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PREFACE

The fourth edition of this book has been updated significantly from previous editions,
and it includes a coauthor. About one-third of the content of this edition is new material,
and these additions are incorporated while maintaining the style and spirit of the previous
editions that are familiar to many of its readess.

The basic outlook and approach remain the same: To develop the subject of proba-
bility theory and stochastic processes as a deductive discipline and to illustrate the theory
with basic applications of engineering interest. To this extent, these remarks made in the
first edition are still valid: “The book is written neither for the handbook-oriented stu-
dents nor for the sophisticated few (if any) who can learn the subject from advanced
mathematical texts. It is written for the majority of engineers and physicists who have
sufficient maturity to appreciate and follow a logical presentation. . .. There is an obvi-
ous lack of continuity between the elements of probability as presented in introductory
courses, and the sophisticated concepts needed in today’s applications. . . . Random vari-
ables, transformations, expected values, conditional densities, characteristic functions
cannot be mastered with mere exposure. These concepts must be clearly defined and
must be developed, one at a time, with sufficient elaboration.”

Recognizing these factors, additional examples are added for further clarity, and
the new topics include the following.

Chapters 3 and 4 have undergone substantial rewriting, Chapter 3 has a detailed
section on Bernoulli’s theorem and games of chance (Sec. 3-3), and several examples
are presented there including the classical gambler’s ruin problem to stimulate student
interest. In Chap. 4 various probability distributions are categorized and illustrated, and
two kinds of approximations to the binomial distribution are carried out to illustrate the
connections among some of the random variables.

Chapter 5 contains new examples illustrating the usefulness of characteristic func-
tions and moment-generating functions including the proof of the DeMoivre-Laplace
theorem.

Chapter 6 has been rewritten with additional examples, and is complete in its
description of two random variables and their properties.

Chapter 8 contains a new Sec. 8-3 on Parameter estimation that includes key ideas
on minimum variance unbiased estimation, the Cramer-Rao bound, the Rao-Blackwell
theorem, and the Bhattacharya bound.
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In Chaps. 9 and 10, sections on Poisson processes are further éxpandcd with
additional results. A new detailed section on random walks has also been added.

Chapter 12 includes a new subsection describing the parametrization of the class
of all admissible spectral extensions given a set of valid autocorrelations.

Because of the importance of queueing theory, the old material has undergone com-
plete revision to the extent that two new chapters (15 and 16) are devoted to this topic.
Chapter 15 describes Markov chains, their properties, characterization, and the long-term
(steady state) and transient behavior of the chain and illustrates various theorems through
several examples. In particular, Example 15-26 The Game of Tennis is an excellent
illustration of the theory to analyze practical applications, and the chapter concludes with
a detailed study of branching processes, which have important applications in queue-
ing theory. Chapter 16 describes Markov processes and queueing theory starting with
the Chapman-Kolmogorov equations and concentrating on the birth-death processes to
illustrate markovian queues. The treatment, however, includes non-markovian queues
and machine servicing problems, and concludes with an introduction to the network of
queues.

The material in this book can be organized for various one semester courses:

¢ Chapters 1 to 6: Probability Theory (for senior and/or first-level graduate students)

¢ Chapters 7 and 8: Statistics and Estimation Theory (as a follow-up course to Proba-
bility Theory)

¢ Chapters 9 to 11: Stochastic Processes (follow-up course to Probability Theory)

» Chapters 12 to 14: Spectrum Estimation and Filtering (follow-up course to Stochastic
Processes)

¢ Chapters 15 and 16: Markov Chains and Queueing Theory (follow-up course to
Probability Theory)

The authors would like to thank Ms, Catherine Fields Shultz, editor for electrical
and computer engineering at McGraw-Hill Publishing Company, Ms. Michelle Flomen-
hoft and Mr. John Griffin, developmental editors, Ms. Sheila Frank, Project manager and
her highly efficient team, and Profs. D. P. Gelopulos, M. Georgiopoulos, A. Haddad,
T. Moon, J. Rowland, C. S. Tsang, J. K. Tugnait, and O. C. Ugweje, for their comments,
criticism, and guidance throughout the period of this revision. In addition, Dr. Michael
Rosse, several colleagues at Polytechnic including Profs. Dante Youla, Henry Bertoni,
Leonard Shaw and Ivan Selesnick, as well as students Dr. Hyun Seok Oh, Mr. Jun Ho Jo.
and Mr. Seung Hun Cha deserve gpecial credit for their valuable help and encouragement
during the preparation of the manuscript. Discussions with Prof. C. Radhakrishna Rao
about two of his key theorems in statistics and other items are also gratefully acknowi-
edged.

Athanasios Papoulis
S. Unnikrishna Pillai
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CHAPTER

1

THE MEANING
OF PROBABILITY

1-1 INTRODUCTION

The theory of probability deals with averages of mass phenomena occurring sequentially
or simultaneously: electron emission, telephone calls, radar detection, quality control,
system failure, games of chance, statistical mechanics, turbulence, noise, birth and death
rates, and queueing theory, among many others.

It has been observed that in these and other fields certain averages approach a
constant value as the number of observations increases and this value remains the same
if the averages are evaluated over any subsequence specified before the experiment is
performed. In the coin experiment, for example, the percentage of heads approaches 0.5
or some other constant, and the same average is obtained if we consider every fourth,
say, toss (no betting system can beat the roulette).

The purpose of the theory is to describe and predict such averages in terms of
probabilities of events. The.probability of an event A is a number P(A) assigned to this
event. This number could be interpreted as:

If the experiment is performed n times and the event A occurs n, times, then, with a high
degree of certainty, the relative frequency n,/n of the occurrence of A is close to P(A):

P(A) = ns/n (1-n
provided that n is sufficiently large.

” <

This mterpretauon is imprecise: The terms “with a high degree of certainty,” “close,”
and “sufficiently large™ have no clear meaning. However, this lack of precision cannot be
avoided. If we attempt to define in probabilistic terms the “high degree of certainty” we
shall only postpone the inevitable conclusion that probability, like any physical theory,
is related to physical phenomena only in inexact terms. Nevertheless, the theory is an
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exact discipline developed logically from clearly defined axioms, and when it is applied
to real problems, it works.

OBSERVATION, DEDUCTION, PREDICTION. In the applications of probability to real
problems, these steps must be clearly distinguished:

Step 1 (physical) We determine by an inexact process the probabilities P(4;) of
certain events A;.

This process could be based on the relationship (1-1) between probability and
observation: The probabilistic data P(A;) equal the observed ratios ng4, /n. It could
also be based on “reasoning” making use of certain symmetries: If, out of a total of ¥
outcomes, there are N, outcomes favorable to the event A, then P(A) = N4/N.

For example, if a Ioaded die is rolled 1000 times and five shows 200 times, then
the probability of five equals 0.2. If the die is fair, then, because of its symmetry, the
probability of five equals 1/6.

Step 2 (conceptual) We assume that probabilities satisfy certain axioms, and by
deductive reasoning we determine from the probabilities P(A;) of certain events A; the
probabilities P(B;) of other events B;.

For example, in the game with a fair die we deduce that the probability of the event
even equals 3/6. Our reasoning is of the form:

If P(l)=---=P@)=g then P(even)=1}

Step 3 (physical) We make a physical prediction based on the numbers P(B;)
50 obtained.

This step could rely on (1-1) applied in reverse: If we perform the experiment n
times and an event B occurs n g times, then ng >~ nP(B).

If, for example, we roll a fair die 1000 times, our prediction is that even will show
about 500 times.

We could not emphasize too strongly the need for separating these three steps in
the solution of a problem. We must make a clear distinction between the data that are
determined empirically and the results that are deduced logically.

Steps 1 and 3 are based on inductive reasoning. Suppose, for example, that we
wish to determine the probability of heads of a given coin. Should we toss the coin 100
or 1000 times? If we toss it 1000 times and the average number of heads equals 0.48,
what kind of prediction can we make on the basis of this observation? Can we deduce
that at the next 1000 tosses the number of heads will be about 4807 Such questions can
be answered only inductively.

In this book, we consider mainly step 2, that is, from certain probabilities we
derive deductively other probabilities. One might argue that such derivafions are mere
tautologies because the results are contained in the assumptions. This is true in the
same sense that the intricate equations of motion of a satellite are included in Newton's
laws.

To conclude, we repeat that the probability P(A) of an event A will be interpreted
as a number assigned to this event as mass is assigned to a body or resistance to 2
resistor. In the development of the theory, we will not be concerned about the “physical
meaning” of this number. This is what is done in circuit analysis, in electromagnetic
theory, in classical mechanics, or in any other scientific discipline. These theories are, of
course, of no value to physics unless they help us solve real problems. We must assign
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specific, if only approximate, resistances to real resistors and probabilities to real events
(step 1); we must also give physical meaning to all conclusions that are derived from the
theory (step 3). But this link between concepts and observation must be separated from
the purely logical structure of each theory (step 2).

As an illustration, we discuss in Example 1-1 the interpretation of the meaning of
resistance in circuit theory.

P> Aresistoris commonly viewed as atwo-terminal device whose voltage is proportional
to the current
v(?)
T
This, however, is only a convenient abstraction. A real resistor is a complex device
with distributed inductance and capacitance having no clearly specified terminals. A
relationship of the form (1-2) can, therefore, be claimed only within certain errors, in
certain frequency ranges, and with a variety of other qualifications. Nevertheless, in
the development of circuit theory we ignore all these uncertainties. We assume that the
resistance R is a precise number satisfying (1-2) and we develop a theory based on
(1-2) and on Kirchhoff’s laws. It would not be wise, we all agree, if at each stage of the
development of the theory we were concerned with the rrue meaning of R. <€

(1-2)

1-2 THE DEFINITIONS

In this section, we discuss various definitions of probability and their roles in our
investigation.

Axiomatic Definition

We shall use the following concepts from set theory (for details see Chap. 2): The certain
event § is the event that occurs in every trial. The union AU B = A + B of two events A
and B is the event that occurs when A or B or both occur. The intersection ANB = AB
of the events A and B is the event that occurs when both events A and B occur. The
events A and B are muiually exclusive if the occurrence of one of them excludes the
occurrence of the other.

We shall illustrate with the die experiment: The certain event is the event that
occurs whenever any one of the six faces shows. The union of the events even and less
than 3 is the event I or 2 or 4 or 6 and their intersection is the event 2."The events even
and odd are mutually exclusive.

The axiomatic approach to probability is based on the following three postulates
and on nothing else: The probability P(A) of an event A is a2 non-negative number
assigned to this event:

P(A)>0 (1-3)
The probability of the certain event equals 1:

PO =1 (1-4)
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If the events A and B are mutually exclusive, then
P(AU B) = P(A) + P(B) (1-5)

This approach to probability is relatively recent (A.N. Kolmogorov,! 1933). However,
in our view, it is the best way to introduce a probability even in elementary courses.
It emphasizes the deductive character of the theory, it avoids conceptual ambiguities,
it provides a solid preparation for sophisticated applications, and it offers at least a
beginning for a deeper study of this important subject.

The axiomatic development of probability might appear overly mathematical.
However, as we hope to show, this is not so. The elements of the theory can be ade-
quately explained with basic calculus.

Relative Frequency Definition

The relative frequency approach is based on the following definition: The probability
P(A) of an event A is the limit

P(A) = lim ~ (1-6)

where n,4 is the number of occurrences of A and » is the number of trials.

This definition appears reasonable. Since probabilities are used to describe relative
frequencies, it is natural to define them as limits of such frequencies. The problem
associated with a priori definitions are eliminated, one might think, and the theory is
founded on observation.

However, although the relative frequency concept is fundamental in the applica-
tions of probability (steps 1 and 3), its use as the basis of a deductive theory (step 2) must
be challenged. Indeed, in a physical experiment, the numbers n4 and n might be large
but they are only finite; their ratio cannot, therefore, be equated, even approximately, to
a limit. If (1-6) is used to define P(A), the limit must be accepted as a hypothesis, not
as a number that can be determined experimentally.

Early in the century, Von Mises? used (1-6) as the foundation for a new theory.
At that time, the prevailing point of view was still the classical, and his work offered a
welcome alternative to the a priori concept of probability, challenging its metaphysical
implications and demonstrating that it leads to useful conclusions mainly because it
makes implicit use of relative frequencies based on our collective experience. The use of
(1-6) as the basis for deductive theory has not, however, enjoyed wide acceptance even
though (1-6) relates P(A) to observed frequencies. It bas generally been recognized that
the axiomatic approach (Kolmogorov) is superior. i

We shall venture a comparison between the two approaches using as illustration
the definition of the resistance R of an ideal resistor. We can define R as a limit

R = tim 29

n=+00 [, (1)

1A.N. Kolmogorov: Grundbegriffe der Wahrscheinlichkeits Rechnung, Ergeb. Math und ihrer Grensg, vol. 2,
1933.

2Richard Von Mises: Probability, Statistics and Truth, English edition, H. Geiringer, ed., G. Allen and Unwin
Ltd., London, 1957.
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where e(t) is a voltage source and i,(t) are the currents of a sequence of real resistors
that tend in some sense to an ideal two-terminal element. This definition might show
the relationship between real resistors and ideal elements but the resulting theory is
complicated. An axiomatic definition of R based on Kirchhoff’s laws is, of course,
preferable,

Classical Definition

For several centuries, the theory of probability was based on the classical definition. This
concept is used today to determine probabilistic data and as a working hypothesis. In the
following, we explain its significance.
According to the classical definition, the probability P(A) of an event A is deter-
mined a priori without actual experimentation: It is given by the ratio
N4
P(A) = N Q-7
where N is the number of possible outcomes and N4 is the number of outcomes that are
Javorable to the event A.
In the die experiment, the possible outcomes are six and the outcomes favorable
to the event even are three; hence P(even) = 3/6.
It is important to note, however, that the significance of the numbers N and N, is
not always clear. We shall demonstrate the underlying ambiguities with Example 1-2.

P> We roll two dice and we want to find the probability p that the sum of the numbers
that show equals 7.

To solve this problem using (1-7), we must determine the numbers N and N,.
(a) We could consider as possible outcomes the 11 sums 2, 3, ..., 12. Of these, only
one, namely the sum 7, is favorable; hence p = 1/11. This result is of course wrong. (&)
‘We could count as possible outcomes all pairs of numbers not distinguishing between the
first and the second die. We have now 21 outcomes of which the pairs (3, 4), (5, 2), and
(6, 1) are favorable. In this case, Ny = 3 and N = 21; hence p = 3/21. This result is
also wrong. (¢) We now reason that the above solutions are wrong because the outcomes
in (a) and (b) are not equally likely. To solve the problem “correctly,” we must count all
pairs of numbers distinguishing between the first and the second die. The total number
of outcomes is now 36 and the favorable outcomes are the six pairs (3, 4), (4, 3), (5, 2),
(2,5), (6, 1), and (1, 6); hence p = 6/36. o

Example 1-2 shows the need for refining definition (1-7). The improved version
reads as follows:

The probability of an event equals the ratio of its favorable outcomes to the total number of
outcomes provided that all outcomes are equally likely.

As we shall presently see, this refinement does not eliminate the problems associ-
ated with the classical definition.
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EXAMPLE 1-3

BERTRAND
PARADOX

Notes 1 The classical definition was introduced as a consequence of the principle of insufficient req-
son®: “In the absence of any prior knowledge, we must assume that the events A; have equal probabili-
ties.” This conclusion is based on the subjective interpretation of probability as a measure of our state of
knowledge about the events A;. Indeed, if it were not true that the events A; have the same probability,
then changing their indices we would obtain different probabilities without a change in the state of our
knowledge.

2. As we explain in Chap. 14, the principle of insufficient reason is equivalent to the principle of
maximum entropy.

CRITIQUE. The classical definition can be questioned on several grounds.

A. The term equally likely used in the improved version of (1-7) means, actually,
equally probable. Thus, in the definition, use is made of the concept to be defined.
As we have seen in Example 1-2. this often leads to difficulties in determining N
and N, A

B. The definition can be applied only to a limited class of problems. In the die
experiment. for example, it is applicable only if the six faces have the same
probability. If the die is loaded and the probability of four equals 0.2, say. the
number 0.2 cannot be derived from (1-7).

C. Itappears from (1-7) that the classical definition is a consequence of logical
imperatives divorced from experience. This, however, is not so. We accept certain
alternatives as equally likely because of our collective experience. The probabilities
of the outcomes of a fair die equal 1/6 not only because the die is syrametrical but
also because it was observed in the long history of rolling dice that the ratio n, /n
in (1-1) is close to 1/6. The next illustration is, perhaps, more convincing:

We wish to determine the probability p that a newborn baby is a boy. It is
generally assumed that p = 1/2; however, this is not the result of pure reasoning.
In the first place, it is only approximately true that p = 1/2. Furthermore, without
access to long records we would not know that the boy—girl alternatives are equally
likely regardless of the sex history of the baby’s family, the season or place of its
birth, or other concejvable factors. It is only after long accumulation of records that
such factors become irrelevant and the two alternatives are accepted as equally
likely.

D. If the number of possible outcomes is infinite, then to apply the classical definition
we must use length, area, or some other measure of infinity for determining the
ratio Na/N in (1-7). We illustrate the resulting difficulties with the following
example known as the Bertrand paradox. =

P> We are given a circle C of radius r and we wish to determine the probability p that
the length 7 of a “randomly selected” cord AB is greater than the length r4/3 of the
inscribed equilateral triangle.

3H. Bernoulli, Ars Conjectandi, 1713 )
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C D F
A a & % .
B
(> E )
A 4
X
(a) (b) ©
FIGURE 1-1

We shall show that this problem can be given at least three reasonable solutions.

L. 'If the center M of the cord AB lies inside the circle C; of radius r/2 shown in
Fig. 1-1a, then ! > r+/3. It is reasonable, therefore, to consider as favorable
outcomes all points inside the circle C, and as possible oatcomes all points inside
the circle C. Using as measure of their numbers the corresponding areas 7rr%/4
and wr2, we conclude that

_mrt/4 1
T w2 4
II. We now assume that the end A of the cord AB is fixed. This reduces the number of

possibilities but it has no effect on the value of p because the number of favorable
locations of B is reduced proportionately. If B is on the 120° arc DBE of Fig. 1-1b,
then! > /3. The favorable outcomes are now the points on this arc and the total
outcomes all points on the circumference of the circle C. Using as their
measurements the corresponding lengths 27r7/3 and 2xr, we obtain

_2wr/3 1

2rr 3

III. We assume finally that the direction of AB is perpendicular to the line FX of
Fig. 1-1c. As in II this restriction has no effect on the value of p. If the center M of
AB is between G and H, then [ > r+/3. Favorable outcomes are now the points on
GH and possible outcomes all points on FK. Using as their measures the respective
Iengths r and 2r, we obtain
|

_r__l
p—2r_2

We have thus found not one but three different solutions for the.same problem!
One might remark that these solutions correspond to three different experiments. This
is true but not obvious and, in any case, it demonstrates the ambiguities associated with
the classical definition, and the need for a clear specification of the outcomes of an
experiment and the meaning of the terms “possible” and “favorable.”

VALIDITY. We shall now discuss the value of the classical definition in the determipation
of probabilistic data and as a working hypothesis.

A. In many applications, the assumption that there are N equally likely alternatives is
well established through long experience. Equation (1-7) is then accepted as
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EXAMPLE 1-4

-self-evident. For example, “If a ball is selected at random from a box containing m
black and n white balls, the probability that it is white equals n/(m + n),” or, “If a
call occurs at random in the time interval (0, T'). the probability that it occurs in the
interval (#;. 1) equals (&2 — 1)/ rr

Such conclusions are of course, valid and useful; however, their validity rests
on the meaning of the word random. The conclusion of the last example that “the
unknown probability equals (t; — )/ T is not a consequence of the “randomness”
of the call. The two statements are merely equivalent and they follow not from
a priori reasoning but from past records of telephone calls.

B. In a number of applications it is impossible to determine the probabilities of
various events by repeating the underlying experiment a sufficient number of times.
In such cases, we have no choice but to assume that certain alternatives are equally
likely and to determine the desired probabilities from (1-7). This means that we use
the classical definition as a working hypothesis. The hypothesis is accepted if its
observable consequences agree with experience, otherwise it is rejected. We
illustrate with an important example from statistical mechanics.

P> Given n particles and m > n boxes. we place at random each particle in one of the
boxes. We wish to find the probability p that in n preselected boxes, one and only one
particle will be found.

Since we are interested only in the underlying assumptions, we shall only state the
results (the proof is assigned as Prob. 4 -34). We also verify the solution for n = 2 and
m = 6. For this special case, the problem can be stated in terms of a pair of dice: The
m = 6 faces correspond to the m boxes and the n = 2 dice to the n particles. We assume
that the preselected faces (boxes) are 3 and 4.

The solution to this problem depends on the choice of possible and favorable
outcomes We shall consider these three celebrated cases:

MAXWELL-BOLTZMANN STATISTICS
If we accept as outcomes all possible ways of placing n particles in m boxes distinguishing
the identity of each particle, then

For n = 2 and m = 6 this yields p = 2/36. This is the probability for getting 3, 4 in the
game of two dice.

BOSE-EINSTEIN STATISTICS
If we assume that the particles are not distinguishable, that is, if all their permutations
count as one, then

<

_ (m—=1)in!
P=¥m—1
Forn = 2 and m = 6 this yields p = 1/21. Indeed., if we do not distinguish between

the two dice, then N = 21 and N4 = | because the outcomes 3, 4 and 4, 3 are counted
as one.
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FERMI-DIRAC STATISTICS
If we do not distinguish between the particles and also we assume that in each box we
are allowed to place at most one particle, then

__nl(m—n)!

m!

Forn = 2 and m = 6 we obtain p = 1/15. This is the probability for 3, 4 if we do not
distinguish between the dice and also we ignore the outcomes in which the two numbers
that show are equal.

One might argue, as indeed it was in the early years of statistical mechanics, that
only the first of these solutions is logical. The fact is that in the absence of direct or indirect
experitnental evidence this argument cannot be supported. The three models proposed
are actually only hypotheses and the physicist accepts the one whose consequences agree
with experience.

C. Suppose that we know the probability P(A) of an event A in experiment 1 and the
probability P(B) of an event B in experiment 2. In general, from this information
we cannot determine the probability P(A B) that both events A and B will occur.
However, if we know that the two experiments are independent, then

P(AB) = P(A)P(B) (1-8)

In many cases, this independence can be established a priori by reasoning that the
outcomes of experiment 1 have no effect on the outcomes of experiment 2. For
example, if in the coin experiment the probability of heads equals 1/2 and in the
die experiment the probability of even equals 1/2, then, we conclude “logically,”
that if both experiments are performed, the probability that we get heads on the
coin and even on the die equals 1/2 x 1/2. Thus, as in (1-7), we accept the validity
of (1-8) as a logical necessity without recourse to (1-1) or to any other direct
evidence. .

D. The classical definition can be used as the basis of a deductive theory if we accept
(1-7) as an assumption. In this theory, no other assumptions are used and postulates
(1-3) to (1-5) become theorems. Indeed, the first two postulates are obvious and the
third follows from (1-7) because, if the events A and B are mutually exclusive, then
Nuass = N4+ Ng; hence

Navs Na Npg

—— = —+ — = P(A)+ P(B

N N TN (4) + P(B)

As we show in (2-25), however, this is only a very special case of the axiomatic

approach to probability.

P(AUB) =

1-3 PROBABILITY AND INDUCTION

In the applications of the theory of probability we are faced with the following question:
Suppose that we know somehow from past observations the probability P(A) of an event
A in a given experiment. What conclusion can we draw about the occurrence of this event
in a single future performance of this experiment? (See also Sec. 8-1.)
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We shall answer this question in two ways depending on the size of P(4): We
shall give one kind of an answer if P(A) is a number distinctly different from 0 or
1, for example 0.6, and a different kind of an answer if P(A) is close to 0 or 1, for
example 0.999. Although the boundary between these two cases is not sharply defined,
the corresponding answers are fundamentally different.

Case I Suppose that P(A) = 0.6. In this case, the number 0.6 gives us only
a “certain degree of confidence that the event A will occur.” The known probability is
thus used as a “measure of our belief” about the occurrence of A in a single trial. This
interpretation of P(A) is subjective in the sense that it cannot be verified experimentally.
In a single trial, the event A will either occur or will not occur. If it does not, this will
not be a reason for questioning the validity of the assumption that P(A) = 0.6.

Case 2 Suppose, however. that P(4) = 0.999. We can now state with practical
certainty that at the next trial the event A will occur. This conclusion is objective in
the sense that it can be verified experimentally. At the next trial the event A must
occur. If it does not, we must seriously doubt, if not outright reject, the assumption
that P(A) = 0.999.

The boundary between these two cases, arbitrary though it is (0.9 or 0.999997),
establishes in a sense the line separating “soft” from “hard” scientific conclusions. The
theory of probability gives us the analytic tools (step 2) for transforming the “subjective”
staternents of case 1 to the “objective” statements of case 2. In the following, we explain
briefly the underlying reasoning.

As we show in Chap. 3, the information that P(A) = 0.6 leads to the conclusion
that if the experiment is performed 1000 times, then “almost certainly” the number of
times the event A will occur is between 550 and 650. This is shown by considering the
repetition of the original experiment 1000 times as a single outcome of a new experiment,
In this experiment the probability of the event

A, = {the number of times A occurs is between 550 and 650)

equals 0.999 (see Prob. 4-25). We must, therefore, conclude that (case 2) the event A,
will occur with practical certainty.

We have thus succeeded, using the theory of probability, to transform the “sub-
jective” conclusion about A based on the given information that P(A) = 0.6, to the
“objective™ conclusion about A based on the derived conclusion that P(A,) = 0.999.
We should emphasize, however, that both conclusions rely on inductive reasoning. Their
difference, although significant, is only quantitative. As in case 1, the “objective” conclu-
sion of case 2 is not a certainty but only an inference. This, however, should not surprise
us; after all, no prediction about future events based on past experience cin be accepted
as logical certainty.

Our inability to make categorical statements about future events is not limited
to probability but applies to all sciences. Consider, for example, the development of
classical mechanics. It was observed that bodies fall according to certain patterns, and
on this evidence Newton formulated the laws of mechanics and used them to predict
future events. His predictions, however, are not logical.certainties but only plausible
inferences. To “prove” that the future will evolve in the predicted manner we must
invoke metaphysical causes.
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1-4 CAUSALITY VERSUS RANDOMNESS

We conclude with a brief comment on the apparent controversy between causality and
randomness. There is no conflict between causality and randomness or between deter-
minism and probability if we agree, as we must, that scientific theories are not discoveries
of the laws of nature but rather inventions of the human mind. Their consequences are
presented in deterministic form if we examine the results of a single trial; they are pre-
sented as probabilistic statements if we are interested in averages of many trials. In both
cases, all statements are qualified. In the first case, the uncertainties are of the form “with
certain errors and in certain ranges of the relevant parameters”; in the second, “with a
high degree of certainty if the number of trials is large enough.” In the next example, we
illustrate these two approaches.

.

P> A rocket leaves the ground with an initial velocity v forming an angle # wath the
horizontal axis (Fig. 1-2). We shall determine the distance d = OB from the origin to
the reentry point B.
From Newton’s law it follows that
2
d= l’g— sin 29 (1:9)

This seems to be an unqualified consequence of a causal law; however, this is not
so. The result is approximate and it can be given a probabilistic interpretation.

Indeed, (1-9) is not the solution of a real problem but of an idealized model in
which we have neglected air friction, air pressure, variation of g, and other uncertainties
in the values of v and 8. We must, therefore, accept (1-9) only with qualifications. It
holds within an error £ provided that the neglected factors are smaller than §.

Suppose now that the reentry area consists of numbered holes and we want to find
the reentry hole. Because of the uncertainties in v and 8, we are in no position to give a
deterministic answer to our problem. We can, however, ask a different question: If many
rockets, nominally with the same velocity, are launched, what percentage will enter the
nth hole? This question no longer has a causal answer; it can only be given a random
interpretation.

Thus the same physical problem can be subjected either to a deterministic or to
a probabilistic analysis. One might argue that the problem is inherently deterministic
because the rocket has a precise velocity even if we do not know it. If we did, we would
know exactly the reentry hole. Probabilistic interpretations are, therefore. necessary
because of our ignorance.

Such arguments can be answered with the statement that the plysicists are not
concerned with what is rrue but only with what they can observe.

=N

FIGURE 1-2
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Historical Perspective

Probability theory has its humble origin in problems related to gambling and games
of chance. The origin of the theory of probability goes back to the middle of the 17th
century and is connected with the works-of Pierre de Fermat (1601-1665), Blaise Pascal
(1623-1662), and Christian Huygens (1629-1695). In their works, the concepts of the
probability of a stochastic event and the expected or mean value of a random variable can
be found. Although their investigations were concerned with problems connected with
games of chance, the importance of these new concepts was clear to them, as Huygens
points out in the first printed probability text* (1657) On Calculations in Games of
Chance: “The reader will note that we are dealing not only with games, but also that
the foundations of a very interesting and profound theory are being laid here.” Later,
Jacob Bernoulli (1654-1705), Abraham De Moivre (1667-1754), Rev. Thomas Bayes
(1702-1761), Marquis Pierre Simon Laplace (1749-1827), Johann Friedrich Carl Gauss
(1777-1855), and Siméon Denis Poisson (1781-1840) contributed significantly to the
development of probability theory. The notable contributors from the Russian school
include P.L. Chebyshev (1821-1894), and his students A. Markov (1856-1922) and A.M.
Lyapunov (1857-1918) with important works dealing with the law of large numbers.

The deductive theory based on the axiomatic definition of probability that is popular
today is mainly attributed to Andrei Nikolaevich Kolmogorov, who in the 1930s along
with Paul Lévy found a close connection between the theory of probability and the
mathematical theory of sets and functions of a real variable. Although Emile Borel had
arrived at these ideas earlier, putting probability theory on this modern frame work is
mainly due to the early 20th century mathematicians.

Concluding Remarks

In this book, we present a deductive theory (step 2) based on the axiomatic definition
of probability. Occasionally, we use the classical definition but only to determine prob-
abilistic data (step 1).

To show the link between theory and applications (step 3), we give also a rela-
tive frequency interpretation of the important results. This part of the book, written in
small print under the title Frequency interpretation. does not obey the rules of deductive
reasoning on which the theory is based.

4 Although the ecentric scholar (and gambler) Girolamo Cardano (1501-1576) had written The Book of
Games and Chance around 1520, it was not published until 1663. Cardano had left behind 131 printed works
and 111 additional manuscripts.
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2

THE AXIOMS
OF PROBABILITY

2-1 SET THEORY

A set is a collection of objects called elements. For example, “car, apple, pencil™is a set
whose elements are a car, an apple, and a pencil. The set “heads, tails” has two elements.
The set “1, 2, 3, 5” has four elements.

A subset B of a set A is another set whose elements are also elements of A. All
sets under consideration will be subsets of a set S, which we shall call space.

The elements of a set will be identified mostly by the Greek letter ¢. Thus

A={§h---»§n} 2-1)

will mean that the set A consists of the elements ¢i, .. ., {». We shall also identify sets
by the properties of their elements. Thus

. A = {all positive integers} 2-2)

will mean the set whose elements are the numbers 1,2, 3, ....
The notation

LeA G €A :

will mean that ¢; is or is not an element of A.

The empty or null set is by definition the set that contains no elements. This set
will be denoted by {@}.

If a set consists of n elements, then the total number of its subsets equals 27.

Note Inprobability theory, we assign probabilities to the subsets (events) of S and we define various functions
(random variables) whose domain consists of the elements of S. We must be careful, therefore, to distinguish
between the element { and the set {{'} consisting of the single element {.

15
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EXAMPLE 2-1

EXAMPLE 2-2

EXAMPLE 2-3

*  FIGURE2-1
P> We shall denote by f; the faces of a die. These faces are the elements of the set
S={fi,..., fs). In this case, n = 6; hence S has 2 = 64 subsets:
@, £} i Bl U1, ou fohienns S <
In general, the elements of a set are arbitrary objects. For example, the 64 subsets
of the set § in Example 2-1 can be considered as the elements of another set. In Exam-

ple 2-2, the elements of S are pairs of objects. In Example 2-3, S is the set of points in
the square of Fig. 2-1.

P> Suppose that a coin is tossed twice. The resulting outcomes are the four objects
hh, ht, th, tt forming the set
== {hh, ht, th, tt}

where hh is an abbreviation for the element “heads~heads” The set § has 2* =
subsets. For example,

= {heads at the first toss} = {hh, ht)
= {only one head showed} = {ht, th}
C = {heads shows at least once} = {hh, ht, th}

In the first equality, the sets A, B, and C are represented by their properties as in (2-2);
in the second, in terms of their elements as in (2-1). <

P> In this example, S is the set of all points in the square of Fig. 2-1. Its elements are
all ordered pairs of numbers (x, y) where

0<x<T 0<y=x<T

The shaded area is a subset A of S consisting of all points (x, y) suchthat—b < x—y < a.
The notation

A={-bzx-y=<af

describes A in terms of the properties of x and y as in (2-2). <
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CCBCA

FIGURE 2-2 FIGURE 2-3 FIGURE 2-4

Set Operations

In the following, we shall represent a set S and its subsets by plane figures as in Fig. 2-2
(Venn diagrams).

" The notation B C A or A D B will mean that B is a subset of A (B belongs to A).
that is, that every element of B is an element of A. Thus, for any A,

@lcAcAcCS

Transitivity fCCcBandBC AthenCC A
Equality A=Bifff ACBandBC A

UNIONS AND INTERSECTIONS. The sum or union of two sets A and B is a set whose
elements are all elements of A or of B or of both (Fig. 2-3). This set will be written in
the form

A+B or AUB

This operation is commutative and associative:
AUB=BUA (AUB)UC=AU(BUO)
We note that, if B C A, then AU B = A. From this jt follows that
AUA=A AUB}=A SUA=S

The product or intersection of two sets A and B is a set consisting of all elements
that are coramon to the set A and B (Fig. 2-3). This set is written in the form

AB or ANB
This operation is commutative, associative, and distributive (Fig. 2-4):
AB = BA (AB)C = A(BC) A(BUC)=ABUAC
"We note thatif A C B, then AB = A. Hence

AA=A {B)A = (0} AS=A

"The term iff is an abbreviation for if and only If.
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FIGURE 2-5 FIGURE 2-6 FIGURE 2-7

Note If two sets A and B are described by the properties of their elemeats as in (2-2), then their intersection
AB will be specified by including these properties in braces. For example, if

§$={1,2,3,4,5,6} A={even} B = {less than 5}
then? '
AB = [even, less than 5} = {2, 4} (2-3)

MUTUALLY EXCLUSIVE SETS. Two sets A and B are said to be mutually exclusive
or disjoint if they have no common elements, that is, if

AB = {B)
Several sets A}, As, ... are called mutually exclusive if
AjA; = {0} forevery iand j#i

PARTITIONS. A partition U of a set S is a collection of mutually exclusive subsets A,
of S whose union equals § (Fig. 2-5).

AjU.---UA, =S AlA; = {0) i#]J -4
Thus

U={Al...,A)]
COMPLEMENTS. The complement A of a set A is the set consisting of all elements of
S that are not in A (Fig. 2-6). From the definition it follows that
AUZ=S AA={0) A=A S={ {@=s

IfBC A thenBDA;ifA=B,then4 =B.

DE MORGAN’S LAW. Clearly (see Fig. 2-7) .
' AUB=AB AB=AUB (2-5)

2We shouild stress the difference in the meaning of commas in (2-1) and (2-3). In (2-1) the braces include all
elements &; and

(;11 ---)cll} = {II}U"'U{;H}
is the union of the sets {f;}. In (2-3) the braces include the properties of the sets {even} and {less than 5}, and

{even, less than 5} = {even} N {less than 5)
is the intersection of the sets {even} and {less than 5}.
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Repeated application of (2-5) leads to this: If in a set identity we replace all sets
by their complements, all unions by intersections, and all intersections by unions, the
identity is preserved.

We shall demonstrate this using the identity as an example:

A(BUC) = ABUAC (2-6)
From (2-5) it follows that ¥
A(BUC)=AUBUC=AUBC

Similarly,
ABUAC = (AB)(AC)=(AUB)AUD)
and since the two sides of (2-6) are equal, their complements are also equal. Hence
AUBC=(AUB)AUO) @7

DUALITY PRINCIPLE. As we know, § = (@} and {@) = S. Furthermore, if in an
identity like (2-7) all overbars are removed, the identity is preserved. This leads to the
following version of De Morgan’s law:

Ifin a set identity we replace all unions by intersections, all intersections by unions,
and the sets § and {#] by the sets {#}} and S, the identity is preserved.

Applying these to the identities

A(BUC)=ABUAC SUA=S
we obtain the identities

AUBC=(AUBAUO) {2)A = {8}

2-2 PROBABILITY SPACE

In probability theory, the following set terminology is used: The space, S or Q is called
the certain eveny, its elements experimental outcomes, and its subsets events. The empty
set {@} is the impossible event, and the event ({;) consisting of a single element ¢; is an
elementary event. All events will be identified by italic letters.

In the applications of probability theory to physical problems, the identification of
experimental outcomes is not always unique. We shall illustrate this ambiguity with the
die experiment as might be interpreted by players X, Y, and Z.

X says that the outcomes of this experiment are the six faces of the'die forming the
space S = {fi,..., fe}. This space has 28 = 64 subsets and the event {even} consists
of the three outcomes f2, fa, and f.

Y wants to bet on even or odd only. He argues, therefore that the experiment has
only the two outcomes even and odd forming the space § = {even, odd}. This space has
only 22 = 4 subsets and the event {even} consists of a single outcome.

Z bets that one will show and the die will rest on the left side of the table. He
maintains, therefore, that the experiment has infinitely many outcomes specified by the
coordinates of its center and by the six faces. The event {even} consists not of one or of
three outcomes but of infinitely many.
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THE AXIOMS

In the following, when we talk about an experiment, we shall assume that its
outcomes are clearly identified. In the die experiment, for example, S will be the set
consisting of the six faces f},..., fs.

In the relative frequency interpretation of various results, we shall use the following
terminology.

Trial A single performance of an experiment will be called a trial. At each trial
we observe a single outcome ¢;. We say that an event A occurs during this trial if it
contains the element ;. The certain event occurs at every trial and the impossible event
never occurs. The event A U B occurs when A or B or both occur. The event A B occurs
when both events A and B occur. If the events A and B are mutually exclusive and A
occurs, then B does not occur. If A C B and A occurs, then B occurs. At each trial,
either A or A occurs.

If, for exarnple, in the die experiment we observe the outcome fs, then the event
{fs}, the event {0dd}, and 30 other events occur.

P> We assign to each event A a number P (A), which we call the probability of the event:
A. This number is so chosen as to satisfy the following three conditions:

I P(A) =0 (2-8)
I PSS =1 29
m if AB={@} then P(AUB)=P(A)+ P(B) (2-10)

<

These conditions are the axioms of the theory of probability. In the development
of the theory, all conclusions are based directly or indirectly on the axioms and only on
the axioms. Some simple consequences are presented next.

PROPERTIES. The probability of the impossible event is 0:
P{@)=0 21D
Indeed, A{@} = {@} and A U {B) = A; therefore [see (2-10)]
P(A) = P(AUD) = P(A) + P{@}
For any A,
PA)=1-PA)<1 (2-12)
because AUA = Sand A4 = (@); hence
1=P(S)=P(AUA) = P(A)+ P(A)
For any A and B,
P(AUB) = P(A)+ P(B)— P(AB) < P(A)+ P(B) (2-13)

To prove this, we write the events A U B and B as unions of two mutually exclusive
events:

AUB=AUAB B=ABUAB
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Therefore [see (2-10)]
P(AUB) = P(A)+ P(AB) P(B) = P(AB)+ P(AB)

Eliminating P (A B), we obtain (2-13).
Finally, if B C A, then

P(A) = P(B) + P(AB) > P(B) (2-14)
because A = BU AB and B(AB) = {@).

Frequency interpretation The axioms of probability are so chosen that the resulting

theory gives a satisfactory representation of the physical world. Probabilities as used in real

. problems must, therefore, be compatible with the axioms. Using the frequency interpretation
ny

of probability, we shall show that they do.
I. Clearly, P(A) = Obecauseny, > Qandn > 0.
II. P(S) = 1 because § occurs at every trial; hence n, = n.
III. X AB = (0}, thenn,,p = n, + ny because if A U B occurs, then A or B occurs but
not both. Hence

n n n
P(AU B) ~ ‘:" =T‘+—n€=P(A)+P(B)

EQUALITY OF EVENTS. Two events A and B are called egual if they consist of the
same elements. They are called equal with probability 1 if the set

(AUB)Y@AB)=ABUAB

consisting of all outcomes that are in A or in B but not in AB (shaded area in Fig. 2-8)
has zero probability.

From the definition it follows that (see Prob. 2-4) the events A and B are equal
with probability 1 iff

P(A) = P(B) = P(AB) (2-15)

If P(A) = P(B), then we say that A and B are equal in probability. In this case,
no conclusion can be drawn about the probability of AB. In fact, the events A and B
might be mutually exclusive.

From (2-15) it follows that, if an event N equals the impossible event with proba-
bility 1 then P(¥) = 0. This does not, of course, mean that N = {@}.

ABU AR

FIGURE 2-8
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FIELDS

The Class F of Events

Events are subsets of S to which we have assigned probabilities. ‘As we shall presently
explain, we shall not consider as events all subsets of S but only a class F of subsets,

One reason for this might be the nature of the application. In the die experiment,
for example, we might want to bet only on even or odd. In this case, it suffices to consider
as events only the four sets {@}, {even}, {odd}, and S.

The main reason, however, for not including all subsets of S in the class F of
events is of a mathematical natore: In certain cases involving sets with infinitely many
outcomes, it is impossible to assign probabilities to all subsets satisfying all the axioms
including the generalized form (2-21) of axiom IIL

The class F of events will not be an arbitrary collection of subsets of S. We shall
assume that, if A and B are events, then A U B and AB are also events. We do so
because we will want to know not only the probabilities of various events, but also the
probabilities of their unions and intersections. This leads to the concept of a field.

P Afield F is a nonempty class of sets such that:

if AeF then A€eF (2-16)
If AeF and BeF then AUBeF 2-17)

<

These two properties give a minimum set of conditions for F to be a field. All
other properties follow:

If AeF and Be F then ABeF (2-18)

Indeed, from (2-16) it follows that A € F and B € F. Applying (2-17) and (2-16) to
the sets A and B, we conclude that
AUBeF AUB=ABeF
A field contains the certain event and the impossible event:
SeF {(B}e F (2-19)

Indeed, since E is not empty, it contains at least one element A; therefore [see (2-16)] it
also contains A . Hence

AUA=SeF AA={@)eF

From this it follows that all sets that can be written as unions of intersections
of finitely many sets in F are also in F. This is not, however, necessarily the case for
infinitely many sets.

Borel fields. Suppose that Ay, ..., A,,... is an infinite sequence of sets in F. If the
union and intersection of these sets also belongs to F, then F is called a Borel field.

The class of all subsets of a set S is a Borel field. Suppose that C is a class of
subsets of S that is not a field. Attaching to it other subsets of S, all subsets if necessary,
we can form a field with C as its subset. It can be shown that there exists a smallest Borel
field containing all the elements of C.
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m P> Suppose that S consists of the four elements a, b. ¢, and d and C consists of the

AXIOM OF

INFINITE
ADDITIVITY

sets {a} and {b}. Attaching to C the complements of {a} and {b} and their unions and
intersections, we conclude that the smaliest field containing {a} and {b} consists of the sets

{8} {a} (b} {a,b} {c.d} {b,c.d} {a,c,d} § <4.

EVENTS. In probability theory, events are certain subsets of S forming a Borel field.
This enables us to assign probabilities not only to finite unions and intersections of
events, but also to their limits.

For the determination of probabilities of sets that can be expressed as limits, the
following extension of axiom III is necessary.

Repeated application of (2-10) leads to the conclusion that, if theevents Ay, . . ., A,
are mutually exclusive, then

P(A U---UA)=P(AD+ -+ P(A) (2-20)
The extension of the preceding to infinitely many sets does not follow from (2-10). It is
an additional condition known as the axiom of infinite additivity:
} Ila. If the events A}, A2, ... are mutually exclusive, then
P(AJjUAU--)Y=P(AD+ P(AD) +--- (2-21)

We shall assume that all probabilities satisfy axioms I, IL, II1, and lla.

Axiomatic Definition of an Experiment

In the theory of probability, an experiment is specified in terms of the following concepts:

1. The set S of all experimental outcomes.
2. The Borel field of all events of S.
3. The probabilities of these events.

The letter S will be used to identify not only the certain event, but also the entire
experiment.

We discuss next the determination of probabilities in experiments with finitely
many and infinitely many elements. s

COUNTABLE SPACES. If the space S consists of N outcomes and N is a finite number,
then the probabilities of all events can be expressed in terms of the probabilities

P{L) = pi

of the elementary events {{;}. From the axioms it follows, of course, that the numbers
p; must be nonnegative and their sum must equal 1:

20 pi+---+py=1 (2-22)
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Suppose that A is an event consisting of the r elements Z;,. In this case, A can be
written as the union of the elementary events {{;.}. Hence [see (2-20)]

PAY=P{g}+ -+ P{t}=pu+ + D (2-23)

This is true even if S consists of an infinite but countable number of elements

;l: ;21 R [SCC (2'21)]-
Classical definition If S consists of N outcomes and the probabilities p; of the
elementary events are all equal, then

1

pi=% (2-24)
In this case, the probability of an event A consisting of r elements equals r/N:
r
PA)=— -
(4) N (2-25)

This very special but important case is equivalent to the classical definition (1-7),
with one important difference, however: In the classical definition, (2-25) is deduced as
a logical necessity; in the axiomatic development of probability, (2-24), on which (2-25)
is based, is a mere assumption.

P> (a) In the coin experiment, the space S consists of the outcomes / and t:
S = (h,t}

and its events are the four sets {3}, {1}, {#}, S.If P{h} = pand P{t} = g,thenp+g=1.
(b) We consider now the experiment of the toss of a coin three times. The possible
outcomes of this experiment are:

hhh, hht, hth, htt thh, tht, tth, tet

We shall assume that all elementary events have the same probability as in (2-24) (fair
coin). In this case, the probability of each elementary event equals 1/8. Thus the proba-
bility P{hhh} that we get three heads equals 1/8. The event

{heads at the first two tosses} = (hhh, hht}

consists of the two outcomes hhh and hht; hence its probability equals 2/8.

THE REAL LINE. If S consists of a noncountable infinity of elements, then its proba-
bilities cannot be determined in terms of the probabilities of the elementary events. This
is the case if S is the set of points in an n-dimensional space. In fact, most applications
can be presented in terms of events in such a space. We shall discuss the determination
of probabilities using as illustration the real line.

Suppose that S is the set of all real numbers. Its subsets can be considered as sets
of points on the real line. It can be shown that it is impossible to assign probabilities to
all subsets of S so as to satisfy the axioms. To construct a probability space on the real
line, we shall consider as events all intervals x| < x < x; and their countable unions
and intersections. These events form a field F that can be specified as follows:

It is the smallest Borel field that includes all half-lines x < x;, where x; is any
number.
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This field contains all open and closed intervals, all points, and, in fact, every set
of points on the real line that is of interest in the applications. One might wonder whether
F does not include all subsets of S. Actually, it is possible to show that there exist sets of
points on the real line that are not countable vnions and intersections of intervals. Such
sets, however, are of no interest in most applications. To complete the specification of S,
it suffices to assign probabilities to the events {x < x;}. All other probabilities can then
be determined from the axioms.

Suppose that a(x) is a function such that (Fig. 2-9a)

o .
/ a(x)dx =1 a(x)=0 (2-26)
]
We define the probability of the event {x < x;} by the integral
Xj
Plx <x;}= / a(x)dx 2-27)
—00

This specifies the probabilities of all events of S. We maintain, for example, that the
probability of the event {x; < x < x;} consisting of all points in the interval (x,, x2) is
given by

X!

Plxi <x<x}= / 2 a(x)dx (2-28)

X)
Indeed, the events {x < x;} and {x; < x < x;} are mutually exclusive and their union
equals {x < x,}. Hence [see (2-10)]

Plx <xj} + Plxy < x < X} = Plx < x3}

and (2-28) follows from (2-27).

‘We note that, if the function &(x) is bounded, then the integral in (2-28) tends to 0
as x; — xp. This leads to the conclusion that the probability of the event {x2} consisting
of the single outcome x; is O for every xz. In this case, the probability of all elementary
events of S equals 0, although the probability of their unions equals 1. This is not in
conflict with (2-21) because the total number of elements of § is not countable.

P> A radioactive substance is selected at ¢ = 0 and the time ¢ of emission of a particle
is observed. This process defines an experiment whose, outcomes are all points on the
positive ¢ axis. This experiment can be considered as a special case of the real line
experiment if we assume that S is the entire ¢ axis and all events on the negative axis
have zero probability.
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Suppose then that the function a(?) in (2-26) is given by (Fig, 2-9b)

1 1>0Q

a(t) = ce U (t) U = {0 r<0

Inserting into (2-28), we conclude that the probability that a particle will be emitted
in the time interval (0, 2p) equals

lo
—ct — 1 . p—Ch
c /o e dt=1—-e"" <

P> A telephone call occurs at random in the interval (0, T). This means that the proba-
bility that it will occur in the interval 0 < ¢ < 15 equals fo/T'. Thus the outcomes of this
experiment are all points in the interval (0, T') and the probability of the event {the call
will occur in the interval (z;, 22)} equals

h—1n
T

This is again a special case of (2-28) with a(#) = 1/T for0 <t < T and 0
otherwise (Fig. 2-9¢). ¢

Piy<t<n}=

PROBABILITY MASSES. The probability P(A) of an event A can be interpreted as the
mass of the corresponding figure in its Venn diagram representation. Various identities
have similar interpretations. Consider, for example, the identity P(A U B) = P(A) +
P(B)— P(AB). The left side equals the mass of the event AUB. Inthe sum P(A)+ P(B),
the mass of AB is counted twice (Fig. 2-3). To equate this sum with P(A U B), we must,
therefore, subtract P(AB).

As Examples 2-8 and 2-9 show, by expressing complicated events as the union
of simpler events that are mutually exclusive, their probabilities can be systematically
computed.

P> A box contains m white balls and » black balls. Balls are drawn at random one at a
time without replacement. Find the probability of encountering a white ball by the kth
draw.

SOLUTION
Let W, denote the event

Wi = {a white ball is drawn by the kth draw}

The event W, can occur in the following mutually exclusive ways: a white ball is drawn
on the first draw, or a black ball followed by a white ball is drawn, or two black balls
followed by a white ball, and so on. Let

X; = {i black balls followed by a white ball are drawn} i=012,....,n

Then
Wi=XoUX U---UX,
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and using (2-20), we obtain
k=1
P(Wy) =Y P(X)
i=0
Now

P(Xop) = ;n—’-zll-—;

n m
m+4+n m+n—1

P(Xy) =

nn—1)---(n—k+1m
m+n(m+n-1)---(m4+n-k+1)

P(Xy-1) =

and hence

( n n(r—1) 4.

m
P(W)=—|1
(We) m+n +m+n—-1 m+n—1D(m+n—-2)
+ nin~1).--(n—k+1)
m+n~1)m+n—-2)---(m+n—-k+1)
By the (n + 1)st draw, we must have a white ball, and hence
P(Wny1) =1
and using (2-29) this gives an interesting identity
n n(n —1)
l+m+n—1-I-(m+n—1)(m+n—2)+“.

nn—1).---2-1 _m+n
m+n—-0D(m+n-=2)---m+m m

(2-29)

(2-30)

<

P> Two players A and B draw balls one at a time alternately from a box containing m
white balls and » black balls. Suppose the player who picks the first white ball wins the
game. What is the probability that the player who starts the game will win?

SOLUTION

Suppose A starts the game. The game can be won by A if he extracts a white ball at the
start or if A and B draw a black ball each and then A draws a white oné, or if A and B
extract two black balls each and then A draws a white one and so on. Let

X: = {A and B alternately draw k black balls each
and then A draws a white ball} k=0,12,...

where the X;s represent mutually exclusive events and moreover the event
{A wins}) = XoUX;UX, .-
Hence
' Ps 2 P(Awins) = P(X,UX, UXoU-.")
= P(Xo) + P(X1) + P(X2) + ---
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where we have made use of the axiom of additivity in (2-20). Now

P(X°)=m+n
n n—1 m
P(X1)=n+m'm+n_1'm+n—2
_ n(n— 1)m
T m4+n)m+n-Dm+n-2)
and
N n(n — D(n —2)(n -3)m
P(Xp) = m+n)(m+n-D(m+n—-2)(m+n-23)
so that
P M (1 n(n—1)
A= mTn (m+n—1)(m+n—2)

n(n = 1)(n ~2)(n —3) +) @-31)

m+n~L)m+n-2)(m+n-3)

This above sum has a finite number of terms and it ends as soon as a term equals zero.
In a similar manner,

Qg = P(B wins)

m ( n + nn—Dn—-2) 4.
m+n—-1 Mm+n-Dm+n-2)(m+n-3)

T m4n

. ) (2-32)
But one of the players must win the game. Hence
Pa+Qp=1

and using (2-31) to (2-32) this leads to the same identity in (2-30). This should not be
surprising considering that these two problems are closely related. <

2-3 CONDITIONAL PROBABILITY

The conditional probability of an event A assuming another event M, denoted by
P(A| M), is by definition the ratio
P(AM)
PAIM)= ——— ¥ 2-33
| (Al M) POD (2-33)
where we assume that P(M) is not 0.
The following properties follow readily from the definition:

If MCA then PA|M)=1 (2-34)
because then AM = M. Similarly, )
P
if ACM then PAIM)= (4) > P(A) (2-35)

PM) —
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AB={0) (AM)BM) = {0}
A B

5

BM

FIGURE 2-10

Frequency interpretation Denoting by ny4, ny, and n 44 the number of occurrences of
the events A, M, and AM respectively, we conclude from (1-1) that

P~ P~ pam~T2M
n n n
* Hence
Pea My = DAM)  Pan/n _ Bam

P(M) ny/n ny
This result can be phrased as follows: If we discard all trials in which the event M did not

occur and we retain only the subsequence of trials in which M occurred, then P(A | M)
equals the relative frequency of occurrence 1,y /2, Of the event A in that subsequence.

FUNDAMENTAL REMARK. We shall show that, for a specific M, the conditional prob-
abilities are indeed probabilities; that is, they satisfy the axioms.
The first axiom is obviously satisfied because P(AM) > O and P(M) > O:

P(AIM)20 (2-36)
The second follows from (2-34) because M C S:
P(SIM) =1 (2-37)

To prove the third, we observe that if the events A and B are mutually exclusive,
then (Fig. 2-10) the events AM and BM are also mutually exclusive. Hence

P[(AUB)M] P(AM)+ P(BM)

P(AUB|M) = P ) = )
This yields the third axiom:
P(AUB|M)=P(AIM)+ P(B| M) (2-38)

From this it follows that all results involving probabilities holds also for conditionat
probabilities. The significance of this conclusion will be appreciated later (see (2-44)).

P> In the fair-die experiment, we shall determine the conditional probability of the event
{ f2} assuming that the event even occurred. With

A=t M ={even}={f, fu fo)
we have P(A) = 1/6 and P(M) = 3/6. And since AM = A, (2-33) yields

Pl 1

Pifz|even) = Pleven] 3
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This equals the relative frequency of the occurrence of the event {two} in the subsequence
whose outcomes are even numbers. <«

P> We denote by ¢ the age of a person when he dies. The probability that ¢ < 7, is
given by

o
Pit <1t} = / a(t)d:
0
where a(t) is a function determined from mortality records. We shall assume that
a(t) =3 x 107%2(100-1)> 0 <t < 100 years

and 0 otherwise (Fig. 2-11).
From (2-28) it follows that the probability that a person will die between the ages
of 60 and 70 equals

70
P60 <t <70} = / a(t)de = 0.154
60

This equals the number of people who die between the ages of 60 and 70 divided by the
total population.
With

A=(6.0_<_1570} M = {t > 60} AM = A

it follows from (2-33) that the probability that a person will die between the ages of 60
and 70 assuming that he was alive at 60 equals

70
1d
P{605:_<_7o;12601=—-———-‘;g°°’() L = 0486
1 @) d

This equals the number of people who die between the ages 60 and 70 divided by the
number of people that are alive at age 60. <

P> A box contains three white balls wy, w,, and w; and two red balls r; and r,. We
remove at random two balls in succession. What is the prebability that the first removed
ball is white and the second is red?

We shall give two solutions to this problem. In the first, we apply (2-25); in the
second, we use conditional probabilities.
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FIRST SOLUTION
The space of our experiment consists of all ordered pairs that we can form with the five
balls:

Wiwy wiws wiry wirp .- RW Wy RW3

The number of such pairs equals 5 x 4 = 20. The event {white first, red second} consists
of the six outcomes

wyry wrz unfy Wwarz Wiry wsn
Hence [see (2-25)] its probability equals 6/20.
SECOND SOLUTION
Because the box contains three white and two red balls, the probability of the event
W, = {white first} equals 3/5. If a white ball is removed, there remain two white and two

red balls; hence the conditional probability P(R; | W) of the event R; = {red second}
assuming {white first} equals 2/4, From this and (2-33) it follows that

2 3 6
P(WiRy) = P(Ry | W) P(W)) = 7 x ¢ = 20

where W, R; is the event {white first, red second}. «§

P> A box contains white and black balls. When two balls are drawn without replacement,
suppose the probability that both are white is 1/3. () Find the smallest number of balls in
the box. (b) How small can the total number of balls be if black balls are even in number?

SOLUTION
(@) Let a and b denote the number of white and black balls in the box, and W, the event

W, = “a white ball is drawn at the kth draw”
We are given that P(W, N W) = 1/3. But

. a—1 a 1
= = W W W = . - 2-
P(W NW,) = P(Wo N W)) = P(Wo | W) P(W)) atb_1 atb_3 (2-39)
Because
a a-1
axb avb-1 o7
we can rewrite (2-39) as
a-1 2<1< a \?
at+b-1 3 a+b
This gives the inequalities
(V3+1)b/2<a<1+3+1)b2 (2-40)
For b == 1, this gives 1.36 < a < 2.36, or a = 2, and we get
21 1
PWoNW)==. ===
(W2 n W) 3373

Thus the smallest number of balls required is 3.
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TABLE 2-1

b a from (2-40} P(WLWy)
3 2 3 |
2 ’ 51073
6 5 1
4 6 0553

() For even value of b, we can use (2-40) with b = 2, 4, ... as shown in Table 2-1.
From the table, when & is even, 10 is the smallest number of balls (@ = 6, b = 4) that
gives the desired probability. <«

Total Probability and Bayes’ Theorem
IfU =[A,,..., A} is a partition of S and B is an arbitrary event (Fig. 2-5), then
P(B)= P(B|A)P(A)) +---+ P(B| An)P(An) @241
Proof. Clearly,
B=BS=B(AU---UA,)=BAU---UBA,
But the events BA; and BA; are mutually exclusive because the events A; and A; are
mutually exclusive [see (2-4)]. Hence
P(B) = P(BA)+---+ P(BA,)
and (2-41) follows because [see (2-33)]
P(BA;) = P(B| A))P(A) (242)
This result is known as the total probability theorem.
Since P(BA;) = P(4;| B) P(B) we conclude with (2-42) that

A;
P(Ai|B) = P(B| A) P(( B)) 2-43)

Inserting (2-41) into (2-43), we obtain Bayes’ theorem®:
P(B|A;)P(Ai)

P(A;|B) = P(BIADP(A) + -+ P(B|A,)P(A,) @49

Note The terms a priori and a posteriori are ofien used for the probabilities P(A;) and P(A; | B).

> Suppose box 1 contains a white balls and b black balls, and box 2 contains ¢ white
balls and 4 black balls. One ball of unknown color is transferred from the first box into
the second one and then a ball is drawn from the latter What is the probability that it
will be a white ball?

3The main idea of this theorem is due to Rev, Thomas Bayes (ca. 1760). However, its final form (2-44) was
given by Laplace several years later.
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SOLUTION

If no ball is transferred from the first box into the second box, the probability of obtaining
a white ball from the second one is simply ¢/(¢ + d). In the present case, a ball is first
transferred from box 1 to box 2 and there are only two mutually exclusive possibilities
for this event—the transferred ball is either a white ball or a black ball. Let

W = {transferred ball is white} B = {transferred ball is black}

Note that W together with B form a partition (W U B = §) and

b

P(W) = a+b

P(B) =

a+b
The-event of interest

A = {white ball is drawn from the second box}
can happen only under the two mentioned mutually exclusive possibilities. Hence

P(A) = P{AN(WU B)} = P[(AN W)U (AN B)}
=P(ANW)+ P(ANB)

= P(A|W)YP(W)+ P(A|B)P(B) (2-45)
But
c+1
PAIW) =71 PAIB =
Hence
PA) = a(c+1) be ac+bc+a (2-46)

@iDCctdtD) (@b TrdrD G@rhetd+D

gives the probability of picking a white ball from box 2 after one ball of unknown color
has been transferred from the first box. <«

The concepts of conditional probability and Bayes theorem can be rather confusing.
As Example 2-15 shows, care should be used in interpreting them.

P> A certain test for a particular cancer is known to be 95% accurate. A person submits
to the test and the results are positive. Suppose that the person comes from a population
of 100,000, where 2000 people suffer from that disease. What can we conclude about
the probability that the person under test has that particular cancer?

SOLUTION

Although it will be tempting to jump to the conclusion that based on the test the probability
of having cancer for that person is 95%, the test data simply does not support that. The test
is known to be 95% accurate, which means that 95% of all positive tests are correct and
95% of all negative tests are correct. Thus if the events {7 > 0} stands for the test being
positive and {T < 0} stands for the test being negative, then with H and C representing
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the sets of healthy and cancer patients, we have
P(T>0]|C)=095 P(T >0|H)=0.05
P(T <0]C) =0.05 P(T <0|H)=0.95
The space of this particular experiment consists of 98,000 healthy people and
2000 cancer patients so that in the absence of any other information a person chosen
at random is healthy with probability 98,000/100,000 = 0.98 and suffers from cancer
with probability 0.02. We denote this by P(H) = 0.98, and P(C) = 0.02. To interpret

the test results properly, we can now use the Bayes’ theorem. In this case, from (2-44)
the probability that the person suffers from cancer given that the test is positive is

PCIT >0 = LT >0UOPE) P(T >0|C)P(C)
TETEETTRTS 0 T PT > 010PO) + PT > 0[P
0.95 x 0.02

= - .2 =
095 x 002+ 0.05 x 098 ~ 278 @47
This result states that if the test is taken by someone from this population without
knowing whether that person has the disease or not. then even a positive test only suggests
that there is a 27.6% chance of having the disease. However, if the person knows that he
or she has the disease, then the test is 95% accurate. <

P> We have four boxes. Box 1 contains 2000 components of which 5% are defective.
Box 2 contains 500 components of which 40% are defective. Boxes 3 and 4 contain
1000 each with 10% defective. We select at random one of the boxes and we remove at
random a single component.

(a) What is the probability that the selected component is defective?

SOLUTION
The space of this experiment consists of 4000 good (g) components and 500 defective
(d) components arranged as:
Box 1: 1900g,100d  Box2: 300g, 200d
Box3: 900g, 100d Box 4: 900g, 100d
We denote by B; the event consisting of all components in the ith box and by D
the event consisting of all defective components. Clearly,

P(By) = P(B;) = P(B3) = P(By) = § (2-48)
because the boxes are selected at random. The probability that a component taken from a

specific box is defective equals the ratio of the defective to the total numbet of components
in that box. This means that

100 2
PD|IB) ==X 2005 PDIB) =204

2000 500

100 100 (2-49)
PODIB) =i =01  P(DIB) =1 =01

And since the events By, By, B3, and B, form a partition of S, we conclude from (2-41)
that

' P(D)=005x §+04x}+0.1x4+0.1x}=0.1625
This is the probability that the selected component is defective.
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(&) We examine the selected component and we find it defective. On the basis of
this evidence, we want to determine the probability that it came from box 2.
We now want the conditional probability P(B; | D). Since

P(D) =0.1625 P(D{By) =04 P(B,) =0.25

(2-43) yields

0.25
P(B;|D)=04x 0165 = 0.615

Thus the a priori probability of selecting box 2 equals 0.25 and the a posteriori
probability assuming that the selected component is defective equals 0.615. These prob-
abilities have this frequency interpretation: If the experiment is performed » times, then
box 2 is selected 0.25n times. If we consider only the np experiments in which the
removed part is defective, then the number of times the part is taken from box 2 equals
0.615np.

We conclude with a comment on the distinction between assumptions and deduc-
tions: Equations (2-48) and (2-49) are not derived; they are merely reasonable assump-
tions. Based on these assumptions and on the axioms, we deduce that P(D) = 0.1625
and P(B,| D) = 0.615.

Independence
Two events A and B are called independent if

P(AB) = P(A)P(B) (2-50)

The concept of independence is fundamental. In fact, it is this concept that justifies
the mathematical development of probability, not merely as a topic in measure theory,
but as a separate discipline. The significance of independence will be appreciated later
in the context of repeated trials. We discuss here only various simple properties.

Frequency interpretation Denoting by n,, ng, and n45 the number of occurrences of
the events A, B, and A B, respectively, we have

PA)~"2 PBY~IE  p@B -~
n n n

If the events A and B are independent, then

na _ P(AB) _nap/n _nus

Thus, if A and B are independent, then the relative frequency n, /n of the occurrence of A
in the original sequence of  trials equals the relative frequency n,p/np of the occurrence
of A in the subsequence in which B occurs.

We show next that if the events A and B are independent, then the events A and
B and the events A and B are also independent.
As we know, the events AB and A B are mutually exclusive and

B=ABUAB P(A)=1- P(A)
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From this and (2-50) it follows thst
P(AB) = P(B) — P(AB) =1 — P(A)|P(B) = P(A)P(B)

This establishes the independence of A and B. Repeating the argument, we conclude
that A and B are also independent.

In Examples 2-17 and 2-18, we illustrate the concept of independence. In Example
2-17a, we start with a known experiment and we show that two of its events are inde-
pendent. In Examples 2-175 and 2-18 we use the concept of independence to complete
the specification of each experiment. This idea is developed further in Chap. 3.

) If we toss a coin twice, we generate the four outcomes hh, ht, th, and 2.

+ (a) To construct an experiment with these outcomes, it suffices to assign probabil-
ities to its elementary events, With a and b two positive numbers such thata + b = 1,
we assume that

P{hh}) =a*  P{ht)=P{thi=ab  P{tt} =b>
These probabilities are consistent with the axioms because
a*+ab+ab+b=(a+b)?=1
In the experiment so constructed, the events
H) = {heads at first toss} = {hh, ht}
H, = {heads at second toss} = {hh, th)
consist of two elements each, and their probabilities are [see (2-23))
P(Hy) = P(hh} + P{ht} =a*+ab=a
P(Hy) = P{hh}+ P{th} =a*+ab=a

The intersection H)H; of these two events consists of the single outcome {hh}.
Hence

P(H\Hz) = P{hh} = a® = P(H\) P(H))

This shows that the events H) and H; are independent.

(b) The experiment in part (a) of this example can be specified in terms of the
probabilities P(H,) = P(H,) = a of the events H, and H>, and the information that
these events are independent.

Indeed, as we have shown, the events H; and H, and the events.H, and H> are
also independent. Furthermore,

H\H, = {hh) HiHy=(ht) HHy={h} HH =/}
and P(H))=1—P(H))=1~a, P(H)) =1~ P(H,) =1 — a. Hence
P(hh)=a* P{hty=a(l—a) Plth)=(1—-a)a Pltt}=(1—-a)* 4

P> Trains X and Y arrive at a station at random between 8 A.M. and 8.20 A.M. Train
X stops for four minutes and train Y stops for five minutes. Assuming that the trains
arrive independently of each other, we shall determine various probabilities related to the
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FIGURE 2-12

times x and y of their respective arrivals. To do so, we must first specify the underlying
experiment.

The outcomes of this experiment are all points (x, y) in the square of Fig. 2-12.
The event

A = {X arrives in the interval (1), 1)} = {t; < x < B}

is a vertical strip as in Fig. 2-12a and its probability equals (#, — #,)/20. This is our
interpretation of the information that the train arrives at random. Similarly, the event

B = {Y arrives in the interval (13, 1)} = {1z < y < 14}

is a horizontal strip and its probability equals (#; — #3)/20.

Proceeding similarly, we can determine the probabilities of any horizontal or ver-
tical sets of points. To complete the specification of the experiment, we must determine
also the probabilities of their intersections. [nterpreting the independence of the arrival
times as independence of the events A and B, we obtain

(f2 — 1)t — 13)
20 x 20

The event AB is the rectangle shown in the figure. Since the coordinates of this
rectangle are arbitrary, we conclude that the probability of any rectangle equals its area
divided by 400. In the plane, all events are unions and intersections of rectangles forming
a Borel field. This shows that the probability that the point (x, y) will be in an arbitrary
region R of the plane equals the area of R divided by 400. This completes the specification
of the experiment.

(@) We shall determine the probability that train X arrives before train Y. This is
the probability of the event

P(AB) = P(A)P(B) =

C={x=y ‘

shown in Fig. 2-12b. This event is a triangle with area 200. Hence

P(C) = %

(b) We shall determine the probability that the trains meet at the station. For the
trains to meet, x must be less than y -+ 5 and y must be, less than x < 4. This is the event

D={-45x-yx5)

of Fig. 2-12¢. As we see from the figure, the region D consists of two trapezoids with
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AB = BC = AC = ABC

FIGURE 2-13

common base, and its area equals 159.5. Hence
159.5

POY="00

(¢) Assuming that the trains met, we shall determine the probability that train X
arrived before train ¥. We wish to find the conditional probability P(C | D). The event
C D is a trapezoid as shown and its area equals 72. Hence

P(CD) T2
P(D) ~ 159.5 <

INDEPENDENCE OF THREEEVENTS. Theevents A, A,,and A; are called (mutually)
independent if they are independent in pairs:

P(AiA)) = P(ADP(Ay)  i#] @2-51)

P(C|D)=

and
P(A1A2A3) = P(A)P(A;) P(A3) (2-52)

We should emphasize that three events might be independent in pairs but not
independent. The next example is an illustration.

P> Suppose that the events A, B, and C of Fig. 2-13 have the same probability
P(A)=P(B)=P(C)=1
and the intersections AB, AC, BC, and ABC also have the same probability
p = P(AB) = P(AC) = P(BC) = P(ABC)

(a) If p = 1/25, then these events are independent in pairs but they are not
independent because

P(ABC) # P(A)P(B)P(C)

(b) If p = 17125, then P(ABC) = P(A)P(B)P(C) but the events are not
independent because

P(AB) # P(A)P(B) <

From the independence of the events A, B, and C it follows that:

1. Any one of them is independent of the intersection of the other two.
Indeed, from (2-51) and (2-52) it follows that

P(A1AzA;) = P(A|)P(A2)P(A3) = P(A|)P(A243) (2-53)
Hence the events A; and A, A; are independent.
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2. If we replace one or more of these events with their complements, the resulting
events are also independent.
Indeed, since

AlAz = A1A2A: U A A A P(A3)=1— P(A3)
we conclude with (2-53) that
P(A1A243) = P(A A7) — P(A1A2)P(A3) = P(A1)P(A2)P(43)

Hence the events A;. A3, and A3 are independent because they satisfy (2-52) and,
as we have shown earlier in the section, they are also independent in pairs.
3. Any one of them is independent of the union of the other two.
To show that the events Ay and A; U A3 are independent, it suffices to show
that the events A; and A2 U A; = A, A3 are independent. This follows from 1
and 2.

Generalization. The independence of n events can be defined inductively: Suppose that
we have defined independence of k events for every k < n. We then say that the events
Ay, ..., A, are independent if any k < n of them are independent and

P(Ai---An) = P(A1)-- P(An) (2-54)

This completes the definition for any n because we have defined independence forn = 2.

P> In a group of n people, (a) what is the probability that two or more persons will have
the same birthday (month and date)? (b) What is the probability that someone in that
group will have birthday that matches yours?

SOLUTION

There are N = 365 equally likely ways (number of days in a year) where the birthdays of
each person can fall independently. The event of interest A = “two or more persons have
the same birthday” is the complement of the simpler event B = “no two persons have the
same birthday.” To compute the number of ways no matching birthdays can occur among
n persons, note that there are N ways for the first person to have a birthday, N — 1 ways
for the second person without matching the first person, and finally N —n + 1 ways for the
last person without matching any others. Using the independence assumption this gives
NWN=-D---(N-r+1) possiblc “no matches.” Without any such restrictions, there are
N choices for each person’s birthday and hence there are a total of N* ways of assigning
birthdays to n persons. Using the classical definition of probability in (1-7) this gives

P(B)=N(N )N(N—n+l) H(l"')

and hence the probability of the desired event

P(at least one matching pair among n persons) = P(B) = 1 — P(B)

n—1 .-
=1-]] (1 - %) o1 — e LantN _ | _ gmntn-D/N (2-55)

k=1
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where we have used the approximation e~ ~ 1 — x that s valid for small x. For example,
n = 23 gives the probability of at least one match to be 0.5, whereas in a group of
50 persons, the probability of a birthday match is 0.97.

(b) To compute the probability for a personal match, once again it is instructive to
look at the complement event. In that case there are N — 1 “unfavorable days™ among ¥
days for each person not to match your birthday. Hence the probability of each person
missing your birthday is (N — 1)/N. For a group of n persons, this gives the probability
that none of them will match your birthday to be (1 — 1/N)* o~ ¢/, and hence the
probability of at least one match is 1 — ¢~*/¥. For a modest 50-50 chance in this case,
the group size needs to be about 253. In a group of 1000 people, chances are about 93%
that there will be someone sharing your birthday. <

P> Three switches connected in parallel operate independently. Each switch remains
closed with probability p. (a) Find the probability of receiving an input signal at the
output, (b) Find the probability that switch §; is open given that an input signal is
received at the output.

SOLUTION
(a) Let A; =*“Switch S; is closed.” Then P(4;) = p, i = 1, 2, 3. Since switches operate
independently, we have

P(AiAj) = P(A)P(A))  P(A1A243) = P(A))P(A2) P(A3)

Let R represents the event “Input signal is received at the output.” For the event R to
occur either switch 1 or switch 2 or switch 3 must remain closed (Fig. 2-14), that is,

R=A1UAUA; (2-56)

P(R)=1-~ P(R)=1— P(A A2A;3) = | — P(A))P(A;)P(A3)
=1-(1-p)®=3p-3p*+p° (2-57)

We can also derive (2-57) in a different manner. Since any event and its compliment
form a trivial partition, we can always write

P(R) = P(R| A)P(A)) + P(R| A))P(4)) (2-58)

But P(R|A;) = 1,and P(R| A|) = P(A; U A3) = 2p — p?, and using these in (2-58)
we obtain

PRY=p+Qp-p)1~-p)=3p-3p*+p* ° (2-59)

5P

$)
o
S.
/ci \ > QOutput
N
se

-
N

FIGURE 2-14
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which agrees with (2-57). Note that the events A, A2, and A3 do not form a partition,
since they are not mutually exclusive. Obviously any two or all three switches can be
closed (or open) simultaneously. Moreover, P(A|) + P(Az2) + P(A3) # 1.

(b) We need P(A; | R). From Bayes’ theorem

P(R|ADP@A) _ (2p—pH(1-p) 2-3p+p?

P&, |R) = = = . 2-60
(A1R) P(R) 3p-3p2+p® 3-3p+p? @50

Because of the symmetry of the switches, we also have
P(A) | R) = P(A;| R) = P(A3| R). <

P A biased coin is tossed till a head appears for the first time, What is the probability
that the number of required tosses is odd?

SOLUTION
Let

A; = “Head appears at the ith toss for the first time”
={T,7,7T,...,.T, H}
i-1

Assuming that each trial is independent of the rest,
P(Ap) = P(T.T,...,T,H) = P(TYP(T)--- P(T)P(H) = ¢'"'q (2-61)
where P(H) = p, P(T) = g = 1 — p. Thus '
P (*Head appears on an odd toss™)
=P(AjUA3UAsU--")

=Y PAus)=) ¢*p=p) ¢"

i=0 i=0 i=0
__P _ P
1-¢2 (1+g)1-9)
1 1
T e—— T ee—— 2'62
l1+gq 2-p (2-62)

because A; UA; =@, i # j. Even for a fair coin, the probability of “Head first appears
on an odd toss” is 2/3. *

As Theorems 2-1 through 2-3 show, a number of important consequences can be
deriveéd using the “generalized additive law” in (2-21).

} If Ay, Az, ... is an “increasing sequence” of events, that is, a sequence such that
A CAyC--- then

P (ij Ak) = lim P(4,). (2-63)
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BOREL-CANTELLI LEMMA Given a sequence of events Ay, Az,..., with
probabilities p; = P(Ag), k = 1,2, ..., (i) suppose

D pe <00 (2-69)

that is, the series on the left converges. Then, with probability 1 only finitely many of
the events A}, A,, ..., occur.
(i) Suppose A), Ay, ... are also independent events, and

o
S =00 (2-70)
k=1
that is, the series on the left diverges. Then, with probability 1 infinitely many of the
events A, Az, ... Occur.

Proof. (i) Let B be the event that “infinitely many of the events A;, A,, ... occur” and let

B,={JA 2-71)
k>n
so that B, is the event that at least one of the events Ay, Aust, - .. Occurs. Clearly B occurs if
and only if B, occurs forevery n = 1, 2, ... . To see this, let the outcome § belong to an infinite
number of events A;. Then & must belong to every B,, and hence it is contained in their intersection
(), Ba. Conversely if § belongs to this intersection, then it belongs to every B,, which is poss1b1e
only if § belongs to an infinite number of events A;. Thus

B=nB =n(UA*). 2-72)
” n k2n
Further, By O B, O - - -, and hence, by Theorem 2-2,
P(B) = lim P(B,) 2-73)
R~+00
But, by Theorem 2-3
P(B)SY PA)=D p—0 a5 n— o0 274)
. k2n kxn
because of (2-69). Therefore
P(B)=lim P(B,) =lm Y p=0 2-75)
R—Q n—rod

k2n

that is, the probability of infinitely many of the events A, A,, ... occurring is 0 Equivalently, the
probability of only finitely many of the events A;, A, ... occurring is 1.
(i) To prove the second part, taking complements of the events B, and B in (2-71) and
(2-72), we get
B.=NA& F=UGF, (2-76)
k>n n

Further,

ném

B.c A
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for every m =0, 1,2, ... Therefore, by the independence of the events 4,, A, .. .. we get

n+m

P@E,) <P ( i x) = P& P(Eyam)

k=g
ntm
= (1 fand pn) v (1 - pn+»n) =< exXp (_ Z Pk) (2‘77)
k=mn

where we have made use of the inequality 1 — x < ¢7*, x > 0. Notice that if Ay, A;,...isa
sequence of independent events, then so is the sequence of complementary events 4, A, ....
But from (2-70)

n4m

Ym0 as mooo (2-78)

. kmp

Therefore, passing to the limit m — oo in (2-77), we find that P(B,) =0foreveryn=1,2,....
Thus using (2-76)

P(B)<) P(B)=0

and hence
P(BY=1-P@B)=1 2-79)
that is, the probability of infinitely many of the events A, A;, ... occurring is 1. Notice that the

second part of the Borel-Cantelli lemma, which represents a converse to the first part, requires the
additional assumption that the events involved be independent of each other.

As anexample, considertheevent“H H - - - H” occurring in a sequence of Bernoulli
trials. To determine the probability that such an “all success” sequence of length n ap-
pears infinitely often, let A, stand for the event “Head appears on the kth toss,” and
define B; = A; NAj41 N - Ajyn—y, i = 1. We have P(B;) = p; = p". The events B;
are not independent, however, the events By, By1. B2+1, - - . are independent, and the
series Ei-:o Din+1 diverges. Hence, from the second part of the Borel-Cantelli lemma, it
follows that with probability one the pattern “H H - - - H” (as well as any other arbitrary
pattern) will occur infinitely often. To summarize, if the sum of the probabilities of an
infinite set of independent events diverge. then with probability 1, infinitely many of
those events will occur in the long run.

PROBLEMS

2-1 Showthat (@) AUBUA UB=A;(b) (AUB)AB) = ABUBA. _

22ffA={2<x<5}and B={3 <x <6),find AUB, AB, and (AU B)(AB).

2-3 Showthat if AB = {@}, then P(A) < P(B).

24 Show that (a)if P(A) = P(B) = P(AB),then P(ABUBA) = 0; (b)if P(A) = P(B) =1,
then P(AB) = 1.

2.5 Prove and generalize the following identity

P(AUBUC) = P(A) + P(B)+ P(C) ~ P(AB) — P(AC) — P(BC) + P(ABC)

2-6 Show that if S consists of a countable number of elements {; and each subset (¢;} is an event,
then all subsets of § are events.

2-7 If S = (1,2, 3, 4}, find the smallest field that contains the sets {1} and {2, 3}.
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28 If AC B, P(A) = 1/4,and P(B) =1/3,find P(A| B) and P(B| A).
2-9 Show that P(AB|C) = P(A|BC)P(B|C) and P(ABC) = P(A|BCY)P(B|C)P(C).
2-10 (Chain rule) Show that

P(An--+ A1) == P(Ay| An-t -  Ar) - P(A2] A} P(A)

2-11 We select at random m objects from a set § of n objects and we denote by A,, the set of the
selected objects. Show that the probability p that a particular element ¢ of S is in A,, equals
m/n.

Hint: p equals the probability that a randomly selected element of S is in An.

2-12 Acalloccurs attime ¢, where t is a random point in the interval (0, 10). (a) Find P{6 < ¢ < 8}.
(b)Find P{6 <t < 8|t > 5)}.

2-13 The space § is the set of all positive numbers ¢, Show thatif P{ts <r <941 |t = 1) =

. P{t <1} forevery o and 1y, then P{t < n,} = 1 — ™", where ¢ is a constant.

2-14 The events A and B are mutually exclusive. Can they be independent?

2-15 Show that if the events A;. ..., A, are independent and B; equals A, or A; or S, then the
events By, ..., B, are also independent.

2-16 A box contains n identical balls pumbered 1 through . Suppose k balls are drawn in
succession. (@) What is the probability that m is the largest number drawn? (b) What is the
probability that the largest number drawn is less than or equal to m?

2-17 Suppose k identical boxes contain n balls numbered 1 through n. One ball is drawn from
each box. What is the probability that m is the largest number drawn?

2-18 Ten passengers get into a train that has three cars. Assuming a random placement of passen-
gers, what is the probability that the first car will contain three of them?

2-19 A box contains m white and » black balls. Suppose k balls are drawn. Find the probability
of drawing at least one white ball.

2-20 A player tosses a penny from a distance onto the surface of a square table ruled in 1 in.
squares. If the penny is 3/4 in. in dlameter what is the probability that it will fall entirely
inside a square (assuming that the penny lands on the table).

2-21 1Inthe New York State lottery, six numbers are drawn from the sequence of numbers 1 through
51. What is the probability that the six numbers drawn will have (a) all one digit numbers?
(b) two one-digit and four two-digit numbers?

2-22 Show that 2" — (n + 1) equations are needed to establish the independence of n events.

2-23 Box 1 contains 1 white and 999 red balls. Box 2 contains 1 red and 999 white balls. A bail
is picked from a randomly selected box. If the ball is red what is the probability that it came
from box 1?7

2-24 Box 1 contains 1000 bulbs of which 10% are defective. Box 2 contains 2000 bulbs of which
5% are defective. Two bulbs are picked from a randomly selected box. (@) Find the probability

. that both bulbs are defective. (b) Assuming that both are defective, find the probability that
they came from box 1.

2-25 A train and a bus arrive at the station at random between 9 AM. and 10 A, M The train stops
for 10 minutes and the bus for x minutes. Find x so that the probability that the bus and the
train will meet equals 0.5.

2-26 Show that a set S with n elements has

n(n—l)---(n-—-k+1)_ n!
1:2.--k T ki(n—k)!

k-element subsets,

2-27 We have two coins; the first is fair and the second two-headed. We pick one of the coins
at random, we toss it twice and heads shows both times. Find the probability that the coin
picked s fair.
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3-1 COMBINED EXPERIMENTS

We are given two experiments: The first experiment is the rolling of a fair die
Si="{fis--n fs}  Bl{fil=1}

The second experiment is the tossing of a fair coin
S ={(h,t} PR} = Pt} =3

We perform both experiments and we want to find the probability that we get “two” on
the die and *heads” on the coin.

If we make the reasonable assumption that the outcomes of the first experiment are
independent of the outcomes of the second, we conclude that the unknown probability
equals 1/6 x 1/2.

This conclusion is reasonable; however, the notion of independence used in its
derivation does not agree with the definition given in (2-50). In that definition, the events
A and B were subsets of the same space. In order to fit this conclusion into our theory,
we must, therefore, construct a space S having as subsets the events “two” and *heads.”
This is done as follows: 2

The two experiments are viewed as a single experiment whose outcomes are pairs
L1182, where £} is one of the six faces of the die and {, is heads or tails.! The resulting
space consists of the 12 elements

hh, ..., feh, fit,..., fet

Un the earlier discussion, the symbol ¢; represented a single element of a set S. From now on, £; will also
represent an arbitrary element of a set 5;. We will understand from the context whether ; is one particular
element or any element of S;.
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In this space, {two} is not an elementary event but a subset consisting of two
elements

{two} = { /21, fat}
Similarly, {heads} is an event with six elements
{heads} = {fih, ..., fsh)

To complete the experiment, we must assign probabilities to all subsets of S.
Clearly, the event {two} occurs if the die shows “two” no matter what shows on the coin.
Hence

P{two} = Pi{fa} = }
Similarly,
P{heads} = Py{h) = 1

The intersection of the events {two} and {heads} is the elementary event { f2h}.
Assuming that the events {two} and {heads} are independent in the sense of (2-50), we
conclude that P{f2h} = 1/6 x 1/2 in agreement with our earlier conclusion.

Cartesian Products

Given two sets S and S, with elements { and {,, respectively, we form all ordered pairs
L1842, where ¢ is any element of S; and & is any element of S;. The cartesian product
of the sets ) and S, is a set § whose elements are all such pairs. This set is written in
the form

S=8 x5

P> The cartesian product of the sets
S, = {car, apple, bird} Sy = (h, 1}
has six elements

Sy x §; = car-h, car-t, apple-h, apple-t, bird-h, bird-t) <

P If S = (h,1}, S2 = {h,1). Then
S; % Sz = {hh, ht, th, 1t}

In this example, the sets S; and S; are identical. We note also that the element Az
is different from the element th. {

If A is a subset of S) and B is a subset of S,, then the set
C=AxB8

consisting of all pairs ¢; {2, where {; € A and ¢, € B.is a subset of S.
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4 *  FIGURE 3-1

Forming similarly the sets A x S; and §; x B, we conclude that their intersection
isthe set A x B:

AxB=(AxS8)N(S x B) 3-1)

Note Suppose that S is the x axis, S, is the y axis, and A and B are two intervals:
A=[xsx<n} B={=<y<yl

In this case, A x B is a rectangle, A x $y is a vertical strip, and §| x B is a horizontal strip (Fig. 3-1).
We can thus interpret the cartesian product A x B of two arbitrary sets as a generalized rectangle.

CARTESIAN PRODUCT OF TWO EXPERIMENTS,. The cartesian product of two ex-
periments S; and S; is a new experiment § = S; x S> whose events are all cartesian
products of the form

AXxB 3-2)

where A is an event of S| and B is an event of S, and their unions and intersections.
In this experiment, the probabilities of the events A x S, and §; x B are such
that

P(A x §3) = Pi(A) P(S; x B) = P,(B) (3-3)

where P (A) is the probability of the event A in the experiments S| and P,(B) is
the probability of the event B in the experiments S,. This fact is motivated by the
interpretation of S as a combined experiment. Indeed, the event A x S, of the experiment
S occurs if the event A of the experiment Sy occurs no matter what the autcome of S; is.
Similarly, the event S; x B of the experiment § occurs if the event B of the experiment
S occurs no matter what the outcome of S; is. This justifies the two equations in (3-3).

These equations determine only the probabilities of the events A x S; and S; x B.
The probabilities of events of the form A x B and of their unions and intersections cannot
in general be expressed in terms of Py and P,. To determine them, we need additional
information about the experiments S, and S;.

’

INDEPENDENT EXPERIMENTS. In many applications, the events A X S; and §; x B
of the combined experiment S are independent for any A and B. Since the intersection
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of these events equals A x B [see (3-1)], we conclude from (2-50) and (3-3) that
P(A x B) = P(A x $)P(S) x B) = P|(A)Py(B) (3-4)

This completes the specification of the experiment § because all its events are
unions and intersections of events of the form A x B.

We note in particular that the elementary event {{; {2} can be written as a cartesian
product {£;] x {{2}) of the elementary events {£)} and {£2} of S| and S>. Hence

P{6ia) = PG} Pa{S2) (3-5)

P> A box B, contains 10 white and 5 red balls and a box B, contains 20 white and
20 red balls. A ball is drawn from each box. What is the probability that the ball from
B, will be white and the ball from B; red?

This operation can be considered as a combined experiment. Experiment S is
the drawing from B, and experiment S, is the drawing from B,. The space S, has 15
elements: 10 white and 5 red balls. The event

W; = {a white ball is drawn from B,}

has 10 favorable elements and its probability equals 10/15. The space S, has 40 elements:
20 white and 20 red balls. The event

R» = {ared ball is drawn from B,}

has 20 favorable elements and its probability equals 20/40. The space S x 8, has 40 x 15
elements: all possible pairs that can be drawn,
‘We want the probability of the event

Wi x Rz = {white from B, and red from B,}

Assuming independence of the two experiments, we conclude from (3-4) that

10 20
P(W) x R3) = Pi (W) Py (R2) = Thebry |

P> Consider the coin experiment where the probability of “heads” equals p and the
probability of “tails” equals ¢ = | — p. If we toss the coin twice, we obtain the space

S=85x8 S|=Sz={h.t}

Thus S consists of the four outcomes hh, ht, th, and tt. Assuming that the experiments
S) and S; are independent, we obtain

Plhh} = Pi{h}Py(h} = p?
Similarly,
Pliy=pq  Pithh=gp Pi}=4’
We shall use this information to find the probability of the event
H} = {heads at the first toss} == {hh, hi)
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Since H; consists of the two outcomes hh and ht, (2-23) yields
P(Hy)) = P{hh} + P{ht} = p* + pg=p
This follows also from (3-4) because H; = {h} x S;. €

GENERALIZATION. Given n experiments Sy, ..., S,;, we define as their cartesian
product

S=8 x---x 8, (3-6)

the experiment whose elements are all ordered n tuplets ¢) - - - £, where {; is an element
of the set S;. Events in this space are all sets of the form

A1 X X A,

where A; C Sy, and their unions and intersections. If the experiments are independent
and P;(A;) is the probability of the event A; in the experiment S;, then

P(A; X << X Ap) = Py(A)) -+ Py(As) G-

P> If we toss the coin of Example 3-4 n times, we obtain the space § = §; x -+~ x S,
consisting of the 2" elements ¢ - - - ¢,, where {; = h or . Clearly,

Pt = Pilti} - Pole) mm={” b=h (3.8)
qg L=t

If, in particular, p = g = 1/2, then
1
P{§1'-'§n}=§;

From (3-8) it follows that, if the elementary event {¢; - - - £,} consists of k heads
and n — k tails (in a specific order), then

P{gy ) = pig* (3-9)

We note that the event H| = {heads at the first toss} consists of 2"~! outcomes
Lyl where &y = hand & =t or h for i > 1. The event H, can be written as a
cartesian product

H={hx8SHx--+x8
Hence [see (3-7)]
' P(H) = PR} Py(SD) -~ Pa(S) = p
because P;(S;) = 1. We can similarly show that if
H; = {heads at the ith toss} I = {tail§ at the ith toss)
then-
PHE)=p PU)=q <
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DUAL MEANING OF REPEATED TRIALS. In the theory of probability, the notion of
repeated trials has two fundamentally different meanings. The first is the approximate
relationship (1-1) between the probability P (A) of an event A in an experiment S and the
relative frequency of the occurrence of A. The second is the creation of the experiment
Sx-.-x 8.

For example, the repeated tossings of a coin can be given the following two inter-
pretations:

First interpretation (physical) Our experiment is the single toss of a fair coin. Its
space has two elements and the probability of each elementary event equals 1/2. A trial
is the toss of the coin once.

If we toss the coin » times and heads shows n;, times, then almost certainly n, /n =
1/2'provided that » is sufficiently large. Thus the first interpretation of repeated trials is
the above inprecise statement relating probabilities with observed frequencies.

Second interpretation (conceptual) Our experiment is now the toss of the coin n
times, where n is any number large or small. Its space has 2" elements and the probability
of each elementary event equals 1/2", A trial is the toss of the coin n times. All statements
concerning the number of heads are precise and in the form of probabilities.

We can, of course, give a relative frequency interpretation to these statements.
However, to do so, we must repeat the n tosses of the coin a large number of times.

3-2 BERNOULLI TRIALS

A set of n distinct objects can be placed in several different orders forming permutations.
Thus, for example, the possible permutations of three objects a, b, ¢ are: abc, bac, bea,
ach, cab, cba, (6 different permutations out of 3 objects). In general, given n objects the
first spot can be selected n different ways, and for every such choice the next spot the
remaining n — 1 ways, and so on. Thus the numbcr of permutations of n objects equal
nn—-DRr-2)-. -l =nl

Suppose only k < n objects are taken out of n objects at a time, attention being
paid to the order of objects in each such group. Once again the first spot can be selected
n distinct ways, and for every such selection the next spot can be chosen (n — 1) distinct
ways, . .., and the kth spot (n — k + 1) distinct ways from the remaining objects. Thus
the total number of distinct arrangements (permutations) of # objects taken k at a time
is given by

n!

(n - k)!

For example, taking two objects out of the three objects a, b, ¢, we get the permu-
tations ab, ba, ac, ca, bc, cb.

Next suppose the k objects are taken out of n objects without paying any attention
to the order of the objects in each group, thus forming combinations. In that case,
the k! permutations generated by each group of k objects contribute toward only one
combination, and hence using (3-10) the total combinations of n objects taken k at a time

(3-10)

nn—Dnr-2)---(n—k+1 =
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is given by

nn—-1@n~2)---(n—k+1) n! _(n
k! T (n-bik T \k
Thus, if a set has n elements, then the total number of its subsets consisting of k elements
each equals

(n>=n(n—1)“'(n“k+1)_ n! (3-11)

k 1.2k " kin — k)!
For example, if » = 4 and k = 2, then

4 4.3
(2) =12=°¢

Indeed, the two-element subsets of the four-element set abed are
ab ac ad be bd cd

This result will be used to find the probability that an event occurs & times in
n independent trials of an experiment S. This problem is essentially the same as the
problem of obtaining k heads in n tossings of a coin. We start, therefore, with the coin

experiment,

P> A coin with P{k} = p is tossed  times. We maintain that the probability p, (k) that
heads shows k times is given by

palh) = (:) Pt g=1-p (3-12)

SOLUTION

The experiment under consideration is the n-tossing of a coin. A single outcome is a
particular sequence of heads and tails. The event {k heads in any order} consists of all
sequences containing k heads and n — k tails. To obtain all distinct arrangements with
n objects consisting of k heads and n — k tails, note that if they were all distinct objects
there would be n! such arrangements. However since the k heads and n — k tails are
identical among themselves, the corresponding k! permutations among the heads and the
(n — k)! permutations among the tails together only contribute to one distinct sequence.
Thus the total distinct arrangements {combinations) are given by F"(:_lki" = (7). Hence
the event {k heads in any order} consists of (}) elementary events containing k heads
and n — k tails in a specific order. Since the probability of each of these elementary
events equals p*q"*, we conclude that

P{k heads in any order} = (:) P .

Special Case. If n = 3 and k = 2, then there are three ways of getting two heads,
namely, hht, hth, and thk. Hence p3(2) = 3p?qg in agreement with (3-12). <

Success or Failure of an Event A inn
Independent Trials ‘

We consider now our main problem. We are given an experiment S and an event A with
P(A)=p PA)=q p+q=1
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We repeat the experiment n times and the resulting product space we denote by S™. Thus
S"=8x..-xS8.
We shell determine the probability p, (k) that the event A occurs exactly k times.

FUNDAMENTAL THEOREM

Pa(k) = P{A occurs k times in any order} = (:) kgt (3-13)

Proof. The event { A occurs k times in a specific order} is a cartesian product By x - - - X
B,, where k of the events B; equal A and the remaining n — k equal A. As we know
frorg (3-7), the probability of this event equals

P(By)--- P(B,) = ptg"*

because
P(B')‘{q if Bj=4A
In other words,
P{A occurs k times in a specific order} = p*q"~* (3-14)

The event {A occurs k times in any order} is the union of the (}) events {A occurs k
times in a specific order} and since these events are mutually exclusive, we conclude
from (2-20) that p, (k) is given by (3-13).

In Fig. 3-2, we plot p, (k) for n = 9. The meaning of the dashed curves will be ex-
plained later.

P4 2 -x-3Ms
03 nw= 9 3\ " -
p=12 \,
02 g=12 # N

P4

® FIGURE 3-2
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EXAMPLE 3-8

P> A fair die is rolled five times. We shall find the probability ps(2) that “six™ will show
twice.
In the single roll of a die, A = {six} is an event with probability 1/6. Setting

PA)=} PA)=3 n=5 k=2

5t (1\?/5\°
wo= 55 () (&) <

The problem in Example 3-8 has an interesting historical content, since part of it
was one of the first problems solved by Pascal. ’

in (3-13), we obtain

} A pair of dice is rolled n times. (g) Find the probability that “seven” will not show
at all. (b) (Pascal) Find the probability of obtaining double six at least once.

SOLUTION
The space of the single roll of two dice consists of the 36 elements f; f;,i, j = 1,2,...,6.

(@) The event A = {seven} consists of the six elements

Nhis fafs fifsa fufs fsf feh
Therefore P(A) == 6/36 = 1/6 and P(_A-) = 5/6. With k = 0, (3-13) yields

5 n
p:(0) = (g)

(b) The event B = {double six} consists of the single element fs f¢. Thus
P(B) = 1/36, and P(B) = 35/36. Let

X = {double six at least once in » games}

Then
X = {double six will not show in any of the » games}
=BB-.--B
and this gives s
PX)=1-PX)=1-P@B) =1~ (%g)" (3-15)

where we have made use of the independence of each throw. Similarly, it follows:
that if one die is rolled in succession » times, the probability of obtaining six at
least once would be '

5 n
1~ (3) (3-16)
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Suppose, we are interested in finding the number of throws required to assure a 50%
success of obtaining double six at least once. From (3-15), in that case n must satisfy

1_(—3—5" l .3_5"<l
3%6) 72 U \3) <2

log2
n>» ————
log 36 — log 35

Thus in 25 throws one is more likely to get double six at least once than not to get it at
all. Also in 24 or less throws, there is a greater chance to fail than to succeed.

In the case of a single die, from (3-16), for 50% success in obtaining six at least
once, we must throw a minimum of four times (since log 2/(log 6 — log 5) = 3.801).

This problem was suggested to Pascal by Chevalier de Mere, a nobleman well
experienced in gambling. He, along with other gamblers, had all along known the ad-
vantage of betting for double six in 25 throws or for one six with a single die in 4 throws.
The confusion at that time originated from the fact that although there are 36 cases for
two dice and 6 cases for one die, yet the above numbers (25 and 4) did not seem to fit into
that scheme (36 versus 6). The correct solution given by Pascal removed all apparent
“paradoxes;” and in fact he correctly derived the same number 25 that had been observed
by gamblers all along. <«

which gives

= 24.605

Example 3-9 is one of the first problems in probability discussed and solved by
Fermat and Pascal in their correspondence.

P> Two players A and B agree to play a series of games on the condition that A wins
the series if he succeeds in winning m games before B wins n games. The probability
of winning a single game is p for A and g = 1 — p for B. What is the probability that
A will win the series?

SOLUTION

Let P4 denote the probability that A will win m games before B wins n games, and let
Pg denote the probability that B wins n games before A wins m of them. Clearly by the
(m + n — 1)th game there must be a winner. Thus P, + Pp = 1. To find P4, notice that
A can win in the following mutually exclusive ways. Let

X = {A wins m games in exactly m + k games}, &k =0,1,2,...,n-1.

Notice that X, s are mutually exclusive events, and the event
{Awins} = XoU X, U---UX,,
so that

n—-1 n-l
Ps = P(A wins) = P (U X;) = Z P(X;) (3-17)
i=0 ' =0

To determine P(X;), we argue as follows: For A to win m games in exactly m + k games,
A must win the last game and (m — 1) games in any order among the first (m + k — 1)
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3-10

games. Since all games are independent of each other, we get
P(X;) = P(A wins m — 1 games among the first (m + k — 1) games)
x P(A wins the last game)

. m+k"" m-1_k

_m+k=D! , 4 _
- (m_l)!k! pq, k—-o,l,z,...,n 1. (3‘18)
Substituting this into (3-17) we get
_ m"i(muc—l)'
1)1kt
om m mm+1) , mm+1)---m+n-2) ,_, _
= p <1+ 1q+-—-—-—-1.2 ¢+---+ T2 1) q (3-19)

In a similar manner, we obtain the probability that B wins

o n_ an+1) , np+1)---m+n-2) .,
Pp=g¢q (1+1p+———1 2 P+ 12 m=1) P (3-20)

Since A or B must win by the (m 4 n — 1) game, we have P4 4 Pp = 1, and substituting
(3-19)~(3-20) into this we obtain an interesting identity. See also (2-30).

P> We place at random £ points in the interval (0, T'). What is the probability that k of
these points are in the interval (), t;) (Fig. 3-3)?

This example can be considered as a problem in repeated trials. The experiment S
is the placing of a single point in the interval (0, T). In this experiment, A = {the point
is in the interval (¢;. £)} is an event with probability

2 —1
T

In the space S", the event {4 occurs k times} means that k of the n pomts are in the
interval (7, #2). Hence [see (3-13)]

P(A)=p=

Pk points are in the interval (¢}, )} = (:) prg"* (3-21)

k points

0 ¢! f T  FIGURE33 <
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P> A system containing n components is put into operation at ¢ = 0. The probability
that a particular component will fail in the interval (0, £) equals

(=]

D =/ a(r)dr where «(2) >0 / a()dt=1 (3-22)
0 0

‘What is the probability that & of these components will fail prior to time £?
This example can also be considered as a problem in repeated trials. Reasoning as
before, we conclude that the unknown probability is given by (3-21). <

MOST LIKELY NUMBER OF SUCCESSES. We shall now examine the behavior of
Da(k) as a function of k for a fixed n. We maintain that as k increases, p, (k) increases
reaching a maximum for

k = kiax = [(n + 1) p] (3-23)

where the brackets mean the largest integer that does notexceed (n + )p. If (n + 1)p
is an integer, then p, (k) is maximum for two consecutive values of k:

k=ky=m+1Dp and k=k=k—~l=np-—-gqg

Proof. We form the ratio
pak—1) kq
pa(k) (n=k+1)p
If this ratio is less than 1, that is, if k < (n+ 1) p, then p,(k — 1) is less than p, (k). This
shows that as k increases, pn(k) increases reaching its maximum for k = [(n + 1)p].
For k > (n + 1) p, this ratio is greater than 1: hence p, (k) decreases.
If ky = (n + 1) p is an integer. then
pai—1) kg (i+Dpg

Pn(ky) n—k+1)p [h—@+1p+1]p

This shows that p, (k) is maximum fork = k; andk = k; — 1.

P (@) Ifn =10and p = 1/3, then (n + 1)p = 11/3; hence kpgx = [11/3] = 3.
(O Ifn=1land p=1/2,then (n+ 1)p =6; hence k; =6,k =5.

We shall, finally, find the probability G
Plky <k < kr}

that the number k of occurrences of A is between k; and k,. Clearly, the events { A occurs
k times}, where k takes all values from k) to k», are mutually exclusive and their union
is the event {k; < k < k}. Hence [see (3-13)]

k! kz '
Plh<k<kl=) p)=>_ (") pg"t (3-24)

k=k, k==k, k
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Proof. We shall outline a simple proof of Bernoulli’s theorem, by Chebyshev (1821-1894), that
makes use of certain identities. Note that with p, (k) as in (3-13), direct computation gives

- n! -
Zk”"(k) Zk k)'k'pq E(n-—k)!(k-—l)!pkq ‘

= 4+ =i (r—D! n—i=1
Z(n—z—l)'z'p+q "”Z(n i

=np(p+q)" ' =np (3-29)

" Proceeding in a similar manner, it can be shown that

Zk’p..(k) Zk k),(k PETTESTLA

n—k Rk _R=—k
Z(n-k)'ac HiPe +Z(,, k>'<k )

= n?p? +npq (3-30)
Returning to (3-27), note that
% — p| > € is equivalent to (k — np)* > n’¢* (3-31)
which in tumn is equivalent to
D (k=np)pa(k) > Y € py(k) = né? (3-32)
k=D k0

Using (3-29) and (3-30), the left side of (3-32) can be expanded to give

Z(k 1) pa (k) = Zk’p..ac) ukap..(an

ka) k=0
=n’p* +npg —2np -np+n’p* =npq (3-33)
Alternatively, the left side of (3-32) can be expressed as

> k—np)palk)

D k-npPp+ Y k=np)plh)

k=0 |k~ npl<n¢é k=npl>ne
2 Y k-mpYia®>ntd Y p®
lk—npi>ne jk—npl>ne
= n’e*P{lk — np| > ne} (3-34)
Using (3-33) in (3-34), we get the desired result
k Pq
P ()n pl| > E) < F' (3'35)

For a given € > 0, pq/ne? can be made arbitrarily small by letting n become large. Thus for very
large n, we can make the fractional occurrence (relative frequency) k/n of the event A as close to
the actual probability p of the event A in a single trial. Thus the theorem states that the probability
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- of event A from the axiomatic framework can be computed from the relative frequency definitio;

quite accurately, provided the number of experiments is large enough. Since kyqy is the most likel:
value of k in ~ trials, from this discussion, as n — oo, the plots of p, (k) tend to concentrate mor.
and more around Ky in (3-23). é\:

Thus Bernoulli’s theorem states that with probability approaching 1 or with cer
tainty. we can expect that in a sufficiently long series of independent trials with constan,
probability, the relative frequency of an event will differ from that probability by less thar
any specified number, no matter how small. Such an event (with probability approaching
1), although not bound to happen, has a probability of occurring so close to 1 that i
may be considered to be a certain event. The immense practical value of Bernoulli*;
theorem lies in pointing out this advantage in real-life problems where the conditions o
thre theorem are satisfied.

One case where the conditions of Bernoulli’s theorem are satisfied is that of gam
bling and casino operations. Situations facing the insurance companies are not far fron
this either. In gambling, one may gain or lose wealth depending on chance. In eac!
game the probabilities of winning and losing are predetermined, and if one continues
to play, the interesting question of course concerns the probability of gaining or losing
money.

Suppose a player gains an amount a if he wins the game and loses another amoun
b if he loses the game, Let p and g represent the probability of winning and losing ¢
game. In n games if the player wins & of them, then his net gain is

G =ka—(n—kb (3-36;

If n is large, according to Bernoulli’s theorem &/ n is very close to p, sothat the difference'
or discrepancy (k — np) must be very small. Let us denote this discrepancy value by A!
Thus

A=k-—np

and by Bernoulli’s theorem the probability of A > —ne, where € is any arbitrary positive
number, approaches 1 provided n is sufficiently large. Using the discrepancy A, the net

' gain can be rewritten as !

G =n(pa—gb)+ (@+b)A=nn+(@+bA 337

where the quantity .
n= pa—gqb (3-38)
represents the “average gain” in any one game. The average gain 7 can be positive, zero,
or negative. As we shall see, the ultimate fate of the player (gain or loss) depends on

the sign of this quantity. Suppose n > 0 and r is sufficiently large. Then by Bernoulli’s
theorem the net gain G satisfies the inequality

G=nn+(@+b)A >n[n—e(a+b)]

with probability approaching 1. Thus the net gain will exceed the number
Q = n(n—e(a+Db)), which itself is larger than any spécified positive number, if » is suf4
ficiently large (this assumes that € is sufficiently small enough so that n ~ e(a + b) > 0)4
The conclusion is remarkable: A player whose average gain is positive stands to gain‘



EXAMPLE 3-14

STATE
LOTTERY

CHAPTER3 REPEATED TRIALS 61

an arbitrarily large amount with probability approaching 1, if he continues to play a
sufficiently large number of games.

It immediately follows that if the average gain 7 is negative, the player is bound to
lose a large amount of money with almost certainty in the long run. If 5 = 0, then either
a huge gain or loss is highly unlikely.

Thus the game favors players with positive average gain over those with negative
average gain. All gambling institutions operate on this principle. The average gain of the
institution is adjusted to be positive at every game, and consequently the average gain of
any gambler turns out to be negative. This agrees with the everyday reality that gambling
institutions derive enormous profits at the expense of regular gamblers, who are almost
inevitably ruined in the long run.

We shall illustrate this using the profitable business of cperating lotteries.

P> In the New York State lottery, the player picks 6 numbers from a sequence of 1
through 51. At a lottery drawing, 6 balls are drawn at random from a box containing
51 balls numbered 1 through 51. What is the probability that a player has k matches,
k=4,5,67

SOLUTION

Let n represent the total number of balls in the box among which for any player there
are m “good ones™ (those chosen by the player!). The remaining (n — m) balls are “bad
ones.” There are in total () samples of size m each with equal probability of occurrence.
To determine the probability of the event “k matches,” we need to determine the number
of samples containing exactly k “good” balls (and hence m — k “bad” ones). Since the
k good balls must be chosen from m and the (m — k) bad ones from n — m, the total

number of such samples is
m n—m
k m—k

(6) Goei)
@)

In particular, with k = m, we get a perfect match, and a win. Thus

m-m~-1)...2.1

. 1
P(winning the lottery) = —,77 = A= D i—m+ D) (3-40)

This gives

P (k matches) = k=0,12,....m (3-39)

Vi
In the New York State lottery, n = 51, m = 6. so that
6-5-4.3-2.1
51-50-49-48-47-46

1 -8
=— ~ 5. .41
18,000,460 5.5x 10 (3-41)

Thus the odds for winning the lottery are !
1 : 18,009,460. (342)

P(winning the lottery) =
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Using k = 5 and 4 in (3-39), we get the odds for 5 matches and 4 matches in the New
York lottery to be 1:66,701 and 1: 1213, respectively.

In a typical game suppose the state lottery pays $4 million to the winner and
$15,000 for 5 matches and $200 for 4 matches. Since the ticket costs $1, this gives the
average gain for the player to be
__ 4,000,000
~ 18,009,460
_ 15,000
~ 66,701

N6 1> -0.778,

ns - 12~ -0.775
and
200
= —— ~ 1~ —(.835
™= T3 0

for winning 5 matches and 4 matches, respectively. Notice that the average gain for the
player is always negative. On the other hand, the average gain for the lottery institution is
always positive, and because of the large number of participants involved in the lottery,

the state stands to gain a very large amount in each game. 4

The inference from Bernoulli’s theorem is that when a large number of games are
played under identical conditions between two parties, the one with a positive average
gain in a single game stands to gain a fortune, and at the same time the one with negative
average gain will almost certainly be ruined. These conclusions assume that the games
are played indefinitely to take advantage of Bernoulli’s theorem, and the actual account
settlement is done only at the very end. Interestingly, the stock market situation does
allow the possibility of long-time play without the need to settle accounts intermittently.
Hence if one holds onto stocks with positive average gains, in the long run that should
turn out to be a much more profitable strategy compared to day-to-day trading? (which is
equivalent to gambling). The key is not to engage in games that call for account settlement
quite frequently. In regular gambling, however, payment adjustment is made at the end
of each game, and it is quite possible that one may lose all his capital and will have to
quit playing long before reaping the advantage that a large number of games would have
brought to him.

In this context, next we examine a classic problem involving the ruin of gamblers.
Since probability theory had its humble origin in computing chances of players in dif-
ferent games, the important question of the ruin of gamblers was discussed at a very
early stage in the historical development of the theory of probability. The gambler’s ruin
problem has a long history and extensive literature is available on this topic. The sim-
plest problem of its kind was first solved by C. Huygens (1657), followed by J. Bernoulli
(1680), and the general case was proved by A. De Moivre in 1711. More important, over
the years it has played a significant role as a source of theorems and has contributed
to various generalizations including the subject of random walks (see Chapter 10). The

2 Among others, this strategy worked very well for the late Prof. Donald'Or.hmcr of Polytechnic, who together
with his wife Mildred had initially invested $25,000 each in the early 1960s with the legendary investor,
Warren Buffett who runs the Berkshire Hathaway company. In 1998, the New York Times reported that the
Othruer’s net assets in the Berkshire Hathaway stock fund were around $800,000,000.



EXAMPLE 3-15

GAMBLER’S
RUIN
PROBLEM

CHAPTER3 REPEATEDTRIALS 63

underlying principles are used also by casinos, state lotteries, and more respectable
institutions such as insurance companies in deciding their operational strategies.

P> Two players A and B play a game consecutively till one of them loses all his capital.
Suppose A starts with a capital of $a and B with a capital of $5 and the loser pays $1
to the winner in each game. Let p represent the probability of winning each game for A
and ¢ = 1 — p for player B. Find the probability of ruin for each player if no limit is set
for the number of games.>

SOLUTION

Let P, denote the probability of the event X, = “A’s ultimate ruin when his wealth is
$n" (0 < n < a + b). His ruin can occur in only two mutually exclusive ways: either A
can win the next game with probability p and his wealth increases to $ (n + 1) so that
the probability of being ruined ultimately equals P,41, or A can lose the next game with
probability ¢ and reduce his wealth to $(n — 1), in which case the probability of being
ruined later is P,_;. More explicitly, with H = “A succeeds in the next game,” by the
theorem of total probability we obtain the equation

Xa=X (HUH)=X,HUX,H

and hence
P, = P(X,) = P(X, | H)P(H) + P(X. | H)P(H)
= pPyy1+qPn (3-43)
with initial conditions
Po=1 Pup=0 (3-44)

The first initial condition states that A is certainly ruined if he has no money left, and
the second one states that if his wealth is (a + b) then B has no money left to play, and
the ruin of A is impossible.

To solve the difference equation in (3-43), we first rewrite it as

P(Pn+l - Pn) = Q(Pn = Pu-t) ) (3‘45)
or

Pui—Pi=L(p, - P = (i) (P —~1)
P F4

where we have made use of the first initial condition. To exploit the remaining initial
condition, consider P, — P,. Clearly, for p # ¢

a+b-1 at+b~1 q k
Poo—Po= Y Put~P= Y (—) (-1
k=n

k=n

(P - l)—”‘-—-“—(%)nla. (%)Hb

-2 .
4

©

3Hugyens dealt with the particular case where a = b = 12 and p/g = 5/4.
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Since P4, = 0, it follows that
q n _(a at+b
(5)-(2)
Py =(1- P))~r—"tt—

and since Py = 1, this expression also gives

0 a+b
Po=1=(1-—P1)(%) ;_f)
4

Eliminating (1 — Py) from the last two equations, we get

P = _(%)" _ (%)”" (3-46)

e

Substituting n = g into (3-46), we obtain the probability of ruin for player A when his
wealth is $a to be (for p # q)

b
P= 1——(5)— (3-47)

1 (g)a-i-b

Proceeding in a similar manner (or interchange p and g as well as g and b) we get the
probability of ultimate ruin for player B (when his wealth is $5) to be for p # ¢

0p= ——\2) () (348)

By direct addition, we also get
Po+ Qp=1 349

so that the probability that the series of games will continue indefinitely without A or B
being ruined is zero. Note that the zero probability does not imply the impossibility of
an eternal game. Although an eternal game is not excluded theoretically, for all practical
purposes it can be disregarded. From (3-47), 1 — P, represents the probability of A
winning the game and from (3-49) it equals his opponents probability of ruin.

Consider the special case where the players are of equal skill. In that case p=
q = 1/2,.and (3-47) and (3-48) simplify to

b
P, = 273 (3-50)
and
a r
O = Ty (3-51)

Equations (3-50) and (3-51) state that if both players are of equal skill, then their proba-
bilities of ruin are inversely proportional to the wealth of the players. Thus it is unwise to
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play indefinitely even against some one of equal skill whose fortune is very large, since
the risk of losing all money is practically certain in the long run (P, — 1, if 3> a).
Needless to say if the adversary is also skiliful (g > p) and wealthy, then as (3-47)
shows, A’s ruin is certain in the long run (P, > 1, as b — 00). All casino games against
the house amount to this situation, and a sensible strategy in such cases would be to quit
while ahead.

What if odds are in your favor? In that case p > ¢, so thatg/p < 1, and (3-47) can

be rewritten as
b
a 1-— ]
%= (3) :‘é_g—?w(%)a

4

and P, converges to (g/p)® as b— 0o. Thus, while playing a series of advantageous
games even against an infinitely rich adversary, the probability of escaping ruin (or

gaining wealth) is
a
1-Pp=1-~ (1) (3-52)
p

If a is large enough, this probability can be made as close to 1 as possible. Thus a skillful
player who also happens to be reasonably rich, will never be ruined in the course of
games, and in fact he will end up even richer in the long run. (Of course, one has to live
long enough for all this to happen!)

Casinos and state lotteries work on this principle. They always keep a slight ad-
vantage to themselves (g > p), and since they also possess large capitals, from (3-48)
their ruin is practically impossible (Q, — 0). This conclusion is also confirmed by ex-
perience. It is hard to find a casino that has gone “out of business or doing rather poorly.”
Interestingly, the same principles underlie the operations of more respectable institutions
of great social and public value such as insurance companies. We shall say more about
their operational strategies in a later example (see Example 4-29, page 114).

If one must gamble, interestingly (3-47) suggests the following strategy: Suppose
a gambler A with initial capital $4 is playing against an adversary who is always willing
to play (such as the house), and A has the option of stopping at any time. If A adopts the
strategy of playing until either he loses all his capital or increase it to $(a + b) (with a
net gain of $5), then P, represents his probability of losing and 1 — P, represents his
probability of winning. Moreover, the average duration of such a game is given by (see
Problem 3-7)

b a+b 1—(g)h
N, = 2p—1_2p—11_(§q)“+” P#4 (3-53)

ab p=¢g=-=

Table 3-1 illustrates the probability of ruin and average duration for some typical values
ofa, b, and p. .

CHANGING STAKES. Let us now analyze the effect of changing stakes in this situation.
Suppose the amount is changed from $1 to $k for each play. Notice that its effect is the
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TABLE 3-1

Gambler’s ruin
Probability of
Average
P q Capital, a Gain, b Ruin, P, Success,1 — P, duration, N,

0.50 0.50 9 1 0.100 0.900 9
0.50 0.50 90 10 0.100 0.900 900
0.50 0.50 90 5 0.053 0.947 450
0.50 0.50 500 100 0167 0.833 50,000
0.45 0.55 9 1 0.210 0.790 11
0.45 0.55 50 10 0.866 0.134 419
0.45 0.55 90 5 0.633 0.367 §52
045 0.55 90 10 0.866 0.134 765
045 ' 0.5 100 5 0.633 0.367 615
045 0.55 100 10 0.866 0.134 852

same as reducing the capital of each player by a factor of k. Thus the new probability of
ruin P} for A, where $k are staked at each play, is given by (3-47) with a replaced by
a/k and bby b/k.

bk
T () st

a 1 (5)(a+b)/k

Letag = a/k, by = b/k, x = (p/q)®, and y = (p/q)®**. Then

C1=xf 1-x 14x4e4xt!
Ty T 1=y 14y oyl
l+x 4. 4xt-t

=P;1+y+...+yk-l>Pa forp <gq, (3-55)
since x > y for p < g. Equation (3-55) states that if the stakes are increased while the
initial capital remains unchanged, for the disadvantageous player (whose probability of
success p < 1/2) the probability of ruin decreases and it increases for the adversary (for
whom the original game was more advantageous). From Table 3-1, fora = 90, b = 10,
with p = 0.45, the probability of ruin for A is founed to be 0.866 for a $1 stake game.
However, if the same game is played for $10 stakes, the probability of ryin drops down
t0 0.21. In an unfavorable game of constant stakes, the probability of ruin can be reduced
by selecting the stakes to be higher. Thus if the goal is to win $ b starting with capital $a,
then the ratio capital/stake must be adjusted in an unfavorable game to fix the overall
probability of ruin at the desired level. <

Py

Example 3-16 shows that the game of craps is pérhaps the most favorable game
among those without any strategy (games of chance). The important question in that
case is how long one should play to maximize the returns. Interestingly as Example 3-17
shows even that question has an optimum solution.
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GAME OF
CRAPS
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P> A pair of dice is rolled on every play and the player wins at once if the total for the
first throw is 7 or 11, loses at once if 2, 3, or 12 are rolled. Any other throw is called a
“carry-over.” If the first throw is a carry-over, then the player throws the dice repeatedly
until he wins by throwing the same carry-over again, or loses by throwing 7. What is the
probability of winning the game?

SOLUTION

A pair of dice when rolled gives rise to 36 equally likely outcomes (refer to Example 3-8).
Their combined total T can be any integer from 2 to 12, and for each such outcome the
associated probability is shown below in Table 3-2.

The game can be won by throwing a 7 or 11 on the first throw, or by throwing the
carry-over on a later throw. Let P; and P> denote the probabilities of these two mutually
exclusive events. Thus the probability of a win on the first throw is given by

6 2

2
P,=P(T=7)+P(T=11)=%+-3—6-=§ (3-56)

Similarly, the probability of loss on the first throw is

1 2 1 1

= = T = = s e o ==

Q1=PT=2)+ P( 3)+ P(T =12) 36+36+36 5

To compute the probability P; of winning by throwing a carry-over. we first note that

4,5,6,8,9, and 10 are the only carry-overs with associated probabilities of occurrence

as in Table 3-2, Let B denote the event “winning the game by throwing the carry-over”
and let C denote a carry-over. Then using the theorem of total probability

(3-57)

10 10
Py=P(B)= Y P(BIC=KPC=k= Y PBIC=kp (3-58)
k=4,kst7 k=4.ks7

To compute g, = P(B|C = k) note that the player can win by throwing a number of
plays that do not count with probability 7, = 1 — p; — 1/6, and then by throwing the
carry-over with probability p. (The 1/6 inr, = 1— p, — 1/6 is the probability of losing
by throwing 7 in later plays.) The probability that the player throws the carry-over k on
the jth throw (and j — 1 do-not-count throws earlier) is pkr,{", J=123,...,00.
Hence

oo
j Pk Dk
a=PBIC=k=pnY r'= = . (3-59)
pjgk 1—r D +1/6
which gives ?
k 4 5 6 8 9 10
e L 2 05 5 2 1
k3 5 T m s 3
TABLE 3-2
Total T =k 2 3 4 5 6 7 8 9 100 11 12
=ProbT=k) |k % % % % & % % % % %




68  PROBABILITY ANDRANDOM VARIABLES

EXAMPLE 3-17

STRATEGY
FOR AN
UNFAIR
GAME?

Using (3-59) and Table 3-2 in (3-58) we get .

10
1 3,24 5 5 55
= ) ap=5 =+ + +

Mry ¥ 3 36 5 36 11 36 11 36
J2.4,1 03 .
5°3 "3 36 495 (3-60)
Finally, (3-56) and (3-60) give
- 2 134 244
P(winning the game) = P + P, = 3 + 395 = 395 = 0.492929 (3-61)

Notice that the game is surprisingly close to even, but as expected slightly to the advantage
of the house! <

Example 3-17 shows that in games like craps, where the player is only at a slight
disadvantage compared to the house, surprisingly it is possible to devise a strategy that
works to the player’s advantage by restricting the total number of plays to a certain
optimum number.

p> A and B plays a series of games where the probability of winning p in a single play
for A is unfairly kept at less than 1/2. However, A gets to choose in advance the total
number of plays. To win the whole game one must score more than half the plays. If the
total number of plays is to be even, how many plays should A choose?

SOLUTION
On any play A wins with probability p and B wins with probability g = 1 — p> p.
Notice that the expected gain for A on any play is p — g <0. At first it appears that
since the game is unfairly biased toward A, the best strategy for A is to quit the game
as early as possible. If A must play an even number, then perhaps quit after two plays?
Indeed if p is extremely small that is the correct strategy. However, if p = 1/2, then
as 2n, the total number of plays increases the probability of a tie (the middle binomial
term) decreases and the limiting value of A’s chances to win tends to 1/2. In that case,
the more plays, the better are the chances for A to succeed. Hence if p is somewhat less
that 1/2, it is reasonable to expect a finite number of plays as the optimum strategy.

To examine this further, let X denote the event “A wins k games in a sexies of 2n
plays.” Then

P(xk)=(2k”)p"q2"-" £=0,1,2,...,.21

and let P,, denote the probability that A wins in 2n games. Then

n 2n b1 In
PZn = P ( U Xk) = Z P(Xk) = Z ( X ) pqun—k (3-62)
k

=n+1 k=n+1 k=n4-1
where we have vsed the mutually exclusive nature of the, X;s.

4“Optimal length of play for a binomial game,” Mathematics Teacher, Vol. 54, pp. 411412, 1961.
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If 2n is indeed the optimum number of plays, then we must have
Pyp—2 < Py 2 Pu2 (3-63)
where Py, denotes the probability that A wins in 2» + 2 plays. Thus

2n42
2 -
Paiz= ) (2” N )p"q”‘“ ¢ (3-64)

k=n+2

To obtain a relation between the right side expressions in (3-63) and (3-64) we can make
use of the binomial expansion

W+2
2 +2 -
Y ( B ) P = (p+ )™ = (p+ 9" (0 + 90

k=<0
2n 2n
= {Z ( X ) p‘ql’”"} (P®+2pg+4>) (3-65)

k=0

Notice that the later half of the left side expression in (3-65) represents Py,.2. Similarly,
the later half of the first term on the right side represents P,,. Equating like powers of

terms p"+2q", p"t3¢"~1, ..., p?*+2 on both sides of (3-65), after some simple algebra
we get the identity
2n 2n
P2n+2 = P2n + ( i ) pn+2qn _ (n + 1) pn+lqn+l (3—66)

Eguation (3-66) has an interesting interpretation. From (3-66), events involved in winning
a game of 2n + 2 plays or winning a game of 2n plays differ in only two cases: (i) Having
won n games in the first 2n plays with probability (2"") p"q", A wins the next two
plays with probability p?, thereby increasing the winning probability by (**) p*+2¢™;
(if) Having won n + 1 plays in the first 2n plays with probability () p"+'g"!, A
loses the next two plays with probability g2, thereby decreasing the winning probability
by (:_"_'I) p"lg"14?. Except for these two possibilities, in all other respects they are
identical.

If 2n is optimum, the right side inequality in (3-63) when applied to (3-66) gives

2n n+\ _n+l 2n n+2 .0
(n + 1) Ptz P (3-67)
or
p N
ng>2m+1lp nlg-pzp n2z (3-68)
q p 1-2p
Similarly, the left side inequality in (3-63) gives (replace n by n — 1 in (3-66))
2n -2 n4t _n—1 2n—-2 n.n -
(n_l)p q 2( n )pq (3-69)
or '
np>(-1g nlg-p)<q n<-— (3-70)

1-2p
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From (3-68) and (3-70) we get

1
-] <2n <
1-2p =" =1-%p

+1 3-71)

which determines 2n uniquely as the even integer that is nearest to 1/(1 — 2p). Thus for
example, if p = 0.47,then2n = 16. However.if 1 /(1—-2p) is an odd integer (p = 0.48),
both adjacent even integers 2n = 1/(1 —2p) —land2n+2=1/(1 —2p) + 1 give the
same probability (show this). Finally if p = 0, then (3-71) gives the optimum number
of plays to be 2.

+ Returning to Example 3-16 (game of craps), p was found to be 0.492929 there,
which gives 2n = 70 to be the optimum number of plays. Most people make the mistake
of quitting the game long before 70 plays, one reason being the slow progress of the game.
(Recall that each play may require many throws because of the do-not-count throws.)
However, here is one game where the strategy should be to execute a certain number
of plays.

Interestingly, the results from Examples 3-15 and 3-16 can be used to design
an optimum strategy for the game of craps involving the amounts of capital, expected
return, stakes and probability of success. Table 3-3 lists the probability of success and
average duration for some typical values of capital a and gain &. Here P, represents
the probability of ruin computed using (3-47) with p = 0.492929, and N, represents
the corresponding expected number of games given by (3-53). Notice that a and b have
been chosen here so that the expected number of games is around its optimum value of
70. Thus starting with $10, in a $1 stake game of craps the probability of gaining $7 is
0.529 in about 70 games. Clearly if the capital is increased to $100, then to maintain the
same number of games and risk level, one should raise the stakes to $10 for an expected
gain of $70. However, if a strategy with reduced risk is preferred, from Table 3-3 one
may play the a = 16, b = 4 game (25% gain) that ensures 75% probability of success
in about 67 games. It follows that for a $100 investment, the stakes in that case should
be set at $6 per game for an expected gain of $25.

TABLE 3-3
Strategy for a game of craps (p = 0.492929)
Probabflity of
Capital,a  Gain, b Ruin, P, Success, 1 — P, Expected duration, N,
9 8 0.5306 0.4694 72.14
10 7 04707 0.5293 70.80
11 6 0.4090 0.5910 67.40
12 6 0.3913 0.6087 73.84
13 5 0.3307 0.6693 67.30
14 5 03173 0.6827 . T72.78
15 5 0.3054 0.6946 7832
16 4 0.2477 0.7523 67.47
17 4 0.2390 0.7610 7198
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PROBLEMS

3-1 Let p represent the probability of an event A. What is the probability that (a) A occurs at
least twice in n independent trials; (b) A occurs at least thrice in n independent trials?

3-2 A pair of dice is rolled 50 times. Find the probability of obtaining double six at least three
times.

3-3 A pair of fair dice is rolled 10 times. Find the probability that “seven” will show at least
once.

3-4 A coin with p{h} = p = 1 — g is tossed n times. Show that the probability that the number
of heads is even equals 0.5[1 + (¢ —~ p)"].

3-5 (Hypergeometric series) A shipment contains K good and N — K defective components.
We pick at random # < K components and test them. Show that the probability p that k of
the tested components are good equals (compare with (3-39))

=(5)(=0)/ ()

3-6 Consider the following three events: (a) At least 1 six is obtained when six dice are rolled,
(b) at least 2 sixes are obtained when 12 dice are rolled, and (¢) at least 3 sixes are obtained
when 18 dice are rolled. Which of these events is more likely?

3-7 A player wins $1 if he throws two heads in succession, otherwise he loses two quarters.
If the game is repeated SO times, what is the probability that the net gain or less exceeds
(a) $17 (b) $5? .

3-8 Suppose there are r successes in # independent Bernoulli trials. Find the conditional proba-
bility of a success on the ith trial.

3.9 A standard pack of cards has 52 cards, 13 in each of 4 suits. Suppose 4 players are dealt
13 cards each from a well shuffled pack. What is the probability of dealing a perfect hand
(13 of any one suit)?

3-10 Refer to Example 3-15 (Gambler's ruin problem). Let N, denote the average duration of the
game for player A starting with capital a. Show that
b a+b 1-(2)’
N, = 2p—1 2p-—-1 1_(5)‘“’”

P#q

1

ab p=q=3

(Hint: Show that N, satisfies the iteration Ny = 1 + pNi4y + gNi—; under the initial
conditions Mg = Noyp = 0.)

3-11 Refer to Example 3-15. Suppose the stakes of A and B are r and 8, and respective capitals
are a and b, as before. Find the probabilities for A or B to be ruined.

3-12 Three dice are rolled and the player may bet on any one of the face values 1,2, 3,4, 5, and 6.
If the player’s number appears on one, two, or all three dice, the player receives respectively
one, two, or three times his original stake plus his own money back. Determine the expected
loss per unit stake for the player.



EXAMPLE 4-1

CHAPTER

4

THE CONCEPT
OF A RANDOM
VARIABLE

4-1 INTRODUCTION

A random variable is a number x(¢) assigned to every outcome ¢ of an experiment,
This number could be the gain in a game of chance, the voltage of a random source, the
cost of a random component, or any other numerical quantity that is of interest in the
performance of the experiment.

P> (a)Inthe die experiment, we assign to the six outcomes f; the numbers x( f;) = 10i.
Thus

x(fi) =10,...,%x(fs) =60

(b) In the same experiment, instead we can assign the number 1 to every even outcome
and the number 0 to every odd outcome. Thus

X(fi) =x(f3) =x(fs) =0  x(f)=x(f) =x(fe) =1 <

THE MEANING OF AFUNCTION. A random variable is a function whose domain is the
set S of all experimental outcomes. To clarify further this important concept, we review
briefly the notion of a function. As we know, a function x() is a rule of correspondence
between values of ¢ and x. The values of the independent variable ¢ form a set S; on the
axis called the domain of the function and the values of the dependent variable x form a
set S, on the x axis called the range of the function. The rule of correspondence between
t and x could be a curve, a table, or a formulia, for example, x(1) = 2,

The notation x () used to represent a function is ambiguous: It might mean either
the particular number x () corresponding to a specific ¢, or the function x(z), namely, the
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rule of correspondence between any ¢ in S, and the corresponding x in S,. To distinguish
between these two interpretations, we shall denote the latter by x, leaving its dependence
on ¢ understood.

The definition of a function can be phrased as: We are given two sets of numbers
S; and §;. Toevery ¢ € §; we assign a number x () belonging to the set S,. This leads to
this generalization: We are given two sets of objects S,, and Sg consisting of the elements
o and B, respectively. We say that 8 is a function of ¢ if to every element of the set S,
we make correspond an element S of the set Sg. The set S, is the domain of the function
and the set S its range.

Suppose, for example, that S, is the set of children in a community and Sz the set
of their fathers. The pairing of a child with his or her father is a function.

We note that to a given o there corresponds a single 8(c). However, more than
one element from S, might be paired with the same $ (a child has only one father but
a father might have more than one child). In Example 4-1b, the domain of the function
consists of the six faces of the die. Its range, however, has only two elements, namely,
the numbers O and 1.

The Random Variable

We are given an experiment specified by the space S (or $2), the field of subsets of S
called events, and the probability assigned to these events. To every outcome { of this
experiment, we assign a number x(Z). We have thus created a function X with domain
the set S and range a set of nurnbers. This function is called random variable if it satisfies
certain mild conditions to be soon given.

All random variables will be written in boldface letters. The symbol x(¢) will
indicate the number assigned to the specific outcome ¢ and the symbol x will indicate
the rule of correspondence between any element of S and the number assigned to it.
Example 4-1q, x is the table pairing the six faces of the die with the six numbers
10, ..., 60. The domain of this function is the set § = {f1, ..., fs} and its range is the
set of the above six numbers. The expression x( f>) is the number 20.

EVENTS GENERATED BY RANDOM VARIABLES. In the study of random variables,
questions of the following form arise: What is the probability that the random variable x
is less than a given number x, or what is the probability that x is between the numbers x)
and x,? If, for example, the random variable is the height of a person, we might want the
probability that it will not exceed certain bounds. As we know, probabilities are assigned
only to events; therefore, in order to answer such questions, we should be able to express
the various conditions imposed on x as events. )
We start with the meaning of the notation

{x<x)

This notation represents a subset of S consisting of all outcomes ¢ such that x(¢) < x.
We elaborate on its meaning: Suppose that the random variable x is specified by a table.
At the left column we list all elements {; of S and at the right the corresponding values
{numbers) x(£;) of x. Given an arbitrary number x, we find all numbers x{{;) that do not
exceed x. The corresponding elements ; on the left column form the set {x < x}. Thus
{x < x} is not a set of numbers but a set of experimental outcomes.
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The second condition states that, although we allow X to be +00 or —oo for some
outcomes, we demand that these outcomes form a set with zero probability.
A complex random variable z is a sum

z2=x+1jy

where x and y are real random variables. Unless otherwise stated, it will be assumed that
all random variables are real.

Note In the applications, we are interested in the probability that a random variable x takes values in a certain
region R of the x axis. This requires that the set {x € R} be an event. As we noted in Sec. 2-2, that is not always
possible. However, if {x < x} is an event for every x and R is a countable union and intersection of intervals,
then {x € R} is also an event. In the definition of random variables we shall assume, therefore, that the set
{x < x} is an event. This mild restriction is mainly of mathematical interest.

4-2 DISTRIBUTION AND DENSITY
FUNCTIONS

The elements of the set S (or 2) that are contained in the event {x < x} change as the
number x takes various values. The probability P{x < x} of the event {x < x} is, there-
fore, a number that depends on x. This number is denoted by F;(x) and is called the
(cumulative) distribution function of the random variable x.

j The distribution function of the random variable x is the function
Fi(x) = P{x < x} 41)

defined for every x from —o0 to co.

The distribution functions of the random variables x. y, and z are denoted by
Fi(x), Fy(y), and F,(z), respectively. In this notation, the variables x, y, and z can be
identified by any letter. We could, for example, use the notation F,(w), F,(w), and
F,(w) to represent these functions. Specifically,

Fe(w) = P(x < w}

is the distribution function of the random variable x. However, if there is no fear of
ambiguity, we shall identify the random variables under consideration by the independent
variable in (4-1) omitting the subscripts. Thus the distribution functions of the random
variables X, y, and z will be denoted by F(x), F(y), and F(z), respectiyely. Q

P> In the coin-tossing experiment, the probability of heads equals p and the probability
of tails equals g. We define the random variable x such that

x(h) =1 x(t) =0

We shall find its distribution function F (x) for every x'from —o00 to co.
If x > 1, then x(h) = 1 < x and x(t) = 0 < x. Hence (Fig. 4-2)

Fx)=Px<x)=Piht}=1 x>1
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Fx)A fi3)
l - e ——————vvee
; |
) - g | P >
1] 1 X 0 1 x
FIGURE 4-2

If0<x <1,thenx(h) =1 > x and x(f) = 0 < x. Hence
Fix)=P{x<x}=P{t}=q 0=<x<1
Ifx sO,thenx(h): 1> x and x(1) = 0 > x. Hence
Fx)=Px<x)=P(@ =0 x<0 <

[CRYIUBERE D In the die experiment of Example 4-2, the random variable x is such that x(f;) =
10i. If the die is fair, then the distribution function of x is a staircase function as in
Fig. 4-3.
We note, in particular, that

F(100) = P{x < 100} = P(§) = 1
F(35) = P(x <35} =P{fi, /. i} =2
F(30.01) = P{x < 30.01} = P(fi, fo, i} =2

F(30) = P{x <30} = P{fi, fo. fa} =
F(29.99) = P{x < 29.99} = P(f. fz} =

<4

3
[
r
6

EXAMPLE 4-5 } A telephone call occurs at random in the interval (0, 1). In this experiment, the
outcomes are time distances ¢ between 0 and 1 and the probability that ¢ is between 7,
and # is given by

Pl 2t<n)=n~-1
We define the random variable x such that

x(t) =1 O0<t<1l s

F(x))

S
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LI L LR L

NRNACH

0 60 o

[ W 1
D 10 20 30 40 50 60

FIGURE 4-3
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Thus the variable ¢ has a double meaning: It is the outcome of the experiment and the
corresponding value x(z) of the random variable x. We shall show that the distribution
function F(x) of x is a ramp as in Fig. 4-4.

Ifx > 1, then x(¢) < x for every outcome. Hence

Fx)=Px<x}=P0<t<1}=P(8) =1 x>1
If0 < x <1, thenx(r) < x for every ¢ in the interval (0, x). Hence
Fx)=Px<x}=P{0<t<x}==x 0<x<l1
If x < 0, then {x < x} is the impossible event because x(z) = 0 for every 1. Hence

Fx)=Plx<x}=P{@#}=0 x<0 |

P> Suppose that a random variable x is such that x({) =a for every £ in S. We shall
find its distribution function.
Ifx > a,then x(¢) = a < x forevery . Hence

Fx)=Px<x)=P(S}=1 x>a
If x < a, then {x < x} is the impossible event because x(¢) = a. Hence
F(x)=P{x<x}=P{#}=0 x<a

Thus a constant can be interpreted as a random variable with distribution function a
delayed step U(x — a) as in Fig. 4-5. <

Note ‘A complex random varigble z = x + jy has no distribution function because the inequality x + jy <
x + Jy has no meaning. The statistical properties of 2 are specified in terras of the joint distribution of the
random variables x and y (see Chap. 6).

PERCENTILES. The u percentile of a random variable x is the smallest number x,, such
that

u=P{x <x,} =F(x,) (4-2)
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Thus x, is the inverse of the function 4 = F(x). Its domain is the interval 0 < u < 1,
and its range is the x axis. To find the graph of the function x,, we interchange the axes
of the F(x) curve as in Fig. 4-6. The median of x is the smallest number m such that
F(m) = 0.5. Thus m is the 0.5 percentile of x.

Frequency interpretation of F(x) and x,. We perform the experiment n times and we
observe n values x), .. ., x, of the random variable x. We place these numbers on the x axis
and we form & staircase function F}(x) as in Fig 4-6a. The steps are located at the points
x; and their height equals 1/n. They start at the smallest value xp, of x;, and F,(x) = 0
for x < Xmip. The function F,(x) so constructed is called the empirical distribution of the
random variable x.

For a specific x, the number of steps of F,(x) equals the gumber n, of x;s that are
smaller than x; thus F, (x) =n,/n. And since n, /n >~ P{x < x} forlargen, we conclude that

Fo(x) = "7 -+ Px<x}=F(x) a5 n—oo (4-3)

The empirical interpretation of the u percentile x,, is the Querelet curve defined as:
We form n line segments of length x; and place them vertically in order of increasing length,
distance 1/n apart. We then form a staircase function with corners at the endpoints of these
segments as in Fig. 4-6b. The curve so obtained is the empirical interpretation of x, and it
equals the empirical distribution F; (x) if its axes are interchanged.

Properties of Distribution Functions

In this discussion, the expressions F(x*) and F(x™) will mean the limits

F(xt)=limF(x +¢) F(x")=1lmF(x —¢)
The distribution function has the following properties

0<e—=0

1 F(+o00) =1 F(—00) =0
Proof. ,

F(+00) = P{x < +00} = P(S) =1 F(—00) = P{x=~00} =0
2.. It is a nondecreasing function of x:

if x1<x then F(x)) < F(xp) 4-4)
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Proof. The event {x < x,} is a subset of the event {x < x;} because, if x(¢) < x for
some ¢, then x(Z) < xa. Hence [see (2-14)] P{x < x1} < P{x < x2} and (4-4) results.
From (4-4) it follows that F (x) increases from 0 to 1 as x increases from —00 10 ¢0.

3. If F(x9)=0 then F(x)=0 forevery x<uxg @-5)

Proof, 1t follows from (4-4) because F(—00) = 0. The preceding leads to the conclu-
sion: Suppose that x({) = 0 for every ¢. In this case, F(0) = P{x < 0} = 0 because
{x < 0} is the impossible event, Hence F(x) = 0 forevery x < 0.

4. Plx>x}=1-F(x) (4-6)

Proof. The events {x < x} and {x > x} are mutually exclusive and
x<sxjU{x>x}=8
Hence P{x < x} + P{x > x} = P(S) = 1 and (4-6) results.

5. The function F(x) is continuous from the right:

F(x*) = F(x) @7
Proof. It suffices to show that P{Xx < x + ¢} — F(x)as& — Obecause P{x < x+¢} =
F(x +¢)and F(x +£) = F(x*) by definition. To prove the concept in (4-7), we must
show that the sets {X < x + &} tend to the set {x < x} as £ — 0 and to use the axiom

HHa of finite additivity. We omit, however, the details of the proof because we have not
introduced limits of sets.

6. Plxi <X 2 x3} = F(x2) — F(xy) 4-8)
Proof. The events {x < x;} and {x; < X < x;} are mutually exclusive because x(¢)
cannot be both less than x; and between x; and x,. Furthermore,
x<xl={x<x}lUin <x=<x}
Hence
Pix<x}=P{x<x1}+ P{x1 <x S x2)
and (4-8) results.

7. P{x=x}=F(@x)— F(x") 4-9)

Proof. Setting x; = x — & and x» = x in (4-8), we obtain
Pix—es<x<x}=F(x)—F(x~¢)

and with ¢ — 0, (4-9) results.

8. P{x; £ x < x2} = F(x2) = F(x7) 4-10)

’

Proof. It follows from (4-8) and (4-9) because
xigx<x}l={x <x<xn}U{x=x}

and the Jast two events are mutually exclusive.
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EXAMPLIE 47

EXAMPLE 4-8

Statistics. We shall say that the statistics of a random variable x are known if we can
determine the probability P{x € R} that xisin aset R of the x axis consisting of countable
unions or intersections of intervals. From (4-1) and the axioms it follows that the statistics
of x are determined in terms of its distribution function.

According to (4-7), F,(x7), the limit of Fy(x) as x — xo from the right always ex-
ists and equals Fy (xo). But F; (x) need not be continuous from the left. At a discontinuity
point of the distribution, the left and right limits are different, and from (4-9)

P{x(§) = xo} = Fy(x0) — Fx(x5) >0 4-11)

Thus the only discontinuities of a distribution function F, (x) are of the jump type, and
occur at points xg where (4-11) is satisfied. These points can always be enumerated as a
sequence, and moreover they are at most countable in number.

P> The set of nonnegative real numbers {p;} satisfy P{x = x;} = p; for all i, and
> 1oy Pi = 1. Determine F(x).
SOLUTION

Forx; < x < xi41, wehave {x(§) <x} = | {x(§) = x} = U {x(§) = x} and hence
Xp2x k=1

i
Fx)=PE)<x)=)_pt X Sx <%
k=1

Here F(x) is a staircase function with an infinite number of steps and the i-th step size
equals p;,i = 1,2,...,00 (see Fig4-7).

P> Suppose the random variable x is such that x(§) =1 if £ € A and zero otherwise.
Find F(x).

SOLUTION
For x < 0, {x(¢) < x} = {0}, so that F(x) = 0.For 0 < x < 1, {x(¢) < x} = {4}, s0
that F(x) = P{A} = 1 — p = g, where p 2 P(A), and if x > 1, {x(£) < x} = .50
that F(x) = 1 (see Fig. 4-2, page 76). Here the event A may refer to success and A to
failure. 4

F(x) ﬂ\ J) A
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FIGURE 4-7
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Continuous, Discrete, and Mixed Types

The random variable X is said to be a continuous type if its distribution function Fy(x) is
continuous, Inthatcase Fy(x~) = F;(x) forall x,and from (4-11) we get P{x = x} = 0.

If F.(x) is constant except for a finite number of jump discontinuities (piecewise
constant; step type). then x is said to be a discrete-type random variable. If x; is such a
discontinuity point, then from (4-11) (see Fig. 4-9-Fig. 4-10 and also Fig. 4-7 on page 80)

Plx =1} = Fi(x) - F:(x) = pi (4-12)
For example, from Fig. 4-5, page 77, at the point of discontinuity we get
Plx=al=F(a)— Fr(@a)=1-0=1
and from Fig. 4-2, page 76, at such a point
Plx=0}=F{(0) - Fx(0T)=g—-0=gq

P> A fair coin is tossed twice, and let the random variable x represent the number of
heads. Find F;(x).

SOLUTION
In this case, Q = {HH, HT,TH, T'T}, and

x(HH) =2 x(HD =1 x(TH)=1 x(TT)=0
Forx <0, {x(¢§)<x}=¢=> F(x)=0,andfor0<x < 1,
{x(¢) < x} = {IT} = F:(x) = P{IT} = P(T)P(T) = §
Finally for 1 <x <2,
{x(¢) < x} = {TT, HT, TH} = F,(x) = P{TT} + P{HT} + P{TH} = }

and forx > 2, {x(§) < x} = Q = F,(x) = 1 (see Fig. 4-8). From Fig. 4-8, at a point
of discontinuity P{x = 1} = F(1) = F(1") =3/4 - 1/4 = 1/2.

The Probability Density Function (p.d.f.)
The derivative of the probability distribution function F;(x) is called the probability
density function f;(x) of the random variable x. Thus

A dF,(x)
filx) = dx .

4-13)

Ffx) A
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FIGURE 4-8
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Since
dF,(x) Hm Fr(x + Ax) — F,(x) >0

dx Ax—0 Ax
from the monotone-nondecreasing nature of F, (x), it follows that f,(x) > O for all x. If
X is a continuous-type random variable, f,(x) will be a continuous function. However,
if x is a discrete-type random variable as in Exampie 4-7, then its p.d.f. has the general
form (Figs. 4-7b and 4-10)

(4-14)

f@) =) pidx —x) (4-15)
i

where x;s represent the jump-discontinuity points in F;(x). As Fig. 4-10 shows, f;(x)
represents a collection of positive discrete masses in the discrete case, and it is known
as the probability mass function (p.m.f.).

From (4-13), we also obtain by integration

} 4
Fo(x) = f Felu) du @16)
-00
Since F(400) = 1, (4-16) yields
+00
f L(x)dx =1 “4-17
-0
which justifies its name as the density function. Further, from (4-16), we also get
(Fig. 4-11)
X2
Plx) < x(®) < 12} = Fy(xg) — Fa(xp) = f felx) dx @4-18)
X1
F() A FALSFY N
ey
X X x Xy X3 X

()] ()]
FIGURE 4-11
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the Gaussian p.d.f. in (4-25). The constant +/27 o2 in (4-25) is the normalization constant
that maintains the area under f, (x) to be unity.
This follows since if we let

+00 A
0= / P 120* gy (4-28)
~00
then

0 = /+°°/+°° e~ EHNNe? 4o dy
-0 J ~00

21 p400 2.2
=/ / e r dr do
o Jo

+00
= 2no? / e du = 2o’ 4-29)
0

where we have made use of the transformation x = rcos8, y = r sinf, sothatdxdy =
rdr d@ and thus Q = +/2wo2. The special case x ~ N(0, 1) is often referred to as the
standard normal random variable.

The normal distribution is one of the most important distributions in the study of
probability and statistics. Various natural phenomena follow the Gaussian distribution.
Maxwell arrived at the normal distribution for the distribution of velocities of molecules,
under the assumption that the probability density of molecules with given velocity com-
ponents is a function of their velocity magnitude and not their directions. Hagen, in
developing the theory of errors, showed that under the assumption that the error is the
sum of a large number of independent infinitesimal errors due to different causes, all of
equal magnitude, the overall error has a normal distribution. This result is a special case
of a more general theorem which states that under very general conditions the limiting
distribution of the average of any number of independent, identically distributed random
variables is normal.

EXPONENTIAL DISTRIBUTION. We say x is exponential with parameter A if its density
function is given by (see Fig. 4-13)

re™™ x>0
= = 4.3
53 { 0 otherwise (4-30)

If occurrences of events over nonoverlapping intervals are independent, such as
arrival times of telephone calls or bus arrival times at a bus stop, then the waiting time
distribution of these events can be shown to be exponential, To see this, let g (z) represent

L:04

—x FIGURE4-13
Exponential density function.
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EXAMPLE 4-10

LIFE LENGTH
OF AN
APPLIANCE

the probability that in a time interval ¢ no event has occurred. If x represents the waiting
time to the first arrival, then by definition P(x > t) = g(z). If 1 and #; represent two
consecutive nonoverlapping intervals, then by the independent assumption we have

q(1)g(0) = g(t1 +1)
which has the only nontrivial bounded solution of the form {see also (16-9)(16-10)]
gy =e™
Hence
F(t)=PE<=1-g@t)=1—-e™ (4-31)
and the corresponding density function is exponential as in (4-30).

Memoryless property of exponential distributions. Let s, 7 > 0. Consider the events
{x >t 4 s}and {x > s}. Then

Px > t+s} e+
P{x>s} e

Px>t+4s|x>s}= =e'=Px>1t} (432)
since the event [x > t + s} C {x > s}. If x represents the lifetime of an equipment,
then (4-32) states that if the equipment has been working for time s, then the probability
that it will survive an additional time ¢ depends only on ¢ (not on s) and is identical
to the probability of survival for time ¢ of a new piece of equipment. In that sense, the
equipment does not remember that it has been in use for time s. It follows that for a
continuous non-negative random variable x, if

Px>t+slx>s}=P{x>1}

holds for all s, ¢ > 0, then x must have an exponential distribution.

This memoryless property simplifies many calculations and is mainly the reason
for wide applicability of the exponential model. Under this model, an item that has not
failed so far is as good as new. This is not the case for other non-negative continuous
type random variables. In fact, the conditional probability

1-P{x<t+s} 1-F(t+s)
1-Pix<s} = 1-F(s)

Pix>t+s|x>s}= (4-33)

depends on s in general.

P> Suppose the life length of an appliance has an exponential distribution with A = 10
years. A used appliance is bought by someone. What is the probability that it will not
fail in the next 5 years?

SOLUTION
Because of the memoryless property, it is irrelevant how many years the appliance has
been in service prior to its purchase. Hence if x is the random variable representing the
length of the life time of the appliance and f; its actual life duration to the present time
instant, then

Pix>t+5|x>1)=P{x>5 == ¢ 12 = 0368
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As mentioned earlier, for any other lifetime distribution this calculation will depend on
the actual life duration time z,. <

P> Suppose that the amount of waiting time a customer spends at a restaurant has an
exponential distribution with a mean value of 5 minutes. Then the probability that a
customer will spend more than 10 minutes in the restaurant is given by

P(X > 10) = ~10/* = g~10/5 = =2 = 00,1353

More interestingly, the (conditional) probability that the customer will spend an addi-
tional 10 minutes in the restaurant given that he or she has been there for more that
10 minutes is

P{x>10|{x> 10} = P{x> 10} = ™2 = 0.1353
In other words, the past does not matter. <

A generalization of the exponential distribution leads to the gamma distribution.

GAMMA DISTRIBUTION. x is said to be a gamma random variable with parameters o,
and8,a>0,8>0if
xa—l .
~x/B
e xz=0
fx(x) = { T@)p” (4-34)

0 otherwise

where I"(@) represents the gamma function defined as
o0
I(a) = / x*le~* dx (4-35)
0

If « is an integer, integrating (4-35) by parts we get
FrWy=@n-DIr'n~-1)=(@n-1)! (4-36)

We shall denote the p.d.f. in (4-34) by G(«, B).

The gamma density function takes on a wide variety of shapes depending on the
values of « and 8. For ¢ < 1, fi(x) is strictly decreasing and f;(x) = coasx — Q,
Je(x) > Oasx — oo.Fora > 1, thedensity f,(x) hasaumque modeatx = (a@—1)/8
with maximum value [(« —1)e~!1%~! /(BT (a)). Figure 4.14 gives graphs of some typical
gamma probability density functions.

Some special cases of the gamma distribution are widely used and have special
names. Notice that the exponential random variable defined in (4-30) is a special case
of gamma distribution with @ = 1. If we let @ = n/2 and B = 2, we obtain the x?
(chi-square) random variable with n degrees of freedom shown in (4-39).

For o = n in (4-34), we obtain the gamma density function to be (with 8 = 1/1)

n -1 '
Ax e x>0,

fixy=4 (-1 - (4-37)
0 otherwise
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Gamma density functions.

Integrating (4-37) by parts, we obtain the probability distribution’ function for the
corresponding gamma random variable to be

£ n=1 k
RO= [ fw=1-3 &L o #38)
0 k=0

IfA = nu in (4-37) and (4-38), then it corresponds to an Erlangian random variable. Thus
G(n, 1/np) corresponds to an Erlangian distribution (E, ). In that case, n = 1 yields an
exponential random variable, and n — 00 gives a constant distribution (F,(t) = 1, for
_ t > 1/u and zero otherwise). Thus randomness to certainty are covered by the Erlangian
distribution as n varies between | and 00. Many important distributions occurring in
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FIGURE 4-15
x2 density functions forr = 2, 5, 8, 10.

practice lie between these two cases, and they may be approximated by an Erlangian
distribution for a proper choice of n.

CHI-SQUARE DISTRIBUTION. x is said to be x2(n) (chi-square) with n degrees of
freedom if

nf2-1

L S

fix) =4 2" T(n/2) (4-39)

0 otherwise

Figure 4.15 shows graphs of x2(n) for various values of n. Note that if we let
n = 2 in (4-39), we obtain an exponential distribution. It is also possible to generalize
the exponential random variable in such a way as to avoid its memoryless property
discussed earlier. In reality, most of the appliances deteriorate over time so that an
exponential mode! is inadequate to describe the length of its life duration and its failure
rate. In that context, consider the distribution function
F(x)=1- R 5 A) >0 (4-40)
The associated density function is given by
A& =awe h0% x50 amz0 - (4-41)
Notice that A(7) = constant, gives rise to the exponential distribution. More generally,
consider
A(t) = arf! 4-42)
and from (4-41), it corresponds to the p.d.f.
axb-le—elB x>0,

4.43
0 otherwise, “43)

fr(x) = {

and it is known as the Weibull distribution (see Fig. 4-16).
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LA

FIGURE 4-16
Weibull density function.

The special case of Weibull with @ = 1/0? and 8 = 2 is known as the Rayleigh
distribution. Thus Rayleigh has linear rate in (4-42).

RAYLEIGH DISTRIBUTION. The random variable x is said to be Rayleigh distribution
with parameter o2 if

f;e"zﬂ’z x>0
fr(x) = (4-44)

0 otherwise

In communication systems, the signal amplitude values of a randomly received signal
usually can be modeled as a Rayleigh distribution.

NAKAGAMI-m DISTRIBUTION. A generalization to the Rayleigh distribution (through
a parameter m), is given by the Nakagami distribution where

2 ("‘)"‘ L2l -mr/Q

— (= 0
fex) =< Tem x>

Q

0 otherwise

(4-45)

Compared to the Rayleigh distribution, Nakagami distribution gives greater flexibility to
model randomly fluctuating (fading) channels in communication theory. Notice that in
(4-45) m = 1 corresponds to the Rayleigh distribution, and the parameter m there can be
used to control the tail distribution. As Fig. 4-17 shows, for m < 1, thestail distribution
decays slowly compared to the Rayleigh distribution, while m > 1 corresponds to faster
decay.

UNIFORM DISTRIBUTION. X is said to be uniformly distributed in the interval (a, b),
- <a<b<oo,if

<x<bh
fy={b-a “*= (4-46)

0 otherwise
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Uniform density function.

We will write x ~ U(a, b). The distribution function of x is given by (see Fig. 4-18)

1 x>b
Fx)={ 7— a<x<b (447)
0 x<a

BETA DISTRIBUTION. The random variable X is said to have beta distribution with
nonnegative parameters o and B if
1 a—1 -1 )
1 -x)ft 0<x<b
fix) = § B@.B) (4-48)
0 otherwise

where the beta function B(a, 8) is defined as

1 2
B(e, p) = /; (1 -x)Pdx =2 /o' sin@)*(cos0)*#'do  (4-49)

The trigonometric form in (4-49) can be obtained by substituting x = sin’@ into the
algebraic version there. It is possible to express the beta function in terms of the gamma
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function défined earlier. If we let x = y? in (4-35) we obtain
00
@) =2 / y-1e=7 gy (4-50)
0
so that
o0 pOO 2
T@I'B) =4 / / x22=1 328 = 49) gy gy,
o Jo
Changing to polar coordinates with x = r cos8, y = r sin8, we obtain

n/2 poo
C)I'(B) =4 / / r2le+B)=1 o= (sin 02~ (c0s 8)2P~1 dr 46
0 (1]

00 1 0
= (2 / reth)=l -r dr) (2 / (sin8)>*~!(cos 9)2"“110)
Q V]

=T'(x + B)B(a, B)

C@)I'(B)
Mo + B)

The beta function provides greater flexibility than the uniform distribution on
(0, 1), which corresponds to a beta distribution with @ = g = 1. Depending on the values
of v and B, the beta distribution takes a variety of shapes. Ifa > 1, 8 > 1, then f;(x) > 0
atboth x = O and x = 1, and it has a concave down shape. If 0 <« < 1, then f,(x) = o0
asx—0,andif0<P<l,then fr(x) >wasx—>1.Ifa<], B<]1, then fr(x)is
concave up with a unique minimum. When o« = 8, the p.d.f. is symmetric aboutx = 1/2
(see Fig. 4-19).

Some other common continuous distributions are listed next.

B(a. ) = 451

CAUCHY DISTRIBUTION
a/ir

= eTa #/)2 T Kl<o (4-52)

LAPLACE DISTRIBUTION
fulx) = %e“""' Ix] < 00 (4-53)
MAXWELL DISTRIBUTION
4 2 —x%/e?
x‘e x>0
fi@) =4 @*Vx (4-54)
0 otherwise

Discrete-Type Random Variables ,

The simplest among the discrete set of random variables is the Bernoulli random variable
that corresponds to any experiment with only two possible outcomes—success or failure
(head or tail) as in Examples 4-3 and 4-8.
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FIGURE 4-19
Beta density function.

BERNOULLI DISTRIBUTION. x is said to be Bernoulli distributed if x takes the values
1 and 0 with (Fig. 4-2)
Pix=1)=p Px=0=q=1-p (4-55)

In an independent trial of n Bernoulli experiments with p representing the probabil-
ity of success in each experiment, if y represents the total number of favorable outcomes,
then y is said to be a Binomial random variable.

BINOMIAL DISTRIBUTION. Y is said to be a Binomial random variable with parameters
n and p if y takes the values 0, 1,2, ..., n with

P{y=k]=(:)p"q""‘ p+g=1 k=012...,n (4-56)
The corresponding distribution is a staircase function as in Fig. 4-20. [See also (3-13)
and (3-23).] .

Another distribution that is closely connected to the binomial distribution is the
Poisson distribution, which represents the number of occurrences of a rare event in a
large number of trials. Typical exaraples include the number of telephone calis at an
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Sl
0.2

0.1

4 ‘r A Binominal
- n=9
l [ p=q=112
01 2 3 4 5 6 7 8 9 <X X
(@)
FIGURE 4-20

Binomial distribution (n = 9, p = ¢ = 1/2).

exchange over a fixed duration, the number of winning tickets among those purchased in
a large lotiery, and the number of printing errors in a book. Notice that the basic event of
interest is a rare one, nevertheless it occurs. The probability distribution of the number
of such events is of interest, and it is dictated by the Poisson distribution.

POISSON DISTRIBUTION. X is said to be a Poisson random variable with parameter A
if x takes the values 0, 1, 2, ..., oo, with
Y
k!
With py = P(x = k), it follows that (see Fig. 4-21)
Pt _ W=k
P ek T
Ifk <A, then P(x=k—1) < P(x =k),butifk > A, then P(x = k—1) > P(x = k).
Finally, if k = A, we get P(x = k — 1) = P(x = k). From this we conclude that
P(x = k) increases with k from O till ¥ < A and falls off beyond A. If A is an integer
P(x = k) has two maximal valuesatk = A — [ and A.
The corresponding distribution is also a staircase function similar to Fig. 4-20b
but containing an infinite number of steps.
In summary, if the ratio pg_ )/ p; is less than 1, that is, if k < A, then as k increases,
D increases reaching its maximum for k = [A]. Hence

Plx=kj=e k=0,1,2,...,00 4-57)

if A < 1, then py is maximum for k = 0;

if A > 1 but it is not an integer, then p; increases as k increases, reaching its
maximum for k = [A]:

if A is an integer, then p; is maximum fork =A —landk = A, *

Px=Kj\ °

- T T T S W\ FIGURE 4-21
1 7 8

2 3 4 5 6 9 ¥ Poisson distribution (A = 3).
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m P> In the Poisson points experiment. an outcome ¢ is a set of points t; on the ¢ axis.

POISSON
POINTS

(a) Given a constant 7,, we define the random variable n such that its value n(¢)
equals the number of points t; in the interval (0, 1,). Clearly, n = k means that the
number of points in the interval (0, 1,) equals k. Hence [see (4-117) for a proof]

v, (o)

k!
Thus the number of Poisson points in an interval of length ¢, is a Poisson distributed
random variable with parameter a = At,, where A is the density of the points.

(b) We denote by t, the first random point to the right of the fixed point z, and
we define the random variable x as the distance from ¢, to t; (Fig. 4-22a). From the
definition it follows that x(¢) = O for any {. Hence the distribution function of x is 0 for
x < 0. We maintain that for x > 0 it is given by

Fx)=1—-¢™

Pln=kl=e (4-58)

Proof. As we know, F(x) equals the probability that x < x, where x is a specific number. But
X < x means that there is at least one point between 1, and ¢, + x. Hence 1 — F(x) equals the
probability po that there are no points in the interval (%, f, + x). And since the length of this
interval equals x, (4-58) yields

Po=e> =1~ F(x)
The corresponding density
f(x)=re™U(x) (4-59)
is exponential as in (4-30) (Fig. 4-22b). ‘

As we shall see in the next section, it is possible to establish the Poisson distribution
as a limiting case of the binomial distribution under special conditions [see (4-107)).

Recall that the binomial distribution gives the probability of the number of suc-
cesses in a fixed number of trials. Suppose we are interested in the first success. One
might ask how many Bernoulli trials are required to realize the first success. In that case,
the number of trials so needed is not fixed in advance, and in fact it is a random number.
In a binomial experiment, on the other hand, the number of trials is fixed in advance and
the random variable of interest is the total number of successes in » trials.

Let x denote the number of trials needed to the first success in repeated Bernoulli
trials. Then x is said to be a geometric random variable. Thus with A representing the

f(x)

LV
a3

%
~Y

P -
»
._"><-—--f

X
) (@) O]
FIGURE 4-22
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success event -
P{x=k} = P(AA---A A)= P(A)P(A)--- P(A)P(A)
k-1
=1-pF'p k=1,23,...,0

GEOMETRIC DISTRIBUTION. x is said to be a geometric random variable if
Pix=k}=pg*' k=123...,0 (4-60)
From (4-60), the probability of the event {x > m]} is given by

P{x>m)= i P{x=k}= i pgt-!

k=m+1 k=m+1
m
=pg"(l+q+-)= {%—q— =q"

Thus, for integers m.n > 1,
Plx>m+n) g™
Pix>m} ~ gqm
since the event {x > m + n} C {x > m}. Equation (4-61) states that given that the first m
trials had no success, the conditional probability that the first success will appear after
an additional n trials depends only on n and not on m (not on the past). Recall that this
memoryless property is similar to that exhibited by the exponential random variable.
An obvious generalization to the geometric random variable is to extend it to the
number of trials needed for r successes. Let y denote the number of Bernoulli trials
required to realize r successes. Then y is said to be a negative binomial random variable.
Thus using (4-56) and the independence of trials, we get

P{y = k} = P{r — 1 successes in k — 1 trials and success at the kth trial}

- k-1 r~1_k-r
_(r,—l)p q p

Px>m+n|x>m)= =q" (4-61)

=(f:i)p'q""' k=rr+1,...,00 (4-62)
NEGATIVE BINOMIAL DISTRIBUTION. y is said to be negative binomial random
variable with parameters r and p if .

P{y=k}=(f::)p’q“" k=rr+1,...,00 (4-63)

If n or fewer trials are needed for » successes, then the number of successes in » trials
must be at least r. Thus

Ply<n}=Plxzr}

where y ~ NB(r, p) as in (4-62) and X is a binomial random variable as in (4-56). Since
the negative binomial random variable represents the waiting time to the rth success, it
is sometimes referred as the waiting-time distribution.
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The random variable z =y — r, that denotes the number of trials (failures) preced-
ing the r™ success, has the distribution given by [use (4-62)]

k-1
Pz=kl=Ply=k+r}= ('f_l )p’q"

=(r+:—l)p'q" k=0,1,2,...,00. (4-64)
In particular r = 1 gives
Pz=k)=pg* k=0,1,2,...,00, (4-65)

and sometimes the distribution in (4-65) is referred to also as the geometric distribution
and that in (4-64) as the negative binomial distribution.

P> Two teams A and B play a series of at most five games. The first team to win three
games wins the series. Assume that the outcomes of the games are independent. Let p
be the probability for team A to win each game, ¢ < p < 1. Let x be the number of
games needed for A to win. Then 3 < x < 5. Let the event

Ap = {A wins on the kth trial} k=3,4,5
We note that A, N A; = ¢, k # 1, so that

5 S
P(A wins) = P | U Ak) = P(A)
=3 =3
where
P(A;) = P(3rd success on kth trial) = (k ; 1) (1 - pyt3

Hence
(k-1
P(A wins) = Z ( 2 ) pPa—p)t3
k=3
If p = 1/2, then P(A wins) = 1/2. The probability that A will win in exactly four

games is
3} (1)'_ 3
2/\2) T 16

The probability that A will win in four games or less is 1/8 + 3/16 = 5/16.
Given that A has won the first game, the conditional probability of A winning
equals

SEEE) 7 (242)-E

k=2
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EXAMPLE 4-14

DISCRETE ﬁMFORM DISTRIBUTION. The random variable x is said to be discrete
uniform if
1

P{x=k}=N k=12,...,N (4-66)

4-4 CONDITIONAL DISTRIBUTIONS

We recall that the probability of an event A assuming M is given by
P(AM)
P(M)
The conditional distribution F(x | M) of a random variable x, assuming M is
defined as the conditional probability of the event {x < x}:
Pix < x, M}
P(M)
In (4-67) {x < x, M} is the intersection of the events {x < x} and M, that is, the event
consisting of all outcomes ¢ such that x({) <xand ¢ € M.
Thus the definition of F(x | M) is the same as the definition (4-1) of F(x), pro-
vided that all probabilities are replaced by conditional probabilities. From this it follows

(see Fundamental remark, Sec. 2-3) that F(x | M) has the same properties as F(x). In
particular [see (4-3) and (4-8)]

PA|IM)= where P(M) #0

FxIM)=P{x<x|M}= (4-67)

Flco|M) =1 F(—o|M) =0 (4-68)
Plxy <X < x3| M} = Flxp| M) — Fxy | M) = L2 <P’2 ;)"2' M} ae9)
The conditional density f(x | M) is the derivative of F(x | M):
_dFx|M) . Plx<x<x+4Ax|M)
FEIM) = —0— = jim, Ax (4-70)

This function is nonnegative and its area equals 1.

} We shall determine the conditional F(x | M) of the random variable x(f;) = 10i of
the fair-die experiment (Example 4-4), where M = {f3, f4, f¢} is the event “even.”
If x > 60, then {x < x} is the certain event and {x < x, M} = M. Hence (Fig. 4-23)

_ PO _
F(le)-P(M)—l x>60
F(x) F(x]even)
1 1
0 0 !

FIGURE 4-23
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If40 < x < 60, then {x < x, M} = (f;, f4}. Hence

_ Pl A} 2/6
F(xIM)_.——-—P(M) =3/ 40<x <60
20 < x < 40, then {x < x, M} = {f,}. Hence
_ Pl 16
F(XIM)—_—P(M)_3/6 20<x <60
If x < 20, then {x < x, M} = {#}. Hence

Fx|M)=0 x <20

99

<

* Tofind F (x | M), we must, in general, know the underlying experiment. However,
if M is an event that can be expressed in terms of the random variable x, then, for the
determination of F(x { M), knowledge of F(x) is sufficient. The two cases presented

next are important illustrations.

1. We wish to find the conditioral distribution of a random variable x assuming that
X < a, where g is number such that F(a) # 0. This is a special case of (4-67) with

M=(x<a}

Thus our problem is to find the function

Fx|x<a)=Plx<x|x<a) = XSTx=a]

P(x <a)
If x > a, then {x < x, X < a} = {x < a}. Hence (Fig. 4-24)
P{x < a}
F(xlxﬁa)—m— x>a
Ifx < a,then {x < x,x <a} = {x < x}. Hence
F(xlxs:z):Plxsx}—F(x) x<u

P{x<a) F(a)

Differentiating F(x | x < a) with respect to x, we obtain the corresponding

density: Since F'(x) = f(x), the preceding yields

0 @
F@ = T fedr O Fe

fGxix<a)=

anditisOforx > a.

Flxlx € a)

—

Fx)

L >

0 a X FIGURE4-24
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EXAMPLE 4-15

4 falb < x < &)

&)

C

0 b a X FIGURE 425

II. Suppose now that M = {b < x < a}. In this case, (4-67) yields

Plx<x.b<x=<a)}

Fxlb<x<a)=

P{b <x <a)
Ifx>a,then{x < x,b <x<a)={b <x<a}. Hence
_F@)—F®) _
F(x|b<x5a)_F(a)_F(b)—l xX>a
Ifb<x<a,then{x<x,b<x<a}={b<x<x}. Hence
_ F(x)=F@®)
F(x|b<x,<_a)-F(a)_F(b) b<x<a

Finally, if x < b, then {x < x, b < x < a} = {#}. Hence
Fix|b<x=<a)=0 x<b

The corresponding density is given by

__f®
~ F(a) - F(b)
and it is O otherwise (Fig. 4-25).

fxlb<x<a) for b<x<a

} We shall determine the conditional density f (x | [x—n| < ko} ofan N(n; o) random
variable. Since

&
1 »
P{lx—n|<ko}l=P{n—ko <x<n+ko =2/ —e™ T2 gy
{ } 0o V21
we conclude from (4-72) that ¢
1 e—x=nP/20*

P(x—nl <ko) o2

for x between n — ko and n + ko and O otherwise. This density is called truncated
normal, 4

fxllx—nl<ko) =

Frequency interpretation In a sequence of n trials, we reject all ontcomes ¢ such that
x(¢) < borx(?) > a.In the subsequence of the remaining trials, F(x |b < x < a) hasthe
same frequency interpretation as F(x) [see (4-3)].
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m P> The memoryless property of a geometric random variable X states that [sec (4-61)]
Px>m+n|x>m}=P{x>n) (4-71)

Show that the converse is also true. (i.e., if x is a nonnegative integer valued random
variable satisfying (4-71) for any two positive integers /m and n, then x is a geometric
random variable.)

SOLUTION
Let
Dr = P{x =k}, k=1,2,3,...
so that
* 20
Pix>nl= > pe=a, 4-72)
k=n+1
and hence using (4-71)
_ Plx>m+n} _ Omin
Pix>m+n|x>m}= Pasml - a,
= Pl{x>n}=a,
Hence
Qnpn = Gy Gy
or
Gmyy = amay =aj™!
where
a=Px>1l}=1-Px=121-p
Thus
an = (1 - p)"
and from (4-72)
P{x=n} = P{x>n}— P(x > n)
=gp1—a=p1-p)"' =123 .

&

comparing with (4-60) the proof is complete. <«

Total Probability and Bayes’ Theorem

We shall now extend the results of Sec. 2-3 to random variables.

1. Setting B = {x < x} in (2-41), we obtain
Pix <x}=P{x<x|A1}P(A)+ -+ P{x < x| Aa} P(An)
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Hence [see (4-67) and (4-70))
Fx)=F(x|A)P(A)+- -+ F(x|A)P(As) @-73)
f@x)=fGx1ADP(A) + -+ f(x| An) P(4n) (4-74)
In the above, the events 4,, ..., A, form a partition of §.

DNECSINPONEYE P Suppose that the random variable x is such that FxIM)is N(m; o) and f(x| M)
is N (m2, 02) as in Fig. 4-26. Clearly, the events M and M form a partition of S. Setting
A = M and A, = M in (4-74), we conclude that

76 = PG 1M+ @ = F 1B = B6(22) + oo (220)

1 o2 o2

where p = P(M). 4

2. From the identity

_ P(B|A)P(A)
P(A|B)= ST B 4-75)
[see (2-43)] it follows that
_ Pix<x|A} _F(x14)
PAlx<x)= —--—P[x <3 P(A) = —_‘F(x) P(A) 4-76)

3. Setting B = {x; < X < x3} in (4-75), we conclude with (4-69) that
Pixy < x<x3|A}
Pix; <x < x3} P(4)
_FxlA) - Fx|4)
F(x) — F(x1)

4.. The conditional probability P(A |x = x) of the event A assuming X = x cannot be
defined as in (2-33) because, in general, P(x = x} = 0. We shall define it as a limit

PlAlx  <x<x3}=

P(A) 4-77)

P[A|x=x}=AIim0P{Alx<x5x+Ax} (4-78)
X—>
With x; = x, x2 = x 4 Ax, we conclude from the above and (4-77) that
f(x1A)
P{A|x=x} = ———=P(A) 4-79
{ 70 ( s )

f(x)
fexIM)

m ) v x
FIGURE 4.26
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EXAMPLE 4-19
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Total probability theorem. As we know [see (4-68))
F@ﬂM=/:f@MMx=l

Muitiplying (4-79) by f(x) and integrating, we obtain

/ = P(A|x =x)f(x)dx = P(A) (4-80)

-0

This is the continuous version of the total probability theorem (2-41).

Bayes’ theorem. From (4-79) and (4-80) it follows that
P(A[x=x)f(x)_ P(Alx=x)f(x)
P(4) T, P(Alx=x)f(x)dx

This is the continuous version of Bayes’ theorem (2-44).

f(x1A) = (4-81)

P> Suppose that the probability of heads in a coin-tossing experiment § is not a number,
but a random variable p with density f(p) defined in some space S,. The experiment of
the toss of a randomly selected coin is a cartesian product S, x . In this experiment,
the event H = {head} consists of all pairs of the form £.h where £, is any element of S,
and k is the element heads of the space S = {4, t}. We shall show that

1
Hm=Aﬁw@ (4-82)

SOLUTION
The conditional probability of H assuming p = p is the probability of heads if the coin
with p = p is tossed. In other words,

PH|p=pl=p (4-83)
Inserting into (4-80), we obtain (4-81) because f(p) = 0 outside the interval (0, 1). ‘

To illustrate the usefulness of this formulation, let us reexamine the coin-tossing
problem.

P Let p = P(H) represent the probability of obtaining a head in a toss. For a given
coin, a priori p can possess any value in the interval (0, 1) and hence we may consider it
to be a random variable p. In the absence of any additional information, we may assume
the a-priori p.d.f. f,(p) to be a unifarm distribution in that interval (see Fig. 4-27). Now
suppose we actnally perform an experiment of tossing the coin » times and k heads are
observed. This is new information. How do we update f,(p)?

SOLUTION '
Let A = “k heads in n specific tosses.” Since these tosses result in a specific sequence,

P(Alp=p)=p'g"* (4-84)
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4
1
\F
FIGURE 4-27

FupiA g

0 %
FIGURE 4-28
and using (4-80) we get

1 1
- n — k)k!
P = [ Paip=nfordp= [ fa-prtap=C28 w9
0 ) (n+1)!

The a posteriori p.d.f. f,(p | A) (see Fig. 4-28) represents the updated information given
the event A, and from (4-81)

P(A|p=p)fe(p)
P(A)

(D) -
= ————(n o p'q 0<p<l B(n, k) (4-86)
Notice that the a posteriori p.d.f. of p in (4-86) is not a uniform distribution, but a beta
distribution. We can use this a posteriori p.d.f. to make further predictions. For example,
in the light of this experiment, what can we say about the probability of a head occurring
in the next (n + 1)th toss?
Let B = “head occurring in the (n + 1)th toss, given that k heads have occurred
in n previous tosses.” Clearly P(B | p = p) = p, and from (4-80)

Soialpl4) =

1
P(B)=‘/o P(B|p=p)fr(plA)dp (4-87)

Notice that unlike (4-80), we have used the a posteriori p.d.f. in (4-87) to reflect our
knowledge about the experiment already performed. Usihg (4-86) in (4-87), we get

]
_ D! e, k1
P(B)",/o P’ =0 (4-88)
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Thus, if n = 10, and k = 6, then
7
P(B) = = 0.58

which is better than p = 0.5.

To summarize, if the probability density function of a random variable x is un-
known, one should make noncommittal judgment about its a priori p.d.f. f;(x). Usually,
the uniform distribution is a reasonable assumption in the absence of any other informa-
tion. Then experimental results (A) are obtained, and the knowledge about x is updated
reflecting this new information. Bayes’ rule helps to obtain the a posteriori p.d.f. of x
given A. From that point on, this a posteriori p.d.f. f;|4(x | A) should be used to make
further predictions and calculations. <«

4-5 ASYMPTOTIC APPROXIMATIONS
FOR BINOMIAL RANDOM VARIABLE

Let x represent a binomial random variable as in (4-56). Then from (3-12), (4-15), and
(4-18)

ka ka2
Plki<x<k)=)_ pa)=)_ ( k) prg"* (4-89)
k=k, k=ky

Since the binomial coefficient

(n) _ n!
k] 7 (n-kk

grows quite rapidly with », it is difficult to compute (4-89) for large n. In this context,
two approximations—the normal approximation and the Poisson approximation-—are
extremely useful.

The Normal Approximation
(DeMoivre-Laplace Theorem)

Suppose n — oo with p held fixed. Then for k in the ,/pq neighborhood of np, as we
shall show in Chap. 5 [see (5-120) and (5-121)}, we can approximate

1 o

(k) pkqu—k ~ o e—(k-nP)z/Z"Pq ptg=1

This important approximation, known as the DeMoivre-Laplace theorem, can be stated

as an equality in the limit: The ratio of the two sides tendsto 1 asn — oo. Thusif k; and ky

in (4-89) are within or around the neighborhood of the interval (np — . /Apq, np+./npq),

we can approximate the summation in (4-89) by an mtegratlon of the normal density
function. In that case, (4-89) reduces to

(4-50)

k2 1
Pl sxshl= [

X2 l
—(k~npY(2pg gy f ey (4-91
k +/27npq 2n 4 )

Xy
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TABLE 4.1

1 x __yilz 1
erfx—E/oe dy—G(x)-—z.x>0

x erfx x erfx x erfx x erfx
0.05 0.01994 0.80 0.28814 1.55 0.43943 230 0.48928
0.10 0.03983 0.85 0.30234 1.60 0.44520 235 0.49061
0.15 0.05962 0.90 031594 1.65 0.45053 240 0.49180
0.20 0.07926 0.95 0.32894 1.70 0.45543 245 0.49286
0.25 0.09871 1.00 0.34134 1.75 0.45994 2.50 0.49379
0.30 0.11791 1.05 0.35314 1.80 0.46407 2.55 0.49461
035 0.13683 1.10 0.36433 1.85 0.46784 2.60 0.49534
040 . 0.15542 1.15 0.37493 1.90 047128 2.65 0.49597
045 0.17364 1.20 0.38493 1.95 0.47441 2.70 0.49653
0.50 0.19146 125 0.39435 2.00 0.47726 275 0.49702
0.55 0.20884 130 0.40320 2.05 0.47982 280 0.49744
0.60 0.22575 135 0.41149 2.10 0.48214 2.85 0.49781
0.65 0.24215 1.40 0.41924 215 048422 2.90 0.49813
0.70 0.25804 145 0.42647 220 0.48610 295 0.49841
0.75 0.27337 1.50 0.43319 225 0.48778 3.00 0.49865

1k

05F

i * ") 1
I ~y'i2 = -——
'\é—; erf(x) N f oa dy = G(z) 2
03}
02}
L a~xn
o :
0.1 -
1 i 1 1 >
0 05 1.0 15 2.0 2.5 3.0 x ¢
FIGURE 4-29
where
ky —np k2 —np
'xl = xz =
/npq v npq
We define (see Fig, 4-29 and Table 4-1)
* 1
G(x) = / ey (4-92)
o Y

-0
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as before, and the error function

X
erfx:/
0

Note that G(~x) = 1 -~ G(x), x > 0. In terms of G(x), we obtain
Pk < x < ky) = G(x) — G(xy) 4-94)

Thus the evaluation of the probability of k successes in » trials, given exactly by
(3-13), is reduced to the evaluation of the normal curve
1

~2rnpgq

e dy = G(x) - 1.x>o (4-93)

e~ @—np)/2npq (4-95)

for x = k.

P> A fair coin is tossed 1000 times. Find the probability p, that heads will show 500
times and the probability p, that heads will show 510 times.

In this example

p=g=05 n=1000 .mpg=>5vV10
(a) If k = 500, then k — np = 0 and (4-90) yields
1 1
ba = Jomnpg  10v/57
(b)) £k =510, then k — np = 10 and (4-90) yields
~0.2

e
Py = 10+/57

As Example 4-21 indicates, the approximation (4-90) is satisfactory even for mod-
erate values of n.

= 0.0252

= 0.0207 <4

P We shall determine p, (k) for p = 0.5,n = 10,and k = 5.
(a) Exactly from (3-13)

L, 101
palk) = ( ) gt = — — =0.246

T 5151210
(b) Approximately from (4-90)
1 2 1 2
k) ~ e~ k-apYmpg . 0.252 <
PO ownpa T

APPROXIMATE EVALUATION OF P{k, < k < k;}. Using the approximation (4-90),
we shall show that

k2
kz —n ki —n
k _n—k ., 2 —np 1 —np
rrso(i)-s(ag)  em
,Z;;, ( k ) npq npq
Thus, to find the probability that in  trials the number of occumrences of an event A
is between k; and k;, it suffices to evaluate the tabulated normal function G(x). The
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approximiation is satisfactory if npg >> 1 and the differences ky — np and k, — np are
of the order of ./fipg.

Proof. Inserting (4-90) into (3-24), we obtain

ka

ky
n k n—k ~, 1 —(k=npY?[2a?
phg" ™t = Y e @97
Z ( k ) /211. =

kaek, o

The normal curve is nearly constant in any interval of length 1 because 0% = npg > 1
by assumption; hence its area in such an interval equals approximately its ordinate
(Fig. 4-30). From this it follows that the right side of (4-97) can be approximated by the
integral of the normal curve in the interval (k;, k2). This yields

1 & i 1 [ 2907
o -\/77? Zk:l o ‘\/ﬂ- k ( )
and (4-96) results [see (4-94)].

Error correction. The sum on the left of (4-97) consists of ks — k; + 1 terms. The
integral in (4-98) is an approximation of the shaded area of Fig. 4-31a, consisting of
ky — k; rectangles. If k; — k; > 1 the resulting error can be neglected. For moderate
values of k — ki, however, the error is no longer negligible. To reduce it, we replace in
(4-96) the limits k; and k; by k; — 1/2 and k> + 1/2 respectively (see Fig. 4-315). This

1 e_(x - "F)z/z"m
v:?fllpq

o=\npg» |

3+
N\
/1
wY

kK k+1 FIGURE 4-30

FIGURE 4-31
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yields the improved approximation
k2
A\ & oaek k2+0.5—np> (kl ‘-0-5"'11?)
p :c(-—-_ _g(lz03-mp (4-99)
3 (3) Vo N

B> A fair coin is tossed 10 000 times. What is the probability that the number of heads
is between 4900 and 5100?
In this problem

n = 10,000 p=qg=05 k) = 4900 ky = 5100

Since (kz — np)/./npg = 100/50 and (k; — np)/./Apq = —100/50, we conclude from
(4-96) that the unknown probability equals

G(2) ~ G(~2) = 2G(2) — 1 = 0.9545 <

P> Over a period of 12 hours, 180 calls are made at random. What is the probability that
in a four-hour interval the number of calls is between 50 and 70?

This situation can be considered as a problem in repeated trials with p = 4/12 the
probability that a particular call will occur in the four-hour interval. The probability that
k calls will occur in this interval equals [see (4-90)]

(2) ) () =
k 3/ \3 " 45m
and the probability that the number of calls is between 50 and 70 equals [see (4-96)]

f: (120) (l)k (-2-) e G(v/2.5) — G(=+/2.5) ~ 0.886 <

k=50 3' 3

Note It seems that we cannot use the approximation (4-96) if k; = 0 because the sum contains values of k
that are not in the ,/npg vicinity of np. However, the comesponding terms are small compared to the terms
with k near np; hence the errors of their estimates are also small. Since

G(—np/fiFG) = G(—/np/g) =0 for np/q > 1
we conclude that if not only n > | but also np > 1, then
ko
> (:)p‘q"“ = G("’ ;p';”) . @-100)
k=0
1n the sum (3-25) of Example 3-13 (Chap. 3),

np = 1000 npg = 900

ky~np 10
mpg 3

g

Using (4-100), we obtain

1100
> ( 12‘ ) ©.009)'k ~ G (339) = 0.99936

P
We note that the sum of the terms of the above sum from 900 to 1100 equals 2G(10/3) — 1 = 0.99872.
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EXAMPLE 4-24

EXAMPLE 4-23

The Law of Large Numbers

According to the relative frequency interpretation of probability, if an event A with
P(A) = p occurs k times in » trials, then £ > np. In the following, we rephrase this
heuristic statement as a limit theorem.

We start with the observation that ¥ ~ np does not mean that k will be close to
np. In fact [see (4-90)]

Plk = np) ~ as n— 00 4-101)

I
_)
V2rnpq
As we saw in Bernoulli’s theorem (Sec. 3-3), the approximation k = np means that the
ratio k/n is close to p in the sense that, for any & > 0, the probability that |k/n — p| < ¢
tendsto 1 as» — oo.

P> Suppose that p = g = 0.5 and & = 0.05. In this case,
ky=n(p—¢€)=045n ko =n(p+¢)=0.55n
(k2 — np)/ /1P = e/nfpq =0.1yn

In the table below we show the probability 2G(0.1./n) — 1 that k is between 0.45n and
0.55n for various values of n.

n 100 400 900
0.1/n \ 2 3
2G(0.1/m)—1 | 0.682 0.954 0997

<

P> We now assume that p = 0.6 and we wish to find » such that the probability that k
is between 0.597 and 0.61n is at least 0.98.
In this case, p = 0.6, ¢ = 0.4, and & = 0.01. Hence

P{0.59n < k < 0.61n} >~ 2G(0.011/n/0.24) — 1
Thus » must be such that

2G(0.014/n/0.24) ~ 1 > 098

From Table 4-1 we see that G(x) > 0.99if x > 2.35. Hence 0.01./n/0. 74 > 2.35 yielding
n>13254. 4

GENERALIZATION OF BERNOULLI TRIALS. The experiment of repeated trials can
be phrased in the following form: The events A; = A and A, = A of the space S form
a partition and their respective probabilities equal p; = p and p; = 1 — p. In the space
S”, the probability of the event {A; occurs k; = k times and A, occurs k; = n — k times
in any order} equals p, (k) as in (3-13). We shall now generalize.

Suppose that

=[Al:----Ar]
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WA G

p—a—f

FIGURE 4-32

conditions of the DeMoivre~Laplace theorem, the Gaussian representation deteriorates
as p — O or p — 1. This representation completely fails for p =0,g = 1,0r p = 1,
q = 0. However, a variety of problems fall under this category where p (or g) is very
small, but the total number of trials is very large. thereby making it necessary to find
an asymptotic formula for such rare events. Obviously, that is the case if, for example,
p — 0asn — o0, such that np = A is a fixed number,

Many random phenomena in nature in fact follow this pattern. The number of calls
on a telephone line, claims in an insurance company, and the like tend to follow this type
of behavior. Consider random arrivals such as telephone calls over a line. Let n represent
the total number of calls in the interval (0, T'). From our experience, as T — 0o we also
have n — 00, so that we may assume n = 1T . Consider a small interval of diuration A
as in Fig. 4-32. Had there been only a single call coming in, the probability p of that
single call occurring in that interval must depend on its relative size with respect to T,

Hence as in Example 3-10 we can assume p = A/T. Note that p — 0 as
T — oo. However in this case np = uT(A/T) = wA = A is a constant, and the
normal approximation is invalid here.

Suppose the interval A in Fig. 4-32 is of interest to us. A call inside that interval
is a “success” (H), whereas one outside is a “failure” (T’). This is equivalent to the coin
tossing situation, and hence the probability p, (k) of obtaining k calls (in any order) in
an interval of duration A is given by the binomial p.m.f. Thus from (3-13) and (4-56)

palk) = P - p* (4-104)

n!
(n-k)k!
as in (3-21), and as n — oo we have p — 0 such that np = A. It is easy to obtain an
excellent approximation to (4-104) in that situation. To see this, rewrite (4-104) as

_nin - —k+1) (np) np\n—k
Pa(k) = nk I (1 — ...’.l..)

_(-3) =205 AV

) (-3 5 (-3)

|

()36
-(MOR)R0-D o

Thus as#n — oo, p — Qsuchthatnp = A

k
pa(k) = A—e A (4-106)
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since the finite product

k-1 3y
A—m A—-m
1
H( * n—A) SE(Hn—A)

m=0
. A\
lim (1 - —) =e?
n—oo n

The right side of (4-106) represents the Poisson p.m.f. described in (4-57) and the
Poisson approximation to the binomial random variable is valid in situations where the
binomial random varible parameters n and p diverge to two extremes (n — co, p —» 0)
such that their product np is a constant. Thus if a phenomenon consists of the sum of
several independent and identical Bernoulli random variables, each of which has a small
probability of occurrence, then the collective sum tends to be Poisson. We summarize
these observations in the following theorem.

tends to unity as n — oo, and

POISSON THEOREM. If
n-— oo p—>0 suchthat np — A

then
k

,_____n! k  n—k _AA _
P 4 et m  kF=0L2.. (4-107)

P> A system contains 1000 components. Each component fails independently of the
others and the probability of its failure in one month equals 103, We shall find the
probability that the system will function (i.e., no component will fail) at the end of one
month.

This can be considered as a problem in repeated trials with p = 1073, n = 103,
and k = 0. Hence [see (3-21)]

Plk = 0} = ¢" = 0.999'0%
Since np = 1, the approximation (4-107) yields
Pk =0}~ e™ = ¢~} =0.368 4

Applying (4-107) to the sum in (3-24), we obtain the following approximation for
the probability that the number & of occurrences of A is between k; and kz:

X (np)t
Pllisksk)xe™y —— (4-108)
el

P> An order of 3000 parts is received. The probability that a part is defective equals
10~3. We wish to find the probability P{k > 5} that there will be more than five defective

parts.
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Clearly,”
Plk>5)=1~Plk<5)
With np = 3, (4-108) yields

3. 3k
Plk<5}=e3) %T = 0916
k=0 "

Hence
Pik > 5) = 0.084 <

(DCWYIGHOESEE P An insurance company has issued policies to 100,000 people for a premium of
$500/person. In the event of a causality, the probability of which is assumed to be 0.001,
the company pays $200,000/causality. What is the probability that (@) the company will
suffer a loss? (b) The company will make a profit of at least $25 million?

SOLUTION

The company collects $500 x 10° = $50 million in terms of premium from its customers.
The probability of each causality is very small (p = 0.001) and » is large so that we can
take advantage of Poisson’s theorem with

A=np= 10° x 0.001 = 100
(@) For the company to suffer a loss, it must make payments to more than
$50 x 10°
ng = —————
$200,000
Hence with x representing the (random) number of causalities, we get

o k
Py = P{company suffers a loss} = P{x > 250} = Z e"‘%

k=250
It is possible to obtain excellent approximations to (4-109) as follows. Clearly

A-" A-k A-” A A.z
-3 —A -A
—_—< E = — 1+ + 4
¢ n! P € k! ¢ n!( n+1 (n+1)(n+2) )

<X 1+ 24 (2 2+
n! n+1 n+1 s

= 250 persons

(4-109)

—e 1 (4-110)
ntl—A/(n+1)
We can make use of Stirling’s formula
n! ~ 2xnnte™ n->oo (4-111)
that is valid for large » to simplify (4-110). Thus
A7 < P(x>n) < A" ! (4-112)

2nn V2rn 1=A/(n+1)
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where

A= %e('-*/") (4-113)

With A = 100, ng =250, we get A = 0.7288 so that A?>? = 0 and the desired probability
is essentially zero.

(b) In this case to gunarantee a profit of $25 million, the total number of payments
should not exceed n), where

_$50x10°—$25x10‘_

"= $200,000 =125
This gives A = 0.9771 so that A™ = 0.0554, and
Am 1
Pix<n}=z1- =~ 0.9904

am 1 =Af(ny +1)
Thus the company is assured a profit of $25 million with almost certainty.
Notice that so long as the parameter A in (4-113) is maintained under 1, the event
of interest such as P(x < n,) can be predicted with almost certainty. <

P> The probability of hitting an aircraft is 0.001 for each shot. How many shots should
be fired so that the probability of hitting with two or more shots is above 0.95?

SOLUTION

In designing an anti-aircraft gun it is important to know how many rounds should be fired
at the incoming aircraft so that the probability of hit is above a certain threshold. The
gircraft can be shot down only if it is hit in a vulnerable gpot and since the probability
of hitting these spots with a single shot is extremely small, it is important to fire at them
with a large number of shots. Let x represent the number of hits when # shots are fired.
Using the Poisson approximation with A = rp we need

P(x>2)>095
But
Px22)=1—-[PX=0)+PX=1)]=1-e*1+A)
so that
(1+2)e™* <0.05

By trial, A = 4 and 5, give (1 + A)e™* to be 0.0916 and 0.0404, respectively, so that we
must have 4 < A < 5 0r 4000 < n < 5000. If 5000 shots are fired at the aircraft, the
probability of miss equals e~ = 0.00673. «{

P> Suppose one million lottery tickets are issued, with 100 winning tickets among
them. (a) If a person purchases 100 tickets, what is the probability of his winning the
lottery? (b) How many tickets should one buy to be 95% confident of having a winning
ticket?
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EXAMPLE 4-32

SOLUTION

The probability of buying a winning ticket

_ No. of winning tickets 100 _
P = T Totalno. of tickets 106

Let n = 100 represent the number of purchased tickets, and x the number of winning

tickets in the n purchased tickets. Then x has an approximate Poisson distribution with

parameter A = np = 100 x 10~* = 1072, Thus

104,

(a) Probability of winning = PX>1)=1— P(x=0) = 1 — ¢™* = 0.0099.
{(b) In this case we need P(x > 1) > 0.95.

P(x>1}=1—e* > 0.95 implies A > In20 ~ 3.

ButA = np = n x 10™* > 3 orn > 30,000. Thus one needs to buy about 30,000 tickets
to be 95% confident of having a winning ticket! <

P> A spacecraft has 20,000 components (n — 00). The probability of any one com-
ponent being defective is 10~ (p — 0). The mission will be in danger if five or more
components become defective. Find the probability of such an event.

SOLUTION
Here n is large and p is small, and hence Poisson approximation is valid. Thus np =
A = 20,000 x 10™* = 2, and the desired probability is given by

4 lk 4 lk
Px25}=1-Pixsdl=1-3 etm=1-€7} =
=0 ) k=0 "
-2 4 2
=1-e?(14+24+2+5+35) =002 <

GENERALIZATION OF POISSON THEOREM. Suppose that, A), ..., Aps1 are the

m + 1 events of a partition with P{A;} = p;. Reasoning as in (4-107), we can show that
if np; — a; fori < m, then

n! ks kit X e"“'a’f' e‘“-a,'f'

k]!"'km+[!p] "'Pm+l :

4-114)

noo k! " kp! ¢

Random Poisson Points

An important application of Poisson’s theorem is the approximate evaluation of (3-21)
as T and ~ tend to co. We repeat the problem: We place at random n points in the interval
(=T/2,T/2) and we denote by P{k in .} the probability that k of these points will lie
in an interval (;, ) of length &, — £, = 1,. As we have shown in (3-21)

Plkint,} = (;) k" *  where p= '? (4-115)
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We now assume that n >> 1 and 1, « 7. Applying (4-107), we conclude that

i (nty/ T)k

o (4-116)

Plkint,) ~e

for k of the order of nt,/ T.
Suppose, next, that » and T increase indefinitely but the ratio

A=n/T

remains constant. The result is an infinite set of points covering the entire ¢ axis from
—00 to +00. As we see from (4-116) the probability that k of these points are in an
interval of length ¢, is given by

—Aily (k’a )k

Plkint) =e o

4-117)
POINTS IN NONOVERLAPPING INTERVALS. Retumning for a moment to the original
interval (—T'/2, T /2) containing n points, we consider two nopoverlapping subintervals
1, and 1, (Fig. 4-33).

We wish to determine the probability

Plks in1g, kp in £}

that k, of the n points are in interval ¢, and &, in the interval ;. We maintain that

, ! L\ \ B A
P{k,inz,,,k,,mz,,}=m(%) (%) (1——"-—") (4-118)

wherek;:n—k,,—kb.

Proof. This material can be considered as a generalized Bernoulli trial. The original
experiment S is the random selection of a single point in the interval (—7'/2, T/2). In this
experiment, the events A; = {the pointisin #}, A2 = {the pointisinz}, and 43 =
{the point is outside the intervals ¢, and £} form a partition and

ta % L, b

P(A) = T P(4;) = T PA3)=1- T T
If the experiment § is performed n times, then the event {k, in f, and kp in 1} will
equal the event {A; occurs k; = k, times, A; occurs k; = k; times, and Az occurs
k3 = n — k; — ky times}. Hence (4-118) follows from (4-102) with » = 3.

We note that the events {k, in #,} and {k, in 7} are not independent because the
probability (4-118) of their intersection {k, in #,, ks in 1,} does not equal P{k, in £,}
Plkp in 1},

LV

I FIGURE4-33

X
x
x
x
x
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EXAMPLE 4-33

Suppose now that

=A n—>00 T—-> o0

Nls

Since nt, /T = Aty and nty /T = A1y, we conclude from (4-118) and Prob. 4-35 that
(MaYle o, Mt)™

Plk,inty, ky in 1y} = ™ P T (4-119)
From (4-117) and (4-119) it follows that
Plkyint,, kp inty} = Plkg int,} P{ky in 1} (4-120)

This shows that the events {k, in t,) and {k; in #,} are independent.

" We have thus created an experiment whose outcomes are infinite sets of points
on the t axis. These outcomes will be called random Poisson points. The experiment
was formed by a limiting process; however, it is completely specified in terms of the
following two properties:

1. The probability P{k, in t,) that the number of points in an interval (¢}, £2) equals
k, is given by (4-117).

2. Iftwo intervals (11, &) and (t3, t4) are nonoverlapping, then the events
{kq in (t1, £2)} and {k, in (3, 24)} are independent.

The experiment of random Poisson points is fundamental in the theory and the
applications of probability. As illustrations we mention electron emission, telephone
calls, cars crossing a bridge, and shot noise, among many others.

} Consider two consecutive intervals (1, £2) and (1, #3) with respective lengths z, and
ty. Clearly, (11, t3) is an interval with length ¢, = f, + t,. We: denote by k,, kp, and
k. = k, + k; the number of points in these intervals. We assume that the number of
points k. in the interval (1, #3) is specified. We wish to find the probability that k, of
these points are in the interval (1), £;). In other words, we wish to find the conditional
probability

Piksintg L k. in ¢}
With &k, = k. — k,, we observe that
{kaint,, ko int.} = {k; in t,, kp in 8}

Hence
Pk, inty, kp in 1}
Pik int}
From (4-117) and (4-119) it follows that this fraction equals
e Mo [(Atg)fe [ kol e [(Atp )08 [ K1)
eMe [(Arc)e [k 1]

Plkyint, |koint} =
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Since t. = t, + 1 and k; = k, + ks, the last equation yields
. . kc' Ia ke Ip ks
Plkina ki = g () (2) @12h

This result has the following useful interpretation: Suppose that we place at random k.
points in the interval (¢, £3). As we see from (3-21), the probability that k, of these points
are in the interval (f), 1) equals the right side of (4-121). <

DENSITY OF POISSON POINTS. The experiment of Poisson points is specified in terms
of the parameter A. We show next that this parameter can be interpreted as the density
of the points. Indeed, if the interval At = r, — ¢, is sufficiently small, then

AAte ™A ~ A AL
From this and (4-117) it follows that

P{one pointin (7,7 + At)} >~ LAt (4-122)
Hence
P .
A= lim {one pointin (¢, t + A1)} (4-123)
At—0 At

Nonuniform density Using a nonlinear transformation of the r axis, we shall de-
fine an experiment whose outcomes are Poisson points specified by a minor modification
of property 1 on page 118.

Suppose that A(?) is a function such that A(f) > O but otherwise arbitrary. We
define the experiment of the nonuniform Poisson points as follows:

1. The probability that the number of points in the interval (¢}, ;) equals k is given by

[ _L:’ AR) dt]
Plkin (t), 1)} = exp {—- / AQ) dt] — (4-124)
(4] .
2. The same as in the uniform case.
The significance of A(f) as density remains the same. Indeed, with
b —1t = At and k = 1, (4-124) yields
P{one pointin (7,1 + Af)} >~ A(?) At (4-125)
as in (4-122).
PROBLEMS

4-1 Suppose that x, is the u percentile of the random variable x, that is, F(x,) = u. Show that
if f(—x) = f(x), thenxi_y = —2x,,.

4-2 Show that if f(x) is symmetrical about the pointx = pand P{n—a <X < n+a}=1-g¢,
then a = 9 — Xup2 = Xiap2 — 7. .

4-3 (a) Using ‘I’able4-1 and linear interpolation, find the z, percentile of the N (0, 1) random
variable z for u = 0. 9; 0.925, 0.95, 0.975, and 0.99. (b) The random variable x is N (1, o).
Express its x, percentiles in terms of z,,.
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A-4 The random variable is X is N(n, o) and P{n — ko <x < n+ko'} = p,. (a) Find p; fork =
1,2,and 3. (b} Find k for py = 0.9,0.99,and 0.999. (c) If P{n~ 2.0 <X < n+ 2,0} =y,
express z, in terms of y.

4-5 Find x, foru = 0.1,0.2,...,0.9 (a) if x is uniform in the interval (0, 1); (b) if f(x) =
22U (x).

4-6 We measure for resistance R of each resistor in a production line and we accept only the units
the resistance of which is between 96 and 104 ohms. Find the percentage of the accepted
units (a) if R is uniform between 95 and 105 ohms; () if R is normal with n = 100 and
o = 2 ohms.

4-7 Show that if the random variable x has an Erlang density with n = 2, then F,(x) =
(1 —e ™ ~cxe™™)U(x).

4-8 The random variable x is N(10; 1). Find f(x | (x — 10)? < 4).

4-9 Find f(x)if F(x)= (1 = e *)U(x ~¢).

4-10 If xis N (0, 2) find (@P{l<x<2jand () P{1 <x=<2|x=>1}.

4-11 The space S consists of all points # in the interval (0, 1) and P{0 < t; < y} = y for every
y < 1. The function G(x) is increasing from G(~o0) = 0 to G(00) = 1; hence it has
an inverse GV (y) = H(y). The random variable x is such that x(z;) = H(t;). Show that
Fy(x) = G(x).

4-12 If x is N(1000; 20) find (a) P{x <1024}, (b)) P{x<1024{x> 961}, and (c) P31 <«
VX <32}

4-13 A fair coin is tossed three times and the random variable x equals the total number of heads,
Find and sketch F; (x) and f,(x).

4-14 A fair coin is tossed 900 times and the random variable x equals the total number of heads.
(@) Find f,(x): 1; exactly 2; approximately using (4-34). (b) Find P{435 < x < 460}.

4-15 Show that, if 2 < x(¢) < b forevery £ € 8, then F(x) = 1 for x> b and F(x) = 0 for
x<a.

4-16 Show thatif x({) < y(¢) for every { € §, then F,(w) > F,(w) for every w.

4-17 Show that if 8(1) = f(t | x > 1) is the conditional failure rate of the random variable x and
B(t) = kt, then f(x) is a Rayleigh density (see also Sec. 6-6).

4-18 Show that P(A) = P(A|x < x)F(x)+ P(A|x > x)[{1 — F(x)].

4-19 Show that

P(A|X 2 x)Fi(x)

FxlA)= P(A)

4-20 Showthatif P(A[x = x) = P(B|x = x) foreveryx <xo,then P(A|x < x0) = P(B|x <
xo). Hint: Replace in (4-80) P(A) and f(x) by P(A|x < xp) and f(x|x < xp).

4-21 The probability of heads of a random coin is a random variable p uniform in the interval (0,
1). (@) Find P{0.3 < p < 0.7}. (b) The coin is tossed 10 times and heads shows 6 times.
Find the a posteriori probability that p is between 0.3 and 0.7. s

4-22 The probability of heads of a random coiu is a random variable p uniform in the interval
(0.4,-0.6). (a) Find the probability that at the next tossing of the coin heads will show.
(b) The coin is tossed 100 times and heads shows 60 times. Find the probability that at the

next tossing Aeads will show.
4-23 A fair coin is tossed 900 times. Find the probability that the number of heads is between 420
and 465.
Answer: G(2) + G(1) - 1 =~ 0.819. '

4-24 A fair coin is tossed n times. Find n such that the probability that the number of heads is
between 0.49n and 0.52# is at least 0.9. ’
Answer: G(0.044/n) + G(0.02./n) > 1.9; hence n > 4556.
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+4-25 If P(A) = 0.6 and k is the number of successes of A in n trials (a) show that P{550 < k <
650} = 0.999, for n = 1000. (b) Find n such that P{0.59» < k < 0.61n} = 0.95.

4-26 A system has 100 components. The probability that a specific component will fail in the
interval (a, b) equals ¢~/7 — ¢~%/7_ Find the probability that in the interval (0, 7'//4), no
more than 100 components will fail.

4-27 A coin is tossed an infinite number of times. Show that the probability that k heads are
observed at the nth toss but not earlier equals () p*¢"*. [See also (4-63).]

4-28 Show that

1

1 1 1
z (1 - F) gx) <1 -Gkx) < ;8(1) gx) = ‘/—z_n_e""if2 x>0

Hint: Prove the following inequalities and integrate from x to co:

_di (le_lez) > e_".2n _aé_ [(l - _13_) e-lez] - e-—,\-zﬂ
x \ x X L\* X

4-29 Suppose that in n trials, the probability that an event A occurs at least once equals P|. Show
that, if P(A) = p and pn « 1, then P; >~ np.
4-30 The probability that a driver will have an accident in 1 month equals 0.02. Find the probability
that in 100 months he will have three accidents.
Answer: About 4¢™%/3,
4-31 A fair die is rolled five times. Find the probability that one shows twice, three shows twice,
and six shows once.
4.32 Show that (4-90) is a special case of (4-103) obtained withr =2, ky =k, ky =n~k, py=p,
n=1-p
4-33 Players X and Y roll dice alternately starting with X. The player that rolls eleven wins. Show
that the probability p that X' wins equals 18/35.
Hint: Show that

P(A)= P(A|M)P(M) + P(A | M)P(M)

Set A = (X wins}, M = {eleven shows at first try}. Note that P(A)=p, P(A| M) =1,
P(M)=2/36, P(A|IM) =1~ p.

4-34 We place at random n particles in m > n boxes. Find the probability p that the particles
will be found in n preselected boxes (one in each box). Consider the following cases:
(a) M-B (Maxwell-Boltzmann)—the particles are distinct; all alternatives are possible,
(b) B-E (Bose—-Einstein)—the particles cannot be distinguished; all alternatives are possible,
(¢) F-D (Fermi-Dirac)—the particles cannot be distinguished; at most one particle is allowed

in a box.
Answer:
M-B B-E F-D y
_ n! nl(m — I)! nl(m — n)!
p= m" (m+n—1) mt

Hint: (a) The number N of all alternatives equals m”. The number N, of favorable alter-
natives equals the n! permutations of the particles in the preselected boxes. (b) Place the
m — | walls separating the boxes in line ending with the n particles. This corresponds to
one alternative where all particles are in the last box. All other possibilities are obtained by
a permutation of the n +m — 1 objects consisting of the m — 1 walls and the n particles. All
the (m — 1)! permutations of the walls and the n! permutations of the particles count as one
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glternative. Hence N = (m +n — 1)1/(m — 1)!n! and N4 = 1. (¢) Since the particles are
not distinguishable, N equals the number of ways of selecting » out of m objects: N = (':)
and Ny =1. .
4-35 Reasoning as in (4-107), show that, if
htkthk=n ptp+p=1 kkp<Kl kp<Kl
then
nl nfith
kylkatkal = kylka!
Use this to justify (4-119).
4-36 We place at random 200 points in the interval (0, 100). Find the probability that in the
interval (0, 2) there will be one and only one point (a) exactly and (b) using the Poisson
. approximation.

p? ~ e""(PI +p2}
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5-1 THE RANDOM VARIABLE g(x)

Suppose that x is a random variable and g(x) is a function of the real variable x. The
expression
y=8®x

is 2 new random variable defined as follows: For a given £, x(¢) is 2 number and g[x(Z)]
is another number specified in terms of x(¢) and g(x). This number is the value y({) =
gIx(Z)) assigned to the random variable y. Thus a function of a random variable x is a
composite functiony = g(x) = g[x(¢)] with domain the set § of experimental outcomes.

The distribution function Fy(y) of the random variable so formed is the probability
of the event {y < y} consisting of all outcomes { such that y(¢) = g[x(¢)] < y. Thus

Fy(y) = P{y < y} = P{g(x) < y) (-1
For a specific y, the values of x such that g(x) < y form a set on the x axis denoted
by Ry. Clearly, g{x(£)] < y if x(¢) is a number in the set R,. Hence .
Fy(y) = P{x € R;} (5-2)
This discussion leads to the conclusion that for g(x) to be a random variable, the
function g(x) must have these properties:
1. Its domain must include the range of the random variable x.

2. It must be a Borel function, that is, for every y, the set R, such that g(x) < y must
consist of the union and intersection of a countable number of intervals. Only then
{y < y}is anevent.

3. The events {g(x) = oo} must have zero probability.

123
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5-2 'THE DISTRIBUTION OF g(x)

We shall express the distribution function Fy(y) of the random variable y = g(x) in
terms of the distribution function F, (x) of the random variable x and the function g(x).
For this purpose, we must determine the set R, of the x axis such that g(x) < y, and
the probability that X is in this set. The method will be illustrated with several examples.
Unless otherwise stated, it will be assumed that F,(x) is continuous.

1. We start with the function g(x) in Fig. 5-1. As we see from the figure, g(x) is
between a and b for any x. This leads to the conclusion that if y > b, then
g(x) < y forevery x, hence P{y < y} = 1, if y < a, then there is no x such that
g2(x) < y,hence Ply < y} = 0. Thus

1 y=b

= {0 y<a

With x; and y; = g(x)) as shown, we observe that g(x) < y, for x < x,. Hence
Fy(n) = Plx < x1} = Fe(x))
We finally note that
gx) <y if x<xjorifxi<x<uxy
Hence
Fy(m) = P(Xx S %3} + Plx) < x < 1)} = Fo(x5) + Fe(®)") — Fe(x})

because the events {x < x;} and {xJ < X < x7'} are mutually exclusive.
2 2 2

EXAMPLE 51 3 y=ax+b (5-3)

To find Fy(y), we must find the values of x such thatax + b < y.
(@) Ifa > 0,thenax + b < y forx < (y — b)/a (Fig. 5-2a). Hence

Fy(y)=P{x5y;b}=F,(y;b) a>0

[V S

__________ a FIGURE 5-1
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a>0 a<o0

Y@ ———— ——— -
- 71( gs=b

\

-

»Y
%

X _p O 0
x<t2 .
—y <Y

(@) ®)

FIGURE §-2

(bYIfa <0, thenax+ b < y forx > (y — b)/a (Fig. 5-2b). Hence [see also
(5-17—(5-18))

F,(y):P{xzy—;—b-}=l—Fx(y—b) a<0 ‘

a

ENAMPLE 5-2 [ 2 y=x2
Ify>0,thenx? <y for —./y <x <./y (Fig. 5-3a). Hence
FO) =P-fy<x2 3 =FR(MN-F(=J/y) y>0
K y < 0, then there are no values of x such that x? < y. Hence
F,())=P{#}=0 y<0
By direct differentiation of Fy(y), we get

1
5 (LW +H=VD)  y>0

f() = (5-4)
0 otherwise
If f,(x) represents an even function, then (5-4) reduces to
1
) ==L (Y) (5-5)
fr(y ﬁf NG
F) E)
xZ
1 1
y
) > ] 1 -
-5 0 § * -1 0 1 x ‘0 1 Y

@ ®
FIGURE 5-3
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EXAMPLE 3-3

EXAMPLE 5-4

LIMITER

In particular if x ~ N (0. 1), so that

1 2
Je(x) = ﬁe-f 2 (5-6)

and substituting this into (5-5), we obtain the p.d.f ofy = x* tobe

1

On comparing this with (4-39), we notice that (5-7) represents a chi-square random
variable with n = 1, since I'(1/2) = /. Thus, if X is a Gaussian random variable
with 4 = O, then y = x? represents a chi-square random variable with one degree of
freedom. <

eU(y) (3-7

Special case If X is uniform in the interval (-1, 1), then
pa

2 Ixl <1

1
Fy(x) = E +
(Fig. 5-3b). Hence

1 y>1

Fy())=y for 0<y=<] and Fy(y)={0 320

2. Suppose now that the function g(x) is constant in an interval (xq, x)):
gx)=y xp<x=2x (5-8)

In this case
Ply =y} = Plxy < x < x1} = Fy(x|) — Fx(xo) (5-9)

Hence F;(y) is discontinuous at y = y; and its discontinuity equals F; (x;) — Fx(xo).

P> Consider the function (Fig. 5-4)

xX—¢c x>¢
= f - < = -
gx)=0 or c<x<c and g(x) {x+c x < —c (5-10)
Inthis case, F, (y) is discontinuous for y = 0 and its discontinuity equals Fy(c)— F.(—c).
Furthermore,

Ify>0 then Ply<y}=Plx<y+cl=F((y+c)
Hfy<0 then Ply<yl=P{x<y—-c}=F({y—oc) <

P> The curve g(x) of Fig. 5-5 is constant for x < —b and x > b and in the interval
(=b, b) it is a straight line. With y = g(x), it follows that F,(y) is discontinuous for
y = g(—b) = —b and y = g(b) = b, respectively. Furthermore,

It y>b then g(x) <y foreveryx; hence Fy(y)=1
If ~b<y<b then gx)<y forx<y; hence F,(y)=F(y)
If y<-b then g(x) <y fornozx; hence Fy(y)=0 ‘
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2(x) Efx)
1

I
{
i
I
I
I
1
[+

/ 0 ¢ % = 0 £
E)
1
0 "y
FIGURE 5-4
£ FAo) EO)
1 1
b -
1 1 > > , >
-b 0 b x 0 x - 0 b y
FIGURE 5-5

3. 'We assume next that g(x) is a staircase function

gx)=gx)=y xa<x=x

In this case, the random variable y = g(x) is of discrete type taking the values y;
with

Ply =y} = P{xj.1 <X < 51} = Fe (%) — Fe(x-y)

P I

1 x>0

-1 x<0 (5-11)

s = {
then y takes the values £1 with
Ply= -1} = P{x < 0] = F(0)
.Ply=1}=P{x>0l=1- F,(0)
Hence F,(y) is a staircase function as in Fig. 5-6. <
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x4 Fx 04

1— 1 i+ —

i .

—_—1

=Y

FIGURE 5-6

EXAMPLE 56 I i
QUANTIZATION g(x) =ns n—-1s<x<ns (5-12)
then y takes the values y, = ns with
Ply=ns} = P{(n — 1)s < x < ns} = Fy(ns) — F,(ns —5) (5-13)

<

4. We assume, finally, that the function g(x) is discontinuous at x = xg and such that
g(x) <glxg) for x<x gx)>glxf) for x>x
In this case, if y is between g(xg) and g(x7), then g(x) < y for x < xo. Hence
FO)=Plx<xl=FM) g#5)=y=<gx)

EXAMPLE 5-7 [ NN o

x+c x>0

x—-¢c x<0 (5-14)

gx)= {

is discontinuous (Fig. 5-7). Thus g(x) is discontinuous for x = 0 with g(0™) = —c and

2k Fx)
/ 1
c
. § 1 - €
0 x —c 0 ¢ x

-c F,{yﬁ\_
/ |

FIGURE 5.7



CHAPTERS FUNCTIONS OF ONE RANDOM VARIABLE 129

8(0%) = c. Hence F,(y) = F(0) for |y| < c. Furthermore,

If y=>c¢

f y<-c

then g(x) <y forx <y—c; hence
If -c<y=<c then gx)<y forx <0 hence
then g(x)<y forx<y+c; hence

F)'(y) = Fy(y —¢)
Fy(y) = Fx(0)
Fy(y) = Fx(y +¢)

<

m P> The function g(x) in Fig. 5-8 equals 0 in the interval (—c. c) and it is discontinuous
for x = =c with g(c*) = ¢, g(c™) = 0, g(—¢7) = —c, g(—c*) = 0. Hence F,(y) is
discontinuous for y = 0 and it is constant for0 <y < cand ~¢ < y <0. Thus

If yzc

If O<y<c then

then g(x)<y forx<y; hence

gx)<y forx <c, hence

If —c<y<c then g(x)<y forx <-—¢; hence

f y<-—c

then g(x) <y forx <y, hence

Fy(y) = Fx(y)
Fy(y) = Fx(c)
Fy(.\’) = Fy(~c)
Fy(y) = Fx(»)

<

5. 'We now assume that the random variable x is of discrete type taking the values x;
with probability p,. In this case, the random variable y = g(x) is also of discrete
type taking the values y; = g(xx).

If y, = g(x) for only one x = x;, then

Ply=w}l=Pix=x}=p

If, however, y; = g(x) forx = x; and x = x;, then

EXAMPLE 59 [ 2

Ply=nl=Px=x}+Pix=x}=pc+p

y=x

(a) If x takes the values 1,2, ..., 6 with probability 1/6, then y takes the values
12,22, ..., 6% with probability 1/6.

(b) If, however, x takes the values -2, —1, 0, 1, 2, 3 with probability 1/6, then y
takes the values 0. 1, 4, 9 with probabilities 1/6, 2/6, 2/6, 1/6, respectively. <«

&4 F;(x; F,(y}n .
L/
e ] .~ — i >
-] o c X -c o ¢ x - 0 ¢ y

FIGURE §-8
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Determination of f)(y)

‘We wish to determine the density of y = g(x) in terms of the density of x. Suppose, first,
that the set R of the y axis is not in the range of the function g(x), that is, that g(x) is
not a point of R for any x. In this case, the probability that g(x) is in R equals 0. Hence
fy(») =0fory € R.Itsuffices, therefore, to consider the values of y such that for some
x, g(x)=y.

FUNDAMENTAL THEOREM. To find f,(y) for a specific y, we solve the equation
y = g(x). Denoting its real roots by x,,.

y=gx))=---=gx,) =--- (5-15)

we shall show that

fx(xl) Je(xx)
gl T e

where g’(x) is the derivative of g(x).

L= (3-16)

Proof. To avoid generalities, we assume that the equation y = g(x) has three roots as
in Fig. 5-9. As we know

f(dy=Ply<y=y+ady}
It suffices, therefore, to find the set of values x such that y < g(x) < y + dy and the
probability that x is in this set. As we see from the figure, this set consists of the following
three intervals
Xy <x<x3+dx Xa+drn <x <x 3<x<xy+dx;

where dx; > 0, dx; > Q but dx; < (. From this it follows that

Ply<y<y+dy}=Plxi <x <x +dx}
4+ P{xy +dx; < X < x3} + P{x3 < X < x3 +dx3)}

Y

FIGURE 5-9
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The right side equals the shaded area in Fig. 5-9. Since
Plxy <x<x +dx}= fi(x))dn dxy=dy/g'(x1)
Plxy +dx; < X <33} = fi(x2) ldx2| dxa =dy/g'(x2)
Plxs < x <x3+dx3} = fi(x3)dxs dx3=dy/g (x3)
we conclude that

fi(xy) fi(x2) Se(x3)
dy = == d d
OV =0y P gl P g
and (5-16) results.

We note, finally, that if g(x) = y; = constant for every x in the interval (xg, x;),
then [see (5-9)] Fy(y) is discontinuous for y = y,. Hence fy(y) contains an impulse
8(y — y1) of area F(x;) — Fy(xo).

Conditional density The conditional density f,(y | M) of the random variable
y = g(x) assuming an event M is given by (5-5) if on the right side we replace the terms
Jr(x:) by fi(x: | M) (see, for example. Prob. 5-21).

Hlustrations
We give next several applications of (5-2) and (5-16).
1. y=ax+b gx)=a (5-17)
The equation y = ax + b has a single solution x = (y — b)/a for every y. Hence
1 y—»b
HO) = Fl—lfx (———a ) (5-18)

Special case If x is uniform in the interval (xy, x2), then y is uniform in the
interval (ax), + b, axz + b).

P> Suppose that the voltage v is a random variable given by
v=i{r+ro)

where | = 0.01 A and ro = 1000 Q. If the resistance r is a random variable uniform
between 900 and 1100 §2, then v is uniform between 19 and 21 V. <

2. y= gx)=—-= . (5-19)

The equation y = 1/x has a single solution x = 1/y. Hence

1 1
HO) = fo (;) (5-20)
Cauchy density: If x has a Cauchy density with parameter o,
o/r 1/ax
fr(x) = el then f,(y) = F+ija

in (5-19) is also a Cauchy density with parameter 1/ce.
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EXAMPLE 5-11

EXAMPLE 5-12

: l
£ g=1 5® o

[1

0 900 1100 0

on Y

I

1
1100 9

8

FIGURE 5-10

) Suppose that the resistance r is uniform between 900 and 1100 £2 as in Fig. 5-10.
We shall determine the density of the corresponding conductance

g=1/r
Since f,(r) = 1/200 S for r between 900 and 1100 it follows from (5-20) that
1 1 1
fs® =555 ' 100 <€ <50
and 0 elsewhere. <
3. y=a a>0 g'(x)=2ax (5-21)

If y < 0, then the equation y = ax? has no real solutions; hence f,(y) = 0.Ify > 0,

then it has two solutions
X = \/Z xz = e \/_2
a a

and (5-16) yields [see also (5-4)]

1
f)()’) = m [fx (\/%'—) + fx (" %):I y > 0 (5-22)
We note that Fy(y) = 0fory <0and

) The voltage across a resistor is a random variable e uniform between 5 and 10 V. We
shall determine the density of the power

2
=% r=10000
r
dissipated in r.
Since f,(e) = 1/5 for e between 5 and 10 and O elsewhere, we conclude from
(5-8) with @ == 1/r that
P =43 p<wems

and 0 elsewhere.
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50

Y FIGURES-11

(=]
3
o

Special case  Suppose that
1 2
x) = ._._.e" 12 = xz
Sx(x) o y

Witil a = 1, it follows from (5-22) and the evenness of f,(x) that (Fig. 5-11)

1 1
= — = e 2 U

We have thus shown thatif xis an N (0, 1) random variable, the random variabley =
x? has a chi-square distribution with one degree of freedom [see (4-39) and also (5-7)).

1
4, y=vx g = oW (5-23)

The equation y = ,/x has a single solution x = y? for y > 0 and no solution for y < 0.
Hence

£HO) =2y:0PHUG) (5-24)

The chi density Suppose that x has a chi-square density as in (4-39),

fi(x) = PAT (/2
and y = /. In this case, (5-24) yields

2
L) = PAT(/2)

This function is called the chi density with » degrees of freedom. The following cases
are of special interest.
Maxwell Forn = 3, (5-25) yields the Maxwell density [see alsg (4-54))

£0) = 2my*e
Rayleigh For n = 2, we obtain the Rayleigh density f,(y) = ye™"/2U (y).

xn/2—le—X/2U(y)

y'le T PU(y) (5-25)

5. y=xU@x gkx)=Uk) (5-26)

Clearly, fy(y) =0and F,(y) =0 fory < 0 (Fig. 5-12). If y > 0, then the
equation y = xU (x) has a single solution x; = y. Hence

=00 F@)=F@y y>0 -27
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Fyx) _ Ff5)
y|=- | 50 £0)
R 0 ’x 0 Y
FIGURE 5-12
Half wave rectifier.
'}I{heus Fy(y) is discontinuous at y =0 with discontinuity F,(0%) — F,(0~) = F,(0).
nce

Iy = (MU () + F(0)6(y)
6. y=¢ gu=¢ (5-28)
If y > O, then the equation y = ¢* has the single solution x = In y. Hence
KOV == filny) 3> (529)
Ify <0,then f,(y) =0

lognormal: 1f xis N(n; o), then

) = e~ {n y~n?/20? 5-30
f ¥y ()’ ¥ \/Z—n’ ( )
This density is called lognormal.

1. : y = asin(x + 8) a>0 (5-31)

If {y| > a, then the equation y = asin(x + 8) has no solutions; hence f,(y) = 0. If
|¥| < a, then it has infinitely many solutions (Fig. 5-13a)

x,,=arcsin%-—6 n=-..--1,0,1,.
Since g'(x,) = a cos(x, +8) = \/ 2~ y2, (5-5) yields
) = Z fitm) Iyl <a (5-32)
n——oo
y 1404 )

ARG D

.3 N
1 1 1 - 2% 2ar
X2 X7 Jxg I\NT o x L ) .
\/ Xp X3 X2 XnXn+1
@ )]

FIGURE §-13
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) AT " F»
1 i |
27 : 1 [ {
| " :
! I
¥ = sin(x + 6) '
P | . 1 .
-r 0 ® X -1 0 1y -1 0 [ ¥
FIGURE 5-14

Special case: Suppose that X is uniform in the interval (—x, ). In this case, the
equation y = asin(x + @) has exactly two solutions in the interval (—, 7) for any 6
(Fig. 5-14). The function f; (x) equals 1 /2 for these two values and it equals O for any
x,, outside the.interval (~, ). Retaining the two nonzero terms in (5-32), we obtain

PN P S—— ¥l <a
RPN e R gy
To find F,(y), we observe thaty < y if x is either between —sr and xg or between

x and & (Fig. 5-13a). Since the total length of the two intervals equals & + 2xg + 26,
we conclude, dividing by 27, that

(5-33)

P4
a
We note that although f, (@) = oo, the probability thaty = +a is 0.

1 1 .
Fy(y) = 3 + p arcsin Iyl <a (5-34)

Smooth phase If the density f,(x) of x is sufficiently smooth so that it can be
approximated by a constant in any interval of length 27 (see Fig. 5-13b), then

n Y o= [ fds=1

ne—00

because in each interval of length 27 this sum has two terms. Inserting into (5-32), we
conclude that the density of y is given approximately by (5-33).

P> A particle leaves the origin under the influence of the force of gravity and its initial
velocity v forms an angle ¢ with the horizontal axis. The path of the particle reaches the
ground at a distance

2
v

d = —sin2¢
8

from the origin (Fig. 5-15). Assuming that ¢ is a random variable uniform between 0
and 7r/2, we shall determine: (a) the density of d and (b) the probability that d < dp.

SOLUTION
(a) Clearly, ,

d=asinx a=1v*/g

where the random varjable x = 2¢ is uniform between Q0 and . If 0 < d < a, then the
equation d = g sinx has exactly two solutions in the interval (0, ). Reasoning as in
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.{’(?)ﬂ
v, a-"“\\
A ~ 2
4 AN L
AY
0 L Sy -
%5 o m
I a 1
FIGURE 8-15

(5-33), we obtain

2
d) = —rae— O<d<e
1A= TE—a
and 0 otherwise.
(b) The probability that d < dy equals the shaded area in Fig. 5-15:
P{d < do} = Fa(do) = %arcsin -iﬂ <
8. y = tanx (5-35)

The equation y = tan x has infinitely many solutions for any y (Fig. 5-16a)
X, = arctany n=...,-1,0,1,...
Since g’(x) = 1/c0s? x = 1 + y2, Bq. (5-16) yields
1 o
HO) =135 2 flw (5-36)

R==00

Special case I x is uniform in the interval (—x /2, w/2), then the term £, (x;1) in
(5-36) equals 1/x and all others are O (Fig. 5-16b). Hence y has a Cauchy density given by

1/n
)= T+ (5-37)
SR 4 H)
s 1
. 7
T y=atanx
e 1 -
_T 0 r X 0 a y
2 2

@ ()]

FIGURE 5-16
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FA(OTY Fyy)
1726
- 'f

Pial y
o5 A
| J -8 o0 6 ¢ 0 dtand y
l
e

(a) )]
FIGURE §-17

As we see from the figure, y < y if x is between —7r/2 and x,. Since the length of this
interval equals x; 4 7/2, we conclude, dividing by 7, that
1

1 b 4 1
FO)=—(n+32)=5+actny (5-38)

P> A particle leaves the origin in a free motion as in Fig. 5-17 crossing the vertical line
x=dat

y=dtang

Assuming that the angle ¢ is uniform in the interval (-0, 6), we conclude as in (5-37)
that

d/2e
HO) = m

and 0 otherwise. ¢

for |y| < dtané

P> Suppose f;(x) = 2x/7%,0 < x < m, and y = sinx. Determine f,(y).

SOLUTION

Since x has zero probability of falling outside the interval (0, ), y = sinx has zero
probability of falling outside the interval (0, 1) and f,(y) = O outside this interval.
For any 0 < y < 1, from Fig. 5.18b, the equation y = sinx has an infinite number
of solutions ..., x;, X3, X3, . . ., where x; = sin~! y is the principal solution. Moreover,
using the symmetry we also get x; = 7 — x| and so on. Further,

Q=cosx=\/1—sin2x=\/1—y2

4

dx
so that

dy

—_ = 4/1 —-.y2

dx x=xy

Using this in (5-16), we obtain ,
+00 1
HO) = —fin) O<y<l (5-39)
¢ i=z—<:x> V1-—y? ’
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But from Fig. 5.18a, here fy(x-1) = fx(x3) = fy(x4) = --- = 0 (except for f;(x;) and
Jx(x2) the rest are all zeros). Thus (Fig. 5-19)

_ 1 I
5OV = =5 (fulm) + S =~y (,,z + ,,z)
2 T
_ — 0 1
JAmtm—x)  Joep—s O<y< (5-40)

2./1 - 2
miyl-y 0 otherwise
4

THE INVERSE PROBLEM. In the preceding discussion, we were given a random vari-
able x with known distribution F, (x) and a function g(x) and we determined the distri-
bution F\(y) of the random variable y = g(x). We consider now the inverse probiem:
We are given the distribution of x and we wish to find a function g(x) such that the
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distribution of the random variable y = g(x) equals a specified function Fy(y). This
topic is developed further in Sec. 7-5. We start with two special cases.

From F,(x) to a uniform distribution. Given a random variable x with distribution
F,(x), we wish to find a function g(x) such that the random variable u = g(x) is
uniformly distributed in the interval (0, 1). We maintain that g(x) = Fy(x), that is, if

u=F,(x) then FF(¥) =ufor0<u=<1l (5-41)

Proof. Suppose that x is an arbitrary number and ¥ = F;(x). From the monotonicity of
Fy(x) it follows that u < « iff x < x. Hence

Fw)=Plu<ul=P{x<xl=Fx)=u

and (5-41) results.

The random variable u can be considered as the output of a nonlinear memoryless
system (Fig. 5-20) with input x and transfer characteristic F,(x). Therefore if we use
u as the input to another system with transfer characteristic the inverse F{~ (u) of the
function u = F,(x), the resulting ontput will equal x:

I x=F"D@m) then P{x<x}=F(x)

From uniform to F,(y). Given a random variable u with uniform distribution in the
interval (0, 1), we wish to find a function g(k) such that the distribution of the random
variable y = g(u) is a specified function Fy(y). We maintain that g(x) is the inverse of
the function ¥ = Fy(y):

¥ y=F""(u) then Ply<yl=F (5-42)

Proof. The random variable u in (5-41) is uniform and the function F,(x) is arbitrary.
Replacing F; (x) by Fy(y), we obtain (5-42) (see also Fig. 5-20).

From F,(x) to F,(y). We consider, finally, the general case: Given F,(x) and Fy(y),
find g(x) such that the distribution of y = g(x) equals Fy(y). To solve this problem, we
form the random variable u = F;(x) as in (5-41) and the random variable y = FV(u)

x = F, =F{h
—_— Fx) > u = Fy(x) ~  FOw) x_.‘_(“)>
Ffu)
0 [
y=F{ V@
> Py f———

FIGURE 5-20
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EXAMPLE 5-16

EXAMPLE 5-17

as in (5-42): Combining the two, we conclude:
If y=FY(F,(x)) then Ply<y}=F) (5-43)

5-3 MEAN AND VARIANCE

The expected value or mean of a random variable x is by definition the integral

B = [ sf@ds (5-44)

This number will also be denoted by 7, or 7.

P> If x is uniform in the interval (x;, x2), then f(x) = 1/(x2 — x;) in this interval.
Hence

1 2 X1+ x2
E{x} = xdx =
o X2 — X1 Jy 2 <

We note that, if the vertical line x = a is an axis of symmetry of f(x) then
E(x} = a; in particular, if f(—x) = f(x), then E{x} = 0. In Example 5-16, f(x) is
symmetrical about the line x = (x) + x2)/2.

Discrete type For discrete type random variables the integral in (5-44) can be
written as a sum. Indeed, suppose that x takes the values x; with probability p;. In this
case [see (4-15)]

f@ =) pdx —x) (5-45)
[
Inserting into (5-44) and using the identity

00
/ x8(x — x;)dx = x;

—oo
we obtain

Ex}=Y px p=Plx=x) (5-46)

P> If x takes the values 1, 2, ..., 6 with probability 1/6, then
E(x}={(1+2+---+6) =35 |

2
2

Conditional mean  The conditional mean of a random variable x assuming an
event M is given by the integral in (5-44) if f(x) is replaced by the conditional density
fx|M):

00

E{xIM}=/ xf(x|M)dx (5-47)

-0

For discrete-type random variables (5-47) yields
E(x|M} =) xP{x=1x|M) (5-48)
i
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ESSREERE P With M = (x = a). it follows from (5-47) that
o0

E{""‘E“}=/ xf(x 1% 2 @) dx = Ja 2T )

-0 f:° Jf(x)dx 4

Lebesgue integral. The mean of a random variable can be interpreted as a Lebesgue
integral. This interpretation is important in mathematics but it will not be used in our
development. We make, therefore, only a passing reference.

We divide the x axis into intervals (xx, xz4.1) of length Ax as in Fig. 5-21a. If Ax
is small, then the Riemann integral in (5-44) can be approximated by a sum

/ > xf(x)dx > ) xef(m) Ax (5-49)

- k=00
And since f(x;) Ax >~ P{x; <X < xx + Ax}, we conclude that
[o ]
E{x} ~ Z X P{xy < X < x + Ax}

ks =00

Here, the sets {x; < X < x; + Ax} are differential events specified in terms of the
random variable x, and their union is the space S (Fig. 5-215). Hence, to find E{x}, we
multiply the probability of each differential event by the corresponding value of x and
sum over all k. The resulting limit as Ax —» 0 is written in the form

Eix} = / x dP (5-50)

and is called the Lebesgue integral of x.

Frequency interpretation 'We maintain that the arithmetic average ¥ of the observed
values x; of x tends to the integral in (5-44) as n — oo0:

L mtetx
X = mm————
n

- E{8} (5-51)
Proof. We denote by Ar, the number of x;’s that are between z; and z; + Ax = Zp4).
From this it follows that

Xy 4ot x, sz Ang

and since f(z;) Ax = An/n [see (4-21)] we conclude that

X~ %sz Ang = szf(zk)Ax :/

o0

xfx)dx*

and (5-51) resuits.

Tl Xp Xpa x
(a) &)

FIGURE 5-21
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10

@ Q)
FIGURE 5-22
We shall use the above frequency interpretation to express the mean of X in terms

of its distribution. From the construction of Fig. 5-224 it readily follows that ¥ equals
the area under the empirical percentile curve of x, Thus

X = (BCD) — (OAB)

where (BCD) and (OAB) are the shaded areas above and below the « axis, respectively,
These areas equal the corresponding areas of Fig. 5-22b; hence

- 0
X= / [1— Fy(x)]dx - / Fy(x)dx
(/] -00
where F,(x) is the empirical distribution of x. With n — oo this yields
00 0
E{x} = / R(x)dx —/ F(x)dx, Rx)=1—-F(x)=P{x>x} (5-52)
0 —00
In particular, for a random variable that takes only nonnegatjve values, we also obtain

E{x} = /m R(x)dx (5-53)
0

Mean of g(x). Given a random variable x and a function g(x), we form the random
variable y = g(x). As we see from (5-44), the mean of this random variable is given by

E(y) = / o) dy . (5-54)

It appears, therefore, that to determine the mean of y, we must find its density f,(y)-
This, however, is not necessary. As the next basic theorem shows, E{y} can be expressed
directly in terms of the function g(x) and the density f.(x) of x.

B E{g()} = / g0 fu(x) dx (5-55)

Proof. We shall sketch a proof using the curve g(x) of Fig. 5-23. With y = g(x;) = g(x3) = g(x3)
as in the figure, we see that

£ dy = filx))dx + fi(xa) dxa + fi(x3)dxy
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8()5)1}
E{g(x)} = F o)
1
(4] Xo :I
FIGURE 5-23 . FIGURE 5-24

Multiplying by y, we obtain
YO dy = g(x1) fx(x1) dx; + g(x2) fy (x2) dxz + 8(x3) fu(x3) dixs

Thus to each differential in (5-54) there correspond one or more differentials in (5-55). As
dy covers the y axis, the corresponding dx’s are nonoverlapping and they cover the entire x axis.
Hence the integrals in (5-54) and (5-55) are equal.

If x is of discrete type as in (5-45), then (5-55) yields

E{g} =) g(x)Pix =x) (5-56)
1
<
P> With x; an arbitrary number and g(x) as in Fig, 5-24, (5-55) yields
E{(gx)} = Sx(x)dx = Fr(xo)

This shows that the distribution function of a random variable can be expressed as
expected value. <«

P> In this example, we show that the probability of any event A can be expressed as
expected value, For this purpose we form the zero—one random variable x4 associated
with the event A:

1 A
XA(§)={O i:A

Since this random variable takes the values 1 and 0 with respective probablhtm P(A)
and P(A), yields

El{xa} =1 x P(A) +0x P(A) = P(A) <

Linearity: From (5-55) it follows that
E{a1g1(x) + -+ + an2: (X} = a1 E{g1(X)} + - - + 2, E{g, (%)} (5-57)

In particular, E{ax + b} = aE{x} + b ’
Complex random variables: 1If z = x + jy is a complex random variable, then
its expected value is by definition

E(z} = E{x} +jE{y}
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From this'and: (5-55) it follows that if
g(x) = g1(x) + jg2(%)

is a complex function of the real random variable x then

Elgw)} = f

00

si(x)f(x)dx+j / &2(x)f(x)dx = /Q gx) f(x)dx (5-58)
In other words, (5-55) holds even if g(x) is complex.

Variance

Mean alone will not be able to truly represent the p.d.f. of any random variable. To illus-
trate this, consider two Gaussian random variables x) ~ N (0, 1) and x, ~ N(0, 3). Both
of them have the same mean p =0. However, as Fig. 5-25 shows, their p.d.fs are quite
different. Here x, is more concentrated around the mean, whereas x; has a wider spread.
Clearly, we need at least an additional parameter to measure this spread around the mean!

For a random variable x with mean x4, X — i represents the deviation of the random
variable from its mean. Since this deviation can be either positive or negative, consider
the quantity (x — 1), and its average value E[(x — x)?) represents the average square
deviation of x around its mean, Define

022 E[(x—u)?] >0 (5-59)
With g(x) = (x — 1)? and using (5-55) we get

+00
ot= [ G-wfwdx>0 (5-60)
-0

The positive constant o is known as the variance of the random variable x, and its
positive square root oy = +/ E(x — u)? is known as the standard deviation of x. Note
that the standard deviation represents the root mean square value of the random variable
x around its mean .

From the definition it follows that o2 is the mean of the random variable (x — 7).
Thus

Var{x} = 0% = E{(x — 7)’} = E{x® - 2x1 + n’} = E{x*} — 2nE(x} + n*

T ) FACHT

Y

Y

(@) =1 ® o?=3
FIGURE 5-25
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Hence
o* = E(x’) - 0’ = E{x’) — (E{x})* (5-61)
or, for any random variable
E{x’} 2 (E{x})?

P> If x is uniform in the interval (—c, ¢), then 5 = 0 and

1 c CZ
2= 2,_____ 2d —
c E{x°} 2c/x x 3 <

-
P> We have written the density of a normal random variable in the form

fx) = 1 g——n'12e?

g

where up to now 1 and ¢ were two arbitrary constants. We show next that 7 is indeed
the mean of x and o2 its variance.

Proof. Cleatly, f(x) is symmetrical about the line x = 1; hence E{x} = 7. Furthermore,

00

because the area of f(x) equals 1. Differentiating with respect to o, we obtain
0 N2
/ G-nr e gy — fox
-00 03

Multiplying both sides by 0?/+/2%, we conclude that E(x—n)*=0? and the proof is
complete.

Discrete type. If the random variable x is of discrete type as in (5-45), then
?=> px—n?  p=Plx=x) (5-62)
i

P> The random variable x takes the values 1 and O with probabilities pandg =1 —p
respectively. In this case

Ex}=1xp+0xg=p
EX}=12xp+0Pxg=p .
Hence
o? = E{x’} ~ E¥x} = p— p* = pg |

A Poisson distributed random variable with parameter A takes the values 0, 1, ...
> p
with probabilities !
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We shall show that its mean and variance bath equal A:
E{x}=1 E{&}=A242 o?=2 (5-63)

Proof. We differentiate twice the Taylor expansion of ¢*:
o0
ll‘
A —
€= Z k
x"-' 1o M
e = Z k— x kzl kz—!'

¢ ‘Zk(k ! Azz X ‘Az Z"k.

. kmi kel
Hence
oo -]
A.k A.k
_pmh A 2y __ oA 2% 42
E{x)=e E kk!-l E{ix)=¢ E kk!_x +A
kex] k=l

and (5-63) results.

Poisson points, As we have shown in (4-117), the number n of Poisson points in an interval of
length ¢, is a Poisson distributed random variable with parameter a = Afy. From this it follows that

Em=My ol=2 (5-64)

This shows that the density A of Poisson points equals the expected number of points per unit
time.

Notes 1. The variance o2 of a random variable x is a measure of the concentration of x near its mean 7. Its
relative frequency interpretation (empirical estimate) is the average of (x; — n)%:
1
otz =N (- ) (5-65)

where x; are the observed values of x. This average can be used as the estimate of o2 only if 5 is known. If it
is unknown, we replace it by its estimate £ and we change » to n — 1. This yields the estimate

2.1 T S |
gt~ e Z(x, ) X= - Zz; (5-66)

known as the sample variance of x [see (7-65)]. The reason for changing n to n — 1 is explained later.
2. A simpler measure of the concentration of x near n is the first absolute central moment M=
Ef{jx — n|}. Its empirical estimate is the average of |x; — n}:

M-’=;ZII:—nI
z

If  is unknown, it is replaced by %. This estimate avoids the computation of squares.

5-4 MOMENTS

The following quantities are of interest in the study of random variables:

¢

Moments

my, = E{x"} = / ” x"f(x)dx (5-67)

-0
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Central moments
o)
o = E{(x— 1)} = f (x— Y f(x) dx (5-68)
Absolute moments
E{ix|"} E{|x - nl"} (5-69)
Generalized moments
E{(x - a)"} E{|x — a|"} (5-70)
We note that
—_ —_ V) - n 1k
pn=E{x-n)"}=E {Z (k)x"( n) }
k=0
Hence
Ba= (Z) my(—~n)*" G-71)
£=0
Similarly,
m, = E{[x—n)+n]"}=E {kz (:) (x—- 17)"17""‘}
=)
Hence
my = ; (Z) e (5-72)
In particular,

po=mp=1 m=n =0 p=o’

and

p3=m3—3qgma+20°  my=p3+3n0’+p°

Notes 1. If the function f(x) is interpreted as mass density on the x axis, then E{x} equals its center of
gravity, E{x?} equals the moment of inertia with respect to the origin, and o2 equals the central moment of
inertia. The standard deviation o is the radius of gyration.

2, The constants 7 and o give only a limited characterization of f(x). Knowledge of other momeats
provides additional information that can be used, for example, to distinguish between two densities with the
same 7 and ¢ . In fact, if m,, is known for every n, then, under certain conditions, f(x) is deterined uniquely
[see also (5-105)]. The underlying theory is known in mathematics as the moment problem.

3. The moments of a random variable are not arbitrary numbers but must satisfy various inequalities
[see (5-92)). For example [see (5-61))

6t=my—-miz>0
Similarly, since the quadratic
E((x" = a)*} = may — 2am, +,a2

is nonnegative for any a, its discriminant cannot be positive. Hence

Moy 2m2
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ENAMPLY 5-25

Normal random variables. We shall show that if

1 —x3 202
= e ”
Fe) o2x
then
0 n=2k+1
ny _ -
E[x}—{l-3---(n—-1)a" n =2 -73)
Eary = {12 o Dot a= (5-74
X = o
2%klo* N Iw n=2k+1 )

The odd moments of x are 0 because f(—x) = f(x). To prove the lower part of
(5-73), we differentiate k times the identity

00
[ b
e dx =] -

b 1-3...(2k-1)
% —-ax? . _
/-wx e dx = o pere

and with o = 1/202, (5-73) results.
Since f(—x) = f(x), we have

b 2 2942
E{x|*t) = 2/ x#*H f(x)dx = xB+ =520 4y
{Ix17"} A f = /o
With y = x2/20?, the above yields

2vk+1
‘/_(20 ) >' te™ dy

and (5-74) results because the last integral equals k!
We note in particular that

E{x*) = 30* = 3E(x%) (5-75)

This yields

P> X x has a Rayleigh density
f@) = Sy ()
then
1 [ 1 2
E{x") = ?‘-5‘/0 xtH=E 20 gy 357 /Q x|~ e’ gy
From this and (5-74) it follows that

1-3--cno"aj2 n=2k+1
B’y = {2*k1a’* n=2k (5-76)
In particular, )
E{x} =0+/n/2  Var{x} = (@2~ n/2)c? (5-77)
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[EESIEEERA B 1 x has a Manwell density

flx) = a;{/ij?xze""/ 2y x)
then
EixX" = 1 o n+2 -x’/Zn’d
x'} = ey Ix"*e x

and (5-74) yields

1-3.--(n+Da" n=2k
Eix"} = K
&) {zkuau—lm; n=2k—1 -78)
In pérticular,
E(x} =2a/2/nr  E{x*} = 3a? (5-79)
|
Poisson random variables. The moments of a Poisson distributed random variable are
functions of the parameter A:
o0 lk
ma(\) = E{x"} =™ gk"n (5-80)
o0 A.k
Uun () = E{(x =2} =€y (k= 2)'e (5-81)
kD :
We shall show that they satisfy the recursion equations
Mast(A) = Amp(R) +m;, (1)) (5-82)
Mng1 () = Anpin— 1 (A) + 1, (V)] (5-83)

Proof. Differentiating (5-80) with respect to A, we obtain

N R Ak N hiad k-1
M) ==Y K ke Y BT
k=0 : k=0 )

and (5-82) results. Similarly, from (5-81) it follows that

1
= —mp(A) + ‘i‘mn+l(l)

4

o0 A.k o0 Ak
HaR) = =€y (= a7 —ne Y -1
k=0 £=0
i k-1
A
-2
+e*) k- Nk
k=0
Setting k = (k — A) + A in the last sum, we obtain ! = —pu,; ~ Ria—y + (1/2)
(a1 + Miin) and (5-83) results.
The preceding equations lead to the recursive determination of the moments m,
and u,. Starting with the known moments m; = A, u; = 0, and u; = X [see (5-63)},
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EXAMPLE 5-27

we obtain mz = A(A + 1) and
my= Q2 +A4+20+ D=3 +302 40 g3 =y +2u) =2

ESTIMATE OF THE MEAN OF g(x). The mean of the random variable y = g(x) is
given by

(o]
Ele()} = / () f(x) dx (5-84)

Hence, for its determination, knowledge of f (x) is required. However, if x is concentrated
near its mean, then E{g(x)} can be expressed in terms of the moments 4, of x.

Suppose, first, that f (x) is negligible outside an interval (n — &, n + ¢€) and in this
interval, g(x) =~ g(n). In this case, (5-84) yields

n4-¢

E{g®} =gl J(x)dx =~ g(n)
n—e

This estimate can be improved if g(x) is approximated by a polynomial

2() = g(m) + £MGE — 1)+ + g‘"’(n)( ik

Inserting into (5-84), we obtain

7 a? Hen
E{g®)} = gm) +g" (5 +---+ g‘"’(n);; - (5-85)

In particular, if g(x) is approximated by a parabola, then

2
ny = E{g(®)} = g(n) + 8"(17)% (5-86)

And if it is approximated by a straight line, then n, =~ g(n). This shows that the slope
of g(x) has no effect on 7, ; however, as we show next, it affects the variance a} of y.
Variance. We maintain that the first-order estimate of o? is given by
oy = 1g'(ni*e? (5-87)
Proof. We apply (5-86) to the function g?(x). Since its second derivative equals 2(g")* +
2gg", we conclude that
ol + 0t =E{g? (0} = g2 + (g +88"V0?

Inserting the approximation (5-86) for n, into the above and neglecting the o term, we
obtain (5-87).

P> A voltage E = 120 V is connected across a resistor whose resistance is a random
variable r uniform between 900 and 1100 Q. Using (5-85) and (5-86), we shall estimate
the mean and variance of the resulting current

1
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If jw is changed to s, the resulting integral

o0
P(s) = f(x)e™ dx P(jw) = Ox(w) (5-96)
is the moment (generating) function of x.
The function )
V(@) = In $x(w) = V(jw) (5-97)

is the second characteristic function of x.
Clearly [see (5-58)]

Dx(w) = E{e’*}  @(s) = E{e™} (5-98)
" This leads to the fact that
fy=ax+b then @,(w)=e/d(aw) (5-99)

because
E{e;wy} = E{ejw(ax+b)} = e]wa{ejGGX}

P> We shall show that the characteristic function of an N (77, o) random variable x equals
(see Table 5-2)

@, (w) = exp { jnw — jo2w?} (5-100)

Proo_'f The random veriable z = (x — %) /o is N(Q, 1) and its moment function equals

Qz(s) == —\/}2__7[__‘/‘ e’ze—zilz dz

with
z 1 2, 8
52— —-—E(z—s) +3
we conclude that
{+ ]
1
&, (s) = e / e 2 gy = N2 (5-101)
z - ,--27!_

And since X = 0z + 1, (5-100) follows from (5-99) and (5-101) with s = jo.

Inversion formula As we see from (5-94), ¥, (w) is the Fourier transform of
S (x). Hence the properties of characteristic functions are essentially the same as the
properties of Fourier transforms. We note, in particular, that f(x) can be expressed in
terms of ¢ (w)

{ve)
f(x) = -2-1-1- / O, (w)e™'** dw (5-102)

Moment theorem. Differentiating (5-96) n times, we obtain
P (5) = E{x"e™)
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EXAMPT.E 5-29

Hence
o™ (Q) = E{x"} = m, (5-103)

Thus the derivatives of ®(s).at the origin equal the moments of x. This justifies
the name “moment function” given to ®(s).
In particular,

YO)=m =17 "0 =m=n>+0> (5-104)

Note Expanding ®(s) into a series near the origin and using (5-103), we obtain
o
e = ':——-‘!'s" (5-105)
n=0

This is valid only if all moments are finite and the series converges absolutely near s = 0. Since f(x)
can be determined in terms of ®(s), (5-105) shows that, under the stated conditions, the density of a random
variable is uniquely determined if all its moments are known.

P> We shall determine the moment function and the moments of a random variable x
with ganvna distribution: (see also Table 5-2)

cH

- b-1_~cx =
fR)=yx" UK vy TE+D

From (4-35) it follows that

o [ bt ey YTRY & ]
() —r/o xe =T S o (5-106)

Differentiating with respect to s and setting s = 0, we obtain
bb+1)---(b+n-1)

™ (0) = p

= E{x"}

. Withn = 1 and n = 2, this yields

bb+1)
2
The exponential density is a special case obtained withb = 1,¢ = A:

A 1 1
= —hx e — = — 2 = -
Fx)=2xe " U(x) ®(s) — E{x} 3 o 3 (5-108)
Chi square: Setting b = m/2 and ¢ = 1/2 in (5-106), we obtain the: moment function
of the chi-square density x2(m):

E{x} = % E{x?} = ol = % (5-107)

¢(S) = _-(—1_1__)_»1 E{X} =m 62 =2m (5-109)
<

Cumulants. The cumulants A, of random variable x are by definition the derivatives
d*w(0)
ds" Aa

(5-110)
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of its second moment function W(s). Clearly [see (5-97)] W(0) = Ay = O; hence
1 1
W(s) = As+ A28+ + —Aps" + -+
2 n!
We maintain that

rM=n  Ay=02 (5-111)

Proof. Since ® = ¢¥, we conclude that
¢ =W &=+ W)’
With s = 0, this yields
Y@=V O=m  ¢0) =V + [VOF =m
and (5-111) results.

Discrete Type

Suppose that x is a discrete-type random variable taking the values x; with probability
pi. In this case, (5-94) yields

Dp(w) =Y pie!®™ (5-112)
[
Thus &, (@) is a sum of exponentials. The moment function of x can be defined as in

(5-96). However, if x takes only integer values, then a definition in terms of z transforms
is preferable.

MOMENT GENERATING FUNCTIONS, If x is a lattice type random variable taking
integer values, then its moment generating function is by definition the sum

+o0 (-]
F=E(@)= ) Plx=n}"= ) pat" (5-113)

Thus T'(1/z) is the ordinary z transform of the sequence p, = P{x = n}. With ¢,(»)
as in (5-112), this yields

D) =T () = ) pe/™

RA==-00 g

Thus @, (w) is the discrete Fourier transform (DFT) of the sequence {p,}, and
Y(s) =InT(*) (5-114)

Moment theorem. Differentiating (5-113) & times, we obtain
M = ExE—1)---(x—k+1)2*%)
With z = 1, this yields
rd() = Ex@E—1)---(x — k+ 1)} (5-115)
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‘We note, in particular, that [(1) =1 and
rQ) =E(x} ") =E{’} - Elx) (5-116)
[DGUSIGEIESKIE D> (a) If x takes the values O and 1 with P{x =1} = p and P{x = 0} = g, then
Fz)=pz+gq
Fr)=Ex}=p §1)=E({x*}—E{x}=0
(b) If x has the binomial distribution B(m, p) given by

pn=Plx=n)= (':)p"q""" O<n=<m

thén
ra=>y (':) g = (pz+ )" (5-117)
n=0
and
Cy=mp (1) =m(m-1)p*
Hence
E{x} = mp o =mpq (5-118)
<4

[BRIIYRUERIE D> If x is Poisson distributed with parameter 2,
n

A
P{x=n}=e"‘;—' n=01,...

then
o0 n
r(z) =e™> g A"Z—! = M- (5-119)
In this case [see (5-114)]
U =A -1 WO=1r WO =2
and (5-111) yields E{x} = A, g% = A in agreement with (5-63).

‘We can use the characteristic function method to establish the eMoivre-Laplace
theorem in (4-90).

B> Letx ~ B(n, p). Then from (5-117), we obtain the characteristic function of the
binomial random variable to be

@, () = (pe’® + g)"

and define

e
I
X
N

(5-120)

a
L)
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Hence by the independence of these events-
P{Bu+l} =(1- pn—r)qp'
so that from (5-122)
Prntl = P{Xpu1} = P{Xp} + P{Bpi1l = pu+ (1 — Pn—r)qpr (5'123)
The equation represents an ordinary difference equation with the obvious initial condi-
tions
p=p=-=p_ =0 and p =p (5-124)

From (5-123), although it is possible to obtain p,1=p' (1+4q),...,
Pr+m = P’ (1+mq) for m <r — 1, the expression gets quite complicated for large values
of a. The method of moment generating functions in (5-113) can be used to obtain a
general expression for p,. Toward this, let

e =1—pa (5-125)
so that (5-123) translates into (with n replaced by n 4 r)
Guir+l =Gntr —qP'qn 1 =0 (5-126)
with the new initial conditions
o=q=-=qa1=1 g=1-p (5-127)
Following (5-113), define the moment generating function
$(2) = i 7" (5-128)
n=0

and using (5-126) we obtain

qP’d’(Z) = (Eq::+rzn - an+r+lzn)

n=0 ne=x0

_@-Yisad _¢@-FTi,ad

zr Zr+l
2 - 1)@ = Thr 2 + (Tih 2t + 1 - 2)2)
= z"+|
z-1e¢@+1-p'7
= o (5-129)

where we have made use of the initial conditions in (5-127). From (5‘:129) we get the
desired moment generating function to be

1~ przr
@O=177 gp'zrt!
¢(z) is a rational function in z, and the coefficient of z* in its power series expansion
gives g,. More explicitly

$@@) = (1 - p'2)1 —2(1 — gp" )™
=(U-pPOM 4zt -t +-] (13D

(5-130)
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so that the desired probability equals

Gn = Qnr — P Cnrr (5-132)

where @, , is the coefficient of z” in the expansion of [1 — z(1 — gp"z"))"!. But

[l-z(—gp'H) ' = Z (1 —qp' )" = ZZ ('Z) (gt

m=0 m=0 k=0
Letm + kr = n so that m = n — kr, and this expression simplifies to

oo |n/(r+1)] n—kr 0
M-zQ-gp'zN"'=> > ( . )(—D"(qp’)" "=,

n=0 k=0 n=0

and the upper limit on k corresponds to the condition n — kr > k so that (") is well
defined. Thus

/¢ +1)] n—kr
G =3 ( . >(-1)*(qp')* (5-133)

k=0
With o, , 50 obtained, finally the probability of r runs for A in n trals is given by

Pr=l—gn=1—0an, + Pran-r,r (5-134)

For example, if n = 25,r = 6, p = ¢ = 1/2, we get the probability of six successive
heads in 25 trials to be 0.15775.

On a more interesting note, suppose for a regular commuter the morning commute
takes 45 minutes under the best of conditions, the probability of which is assumed to be
1/5. Then there is a 67% chance for doing the trip within the best time at least once a
week. However there is only about 13% chance of repeating it twice in a row in a week.
This shows that especially the day after the “lucky day,” one should allow extra travel
time. Finally if the conditions for the return trip also are assumed to be the same, for a
one week zeriod the probability of doing two consecutive trips within the best time is
0.2733,

The following problem has many varients and its solution goes back to Montmort
(1708). It has been further generalized by Laplace and many others.

TABLE 5-1
Probability p, in (5-134)
n=35 n=10
p=1/5 p=1/3 p=1/8 p=1/3
1 0.6723 0.8683 0.8926 0.9827
2 0.1347 0.3251 0.2733 0.5773
3 0.0208 0.0864 0.0523 0.2026 -
4 0.0029 0.0206 0.0093 0.0615
5 0.0003 0.0041 0.0016 0.0178
6 — —_ 0.0003 0.0050
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EXAMPLE 5

THE PAIRING
PROBLEM

‘} A persdn writes » letters and addresses n envelopes. Then one letter is randomly
placed into each envelope. What is the probability that at least one letter will reach its
correct destination? What if n — c0?

SOLUTION

When a letter is placed into the envelope addressed to the intended person, let us refer to it
as a coincidence. Let X represent the event that there are exactly k coincidences among
the n envelopes. The events Xo, X1, ..., X, form a partition since they are mutually
exclusive and one of these events is bound to happen. Hence by the theorem of totai
probability

Pu(0) + pa(l) + pa@) + -+ + paln) = 1 (5-135)
where
pa(k) 2 P(X,) (5-136)

To determine p,(k) let us examine the event X;. There are (:) number of ways of
drawing k letters from a group of r, and to generate k coincidences, each such sequence
should go into their intended envelopes with probability

1 1 1

n n—1 n—-k+1
while the remaining n — k letters present no coincidences at all with probability p,—;(0).
By the independence of these events, we get the probability of & comcldences for each
sequence of k letters in a group of n to be

1
nn—=1---n—-k+1
But there are (") such mutually exclusive sequences, and using (2-20) we get

1 )

pak) = P(X;} = ( ) g vy e VO L CR U]
Since p, () = 1/n!, equation (5-137) gives po(0) = 1. Substituting (5-137) into (5-135)'
term by term, we get

pn—l(o) pn—Z(o) Pl(o) 1 = _ [
PO+ T+ T ek T = (5-138)

which gives successively

nO=0 pO=1% pO=4%
and to obtain an explicit expression for p,(0), define the moment generating function

Pn~k (0)

@ =) pal0)2" (5-139)

n=0

() = (; )(Zp"w)z )

1
=l+z+zz+...+zn+---=i——z (5-140)

Then
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where we have made use of (5-138). Thus

et o n (—l)k \
o= =5 (S5Y):

n=0 \k=0

and on comparing with (5-139), we get

~ (=Dt 1
pa0) =) == — = =0.377879 (5-141)
k! e
k=0
and using (5-137)
1 n—k (_l)m
palk) = 5,27 (5-142)
Thus
P{At least one letter reaches the correct destination}
_ _ = (—1)F
=1-pu@=1-3 "= — 0.63212056 (5-143)

k=0

Even for moderate n, this probability is close to 0.6321. Thus even if a mail delivery
distributes letters in the most causal manner without undertaking any kind of sorting at
all, there is still a 63% chance that at least one family will receive some mail addressed
to them.

On a more serious note, by the same token, a couple trying to conceive has about
63% chance of succeeding in their efforts under normal conditions. The abundance of
living organisms in Nature is a good testimony to the fact that odds are indeed tilted in
favor of this process.

Determination of the density of g(x). We show next that characteristic functions can
be used to determine the density f;(¥) of the random variable y = g(x) in terms of the
density f,(x) of x.

From (5-58) it follows that the charaeteristic function

®,(w) = / e £, (y) dy

-0

of the random variable y = g(X) equals

Oy (w) = E{/¥W} = /W 8O £ (xydx (5-144)
-00
If, therefore, the integral in (5-144) can be written in the form
(>4
/ e/’h(y)dy
-0

it will follow that (uniqueness theorem)

5y =h(y)
This method leads to simple results if the transformation y = g(x) is one-to-one.
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TABLE 52
Probabllity density ' Characteristic
Random variable function f(x) Mean ) Variance function @, (w)
Normal or 1 —pPpo? 2 inw—0dt 2 o
Gaussian N(1,02)  opoz® g #» ° el
~00 < X < 00
1 1 10,2
Log-norma! — g~ ORX-BY 207
. xv/2n0? ¢
x20,
Exponential E(A) Ae* x>0,0>0 % Ilf (4 ~ jw/ay
071
Gamma G(a, ) ﬁﬁﬁ;e*xl‘, «p af? (1~ jwp)~®
x20,aa>0,8>0
Y . 1 RS . -k
E.rlang-k Zk—_l—)ix e X 0z ¢ ]w/kl)
; 2 A n -}
Chi-square x*(n) me ,x20 n 2n (1 - j2w)
' Soarose (B)r(+5) (B"[(+3)
Weibull x20,a>08>0 (a r 1+ﬁ - r l+p
1 2
- +3)
(r(+3
Rayleigh fie“"’ﬂ"’, x>0 \/ %a 2 ~n/Do? (l +Jy / %am) o
. a+b b - a) &b _ g—joo
Uniform U(a, b) m,a <x<b 3 o ot —a)
l"(a +ﬁ) @17t _ 1 B-1 4 aﬂ .
Bnpeh  rar@t TV a4 @ PP T BT D
O0<x<l,a>0,>0
a/n
CauChy (x et #)2 + a?’ — 00 g}l‘”g‘“h"
-0 <x <00,a>0
2
Rician -‘-'5['2?3' Io (5"-2-) o L+ Nlotr/D - —
g ' 2
-0 <x<00,8a>0 +rhi{r/))e"?, <
) r=a%/20?
. 2 (m\" am-1,-g2 Tm+172) [Q 1 (r‘(m+1/2))2
Nakagami T(m) (n) UYL T Vm U aUTTe

x>0
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TABLE 5-2
(Continued)
Probability density Characteristic
Rardom variable function f.(x) Mean Variance tunction ¥, (w)
. iz +1)/2) 2\~ 2 n
Students’ 7(rn) W xT) (1+x*/n) , 0 n_z.n>2
- <L <0
N T'((m +n)/2) (m)"’/z w2l n n%(2m +2n - 4)
F-distribution Tmara \n) * =2"7?  ma-rmea "
~{m+n)f2
X (l + E) ,x>0
n
Bernoulli PX=1)=p, P 7(1-p) pe’® +gq
PX=0=1-p=gq
I 3 7\ & n-k Jo ]
Binomial B(n, p) ( X ) g np npq (pe’®+q)
k=01,2,....n,p+qg=1
. oA ~A(1~e%)
Poisson P(A) e ;—.-.k=0.l,2...,,oo A A &
M N-M
H eometric k n-k ﬂ nﬁ (l M) (1 n-1
yperg N N N N N1
n
max (0, M +n — N) £k < min (M, n)
rg, q a 7
k=0.12, ..,00 P p? 1 —gel®
] [+)
Geometzie ) 1 4 _r
re P P2 e—Jo -q
k=12,...,00, ptg=1
( r+k-1
( k )”’ ¢ rq rq ( P )’
" ") 1 —ge—Ji®
Pascal or negative k=0,12,...,00 d ? b
biromial NB(r, p) < or
(F2))re r ) (=)
L r P e~io—g
\k=rnr+l,...,00,p+g=1
N+1 Ni-| , sin(Nw/2)
i ; ar: -t j(N+Dwp SN @/2)
Discrete uniform /N, 3 12 ¢ sin{w/2)

k=1,2,....N
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EXANMPLE 5-34

EXAMPLE 5-35

p Suppése that x is N(0; o) and y = ax?. Inserting into (5-144) and using the evenness
of the integrand, we obtain

0o 2 00 2 22
o) = Joax? dx = / Jaws? -2 (20 4
(@) /me Fx)dx ST ) el ¢ x

As x increases from 0 to co, the transformation y = ax? is one-to-one. Since
dy =2axdx =2./aydx

the last equation yields

2 bl 2 d)’
&, (0) = ey g—yitae® 7
y(@) o 27r./o 2./ay

Hence
e-y/ 2a0?

L= ;‘mv »
in agreement with (5-7) and (5-22). <

(5-145)

) We assume finally that x is uniform in the interval (—n/2, 7/2) and y = sinx. In
this case
o 1 o
Oy (w) = f o f(x)dx = = e/ dx
-00 T Jezp2

As x increases from —7 /2 to 7 /2, the function y = sinx increases from —1to 1 and

dy =cosxdx = /1 — y*dx

Hence

1 /' dy
o, (w) = — &Y
ORIty e
This leads to the conclusion that
1

HO)=—=== for ly|<1
w1 —y2

and 0 otherwise, in agreement with (5-33). <

PROBLEMS

5-1 The random variable xis N (5, 2) and y = 2x + 4. Find »,, 0, and £,(»).

5-2 Find Fy(y) and f,(y) ify = —4x + 3 and f,(x) = 2™ U (z).

5-3 If the random variable x is N(0, ¢*) and g(x) is the function in Fig. 5-4, find and sketch the
distribution and the density of the random variable y = g(x).

5-4 The random variable x is uniform in the interval (—2¢, 2¢). Find and sketch f,(y) and Fy(y)
if y = g(x) and g(x) is the function in Fig. 5-3.

§-5 The random variable x is N (0, b?) and g(x) is the function in Fig. 5-5. Find and sketch 50)
and Fy(y).
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5-6 The random variable x is uniform in the interval (0, 1). Find the density of the random
variable y = —~Inx.
5-7 We place at random 200 points in the interval (0, 100). The distance from 0 to the first random
point is a random variable z. Find F,(z) (a) exactly and (b) using the Poisson approximation.
5-8 If y = ./x, and x is an exponential random variable, show that y represents a Rayleigh
random variable.
5-9 Express the density f, (y) of therandom variable y = g(x) in terms of f, (x) if () g(x) = |x[;
(B) gx) =e~*U(x).
5-10 Find Fy(y) and f,(») if Fi(x) = (1 = =)U(x) and (@) y = (x—~ 1)U (x = 1); (b) y = x*.
5-11 Show that, if the random variable x has a Cauchy density with @ = 1 and y = arctan x, then
y is uniform in the interval (~n /2, 7/2).
5-12 The random variable x is uniform in the interval (-2, 2r). Find f,(y) if (a) y=2x°,
(b)y =x%, and () y = 2sin(3x + 40°).
5-13 The random variable x is uniform in the interval (-1, 1). Find g(x) such thatif y = g(x)
then f,(y) = 2¢2*U(y).
5-14 Given that random variable x is of continuous type, we form the random variable y = g(x).
(a) Find f;(y) if g(x) = 2F.(x) -+ 4. (b) Find g(x) such that y is uniform in the interval
(8, 10).
§-15 A fair coin is tossed 10 times and x equals the number of heads. (a) Find F, (x). (b) Find
F(y)ify = (x-3)%
5-16 If xrepresentsabetarandom variable with parameters & and 8, show that 1 — x also represents
a beta random variable with parameters g and .
5-17 Let x represent a chi-square random variable with n degrees of freedom. Then y = x* is
known as the chi-distribution with n degrees of freedom. Determine the p.d.fof y.
5-18 Letx ~ U(0, 1). Show thaty = —2logx is x2(2).
5-19 If x is an exponential random variable with parameter A, show that y = x'/# has a Weibulil
distribution.
5-20 If t is a random variable of continuous type and y = a sin wt, show that

Ja? — 2
£ - {l/ﬂ a—~y lyl<a

0 Iyl>a
§-21 Show that if y = x, then

uy) LG
- F0) 2/5

5-22 (a) Show that if y = ax + b, then oy = |a|o,. (b) Find , and o, if y = (x — 7y)/0;.

5-23 Show that if x has a Rayleigh density with parameter & and y = b + cx?, then 02 = 4c’c*.

5.24 Ifxis N(0,4) and y = 3x%, find 9,, 5,, and f,(y). )

§-25 Let x represent a binornial random variable with parameters n and p. Show that () E(x) =
np; (b) Efx(x — 1)] = n(n — 1)p% (¢) Efx(x — )(x — 2)] = a(r — 1)(n — 2)p%
(d) Compute E(x?) and E(x).

5-26 ForaPoisson random variable x with parameter A show that (@) P(0 < x < 21) > (A—1)/A;
(b) E[x(x — 1)] = A%, E[x(x — 1)(x — 2)] = A3

§-27 Show thatif U = [A,, ..., A,] is a partition of S, then

H@lxz0) =

E{x) = E{x1 A)}P(A)) + - - + E(x| A, ) P(A,).

5-28 Show thatif x > Oand E{x] = 1, then P{x > ./} < /7.
5-29 Using (5-86), find E{x*} if n, = 10 and g, = 2.
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"5-30- If x is uniform in the interval (10,12) and y = %*, (@) find £,(); (b) find E{y}: (i) exactly

(ii) using (5-86).

5-31 The random variable x is N (100, 9). Find approximately thé mean of the random variabld
¥ = 1/x using (5-86).

5.32 (a) Show that if m is the median of x, then

E{lx - a]} = E{Ix - ml} +2/ (x —-a)f(x)dx

for any a. (b) Find ¢ such that E{|x — c}} is minimum.
§-33 Show that if the random variable x is N(n; o), then

2 _ a2 n
= ‘/.. -n*{2% A
Elix]}=0¢ ne + 272G (a) 7

5-34 Show that if x and y are two random variables with densities f; (x) and f£,(y), respectively,
then

Eflog f, (X)) = E{log fy(x)}
5-35 (Chernoff bound) (a) Show that for any @ > 0 and for any real s,

Pe*za) s 2 where o) = Efe®) 0

Hins: Apply (5-89) to the random variable y = ¢**. (b) For any 4,
Pix> Al e @) s>0
Pix <A} < e @(s) s<0

(Hint: Set « = €*4 in (i).)
5-36 Show that for any random variable x

[EQx™IY™ < [E(xI)]Y* 1l<m<n<oo

5.37 Show that (a) if f(x) is a Cauchy density, then ®(w) = e~*¥; (b) if f(x) is a Laplace
density, then ®(w) = a?/(e? + @?).

5.38 (a) Let x ~ G(&, B). Show that E{x} = af, Var{x} = ¢f* and Oy (w) = (1 — Be/*)~=.

(b) Letx ~ x2(n). Show that E{x} = n, Var{x) = 22 and ©,(w) = (1 ~ 2¢/*)~"2,
(c) Letx ~ B(n, p). Show that E{x} = np, Var{x} = npq and &, (w) = (pe/® + g)".
(d) Let x ~ N B(r, p). Show that ®, (w) = p’ (1 — ge/*)".

5-39 A random variable x has a geometric distribution if

Pix=kl=pg* k=0,1,... p+g=1

Find '(z) and show that 5, = q/p, 02 = q/p?

5-40 Let x denote the event “the number of failures that precede the n* success” so thatx + n
represents the total number of trials needed to generate n successes. In that case, the even!
{x = k} occurs if and only if the last trial results in a success and among the previous
(x+n — 1) trials there are n — 1 successes (or x failures). This gives an alternate formulatior
for the Pascal (or negative binomial) distribution as follows: (see Table 5-2)

Pix=k) = ("*:“l)p"q*= ('k")p"(-q)* k=0,1,2,...

find I'(z) and show that n; = ng/p, o2 = ng/p?.

-3
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5-41 Letx be a negative binomial random variable with parameters r and p. Show thatas p — 1
and r — oo such that 7(1 — p) — A, a constant, then

L]
P(x=n+r)—>e"‘/;:—l n=0,1,2,...

5-42 Show thatif E{x} = 7, then
had n
Ele) ="y = = Elx-n))
ne= )

5-43 Show that if ¥, (w|) = 1 for some &, # O, then the random variable x is of lattice type
taking the values x, = 2n/wy.
Hint;

0=1-dyen) = /a(l ~ el £ (x) dx
-50

5-44 The random variable x has zero mean, central moments p,, and cumulants A,. Show that
Ay = 3, Ao = g — 3u3; if y is N(0; 0}) and 0y = 0;, then E{x} = E{y*} + As.
5-45 The random variable x takes the values 0, 1, ... with P{x = k} = p;. Show that if
y=(x—-DUx~-1) thenly(2) = po +z'[[:(2) - po]
fy=n—1+po E}=E{}-2n+1~po
5-46 Show that, if ¢ (w) = E{e/**}. then for any a;,

i i S(w; — w!)a,a; >0

=l j=1
Hine;

2
E

n
>

FL

>0

5-47 We are given an even convex function g(x) and a random variable x whose density f(x)
is symmetrical as in Fig. P5-47 with a single maximum at x = 7. Show that the mean
E{g(x — a)} of the random variable g(x — a) is minimum if a = 7.

4
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P

*  FIGURE P547
5-48 The random variable x is N QO; 62). (a) Using characteristic functions, show that if g(x) is
a function such that g(x)e™" 125 _5 0as |x] = o0, then (Price’s theorem)

dE
____figv(x)} = %E {——djfx(: ) } v =0 )]
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'(b) The moments 4, of X are functions of v. Using (i), show that

ntn—1) / tn-2(B) dB
0

(V) = 3

5-49 Show that, if x is an integer-valued random variable with moment function I'(z) as in (5-1 13),
then

n
Plx=k}= 2—17-[- / M(/*)e ™ dw
-r

5-50 A biased coin is tossed and the first outcome is noted. The tossing is continued until the
outcome is the complement of the first outcome, thus completing the first run. Let x denote
the length of the first run. Find the p.m.f of x, and show that

Ex=2+4
q p

5-51 A box contains N identical items of which M < N are defective ones. A sample of size n
is taken from the box, and let x represent the number of defective items in this sample.
(a) Find the distribution function of x if the n samples are drawn with replacement,
(b) If the n samples are drawn without replacement, then show that

(M) N—M)
Plx=k} = _LF):*_ max(0,n + M — N) < k < min(M, N)
Find the mean and variance of x. The distribution in () is known as the hvpergeomerric
distribution (see also Problem 3-5). The lottery distribution in (3-39) is an example of this
distribution.
(c)In(b),let N = oo, M = o0, such that M/N — p, 0 < p < 1. Then show that the
hypergeometric random variable can be approximated by a Binomial random variable with
parameters n and p, provided n &« N.
5-52 A box contains n white and m black marbles. Let x represent the number of draws needed
for the rth white marble.
(a) If sampling is done with replacement, show that x has a negative binomial distribution
with parameters r and p = n/(m + n). (b) If sampling is done without replacement, then
show that
k-1 (o
Pix=k)= S k=rr+1l,....m+n
w=n=(521) )
(c) Por a given k and r. show that the probability distribution in (b) tends to a negative

binomial distribution as n + m - oo. Thus, for large population size, sampling with or
without replacement is the same.
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6-1 BIVARIATE DISTRIBUTIONS

We are given two random variables x and y, defined as in Sec. 4-1, and we wish to
determine their joint statistics, that is, the probability that the point (x, y) is in a specified
region' D inthe xy plane. The distribution functions Fy (x) and Fy(y) of the givenrandom
variables determine their separate (marginal) statistics but not their joint statistics. In
particular, the probability of the event

x<xjn{y<yl={x=<x.y<y]

cannot be expressed in terms of Fy(x) and Fy(y). Here, we show that the joint statistics
of the random variables x and y are completely determined if the probability of this event
is known for every x and y.

Joint Distribution and Density

The joint (bivariate) distribution Fyy(x, y) or, simply, F(x, y) of two random variables
x and y is the probability of the event .

x=x,y<yl={(xy) € D}
where x and y are two arbitrary real numbers and D is the quadrant shown in Fig. 6-1a:
Fx,y)=P{x<x,y<y} (6-1)

The region D is arbitrary subject only to the mild condition that it can be expressed as & countable union or
intersection of rectangles.

169
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Y
ors

(&)

(@)
FIGURE 6-1

PROPERTIES
1. The function F(x, y) is such that

F(—°°-y)=0. F(X, "'w)=0v F(m:w)-?-l

Proof. As we know, P{x = —c0} = P{y = —oo} = 0. And since
{x=-00,y<ylClx=-00} {x=<x,y=-00}C{y=—00}
the first two equations follow. The last is a consequence of the identities
{x<-00,y<-o0}=8 P(§)=1
2. Theevent {x) <X <x2,y <y} consists of all points (%, y) in the vertical half-strip
D and the event {x <x, y; <y <)} consists of all points (X, y) in the horizontal

half-strip D3 of Fig. 6-1b. We maintain that
{1 <X <x2.¥ 2y} = F(x2, )~ Fx1,y) (6-2)

fx<x,y1 <y=< w2} =Fx,») - F(x, ) (6-3)
Proof. Clearly, for x; > x,
X<x,y<y=E<xny<yUly<x<xnysy
The last two events are mutually exclugive; hence [see (2-10)]
Px<x,y<y)=P{x<x,y<y}+ Plx; <x<x3,y <y}
and (6-2) results. The proof of (6-3) is similar.
4
3. : Plx; <X 2 x2, )1 <Y < Yo} = F(x2, y3) — F(x1, y2)
- F(x2, y1) + F(xy, y1) 649

This is the probability that (x, y) is in the rectangle D, of Fig. 6-1c.

Proof. It follows from (6-2) and (6-3) because
(xi<x<xm,y<nl=E <x<x,y<nlVU{x <x<x,y <y=<yl

and the last two events are mutually exclusive.
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JOINT DENSITY. The joint density of x and y is by definition the function

3*F(x,y)
flx,y) = Toxdy (6-5)
From this and property 1 it follows that
X Py
Foun = [ | tepaass (6-6)
~00 J —00

JOINT STATISTICS. We shall now show that the probability that the point (x, y) isina
region D of the xy plane equals the integral of f(x, y) in D. In other words,

P{(xy) € D} = /D / F(x.y)dxdy )

where {(x, y) € D}istheevent consisting of all outcomes £ such that the point [x(¢ ), y(£)]
isin D.
Proof. As we know, the ratio

Fx+Ax,y+ Ay)— F(x,y+ Ay)~ F(x + Ax.y) + F(x, y)
Ax Ay

tends to 3 F(x, y)/8x3y as Ax — 0 and Ay —» 0. Hence [see (6-4) and (6-5)]

Plx <x<x+Ax,y<y<y+Ay}= f(x,y) Ax Ay (6-8)

We have thus shown that the probability that (x, y) is in a differential rectangle equals
J(x, y) times the area Ax Ay of the rectangle. This proves (6-7) because the region D
can be written as the limit of the union of such rectangles.

MARGINAL STATISTICS. In the study of several random variables, the statistics of
each are called marginal. Thus F, (x) is the marginal distribution and f,(x) the marginal
density of x. Here, we express the marginal statistics of x and y in terms of their joint
statistics F(x, y) and f(x, y).

We maintain that

F®) =F(r.00)  Fy) = F(00, ) 69
A = / Fndy )= / Fx,y)dx 6-10)
Proof. Clearly, {x < o0} = {y < o0} = §; hence

x<x}j=fx<x,y<soo}] {ysyl={x<o00,y=y)]

The probabilistics of these two sides yield (6-9).

Differentiating (6-6), we obtain s ol
¥ F oy
PN [ sepap TER= [ fana @)
X -0 dy -00

Setting y = oo in the first and x = ¢¢ in the second equation, we obtain (6-10) because
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[see (6-9)]

dF(x. 00) 9F (00, y)

fi(x) = " L) = 3y

EXISTENCE THEOREM. From properties 1 and 3 it follows that

F(-00,y) =0 F(x,—o0) =0 F(00,00) =1 (6-12)
and
F(x2,y2) — F(x1,y2) = Fx2. y0) + FGxi, ;) 2 0 (6-13)
for every x| < x2, y1 < y2. Hence {see (6-6) and (6-8)]
[ [ swnazar=1 senzo (6-14)
—o0 /=00

Conversely, given F(x, y) or f(x, y) as before, we can find two random variables
x and y, defined in some space S, with distribution F(x, y) or density f(x, y). This can
be done by extending the existence theorem of Sec. 4-3 to joint statistics.

Probability Masses

The probability that the point (x, y) is in a region D of the plane can be interpreted as
the probability mass in this region. Thus the mass in the entire plane equals 1. The mass
in the half-plane x < x to the left of the line L, of Fig. 6-2 equals F,(x). The mass in
the half-plane y < y below the line Ly equals F,(y). The mass in the doubly-shaded
quadrant {x < x,y < y} equals F(x, y).

Finally, the mass in the clear quadrant (x > x,y > y) equals

Pix>x,y>yl=1-Fx)-FQ()+F,y) (6-15)
The probability mass in a region D equals the integral [see (6-7))

/ / fix y)dxdy
D

If, therefore, f(x, y) is a bounded function, it can be interpreted as surface mass density.

X 2

xX>xy>y

x

FIGURE 6-2
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P> Suppose that

f(x»)’) =

We shall find the mass m in the circle x* + y* < a?. Inserting (6-16) into (6-7) and using
the transformation

e w4yt 20 (6-16)

x =rcosé y=rsiné

l a pr
= 5mal // e drde =1 — @1 (6-17)
0J-r

|

we obtain

m

@ Two random variables x and y are called (statistically) independent if the events
{x € A} and {y € B} are independent [see (2-40)], that is, if

P{xe A.ye B} = P{xe A}P(y € B) (6-18)

where A and B are two arbitrary sets on the x and y axes, respectively.
Applying this to the events {x < x} and {y < y}, we conclude that, if the random
variables x and y are independent, then

F(x,y) = Fs(x)F;(y) (6-19)

Hence

[G.y) = £ &) ) (6-20)

It can be shown that, if (6-19) or (6-20) is true, then (6-18) is also true; that is, the
random variables x and y are independent [see (6-7)]. @

P> A fine needle of length 2a is dropped at random on a board covered with parallel
lines distance 2b apart where b > a as in Fig. 6-3a. We shall show that the probability p
that the needle intersects one of the lines equals 2z2/7b.

In terms of random variables the experiment just discussed can be phrased as: We
denote by x the distance from the center of the needle to the nearest line and by 8 the
angle between the needle and the direction perpendicular to the lines. We assume that
the random variables x and @ are independent, X is uniform in the mterval (0,b),and @
is uniform in the interval (0, 7r/2). From this it follows that

«©

fe0) = fWhO) =3>  0sxsh 0s0s2

and 0 elsewhere. Hence the probability that the point (x, @) is in a region D included in
the rectangle R of Fig. 6-3b equals the area of D times 2/ b.

The needle intersects the lines if x < a cosé. Hence p equals the shaded area of
Fig. 6-3b times 2/m b:

2 2/x
p {x < acos@} er_/o acos@df s
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(@) 1))
FIGURE 6-3

This can be used to determine experimentally the number 7 using the relative frequency
interpretation of p: If the needle is dropped n times and it intersects the lines n; times, then

n 2a 2an
—~p=— h > —
—~p=— hence x o |

i3> If the random variables x and y are independent, then the random variables
z=g(x) w=h(y)
are also independent.

Proof. We denote by A, the set of points on the x axis such that g(x) < z and by B,, the set of
points on the y axis such that 2(y) < w. Clearly,

z=z)={x€Ad,} (w=<wl=(yeB,) (6-21)

Therefore the events {z < z} and {w < w} are independent because the events {x € A,} and
{y € B,} are independent. *&E

INDEPENDENT EXPERIMENTS. As in the case of events (Sec. 3-1), the concept of
independence is important in the study of random variables defined on product spaces.
Suppose that the random variable x is defined on a space S| consisting of the outcomes
{£&:} and the random variable y is defined on a space S consisting of the outcomes {&2}.
In the combined experiment §) x §; the random variables x and y are such that

X&) =xE) yE&) =y&) ) (6-22)

In other words, x depends on the outcomes of S; only, and y depends on the outcomes
of $; only.

B> 1f the experiments §; and S are independent, then the random variables x and y are
independent. .

Proof. We denote by A, the set {x < x} in S; and by B, the set{y < y}in S,. In the space S; x 5,
x=<x}]=A4:x85 ({y<yl=S8xB5,
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EXAMPLE 6-3

THEOREM 6-3 -

Notes 1. From (6-26) it follows that if two random variables are jointly normal, they are aiso marginally
normal. However, as the next example shows, the converse is not true.

2. Joint normality can be defined also as follows: Two random variables x and y are jointly normal if
the sum ax + by is normal for every a and b [see (7-56)).

} We shall construct two random variables x and y that are marginally but not jointly
normal. Toward this, consider the function

f&, ) = LG LI+ p2F(x) ~1H2F,0) -1} |l <1 (6-27)

where f(x) and f,(y) are two p.d.fs with respective distribution functions F; (x) and
Fy(y). It is easy to show that f(x, y) > Oforall x, y, and

+00 p400
/ Fmy)dxdy =1
-0 J-o0

which shows that (6-27) indeed represents a joint p.d.f. of two random variables x and
y. Moreover, by direct integration .

+00 1 udu
£y = £:0) + p@E) = D1:00) [ 43 = o)
o -
where we have made use of the substitution ¥ = 2F,(y) — 1. Similarly,

+00

fx,y)dx = f(y)
00

implying that f;(x) and f,(y) in (6-27) also represent the respective marginal p.d.f.s of
x and y, respectively.

In particular, let f;(x) and f,(y) be normally distributed as in (6-26). In that case
(6-27) represents a joint p.d.f. with normal marginals that is not jointly normal. <§

Circular Symmetry

We say that the joint density of two random variables x and y is circularly symmetrical
if it depends only on the distance from the origin, that is, if

fx.y)=80) r=1+/x2+y? (6-28)

P> If the random variables x and y are circularly symmetrical and independent, then
they are normal with zero mean and equal variance.

Proof. Prom (6-28) and (6-20) it follows that
g/ ¥+ ¥y = i), (6-29)

Since

dg(r) _ dg(r) ar

and -a—r---{
ax dr ax x r
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we conclude, differentiating (6-29) with respect to x, that

2¢'0) = ff0)
Dividing both sides by xg(r) = x£i(x) f, (¥), we obtain
180 _ 1L
rgry xfix)

The right side of (6-30) is independent of y and the left side is a function of r = /x? + y2, This
shows that both sides are independent of x and y. Hence

(6-30)

lg—(r—)' = ¢ = constant
r gir)
and (6-28) yields
Fx ) = g(/x2 4 y) = At 0D (6-31)

Thus the random variables x and y are normal with zero mean and variance o2 = —1/a. Q

DISCRETE TYPE RANDOM VARIABLES. Suppose the random variables x and y are
of discrete type taking the values of x; and y; with respective probabilities

Pix=x}=p Ply=nl=a " (632)
Their joint statistics are determined in terms of the joint probabilities
P{x =x1,¥ =y} = pix (6-33)

Clearly,
Z P =1
ik

because, as i and k take all possible values, the events {x = x;, ¥ = ¥} are mutually
exclusive, and their union equals the certain event.

We maintain that the marginal probabilities p; and g can be expressed in terms
of the joint probabilities pi:

Pi=) Pk @%=)_ Pu (6-34)
k i
This is the discrete version of (6-10).

Proof. The events {y = y,} form a partition of §. Hence as k ranges over all possible
values, the events {x = x;, ¥ = yi} are mutnally exclusive and their union equals {x = x;}.
. This yields the first equation in (6-34) [see (2-41)]. The proof of the second is similar.

POINT MASSES. If the random variables x and y are of discrete type taking the values
x; and y,, then the probability masses are 0 everywhere except at the point (x;, yx). We
have, thus, only point masses and the mass at each point equals p;; [see (6-33)). The
probability p; = P{x = x;} equals the sum of all masses p;; on the line x = x; in
agreement with (6-34).
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EXAMPLE 6-4

Ifi=1,...,Mandk=1,..., N, then the number of possible point masses on the
plane equals M N. However, as Example 6-4 shows, some of these masses might be 0,

P> (a) In the fair-die experiment, x equals the number of dots shown and y equals twice
this number:

x(f)=i y(f)=2 i=1,...,6
In other words, x; = i, y, = 2k, and

! i=k
Pe=Plx=iy=2%}=(6
0 isk
Thus there are masses only on the six points (i, 2i) and the mass of each point equals

1/6 (Fig. 6-4a).
(b) We toss the die twice obtaining the 36 outcomes f; f; and we define x and y
such that x equals the first number that shows, and y the second

x(fi, id =i  y(ifo=k ik=1,...,6

Thus x; = i, y» = k, and py = 1/36. We have, therefore, 36 point masses (Fig. 6-4b)
and the mass of each point equals 1/36. On the line x = i there are six points with total
mass 1/6.

(¢) Again the die is tossed twice but now

x(fifo=li—k| y(fifi)=i+k

In this case, x takes the values 0, 1,...,5 and y the values 2, 3, ..., 12. The number
of possible points 6 x 11 = 66; however, only 21 have positive masses (Fig. 6-4c).
Specifically, if x = 0, then y = 2, or 4,..., or 12 because if x=0, then i =k and
y = 2i. There are, therefore, six mass points in this line and the mass of each point
equals 1/36.fx = 1,theny = 3, 01 §, ..., or 11. Thus, there are, five mass points on
the line x = 1 and the mass of each point equals 2/36. For example, ifx =l andy = 7,
theni =3,k =4,0ri =4,k = 3;hence P{x =1,y =7} = 2/36.

YA Yi y o 1736
12 o 6 e o o & o o 12 e 236
°
10 . 5] o o o o o o 10 . -
) [ ] ®
8 ™ 4] o o o o o o 8 ° °
° ° °
6 ° 3] o o o o o o 6 ° °
° °
4 2] o o o o o o 4 °
°
2 [ 1 e 6 o o o o 2
1 2 3 4 5 6 * 1 2 3 4 5 6 X 1 2 3 4 5 x
(@ (] ©

FIGURE 6-4
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EXAMPLE 6-5

Y 4 YA
X =082 y=sinz
nt 2@
Y+ »+
. 0 il x
0 X; x
(a) ()] ©

FIGURE 6-5

LINE MASSES. These cases lead to line masses:

1. If xis of discrete type taking the values x; and y is of continuous type, then all
probability masses are on the vertical lines x = x; (Fig. 6-5a). In particular, the
mass between the point y, and y, on the line x = x; equals the probability of the
event

x=x,y<y=<»n)

2. Ify = g(x), then all the masses are on the curve y = g(x). In this case, F(x, y)
can be expressed in terms of F, (x). For example, with x and y as in Fig. 6-5b,
F(x, y) equals the masses on the curve y = g(x) to the left of the point A and
between B and C equal F,(x3) — F,(x2). Hence

F(x,y) = Fx(x)) + Fe(x3) ~ Fr(x2)  y=g(x1) = g(x2) = g(x3)

3. Ifx=g(z) and y = k(2), then all probability masses are on the curve x = g(2),
¥y = h(z) specified parametrically. For example, if g(z) = cos z, (z) = sing, then
the curve is a circle (Fig. 6-5¢). In this case, the joint statistics of x and y can be
expressed in terms of F;(z).

If the random variables x and y are of discrete type as in (6-33) and independent,
then

Pik = Di Pk (6-35)

This follows if we apply (6-19) to the events {x = x;} and {y = y;}. This is the discrete
version of (6-20). .

P> A die with P{f;} = p; is tossed twice and the random variables x and y are such
that

x(fifd=i  y(fif)=k

Thus x equals the first number that shows and y equals'the second; hence the random
variables x and y are independent. This leads to the conclusion that

Pu=Px=i,y=k)=pip: <
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6:2 ONE FUNCTION OF TWO
RANDOM VARIABLES

Given two random variables x and y and a function g(x, y). we form a new random
variable z as

z = g(x,y) (6-36)

Given the joint p.d.f. fiy(x, ¥), how does one obtain f;(z), the p.d.f. of z? Problems of
this type are of interest from a practical standpoint. For example, a received signal in
a communication scene usually consists of the desired signal buried in noise, and this
formulation in that case reduces to z = x - y. It is important to know the statistics of the
incoming sighal for proper receiver design. In this context, we shall analyze problems
of'the type shown in Fig. 6-6. Referring to (6-36), to start with,

Fi(@) = P(®) < o) = Pla(x,y) <2} = P((x,y) € Dy}
= [ to@naxa (6:37)
x,yeD,

where D, in the xy plane represents the region where the inequality g(x, y) < zissatisfied
(Fig. 6-7).

min(x, y)
&2+ y!
max(, ¥) tan™"(x/y) FIGURE 6-6
Yi
-
Dl
gxy) €z
Dl
gxy) <z
\/ L x

FIGURE 6-7
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Note that D, need not be simply connected. From (6-37), to determine F,(z) it is
enough to find the region D, for every z, and then evaluate the integral there.

We shall illustrate this method to determine the statistics of various functions of x
andy.

m P> Letz = x +y. Determine the p.d.f. f,(z).

From (6-37),
z=X+Y

=)
F(2) = P{x+y=<z}= /@ / Sfey(x, ¥)dx dy (6-38)
ym==o0 J xe=-00

since the region D, of the xy plane where x 4+ y < z is the shaded area in Fig. 6-8 to
the left of the line x -+ y < z. Integrating over the horizontal strip along the x axis first
(inner integral) followed by sliding that strip along the y axis from —oo to 400 (outer
integral) we cover the entire shaded area.

We can find f,(z) by differentiating F,(z) directly. In this context it is useful to
recall the differentiation rule due to Leibnitz. Suppose

b(z)

F(2) = Sx, z)dx (6-39)
a(z)
Then
_4F () _db») _ da(z) /”m af(x,z)
fe(D) = az - dz F¥(2). 2) e fla@), )+ o 8z dx  (6-40)
Using (6-40) in (6-38) we get

(o] a Z=Yy
A = f w (55 f_  fote) dx) dy

- > — — z-yM ]
_[m(l.f”(z .y 0+/ % )d)

—00

= / fey@—y, y)dy (6-41)

Alternatively, the integration in (6-38) can be carried out first along the y axis
followed by the x axis as in Fig. 6-9 as well (see problem set).

-

Y

FIGURE 6-8
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YA

" FIGURE 69
If x and y are independent, then
foy(x, y) = () () (642)
and inserting (6-42) into (6-41) we get
L+] 00
r= [ fse-npody= [ f@pe-na 60

This integral is the convolution of the functions f;(z) and f,(z) expressed two different,
ways. We thus reach the following conclusion: If two random variables are independent,
then the density of their sum equals the convolution of their densities.

As a special case, suppose that f,(x) =0 for x <0 and f,(y)=0 for y <0, then
we can make use of Fig. 6-10 to determine the new limits for D,.

In that case
¢4 -y
F(2) = / / Jay(x, y)dxdy
y=0 J x=0

"z a T~y
f(2) = /, o (a_z /x o fxy(x.y)dx) dy

2

' X — d 0

={/ofy(z y»ydy z> (644)
0 z<0

;
p

/|
e )

FIGURE 6-10
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On the other hand, by considering vertical strips first in Fig. 6-10, we get

2 Z-X
FZ(Z) = / / fxy(x' }’) dydx
x=0 J y=0

or

fz(z)=/ Of:y(x.z-x)cbr

4
- {/0 @) fy@z=x)dx >0 (645

0 z<0

if x and y are independent random variables. <

P> Suppose x and y are independent exponential random variables with common pa-
rameter A. Then

@ =2MU@) SO =rVU®Y) (6-46)
and we can make use of (6-45) to obtain the p.df.of z=x+y.

Z Z
f(2) = / AleTM AR gy = p2gN / dx
0 0

= 222U (z) (6-47)

As Example 6-8 shows, care should be taken while using the convolution formula for
random variables with finite range. <«

P> x and y are independent uniform random variables in the common interval (0, 1).
Determine f,(z), where z = x + y. Clearly,

2=x+y=>0<2z<2

and as Fig. 6-11 shows there are two cases for which the shaded areas are quite different
in shape, and they should be considered separately.

0=z<1 1=2<2

FIGURE 6-11
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For0<z <1,

2

24 2~y 2
F,(z)———/ / 1dxdy=/ (z—y)dy=
y=0 Jx=0 y=0 2

For 1 < z < 2, notice that it is easy to deal with the unshaded region. In that case,

0<z<1 (648

1 1
F(=1-Plz>z}l=1- / 1dxdy
y=2—1 Jxe=z—y

1 2 - 7)2
=1—/ (-z+ydy=1-" 21) l=z<2 (649
Y

=1~1

dF(z) ]z 0<z<l
Ao = dz —{Z-z 1<z<2 (6'50)¢

By direct convolution of f,(x) and f,(y), we obtain the same result as above. In fact,
for0 < z < 1 (Fig. 6-12q)

z "
s = [ fe-npwas= [ 1422 (6-51)
FAesY) flz— 04 FE =0 5fx) §
] ,>X z~1 z ;X z :Z
(@ 0=<z<1]
F4 Sz~ %) f&a = 010 lr
1 :X z-1 Z;; z—-1 1 ;;
b) 1=2<2 s
pA¢)
0 2 2

©
FIGURE 6-12
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and for 1 < z < 2 (Fig. 6-12b)

I
Jo(2) = f ldx =2~z (6-52)
-1
Fig. 6-12¢ shows f;(z), which agrees with the convolution of two rectangular waveforms
as well,
P Letz = x — y. Determine f,(z).
From (6-37) and Fig. 6-13

00 2ty
F(d)=P{x-y=<z}= f / Sey(x, y)dx dy

y=~00 =00
and hence
dF, had
=29 _ [Tty nay (6-53)
dz o0

If x and y are independent, then this formula reduces to

@ = [ fe+ N[0y = £i-0 8 /) (6-54)
which represents the convolution of fy(—z) with f,(2).
As a special case, suppose
L) =0 x <0, (=0 y<0

In this case, z can be negative as well as positive, and that gives rise to two situations
that should be analyzed separately, since the regions of integration forz > 0andz < 0
are quite different.

For z > 0, from Fig. 6-14a

00 2ty
Fu@) = f / foye, Y dx dy
y=0 Jx=0

FIGURE 6-13
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EXAMPLE 6-10

z=x/y

va Y

/

(a) ®

FIGURE 6-14
and for z < O, from Fig. 6-14b

00 2+y
F(2) = / fxy(xa y)dxdy
¥:

=z J x=0

After differentiation, this gives

00
/ fole+y.y)dy 220
=47 (6-55)
foy@+y.)dy 2<0

hat 4

P> Letz = x/y. Determine f,(z).
We have

Fy(z) = P{x/y < 7} (6-56)

The inequality x/y < z can be rewrittenas x < yzify > 0, and x > yz if y < 0. Hence
the event {x/y < z} in (6-56) needs to be conditioned by the event A = {y > 0} and its
compliment A. Since AU A = §, by the partition theorem, we have

Pix/y <z} = P{x/y Sz2N(AUA)} .
= P{x/y <2,y>0}+ P{x/y <z,y <0}
= P{x<yz,y>0}+ P{x>yz,y < 0} (6-57)
Fig. 6-15a shows the area corresponding to the first term, and Fig. 6-15b shows that

corresponding to the second term in (6-57).
Integrating over these two regions, we get

0

0 Yz
F.(@) =/ / Fole,y) dxdy + / fuyle, ) dxdy  (659)
y=0 J x=—00

y=-00 Jx=yz
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(@ Px=yz,y>0) By Pxzyr, y <0

FIGURE 6-15

A FIGURE ¢-16

Differentiation gives

f(2) = /OQ Yey(yz, y)dy + f —¥fey(rz, y) dy
-0

= ¥ fey(yz, ) dy (6-59)

-0

Note that if x and y are non-negative random variables, then the area of integration
reduces to that shown in Fig. 6-16.

This gives
373
F(2) = / / Sry(x, y)dx dy
y=0Jx=0

f(2) = /Q Yz (yz, y)dy (6-60)
y=0

[DEGYSIUNNEE P> x and y are jointly normal random variables with zero mean and

Forlsn ) = {E,Trz—lﬁ_—_?"_ [wn(3-+3) (6-61)

Show that the ratio z = x/y has a Cauchy density centered at ro; /05.
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ENAMPLE 6-12

SOLUTION -
Inserting (6-61) into (6-59) and using the fact that f,,(—x, —y) = fiy(x, y), we Obtaip
2

2 hd P o
Z) = —— e_y /260 d — ——-—0—-—_
£ 210074/ 1 —r2 ,/; Y Y no1024/1 - r?

where
2 _ 1~—r2
% = 2jo?) = @rejoron) + (1/07)
Thus
fi@) = D~ 1/T 6-62)

02(z — ron/o2)? + o(1 — r?)

which represents a Cauchy random variable centered at o /o5, Integrating (6-62) from
—00 10 z, we obtain the corresponding distribution function to be

02z — ro)

0—1 e (6-63)

<

1 1

As an application, we can use (6-63) to determine the probability masses m,, ma,
m3, and my4 in the four quadrants of the xy plane for (6-61). From the spherical symmetry
of (6-61), we have

my =m3 my =m4

But the second and fourth quadrants represent the region of the plane where x/y < 0.
The probability that the point (x, y) is in that region equals, therefore, the probability
that the random variable z = x/y is negative. Thus

1 1
m2+m4=P(zSO)=FZ(O)=§—;aIcm

r
e

-and

' 1 1 r
m|+m3=l—(mz+m4)=-2-+1—r-arctan—l—ﬁ

If we define a = arc tan r/+/1 — r2, this gives

1 o l «

m1=M3=Z+-2-;T- M2=M4=Z v

Of course, we could have obtained this result by direct integration of (6-61) in each
quadrant. However, this is simpler.

(6-64)

P Let x and y be independent gamma random variables with X ~ G(m, ) and y ~
G(n, a). Show that z = x/(x + y) has a beta distribution.

Proof. Jolx,y) = () H,0)
1

= e me1_n~1 _—(x+y)fa 65
c:"'“l‘(m)l‘(n)x y"le x>0 y>0 (6-65)
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Note that 0 < z < 1, since x and y are non-negative random variables

= = x = <
Fz(Z)—P[ZSz]—P(x+ySZ) P xsyl_z)

0 pyz/(l=-2)
= / / Jey(x, ¥)dxdy
0 ]

where we have made use of Fig. 6-16. Differentiation with respect to z gives

Yy
ﬂ(z)=[mf;y(yz/(1—z).ﬁdy

00
- Y 1 ¥y ).-l a1 =3 /(1=D)r
= /o. (= @ T m)T () (%) »re &

1 2! * nnet=y/all-n
= =1 5=~y/all-2
am L (m)T () (1 = )#+! ,/o. Y ¢ dy

=101 o )A-1 o0
= ™ (1 Z) um+n-le-v du = F(m + ")

Tmrm  J, T(m)T(n)

z--l (1 — z)u*)

B(m,n) (6-66)

_ L -2 0<z<1
0 otherwise

which represents a beta distribution. <

DVNIIBNERE P Letz = x* + y2. Determine f;(2).
‘We have
z=x 4y

nm=PW+f5u=[/ Fiyx,y) dx dy
x4y2sz

But, x* 4+ y2 < z represents the area of a circle with radius ./z, and hence (see Fig. 6-17)

vz -y
Ew=/ f foyx. ) dxdy
y==+1 Jr=—rf2~-5

FIGURE 6-17
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EXAMPLE 6-14

EXAMPLIL 6-15

z2=/x +y?

‘This gives -

{Fy(Vz -y )+ fxy(_ Vz -y y)ldy

(6-67y

p
£ = f-zzﬁ
<4

As an illustration, consider Example 6-14.
P> x and y are independent normal random variables with zero mean and common
variance o2. Determine f,(z) for z = x* + y2.

SOLUTION
Using (6-67), we get

e(z—y’+y’)/26’) dy

| 1
ﬂ(2)=_/f—_2 ’_—z—yz (2-27r02

e~i/2’ e~ A [7e0s8
ET / ,/z — y2 wo? Jo Jzcosb dé
1
= Fe"’” U(2) (6-68)

where we have used the substitution y = ,/Z sin8. From (6-68), we have the following:
If x and y are independent zero mean Gaussian random variables with common variance
o2, then x? + y? is an exponential random variable with parameter 202, <

P Letz= /x> +y2 Find f;(2).

SOLUTION
From Fig. 6-17, the present case corresponds to a circle with radius z2. Thus

z!_"!
ro= [ [Tt
() = A - J?:,'f y(x, y)dx dy

and by differentiation,
24
Z
IAGES ./_l \/_?:———'}ﬂfxy(\/ 2=y, 9) + fiy(—VZ2 ~ y2, »}dy (6-69)

In particular, if x and y are zero mean independent Gaussian random variables as in the
previous example, then .

>4 z 2
f(2) =2f0 —ﬁm

4 7 /2
— _2_z_e~l’/7ﬂ’ ____..__1 dy = E.e—z’lzv’ f zcosé de
0

e~ @=P e gy

(6-70)

which represents a Rayleigh distribution. Thus, if w = x + iy, where x and y are
real independent normal random variables with zero mean and equal variance, then
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the random variable |w| = /X2 4 y2 has a Rayleigh density. w is said to be a complex
Gaussian random variable with zero mean, if its real and imaginary parts are independent.
So far we have seen that the magnitude of a complex Gaussian random variable has
Rayleigh distribution. What about its phase

8 = tan™! (i) (6-71)

Clearly, the principal value of @ lies in the interval (—x/2, 7/2). If we let u = tané =
y/x. then from Example 6-11, u has a Canchy distribution (see (6-62) with o, = o3,
r=0)

1/m
- f"(u)=u2+l -0 < U <O
As a result, the principal value of @ has the density function
1 1 1/
) = ——— T =
1o ®) i67du”* an) (1/sec26) tan? 6 + 1

- {l/yr —nf2 <8 <mf2 ©72)

0 otherwise

However, in the representation x + jy = re/?, the variable 0 lies in the interval (—m, 7).
and taking into account this scaling by a factor of two, we obtain

[/2n -w<6<m

-7
0 otherwise ©€-73)

fo(6) = {
To summarize, the magnitude and phase of a zero mean complex Gaussian random
variable have Rayleigh and uniform distributions respectively. Interestingly, as we will
show later (Example 6-22), these two derived random variables are also statistically
independent of each other! <«

Let us reconsider Exarmple 6-15 where x and y are independent Gaussian random
variables with nonzero means u, and u, respectively. Then z = /x2 + y2 is said to be
a Rician random variable. Such a scene arises in fading multipath situations where there
is a dominant constant component (mean) in addition to a zero mean Gaussian random
variable. The constant component may be the line of sight signal and the zero mean
Gaussian random variable part could be due to random multipath components adding up
incoherently. The envelope of such a signal is said to be Rician instead of Rayleigh.

P> Redo Example 6-15, where x and y are independent Gaussian random variables with
nonzero means /. and i, respectively.

SOLUTION
Since
1

) 2ro?
substituting this into (6-69) and letting y=zsiné, u=, //1,3 + /.:,3, Ly = (L COS D,

P (N Y o I

fxy(-x’ y) =
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py = s sin @, we get the Rician distribution to be

—(2+ud) /20  pxf2
ze d - 2
fz(Z) —_ 3 / (ezucos(o )/ +e 24 cO8(B4p) /0 )dG
-n/2 '
{2 +u?)/20? ” 3x/2
== ;::2 — ( / i 1,’e:aut:os(ﬂ—:.t:)/cr‘ dé + / g cas@—g)/o? de)
: —-n/ /2
—(22+u?) /207
ze r4 2
) 6
where

N 1 2 0 1 T
o & o [ erme-0dp = o /0 159 gg

is the modified Bessel function of the first kind and zeroth order. ¢

Order Statistics

In general, given any n-tuple x;, %, ..., X,, we can rearrange them in an increasing
order of magnitude such that

XD < X@) < S X

wherex(;y = min(x,, Xz, . . . , X), and X() is the second smallest value among x, X2, ees,
Xy, and finally X(;) = max(x), Xz, ..., X»). The functions min and max are nonlinear op-
erators, and represent special cases of the more general order statistics. If x;, X2, ..., X,
represent random 'variables, the function X that takes on the value x4y in each pos-
sible sequence (x), X2, . .., X,) is known as the kth-order statistic. {x(1). X2y, . .., X(m)}
represent the set of order statistics among » random variables. In this context

R= X)) — X(1) (6'75)

represents the range, and when n = 2, we have the max and min statistics.

Order statistics'is useful when relative magnitude of observations is of importance.
When worst case scenarios have to be accounted for, then the function max(-) is quite
useful. For example, let x;, Xz, ..., X, represent the recorded flood levels over the past
n years at some location. If the objective is to construct a dam to prevent any more
flooding, then the height H of the proposed dam should satisfy the inequality

H > max(X;, X3, ..., Xs) s 676

with some finite probability. In that case, the p.d.f. of the random variable on the right
side of (6-76) can be used to compute the desired height. In another case, if a bulb
manufacturer wants to determine the average time to failure (1) of its bulbs based on 2
sample of size n, the sample mean (X; +X> + - - - + X, )/n can be used as an estimate for
. On the other hand, an estimate based on the least time to failure has other attractive
features. This estimate min(x;, Xz, . .. , X,) may not bé as good as the sample mean in
terms of their respective variances, but the min(-) can be computed as soon as the first
bulb fuses, whereas to compute the sample mean one needs to wait till the last of the lot
extinguishes.
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m P> Let x and y be independent exponential random variables with common parameter

EXANMPLE 6-19

A. Define w = min(x, y). Find f,,(w).

SOLUTION
From (6-81)

Fy(w) = Fe(w) + Fy(w) — Fr(w)Fy(w)
and hence
Fuw) = fo() + fyw) — fe(w)Fy(w) = Fx(10) fy(w)
But fy(w) = fy(w) = ke, and Fy(w) = Fy(w) = 1 — ¢™*, 50 that
fo(w) = 24e™ — 2(1 — e *®)he™¥ = 22e~ 2V (w) (6-82)
Thus min(x, y) is also exponential with parameter 2. <

) Suppose x and y are as given in Example 6-18. Define
__ min(x, y)
" max(x, y)

Although min(-)/max(-) represents a complicated function, by partitioning the whole
space as before, it is possible to simplify this function. In fact

<
e {X/y x<y 683)
y/x x>y
As before, this gives
F(2) = P{x/y<z,x<y}+ P{y/x<z,x>Y)
= P{x <yz,x <y} + Ply <xz,x >y}

Since x and y are both positive random variables in this case, we have 0 < z < 1. The
shaded regions in Fig. 6-20a and 6-20b represent the two terms in this sum.

(@ &
FIGURE 6-20
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From Fig, 6-20,
)< X

Fi@) = / / Foplx.y)dxdy + / / (e, y)dydx
y=0

Hence
00

@)= /0 Yfey(¥z, ¥)dy + /0 xfry(x, x27)dx
= /0 ¥ (fey Oz, ¥) + frp(y, y2)) dy
= / *® yA2 (e-l(ﬂﬂ') + e—l(rﬂz)) dy
0

=22 > e~ 214y 4 --——3-— Cwue"“du
- 0 Y y= A+2)2 Jy

; 0<z<l

= { 1+ 2)? (6-84)
0 otherwise

|

IDNENIIURESIIE P> Let x and y be independent Poisson random variables with parameters A and A,
respectively. Let z = x + y. Determine the p.m.f. of z.
gffs%RETE Since x and y both take values {0, 1, 2, ...}, the same is true for z. For any n =
0,1,2,..., {x+y = n} gives only a finite number of options for x and y. In fact, if x = 0,
then y must be n; if x = 1, then y must be n — 1, and so on. Thus the event {x +y = n}
is the union of mutually exclusive events Ay = {x =k, y=n—kLk=0—->n.

Plz=n}=P{x+y=n}=P U{x:k,y::n—k})
=0

=) Plx=ky=n-—k} (6-85)
k=0

If x and y are also independent, then
Pix=k,y=n—k} =Pi{x=k)Ply=n—k}

and hence

Pla=n}=) Plx=k}Ply=n—k)
. k=0
e~ 7 nl

- - A 1 w M nek
Z‘ B m—ni Zk!(n i

= p—iti2) (1 +22)"
=g ——
n!
Thus z represents a Poisson random variable with parameter A; + X5, indicating that sum
of independent Poisson random variables is a Poisson random variable whose parameter
is the sum of the parameters of the original random variables.

n=0,1,2,...,00 (6-86)
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As Example 6-20 indicates, this procedure is too tedious in the discrete case. As we
shall see in Sec. 6-5, the joint characteristic function or the moment generating function
can be used to solve problems of this type in a2 much easier manner.

6-3 TWO FUNCTIONS OF TWO
RANDOM VARIABLES

In the spirit of the previous section, let us look at an immediate generalization. Suppose
x and y are two random variables with joint p.d.f. f.,(x, y). Given two functions g(x, y)
and h(x, y), define two new random variables
z=g(x,y) (6-87)
w = h(x,y) (6-88)
How does one determine their joint p.d.f. f,,,(z, w)? Obviously with f;,,(z, w) in hand,
the marginal p.d.f.s f,(z) and f,, (w) can be easily determined.

The procedure for determining f.,(z, w) is the same as that in (6-36). In fact for
given numbers z and w,

Frolz, w) = P{a(®) < 2, wE) < w} = Plg(x,y) < 2, h(x,Y) < w}
= P{(x,}) € Dy} = / / fis e, yYdx dy (6-89)

(x.eD,

where D, ,, is the region in the xy plane such that the inequalities g(x, y) <z and
h(x, y) < w are simultaneously satisfied in Fig. 6-21,
We illustrate this technique in Example 6-21.

P> Suppose x and y are independent uniformly distributed random variables in the
interval (0, 8). Define z = min(x, y), w = max(x, y). Determine f,,(z. w).

SOLUTION
Obviously both z and w vary in the interval (0, 8). Thus

Fo(z,w)=0 if z<0 or w<0 (6-90)

Fou(z,w) = P{z £z, w < w} = P{min(x, y) < z, max(x,y) < w} (6-91)

by

Y

FIGURE 6-21



198  PRORABIITY AND RANDOM VARIABLES

@w>z . & w<g

FIGURE 6-22

We must consider two cases: w > z and w < z, since they give rise to different regions

for D, ,, (see Fig. 6-22a and 6-22b).

For w > z, from Fig. 6.22a, the region D, ,, is represeated by the doubly shaded

area (see also Fig. 6-18¢ and Fig. 6-19¢). Thus

Fp(z, w) = Fry(z, w) + ny(wv z) ~ ny(Z, 2) w2z

and for w < z, from Fig. 6.22b, we obtain

Flw(zi w) = ny(w: w) w<z¢

with
X Yy xy
F‘)’(x!y)=Fx(x)Fy(y)=5-5=e—2-
we obtain
Fk w) = 2wz ~ 2)/6? O<z<w<$@
sz. = wz/gl 0<w<z<e
Thus
2/6> O<z<w<¥

From (6-96), we also obtain

6 2
fz(Z)=/; fzw(z,w)dw=5(1—-;-) 0<z<6

and

fw(w)=/wﬁw(z,w)dz=2—'f— O<w<§@
0 0

(6-92)

(6-93)

(6-94)

(6-95)

(6-96)

(6-97)

(6-98)
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wh YA
A
w+ A§—2 ___ (x2, ¥9) E_ ?
Aw
S w)A: B: 7 + Az A
E Az E (1) E—Ai
: { N (679 -
z x
A
(xﬂ? yﬂ) & "
{a) ®)
FIGURE 6-23
Joint Density

If g(x. y) and A(x, y) are continuous and differentiable functions, then, as in the case of
one random variable [see (5-16)], it is possible to develop a formula to obtain the joint
p-d.f. fru(z, w) directly. Toward this, consider the equations

gx,y)=z hx,y)=w (6-99)

For a given point (z, w). equation (6-99) can have many solutions. Let us say (x, y1),
(x2, ¥2), - - - s (x5, yn) represent these multiple solutions such that (see Fig. 6-23)

gx,y) =2z  h&x,y)=w (6-100)
Consider the problem of evaluating the probability

Plz<z<z+Az,w<w<w+ Aw}
=Plz<g(Xx,y)<z+Az,w <h(X,¥y) <w+ Aw} (6-101)

Using (6-8) we can rewrite (6-101) as
Plz<z<z+ Az, w<wWSw+ Aw} = fo,(z, w) Az Aw (6-102)

But to translate this probability in terms of f,(x, ¥), we need to evaluate the equivalent
region for Az Aw in the xy plane. Toward this, referring to Fig. 6-24, we observe that
the point A with coordinates (z, w) gets mapped onto the point A’ with coordinates
(xi, i) (as well as to other points as in Fig 6.23b). As z changes to z + Az to point B in
Fig. 6.24a, let B’ represent its image in the xy plane. Similarly, as w changes to w + Aw
to C, let C’ represent its image in the xy plane.

Finally D goesto D, and A’ B'C’ D’ represents the equivalent parallelogram in the
xy plane with area A;. Referring to Fig. 6-23, because of the nonoverlapping nature of
these regions the probability in (6-102) can be alternatively expressed as

ST P A= foylm A (6-103)



200 PROBABILITY AND RANDOM VARIABLES

wi

Az

R

Y

(@ ®)

FIGURE 6-24
Equating (6-102) and (6-103) we obtain

folz, w) = Z Fey 1, yi) e (6-104)

A;
Az Aw
To simplify (6-104), we need to evaluate the area A; of the parallelograms in Fig, 6.24b
interms of Az Aw. Toward this, let g; and k; denote the inverse transformation in (6-99),
so that

=g w y=hw) (6-105)

As the point (z. w) goes to (x;, y;) = A’, the point (z + Az, w) goes to B’, the point
(z, w+ Aw) goesto C’, and the point (z + Az, w+ Aw) goes to D’. Hence the respective
x and y coordinates of B’ are given by

d d
g1z + Az, w) = gi(z, w)+aiz'Az=x,+-§'-Az (6-106)
and
oh oh
hi(z + Az, w) = ky (2. w)+-5z—'Az=y1+a—zlAz (6-107)
Similarly those of C’ are given by
g1 oh,
Sl A i } 1
X+ 30 A¥ Y + o Aw (6-108)

The area of the parallelogram A’B’'C’D’ in Fig. 6-24b is given by e
' = (A’B)(A'C’)sin(6 — ¢)
= (A’B' cos $)(A'C’sin@) — (A’ B’ sin¢)(A'C’ cos8) (6-109)
But from Fig. 6-24b, and (6-106)—(6-108)

A'B'cos¢p = %— Az A'C’sing = ?i_’z’; Aw (6-110)

B'sin¢=?a—z-Az G—Z—Aw (6-111)
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so that
_fg;adn 3 3h1)
A= (az " 3w 3z Az Aw (6-112)
and
% 3
Ai _ ag, ah; ag. 8h;) _ 9z w
AzAw (8z dw dw 3z /) |om an (6-113)
Bz dw

The determinant on the right side of (6-113) represents the absolute value of the Jacobian
J(z . w) of the inverse transformation in (6-105). Thus

% g
dz dw
J(z, w) = 6-114
e P 6-114)
9z 3w

Substituting the absolute value of (6-114) into (6-104), we get
. :
z,w) =) W@ Wy ) =) ———foyti, ) (6115
Feal2, ) };t ey et };”(m[)lfx,(,y,) (6-115)
since

1

iJ(z, w)| = .——-_Ij(xiayx‘)l (6-116)
where the determinant J (x;, y;) represents the Jacobian of the original transformation
in (6-99) given by
dg g
ax 3y
oh 0h
ax

We shall illustrate the usefulness of the formulas in (6-115) through various examples.

J(xi, yi) = (6-117)

8y X=X} Yy=N

Linear Transformation )
Z = ax + by w = cx+dy (6-118)

If ad — bc # 0, then the system ax + by = z, cx + dy = w has one and only one
solution

x=Az+Bw y=Ciz+Dw
Since J(x, y) = ad — bc, (6-115) yields

frw(z W) = fiy(Az + Bw, Cz + Dw) (6-119)

lad — b
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JOINT NORMALITY. From (6-119) it follows that if the random variables x and y are
jointly normal as N (i, iy, 07, 0, p) and

z=ax+by w=cx+4dy ' (6-120y

then z and w are also jointly normal since f.,,(z, w) will be an exponential (similar to
Sry(x, ¥)) with a quadratic exponent in z and w. Using the notation in (6-25). z and w
in (6-120) are jointly normal as N (1., Ly, a}, a,f,. Prw). Where by direct computation

My = apy + by

Mo = cux+duy

o2 = a’o? + 2abpoyoy + b0}
o2 = c*o} + 2cdpo,oy, + d*o?}

(6-121)

aco} + (ad + bc)poyoy, + bdo?
Oz0y
In particular, any linear combination of two jointly normal random variables is normal.

O =

P> Suppose x and y are zero mean independent Gaussian random variables with common
variance o2, Define r = /X + ¥2, 8 = tan~! (y/x), where |§| < m. Obtain their joint
density function.

SOLUTION
Here
1 (v 2
fy@ y) = 5—se™¢ +7)/20 (6-122)
Since
r=gxy)=Vx*+y? 8=h(xy)=tn"(y/x) (6-123)

and @ is known to vary in the interval (—7, &), we have one solution pair given by

X =rcosé y =rsiné (6-124)
We can use (6-124) to obtain J{r, 8). From (6-114)
3x1 ox 1
ar 80 cosfd —rsinf
= = = F - 25
1.6) vy oy sind  rcosd| (6-125)
ar 96
so that
[JJ(r,0)|=r (6-126)
We can also compute J(x, y) using (6-117). From (6-123),
X
J(x,y) = J-Y:+y=2 :7x:+y’ = ____2_1_2 = 1 (6-127)
map om | VERE T
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Notice that {J (r, 8)] = 1/]J (x, y}|, agreeing with (6-116). Substituting (6-122), (6-124)
and (6-126) or (6-127) into (6-115), we get

fra(r,0) = rfay(xi, 1) = 2]:62(”/2"2 O<r<oo [8)<m (6-128)

Thus
f(r) = / fro(r, 6)do = -‘:—2e"’2/2"2 O<r<oo (6-129)

which represents a Rayleigh random variable with parameter 62, and

fo(8) = / fro(r,8)dr = L 8l <m (6-130)
0 2n

which represents a uniform random variable in the interval (—r, 7). Moreover by direct
computation

fro(r,0) = fr(r) - fo(6) (6-131)

implying that r and 6 are independent. We summarize these results in the following
statement: If x and y are zero mean independent Gaussian random variables with common
variance, then 1/x2 + y2 has a Rayleigh distribution, and tan~!(y/x) has a uniform
distribution in (—m, ) (see also Example 6-15). Moreover these two derived random
variables are statistically independent. Alternatively, with x and y as independent zero
mean random variables as in (6-122), x + jy represents a complex Gaussian random
variable. But

X+ jy=re/ (6-132)

with r and @ as in (6-123), and hence we conclude that the magnitude and phase of a
complex Gaussian random variable are independent with Rayleigh and uniform distri-
butions respectively. The statistical independence of these derived random variables is
an interesting observation.

) Letxandy be independent exponential random variables with common parameter A.
Defineu = x + y, v = x —y. Find the joint and marginal p.d.f. of w and v.

SOLUTION
It is given that

foyGx,y) = %e"“*”" x>0 y>0 (6-133)

Now since u = x + y, v = x — y, always |v| < u, and there is only one solution given
by

w+v u-v
= = -134
r=— y=-3 (6-134)
Moreover the Jacobian of the transformation is given by
11

= =2

J(x,y)=’1 -1
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and hencé

Juw(u,v) = 212 e 0< v <u<o00 (6-135)

represents the joint p.d.f. of u and v. This gives

U i
fu(u) = Joo(u, V)dv = 21? e dy = %e‘“/" O<u<oo (6-136)
- -2

and

() = /mf (u, v)du = —I-/we-md":ie"l”'“ —00 <V <00
v Jui wp\Y, 02 " n

(6-137)

Notfce that in this case f,, (4, v) # fu (1) - fy(v), and the random variables u and v are
not independent.

As we show below, the general transformation formula in (6-115) making use of
two functions can be made useful even when only one function is specified.

AUXILIARY VARIABLES. Suppose
z=g(x,y) (6-138)

where x and y are two random variables. To determine f,(z) by making use of the
formulation in (6-115), we can define an auxiliary variable

W=X Of w=Yy (6-139)
and the p.d.f. of z can be obtained from f,,,(z, w) by proper integration.

P> Suppose z = x+y and let w = y so that the transformation is one-to-one and the
solution is given by y, = w, x; = z — w. The Jacobian of the transformation is given by

11
J(x,y)='0 ] =1
and hence
frwx, ) = fxy(xh ) = fey(z —w, w)

or

+00
1@ = [t uwdw= [ fe-vwde s @0

-0

which agrees with (6-41). Note that (6-140) reduces to the convolution of f(z) and
f,(2) if x and y are independent random variables. <

Next, we consider a less trivial example along these lines.
P Letx ~ U(0, 1) andy ~ U(0, 1) be independent random variables. Define
z= (-2 Inx)'2 cos(2ry) (6-141)
Find the density function of z.



EXAMPLE 6-26

CHAPTER6 TWO RANDOM VARIABLES 205

SOLUTION

We can make use of the auxiliary variable w = y in this case. This gives the only solution
to be

X} = e"[l seCGNW)l’ﬂ (6"142)
n=w (6-143)
and using (6-114)
axl ax; a
9z dw —zsec?(2rrw)e—lescmwPz IXL
@ m 0 1
9z dw
= —z sec?(2mw)elesec@r w2 (6-144)
Substituting (6-142) and (6-144) into (6-115), we obtain
few(@, w) = 25ec?Qrw)e E=CTI2 o <z <to0 O<w< ] (6-145)

and
1 1
fi(2) = / Fow(z, w)dw = e~ / zsect(2rw)e Run@WF2 40, (6-146)
0 (/]

Let u = ztan(2m w) so that du = 27z sec?>(2rw) dw. Notice that as w varies from O to
1, u varies from —o0 to +00. Using this in (6-146), we get

b d |
f:(2) = ! v / e L et —co<z<00o (6-147)

7 ) om T
1

which represents a zero mean Gaussian random variable with unit variance. Thus
z ~ N(0, 1). Equation (6-141) can be used as a practical procedure to generate Gaussian
random variables from two independent uniformly distributed random sequences. <

P Letz = xy. Then with w = x the system xy = z, x = w has a single solutiun:
X1 = w, y; = z/w. In this case, J(x, y) = —w and (6-115) yields

1 F4
Jow(zZ, W) = mfzy (wo _w‘) <
Hence the density of the random variable z = xy is given by
o0 1 2
= e - 4
@ = [ ot (0. 2)du (6-148)

Special case: We now assume that the random variables x and y are independent
and each is uniform in the interval (0, 1). In this case, z < w and

fo (0. 2) = gy (=) =1
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so that (see Fig, 6-25)

1/jw O<z<w<]l
Suw(z, w) = {0 otherwise (6-]49)
Thus
| -lnz O<z<l
fi@) = /z. w dw = {0 elsewhere (6-150)
<

IDCRTIYRON S P Let x and y be independent gamma random variables as in Example 6-12. Define
z =x +y and w = x/y. Show that z and w are independent random variables.

SOLUTION
Equations z = x + y and w = X/y generate one pair of solutions
Xy = hed = <
L+w 14+w
Moreover
1 | x+y (1 + w)?
.’(X,y): |1/y _X/yz = — .yz = — p

Substituting these into (6-65) and (6-115) we get

_ 1 z aw \"' 2\ fa
Jwi@ow) = o+ T(m)C(n) (1 + w)? (1 +w) (1 +w} e

1 zm+n—l

wm—l

~zfa

o™+ T(m)[(n) (L + wyn+r

_ ( zm+n--l e—t/“) ' (r(m+n) w—l )
~ \amT(m +n) T(m)[(n) (1 + wyn+

=fil@fow) z2>0 w>0 (6-151)

showing that z and w are independent random variables. Notice that z ~ G(m + n, @)
and w represents the ratio of two independent gamma random variables. <«
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P> A random variable z has a Student ¢ distribution? ¢(n) with n degrees of freedom if
for—o0 <z <0
Y1 T'({(n+1)/2)
@) = ———— = =T
f N NP
We shall show that if x and y are two independent random variables, x is N(0, 1), and y
is x2(n):

(6-152)

f‘(")=7l=e-’2” £ = YY) (6-153)

2 221 (n /2)
then the random variable
X
z=
Jy/n

has a ¢ (n) distribution. Note that the Student  distribution represents the ratio of a normal
random variable to the square root of an independent x2 random variable divided by its
degrees of freedom.

SOLUTION
We introduce the random variable w = y and use (6-115) with

x=z\/§ y=w J(z,w)=\/E or J(Jc.y)=\/Z
n n w

This yields
- w 1 _zzwm w"/z_l —-w/2
Jw(z, W) = - Jz?e 2"/21"(n/2)e Uw)
w012

= —w(l+z3/n)/2 U
S2rn 2PN (n)2)" @)
Integrating with respect to w after replacing w(l + z2/n)/2 = u, we obtain
B | 1 g
- (n=13/2 -4
540 = et , W
_ T+ 1)/2) 1
T SmnT(n/2) (1 + 22/n)a+hs2
S 1
= JnB(72.n/2) (L + 22/ n)#DFE
For n = 1, (6-154) represents a Cauchy random variable. Notice that for each n, (6-154)

generates a different p.d.f. As n gets larger, the ¢ distribution tends towards the normal
distribution. In fact from (6-154)

(1+22/n)" D2 5 =212 a5 pn 5 0

For small », the ¢ distributions have “fatter tails” compared to the normal distribution
because of its polynomial form. Like the normal distribution, Student ¢ distribution is
important in statistics and is often available in tabular form. ¢

-0 <z<oo (6-154)

2Student was the pseudonym of the English statistician W. S. Gosset, who first introduced this law in
empirical form (The probable error of a mean, Biometrica, 1908.) The first rigorous proof of this result was
published by R. A. Fisher.
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THE F DISTRI-
BUTION

‘P> Leix and y be independent random variables such that x has a chi-square distribution

with m degrees of freedom and y has a chi-square dlstnbuuon with n degrees of freedom_
Then the random variable
Xx/m
F=— (6-155
y/n )
is said to have an F distribution with (m, n) degrees of freedom. Show that the p.d.f. of
z = F is given by
T'((m + n)/2)m™/n?2  gm/2-1 2> 0
f (D) = TCen/2T(n/2)  (n+mz)tntni2 (6-156)
0 otherwise

SOLUTION
To compute the density of F, using (6-153) we note that the density of x/m is given by

m(mx)™/2~Lg—mx/2

fiy={ " T~ *7°
0 otherwise
and that of y/n by
n(ny)nﬂ—le—uyﬂ
=14 Tamzr - ¥>0
0 otherwise

Using (6-60) from Example 6-10, the density of z = F in (6-155) is given by

._ 00 m(mzy)mﬂ—le—mzy/z n(ny)nﬂ-—le—ny/z
f‘(Z)'/o y ( T(m/22 R )( T/ )d”

_ (m/)" P n/2y
= T(m/2)T(n/2)2m+n072

00
21 /o‘ YO Y12 g

_ (m/2)m/2 (n /2)n/2 /21 [‘(m + n) 2 (m+n)/2
= TOn/2)T (/2200 2 (n + mz)

_ D(m+n)/2ymmPpr2 g2
T T(m/2T(/2)  (n+mz)mn

_ (m/mm e ~(m+n)/2 7
Bm/2, n/2)z (1 4+mz/n) z>0 6-157)
and f;(z) = 0 for z < 0. The distribution in (6-157) is called Fisher’s variance ration
distribution. If m = 1 in (6-155), then from (6-154) and (6-157) we get F = [t(n)]z-
Thus F(1, n) and £2(n) have the same distribution, Moreover F(1, 1) = #2(1) represents
the square of a Cauchy random variable. Both Studeat’s ¢ distribution and Fisher’s F
distribution play key roles in statistical tests of significance. «{
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However, in general,
x(E)y(&:) + - + x(E)y(E)

n

x(6) + - - + x(&) x YE) +---+y&)
n n

E{xy} =~

#

> E{x}Ely}

In the case of one random variable, we defined the parameters mean and variance to rep-
resent its average behavior. How does one parametrically represent similar cross behavior
between two random variables? Toward this, we can generalize the variance definition
as shown next.

COVARIANCE. The covariance C or C;, of two random variables x and y is by definition
the number

Cry = E{(x — n:)(y — ny)} (6-163)

where E{x} = 7, and E{y} = n,. Expanding the product in (6-163) and using (6-161)
we obtain

Cyy = E{xy} — E{x}E{y) (6-164)

Correlation coefficient The correlation coefficient p or o, of the random vari-
ables x and y is by definition the ratio

Pry = f;y (6-165)
‘We maintain that
loxyl <1 |Cxyl < 020y (6-166)
Proof. Clearly,
E{la(x — ns) + (v — ny)?) = a*0? + 2aCyy + 0} (6-167)

Equation (6-167) is a positive quadratic for any a; hence its discriminant is negative. In
other words,

c2 -0’0 <o (6-168)

and (6-166) results.
We note that the random variables x. y and X ~ 7, y — 7, have thesame covariance
and correlation coefficient.

P> We shall show that the correlation coefficient of two jointly normal random variables
is the parameter r in (6-23). It suffices to assume that n, = 1, = 0 and to show that
E(xy) =roj0a.

Since

2 2 2
f—z-zriy-+—y-,-=(f-—r-?’- ra-mY
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we conclude with (6-23) that
1 f°° e [ x ( & —ryallaz)z)
ye’/=/ —_— - exp | ~———g————— |dx d
227 J-co el =rD) P\ 20— 1) Y

The inner integral is a normal density with mean ryo, /o, multiplied by x; hence it equals
ryoy/o,. This yields

E{xy} =

o0

1 2
E =ro, /o 2% gy = roy0
{xy} 1/2/_0002«/27}, y 102 |

Uncorrelatedness Two random variables are called uncorrelated if their covari-
ance is 0. This can be phrased in the following equivalent forms

Coy=0 puy=0  E(xy) = Ex)E(y)
Orthogonality Two random variables are called orthogonal if
E{xy} =0
We shall use the notation
xly

to indjcate the random variables x and y are orthogonal.

Note (a) If x and y are uncorrelated, then x — nx L y — ny. (b) If x and y are uncorrelated and 7, = O or
ny=0thenx Ly.

Vector space of random variables. We shall find it convenient to interpret random
variables as vectors in an abstract space. In this space, the second moment

E{xy}

of the random variables x and y is by definition their inner product and E {x?} and E{y*}
are the squares of their lengths. The ratio

E{xy}
V E{x?} E{y?)

is the cosine of their angle.
We maintain that

E*{xy) < E(X’}E(y’) . (6-169)
This is the cosine inequality and its proof is similar to the proof of (6-168): The quadratic
E{(ax —y)’} = ®E(x"} — 2aE(xy} + E{y’}

is positive for every a; hence its discriminant is negative and (6-169) results. If (6-169)
is an equality, then the quadratic is 0 for some a = aq, hence y = agx. This agrees with
the geometric interpretation of random variables because, if (6-169) is an equality, then
the vectors x and y are on the same line.

The following illustration is an example of the correspondence between vectors
and random variables: Consider two random variables x and y such that E{x?} = E(y}.
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FIGURE 6-27

Thus (see the shaded region in Fig, 6-27)

) 1/2 0<z<2,-l<w<lz4+w=2,z-~w=s2|uw<z
fow(z, w) = i
0 otherwise
(6-173)
and hence
1
/ —dw=72 0<z<l
- 2
= —_ 2—2
52) = [ uwte, w1 = [Flavmre: <z<z 619
-2 2
0 otherwise
and
2-lwl g 1—-lw| -l<w<l
= w2, = ~ = 17
futw) = [futewrda= [ {0 et = 1)
Clearly f,,(z, w) # f:(2) fu(w). Thus z and w are not independent, However,
Efzw} = E{x +y)x— y)} = E(x’} - E{y’} =0 (6-176)
and
E{w)=E{x—y} =0 (6-177)
and hence
Cov{z, w} = E{zw} — E{z}E{w} =0 (6-178)
implying that z and w are uncorrelated random variables. s

Variance of the sum of two random variables: Ifz = x+y,thenn; = n,+n);
hence '

of = E{@~ n)*} = E{{x — ne) + (5 — )}
From this and (6-167) it follows that
o} = 0% +2py0,0y + 07 (6-179)
m leads to the conclusion that if oy, = O then

ol=0c+ 0',2 (6-180)
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Thus, if two random variables are uncorrelated, then the variance of their sum equals the
sum of their variances.
It follows from (6-171) that this is also true if X and y are independent. <

Moments

The mean

o0
my = E{x'y’} = / Y fey(x, y)dx dy (6-181)

-~00

of the product x*y” is by definition a joint moment of the random variables x and y of
orderk +r =n.
* Thus m;o = 1y, moy = 7, are the first-order moments and

myp=E{x’} my=E(xy} mp=E{y’)

are the second-order moments.
The joint central moments of X and y are the moments of X — 7, and y — 7,:

e = E{(x =)t @ — 1))} = / (x = 0@ = nyY foy(x, Y)dxdy  (6-182)
Clearly, pi0 = o1 =0 and

pu=Cr Hw=0 pu=o;
Absolute and generalized moments are defined similarly [see (5-69) and (5-70)].
For the determination of the joint statistics of x and y knowledge of their joint
density is required. However, in many applications, only the first- and second-moments
are used. These moments are determined in terms of the five parameters
M Ny 0'3 0'3 Pxy

If x and y are jointly normal, then [see (6-23)] these parameters determine uniquely
f xy (x * y ) . '

P> The random variables x and y are jointly normal with
m=10 n,=0 of=4 ol=1 p,=05
We shall find the joint density of the random variables
. Z=X+y W=X~-Yy
Clearly,
n=n+ny=10 np=2—1,=10
0l =0l+0} +2ry0:0,=T ol =0}+0] —20.0y=3
E(zw) = E(x* — y*) = (100 +4) — 1 = 103
- E(zw) — E(Z)E(W) - 3
OO0y 7x3

Pz
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As we know [see (6-119)], the random variables z and w are jointly normal because they
are linearly dependent on x and y. Hence their joint density is

N(10,10,7,3,1/3/7) <4

ESTIMATE OF THE MEAN OF g(x, y). If the function g(x, y) is sufficiently smooth
near the point (7., 7y), then the mean 75, and variance 032 of g(x, y) can be estimated in
terms of the mean, variance, and covariance of x and y:

1 (P,

~et = 2+288 +82g 2 6-183
ng =8+ 5\ 32 5;5;9nyny ‘3?0, (6-183)

dg 2 g ag) 98 2
2 ~ 2 ——— — — 2 -
oy = (——a ) oy 2 (a ) (a Dxy0x0Oy dy oy (6-184)

where the function g(x, y) and its derivatives are evaluated at x = 7, and y = 7,.
Proof. We expand g(x, y) into a series about the point (7y, 1y):

ag ag
g8(x,y) = gne,my) + (x = nx)a + (- 77y)5; +--- (6-185)

Inserting (6-185) into (6-159), we obtain the moment expansion of E{g(x, y)} in terms
of the derivatives of g(x, y) at (3x, 1y) and the joint moments g, of x and y. Using only
the first five terms in (6-185), we obtain (6-183). Equation (6-184) follows if we apply
(6-183) to the function [g(x, y) — 173]2 and neglect moments of order higher than 2.

6-5 JOINT CHARACTERISTIC FUNCTIONS
The joint characteristic function of the random variables x and y is by definition the

integral
O(w;, w) = f " f ” fx, yye/@x+ed) gy gy (6-186)
—~00 J —00

From this and the two-dimensional inversion formula for Fourier transforms, it follows
that

f&x = -4—;—2 /: [_ :¢(w1.wz)e"""""+“"” dw, dwn (6-187)
Clearly, R
(@), @) = E {e/@xtem} (6-188)
The logarithm
YV (w1, w2) = In (w1, w2) (6-189)

of ®(w;, wy) is the joint logarithmic-characteristic function of x and y.
The marginal characteristic functions

0. (@) = E{e!™}  &,(w) = E{e/*) (6-190)
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of x and y can be expressed in terms of their joint characteristic function ®(wy, wy),
From (6-188) and (6-190) it follows that

O, () = ®w,0) Dyw) = PO, ) (6-191)
We note that, if 2 = ax 4 by then
P, (0) = E{e/ @M%} = d(aw, bo) (6-192)

Hence &,(1) = ®(a, b).

Cramér-Wold theorem The material just presented shows that if &,(w) is
known for every a and b, then ®(w,, w2) is uniquely determined. In other words, if
the density of ax + by is known for every a and b, then the joint density f(x, y) of x
and y is uniquely determined.

Independence and convolution
If the random variables x and y are independent, then [see (6-172)]
E{ei(w-xwzy)} = E{e/9*}E{e/*»)
From this it follows that
P (w), ©2) = Pr(w))Py(w2) (6-193)

Conversely, if (6-193) is true, then the random variables x and y are indepen-
dent. Indeed, inserting (6-193) into the inversion formula (6-187) and using (5-102), we
conclude that fyy(x, ¥) = fi(x) L ().

Convolution theorem If the random variables x and y are independent and
Z2=Xx+Y,then

E{e/**} = E {/*®+)} = E{e/*™}E{e/*7)

. Hence

P () = Px()Py(@) Vi (w) = Vr(w) + Vy(w) (6-194

As weknow [see (6-43)], the density of z equals the convolution of f,(x) and f,(y).
From this and (6-194) it follows that the characteristic function of the convolution of
two densities equals the product of their characteristic functions. -

P> We shall show that if the random variables x and y are indeper:dent and Poisson
distributed with parameters a and b, respectively, then their sum z = x 4 y is also
Poisson distributed with parameter 2 + b.
Proof. As we know (see Example 5-31),

Y, (@) =ale® 1) ¥, =bE" 1)
Hence

V() = Ve (@) + Wy (@) = (a + b)(e!” - 1)
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It can be shown that the converse is also true: If the random variables x and y
are independent and their sum is Poisson distributed, then x and y are also Poisson
distributed. The proof of this theorem is due to Raikov.} <«

P> It was shown in Sec. 6-3 that if the random variables x and y are jointly normal, then
the sum ax + by is also normal. Next we reestablish a special case of this result using
(6-193): If x and y are independent and normal, then their sum z = x + y is also normal.

SOLUTION .
In this case [see (5-100)]
2 1 2

, 1, .
Ve(w) = jnw— ~2~U;a) Yy (w) = jnyw— -iof.w

Hence
. 12, a2
V(@) = j(1: + my)ow — 5(0; +0y)w

It can be shown that the converse is alsc true (Cramér’s theorem): If the random variables
x and y are independent and their sum is normal, then they are also normal. The proof
of this difficult theorem will not be given.*

In a similar manner, it is easy to show that if x and y are independent identically
distributed normal random variables, then x +y and x — y are independent (and normal).
Interestingly, in this case also, the converse is true (Bernstein’s theorem): If x and y are
independent and identically distributed and if x+ y and x — y are also independent, then
all random variables (x, y, X + y, X — y) are normally distributed.

Darmois (1951) and Skitovitch (1954) bave generalized this result as: If x; and x,
are independent random variables and if two linear combinations a1x; +a2x; and b;x; +
box, are also independent, where a,, a3, b1, and b, represent nonzero coefficients, then
all random variables are normally distributed. Thus if two nontrivial linear combinations
of two independent random variables are also independent, then all of them represent
normal random variables. <

More on Normal Random Variables

Letx and y be jointly Gaussian as N (13, 72, o, o2, r) with p.d.f. as in (6-23) and (6-24).
‘We shall show that the joint characteristic function of two jointly normal random variables
is given by

O (), @) = o/ mertmwr) ~(wlol+ronmmtaio;)2 (6-195)

Proof. Thiscanbederived by inserting f (x, y) into (6-186). The simpler proof presented
here is based on the fact that the random variable z = @;X + @,y is normal and

O, (@) = e/no—oief2 (6-196)

3D. A. Raikov, “On the decomposition of Gauss and Poisson laws,” Izv. Akad. Nauk. SSSR, Ser. Mat. 2, 1938,
pp. 91-124.

4B, Lukacs, Characteristic Functions, Hafner Publishing Co., New York, 1960.
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Yi

x+y=z+dy

{ k
&
[=)
uY

x+y=z

FIGURE 6-28

Since

ne=om o 0F = wlop + 2rw w010, + wie}
and P,(w) = ®(w 1w, wrw), (6-195) follows from (6-196) with w = 1.

This proof is based on the fact that the random variable z = )X + @2y is normal
for any w; and w,; this leads to the conclusion: If jt is known that the sum ax + by is
normal for every a and b, then random variables x and y are jointly normal. We should
stress, however, that this is not true if ax 4+ by is normal for only a finite set of values of
a and b. A counterexample can be formed by a simple extension of the construction in
Fig. 6-28.

P> We shall construct two random variables x; and x; with these properties: x,, X;, and
X; + X are normal but x, and X, are not jointly normal.

" SOLUTION

Suppose that x and y are two jointly normal random variables with mass density f(x, ¥).
Adding and subtracting small masses in the region D of Fig, 6-28 consisting of eight
circles as shown, we obtain a new function fi(x, y) = f(x,y) e in D and fi(x,y) =
f(x, y) everywhere else. The function f;(x, y) is a density; hence it defines two new
random variables x; and y;. These random variables are obviously not jointly normal.
However, they are marginally normal because x and y are marginally normal and the
masses in the vertical or horizontal strip have not changed. Furthermore, the random
variable Z, = X; +¥; is also normal because z = x + y is normal and the masses in any
diagonal strip of the form z < x + y < z + dz have not changed. ¢

B> The moment generating function of x and y is given by
D (s1, 52) = E{e"™+),

Expanding the exponential and using the linearity of expected values, we obtain the
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series

oG =3 'Z( )E{x*y‘“"}sfs;“‘

n=0
1
=14 myo$, + mois2 + -2-(m20.s',2 +2my152 + meas3) + -+ (6-197)

From this it follows that ak3
'd
PR &(0,0) = my, (6-198)
The derivatives of the function W (sy, 52) = In ® (s}, s2) are by definition the joint
cumulants A, of x and y. It can be shown that
Ao =myp Aoy = my; Ao = A =Mr A=y
Hence

l(«:rlz.s'f + 2ra1o2515 + a;s%) +-.-. @

W(s1, $2) = ms1 + ms2 + 5

P Using (6-197), we shall show that if the random variables x and y are jointly normal
with zero mean, then

E{x’y’} = E(x*} E(y*} + 2E*(xy} (6-199)
SOLUTION
As we see from (6-195)
1
O(s1,5) =4 = -2~(¢:r, 52 + 2Cs152 + 0753)

where C = E{xy} = rojc. To prove (6-199), we shall equate the coefficient
1
7 (3) £

of s s% in (6-197) wnh thc corresponding coefficient of the expansion of e~4. In this
expansion, the factor s?sZ appear only in the terms
A2

> =3 (¢712.v;12 +2Cs15; + 03s3)’

Hence

1
a ( ) E{x*y*} = —(201 of +4C?)
and (6-199) results. <«

P> Given two jointly normal random variables x and y, we form the mean

I=Efglx,y} = / / g(x,y)f(x,y)dxady (6-200)

5R. Price, “A Useful Theorem for Nonlinear Devices Having Gaussian Inputs,” IRE, PGIT. Vol. IT-4, 1958.
See also A. Papoulis, “On an Extension of Price’s Theorem,” IEEE Transactions on Information Theory,
Vol. IT-11, 1965.
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-of some function g(x, ¥) of (x, y). The above integral is a function 1 (1) of the covariance
p of the random variables x and y and of four parameters specifying the joint density
f(x,y) of x and y. We shall show that if g(x, ¥) f(x, y) = 0 as (x, y) = oo, then

"I (w) o 82"3(36 ¥) o (3ex,y)
" [ St w357 o

Proof. Inserting (6-187) into (6-200) and differentiating with respect to u, we obtain

Flw _ =) 7

-~ {.+]
X / / Wt D (wy, wp)e™ W=V doy, doy dx dy

From this and the derivative theorem, it follows that

8" I () a* f (x Y)
au / / glx, y)—— ay
After repeated integration by parts and using the condition at co, we obtain (6-201) (see also
Prob. 5-48). <

[DNGWIIIROKYE P> Using Price’s theorem, we shall rederive (6-199). Setting g(x, y) = x2y* into (6-201),

we conclude with n = 1 that
AW _ . (Fxy)
du ox dy

If 4 = 0, the random variables x and y are independent; hence [(0) = E(x*y?) =
E(x%)E(y?) and (6-199) results. <

)=4E{xy}=4u Iw) = ——+1(0)

6-6 CONDITIONAL DISTRIBUTIONS

As we have noted, the conditional distributions can be expressed as conditional
probabilities:
Pl{z <z, M}

F@zIM)=Pz=<z|M}= PUA)

Plz<z,w<w, M)
P(M)

The corresponding densities are obtained by appropriate differentiations. In this section,
we evaluate these functions for various special cases.

Fp(G,w|M)=Plz<z,wsw|M}= (6-202)

EXAMPLL 6-3 } We shall first determine the conditional distribution F,(y|x<x) and density
Hylx<x).



CHAPTER6 TWO RANDOM VARIABLES 221

With M = {x < x}, (6-202) yields
Plx<x,y<yl F(xy)

=0 = Px<x} = F®
a ]
fy<y|x51)__._F(_;a_))18_y <

m P> We shall next determine the conditional distribution F(x,y|M) for M=
{x) <X <x;}. Inthis case, F(x, y | M) is given by
Pix<x,y<y,x1 <x=<xi}
Plx; <x < x3}
F(x2,y) — F(x1, )

F,ylxi<x<x)=

FG)-FG)
F(x: )’) - F(xll )’)
PG — Ry 1 SFER
and it equals 0 for x < x;. Since f = 3°F/3x3y, this yields
f,ylxi<x<x)= Fx, ) X <x <X (6-203)

Fi(x2) — Fi(x1)
and O otherwise.

The determination of the conditional density of y assuming x = x is of particular
interest. This density cannot be derived directly from (6-202) because, in general, the
event {X = x} has zero probability. It can, however, be defined as a limit. Suppose first
that

M={x <x<x)
In this case, (6-202) yields

Ploy <x<x,y<y} _FOy)-FGiy)
Pl{x) < x < x3} Fi(x2) — Fr(x1)
Differentiating with respect to y, we obtain

Filan<x=<xn)=

Sy f&x,y)dx

X1 <x<x)= 6-204
J A < x2) F.Go) — R G ( )
because [see (6-6)]
F(x,y) *
= o, y)da
3y - fle,y)
To determine fy(y|x = x), we set x; = x and x; = x + Ax in (6-204). This
yields

f:+Ax fla,y)da f(x,y)Ax
Fi(x 4+ Ax) —= Fy(x) ~  fu(x)Ax

HUOlx<x<x+Ax)=

Hence
S(x,Y)

HOlx=2)= lim f,(y|x <xsx+Ax)= 7.0
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If there is no fear of ambiguity, the function fy(y |X = x) = fy(y | x) will be
written in the form f(y | x). Defining f (x | y) similarly, we obtain

fx, ) flx,y)

flx) = 15 fxly) = “}:G)— (6-205)

If the random variables x and y are independent, then

fEY=f@Of®» fOID=F0) f&ly=rf& 4

Next we shall illustrate the method of obtaining conditional p.d.fs through an
example.

P Given
k O<x<y<l
fotu ) = {o otherwise (¢-208
determine f,,,(x | y) and fy]x(y [ x).
SOLUTION

The joint p.d.£. is given to be a constant in the shaded region in Fig. 6-29. This gives

1py 1
//f,,(x,y)dxdy=// kdxdy:/ kydy=£=1=>k=2
0Jo 0 2

Similarly

1
fi(x) = /f,,(x,y)dy = / kdy =k(1-x) O<cx<l (6-207)

and
501 = [ £ty ds = / kdx=ky O0<y<1 (6-208)
0
. From (6-206)-(6-208), we get
. Xy ? ) l
m,(xty>=f}ffy)’ =5 O<z<y<l (6-209)
and
xy (X, 1 .
Hi0lx) = f}ffx)y) =1=% O<x<y<l (6-212

S

FIGURE 6-29
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(@ ®

FIGURE 6-30

Notes 1. For a specific x, the function f(x, y) is a profile of f(x, y); that is, it equals the intersection of
the surface f(x, y) by the plane x = constant. The conditional density f(y{x) is the equation of this curve
normalized by the factor 1/ (x) so as to make its area 1. The function f{x | y) has a similar interpretation: It
is the normalized equation of the intersection of the surface f(x, y) by the plane y = constant,

2. As we know, the product f (y)dy equals the probability of the event {y < y < y 4 dy). Extending
this to conditional probabilities, we obtain

Plxy <x<x,y<y<y+dy}
Plxy < x < x3}

Hplxi<x<xn)dy=

This equals the mass in the rectangle of Fig, 6-30a divided by the mass in the vertical strip x| < X < x2.
Similarly, the product f(y | x)dy equals the ratio of the mass in the differential rectangle dx dy of Fig. 6-30b
over the mass in the vertical strip (x, x + dx).

3. The joint statistics of x and y are determined in texms of their joint density f(x, y). Since

Cfey) = FOIDFE)

we conclude that they are also determined in terms of the marginal density f(x) and the conditional density
Fix).

P> We shall show that, if the random variables x and y are jointly normal with zero
mean as in (6-61), then

_Q‘_’Mf_) (6-211)

1
fo1R = 024/27(1 — r?) exP( 202(1 - r?)

Proof. The exponent in (6-61) equals

(y —roax/o))?  x?

203(1—-r) 207

Division by f(x) removes the term —x2/20? and (6-211) results.

The same reasoning leads to the conclusion that if x and y are jointly normal with E{x} =
ny and E{y} == n, then f(y|x) is given by (6-211) if y and x are replaced by y — 5, and
X — 1, respectively. In other words, for a given x, f(y{x) is a normal density with mean 7, +
roa(x — m)/oy and variance a2(1 — r3),
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BAYES’ THEOREM AND TOTAL PROBABILITY. From (6-205) it follows that

_ X /x)
fxly) = o)

This is the density version of (2-43).
The denominator f(y) can be expressed in terms of f(y|x) and f(x). Since

(6-212)

FO) = / Faydx and F(ry) = FO|0FE)

we conclude that (total probability)

fn = / FrIx)f(x)dx (6-213)
—-00

Inserting into (6-212), we obtain Bayes’ theorem for densities

FOIXNF@
2 fO1x)fx)dx

fxly) = (6-214) -

Note As (6-213) shows, to remove the condition x = x from the conditional density f(y | x), we multiply
by the density f(x) of x and integrate the product.

Equation (6-214) represents the p.d.f. version of Bayes’ theorem. To appreciate
the full significance of (6-214), we will look at a situation where observations are used
to update our knowledge about unknown parameters. We shall illustrate this using the
next example.

} An unknown random phase @ is uniformly distributed in the interval (0, 27}, and
r = 0 + n, where n ~ N(0, o2). Determine (8 | r).

SOLUTION

Initially almost nothing about the random phase 8 is known, so that we assume its a
priori p.d.f. to be uniform in the interval (0, 27). In the equation r = 6 4 n, we can
think of n as the noise contribution and r as the observation. In practical situations, it is
reasonable to assume that @ and n are independent. If we assume so, then

f(r10=0)~N@®,o% (6-215)

since it is given that 6 is a constant, and in that case r = 6 + n behaves like n. Using
(6-214), this gives the a posteriori p.d.f. of 6 given r to be (see Fig. 6-31b)

F(r10)fe(6) o r-812*
f@ir) = —o p— —_
o f(r10)fo(0)d8  [JT e~r-9012% dg
=g(r)e~ " 0 cg<2n (6-216)
where
1
o(r)

T [T eovpt gg
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(a) a priorip.dfof @ (b) a posteriori p.d.f of 8

FIGURE 6-31

Notice that knowledge about the observation r is reflected in the a posteriori p.d.f. of 8
in Fig. 6.315. It is no longer flat as the a priori p.d.f. in Fig. 6.31a, and it shows higher
probabilities in the neighborhood of 8 = 7.
Discrete Type Random Variables: Suppose that the random variables x and y
are of discrete type
Px=xl=p Ply=nl=q
P{x=x,~,y=yk}=p,-k i=1,....M k=1,...,N

where [see (6-34)]

pi = Zpik k= z Pik
k

i
From the material just presented and (2-33) it follows that

P{x=x;,y=yk}=ﬁ <
P{x = x;} P

Ply=ywlx=x}=

MARKOV MATRIX. We denote by 77;; the above conditional probabilities
Ply=nlx=x}=nru

and by P the M x N matrix whose elements are ;. Clearly,

my = P& (6-217)
pi
Hence
mez0, Y mp=1 s (6-218)

k
Thus the elements of the matrix P are nonnegative and the sum on each row equals 1. Such
amatrix is called Markov (see Chap. 15 for further details). The conditional probabilities
Plx=x|y=y)=nH =22

KL

are the elements of an N x M Markov matrix.
If the random variables x and y are independent, then

Pik = DPidx T =G = pi
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We note that
= 71;,4% G = Zﬂikpi (6-219)
i

These equations are the discrete versions of Egs. (6-212) and (6-213).
Next we examine some interesting results involving conditional distributions and
independent binomial/Poisson random variables.

P> Suppose x and y are independent binomial random variables with parameters (m, p)
and (n, p) respectively. Then x + y is also binomial with parameter (m 4 n, p), so that

Pix=x)Ply=y} _ (3()

Pix+y=x+y} (3}

Plx=x|x+y=x+y}= (6-220),
Thus the conditional distribution of x given X+ Yy is hypergeometric. Show that the’
converse of this result which states that if x and y are nonnegative independent randomi
variables such that P{x = 0} > 0, P(y = 0} > 0 and the conditional distribution of

given x + y is hypergeometric as in (6-220), then x and y are binomial random variables,

SOLUTION
From (6-220)
Pix=x}Ply=y} P{x+y=x+y}
@06 (5ey)
Let
ﬂx_mix_} = f(x) fg—nf—y—} = g(y) P{x+3"r‘:‘x + ) =h(x+y)
(x) (y) (x+y
Then
h(x+y) = f(x) g(y)
" and hence
k(1) = f(1)g(0) = f(0)g(1)
k(2) = f(2)g(0) = f(l)g(l) = f(0)g(2)
h(k) = f(k)g©) = f(k - Dg(l})=--- -
Thus
g(l) g\
= flk-1)"—0= 2 -
F&) = f( )g(O) f©) (g(O))
or

P{x=k}=(’Z)P{x=0}a* " k=0,1,... 62211

where a = g(1)/g(0) > 0. But > ;.o P{X = k} = 1 gives P{x = O}(1 +a)™ = 1, 01
Pix=0}=qg" whereg = 1/(1+a) < 1. Hencea = p/q, where p=1~-gq >
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and from (6-221) we obtain
Pix=k} = (’:)pkq”"k k=0,1,2,...m
Similarly, it follows that

P{y::r}: (:)prqn—r r=0,1.2,...n

and the proof is complete.

Similarly if x and y are independent Poisson random variables with parameters )\,
and p respectively, then their sum is also Poisson with parameter A + u [see (6-86)],
and, moreover,

Y LN ek
Pix=kix+y=n) = PEZHPY=nkH _¢Tne i
- y=np= P{x+y=n) T e Gy

n Y k P n—k
= (k)(m) (m) k=0,1,2,...n (6-222)

Thus if x and y are independent Poisson random variables, then the conditional density
of x given x + y is Binomial. Interestingly, the converse is also true, when x and 'y are
independent random variables. The proof is left as an exercise.

Equivalently, this shows that if y = Y, x; where x; are independent Bernoulli
random variables as in (4-55) and n is a Poisson random variable with parameter A as in
(4-57),theny ~ P(pAr) and z = n—y ~ P((1 — p)A). Further, y and z are independent
random variables. Thus, for example, if the total number of eggs that a bird lays follows
a Poisson random variable with parameter A, and if each egg survives with probability
P, then the number of baby birds that survive is also Poisson with parameter pr.

System Reliability

We shall use the term system to identify a physical device used to perform a certain
function. The device might be a simple element, a lightbulb, for example, or a more
complicated structure. We shall call the time interval from the moment the system is
put into operation until it fails the time to failure. This interval is, in general, random.
It specifies, therefore, a random variable x > 0. The distribution F(t) = P{x <t} of this
random variable is the probability that the system fails prior to time z where we assume
that ¢ = 0 is the moment the system is put into operation. The difference

R@)=1-F() = P{x > 1}

is the system reliability. It equals the probability that the system fanctions at time ¢.
The mean time to failure of a system is the mean of x. Since F(x) =0forx < 0,
we conclude from (5-52) that

E{x}=/0 xf(x)dx=‘/(;°oR(t)dt

The probability that a system functioning at time ¢ fails prior to time x > ¢ equals
Pix<x,x>1t} F(x)—F(@)
Pix>t} 1-F(Q@)

Fxjx>1)=
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0 Felx> 1)

=

0 t T FIGURE 6-32

Differentiating with respect to x, we obtain
f(x)
1—F(@)

The product f(x |x > ¢)dx equals the probability that the system fails in the interval
(x,x + dx), assuming that it functions at time ?.

fx|x>1t)= x>t (6-223)

P If f(x) = ce™*, then F(t) = 1 — e~ and (6-223) yields
~CX

= fx-1)

falx>n="2
[4

This shows that the probability that a system functioning at time ¢ fails in the interval
(x, x + dx) depends only on the difference x — ¢ (Fig. 6-32). We show later that this is
true only if f(x) is an exponential density. <«

CONDITIONAL FAILURE RATE. The conditional density f(x | x > ?) is a function of
x and ¢. Its value at x = ¢ is a function only of z. This function is denoted by () and
is called the conditional failure rate or, the hazard rate of the system. From (6-223) and
the definition of hazard rate it follows that
- _ _J®

BO=1f¢1x>n=1"F
The product 8(t) dt is the probability that a system functioning at time # fails in the
interval (¢, ¢ + dt). In Sec. 7-1 (Example 7-3) we interpret the function B(¢) as the
expected failure rate.

(6-224)

P (a) If f(x) = ce ", then F(f) = 1 — ¢~ and

Ce—tl

PO=T"—eay =¢ )

) If f(x) = c¢%xe™*, then F(x) = 1 — cxe™** — ¢~* and
B(E) = Fte™ A <
T cte=' + e 1+ct
From (6-224) it follows that
FI .I
() = n _ R@

1-F(t) RO
We shall use this relationship to express the distribution of x in terms of the function
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B(t). Integrating from O to x and using the fact that In R(0) = 0, we obtain

-/x B dt =1n R(x)
0

Hence
RxX)=1-F@x)= exp{—/x ﬂ(t)dt}
0

And since f(x) = F'(x), this yields

F) = B@rexp {— /0 BE) dr} (6-225)

P> A system is called memoryless if the probability that it fails in an interval (z, x),
assuming that it functions at time #, depends only on the length of this interval, In other
words, if the system works a week, a month, or a year after it was put into operation, it
is as good as new. This is equivalent to the assumption that f(x |x > 1) = f(x ~ ) as
in Fig. 6-32. From this and (6-224) it follows that with x = r:

B)=f@ix>t)=f@t-D=f0)=c

and (6-225) yields f(x) = ce™°*. Thus a system is memoryless iff x has an exponential
density. <

P> A special form of 8(t) of particular interest in reliability theory is the function
B(t) = ct®!

This is a satisfactory approximation of a variety of failure rates, at least near the origin.
The corresponding f(x) is obtained from (6-225):

b
fx) =cx*Vexp {—- f—;—— } (6-226)

This function is called the Weibull density. (See (4-43) and Fig. 4-16.) <

We conclude with the observation that the function S(z) equals the value of the
conditional density f(x |x > ) for x = ¢; however, (1) is not a density because its
area is not one. In fact its area is infinite. This follows from (6-224) because R(00) =
1-F(x0)=0.

INTERCONNECTION OF SYSTEMS. We are given two systems S; and S; with times
to failure x and y, respectively, and we connect them in parallel or in series or in standby
as in Fig. 6-33, forming a new system S. We shall express the properties of S in terms
of the joint distribution of the random variables x and y-

Parallel: We say that the two systems are connected in parallel if S fails when both
systems fail. Denoting by z the time to failure of §, we conclude that z = ¢ when the
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6-7 CONDITIONAL EXPECTED VALUES

Applying theorem (5-55) to conditional densities, we obtain the conditional mean of
gy):

00

Elety) | M) = f £0)f(y | M) dy 6-227)

-00
This can be used to define the conditional moments of y.
Using a limit argument as in (6-205), we can also define the conditional mean
Efg(y) | x}. In particular,

nye = Ely |3} = /

00

YF( %) dy (6-228)
o <]
is the conditional mean of y assuming x = x, and
00
o2, = E{(y — ny)? 1%} = / G- fOl0dy (6229
-0

is its conditional variance.
We shall illustrate these calculations through an example.

P Let
1
Fey(x, ) = {0 gt;e{lﬂ; *<1 (6-230)
Determine E{x|y} and E{y|x}.
SOLUTION

As Fig. 6-34 shows, fi,(x, y) = 1 in the shaded ares, and zero elsewhere. Hence

fi(x) = ) fxy(x» y)dy =2x O<x<l

and
{
fy(y)=/uldx==1—ty! bl <1
=1y
This gives
fIY(x» )’) 1
() = = 0 1 6-231
Say(x, ¥) 50 -] <lPl<x< ( )

FIGURE 6-34
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and
Sy x) = fx}f: )y) -;; O<|yl<x<l (6-232)
Hence
Vox 1 %2
E = ety dx = —
{x|y} /Xf (x| y)dx /M - Iyl) =G=nmD 2 .
I-lyP  1+lyl
= = 1 -
20=hD 5 [yl < (6-233)
‘ *y 1y
E{ylx}:/yf,.,ﬁylx)dy: E.x—dy=—2.-x_7 =0 O<x <1 (6234

<

For a given x, the integral in (6-228) is the center of gravity of the masses in the
vertical strip (x, x + dx). The locus of these points, as x varies from —o0 to 00, is the
function

o(x) = / Yy 1x)dy (6-235)

known as the regression line (Fig. 6-35).

Note If the randomn variables x and y are functionally related, that is, if y = g(x), then the probability masses
on the xy plane are on the line y = g(x) (see Fig. 6-5b); hence E{y|x} = g(x).

Galton’s law. The term regression has its origin in the following observation attributed
‘to the geneticist Sir Francis Galton (1822-1911): “Population extremes regress toward
their mean.” This observation applied to parents and their adult children implies that
children of tall (or short) parents are on the average shorter (or taller) than their parents.
In statistical terms be phrased in terms of conditional expected values:

Suppose that the random variables x and y model the height of parents and their
children respectively. These random variables have the same mean and variance, and
they are positively correlated:

=

Wm=N =10 Oy=0y=0 r>0

@(x)

x+dex

FIGURE 6-3§



EXAMPLE 6-49

CHAPTER 6 TWORAMDOM VARIABLES 233

o(x)

B —————

4

FIGURE 6-36

According to Gaiton’s law, the conditional mean E{y | x} of the height of children whose
parents height is x, is smaller (or larger) than x if x > n (orx < n):

<X if x>n
>x if x<np

E{y|x} =¢(x){

This shows that the regression line ¢(x) is below the line y = x for x > 1 and above
this line if x < 7 as in Fig. 6-36. If the random variables x and y are jointly normal,
then see (6-236) below] the regression line is the straight line ¢(x) = rx. For arbitrary
random variables, the function ¢(x) does not obey Galton’s law. The term regression is
used, however, to identify any conditional mean.

P> If the random variables x and y are normal as in Example 6-41, then the function
xX—m
4!
is a straight line with slope ro, /oy passing through the point (n;, 172). Since for normal
random variables the conditional mean E{y | x} coincides with the maximum of f(y | x),
we conclude that the locus of the maxima of all profiles of f(x, y) is the straight line

(6-236).
From theorems (6-159) and (6-227) it follows that

Ele(x,y) | M) = /_ / g, ) f(x, y | M) dxdy 6-237)

<

Ely|x}=m+ro (6-236)
