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PREFACE 

The fourth edition of this book has been updated significantly from previous editions. 
arid it includes a coauthor. About one-third of the content of this edition is new material, 
and these additions are incorporated while maintaining the style and spirit of the previous 
editions that are familiar to many of its readers. 

The basic outlook and approach remain the same: To develop the subject of proba­
bility theory and stochastic processes as a deductive discipline and to illustrate the theory 
with basic applications of engineeling interest. To this extent. these remarks made in the 
first edition are still valid: "The book is written neither for the handbook-oriented stu­
dents nor for the sophisticated few (if any) who can learn the subject from advanced 
mathematical texts. It is written for the majority of engineers and physicists who have 
sufficient maturity to appreciate and follow a logical presentation .... There is an obvi­
ous lack of continuity between the elements of probability as presented in introductory 
courses, and the sophisticated concepts needed in today's applications .... Random vari­
ables. transformations, expected values, conditional densities, characteristic functions 
cannot be mastered with mere exposure. These concepts must be clearly defined and 
must be developed, one at a time, with sufficient elaboration." 

Recognizing these factors, additional examples are added for further clarity, and 
the new topics include the following. 

Chapters 3 and 4 have ul)dergone substantial rewriting. Chapter 3 has a detailed 
section on Bernoulli's theorem and games of chance (Sec. 3-3), and several examples 
are presented there including the classical gambler's ruin problem to stimulate student 
interest. In Chap. 4 various probability distributions are categorized and illustrated, and 
two kinds of approximations to the binomial distribution are carried out to illustrate the 
connections among some of the random variables. " 

Chapter 5 contains new examples illustrating the usefulness of characteristic func­
tions and moment-generating functions including the proof of the DeMoivre-Laplace 
theorem. 

Chapter 6 has been rewritten with additional examples, and is complete in its 
description of two random variables and their properties. 

Chapter 8 contains a new Sec. 8-3 on Parameter e6Eimation that includes key ideas 
on minimum variance unbiased estimation, the Cramer-Rao bound, the Rao-Blackwell 
theorem, and the Bhattacharya bound. 
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. In Chaps. 9 and la, sections on Poisson processes are further expanded with 
additional results. A new detailed section on random walks has also been added. 

Chapter 12 includes a new subsection describing the parametrization of the class 
of all admissible spectral extensions given a set of valid autocorrelations. 

Because of the importance of queueing theory, the old material has undergone com­
plete revision to the extent that two new chapters (15 and 16) are devoted to this topic. 
Chapter 15 describes Markov chains, their properties, characterization, and the long-term 
(steady state) and transient behavior of the chain and illustrates various theorems through 
several examples. In particular, Example 15-26 The Game of Tennis is an excellent 
illustration of the theory to analyze practical applications, and the chapter concludes with 
a detailed study of branching processes, which have important applications in queue­
ing theory. Chapter 16 describes Markov processes and queueing theory starting with 
the Chapman-Kolmogorov equations and concentrating on the birth-death processes to 
illustrate markovian queues. The treatment, however, includes non-markovian queues 
and machine servicing problems, and concludes with an introduction to the network of 
queues. 

The material in this book can be organized for various one semester courses: 

• Chapters 1 to 6: Probability Theory (for senior andlor first-level graduate students) 

• Chapters 7 and 8: Statistics and Estimation Theory (as a follow-up course to Proba­
bility Theory) 

• Chapters 9 to 11: Stochastic Processes (follow-up course to Probability Theory.) 

• Chapters 12 to 14: Spectrum Estimation and Filtering (follow-up course to Stochastic 
Processes) 

• Chapters 15 and 16: Markov Chains and Queueing Theory (follow-up course to 
Probability Theory) 

The authors would like to thank Ms. Catherine Fields Shultz, editor for electrical 
and computer engineering at McGraw-Hill Publishing Company, Ms. Michelle Flomen­
hoft and Mr. John Griffin, developmental editors, Ms. Sheila Frank, Project manager and 
her highly efficient team, and Profs. D. P. Gelopulos, M. Georgiopoulos, A. Haddad, 
T. Moon, 1. Rowland, C. S. Tsang, J. K. Tugnait, and O. C. Ugweje, for their comments, 
criticism, and guidance throughout the period of this revision. In addition, Dr. Michael 
Rosse, several colleagues at Polytechnic including Profs. Dante Youla, Henry Bertoni, 
Leonard Shaw and Ivan Selesnick, as well as students Dr. Hyun Seok Oh. Mr. Jun Ho Jo. 
and Mr. Seung Hun Cha deserve special credit for their valuable help and encouragement 
during the preparation of the manuscript. Discussions with Prof. C. Radhakrishna Rao 
about two of his key theorems in statistics and other items are also gratefully acknowl­
edged. 

Athanasios PapouIis 
S. Unnikrishna Pillai 
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1·1 INTRODUCTION 

CHAPTER 

1 
THE MEANING 

OF PROBABILITY 

The theory of probability deals with averages of mass phenomena occurring sequentially 
or simultaneously: electron emission, telephone calls, radar detection, quality control, 
system failure, games of chance, statistical mechanics, turbulence, noise, birth and death 
rates, and queueing theory, among many others. 

It has been observed that in these and other fields certain averages approach a 
constant value as the number of observations increases and this value remains the same 
if the averages are evaluated over any subsequence specified before the experiment is 
performed. In the coin experiment, for example, the percentage of heads approaches 0.5 
or some other constant, and the same average is obtained if we consider every fourth, 
say, toss (no betting system can beat the roulette). 

The purpose of the theory is to describe and predict such averages in terms of 
probabilities of events. The.probability of an event A is a number P(A) assigned to this 
event. This number could be interpreted as: 

If the experiment is perfonned n times and the event A occurs nil times, then, with a high 
degree of certainty. the relative fr~uency nA/n of the occurrence of A i~ close to peA): 

P(A):::. nA/n (1-1) 

provided that n is suJJiciently large. 

This interpretation is imprecise: The terms "with a high degree of certainty," "close," 
and "sufficiently large" have no clear meaning. However, this lack of precision cannot be 
avoided. If we attempt to define in probabilistic terms the "high degree of certainty" we 
shall only postpone the inevitable conclusion that probability, like any physical theory, 
is related to physical phenomena only in inexact terms. Nevertheless. the theory is an 

3 
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exact-discipline developed logically from clearly defined axioms, and when it is applied 
to real problems, it works. 

OBSERVATION, DEDUCTION, PREDICTION. In the applications of probability to real 
problems, these steps must be clearly distinguished: 

Step 1 (physical) We determine by an inexact process the probabilities P (Ai) of 
certain events Ai. 

This process could be based on the relationship (1-l) between probability and 
observation: The probabilistic data P (Ai) equal the observed ratios n AI I n. It could 
also be based on "reasoning" making use of certain symmetries: If, out of a total of N 
outcomes, there are N A outcomes favorable to the event A, then peA) = N AI N. 

For example, if a loaded die is rolled 1000 times and five shows 200 times, then 
the probability of five equalS 0.2. If the die is fair, then, because of its symmetry, the 
probability offive equals 1/6. 

Step 2 (conceptual) We assume that probabilities satisfy certain axioms, and by 
deductive reasoning we determine from the probabilities P (A,) of certain events Ai the 
probabilities P (B j) of other events B j. 

For example, in the game with a fair die we deduce that the probability of the event 
even equals 3/6. Our reasoning is of the form: 

If pel) = ... = P(6) = i then P(even) = i 
Step 3 (physical) We make a physical prediction based on the numbers P(Bj) 

so obtained. 
This step could rely on (1-1) applied in reverse: If we perform the experiment n 

times and an event B occurs no times, then no ::::: nP(B). 
If, for example, we roll a fair die 1000 times, our prediction is that even will show 

about 500 times. 
We could not emphasize too strongly the need. for separating these three steps in 

the solution of a problem. We must make a clear distinction between the data that are 
determined empirically and the results that are deduced logically. 

Steps 1 and 3 are based on inductive reasoning. Suppose, for example, that we 
wish to determine the probability of heads of a given coin. Should we toss the coin 100 
or 1000 times? If we toss it 1000 times and the average number of heads equals 0.48, 
what kind of prediction can we make on the basis of this observation? Can we deduce 
that at the next 1000 tosses the number of heads will be about 4807 Such questions can 
be answered only inductively. 

In this book, we consider mainly step 2. that is. from certain probabilities we 
derive deductively other probabilities. One might argue that such derivations are mere 
tautologies because the results are contained in the assumptions. This is true in the 
same sense that the intricate equations of motion of a satellite are included in Newton's 
laws. 

To conclude, we repeat that the probability P (A) of an event A will be interpreted 
as a number assigned to this event as mass is assigned to a body or resistance to a 
resistor. In the development of the theory, we will not be concerned about the "physical 
meaning" of this number. This is what is done in circuit analysis, in electromagnetic 
theory, in classical mechanics, or in any other scientific discipline. These theories are, of 
course, of no value to physics unless they help us solve real problems. We must assign 
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specific, if only approximate, resistances to real resistors and probabilities to real events 
(step 1); we must also give physical meaning to all conclusions that are derived from the 
theory (step 3). But this link between concepts and observation must be separated from 
the purely logical structure of each theory (step 2). 

As an illustration, we discuss in Example 1-1 the interpretation of the meaning of 
resistance in circllit theory. 

~ A resistor is commonly viewed as a two-terminal device whose voltage is proportional 
to the current 

R = v(t) 
i(t) 

(1-2) 

This, however, is only a convenient abstraction. A real resistor is a complex device 
with distributed inductance and capacitance having no clearly specified terminals. A 
relationship of the form (1-2) can, therefore, be claimed only within certain errors, in 
certain frequency ranges, and with a variety of other qualifications. Nevertheless, in 
the development of circuit theory we ignore all these uncertainties. We assume that the 
resistance R is a precise number satisfying (1-2) and we develop a theory based on 
(1-2) and on Kirchhoff's laws. It would not be wise, we all agree, if at each stage of the 
development of the theory we were concerned with the true meaning of R. ~ 

1-2 THE DEFINITIONS 

In this section, we discuss various definitions of probability and their roles in our 
investigation. 

Axiomatic Definition 

We shall use the following concepts from set theory (for details see Chap. 2): The certain 
event S is the event that occurs in every trial. The union A U B == A + B of two events A 
and B is the event that occurs when A or B or both occur. The intersection A n B == A B 
of the events A and B is the event that occurs when both events A and B occur. The 
events A and B are mulually exclusive if the occurrence of one of them excludes the 
occurrence of the other. 

We shall illustrate with the die experiment: The certain event is the event that 
occurs whenever anyone of the six faces shows. The union of the events even and less 
than 3 is the event I or 2 or 4 or 6 and their intersection is the event 2."The events even 
and odd are mutually exclusive. 

The axiomatic approach to probability is based on the following three postulates 
and on nothing else: The probability P(A) of an event A is a non-negative number 
assigned to this event: 

P(A) ::: 0 (1-3) 

The probability of the certain event equals 1: 

P(S) = 1 (1-4) 
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If the events A and B are mutually exclusive, then 

P(A U B) = P(A) + P(B) (1-5) 

This approach to probability is relatively recent (A.N. Kolmogorov, l 1933). However. 
in our view, it is the best way to introduce a probability even in elementary courses. 
It emphasizes the deductive character of the theory, it avoids conceptual ambiguities, 
it provides a solid preparation for sophisticated applications, and it offers at least a 
beginning for a deeper study of this important subject. 

The axiomatic development of probability might appear overly mathematical. 
However, as we hope to show, this is not so. The elements of the theory can be ade­
quately explained with basic calculus. 

Relative Frequency Definition 

The relative frequency approach is based on the following definition: The probability 
P(A) of an event A is the limit 

) 1. nA 
P(A = Im-

n .... oo n 
(1-6) 

where nA is the number of occurrences of A and n is the number of trials. 
This definition appears reasonable. Since probabilities are used to describe relative 

frequencies, it is natural to define them as limits of such frequencies. The problem 
associated with a priori definitions are eliminated, one might think, and the theory is 
founded on observation. 

However, although the relative frequency concept is fundamental in the applica­
tions of probability (steps 1 and 3), its use as the basis of a deductive theory (step 2) must 
be challenged. Indeed. in a physical experiment, the numbers nA and n might be large 
but they are only finite; their ratio cannot, therefore, be equated, even approximately. to 

a limit If (1-6) is used to define P(A), the limit must be accepted as a hypothesis, not 
as a number that can be determined experimentally. 

Early in the century, Von Mises2 used (1-6) as the foundation for a new theory. 
At that time. the prevailing point of view was still the classical. and his work offered a 
welcome alternative to the a priori concept of probability, challenging its metaphysical 
implications and demonstrating that it leads to useful conclusions mainly because it 
makes implicit use of relative frequencies based on our collective experience. The use of 
(1-6) as the basis for deductive theory has not, however, enjoyed wide acceptance even 
though (1-6) relates peA) to observed frequencies. It has generally been recognized that 
the axiomatic approach (Kolmogorov) is superior. 

We shall venture a coq1parison between the two approaches using as illustration 
the definition of the resistance R of an ideal resistor. We can define R as a limit 

R = lim e(/) 
n-.oo in(t) 

I A.N. Kolmogorov: Grundbegriffe dcr Wahrscheinli.ehkeilS Rechnung, Ergeb. Math und ihrerGrensg. vol. 2, 
1933. 
2Richard Von Mises: Probability. Statislics and Truth. English edition. H. Geiringer, ed., G. Allen and Unwin 
Ltd .• London, 1957. 
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where e(t) is a voltage source and in(t) are the currents of a sequence of real resistors 
that tend in some sense to an ideal two-terminal element. This definition might show 
the relationship between real resistors and ideal elements but the resulting theory is 
complicated. An axiomatic definition of R based on Kirchhoff's laws is, of course. 
preferable. 

Oassical Definition 

For several centuries, the theory of probability was based on the classical definition. This 
concept is used today to determine probabilistic data and as a working hypothesis. In the 
following, we explain its significance. 

. According to the classical definition, the probability P(A) of an event A is deter­
mined a priori without actual experimentation: It is given by the ratio 

P(A) = N ... 
N 

(1-7) 

where N is the number of possible outcomes and N A is the number of outcomes that are 
favorable to the event A. 

In the die experiment, the possible outcomes are six and the outcomes favorable 
to the event even are three; hence P(even) = 3/6. 

It is important to note, however, that the significance of the numbers N and N A is 
not always clear. We shall demonstrate the underlying ambiguities with ExampJe 1-2. 

~ We roll two dice and we want to find the probability p that the sum of the numbers 
that show equals 7. 

To solve this problem using (1-7), we must determine the numbers N and NA . 

(a) We could consider as possible outcomes the 11 sums 2,3, ... ,12. Of these, only 
one, namely the sum 7, is favorable; hence p = 1/11. This result is of course wrong. (b) 
We could count as possible outcomes all pairs of numbers not distinguishing between the 
first and the second die. We have now 21 outcomes of which the pairs (3,4), (5, 2), and 
(6,1) are favorable. In this case, NA = 3 and N = 21; hence p = 3/21. This result is 
also wrong. (c) We now rea,son that the above solutions are wrong because the outcomes 
in (a) and (b) are not equally likely. To solve the problem "correctly," we must count all 
pairs of numbers distinguishing between the first and the second die. The total number 
of outcomes is now 36 and the favorable outcomes are the six pairs (3, 4), (4. 3), (5, 2). 
(2,5), (6,1), and (1, 6); hence p = 6/36. ~ " 

Example 1-2 shows the need for refining definition (1-7). The improved version 
reads as follows: 

The probability of an event equals the ratio of its favorable outcomes to the total number of 
outcomes provided that all outcomes are equally likely. 

As we shall presently see, this refinement does not eliminate the problems associ­
ated with the classical definition. 
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EX'\~IPLE 1-3 

BERTRAND 
PARADOX 

Notes I The classical definition was introduced as a consequence of the prillciple of insufficient rea­
son3: "In the absence of any prior knowledge. we mllst assume that the event~ AI have equal probabili. 
ties." This conclusion is based on the subjective interpretation of probability as a measure oj our stare oj 
knowledge about the events Ai. Indeed, if it were not true that the events Ai have the same probability. 
then changing their indices we would obtain different probabilities without a change in the slate of our 
knowledge. 

2. As we explain in Chap. 14, the principle of insufficient reason is equivalent 10 the p,.inciple oj 
maximum entropy. 

CRITIQUE. The classical definition can be questioned on several grounds. 

A. The tenn equally likely used in the improved version of (1-7) means, actually, 
equally probable. Thus, in the definition, use is made of the concept to be defined. 
As we have seen in Example 1-2. this often leads to difficulties in detennining N 
and NA• 

B. The definition can be applied only to a limited class of problems. In the die 
experiment. for example, it is applicable only if the six faces have the same 
probability. If the die is loaded and the probability of four equals 0.2, say. the 
number 0.2 cannot be derived from (1-7). 

C. It appears from (1-7) that the classical definition is a consequence of logical 
imperatives divorced from experience. This. however. is not so. We accept certain 
alternatives as equally likely because of our collective experience. The probabilities 
of the outcomes of a fair die equal 116 not only because the die is symmetrical but 
also because it was observed in the long history of rolling dice that the ratio nAln 
in (1-1) is close to 1 16. The next illustration is. perhaps, more convincing: 

We wish to detennine the probability p that a newborn baby is a boy. It is 
generally assumed that p = 1/2; however, this is not the result of pure reasoning. 
In the first place. it is only approximately true that p = 1/2. Furthermore, without 
access to long records we would not know that the boy-girl alternatives are equally 
likely regardless of the sex history of the baby's family. the season or place of its 
birth. or other conceivable factors. It is only after long accumulation of records that 
such factors become irrelevant and the two alternatives are accepted as equally 
likely. 

D. If the number of possible outcomes is infinite, then to apply the classical definition 
we must use length. area, or some other measure of infinity for determining the 
ratio N A IN in (1-7). We illustrate the resulting difficulties with the following 
example known as the Bertrand paradox. " 

~ We are given a circle C of radius r and we wish to determine the probability p that 
the length 1 of a "randomly selected" cord AB is greater than the length r-./3 of the 
inscribed equilateral triangle. 

3H. Bernoulli, Ars Conjectandi, 1713. 
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We shall show that this problem can be given at least three reasonable solutions. 

I. -If the center M of the cord A B lies inside the circle C 1 of radius r /2 shown in 
Fig. I-la. then I > r./3. It is reasonable, therefore, to consider as favorable 
outcomes all points inside the circle eland as possible outcomes all points inside 
the circle C. Using as measure of their numbers the corresponding areas 1r,2 / 4 
and 1r,2, we conclude that 

1rr2/4 1 
P = 1rrz = 4 

ll. We now assume that the end A of the cord AB is fixed. This reduces the number of 
possibilities but it has no effect on the value of p because the number of favorable 
locations of B is reduced proportionately. If B is on the 1200 arc DBE ofRg. I-lb. 
then 1 > r../3. The favorable outcomes are now the points on this arc and the total 
outcomes all points on the circumference of the circle C. Using as their 
measurements the corresponding lengths 21rr /3 and 2'1r r. we obtain 

27rr/3 1 
p = 2'1rr == '3 

m. We assume finally that the direction of AB is perpendicular to the line FK of 
Fig. I-Ie. As in II this restriction has no effect on the value of p.lfthe center M of 
AB is between G and H, then 1 > r./3. Favorable outcomes are now the points on 
GH and possible outcomes all points on FK. Using as their measures the respective 
lengths r and 2r. we obtain 

r 1 
p=-=-

2r 2 

We have thus found not one but three different solutions for the .. same problem! 
One might remark that these solutions correspond to three different experiments. This 
is true but not obvious and. in any case, it demonstrates the ambiguities associated with 
the classical definition, and the need for a clear specification of the 9utcomes of an 
experiment and the meaning of the terms "possible" and ''favorable.'' 

VALIDITY. We shall now discuss the value of the classical definition in the detennination 
of probabilistic data and as a working hypothesis. f 

A.' In many applications, the assumption that there are N equally likely alternatives is 
well established through long experience. Equation (1-7) is then accepte,d as 
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EXAMPLE J-4 

. self-evident. For example, "If a ball is selected at random from a box containing m 
black and n white balls, the probability that it is white equals n/(m + n)," or, "If a 
call occurs at random in the time interval (0. T). the probability that it occurs in the 
interval (t1. t2) equals (t2 - tl)/T." 

Such conclusions are of course, valid and useful; however, their Validity rests 
on the meaning of the word random. The conclusion of the last example that ''the 
unknown probability equals (t2 - t1) / T" is not a consequence of the "randomness" 
of the call. The two statements are merely equivalent and they follow not from 
a priori reasoning but from past records of telephone calls. 

B. In a number of applications it is impossible to determine the probabilities of 
various events by repeating the underlying experiment a sufficient number of times. 
In such cases, we have no choice but to assume that certain alternatives are equally 
likely and to detennine the desired probabilities from (1-7). This means that we use 
the classical definition as a working hypothesis. The hypothesis is accepted if its 
observable consequences agree with experience, otherwise it is rejected. We 
illustrate with an important example from statistical mechanics. 

~ Given n particles and m > n boxes. we place at random each particle in one of the 
boxes. We wish to find the probability p that in n preselected boxes, one and only one 
particle will be found. 

Since we are interested only in the underlying assumptions, we shall only state the 
results (the proof is assigned as Prob. 4 -34). We also verify the solution for n = 2 and 
m = 6. For this special case, the problem can be stated in terms of a pair of dice: The 
m = 6 faces correspond to the m boxes and the n = 2 dice to the n particles. We assume 
that the preselected faces (boxes) are 3 and 4. 

The solution to this problem depends on the choice of possible and favorable 
outcomes We shall consider these three celebrated cases: 

MAXWELL-BOLTZMANN STATISTICS 
If we accept as outcomes all possible ways of placing n particles in m boxes distinguishing 
the identity of each particle, then 

n! 
p=­

m" 

For n = 2 and m = 6 this yields p = 2/36. This is the probability for getting 3, 4 in the 
game of two dice. 

BOSE-EINSTEIN STATISTICS 
If we assume that the particles are not distinguishable, that is, if all their pennutations 
count as one, then 

(m -l)!n! 
p = (n +m -I)! 

For n = 2 and m = 6 this yields p = 1/21. Indeed. if we do not distinguish between 
the two dice, then N = 21 and N A = 1 because the outcomes 3, 4 and 4, 3 are counted 
as one. 
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FERMI-DIRAC STATISTICS 
If we do not distinguish between the particles and also we assume that in each box we 
are allowed to place at most one particle, then 

n!(m - n)! 
p=---­

m! 

For n = 2 and m = 6 we obtain p = 1/15. This is the probability for 3,4 if we do not 
distinguish between the dice and also we ignore the outcomes in which the two numbers 
that show are equal. 

One might argue, as indeed it was in the eady years of statistical mechanics, that 
only the first of these solutions is logical. Thefact is that in the absence of direct orindirect 
experimental evidence this argument cannot be supported. The three models proposed 
are actually only hypotheses and the physicist accepts the one whose consequences agree 
with experience. ..... 

C. Suppose that we know the probability peA) of an event A in experiment 1 and the 
probability PCB) of an event B in experiment 2. In general, from this information 
we cannot determine the probability P(AB) that both events A and B will occur. 
However. if we know that the two experiments are independent, then 

P(AB) = P(A)P(B) (1-8) 

In many cases, this independence can be established a priori by reasoning that the 
outcomes of experiment 1 have no effect on the outcomes of experiment 2. For 
example, if in the coin experiment the probability of heads equals 1/2 and in the 
die experiment the probability of even equals 1/2, then, we conclude "logically," 
that if both experiments are performed, the probability that we get heads on the 
coin and even on the die equals 1/2 x 1/2. Thus, as in (1-7), we accept the validity 
of (1-8) as a logical necessity without recourse to (1-1) or to any other direct 
evidence. 

D. The classical definition can be used as the basis of a deductive theory if we accept 
(1-7) as an assumption. In this theory, no other assumptions are used and postulates 
(1-3) to (1-5) become theorems. Indeed, the first two postulates are obvious and the 
third follows from t 1-7) because, if the events A and B are mutually exclusive, then 
NA+B = NA + NB; hence 

peA U B) = NA+B = NA + NB = peA) + PCB) 
N N N " 

As we show in (2-25), however, this is only a very special case of the axiomatic 
approach to probability. 

1-3 PROBABILITY AND INDUCTION 

In the applications of the theory of probability we are faced with the following question: 
Suppose that we know somehow from past observations the probability P (A) of an event 
A in a given experiment. What conclusion can we draw about the occurrence of this event 
in a single future performance of this experiment? (See also Sec. 8-1.) 
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We shall answer this question in two ways depending on the size of peA): We 
shall give one kind of an answer if peA) is a number distinctly different from 0 or 
I, for example 0.6, and a different kind of an answer if peA) is close to 0 or 1, for 
example 0.999. Although the boundary between these two cases is not sharply defined, 
the corresponding answers are fundamentally different. 

Case J Suppose that peA) = 0.6. In this case, the number 0.6 gives us only 
a "certain degree of confidence that the event A will occur." The known probability is 
thus used as a "measure of our belief' about the occurrence of A in a single trial. This 
interpretation of P (A) is subjective in the sense that it cannot be verified experimentally. 
In a single trial, the event A will either occur or will not occur. If it does not, this will 
not be a reason for questioning the validity of the assumption that peA) = 0.6. 

Case 2 Suppose, however. that peA) = 0.999. We can now state with practical 
certainty that at the next trial the event A will occur. This conclusion is objective in 
the sense that it can be verified ex.perimentally. At the next trial the event A must 
occur. If it does not, we must seriously doubt, if not outright reject, the assumption 
that peA) = 0.999. 

The boundary between these two cases, arbitrary though it is (0.9 or 0.99999?), 
establishes in a sense the line separating "soft" from "hard" scientific conclusions. The 
theory of probability gives us the analytic tools (step 2) for transforming the "subjective" 
statements of case I to the "objective" statements of case 2. In the following, we explain 
briefly the underlying reasoning. 

As we show in Chap. 3, the information that peA) = 0.6 leads to the conclusion 
that if the experiment is performed 1000 times, then "almost certainly" the number of 
times the event A will occur is between 550 and 650. This is shown by considering the 
repetition of the original experiment 1000 times as a single outcome of a new experiment. 
In this experiment the probability of the event 

AI = {the number of times A occurs is between 550 and 650} 

equals 0.999 (see Prob. 4-25). We must, therefore, conclude that (case 2) the event AI 
will occur with practical certainty. 

We have thus succeeded, using the theory of probability, to transform the "sub­
jective" conclusion about A based on the given information that peA) = 0.6, to the 
"objective" conclusion about Al based on the derived conclusion that P(AI) = 0.999. 
We should emphasize, however, that both conclusions rely on inductive reasoning. Their 
difference, although significant, is only quantitative. As in case 1, the "objective" conclu­
sion of case 2 is not a certainty but only an inference. This, however, should not surprise 
us; after all, no prediction about future events based on past experience do be accepted 
as logical certainty. 

Our inability to make categorical statements about future events is not limited 
to probability but applies to all sciences. Consider, for example, the development of 
classical mechanics. It was observed that bodies fall according to certain patterns, and 
on this evidence Newton formulated the laws of mechanics and used them to predict 
future events. His predictions, however, are not logical. certainties but only plausible 
inferenc~. To "prove" that the future will evolve in the predicted manner we must 
invoke metaphysical causes. 
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1-4 CAUSALITY VERSUS RANDOMNESS 

We conclude with a brief comment on the apparent controversy between causality and 
r'dndomness. There is no conflict between causality and randomness or between deter­
minism and probability if we agree, as we must, that scientific theories are not discoveries 
of the Jaws of nature but rather inventions of the human mind. Their consequences are 
presented in deterministic form if we examine the results of a single trial; they are pre­
sented as probabilistic statements if we are interested in averages of many trials. In both 
cases, all statements are qualified. In the first case, the uncertainties are of the fonn "with 
certain errors and in certain ranges of the relevant parameters"; in the second, "with a 
high degree of certainty if the number of trials is large enough." In the next example, we 
illustrate these two approaches. 

.... A rocket leaves the ground with an initial velocity v forming an angle 8 WIth the 
horizontal axis (Fig. 1-2). We shall determine the distance d = OB from the origin to 
the reentry point B. 

From Newton's law it follows that 

v2 
d = - sin 28 (1-9) 

g 

This seems to be an unqualified consequence of a causal law; however, this is not 
so. The result is approximate and it can be given a probabilistic interpretation. 

Indeed, (1-9) is not the solution of a real problem but of an idealized model in 
which we have neglected air friction, air pressure, variation of g. and other uncertainties 
in the values of v and 8. We must, therefore, accept (1-9) only with qualifications. It 
holds within an error s provided that the neglected factors are smaller than 8. 

Suppose now that the reentry area consists of numbered holes and we want to find 
the reentry hole. Because of the uncertainties in v and 8, we are in no position to give a 
deterministic answer to our problem. We can, however, ask a different question: If many 
rockets, nominally with the same velocity. are launched, what percentage will enter the 
nth hole? This question no longer has a causal answer, it can only be given a random 
interpretation. 

Thus the same physical problem can be subjected either to a deterministic or to 
a probabilistic analysis. One might argue that the problem is inherently deterministic 
because the rocket has a precise velocity even if we do not know it. If we did, we would 
know exactly the reentry hole. Probabilistic interpretations are, therefore. necessary 
because of our ignorance. 

Such arguments can be answered with the statement that the physicists are not 
concerned with what is true but only with what they can observe. ..... 

.-----.. v..,.... - ... , , , 
8 , 8 

O~I' ______ d ______ ~ x 
FIGURE 1-2 



14 PROBABlUTY ANORANOOMVARIABLES 

Historical Perspective 

Probability theory has its humble origin in problems related to gambling and games 
of chance. The origin of the theory of probability gqes back to the middle of the 17th 
century and is connected with the works 'of Pierre de Fermat (160 1-1665), Blaise Pascal 
(1623-1662), and Christian Huygens (1629-1695). In their works, the concepts of the 
probability of a stochastic event and the expected or mean value of a random variable can 
be found. Although their investigations were concerned with problems connected with 
games of chance, the importance of these new concepts was clear to them, as Huygens 
points out in the first printed probability text" (1657) On Calculations in Games of 
Chance: "The reader will note that we are dealing not only with games, but also that 
the foundations of a very interesting and profound theory are being laid here." Later. 
Jacob Bernoulli (1654-1705), Abraham De Moivre (1667-1754), Rev. Thomas Bayes 
(1702-1761), Marquis Pierre Simon Laplace (1749-1827), Johann Friedrich Carl Gauss 
(1777-1855), and Simeon Denis Poisson (1781-1840) contributed significantly to the 
development of probability theory. The notable contributors from the Russian school 
include P.L. Chebyshev (1821-1894), and his students A. Markov (1856-] 922) and A.M. 
Lyapunov (1857-1918) with important works dealing with the law of large numbers. 

The deductive theory based on the axiomatic definition of probability that is popular 
today is mainly attributed to Andrei Nikolaevich Kolmogorov, who in the 1930s along 
with Paul Levy found a close connection between the theory of probability and the 
mathematical theory of sets and functions of a real variable. Although Emile Borel had 
arrived at these ideas earlier. putting probability theory on this modern frame work is 
mainly due to the early 20th century mathematicians. 

Concluding Remarks 

In this book, we present a deductive theory (step 2) based on the axiomatic definition 
of probability. Occasionally. we use the classical definition but only to determine prob­
abilistic data (step 1). 

. To show the link between theory and applications (step 3), we give also a rela­
tive frequency interpretation of the important results. This part of the book, written in 
small print under the title Frequency interpretation. does not obey the rules of deductive 
reasoning on which the theory is based. 

4 Although the ecentric scholar (and gambler) Girolamo Catdano (1501-1576) had wrilten The Book of 
Games and Chance around 1520. il was not published until 1663. Cardano had left behind 131 printed works 
and III additional manuscripts. 



CHAPTER 

2 
THE AXIOMS 

OF PROBABILITY 

2-1 SETTHEORY 

A set is a collection of objects called elements. For example, "car, apple. pencil"·is a set 
whose elements are a car, an apple, and a pencil. The set "heads, tails" has two elements. 
The set "1, 2. 3, 5" has four elements. 

A subset B of a set A is another set whose elements are also elements of A. All 
sets under consideration will be subsets of a set S, which we shall call space. 

The elements of a set will be identified mostly by the Greek letter ~. Thus 

(2-1) 

will mean that the set A consists of the elements ~l' ••• , ~n' We shall also identify sets 
by the properties of their elements. Thus 

. A = {all positive integers} 

will mean the set whose elements are the numbers 1, 2, 3, .... 
The notation 

C,eA ~i,A 

will mean that ~, is or is not an element of A. 

(2-2) 

The empty or null set is by definition the set that contains no elements. This set 
will be denoted by {0}. 

If a set consists of n elements, then the total number of its subsets equals 2n. 

Note In probabJlitytheory. we assign probabilities to the subsets (events) of S and we define various functions 
(random variables) whose domain c:onsista of the elements of S. We must be careful. therefore, to distinguish 
between the element ( and the set {(} consisting of the single element ( • 

15 
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EXAMPLE 2-2 

EX \\IPLE 2-3 

oaT x FIGURE 2.1 

~ We shall denote by /J the faces of a die. These faces are the elements of the set 
S = {fl •...• f6l. In this case, n = 6; hence S has 26 = 64 subsets: 

{01. {fll. " .• {fit hI ..... {fl. b. hl. ... , S 

In general, the elements of a set are arbitrary objects. For example, the 64 subsets 
of the set S in Example 2-1 can be considered as the elements of another sel In Exam­
ple 2-2, the elements of S are pairs of objects. In Example 2-3, S is the set of points in 
the square of Fig. 2-1. 

~ Suppose that a coin is tossed twice. The resulting outcomes are the four objects 
hh, ht, th, tt forming the set. 

S = {hh, ht, th, ttl 

where hh is an abbreviation for the element "heads-heads." The set S has 24 = 16 
subsets. For example, 

A = {heads at the first toss} = {hh, hi} 

B = {only one head showed} = {ht, th} 

C:= {heads shows at least once} = {hh, hI. th} 

In the first equality, the sets A, B, and C are represented by their properties as in (2-2); 
in the second, in terms of their elements as in (2-1). ~ 

~ In this example. S is the set of all points in the square of Fig. 2-1. Its elements are 
all ordered pairs of numbers (x, y) where C 

The shaded area is a subset A of S consisting of all points (x, y) such that -b ::: x - y :::: a. 
The notation 

A = {-b :::: x - y :::: a}' 

describes A in terms of the properties of x and y as in (2-2). ~ 
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CCiJCA 

FIGURE 2-2 FIGURE 2-3 FIGURE 2-4 

Set Operations 

In the following. we shall represent a set S and its subsets by plane figures as in Fig. 2-2 
(Venn diagrams). 

. The notation B C A or A ::> B will mean that B is a subset of A (B belongs to A). 
that is. that every element of B is an element of A. Thus. for any A. 

{0} cAe A c S 

Transitivity If C C B and B C A then C C A 
Equality A = B iff' A c Band B C A 

UNIONS AND INTERSEC'nONS. The sum or union of two sets A and B is a set whose 
elements are all elements of A or of B or of both (Fig. 2-3). This set will be written in 
thefonn 

A+B or AUB 

This operation is commutative and associative: 

AUB=BUA (A U B) U C = AU (B U C) 

We note that, if B C A. then A U B = A. From this it follows that 

AUA=A AU{0} =A SUA=S 

The product or intersection of two sets A and B is a set Consisting of all elements 
that are common to the set A and B (Fig. 2-3). This set is written in the fonn 

AB or AnB 

This operation is commutative. associative. and distributive (Fig. 24): ;; 

AB:;= BA (AB)C = A(BC) A(BUC) =ABUAC 

'We note that if A c B. then AB = A. Hence 

AA=A {0}A = U?I} AS=A 

I The term jff is an abbreviation for if and onl), If. 



FIGURE 2-7 

Note If two sets A and B are described by the properties of their elements as in (2-2), then their intersection 
AB win be specified by including these properties in braces. For example. if 

S == {i, 2. 3. 4. 5. 61 A = (even} B = {less than 5} 
1hen2 • 

AB-

EXCLUSIVE SETS. are said to be mutually e:xC,~US1've 
they have no common elel:nelJll.!i 

AB = {0} 

Several sets Alt A2, ..• are called mutually exclusive if 

A/Aj=={0} forevery iandj:fti 

PARTITIONS. A partition U of a set S is a collection of mutually exclusive subsets AI 
of S whose union equals S (Fig. 2-5). 

u 

COMPLEMENTS. The complement set consisting of all elements 
S that are not in A (Fig. 2-6). From the definition it follows that 

AA == {0} 

If B c A, then B :::> A; if A == B, then A = B. 

DE MORGAN'S LAW. Clearly (see Fig. 2-7) 

AUB= 

slrellS tho difference in the meaning 

('1 •... , 

S == {0} {0} == S 

UB 

and (2-3). In (2-1) the braces 

ls the union of the sets tt,}. In (2-3) the braces include the properties of'the sets {even} and {lellS than 5}. and 

(even. less than 5) = {even} n {lOllS than 5} 

is the intersection of the sets {even} and {less than5}. 
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Repeated application of (2-5) leads to this: If in a set identity we replace all sets 
by their complements, ail unions by intersections, and all intersections by unions, the 
identity is preserved. 

We shall demonstrate this using the identity as an example: 

A(BUC) =ABUAC (2-6) 

From (2-5) it follows that 

A(B U C) = if U B U C = AU B C 

Similarly, 

AB U AC = (AB)(AC) = or U B)(A U C) 

and since the two sides of (2-6) are equal, their complements are also equal. Hence 

AU Be = (AU B)(AUC) (2-7) 

DUALITY PRINCIPLE. As we know, S = {0} and {0} = S. Furthermore, if in an 
identity like (2-7) all overbars are removed, the identity is preserved. This leads to the 
following version of De Morgan's law: 

If in a set identity we replace all unions by intersections, all intersections by unions, 
and the sets Sand {0} by the sets {0} and S. the identity is preserved. 

Applying these to the identities 

A(B U C) = AB U AC SUA=S 

we obtain the identities 

AU BC = (A U B)(A U C) {0}A = {0} 

2·2 PROBABILITY SPACE 

In probability theory, the following set terminology is used: The space, S or n is called 
the certain event, its elements experimental outcomes, and its subsets events. The empty 
set {0} is the impossible event, and the event {~i} consisting of a single element ~i is an 
elementary event. All events will be identified by italic letters. 

In the applications of probability theory to physical problems, the identification of 
experimental outcomes is not always unique. We shall illustrate this ambiguity with the 
die experiment as might be interpreted by players X. Y. and Z. 

X says that the outcomes of this experiment are the six faces of the"die forming the 
space S = {fl • ... , f51. This space has 26 = 64 subsets and the event {even} consists 
of the three outcomes h. f4' and f6. 

Y wants to bet on even or odd only. He argues, therefore that the experiment has 
only the two outcomes even and odd forming the space S = {even, odd}. This space has 
only 22 = 4 subsets and the event {even} consists of a single outcome. 

Z bets that one will show and the die will rest 01) the left side of the table. He 
maintains, therefore, that the experiment has infinitely many outcomes specified by the 
coordinates of its center and by the six faces. The event { even} consists not of one or of 
three outcomes but of infinitely many. 



20 PROBABIUTY AM>RANDOMVA:RIABLES 

fHE \X\O\IS 

in the following, when we talk about an experiment, we shall assume that its 
outcomes are clearly identified. In the die ex,periment, for example, S will be the set 
consisting of the six faces /1> .... /6. 

In the relative frequency interpretation of various results, we shall use the follOwing 
terminology. 

Trial A single performance of an experiment will be called a trial. At each trial 
we observe a single outcome ~;. We say that an event A occurs during this trial if it 
contains the element ~i' The certain event occurs at every trial and the impossible event 
never occurs. The event A U B occurs when A or B or both occur. The event AB occurs 
when both events A and B occur. If the events A and B are mutually exclusive and A 
occurs. then B does not occur. If A c B and A occurs, then B occurs. At each trial, 
either A or A occurs. 

. If. for example, in the die experiment we observe the outcome Is, then the event 
{Is}. the event {odd}. and 30 other events occur . 

.. We assign to each event A a number P(A), which we call the probability o/the event­
A. This number is so chosen as to satisfy the following three conditions: 

I 

U 

m 

peA) ~ 0 

peS) = 1 

if AB = {0} then peA U B) = P(A) + P(B) 

(2~8) 

(2-9) 

(2~10) 

<III!! 

These conditions are the axioms of the theory of probability. In the development 
of the theory, all conclusions are based directly or indirectly on the axioms and only on 
the axioms. Some simple consequences are presented next. 

PROPERTIES. The probability of the impossible event is 0: 

P{0} = 0 

Indeed, A{0} = {0} and A U {0} = A; therefore [see (2-10)] 

peA) = peA U I{}) = peA) + P{0} 

For any A. 

peA) = 1 - P(A) !S 1 

because A U A = S and AA = (0); hence 

I = peS) = peA U A) = P(A) + peA) 

For any A and B, 

(2-11) 

(2-12) 

peA U B) = P(A) + P(B) - P(AB) ::: peA) + PCB) (2-13) 
• 

To prove this, we write the events A U B and B as unions of two mutually exclusive 
eyents: 

AUB=AUAB B=ABUAB 
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Therefore [see (2-10)] 

peA U B) = peA) + peA B) 

Eliminating P(AB), we obtain (2-13). 
Finally, if B c A, then 

PCB) = P(AB) + P(AB) 

peA) = PCB) + P(AB) ~ PCB) 

because A = B U AB and B(AB) = {0}. 

(2-14) 

Frequency Interpretation The axioms of probability are so chosen that the resulting 
theory gives a satisfactory representation of the physical world. Probabilities as used in real 

. problems must, therefore, be compatible with the axioms. Using the frequency interpretation 

P(A)::: nA 
II 

of probability, we shall show that they do. 

I. Clearly, peA) ~ 0 because nA ~ 0 and n > O. 
n. peS) = 1 because S occurs at every trial; hence IIJ = n. 
m. If AB = (S}, then "MB = nA + nB because if AU B occurs, then A or B occurs but 

not both. Hence 

peA U B) ::::: nAUB = IIA + liB ::: peA) + PCB) 
n II n 

EQUALITY OF EVENTS. Two events A and B are called equal if they consist of the 
same elements. They are called equal with probability 1 if the set 

(A U B){AB) = AB UAB 

consisting of all outcomes that are in A or in B but not in AB (shaded area in Fig. 2-8) 
has zero probability. 

From the definition it follows that (see Prob. 2·4) the events A and B are equal 
with probability 1 iff 

peA) = PCB) = P(AB) (2-15) 

If peA) = P(B), then we say that A and B are equal in probability. In this case, 
no conclusion can be drawn about the probability of AB. In fact, the events A and B 
might be mutually exclusive. 

From (2-15) it follows that, if an event N equals the impossible event with proba­
bility 1 then peN) = O. This does not, of course. mean that N = {0l. 

AiuAB 

B 

FIGURE 2-8 
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FIELDS 

The Class F of Events 

Events are subsets of S to which we have assigned probabilities. As we shall presently 
explain. we shall not consider as events all subsets of S but only a class F of subsets. 

One reason for this might be the nature of the application. In the die experiment. 
for example. we might want to bet only on even or odd. In this case, it suffices to consider 
as events only the four sets {0}. {even}, {odd}, and S. 

The main reason. however. for not including all subsets of S in the class F of 
events is of a mathematical nature: In certain cases involving sets with infinitely many 
outcomes. it is impossible to assign probabilities to all subsets satisfying all the axioms 
including the generalized form (2-21) of axiom III. 

The class F of events will not be an arbitrary collection of subsets of S. We shall 
assume that, if A and B are events, then A U B and AB are also events. We do so 
because we will want to know not only the probabilities of various events, but also the 
probabilities of their unions and intersections. This leads to the concept of a field. 

~ A field F is a nonempty class of sets such that: 

If AeF then AeF 

If AeF and BeF then AUBeF 

(2-16) 

(2-17) 

.... 
These two properties give a minimum set of conditions for F to be a field. All 

other properties follow: 

If A e F and B e F then AB e F (2-18) 

Indeed, from (2-16) it follows that A e F and B e F. Applying (2-17) and (2-16) to 
the sets A and B, we conclude that 

AUBeF A UB = AB e F 
A field contains the certain event and the impossible event: 

SeF {0} e F (2-19) 

Indeed, since F is not empty, it contains at least one element A; therefore [see (2-16)] it 
also contains A . Hence 

AA = {0} e F 

From this it follows that all sets that can be written as unions or intersections 
of finitely many sets in F are also in F. This is not, however, necessarily the case for 
infinitely many sets. 

Borel fields. Suppose that AI •...• All •... is an infinite sequence of sets in F. If the 
union and intersection of these sets also belongs to F, then F is called a Borel field. 

The class of all subsets of a set S is a Borel field. Suppose that C is a class of 
subsets of S that is not a field. Attaching to it other subsets of S, all subsets if necessary. 
we can form a field with C as its subset. It can be shown that there exists a smallest Borel 
field containing all the elements of C. 
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~ Suppose that S consists of the four elements a, b. c, and d and C consists of the 
sets {a} and {b}. Attaching to C the complements of {al and {b} and their unions and 
intersections, we conclude that the smallest field containing {a} and {b } consists of the sets 

{0} {al {b} {a, b} {c. d} {b, c, d} {a, c, d} S 

EVENTS. In probability theory, events are certain subsets of S forming a Borel field. 
This enables us to assign probabilities not only to finite unions and intersections of 
events, but also to their limits. 

For the determination of probabilities of sets that can be expressed as limits, the 
following extension of axiom m is necessary. 

Repeated application of (2-10) leads to the conclusion that, if the events A I, ... , All 
are mutually exclusive, then 

(2-20) 

The extension of the preceding to infinitely many sets does not follow from (2-10). It is 
an additional condition known as the axiom of infinite additivity: 

~ IlIa. If the events A .. A2, ... are mutually exclusive, then 

We shall assume that all probabilities satisfy axioms I, II, III, and Ilia. 

Axiomatic Definition of an Experiment 

(2-21) 

... 

In the theory of probability, an experiment is specified in terms of the following concepts: 

1. The set S of all experimental outcomes. 
2. The Borel field of all events of S. 
3. The probabilities of these events. 

The letter S will be used to identify not only the certain event, but also the entire 
experiment. 

We discuss next the determination of probabilities in experiments with finitely 
many and infinitely many elements. " 

COUNTABLE SPACES. If the space S consists of N outcomes and N is a finite number, 
then the probabilities of all events can be expressed in terms of the probabilities 

P{~il = Pi 

of the elementary events {~i}' From the axioms it follows. of course, that the numbers 
Pi must be nonnegative and their sum must equal I: 

Pi ~ 0 PI + ... + PN = 1 (2-22) 
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Suppose that A is an event consisting of the r elements ~/q. In this case, A can be 
written as the union of the elementary events (~k;)' Hence [see (2-20)] 

peA) = P{~kl} + ... + P{Sk,} = Pk. + ... + Pk, (2-23) 

This is true even if S consists of an infinite but countable number of elements 
SI, S2 •... lsee (2-21)]. 

Classical definition If S consists of N outcomes and the probabilities Pi of the 
elementary events are all equal. then 

1 
Pi = - (2-24) 

N 
In this case, the probability of an event A consisting of r elements equals r / N: 

r 
peA) = N (2-25) 

This very special but important case is equivalent to the classical definition (1-7), 
with one important difference. however: In the classical definition, (2-25) is deduced as 
a logical necessity; in the axiomatic development of probability, (2-24), on which (2-25) 
is based, is a mere assumption . 

.. (a) In the coin experiment, the space S consists of the outcomes h and t: 

S = {h, t} 

and its events are the four sets {0}, ttl, {h}, S. If P{h} = P and P{t} = q. tben P + q = 1. 
(b) We consider now the experiment of the toss of a coin three times. The possible 

outcomes of this experiment are: 

hhh. hilt, hth, htt. thh, tht, uh, Itt 

We shall assume that all elementary events have the same probability as in (2-24) (fair 
coin). In this case, the probability of each elementary event equals 1/8. Thus the proba­
bility P (hhh) that we get three heads equals 1/8. The event 

{beads at the first two tosses} = {hhh, hht} 

consists of the two outcomes hhh and Ilht; hence its probability equals 2/8. ..... 

THE REAL LINE. If S consists of a noncountable infinity of elements, then its proba­
bilities cannot be determined in terms of the probabilities of the elementary events. This 
is the case if S is the set of points in an n-dimensional space. In fact, most applications 
can be presented in terms of events in such a space. We shall discuss the determination 
of probabilities using as illustration the real line. 

Suppose that S is the set of all real numbers. Its subsets can be considered as sets 
of points on the real line. It can be shown that it is impossible to assign probabilities to 
all subsets of S so as to satisfy the axioms. To construct a probability space on the real 
line, we shall consider as events all intervals XI ::: X ~ X2 and their countable unions 
and intersections. These events form a field F that can be specified as follows: 

It is the smallest Borel field that includes all half-lines x ::: Xi, where Xi is any 
number. 
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a(l) 

/Th. 
c 

XI X2 X 

(0) 

FIGURE 2-9 

(b) 

a(l) 

1 'TI----.. 

o T 

(c) 

This field contains all open and closed intervals. all points. and, in fact, every set 
of points on the real line that is of interest in the applications. One might wonder whether 
F dQes not include all subsets of S. Actually. it is possible to show that there exist sets of 
points on the real line that are not countable unions and intersections of intervals. Such 
sets. however, are of no interest in most applications. To complete the specification of S, 
it suffices to assign probabilities to the events Ix :::: Xi}. All other probabilities can then 
be determined from the axioms. 

Suppose thata(x) is a function such that (Fig. 2-9a) 1: a(x) dx = 1 a(x) ::: 0 (2-26) 

We define the probability of the event (x :::: Xi} by the integral 

Pix :::: x;} = J:~ a (x) dx (2-27) 

This specifies the probabilities of all events of S. We maintain. for example, that the 
probability of the event {XI < X :::: X2} consisting of all points in the interval (XI, X2) is 
given by 

l X2 pix! < X :::: X2} = a(x) dx 
XI 

(2-28) 

Indeed, the events {x :::: xd and {XI < X :::: X2} are mutually exclusive and their union 
equals {x :s X2}. Hence [see (2-10») 

Pix :::: xd + Pix! < x :::: X2} = P{x :::: X2} 

and (2-28) follows from (2-27). 
We note that, if the function a(x) is bounded, then the integral in (2-28) tends to 0 

as Xl -+ X2. This leads to the conclusion that the probability ofthe event .. {x2} consisting 
of the single outcome X2 is 0 for every X2. In this case, the probability of all elementary 
events of S equals 0, although the probability of their unions equals 1. This is not in 
conflict with (2-21) because the total number of elements of S is not countable. 

... A radioactive substance is selected at I = 0 and the time t of emission of a particle 
is observed. This process defines an experiment whose, outcomes are aU points on the 
positive t axis. This experiment can be considered as a special case of the real line 
experiment if we assume that S is the entire t axis and all events on the negative axis 
have zero probability. 
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Suppose then that the function aCt) in (2-26) is given by (Fig. 2-9b) 

U(t) = {I t~O o t < 0 

Inserting into (2-28), we conclude that the probability that a particle will be emitted 
in the time interval (0, to) equals 

C folo e-ct dt = 1 - e-C1o 

~ A telephone call occurs at random in the interval (0, T). This means that the proba­
bilit~ that it will occur in the interval 0 ~ 1 ~ 10 equals toiT. Thus the outcomes of this 
experiment are all points in the interval (0, T) and the probability of the event {the call 
will occur in the interval (tl' t2)} equals 

• t2 - 11 
P{II ~ t ~ 12l = -T-

This is again a special case of (2-28) with a(l) = liT for 0 ~ t ~ T and 0 
otherwise (Fig. 2-9c). ~ 

PROBABILITY MASSES. The probability peA) of an event A can be interpreted as the 
mass of the corresponding figure in its Venn diagram representation. Various identities 
have similar interpretations. Consider, for example, the identity peA U B) = peA) + 
P(B)-P(AB). The left side equals the mass of the event AUB. In the sum P(A)+P(B), 
the mass of A B is counted twice (Fig. 2-3). To equate this sum with peA U B), we must, 
therefore, subtract P(AB). 

As Examples 2-8 and 2-9 show, by expressing complicated events as the union 
of simpler events that are mutually exclusive, their probabilities can be systematically 
computed. 

~ A box contains m white balls and n black balls. Balls are drawn at random one at a 
time without replacement. Find the probability of encountering a white ball by the kth 
draw. 

SOLUTION 
Let WI; denote the event 

WI; = {a white ball is drawn by the kth draw} 

The event Wk can occur in the following mutually exclusive ways: a white ball is drawn 
on the first draw, or a black ball followed by a white ball is drawn. or two black balls 
followed by a white ball. and so on. Let 

Xi = {i black balls followed by a white ball are drawn} 

Then 

i = O. 1,2 •... , n 
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and using (2-20), we obtain 

Now 

and hence 

k-\ 

P(Wk) = L P(X/) 

m 
P(Xo) = -­

m+n 

;=0 

n m 
P(X\) = -- . --~ 

m+n m+n-l 

n(n - 1) ... (n - k + l)m 
P(X/C-l) = -------'------­

(m + n)(m + n - 1) ... (m + n - k + 1) 

P(W/c) = -- 1 + + + ... m (n n(n -1) 
m + n m + n - 1 (m + n - 1)(m + n - 2) 

n(n - 1) ... (n - k + 1) ) 

+ (m + n - 1)(m + n - 2) ... (m + n - k + 1) 

By the en + l)st draw, we must have a white ball, and hence 

P(WII+I) = 1 
and using (2-29) this gives an interesting identity 

1 + n + n(n - 1) + ... 
m + n - 1 (m + n - l)(m + n - 2) 

(2-29) 

+ n(n - 1) .. ·2· 1 = m + n (2-30) 
(m + n - l)(m + n - 2) ... (m + l)m m 

~ Two players A and B draw balls one at a time alternately from a box containing m 
white balls and n black balls. Suppose the player who picks the first white ball wins the 
game. What is the probability that the player who starts the game will win? 

SOLUTION 
Suppose A starts the game. The game can be won by A if he extracts a white ball at the 
start or if A and B draw a black ball each and then A draws a whiie on~, or if A and B 
extract two black balls each and then A draws a white one and so on. Let 

XI; = {A and B alternately draw k black balls each 
and then A draws a white ball} k = 0,1,2, ... 

where the X/cs represent mutually exclusive events and moreover the event 

{A wins} = XoUX I UX2\.,1 .. • 

Hence 

PA £ peA wins) = P(Xo U XI U X2 U· .. ) 

= P(Xo) + P(Xl) + P(X2) + ... 
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where we have made use of the axiom of additivity in (2-20). Now 

m 
P(Xo) = --

and 

so that 

m+n 
m n n-I 

P(XI) = --. --­
n+m m+n-l m+n-2 

n(n -l)m 
=~--~--~-7.~----~ 

(m + n}(m + n - 1)(m + n - 2) 

P(X2) = n(n - l)(n - 2)(n - 3)m 
(m + n)(m + n - 1)(m + n - 2)(m + n - 3) 

P m (1 n(n -1) 
A = -- + -:------:-:--:------::-

m +n (m +n -l)(m +n -2) 

+ + ... n(n - l)(n - 2)(n - 3) ) 

(m + n - 1)(m + n - 2)(m + n - 3) 
(2-31) 

This above sum has a finite number of terms and it ends as soon as a term equals zero. 
ID a similar manner, 

QB = P(B wins) 

m ( n n(n - 1}(n - 2) ) 
= m+n m+n-l + (m+n-1)(m+n-2)(m+n-3) + ... (2-32) 

But one of the players must win the game. Hence 

PA + QB = 1 

and using (2-31) to (2-32) this leads to the same identity in (2-30). This should not be 
surprising considering that these two problems are closely related. ... 

2-3 CONDITIONAL PROBABILITY 

The conditional probability of an event A assuming another event M, denoted by 
peA I M), is by definition the ratio 

peA I M) = P(AM) 
P(M) 

where we assume that P (M) is not O. 
The following properties follow readily from the definition: 

If MeA then peA 1M) = 1 

because then AM = M. Similarly, 

(2-33) 

(2-34) 

if A C M then peA I M) = peA) > peA) (2-35) 
P(M) -
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AB = {e} (AM)(8M) = {0} 

~
'.I\B 

BM 
M FIGURE 2·10 

Freql18llCY Interpretation Denoting by nAt nil> and nAM the number of occurrences of 
the events A. M, and AM respective1y, we conclude from (1-1) that 

peA) ~ nA P(M) ~ nM P(AM) ~ ~ 
n n n 

. Hence 

P(A 1M) = P(AM) ~ nAMln = nAM 
P(M) nMln nlll 

This result can be phrased as follows: If we discard aU trials in which the event M did not 
occur and we retain only the subsequence of trials in which M occurred, then peA I M) 
equals the relative frequency of occurrence nAM I nil of the event A in that subsequence. 

FUNDAMENTAL BEMARK. We shall show that, for a specific M. the conditional prob­
abilities are indeed probabilities; that is, they satisfy the axioms. 

The first axiom is obviously satisfied because P(AM) ~ 0 and P(M) > 0: 

peA 1M) ~ 0 

The second follows from (2-34) because Me S: 

P(SIM) = 1 

(2-36) 

To prove the third, we observe that if the events A and B are mutually exclusive. 
then (Fig. 2-10) the events AM and BM are also mutually exclusive. Hence 

P(A UBI M) = P[(~~~)M] = P(AM~~(BM) 

This yields the third axiom: 

P(A UBI M) = peA 1M) + PCB I M) (2-38) 

From this it follows that all results involving probabilities holds also for conditional 
probabilities. The significance of this conclusion will be appreciated later (see (2-44» . 

.. In the fair-die experiment, we shall determine the conditional probability of the event 
{/2} assuming that the event even occurred. With 

A = {!2} M = {even} = {!2, 14. 16} 

we have peA) = 1/6 and P(M) = 3/6. And since AM = A, (2-33) yields 

P{!21 even} = P{!2} =! 
P{even} 3 
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a(tH-' 

100 

This equals the relative frequency of the occurrence of the event {two} in the subsequence 
whose outcomes are even numbers. ~ 

~ We denote by t the age of a person when he dies. The probability that t ::: to is 
given by 

dt 

is a function deteonined .UVlII4ULJ' records. We shall assume 

a(t) = 3 x ::: t ::: 100 years 

and 0 otherwise (Fig. 2-11). 
From (2-28) it follows that the probability that a person will die between the ages 

of 60 and 70 equals 

P(60 ::: t ::: 70} = L70 aCt) dt = 0.154 

the number of people 
population. 

IV'lt'Wf:fm the ages of 60 and 70 

50} AM=A 

it follows from (2-33) that the probability that a person will die between the ages of 60 
and 70 assuming that he was alive at 60 equals 

Ii: a(t)dt 
P{60 ::: t ::: 70 It::: 50} = 100 = 0.486 

I~ a(t)dt 

~e number of people 
nnwlh_1I' of people that are alive 

contains three white 
remove at random two balls in suc:ceS;SlO!D. 
ball is white and the second is red? 

" 
Oet'Wef:n the ages 60 and 70 divided 

and two red balls '1 
the probability that the first .... n"'vl~1"I 

We shall give two solutions to this problem. In the first, we apply (2-25); in the 
second, we use conditional probabilities. 
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FIRST SOLUTION 
The space of our experiment consists of all ordered pairs that we can form with the five 
balls: 

The number of such pairs equals 5 x 4 = 20. The event {white first, red second} consists 
of the six outcomes 

Hence [see (2-25)] its probability equals 6/20. 

SECOND SOLUTION 
Because the box contains three white and two red balls, the probability of the event 
WI = {white first} equals 3/5. If a white ball is removed, there remain two white and two 
red balls; hence the conditional probability P(R21 WI) of the event R2 = {red second} 
assuming {White first} equals 2/4. From this and (2-33) it follows that 

2 3 6 
P(W1R2) = P(R21 W1)P(W\) = 4: x 5" = 20 

where WlR2 is the event {white first, red second}. ~ 

... A box contains white and black balls. When two balls are drawn without replacement, 
suppose the probability that both are white is 1/3. (a) F'md the smallest number of balls in 
the box. (b) How small can the total number of balls be if black balls are even in number? 

SOLUTION 
(a) Let a and b denote the number of white and black balls in the box, and Wk the event 

Wk = "a white ball is drawn at the kth draw" 

We are given that P(Wl n W2) = 1/3. But 
. a-I a 1 

p(WlnW2)=p(W2nWI)=p(W2IWt)P(WI)= b 1 '--b =-3 (2-39) 
a+ - a+ 

Because 
a a-1 
-- > b>O 
a+b a+b-l 

we can rewrite (2-39) as 

( a-I )2 1 (a)2 
a+b-l <3< a+b 

This gives the inequalities 

(../3 + 1)b/2 < a < 1 + (../3 + l)b/2 

For b = I, this gives 1.36 < a < 2.36, or a = 2, and we get 
2] 1 

P(W2 n WI) = 3' 2 = 3 
Thus the smallest number of balls required is 3. 

(2-40) 
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TABLE 2-1 

b 

2 

4 

a from (2-40) 

3 

6 

3 2 3 I 
5'4=]O:;C3 

6 5 J 
10'9=3 

(b) For even value of b, we can use (2-40) with b = 2, 4, ... as shown in Table 2-1. 
From the table, when b is even, 10 is the smallest number of balls (a = 6, b = 4) that 
gives the desired probability. ~ 

Total Probability and Bayes' Theorem 

If U = [A I, ... , An] is a partition of Sand B is an arbitrary event (Fig. 2-5), then 

PCB) = PCB I AI)P(AI} + ... + PCB I An)P(An) (2-41) 

Proof. Clearly. 

B = BS = B(AI U··· U An} = BAI U .. · U BAn 

But the events B AI and B A j are mutually exclusive because the events Ai and A j are 
mutually exclusive [see (2-4)]. Hence 

PCB) = P(BAI) + ... + P(BAn } 

and (2-41) follows because [see (2-33)] 

P(BA;) = PCB I Aj)P(A/) (2-42) 

This result is known as the total probability theorem. 
Since P(BA;} = peA; I B)P(B) we conclude with (2-42) that 

peA; I B) = PCB I Ai) ~~~~ (2-43) 

Inserting (2-4) into (2-43), we obtain Bayes' theorem3: 

peA; I B) = PCB I A/)P(A;) (2-44) 
PCB I AI)P(AI) + ... + PCB I An}P(An} 

Note The tenns a priQri and a posteriori are often used for the probabilities P(A;) and P(AI I B). 

~ Suppose box 1 contains a white balls and b black balls, and box 2 contains c white 
balls and d black balls. One ball of unknown color is transferred from the first box into 
the second one and then a ball is drawn from the latter. What is the probability that it 
will be a white ball? 

30Jbe main idea of this theorem is due to Rev. Thomas Bayes (ca. 1760). However. its final form (2-44) was 
given by LapJace several years later. 
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SOLUTION 
If no baIl is transfen'ed from the first box into the second box, the probability of obtaining 
a white ball from the second one is simply cl(c + d). In the present case, a ball is first 
transferred from box 1 to box:! and there are only two mutually exclusive possibilities 
for this event-the transferred ball is either a white ball or a black ball. Let 

W = {transferred ball is white} B = {transferred ball is black} 

Note that W. together with B form a partition (W U B = S) and 

The·event of interest 

a 
P(W)=­

a+b 

b 
PCB) =-­

a+b 

A = {white ball is drawn from the second box} 

can happen only under the two mentioned mutually exclusive possibilities. Hence 

But 

Hence 

peA) = PtA n (W U B)} = PleA n W) U (A n B)} 

= peA n W) + peA n B) 

= peA I W)P(W) + peA I B)P(B) 

peA I W) = c+ I 
c+d+l 

peA I B) = ; 
c+ +1 

peA) _ a(c+ 1) be _ ac+hc+a 
- (a+b)(c+d+l) + (a+b)(c+d+l) - (a+b)(c+d+l) 

(2-45) 

(2-46) 

gives the probability of picking a white ball from box 2 after one ball of unknown color 
has been transferred from the first box. ~ 

The concepts of conditional probability and Bayes theorem can be rather confusing. 
As Example 2·15 shows, care should be used in interpreting them. 

~ A certain test for a particular cancer is known to be 95% accurate. A'person submits 
to the test and the results are positive. Suppose that the person comes from a popUlation 
of 100,000, where 2000 people suffer from that disease. What can we conclude about 
the probability that the person under test has that particular cancer? 

SOLUTION 
Although it will be tempting to jump to the conclusion that based on the test the probability 
of baving cancer for that person is 95%, the test data simply does not support that. The test 
is known to be 95% accurate, which means that 95% of all positive tests are correct and 
95% of all negative tests are correct. Thus if the events (T > O} stands for the test being 
positive and {T < O} stands for the test being negative, then with H and C r~presenting 
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the sets of healthy and cancer patients, we have 

peT > 0 I C) = 0.95 peT > 0 I H) = 0.05 

P (T < a I C) = 0.05 peT < 01 H) = 0.95 

The space of this particular experiment consists of 98,000 healthy people and 
2000 cancer patients so that in the absence of any other infonnation a person chosen 
at random is healthy with probability 98,000/100,000 = 0.98 and suffers from cancer 
with probability 0.02. We denote this by P(H) = 0.98, and P(C) = 0.02. To interpret 
the test results properly, we can now use the Bayes' theorem. In this case, from (2-44) 
the probability that the person suffers from cancer given that the test is positive is 

peT > 01 C)P(C) peT > 0 I C)P(C) 
P,(C IT> 0) = peT > 0) = P(T > 0 I C)P(C) + peT > 0 I H)P(H) 

= 0.95 x 0.02 = 0.278 
0.95 x 0.02 + 0.05 x 0.98 

(2-47) 

This result states that if the test is taken by someone from this population without 
knowing whether that person has the disease or not. then even a positive test only suggests 
that there is a 27.6% chance of having the disease. However, if the person knows that he 
or she has the disease, then the test is 95% accurate. ..... 

.... We have four boxes. Box 1 contains 2000 components of which 5% are defective. 
Box 2 contains 500 components of which 40% are defective. Boxes 3 and 4 contain 
1000 each with 10% defective. We select at random one of the boxes and we remove at 
random a single component. 

(a) What is the probability that the selected component is defective? 

SOLUTION 
The space of this experiment consists of 4000 good (g) components and 500 defective 
(d) components arranged as: 

Box 1: 1900g, 100d 
Box 3: 9OOg, 100d 

Box 2: 300g,200d 
Box 4: 900g, lOOd 

We denote by Bi the event consisting of all components in the ith box and by D 
the event consisting of all defective components. Clearly, 

P(BI ) = P(B2) = P(B3) = P(B4) = i (2-48) 

because the boxes are selected at random. The probability that a component taken from a 
specific box is defective equals the ratio of the defective to the total num.bel-of components 
in that box. This means that 

100 200 
P(D I B1) = 2000 = 0.05 P(D l]h) = 500 = 0.4 

100 100 
P(D I B3) = 1000 = 0.1 P(D I B4) = 1000 = 0.1 

(2-49) 

And since the events B •• B2, B3, and B4 fonn a partition of S, we conclude from (2-41) 
that 

P(D) =0.05 xi +0.4 xl +0.1 x i +0.1 x i =0.1625 

This is the probability that the selected component is defective. 
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(b) We examine the selected component and we find it defective. On the basis of 
this evidence, we want to detennine the probability that it came from box 2. 

We now want the conditional probability P(B21 D). Since 

P(D) = 0.1625 

(2-43) yields 

0.25 
P(B21 D) = 0.4 x 0.1625 = 0.615 

Thus the a priori probability of selecting box 2 equals 0.25 and the a posteriori 
probability assuming that the selected component is defective equals 0.615. These prob­
abilities have this frequency interpretation: If the experiment is performed n times, then 
box 2 is selected 0.25n times. If we consider only the nD experiments in which the 
removed part is defective, then the number of times the part is taken from box 2 equals 
0.615nD· 

We conclude with a comment on the distinction between assumptions and deduc­
tions: Equations (2-48) and (2-49) are not derived; they are merely reasonable assump­
tions. Based on these assumptions and on the axioms, we deduce that P(D) = 0.1625 
and P(B2 1 D) = 0.615. ..... 

Independence 

Two events A and B are called independent if 

P(AB) = P(A)P(B) (2-50) 

The concept of independence is fundamental. In fact, it is this concept that justifies 
the mathematical development of probability, not merely as a topic in measure theory, 
but as a separate discipline. The significance of independence will be appreciated later 
in the context of repeated trials. We discuss here only various simple properties. 

Frequency interpretation Denoting by nA, nB, and nAB the number of occurrences of 
the events A, B, and AB, respectively, we have 

P(A)::::: nA 
n 

P(B)::::: ~ 
n 

P(AB)::::: nAB 
n 

If the events A and B are independent, then 

nA ::::: P(A) = P(AB) ::::: nAB/n = nAB 
n P(B) nBln nB 

Thus, if A and B are independent, then the relative frequency nA/n of the occurrence of A 
in the original sequence of n trials equals the relative frequency nAB/nB of the occurrence 
of A in the subsequence in which B occurs. 

We show next that if the events A and B are independent, then the events A and 
B and the events A and B are also independent. 

As we know, the events AB and ABare mutually exclusive and 

B=ABUAB P(A) = 1 - P(A) 
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From this and (2-50) it follows that 

P(AB) = PCB) - P(AB) = [1 - P(A)IP(B) = P(X)P(B) 

This establishes the independence of A and B. Repeating the argument, we conclude 
that A and B are also independent. 

In Examples 2-17 and 2-18, we illustrate the concept of independence. In Example 
2-17a. we start with a known experiment and we show that two of its events are inde­
pendent. In Examples 2-17b and 2-18 we use the concept of independence to complete 
the specification of each experiment. This idea is developed further in Chap. 3. 

~ If we toss a coin twice, we generate the four outcomes hh. ht. t h, and t t . 
. (a) To construct an experiment with these outcomes, it suffices to assign probabil­

ities to its elementary events. With a and b two positive numbers such that a + b = 1, 
we assume that 

P{hh) = a2 P{ht} = Pith} = ab Pitt} = b2 

These probabilities are consistent with the axioms because 

a2 +ab+ab +b2 = (a +b)2 = 1 

In the experiment so constructed, the events 

HI = {heads at first toss} = {hh. ht} 

H2 = {heads at second toss} = {hh. th} 

consist of two elements each. and their probabilities are [see (2-23)] 

P(HI) = P{hh} + P{hE} = a2 + ab = a 

P(H2) = P{hhJ + P{lh} = a2 + ab = a 

The intersection HIH2 of these two events consists of the single outcome (hhJ. 
Hence 

P(HI H2) = P{hh) = a2 = P(HI )P(H2) 

This shows that the events HI and H2 are independent. 
(b) The experiment in part (a) of this example can be specified in terms of the 

probabilities P(HI) = P(H2) = a of the events HI and H2. and the information that 
these events are independent. 

Indeed. as we have shown. the events HI and H2 and the events~HI and H2 are 
also independent. Furthermore, 

HIH2 = {ht} 

and PCHI) = 1 - P(HI) = 1 - a, P(H2) = 1 - P(H2) = 1 - a. Hence 

P{hh} = a2 P{ht} = a(l - a) Pith} = (l - a)a Pitt) = (1 - ai .... 

~ Trains X and Y arrive at a station at random between 8 A.M. and 8.20 A.M. Train 
X stops for four minutes and train Y stops for five minutes. Assuming that the trains 
arrive independently of each other, we shall determine various probabilities related to the 
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FIGURE 2-12 

times x and y of their respective arrivals. To do so, we must first specify the underlying 
experiment. 

. The outcomes of this experiment are all points (x, y) in the square of Fig. 2-12. 
The event 

A = {X arrives in the interval (tI, t2)} = {tl ~ x ~ t2l 

is a vertical strip as in Fig. 2-12a and its probability equals (/2 - tl)/20. This is our 
interpretation of the information that the train arrives at random. Similarly, the event 

B = {Y arrives in the interval (t3, t4)l = (t3 ~ Y ~ t4l 

is a horizontal strip and its probability equals (t4 - t3)/20. 
Proceeding similarly, we can determine the probabilities of any horizontal or ver­

tical sets of points. To complete the specification of the experiment, we must detennine 
also the probabilities of their intersections. Interpreting the independence of the anival 
times as independence of the events A and B, we obtain 

P(AB) = P(A)P(B) = (t2 - tl){r.. - t3) 
20x20 

The event AB is the rectangle shown in the figure. Since the coordinates of this 
rectangle are arbitrary, we conclude that the probability of any rectangle equals its area 
divided by 400. In the plane, all events are unions and intersections of rectangles forming 
a Borel field. This shows that the probability that the point (x, y) will be in an arbitrary 
region R of the plane equals the area of R divided by 400. This completes the specification 
of the experiment. 

(a) We shall determine the probability that train X arrives before train Y. This is 
the probability of the event 

C = {x ~ y} 

shown in Fig. 2-12b. This event is a triangle with area 200. Hence 

P(C) = 200 
400 

(b) We shall determine the probability that the trains meet at the station. For the 
trains to meet, x must be less than y + 5 and y must be, less than x + 4. This is the event 

D = {-4 ~ x - y ~ 5} 

of Fig. 2-12c. As we see from the figure, the region D consists of two trapezoids with 
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common base, and its area equals 159.5. Hence 

P(D) = 159.5 
400 

(c) Assuming that the trains met, we shall determine the probability that train X 
arrived before train Y. We wish to find the conditional probability P(C I D). The event 
CD is a trapezoid as shown and its area equals 72. Hence 

p~m 72 ~ 
P(C I D) = P(D) = 159.5 

INDEPENDENCE OF THREE EVENTS. The events AI, A2,andA3areca11ed(mutually) 
independent if they are independent in pairs: 

P(A/A) = P(A/}P(Aj} i :f: j (2-51) 

and 

(2-52) 

We should emphasize that three events might be independent in pairs but not 
independent. The next example is an illustration. 

~ Suppose that the events A, B, and C of Fig. 2-13 have the same probability 

peA) = PCB) = P(C) = k 
and the intersections AB, AC. BC, and ABC also have the same probability 

p = P(AB) = P(AC) = P(BC) = P(ABC) 

(a) If p = 1/25, then these events are independent in pairs but they are not 
independent because 

P(ABC) :f: P(A)P(B)P(C} 

(b) If p = 1/125, then P(ABC) = P(A)P(B)P(C) but the events are not 
independ~ntbecause 

P(AB):f: P(A)P(B) 

From the independence of the events A, B, and C it follows that: 

1. Anyone of them is independent of the intersection of the other two. 
Indeed, from (2-5 I} and (2-52) it follows that 

P(A1A2A3) = P(AI)P(A2)P(A3) = P(AI)P(A2A3) (2-53) 

Hence the events AI and A2A3 are independent. 
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2. If we replace one or more of these events with their complements, the resulting 
events are also independent. 

Indeed, since 

AIAz = AIAzA; U AIAzA3; 

we conclude with (2-53) that 

P(AIAzA3) = P(AIAz) - P(A 1Az)P(A3} = P(A1)P(Az)P(A3) 

Hence the events A I. Az, and A 3 are independent because they satisfy (2-52) and, 
as we have shown earlier in the section, they are also independent in pairs. 

3. Anyone of them is independent of the union of the other two. 
To show that the events A I and Az U A3 are independent, it suffices to show 

that the events A 1 and Az U A3 = A zA 3 are independent. This follows from 1 
and 2. 

Generalization. The independence of n events can be defined inductively: Suppose that 
we have defined independence of k events for every k < n. We then say that the events 
AI, ... , An are independent if any k < n of them are independent and 

(2-54) 

This completes the definition for any n because we have defined independence for n = 2. 

~ In a group of n people, (a) what is the probability that two or more persons will have 
the same birthday (month and date)? (b) What is the probability that someone in that 
group will have birthday that matches yours? 

SOLUTION 
There are N = 365 equally likely ways (number of days in a year) where the birthdays of 
each person can fall independently. The event of interest A = "two or more persons have 
the same birthday" is the complement of the simpler event B = "no two persons have the 
same birthday." To compute the number of ways no matching birthdays can occur among 
n persons, note that there are N ways for the first person to have a birthday, N - 1 ways 
for the second person without matching the first person, and finally N - n + 1 ways for the 
last person without matching any others. Using the independence assumption this gives 
N(N -1) ... (N -r + 1) possible "no matches." Without any such restrictions, there are 
N choices for each person's birthday and hence there are a total of N n w~ys of assigning 
birthdays to n persons. Using the classical definition of probability in (1-7) this gives 

N(N - 1) ... (N - n + 1) nrr-l ( k ) 
PCB) = = 1--

Nn k=1 N 

and hence the probability of the desired event 

peat least one matching pair among n persons) = PCB) = 1 - PCB) 

II-I (k) . = 1 - II 1 - N :::: 1- e- 2:::. k/ N = 1- e-n(n-I)/ZN 

k=1 

(2-55) 
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where we have used the approximation e -.1 ~ 1 - x that is valid for small x. For example, 
n = 23 gives the probability of at least one match to be 0.5, whereas in a group of 
50 persons, the probability of a birthday match is 0.97. 

(b) To compute the probability for a personal match, once again it is instructive to 
look at the complement event. In that case there are N - 1 "unfavorable days" among N 
days for each person not to match your birthday. Hence the probability of each person 
missing your birthday is (N - 1) / N. For a group of n persons, this gives the probability 
that none of them will match your birthday to be (1 - 1/ NY' ~ e-nl N, and hence the 
probability of at least one match is 1 - e-nIN• For a modest 50-50 chance in this case, 
the group size needs to be about 253. In a group of 1000 people, chances are about 93% 
that there will be someone sharing your birthday. ..... 

~ Three switches connected in parallel operate independently. Each switch remains 
closed with probability p. (a) Find the probability of receiving an input Signal at the 
output. (b) Find the probability that switch SI is open given that an input signal is 
received at the output. 

SOLUTION 
(a) Let Ai = "Switch Sj is closed." Then P(Al') = p, i = 1,2,3. Since switches operate 
independently, we have 

Let R represents the event "Input signal is received at the output." For the event R to 
occur either switch 1 or switch 2 or switch 3 must remain closed (Fig~ 2-14), that is, 

peR) = 1- P(R) = 1- PCAJA2A3) = 1- P(A1)P(Al)P(A3) 

= 1 - (1- p)3 = 3p _ 3p2 + p3 

(2-56) 

(2-57) 

We can also derive (2-57) in a different manner. Since any event and its compliment 
form a trivial partition, we can always write 

(2-58) 

But peR I AJ) = I, and peR I AI) = P(A2 VA3) = 2p - pl, and using these in (2-58) 
we obtain 

peR) = p + (2p - p2)(l- p) = 3p - 3p2 + p3" (2-59) 

Input ---l_~-----~ o-------r--_ Output 

FIGURE 2-14 
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which agrees with (2-57), Note that the events AI, A2. and A3 do not form a partition, 
since they are not mutually exclusive. Obviously any two or an three switches can be 
closed (or open) simultaneously, Moreover. P(AI) + P(A2) + P(A3) =F l. 

(b) We need peAl I R), From Bayes' theorem 

P(AI I R) = peR I Al)P(Al) = (2p - p2)(1 - p) = 2 - 3p + p2, (2-60) 
peR) 3p - 3p2 + p3 3 - 3p + p2 

Because of the symmetry of the switches. we also have 

~ A biased coin is tossed till a head appears for the first time, What is the probability 
that the number of required tosses is odd? 

SOLUTION 
Let 

A, = "Head appears at the i th toss for the first time" 

= IT, T, T,; " "1',, B} 
i-I 

Assuming that each trial is independent of the rest, 

peA,) = pelT, T. "., T, B}) = P(T)P(T),·, P(T)P(B) = qi-lq (2-61) 

where PCB) = p, P(T) = q = 1 - p. Thus 

P("Head appears on an odd toss") 

= P(AI U A3 U As u· .. ) 
00 00 00 

= I: P(A2i+l) = L:q2i p = P }:q2i 
1.0 1.0 1-0 

p p 
= l- q2 = (1 +q)(l-q) 

1 1 
=1+q=2-p 

(2-62) 

because Ai U A j = 0, i =F j, Even for a fair coin, the probability of "Head first appears 
on an odd toss" is 2/3. ~ c 

As Theorems 2-1 through 2-3 show, a number of important consequences can be 
derived using the "generalized additive law" in (2-21), 

~ If A I. A2 • ... is an "increasing sequence" of events, that is, a sequence such that 
AI C A2 C .. " then 

P (U At) = lim P(A.), 
t 11-+00 

(2-63) 
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Proo/. Clearly, the events 

are mutually exclusive and have union Uk Aj:, Moreover, 

Therefore. by (2-21) 

n 

UBk=A" 
b.1 

II-I 

Bn = An - U Bk , ••• 
11-1 

P(UAk) = P(UBk) = LP(Bk) = lim tp(Bk) 
k II II ..... 00 11-1 

= lim P (0 Bk) = lim P(A.) 
"-'00 k_ t ...... 00 

(2-64) 

(2-65) 

(2-66) 

~ If At, A2, . . . is a "decreasing sequence" of events, that is, a sequence such that 
At :::> A2 :::> • , " then 

Proof. Considering the complementary events, we get AI C A2 C ' , " and hence, by (2-63) 

p(nAII) = 1- P(UAk) = 1- lim P(A,,)= lim [1- P(A,,)] = lim P(A.) 
II II .... 00 ..... 00 _00 

In the case of arbitrary events, we have the result in Theorem 2-3. 

~ The inequality 

p( yAk) ~ ~P(Ak) (2-68) 

holds for arbitrary events AI, A2 , ' , .. 

Proof. Proceeding as in (2-64), Uk All can be expressed as the union of the mutually exclusive 
events PI, B2, , " , where BA: C Ak and hence P(Bt ) < peAk). Therefore 

p( yAk) = p( yBk) = ~P(Bk):S ~P(Ak) 
, 

Notice that (2-68) is a direct generalization of (2-21), where the events are not mutually 
exclusive. We can make use of Theorems 2-1 to 2-3 to prove an important result known as 
Borel-Cantelli lemma, 
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BOREL-CANTELLI LEMMA Given a sequence of events AI, A2, ... , with 
probabilities Pk = peAk), k = ],2, ... , (l) suppose 

00 

LPk < 00 (2-69) 
k=1 

that is, the series on the left converge 1;. Then, with probability I only finitely many of 
the events AI. Az • ...• occur. 

(il) Suppose A I, A2 • ... are also independent events. and 
00 

LPk=oo (2-70) 
k=1 

that .is, the series on the left diverges. Then, with probability 1 infinitely many of the 
events AI. Az, ... occur. 

Proof. (i) Let B be the event that "infinitely many of the events AI> A2. '" occur," and let 

(2-71) 

so that Bn is the event that at least one of the events An' An+I •... occurs. Clearly B occurs if 
and only if B. occurs for every n = 1, 2, .... To see this, let the outcome ~ belong to an infinite 
number of events AI. Then ~ must belong to every B", and hence it is contained in their intersection nit B •• Conversely if ~ belongs to this intersection, then it belongs to every Bn. which is possible 
only if ~ belongs to an infinite number of events Ai. Thus . 

Further, BI ::> B2 ::> ... , and hence, by Theorem 2-2, 

PCB) = lim P(Bn) 
11-+00 

But, by Theorem 2-3 

P(B,,)!:: LP(Ak) = LPIc ~ 0 as n ~ 00 

k;, J:~" 

because of (2-69). Therefore 

PCB) = lim PCB,,) = lim ~ Pic = 0 
n ..... co """"00 L." 

k:!:" 

(2-72) 

(2-73) 

(2-74) 

(2-75) 

that is, the probability of infinitely many of the events AI, A2, ... occurring is O~Equivalently, the 
probability of only finitely many of the events A It A2 • ••• occurring is 1. 

(ii) To prove the second part, taking complements of the events Bft and B in (2-71) and 
(2-72), we get 

(2-76) 
n 

Further. 
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for every ni = 0, 1,2, .... Therefore, by the independence of the events AI, A2, .... we get 

P(Bn) :::: P (lin Ak) = P(A,,)··· P(AI/+m) 
k .. " 

= (1- p,)---(1- p._),;exp (-~ .. ) (2-77) 

where we have made use of the inequality 1 - x :::: e-x , x ~ O. Notice that if AI, A2, ... is a 
sequence of independent events, then so is the sequence of complementary events AI, A2 , •••• 

But from (2-70) 

11+110 

~Pk-+OO as m-oo (2-78) 

Therefore, passing to the limit m _ 00 in (2-77), we find that p('ii .. ) = 0 for every n == 1,2, .... 
Thus using (2-76) 

P(8) :::: ~ P(BII ) = 0 
II 

and hence 

PCB) = 1 - P(B) = 1 (2-79) 

that is, the probability of infinitely many of the events A .. A2, •.. occurring is 1. Notice that the 
second part of the Borel-Cantelli lemma, which represents a converse to the first part, requires the 
ad~tiona1 assumption that the events involved be independent of each other. <IIIIlI 

As an example, consider the event .. H H ... H" occurring in a sequence ofBemoulli 
trials. To determine the probability that such an "aU success" sequence oflength nap­
pears infinitely often, let Ale stand for the event "Head appears on the kth toss," and 
define Bj = Ai n AI+I n ... AI+n-I, i ~ 1. We have P(Bj ) = Pi = pH. The events Bj 

are not independent, however, the events BI, Bn+l, B211+1, ••• are independent, and the 
series 2::.0 Plcll+l diverges. Hence, from the second part of the Borel-Cantelli lemma, it 
follows that with probability one the pattern" H H ... Hot (as well as any other arbitrary 
pattern) will occur infinitely often. To summarize, if the sum of the probabilities of an 
infinite set of independent events diverge. then with probability 1, infinitely many of 
those events will occur in the long run. 

PROBLEMS 
2·1 Show that (a) AUBUAU B = A; (b) (A U B)(AB) = ABU BA. . 
2-2 If A = (2 :::: x ~ 5) and B = {3 :::: x :::: 6}, find A U B, AB. and (A U B)(AB). 
2-3 Show-that if AB = {III}, then peA) :::: PCB). 
2-4 Show that (a) if peA) = PCB) = P(AB), then P(ABUBA) = 0; (b) if peA) = PCB) = 1, 

then P(AB) = 1. 
2-S Prove and generalize the following identity 

peA U B U C) = peA) + PCB) + P(C) - P(AB) -; P(AC) - P(BC) + P(ABC) 

2-6 Show that if S consists of a countable number of elements ~l and each subset (~i) is an event, 
then all subsets of S are events. 

2-7 If S = (1, 2. 3, 4). find the smallest field that contains the sets {I} and {2, 3}. 
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2·8 If A c B, peA) = 1/4, and P(B) = 1/3. find peA 1 B) and PCB 1 A). 
2·9 Show that P(AB 1 C) = peA 1 BC)P(B 1 C) and P(ABC) = peA 1 BC)P(B 1 C)P(C). 

2·10 (Chain rule) Show that 

P(An ... AI) ::.:: P(An 1 An-I'" AI)' .. P(A2 [ AI)P(AI) 

2·11 We select at random m objects from a set S of n objects and we denote by Am the set of the 
selected objects. Show that the probability p that a particular element SO of S is in Am equals 
min. 

Hint: p equals the probability that a randomly selected element of S is in Am. 
2·12 A call occurs at time t. wheret is a random point in the interval (0,10). (a) Find P{6 :::: t :::: 8}. 

(b) Find P{6 ~ t ~ 81 t > 5}. 
2·13 The space S is the set of all positive numbers t. Show that if P{to ~ t ~ to + tilt::=' to} = 

. PIt ~ II} for every to and tlo then P{t ~ tl} = 1 - e-CII , where c is a constant. 
2·14 The events A and B are mutually exclusive. Can they be independent? 
2·15 Show that if the events AI . ...• An are independent and B; equals AI or AI or S, then the 

events BI • •••• Bn are also independent. 
2·16 A box contains n identical balls numbered 1 through n. Suppose k balls are drawn in 

Suc.,'·cession. (a) What is the probability that m is the largest number drawn? (b) What is the 
probability that the largest number drawn is less than or equal to m? 

2-17 Suppose k identical boxes contain n balls numbered 1 through n. One ball is drawn from 
each box. What is the probability that m is the largest number drawn? 

2-18 Ten passengers get into a train that has three cars. Assuming a random placement of passen­
gers, what is the probability that the first car will contain three of them? 

2-19 A box contains m white and n black balls. Suppose k balls are drawn. Find the probability 
of drawing at least one white ball. 

2·20 A player tosses a penny from a distange onto the surface of a square table ruled in 1 in. 
squares. If the penny is 3/4 in. in diameter, what is the probability that it will fall entirely 
inside a square (assuming that the penny lands on the table). 

2·21 In the New York State lottery, six numbers are drawn from the sequence of numbers 1 through 
51. What is the probability that the six numbers drawn will have (a) all one digit numbers? 
(b) two one-digit and four two-digit numbers? 

2·22 Show that 21' - (n + 1) equations are needed to establish the independence of n events. 
2·23 Box 1 contains 1 white and 999 red balls. Box 2 contains 1 red and 999 white balls, A ball 

is picked from a randomly selected box. If the ball is red what is the probability that it came 
from box I? 

2·24 Box 1 contains 1000 bulbs of which ] 0% are defective. Box 2 contains 2000 bulbs of which 
5% are defective. Two bulbs are picked from a randomly selected box. (a) Find the probability 
that both bulbs are defective. (b) Assuming that both are defective, find the probability that 
they came from box 1. • 

2·25 A train and a bus arrive at the station at random between 9 A.M. and 10 A.M. The train stops 
for 10 minutes and the bus for x minutes. Find x so that the probability that the bus and the 
train will meet equals 0.5. 

2·26 Show that a set S with n elements has 
n(n - 1) ... (n - k + 1) n! =---

1·2···k k!(n-k)! 

k-element subsets. 
2·27 We have two coins; the first is fair and the second two-headed. We pick one of the coins 

at random, we toss it twice and heads shows both times. Find the probability that the coin 
picked is fair. 



CHAPTER 

3 
REPEATED 
TRIALS 

3·1 COMBINED EXPERIMENTS 

We are given two experiments: The first experiment is the rolling of a fair die 

S. = {fl,"" Id PI{ft} = ~ 
The second experiment is the tossing of a fair coin 

S2 = {h, t} P2{h} = P2{t} = ! 
We perform both experiments and we want to find the probability that we get "two" on 
the die and "heads" on the coin. 

If we make the reasonable assumption that the outcomes of the first experiment are 
independent of the outcomes of the second. we conclude that the unknown probability 
equals 1/6 x 1/2. 

This conclusion is reasonable; however. the notion of independence used in its 
derivation does not agree with the definition given in (2-50). In that definition, the events 
A and B were subsets of the same space. In order to fit this conclusion into our theory, 
we must. therefore, construct a space S having as subsets the events "two" and "heads." 
This is done as follows: ~ 

The two experiments are viewed as a single experiment whose outcomes are pairs 
~. ~2. where ~I is one of the six faces of the die and ~2 is heads or tails} The resulting 
spac~ consists of the 12 elements 

/th, ... , 16h, lIt, ... , 16t 

I In the earlier discussion. the symbol {I represented a single element of a set $. From now on. ~i will also 
represent an arbitrary element of a set S;. We will understand from the context whether {I is one particular 
element or any element of $;. 
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In this space. {tWO} is not an elementary event but a subset consisting of two 
elements 

{two} = {hh, ht} 

Similarly, {heads} is an event with six elements 

{heads} = {!lh, ... , 16h} 

To complete the experiment, we must assign probabilities to all subsets of S. 
Clearly, the event {two} occurs if the die shows ''two'' no matter what shows on the coin. 
Hence 

P{two} = Pdh} = ~ 
Similarly, 

P{heads) = P2{h} = ! 
The intersection of the events {two} and {heads} is the elementary event {hh}. 

Assuming that the events {two} and {heads} are independent in the sense of (2-50), we 
conclude that P {hh} = 1/6 x 1/2 in agreement with our earlier conclusion. 

Cartesian Products 

Given two sets SI and ~ with elements ~1 and ~2' respectively, we form all ordered pairs 
~1'2' where ~1 is any element of SI and ~2 is any element of S2. The cartesian product 
of the sets S 1 and ~ is a set S whose elements are all such pairs. This set is written in 
the form 

S = SI X ~ 

~ The cartesian product of the sets 

SI = {car, apple, bird} S2 = {h, t} 

has six elements 

SI X S2 = {car-h, car-t, apple-h, apple-t, bird-h. bird-I} 

... If SI = {h, t}, S2 = {h, r}. Then 

SI x S2 = {hh, hI, th, ttl 

In this example, the sets S 1 and S2 are identical. We note also that the element ht 
is diff:erent from the element tho ~ 

If A is a subset of SI and B is a subset of S2, then the set , 
C=AxB 

cOnsisting of all pairs ~1'2' where~1 e A and C2 e B. is a subset of S. 
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Ponning similarly the sets A x S2 and SI X B. we conclude that their intersection 
is die set A x B: 

(3-1) 

Note Suppose that 31 is the x axis, s" is the y axis. and A and B are two intervals: 

In this case. A x B is a rectangle. A x ~ is a vertical strip. and SIX 8 is a horizontal strip (Fig. 3-1). 
We can thus inrerpret the cartesian product A x B of two arbitrary sets as a generalized rectangle. 

CARTESIAN PRODUCT OF TWO EXPERIMENTS. The cartesian product of two ex­
periments SI and S2 is a new experiment S = SI X ~ whose events are all cartesian 
products of the fonn 

AxB (3-2) 

where A is an event of SI and B is an event of S2. and their UBions and intersections. 
In this experiment, the probabilities of the events A x ~ and SI X B are such 

that 

(3-3) 

where PI (A) is the probability of the event A in the experiments SI and P2(B) is 
the probability of the event B in the experiments ~. This fact is motivated by the 
interpretation of S as a combined experiment. Indeed, the event A x ~ of the experiment 
S occurs if the event A of the experiment S1 occurs no matter what the QUtcome of ~ is. 
Similarly, the event SI x B of the experiment S occurs if the event B of the experiment 
S2 occurs no matter what the outcome of SI is. This justifies the two equations in (3-3). 

These equations determine only the probabilities of the events A x S2, and SI x B. 
The probabilities of events oftbe fonn A x B and of their unions and intersections cannot 
in general be expressed in terms of PI and P2. To determine them, we need additional 
information about the experiments SI and S2. 

IN;I)EPENDENT EXPERIMENTS. In many applications, the events A x S2 and SI X B 
of the combined experiment S are independent for any A and B. Since the intersection 
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of these events equals A x B [see (3-1)), we conclude from (2-50) and (3-3) that 

(3-4) 

This completes the specification of the experiment S because all its events are 
unions and intersections of events of the form A x B. 

We note in particular that the elementary event {s \ S2} can be written as a cartesian 
product {ttl x {S2} ofthe elementary events gd and {S2} of SI and S2. Hence 

(3-5) 

~ A box BI contains 10 white and 5 red balls and a box B2 contains 20 white and 
20 red balls. A ball is drawn from each box. What is the probability that the ball from 
B\ will be white and the ball from B2 red? 

This operation can be considered as a combined experiment. Experiment S} is 
the drawing from B\ and experiment S2 is the drawing from B2. The space S1 has 15 
elements: 10 white and 5 red balls. The event 

WI = {a white ball is drawn from Btl 

has 10 favorable elements and its probability equals 10/15. The space S2 has 40 elements: 
20 white and 20 red balls. The event 

R2 = {a red ball is drawn from B21 

has 20 favorable elements and its probability equals 20/40. The space SI x S2 has 40 x 15 
elements: all possible pairs that can be drawn. 

We want the probability of the event 

W\ x R2 = {white from BI and red from B2l 

Assuming independence of the two experiments, we conclude from (3-4) that 

10 20 
P(WI x R2) = PI (WI )P2(R2) = 15 x 40 

~ Consider the coin experiment where the probability of "heads" equals p and the 
probability of "tails" equals q = 1 - p. If we toss the coin twice, we obtain the space 

SI = ~ = {h, t} 

Thus S consists of the four outcomes hh. ht. th, and tt. Assuming that the experiments 
SI and S2 are independent, we obtain 

P{hh} = Pdh}P2{h} = p2 

Similarly, 

P{ht} = pq P{th} = qp Pitt} = q2 , 

We shall use this information to find the probability of the event 

HI = {heads at the first toss} = {hh, ht} 
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Since HI consists of the two outcomes hh and ht; (2-23) yields 

P(HI} = P{hh} + P(ht} = p2 + pq = P 

This follows also from (3-4) because HI = {h} X S2. ~ 

GENERALIZATION. Given n experiments S, •... , Sn. we define as their cartesian 
product 

S = SI X ••• X Sn (3-6) 

the experiment whose elements are all ordered n tuplets ~I ••• 'II where ~I is an element 
of the set SI. Events in this space are all sets of the form 

Al x .. · X All 

where Ai C S" and their unions and intersections. If the experiments are independent 
and Pi(Ai) is the probability of the event Ai in the experiment Sit then 

peAl x .. · x All) = Pt(AI) .. ·Pn(A/I) (3-7) 

~ If we toss the coin of Example 3·4 n times, we obtain the space S = SI X ••• X Sn 
consisting of the 2" elements ~I ••• ~". where ~i = h or t. Clearly. 

P{~t .. , ~II} = PI {~1}'" PII{~II} P,{~i} = {qP ~,= h (3-8) 
~i = t 

If. in particular. p = q = 1/2, then 

1 
P{~I ... ~II} = 2" 

From (3·8) it follows that, if the elementary event {~1 ... ~n} consists of k heads 
and n - k tails (in a specific order), then 

(3-9) 

We note that the event HI = {heads at the first toss} consists 012/1-1 outcomes 
~1 ••• ~Il' where ~1 = h and 'i = t or h for i > 1. The event HI can be written as a 
cartesian product 

HI = {h} x S2 X ••• x S. 

Hence lsee (3-7») 

P(HI) = PI {h}P2(S2) ... Pn(Sn) = P 

because Pi(Si) = 1. We can similarly show that if 

Hi = {heads at the i th toss} Ii = {tails at the ith toss} , 
then-

P(Hi ) = p 
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DUAL MEANING OF REPEATED TRIALS. In the theory of probability, the notion of 
repeated trials has two fundamentally different meanings. The first is the approximate 
relationship (1-1) between the probability P (A) of an event A in an experiment S and the 
relative frequency of the occurrence of A. The second is the creation of the experiment 
S x··· x S. 

For example, the repeated tossings of a coin can be given the following two inter­
pretations: 

First interpretation (physical) Our experiment is the single toss of a fair coin. Its 
space has two elements and the probability of each elementary event equals 1/2. A trial 
is the toss of the coin once. 

If we toss the coin n times and heads shows nh times, then almost certainly nh / n ~ 
1/2 'provided that n is sufficiently large. Thus the first interpretation of repeated trials is 
the above inprecise statement relating probabilities with observed frequencies. 

Second interpretation (conceptual) Our experiment is now the toss of the coin n 
times, where n is any number large or small. Its space has 2" elements and the probability 
of each elementary event equals 1/2" . A trial is the toss of the coin n times. All statements 
concerning the number of heads are precise and in the fonn of probabilities. 

We can, of course, give a relative frequency interpretation to these statements. 
However, to do so, we must repeat the n tosses of the coin a large number of times. 

3-2 BERNOULLI TRIALS 

A set of n distinct objects can be placed in several different orders fonning permutations. 
Thus. for example, the possible permutations of three objects a, b, c are: abc, bac, bca, 
acb, cab, cba, (6 different pennutations out of 3 objects). In general, given n objects the 
first spot can be selected n different ways, and for every such choice the next spot the 
remaining n - 1 ways, and so on. Thus the number of permutations of n objects equal 
n(n - l)(n - 2) ... 3·2· I = n!. 

Suppose only k < n objects are taken out of n objects at a time, attention being 
paid to the order 'of objects in each such group. Once again the first spot can be selected 
n distinct ways, and for every such selection the next spot can be chosen (n - 1) distinct 
ways, ... , and the kth spot (n - k + 1) distinct ways from the remaining objects. Thus 
the total number of distinct arrangements (permutations) of n objects taken k at a time 
is given by 

n! 
n(n - l)(n - 2) ... (n - k + 1) = -­

(12 - k)! 
(3-10) 

For example, taking two objects out of the three objects a, b, c, we get the permu­
tations ab, ba, ac, ca, be, eb. 

Next suppose the k objects are taken out of n objt;Cts without paying any attention 
to the order of the objects in each group, thus forming combinations. In that case, 
th~ k! permutations generated by each group of k objects contribute toward only one 
combination, and hence using (3-10) the total combinations of n objects taken k at a time 
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is giverrby 

n(n - l)(n - 2)· .. en - k + 1) = n! = (n) 
k! (n - k)!k! k 

Thus, if a set has n elements, then the total number of its subsets consisting of k elements 
each equals 

( n) = n(n - 1)··· (n - k + 1) = n! 
k I·2···k kl(n-k)! 

(3-11) 

For example, if n = 4 and k = 2, then 

(4) =~=6 
2 1·2 

In~eed. the two-element subsets of the four-element set abed are 

ab ae ad be bd cd 

This result will be used to find the probability that an event occurs k times in 
n independent trials of an experiment S. This problem. is essentially the same as the 
problem of obtaining k heads in n tossings of a coin. We start, therefore. with the coin 
experiment. 

~ Acoin with P{h} = pis tossedn times. We maintain that the probability PaCk) that 
heads shows k times is given by 

PlI(k) = G) pkqn-k q = 1 - p (3-12) 

SOLUTION 
The experiment under consideration is the n-tossing of a coin. A single outcome is a 
particular sequence of heads and tails. The event {k heads in any order} consists of all 
sequences containing k heads and n - k tails. To obtain all distinct arrangements with 
n objects consisting of k heads and n - k tails. note that if they were all distinct objects 
there would be n! such arrangements. However since the k heads and n - k tails are 
identical among themselves, the corresponding k! permutations among the heads and the 
(n - k)! permutations among the tails together only contribute to one distinct sequence. 
Thus the total mstinct arrangements (combinations) are given by klC:~k)! = m. Hence 
the event {k heads in any order} consists of m elementary events containing k heads 
and n - k tails in a specific order. Since the probability of each of these elementary 
events equals pkqn-k, we conclude that 

P{k heads in any order} = G)pkqll-k ~ 
Specitzl Case. If n = 3 and k = 2, then there are three ways of getting two heads, 
namely, hht, hth, and thh. Hence P3(2) = 3p2q in agreement with (3-12) ..... 

Success or Failure of an Event A in n 
Independent1Jiab 

We consider now our main problem. We are given an experiment S and an event A with 

P(A)=p P(A)=q p+q=l 
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We repeat the experiment n times and the resulting product space we denote by S". Thus 

Sri = S x.·· x S. 

We shall determine the probability p,,(k) that the event A occurs exactly k times. 

FUNDAMENTAL THEOREM 

p,,(k) = PtA occurs k times in any order} = G) pkqn-It. (3-13) 

Proof. The event {A occurs k times in a specific order} is a cartesian product Bl x ... x 
B". where k of the events B; equal A and the remaining n - k equal A. As we know 
fro~ (3-7), the probability of this event equals 

because 

In other words. 

P(B1) • •• P(B,,) = pkq,,-It. 

if Bi =A 
if B, = A 

P {A occurs k times in a specific order} = pit. q,,-k (3-14) 

The event {A occurs k times in any order} is the union of the C) events {A occurs k 
times in a specific order} and since these events are mutually exclusive, we conclude 
from (2-20) that p,,(k) is given by (3-13). 

In Fig. 3-2, we plot p,,(k) for n = 9. The meaning of the dashed curves will be ex­
plained later. 

p,,(k) _2 __ -fle- 3)214.3 

0.3 ,,-9 3.1'J;;;-
p-112 \, , 

0.2 q= 112 / , 
0.1 / 

, 
/ 

, 
,," 

k=O 2 3 4 S 6 9 x 

(a) 

.: 

p,,(k) 
n=9 

0.3 p -113 ., , q = 213 

0.2 
\ 

I \ 1 -fie - 4.sT14 I ,--- J4:ii-
0.1 

" ... 
1 2 3 4 7 8 9 JC 

lI'IGURE 3-2 
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EX \i\IPLE 3-7 

EX.\:\IPLL 3-8 

~. A fair die is rolled five times. We shall fino the probability Ps (2) that "six" will Show 
twice. 

In the single roll of a die. A = {six} is an event with probability 1/'6. Setting 

peA) = i peA) = ~ n = 5 k = 2 

in (3-13), we obtain 

5! (1)2 (5)3 
Ps(2) = 2!3! 6 6 

The problem in Example 3-8 has an interesting historical content, since part of it 
was one of the first problems solved by Pascal. . 

~ A pair of dice is rolled n times. (a) Find the probability that "seven" will not show 
at all. (b) (Pascal) Fmd the probability of obtaining double six at least once. 

SOLUTION 
The space of tbesingle roll of two dice consists of the 36 elements Ii Ii, i. j = I, 2 •...• 6. 

(a) The event A = {seven} consists of the six elements 

nA hh h~ Ah hh An 
Therefore peA) = 6/36 = 1/6 and P(A) = 5/6. With k = O. (3-13) yields 

p,,(O) = (~r 
(b) The event B = {double six} consists of the single element /(d6. Thus 

PCB) = 1/36. and PCB) = 35/36. Let 

Then 

and this gives 

X = {double six at least once in n games} 

x = {double six will not show in any of the n games} 

=BB· .. B 

.. 

- - (35)" P(X) = 1 - P(X) = 1 - P(B)II = 1 - 36 (3-15) 

where we have made use of the independence of each throw. Similarly, it follows' 
that if one die is rolled in succession n times. the probability of obtaining six at 
least once would be 

(3-16) 
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Suppose, we are interested in finding the number of throws required to assure a 50% 
success of obtaining double six at least once. From (3-15), in that case n must satisfy 

1 _ (35)n > ~ or (35)n < ~ 
36 2 36 2 

-
which gives 

n > log 2 = 24.605 
log 36 - log 35 

Thus in 25 throws one is more likely to get double six at least once than not to get it at 
all. Also in 24 or less throws. there is a greater chance to fail than to succeed. 

In the case of a single die, from (3-16), for 50% success in obtaining six at least 
onc~, we must throw a minimum off our times (since log 2/(10g 6 -log5) = 3.801). 

This problem was suggested to Pascal by Chevalier de Mere, a nobleman well 
experienced in gambling. He, along with other gamblers, had all along known the ad­
vantage of betting for double six in 25 throws or for one six with a single die in 4 throws. 
The confusion at that time originated from the fact that although there are 36 cases for 
two dice and 6 cases for one die, yet the above numbers (25 and 4) did not seem to fit into 
that scheme (36 versus 6). The correct solution given by Pascal removed all apparent 
"paradoxes;" and in fact he correctly derived the same number 25 that had been observed 
by gamblers all along. ~ 

Example 3-9 is one of the first problems in probability discussed and solved by 
Fermat and Pascal in their correspondence. 

~ Two players A and B agree to playa series of games on the condition that A wins 
the series if he succeeds in winning m games before B wins n games. The probability 
of winning a single game is p for A and q = 1 - p for B. What is the probability that 
A will win the series? 

SOLUTION 
Let P A denote the probability that A will win m games before B wins n games, and let 
Ps denote the probability that B wins n games before A wins m of them. Clearly by the 
(m + n - l)th game there must be a winner. Thus PA + Ps = 1. To find PA, notice that 
A can win in the following mutually exclusive ways. Let 

Xk = {A wins m games in exactly m + k games}. k = 0,1,2, .... n - 1. 

Notice that XiS are mutually exclusive events, and the event 

{A wins} = Xo U XI U ... U Xn-I 

so that 

PA = peA wins) = P (rj XI) =.~ P(Xj) 
1=0 /=0 

(3-17) 

To determine P (XI). we argue as follows: For A to win m games in exactly m + k games, 
A must win the last game and (m - 1) games in any order among the first (m + k - 1) 
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games. Since all games are independent of each other. we get 

P(Xi) = P(A wins m - 1 games among the first (m 1:' k -1) games) 

x peA wins the last game) 

= (m + k - l)pWl_Iq*- p 
m-l 

(m +k -1)! WI Ie = (m _ l)!k! P q. k = 0.1. 2 •...• n - 1. 

Substituting this into (3-17) we get 

P _ WI ~ (m + k - 1)! k 

A - P (:0 (m -l)!k! q 

(3-18) 

WI (1 m m(m + 1) 2 m(m + 1) ... (m + n - 2) n-l) (3-19) = p + Tq + 1·2 q + ... + 1· 2 .. · (n -1) q 

In a similar manner, we obtain the probability that B wins 

P n (1 n n(n + 1) 2 n(n + 1) ... (m + n - 2) 111-1) (3-20) 
B = q + 1 P + 1 . 2 P + ... + 1 . ~ ... (m - 1) P 

Since A or B must win bytbe (m+n -1) game, webave PA + PB = 1, and substituting 
(3-19)-(3-20) into this we obtain an interesting identity. See also (2-30). ~ 

~ We place at random n points in the interval (0, T). What is the probability that k of 
these points are in the interval (tl. t2) (Fig. 3-3)1 

This example can be considered as a problem in repeated trials. The experiment S 
is the placing of a single point in the interval (0, T). In this experiment, A = {the point 
is in the interval (11. 12)} is an event with probability 

peA) = p = t2 - tJ 
T 

In the space sn, the event {A occurs k times} means that k of the n points are in the 
interval (t .. t2). Hence [see (3-13)] ; 

P{k points are in the interval (tit t2)} = (~) ~qn-k (3-21) 

kpoinlS 
~ 

•• • I •••••• I.. • •• • 
o I, ~ T DGURE3-3 
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~ A system containing n components is put into operation at t = O. The probability 
that a particular component will fail in the interval (0, t) equals 

P = l' a(.) dr: where aV):! 0 100 
aCt) dt = 1 (3-22) 

What is the probability that k of these components will fail prior to time t? 
This example can also be considered as a problem in repeated trials. Reasoning as 

before, we conclude that the unknown probability is given by (3-21). .... 

MOST LIKELY NUMBER OF SUCCESSES. We shall now examine the behavior of 
Pn(k) as a function of k for a fixed n. We maintain that as k increases, p,,(k) increases 
reac~ing a maximum for 

k = kmax = [en + J)p] (3-23) 

where the brackets mean the largest integer that does not exceed (n + l)p. If (n + l)p 
is an integer, then Pn(k) is maximum for two consecutive values of k: 

k = k) = (n + l)p and k = k2 = k) - I = np - q 

Proof. We fonn the ratio 
Pn(k - 1) kq = ...,....---=---

p,,(k) (n - k + l)p 

If this ratio is less than I, that is, if k < (n + 1) p, then p" (k - 1) is less than p" (k). This 
shows that as k increases, Pn(k) increases reaching its maximum for k = [en + l)p]. 
For k > (n + I)p, this ratio is greater than 1: hence p,,(k) decreases. 

If kl = (n + l)p is an integer. then 

Pn(k. -1) = k.q = (n+ l)pq = 1 
p,,(kt ) (n - k\ + l)p [n - (n + l)p + l]p 

This shows that Pn(k) is maximum for k = kJ and k = kl - 1. 

~ (a) If n = 10 and p = 1/3, then (n + l)p = 11/3; hence kmax = [11/3] = 3. 
(b) If n = 11 and P = 1/2, then (n + l)p = 6; hence k\ = 6, k2 = 5. .... 

We shall, finally. find the probability 

P{k\ ~ k ~ k2} 

that the number k of occurrences of A is between k\ and k2. Clearly, the events {A occurs 
k times}, where k takes all values from k\ to k2' are mutually exclusive and their union 
is the event {kl ~ k ~ k2}' Hence [see (3-13)] 

kl kl'() 
P{k\ ~ k ~ k2} = L Pn(k) = L : pkqn-k 

k=k, k=k. 

(3-24) 
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BERNOULLI'S 
THEOREM 

~ , An order of 104 parts is received. The probability that a part is defective equals 
0.1. What is the probability that the total number of defective parts does not exceed 
1100? 

The experiment S is the selection of a single part. The probability of the event A = 
{the part is defective} equals 0.1. We want the probability that in 1 Q4 trials, A will occur 
at most 1100 times. With 

(3-24) yields 

From (3-23) 

p = 0.1 n = 104 kJ = 0 k2 = 1100 

1100 (1Q4) P{O ~ k ~ lloo} = L k (O.lyt(0.9)104-k 
k=O 

I" km 1m -=p 
n .... oo n 

(3-25) 

(3-26) 

so that as n -+ 00, the ratio of the most probable number of successes (A) to the total 
number of trials in a Bernoulli experiment tends to p, the probability of occurrence of A 
in a single trial. Notice that (3-26) connects the results of an actual experiment (km/n) 
to the axiomatic definition of p. In this context, as we show below it is possible to obtain 
a more general result 

3·3 BERNOULLI'S THEOREM AND GAMES 
OF CHANCE 

In this section we shall state and prove one of the most important and beautiful theorems in 
the theory of probability, discovered and rigorously proved by Jacob Bernoulli (1713). To 
emphasize its significance to problems of practical importance we shall briefly examine 
certain games of chance. 

~ Let A denote an event whose probability of occurrence in a single trial is p. If k 
denotes the number of occurrences of A in n independent trials; ,en 

(3-27) 

Equation (3-27) states that the frequency definition of probability of an event k / n and its 
axiomatic definition p can be made compatible to any degree of accuracy with probability 
1 or with almost certainty. In other words, given two positive numbers ~ and 8, the 
probability of the inequality 

(3-28) 

will be greater than 1 - 8. provided the number of trials is above a certain limit 



Proof. We shall outline a simple proof of Bernoulli's theorem, by Chebyshev (1821-1894). that 
makes use of certain identities. Note that with PII(k) as in (3-13), direct computation gives 

" ., "I 
~k (k)- ~k n. t II-k" n. J II-It 
L...J P. - L...., (n - k)!k! P q = L...J (n - k)!(k - 1)1 p q 
k-O A.I *-1 

II-I II-I 
_ " n! 1+1 .-1-1 _ " (n - 1)1 1 ,,_I_I 

- L....,(n-i-l)lil P q -nPL.J(n-i-I)!iI Pq 
(=0 1..0 

= np(p + q)"-1 = np (3-29) 

• Proceeding in a similar manner, it can be shown that 

II II I 
"2 k" n. A II-A 
L.Jk P.< ) = .L....t\n - k)!(k -1)lP q 
.boO .. I 

"I II I 
~ n. It II-A ~ n. J II_It 

= L...J (n - k)!(k - 2)1 P q + L...J (n - k)!(k -l)!P q 
W .. I 

= n2p2 +npq 

Returning to (3-27). note that 

I; -pi > £ is equivalent to (k - np)2 > n2£2 

which in tum is equivalent to 
n u 

L(k-np)2PII (k) > Ln2~2pu(k) =11.2£2 

"..0 "..0 
Using (3-29) and (3-30), the left side of (3-32) can be expanded to ~ 

II • ". 

L(k -np)2p,,(k) = Lk2PII(k) -2np LkplI(k) +n2p2 
k..o It..o It-o 

(3-30) 

(3-31) 

(3-32) 

= 11.2 p2 + npq - 2np • np + n21 = npq (3-33) 

Alternatively, the left side of (3-32) can be expressed as 

" L(A: _np)2p,,(k) = L (k -np)2p,,(k) + L (k -np)2PII(k) 

It=O !k-lIpl:s". it-IIpl>/tf 

~ L (k - np)2 p.(k) > 112f2 L p,,(1ti) 

!k-llpl>"f Ii-lfl'l>llf 

= 112£2 PUk - npi > n£} (3-34) 

Using (3-33) in (3-34), we get the desired result 

P (I; -pi > E) < :;, (3-35) 

For a given E > 0, pq /lIf2 can be made arbitrarily smaIl by letting n become large. Thus for very 
laIge n, we can make the fractional OCCUJTenCC (relative frequency) k/ If. of the event A as close to 
the actual probability p of the event A in a single trial. Thus the theorem states that the probability 
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of event A 'from the axiomatic framework can be computed from the relative frequency definitioJ 
quite accurately. provided the number of experiments is large enough. Since krilU is the most likel­
value of kin n trials. from this discussion, as n ~ 00, the plots of p,,(k) tend to concentrate mo~ 
and more around kmax in (3-23). <1$.1 

Thus Bernoulli's theorem states that with probability approaching 1 or with cer 
tainty. we can expect that in a sufficiently long series of independent trials with constan, 
probability. the relative frequency of an event will differ from that probability by less thaI 
any specified number, no matter how small. Such an event (with probability approachini 
1), although not bound to happen, has a probability of occurring so close to 1 that i 
may be considered to be a certain event. The immense practical value of Bernoulli'~ 
theorem lies in pointing out this advantage in real-life problems where the conditions 0 

the theorem are satisfied. 
One case where the conditions of Bernoulli's theorem are satisfied is that of gam 

bLing and casino operations. Situations facing the insurance companies are not far fron 
this either. In gambling, one may gain or lose wealth depending on chance. In eac1 
game the probabilities of winning and losing are predetermined, and if one continuel 
to play, the interesting question of course concerns the probability of gaining or losin~ 
money. 

Suppose a player gains an amount a if he wins the game and loses another amount 
b if he loses the game. Let p and q represent the probability of winning and losing c 
game. In n games if the player wins k of them, then his net gain is 

I 

G = ka - (n - k)b (3-36: 

If n is large, according to Bernoulli' s theorem k / n is very close to p, so that the differenc~ 
or discrepancy (k - np) must be very small. Let us denote this discrepancy value by ~! 
Thus 

/),. = k - np 

and by Bernoulli's theorem the probability of Il. > -nE, where € is any arbitrary positivq 
number, approaches 1 provided n is sufficiently large. Using the discrepancy ~, the net 
gain can be rewritten as t 

G = n(pa - qb) + (a + b)~ = nl1 + (a + b)~ (3-37j 

where the quantity 

11 = pa - qb (3-381 

represents the "average gain" in anyone game. The average gain 11 can·be positive, zero~ 
or negative. As we shall see. the ultimate fate of the player (gain or loss) depends on 
the sign-of this quantity. Suppose T/ > 0 and n is sufficiently large. Then by Bernoulli'~ 
theorem the net gain G satisfies the inequality 

G = nT/ + (a + b)~ > n[11 - €(a + b)] 

with probability approaching 1. Thus the net gain will exceed the numbet 
Q = n(I1-€(a+b), which itself is larger than any specified positive number. ifn is suf~ 
ficiently large (this assumes that € is sufficiently small enough so that 11- €(a + b) > 0)1 
The conclusion is remarkable: A player whose average gain is positive stands to gain 

• 
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an arbitrarily large amount with probability approaching 1. if he continues to playa 
sufficiently large number of games. 

It immediately follows that if the average gain 1] is negative. the player is bound to 
lose a large amount of money with almost certainty in the long run. If TJ = O. then either 
a huge gain or loss is highly unlikely. 

Thus the game favors players with positive average gain over those with negative 
average gain. All gambling institutions operate on this principle. The average gain of the 
institution is adjusted to be positive at every game, and consequently the average gain of 
any gambler turns out to be negative. This agrees with the everyday reality that gambling 
institutions derive enormous profits at the expense of regular gamblers, who are almost 
inevitably ruined in the long cun. 

We shall illustrate this using the profitable business of operating lotteries. 

~ In the New York State lottery, the player picks 6 numbers from a sequence of 1 
through 51. At a lottery drawing, 6 balls are drawn at random from a box containing 
51 balls numbered 1 through 51. What is the probability that a player has k matches, 
k = 4,5,6? 

SOLUTION 
Let n represent the total number of balls in the box among which for any player there 
are m "good ones" (those chosen by the player!). The remaining (n - m) balls are "bad 
ones." There are in total (;) samples of size m each with equal probability of occu~nce. 
To determine the probability of the event Uk matches:' we need to determine the number 
of samples containing exactly k "good" balls (and hence m - k "bad" ones). Since the 
k good balls must be chosen from m and the (m - k) bad ones from n - m. the total 
number of such samples is 

This gives 

(~) (:-::) 
P(k matches) = (;,) k = 0, 1.2, ...• m 

In particular, with k = m, we get a perfect match, and a win. Thus 

.. I m·(m-l) .. ·2·1 
P(wmnmg the lottery) = (II) = ( 1) ( 1) 

I.m nn- · .. n-m+ 

In the New York State lottery. n = 51, m = 6. so that 

6·5·4·3·2·1 
P(winning the lottery) = 51 .50.49.48.47.46 

(3-39) 

(3-40) 

1 
= 18,009,460 ~ 5.5 x 10-8 (3·41) 

Thus the odds for winning the lottery are 

1 : 18,009,460. (3-42) 
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Using k = 5 and" 4 in (3-39), we get the odds for 5 matches and 4 matches in the New 
York lottery to be 1 : 66,701 and 1 : 1213. respectively. 

In a typical game suppose the state lottery pays $4 million to the winner and 
$15,000 for 5 matches and $200 for 4 matches. Since the ticket costs $1, this gives the 
average gain for the player t5 be 

- 4,000,000 _ '" -0 778 
116 - 18,009,460 1 - . , 

15,000 
715 = 66,701 - 1 ~ -0.775 

and 
200 

114 = 1213 - 1 ~ -0.835 

for winning 5 matches and 4 matches, respectively. Notice that the average gain for the 
player is always negative. On the other hand, the average gain for the lottery institution is 
always positive, and because of the large number of participants involved in the lottery, 
the state stands to gain a very large amount in each game. ~ 

The inference from Bernoulli's theorem is that when a large number of games are 
played under identical conditions between two parties, the one with a positive average 
gain in a single game stands to gain a fortune, and at the same time the one with negative 
average gain will almost certainly be ruined. These conclusions assume that the games 
are played indefinitely to take advantage of Bernoulli's theorem, and the actual account 
settlement is done only at the very end. Interestingly, the stock market situation does 
allow the possibility of long-time play without the need to settle accounts intermittently. 
Hence if one holds onto stocks with positive average gains, in the long run that should 
turn out to be a much more profitable strategy compared to day-to-day trading2 (which is 
equivalent to gambling). The key is not to engage in games that call for account settlement 
quite frequently. In regular gambling, however, payment adjustment is made at the end 
of each game, and it is quite possible that one may lose all his capital and will have to 
quit playing long before reaping the advantage that a large number of games would have 
brought to him. 

In this context, next we examine a classic problem involving the ruin of gamblers. 
Since probability theory had its humble origin in computing chances of players in dif­
ferent games. the important question of the ruin of gamblers was discussed at a very 
early stage in the historical development of the theory of probability. The gambler's ruin 
problem has a long history and extensive literature is available on this tqpic. The sim­
plest problem ofits kind was first solved by C. Huygens (16S7), followed by 1. Bernoulli 
(1680), and the general case was proved by A. De Moivre in 1711. More important, over 
the years it has played a significant role as a source of theorems and has contributed 
to various generalizations including the subject of random walks (see Chapter 10). The 

2 Among others, this strategy worked very welt for the late Prof. Donald' Othmer of Polytechnic, who together 
with his wife Mildred had initially invested $25,000 each in the early 19605 with the legendary investor, 
Warren Buffett who runs the Berkshire Hathaway company. In 1998. the New York Times reported that the 
Othmer's net assets in the Berkshire Hathaway stock fund were around $800.000,000. 
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underlying principles are used also by casinos. state lotteries, and more respectable 
institutions such as insurance companies in deciding their operational strategies. 

~ Two players A and B playa game consecutively till one of them loses all his capital. 
Suppose A starts with a capital of Sa and B with a capital of Sb and the loser pays $1 
to the winner in each game. Let p represent the probability of winning each game for A 
and q = 1 - p for player B. Find the probability of ruin for each player if no limit is set 
for the number of games.3 

SOLUTION 
Let Pn denote the probability of the event Xn = "A's ultimate ruin when his wealth is 
$n" (0 !:: n !:: a + b). His ruin can occur in only two mutually exclusive ways: either A 
can win the next game with probability p and his wealth increases to $(n + 1) so that 
the probability of being ruined ultimately equals Pn+ 1, or A can lose the next game with 
probability q and reduce his wealth to $ (n - 1), in which case the probability of being 
ruined later is Pn-I' More explicitly, with H = "A succeeds in the next game," by the 
theorem of total probability we obtain the equation 

and hence 

Xn = Xn(HU H) = XnH UXnH 

Pn = P(Xn) = P(Xn I H)P(H) + P(Xn I H)P(H) 

= pP,,+l +qP,,-1 

with initial conditions 

(3·43) 

Po = 1 Pa+b = 0 (3-44) 

The first initial condition states that A is certainly ruined if he has no money left. and 
the second one states that if his wealth is (a + b) then B has no money left to play, and 
the ruin of A is impossible. 

To solve the difference equation in (3-43), we first rewrite it as 

p(Pn+1 - Pn) = q(Pn - Pn-I) (3-45) 

or 
q (q)1I 

P,,+I - Pn = -p(Pn - Pn-I) = -p (PI - I) 

where we have made use of the first initial condition. To exploit the remaining initial 
condition, consider Po+b - Pn' Clearly. for p =! q ~ 

o+b-I o+b-l ( )k 
Pa+b - Pn = L PHI - Pk. = L ! (PI - 1) 

k=n k=n P 

(1)" (!)O+b 
= (PI -1) P P 

1-! , 
p 

3Hugyensdealt with tbeparticularcase whe.rea = b = 12 and p/q" = 5/4. 
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Since PQ+b = O. it follows that 

( ),, (q)Q+b 
P. = (1 - P); - P , 

n I 1 _ ! 
p 

and since Po = 1, this expression also gives 

(1)0 (1)tl+b 
Po = 1 = (1 - Pl) p p 

1_1 
p 

Eliminating (1 - PI) from the last two equations, we get 

(;f - (~r+b 
Pn = 1- (%r+b (3-46) 

Substituting n = a into (3.46). we obtain the probability of ruin for player A when his 
wealth is Sa to be (for p =F q) 

(3-47) 

Proceeding in a similar manner (or interchange p and q as well as a and b) we get the 
probability of ultimate ruin for player B (when his wealth is S b) to be for p =F q 

1- (~r 
Qb = (q)Q+b 

1- -p 

(3-48) 

By direct addition, we also get 

(3-49) 

so that the probability that the series of games will continue indefinitely withoot A or B 
being ruined is zero. Note that the zero probability does not imply the impossibility of 
an eternal game. Although an eternal game is not excluded theoretically. for all practical 
purposes it can be disregarded. From (~-47), 1 - PQ represents the probability of A 
winning the game and from (3·49) it equals his opponents probability of ruin. 

Consider the special case where the players are of equal skill. In that case p = 
q = 1/2,.and (3·47) and (3-48) simplify to 

and 

b 
P. --­
Q- a+b (3-50) 

a 
Qb = a + b (3-51) 

Equations (3-50) and (3-51) state that if both players are of equal skill, then their proba­
bilities of ruin are inversely proportional to the wealth of the players. Thus it is unwise to 
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play indefinitely even against some one of equal skill whose fortune is very large, since 
the risk of losing all money is practically certain in the long run (Pa -+ 1, if b »a). 
Needless to say if the adversary is also skillful (q > p) and wealthy, then as (3-47) 
shows, A's ruin is certain in the long run (Po -+ 1, as b -+ (0). All casino games against 
the house amount to'this situation, and a sensible strategy in such cases would be to quit 
while ahead. 

What if odds are in your favor? In that case p > q, so that q / p < 1. and (3-47) can 
be rewritten as 

Po = (:i)O 1 - (; )b < (:i)a 
p 1- (~r+b p 

and 'Po converges to (q / p)o as b -+ 00. Thus, while playing a series of advantageous 
games even against an infinitely rich adversary, the probability of escaping ruin (or 
gaining wealth) is 

(3-52) 

If a is large enough, this probability can be made as close to I as possible. Thus a skillful 
player who also happens to be reasonably rich, will never be ruined in the course of 
games, and in fact he will end up even richer in the long run. (Of course, one has to live 
long enough for all this to happen!) 

Casinos and state lotteries work on this pIinciple. They always keep a sUght ad­
vantage to themselves (q> p), and since they also possess large capitals, from (3-48) 
their ruin is practically impossible (Qb -+ 0). This conclusion is also confirmed by ex­
perience. It is hard to find a casino that has gone "out of business or doing rather poorly." 
Interestingly, the same principles underlie the operations of more respectable institutions 
of great social and public value such as insurance companies. We shall say more about 
their operational strategies in a later example (see Example 4-29, page 114). 

If one must gamble, interestingly (3-47) suggests the following strategy: Suppose 
a gambler A with initial capital $a is playing against an adversary who is always willing 
to play (such as the house), and A has the option of stopping at any time. If A adopts the 
strategy of playing until either he loses all his capital or increase it to $ (a + b) (with a 
net gain of $b), then Po represents his probability of losing and 1 - Pa represents his 
probability of winning. Moreover, the average duration of such a game is given by (see 
Problem 3-7) 

! b a+b l-(~r 
N - 2p - 1 - 2p - 1 (p)O+b 

a - 1- -q 

ab 
1 

p=q=-
2 

(3-53) 

Table 3-1 illustrates the probability of ruin and average duration for some typical values 
of a, b, and p. 

CHANGING STAKES. Let us now analyze the effect of changing stakes in this situation. 
Suppose the amount is changed from $1 to $k for each play. Notice that its effect is the 
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TABLE3~1 

Gambier's ruin 

Probability of 
Average 

p q Capital, Q GaiD,b Ruin, PII Success, 1 - Pa duration, Nil 

0.50 0.50 9 1 0.100 0.900 9 
0.50 0.50 90 10 0.100 0.900 900 
0.50 0.50 90 5 0.053 0.947 450 
0.50 0.50 500 100 0167 0.833 50,000 
0.45 0.55 9 1 0.210 0.790 11 
0.45 0.55 SO 10 0.866 0.134 419 
0.45 0.55 90 5 0.633 0.367 552 
0.45 0.55 90 10 0.866 0.134 765 
0.45 . 0.55 100 5 0.633 0.367 615 
0.45 0.55 100 10 0.866 0.134 852 

same as reducing the capital of each player by a factor of k. Thus the new probability of 
ruin P: for A, where $k are staked at each play, is given by (3-47) with a replaced by 
a/kandbbyb/k. 

1 _ (!!.)b1k 
P* q 

, Q = 1- (~yQ+b)lk 
(3-54) 

Let flo = a/k. bo = b/k. x = (p/q)bo. and y = (p/q)Qo+bo. Then 

1 - xk 1 - x 1 + x + ... + Xk- 1 
PQ = -- = -- . -----:--:-

1 - yk 1 - Y 1 + y + ... + yk-I 

1 +x + ... +Xk- 1 
= P: 1 k-l > P; for p < q, 

+y+"'+y 
(3-55) 

since x > y for p < q. Equation (3-55) states that if the stakes are increased while the 
initial capital remains unchanged. for the disadvantageous player (whose probability of 
success p < 1/2) the probability of ruin decreases and it increases for the adversary (for 
whom the original game was more advantageous). From Table 3-1, for a = 90, b = 10, 
with p = 0.45, the probability of ruin for A is founed to be 0.866 for a $1 stake game. 
However. if the same game is played for $10 stakes, the probability of ~in drops down 
to 0.21. In ~ unfavorable game of constant stakes, the probability of ruin can be reduced 
by selecting the stakes to be higher. Thus if the goal is to win $ b starting with capital $a, 
then the ratio capital/stake must be adjusted in an unfavorable game to fix the overall 
probaoility of ruin at the desired level. .... 

Example 3-16 shows that the game of craps is ptrhaps the most favorable game 
among those without any strategy (games of chance), The important question in that 
case is how long one should play to maximize the returns. Interestingly as Example 3-17 
shows even that question has an optimum solution. 
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.. A pair of dice is rolled on every play and the player wins at once if the total for the 
first throw is 7 or 11, loses at once if 2.3, or 12 are rolled. Any other throw is called a 
"cany-over." If the first throw is a carry-over, then the player throws the dice repeatedly 
until he wins by throwing the same carry-over again, or loses by throwing 7. What is the 
probability of winning the game? 

SOLUTION 
A pair of dice when rolled gives rise to 36 equally likely outcomes (refer to Example 3-8). 
Their combined total T can be any integer from 2 to 12. and for each such outcome the 
associated probability is shown below in Table 3-2. 

The game can be won by throwing a 7 or lIon the first throw, or by throwing the 
carry-over on a later throw. Let PI and Pa denote the probabilities of these two mutually 
exclusive events. Thus the probability of a win on the first throw is given by 

6 2 2 
PI = peT = 7) + peT = 11) = - + - = -

36 36 9 
(3-56) 

Similarly, the probability of loss on the first throw is 

1 2 I 1 
QI = peT = 2) + peT = 3) + peT = 12) = 36 + 36 + 36 = 9 (3-57) 

To compute the probability P2 of winning by throwing a carry-over. we first note that 
4, S, 6, 8, 9, and 10 are the only carry-overs with associated probabilities of occurrence 
as in Table 3-2. Let B denote the event "winning the game by throwing the carry-over" 
and let C denote a carry-over. Then using the theorem of total probability 

10 10 

P2 = PCB) = L PCB Ie = k)P(C = k) = L PCB I C = k)Pk (3-58) 
k=4,k,,7 k=U", 

To compute IJJ.: = PCB Ie = k) note that the player can win by throwing a number of 
plays that do not count with probability Tic = 1 - Pic - 1/6, and then by throwing the 
carry-over with probability Pic. (The 1/6 in Til = 1- PI!. -1/6 is the probabilityoflosing 
by throwing 1 in later plays.) The probability that the player tb:rows the carry-over k on 
the jth throw (and j - 1 do-not-count throws earlier) is PkTrl, j = 1,2,3, ... ,00. 

Hence 
00 L )-1 Pic Pic a" = PCB I C = k) = Pic T" = -- = . 

1=1 1 - T" Pic + 1/6 
(3-59) 

which gives 

k 4 S 6 8 9 10 

a" I '2. S S '2. I 
3 S Ii Ii !i 3 

TABLE 3-2 

TotaIT=k 2 3 4 5 6 7 8 9 10 11 12 

pic = Prob(T = k) I i 3 4 5 6 , 
;\ l6 2 

* !li !li B !li ~ ~ JK 
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Using (3-59) and Table 3-2 in (3-58) we get 

10 1 3 2 4 5 5 5 5 
P2 = 2:, ak Pic = '3 . 36 + 5 . 36 + i.1 . 36 +. IT . 36 

k=4.k:ft1 

2 4 1 3 134 
+ 5 . 36 + '3 . 36 = 495 (3-60) 

Finally, (3-56) and (3-60) give 

. . 2 134 244 
P(wmmng the game) = PI + P2 = 9 + 495 = 495 :::::: 0.492929 (3-61) 

Notice that the game is surprisingly close to even, but as expected slightly to the advantage 
of the house! ~ 

Example 3-17 shows that in games like craps, where the player is only at a slight 
disadvantage compared to the house, surprisingly it is possible to devise a strategy that 
works to the player's advantage by restricting the total number of plays to a certain 
optimum number. 

~ A and B plays a series of games where the probability of winning p in a single play 
for A is unfairly kept at less than 1/2. However, A gets to choose in advance the total 
number of plays. To win the whole game one must score more than half the plays .. If the 
total number of plays is to be even, how many plays should A choose? 

SOLUTION 
On any play A wins with probability p and B wins with probability q = 1 - P > p. 
Notice that the expected gain for A on any play is p - q < O. At first it appears that 
since the game is unfairly biased toward A, the best strategy for A is to quit the game 
as early as possible. If A must play an even number, then perhaps quit after two plays? 
Indeed if p is extremely small that is the correct strategy. However, if p = 1/2, then 
as 2n. the total number of plays increases the probability of a tie (the middle binomial 
tem) decreases and the limiting value of A's chances to win tends to 1/2. In that case, 
the more plays, the better are the chances for A to succeed. Hence if P is somewhat less 
that 1/2, it is reasonable to expect a finite number of plays as the optimum strategy. 

To examine this further,let Xic denote the event "A wins k games in a series of2n 
plays." Then 

k = 0,1.2, .... 2n .. 

and let P2Ir denote the probability that A wins in 2n games. Then 

P2n = P ( U Xk) = t P(Xk) = t (~) pkq2lr-1c (3-62) 
k=n+1 k=n+l kCII+l 

where we have used the mutually exclusive nature of ~ XiS. 

4"Optlmallength of play for a binomial game," Mathematics readzer, Vol. 54, pp. 411-412, 1961. 
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If 2n is indeed the optimum number of plays, then we must have 

where P2n+2 denotes the probability that A wins in 2n + 2 plays. Thus 

~ (2n k+ 2) pkq2n+2-k P2n+2 = ~ 
k=II+2 

(3-63) 

(3-64) 

To obtain a relation between the right side expressions in (3-63) and (3-64) we can make 
use of the binomial expansion 

21.+2 (2n 2) 
{; : pkq2t1+2-k = (p + q)2n+2 = (p + q)2n(p + q)2 

= {~(Z:) pkq2n-k} (p2 +2pq +q2) (3-65) 

Notice that the later half of the left side expression in (3-65) represents P2n+2' Similarly, 
the later half of the first term on the right side represents P21!' Equating like powers of 
terms pll+2ql!, pl!+3q'l-l, . .. , p2n+2 on both sides of (3-65), after some simple algebra 
we get the identity 

p. = p. + (2n) pl!+2qn _ ( 2n ) pl!+lqn+1 (3-66) 
211+2 2n n n + 1 

Equation (3-66) has an interesting interpretation. From (3-66), events involved in winning 
a game of2n + 2 plays or winning a game of2n plays differ in only two cases: (i) Having 
won n games in the first 2n plays with probability (~) pI! qtl, A wins the next two 
plays with probability p2, thereby increasing the winning probability by f:) pl!+2qll; 
(ii) Having won n + 1 plays in the first 2n plays with probability C::l)pll+lqn-I, A 
loses the next two plays with probability q2, thereby decreasing the winning probability 
by (n~l)pn+1qn-1q2. Except for these two possibilities, in all other respects they are 
identical. 

If 2n is optimum, the right side inequality in (3-63) when applied to (3-66) gives 

or 

nq ~ (n + l)p n(q-p)~p 
p 

n>-­
- 1-2p 

Similarly, the left side inequality in (3-63) gives (replace n by n - 1 in (3-66») 

or 

( 2n - 2) n+1 II-I > (2n - 2) n n 
n-l p q - n pq 

np ~ (n - l)q n(q - p) ::; q 
q 

n<-­
- ] -2p 

(3-67) 

(3-68) 

(3-69) 

(3-70) 
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From (3-68) and (3-70) we get 

1 1 
---1<2n<--+1 
1- 2p - - 1 -2p 

(3-71) 

which determines 2n uniquely as the even integer that is nearest to 1/(1- 2p). Thus for 
example. if p = 0.47. then2n = 16. However. if 1/(1-2p) is an odd integer (p = 0.48), 
both adjacent even integers 2n = 1/(1 - 2p) -1 and 2n + 2 = 1/(1- 2p) + 1 give the 
same probability (show this). Finally if p ::::: O. then (3-71) gives the optimum number 
of plays to be 2. ~ 

. Returning to Example 3-16 (game of craps), p was found to be 0.492929 there, 
which gives 2n = 70 to be the optimum number of plays. Most people make the mistake 
of quitting the game long before 70 plays, one reason being the slow progress of the game. 
(Recall that each play may require many throws because of the do-nat-count throws.) 
However, here is one game where the strategy should be to execute a certain number 
of plays. 

Interestingly. the results from Examples 3-15 and 3-16 can be used to design 
an optimum strategy for the game of craps involving the amounts of capital, expected 
return, stakes and probability of success. Table 3-3 lists the probability of success and 
average duration for some typical values of capital a and gain b. Here Pa represents 
the probability of ruin computed using (3-47) with p = 0.492929, and Na represents 
the corresponding expected number of games given by (3-53). Notice that a and b have 
been chosen here so that the expected number of games is around its optimum value of 
70. Thus starting with $10, in a $1 stake game of craps the probability of gaining $7 is 
0.529 in about 70 games. Clearly if the capital is increased to S100, then to maintain the 
same number of games and risk level, one should raise the stakes to $10 for an expected 
gain of S70. However, if a strategy with reduced risk is preferred, from Table 3-3 one 
may play the a = 16, b = 4 game (25% gain) that ensures 75% probability of success 
in about 67 games. It follows that for a Sloo investment, the stakes in that case should 
be set at S6 per game for an expected gain of $25. 

TABLE 3·3 
Strategy for a game of craps (p = 0.492929) 

Probability of 
~ 

Capital,a Gain,b Ruin, PIt Success. 1 - Pil .Expected duration, Nil 

9 8 0.5306 0.4694 72.14 
10 7 0.4707 0.5293 70.80 
11 6 0.4090 0.5910 67.40 
12 6 0.3913 0.6087 73.84 
13 5 0.3307 0.6693 67.30 
14 5 0.3173 0.6827 72.78 
15 5 0.3054 0.6946 78.32 
16 4 0.2477 0.7523 67.47 
17 4 0.2390 0.7610 71.98 
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PROBLEMS 

3-1 Let p represent the probability of an event A. What is the probability that (0) A occurs at 

least twice in n independent trials; (b) A occurs at least thrice in n independent trials? 
3-2 A pair of dice is rolled 50 times. Find the probability of obtaining double six at least three 

times. 
3·3 A pair of fair dice is rolled 10 times. Find the probability that "seven" will show at least 

once. 
34 A coin with p{h} = p = 1 - q is tossed n times. Show that the probability that the number 

of heads is even equals 0.5[1 + (q - p)nJ. 
3-5 (Hyper geometric series) A shipment contains K good and N - K defective components. 

We pick at random n S K components and test them. Show that the probability p that k of 
the tested components are good equals (compare with (3-39» 

3-6 Consider the following three events: (0) At least I six is obtained when six dice are rolled, 
(b) at least 2 sixes are obtained when 12 dice are rolled, and (c) at least 3 sixes are obtained 
when 18 dice are rolled. Which of these events is more likely? 

3-7 A player wins $1 if he throws two heads in succession, otherwise he loses two quarters. 
If the game is repeated 50 times, what is the probability that the net gain or less exceeds 
(0) Sl? (b)SS? 

3-8 Suppose there are r successes in n independent Bernoulli trials. Find the conditional proba­
bility of a success on the ith trial. 

3·9 A standard pack of cards has 52 cards, 13 in each of 4 suits. Suppose 4 players are dealt 
13 cards each from a well shuffled pack. What is the probability of dealing a perfect hand 
(13 of anyone suit)? 

3·10 Refer to Example 3-15 (Gambler's ruin problem). Let No denote the average duration of the 
game for player A starting with capital o. Show that 

{ 

b o+b l-(nb 

No = 2p -1 - 2p - 11_ ur+b p oF q 1 

d p=q=-
2 

(Hint: Show that Nk satisfies the iteration Nt = 1 + pNHI + qNk - J under the initial 
conditions No = No+b = 0.) 

3·11 Refer to Example 3-15. Suppose the stakes of A and B are IX and p, and respective capitals 
are 0 and b. as before. Find the probabilities for A or B to be ruined. 

3-12 Three dice are rolled and the player may bet on anyone of the face values 1,2,3,4,5, and 6. 
If the player's number appears on one, two, or all three dice, the player receives respectively 
one, two, or three times his original stake plus his own money back. Determine the expected 
loss per unit stake for the player. 
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CHAPTER 

4 
THE CONCEPT 
OFARANDOM 
VARlABLE 

4-1 INTRODUCTION 

A random variable is a number x(n assigned to every outcome ~ of an experiment. 
This number could be the gain in a game of chance, the voltage of a random source, the 
cost of a random component, or any other numerical quantity that is of interest in the 
performance of the experiment . 

... (a) In the die experiment, we assign to the six outcomes It the numbers x(lt) = 1 Oi. 
Thus 

(b) In the same experiment, instead we can assign the number 1 to every even outcome 
and the number 0 to every odd outcome. Thus 

x(h) = X(f4) = X(f6) = 1 
II 

THE MEANING OF A FUNCTION. A random variable is a function whose domain is the 
set S of all experimental outcomes. To clarify further this important concept. we review 
briefly the notion of a function. As we know, a function x (t) is a rule of correspondence 
between values of t and x. The values of the independent variable t form a set S, on the t 
axis called the domain of the function and the values of the dependent variable x form a 
set Sx on the x axis called the range of the function. The rule of correspondence between 
t and x could be a curve, a table, or a formula, for example, x (1) = t 2• 

The notation x(t) used to represent a function is ambiguous: It might mean either 
the particular number x{t) corresponding to a specific t, or the function x(t). namely. the 
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rule of correspondence between any tinS, and the corresponding x in S J(' To distinguish 
between these two interpretations, we shall denote the latter by x, leaving its dependence 
on t understood. 

The definition of a function can be phrased as: We are given two sets of numbers 
S, and Sx. To every t E S, we assign a number x(t) belonging to the set SJ(' This leads to 
this generalization: We are given two sets of objects Sa and S p consisting of the elements 
a and f3, respective! y. We say that f3 is a function of a if to every element of the set Sa 
we make correspond an element f3 of the set Sp. The set Sa is the domain of the function 
and the set Sp its range. 

Suppose, for example, that Sa is the set of children in a community and Sp the set 
of their fathers. The pairing of a child with his or her father is a function. 

We note that to a given or there corresponds a single f3(a). However, more than 
one' element from Sa might be paired with the same f3 (a child has only one father but 
a father might have more than one child). In Example 4-lb, the domain of the function 
consists of the six faces of the die. Its range, however, has only two elements, namely, 
the numbers 0 and 1. 

The Random Variable 

We are given an experiment specified by the space S (or Q), the field of subsets of S 
called events, and the probability assigned to these events. To every outcome t of this 
experiment, we assign a number x(O. We have thus created a function x with domain 
the set S and range a set of numbers. This function is called random variable if it satisfies 
certain mild conditions to be soon given. 

All random variables will be written in boldface letters. The symbol x(n will 
indicate the number assigned to the specific outcome s and the symbol x will indicate 
the rule of correspondence between any element of S and the number assigned to it. 
Example 4-1a. x is the table pairing the six faces of the die with the six numbers 
10, ... , 60. The domain of this function is the set S = {fl, ... , fd and its range is the 
set of the above six numbers. The expression x(h) is the number 20. 

EVENTS GENERATED BY RANDOM V~RIABLES. In the study of random variables, 
questions of the following form arise: What is the probability that the random variable x 
is less than a given number x, or what is the probability that x is between the numbers x J 

and X2? If, for example, the random variable is the height of a person, we might want the 
probability that it will not exceed certain bounds. As we know. probabilities are assigned 
only to events; therefore, in order to answer such questions, we should ~ able to express 
the various conditions imposed on x as events. -

We start with the meaning of the notation 

{x ~ xl 

This notation represents a subset of S consisting of all outcomes s such that xes) ~ x. 
We elaborate on its meaning: Suppose that the random variable x is specified by a table. 
At the left column we list all elements ~j of S and at the right the corresponding values 
(numbers) X(~i) ofx. Given an arbitrary number x, we find all numbers X(~i) that do not 
exceed x. The corresponding elements Si on the left column form the set {x ~ x}. Thus 
{x ~ x} is not a set of numbers but a set of experimental outcomes. 
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DEF1NITION 

The meaning of 

(Xl :s x :s X2) 

is similar. It represents a subset of S consisting of all outcomes ~ such that Xl :s xes) ::: 
X2; where Xl and X2 are two given numbers. 

The notation 

{x = x} 

is a subset of S consisting of all outcomes s such that xes) = x. 
Finally, if R is a set of numbers on the X axis, then 

(x E R} 

represents the subset of S consisting of all outcomes ~ such that x(t) E R. 

~ We shall illustrate the above with the random variable x(/J) = tOi of the die experiM 
ment (Fig- 4-1). 

The set {x :s 35} consists of the elements fl. h. and 13 because x(li) :s 35 only 
if i = 1. 2, or 3. 

The set {x :s 5} is empty because there is no outcome such that x(li) :s 5. 
The set {20 :s x :s 35} consists of the elements h and b because 20 :s xCII) :s 35 

only if i = 2 or 3. 
The set {x = 40} consists of the element 14 because x(li) = 40 only if i = 4. 
Finally, {x = 35} is the empty set because there is no experimental outcome such 

thatx(li) = 35. ~ 

We conclude with a formal definition of a random variable. 

~ A random variable x is a process of assigning a number x(~) to every outcome ~ . The 
resulting function must satisfy the following two conditions but is otherwise arbitrary: 

L The set {x :s x} is an event for every x. 

IL The probabilities of the events (x = oo} and {x = -oo} equal 0: 

P{x = oo} =0 P{x= -oo} = 0 :: 

II 12 f3 f4 " 16 
X X X X X X It 

10 20 30 40 so 60 
x(ft) • • • • • • 

• xoS3S 
)( )( )( 

, 
x>so )( .. 

)( )( 
2O..-x<3S 

FIGURE4-l 
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The second condition states that. although we allow x to be +00 or -00 for some 
outcomes, we demand that these outcomes fonn a set with zero probability. 

A complex random variable z is a sum 

z = x+ jy 

where x and yare real random variables. Unless otherwise stated, it will be assumed that 
all random variables are real. 

Note In the appl ications. we are interested in the probability that a random variable x takes values in a certain 
region H of the x axis. This requires that the set Ix E HI be an event. As we noted in Sec. 2-2. that is not always 
possible. However. if I x :s x I is an event for every x and R is a countable union and intersection of intervals. 
then (x E RI is also an event. In the definition of random variables we shall assume, therefore, that the set 
Ix:s xl is an event. ThIs mild restriction is mainly of mathematical interest 

4·2 DISTRIBUTION AND DENSITY 
FUNCTIONS 

The elements of the set S (or 0) that are contained in the event {x ~x} change as the 
number x takes various values. The probability P{x ~ xl of the event {x :::;x} is, there­
fore, a number that depends on x. This number is denoted by F:x (x) and is called the 
(cumulative) distribution function of the random variable x. 

~ The distribution function of the random variable x is the function 

F'.t{x) = P{x ~ x} 

defined for every x from -00 to 00. 

(4-1) 

The distribution functions of the random variables x. y, and z are denoted by 
FAx), Fy(Y). and F1.(z), respectively. In this notation. the variables x, y, and z can be 
identified by any letter. We could, for example, use the notation Fx(w), Fy(w). and 
F1.(w) to represent these functions. Specifically. 

FAw) = P{x ~ w} 

is the distribution function of the random variable x. However, if there is no fear of 
ambiguity, we shall identify the random variables under consideration by the independent 
variable in (4-1) omitting the subscripts. Thus the distribution functions of the random 
variables x, y, and z will be denoted by F(x), F(y), and F(z), respectively. ~ 

~ 

~ In the coin-tossing experiment, the probability of heads equals p and the probability 
of tails equals q. We define the random variable x such that 

x(h) = 1 x(t) = 0 

We shall find its distribution function F(x) for every x'from -00 to 00. 

If x ~ 1, then x(h) = 1 ~ x and x(t) = 0 ~ x. Hence (Fig. 4-2) 

F(x) = Pix :::; xl = P{h, t} = 1 x ~ 1 
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If 0 :5 x < 1, then x(h) == 1 > x andx(t) = 0:5 x. Hence 

F(x) = PIx :5 xl = P{t} = q O:5x<l 

If x < 0, then x(h) = 1 > x and x(t) = 0 > x. Hence 

F(x) = PIx :5 x} = P{ItJ} = 0 x < 0 

... In the die experiment of Example 4-2, the random variable x is such that xC!;) = 
10i. If the die is fair, then the distribution function of x is a staircase function as in 
Fig. 4-3. 

We note, in particular, that 

Fll00) = P{x :5 lOO} = peS) = 1 

F(35) = PIx ~ 35} = P{!l. /2. h} = t 
F(30.01) = P{x:5 30.01} = P{/I. /2. hi == i 

F(30) = P{x :5 30} = PUt. h. h} = i 
F(29.99) = PIx :5 29.99} = P{!!. h} = ~ 

... A telephone call occurs at random in the interval (0, 1). In this experiment. the 
outcomes are time distances t between 0 and 1 and the probability that t is between t1 

and t2 is given by 

P{tl ~ t ~ ta} == t2 - tl 

We define the random variable x such that 

X(/) = t O~t:51 

F(x) 

112 

·0 10 20 30 40 SO 60 x 

" 
FlGURE<i·3 

)0 

x 
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FIGURE 4-5 

Thus the variable t has a double meaning: It is the outcome of the experiment and the 
corresponding value x(t) of the random variable:x. We shall show that the distribution 
function F(x) ofx is a ramp as in Fig. 4-4. 

If x > 1, then x(t) :S x for every outcome. Hence 

F(x) = PIx :S x} = P{O :S t :S I} = peS) = 1 x > I 

If 0 :S x :S 1, then x(t) :S x for every t in the interval (0, x). Hence 

F(x) = P{x:s x} = P{O:s t :S x} = x O:sx:Sl 

If x < O. then {x :S x} is the impossible event because x{t) 2: 0 for every t. Hence 

F(x) = P{x :S xl = P{I2I} = 0 

~ Suppose that a random variable x is such that x(~) = a for every ~ in S. We shall 
find its distribution function. 

If x 2: a. then x(t) = a :S x for every ~. Hence 

F(x) = Pix :S xl = PIS} = 1 x 2: a 

If x < a. then {x :s x} is the impossible event because x(t) = a. Hence 

F(x) = PIx :S xl = P{I2I} = 0 x < a 

Thus a constant can be interpreted as a random variable with distribl},tion function a 
delayed step U(x - a) as in Fig. 4-5. .... 

Note 'A complex random variable z = x + i'Y has no discribution function because the ineqoaiity x + if :s 
x + Jy has no meaning. The statistical properties of z are specified in terms of the joint distributlon of the 
random variables x and 'Y (see Chap. 6). 

PERCENTILES. The u percentile of a random variable x is the smallest number Xu such 
that 

u = P{x:s xu} =.f(x,,) (4-2) 
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Thus Xu is the inverse of the function u = F(x). Its domain is the interval 0 !:: u !:: I, 
and its range is the X axis. To find the graph of the function Xu. we interchange the axes 
of the F(x) curve as in Fig. 4-6. The median of x is the smallest number m such that 
F(m) = 0.5. Thus m is the 0.5 percentile ofx. 

Frequency interpretation oj F (x) fl1Id x.. We perform the experiment n times and we 
observe n values XI, •••• XII of the random variable x. We place these numbers on the x axis 
and we form a staircase function F" (x) as in Fig 4-6a. The steps are located at the points 
Xi and their beight equals lIn. They start at the smallest value x. of Xi, and F,,(x) = 0 
for x < Xmin. The function F.,{x) so constructed is called the empirical distribution of the 
random variable x. 

For a specific x, the number of steps of F.,(x) equals the number nx of X'S that are 
smaller than x; thus F" (x) = nxl n. And since n,,1 n ~ P (x ~ x} for large n. we conclude that 

nx 
F,,(x) = - ~ Pix ~ xl = F(x) as n ~ 00 (4-3) 

n 
The empirical interpretation of the u percentile Xu is the Qllelelet curve defined as: 

We form n line segments of length Xi and place them vertically in order of increasing length. 
distance lIn apart. We then form a staircase function with comers at the endpoints of these 
segments as in Fig. 4-6b. The curve so obtained is the empirical interpretation of x" and it 
equals the empirical distribution F" (x) if its axes are interchanged. 

Properties of Distribndon Functions 

In this discussion, the expressions F(x+) and F(x-) will mean the limits 

F(x+) = lim F(x + 8) F(x-) = lim F(x - 8) 0 < 8 -+ 0 

The distribution function has the following properties 

1. 

Proof. 

F(+oo) = 1 

F(+oo) = P{x !:: +oo} = peS) = 1 

2. It is a nondecreasing function of x: 

if Xl < X2 

F(-oo) =0 

F(-oo) = P{x = -co} = 0 

(4-4) 



CHAI'1BR 4 TfIE CONCIlPTOf II. RANDOM VARIABlJ! 79 

Proof. The event {x ~ XI} is a subset of the event {x ~ X2} because, if x(~) ~ Xl for 
some~.thenx(n ~x2.Hence[see(2-14)] P{X~XI} ~ P{x~x2}and(4-4)results. 

From (4-4) it follows that F(x) increases from 0 to 1 asx increases from -00 to 00. 

3. If F(xo) = 0 then F(x) = 0 forevery X ~ Xo (4-5) 

Proof. It follows from (4-4) because F(-oo) = O. The preceding leads to the conclu­
sion: Suppose that x(n :! 0 for every ~. In this case, F(O) = PIx ~ O} = 0 because 
{x ~ O} is the impossible event. Hence F(x) = 0 for every X :s O. 

4. P{x> xl = 1 - F(x) 

Proof. The events {x:s xl and {x > x} are mutually exclusive and 

{x:s xl U {x > xl = S 

Hence P{x:s xl + Pix > xl = peS) = 1 and (4-6) results. 

5. The function F (x) is continuous from the right: 

F(x+) = F(x) 

(4-6) 

(4-7) 

Proof. ItsufficestoshowthatP{x:sx+e} ... F(x)ase ... ObecauseP{x ~ X+8} = 
F(x + 8) and F(x + e) ... F(x+) by definition. To prove the concept in (4-7). we must 
show that the sets {x :s x + e} tend to the set {x :s x} as e ... 0 and to use the axiom 
llIa of finite additivity. We omit, however. the details of the proof because we h8ve not 
introduced limits of sets. 

6. (4-8) 

Proof. The events {x :s Xl} and {Xl < X :s Xl} are mutually exclusive because x(n 
cannot be both less than XI and between XI and X2. Furthennore. 

Hence 

and (4-8) results. 

7. 

{x::: X2} = {x:s XI} U {XI < x:s X2} 

PIx = x} = F(x) - F(x-) 

Proof. Setting Xl = X - e and X2 = X in (4-8), we obtain 

PIx - 8 < X ~ X} = F(x) - F(x - 8) 

and with e -+ O. (4-9) results. 

8. 

Proof. It follows from (4-8) and (4-9) because 

{XI :s x :s X2} = {Xl < X :s X2} U {x = xtl 

and the last two events are mutually exclusive. 

(4-9) 

(4-10) 
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Statistics. We shall say that the statistics Of a random variable x are known if we can 
detemline the probability PIx E R} that x is in a set R of the x axis consisting of countable 
unions or intersections of intervals. From (4-1) and the axioms it follows that the statistics 
of x are determined in terms of its distribution function. 

According to (4-7), Fx(xt), the limit of Fx(x) asx -+ Xl) from the right always ex.­
ists and equals Fx (xo). But Fx (x) need not be continuous from the left. At a discontinuity 
point of the distribution, the left and right limits are different, and from (4-9) 

(4-11) 

Thus the only discontinuities of a distribution function F" (x) are of the jump type, and 
occur at points Xo where (4-11) is satisfied. These points can always be enumerated as a 
sequence, and moreover they are at most countable in number. 

~ The set of nonnegative real numbers {Pi} satisfy P {x = Xi} = Pi for all i. and 
2::1 Pi = 1. Determine F(x). 

SOLUTION i 
FOUL ~ X < x/+!t we have {x(~) ::: x} = U (x(~) = Xk} = U {x(~) = Xk} and hence 

x~St k=l 

i 

F(x) = P{x(~) ::: x} = L Pk x, ~ X < Xi+l 

k=l 

Here F (x) is a staircase function with an infinite number of steps and the i -th step size 
equals Ph i = 1, 2 •...• 00 (see Fig 4-7). ~ 

~ Suppose the random variable x is such that x(f) = 1 if sEA and zero otherwise. 
Find F(x). 

SOLUTION 
For x < 0, {x(s) ::: x} = {121}, so that F(x) = O. For 0 S x < 1. {x(s) ::: x} = {A}, so 
that F(x) = P{A} = 1 - P = q, where P £. P(A), and if x ~ 1. {x(g) ::: xl = 0, so 
that F(x) = 1 (see Fig. 4-2. page 76). Here the event A may refer to success and A to 

failure. ~ 

F(x) l(x) 

1 -:---------------; 

x x 

(a) (b) 

FIGURE 11-7 
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Continuous, Discrete, and Mixed. Types 

The random variable x is said to be a continuous type if its distribution function Fx (x) is 
continuous. In that case Fx{x-) = Fx(x) forallx,andfrom(4-11)wegetP{x = xl = O. 

If Fx(x) is constant except for a finite number of jump discontinuities (piecewise 
constant; step type). then x is said to be a discrete-type random variable. If Xi is such a 
discontinuity point, then from (4-] 1) (see Fig. 4-9-Fig. 4-10 and also Fig. 4-7 on page 80) 

PIx = x;) = Fx(x,) - FAx/) = Pi 

For example, from Fig. 4-5, page 77, at the point of discontinuity we get 

PIx = a} = FAa) - Fx(a-) = 1 - 0 = 1 

and .from Fig. 4-2, page 76, at such 8 point 

PIx = O} = Fx(O) - Fx(O-) = q - 0 = q 

~ A fair coin is tossed twice, and let the random variable x represent the number of 
heads. Find FAx). 

SOLUTION 
In this case, 0 = {HH, HT, TH, TTl, and 

x(HB) = 2 x(RT) = 1 x(TH) = 1 x(Tn = 0 

For x < 0, {x{;) ~ x} = tfJ => Fx(x) = 0. and for 0 ~ x < 1, 

(x(~) ~ x} = {m => F.r(x} = P{TT} = P(T)P(T) = i 
Finally for 1 ~ x < 2, 

{x(~) ~ x} = {TT,HT, TH} => Fx(x) = P{TT} + P{HT} + P{TH} = ~ 
and for x ~ 2, {x(~) ~ x} = Q => Fx(x) = 1 (see Fig. 4-8). From Fig. 4-8, at a point 
of discontinuity P{x = I} = F",(1) - FxCl-) = 3/4 - 1/4 = 1/2. ~ 

The Probability Density Function (p.d.!.) 

The derivative of the probability distribution function Fx(x) is called the probability 
density function !x (x) of the random variable x. Thus 

!.r(x) ~ dF.r(x) (4-13) 
dx 

1 

3/4 ------.,.....---1 
1/41-----1 

2 x 
FlGURE4-8 
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Since 

(4-14) 

from the monotone-nondecreasing nature of F,l'(x), it follows that lAx) ~ 0 for all x. If 
x is a continuous-type random variable, Ix (x) will be a continuous function. However, 
if x is a discrete-type random variable as in Example 4-7. then its p.df. has the general 
form (Figs. 4-7b and 4-10) 

l.r(x) = L Pi8(X - XI) (4-15) 
I 

whee XIS represent the jump-discontinuity points in Fx(x). ~ Fig. 4-10 shows. 1,I'(x) 
represents a collection of positive discrete masses in the discrete case, and it is known 
as the probability mass function (p.m.f.). 

From (4-13), we also obtain by integration 

F,l'(x) = 1,1' I,l'(u) du 
-co 

(4-16) 

Since Fx(+oo) = 1, (4-16) yields 1: l.r(x) dx = 1 (4-17) 

which justifies its name as the density function. Further, from (4-16), we also get 
(Fig. 4-11) 

P{XI < x(~) !:: X2} = F,I'(Xl) - Fx(Xl) = 10¥2 IAx)dx (4-18) 
XI 

1 ---~-----------

(a) 

FIGURE 4·11 

fp) 

(b) 
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Thus the area under fAx) in the interval (XI> X2) represents the probability that the 
random variable x lies in the interval (x I , X2) as in (4-18). 

If the random variable x is of continuous type. then the set on the left might be 
replaced by the set (Xl ~ x ~ X2). However, if F(x) is discontinuous at Xl or X2, then 
the integration must include the corresponding impulses of f{x). 

With XI = X and X2 = X + i:J.x it follows from (4-18) that, if x is of continuous 
type, then 

P{x ~ x ~ X + .D.x} ::: f(x).D.x (4-19) 

provided that.D.x is sufficiently small. This shows that f(x) can be defined directly as a 
limit 

f(x) = lim P{x ~ x ~ X + .D.x} 
A.t-+O ax (4-20) 

Note As we can see from (4-19), the probability that x is in a small interval of specified length Il.x is 
proportional to f(x) and it is maximum if that interval contains the point x ... where f(x) is maximum. This 
point is called the mode or the mosllik.ely value of x. A random variable is caUed unimodal if it has a single 
mode. 

Frequency interpretation We denote by An" the number of trials such that 

x :::: xeS) :::: x + Ax 

From (I -1) and (4-19) it follows that 

An" 
f(x)Ax:::::: -

n 

4-3 SPECIFIC RANDOM VARIABLES 

(4-21) 

In Sees. 4-1 and 4-2 we defined random variables starting from known experiments. In this 
section and throughout the book, we shall often consider random variables having specific 
distribution or density functions without any reference to a particular probability space. 

~ To do so, we must show that given a function f (x) or its integral 

F(x) = 1~ f(u)du 

we can construct an experiment and a random variable x with distribution F (x) or density 
f (x). As we know, these functions "must have these properties: ~ 

The function f (x) must be non-negative and its area must be 1. The function F (x) 
must be continuous from the right and. as x increases from -00 to 00, it must increase 
monotonically from 0 to 1. 

Proof. We consider as" our space S the set of all real numbers. and as its events all intervals on 
the real line and their unions and intersections. We define the probability of the event {x ~ XI} by 

(4-22) 

where F(x) is the given function. This specifies the experiment completely (see Sec. 2-2). 



The outcomes of our experiment are the real numbers. To define a random variable x on this 
experiment. we must know its value x(x) for every x. We define x such that 

,,(x) = x (4-23) 

Thus x is the outcome of the experiment and the corresponding value of the random variable x 
(see also Example 4-5). 

We maintain that the distribution function of x equals the given F(x). Indeed, the event 
{x ~ XI} consists of all outcomes x such that x(x) ~ XI _ Hence 

P{x ~ xd = P{x ~ XI} = F(XI) 

and since this is true for every XIo the theorem is proved. ~ 

- In the following. we discuss briefly a number of common densities. 

Continuous-'JYpe Random Variables 

(4-24) 

NORMAL (GAUSSIAN) DISTRIBUTION. Nonnal (Gaussian) distribution is one of the 
most commonly used distributions. We say tbat x is a nonnal or Gaussian random variable 
with parameters J1 and 0'2 if its density function is given by 

/x(x) = 1 e-r;c-/l)2/2a2 (4-25) 
J27r0'2 

This is a bell-shaped curve (see Fig. 4-12), symmetric around the parameter /J.. and its 
distribution function is given by 

Fx(x) = IX ~e-(Y-/l)2/2fT2 dy ~ G (x -JJ.) (4-26) 
-00 27r 0'2 0' 

where the fUDction 

G(x) £ IX _1_e-r /2 dy 
-00 ..;z; (4-27) 

is often available in tabulated fonn (see Table 4-1 later in the chapter). Since /x(x) 
depends on two parameters JJ. and 0'2. the notation x - N (JJ" 0'2) will be used to represent 

IP) 

p. JC P. 

(a) X - N(p., ui> (b) X - N(p., ~). oi > ~ 

FIGURE 4·12 
Nonna! density function. 
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the Gaussian p.d.f. in (4-25). The constant J21r (12 in (4-25) is the normalization constant 
that maintains the area under Ix (x) to be unity. 

then 

This follows since if we let 

Q2 = 1+00 r+oo e-<x2+r)f2q2 dx dy 
-00 J-oo 

= 127r 1+00 e-r2/'kr r dr de 

(4-28) 

= 21C(121+00 e-u du = 21C(12 (4-29) 

where we have made use of the transformation x = r cos e, y = r sin 8, so that dx dy = 
r dr de and thus Q = J21Cu2• The special case x'" N(O, 1) is often referred to as the 
'Standard normal random variable. 

The normal distribution is one of the most important distributions in the study of 
probability and statistics. Various natural phenomena follow the Gaussian distribution. 
Maxwell arrived at the normal distribution for the distribution of velocities of molecules, 
under the assumption that the probability density of molecules with given velocity com­
ponents is a function of their velocity magnitude and not their directions. Hagen, in 
developing the theory of errors, showed that under the assumption that the error is the 
sum of a large number of independent infinitesimal errors due to different causes, all of 
equal magnitude. the overall error has a normal distribution. This result is a special case 
of a more general theorem which states that under very general conditions the limiting 
distribution of the average of any number of independent, identically distributed random 
variables is normal. 

EXPONENTIAL DISTRIBUTION. We say x is exponential with parameter ).. ifits density 
function is given by (see Fig. 4-13) 

{ 
)..e->'x x?: 0 

Ix(x) = 0 tb· o erwlse 
(4-30) 

If occurrences of events over nonoverlapping intervals are independent. such as 
arrival times of telephone calls or bus arrival times at a bus stop. then the waiting time 
distribution of these events can be shown to be exponential. To see this.letq (t) represent 

x FlGURE4-13 
Exponential density function. 
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E\:\\II'I f 4-10 

LIFE LENGTH 
OF AN 
APPLIANCE 

the probability that in a time interval t no event has occurred. If x rewesents the waiting 
time to the first arrival, then by definition P(x > t) = q(t).lf tl and t2 represent two 
consecutive nonoveriapping intervals, then by the independent assumption we have 

q(tl )q(t2) = q{tl + t2) 

which has the only nontrivial bounded solution of the form [see also (16-9)-{16-10)] 

q(t) = e-l.l 

Hence 

FAt) = P(x :S t) = 1 - q(t) = I - e-l.t 

an~ the corresponding density function is exponential as in (4-30). 

(4-31) 

Memoryless property of exponential distributions. Let s, t ~ O. Consider the events 
{x> t +s} and {x > s}_ Then 

P{x> t + s} e-(I+.r) 
P{x> t + s I x> $} = = -- = e-I = PIx > t} (4-32) 

PIx > s} e-S 

since the event {x > t + s} c {x > s}. If x represents the lifetime of an equipment, 
then (4-32) states that if the equipment has been working for time s, then the probability 
that it will survive an additional time t depends only on t (not on $) and is identical 
to the probability of survival for time t of a new piece of equipment. In that sense, the 
equipment does not remember that it bas been in use for time s. It follows that for a 
continuous non-negative random variable x, if 

P{x> t + s I x> s} = Pix > I} 

holds for all s. t ~ 0, then x must have an exponential distribution. 
This memoryless property simplifies many calculations and is mainly the reason 

for wide applicability of the exponential model. Under this model, an item that has not 
failed so far is as good as new. This is not the case for other non-negative continuous 
type random variables. In fact. the conditional probability 

P{ I} I-P{x:St+s} 1-F(t+s) 
X>I+.s X>s = =----

1 - Pix :s s} 1 - F($) 
(4-33) 

depends on s in general. 

~ Suppose the life length of an appliance has an exponential distribution with ).. = 10 
years. A .used appliance is bought by someone. What is the probability that it will not 
fail in the next 5 years? 

SOLUTION 
Because of the memoryless property. it is irrelevant bow many years the appliance has 
been in service prior to its purchase. Hence if x is the random variable representing the 
length of the life time of the appliance and to its actual life duration to the present time 
instant, then 

P{x> 10 + 5 I x> to} = P{x > 5} = e-S/ 10 = e-1/ 2 = 0.368 
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As mentioned earlier, for any other lifetime distribution this calculation will depend on 
the actual life duration time 10. ~ 

.. Suppose that the amount of waiting time a customer spends at a restaurant has an 
exponential distribution with a mean value of 5 minutes. Then the probability that a 
customer will spend more than lO minutes in the restaurant is given by 

P(x> 10) = e-10/1. = e-101S = e-2 = 0.1353 

More interestingly, the (conditional) probability that the customer will spend an addi­
tional lO minutes in the restaurant given that he or she has been there for more that 
10 minutes is 

P{x> 101x> to} = P{x> lO} = e-2 = 0.1353 

In other words, the past does not matter. ~ 

A generalization of the exponential distribution leads to the gamma distribution. 

GAMMA DISTRIBUTION. x is said to be a gamma random variable with parameters a, 
andP,a > O,p > Oif 

{ 
___ xa_-.....,l_e-z/p X > 0 

Ix(x) = r(a)pa -

o otherwise 

where rca) represents the gamma function defined as 

rca) = 100 xa-1e-x dx 

If a is an integer, integrating (4-35) by parts we get 

r(n) = (n - l)r(n - I) = (n - I)! 

We shall denote the p.d.f. in (4-34) by G(a, Pl. 

(4-34) 

(4-35) 

(4-36) 

The gamma density function takes on a wide variety of shapes depending on the 
values of a and p. For a < I, lAx) is strictly decreasing and Iz(x) ....... 00 as x ....... 0, 
lAx) ....... Oasx ....... 00. Fora> 1, the density Ix(x) has a unique mode atx = (a-I)IP 
with maximum value [(a -I)e-1 ]a-I Icpr(a». Figure 4.14 gives graphs of some typical 
gamma probability density functions. $ 

Some special cases of the gamma distribution are widely used and have special 
names. Notice that the exponential random variable defined in (4-30) is a special case 
of gamma distribution with a = 1. If we let a = nl2 and P = 2, we obtain the X2 

(chi-square) random variable with n degrees of freedom shown in (4-39). 
For a = n in (4-34), we obtain the gamma density function to be (with P = II>") 

Iz(x) = {F :;;,...... .;,: O. (4-37) 

otherwise 
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fP) 

JC 

(a) a = o.s,(!J -= 1 
fz(JC) 

(!J=2 

(b) a - 2, (!J - 0.5, 1,2 

(c) a = 4,(!J = 2,4;a -10.(!J'" 2 

FIGURE 4-14 
Gamma density functions. 

Integrating (4-37) by parts. we obtain the probability distribution c: function for the 
corresponding gamma random variable to be 

11 n-l (Ati 
F",(t) = ix(x) = 1 - L -,- e-l.r 

o k=O k. 
(4-38) 

If).. = np, in (4-37) and (4-38), then it corresponds to aD Erlangianrandom variable. Thus 
G(n. I/np,) corresponds to an Eriangian distribution (En). In that case. n = 1 yields an 
exponential random variable. and n ~ 00 gives a constant distribution (Fx(t) = 1. for 
t > IIp. and zero otherwise). Thus randomness to certainty are covered by the Erlangian 
distribution as n varies between 1 and 00. Many important distributions occurring in 
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x 

FIGURE4-lS 
x'J. density functiODS for n = 2, S, 8. 10. 

practice lie between these two cases. and they may be approximated by an Erlangian 
distribution for a proper choice of n. 

CHI-SQUARE DISTRIBUTION. x is said to be x2(n) (chi-square) with n degrees of 
freedom if 

{ 
X,,/2-1 e-z/2 x> 0 

/z(x) = 2n/2r(n/2) -

o otherwise 

(4-39) 

Figure 4.15 shows graphs of x2(n) for various values of n. Note that if we let 
n = 2 in (4-39). we obtain an exponential distribution. 1t1s also possible to generalize 
the exponential random variable in such a way as to avoid its memoryless property 
discussed earlier. In reality, most of the appliances deteriorate over time so that an 
exponential model is inadequate to describe the length of its life duration and its failure 
rate. In that context, consider the distribution function 

r;o () 1 - r l.(I)dl 
I;'X X = -e Jo 

The associated density function is given by 

/x(x) = A(x)e-J: l.(t)dl 

x~O A(t) ~ 0 (4-40) 

x~O A(t) ~ 0 (4-41) 

Notice that A(t) = constant. gives rise to the exponential distribution. More generally. 
consider 

A(t) = atll- I 

and from (4-41), it corresponds to the p.d.f. 

{ 
aXIl-le-axllll x ~ 0, 

'z(x) = 0 otherwise. 

and it is known as the Weibull distribution (see Fig. 4-16). 

(4-42) 

(4-43) 
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Ix(x> 

FIGUR.E4·16 
WeibUll density function. 

The special case of Wei bull with ex = 1/u2 and ~ = 2 is known as the Rayleigh 
distribution. Thus Rayleigh has linear rate in (4-42). 

RAYLEIGH DISTRIBUTION. The random variable x is said to be Rayleigh distribution 
with parameter u 2 if 

{

X _zlf2tr2 0 
"2e x 2:: 

fx{x) = u 

o otherwise 
(4-44) 

In communication systems, the signal amplitude values of a randomly received signal 
usually can be modeled as a Rayleigh distribution. 

NAKAGAMI-m DISTRIBUTION. A generalization to the Rayleigh distribution (through 
a parameter m), is given by the Nalcagami distribution where 

{ 
_2_ (~)m x2Ja-1e-mr/o. x > 0 

fz{x) = rem) 0 

o otherwise 
(4-45) 

Compared to the Rayleigh distribution, Nakagami distribution gives greater flexibility to 
model randomly fluctuating (fading) channels in communication theory. Notice that in 
(4-45) m = 1 coxresponds to the Rayleigh distribution, and the parameter m there can be 
used to control the tail distribution. As Fig. 4-17 shows, for m < 1. th~l distribution 
decays slOWly compared to the Rayleigh distribution, while m > 1 coxresponds to faster 
decay. 

UNIFORM DISTRIBUTION. x is said to be uniformly distributed in the interval (a, b). 
-00 < a < b < 00. if 

{
I' 
-- a<x<b 

fz(x) = b - a --

o otherwise 

(4-46) 
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x 

FIGURE 4-17 
Nakapmi-m density function for III = 0.25. 0.5. 0.75. 1.2. 4. 

_1_ r-------r------, 
b-a 

a b x FIGURE 4-18 
Unifonn density function. 

We will write x,.., U(a, b). The distribution function ofx is given by (see Fig. 4-18) 

Fx(x) = { o~ = : ::: <b 

x<a 

(4-47) 

BETA DISTRIBUTION. The random variable x is said to have beta distribution with 
noDnegative parameters a and fJ if 

{
I J 

'::"":"~~,xa-l(1- x)6-1 0 < X < b 
fx(x) = B(a, fJ) 

o otherwise 

where the beta function B(a, fJ) is defined as 

(4-48) 

B(a, fJ) = 101 xa- I (1 - x)p-t dx = 212Jt (sin 6)2a-l (cos 6)2P-J d6 (4-49) 

The trigonometric form in (4-49) can be obtained by substituting x = sin? 6 into the 
algebraic version there. It is possible to express the beta function in terms of the gamma 
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funetlon defined earlier. If we let x = y2 in (4-3S) we obtain 

r(a) = 2100 
y'lllt-l e- r dy 

so that 

r(a)r(.8) = 4100100 
X2«-1 ,2P-1 e-<.r2+r> dx dy 

Changing to polar coordinates with x = r cos 6, y = r sin 6, we obtain 

r(a)r(p) = 41"/2100 r 2C«+P>-le-r2(sin6)2«-1 (cos 6)2P-1 drd6 

or 

= (2100 r2(a+PH e-r2 dr) (2 f (sin6)2«-1(COS6)2J1-1d9) 

= r(a + p)B(a, fJ) 

B( fJ) = r(a)r(.8) 
a. r(a + fJ) 

(4-50) 

(4-51) 

The beta function provides greater flexibility than the uniform distribution on 
(0, 1). which corresponds to a beta distribution with a = P = 1. Depending on the values 
of a and fJ. the beta distribution takes a variety of shapes. If a > 1, fJ > 1, then Ix (x) :-+ 0 
at both x = o and x = 1, and it has a concave down shape. If 0 <a < 1, then/,,(x) -+ 00 

as x -+ O. and if 0 < P < 1. then Ix(x) -+ 00 as x -+ 1. If a < 1. P < 1. then Ix(x) is 
concave up with a unique minimum. When a = fJ. the p.d.f. is symmetric about x = 1/2 
(see Fig. 4-19). 

Some other common continuous distributions are listed next 

CAUCHY DISTRIBUTION 
afT{ 

fx(x) = (x _ JL)2 + a 2 Ixl < 00 (4-52) 

LAPLACE DISTRIBUTION 

(4-53) 

MAXWELL DISTRIBUTION 

{ 
4 2 _x2/«2 --xe 

f~(x) = ~3..fii 
x~O 

(4-54) 

otherwise 

DIscrete-Type Random Variables 

The simplest among the discrete set of random variables is the Bemoulli random variable 
that corresponds to any experiment with only two possible outcomes--wccess or failure 
(head or tail) as in Examples 4-3 and 4-8. 
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a = 0.5,/3 = O.S 

o or 

(0) (a, 13) = (0.5, 0.5), (3, 3) 

x 

(b) (a, 13) = (1,2). (4, I), (6,2), (8, 2) 

FIGURE 4-19 
Beta density function. 

BERNOULLI DISTRIBUTION. X is said to be Bernoulli distributed ifx takes the values 
1 and 0 with (Fig. 4-2) 

P{x = 1) = p P{x = 0) = q = 1- P (4-55) 

In an independent trial of n Bernoulli experiments with p representing the probabil­
ity of success in each ex.periment, if y represents the total number of favorable outcomes. 
then y is said to be a Binomial random variable. 

BINOMIAL DISTRIBUTION. yis said to beaBinomial random variable' with parameters 
nand p if y takes the values 0, 1, 2, ... , n with 

Ply = k} = (~)pkqll-k P +q = I k = 0, 1, 2, ... ,n (4-56) 

The corresponding distribution is a staircase function as in Fig. 4-20. [See also (3-13) 
and (3-23).] 

Another distribution that is closely connected to the binomial distribution is the 
Poisson distribution, whfch represents the number of occurrences of a rare event in a 
large number of trials. Typical examples include the number of telephone calls at an 
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frex) 

0.2 

0.1 

4 5 
(a) 

FIGURE 4-20 

Binominal 
n=9 
p = q = 112 

Binomial distribution (n = 9, P = q = 1/2), 

F.(x~ 

1 ------------~--~-r-~-------

0) 23456789 
(b) 

x 

excliange over a fixed duration. the number of winning tickets among those purchased in 
a large lottery, and the number of printing errors in a book. Notice that the basic event of 
interest is a rare one. nevertheless it occurs. The probability distribution of the number 
of such events is of interest. and it is dictated by the Poisson distribution. 

POISSON DISTRIBUTION. x is said to be a Poisson random variable with parameter ).. 
if x takes the values O. ), 2, ... , 00, with 

P{x = k} = e_AAIc 

k! 
k = 0, I, 2, .... 00 

With Pic = P(x = k). it follows that (see Fig. 4-21) 

Pk-I e-)..AIc-I!(k -I)! k 
--= =-

Pic e-).AIc!k! A 

(4-57) 

If k < A. then P(x = k - l) < P(x = k), but if k > A. then P(x = k -1) > P(x = k). 
Finally. if k = A, we get P(x = k - 1) = P(x = k). From this we conclude that 
P(x = k) increases with k from 0 till k ~ ).. and falls off beyond A. If A is an integer 
P(x = k) has two maximal values at k = A-I and A. 

The corresponding distribution is also a staircase function similar to Fig. 4-20b 
but containing an infinite number of steps. 

In summary, if the ratio pic-I! Pic is less than 1. that is, if k < A, then as k increases. 
Pic increases reaching its maximum for k = [Al. Hence 

if A < 1, then Pic is maximum for k = 0; 
if A > 1 but it is not an integer. then Pic increases as k increases, reaching its 

maximum for k = LA]; 
if A is an integer, then Pk is maximum for k = A-I and k = A. .: 

P(x = k) 

FIGURE 4-21 
3 Poisson dislribulion (J.. = 3). 
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... In the Poisson points experiment. an outcome s is a set of points t; on the taxis. 
(a) Given a constant to, we define the random variable n such that its value n(S) 

equals the number of points t; in the interval (0, to). Clearly, n = k means that the 
number of points in the interval (0. to) equals k. Hence [see (4-117) fora proof] 

P{n = k} = e-A1. ()..to)k 
k! 

(4-58) 

Thus the number of Poisson points in an interval of length to is a Poisson distributed 
random variable with parameter a = )..to, where A is the density of the points. 

(b) We denote by tl the first random point to the right of the fixed point to and 
we define the random variable x as the distance from to to tt (Fig. 4-22a). From the 
definition it follows that x(s) ::: 0 for any s. Hence the distribution function of x is 0 for 
x <' O. We maintain that for x > 0 it is given by 

F(x) = I - e-Ax 

Proof. As we know, F(x) equals the probability that x ~ x, where x is a specific number. But 
x ~ x means that there is at least one point between to and to + x. Hence 1 - F(x) equals the 
probability Po that th~re are no points in the interval (to. to + x). And since the length of this 
interval equals x, (4-58) yields 

Po = e-J.x = 1 - F(x) 

1be corresponding density 

f(x) = .te-J.xU(x) 

is exponential as in (4-30) (Fig. 4-22b). .... 

(4-59) 

As we shall see in the next section, it is possible to establish the Poisson distribution 
as a limiting case of the binomial distribution under special conditions [see (4-107)]. 

Recall that the binomial distribution gives the probability of the number of suc­
cesses in a fixed number of trials. Suppose we are interested in the first success. One 
might ask how many Bernoulli trials are required to realize the first success. In that case, 
the number of trials so needed is not fixed in advance, and in fact it is a random number. 
In a binomial experiment. on the other hand, the number of trials is fixed in advance and 
the random variable of interest is the total number of successes in n trials. 

Let x denote the number of trials needed to the first success in repeated Bernoulli 
trials. Then x is said to be a geometric random variable. Thus with A representing the 

)( )( 

FlGURE4-21 
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x l.­
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(b) 
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success ~ent . 

Pix = k} = P(AA: .. A:A) = P(A)P(A) ... P(A)P(A) 
k-I 

= (1- p)lr.-rp k=I.2.3 •...• 00 

GEOMETRIC DISTRIBUTION. x is said to be a geometric random variable if 

PIx = k} = pqlr.-t k = 1.2.3 •...• 00 (4-60) 

From (4-60), the probability of the event {x> m} is given by 
00 00 

PIx > m} = L Pix = k} = L pq"-l 

Thus, for integers m. n > 1. 

k_+' k=m+l 

= pqm(1 + q + ... ) = pqm = qm 
l-q 

P{x> m +n} qlll+71 
P(x> m + n I x> m} = = -- = q" (4-61) P{x> m} qm 

since the event {x> m +n} C {x > m}. Equation (4-61) states that given that the first m 
trials had no success, the conditional probability that the first success will appear after 
an additional n trials depends only on n and not on m (not on the past). Recall that this 
memoryless property is similar to that exhibited by the exponential random variable. 

An obvious generalization to the geometric random variable is to extend it to the 
number of trials needed for r successes. Let y denote the number of Bernoulli trials 
required to realize r successes. Then y is said to be a Mgalille binomial random variable. 
Thus using (4-56) and the independence of trials, we get 

PlY = k} = P{, - 1 successes in k - 1 trials and success at the kth trial} 

= (k -1) pr-Iq"-r p 
',-I 

( k - 1) I Ir.-r = r-l pq k = r, r + 1, ... ,00 (4-62) 

NEGATIVE BINOMIAL DISTRIBUTION. Y is said to be negative binomial random 
variable with parameters T and p if 

. Ply = k} = (~=!) p' q"-' k = r,r + 1, ...• 00 (4-63) 

H n or fewer trials are needed for r successes, then the number of successes in n trials 
must be at least r. Thus 

Ply =s n} = PIx ~ r} , 

where y - NB(r, p) as in (4-62) and x is a binomial random variable as in (4-56). Since 
the negative binomial random variable represents the waiting time to the rth success, it 
is sometimes referred as the waiting-time distribution. 
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The random variable z = y - r, that denotes the number of trials (failures) preced­
ing the rtll success, has the distribution given by [use (4-62)] 

P{z=k}=P{y=k+r}= (r;~~l)prqk 

( r+k-l) r II = k P q k =0,1.2, ... ,00. (4-64) 

In particular r = 1 gives 

P{z=k) =pq" k = 0,1,2, ... ,00, (4-65) 

and sometimes the distribution in (4-65) is referred to also as the geometric distribution 
and that in (4-64) as the negative binomial distribution . 

.. Two teams A and B playa series of at most five games. The first team to win three 
games wins the series. Assume that the outcomes of the games are independent Let p 
be the probability for team A to win each game, 0 < p < 1. Let x be the number of 
games needed for A to win. Then 3 :s x :s 5. Let the event 

At = {A wins on the kth trial} 

We note that A" n AI = t/J, k =F I. so that 

k = 3,4.5 

peA wins) = P C~ Al) = ~ P(A,,} 

where 

peAk} = P(3rd success on kth trial) = (k; 1) p3(1 _ p)"-3 

Hence 

If p = 1/2, then peA wins) = 1/2. The probability that A. will win in exactly four 
games is 

The probability that A will win in four games or less is 1/8 + 3/16 = 5/16. 
Given that A has won the first game, the conditional probability of A winning 

equals 

~ (k-l) (!)2 (!)"-2 = (! ~ ~) = ~ 
L.J 1 2 2 4 + 8 + 16 16 
t=2 
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EX \I\LPI ,E 4-14 

DISCRETE UNIFORM DISTRIBUTION. The"random variable x is said to be discrete 
uniform if 

1 
P{x=k} =­

N 
k = 1.2 •... , N 

4-4 CONDITIONAL DISTRmUTIONS 

We recall that the probability of an event A assuming M is given by 

peA 1M) = P(AM) where P(M) ':/: 0 
P(M) 

(4-66) 

The conditional distribution F (x I M) of a random variable x, assuming M is 
defined as the conditional probability of the event (x ~ xl: 

F(x 1M) = Pix ~ x I M} = P{xp~;; M} (4-67) 

In (4-67) {x ~ x, M} is the intersection of the events {x ~ x} and M, that is. the event 
consisting of all outcomes, such that x(n ~ x and ~ e M. 

Thus the definition of F(x I M) is the same as the definition (4-1) of F(x), pro­
vided that all probabilities are replaced by conditional probabilities. From this it follows 
(see Fundamental remark, Sec. 2-3) that F(x I M) has the same properties as F(x). In 
particular [see (4-3) and (4-8)] 

F(oo I M) = 1 F(-oo I M) = 0 (4-68) 
P{XI <x<x2,M} 

P{XI < x ~ x21 M} = F(X21 M) - F(XI 1M) = P(M) (4-69) 

The conditional density I(x I M) is the derivative of F(x 1M): 

I(x 1M) = dF(x I M) = lim PIx ~ x ~ x + Ax 1M} (4-70) 
dx A.¥ ..... O Ax 

This function is nonnegative and its area equals 1. 

~ We shall determine the conditional F(x I M) of the random variable x(li) = 10i of 
the fair-die experiment (Example 4-4), where M = {h. 14. 16} is the event "even." 

Ifx ~ 60, then {x ~x} is the certain event and {x ~x, M} =M. Hence (Fig. 4-23) 

F(.x) 

o 

Ii1GURE 4-23 

P(M) 
F(x 1M) = P(M) = 1 

F(xlevoo) 

o 
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If40 ~ X < 60, then {x ~ X, M} = (12, f4}. Hence 

F(x I M) = P{h, f4} = 2/6 40 ~ X < 60 
P(M) 3/6 

If20 ~ x < 40, then {x ~ x, M} = {h}. Hence 

F(x I M) = P{!2} = 1/6 20 ~x < 60 
P(M) 3/6 

If X < 20. then {x ~ x, M} = {0}. Hence 

F(x I M) = 0 x < 20 

. To find F (x I M), we must. in general, know the underlying experiment. However. 
if M is an event that can be expressed in terms of the random variable X. then, for the 
determination of F(x I M). knowledge of F(x) is sufficient. The two cases presented 
next are important illustrations. 

L We wish to find the conditional distribution of a random variable x assuming that 
x ~ a, where a is number such that F(a) ::F O. This is a special case of (4-67) with 

M= {x~a} 

Thus our problem is to find the function 

Pix < x.x < a} 
F(x I x ~ a) = PIx ~ X I x ~ a} = P-( < -) x_a 

If x ~ a. then {x ~ x, X ~ a} = {x ~ a}. Hence (Fig. 4-24) 

F(x I x < a) = P{x $ a} = 1 x ~ a 
- PIx $ a} 

If x < a. then {x ~ x. X ~ a} = {x ~ x}. Hence 

F(x I x < a) = P{x ~ x} = F(x) 
- PIx ~ a} F{a) 

x <a 

Differentiating F(x I x ~ a) with respect to x. we obtain the corresponding 
density: Since F/{x) = I(x), the preceding yields 

f(x) f(x) 
f(xlx~a)= F(a) = f~oof{x)dx for x <0 

;; 

and it is 0 fou ~ o. 

F(xlx ell.I) 

o 1.1 x FIGURE 4-24 
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I EX,\MPLL 4-15 

x FIGURE 4-25 

n. Suppose now that M = {b < x:::; a}. In this case, (4-67) yields 

F( I b <) = P{x:::; x. b < x :::; aJ 
x < x - a P{b < x :::; aJ 

Ifx ~ a. then {x:::; x, b < x:::; a} = {b < x :::; a}. Hence 

F(a) - F(b) 
F(x Ib < x:::; a) = F(a) _ F(b) = 1 x ~ a 

If b :::; x < a, then {x:::; x, b < x:::; a} = {b < x:::; xl. Hence 

F(x) - F(b) 
F(x 1 b < x :::; a) = F(a) _ F(b) b:::;x<a 

Finally, if x < b, then {x :::; x, b < x :::; aJ = (el. Hence 

F(x I b < x :::; a) = 0 x < b 

The corresponding density is given by 

I(x) 
I(x 1 b < x :::; a) = F(a) _ Feb) for b:::; x < a 

and it js 0 otherwise (Fig. 4-25). 

~ We shall detennine the conditional density I (x Ilx - TJ 1 :::; ku) of an N (TJ; u) random 
variable. Since 

POx - TJI :::; ku} = P{7} - ku :::; x:::; 7J + ku} = 2 [ ~e-il/2 dx 

we conclude from (4-72) that 

1 e-(x-T/}2/2rT2 

I(x Ilx - 111 :::; ku) = P(lx _ '71 :s ku) u../ii 

for x between 7J - ku and TJ + ku and 0 otherwise. This density is called truncated 
normal . .... 

Frequency interpretation In a sequence of n trials, we reject all outcomes ~ such that 
x(~) .$ b or x(S) > Q. In the subsequence of tile remaining trials, F(x I h < x :s a) bas the 
same frequency interpretation as F(x) [see (4-3)J. 
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~ The memoryless property of a geometric random variable x states that [see (4-61)] 

P{x> m + n I x> m} = P{x > n} (4-71) 

Show that the converse is also true. (i.e .• if x is a nonnegative integer valued random 
variable satisfying (4-71) for any two positive integers m and n. then x is a geometric 
random variable.) 

SOLUTION 
Let 

so that 

Pk = P{x = k}. k=1.2.3 .... 

00 

P{x> n} = L Pk = a" 
k=n+1 

and hence using (4-71) 

Hence 

or 

where 

Thus 

and from (4-72) 

P{ I} P{x> m +n} alll+n 
x>m+n x>m = =--

P{x> m} alii 
= P(x > n} = all 

a -a a - a»l+1 111+1 - '11 1- 1 

t:. 
al = P(x > I} = 1 - Pix = I} = 1 - P 

PIx = n} = P(x ~ n} - P(x > n} 

= all_I -an = p(l- pt-I 

comparing with (4-60) the proof is complete. .... 

n = 1.2,3 •... .. 

Total ProbabUity and Bayes' Theorem 

We shall now extend the results of Sec. 2-3 to random variables. 

1. Setting B = (x ~ x) in (2-41), we obtain 

Pix ~ xl = Pix ~ x I AJlP(A)} + '" + P{x ~ x I An}P(AII ) 

(4-72) 
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Helice [see' (4-67) and (4-70)] 

F(x) = F(x I A.)P(A.) + ", + F(x I A'I)P(An} (4-73) 

I(x) = I(x I A1)P(A1) + ' , . + I(x I An}P(AII } (4-74) 

In the above, the events A" ...• An form a partition of S . 

... Suppose that the random variablexis such that I(x I M) is N(lll; 0'1) and f(x I M) 
is N(rn. 0'2) as in Fig. 4-26. Clearly. the events M and M form a partition of S. Setting 
AI = M and A2 = M in (4-74). we conclude that 

f(x) = pf(x I M) + (1- p)f(x I M) = LG(X -:- 111) + 1- P G(X - 112) 
• 0'1 0'1 0'2 0'2 

where p = P (M). <411 

2. From the identity 

peA I B) = PCB I A)P(A) (4-75) 
PCB) 

[see (2-43)] it follows that 

peA I x!: x) = PIx!: x I A} peA) = F(x I A) peA) (4-76) 
Pix !: x} F(x) 

3. Setting B = {XI < x !: X2} in (4-75), we conclude with (4-69) that 

PIA IXI < x!: X2} = P{XI < X ~ x21 A} peA) 
P{XI < x ~ X2} 

= F(X21 A} - F(xi I A) peA) 
F(X2) - F(xl) (4-77) 

4., The conditional probability P (A I x = x) of the event A assuming x = x cannot be 
defined as in (2-33) because, in general. P {x = x} = O. We shall define it as a limit 

P{Alx=x}= lim P{Alx<x!:x+AX} (4-78) 
t.x-+O 

With XI = X, X2 = X + Ax. we conclude from the above and (4-77) that 

PIA Ix = xl = f<;(l:) peA) ~ (4-79) 

FIGURE 4-26 
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Total probability theorem. As we know [see (4-68)] 

F(oo I A) = I: f(x I A) dx = 1 

Multiplying (4-79) by f(x) and integrating. we obtain 

f: peA Ix = x)f(x)dx = peA) 

This is the continuous version of the total probability theorem (2-41). 

Bayes' theorem. From (4-79) and (4-80) it follows that 

(4-80) 

f(x I A) = peA I x = x) f(x) = peA I x = x)f(x) (4-81) 
peA) 1:0 peA I x = xl/ex) dx 

This is the continuous version of Bayes' theorem (2-44). 

~ Suppose that the probability of heads in a coin-tossing experiment S is not a number, 
but a random variable p with density / (p) defined in some space Sc. The experiment of 
the toss of a randomly selected coin is a cartesian product Sc x S. In this experiment, 
the event B = {head} consists of all pairs of the form ~ch where ~c is any element of Sc 
and h is the element heads of the space S = {h, t}. We shall show that 

PCB) = 101 pf(p) dp (4-82) 

SOLUTION 
The conditional probability of H assuming p = p is the probability of heads if the coin 
with p = p is tossed. In other words, 

P{Hlp = p} = p (4-83) 

Inserting into (4-80), we obtain (4-81) because / (p) = 0 outside the interval (0, 1). ~ 

To illustrate the usefulness of this formulation, let us reexamine the coin-tossing 
problem. 

~ Let P = P(H) represent the probability of obtaining a head in a toss. For a given 
coin, a priori p can possess any value in the interval (0, 1) and hence we may consider it 
to be a random variable p. In the absence of any additional information, we may assume 
the a-priori p.d.f. /p(P) to be a uniform distribution in that interval (see Fig. 4-27). Now 
suppose we actually perform an experiment of tossing the coin n times and k heads are 
observed. This is new information. How do we update /p(p)? 

SOLUTION 
Let A = Uk heads in n specific tosses." Since these tosses result in a specific sequence, 

(4-84) 
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fp(P) 

p 
FIGURE 4-27 

fplA(pIA) 

p 

FIGURE 4-28 

and using (4-80) we get 

peA) = 11 peA I p = p)!p(p) dp = 11 pi(! - p)"-It dp = (~n-+k~~~! (4-85) 

The a posteriori p.d.f. !p(p I A) (see Fig. 4-28) represents the updated information given 
the event A, and from (4-81) 

~ (I A) = peA Ip = p)!p(p) 
JplA p peA) 

(n + I)! Ie n-It 
. = (n - k)!k! P q o < p < 1 '" pen, k) (4-86) 

Notice that the a posteriori p.d.f. of p in (4-86) is not a uniform distribution, but a beta 
distribution. We can use this a posteriori p.d.f. to make further predictions. For example. 
in the light of this experiment, what can we say about the probability of a head occurring 
in the next (n + l)th toss? 

Let B = "head occurring in the (n + l)th toss, given that k beads have occurred 
in n previous tosseS!' Clearly P(B I p = p) = p, and from (4-80) 

P(B) = 11 P(B I p = p)!p(p I A)dp (4-87) 

Notice that unlike (4-80), we have used the a posteriori p.d.f. in (4-87) to reflect our 
knowledge about the experiment already performed. Using (4-86) in (4-87), we get 

PCB) = rl . (n + I)! It n-k d = k + ! (4-88) 10 p (n - k)!k!P q P n + 2 
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Thus, if n = 10, and k = 6, then 

7 
P(B) = 12 = 0.58 

which is better than p = 0.5. 
To summarize, if the probability density function of a random variable x is un­

known, one should make noncommittal judgment about its a priori p.d.f. Ix (x). Usually, 
the unifonn distribution is a reasonable assumption in the absence of any other infoIDla­
tion. Then experimental results (A) are obtained, and the knowledge about x is updated 
reflecting this new information. Bayes' rule helps to obtain the a posteriori p.d.f. of x 
given A. From that point on, this a posteriori p.d.f. Ix I A (x I A) should be used to make 
further predictions and calculations. ~ 

4·5 ASYMPTOTIC APPROXIMATIONS 
FOR BINOMIAL RANDOM VARIABLE 

Let x represent a binomial random variable as in (4-56). Then from (3-12), (4-15), and 
(4-18) 

(4-89) 

Since the binomial coefficient 

(~) = (n :!)!k! 
grows quite rapidly with n, it is difficult to compute (4-89) for large n. In this context, 
two approximations-the normal approximation and the Poisson approximation-are 
extremely useful. 

The Normal Approximation 
(DeMoivre-Laplace Theorem) 

Suppose n -+ 00 with p held fixed. Then for k in the .Jnpq neighborhood of np, as we 
shall show in Chap. 5 [see (5-120) and (5-121)], we can approximate 

(n) lq"-k ~ 1 e-(k-np)2/2npq 
k .J27rnpq 

.. 
p+q=l (4-90) 

This important approximation, known as the DeMoivre-Laplace theorem. can be stated 
as an equality in the limit: The ratio of the two sides tends to 1 as n -+ 00. Thus if kl and k2 
in (4-89) are within or around the neighborhood of the interval (np- ../npq, np+ ../npq ), 
we can approximate the summation in (4-89) by an integration of the normal density 
function. In that case, (4-89) reduces to ' 
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TABLE 4·1 

erfx = -- e-Y./2dy = G(x) - -,x> 0 1 l x 1 
,.fiii 0 2 

x error or erfx % erfx % 

0.05 0.01994 0.80 0.28814 1.55 0.43943 2.30 
0.10 0.03983 0.85 0.30234 1.60 0.44520 2.35 
0.15 0.05962 0.90 0.31594 1.65 0.45053 2.40 
0.20 0.07926 0.95 0.32894 1.70 0.45543 2.45 
0.25 0.09871 1.00 0.34134 1.75 0.45994 2.50 

0.30 0.11791 1.05 0.35314 1.80 0.46407 2.55 
0.35 0.13683 1.10 0.36433 1.85 0.46784 2.60 
0.40 • 0.15542 1.15 0.37493 1.90 0.47128 2.65 
0.45 0.17364 1.20 0.38493 1.95 0.47441 2.70 
0.50 0.19146 1.25 0.39435 2.00 0.47726 2.75 

0.55 0.20884 1.30 0.40320 2.05 0.47982 2.80 
0.60 0.2lS75 1.35 0.41149 2.10 0.48214 2.85 
0.65 0.242]5 1.40 0.41924 2.15 0.48422 2.90 
0.70 0.25804 1.45 0.42647 2.20 0.48610 2.95 
0.75 0.27337 1.50 0.43319 2.25 0.48778 3.00 

0.5 

.rjf;() = _1_ r .-r12 fly = G(x) _ 1 
~J 0 2 

0.3 

0.1 

o 0.5 ].0 1.5 2.0 3.0 x c 

FIGURE 4-19 

where 
kl -np 

Xl = -'-:=~ 
.Jnpq 

We define (see Fig. 4-29 and Table 4-1) 

G(x) = -e-y'l/2 dy j x 1 

-00 ,J2i 

erf% 

0.48928 
0.49061 
0.49180 
0.49286 
0.49379 

0.49461 
0.49534 
0.49597 
0.49653 
0.49702 

0.49744 
0.49781 
0.49813 
0.49841 
0.49865 

(4-92) 
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as before. and the error function 

erfx = __ e-'h2 dy = O(x) - -,x> 0 l x 1 1 

o .J2i 2 
(4-93) 

Note that O( -x) = 1 - G(x), x > O. In tenns of G(x), we obtain 

P(kJ :5 x :5 k2) = O(X2) - O(Xl) (4-94) 

Thus the evaluation of the probability of k successes in n trials, given exactly by 
(3-13), is reduced to the evaluation of the normal curve 

(4-95) 

for x, = k . 

.. A fair coin is tossed 1000 times. Find the probability Po that heads will show 500 
times and the probability Pb that heads will show 510 times. 

In this example 

p=q =0.5 n = 1000 

(a) If k = 500, then k - np = 0 and (4-90) yields 

1 1 
Po~ ~= ~=O.0252 

....,~.npq 10....,5n 
(b) If k = 510, then k - np = 10 and (4-90) yields 

e-O•2 
Pb ~ ~ = 0.0207 

10....,5n 

As Example 4-21 indicates. the approximation (4-90) is satisfactory even for mod­
erate values of n. 

~ We shall determine PII(k) for p = 0.5, n = 10, and k = 5. 
(a) Exactly from (3-13) 

(n) k II-k 10! 1 
PII(k) = k p q = 5!S! 210 = 0.246 

(b) Approximately from (4-90) 

PII(k) ~ 1 e-(Ie-IIp)2/211pq = _1_ = 0.252 ~ ~ 
J2nnpq .JSn 

APPROXIMATE EVALUATION OF P{k1 ~ k ~ kl }. Using the approximation (4-90), 
we sh8J.I show that 

t (n) l"q,,-k ~ O(k2 - np ) _ O(kJ -np ) (4-96) 
Ie=k. k Jnpq' Jnpq 

Thus. to find the probability that in n trials the number of occurrences of an event A 
is between kl and k2, it suffices to evaluate the tabulated nonna! function G(x). The 
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~roxiniation is satisfactory if npq » 1 and the differences kl - np and k2 - np are 
order of ../npq. 

Inserting (4-90) into 

The normal curve is nearly constant in any interval of length 1 because 0'2 = npq » 1 
by assumption; hence its area in such an interval equals approximately its ordinate 
(Fig. 4-30). From this it follows that the right side of (4-97) can be approximated by the 
inte8fal of the nonnal curve in the interval (kl l k2)' This yields 

results [see (4-94)1. 

Error correction. The sum on the left of (4-97) consists of k2 - kJ + 1 terms. The 
integral in (4-98) is an approximation of the shaded area of Fig. 4-31a, consisting of 
k2 - kl rectangles. If k2 - kl » 1 the resulting error can be neglected. For moderate 
values of k2 - kl' however. the error is no longer negligible. To reduce it, we replace in 
(4-96) the limits kJ and k2 by kJ - 1/2 and k2 + 1/2 respectively (see Fig. 4-31b). This 

FlGURE4·30 

(I 

kl '- 0.5 k2 + 0.5 

00 W 

FIGURE 4·31 
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yields the improVed approximation 
k t (n) lqn-k ~ 0(k2 + 0.5 - np ) _ O(k l - 0.5 - np ) 

k=k, k ./npq Jnpq 
(4-99) 

~ A fair coin is tossed 10 000 times. What is the probability that the number of heads 
is between 4900 and 51 OO? 

In this problem 

n = 10,000 p = q =0.5 kl = 4900 

Since (k2 -np)/Jnpq = 100/50 and (k) -np)/ Jnpq = -100/50, we conclude from 
(4-96) that the unknown probability equals 

0(2) - 0(-2) = 20(2) - I = 0.9545 

~ Over a period of 12 hours, 180 calls are made at random. What is the probability that 
in a four-hour interval the number of calls is between 50 and 70? 

This situation can be considered as a problem in repeated trials with p = 4/12 the 
probability that a particular call will occur in the four-hour interval. The probability that 
k calls will occur in this interval equals [see (4-90)1 

(180) (!)k (~) 180-1: ~ _1_e-<k-60)1/80 

k 3 3 4~ 

and the probability that the number of calls is between 50 and 70 equals [see (4-96)] 

~ (1~0) (~) k (~) 180-k ~ 0(./2.5) _ O( -./2.5) ~ 0.886 

Note It seems that we cannot use the approximation (4-96) if k, = 0 because the sum contains values of k 
that are not in the ..;;;pq vicinity of tIp. However, the corresponding terms are small compared to the terms 
with k near np; hence the errors of their estimates are also small. Since 

G(-np/..fiiijq) = G(-Vnp/q) ':::. 0 for np/q» 1 

we conclude that if not only n » 1 but also np » J, then 

In the sum (3-25) of Example 3-13 (Chap. 3). 

np = 1000 npq = 900 

Using (4-100), we obtain 

f ( lr) (0.1)"(0.9)'0"'-" ':::. G (1~) = 0.99936 
k-o . 

(4-100) 

We note that the sum of the terms of the above sum from 900 to 1100 equalS 2G( 10/3) - 1 ':::. 0.99872. 
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EX~ \IPLE 4-24 

EX \i\IPLE .cl-25 

The Law of Large Numbers 

According to the relative frequency interpretation of probaPility. if an event A with 
peA) = P occurs k times in n trials. then k ::::: np. In the following. we rephrase this 
heuristic statement as a limit theorem. 

We start with the observation that k ::: np does not mean that k will be close to 
np. In fact [see (4-90») 

1 
P{k = lip}::: ~ -+- 0 

7rnpq 
as n -+- 00 (4-101) 

As we saw in Bernoulli's theorem (Sec. 3-3), the approximation k ::: np means that the 
ratio k / n is close to p in the sense that, for any 8 > 0, the probability that Ik / n - pi < 8 

tends to 1 as n -+- 00. 

~ Suppose that p = q = 0.5 and 8 = 0.05. In this case, 

kJ = n(p - 8) = OA5n k2 = n{p + 8) = 0.55n 

(k2 - np)/..jnpq = s.,fii1pq = O.l..jn 

In the table below we show the probability 2G(0.1..jn) - 1 that k is between OA5n and 
0.55n for various values of n. 

n 100 400 900 
0.1";;; 1 2 3 
2G(0.1.,fii) - 1 0.682 0.954 0997 

~ We now assume that p = 0.6 and we wish to find n such that the probability that k 
is between 0.59n and 0.61n is at least 0.98. 

In this case. p = 0.6, q = 004. and 8 = 0.01. Hence 

P{0.59n ~ k ~ 0.61n}::: 2G(0.01..jn/0.24)-1 

Thus n must be such that 

2G(0.01..jn/0.24) -1 ~ 0.98 

FromTable4-1 weseethatG(x) > 0.99 if x > 2.35. HenceO.Ol.J7i7(j24 > 2.35 yielding 
n> 13254. .... Q 

GENERALIZATION OF BERNOULLI TRIALS. The experiment of repeated trials can 
be phrased in the following form: The events Ai = A and A2 = A of the space S form 
a partition and their respective probabilities equal PI = P and P2 = 1 - p. In the space 
sn, the probability of the event {AI occurs kJ = k times and A2 occurs k2. = n - k times 
in any order} equals Pn(k) as in (3-13). We shall now generalize. 

S!lPpose that 

U = [AI .... , A,) 
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is a partition of S consisting of the r events Ai with 

P(Ai) = Pi PI + ... + PI' = 1 

We repeat the experiment n times and we denote by PII(kl ••••• k,.) the probability of 
the event {AI occurs kl times, ...• A, occurs kr times in any order} where 

ki + ... +k,. = n 

We maintain that 

k n! 1:1 Ie 
PII( 10 •••• k,.) = k I k ,PI .. ·Pr' 

1· .. · ,.. 
(4-102) 

Proof. Repeated application of (3-11) leads to the conclusion that the number of events 
of the form {AI occurs kl times, ...• AT occurs k,. times in a specific order} equals 

n! 

kl l .. ·k,.! 

Since the trials are independent. the probability of each such event equals 

plel ... p:' 

and (4-102) results. 

~ A fair die is rolled 10 times. We shall determine the probability that il shows three 
times. and "even" shows six times. 

In this case 

Al = {itl 
Clearly. 

PI = ~ 
and (4-102) yields 

no. - ~ r"'- 6 

10! (1)3(1)61 
Plo(3. 6.1) = 31611! 6 :2 3 = 0.002 

.. We can show as in (4-90) that. if k/ is in the .;n vicinity of npi and n is sufficiently 
large. then 

exp {_l [<kl-IIP1)l + ... + (1e,_1tP,)2]}ot 
n! lei Ie, '" 2 IIPI lip, 

-----PI ... PI - ----'--~===:==:====---.:..:;.. 
k)!··· k,.! y'(27rny-l PI ... Pr 

(4-103) 

Equation (4-90) is a special case. ... 

The Poisson Approximation 

As. we have mentioned earlier. for large n. the Gaussian approximation of a binomial 
random variable is valid only if P is fixed, that is, only if np » 1 and npq » 1. From the 
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I ,. 
o T 

FIGURE 4·32 

conditions of the DeMoivre-Laplace theorem, the Gaussian representation deteriorates 
as P .... 0 or P .... 1. This representation completely fails for p = 0, q = I, or p = I, 
q = O. However, a variety of problems fall under this category where p (or q) is very 
small, but the total number of trials is very large. thereby making it necessary to find 
an asymptotic formula for such rare events. Obviously, that is the case if, for example, 
p ~ 0 as n .... 00, such that np = A is a fixed number. 

Many random phenomena in nature in fact follow this pattern. The number of calls 
on a telephone line, claims in an insurance company, and the like tend to follow this type 
of behavior. Consider random arrivals such as telephone calls over a line. Let n represent 
the total number of calls in the interval (0, T). From our experience, as T ~ 00 we also 
have n .... 00, so that we may assume n = J,LT. Consider a small interval of duration I::!. 
as in Fig. 4-32. Had there been only a single call coming in, the probability p of that 
single call occurring in that interval must depend on its relative size with respect to T. 

Hence as in Example 3-10 we can assume p = I::!./T. Note that p ~ 0 as 
T .... 00. However in this case np = p,T(A/T) = p,A = ).. is a constant, and the 
nonnal approximation is invalid here. 

Suppose the interval I::!. in Fig. 4-32 is of interest to us. A call inside that interval 
is a "success" (H), whereas one outside is a "failure" (T). This is equivalent to the coin 
tossing situation, and hence the probability P7l(k) of obtaining k calls (in any orde!') in 
an interval of duration I::!. is given by the binomial p.m.f. Thus from (3-13) and (4-56) 

n! II 71-k 
Pn(k) = en _ k)!k! p (1 - p) (4-104) 

as in (3-21), and as n .... 00 we have p -- 0 such that np = A. It is easy to obtain an 
excellent approximation to (4-104) in that situation. To see this, rewrite (4-104) as 

_ n(n - I}· .. (n - k + 1) (np)k ( _ np )lI-k 
Pn(k) - k k' 1 n . n 

= (1 - ~) (1 - ~) ... (1 - ¥) )..le (1 _ ~)11 
(l-*t k! n 

= 0-1 (l-~)) Ak (1_~)n II (l-!) k! n 
=0 11 

(
k-l ( A )) )..k ( A)lI 

= !! 1 + n -= 7 k! 1 - n 
Thus as n .... 00, p .... 0 such that np = A 

)..t 
Pn(k) ~ k! e-A. 

" 

(4-105) 

(4-106) 
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since the finite product 

IT (1 + ~ ~~) ~ Ii (1 + ~ ~~) 
m=O m=O 

tends to unity as n -+ 00, and 

( A)'· lim 1- - = e-J.. 
11-+00 n 

The right side of (4-106) represents the Poisson p.m.f. described in (4-57) and the 
Poisson approximation to the binomial random variable is valid in situations where the 
binomial random varible parameters n and p diverge to two extremes (n -+ 00, p -+ 0) 
suc~ that their product np is a constant Thus if a phenomenon consists of the sum of 
several independent and identical Bernoulli random variables, each of which has a small 
probability of occurrence, then the collective sum tends to be Poisson. We summarize 
these observations in the following theorem. 

POISSON THEOREM. If 

n -+ 00 p-+O such that np -+ A 

then 

n! Ie n-Ie _l.AIe 
.,.-,--~p q --+ e -
kl(n - k)! 11-00 k! 

k = 0.1, 2, ... (4-107) 

.. A system contains 1000 components. Each component fails independently of the 
others and the probability of its failure in one month equals 10-3• We shall find the 
probability that the system will function (i.e., no component will fail) at the end of one 
month. 

This can be considered as a problem in repeated trials with p = 10-3, n = 1 Q3 , 
and k = O. Hence [see (3-21)] 

P{k = O} = q" = 0.9991000 

Since np = I, the approximation (4-107) yields 

P{k = O} :::: e-np = e- I = 0.368 

Applying (4-107) to the sum in (3-24), we obtain the following approximation for 
the probability that the number k of occurrences of A is between kl and k2: 

k2 ( )" 
P{kl ~ k ~ k2} ::::e-IIPL: n~ 

k=le. 

(4-108) 

, 
.. An order of 3000 parts is received. The probability that a part is defective equals 
10-3• We wish to find the probability P {k > 5} that there will be more than five defective 
parts. 
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Clearly, 

P{k > 5} = 1 - P{k ~ 5} 

With np = 3, (4-108) yields 

S 3.1: 
P{k ~ S} = e-3 L:: -kl = 0.916 

.1:=0 • 

Hence 

P{k> 5} = 0.084 

~ An insurance company has issued policies to 100,000 people for a premium of 
$SOOIperson. In the event of a causality, the probability of which is assumed to be 0.001, 
the company pays $200,OOOIcausality. What is the probability that (a) the company will 
suffer a loss? (b) The company will make a profit of at least $25 million? 

SOLUTION 
The company collects $500 x lOS = $50 million in terms of premium from its customers. 
The probability of each causality is very small (p = 0.001) and n is large so that we can 
take advantage of Poisson's theorem with 

A = np = lOS x 0.001 = 100 

(a) For the company to suffer a loss, it must make payments to more than 

$50 x 106 

no = $200,000 = 250 persons 

Hence with x representing the (random) number of causalities, we get 
00 ')...1: 

Po = P{company suffers a loss} = PIx > 250} = L:: e-). kl 
. .1:=250 • 

It is possible to obtain excellent approximations to (4-109) as follows. Clearly 

We can make use of Stirling's fannula 

n! ~ J21rnnne-1i n -+ 00 

that is valid for large n to simplify (4-110). fhus 
fl." An 1 
-- < P(x > n) < ------­
J21rn J27Cn 1 - A/(n + 1) 

(4-109) 

(4-110) 

(4-111) 

(4-112) 
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where 

(4-113) 

With A = 10Q, no = 250, we get .6. = 0.7288 so that .6.250 = 0 and the desired probability 
is essentially zero. 

(b) In this case to guarantee a profit of $25 million, the total number of payments 
should not exceed n), where 

$50 x 1()6 - $25 x 106 
n) = $200,000 = 125. 

This gives .6. = 0.9771 so that 6,nl = 0.0554. and 

.6./11 I 
P{x ::: nd ~ 1- ../2'n:n) 1- A/(n) + 1) ::::: 0.9904 

Thus the company is assured a profit of $25 million with almost certainty. 
Notice that so long as the parameter .6. in (4-113) is maintained under 1, the event 

of interest such as P (x ::: n 1) can be predicted with almost certainty. ~ 

... The probability of hitting an aircraft is 0.001 for each shot How many shots should 
be fired so that the probability of hitting with two or more shots is above 0.95? 

SOLUTION 
In designing an anti-aircraft gun it is important to know how many rounds should be fired 
at the incoming aircraft so that the probability of hit is above a certain threshold The 
aircraft can be shot down only if it is hit in a vulnerable ~ot and since the probability 
of bitting these spots with a single shot is extremely small, it is important to tire at them 
with a large number of sbots. Let x represent the number of hits when n shots are fired. 
Using the Poisson approximation with A = np we need 

P(x ~ 2) ~ 0.95 

But 

P(x ~ 2) = 1 - [P(X = 0) + P(X = 1)] = 1 - e-A(l + A) 

so that 

(1 + A)e-A < 0.05 

By trial. A = 4 and 5, give (1 + A)e-A to be 0.0916 and 0.0404, respectively, so that we 
must have 4 ::: A ::: 5 or 4000 ::: n ::: 5000. If 5000 shots are fired at the aircraft, the 
proba~ility of miss equals e-s = 0.00673. ~ 

... Suppose one million lottery tickets are issued. w,ith 100 winning tickets among 
them. (a) If a person purchases 100 tickets, what is the probability of his winning the 
lottery? (b) How many tickets should one buy to be 95% confident of having a winning 
ticket? 
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SOLUTION 
The probability of buying a winning ticket 

= No. of winning tickets == 100 = 10-4'. 
P Total no. of·tickets 1()6 

Let n = 100 represent the number of purchased tickets. and x the number of winning 
tickets in the n purchased tickets. Then x has an approximate Poisson distribution with 
parameter J.. = np = 100 x 10-4 = 10-2• Thus 

'A/t 
P(x = k) = e-l _ 

kl 

(a) Probability of winning = P(x::: 1) = 1- P(x = 0) = 1 - e-J. ~ 0.0099. 
(b) In this case we need P(x ::: 1) ::: 0.95. 

P{x::: i} = 1 - e-J. ::: 0.95 implies J.. ~ In 20 ~ 3. 

But A = np = n x 10-4 ~ 3 or n ::: 30,000. Thus one needs to buy about 30.000 tickets 
to be 95% confident of having a winning ticketl ~ 

.. A spacecraft has 20.000 components (n -+ 00). The probability of anyone com­
ponent being defective is 10-4 (p -+ 0). The mission will be in danger if five or more 
components become defective. Find the probability of such an event. 

SOLUTION 
Here n is large and p is small, and hence Poisson approximation is valid Thus np = 
A = 20,000 X 10-4 = 2, and the desired probability is given by 

4 Ak 4 Ak 
P{x::: 51 = 1- Pix :s 4} = 1 - Le-J..- = 1 - e-2 L-

k=O kl k=O kl 

= l-e-2 (1 +2+2+ ~ +~) =0.052 .... 

GENERALIZATION OF POISSON THEOREM. Suppose that, AI .... , Am+1 are the 
m + 1 events of a partition with P{Al} = Pi' Reasoning as in (4-107), we can show that 
if npi -+ ai for i :s m, then 

(4-114) 

Random Poisson Points 

An important application of Poisson's theorem is the approximate evaluation of (3-21) 
as T and n tend to 00. We repeat the problem: We place at random n points in the interVal 
( - T /2. T /2) and we denote by P {k in ta } the probabili1¥ that k of these points will lie 
in an interval (tl. '2) of length t2 - tl = ta' As we have shown in (3-21) 

ta 
where p =­

T 
(4-115) 
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We now assume that n » 1 and ta « T. Applying (4-107), we conclude that 

P{k ' t}..... -nlatT (nta/T)I: 
In a - e k! (4-116) 

for k of the order of nla / T. 
Suppose, next, that n and T increase indefinitely but the ratio 

l=n/T 

remains constant The result is an infinite set of points covering the entire 1 axis from 
-00 to +00. As we see from (4-116) the probability that k of these points are in an 
interval of length ta is given by 

P{k . ) _ -Ala (110)1: 
mla - e k! (4-117) 

POINTS IN NONOVERLAPPING INTERVALS. Returning for a moment to the original 
interval (-T /2, T /2) containing n points, we consider two nonoverlapping subintervals 
ta and tb (Fig. 4-33). 

We wish to detennine the probability 

P{ko in la. kb in 4} 

(4-118) 

Proof. This material can be considered as a generalized Bernoulli trial. The original 
experiment S is the random selection of a single point in the interval ( - T /2. T /2). In this 
experiment, the events AI = {the point is in tal, A2 = {the point is in tb}, and A3 = 
{the point is outside the intervals ta and ta} form a partition and 

to tb ta tb 
peAl) = T P(A2) = T P(A3) = 1 - T - T 

If the experiment S is performed n times, then the event {ka in to and Jc" in tb} will 
equal the event {AI occurs kl = ko times, A2 occurs k2 = kb times, and A3 occurs 
k3 = n - kJ - k2 times}. Hence (4-118) follows from (4-102) with r = 3. 

We note that the events {ko in tal and {kb in tb} are not independ~t because the 
probability (4-118) of their intersection {ko in 10 • kb in Ib} does not equal P{ko in lo} 
P{kb in tb}. 

t FIGURE 4.33 
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Suppose now that 
n 
-=A n~OO T~oo 
T 

Since nEt/IT = Ata and ntblT = Atb', we conclude from (4-118) and Prob. 4-35 that 

P{k . t k . t} _ -).1. (Ata)"o -Alb (Atblb 
aID/hbInb- e k' e k' 

fl' b· 
(4-119) 

From (4-117) and (4-119) it follows that 

(4-120) 

This shows that the events {ka in ta} and {kb in Ib} are independent. 
. We have thus created an experiment whose outcomes are infinite sets of points 

on the t axis. These outcomes will be called random Poisson points. The experiment 
was formed by a limiting process; however, it is completely specified in terms of the 
following two properties: 

1. The probability P {to in ta } that the number of points in an interval (11, t2) equals 
ka is given by (4-117). 

2. If two intervals (tl. (2) and (13. t4) are nonoverlapping. then the events 
{ka in (t1. t2)} and {kb in (t3, 4)} are independent. 

The experiment of random Poisson points is fundamental in the theory and the 
applications of probability. As illustrations we mention electron emission, telephone 
calls. cars crossing a bridge, and shot noise, among many others. 

~ Consider two consecutive intervals (t1, t2) and (t2. 13) with respective lengths ta and 
tb. Clearly. (tt. 13) is an interval with length te = la + tb. We· denote by ka, kb. and 
ke = ka + kb the number of points in these intervals. We assume that the number of 
points ke in the interval (tt. 13) is specified. We wish to find the probability that ka of 
these points are in the interval (II, 12). In other words, we wish to find the conditional 
probability 

P{ka in ta I kc in tel 

With kb = Icc - ka, we observe that 

{kll in ta, kc in te} = {ka in tat kb in Ib} 

Hence 

P{k' I k' } _ PIka in til' kb in tb} 
a 10 to cInte - P{kcintc}. 

From (4-117) and (4-119) it follows that this fraction ~uals 

e->.t. [O .. ta)k.r I ~!]e-Al6 [(Atb)kb I kb!] 

e-Al.. [(Ate)~ I ke!] 

.: 
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Since te = ta + tb and Icc = ka + kb, the last equation yields 

P{k . . ke! (ta)k. (tb)~ 
Q m la Ike m tel = -k 'k I - -

Q' b· te te 
(4-121) 

This result has the following useful interpretation: Suppose that we place at random ke 
points in the interval (tl, t3). As we see from (3-21), theprobabilitytbatka of these points 
are in the interval (1\, 12) equals the right side of (4-121). ..... 

DENSITY OF POISSON POINTS. The experiment of Poisson points is specified in tenns 
of the parameter A. We show next that this parameter can be interpreted as the density 
of the points. Indeed. if the interval !l.t = 12 - t\ is sufficiently small. then 

A!l.te-J..1l.1 =:::: A!l.1 

From this and (4-117) it follows that 

P{one point in (t, 1+ !l.t)} =:::: A!l.t (4-122) 

Hence 

1. P{one point in (t, t + !l.t)} 
A = 1m ---'--~---:----'-'-

41-+0 !l.t 
(4-123) 

Nonuniform density Using a nonlinear transformation of the t axis. we shall de­
fine an experiment whose outcomes are Poisson points specified by a minor modification 
of property 1 on page 118. ' 

Suppose that A(t) is a function such that A(t) 2= 0 but otherwise arbitrary. We 
define the experiment of the nonuniform Poisson points as follows: 

1. The probability that the number of points in the interval (t\, t2) equals k is given by 

[ 
12 ] [1,62 A(t) dt r 

P{k in (tl, t2)} = exp - 1. A(t) dl I k! (4-124) 

2. The same as in the uniform case. 
The significance of A(t) as density remains the same. Indeed. with 

t2 - tl = !l.t and k = I, (4-124) yields 

P{one point in (t, t + !l.t)} =:::: A(t)At (4-125) 

as in (4-122). 

PROBLEMS 
4-1 Suppose that x" is the u percentile of the random variable x, that is, F(xu) = u. Show that 

if I(-x) = I(x), then XI-or = -XII' 

4-2 Show tbatif I(x) is symmetrical about the point x = 11 and P{17 -a < x < 11 +a} = 1-a, 
then a = 17 - Xtll/2 = XI-«/2 - 17· 

4-3 (a) Using Table4-1 and linear interpolation, find the ZM percentile of the N(O, 1) random 
variable z for u == 0.9; 0.925, 0.95, 0.975, and 0.99. (b) The random variable x is N(17, 0'). 
Express its 'xu percentiles in tenns of ZII' 
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44 The random variable is x is N(I]. 0') and P{f7 - kO' < x < '1 + kd} = Pk. (a) Find Pk for k ::: 
1,2, and 3. (b) Find k for Pk = 0.9,0.99, and 0.999. (e) If P{'1- ZIlO' < x < TJ + zuO'} = y, 
express ZIl in terms of y. 

4-5 Find Xu for u = 0.1,0.2, ... ,0.9 (a) if x is uniform in the interval (0. 1); (b) if f(x) == 
2e-2.tU(x). 

4·6 We measure for resistance R of each resistor in a production line and we accept only the units 
the resistance of which is between 96 and 104 ohms. Find the percentage of the accepted 
units (a) if R is uniform between 95 and 105 ohms; (b) if R is normal with 1/ = 100 and 
C1 = 2 ohms. 

4·7 Show that if the random variable x has an Brlang density with 1'1 = 2, then F. (x) = 
(1 - e-t:x - exe-C:l')U(x). 

4·8 The random variable x is N(lO; n. Find f(x I (x - 10)2 < 4). 
4-9 Find f(x) if F(x) = (1 - e-tlX)U(x - e). 

4.10 Ifx is N(O, 2) find (a) PO ~ x ~ 2) and (b) P{1 ~ X ~ 21x ~ I}. 
4-11 The space S consists of all points t/ in the interval (0, I) and prO ~ t/ ~ )I} = Y for every 

y ~ 1. The function G(x) is increasing from G(-oo) = 0 to G(oo) = 1; hence it has 
an inverse GHl(y) = H(y). The random variable x is such that x(t/) = H(tj). Show that 
F,,(x) = G(x). 

4·12 Ifx is N(lOOO; 20) find (a) P{x<1024), (b) P{x<1024Ix>961}, and (e) P{31 < 
...rx ~ 32}. 

4-13 A fair coin is tossed three times and the random variable x equals the total number of heads. 
Fmd and sketch F,,(x) and I,,(x). 

4-14 A fair coin is tossed 900 times and the random variable x equals the total number of heads. 
(a) Find !,,(x): 1; exactly 2; approximately using (4-34). (b) Fmd P{435 ~ x ~ 460}. 

4·15 Show that, if a ~ xen ~ b for every t e S, then F(x) = 1 for x > band F(x) = 0 for 
x <a. 

4·16 Show that if x{n ~ yen for every t e S, then FAw) ~ F,(w) for every w. 
4·}7 Show that if pet) = f(t I x > t) is the conditional failure rate of the random variable x and 

(HI) = kt, then I(x) is a Rayleigh density (see also Sec. 6-6). 
4-18 Show that peA) = peA Ix ~ x)F(x) + peA I x> x)[1 - F(x)]. 

4·19 Show that 

F (x I A) = peA Ix ~ x)F" (x) 
" peA) 

4·20 Show that if peA I x = x) == PCB I x = x) for every x S Xo. then peA I x ~ xo) = PCB I x ~ 
XcI). Hil'lt: Replace in (4·80) peA) and I(x) by peA I x ~ xo) and f(x I x ~ xo). 

4·21 The probability of heads of a random coin is a random variable p uniform in the interval (0. 
1). (a) Find P{O.3 ~ P ~ O.7}. (b) The coin is tossed 10 times and heads shows 6 times. 
Find the a posteriori probability that p is between 0.3 and 0.7. :: 

4-22 The probability of heads of a random coin is a random variable p uniform in the interval 
(0.4,'0.6). (a) Find the probability that at the next tossing of the coin heads will show. 
(b) The coin is tossed 100 times and heads shows 60 times. Find the probability that at the 
next tossing heads will show. 

4·23 A fair coin is tossed 900 times. Find the probabiHty that the number of heads is between 420 
and 465. 

Answer: G(2) + G(l) - 1 ::::: 0.819. 
4-24 A fair coin is tossed n times. Find n such that the probability that the number of heads is 

between 0.49n and O.S2n is at least 0.9. . 
Answer: G(O.04.Jri) + G(O.02.Jri) ~ 1.9; hence n > 4556. 
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.4-25 If peA) = 0.6 and k is the number of successes of A in n trials (a) show that P{550 ~ k ~ 
650} = 0.999, for n = 1000. (b) Find n such that P{0.59n ~ k ~ 0.61nJ = 0.95. 

4·26 A system has 100 components. The probability that a specific component will fail in the 
interval (a. b) equals e-IJ/ T - e-b/ T • Find the probability that in the interval (0. T /4), no 
more than 100 components will fail. 

4-27 A coin is tossed an infinite number of times. Show that the probability that k heads are 
observed at the nth toss but not earlier equals (:=:) pkqn-k. {See also (4-63).] 

4-28 Show that 

I ( 1 ) 1 - 1 - - g(x) < I - G(x) < -g(x) 
1 _ 2f2 

g(x) = --e x x > 0 
x x2 x .,fii 

Hint: Prove the following inequalities and integrate from x to 00: 

_!.... (.!.e-X2/2) > e-x2f2 _ .!!.- [(.!. _ ~) e-z2/2] > e-x2j2 
dx x dx X x3 

4·29 Suppose that in n trials, the probability that an event A occurs at least once equals PI. Show 
that, if peA) = p and pn « 1. then PI ~ np. 

4-30 The probability that a driver will have an accident in 1 month equals 0.02. Find the probability 
that in 100 months he will have three accidents. 

Answer: About 4e-2/3. 
4-31 A fair die is rolled five times. Find the probability that one shows twice. three shows twice, 

and six shows once. 
4·32 Show that (4-90) is a special case of (4-103) obtained with r = 2, kl = k. k2 = n - k. PI = P, 

P2=1- p. 
4-33 Players X and Y roll dice alternately starting with X. The player that rolls eleven wins. Show 

that the probability p that X wins equals 18/35. 
Hint: Show that 

peA) = peA I M)P(M) + peA I M)P(M) 

Set A = (X wins}, M = (eleven shows at first try}. Note that peA) = p. peA I M) = I, 
P(M) = 2/36. peA I M) = 1 - p. 

4·34 We place at random n particles in m > n boxes. Find the probability p that the particles 
wiD be found in n preselected boxes (one in each box). Consider the following cases: 
(a) M-B (Maxwell-Boltzmann)-the particles are distinct; all alternatives are possible, 
(b) B-E (Bose-Einstein)-the particles cannot be distinguished; all alternatives are possible. 
(c) F-D (Fermi-Dirac )-the particles cannot be distinguished; at most one particle is allowed 
in a box. 

Answer: 

M-B B-E F-D 
~ 

n! nlCm -1)! n!Cm -n)! 
p= mft C~ + PI -1)1 ml 

Hint: (a) The number N of all alternatives equals mn. The number NA offavorable alter­
natives equals the n! permutations of the particles in the preselected boxes. (b) Place the 
m - 1 walls separating the boxes in line ending with the it particles. This corresponds to 

one alternative where all particles are in the last box. All other possibilities are obtained by 
a permutation of the n + m - 1 objects consisting of the m - 1 walls and the n particles. All 
the (m -1)! permutations of the walls and the n! permutations of the particles count as one 



alternative. Hence N = (~ + n - 1) 1/ (m - l)!n I and N A = 1. (e) Since the particles are 
not distinguishable, N equals the number of ways of selecting n out of m ~l;Ijects: N = (~) 
81.ldNA = 1. . 

4-35 Reasoning as in (4-107), show that, if 

kiP, «1 

then 
nl nkl+.t:t 

.,.....,.,~"'"' "" -- p~ :::::: e-II(PI+P1) 
k,!k2Ik31 - kllk2! 

Use this to justify (4-119). 
4·36 We place at random 200 points in the interval (0, 100). Find the probability that in the 

interval (0, 2) there will be one and only one point (a) exactly and (b) using the Poisson 
. approximation. 



5-1 THE RANDOM VARIABLEg(x) 

CHAPTER 

5 
FUNCTIONS 

OF ONE 
RANDOM 

VARIABLE 

Suppose that x is a random variable and g(x) is a function of the real variable x. The 
expression 

y = g(x) 
is a new random variable defined as follows: For a given ~, x(n is a number and g[x(~)] 
is another number specified in terms ofx(n and g(x). This number is the value y(~) = 
g[x(s)) assigned to the random variable y. Thus a function of a random variable x is a 
composite functiony = g(x) = 8 [xes)] with domain the set S of experimental outcomes. 

The distribution function Fy (y) of the random variable so fonned is the probability 
of the event {y :::: y} consisting of all outcomes s such that yen = g[x(nl =:: y. Thus 

Fy(y) = PCy =:: y} = P{g(x) =:: y} (5-1) 

For a specific y, the values of x such that g (x) =:: y form a set on the x axis denoted 
by Ry• Clearly, g[x(s)J =:: y if x(n is a number in the set Ry• Hence _ 

Fy(y) = PIx E Ry} (5-2) 

This discussion leads to the conclusion that for g(x) to be a random variable, the 
function g (x) must have these properties: 

1. Its domain must include the range of the random variable x. 
2. It must be a Borel function, that is, for every y, th~ set Ry such that g(x) =:: y must 

consist of the union and intersection of a countable number of intervals. Only then 
(y =:: y} is an event. 

3. The events (g(x) = ±oo} must have zero probability. 

123 
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EXAMPLE 5-1 

5-2 'THE DISTRIBUTION OF g(x) 

We shall express the distribution function Fy(Y) of the random yariable y = g(x) in 
terms of the distribution function Fx (x) of the random variable x and the function g(x). 
For this purpose, we must determine the set Ry of the x axis such that g(x) ::: y, and 
the probability that x is in this set. The method will be illustrated with several examples. 
Unless otherwise stated, it will be assumed that ft(x) is continuous. 

1. We start with the function g(x) in Fig. 5-1. As we see from the figure, g(x) is 
between a and b for any x. This leads to the conclusion that if y ~ b, then 
g(x) ::: y for every x, hence Ply :s y} = 1; if y < a, then there is no x such that 
g(x) :::: y, hence Ply ::: Y} = O. Thus 

{ I y?,b 
Fy(Y) = o y <a 

WithXl and Yl = g(xI) as shown, we observe that g(x) :::: Yl for x:::: Xl. Hence 

We finally note that 

g(x) :::: Y2 

Hence 

F,(Yl) = P{x ::: x2} + P{x~ :s x :s ~/} = FxCx~) + FJC(x!f.') - FJC(x~) 

because the events {x :s xl} and {xq :::: x :::: x2"} are mutually exclusive. 

y=ax+b 

To find F,(y), we must find the values of x such that ax + b ::: y. 
(a) If a> 0, then ax + b :s Y for x::: (y - b)/a (Fig. 5-20). Hence 

{ y -b} (Y -b) Fy(Y) = P x:s -a- = FJt -a- a>O 

--------- a FIGURE5-l 

(5-3) 
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a>O 

x x 

(a) (b) 

FIGURE 5·2 

(b) If a < O. then ax + b .::: y for x > (y - b)/a (Fig. 5-2b). Hence [see also 
(5-17)-(5-18)] 

{ Y-b} (Y-b) Fy(Y) = P x::: -a- = 1 - Fx -a- a<O 

If Y ::: O. then x2 .::: Y for -.JY.::: x.:::.JY (Fig. 5-Ja). Hence 

Fy(y) = P{-.JY .::: x .::: JY} = Fx(./Y) - F:A-..fj) Y > 0 

If y < 0, then there are no values of x such that x2 < y. Hence 

Fy(Y) = P{0} =0 y < 0 

By direct differentiation of Fy(y), we get 

{ 
2 1", (l .. (JY) + I:A-..fj)) 

ly(Y) = vy 

o 
If Ix (x) represents an even function. then (5-4) reduces to 

1 
I,(y) = .;yIAJY)U(Y) 

(a) 

F1GURES·3 

x x 

(b) 

otherwise 

(5·4) 

(5·5) 
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EXAl\IPLE 5·J 

EX \!\IPLF 5-4 

LIMITER 

In particular ifX '" N(O. 1), so that 

~ ( ) _ 1 -x2J2 
JX X - ~e 

'\I21C . 

and substituting this into (5-5), we obtain the p.d.f. of y = x2 to be 
1 _ 

ly(Y) = ../21iye Y12U(y) 

(5-6) 

(5-7) 

On comparing this with (4-39), we notice that (5-7) represents a chi-square random 
variable with n = 1, since r(1/2) = -/ii. Thus. if x is a Gaussian random variable 
with J.l. = 0, then y = x2 represents a chi-square random variable with one degree of 
freedom ..... 

Special case If x is uniform in the interval (-1, 1), then 

I x 
Fx (x) = 2: + '2 Ix I < 1 

(Fig. 5-3b). Hence 

Fy(Y) = Jy { I Y> I 
for O:s Y :s 1 and Fy(Y) = 0 y < 0 

2. Suppose now that the function g(x) is constant in an interval (XO, Xl): 

g(X) = YI Xo < x:::: Xl 

In this case 

(5-8) 

(5-9) 

Hence Fy(Y) is discontinuous at y = YI and its discontinuity equals Fx(Xl) - Fx(xo). 

.. Consider the function (Fig. 5-4) 

g(x) = 0 fi and (x) = {X - c x > C 
or -c:Sx::::c g 

x +c x <-c 
(5-10) 

In this case, Fy (y) is discontinuous for Y = 0 and its discontinuity equals Fx (c) - Fx ( -c). 
Furthennore. 

Ify ~ 0 

. Ify < 0 

then P{y:::: y} = P{x:s Y +c} = Fx(Y +cl 

then P{y:s y} = P{x:::: y-c} = Fx(y-c) 

.. The curve g(x) of Fig. 5-5 is constant for x :s -b and X ~ b and in the interval 
(-b, b) it is a straight line. With y = g(x), it follows that Fy(Y) is discontinuous for 
Y = g(-b) = -b and y = g(b) = b, respectively. Furthermore. , 

If Y ~ b then g(x):::: y for every x; 
If -b:::: y < b then g(x):::: y for x :s y; 
If y < -b then g(x):s y for no x; 

hence Fy(Y) = 1 
hence Fy(y) = Fx(Y) 
hence Fy(Y) = 0 .... 
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g(x) FI-x) 
1 

-c o c 

y 

nGlJRE5-4 

-b 

3. We assume next that SeX) is a staircase function 

sex) = s(x,) = y, 

In this case, the random variable y = Sex) is of discrete type taking the values Yi 
with 

.. If 

then y takes the values ±I with 

{ Ix> 0 
sex) = -1 x:s 0 

Ply = -I} = P{x:s OJ = FJ,O) 

. P{y= 1} = PIx > O} = 1- FJ(O) 

Hence F,(Y) is a staircase function as in Fig. 5-6. ..... 

(5-11) 



~ 
~(x) fp) 

-} 
x -} 0 y 

FIGURES-6 

EX \\11'1 I. 5-() .-U 
QUANTIZATION g(x) =ns (n - 1)$ < x !S ns (5-12) 

then y takes the values YII = ns with 

Ply = na} = P{(n - 1)s < x !S nsl = F;c(ns) - F;c(ns - a) (5-13) 

4. We assume. finally. that the function g(x) is discontinuous at x = Xo and such that 

g(x) < g(xo) for X<Xo g(x) > g(xt) for X>Xo 

In this case. if Y is between g(xQ) and g(Xit>. then g(x) < y for x !S Xo. Hence 

g(xo) :s y :s g(xt) 

I, X.\l\IPLE 5-7 ~ Suppose that 

(x) = {x + c x ~ 0 
g x-c x<O (5-14) 

is discontinuous (Fig. 5-7). Thus g(x) is discontinuous for x = 0 with g(O-) = -c and 

g(x) 

c 

o x 

-c 

c y 

FIGURE 5-7 
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g(O+) = c. Hence F)'(y) = Fx(O) for Iyl ~ c. Furthermore, 

If Y ~ c then g(x) ~ y for x ~ Y - c; hence Fy(y) = FlI (y - c) 
If -c ~ y ~ c then g(x) ~ y for x ~ 0; hence F,(Y) = Fx(O) 
If y ~ -c then g(x) ~ y for x ~ y + c; hence F,(Y) = Fx(y + c) 

... The function g (x) in Fig. 5-8 equals 0 in the interval (-c. c) and it is discontinuous 
for x = ±c with g(c+) = c, g(c-) = 0, g(-c-) = -c, g(-c+) = O. Hence Fy(y) is 
discontinuous for y = 0 8Q.d it is constant for 0 ~ Y ~ c and -c ~ y ~ O. Thus 

If y ~ c then g(x) ~ y for x ~ y; hence Fy(y) = FlI (y) 
If 0 ~ y < C then g(x) ~ y for x < c; hence F,(y) = Fx(c) 
If -c ~ y < C then g(x) ~ y for x ~ -c; hence F,(y) = Fx(-c) 
If y < -c then g(x) ~ y for x ~ y; hence F,(Y) = Fx(Y) 

s. We now assume that the random V".mable x is of discrete type taking the values Xlc 

with probability Pic. In this case. the random variable y = g(x) is also of discrete 
type taking the values Yle = g(Xk). 

If Yle = g(x) for only one x = Xko then 

Ply = ykl = Pix = XIc} = Pie 

If, however. Yle = g(x) forx = x" and x = x" then 

P{y= »} = P{x =xkl + PIx =X/} = PIc + PI 

(a) Ifx takes the values 1,2, ... ,6 with probability 1/6. then y takes the values 
12,22, ...• (,2 with probability 1/6. 

(b) If, however, x takes the values -2, -1,0,1,2,3 wil:h probability 1/6, then y 
takes the values O. 1,4,9 with probabilities 1/6,2/6,2/6, 1/6, respectively. ..... 

gtx) 

FlGURE5-8 

FP) 
1 

o c -c 0 c y 
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Determination of /y (y) 

We wish to determine the density ofy = g(x) in terms of the density ofx. Suppose, first, 
that the set R of the y axis is not in the range o~ the function g(x), that is. that g(x) is 
not a point of R for any x. In this case, the probability that g (x) is in R equals O. Hence 
I, (y) = 0 for y E R. It suffices, therefore. to consider the values of y such that for some 
x,g(x) = y. 

FUNDAMEl'ffAL THEOREM. To find I, (y) for a specific y. we solve the equation 
y = g(x). Denoting its real roots by X/J' 

y = g(xl) = ... = g(x/J) = ... (5-15) 

we shall show that 

Ix(XI) !x(xlI ) 

fy(y) = 1(xl)1 + ... + Ig'(xn)1 + ... (5-16) 

where g'(X) is the derivative of g(x). 

Proof. To avoid generalities, we assume that the equation y = g(x) has three roots as 
in Fig. 5-9. As we know 

Iy(y) dy = Ply < y ::; y + dy} 

It suffices, therefore, to find the set of values x such that y < g (x) ::s y + d y and the 
probability that x is in this set. As we see from the figure. this set consists of the following 
three intervals 

where dXl > 0, dX3 > 0 but dX2 < O. From this it follows that 

Ply < y < y + dy} = P{XI < X < Xl + dxJl 

+ P{X2 + dX2 < X < X2} + P{X3 < X < X3 + dX3} 

x 

FIGURE 5-9 
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The right side equals the shaded area in Fig. 5-9. Since 

P{XI < x < XI + dxd = fA (Xt)dXt dXl = dyjg'(x,) 

P{X2 + dX2 < X < X2} = fx(x'l) Idx2! dX2 = dyjg'(X2) 

P{X3 < x < x3 + dX3} = ft(X3) dX3 dX3 = dyjg'{X3) 

we conclude that 

and (5-16) results. 
We note, finally, that if g(x) = YI = constant for every x in the interval (xo, XI), 

then.lsee (5-9)] Fy(Y) is discontinuous for y = YI' Hence ly(Y) contains an impulse 
8(y - YI) of area FAx,) - Fx(xo). 

Conditional tUnsit)' The conditional density ly{Y 1 M) of the random variable 
y = g(x) assuming an event M is given by (5-5) ifon the right side we replace the terms 
lAx;) by Ix(xi 1 M) (see, for example. Prob. 5-21). 

lliustratiODS 

We give next several applications of (5-2) and (5-16). 

1. y=ax+b g'(x)=a (5-17) 

The equation y = ax + b has a single solution x = (y - b) / a for every y. Hence 

1 (Y -b) 
Iy(y) = lal Ix -a- (5-18) 

Special case If x is uniform in the interval (XI, X2), then y is uniform in the 
interval (axi + b, OX2 + b). 

... Suppose that the voltage v is a random variable given by 

v = i(r+ro) 

where i = 0.01 A and ro = 10000. If the resistance r is a random variable uniform 
between 900 and 1100 0, then v is uniform between 19 and 21 V. ~ 

1 
y=­

x 
I I 

g (x) =-­
X2 

The equation Y = l/x has a single solution x = l/y. Hence 

ly(Y) = )~2 Ix (~) 
Cauchy density: If x has a Cauchy density with parameter a, 

aj7r • l/a7r 
lAx) = x2 + (¥2 then Iy(y) = y2 + 1/a2 

in (5-19) is also a Caucby density with parameter l/el. 

(5-19) 

(5~20) 
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EX,\\IPLE 5-11 

I~X \i\lPLE 5-12 

f,fr) g=~ 

o 900 1100 r o 

I 
200,2 

11' 
iiOo 900 

FIGURES-iO 

~ Suppose that the resistance r is uniform between 900 and 1100 0 as in Fig. 5-10. 
We shall determine the density of the corresponding conductance 

g = l/r 

Since Ir(r) = 1/200 S for r between 900 and 1100 it follows from (5-20) that 

1 1 1 
I,(g) = 2OOg2 for 1100 < g < 900 

and 0 elsewhere. ~ 

3. y = aXJ a> 0 g'(X) = 2ax (5-21) 

If Y ~ O. then the equation y = ax2 has no real solutions; hence I,(Y) = O. If y > O. 
then it has two solutions 

Xl=~ X2=-~ 
and (5-16) yields [see also (5-4)] 

Iy(y) = 2a!ma [Ix ( /f) + Ix (-/f)] (5-22) 

We note that Fy(y) = 0 for y < 0 and 

~ The voltage across a resistor is a random variable e uniform between 5 and 10 V. We 
shall determine the density of the power 

r = 10000 

dissipated in r. 
Since I.(e) = 1/5 for e between 5 and 10 and 0 elsewhere, we conclude from 

(5-8) with a = 1/ r that 

and 0 elsewhere. ~ 

(fO 
!w(w) = VW" 
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x 

f.y(y) 

1 
"2 

Special case Suppose that 
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Y FIGURE 5-11 

!x(X) = _1_e-X1/ 2 y = X2 

..tii 
With a = I, it follows from (5.22) and the evenness of Ix (x) that (Fig. 5-11) 

1 1 
Iy(y) = .;ylx(../Y) = J21ry e- Y/2U(y) 

We have thus shown thatifxis an N (0, 1) random variable, the random variable y = 
xl has a chi-square distribution with one degree of freedom [see (4-39) and also (5-7)]. 

4. 1 
Y =.Ji g'(x) = 2./i (5-23) 

The equation y = -Ii has a single solution x = y2 for y > 0 and no solution for y < O. 
Hence 

The chi density Suppose that x has a chi-square density as in (4-39), 

1 h (x) = xn/2-le-x/2U(y) 
x 2n/2f(n/2) 

and y = ./i. In this case, (5-24) yields 

_ 2 II-I _,2/2 
ly(Y) - 2n/2f(n/2)y e U(y) (5-25) 

This function is called the chi density with n degrees of freedom. The following cases 
are of special interest. 

s. 

MaxweU For n = 3, (5-25) yields the Maxwell density [see also (4-54)1 
" 

Iy{y) = V2/1ry2e-y2/2 

Rayleigh For n = 2, we obtain the Rayleigh density ly(Y) = ye-y2/ 2U(y). 

y=xU(x) g'(x) = U(x) 

Clearly, ly(Y) = 0 and Fy(Y) = 0 fory < 0 (Fig. 5-12). If y > 0, then the 
equation y = xU(x) has a single solution XI = y. Hence 

Iyey) = Ix(Y) y>O 

(5-26) 

(5-27) 
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Half wave rectifier. 

x 

Thus F,(y) is discontinuous at y =0 with discontinuity F,(O+) - F).(O-) = Fx(O). 
Hence 

6. g'(x) =,r (5-28) 

If y > 0, then the equation y = eX has the single solution x = In y. Hence 
1 

ly(Y) = - Ix{lny) y > 0 (5-29) 
Y 

If y < 0, then I.,(y} = O. 

lognormal: Ifx is N(I1; 0'). then 

f. ( ) - 1 _(Iny_,,)2f2a2 
., Y - uyJ2iie (5-30) 

This density is called lognormal. 

7. y = a sin(x + 8) (5-31) 

If Iyl > a, then the equation y = a sin(x + 8) has no solutions; hence ly(Y) = O. If 
Iyl < a, then it has infinitely many solutions (Fig. 5-13a) 

• Y f) 
XII =arCSln-- n = - ... -1, 0, I, ... 

a 

Since g'(xlI } = acos(xlI + 8) = Va2 - y2, (5-5) yields 
1 00 

I,{J) = ..) 2 _ 2 L Ix(xlI } Iyl < a 
a y _-00 (5-32) 

y heX) 

(a) (b) 

FIGURE 5-13 
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!;.x) f,(y) 
I I 

1/211' 

I 
I 
I 

J 
I 
I 

y" ~in(x + 8) 

-'IT 0 'IT x -1 0 I Y 

FIGURE 5-14 

Special case: Suppose that X is unifonn in the interval (-n, n), In this case, the 
equation y = a sin(x + 9) has exactly two solutions in the interval (-n, n) for any 9 
(Fig. 5-14), The function !JC(x) equals 1/21r for these two values and it equals 0 for any 
XII Outside the-interval (-n, 71'). Retaining the two nonzero tenns in (5-32), we obtain 

2 1 
!,(Y) = 2n'va2 - y2 = 71'va2 _ y2 

Iyl <a (5-33) 

To find F,(Y), we observe that y ~ y if x is either between -1C and Xo or between 
Xl and 7r (Fig. 5-13a). Since the total length of the two intervals equals 7r + 2xo + 28, 
we conclude. dividing by 2n', that 

(y) 1 1 . Y 
Fy = - + - arCSIn -

2 1C a 
Iyl <a (5-34) 

We note that although /,(±a) = 00, the probability that y = ::I:a is O. 

Smooth phase If the density !z (x) of x is sufficiently smooth so that it can be 
approximated by a constant in any interval of length 2n' (see Fig. S-13b), then 

7r f !z(xn) ~ i j,,(x) dx = 1 
n=-oo 1-00 

because in each interval of length 21r this sum has two terms. Inserting into (5-32), we 
conclude that the density of Y is given approximately by (5-33). 

~ A particle leaves the origin under the influence of the force of gravity and its initial 
velocity v forms an angle fP with the horizontal axis. The path of the particle reaches the 
ground at a distance 

v2 
d=-sin2~ 

g 

from the origin (Fig. 5-15). Assuming that fP is a random variable uniform between 0 
and 7r/2, we shall determine: (a) the density of d and (b) the probability that d ~ 4. 

SOLUTION 
(a) Clearly, 

d=asinx 

where the random variable x = 2tp is uniform between 0 and 7r. If 0 < d < a, then the 
equation d = a sin x has exactly two solutions in the interval (0, :7r). Reasoning as in 
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(5-33), we obtain 

and 0 otherwise. 

21--_..., 
'IT 

o 

2 
Wll 

(b) The probability that d :::: do equals the shaded area in Fig. 5-15: 

P{d :::: do} = Fd(do) = ~ arcsin do 
1r a 

8. y=tanx 

The equation y = tanx bas infinitely many solutions for any y (Fig. 5-100) 

XII = arctany n = ...• -1. O. 1, ... 

Since '(x) = 1/ coil x = 1 + y2. Eq. (5-16) yields 

1 00 

I.,(y) = 1 + 2 2: f.Axll ) 

y 11=-00 

(5-35) 

(5-36) 

Specw case If X is uniform in the interval (-1r /2, 1r /2), then the term Ix (xi) in 
(5-36) equals 1/1C and all others are 0 (Fig. 5-16b). Hence y has a Cauchy density given by 

1/1r 
lyCy) = 1 + y2 (5-37) 

IN) 

y 

(a) (b) 

FIGURE 5·16 
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T 
y 
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I 
I 
I 
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(a) 
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-8 o 6 

(b) 

As we see from the figure, y ~ y if x is between -1r /2 and XI' Since the length of this 
interval equals Xl +,,/2. we conclude. dividing by 1r. that 

1 ( ") 1 1 Fy(Y) = - XI + - = - + -arc tan y 
1r 2 2 1r 

(5-38) 

.. A particle leaves the origin in a free motion as in Fig. 5-17 crossing the vertical line 
x =dat 

y = dtancp 

Assuming that the angle cp is uniform in the interval (-9. 8), we conclude as in (5-37) 
that 

d/2fJ 
ly(Y) = tJ2 + y2- for Iyl < dtan8 

and 0 otherwise. ~ 

.. Suppose lAx) = 2x/1r2, 0 < X < 7r. and y = sinx. Determine Iy(y). 

SOLUTION 
Since x has zero probability of falling outside the interval (O,1r), y = sinx has zero 
probability of falling outside the interval (0,1) and ly(Y) = 0 outside this interval. 
For any 0 < y < 1, from Fig. S.l8b. the equation y = sinx has an infinite number 
of solutions ... , Xl. X2. X3, ••• , where Xl = sin-1 y is the principal solution. Morcovec. 
using the symmetry we also get X2 = 1r - Xl and so on. Further, 

so that 

dy = cos X = ";1 - sin2 X = ";1 _ y2 
dx 

Idyl = ";1-:)'2 
dx X=XI 

Using this in (5-16), we obtain 

+00 1 
I,(Y) = 2: ~fx(x,) 

1=-00 y 
(5-39) 



IZ<X) 

-'_I 

x 
(0) 

y=sinx 

(b) 
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y FIGURE 5-19 

(5-40) 

THE INVERSE PROBLEM. In the preceding discussion, we were given a random vari­
able x with known distribution Fx(x) and a function g(x) and we determined the distri­
bution Fy(y) of the random variable y = g(x). We consider now the inverse problem: 
We are given the distribution of x and we wish to find a function g(x) such that the 
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distribution of the random variable y = g(x) equals a specified function F,(Y). This 
topic is developed further in Sec. 7-5. We start with two special cases. 

From F" (x) to a uniform distribution. Given a random variable x with distribution 
FA (x), we wish to find a function g(x) such that the random variable u = g(x) is 
uniformly distributed in the interval (0, 1). We maintain that g(x) = Fx(x), that is, if 

u = FAx) then Fu(u) = u for 0 :5 u :5 1 (5-41) 

Proof. Suppose that x is an arbitrary number and u = Fx (x). From the monotonicity of 
Fx(x) it follows that u :5 u iff x :5 x. Hence 

FII(u) = P{u :5 u} = PIx :5 xl = Fx(x) = u 

and (5-41) results. 
The random variable u can be considered as the output of a nonlinear memoryless 

system (Fig. 5-20) with input x and transfer charaeteristic Fx(x). Therefore if we use 
u as the input to another system with transfer characteristic the inverse Fl- l )(u) of the 
function u = FJt(x), the resulting output will equal x: 

then P{x:5 xl = Fx(x) 

From uniform to F.1(Y)' Given a random variable u with uniform distribution in the 
interval (0. 1), we wish to find a function g (u) such that the distribution of the random 
variable y = g(u) is a specified function Fy(Y). We maintain that g(u) is the inverse of 
the function u = Fy(y): 

If y = Ftl)(u) then P{Y:5 y} = Fy(y) (5-42) 

Proof. The random variable u in (5-41) is uniform and the function F,,(x) is arbitrary. 
Replacing Fx(x) by Fy(y), we obtain (5-42) (see also Fig. 5-20). 

From Fz(x) to F,<Y). We consider, finally, the general case: Given FzCx) and Fy(Y). 
find g(x) such that the distribution ofy = g(x) equals Fy(Y). To solve this problem, we 
form the random variable u = Fx (x) as in (5-41) and the random variable y = F{-l) (u) 

x u'" Fp.) x = P1- I){u) 
Fx(x) 

'Iz: 
11-')(u) 

0 1 II 

~ ptl)(It) 
y - Ftl)(u) 

FIGURE 5-20 
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as in (5-42), Combining the two; we conclude: 

If y = F~-I)(Fx(x» then Ply ~ Y}, = Fy(Y) (5-43) 

5-3 MEAN AND VARIANCE 

The expected value or mean of a random variable x is by definition the integral 

E{x} = I: xl (x) dx (5-44) 

This number will also be denoted by l1x or 1]. 

~ If x is unifonn in the interval (XIt X2), then I(x) = 1/(X2 - XI) in this interval. 
Hence 

E{x} = _1_1x2 xdx = Xl +X2 

X2 - XI .1:1 2 

We note that. if the vertical line X = a is an axis of symmetry of I(x) then 
E{x} = a; in particular, if fe-x) = I(x), then E{x} = O. In Example 5-16, I(x) is 
symmetrical about the line x = (XI + x2)/2. 

Discrete type For discrete type random variables the integral in (5-44) can be 
written as a sum. Indeed, suppose that x takes the values Xi with probability Pi. In this 
case [see (4-15)] 

Inserting into (5-44) and using the identity J: xc5(x -xi)dx =Xj 

we obtain 

E{x} = LPix; Pi = P{x=xd 

~ If x takes the values 1, 2, ...• 6 with probability 1/6, then 

E{x} = ~(1 + 2 + ... + 6) = 3.5 

(5-45) 

(5-46) 

Co,uJitional mean The conditional mean of a random variable x assuming an 
event M is given by the integral in (5-44) if I(x) is replaced by the conditional density 
I(x 1M): 

E{xIM} = I: xf(xIM)dx 

For discrete-type random variables (5-47) yields 

E{xl M} = LX;P{x = Xi 1M} 
I 

(5-47) 

(5-48) 
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~ With M = {x ::: a}, it follows from (5-47) that 

100 1.00 x! (x) dx 
E(x I x::: a} = x!(x I x::: a) dx = ~oo 

-00 JII f(x) dx 

Lebesgue Integral. The mean of a random variable can be intetpreted as a Lebesgue 
integral. This interpretation is important in mathematics but it will not be used in our 
development. We make. therefore. only a passing reference. 

We divide the x axis into intervals (Xb Xk+l) oflength Ax as in Fig. 5-21a. If AX 
is small, then the Riemann integral in (5-44) can be approximated by a sum 

100 00 

xf(x) dx:::: L Xd(Xk) Ax 
-00 k=-oo 

(5-49) 

And since !(x,,) Ax :::: P{XIc < x < Xk + AX}. we conclude that 
00 

Elx}:::: L XkP{Xk < X < Xk + AX} 
k .. -oo 

Here, the sets {Xk < x < Xk + AX} are differential events specified in terms of the 
random variable x, and their union is the space S (Fig. S-21b). Hence, to find E{x}, we 
multiply the probability of each differential event by the corresponding value of x and 
sum over all k. The resulting limit as Ax -+ 0 is written in the form 

E {x} = 1 x dP (5-50) 

and is called the Lebesgue integral of x. 

Frequency interpretation We maintain that the arithmetic average j of the observed 
values XI ofx tends to the integral in (5-44) as n .... 00: 

i = XI + ... +xn .... E{t} (5-51) 
n 

Proof, We denote by Il.nk the number of XI'S that are between 4k and Zk + Il.x = 4k+I' 
From this it follows that 

XI + ... +x,,:::: LZk Il.nk 

and since !(Zk) Il.x :::: Il.nk/n [see (4-21)] we conclude that 

1 100 
i:::: - LZkll.nk = LZk!(Zk)Il.X:::: xf(x)dx~ 

n -00 

and (5-51) results. 

I I I 

Jt-J Xi XJc+1 x 

(a) 

F1GURE5-Z1 
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(tI) (b) 
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We shall use the above frequency interpretation to express the mean of x in terms 
of its distribution. From the construction of Fig. 5-22a it readily follows that .f equals 
the area under the empirical percentile curve of x. Thus 

.f = (BCD) - (OAB) 

where (BCD) and (DAB) are the shaded areas above and below the u axis, respectively. 
These areas equal the corresponding areas of Fig. 5-22b; hence 

j = 100(1_ F,.(x)]dx _ jO F,.(x)dx 
10 -00 

where F,. (x) is the empirical distribution of x. With n -+ 00 this yields 

E{x} = [R(X)dX - jO F(x)dx, R(x) = 1- F(x) = P{x > x} (5-52) 
o -00 

In particular, for a random variable that takes only nonnegative values, we also obtain 

E{x} = [ R(x)dx (5-53) 

Mean of g(x). Given a random variable x and a function S(x), we form the random 
variable y = Sex). As we see from (5-44), the mean of this random variable is given by 

E{y} = L: yl'l(Y) dy : (5-54) 

It appears, therefore, that to determine the mean of y, we must find its density ly(Y). 
This. however, is not necessmy. As the next basic theorem shows, E{y} can be expressed 
directly in tenns of the function g(x) and the density Ix{x) ofx. 

E{S(x)} = I: s(x)/x(~) dx (5-55) 

Proof. We shall sketcb a proof using the curve g(x) of Fig. 5-23. With)l = g(xl) = g (X2) = g(%3) 
as in the fi.gure, we see that 

!y<Y)dy = h(XI)dxI + !,.(X2)dx2 + !,.(X3)dx3 
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g(x) 

_-:-!...-...,E{g(X)} = FI.Xo) 

x 
o "0 x 

FIGUU5-n FIGUU5-24 

Multiplying by y, we obtain 

yfy(y)dy = g(Xt)!z(Xl)dxl + g(X2)!x(x2}dX2 + g(X3)!,,(X3)dxa 

Thus to each differential in (5-54) there cOlTespond one or more differentials in (5-55). As 
dy covers the y axis. the corresponding dx's are nonoverlapping and they cover the entire x axis. 
Hence the integrals in (5-54) and (5-55) are equal. 

Ifx is of discrete type as in (5-45). tben (5-55) yields 

E{g(x)} = Lg(x;)P{x=xd (5-56) 

~ With Xo an arbitrary number and g(x) as in Fig. 5-24, (5-55) yields 

E{g(x)} = [: /x(x)dx = Fx(xo) 

~ 

This shows that the distribution function of a random variable can be expressed as 
expected value. ~ 

~ In this example, we show that the probability of any event A can be expressed as 
expected value. For this purpose we fonn the zeJ:'(H)ne random variable XA associated 
with the event A: 

{ I reA 
XA(r) = 0 ~ ¢ A 

Since this random variable takes the values 1 and 0 with respective probabilities P (A) 
and peA), yields 

E{XA} = 1 x P(A) + 0 x peA) = peA) 

Unearity: From (5-55) it follows that 

E{algl(x) + ... + t&ngn(x)} = alE{gl(x)} + ... + an E{gn (x)} (5-57) 

In particular, E{ax + b} = aE{x} + b 
Complex random J1II1'iables: If z = x + jy is a complex random variable, then 

its expected value is by definition 

E{z} = E{x} + jE{y} 
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From this' and- (5-55) it follows that if 

g(x) = gl ex) + j g2(X) 

is a complex function of the real random variable x then 

E{g(x)} = 1: gl(x)!(x)dx+ j I: g2(x)f(x)dx = I: g(x)!(x)dx (5-58) 

In other words, (5-55) holds even if g(x) is complex. 

Variance 

Mean alone will not be able to truly represent the p.dJ. of any random variable. To illus­
trate this, consider two Gaussian random variables Xl '" N (0, 1) and X2 '" N (0, 3). Both 
of them have the same mean f..L = O. However, as Fig. 5-25 shows, their p.d.fs are quite 
different. Here Xl is more concentrated around the mean, whereas X2 has a wider spread. 
Clearly, we need at least an additional parameter to measure this spread around the mean! 

For a random variable X with mean f.L, X - f..L represents the deviation of the random 
variable from its mean. Since this deviation can be either positive or negative, consider 
the quantity (x - f..L)2. and its average value E[(x - p)2] represents the average square 
deviation of x around its mean. Define 

0'; £: E[(x - 1£)2] > 0 

With g(x) = (x - 1£)2 and using (5-55) we get 

0'; = [00 (x _ f.L)2 !;t(x) dx > 0 

(5-59) 

(5-60) 

The positive constant 0'; is known as the variance of the random variable x, and its 
positive square root O';x = JE(x - f..L)2 is known as the standard deviation of x. Note 
that the standard deviation represents the root mean square value of the random variable 
:t' around its mean 1£. 

From the definition it follows that 0'2 is the mean of the random variable (x _1J)2. 
Thus 

(a) u2 = 1 (b) u2 = 3 

FlGURES·2S 
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Hence 

(12 = E{x2) _ ,,2 = E{x2} _ (E{X})2 

or, for any random variable 

~ If x is unifonn in the interval (-c, c), then TJ = 0 and 

(12 = E{x2) = - x2 dx = -1 1c c2 

2c -c 3 

~ We have written the density of a nonnal random variable in the fonn 

I(x) = _1_e-(~-'f/)2{lq2 
(15 

(5-61) 

where up to now TJ and (12 were two arbitrary constants. We show next that TJ is indeed 
the mean of x and (12 its variance. 

Proof. Clearly. lex) is symmetrical about the line x = '7; hence E{x} = 1]. Furthexmore. 

roo e-l;il-r/l2/'MI' dx = (15 

1-00 
because the area of I(x) equals 1. Differentiating with respect to ()". we obtain 

100 (x - 11)2 -1;il-rr)J/ltIl d - ~2 
3 e X-v"-7f 

-00 ()" 

Multiplying both sides by (}"2/.fii. we conclude that E(x - 7/)2 = (}"2 and the proof is 
complete .... 

Discrete type. If the random variable x is of discrete type as in (5-45). then 

(12 = LPi(Xi - TJ)2 
i 

Pi = Pix = Xi) 

~ The random variable x tSkes the values 1 and 0 with probabilities P and q = 1 - P 
respectively. In this case 

Hence 

E{x} = 1 x p+Oxq=p 

E{x2} = 12 X P + Q2 x q = P 

~ A Poisson distributed random variable with parameter A takes the values O. 1, ... 
with probabilities ' 

Ak 
PIx = k) = e-J._ 

k! 
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We shall show that its mean and variance both equal),,: 

E{x} = )" E{xl} = ),,2 +)" (12 = )" 

Proof. We differentiate twice the Taylor expansion of el.: 

00 Ak 
i'=Lkl 

1<-<1 

co A"-I 1 co Ak 
el. = "k- = -"k-~ kl A~ kl 

k_O k-I 

Hence 

and (5-63) results. 

(5-63) 

Poisson points. As we have shown in (4-117). the number n of Poisson points in an interval of 
length to is a Poisson distributed random variable with parameter a = lto. From this it follows that 

E(n} = >..to (5-64) 

This shows that the density A of Poisson points equals the expected number of pOints per unit 
time. ~ 

Notes 1. The variance 0'2 ofarandom variable x is a measure of the concentration of" near its mean 1/. Its 
relative frequency interpretation (empirical estimate) is the average of (Xl - 1/)2: 

(5·65) 

where X, are the observed values of x. This avenge can be used as the estimate of 0'2 only if 1/ is known. If it 
is unknown. we replace it by its estimate of and we change 11 to 11 - 1. This yields the estimate 

0'2~1I:1L(XI-j)2 X=;LXi (5-66) 

known as the sample variance of" [see (7-65)]. The reason for changing n to 11 - 1 is explained later. 
2. A simpler measure of the concentration of x near IJ is the .first absolute central moment M = 

E {Ix - 171}. Its empirical estimate is the average of IXI - 171: ' 

M~;LIXi-171 
If 1/ is unknown. it is replaced by .f. This estimate avoids the computation of aquares. 

5-4 MOMENTS 

The following quantities are of interest in the study of random variables: 

Moments 

(5-67) 
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Central moments 

ILn = E{(x _1})n} = I: (x -1}t f(x)dx 

Absolute moments 

E{lxIR} 

Generalized moments 

E{lx -al"} 

We note that 

p., = Ef(· - ~)'} = E {E mx'( -~)''''' } 
Hence 

Similarly. 

m. = E([(x- ~l+ ~r} = E {~(:)(X- q).". .... } 

Hence 

In particular. 

JLo =mo = 1 ILl = 0 

and 

(5-68) 

(5-69) 

(5-70) 

(5-71) 

(5-72) 

Notes 1. If !he function I (x) is iDtelpleted as mass density on the :;c axis. then E {x} equals its center of 
gravity, E(r} equals the moment of inertia with respect to !he origin. and 0'2 equals the c:eoIraI momeat of 
inertia. The standard deviation (1' is the radius of gyration. 

2. The constants 71 and (1' give only a limited characterization of I(x). Knowledge of other rnomeIIts 
provides additional information that can be used, for example, to distinguisb between two densities with the 
same" and (1'. In fact. ifm" is known forevcry n, then, undetcertainconditiona. I(x) is ~ uniquely 
[see aiso (5-1OS)]. The underlying theory is known in mathematics as the mtRrI8IIl pmb1em. 

3. The moments of a random variable are not atbitrary numbe.rs but must satisfy 'YIrious Inequalities 
[see (5·92)]. For example [see (5-61») 

Similarly, since the quadratic 

E(x" - a)2} = m:z" - lamn +,a2 

is nonnegative for 8IrJ a, its discriminant cannot be positive. Hence 

m211 ~ m~ 
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Normal- random variables. We shall show that if 

then 

1 _rl'>_2 
f(x) = --e . 1-

(1$ 

E(x") = {O " n = lk + 1 
1 - 3 -.. (n - 1)(1 n = lk 

" _ {I ·3· -. (n - 1)(1" n = 2k 
E{lxl ) - 2kk!(l2k+1.J1Jii n = lk + 1 

(5-73) 

(5-74) 

The odd moments of x are 0 because f( -x) = f (x). To prove the lower part of 
(5-73), we differentiate k times the identity 

100 1 ~ e-ax dx = -
-00 a 

This yields 

100 2k _ax2 _ 1 . 3 ... (lk - 1) V tr 
X e dx - 2k 2k+l 

-00 a 
and with a = 1/2(12, (5-73) results. 

Since fe-x) = f(x), we have 

E{lxl2k+I} = 2fx2k+1 f(x)dx = _2_ (00 x2k+le-xl/'Jtr2 dx 
o u~Jo 

With y = x2 /2(12. the above yields 

~(2U2)k+l f -
- le'dy 
1r 2(1 0 

and (5-74) results because the last integral equals k! 
We note in particular that 

E(x4) = 3u4 = 3E2(r} 

~ If x bas a Rayleigh iknsity 

f() x -x2/2t1'U() x ="2e x 
u 

then 

In particular. 

E{x} = uJ1r/2 Varix} = (2 -tr/2)u2 

(5-75) 

(5-76) 

(5-77) 

~ 
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~ If x has a MaxweU deMity 

then 

and (S-74) yields 

In particular, 

.,fi 2 _x2 M - 2 
I(x) = --x e 1- U(x) 

a3.fii 

{
1'3'''(n+l)all n=2k 

E{x"} = 
~kla2Jc-I,J1Jii n = 2k - I 

E{x} = 2a,J2/1C E{xl} = 3a2 

(S-7S) 

(S-79) 

~ 

Poisson random variables. The moments of a Poisson distributed random variable are 
functions of the parameter A: 

00 Ale 
mll(A) = E{x"} = e-J. ~k"-kl (S-SO) 

k=O • 

00 Ale 
JLII(A) = E{(x - A)"} = e-J. 2:(k - A)"-kl 

k-o • 

We shall show that they satisfy the recursion equations 

mll+l(A) = A[m,,(A) +m~(A)] 

JLII+I(A) = A[nJLn-I(A) + JL~(A)J 

Proof. Differentiating (5-80) with respect to A. we obtain 

00 Ak 00 Ak- I 1 
m~(A) = -e-'I.. ~k" kl + e-J. ~k"+l7 = -mil (A) + imll+I(A) 

k..o ,,-0' .. 
and (S-82) results. Similarly. from (5-S1) it follows that 

" 00 ~ 00 ~ 
~(A) = _e-J. ~(k - A)", - ne-J. ~(k _ A)n-I, 

,,=0 k. k=O k. 

00 Ak- I 
+e->' ~(k-A)lIk-ki 

k..o • 

(S-SI) 

(S-82) 

(5-83) 

Setting k = (Ie - A) + A in the last sum, we obtain ~~ = -JLII - nJLn-1 + (I/A) 
(JL1I+1 + AJL,,) and (S-83) results. 

The preceding equations lead to the recursive determination of the moments mIl 
and JLn. Starting with the known moments mi = A, J.£l = 0, and 1L2 = A [see (S-63)], 
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we obtain m.2 = >..().. + 1) and 

m3 = )..()..2 +).. + 2)" + 1) = )..3 + 3)..2 +).. 

ESTIMATE OF THE MEAN OF g(x). The mean of the random variable y = g(x) is 
given by 

E{g(x)} = L: g(x)/(x)dx (5-84) 

Hence, for its determination, knowledge of I (x) is required. However, if x is concentrated 
near its mean, then E {g (x)} can be expressed in terms of the moments JJ.n of x. 

Suppose, first, that I(x) is nl;lgligible outside an interval (11- 8,11 + 8) and in this 
intetval, g(x) ~ g(rO. In this case, (5-84) yields 

l "H 
E{g(x)} ~ 9(11) 'I-I j{x)dx ~ g('1) 

This estimate can be improved if g(x) is approximated by a polynomial 

I ( ) (x - 11)" 
g(x) :::= g(TJ) + 9 (TJ)(x - 71) + " . + g'l (11)-'----'-­

n! 

Inserting into (5-84), we obtain 

q2 JJ. 
E{g(x)} ~ g(TJ) + gl/(1-,)- + ... + g(n) (TJ)-!!' 

2 n! 

In particular, if 9 (x) is approximated by a parabola, then 

q2 
71, = E{g(x)} :::= g(TJ) + gil (71) 2 

. (5-85) 

(5-86) 

And if it is approximated by a straight line, then 11, ~ g(1I). This shows that the slope 
of g(x) has no effect on 11,; however, as we show next, it affects the variance q; ofy. 

Variance. We maintain that the first-order estimate of 0-; is given by 

q; ~ 19'(11)120 2 (5-87) 

Proof. We apply (5-86) to the function g2 (x). Since its second derivative equals 2(g')2 + 
2gg", we conclude that 

q; + '1~ = E{g2(X)} ~ g2 + [(g')2 + gg"]0-2 .. 

Inserting the approximation (5-86) for 11, into the above and neglecting the 0'4 tenD, we 
obtain (5-87). 

~ A voltage E = 120 V is connected across a resistor whose resistance is a random 
variable r uniform between 900 and 1100 O. Using (5r85) and (5-86), we shall estimate 
the mean and variance of the resulting cwrent 

. E 
1=-



CHAPl1!R5 FUNCTlONSOJ'ONBRANOOMVARIABU! 151 

Clearly, E{r} = 71 = 103,0-2 = 1002/3. Withg(r) = E/r, we have 

g(71) = 0.12 g'(71) = -12 x 10-5 g"(rf} = 24 X 10-8 

Hence 

E {iJ ~ 0.12 + 0.0004 A 

A measure of the concentration of a random variable near its mean T1 is its variance 
0-2• In fact, as the following theorem shows, the probability that x is outside an arbitrary 
interval (TJ - s, 71 + s) is negligible if the ratio 0-/8 is sufficiently small. This result, 
known as the Chebyshev inequality. is fundamental. 

CHEBYSHEV ~ For any e > 0, 
(TCHEBYCHEFF) 
INEQUALITY 

MARKOV 
INEQUALITY 

(5-88) 

Proof. The proof is based on the fact that 

1_1/-1 100 1 PUx -711 ~ 8} = f(x)dx + f(x)dx = f(x)dx 
-00 1/'1'£ \%-"'i!!~ 

Indeed 

and (5-88) results because the last integral equals P{lx - ,,1 ~ 8}. ~ 

Notes 1. From (5-88) it follows that. if (1 ::: 0, then the probability that x is outside the interval (71-8. 71 + 6) 

equals 0 for any 8; hence x = 71 with probability I. Similarly, if 

E(r} = ,r + (12 = 0 then 71 = 0 a = 0 

hence x = 0 with probability I. 
2. For specific densities, tbe bound in (5-88) is too high. Suppose, for example, that x is normal. In this 

case, P(lx -711 ~ 3a) = 2 - 2G(3) = 0.0027. Inequality (5-88), however. yields P(1x -111 ~ 3a} !: 1/9. 
The significanc:c of Chebyshev's inequality is the fact that it holds for any I (x) and can. tbelefore be 

used even if I(x) is not known. 
3. The bound in (5-88) can be RJduced if various assumptions are made about I(x) [see ChemoJl 

bound (Prob. 5·35)J. 

~ If !(x) = 0 for x < 0, then. for any a > O. 

Proof· 

P{x:::: a} ::; !!. 
a 

E(x) = Loo 
xJ (x) dx ~ [00 xf(x)dx ~ ~ [00 f(x)dx 

and (5-89) results because the last integral equals Pix ~ a}. ~ 

(5-89) 
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BIENAYME 
INEQUALITY 

LYAPUNOV 
INEQU~Y 

~ Suppose that x is an aIbitrary random variable and a and n are two arbitrary numbers. 
Clearly, the random variable Ix - aln takes on,Iy positive values. Applying (5-89), with 
a = e", we conclude that . 

(5-90) 

Hence 

(5-91) 

This result is known as the inequality of Bienaymi. Chebyshev's inequality is a special 
case obtained with a = '1 and n = 2. <fi 

~ Let Pic = E {lxllc} < 00 represent the absolute moments of the random variable x. 
Then for any k 

tN(Ic-I) < II.I/Ie 
"'Ic-l - "'/C k~l (5-92) 

Proof. Consider the random variable 

y = OIX/Ck-I)!2 + /xl(.t+l}!2 

Then 

E (f} = 0 2 Pk-I + 2tzP,t + P"+J ;:: 0 

implying that the discriminant of the preceding quadratic must be nonpositive. ThllS 

pi ::: P"-IPk+1 or Pi"::: P:_IP:+1 

This gives 

D<I $12$12 R2(n-I) R,,-IQII-J 
P2 ::: I-'J 1"3' •••• ,., .. -1 ::: 1-'"-21-',, 

where fJo = 1. Multiplying successively we get 

P: ::: /J2. ~ ::: Pi. p; ::: p1 ... ·. P:-I ::: p:-I. or RI/(,t-1) < $III" 
1-'1_1 - 1-'1 

Thus, we also obtain 

$I < RI/2 < $11/3 < ... < $III" 
1"1 - Y2 -"'3 - - ,.,. (5-93) 

~ 

5-5 CHARACTERISTIC FUNCTIONS 

The characteristic function of a random variable is by definition the integral 

~x«(.f) = L f(x)ejl!)X. dx (5-94) 

This function is maximum at the origin because f (x) ~ 0: 

(5-95) 
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If jw is changed to s. the resulting integral 

$(s) = f: l(x)eSX dx $Uw) = <l>x(w) 

is the moment (generating) fimction of x. 
The function 

\IJ(w) = In ¢>x(w) = $(jw) 

is the second characteristic function of x. 
Clearly [see (5-58)] 

<l>x(w) = E{eJ-} 

. This leads to the fact that 

Ify = ax + b then <I>,,(w) = elbto¢>x(aw) 

because 

(5-96) 

(5-97) 

(5-98) 

(5-99) 

.. We shall show that the characteristic function of an N (71, (1) random variable x equals 
(see Table 5-2) 

(5-100) 

Proof. The random variable z = (x - rM u is N (0, 1) and its moment function equals , 

with 
z'- 1 S2 

SZ - - = --(z - $)2 + -
2 2 2 

we conclude that 

$z($) = e'l{l ~e-(Z-$Y.{l dz = ~(l 100 1 

-00 'V21r 
(5-101) 

And since x = uz + 71. (5-100) follows from (5-99) and (5-101) with $ = jw. .... 

>l 

Inversion formula As we see from (5-94), ¢>x(w) is the Fourier transform of 
I(x). Hence the properties of characteristic functions are essentially the same as the 
properties of Fourier transforms. We note, in particular, that I (x) can be expressed in 
terms of <I>(w) 

1 100 I(x) = -2 ¢>x(w)e-)tAIX dw 
7r -co • 

Moment theorem. Differentiating (5-96) n times, we obtain 

$(n)(s) = E{XZ~} 

(5-102) 
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Hence 

(5-103) 

Thus the derivatives of «I>(s).at the origin equal the moments of x. This justifies 
the name ''moment function" given to «I>(s). 

In particular, 

«1>'(0) = ml = 11 

Note Bx.panding _(s) into a series near the origin and using (5-103). we obtain 
00 

_(s) = ~~s" 
L..." n! 
_=0 

(5-104) 

(5-105) 

This is valid only if all moments are finite and the series converges absolutely nears = O. Since f(x) 
can be determined in terms of _(s). (5-lOS) shows that, under the stated conditions. the density of a random 
variable is uniquely determined if all its moments are known. 

~ We shall determine the moment function and the moments of a random variable x 
with gamma distribution: (see also Table 5-2) 

I(x) = yxb-1e-CxU(x) 

From (4-35) it follows that 

d'+1 
Y = r(b+ 1) 

.... ( ) 100 b-1 -(c-s)x d yr(b) d' 
'fI'S =y x e x= =--...,-

o (c - s)b (c - s)b 

Differentiating with respect to s and setting s = 0, we obtain 

«1>(11)(0) = b(b + 1)··· (b + n - 1) = E{x"} 
en 

. With n = 1 and n = 2, this yields 

(5-106) 

E{x} = ~ E{x2} = b(b; 1) (12 = ~ (5-107) 
C c2 

The exponential density is a special case obtained with b = 1, C = A: 

I(x) = Ae-MU(x) «I>(s) = _A_ E{x} =.!. q2 = .!.. (5-108) 
A-S A A2 

Chhquare: Setting b = m/2 and c = 1/2 in (5-106), we obtain the: moment function 
of the chi-square density x2(m): 

.(s) - 1 E{x} = m q2 = 2m (5-109) 
" - J(l-2s)1n 

. 
Cumulants. The cumulants All of random variable x are by definition the derivatives 

dn'll(O) = All (5-110) 
ds" 
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ofits second moment function \II(s). Clearly [see (5-97)] \11(0) = >"0 = 0; hence 

1.'( ) 1 2 1 n ... S = >"IS + ->"2$ + ... + ->"nS + ... 
2 n! 

We maintain that 

Proof. Since. = e·, we conclude that 

With $ = O. this yields 

.'(0) = \11'(0) = ml 

and (5·111) results. 

Discrete Type 

(5-l11) 

Suppose that x is a discrete-type random variable taking the values Xi with probability 
Pi. In this case, (5-94) yields 

~xC(() = 2: Pie}fn1 (~-112) 

i 

Thus ~z{(() is a sum of exponentials. The moment function of x can be defined as in 
(5-96). However. if x takes only integer values. then a definition in terms of z transforms 
is preferable. . 

MOMENT GENERATING FUNCTIONS. If x is a lattice type random variable taking 
integer values, then its moment generating function is by definition the sum 

+co co 

r{z) = E{zX} = 2: PIx = n}zn = 2: Pnzn (5-113) 
R--CO 

Thus rO/z) is the ordinary z transfol1I\. of the sequence Pn = Pix = n}. With ~xC(() 
as in (5-112), this yields 

co 

~z«(() = r{eiCII) = L PneinCII 
n=-co 

Thus ~z«(() is the discrete Fourier transform (OFT) of the sequence {PnJ. and 

\II{s) = In r(~) 

Moment theorem. Differentiating (5-113) k times, we obtain 

r(k)(z) = E{x(x - 1)· .. (x - k + l)zX-k} 

With z = 1, this yields 

r<k)(l) = E{x(x - 1) ... (x - k + I)} 

t5-114) 

(5-115) 
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FXA\IPLE 5-30 

\ \. \\\I'[ I 5-.~1 

DBMOIVRE­
LAPLACE 
THEOREM 

We note, in particular, that r(l) ="1 and 

r'(l) = E{x} r"(1) = E{r} - ,E{x} (5-116) 

... (a) Ifx takes the values 0 and I with PIx = I} = p and P{x = O} = q. then 

r(z) = pz +q 

r'(l) = E{x} = p rlf(l) = E{r} - E(x) = 0 

(b) Ifx bas the binomial distribution B(m, p) given by 

Pn=P{x=n)= (:)pnqlll-n O~n~m 
thdn 

and 

r'(l) = mp r"(!) = m(m - l)p2 

Hence 

£{x} = mp 0'2 = mpq 

.. If x is Poisson distributed with parameter At 
An 

PIx = n} = e-"- n = 0, 1, •.. 

tben 

n! 

00 n 
r(z) = e-'A LAII~ = e,,<,-l) 

11-0 n! 

In this case [see (5-114)] 

"'(s) = A(e' - 1) "" (0) = A "'" (0) = A 

and (5-111) yields E{x} = A, 0'2 = A in agreement with (5-63). ~ 

(5-117) 

(5-118) 

~ 

(5-119) 

We can use the characteristic function method to establish the I1eMoivre-Laplace 
theorem in (4-90). 

~ Let x"'" B(n t p).1ben from (5-117), we obtain the characteristic function ofth~ 
binomial random variable to be 

and define 

<I>.I'(Cr) = (pelf» + q)" 

x-np 
y=-­

..jnpq 
(5-1201 
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This gives 

4?y(w) = E{e1Yw} = e-lipW/..ftiii9<t>x (~) 
-/npq 

= e-"pw/..jiiiiii (pej(J)/..fiiiii + q)" 

= (pejqw/..jiiiiii + qe-JPW/.,ftiPi)" 

= {p (1+ J:; -~;; + ~:! C:;J) 
+ 1-----+ ---( jpw p2w2 00 1 (_ jpW)k) }" 

q -/npq 2npq ~ k! -/npq 

(5-121) 

since 

cp(n) ~ 2 L:,.)W pq +q ~p -+ 0, 00 1 (. ) k-2 k ( )Ic 

k..,3 k.,Jn (.JPlj) 

On comparing (5-121) with (5-100), we conclude that as n -+ 00, the ran­
dom variable y tends to the standard nonnal distribution, or from (5-120), x tends to 
N(np, npq). 4J 

In Examples 5-32 and 5-33 we shall exhibit the usefulness of the moment gener­
ating function in sOlving problems. The next example is of historical interest, as it was 
first proposed and solved by DeMoivre. 

~ An event A occurs in a series of independent trials with constant probability p. If 
A occurs at least r times in succession, we refer to it as a run of length r. Find the 
probability of obtaining a run of length r for A in n trials. 

SOLtmON 
Let Pn denote the probability of the event X n that represents a run of length r for A in n 
trials. A run of length r in n + 1 trials can happen in only two mutually exclusive ways: 
either there is a run of length r in the first n trials, or a run of length r is obtained only 
in the last r trials of the n + 1 trials and not before that. Thus 

where 

B,,+I = (No run of length r for A in the first n - r trials} 

n {A does not occur in the (n - r + l)th trial} . 
n {Run of length r for A in the last r trials} 

= Xn- r n Ant4 nA n .. · n4, .. 
r 

(5-122) 



158 PR!)BABJUTY ANO RANDOM VAlUABLES 

Hence by the independence of these events· 

P{B,,+tl = (1 - Pn-r)qp' 

so that from (5-122) 

Pn+1 = P(Xn+1l = P{Xn} + P{Bn+d = Pn + (1 - Pn_r)qpr (5-123) 

The equation represents an ordinary difference equation with the obvious initial condi­
tions 

Po = PI = '" = Pr-I = 0 and Pr = P' (5-124) 

From (5-123), although it is possible to obtain P,+I=P'(1+q), ... , 
Pr+m = pr (1 + mq) for m !: r - 1, the expression gets quite complicated for large values 
of n. The method of moment generating functions in (5-113) can be used to obtain a 
general expression for PII' Towa(d this, let 

ll. 
q" = 1- Pn 

so that (5-123) translates into (with n replaced by n + r) 
qll+r+1 = q"+1 - qpr qn 

with the new initial conditions 

qo = ql = ... = q,-l = 1 qr = 1 - pr 

Following (5-113), define the moment generating function 

and using (5-126) we obtain 

qpr¢(z) = (tqn+rzll - Eqn+r+tZ") 
11=0 11-0 

¢(z) - ~~qkZk ¢(z) - ~ .. oqkzk = -'----==;.:..;;.-zr Z,+1 

_ (z - 1)¢('l.) - 2:~=1 zk + (2:;::' t + (1 - P,)z,) 
- z,+I 

(z - 1)¢ (z) + 1 - P' zr 
= zr+l 

111 

(5-125) 

(5-126) 

(5-127) 

(5-128) 

(5-129) 

where we have made use of the initial conditions in (5-127). From (5-129) we get the 
desired moment generating function to be 

1 ' , 
¢('l.) = - p z 

1 - z + qprzr+l 
(5-130) 

¢(z) is a rational function in z, and the coefficient of 1." in its power series expansion 
gives q". More explicitly 

¢(z) = (1- p'z')[I-z(1-qp'z')r1 

= (1 - P' z')[1 + al.,Z + . " + a".rZ" + ... J (5-131) 
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so that the desired probability equals 

(5-132) 

where an" is the coefficient of Zll in the expansion of [1 - z(1 - qp'z')r1• But 

co com() [1-z(1-qp'z')r J = I:>m(1-qp' z,)'n = L:L: ~ (_l)k(qpr)kzm+k, 
m=O m ... Ok .. O 

Let m + kr = n so that m = n - kr, and this expression simplifies to 

co Ln/(,+I)J ( k) co 
[1-z(l-qp'z')r 1 = L: L: n ~ r (_I)k(qp')kzn = L:an.,zn 

n~ k~ n~ 

and the upper limit on k corresponds to the condition n - kr ~ k so that ("kkr) is well 
defined. Thus 

Ln/(/+I)J ( k) 
an,T = L: n ~ r <_I)k(qpr)k 

k=O 

(S-133) 

With all" so obtained, finally the probability of r runs for A in n trials is given by 

Pn = 1 - qll = 1 - an•r + pT an-r,r (S-134) 

For example, if n = 25, r = 6, p = q = 1/2, we get the probability of six successive 
heads in 25 trials to be 0.IS77S. 

On a more interesting note, suppose for a regular commuter the morning commute 
takes 45 minutes under the best of conditions, the probability of which is assumed to be 
liS. Then there is a 67% chance for doing the trip within the best time at least once a 
week. However there is only about 13% chance of repeating it twice in a row in a week. 
This shows that especially the day after the "lucky day," one should allow extra travel 
time. Finally if the conditions for the return trip also are assumed to be the same, for a 
one week period the probability of doing two consecutive trips within the best time is 
0.2733. ~ 

The following problem has many varients and its solution goes back to Montmort 
(1708). It has been further generalized by Laplace and many others. 

TABLE 5-1 
Probability Pre in (5-134) 

n=5 n=10 

r p=I/5 p=I/3 p=I/5 p=I/3 

1 0.6723 0.8683 0.8926 0.9827 
2 0.1347 0.3251 0.2733 0.5773 
3 0.0208 0.0864 0.0523 0.2026 
4 0.0029 0.0206 0.0093 0.0615 
5 0.0003 0.0041 0.0016 0.0178 
6 0.0003 0.0050 
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EX ,\.i\IPLl~ 5-33 

TBEPAIRING 
PROBLEM 

... A pers~n writes n letters and addresses n envelopes. Then one letter is randOmly 
placed into each envelope. What is the probability that at l~t one letter will reach its 
correct destination? What if n -+ oo? 

SOLUTION 
When a letter is placed into the envelope addressed to the intended person. let us refer to it. 
as a coincidence. Let Xk represent the event that there are exactly k coincidences among 
the n envelopes. The events Xo. Xl •. · .• Xn form a partition since they are mutually 
exclusive and one of these events is bound to happen. Hence by the theorem of total 
probability 

Pn(O) + Pn(l) + p;,(2) + ... + Pn(n) = 1 (5-135) 

where 

(5-136) 

To determine Pn(k) let us examine the event Xk. There are (:) number of ways of 
drawing k letters from a group of n. and to generate k coincidences, each such sequence 
should go into their intended envelopes with probability 

1 1 1 
n n-l n-k+l 

while the remaining n - k letters present no coincidences at all with probability Pn-k(O). 
By the independence of these events. we get the probability of k coincidences for each 
sequence of k letters in a group of n to be ' 

1 
-------Pn-" (0) 
n(1l - 1) ..• (n - k + 1) 

But there are (~) such mutually exclusive sequences. and using (2-20) we get 

(n) l' Pn-"(O) 
Pn(k)=P{X,,}= k n(n-l) ... (n-k+l)Pn-,,(O)= kl (5-137)1 

Since Pn(n) = lIn!, equation (5-137) gives Po(O) = 1. Substituting (5-137) into (5-135)' 
term by teno, we get 

(0) + Pn-I(O) + Pn-2(0) + ... + PI (0) +..!.. = 1 (5-138)1 
Pn l! 21 (n -1)! n! 

which gives successively 

P3(0) = l 
and to obtain an explicit expression for Pn (0), define the moment generating function 

TIlen 

00 

4>(z) = LPn(O)zn 
n-O 

• e'~(%) = (~~) (Ep.(O)z') 
= 1 + z + Z2 + ... + zn + ... = _1_ 

l-z 

(5-139) 

(5-140) 
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where we have made use of (5-138). Thus 

e-Z 00 (" (_l)k) 
q,(z) = -=-- = I: L -, z" 

1 Z ncO k=O k. 

and on comparing with (5-139), we get 

n (-lyt 1 
Pn(O) = I: -- ~ - = 0.377879 

k=O k! e 
(5-141) 

and using (5-137) 

(5-142) 

Thus 

P{At least one letter reaches the correct destination} 
n (_l)k 

= 1 - PJI(O) = 1 - I: -kl ~ 0.63212056 
k=O • 

(5-143) 

Even for moderate n, this probability is close to 0.6321. Thus even if a mail delivery 
distributes letters in the most causal manner without undertaking any kind of sorting at 
all, there is still a 63% chance that at least one family will receive some mail addressed 
~~~ . 

On a more serious note, by the same token. a couple trying to conceive has about 
63% chance of succeeding in their efforts under normal conditions. The abundance of 
living organisms in Nature is a good testimony to the fact that odds are indeed tilted in 
favor of this process. ..... 

Determination of the density of g(x). We show next that characteristic functions can 
be used to determine the density !.,(y) ofthe random variable y = g(x) in terms of the 
density !~ (x) of x. 

From (5-58) it follows that the charaeteristic function 

4>,(£1) = [: e jw, fy(y) dy 

af the random variable y = g(x) equals 

4>y(£I) = E{ej(J)g(X)} = [: ejwg(x) !x(x)dx 

If. therefore, the integral in (5-144) can be written in the form 

[: ejw'h(y)dy 

it will follow that (uniqueness theorem) 

!,lv) = h(y) 

(5-144) 

This method leads ~ simple results if the transformation y = g (x) is one-to-one. 
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TABLE~2 

Probability density CJtaracteristic: 
Random variable function i%(x) Mean Variance fundlon o1i%«(a}) 

Normal 01 _1_e-(t-p)2/2tt2 (72 
eJ __ tJ2uJl/2 

Gaussian N(p., (72) J21ru2 ' 
1.£ 

-00 < x < 00 

Log-nonna! 1 _(lIIJI-p)2 j1.tJ2 
---e , 
xJ2rr(72 

x 2: 0, 

Exponential E(A) Ac-At,x2:0,A>O 
A ).2 

(1 - j6)/).)-' 

Gamma G(a, p) 
.1'0,:,1 -x,_ 

r(a)/JDe , ap a/J2 (1- jaJ{J)-

x 2: O. a > O. fJ > 0 

Erlang-k (kAi i-l-fu 1 
(1 - jw/ k).)-k (k_l)!x e I Jc).2 

Chi-square x2(n) 
x·/1-1 

(1- j2(a})-n/1 -x/1 > 0 n 2n 2R/1r(nI2)' ,x_ 

Weibull 
ax--Ie~/-. (fJr'- ( 1) (~)2/_ [r(l+~) - r 1+-

x2:0,a>O./J>O a fJ 
- (r (I +~)r] 

Rayleigh x -~/2tt~ 0 
tT2e ,x 2: /fu (2 -n/2)ul ( 1 + j IftT6) ) .-.2';'/1 

Unifonn U(a, b) 
1 a+b (b _a)2 eJ- _ , - jtl4> 

-b-,a<x<b 
2 12 j6)(b- a) -0 

Beta (J(a, (J) rea + fJ) a-I(1 _ )_-1 a afJ 
r(a)r(fJ) x x, a+fJ (a + fJ)2(a + fJ + 1) 

O<x<l.a>O.fJ>O 

aln 
Ca\lchy (x - 1.£)2 + a 1 ' 00 .J,. ... -"'" 

-00 < x < oo,a > 0 

Rician .:...-~ 10 (~). 
tT2 0'1 

u ~ [(1 + r)10(r/2) 

-oo<x<oo.a>O + r11(r/2)],-,/2, " 
r = a2/2O'2 

Nakagami _2_ (~) III 2m-I -lx2 rem) 0 x e , 
r(m + 1/2) ~ 

rem) m 
0(1 _ 1. (r(m + 1/2») 2) 

m rem) 
x>o 
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TABLE 5-2 
(Continued) 

Probability density Characteristic 
Random variable function /"Vt) Mean Variance function .... (c.» 

Students't(n) r«n + 1)/2) (1 +x2/nr(ll+I)/2, 0 
n 

--2. 11 >2 .,f7rnr(nj2) n-
-00 < x < 00 

F -distribution r«m + n)/2) (~)""2 x",/2-1 n n2(2m + 2n - 4) 
--2,n > 2 )2 .n>4 r(mj2)r(n/2) n n- m(n - 2 (n - 4) 

( mx) -(M+oe)/2 
x 1+,,- .x>O 

Bernoulli P(X = I) =p. p p(l - p) p';-+q 
P(X = 0) = 1 - p = q 

Binomial B(n. p) (~) pkq"-t. np npq (peJ"'+q)" 

k = 0,1,2, ...• n.p+q = I 

Poisson peA) 
At ,-1 k!'/c. =0.1.2 •...• 00 e-.I.(I-';") 

Hypergeometric 
(~)(~:r) nM M( M)( n-l) 

(~) Ii" n- 1-- 1---
N N N-l 

max (0. M +n - N) :s Ie.:s min (M.n) 

pqk. 1. q p 
k =0.1.2 •..• 00 P pol l-qeJt» 

Oeornetric [ ~ 1 q --p-pt/-I. - p2 P ,-i"'-q 
Ie. = 1. 2 .... ,00. p + q = 1 

(r+!-l)p'qk. rq rq 
(l-:rJ-)' 

Ie. = 0.1.2 •...• 00 
P p2 

Pascal or negative 
binomial NB(r. p) or e -1 ) p' t/-' • r rq . (,-J!_q)' r-l p p2 

Ie.:::: r.' + 1, ...• 00.p+q .. 1 

Discrete unifonn lIN, 
N+l N2 -1 j(N+I)o>/2 sin(N{J)/2) 
-2- 12 e sin({J)/2) 

k=1.2 ..... N 
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~ Suppi,sethatxis N(O; 0') andy = ax". Inserting into (5-144) and usingtbeevenness 
of the integrand. we obtain 

<1>,(w) = leo ej01llX2 I(x) dx = _2_ (eo eJ-2 e-x2/ 2Ir2 dx 
-eo O'~k 

As x increases from 0 to 00, the transformation y = ax2 is one-to-one. Since 

dy = lax dx = 2.jiij dx 

the last equation yields 

<P (w) = _2_ (eo elfl},)' e-y/24a2 ~ 
1 0'$ Jo 2..foY 

Hence 
e-1/24(12 

ly(Y) = ../IiUiYU(y) 
0' 7ray 

in agreement with (5-7) and (5-22). .. 

(5-145) 

.. We assume finally that x is uniform in the interval (-7r /2, 7r /2) and y = sin x. In 
this case 

[ ) . I11t/2 .. 
<Py(w) = e fI}$IIIX I(x)dx = - eJ(t)$IIIx dx 

-eo 7r -71/2 

As x increases from -7r /2 to 7r /2. the function y = sinx increases from -1 to 1 and 

dy = cos x dx = Vl- y2dx 

Hence 

This leads to the conClusion that 
1 

ly(Y> = 7r VI _ y2 

and 0 otherwise, in agreement with (5-33). .. 

PROBLEMS 

for Iyl < 1 

5·1 The random variable x is N(5, 2) and Y = 2x + 4. Fmd 1/y. u y• and ly(Y). 
5·2 Find Fy<y) and/y<Y) ify = -4x+3 and Ix(x) = 2,-2%U(x). 
5-3 If the random variable x is N(O, el) and Sex) is the function in Fig. 5-4. find and sketch the 

distribution and the density of the random variable y = Sex). 
5-4 The random variable x is unifonn In the interval (-2c, 2c). Find and sketch Iy{y) and Fy(Y) 

if y = g(x) and g(x) is the function in Fig. 5-3. 
5-5 The random variable x is N(O, b2) and g(x) is the function in Fig. 5-5. Find and sketch Iy(y) 

and F)'(y). 



CHAPTER S FUNCTIONS OF ONE RANDOM VARIABLE 165 

5-6 The random variable x is uniform in the interval (0, 1). Find the density of the random 
variable y = - In x. 

5-7 We place at random 200 points in the interval (0, 100). The distance from 0 to the first random 
point is a random variable z. Find F:(~) (a) exactly and (b) using the Poisson approximation. 

5-8 If y = ../i, and x is an exponential random variable, show that y represents a Rayleigh 
random variable. 

5-9 Express the density lyCY) of the random variabley = g(x)intermsof I .. (x) if(a)g(x) = Ixl; 
(b) g(x) = e-X U (x). 

5-10 Find F,(y) and i.v(Y) if Fx(x) = (\ - e-2r )U(x) and (a) y = (x-l)U(x -1); (b) y = x2• 

5-11 Show that, if the random variable x has a Cauchy density with ex = 1 and y = arctan x, then 
y is uniform in the interval (-'f{ 12, 'f{ 12). 

5-12 The random variable x is uniform in the interval (-2rc,2rc). Find I,(Y) if (a) y=x3, 
.(b) y = x", and (e) y = 2 sin(3x + 40°). 

5-13 The random variable x is uniform in the interval (-I, 1). Find g(x) such that if y = g(x) 
then ly(Y) = 2e-2\·U(y). 

5-14 Given that random variable x is of continuous type. we form the random variable y = g(x). 
(a) Find ly(Y) if g(x) = 2FAx) + 4. (b) Find gex) such that y is uniform in the interval 
(8, 10). 

5-15 A fair coin is tossed 10 times and x equals the number of heads. (a) Find Fx(x). (b) Find 
F,(y) ify = (x - 3)2. 

5-16 Ifx represents a beta random variable with parameters ex and fj, show that 1 - x also represents 
a beta random variable with parameters fj and ex. 

5-17 Let x represent a chi-square random variable with n degrees of freedom. Then y = r is 
known as the chi-distribution with n degrees of freedom. Determine the p.d! of y. . 

5-18 Let x ...., U(0.1). Showthaty = -210gxis x2(2). 
5-19 If x is an exponential random variable with parameter A. show that y = XI/fJ has a Weibull 

distribution. 
5-20 If t is a random variable of continuous type and y = a sin wt. show that 

{ I1TCJa2 _ )'2 
ly(Y)-

(11-+00 0 

5-21 Show that if y = x2• then 

lyl <a 

Iyl >a 

I( I >0)= U(y) 1.(..jY) 
y y x-I - FAO) 2..jY 

5-22 (a) Show thatify = ax+b. then u y = lalu.l' (b) Find 71, andu\ ify = (x -71.1)lux ' 

5-23 Show that if x has a Rayleigh density with parameter ex and y = b + cx2• then u; = 4c2u4• 

5-24 lfxis N(0.4) andy = 3x2, find 71"U" and Ir{Y). . 
5-25 Let x represent a binomial random variable with parameters nand p. Show that (a) E{x) = 

np; (b) E[x(x - 1)) = n(n - 1)p2; (e) E[x(x - l)(x - 2») = n{n - l)(n - 2)p3; 
(d) Compute E(X2) and E(xl). 

5-26 ForaPoissonrandomvariablexwithparameter}..showthat(a)P(O < x < 2J..) > (04-1)/04; 
(b) E[x(x - 1») = )..2, E[x(x -l)(x - 2)] = ),.3. 

5-27 Show that if U = [A It ••• , An] is a partition of S, then 

E{x) = E{x I AdP(A.) + ... + E(x I A,,)P(A,,). 

5-28 Show that if x ~ 0 and E (x) = 71, then P (x ~ ..fti) ~ .ft. 
5-29 Using (5-86), find E (x3) if 71x = 10 and (1"x = 2. 
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. 5-30-Ii" is 'uniform in the interval (10.12) and y = x3• (a) find f,.(Y); (b) find E{y}: (i) exactly 
(ii) using (5-86). 

5·31 The random variable x is N(IOO. 9). Find approximately the mean of the random variabl~ 
y = l/x using (5-86). 

5-32 (a) Show that if m is the median of x. then 

E{lx - al} = E{lx - ml} + 21'" (x - a)f(x)dx 

for any 4. (b) Find c such that Enx - ell is minimum. 
5-33 Show that if the random variable x is N (7/; (12). then 

E{lxll = (1 ~e-n1/2#2 + 2710 G,) - 71 

S;34 Show that if x and y are two random variables with densities fx (x) and Iyu'), respectively; 
then 

E(logfA(x») ~ E{logf,(x») 

5-35 (Chernojfbound) (a) Show that for any a > 0 and for any real s, 

P{e'" ~ a) ~ 4»(s) wbere4»{s) = E(e'''} 
a 

Hinl: Apply (5-89) to the random variable y =,xx. (b) For any A, 

P{x::: A) ::: e-·A4»(s) s > 0 

PIx ~ A} ::: e-8A 4»(s) s < 0 

(Hmc Set a = erA in (i).) 
5-36 Show that for any random variable x 

(E<lxllll)]IJm ~ [E(lxfWJR l<m<n<oo 

5-37 Show that (a) if f(x) is a Cauchy density. then 41(co) = e"'looI ; (b) if I(x) is a Laplace 
density, then 41(co) = a" I(a" + co2). 

5-38 (a) Letx,... G(a, Pl. Show that E{x} = ap, Var(x} = ap2 and 41x(co) = (1 - pei .. ) .... 
(b) Leu .... x2(n). Show that E{x} = n, VarIx) = 2n and cII,,(lI» = (1- 2ei .. )-nJ2• 

(c) Leu"" B(n, pl. Show that E{x) = np, VarIx) = npq and cIIx (lI» = (pel" + q)n. 
(d) Let X"" N B(r, pl. Show that 41x (lt.I) = p' (l - qei"r'. 

5-39 A random variable x has a geometric distribution if 

PIx = k) = pqk k = O. 1,... p + q = 1 

Find r(.z) and show that 711t = q I P. (1: = q I p2 
5-40 Lei x denote the event "the number of failures thai precede the nih success" so that x + n 

represents the total number of trials needed to generate n successes. In that case, the evenl 

{x = k) occurs if and only if the last trial results in a success and among the previow 
(x + n -1) trials there are n -1 successes (or x failures). This gives an alternate fonnulatior 
for the Pascal (or negative binomial) distribution as follows: (see Table 5-2) 

P{x = k) = ( n +: -1) pllq" = ( kn )'p-<_q)1: k = O. 1,2 •.•. 

find r(.z) and show that 7J1t = nq./ P. (1: = nq I p2. 
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5-41 Let x be a negative binomial random variable with parameters r and p. Show that as p -+ 1 
and r -+ 00 such that r(l - p) -+ A. a constant. then 

'Aft 
P(x=n+r)-+e->'- n=O.1.2 •... 

n! 

5·42 Show that if.E{x} = 7/. then 

543 Show that if 4>z{WI) = 1 for some WI #:- O. then the random variable x is of lattice type 
taking the values x" = 2:rrn/wl' 

Hint: 

0= 1 - 4> .. (WI) == 1:(1-eiIllIZ)/z(x)dx 

5-44 The random variable x has zero mean. centtal moments JI.". and cumulants A". Show that 
A3 = Jl.3. 4 == J.l4 - 3J1.~; ify is N(O; 0-;) and 0, == (lr. then E{x4} == E{t} + A4. 

5-4S The random variable x takes the values O. 1 •... with P{x = k} == Pit. Show that if 

y = (x - I)U(x - 1) then r,(z) = Po + z-I[rx(z) - Po] 

717 == 7/", - 1 + Po E{f} == E{x2} - 21Ir + 1 - Po 

5·46 Show that. if 4>(w) = E{eJItIX}. then for any a;. 
II /I 

L L 4>(Wj - WJ)alaj ?: 0 
i-I J=I 

Hint: 

5-47 We are given an even convex function g(x) and a random variable x whose density I(x) 
is symmetrical as in Fig. PS-47 with a single maximum at x = 7}. Show that the mean 
E (g(x - a)} of the random variable g(x - a) is minimum if a = 71. 

I(x) 

o FIGUREPS47 

5-48 The random variable x is N~O; (12). (a) Using characte;istic functions. show that if g(x) is 
a function such that g(x)e-Z p6l -+ 0 as /xl-+ 00, then (Price's theorem) 

dE{g(x)} =!E{~g(X)} V =(12 (i) 
dv 2 dx2 
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(b) The moments f.I.,. of x are functions of v. Using (i). show that 

n(n -1) 1-
f.I.n(v) = 2 0 f.I."_2(fJ)d~ 

5-49 Show that, ifxis an integer-valued random variable with moment function r(z) as in (5,,113). 
then 

P{x = k} = - r(eJCt»e- lbI dfJ) 1 1" 
2:n' -It 

S-SO A biased coin is tossed and the first outcome is noted. The tossing is continued until the 
outcome is the complement of the first outcome. thus completing the first run. Let x denote 
the length of the first run. Find the p.mJ of x, and show that 

E{x} = E. +! 
q p 

s..Sl A box contains N identical items of which M < N are defective ones. A sample of size n 
is taken. from the box, and let x represent the number of defective items in this sample. 
(a) Fmd the distribution function of x if the n samples are drawn with replacement. 
(b) If the n samples are drawn without replacement, then show that 

P(x = k} = (~)(~~) max(O, n + M - N):5 k!:: min(M. N) 

Find the mean and variance of x. The distribution in (b) is known as the hypergeomelric 
distribution (see also Problem 3-5). The lottery distribution in (3-39) is an example of this 
distribution. 
(e) In (b), let N -+ 00. M -+ 00, such that MIN -+ P.O < P < 1. Then show that the 
bypergeometric random variable can be approximated by a Binomial random variable with 
parameters n and P. provided n « N. 

s..Sl A box contains n white and m black marbles. Let x represent the number of draws needed 
fur the rth white marble. 
(a) If sampling is done with replacement, show that x has a negative binomial distribution 
with parameterS r and p = nl(m + n). (b) If sampling is done without replacement, then 
show that 

Pix = k} = (k - 1) (',,:=~) 
r - 1 (m:-) k =',r+ l •..• ,m+n 

(e) For a given k and r. show that the probability distribution in (b).tends to a negative 
binomial distribution as n + m -+ 00. Thus. for large population size. sampling with or 
without replacement is the same. 



6-1 BIVARIATE DISTRIBUTIONS 

CHAPTER 

6 
TWO 

RANDOM 
VARIABLES 

We are given two random variables x and y, defined as in Sec. 4-1, and we wish to 
detennine their joint statistics, that is, the probability that the point (x, y) is in a specified 
region) Din thexj plane. The distribution functions Fx (x) and F,(y) of the given random 
variables determine their separate (marginal) statistics but not their joint statistics. In 
particular, the probability of the event 

{x === x} n {y === y} = {x === x. y === y} 

cannot be expressed in terms of Fx (x) and F,(y). Here, we show that the joint statistics 
of the random variables x and y are completely determined jf the probability of this event 
is known for every x and y .. 

Joint Distribution and Density 

The joint (bivariate) distribution Fx,(x, y) or, simply. F (x, y) of two ~dom variables 
x and y is the probability of the event -

{x === x, y === y} = {(x, y) e DI} 

where x and y are two arbitrary real numbers and DI is the quadrant shown in Fig. 6-1a: 

F(x, y) = PIx === x, y === y} (6-1) 

I The region D is arbitrary subject only co !be mild condition that it can be expressed as a COUD1ab1e UDion or 
intersection of xecrangles. 

169 
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Yz 

(a) (b) (e) 

FIGURE6-l 

PROPERTIFS 

1. The function F (x. ]) is such that 

F(-oo,]) = 0, F(x. -00) = 0, F(oo,oo) = 1 

Proof. As we know, P {x = -oo} = P {1 = -oo} = O. And since 

{x = -00,1 $ y} c {x = -oo} {x ~ x, y = -oo} C {y = -oo} 

the first two equations follow. The last is a consequence of the identities 

{x $ -00,1 $ -oo} = S peS) = 1 

2. The event {Xl < X $ X2. 1 $ y} consists of all points (x,1) in the vertical half-strip 
Dz and the event {x $ X. ]1 < Y $ Yll consists of all points (x,1) in the horizontal 
half-strip D3 of Fig. 6-lb. We maintain that 

{XI < X ~ X2, Y $ y} = F(X2. y) - F(XI, y) 

{x $ X, Yl < Y $ Yll = F(x,)'2) - F(x, YI) 

Proof. Oearly, for X2 > XI 

{x $ X2. 1 $ y} = {x $ Xl> 1 $ y} U {XI < x !5 X2, Y $ y} 

The last two events are mutually exclusive; hence [see (2-10)] 

P{x $ x2.1 $ y} = PIx $ XI.1 $ y} + P{XI < X $ X2.1 $ y} 

and (6-2) results. The proof of (6-3) is similar. 

3. P{XI < X $ X2.]1 < 1 $ Yl} = F(X2.)'2) - F(x.,)'2) 

- F(X2, YI) + F(x" Yl) 

This is the probability that (x, y) is in the rectangle D4 ofF18. 6-1c. 

Proof. It follows from (6-2) and (6-3) because 

(6-2) 

(6-3) 

(6-4) 

{Xl < X $ X2, Y $ n} = {Xl < X $ X2, Y $ Yl} U {Xl < X $ X2. YI < 1 $ Yl} 

and the last two events are mutually exclusive. 
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JOINT DENSITY. The jOint density of x and y is by definition the function 

I( _ 02 F(x, y) 
x,y) - 8xay (6-5) 

From this and property 1 it follows that 

F(x,y) = l~J:oo j(a.fJ)dadfJ (6-6) 

JOINT STATISTICS. We shall now show that the probability tbat the point (x, y) is in a 
region D of the xy plane equals the integral of I(x, y) in D. In other words, 

P{(x,y) e D} = il I(x.y)dxdy (6-7) 

where {(x, y) e D} is the event consisting of all outcomes ~ sucb that the point [x(n, y(~)] 
is in D. 

Proof. As we know, the ratio 

F(x + ax, y + Ay) - F(x, y + Ay) - F(x + Ax. y) + F(x, y) 
AxAy 

tends to aF(x, y)/axoy as Ax -+ 0 and Ay -+ O. Hence [see (6-4) and (6-5)] 

Pix < x::: x + Ax, y < y ::: y + Ay} ~ I(x, y) Ax Ay (6-8) 

We have thus shown that the probability that (x, y) is in a differential rectangle equals 
I(x, y) times the area Ax Ay of the rectangle. This proves (6-7) because the region D 
can be written 88 the limit of the union of such rectangles. 

MARGINAL STATISTICS. In the study of several random variables, the statistics of 
each are called maIginal. Thus Fx (x) is the marginal distribution and Ix (x) the marginal 
density of x. Here, we express the marginal statistics of x and y in tenns of their joint 
statistics F(x. y) and I(x, y). 

We maintain that 

Fx(x) = F(x. (0) 

lAx) = I: I(x,y)dy 

F,(y) = F(oo, y) 

ly(Y) = 1: I(x, y)dx 

Proof. Clearly, (x ::: oo} = {y ::: oo} = S; hence 

{x::: x} = {x ~ x, y ::: oo} {y ::: y} = [x::: 00, y ::: y} 

The probabilistics of these two sides yield (6-9). 
Differentiating (6-6), we obtain / Z 

(6-9) 

(6-10) 

• Y 
aF(X,Y)=j'/(X,fJ)dfJ aF~X'Y)=j I(a.y)da (6-11) 

ax -00 Y-oo 
Setting y = 00 in the first and x = 00 in the second equation, we obtain (6-10) because 
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[see (6-9n 

Ix(x) = aF(x.oo) 
ax 

f) (x) = BF(oo, y) 
By 

EXISTENCE THEOREM. From properties 1 and 3 it follows that 

F(-oo,y) =0 F(x, -00) = 0 F(oo,oo) = 1 

and 

(6-12) 

F(X2,)'2) - F(xt. Y2) - F(X2. Yl) + F(XI, Yl) ::: 0 (6-13) 

for eyery Xl < X2, Yt < )'2. Hence [see (6-6) and (6-8)] J: I: I(x, y) dx dy = 1 I(x, y) ::: 0 (6-14) 

Conversely, given F(x. y) or I(x, y) as before, we can find two random variables 
x and y, defined in some space S, with distribution F(x, y) or density I(x, y). This can 
be done by extending the existence theorem of Sec. 4-3 to joint statistics. 

Probabllity Masses 

The probability that the point (x, y) is in a region D of the plane can be interpreted as 
the probability mass in this region. Thus the mass in the entire plane equals 1. The mass 
in the balf-pl~e x::: x to the left of the line Lx of Fig. 6-2 equals Fx(x). The mass in 
the balf-plane y ::: y below the line L, equals Fy(y). The mass in the doubly-shaded 
qUadrant {x::: x, y ::: y} equals F(x, y). 

Finally, the mass in the clear quadrant (x > x, y > y) equals 

P{x> x, y > y} = 1 - Fx(x) - Fy(Y) + F(x, y) (6-15) 

The probability mass in a region D equals the integral [see (6-7)] 

L J I(x, y)dxdy 

If, therefore, I (x, y) is a bounded function, it can be interpreted as surface mass density. 

FIGURE 6-2 
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~ Suppose that 

f() 1 _(Xl+yZ){2c1~ 
x,y = -2 2e 

lC<7 
(6-16) 

We shall find the mass m in the circle x2 + y2 ~ a2• Inserting (6-16) into (6-7) and using 
the transformation 

x=rcos8 y=rsin8 

we obtain 

INDEPENDENCE ~ Two random variables x and y are called (statistically) independent if the events 
{x E A} and {y E B} are independent [see (2-40)], that is. if 

EXA\IPLL h-2 

BUFFON'S 
NEEDLE 

PIx EA. y E B} = P{x E AJP{y E B} (6-18) 

where A and B are two arbitrary sets on the x and y axes, respectively. 
Applying this to the events {x ~ x} and {y ~ y}. we conclude that, if the random 

variables x and y are independent. then 

F(x, y) = F:c(x)F)'(y) (6-19) 

Hence 

f(x. y) = fx(x)fy(y) (6-20) 

It can be shown that, if (6-19) or (6-20) is true, then (6-18) is also true; that is. the 
random variables x and y are independent [see (6-7)]. ~ 

~ A fine needle of length 2a is dropped at random on a board covered with parallel 
lines distance 2b apart where b > a as in Fig. 6-3a. We shall show that the probability p 
that the needle intersects one of the lines equals 2a/nb. 

In tenns of random variables the experiment just discussed can be phrased as: We 
denote by x the distance from the center of the needle to the nearest line and by (J the 
angle between the needle and the direction perpendicular to the lines. We assume that 
the random variables x and (J are independent. x is uniform in the interval (0, b). and e 
is unifonn in the interval (O,n/2). From this it follows that :: 

1 2 
f(x.8) = fx(x)fs(8) = 'b;; Tr 

0<8 <­
- - 2 

and 0 elsewhere. Hence the probability that the point (x. e) is in a region D included in 
the rectangle R of Fig. 6-3b equals the area of D times 2/Trb. 

The needle intersects the lines if x < a cos 8. Hence p equals the shaded area of 
Fig. 6-3b times 2/Trb: . 

2102/71 2a P = PIx < acose} = -b acos8d8 =-
n 0 nb 
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2b 

R 

() 

(a) (b) 

nGURE6·3 

This can be used to determine experimentally the number 7t using the relative frequency 
interpretation of p: If the needle is droppedn times and it intersects the lines ni times, then 

nl 2a 2an 
-=::!p=- hence 7t=::!- ... 
n 7tb bnj 

> If the random variables x and y are independent, then the random variables 

z = g(1') w = h(y} 

are also independent. 

Proof. We denote by Az the set of points on the x axis such that g(x) ~ z and by Bw the set of 
points on the y axis such that h(y) :s w. Clearly, 

{z :s z} = {x e Az} {w :s w} = {y e B",} (6·21) 

Therefore the events {z :5 z} and {w :5 w} are independent because the events {x e Az} and 
{y e Bw} are independent. ~ 

INDEPENDENT EXPERIMENTS. As in the case of events (Sec. 3-1), the concept of 
independence is important in the study of random variables defined on product spaces. 
Suppose that the random variable x is defined on a space SI consisting of the outcomes 
{~I} and the random variable y is defined on a space S2 conSisting of the outcomes {~}. 
In the combined ~periment SIX ~ the random variables x and y are such that 

(6-22) 

In other words, x depends on the outcomes of SI only, and y depends on the outcomes 
of S2 only. 

~ If the ex.periments Sl and ~ are independent, then the random variables x and y are 
independent. 

Proof. We denote by Ax the set {x :s xl in SI and by By theset{y ~ y} in S2' In the spaceSI x Sl' 

{x :s x} = A .. X S2 (y :5 y) = SI X B, 
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From the independence of the two experiments, it follows that [see (3-4)] the events Ax x ~ and 
S. x By are independent. Hence the events (x :::: xl and {y :::: y} are also independent. ~ 

~ We shall say that the random variables x and y are jointly normal if their joint density 
is given by 

I(x, y) = A exp {_ 1 (X - 7JI)2 _ 2r (x - 7JI)(y - 112) + (y - 712)2)} 
2(1 - r2) O't <71 <72 <71 

(6-23) 

This function is positive and its integral equals 1 if 

A = 1 Irl < 1 
21r<71<72~ 

(6-24) 

Thus I (x, y) is an exponential and its exponent is a negative quadratic because I r I < 1. 
The function I (x, y) will be denoted by 

(6-25) 

As we shall presently see, 711 and 712 are the expected values ofx and y, and O't and <7/ 
their variances. The significance of r will be given later in Example 6-30 (correlation 
coefficient). 

We maintain that the marginal densities of x and y are given by 

(6-26) 

Proof. To prove.this, we must show that if (6-23) is inserted into (6-10), the result is 
(6-26). The bracket in (6-23) can be written inth~ form 

Hence 

where 

( ... ) = (X -711 _ r Y -712)2 + (1- r2) (y - 7}2)2 

0'1 0'2 <7:} 

(y -172)0'1 
17 = 171 + r...;;-.-:..:..:.....-;;. 

0'2 

The last integral represents a normal random variable with mean IL and variance 
(1- r2)0'f. Therefore the last integral is a constant (independent of x and y) B = 
J21r(l - r1)O't. Therefore 

I,(y) = ABe(Y-'f/2)2f14? 

And since I.,(Y) is a density. its area must equal!, This yields AB = 1/<72$, from 
which we obtain A = 1/21r<7t0'2Jl - r2 proving (6-24), and the second equation in 
(6-26). The proof of the first equation is similar. ~ 
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Notes 1. From (6-26) it follows that if two random variables are jointly nonnal. they are also marginally 
nonnal. However, as the nex.t example shows, Ihe cOllverse is 1101 trU4. 

2. Joint nonna]ity can be defined also as follows: 1Wo random variableS x and y are jointly normal if 
the sum ax + by is normal for every a and b [see (7-56»). 

~ We shall construct two random variables x and y that are marginally but not jOintly 
normal. Toward this, consider the function 

I(x, y) = 1.r(x)/y(y)[I + p{2F.r(x) -1}{2Fy(Y) -I}] Ipl < 1 (6-27) 

where 1:X<x) and Iy(y) are two p.d.fs with respective distribution functions FAx) and 
FyU;).1t is easy to show that I(x, Y) ~ 0 for all x, y, and 

[00 r: lex, y)dxdy = 1 

which shows that (6-27) indeed represents a joint p.d.f. of two random variables x and 
y. Moreover, by direct integration 

1+00 11 udu -00 I(x, y)dy = 1.r(X) + p(2Fx(x) -l)/x(X) -1 '"2 = lAx) 

where we have made use of the substitution u = 2Fy(Y) - 1. Similarly, 

[:00 I(x. y)dx = ly(Y) 

implying that Ix(x) and ly(Y) in (6-27) also represent the respective marginal p.d.f.s of 
x and y, respectively. 

In particular. let l.r(x) and ly(Y) be normally distributed as in (6-26). In that case 
(6-27) represents a joint p.d.f. with normal marginals that is Dot jointly normal. ~ 

Circular Symmetry 

We say that the joint density of two random variables x and y is circularly symmetrical 
if it depends only on the distance from the origin. that is, if 

I(x. y) = g(r) r = ..jx2 + y2 (6-28) 

.... If the random variables x and y are circularly symmetrical and independent, then 
they are normal with zero mean and equal variance. 

Proof. From (6-28) and (6-20) it follows that 

Since 

g(..jx2 + y2) = /:,,(x)/,(y) 

ag(r) dg(r) ar and aT x 
ax- = ""'(i;- ax ax = -; 

(6-29) 
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we conclude. differentiating (6.29) with respect to x. that 
x , , 
;8 (r) = /,,<x)/ylY) 

Dividing both sides by x8(r) = x/Ax)/) (y). we obtain 

1 g'(r) 1 f:<x) 
-; g(r) = :; fA (x) 

(6-30) 

The right side of (6-30) is independent of y and the left side is a function of r = V x2 + y2. This 
shows that both sides are independent of x and y. Hence 

and (~28) yields 

18'(r) --- = a = constant 
r 8(r) 

(6-31) 

Thus the random variables x and yare normal with zero mean and variance (12 = -l/a. .... 

DISCRETE TYPE RANDOM VARIABLES. Suppose the random variables x and y are 
of discrete type taking the values of Xi and Yle with respective probabilities 

P(x = xd = Pi Ply = YIe} = qle • (6-32) 

Their joint statistics are determined in terms of the joint probabilities 

P{x = X,. Y = YIe} = Pile (6-33) 

Qearly. 

1,1e 

because, as i and k take all possible values, the events {x = Xi, Y = YIe} are mutually 
exclusive, and their union equals the certain event. 

We maintain that the marginal probabilities Pi and q" can be expressed in terms 
of the joint probabilities Pile: 

Pi = LPile 
Ie 

This is the discrete version of (6-10). 

(6-34) 

Proof. The events {y = YIe} form a partition of S. Hence as k ranges over all possible 
values. the events {x = XI, Y = YIe} are mutually exclusive and their union equals {x = Xi} • 

. This yields the first equation in (6.:34) [see (2-41)]. The proof of the second is similar. 

POINT MASSES. If the random variables x and y are of discrete type taking the values 
Xi and Yt. then the probability masses are 0 evexywbere except at the point (Xi, YIe). We 
have, thus. only point masses and the mass at each point equals Pile [see (6-33)J. The 
probability PI = P {x = Xj} equals the sum of all masses Pile on the line X = Xi in 
agreement with (6-34). . 
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If i == 1 •...• M and k == 1 •...• N. then the number of possible point masses on the 
plane equals M N. However. as Example 6-4 shows. some of these masses might be O. 

~ (a) In the fair-die experiment;'" equals the number of dots shown and y equals twice 
this number: 

xc/;) == i y(/;) = 2i i = 1 ....• 6 

In other words, Xl = i, Yk = 2k, and 

{! i =k 
Pik = P(x = i, Y == 2k} == 6 

o i ~k 

Thus there are masses only on the six points (i, 2i) and the mass of each point equals 
1/6 (Fig. 6-4a). 

(b) We toss the die twice obtaining the 36 outcomes /; ik and we define x and y 
such that x equals the first number that shows, and y the second 

i,k=I ..... 6. 

Thus Xi == i, Yk == k. and Pik == 1/36. We have, therefore, 36 point masses (Fig. 6-4b) 
and the mass of each point equals 1/36. On the line X == i there are six points with total 
mass 1/6. 

(c) Again the die is tossed twice but now 

Y(/;ik) = i + k 

In this case, x takes the values 0, 1 •...• 5 and y the values 2, 3, ... , 12. The number 
of possible points 6 x 11 == 66; however. only 21 have positive masses (Fig. 6-4c). 
Specifically. if x = O. then y = 2, or 4 •...• or 12 because if x = 0, then i = k and 
y = 2i. There are. therefore, six mass points in this line and the mass of each point 
equals 1/36. If x = 1, then y = 3, or 5 •... , or 11. Thus, there are, five mass points on 
the line X = 1 and the mass of each point equals 2/36. For example, if x = 1 and y = 7, 
then i = 3, k = 4, or i = 4, k = 3; hence Pix = I, y = 7} == 2/36. ~ 

y y <> 1/36 

• 6 • • • • • • 12 • 2136 
• • 5 • • • • • • 10 • .. • • • 4 • • • • • • 8 • • • • • 3 • • • • • • 6 • • • • 2 • • • • • • 4 • • • • • • • • 2 

4 5 6 x 2 3 4 5 6 x 1 2 3 4 5 x 

(a) (b) (c) 

FIGURE 6-4 
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y 

x= cosz y=sinz 
g(x) 

Xi x 

(a) (b) (c) 

FIGUREfi-5 

LINE MASSES. These cases lead to line masses: 

1. If x is of discrete type taking the values Xi and y is of continuous type, then all 
probability masses are on the vertical lines X = Xj (Fig. 6-Sa). In particular, the 
mass between the point Yl and )/2 on the line x = Xi equals the probability of the 
event 

[x = Xi. YI ~ Y ~)/2) 

2. Ify = g(x), then all the masses are on the curve Y = g(x). In this case, F(x, y) 
can be expressed in tenns of F% (x). For example, with x and y as in Pig. 6-Sb. 
F(x, y) equals the masses on the curve y = g(x) to the left of the point A and 
between B and C equal FAx) - Fx (X2)' Hence 

F(x. y) = Fx(xt) + Fx(X3) - Fx(xv y = g(Xl) = g(X2) = g(X3) 

3. If x = g(z) and y = h(z). then all probability masses are on the curve x = get), 

then 

Y = h(t) specified parametrically. For example, if g(z) = COSt, h(z) = sinz. then 
the curve is a circle (Fig. 6-5c). In this case, the joint statistics of x and y can be 
expressed in terms of Fz(z). 

If the random variables x and y are of discrete type as in (6-33) and independent, 

Pill = PiPII (6-35) 

This follows if we apply (6-19) to the events {x = Xi} and {y = YIIl. This is the discrete 
version of (6-20) . 

.. A die with P{fj} = Pi is tossed twice and the random variables x and y are such 
that . 

Thus x equals the first number that shows and y equals'the second; hence the random 
variables x and y are independent This leads to the conclusion that 

Pi/c = Pix = i, y = k} = PIPJ: ~ 
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6~2 ONE FUNCTION OF TWO 
RANDOM VARIABLES 

Given two random variables x and y and a function g(x, y). we form a new random 
variable z as 

z=g(x,Y) (6-36) 

Given the joint p.d.f. Ixy(x, y), how does one obtain 11.(1.), the p.d.f. of z? Problems of 
this type are of interest from a practical standpoint. For example, a received signal in 
a communication scene usually consists of the desired signal buried in noise, and this 
formulation in that case reduces to z = X + y. It is important to know the statistics of the 
incoming sigilaJ. for proper receiver design. In this context, we shall analyze problems 
of·the type shown in Fig. 6-6. Referring to (6-36), to start with, 

Ft(z) = P{z(~) ~ z} = P{g(x, y) ~ z} = P(x, y) e Dz} 

= fr ( Ixy(x. y) dx dy 
}X,YEDz 

(6·37) 

where Dz in thexy plane represents the region where the inequality g(x, y) ~ z is satisfied 
(Fig. 6-7). 

x+y 
max(x,y) 

min(x. yJ 

max(x,y) 

y 

x-y 

xly 

Dz 
g(x. Y)"'z 

FIGUREU 

• x 

FIGURE 6·7 
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Note that Dz need not be simply connected. From (6-37), to determine Fz(z) it is 
enough to find the region Dr. for every z, and then evaluate the integral there. 

We shall illustrate this method to detennine the statistics of various functions of x 
andy. 

~ Let z = x + y. Determine the p.d.f. fz(z), 
From (6-37), 

[ 1Z-> 
F1.(z) = P{x+y::: z} = fxy(x,y)dxdy 

),=-00 x=-oo 
(6-38) 

since the region Dr. of the xy plane where x + y ::: z is the shaded area in Fig. 6-8 to 
the left of the line x + y ::: z. Integrating over the horizontal strip along the x axis first 
(inner integral) followed by sliding that strip along the y axis from -00 to +00 (outer 
integral) we cover the entire shaded area. 

We can find 11.(z) by differentiating Fz(z) directly. In this context it is useful to 
recall the differentiation rule due to Leibnitz. Suppose 

l b(Z) 

Fz(z) = J(x. z) dx 
o(t.) 

(6-39) 

Then 

f1.(z) = dFz{z) = db(z) /(b(z). z) _ da(z) /(a(z). z) + r(t.) alex. z) dx (6-40) 
dz dz dz Ja(t.) az 

Using (6-40) in (6-38) we get 

/1.(z) = I: (:z l:y fxy(x. y) dX) dy 

100 ( r-)' at (x y») 
= -00 1· /Xy(z - y. y) - 0 + Loo x)'az' dy 

= I: fxy(z - y. y) dy (6-41) 

Alternatively. the integration in (6-38) can be carried out first along the y axis 
followed by the x axis as in Fig. 6-9 as well (see problem set). 

y 

x 

FIGURE 6·8 
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x 

FIGURE 6-, 

If x and y are independent, then 

I~y(x, y) = Iz(x)/y(y) (6-42) 

and inserting (6-42) into (6-41) we get 

11.(1.) = l~-oo Ix(z - y)/,(y)dy = [-00 Ix (x)/,(1. -x)dx (6-43) 

This integral is the convolution of the functions Ix(1.) and 1,(1.) expressed two different, 
ways. We thus reach the following conclusion: If two random variables are independent, 
then the density of their sum equals the convolution of their densities. 

As a special case, suppose that Ix (x) = 0 for x < 0 and I,(Y) = 0 for y =< O. then 
we can make use of Fig. 6-10 to determine the new limits for DI.. 

In that case 

or 

r (a 11.-7 ) Iz(Z) = 1,..0 81. %=00 Ix,(x, y) dx dy 

'= {1t. /x,(1. - y, y)dy 1. > 0 

o z:::o 
(6-44) 

y 

c 

x 

ftGURE6-10 
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On the other hand, by considering vertical strips first in Fig. 6-10, we get 

1z l~-x Fz(z) = Ixy(x, y)dydx 
x=O y-o 

or 

f1.(z) = 11. Ixy(x, z - x) dx 
x=o 

= {[.' /,(x)/,(z -x)dx (6-45) 

if x a.nd y are independent random variables. ~ 

.. Suppose x and y are independent exponential random variables with conunon pa­
rameter A. Then 

and we can make use of (6-45) to obtain the p.d.f. of z = x + y. 

11.(z) = lot A2e-1."'e-1.(1.-xl dx = A2e->.r.l1. dx 

= ZA 2e-l.1. U (1.) 

(6-46) 

(6-47) 

As Example 6-8 shows, care should be taken while using the convolution formula for 
random variables with finite range. ~ 

.. x and yare independent uniform random variables in the common interval (0,1). 
Determine 11.(z), where z = x + y. Clearly, 

z=x+y=*O<z<2 

and as Fig. 6-11 shows there ~e two cases for which the shaded areas are quite different 
in shape, and they should be considered separately. 

y y 

z - 1 

x x 

0 ... %<1 1«0%<2 

FIGURE 6-11 



For O-:s r. < I, 

1~ l::-Y l Z 1.2 
Fz(z) = ldxdy = (z - y)dy = -2' 

y=O ~-O y-o 
o < r. < 1 (6-48} 

For 1 :s z < 2, notice that it is easy to deal with the unshaded region. In that case, 

Fz(z)=I-P{z>z}=l- t 11 Idxdy 
1,=1.-1 x"'<%-y 

11 (2-Z)2 = 1 - (1 - z + y) dy = 1 - -~ 
y=%-1 2 

Thus 

I~(z) = dFz(r.) = {z 0 :s z < 1 
dz 2 - z 1:s z < 2 

1 :s r. < 2 (6-49) 

(6-50) 
I 

By djrect convolution of Ix (x) and ly(Y), we obtain the same result as above. In fact, 
for 0 .=: z < 1 (Fig. 6-12a) 

/z(z) = J IAr. - x)/,(x) dx = 1~ 1 dx = 1. (6-51) 

1~1. - x) 1:Ar.-x)/p) 

x 1. 

(0) 0 "'z< I 

Ip) 1:Ar.- x) 1:Jr. - x)/,<x) 

x 

(b) 1-0::<2 

o . 2 

(c) 
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and for 1 ~ 1. < 2 (Fig. 6-12b) 

Iz(z) = 11 Idx = 2-z 
z-1 

(6-52) 

Fig. 6-12c shows Iz(1.), which agrees with the convolution of two rectangular waveforms 
as well. ~ 

~ Letz = x -yo Determine It.(z). 
From (6-37) and Fig. 6-13 

(00 1'+)' 
Fz(1.) = P{x - y ~ 1.} = Jy=-oo ~=-oo f~y(x, y) dx dy 

and hence 

dFz(z) 100 

Iz(1.) = -d- = IJty(1. + y, y) dy 
1. -00 

If x and y are independent, then this formula reduces to 

ft.(z) = L f;e(z + Y)/y(y) dy = !:A-'l.) ® f,Cy) 

which represents the convolution of f;e(-z) with 1,(1.). 
As a special case, suppose 

fx(x) =0 x < 0, 

(6-53) 

(6-54) 

In this case, Z can be negative as well as positive, and that gives rise to two situations 
that should be analyzed separately, since the regions of integration for 1. :! 0 and z < 0 
are quite different. 

For z ~ 0, from Fig. 6-14a 

y 

x 

FIG~6-13 
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z=x/y 

y 

(a) (b) 

< 0, from Fig. 6-14b 

After differentiation, this gives 

{r. /x,(1. + y, y) dy 1.:::' 0 

/~(1.) = 100 

d)' 1. < 0 
~l: 

z = x/y. Detennine 
have 

x 

(6-55) 

(6-56) 

The inequality x I y ~ 1. can be rewritten as x ~ y1. if Y > 0, and x ~ yz if Y < O. Hence 
the event {x/y ~ z} in (6-56) needs to be conditioned by the event A = (y > O} and its 
compliment A. Since A U A = S. by the partition theorem, we have 

P{x/y ~ z} == P{x/y ~ Z n (A U A)} 

== 

= 
P{x/Y~z.y <OJ 

P{x ~ yz. Y < O} 

6-15a shows the area first tenn, and Fig. 6·15b 
corresponding to the second teon 

Integrating over these two regions, we get 

Fl.(z)= f oo l YZ 
fxy(x,Y)dXdY+!. [, /xy(x,y)dxdy (6-58) J y=fJ x=-oo ,..-00 x-y~ 
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y y 

x 

x 

(a) P(x :s yz, y > 0) (b) P(x =::: yz. y < 0) 

FIGURE 6-15 

x FIGURE 6-16 

Differentiation gives 

h(?) = roo yfx.y(Yz. y)dy + r -yfx.y(Yz. y)dy 
10 Loo 

= I: lylfx,(Yz. y) dy (6-59) 

Note that if x and y are non-negative random variables, then the area of integration 
reduces to that shown in Fig. 6-16. 

This gives 

or 

F~(z) = i lY~ fxy{x,y)dxdy 
1y=o x=o 

fz(z) = i y/xy(Yz, y) dy 1,-0 

~ x and y are jointly normal random variables with zero mean and 

(6-60) 

<II( 

1 - [;;6; (S--k.!t+5)] fxy(x, y) = e 3(1-r) -I -1"2 -2 (6-61) 
- 21r 0'\ 0'2../f'="'T2 

Show that the ratio z = x/y has a Cauchy density centered at TO'I/0'2. 
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SOLUTtON' 
Inserting (6-61) into (6-59) and using the fact that hy(-x, -y) = fxy(x, y), we obtain 

f~('l..) = ye-Y' /2ao dy = ---==== 2 100 
2 2 ~ 

2:1l'O't0'2.Jl - 'r2 0 :Il'O't0'2.Jl - r2 

where 

Thus 

(6-62) 

which represents a Cauchy random variable centered at rO'110'2. Integrating (6-62) from 
-00 to z. we obtain the corresponding distribution function to be 

Ie' () 1 1 a2Z - ral 
rz Z = - + - arctan --=--=== 

2:1l' a t..Ji'"=r2 (6-63) 

As an application, we can use (6-63) to determine the probability masses mit m2, 
m3. and m4 in the four quadrants of the xy plane for (6-61). From the spherical symmetry 
of (6-61), we have 

But the second and fourth quadrants represent the region of the plane where x Iy < O. 
The probability that the point (x, y) is in that region equals. therefore. the probability 
that the random variable z = x/y is negative. Thus 

1 1 r 
m2 +m4 = P(z ~ 0) = Fz(O) = -2 - -arctan ~ 

:Il' -vl-r~ 
, and 

If we define a = arc tan r I~, this gives 

1 a 1 a 
m 1 = m3 = 4 + 2:1l' m2 = m4 = 4 - 2:1l' (6-64) 

.. 
Of course, we could have obtained this result by direct integration of (6-61) in each 
quadrant. However. this is simpler. 

~ Let x and y be independent gamma random variables with x'" G(m, a) and y .... 
G(n, a). Show that z = xj(x + y) has a beta distribution. 

Proof. /Xy(x. y} = /x(x)f'1(Y) 

= 1 ,x"'-I ,,-I -(}t+,l/a 
a"'+np(m)r(n) y e 

(6-65) 
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Note that 0 < z < I, since x and y are non-negative random variables 

Fz(t} = P(z ~ z) = p (_X_ ~ z) = p (x ~ y_z_) 
x+y I-t 

1"" [1Z/(I-zl 
= 0 0 f",(x,y)dxdy 

where we have made use of Fig. 6-16. Differentiation with respect to t gives 

k(z) = [ (1 ~ Z)2 fJly(Jz/(l - z), y) dy 

= [_y_ 1 (-E-)_-I y"-I.-'1/(I-zP dy 
o (1 - z)2 czH'+nr(m)r(n) ) - z 

_ 1 ,t"-I roo ...... -I.-,Icr(I~) d 
- am .... r(m)r(II) (1 - t)_+1 Jo Y y 

zm-I(l-t},,-I [ 81+,,-1 -d r(m+n) ___ I(l )"-1 
= " e"= 4-Z r(m)rCn) 0 r(m)r(n) 

{
_J-Z--1(l- Z),,-1 0 < z; < 1 

= ~(m,n) 
o otherwise 

which represents a beta distribution. ~ 

... Letz = r + y2. Determine /,('1.). 
We have 

F,('l.) = P{x2 + y2 ~ 'l.} = r r /JlY(x, y) dx dy 
J J,,2+r~~ 

(6-66) 

But. r + y1 ~ 'l. represents the area of a circle with radius ..[i. and hence (see Fig. 6-17) 

1.Ji. 1.Jz::;i 
F~('l.) = /xy(x,y)dxdy 

>--.Ji. z=-.J,-r 

y 
.jZ' 

• 

-fi 
FlGURE6-l7 
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As an illustration. consider Example 6-14. 

... x and y are independent nonnal random variables with zero mean and common 
variance u 2• Determine h(Z) for z = xl + r. 
SOLUTION 
Using (6-67), we get 

1.fi I ( 1 ..2 2 2) /z(Z) = 2· --2e(Z-.I'+,)(JH dy 
--Ii 2";1. - y2 21ru 

e-Z/2t12 1-1i 1 e-z/2t12 171/l ';;'cos6 
=-- dy=-- d6 

:11'0'2 0 ";1. - )'2 :ll'U2 0 ';;'oos6 

= ~2e-Z(JH2u(Z) (6-68) 

where we have used the substitution y = .;;. sin 6. From (6-68), we have the following: 
Ifx and y are independent zero mean Gaussian random variables with common variance 
u2, then x2 + y2 is an exponential random variable with parameter 2q2. ~ 

... Let z = ";X2 + y2. Find /7.(z). 

SOLUTION 
From Fig. 6-17, the present case corresponds to a circle with radius Z2. Thus 

l' 1..;;9 Fz(z) = /z,(x, y) dx dy 
pc-t z_-Jz2_y2 

(6-69) 

In particular, jf x and y are zero mean independent Gaussian random variables as in the 
previous example, then c 

h(1.) = 2 r 1. 2 e-<z2-):l+y2)/2u2 dy 
Jo ";Z2 - y2 21ru2 

= .l:!:...e-z2/2t12 r 1 dy = ~e-z2/2t11 r12 lCOSe de 
:ll'U2 Jo ";Z2 - y2 :ll'U2 Jo zcosS 

(6-70) 

which represents a Rayleigh distribution. Thus, if w = x + iy, where x and y are 
real independent normal random variables with zero mean and equal variance, then 
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the random variable Iwl = ,/x2 + y2 has a Rayleigh density. w is said to be a complex 
Gaussian random variable with zero mean, if its real and imaginary parts are independent. 
So far we have seen that the magnitude of a complex Gaussian random variable has 
Rayleigh distribution. What about its phase 

() = tan-I (~) (6.71) 

Clearly, the principal value of 6 lies in the interval (-](/2, 7C /2). If we let u = tan (J = 
y/x. then from Example 6·11, u has a Cauchy distribution (see (6-62) with 0'1 = 0'2, 
r =0) 

-oo<u<oo 

As a result, the principal value of (J has the density function 

1 1 1/7C 
f9(9) = IdO/dul ",(tan 9) = (l/sec29) tan20 + 1 

= {1/7C -7C/2 < 0 < 7C/2 

o otherwise 
(6-72) 

However, in the representation x+ jy = rej8 , the variable 6 lies in theintervaI (-7C, 7C). 
and taking into account this scaling by a factor of two, we obtain 

{ 
1/27C -]( < 0 < 7C 

fe(O) = . o otherwlse 
(6-73) 

To summarize. the magnitude and phase of a zero mean complex Gaussian random 
variable have Rayleigh and uniform distributions respectively. Interestingly, as we will 
show later (Example 6-22), these two derived random variables are also statistically 
independent of each other! ~ 

Let us reconsider Example 6·15 where x and y are independent Gaussian random 
variables with nonzero means /1-x and /1-y respectively. Then z = ";X2 + y2 is said to be 
a Rician random variable. Such a scene arises in fading multipath situations where there 
is a dominant constant component (mean) in addition to a zero mean Gaussian random 
variable. The constant component may be the line of sight signal and the zero mean 
Gaussian random variable part could be due to random multipath components adding up 
incoherently. The envelope of such a signal is said to be Rician instead flf Rayleigh. 

~ Redo Example 6·15, where x and y are independent Gaussian random variables with 
nonzero means /1-x and /1-y respectively. 

SOLUTION 
Since 

}; (x y) = _1_e-l(x-J.'~)2+(y-J.'»2J/2CT2 
xy. 27C0'2 

substituting this into (6-69) and letting y = z sin 0, /1- = J /1-; + /1-~, /1-x = /1- cos tP. 
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(6-74) 

where 

10(1]) ~ _1_121r e"coa(8-~) dB = .!.11r e"cos8 dO 
2rr 0 1l' 0 

is the modified Bessel function of the first kind and zeroth order. ~ 

Order Statistics 

In general. given any n-tuple Xl. X2 •...• XII' we can rearrange them in an increasing 
order of magnitude such that 

X(I) ::: x(2) ::: ••• ::: X(II) 

wherex(l) = min (x\, X2 •••• , xll ).andX(2)is the second smallest value amongxlt X2 ••••• 

x'u and finally x(n) = max(xJ. X2 •••• , XII)' The functions min and max are nonlinear op­
erators. and represent special cases of the more general order statistics. If Xl. X2, •••• XII 

represent randolp . variables, the function XCk) that takes on the value X(k) in each pos­
sible sequence (Xl, X2 • •••• XII) is known as the kth-order statistic. {x(1). X(2) •.•• ,X(II)} 

represent the set of order statistics among n random variables. In this context 

R = K(n) - x(1) (6-75) 

represents the range, and when n = 2, we have the max and min statistics. 
Order statistics'is useful when relative magnitude of observations is of importance. 

When worst case scenarios have to be accounted for. then the function max(·) is quite 
useful. For example, let XJ, X2, ••• ,:x,. represent the recorded flood levels over the past 
n years at some location. If the objective is to construct a dam to prevent any more 
flooding, then ~he height H of the proposed dam should satisfy the inequality 

(6-76) 

with some finite probability. In that case, the p.d.f. of the random variable on the right 
side of (6-76) can be used to compute the desired height. In another case, if a bulb 
manufacturer wants to determine the average time to failure (f.L) of its bulbs based on a 
sampleofsizen, the sample mean (Xl +X2 + ... +Xn)/n can be used as an estimate for 
/1-. On the other hand, an estimate based on the least time to failure has other attractive 
features. This estimate min(x}, X2, •••• Xn) may not be as good as the sample mean in 
terms of their respective variances, but the min(·) can be computed as soon as the first 
bulb fuses, whereas to compute the sample mean one needs to wait till the last of the lot 
extinguishes. 
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~ Let z = max(x, y) and w = min (x. y). Determine fz(z) and fw{w). 

we have (see (6-57)] 

{
X x> y 

z = max(x. y) = 
y x Sy 

Fz(z) = P{max(x. y) S z} 

= P {(x S Z, x > y) U (y S z. x S y)} 

= PIx s z. x> y} + Ply ~ z, x S y} 

(6-77) 

since {~ > y} and {x S y} are mutually exclusive sets that form a partition. Figure 6-18a 
and 6-1Sb show the regions satisfying the corresponding inequalities in each term seen 
here. 

Figure 6-1Sc represents the total region. and from there 

Fz{z) = P{x ~ z, y s z} = Fxy{z. z) 

If x and y are independent, then 

y y 

(a) Pix ~ <';, x > y) 

y 

(z, z) 

x 

(c) 

FIGURE ,.18 

(6-78) 

=z 

x 
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y 
x= w 

x 

, (a) Ply s: w, x >yj" (b)P[x $w, X s: y) 

x 

(c) 

and hence 

(6-79) 

Similarly, 

w = min(x y) = {y x > y 
, x x:sy (6-80) 

Thus. 

FIO(w) = P{min(x, y) :S w} 

= Ply :S w, x > y} + PIx :S w, x :S y} 

Once again, the shaded areas in Fig. 6-19a and 6·19b show the regions satisfying these 
ineqUatities, and Fig. 6-19c shows them together. 

From Fig. 6-19c, 

Fl/I(w) = 1 - pew > w} = 1 - P{x > w, y > w} 

= Fx(w) + F,(w) - Fx,(w, w) 

where we have made use of (6-4) with X2 = Y2 = 00, and XI = )'1 = W. ~ 

(6-81) 
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• Let x and y be independent exponential random variables with common paranleter 
A. Define w = min(x, y). Fmd fw(w). 

SOLUTION 
From (6-81) 

Fw(w) = Fx(w) + Fy(w) - Fx(w)Fy(w) 

and hence . 
fw(w) = fx(w) + fy(w) - f.r(w)Fy(w) - Fx(w)fy(w) 

But fx(w) = !,(w) = Ae-}.w. and F.r(w) = Fy(w) = 1 - e-}.w. so that 

!w(w) = lAe}.w - 2(1 - e-}.wp .. e-l.W = lAe-21.wU(w) (6-82) 

Thus min(x. y) is also exponential with parameter lA. ~ 

• Suppose x and y are as given in Example 6-18. Define 

min(x,y) 
2:= -.....;......=.. 

max(x,y) 

Altbough min(·)/max(·) represents a complicated function. by partitioning the whole 
space as before, it is possible to simplify this function. In fact 

z = {x/Y x ~ Y (6-83) 
Y/x x> Y 

As before, this gives 

Fz(z) = P{x/y ~ z, x ~ y} + P{y/x ~ z. x> y} 

= P{x ~ Y2:. x ~ y} + Ply ~ xz, x> y} 

Since x and y are both positive random variables in this case. we have 0 < Z < 1. The 
shaded regions in Fig. 6-2Oa and 6-20b represent the two terms in this sum. 

y y 

x x 

(a) (b) 

FIGUU6·20 
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DISCRETE 
CASE 

from Fig. 6-20, 

l°O1)~ l°Olxl 
F~(z) = fx,,(x.y)dxdy+ fxy(x.y)dydx 

o x...o 0 y...() 

Hence 

ft(z) = 100 
yfxy(YZ, y) dy + roo xfxy(x, Xl.) dx o , Jo 

= 100 
y(Jxy(YZ, y) + /xy(Y, yz») dy 

= 100 yA2 (e-}..(YZ+Y) + e-}..(Y+)t») dy 

= 2A2 roo ye-}"(I+z)y dy = 2 fue-u du 
Jo (1 +%)2 0 

{ 
2 0<7.<1 

= 0(1 +7.)2 
otherwise 

(6-84) 

~ Let x and y be independent Poisson random variables with parameters Al and A2. 
respectively. Let z = x + y. Determine the p.mJ. of z. 

Since:x and y both take values (0,1,2, " .), the same is true for z. For any n = 
0, 1, 2, ... , {x + Y = n} gives only a finite number of options for:x and y. In fact, if :x = 0, 
then y must be n; ifx = I, then y must be n - I, and so on. Thus the event (x + y = n} 
is the union of mutually exclusive events At = {x = k, Y = n - k}, k = 0 -+ n. 

PI' =n} = P{x+y = n} = P W{x= k.y = n - k}) 
n 

= L P{x = k, Y = n - k} (6-85) 

If x and y are also independent, then 

P{x = k, Y = n - k} = P{x = k)P{y = n - k} 

and hence 

" 
P{z=n} = LP{x = k}P{y = n -k} 

k=O 
n ')..k lll-k e-(1.1+l2) II n' 

_ " -}..I -1 -}..2 "'2 - ". }.h .. ;-k 
-~e k!e (n-k)'- n! ~kl(n-k)! I 

_ -(}..I+}..d (AI + A2)" 
- e , n = 0, 1, 2~ ...• 00 (6-86) 

n! 
Thus z represents a Poisson random variable with parameter AI + A2, indicating that sum 
of.independent Poisson random variables is a Poisson random variable whose parameter 
is the sum of the parameters of the original random variables. 
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As Example 6-20 indicates. this procedure is too tedious in the discrete case. As we 
shall see in Sec. 6-5, the joint characteristic function or the moment generating function 
can be used to solve problems of this type in a much easier manner. ~ 

6·3 TWO FUNCTIONS OF TWO 
RANDOM VARIABLES 

In the spirit of the previous section, let us look at an immediate generalization. Suppose 
x and yare two random variables with joint p.d.f. ixy(x, y). Given two functions g(x, y) 
and h (x, y). define two new random variables 

z = g(x. y) 

w = h(x,y) 

(6-87) 

(6-88) 

How does one determine their joint p.d.!. izw(z, w)? Obviously with itw(z. w) in hand, 
the marginal p.d.f.s iz(z) and iw(w) can be easily detennined. 

The procedure for determining izw(z. w) is the same as that in (6-36). In fact for 
given numbers z and w, 

Fzw(z. w) = P{z(~) ~ z. w(~) ~ w} = P{g(x, y) ~ z, hex. y) ~ w} 

= P{(x, Y) E D t .w} = J! /xy(x, y) dx dy (6-89) 

(x.)' IE D .... 

where D Z.1I) is the region in the xy plane such that the inequalities g(x, y) ~ z and 
hex. y) ~ ware simultaneously satisfied in Fig. 6-21. 

We illustrate this technique in Example 6-21. 

~ Suppose x and y are independent uniformly distributed random variables in the 
interval (0,6). Define z = min(x, y), W = max.(x, y). Determine iZII)(z, w). 

SOLUTION 
Obviously both z and w vary in the interval (0,6). Thus 

Fzw(z. w) = 0 jf z < 0 or w < 0 (6-90) 

F~w(z, w) = P{z ~ z. w ~ w} = P{mm(x,y) ~ z, max (x, y) ~ w} (6-91) 

y 

FIGURE 6·21 
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y 

=z y= 

x X 

X= W 

(a) tU~t (b) 111< t 

F1GVRE6-22 

We must consider two cases: w ~ Z and w < z. since they give rise to different regions 
for D"w (see Fig. 6-22a and 6-22b). 

For w ~ z. from Fig. 6.22a, the region D"w is represented by the doubly shaded 
area (see also Fig. 6-18c and Fig. 6-19c), Thus 

F,w(z. w) = Fxy(z. w) + Fxy(w. z) - Fxy(z. z) 

and for w < ,. from Fig. 6.22h. we obtain 

w~Z 

with 

we obtain 

Thus 

F,w(z, w) = Fxy(w. w) w < z 

x y xy 
Fxy(x. y) = Fz(x)Fy(y) = - , - = -2 (J (J e 

O<z<w<(J 

O<w<z<(J 

O<z<w<(J 

otherwise 

From (6-96). we also obtain 

1,(1.) = 18 I~(z. w)dw = ~(1- i) 
and 

. r 2w 
Iw(w) = 10 I~w(z, w)dz = (j2 O<w<(J 

" 

(6-92) 

(6-93) 

(6-94) 

(6-95) 

(6-96) 

(6-97) 

(6-98) .. 
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y 

(a) 

FIGURE "'23 

Joint Density 

~A.n 
(x",y,,)1-J 

(b) 

x 

If g (x. y) and h (x. y) are continuous and differentiable functions, then, as in the case of 
one random variable [see (5-16)], it is possible to develop a formula to obtain the joint 
p.d.f. /zw(z. w) directly. Toward this, consider the equations 

g(x, y) = z h(x,y) = w (6-99) 

For a given point (z, w). equation (6-99) can have many solutions. Let us say (xt. YI). 
(X2. )'2), ...• (x". YII) represent these multiple solutions such that (see Fig. 6-23) 

h(Xi. Yi) = W (6-100) 

Consider the problem of evaluating the probability 

P{z < z :s z + /1z. w < w:s w + tow} 

= P(z < g(x. y) :s z + toz. w < hex, y) :5 w + tow} (6-101) 

Using (6-8) we can rewrite (6-101) as 

P{z < z:s z + toz. w < W :5 w + tow} = /r.wtz, w) toz tow (6-102) 

But to translate this probability in terms of /xy(x. Y), we need to evaluate the equivalent 
region for Az Aw in the xy plane. Toward this. refeni.ng to Fig. 6-24, we observe that 
the point A with coordinates (z, w) gets mapped onto the point A' with coordinates 
(Xi, YI) (as well as to other points as in Fig 6.23b). As z changes to z + Az to point B in 
Fig. 6.24a, let B' represent its iniage in the xy plane. Similarly, as w changes to w + Aw 
to C, let C' represent its image in the xy plane. 

Finally D goes to D', and A' B' C' D' represents the equivalent parallelogram in the 
xy plane with area toj. Referring to Fig. 6-23. because ~f the nonoverlapping nature of 
these regions the probability in (6-102) can be alternatively expressed as 

(6-.103) 
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y, ----
A" 

I 
I 
I 

(a) (b) 

Equating (6-102) and (6-103) we obtain 

" Ai fzw(z. w) = L...Jfxy(x" Yi)~ 
; ~Z~W 

D' 

(6-104) 

To simplify (6-104), we need to evaluate the area Aj of the parallelograms in Fig, 6.24b 
in tenns of Az A w. Toward this,let 'I and h I denote the inverse transformation in (6-99), 
so that 

Xi = 'I(Z. w) '1; = hl(z. w) (6-105) 

As the point (.z. w) goes to (x" y,) !!5 A'. the point (z + Az, w) goes to B'. the point 
(.z. w + Aw) goes to C'• and the point (z + Az. w + Aw) goes to D'. Hence the respective 
x and y coordinates Qf B' are given by 

a'l a'i ,\(z + Az. w) = ,,(.z, w) + az Az = X, + az Az (6-106) 

and 
8h l 8hl 

h1(z + Az, w) = hl(z. w) + at Az = YI + at: Az 

Similarly those of C' are given by 

The area of the parallelogram A' B' C'D' in Fig. 6-24b is given by .. 

Ai = (A'B')(A'C/) sin(e - t/J) 

= (A' 8' cos t/J)(A'C' sin 8) - (A' B' sint/»(A'C' cos 8) 

But from Fig. 6-24b, and (6-106)-(6-108) 

A'B'cost/> = a'l Az 
8z 

A'B' 'A. 8h l A~ SIn." = - u..c. 
8z 

A'C' . 'll 8h1 A SlDlI' = -~w 
OW 

A'C' cos 9 = :~ Aw 

(6-107) 

(6-108) 

(6.109) 

(6-110) 

(6-111) 
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so that 

and 

ts. j = (Ogl oh) _ iJg) Ohl) .6.z.6.w 
oz oW ow oz 

ogl 
~ = (Ogl ohl _ ogl Ohl) = az 
.6.z.6.w oz ow oW az Bhl 

az 

(6-112) 

(6-113) 

The determinant on the right side of (6-113) represents the absolute value of the Jacobian 
J(t. w) of tile inverse transfonnation in (6-105). Thus 

Bgi ogl 
oz ow 

J(t. w) = (6-114) 
oh, oh l 

oz ow 
Substituting the absolute value of (6-114) into (6-104). we get 

1 
It.VI(z. w) = 2: IJ(t. w)lfxy(xi' Yi) = 2: IJ( )1 IX'l(xi. Yi) (6-115) 

i i x,.}, 
since 

1 
IJ(z. w)1 = IJ(x" }I)I (6-116) 

where the detenninant J (Xl. Y/) represents the Jacobian of the original transfonnation 
in (6-99) given by 

og og 
ax By 

J(x;. y;) = 
ah oh 

(6-117) 

oX By """Xi,Y"''' 

We shall illustrate the usefulness of the fonnulas in (6-115) through various examples. 

Linear Transformation 

z=ax+by W= ex+dy 

If ad - be =f: 0, then the system ax + by = z. ex + dy = w has one and only one 
solution 

x = Az+Bw y = Cz+Dw 

Since J(x. y) = ad - be. (6-115) yields 

1 
fVII(z, w) = lad _ bel Ix,(Ar. + Bw. Cz + Dw) (6-119) 
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LX \\11'1 I, h-22 

.JOINT NORMALITY. From (6-;119) it follows that if the random variables x and yare 
jointly normal as N(jJ,x. f.LY' 0-;. (1')~. p) and 

z=ax+by w=cx+dy (6-120) 

then z and w are also jointly normal since f:w(z. w) will be an exponential (similar to 
fxy(x, y» with a quadratic exponent in z and w. Using the notation in (6-25), z and w 
in (6-120) are jointly normal as N(jJ,l" f.LIII' (1':. (1';. Pzw). where by direct computation 

and 

f.Lz = aJ.Lz + blJ.y 

Jl.w = ClJ.x + dJ.Ly 

ac(1'; + (ad + bC)P(1'zC1y + bdC1; 
Pf,W = --'--------'---..£.. 

(1'z(1'w 

(6-121) 

In.particular, any linear combination of two jointly normal random variables is normal.. 

~ Suppose x and y are zero mean independent Gaussian random variables with common 
variance (1'2. Define r = VX2 + y2, 6 = tan-I (yjx). where 191 < Jr. Obtain their joint 
density function. 

SOLUTION 
Here 

(6-122) 

Since 

r = g(x, y) = vx2 + y2 (J = hex, y) = tan-I (y/x) (6-123) 

and 9 is known to v~ in the interval (-Jr, Jr), we have one solution pair given by 

Xl = r cos(J YI = r sin(J (6-124) 

We can use (6·124) to obtain J(r, (J). From (6-114) 

so that 

axl 
ar 

J(r,9) = 
aYI 
ar 

aXI 

ae = \cose -rSine\ = r ~ 
aYI sine reose 
8e 

IJ(r. e)1 = r 

We can also compute J(x, y) using (6-117). From (6-~23), 

J(x,y) = 
X 

JX2+y2 

i+71 

(6-125) 

(6-126) 

(6-127) 
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Notice that IJ(r, 0)1 = 1/IJ(x, Y)I. agreeing with (6-116). Substituting (6-122). (6-124) 
and (6-126) or (6-127) into (6-115), we get 

I' (il) f ( ) r _r1/2a1 
;r.B r,!7 = r xy XI, y, = 27r(12e O<r<oo 101 < re (6-128) 

Thus 

O<r<oo (6-129) 

which represents a Rayleigh random variable with parameter (12, and 

100 1 
f(}(O) = f, B(r, 0) dr = -

o· 2re 
101 < 7C (6-130) 

which represents a uniform random variable in the interval ( -re, 7C). Moreover by direct 
computation 

fr.8(r,0) = fr(r) . f8(0) (6-131) 

implying that rand (J are independent. We summarize these results in the following 
statement: Ifx and y are zero mean independent Gaussian random variables with common 
variance, then ";X2 + y2 has a Rayleigh distribution, and tan-l (y/x) has a uniform 
distribution in (-re, re) (see also Example 6-15). Moreover these two derived random 
variables are statistically independent. Alternatively, with x and y as independent zero 
mean random variables as in (6-122), x + jy represents a complex Gaussian random 
variable. But 

x+ jy = reiD (6-132) 

with rand (J as in (6-123), and hence we conclude that the magnitude and phase of a 
complex Gaussian random variable are independent with Rayleigh and uni~orm distri­
butions respectively. The statistical independence of these derived random variables is 
an interesting observation. ~ 

~ Let x and y be independent exponential random variables with common parameter >... 
Define u = x + y, v = x - y. Find the joint and marginal p.d.f. ofu and v. 

SOLUTION 
It is given that 

1 _ 
f (X y) = -e (x+y)/)., 
xy' >..2 X>O (6-133) 

Now since u = x + y, v = X - y, always Ivl < u, and there is only one solution given 
by 

U+v 
X=--

2 
u-v 

y=--
2 

Moreover the Jacobian of the transformation is given by 

J(x, y) = I ~ _!I = -2 

(6-134) 
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and hence 

I' ( ) 1 -u/A 
Juv U, V = 2.>..2e 0< Ivl < U <,00 (6-135) 

represents the joint p.d.f. of u and v. This gives 

1" 1 l u -ul).. U -ul).. 
!r,(u) = fuv(u, v)dv = 22 e dv = '2 e 

-u .>.. -u ,., 
o<u<oo (6-136) 

and 

[
00 1 100 1 flJ(v) = fuv(u, v) du = -2 e-lIl). du = _e-11J1/). 

• Ivl 2'>" 1111 2.>.. 
-oo<v<oo 

(6-137) 

Notice that in this case fUIJ(u, v) =F fu(u) • fll(v). and the random variables u and v are 
not independent. ~ 

As we show below, the general transfonnation formula in (6-115) making use of 
two functions can be made useful even when only one function is specified. 

AUXILIARY VARIABLES. Suppose 

z = g(x,y) (6-138) 

where x and yare two random variables. To determine fz(z) by making use of the 
formulation in (6-115), we can define an auxiliary variable 

w=x or w=y (6-139) 

and the p.d.f. of z can be obtained from fzw (z, w) by proper integration. 

~ Suppose z = x + y and let w = y so that the transformation is one-to-one and the 
solution is given by Yl = W. Xl = Z - w. The Jacobian of the transformation is given by 

J(X'Y)=I~ ~1=1 
and hence 

or 

fz(z) = J izw(z, w)dw = 1:00 
fxy(z - w, w)dw ~ (6-140) 

which agrees with (6-41). Note that (6-140) reduces to the convolution of ix(z) and 
f,(z) if x and y are independent random variables. ~ 

Next, we consider a less trivial example along these lines. 

~ Let x '" U (0, 1) and y "" U (0. 1) be independent random variables. Define 

z = (-2Inx)l/2cos(2n'Y) (6-141) 

P~nd the density function of z. 
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SOLUTION 
We can make use of the auxiliary variable w = y in this case. This gives the only solution 
to be 

and using (6-114) 

ax! 

8z 
I(z. w) = 

By! 

8z 

y! = W 

= 
o 

Substituting (6-142) and (6-144) into (6-115), we obtain 

(6-142) 

(6-143) 

(6-144) 

f1.w(z, w) = zsec2 (23Tw)e-[Z5eC(21l"W»)2/2 

and 

-00 < z < +00 0 < w < 1 (6-145) 

Ir.(z) = 101 fzw(z. w) dw = e-z2 /2 101 z sec2 (23Tw)e-[Z tan(27I'w)Jl/2 dw (6-146) 

Let u = ztan(27rw) sothatdu = 27rZ sec2 (23TW) dw. Notice that as w varies from 0 to 
1. u varies from -00 to +00. Using this in (6-146). we get 

fr.(z) = ~e-1.2/21OO e-u2/ 2 ~ = ~e-1.2/2 - 00 < z < 00 (6-147) 
'" 27r -00 '" 27r V 27r , J .. 

! 

which represents a zero mean Gaussian random variable with unit variance. Thus 
z '" N (0. 1). Equation (6-141) can be used as a practical procedure to generate Gaussian 
random variables from two independent uniformly distributed random sequences. ~ 

~ Let z = xy. Then with w = x the system xy = z. x = w has a single solution: 
XI = W, YI = z/w. In this case, I(x. y) = -wand (6-115) yields 

f1.w(z, w) = 1~lfxY (w, ~) 
Hence the density of the random variable z = xy is given by 

f1.(z) = 100 
-I 1 Ifxy (w. ~) dw 

-00 w w 
(6-148) 

SpeclaI case: We now assume that the random variables x and y are independent 
and each is uniform in the interval (0, 1). In this case, Z < wand 

Ixy (w, ~) = fx(w)f, (~) = 1 
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(a) 

FIGURE 6·25 

so that (see Fig. 6-25) 

x 

f,(z) = l VI dw = { 0 

w 

(b) 

Z < W < 1 
othe:rwise 

O<z<l 
elsewhere 

(6--1 SO) 

~ Let x and y be independent gamma random variables as in Example 6-12. Define 
z = x + y and w = x/yo Show that z and w are independent random variables. 

SOLUTlON 
of solutions 

z 
l+w 

1
1 1 1 __ x + y __ (1 + w)2 

J(x, y) = l/y _x/y2 - 'y2 - z 

Substituting these into (6-65) and (6-115) we get 

~ _ 1 Z (~)JII-1 (_Z_)n-I -z/a 
nw(z, w) - atn+n f(m)r(n) (1 + w)2 1 + w 1 + w e 

1 zJII+n-1 
= __ e-z1a . ----

am+II r(m)f(n) 

( zm+n-l -t1a) (r(m + n) wm-J ) 

= am+ll r(m e . f(m)~(n) (1 + w)m+n 

z>O w>O (6-151) 

snowing that z and ware independent random variables. Notice that z '" G(m + n, a) 
and w represents the ratio of two independent gamma random variables. .... 
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~ A random variable z has a Student t distribution2 t(n) with n degrees of freedom if 
for -00 < z < 00 

r«n + 1)/2) 
YI = ,.ftrnr(n/2) 

(6-152) 

We shall show that if x and y are two independent random variables, x is N (0. 1), and y 
is x2(n): 

fx(x) = ~e-X2/2 

then the random variable 

f ( ) - 1 11/2-1 -y/2U(y) 
y y - 211/2r(n/2/ e 

x 
z=--

../YTn 

(6-153) 

has lit (n) distribution. Note that the Studentt distribution represents the ratio ofanonnal 
random variable to the square root of an independent X2 random variable divided by its 
degrees of freedom. 

SOLUTION 
We introduce the random variable w = y and use (6-115) with 

x = z~ y = w J(z. w) =~ or J(x. y) = ~ 
This yields 

Integrating with respect to w after replacing w(l + 1.2/ n)/2 = u, we obtain 

_ . 1 1 roo (11-1)/2 -u d 
ft(1.) - ,.ftrnr(n/2) (1 + z2/n)(n+l)/2 10 u e u 

r«n + 1)/2) 1 
= ,.ftrnr(n/2) (I + z2/n)(n+1){2 

1 1 
= .JnP(I/2, n/2) (1 + 1.2/ n}(n+l)/2 

(6-154) -oo<z<oo 

For n = 1, (6-154) represents a Cauchy random variable. Notice that for each n, (6-154) 
generates a different p.d.f. As n gets larger, the t distribution tends towards the normal 
distribution. In fact from (6-154) 

{l + z2/ n)-(n+I)/2 -+- e-z2 /2 as n -+- 00 

For small n, the t distributions have "fatter tails" compared to the normal distribution 
because of its polynomial form. Uke the normal distribution, Student t distribution is 
important in statistics and is often available in tabular f~ ~ 

2 Student was the pseudonym of tlie English statistician W. S. Gosset. who first introduced this law in 
empirical fonn (The probabk ,rror of a IMQII, Biometrica, 1908.) The first rigorous proof of this result was 
published by R. A. Fisher. 
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THE F DISTRI­
BUTION 

. ~ Let x and y be independent random variables such that x has a chi-square distriblltion 
with m degrees of freedom and y has a chi-square distribution with n degrees of freedom. 
Then the random variable 

F= x/m 
Yin 

is said to have an F distribution with (m. n) degrees of freedom. Show that the p.dJ. of 
z = F is given by 

{ 
r«m + n)/2)mm/2.n,,/2 zm/2.-1 

Z>O 
I~(z) = r(m/2)r(n/2) (n + mz)(m+n)/2 

o otherwise 
(6-156) 

SOLUTION 
To compute the density ofF, using (6-153) we note that the density ofx/m is given by 

{ 
m(mx)m/2-1e-mx/2 

x>O 
It (x) = 0 r(m/2)2m/2 

otherwise 

and thatofy/n by 

{ 
n(ny)n/2-le-ny/2 

h(Y) = r(n/2)2n/2 y > 0 

o otherwise 

Using (6-60) from Example 6-10, the density of z = Fin (6-155) is given by 

__ roo (m(mzy)m/2-Je-m:,Y/2) (n(ny )n/2-l e -nY/2) 
11.(z) - Jo y r(m/2)2m/2 r(n/2)2n/2 dy 

= Z/2 r-- --(m/2)m/2(n/2)n/2 m -1 (m + n) ( 2 ) (m+n)/2 

r(m/2)r(n/2)2(m+n)/2 2 n + mz 

r«m + n)/2)mm/2nn/2 zm/2-t 
= r(m/2)r(n/2) (n + mz)(m+n)/2 

= (m/n)m/2 zm/2-1(1 + mz/n)-(m+n)/2 
p(m/2,n/2) 

(6-157) 

and 11.(z) = 0 for z ::s O. The distribution in (6-157) is called Fisher's variance ration 
distribution. If m = 1 in (6-155), then from (6-154).and (6-157) we get F = [t(n)]2. 
Thus F(l, n) and t2(n) have the same distribution. Moreover F(l, 1) = t2(1) represents 
the square of a Cauchy random variable. Both Student's t distribution and Fisher's F 
distribution play key roles in statistical tests of significance. .... 
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64 JOINT MOMENTS 

Given two random variables x and y and a function g(x, y). we form. the random variable 
z = g(x, y). The expected value of this random variable is given by 

E{z} = 1: zfz(z)dz (6-158) 

However, as the next theorem shows, E{z} can be expressed directly in terms of the 
function g (x, y) and the joint density f (x. y) of x and y. 

E{g(x,Y)} = [:[: g(x,y)f(x,y)dxdy (6-159) 

Proof. The proof is similar to the proof of (5-55). We denote by ADz the region of the xy plane 
such thatz < Sex. y) < z+dz. Thus to each differential in (6-158) there corresponds a region ADz 
in the xy plane. As dz covers the z axis, the regions ADz are not overlaPging and they cover the 
entire xy plane. Hence the integrals in (6-158) and (6-159) are equal. ~ 

We note that the expected value of g(x) can be determined either from (6-159) or 
from (5-55) as a single integral 

E{g(x)} = roo roo g(x)f(x, y) dx dy = 100 g(x)fx(x) dx 
J -00 J -00 -00 

This is consistent with the relationship (6-10) between marginal and joint densities. 
If the random variables x and Y are of discrete type talcing the values Xi and Yk 

with probability Pi/c as in (6-33). then 

E{g(x,y)} = LLg(XI,Y/C)Pik (6-160) 
I Ie 

Linearity From (6-159) it follows that 

E {~akglc(x.Y)} =.~aIcE{glc(X'Y)} (6-161) 

This fundamental result will be used extensively. 
We note in particular that 

E(x + y} = E{x} + E{y} (6-162) 

Thus the expected value of the sum of two random variables equals tl}e sum of their 
expected values. We should stress, however. that. in general. 

E{xy} :p E{x}E{y} 

Frequency interpretation As in (5-51) 

E(x + y} ~ X(~I) + Y(~I) + ... + x(t.) + Y(~.) 
n . 

X(~I) + ... + x(~,,) Y(~l) + ... + y(t.) = +;.....;.:..;"---.......;;..~ 
n n 

~ E{x} + E(y} 
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H6wever. in general, 

E{xy} ~ X(~l)Y(~i) +'" + X(~n)Y(~n) 
n 

'# X(~l) + ".' :or X(~II) x y(M + '" + Y(~II) ~ E{x}E{y} 
n n 

In the case of one random variable. we defined the parameters mean and variance to rep. 
resent its average behavior. How does one parametrically represent similar cross behavior 
between two random variables? Toward this. we can generalize the variance definition 
as shown next. 

COVARIANCE. The covariance C or C xy of two random variables x and y is by definition 
the number 

CXy = E{(x - 11x)(Y -11y)} (6-163) 

where E{x} = T/x and E{y} = 11)'. Expanding the product in (6-163) and using (6-161) 
we obtain 

Cx), = E{xy} - E{x}E{y} (6-164) 

Correlation coefficient The correlation coefficient p or Pxy of the random vari­
ables x and y is by definition the ratio 

We maintain that 

Proof. Clearly. 

Cx, 
Px),= -­

uxuy 
(6-165) 

(6-166) 

(6-167) 

Equation (6-167) is a positive quadratic for any a; hence its discriminant is negative. In 
other words. 

(6-168) 

and (6-166) results. 
We note that the random variables x. y and x - T/x. Y -7]y have the..same covariance 

and co~lation coefficient. 

~ We shall show that the correlation coefficient of two jointly normal random variables 
is the parameter r in (6-23). It suffices to assume that 11x = 11y = 0 and to show that 
E(xy) = rU1u2. 

Since 
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we conclude with (6-23) that 

E{} 1 100 
-y2/20:2 1°O x ( (x - r yqi/( 2)2)d d xy = -- ye 2 exp - x y 

Cf2$ -00 -00 Cf\ y'2:7I'(1 - r2) 2<1f(1 - r 2) 

The inner integral is a normal density with mean ryCfj / Cf2 multiplied by x; hence it equals 
rYCft!Cf2. This yields 

Uncorrelatedness Two random variables are called uncorrelated if their covari­
ance is O. This can be phrased in the following equivalent forms 

Cxy = 0 Pxy = 0 E{xy} = E{x}E{y} 

Ortbogonality Two random variables are called orthogonal if 

E{xy} = 0 

We shall use the notation 

x..L.y 

to indicate the random variables x and y are orthogonal. 

Note (a) If x and y are uncorrelated. then x -1/x .L Y -11,. (b) If x and y are uncorrelated and 11% = 0 or 
1/y = 0 then x .L y. 

Vector space of random variables. We shall find it convenient to interpret random 
variables as vectors in an abstract space. In this space, the second moment 

E{xy} 

of the random variables x and y is by definition their inner product and E{x2} and E{f} 
are the squares of their lengths. The ratio 

E{xy} 

is the cosine of their angle. 
We maintain that 

(6-169) 

This is the cosine inequality and its proof is similar to the proof of (6-168): The quadratic 

E{(ax - y)2} = a2 E{x2} - 2aE{xy} + E{y2} 

is positive for every a; hence its discriminant is negative and (6-169) results. If (6-169) 
is an equality, then the quadratic is 0 for some a = ao, hence y = aox. This agrees with 
the geometric interpretation of random variables because, if (6-169) is an equality, then 
the vectors x and y are on the same line. 

The following illustration is an example of the correspondence between vectors 
and random variables: Consider two random variables x and y such that E {x2} = E {f}. 
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x-y.1x+y 

FIGURE 6-26 

Geometrically, this means that the vectors x and y have the same length. If. therefore, We 

construct a parallelogram with sides x and y, it will be a rhombus with diagonals x + y 
and x - y (Fig. 6-26). These diagonals are perpendicular because 

E{(x + y)(x - y)} = E{r - y2} = 0 

I> If two random variables are independent, that is, if [see also (6-20)1 

f(x, y) = fA (x)f,(y) 

then they are uncorrelated. 

Proof. It suffices to show that 

E{xy} = E{xIE{y} 

From (6-159) and (6-170) it follows that 

E(xy} = 1: l:XY!z(X)!r(Y)dxdy = 1: X!Jt(X) dx l: y!,(Y)dY 

and (6-171) results. 

(6-170) 

(6-171) 

If the random variables x and y are independent, then the random variables g(x) and hey) are 
also independent [see (6-21)). Hence 

E{g(x)h(y)} = E(g(x)}E{h(y» 

This is not, in general, true if x and y are merely uncorrelated. ~ 

(6-172) 

As Example 6-31 shows if two random variables are uncorrelated they are not nec­
essarily independent. However, for nonna! random variables uncorrelatedness is equiv­
alent to independence. Indeed, if the random variables x and y are jointly normal and 
their correlation coefficient r = 0, then [see (6-23)} /xy(x, y) = /x(x)/y(y) . .. 

~ Let x'" U(O, 1), y '" U(O, 1). Suppose x and y are independent. Define z = x + y, 
w = x - y. Show that! and w are not independent. but uncorrelated random variables. 

SOLUTION 
z = x + y, w = x - y gives the only solution set to be 

z+w z-w 
x=-- y=--

2 2 
Mo~overO < Z < 2,-1 < W < 1,z+w ~ 2,z-w ~ 2,z > IwlandIJ(z, w)1 = 1/2. 
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(a) (b) 

FlGURE6-27 

Thus (see the shaded region in Fig. 6-27) 

{O
l/2 < z < 

jl:w(z, w) 
otherwise 

<w +w< 

and hence 

-dw= i f 1 

-z 2 

fe(z) = f f~w(z. w) dw = 
/

2-% 1 
-dw =2-z 

.-2 2 

and 

f!D(w) 

o 

= 1.2-
IWI 

Iwi 
dz= { 

Iwl 

(c) 

-w~ 

z < 1 

1<z<2 

otherwise 

<w< 

otherwise 

Gearly h.(z. w) '=F ft.(z)fw(w). Thus z and w are not independent. However, 

E{zw} E{(x+ -y)} = 
and 

E{w} = E{x - y} = 0 

hence 

Cov{z. w} = E{zw} - E{z}E{w) = 0 

implying that z and w are uncorrelated random variables. ~ 

Variance of the sum of two If z x + y, then 
hence 

(1; = E{(z - 7Jz)2) = E{[(x -1]x) + (y - TJy)12} 

this (6-167) it follows that 

0'; = + 2pxyO'xC1y + C1; 

This leads to the conclusion that if Pxy = 0 then 

u;+ 

<z 

(6-173) 

(6-174) 

(6-175) 

(6-176) 

(6-177) 

(6-178) 

(6-179) 

(6-180) 
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Thus. if two randOm variables are uncorrelated, then the variance of their sum equals the 
sum of their variances. 

It follows from (6-171) that this is also true if x and y are independent ~ 

Moments 

The mean 

(6-181) 

of the product xky' is by definition a joint moment of the random variables x and y of 
order k + r = n . 

. Thus miO = TJx. mOl = TJy are the first-order moments and 

m20 = E{x2} mu = E{xy} m02 = Etr} 

are the second-order moments. 
The joint central moments of x and y are the moments of" - TJx and y - TJy: 

/Lk.r = E{(x - TJx)"(s - TJ,)r} = J: (x - TJx)"(y - TJyY ix,(x. y) dx dy (6-182) 

Clearly. /LtO = JJ.oI = 0 and 

"-20 _,..2 ,,- -_ -.~ r- -"'x ,.....,. v~ 

Absolute and generalized moments are defined similarly [see (5-69) and (5-70»). 
For the determination of the joint statistics of x and y knowledge of their joint 

density is required. However. in many applications. only the first- and second-moments 
are used. These moments are determined in terms of the five parameters 

2 2 'fix TJ, UX u, Pxy 

If x and yarejointly normal, thenlsee (6-23)] these parameters determine uniquely 
ix,(x. y). • 

~ The random variables x and y are jointly normal with 

l1x = 10 TJy = 0 u; = 4 u; = 1 Pxy = O.S 

We shall find the joint density of the random variables 

w=x-y 

Clearly. 

TJ, = l1x + fl, = 10 "lID = l1z - TI, = 10 

E(zw) = E(r - f) = (100 + 4) - 1 = 103 

E(zw) - E(z)E(w) 3 
Pt.w = = --==== 

Ut.Uw .J7X3 



CHAmR6 1WORANDOMVARIABLES 215 

As we know [see (6-119) J, the random variables z and w are jointly normal because they 
are linearly dependent on x and y. Hence their joint density is 

N(10, 10,7,3, .j3j7) 

ESTIMATE OF THE MEAN OF g(x, y). If the function g(x, y) is sufficiently smooth 
near the point (17x.17y). then the mean 1], and variance "i of g(x, y) can be estimated in 
terms of the mean, variance, and covariance of x and y: 

1 (a2g 2 a2g a2g 2) 
718 :::::: g + 2: ax2 "x + 2 axayPXY"X"y + ay2 "y (6-183) 

2 (ag )2 2 (ag ) (ag ) (8g )2 2 "8:::::: ax "x + 2 ax ay Pxy"x"y + ay ")' (6-184) 

where the function gex, y) and its derivatives are evaluated at x = 'Ix and y = 11,. 

Proof. We expand g(x, y) into a series about the point (7]x. 1]y): 

ag og 
g(x, y) = g(1Ix, 17y) + (x - 'Ix) ax + (y - '1)') ax + ... (6-185) 

Inserting (6-185) into (6-159), we obtain the moment expansion of E{g(x, y)} in terms 
of the derivatives of g(x, y) at (17x. '1y) and the joint moments JJ.kr ofx and y. Using only 
the first five terms in (6-185), we obtain (6-183). Equation (6-184) follows if we apply 
(6-183) to the function [g(x, y) - 1I,J2 and neglect moments of order higher than 2. 

6-5 JOINT CHARACTERISTIC FUNCTIONS 

The joint characteristic junction of the random variables x and y is by definition the 
integral 

(6-186) 

From this and the two-dimensional inversionformula for Fourier transforms, it follows 
that 

(6-187) 

Clearly, 

(6·188) 

The logarithm 

\If(Wl' l.!12) = In 41(WIo Wl) (6·189) 

of 4l (WI, l.!12) is the joint logarithmic-characteristic function of x and y. 
The marginal charac~eristic functions 

(6-190) 
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of x a11d y can be expressed in terms of their joint characteristic function 4>(WIo ~). 
From (6-188) and (6-190) it follows that 

4>Aw) = 4>(w, 0) <I>)'(w) = 4>(0~ w) (6-191) 

We note that, if z = ax + by then 

<l>z(w) = E {ej(ax+bY)w} = <I>(aw, bw) (6-192) 

Hence <l>z(1) = 4>(a, b). 

Cramer-Wold theorem The material just presented shows that if 4>z«(c» is 
known for every a and b. then <I> (WI , <02) is uniquely determined. In other words. if 
the density of ax + by is known for every a and b. then the joint density f(x, y) of x 
and y is uniquely determined. 

Independence and convolution 

If the random variables x and y are independent, then [see (6-172)] 

E{ej(W!X+WlY)} = E{ejwl"}E(ei"'lY} 

From this it follows that 

(6-193) 

Conversely, if (6-193) is true, then the random variables x and y are indepen­
dent. Indeed, inserting (6-193) into the inversion formula (6-187) and using (5-102), we 
conclude that fxY(x. y) = fAx)fy(Y). 

Convolution theorem If the random variables x and y are independent and 
z = x+y,then 

Hence 

(6-194) 

As we know [see (6-43)], the density ofzequals the convo}ution of fx(x) and fy(y). 
From this and (6-194) it follows that the characteristic function of the convolution of 
two densities equals the product of their characteristic functions. -

~ We shall show that if the random variables x and y are indepe~nt and Poisson 
distributed with parameters a and b, respectively. then their sum z = x + y is also 
Poisson distributed with parameter a + h. 

Proof. As we know (see Example 5-31), 

"'.r(w) = a(ejw - 1) lI1y(w) ~ b(eJOI - 1) 

Hence 

IJIz(w) = 1II.r(w) + 1IIy(w) = (a + b)(eiOJ - 1) 
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It can be shown that the converse is also true: If the random variables x and y 
are independent and their sum is Poisson distributed. then x and y are also Poisson 
distributed. The proof of this theorem is due to Raikov.3 ~ 

~ It was shown in Sec. 6-3 that jf the random variables x and y are jointly nonnal. then 
the sum ax + by is also normal. Next we reestablish a special case of this result using 
(6-193): Ifx and y are independent and normal, then their sum z = x+yis also normal. 

SOLUTION. 
In this case [see (5-100)] 

Hence 
. 1 2 2 2 

'IIt(W) = J (T/x + T/y)W - 2:(Ux + uy)w 

It can be shown that the converse is also true (Cramer's theorem): If the random variables 
x and y are independent and their sum is normal, then they are also normal. The proof 
of this difficult theorem will not be given.4 

In a similar manner, it is easy to show that if x and y are independent identically 
distributed normal random variables, then x + y and x - y are independent (and normal). 
Interestingly. in this case also, the converse is true (Bernstein's theorem): Ifx and yare 
independent and identically distributed and if x + y and x - y are also independent, then 
all random variables (x, y. x + y, x - y) are normally distributed. 

Darmois (1951) and Skitovitch (1954) have generalized this result as: If Xl and X2 
are independent random variables and if two linear combinations alXl +a2x2 and blXl + 
bzX2 are also independent, where at. a2. bl> and bz represent nonzero coefficients. then 
all random variables are nonnally distributed. Thus if two nontrivial linear combinations 
of two independent random variables are also independent, then all of them represent 
normal random variables. ~ 

More on Nonnal Random Variables 

Let x and y be jointly Gaussian as N(T/l. '112. Urt u1. r) with p.d.f. as in (6-23) and (6-24). 
We shall show that the joint characteristic function of two jointly normal random variables 
is given by 

(6-195) 

Proof. This can be derived by inserting f (x • y) into (6-186). The simpler proof presented 
here is based on the fact that the random variable z = WIX + tJJzY is normal and 

~%(w) = ei ".-r1:";/2 (6-196) 

3D. A. Raikov, "On the decomposition of Gauss and Poisson laws," ltv. AJcad. Nau/c. SSSR, Ser. Mat. 2, 1938, 
pp.91-124. 
4E, Lu\cacs, Characteristic FunClWII$, Hafner Publishing Co., New yen, 1960. 
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EX;\\IPLE 6-35 

- -
l}mpRFl\I ~~6 . 

MOMENT 
THEOREM 

Since 

~ 
r;;;g) 

'Y 

@ 
~ 

x+y=z+dz 

FIGURE6-2B 

and ~z(cu) = ~(CUlCU, euzcu). (6-195) follows from (6-196) with llJ = 1. 
This proof is based on the fact that the random variable z = CUI X + fD2Y is normal 

for any CUI and euz; this leads to the conclusion: If it is known that the sum ax + by is 
normal for every a and b, then random variables x and y are jointly normal. We should 
stress, however. that this is not true if ax + by is normal for only a finite set of values of 
a and b. A counterexample can be formed by a simple extension of the construction in 
Fig. 6-28. 

... We shall construct two random variables Xl and X2 with these properties: Xl. X2, and 
Xl + X2 are normal but Xl and X2 are not jointly normal. 

SOLUTION 
Suppose that x and yare two jointly normal random variables with mass density I (x, y). 
Adding and subtracting small masses in the region D of Fig. 6-28 consisting of eight 
circles as shown, we obtain a new function 11 (x, y) = I (x, y) ± ~ in D and 11 (x. y) = 
f(x, y) everywhere else. The function fl(x, y) is a density; hence it defines two new 
random variables XI and YI. These random variables are obviously not jointly normal. 
However, they are marginally normal because x and y are marginally normal and the 
masses in the vertical or horizontal strip have not changed. Furthermore, the random 
variable 'ZI = Xl + Yl is also normal because z = X + Y is normal and the masses in any 
diagonal strip of the form z :5 x + y :5 z + dz have not changed. ..... 

~ The moment generating function of X and y is gi:ven by 

~($lt $2) = E{r'x+'l),}. 

Expanding the exponential and using the linearity of expected values, we obtain the 
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series 

1 ( 2 2) = 1 + "'lOSt + mOIS2 + 2: m20s l + 2mIlS2 + m02s2 +... (6-197) 

From this it follows that 
aka' 
~a ' ~(O. 0) = mk, 

$1 $2 
(6-198) 

The derivatives of the function 'II(st. S2) = In ~($lo $2) are by definition the joint 
cumulants AkT of x and y. It can be shown that 

All = ~1I 

~ Using (6-197). we shall show that if the random variables x and y are jointly normal 
with zero mean. then 

(6-199) 

SOumON 
As we see from (6-195) 

A A_l(222C 22) 4>(s .. S2) = e- - 2: 0'1 SI + slS2 + 0'282 

where C = E{xy} = rO'10'2. To prove (6-199), we shall equate the coefficient 

~! (i) B{rr} 

of s~si in (6-197) with the corresponding coefficient of the expansion of e-A• In this 
expansion, the factor $~ si appear only in the terms 

A2 1 ( 2 2 2 2)2 "2 = 80'1$1 +2CSIS2 +0'2 s2 

Hence 

:, (i) E{rr} = ~ (2O'tO'i + 4C2) 

and (6-199) results. .... 

.... Given two jointly normal random variables x and y, we form the mean 

1= E{g(x,y)} = [1: g(x,y)fCx.y)dxdy (6-200) 

SR. Price, "A Useful Theorem for NonHnear Devices Having Gaussian Inputs," IRE. PGlT. VoL IT-4. 1958. 
See also A. Papoulis. "On an Extension of Price's Theorem," IEEE 7'n.In8actlons on InjoTTlllJlion ~~ 
Vol. IT-ll,l965. 
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EXAl\lPU. 6-:'7 

EXAl\IPLE (>-38 

-of S01l1e function 9 (x, y) of (x, y). The above integral is a function 1(1') of the covariance 
I' of the random variables x and y and of four parameters specifying the joint density 
I(x, y) ofx and y. We shall show that if g(x, y)f(x, y) --+- 0 as (x, y) --+- 00, then 

a1l1(Jt)=[ (0082119(X'Y)/(x )dxd =E(02ng(X,Y)) (6-201) 
a 1'" -00 Loo axn8yn ,Y Y ax"ayn 

Proof. Inserting (6-187) into (6-200) and differentiating with respect to IL. we obtain 

OR/(IL) _ (_l)R 100 [ ( ) 
a ll - 4 2 g X, Y 

p. 1C -OQ-OO 

xl: 1: ~~4>(WIo euz)e-J (61IX+"'ZY) dWl deuz dx dy 

From this and the derivative theorem, it follows that 

aR/(p.) = roo to (x )82nf(x,y) dxd 
aIL" Loo J -00 g • y 8xnayn Y 

After repeated integration by parts and using the condition at 00, we obtain (6-201) (see also 
Prob. 5-48). ~ 

.. Using Price's theorem, weshallrederiv~(6-199). Settingg(x, y) = ry'linto(6-201). 
we conclude with n = 1 that 

81(Jt) = E (02g(x. y») = 4E{ } = 4 
01' ax 8y xy I' 

1(Jt) = 4~2 + 1(0) 

If I' = O. the random variables x and yare independent; hence 1(0) = E(x2y2) = 
E(X2)E(y2) and (6-199) results. ~ 

6-6 CONDITIONAL DISTRIBUTIONS 

As we have noted. the conditional distributions can be expressed as conditional 
probabilities: 

P{z ~ z, M} 
F,(z I M) = P{z :::: z I M} = P(M} 

P(z s z, w ~ W, M} 
Fzw(z, W I M) = P{z ::: z, w ::: wi M} = P(M) (6-202) 

The corresponding densities are obtained by appropriate differentiations. In this section, 
we evaluate these functions for various special cases. 

~ We shall first determine the conditional distribution Fy (y I x ~ x) and density 
I,(Y I x ::: x). 
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With M = {x ::: x}. (6-202) yields 

F ( I x < x) = P{x::: x. y ::: y} = F(x. y) 
y y - P{x::: x} FJe(x) 

f (I ) aF(x. y)/ay 
yYx:::x= F() 

JeX 

~ We shall next detennine the conditional distribution F (x. y I M) for M = 
{Xl < X:::X2}. In this case, F(x. y I M) is given by 

F( I ) P{x:::x,y:::y,XI<X:::X2} 
x, y Xl < X::: X2 = P{ } 

XI < X::: X2 

(6-203) 

and 0 otherwise. 
The detennination of the conditional density of y assuming x = X is of particular 

interest This density cannot be derived directly from (6-202) because, in general, the 
event {x = x} has zero probability. It can, however, be defined as a limit. Suppose first 
that 

In this case. (6-202) yields 

F I ) P{XI < x !: X2, Y ::: y} F(X2. y) - F(xlo y) 
y(Y XI < X ::: X2 = P{XI < X ::: X2} = Fz (X2) - Fx(XI) 

Differentiating with respect to y, we obtain 

. J:2 I(x, y) dx 
ly(Y I Xl < X ::: X2) = F ( ) F ( ) 

z X2 - z Xl 
(6-204) 

because [see (6-6)] 

aF(X'Y)_lJC I( )d a - a,Y a 
Y -00 

To determine ry{y I x = x). we set Xl = X and X2 = X + Il.x in (6-204). This 
yields 

Lz+AtI < tu- z (a,y)da ..... /(x.y)AX 
Iy(y Ix < x - X + ) - Fx(x + Ax) _ F.t(x) - Iz(X)AX 

Hence 

) 1· f ( I I(x, y) 
Iy{y I x = x = un y y x < x !: X + 6.x) = ~ ( ) 

4.1 .... 0 J.t X 
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If there is no fear of ambiguity, the function Iy (y I x = x) = IYI% (y Ix) will be 
written in the fom I(y I x). Defining I(x I y) similarly, we obtain 

I( I ) = I(x, y) 1'( I ) = I(x, y) 
Y x J(x) x y l(y) (6-205) 

If the random variables x and y are independent, then 

I(x, y) = l(x)/(y) 1(Y I x) = I(y) I(x I y) = I(x) 

Next we shall illustrate the method of obtaining conditional p.d.f.s through an 
example. 

~·Given 

{
k O<x<y<l 

Ix,(x" y) = 0 otherwise 

determine 1% Iy(x I y) and 1,lx(Y I x). 

SOLtrrION 

(6-206) 

The joint p.d.f. is given to be a constant in the shaded region in Fig. 6·29. This gives 

II Ixy(x,y)dxdy= llo'kdxdY = llkYdY=~=1:::}k=2 
Similarly 

Ix (x) = Ilxy(X,Y)dY = llkdY=k(l-X) O<x<l 

and 

ly(Y) = I Ix,(x, y)dx = loy kdx = ky 0 < Y < 1 

, From (6-206)--(6-208), we get 

and 

y 

; ( I ) - Ixy(x, y) - .!. 0 < x < y < 1 
Jxl, x Y - Iy(y) - y 

~ ( I ) - Ixy(x,y} __ 1_ 
Jylx Y x - lAx) - 1- x 

x 
FIGURE 6-29 

O<x<y<l 

(6-207) 

(6-208) 

(6-209) 

(6-210) 

.... 
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dy 

1 y 
y 

T 
0 0 

dx 

(a) (b) 

FIGVRE6-30 

Notes 1. For a specific %, the function I(x, y) is a profil, of I(x. y); that is, it equals the intersection of 
the surface 1(%, y) by the plane x = constant. The conditional density ICy I x) is the equation of this curve 
normalized by the factor 1/1 (x) so as to make its area I. The function I (x I y) has a similar interpretation: It 
is the normalized equation of the intersection of the surface I(x, y) by the plane y = constant. 

2. As we know, the product I(y)dy equals the probability of the event {y < y ~ y + dy}. Extending 
this to conditional probabilities, we obtain 

." I )d P{XI <x~x2,y<y<y+dy} 
I)'lY XI < x ~ X2 Y = pr ) 

,%1 <X~X2 

This equals the mass ID the rectangle of Pig. 6·3Od divided by the mass in the verti.c:aI strip XI < X ~ X2. 
Similarly. the product I(y Ix )dy equals the ratio of the mass in the differential rectangle dx dy of Pig. 6-3Ob 
over the mass in the vertical strip (x, % + dx). 

3. The joint statistics of x and y are determiDCd in terms of their joint density I(x. y). Since 

l(x. )1) - ICy I %)/(x) 

we conclude that they are also determined in terms of the marginal density I(x) and the conditional density 
I<YI%)· 

.. We shall show that, if the random variables x and y are jointly nonna! with zero 
mean as in (6-61). then 

I(y Ix) = C12v'2n:l- r2} exp( (6-211) 

Proof. The exponent in (6-61) equals 

(y - r02x/UI)2 x 2 

201(1 - r2) - 20~ 

Division by f(x) removes the term -x2/20~ and (6-211) results. 
The same reasoning leads to the conclusion that if x arid y are jointly normal with E {xl = 

771 and E{y} = 111, then fCy Ix) is given by (6-211) if y and x are replaced by y - 772 and 
x - 77" respectively. In other words, for a given x, f(y Ix) is a nonnal density with mean 772 + 
r02(X - 771)/UI and variance 01(1- rl ). ~ 
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BAYES' THEOREM AND TOTAL PROBABILITY. From (6~205) it follows that 

f (x 1 y) = f(y 1 x)f(x) (6-212) 
fey) 

This is the density version of (2-43). 
The denominator fey) can be expressed in terms of fey 1 x) and f(x)- Since 

fCy) = L: f(x, y) dx and f(x, y) = fey 1 x)f(x) 

we conclude that (total probability) 

fey) = I: fey 1 x)f(x) dx (6-213) 

Inserting into (6-212), we obtain Bayes' theorem for densities 

fey Ix}f(x) 
f(x 1 y) = J:O fey 1 x)f(x) dx 

(6-214) . 

Note A$ (6-213) shows, to remove the condition x = x from the conditional density f(y Ix). we multiply 
by the density f(x) of x and integrate the product. 

Equation (6-214) represents the p.d.f. version of Bayes' theorem. To appreciate 
the full significance of (6-214), we will look at a situation where observations are used 
to update our knowledge about unknown parameters. We shall illustrate this using the 
next example. 

~ An unknown random phase () is uniformly distributed in the interval (0,231'), and 
r = () + n, where n '" N(O, (12). Determine fCO I r). 

SOLUTION 
initially almost nothing about the random phase () is known, so that we assume its a 
priori p.d.f. to be uniform in the interval (0,231'). In the equation r = () + n. we can 
think of n as the noise contribution and r as the observation. In practical situations, it is 
reasonable to assume that (J and n are independent. If we assume so, then 

(6-215) 

since it is given that () is a constant, and in that case r = () + n behaves like n. Using 
(6-214), this gives the a posteriori p.d.f. of () given r to be (see Fig. 6-31b) 

fCo 1 r) _ fer 18)f9(0) e-(r-9)2(Jq2 

- 1027r f(r 1 0)f9(0) dO - Jo27r e-(r-9)2/2a2 dO 

(6-216) 

where 
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1,(8) 

1 
211' 

(Il) Il priori p.d.f of (I 

FlGUU6-31 

(J (I 

(b) a posteriori p.d.f of (I 

Notice that knowledge about the observation r is reflected in the a posteriori p.d.!. of (J 

in Fig. 6.31b. It is no longer flat as the a priori p.d.!. in Fig. 6.31a, and it shows higher 
probabilities in the neighborhood of (J = r. 

Discrete Type Random Variables: Suppose that the random variables x and Y 
are of discrete type 

P{X=Xi}=PI 

Pix = X" Y = Yk) = Pile 

where [see (6-34)] 

Pi = LPik 
k 

i = I, ... ,M 

From the material just presented and (2-33) it follows that 

k = I, ... , N 

P{ I } P{x=Xf,Y=Yk} Pik 
Y = Yk X = Xi = = -

Pix = Xi} Pi 

MARKOV MATRIX. We denote by Hik the above conditional probabilities 

Ply = Yk Ix = Xi} = 7tik 

and by P the M x N matrix whose elements are 7tik. Clearly, 

Pik 
HiI' =-

Pi 

Hence 

7tik ~ O. LHik = 1 
k 

(6-217) 

(6-218) 

Thus the elements of the matrix P are nonnegative and the sum on each row equals 1. Such 
a matrix is called Markov (see Chap. 15 for further details). The conditional probabilities 

ki Pil; PIx = Xi I Y = Yk} = H =­
ql; 

are the elements of an N x M Markov matrix. 
If the random variables x and y are independent, then 



We note that 

ki Pi " 1r = '17:11:- qlr. = L." '17:ikPi 
'1" i 

(6-219) 

These equations are the ctiscrete versions ofEqs. (6-212) and (6-213). 
Next we examine some interesting results involving conditional ctistributions and 

independent binomiallPoisson random variables . 

... Suppose x and y are independent binomial random variables with parameters (m, p) 
and (n, p) respectively. Then x + y is also binomial with parameter (m + n, p), so that 

Pix = x I x + y = x + y} = PIx = x}P{y = y} = (~)(;) (6-220)1 
P{x+y=x+y} (~!;) 

Thus the conctitional distribution of x given x + y is hypergeometric. Show that the' 
converse of this result which states that if x and y are nonnegative independent randomt 
variables such that P{~ = O} > 0, Ply = O} > 0 and the conctitional distribution of". 
given x + y is hyper geometric as in (6-220), then x and y are binomial random variables. 

SOLUTION 
From (6-220) 

Let 

P{x=x} -I() P(y=y} -gCy) P{x+y=x+y} h( ) 
(~) - x (;) - (~!;) = x + y 

Then 

hex + y) = I(x) g(y) 

, andhence 

h(1) = 1(1)g(O) = I(O)g(l) 

h(2) = 1(2)g(0) = IU)g(1) = 1(0)g(2) 

h(k) = l(k)g(O) = I(k - l)g(l) = ... .: 

Thus ' 

I(k) = I(k _1)g(1) = 1(0) (g(l»)1: 
g(O) g(O) 

or 

(6-221J 

where a = g(l)/g(O) > O. But Ll-O Pix = Ie} = 1 gives PIx = O}(1 + a)m = 1. or 
Pix = OJ = qm, where q = 1/(1 +a) < 1. Hence a = plq, where p = 1- q > ~ 
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and from (6-221) we obtain 

P{x = k} = (7)pkqm-1c k = 0, 1,2, ... m 

Similarly, it follows that 

Ply = r} = G)pT qn-r r = 0,1,2, ... n 

and the proof is complete. 
Similarly if x and y are independent Poisson random variables with parameters J.. 

and fJ, respectively, then their sum is also Poisson with parameter J.. + fJ, [see (6-86)], 
and, moreover, 

_Ht -p...Jt:::.... 

P{ ' k I } Pix = k}P{y = n - k} e kfe (n-k)! x= x+y=n = = --=-~~~ 
P{x + y = n} e-(l.+p.)~ 

n! 

(n)( }. )k ( fJ, )n-k 
= k l+fJ, J..+fJ, 

k = 0,1, 2, ... n (6-222) 

Thus if x and y are independent Poisson random variables, then the conditional density 
of x given x + y is Binomial. Interestingly, the converse is also true, when x and y are 
independent random variables. The proof is left as an exercise. 

Equivalently, this shows that if y = ~-l X; where X; are independent Bernoulli 
random variables as in (4-55) and n is a Poisson random variable with parameter }. as in 
(4-57), theny '" P(pJ..) and z = n-y '" P«l- p)J..). Further,y andz are independent 
random variables. Thus, for example, if the total number of eggs that a bird lays follows 
a Poisson random variable with parameter J.., and if each egg survives with probability 
p, then the number of baby birds that survive is also Poisson with parameter pJ... ~ 

System Reliability 

We shall use the tenn system to identify a physical device used to perform a certain 
function. The device might be a simple element, a lightbulb, for example, or a more 
complicated structure. We shall call the time interval from the moment the system is 
put into operation until it fails the time to failure. This interval is. in general, random. 
It specifies, therefore, a random variable x ~ O. The distribution F(t) = P{x:s t} of this 
random variable is the probability that the system fails prior to time t where we assume 
that t = 0 is the moment the system is put into operation. The difference 

R(t) = 1 - F(t) = P{x > t} 

is the system reliability. It equals the probability that the system functions at time t. 
The mean time to failure of a system is the mean of x. Since F(x) = 0 for x < 0, 

we conclude from (5-52) that 

E{x} = 1000 
xf(x) dx = 1000 

R(t) dt 

The probability that a system functioning at time t fails prior to time x > t equals 

F(xlx>t)= P{x:sx,x>t} = F(x)-F(t) 
P {x > t} ~l---:F::-:(t-:-)-
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Differentiating with respect to x. we obtain 

lex) 
f(x I x > t) = 1 _ F(t) x> t (6-223) 

The product l(x I x > t) dx equals the probability that the system fails in the interval 
(x, x + dx). assuming that it functions at time t. 

~ If f(x) = ce-CX, then F(/) = 1 - e-cr and (6-223) yields 

ce-CX 

l(x I x> t} = -- = f(x - t) e-ct 

This shows that the probability that a system functioning at time t fails in the interval 
(x, x + dx) depends only on the difference x - t (Fig. 6-32). We show later that this is 
true only if f (x) is an exponential density. .... 

CONDmONAL FAILURE RATE. The conditional density f (x I x > I) is a function of 
x and t. Its value at x = t is a function only of t. This function is denoted by pet) and 
is called the conditionalfailure rate or, the hazard rate of the system. From (6-223) and 
the definition of hazard rate it follows that 

{3(t) = f(t I x> t) = 1 !~(t) (6-224) 

!he product {3(/) dt is the probability that a system functioning at time I fails in the 
interval (t, t + dt). In Sec. 7-1 (Example 7-3) we interpret the function {3(t) as the 
expected failure rate. 

~ (a) If f(x) = ce-cx, then F(t) = 1 - e-ct and 

ce-cr 
{3(t) = 1 _ (1 _ e-ct) = c 

(b) ,If f(x) = c2xe-CX, then F(x) = 1 - cxe-CX - e-cx and 

c2te-ct c?-t 
{3(t) = ctrCI + rCI = 1 + ct 

From (6-224) it follows that 

F'(t) R'(t) 
{3(t) = 1 - F(t) = - R(t) 

We shall use this relationship to express the distribution of x in terms of the function 
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pet). Integrating from 0 to x and using the fact that In R(O) = 0, we obtain 

-fox pet) dt = In R(x) 

Hence 

R(x) = I - F(x) = exp { -fox {3(t) dt} 

And since f (x) = F' (x), this yields 

f(x) = {3(x) exp { -fox {3(t) dt} (6-225) 

~ A system is called memoryless if the probability that it fails in an interval (t, x), 
assuming that it functions at time t, depends only on the length of this interval. In other 
words, if the system works a week, a month, or a year after it was put into operation, it 
is as good as new. This is equivalent to the assumption that f(x I x> t) = f(x - t) as 
in Fig. 6-32. From this and (6-224) it follows that with x = t: 

pet) = f(t I x> t) = f(t - t) = f(O) = c 

and (6-225) yields f(x) = ce-cx • Thus a system is memoryless iff x has an exponential 
density. ~ 

~ A special form of pet) of particular interest in reliability theory is the function 

pet) = ctb- 1 

This is a satisfactory approximation of a variety of failure rates, at least near the origin. 
The corresponding f(x) is obtained from (6-225): 

f(x) = cxb- J exp { _ c;b } (6-226) 

This function is called the WeibuLl density. (See (4-43) and Fig. 4-16.) ~ 

We conclude with the observation that the function {3(t) equals the value of the 
conditional density f(x I x > t) for x = t; however, pet) is not a density because its 
area is not one. In fact its area is infinite. This follows from (6-224) be'cause R(oo) = 
1- F(oo) =0. 

INTERCONNECTION OF SYSTEMS. We are given two systems SI and S2 with times 
to failure x and y, respectively, and we connect them in parallel or in series or in standby 
as in Fig. 6-33, forming a new system S. We shall express the properties of S in terms 
of the joint distribution of the random variables x and y~ 

Parallel: We say that the two systems are connected in parallel if S fails when both 
systems fail. Denoting by z the time to failure of S, we conclude that z = t when the 
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larger of the numbers x and y equals t. Hence [see (6-77)-(6-78)] 

z = max(x, y) F~(z) = Fx,(z, z) 

Stand-by 

s 

(c) 

If the random variables x and yare independent. F~(z) = F.t(z)Fy(z). 

X 

Series: We say that the two systems are connected in series if S fails when at least one 
of the two systems fails. Denoting by w the time to failure of S. we conclude that w = t 
when the smaller of the numbers x and y equals t. Hence [see (6-80)-(6-81)] 

w = min(x, y) F ... (w) = F;lI(w) + Fy(w) - Fx,(w, w) 

If the random variables x and y are independent, 

where Px(t), P,(t). and p ... (r) are the conditional failure rates of systems Sl. ~. and S, 
respectively. 

Standby: We put system Sl into operation, keeping s,. in reserve. When SI fails, we put 
s,. into operation. The system S so formed fails when S2 fails. If tl and t2 are the times 
of operation of Sl and S2. tl + 12 is the time of operation of S. Denotin.g by s the time to 
failure ~ system S, we conclude that 

s=x+y 

The distribution of s equals the probability that the point (x, y) is in the triangular 
shaded region of Fig. 6-33c. If the random variables x and y are independent, the density 
ofs equals 

h(S) = l' fx(t)f,(s - t) dt 

as in (6-45). 
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6-7 CONDITIONAL EXPECTED VALUES 

An"""""" theorem (5-55) to conditional UwU"lU'''', we obtain the conditional 

E{g(y) IM)dy 

be used to define the of y. 
Using a limit argument as in (6-205). we can also define the conditional mean 

E {g (y) 1 x}. In particular. 

77,lx = E{Ylx} = [Y/(Y Ix)dy 

is die conditional mean of y assuming x = x. and 

conditional variance. 
shall illustrate these ...cu'"W"'UUl~" tIlroullh example. 

/x,(x, y) = {~ 
Determine E{xly} and E{ylx}. 

SOLUTION 

0< Iyl < x < 1 
otherwise 

(6-228) 

(6-230) 

6-34 shows. /xy(x, y) = 1 and zero elsewhere. Hence 

This gives 

/x(x) = L: 
/y(y) = 11 

-IYI 

O<x<l 

Iyl < 1 

/Xy(x. y) 1 
/x!y(x, y) = /y(y) = 1 -Iyl 0 < Iyl < x < 1 

x 

FIGURE (;.34 

(6-231) 
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and 

~ ( I) fxy(x.y) 1 
Jylx y x = =-

fx(x) 2x 
0< Iyl < x < 1 (6-232) 

Hence 

J t x 1 X211 
E{x I y} = xfxl)'(x I y) dx = i lYI (1 _ Iyl) dx = (1 - lyD "2 Iyl 

1 - lyl2 1 + Iyl 
= 2(1-lyl) = -2- Iyl < 1 (6-233) 

J I x y 1 y21X 
E{Ylx} = yfYlx(Y Ix)dy = -x 2x dy = 2x "2 -x = 0 o < x < 1 (6-234) 

For a given x, the integral in (6-228) is the center of gravity of the masses in the 
vertical strip (x, x + dx). The locus of these points, as x varies from -00 to 00, is the 
function 

q>(x) = 1: yf(y I x) dy 

known as the regression line (Fig. 6-35). 

(6-235) 

Note If the random variables x and y are functionally related, that is, ify = g(x), then the probability masses 
on thexy plane are on the line y = g(x) (see Pig. 6-Sb); hence E(y Ix) = g(x). 

Galton's law. The term regression has its origin in the following observation attributed 
'to the geneticist Sir Francis Galton (1822-1911): "Population extremes regress toward 
their mean." This observation applied to parents and their adult children implies that 
children of tall (or short) parents are on the average shorter (or taller) than their parents. 
In statistical terms be phrased in terms of conditional expected values: 

Suppose that the random variables x and y model the height of parents and their 
children respectively. These random variables have the same mean and variance, and 
they are positively correlated.: 

l1x = TJx = 11 

y 

::.~ 

}~ 
.--t-...... r cp(x) 

;,~; 

X,'~x+dxx 

Ux = u)' = U 

:;i FIGURE 6-35 

r>O 
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o x FIGURE 6-36 

According to Galton's law. the conditional mean E {y I x} of the height of children whose 
parents height is x, is smaller (orlarger) than x if x > 11 (or x < 11): 

E{y Ix} = q>(x) { <x 
>x 

if x> 11 
if x<l1 

This shows that the regression line q>(x) is below the line y = x for x > 11 and above 
this line if x < 11 as in Fig. 6-36. If the random variables x and y are jointly normal, 
then [see (6-236) below] the regression line is the straight line q>(x) = rx. For arbitrary 
random variables, the function ({l(x) does not obey Galton's law. The term regression is 
used, however, to identify any conditional mean. 

~ If the random variables x and y are normal as in Example 6-41, then the function 

x -111 
E{ylx} = 712 +ru2-- (6-236) 

U1 

is a straight line with slope rU21 Ul passing through the point (111, 112). Since for normal 
random variables the conditional mean E {y I x} coincides with the maximum of I (y Ix), 
we conclude that the locus of the maxima of all profiles of I(x, y) is the straight line 
(6-236). 

From theorems (6-159) and (6-227) it follows that 

E{g(x,y) 1M} = 1:1: g(x, y)/(x,y I M)dxdy (6-237) 

~ 

This expression can be used to determine E {g (x, y) I x}; however, the conditional density 
I(x, y I x) consists of line masses on the line x-constant. To avoid dealing with line 
masses, we shall define E{g(x, y) I xl·as a limit: 

As we have shown in Example 6-39, the conditional density t(x, y I x < x < 
x + AX) is 0 outside the strip (x,x + AX) and in this strip it is given by (6-203) where 
Xl = X andx2 = X+Ax. It follows, therefore, from (6-237) withM = {X < x !:: X+AX} 
that 

100 r+Ax I(a y)da 
E{g(x. y) Ix < x!:: x + AX} = -oo}z g(a, y) F;c(x +~) _ Fz(x) dy 

As AX -+ O. the innerintegral tends to g(x, y)/(x, y)ll(x). Defining E{g(x, y) I xl as 
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the limlt of the above integral. we obtain 

E(g(x, y) I xl = I: g(x, y)/(y Ix)dy (6-238) 

We also note that 

E{g(x,y) Ix} = I: g(x,y)/(ylx)dy (6-239) 

because g(x, y) is a function of the random variable y, with x a parameter; hence its 
conditional expected value is given by (6-227). Thus 

E{g(x,y) Ix} = E{g(x,y) Ix) (6-240) 

One might be tempted from the above to conclude that (6-240) follows directly 
from (6-227); however, this is not so. The functions g(x, y) and g(x, y) have the same 
expected value, assuming x = x, but they are not equal. The first is a function g(x, y) of 
the random variables x and y, and for a specific ~ it takes the value g[x(~), y(~)]. The 
second is a function g(x, y) of the real variable x and the random variable y, and for a 
specific ~ it takes the value g[x, y(~)] where x is an arbitrary number. 

Conditional Expected Values as Random Variables 

The conditional mean of y, assuming x = x, is a function rp(x) = E{y I x) of x given 
by (6-235). Using this function, we can construct the random variable q:I(x) = E (y I xl 
as in Sec. 5-1. As we see from (5-55), the mean of this random variable equals 

E{rp(x)) = I: rp(x)/(x)dx = 1: I(x) 1: yl(y \x)dydx 

Since f (x, y) = I (x) I (y Ix), the last equation yields 

E{E{y I x}) = 1: I: yl(x, y) dx dy = E{y) (6-241) 

This basic result can be generalized: The conditional mean E (g(x, y) I x} of 
g(x, y), assuming x = x, is a function of the real variable x. It defines, therefore, the 
function E {g(x, y) I x} of the random variable x. As we see from (6-159) and (6-237), 
the mean of E{g(x, y) I x} equals 

I: I(x) I: g(x, y)/(ylx)dydx = 1:1: g(x, Y)f(x,~y)dxdy 
But ¢.e last integral equals E{g(x, y)}; hence 

E{E{g(x, y) I x}} = E{g(x, y)} 

We note, finally. that 

E{g} (X)g2(y) I xl = E{gl (X)g2(Y) I xl = gl (X)E{g2(Y) I xl 

E{gl(X)g2(Y)} = E{Efgl(X)g2(Y) Ix}} = E{gl(X)E{g2(Y) Ix}} 

(6-242) 

(6-243) 

(6-244) 
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~ Suppose that the random variables x and y are N(O, 0, O'f, O'f. r). As we know 

E{x2} 30'~ 

FurthermOlre, f (y I x) is a normal 

Proof-

Using (6-244), we shall show that 

E{xy} = rO'J0'2 E{xly2} = E{xl}E{r} + 2E2{xy} 

E{xy} = E{xE{y 

E{xlyZl = E{x2E{yZ 

(1,2 

= 30')4r22-
0'( 

and the proof is complete [see also (6-199»). ~ 

PROBLEMS 

(6-246) 

are independent, identically 

h(X) 

(U.d,) random variables with common 

= e-1 U(y) 

the p.d.f. of the following x + y, (b) x - y, (c) 
min(x, y). (f) max(x. y). 

6-2 x and y are independent and uniform in the interval (0, a). Find the p.d.f. of (a) x/y, 
(b) y/(x + y), (c) Ix - YI: 

6-3 The joint p.d.f. of the random variables x and y is given by 

{
lin the shaded area 

f~1(X, y) = 0 otherwise 

Let z = x + y. Find Fz(z) and fz{z). 

-1 

, FIGU.RE~3 
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6-4 The joint p.d.f. of x and y is defined as 

{
6x x ~ 0, y ~ 0, x + y ~ 1 

IIl,(x, y) = 0 otherwise 

Define z = x - y. Fmd the p.dl. of z. 
6-5 x and y are independent identically distributed normal random variables with zero mean and 

common variance ql, that is. x .... N(O, ql), y ,... N(O, q2) and Ill} (x, y) = III (x)I,(y). 
Find thep.d.f. of(a)z = "';X2 + T. (b) w = Xl + y2, (e) u = x - y. 

6-6 The joint p.d.f. of x and y is given by 

{ 2(1 - x) 0 < x ~ I, 0 ~ Y ~ 1 
Iz,(x, y) = 0 otherwise 

Detennine the probability density function of z = xy. 
6-7 Given 

{
X + Y 0 ~ x ~ 1, 0 ~ y ~ 1 

IIl'l(x, Y) = 0 otherwise 

Show that (a) x + y has density II(z) = 1}, 0 < Z < 1, II(z) = %(2 - z), 1 < z < 2. 
and 0 elsewhere. (b) xy has density 12(z) = 2(1 - z), 0 < Z < 1, and 0 elsewhere. (e) y/x 
has density I,(z) = (1 + 7.)/3.0 < z < 1, 13(z) = (1 + z)f3z3. % > 1. and 0 elsewhere. 
(d) y - x has density 14(z) = 1 -lzl.lzl < 1. and 0 elsewhere. 

6·8 Suppose x and y have joint density 

{ I 0 ~ oX ~ 2, 0 ~ 1 ~ 1, 21 ~ x 
h,(X, y) = 0 otherwise 

Show that z = x + Y bas density 

{
(lf3)Z 0 < % < 2 

IIl,(x, y) = 02 - (2/3)% 2 < z < 3 
elsewhere 

6-9 x and y are uniformly distributed on the triangular region 0 ~ 1 ~ x ~ 1. Show that (a) z = 
x/y has density ,,(z) = l/zl, z ~ 1. and It(z) = 0, otherwise. (b) Detennine the density 
ofxy. 

6-10 x and y are unifonnly distributed on the triangular region 0 < x ~ y ~ x + y ~ 2. Find the 
p.d.f. of x + y and x - y. 

6·11 x and y are independent Gamma random variables with common parameters a and p. Find 
the p.d.f. of (a) x + Y. (b) x/y. (e) xf(x + y), 

6-12 x and y are independent unifonnly distributed random variables on (O,d). Plnd the joint 
p.d.f. ofx + y and x - y. 

6-13 x and yare independent Rayleigh random variables with common parameter q2. Detennine 
the density of x/yo 

6·14 The random variables x and y are independent and z = x + y. Fmd I,(Y) if 

IIl(x) = ee-UU(x) Ir.(z) = c?-tf"U(z) 

6-1S The random variables x and y are independent and y is uniform in the interval (0, 1). Show 
that. if z = x + y. then 
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6·16 (a) The function g(x) is monotone increasing and y = g(x). Show that 

F"y(x.y) = {
F,,(X) if Y > g(x) 

Fy(Y) if Y < g(x) 

(b) Find Fxylx. y) if g(x} is monotone decreasing. 
6·17 The random variables x and y are N(O, 4) and independent Find fl(1.} and Ft(x) if (a) z = 

2x + 3y. and (b) z = x/yo 
6·18 The random variables x and y are independent with 

f,,(x) = :2 e- x2(J.ct2 U(X) f,(y) = {Ol/TtJl- y2 lyl < 1 
.. Iyl> 1 

Show that the random variable z = xy is N(O, ( 2). 

6-19 .The random variables x and yare independent with Rayleigh densities 

fAx} = ;2e-xl/2a2u(x) frey) = ;2e-y2!2~2UlY) 
(a) Show that ifz = x/yo then 

2a2 1. 
ft (z) = P (1.2 + a2/ fil)2 U (z) 

(b) Using (i), show that for any k > 0, 

k2 

PIx ~ ky) = kl + a2/ft2 

6-20 The random variables x and y are independent with exponential densities 

fAx) = ae-"U(x) f,(Y) = fte-~YU(y) 

Find the densities of the following random variables: 
x 

(a) 2x + y (b) x - y (e) - (d) rnax(x, y) 
y 

(e) min(x, y) 

{i) 

6-21 The random variables x and yare independent and each is uniform in the interval (0. a). Fmd 
the density of the random variable z = Ix - YI. 

6·22 Show that (a) the convolution of two normal densities is a normal density, and (b) the 
convolution of two Cauchy densities is a Cauchy density. 

6-23 The random variables x and yare independent with respective densities x2 (m) and x2(n). 
Show that if (Example 6-29) 

x/m 
Z=-

Yin 
This distribution is denoted by F(m, n) and is called the Snedecor F distribution. It is used 
in hypothesis testing (see frob. 8·34). 

6-24 Express F, .. (z, w) in tenns of Fx.,(x, y) ifz = max(x. y), W = min(x, y). 
6-25 Let x be the lifetime of a certain electric bulb, and y that ofits replacement after the failure of 

the first bulb. Suppose x and y are independent with common exponential density function 
with parameter 1. Find the probability that the combined lifetime exceeds 2>... What is the 
probability that the replacement outlasts the original component by A? 

6-26 ]I; and yare independent unifonnly distributed random variables in (0. 1). Let 

w = max(x, y) z = min(x, y) 

Fmd thep.di. of (a) r = w -z, (b) s = w+z. 
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6·27 Let x and y be independent identically distributed exponential rahdom variables with common 
parameter A. Fmd the p.d.f.s of (a) z = y /max(x, y). (b) w = x/min (x, 2y). 

6·28 If x and y are independent exponential random variables with common parameter A. show 
that x/ex + y) is a uniformly distributed random variable in (0, 1). 

6·29 x and y are independent exponential random variables with common parameter A. Show that 

z = minCK. y) and w = max(x. y) - min(x. y) 

are independent random variables. 
6·30 Let x and y be independent random variables with common p.d.f. ix(x) = IrOto:xOt- I • 

o < x < ~, and zero otherwise (0: ~ 1). Let z = min(x, y) and w = max(x, y). (a) Frod the 
p.d.f. ofx + y. (b) Find the joint p.d.f. of z and w. (c) Show that z/w and w are independent 
random variables. 

6·31 Let x and y be independent gamma random variables with parameters (al.~) and (0:2, {J). 
respectively. (a) Determine the p.d.f.s of the random variables x + y, x/y, and x/ex + y). 
(b) Show that x + y and x/yare independent random variables. (c) Show that x + y and 
x/ex + y) are independent gamma and beta random variables, respectively. The converse to 
(b) due to Lukacs is also true. It states that with x and y representing nonnegative random 
variables, if x + y and x/yare independent, then x and y are gamma random variables with 
common (second) parameter p. 

6·32 Let x and y be independent normal random variables with zero mean and unit variances. 
(a) Find the p.d.f. ofx/lyl as well as that of Ixl/lyl. (b) Let u = x + y and v = r + y2. Are 
u and v independent? 

6-33 Let x and y be jointly normal random variables with parameters J.Lx, J.L" 0-;, q;, and r. Find 
a necessary and sufficient condition for x + y and x - y to be independent 

6·34 x and y are independent and identically distributed D<lrmal random variables with zero mean 
and variance q2. Define 

u = --=x?=-=r= 
..jX2 + y2 

v= xy 
..jX2 +y2 

(a) Find the joint p.dJ. J • .,(u. v) of the random variables u and v. (b) Show that u and v are 
independent normal random variables. (c) Show that [(x - y)2 - 2fllJx2 + y2 is also a 
normal random variable. Thus nonlinear functions of normal random variables can lead to 

normal random variables! (This result is due to Shepp.) 
6-35 Suppose z has an F distribution with (m. n) degrees of freedom. (a) Show that liz also has 

an F distribution with (n, m) degrees of freedom. (b) Show that mz/(mz + n) has a beta 
distribution. 

6·36 Let the joint p.d.f. of x and y be given by 

O<Y~X~OO 

otherwise 

Define z = x + Y. w = x - y. Find the joint p.d.f. of z and w. Show that z is an exponential 
random variable. 

6-37 Let 

{
2e-<x+Y) 0 < x < y < 00 

ix,(x, y) = 0 th' . 
o erwJse 

Define z=x+y, w=y/x. Determine tbejoint p.d.f. ofz and w. Are z and w independent 
random variables? 



6-38 The random variables x and (} are independent and (} is uniform. in the interVal (-7r, 7r). 
Show thatifz = xcos(wt + 8}. then 

!,(z) = .!.1-IZ1 !:x(Y) dy + .!. [ f:x(Y) dy 
7r -00 -/y2 - Zl 7r 1,1 -/]2 - Zl 

6-39 The random variables x and y are independent. x is N (0. u2). and y is uniform in the interval 
(0. 7r). Show thatifz = x + a cosY. then 

F ( ) - 1 1· -~-fH:oJ1)2/262 d "z- ~ e y 
7ru,,27r 0 

6-40 The random variables x and y are of discrete type, independent, with Pix = n} = a •• 
Ply = n) = b •• n = 0.1, .... Show that, ifz = x + y, then 

/I 

P{z = n} = ~ 4tb .. _t. 
h.O 

n = 0.1.2 •... 

6-41 The random variable x is of discrete type taking the values x. widt Pix = x.} = P" and the 
random variable y is of continuous type and independent of x. Show that if z = x + y and 
w = "y, then 

• 
6-42 x and y are independent random variables with geometric p.m.f. 

Pix = k} = pq" k = 0, 1.2, " . Ply = m} = pq'" m = 0, 1.2 •... 

Find the p.m.f. of (a) x + y and (b) x - y. 
6-43 Let x and y be independent identically distributed nonnegative discrete random variables 

with 

Pix = k} = Ply = k} = Pi k = 0,1.2, ... 

Suppose 

1 
P{x= klx+y=k} = P{x= k-Ilx+y=k} = k+ 1 k ~ 0 

Show that x and y are geometric random variables. (This result is due to Chatterji.) 
6-44 x and y are independent, identically distributed binomial random variables with parameters 

n and p. Show that z = x + y is also a binomial random variable. Find its parameters. 
6-45 Let x and y be independent random variables with common p.m.f. 

P(x = k) = pq" k = 0.1,2, ... q = P - 1 

(0) Show that min(x, y) and x - y are independent random variables. (b) Show that z = 
min(x. y) and w = max(", y) - min (x, y) are independent random variables. 

6-46 Let" and y be independent Poisson random variables with parameters ~I and A.,. respectively. 
Show that the conditional density function of x given x + y is binomial. 

6-47 The random variables Xl and X2 are joindy normal with zero mean. Show that their density 
can be written in the form 

I {I X I t} . !(XI,X2) = 27r,jXexp -2 c- X c = [""II ""12] 
IJ.2I JI.22 
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6;48 Show that if the random variables x and y are nonnaI and independent, then 

P{xy<O} = G(~) +GC:) -20(::)0(::) 
6·49 The random variables" and y are N (0; ( 2 ) and independent Show that if z = Ix - yj, then 

E{z} = 20"/";;;, E(Z2} = 2u2• 

6·50 Show that if x and y are two independent exponential random variables with fx(x) == 
e-.rU(x), f,(y) = e-YU(y), and z = (x - y)U(x - y), then E(z} = 1/2. 

6·51 Showthatforanyx,yrealorcomplex(a) E{xy}l2::: E{lxj2}E{JYI2};(b)(triangleinequality) 
v'E{lx + Y12} ::: v'E{lxI2} + E{lYI2}. 

6-52 Show that, if the correlation coefficient r.r1 = I, then y = ax + b. 
6-53 Show that, if E{x2} = E{y2} = E{xy}, then X = y. 
6-54 The random variable n is Poisson with parameter A and the random variable x is independent 

of n. Show that, if z = nx and 

6-55 Let x represent the number of successes and y the number of failures of n independent 
Bernoulli trials with p representing the probability of success in anyone trial. Find the 
distribution ofz = x - y. Show that E{z} = n(2p - 1), Var{z} = 4np(1 - p). 

6-56 x and yare zero mean independent random variables with variances u~ and u;, respectively, 
that is, x ,.., N (0, ut), y '" N (0, ui). Let 

z=ax+by+c c;#O 

(a) Find the characteristic function Cl>~(u) of z. (b) Using Cl>t(u) conclude that z is also a 
normal random variable. (c) Fmd the mean and variance of z. 

6-57 Suppose the Conditional distribution of " given y = n is binomial with parameters nand 
PI. Further, Y is a binomial random variable with parameters M and 1'2. Show that the 
distribution of x is also binomial. Find its parameters. 

6·58 The random variables x and y are jointly distributed over the region 0 < JC < Y < 1 as 

{
kX 0 < x < y < I 

fxy(x, y) = 0 th • 
o erwtse 

for some k. Determine k. Find the variances of x and y. What is the covariance between :II: 

andy? 
6-59 x is a Poisson random variable with parameter A and y is a normal random variable with 

mean J.t and variance u 2• Further :II: and y are given to be independent. (a) Find the joint 
characteristic function of x and y. (b) Define z = :II: + y. Find the characteristic function of z. 

6-60 x and y are independent exponential random variables with common-:parameter A. Find 
(a) E[min(x, y)], (b) E[max(2x, y)]. 

6-61 The joint p.d.f. of x and y is given by 

{ 6x x > 0, y > 0, 0 < x + y ~ I 
f., (x, y) = 0 otherwise 

Define z = x - y. (a) FInd the p.d.f. of z. (b) Finel the conditional p.d.f. of y given x. 
(c) Detennine Varix + y}. 

6-62 Suppose xrepresents the inverse of a chi-square random variable with one degree of freedom, 
and the conditional p.d.f. of y given x is N (0, x). Show that y has a Cauchy distribution. 
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6-63 For any two random variables x and y.let (1; = Var{X).o} = Var{y) and (1;+1 = VarIx + y). 
(a) Show that 

a.t +y < 1 
ax +0",. -

(b) Moce generally. show that for P ~ 1 

{E(lx + ylP)}l/p 
-:-=-~...,..:.;,-:--..:..:-::::::-..,..-:-,:-:-:- < 1 
{E(lxIP»l/P + (E(lyl')lIlp -

6-64 x and y are jointly normal with parameters N(IL",. IL" 0":. a;. Pxy). Find (a) E{y I x = x}. 
and (b) E{x21 Y = y}. 

6-65 ForanytworandomvariablesxandywithE{x2} < oo,showthat(a)Var{x} ~ E[Var{xIY}]. 
(b) VarIx} = Var[E{x I y}] + E[Var{x I y}]. 

6·66 .Let x and y be independent random variables with variances (1? and ai, respectively. Consider 
the sum 

z=ax+(1-a)y 

Find a that minimizes the variance of z. 
6-67 Show that, if the random variable x is of discrete type taking the valuesxn with P{x = x.1 = 

p" and z = 8(X, y), then 

E{z} = L: E{g(x", Y)}Pn fz(z) = L: fz(z I x.)Pn 
n n 

6-68 Show that, if the random variables x and y are N(O, 0, (12, (12, r), then 

(a) E{/l"(Ylx)} = (1J2n"~2-r2) exp { --2a-=-/-(;x-~-r""'2)} 
I 

E{/ .. (x)/,(Y)} = ~ 
2Jta2 4 - r 

(b) 

6·69 Show that if the random variables ~ and yare N(O. O. at, ai, r) then 

2ie • J.L 20"1 a2 20"1 (12 . E{lxyll = - arcsIn - d/-L+ -- = --(cosa +asma) 
n" 0 0"10"2 n" n" 

wherer = sina and C = r(1I(12. 

(Hint: Use (6-200) with g(x, y) = Ixyl.) 
6-70 The random variables x and y are N(3, 4, 1,4,0.5). Find I(y I x) and I(x I y). 
6-71 The random variables x and y are uniform in the interval (-1, 1 and independent. Fmd the 

conditional density f,(r I M) of the random variable r = x2 + y2, where M = {r ::s I}. 
(i·72 Show that, if the random variables x and y are independent and z = x + Y 1 then 1% (z Ix) = 

ly(2. -x). 

6-73 Show that, for any x and y, the random variables z = F .. (x) and w = F, (y I x) are independent 
and each is uniform in the interval (0. 1). 

6-74 We have a pile of m coins. The probability of heads of the ith coin equals PI. We select 
at random one of the coins, we toss it n times and heads shows k times. Show that the 
probability that we selected the rth coin equals 

~(l- p,),,-k 

pW - PI),,-t + ... + p~(l- P1II)H-k 

(i.75 Therandom variable x has a Student t distribution len). Show that E(x2} = n/(n - 2). 



6·76 Show that if P~(t~ = fll(t Ix'> e), ~Ct 11 > t) and fJ~li) = kJJ,(t), then 1- F .. (x) 
, [1 -,F,(X)]k. 

6-77 Show that, for any x, y, and e > 0, 

1 
P{I!(-YI > s}:s s1E{lX-YI1} 

6-78 Show that the random variables x and Y ate independent iff for any a and b: 

E{U(a - x)U(b - y)) = E{U(a - x)}E{U(b - y» 

6·79 Show dlat 
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7 
SEQUENCES 
OF RANDOM 
VARIABLES 

7-1 GENERAL CONCEPI'S 

A random vector is a vector 

x = [x ..... ,XII) (7-1) 

whose components Xi are random variables. 
The probability that X is in a region D of the n-dimensional space equals the 

probability masses in D: 

P(X e D} = L I(X)dX X = [Xl. .... xlI ] (7-2) 

where 

I(x) - I( ) - all F(Xlo ... ,X/I) 
- X" ••• ,X/I - a a 

Xl •••• , X,. 
(7-3) 

is the joint (or, multivariate) density of the random variables Xi and 
.. 

F(X) = F(xlo ••• ,XII) = P{Xt ~ Xlo •••• x,. !: XII} (7-4) 

is their joint distribution. 
If we substitute in F(Xl .... , Xn) certain variables by 00, we obtain the joint 

distribUtion of the remaining variables. If we integrate I(xl, ... , XII) with respect to 
certain variables, we obtain the joint density of the remaining variables. For example 

F(XloX3) = F(Xl, OO,X3, (0) 

/(x}, X3) = roo r l(xlo X2, X3, X4) dX2 dX4 
)-00)"-' 

(7-S) 

243 
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EXAi\IPLE 7-1 

'Note We haVe just identified various. functions in terms of their independent variables. Thus / (Xl, X3) is -; 
joint density oflhe random variables "I and x3 and it is in general dif{erenrfrom thejoiDtdenSity /(X2. x.) of 
the random variables X2 and X4. Similarly. the density /; (Xi) of the random variable Xi will often be denoted 
by f(~i). 

TRANSFORMATIONS. Given k functions 

gl(X) •...• gk(X) 

we form the random variables 

YI = gl (X), ... ,Yk = gJ;(X) 

-

(7-6) 

The statistics of these random variables can be determined in terms of the statistics of X 
al! in Sec. 6-3. If k < n, then we could determine first the joint density of the n random 
variables YI •... , Yk. ".1:+1> ••• , X'I and then use the generalization of (7-5) to eliminate 
the x's. If k > n, then the random variables YII+I, ••• I Yle can be expressed in terms of 
Ylt ... I y". In this case, the masses in the k space are singular and can be detennined in 
terms of the joint density ofy ...... Y". It suffices, therefore, to assume that k = n. 

To find the density !,,(YI, ...• YIl) of the random vector Y = [YII ... ,YII] for a 
specific set of numbers YI, ••. , YII' we solve the system 

gl (X) = Ylo ...• g,,(X) = Yn (7-7) 

If this system has no solutions, then fY(YI • ... ,Yn) = O. If it has a singlt~ solution 
X = [Xl, ..•• x,,), then 

f(y ) - !x(XI, ... ,X,,) 
'Y I, ···.Y" - IJ(xlo ... , X,,) I (7-8) 

where 

J(Xl,·· .• Xn)= .............. . (7-9) 
og" og" 
aXI ax" 

is the jacobian of the transformation (7-7). If it has several solutions. then we add the 
corresponding terms as in (6-1l5). 

Independence 

The random variables Xl> ••• , XII are called (mutually) indepen&nt if the events 
(XI ~ XI}, ••• , {x" ~ XII} are independent. From this it follows that 

F(Xlo ..•• x,,) = F(Xt)· •• F(xn) 
(7-10) 

.. Given n independent random variables Xi with respective densities Ii (XI), we funn 
the random variables 

. Yk = XI + ... + XJ; k = 1, ... , n 
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We shall determine the joint density of Yt. The system 

Xl = Yl. Xl + X2 = Yl •..•• Xl + ... + Xn = Yn 

has a unique solution 

Xk = Yk - Yk-I 

and its jacobian equals 1. Hence [see (7-8) and (7-1O)J 

!y(Yl ••. . , Yn) = 11 (Yl)!2(Yl - Yt)· .. J~(Yn - Yn-l) (7-11) 

~ 

.From (7-10) it follows that any subset of the set Xi is a set of independent random 
variables. Suppose, for example. that 

I(xi. X2. X3) = !(Xl)!(X2)!(X3) 

Integrating with respect to Xl, we obtain !(XI. Xz) = !(XI)!(X2). This shows that the 
random vr¢ables Xl and X2 are independent. Note, however. that if the random variables 
Xi are independent in pairs. they are not necessarily independent. For example. it is 
possible that 

!(X., X2) = !(Xl)!(XZ) !(x .. X3) = !(Xl)!(X3) !(X2. X3) = !(X2)!(X3) 

but !(Xl. Xz. X3) # !(Xl)!(X2)!(X3) (see Prob. 7-2), 
Reasoning as in (6-21). we can show that if the random variables Xi areindependent, 

then the random variables 

are also independent 

INDEPENDENT EXPERIMENTS AND REPEATED TRIALS. Suppose that 

Sn = SI x .. · X Sn 

is a combined experiment and the random variables Xi depend only on the outcomes ~, 
of S,: 

i = l ..... n 

If the experiments Sj are independent, then the random variables Xi are independent [see 
also (6-22)]. The following special case is of particular interest. : 

Suppose that X is a random variable defined on an experiment S and the experiment 
is performed n times generating the experiment sn = S X ••• x S. In this experiment. 
we defil)e the random variables Xi such that 

i = 1, ... ,n (7-12) 

From this it follows that the distribution F; (Xi) of Xi equals the distribution Fx (x) of the 
random variable x. Thus, if an experiment is performed n times. the random variables Xi 
defined as in (7-12) ate independent and they have the same distribution Fx(x). These 
random variables are called i.i.d. (independent. identically distributed). 
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EX \\IPLE 7-2 

ORDER 
STATISTICS 

... The oider statistics of the random variables X; are n random variables y" defined 
as follows: For a specific outcome ~, the random variables X; take the values Xi (n. 
Ordering these numbers. we obtain the sequence 

Xrl (~) :s ... :s X/~ (~) ::: ••• :s Xr• (~) 

and we define the random variable Yle such that 

YI (n = 141 (~) :s ... ~ Yk(~) = 14t(~) ::: ... ::: Ylf(~) = Xr. (~) (7-13) 

We note that for a specific i, the values X; (~) of X; occupy different locations in the above 
ordering as ~ cbanges. 

We maintain that the density lie (y) of the kth statistic Yle is given by 

Ik(Y) = (k _ 1)7~n _ k)! F;-I(y)[l- Fx(y)]n-Ie Ix(Y) (7-14) 

where Fx (x) is the distribution of the Li.d. random variables X; and Ix (x) is their density. 

Proof. As we know 

I,,(y)dy = Ply < Yle ~ Y +dy} 

The event B = {y < y" ~ y + dy} occurs iff exactly k - 1 of the random variables Xi are less 
than y and one is in the interval (y. y + dy) (Fig. 7-1). In the original experiment S, the events 

AI = (x ~ y) A1 = (y < x ~ y + dy} As = (x > y + dy) 

fonn a partition and 

P(A.) = F .. (y) P(A~ = I .. (y)dy P(A,) = 1 - Fx(y) 

In the experiment SR, the event B occurs iff A I occurs k - 1 times. A2 occurs once, and As OCCUIS 

n - k times. With k. = k - I, k1 = 1, k, = n - k. it follows from (4-102) that 

n! k-I .. -I< 
P{B} = (k _ 1)11 !(n _ k)! P (AJ)P(A1)P (A,) 

and (7-14) results. 
Note that 

II(Y) = n[1- F .. (y)]"-I/ .. (Y) In(Y) = nF;-I(y)/s(y) 

These are the densities of the minimum YI and the maximum y" of the random variables Xi, 

Special Case. If the random variables Xi are exponential with parameter J..: 

hex) = ae-AJrU(x) FAx) = (1- e-AJr)U(x) c 

then 

!I(Y) = nAe-lItyU(y) 

that is, their minimum y, is also expoqential with parameter nA. 

"'I )E )( 
x,. 
)E )( )( 

y 1k y+ dy 1 .. 

FIGURE 7·1 
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~ A system consists of m components and the time to failure of the ith component is 
a random variable Xi with distribution Fi(X). Thus 

1 - FiCt) = P{Xi > t} 

is the probability that the ith component is good at time t. We denote by n(t) the number 
of components that are good at time t. Clearly, 

where 

n(/) = nl + ... + nm 

{ I Xi>t n·-,- 0 Xj<t E{nd = 1 - Fi(l) 

Hence the mean E{n(t)} = l7(t) ofn(t) is given by 

17(/) = 1 - FI(t) + ... + 1 - Fm(t) 

We shall assume that the random variables Xi have the same distribution F(t). In this 
case, 

7](1) = m[1 - F(t}] 

Failure rate The difference 11(/) - 11(t + dt) is the expected number offailures 
in the interval (I. t + dl). The derivative -11' (I) = ml(/) of -17(1) is the rate offailure. 
The ratio 

fi(l) = _ 17'(1) = I(t) 
71(t) 1 - F(t) 

(7-15) 

is called the relative expectedlailure rate. As we see from (6-221), the function fi(t) 
can also be interpreted as the conditional failure rate of each component in the sys­
tem. Assuming that the system is put into operation at 1 = O. we have n(O) = m; hence 
17(0) = E{n(O)} =m. Solving (7-15) for 71(1), we obtain 

17(t) = m exp{ -lo' fi(1:) dT } 

~ We measure an object of length 17 with n instruments of varying accuracies. The 
results of the measurements are n random variables 

E{Vi} = 0 

where Vi are the measurement errors which we assume independent with :{CEO mean. We 
shall determine the unbiased, minimum variance, linear estimation of TJ. This means the 
following: We wish to find n constants ai such that the sum 

j) = alx\ + ... + all X" 

is a random variable with mean E{i}} = a\E{xd + ... +a"E{x,,} = 17 and its variance 

V = atat+ ... +a;a; . 

is minimum. Thus our problem is to minimize the above sum subject to the constraint 

(7-16) 
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To solve this problem, we note that 

V = alert + ... + a;er; - A(al + ... +.a" - 1) 

for any A (Lagrange multiplier). Hence V is minimum if 

av 2 
- =2aj er. -A=O 
aai ' 

A 
ai=-2 

20'; 

Inserting into (7-16) and solving for A, we obtain 

A 1 
- - V - --:-----...,. 
2 - - 1/ert + ... + 1/er; 

Hence 

A Xt!erf + ... + x,,/er: 
11 = 1/er? + ... + 1/er; 

Illustration. The voltage E of a generator is measured three times. We list here the results4 
Xi of the measurements, the standard deviations er; of the measurement errors, and the. 
estimate t of E obtained from (7-17): 

Xi = 98.6, 98.8, 98.9 eri = 0.20, 0.25, 0.28 

t = xt/O.04 + x2/0.0625 + x3/0.0784 = 98.73 
1/0.04+ 1/0.0625 + 1/0.0784 

Group independence. We say that the group G x of the random variables XI ••••• x" is! 
independent of the group G y of the random variables YI ••••• Yk if 

l(xl, ...• X"' Yit ...• Yk} = I(xi • ...• XII)I(YI, ... , Yk} (7-18~ 

By suitable integration as in (7-5) we conclude from (7-18) that any subgroup of Gx iJ 
independent of any subgroup of Gy • In particular, the random variables Xi and Yi ar~ 
independent for any i andj. 

Suppose that S is a combined experiment Sl x S2. the random variables Xi depend 
only on the outcomes of S" and the random variables Y j depend only on the outcomes 
of S2. If the experiments SI and S2 are independent, then the groups Gx and Gy are 
independent. 

We note finally that if the random variables Zm depend only on th~ random variables 
Xi of Gx and the random variables Wr depend only on the random variables Yj of GJ. 

then the groups Gt and Gw are independent. 
Complex random variables The statistics of the random variables 

ZI = XI + jy ..... , Z" = x" + jy" 

are determined in terms of the joint density I(xi • ... , X". YI •••• , YII) of the 2n randolT 
variables Xi and Y j. We say that the complex random variables Zi are independent if 

I(Xl.··., X". Ylt.·., Yn) = I(x., Yl)'" I(x", YII) (7-19' 
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Mean and Covariance 

Extending (6~159) to n random variables, we conclude that the mean of g(Xlt ..• , XII) 
equals 

100 ••• 100 
g(x], ...• x,. )f(Xl •... , XII) dXI ••• dXII (7-20) 

-00 -00 

If the random variables Z, = Xi + hi are complex. then the mean of g(zi •...• zn) 
I equals 

. From this it follows that (linearity) 

E{algl(X) + ... +a".gm(X)} = aIE{gl(X)} + ... +amE(gm(X)} 

for any random vector X real or complex. 

CORRELATION AND COVARIANCE MATRICES. The covariance C'J of two real ran­
dom variables X; and Xj is defined as in (6-163). For complex random variables 

eij = E{(X; - 7U)(xj - J7j)} = E{x;xj} - E{x,}E{xj} 

by definition. The variance of Xi is given by 

U{ = Cti = ElIXt - 71112} = EUXtI2 } -IE(x,}l2 

The random variables Xi are called (mutually) JUlCorreiated if C'j = 0 for every 
I # j. In this case, if 

X=XI + ... +x" (7-21) 

~ The random variables 

1 II 

v= -L)X; _1)2 
n - 1 1=1 

are by definition the sample mean and the sample variance. respectively. of Xi. We shall 
show that. if the random variables Xi are unco.ttelated with the same mean E {Xi} = " 
and variance u1 = u2• then 

E{X) = J7 (7-22) 

and 

(7-23) 

Proof. The first equation in (7-22) follows from the linearity of expected values and the second 
from (7-21): 

1 II 

E{i} = ;; 2: E{x;} = 71 
I_I 
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To prove (7-23); we observe that 

1 
E{(X; -71)(1 - 7])} = -E(x/ - 7])[(XI - '1) + ... +.(x" - 7])]} 

n 
l' q2 = -E(Xi -71)(Xj -71)} = -
n n 

because the random variables Xi and Xj are uncor:related by assumption. Hence 

_ 2 2 2 q2 0'2 n - 1 2 
E{(xi - x) } = E{{(x, - 71} - (I - 71)] } = q + - - 2- = --q 

n n n 
This yields 

- 1 L" 2 n n-l 2 E{v} = -- E{(x, -I) 1=----0' 
n-l n-l n 

i_I 

and (7-23) results. 
Note that if the random variables XI are independent identically distributed (Li.d.) with 

E{lXi - 7114} = 1J.4. then (see Prob. 7-21) 

21( n-3,,) 0'0 = - 1J.4 - --q 
n n-l 

If the random variables Xl ••••• Xn. are independent, they are also uncorrelated. 
This follows as in (6-171) for real random variables. For complex random variables the 
proof is similar: If the random variables ZI = Xl + jy 1 and Z2 = X2 + j Y2 are independent, 
then I(x" X2. Ylt Y2) = I(x" Yl)f(X2. h). Hence 

100 •• • 100 
zlzif(Xh Xl. Ylt n) dxl dYI dX2 dn 

-00 -00 

= I: I: zt/(xJ, YI) dXl dYI I: J: Z2/(X2, n) dX2 dYl 

This yields E{Zlzi} = E(zl }E{zi} therefore, ZI and Z2 are uncorrelated. 
Note, finally, that if the random variables XI are independent, then 

E{gt(xI)'" gn(xn)} = E{gl(XI)}'" E{gn(xn)} 

Similarly, if the groups Xl ••••• Xn and YI ••••• Yle are independent, then 

E{g{Xlo ...• Xn)h(yl ••••• fie)} = E{g(Xls"" xn)}E{h(YI •• · .• Ylc)} 

The correlation matrix. We introduce the matrices 

Rn = [~1.1'~~~'~~~1 Cn = [~1~'~:~'~~~1 a 

Rnl '" Rnn Cnl ••• C/I/I 

where 

RIj = E{Xixjl = Rjl Cij = R'j - 7Ji7Jj = Cjj 

(7·24) 

The first is the correlation matrix of the random vector X = [Xl ••••• Xn] and the 
~ its covariance matrix. Clearly. 

Rn = E{X'X*} 
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where X' is the transpose of X (column vector). We shall discuss the properties of the 
matrix Rn and its determinant ~". The properties of Cn are similar because Cn is the 
correlation matrix of the "centered" random variables Xi - 71i. 

~ The matrix RII is nonnegarive definite. This means that 

Q = I:aiajR;j = ARnAt ~ 0 
i.j 

where At is the complex conjugate transpose of the vector A = [at. ... , an]. 

Proof. It follows readily from the linearity of expected values 

E{lalxl + ... +QIlx,,12} = LQ;ajE{x;xj} 
I.j 

(7-25) 

(7-26) 

If (7-25) is strictly positive, that is, if Q > 0 for any A#- O. then RIO is called positive definite. J 

The difference between Q ~ 0 and Q > 0 is related to the notion of linear dependence. ~ 

t> The random variables Xi are called linearly independent if 

E{lalXI + ... +anxnI2} > 0 (7-27) 

for any A #0. In this case [see (7-26)], their correlation matrix Rn is positive 
definite. ~ 

The random variables Xi are called linearly dependent if 

(7-28) 

for some A # O. In this case, the corresponding Q equals 0 and the matrix Rn is singular 
[see also (7-29)]. 

From the definition it follows iliat, if the random variables Xi are linearly indepen­
dent, then any subset is also linearly independent. 

The correlation determinant. The det~nninant ~n is real because Rij = Rji' We shall 
show that it is also nonnegative 

(7-29) 

with equality iff the random variables Xi are linearly dependent. The familiar inequality 
~2 = RllR22 - R~2 ::: 0 is a special case [see (6-169)]. 

Suppose, first, that the random variables Xi are linearly independent. We maintain 
that, in this case, the determinant ~n and all its principal minors are positive 

(7-30) 

IWe shall use the abbreviation p.d. to indicate that R" satisfies (7-25). The distinction between Q ~ 0 and 
Q > 0 will be understood from the context. 



252 PROBAllIL1TY ANOAANDOMVARlABW 

Proof. 'This is true for n = 1 because III = R II > O. Since the random variables of 
any subset of the set (XI) are linearly independent. we can assume that (7-30) is true for 
k !: n - 1 and we shall show that Il.n > O. For this purpose. we form the system 

Rlla. + ... + Rlnan = 1 
R2Ja! + ... + R2nan = 0 (7-31) 

Rnlal +···+RllI/an =0 

Solving for a .. we obtain al = Iln_l/ Iln• where Iln-l is the correlation determinant of 
the random variables X2 ••••• Xn' Thus al is a real number. Multiplying the jth equation 
by a j and adding. we obtain 

~ * Iln-l Q = L.Ja,ajRij = al = --
I . lln 
.J 

(7-32) 

In this, Q > 0 because the random variables X, are linearly independent and the left side 
of (7-27) equals Q. Furthermore. lln-l > 0 by the induction hypothesis; hence lln > O. 

We shall now show that, if the random variables XI are linearly dependent, then 

lln = 0 (7-33) 

Proof. In this case, there exists a vector A =F 0 such that alXI + ... + allxn = O. Multi­
plying by xi and taking expected values. we obtain 

alRIl + ... + an Rill = 0 i = 1 • ...• n 

This is a homogeneous system satisfied by the nonzero vector A; hence lln = O. 
Note. finally, that 

llll !: RuRn ... Rlln (7-34) 

with equality iff the random variables Xi are (mutually) orthogonal, that is, if the matrix 
Rn is diagonal. 

7·2 CONDITIONAL DENSITIES, 
CHARACTERISTIC FUNCTIONSt 

AND NORMALITY 

Conditional densities can be defined as in Sec. 6-6. We shall discuss various extensions 
of the equation f<Y Ix)=f(x, y)lf(x). Reasoning as in (6-205), we conclude that 
the conditional density of the random variables Xn ••••• Xk+1 ass~g Xt. •••• XI is 
given by , 

I(Xt ••••• Xk ••••• X,,) 
I(xn • .... xk+ll Xj:o ... , Xl) = f( ) 

XI,··· ,Xk 
(7-35) 

The corresponding distribution function is obtained by integration: 

F(xlI' ••• ,Xk+1 I Xk • .... XI) 

= t'- .: '1~!+1 f(a ll ••••• ak+! I Xk • ••• , Xl) daHl' .. dan i-co -00 

(7-36) 
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For example. 

!( I - !(xJ, X2, X3) _ dF(XI IX2. X3) 
Xl X2, X3) - f( ) - d 

X2,X3 Xl 

Chain rule From (7-35) it follows that 

!(x" ... , x,,) = !(XII I XII-I • •..• XI) ... !(xli xl)f(XI) (7-37) 

~ We have shown that [see (541)] if x is a random variable with distribution F(x). 
then the random variable y = F (x) is uniform in the interval (0, 1). The following is a 
generalization. 

Given n arbitrary random variables Xi we form the random variables 

(7-38) 

We shall show that these random variables are independent and each is uniform in the 
interval (0. 1). 

SOLUTION 
The random variables Yi are functions of the random variables Xi obtained with the 
transformation (7-38). ForO::: Yi ::: 1. the system 

YI = F(Xl) Yl = F(xllxl) •. "'YII = F(xli lXII-I ..... XI) 

bas a unique solution XI • •••• Xn and its jacobian equals 

8Yl 0 0 
aXI 

8)'l 

o 

o 

8Yn 8Yn - ................. -
ax) 8xII 

This determinant is triangular; hence it equals the product of its diagonal elements 

aYk 
~ = !(Xk Ixk-It ...• Xl) 
(]Xk 

Inserting into (7-8) and using (7-37), we obtain 

!(y ) _ !(x" .... XII ) _ 1 
I.· ... yn - !(XI)!(X2Ix,) ... !(xll lxn-1o .... Xt)-

$ 

in the n-dimensional cube 0 ::: Yi ::: 1, and 0 otherwise. ~ 

From (7-5) and (7-35) it follows that 

!(xll x3) = I: !(XI,X2I x3) dx2 

!(X,I X4) = [I: !(Xl I X2,X3. X4,)!(X2,X3 IX4) dX2 dX3 

Generalizing. we obtain the following rule for removing variables on the left or on 
the right of the conditional line: To remove any number of variables on the left of the 
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,conditional line, we integrate with respeot to them. To remove any number of variables 
, to the right of the line, we multiply by their conditional density with respect to thJ 
remaining variables on the right, and we integrate the product. The following specia. 
case is used extensively (Chapman-Kolmogoroff equation, see also Chapter 16): 

!(x, I X3) = .L: !(x, I X2. X3)!(X21 X3) dX2 (7-39) 

Discrete type The above rule holds also for discrete type random variableS 
provided that all densities are replaced by probabilities and all integrals by sums. WtA 
mention as an example the discrete form of (7-39): If the random variables x" X2, X3I 

take the values a;, bk, Cn respectively, then 

P(x, = aj I X3 = Ci} = L: PIx, = aj I bk, Cr }P{X2 = bit. I cr } (7-40 
It. 

CONDITIONAL EXPECTED VALUES. The conditional mean of the random variabl~ 
g(x" ... , xn ) assuming M is given by the integral in (7-20) provided that the deI1sit~ 
!(x" ... , xn) is replaced by the conditional density !(x" ... , Xn I M). Note, in partic"'l 
ular, that [see also (6-226)J 

(7-41~ 

This is a function of X2, ... , Xn; it defines, therefore, the random variable E{xil X2,' 

: .. , xn}. Multiplying (7-41) by !(X2, .•. , xn) and integrating. we conclude that 

E{E{x, IX2, •••• Xn}} = E(xd 

Reasoning similarly, we obtain 

E{xil X2, X3} = E{E{x, I X2, X3, X4}} 

(7-42) 

= 1: E{x,lx2,X3.X4}!(X4Ix2.X3)dx4 (7-43) 

, This leads to the following generalization: To remove any number of variables on the 
right of the conditional expected value line, we multiply by their conditional density 
with respect to the remaining variables on the right and we integrate the product. For 
example, 

E{x,l x3} = 1: E{Xllx2,X31!(x2I x3)dx2 

and for the discrete case [see (7-40)] 

E(XI I cr } = L: E{XI I ble. Cr }P{X2 = blr.l cr } 

It. 

(7-44) 

(7-45) 

.. Given a discrete type random variable n taking the values 1, 2, ... and a sequence 
of random variables XIt. independent of n, we form the sum 

(7-46) 
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This sum is a random variable specified as follows: For a specific ~,n(~) is an integer 
and sen equals the sum of the numbers Xk(n for k from 1 to n(~). We maintain that if 
the random variables XI: have the same mean, then 

E(s} = l1E{n} where E {Xk} = 11 (7-47) 

Clearly, E{Xkl n = n} = E{Xk} because Xk is independent ofn. Hence 

E(sln =n} = E {tXk In = n} = tE(Xk} = l1n 
k=1 k=J 

From this and (6-239) it follows that 

E{s} = E{E{s I nH = E{17n} 

and (7-47) results. 
We show next that if the random variables Xk are uncorrelated with the same 

variance (12, then 

(7-48) 

Reasoning thus, we have 
n n 

E{s21 n = n} = L L E{XiXk} (7-49) 
{ .. I k=l 

where 

{ 
(12 + 772 i = k 

E{XiXk} = 772 i :F k 

The double sum in (7-49) contains n terms with i = k and n2 - n terms with i :F k; 
hence it equals 

«(12 + 112)n + 772(n1 - n) = 772n2 + (12n 

This yields (7-48) because 

E{S2} = E{E{s2In}} = E{111n2 + (11n} 

Special Case. The number n of particles emitted from a substance in t seconds is 
a Poisson random variable with parameter )..t. The energy Xk of the kth particle has 
a Maxwell distribution with mean 3kT /2 and variance 3k1T1/2 (see Prob. 7-5), The .. 
sum sin (7-46) is the total emitted energy in t seconds. As we know E{n} = At, 
E(n2} = )..2t2 + At [see (5-64)]. Inserting into (7-47) and (7-48), we obtain 

E(s} = 3kT)..t (12 _ 15k2T2>..t ~ 
2 s - 4 

Characteristic Functions and Normality 

The characteristic function of a random vector is by definition the function 

4>(0) = E{e}OX'} = E{e}(0I1XI+"'+OI,oSo>} = ClJUO) (7-50) 
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where 

As an application, we shall show that if the random variables XI are independent 
with respective densities Ii (Xi), then the density fz(z) of their sum z = Xl + ' . , + XII 
equals the convolution of their densities 

(7-51) 

Proof. Since the random variables XI are independent and ejw;Xi depends only on X;, we 
conclude that from (7-24) that 

E {e}«(/)IXI + ' +CllnX.)} = E{ejwIXI} ... E{ejI»,tXn } 

Hence 

(7-52) 

where <Pi (a» is the characteristic function ofxj. Applying the convolution theorem for 
Fourier transforms. we obtain (7-51). 

~ (a) Bernoulli trials: Using (7 -52) we shall rederive the fundamental equation (3-13), 
We define the random variables Xi as follows: Xi = 1 if heads shows at the ith trial and 
Xi = 0 otherwise. Thus 

PIx; = 1} = P{h} = P P{XI = O} = prE} = q (7-53) 

The random variable z = XI + .. , + XII takes the values 0,1.. '" n and {z = k} is the 
event {k heads in n tossings }, Furthermore. 

II 

<Pz(a» = E{ejOlZ } = L P{z = k}ejk,., (7-54) 
k=O 

The random variables Xi are independent because Xj depends only on the outcomes of 
the ith trial and the trials are independent. Hence [see (7-52) and (7-53)] 

<Pz(a» = (peftD + q)1I = ~ (~) l'ejktDq"-k 

Comparing with (7-54), we conclude that 

P{z = k} = P{k heads} = (;) ~I:qll-k 
(b) Poisson theorem: We shall show that if p « I, th~n 

-np ( )1: 
P{z = k} ::: e np 

k! 

(7-55) 

as in (4-106). In fact, we shall establish a more general result. Suppose that the randorr 
variables XI are independent and each takes the value 1 and 0 with respective probabilitiel 
Pi and qi = 1 - Pi' If Pi « 1, then 

eP/(?-l) ~ 1 + PI (ej (/) - 1) = Plej ,., +ql = <Pi(a» 
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With z = XI + ... + XII' it follows from (7-52) that 

4>~«(I» :::: ePI(~"-I) • • • eP.(~"-I) = eQ(~-I) 
where a = PI + ... + Pn. This leads to the conclusion that [see (5-119)] the random 
variable z is approximately Poisson distributed with parameter a. It can be shown that 
the result is exact in the limit if 

Pi -+ 0 and PI + ... + PrJ -+- a as n -+- 00 

NORMAL VECTORS. Joint normality of n random variables Xi can be defined as lD 

(6-23): Their joint density is an exponential whose exponent is a negative quadratic. We 
give next an equivalent definition that expresses the normality of n random variables in 
termS of the normality of a single random variable. 

~ The random variables Xi are jointly normal iff the sum 

alxl + ... + aI/x" = AX' 

is a normal random variable for any A. 

(7-56) 

We shall show that this definition leads to the following conclusions: If the random 
variables Xi have zero mean and covariance matrix C, then their joint characteristic 
function equals 

4>(0) = exp{ -! GeO' } 

Furthermore, their joint density equals 

I(X) = 1 exp{ -!xe- I X'} 
J(21t:)lIa 

where a is the determinant of C. 

Proof. From the definition of joint normality it follows that the random variable 

W = WIXI + ... + W"x,. = 'lX' 

is normal. Since E{xj} = 0 by assumption. this yields [see (7-26)] 

E(w} =0 E(w2} = L w/O)jCIj = 0'; 
(.j 

Setting '1 = 0 and W == 1 in (5-100). we obtain 

E{eJ"'} == exp [-1] 
This yields 

E { ejQX1
} = exp{ - ~ L Cl>!WjCIj } 

'.J 
as in (7-51). The proof of (7-58) follows from (7-57) and the Fourier inversion theorem. 

(7-57) 

(7-58) 

(7-59) 

(7-60) 

Note that if the random variables X; are jointly normal and uncorrelated, they are indepen­
dent. Indeed, in this case, their covariance matrix is diagonal and its diagonal elements equal O'l. 
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Hence (:-1 is also diagonal with diagonal elements i/CT? Inserting into (7-58). we obtain 

.. Using characteristic functions. we shall show that if the random variables Xi are 
jointly nonnai with zero mean, and E(xjxj} = Cij. then 

E{XIX2X314} = C12C34 + CJ3C24 + C J4C23 (7-61) 

PI'(J()f. We expand the exponentials on the left and right side of (7-60) and we show explicitly 
only the terms containing the factor Ct.IJWlW3Ct.14: 

I E{ e}(""x, +"+41114X4)} = ... + 4! E«Ct.llXl + ... + Ct.I4X4)"} + ... 
24 

= ... + 4! E{XIX2X3X4}Ct.lIWlW3W. 

exp{ _~ L Ct.I;(J)JCij } = + ~ (~~ Ct.I;Ct.I)CI)) 2 + ... 
J.) I.j 

8 = ... + g(CJ2C'4 + CI3C24 + CI4C23)Ct.llWlCt.l)Ct.l4 

Equating coefficients. we obtain (7-61). .... 

Complex normal vectors. A complex normal random vector is a vector Z = X + jY = 
[ZI ..... z,.] the components ofwbich are njointly normal random variablesz;: = Xi+ jy/. 
We shall assume that E {z;:} = O. The statistical properties of the vector Z are specified 
in terms of the joint density 

fz(Z) = f(x" ...• Xn• Yl •••.• YII) 

. of the 2n random variables X; and Yj. This function is an exponential as in (7-58) 
determined in tennS of the 2n by 2n matrix 

D = [CXX CXy] 
Cyx Cyy 

consisting of the 2n2 + n real parameters E{XIXj}. E(Y/Yj). and E{X;Yj}. The corre-
sponding characteristic function .., 

<l>z(O) = E{exp(j(uixi + ... + U"Xn + VIYI + ... + VnYII))} 

is an exponential as in (7-60): 

Q = [U V] [CXX CXy] [U:] 
CyX Crr V 

where U = [UI .... , ulI ]. V = [VI .... , vn1. and 0 = U + jV. 
The covariance matrix of the complex vector Z is an n by n hermitian matrix 

Czz = E{Z'Z"'} = Cxx + Crr - j(CXY - Cyx) 
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with elements E{Zizj}. Thus. Czz is specified in tenns of n2 real parameters. From 
this it follows that. unlike the real case, the density fz(Z) of Z cannot in general be 
determined in tenns of Czz because !z(Z) is a normal density consisting of 2n2 + n 
parameters. Suppose, for example, that n = 1. In this case, Z = z = x + jy is a 
scalar and Czz = E{lzf!}. Thus. Czz is specified in terms of the single parameter 
0-; = E{x2 + f}. However, !z(1.) = I(x, y) is a bivariate normal density consisting of 
the three parameters (lx. 0"1' and E{xy}. In the following, we present a special class of 
normal vectors that are statistically determined in tenns of their covariance matrix. This 
class is important in modulation theory (see Sec. 10-3). 

~ If the vectors X and Y are such that 

Cxx = Crr CXY = -CYX 

and Z = X + jY, then 

Czz = 2(Cxx - JCXY) 

fz(Z) = I~ I exp{ -ZCiizt} 
1rn zz 

<Pz(o) = exp{ -~oczznt } 

(7-62) 

(7-63) 

Proof. It suffices to prove (7-63); the proof of (7-62) follows from (7-63) and the Fourier inversion 
formula. Under the stated assumptions, 

Q = [U V] [~~;y ~;:] [~:] 
= UCXyU' + VCxyU' - UCXyV' + VCxx V' 

Furthermore Cb = Cxx and Ch = -Cxr. This leads to the conclusion that 

VCxxU' = UCxxvt UCXyUt = VCXyV' =0 

Hence 

~OCzzO+;:::: (U + jV)(Cxx - jCxr)(U' - jV') = Q 

and (7-63) results. ~ 

Normal quadratic forms. Given n independent N(O, 1) random variables Zi, we fonn 
the sum of their squares 

. ~.=-~+ ... +~ 
Using characteristic functions, we shall show that the random variable x so formed has 
a chi-square distribution with n degrees of freedom: 

!z(x) = yxn/2-t e-x/2U(x) 

IN. R. Goodman. "Statistical Analysis Based on Certain Multivariate Complex Distribution." Annals of 
Mtllh. Statistics. 1963. pp. 152-177. 
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Pl'oof. The random variables ~ have a x2(1) distribution (see page 133); hence theu­
characteristic functions are obtained from (5-109) with m = 1. This yields 

{ 
2 1 

$;(8) = E estl } = ~ 
'\"1-2s 

From (7-52) and the independence of the random variables zr, it follows therefore that 

1 
$,1: (s) = $1 (s) ••• $n(s) = -:..,;m(1=-:::::;2;:=s)~n 

Hence [see (5-109)] the random variable x is x2(n). 
Note that 

1 1 1 
~ (1 - 1$)/11 X ~(1 - 1$)n = -..,;77.(l;=_:::::;;:2s""')m::=;+n== 

This leads to the conclusion that if the random variables x and y are independent, x is 
x2(m) and y is x 2(n), then the random variable 

Z = x + y is x2(m + n) (7-64) 

Conversely, if z is X2(~ + n), x and y are independent, and x is x2(m), then y is 
X2(,,). The following is an important application. 

Sample variance. Given n i.i.d. N(T1, 0') random variables x" we form their .sample 
variance 

1 It 1 It 

52 = -- ~)x; - 1)2 X = - LX; (7-65) 
n - 1 ;=1 n 1-1 

as in Example 7-4. We shall show that the random variable (see also Example 8-20) 

(n -21)52 = ~ (Xi - X)2 2 
L.,; is X (n - 1) 

0' i=1 0' 

Proof. We sum the identity 

(x; - 1])2 = (x; - X + X - 1])2 = (x, - 1)2 + (X - 1])2 + 2(xt - X)(X - 1]) 

from 1 to n. Since I: (x; - X) = 0, this yields 

E Xi-71 =L x,-x +n X-1] e It ( ) 2 n ( -) 2 (- ) 2 

;=1 0' i=1 0' (J 

(7-66) 

(7-67) 

It can be Shown that the random variables x and s2 are independent (see Prob. 7-17 
or Example 8-20). From this it follows that the two tenns on the right of (7-67) are 
independent. Furthermore, the term 

is'X2(l) because the random variable xis N(", (J/,Jn). Fmally, the term on the left side 
is x2(n) and the proof is complete. 
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From (7-66) and (5-1 09) it follows that the mean of the random variable (n-l)sl /(12 

equals n - 1 and its variance equals 2(n - 1). This leads to the conclusion that 

q2 (14 2u4 

E{s2) = (n - 1) n _ 1 = 3'2 Var {S2} = 2(n - 1) (n _ 1)2 = n _ 1 

~ We shall verify the above for n = 2. In this case, 

_ XI +X2 
x=---

2 
The random variables XI + X2 and XI - X2 are independent because they are jointly 
normal and E{XI - X2} = 0, E{(xl - X2)(X, + X2)} = O. From this it follows that the 
random variables x and 52 are independent. But the random variable (XI - X2)jq,.fi = 
5/(1 is N(O, 1); hence its square 52/(12 is x2(l) in agreement with (7-66). ..... 

7-3 MEAN SQUARE ESTIMATION 

The estimation problem is fundamental in the applications of probability and it will be 
discussed in detail later (Chap. 13). In this section first we introduce the main ideas using 
as illustration the estimation of a random variable y in terms of another random variable 
x. Throughout this analysis, the optimality criterion will be the minimization of the mean 
square value (abbreviation: MS) of the estimation error. 

We start with a brief explanation of the underlying concepts in the context of 
repeated trials, considering first the prob1em of estimating the random variable y by a 
constant. 

Frequency interpretation As we know. the distribution function F(y) of the random 
variable y determines completely its statistics. This does not, of course, mean that if we 
know F(y) we can predict the value y(C> of y at some future trial. Suppose, however, 
that we wish to estimate the unknown Y(C) by some number e. As we shall presently see, 
knowledge of F(y) can guide us in the selection of e. 

Ify is estimated by a constant e, then, at a particular trial. the error yes) - c results 
and our problem is to select e so as to minimize this error in some sense. A reasonable 
criterion for selecting c might be the condition that, in a long series of trials, the average 
error is close to 0: 

Y(Sl) - c + ... +Y(Cn) - e 
--------....;...;"""'-- ::::: 0 

n 
As we see from (5-51), this would lead to the conclusion that c should eqUal the mean of Y 
(Fig.7-2a). 

Anothercriterion for selecting e might be the minimization of the average of IY(C)-cl. 
In this case, the optimum e is the median ofy [see (4-2»). 
. In our analysis, we consider only MS estimates. This means that e should be such as 
to minimize the average of lyCn - e12• This criterion is in general useful but it is selected 
mainly because it leads to simple results. As we shall soon see, the best c is again the mean 
ofy. 

Suppose now that at each trial we observe the value x(C} of the random variable x. 
On the basis of this observation it might be best to use as the estimate of Y not the same 
number e at each trial, but a number that depends on the observed x(C). In other words, 
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y 

--~--
y({) = y (x=x) , .. ,-

ySfL----i< .. -- --,...-- c= Ely} .. -- --..,-; --------i( 
""",,,~-- !p(x) = E{ylx} 

e-'''' -----x 

S s 

(a) (b) 

FIGURE 7·2 

we might use as the estimate of y a function c(x) of the random variable x. The resulting 
problem is the optimum detennination of this function. 

It might be argued that, if at a certain trial we observe x(n. then we can determine 
the outcome, of this trial, and hence also the corresponding value y(,) of y. This, however, 
is not so. The samenumberx(O = x is observed for every , in the set (x = x} (Fig. 7·2b). 
If, therefore, this set has many elements and the values of y are different for the various 
elements of this set, then the observed xC,) does not determine uniquely y(~). However, 
we know now that, is an element of the subset {x = xl. This information reduces the 
uncertainty about the value of y. In the subset (x = xl, the random variable x equals x 
and the problem of determining c(x) is reduced to the problem of determining the constant 
c(x). As we noted, if the optimality criterion is the minimization of the MS error, then c(x) 
must be the average of y in this set. In othec words, c(x) must equal the conditional mean 
of y assuming that x = x. 

We shall illustrate with an example. Suppose that the space S is the set of all children 
in a community and the random variable y is the height of each child. A particular outcome 
, is a specific child and yen is the height of this child. From the preceding discussion it 
follows that if we wish to estimate y by a number, this number must equal the mean of y. 
We now assume that each selected child is weighed. On the basis of this observation, the 
estimate of the height of the child can be improved. The weight is a random variable x: 
hence the optimum estimate of y is now the conditional mean E (y I x} of y assuming x = x 
where x is the observed weight. 

In the context of probability theory, the MS estimation of the random variable y by 
a constant c can be phrased as follows: Find c such that the second moment (MS error) 

e = E{(y - C)2} = I: (y - ci f(y) dy (7·68) 

of the difference (error) y - c is minimum. Clearly. e depends on e and it is minimum if 

de = 100 
2(y - c)f(y) dy = 0 

de -00 

that is, if 
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Thus 

c = E{y} = 1: yfCy) dy (7-69) 

This result is well known from mechanics: The moment of inertia with respect to a point 
c is minimum if c is the center of gravity of the masses. 

NONLINEAR MS FSTIMATION. We wish to estimate y not by a constant but by a 
function c(x) of the random variable x. Our problem now is to find the function c(x) 
such that the MS error 

e = E{[y - C(X)]2} = 1: 1: [y - c(x»)2f(x, y) dx dy (7-70) 

is minimum. 
We maintain that 

c(x)=E{ylx}= I:Yf(Y'X)dY 

Proof. Since fex, y) = fey I xl/ex), (7-70) yields 

e = I: fex) 1: [y - C(x)]2 fey Ix)dydx 

(7-71) 

These integrands are positive. Hence e is minimum if the inner integral is minimum for 
every x. This integral is of the form (7-68) if c is changed to c(x), and fey) is changed 
to fey I x). Hence it is minimum if c(x) equals the integral in (7-69), provided that fey) 
is changed to fey Ix). The result is (7-71). 

Thus the optimum c(x) is the regression line <p(x) of Fig. 6-33. 
As we noted in the beginning of the section. if y = g(x), then E{y I xl = g(x): 

hence c(x) = g(x) and the resulting MS erroris O. This is not surprising because, ifx is 
observed and y = g(x). then y is determined uniquely. 

If the random variables x and y are independent, then E {y I x} = E {y} = constant. 
In this case, knowledge of x has no effect on the estimate of y. 

Linear MS Estimation 

The solution of the nonlinear MS estimation problem is based on knowledge of the 
function <p(x). An easier problem, using only second-order moments, is the linear MS 
estimation of y in terms of x. The resulting estimate is not as good as the nonlinear 
estimate; however. it is used in many applications because of the simplicity of the solution. 

The linear estimation problem is the estimation of the random variable y in terms 
of a linear function Ax + B of x. The problem now is to find the constants A and B so 
as to minimize the MS error 

e = E{[y - (Ax + B)]2} (7-72) 

We maintain that e = em is minimum if 

A = ~ = r(Jy 

"'20 (Jx 
B = 11, - Al1x (7-73) 
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and 
2 

J.LII 212 em = J.L02 - - = aye - r ) 
J.L20 

(7-74) 

Proof. For a given A, e is the MS error of the estimation of y - Ax by the constant 
B. Hence e is minimum if B = E{y - Ax} as in (7-69). With B so determined. (7-72) 
yields 

e = E{[(y - 11),) - A(x -11x)f} = u; - 2Aruxay + A2a; 
This is minimum if A = ra) / (Ix and (7 -73) results. Inserting into the preceding quadratic. 
we obtain (7-74). 

TERMINOLOGY. In the above. the sum Ax + B is the nonhomogeneous linear estimate 
of y in terms of x. If y is estimated by a straight line ax passing through the origin. the 
estimate is called homogeneous. 

The random variable x is the data of the estimation, the random variable e = y -
(Ax + B) is the error of the estimation, and the number e = E {82} is the MS error. 

FUNDAMENTAL NOTE. In general, the nonlinear estimate cp(x) = E[y I x} of y in 
terms ofx is not a straight line and the resultingMS error EUy - cp(X)]2} is smaller than 
the MS error em of the linear estimate Ax + B. However, if the random variables x and 
y are jointly nonnal, then [see (7-60)] 

rayx rayYJx 
cp(x) = - + 11), - --

Ux ax 

is a straight line as in (7-73). In other words: 

For normal random variables. nonlinear and linear MS estimates are identical. 

The Orthogonality Principle 

From (7-73) it follows that 

E{[y - (Ax + B»)x) = 0 (7-75) 

This result can be derived directly from (7-72). Indeed, the MS en·or,.e is a function of 
A and B and it is minimum if oe/oA = 0 and oe/3B = O. The first equation yields 

oe 
aA = E{2[y - (Ax + B)](-x)} = 0 

and (7-75) results. The interchange between expected value and differentiation is equiV­
alent to the interchange of integration and differentiation. 

Equation (7-75) states that the optimum linear MS estimate Ax + B of y is such 
that the estimation error y - (Ax + B) is orthogonal to the data x. This is known as the 
orthogonality principle. It is fundamental in MS estimation and will be used extensively. 
In the following, we reestablish it for the homogeneous case. 
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HOMOGENEOUS LINEAR MS ESTIMATION. We wish to find a constant a such that, 
if y is estimated by ax, the resulting MS error 

(7-76) 

is minimum. We maintain that a must be such that 

E{(y - ax)x} = 0 (7-77) 

Proof. Oeady, e is minimum if e'(a) = 0; this yields (7-TI). We shall give a second 
proof: We assume that a satisfies (7-77) and we shall show that e is minimum. With a 
an arbitrary constant, 

. E{(y - ax)2} = E{[(y - ax) + (a - a)x]2) 

= E{(y - ax)2} + (a - a)2E{x2) + 2(a - a)E{(y - ax)x} 

Here, the last term is 0 by assumption and the second term is positive. From this it follows 
that 

for any a; hence e is minimum. 
The linear MS estimate of y in terms of x will be denoted by E {y I x}. Solving 

(7-77), we conclude that 

MS error Since 

E{xy} 
a = E{X2} (7-78) 

e = E{(y - ax)y} - E{(y - ax)ax} = E{i} - E{(ax)2} - 2aE{(y - ax)x} 

we conclude with (7-77) that 

(7-79) 

We note finally that (7-TI) is consistent with the orthogonality principle: The error 
y - ax is orthogonal to the data x. 

Geometric interpretation of the orthogonality principle. In the vector representation 
of random variables (see Fig. 7-3), the difference y - ax is the vector from the point ax 
on the x line to the point y, and the length of that vector equals ..;e. Clearly, this length 
is minimum if y - ax is perpendicular to x in agreement with (7-77). The right side of 
(7-79) follows from the pythagorean.theor:em and the middle term states that the square 
of the length of y - ax equals the inner product of y with the error y - ax. 

(y - tnt).l x 

./'l-~ 
ax x FIGURE 7-3 



266 PROBABDJTY.ANPRANOOM VARIABLES 

. Risk and loss functions. We conclude with a brief comment on other optimality criteria 
limiting the discussion to the estimation of a random variable y by a constant c. We seleet 
a function L (x) and we choose c so as to minimize the mean 

R = E{L(y - c)} = I: L(y - c)f(y) dy 

of the random variable Us - c). The function L (x) is called the loss function and the 
constant R is called the average risk. The choice of L (x) depends on the applications. If 
L(x) = x2, then R = E{(y- C)2} is the MSerror and as we have shown, it is minimum 
ife = E{y}. 

If L(x) = Ixl. then R = EUy - cll. We maintain that in this case, c equals the 
median YO.S ofy (see also Prob. 5-32). 

Proof. The average risk equals 

R = I: Iy - clf(y) dy = [~(C - y)f(y) dy + [00 (y - c)f(y) dy 

Differentiating with respect to c, we obtain 

dR I c [00 - = fey) dy - ICy) dy = 2F(e) - 1 
de -00 C 

Thus R is minimum if F(c) = 1/2, that is. if e = YO.S. 

Next, we consider the general problem of estimating an unknown s in terms of n 
random variables XI- Xl •.••• Xn' 

LINEAR ESTIMATION (GENERAL CASE). The linear MS estimate of s in terms of the 
random variables Xi is the sum 

(7-80) 

where aJ, ..•• an are n constants such that the MS value 

(7-81) 

of the estimation error s - § is minimum. " 

Orthogonality prindple. P is minimum if the error s - i is orthogonal to the data Xi: 

i = 1, ...• n 

Proof. P is a function of the constants aj and it is minimum if 

ap 
- = E{-2[s - (alxl + ... + anx,,)]Xi} = 0 
8aj 

(7-82) 
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and (7-82) results. This important result is known also as the projection theorem. Setting 
i = I, ... , n in (7-82), we obtain the system 

RlIa, + R21a2 + ... + Rnlan = ROI 

Rlzal + RZZa2 + ... + Rn2an = R02 

Rlna, + R2na2 + ... + Rnnan = ROIl 

where Rij = E{X;x)} and ROj = E{sxj}. 
To solve this system, we introduce the row vectors 

x = [Xl, ••. , XII] A = La' .... , an] Ro = [ROI' ... , ROn] 

(7-83) 

and the data correlation matrix R = E{X'X}. whereXr is the transpose ofX. This yields 

AR=Ro (7-84) 

Inserting the constants aj so determined into (7-81), we obtain the least mean 
square (LMS) error. The resulting expression can be simplified. Since s - & .1. X; for 
every i, we conclude that s - § .1. §: hence 

P = E{(s - §)s} = E(S2} - AR'o (7-85) 

Note that if the rank of R is m < n, then the data are linearly dependent. In this case, 
the estimate i can be written as a linear sum involving a subset of m linearly independent 
components of the data vector X. . 

Geometric interpretation. In the representation of random variables as vectors in an 
abstract space, the sum § = a,xI + ... +anxn is a vectorin the subspace Sn of the data X/ 

and the error e = s - § is the vector from s to § as in Fig. 7-4a. The projection theorem 
states that the length of e is minimum if e is orthogonal to Xi, that is, if it is perpendicular 
to the data subspace Sn. The estimate § is thus the "projection" of s on Sn. 

If s is a vector in Sn, then § = sand P = O. In this case, the n + 1 random variables 
S, x I, ••• , Xn are linearly dependent and the determinant Lln+ I of their correlation matrix 
is O. If s is perpendicular to S'I> then § = 0 and P = E{lslz}. This is the case if sis 
orthogonal to all the data X;. that is, if ROj = 0 for j :f: O. 

~ 

FIGURE 7-4 

(a) (b) 
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NOnhemogeneous estimation. The estimate (1-80) can be improved if a constant is 
added to the sum. The problem now is to determine n + 1 parameters ak such that if 

(7-86) 

then the resulting MS error is minimum. This problem can be reduced to the homogeneous 
case if we replace the term ao by the product aoXo. where Xo == 1. Applying (7-82) to 
the enlarged data set 

we obtain 

where E{XoX;} = {EI (Xi) = 71; i =F 0 
i=O 

aO + 711a ) + ... + 7'lnan = 7Js 

7'llao + Rna, + ... + R1nan = ROl 

71nao + Rnla, + ... + Rntlan = Ron 

(7-87) 

Note that, if71.t = 71; = O. then (7-87) reduces to (7-83). This yields ao = 0 and an = a". 

Nonlinear estimation. The nonlinear MS estimation problem involves the detennina­
tion of a function g(Xl •...• xn) = g{X) of the data Xi such as to minimize the MS 
error 

(7-88) 

We maintain that P is minimum if 

g(X) = E{sIX} = I: s!s(sIX)ds (7-89) 

The function Is (s I X) is the conditional mean (regression surface) of the random variable 
s assuming X = X. 

Proof. The proof is based on the identity [see (7-42)] 

P = E{[s - g(X)]2} = E{E{[s - g(X)]2IX}} (7-90) 

Since all quantities are positive. it follows that P is minimum if the conditional MS error 

E{[s - g(X)]21 Xl = J: [9 - g(X)]2!s(sl X) ds " (7-91) 

is minimum. In the above integral. g(X) is constant. Hence the integral is minimum if 
g(X) is given by (7-89) [see also (7-71)]. 

The general orthogonality principle. From the projection theorem (7-82) it foIlows 
that 

(7-92) 

for any CI ••••• Cn- This shows that if i is the linear MS estimator of s, the estimation 
errors - i is orthogonal to any linear function y = CtXt + . --+ CnXn of the data X;. 
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We shall now show that if g(X) is the nonlinear MS estimator of s, the estimation 
error s - g(X) is orthogonal to any function w(X), linear or nonlinear. of the data Xi: 

E{[s - g(X)]w(X)} = 0 (7-93) 

Proof. We shall use the following generalization of (7-60): 

EUs - g(X)]w(X)} = E{w(X)E{s - g(X) I X}} (7-94) 

From the linearity of expected values and (7-89) it follows that 

E{s - g(X) IX} = E{sl X} - E{g(X) I X} = 0 

and (7-93) results. 

Normality. Using the material just developed, we shall show that if the random variables 
s, XI, •.. , Xn are jointly normal with zero mean, the linear and nonlinear estimators of s 
are equal: 

§ = atXl + ... + all X" = g(X) = E{s IX} (7-95) 

Proof. To prove (7-93), it suffices to show that § = E{s I Xl. The random variables s - S 
and X; are jointly normal with zero mean and orthogonal; hence they are independent. 
From this it follows that 

E(s - s I X} = E{s - 5} = 0 = E{s I Xl - E{5 I Xl 

and (7 -95) results because E {s I Xl = 5. 

Conditional densities of normal random variables. We shall use the preceding result 
to simplify the determination of conditional densities involving normal random vari­
ables. The conditional density fs (s I X) of s assuming X is the ratio of two exponentials 
the exponents of which are quadratics, hence it is normal. To detennine it, it suffices, 
therefore. to find the conditional mean and variance of s. We maintain that 

E{s I X} = ~ (7-96) 

The first follows from (7-95). The second follows from the fact that s - s is orthogonal 
and, therefore, independent of X. We thus conclude that 

f(s I X X ) - _l_e-(s-<a,.K, + .. ·+a • .K.)}'/2P (7-97) 
It ••• , " - "';2rr P . 

~ The random variables Xl and X2 are jointly normal with zero mean. We shall determine 
their conditional density f(x21 Xl). As we know [see (7-78)] 

RJ2 
. E {x21 xtl = axl a = -

RIl 

U;11.KI = P = E{(X2 - aXt)X2} = R22 - aR12 
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EXAMPLE 7-12 

EXAl\IPLE 7-13 

InsertiJig into (7-97), we obtain 

Itx2!X.) = _1_e-(X1-axl )2/2P, 
J21TP 

~ We now wish to find the conditional density 1 (X3 I Xl. X2). In this case, 

E{X31 Xl, X2} = alxl + a2X2 

where the constants a, and a2 are determined from the system 

RlIal + RI2Q2 = RI3 

Furthermore [see (7-96) and (7-85)] 

o-;,IXf,X2 = p = R33 - (Rl3a l + R23a2) 

and (7-97) yields 

~ In this example, we shall find the two-dimensional density I(X2, x31 XI). This in­
volves the evaluation of five parameters [see (6-23)]; two conditional means, two con­
ditional variances, and the conditional covat1ance of the random variables X2 and X3 

assuming XI. 

The first four parameters are determined as in Example 7-11: 

RI2 RI3 
E{x21 xd = -R XI E{x31 x11 = -Xl 

11 Ru 

The conditional covariance 

CX2~lxl =E{ (X2- ~:~XJ)(X3- ~::Xl)IXI =Xl} (7-98) 

is found as follows: We know that the errors X2 - R12xl/ RlI and X3 - R13xI/ Ru are 
independent of XI. Hence the condition XI = XI in (7-98) can be removed. Expanding 
the product, we obtain 

RI2R13 
CX2X31XI = R23 --R 

11 

This completes the specification of 1 (X2 , X3 I x I)' .... 

Orthon<~rmal Data Transformation 

If the data Xi are orthogonal, that is. if Rij = 0 for i =F j, then R is a diagonal matrix 
and (7-83) yields 

ROI E{sx,} 
a/=-=-

Ru E{~} 
(7-99) 
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Thus the determination of the projection § of s is simplified if the data Xi are expressed 
in terms of an orthonormal set of vectors. This is done as follows. We wish to find a set 
{Zk} of n orthononnal random variables Zk linearly equivalent to the data set {x.t}. By 
this we mean that each Zk is a linear function of the elements of the set {Xk} and each 
x.t is a linear function of the elements of the set {Zk}. The set {Zk} is not unique. We 
shall determine it using the Gram-Schmidt method (Fig. 7-4b).1n this method, each Zk 

depends only on the first k data Xl •.•.• Xk. Thus 

Zl = ylx) 
Z2 = y[x) + yiX2 (7-100) 

Zn = yjxI + YiX2 + ... + y:xn 

In tlie notation y:. k is a superscript identifying the kth equation and r is a subscript 
taking the values 1 to k. The coefficient Yl is obtained from the nonnalization condition 

E{zH = (yl)2RIl = 1 

To find the coefficients Yf and Y~. we observe that Z21. XI because Z2 1. ZI by assumption. 
From this it follows that 

E{Z2Xd = 0 = y~Rll + y~R21 
The condition E{~} = 1 yields a second equation. Similarly, since Zk l.z, for r < k, 
we conclude from (7-100) that Zk 1. Xr if r < k. Multiplying the kth equation in (7-100) 
by Xr and using the preceding development, we obtain 

E{ZkXr) = 0 = yf Rlt + ... + yf Rkr (7-101) 

This is a system of k - 1 equations for the k unknowns yf, ... , yf. The condition 
E(zi} = 1 yields one more equation. 

The system (7-100) can be written in a vector fonn 

z=xr 
where Z is a row vector with elements Zk. Solving for X. we obtain 

Xl = 1lz1 X = zr-1 = ZL 

X2 = qZl +IiZ2 

Xn = Ifzl + liZz + ... + l;zlI 

In the above. the matrix r and its inverse are upper triangular 

[
YI Y~ ••. yf I 

Y2 •.• Yi 
r= ..... . 

o 
Y: 

[

11 11 
Ii 

L= 
o 

Since E{ztzj} = 8[; - j] by construction, we conclude that 

E{Z'Z} = I" = E{rtX'Xf} = rt E{X'X}r 

In I ~. 
[" 
" 

(7-102) 

(7-103) 

(7-104) 
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where 1;1 is the identity matrix. Hence 

r'Rr = 1'1 R = V L (7-105) 

We have thus expressed the matrix R and its inverse R- I as products of an upper triangular 
and a lower triangular matrix {see also Cholesky factorization (13-79)]. 

The orthonormal base (zn) in (7-100) is the finite version of the innovatiOJaS process 
i[n] introduced in Sec. (11-1). The matrices r and L correspond to the whitening filter 
and to the innovations filter respectively and the factorization (7-105) corresponds to the 
spectral factorization (11-6). 

From the linear equivalence of the sets {Zk} and {Xk}, it follows that the estimate 
(7 -80) of the random variable s can be expressed in terms of the set {Zk}: 

§ = btzi + ... +bnz" = BZ' 

where again the coefficients bk are such that 

This yields [see (7-104)] 

E{(s - BZ')Z} = 0 = E{sZ} - B 

from which it follows that 

B = E{sZ} = E{sXr} = Ror 

Returning to the estimate (7-80) of s, we conclude that 

§ = BZ' = Br'X' = AX' A = Br' 
This simplifies the determination of the vector A if the matrix r is known. 

7·4 STOCHASTIC CONVERGENCE 
AND LIMIT THEOREMS 

(7-106) 

(7-107) 

. A fundamental problem in the theory of probability is the determination of the asymptotic 
properties of random sequences. In this section, we introduce the subject, concentrating 
on the clarification of the underlying concepts. We start with a simple problem. 

Suppose that we wish to measure the length a of an object. Due to measurement 
inaccuracies, the instrument reading is a sum 

x=a+1I 

where II is the error term. If there are no systematic errors, then ., is a random variable 
with zero mean. In this case, if the standard deviation (J of., is small compared to a, 
then the 'observed value x(~) of x at a single measurement is a satisfactory estimate of 
the unknown length a. In the context of probability, this conclusion can be phrased as 
follows: The mean of the random variable x equals a and its variance equals (J2. Applying 
Tcbebycheff's inequality, we conclude that 

(J2 

P{lx - al < e) > 1 - - (7-108) 
e2 

If, therefore. (J « e, then the probability that Ix - al is less than that e is close to 1. 
From this it follows that "almost certainly" the observed x({) is between a - e and 
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a + e, or equivalently, that the unknown a is between x(~) - e and xCO + e. In other 
words, the reading xC~) of a single measurement is "almost certainly" a satisfactory 
estimate of the length a as long as (1 « a. If (1 is not small compared to a, then a single 
measurement does not provide an adequate estimate of a. To improve the accuracy, we 
perform the measurement a large number of times and we average the resulting readings. 
The underlying probabilistic model is now a product space 

S"=SX"'XS 

formed by repeating n times the experiment S of a single measurement. If the measure­
ments are independent, then the ith reading is a sum 

Xi = a + Vi 

where the noise components Vi are independent random variables with zero mean and 
variance (12. This leads to the conclusion that the sample mean 

x = XI + ... + x" (7-109) 
n 

of the measurements is a random variable with mean a and variance (12/ n. If, therefore, 
n is so large that (12 «na2, then the value x(n of the sample mean x in a single 
performance of the experiment 5" (consisting of n independent measurements) is a 
satisfactory estimate of the unknown a. 

To find a bound of the error in the estimate of a by i, we apply (7-108) .. To be 
concrete. we assume that n is so large that (12/ na2 = 10-4, and we ask for the probability 
that X is between 0.9a and 1.1a. The answer is given by (7-108) with e = 0.1a. 

l00cT2 
P{0.9a < x < l.1a} ::: 1 - -- = 0.99 

n 

Thus, if the experiment is performed n = 1 (f (12 / a2 times, then "almost certainly" in 
99 percent of the cases, the estimate x of a will be between 0.9a and 1.1a. Motivated by 
the above. we introduce next various convergence modes involving sequences of random 
variables. 

~ A random sequence or a discrete-time random process is a sequence of random 
variables 

Xl,. ~ ·~Xn'··. (7-110) 

.... 
For a specific ~ . XII (~) is a sequence of numbers that might or might not converge. 

This su.ggests that the notion of convergence of a random sequence might be given several 
interpretations: 

Convergence everywhere (e) As we recall, a sequence of numbers Xn tends to a 
limit x if, given e > 0, we.can find a number no such that 

Ix" -xl < e for every n > no (7-111) 
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We say that a random sequence Xn converges everywhere if the sequence of num~ 
bers Xn(~) converges as in (7-111) for every s. The limit is a number that depends, in 
general, on s. In other words, the limit of the random sequence Xn is a random variable x: 

as n -+- 00 

Convergence almost everywhere (a.e.) If the set of outcomes { such that 

as n-+oo 

exists and its probability equals I, then we say that the sequence Xn converges almost 
everywhere (or with probability 1). This is written in the fonn 

P{X'I -+ x} = 1 as n --+ 00 

10"(7-113), {xn -+ x} is an event consisting of all outcomes s such that xn({) --+ x<n. 
Convergence in the MS sense (MS) The sequence X'I tends to the random vari. 

able x in the MS sense if 

as n --+ 00 (7-114) 

This is called 
it limit in the mean and it is often written in the form 

l.i.m. Xn = x 

Convergence in probobUity (P) The probability P{lx - xnl > 8} of the event 
{Ix - Xn I > e} is a sequence of numbers depending on e. If this sequence tends to 0: 

P{lx - xnl > e} -+ 0 n -+ 00 (7-115) 

for any s > 0, then we say that the sequence X1/ tends to the random variable x in prob­
ability (or in measure). This is also called stochastic convergence. 

Convergence in distribution (d) We denote by Fn(x) and F(x), respectively, the 
distribution of the random variables Xn and x. If 

n --+ 00 (7-116) 

for every point x of continuity of F(x), then we say that the sequence Xn tends to the 
random variable x in distribution. We note that, in this case, the sequence Xn ({) need not 
converge for any s-

Cauchy criterion As we noted, a detenninistic sequence Xn converges if it sat­
isfies (7-111). This definition involves the limit x of Xn• The following theorem, known 
as the Cauchy criterion, establishes conditions for the convergence of Xn that avoid the 
use of x: If 

as n-+OO (7-117) 

for any m > 0, then the sequence Xn converges. 
The above theorem holds also for random sequence. In this case, the limit must be 

interpreted accordingly. For example, if 

as n-+oo 

for every m > 0, then the random sequence Xn converges in the MS sense. 
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Comparison of coDl'ergence modes. In Fig. 7-5, we show the relationship between 
various convergence modes. Each point in the rectangle represents a random sequence. 
The letter on each curve indicates that all sequences in the interior of the curve converge 
in the stated mode. The shaded region consists of all sequences that do not converge in 
any ·sense. The letter d on the outer curve shows that if a sequence converges at all, then 

distribution. We comment obvious comparisons: 
""''1t'"'''''''''' converges in the MS converges in probability. 

inequality yields 

P{lXII - xl> 

If X,I -+ x in the MS sense, then for a fixed e > 0 the right side tends to 0; hence the 
left side also tends to 0 as n -+ 00 and (7-115) follows. The converse, however, is not 
necessarily true. If Xn is not bounded, then P {Ix,. - x I > e} might tend to 0 but not 
E{lx,. - xI2}. If, however, XII vanishes outside some interval (-c, c) for every n > no. 
then p convergence and MS convergence are equivalent. 

It is self-evident that a.e. convergence in (7-112) implies p convergence. We shall 
heulristic argument that the In Fig. 7-6, we plot the 

as a function of n, sequences are drawn 
represents, thus. a - x(~)I. Convergence 

means that for a specific n percentage of these curves 
VU",IU'~'"," that exceed e (Fig. possible that not even one 

remain less than 6 for Convergence a.e .• on the other 
hand, demands that most curves will be below s for every n > no (Fig. 7-6b). 

The law of large numbers (Bernoulli). In Sec. 3.3 we showed that if the probability of 
an event A in a given experiment equals p and the number of successes of A in n trials 

n 

(0) (b) 

FIGURE7~ 
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equals k, then 

as n~oo (7-118) 

We shall reestablish this result as a limit of a sequence of random variables. For this 
purpose, we introduce the random variables 

Xi = {I if A occurs at the ith trial 
o otherwise 

We shall show that the sample mean 
_ Xl + ... + XII x,,=-----

n 

of these random variables tends to p in probability as n ~ 00. 

Proof. As we know 

E{x;} = E{x,,} = p 

Furthennore, pq = p(1- p) :::: 1/4. Hence [see (5-88)] 

PHx" - pi < e} ~ 1 - PQ2 ~ 1 - ~2 ---+ 1 
ne 4ne n-+oo 

This reestablishes (7-118) because in({) = kIn if A occurs k times. 

The strong law of large numbers (Borel). It can be shown that in tends to p not only 
in probability, but also with probability 1 (a.e.). This result, due to Borel, is known as the 
strong law of large numbers. The proof will not be given. We give below only a heuristic 
explanation of the difference between (7-118) and the strong law of large numbers in 
terms of relative frequencies. 

Frequency interpretation We wish to estimate p within an error 8 = 0.1. using as its 
estimate the S8(llple mean ill' If n ~ 1000, then 

Pllx" - pi < 0.1) > 1- _1_ > 39 
- 4ns2 - 40 

Thus, jf we repeat the experiment at least 1000 times, then in 39 out of 40 such runs, our 
error Ix" - pi will be less than 0.1. 

Suppose, now, that we perform the experiment 2000 times and we determine the 
sample mean in not for one n but for every n between 1000 and 2@O. The Bernoulli 
version of the law of large numbers leads to the following conclusion: If our experiment 
(the toss of the coin 2000 times) is repeated a large number of times. then, for a specific 
n larget' than 1000, the error lX" - pi will exceed 0.1 only in one run out of 40. In other 

. words, 97.5% of the runs will be "good:' We cannot draw the conclusion that in the good 
runs the error will be less than 0.1 for every n between 1000 and 2000. This conclusion, 
however, is correct. but it can be deduced only from the strong law of large numbers. 

Ergodicity. Ergodicity is a topic dealing with the relationship between statistical aver­
ages and sample averages. This topic is treated in Sec. 11-1. In the following, we discuss 
certain results phrased in the form of limits of random sequences. 
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Markov's theorem. We are given a sequence Xi of random variables and we form their 
sample mean 

XI +, .. +xn 
xn =-----

n 
Clearly, X,I is a random variable whose values xn (~) depend on the experimental outcome 
t. We maintain that, if the random variables Xi are such that the mean 1f'1 of xn tends to 
a limit 7J and its variance ({" tends to 0 as n -+ 00: 

E{xn } = 1f,1 ---+ 11 ({; = E{CXn -1f,i} ---+ 0 (7-119) 
n ...... oo n~oo 

then the random variable XII tends to 1'/ in the MS sense 

E{(Xn - 11)2} ---+ 0 (7-120) 
"-+00 

Proof. The proof is based on the simple inequality 

I~ - 7112 ::: 21x" -1f" 12 + 211f'1 - 7112 

Indeed, taking expected values of both sides, we obtain 

E{(i" -l1)l} ::: 2E{(Xn -771/)2) + 2(1f" - 1'/)2 

and (7-120) follows from (7-119). 

t> (Tchebycheff's condition.) If the random variables Xi are uncorrelated and 

then 
1 n 

in ---+ 1'/ = lim - '" E{Xi} n ..... oo n ..... oo n L..J 
;=1 

in the MS sense. 

(7-121) 

PrtHJf. It follows from the theorem because, for uncorrelated random variables, the left side of 
(7-121) equals (f~. 

We note that Tchebycheff's condition (7-121) is satisfied if (1/ < K < 00 for every i. This is 
the ease if the random variables Xi are i.i.d. with finite variance, ~ 

Khinchin We mention without proof that if the random variables Xi are i.i.d., 
then their sample mean in tends to 11 even if nothing is known about their variance. In 
this case, however, in tends to 11 in probability only, The following is an application: 

~ We wish to determine the distribution F(x) of a random variable X defined in a 
certain experiment. For this purpose we repeat the experiment n times and form the 
random variables Xi as in (7-12). As we know, these random variables are i.i,d. and their 
common distribution equals F(x). We next form the random variables 

{ I if Xi::x 
Yi(X) = 0 'f 

1 X, > x 
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where x is a fixed number. The random variables Yi (x) so formed are also i.i.d. and their 
mean equals 

E{Yi(X)} = 1 x P{Yi = I} = Pix; !:: x} = F(x) 

Applying Khinchin's theorem to Yi (x), we conclude that 

Yl(X) + ... +YII(X) ---7 F(x) 
n 11_00 

in probability. Thus, to determine F(x), we repeat the original experiment n times and 
count the number of times the random variable x is less than x. If this number equals 
k and n is sufficiently large, then F (x) ~ k / n. The above is thus a restatement of the 
relative frequency interpretation (4-3) of F(x) in the form of a limit theorem. ~ 

The Central Limit Theorem 

Given n independent random variables Xi, we form their sum 

X=Xl + ",+xlI 

This is a random variable with mean 11 = 111 + ... + 11n and variance cr2 = O't + ... + cr;. 
The central limit theorem (CLT) states that under certain general conditions, the distri­
bution F(x) of x approaches a normal distribution with the same mean and variance: 

F(x) ~ G (X ~ 11) (7-122) 

as n increases. Furthermore, if the random variables X; are of continuous type, the density 
I(x) ofx appro~ches a normal density (Fig. 7-7a): 

f(x) ~ _1_e-(x-f/)2/2q2 

0'$ 
This important theorem can be stated as a limit: If z = (x - 11) / cr then 

1 _ 1/2 
f~(z) ---7 --e ~ 

n_oo $ 

(7-123) 

for the general and for the continuous case, respectively. The proof is outlined later. 
The CLT can be expressed as a property of convolutions: The convolution of a 

large number of positive functions is approximately a normal function [see (7-51)]. 

x o x 
(a) 

FIGURE 7-7 
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The nature of the CLT approxlInation and the required value of n for a specified 
error bound depend on the form of the densities fi(x). If the random variables Xi are 
Li.d., the value n = 30 is adequate for most applications. In fact, if the functions fi (x) 
are smooth, values of n as low as 5 can be used. The next example is an illustration. 

~ The random variables Xi are i.i.d. and unifonnly distributed in the interval (0, }). We 
shall compare the density Ix (x) of their swn X with the nonnal approximation (7-111) 
for n = 2 and n = 3. In this problem, 

T T2 T T2 
7Ji = "2 al = 12 7J = n"2 (12 = nU 

n = 2 I (x) is a triangle obtained by convolving a pulse with itself (Fig. 7-8) 

n = 3 I(x) consists of three parabolic pieces obtained by convolving a triangle 
with a pulse 

3T 
7J= -2 

As we can see from the figure. the approximation error is small even for such small 
valuesofn ...... 

For a discrete-type random variable, F(x) is a staircase function approaching a 
nonna! distribution. The probabilities Pk> however, that x equals specific values Xk are, in 
general, unrelated to the nonna} density. Lattice-type random variables are an exception: 
If the random variables XI take equidistant values ak;, then x takes the values ak and for 
large n, the discontinuities Pk = P{x = ak} of F(x) at the points Xk = ak equal the 
samples of the normal density (Fig. 7-7b): 

1 fl.-x) 

f 

o T oX 0 

--f(x) 

.!. II e - 3(;c - n2n-2 
T";;; 

(/.I) (b) 

FIGURE 7·8 

0.50 
T 

o T 2T 3TX 

--f~) 

.!. fI e-2(%- I.3Trn-2 
T";;; 

(c) 

(7-124) 
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LX \\lI'Uc 7-)(, 

We give next an illustration in the context of Bernoulli trialS. The random variables Xi of 
Example 7-7 are i.i.d. taking the values 1 and 0 with probabilities p and q respectively: 
hence their sum x is of lattice type taking the values k = 0, '" . , n. In this case, 

E{x} = nE{x;) = np 

Inserting into (7-124), we obtain the approximation 

P{x = k} = (~) pkqn-k ~ ~e-(k-np)2/2npq (7-125) 

This shows that the DeMoivre-Laplace theorem (4-90) is a special case of the lattice-type 
form (7-124) of the central limit theorem. 

~ A fair coin is tossed six times and '" is the zero-one random variable associated with 
the event {beads at the ith toss}. The probability of k heads in six tosses equals 

P{x=k}= (~);6 =Pk x=xl+"'+X6 
In the following table we show the above probabilities and the samples of the 

normal curve N(TJ, cr2) (Fig. 7-9) where 

,,. .. np=3 0'2 = npq = 1.S 

k 0 1 2 3 4 S 6 
Pi 0.016 0.094 0.234 0.312 0.234 0.094 0.016 
N(".O') 0.ill6 0.086 0.233 0.326 0.233 0.086 0.016 

~ 

ERROR CORRECTION. In the approximation of I(x) by the nonna! curve N(TJ, cr2), 

the error 
1 _ 2!2fT2 

e(x) = I(x) - cr./iiie x 

results where we assumed. shifting the origin. that TJ = O. We shall express this error in 
terms of the moments 

mil = E{x"} " 

fx(x) _____ 1_e-(k-3)113 

lSi( 
, .. ..., , , , , , , 

.... T' 'T', 
0 1 2 3 A S 6 k FIGURE1-t) 
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of x and the Hermite polynomials 

H/r.(x) = (_1)kex1/ 2 dk e-x2 / 2 
dxk 

= Xk - (~) x k- 2 + 1 . 3 ( ! ) xk-4 + ... 

These polynomials form a complete orthogonal set on the real line: 

100 -X2/2H ( )U ( d _ {n!$ n =m 
e " X Um x) X - 0 -J. 

~ nTm 

Hence sex) can be written as a series 

sex) = ~e-rf2u2 f. CkHIr. (=-) 
(1 v 2:n- k .. 3 (J 

(7-126) 

(7-127) 

The series starts with k = 3 because the moments of sex) of order up to 2 are O. The 
coefficients Cn can be expressed in terms of the moments mn of x. Equating moments 
of order n = 3 and n = 4. we obtain [see (5-73)] 

First-order correction. From (7-126) it follows that 

H3(X) = x3 - 3x H4(X) = X4 - 6x2 + 3 

Retaining the first nonzero term of the sum in (7-127), we obtain 

1 x21'>_2 [ m3 (X3 3X)] I(x)~--e- ,- 1+- ---(1../iii 6cT3 (13 (1 
(7-128) 

If I(x) is even. then m3 = 0 and (7-127) yields 

1 )&2/20'2 [ I (m4 ) (x4 6x2 )] I(x)~ --e- 1+- - -3 - --+3 (1../iii 24 (14 (14 (12 
(7-129) 

~ If the random variables X; are i.i.d. with density f;(x) as in Fig. 7-10a. then I(x) 
consists of three parabolic pieces (see also Example 7-12) and N(O.1/4) is its normal 
approximation. Since I(x) is even and m4 = 13/80 (see Prob. 7-4), (7-129) yields 

I(x) ~ ~e-2x2 (1 _ 4x4 + 2x2 -..!..) = lex) V -; 15 5 20 -

In Fig. 7-lOb. we show the error sex) of the normal approximation and the first-order 
correction error I(x) -lex) . ..... 

ON THE PROOF OF THE CENTRAL LIMIT THEOREM. We shall justify the approx­
imation (7-123) using characteristic functions. We assume for simplicity that 11i = O. 
Denoting by 4>j(ru) and 4>(ru). respectively. the characteristic functions of the random 
variables X; and x = XI + ... + Xn. we conclude from the independence of Xi that 

4>(ru) = 4>1 (ru)· .. 4>,.(ru) 
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fl-x) 

---- >i2hre-ul 

n=3 -f(x) 
_._- fix) 

-0.5 0 0.5 1.0 1.5 x 

(a) 

FIGURE 7-10 

-0.05 

(b) 

Near the origin, the functions \II; (w) = In 4>;(w) can be approximated by a parabola: 

\II/(w) =::: _~ol{t)2 4>/(w) = e-ul(',,2j2 for Iwl < 8 (7-130) 

If the random variables x/ are of continuous type, then [see (5-95) and Prob. 5-29] 

<1>/(0) = 1 I <I>/(w) I < 1 for Iwl =F 0 (7-131) 

Equation (7-131) suggests that for smalls and large n, the function <I>(w) is negligible 
for Iwl > s, (Fig. 7-11a). This holds also for the exponential e-u2";/2 if (1 -+,00 as in 
(7-135). From our discussion it follows that 

_ 2 2/2 _ 2 2/" _-~ 2/2 <I>(w) ~ e u.lI) •• 'e u~'" .. = e <rID for all w (7-132) 

in agreement with (7-123). 
The exact form of the theorem states that the normalized random variable 

XI + ... + x,. 2 2 
Z = (1 = (1, + ... + (1; 

(1 

tends to an N(O, 1) random variable as n -+ 00: 

ft(z) ---+ _l_e-~/2 
n-+oo .J2ii (7-133) 

A general proof of 'the theorem is given later. In the following, we sketch a proof under 
the assumption that the random variables "I are i.i.d. In this case 

-8 0 8 

(a) 

FIGURE 7-11 

(1 = (11J"ii 

o 
(b) 

" 
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Hence, 

¢;:(W) = ¢7 = (U;~) 
Expanding the functions \l#j(w) = In ¢j(w) near the origin, we obtain 

Hence, 

u?-w2 3 
\l#i(W) = --'- + O(w ) 

2 

( W) w2 (1) w2 
\l#t(w) = nl,llj t= = -- + 0 t= ----.--

UjVn 2 vn n~oo 2 

This shows that <l>z(w) ~ e-w1/ 2 as n ~ 00 and (7-133) results. 

(7-134) 

. As we noted, the theorem is not always true. The following is a set of sufficient 
conditions: 

(a) 
2 2 U 1 + ... + C1. ----. 00 

n 11-+00 
(7-135) 

(b) There exists a number a> 2 and a finite constant K such that 1: xa .fI(x)dx < K < 00 for all i (7-136) 

These conditions are not the most general. However, they cover a wide range of applications 
For example, (7-135) is satisfied if there exists a constant s > 0 such that U; > 8 for 
all i. Condition (7-136) is satisfied if all densities .fI(x) are 0 outside a finite interval 
(-c, c) no matter bow large. 

Lattice type The preceding reasoning can also be applied to discrete-type random 
variables. However, in this case the functions <l>j(w) are periodic (Fig. 7-11b) and their 
product takes significant values only in a small region near the points W = 211:nja. Using 
the approximation (7-124) in each of these regions, we obtain 

¢(w):::::: Le-<11(GI-nC</o)1/2 ~ = 211: (7-137) 
a 

II 

As we can see from (llA-l), the inverse of the above yields (7-124). 

The Berry-E"een theorem3 This theorem states that if 

E{r.} < cu?- all i 
1 - 1 

where c is some constant, then the distribution F (x) of the normalized sum 
_ Xl + ... + XII 
x=-----

U 

is close to the normal distribution G(x) in the following sense 

- 4c 
IF(x) - G(x)1 < -

U 

3 A:Papoulis: "Narrow-Band Systems and Gaussianity:' IEEE Transactions on /njorflllltion Theory. 
January (972. 

(7-138) 

(7-139) 
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Tne central limit theorem is a corollary of (7-139) because (7-139) leads to the 
conclusion that 

F(x) -? G(x) as 0' -? 00 (7-140) 

This proof is based on condition (7-138). This condition, however, is not too restrictive. 
It holds, for example, if the random variables Xi are Li.d. and their third moment is finite. 

We note, finally, that whereas (7-140) establishes merely the convergence in dis­
tribution on to a normal random variable, (7-139) gives also a bound of the deviation 
of F (x) from normality. 

The central limit theorem for products. Given n independent positive random vari­
abl~s Xi, we form their product: 

X; > 0 

ttl~"«~f~1 ~ For large n, the density of y is approximately lognormal: 

EX \l\JPLE 7-IS 

fy(y) ~ yO'~ exp { - ~2 (lny - TJ)2} U(y) (7-141) 

where 
n n 

TJ = L,:E{lnxd 0'2 = L Var(ln Xi) 

i=1 ;=1 

Proof. The random variable 

z = Iny = Inxl + ... + In X" 

is the sum of the random variables In Xj. From the CLT it follows, therefore, that for large n, this 
random variable is nearly normal with mean 1/ and variance (J 2• And since y = e', we conclude 
from (5-30) that y has a lognormal density. The theorem holds if the random variables In X; satisfy 

. the conditions for the validity of the CLT. ~ 

~ Suppose that the random variables X; are uniform in the interval (0,1). In this case, 

E(In,,;} = 101 
Inx dx = -1 E(lnx;)2} = 101 

(lnX)2 dx = 2 

Hence 1] = -n and 0'2 = n. Inserting into (7-141), we conclude that the density of the 
product Y = Xl ••• Xn equals 

fy(y) ~ y~exp {-~ (lny +n)2} U(y) .... 

7-5 RANDOM NUMBERS: MEANING 
AND GENERATION 

Random numbers (RNs) are used in a variety of applications involving computer gen­
eration of statistical data. In this section, we explain the underlying ideas concentrating 
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on the meaning and generation of random numbers. We start with a simple illustration 
of the role of statistics in the numerical solution of deterministic problems. 

MONTE CARLO INTEGRATION. We wish to evaluate the integral 

1= 11 g(x)dx (7-142) 

For this purpose, we introduce a random variable x with uniform distribution in the 
interval (0, 1) and we fOfm the random variable y = g(x). As we know, 

E{g(x)} = 11 g(X)/x(x)dx = 11 g(x)dx (7-143) 

hen~e 77 y = I. We have thus expressed the unknown I as the expected value of the random 
variable y. This result involves only concepts; it does not yield a numerical method for 
evaluating I. Suppose, however, that the random variable x models a physical quantity 
in a real experiment. We can then estimate I using the relative frequency interpretation 
of expected values: We repeat the experiment a large number of times and observe the 
values Xi of x; we compute the cOlTesponding values Yi =g(Xi) of y and form their 
average as in (5-51). This yields 

1 
1= E{g(x)} ~ - 2:g(Xi) (7-144) 

n 
This suggests the method described next for determining I: 

The data Xi, no matter how they are obtained, are random numbers; that is, they are 
numbers having certain properties. If, therefore, we can numerically generate such num­
bers. we have a method for determining I. To carry out this method, we must reexamine 
the meaning of random numbers and develop computer programs for generating them. 

THE DUAL INTERPRETATION OF RANDOM NUMBERS. "What are random num­
bers? Can they be generated by a computer? Is it possible to generate truly random 
number sequences?" Such questions do not have a generally accepted answer. The rea­
son is simple. As in the case of probability (see Chap. I), the term random numbers has 
two distinctly different meanings. The first is theoretical: Random numbers are mental 
constructs defined in terms of an abstract model. The second is empirical: Random num­
bers are sequences of real numbers generated either as physical data obtained from a 
random experiment or as computer output obtained from a deterministic program. The 
duality of interpretation of random numbers is apparent in the following extensively 
quoted definitions4 : 

A sequence of numbers is random if it has every property that is shared by all infinite 
sequences of independent samples of random variables from the uniform distribution. 
(1. M. Franklin) 

A random sequence is a vague notion embodying the ideas of a sequence in which each 
term is unpredictable to the uninitiated and whose digits pass a certain number of tests, 
traditional with statisticians and depending somewhat on the uses to which the sequence is 
to be put. (D. H. Lehmer) 

4D. E. Knuth: The Art o/Computer Programming, Addison-Wesley, Reading. MA, 1969. 
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It is obvious that these definitions cannot have the same meaning. Nevertheless, 
both are used to define random number sequences. To avoid this confusing ambiguity, we 
shall give two definitions: one theoretical. the other empirical. For these definitions We 

shall rely solely on the uses for which random numbers are intended: Random numbers 
are used to apply statistical techniques to other fields. It is natural, therefore, that they 
are defined in terms of the corresponding probabilistic concepts and their properties as 
physically generated numbers are expressed directly in terms of the properties of real 
data generated by random experiments. 

CONCEPTUAL DEFINITION. A sequence of numbers Xi is called random if it equals 
the samples Xi = Xi (~) of a sequence Xi of i.i.d. random variables Xi defined in the space 
of repeated trials. 

It appears that this definition is the same as Franklin's. There is, however, a subtle 
but important difference. Franklin says that the sequence Xi has every property shared by 
U.d. random variables; we say that Xj equals the samples of the i.i.d. random variables 
Xi. In this definition. all theoretical properties of random numbers are the same as the. 
corresponding properties of random variables. There is, therefore, no need for a new 
theory. 

EMPIRICAL DEFINITION. A sequence of numbers Xi is called random if its statisti­
cal properties are the same as the properties of random data obtained from a random 
experiment. 

Not all experimental data lead to conclusions consistent with the theory of prob­
ability. For this to be the case, the experiments must be so designed that data obtained 
by repeated trials satisfy the i.i.d. condition. This condition is accepted only after the 
data have been subjected to a variety of tests and in any case, it can be claimed only 
as an approximation. The same applies to computer-generated random numbers. Such 
uncertainties, however, cannot be avoided no matter how we define physically gener­
ated sequences. The advantage of the above definition is that it shifts the problem of 
establishing the randomness of a sequence of numbers to an area with which we are 
already familiar. We can, therefore. draw directly on our experience with random experi­
ments and apply the well-established tests of randomness to computer-generated random 
numbers. 

Generation of Random Number Sequences 

Random numbers used in Monte Carlo calculations are generated mainly by computer 
programs; however, they can also be generated as observations of random data obtained 
from reB;1 experiments: The tosses of a fair coin generate a random sequence of O's 
(beads) and I's (tails); the distance between radioactive emissions generates a random 
sequence of exponentially distributed samples. We accept number sequences so gener­
ated as random because of our long experience with such experiments. Random number 
sequences experimentally generated are not. however, suitable for computer use, for ob­
vious reasons. An efficient source of random numbers is a computer program with small 
memory, involving simple arithmetic operations. We outline next the most commonly 
used programs. 
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Our objective is to generate random number sequences with arbitrary distribu­
tions. In the present state of the art, however, this cannot be done directly. The available 
algorithms only generate sequences consisting of integers Zi uniformly distributed in 
an interval (0, m). As we show later, the generation of a sequence XI with an arbi­
trary distribution is obtained indirectly by a variety of methods involving the uniform 
sequence Z/. 

The most general algorithm for generating a random number sequence Z; is an 
equation of the form 

Z" = !(z,,-lt ...• Zn-r) mod m (7-145) 

where! (Z,,-l, •••• ZII-r) is a function depending on the r most recent past values of Zn. 

In this notation, z" is the remainder of the division of the number! (ZII-l, ••• , ZII-' ) by m. 
This is a nonlinear recursion expressing Z'I in terms of the constant m, the function/. and 
the initial conditions z 1 ••.•• Z, -1. The quality of the generator depends on the form of 
the functionJ. It might appear that good random number sequences result if this function 
is complicated. Experience has shown, however. that this is not the case. Most algorithms 
in use are linear recursions of order 1. We shall discuss the homogeneous case. 

LEHMER'S ALGORITHM. The simplest and one of the oldest random number gener­
ators is the recursion 

Z" = aZn-l mod m zo=l n~1 

where m is a large prime number and a is an integer. Solving, we obtain 

ZII = a" modm 

(7-146) 

(7-147) 

The sequence z" takes values between 1 and m - 1; hence at least two of its first m 
values are equal. From this it follows that z" is a periodic sequence for n > m with 
period mo ~ m - 1. A periodic sequence is not, of course, random. However, if for the 
applications for which it is intended the required number of sample does not exceed mo. 
periodicity is irrelevant. For most applications, it is enough to choose for m a number 
of the order of 1()9 and to search for a constant a such that mo = m - 1. A value for m 
suggested by Lehmer in 1951 is the prime number 231 - 1. 

To complete the specification of (7-146), we must assign a value to the multiplier 
a. Our first condition is that the period mo of the resulting sequence Zo equal m - 1. 

~ An integer a is called the primitive root of m if the smallest n such ~t 

a" = 1 modm isn = m-l (7-148) 

From the definition it follows that the sequence an is periodic with period mo = m - 1 
iff a is a primitive root of m. Most primitive roots do not generate good random number 
sequences. For a final selection, we subject specific choices to a variety of tests based on 
tests of randomness involving real experiments. Most tests are carried out not in terms 
of the integers Zi but in terms of the properties of the numbers 

Zi 
Ui =­

m 
(7-149) 
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.These numbers take essentially all values in the interval (0, 1) and the purpose of testing 
is to establish whether they are the values of a sequence Uj of continuous-type i.i.d; 
random variables uniformly distributed in the interval (0. 1). The i.i.d. condition leads 
to the following equations; 

For every Ui in the interval (0, 1) and for every n, 

P{Ui ::: u;} = Ui 

P{UI ::: UI,"" UII ::: un} = P{Ul ::: uJl· .. P(un ::: Un} 

(7-150) 

(7-151) 

To establish the validity of these equations, we need an infinite number of tests. In 
real life, however, we can perform only a finite number of tests. Furthermore, all tests 
involve approximations based on the empirical interpretation of probability. We cannot, 
therefore, claim with certainty that a sequence of real numbers is truly random. We can 
claim only that a particular sequence is reasonably random for certain applications or 
that one sequence is more random than another. In practice, a sequence Un is accepted 
as random not only because it passes the standard tests but also because it has been used 
with satisfactory results in many problems. 

Over the years, several algorithms have been proposed for generating "good" 
random number sequences. Not alI, however, have withstood the test of time. An example 
of a sequence 41/ that seems to meet most requirements is obtained from (7-146) with 
a = 7s and m = 231 - 1: 

ZI/ = 16,807zlI _1 mod 2.147,483,647 (7-152) 

This sequence meets most standard tests of randomness and has been used effectively in 
a variety of applications.s 

We conclude with the observation that most tests of randomness are applications, 
direct or indirect. of well-known tests of various statistical hypotheses. For example, 
to establish the validity of (7-150), we apply the Kolmogoroff-Smimov test, page 361, 
or the chi-square test, page 361-362. These tests are used to determine whether given 
experimental data fit a particular distribution. To establish the validity of (7-]51), we 

. apply the chi~square test, page 363. This test is used to determine the independence of 
various events. 

In addition to direct testing. a variety of special methods have been proposed for 
testing indirectly the validity of equations (7-150)-(7-151). These methods are based on 
well-known properties of random variables and they are designed for particular appli­
cations. The generation of random vector sequences is an application requiring special 
tests. ~ 

Random· vectors. We shall construct a multidimensional sequence of random numbers 
using the following properties of subsequences. Suppose that x is a random variable with 
distribution F (x) and Xi is the corresponding random number sequence. It follows from 
(7-150) and (7-151) that every subsequence of Xi is a random number sequence with 

5S K. Park and K. W. Miller "Random Number Generations: Good Ones Are Hard to Find," Communictztiqns 
of the ACM. vol. 31, no. 10. October 1988. 
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distribution F (x). Furthermore. if two subsequences have no common elements. they 
are the samples of two mdependent random variables. From this we conclude that the 
odd-subscript and even-subscript sequences 

xi = X2i-1 xf =X'Jj i = 1,2, ... 

are the samples of two i.i.d. random variables XO and x~ with distribution F(x). Thus, 
starting from a scalar random number sequence, Xi, we constructed a vector random 
number sequence (xf, xf). Proceeding similarly, we can construct random number se­
quences of any dimensionality. Using superscripts to identify various random variables 
and their samples, we conclude that the random number sequences 

xf = Xmi-m+k k = 1, ... ,m i = 1,2, ... (7-153) 

are the samples of m i.i.d. random variables Xl, ••• ,xm with distribution F{x}. 
Note that a sequence of numbers might be sufficiendy random for scalar but not 

for vector applications. If. therefore, a random number sequence Xi is to be used for 
multidimensional applications, it is desirable to subject it to special tests involving its 
subsequences. 

Random Number Sequences with 
Arbitrary Distributions 

In the following, the letter u will identify a random variable with uniform distribution 
in the interval (0, 1); the corresponding random number sequence will be identified 
by Ui. Using the sequence Uit we shall present a variety of methods for generating 
sequences with arbitrary distributions. In this analysis, we shall make frequent use of 
the following: 

If XI are the samples of the random variable X, then Yi =g(Xi) are the samples 
of the random variable y = g(x). For example, if Xi is a random number sequence 
with distribution Fx(x), then Yi =a + bXi is a random number sequence with distri­
bution Fx{(Y - a}/b] if b > 0, and 1 - Fx[(Y - a}/b] if b < O. From this it follows. 
for example, that Vi = 1 - Ui is a random number sequence uniform in the interval 
(0. 1). 

PERCENTILE TRANSFORMATION METHOD. Consider a random variable x with dis­
tribution Fx (x). We have shown in Sec. 5-2 that the random variable u = llx (x) is uniform 
in the interval (0, 1) no matter what the form of Fx(x) is. Denoting by F;-l)(u) the in­
verse of Fx(x), we conclude that x = F1-1)(u) (see Fig. 7-12). From this it follows 
that 

(7-154) 

is a random number sequence with distribution Fx(x), [see also (5-42)1. Thus, to find 
a random number sequence Xi with distribution a given function Fx(x), it suffices to 
determine the inverse of Fx(x) and to compute F}-I)(Ui). Note that the numbers Xi are 
the Ui percentiles of Fx(x). 
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~ We wish to generate a random number sequence Xi with exponential distribution. In 
this case, 

x = -J.ln(l- u) 

Since 1-u is a ran~om variable with uniform distribution, we conclude that the sequence 

(7-155) 

has an exponential distribution. <411 

~ We wish to generate a random number sequence Xi with Rayleigh distribution. In 
this case, 

Ft1)(u) = V-2In(1-u) 

Replacing 1 - u by u, we conclude that the sequence 

XI = V-2InUi 

has a Rayleigh distribution. <411 

Suppose now that we wish to generate the samples Xi of a discrete-type random 
variable x taking the values ak with probability 

k = 1, ... , m 

In'this case, F~(x) is a staircase function (Fig. 7-13) with discontinuities at tbe 
points ak, and its inverse is a staircase function with discontinuities at the points 
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F(x) XI< = p(-I>(u) 

x u 

FIGVRE7·13 

FJC(ak) = PI + ... + Pk. Applying (7-154), we obtain the following rule for gener­
ating the random number sequence Xj: 

Set Xj = ak 

~ The sequence 

iff PI + ... + Pk-I =s U; < PI + ... + Pit 

{o if 0 < Uj < P 
XI = 

1 if P < Uj < 1 

(7-156) 

takes the values 0 and 1 with probability P and 1 - P respectively. It specifies. therefore. 
a binary random number sequence. 

The sequence 

iff O.lk < Uj < O.l(k + 1) k = 0,1, ... ,9 

takes the values 0, 1, ... ,9 with equal probability. It specifies, therefore, a decimal 
random number sequence with uniform distribution. 

Setting 

k = 0,1, ... ,m 

into (7-15), we obtain a random number sequence with binomial distrihf:ttion. 
Setting 

k = 0,1, ... 

into (7-15) we obtain a random number sequence with Poisson distribution. ..... 

Suppose now that we are given not a uniform sequence, but a sequence Xi with dis­
tribution FAx). We wish to find a sequence Yj with distribution Fy (y). As we know, Yi = 
F;-l)(uj) is a random number sequence with distribution Fy(Y). Hence (see Fig. 7-12) 
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EXAl\IPLE 7-22 

the cqmposite function 

(7-157) 

generates a random number seque~ce with distribution Fy(y) [see also (543)]. 

~ We are given a random number sequence Xi > 0 with distribution Fx(x) = 1 -
e-X - xe-x and we wish to generate a random number sequence Yi > 0 with distribution 
F)"(y) = 1 - e-Y• In this example F;-l}{u) = -In(1 - u); hence 

FtI)(Fx(x» = -In[l - FK{x)] = -In(e-X + xe-or ) 

Inserting into (7-145), we obtain 

Yi = -In(e-xi + xje-X,) 

REJECTION METHOD. In the percentile transformation method, we used the inverse 
of the function Fx(x). However, inverting a function is not a simple task. To overcome 
this difficulty, we develop next a method that avoids inversion. The problem under 
consideration is the generation of a random number sequence YI with distribution F,,(y) 
in terms of the random number sequence Xi as in (7-157). 

The proposed method is based on the relative frequency interpretation of the con­
ditional density 

~( IM)d = P{x <x!::x+dx,M) 
JX X x P(M) (7-158) 

of a random variable x assuming M (gee page 98). In the following method, the event M 
is expressed in tenus of the random variable x and another random variable u. and it is so 
chosen that the reSulting function It (x I M) equals Iy (y). The sequence Yi is generated 
by setting Yi = Xi if M occurs, rejecting Xi otherwise. The problem has a solution only 
if Iy (x) = 0 in every interval in which Ix (x) = O. We can assume, therefore, without 
essential loss of generality, that the ratio Ix(x)II,(x) is bounded from below by some 
positive constant a: 

lor(x) > 0 
Iy(x) - a> for every x 

Rejection theorem. If the random variables x and u are independent and 

M = {u ~ rex)} where rex) = a 1'J{x) < 1 
lor{x) -

(7-159) 

then 

ix(x 1M) = Iy(x) 

Proot The joint density of the random variables x and u equals Ix(x) in the strip 
o < U < 1 of the xu plane. and 0 elsewhere. The event M consists of all outcomes such 
that the point (x, u) is in the shaded area of Fig. 7-14 below the curve u = rex). Hence 

P(M) = I: r(x)/x(x) dx = a I: Iy(x) dx = a 

The event {x < x ::: x + dx, M} consists of all outcomes such that the point (x. u) is in 
the strip x < x :S x + dx below the curve u = r(x). The probability masses in this strip 
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equal Ix(x)r(x)dx. Hence 

P{x < x ~ x + dx. M} = fx(x)r(x) dx 

Inserting into (7-158), we obtain (7-159). 
. From the rejection theorem it follows that the subsequence of Xi such that Uj ~ 

r(xj) forms a sequence of random numbers that are the samples of a random variable 
y with density lAy I M) = I.,(y), This leads to the following rule for generating the 
sequence Yj: Form the two-dimensional random number sequence (Xi. Ui), 

S l'f < I,(x/) , . th' et Yi = X; U/ _ a fAx;) , reject XI 0 erwl&e (7-161) 

~ We are given a random number sequence Xi with exponential distribution and we 
wish to construct a random number sequence Yi with truncated normal distribution: 

Forx > 0, 

2 
fAx) = e-XU(x) fy(y) = ..j2ie-r /2u(J) 

f,(x) = fiie-<;r-1)2/2 < fii 
fx(x) V -; - V -; 

Setting a = $l2e. we obtain the following rule for generating the sequence Yi: 

Set Yj = Xi 

MIXING METHOD. We develop next a method generating a random number sequence Xi 

with density I (x) under the following assumptions: The function I (x) can be expressed 
as the weighted sum of m densities fk(m): 

I(x) = pdl(x) +.,' + Pmfm(x) Pk >0 (7-162) 

Each component fk (x) is the density of a known random number sequence xt, 
In the mixing method, we generate the sequence Xi by a mixing process involving 

certain subsequences of the m sequences xf selected according to the following rule: 

Set Xi = x~ if PI +.,' + Pk-I ~ UI < PI +". + Pk (7-163) 

Mixing theorem. If the sequences Ui and xl .. , , , xi are mutually independent. then 
the density fx(x) of the sequence Xi specified by (7-163) equals 

fx(x) = pdl(x) + ... + Pmlm(x) (7-164) 
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EX.\l\IPLE 7-24 

Proof; The sequence Xi is a mixture of m subsequences. The density of the subsequence 
of the kth sequence xf equals I,,(x). This subsequence is also a subsequence of Xi 

conditioned on the event 

Ak = {PI + ... + Pk-I :5 U < PI + ... + Pk} 

Hence its density also equals ix(x I Ak). This leads to the conclusion that 

Ix (x I A~J = Ik(x) 

From the total probability theorem (4-74), it follows that 

Ix(x) = lAx I A1)P(A I ) + ... + lAx I Am)P(Am) 

And; since peAk) = Pks (7-164) results. Comparing with (7-162), we conclude that the 
density Ix(x) generated by (7-164) equals the given function I(x) . 

... The Laplace density O.5e-lxl can be written as a sum 

I(x) = 0.5e-XU(x) + 0.5eXU(-x) 

This is a special case of (7-162) with 

II (x) = e-XU(x) hex) = eXU(-x) PI = P2 = 0.5 

A sequence Xi with density I (x) can, therefore, be realized in tenns of the samples of two 
random variables Xl and X2 with the above densities. As we have shown in Example 7-19, 
if the random variable v is uniform in the interval (0, 1). then the density of the random 
variablex l = -In v equals II (x); similarly. the density of the random variablex2 = lnv 
equals hex). This yields the following rule for generating a random number sequence 
Xi with Laplace distribution: Form two independent uniform sequences Ui and Vi: 

Set Xi = - In Vi if 0:5 Ui < 0.5 

Set Xj = In Vj if 0.5::: Ui < 1 ~ 

GENERAL TRANSFORMATIONS. We now give various examples for generating a 
random number sequence Wi with specified distribution F w (w) using the transformation 

w = g(x' •... , x"') 

where x" are m random variables with known distributions. To do so, we determine g 
such that the distribution ofw equals Fw(w). The desired sequence is gjven by 

Wi = g(x/ .... ,xi') 

Binomial Random Numbers. If x" are m i.i.d. random variables taking the values 0 
and 1 with probabilities p and q, respectively, their sum has a binomial distribution. 
From this it follows that if xt are m binary sequences, their sum 

W,' = x~ + ... + x!n 
I I 

is a random number sequence with binomial distribution. The m sequences xf can be 
realized as subsequences of a single binary sequence Xi as in (7-153), 
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Erlang Random Numbers. The sum w = Xl + ... + xm of m i.i.d. random variables 
xl' with density e-CX U(x) has an Erlang density [see (4-37)-(4-38)]: 

(7-165) 

From this it follows that the sum Wi = wI + ... + wi' of m exponentially distributed 
random number sequences w~ is a random number sequence with Erlang distribution. 

The sequences xf can be generated in terms of m subsequences of a single sequence 
"I (see Example 7-19): 

1 (I III) Wi = -- Inu· + ... +lnu. c I I 
(7-166) 

Chi-square Random Numbers. We wish to generate a random number sequence Wi 

with density 

iw(w) '" wlI/2-le-w/2U(w) 

For n = 2m, this is a special case of (7-153) with c = 1/2. Hence Wi is given by (7-166). 
To find Wi for n = 2m + 1. we observe that if y is x2(2m) and z is NCO, 1) and 

independent ofy, the sum w = y + z2 is x2(2m + 1) [see (7-64)]; hence the sequence 

Wi = -2(lnu: + ... +lnu7) + (1./)2 

has a X2(2m + 1) distribution. 

Student t Random Numbers. Given two independent random variables x and y with 
distributions N(O, 1) and x2(n) respectively, we form the random variable w = x/"fY7"n. 
As we know, W has a ten) distribution (see Example 6-28). From this it follows that, if 
Xi and Yi are samples ofx and y, the sequence 

has a t (n) distribution. 

Xi 
Wi=--

..fYiTn 

, 
Lognormal Random Numbers. If z is N (0, 1) and w = ed +bz, then w has a lognormal 
distribution [see (5-25)1: 

1 {(lnW _a)2} 
/w(w) = bw../iii exp 2h2 

Hence, if 1.1 is an N(O, 1) sequence, the sequence 

has a lognormal distribution. 

Random Number sequences with normal distributions. Several methods are avail­
able for generating normal random variables. We next give various illustrations. The 
percentile transformation method is not used because of the difficulty of inverting the 
normal distnbution. The mixing method is used extensively because the normal density 
is a smooth curve; it can, therefore, be approximated by a sum as in (7-162). The major 
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z FIGURE 7-1S 

components (unshaded) of this sum are rectangles (Fig. 7-15) that can be realized by se­
quences of the form aUj + b. The remaining components (shaded) are more complicated; 
h"'IlIJPv,".r since their areas are be realized exactly. Other metho,js 

known properties of variables. For example, the 
thelorelm leads to the following """,UAV'W'. 

Given m independent random , we form the sum 

If m is large. the random variable z is approximately normal [see (7-123)]. From this it 
follows that if u~ are m independent random number sequences their sum 

1 + + 1/1 Xi = ui .•• uj 

is app~oximately a normal random number sequence. This method is not very efficient 
The following three methods are more efficient and are used extensively. 

Kel lectll)n and mixing (G. Marsaglia,), 
gerterate a random variable SeOtUellce 

normal density can be written 

7-23. we used the rejection 
truncated normal density 

1 2/2 1 1 
f4(Z) = ,J2He-l = '2/y(X) + '2/y(-Z) (7-167) 

The density Iy (y) is realized by the sequence Yj as in Example 7-23 and the density 
/,(-y) by the sequence -Yi. Applying (7-163), we conclude that the following rule 
generates an N(O. 1) sequence Zj: 

Set 

Set 

Polar coordinates. Wehave 
Rayleigh<iensity I,(r) 

Example 6-15) the random 

if 0 ~ Ui < 0.5 

0.5 ::: Uj < 1 

if the random variables r and q1 are In(lep,enaem, 
uniform in the interval 

z = rCOSq1 W = rsinq1 (7-169) 

are N(O, 1) and independent. Using this, we shall construct two independent normal 
random number sequences ZI and Wi as follows: Clearly. rp = 1r(2u - 1); hence 
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'PI = 1r(2ui -1). As we know, r =../ii. = J-2lnv. where xis a random variable with 
exponential distribution and v is uniform in the interval (0. 1). Denoting by Xi and Vi the 
samples of the random variables x and v, we conclude that rl = -/2Xi = J -21n Vj is 
a random number sequence with Rayleigh distribution. From this and (7-169) it follows 
that if Uj and Vj are two independent random number sequences uniform in the interval 
(0, 1). then the sequences 

Z, = v'-2Invj cos:lf(2uj -1) 

are N(O, 1) and independent. 

Wj = v'-2Inv1sin:lf(2uI-l) (7-170) 

,The Box-Muller method. The rejection method was based on the following: If XI is a 
ranoom number sequence with distribution F(x). its subsequence Yi conditioned on an 
event M is a random number sequence with distribution F(x I M). Using this, we shall 
generate two independent N(O, 1) sequences Zi and Wi in tenns of the samples Xi and 
Yi of two independent random variables x and y uniformly distributed in the interval 
(-1, 1). We shall use for M the event 

M={q::::l} q = v'x2+y2 

The joint density ofx and yequals 1/4 in the square Ixl < 1,Iyl < 1 of Fig. 7-16 
and 0 elsewhere. Hence 

:If 
P(M) =-

4 
for q<1 

But {q:::: q, M} = {q:::: q}. for q < 1 because {q < q} is a subset of M. Hence 

Fq(q 1M) = P(~~~; M} = q2 fq(q I M) = 2q 0:::: q < 1 (7-171) 

Writing the random variables x and y in polar form: 

x = qcoscp y = qsincp tancp = y/x (7-172) 

we conclude as in (7 -171) that the joint density of the random variables q and cp is such that 

j: ( IM)d d = P{q:::: q < q +dq,'P:::: cp < f/+df/) = qdq df//4 
Jq'P q. 'P q 'P P(M) 'It /4 

y 

x 

FlGURE7-!6 
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for 0 ::: q <: 1 and 19'1 < 1r. From this it follows that the random variables q and 9' are 
conditionally independent and 

/q(q 1M) = 2q /,,(9') = Ij21r O:::q:::l -1r<9'<1r 

~ If x and y are two independent random variables uniformly distributed in the interval 
(-1. 1) and q = V x2 + y2. then the random variables 

z = ~v-4Inq w = !v-41nq (7-173) 
q q 

are conditionally N(O. 1) and independent: 

/:w(z. w 1 M) = /t(z I M)/w(w I M) = _1 e-(r.2+til)/2 
21f 

Proof. From (7-172) it follows that 

z = V-4Inqcos<p w = V-4Inqsin<p 

This system is similar to the system (7-169). To prove the theorem, it suffices, therefore, to show 
that the conditional density of the random variable r = ..;=4Iii"q assuming M equals re-,2/2. To 
show this, we apply (5-16). In our case. 

-r,2 1 q'(r) = -e- /4 = __ 
2 r'(q) 

fq(qIM) = 2q 

Hence 

This shows that the conditional density of the random variable r is Rayleigh as in (7-169). 
The preceding theorem leads to the following rule for generating the sequences Z; and Wi: 

Form two independent sequences X; = 2u; - 1. YI = 2v; - 1. 

If qi = vxl + yl < I, set Zi = :!.V-4lnqj 
q; 

Reject (Xi> Yi) otherwise. 

y'~ 
WI = ...!..y -4lnq; 

q; 

COMPUTERS AND STATISTICS. In this section, so far we have analyzed the dual 
meaning of random numbers and their computer generation. We conclude with a brief 
outline of the general areas of interaction between computers and statistics: 

1. Statistical methods are used to solve numerically a variety of deterministic 
problems. " 

Examples include: evaluation of integrals, solution of differential equations; 
determination of various mathematical constants. The solutions are based on the 
availability of random number sequences. Such sequences can be obtained from 
random experiments; in most cases, however, they are computer generated. We 
shall give a simple illustration of the two approaches in the context of Buffon's 
needle. The objective in this problem is the statistical estimation of the number 1t • 

The method proposed in Example 6-2 involves the performance of a physical 
experiment. We introduce the event A = {x < a cos tJ}, where x (distance from the 
nearest line) and tJ (angle of the needle) are two independent random variables 
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uniform in the intervals (0. a) and (0. 7r/2). respectively. This event occurs if the 
needle intersects one of the lines and its probability equals 7r b /2a. From this it 
follows that 

peA) :::: nA 
n 

(7-174) 

where nA is the number of intersections in n trials. This estimate can be obtained 
without experimentation. We form two independent random number sequences Xi 

and 9; with distributions Fx(x) and Fs«(J). respectively, and we denote by nA the 
number of times X; < a cos 8j • With n A so determined the computer generated 
estimate of 7r is obtained from (7-174). 

2. .Computers are used to solve a variety of deterministic problems originating in 
statistics. 

Examples include: evaluation of the mean, the variance, or other averages 
used in parameter estimation and hypothesis testing; classification and storage of 
experimental data; use of computers as instructional tools. For example. graphical 
demonstration of the law of large numbers or the central limit theorem. Such 
applications involve mostly routine computer programs unrelated to statistics. 
There is, however, another class of deterministic problems the solution of which is 
based on statistical concepts and random number sequences. A simple illustration is: 
We are given m random variables XI •••• ,XII with known distributions and we wish 
to estimate the distribution of the random variable y = g(xl •... , x,,). This problem 
can, in principle, be solved analytically; however, its solution is, in general, 
complex. See, for example, the problem of determining the exact distribution of 
the random variable q used in the chi-square test (8-325). As we can show next, the 
determination of Fy(Y) is simplified if we use Monte Carlo techniques. Assuming 
for simplicity that m = 1, we generate a random number sequence Xj of length 
n with distribution the known function FxCx) and we form the random number 
sequence Yi = g(Xj). To determine Fy(Y) for a specific y, we count the number 
ny of samples YI such that Yi < y. Inserting into (4-3), we obtain the estimate 

n 
Fy(Y):::: ...1.. 

n 
(7-175) 

A similar approach can be used to determine the u percentile Xu of X or to decide 
whether Xu is larger or smaller than a given number (see hypothesis testing, Sec. 8-4). 

3. Computers are used to simulate random experiments or to verify a s9ientific theory. 

This involves the familiar methods of simulating physical systems where now 
all inputs and responses are replaced by appropriate random number sequences. 

PROBLEMS 
7·1 Show that if F(x, y. z) is a joint distribution. then for any XI ::::: X2. YI ::::: )'2. z, ::::: Z2: 

F(X2.)'2. Z2) + F(x" y" z.> + F(xlt)'2. ZI) + F(X2. y" Zl) 

- F(x,,)'2. Z2) - F(xa. y" Z2) - F(xa.)'2. ZI) - F(xlt y" ZI) ~ 0 
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'7-2 TJieevents A. B. and C are such that 

peA) = PCB) = P(C) = 0.5 

P(AB) = P(AC) = P(BC) = P(ABC) = 0.25 

Show that the zero-one random variables associated with these events are not independent: 
they are, however. independent in pairs. • 

7-3 Show that if the random variables x. y, and z are jointly normal and independent in Pairs, 
they are independent. 

7-4 The random variables Xt are i.i.d. and unifonn in the interval (-0.5, 0.5). Show that 

E{(xl + X" + X3)4} = ~ 
7-5 (a) Reasoning as in (6-31), show that if the random variables x, y, and z are independent 

and their joint density has spherical symmetry: 

I(x, y,z) = I( Jx l + y2 +Z2) 

then they are normal with zero mean and equal variance. 
(b) The components VA" vy• and V: of the velocity V = v"1 +v~ +~ of a particle are 
independent random variables with zero mean and variance kT 1m. Furthermore, their joint 
density has spherical symmetry. Show that v has a Maxwell density and 

E{v} = 2V2kT E{r} = 3kT E{v4} = 15k2"T2 
nm m m 

7-6 Show that if the random variables x. y. and z are such that rxy = r>= = I, then rXt = 1. 
7-7 Show that 

E{x,x2Ix,} = E{E{x,x21 X2, X3} IX3} = E{x2E{xtlx".x3} IX3} 

7-8 Show that tly I xtl = b{E{y I x" X2} I xJl where tly I x .. X2} = a,x, + alX" is the linear 
MS estimate ofy tenns of x, and Xl. 

7-9 Show that if 

E{~} =M 

then 

Elsl} !S ME{n"} 

7-10 We denote by XIII a random variable equal to the number of tosses ofa coin until heads shows 
for the mth time. Show that if P{h} = P. then E{x",} = m/p. 

Hint: E{x", -x",-d = E{xd = p +2pq + ... +npq"-I + ... = IIp. 
7-11 The number of daily accidents is a Poisson random variable n with parameter o. The prob­

ability that a single accident is fatal equals p. Show that the number m of fatal accidents in 
one day is a Poisson random variable with parameter ap. 

Hint: "(n) 
E{e}-I n = n} = ~ ejeui k pkqa-t. = (pel- + q)" 

7-12 The random variables x.t are independent with densities Ik(x) and the random variable n is 
independent ofx.t with PIn = kl = Pk. Show that if 

co 

then I,(s) = I>k[ft(S) * ... * Jk(s)] 
k .. 1 
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7·13 The random variables Xi are i.i.d. with moment function clJx(s) = E{e"'i}. The random vari­
able n takes the values O. 1 •... and its moment function equals r nell = E{z"}. Show that if 

Him: E{e" I n = k} = E{e*1 + +XA)} = cIJ~(s). 
Special case: If n is Poisson with parameter a. then cIJ,.(s) = e"cII.<.)-a. 

7·14 The random variables Xi are i.i.d. and uniform in the interval (0, 1). Show that if y = max Xj. 

then F(y) = yn forO ~ y ~ 1. 
7·15 Given a random variable X with distribution Fx(x). we fonn its order statistics Yt as in 

Example 7-2. and their extremes 

Show that 

Z = Yn = Xm •• w =y, = Xliii. 

{ 
n(n - l)i .. (z)/xCw)[F..,(z) - F..,(w»),,-2 

It",(l. w) = o 
l> W 

z< w 

7·16 Given n independent N(T/j, 1) random variables Zio we form the random variable w = 
zi + ... + ~. This random variable is called noncentral chi-square with n degrees offreedom 
and eccentricity e = '7~ + ... + T/~. Show that its moment generating function equals 

clJlD(s) = .,/(1 ~ 2s)" exp { I ~s 2s} 
7·17 Show that if the random variables Xi are i.i.d. and normal, then their sample mean x and 

sample variances S2 are two independent random variables. 
7·18 Show that. if GYo + GYIXI + GY2X2 is the nonhomogeneous linear MS estimate of s in terms of 

x" and X2. then 

7·19 Show that 

E{Ylxd = E{E{Ylxr. x2}\xd 

7-20 We place at random n points in the interval (0, 1) and we denote by x and y the distance 
from the origin to the first and last point respectively. Find F(x). F(y), and F(x. y). 

7-21 Show that if the random variables XI are Li.d. with zero mean, variance 0"2. and sample 
variance v (see Example 7-5), then 

0": = ~ ( E {xn - : = ~ 0"4) 
7·22 The random variables Xj are N (0; 0") and independent. Show that if ~ 

..fii" 
z = .....!!.. '"' I Xli - X2i-11 2n L.J 

1=1 

then E{z} = 0" 

7-23 Show that if R is the correlation matrix of the random vector X: [XI •••• , x.] and R- l is its 
inverse, then 

E{XR-'X'l = n 

7·24 Show that if the random variables", are of continuous type and independent, then, for suffi­
ciently largen. the density ofsin(xl + ... + x,,) is nearly equal to the density of sin x. where 
x is a random variable uniform in the interval (-1r, 1r). 
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fT·2S .SHow dlat if a" - a and E {I XII - a" 12} ..... 0, tben x,. - a in the MS sense as n -+ 00. 

7·26 Using the Cauchy criterion, sbow that a sequence x,. tends to a limit in the MS sense iff the 
limit of E(x"x/n} as n, m -+ 00 exists. 

7·27 An infinite sum is by definition a limit: 
n 

Y .. = Ex.t 
Show that if the random variables x.t are independent with zero mean and variance at, tben 
the sum exists in the MS sense iff 

Hint: 
.. +111 

E{(y._ - Ylli} = E a1 

7·28 The random variables Xi are i.Lei. with density ce-"U(x). Show that, ifx = XI + ... + x... 
then Ix(x) is an Erlang density. 

7·29 Using the central limit theorem. show that for large n: 

_d' __ X,,-le-U :::::: _c_e-(t:JI-~/2tI x > 0 
(n - I)! ../27rn 

7·30 The resistors rio r2. 1'3, and r. are independent random variables and each is uniform in the in­
terval (450, SSO). Using the central limit theorem, find P{l900 ~ rl +r2 +r, +r4 ~ 2100). 

7·31 Show that the central limit theorem does not hold if the random variables X, have a Cauchy 
density. 

7-32 The random variables X and yare uncorrelated with zero mean and ax = a, = a. Show that 
ifz = x + jy. then 

fl(d = I(x, y) = _1_e-(iJ+r)/2t12 = _1_e-I~1211S1 
27ra2 'Ira; 

~c(Q) = exp { -4(a2u2 + a2v:> } = exp { _~a:IQI2 } 
where Q = u + jv. This is the scalar form of (7·62)-{7-63). 



CHAPTER 

8 
STATISTICS 

8·1 INTRODUCTION 

Probability is a mathematical discipline developed as an abstract model and its con­
clusions are deductions based on the axioms. Statistics deals with the applications of 
the theory to real problems and its conclusions are inferences based on observations. 
Statistics consists of two parts: analysis and design. 

Analysis. or mathematical statistics, is pan of probability involving mainly repeated 
trials and events the probability of which is close to 0 or to 1. This leads to inferences that 
can be accepted as near certainties (see pages 11-12). Design, or applied statistics, deals 
with data collection and construction of experiments that can be adequately described by 
probabilistic models. In this chapter. we introduce the basic elements of mathematical 
statistics. 

We start with the observation that the connection between probabilistic concepts 
and reality is based on the approximation 

(8-1) 

relating the probability p = P (A) of an event A to the number n A of successes of A in n 
trials of the underlying physical experiment We used this empirical formula to give the 
relative frequency interpretation of all probabilistic concepts. For exampl~. we showed 
that the mean 11 of a random variable x can be approximated by the average 

(8-2) 

of the observed values Xi ofx. and its distribution F(x) by the empirical distribution 

A nx 
F(x) = - (8-3) 

n 

where nx is the number of Xi'S that do not exceed x. These relationships are empirical 
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F(x,O} F(x, 8) 
~ known x xi 8 unknown 

6 

Predict x Estimate 6 
(a) (b) FIGURE8·l 

point estimates of the parameters rJ and F ex) and a major objective of statistics is to giv~ 
them an exact interpretation. 

In a statistical investigation, we deal with two general classes of problems. IT 
the first class, we assume that the probabilistic model is known and we wish to mak4 
p~ictions concerning future observations. For example, we know the distribution F (x' 
of a random variable x and we wish to predict the average x of its n I 

future samples or we know the probability p of an event A and we wish to predic1 
the number nA of successes of A in n future trials. In both cases, we proceed from th1 
model to the observations (Fig. 8-la). In the second class, one or more parameters (Ji 0: 

the model are unknown and our objective is either to estimate their values (paramete! 
estimation) or to decide whether ()i is a set of known constants 90; (hypothesis testing) 
For example, we observe the values Xi of a random variable x and we wish to estimate 
its mean IJ or to decide whether to accept the hypothesis that rJ = 5.3. We toss a coil 
1000 times and heads shows 465 times. Using this information, we wish to estimate th\ 
probability p of heads or to decide whether the coin is fair. In both cases, we proceed fron 
the observations to the model (Fig. 8-1b). In this chapter, we concentrate on parametel 
estimation and hypothesis testing. As a preparation, we comment briefly on the predictio~ 
problem. 

Prediction. We are given a random variable x with known distribution and we wis\ 
to predict its value x at a future trial. A point prediction of x is the determination of ~ 
constant c chosen so as to minimize in some sense the error x-c. At a specific trial, thl 
random variable x can take one of many values. Hence the value that it actually taket 
cannot be predicted; it can only be estimated. Thus prediction of a random variable x i: 
the estimation of its next value x by a constant c. If we use as the criterion for selectinl 
c the minimization of the MS error E{(x - C)2}, then c = E{x}. This problem w84 
considered in Sec. 7-3. t 

An interval prediction ofx is the determination of two constants c, and C2 such tha 

P{Cl < x < c2l = Y = 1-8 (8-4~ 
I 

where y is a given constant called the confidence coefficient. Equation (8-4) states tha 
if we predict that the value x of x at the next trial will be in the interval (CI, C2), oul 

prediction will be correct in l00y% of the cases. The problem in interval prediction ~ 
to find Cl and C2 so as to minimize the difference C2 - CI subject to the constraint (8-4) 
The selection of y is dictated by two conflicting requirements. If y is close to I, thl 
prediction that x will be in the interval (CI. C2) is reliable but the difference C2 - CI il 
large; if y is reduced, C2 - CI is reduced but the estimate is less reliable. 1YPical valuej 
of y are 0.9, 0.95, and 0.99. For optimum prediction, we assign a value to y and WI 

determine C1 and C2 so as to minimize the difference C2 - Cl subject to the constraid 
(8-4). We can show that (see Prob. 8-6) if the density f(x) of x has a single maximulIj 
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~. 
(a) 

(b) 

FIGURE 8·2 

C2 - CJ is minimum if f (Cl) = f (C2). This yields CI and C2 by trial and error. A simpler 
suboptimal solution is easily found if we detennine CI and C2 such that 

8 8 
P{x < cil = '2 P{x> c2l = '2 (8M 5) 

This yields Cl = X8/2 and C2 = Xl-8/2 where XII is the u percentile ofx (Fig. 8M 2a). This so­
lution is optimum if f (x) is symmetrical about its mean ,., because then f (CI) = f (C2). If 
x is also normal, then Xu = ,.,+ ZIIO" , where Zu is the standard normal. percentile (Fig. 8-2b). 

~ The life expectancy of batteries of a certain brand is modeled by a normal random 
variable with ,., = 4 years and a = 6 months. Our car has such a battery. Find the 
prediction interval of its life expectancy with y = 0.95. 

In this example, 8 = 0.05, zJ-&j2 = ZO.97S = 2 = -1.8/2. This yields the interval 
4 ± 2 x 0.5. We can thus expect with confidence coefficient 0.95 that the life expectancy 
of our battery will be between 3 and 5 years. ~ 

As a second application, we shall estimate the number nA of successes of an event 
A in n trials. The point estimate of nA is the product np. The interval estnnate (kl, k2) is 
determined so as to minimize the difference k2 - kJ subject to the constraint 

P{kJ < nA < k2} = y 

We shall assume that n is large and y = 0.997. To find the constants k, and k2• we set 
x = nA into (4-91)-(4-92). This yields 

P{np - 3.jnpq < nA < np + 3.jnpq} = 0.997 (8-6) 

because 2G(3) - 1 ~ 0.997. Hence we predict with confidence coefficient 0.997 that 
nA will be in the interval np ± 3.jnpq. 
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EXAI\II'LE S-2 ~ We toss a fair coin 100 times and we wish to estimate the number nA of heads wit~ 
y = 0.997. In this problem n = 100 and p = 0.5. Hence 

kl = np - 3.jnpq == 35 k2 = np - 3'.jnpq = 65 

We predict. therefore, with confidence coefficient 0.997 that the number of heads wit' 
be between 35 and 65. ~ 

Example 8-2 illustrates the role of statistics in the applications of probability to 
real problems: The event A = {heads} is defined in the experiment S of the single tosj 
of a coin. The given information that P(A) = 0.5 cannot be used to make a reliablA 
prediction about the occurrence of A at a single performance of S. The event 

B = {35 < nA < 65} 

IS defined in the experiment Sn of repeated trials and its probability equals P(B) ::: 
0.997. Since P(B) :::::: 1 we can claim with near certainty that B will OCCur at a singM 
performance of the experiment Sn. We have thus changed the "subjective" knowledg, 
about A based on the given information that P(A) = 0.5 to the "objective" conclusion 
that B will almost certainly occur, based on the derived probability that P (B) :::::: 1. Note~ 
however, that both conclusions are inductive inferences; the difference between them is. 
only quantitative. 

8-2 ESTIMATION 

Suppose that the distribution of a random variable x is a function F (x, (J) of known form 
depending on a parameter (J, scalar or vector. We wish to estimate (J. To do so, we repeat! 
the underlying ~hysical experiment n times and we denote by Xi the observed values o~ 
x. Using these observations, we shall find a point estimate and an interval estimate of e. 

Apointestimateisa function 8 = g(X) of the observation vector X = (x[, ... , X,IV 
The corresponding random variable 0 = g(X) is the point estimator of (J (see Sec. 8-3)., 
Any function of the sample vector X = [XI, .••• "Ill is called a statistic. I Thus a point 
estimator is a statistic. 

We shall say that 8 is an unbiased estimator of the parameter e if E{O} = fJ. 
Otherwise, it is called biased with bias b = E {6} - e. If the function g (X) is properly 
selected, the estimation error 0 - (J decreases as n increases. If it tends to 0 in probability 
as n -+- 00, then 0 is called a consistent estimator. The sample mean i of" is an unbiased 
estimator of its mean 1]. Furthermore. its variance (12 In tends to 0 as n -+- 00. From 
this it follows that i tends to 11 in the MS sense, therefore, also in probability. In other 
words, x is a consistent estimator of 1]. Consistency is a desirable prQperty; however. it 
is a theoretical concept. In reality, the number n of trials might be large but it is finite. 
The objective of estimation is thus the selection of a function g(X) minimizing in some 
sense the estimation error geX) - e. If g eX) is chosen so as to minimize the MS error 

e = E{[g(X) - (Jf} = h [g(X) - (J]2 f(X, e) dX (8-7) 

IThis interpretation of the tenn statistic applies only for Chap. 8. In all other chapters, sratistics means 
statistical properties. 
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then the estimator 8 = g(X) is called the best estimator. The determination of best 
estimators is not. in general, simple because the integrand in (8-7) depends not only on 
the function g(X) but also on the unknown parameter (J. The corresponding prediction 
problem involves the same integral but it has a simple solution because in this case, (J is 
known (see Sec. 7-3). 

In the following. we shall select the function 8(X) empirically. In this choice we 
are guided by the fallowing: Suppose that (J is the mean (J = E{q(x)} of some function 
q(x) ofx. As we have noted, the sample mean 

(8-8) 

of q(x) is a consistent estimator of (J. If, therefore. we use the sample mean 6 of q(x) as 
the 'point estimator of (J, our estimate will be satisfactory at least for large n. In fact, it 
turns out that in a number of cases it is the best estimate. 

INTERVAL ESTIMATES. We measure the length () of an object and the results are the 
samples X; = () + V; of the random variable x = (J + 11, where" is the measurement error. 
Can we draw with near certainty a conclusion about the true value of ()? We cannot do 
so if we claim that (} equals its point estimate 0 or any other constant. We can, however. 
conclude with near certainty that () equals 0 within specified tolerance limits. This leads 
to the following concept. 

An interval estimate of a parameter () is an interval «(;II, (}z), the endpoints of which 
are functions 61 = gl (X) and (;12 = 82(X) of the observation vector X. The corresponding 
random interval (tJ" (J2) is the interval estimator of 6. We shall say that (fh, ()2) is a y 
confidence interval of e if 

(8-9) 

The constant y is the confidence coefficient of the estimate and the difference 8 = 1- y is 
the confidence level. Thus y is a subjective measure of our confidence that the unknown 
6 is in the interval (e l , (}z). If y is close to 1 we can expect with near certainty that this 
is true. Our estimate is correct in l00y percent of the cases. The objective of interval 
estimation is the determination of the functions 81 (X) and g2 (X) so as to minimize the 
length {}z - 6, of the interval (el, (}z) subject to the constraint (8-9). If 8 is an unbiased 
estimator of the mean 7J of x and the density of x is symmetrical about 7J, then the optimum 
interval is of the form 7J ± a as in (8-10). In this section. we develop estimates of the 
commonly used parameters. In the selection of {j we are guided by (8-8) and in all cases 
we assume that n is large. This assumption is necessary for good estiIp.ates and, as we 
shall see, it simplifies the analysis. 

Mean 

We wish to estimate the mean 7J of a random variable x. We use as the point estimate of 
7J the value 

_ 1,", 
x = ;; L...,Xi 

of the sample mean x of x. To find an interval estimate. we must determine the distribution 
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ofi. In general, this is a difficult problem involving m1.iltiple convolutions. To simplify 
it we shall assume that x is normal. This is true if x is normal and it is approximately 
true for any x if n is large (CLT). 

KNOWN VARIANCE. Suppose first that the variance 0"2 of x is known. The noonal­
ity assumption leads to the conclusion that the point estimator x of 11 is N (1]. (J' / .In). 
Denoting by Zu the u percentile of the standard normal density, we conclude that 

p { 1'] - ZH/2 5n < x < 11 + ZI-8/2 5n} = G(ZI-8/2) - G( -Zl-8/2) 

~ ~ 
= 1 - 2 - 2 (8-10) 

because Zit = -ZI-Il and G( -Zl-u) = G(ZII) = u. This yields 

p{x - ZI-8/2 .5n < 1] < x + ZI-&/2 5n} = 1 - 8 = Y (8-11~ 
We can thus state with confidence coefficient y that 11 is in the interval x ± Z 1-8/2(J' /...;n. 
The determination of a confidence interval for 17 thus proceeds as discussed next. 

Observe the samples Xi of x and form their average x. Select a number y = I - 8 
and find the standard normal percentile Zu for u = 1-8/2. Form the interval x ± ZuO" /..;n. 

This also holds for discrete-type random variables provided that n is large [see 
(7-122»). The choice of the .confidence coefficient y is dictated by two conflicting re­
quirements: If y is close to 1, the estimate is reliable but the size 2z,p/.;n of the 
confidence interval is large; if y is reduced, Zu is reduced but the estimate is less reliable. 
The final choice is a compromise based on the applications. In Table 8·1 we list Zu for 
the commonly used values of u. The listed values are determined from Table 4-1 by 
interpolation. 

TCHEBYCHEFF INEQUALITY. Suppose now that the distribution of x is not known. 
To find the confidence interval of TI, we shall use (5-88): We replace x by x and (J' by 
(J' / In. and we set s = a / n8. This yields (5-88) 

p{x-~ <1'/<X+~} > 1-8=y ..;ng ....In8 
(8-12) 

This shows that the exact y confidence interval of 1'] is contained in the interval 
x±O"/....In8.If, therefore, we claim that 1'/ is in this interval, the probability that we are 
correct is larger than y. This result holds regardless of the form of F (x) and. surprisingly, 
it is not very different from the estimate (8-11). Indeed, suppose thit y =0.95; in this 
case, 1/-J"i=4.47. Inserting into (8-12), we obtain the interval x±4.470"/..jii. The 

'fABLE 8-1 

%I-u = -Zu Il = - e-r2fJ. dz 1 l~u 
.,fii -co 

Il 0.90 0.925 0.95 0.975 0.99 0.995 0.999 0.9995 
1II 1.282 1.440 1.645 1.967 2.326 2.576 3.090 3.291 
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corresponding i1UerVal (8-11), obtained under the normality assumption, is x ± 2u / ..;n 
because ZOo97S :::: 20 

UNKNOWN VARIANCE. If u is unknown, we cannot use (8-11). To estimate '1, we form 
the sample variance 

2 1 ~ 2 
S = -- L-(X;-X) 

n -1 0 1 
''''' 

(8-13) 

This is an unbiased estimate of u2 {see (7-23)] and it tends to u2 as n -+ 00. Hence, 
for large n. we can use the approximation s :::: u in (8-11). This yields the approximate 
confidence interval 

(8-14) 

We shall find an exact confidence interval under the assumption that x is normal. 
In this case [see (7-66)] the ratio 

(8-15) 

has a Student t distribution with n -1 degrees of freedom. Denoting by tu its u percentiles, 
we conclude that 

{ 1-'1 } P -t., < s/.;n < t., = 2" - 1 = y (8-16) 

This yields the interval 

x - tl-&!l .5n < '1 < x + 11-6/2 In (8.17) 

In Table 8-2 we list t.,(n) for n from 1 to 20. For n > 20, the ten) distribution is 
nearly normal with zero mean and variance n / (n - 2) (see Prob. 6-75) . 

.. The voltage V of a voltage source is measured 25 times. The results of the measure­
ment2 are the samples Xl = V + Vi of the random variable x = V + 11 and their average 
equals x = 112 V. Find the 0.95 confidence interval of V. 

(a) Suppose that the standard deviation ofx due to the error 11 is u = 0.4 V. With 
8 = 0.05, Table 8-1 yields ZO.97S :::: 2. Inserting into (8-11), we obtain the interval 

X+ZOo97SU/Jn = 112±2 x 0.4/../25 = 112±0.16V 0 

(b) Suppose now thatu is unknown. To estimate it, we compute the sample variance 
and we find S2 = 0.36. Inserting into (8-14), we obtain the approximate estimate 

X±ZOo975S/Jn = 112±2 x 0.6/../25 = 112±0.24 V 

Since 10.975(25) = 2.06, the exact estimate (8-17) yields 112 ± 0.247 V. .... 

2In most eumples of this chapter. we shall not list all experimental data. To avoid lenglbly tables. we shall 
list only the relevant averages. 
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TABLE 8·2 
Student t Percentiles til (n) 

~ .9 .95 .975 .99 .995 

1 3.08 6.31 12.7 31.8 63.7 
2 1.89 2.92 4.30 6.fYI 9.93 
3 1.64 2.35 318 4.54 5.84 
4 1.53 213 2.78 3.75 4.60 
5 1.48 2.02 2.57 3.37 4.03 

6 1.44 1.94 2.45 3.14 3.71 
7 1.42 1.90 2.37 3.00 3.50 
8 1.40 1.86 2.31 2.90 3.36 
9 1.38 1.83 2.26 2.82 3.25 

10 1.37 1.81 2.23 2.76 3.17 

11 1.36 1.80 2.20 2.72 3.11 
12 1.36 1.78 2.18 2.68 3.06 
13 1.35 1.77 2.16 2.65 3.01 
14 1.35 1.76 2.15 2.62 2.98 
IS 1.34 1.75 2.13 2.60 2.95 

16 1.34 1.75 2.12 2.58 2.92 
17 1.33 1.74 2.11 2.57 2.90 
18 1.33 1.73 2.10 2.5S 2.88 
19 1.33 1.73 2.09 2.S4 2.86 
20 1.33 1.73 2.09 2.53 2.85 

22 1.32 1.72 2.07 2.51 2.82 
24 1.32 1.71 2.06 2.49 2.80 
26 1.32 1.71 2.06 2.48 2.78 
28 1.31 1.70 2.0S 2.47 276 
30 1.31 1.70 2.05 2.46 2.75 

Forn l!; 3O:t.(n):: ZaJ n :2 

In the following three estimates the distribution of x is specified in tenns of a single 
parameter. We cannot. therefore. use (8-11) directly because the constants 11 and q are 
related. 

EXPONENTIAL DISTRIBUTION. We are given a random variable x with density 
c 

I(x, A) = !e-.¥/AU(x) 
A 

and we wish to find the y confidence interval of the parameter A. As we know, 71 = A and 
q =A; hence, for large n, the sample mean x ofx is N(A, A/.../ii). Inserting into (8-11), 
we obtain 
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This yields 

p{ x < A < x } = 'V 

1 + z"I..fo 1 - zul..fo F 

(8-18) 

and the interval xl (1 ± Zu l..fo) results. 

~ The time to failure of a light bulb is a random variable x with exponential distribution. 
We wish to find the 0.95 confidence interval of A. To do so, we observe the time to failure 
of 64 bulbs and we find that their average x equals 210 hours. Setting zul..fo ::::::: 21 J64 = 
0.25 into (8-18), we obtain the interval 

168 < A < 280 

We thus expect with confidence coefficient 0.95 that the mean time to failure E {x} = A 
of the bulb is between 168 and 280 hours. ~ 

POISSON DISTRIBUTION. Suppose that the random variable x is Poisson distribution 
with parameter A: 

Ak 
PIx = k} = e-"­

k! 
k = 0,1. ... 

In this case, 11 = A and 0"2 = A; hence, for large n, the distribution ofi is approximately 
N(A, $Tn) [see (7-122)]. This yields 

P{IX-AI <ZU~} =y 

The points of the :fA plane that satisfy the inequality Ix - Al < z",JrJn are in the interior 
of the parabola 

Z2 
(A _:%)2 =..1!.A 

n 
(8-19) 

From this it follows that the y confidence interval of A is the vertical segment (At. A2) 
of Fig. 8-3, where A) and A2 are the roots of the quadratic (8-19). 

FIGURE 8-3 
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.~ The number of particles emitted from a radioactive substance per second is a Poisson 
random variable x with parameter A. We observe the emitted particles XI in 64 consec. 
utive seconds and we find that x = 6. Find the 0.95 confidence interval of A. With 
z; / n = 0.0625, (8-19) yields the quadratic 

(A - 6)2 = 0.0625A 

Solving, we obtain Al = 5.42, A2 = 6.64. We can thus claim with confidence coefficient 
0.95 that 5.42 < A. < 6.64 ...... 

PROBABILITY. We wish to estimate the probability p = peA) of an event A. To do 
so, we form the zero-one random variable x associated with this event. As we know 
E(x} = P and 0-; = pq. Thus the estimation of P is equivalent to the estimation ofth~ 
mean of the random variable x. 

We repeat the experiment n times and we denote by k the number of successes of 
A. The ratio x = kj n is the point estimate of p. To find its interval estimate, we form the 
sample mean x ofx. For large n, the distribution ofi is approximately N(p, ./PiiTn). 
Hence 

P {Ii - pi < zu..fi!} = y = 2u - 1 

The points of the x p plane that satisfy the inequality Ix - pi < iu"; pq / n are in the 
interior of the ellipse 

( -)2 2P(1- p) p-x = zu 
n 

_ k 
x=­

n 
(8-20) 

From this it follows that the y confidence interval of p is the vertical segment (PI, 1'2) 
of Fig. 8-4. The endpoints PI and P2 of this segment are the roots of (8-20). Forn > 100 
the following approximation can be used: 

. PI,.,,_± VX(l-X) 
-x ill 

P2 n 
PI < P < P2 (8-21) 

This follows from (8-20) if we replace on the right side the unknown p by its point 
estimatex. 

FIGURE 8-4 
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~ In a preelection poll. 500 persons were questioned and 240 responded Repub­
liean. Find the 0.95 confidence interval of the probability p = {Republican}. In this 
example, ZII ::::: 2, n = 500. x = 240/500 = 0.48, and (8-21) yields the interval 0.48 ± 
O.04S. 

In the usual reporting of the results. the following wording is used: We estimate that 
48% of the voters are Republican. The margin of error is ± 4.5%. This only specifies the 
point estimate and the confidence interval of the poll. The confidence coefficient (0.95 
in this case) is rarely mentioned. <I11III 

Variance 

We wish to estimate the variance v = (72 of a normal random variable x in terms of the 
n samples Xi of x. 

KNOWN MEAN. We assume first that the mean 7J of x is known and we use as the point 
estimator of v the average 

As we know, 

E{t) = v 
2q4 

(7:=--+0 
n "'-'00 

(8-22) 

Thus, is a consistent estimator of (72. We shall find an interval estimate. The random 
variable nt /(72 has a x2(n) density [see (4-39)]. This density is not symmetrical; hence 
the interval estimate of (72 is not centered at (72. To determine it, we introduce two 
constants c) and C2 such that (Fig. 8-Sa) 

{ nt } 8 p - <c) =-(12 2 P ->C2 =-{ nt } 6 
0'2 2 

This yields c) = xl/2(n). C2 = X~-m(n). and the interval 

nO 2 nv 
---<(1 <--
Xl-men) X'/2(n) 

(8-23) 

results. This interval does not have minimum length. The minimum interval is such that 

JC JC 

(a) (b) 

FIGURES·! 
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TABLES-3 
Chi~square percentiles x~(n) 

X .OOS .01 .015 •. OS .1 .9 .95 .97S .99 ~ 
0.00 0.00 0.00 0.00 0.02 2.71 3.84 5.02 6.63 7.88 

:2 0.01 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21 1060 
3 0.07 O.ll 0.22 0.35 0.58 6.25 7.81 9.35 11.34 12.84 
4 0.21 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28 14·86 
5 0.41 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09 16.75 
6 0.68 0.87 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55 
7 0.99 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28 
8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.96 
9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59 

10' 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19 
11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.73 26.76 
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30 
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82 
14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32 
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80 
16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27 
17 5.70 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 35.72 
18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16 
19 6.84 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 38.S8 
20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00 
22 8.6 9.5 11.0 12.3 14.0 30.8 33.9 36.8 40.3 42.8 
24 9.9 10.9 12.4 13.8 IS.7 33.2 36.4 39.4 43.0 4S.6 
26 11.2 12.2 13.8 15.4 17.3 35.6 38.9 41.9 4S.6 48.3 
28 12.5 13.6 15.3 16.9 18.9 37.9 41.3 44.5 48.3 51.0 
30 13.8 15.0 16.8 18.S 20.6 40.3 43.8 47.0 50.9 53.7 
40 20.7 22.2 24.4 26.5 29.1 51.8 55.8 59.3 63.7 66.8 
50 28.0 29.7 32.4 34.8 37.7 63.2 67.5 71.4 76.2 79.5 

1 
For n :: 50: x~(7I) ~ 2(~. +./2n - 1)2 

Ix (el) = Ix (e2) (Fig. 8-Sb); however. its determination is not simple. In Table 8-3, we 
list the percentiles x;(n) of the x 2(n) distribution. 

UNKNOWN MEAN. 1f'1} is unknown, we use as the point estimate of (12 the sample vari-
ances2 [see (8-13)]. The random variable (n-1)s2 j0'2hasax2(n-l) distribution. Hence 

p{ xi'2(n - 1) < 
(n -1)s2 

< xL&/2(n - 1) } = )! 0'2 

This yields the interval 

(n - 1)s2 2 (n - l)s2 
(8-24) 2 < 0' < 

Xl-&/2(n - 1) X6/2(n - 1) 

... A voltage source V is measured six times. The measurements are modeled by the 
random variable x = V + 11. We assume that the error 11 is NCO, 0'). We wish to find the 
0.95 interval estimate of 0'2. 
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(a) Suppose first that the source is a known standard with V = 110 V. We insert the 
measured values Xi = ItO + Vi of V into (8-22) and we find v = 0.25. From Table 8-3 
we obtain 

xJ.02s(6) = 1.24 X5.97S(6) = 14.4S 

and (8-23) yields 0.104 < (J'2 < 1.2. The corresponding interval for a is 0.332 < (J' < 
1.096 V. 

(b) Suppose now that V is unknown. Using the same data, we compute s2 from 
(8-13) and we find s2 = 0.30. From Table 8-3 we obtain 

XlO2S(S) = 0.83 X5.97S(S) = 12.83 

and (8-24) yields 0.117 <(J'2 < 1.8. The corresponding interval for a is 0.342 <a < 
1.344V. ~ 

PERCENTILES. The u percentile of a random variable x is by definition a number XII 

such that F(xu ) = u. Thus Xu is the inverse function F(-l)(u) of the distribution F(x) 
of x. We shall estimate XII in terms of the samples Xj of x. To do so, we write the n 
observations Xi in ascending order and we denote by Yk the kth number so obtained. The 
corresponding random variables Yk are the order statistics of x [see (7-13)]. 

From the definition it follows that Yk < Xu iff at least k of the samples Xi are less 
than Xu; similarly, Yk+1 > Xu iff at least k + r of the samples Xi are greater than Xu' Finally, 
Yk < Xu < Yk+r iff at least k and at most k + r - 1 of the samples Xi are less than Xu. 

This leads to the conclusion that the event {Yk < Xu < Yk+I'} occurs iff the number of 
successes of the event {x ::; xu} in n repetitions of the experiment S is at least k and at 
most k + r - 1. And since P {x ~ xu} = u, it follows from (3-24) with p = u that 

P{Yk < Xu < Yk+r} = k~l (~) um (1 - u)n-m (8-25) 

Using this basic relationship, we shall find the y confidence interval of XII for a 
specific u. To do so, we must find an integer k such that the sum in (8-2S) equals y for 
the smallest possible r. This is a complicated task involving trial and error. A simple so­
lution can be obtained if n is large. Using the normal approximation (4-99) with p = nu, 
we obtain 

( k+r-o.s-nu) (k-o.s-nu) 
P{Yk < Xu < Yk+,} ::::: G v'nu(1 _ u) - G Jnu(n _ u) = y 

This follows from (4.99) with p = nu. For a specific y, r is minimum if nu is near the 
center of the interval (k, k + r). This yields 

k ::::: nu - Zl-&/2v'nu(l - u) k + r::::: nu + ZI-&/2Jnu(1- u) (8-26) 

to the nearest integer. 

~ We observe 100 samples of x and we wish to find the 0.95 confidence interval of the 
median XO.S ofx. With u = 0.5, nu = SO, ZO.975 ~ 2, (8-26) yields k = 40, k + r = 60. 
Thus we can claim with confidence coefficient 0.95 that the median of x is between Y40 

andY60. ~ 
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DISTRIBUTIONS. We wish to estimate the distribution F(x) of a random vru.iable x in 
terms of the samples Xi of x. For a specific X, F(x) equals the probability of the event 
{x ~ x}; hence its point estimate is the ratio nx/n, where nx is the number of Xi'S that 
do not exceed x. Repeating this for every x, we obtain the empirical estimate 

~ nx 
F(x) =­

n 

of the distribution F(x) [see also (4-3)]. This estimate is a staircase function (Fig. 8-00) 
with discontinuities at the points Xi. 

INTERVAL ESTIMATES. For a specific x, the interval estimate of F(x) is obtained from 
(8-20) with p = F(x) and x = F(x). Inserting into (8-21), we obtain the interval 

I(x) ± In.j F(x)[l - I(x)] 

We can thus claim with confidence coefficient y = 2u - 1 that the unknown F (x) is in 
the above interval. Note that the length of this interval depends on x. 

We shall no,¥ find an interval estimate F (x) ± c of F (x), where c is a constant. The 
empirical estimate I (x) depends on the samples Xi of x. It specifies, therefore, a family 
of staircase functions F(x), one for each set of samples Xi. The constant c is such that 

P{lF(x) - F(x)1 ~ c} = y (8-27) 

for every x and the y confidence region of F(x) is the strip F(x) ± c. To find c, we form 
themrutimum -

w = max IF(x) - F(x)1 (8-28) 

(least upper bound) of the distance between F(x) and F(x). Suppose that w = w(~) is 
a specific value of w. From (8-28) it follows that w < c iff F (x) - F (x) < c for every 
x. Hence 

y = P{w ~ c} = Fw(c) 

It suffices, therefore, to find the distribution of w. We shall show first that the function 
Fw (w) does not depend on F (x). As we know [see (5-41)1. the random variable y = F(X) 
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is uniform in the interval (0. 1) for any F(x}. The function y = F(x) transforms the 
points Xi to the points Yi = F(Xi) and the random variable w to itself (see Fig. 8-6b). 
This shows that F w ( w) does not depend on the form of F (x). For its determination it 
suffices, therefore, to assume that x is uniform. However, even with this simplification, 
it is not simple to find Fw(w). We give next an approximate solution due to Kolmogorov: 

For large n: 

Fw(w) ~ 1 - 2e-211w2 (8-29) 

From this it follows that y = Fw(c) ~ 1 - 2e-2nc2 • We can thus claim with confidence 
coefficient y that the unknown F(x) is between the curves F(x)+c and F(x) -c, where 

/ 1 l-y 
c = V - 2n log -2- (8-30) 

This approximation is satisfactory if w > 1/.[ii. 

Bayesian Estimation 

We return to the problem of estimatJ.ng the parameter e of a distribution F(x, 6). In 
our earlier approach, we viewed e as an unknown constant and the estimate was based 
solely on the observed values Xi of the random variable x. This approach to estimation 
is called classical. In certain applications. e is not totally unknown. If, for example, 6 is 
the probability of six in the die experiment, we expect that its possible values are close 
to 1/6 because most dice are reasonably fair. In bayesian statistics, the available prior 
information about () is used in the estimation problem. In this approach, the unknown 
parameter 6 is viewed as the value of a random variable fJ and the distribution of x 
is interpreted as the conditional distribution Fx (x I 6) of x assuming f) = (). The prior 
information is used to assign somehow a density /(1(8) to the random variable fJ, and the 
problem is to estimate the value e of fJ in terms of the observed values Xi of x and the 
density of fJ. The problem of estimating the unknown parameter e is thus changed to the 
problem of estimating the value 6 of the random variable fJ. Thus, in bayesian statistics, 
estimation is changed to prediction. 

We shall introduce the method in the context of the following problem. We wish to 
estimate the inductance () of a coil. We measure (J n times and the results are the samples 
Xi = e + Vi of the random variable x = e + II. If we interpret e as an unknown number. 
we have a classical estimation problem. Suppose, however, that the coil is selected from 
a production line. In this case, its inductance e can be interpreted as the value of a random 
variable fJ modeling the inductances of all coils. This is a problem in bay~sian estimation. 
To solve it, we assume first that no observations are available, that is, "that the specific 
coil has not been measured. The available information is now the prior density /9 (6) of 
fJ, which we assume known and our problem is to find a constant 0 close in some sense 
to the unknown f), that is, to the true value of the inductance of the particular coil. If we 
use the least mean squares (LMS) criterion for selecting e. then [see (6-236)] 

0= E(fJ} = I: Of9(O)d6 

To improve the estimate, we measure the coil n times. The problem now is to 
estimate (J in terms of the n samples Xi of x. In the general case, this involves the 



318 PR08ABR.ITY AND RANDOM VARIABLES 

FXAI\IPIX 8-9 

estimation af the value 8 of a random variable 8 in terms of the n samples Xi of x. Using 
again the MS criterion, we obtain 

D = E{81 Xl = [: 8/9(8 I X)d~ (8-31) 

[see (7-89)] where X = [Xl, ... , x,,] and 

(8-32) 

In (8-32), !(X 18) is the conditional density of the n random variables Xi assuming 
() = 8. If these random variables are conditionally independent, then 

I(X 10) = !(xI18)··· !(xII 18) (8-33) 

where !(x 10) is the conditional density of the random variable X assuming () = 9. 
These results hold in general. In the measurement problem, !(x 10) = !I/(x - 8). 

We conclude with the clarification of the meaning of the various densities used 
in bayesian estimation, and of the underlying model, in the context of the measurement 
problem. The density !8(8), called prior (prior to the measurements), models the in­
ductances of all coils. The density !8(8 I X), called posterior (after the measurements), 
models the inductances of all coils of measured inductance x. The conditional density 
!x(x 10) = !I/(x - 8) models all measurements of a particular coil of true inductance 
8. This density, considered as a function of 8, is called the likelihood function. The 
unconditional density !x(x) models all measurements of all coils. Equation (8-33) is 
based on the reasQnable assumption that the measurements of a given coil are indepen­
dent. 

The bayesian model is a product space S = S8 X Sx, where S8 is the space of the 
random variable () and Sx is the space of the random variable x. The space S8 is the space 
of all coils and Sx is the space of all measurements of a particular coil. Fmally. S is the 
space of all measurements of all coils. The number 0 has two meanings: It is the value 

. of the random variable () in the space S8; it is also a parameter specifying the density 
! (x I B) = !v(x - 0) of the random variable x in the space Sz. 

~ Suppose that x = B + " where" is an N (0, 0') random variable and (J is the value of 
an N(80. 0'0) random variable () (Fig. 8-7). Find the bayesian estimate 0 of O. 

8 
FIGURE 8-7 
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The density f(x 1 9} ofx is N(9, a). Inserting into (8-32), we conclude that (see 
Prob. 8-37) the function f8(91 X) is N(e l , at) where 

a2 a2 a2 na2 
a2 = - x 0 9t = ---180 + _IX 

I n a5+ a2ln aa a2 

From this it follows that E {II X} = 91; in other words, 8 = 81• 

Note that the classical estimate of 8 is the average x of Xi. Furthennore, its prior 
estimate is the constant 90. Hence 8 is the weighted average of the prior estimate 80 and 
the classical estimate x. Note further that as n tends to 00, al -+- 0 and ncrVcr2 -+- 1; 
hence D tends to X. Thus, as the number of measurements increases, the bayesian 
estimate 8 approaches the classical estimate x; the effect of the prior becomes neg­
ligible. ~ 

We present next the estimation of the probability p = peA) of an event A. To be 
concrete, we assume that A is the event "heads" in the coin experiment. The result is 
based on Bayes' formula [see (4-81)] 

f(x 1 M) = P(M Ix)f(x) (8-34) 
1:0 P(M I x)f(x) dx 

In bayesian statistics, p is the value of a random variable p with prior density f(p). In 
the absence of any observations, the LMS estimate p is given by 

p = 11 pf(p}dp (8-35) 

To improve the estimate, we toss the coin at hand n times and we observe that "beads" 
shows k times. As we know, 

M = {kheads} 

Inserting into (8·34), we obtain the posterior density 

k n-tf( ) 
f(p 1M) = I p q p 

fo pkqn-k f(p) dp 
(8-36) 

Using this function, we can estimate the probability of heads at the next toss of 
the coin. Replacing f(p} by f(p I M) in (8-35), we conclude that the updated estimate 
p of p is the conditional estimate of p assuming M: $ 

11 pf(pIM)dp (8-37) 

Note that for large n, the factor ((J(p) = pk(1 - p)n-k in (8-36) has a sharp maxi­
mum at p = kin. Therefore, if f(p) is smooth. the product f(p)({J(p) is concentrated 
near kin (Fig. 8-8a). However, if f(p) has a ~haq> p~ at p = O.S (this is the case 
for reasonably fair coins), then for moderate values of n, the product f (p )({J(p) has two 
maxima: one near kl n and the other near 0.5 (Fig. 8-8b). As n increases, the sharpness of 
((J(p) prevails and f(p I M) is maximum near kin (Fig. 8-Se). (See also Example 4-19.) 
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Note Bayesian estimation is a controversial subject. The controversy bas its origin on the dual interpretation 
of the physical meaning of probability. In the first interpretation, the probability peA) of an event A is an 
"objective" measure of the relative frequency of the occurrence of A in a large number of trials. In the second 
interpretation. peA} is a "subjective" measure of our state of knowledge concerning the occurrence of A in a 
single trial. This dualism leads to two different interpretations of the meaning of parameter estimation. In the 
coin experiment. these interpretations take the follOWing form: 

In the classical (objective) approach. p is an unknown number. To estimate its value, we toss the coin n 
times and use as an estimate of p the ratio p = kIn. In the bayesian (subjective) approach, p is also an unknown 
number, however. we interpret it as the value of a random variable 6, the density of which we determine using 
whatever knowledge we might have about the coin. The resulting estimate of p is determined from (8·37). If 
we know nothing about P. we set I(p) = I and we obtain the estimate p = (k + l}/{n + 2) [see (4-88)]. 
Concepblally, the two approaches are different. However. practically, they lead in most estimafeS of interest 
to similar results if the size n of the available sample is large. In the coin problem, for example, if n is large, 
k is also large with high probability; hence (k + I )/(n + 2) ~ kIn. If n is not large. the results are dift'ereDI 
but unreliable for either method. The mathematics of bayesian estimation are also used in classical estimation 
problems if 8 is the value of a random vanable the density of which can be determined objectively in terms of 
averages. This is the case in the problem considered in Example 8-9. 

Next. we examine the classical parameter estimation problem in some greater detail. 

8-3 PARAMETER ESTIMATION 

Let X= (XI. X2 •.•.• xn) denote n random variables representing observations XI =X" 

X2 =X2 ••••• Xn =Xn• and suppose we are interested in estimating an unknown nonran­
dom parameter () based on this data. For example, assume that these random variables 
have a common nonna! distribution N (fl.. (J" 2). where fl. is unknown. We make n observa­
tions Xt, X2 • •••• XII' What can we say about fl. given these observations? Obviously the 
underlying assumption is that the measured data has something to do with the unknown 
parameter (). More precisely. we assume that the joint probability density function (p.d.f.) 
of XI. X2 ••••• Xn given by Ix (Xt. X2 • •••• XII ; () depends on (). We form an estimate for 
the unknown parameter () as a function of these data samples. The p.roblem of point 
estimation is to pick a one-dimensional statistic T(xJ. X2 ••••• XII) that best estimates 8 
in some optimum sense. The method of maximum likelihood (ML) is often used in this 
context 

Maximum Likelihood Method 

The principle of maximum likelihood assumes that the sample data set is represen­
tative of the population ix(xlt X2 • ••• , Xn ; (). and chooses that value for () that most 
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8 

FIGURE 8-9 

likely caused the observed data to occur. i.e .• once observations Xl, X2, •.. , Xn are given, 
!x(XI, X2 • ••• ,Xli; 8) is a function of 8 alone, and the value of (J that maximizes the 
above p.d.f. is the most likely value for 8. and it is chosen as its ML estimate OML(x) 
(see Fig. 8-9). 

Given XI = XI> X2 = X2, ••• ,1(" = Xn, the joint p.d.f. fx(xit X2 • •.• ,Xn ; 8) is 
defined to be the likelihood function. and the ML estimate can be determined either from 
the likelihood equation as 

DMJ.. = sup !x (Xl. X2, •••• Xli ; 8) 
9 

Or by using the log-likelihood function 

(8-38) 

(8-39) 

If L(XI. X2, ••• , XII; 8) is differentiable and a supremum OML exists, then that must satisfy 
the equation 

8Iogfx(x" X2.··· ,Xli; 8) I = 0 
88 9..,§MI. 

(8-40) 

~ Let XI • X2 •••.• x" be Li.d. uniformly distributed random variables in the interval 
(0, (J) with common p.d.!. 

1 
!x/(Xi; 8) = (j 0< Xi < 8 

where 8 is unknown. The likelihood function in this case is given by 

1 
!(XI =Xl,X2 = X2.···. x" = Xn; 6) = 8n ' 

.. 
i=l-+n 

(8-41) 

I o ~ max(xI, X2 • .••• Xli) ~ 8 (8-42) = 8n 

The likelihood function is maximized by the minimum value of 8, and since e ~ 
max(xl> X2 • ••• , XII), we get 

DML (x) = max(XI. X2 ••••• x,,) 

to be the ML estimate for 8. ..... 

(8-43) 



322 PROBABD-lTY AND RANDOM VARIABLES 

EXAl\IPLE 8-11 ~ Let xI. X2 ••••• Xn be Li.d. gamma random variables with unknown parameters a and 
~. Thus Xi ~ 0, and 

+ ( R) ~na n'l a-I -pEn x, 
J X Xi> X2 • ••• , Xn ; a, p = (r(a»n . I Xi e 1.1 

1= 

(8-44) 

This gives the log-likelihood function to be 

L(xi. X2, ••• , Xn; a, 13) 

= log !x(xt, X2 • ••. , Xn ; a, 13) 

=nalog~-nlogr(a)+(a-l) (~lOgXi) -~tXi (8-45) 

Differentiating L with respect to a and ~ we get 

BL n, ~ I - = nlogtJ - -r (a) + L.Jlogx; = 0 
Ba rea) . I 10 

1= a.p=lJt.p 

(8-46) 

(8-47) 

Thus 
a &ML 
PMLX; = 1 ~n 

ii 4.J;=1 Xi 
(8·48) 

and substituting (8-48) into (8-46), it gives 

r'(&Md (1 II ) 1 11 
10g&ML - = log - LXI - - Llogx; 

r(&Md n ;=1 n ;=1 . 
(8·49) 

Notice that (8-49) is highly nonlinear in &ML' ~ 

In general the (log)-likelihood function can have more than one solution, or no 
solutions at all. Further, the (log)-likelihood function may not be even differentiable. or 
it can be extremely complicated to solve explicitly [see (8-49)]. 

From (8-38), the maximum likelihood method tries to find the mode of the p.d.f. 
!x(xJ, X2, ••• , Xn ; 9). Since mode is in general a poorer estimate than the mean or the 
median, small-sample properties of this method are usually poor. For large sample size. 
the mode ~pproaches the mean and median, and as we shall see later the ML estimator 
has many desirable large-sample properties [see (8-284)-(8-289)]. 

To study the problem of nonrandom parameter estimation in some systematic 
manner, it is useful to introduce the notion of sufficient statistic and other related concepts. 

Sufficient Statistic 

A function T(x) = T(x1, X2, ••• , x,,) is said to be a sufficient statistic for e, if T(x) 
contains all infonnation about 9 that is contained in the data set, i;e., given the probability 
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density function 

(8-50) 

if 

P (Xl = Xl. Xl = X2 • •••• Xn = Xn; 81 T(x) = t} (8-51) 

does not depend on 8 for all possible values of Xl_ then T (X) must contain all information 
about 8 that is contained in the sample set x. Once T (x) is known. the sample set X 

contains no further information about 8. and hence it is called the sufficient statistic 
for 8. 

Thus a statistic T (x) is said to be sufficient for the parameter 8, if the conditional 
p.d.f. 

(8-52) 

does not depend on 8. 
Notice that the outcome XI. Xl •.••• x" is always trivially sufficient, but more in­

terestingly if a function T (x) is sufficient. we need to concentrate only on T since it 
exhausts aU the information that the sample set X has about e. The following example 
shows a statistics that is sufficient 

~ Let XI. X2 •••. , Xn be i.i.d. "- peA). and consider the function 
II 

T(XI,X2 ..... x,.) = LX; 
1=1 

Then 

P {XI = Xlt Xl = X2 • •••• x,. = X" 1 T(x) = t} 

{ 
P {XI = Xl. X2 = X2 • .... Xn = t" - (XI + Xl + ... + XII_I)} 

= P {T = Li=1 X;} 
o 

But as we know T(x:) ..... P(n>..). Thus 

(8-53) 

if t = L7=1 Xi 

t:f: 2:;=1 Xj 
(8-54) 

P (T = t XI) = e-"). (n>")L:', Xi = e-IIA (nAY • (8-55) 
1=1 (E7=I Xi)1 t! 

Thus 
P{XI = Xlt X2 = Xl, ... , Xn = 1 - (XI + X2 + ... + xlI-d} 

P {T = 2:;=1 Xi} 

is independent of e = >... Thus, T(x) = E7=1 X; is sufficient for A. ..... 

(8-56) 
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EXAMPLE S-13 

A STATISTICS 
THATISNOf 
SUFFICIENT 

~ Let ~It X2 be Li.d . ..., N(fL. cr2 ). Suppose p, is the only unknown parameter. and 
consider some arbitrary function of Xl and X2. say 

(8-57) 

{ 
IXI,x2(xj,x2) if Tl =Xl +2x2 

= !Xl+2x2(XI + 2x2) 

o TI ::j: Xl + 2x2 

_1_ -[(x.-I')2+(xz-J.!)21f2o'2 
ZlrQ2 e 

(8-58) 

is nQt independent of fL. Hence Tl = XI + 2X2 is not sufficient for p,. 
However T (x) = XI + X2 is sufficient for IL. since T (x" X2) = XI + X2 -

N(21L, 20'2) and 

I( I T) _ l(xJ, X2. T = Xl + X2) 
XIt X2 - .;;..,.....~--------:--­

I(TI = XI + X2) 

{ 
IXJ,x2 (x It X2) , if T = XI + X2 

= IX.+X2(xl + X2) 

o otherwise 

e-(x~+X~-2j.L~1+X2)+~2)f2o'2 

= .j 7r cr 2 e-[(xi +X2)2/2-2j.L(XI +x2)+2"zlf2o'2 

= _1_e-(XI-X2)2/4<l2 

.J1f(J2 

is independent of IL. Hence T (XI. X2) = XI + X2 is sufficient for IL. ~ 

(8-59) 

How does one find the sufficient statistics in general? Fortunately, rather than go 
through an exhaustive trial and error procedure as in Example 8-13, sufficient statistic 
can be detennined from the following theorem. 
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~ Let Xl. X2 ••••• X,i be a set of discrete random variables with p.m.f. P(X, = XJ. 

Xz = XZ • •••• Xn = Xn; 9). Then T(xt. X2 ••••• x,,) is sufficient if and only if 

P {Xl = Xh Xl = XZ • .... len == Xn; 9} == h(x .. Xl ..... xn)g6(T(x) = t) (8-60) 

where h(.) is a nonnegative function of Xl. X2 •••• ,x" that does not depend on 9. and 
g(.) is a nonnegative function of 9 and T only (and not of Xl. X2, ••• ,Xn in any other 
manner). 

Proof. Sufficiency. Suppose 

P{x; 8} == h(X)8,(T) (8·61) 

Then 

{ 
P{x=x;9, T =t} 

P{x = x;91 T(x) == I} == 0 P{T == t} 
T=I 

{ 
P{x==x;81 

== P{T == t} 

o 
T=I 

(8·62) 
T::j: t 

IfT(x) == t, then 

P (T(x) == t} == 2: P{x == x; 8} == L: h(X)8,(T = t) 
Tlxl.' T(x)ooI 

= 8,(T = t) L: hex) (8-63) 
TOO·, 

Hence 

{ 
hex) 

Pix == x; (J I T(x) == t} == :7(x)-t hex) 
T(x) == t 

(8-64) 

T(x)::j: t 

which does not depend on 8. Hence T is sufficient. 
Conversely. suppose T (x) == t is sufficient. Thcn 

P (x =x;8) == Pix =x;8. T(x) == t} if T(x) == I 

== Pix == x; 91 T(x) == I} P{T(x) == I} (8·65) 

Since T is sufficient. P{x == x; 81 T == t) is independent of 8, say hex). Thus 

p (x == x; 8) == h(x)P(T == t) 

But 

P (T(x) == t} == L: PIx == x;9} == 8,(T == I) 
T(x)"" 

Thus if T is sufficient, we obtain 

P {x == x; 9} == h(X)8,(T = t) 
that agrees with (8-60). .. 

(8·66) 

(8-67) 

(8-68) 
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EX\!\IPLI S-IS 

Next, we consider two examples to illustrate the usefulness of this theorem in 
finding the sufficient statistic. 

.. Let Xl, XZ, •••• Xn be i.i.d. '" N (JL, 0'2). Thus 

= -- e LJi.,' "-"_I ( 1 )"/2 _(". x~/2I12_p. "" Xdu2+np.2/2t12) 

21£'0'2 
(8-69) 

. Hence the set (2::=1 Xi, 2:7=1 ,q) is sufficient for the parameter pair (JL, 0'2). Note 
that if 0'2 is known. then 2:7=\ Xi is sufficient for JL; and similarily if JL is known then 
2:7=1 xl is sufficient for the unknown parameter O'z. ~ 

.. Let Xl. X2, ••• , Xn be Li.d. '" U(O, 9). Then 

Define 

{
I 

- 0 < XI> Xz, .••• Xn < e 
fx(x\. Xz • .•. ,Xn; 9) = en 

o otherwise 

{ I b > a 
ha.b) = 0 otherwise 

and the random variables 

• IJ. • ( ) IDlnx = mm XIt Xl, ••• , "" 

Then 

where 
A 

h(x) = l(o.minx) 

IJ. 1 
8s(T) = en I(maxx;S} 

Thus 

is sufficient for e for uniformly distributed random variables. 

(8-70) 

(8-71) 

(8-72) 

(8-73) 

(8-74) 

(8-75) 

In a similar manner, if X; represents a uniformly distributed discrete random vari­
able with 

P{xt = k} = liN k= 1,2, ... ,N (8-76) 



CRAMER-RAO 
(CR) LOWER 
BOUND 

CHAPTeR. 8 STAnsnCS 327 

and Xl, X2, . : . , XII are i.i.d .• then using the same argument, 

T (x) = max(Xl, X2, ... , XII) 

also represents the sufficient statistic for the unknown discrete parameter N. 

(8-77) 

~ 

Next, we consider important properties that estimators of nonrandom parameters 
should posses ideally. To start with, it is desirable that estimates for unknown nonrandom 
parameters be unbiased and possess low variances. 

Unbiased Estimators 

Recall that an estimator T (x) is said to be an unbiased estimator for 9. if 

E[T(x)] = 9 (8-78) 

If Tl (x) and T2 (x) are both unbiased estimators for 9, clearly the one with lower variance 
is preferable. In this context, it is reasonable to ask: (i) How does one find an unbiased 
estimator for e with the lowest possible variance? (i i) Is it possible to obtain an expression 
for the lower bound for the variance of all unbiased estimators for 8? 

The answers to both these questions are positive. and they are given by Rao in his 
1945 paper.3 Cramer also obtained the desired bound quite independently in 1946. We 
begin with the Cramer-Rao bound that gives the lower bound for the variances of all 
unbiased estimators for e. 

~ Let T (x) represent any unbiased estimate for the unknown parameter 9 based on 
observations of the random variables Xl, X2, ... ,XII under the joint probability density 
function f(Xl = Xl. X2 = X2.· •• , XII = XII; 8) denoted by f(x; e). Then 

1 -1 
Var{T(x)} ~ {8 2} = {8' } (8-79) 

E (8ologf(x;9») E w1ogf(x;9) 

provided the following regularity conditions are satisfied: 

. :9 J f(x;9)dx = J af~;e) dx =0 

a J J af(x;9) ae T(x)f(x; 8)dx = T(x) a9 dx 

Here the integrals represent n-fold integration. 

Proof. Using the unbiased property, we have 

E{T(x) - O} = 1: (T(x) - 8}f(x; 9)dx = 0 

Differentiate with respect to fJ on both sides to obtain 

[ af(x' 6) 100 

-00 (T(x) - fJ) a; dx - -00 f(x; 8) dx = 0 

(8-80) 

(8-81) 

(8-82) 

(8-83) 

3e. R. Rao,lriformtltion and the Accuracy Attainable in the Estimation of Statistical Parameten, Bulletin of 
the Calcutta Mathematical Soc:iety, Vol. 37, pp. 81-89, 1945. 
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where we have made use of the regularity conditions given is (8 .. 80) and (8-81). Thns 

100 (T(x) _ 9) a/(x; e) dx = 1 
-00 89 

But 

alog/(x;e) 1 a/(x;e) 
= ae I(x;e) ae 

so that 

af(x; 9) = f(x' e) a log/(x; e) 
ae ' ae 

and (8-84) beE:omes I: (T(x) - 9)/(x; fJ) a log ::x; e) dx = 1 

Rewrite this expression as 

(8-84) 

(8-85) 

(8-86) 

(8-87) 

I: {(T(x) - 8)J I(x; 8)} {J I(x; 8) a log::x; e)} dx = 1 (8-88) 

By Cauchy-Schwarz inequality, we obtain 

1;S L{(T(X)-e)JI(x;8)}2dX L {JI(X;8)alog::X;8)f dx (8-89) 

or 

But 

L (T(x) - 8)2/(x; 8)dx = Var{T(x)} (8-91) 

so that we obtain 

..... {T(xll· E { elog~:X;9)n ?: I (8-92) 

which gives the desired bound 

1 
Var{T(x)} > --:;-------::-::-

- E { (a log (Jx ; 8) ) 2} 

(8-93) 

Also integrating the identity in (8-86) we get 

J: I(x; 8) a log ::X; 8) dx = I: a/~~ 8) dx = a~ I: I(x; e) dx = 0 (8-94) 

where we have once again made use of the regularity condition in (8-80). Differentiating 
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this expression again with respect to 0, we get 

100 ol(x;O)olog/(x;O)d l°O /( ·0)a2 10g/(-.,;0) =0 
-00 ae 00 x + -00 x, a20 dx (8-95) 

where we have assumed that a/(x; o)/ao is once again differentiable. Substituting (8-
86) into (8-95), we obtain 1: I (x; 0) (a log {;x; 0) ) 2 dx + I: I (x; 0) a210ga~~X; 0) dx = 0 (8-96) 

which is the same as 

E { (a log {;x: 0) ) 2} = _ E { a210ga~~X ; 0) } £ Jll (0) (8-97) 

Note JIl (e) is often referred to as the Fisher infonnation contained in the data set about 
the parameter (J. Thus we obtain 

1 -1 

Var(T(x)}::: {(alogf{X;0»)2} = E (8110g/(X;(J») (8-98) 
E 8lJ ae2 

If XI, X2, ... t Xn are i.i.d. random variables, then 
n 

log I(x!, X2, .•. , Xn ; (J) = log/ex} ; (J)/(X2; 0)··· I(xn ; 0) = L: log I(Xi ; 0) 
;=1 

(8-99) 
represents a sum of n independent random variables, and hence 

E { Clog!(.,,: ... , .. ; e»),} = t.E { Clog~~",; O»),} 

= .E { C log ~'" ; e»),} (8-100) 
so that the CR bound simplifies into 

1 -1 
Var{T(x)}::: { 2} = -~(:-:;-2---~) 

E ( 8 log f(Xi ; e») nE a log [(Xi; 0) 
n ae ale 

(8-101) 

~ 
Returning to the general situation in (8-98), from the Cauchy-Schwarz inequality, 

equality holds good in (8-89) and (8-98) if and only if 

810gf(x;9) = {T(x) -O}a(O) 
89 

(8-102) 

In that case the unbiased estimator T (x) has the lowest possible variance and it is said 
to be an efficient estimator for 9. 

Clearly if an efficient estimator exists, then that is the best estimator from the 
minimum variance point of view. There is no reason to assume that such an estimator 
would exist in all cases. In general, sucb an estimator mayor may not exist and it depends 
on the situation at band. 
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However, if an efficient estimator exists, then it is easy to show that it is in fact 
the ML estimator. To see this, notice that the maximum likelihood estimator in (8-40) 
satisfies the equation 

a log I(x; e) I = 0 
ae 6=DML 

(8-103) 

Substituting this into the efficiency equation, we get 

a log :~x; e) I = {T(x) - 8}a(8)19=DML = 0 
9=DML 

(8-104) 

It is easy to show that aCe) > 0, so that 

eML = T(x) (8-105) 

is the only solution to (8-104), and this shows that if an efficient estimator T(x) exists, 
then it is necessarily the ML estimator. To complete the proof, we need to show that 
a(8) > 0, and towards this differentiate (8-102) once again with respect to 8 to get 

Thus 

a2 1og/(x; e) = -a (e) + (T(x) _ 8la'(S) 
a£)2 

(8-106) 

a(8) = -E {a2Ioga~~'; 8)} = E { (a IOgtix; 8) y} = JII > 0 (8-107) 

where we have made use of (8-82) and (8-97), thus completing the proof. Using (8-107) 
in (8-102), the p.d.f. of an efficient estimator has the form 

I(x; e) = h(x)eJ Ju IT(x)-8} d6 (8-108) 

and it represents the exponential family of p.dJ.s. In particular if Jll is independent of 
e, then (8-108) reduces to the Gaussian p.d.f. itself. 

An efficient estimator need not exist in all cases; and in those cases the ML estimator 
may be not even unbiased. Nevertheless, the parameter still can have several unbiased 
estimators, and among them one such estimator has the lowest variance. How does one 
go ahead to obtain such an estimator? 

Before we proceed to answer this important question, let us consider a few examples 
to illustrate the CR bound. " 

.. LetXj '" P(A), i.i.d. i = 1 ~ n; and A is unknown. Since E(xj) = A, we have 

(8-109) 

is ail unbiased estimator for A. Further 

1 n nA A 
Var{X} = 2" L:Var{X/} = 2" =-

n ;=1 n n 
(8-110) 
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To examine the efficiency of this estimator, let us compute the CR bound in this case. 

1/ tI A x/ A (L,.I x/ ) 

P{xJ, X2, .•• ,Xn ; A} = II P{x; ; A} = II e->' -. t = e-n1 IIn . t (8-111) 
;=1 1=1 X,. ;=1 ~,. 

and 

8 log P{x(, X2, ... , Xn ; A} E:'..1 Xj 
8A = -n + ==J..'-- (8-113) 

(8-114) 

so that 

-E [8210g P{xJ, X2,···. Xn; A}] = 2:7=1 E(xil = nA = ~ 
82 A A2 A2 A 

(8-115) 

and hence the CR bound is given by 

2 A 
O"CR = - (8-116) 

n 
Thus the variance of x equals the CR bound. and hence x is an efficient estimatoi in this 
case. From (8-105), it must also be the maximum likelihood estimator for A. In fact, 

8 log P(Xt , X2 •... , Xn ; A) I E~-I Xi I 0 =-n+ = a A l.=lML A l.=lw. 
(8-117) 

so that 

J..ML(X) = E~=1 Xj = x (8-118) 
A 

It is important to verify the validity of the regularity conditions, otherwise the CR 
bound may not make much sense. To illustrate this point, consider the case where XiS 

are i.i.d. '" U (0, e). i = 1 ~ n. Thus 

1 
ix,(x/; 9) = (j 0 < Xi < () (8-119) 

From Examples 8-10 and 8-15. we know that 

(8-120) 

represents the maximum likelihood estimator as well as the sufficient statistic for () in 
this case. The probability distribution function of T (x) is given by 

FT(t) = P(T :': I} = P{max(xl, X2, .••• Xn) :': t} 

= P{XI :': I, X2:': t, ... , Xn =: t} 

= [P{Xj =: t})1! = (~r 0 < t < () (8-121) 
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EX \!\IPLE 8-17 

so that the p.d.f. of T is given by 

fret) = dFr(t) = ntn- I 

dt en O<t<O (8-122) 

This gives 

19 n [ n on+J n 
E[T(x)] = tfr(t)dt = - tndt = --- = --9 

o on 0 on n + 1 n + 1 
(8-123) 

and hence and ML estimator is not unbiased for e. However, 

D(x) = (n: 1) max(XI, X2 •••• , len) (8-124) 

is ~ unbiased estimator for O. Moreover 

Var{D(x)} = (_n +_1)2 Var{T(x)} = (_n +_1)2 [_nO_2 _ (_n9_)2] = ~0_2_ 
n n n + 2 n + 1 n(n + 2) 

However. using (8-119) the Cramer-Rao bound in this case is given by 

Note that 

1 1 1 92 

nE {eJog/;~(lCl.6)r} = nE {e(-~?9)r} = n(-lj9)2 = -; 

e2 
Var{ D (x)} < -

n 

(8-125) 

(8-126) 

(8-127) 

the CR bound in this case. This apparent contradiction occurs because the regularity 
conditions are not satisfied here. Notice that 

a f6 
ae 10 I (x; e) dx = 0 (8-128) 

as required in (8-80), but 

[ al(x; e) dx = [ !.. (~) dx = f6 _..!. dx = ~ ;l: 0 
o a9 0 ae (J 10 (J2 e (8-129) 

The second regularity condition in (8-80) does not hold here, and hence the CR bound 
is meaningless in this case. .... 

As we mentioned earlier, all unbiased estimators need not be efficient. To construct 
an example for an unbiased estimator that is not efficient, consider the situation in 
Example 8-17. 

~ Let XI'" N(IL. (12), where f.J. is unknown and (12 is known. Further, XIS are Li.d. for 
i = 1 -+- n. 

It is easy to verify that 

T(x) = XI + X2 : .•. + len = x (8.130) 
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is·an unbiased estimator for p., that is also efficient. In facti'" N({J.. 0'2 In). But suppose 
our parameter of interest is not J.L, but say J.L2. Thus e = J.L 2 is unknown, and we need an 
unbiased estimator for 9. To start with 

(8-131) 

so that 

(8-132) 

which gives 

i { (a log I(x., X2 ..... Xn ; e») 2} = :E7.... E{x; - J.L)2 = n0'2 = _n_ 
ae 4q4J.L2 4q4J.L2 40'2J.L2 

(8-133) 

Thus the CR bound for e = J.L2 is given by 

A 4q2J.L2 O'bt = -- ~ Var{D} 
n 

(8-134) 

where D represents any unbiased estimator for e = J.L2. To obtain an unbiased estimator 
for e, let us examine the estimator r. We obtain 

0'2 
E{'i'-} = Var{X} + [E{I}]2 = - + J.L2 (8-135) 

n 
so that 

er2 
D(x) =12 -­

n 

is an unbiased estimator for e = J.L 2• Its variance is given by 

• 2 2 

= E{i"} - (E{12}]2 = E{i"} - (: + J.L2) 

But if y ..... N (J.L. 0'2), then by direct computation, we get 

E{y} = J.L 

E{y2} = 0'2 + J.L2 

Etr} = J.L3 + 3J.LU2 

Ety4} = J.L4 + 6J.L2er2 + 30'4 

Since I .... N{J.L. 0'2 In). we obtain 

0'2 30'4 
E{r} = J.L4 +6J.L2- + 2"" 

n n 

(8-136) 

(8-137) 

(8-138) 

(8-139) 
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so that using (8-137) and (8-139), 

Var{9(x)} = E{(~ _ ~2)Z} = E~} _ (:2 + p.2) 2 

4 6p.2q2 30'4 (q4 4 2~20'2) 
= J.L + -n - + nZ - n2 + ~ + -n-

4~Zq2 20"4 
= -n-+ n2 (8-140) 

Thus 

(8-141) 

Clearly the variance of the unbiased estimator for 8 = ~2 exceeds the corresponding 
CR bound, and hence it is not an efficient estimator. How good is the above unbiased 
estimator? Is it possible to obtain another unbiased estimator for 8 = ~ Z with even lower 
variance than (8-140)? To answer these questions it is important to introduce the concept 
of the uniformly minimum variance unbiased estimator (UMVUE). ... 

UMVUE 
Let {T(x)} represent the set of all unbiased estimators for 8. Suppose To(x) E {T(x)}, 
and if 

(8-142) 

for all T(x) in {T(x)}, then To(x) is said to be an UMVUE for 8. Thus UMVUE for (} 
represents an unbiased estimator with the lowest possible variance. It is easy to show 
that UMVUEs are unique. 

If not, suppose Tl and T2 are both UMVUE for e, and let Tl ¥- Ta. Then 

(8-143) 

and 

(8-144) 

Let T = (T\ + Ta)/2. Then T is unbiased for 8, and since Tl and T2 are both UMVUE, 
we must have 

Var{T} ~ Var{T,} = 0'2 (8-14S) 

But 

Var{T} = E (TJ ; T2 _ () ) 2 = Var{Td + Var{T~ + 2CovfTt, Tz} 

0'2 + Cov{Tt. T2} 2 = >q 2 - (8-146) 
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or. 

Cov{Tt, T2} ?: (f2 

But Cov{TJ• T2} ::: 0'2 always, and hence we have 

Cov{TJ, T2} = 0'2 => Prl.rl = 1 

Thus TI and T2 are completely correlated. Thus for some a 

P{TI = aT2} = 1 for all 6 

Since T. and T2 are both unbiased for 6, we have a = 1, and 

PIT. = T2} = 1 for aIle 
Q.E.D. 

(8-150) 

How does one find the UMVUE for 8? The Rao-Blackwell theorem gives a com­
plete answer to this problem. 

~ Let h (x) represent any unbiased estimator for 8, and T (x) be a sufficient statistic for 
6 under f(x, 8). Then the conditional expectation E[h(x) I rex)] is independent of 8, 
and it is the UMVUE for 8. 

Proof. Let 

To(x) = E[h(x) I T(x)] 

Since 

E{To(x)} = E{E[h(x) I T(x)]} = E{h(x)} = 9, 

To(x) is an unbiased estimator for (), and it is enough to show that 

Var{To(x)} ::: Var{h(x)}, 

which is the same as 

But 

and hence it is sufficient to show that 

E{T!(x)} = E{[E(h I T)]2} ::: E[E(h11 T)] 

(8-152) 

(8-153) 

(8-154) 

where ~e have made use of (8-151). Clearly. for (8-156) to hold, it is sufficient to show 
that 

[E(h I T)]2 ::: E(h2 1 T) 

lnfact, by Cauchy-Schwarz 

[E(h I T)]2 ::: E(h2 , T)E(11 T) = E(h2 , T) (8-158) 
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and hence the desired inequality in (8-153) follows. Equality holds in (8-153)-(8-154) 
if and only if 

(8-159) 

or 

E([E(h I T)]2 - h2} = E{[(E(h I T)]2 - E(h2 1 T)} = -E[Var{h I T}] = 0 (8-160) 

Since Var{h I T} :::: O. this happens if and only if 

Var{h IT} = 0 

i.e., if and only if 

[E{h I TlP = E[h2 1 T] 

which will be the case if and only if 
h = E[h(x) I T] 

i.e., if h is a function of the sufficient statistic T = t alone, then it is UMVUE. 

(8-]61) 

(8-162) 

~ 
Thus according to Rao-Blackwell theorem an unbiased estimator for (J that is 

a function of its sufficient statistic is the UMVUE for (J. Otherwise the conditional 
expectation of any unbiased estimator based on its sufficient statistic gives the UMVUE. 
The significance of the sufficient statistic in obtaining the UMVUE must be clear from 
the Rao-Blackwell theorem. 

If an efficient estimator does not exist, then the next best estimator is its UMVUE, 
since it has the minimum possible realizable variance among all unbiased estimators 
fore. 

Returning to the estimator for (J = p,2 in Example 8-17, where Xi '" N(f..i. (12), 
i = 1 ~ n are i.i.d. random variables, we have seen that 

2 

o(X) = x? - ~ (8-163) 
n 

is an unbiased estimator for (J = J.I-2• Clearly T (x) = x is a sufficient statistic for J.L as 
well as p, 2 = e. Thus the above unbiased estimator is a function of the sufficient statistic 
alone, since 

(8-164) 

From Rao-Blackwell theorem it is the UMVUE for e = J.L2. 
Notice that Rao-Blackwell theorem states that all UMVUEs depend only on their 

sufficient statistic, and on nO'other functional form of the data. This is eonsistent with the 
notion of sufficiency. since in that case T (x) contains all information about (J contained 
in the data set x = (XI. X2, .•. , xn), and hence the best possible estimator should depend 
only upon the sufficient statistic. Thus if hex) is an unbiased estimator for e, from 
Rao-Blackwell theorem it is possible to improve upon its variance by conditioning it on 
T(x). Thus compared to h(x), 

Tl = E{h(x) I T(x) = t} 

= J h(x)f(XI. X2 • ... , Xn; (J I T(x) = t) dXl dX2'" dXn (8-165) 
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is a b~tter estimator for e. In fact, notice that f (Xl. Xl •••• , X,I; BIT (x) = t) dQes not 
depend on t:J, since T (x) is sufficient. Thus TJ = E[h (x) I T (x) = t] is independent of (} 
and is a function of T (x) = t alone. Thus TI itself is an estimate for (}. Moreover, 

E{Td = E{E[h(x) I T(x) = t]} = E[h(x)] = e 
Further, using the identitt 

Var{x} = E[Var{x I y}] + VarLE{x I y}l 

we obtain 

(8-166) 

(8-167) 

Var{h(x)} = E[Var{h I TJI + Var[E{h I TlJ = Var{Td + E[Var{h I T}] (8-168) 

Thus 

Var{Td < Var{h(x)} (8-169) 

once again proving the UMVUE nature of TJ = E[h(x) I T(x) = t]. Next we examine 
the so called "taxi problem," to illustrate the usefulness of the concepts discussed above. 

The Taxi Problem 

Consider the problem of estimating the total number of taxis in a city by observing the 
"serial numbers" ofa few ofthem by a stationary observer.s Let Xl, Xl •... , XII represent 
n such random serial numbers, and our problem is to estimate the total number N of 
taxis based on these observations. 

It is reasonable to assume that the probability of observing a particular serial 
number is liN, so that these observed random variables Xl. X2 ••••• x" can be assumed 
to be discrete valued random variables that are uniformly distributed in the interval 
(1, N), where N is an unknown constant to be determined. Thus 

1 
P{x; = k} = N k = 1,2, ...• N i = 1. 2, ... , n (8-170) 

I 

In that case, we have seen that the statistic in (8-TI) (refer to Example 8-15) 

(8-171) 

is sufficient for N. In searc.h of its UMVUE,let us first compute the mean of this sufficient 

4 

Var{xly} ~ E{x2 IYI- [E{xly}J2 

and 
Var[E(xlyll = E[E(xly}}2 - (ElE{xlyJl)2 

so that 

ElVar(x I y)] + Var[E{xl y}1 "" E[E(x2 1 y)) - (E[E{x lym2 = E(r) - [E(,,)]2 = Varix} 

SThe stationary observer is assumed to be standing at a street corner, so that the observations can be assumed 
to be done with replacement. 



statistic. To compute the p'.m.f. of the sufficient statistic in (8-171). we proceed as: 

PiT = Ie} = P[max(Xl. X2 •.•.• XII) = k] 

= PLmax.(xl. X2 •••. ,x,.) $ k] - P[max(xt. X2 ••••• XII) < k] 

= P[max(:Xl, X2 ..... XII) $ k] - P[roax(XI.X2 .... ,x,.) $ k -IJ 

= Pix, $ k. X2 $ Ie, ... , x,. $ Ie) 

sotbat 

- P[XI $ Ie - 1, X2 $ Ie - 1, ... , x,. $ Ie - 1] 

= [P{Xt ::::: leU' - [P{x; ::::: Ie _1}]" 

= (NIe)1I - (le N-l)" k = 1,2, ... ,N 

N 

E{T(x» = N-II I:k{~ - (k _1)II) 
k-l 

N 

= N-n 2:{~+1 - (Ie - 1 + 1)(k - 1)"} 
1=1 

N 

= N-II 2:{(~+1 - (Ie - 1)"+1) - (k - It) 
1-1 

For large N, we can approximate this sum as: 

N ioN N/I+l 
I:(k -1)/1 = 1" +2" + ... + (N _1)" ~ y"dy =--
}=1 0 n + 1 

Thus 

so that .. 

(n+l) (n+l) Tl (x) = -n- T(~ = -n- max(xt. X2, ••• , x,.) 

(8-172) 

(8-173) 

forlargeN 

(8-174) 

(8-175) 

(8-176) 

is nearly an unbiased estimator for N, especially when N is large. Since it depends only 
on the sufficient statistic, from Rao-Blackwell theorem it is also a nearly UMVUE for 
N. It is easy to compute the variance of this nearly UMVUE estimator in (8-176). 

(n+ 1)2 Var{Tl(x» = -n- Var{T(x)} (8-177) 
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But 

so that 

Now 

Var{T(x)} = E{T2(X)} - LE{T(x)}]2 = E{T2(x)} _ n2JV2 2 
(n+ 1) 

N N 

E{T2(x)} = L~ PiT = k} = N-" L~{k" - (k - 1)"} 
k=1 k=l 

N 

= N-n L{k"+2 - (k - 1 + 1)2(k - l)n) 
b.1 

(8-178) 

(8-179) 

= N-n {t[kn+2 - (k _1)"+2] - 2 t(k _1)11+1 - t(k _1)II} 
t-J k-I_I 

=::: N-n ( N II+2 - 21N yn+l dy -1N yft dY) 

= N-II (Nn+2 _ 2Nn+2 _ Nn+l) = nN2 _ ~ 
n+2 n+l n+2 n+l 

(8-180) 

Substituting (8-180) into (8-179) we get the variance to be 

Var{Tt(x» =::: (n + 1)2 N2 _ (n + I)N _ N 2 = N2 (n + l)N 
n(n + 2) n2 n(n + 2) n2 

(8-181) 

Returning to the estimator in (8-176), however. to be precise it is not an unbiased 
estimator for N, so that the Rao-Blackwell theorem is not quite applicable here. To 
remedy this situation. all we need is an unbiased estimator for N, however trivial it is. 

At this point, we can examine the other "extreme" statistics given by 

N (x) = min(xi. X2 •..•• x,,) (8-182) 

which re~ents the smallest observed number among the n observations. Notice that 
this new statistics surely represents relevant information. because it indicates that there 
are N (x) - 1 taxis with numbers smaller than the smallest observed number N (x). 
Assunnng that there are as many taxis with numbers larger than the largest observed 
number. we can choose 

To(x) = max(XI. X2 •... , x,,) + min(Xl, X2, ... , x,,) - 1 (8-183) 

to ~ a reasonable estimate for N. 10 examine whether this is an unbiased estimator for 
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N. we need to evaluate the p.m.f. for min(x\. X2 ••••• Xn). we bave6 

P(min(xlo X2 •••• , Xn) = j] 

= PLmin(xl. X2, •••• xn) :s j] - P[min(xlo X2 ••••• Xn) :::: j - 1]. (8-184) 

But 

" n 
= 1 - II Pix, > j} = 1 - II[1- Pix, :::: j}] 

Thus 

Thus 

i=1 

= 1 - II 1 _.L = 1 - -/ 
n ( .) (N ')" 

• 1 N N 
''"' 

. . (N - j)n ( (N - j + l)n) 
P[mm(xlo X2 ... ·, Xn) = J] = 1 - N1I - 1- N1I 

(N - j + l)n - (N _ j)1I 
= 

N 

E{min(xh X2 ••••• x,.)} = L:j P[min(xlt X2 ••••• Xn) = j] 
J=I 

_ ~ . (N - j + lY' - (N _ j)1I 
- L..JJ Nn 

1=1 

(8-185) 

(8-186) 

(8-187) 

Let N - j + 1 = k so that j = N - k + 1 and the summation in (8-187) becomes 
N 

N-n L:(N - k + l)[kn - (k - 1)11] 
k ... l 

= N-n {N fJl(.1I - (k - 1)"] - t,(k - l)k" - (k - l)n+l1} 
t=l t=1 

= N-n {NII+J - t{kll+1 - (k - 1)"+1) + Ek"} 
k=1 k_l 

(8-188) 

. 'The p.m.f. formax(xa. x2 •. ", XII) and its expected valaeare given in (8-172)-(8-173), 
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Thus 

N-l 

E[min(x). X2, •••• Xn)] = 1 + N-1I L k" 
k=l 

From (8-171)-{8-173). we have 

N-I 
E[max(x., X2, •••• Xn)] = N - N-n L k1l 

k-l 

so that together with (8-183) we get 

E[To(x)] = E[max(xJ, Xl ••••• Xn)] + E[min(x" X2, ..•• Xn)] - 1 

( 
N-l ) ( N-I) = N - N-n L k1l + 1 + N-n L k!' - 1 
k=l 1=1 

=N 

(8-189) 

(8-190) 

(8-191) 

Thus To(x) is an unbiased estimator for N. However it is not a function of the suf­
ficient statistic max(X., Xl ••.•• Xn) alone, and hence it is not the UMVUE for N. To 
obtain the UMVUE, the procedure is straight forward. In fact, from Rao-Blackwell 
theorem. 

E{To(x) I T(x) = max(xlt X2 •••.• Xn)} (8-192) 

is the unique UMVUE for N. However. because of the min(xlo X2 ••••• Xn) statistics 
present in To(x). computing this conditional expectation could turn out to be a difficult 
task. To minimize the computations involved in the Rao-Blackwell conditional expecta­
tion. it is clear that one should begin with an unbiased estimator that is a simpler function 
of the data. In that context. consider the simpler estimator 

T2(X) =XI (8-193) 

N ~ 1 N (N + 1) N + 1 
E{T2} = E{xIl = EkP{x, = k} = ~k- = =--

k .. l k-l N 2N 2 
(8-194) 

so that 

h(x) = 2xl-l (8-195) 

is an unbiased estimator for N. We are in a position to apply the Rao-BJ.ackwell theorem 
to obtain the UMVUE here. From the theorem 

E[h(x) I T(x)] = E{2xl - 11 max(XIt X2 ••••• Xn) = t} 
N 

= E(2k - l)P{XI = k I max(xl. X2 •.••• Xn) = I} 
k-=I 

(8-196) 
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is the "best" unbiased estimator from the minimum variance point of view. Using (8-172) 

P{x, = k. T(x) = t) 
P{xJ = k I mu(x}, X2,··., Xn) = t} = P{T(x) = t} 

PIx, = k, T(x) ~ t} - Pix, = k, T(x) !5 t - I} 
=~--~--~~~~~~~----~--~ 

P{max T(x) !5 t} - P{T(x) !5 t - I} 

_ P{XI = k. X2 !5 t, ...• Xn =:: t} - P{x, = k, X2 =:: t - 1, ... , Xn =:: I - I} 

- P{XI !5 t. X2 =:: t, ... , Xn =:: t} - P{x, !5 t - I, X2 =:: t - 1 •...• Xn !5 t - I)} 

Thus 

{ 

t,,-1 - (t - l)n-1 . 
if k = 1.2, ...• t - 1 

til - (t - 1)" 

t"-' 
if k =t 

til - (t -1)" 

E(h(x) I T(x)} = E{(2xl - 1) I max(xt. X2 •.•. , XII)} 

t 

= 2)2k - l)P{XI = k I max(xlt X2 •...• Xn) = t} 
k=l 

(8-197) 

(
tll-l _ (t _ 1)11-1) I-I 1"-1 

= 2k-l 21-1 t" - (t - 1)" L( ) + t" - (t - 1)11 ( ) 
k=1 

t"-1 - (t - 1)"-1 t ll - 1 (21 - 1) 
= (t-l)2+----

til - (t - 1)" til - (t - 1)11 

1"+1 - 2tn + t"-1 - (I - 1)11+1 + 21" _ t"-1 
=------------~--~----------

til - (t - 1)" 

t"+1 - (t - 1)11+1 
= ------:---:---

til - (t -1)11 
(8-198) 

is the UMVUE for N where t = max(XI. X2 •..•• XII)' Thus if Xl. X2 •...• x,. represent 
n random observations from a numbered population. then' 

11" = [max(xlo X2 •.••• x,.)]11+1 - [max(x}, X2, ••• , x,.) - 1]11+1 (8-199) 
[max(XI' X2 ••••• x,.)]11 - [max(Xt, X2, ... , XII) - 1]11 

is the minimum variance unbiased estimator for the total size of th~ population. The 
calculation of the variance of this UMVUE is messy and somewhat difficult, nevertheless 
we are assured that it is ~e best estimator with minimum possible variance. 

A! an example, let 

82,124,312,45,218,151 

represent six independent observations from a population. Then 

max(Xl, X2 ••••• XG) = 312 

7S.M. Stigler, Comp1818118$$ and UnbiasIJd Estimmion, AM. Slat. 26, pp. 28-29. 1972. 

(8-200) 

(8-201) 
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ari4hence. 

tI = 3127 - 3117 = 363 
6 3126 _ 3116 (8-202) 

is the "best" estimate for the total size of the population. We can note that the nearly 
unbiased estimator, and hence the nearly UMVUE T\ (x) in (8-176) gives the answer 

6+1 
T\(x) = -6-312 = 364 (8-203) 

to be the best estimate for N. thus justifying its name! 

Cramer-Rao Bound for the Muldparameter Case 

It is easy to extend the Cramer-RIO bound to the multiparameter situation. Let !. ~ 
(81.8:2, ... , em)' represent the unknown set of parameters under the p.d!. I(x; 1D and 

(8-204) 

an unbiased estimator vector for !,. Then the covariance matrix for I(x) is given by 

Cov{l'(x)} = El{l'(x) - flHl'(x) - fll'] (8-205) 

Note that Cov{l'(x) I is of size m x m and represents a positive definite matrix.. The 
Cramer-Rao bound in this case has the formS 

(8-206) 

where J (fl) repre§ents the m x m Fisher information matrix associated with the parameter 
set fl under the p.d.f. I (x; fl). The entries of the Fisher information matrix are given by 

J.. ~ E (8 log I(x; Ji.) a log I(x; fl») i, j = 1-. m (8-207) 
I} aei 88j 

To prove (8-206), we can make use of (8-87) that is valid for every parameter (J", 
k = 1 -. m. From (8-87) we obtain 

E ({Tk(X) - ekl a log I(x; !l.)) = 1 k = 1-. m (8-208) 
(Jek 

Also 

(8-209) 

8In (8-206), the notation A 2: B is used to Indicate that the matrix A - B is a IlOIIIIePtive-deliDite mattix. 
Strict inequality as in (8-218) would imply positive-definiteness. 



To exploit (8-208) and (8-209), define the 2m x 1 vector 

T.(x) - 8. 

z= 

T2(X) -8a 

Tm(x) -8m 

a log I(x; 1l> 
a81 

a log I(x; 1ll 
a(h 

a log/(x; .£n 
88m 

~ [~~] 

Then using the regularity conditions 

E{Z} = 0 

and hence 

But 

E{Y.~} = Cov{T(x)} 

and from (8-208)-(8-209) 

E{YtYU = 1m 

the identity matrix, and from (8-207) 

E{Y2YU=J 

the Fisher infonnation matrix with entries as in (8-207). Thus 

Cov{Z} = (~OV{T(X)} ~) ~ 0 

Using the matrix identity 

(8-210) 

(8-211) 

(8-212) 

(8-213) 

(8-214) 

(8-215) 

(8·216) 

(~ ~) (-~-.e ~) = (~- BD-le ~) G (8.217) 

with A = Cov{T{x)}. B = C = I and D = I, we have 

(_~-lC ~) = (_~-l ~) > 0 (8-218) 

and hence 

( A - B/rIC B) = (CoV{T(X)} - I-I I) > 0 (8-219) 
o D 0 J -
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wl:).ichgives 

Cov{T(x)} - rl ::: 0 

or 

(8-220) 

the desired result In particular, 

Var{T,,(x)} ::: J"" ~ (1-1)"" k=l--+m (8-221) 

Interestingly (8-220)-(8-221) can be used to evaluate the degradation factor for the CR 
bound caused by the presence of other unknown parameters in the scene. For example, 
when'OI is the only unknown, the CR bound is given by J) I, whereas it is given by Jl1 

in presence of other parameters Oz, 8:J, ... , Om. With 

J= (~llf) (8-222) 

in (8-215), from (8-217) we have 

J ll _ 1 _ ...!..- ( 1 ) 
- T - T J11 - 12. 0-112. Jll 1 -12. O-I12.fJll 

(8-223) 

Thus 1 I[ 1 - 12.T G- I12.1 III] > 1 represents the effect of the remaining unknown param­
eters on the bound for OJ. As a result, with one additional parameter, we obtain the 
increment in the bound for 01 to be 

JIl - ...!..- = J12 2 > 0 
JI1 III hz - JI2 -

Improvements on the Cramer-Rao Bound: 
The Bhattacharya Bound 

Referring to (8-102)-(8-108) and the related discussion there, it follows that if an effi­
cient estimator does not exist, then the Cramer-Rao bound will not be tight. Thus the 
variance of the UMVUE in such situations will be larger than the Cramer-Rao bound. An 
interesting question in these situations is to consider techniques for possibly tightening 
the Cramer-Rao lower bound. Recalling that the CR bound only makes use of the first 
order derivative of the joint p.d.f. I(x; 0), it is natural to analyze the *uation using 
higher order derivatives of I(x; 0), assuming that they exist • 

To begin with, we can rewrite (16-52) as 1: {T(x) - O} a/~x~ 8) dx 

100 { 1 a/(x; O)} = -00 (T(x) - O} I(x; 0) ae I(x; 0) dx 

( 1 a/(x; e») = E {T(x) -e} I(x;e) ae = 1 (8-224) 
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Similarly 

E ({T(X) _ 8} 1 ak 1(,,; 8») 
I(x; 8) a8k 

ak 100 100 ale I (x ; e) 
= aek -00 T(x)/(x; e) dx - e -00 aek dx 

ak 100 ake 
= aek -00 T (x) I (x; e) dx = aek = 0 k ~ 2 (8-225) 

where we have repeatedly made use of the regularity conditions and higher order dif­
ferentiability of I(x; e). Motivated by (8-224) and (8-225), define the BhattachaIya 
random vector to be 

[ ta/ 1a21 1 amI]' 
Ym = T(x) - 8, 7 Be' 7 Be2 '···' I 8em (8-226) 

Notice that E{Ym} = 0, and using (8-224) and (8-225) we get the covariance matrix of 
Ym to be 

Var{T} 0 0 0 
1 JII B12 B13 B1m 

E{YmY~} = 
0 B12 B22 B23 B2m 
0 B13 1h3 B33 B3m (8-227) 

0 B1m B2m B3m Bm". 

where 

D. {( 1 all(x;8»)( 1 8JI(X;O»)} 
Bi) = E I(x; e) aei I(x; 9) 89J 

(8-228) 

In particular, 

B11 = Jll = E { cHOg~:x;e)r} (8-229) 

repIeSents the Fisher infonnation about e contained in the p.d!. I (x I e). We will proceed 
under the assumption that (l//) (a" I/aek), k = 1 ..... m. are linearly independent (not 
completely correlated with each other) so that the matrix 

( 

Jll B12 B13 ••. B1m 1 
B12 B22 B23 ••• B2m 

B(m) £ Bt3 B~ B;3 ~~: B~ 
Blm B2m B3m .• • Bmm 

(8-230) 

is a full rank symmetric (positive definite) matrix for m ~ 1. Using the determinantal 
identity [refer to (8-217)] 

(8-231) 
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on (8-227) and (8-230) with A = Var{T}, B = (l, 0, o .... ,0] = C' and D = B(m), 
we get 

or 

detE{Ym Y~} = detB(m)[Var{T} - BB-1(m)C] 

= detB(m)[Var{T} - BH(m») ~ 0 (8-232) 

(8-233) 

Since B 11 (m) ~ 1 I[B 11 (m)] = 1 I J ll , clearly (8-233) always represents an improvement 
over the CR bound. Using another well known matrix identity,9 we get 

1 (B-I(m) + qmcc' -qmc ) 
B- (m + 1) = 

-qmc' qm 
(8-234) 

where 

with 

and 
1 

qm = >0 
Bm+l,m+l - b'B-I(m)b 

From (8-234) 

(8-235) 

Thus the new bound in (8-233) represents a monotone nondecreasing sequence. i.e., 

B1l(m + 1) ~ Bll(m) m = 1,2".. (8-236) 

lfigher Order Improvement Factors 

To obtain B II (m) explicitly in (8-233), we resort to (8-230). Let Mij denote the minor 
of B;j in (8-230), Then -

BH(m) = Mu = '111 = _1 (_1_) (8-237) 
detB(m) I11M11 - Ek=2(-l)kBlkMU Jll 1- 8 

9 

( A B)-I = ( A-I +FIEF2 -FEIE) 
C D -EF2 

where E = (D -CA-IB)-I, FI = A-lB. and F2 = CA-I. 
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where 

(8-238) 

Clearly, since B 11 (m) > 0 and represents an improvement over 1/ Jll , 8 is always strictly 
less than unity and greater than or equal to zero; 0 ::; 8 < 1. Moreover. it is also a function 
of n and m. Thus 

B11 () 1 sen, m) s2(n, m) 
m =-+ + + ... 

/11 J1\ /11 
(8-239) 

Note that the first teon is independent of m and the remaining terms represent the 
improvement over the CR bound using this approach. Clearly, if T(x) is first-order 
efficient then e = 0, and hence the higher order terms are present only when an efficient 
estimator does not exist These terms can be easily computed for small values of m. In 
fact for m = 2, (8-230)-(8-233) yields. 

1 B2 
Var{T(x)} > - + 12 (8 240) 

- /11 J11 (/11 B22 - B~2) -

When the observations are independent and identically distributed, we havelO 

/11 = njll 

B12 = nb12 

B22 = nb22 + 2n(n - l)jfl 

and hence 

1 b~2 
Var{T(x)} ~ -.- + 2 ·4 [1 (. b b2 2'3 )/2n'3 ) n)u 2n)1I +)11 22 - 12 -)11 Ju 

1 b2 
= -.- + 2ni~4 + o(ljn2) 

n)u 111 

Similarly for m = 3, we start with 

Var{T} 

1 
o 
o B13 B23 B33 

and for independent observations, (8-241) together with 

B13 = nb13 

B23 = nbn + 6n(n - 1)b12j11 

B33 = nb33 + 9n(n - 1) (b-z2hl + b~2) + 6n(n - l)(n - 2)jll 

we have 

1 b~2 c(3) 3 
Var{T} ~ -.- + 2n2 ·4 + -3 + o(ljn ) 

n)l1 )11 n 

(8-241) 

(8-242) 

(8-243) 

(8-244) 

(8-245) 

1000ete iu. b12. bn.bI3 •.•. COlTeSpOnd to their counterparts Ju. B12. lin. BI3 •••• evaluated for n =: 1. 
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where c(3') turns out to be 

c(3) = 2j~lb?3 + br2(6jrl + 21b~~ - 3jubn - 12hlb13) 
12]11 

In general, if we consider Yin. then from (16-110) we have 

Var{T(x)} 2: a(m) + b(m) + c(m) + d(m) + ... + o(1/nm) 
n n2 n3 n4 

From (8-239) and (8-241), it is easily seen that 

(8-246) 

(8-247) 

1 A 
a(m) = -. = a (8-248) 

JlI 

i.e .• the lin term is independent of m and equals the CR bound. From (8-242) and 
(8-245) we obtain 

Infact, it can be shown that 

b(2) = b(3) = b~! 
2Jll 

(8-249) 

(8-250) 

Thus, the I/n2 term is also independent of m. However, this is no longer true for 
c(k), d(k), ... , (k 2: 3). Their exact values depend on m because of the contribu­
tions from higher indexed terms on the right. To sum up, if an estimator T(x) is no 
longer efficient, but the lin term as well as the 1/n2 term in its variance agree with the 
corresponding terms in (8-247)-{8-250), then T(x) is said to be second order efficient. 
Next. we will illustrate the role of these higher order terms through various examples. 

~ Let Xj, i = 1 ~ n, represent independent and identically distributed (i.i.d.) samples 
from N (p" 1), and let p, be unknown. Further, let e = J.L 2 be the parameter of interest. 
From Example 8-17, z = (lIn) E7=1 Xj = x represents the sufficient statistic in this 
case, and hence the UMVUE for e must be a function of z alone. From (8-135)-(8-136), 
since 

T =Z2 -lin (8-251) 

is an unbiased estimator for J.L 2, from the Rao-Blackwell theorem it is also the UMVUE 
for e. Mor~ver, from (8-140) 

Var{T} = E Z4 - - + - - J.L4 = - + -( 2z2 1 ) 4J.L2 2 
n n2 n n2 

(8-252) 

Clearly. no unbiased estimator for e can have lower variance than (8-252). In this case 
using Prob. 841 the CR bound is [see also (8-134)] 

1 (ae I a J.L)2 (2J.L )2 4J.L 2 

JI1 = nE{(a log Jlap,)2) = nE{(x - J.L)2} = -;-
(8-253) 
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, EX,\i\IPLE S-] I) 

Though, 1/ J11 '< Var{T} here, it represents the first-order term that agrees with the 
corresponding l/n term in (8-252). To evaluate the second-order term, from (8-132) 
with n = 1 we have 

2. a2f = a210g f (a log f)2 = _~ (X_f.L)2 
f a02 802 + ae 4.u3 + 2f.L 

(8-254) 

so that 

[(X - f.L) (-x (X - p.)2)] -1 
b12 = E ~ 4p.3 + ---;;:;- = 8f.L4 (8-255) 

and from (8-248)-{8-250), we have 

b b?2 2 
n2 = 2n2 it! = n2 (8-256) 

Comparing (8-252) with (8-253) and (8-256), we observe that the UMVUE in (8-251) 
is in fact second-order efficient. ~ 

~ Let Xi' i = 1 ~ n. be independent and identically distributed Poisson random 
variables with common parameter A.. Also let e = A.2 be the unknown parameter. Once 
again z = x is the sufficient statistic for A. and hence e. Since 

we have 
2 Z T=z -­

n 

to be an unbiased estimator and the UMVUE for 0 = A 2• By direct calculation. 

Next we will compute the CR bound. Since for n = 1 

(8-257) 

(8-258) 

(8-259) 

log f = -A. + x log A - log(x!) = -.J8 + x 10g(.J8) - log(x!) (8-260) 

we have 

(8-261) 

(8-262) 

or 

. _ -E (82 10gf ) ___ 1_ 2.. __ 1_ 
JIl - ae2 - 4A3 + 2A,4 - 4),,3 (8-263) 

Thus, the CR bound in this case is l/ni1l = 4A.3/n and it agrees with the first term 
in (8-259). To detennine whether T(x) is second-order efficient, using (8-261) together 
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with (8-262) gives [see (8-254)] 

b = E { B log f (B210g f (B log f) 2) } 
12 Be 892 + Be 

= E { (~ + ~,) ((4~3 - ~,) + (~ - ~,)') } = ~~ (8-264) 

and hence the second-order tenn 

~ _ b~2 _ 2),,2 
n2 - 2n2)·4 - n 2 (8-265) 

11 

which also agrees with second teon in (8-259). Again. T given by (8-258) is a second­
order efficient estimator. Next, we will consider a multiparameter example that is efficient 
only in the second-order Bhattacharya sense. ~ 

~ Let X; '" N(p.. cr2), i = 1 -+ n, represent independent and identically distributed 
Gaussian random variables, where both J.L and cr 2 are unknown. From Example 8-14, 
ZI = i and Z2 = 2:7=1 x~ form the sufficient statistic in this case, and since the estimates 

and 

1 " 
{L = - LX; = i = ZI 

n 1=1 

A2 L" (x; - 1)2 Z2 - nz? cr = =~-~ 
n-l n-l 

i-I 

(8-266) 

(8-267) 

are two independent unbiased estimates that are also functions of ZI and Z2 only. they 
are UMVUEs for J.L and cr2• respectively. To verify that fi. and ti2 are in fact independent 
random variables, let 

A= 

so that 
-I 

1 -2 

AAT = 
1 1 1 -3 

1 1 
I 1 

1 -1 

1 1 

1 1 

o 

-2 0 
1 -3 

1 
I ... 

-(11- I) 

1 

1 '" 
-I 1 1 ... 

-(/I - I) 

1 

-2 1 

-3 

o I 
-(II-I) 1 

(8-268) 

(8-269) 
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Thus 

I I 0 :Ii -72 
0 I 1 I 

U= A= J6 J6 -J6 

o I 
J,,{n-I) 1; 1 I I 

1 "Tn 7n 7n "Tn 
(8-270) 

is an orthogonal matrix (U U' = I). Let x = (XI. X2 •.••• x,,)', and define 

Y= (~:) =Ux= It -~ -~ 0 1 1[:] = 1.:~I:1 
7n -:Tn 7n 7n ..fo 

(8-271) 

which gives 

(8-272) 

From (8-271) 

E[yy'] = U E[XX'] U' = U (0'2[)U' = 0'21 (8-273) 

and hence (Yt. Y2, ••• , Yn) are independent random variables since Xlt X2, •••• x" are 
independent random variables. Moreover, 

II II 

I)f = 1'y = x'U'Ux = x'x = 2:xr (8-274) 
1 ... 1 i-I 

and hence 
II II n n-l 

(n - 1)h2 = 2: (x; - x)2 = 2: X~ - nx2 = 2: if - Y; = 2: y; (8.275) 
i-I ;=1 i=1 i=1 

where we have used (8-272) and (8-274). From (8-273) and (8-275) 

1 1 II-I 

P, = X = r.:Yn and 8 2 = - 2: if 
'\In n - 1 . 1 

'" 
(8-276) 

" are independent random variables since Y I, Y2 ••..• Y n are all independent random vari-
ables.Moreover,sincey; '" N(O.0'2),i = 1-+ n-l.Yn '" N("fo1L.0'2),using(8-272) 
and (8-275) we obtain 

Var{fJ,} = 0'2 In and Var{82} = 20'4/(n - 1) (8-277) 

To determine whether these estimators are efficient, let ~ = (JL. 0'2)' represent the 
multiparameter vector. Then with 

A (I ak! 1 alt.! )' 
z" = 7 ap.k' 7 8(0'2)" 

(8-278) 
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a direct C!a1C1l:lation shows 

(
810gf(X;iJ) ( E7=l(Xj-/.L) ) 

ZI = fHOg~X; i,) == _~ iL(XI - /.L)2 
80'2 20"2 + 20"4 

and the 2 x 2 FISher information matrix J to be [see (8-206)-{8-207)] 

T [n/0'2 0] 
J = E(ZlZI ) == 0 n/2o"4 (8-279) 

Note that in (8-279) 

J. == E [(_~ + 2:7.1(Xs - /.L)2)2] 
22 20"2 20"4 

== ~ (n2 _ n E7.1 E[(Xs - /.L)2) + E7.1 E[(Xs - /.L)4]) 
a4 4 20"2 40'4 

+ ~ (E~=l Ei.l.lt" E[(x, - p,)2(Xj - /.L)2]) 
0'4 40'4 

1 (n2 n20'2 3n0'4 n(n -1)0'4) 
== 0'4 4" - 20"2 + 40'4 + 40'4 

== ~ (n2 _ n2 + 3n+n2-n) = ~ 
0'4 4 2 4 20'4 

ThusVar{,a.} = 0'2/n == JlI whereasVar{8"2} == 2o"4/(n-l) > 2o"4/n == }22,implying 
that p, is an efficient estimator whereas 8"2 is not efficient. However, since 8'2 is a function 
of the sufficient statistic z\ and Z2 only, to check whether it is second-order efficient, after 
some computations, the block structured Bhattacharya matrix in (8-230) with m == 2 
turns out to be 

(8-280) 

and this gives the "extended inverse" Fisher infonnation matrix at the (1,1) block location 
of B-1 (2) to be 

[B(2)]1.1 ~ [O'~ n 20"4/(~ _ 1)] 
Comp8rlng (8-277) and (8-281) we have 

E[(l- i,)(l- i,)'] == [Var~M Var~q2}] == [B(2)]ii1• 

(8·281) 

(8-282) 

Thus (8-233) is satisfied with equality in this case for m = 2 and hence 8"2 is a second­
order efficient estimator. .... 
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More on Maximum Likelihood Estimators 

Maximum likelihood estimators (MLEs) have many remarkable properties, especially 
for large sample size. To start with, it is easy to show that if an ML estimator exists, then 
it is only a function of the sufficient statistic T for that family of p.d.f. I(x; 0). This 
follows from (8-60), for in that case 

I(x; 0) = h(x)ge(T(x» (8-283) 

and (8-40) yields 

a log I(x; 0) = a 10gge(T) I = 0 
ao ao e::§},tl 

(8-284) 

which shows OML to be a function of T alone. However, this does not imply that the 
MLE is itself a sufficient statistic all the time, although this is usually true. 

We have also seen that if an efficient estimator exists for the Cramer-Rao bound, 
then it is the ML estimator. 

Suppose 1/1 (0) is an unknown parameter that depends on O. Then the ML estimator 
for 1/1 is given by 1/1 (8MlJ , i.e., 

(8-285) 

Note that this important property is not characteristic of unbiased estimators. 
If the ML estimator is a unique solution to the likelihood equation, then under 

some additional restrictions and the regularity conditions, for large sample size we also 
have 

(i) 

(ii) 

and 

(iii) 

Thus, as n ~ 00 

E{OML} ~ 0 (8-286) 

Var(DML} ~ U6, ~ E [ C log~,; 6) rr (8-287) 

OML(X) is also asymptotically normal. (8-288) 

OML(X) - 0 ~ N(O, 1) (8-289) 
O'eR 

i.e., asymptotically ML estimators are consistent and possess normal distributions. 

8·4 HYPOTHESIS TESTING 

A statistical hypothesis is an assumption about the value of one or more parameters of a 
statistical model. Hypothesis testing is a process of establishing the Validity of a hypoth­
esis. This topic is fundamental in a variety of applications: Is Mendel's theory of heredity 
valid? Is the number of pa,rticles emitted from a radioactive substance Poisson distributed? 
Does the value of a parameter in a scientific investigation equal a specific constant? Are 
two events independent? Does the mean of a random variable change if certain factors 
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of the experiment are modified? Does smoking decrease life expectancy? Do voting 
patterns depend on sex? Do IQ scores depend on parental education? The list is endless. 

We shall introduce the main concepts of hypothesis testing in the context of the 
following problem: The distribution of a random variable x is a known function F (x, 0) 
depending on a parameter O. We wish to test the assumption e = 00 against the as­
sumption e ::f. eo. The assumption that () = 00 is denoted by No and is called the null 
hypothesis. The assumption that 0 =1= 00 is denoted by HI and is called the alternative 
hypothesis. The values that 0 might take under the alternative hypothesis form a set e l in 
the parameter space. If e l consists of a single point () = ()J, the hypothesis HI is called 
simple; oth~se, it is called composite. The null hypothesis is in most cases simple. 

The purpose of hypothesis testing is to establish whether experimental evidence 
supports the rejection of the null hypothesis. The decision is based on the location of 
the observed sample X of x. Suppose that under hypothesis Ho the density f(X, 00) 
of the sample vector X is negligible in a celtain region Dc of the sample space, taking 
significant values only in the complement Dc of Dc. It is reasonable then to reject Ho jf 
X is in Dc and to accept Ho if X is in Dc. The set Dc is called the critical region of the 
test and the set Dc is called the region of acceptance of Bo. The test is thus specified in 
terms of the set Dc. 

We should stress that the purpose of hypothesis testing is not to determine whether 
Ho or HI is true. It is to establish whether the evidence supports the rejection of Ho. 
The terms "accept" and "reject" must, therefore, be interpreted accordingly. Suppose, 
for example, that we wish to establish whether the hypothesis Ho that a coin is fair is 
true. To do so, we toss the coin 1 ()() times and observe that heads show k times. If k = 15. 
we reject Ho. that is. we decide on the basis of the evidence that the fair-coin hypothesis 
should be rejected. If k = 49, we accept Ho. that is, we decide that the evidence does not 
support the rejection of the fair-coin hypothesis. The evidence alone. however, does not 
lead to the conclusion that the coin is fair. We could have as well concluded that p = 0.49. 

In hypothesis testing two kinds of errors might occur depending on the location 
of X: 

1. Suppose first that Ho is true. If X E Dc. we reject Ho even though it is true. We 
then say that a Type 1 error is committed. The probability for such an error is 
denoted by a and is called the significance level of the test. Thus 

ex = PIX E Dc I HoJ (8-290) 

The difference 1 - a = P{X rt Dc I HoJ equals the probability that we accept Ho 
when true. In this notation. P{··· I Ho} is not a conditional probabili~. The 
symbol Ho merely indicates that Ho is true. 

2. Suppose next that Ho is false. If X rt Dc. we accept Ho even though it is false. We 
then say that a Type II error is committed. The probability for such an error is a 
function fJ (0) of 0 called the operating characteristic COC) of the test. Thus 

f3«() = PiX rt Dc I Hd (8-291) 

The difference 1 - {3(e) is the probability that we reject Ho when false. This is 
denoted by pee) and is called the power of the test. Thus 

p(e) = 1 - f3(e) = P(X E Dc I Hd (8-292) 
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Fundamental note Hypothesis testing is not a part of statistics. It is part of decision 
theory based on statistics. Statistical consideration alone cannot lead to a decision. They 
merely lead to the following probabilistic statements: 

If Ho is true, then P{X E Dc} = a 
If Ho is false, then P{X rf. D,} = P(8) 

(8-293) 

Guided by these statements, we "reject" Ho if X E Dc and we "accept" Ho if X ¢ D •. 
These decisions are not based on (8-293) alone. They take into consideration other. often 
subjective, factors, for example. our prior knowledge concerning the truth of Ro, or the 
consequences of a wrong decision. 

The test of a hypothesis is specified in terms of its critical region. The region Dc 
is chpsen so as to keep the probabilities of both types of errors small. However. both 
probabilities cannot be arbitrarily small because a decrease in a results in an increase in 
~. In most applications, it is more important to control a. The selection of the region Dc 
proceeds thus as follows: 

Assign a value to the Jype I error probability a and search for a region Dc of 
the sample space so as to minimize the Type II error probability for a specific e. If the 
resulting ~(e) is too large, increase a to its largest tolerable value; if ~(e) is still too 
large, increase the number n of samples. 

A test is called most powerful if ~ (e) is minimum. In general. the critical region of 
a most powerful test depends on e. If it is the same for every e Eel, the test is uniformly 
most powerful. Such a test does not always exist. The determination of the critical region 
of a most powerful test involves a search in the n-dimensional sample space. In the 
following, we introduce a simpler approach. 

TEST STATISTIC. Prior to any experimentation, we select a function 

q = g(X) 

of the sample vector X. We then find a set Rc of the real line where under hypothesis Ho 
the density of q is negligible, and we reject Ho if the value q = g(X) of q is in Re. The 
set Rc is the critical region of the test; the random variable q is the test statistic. In the 
selection of the function g(X) we are guided by the point estimate of e. 

In a hypothesis test based on a test statistic, the two types of errors are expressed 
in terms of the region Rc of the real line and the density fq (q, e) of the test statistic q: 

a = P{q ERe I Ho} = h. fq(q, eo) dq (8-294) 
~ 

~(e) = P{q rt Rc I Hd = h. fq(q, e) dq (8-295) 

To carry out the test, we determine first the function /q(q, e). We then assign a 
value to a and we search for a region Rc minimizing ~(e). The search is now limited to 
the real line. We shall assume that the function fq (q, e) has a single maximum. This is 
the case for most practical tests. 

Our objective is to test the hypothesis e = eo against each of the hypotheses 
e =f:. eo, e > eo, and e < 80. To be concrete, we shall assume that the function fq (q, G) is 
concentrated on the right of fq(q, eo) fore> eo and on its left for e < eo as in Fig. 8-10. 
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C2 q 
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(a) (b) (c) 

FIGURES-lO 

HI: (J =F 80 

Under the stated assumptions, the most likely values of q are on the right of fq(q, (0) 

if 6 > 60 and on its left if 6 < 60- It is, therefore, desirable to reject Ho if q < CI or if 
q > C2. The resulting critical region consists of the half-lines q < C1 and q > Cz. For 
convenience, we shall select the constants CI and C2 such that 

a a 
P{q < Cl I Hol = 2' P{q> cal Hol = 2' 

Denoting by qu the u percentile of q under hypothesis Ho. we conclude that Cl = qa!2, 
C2 = ql-a!2- This yields the following test: 

Accept Ho iff qal2 < q < ql-a!2 

The resulting OC function equals l q'
_

12 

P(6) = f q(q,6)dq 
q"12 

Hl: 8 >80 

(8-296) 

(8-297) 

Under hypothesis Hlt the most likely values of q are on the right of fq(q. 6). It is, 
therefore, desirable to reject Ho if q > c. The resulting critical region is now the half-line 
q > c, where C is such that 

P{q > c I Ho} = a C = ql-a 

and the following test results: 

Accept Ho iff q < ql-a 

The resulting OC function equals 

P(£) = [~fq(q, O)dq 

Hl: 8 <80 

~oceeding similarly. we obtain the critical region q < C where C is such that 

P{q < c I Ho} = a c = qa 

(8-298) 

(8-299) 
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This yields the following test: 

Accept Ho iff q > qa 

The resulting OC function equals 

{J«(J) = [ fq(q,e)dq 

(8-300) 

(8-301) 

The test of a hypothesis thus involves the following steps: Select a test statistic 
q = gOO and determine its density. Observe the sample X and compute the function 
q = g(X). Assign a value to a and determine the critical region Re. Reject Ho iff q eRe. 

In the following, we give several illustrations of hypothesis testing. The results are 
based on (8-296)-(8-301). In certain cases. the density of q is known for e = 60 only. 
This suffices to determine the critical region. The OC function {J(e), however, cannot be 
determined. 

MEAN. We shall test the hypothesis Ho: TJ = 710 that the mean 11 of a random variable 1( 

equals a given constant 110. 

Known variance. We use as the test statistic the random variable 

X-110 
q = u/.ji 

Under the familiar assumptions, x is N('1. u/.ji); hence q is N(1]q, 1) where 

1] - 710 
11q = u/.ji 

(8-302) 

(8-303) 

Under hypothesis Ho. q is N(O, 1). Replacing in (8-296}-(8-301) the qll percentile by 
the standard normal percentile til' we obtain the following test: 

HJ: 1] =F '10 Accept Ho iff Za/2 < q < ZI-a/2 (8-304) 

{J(11) = P{ 1 q 1 < z1-«/21 Htl = 0(Z1-«/2 -l1q) - O(Za/2 -l1q) (8-305) 

HI: 11 > '10 Accept H'o iff q < ZI_ 

{J('q) = P{q < 1.1-« 1 HI} = 0(1.1-« -11q) 

Accept Ho iff q > Za 

{J(TJ) = P{q > Zcr 1 Hil = 1 - O(z« - TJq) 

(8-306) 

(8-307) 

(8-308) 

(8-309) 

Unknown varianee. We assume that x is normal and use as the test statistic the random 
variable 

(8-310) 

where S2 is the sample variance of x. Under hypothesis Ho, the random variable q has 
a Student t distribution with n - 1 degrees of freedom. We can, therefore, use (8-296). 
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(8-298) and (8-300) where we replace qu by the tabulated tu(n - 1) percentile. To find 
fi(1]). we must find the distribution of q for 1] :F 1]0-

~ We measure the voltage V of a voltage source 25 times and we find x = 110.12 V 
(see also Example 8-3). Test the hypothesis V = Vo = 110 V against V :F 110 V with 
a = 0.05. Assume that the measurement error v is N(O, 0"). 

(a) Suppose that 0" = 0.4 V. In this problem, ZI-a!2 = ZO.97S = 2: 

_ 110.12-110 -15 
q - 0.4/../25 -. 

Since 1.5 is in the interval (-2, 2), we accept Ho. 
(b) Suppose that 0" is unknown. From the measurements we find s = 0.6 V. 

Inserting into (8-310), we obtain 

110.12 - 110 
q - -1 

- 0.6/../25 -

Table 8-3 yields ti-a/2(n - 1) = to.975(25) = 2.06 = -/0.025' Since 1 is in the interval 
(-2.06,2.06), we accept Ho. ~ 

PROBABILITY. We shall test the hypothesis Ho: P = Po = 1 - qo that the probability 
P = peA) of an event A equals a given constant Po, using as data the number k of 
successes of A in n trials. The random variable k has a binomial distribution and for 
large n it is N (np, Jnpq). We shall assume that n is large. 

The test will be based on the test statistic 
k-npo 

q = ----"-
Jnpoqo 

(8-311) 

Under hypothesis Ho, q is N(O, 1). The test thus proceeds as in (8-304)-(8-309). 
To find the OC function fi(p), we must determine the distribution of q under the 

alternative hypothesis. Since k is normal, q is also normal with 
np -npo 

11 -
q - Jnpoqo 

This yields the following test: 

2 npq 
0" =--

q npoqo 

HI: p :F Po Accept Ho iff Za/2 < q < ZI-a/2 

fie )=P{II<Zl_a2I Htl=G(Zl-a/2-1]Q)_G(za12 -T/Q) 
P q / Jpq/poqO Jpq/Poqo 

Accept Ho iff q < Zl-a 

( Zl-a - T/q ) 
fi(p) = P{q < Zl-a I Htl = G J / pq poqo 

Accept Ho iff q > Za 

fi(p) = P{q > Za I Htl = 1 - G Q ( Za-T/ ) 
Jpq/POqO 

(8-312) 

(8-313) 

(8-314) 

(8-315) 

(8-316) 

(8-317) 



360 PRG>BABIUTY AND AANDOM VARIABLES 

EX \;\IPU~ 8-22 

I X \\IPLE S-23 

~ We wish to test the hypothesis that a coin is fair against the hypothesis that it is 
loaded in favor of "heads": 

Ho:p =0.5 against 

We tbSS the coin 100 times and "heads" shows 62 times. Does the evidence support the 
rejection of the null hypothesis with significance level a = 0.05? 

In this example, ZI-a = ZO.9S = 1.645. Since 

62-50 
q = ./is = 2.4 > 1.645 

the fair-coin hypothesis is rejected. ~ 

VARIANCE. The random variable x is N(". a). We wish to test the hypothesis 
Ho:a= ao. 

Known mean. We use as test statistic the random variable 

q = L (Xi - TJ)2 
i ao 

(8-318) 

Under hypothesis Ho. this random variable is x2(n). We can, therefore. use (8-296) 
where qu equals the x;(n) percentile. 

Unknown mean. We use as the test statistic the random variable 

q= L (Xi _X)2 
i ao 

(8-319) 

Under hypothesis Ho, this random variable is X 2(n - 1). We can, therefore. use (8-296) 
with qu = X:(n - 1). 

~ Suppose that in Example 8-21. the variance a2 of the measurement error is un­
known. Test the hypothesis Ho: a = 0.4 against HI: a > 0.4 with a = 0.05 using 20 
measurements Xi = V + "I. 

(a) Assume that V = 110 V. Inserting the measurements Xi into (8-318), we find 

q = t (XI - 110) 2 = 36.2 .a 

1=1 0.4 

Since X~-a(n) = Xl9S(20) = 31.41 < 36.2. we reject Ho. 
(b) If V is unknown, we use (8-319). This yields 

~ XI-X 20 ( _)2 
q = ~"'0:4 = 22.5 

Since X?-a(n - 1) = X~.9s(19) = 30.14> 22.5. we accept Ho. ~ 
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DISTRIBUTIONS. In this application, Ho does not involve a parameter; it is the hypoth­
esis that the distribution F(x) of a random variable x equals a given function Fo(x). 
Thus 

Ho: F(x) == Fo(x} against 

The Kolmogorov-Smimov test. We form the random process :r(x) as in the estimation 
problem (see (8-27)-(8-30» and use as the test statistic the random variable 

q = max IF(x) - Fo(x)1 
IC 

(8-320) 

This choice is based on the following observations: For a specific ~ • the function F (x) is 
the empirical estimate of F(x) [see (4-3)]; it tends, therefore. to F(x) as n --+ 00. From 
this it follows that 

Eft(x)} = F(x) :r(x)~ F(x) 
n-+oo 

This shows that for large n, q is close to 0 if Ho is true and it is close to max IF (x) - Fo(x) I 
if HI is true. It leads, therefore, to the conclusion that we must reject Ho if q is larger 
than some constant c. This constant is determined in terms of the significance level 
(X = P{q > c I Hol and the distribution of q. Under hypothesis Ho, the test statistic q 
equals the random variable w in (8-28). Using the Kolmogorov approximation (8-29), 
we obtain 

(X = P{q > c I Ho}:::: 2e-2nc2 (8-321) 

The test thus proceeds as follows: Form the empirical estimate F(x) of F(x) and deter­
mine q from (8-320). 

Accept Ho iff q < J -~ log i (8-322) 

The resulting 1)rpe II error probability is reasonably small only if n is large. 

Chi-Square Tests 

We are given a partition U = [AI, ... , Am] of the space S and we wish to test the 
hypothesis that the probabilities Pi = P (Ai) of the events Ai equal m given constants POi: 

Ho: Pi = POi, all i against HI: Pi :f:. Poi, some i (8-323) 

using as data the number of successes ki of each of the events Ai in 11 trials. For this 
purpose, we introduce the sum 

~ (k; - npoi)2 
q = L." 

i ... l npOi 
(8-324) 

known as Pearson's test statistic. As we know, the random variables kl have a binomial 
distribution with mean npi and variance npiqi. Hence the ratio ktln tends to Pi as 
n -+- 00. From this it follows that the difference Iitt - nPo; I is small if PI = POi and it 
increases as IPi - POi I increases. This justifies the use of the random variable q as a test 
statistic and the set q > c as the critical region of the test. 
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EX \[\IPLE 8-24 

To find c. we must determine the distribution of q. We shall do so under the 
assumption that n is large. For moderate values of n, we use computer simulation [see 
(8-334)]. With this assumption. the random variables kl are nearly nonna! with mean 
kpi. Under hypothesis Ho, the random variable q has a x2(m - 1) distribution. This 
follows from the fact that the constants POi satisfy the constraint E Pot = 1. The proof, 
however, is rather involved. 

This leads to this test: Observe the numbers ki and compute the sum q in (8-324); 
find Xf-a(m - 1) from Table 8-3. 

Accept Ho iff q < X[-a(m - 1) (8-325) 

We note that the chi-square test is reduced to the test (8-312)-(8-317) involving the 
pr<?bability P of an event A. In this case, the partition U equals [A, A] and the statistic q 
in (8-324) equals (k - npo)2 / npof/o. where Po = Pol, qo = P02, k = kl' and n - k = k2 
(see Prob. 8-40). 

~ We roll a die 300 times and we observe that fi shows Ie; = 55 43 44 61 40 57 times. 
Test the hypothesis that the die is fair with ex = 0.05. In this problem, POi = 1/6, m = 6, 
and nPo; = SO. Inserting into (8-324), we obtain 

_ ~ (ki - 50)2 _ 7 6 
q-L.J - . 

. I 50 
1-

Since X6.9S (5) = 11.07 > 7.6, we accept the fair-die hypothesis. ..... 

The chi-square test is used in goodness-of-fit tests involving the agreement between 
experimental data and theoretical models. We next give two illustrations. 

TESTS OF INDEPENDENCE. We shall test the hypothesis that two events B and C are 
independent: 

Ho: PCB n C) = P(B)P(C) against HI: PCB n C) =F P(B)P(C) (8-326) 

under the assumption that the probabilities b = PCB) and c = P(C) of these events 
are known. To do so, we apply the chi-square test to the partition consisting of the four 
events 

AI =BnC 

Under hypothesis Ho, the components of each of the events Ai are independent. Hence 

Pol = be P02 = b(1 - c) POl = (1- b)c P04 = (1 - b)(1 - c) 

This yields the test: 

Accept Ho iff t (ki - nPoi)2 < xL,(3) 
k=l nPo; 

(8-327) 

In (8-327), Ie; is the number of occurrences of the event Ai; for example, k2 is the number 
of times B occurs but C does not occur. 
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~ In a certain university, 60% of all first-year students are male and 75% of all entering 
students graduate. We select at random the records of 299 males and 101 females and 
we find that 168 males and 68 females graduated. Test the hyPothesis that the events 
B = {male} and C = {graduate} are independent with a = 0.05. In this problem, 
m = 400, PCB) = 0.6, P(C) = 0.75. POi = 0.450.150.30.1. ki = 16868 13133, and 
(8-324) yields 

~ (ki - 4OOPOi)2 
q = L...J =4.1 

i=1 400Po; 

Since xG.gs(3) = 7.81 > 4.1. we accept the independence hypothesis. .... 

TESTS OF DlSTRIBtmONS. We introduced earlier the problem of testing the hypoth­
esis that the distribution F(x) of a random variable x equals a given function Fo(x). The 
resulting test is reliable only if the number of available samples x} of x is very large. In 
the following. we test the hypothesis that F (x) = Fo (x) not at every x but only at a set 
of m - 1 points at (Fig. 8-11): 

Ho: F(a,) = FO(a,).1 :S i :S m-l against HI: F(a,) ¢ Fo(a,), some i 
(8-328) 

We introduce the m events 

Ai = {Cli-l < X < ail i = 1 • ... ,m 

where ao = -00 and alii = 00. These events form a partition of S. The number Ie; 
of successes of Ai equals the number of samples x} in the interval (ai-It at). Under 
hypothesis Ho. 

peA,) = FO(al) - Fo(ai-l) = POi 

Thus. to test the hypothesis (8-328). we form the sum q in (8-324) and apply (8-325). If 
Ho is rejected, then the hypothesis that F (x) = Fo(x) is also rejected. 

1 -----------------------

tlf-. (Ii " FIGURE 8-11 
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EXAi\lPLE 8-26 ~ We have a list of 500 computer-generated decimal numbers Xj and we wish to test 
the hypothesis that they are the samples of a random variable x uniformly distributed 
in the interval (0,1). We divide this interval into 10 subintervals of length 0.1 and we 
count the number kj of samples x j that are in the ith subinterval. The results are 

kj = 43 56 42 38 59 61 41 57 46 57 

In this problem, m = 500, POj = 0.1, and 

q = t (kj - 50)2 = 13.8 
;=1 50 

Si~ce X6.9S(9) = 16.9> 13.8 we accept the uniformity hypothesis. ~ 

Likelihood Ratio Test 

We conclude with a general method for testing any hypothesis, simple or composite. We 
are given a random variable x with density I(x, B), where B is an arbitrary parameter, 
scalar or vector, and we wish to test the hypothesis Ho: B e eo against HI: () eel. The 
sets eo and e1 are subsets of the parameter space e = eo u e1. 

The density I(X, 0), considered as a function of 0, is the likelihood function of 
X. We denote by B". the value of B for which I(X, 0) is maximum in the space e. Thus 
B". is the ML estimate of O. The value of () for which I (X, 0) is maximum in die set 60 

will be denoted by OmO. If Ho is the simple hypothesis 0 = 0o, then OmO = 00. The ML 
test is a test based on the statistic 

Note that 

A. = I(X, 0".0) 
I(X,Om) 

0~A.~1 

(8-329) 

because I(X, OmO) ~ I(X, Bm). We maintain that A. is concentrated near 1 if Ho is true. 
As we know. the ML estimate Bm of B tends to its true value (r as n ~ 00. Furthermore, 
under the null hypothesis, 01' is in the set eo; hence A ~ 1 asn ~ 00. From this it follows 
that we must reject Ho if A < c. The constant c is determined in terms of the significance 
level a of the test. 

Suppose, first, that Ho is the simple hypothesis 0 = 00. In this case, 

a = PtA. ::: c I HoI = foc llo(A, 00) dA " (8-330) 

This leads to 'the test: Using the samples Xj of x, form the likelihood function I(X. 0). 
Find Om and OmO and form the ratio A = I(X, Omo)/I(X, Om): 

Reject Ho iff A < Aa (8-331) 

where Aa is the a percentile of the test statistic A. under hypothesis Ho. 
lf Ho is a composite hypothesis, c is the smallest constant such that P {A. ::: c} < Aa 

for every 0 e eo. 
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FIGURE 8-12 

~ Suppose that I(x. e) '" ee-6x U(x). We shall test the hypothesis 

Ho:O < () ~ eo against 

In this problem, eo is the segment 0 < e ~ 60 of the real line and e is the half-line 
e > O. Thus both hypotheses are composite. The likelihood function 

I(X. e) = One-lIxs 

is shown in Fig. 8-12a for x > 1/00 and x < 1/60. In the half-line 0 > 0 this function 
is maximum for 0 = l/x. In the interval 0 < 0 ~ 00 it is maximum for 0 = 1/"£ if 
x> 1/60 and for 0 = eo ifx < 1/00. Hence 

em = ~ OmO = {l/X for x > l/Oo 
x 90 for"£ < l/eo 

The likelihood ratio equals (Fig. 8-12b) 

{ I for x > l/eo 
A = (x6o)le-"/1uX"+n90 for x < 1/60 

We reject Ho if A < C or, equivalently, if x < CI, where CI equals the a percentile of the 
random variable x. .... 

To carry out a likelihood ratio test, we must determine the density of 1. This is not 
always a simple task. The following theorem simplifies the problem for large n. 

ASYMPTOTIC PROPERTIES. We denote by m and mo the number of free parameters in 
e and So. respectively, that is, the number of parameters that take noncountably many 
values. It can be shown that if m > mo. then the distribution of the random variable 
w = -2logl approaches a chi-square distribution with m - mo degrees of freedom as 
n ~ 00. The function w = - 2 log A is monotone decreasing; hence A < C iff w > Cl = 
-2 log c. From this it follows that 

a = P{l < c} = P{w > cll 

where c) = Xf-a(m - mo), and C8-331) yields this test 

Reject Ho iff - 210gA > X?_aCm - mo) 

We give next an example illustrating the theorem. 

(8-332) 
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EXAi'''JPLL X-2S ~ We are given an N (1], 1) random variable x and we wish to test the simple hypotheses 
TJ = 1]0 against 1] ::F 710· In this problem rJmO = 1]0 and 

!eX.I7) = ~ exp { -~ 2:<Xi - rJ)2 } 

This is maximum if the sum lsee (7-67)] 

2:(Xi - rJ)2 = 2:(Xj - X)2 + n(X - rJ)2 

is minimum, that is. if 71 = x. Hence 1]m = x and 

, exp {-~ Eexj - rJO)2} {n r.; )2} " = = exp --,x - 710 
exp {-~ E(XI - X)2} 2 

From this it follows that A > c iff Ix - 1]0 I < C I' This shows that the likelihood ratio test 
of the mean of a normal random variable is equivalent to the test (8-304). 

Note that in this problem. rn = 1 and rno = O. Furthermore, 

- 2 X-TJo (- )2 
w = -21ogl. = n(x - rJo) = l/..;n 

But the right side is a random variable with X 2 (1) distribution. Hence the random variable 
w has a x2 (rn - rno) distribution not only asymptotically, but for any n. ~ 

COMPUTER SIMULATION IN HYPOTHESIS TESTING. As we have seen, the test of 
a hypothesis Ho involves the following steps: We determine the value X of the random 
vector X = [Xl •.•• , xm] in terms of the observations Xk of the m random variables 
Xk and compute the corresponding value q = g(X) of the test statistic q = g(X). We 
accept Ho if q is not in the critical region of the test, for example, if q is in the interval 
(qa, qb), where qa and qb are appropriately chosen values of the u percentile qu of q [see 
(8-296)]. This involves the determination of the distribution F(q) of q and the inverse 
qu = F(-I)(u) of F(q). The inversion problem can be avoided if we use the following 
approach. 

The function F(q) is monotone increasing. Hence, 

qa < q < qb iff a = F(qo) < Feq) < F(qb) = b 

This shows that the test qa < q < qb is equivalent to the test 

Accept Ho iff a < F(q) < b (8-333) 

involving the determination of the distribution F(q) of q. As we have shown in Sec. 7-3, 
the function F(q) can be determined by computer simulation [see (7-175)]: 

To estimate numerically F(q) we construct the random variable vector sequence 

Xj = [XI,i, ... , Xm,i] i = 1, ... , n 

where Xk.i are the computer generated samples of the m random variables Xk. Using 
the sequence Xi. we form the random number sequence qj = g(Xi ) and we count the 
number nq of qi 's that are smaller than the computed q. Inserting into (J -175), we obtain 
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th.eestimate F(q) :::: nq/n. With F(q) so determined. (8-333) yields the test 

Accept Ho iff a < nq < b 
n 

(8-334) 

In this discussion, q = g(X) is a number determined, in terms of the experimental 
data Xk. The sequence qt. however. is computer generated. 

The approach we have described is used if it is difficult to determine analytically, 
the function F (q). This is the case in the determination of Pearson's test statistic (8-324). 

PROBLEMS 
8-1 The diameter of cylindrical rods coming out of a production line is a nonnal random variable 

. x with a = 0.1 nun. We measure n = 9 units and find that the average of the measurements 
is x = 91 mm. (a) Find c such that with a 0.95 confidence coefficient, the mean TJ ofx is in 
the interval x ± c. (b) We claim that TJ is in the interval (90.95, 91.05). Find the confidence 
coefficient of our claim. 

8·2 The length of a product is a random variable x with (f = I mm and unknown mean. We 
measure four units and find that x = 203 mm. (a) Assuming that x is a normal random 
variable, find the 0.95 confidence interval of TJ. (b) The distribution of x is unknown. Using 
Tchebycheff's inequality, find c such that with confidence coefficient 0.95, TJ is in the interval 
203±c. 

8·3 We know from past records that the life length of type A tires is a random variable x with (f = 
5000 miles. We test 64 samples and find that their average life length is:X = 25,000 miles. 
Find the 0.9 confidence interval of the mean of x. 

8-4 We wish to determine the length a of an object. We use as an estimate of a the average x 
of n measurements. The measurement error is approximately normal with zero mean and 
standard deviation 0.1 mm. Find n such that with 95 % confidence, x is within ± 0.2 mm of a. 

8·5 The random variable x is uniformly distributed in the interval e - 2 < x < 8 + 2. We 
observe 100 samples XI and find that their average equals x = 30. Find the 0.95 confidence 
interval of 8 . 

8·6 Consider a random variable x with density f (x) = xe-X U (x). Predict with 95% confidence 
that the next value of X will be in the interval (a, b). Show that the length b - a of this 
interval is minim~ if a and b are such that 

f(a) = f(b) P{a < x < b} = 0.95 

Find a andb. 
8-7 (Estimation-prediction) The time to failure of electric bulbs of brand A is II normal random 

variable with q = 10 hours and unknown mean. We have used 20 such bulbs and have 
observed that the average x of their time to failure is 80 hours. We buy a new bulb of the 
same brand and wish to predict with 95% confidence that its time to failure will be in the 
interval 80 ± c. Find c. 

8·8 Suppose that the time between amvals of patients in a dentist's office constitutes samples of 
a.random variable x with density 8e-8x U (x). The 40th patient arrived 4 hours after the first. 
Find the 0.95 confidence interval of the mean arrival time 11 = l/e. 

8·9 The number of particles emitted from a radioactive substance in 1 second is a Poisson dis­
tributed random variable with mean A. It was observed that in 200 seconds, 2550 particles 
were emitted. Find the 0.95 confidence interval of A. 

8-10 Among 4000 newborns, 2080 are male. Find the 0.99 confidence interval of the probability 
p = P(male}. 
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8-11 In an exit poll of 900 voters questioned, 360 responded that they favor a particular proposi_ 
tion. On this basis, it was reported that 40% of the voters favor the proposition. (a) Find the 
margin of error if the confidence coefficient of the results is 0.95. (b) Find the confidence 
coefficient if the margin of error is ± 2%. 

8·12 In a market survey, it was reported that 29% of respondents favor product A. The poll Was 
condu~ with confidence coefficient 0.95, and the margin of error was ±4%. Find the 
number of respondents. 

8-13 We plan a poll for the purpose of estimating the probability p of Republicans in a commu­
nity. We wish our estimate to be within :I:: 0.02 of p. How large should our sample be if the 
confidence coefficient of the estimate is 0.951 

8-14 A coin is tossed once, and heads shows. Assuming that the probability p of heads is the 
value of a random variable p unifomly distributed in the interval (0.4, 0.6), find its bayesian 
estimate. 

8-15 The time to failure of a system is a random variable x with density I(x, 8) = 8e""''' U(x). We 
wisb to find the bayesian estimate b of 8 in terms of the sample mean if of the II samples x, of 
x. We assume that 8 is the value ofa random variable8 with prior density 1,(8) = ce~ U (8). 
Showtbat 

8= 11+1 _! 
c+nx It~OO x 

8·16 The random variable x has a Poisson distribution with mean 8. We wish to find the bayesian 
estimate b of 8 under the assumption that 8 is the value of a random variable 9 with prior 
density 1,(8) '" 8be-c8U(8). Show that 

8="x+b+l 
n+c 

8-17 Suppose that the IQ scores of children in a certain grade are the samples of an N(FI,a) 
random variable x. We test 10 children and obtain the following averages: x = 90, s = S. 
Find the 0.95 confidence interval of 71 and of (f. 

8·18 The random variables X, are Li.d. and N(O, a). We observe that xf + ... + xlo = 4. Find 
the 0.95 confidence interval of a. 

8-19 The readings of a voltmeterintroduces an error II with mean O. We wish to estimate its standard 
deviation a. We measure a calibrated source V = 3 V four times and obtain the values 2.90, 
3.15,3.05. and 2.96. Assuming that II is normal, find the 0.95 confidence interval of (f. 

8·20 The random variable x has the Erlang density I(x) <V c· x 3 e"'" U (x). We observe the samples 
Xi = 3.1, 3.4. 3.3. Find the ML estimate t of c. 

8·21 The random variable x has the truncated exponential density I(x) = ce~-zo)U(x - .to). 
Find the ML estimate t of c in temlS of the n samples Xi of X. 

8-22 The time to failure of a bulb is a random variable x with density ce-C1l U (:x). We test 80 bulbs 
and find that 200 hours later, 62 of them are still good. Find the ML estimate of c. 

8-23 The random variable x has a PoissO.D distribution with mean 9. Show thllt the ML estimate 
of 8 equals x. 

8·24 Show that if L(x. 9) = log I(x, 8) is the likelihood function ofa random variable x. then 

E {laL~8)r} = -E{ a2~8)} 
8-25 We are given a random variable x with mean 1/ and standard deviation a = 2, and we wish 

to test the hypothesis 71 = 8 against 71 = 8.7 with a = 0.01 using as the test statistic the 
sample mean x of II samples. (a) Find the critical region Rc of the test and the resulting P if 
n = 64. (b) Find II and Rc if P = 0.05. 
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s.;16 A new car is lDtroduced with the claim that its aVCrage mileage in highway dri'ling is at least 
28 miles per gallon. Seventeen cars are tested, and the following mileage is obtained: 

19 20 24 25 26 26.8 27.2 27:5 
28 28.2 28.4 29 30 31 32 33.3 35 

Can we conclude with significance level at most 0.05 that the claim is true? 
8·27 The weights of cereal boxes are the values of a random variable x with mean T/. We measure 

64 boxes and find that x = 7.7 oz. and $ = 1.5 oz. Test the hypothesis Ho: T/ = 8 oz. against 
HI: 71 :F 8 oz. with ex = 0.1 and ex = 0.01. 

8·28 Brand A batteries cost more than brand B batteries. Their life lengths are two normal and 
independent random variables x and y. We test 16 batteries of brand A and 26 batteries of 
brand B and find these values. in hours: 

x=4.6 sx = 1.1 ]=4.2 &, =0.9 

Test the hypothesis T/" = rt, against 11< > 71, with ex = O.OS. 
8·29 A coin is tossed 64 times, and heads shows 22 times. (a) Test the hypothesis that the coin 

is fair with significance level 0.05. (b) We toss a coin 16 times, and heads shows k times. If 
k is such that k\ ~ k ~ k2 , we accept the hypothesis that the coin is fair with significance 
level ex = 0.05. Find kl and k2 and the resulting p error. 

8·30 In a production process, the number of defective units per hour is a Poisson distributed 
random variable x with parameter }. = 5. A new process is introduced. and it is observed 
that the hourly defectives in a 22~hour period are 

Xi =3 0 5 4 2 6 4 I 5 3 7 4 0 8 3 2 4 3 6 5 6 9 

Test the hypothesis}. = 5 against A < 5 with ex = 0.05. 
S.31 A die is tossed 102 times, and the ith face shows ki = 18, IS, 19, 17, 13, and 20 times. Test 

the hypothesis that the die is fair with ex = 0.05 using the chi-square test. 
S.32 A computer prints out 1000 numbers consisting of the 10 integers j = 0,1, ...• 9. The 

number n J of times j appears equals 

nJ = 85 110 118 91 78 105 122 94 101 96 

Test the hypothesis that the numbers j are uniformly distributed between 0 and 9, with 
ex =0.05. 

S.33 The number x of particles emitted from a radioactive substance in 1 second is a Poisson 
random variable with mean e. In 50 seconds. 1058 particles are emitted. Test the hypothesis 
eo = 20 against () :F 20 with ex = 0.05 using the asymptotic approximation. 

S.34 The random variables x and y are N(71". O'x) and N(rt,. O'y), respectively. and independent. 
Test the hypothesis 0'" = 0', against 0'" :F 0', using as the test statistic the ratio (see Exam­
ple 6-29) 

8·35 Show that the variance of a random variable with the Student t distribution t(n) equals 
n/(n - 2). 

8-36 Find the probability Ps that in a men's tennis tournament the final match will last five sets. 
(a) Assume that the probability p that a player wins a set equals 0.5. (b) Use bayesian statistic 
with uniform prior (see law of succession). 
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8-37 Show that in the measurement problem of Example 8-9, tho bayesian estimate 0 of the 
parameter 9 equals 

II a12 60 na)2 _ a2 0:2 
r:1 - + x where a2 - x 0 

- ai -;2 1 - n al +a2/n 

8-38 Using tho ML method, find the y confidence interval oftbe variance v = a2 of an N(". a) 
random variable with known mean. 

8-39 Show that if' I and 12 are two unbiased minimum variance estimators of a parameter 8. then 
II = 12• Hint: Porm the random variable I = ('1 + '2)/2. Show tbata& = a2(1 +r)/2 ~ 
a2, where a2 is the common variance of' I and'2 and r is their correlation coefficient. 

8-40 The number of successes of an event A in n trials equals leI. Show that 

(leI - npI)2 (~ - "P2)2 (11 - npt'Y' 
.;;...;..---=~+ =.;;...;..---=~ 

npI "P2 nplP2 

where 1e2 = n - 1. and peA) = PI = 1 - P2. 
8-41 Let T(x) represent an unbiased estimator for the unknown parameter t(8) based on the 

random vapables (Xt. X2 •••• x,,) = x under joint density function I(x; 9). Show that the 
Cmmer-Rao lower bound for the parameter '" (8) satisfies the inequality 

Var{T(x)} ~ [t'(9)]2 
E { (.Iot,,;!))2} 
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9-1 DEFINITIONS 

CHAPTER 

9 
GENERAL 

CONCEPTS 

As we recall, a random variable x is a rule for assigning to every outcome { of an 
experiment S a number x({). A stochastic process x(t) is a rule for assigning to every { 
afunction x(t, {). Thus a stochastic process is a family of time functions depending on 
the parameter { or, equivalently, a function of t and {. The domain of { is the set of all 
experimental outcomes and the domain of t is a set ~ of real numbers. 

If R is the real axis, then x(t) is a continuous-time process. If R is the set of 
integers, then x{t) is a discrete-time process. A discrete-time process is, thus, a sequence 
of random variables. Such a sequence will be denoted by x" as in Sec. 7-4, or, to avoid 
double indices, by x[n). 

We shall say dIat x(t) is a discrete-state process if its values are countable. 
Otherwise, it is a continuous-state process. 

Most results in this investigation will be phrased in terms of continuous-time 
processes. Topics dealing with discrete-time processes will be introduced either as illus­
trations of the general theory, or when their discrete-time version is not self-evident 

We shall use the notation x(t) to represent a stochastic process omitting, as in 
the case of random variables, its dependence on {. Thus x(t) has the f81l0wing inter­
pretations: . 

1. It is a family (or an ensemble) offunctions x(t, {). In this interpretation, t and { 
are variables. 

2. It is a single time function (or a sample of the given process). In this case, t is a 
variable and { is fixed. 

3. If t is fixed and { is variable, then x(t) is a random variable equal to the state of the 
given process at time t. 

4. If t and ~ are fixed, then x{t) is a number. 
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(a) (b) 

FIGURE9-l 

A physical example of a stochastic process is the motion of microscopic particles 
in collision with the molecules in a fluid (brownian motion). The resulting process x(t) 
consists of the motions of all particles (ensemble). A single realization x(t, {i) of this 
process (Fig. 9-la) is the motion of a specific particle (sample). Another example is the 
voltage 

x(t) = rcos(wt + qJ) 

of an ac generator with random amplitude r and phase qJ. In this case, the process x(t) 
consists of a family of pure sine waves and a single sample is the function (Fig, 9-lb) 

X(I, {i) = r(~i) cos[wt + qJ({j)J 

According to our definition, both examples are stochastic processes. There is, 
however, a fundamental difference between them. The first example (regular) consists of 
a family of functions that cannot be described in tenns of a finite number of parameters 
Furthennore. the future of a sample x(t, {) of x(t) cannot be determined in terms of 
its past. Finally, under certain conditions, the statistics 1 of a regular process x(t) can be 
determined in tenns of a single sample (see Sec. 12-1). The second example (predictable) 
consists of a family of pure sine waves and it is completely specified in tenns of the 
random variables rand qJ. Furthennore, if x(t, {) is known for t ~ to, then it is detennined 
for t > to. Finally, a single sample x(t, {) ofx(t) does not specify the properties of the 
entire process because it depends only on the particular values r({) and qJ(') of rand 
qJ. A fonnal definition of regular and predictable processes is given in Sec. 11-3. 

Equality. We shall say that two stochastic processes x(t) and y(t) are equal (everywhere) 
if their respective samples x(t, {) and y(t, {) are identical for every ,. Similarly, the 
equality z(t) =x(t) + yet) means thatz(t. {) =x(t, 0 +y(t, ~) forevery,. Derivatives, 
integrals, or any other operations involving stochastic processes are defined similarly in 
tenns of the corresponding operations for each sample. 

As in the case of limits, the above definitions can be relaxed. We give below the 
meaning of MS equality and in App. 9A we define MS derivatives and integrals. Two 

I Keep in mind that statistics hereafter will mean statistical properties. 



eHAl'TER 9 Cl.ENERAI.COHCEPTS 375 

pr~ses x(t) and yet) are equal in the MS sense iff 

E{lx(t) - y(t)12} = 0 (9-1) 

for every t. Equality in the MS sense leads to the following conclusions: We denote by 
At the set of outcomes ~ such that x(t, {) = yet, ~) for a specific t, and by Aoo the 
set of outcomes ~ such that x(t.~) = yet, t) for every t. From (9-1) it follows that 
x(t,~} - y(t,~) = 0 with probability 1; hence peA,) = peS) = 1. It does not follow, 
however, that P(Aoo} = 1. In fact, since Aoo is the intersection of all sets At as t ranges 
over the entire axis, P(Aoo) might even equal O. 

Statistics of Stochastic Processes 

A stochastic process is a noncountable infinity of random variables, one for each t. For 
a specific t, x(t) is a random variable with distribution 

F(x, t) = P{x(t) ~ x} (9-2) 

This function depends on t, and it equals the probability of the event {x(t) :s x} consisting 
of all outcomes t such that, at the specific time t, the Satnples x(t I ~) of the given process 
do not exceed the number x. The function F (x, t) will be called thefirst-order distribution 
of the process x(t). Its derivative with respect to x: 

is the first-order density of x(t). 

I( ) - aF(x, t) 
x,t ---­

ax 
(9-3) 

FrequeneylnterpretatioD If the experiment is perfonnedn times, then n functions x(t. ti) 
are observed, one for each trial (Fig. 9-2). Denoting by n,(x) the number of trials such that 
at time t the ordinates of the observed functions do not exceed x (solid lines), we conclude 
as in (4-3) that . 

F(X,l) :::::: n,(x) 
n 

The second-order distribution of the process X(l) is the joint distribution 

F(XI. X2; tit t2) = P{X(I,) :s Xi> X(12) ~ X2} 

FIGURE 9·2 

(9-4) 

(9-5) 



of the random variables X(tl) and X(t2). The corresponding density equals 

I( ) 8z F(xJ, Xz; tt. (2) 
XI, Xz; tl. t2 = 8 8 

XI Xl 
(9-6) 

We note that (consistency conditions) 

F(Xl;II)=F(Xl,OO;t).tz) !(x),td= r:!(XJ,X2;tJ,tz)dX2 

as in (6-9) and (6-10). 
The nth-order distribution ofx(t) is thejoint distribution F(XIo ... , Xn; tit " ., tn) 

of the random variables X(tl), .•. J x(tn). 

SECOND-ORDER PROPERTIES. For the determination of the statistical properties of 
a stochastic process, knowledge of the function F (Xl • ...• Xn; tl, ... , tn) is required for 
every Xi. tit and n. However, for many applications, only certain averages are used, in 
particular, the expected value of X(f) and of xZ(t). These quantities can be expressed in 
terms of the second-order properties of x(t) defined as follows: 

Me.an The mean 11(t) of x{t) is the expected value of the random variable X{f): 

17(1) = E{x(t)} = 1: x/(x, t) dx (9-7) 

Autocorrelation The autocorrelation R(fit t2) ofx(t) is the expected value of the 
product X(tl)X(t2): 

R(tit t2) = E{x(tl)x(tz)} = r: 1: Xlx2!(XIt X2; tl, t2) dXl dX2 (9-8) 

The value of R(t}, tz) on the diagonal tl = t2 = t is the average power of x(t): 

E{x2(t)} = R(t, t) 

The autocovariance C(tl. t2) of x(t) is the covariance of the random variables 
X(tl) and X(t2): 

C(tl. t2) = R(tl. t2) - 11(tl)11(12) (9-9) 

and its value C(t. t) on the diagonal tl = t2 = t equals the variance ofx(t). 

Note The following is an explanation of the reason for introducing the function R(tJ .1'2) even in problems 
dealing only widl average power: Suppose that X(I) is the input to a linear system· and 1(t) is the resulting 
output. In Sec. 9-2 we show dlat die mean ofy(t) can be expressed in tenns of die mean ofX(I). However. the 
average power OfY(I) cannot be found ifonJy Elr(I)} is given. For tbedetennination of E{y2(1)}. knowledge 
of the function R(tl. 12) is required. not just on die diagonal II = '2. but for tNet:y tl and 12. The following 
identity is a Simple illustration 

E{[X(IL) +x(I'2)]2} = R(tlotl) +2R(tl./2) + R(t2./2) 

This follows from (9·S) if we expand the square and use the linearity of expected values. 
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EX~i\IPLE 9-4 

... An extreme example of a stochastic process is a detenninistic signal x(t) = f(t). In 
this case, 

I1(t) = E{f(t)} = f(t) 

~ Suppose that x(t) is a process with 

11(t) = 3 

We shall determine the mean, the variance, and the covariance of the random 
variables z = x(5) and w = xeS). 

Clearly, E{z} = 11(5) = 3 and E{w} = 11(8) = 3. Furthermore, 

E{r} = R(S, S) = 13 E{r} = R(8, 8) = 13 

E{zw} = R(S, 8) = 9 + 4e-0 6 = 11.195 

Thus z and w have the same variance 0'2 = 4 and their covariance equals C(S, 8) = 
4e-O.6 = 2.195. ~ 

~ The integral 

s = lb x(t)dt 

of a stochastic process x(t) is a random variable s and its value 5(~) for a specific outcome 
~ is the area underthecurvex(t,~) in the interval (a, b) (see also App. 9A). Interpreting 
the above as a Riemann integral. we conclude from the linearity of expected values that 

llJ = E{s} = lb E{x(t)}dt = 1" T/(t)dt (9·10) 

Similarly. since 

52 = lib X(tl)X(t2) dtl dt2 

we conclude, using again the linearity of expected values, that 

E{r} = lib E{x(t.)X(t2)} dtl dtz = l1b 
R(t .. t2)dtldt2 (9-11) 

~ We sb~l1 determine the autocorrelation R (tl, t2) of the process 

'x(t) = rcos(Ct>t + qI) 

~ 

where we assume that the random variables r and qI are independent and qI is unifonn 
in the interval (-7r, 7r). 

Using simple trigonometric identities, we find 

E{X(ll)X(t2)} = !E{rl}E{cos(Q(tl - t2) + COS«(Qtl + WIz + 2qI)} 
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and since 

we conclude that 

(9-12) 

~ 

~ In Sec. 4-5 we introduced the concept of Poisson points and we showed that these 
points are specified by the following properties: 

Pi: The number n(t., 12) of the points ~ in an interval (t., 12) oflength 1= t2 - II is a 
Poisson random variable with parameter At: 

e-MO.I)k 
P{n(tlt Iz) = k} = k! (9-13) 

P2: If the intervals (tt. t2) and (13.14) are nonoverlapping, then the random variables 
n(lt. t2) and n(t3, t4) are independent 

Using the points ~, we form the stochastic process 

x(t) = nCO, t) 

shown in Fig. 9-3a. This is a discrete-state process consisting of a family of increasing 
staircase functions with discontinuities at the points ~. 

For a specific t, x(t) is a Poisson random variable with parameter At; hence 

E{x(t)} = 71(t) = At 

We shall show that its autocorrelation equals 

{ 
At2 + A2tJtz t1::: t2 

R(tlt t2) = 2 
Atl + A tl12 tl:=:; t2 

or equivalently that 

C(tJ, '2) = A min (II , t2) = Atl U (/2 - tl) + At2U VI - t2) 

x(t) Poisson process x(t) Telegraph signal 

(0) (b) 

FIGURE!)-3 

(9-14) 
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Proof. The preceding is true for t, = t2 because [see (5-63)] 

E(,,2(t)} = At + A2t2 (9-15) 

Since R(tl. t2) = R(t2. t,), it suffices to prove (9-14) for t, < 12. The random variables x(t,) and 
X(t2) - x(t,) are independent because the intervals (0. t,) and (t,. t2) are nonoverlapping. Further­
more. they are Poisson distributed with parameters Atl and Ml2 - tl) respectively. Hence 

E{X(tI}[X(t2) - X(tl)]} = E{x(t))}E{x(t2) - x{t)} = At'A(12 - t) 

Using the identity 

,,(t,)X(t2) = X(tl)[x(t\) + ,,(t2) - x(tt)] 

we conclude from the above and (9-15) that 

R(t,.12) = At, + A2t; + At\A(t2 - tl) 

and (9-14) results. 
Nonuniform case If the points ~ have a nonunifonn density A(t) as in (4-124), then the 

preceding results still hold provided that the product A(t2 - 11) is replaced by the integral of A(t) 
from II to 12. 

Thus 

E{X(I)} = l' A(a)da (9-16) 

and 

R(t). t2) = 1'1 A(t) dt [1 + 112 A(t) dt J (9-17) 

~ Using the Poisson points 1,. we form a process x(t) such that x(t) = 1 if the number 
of points in the interval (0, t) is even, and x(t) = -1 if this number is odd (Fig. 9-3b). 

Denoting by p(k) the probability that the number of points in the interval (0, t) 
equals k, we conclude that (see (9-13)J 

Hence 

P{x(t) = I} = p(O) + p(2) + ... 

= e-}..t [1 + (~t + ... J = e-l.t cosh A.t 

P{x(t) = -I} = pel} + p(3) + ... 

-}..t [1 + (M)3 + ] -}..t'nh \ = e ",t """'"3f" ... = e 81 ",I 

E{x(t)} = e-}../ (cosh M - sinh At) = e-2M (9-18) 

To determine R (tl' t2), we note that, if f = 11 - t2 > 0 and X(12) = 1, then x(t\) = 1 
if .the number of points in the interval (tl, t2) is even. Hence 

P{x(tJ) = 11 X(t2) = I} = e-l.t cosh 'AI f = I) - 12 
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Multiplying by P{X(t2) = I}, we obtain 

Similarly, 

P{x(t,) = I, X(12) = I} = e-At cosh Ate-).12 cosh At2 

P (x(t,) = -1, X«2) = -I} = e-u cosh Ale-).k. sinh At2 

P{x(t,) = 1, X(t2) = -I} = e-u sinh Ate-M2 sinh At2 

P{X(I,) = -1, X(t2) = I} = e-At sinh Ate-~ cosh M2 

Since the product x(t,)X(t2) equals 1 or -1, we conclude omitting details that 

R(llt t2) = e-2J.111-121 (9-19) 

This process is called semirandom telegraph signal because its value x(O} = 1 at 
t = 0 is not random. To remove this certainty, we fonn the product 

yet) = ax(t} 

where a is a random variable taking the values + 1 and -1 with equal probability and is 
independentofx(t). The process yet) so formed is called random telegraph signal. Since 
E{a} =0 and E{a2} = I, themeanofy(t) equals E{a}E{x(t)} =0 and its autocorrelation 
is given by 

E{y(t,)y(t2)} = E{a2}E{x(t)X(t2)} = e-2J.lll-t21 

We note that as t -+ 00 the processes x(t) and yet) have asymptotically equal 
statistics. ..... 

More on Poisson processes. If Xl (t) and X2 (I) represent two independent Poisson pro­
cesses with parameters Al t and A2t, respectively, it easily follows [as in (6-86)] that their 
sum X, (t) + X2(t) is also a Poisson process with parameter (AI + A2)/. What about the 
difference of two independent Poisson processes? What can we say about the distribution 
of such a process? Let 

yet) = Xl (t) - X2(t) (9-20) 

where X, (t) and X2(t) are two independent Poisson processes as just defined. Then 
co 

P(y(t) = n} = L P{Xl (t) = n + k}P{X2(t) = k} '" 
1:=0 

~ -).1
' 

(A,t)n+k -).2
' 

(A2t)k 
=L.Je e--

k=O (n + k)! k! 

= e-().I+).2)1 (Al)nI2 f (t..ftiI2)n+2k 

A2 &: .. 0 kl(n + k)! 

n = 0, ±1, ±2, . . . (9-21) 



where 
4 co (x/2)n+2k 

In(x) = t; k!(n +k)! 
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(9-22) 

represents the modified Bessel function of order n. From (9-15) and (9-20), it follows 
that 

(9-23) 

Thus the difference of two independent Poisson processes is not Poisson. However, it is 
easy to show that a random selection from a Poisson process yields a Poisson process! 

Random selection of Poisson points. Let x(t) ,.., P(J..t) represent a Poisson process 
with parameter At as before, and suppose each occmrence of x(t) gets tagged indepen­
dently with probability p. Let yet) represent the total number of tagged events in the 
interval (0, t) and let z(t) be the total number of un tagged events in (0, t). Then 

yet) ...., P(Apt) z(t) '" P(J..qt) (9-24) 

whereq = 1- p. 

Proof. Let An represent the event "n events occur in (0, t) and k of them are tagged." 
Then 

P(An) = P{k events are tagged I x(t) = n} P{x(t) = n} 

(n) 1 n-1 -AI (A/)II = pq e --
k nl 

Also the event {yet) = k} represents the mutually exclusive union of the events At. 
AA:+I0 •••• Thus 

co 

(y(t) = k} = U An II. 
so that 

k = O. 1.2, .. . (9-25) 

represents a Poisson process with parameter Apt. Similarly the untagged events z(t) 
form an independent Poisson process with parameter Aqt. (See also page 227.) For 
example, if customers arrive at a counter according to a Poisson process with parameter 
At, and the probability of a customer being male is p. then the male customers form 
a Poisson process with parameter Apt, and the female customers form an independent 
Poisson process with par8meter Aq t. (See (10-90) for a deterministic selection of Poisson 
points.) 
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Next we will show that the conditional probability of a subset of a Poisson event 
is in fact binomial. 

Poisson points and binomial distribution. For t} < 12 consider the conditional prob.­
ability 

P{X(tl) = k I x(tz) = n} 

P{X(tl) = k, x(tz) = n} 
= 

P{x(tz) = n} 

P{X(tl) = k. n(II' tz) = n - k} 
= 

P{x(tz) = n} 

k = 0. 1.2 •...• n (9-26) 

which proves our claim. In particular, let k = n = 1. and let ll. be the subinterval in the 
beginning of an interval of length T. Then from (9-26) we obtain 

fl. 
P(n(fl.) = 11 n(/, t + T) = I} T 

But the event {n(fl.) = l}isequivalentto{t < t; < t+ fl.}, wheret; denotes the random 
arrival instant. Hence the last expression represents 

fl. 
Pit < t; < t + fl.1 n(t, t + T} = 1) = T (9-27) 

i.e .• given that only one Poisson occurrence has taken place in an interval of length T. 
the conditional p.d.f. of the corresponding arrival instant is unifonn in that interval. In 
other words, a Poisson arrival is equally likely to happen anywhere in an interval T, 
given that only one occurrence has taken place in that interval. 

More generally if tl < t2 < . .. < tn < T represents the n arrival instants of a Pois­
son process in the interval (0, T), then the joint conditional distribution of tl. tz • ...• til 
given x(T) = n simplifies into 

P {tl ::; Xt. tz ::; X2, .... t" ::; X,I I x(T) = n} 

Pttl ::; Xl, t2 ::; Xz • •••• tn ::; Xn, x(t) = n} 
= P{x(T) = n} 

= 1 ~ nn e-l.(JCj-XI-I) [>"(X; - Xi_I)]m/ 

-AT (IT)n L...J mj! 
e -- {ml.m2 ..... nt.} 1=1 

n! 

= ~ n! (XI)ntl (X2 -Xl)m~ ... (xn -Xn_l)nt. (9-28) 
L...., ml!mz!" ·mn ! T T T 

ml.m2.···.mll 

with XC = O. The summation is over all nonnegative integers {m I, m2, ...• mn } for which 
m) +m2+" ·+mn = n andml +mz+' .. +m,t 2: k = 1,2, ... ,n -1. On comparing 
with (4-102), the above fonnula in (9-28) represents the distribution of n independent 



points arranged in increasing order; each of which is uniformly distributed over the 
interval (0, T). It follows that a Poisson process x(t) distributes points at random over 
the infinite interval (0, 00) the same way the uniform random variable distributes points 
in a finite interval. 

General Properties 

The statistical properties of a real stochastic process x(t) are completely determined2 in 
terms of its nth-order distribution 

F(x .. •.. , XII; t .. ... ,tn) = P(X(tl) ~ Xl •... , x(tn } ~ Xn} (9-29) 

The joint statistics of two real processes x(t) and yet) are determined in terms of 
the joint distribution of the random variables 

x(t) ) •... , x(t,,), yet;) • ... , y(t~} 

The complex process z(t) = x(t) + jy(t) is specified in terms of the joint statistics 
of the real processes x(t) and y(l). 

A vector process (n-dimensional process) is a family of n stochastic processes. 

CORRELATION AND COVARIANCE. The autocorrelation of a process x(t). real or 
complex, is by definition the mean of the product x(t,)X*(t2)' This function will be 
denoted by R(t,. t2) or Rx(tlt t2) or Rxx(tl. t2). Thus 

Ru(t .. 12) = E{X(tl)X*(t2)} (9-30) 

where the conjugate tennis associated with the second variable in Rxx(tl. t2)' From this 
it follows that 

R(t2. til = E(X(t2)X*(tl)} = R*(t\.12) 

We note, further, that 

(9-31) 

(9-32) 

The last two equations are special cases of this property: The autocorrelation 
R(t!, 12) of a stochastic process x(t) is a positive definite (p.d.) function, that is, for any 
al and a}: 

(9-33) 
i.} 

This is a consequence of the identity 

o ~ E { I:alx(tt) 2} = I>lajE{x(t;)x*(t})} 
i i,} 

We show later that the converse is also true: Given a p.d. function R(/,. t2), we can 
find a process x(t) with autocorrelation R(t,. '2). 

2The.re ate processes (nonseparable) for which this is not true. However. such processes ate mainly of 
mathematical interest. 
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~ (a) Ifx(t) = aeitdl , then 

R(tl./2) = E{aejtdlla*e-iC8t2} = E{laI2}ei4l(11-12) 

(b) Suppose that the random variables 8t are uncorrelated with zero mean and 
variance ol. If 

then (9-30) yields 

x(t) = L ajei 4/f1 

j 

R(tl, t2) = L 0}e}al/(II-t2) 

i 

The lJIltocovario.nce C(ll, t2) of a process x(t) is the covariance of the random 
variables X(tl) and X(/2): 

C(tl> t2) = R(tl> tz) - 11(tl)71*(/2) 

In (9-34), 11(t) = E{x(t)} is the mean ofx(t). 
The ratio 

Note The autocovariance C(tl, 12) of a process X(I) is the autocorrelation of the unlered process 

let) = X(I) - 1/(1) 

Hence it is p.d. 

(9-34) 

(9-35) 

The correlation coefficient r(tl. t2) of x(t) is the autocovariance of the 1IOnnaiked process X(I)/ 
..;ccr:i); hence it is also p.d. Furthermore [see (6-166)] 

~ If 

s= lb x{t)dt then s - 118 = lb i{t) dt 

where i{t) = x(t) - 11x(t). Using (9-1), we conclude from the note that 

0-; = E{ls -11sI2} llb Cx(tJ, t2)dtl dt2 

The cross-co"e1o.tilJn of two processes x(t) and yet) is the function 

Rxy(t .. (2) = E{x(t\)Y*(f2)} = R;x(t2, tl) 

.. 

(9-36) 

(9-37) 

(9-38) 

... 
3In optics, C(tl. t2) is called the coherence function and r(tl. tv is called the complex degree of coherence 
(see Papoulis, 1968 (19]). 
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Similarly. 

CX)(tl. t2) = Rxy(t,. t2) -l1x(ll)77;(t2) 

is their cross-covariance. 
Two processes x(t) and yet) are called (mutually) orthogonal if 

Rxy(tt.12) =0 

They are called uncorrelated if 

Cxy(t,. t2) = 0 

for every 11 and 12 

for every 11 and t2 

(9-39) 

(9-40) 

(9-41) 

a-dependellt processes Iil general, the values X(II) and X(t2) of a stochastic 
p~ss X(/) are statistically dependent for any 11 and '2. However, in most cases this 
dependence decreases as It. - 121-+ 00. This leads to the following concept: A stochastic 
process X(I) is called a-dependent if all its values X(I) for I < to and for t > to + a are 
mutually independent. From this it follows that 

(9-42) 

A process x(t) is called correlation a-dependent if its autocorrelation satisfies 
(9-42). Clearly. if X(/) is correlation a-dependent, then any linear combination of its 
values for I < 10 is uncorrelated with any linear combination of its values for I > 10 + a. 

White noise We shall say that a process V(I) is white noise if its values V(ti) and 
,(t j) are uncorre1ated for every ti and I J i= 'i: 

C(li, 'i) = 0 'i i= tJ 

As we explain later. the autocovariance of a nontrivial white-noise process must 
be of the fann 

q(l) ~ 0 (9-43) 

If the random variables V(ti) and ,(tj) are not only uncorrelated but also inde­
pendent, then ,(t) will be called strictly white noise. Unless otherwise stated. it will be 
assumed that the mean of a white-noise process is identically O. 

~ Suppose that ,(t) is white noise and 

x(t) = l' ,(a) da (9-44) 

Inserting (9-43) into (9-44), we obtain 

E{X2(t)} = 11' q(tl)8(t, - t2)dl2dtl = l' q(t,)dl, (9-45) 

because 

for 0 < 'I < t 

Uncorrelated and independent increments If the increments X(12) - X(II) and 
x(4) - X(13} of a process x(t) are uncorrelated (independent) for any 11 < 12 < 13 < 14. 
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then we say that x(t) is a process with uncorrelated (independent) increments. The 
Poisson process is a process with independent increments. The integral (9-44) of white 
noise is a process with uncorrelated increments. 

Independent processes If two processes x(t) and yet) are such that the ran­
dom variables X(/\) •...• x(tn) and y(tl) ....• y(t~) are mutually independent, then these 
processes are called independent. 

l> A process x(t) is called normal, if the random variables X(ti) •...• x(tn) are jOintly 
normal for any n and t), ... , tn. 

The statistics of a normal process are completely determined in terms of its mean 
I1(t) and autocovariance C(tl. t2). Indeed, since 

E{x(t)} = 11(t) oo;(t) = C(c, t) 

we conclude that the first-order density f(x. t) of x(t) is the normal density N[I1(t); 
JC(t. t)J. 

Similarly, since the function r(t\, 12) in (9-35) is the correlation coefficient of the 
random variables X(II) and X(t2), the second-order density f(x" X2; tit t2) ofx(t) is the 
jointly normal density 

N[fI(t!), fI(t2); VC(tlt 1\), VC(t2. t2); r(t) , 12)] 

The nth-order characteristic function of the process x(t) is given by [see (7-60)] 

exp {i ~ I1(/j)Wj - ~ ~ C(tlt tk)WjWii} (9-46) 
I I.k 

Its inverse f(xit ... , xn• tit ... , tn) is the nth-order density oh(t). ~ 

EXISTENCE THEOREM. Given an arbitrary function 11(t) and a p.d. function C (t), t2), 
we can construct a normal process with mean 11(/) and autocovariance C(t) , t2)' This fol­
lows if we use in (9-46) the given functions YJ (t) and C (/\, t2)' The inverse of the resulting 
characteristic function is a density because the function C(tl, t2) is p.d. by assumption. 

~ Suppose that x(t) is a normal process with 

11(t) = 3 

(a) Find the probability that x(5) ~ 2. 
Clearly. xeS) is a normal random variable with mean 11(5) = 3 and variance 

C(5,5) = 4. Hence i> 

P(x(5) ~ 2} = 0(-1/2) = 0.309 

(b) Find the probability that Ix(8) - x(5)1 ~ 1. 
The difference s = x(8) - x(5) is a normal random variable with mean 11(8) -

11(5) = 0 and variance 

C(8, 8) + C(5. 5) - 2e(8. 5) = 8(1 - e-0.6) = 3.608 

Hence 

P{lx(8) - x(5) I ::: I} = 20(1/1.9) - 1 = 0.4 
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tIl: Point process 
z,,: Renewal process 
t,,= Zl + ... + z" 

I 
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FIGURE 9-4 

POINT AND RENEWAL PROCESSES. A point process is a set of random points t; on 
the time axis. To every point process we can associate a stochastic process x(t) equal 
to the number of points ~ in the interval (0, t). An example is the Poisson process. To 
every point process ~ we can associate a sequence of random variables Zn such that 

where tl is the first random point to the right of the origin. This sequence is called a 
renewal process. An example is the life history of lightbulbs that are replaced as soon as 
they fail. In this case, Zj is the total time the ith bulb is in operation and ti is the time of 
its failure. 

We have thus established a correspondence between the following three concepts 
(Fig. 9-4): (a) a point process ~, (b) a discrete-state stochastic process x(t) increasing 
in unit steps at the points ti , (c) a renewal process consisting of the random variables Zj 

and such that tn = Zl + ... + Zn. 

Stationary Processes 

STRICT SENSE STATIONARY. A stochastic process x(t) is called strict-sense station­
ary (abbreviated SSS) if its statistical properties are invariant to a shift of the origin. 
This means that the processes X(/} and x(t + c) have the same statistics for any c. 

Two processes x(t) and yet) are called jointly stationary if the joint statistics of 
X(I) and yet) are the same as the joint statistics of x(t + c) and yet + c) for any c. 

A complex process z(t) = x(t) + jy(t} is stationary if the processes x(t) and yet) 
are jointly stationary. 

From the definition it follows that the nth-order density of an SSS process must 
be such that 

I(x), ... ,Xn; tl, .•• , tn) = I(Xj, ... ,x,,; II +c, ... , tIl +'c} (9-47) 

for any c .. 
From this it follows that I(x; t) = f(x; I + c) for any c. Hence the first-order 

density of x(t) is independent of t: 

f(x; t) = lex) (9-48) 

Similarly, f(x!, X2; II + c, t2 + c) is independent of c for any c, in particular for 
c = -t2. This leads to the conclusion that 

(9-49) 
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Thus the joint density of the random variables x{t + -r) and x(t) is independent of t and 
it equals I(x], X2; -r). 

WIDE SENSE STATIONARY. A stochastic process X(I) is called wide-sense stationary 
(abbreviated WSS) if its mean is constant 

E(X(I)} = 11 (9-50) 

and its autocorrelation depends only on -r = t1 - t2: 

E{x(t + -r)X·(/)} = R(-r) (9-S1) 

Since l' is the distance from t to t + l' , the function R ('t') can be written in the symmetrical 
form 

(9-52) 

Note in particular that 

E{lx(t)12} = R(O) 

Thus the average power of a stationary process is independent of t and it equals R(O) . 

... Suppose that x(t) is a WSS process with autocOITelation 

R(-r) = Ae-IT1 

We shall detennine the second moment of the random variable x(8) - xeS). Clearly, 

E{[x(8) - X(S)]2} = E{r(8)} + E{r(S)} - 2E{x(8)x(5)} 

= R(O) + R(O) - 2R(3) = 2A - 2Ae-3cr ... 

Note As Example 9·11 suggests.. the autocorrelation ola stalionary process x(t) can be defined as average 
power. Assuming for simpHcity tbat x(t) is real. we conclude from (9-51) that 

E{[x(t + 1') - x(1)]2) ... 2(R(O) - R(T)] (9·S3) 

From (9-51) it follows that the autocovariance of a WSS process depends only on 
't' = t1 - t2: 

C(t") = R('r) -11112 

and its correlation coefficient [see (9-35)] equals 

reT) = C('t')/C(O) 

(9-54) 

(9-55) 

Thus C ('t') is the covariance, and r( 1') the correlation coefficient of the random variables 
x(1 + t) and x(t). 

Two processes x(t) and yet) are called jointly WSS if each is WSS and their 
cross-correlation depends only on 't' = t1 - t2: 

Rxy(-r) = E{x(t + -r)y*(t)} (9-56) 
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If x(t) is WSS white noise, then [see {9-43)] 

C(.) = q8(t) (9·57) 

If x(t) is an a-dependent process, then C(.) = 0 for It I > a. In this case, the 
constant a is called the correlation time of x(t). This tenn is also used for arbitrary 
processes and it is defined as the ratio 

1 [00 ·c = C(O) Jo C(t) d-r 

In general C (-r) ::f: 0 for every r. However, for most regular processes 

.. If xCt) is WSS and 

then [see (9·37)] 

C(-r) --+ 0 R('r) --+ 17112 
ITI"" 00 ITI-+ 00 

s = iT x(t)dt 
-T 

The last equality follows with t' = t\ - t2 (see Fig. 9·5); the details, however, are omitted 
[see also (9·156»). 

Specilll cases. (a) If C(r) = q8(r), then 

0-; = q 12T (2T - l-r1)8 (.) dT = 2Tq 
-2T 

(b) If the process x(t) is a-dependent and a « T ,then (9·59) yields 

0-; = 12T (2T -ltDC(-r)d-r :::::: 2T fa C(T)dT 
-2T -a 

T T 21 

j J C(/I - '2) dt. dt2 = j(2T - IrDC(T) dT 
-T-T -2T 

I'}. 

T 

-T 
o -2T -Q 0 Q 

-T 

FIGUR£9-5 

2T 'I' 
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EX \\11'101: ()-U 

This shows that, in the evaluation of the variance of s, an a-dependent process with 
a « T can be replaced by white noise as in (9-57) with 

q = I: Ctc) d1: ~ 

If a process is SSS, then it is also WSS. This follows readily from (9-48) and 
(9-49). The converse, however, is not in general true. As we show next, nonnal processes 
are an important exception. 

Indee? suppose that x(t) is a normal WSS process with mean 1'/ and autocovariance 
C(1:). As we see from (9-46). its nth-order characteristic function equals 

exp {jl] I: Wi - ~ I: C(tj - tk)WjWk} (9-60) 
i i,k 

This function is invariant to a shift of the origin. And since it determines completely the 
statistics of x(t) , we conclude that x(t) is SSS. 

~ We shall establish necessary and sufficient conditions for the stationarity of the 
process 

x(t) = a cos wt + bsinwt 

The mean of this process equals 

E(x(t)} = E(a} coswt + E(b} sinwt 

This function must be independent of t. Hence the condition 

E(a} = E{b} = 0 

is necessary for both forms of stationarity. We shall assume that it holds. 

(9-61) 

(9-62) 

Wide sense. The process x(t) is WSS iff the random variables a and b are uncorrelated 
with equal variance: 

E{ab} = 0 

If this holds, then 

Proof. Ifx(t) is WSS, then 

E(r(O)} = E{r(nl2w)} = R{O) 

Butx(O) = aandx(1l'/2w) = b; hence E{a2} = E{b2}. Using the above, we obtain 

E{x(t + 1:)x(t)} = E{[acosdI(t + 1:) + b sindl(t + 1:»)[acos dlt + bsindltJ} 

= 0-2 COSdl1: + E{ab} Sindl(2t + 1:) 

This is independent of I only if E{ab} = 0 and (9-63) results. 

(9-63) 

(9-64) 

(9-65) 

Conversely, if (9-63) holds, then, as we see from (9-65), the autocorrelation of X(/) equals 
(12 cos dI't; hence x(t) is WSS. 



COROLLARY 

EX \i\IPLE 9-1-l 

alAPI'SR9 OENERALCONCEPTS 391 

Strict sense. Theprocessx(t) is SSS iff the joint density I(a, b) of the random variables 
a and b has circular symmetry, that is, if 

I(a, b) = f(../a2 + b2 ) (9-66) 

Proof. If x(t) is SSS, then the random variables 

x(O) = 8 x(n,/2<&I) = b 

and 

X(f) = 8 coswt + b sin wI X(1 + 7r /2t.o) = b coswt - 8 sin wt 

have the same joint density for every t. Hence f(a, b) must have circular symmetry . 
. We shall now show that, if f(a, b) has circular symmetry, then X(/) is SSS. With l' a given 

number and 

we form the process 

XI (t) = 8, COSM + bl sinwI = X(I + t") 
Clearly, the statistics oh(l) and XI (I) are determined in terms ofthe joint densities f (a, b) 

and I(alo hi) of the random variables 8, band 810 bl • But the random variables a. band 810 bl 

have the same joint density. Hence the processes X(I) and X(I + .) have the same statistics for 
every T. ~ 

.,. If the process x(t) is SSS and the random variables a and b are independent, then 
they are normal. 

Proof. It follows from (9-66) and (6-31). ~ 

~ Given a random variable Cd with density I (w) and a random variable fP uniform in 
the interval (-7f. 7f) and independent of Cc>, we form the process 

x(t) = a COS(Cdt + fP) 

We shall show that XV) is WSS with zero mean and autocorrelation 

a2 a2 
R(t") = 2"E{cosCc>t} = 2 Re <l»Q.>(t) 

where 

<l>Q.>(T) = E{elfllt } = E{COSCdt} + jE{sinCc>T} 

is the characteristic function of Cd. 

Proof. Clearly [see (6-235)] 

E{cos(talt + <p)} = E{E(cos(talt + 91) I tal}} 

Fropl the independence of w and <p, it follows that 

E(cos(wt + 91) I w) = cos wtE{cos<p} - sinCdIE{sin<p) 

(9-67) 

(9-68) 

(9-69) 



Hence E{x(t)} = 0 because 

1 1ff E{cos(,O} = 21t -ff cosrpdrp = 0 E{sin(,O} = ~ 11< sinrpdrp = 0 
-71 

Reasoning similarly. we obtain E{cos(26)t + 6>t' + 2(,O)} = O. And since 

2cos[6>(t + t') + (,0] cos(6)t + (,0) = COS6>t' + cos(2t.>t + CO)t' + 2(,0) 

we conclude that 

a1 
R(t') = a2 E{cos(CO)(t + t') + (,0] cos(6)t + (,O)} = TE{cosCO)t') 

Further. with CO) and rp as above. the process 

z(t) = aeJCtII+<p) 

is WSS with zero mean and autocorrelation 

CENTERING. Given a process x(t) with mean 71(1) and autocovariance C.r(tJ, t2). we 
form difference 

i(t) = x(t) - 71(t) (9-70) 

1bis difference is called the centered process associated with the process x(t). Note that 

E{i(t)} = 0 RJf(t], '2) = C.r(tl' t2) 

From this it follows that if the process x(t) is covariance stationary. that is, if C..t (t1, t2) = 
C,,(tl - t2). then its centered process i(t) is WSS. 

OTHER FORMS OF STATIONARITY. A process x(t) is asymptotically stationary if the 
statistics of the random variables X(tl + c) • ... , x(tn + c) do not depend on cif c is large. 
More precisely, the function 

l(xi ....• xn.t) +c, ...• tn +c) 

tends to a limit (that does not depend on c) as c -+ 00. The semirandom telegraph signal 
is an example. 

A process x(t) is NIh-order stationary if (9-47) holds not for every n. but only for 
n~N. 

A process x{t) is stationary in an interval if (9-47) holds for every ti and ti + c in 
this interval. 

We say that x(t) is a process with stationary increments if its increments yet) = 
X(I ~ h) - X(I) form a stationary process for every h. The Poisson process is an example. 

MEAN SQUARE PERIODICITY. A process x(t) is called MS periodic if 

E{lX(1 + T) - x(t)12} = 0 (9-71) 

for every t. From this it follows that, for a specific t, 

x(t + T) = X(I) (9-72) 
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with probability 1. It does not, however. follow that the set of outcomes ~ such that 
x(t + T,~) = x(t,~) for all thas probability 1. 

As we see from (9-72) the mean of an MS periodic process is periodic. We shall 
examine the properties of R(tl, tz). 

~ A process x(t) is MS periodic iff its autocorrelation is doubly periodic, that is, if 

R(tl + mT. t2 + nT) = R(tlo t2) 

for every integer m and n. 

Proof. h we know (see (6-167») 

E2{ZW} ::::: E{r}E{r} 

With Z = X(I,) and w = X(l2 + T) - X(t2) this yields 

E2 {x(t,)[X(t2 + T) - X(2)]} ::::: E{r(t,)}E{[x(t2 + T) - X(t2)]2} 

(9-73) 

If X(f) is MS periodic, then the last term in the last equation is O. Equating the left side to 0, we 
obtain 

R(th 12 + T) - R(th 12) = 0 

Repeated application of this yields (9-73). 
Conversely, if (9-73) is true, then 

R(t + T, t + T) = R(t + T, t) = R(t, t) 

Hence 

E{[x(t + T) - x(t)]21 = R(t + T, t + T) + R(t. t) - 2R(t + T, t) = 0 

therefore X(I) is MS periodic. ~ 

9-2 SYSTEMS WITH STOCHASTIC INPUTS 

Given a stochastic process x(t), we assign according to some rule to each of its samples 
x(t, ~i) a function yet, ~i)' We have thus created another process 

yet) = T[x(t)] 

whose samples are the functions y (t, ~i)' The process y(t) so formed can be considered 
as the output of a system (transformation) with input the process x(tl. The system is 
completely specified in terms of the operator T, that is, the rule of correspondence 
between the samples of the input x(t) and the output y(t). 

The system is deterministic if it operates only on the variable t treating ~ as a 
parameter. This means that if two samples x(t, ~l) and x(t, ~2) of the input are identical 
in t. then the corresponding samples y(t, ~1) and y(t, ~2) of the output are also identical 
in t. The system is called stochastic if T operates on both variables t and ~. This means 
that there exist two outcomes ~I and ~2 such that x(t, ~J) = x(t, S2) identically in t 

but y(t, ~1) =f y(t, ~2)' These classifications are based on the terminal properties of the 
system. If the system is specified in terms of physical elements or by an equation, then it 
is deterministic (stochastic) if the elements or the coefficients of the defining equations 
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are deterministic (stochastic). Throughout this book we shall consider only detemtinistic 
systems. 

In principle, the statistics of the output of a system can be expressed in terms of the 
statistics of the input. However, in general this is a complicated problem. We consider 
next two important special cases. 

Memoryless Systems 

A system is called memoryless if its output is given by 

yet) = g[x(t») 

where g (x) is a function of x. Thus, at a given time 1 = 1\, the output y(t.) depends only 
oil x(t.) and not on any other past orfuture values oh(t). 

From this it follows that the first-order density ly(Y; t) of y(1) can be expressed 
in terms of the corresponding density l.x(x; t) ofx(t) as in Sec. 5-2. Furthermore, 

E{y(t)} = 1: g(x)/,,(x; t)dx 

Similarly, since y(t.) = g[X(tl)] and y(t2) = g[X(t2)], the second-order density 
ly(YIt Y2; t., t2) ofy(t) can be determined in terms of the corresponding density 1.x(Xl, 
X2; t(, t2) ofx(t) as in Sec. 6-3. Furthermore, 

E{y(t\)y(t2)} = 1: 1: g(X.)g(X2)f.x(X" X2; tt. 12) dXl dX2 

The nth-order density 1,(Yl> ..• ,Yn; tJ, ... , tn) of yet) can be detennined from 
the corresponding density ofx(t) as in (7-8), where the underlying transformation is the 
system 

(9-74) 

STATIONARITY. Suppose that the input to a memoryless system is an SSS process X(/). 

We shall show that the resulting output yet) is also SSS. 

Proof. To determine the nth-order density of yet), we solve the system 

g(x) = YI. ... , g(xn) = Yn 

If this system has a unique solution. then [see (7-8)] 

(9-75) 

l.x(x(, .•. , Xn; tJ, ... ,t".) 6 
1,(YIt ... , Yn; II. ... , In) = 1 '() '( )1 (9-7 ) g Xl '" g Xn 

From the stationarity of X(/) it follows that the numerator in (9-76) is invariant to a shift 
of the time origin. And since the denominator does not depend on t, we conclude that the 
left side does not change if ti is replaced by ti + c. Hence yet) is SSS. We can similarly 
show that this is true even if (9-75) has more than one solution. 

Notes l.If x(r) is stationary of order N. then y(t) is stationary of order N. 
2.lf x(r) is stationary in an interval. then y(t) is stationary in the same interval. 
3.lf x(t) is WSS stationary, then y(t) might not be stationary in any sense. 
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Square-law 4etector. A square-law detector is a memory-less system whose output 
equals 

yet) = r(/) 

We shall detennine its first- and second-order densities. If Y > 0, then the system Y = x2 

has the two solutions ±,fY. Furthermore. y'(x) = ±2,fY; hence 

1 
I,(Y; I) = 2,fY[lx(.fj; I) + Ix (-.fj; t)] 

If YI > 0 and )/2 > O. then the system 

YI =x~ 
has tke four solutions (±.JYi. ±.Jji). Furthermore, its jacobian equals ±4.jYl )/2; hence 

1 
I.,(YI. )/2: tl. '2) = 4.JYi3i2 L Ix (±.jYj. ±.j)ii; '1. t2) 

YI)/2 

where the summation has four terms. 
Note that, if X(/) is SSS, then lAx; t) = Ix (x) is independent of t and 1.r(XI, X2; 

tit '2) = Ix(xit X2; t') depends only on t' = II - 12. Hence ly(Y) is independent of t and 
!y(Yl. 12; r) depends only on r = 11 - t2' 

~ Suppose that x(t) is a normal stationary process with zero mean and autocorrelation 
R.r(r). In this case, Ix(x) is normal with variance Rx(O). 

Ify(t) = X2(/) (Fig. 9-6), then E{y(t)} = Rx(O) and [see (5-22)J 
1 

ly(Y) = .j21iRx (O)y e-y/2Rs CO)U(y) 

We shall show that 

(9-n) 

Proof. The random variables x(t + 'C) and X(I) are jointly nonnal with zero mean. Hence [see 
(6-199)] 

E(x1(t + T)X1(tH = B{x2(1 + T)}B{x1(t)} + 2B2(X(t + T)X(t)} 

and (9-77) results. 
Note in particular that 

E{r(t)} = Ry(O) = 3R;(O) (1; = 2~(O) 

FIGURE 9·' 
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Bard limiter. Consider a memoryless system with 

{ Ix> 0 
g(x) = -1 x < 0 

(Fig. 9·7). Its output y(t) takes the values ± 1 and 

Hence 

P{y(t) = 1) = P{x(t) > O} = 1 - Fx(O) 

P{y(t) = -lJ = P{x(t) < O} = FAO) 

E{y(t)} = 1 x P{y(t) = I} -1 x P{y(t) == -l} = 1-2Fx(O) 

(9.78) 

The product y(1 + 1:)y(t) equals 1 ifx(t + 1:)x(t) > 0 and it equals -1 otherwise. Hence 

Ry(,r) = PIXel + 1:)x(t) > OJ - P{x(t + 1:)x(t) < O} (9·79) 

Thus, in the probability plane of the random variables X(I + 1:) and x(t), Ry(r) 
equals the masses in the first and third quadrants minus the masses in the second and 
fourth qua~~. 

~ We shall show that if X(I) is a normal stationary process with zero mean, then the 
autocorrelation of the output of a hard limiter equals 

R ( ) - ~ • Rx(1:) (9.80) 
'I 1: - 1r arcsm Rx(O) 

This result is known as the arcsine law.4 

Proof. The random variables X(I + -r) and x(t) are jointly normal with zero mean, variance Rx (0). 
and correlation coefficient Rx(-r)/ RAO). Hence (see (6-64)]. 

I a 
P{X(I + -r)x(t) > Ot = 2 + i 

1 a 
P{x(t + -r)x(t) < O} = - - -

2 1C 

Inserting in (9-79), we obtain 

• Rx(-r) 
sma = R.(O) .. 

1 a (1 a) 2a R)'(-r) = - + - - - - - ==-
21f 21f 1C 

and (9·80) follows. .... 

4J. L. Lawson and G. E. Uhlenbeck: ThreshDlti Signals. McGraw·Hill Book Company, New York, 1950. 
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~ Using Price's theorem. we shall show that if the input to a memoryless system 
y = g(x) is a zero-mean normal process x(t), the cross-correlation of x(t) with the 
resulting output y(t) = g[x{t)] is proportional to Rxx('r): . 

Rxy("r) = KRzx{i) where K = E{g'[x(t))) (9-81) 

Proof. For a specific T, the random variables x = xV) and z = X(I + f) are jointly nonnal with 
zero mean and covariance /L ;:::; E(xz} = R1.rCT). With 

I = E(zg(x)} = E{X(1 + f)y(t)} = R.y(T) 

it follows from (6-201) that 

81 ;:::; E { a2[zg(x)]} = E{ '[x(t)]};:::; K 
aIL axaz g 

(9-82) 

If /L = 0, the random variables X(I + T) and X(/) are independent; hence I ;:::; O.lntegrating (9-82) 
with respect to /L, we obtain I ;:::; K /L and (9-81) results. 

Special cases,s (a) (Hard limiter) Suppose that g(x) :::: sgn x as in (9-78), In this case, g'(x) ;:::; 
28(x): hence 

K = E(28(x») ;:::; 21: 8(x)/(x)dx;:::; 2/(O} 

where 

I(x);:::; J21r ~xx(O) exp { - 2R::(O) } 
is the first-order density of X(I). Inserting into (9-81), we obtain 

Ryy(f) ;:::; RXA (T)J 7r R~ (0) yet) = sgn X(I) 

(b) (Limiter) Suppose next that yet) is the output of a limiter 

In this case, 

Linear Systems 

The notation 

(x) = {x Ixl < c '(x) = { 1 
g c Ixl > egO 

yet) = L[x(t)] 

Ixl <c 
Ixl > c 

(9-83) 

(9-84) 

(9-85) 

will indicate that yet) is the output of a linear system with input X(/), This means that 

L[alxl (t) + a2x2(t)] = a1L[xl (t)] + a2L[x2(t)J 

for any 8t. 82, XI (t), X2(t). 

(9-86) 

SH. E. Rowe. "Memoryless Nonlinearities with Gaussian Inputs," BSTJ, vol. 67. no. 7, September 1982. 
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This is the familiar definition of linearity and it also holds if the coefficients 81 

and 82 are random variables because, as we have assumed, the system is deterministic 
that is, it operates only on the variable t. • 

Note If a system is specified by its internal structure or by a differential equation, then (9-86) holds o:i; 
if Y(/) is the zero-Slate respon.~. The response due to the initial conditions (zero-input response) will 110( be 
considered. -

A system is called time-invariant if its response to X(t + c) equals yet + c). We 
shall assume throughout that all linear systems under consideration are time-inVariant 

It is well known that the output of a linear system is a convolution 

yet) = x(t) * h(t) = [: X(I - a)h(a) da (9-87) 

where 

h(t) = L[8(t}] 

is its impulse response. In the following, most systems will be specified by (9-87). 
However. we start our investigation using the operational notation (9-85) to stress the 
fact that various results based on the next theorem also hold for arbitrary linear operators 
involving one or more variables. 

The following observations are immediate consequences of the linearity and time 
invariance of the system. 

If x(t) is a normal process, then yet) is also a normal process. This is an extension 
of the familiar property of linear transformations of normal random variables and can 
be justified if we approximate the integral in (9-87) by a sum: 

yeti) ~ LX(CI - ak)h(ak)A(a) 
k 

Ifx(t) is SSS, theny(t) is also SSS.lndeed, since yet +c) = L[x(t +c») for every 
c, we conclude that if the processes x(f) and X(I + c) have the same statistical properties, 
so do the processes yet) and yet + c). We show later [see (9-142)] that if x(t} is WSS. 
the processes X(/) and yet) are jointly WSS. 

Fundamental theorem. For any linear system 

E{L[x(t)]} = L[E{x(/)}] (9-88) 

In other words, the mean l1y(t) of the output yet) equals the response of the system to 
the mean l1x(t) of the input (Fig. 9-Sa) 

l1y(t) = L[71x(t)] (9-89) 

h(/,) h(,.) 
R%~(/ •• '2> Rxt.tt. '2> R,,A.tt, t:z} 

X(/) yet) 
h(t) 

'1/,,(1) '1/,(1) 
'--_ ..... 

(a) (b) 

FIGURE 9-8 
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This is a simple extension of the linearity of expected values to arbitrary linear 
operators. In the context of (9-87) it can be deduced if we write the integral as a limit of 
a sum. This yields 

E{y(t)} = I: E{x(t - a)}h(a) da = 71x(t) * h(t) (9-90) 

Frequency interpretation At the ith trial the input to our system is a function X(/. ~i) 
yielding as output the function y(/. Si) = L[x(t. Si)]. For large n. 

E{y(t)} ::::: Y(I. Sl) + ... + y(t, Sn) = L[x(/. SI)] + ... + L[x(t, Sn)) 
n n 

From the linearity of the system it follows that the last term above equals 

L [X(t.SI)+'~'+X(t.~n)] 

This agrees with (9-88) because the fraction is nearly equal to E{x(t}). 

Notes 1. From (9-89) it follows that if 

fer) = X(l) - '1x(l) Y(/) = yet) - '1y(t) 

then 

L[x(/)] = L[x(l» - L['1x(r)] = y(r) 

Thus the response of a linear system to the centered input let) equals the centered output yet). 
2. Suppose that 

x(t) = IV) + Vel) E(v(r)} = 0 

In this case, E(x(t)} = I(t); hence 

'1)'(t) = I(t) * h(t) 

(9-91) 

Thus, if X(l) is the sum of a delenllinistic signal I(t) and a random component vet). then for the 
determination of the mean of the output we can ignore vet) provided that the system is linear and E( V(I)} = o. 

Theorem (9-88) can be used to express the joint moments of any order of the 
output y(t) of a linear system in terms of the corresponding moments of the input The 
following special cases are of fundamental importance in the study of linear systems 
with stochastic inputs. 

OUTPUT AUTOCORRELATION. We wish to express the autocorrelation Ryy(th t2) of 
the output y(t) of a linear system in terms of the autocorrelation Rxx(t1<l t2) of the input 
X(I). As we shall presently see, it is easier to find first the cross-correlation Rxy(tl, t2) 

between x(t) and yet). 

lP (a) (9-92) 

In the notation just established, L2 means that the system operates on the variable 12, 

treating 11 as a parameter. In the context of (9-87) this means that 

(9-93) 



400 STOCHASTIC PIlOCI!SSES 

EX \\IPLE 9-18 

(b) (9~94) 

In this case, the system eperates on tl' 

Ryy(tt. t2) = 1: Rxy(tl - 0:. t2)h(o:) da (9-95) 

Proof. MultiplYing (9-85) by X(ll) and using (9-86), we obtain 

X(II)y(t) = L,[x(tl)x(t)] 

where L, means that the system operates on t. Hence [see (9-88)] 

E{x(tl)y(t)} = L,[E{x(tl)X(t)}] 

and (9-92) follows with t = tl' The proof of (9-94) is similar: We multiply (9-85) by y(tl) and Use 
(9-8li). This yields 

E{y(t)y(t2)} = L,[E{x(t)y(tl)}) 

and (9-94) follows with t = 'I. ~ 

The preceding theorem is illustrated in Fig. 9-8b: If Rxx(tJ, t2) is the input to the 
given system and the system operates on t2. the output equals Rxy(tl. t2). If Rxy(tl, t2) 
is the input and the system operates on tit the output equals Ryy(tl. t2)' 

Inserting (9-93) into (9-95). we obtain 

R)'y(tl.12) = 100 roo Rxx(ll - a, 12 - {J)h(a)h({J) da d{J -ooJ-oo 
This expresses R)')'(llt t2) directly in terms of Rxx(tlt t2). However. conceptually and 
operationally. it is preferable to find first Rxy(tl. t2)' 

~ A stationary process vet) with autocorrelation RlIlI(t') = q8(t') (white noise) is ap­
plied at t = 0 to a linear system with 

h(f) = e-ctU(I) 

We shall show that the autocorrelation of the resulting output yet) equals 

forO < 11 < t2' 

Ryy(tlt 12) = .!.(l - e-2ctI)e-clf2-tJI 
2c 

(9-96) 

Proof, We can use the preceding results if we assume that the input to the system is the process 

X(I) = ,,(t)U(t) 

With this assumption. all correlations are 0 if tl < 0 or 12 < O. For t\ > 0 and t2 > O. 

Rxx(th 12) = E{v(t,)JI(t2)} = q6(tl - t2) 

As we see from (9-92), Rx,(t., III equals the response of the system to q6(tl - t2) considered as 
a function of 12. Since 6(tl - t2) = 6(t2 - tl) and L[6(12 - tl)] = h(t2 - t,) (time invariance). we 
conclude that 
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q 

o 

FIGURE 9-9 

In Fig. 9-9, we show R"y(tl. (2) as a function of tl and t2. Inserting into (9-95), we obtain 

and (9-96) results. 
Note that 

~ The autocovariance Cyy(tl. tz) of yet) is the autocorrelation of the process jet) = 
yet) -11,(t) and, as we see from (9-91), yet) equals L[x(t)]. Applying (9-93) and (9-95) 
to the centered processes x(t) and yet). we obtain 

Cxy(t .. t2) = Cu(tl. tz) * h(t2) 

Cyy(tl. (2) = Cxy(tb tz) * h(tl) 

where the convolutions are in II and tz. respectively. ~ 

(9-97) 

Complex processes The preceding results can be readily extended to complex 
processes and to systems with complex-valued h(t). Reasoning as in the real case, we 
obtain 

Rxy(tlo (2) = Ru(t) , t2) * h-(t2) 

Ryy(tl. t2) = Rxy(t" tz) * h(tl) 
(9-98) 

Response to white noise. We shall determine the average power E {ly(t) IZ} of the output 
of a system driven by white noise. This is a special case of (9-98), however, because of 
its importance it is stated as a theorem. 

... If.the input to a linear system is white noise with autocorrelation 

Rxx (tl. tz) = q (ll)1S (tl - '2) 

then 

E{ly(t)IZ} = q(t) * Ih(t)12 = I: q(t - a)lh(a)12 da (9-99) 
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EX,\\11'1 I 9-19 

Prool. From (9-98) it follows that 

R",),(I" '1) = q(t,)8(tl - '1) * hN(I,) = q(t\)h*(t2 - '1) 

R1Y(ll, ,,) = 1: q(t, - a)h*[12 - (11 - a)]h(a) da 

and with 11 = 11 = t. (9-99) results. 

Special CIlSe8. (a) !fx(t) is stationary white noise. then q(t) = q and (9-99) yields 

E{y2(t)} = qE where E = 1: Ih(t)12 dt 

is the energy of h(t). 
(b)!f h(t) is of short duration relative to the variations of q(t), then 

E{y2(t)} ::::: q(t) 1: Ih(a)12 da = Eq(t) 

This relationship justifies the term average intensity used to describe the function q(t). 

(9-100) 

(c) If R",,(r) = q8(r) and vCt) is applied to the system at I = 0, then q(t) = qUell and 
(9-99) yields 

.. The integral 

y = l' l1(a)da 

can be considered as the output of a linear system with input x(t) = ,(t)U(t) and impulse 
response h(t) = U (t). If. therefore, lI(t) is white noise with average intensity q(t), then 
x(t) is white noise with average intensity q(t)U(t) and (9-99) yields 

E{f(t)} = q(t)U(t) * U(t) = l' q(a)da ~ 

Differentiators. A differentiator is a linear system whose output is the derivative of the 
input 

L{x(t)] = x(t) 

We can, therefore, use the preceding results to find the mean and the autocorrelation of 
ret). 

From (9-89) it follows that 

7]x,(t) = L[1]x(t)] = 7J~(t) 
Similarly [see (9-92)] 

8Rxx(t .. t2) 
Ru'(tb t2) = L2[Rxx (tl, 12)] = --!l:----'­

C1t2 

.. 

because, in this case, L2 means differentiation with respect to t2. Finally, 

8Rxx'Ctl,ta) 
Rx'x'(tlt t2) = LtlRxx'(tlt t2)] = ---'~~~ 

8t1 

(9-101) 

(9-102) 

(9-103) 



x(t) 

Combining, 'we obtain 

R ( ') _ a2Rxx(t .. 12) 
Jetx' 11,12 - -..=..;...:..;...:;.:.. 

.atl8t2 

Stationary processes Ifx(t) is WSS, then 1]x(t) is constant; hence 

E{x'(t)} = 0 

Furthermore, since Ru(t1' 12) = Rxx(1:). we conclude with 1: = tl - 12 that 

aRu(tl - 12) dRxJe (1:) a2Ru (tl - 12) dlRzx('C) 
-~"'--- = = 

at2 dr: atl at2 d'C2 

HeRce 

(9-104) 

(9-105) 

(9-106) 

Poisson impulses. If the input X(I) to a differentiator is a Poisson process, the resulting 
output z(t) is a train of impulses (Fig. 9-10) 

Z(/) = 2: 8(t - it) (9-107) 
I 

We maintain that z(t) is a stationlU)' process with mean 

TIt = A (9-108) 

and autocorrelation 

(9-109) 

Proof. The first equation follows from (9-101) because TlJe (I) = At. To prove the second, 
we observe that [see (9-14)] 

RxJe(/I, 12) = A211t2 + Amin(tlt t2) 

And since z(t) = x(t), (9-102) yields 

aRu(l" t2) 2 
RJet(t .. t2) = a = A tl + AU (11 - 12) 

h 

(9-110) 

This function is plotted in Fig. 9-10b. where the independent variable is tl- As we see, 
it is discontinuous for tl = 12 and its derivative with respect to tl contains the impulse 

0= 

(0) 

PlGURE9·10 

(b) 
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M(tl - t2)' This yields [see (9-103)] 

a Rxz(tb t2} 2 
Ru{tl' t2) = a = A + M(tl - t2) 

II 

DIFFERENTIAL EQUATIONS. A deterministic differential equation with random ex­
citation is an equation of the form 

(9-111) 

where the coefficients aft. are given numbers and the driver x(c) is a stochastic process. 
We shall consider its solution yet) under the assumption that the initial conditions are O. 
With this assumption, yet) is unique (zero-state response) and it satisfies the linearity 
condition (9-86). We can, therefore, interpret y(t) as the output of a linear system specified 
by (9-111). 

In general, the determination of the complete statistics of yet) is complicated. In 
the following, we evaluate only its second-order moments using the preceding resUlts. 
The above sy~tem is an operator L specified as follows: Its output yet) is a process with 
zero initial conditions satisfying (9-111). 

Mean. As we know [see (9-89)] the mean l1y(t) of yet) is the output of L with input 
71x (t). Hence it satisfies the equation 

and the initial conditions 

71.,(0) = ... = l1~'-L}(O) = 0 

This result can be established directly: Clearly. 

E {y(ft.) (t) } = 71~k) (I) 

(9-112) 

(9-113) 

(9-114) 

Taking expected values of both sides of (9-111) and using (9-114), we obtain (9-112). 
Equation (9-113) follows from (9-114) because y(k) (0) = 0 by assumption. 

Correlation. To detennine' Rx} (tl. t2), we use (9-92) 

Rxy(/!./2) = L2[Rxx (tl' t2)] 

In this case, Lz means that Rxy(tl' t2) satisfies the differential equationQ 

an Rxy(/l. 12) 
an 8tl + ... +aoRxy(tlt 12) = Rxx(tlt t2) 

with the initial conditions 

R ( 0) - ... - 8"-1 Rxy(t" 0) - 0 
xy tIt - - 1-8t;-

Similarly, since [see (9-94)] 

(9-115) 

(9-116) 
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we concl.u~ as earlier that 

an Ryy(tJ, ti) 
an a n + ... + aORyy(tl' 12) = RX'IVl, t2) 

tl 

an- 1 Ryy(O, 12) 
Ryy (O,12) = ... = 1 = 0 

alj-

These results can be established directly: From (9-111) it follows that 

x(!!) [a"y(n) (t2) + ... + Qoy(t2)] = X(tl)X(12) 

This yields (9-115) because [see (9-132)] 

E {X(tl)y(k)(t2)} = ak RX'I(tl, t2)/8t~ 

Similarly, (9-117) is a consequence of the identity 

[any(n)(tl) + ... + aOy(tl>]y(t2) = x(tl)y(tll 

because 

E{y(k)(tl)y(t2)} = 8kRyy(tl.12)/8tt 

Finally. the expected values of 

X(CI)y(k)(O) = 0 

yield (9-116) and (9-118). 

(9-117) 

(9-118) 

General moments. The moments of any order of the output y(t) of a linear system can 
be expressed in terms of the corresponding moments of the input x(t). As an illustration. 
we shall determine the third-order moment 

Ryyy(lJ, t2, t3) = E{YI(t)Y2(I)Y3(t)} 

ofY(I) in terms of the third-ordermoment Rxxx (tl, l2, (3) oh(t). Proceeding as in (9-92), 
we obtain 

E {xCt, )X(t2)y(t3)} = L3[E {X(tl )X(t2)X(t3)}] 

= 1: Rzxx (tl' 12, t3 - y)h(y)dy 

E{X(tJ)y(12)y(t3)} = L2[E{x(ll)X(t2)y(t3)}J 

= 1: RZX'l(tl, t2 - fJ, t3)h(fJ) dfJ 

E {y(tl)y(t2)y(t3)} = L I [E {x(tt)y(t2)y(t3)} 1 

= 1: RX'I)/(tl - a, t2. t3)h(a) da 

(9-119) 
~ 

(9-120) 

(9-121) 

Note that for the evaluation of Ry)/'1 (11. t2. t3) for specific times 'I. t2. and 13. the function 
Rxxx(ti. t2. '3) must be known for every I), t2. and t3. 



406 STOCHASTIC PROCESSES 

Vector Processes and Multiterminal Systems 

We consider now systems with n inputs Xi(t) and r outputs Yj(t). As a preparation, We 

introduce the notion of autocorrelation and cross-correlation for vector processes starting 
with a review of the standard matrix notation. 

The expression A = [alj] will mean a matrix with elements alj' The notation 

A' = [ajd A* = raul At = ~aj;1 

will mean the transpose, the conjugate, and the conjugate transpose of A. 
A column vector will be identified by A = ta;]. Whether A is a vector or a general 

matrix will be understood from the context. If A = [ail and B = [bJ] are two vectors 
with m elements each, the product At B = alb) + ... + ambm is a number, and the 
product AB' = [alb j ] is an m x m matrix with elements a;bj. 

A vector process X(t) = [Xi (t)] is a vector. the components of which are stochastic 
processes. The mean TI(t) = E(X(t.)} = [TI;(t)] of X(t) is a vector with components 
1/;(t) = E (X; (t)}. The autocorrelation R(t" t2) or Ru(t!, t2) of a vector process X(t) is 
an m x m matrix 

R(t!. t2) = E {X(tl)Xt (t2)} (9-122) 

with elements E{Xi(t,)Xj(t2)}. We define similarly the cross-correlation matrix 

Rxy(t!, t2) = E{X(t)yt(t2)} (9-123) 

of the vector processes 

X(t) = [X;(t)] i = 1, ... , m j = 1, ... ,r (9-124) 

A multiterminal system with m inputs X;(t) and r outputs Yj(t) is a rule for 
assigning to an m vector X(t) an r vector yet). If the system is linear and time-invariant, 
it is specified in terms of its impulse response matrix. This is an r x m matrix 

H(t) = [hjl(/)] i = 1, ... ,m j = 1, ... ,r (9-125) 

defined as: Its component hj;(t) is the response of the jth output when the ith input 
equals 8(t) and all other inputs equal O. From this and the linearity of the system, it 
follows that the response Yj(l) of the jth output to an arbitrary input X(t) = [X;(t») 
equals 

Yj(t) = f:hj1(a)X,(t-a)da+ ... + f:hjm(a)Xm(t-a)da 
., 

Hence 

yet) = f: H(a)X(t - a) da (9-126) 

In this material, X(t) and Y (t) are column vectors and H (t) is an r x m matrix. We shall 
use this relationship to determine the autocorrelation R yy (II , t2) of Y (I). Premultiplying 
the conjugate transpose of (9-126) by X(tl) and setting 1 = 12, we obtain 

X(tI)yt(t2) = f: X(/I)Xt(t2 - a)Ht(a)da 
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(a) 

FIGURE 9-11 

Hence 

(b) 

Rxy (t\,t2) = I: Rxz (tlo t2- a )Ht(a)da 

Postmultiplying (9-126) by yt(t2) and setting t = tt. we obtain 

Ryy(tj, 12) = I: H(a) Rxy (tJ - a, t2) da 

(9-127) 

(9-128) 

as in (9-98). These results can be used to express the cross-correlation of the outputs of 
several scalar systems in teons of the cross-correlation of their inputs. The next example 
is an illustration. 

~ In Fig. 9-11 we show two systems with inputs XI (t) and X2(t) and outputs 

YI (t) = I: hi (a)x\ (t - a) da Y2(t) = I: h2(a)X2(t - a} da (9-129) 

These signals can be considered as the components of the output vector yl (t) = [Yl (t), 
Y2(r)] of a 2 x 2 system with input vector X' (t) = [XI (t), X2(t)] and impulse response 
matri?, 

H(t) = [hl(t) 0 ] 
o h2(t) 

Inserting into (9-127)-(9-128), we obtain 

Rx,~(tl. t2} = I: RXIX2 (tJ, t2 - a)h;'(a)da (9-130) 

R)',Yl(tt.t2) = I: hl(a)Rz1Y2 (tI-a,t2)da (9-131) 

Thus. to find RX1 )'2(tl, t2), we use RxlX2 (t" t2) as theinputto the conjugate h2(t) ofh2(t), 
operating on the variable t2. To find R YlY2 (tl, t2), we use RXI.~(tl' t2) as the input to hI (t) 
operating Qn the variable tl (Fig. 9-11). .... 

~ The derivatives YI(t) = z(m)(t) and Y2(/) = W(II)(t) of two processes z(t) and wet) 
can be considered as the responses of two differentiators with inputs XI (t) = z(t) and 
X2(t) = wet). Applying (9-130) suitably interpreted, we conclude that 

(9-132) 

.... 
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9-3 THE POWER SPECTRUM 

In signal theory, spectra are associated with Fourier transfonns. For deterministic signals 
they are used to represent a function as a superposition of exponentials. For rando~ 
signals. the notion of a spectrum has two interpretations. The first involves transforms of 
averages; it is thus essentially deterministic. The second leads to the representation of the 
process under consideration as superposition of exponentials with random coefficients. 
In this section, we introduce the first interpretation. The second is treated in Sec. 11-4. 
We shall consider only stationary processes. For nonstationary processes the notion of a 
spectrum is of limited interest. 

DEFINITIONS. The power spectrum (or spectral density) of a WSS process x(t), real 
or' complex, is the Fourier transfonn Sew) of its autocorrelation R('t) = E(x(t + r) 
x*(t)}: 

Sew) = [: R(T:)e- jllYC dT: (9-133) 

Since R( -T:) = R*(T:) it follows that Sew) is a real function of (J). 

From the Fourier inversion fonnula, it follows that 

1 100 
R(T:) = -2 S(w)e jllYC dw 

11: -00 
(9-134) 

If x(t) is a real process, then Rtr) is real and even; hence Sew) is also real and 
even. In this case, 

Sew) = 100 R(T:) cos WT: dT: = 2 roo R(T:) COSWT: dT: 
-00 10 
1 100 If R(t') = - Sew) cos WT: dw = - Sew) cos W7: dw 

21r -00 11: 0 

(9·135) 

The cross-power spectrum of two processes x(t) and yet) is the Fourier transform 
Sxy(w) oftheircross-cOIrelation Rxy(t') = E{x(t + T:)y*(t)}: 

(9-136) 

The function Sxy(w) is, in general, complex even when both processes x(t) and yet) are 
real. In all cases, 

(9-137) 

because Rxy(-r) = E{x(t - r)y*(t)} = R;x(t'). 
In Table 9-1 we list a number of frequently used autocorrelations and the corre­

sponding spectra. Note that in all cases, Sew) is positive. As we shall soon show, this is 
true for every spectrum. 
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TABLE 9·1 
'1(00. joo. 

R(r) = h Loo S(tu)eJ"'T dll) +-+ S(lI» = -00 R(T)e-J&n d-r 

oCt) +t> 1 . 1 1+ 23r8(tII) 

eiP, 1+ 2d(tII- P) cos PT +t> d(w - P) + d(w + P) 

e-"Irl 1+ ~ e-"f2 1+ f1!.e-uil /4a 
a 2 +tII2 V;;-
e-crlfl cos P1' +I- a + a 

«2 + (til _ P)2 a2 + (4) + P)2 

2e-T2 COSPT 1+ /1f [e-("'-~~/4a +e-(ao+~j2/4a') 
{ 

1 -!!! I I T 4 si.n2 (wT /2) 
T l' < 1+ TfIfl 

o 11'1> T 

sino-T {I Iwl < 0-
--+I-

reT 0 ItIIl > (J 

~ A random telegraph signal is a process x(t) taking the values + 1 and -1 as in 
Example 9-6: 

x(t) = { 1 t21 < t < t2i+l 

-1 ~-1 < t < t2i 

where tl is a set of Poisson points with average density A, As we have shown in (9-19), 
its autocorrelation equals e-:nITI, Hence 

4}. 
Sew) = 4}.2 + w2 

For most processes R(T) -+ 1}2, where 1} = E{x(t)} (see Sec. 11-4). If, therefore, 
1} #: 0, then Sew) contains an impulse at w = O. To avoid this, it is often convenient 
to express the spectral properties of x(t) in terms of the Fourier transfonn SC (w) of its 
autocovariance C (r). Since R ("C) = C ("C) + 1}2, it follows that 

The function SC (w) is called the covariance spectrum of x(t). 

~ We have shown in (9-109) that the autocorrelation of the Poisson impulses 

d 
z(t) = - L:U(r -tj ) = I>Ht -~) 

dt i j 

equals Rz(,r) =}.2 + }"8(r). From this it follows that 

Stew) = }.. + 21r}..28(w) ~(w) = }.. 

(9-138) 
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We shall show that given an arbitrary positive function S(w), we can find a process 
xCt) with power spectrum Sew). 

(a) Consider the process 

x(t) = ae)(fIII-tp) (9-139) 

where a is a real constant, t.J is a random variable with density I.(w). and fP is a 
random variable independent of t.J and uniform in the interval (0, 2Jr). As we 
know, this process is WSS with zero mean and autocorrelation 

Rx(T) = a2E{eitn } = a21°O IfI)(w)eitn dw 
-00 

From this and the uniqueness property of Fourier transforms, it follows that [see 
(9-134)] the power spectrum ofx(t) equals 

(9-140) 

If, therefore, 

1 100 
a2 = -2 Sew) dw = R(O) 

1l' -00 

then I.(w) is a density and Sx(w) = Sew). To complete the specification ofx(t), it 
suffices to construct a random variable t.J with density Sew) /21l' a2 and insert it into 
(9-139). 

(b) We show next that if S( -w) = S(w), we can find a real process with power 
spectrum Sew). To do so, we form the process 

yet) = a COS(t.Jt + 9') (9-141) 

In this case (see Example 9-14) 

a2 a21°O 
Ry(T) = "2E{COSt.JT} ="2 -00 l(w)cosw'Cdw 

From this it follows that if I.(w) = S(w)/na2, then S,(w) = Sew). 

~ A harmonic oscillator located at point P of the x axis (Fig. 9-12) moves in the x 
direction with velocity v. The emitted signal equals ei010t and the signal received by an 
observer located at point 0 equals 

set) = aei01O(,-r/c) 

where c is the velocity of propagation and r = ro + vt. We assume that v is a random 
variable with density I.(v). Clearly. 

roCt>o 
rp=­

c 
hence the spectrum of the received signal is given by (9-140) 

. 27ra2c [( w)] Sew) = 27ra2/",(w) = -;;-lu 1 - Ct>o c (9-142) 
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Doppler effect 

o p 

F1GURE'-l2 

Note that if v = 0, then 

set) = aei(tIJ01-'P) 

v . 

S(CII)l'-_B_I1ll_tted ____ ........ _-.. . _m --------- t . 
o ~ ~ 

S(~)l Received 
spectrum _________ 

1\ 
o 

This is the spectrum of the emitted signal. Thus the motion causes broadening of the 
spectrum. 

This development holds also if the motion forms an angle with the x axis provided 
that v is replaced by its projection v x on OP. The next case is of special interest. Suppose 
that the emitter is a particle in a gas of temperature T. In this case, the x component of its 
velocity is a normal random variable with zero mean and variance kT / m (see Prob. 9-5). 
Inserting into (9-142), we conclude that 

21ra2e {me2 ( {J) )2} S({J) = exp -- 1 - -
cuoJ21rkT/m 2kT WO 

Une spectra. 

(a) We have shown in Example 9-7 that the process 

x(t) = L cjeJ0II1 

j 

is WSS if the random variabJes Cj are uncorrelated with zero mean. From this and 
Table 9-1 it follows that ~ 

R(r) = L a?eiOlir 

i 

Sew) =2n L,al8(w-Wj) (9-143) 

where a1 = E{cr}. Thus Sew) consists of lines. In Sec. 13-2 we show that such a 
process is predictable, that is, its present value is uniquely determined in tenns of 
its past. 

(b) Similarly, the process 

yet) = ~)ai COSWjt + bl sinwjt) 
i 
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is WSS iff the random variables ai and bi are uncorrelated with zero mean and 
E {an = E {btl = (fl. In this case, 

R (r) = L~>l cos Wi r 
I 

Sew) = 1C L ol[~(w -w/) + ~(w + WI)] (9-144) 
I 

Linear systems. We shall express the autocorrelation R,,(r) and power spectrum 
S,,(w) of the response 

y(t) = f: x(t - a)h(a) da (9-145) 

of a linear system in terms of the autocorrelation Rxx (r) and power spectrum Sxx (w) of 
the input x(t). 

Rxy(r) = Rxx(r) * h*( -r) R,,(r) = Rx,(r) * h('r) 

S:!ly = Sxx(w)H*(w) S,,(w) = Sxy(w)H(w) 

(9-146) 

(9-147) 

Proof. The two equations in (9-146) are special cases of (9-211) and (9-212), However, because 
of their importance they will be proved directly. Multiplying the conjugate of (9-145) by x(t + T) 
and taking expected values, we obtain 

E{x(t + 't")y"(t)} = 1: E{X(1 + t)x*(t - a)}h*(a) da 

Since E{x(t + t)x"(t - a)} = RxJc('t" + a), this yields 

Rx,(t) = [RxX(T +a)h*(a)da = !~ Rxx('r - ft)h*(-ft)dft 

Proceeding similarly, we obtain 

E{y(t)y·(t - 't")} = !~ E{x(1 - a)y*(t - t)}h(a)da 

= !~ RJc,('t" - a)h(a)da 

Equation (9-147) follows from (9-146) and the convolution theorem. ...... 

~ Combining the two equations in (9-146) and (9-147), we obtain 

Ry,(r) = Rxx(r) *h(r) * h*( -r) = RXJ( (r) * per) 

S",,(w) = Sxx(w)H(w)H*(w) = SXJ(w)IH(w)12 

where 

per) = her) * h*(-r) = f: h(t + r)h·(t)dt ~ IH(w)12 

(9-148) 

(9-149) 

(9-150) 



LX \\IPLL 1)-2::; 

CHAPTIlU OBNBRALCONCSPTS 413 

Note,-in particlilar. that ifx(t) is white noise with average power q. then 

Rxx(t) = q8(t) Six«(.(» = q 
(9-151) 

Syy«(.(» = qJH(w)12 Ryy(t) = qp(t) 

From (9-149) and the inversion formula (9-134), it follows that 

E{ly(t)12} = Ryy(O) = ~ L: Sxx(w)IH(w)12 dw ~ 0 (9-152) 

This equation describes the filtering properties of a system when the input is a random 
process. It shows, for example, that if H«(J) = 0 for I(.()I > Wo and S.u«(.(») = 0 for 
\(.()\ < Wo, then E{r(t)} = O. 44 

Note The preceding results hold if all correlations are replaced by the corresponding covariaDces aDd all 
spectra by the corresponding covariance spectra. This follows from the fact that the resPOIISC to x(t) - 11 .. 
equals YlI) -7)" For example, (9-149) and (9-155) yield 

(9-153) 

(9-154) 

~ (a) (Moving average) The integral 

1 1'+T yet) = 2T I-T x(a) da 

is the average oftlie process x(t) in the interval (t - T. t + T). Oearly, yet) is the output 
of a system with input x(t) and impulse response a rectangular pulse as in Fig. 9-13. The 
corresponding pet:) is a triangle. In this case, 

1 1T -jon sin T (.() sin2 T (.() 
H«(J) = 2T -T e d1: = r;;- Syy(w) = Su«(.(» T2(J)2 

Thus H«(J) takes significant values only in an interval of the order of liT centered at 
the origin. Hence the moving average suppresses the high-frequency components of the 
input It is thus a simple low-pass filter. 

Since pet") is a triangle. it follows from (9-148) that 

R",,(f) = _1 12T (1-~) Rxx(f -a)da 
2T -2T 2T 

~ 
h(t) 

t - T t t +T 

FIGURE 9-13 

p(t) 

J.. 
2T 

(9-155) 
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We shall use this result to determine the variance of the integral , 

1 IT 
rtT = 2T -r x(t) dt 

Clearly, 1Jr = y(O); hence 

1 I2T ( lal) Var {rtr} = C.,.,CO) = 2T -2T 1 - 2T CxAa) da 

(b) (High-pass filter) The process z(t) = x(t) - yet) is the output of a system with 
input x(t) and system function 

sinTOJ 
H(OJ) = 1 - -:r;;-

This function is nearly 0 in an interval of the order of liT centered at the origin, and 
it approaches 1 for large OJ. It acts, therefore, as a high-pass filter suppressing the low 
frequencies of the input. ... 

~ The derivative ret) of a process X(/) can be considered as the output of a linear 
system with input x(t) and system function j{J). From this and (9-147), it follows that 

Hence 

R () _ dRxx(1:) R () _ d2Ru(1:) 
xx' 1: - x'x' 1: - - 2 d1: iT 

The nth derivative yet) = x(")(t) ofx(t) is the output of a system with inputx(t) 
and system function (jOJ)". Hence 

S.,.,(OJ) = 1j{J)12n (9-157) 

... 
~ (a) The differential equation 

y'(t) + ey(t) = xCt) all t 

specifies a linear system with input x(t), output y(t), and system function 1/{jOJ+c). 
We assume that x(t) is white noise with Rxx(T) = q8(t). Applying (9-149), we 
obtain 

Su(OJ) q 
S"(OJ) = W + c2 = w2 + e2 

Note that E{y2(t)} = R,.,(O) = ql2c . 
. (b) Similarly, if 

y"(t) + by'(t) + ey(t) = x(t) 

then 
1 

H({J) = 2 + ·L,.,+ 
-(J) Juw e 
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To find Ryy(7:), we shall consider three cases: 

b2 < 4c 

Ryy(r) = 2!C e-alTI (cos P7: + ~ sin PI7:I) 

b2 =4c 

R (7:) = ....Le-«ITI(1 + al7:1} 
YY 2bc 

b 
ar=-

2 

b 
ar=-

2 

R (7:) = -q- [(ar + y)e-(a-y)ITI - (ar _ y)e-<a+Y)I'tI] 
YY 4ybc 

b 
ar = - ar2 _y2 =c 

2 

In all cases, E{y2(t)} = qj2bc. -4II1II 

~ A system with system function (Fig. 9-14) 

{
-j 

H(w)=-jsgn.w= j (9-158) 

is called a quadrature filter. The corresponding impulse response equals 1/ Tr I (Papoulis, 
1977 [20]). Thus H(w) is all-pass with -900 phase shift; hence its response to coswt 
equals cos(wt - 90°) = sin WI and its response to sin lL>1 equals sin (wt - 9(0) = -cos WI. 

The response of a quadrature filter to a real process x(r) is denoted by i(l) and it 
is called the Hilbert transform of X(/). Thus 

x(t) = X(I) * ..!.. = .!.1°C x(a) dar 
Trl Tr -00 I - a 

I 

From (9-147) and (9-137) it follows that (Fig. 9-14) 

l o CIJ 

QF 

x(t) 90" X(t) 

FIGURE 9-14 

S",t(lL» = j Sxx(w)sgn lL> = -S1x(W) 

SH(W) = Sxx(w) 

(9-159) 

(9-160) 
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The complex process 

z(t) = x(t) + jt(r) 
is called theanalYlic signal associated with x(t). Clearly, z(t) is the response of the system 

1 + j(-j sgn w) = 2U(w) 

with input x(t). Hence [see (9-149)J 

Su(w) = 4Sxx (w)U(w) = 2SxX<w) + 2jSb(W) 

THE WIENER-KHINCHIN THEOREM. From (9-134) it follows that 

1 100 E{x2(t)} = R(O) = -2 S(w)dw ~ 0 
7C -00 

(9-161) 

(9-162) 

~ 

(9-163) 

This shows that the area of the power spectrum of any process is positive. We shall show 
that 

Sew) ~ 0 (9-164) 

for every w. 

Proof. We fonn an ideal bandpass system with system function 

{
I WJ < w < lLI2 

H(w) = . o OtherwIse 

and apply X(I) to its input From (9-152) it follows that the power spectrum S,,(w) of 
the resulting output y(t) equals 

_ {S(W) Wi < w < CLI2 
S,,(w) - 0 th' o etWlse 

Hence 

1 100 1 [ o ~ E{r(t)} = "1_ Syy(w)dw = -2 S(w)dw 
,£J, -00 7C /ill 

(9-165) 

Thus the area of S(w) in any interval is positive. This is possible only if Sew) ~ 0 
everywhere. 

We have shown on page 410 that if Sew) is a positive function,-then we can find 
a process X(I) such that S,u(w) = Sew). From this it follows that a function Sew) is 
a power spectrum iff it is positive. In fact, we can find an exponential with random 
frequency 6) as in (9-140) with power spectrum an arbitrary positive function Sew) . 

. We shall use (9-165) to express the power spectrum Sew) of a process x(t) as the 
average power of another process yet) obtained by filtering x(t). Setting Wi = lI>() + 6 
and lLI2 = lI>() - 8, we conclude that if 8 is sufficiently small, 

E(r(t)} ~ ~S(lI>(» (9-166) 
7C 

This shows the localization of the average power of x(t) on the frequency axis. 
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Integ.rated ·spectrum. In mathematics, the spectral properties of a process x(t) are 
expressed in terms of the integrated spectrum F(w) defined as the integral of Sew): 

F(w) = 1: S(a)da (9-167) 

From the positivity of Sew), it follows that F(w) is a nondecreasing function of w. 
Integrating the inversion formula (9-134) by parts, we can express the autocorrelation 
Ret') ofx(t) as a Riemann-Stieltjes integral: 

R(t') = - ejCIJt dF(w) 1 100 

2n -00 

(9-168) 

This approach avoids the use of singUlarity functions in the spectral representation of 
R('r) even when Sew) contains impulses. If Sew) contains the terms f3iO(W - Wi), then 
F(w) is discontinuous at Wi and the discontinuity jump equals f3j. 

The integrated covariance spectrum Fe (w) is the integral of the covariance spec­
trum. From (9-138) it follows that F(w) = FC(w) + 2nT/2U(w). 

Vector spectra. The vector process X(/) = [Xi(t)] is WSS if its components Xi(t) are 
jointly WSS. In this case, its autocorrelation matrix depends only on t' = 11 - t2. From 
this it follows that [see (9-127)-(9-128)] 

The power spectrum of a WSS vector process X(t) is a square matrix Su(w) = 
[Sij(W)], the elements of which are the Fourier transforms Sij(W) oftbe elements Rij(r) 
of its autocorrelation matrix Rxx(r:). Defining similarly the matrices Sxy(w) and Syy(w), 
we conclude from (9-169) that 

-t -
Sxy(w) = Sxx(w)H (w) Syy(w) = H (w)Sxy(w) (9-170) 

where H (w) = [Hji(W)] is an m x r matrix withelementstbe Fourier transforms Hji(w) 
. of the elements h ji (~) of the impulse response matrix H (t). Thus 

Syy(w) = H (w)SxxCw)H t (w) (9-171) 

This is the extension of (9-149) to a multi terminal system. 

~ The derivatives 

of two WSS processesz(t) and wet) can be considered as the responses of two differentia­
tors witbinputs z(t) and W(/) and system functions H1 (w) = (jw)m and H2(W) = (jw)n. 
Proceeding as in (9-132), we conclude that the cross-power spectrum of z(m)(t) and 
w(n)(t) equals (jw)m (-jw)ns~w(w). Hence 

(9-172) 

~ 
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PROPERTms OF CORRELATIONS. If a function R (r:) is the autocorrelation of a WSS 
process x(t), then [see (9-164)] its Fourier transform Sew) is positive. Furthermore. if 
R(r:) is a function with positive Fourier transform, we can find a process x(t) as in 
(9-139) with autocorrelation R(r:). Thus a necessary and sufficient condition for a func­
tion R (r:) to be an autocorrelation is the positivity of its Fourier transform. The conditions 
for a function R(r:) to be an autocorrelation can be expressed directly in terms of R(r). 
We have shown in (9-93) that the autocorrelation R('e) of a process x(t) is p.d., that is, 

'LajajR(r:j - r:j) ::: 0 (9-173) 
I.j 

for every aj, aj, r:j, and r:j. It can be shown that the converse is also true6: If R(r:) is a 
p.d. function, then its Fourier transform is positive (see (9-197». Thus a function R(r) 
has .a positive Fourier transform iff it is positive definite. 

A sufficient condition. To establish whether R(r:) is p.d., we must show either that it 
satisfies (9-173) or that its transform is positive. This is not, in general, a simple task. 
The following is a simple sufficient condition. 

Polya's criterion. It can be shown that a function R(r:) is p.d. if it is concave for r: > 0 
and it tends to a finite limit as r: -+ 00 (see Yaglom, 1987 [30]). 

Consider, for example, the function wet') = e-aITlc. If 0 < c < 1, then w{r:) -+ 0 
as r: -+ 00 and w"(r:) > 0 for t' > 0; hence w(r:) is p.d. because it satisfies Polya's 
criterion. Note, however, that it is p.d. also for 1 ::: c ::: 2 even though it does not satisfy 
this criterion. 

Necessary conditions. The autocorrelation R (t') of any process x{t) is maximum at the 
origin because [see (9-134») 

1 100 
IR(r:)1 ::: -2 Sew) dw = R(O) 

1f -00 
(9-174) 

We show next that if R (r:) is not periodic, it reaches its maximum only at the origin. 

fe.- If R{r:() = R(O) for some r:( :F 0, then R(t') is periodic with period r:(: 

R(r: + t'1) = R(r:) for all t' (9-175) 

Proof. From Schwarz'S inequality 

(9-176) 

it follows that 

Hence 

[R('r + '1) - R(.)]2 !: 2[R(O) - R('t'I)]R(O) (9-177) 

If R('t'I) = R(O), then the right side is 0; hence the left side is also 0 for every •. This yields 
(9-175) . .. 

6S. Bocher: Lectures on Fourier imegral$. Princeton Univ. Press, Princeton, NJ, 1959. 
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J> If R(rl) .= R(r2) = R(O) and the numbers 1.') and r2 are noncommel.lSurate, that is, 
their ratio is irrational, then R (-r) is constant. 

Proof. From the theorem it follows that R(t") is periodic with periods 1:") and t"2. This is possible 
only if R(t") is constant. <1 

Continuity. If R (r) is continuous at the origin, it is continuous for every r. 

Proof. From the continuity of R(r) at r = 0 it follows that R(7:\) ~ R(O); hence the 
left side of (9-177) also tends to 0 for every r as 7:\ ~ o. 

~ Using the theorem, we shall show that the truncated parabola 

( _ {a2 _.2 1.1 <a 
w.) - 0 It I > a 

is not an autocorrelation. 
If w(.) is the autocorrelation of some process x(t). then [see (9-157)] the function 

-w"(r) = {2 It I < a 
o II'I > a 

is the autocorrelation of x'(t). This is impossible because -wilt,;) is continuous for 
I' = 0 but not for t' = a. ~ . 

MS continuity and periodicity. We shall say that the process x(t) is MS continuous if 

E{[x(t + e) - X(t)]2} ~ 0 as e ~ 0 (9-178) 

Since E{[x(t + e) - X(t)]2} = 2lR(O) - R(e)], we conclude that if x(t) is MS con­
tinuous, R(O) - R(e) ~ 0 as e ~ O. Thus a WSS process x(t) is MS continuous iff its 
autocorrelation R(I') is continuous for all •. 

We shall say that the process xCt) is MS periodic with period tl if 

E{[x(t + .1) - X(t»)2} = 0 (9-179) 

Since the left side equals 2[R(0) - R(t")], we conclude that R(t'\) = R(O); hence [see 
(9-175)] R(I') is periodic. This leads to the conclusion that a WSS process x(t) is MS 
periodic iff its autocorrelation is periodic. 

Cross-con-elation. Using (9-176), we shall show that the cross-correlation Rxy(I') of 
two WSS processes x(t) andy(t) satisfies the inequality 

R~y(I') ::: Rxx(O)Ryy(O) (9-180) 

Proof. From (9-176) it follows that 

E2{X(t + I')y·(t}} ~ E{lx(t + 7:)l2}E{ly(t)12} = Rxx(O)Ry,,(O) 

and (9-180) results. 
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1 
b 12 b b 1 Sxy(w)dw :: 1 Sxx(w)dw 1 Syy(w)dw 

Proof. Suppose that x(t) and yet) are the inputs to the ideal filters 

{ I a<w<b 
HI (w) = Bl(W) = 0 otherwise 

Denoting by z(t) and wet), respectively. the resulting outputs, we conclude that 

RdO) = 2~ [b Su(w)dw R", .. (O) = ~ [b S11(w)dw 

Rz .. (O) = 2~ [b S, .. (w) dw 

and (9-181) follows because R:III (O) !S Rzz(O)RIfI",(O). ~ 

9-4 DISCRETE-TIME PROCESSES 

(9-181) 

A digital (or discrete-time) process is a sequence Xn of random variables. To avoid double 
subscripts. we shall use also the notation x[n] where the brackets will indicate that n is 
an integer. Most results involving analog (or continuous-time) processes can be readily 
extended to digital processes. We outline the main concepts. 

The autocorrelation and autocovariance of x[n] are given by 

(9-182) 

respectively where 1][n] = E{x[n]} is the mean ofx[n]. 
A process x[n] is SSS if its statistical properties are invariant to a shift of the origin. 

It is WSS if 1][n] = 1] = constant and 

R[n + m, n] = E{x[n + m]x*[n]} = R[m] (9-183) 

A process x[n] is strictly white noise if the random variables x[n; I are independent 
It is white noise if the random variables x[n,] are uncorrelated. The autocorrelation of a 
White-noise process with zero mean is thus given by 

{ I n=(F 
R[nt, n2J = q[ntJ8[nl - n2] where 8[n] = 0 n:l: 0 (9-184) 

andq[n] = E{rln]}. Ifx[n) is also stationary. then R[m] = q8[m). Thus a WSS white 
noise is a sequence of i.i.d. random variables with variance q. 

The delta response h[n] of a linear system is its response to the delta sequence 
8[n]. Its system function is the z transform of h[n]: 

00 

H(l) = L h[n]z-n (9-185) 
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If x[n] is the input to a digital system, the resulting output is the digital convolution 
of x[n] with hln]: 

00 

yen] = L' x[n - k]h[kJ = x[n] * hin] (9-186) 
.1:=-00 

From this it follows that 11yLn) = 11xLn] * hen]. Furthermore. 
00 

Rxy[nl, n2] = L Rxxln .. nl - k]h"[k] (9-187) 
.1:=-00 

00 

Ryy[nb n2] = L Rxy[nl - r, n2]h[r] (9-188) 

Ifx[n] is white noise with average intensity q[n] as in (9-184), then. [see (9-99)], 

E{y2[n]} = q[n] * Ih[n]12 (9-189) 

Ifx[n] is WSS, then Yln) is also WSS with 11, = l1xH(l). Furthermore, 

Rxy[m] = Rxx[m] * h*[-mJ Ryy[mJ = Rxy[m] * hIm] 

Ryy[mJ = Rn em] * p(m] 
00 

p[m] = L hem + k)h"[k] 
(9-190) 

.1:=-00 

as in (9-146) and (9-148). 

THE POWER SPECTRUM. Given a WSS process x[n]. we form the z transform S(z) 
of its autocorrelation R[m]: 

00 

S(z) = L R[m]z-m (9-191) 
m=-oo 

. The power spectrum of x[n] is the function 
00 

Sew) = S(eJfll) = L R[m]e-JIIUII ~ 0 (9-192) 
m=-oo 

Thus S(e}") is the discrete Fourier transform (OF!') of R[m), The function S(ejltl) is 
periodic with period 2,. and Fourier series coefficients R[ml. Hence 

1 j'R R[m] = - S(eiltl)eimfD dw 
21r -7t 

" 

It suffices, therefore, to specify S(eiltl) for Iwl < ,. only (see Fig. 9-15), 
Ifx[nJ is areal process, then RL-m] = Rlm] and (9-192) yields 

00 

S(ejfll ) = R[O] + 2 LR[m]cosmw 
m=O 

(9-194) 

This shows that the power spectrum of a real process is a function of cos w because 
cos mw is a function of cos w. 



FIGURE 9-15 

The nonnegativity condition in (9-173) can be expressed in terms of certain Her­
mitian 1beplitz matrices. Let 

6-
Tic = R[k] (9-195) 

anddefioe 

TO T. T2 Tn 

rIO 
1 ro r1 T2 Tn-l 

T,.= 
r* 2 r; ro T. rn-2 

(9-196) 

roo r:_1 ... r* TO /I • 
In that case 

S(Q) ~ 0 {:} Tn ~ 0 n=O-+oo (9-197) 

i.e., the nonnegative nature of the spectrum is equivalent to the nonnegativity of every 
Hernitian Toeplitz matrix Tn, n = 0 -+ 00 in (16-10). To prove this result due to Schur, 
first assume that seQ)~ ~ 0 in (9-192). Then letting 

we have 
• • 

at T. a = 2: 2:4j*a",rl-m 
1.0 m=O 

(9-199) 



Since a is arbitrary, this gives 

S(w) ~ 0 => Tn ~ 0 n=O-..oo (9-200) 

Conversely, assume that every Tn. n := 0 -.. 00 are nonnegative definite matrices. Further, 
for any p, 0 < p < I, and wo, 0 < Wo < 2Jr. define the vector a in (9-198) with 

am = VI - plpmeimfl10 

Then Tn nonnegative implies that 

o :s atTlla = _1 j1C (1 _ p2) t pme}m(o>-fI1O) 2 S(w)dw 
2Jr -1t m==O 

and letting n -+ 00, the above intergrad tends to 

1 j1t 1- p2 
- Sew) dw > 0 
2n' -1t 1 - 2p cos(w - CtJo) + p2 -

(9~201) 

The left-hand side of (9-201) represents the Poisson integral, and its interior ray limit as 
p -+ 1 - 0 equals S(CtJo) for almost all Wo. Thus 

almost everywhere (a.e.) (9-202) 

More interestingly, subject to the additional constraint, known as the Paley-Wiener 
criterion 

1 j1l 
2n' -If lnS(w) dw > -00 (9-203) 

every Tl.:t k = 0 -+ 00, must be positive definite. This follows from (9-199). In fact, 
if some TI.: is singUlar, then there exists a nontrivial vector a such Tka = 0 and, from 
(9-199), 

1 jlf I.: 2 
atTka = "'_ Sew) Lamei- dw = 0 

.. , -If m=O 

Since Sew) ~ 0, a.e., this expression gives 

k 

Sew) L amejmOl 

m-o 

d "I.: -jmfl) .J. 0 . Ii an "-'maO ame or, a.e., unp es 

=0 

Sew) = 0 a.e. 

and 

a.e. 

I: lnS(w)dw =-00 

contradicting (9-203). Hence subject to (9-203). every 

Tk >0 (9-204) 

The integrability condition together with (9-203) enables the factorization of the 
power spectral density in terms of a specific function with certain interesting properties. 
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L\A\I1'! I 9-,'2 

More precisely. there exists a unique function 
co 

H(z) = LhkZ-k ho > 0 Izl> 1 (9-205) 
k=O 

that is analytic together with its inverse in Izi > 1 (minimum-phase function, see 
Appendix 12A) satisfying 

(9-206) 

and 

(9-207) 

if and only if Sew) as well as in S(w) are integrable functions. Here H(e-jQ) is defined 
as the exterior radial limit of H (z) on the unit circle, i.e., 

... If RLm] = alml , then 

Hence 

- (a-I +a) - (Z-l + z) 

. a-I-a 
Sew) = S(e)Q) = --,,.-----­

a-I + a - 2 cos Cd 

... Proceeding as in the analog case, we can show that the process 

xln] = L clejQ)/n 
i 

is WSS iff the coefficients C, are uncorrelated with zero mean. In this case, 

R[m] = E ulej/hlml Sew) = 2:7r L ul8(w - {Ji) Iwl < :7r 
i i 

where u,2 = E{cn. CtJt = 21rk; + {Jit and I{J/I <:7r. ~ 

(9-208) 

(9-209) 

From (9-190) and the convolution theorem, it follows that if y[n] is the output of 
a linear system with input x[n]. then 

Sxy(ejQ) = Sxx(eiQ)H*(ejQ) 

Syy(ejQ) = SXy(ejQ)H(eiQ) (9-210) 

Syy(eiQ) = Sxx(eiQ)IH(ej Q)12 
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If h{n] is real, W(ei(ll) = H(e-iGl).ln this case, 

Sy,,(z) = Sxx(z)H(z)H(l/z) (9-211) 

~ The first difference 

yen] = x[n] - x[n - 1] 

of a process x[n] can be considered as the output of a linear system with input x[n] and 
system function H(z) = 1 - Z-I. Applying (9-211). we obtain 

S",,(z) = Sxx(z)(I- ,-1)(1 - z) = SxAz)(2 - z - ,-1) 

Ryy[m] = -Rxx[m + 1] + 2RxAmJ- Rxx[m - 1] 

If x[n] is white noise with S,u (z) = q, then 

Syy(e jlD) = q(2 - eio> - e-jlAJ ) = 2q(1 - caSle) 

~ The recursion equation 

yen] - ay[n - 1] = x[n] 

specifies a linear system with inputx[n] and system function H(z) = 1/(1 - at-I). If 
S,u(z) = q, then (see Example 9-31) 

5 (z) = q 
'Y'Y (1 - a,-I)(1 - az) 

(9~212) 

Using this identity, we shall show that the power spectrum of a process x[n] real or 
I 

complex is a positive function: 

(9-213) 

Proof. We form an ideal bandpass filter with center frequency CUo and bandwidth 2.6. 
and apply (9~212). For small I:!.., 

1 [+01 I:!.. , 
E{ly(nJI2} = ",_ S,u(ej~ dle) ~ -Sxx(ei~) 

~, tdO-o1 1C 

and (9-213) results because E{y2[n]} ::: 0 and CUo is arbitrary. 

SAMPLING. In many applications, the digital processes under consideration are ob­
tained by sampling various analog processes. We relate next the corresponding correla­
tions and spectra. 

Given an analog process x(t), we form the digital process 

x[n] = x(nT) 
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EXAi\IPLE 9-35 

where T is a given constant. From this it follows that 

77ln] = 1]a(nT) (9-214) 

where TJa (t) is the mean and Ra (tl> t2) the autocorrelation of x(t}. !fx(t) is a stationary 
process, then x[n] is also stationary with mean 77 = TJa and autocorrelation 

R[m] = Ra(mT) 

From this it follows that the power spectrum of x[n] equals (Fig. 9-15) 

S(eiw) = m'f;oo Ra(mT)e-imw = f nf;oo Sa (w + :1rn) (9-215) 

where Sa(w) is the power spectrum of x(t). The above is a consequence of Poisson's 
sum formula [see (lOA-I)]. 

~ Suppose that x(t) is a WSS process consisting of M exponentials as in (9-143): 
M M 

x(t) = L: cleilDil Sa(W) = 2:7r L: u?~(w - Wi) 

i=1 

where u? = E {en. We shall determine the power spectrum S(ei .... ) of the process x[n] = 
x(nT). Since 8(wIT) = T8(w), it follows from (9-215) that 

00 M 

S(ei "') = 21r L: L: ul8(w - Tw/ + 2n'n) 
n=-oo 1=1 

In the interval (-tr, 1(), this consists of M lines: 
M 

S(ei"') = 2n' L: ul8(w - PI) Iwl <:7r 
1=1 

where Pi = T Wi - 2n' nj and such that IPi! < :7r. .... 

APPENDIX9A 
CONTINUITY, DIFFERENTIATION, INTEGRATION 

.. 
In the earlier discussion, we routinely used various limiting operations involving stochas-
tic processes, with the tacit assumption that these operations hold for every sample in­
volved. This assumption is, in many cases, unnecessarily restrictive. To give some idea 
of the notion oflimits in a more general case, we discuss next conditions for the existence 
ofMS limits and we show that these conditions can be phrased in terms of second-order 
moments (see also Sec. 7-4). 

STOCHASTIC CONTINUITY. A process x(t) is called MS continuous if 

E{[x(t + e) - X(t)]2} ---+ 0 (9A-I) 
~-foO 



COROLLARY 

CHAPTI!R9 ClENl!RALCONCIiPTS 427 

~ We maintain that X(I) is MS continuous if its autocorrelation is continuous. 

Proof. Clearly, 

E{(x(1 + 6) - X(t)]2} = R(t + e,l + e) - 2R(t + e, I) + R(/,/) 

If. therefore, R(tl, 12) is continuous. then the right side tends to 0 as 6 -+ 0 and (9A-l) results. 

Note Suppose that (9A-l) holds for every t in an interval I. From this it follows that [see (9-1)] almost all 
samples of xV) will be continuous at a particular point of I. It does not follow, however, that these samples 
will be continuous for every point in I. We mention as illustrations the Poisson process and the Wiener process. 
As we sec from (9·14) and (10-5), both processes are MS continuous. However, the samples of the Poisson 
process are discontinuous at the points t;, whereas almost all samples of the Wiener process are continuous. 

... If X(f) is MS continuous, then its mean is continuous 

1](t + e) -+ 17(t) 

Proof. As we know 

E{[x(1 + e) - X(t)]2} ~ E2Ux(1 + 6) - X(I)]} 

Hence (9A-2) follows from (9A-l). Thus 

lim E{x(1 + e)} = E {lim X(I + e)} 
,-+0 _0 

STOCHASTIC DIFFERENTIATION. A process x(t) is MS differentiable if 

X(I + e) - x(t) ---+ X(I) 
8 a_O 

in the MS sense, that is, if 

E { [X(I + e~ - x(t) _ X' (I) ] 2} -;::;t 0 

~ The process X(/) is MS differentiable if 82 R(tl, 12)/8118t2 exists. c 

Proof. It suffices to show that (Cauchy criterion) 

E{ [X(1 +6.) - X(/) _ X(I + 62) - X(t)]2} ---+ 0 
6. 62 6\."1-+0 

(9A-2) 

(9A-3) 

(9A-4) 

(9A-S) 

(9A-6) 

We use this criterion because, unlilce (9A-5), it does not involve the unknown 'It (I). Clearly, 

EUx(t + e.) - X(I)][X(t + e2) - X(/))} 

= R(t. + 8 .. t + 82) - R(I + 8., t) - R(t, I + e2) + R(/, t) 
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The right side divided by 8.82 tends to a2 R(t. t)/Bt at which. by assumption, exists. Expanding 
the square in (9A-6). we conclude that its left side tends to 

a2 R(t,t) _ a2R(t.t) + a2R{t,t) =0 
at at a, al at at 

f;> The proof of the above theorem yields 

E{x'(t)} = E{ lim x(t + e) - X(/)} = lim E{ x(! + e) - X(t)} 
8-+0 e £ .... 0 s 

Note The autocorrelation of a Poisson process x(t) is discontinuous at the points 11; hence x'(t) does;;; 
exist at these points. However, as in the case of deterministic signals, it IS convenient to introduce random 
impulses and to interpret x/(t) as in (9-107). 

STOCHASTIC INTEGRALS. A process x(t) is MS integrable if the limit 

1b 
X(I) dt = lim LXVi) I:l.t; 

4 AI/-+O j 

exists in the MS sense. 

~ The process x(t) is MS integrable if 

11b 
IR(t., (2)1 dtJ dt2 < 00 

Proof. Using again the Cauchy criterion, we must show that 

E{I Lx(t;) Atl- LX(tk) Atkl2} _0 
I k A1/.A1t-+O 

This follows if we expand the square and use the identity 

E { L X(tl) Atl L X(tk) Atk} = L R(t;, tic) Atl At" 
i k I~ 

because the right side tends to the integral of R(t., 12) as At; and Atk tend to O. ~ 

." From the proof of the theorem it follows that 

E{llb X(t)dtr} = [lb 
R(tl,t2) dtl dt2 

as in (9-11). <E 

(9A-7) 

(9A-8) 

(9A-9) 

APPENDIX9B 
SHIFf OPERATORS AND STATIONARY PROCESSES 

An SSS process can be generated by a succession of shifts Tx of a single random 
variable x where T is a one-to-one measure preserving transfonnation (mapping) of 



the probability space S into itself. This difficult topic is ()f fundamental importance in 
mathematics. Here, we give a brief explanation of the underlying concept, limiting the 
discussion to the discrete-time case. 

A trans/ormation T of S into itself is a rule for assigning to each element ~; of S 
another element of S: 

(9B-1) 

called the image of ~i' The images ~i of all elements ~i of a subset A of S form another 
subset 

of S called the image of A . 
. We shall assume that the transformation T has these properties. 

PI: It is one-to-one. This means that 

then ~j::j: ~j 

P2: It is measure preserving. This means that if A is an event, then its image A is 
also an event and 

peA) = peA) (9B-2) 

Suppose that x is a random variable and that T is a transformation as before. The 
expression Tx will mean another random variable 

y = Tx such that ya;) = X(~i) (9B-3) 

where ~i is the unique inverse of ~I' This specifies y for every element of S because (see 
PI) the set of elements ~I equals S. 

The expression z = T-Ix will mean that x = Tz. Thus 

We can define similarly T2X = T (Tx) = Ty and 

Tlix = T(TII - l x) = T-1(TII+lx) 

for any n positive or negative. 
From (9B-3) it follows that if, for some ~;, X(Si) :5 w, then y(~j) = xes;) :5 w. 

Hence the event {y =:: w} is the image of the event {x :5 w}. This yields {see (98-2)] 

P{x:5 w} = Ply :5 w} y = Tx ~ (9B-4) 

for any w .. We thus conclude that the random variables x and Tx have the same distri­
bution Fx(x). 

Given a random variable x and a transformation T as before, we form the random 
process 

Xo=x XII = Tli x n = -00, •.• ,00 (9B-5) 

It follows from (9B-4) that the random variables Xn so formed have the same distribution. 
We can similarly show thilt their joint distributions of any order are invariant to a shift 
of the origin. Hence the process Xn so fonned is SSS. 
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It can be shown that the converse is also true: Given an SSS process Xn, we can find 
a random variable x and a one-to-one measuring preserving transfonnation of the space 
S into itself such that for all essential purposes, Xn = Tnx. The proof of this diffiCUlt 
result will not be given. 

PROBLEMS 

9-1 In the fair-coin experiment, we define the process X(I) as follows: x(t) = sinnt if heads 
show, X(/) = 2t iftaiJs show. (a) Find E{xv)}. (b) Find F(x, t) for t = 0.25. t = 0.5. and 
t = 1. 

9-2 The process x(t) = eRl is a family of exponentials depending on the random variable a. 
Express the mean 11(t), the autocorrelation R(t •• t2). and the first-order density !ex.t) of 

. x(t) in terms of the density !a (a) of a. 

9-3 Suppose that x(t) is a Poisson process as in Fig. 9-3 such that E{x(9)} = 6. (a) Find the 
mean and the variance ofx(8). (b) Find P{x(2)::: 3). (c) Find P{x(4) ::: 51 x(2) ::: 3}. 

9·4 The random variablecis uniform in the interval (0. T). Find Rx(t., 12) if(a)x(t) = U(I-C). 

(b) x(t) = 8(t - c). 

9·5 The random variables a and b are independent N (0; q) and p is the probability that the 
process xU) = a - bt crosses the t axis in the interval (0. T). Show that 1rp = arctan T. 

Hint: p = prO ::: alb ::: T}. 
9-6 Show that if 

Rv(t) , t2) = q(t)8(t) - t2) 

w"(t) = v(t)U(t) and w(O) = w(O) = 0, then 

E{w2(t)} = l' (t - T)q(T)dT 

9·' The process x(t) is real with autocorrelation R(T). (a) Show that 

Pflx(r + T) - x(t)1 ~ a} ::: 2[R(0) - R(T)]/a2 

(b) Express Pflxet + T) - xCt)1 ~ a) in terms of the second-order density !(X., Xl: r) 
ofx(t). 

9-8 The process x(t) is WSS and normal with E{x(t») =0 and R(T)=4e-l1fl • (a) Find 
P{x(t) ::: 3). (b) Find EUx(t + 1) - x(t - l))2}. 

9-9 Show that the process x(t) = ew(t) is WSS iff E{c} = 0 and wet) = ei (""+'). 

9·10 The process x(t) is normal WSS and E{x(t)} = O. Show that ifz(t) = ret). then C,,(r) = 
2C:x (T). 

9-11 Find E{y(t»). E{r(t)}, and Ry1 (T) if 

y'1(t) + 4y'(t) + 13y(t) = 26 + vet) R~w(T) = l08(T) 

Find P{y(t) ::: 3} if vet) is normal. 
9.12 Show that: Ifx(t) is a process with zero mean and autocorrelation !(t.)!(12)W(tl - t2). then 

the process yet) = x(t)/!(t) is WSS with autocorrelation WeT). If x(t) is white noise with 
autocorrelation q(t)<5(tJ - t2). then the process z(t) = x(t)/../iiJ.ij is WSS white noise with 
autocorrelation 8(T). 

9-13 Show that IRxy(T)1 ::: HRxx(O) + Ryy(O)]. 
9·14 Show that if the processes x(t) and yet) are WSS and Eflx(O) - y(O) 12) = O. then R.u(r) ;e 

Rxy(T) !5 Ryy(T). 
Hint: Set z = x(t + T), W = x"(t) - y¥(t) in (9-176). 
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9·15 Show that ifx(t) is a complex WSS process, then 

E{lx(t + T) - x(t)12} = 2Re [R(O) - R(T)] 

9·16 Show that if tp is a random variable with <II(),.) = E{eJAto } and <11(1) = <11(2) = 0, then the 
process X(I) = COS(er>1 + tp) is WSS. Find E{x(t)} and Rx(T) iftpisuniformintheinterval 
(-:11".:11"). 

9-17 Given a process X(I) with orthogonal increments and such that x(O) = 0, show that 
(a) R(tlo t2) = R(tl. tl) for tl :s t2. and (b) if E{[x(tl) - X(t2)]2} = qltl - t21 then the 
process yell = [X(I + e) - x(t»)/e is WSS and its autocorrelation is a triangle with area q 
and base2s. 

9·18 Show that if RxAt .. t2) = q(t.)8(t. -12) and yet) = X(I) ... h(r) then 

E{X(l)y(t)} = h(O)q(t) 

9·19 The process x(t) is normal with l1x = 0 and Rx(T) = 4e-3,t",. Find a memoryless system 
g(x) such that the first-order density I,(y) of the resulting output yet) = g[x(t)] is uniform 
in the interval (6, 9). 

9·20 Show that ifx(t) is an SSS process and B is a random variable independent ofx(t), then the 
process yet) = xV - e) is SSS. 

9·21 Show that ifx(t) is a stationary process with derivative r(t), then for a given t the random 
variables x(t) and ret) are orthogonal and uncorrelated. 

9-22 Given a normal process x(t) with l1x = 0 and Rx (T) = 4e-2't"', we form the random variables 
z = x(t + 1), w = x(t - I), (a) find E{zw} and E{(z + W)2}, (b) find 

P{z < 1} 1.",(1., w) 

9-23 Show that ifx(t) is normal with autocorrelation R(T), then 

P{x'(t) ::: a} = G [rn,] 
9·24 Show thatifx(t) is a normal process with zero mean and yet) = sgnx(t), the\ 

R,(T) = ~ t ; [Jo(mr) - (-1)ft]sin [n:1l" ~~~~] 
I n=1 

where Jo(x) is the Bessel function. 
Hint: Expand the arcsine in (9-80) into a Fourier series. 

9·25 Show that ifx(t) is a normal process with zero mean and yet) = / e"x{I). then 

11, = = I exp { ~ RAO) } Ry(T) = /2 exp{a2[Rx(0) + ~x(T)]} 
9·26 Show that (a) if 

yet) = ax(ct) 

(b) if Rx(T) -+ 0 as T -+ 00 and 

z(t) = lim -Ii x(st) 
..... co 

q = 100 R~(T) dT 
-co 

9·27 Show that ifx(t) is white noise, h(t) = 0 outside the interval (0, T), and yet) = x(t) * het) 
then R1Y(tj, t2) = 0 for It I - t21 > T. 



9-28 Show that if 

and 

(a) 

(b) 

yet) == [ h(t, cr)x(cr)dcr 

"let) + c(l)y(r) = X(I) 

'·29 Find E{y2(t)} (a) if Rzz(r) == 58(r} and 

then l(t) = l' h'l(t,cr)q(cr)dcr 

then I' (I) + 2c(t}1 (t) = q(t} 

yet) + 2y(t) == X(t) all 1 

(b) if (i) holds for t > 0 only and yet) = 0 for I !S O. 
Hint: Use (9-99). 

(i) 

'.30 The input to a linear system. with h(t) = Ae-«lU(t) is a process X(l) with Rz(r) = N8(t) 
applied at t == 0 and disconnected at 1 = T. Fmd and sketch E(y2(t)}. 

Hint: Use (9·99) with q(l) = N for 0 < t < T and 0 otherwise. 
9·31 Show that if 

s == 11
\(1) dl then E{r} = 1::(10 -\rI)Rz('t) dt' 

Find the mean and variance ofs if E{x(t)} = 8, RAT) = 64 + lOe-'l(~I. 
!).32 The process X(I) is WSS with R,u(T) = 58(T) and 

yet) + 2y(l) = X(I) 0) 

Fmd E(y2(t»), Rzy(IJ,I2), R,,(t .. t2) (a) if (i) holds for all I, (b) if yeO) == 0 and (i) holds 
fort:~ O. 

9·33 Find S({J) if (a) R(t') = e-n2, (b) R(r) = e-a,2 coS~t'. 
'·34 Show that the power spectrum of an SSS process x(t) equals 

S({J) == [f~ %t%2G(%IoX2;{J)dxl dx2 

where G(XI, X2; (J) is the Fourier transfonn in the variable r of the secoild-order density 
/(x" X2; T) oh(t). 

9-35 Show tbatifY(I) == X(I + a) - X(I - a), then 

R,(T) = 2Rz(T) - RJ<('r: + 2a) - Rz(r - la) S,({J) == 4Sz ({J) sin' a{J) 

'·36 Using (9-135), show that 

1 
R(O) - R(T) ~ 4" [R(O) - R(2"T)] 

" Hint: 

1- cose == 2sin2 ~ > 2sin2 ~ cor ~ == !(1- 00828) 
2 - 2 2 4 

9-37 The process x(t) is nonnal with zero mean and R..(T) == I e-ar1fl cos PT. Show that ify(t) = 
ret). then C,(t') = 12e-211ITI(1 + cos 2P7:). Find S,({J). 

9-38 Show that if R(r) is the inverse Fourier transform of a function S({J) and S({J) ~ 0, then, 

for any al. 

L a,a:R(TI - Ta) ~ 0 
I.i 



Hint: 
2 1: Sew) ~ aieitJ>f1 dw ~ 0 

, 
9·39 Find R(T) if (1.1) Sew) = 1/(1 + ( 4 ), (b) S(w) == 1/(4 + ( 2 )2. 

9-40 Show that, for complex systems. (9·149) and (9-194) yield 

5, .. (s) == Su(s)H(s)H*(-s·) Sy,(z) = Su(z)H(z)H*(l/z·) 

9-41 The process x(f) is nonnal with zero mean. Show that if yet) = ret). then 

S)"(w) = 21r R;(0)8(w) + 2S .. (0» * S.f(w) 

Plot S .• (w) jf SA (w) is (1.1) ideal LP, (b) ideal BP. 
9-42 'The process X(/) is WSS with E{x(t)} = 5 and R" .. ('r) = 25 + 4e-2Irl • If yet) = 2x(t) + 

3x'(t), find 17,.. R,y(T), and Sy,(w). 

9·43 Theprocessx(t) is WSS and R ..... ('r) = 58('1'). (a) Find E{f(t)} and S,,(w) if1'(t)+3y(t) = 
X(/). (b) Find E{y2(t)} and Rty(tl. t2) if 1'(t) + 3Y(I) = x(t)U(t). Sketch the functions 
R .. y(2, t2) and R .. y(tl. 3). 

9·44 Given a complex processx(r) with autocorrelation R(T), show thatifIR(TI)1 = (R(O)I,then 

R(T) = ejttlOr WeT) x(t) = eJttIO'y(/) 

where WeT) is a periodic function with period '1'1 and yet) is an MS periodic process with 
the same period. 

9-45 Show that (1.1) E{x(t)i(t)} = 0, (b) i(t) = -X(I). 
9-46 (Stochastic resonance) The input to the system 

1 
H(s) = s2+21+5 

is a WSS processX(/) with E{x2(t)} = 10. Find S .. (w) such that the average power E(r(l)} 
of the resulting output yet) is maximum. 

Hint: IHUw)1 is maximum for w = ../3. 
'·47 Show that if = AejttlOr , then R.fY(T) = Bei"'Of for any yet). 

Hin se (9-180). 
9-48 Given system H(w) with input X(I) and output yet), show that (a) if X(I) is WSS and 

Ru(T) = ej«r, then 

R, .. ('1') = eillr H(a) 

(b) If R ... ,,(t .. ~) = ei(II'I-~').), then 

R,;r{t .. '2) = ej(II'I-fJlZ) H(a) Ryy(t"t2) = e1(II'I-~'2) H (a)H*(fJ) 
l 

9-49 Show that if Sn(W)Sn (w) • 0, then S",(o» = O. 
9·50 Show that ifx[Il] is WSS and R .. [l] = R .. [O], then R .. [m] = R.f[O] for every m. 
9·51 Show that if R[m] = E{x[n + mJx[n]}, then 

R(O)R[21 > 2R2[1] - R2[O] 

'·52 Given a random variable Q) with density J (w) such that few) = 0 for Iwl > n, we form the 
processx[n] = Aei"017f • Show that S,,(w) = 21rA2f(w) for Iwl < n. 

,·53 (1.1) Find E{f(!)} ify(O) = 1'(0) = 0 and 

y"V) + 71'(t) + lOy(/) = x(t) R,,(T) = 58('1') 



(b) Find EIr[n]} ify[-l1 == y[-2] = 0 and 

8y[n] - 6y[n - 1) + y[n - 2] = :e(n] Rlt[m] == 5![m) 

'-54 Tho process:e[n] is WSS with R.Ylt[m) = S8(m] and 

y[n]- O.Sy[n - 1) = XCn) (i) 

Fmd E{r[n)}, R.r,[mJ. m21, R,,[mJ. m2) (a) if (i) holds for all n. (b) if y[-]) = 0 and 
(i) bolds for n ~ O. 

'-55 Show that (a) if Rlt[m!, m2] = q(ml]8[m! - m2] and 
N 

S = La,,:e[n) 
11-0 

(b) If Rltlt(tl, III = q(tl)6(tl - tll and 

N 

then E{s2} = La!q[n] 
• ..0 

s = 1T a(l)x(t) dt then E{s2} = 1T 122 (t)q(t) dt 
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CHAPTER 

10 
RANDOM 

WALKS 
AND OTHER 

APPLICATIONS 

Consider a sequence of independent random variables that assume values +1 and -1 
with probabilities p and q = 1 - p, respectively, A natural example is the sequence of 
Bernoulli trials Xlt X2, ••• , len, ••• with probability of success equal to p in each trial. 
where Xi = + 1 if the kth trial results in a success and Xk = -1 otherwise. Let Sft denote 
the partial sum . 

8n = Xl + X2 + ... + Xn So =0 (10-1) 

that represents the accumulated positive or negative excess at the nth trial. In a random 
walk model, the particle takes a unit step up or down at regular intervals, and 8" represents 
the position of the particle at the nth step (see Fig. 10-1). The random walk is said to be 
symmetric if p = q = 1/2 and unsymmemc if p rf: q. In the gambler's ruin problem dis­
cussed in Example 3-15. 8n represents the accumulated wealth of the player A at the nth 
stage. Many "real life" phenomena can be modeled quite faithfully using a random walk. 
The motion of gas molecules in a diffusion process, thermal noise phenomena, and the 
stock value variations of a particular stock are supposed to vary in consequ~ce of succes­
sive collisions/occurrences of some sort of random impulses. In particular. this model will 
enable us to study the long-time behavior of a prolonged series of individual observations. 

In this context, the following events and their probabilities are of special interest. 
In n successive steps, ''return to the origin (or zero)" that represents the return of the 

lThe phrase random walk was first used by George Polya in his 1921 paper on that subject (See Random 
Wa~ oj'George Polya by G. 1.. Alexanderson, published by The Mathemtltical A.ssociation of America 
(2000) for references.) 

435 
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q p 

• -1 • • • • CC\ • o 2 i-I i 1+1 
(a) 

----~------------~~~~--~-----------------.n 

FIGURE 10-1 
Random walk. 

(b) 

random walk to the starting point is a noteworthy event since the process starts allover 
again from that point onward. In particular, the events ''the first return (or visit) to the 
origin," and more generally ''the rth return to the origin:' "waiting time for the first gain 
(first visit to +1)," "first passage through r > 0 (waiting time fox rth gain)" are also of 
interest In addition, the number of sign changes (zero crossings), the level of maxima 
and minima and their corresponding probabilities are also of great interest. 

To compute the probabilities of these events, let [5" = r} represent the event "at 
stage n, the particle is at the point r ," and Pn,r its probability. Thus 

A P{ } (n) A: ,,-A: PII,t = 511 = r = k P q (10-2) 

where k represents the number of successes in n trials and n - k the number of failures. 
But the net gain 

r = k - (n - k) = 2k - n (10-3) 

or k = (n + r)/2, so that 

P = ( n ) p(n+r)/2q(n-r)/2 
n,l (n +r)/2 (10-4) 

where the binomial coefficient is understood to be zero unless (n + r) /2 is an integer 
between 0 and n, both inclusive. Note that n and r must be therefore odd ox even together. 

Return to the origin. If the accumulated number of successes and failures are equal at 
stage n, then 511 = 0, and the random walk has returned to the origin. In that case r = 0 
in (10-3) or n = 2k so that n is necessarily even, and the probability of return at the 2nth 
trial is given by 

P{B2n = O} = (':) (pq)" £ U2n (10-5) 
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with Uo = 1. Alternatively 

(2n)! n 
U2n = --(pq) 

n!n! 
2n(2n-2)···4·1 (2n-l)(2n-3)· .. 3·1 

= n! . n! (pq)" 

= 2"n! . 2"(-1)11(-1/2)(-3/2) ... (-1/2 - (n -1» (pqt 
n! n! 

= (_1)" (-~/2) (4pq)" (10-6) 

so that the moment generating function of the sequence {U2n} is given by 

00 00 ( 1/2) 1 U (1.) = L U2I1 1.211 = L - (-4 pq 1.)" = --;::===:=====;;: 
11=0 11 .. 0 n ";1 - 4pqz2 

(10-7) 

Since U(l) = 2::0 U211 =F I, the sequence (U2n} in (10-6) does notrepresentaprobabil­
ity distribution. In fact, for p = q = 1/2, we obtain U(1) = 2:::0=0 U2n = 00, and from 
the second part of Borel-Cantelli lemma in (2-70) (see page 43). returns to equilibrium 
occur repeatedly or infinitely often. 

The first return to origin. Among the returns to origin or equilibrium point, the first 
return to the origin commands special attention. A first return to zero occurs at stage 2n 
if the event 

BII = {SI =F 0,82 =F O •••• , 5211-1 =/: 0, 5211 = O} 

occurs. Let 1I2n deno~ the probability of this event. Thus 

(10-8) 

1I2n = P(Bn) = P{Sl :f: 0,82 =F 0, ... ,5211-1 :f: 0,5211 = O} (10-9) 

with Vo = O. The probabilities U2n and 1I2n can be related in a noteworthy manner. A visit 
to the origin at stage 2n is either the first return with probability 1I2n. or the first return oc­
curs at an earlier stage 2k < 2n with probability V2k. and it is followed by an independent 
new return to zero after 2n - 2k stages with probability U2n-2k. for k == 1.2, ...• n. 
Since these events are mutually exclusive and exhaustive. we get the fundamental 
identity 

n 

U2n = V2n + 1I2n-2U2 + ... + VlU2n-2 = L V2k "2n-2k n 2! 1 (10-10) 
k=l 

We can use (10-10) to compute the moment generating function of the sequence {Vln}. 

Since Uo = I, we get 

00 00 

= ] + L"2m z2m , L V2k 1.21< == 1 + U(z)V(z) (10-11) 
m=O k=O 
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or 
1 

V(z) = 1- V(z) (10-12) 

and hence 

00 1 
V (z) = L V2n z2n = 1 - - = 1 - y'1 - 4pqz2 (10-13) 

,,=0 U(z) 

V2n = (_1),,-1 C~2) (4pq)" 

(-1),,-1(1/2)(-1/2)(-3/2) ... (3/2 - n) 
= (4pq)" 

n! 
(2n - 3)(2n - 5) ... 3 . 1 

= 2'1 t (4pq)" n. 
(2n - 2)! " 

= 2,,-12" . n! (n _ I)! (4pq) 

= _1 _ (2n - 1) 2( )11 
2n-l n pq n:::l (10-14) 

More importantly, we can use (10-13) to compute the probability that the particle will 
sooner or later return to the origin. Clearly in that case one of the mutually exclusive 
events B2 or B4, ..• must happen. Hence 

p{ particle will ev.e~ } = ~ PCB) = ~ 
return to the ongm L.J n L..., V2n 

11=0 n=O 

= V(1) = 1- y'1-4pq 

=1-IP-ql={11-IP-ql<1 Pi=q (10-15) 
p=q 

Thus if p of:. q, the probability that the particle never will return to the origin (P(S2k ;i: 0), 
k::: 1) is Ip - ql :# 0 (finite), and if p = q = 1/2, then with probability 1 the particle 
will return to the origin. In the latter case, the return to origin is a certain event and {V2n I 
represents the probability distribution for the waiting time for the first return to origin. 
The expected value of this random variable is given by 

{ 
4pq P"l-q 

I-' = V'(1) = Ip - ql 
00 p=q 

(10-16) 

In gambling terminology this means that in a fair game with infinite resources on both 
sides, sooner or later one should be able to recover all losses, since return to the break 
even point is bound to happen. How long would it take to realize that break even point? 
From (10-16), the expected number of trials to the break even point in a fair game is 
infinite. Thus even in a fair game, a player with finite resources may never get to this 
point, let alone realize a positive net gain. For example, the probability that no break even 
occurs in 100 trials in a fair game is around 0.08. The mean value for the first retum to 
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the origin in a fair game is infinite, implying that the chance fluctuations in an individual 
prolonged coin tossing game are governed entirely differently from the familiar pattern 
ofthe normal distribution. From (10-7) and (10-13) we also obtain 

1- V(.z) = (1 - 4pqz2)U(Z) 

or 

-112n = U'b, - 4pq U2n-2 

which gives the interesting identity 

V2n = 4 pq U2n-2 - U2n 

In a fair game (symmetric random walk), p = q = 1/2, and (10-17) reduces to 

112n = U2n-2 - U2n 

from which we also obtain the identity 

U2n = lJ2n+2 + U2n+2 

= 112n+2 + 112n+4 + V'b.+6 + ... 

(10-17) 

(10-18) 

(10-19) 

The right side of (10-19) represents the probability of the event "the ftrst return to origin 
occurs after 2n steps," which is the same as the event {Sl ::F 0,82 :f:. 0, •.. , S2n :f:. OJ. 
Thus (10-19) states that in a fair game the probability of {l2n = O} equals the probability 
that {Sl, 82, ••• , S2n} are aU different from zero. Thus in a symmetric random walk, we 
get the curious identity 

(10-20) 

Later returns to the origin. The event "theftrst return to the origin" naturally leads 
to the more general event "rth return to the origin at 2nth trial." Let vr; represent the 
probability of this cumulative event. Since the trials following the first return to zero 
form a probabilistic replica of the whole sequence, repeating the same arguments used 
in deriving (10-10), we get 

n 

vrJ = L "2k vt:~ (10-21) 
k=O 

This gives the generating function of {vr}} to be 
00 

v{r)(z) ~ L V~Z'b1 
n=O 

00 00 

= L lJ2kz2k L vr,;J)Z'b1l 
k=O 1/1=0 

= V(z)v{r-l)(z) = Vr(z) (10-22) 

Thus v(r)(z) is given by the rth power of V(z). An easy calculation using (10-13) shows 
that V'(z) satisfies the identity 

V'(z) = 2V,-1(Z) - 4pqz2 Vr - 2(z) (10-23) 
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from which we get the recursive formUla 

VCr) _ 2v(r-1) _ 4pq V(r-2) 
211 - 2n 2n-2 (10-24) 

that starts with v~) given by (l 0-14). By induction. it follows that the probability for the 
desired event "rth return to zero at the 2ntb step" is given by 

vCr) = _,_ (2n - r) 2' (pq)1I 
2n 2n-r n (10-25) 

In the special case when p = q = 1/2, the probability of the ,th return to origin at the 
2nth step is given by 

VCr) = _,_ (2n -') r(2n-r) 
2n 2n-r n (10-26) 

Clearly ~'.N = E2n~NV~ gives the probability that the rth return to origin happens by 
the Nth step. When, is also large. we can use the De Moivre-Lap1ace theorem in (4-90) 
to approximate the above sum. Let 2n - r = m in (10-26) SO that n = (m + r)/2 and 
using (4-90) we get 

SO that 

(2n n- r) 2-(2/1-r) = ( ; ) (1/2)(m+r)!2(1/2)(m-r}/l 

'" I e-[(III+r)!2-(m!2)f /(2111/4) 

-~ 

= J 2 e-,.2j2m 
l£m 

(10-27) 

(10-28) 

Itsbouldbe borne in mind that (( ';)12) and vm(r) are nonzero only ifm andr are of the 
same parity, and hence for a give~ ,! the above approximation is valid only if m together 
with r is either even or odd.. For any m = cr2. counting all such nonzero (alternate) 
terms. we get 

(10-29) 

,) 

For a given r, the integration in (10-29) should be performed only over those alternate 
terms involving m (of same parity as r) for which the approximation is valid. and the 
factor 1/2 outside the integral accounts for the total number of such tenns. From the 
exponent in (10-29), only those terms for which r21m is neither too small nor too large 
will playa significant role in the summation there. Substituting ,21m = x2 in (10-29), 
it simplifies into 

(10-30) 
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For fixed c, 00-30) gives the probability that r returns to origin occur before the instant 
t = cr"2. Thus for c = 10 we get the preceding probability to be 0.7566 so that in a fair 
game, to observe r returns to zero with 75% confidence. one must be prepared to play 
10r2 games. In other words, the waiting time to the rth return to zero in a fair game 
increases as the square of r (or r increases only as "jii). Since the random walk starts 
from scratch every time the particle returns to zero, the time to the rth return to zero 
can be interpreted as the sum of 1" independent waiting times, all of which add up to 
cr2 in this case, and hence their average is proportional to r. To ensure the probability 
of occurrence for the rth return to zero close to one, from (10-30) c: must be roughly 
of the order of r (large), so that the earlier average of r independent waiting times 
increases as cr = r2, implying that at least one among the r waiting times is very 
likely to be of the same magnitude as the whole sum, namely, r2. This result shows that 
some of the waiting times between successive returns to zero in long runs can be quite 
large. In other words, returns to zero are rare events in a long run. Since the number of 
zero-crossings does not exceed the number of returns to zero, it follows that the zero 
crossings are also rare events in long runs, a rather unexpected result that reveals the 
peculiar nature of chance fluctuations in random walks. For example, in a prolonged fair 
game "common sense" ?right tell us that the number of sign changes (or returns to zero) 
should increase in proportion to the duration of the game. In a game that lasts twice 
as long, one should expect twice as many returns to zeros and sign changes. However, 
the above analysis indicates that this is not true. The number of returns to zero in fact 
increases only as fast as the square root of the number of trials, and from (10-26)-(10-30) 
with cr2 = N, the probability that fewer than a-/N returns to zero occur prior to N trials 
equals 

Pa = 2 __ e-x /2 dx 100 1 2 

a .j2ii 
as n-+oo (10-31) 

Thus the median for the total number of returns to zero is about ~-/N, and hence in a run 
of length 10,000 it is as likely that there occur fewer than 66 returns to zero than more 
of them. There is only about a 30% probability that the total number of returns to zero 
will exceed 100 in 10,000 trials. More generally the probability PQ in (10-31) decreases 
as a increases. Thus regardless of the number of tosses, low values for the number of 
returns to zero are more probable in a long sequence of trials. 

Figure 10-2 shows the results of simulation for 10,000 tosses of a fair coin in 
four separate trial runs (upper half of Fig. 10-2). Reversing the order of occurrences, we 
get the lower figures, which also represent legitimate random walks. Thus Fig. 10-2(a) 
and 10-2(b) refer to one set of forward and reversed pair of random~walks. Starting 
from their respective origins the reversed random walks have their own returns to zero 
and changes of sign. The actual number of returns to zero and sign changes for each 
random walk are listed in Table 10-1. The low values for the actual number of returns 
to zero in these cases may appear as somewhat counterintuitive and surprisingly low 
only because of our intuition having been exposed to rather "commonsense" interpreta­
tions! 

After studying the first and subsequent returns to the origin, the next significant 
event is where the first visit to + 1 takes place at the nth step. In gambling terminology 
this refers to a net gain for the first time for player A. 
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FIGURE 10-2 
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01\-------1 
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(J) 
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SO 
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10,000 

50,.------.,---, 

5000 
(h) 

10,000 

Random wa1lts: The upper half represents four different random wa1lts each generated from 10,000 tosses of 
a fair coin. The lower half refers to reversed random walks generated from the respective forward walk above. 

TABLE 10-1 
Total number oftriaIs equal 10,000 in each run 

Number or returns Number of sign changes 
Random walk to zero (zero-crossings) 

a 60 28 
b 49 19 .. 

n c 46 19 
d 40 25 

m e 47 29 
f 30 15 

IV g 35 21 
h 54 30 

4. c, e, g: forward walks; b, d.I, h: reversed walks. 



CHAi'TBa 10 RANDOM WALKS AND OTHERAPPUCATIONS 443 

. . 
Waiting time for a gain. The event 

{SI :::: 0,82 :::: 0, ... , S'1-1 :::: 0,811 = +1} (10-32) 

signifies the first visit to + 1. or the first passage through + 1. Let t/>" represent the 
probability of the event in (10-32), with t/>o = O. To start with tPl = p. and if (10-32) 
holds for some n > 1, then SI = -1 with probability q. and there must exist a smallest 
integer k < n such that Sk = 0, and it is followed by a new first passage though + 1 in 
the remaining (n - k) steps, k = 1.2, ... , n - 2. Now P(SI = -1) = q. 

P{Sl = -1,82 < 0 •... , Sk-I < O. SA: = O} 

= P{Sl = 0,82 :::: 0, ...• Sk-I :::: 0, Sk = +1} = tPk-l (10-33) 

and.the probability of the third event mentioned above is tPn-k so that from their inde­
pendence. and summing over all possible k (mutually exclusive) events, we get 

n> 1 (10-34) 

The corresponding generating function is given by 

4,>(z) = f t/>'IZII = pz + f q {I:: t/>kt/>II-k-I} z1I 
/1=1 11=2 k=l 

00 00 

= pz + qz I:: t/>mZ'" L tPk~ = PZ + qZ<l>2(Z) (10-35) 
m=1 1-1 

Of the two roots of this quadratic equation. one of them is unbounded near z = 0, and 
the unique bounded solution of t/>(z) is given by the second solution 

1- Jl-4pqz2 
<I>(z) = 2 (10-36) 

qz 

Using (10-13) we get 

V(z) = 2qz <l>(z) (10-37) 

so that from (10-14) 

tP2n-1 = 1J2n = (_1)11-1 (1/2) (4pqt 
2q 2q n 

(10-38) 

and i/J2n = O. From (10-36), we also get 

~ 1 - .Jl - 4pq 1 - Ip - ql 
4,>(1) = LJt/>n = = .. 

11=1 2q 2q 
(10-39) 

so that 

ft/>n = {plq p < q 
,,=1 1 p ::: q 

(10-40) 

Thus if p < q. the probability that the accumulated gain 8" remains negative forever 
equals (q - p) / q. However, if p ::: q, this probability is zero, implying that sooner or 
later 8,. will become positive with probability 1. In that case, tPlI represents the probability 
distribution of the waiting time for the first passage though +1, and from (10-37) its 
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expected value is given by 

<1>'(1) = -- -¢(l) = -- -1 - = 00 p =q 
V'(1) {I } 1 {1/(P - q) p > q 

2q Ip - ql 2q p/q(q _ p) q > p 
(10-41) 

Once again in fair game, although a positive net gain is bound to occur, the number of 
trials preceding the first positive sum has infinite expectation. It could take an exceedingly 
long time for that event to happen. This leads us to the following question: What about 
the probability of obtaining a considerably large gain? How long would it take for that 
event to happen? 

First passage through maxima. More generally, we can consider the event "the first 
passage though r > 0 occurs at the nth step," and denote its probability by ¢~r). Here 
r stands for the desired maximum gain. Since the trials following the first passage 
through + 1 form a replica of the whole sequence, the waiting times between successive 
incremental first passages are independent, so that the waiting time for the first passage 
through a positive gain r is the sum of r independent random variables each with common 
distribution {¢II}' This gives the generating function of ¢~) to be (see also (10-22» 

00 

<1>(r) (z) ~ L ¢~r):l = <1>' (z) (10-42) 
11=1 

Using (10-22) and (10-37), we get 

v(r)(z) = (2q)'zr<1>(r)(z) (10-43) 

and hence 

V(I) - (2q)r A.(r) 
211 - 'Y211-r (10-44) 

or2 

¢(r) = !.. ( m ) p(m+r)f2q (m-I)/2 
m m (m +r)/2 

(10-45) 

where we have made use of (1 0-25). In the special case when p = q = 1/2, the probability 
for the first passage through r at the nth step is given by 

¢(r) _ !:. ( n ) 2-11 
n - n (n +r)/2 

(10-46) 

Clearly, 2::...0 4>n (r) given the probability that the first passage through r occurs before 
the Nth step. To compute this probability for large values of N. once again we can 
proceed as in (10-27)-{1O-29). Using (10-27), when n and r are of same parity 

¢(r) _ ~ ~e-,2/2n 
n - V; n3J2 

2The binomial coefficient in (1045) is to be interpreted as zero if (m + r) /2 is not an integer. 

(10-47) 
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and hence for N = cr2, as before 

t¢/~/)~! rr~ ~_r_e-r2/2J'dn=21°O _.l_e-;c2/2dx (10-48) 
n=O 2 Jo V -;; n3/2 l/.fi ./2ir 

For fixed c, (10-48) gives the probability that the first passage through gain r occurs 
before the instant t = cr2• Notice that (10-48) is identical to (10-30) and it enables us to 
conclude that in a fair game the two events "r returns to origin occur before the instant tn 

and "the first passage through r occurs before the instant tt> have the same probability 
of occurrence as t -+ 00. 

For c = 10, we get the above probability to be 0.7566 so that jn a fair game of $1 
stakes, to secure a gain of$1 00 with 75% probability of success, one must be prepared to 
play·throughm = cr2 = 100,000 trials! If the stakes are increased to $10, the same goal 
can be realized in 1000 trials with the same probability of success. Similarly to achieve a 
modest $3 gain with 75% probability of success in a fair game, one need to play through 
90 trials. On the other hand, referring back to the game of craps (Examples 3-16 and 3-17) 
from Table 3-3. a slightly better gain of $4 can be realized there with 75% probability 
of success in about 67 trials (a = $16, b = $4 play). Even though the game of craps is 
slightly disadvantageous to the player compared to a fair game (p = 0.492929 versus 
p = 0.5), nevertheless it appears that for the same success rate a better return ($4 versus 
$3) is possible with the game of craps. How does one explain this apparent anomaly 
of an unfair game being more favorable? The somewhat higher return for the game of 
craps is due to the willingness of the player to lose a higher capital (lose $16 with 25 % 
probability) while aiming for a modest $4 gain. In a fair game, the probability of losing 
$16 in 90 trials is only 9.4%. The risk levels are different in these two games and the 
payoff is better at higher risk levels in a carefully chosen game. 

The Wiener Process 

To study the limiting behavior of the random walk as n _ 00, let T represent the duration 
of a step. Then 

x(nT) = S/l = Xl + X2 + ... + XII (10-49) 

represents the random walk in (10-1). Let the modified step size be s, so that the inde­
pendent random variables Xi can take values ±s, with E {Xi} = 0, E {x; J = s2. From this 
it follows that 

E{x(nT)} = 0 (10-50) 

As we know. if n is large and k is in the .jnpq vicinity of np, then 

(n) pkqn-k ~ 1 e-(k-Jlp)2/2npq 
k .j21rnpq 

From this and (10-2), with p = q = 0.5 and m = 2k - n it follows that 

P{x(nT) = ms} ~ ~e-m2f2n 
'Vmr/~ 
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x(r) Random walk w(t) WIener process 

o~------------~~~x--. 

hhhtrthttt 
(a) 

FIGURE 10·3 

for m of the order of ,;n. Hence 

P{x(t) ::; ms} ::: G(m/Jn) 

(b) 

nT - T < t ::; nT 

where G(x) is the N(O, 1) distribution defined in (4-92). 

(l0-51) 

Note thatifnt < n2 ::;113 < n4, then theincrementsx(1I4T)-x(n3T) andx(n2T)­
x(n \ T) of X(/) are independent. 

To examine the limiting form of the random walk as n -+ 00 or, equivalently. as 
T -+ 0, note that 

ts2 
E{x2(t)} = lIS2 = -

T 
t=nT 

Hence. to obtain meaningful results, we shall assume that s tends to 0 as .ff: 
S2 = aT 

The limit ofx(t) as T -+ 0 is then a continuous-state process (Fig. 10-3b) 

wet) = limx(t) 

known as the Wiener process. 
We shall show that the first-orderdensity few, t) ofw(t) is nonnal with zero mean 

and variance at: 

(l0-52) 

Proof. Ifw = ms and t = nT, then 

m w/s w 
,;n = JtlT = ../iii 

Inserting into (10-51), we conclude that 

P{w(t) :s w} = G(;') 
and (l0-52) results. 

We show next that, the autocorrelation ofw(t) equals 

R(tl. 12) = a min(tlt t2) (10-53) 



CHAPTER 10 RANOOMWALKSANDOTKERAPPIJCAllONS 447 

IndeedJ if tl <: t2, then the difference W(tl) -"- W(tl) is independent of W(tl)' Hence 

E{[W(t2) - W(tl)]W(tt)} = E{[W(t2) - w(tl)]}E(w(tl)} = 0 

This yields 

11$2 
E{w(tdw(t2)} = E{w2(tl)} = T = atl 

as in (l0-53). The proof is similar if tl > 12. 

Note finally that if tl < t2 < t3 < t4 then the increments w(4) - W(t3) and W(t2) -
W(tl) ofw(t) are independent. 

Generalized random walk. The random walk can be written as a sum 
/I 

X(I) = L CkU(t - kT) (n - I)T < t :5 nT (10-54) 
k=1 

where Ck is a sequence of Li.d. random variables taking the values $ and -$ with equal 
probability. In the generalized random walk, the random variables Ck take the values $ 

and -$ with probability p and q, respectively. In this case. 

E(cIIJ = (p - q)s 

From this it follows that 

E{x(t)} = n(p - q)s Var x(t) = 4npqs2 (l0-55) 

For large n, the process X(/) is nearly normal with 

I 41 
E(x(t)} ~ r(p - q)$ Var x(t) ~ T pqs2 (10-56) 

Brownian Motion 

The term brownian motion is used to describe the movement of a particle in a liquid, 
subjected to collisions and other forces. Macroscopically, the position X(I) of the particle 
can be modeled as a stochastic process satisfying a second-order differential equation: 

mx'l (t) + Ix (I) + ex(t) = F(t) (l0-57) 

where F(I) is the collision force, m is the mass of the particle, I is the coefficient of 
friction, and ex(t) is an external force which we assume proportional to X(I). On a 
macroscopic scale. the process F(t) can be viewed as normal white noise with zero 
mean and power spectrum 

Spew) =2kTI (l0-58) 

where T is the absolute temperature of the medium and k = 1.37 X 10-23 Joule-degrees 
is the Boltzmann constant. We shall determine the statistical properties ofx(l) for various 
cases. 

BOUND MOTION. We assume first that the restoring force cx(t) is different from O. For 
sufficiently large t, the position X(I) of the particle approaches a stationary state with 
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zero mean and power spectrum (see Example 9-27) 

2kTf 
SxCw) = (c - mtu2)2 + J2tu2 (l0-59) 

To determine the statistical properties of x(t), it suffices to find its autocorrelation. We 
shall do so under the assumption that the roots of the equation ms2 + f $ + C = 0 are 
complex 

$1.2 = -(X ± jp (X = L (X2 + p2 = ~ 
2m m 

Replacing b, c, and q in Example 9-27b by !1m, elm. and 2kTflm2, respectively, We 

obtain 

(10-60) 

Thus, for a specific t, x(t) is a normal random variable with mean 0 and variance Rx (0) == 
kT Ie. Hence its density equals 

~ ( ) _ ~ -cx'/2kT JXX - --e 
21rkT 

(10-61) 

The conditional density ofx(t) assuming x(to) = Xo is a normal curve with mean 
axo and variance P, where (see Example 7-11) 

Rx('r:) 
a = RxCO) 7:=t- /o 

FREE MOTION. We say that a particle is in free motion if the restoring force is O. In 
this case, (10-57) yields 

mx"(t) + fx'(t) = F(t) (10-62) 

The solution of this equation is not a stationary process. We shall express its properties 
in terms of the properties of the velocity v(t) of the particle. Since v(r) = x'(t), (10-65) 
yields 

mv'(t) + fv(t) = F(t) (10-63) 

The steady state solution of this equation is a stationary process with 

2kTf kT 
SII(W) = 2tu2 2 RII(7:) = _e-f1fl/m 

m +1 m 
(10 .. 64) 

From the preceding, it follows that v(t) is a normal process with zero mean, variance 
kT 1m, and density 

(10-65) 

The conditional density ofv(t) assuming v(O) = vo is normal with mean avo and 
variance P (see ~ample 7-11) where 

a = RII(t) = e-ft/ m P = kT (1- a2) = kT (1 _ e-2ft/m) 
RII(O) m m 
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In physics, (10-63) is caned the Langevin equation, its solution the Ornstein­
Uhlenbeck process. and its spectrum Loren,zian. 

The position x(t) of the particle is the integral of its velocity: 

X(t) = l' yea) da (10-66) 

From this and (9-11) it follows that 

E{r(t)} = Ru(a - {3)dad{3 = - e-fla-PI/m dad{3 110' kT lk' 
o 0 moo 

Hence 

(10-67) 

Thus, the position of a particle in free motion is a nonstationary normal process with 
zero mean and variance the right side of (10-67). 

For t »mll, (10-67) yields 

2kT 
E{x2 (t)} :::::: it = 2D2t (10-68) 

The parameter D is the diffusion constant. This result will be presently rederived. 

THE WIENER PROCESS. We now assume that the acceleration term mr' (t) of a particle 
in free motion is small compared to the friction term Ir(t); this is the case if I» mIt. 
Neglecting the term mr'(t) in (10-62), we conclude that 

Ix'(t) = F(t) 11' x(t) = - F(a) da 
I 0 

Because F(t) is white noise with spectrum 2kT I, it follows from (9-45) with vet) = 
F(t)11 and q(t) = 2kT II that 

2kT 
E{x2(t)} = -I = at 

I 
Thus, X(/) is a nonstationary normal process with density 

~ () 1 _)(3 I'm, 
)x(') x = J21rat e 

We maintain that it is also a process with independent increments. Because it is normal, 
it suffices to show that it is a process with orthogonal increments, that is , 

(10-69) 

for t1 < t2 < 13 < t4' This follows from the fact that x(t;) - x(t j) depends only on the 
values ofF(t) in the interval (ti, tj) and F(t) is white noise. Using this, we shall show that 

Rx (tl , t2) = a min(tl' t2) 

To do so, we observe from (10-69) that if tl < t2. then 

E{x(tl)x(tz») = E{X(tl)[X(t2) - X(lt) + X(tl)]} = E{xl(tl)} = atl 

(10-70) 

and (10-70) results. Thus the position of a particle in free motion with negligible 
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acceleration has the following properties: 

It is normal with zero mean. variance at and autocorrelation a min(t\, h). It is a 
process with independent increments. 

A process with these properties is called the Wiener process. As we have seen, it 
is the limiting form of the position of a particle in free motion as t .,. 00; it is also the 
limiting form of the random walk process as n ~ 00. 

We note finally that the conditional density of x(t) assuming x(to) = Xo is nOrmal 
with mean axo and variance P, where (see Example 7·11) 

a = Rx(t, to) = 1 P = R(t, t) - aR(t, to) = at - ato 
Rx(to, to) 

Hence 

(10-71) 

DiffusioD equations. The right side of (10-71) is a function depending on the four 
parameters x, Xo, t. and to. Denoting this function by Jr(x, Xo; I, fO), we conclude by 
repeated differentiation that 

aJr = D2 a2Jr 011' __ D2 0211' 
at ax2 aro - ax~ 

(10-72) 

where D2 = aJ2. These equations are called diffusion equations. 

Thermal Noise 

Thermal noise is the distribution of voltages and currents in a network due to the thermal 
electron agitation. In the following, we discuss the statistical properties of thermal noise 
ignoring the underlying physics. The analysis is based on a model consisting of noiseless 
reactive elements and noisy resistors. 

A noisy resistor is modeled by a noiseless resistor R in series with a voltage source 
De(t) or in parallel with a current source ni(t) = De (t)/ R as in Fig. 10-4. It is assumed 
that ne(t) is a normal process with zero mean and fiat spectrum 

Sn.(w) = 2kTR S ( ) - Sn.(w) - 2kTG nl W - --p:r- - (10-73) 

where k is the Boltzmann constant, T is the absolute temperature of the ~sistor, and G = 
1/ R is its conductance. Furthermore, the noise sources of the various network resistors 
are mutually independent processes. Note the similarity between the spectrum (10-73) 
of thermal noise and the spectrUm (10-58) of the collision forces in brownian motion. 
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n,(t) 

·Lf 
b 

FIGURE 10·5 

Using Fig. 10-5 and the properties of linear systems, we shall derive the spectral 
properties of general network responses starting with an example. 

~ The circuit of Fig. 10-5 consists of a resistor R and a capacitor C. We shall determine 
the spectrum of the voltage vet) across the capacitor due to thermal noise. 

The voltage vet) can be considered as the output of a system with input the noise 
voltage ne(t) and system function 

Applying (9-149), we obtain 

1 
H(s) = 1 +RCs 

2. 2kTR 
Su(w) = Sn.(w)IH(w)1 = 1 + wlR2.C2 

kT 
Ru(.) = _e-1fI/RC 

C 

(10·74) 

The following consequences are illustrations of Nyquist's theorem to be discussed 
presently: We denote by Z(s) the impedance across the terminals a and b and by z(t) its 
inverse transform 

R 
Z(s) = 1 +RCs 

The function z(t) is the voltage across C due to an impulse current oCt) (Fig. 10-5). 
Comparing with (10-74), we obtain 

Su(w) = 2kT Re Z(jw) Re Z(jw) = 1 + :J.R2.C2 

Ru(.) = kTz(T) • > 0 Ru(O) = kTz(O+) 

kT 
E{v'2(t)} = Rv(O) = c C

1 = lim jwZUw) 
(1)-+00 " 

Given a passive, reciprocal network, we denote by vet) the voltage across two 
arbitrary terminals a and b and by Z(s) the impedance from a to b (Fig. 10-6). 

FIGURE 10.6 
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NYQUIST 
THEOREM 

(a) (b) 

S (w) = 2kl' 
Ifi R 

U() V(w) Re Z(J'w) = IH(w)12 
U'W = I(w) , R 

FIGURE 10-7 

.. The power spectrum of v(t) equals 

SI/(w) = 2kT Re Z(jw) (10-75) 

Proof. We shall assume that there is only one resistor in the network. The general case can be 
established similarly if we use the independence of the noise sources. The resistor is represented 
by a noiseless resistor in parallel with a current source III (t) and the remaining network contains 
only reactive elements (pig. 10-7 a). Thus vet) is the output of a system with input III (I) and system 
function H(w). From the reciprocity theorem it follows that H(w) = V (tu)/ /(w) where l(tu) is 
the amplitude of a sine wave from a to b (Pig. 10-7b) and V(tu) is the amplitude of the voltage 
across R. The input power equals II (tu)12 Re Z(jtu) and the power delivered to the resistance 
equals I V (tu) 12/ R. Since the connecting network is lossless by assumption, we conclude that 

Hence 

and (10-75) results because 

Il(tu)12 Re ZUw) = W(w)12 

R 

2 W(w)12 • 
IH(tu)1 = II (w)12 = R Re Z(jw) 

2kT 
Sn,(w) = R 

COROLLARY 1 t> The autocorrelation of v(t) equals 

COROLLARY 2 

Ru(") = kTz(r) 

where z(t) is the inverse transform of Z(s). 

Proof. Since Z(- jw) = Z·Utu), it follows from (10-75) that 

Su(w) = kT[Z(jtu) + Z( - jw)] 

(to-76) 

and (10-76) results because the inverse of Z( - jw) equals z( -I) and z( -I) = 0 for t > O. -4 

~ The average power of vCt) equals 

E{v2(t)} = kT . C 

where C is the input capacity. 

1 
where C = lim jwZUw) 

-co 
(10-77) 
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Proof. As we-know (initial value theorem) 

z(O+) = IimsZ(s) s -+ 00 

and (10-77) follows from (10-76) because 

E[v2(r)} = R.(O) = kTz(O+) 

Currents. From Thevenin's theorem it follows that, temrinally, a noisy network is equiv­
alent to a noiseless network with impedance Z(s) in series with a voltage source vet). 
The power spectrum S,,(CtJ) ofv(t) is the right side of (10-75), and it leads to this version 
of Nyquist's theorem: 

The power spectrum of the short-circuit current i(t) from a to b due to thennal 
noise equals 

Sj(CtJ) = 2kT Re VUCtJ) 
1 

V(s) Z(s) 

Proof. From Thevenin's theorem it follows that 

s-( ) = s ( )IVU )12 = 2kT Re Z(jCtJ) 
, CtJ 1/ CtJ CtJ IZ(jCtJ)12 

and (10-78) results. 
The current version of the corollaries is left as an exercise. 

10·2 POISSON POINTS AND SHOT NOISE 

(10-78) 

Given a set of Poisson points t; and a fixed point 10. we fonn the random variable 
z = tl - to, where tJ is the first random point to the right of to (Fig. 10-8). We shall show 
that z has an exponential distribution: 

z>o (10-79) 

Proof. For a given Z > 0, the function Fz(z) equals the probability of the event (z ~ z}. 
This event occurs if tJ < to + z, that is, if there is at least one random point in the interval 
(to. to + z). Hence 

Fl(z) = P(z ~ z} = P{n(to, to + z) > 0) = 1 - P{n(to. to + z) = O} 

and (10-79) results because the probability that there are no points in .the interval (to. 
to + z) equals e-l.z• 

FIGURE 10-8 
Poisson points. 
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We can show similarly that if w = to - L I is the distance from to to the first point 
L .. to the left of to then 

iw(w) = Ae-J..w Fw(w) = 1 - e-J..w w > 0 (lO-SO) 

We shall now show that the distance X,I = t,. - to from to the nth random point tn 
to the right of to (Fig. 10-8) has a gamma distribution: 

x>O 00-81) 

Proof. The event (x,. ~ x} occurs if there are at least n points in the interval (to, to + x). 
Hence 

11-1 (Ax)k 
F,.(x) = P{x,. ~ x} = 1 - P{n(to, to + x) < n} = 1 - L: -kl e-A.\ 

k=O • 

Differentiating. we obtain (10-81). 

Distance between random points. We show next that the distance 

x = x,. - X'I_I = 1,. - 1,.-1 

between two consecutive points til_I and t'l has an exponential distribution: 

ix(x) = Ae-J..x (10-82) 

Proof. From (10-81) and (5-106) it follows that the moment function ofxn equals 
An 

~II($) = (A _ 3)n (10-83) 

Furthermore. the random variables x and Xn-l are independent and x,. = x + x,,+ 
Hence. if ~ x(s) is the moment function of x. then 

~n(s) = ~x(S)~"-l($) 
Comparing with (10-83), we obtain ~X<$) = A/(A - 3) and (10-82) results. 

An apparent paradox. We should stress that the notion of the "distance x between 
two consecutive points of a point process" is ambiguous. In Fig. 10-8, we interpreted x 
as the distance between tll -1 and tn, where tn was the nth random point to the right of 
some fixed point to. This interpretation led to the conclusion that the density of x is an 
exponential as in (10-82). The same density is obtained if we interpret x, as the distance 
between consecutive points to the left of to. Suppose. however, that x is interpreted as 
follows: 

Given a fixed point tal we denote by " and t, the random points nearest to ta on 
its left and right, respectively (Fig. 1O-9a). We maintain that the density of the distance 
x = 1, - ~ between these two points equals 

Indeed the random variables 

X/=ta-t, and 

(10-84) 

x,=t,.-~ 
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exponential density as x = x,. + Xi, This 
beccmse the convolution of two density in (10·84). 

although x is again the "distance consecutive points," its density 
exp()ne'nti~u. This apparent paradox of the ambiguity in the 

specification of the identity of random points. Suppose, for example, that we identify the 
points t, by their order i, where the count starts from some fixed point to, and we observe 
that in one particular realization of the point process, the point t" defined as above, equals 
t.t. In other realizations of the process, the random variables t, might equal some other 
point in this identification (Fig. 1 0·9b). The same argument shows that the point t,. does 
not coincide with the ordered point t,,+1 for all realizations. Hence we should not expect 

= tT - t, has random variable t.t+l - t.t. 

£'nc"""T'Dl,,£"rn,'ll' DEFINITION. Given a seq!uen,ce 
laelottcauy diSltributelj) random variables with 

DOSlluve i.i:d. (independent, 

(10-85) 

we form. a set of points t,. as in Fig. 10-1 Oa. where t = 0 is an arbitrary origin and 

(10-86) 

We maintain that the points so formed are Poisson distributed with parameter A. 

tIl T t.+1 

(0) (b) 

FIGURE 1(1.10 
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POISSON 
PROCESSES 
AND 
GEOMETRIC 
DISTRIBUTION 

Proof. From the independence of the random variables Wn , it follows that the random 
variables ttl and Wn+l are independent. the density f,,(t) oft,. is given by (10-81) 

(10-87) 

and the joint density oft" and WII+I equals the product f,,(t)/(w). 1ft" < .. and tn+l :::: 

t" + Wn+l > .. then there are exactly n points in the interval (0, f). As we see from 
Fig. lO-lOb, the probability of this event equals 

Ae->"w t,,-Ie-lol dwdt 1100 An 

o t-I (n-l)! 

= e->"(/-T) tn-1e->..r dt = e-'A/ __ l t An (Ar)" 

o (n-1)! n! 

Thus the points ttl so constructed have property PI' We can show similarly that they have 
also property P2. 

~ Let x(t) '" P(M) and yet) ,....., P(f.Lt) represent two independent Poisson processes, 
and n the number of occurrences of x(t) between any two successive occurrences of 
y(t). Then with z representing the random interval between two successive occurrences 
ofy(t), we have 

so that 

(M)k 
P(n=klz=t}=e->"I-­

k! 

PIn = k} = 100 PIn = k Iz = t} ft(t)dt (10-88) 

But from, (10-82) the interarrival duration z is exponentially distributed with parameter 
f.L so that f1.(t) = J.l,e-fJ.I , t ~ 0, and substituting this into (10-88), we get 

P{n = k} = e->"I--J.I,e-Jl.1 dt 100 (M)k 

o k! 

k = 0,1,2, ... (10·89) 

Thus the number of occurrences (count) of a Poisson process between any two successive 
occurrences of another independent Poisson process has a geometric distribution. It 
can be shown that counts corresponding to different interanival times are independent 
geometric random variables. For example, if x(t) and y(t) represent the arrival and 
departure Poisson processes at a counter, then from (10-89) the number of arrivals 
between any two successive departures has a geometric distribution. Similarly the number 
of departures between any two arrivals is also a geometric random variable. ~ 
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~, Suppose every kth outcome of a Poisson process x(t) is systematically tagged to 
generate a new process yet). Then 

P{y(t) = n} = P{nk ::: x(!) ::: (n + l)k - 1} 

(n+!lk-l (AtY = ~ e-l., __ 
L., r! 
r=tlk 

(l0-90) 

Using (10-86)-(10-87) and the definition of yet), the interarrival time between any 
two successive occurrences of yet) is a gamma random variable. If A = kf,L. then the 
interarrival time represents an Erlang-k random variable and yet) is an Erlang-k process. 
(S~ also (4-38).) 

Interestingly from (9-25), a random selection of a Poisson process yields another 
Poisson process, while a systematic selection from a Poisson process as above results 
in an Erlang-k process. For example, suppose Poisson arrivals at a main counter are 
immediately redirected sequentially to k service counters such that each counter gets 
every kth customer. The interarrival times at the service counters in that case will follow 
independent Erlang-k distributions. whereas a random assignment at the main counter 
would have preserved the exponential nature of the interarrival times at the service 
counters (why?). ~ 

POISSON POINTS REDEFINED. Poisson points are realistic models for a large class 
of point processes: photon counts. electron emissions, telephone calls, data commu­
nications. visits to a doctor. arrivals at a park. The reason is that in these and other 
applications, the properties of the underlying points can be derived from certain general 
conditions that lead to Poisson distributions. As we show next, these conditions can be 
stated in a variety of forms that are equivalent to the two conditions used in Sec. 4-5 to 
specify random Poisson points (see page 118). 

I. If we place at random N points in an interval of length T where N » I, then the 
resulting point process is nearly Poisson with parameter N / T. This is exact in the 
limit as Nand Ttend to 00 [see (4-117)]. 

n. If the distances Wn between two consecutive points tn-l and tn of a point process 
are independent and exponentially distributed, as in (10-85), then this process is 
Poisson. (See also (9-28).) 

This can be phrased in an equivalent form: If the distance W jrom an 
arbitrary point to to the next point of a point process is a random variable 
whose density does not depend on the choice of to. then the process is Poisson. 
The reason for this equivalence is that this assumption leads to the conclusion 
that 

few I W ~ to) = f(w - to) (10-91) 

and the only function satisfying (10-91) is an exponential (see Example 6-43). In 
queueing theory. the above is called the Markov or memoryless property. 
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IlL If the number of points n(t, 1+ dt) in an interval (t, t + dl) is such that: 

(a) P{n(t, t + dt) = I} is of the order of dt; 
(b) P{n(t, t + dt) > I} is of order higher than dt; 
. (e) these probabilities do not depend on the state of the point process outside the 

interval (I, t + dt); 

then the process is Poisson (see Sec. 16-1). 
Iv. Suppose, finally, that: 

(a) P{n(a, b) = k} depends only on k and on the length of the interval (a, b); 
(b) if the intervals (aj. bi) are nonoverlapping, then the random variables n(a;, bi) 

are independent; 
(e) P{n(a, b) = co} = O. 

These conditions lead again to the conclusion that the probability Pk (1:) of 
having k points in any interval of length 1: equals 

Pk(r) = e-b ().:ci' / k! (10-92) 

The proof is omitted. 

Linear interpolation. The process 

x(t) = t - t,. (10-93) 

of Fig. 10-11 consists of straight line segments of slope 1 between two consecutive 
random points t,. and t..+l' For a specific t. X(/) equals the distance w = t - t,. from t to 
the nearest point tn to the left of t; hence the first-order distribution of x(t) is exponential 
as in (10-80). From this it follows that 

1 
E{x(t)} = -

). 

~ The autocovariance of X(/) equals 

1 
Ctr) = -(1 + ).lrl)e-A1rl 

).2 

(10-94) 

(10-95) 

Proof. We denote by t", and t" the random points to the left of the points t + • and t. respectively. 
Suppose first, that t", = t,,; in this case x(t + 1') = t + l' - t" and x(t) = t - tn. Hence [see 
(10-93)1 

2 l' 
C(1') = E{(t +1' - t,,)(t - tn )) = E{(t - t,,)2} +1' E{t - t,,} = -2 + -

A. A. 
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Suppo~ next, that t.. ::j: t,,; in this case 

1 
C(-c) = E{(t + '1' - tm)(t - til)} = E{t + '1' - t,.}E{t - t,,} = Al 

Clearly,t", = t,. if there are no random points in the interval (t +'1', t);hence P{t", = t,,} = e-~f. 
Similarly, t", ::j: t" if there is at least one random point in the interval (t+-c, t); bence P{t" ::j:t",} = 
1 - e-~f. And since [see (4-74)] 

R(-c) = E(x(t+-c)x(t)/t", =t"}P{t,,, = t"l + E{X(t+T)X(t)It,. ::j:t",}P(t" ::j:tlll } 

we conclude that 

R(-c) = (~ + ::.) e-~f + 2..0 - e-~T) 
1..2 A A2 

fon > O. Subtracting 1/A2, we obtain (10-95). <4 

Shot Noise 

Given a set of Poisson points tj with average density>.. and a real function h(t), we fonn 
the sum 

(10-96) 

This sum is an SSS process known as shot noise. Here. we discuss its second-order 
properties. 

From the definition it follows that s(t) can be represented as the O\ltput of a linear 
system (Fig. 10-12) with impulse response h(t) and input the Poisson impulses 

z(t) = L 8(t - til (10-97) 
I 

This representation agrees with the generation of shot noise in physical problems: The 
process set) is the output of a dynamic system activated by a sequence of impulses 
(particle emissions. for example) occurring at the random times tj. 

As we know. 1h = >..; hence 

E{s(t») =>.. 1: h(t)dt =>"H(O) (10-98) 

Furthermore, since (see Example 9-22) 

Stt(a» = 2n>..2c5(a» + >.. (10-99) 

it follows from (9-149) that 

Sss{a» = 21r>..2H2(O)c5(a» + AIH(a» 12 (10-100) 

FIGURE 10·-12 
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EXA:'IPLL 10-2 

EXAl\IPLE 10-3 

ELECTRON 
TRANSIT 

00-101) 

Campbell's theorem. The mean 1'1$ and variance (if of the shot-noise process set) eqUal 

11$ =.>.. 1: h(t)dt (if = .>..p(O) =)., I: h2(t)dt 00-102) 

Proof. It follows from (10-101) because 0'; = Css(O). 

then 

~ Suppose that h(t) is a triangle as in Fig. 10-13a. Since 

loT kT2 
ttdt =-

o 2 

it follows from (10-102) that 

In this case 

H() loTk -jllJld _JttJT{22ksin{J)T/2 _jO)T kT 
(J) = te t = e . 2 - e -. o )(J)}{J) 

Inserting into (lO-loo), we obtain (Fig. 10-13b). 
)Jc2 

Su({J) = 21r1}:~({J) + -4 (2 - 2cos{J)T + (JlT2 - 2wTsin{J)T) 
(J) 

S .. (Q) II 

h(t)t_ ~ 

kT~ 
OTt 

(a) (b) FiGURE 10·13 
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Generalized Poisson processes and shot noise. Given a set of Poisson points t; with 
average' density A. we form the process 

u(1) 

x(t) = I: CjU(t - t;) = I: c; 
;=1 

(10-103) 

where Ci is a sequence of i.i.d. random variables independent of the points t; with mean 
'flc and variance u;. Thus x(t) is a staircase function as in Fig. 9-3 with jumps at the 
points t; equal to Cj . The process net) is the number of Poisson points in the interval 
(0, t); hence E{n(t)} = At and E{n2(t)} = A2 + At. For a specific t, x(t) is a sum as in 
(7-46). From this it foJlows that 

E{x(t)} = 71cE{n(t)} = 'fleAt 

. E{x2(t)} = 71;E{n2(t)} + u; E{n(t)} = '1~(At + A2t2) + u;At 

Proceeding as in Example 9-5, we obtain 

Cxx (t1, 12) = (71: + cr;)A min(t) , t2) 

We next form the impulse train 

z(t) = X/(l) = L:cj 8(t - t/) 

From (10-105) it follows as in (9-109) that 

d 
E{z(t)} = dt E{x(t)} = l1cA 

B2Cu (t}. t2) (2 2) 
C,z(t1, t2) = a a = T'lc + Uc ),,8(.) 

t1 t2 

(10-104) 

(10-105) 

(10-106) 

(10-107) 

(10-108) 

where -r = t2 - fl. Convolving z(t) with a function h(t), we obtain the generalized shot 
noise 

This yields 

s(t) = I: c;h(t - tl) = z(t) * h(t) 
i 

E{s(t)} = E{z(t)} * h(t) = l1cA I: h(t) dt 

Css (-') = cn (.) * h(-r) * h( --r;) = (11; + ( 2)Ap(-r;) 

Var{s(t)} = C.rs(O) = (11;+U;)).. I: h2(t)dt 

(10-109) 

(lO-HO) 

(10-111) 

(10-112) 

This is the extension of Campbell's theorem to a shot-noise process with random coef­
ficients. 

Equation (10-103) can be given yet another interesting interpretation. 

~ In an ordinary Poisson process only one event occurs at any arrival instant. Instead, 
consider a random number of events Ci occurring simultaneously as a cluster at an 
instant ~ as in (10-103) such that the total number of clusters in time t constitute an 
ordinary Poisson process n(t). Each cluster bas a random number of occurrences that is 



independent of other clusters. Let Cj denote the number of occuaences in the ith cluster. 
and x(t) the total number of occurrences in the interval (0, t). Then x(t) represents ~ 
compound Poisson process. For example, CI may represent the number of cars invOlved 
in the ith automobile accident (or number of houses involved in the ith fire incident) in 
some interval, and if the number of accidents (fires) in that interval is assumed to be a 
Poisson process. then the total number of claims during that interval has a compOUnd 
Poisson distribution. Let 

Pk = P{Ci = k} k = 0,1, 2, ... (10-113) 

represent the common probability mass function of occw:rences in any cluster, and 
00 

P(z) = E(ZCi) = LPkt 
1..0 

(10-114) 

its moment generation function. For any I, the moment generating function of the com­
pound Poisson process X(I) is given by 

4lx (z) = E {Zx<r)} = E {E(ZX(I) I net) = k)} 

= E{ E(zE:a, CJ In(t) = k)} 
00 

= L(E(ZCJ)]" P{n(t) = k} 
k=O 

= E[P(Z)]ke->.r (ll)t = e-AI(l-P(~») 
k-o k! 

(10-115) 

We can use this identity to determine the probability of n occurrences in the interval 
(0, t). Toward this, let 

00 

pk(z) ~LP!:)zn (10-116) 
n=O 

where {p~k)} represents the k-fold convolution of the sequence (Pn} with itself. Substi­
tuting (10-116) into the first expression in (10-11 S) we get the interesting identity 

00 (MY 
P{x(t) = n} = Le-1t-,-p!:) (10-117) 

1=0 k. 
;l 

Equations (10-114) and (10-115) can be used also to show that every compound Poisson 
distribution is a linear combination (with integer coefficients) of independent Poisson 
processes. In fact substituting (10-114) into (10-115) we get 

(10-118) 

where At = APt and hence it follows that 

x(t) = m, (t) + 2m2(t) + -.. + klllA:(t) + ... (10-119) 

where m,,(t) are independent Poisson processes with parameter ApA;, k = 1,2, .... 



More generally. we can use these obSeFVations to show that any linear combination 
of indePendent Poisson processes is a compound Poisson process. ThUS 

11 

yet) = 2: a.tXk(t) (10-120) 
01:=1 

is a compound Poisson process, where aol: are arbitrary constants and Xi (I) are indepen­
dent Poisson processes with parameter Akl. since 

11 

~)I(z) = E { 'l.y(t)} = II E { 'l.a1x.t(t)} 

k .. 1 

11 = II e-).kt(I-z"i) = e-.I.l(I-Po(I:» (10-121) 
01:=1 

where 
11 ). 11 

Po(z) = 1: 2.zat A £ 1:)..1: (10-122) 
i-I A .1:=1 

On comparing (10-121) and (10-122) with (10-114) and (10-115) we conclude that 

z(t) 

yet) = 2:ei (10-123) 
i_I 

as in (10-103), where z(t) ..... P{At} and 

k = 1.2, ...• n (10-124) 

10-3 MODULATION3 

Given two real jointly WSS processes aCt) and b(t) with zero mean and a constant "'0. 
we form the process 

where 

x(t) = a(t)cos"'Ol- b(t)sin"'Ot 

= ret) cos["'Ot + .(t)] 

b(t) 
tan.(I) =­

a(l) 

(10-125) 

This process is called modulated with amplitude modulation ret) and phase modulation 
.(t). 

We shall show that x(t) is WSS iff the processes aCt) and bet) are such that 

RaaC'r:) = Rbb(r) Rab(-r) = -.R".(t) (10-126) 

3 A:. Papoulis: ''Random. Modulation: A Review," IEEE TTl2llStU:tlons on Acorulics, SpeICh, and Signal 
Processing, vol. ASSP-31, 1983. 



Proof. Clearly, 

E{x(t)} = E{a(t)} cosWot - E{b(t)} sinWot = 0 

Furthennore, 

x(t + l')x(t) = [aCt + r) coswo(t + 1:) - b(1 + 1') sinCdO(t + 1:)] 

x [a(l) cos WOI - bet) sin CdOt) 

Multiplying, taking expected values, and using appropriate trigonometric identities, we 
obtain 

2E{x(t + t')x(t)} = [R.a(t') + Rbb(t'»)COSCd01: + [R.b(1:) - Rba(t')]sinCOot' 

+ [R.a{'r) - Rbb(l')] cos wo{2t + t') 
- [RabCr) + Rba(r)]sinCOo(2t + t') 

If (1()"126) is true, then (10-127) yields 

RzJC(l') = RaD(l') cos COo 1: + Rab(1:) sin COol' 

(10-127) 

(10-128) 

Conversely, ifx(t) is WSS, then the second and third lines in (10-127) must be indepen­
dent of t. This is possible only if (10-126) is true. 

We introduce the "dual" process 

yet) = bet) coscuot + a(t) sinWot 

This process is also WSS and 

(10-129) 

(10-130) 

Rxy(t') = Rab(r) cos Wo1: - Raa(l') sinWo't (10-131) 

This follows from (10-127) if we change one or both factors of the product x(t + 1:)"(/) 
with y(t + 1') or yet). 

Complex representation. We introduce the processes 

Thus 

and 

This yields 

w(t) = aCt) + jb(t) = r(t)ejt{l(t) 

z(t) = x(t) + jy(t) = w(t)eJ0I01 

x(t) = Rez(t) = Re[w(t)eJOIot ] 

aCt) + jb(t) = wet) = z(t)e-JOIot 

aCt) = x(t) cos Wat + yet) sin COot 

bet) = yet) cos Wot - x(t) sin Wat 

(10-132) 

(10-133) 

(10-134) 

Correlations and spectra. The autocorrelation of the complex process wet) equals 

RIOIO(t') = E{[a(t + t') + jb(t + t')][a(t) - jb(t)]} 
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Expanding and using (10-126), we obtain 

Similarly. 

We note, further. that 

From this it follows that 

Rww("r) = 2Raa ('r) - 2jRab(r:) 

Sww(W) = 2Saa (w) - 2jSab(W) 

Szz(w) = 2Sxt (w) - 2jSxy(w) 

Szz(w) = Sww(w -COO) 

(10-135) 

(10-136) 

(10-137) 

(10-138) 

(10-139) 

The functions Sxx(lIJ) and Sz~(w) are real and positive. Furthermore [see (10-130)] 

Rxy (-1:) = -Ryx (-7:) = -Rx)'(7:) 

This leads to the conclusion that the function - jSxy(w) = Bxy(w) is real and (Fig. 
10-14a) 

(10·140) 

And since S.u (-w) = S.u(w), we conclude from the second equation in (10-138) that 

4S.fX (w) = Szz(w) + Su(-w) 

4jSxy(w) = Su(-w) - Szz(w) 
(10-141) 

Single sideband lfb(t) =A(t) is the Hilbert transform ofa(t), then [see (9-160)] 
the constraint (10-126) is satisfied and the first equation in (10-138) yields 

SWlll(w) = 4Saa (w)U (lIJ) 

(Fig. 10-14b) because 

Sall(W) = jSoo(w)sgnw 

The resulting spectra are shown in Fig. 10-14b. We note. in particular. that S;u(w) = 0 
for Iwi < coo· 

RICE'S REPRESENTATION. In (10-125) we asswned that the carrier frequency lIJ() 

and the pr9(:esses aCt) and bet) were given. We now consider the converse problem: 
Given a WSS process x(t) with zero mean. find a constant lIJ() and two processes aCt) and 
bet) such that x(t) can be written in the form (10-125). To do so, it suffices to find the 
constant COO and the dual process yet) [see (10-134)]. This shows that the representation 
of x(t) in the form (10-125) is not unique because, not only lIJo is arbitrary, but also 
the process y(t) can be chosen arbitrarily subject only to the constraint (10-130). The 
question then arises whether, among all possible representations of x(t), there is one 
that is optimum. The answer depends, of course, on the optimality criterion. As we 
shall presently explain. if yet) equals the Hilbert transform i(t) of x(t), then (10-125) 
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Single sideband 
bet) = aCt) 

Rice's representation 
y(1) = ift) 

FIGURE 10·14 

(a) 

(b) 

jSvj.fIJ) 

(e) 

is optimum in the sense of minimizing the average rate of variation of the envelope of 
xOO. c 

Hnbert transforms. As we know [see (9-160)] 

Ru(T) = -Ru(T) 

We can, therefore, use t(t) to form the processes 

z(t) = x(t) + ji,(t) = w(t)eifl/OI 

wet) = i(t) + jq(t) = z(t)e-ifl/OI 

(10-142) 

(10·]43) 
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x(t) 
i(t} 

FIGURE 10-15 

as in (10-132) where now (Fig. 1O-14c) 

yet) = i(l) 

Inserting into (10-125), we obtain 

aCt) = i(t) 

q(t) 

b(t) = q(t) 

X(/) = i(t) cos coot - q(t) sin root (10-144) 

This is known as Rice's representation. The process I(t) is called the inphase component 
and the process q(t) the quadrature component of x(t). Their realization is shown in 
Fig. 10-15 [see (10-134)]. These processes depend. not only on X(/), but also on the 
choice of the carrier frequency coo. 

From (9-149) and (10-138) it follows that 

(10-145) 

Bandpass processes. A process X(/) is called bandpass (Fig. 1O-14c) if its spectrum 
Sxx(w) is 0 outside an interval (wt. W2). It is called narrowband or quasimonochromatic 
if its bandwidth W2 - WJ is small compared with the center frequency. It is called 
monochromatic if Sxx(w) is an impulse function. The process a cos root + bsinroot is 
monochromatic. 

The representations (10-125) or (10-144) hold for an arbitrary XCI). However. they 
are useful mainly if x(t) is bandpass. In this case, the complex envelope wet) and the 
processes i(t) and q(t) are low-pass (LP) because 

Sww(w) = Szz(w + roo) 
(10-146) 

Sii(W) = Sqq(w) = HSww(w) + SwwC-w)} 

We shall show that if the process x(t) is bandpass and WI + We ::: 2roo, then the inphase 
component i(t) and the quadrature component q(t) can be obtained as responses of the 
system of Fig. 10-16a where the LP filters are ideal with cutoff frequency We such that 

(10-147) 

Proof. It suffices to show that (linearity) the response of the system of Fig. 10-16b 
equals wet). Clearly. 

2x(t) = z(t) + z*(t) w*(t) = z*(t)ei01Qt 



x(t) 

-2 sin GIot 
(a) 

Demodulation 

X(I) 

2B-Jr»ot 

H(UJ) lWSwu/..O) 

wCo = J(t) + jq(l) 

H(O) I..PP 

I 1 I 0) w(t) 

0 61.: 

(b) 

/~~: -2fd()} I n I ~) 
: \ -------4~--_!_--.J.+--L-j,I6--~~--""'. 

-2aIo 0 0).: OJ, ~ 0) 

yet) = x(t) q(t) - iet) 
le) 

FIGURE 10·16 

Hence 

2x(t)e-J~t = wet) + w*(t)e-J2oJot 

The spectra of the processes wet) and w·(t)e-J2oJot equal SWIII(CI» and Svn,,( -co - 2mo). 
respectively. Under the stated assumptions. the first is in the band oftheLP filter H(ll) 
and the second outside the band. Therefore, the response of the filter equals wet). 

We note. finally. that if COO :::: t'l>1. then SwID{CO) = 0 for t'l> < O. In this case, q(t) is 
the HUbert transform of l(t). Since t'l>2 - t'l>1 :::: 2oJo, this is possible only if t'l>2 :::: 3col. In 
Fig. 10-16c. we show the corresponding spectra for COO = COl. 

Optimum envelope. We are given an arbitrary process X(I) and we wish to detennine 
a constant COO and a process yet) so that, in the resulting representation (10-125), the 
complex envelope wet) ofx(t) is smooth in the sense of minimizing E{lw'(t)12}. As we 
know. the power spectrum of Wet) equals 

fJisww(CI» = Cl>2Su (co+coo) 

Our problem. therefore. is to minimize the integral4 

M = 2RE{Iw'(t)12} = I: (t'l> - coo)2Su (t'l»dt'l> 

subject to the constraint that S,u(co) is specified. 

(10·148) 

"I.. Mandel: ''Complex Representation of Optical Fields in Coherence Theory;' JOIlnlQI of the Optical 
Sodety of AmericG, vol 57. 1967. See also N. M. Blachman: Noise QIId Its FJ!eet on Communlctztwn, 
Krieger Publishina Company. Malabar. PL, 1982. 
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rt> Rice's representation (10-144) is optimum and the optimum carrier frequency Wo is 
the center of gravity Wo of Sx.r(w)U(w). 

Proof. Suppose, first, that S ..... (w) is specified. In this case,M depends only onWo. Differentiating 
the right side of (10-148) with respect to Wo, we conclude that M is minimum if Wo equals the 
center of gravity 

_ J:OwSu(w)dw io wBxy(w)dw 
Wo = = (10-149) 

f:OSu(w)dw 1000 S)C)C(w)dw 

of Su(w). The second equality in (l0-149)followsfrom (10-138) and (10-140). Inserting (10-149) 
into (10-148), we obtain 

M= 1: (w2-a;~)Su(w)dw=2 J: (w2-~~)Sxx(w)dw (10-150) 

We wish now to choose Su(w) so as to minimize M. Since S .... (w) is given. Mis minimum 
if?£io is maximum. As we see from (10-149), this is the case if IB .. y(w)1 = Szx(w) because 
IBz),(w)1 ~ S .... (w). We thus conclude that - jS"y(w) = Sz..cw)sgn wand (10-138) yields 

Instantaneous frequency. With ,,(t) as in (10-125), the process 

lU/(t) = Wo + ,,'(t) 
is called the instantaneous frequency ofx(t). Since 

z = rej(GIOl~) = x + jy 

we have 

iz* = rr' + jrIN/ = (x' + jy')(x - jy) 

This yields E{rr'} = 0 and 

E{r6.l;} = ~ 1: wSzz(w)dw 

because the cross-power spectrum of t and z equals jwSzz(w}. .. 

(10-151) 

(10-152) 

(10-153) 

The instantaneous frequency of a process x(t) is not a uniquely defined process 
because the dual process yet) is not unique. In Rice's representation y = i. hence 

xi' -rt 
6.1;= r2 

(10-154) 

In this case [see (10-145) and (10-149)] the optimum carrier frequency {ijo equals the 
weighted average of lUi: 
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Frequency Modulation 

The process 

x(t) = COS[Wot + A'P(t) + 'PoJ 'P(t) = l' e(a)da (10-155) 

is PM with instantaneous frequency Wo + Ae(t) and modulation index A. The correspond. 
ing complex processes equal 

wet) = ejJ..tp(tl 

We shall study their spectral properties. 

z(t) = w(t)ei(~'~o) 

~ If the process e(t) is SSS and the random variable 'Po is independent of c(t) and 
such that 

E{ej 9'O} = E{ej~O} = 0 

then the process x(t) is WSS with zero mean. Furthennore, 

Rxx(r) = ~Re Ru(r) 

Rtz(r) = Rww(r)ej~r Rww(,r) = E{w(r)} 

Proof. From (10-157) it follows that E(x(t)} = 0 because 

E(z(t)} = E{ eJ[OIOI+~(/)I}E{eJ!'o} = 0 

Furthennore, 

E{z(t + -r)z(t)} = E{ eJ("'O(2z+~l+l"(I+r)+1p(/)I}E{eJ2too} = 0 

E{z(t + r)z'"(t)} = e1010r E { exp [iA 1,+r 
c(a) da] } = eJ"'Or E(w(r)} 

(10-157) 

(10-158) 

The last equality is a consequence of the stationarity of the process C(t). Since2x(t) = Z(I)+z"(1), 
we conclude from the above that 

4E(x(t + -r)x(t)} = Ru('r) + Ru(-f) 

and (10-158) results because Rzz(-r) = R;t(r). ~ 

Definitions A process x(t) is phase modulated if the statistics of 'P (t) are known. 
In this case, its autocorrelation can simply be found because 

E{w(t)} = E{ej J..91(t)} = 4>,,(A.t) (10-159) 

where 4>,,(A, t) is the characteristic function of 'P(t). 
A process x(t) is frequency modulated if the statistics of e(t) are known. To 

determine 4>,,(A, t), we must now find the statistics of the integral of c(t). However, in 
general this is not simple. The normal case is an exception because then c119l0 .. , t) can be 
expressed in tenns of the mean and variance of 'P{t) and, as we know [see (9-1S6)} 

E{'P(t)} = l' E{c(a)}da = rJct 

E{'P2(t)} = 210' Rc(a)(t - a)da 

(10-160) 
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, Fot: the. determination of the power spectrum Sxx(lIJ) of x(t). we must find the 
function cf>tp(J... t) and its Fourier transform. In general. this is difficult. However, as the 
next theorem shows, if J.. is large, then Sxx (w) can be expressed directly in terms of the 
density fc(e) of e(I). 

~ If the process e(l) is continuous and its density fc(e) is bounded, then for large J..: 

1C [ ((0 -wo) (-w -WO)] Sxx(w) ~ 2A fe -J..- + fe J.. (10-161) 

Proof. If TO is sufficiently small, then e(t) ::::: c(O), and 

cp(t) = l' e(a) da ::::: c(O)t It I < TO (10-162) 

Inserting into (10-159), we obtain 

E{W(T)} :::::: E {eiATC(O)} = q)c(i .. T) ITI < To (10-163) 

where 

Cl>c(.u.) = E { eip.c(I)} 

is the characteristic function of e(t). From this and (10-158) it follows that 

(10-164) 

If A is sufficiently large, then q)c(AT) ::::: 0 for ITI > TO because q)cUL) ..... 0 as /L ..... 00. Hence 
(10-164) is a satisfactory approximation for every T in the region where Cl>c(AT) takes significant 
values. Transfonning both sides of (10-164) and using the inversion formula 

we obtain 

Su(w) = 1: 4>c(A'C)eJ"'O'e-illl• d'C = ~ Ic ('" ~ ~) 
and (10-161) follows from (10-141). <i 

NORMAL PROCESSES. Suppose now that C(l) is normal with zero mean. In this case 
cp(/) is also normal with zero mean. Hence [see (10-160)] r: 

4>tp{J... r) = exp {-!J..2Qi(r)} 

cri{r) = 2foT Rc(ex)(r - ex) dex 
(10-165) 

In general, the Fourier transform of 4>tp (J.. , r) is found only numerically. However, 
as we show next, explicit formulas can be obtained if J.. is large or small. We introduce 

SP. M. Woodward: "The spectrum of Random Frequency Modulation," Thlecommlt1lications Research, Oreat 
Malvern, Worcs., England, Memo 666, 1952. 
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RJa) 

FIGURE 16-17 

the "correlation time" t'c of c(t): 

1'c = .!. [Rc(CX) dcx 
p 0 

and we select two constants 'to and 't1 such that 

{o l'tl > 1') 
RetE') ~ I I , p't<ro 

Inserting into (1 0-165), we obtain (Fig. 10-17) 

{ 
p1'2 It'l < ro e-p>..2T2/2} 

u;(t') ::::: >..2 ::::: Rww(t') 
2Pt'T:e T: > t'J e-P t'T~ 

(10-166) 

(10-167) 

It is known from the asymptotic properties of Fourier transforms that the behavior 
of RU/w(t') for small (large) t' determines the behaviors of Sww(w) for large (small) co. 
Since 

_p)"lTl/2 1 ~ _,.-2/2p>..2 e -E+ - -e 
>.. P 

e-p ),,2 l .ITI -E+ 2p'tc>" 2 

w2 + p2t';>..4 

(10-168) 

we conclude that SlPlIJ (w) is IoreTllian near the origin and it is asymptotically normal as 
CIJ ~ 00. As we show next, these limiting cases give an adequate description of S"'III(IJ» 
for large or small A. 

Wldeband FM. If A is such that 

p>.. 2-rg» 1 

then RU/U/(t') ::: 0 for It'l > 1'0. This shows that we can use the upper ~pproximation in 
(10-167) for every significant value of t'. The resulting spectrum equals 

Sww(ev) :::::.!. ~e-r.-2/2P>..2 = 211' fc (~) 
AV~ A e >.. 

(10-169) 

in agreement with Woodward's theorem. The last equality in (10-169) follows becaUSC 
e(t) is nonnal with variance E{c1(t)} = p. 
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Narrowb.and FM. If J... is such that 

pJ... 2r. rc « 1 

then Rww(r) ~ 1 for Irl < ft. This shows that we can use the lower approximation in 
(10-167) for every significant value of t'. Hence 

(10-170) 

10-4 CYCLOSTATIONARY PROCESSES' 

A process x(t) is called strict-sense cyclostationary (SSCS) with period Tit its statistical 
proPc:rties are invariant to a shift of the origin by integer multiples ofT, or, equivalently, if 

F(xa, ... , XII; II + mT, ... , til + mT) = F(x., ... , XII; tl, ••• , til) (10-171) 

for every integer m. 
A process x(t) is called wide-sense cyclostationary (WSCS) if 

1](t + mT) = 71(t) R(t. + mT, t2 + mT) = R(llt t2) (10-172) 

for every integer m. 
It follows from the definition that if x(1) is SSCS, it is also WSCS. The following 

theorems show the close connection between stationary and cyclostationary processes. 

~ If x(t) is an SSCS process and 6 is a random variable uniform in the interval (0, T) 
and independent of X(I). then the shifted process 

x(t) = x(t - 9) (10-173) 

obtained by a random shift of the origin is SSS and its nth-order distribution equals 

F(XI, ... ,XII;tlt ..• ,tn ) = ~foT F(Xl, ... ,X,.;tl-a, ... ,tll-a)da (10-174) 

Proof. To prove the theorem. it suffices to show that the probabiHty of the event 

A = (i(l. + c) =:; XI. ...• i(l" + c) ~ x.} 

is independent of c and it equals the right side of (10-174). As we know [see (4-80)] 

peA) = ~ iT peA 16 = 8)d8 

Furthermore, .. 
peA 16 = 8) = P{X(II + c - 8) ~ XI •• " , x(t" + c - 8) =:; x" 18} 

And since 6 is independent of x(t). we conclude that 

PtA 18 = 8} = F(xJ, ... , XII; II + C - 8, ... , tit + c - 8) 

Inserting into (10-175) and using (10-171), we obtain (10-174). ~ 

(10-175) 

6N. A. Gardner and L. E. Pranks: Characteristics of Cyc1ostationary Random Signal Processes,lEEE 
TranSfJctwns in IqfiJrmation 'I'Mory. vol. IT-21, 1975. 
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~ !fx(t) is a WSCS process, then the shifted process x(t} is WSS with mean 

fj=.!. (7J(t)dt (10..176) 
T Jo 

and autocorrelation 

R(r)=.!. (R(t+.,t)dt 
T Jo 

Proof. From (6-240) and the independence of e from xCt), it follows that 

I( 
E{x(t - e)} = E{l1(t - 8)} = T Jo 11(1 - 8) d8 

and (10-176) results because l1(t) is periodic. Similarly, 

E(x(t + 't' - 8)x(t - 8)} = E{R(t + 't' - 8, t - 8)} 

liT = - R(t + 't - 8, t - 8) d8 
T 0 

This yields (10-177) because R(t + 't, t) is a periodic function of t. ~ 

Pulse-Amplitude Modulation (PAM) 

An important example of a cyclostationary process is the random signal 
00 

X(I) = L cnh(t - nT) 

(10-.177) 

(10-178) 

whereh(t) is a given function with Fourier transform H (w) and en is a stationary sequence 
of random variables with autocorrelation Rc[m] = E{Cn+mCn} and power spectrum 

00 

Sc(eJQI) = L Rc[m]e-Jnw 

m"'-oo 

~ The power spectrum SAw) of the shifted process x(t) equals 

Sx(w) = ~Sc(eJQt)IH(W)12 

Proof. We form the impulse train 
co 

z(t) = L c,,8(1 - nT) 
11--00 

Clearly, z(t) is the derivative of the process wet) of Fig. 10-18: 
00 

wet) = L c"U(t - nT) z(t) = wet) 

The process wet) is cyclostationary with autocorrelation 

RIII(tt, t,) = L L ReCn - r)UVI - nT)U(t2 - rT) 

" 

(10-179) 

(10-180) 

(10-181) 

(10-182) 
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FIGURE 10-18 

This yields 
00 00 

R,(t + t:, t) = L Rc[m] L 8[t + l' - (m + r)T)8(t - rTl (10-183) 
_.-co '-=-00 

We shall find first the autocorrelation R,(t:) and the power spectrum S,(w) of tbe shifted process 
I(t) = z(t - 8). Inserting (10-183) into (10-177) and using the identity 

iT 8[t + t: - (m + r)T]&(t - rT) dt = 8(t: - mT) 

we obtain 
1 00 

R,(r) = T L Rc[m]&(r - mT) (10-184) 
"=-00 

From this it follows that 

(10-185) 
__ -00 

The process x(t) is the output of a linear system with input z(t). Thus 

x(t) = z(t) * h(t) x(t) = z(t) * h(t) 

Hence [see (10-185) and (9-149)] the power spectrum of the shifted PAM process x(t) is given by 
(10-180). 4J 

~ If the process en is white noise with Sc(w) = q. then 

Sx(w) = ~ IH(w) 12 Rx(t:) = ~h(t) * h(-t) (10-186) 

.... 
~ Suppose that h(t) is a pulse and en is a white-noise process taking the values ±1 
with equal probability: 

{ l O<t<T 
h(t) = 0 ::: . 

. Oud~rwlse 

en = x(nT) Rc[m] = 8[mJ 

The resulting process x(t) is called binary transmission. It is SSCS taking the values ±1 
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xCI) 

(a) 

FIGURE 16-19 

Binary transmission 

I(t) 

(b) 

1 
-T 0 T T 

in every interval (nT - T, nT), the shifted process x(t) = X(I - 8) is stationary. From 
(10-180) it follows that 

S- ( )_ 4sin2(£I>T/2) 
x £I> - Twl 

because Sc(z) = 1. Hence R ~('r) is a triangle as in Fig. 10-19. ~ 

10-5 BANDLIMITED PROCESSES 
AND SAMPLING THEORY 

A process x(t) is called bandlimited (abbreviated BL) ifits spectrum vanishes for Iwl > (I 
and it has finite power: 

S(£I» = 0 Iwl > (I, R(O) < 00 (10-187) 

In this section we establish various identities involving linear functionals ofBL processes. 
To do so, we express the two sides of each identity as responses of linear systems. The 
underlying reasoning is based on the following: 

~ Suppose that Wl (t) and W2(t) are the responses of the systems Tl (w) and T2(W) to 
a BL process x(t) (Fig. 10-20). We shall show that if 

for 1£1>1::: (J (10-188) 

then 

Wl (t) = wz(t) (10-189) .. 

x(t) 

u 

FIGURE 10·20 
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Proof. The difference WI (t) - wz(t) is the response of the system T\ (1'0) - T2(W) to the input 
x(t). Since Sew) = 0 for IltIl > a, we conclude from (9-152) and (10-188) that 

E{(wl (I) - w2(t)12} = - S(w)ITI (w) - TZ(W)!2 dw = 0 1 1" . 2n' -a 

Taylor series. Ifx(t) is BL, then [see (9-134)] 

R(r) = ~ f~ S(&»eiOJr d&> (10-190) 

In (lO-190). the limits ofintegration are finite and the area 21r R(O) of S(&» is also finite. 
We can therefore differentiate under the integral sign 

R(n}(r) = _1 r (j&»"S(&»ejfJJ'I: dw 
2HL" 

(10-191) 

This shows that the autocorrelation of a BL process is an entire function; that is, it has 
derivatives of any order for every -c. From this it follows that X(II) (I) exists for any n (see 
App.9A). 

We maintain that 
co It 

x(t + -c) = L:x(n}(t}~ 
O n! 

11= 

(10-192) 

Proof. We shall prove (10-192) using (10-189). As we know 

co tit 
eJfJJ'I: = L:UW)II- all &> (10-193) 

11=0 n! 

The processes xCt + r) and x(n)(t) are the responses of the systems eJfJJ'I: and U&»", 
respectively. to the input x(t). If, therefore. we use as systems T\ (&» and T2(&» in 
(10-188) the two sides of (10-193), the resulting responses will equal the two sides ot 
(10-192). And since (10-193) is true for all &>, (10-192) follows from (10-189). 

Bounds. Bandlimitedness is often associated with slow variation. The following is an 
analytical formulation of this association. 

Ifx(/) is BL. then 

or, equivalently, 

Proof. The familiar inequality Isin~1 ~ IqJl yields 

wt' w2." 
1- cOS&>'t' = 2 sin" - <--

2 - 2 

7 AU identi.ties in this secdon are interpreted in the MS sense. 

(10-194) 

(10-195) 
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Since Sew) ~ 0, it follows from the above expression and (9-135) that 

R(O) - R{-r) = 21 r S(w)(1 - cos wt') dw 
7r L" 
1 1" w2• 2 u2• 2 L u 2

• 2 
:::: ? S(w)-- dw:::: -- S(w)dw = --R(O) 

_7r -" 2 41r -" 2 

as in (10-195). 

Sampling Expansions 

The sampling theorem for deterministic signals states thatif f (t) ~ F (w) and F (w) = 0 
for Iwl > 0', then the function f (t) can be expressed in terms ofits samples f (n T), where 
T = 1r / u is the Nyquist interval. The resulting expansion applied to the autocorrelation 
R(t') of a BL process x(t) takes the following form: 

R{.) = t R(nT) sin 0' (t' - nT) 
u(t' - nT) n=-oo 

We shall establish a similar expansion for the process x(t). 

p> If x(t) is a BL process, then 

~ sinu(. - nT) 
x(t + t) = L...J x(t + nT) u(. _ nT) 

n=-oo 

7r 
T=­

u 

(10-196) 

(10-197) 

for every t and •. This is a slight extension of (10-196). This extension will permit us to 
base the proof of the theorem on (10-189). 

Proof. We consider the exponential ei",r as a function of w, viewing • as a parameter, and we 
expand it into a Fourier series in the interval (-(1 ::: w ::: (1). The coefficients of this expansion 
equal 

I 1a 
_j",r -J·"r"'d sin (1(. - nT) all =- r:" e W= 

2(1 -a (1(. - nT) 

Hence 

eiOJr = ~ eillT .. sin u(-. - nT) 
L...J (1(-' - nT) 

(10-198) 
n=-oo 

We denote by T.(w) and T2(w) the left and right side respectively of (10-197). Clearly, T. (w) isa 
delay line and its response WI (I) to x(t) equals X(I + .). Similarly, the response..w2(t) of T2(w) to 
x(t) equals the right side of (10-197). Since TI(w) = T2(W) for Iwl < u, (10-197) follows from 
(10-189). <t1 

Past samples. A deterministic BL signal is determined only if all its samples, past and 
future, are known. This is not necessary for random signals. We show next that a BL 
process x(t) can be approximated arbitrarily closely by a sum involving only its past 
samples x(nTo) provided that To < T. We illustrate first with an example.8 

8L. A. Wainstein and V. Zubakoy: Ulraction of Signals in NOise. Prentice-Hall, Englewood Cliffs, NJ, 1962. 
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~ Consider the process 

let) = nx(t - To) - (;) x(t - 2To) + ... - (-l)"x(t - nTo) 

The difference 

y(t) = x(t) - :i(t) = t(-li (~)X(t - kTo) 
k..o 

is the response of the system 

H(w) = t(-l)k (~) e-jkTObI = (1 - e-JII>Tof 
k=O 

(10-199) 

with input x(t). Since IH(w)1 = 12 sin(wTo/2) In , we conclude from (9-45) that 

(to-200) 

If To < 11'/3(/, then 2 sin IwTo/21 < 2 sin (11' /6) = 1 for Iwl < (/. From this it follows that 
the integrand in (10-200) tends to 0 as n ---+- 00. Therefore, E{f(t)} ~ 0 and 

i(t) ---+- x(t) as n ---+- 00 

Note that this holds only if To < T /3; furthermore, the coefficients m oU(t) tend to 00 

asn~oo . ... 

We show next that x(t) can be approximated arbitrarily closely by a sum involving 
only its past samples X(I - kTo), where To is a number smaller than T but otherwise 
arbitrary. 

~ Given a number To < T and a constant 6 > 0, we can find a set of coefficients ak 

such that 
n 

:i(t) = L akx(t - kTo) (10-201) 
k=l 

where n is a sufficiently large constant 

Proof. The process x(t) is the response of the system 

• 
pew) = Lakl!-JkToo> (10-202) 

... 1 

with input XCI). Hence 

l1/1 E{lx(t) - i(t)12} = 211' _/I S(w)ll - P(w) 12 ~w 

It suffices, therefore. to find a sum of exponentials with positive exponents only, approximating 1 
arbitrarily closely. This cannot be done for every Iwl < 0'0 = 1I'/To because pew) is periodic with 
period 20"0. We can show, however, that if (10 > (1, we can find pew) such that the differences 
11 - P(w)1 can be made arbitrarily small for Iwl < (/ as in Fig. 10-21. The prooffollows from 
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FIGURE 10-21 

x(t) 

(1' Cd 

FIGURE 10-22 

the Weierstrass approximation theorem and the Fejer-Riesz factorization theorem; the details. 
however, are not siJ:nple.9 

Note that, as in Example 10-5, the coefficients at tend to 00 as 8 -+ O. This is based on the 
fact that we cannot find a sum P(w) of exponentials as in (10-202) such that 11 - P(w}1 = 0 for 
every w in an interval. This would violate the Paley-Wiener condition (9-203) or more generally 
(11-9). <Ct! 

THE PAPOULIS SAMPLING EXPANSION.IO The sampling expansion holds only ifT :::; 
1C /(1. The following theorem states that if we have access to the samples of the outputs 
YI (t), ... , YN(r) of N linear systems HI (w), ... I HN(w) driven by x(t) (Fig. 10-22), 
then we can increase the sampling interval from 1r / (1 to N 1C /(1. 

We introduce the constants 

2(1 21r 
c=-=-

N T 
(10-203) 

and the N functions 

9 A. Papoulis: "A Note on the Predictability of Band-Limited Processes." Proceedings qfthe IEEE. vol 13. 
no. 8. 1985. 
lOA. Papoulis: "New Results in Sampling Theory," Hawaii Intern C:mf. System Sciences. January. 1968. 
(See also Papoulis. 1968 [19]. pp. 132-137.) 
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defined as the solutions of the system 

HJ (w)P1 (w, -r) + ... + HN(w)PN(w, 1") 
HI (w + c)PJ (w. 1:) + ... + H.N{W + C)PN{W, -r) 

=1 
= eict 

HI (w + Nc - c) PI (w, -r) + ... + HN(w + Nc - C)PN(W, -r) = ei(N-I)cr (10-204) 

In (1O-204), w takes all values in the interval (-0', -0' + c) and -r is arbitrary. 
We next form the N functions 

(10-205) 

00 

~ x(t + 1:) = I: LYI(t + nT)PI{1: - nT) + ... + YN{t + nT)PN(-r - nT)] 
n=-oo 

(10-206) 

Proof. The process YI (1 + nT) is the response of the system HI (w)eiIlTo> to the input x(t). There­
fore, jfwe use as systems T,(w) and T2(W) in Pig. 10-20 the two sides of the identity 

~ ~ 

ei6>r = HI (w) I: PI Ct - nnei".?! + ... + HN{W) I: PHCt - nT)eJ- T (10-207) 
n_-oo 

the resulting responses will equal the two sides of (10-206). To prove (1 0-206), it suffices, therefore, 
to show that (10-207) is true for every Iwl == 0'. 

The coefficients Hit. (w + kc) of the system (10-207) are independent of t and the right side­
consists of periodic functions of r with period T = 2n / c because ejkcT = 1. Hence the solutions 
PIt.(w •• ) are periodic 

P,,(w, t - nT) = P,,(w, r) 

From this and (10-205) it follows that 

Pk(T: - nT) = - Pt(w, .)eJ6>(r-lIT) dw 
- Ij-O'+C _ 

c -0' 

This shows that if we expand the function PIt.(w, .)eiOlf into a Fourier series in the interval 
(-0', -a + c), the coefficient of the expansion will equal pt(r - nT). Hence 

~ 

Pj:(w, r)ei .. r = L PtCt - nT)eill .. T -0' < W < -a + c (10-208) 
11=-00 

Multiplying each of the equations in (10-204) by eJ"" and using (10-208) and the identity 

eI"(tri-kcif = ei- f 

we conclude that (10-207) is true for every w in the interval (-a, 0'). ~ 

Random Sampling 

We wish to estimate the Fourier transform F(w) of a deterministic signal J{t} in terms 
of a sum involving the samples of J(t). If we approximate the integral of f(t)e-J(J)I by 
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its Riemann SUIIl, we obtain the estimate 
00 

F(w) :::: F",(w) == L Tf(nT)e-iftI»T (1()..209) 
n=-oo 

From the Poisson sum formula (lOA-I). it follows that F.(w) equals the sum of F(cu) 
and its displacements 

00 

F*(w) = :L F(w + 2n0') 
n=-oo 

11: 
0'=-

T 

Hence F*(w) can be used as the estimate of F(w) in the interval (-0',0') only if F(cu) is 
negligible outside this interval. The difference F(w) - F.(w) is called aliasing error. In 
th~following, we replace in (10-209) the equidistant samples f(nT) of I(t) by its sam. 
pIes I Cti) at a random set of points t; and we examine the nature of the resulting elTOr.1I 

We maintain that if t, is a Poisson point process with average density A, then the sum 

pew) = ~ :L !Cti)e-jllJC/ (10-210) 
A . 

I 

is an unbiased estimate of F(w). Furthennore, if the energy 

E = L: f2(t) dt 

of f(t) is finite, then pew) -+ F(w) as A -+ 00. To prove this, it suffices to show that 

2 E 
E{P(w)} = F(w) O'P(OI) = i (10-211) 

Proof. Clearly. 

100 !Ct)e-jOJl:L 8(1 - tl) dt = :L !(~)e-j~ 
-00 1 i 

(10-212) 

Comparing with (10-210). we obtain 

P«(Q) = ~ 100 
fCt)z(t)e- jOJl dt 

A -00 
where zCt) = L 8(1 - ti) (10-213) 

is a Poisson impulse train as in (9-107) with 

E{z(t)} = A C~(t .. t2) = A8{tl - t2) (10-214) 

Hence 

1100 
E{P(w)} = I -00 l(t)E{z(t)}e-iOJl dt = F(w) 

11 E. Masry: "Poisson Sampling and SpeclI1l1 Estimation of Continuous-nme Processes," IEEE ntmsoctions 
on Info17nlllion Theory, vol. IT-24, 1978. See also F. J. Beutler: "Alias Free Raudomly Tuned Sampling of 
Stocbastlc Processes," IEEE Transactions on Jriformation TMory, vol.lT·16, 1970. 
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From (l0-21t) it follows that, for a satisfactory estimate of F(w), A must be such 
that 

. IF(a»1 » V¥ 
~ Suppose that f(t) is a sum of sine waves in the interval (-a, a): 

f(t) = L qei&Jtl 

k 

and it equals 0 for It I > a. In this case, 

F(a» = 2: 2Ck sin a (a> - a>k) 

k a> - a>k 

It I < a 

(10-215) 

(10-216) 

where we neglected cross-products in the evaluation of E. If a is sufficiently large, then 

This shows that if 

2: Ic;l2 « 2aAlcd 
i 

Thus with random sampling we can detect line spectra of any frequency even if the 
average rate A is small, provided that the observation interval 2a is large. ~ 

10-6 DETERMINISTIC SIGNALS IN NOISE 

A central problem in the applications of stochastic processes is the estimation of a 
signal in the presence of noise. This problem has many aspects (see Chap. 13). In the 
following, we discuss two cases that lead to simple solutions. In both cases the signal is 
a deterministic function f(t) and the noise is a random process vet) with zero mean. 

The Matched Filter Principle 

The following problem is typical in radar: A signal of known form is reflected from a 
distant target; The received signal is a sum 

x(t) = f(t) + vet) E{v(t)} = 0 

where J(t) is a shifted and scaled version of the transmitted signal and vet) is a WSS 
process with known power spectrum S(a». We assume that J(t) is known and we 
wish to establish its presence and location. To do so, we apply the process x(t) to a 
linear filter with impulse response h (t) and system function H (a». The resulting output 
yet) = xCt) * h(t) is a sum 

y(t)'= I: x(t - a)h(a)d(a) = Yf(t) + y,,(t) (10-217) 



where 

y/(t) = f(t - a)h(a) da = - F(OJ)H(OJ)eiOJl dO) 100 1 100 

-00 2n' -00 
(10-218) 

is the response due to the signal f(t), and y,,(t) is a random component with average 
power 

(10-219) 

Sincey,,(t) is due to lI(t) and El,(t)} = 0, weconcludethatE{y,,(t)} = OandE{y(t)}:::: 
y,(t). Our objective is to find H(O)) so as to maximize thesignal~to-Mise me 

p = ..."",y=,=(Io::::)=1 = 
VE {y~(to)} 

(10-220) 

at a specific time to. 

WHITENOISE. Suppose. first. that S(O) = ul. Applying Schwarz's inequality (lOB-I) 
to the second integral in (10-218), we conclude that 

2 jlF(O)eJOlto 12 dOJ JIH(0)12 dOJ E I 
p !S 2n'UG jl H(OJ) 12 dO) = u& (10-221) 

where E, = (1/2n-) jIF(O) 12 dw is the energy of f(t). The above is an equality if [see 
(lOB-2)] 

H(O) = kF*(OJ)e-JOJIo h(t) = kf(1o - t) (10-222) 

This determines the optimum H(O) within a constant factor k.The system so obtained 
is called the 11IIJtChed filter. The resulting signal-to-noise ratio is maximum and it equals 

VE/lul. 

COLORED NOISE. The solution is not so simple if S(O) is not a constant. In this case. 
first multiply and divide the integrand of (10-218) by ...(!{O)) and then apply Schwarz's 
inequality. This yields 

l2n"y,(1o)12 = If :i~) VS(W)H(W)elt»todfl>r 

• 

f IF(w)12 f 
!S S(OJ) dO) S(O)IH(O) 12 dO) 

Inserting into (10-220), we obtain 

2 < jWdO) jS(w)IH(OJ)12 dw _ ..!. f IF(0)12 

P - 2n" jS(0)IH(0)12 dOJ - 2n" S(fl» dOJ 
(10-223) 
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Equality holds if 

F*(w)e- jW10 
V SeW) H(w) = k ,JS(Wi 

Thus the signal-to-noise ratio is maximum if 

H(w) =kr(w) e-jw1o 

Sew) 
(10-224) 

TAPPED DELAY LINE. The matched filter is in general noncausal and difficult to real­
ize.12 A suboptimal but simpler solution results if H (w) is a tapped delay line: 

(10-225) 

In this case, 
m m 

Yj(to) = 2: aj f(to - iT) Y\I(t} = 2: a; vet - iT) (10-226) 
1=0 ;=0 

and our problem is to find the m + 1 constants aj so as to maximize the resulting signal­
to-noise ratio. It can be shown that (see Prob. 10-26) the unknown constants are the 
solutions of the system 

m 

2:a;R(nT - iT) = kf(to - nT) n = 0, ... , m (10-227) 
1=0 

where R(t) is the autocorrelation of vet) and k is an arbitrary constant. 

Smoothing 

We wish to estimate an unknown signal f(t) in terms of the observed value of the sum 
X(I) = f(t) + vet). We assume that the noise vet) is white with known autocorrelation 
R(tJ, 12) = q(tl)8(tl - 12)' Our estimator is again the response yet) of the filter h(t): 

yet) = 1: x(t - .)h(.) d. (10-228) 

The estimator is biased with bias 

b = YJ(t) - f(t) = 1: f(t - 7:)h(r)d. - f(t) 

and variance [see (9-99)] 

(J'2 = E {y;(t)} = L q(t - 't')h2{,r) d. 

Our objective is to find h(t) so as to minimize the MS error 

e = E{[y(t) - f(t)]2} = b2 + (J'2 

(10-229) 

(10-230) 

llMore generally, for the optimum causal transmitter-receiver pair given the wgetresponse as well as the 
intedemlce and noise spectral characteristics, see S. U. PilIai, H. S. Oh, D. C. Youla and J. R. Guerci, 
"Optimum Transmit-Receiver Design in the Presence of Signal-Dependent Interference and Channel Noise." 
IEEE T1YlIis. 0II1njoT11llJt1on Theory, vol. 46, no. 2, pp. 577-584, March 2000. 
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We shall assume that h(t) is an even positive function of unit area and finite 
duration: 

h(-t) = her) rT h(t)dt = 1 LT h(t) > 0 (1()"23l) 

where T'is a constant to be detennined. If T is small. y/(t) ~ f(t). hence the bias is 
small; however. the variance is large. As T increases. the variance decreases but the bias 
increases. The determination of the optimum shape and duration of h(t) is in general 
complicated. We shall develop a simple solution under the assumption that the functions 
f(t) and q(t) are smooth in the sense that f(t) can be approximated by a parabola and 
q(t) by a constant in any interval of length 2T. From this assumption it follows that 
(Taylor expansion) 

1"2 
f(t - T) ~ f(t) - Tf'(t) + "2/,,(1) q(t - -r) ~ q(t) (10-232) 

for 11"1 < T. And since the interVal of integration in (10-229) and (10-230) is (-T, T), 
we conclude that 

b ~ Pit) 1: t'2h(t') d1" (10-233) 

because the function h(t) is even and its area equals 1. The resulting MS error equals 

e ~ !M2[f"(/)]2 + Eq(t) (l0-234) 

where M = j!T t2k(t) dt and E = j!T h2(t) d1". 
To separate the effects of the shape and the size of h(t) on the MS error, we 

introduce the nonnalized filter 

wet) = Th(Tt) (10-235) 

The function wet) is of unit area and wet) = 0 for It I > ]. With 

Mw = 1: t2w(t)dt = ~ Ew = 1: w2(t)dt = TE 

it follows from (10-231) and (10-234) that 

T2 E 
b ~ 2'MIII /,,(t) 0'2 = ; q(t) (10-236) 

1 E 
e = 4T2M;[/,,(t)]2 + ; q(t) (10-237) 

Thus e depends on the shape of wet) and on the constant T. 

THE TWO-TO-ONE RULEP We assume first that wet) is specified. In Fig. 10-23 we 
plot the bias b, the variance 0'2, and the MS error e as functions of T. As T increases. 
b increases. and 0'2 decreases. Their sum e is minimum for 

( Ewq(t) ) I/S 
T - T. -

- m - M;,[r(t)]2 

13 A. Papoulis, Two-to-One Rule in Data Smoothing,lEEE Thrns. In/. Theory, September, 1977. 

(10-238) 
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Inserung into (10·236). we conclude, omitting the simple algebra, that 

0' = 2b (10-239) 

Thus if wet) is of specified shape and T is chosen so as to minimize the MS error e, then 
the standard deviation of the estimation error equals twice its bias. 

MOVING AVERAGE. A simple estimator of f (I) is the moving average 

1 It+T 
yet) = -2 x('r) dr: 

T t-T 
of:x:(t). This is a special case of (10-228), where the nonnalized filter wet) equals a pulse 
of width 2. In this case 

Mw = - t2 dt =-111 1 
2 -1 3 

Inserting into (10-238), we obtain 

5 9q(t) 
Tm == 2[fH(t)]2 

111 1 Ew = - dt =-
4 -1 2 

(10-240) 

THE PARABOLIC WINDOW. We wish now to determine the shape of w(t) so as to 
minimize the sum in (10-237). Since h(t) needs to be determined within a scale factor, it 
suffices to assume that Ew has a constant value. Thus our problem is to find a positive even 
function wet) vanishing for It I > 1 and such that its second moment Mw is minimum. 
It can be shown that (see footnote 13, page 486) 

wet) == {00·75(1- t2) It I < 1 E _ ~ 
It I > 1 w - S 

M _1 
w-! (10-241) 

Thus the optimum wet) is a truncated parabola. With wet) so determined, the optimum 
filter is 

h(t) == _1 w (_t ) 
Tm Tm 

where Tm is the constant in (10-238). This filter is, of course, time varying because the 
scaling factor T m depends on t. 
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DEFINITION 

10·7 BISPECTRA AND SYSTEM 
IDENTIFICATION14 

Correlations and spectra are the most extensively used concepts in the applications of 
stochastic processes. These concepts involve only second-order moments. In certain 
applications. moments of higher order are also used. In the following. we introduce the 
transform of the third-order moment 

(10-242) 

of a process x(t) and we apply it to the phase problem in system identification. We 
assume that x(t) is a real SSS process with zero mean. From the stationarity ofx(t) it 
follows that the function Rxxx(ti. t2. t3) depends only on the differences 

tl - 13 = J1, 12 -13 = II 

Setting 13 = tin (10-242) and omitting SUbscripts. we obtain 

R(tj, 12. t3) = R(J1,. v) = E(x(1 + J1,)X(t + v)X(t») (10-243) 

~ The bispectrum S(u, v) of the process X(I) is the two-dimensional Fourier transform 
of its third-order moment R (IL, 1.1): 

S(u. v) = 11: R(J1,. v)e-j(""'+PlI'dlL dv 

The function R(J1" 11) is real; hence 

S( -u, -v) = S*(u. v) 

Ifx(t) is white noise then 

R(J1,. v) = Q8(J1,)8(v) S(u, v) = Q 

(10-244) 

(10-245) 

(10-246) 

Notes I. 1be third-order moment of a normal process with zero mean is identically zero. This is a conse· 
quence of the fact that the joint density of three jointly normal random variables with zero mean is symmetrical 
with respect to the origin. 

2. The autocorrelation of a white noise process with third-order momellt as in (10·246) is an im· 
pube q&(1'); in general, however. q:F Q. For example ifx(/) is normal white noise, then Q = 0 but q:FO 
Furthermore. whereas q > 0 for all nontrivial processes, Q might be negative. 

SYMMETRIES. The function R(tl, 12, 13) is invariant to the six peanutations of the 
numbers II.h, and 13. For stationary processes, 

I 1\./2. /3 fl., 1/ U, II 4 13. '2, II -IJ..-IJ.+V -14-11.11 

2 12. /1, '3 V. IJ. II,U 5 12. '3.'1 -IJ.+V,-J.L II.-U-II 

3 Il. tl, 12 -V.IJ.-V -U -II.U 6 II. '3.12 IJ.- II,-V U. -u-v 

140 R. Brillinger: "An Introduction to Polyspectra," Annals of Math Slatistics, vol. 36. Also C. L. Nikias and 
M. R. Raghuveer (1987): "Bispectrum Estimation; Digital Processing Framework:' IEEE Proceedings, 
vol. 75, 1965. ' 
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FIGURE 10-24 

II 1* 
tan IJ "" 112 

II'" 

This yields the identities 

R(J,L, II) = R(v. J.L) = R(-v, p. - II) = R(-p., -p. + v) 

= R(-p. + v, -p.) = R(p. - v, -v) (10-247) 

Hence if we know the function R(p., v) in anyone of the six regions of Fig. 10-24, we 
can determine it everywhere. 

From (10-244) and (10-247) it follows that 

S(u, v) = S(v, u) = S(-u - v, u) = S(-u - v, v) 

= S(v, -u - v) = S(u, -u - v) (10-248) 

Combining with (10-245), we conclude that if we know S(u, v) in anyone of the 12 
regions of Fig. 10-24, we can determine it everywhere. 

Linear Systems 

We have shown in (9-119)-(9-121) that if:x(t) is the input to a linear system, the third­
order moment of the resulting output yet) equals 

RyyyCtl> t2, t3) = II [ RxxxCtl-a, t2-~' t3-y)h(a)h(jJ)h(y)dotd~dy (10-249) 

For stationary processes, Rxxx(tl-a, t2-~' t3-Y) = Rx.u(p.+y-a, v+y-~);hence 

Ryyy(p., v) = Iff: Rn.x(p.+y -a, II+Y -~)h(a)h(~)h(y)dad~dy (10-250) 
.. 

Using this relationship. we shall express the bispectrum Syyy(u, v) of y(t) in terms of 
the bispectrum Sx;cx(u, v) ofx(t). 

Sy),y(u, v) = S,x.u(u, v)H(u)H(v)H*(u + v) 

Proof. Taking transformations of both sides of (10-249) and using the identity 

I [ Rxxx (jL + y - a, II + y - p)e-}(u,.+w) dp. dll 

= S""x(U, v)ei[/I(Y-G')+u{Y-.B>1 

(10-251) 
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r:X,\\IPLE 10-7 

we obtain 

S)'1\'(U' v) = S ...... (u. v) //1: fli("()'-<tI+u{I'-Jl)Jh(a)h(fJ)h(y)dad~dy 
Expressing this integral as a product of three one-dimensional integrals. we obtain (l 0-251). ~ 

~ Using (10-249), we shall determine the bispectrum of the shot noise 

set) = L h(t - t;) = z(t) * h(t) z(t) = I: aCt -~) 
i ; 

where t; is a Poisson point process with average density)... 
To do so, we form the centered impulse train i(t) = z{t) - A. and the centered shot 

noise set) = i(t) * h(t). As we know (see Prob. 10-28) 

RUf(fJ., v) = M(fJ.)a(v) hence Sm(u, v) = A. 

From this it follows that 

Sm(U, v) = )"HCu)HCv)H*Cu + v) 

andsinceS.fi(w) = )..IH(w)12, we conclude fromProb. 10-27 withe = E{s(t)} = )"H(O) 
that 

S6&$(U, v) = )"H(u)H{v)H"(u + v) 

+ 21t')..2H (0) [I H (u) 124S (v) + IH(v)12a(u) + IH(u)12a{u + v)] 

+ 41t'2).. 4 H3(0)a(u)a(v) 

SysreDlIdentification 
A linear system is specified terminally in terms of its system function 

H (w) = A(w)eif>(&I) 

System identification is the problem of determining H(w). This problem is central in 
system theory and it has been investigated extensively. In this discussion, we apply the 
notion of spectra and polyspectra in the determination of A(w) and tp(w). 

SPECTRA. Suppose that the input to the system H (w) is a WSS process x(t) with power 
spectrum Sx.r(w). As we know. 

(10-252) 

This relationship expresses H(w) in terms of the spectra Su(CI» and SIC,(CI» or, equiv­
alently, in terms of the second-order moments Rxx(-r) and RIC, (-r). The problem of 
estimating these functions is considered in Chap. 12. In a number of applications, we 
cannot estimate RlCyC-r) either because we do not have access to the input x(t) of the 
system or because we cannot form the product X(I + -r)y(/) in real time. In such cases, 
an alternative method is used based on the assumption that X(/) is white noise. With this 
~sumption (9-149) yields . 

(10-253) 
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This relationship detennines the amplitude A(a» of H(a» in tenns of Syy(a» within a 
constant factor. It involves, however, only the estimation of the power spectrum Syy(a» 
of the output of the system. If the system is minimum phase (see page 499, and also 
Appendix 12A, page 574), then H(a» is completely detennined from (10-253) because, 
then, f/J(a» can be expressed in tenns of A (a». In general, however, this is not the case. 
The phase of an arbitrary system cannot be determined in terms of second-order moment 
of its output. It can, however, be determined if the third-order moment of yet) is known. 

PHASE DETERMINATION. We assume that x(t) is an SSS white-noise process with 
Sxxx(u, v) = Q. Inserting into (10-251), we obtain 

Syyy(u, v) = QH(u)H(v)H*(u + v) (10-254) 

The function Syyy(u, v) is, in general. complex: 

Syyy(u, v) = B(u, V)el8(Il.lJ) (10-255) 

Inserting (10-255) into (10-254) and equating amplitudes and phases, we obtain 

B(u, v) = QA(u)A(v)A(u + v) 

9(u, v) = q>(u) + f/J(v) - f/J(u + v) 

(10-256) 

(10-257) 

We shall use these equations to express A(a» in terms of B(u, v) and f/J(a» in 
tenns of 9(u, v). Setting v = 0 in (10-256), we obtain 

2 1 3 QA (a» = A (0) B(a>, 0) QA (0) = B(O,O) (10-258) 

Since Q is in general unknown, A (a» can be determined only within a constant factor. The 
phase f/J(a» can be determined only within a linear term because if it satisfies (10-257), 
so does the sum q>(a» + ca> for any c. We can assume therefore that f/J'(O) = O. To find 
f/J(a». we differentiate (10-257) with respect to v and we set v = O. This yields 

av(u,O) = -f/J' (u) f/J(a» = -161 
all(u, 0) du (10-259) 

where (Mu, v) = aa(u, v)/av. The above is the solution of (10-257). 
In a numerical evaluation of q>(a», we proceed as follows: Clearly, 9(u, 0) = 

f/J(u) + f/J(O) - f/J(u) = f/J(O) = 0 for every u. From this it follows that 

(lu(u,O) = lim ~ B(u,.6) as A ~ 0 

Hence OIl(U, 0) ::::: O(u, MI.6 for sufficiently small .6. Inserting into (10-259), we obtain 
the approximations 

11lJJ f/J(a» ::::: -- 9(u, .6)du 
A 0 

n 

qJ(nA)::::: - L:9(k.6,.6) 
k=1 

(10-260) 

This is the solution of the digital version 

9(k.6, rA) = q>(k.6) + qJ(r.6) - q>(k.6 + rA) (10-261) 

of (10-257) where (k.6, r.6) are points in the sector I of Fig. 10-24. As we see from 
(10-261) qJ(nA) is determined in terms of the values of O(k.6, A) of O(u, .6) on the 
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v V 

'IT 

A 'IT 

II 0 A II 

(a) (b) 

FIGURE 10-25 

horizontal line V = t:... Hence the system (10-261) is overdetermined. This is used to 
improve the estimate of (('(Cd) if 9(u, v) is not known exactly but it is estimated in 
terms of a single sample of yet). IS The corresponding problem of spectral estimation is 
considered in Chap. 12. 

Note lethe bispectrum S(II. 11) ofaprocess x(t) equals lherigbtside of (10-2S4) and H(Cd) .. 0 for ICdI >(1. 
then 

5(11.11) = 0 for 1111> 0' or Ivl > 0' or lit + vi> 0' 

Thus. S(II. 11) = 0 outside the hexagon of ITJg. 10-2SlI. From this and the symmetries of Fig. 10-24 it follows 
that S(II, 11) is uniquely clete.nnined in terms ofits values in the triangle DAB of Fig. 10-2Sa. 

Digital processes. The preceding concepts can be readily extended to digital processes. 
We cite only the definition of bispectra. 

Given an SSS digital process x[n], we form its third-order moment 

R[k. r] = E{x[n + k]x[n + rJx[n]} 

The bispectrum of x[n] is the two-dimensional DFf of Rlk. r): 
00 00 

S(u, v) = L L R[k. r]e-}(IIA:+lIr) 

k=-oor=-oo 

This function is doubly periodic with period 2n': 

S(u + 21rm. v + 21rn) = S(u. v) 

.. 

(10-262) 

(10-263) 

(10-264) 

It is therefore determined in terms of its values in the square lui ~1l',lvl:::;:1l' of 
Pig. 10-25b. Furthermore. it has the 12 symmetries of Fig. 10-24. 

Suppose now that x[n] is the output of a system H (z) with input a white noise pro­
cess. Proceeding as in (10-251) and (10-254) we conclude that its bispectrum 

I~. Matsuoka and T. J. Ulrych: "Phase Estimation Using the Bispectrum," IEEE Procetldings, voL 72, 1984. 
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equals 

S(u, v) = QH(ei")H(eiO)H(e-j(a+u») 

From the above expression it follows .that S (u, v) is determined here in tenus of its values 
in the triangle OAB of Fig. 10·25b (see Prob. 10-29). 

APPENDIX lOA 
THE POISSON SUM FORMULA 

If . 

F(u) = [: !(x)e-jux dx 

is the Fourier transform of I(x) then for any c 
00 1 00 E I(x + nc) = c E F(nuo)eillMt' 

n--oo n=-oo 

Proof. Clearly 
00 1 00 L 8(x +nc) = c E einu~ 

n-oo n=-oo 

21t 
uo=­

c 

because the left side is periodic and its Fourier series coefficients equal 

l1CJ2 1 - 8(x)e-jnl/~ dx = -
c -c!2 C 

Furthermore, 8(x + nc) * I(x) = I(x + nc) and 

ej,,~ * I(x) = 100 ei""o(x-a) I(et) det = eJ"a~ F(nuo} 
-00 

(IOA-]) 

(lOA-2) 

Convolving both sides of (10A-2) with I(x) and using the last equation, we obtain 
(lOA-I). 

APfENDIX lOB 
THE SCHWARZ INEQUALITY 

We sliall show that 

I b 12 b b 
1 I(x)g(x) dx :::: 1 I/(x) 12 dx 1Ig(X),2 dx (lOB-I) 

with equality iff 

I(x) = kg*(x) (lOB·2) 
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Proof. Clearly 

lib !(X)g(X)dXI $ib 
1!(x)lIg(x)1 dx 

Equality holds only if the product !(x)g(x) isreal. This is the case if the angles of I(x) 
and g(x) are opposite as in (10B-2). It suffices, therefore, to assume that the fUnctions 
lex) and g(x) are real. The quadratic 

l(z) = l\f(X) -zg(x)]2dx 

= z2ib g2(x)dx - 2z lb l(x)g(x)dx + [ l2(x)dx 

is nonnegative for every real z. Hence, its discriminant cannot be positive. This yields 
(lOB-I). If the discriminant of I (z) is zero, then I (z) has a real (double) root z = k. 
This shows that 1 (k) = 0 and (lOB-2) follows. 

PROBLEMS 

10-1 Find the first-order characteristic function (a) of a Poisson process, and (b) of a Wiener 
process. 

Answer: (a) e)JI.Jto>-I); (b) e-«,.,2/2 

10-2 (1Wo-dimensional rtutdom walk). The coordinates x(t) and yet) of a moving object are two 
independent random-walk processes with the same sandT as in Fig. 10-30. Show that if 
z(t) = ";X2(t) + y2(1) is the distance of the object from the origin and t » T, then for z 
of the order of ./iii: 

S2 
a=-

T 

10-3 In the circuit of Fig. PlO·3. ~(t) is the voltage due to thermal noise. Show that 

2kTR 2kTR 
S»(w) = (1-wlLC)2+wlR2(;2 Si(W) = Rl+wlL2 

and verify Nyquist's theorems (10-75) and (10-78). 

n/"'t) 
R II 

+ 

L c \'(t) 

b b 

Ca) (b) 

FIGURE PIo.3 

10-4 A particle in free motion satisfies the equation 

mx"(t) + !x(t) = F(t) Sp((U) = 2k71 
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Show that if x(O) = x' (0) = O. then 

E{:x2(t») = 2D2 (t -2. + .!..e-2a1 - ~e-4a') 
4a a 4a 

where D2 = kT// and a = f/2m. 
Hint: Use (9-99) with 

h(t) = 7(1- e-lal)U(t) q(t) = 2kTjU(t) 

10·5 The position of a particle in underdamped harmonic motion is a nonna! process with 
autocorrelation as in (10-60). Show that its conditional density assuming x(O) = Xo and 
x'(O) = v(O) = Vo equals 

/x(J) (x I Xo. Vo) = J:7r p e-(X-~-bvo)l/2P 

Find the constants a, b, and P. 
10·6 Given a Wiener process wet) with parameter a, we form the processes 

x(t) = w(t2) yet) = w2(t) z(t) = Iw(t)1 

Show that x(t) is normal with zero mean. Furthermore, if II < '2. then 

Rx(tl. t2) = atl Ry(tl. t2) = a2tl (211 + t2) 

R:(t .. t2) = 2a .Jiit2(cosS + 8 sin8) sin8 = f!i. 
7r V~ 

10·7 The process set) is shot noise with).. = 3 as in (10-96) where h(t) = 2 for 0 :::: t :::: 10 and 
h(t) = 0 otherwise. Find E{s(t)}, E{rCt»). and P{s(7) = OJ. 

10·8 The input to a real system H(w) is a WSS process x(t) and the output equals y(t). Show 
that if 

R .. x(T:) = Rn(T:) Rxy(-T:) = -R .. ,(T:) 

as in (10-130), then H(w) = jB(w) where B(w) is a function taking only the values +1 
and-I. 

Special case: Ify(t) = i(t). then B(w) = -sgn w. 
10·9 Show that if i(l) is the Hilbert transform of x(t) and 

l(t) = X(I) cosWot + let) sinWot 

then (Fig. PI0-9) 

SI(W) = Sq(w) = S .. (w) + SII/(-w) 
4 

where S .. (w) = 4S.,{w + Wo)U (w + (J)c). 

FIGURE PI0-9 

q(t) = i(t)cosWot - x(t) sinWot 

S ( ) _ S",(w) + SII/(-w) 
qt W - 4' JtS 



10·10 Show that ifw(t) and wT(t) are the complcxenvelopes of the processes xCt) andx(t -r) 
respectively, then w~(t) = wet - -c)e-JOJOf • 

10·11 Show that ifw(t) is the optimum complex envelopeofx(t) [see (10-148)], then 

E{lw'(!)I'} = -2 [R:(O) +~Rz(O)] 

10·12 Show that if the process x(t) cos (J)t + yet) sinwt is nonna! and WSS, then its statistical 
properties are determined in terms of the variance of the process z(t) = X(/) + jy(t). 

10-13 Show that if (J is a random variable uniform in the interval (0, T) and f(t) is a periodic 
function with period T. then the process x{t) = f(t - 8) is stationary and 

10-14 Show that if 

then 

Sz(w) = ~ liT f(t)e-J- d{ .teo .5 (w -~ m ) 

~ sin<1(t - nT) 
8N(/) = x(t) - L- x(nT) <1(1 _ nT) 

n=-N 

7r 
<1=-

T 

1 

E {8~(t)} = ~ 100 S«(J» eJOJI _ ~ sin <1(t - nT) el-T d(J) 
21r -00 L- <1(t - nT) 

a=-N 

and if Sew) = 0 for Iwl > <1, then E{8~(/)} -+ 0 as N -+ 00. 

10-15 Show that if x(t) is BL as in (10-187), tbenl6 for 1.1 < 7r /<1: 

2rl rl 
7r2IR"(O)1 ~ R(O) - R(.) ~ TIR"(O)I 

4.2 
E{[x(t + .) - x(t)]'} ~ lEUt(t)]'} 

7r 
Hint.: If 0 < rp < 7r /2 then 2rp / 7r < sin rp < rp. 

10-16 A WSS process X(I) is BL as in (l0-187) and its samples X(M/<1) are uncorrelated. Find 
SAw) if E{x(t)} = 11 and E{x2(t)} = I. 

10-17 Find the power spectrum S«(J» of a process x(t) if Sew) = 0 for Iwl > Tr and 

EI,,(n + m)x(n») = Nc5[mJ 

10-18 Show that if S«(J» = 0 for Iwl > <1, then 

R(.) ~ R(O) cos <1. for 1.1 < 7r/lu 

10-19 Show that if ,,(t) is BL as in (10-187) and a = 2rr/u, then 

( ) 4 . 2 <1t Leo [x(na) rena) .. ] x t = sm - + --:---'-~~ 
2 (<1t - 2n7r)2 U(<1t - 2n7r) ,.=-00 

Hint: Use (10-206) with N = 2, HI (00) = 1, H2(w) = jw. 
10·20 Find the mean and the variance ofP(Wo) ifti is a Poisson point process and 

P(w) = i I: cosWot; cosec>t, ltd < a 
i 

16 A. Papoulis: "An Estimation of tile Variation of a Bandlimiled Process," IEEE. PGn; 1984. 
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lQ-21 Given ~ WSS process x(t) and a set of Poisson points t/ independent of x(t) and with 
average density A. we form the sum 

Xc(w) = L x(t;)e-iOllI 

11,1« 

Show that if Elx(I)} = o and f:' IRx(')ld. < 00, then for large c. 

2c 
EUx..{w)12} = 2cSx(w) + TRx(O) 

10-22 We are given the data X(1) = f(l) + 0(1). where Ra(,) = N8C') and E{oV) = OJ. We 
wish to estimate the integral 

get) = l' f(Ol)da 

knowing that geT) = O. Show that if we use as the estllnate of get) the process wet) = 
z(t) - Z(T)I/T. where 

z(t) = l' X(Ol) dOl then E{w(t)} = get) 

10-23 (Cauchy inequality) Show that 

II: alb; 12 ::: I: lal12 I: Ibll2 

i I I 

(i) 

with equality iff aj = kb;. 
10-24 Theinputto a system Hez) is the sum x[n) = f{n)+v[n). where f[n) is a known sequence 

with z transform F(z). We wish to find H(z) such that the ratio y}[O)/E{~[n]} of the 
output yIn] = y/[n) + y.[n) is maximum. Show that (a) if v{n) is white noise, then 
H(z) = kF(C'). and (b) if H(z) is a finite impulse response (FIR) filter that is, ifH(z) = 
ao + OIZ-1 + ... +aNz-N• then its weights am are the solutions of the system 

N 

L R .. [n - m]am = kf( -n] n =O •...• N 

10-25 If RneT) = N8(.) and 

1 
xV) = A C05Wol + net) H(w) = --.-

O! +Jw 

yet) = B cos(Wo + 1+ 9') + YII(t) 

where y,,(1) is the component of the output Y(1) due to net). find the value of O! that 
maximizes the signal-to-noise ratio 

.. 

Answer: a = Wo. 
10-26 In the detection problem of pages 483-485, we apply the process x(t) = f(t) + vet) to the 

tapped delay line (10-225). Show that: (a) The signal-to-noise (SNR) ratio ris maximum 
if the coefficients a, satisfy (10-227); (b) the maximum r equals vy/(to)/k. 

10-27 Given an SSS process x(t) with zero mean. power spectrum S(w), and bispectrum S(u. v). 
we form me process yet) = '1(1) + c. Show that 

Sm(u. v) = S(u. v) + 211'c[S(u)8(v) + S(v)8(u) + 8(u)8(u + v)] + 4n2c'8(u)8(v) 
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10-28 Given a Poisson process x(t), we form its centered process i(t} = x(t)-}..t andthecenteted 
Poisson impulses 

Show that 

diet) L: i(t) == -- = 8(t - tl ) - }.. 
dt 

I 

E (I(t. )1(t2)1(13)} = }.. min(r. , 12, '3) 

E{i(t. )i(t2)i(t3)} = }"8(tl - '2)8(11 - t3) 

Hint: Use (9-103) and the identity 

min(tl,t"t3) = 'IU(r, - tl)U(t3 -II) +t,U(I. -1l)U(t3 -Il) 

+t3UCt. -13)U(t2 - t3) 

10-29 Show that the function 

S(Il. v} = H(eJM )H(e1P)H(e-J(N+U») 

is deta:mincd in terms of its values in the triangle of F"tg. 10-2Sb. 
OIltlin8: FonD. the function 

where H..{w) = {OH{el.) Iwl::::: 1r 

Iwl > 0 

Clearly, S.(u, v) = S(u. v) for lui. Ivl. lu+vl < 1r and o otherwise. The function Sa(U. v) 
is a bispectrum of a bandlimited process, x(t) with q = n'; hence (see note page 492) it 
is determined from its values in the triangle of Fig. 10-254. Inserting into (10-2S8) and 
(10-259) we obtain H..«(A). This yields H(el .) and S(Il, v). 



CHAPTER 

11 
SPECTRAL 

REPRESENTATION 

11-1 FACTORIZATION AND INNOVATIONS 

In this section, we consider the problem of representing a real WSS process X(I) as 
the response of a minimum-phase system L(s) with input a white-noise process I(t). 
The term minimum-phase has the following meaning: The system L(s) is causal and 
its impulse response.l(t) has finite energy; the system res) = l/L(s) is causal and its 
impulse response yet) has finite energy. Thus a system L(s) is minimum-phase if the 
functions L(s) and l/L(s) are analytic in the right-hand plane Re s > O. A process x(t) 
that can be so represented will be called regular. From the definition it follows that X(I) 
is a regular process if it is linearly equivalent with a white-noise process l(t) in the sense 
that (see Fig. 11-1) 

I(t) = 100 
y(a)x(t - a) da RII(r) = ~(T) (11-1) 

x(t) = l°01(a)i(,-a)da E{r(t)} = l°OZ2(t)dt<oo (11-2) 

The last equality follows from (9-100). This shows that the power spectrum S(s) of a 
regular process can be written as a product ,; 

S(s) = L(s)L(-s) (11-3) 

where L{s) is a minimum-phase function uniquely detemrlned in tellDS of S«(O). The 
function L(s) will be called the innovations filter of X(I) and its inverse r (s) the whitenin8 
filter of X(I). The process I(t) will be called the innovations of x(t). It is the output of 
the filter L(s) with input X(I). 

The problem of determining the function L(s) can be phrased as follows: Given a 
positive even function Sew) of finite area, find a minimum-phase function L(s) such that 
IL(jw)12 = Sew). It can be shown that this problem has a solution if S(w) satisfies the 
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X(/) 
'Y(r)-r(s) ~ 

FIGURE 11-1 

S(s) 

x x 

Si o 

x x 

(a) 

FIGURE 11-2 

Paley-Wiener condition! 

I(I)-L(s) 
x(t) 

x 

x 

f(s): whitening filter 

L(s): innovations filter 

L(s) 

o 

(b) 

100 Ilog S(w)1 d 
I .. ? w<oo 

-00 +ar 
(11-4) 

This condition is not satisfied if S(w) consists of lines, or, more generally, if it is band· 
limited. As we show later, processes with such spectra are predictable. In general, the 
problem of factoring S (w) as in (11-3) is not simple. In the following. we discuss an 
important special case. 

Rational spectra. A rational spectrum is the ratio of two polynomials in £Jl- because 
S(-w) = Sew): 

(11-5) 

This shows that if Sj is a root (zero or pole) of S(s), -SI is also a root. Furthermore, all 
roots are either real or complex conjugate. From this it follows that the roots of S(s) 
are symmetrical with respect to the jw axis (Fig. 11-2a). Hence they"can be separated 
into two groups: The "left" group consists of all roots SI with Re SI < 0, and the "right" 
group consists of all r90ts with Re SI > O. The minimum-phase factor L(s) of S{s) is a 
ratio of two polynomials formed with the left roots of S{s): 

S(S) = N(s)N(-s) 
D(s)D(-s) 

If ) = N(s) 
\$ D(s) 

1 N. Wiener. R. E. A. C. Paley: Fourier Thmsforms in the Complex Domain, American Mathellllltical Socitty 
College. 1934 (see also Papoulis. 1962 [20]). 
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... If S(;") :;:; N /(a2 + CJ?) then 

S(s) = N = N 
a2 -s2 (a+3)(a-'s) 

~ If Sew) = (49 + 25(2)/(W4 + 10w2 + 9), then 

..JFi 
L(s)=-­

a +s 

S(s) = 49 - 25s2 

(1 - a2)(9 - S2) 

7+53 
L(a) = (1 + $)(3 + a) 

~ If Sew) = 25/(w4 + 1) then 

25 25 
S(s) = -- = ~--=----~::--­
• S4 + 1 (a2 + .J2a + 1)($2 - .J2s + 1) 

Discrete-TIme Processes 

A discrete-time system is minimum-phase if its system function L(z) and its inverse 
r(z) = I/L(z) are analytic in the exterior Izl > 1 of the unit circle. A real WSS digital 
process x[n] is regular if its spectrum S(z) can be written as a product 

S(z) = L(z)L(I/z) S(eilll) = IL(eiGl)12 (11-6) 

Denotingbyl[n] and y[n],respectively, thedeltaresponsesofL(z) andr(z). we conclude 
that a regular process x[n] is linearly equivalent with a white-noise process I[nl (see 
Fig. 11-3): 

x(n) 

S(z) 

(a) 

FIGURE 11-3 

00 

i[nJ = Ly[k]x[n - k] Ru[m] = 8[m] 
1:., 

00 

x[n] = L l[k]i[n - k] 
1:=0 

00 

E{r[n]} = L:12[kJ < 00 

1:-0 

r::l i[nJ r:-:-:l x[nJ 
~~ .~ I~--~· 

(b) 

(11-7) 

(11-8) 
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The process i[n] is the innovations of x[n] and the function L(z) its innovations filter. 
The whitening filter of x[n] is the function r(z) = l/L(z). 

It can be shown that the power spectrum S(eieo) of a process x[n] can be factored 
as in (11-6) if it satisfies the Paley-Wiener condition 1: I log Sew) dwl < 00 (11-9) 

If the power spectrum Sew) is an integrable function. then (11-9) reduces to (9-203). 
(See also (9-207).) 

Rational spectra. The power spectrum S(ei "') of a real process is a function of COScu ::: 
(el '" + e-i "')/2 [see (9-193)]. From this it follows that S(z) is a function of z + liz. If 
therefore, Zi is a root of S(z). II Zi is also a root. We thus conclude that the roots of S(z) 
are symmetrical with respect to the unit circle (Fig. 11-3); hence they can be separated 
into two groups: The "inside" group consists of all roots Zi such that IZi I < 1 and the 
"outside" group consists of all roots such that IZi I > 1. The minimum-phase factor l(z) 
of S(z) is a ratio of two polynomials consisting of the inside roots of 5(z): 

S(z) = N(z)N(l/z) l(z) = N(z) L2(1) = 5(1) 
L>(z) L>(l Iz) L>(z) 

.. If Sew) = (5 - 4 cos w)/(lO - 6 cos w) then 

5 - 2(z + Z-I) 2(z - 1/2)(z - 2) 
S(z) = 10 - 3(z + Z-I) = -3(-z---1-'-/3-)-(z---3) 

11-2 FINITE-ORDER SYSTEMS 
AND STATE VARIABLES 

2z -1 
l(z) =--

3z -1 

In this section. we consider systems specified in terms of differential equations or re­
cursion equations. As a preparation. we review briefly the meaning of finite-order sys­
tems and state variables starting with the analog case. The systems under consideration 
are multiterminal with m inputs Xi(t) and r outputs Yi(l) forming the column vectors 
X(t) = [Xi (t)] and yet) = [y jet)] as in (9-124). 

At a particular time t = tl> the output yet) of a system is in general specified 
only if the input X(t) is known for every t. Thus, to determine yet) for t > 10. we must 
know X(t) for t > to and for t ::: to. For a certain class of systems, this is not necessary. 
The values of yet) for t > to are completely specified if we know }f(t) for t > to and. 
in addition. the values of a finite number of parameters. These parameters specify the 
"state" of the system at time t = to in the sense that their values determine the effect 
of the past t < to of X(t) on the future t > to of Y(t). The values of these parameters 
depend on to; they are. therefore, functions Zi (t) of t. These functions are called state 
variables. The number n of state variables is called the order of the system. The vector 

i = 1, .. . ,n 

is called the state vector; this vector is not unique. We shall say that the system is in zero 
state at t = to if Z(to) = O. 
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D 

We shall consider here only linear, time-invariant, real, causal systems. Such sys­
terns are specified in terms of the following equations: 

dZ(t) = AZ(t) + BX(t) (ll-IOa) 
dt 
yet) = CZ(t) + DX(t) (ll-IOb) 

In (11-lOa) and (It-lOb), A. B, C, and D are matrices with real constant elements, of 
order n x n, n x m, r x n, and r x m, respectively. In Fig. 11-4 we sbow a block diagram 
of the system S specified terminally in tenns of these equations. It consists of a dynamic 
system S) with input U(t) = BXet) and output Z(t), and of three memoryless systems 
(multipliers). If the input X(t) of the system S is specified for every t, or, if X(t) = 0 
for t < 0 and the system is in zero state at t = 0, then the response yet) of S for t > 0 
equals 

yet) = 100 
H(a)X(t -a)da (11-11) 

where H(t) is the impulse response matrix of S. This follows from (9-87) and the fact 
that H(t) = 0 for t < 0 (causality assumption). 

We shall determine the matrix H(t) starting with the system St. A$ we see from 
(ll-IOa), the output Z(t) of this system satisfies the equation 

d~~t) _ AZ(t) = UV) (11-12) 

The impulse response of the system SI is an n x n matrix ~(t) = [<pjlet)] called the 
transition matrix of S. The function <P ji (t) equals the value of the jth state variable Z j (t) 
when the ith element Uj (I) of the input U(t) of S1 equals Bet) and all other elements are O. 
From this it follows that [see (9-126») 

Z(t) = 100 ~(a)U(t - a) da = 100 ~(a)BX(t - a) d~ (11-13) 

Inserting into (II-lOb), we obtain 

yet) = 100 C~(a)BX(t - a)da + DX(t) 

= 100 
[C4>(a)BX(t - a) + &(a) DX(t - a») da (11-14) 

where Bet) is the (scalar) impulse function. Comparing with (11-11), we conclude that 
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the impulse response matrix of the system S equals 

H(t) = Cct>(t)B + &(t)D 

From the definition of ct> (t) it follows that 

dct>(t) _ Act>(t) = &(t)l" 
dt 

(11-15) 

(11-16) 

where I" is the identity matrix of order n. The Laplace transform .(a) of ct>(t) is the 
system function of the system S 1. Taking transforms of both sides of (11-16), we obtain 

a.(a) - A.(s) = In .(a) = (aln - A)-I (11-17) 

Hence 

ct>(t) = eAt (11-18) 

This is a direct generalization of the scalar case; however. the determination of the 
elements 'Pjl(t) of,z,(I) is not trivial. Each element is a sum ofex.ponentials of the form 

'Pj/(I) = LPji.k(t)e'it I> 0 
A: 

where SA: are the eigenvalues of the matrix A and Pjl,k(l) are polynomials in t of ~ 
gree equal to the multiplicity of SA:. There are several methods for determining these 
polynomials. For small n, it is simplest to replace (11-16) by n systems of n scalar 
equations. 

Inserting ct>(I) into (II-IS). we obtain 

H(t) = CeA., B + 8(t)D 

H(s) = C(sln - A)-I B + D 
(11-19) 

Suppose now that the input to the system S is a WSS process X(I). We shall 
comment briefty on the spectral properties of the resulting output, limiting the discussion 
to the state vector Z(t). The system SI is a special case of S obtained with B = C = I. 
and D = O. In this case. Z(t) = yet) and 

dY(t) _ AY(t) = X(/) H(s) = (sIn - A)-l (11-20) 
dt 

Inserting into (9-170), we conclude that 

5.1',(s) = 5,u(s)(-sln - A)-l 

5,,(a) = (sl/l - A')-lSx,(a) 

5,,(a) = (sl" - A,)-15xx (s)(-al ll - A)-l 

DIfferential equations. The equation 

y(II)(I) + aly(,,-I)(/) + ... + ally(t) = x(t) 

c 

(11-21) 

(11-22) 

specifies a system S with input x(t) and output yet). This system is of finite order 
because yet) is determined for I > 0 in terms of the values of x(t) for t ~ 0 and the 
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iDltial conditions 

y(O), y(O), ... , y(n-l) (0) 

It is, in fact, a special case of the sy~tem of Fig. 11-4 if we set m = r = 1, 

ZI (t) = yet) Z2(t) = y(t)· .. z,.(t) = y(n-l)(I) 

A = [_: _:_. j B = [·r·] ~ = [·i·] 
and D = O. Inserting this into (11-19), we conclude after some effort that 

H(s) = 1 
sn +alsn-1 + ... +an 

This result can be derived simply from (11-22). 
Multiplying both sides of (11-22) by x(t - r) and yet + 'E'). we obtain 

RW('E') + aIR~~-I)(t') + ... + an Ryx ('E') = Rxx('r) 

RW('E') + alR~-I>C-r) + ... + anR,,('E') = Rxy('E') 

for all 'E'. This is a special case of (9-146). 

(11-23) 

(11-24) 

Finite-order processes. We shall say that a process x(t) is of finite order if its innova­
tions filter L(s) is a rational function of a: 

S(s) = L(s)L(-s) L(s) = boSm + blSm- 1 + ... + bm = N(s) (11-25) 
sn + alSn-1 + ... + an D(s) 

where N(s) and D(s) are two Hurwitz polynomials. The process x(t) is the response of 
the filter L(s) with input the white-noise process i(t): 

x(n)(t) + al,,(n-l)(/) + ... + anx(l) = boi(m)(t) + ... + bmi(t) (11-26) 

The past X(I - 'E') of x(t) depends only on the past of i(/); hence it is orthogonal 
to the right side of (11-26) for every l' > O. From this it follows as in (11-24) that 

1'>0 (11-27) 

Assuming that the roots Sj of D(s) are simple. we conclude from (11·27) that 
n 

R('E') = E (Xte';T l' > 0 

The coefficients (Xl can be determined from the initial value theorem. Alternatively. to 
find RC'r), we expand Sea) into partial fractions: 

n n 
~ai ~ a· 

Sea) = L..J -- + L..J I = S+(a) + S-(s) 
/=1 s - at i-I -s - Sj 

01-28) 

The first sum is the transform of the causal part R+('E') = R(t')U(1') of R(t') and the 
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EXMIPLE 11-5 

EX ,\\IPLE 11-6 

second of its anticausal part R-(,r) = R(1:)U( -T). Since R(-T) = R(t'). this yields 
n 

R(T) = R+(I't'\) = Laie"I~1 
i=l 

~ If L(s) = l/(s + a), then 

S(s) = 1 = 1/2a + 112a 
(s+a)(-s+a) s+a -s+a 

Hence R(T) = (1/2a)e-*I. ... 

~ The differential equation 

,,' (I) + 3x' (t) + 2x(/) = i(t) Rjj('r) = 8(t') 

(11-29) 

specifies a process x(t) with autocorrelation R('t'). From (11-27) it follows that 

R"('t') + 3R'(T) + 2R('t') = 0 hence R('t') = cle-r + C2e-2r 

for t' > O. To find the constants Cl and C2, we shall determine R(O) and R'(O). Clearly. 

( 1 s/12 + 1/4 -s112 + 1/4 
5 s) = = + -=,'--::---~ 

~+~+~~-~+~ ~+~+2 ~-~+2 

The first fraction on the right is the transform of R+(T); hence 

R+(O+) = lim s5+(s) = Ii = Cl + C2 = R(O) 
s-+oo 

Similarly, 

This yields R('t') = ~e-Irl - lie-2ITI . 
Note finally that R(T) can be expressed in terms of the impulse response let) of 

the innovations filter L(s): 

R(T) = 1(7:) * 1(-1:) = 100 1(17:1 + a)l(a) da (11-30) 

... 
Discrete-Time Systems 

The digital version of the system of Fig. 10-6 is a finite-order system S specified by the 
equations: 

Z[k + 1] = AZ[k] + BX[k] 

Y[k] = CZ[k] + DX[k] 

(1l-31a) 

(1l-3Ib) 

where k is the discrete time, X[k] the input vector, Y[k] the output vector, and Z[k] the 
state vector. The system is stable if the eigenvalues Zi of the n x n matrix A are such 
that IZi I < 1. The preceding results can be readily extended to digital systems. Note, in 
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particular, that the system function of S is the z transform 

H(z) = C(zlll - A)-I B + D 

of the delta response matrix 

H[k] = C4l[k]B + o[k]D 

(11-32) 

(11-33) 

We shall discuss in some detail scalar systems driven by white noise. This material is 
used in Sec. 12-3. 

FINITE-ORDER PROCESSES. Consider a real digital process x[n 1 with innovations 
filter L(z) and power spectrum 5(z): 

00 

S(z) = L(z)l(l/z) l(z) = L l[n]z-n (11-34) 

where n is now the discrete time. If we know l(z), we can find the autocorrelation RIm) 
ofx[n] either from the inversion formula (9-192) or from the convolution theorem 

00 

R[m] = LIm] *l[-m] = Ll[lml +k]l[k] 01-35) 
k=O 

We shall discuss the properties of R[m] for the class of finite-order processes. 
The power spectrum S(w) of a finite-order process x[n] is a rational function of 

cos w; hence its innovations filter is a rational function of z: 
N(z) bo + b1z-1 + ... + bMZ-M 

L(z) = D(z) = 1 + alz-1 + ... + aNz-N (11-36) 

To find its autocorrelation, we determine lIn) and insert the result into (11-35). Assuming 
that the roots Zi of D(z) are simple and M ::: N, we obtain 

"" YI "" L(z) = L.J 1 -I LIn] = L.J m:i'U[n] 
I - liZ i 

Alternatively, we expand 5(z): 

L ai L ai 5(Z) = +--
. 1 - ZiZ-1 . 1 - ZIZ 
I I 

Notethataj = YiL(l/z/). 
The process x[n] satisfies the recursion equation 

R[m] = La,zlm, 
i 

x[n] + alx[n - 1] + ... + aNx[n - N] = boi[nJ + ... + bMi[n -N] 

(11-37) 

(11-38) 

where ifnI is its innovations. We shall use this equation to relate the coefficients of l(z) 
to the sequence R[m] starting with two special cases. 

AUTOREGRESSIVE PROCESSES. The process x(n] is called autoregressive CAR) if 

bo 
L(z) = ----:-----...,.., 

1 + alz-1 + ... + aNz-N 

In this case, (11-38) yields 

x[n] + alx[n - 1] + ... + aNx[n - N] = boi[n} 

(11-39) 

(11-40) 
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The past x[n - m] of x[n] depends only on the past of i[n]; furthermore, 
E{f[n]}=1. From this it follows that E{x[n)i[n)}=bo and E{x[n - m]i[n]} =0 
for m > O. Multiplying (11-40) by x[n - m] and setting m=O, 1, ... , we obtain the 
equations . 

and 

R[O] + a.R[1] + ... + aNR[N] = b~ 
R[I] + aIR[O] + ... + aNR[N - 1] = 0 

R[N] + alR[N - 1] + ... + aNR[O] = 0 

(ll"Ma) 

(1l-41b) 

for m > N. The first N + 1 of these are called the Yule-Walker equations. They are used 
in Sec. 12-3 to express the N + 1 parameters ak and bo in terms of the first N + 1 values 
of R[m]. Conversely, if L(z) is known, we find RLm] for Iml !S N solving the system 
(11-41a) and we determine R[m] recursively from (I1 .. 4th) for m > N. 

~ Suppose that 

x[n] - ax[n - 1] = lILn] RI/I/[m] = bo[m] 

This is a special case of (11-40) with D(z) = 1 - aCI and Zl = a. Hence 

b 
R[O] - aR[1] = b RLmJ = aalml a = --

I-a" 

LINE SPECTRA. Suppose that x[n] satisfies the homogeneous equation 

x[n] + alx[n - 1] + ... + aNx(n - N] = 0 

This is a special case of (11-40) if we set bo = O. Solving for x[n]. we obtain 

(11-42) 

(11 .. 43) 

If x[n] is a stationary process, only the terms with Zi = ejOll can appear. Furthermore, 
their coefficients Ck must be uncorrelated with zero mean. From this it follows that ifx[n] 
is a WSS process satisfying (11-42), its autocorrelation must be a sum of exponentials 
as in Example 9-31: 

R[m] = L ale'OIIlml Sew) = 21r L a,o(w - Pi) (11 .. 44) 

where al = E{c1} and PI = WI - 21rk, as in (9 .. 209). 

MOVING AVERAGE PROCESSES. A process x[n] is a moving average (MA) if 

x[n] = boi[n] + ... + bMi[n - M] (11-45) 

In this case. l(z) is a polynomial and its inverse len] has a finite length (FIR filter): 

L(z) = bo + blCI + ... + bMZ-M len] = boo[n] + ... + bMo[n - M] (1146) 
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Since l[ll] '= 0 for n > m, (11-35) yields 

M-m M-m 

R[m] = L l[m + k]l[k] = L bk+mbi: 
k=O k=O 

for 0 ::: m ::: M and 0 for m > M. Explicitly, 

R[O] = b5 + b? + ... + b~ 
R[1] = bob, + b1b2 + ... + bM-IbM 

R[M] = bobM 

~ Suppose that x[n] is the arithmetic average of the M values of l[n]: 

x[n] = ..!..(i[n] + l[n - 1] + ... + l[n - M + 1]) 
M 

In this case, 

1 1- Z-M 
L(z) = -(1 + Z-I + ... + Z-M+I) = ---.,-

M M(l-z-l) 

R[m] = _1 M~/I\ = M -Iml = ..!..(l_lml) I I M W ~ W M M m::: 
k..o 

2-z-M -ZM 
S(z) = L(z)L(l/z) = M2(2 _ Z-I - z) 

(11-47) 

AUTOREGRESSIVE MOVING AVERAGE. We shall say that x[nJ is an autoregressive 
moving average (ARMA) process if it satisfies the equation 

x[n] + a\x[n - 1] + ... + aNx[n - N] = boi[n] + ... + bMi[n - M] (11-48) 

Its innovations filter L(z) is the fraction in (11-36). Again, i[n] is white noise; hence 

E{x[n - m]i[n - r]} = 0 for m < r 

Multiplying (11-48) by x[n - m] and using the equation just stated, we conclude that 

R[m] +a\R[m -1] + ... +aNR[m - N] = 0 m > M (11-49) 

Note that, unlike the AR case, this is true only for m > M. 

11·3 FOURIER SERIES AND 
KARHUNEN-LOEVE EXPANSIONS 

A process x(t) is MS periodic with period T if E{lx{t + T) - X(t)12} = 0 for all t. A 
WSS process is MS periodic if its autocorrelation R(r) is periodic with period T = 
21r/Wo [see (9-178»). Expanding R(r) into Fourier series, we obtain 

00 

R(r) = L 'YnejnWOT 

n""-oo 

11T . 'Yn = - R(t:)e-J/I(I/OT dt: 
T 0 

(11-50) 
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Given a WSS periodic process x(t) with period T. we form the sum 

00 

i(t) = L cneinOJ01 

n--co 

I1T Cn = - x(t)e- jnlPo1 dt 
T 0 

(11-51) 

~ The sum in (11-51) equals x(t) in the MS sense: 

(11-52) 

Furthermore, the random variables Cn are uncorrelated with zero mean for n :#; 0, and 
their variance equals Yn: 

{ 71 n = 0 
E{clI } = OX 

n:#;O 

Proof. We fonn the products 

E{ ... } _ {YII n = m 
c,.cm - 0 n :#; m 

liT c"x"(a) = - x(t)x" (a)e-J"'" dt 
T 0 

and we take expected values. This yields 

E{c"x·(a)} = ..!.IT R(t - a)e-illflOl dt = y"e-J"OIi)/l! 
T 0 

E{c"c;} = ~ [T y.e-illMOl ei .. .., dt = {~. : ~: 

and (11-53) results. 
To prove (11-52), we observe, using the above, that 

E{lt(t)12} = L E{lcn Il} = LY" = R(O) = E{lx(t)f~) 
E{x(t)x·(t» = L E{c"x·(t)}ei·'" = LYJI = E{r(t)x(t)} 

and (1 t -51) follows readily. ~ 

(11-S3) 

Suppose now that the WSS process x(t) is not periodic. Selecting an arbitrary constant T, 
we fonn again the sum let) as in (11-51). It can be shown that (see Prob. 11-12) let) equals x(t) 
not for all t. but only in the interval (0. T): 

ElIi(t) - x(I)11 } = 0 0 < I < T (11-54) 

Unlike the periodic case, however, the coefficients c. of this expansion are not orthogonal (they are 
nearly orthogonal for large n). In the following, we show that an arbitrary process X(I), stationary 
or not, can be expanded into a series with orthogonal coefficients. ... 
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The Karhlinen-Loeve Expansion 

The Fourier series is a special case of the expansion of a proce$S x(t) into a series of the 
fonn 

00 

t(t) = L CIICPII(t) 0< t < T 
11=1 

where qJ,.(t) is a set of orthonormal functions in the interval (0, T); 

foT CPII (t)cP! (t) dt = 8[n - m] 

and the coefficients ell are random variables given by 

e" = foT x(t)cP;(t) dt 

(11-55) 

(11-56) 

(11-57) 

In this development, we consider the problem of determining a set of ortbononnal func­
tions cp,,(t) such that: (a) the sum in (11-55) equalS x(t); (b) the coefficients Cn are 
orthogonal. 

To solve this problem, we form the integral equation 

foT R(tl, t2)CP(t2) dt2 = Acp(tl) 0<11 < T (11-58) 

where R(t .. 12) is the autocorrelation of the process x(t). It is well known from the 
theory of integral equations that the eigenfunctions cP,. (t) of (11-58) are orthonormal as 
in (11-56) and they satisfy the identity 

00 

R(t, t) = LA"lcp,,(t)12 (11-59) 
,,=1 

where A" are the corresponding eigenvalues. This is a consequence of the p.d. character 
of R(llo (2). ' 

Using this, we shall show that if cp,,(t) are the eigenfunctions of (11-58), then 

o <t < T 

and 

Proof. From (11-57) and (11-58) it follows that 

E{c"x*(a)} = fo7 R*(a,t)cp;(t)dt = A"cp;(a) 

E{c"c:'} = Am foT cp;(t)CPm(t) dt = A,,8[n - m] 

(11-60) 

(11-61) 

(11-62) 
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Hence 
00 

E{cni*(t)} = L E{cllc~},,:(t) = An,,:(t) 
m=1 

00 

E{i(t)x"'(t)} = LAn",,(t),,:(t) = R(t, t) 
,. .. 1 

and (11-60) results. 
It is of interest to note that the converse of the above is also true: If "n (t) is an 

orthononnal set of functions and 

00 {~ n=m 
x(t) = L C/I",.(t) E{cllc~} = 0/1 n :F m 

n=1 

then the functions "/1(1) must satisfy (11-58) with A = u;. 
Proof. From the assumptions it follows that Cn is given by (11-57). Furthermore. 

00 

E{x(t)c:.} = L E{enc:'}",,(t) = U~"m(t) 

E{x(t)c:'l = foT E{x(t)x*(a)}"m(a)da = foT R(t,a)"m(a)da 

This completes the proof. 
The sum in (11-55) is called the Karhunen-Lo~ve (K-L) expansion of the process 

x(t). In this expansion, x(t) need not be stationary. If it is stationary. then the origin can 
be chosen arbitrarily. We shall illustrate with two examples. 

~ Suppose that the process X(/) is ideal low-pass with autocorrelation 

R(-c) = sina-c 
:1ft' 

We shall find its K-L expansion. Shifting the origin appropriately. we conclude from 
(J 1-58) that the functions VJn(t) must satisfy the integral equation 

I T/2 sina(t - -c) 
( ) ifJlI(-c)d-c = AII"n(t) 

-T/2 1( t--c 
~ 

The solutions of this equation are known as prolate-spheroidtil functions. 2 ~ 

~ We shall determine theK-L expansion (11-55) of the Wiener process wet) introduced 
in Sec. 10-1. In this case [see (10-53)] 

20. Slepian, H. 1. Landau. and H. O. Pollack: "Prolate Spheroidal Wave Functions," BeU System Technical 
Journal. vol. 40, 1961. 
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Inserting into (11-58), we obtain 

(11-64) 

To solve this integral equation, we evaluate the appropriate endpoint conditions and 
differentiate twice. This yields 

rp(O) = 0 

rp'(T) = 0 

Solving the last equation, we obtain 

rpn(t) = ~ sin Wilt 

a 11 rp(t2) dt2 = Arp'(t\) 
II 

Arp" (t) + arp(t) = 0 

wn = ~ = (2n + 1)1Z' 
Y i,; 2T 

Thus, in the interval (0, T), the Wiener process can be written as a sum ofsine waves 

wet) = ~ I:cnsinw"t en = ~ foT w(t)sinw"tdt 
,,=\ 

where the coefficients en are uncorrelated with variance E{~} = A,,_ ..... 

11-4 SPECTRAL REPRESENTATION 
OF RANDOM PROCESSES 

The Fourier transform of a stochastic process x(t) is a stochastic process X(w) given by 

X(w) = 1: x(t)e- jOJI dt (11-65) 

The integral is interpreted as an MS limit. Reasoning as in (11-52), we can show that 
(inversion fonnula) 

1 100 xCt) = -2 X(w)ej(l)t dw 
1Z' -00 

(11-66) 

in the MS sense. The properties of Fourier transfonns also hold for random signals. For 
example, if y(t) is the output of a linear system with input x(t) and system function 
H(w), then Yew) = X(w)H(w). 

The mean of X(w) equals the Fourier transform of the mean of xCt). We shall 
express the autocorrelation ofX(w) in tenns of the two-dimensional Foprier transform: 

fCu, v) = 1:1: R(tl, t2)e-)(all +1I12) dtl dtz (11-67) 

of the autocorrelation R(tl. t2) ofx(t). Multiplying (11-65) by its conjugate and taking 
expected values. we obtain 

E{X(u)X*(v)} = 1:1: E{x(tJ)x*Ctz)}e-j (1I/1-1I12) dtl dt2 

Hence 

E{X(u)X'"(v)} = feu, -v) (11-68) 
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Using (11-68), we shall show that, if x(t) is nonstationary white noise with average 
power q(t), then X(a» is a stationary process and its autocorrelation equals the FOUrier 
transform Q(a» of q(t): 

~ If R(tl, (2) = q(tl)~(tl - (2), then 

E{X(a> + a)X*(a)} = Q(a» = 1: q(t)e-j(l)I dt (11-69) 

Proof. From the identity 1:1: q(I)8(t) - tl)e-J(II'I+PIl) dl) dtl = 1: q(ll)e-J(U+U)'2 dt2. 

it follows that r(u, v) = Q(u + v). Hence [see 01-68») 

E(X(CtJ + a)X¥(a)} = rcCtJ + a, -a) = Q(Ctl) 

Note that if the process X(I) is real. then 

E{X(u)X(v)} = r(u, v) 

Furthermore, 

(11-70) 

(11-71) 

~ 

Covariance of energy spectrum. To find the autocovariance of IX(a» 12. we must know 
the fourth-order moments of X(a». However, if the process x(t) is normal, the results 
can be expressed in terms of the function f(u, v). We shall assume that the processx(t) 
is real with 

X(w) = A(a» + jB(w) r(u, v) = fr(u, v) + jf/(u, v) 

From (11-68) and (11-70) it follows that 

2E{A(u)A(v)} = f,(u, v) + r,(u, -v) 

2E(A(v)B(u)} = ri(u, v) + ri(U, -v) 

2E{B{u)B(v)} = r, (u, v) - f,(u, -v) 

2E{A(u)B(v)} = ri(U, v) - fi(U, -v) 

~ Ifx(t) is a real normal process with zero mean, then 

Cov{\X(u)12, IX(v)12} = r2(u. -v) + f2(u, v) 
II 

(11-72) 

(11-73) 

(11-74) 

Pl'()()f. From the normality ofx(t) it follows that the processes A(Ctl) and B(a» are jointly nonnal 
with zero mean. Hence [see (6-197») 

E(lX(u)12 IX(v)ll } - E[lX(u)12 }E{lX(v)12 } 

= E{[Al(u) + B2(U))[A2(V) + B'l.(v)]} - E{Al(u) + B2(unE(A2(v) + B2(V)} 

= 2E'l.{A(u)A(v)} + 2E2{B(u)B(v)} + 2E2.(A(u)B(v)} + 2E2{A(v)B(u)l 

Inserting (11-73) into the above, we obtain (I 1-74). ~ 
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STATIONARY PROCESSES. Suppose that x(t) is a stationary process with autocorre­
lation R(tl, 12) = R(tl - t2) and power spectrum S({J). We shall show that 

r(u, v) = 21rS(u)o(u + v) (11-75) 

Proof. With t I = t2 + T', it follows from (11-67) that the two-dimensional transform of 
R(t! - t2) equals 

100 100 R(t! _12)e-)(UII+1I12) dl! dt2 = 100 
e-)(u+II)12 1OO R(,r)e-juT dT' dt2 

-00 -00 -00-00 
Hence 

r(u, u) = S(u) 100 e-)(U+II)12 dt2 

-00 
This yields (11-75) because J e-jtDt dt = 21ro({J). 

From (11-75) and (11-68) it follows that 

E{X(u)X"(u)} = 21rS(u)cS(u - v) (11-76) 

This shows that the Fourier transform of a stationary process is nonstationary white 
noise with average power 21rS(u). It can be shown that the converse is also true (see 
Prob. 11-12): The process x(t) in (11-66) is WSS iff E{X({J)} = 0 for (J) :F o. and 

E{X(u)X*(v)} = Q(u)cS(u - u) (11-77) 

Real processes. If x(t) is real. then A( -(J) = A({J). B( -(J) = B({J), and 

1100 1 100 
X(I) = - A({J)cos{J)td{J)- - B(cv)sincvtdcv 

1r 0 1r 0 
(11-78) 

It suffices, therefore, to specify A({J) andB({J) for{J) ~ Oonty. From (11-68) and (11-70) 
it follows that 

E{[A(u) + jB(u)]lA(v) ± jB(u)]} = 0 u :F ±v 

Equating real and imaginary parts, we obtain 

E{A(u)A(v)} = E{A(u)B(v)} = E{B(u)B,(v)} = 0 for U:F v (l1-79a) 

With u = cv and v = -(J), (11-9) yields E{X({J)X({J)} = 0 for CV:F 0; hence 
Il 

E{A2(w)} = E{B2(w)} E{A({J)D({J)} = 0 (1l-79b) 

It can be shown that the converse is also true (see Prob. 11-13). Thus areal process 
x(t) is WSS if the coefficients A({J) and D(w) of its expansion (11-78) satisfy (11-79) 
and E{A(cv)} = E{B({J)} = 0 for w :F O. 

Windows. Given a WSS process x(t) and a function wet) with Fourier transform W (w). 
we fonn the process yet) = w(t)x(t). This process is nonstationary with autocorrelation 

Ryy (tl.12) = W(tI)W*{t2)R{tl - 12) 
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The Fourier tranSform of R yy (11, t2) equals 

ry)(U, v) = I: I: w(tl)w"(12)R(t\ - t2)e- j (utl+llt2) dtt dt2 

Proceeding as in the proof of (11-75), we obtain 

1 100 
ryy(U, v) = -2 W(u - P)W*(-v - P)S(P)dP 

1r -00 
(11-80) 

From (11-68) and the development resulting in (11-80) it follows that the autocorrelation 
of the Fourier transform 

Yew) = I: w(t)x(t)e- jw/ dt (11-81) 

of,,(t) equals 

1 100 E{Y(u)Y*(v)} = ryy(U, -v) = -2 W(u - P)W"'(v - P)S(fJ)dP 
7C -00 

Hence 

(11-82) 

~ The integral 

XT(W) = IT x(t)e-JG1I dt 
-T 

is the transform of the segment X(t)PT(t) of the process x(t). This is a special case of 
(11-81) with wet) = Pr(t) and W(w) = 2 sin Tw/w.lf, therefore, xCt) is a stationary 
process, then [see (11-82)] 

Fourier-Stieltjes Representation 
of WSS processesl 

(1l-B3) 

~ 

We shall express the spec~ representation of a WSS process x(t) in terms of the integral 

Z(w) = 1(1) X(a)da (11-84) 

We have shown that the Fourier transform X(w) of X(l) is nonstationary. white noise with 
average power 21rS(w). From (11-76) it follows that, Z(w) is a process with orthogonal 
increments: 

For any WI < It.I2 < C/)) < W4: 

E{[Z(lt/2) - Z(Wt)][Z·(CV4) - Z*(IlI3}]} = 0 

E{jZ(W2) - Z(wl)12} = 21r 1412 Sew) dw 
1111 

3H. Cramer: MatMmatical Methods of SlQ1isrics. Princeton Univ. Press. Princeton, NJ., 1946. 

(ll-85a) 

(1l-8Sb) 
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Clearly, 

dZ(w) = XC(&»~ dw (11-86) 

hence the inversion formula (11-66) can be written as a Fourier-StieltJes integral: 

x(t) = - ejfIJI dZ(w) 1 100 

21Z' -00 
(11-87) 

With WI = U, W2 = u + du and W3 = V,W4 = V + dv, (11-85) yields 

E{dZ(u)dZ*(v)} = 0 u:# v 

E{JdZ(u)12 } = 2nS(u) du 
(11-88) 

The last equation can be used to define the spectrum Sew) ofWSS process x(t) in terms 
of the ~ess Z(w). 

WOLD'S DECOMPOSITION. Using (11-85), we shall show that an arbitrary WSS pro­
cess x(t) can be written as a sum: 

x(t) = x.,.(l) + xp(t) (11-89) 

where x,.(t) is a regular process and xp(t) is a predictable process consisting of expo· 
nentials: 

Xp(t) = Co + L Ciej,."" , E{e,} = 0 (11-90) 

Furthermore, the two processes are orthogonal: 

E{x,.(t + -r)X;(t)} = 0 (11-91) 

This expansion is called Wold's decomposition. In Sec. 13-2, we determine the processes 
x,.(t) and xp(t) as the responses of two linear systems with input x(t). We also show 
that xp (I) is predictable in the sense that it is detennined in terms of its past; the process 
x,.(t) is not predictable. 

We shall prove (11-89) using the properties of the integrated transform Z(w) ofx(t). 
The process Z(w) iSla family of functions. In general, these functions are discontinuous 
at a set of points Wi for almost every outcome. We expand Z(w) as a sum (Fig. 11-5) 

Z(w) = Z, (w) + Zp(w) (11-92) 

Z,.(w) z,<w) 

o 

FIGURE 11·5 
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where Zr(W) is a continuous process for W #- 0 and Zp(w) is a staircase function with 
discontinuities at Wj. We denote by 21f Cj the discontinuity jumps at Wj #- O. These jumps 
equal the jumps of Zp(w). We write the jump at W = 0 as a sum 21!{77 + Co), where 
77 = E{x(t)}, and we associate the term 21f77 with Z,(w). Thus at W = 0 the process 
Z,(w) is discontinuous with jump equal to 21fTJ. The jump of Zp(w) at W = 0 equals 
21fCo. Inserting (11-92) into (11-87), we obtain the decomposition (11-89)ofx(t), where 
xr(t) and xp(t) are the components due to Z, (w) and Zp(w), respectively. 

From (11-85) it follows that Zr(w) and Zp(w) are two processes with orthogonal 
increments and such that 

(11-93) 

The first equation shows that the processes xr(t) and xp(t) are orthogonal as in (11-89); 
the second shows that the coefficients Cj of xp(t) are orthogonal. This also follows 
from the stationarity ofxp(t). 

We denote by S, (w) and Spew) the spectra and by Fr(w) and Fp(w) the integrated 
spectra ofxr(t) and xp(t) respectively. From (11-89) and (11-91) it follows that 

F(w) = F, (w) + Fp(w) (11-94) 

The term Fr(w) is continuous for w #- 0; for w = 0 it is discontinuous with a jump 
equal to 21!rr The term Fp(w) is a staircase function, discontinuous at the points (OJ 

with jumps equal to 21f k;. Hence 

(11-95) 

The impulse at the origin of Sew) equals 21!(ko + TJ2)c5(w). 

.. Consider the process 

yet) = ax(t) E{a} = 0 

where x(t) is a regular process independent of a. We shall determine its Wold decom­
position. 

From the assumptions it follows that 

E{y(t)} = 0 

The spectrum ofx(t) equals S;x(w) + 21fTJ;o(w). Hence 

Syy(w) = O';S~x(w) + 21fO';1l;o(w) 

From the regularity of x(t) it follows that its covariance spectrum Six (w) has no impulses. 
Since 77, = 0, we conclude from (11-95) that Spew) = 21!koo(w), where ko = 0';1/;. 
This yields 

Yr(t) = a[x(t) - flx] 



DISCRETE-TIME PROCESSES. Given a discrete-time process x[n 1, we form its discrete 
Fourier transform (DFT) 

00 

X(w) = 2: x[nje-jn41 (11-96) 
n-=-oo 

This yields 

x[n] = - X(w)e jnf.l1 dw 1 1'Jr 
2n -If 

(11-97) 

From the definition it follows that the process X( w) is periodic with period 2n. It suffices, 
therefore, to study its properties for Iwl < n only. The preceding results properly modified 
also hold for discrete-time processes. We shall discuss only the digital version of (11-76): 

. Ifx[n] is a WSS process with power spectrum S(w), then itS DFT X(w) is nonsta­
tionary white noise with autocovariance 

E{X(u)X*(v)} = 23rS(u)8(u - v) -n < u, v < n (11-98) 

Proof. The proof is based on the identity 
00 

2: e-jnf.l1 = 21l'8(w) Iwl < n 
n--oo 

Clearly, 
00 00 

E{X(u)X"(v)} = 2: 2: E{x[n + mlx*Lm]} exp{- j[(m + n)u - nvl} 
n=-oom=-oo 

00 00 

= 2: e-jll(u-v) 2: R[m]e-jmu 

11=-00 m=-oo 

and (11-98) resultS. 

BISPECTRA AND THIRD ORDER MOMENTS. Consider a real SSS process X(/) with 
Fourier transform X(w) and third-order moment R(p" v) [see (10-243)1. Generalizing 
(11-76), we shall express the third-order moment of X(w) in terms of the bispectrum 
S(u, v) ofx(t). 

E{X(u)X(v)X*(w)} = 23rS(u, v)8(u + v - w) 

Proof. From (11-65) it follows that the left side of (11-99) equals 

1: 1: 1: E(x(t.)X(h)x(t3)}e-J(1I11+1112- IlI3) dt. d~ dt3 

With t. = l3 + I-L and t2 = 13 + v, the last equation yields 

100 100 R(j,t. lJ}e-J(UP+W) dj,tdv 100 e-J(II+U-III)13dt3 
-00 -00 -00 

and (11-99) results because the last integral equals :ara(u + v - w). <41 

(11-99) 
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. We have thus shown that the third-order moment of X(w) is 0 everywhere in the 
uvw space except on the plane w = u + v, where it equals a surface singularity with 
density 21rS(u, v). Using this result, we shall determine the third-order moment of the 
increments 

Z(Wi) - Z(Wk) = L"'" X(w)dw 

of the integrated transforms Z(w) ofx(t). 

E{[Z(ClJ2) - Z(w,)J(Z(W4) - Z(ll>3)][Z·(ClJ6) - Z·(ClJs)]} 

= 21r h J S(u, v)dudv 

where R is the set of points common to the three regions 

w, < u < ClJ2 ClJs < w < ClJ6 

(shaded in Fig. 11-6a) of the uv plane. 

Proof. From (11-99) and (11-100) it follows that the left side of (11-101) equals 

[ [[ 21rS(U. v)8(u + v - w)dudvdw 
"'I .. ) .., 

= 2'1' 1"'21'" S(u. V)dUdv[a(U + v - w)dw 
"" "'3 .., 

(l1-IOO) 

(11-101) 

The last integral equals one for Ct>s < u + v < W6 and 0 otherwise. Hence the light side equals the 
integral of 21rS(u, v) in the set R as in (11-101). ~ 

.. <;:onsider the differentials 

dZ(uo) = X(uo) du dZ(vo) = X(vo) dv dZ(wo) = X(wo) dw 

We maintain that 

E{dZ(uo) dZ(vo)dZ·(wo)} = 21rS(uo, VO)du dv 

if Wo = Uo + 110 and dw ~ du + dv; it is zero if Wo :f: uo + vo. 
(11-102) 
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Pr:oof· Setting 0)1 == Uo Cd3 = Vo a>s = Wo = Uo + Vo 
a>a = Uo + du 0)4 = Vo + dv 0)6 ~ Wo + du + dv 

into (11-101), we obtain (11-102) because the set R is the shaded rectangle of Fig. 1l·6b. 
We conclude with the observation that equation (II·I 02) can be used to define the bispectruIn 

of a SSS process X(I) in terms of Z(w). ~ 

PROBLEMS 

11·1 Find R .. [m] and the whitening filter of x[n] if 

c:os2a> + 1 
8 .. (0» = 12cos2a>-70cosO)+62 

11.2 Find the innovations filter of the process x{t) if 

0)4 + 64 
S .. (O» = 0)4 + 100>2 + 9 

11·3 Show that if lAn) is the delta response of the innovations filter of .[nl. then 

,. .. 0 

11-4 The process x(t) is WSS and 

y" (I) + 3y' (t) + 2y(t) = x(t) 

Show that (a) 

R; .. (7:) + 3R~.r(7:) + 2R1x (7:) = Ru (') 

R;,(T) + 3R~,(7:) + 2R,.,(T) = R.lt)'('r) 
all T 

(b) If Rx,,(T) = q8(7:). then R,,,,(7:) = 0 fort' < 0 and for T > 0: 

R;,,(7:) + 3R;x(7:) + 2R,,, (7:) = 0 R7X<O) = 0 R; .. (O+) = q 

R;,(O) = 0 

il.5 Show thatifs[n] is AR and v[n] is white noise orthogonal to s[nl, then the process x[n] = 
s[n] + v[n} is ARMA. Find 5..,(z) if R,[m] = 2-fJlJ1 and 5.(z) = 5. 

11-6 Show that ih(t) is a WSS process and 

11·7 Show that if Rx(T) = e-<Irl, then the Karhuneu-Loeve expansion of xtt) in the interval 
(-a, a) is the sum 

00 

i(t) = L(Pnb" COSO)ftt + P~b~ sinO)~t) 
-I 

where 
c -c 

tanaco.. = - cotaw' = -
co.. "til" 

{ 2} 2c 
E b,. = A.,. = c2 + O)~ 
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11·8 Show that if X(l) is WSS and 

I T12 
Xt(w) = x(/)e-jW/ dt 

-T/2 

11-9 Find the mean and the variance of the integral 

X(cu) = 1: [5 cos 31 + v(t)]e-i .... dt 

if E(v(t)} = 0 and Rv(.) = 28(.). 
11-10 Show that if 

co 

E(x"Xot} = a!8[11 - k] X(w) = L xHe-i"blT 

and E{x,,} = 0, then E{X(cu)} = 0 and 
00 

E{X(u)X"(v)1 = L a~e-J"(U-v)r 
na=:-oo 

11-11 Given a nonperiodic WSS process x(t), we form the sum t(t) = :Ec"e-j~OIOI as in (11-51). 
Sbow that (a) E{lx(t)-t(t)12 } =OforO < t < T. (b) E(c.c~}= (lIT) fo Pn(a)eja- da, 

where p.(a) = (lIT) foT R(. _a)e-JnOlOf dr are the coefficients of the Fourier expansion 
of R(. - a) in the interval (0, T). (e) For large T. E{c,,('l ~ S(nCVQ)8(n - m)/T. 

11-11 Show that, if the process X(w) is white noise with zero mean and autocovariance 
Q(u)8(u - II), then its inverse Fourier transform X(I) is WSS with power spectrum 
Q(w)/21r • 

11-13 Given a real process x(t) with Fourier transform X(w) = A(w) + jB(w). show that if the 
processesA(w) andB(w) satisfy (11-79) and E{A(cu)} = E{B(w)} = 0, thenx(t) is WSS. 

11-14 We use as an estimate of the Fourier transform F(w) of a signal I (t) the integral 

XT(cu) = IT [/(t) + .(t)]e-j "" dt 
-T 

where lI(t) is the measurement noise. Show that if Svv(W) = q and E{II(t)} = 0, then 

E{X (w)} == 100 F(y) sin T(w - y) dy Var Xr(w) = 2qT 
T -00 n(w - y) 
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CHAPTER 
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SPECTRUM 

ESTIMATION 

A central problem in the applications of stochastic processes is the estimation of var­
ious statistical parameters in terms of real data. Most parameters can be expressed as 
expected values of some functional of a process x(t). The problem of estimating the 
mean of a given pr.ocess x(t) is, therefore, central in this investigation. We start with this 
problem. 

Fora specific t, xCt) is a random variable; its mean 1}(t) = E{x(t)} can, therefore. 
be estimated as in Sec. 8-2: We observe n samples xCt, ~;) of x(t) and use as the point 
estimate of E{x(t)} the average 

As we knOW,17(t) is a consistent estimate of 1}(t); however, it can be used only if a 
large number of realizations x(t, ~j) of x(t) are available. In many applications, we know 
only a single sample of x(t). Can we then estimate 1}(t) in tenns of the time average 
of the given sample? This is not possible if E (x(t)} depends on t. However, if x(t) is a 
regular stationary process, its time average tends to E (x(t)} as the length of the available 
sample tends to 00. Ergodicity is a topic dealing with the underlying theory. 

Mean-Ergodic Processes 

We are given areal stationary process X(I) and we wish to estimate its mean 1} = E{x(t)}. 
For this purpose, we form the time average 

1 jT 
l1T = 2T -T x(t) dt t12-l) 

5Z3 
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Oearly, 71T is a random variable with mean 

E{11r} = _1 (E{X(l)}dr = 71 
2T J-r 

Thus 11r is an unbiased estimator of 1]. If its variance 0'f. -4 0 as T -400, then 11r --? 17 in 
the MS sense. In this case, the time average 11 r (~) computed from a single realization of 
x(1) is close to ." with probability close to 1. If this is true, we shall say that the process 
X(I) is mean-ergodic. Thus a process x(t) is mean-ergodic if its time average 71T tends 
to the ensemble average TJ as T -4 00. 

To establish the ergodicity of a process, it suffices to find 0T and to examine the 
conditions under which Or -4 0 as T -400. As Examples 12-1 and 12-2 show, not all 
pr~ses are mean-ergodic. 

~ Suppose that c is a random variable with mean 17e and 

x(t) = c ." = E{x(t)} = E{c} = 71e 

In this case, x(t) is a family of straight lines and liT = C. For a specific sample, 7IT(S) = 
c(n is a constant different from 17 if c(n :f.: 1'J. Hence x(t) is not mean-ergodic. ~ 

~ Given two mean-ergodic processes XI (I) and X2(t) with means "'1 and 1'J2, we form 
the sum 

x(t) = XI (t) + CX2(t) 

where c is a random variable independent of X2 (t) taking the values 0 and 1 with proba­
bility 0.5. Clearly. 

E{x(t)} = E{xl(t)} + E{c}E{X2(t)} = 1'J1 +0.5112 

If c(n = 0 for a particular S, then xV) = XI (I) and 117" -4111 as T --? 00. If c(n = 1 for 
another ~, then x(t) = XI (t) + X2(t) and 71r -+ 111 + 712 as T -+ 00. Hence X(I) is not 
mean-ergodic. .... 

VARIANCE. To determine the variance CTf. of the time average 7Ir oh(t), we start with 
the observation that '" 

lIT = w(O) 
1 1t+T where wet) = - x(a) da 

2T t-T (12-2) 

is the moving average of x(t). As we know, wet) is the output of a linear system with 
input xCt) and with impulse response a pulse centered at t = O. Hence wet) is stationary 
and its autocovariance equals 

. 1 12T (Ial) Cww(t') = - C(-r - a) 1 - - da 
2T -2T 2T 

(12-3) 
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where C(t') is the autocovariance ofx(t) [see (9-155)]. Since O"f = Varw(O) = Cww(O) 
and C(-a) = C(a), this yields 

0";' = - C(a) 1 - - da = - C(a) 1 - - da 1 12T ( la l) 1 12T ( a ) 
2T -2T 2T T 0 2T 

(12-4) 

This fundamental result leads to the following conclusion: A process x(t) with autoco­
variance C(t') is mean-ergodic iff 

112T ( a) - C(a) 1- - da---+O 
T 0 2T T-+oo 

(12-5) 

The determination of the variance of 1/T is useful not only in establishing the 
ergodicity of X(I) but also in determining a confidence interval for the estimate 71T of 71. 
Indeed, from Tchebycheff's inequality it follows that the probability that the unknown 
71 in the interval1/T ± 100"r is larger than 0.99 [see (5·88)]. Hence 71T is a satisfactory 
estimate of 71 if T is such that O"T « 71. 

~ Suppose that C(t) = qe-c1tl as in (10-63). In this case, 

0"; = ~ L2T e-ct (1 - 2~ )dT = e~ (1 _ l-;;;2cT) 
Clearly, O"T -+ 0 as T -+ 00; hence X(I) is mean-ergodic. If T » lie, then 0"; :::::: q leT . 

.... 

~ Suppose that X(I) = 71 + v(t), where vet) is white noise with R",,(T) = qcS(T). In 
this case, C(T) = R"l)('r) and (12-4) yields 

0"; = _1 (2T qcS(t')(1 _ ~)dT = _tL 
2T 1-2T 2T 2T 

Hence x(t) is mean-ergodic. .... 

It is clear from (12-5) that the ergodicity of a process depends on the behavior of 
C(t') forlargeT. IfC(1') = Ofon > a, thatis.ifx(t) is a-dependent and T» a, then 

0"; = f loQ C(T)(I- 2~ )dt':::::: f LQ C(t')dt' < ;C(O)~O 
because IC(1')1 < C(O); hence X(I) is mean-ergodic. 

In many applications, the random variables X(I + 1') and x(t) are nearly uncon'e­
lated for large 1't that is, C (1') -+ 0 as T -+ 00. The above suggests that if this is the case, 
then x(t) is mean-ergodic and for large T the variance of 1/T can be approximated by 

ItT 1(00 t 0"; :::::: T 10 C(.) dt' :::::: T 10 C(t') dt' = ; C(O) (12-6) 

where 1'c is the correlation time of ,,(t) defined in (9-58). This result will be justified 
presently. 
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~ A process X(I) is mean-ergodic iff 

1 lT -r C(t)dT~O 
o T-+oo 

(12-7) 

PI'()O/. (a) We show first that if (IT -+- 0 as T -+- 00, Eben (12-7) is true. The covariance of the 
random variables 'IT and x(O) equals 

COV[71T. x(O)] = E {2~ 1: [x(t) -11)[X(O) -17]dl} = 2~ 1: C(l)dt 

But [see (6-164») 

eov2[IIT' x(O)) :s Var 'IT Var x(O) = (liC(O) 

Hence (12-7) holds if (IT -+- O. 
(b) We show next that if (12-7) is true, then (IT -+- 0 as T -+- 00. From (12-7) it follows that 

given e > 0, we can find a constant Co such that 

1[' - C(.)d-r < 6 
I c 

for every c > Co (12-8) 

The variance of 'IT equals [see (12-4») 

(Ii = - + - C(-r) 1 -.!.... d-r 1 12TO 1127 ( ) 
To T2To 2T 

The integral from 0 to 2To is less than 2ToC(O)/T because IC(l')1 :s C(O). Hence 

2 2To 1 -r 12T ( ) 
(IT < rC(O) + T 220 C(-r) 1 - 2T dl' 

But (see Fig. 12-1) 

12T 12T 12T 12Tl' C(l')(2T - r) d. = C(r) dt d'C = C('C) dr dt 
2To 2To T 2Ta 2To 
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From (1241) it follows that the inner integral on the right is less than 81; hence 

ai < _DC(O) +.!.. tdt_28 2T. 12T 
T T2 2To r-+oo 

and since 8 is arbitrary, we conclude that aT _ 0 as T - 00. 48 

... Consider the process 

x(t) = acoswt + bsinwt + c 

where a and b are two uncorrelated random variables with zero mean and equal variance. 
As we know [see (11-106)], the process xCt) is WSS with mean c and autocovariance 
(12 OOS WT. We shall show that it is mean-ergodic. This follows from (12-7) and the fact 
that 

1 loT (12 loT (12 
- C(l')dT = - coswfdT = -sinwT~O 
ToT 0 wT T-+oo 

Sufficient conditions. (a) If 

[ C(T) dT < ().') 

then (12-7) holds; hence the process xCt) is mean-ergodic. 
(b) If R(r) ~ .,,2 or, equivalently, if 

C(r)~O as f~OO 

then x(t) is mean-ergodic. 

(12-9) 

(12-10) 

Proof. U(12-lO) is true, then given e > 0, we can find a constant To such that IC.(T)I < e 
for T > To; hence 

and since e is arbitrary, we conclude that (12-7) is true. 
Condition (12-10) is satisfied if the random variables x(t + T) ancfx(t) are uncO!­

related for large T. 

Note The time average 1fT is an unbiased estimator of II; however, it is not best An estimator with smaller 
variance results if we use the weigbted average 

'lw = 1T w(l)x(r) dr 
-T 

and select the function wet) appropriately (see also Example 7-4). 
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DISCRETE-TIME PROCESSES. We outline next. without elaboration, the discrete-time 
version of the preceding results. We are given a real stationary process xln] with auto­
covariance C[m] and we fonn the time average 

1 M 
11M = N L: x[n] N = 2M + 1 (12-11) 

n=-M 

This is an unbiased estimator of the mean of x[n] and its variance equals 

(12-12) 

The process x[n] is mean-ergodic if the right side of (12-12) tends to 0 as M ~ 00. 

~ The process x[n] is mean-ergodic iff 

1 M 
- "C[m]---. 0 (12-13) M L., m ..... oo 

m=O 

We can show as in (12-10) that if C[m] ~ 0 as m ~ 00, then x[n] is mean-ergodic. 
For large M, 

1 M 
uk ~ M I,:C[m] 

m=O 

(12-14) 

.. (a) Suppose that the centered process x[n] = xLn] - TJ is white noise with autoco­
variance P8[m]. In this case, 

C[m] = P8[m] 

Thusx[n] is mean-ergodic and the variance of 11M equals PIN. This agrees with (7-22): 
The random variables x[n] are i.i.d. with variance C[O] = P, and the time average 11M 
is their sample mean. 

(b) Suppose now that C[mJ = Palmi as in Example 9-31. In this case, (12-14) 
yields " 

0'2 ::::::..!.. ~ P Iml = P(I +a) 
At N L., a N(l-a) 

m--oo 

Note that if we replace xLn] by white noise as in (a) with the same P and use as estimate 
of TJ the time average of NI terms, the variance P / N I of the resulting estimator will equal 
uiif 

I-a 
Ni =N-­

l+a 
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Sl\mpling. In. a numerical estimate of the _ of a continuous-time process x(t), the 
time-average lIr is replaced by the average 

1 
lIN = N LX(tn) 

of the N samples x(t,,) ofx(t). This is an unbiased estimate of Tf and its variance equals 

o-~ = ~ I: I: C(rn - tk) 
N n k 

where C ('t) is the autocovariance of x( t). If the samples are equidistant, then the random 
variables x(tn) = x(nTo) form a discrete-time process with autovariance CCmTo). In this 
case. the variance CT~ of 1/N is given by (12-12) if we replace C[m] by C(mTo). 

SPECTRAL INTERPRETATION OF ERGODICITY. We shall express the ergodicity 
conditions in terms of the properties of the covariance spectrum 

~(w) = Sew) - 21f1)28(w) 

of the process X(/). The variance CTf. of 1/T equals the variance of the moving average 
wet) of x(t) [see (12-2)]. As we know. 

(12-15) 

hence 

1 100 sin2 T w 
o-i- = 21r -00 SC(w) T2w2 dw (12-16) 

The fraction in (12-16) takes Significant values only in an interval of the order of liT 
centered at the origin. The ergodicity conditions ofx(t) depend, therefore, only on the 
behavior of S" (w) near the origin. 

Suppose first that the process X(/) is regular. In this case, SC(w) does not have an 
impulse at w = O. If. therefore, T is sufficiently large, we can use the approximation 
SC(w) ::::: SC(O) in (12-16). This yields 

2 SC (0) 100 sin2 T w SC (0) 
CT ~ -- dw = -- --+ 0 (1217) 

T 21f -00 T2w2 2T T -"00 -

Hence X(/) is mean-ergodic. 
Suppose now that ~ 

Sf(O) < 00 

Inserting into (12-16). we conclude as in (12-17) that 

2 1 
o-T ~ 2TS1(0) + ko ----+ ko r .... oo 

(12-18) 

Hence x(t) is not mean-ergodic. This case arises if in Wold's decomposition (11-89) the 
constant term Co is different from 0, or, equivalently, if the Fourier transform X(w) of 
x(i) contains the impulse 21fCocS(w). 



~ Consider the process 

Y(/) = aX(/) E{a} = 0 

where X(/) is a mean-ergodic process independent of the random variable a. Clearly. 
E{y(t)} = 0 and 

S;y(co) = 0'; S;~(co) + 21t0';11;S(CO) 

as in Example 11-12. This shows that the process yet) is not mean-ergodic. <liliiii 

The preceding discussion leads to the following equivalent conditions for mean 
ergodicity: 

1. O'T must tend to 0 as T -+- 00. 

1. In Wold's decomposition (11-89) the constant random term Co must be O. 
3. The integrated power spectrum FC(w) must be continuous at the origin. 
4. The integrated Fourier transform Z(w) must be continuous at the origin. 

Analog estimators. The mean 11 of a process x(t) can be estimated by the response of 
a physical system with input x(t). A simple example is a normalized integrator of finite 
integration time. This is a linear device with impulse response the rectangular pulse pet) 
of Fig. 12-2. For t > To the output of the integrator equals 

yet) = 7i1 l' x(a) da 
o t-To 

If To is large compared to the correlation time Tc of X(/), then the variance ofy(t) equals 
21:cC(O)/To. This follows from (12-6) with To = 2T. 

Suppose now that X(/) is the input to a system with impulse response h(/) of unit 
area and energy E: 

wet) = fo' x(a)h(t - a) da E = fooo h2(t) dt 

We assume that C(T) :::::: 0 for t' > Tl and h(t) :::::: 0 for t > To > TJ as in Fig. 12-2. 
From these assumptions it follows that E{w(/)} = 11 and 0'; :::::: EC(O)t'c for t > To. If, 
therefore, EC(O)Tc « 112 then wet) :::::: 11 for t > To. These conditions are satisfied if the 
system is low-pass. that is, if H (co) :::::: 0 for Iwl < Wc and wc « 112/ C (O)1:c. 

h(t) 

ll--__ ....,.~ __ ~ ....... :__---:...;.;._. 
To 

t FIGUREU-2 
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CQvari~nce-Ergodic Processes 

We shall now determine the conditions that an SSS process x(t) must satisfy such that 
its autocovariance C(A.) can be estimated as a time average. The results are essentially 
the same for the estimates of the autocorrelation RCJ..) ofx(t). 

VARIANCE. We start with the estimate of the variance 

V = C(O) = E{lx(t) - 7112} = E{x2(t)) _ .,,2 (12-19) 

ofx(t). 

Known mean. Suppose, first, that 7J is known. We can ~en assume, replacing the process 
x(t) 'by its centered process x(t) - .", that 

E{x(t)} = 0 

Our problem is thus to estimate the mean V of the process Xl(t). Proceeding as in (12-1), 
we use as the estimate of V the time average 

(12-20) 

This estimate is unbiased and its variance is given by (12-4) where we replace the function 
C (r) by the autocovariance 

C.t2.t2(r) = E{x2(t + T)X2(t)} - E2{r(t)} (12-21) 

of the process Xl(t). Applying 02-7) to this process, we conclude that x(t) is variance­
ergodic iff 

(12-22) 

To test the validity of (12-22), we need the fourth-order moments ofx(t). If, however, 
x(t) is a normal process, then [see (9-77)] 

C.t2.t2(T) = 2C2(r) (12-23) 

From this and (12-22) it follows that a normal process is variance-ergodic iff 

1 loT -r C2(T)dr ---+ 0 
o T .... oo 

(12-24) 

Using the Simple inequality (see Prob. 12-10) 

I~ foT C(T)dTr ~ ~ foT C2(T)dT 

we conclude with (12-7) and (12-24) that if a normal process is variance-ergodic, it is 
also mean-ergodic. The converse, however, is not true. This theorem has the following 
spectral interpretation: The process x(t) is rnean-ergodic iff SC(f./) has no impulses at 
the origin; it is variance-ergodic iff SC(f./) has no impulses anywhere. 
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EXAi\ IPLE 12-8 ~ Suppose that the process 

x(1) = acoswt + bsinwt + 11 

is normal and stationary. Clearly, x(t) is mean-ergodic because it does not contain a 
random constant. However, it is not variance-ergodic because the square 

IxU) -1712 = ~(a2 + b2) + ~(a2cos2wt - b2 cos 2wt) +absin2wt 

of X(/) - 1] contains the random constant (a2 + b2)/2. ..... 

Unknown mean. If 17 is unknown, we evaluate its estimator lIT from (12-1) and form 
the average 

VT = -21 1T Lx(!) -lIT]2 dt = 21T 1T x2(t) dt -1I} 
T -T -T 

The determination of the statistical properties of V T is difficult. The following observa. 
tions. however. simplify the problem. In general. V T is a biased estimator of the variance 
V of x(t). However. if T is large. the bias can be neglected in the determination of the 
estimation error; furthermore. the variance of V T can be approximated by the variance 
of the known-mean estimator V T. In many cases. the MS error E {~T - V)2} is smaller 
than E{(VT - V)2} for moderate values of T. It might thus be preferable to use VT as 
the estimator of V even when 17 is known. 

AUTOCOVARIANCE. We shall establish the ergodicity conditions for the autocovari­
ance C(J..) of the process x(t) under the assumption that E{x(t)} =0. We can do so. 
replacing x(t} by x(t) - 11 if 17 is known. If it is unknown. we replace x(t) by x(t) -lIT' 
In this case. the results are approximately correct if T is large. 

For a specific J... the product x(t + J..)x(t) is an SSS process with mean C(J..). We 
can. therefore. use as the estimate of C(J..) the time average 

1 1T 
eT(J..) = 2T -T z(t) dt z(t) = x(t + J..)x(t) (12·25) 

This is an unbiased estimator of C(J..) and its variance is given by (12-4) if we replace 
the autocovariance of x(t) by the autocovariance 

Ctt(r) = E{x(t + J.. + 1')x(t + 1')x(t + J..)x(t)} - C2(J..) 

of the process z(t). Applying Slutsky's theorem, we conclude that the process xCt} is 
covariance-ergodic iff " 

If xCt) is a normal process, 

Czz(,r) = C(J.. + r)C(J.. - 'l') + C2 ('l') 

In this case, (12-6) yields 

1 r2T 
Varer(J..) :::: T Jo Lc(J.. + 1')C(J.. - 1') + C2(1')] d'l' 

(12-26) 

(l2-27) 

(12-28) 
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From (12-27) it follows thlit if C('c) -+ O. then Cu(r) -+ 0 as r -+ 00; hence x(t) is 
covariance-ergodic. 

Cross-covariance. We comment briefly on the estimate of the cross-covariance Cxy( r) 
of two zero-mean processes x(t) and yet). As in (12-25), the time average 

1 iT txy(r) = - X(I + r)y(t) dt 
2T -T 

(12-29) 

is an unbiased estimate of C xy (r) and its variance is given by (12-4) if we replace C (r) 
by Cxy(r). If the functions Cxx(r), Cn (f), and Cxy(r) tend to 0 as r -+ 00 then the 
processes x(t) and yet) are cross-covariance-ergodic (see Prob. 12-9). 

NONUNEAR FSTIMATORS. The numerical evaluation of the estimate Cr(l) of C(l) 
involves the evaluation of the integral of the product x(t + l)x(t) for various values 
of l. We show next that the computations can in certain cases be simplified ihye replace 
one or both factors of this product by some function I of x(t). We shall assume that the 
process x(t) is normal with zero mean. 

The arcsine law. We have shown in (9-80) that if yet) is the output of a bard limiter 
with input x(t): 

then 

{ I x(t) > 0 
yell = sgn X(/) = -1 x(t) < 0 

2 . Cxx(r) 
Cyy(r) = -; arcSlD C.u;(O) 

The estimate of Cyy(f) is given by 

t).y(r) = 2~ I: sgn x(t + r)sgn x(t)dt 

This integral is simple to determine because the integrand equals ± 1. Thus 

tyy(f) = (rr; -1) 
where T.,t is the total time that x(t + r)x(t) > O. This yields the estimate 

txx(r) = t,u(O) sin [~ty,(r)] 
of C u (r) within a factor. 

(12-30) 

(12-31) 

IS. Cambanis and E. Masry: "On the Reconstruction of the Covariance of Stationary Gaussian Processes 
Through Zero-Memory Nonlinearilies," IEEE TransaclWns 0II11f!ormation Theory, vol. IT-24, 1978. 
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Bussgang's theorem. We have shown in (9-81) that the cross-covariance of the pro­
cesses x(t) and y(t) = sgn x(t) is proportional to C,u(t): 

Cxy('/:) = KCxx(r) K = f2 (12.32) V 1iC;;(O) 
To estimate Cxx(r). it suffices, therefore, to estimate Cxy(r). Using (12-29), we obtain 

lIlT 
txx(,r) = K tx,(r) = 2KT -T x(t + r)sgn x(t) dt (12-33) 

CORRELOMETERS AND SPECTROMETERS. A correlometer is a physical device 
measuring the autocorrelation R(A) of a process x(t). In Fig. 12-3 we show two cor­
relometers. The first consists of a delay element. a multiplier, and a low-pass (LP) filter. 
The input to the LPfilteris the processx(t - A)x(t); the outputy) (t) is the estimate of the 
mean R(A) of the input. The second consists of a delay element, an adder. a square-law 
detector, and an LP filter. The input to the LP filter is the process [X(I - A) + X(t»)2; the 
output Y2(t) is the estimate or the mean 2[R(O) + R(A») of the input. 

A spectrometer is a physical device measuring the Fouriertransfonn Sew) of R(A). 
This device consists of a bandpass filter B(w) with input x(t) and output yet). in series 
with a square-law detector and an LP filter (Fig. 12-4). The input to the LP filter is the 
process y(t); its output z(t) is the estimate of the mean E{y(t)} of the input. Suppose 
that B(w) is a narrow-band filter of unit energy with center frequency Wo and bandwidth 
2c.lfthe function Sew) is continuous atWo andcis sufficiently small, thenS(w) ~ S(Cdo) 
for Iw - Wol < c; hence [see (9-152)] 

• 
E{i(t)} = '\~ 100 

S(w)B2(w) dw ~ S(Wo) [+C B2(w) dw = S(Ql() 
,ul.. -00 2n: GlQ-C 

x(t) CrL Y(I) \ ) LPP 
r(t) z(t) ... S( 

o lIIo (d 

FIGURE 12-4 
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as in (9-16(i). T.bis yields 

z(t) =:: E{r(t)} =:: S(WO) 

We give next the optical realization of the correlometer of Fig. 12-3b and the 
spectrometer of Fig. 12-4. 

The Michelson Interferometer. The device of Fig. 12-5 is an optical correlometer. It 
consists of a light source S. a beam-splitting surface B. and two mirrors. Mirror Ml is 
in a fixed position and mirror M2 is movable. The light from the source S is a random 
signal x(t) traveling with velocity c and it reaches a square-law detector D along paths 
1 and 2 as shown. The lengths of these paths equall and 1 + 2tl, respectively, where dis 
the displacement ofmirror M2 from its equilibrium position. 

. The signal reaching the detector is thus the sum 

Ax(t - to) + Ax(t - to - A) 

where A is the attenuation in each path, to = 1/ c is the delay along path 1. and A = 2d / c 
is the additional delay due to the displacement of mirror M2. The detector output is the 
signal 

z(t) = A2[x(t - to - A) + x(t - to)]2 

Clearly. 

E{z(t)} = 2Al [R(O) + R()')] 

If. therefore, we use z(t) as the input to a low-pass filter. its output y(t) will be proportional 
to R(O) + R()') provided that the process x(t) is correlation-ergodic and the band of the 
filter is sufficiently narrow. 

Mz 
~--~-'" t 

--T---- ------------

B 

FIGUREU-5 
Michelson inrerferometer 

2 2 

x(t) 

2 
Ax(1 - to - A) 

s 

z(t} 
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Light M 

beam~~~=t:===t::;:~~~y~(t)$r;::..-r-"'" z(t) ... S(OJm) x(t) _ 

o 

FlGURE1U 
Fabry-Perot interferometer 

Detector 

(a) 

(b) 

The Fabry-Perot interferometer. The device of Fig. 12-6 is an optical. spectrometer. 
The bandpass filter consists of two highly reflective plates PI and P2 distance d apart 
and the input is a light beam X(/) with power spectrum S(w). The frequency response of 
the filter is proportional to 

1 
B(w) = 1 2 '2f»1i/ r ::.: 1 - r e-} C 

where r is the reflection coefficient of each plate and c is the velocity of light in the 
mediumM between the plates. The function B(w) is shown in Fig. 12-6b. It consists of 
a sequence of bands centered at 

1CnO. 
Wn =­

C 

whose bandwidth tends to 0 as r ~ 1. If only the mth band of B(w) overlaps with S«(J) 
and r ::.: 1, then the output z(t) of the LP filter is proportional to S(wm). To vary (J)m, 
we can, either vary the distance d between the plates or the dielectric constant of the 
mediumM. 

Distribution-Ergodic Processes 

Any parameter of a probabilistic model that can be expressed as the mean of some 
function of an SSS process x(z) can be estimated by a time average. For a specific x, the 
distribution of x(t) is the mean of the process yet) = U[x - X(/)]: 

t _ {I x(t) ~ x 
y( ) - 0 x(t) > x E{y(t}} = P{x(t) :s x} = F(x) 

Hence F(x) can be estimated by the time average ofy(t). Inserting into (12-1), we obtain 
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the estimator 

1 IT T1 + .,. + Tn 
Fr(x) = 2T -T yet) dt = 2T (12-34) 

where T i are the lengths of the time intervals during which x(t) is less than x (Fig. 12-7a). 
To find the variance of F T (x), we must first find the autocovariance of y(t). The 

product yet + ~')y(t) equals 1 ifx(t +.) =:: x and x(t) =:: x; otherwise. it equals O. Hence 

Ry(T) = P{x(t + .) =:: x, x(t) =:: xl = F(x, x; .) 

where F(x. x; .) is the second-order distribution of x(t). The variance of Ft(x) is 
obtained from (12-4) if we replace C(.) by the autocovariance F(x, x; -r) - Fl(x) of 
yet). From (12-7) it follows that a process x(t) is distribution-ergodic iff 

llT 
T F(x. x; T) dT: ~ Fl(x) 

o T-+oo 
(12-35) 

A sufficient condition is obtained from (12-10): A process x(t) is distribution-ergodic if 
F(x, x: T) -+ Fl(x) aST -+ 00. This is the case if the random variables x(t) and x(t + T) 
are independent for large T. 

Density. To estimate the density of X(/), we form the time intervals II t'i during which 
x(t) is between x and x + Ax (Fig. l2-7b). From (12-34) it follows that 

1 
I(x) ax ~ F(x + llx) - F(x) :::::: 2T LA.; 

; 

Thus lex) Ax equals the percentage of time that a single sample of x('i) is between x 
and x + Il.x. This can be used to design an analog estimator of lex). 

12-2 SPECTRUM ESTIMATION 

We wish to estimate the power spectrum Sew) of areal process x(t) in terms ofa single 
realization of a finite segment 

XT(I) = X(t)PT(t) { I It I < T 
PT(/) = 0 It I > T (12-36) 
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ofx(t). The spectrum SeCt»~ is not the mean of some function ofx(t). It cannot, therefore, 
be estimated directly as a time average. It is, however. the Fourier transform of the 
autocorrelation 

It will be determined in terms of the estimate of R (T). This estimate cannot be computed 
from (12-25) because the product X(I + T/2)x(t - T/2) is available only for t in the 
interval (-T + ITI/2, T -ITII2) (Fig. 12-8). Changing 2T to 2T -ITI, we obtain the 
estimate 

RT(T) = 2T ~ IT,l:~:: X(t + ~)X(t -~) dt (12-37) 

This integralspecifi.es RT(T) for ITI < 2T; for ITI > 2T we setRT(T) =0. This estimate 
is unbiased; however, its variance increases as IT I increases because the length 2T -11'1 
of the integration interval decreases. Instead ofRT (T), we shall use the product 

Rr(T) = (1 - ~i) RT(T) (12-38) 

This estimator is biased; however. its variance is smaller than the variance of RT (f). The 
main reason we use it is that its transform is proportional to the energy spectrum of the 
segmentxr(t) ofx(t) [see (12-39)]. 

The Periodogram 
• 

The periodogram of a process x(t) is by definition the process 

Sr(Ct» = 2~ 1[: x(t)e- jOlt d{ (12-39) 

This integral is the Fourier transform of the known segment xr(t) of X(I): 

1 
Sr(Ct» = 2T IXr (Ct»12 Xr(W) = 1r 

x(t)e- jOlt dt 
-T 

We shall express ST(Ct» in tenns of the estimator Rr('r) of R(f). 
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12T ' 
STeW) = RT('r)e- jcor dT: 

-2T 
(12-40) 

Proof. The integral In (12-37) is the convolution of Xr(t) with Kr( -I) because Xr(/) = 0 for 
It\ > T. Hence 

(12-41 ) 

Since Kr(t) is real. the transform ofxr ( -t) equals XT(w). This shows that (convolution theorem) 
the transform ofRT(r) equals the right side of (12-39). ., 

In the early years of signal analysis, the spectral properties of random processes 
were expressed in terms of their periodogram. This approach yielded reliable results 
so lOng as the integrations were based on analog techniques of limited accuracy. With 
the introduction of digital processing, the accuracy was improved and. paradoxically. 
the computed spectra exhibited noisy behavior. This apparent paradox can be readily 
explained in tenns of the properties of the perlodogram: The integral in (12-40) depends 
on all values of R1 (t') for 'r large and small. The variance of R1 (.) is small for small. 
only, and it increases as 't' - 2T. A1; a result, STeW) approaches a white-noise process 
with mean Sew) as T increases Lsee (12-57)]. 

To overcome this behavior of S1 (w), we can do one of two things: (1) We replace 
in (12-40) the term R1(.) by the product W(T:)RT(.), where wet') is a function (window) 
close to 1 near the origin, approaching 0 as t' -+ 2T. This deemphasizes the unreliable 
parts ofRT(.). thus reducing the variance of its transform. (2) We convolve STeW) with 
a suitable window as in (10-228). 

We continue with the determination of the bias and the variance of S1 (w). 

~ From (12-38) and (12·40) it follows that 

121 (1.1) . 
E{Sr(w)} = -21 1 - 2T R(.)e-Jcor d. 

Since 

( 1t'1) () 2sin2 Tw 
1 - 2T PT T # T Wl 

we conclude that [see also (11-83)] 

E{Sr(w)} = sm w - y S(y) d 100 • 2 T( ) 

-00 1rT(w - y)2 Y 
(12-42) 

This shows that the mean of the periodogram is a smoothed version of S(w); however, 
the smoothing kernel sin2 T(w - y)jnT(w - y? takes significant values only in an 
interv~l of the order of 1 j T centered at y = w. If, therefore, T is sufficiently large, 
we can set S(y) ~ S(w) in (12-42) for every point of continuity of Sew). Hence for 
large T. 

[ sin2 T(w - y) 
E{Sr(w)} ~ Sew) T( )2 dy = Sew) 

-00 1r W - Y 
(12-43) 

From this it follows that STeW) is asymptotically an unbiased estimator of S(w). ~ 
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SPECfRAL 
VARIANCE 

Data window. If S(w) is not nearly constant in an interval of the order of liT, the 
periodogram is a biased estimate of S(w). To reduce the bias, we replace in (12-39) the 
process x(t) by the product c(t)x(t). This yields the modified periodogram 

Sc(w) = -11fT c(t)x(t)e-jOl/ dtl2 (12-44) 
2T -T 

The factor e(l) is called the data window. Denoting by C(w) its Fourier transfonn, We 
conclude that [see (11-82)] 

1 
E{Sc(w)} = -Sew) * C2(w) (12-45) 

4nT 

VARIANCE. For the determination of the variance of STeW), knowledge of the fourth. 
order moments of x(t) is required. For normal processes, all moments can be expressed 
in teons of R ('t). Furthermore, as T -+ 00, the fourth-order moments of most processes 
approach the corresponding moments of a normal process with the same autocorrelation 
(see Papoulis, 1977 [22]). We can assume, therefore, without essential loss of generality, 
that x(t) is normal with zero mean. 

~ For large T: 

{ 2S2(O) w = 0 
VarST(w)::: S2(h') ..... Iwl » liT 

at every point of continuity of Sew). 

(12-46) 

Proof. The Fourier transform of the autocorrelation R(tl - (2) Pr (II) PT(t2) of the process xr(/) 
equals 

r( ) f002SinTaSinT(u+v-a)S( )d 
U,v = u-a a 

-00 Jl'a(u + v - a) 
(12-47) 

This follows from (11-80) with W(w) = 2 sin Twlw. The fraction in (12-47) takes significant 
values only if the terms aT and (u + v - a)T are of the order of 1; hence, the entire fraction is 
negligible if I" + vi» liT. Setting" = v = w, we conclude that r(w, w) ~ 0 and 

f oo 2sin2Ta 
r(w, -w) = 2 Sew - a) da 

-00 Jl'a 

f oo 2sin2Ta 
~ S(w) 2 da = 2TS(w) 

-00 Jl'a 
(12-48) 

for Iwl » liT and since [see (11-74») G 

1 
VarSr(w) = 4T2 [r2(w, -w) + r2(w, w)] 

and reO. 0) = S(O), (12-46) foHows. ~ 

Note For a specific 't', no matter how large,the estimate Rr('t') -+ R(f) as T -+ 00. Its transform 5r(0I). 
however, does not tend to S«(J) as T -+ 00. The reason is that the convergence ofRr(f) toR('t') is not unifonn 
ip f, that is. given e > o. we cannot find a constant To independent of 't' such that IRr('t') - R(f)l < £ for 
every 't'. and every T > To· 
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Proceeding similarly, we can show that the variance of the spectrum Sc (w) obtained 
with the data window c(t) is essentially equal to the variance of ST(eo). This shows 
that use of data windows does not reduce the variance of the estimate. To improve the 
estimation .. we must replace in (12-4Q) the sample autocorrelation RT(.) by the product 
w(.)Rr(.). or, equivalently, we must smooth the periodogram Sr(eo). 

Note Data windows might be useful if we smooth ST (w) by an ensemble average: Suppose that we have access 
to N independent samples x(l, ~i) of X(I), or, we divide a single long sample into N essentially independent 
pieces, each of duration 2T. We form the periodograms Sr (w, ~I) of each sample and their average 

- 1 ~ 
STeW) = li L..,., ST(W, ~j) (12-49) 

~weknow, 

- sin2 wT - 1 2 
E{ST(W)} = Sew) * 7rTwl Var STeW) ~ liS (w) W #: 0 (12-50) 

If N is large, the variance ofST(w) is smaU. However, its bias might be significant. Use of data windows is in 
this case desirable. 

Smoothed Spectrum 

We shall assume as before that T is large and x(t} is normaL To improve the estimate, 
we form the smoothed spectrum 

Sw{eo) = _1 100 
ST(eo - y)W(y)dy = 12r 

w(.)Rr(.)e- jCdf d. (12-51) 
2n -00 -2T 

where 

wet) = - W{eo)ejtl.lt deo 1 100 

21l' -00 

The function wet) is called the lag window and its transform W(eo) the spectral 
window. We shall assume that W ( -eo) = W (eo) and 

1 100 w(O) = 1 = - W(eo)dw 
2n -ooy 

W(w) ~ 0 (12-52) 

Bias. From (12-42) it follows that 

1 1 sin2 Teo 
E(SII/(eo)} = 21l' E{ST(W)} * W(w) = 21r S(eo) * nTeo2 * W(eo) 

Assuming that W (eo) is nearly constant in any interval of length 1/ T, w~ obtain the large 
T approximation 

1 
E{Sw(w)} ::::: 2n S(eo) * W(eo) (12-53) 

Variance. We shall determine the variance of Sw(w) using the identity [see (11-74)J 
1 

COV[ST(U), Sr(v)] = 4T2lr2(u, -v) + r2(u. v») (12-54) 

This problem is in general complicated. We shall outline an approximate solution 
based on the following assumptions: The constant T is large in the sense that the functions 
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Sew) and W(w) are nearly constant in any interval oflength liT. The width of W(co) 
that is, the constant (1' such that W(w) :::::: 0 for Iwl > (1', is small in the sense that S(CO) 
is nearly constant in any interval of length 2cr . 

Reasoning as in the proof of (12-48), we conclude from (12-47) that r(u, v) ~ 0 
for u + v» liT and 

r(u. -v) :::::: S(u) 100 2 sin T(u - v - a) sin Ta da = S(u) 2 sin T(u - v) 
-00 3l"(u - V - ala u - v 

This is the generalization of (12-48). Inserting into (12-54), we obtain 

sm2 T(u - v) 2 
Cov[Sr(u), Sr(v)]:::::: T2(u _ V)2 S (u) 02-55) 

Eq.uation (12-46) is a special case obtained with u = 1) = W. 

~ For Iwl » 1/ T 

(12-56) 

where 

Proof, The smoothed spectrum SUI (w) equals the convolution of ST (w) with the spectral window 
W(w)/21t. From this and (9-96) it follows mutatis mutandis that the variance ofSw(w) is adoub\e 
convolution involving the covariance of Sr(W) and the window W(w). The fraction in (12-55) is 
negligible for Iu - vi » liT. In any interval oflength lIT. the function W(w) is nearly constant 
by assumption. This leads to the conclusion that in the evaluation of the variance of S.,(w). the 
covariance of Sr(w) can be approximated by an impulse of area equal to the area 

S2 ) 100 sin2 T(u - v) d = "!...S2( ) 
(u -00 T2(u _ V)2 V T /l 

of the right side of (12-55). This yields 

Cov(Sr(u), Sr(t')] = q(u)~(u - v) (12-57) 

From the above and (9- I 00) it follows that 

7r 100 2 W2(y) S2(W) 100 W2(y) VarSw(w)::::::- S(W-y)-2-dy=-- --dy 
T -00 47r 2T -00 27r 

and (12-56) results. ~ 

WINDOW SELECTION. The selection of the window pair wet) ~ W(w) depends on 
two conflicting requirements: For the variance of Sw(w) to be small, the energy Ell) of 
the lag window wet) must be small compared to T. From this it follows that w(t) must 
approach 0 as t -7 2T. We can assume, therefore, without essential loss of generality 
that w(t) = 0 for It I > M, where M is a fraction of2T. Thus 

Sw(w) = 1M w(t)Rr(t)e-jllIf dt 
-M 

M<2T 
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The mean of SIII(W) is a smoothed version of Sew). To reduce the effect of the resulting 
bias, we must use a spectral window W(w) of short duration. This is in contlict with 
the requirement that M be small (uncertainty principle). The final choice of M is a 
compromise between bias and variance. The quality of the estimate depends on M and 
on the shape of w(t). To separate the shape factor from the size factor, we express wet) 
as a scaled version of a nonnalized window wo(t) of size 2: 

w(t) = Wo (~ ) -++- W(w) = MWo(Mw) (l2-58) 

where 

wo(t) = 0 for It I > 1 

The critical parameter in the selection of a window is the scaling factor M. In 
the absence of any prior information, we have no way of determining the optimum size 
of M. The following considerations, however, are useful: A reasonable measure of the 
reliability of the estimation is the ratio 

Var Sw(w) Ew 
S2(W) ::::: 2T = a (12-59) 

For most windows in use, Ew is between O.SM and O.8M (see Table 12-1). If we set 
a = 0.2 as the largest acceptable a, we must set M ~ T 12. If nothing is known about 
S(w), we estimate it several times using windows of decreasing size. We start with 
M = T 12 and observe the form of the resulting estimate Slll(w). This estimate might not 
be very reliable; however, it gives us some idea of the form of Sew). If we see that the 
estimate is nearly constant in any interval of the order of 11 M , we conclude that the initial 

TABLE 12-1 

w(t) 

1. Bartlen 

I -It I 
m2 = 00 Ell> = ~ n = 2 

2. Tukey 

i(l +cout) 

ml = ~ E .. = i n = 3 

3.Panen 

[3(1 - 21tJ)PI (I)] * [3(1 - 211l)Pl (I)] 

m2 = 12 EI» = 0.539 n = 4 

4. Papoulis I 

1.1 sinH!1 + (1 -It I) COSHl 
H 

m2 = ",2 EI» = 0.587 n = 4 

~ (sinW/4)4 
4 (J)/4 

J A. Papoulis: "MInJmum Bias Wmdows for High Resolution Speclr8l 
Estimates," lEEET_ions on In/oT1IIQJion Theory. vol. IT-l!I,l973 



S44 STOCHASTIC PROCf!SSES 

choice M = T /2 is too large. A reduction of M will not appreciably affect the bias but it 
will yield a smaller variance. We repeat this process until we obtain a balance between 
bias and variance. As we show later, for optimum balance, the standard deviation of the 
estimate must equal twice its bias. The quality of the estimate depends, of course, on the 
size of the available sample. If, for the given T, the resulting Sw (w) is not smooth for 
M = T /2, we conclude that T is not large enough for a satisfactory estimate. 

To complete the specification of the window. we must select the fonn of wo(t). In 
this selection, we ~ guided by the following considerations: 

1. The window W(w) must be positive and its area must equal21l' as in (12-52). This 
ensures the positivity and consistency of the estimation. 

2. For small bias. the "duration" of W (w) must be small. A measure of duration is the 
. second moment 

m2 = - w2W(w)dw 1 100 

21l' -00 
02-60) 

3. The function W(w) must go to 0 rapidly as w increases (small sidelobes). This 
reduces the effect of distant peaks in the estimate of Sew). As we know. the 
asymptotic properties of W (w) depend on the continuity properties of its inverse 
wet). Since wet) = 0 for It I > M. the condition that W(w) -+ 0 as A/w" as 
n -+ 00 leads to the requirement that the derivatives of wet) of order up to n - 1 
be zero at the end-points ±M of the lag window wet): 

w(±M) = w'(±M) = ... = w(n-I)(±M) = 0 (12-61) 

4. The energy Ew of wet) must be small. This reduces the variance of the estimate. 

Over the years, a variety of windows have been proposed. They meet more or less 
the stated requirements but most of them are selected empirically. Optimality criteria 
leading to windows that do not depend on the form of the unknown Sew) are difficult 
to generate. However, as we show next, for high-resolution estimates (large T) the last 
example of Table 12-1 minimizes the bias. In this table and in Fig. 12-9, we list the most 

" 

F1GUREIZ-9 



CHAPTER 12 SPECTRUM ESTIMATION 545 

common window pairs wet) # W(w). We also show the values of the second moment 
m2, the energy Ew, and the exponent n of the asymptotic attenuation Ajw" of W(w). In 
all cases, wet} = 0 for It I > 1. 

OPTIMUM WINDOWS. We introduce next three classes of windows. In all cases, we 
assume that the data size T and the scaling factor M are large (high-resolution estimates) 
in the sense that we can use the parabolic approximation of S(w - a) in the evaluation 
of the bias. This yields [see (10-232)] 

1 /00 S"(W) /00 
-2 S(w - a)W(a)da ~ Sew) + -4- a2W(a}da (12-62) 

7C -00 n -00 . 
Non:: that since W(w) > 0, the above is an equality if we replace the term S"(W) by 
S"(w + 0). where 8 is a constant in the region where W(w) takes significant values. 

Minimum bias data window. The modified periodogram Sc(w) obtained with the data 
window e(/) is a biased estimator of Sew). Inserting (12-62) into (12-45), we conclude 
that the bias equals 

1 /00 Bc(w) = -2 sew - a)C2(a) da - Sew) 
n -00 

~ -- a 2C2 (a) da 
S"(W) [ 

4n -00 (12-63) 

We have thus expressed the bias as a product where the first factor depends only on Sew) 
and the second depends only on C(w).This separation enables us to find C(w} so as to 
minimize Bc(w). To do so, it suffices to minimize the second moment 

(12-64) 

of Cl(w) subject to the constraints 

1 100 
-2 C2(w) dw = 1 

7C -00 

C( -w) = C(w) 

It can be shown that2 the optimum data window is a truncated cosine (Fig. 12-10): 

{ 
_1_ cos ~t It I < T cos T'w 

e(t) = .ff 2T ~ C(w) = 4n.Jf 2 _ 4T2w2 
o It I > T 7C 

(12-65) 

The resulting second moment M2 equals 1. Note that if no data window is used, then 
e(l) = 1 and M2 = 2. Thus the optimum data window yields a 50% reduction of the 
bias. 

2 A. Papouli.$: '~podization for Optimum Imaging of Smooth Objects:' J. Opt. Soc Am.. vol. 62, 
December,1972. 
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c(t) 

o T 

FIGURE 12·10 

Minimum bias spectral window. From (12-53) and (12-62) it follows that the bias of 
Sw (w) equals 

1 100 m2 B(w) = 2.7r -00 S(w - a)W(a) da - Sew) ~ TS"(w) (12-66) 

where m2 is the second moment of W(w)/2.7r. To minimize B(w). it suffices, therefore, 
to minimize m2 subject to the constraints 

W(w) ~ 0 W(-w).= W(w) 1 100 
2.7r -00 W(w)dw=l (12-67) 

This is the same as the problem just considered if we replace 2T by M and we set 

W(w) = C2ew) wet) = e(t) * e{-t) 

This yields the pair (Fig. 12-11) 

{ 2. I sin !!"r/ + (1 -11) cos!!...t It I ::: M 
wet) = TC M M M 

o It I >M 
(12-68) 

(12-69) 

Thus the last window in Table 12-1 minimizes the bias in high-resolution spectral 
estimates. 

LMS spectral window. We shall finally select the spectral window W{w) so as to 
minimize the MS estimation error 

(12-70) 

We have shown that for sufficiently large values of T. the periodogram STeW) can be 
written as a sum Sew) + l'(w), where l'(w) is a nonstationary white noise process with 
autocorrelation 7rS2(u)8(u - v)/T as in (12-57). Thus our problem is the estimation 
of a deterministic function Sew) in the presence of additive noise ,,(w). This problem 
was considered in Sec. 10-6. We shall reestablish the results in the context of spectral 
estimation. 
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W(l) 

-M Mt 

FIGURE 12-11 

We start with a rectangular window of size 2a and area 1. The resulting estimate 
of SeCt»~ is the moving average 

1 1.0. 
Sb,(Ct» = 2a -.0. ST(Ct> - a)da (12-71) 

of Sr(Ct». The rectangular window was used first by Danie113 in the early years of 
spectral estimation. It is a special case of the spectral window W (Ct» j27r. Note that the 
corresponding lag window sin at /21r At is not time-limited. 

With the familiar large-T assumption. the periodogram ST(Ct» is an unbiased es­
timator of S(Ct». Hence the bias of S.o. (Ct» equals 

- S(Ct> - y) dy - seCt»~ ::::: -- l dy = S"(Ct»-1 1.0. S'(Ct» 1.0. a2 

2A -.0. 2a -.0. 6 
and its variance equals 

This follows from (12-71) because ST(Ct» is white noise as in (12-57) with q(u) = 
1r S2(u)/T [see also (10·236)]. This leads to the conclusion that 

1r S2(Ct» 
VarS.o.(Ct» = 2aT 

Proceeding as in (10-240). we conclude that e is minimum if 

= (91r) 0.2 ( SeCt»~ )0.4 
A 2T S"(Ct» 

(12-72; 

The resulting bias equals twice the standard deviation of S.o. (Ct» (see two-to-one rule). 

3p, J. Daniell: Discussion on "Symposium on AlItOCOlTelation in TIme Series," J. Roy. Statist. Soc. Suppl .• 8, 
1946. 
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Suppose finally that the spectral window is a function of unknown form. We wish 
to determine its shape so as to minimize the MS error e. Proceeding as in (10-24l), we 
can show that e is minimum if the window is a truncated parabola: 

3 ill. (y2) 
Sw(W) = 4D. -Il. ST(llJ- y) 1- D.2 dy 

_ (151r )0.2 ( S{llJ) )0.4 
D. - T S"(w) (12-73) 

This window was first suggested by Priestley.4 Note that unlike the earlier windows, it 
is frequency dependent and its size is a function of the unknown spectrum S(w) and 
its second derivative. To determine Sw(w + 8) we must therefore estimate first not only 
S(w) but also SJ/(w). Using these estimates we detennine fl. for the next step. 

12:-3 EXTRAPOLATION AND 
SYSTEM IDENTIFICATION 

In the preceding discussion, we computed the estimate RT(f) of R(f) for If I < M and 
used as the estimate of Sew) the Fourier transform Sw(w) of the product W(t)RT(t). The 
portion of Rr('r) for If I > M was not used. In this section, we shall assume that S({Q) 
belongs to a class of functions that can be specified in terms of certain parameters, and 
we shall use the estimated part of R{f) to determine these parameters. In our develop­
ment, we shall not consider the variance problem. We shall assume that the portion of 
R(f) for If I < M is known exactly. This is a realistic assumption if T » M because 
RT(r) -i> R('t') for It'l < MasT -i> 00. A physical problem leading to the assumption 
that R(f) is known exactly but only for ITI < M is the Michelson interferometer. In this 
example. the time of observation is arbitrarily large; however. R(t') can be determined 
only for IT I < M, where M is a constant proportional to the maximum displacement of 
the moving mirror (Fig. 12-5). 

Our problem can thus be phrased as follows: We are given a finite segment 

R (.) _ {Ref) It'l < M 
M - 0 It'l > M 

of the autocorrelation R (t') of a process x(t) and we wish to estimate its power spectrum 
S(w). This is essentially a deterministic problem: We wish to find the Fourier trans­
form S(w) of a function R(t) knowing only the segment RM(.) of R(t') and the fact 
that S(llJ) ~ O. This problem does not have a unique solution. Our task then is to find a 
particular S(w) that is close in some sense to the unknown spectrum. In the early years 
of spectral estimation, the function S(w) was estimated with the method of windows 
(Blackman and Tukeys). In this method. the unknown R( 't') is replaced b}l 0 and the known 
or estimated part is tapered by a suitable factor w( 't'). In recent years, a different approach 
has been used: It is assumed that S(w) can be specified in terms of a finite number of 
parameters (parametric extrapolation) and the problem is reduced to the estimation of 
these parameters. In this section we concentrate on the extrapolation method starting 
with brief coverage of the method of windows. 

4M. 8. Priestley: "Basic Considerations in the Estimation of Power Spectra," Techno1ll4trics, 4,1962 
SR. B. Blackman and I. W. Tukey: The Measurement of Power Spectra, Dover, New York, 1959. 
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METHOD'OF WINDOWS. The continuous-time version of this method is treated in the 
last section in the context of the bias reduction problem: We use as the estimate of S (w) 
theintegrat 

1M . 1100 
Sw(W) = wtr)R("r)e-Jon dt: = -2 S(w - a) Weal da 

-M 11: -00 
(12-74) 

and we select wet) so as to minimize in some sense the estimation error Sw (w) - S (w). H 
M is large in the sense thatS(w -a) ~ Sew) for lal ~ 11M, we can use the approxima­
tion [see (12';()2)] 

This is minimum if 

1 \. 11: I ( 1t:1) 11: w(t:) =;r SlD Mt: + 1- M cos M't' It:\ < M 

The discrete-time version of this method is similar: We are given a finite segment 

R [ 1 = {R[m] Iml ~ L 
L m 0 Iml> L (12-75) 

of the autocorrelation R[m] = E {x[n+m]xLn]} of a process x[n] and we wish to e~timate 
its power spectrum 

00 

Sew) = L Rlm]e-)mw 
m=-oo 

We use as the estimate of Sew) the OFf 

L ] 1" SIII(W) = L: w[m]R[m]e-Jmw = 2 S(w - a)W(a)da 
m=-L 11: -K 

(12-76) 

oftheproductw[m]R[m). wherew[m] ~ W(w) is a DFf pair. Thecriteriaforselecting 
w[m] are the same as in the continuous-time case. In fact, if M is large, we can choose 
for w[m] the samples 

w[m] = w(Mml L) m =O •...• L (12-77) 

of an analog window wet) where M is the size of wet). 
In a real problem. the data Rdm] are not known exactly. They are estimated in 

terms of the J samples of x[n]: 

1 
RdmJ = J Lx[n + m]xln] (12-78) 

1/ 

The mean and variance of RL[m 1 can be determined as in the analog case. The details. 
however. will not be given. In the upcoming material, we assume that Rdm] is known 
exactly. This assumption is satisfactory if J » L. 
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Extrapolation Method 

The spectral estimation problem is essentially numerical. This involves digital data even 
if the given process is analog. We shall. therefore. carry out the analysis in digital fonn. 
In the extrapolation method we assume that S(z) is of known form. We shall assume that 
it is rational 

S(z) = l(z)l(l/z) 

We select the rational model for the following reasons: The numerical evaluation of its 
unknown parameters is relatively simple. An arbitrary spectrum can be closely approx­
imated by a rational model of sufficiently large order. Spectra involving responses of 
dynamic systems are often rational. 

SYSTEM IDENTIFICATION. The rational model leads directly to the solution of the 
identification problem (see also Sec. 10-7): We wish to determine the system function 
H (z) ofa system driven by white noise in terms of the measurements orits output x[n]. As 
we know, the power spectrum of the output is proportional to H(z)H(1/z). If, therefore, 
the system is of finite order and minimum phase. then H(z) is proportional to L(z}. To 
determine H(z), it suffices, therefore, to determine the M + N + 1 parameters of l(z). 
We shall do so under the assumption that Rdm] is known exactly for 1m I ::: M + N + 1. 

We should stress that the proposed model is only an abstraction. In a real problem, 
R[m] is not known exactly. Furthermore, S(z) might not be rational; even if it is, the 
constants M and N might not be known. However, the method leads to reasonable 
approximations if Rdm] is replaced by its time-average estimate Rdm] and L is large. 

AUTOREGRESSIVE PROCESSES. Our objective is to determine the M + N + 1 coef­
ficients hi and at specifying the spectrum S(z) in tenns of the first M + N + 1 values 
Rdm] of R[m]. We start with the assumption that 

(12-80) 

This is a special case of (11-36) with M = 0 and bo = .JPN. As we know, the process 
x[nJ satisfies the equation 

x[n] + alx[n - IJ + ... + aHx[n - N] = e[n1 (12-81) 

where ern] is white noise with average power PH. Our problem is to find the N + I 
coefficients at and PN. To do so, we multiply (12-81) by x[n - mJ and take expected 
values. With m = 0, ... , N, this yields the Yule-Walker equations 

R[O] +a,R[lJ + ... +aHR[N] = PH 

R[ll + alR[O] + ... + aNR[N - 1] = 0 
(12-82) ...................................................................... 

R[N] + a1R[N - 1] + ... + aN RlO] = 0 

This is a system of N + 1 equations involving the N + 1 unknowns ale and PH, and it has 
a unique solution if the determinant aN of the correlation matrix DN of x[n] is strictly 
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positive. We note, in particular, that 

PN = ~N+I 
~N 

:12-83) 

If ~N+l = 0, then PN = 0 and eN[m] = O. In this case, the unknown Sew) consists of 
lines [see (11-44)]. 

To find l(z), it suffices, therefore, to solve the system (12-82). This involves the 
inversion of the matrix D N. The problem of inversion can be simplified because the 
matrix DN is Toeplitz; that is, it is symmetrical with respect to its diagonal. We give 
later a simple method for detennining ak and PN based on this property (Levinson's 
algorithm). 

MOVING AVERAGE PROCESSES. If x[n] is an MA process, then 

S(z) = L(z)L(1/z) (12-84) 

In this case, R{m] = 0 for Iml > M [see (11-47)J; hence S(z) can be expressed directly 
in tenns of R[m]: 

M 

S(z) = L R[m]z-m 
III=-M 

M 

S(e jCl1 ) = L: bme-jmfIJ 

m=O 

2 

(12-85) 

In the identification problem, our objective is to find not the function S(z), but the M + 1 
coefficients bm of l(z). One method for doing so is the factorization S(z) = l(z)l(l/z) 
of S(z) as in Sec. 11-1. This method involves the detennination of the roots of S(z). We 
discuss later a method that avoids factorization (see pages 561-562). 

ARMA PROCESSES. We assume now that x[n] is an ARMA process: 

l(z) = bo + blZ-1 + ... + bMCM = N(z) 
1 + a1z-1 + ... + aNz-N D(z) 

(12-86) 

. In this case, x[n] satisfies the equation6 

x[n] + alx[n - 1] + " . + aNx[n - NJ = boiLn1 + ... + bMi[n - M] (12-87) 

where i[n] is its innovations. Multiplying both sides of (12-87) by x[n - m1 and taking 
expected values, we conclude as in (11-49) that 

R[m] + alR[m - 1] + ... + aNRLm - N] = 0 m>M (12-88) 

Settingm = M + I, M +2, ... , M + N into (12-88), we obtain a system'"of N equations. 
The solution of this system yields the N unknowns a I •... , aN. 

To complete the specification of l(z), it suffices to find the M + 1 constants 
bo, ...• bM' To do so, we form a filter with input x[n]. and system function (Fig. 12-12) 

D(z) = 1 + alz- I + ... + aNz-N 

6M. Kaveh: "High Resolution Spectral Estimation for Noisy Signals:' IEEE Transactions on Acoustics. 
Sp~ech. and Signal Processing. vol. ASSP·Z7, 1979. See also 1. A. Cadzow: "Spectral Estimation: An 
Overdetennined Rational Model Equation Approach," IEEE Proceedings, vol. 70,1982. 
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N(~) 
D(z) 

1..[11] D(z) x[n] y[nl 

N(z) 
y[n] 

FIGURE 12·12 

The resulting output y[nJ is called the residual sequence. Inserting into (9-210), we 
obtain 

5,,(z) = 5(z)D(z)D(1/z) = N(z)N(l/z) 

From this it follows that y[n] is an MA process, and its innovations filter equals 

L,(z) = N(z) = bo + hlel + ... + bMZ-M (12-89) 

To determine the constants bi. it suffices, therefore, to find the autocorrelation RY)'[m] 
for Iml ~ M. Since y[n] is the output of the filter D(z) with input x[n]. it follows from 
(11-47) with ao = 1 that 

N 

R,,[m] = Rlm] * d[m] * dl-m] d[m) = I>k8[m -kJ 
t=O 

Thlsyields 
N N 

R,.,,[m] = E R[m - i]p[i] pLm] = Eat-mat = p[-m] (12-90) 
k_ 

for 0 ~ m ~ M and 0 for m > M. With R vy[m1 so determined, we proceed as in the MA 
case. 

The determination of the ARMA model involves thus the following steps: 

Find the constants at from (12-88); this yields D(z). 

Find R,,,[m1 from (12-90). 
Fmd the roots of the polynomial 

M 

5,,(z) = E RyyLm]Cm = N(z)N(1/z) 
m=-M 

Fonn the Hurwitz factor N(z) of 5,,. (z). 

.. 

LATTICE FILTERS AND LEVINSON'S ALGORITHM. An MA filter is a polynomial 
in 1.-1• Such a filter is usually realized by a ladder structure as in Fig. 12-144. A lattice 
filter is an alternate realization of an MA filter in the form of Fig. 12-14b. In the context 
of spectral estimation, lattice filters are used to simplify the solution of the Yule-Walker 



x[n} 

A 
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equation~ and the factorization of polynomials. Furthermore, as we show later. they are 
also used to give a convenient description of the properties of extrapolating spectra. 
Related applications are developed in the next chapter in the Solution of the prediction 
problem. 

The polynomial 
N 

D() I N-I N -N 1 '" N -It. Z = - al Z - •.. - aNz = - L..,a" Z 

1=1 

specifies an MA filter with H(z) = D(z). The superscript in at' identifies the order of 
the filter. If the input to this filter is an AR process x[n] with l(z) as in (12-80) and 
af = -a", then the resulting output 

ern] = x[n] - afx[n - 1) - ••. - a~x[n - N] (12-91) 

is white noise as in (12-81). The filter D(z) is usually realized by the ladder structure 
of Fig. 12-14a. We shall show that the lattice filter of Fig. 12-14b is an equivalent 
realization. We start with N = 1. 

In Fig. 12-13a we show the ladder realization of an MA filter of order 1 and its 
mirror image. The input to both systems is the process x[n]; the outputs equal 

y[n] = x[n] - alx[n - 1] zen) = -a:x[n] + x[n - 1] 

The corresponding system functions equal 

1 - alz-1 -a: + Z-I 

In Fig. 12-13b we show a lattice filter of order 1. It has a single input x{n) and two 
outputs 

X[II] 

A 

L-____ _+{ >--__ .,y[n] 
B 

L...------+(.+>--_.,z[n] 
C 

x[n] 

A 

(a) 

r---------;~------+f )---.B-6I[II] 

1----'--------;o-t>---c-SI[n] 

(b) 

FIGURE 12-13 
Ladder and lattice filters of order one. 
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x(n) 

A 

x{n1 
A 

FIGURE 12-14 
Ladder and lattice filters 

t--+r-----------

--------------to{.+ B sNln] 

(a) 

(b) 

The corresponding system functions are 

If K 1 = a~. then the lattice filter of Fig. 12-13b is equivalent to the two MA filters of 
Fig. 12-13a. 

In Fig. 12-14b we show a lattice filter of order N formed by cascading N first-order 
filters. The input to this filter is the process x[n]. The resulting outputs are denoted by 
BN[n] and BNln] and are calledforward and backward, respectively. As we see from the 
diagram these signals satisfy the equations 

'N[n] = 'N-I[n] - KNIN-I[n - 1] 

iN[n] = iN-len - 1] - KNBN-l[n] 

(12-92a) 

(12-92b) 

Denoting by ~N(Z) and EN (z) the system functions from the input A to the upper output 
B and lower output C. respectively, we conclude that 

~N(ol) = ~N-I(ol) - KNCIEN-l(ol) 

EN(Z) = z-lEN_l(Z) - KN~N-I(Z) 

(12-93a) 

(12-93b) 

where EN-I (z) and EN-l (ol) are the forward and backward system functions of the lattice 
of the first N - 1 sections. From (12-93) it follows by a simple induction that 

EN(Z) = z-N~N(1lz) (12-94) 

The lattice filter is thus specified in terms of the N constants Ki. These constants are 
called reflection coejJicients. 
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Since EI (z) = 1- K1z-1 and El (z) == -KI + Z-I, we conclude from (12-93) that 
the functions El (z) and EN(z) are polynomials in ;::-1 of the fonn 

EN (z) = 1 - af Z-I - . .. - aZz-N (12-95) 

EN(z) = Z-N - af Z-N+l - ... - aZ (12-96) 

where at' are N constants that are specified in tenns of the reflection coefficients K/c. 
We shall refer to En (Z) as the normalized Levinson polynomial of degree N (constant 
term is unity) and En (z) represents its reciprocal polynomial. 

LEVINSON'S ALGORITHM.' We denote by af-I the coefficients of the lattice filter of 
the first N - 1 sections: 

EN-l (z) = 1 - a~-l Z-I - ... - aZ:1 Z-(N-l) 

From (12-94) it follows that 

z- I EN_I(z) = z-NEN_l(llz) 

Inserting into (12-93a) and equating coefficients of equal powers of z. we obtain 
N N-I K N-I a/c = a/c - NaN-k 

a~ = KN 

k = 1 •... , N-1 
(12-97) 

We have thus expressed the coefficients at' of a lattice of order N in terms of the coeffi­
cients af -I and the last reflection coefficient K N. Starting with a I = K 1. we can express 
recursively the N parameters at' in tenns of the N reflection coefficients K/c. 

Conversely, if we know at'. we find K/c using inverse recursion: The coefficient 
KN equals a~. To find KN-l, it suffices to find the polynomial EN-I(Z). Multiplying 
(12-93b) by KN and adding to (12-93a), we obtain 

( 2)4 4 NA 1 - KN EN-I (z) = EN(Z) + KNZ- EN(llz) (12-98) 

This expresses EN-l (z) in terms of EN(z) because KN = a~. With ~N-l (z) so deter­
mined, we set KN-I = aZ:/. Continuing this process, we find EN-k(Z) and KN-Ic for 
·every k < N. 

Minimum-phase properties of Levinson Polynomials. We shall relate the location of 
the roots zf of the polynomial EN (z) to the magnitude of the reflection coefficients Kk. 

~ If 
IK/cl < 1 for all k ~ N then Izfl < 1 for all i ~ N (12-99) 

Proof, By induction. The theorem is true for N = 1 because E\(z) = 1 - K1z-1; hence Izl! = 
IKd < 1. Suppose that Izf-II ~ 1 for all j ~ N - 1 where zf- I are the roots of EN-I (z). From 
this it follows that the function 

(12-100) 

'N. Levinson: "The Wiener RMS Error Criterion in Filter Design and Prediction," Joumal of MarMmatics 
and Physics, vol.lS, 1947. See aIsoJ. Durbin: "The Fining of TIme Series Models:' Revue L'[nstitul 
Intemationau de Statisque, vol. 28, 1960. 
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is all-pass. Since EN(zf) = 0 by assumption, we conclude from (12-93a) and (12-94) that 

EN(z;) = EN-I (z;) - KNz-NEN _ I (1/z;) = 0 

Hence 
1 

IAN-I (zf) 1= IKNI > 1 

This shows that Izfl < 1 [see (12B-2)]. ~ 

Izfl < 1 for all i::: N then IKkl < 1 for all k == N (12-101) 

Proof. The product of the roots of the polynomial EN (z) equals the last coefficient a~. Hence 

Thus (12-100) is true for k = N. To show that it is true for k = N - 1, it suffices to show thal 
Iztll < 1 for j :S N - 1. To do so, we form the all-pass function 

N" 
A () _ C EN(llz) 

N z - " 
EN(z) 

(12-102) 

Since EN_I (z1- 1) = 0 it follows from (12-98) that 

IAN (ztl) I = I~NI > 1 

Hence Iztll < I and IKN_tI = laZ=:, = Izf-' ... zZ=:, < 1. Proceeding similarly, we conclude 
that IKkl < 1 for all k :S N. ~ 

V If IKkl < 1 for k ::: N - 1 and IKNI = 1, then 

Izfl = 1 for all i:!: N (12-103) 

Proof. From the theorem it follows that Iz7-11 < 1 because IKll < 1 for all k :S N - 1. Hence 
the function AN_I(Z) in (12-100) is aU-pass and IAN-I (zf) I = l/lKNI = 1. This leads to the 
conclusion that Izfil = 1 [see (12B-2»). <! 

We have thus established the equivalence between the Levinson polynomial EN (z) 
and a set of N constants K". We have shown further that the Levinson polynomial is 
strictly Hurwitz, iff I K" I < 1 for all k. " 

Inverse lattice realization of AR systems. An inverse lattice is a modification of a 
lattice as in Fig. 12-15. In this modification, the input is at pointB and the outputs are at 
points A and C. Furthennore, the multipliers from the lower to the upper line are changed 
from -K" to K". Denoting by ~N[nl the input at point B and by 8N-I[n] the resulting 
output at C, we observe from the figure that 

iN-len] = 8N[n] + KN8N-l[n - 1] 

iN[n] = eN-len - 1] - KN8N_I[n] 

(12-1040) 

(12-104b) 
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Lattice 

-------.---~----~--------~~ 

------ t-1 

(a) 

Inverse Jauice 

--------.---~----~--------~ 

(b) 

FIGURE 12-15 
Lattice and inverse lanice filters. 

These equations are identical with the two equations in (12-92). From this it follows that 
the system function from B to A equals 

1 1 
~N(Z) = 1 - ar Z-I - ... - a~z-N 

We have thus shown that an AR system can be realized by an inverse lattice. The 
coefficients af and Kk satisfy Levinson's algorithm (12-97). 

Iterative solution of the Yule-Walker equations. Consider an AR process x[n) with 
innovations filter L(z) = ../PN / D(z) as in (12-80). We form the lattice equivalent of the 
MA system o(z) with af = -a.t. and use x[n) as its input As we know [see (12-95») 
the forward and bac.kward responses are given by " 

iN[n) = x[n) - arx[n - 1) - ... - a~x[n - N] 

iNlnJ = x[n - N] - arx[n - N + 1] - ... - a%x[n) 
(12-105) 

Denoting by ~N(Z) and SN(Z) the spectraofiN[n} andeN[n], respectively, we conclude 
from (12-105) that 

~N(Z) = S(Z)~N(Z)~N(1/Z) = PN 

SN(Z) = S(z}EN(z)EN(I/z) = PN 
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From this it follows that iN[n] and BN[n] are two white-noise processes and 

E{i~[nJ} = E{i~[nJ} = PN 

O:sm:sN-l 
m=N 

(12-106a) 

(12-106b) 

These equations also hold for all filters oflower order. We shall use them to express recur­
sively the parameters ar. KN. and PN in terms of the N + 1 constants RL01, ...• R[N). 

For N = 1 (12-82) yields 

R[O] - ai R[I) = PI Rll] - a~ R[O] = 0 

Setting Po = R[O], we obtain 

I R[I] (2 
al =KI = R[O] PI = l-KI)Po 

Suppose now that we know the N + I parameters af-l , KN-l, and PN. From Levinson's 
algorithm (12-97) it follows that we can determine af if KN is known. To complete the 
iteration. it suffices. therefore. to find KN and PN. 

We maintain that 
N-J 

PN-I KN = R[N] - L af-l R[N - k] (12-107) 
.1:=1 

(12-108) 

The first equation yields K N in terms of the known parameters af-l • R[m], and PN-Jo 
With KN so determined, PN is determined from the second equation. 

Proof. Multiplying (12-92a) by x[n - N] and using the identities 

N-J 
E{iN_l[n]x[n - N]) = RLN] - 2:af-l R[k] 

k=1 

we obtain (12-107). From (l2-92a) and the identities 

E(iN-J[n - l]x[n]} = PN-l 
N-I 

E{iN_l[n -1]x{n]} = R[N] - L af-I RIN - k] = PN-IKN 
.1:-1 

it follows similarly that PN = PN- 1 - K~PN-l and (12-108) results. 
Since 1\ ~ 0 for every k, it follows from (12-108) that 

I Kk I :$ 1 and Po ~ PI ~ ... ~ PH ~ 0 (12-109) 
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If I~NI = ,I b~t IKkl < 1 for all k < N, then 

Po > PI > .,. > PN = 0 

As we show next this is the case if Sew) consists of lines. 

(12-110) 

Line spectra and hidden periodicities. If PN = 0, then €N[n] = 0; hence the process 
x[nJ satisfies the homogeneous recursion equation 

x[n] = afx[n - 1] + .. , + aZx[n - Nl (12-111) 

This shows that x[n] is a predictable process, that is, it can be expressed in terms of its 
N past values. Furthermore, 

R[m] - af R[m - 1] - ., . - aZR[m - N] = 0 (12·112) 

As we know [see (12-103)] the roots zlv of the characteristic polynomial ~N(Z) of this 
equation are on the unit circle: zf = ejll>; . From this it follows that 

N N 

R[m] = ~=>~iejll>lm Sew) = 2rr L O!iO(W - Wi) 
;=1 

And since Sew) ~ 0, we conclude that IXi ~ O. 
Solving (12-111), we obtain 

N 

x[n] = L cjejO/in 

;=1 

E{ed = 0 

;=1 

{
o!i i = k 

E{C'Ck} = 
I 0 i '# k 

(12-113) 

(12-114) 

V We show next that if R[m] is a p.d. sequence and its correlation matrix is of rank 
N, that is, if 

then R(m) is a sum of ~xponentials with positive coefficients: 
N 

R[m) = L O!jej",;m 

;=1 

(12-115) 

(12-116) 

Proot Since R[m 1 is a p.d. sequence, we can construct a process x[n) with autocorre­
lation R[m]. Applying Levinson's algorithm. we obtain a sequence of constants Kk and 
Pic. The iteration. stops at the Nth step because PN = 6.N+I/6.N = O. This shows that 

. the process x[n J satisfies the recursion equation (12-111). <l 
. 

, . Detection of hidden periodicities.8 We shall use the development in (13.:'111)-( 13-116) 
to solve the following problem: We wish to determine the frequencies wj of a process x[n] 
consisting of at most N exponentials as in (12-114). The available information is the sum 

y[n] = x[n] + v[n] E(v2[n]} = q (12-117) 

where l' [n] is white noise independent of x[n] . 

• av. F. Pisal:enko: "The Retrieval of Harmonics:' Geophysical Joun/al o/the Royal Astronomical Society, 
1973. 
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Using J samples of yen 1. we estimate its autocorrelation 

Ry}'[ml = Rxx[m] + q8[m] 

as in (12-78). The correlation matrix DN+1 ofx[n] is thus given by 

[ 

Ryy[OJ - q Rvy[l] 

D - Ryy[lJ Ryy[O] - q 
N+I- ... . .. 

Ryy[N] RyAN - 1] 

... Ryy[NJ 1 

.,. Ryy[N -lJ 

Ryy[O] - q 

In this expression, Ryy[m] is known but q is unknown. We know, however. that toN+I = 0 
because x[nJ consists of N lines. Hence q is an eigenvalue of DN+J' It is, in fact. the 
smallest eigenvalue qo because DN+l > 0 for q <qo. With Rxx[m] so determined, We 

proCeed as before: Using Levinson's algorithm, we find the coefficients af and the roots 
ejf»/ of the resulting polynomial EN(Z). If qo is a simple eigenvalue, then all roots are 
distinct and x[n] is a sum of N exponentials. If, however, qo is a multiple root with 
multiplicity No then x[n] consists of N - No + 1 exponentials. 

This analysis leads to the following extension of Caratheodory's theorem: The 
N + 1 values R[O] • ••. , R[N] of a strictly p.d. sequence R[m] can be expressed in the 
form 

N 

R[m] = qo8[m] + L lY.i ejw/m 

i=1 

where qo and lY.i are positive constants and Wi are real frequencies. 

~ Levinson's algorithm is used to determine recursively the coefficients at' of the 
innovations filter L(z) of an AR process x[n] in terms of R[m]. In a real problem the data 
R[m] are not known exactly. They are estimated from the J samples ofx[n] and these 
estimates are inserted into (12-107) and (12-108) yielding the estimates of KN and PN. 
The results are then used to estimate at' from (12-97). A more direct approach, suggested 
by Burg, avoids the estimation of R[m]. It is based on the observation that Levinson's 
algorithm expresses recursively the coefficients af in terms of K N and PN' The estimates 
of these coefficients can. therefore, be obtained directly in terms of the estimates of KN 
and PN. These estimates are based on the following identities [see (12-106)]: 

PN-1KN = E{eN_1 [n)sN_1 Ln -I]} 

PN = !E{e~[n]+8~[nJ} 
(12-121) 

Replacing expected values by time averages, we obtain the following iteration: Start with 

1 J 
Po = J Lx2[n] 

n=l 

eoln] = Bo[n] = x[n] 

\I J. P. Burg: Maximum entropy spectral analysis, presented at the International Meeting of the Society for 
the Exploration of Geophysics, Orlando, FL, 1967. Also 1. P. Burg, "Maximum entropy spectral analysis" 
Ph.D. Oiss., Dept. Geophysics, Stanford Univ .• Stanford. CA, May 1975. 
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~ind KN.-t. ~N-I' a~-I, eN-I Lnl, eN-I. Set . 

K ~J N I iN_I(nJiN_I(n-Ij N - L.J,, __ + 

- ! E:'.N+, (iL[nl+i~_I[n-lj) 
PN = (1 - K~)PN-I 

N N-J K N-I ak = ak - NaN-k k = 1, ... , N-l 

a%=KN 

N-I 
eN[n] = x[n1- Lafx[n - k] 

k=l (l2-125) N 

8N[n] = x[n - NJ - 2:aZ_lex[n - N +k1 
1e=1 

This completes the Nth iteration step. Note that 

This follows readily if we apply Cauchy's inequality (see Prob. 10-23) to the numerator 
of (12-122). ~ 

Levinson's algorithm yields the correct spectrum S(z) only ifxCn1 is an AR pro­
ceSS •. If it is not. the result is only an approximation. If Rlm] is known exactly, the 
approximation improves as N increases. However, if R[m] is estimated as above, the 
error might increaSe because the number of terms in (12-49) equals J - N - 1 and it 
decreases as N increases. The determination of an optimum N is in general difficult 

.... Given a polynomial spectrum 

N 

W(eil<l) = L wne- jnw ::: 0 (12-126) 
n=-N 

we can find a Hurwitz polynomial 

, 

n=O 

(12-127) 
I 

such that W(ejt&l) = ly(ej t&l)12. This theorem has extensive applications. We used it in! 
Sec. 11-1 (spectral factorization) and in the estimation of the spectrulll. of an MA and an I 
ARMA process. The construction of the polynomial Y (z) involves the determination of 
the roots of W (z). This is not a simple problem particularly if W (e jW) is known only as 
a function of (J). We discuss next a method for determining Yez) involving Levinson'sl 
algorithm and Fourier series. 

We compute. first, the Fourier series cbefficients 

R[ ] '- _I 1" I -jmt&ld 0 N (12-128) m - 211' _" W (ejt&l) e (J) ::: m ::: 

of the inverse spectrum S(ejt&l) = IjW(ejGl). The numbers Rlm] so obtained are the 
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\ 
values of a p.d. sequence because S(eJW) ~ O. Applying Levinson's algorithm to the 
numbers R[m] so computed, we obtain N + 1 constants af and PH. This yields 

S(ejfA) = 1 = PH 
W(ejfA) 11 - "H aNe-JIIOII2 

L.m=l n 

Hence 

Y(z) = ~(1- ta:z-II) 
",eN 11=1 

as in (12-127). This method thus avoids the factorization problem. ... 

12-4 THE GENERAL CLASS OF EXTRAPOLATING 
SPECTRA AND YOULA'S PARAMETRIZATION 

We consider now the following problem 10: Given n + 1 values (data) 

of the autocorrelation sequence {rm} of a process x[k] we wish to find all its positive 
definite extrapolations, that is, we wish to find the family en of spectra S(e jOl ) ~ 0 such 
that the first n + 1 coefficients of their Fourier series expansion equal the given data. The 
sequences {rm} of the class en and their spectra will be called admissible. 

Known as the trigonometric moment problem. it has been the subject of extensive 
study for a long time [14]. In view of the considerable mathematical interest as well as 
the practical significance of the moment problem in interpolation theory. system iden­
tification. power gain approximation theory and rational approximation of nonrational 
spectra, it is best to review this problem in some detail. TowardS this, note that a member 
of the class en is the AR spectrum 

5(z) = L(z)L(I/z) 

where En (z) = En (z) is the forward filter of order n obtained from an n-step Levinson 
algorithm. The continuation of the corresponding rm is obtained from (l1-4lb): 

n 

rm = LaZrlll-k 
k ... 1 

m>n 

To find all members of the class en, we can continue the algorithm by assigning 
arbitrary values 

k=n+l.n+2 .... 

to the reflection coefficients. The resulting values of r m can be determined recursively 
[see (12-107)] 

m-l 

rm = La:-1rm-k + Pm-IKm 
1e=1 

(12-129) 

lOA. Papoulis: "Levill$on's Algorithm. Wold's Decomposition. and Spectral Estimation:' SIAM Revk!w, 
vol. 'J.1, 1985. 
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Data Eltuapolating 
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s,,[k] 

I I 
K", : K", : • x[k] 

mCOn m>n 

ill[k] 

FIGURE 12-16 

This shows that the admissible values of rill at the mth iteration are in an interval of 
length 2Pm-l: 

m-I m-I 
I:a:-I'm-k - Pm-J ~'m ~ I:a:-Irm-k + Pm-I (12·130) 
~J k=1 

because IKml ~ 1. At the endpoints of the interval, IKml = 1; in this case, Pm = 0 
and dm+1 = O. As we have shown, the corresponding spectrum S(ct) consists of lines. 
If IKmol < 1 and Km = 0 for m > mo. then S(z) is an AR spectrum of order mo. In 
Fig. 12-16, we show the iteration lattice. The first n sections are uniquely determined in 
terms of the data. The remaining sections fonn a four-terminal lattice specified in terms 
of the arbitrarily chosen reflection coefficients Kn+1, Kn+2, •••• 

lfiterestingly, Youla has given a complete parametrization to the class of all such 
admissible extensions by making use of the positive-real and bounded-real function 
concepts from classical network theory [33]. 

Youla's Parametrization of Admissible 
Extensionsll 

Let S(ct) represent the spectral density of a zero mean, real, second-order stationary 
stochastic process x(nT) with finite power and covariance sequence (rklr..-co. Then, 

00 
S(ct) = I: r"eJkr.J ::: 0 Ct)rea1 (12·131) 

"--00 
is periodic with period 27l' and I: S(ct) dCt) < 00 (12-132) 

c 

Under these conditions, rk = r -Ie are real, well defined and rIc ~ 0 as Ikl ~ 00. As 
we have seen in Sec. 9-4 the nonnegativity property of the power spectral density can 
be characterized in terms of certain Toeplitz matrices generated from roo rlo ..• ,'n in 
(9-196) and their derenninants d ll , n = O~ 00. Thus the nonnegativity property of 

II D. C. Youla, "The FEE: A new tunable high-resolution spectral estimator," Part I, Technical note, no. 3. 
Degartment of Electrical Engineering, Polytechnic Institute of New York, Brooklyn, New York, 1980: also 
available as RADC Rep. RADC-TR·81-397. AD A114996. February 1982. 
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the power spectral density function is equivalent to the nonnegative definiteness of the 
Toeplitz matrices in (9-196) for every n.ln addition, if the power spectral density also 
satisfies the Paley-Wiener criterion in (9-203), then the nonnegativity property of the 
power spectral density implies positive definiteness for all T,,, that is, D.n > 0, n ::: 
0--+ 00. Moreover, under these conditions there exists a function H (z), analytic together 
with its inverse in Izl < 1, such that [see (9-203)-(9-207)] 

S(a)j = IH(e Jeu )12 a.e. (12-133) 

This minimum phase factor H (z) is also unique up to sign, admits a power series ex­
pansion12 

Izl < 1 (12-134) 

such that E:o h; < 00. 

Given (n + 1) partial covariances ro, rio .. . , r,,, from a zero-mean, stationary 
stochastic process whose power spectral density function satisfies (12-132) and (9-203), 
the spectral estimation problem is to obtain all possible solutions for the power Spectral 
density that interpolate the given data; that is, such a solution K (w) should satisfy 

K (w) ::: 0 

and 

- K(w)e-JkOl dw = rk I 1" . 
21f _" 

Ikl = 0 --+ n 

in addition to satisfying (12-132) and (9-203).13 
To see the general development, it is useful to introduce the notions of positive-real 

(p.r.) and bounded-real (b.r.) functions. 

POSITIVE FUNCI'IONS AND BOUNDED FUNCTIONS. A function Z(z) is said to be 
positive if (i) Z(z) is analytic in Izl < 1 and (it) Re Z(z) ::: 0 in Izl < 1. If. in addition, 
Z (z) is also real for real z, then it is said to be positive-real or (p.r.). Such functions can 
be shown to be free of poles and zeros in the interior of the unit circle and, moreover, 
their poles and zeros on the boundary of the unit circle, if any, must be simple with 
positive residues for the poles. 

Similarly a function p(z) is said to be bounded if (i) it is analytic in Izl < 1 
and (ii) Ip(z)1 ~ 1 in Izl < 1. If in addition p(z) is also real for real z, then it is said 
to be bounded-real. For example, e-(1-t). ZR, (1 + 2z)/(2 + z) are all bounded-real 
functions. 

121n this subsection we shall use the variable z rather than Z-I so that the region of convergence is the 
compact region interior to the unit circle (see note in Appendix 12A). 

13 As (9-204) shows, equation (9-203) implies Tk > 0, k = 0 -+ 00. However, if the covariances form a 
singular sequence satisfying I:.r = 0 foe some r, then there exists an m :S r such that I:.m-l > 0 and 1:.", ::: 0 
and the given covariances have the unique extension rk = E~=1 PI ei k4>; , k ;:: 0, and this corresponds to a 
line spectra with m discrete components. Here PI > 0, 0 :S Wi < 2n, foe i = I -+ m are unique positive 
constants that can be obtained from the unique eigenvector associated with the zero eigenvalue of Tm. This is 
Caratheodory's theorem in (12-116) Ll4), and p. 81 of [25). 
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POsitive-real functions and bounded fUnctions are intimately related. If Z (l) is 
positive rear, then 

Z(z) - R 
p(z) = Z(z) + R (12-135) 

is bounded~real for every R > 0, since 1 - Ip(z)/2 ~ 0 in Izl < 1 and p(z) is analytic 
in that region. Let 

00 
Z(z) = 70 + 2 I: rkzk 

h.O 

Izi < 1 

where {rk}r-o represents the covariance sequence in (12-131). Then since 

1 j7r (ejfJJ + z) Z(z) = ,,_ . Sew) dw 
~, -7r eJfJJ - Z 

it follows readily that 

1 r ( l-lzl2 ) 
Re 21r J-1r le jfJJ _ zl2 Sew) dw ~ 0 

(12-136) 

(12-137) 

i.e., Z(z) defined by (12-136) is positive-real. Referring to (10-184) and (12-137), it 
follows that Z(z) given by (12-136) represents a positive-real function iff every her­
mitian Toeplitz matrix Til generated from ro, rio ... , rn , n = 0-+ 00 as in (10-182) is 
nonnegative definite. It can be shown that, for such functions the interior radial limit 

(12-138) 

exists for almost all w and hence its real part is nonnegative almost everywhere on the 
unit circle, that is, 

00 

K(w) ~ ReZ(eifJJ) = L rkel"'" ~ 0 (12-139) 
"=-00 

where r_k ~ r;. Since K(w) is also uniformly bounded for almost all w, it is an 
integrable function. and associated with every positive-real function there exists a power 
spectrum defined as in (12-139) with finite power. Conversely associated with every 
power spectrum S(cr». the function Z(z) defined in (12-136), with rk's from (12-131), 
represents a positive-real function. Thus, there exists a one-to-one relationship between 
positive-real functions and power spectral density functions. 

In the rational case. Z (z) is rational, and since every power spectral density can be 
represented uniquely in terms of its minimum phase factor H (z) as in (l2-133), together 
with (12-139), we have14 

(12-140) 

Clearly,H(z)isfreeofzerosonlzl = 1 ifandonlyifK(cr»is freeofzerosinO ~ cr> < 21r. 

14'Dlis is also true in the nonrational case under certain restrictions. 



566 STOCHASTIC PROCESSes 

Equation (12·140) can be rewritten in a more convenient form by introducing the para. 
conjugate notation 

H.(1.) g, H*(1/1.*) = H(1/z) (12-141) 

where H" denotes the complex conjugate of H so that H.(ei8) = H"(ei8) and (12.140) 
translates into the identity 

Z(z) ~ Z*(1.) = H(1.)H.(z) (12.142) 

Here Z(z) is free of poles on 11.1 = I, and for every rational minimum phase system 
H(z) there exists a unique rational positive-real function Z(z) that is free of poles On 

Izi = I, and of degreel' equal to that of H (z). Thus, for every minimum phase rational 
transfer function. there exists a unique rational positive-real function that is free of poles 
on Izl = 1. 

As Youla has shown. by making use of an algorithm due to Schur, every Such 
positive-real function Z (z) has a unique representation in terms of a set of ideal line 
elements and a unique positive-real function. Thus any such Z (z) can be represented as 
the input impedance of a cascade of equidelay ideal (TEM) lines l6 closed on a unique 
positive-real function. This alternate representation of Z (1.) can be further exploited to 
identify the correct model order and system parameters in the rational case, and to obtain 
stable (minimum phase) rational approximations in the nonrational easel? [25]. 

that 
Referring back to (12-135), in particular, since Z(O) = Re Z(O) > 0, it follows 

Z(z) - Z(O) 
Po(z) = Z(z) + Z(O) (12-143) 

is another bounded-real function. In the rational case, P (z) is rational, and for the rational 
positive-real function Z(z), (12-143) defines a rational bounded-real function. Moreover 
from (12-143), Po(z) has at least a simple zeroatz = 0, andhencetherealrati.onalfunction 

1 1 Z(z) - Z(O) 
PI (1.) = Z"Po(1.) = Z" Z(z) + Z(O) (12-144) 

is analytic in Izi < 1. Since Po(1.) is also analytic on z = eitIJ, 

Ipi (eitIJ) I = IPo(eitll)1 ~ 1 

andfrommaximum-modulustheorem,lpl(1.)1 ~ lin 11.1 ~ 1. i.e., PI (1.) is also bounded­
real. Further, since 1. = 0 is not a pole of PI (z). we have degree of PI (1.) given by 
81PI (z)] ~ 8[Z(1.)] with inequality if and only if the factor 1/1. canc.rls a pole of the 
bounded-real function Po(z) at 1. = 00. To observe this degree reduction condition ex-

15The degree of a rational system 8[H (l) 1 equals the totality of its poles (or zeros), including those at infinilY 
with multiplicities counted. 
1610 the present context, transverse electromagnetic (TEM) lines can be thought of as pure multiplier/delay 
elements and z represents the two-way round-trip delay operator common to all lines (see Fig. 12.18 later in 
the section). 
"s. U. PiUai, T. L Shim and D. C. YouJa, "A New Technique for ARMA-System Identification and Rational 
Approximatlon," IEEE Tnuu. 011 Signal Processing. vol. 41. DO. 3, pp. 1281-1304, March 1993. 



then from (12-144) 

() 1 () (aob1 - boal) + (aob2 - boal)' + ... + (aobp - boap)zP-l PI Z = -Po z = --...;.....;;....-;.....;;.;~...:.....;;.....:;;..-~--~-:---'-:--~;...;.....--
Z 2aobo + (aob l + boal)' + ... + (aobp + boap)ZP 

(12-145) 

and (Hpl(')] < 8[Z(z)] = p, iff the denominator term in (12-145) is of degree p - 1; 
that is, 

or, iff 

bolao = -bp/ap 

But, bo/ao = Z(O) and bp/ap = Z(1/z)I{...o = 0, and hence degree reduction occurs if 
and only if 

Z(z) + Z.(z) -+ 0 (12-146) 

au; -+ 0, a result known as Richards's theorem in classical networlc synthesis theory [33]. 
Making use of (12-142), this degree reduction condition is 

8(pJ(z» = p - 1 <:> Z(z) + Z.(z) = 2H(z)H.(z) -+ 0 as z -+0 (12-147) 

that is, for degree reduction to occur, the "even part" of Z (z) must possess a zero at 
z = O. This condition can be further exploited for rational system identification (see 
reference in footnote 17 and [25] for details). 

Let ZI (z) represent the positive-real function associated with PI (z) nonnalized to 
Z(O). Thus. 

(12-148) 

In that case, ~der the identification z = e-2s-r (3 = (1 + jw represents the com­
plex frequency variable), (12-144) yields the interesting configuration in Fig. 12-17. in 
which Z(z) is realized as the input impedance of an ideal (TEM) line of "characteristic 

Z(z) 

<Po(z» . 

FIGURE 12-17 
Positivo-reallbounded-real flmctiODS aad liDe extraction. 



impedance" Ro = Z(O) and one-way delay 't(>O), closed on a new positive-real function 
ZI (z) given by 

ZI(Z) = Ro 1 + Pl(Z) 
1- Pl(Z) 

Within this setup, (12-144) can be rewritten as 

Z, (z) - Z(O) 1 Z(z) - Z(O) 

ZI(Z) + Z(O) = z Z(z) + Z(O) 
(12-149) 

Repeating this procedure using the basic Richards transfonnation formula (12-149) 
together with (12-148), more generally at the rth stage, we have 

( ) 6. Zr+1 (z) - Zr(O) 1 Zr(Z) - Zr(O) 
Pr+! z = = --=-~-~~ 

Zr+l (z) + Z,(O) Z Z,(z) + Zr(O) 
r~O (12-150) 

With R, = Z,(O) and letting 

Rr+l - Rr 6. 
Pr+l (0) = R + R = Sr+! r ~ 0 (12-151) 

r+l r 

represent the (r + l)st junction "mismatch" reflection coefficient that is bounded by 
unity, the single-step update rule (Schur algorithm) 

( ) zPr+2(Z) + Pr+l (0) zP,+2(Z) + Sr+l 
Pr+l Z = = 

1 + zPr+l (0)Pr+2(Z) 1 + ZSr+lP,+2(Z) 
r~O (12-152) 

that follows readily from (12-150), by expressing Zr+l (z) in terms of Pr+l (z) as well 
as P,+2 (z), also proves to be extremely useful for model order determination. With this 
setup, to make progress in the spectrum extension problem, it is best to express the 
input reflection coefficient Po(z) in (12-143) (normalized to Ro) associated with Z(z) in 
(12-135), in tenns of Pn+l (z). the reflection coefficient of the tennination Zn+l (z) after 
n + 1 stages of the Schur algorithm described in (12-150)-(12-152), (see Fig. 12-18). 
(From (12-150), Pn+\ (z) is nonnalized with respect to the characteristic impedance R" 
of the last line.) Toward this, from (12-152) with r = 0 we have 

( ) S, + lP2(z) 
PI z = 

1 + ZSIP2(Z) 
(12-153) 

and (12-144) gives 

Po(t) = ZPl (z) (12-154) 

H 1----• ;1 

Z(z) - RI RII 
z~+ I(Z) 

(prJ..,» (Pni I(Z» 

• H 1----
FIGURE 12-18 
Cascade representation. 
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SincePo(O) = So = O. notice that (12-154) in fact has the same form as in (12-152). 
Thus, for the sake of uniformity, we can rewrite (12-154) as 

() So + ZPI(Z) 
Poz= 

1 + ZSOPI (z) 
(12-155) 

and with (12-153) in (12-155), we obtain 

Po(t) = (so + lSI) + Z(S091 + z)P2(z) = ZSI + Z2P2(Z) 
(1 + ZSOSI) + Z(SI + zso)P2(z) 1 + tSlP2(Z) 

(12-156) 

Continuing this iteration for (n - 2) more steps. we have 

() hn-I(Z) + Zgn-l(Z)PII(Z) 
Po Z = 8n-1 (Z) + zh,,_1 (Z) Pn (Z) 

(12-157) 

where 

(12-158) 

represents the polynomial reciprocal to 8u(Z). Once again, updating p,,(z) with the help 
of (12-152), Eq. (12-157) becomes 

( ) _ [h,,-l (z) + zSlIgn_1 (z)] + Z[zgn_1 (z) + Snhll-l (Z)]P,,+1 (z) 
Poz- ~ ~ 

[gil-I (z) + ZSlIh,,-l (z)] + z[zh,,_1 (z) + 8118,,-1 (Z)]PII+l (Z) 

_ h,,(z) + zgll(Z) PII+1 (z) 

- 811('1.) +zhll(z) Pn+I(Z) 
where, for n ~ 1, 

ahll(z) ~ hll- 1 (z) + ZSlIgn_1 (z) 

(12-159) 

(12-160) 

and a is a suitable normalization constant yetto be determined. From (12-154)-(12-155), 
the above iterations start with 

80(Z) = 1 and ho(z) = 0 (12-161) 

Notice that (12-160) gives aSI (z) = 1. ah 1 (z) = ZSj, ag 1 (z) = z. ahl (Z) = SJ, all of 
which agree with (12-156). A direct computation also shows 

a2[g,,(z)811*(Z) - h"(z)h,,.(z)] = (1- s~)[8"-1(Z)gll-I·(Z) - hll-l(Z)h,,-I*(z») 

(12-162) 

and hence by setting 

(12-163) 

we have 

811(Z)8n.(Z) - hn(z)hn.(z) = 1 (12-164) 

a relation known as the Feltketter identityl8 in network theory [33]. 

laI . 2 h ,. t IS easy to see that hll (0) = 0 for every n, and hence we most have hIt (z) = hit + h2Z + ... + II l . 

H~evcr, for (12-163) to hold, the highest term generated by g,.(z)g ... (z) must cancel with that of 
h,,(t)h ... (z) and hence g,,(z) is at most of degree (n - 1). 
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As pointed out by Youla, (12-159) can be interpreted as the input refiection co­
efficient of an (n + I)-stage transmission line terminated upon a load Z,,+I (z) with 
reflection coefficient Pn+l (z) (see Fig. 12-18). Here the inputreftection coefficient Po(,) 
is normalized with respect to the characteristic impedance Ro of the first line and the 
termination Zn+l (z) is normalized with respect to the characteristic impedance Rn of 
the (n + I)th line, that is [see (12-150)], 

() Z,,+I(Z) - R" 
P,,+l Z = -.;...;....;~--

Zn+1(Z) + Rn 
(12-165) 

Naturally, g,,(z) and hn(z) characterize the (n + I)-stage transmission line though the 
single step update rule, 

VI - s; g,,(z) = g,,-I (z) + ZSrhll-1 (z) 02-166) 

and 

VI - s~ kn(z) = hll _ 1 (z) + ZS"§,,_I (z) (12-167) 

Using Rouche's theorem together with an induction argument on (12-166), with the help 
of (12-161), it follows thatg,,(z), n = 1,2 .... are free of zeros in the closed unit circle 
(strict Hurwitz Polynomials) provided ISk I < 1, k = 1-+ n. But (12-191) shows Tn > 0 
implies ISkl < 1, k = 1-+ n. As a result, (12-164) together with maximum modulus 
gives h" (z)/gll (z) to be bounded-real functions. Moreover, from (12-159) and (12-164), 
we obtain the key identity 

Po (z) _ h" (z) = z,,+1 P,,+1 ~z) 
g,,(z) g;(z)[1 + ZPn+1 (z)kn(z)/g" (z)] 

(12-168) 

Since Ig" (z) I > 0 and Ih"(z)/g,, (z)1 < 1 in Izl :::s 1, (12-168) implies 

() h,. (z) Oe "+1) Poz ---= z 
8/1(Z) 

that is, the power series expansions about z = 0 of the bounded-real functions Po(z) and 
h"ez)/ g" (z) agree for the first (n + 1) tenus. Since Po(z) contains an arbitrary bounded­
real function P'I+I (z), clearly that function does not affect the first (n + 1) coefficients 
in the expansion of Po(z). As a result, the first en + 1) coefficients '0, rio ... ,rn in the 
expansion of the corresponding driving-point positive-real function 

( 1+ (») II 

Z(z)=Ro 1-:<;) =ro+2i;rkzk +O(Z"+I) (12-169) 

in (12-150) are also not contaminated by the choice of Pn+l (z). sine! rk, k = 0 -7 n 
depend only on the first (n + 1) coefficients of Po{z). 

To understand this from the transmission line point of view, let the terminated 
structure in Fig. 12-18 be excited by an input current source i(t) = 8(t). This current 
impulse launches a voltage impulse r08(t) into the first line, which reaches the junction 
separating the first and second line after r seconds. At this point, part of the incident 
impulse is reflected back to the driving point and part of it is transmitted toward the 
next line. In the same way, after or more seconds, the transmitted part reaches the next 
junction. where once again it is partly refiected and transmitted. This process continues 
until the transmitted part reaches the terminated passive load Zn+l (z). Since interaction 
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with this 'passive load can begin only after the lapse of (n + ])r seconds, the input 
voltage response vet) over the interval 0 :::: t :::: 2(n + l)-r is determined entirely by 
the (r + 1) line structure. Moreover, since 2r represents the two-way round-trip delay 
common to alllines, under the identification z = e-2rT , it follows that the first (n + 1) 
coefficients of the driving-point impedance in the expansion (12-169) are determined by 
the characteristic impedances Ro, RI • ...• Rn of the first (n + 1) lines and not by the 
termination Pn+1 (z). Using (12-159) in (12-169), the input impedance is given by 

Z(z) = Ro 1+ Po(z) = 2 Qn(Z) + ZPn+I(Z)~n(Z) (12-170) 
1 - Po(z) Pn(z) - ZPII+I(Z)Pn(.z) 

where we define 

P ( ) ~ gn(Z) - hn(z) 
nZ ..flIO (12-171) 

and 

(12-172) 

Pn(Z) and Qn(Z) are known as the Levinson polynomials of the first and second kind 
respectively.19 Finally, using (12-164), a direct calculation shows 

PII(Z)QII*(Z) + P'I.(Z) Q'I (z) == 1 (12-173) 

and with the help of this (even part condition). "the even part" of Z(z) in (12-170) takes 
the simple forro20 

Z(z) + Z*(z) 1 - PII+I(Z)Pn+lo.(Z) =------------=---------------=----
[Pn(z) - ZPII+I(Z)Pn(Z)][P'I(Z) - ZP'I+l(Z)Pn(z)] .. 2 

(12-174) 

From (12-139), since the real part of every positive-real function on the unit circle 
corresponds to a power spectral density function, we have21 

K( ) = ReZ(ej(cl) = l-IPn+l(ej (cl)12 > 0 (12-175) 
(J) I D'I (ej(cl) 12 -

where 
t. -Dn(z) = Pn(z) - ZPn+l(Z)P'I(Z) n = 0--+ 00 

Using (12-166) and (12-167) in (12-171). we also obtain the recursion 

VI - s~ Pn(z) = P'I-I(Z) - ZS,IPn-l(z) n = 1--+ 00 

that begins under the initialization (use (12-161) and (12-171» 

Po(Z) = 1/.;ro 

(12-176) 

(12-177) 

(12-178) 

Once again, since ISnl < 1 for all n, arguing as before, it follows that Pn(z), n = 0, 1, ... 
are free of zeros in Izi ~ 1 and this together with IPn+l (z)1 :::: 1 in Izl ~ 1, enables 

19 Pn(z) is the same as En (z) in (l2-93a) and (12-95) except for a nonnalization constant and the variable z 
(instead of C l ). Notice that Pn(z) = Zll P;(l/z') represents the polynomial recipcoca.l to Pn(z). 

2OU:sing (12-170) together with (12-173) we obtain more directly Z(z) - 2l1W = O(Z·+I) that confinns 
(12-169). 
21 Observe that on the unit circle [Z(z) + Z.(z»)/2 = [Z(z) + Z·(z))/2 = ReZ(z). 
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us to conclude from (12-176) that DII(z). n = 0, 1 •... are analytic and free ofzems in 
Izl < 1. Let r ll+1 (z) represent the solution of the equation 

1 - Ip,,+1(ej t.rJ)12 = WII+I(ej "')12 

that is analytic and free of zeros in Izl < 1. From (9-203)-(9-207), this factorization is 
possible iff 1: In(1 - IplI+1 (ej "')12) d{J) > -00 (12-179) 

(Equation (12-179) is automatic if Pn+l (z) is rational.) In that case, from (12-175) 

K({J) = IH(ej (d)12 

where up to sign 

(12-l80) 

represents the Wiener factor associated with K({J) in (12-175). since H(z) is analytic 
together with its inverse in Izl < 1. 

Clearly K ({J) is parameterized by the bounded-real function PII+ 1 (z) and for every 
b.r. function (rational or nonrational). from (12-169) and (12-175). 

II 
K ((J) = L rteikOJ + higher order terms (12·181) 

k=-II 

Thus, (12-175) represents the class of all spectral extensions that interpolate the given 
autocorrelation sequence ro, rJ, ... , rn. As remarked before. rk. Ikl = 0 ~ n, are deter­
mined completely from the cascade structure description given by 811(z) and hn(z). or 
as (12·171), (12-175), and (12-176) suggests, entirely from the Levinson polynomials 
PIl(z). We shall refer to (12·175) and (12-180) as Youla's parametrization formulas for 
the class of all spectra and the underlying Wiener factors respectively. 

The inverse problem of generating PII(z), given TO. rl • ..•• rn. can be solved by 
considering the special case Pn+l(Z) ;;;; O. From (12-165), this corresponds to the situ­
ation where ZIl+1 (z) == RIl • that is, the terminating load is matched to the characteristic 
impedance of the last line. In that case, from (12-175) and (12-176) 

1 
K({J) = KO({J) = IPII (ei Q)12 (12-182) 

represents the maximum entropy extension. since the entropy associated with any arbi-
trary extension in (16-50)-(16-55) is given by " 

1 r 
Ep ~ 21r J-tr InK(w)d{J) = lnIH(0)/2 

= -lnl P" (0) 12 -In(I/WII+1(0)12) (12-183) 

anditismaximizedforrn+l(O) = I, which corresponds to rll+l (z) ;;;; landPn+l(Z) == O. 
From (12-170), the corresponding impedance has the form 

Z (z) = 2QIl(z) (12-184) 
o PIl(z) 
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Using (12-173), this gives 

Zoer.) + zo. (z) 1 
=-~~-:-

2 Pn (z) Pno (z) 

Let 

Pn(z) = ao + air. + ... + anz" 

Then. from (12-169) since 
n 

Zoer.) = TO + 2 2:Tlt + O(z"+I), 
1=1 

(12-184) and (12-185) yield . 
( ro + frkt + fr_lcz-k) (an + an-IZ +,., + aoz") = p,znCZ) 

k~ 1=1 " 

Since Pn (z) =F 0 in Izi ~ I, 1/ Pn(z) admits a power series expansion 

_1_ = bo + btz + IJ,.z2 + .. , bo = ..!.. > 0 
Pn(z) ao 

(12-185) 

(12-186) 

(12-187) 

(12-188) 

with radius of convergence greater than unity. Thus, by comparing coefficients of both 
sides of (12-187), we obtain 

( '~' ~: ::: ,::, ). (~?,) = (~) 
r_" '-n+l '0 ao bo 

(12-189) 

However, with a = [an,an-It ...• al. ao]', from (12-189) [25J, 

By applying Cramer's rule on (12-189) to solve for bo and with the help of (12-188), we 
get 

fi2 
~ 

ao= -
t:.n 

which, finally gives the compact expression 

'0 'I rn-l 'n 
'-1 rl 'n-2 'n-1 

1 
Pn(z) = ..fA A 

n n-l 
(12-190) 

'-n+l T-n+2 '0 rl 
zn zn-l Z 1 
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Note that an easy determinantal expansion22 on (12-190) and fl.1I also gives the useful 
recursion rule (12-177)-(12-178) together with the new formula 

~ = fl.,,_1 (1 _ ISnI2) 
A /1 _ J fl. n-2 

(12-191) 

where the junction reflection coefficients also satisfy 
A (I) 

Sn = (_l)n-1 _11_ (l2-192) 
fl.n- J 

Here A~l) represents the minor ofT 11 obtained after deleting its first column and last row. 
Clearly from (12-191), Tn > 0 implies ISkl < I, k = 1 ~ n. Alternatively, (12-191) can 
also be rewritten in the more convenient form [25] 

Sn = {P/I-I(Z) trkzk} Pn-I(O) n ~ 1 (12-193) 
k=l II 

where { }n denCites the coefficient of zn in ( }. Notice that expressions (12-177) and (12. 
178) together with (12-193) can be easily implemented and constitutes the Levinson 
recursion algorithm for the strict Hurwitz polynomials Pk(Z), k = 1,2, ... , n generated 
from the autocorrelation sequence ro, rJ, ... , rn that form a positive definite sequence. 

This completes the characterization of the class of all power spectral extensions 
that interpolate the given autocorrelation sequence. 

A function 
00 

APPENDIX 12A 
MINIMUM·PHASE FUNCTIONS 

H(z) = L hllz-n (12A-l) 
n=O 

is called minimum-phase, if it is analytic and its inverse IfH(z) is also analytic for 
Izl > 1. We shall show that if H(z) is minimum-phase, then 

1nh~ = - InIH(ej ",)12 dw 1 111 
27l' _" 

(12A-2) 

Proof. Using the identity IH(eJOI )12 = H(eiOl)H(e- jtd), we conclude w1th e}tp = z, that 

1" InIH(ejtd)12 dw = f ~ln[H(z}H(Z-I)Jdz 
-11 ]Z 

where the path of integration is the unit circle. We note further, changing z to 1/ z, 

2lLet A be an n x n matrix and 6.NW. 6.NE, 6.sw. and 6.ss denote the (n - I) x (n - I) minors formed from 
consecutive rows and consecutive columns in the northwest, northeast, southwest, and southeast comers. 
Further let 6.c denote the central (n - 2) x (n - 2) minor of A. Then, from a special case of an identity due 
to Jacobi. 6.clAI = 6.NW 6.SE - 6.NE6.SW. 
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f llnH(Z) dz = f ~lnH(Z-I) dz . 

To prove (12A-2), it suffices. theref~re, to show that 

Inlhol = ~f ~lnH(z)dz 
21rJ z 

This follows readily because H(z) tends to ho as z -+ 00 and the function lnH(z) is 
analytic for Izi > 1 by assumption. 

Note If z-l is replaced by % in (l2A.l), the region of convergence becomes 1%1 < 1 [$Ce (l2·134)]. 

APPENDIX 12B 
ALL-PASS FUNCTIONS 

The unit circle is the locus of points N such that (see Fig. 12-19a) 

(NA) lela> - l/z;1 1 
(NB) = lela> - 1./1 = IZII Ilil < 1 

From this it follows that, if 

All-pass filter 

-;(;;] h[lI] 
y[n] 

H(%) 

FIGURE 12-19 

F(z) = Z1.; - 1 
z-z/ Iz;1 < 1 

Circle of Apolloruus 

(a) 

y[nl = i x[n - k1 h[k1 
,t-o 

h[-n) 
x[n] .. 

x[n) '" I Y[1I + k] h[k) 
t-O 
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then IF(eiOl)I = 1. Furthennore, IF(z)1 > 1 for Izl < 1 and IF(z)J < 1 for Izi > 1 becaUse 
F(z) is continuous and 

then 

1 
IF(O)I = Izd > 1 IF(oo)1 = Izil < 1 

Multiplying N bilinear fractions of this form. we conclude that, if 

N .. 1 
Hez) = II ZZj -

;=1 Z - Zj 
Iz;l < 1 

{ 
> 1 Izi < 1 

IHez)1 = 1 Izi = 1 
< 1 Izi > 1 

(12B-I) 

(l2B-2) 

A system with system function H(z) as in (12B-I) is called aU-pass. Thus an 
all-pass system is stable, causal, and 

Furthermore, 

N N ( ) 1 z - z; 1 - z;/z 1 
H(z) = n zz~ - 1 = n: z7 - l/z = H Z ,.1 I ,=1 

(12B-3) 

because if z; is a pole of H(z), then zi is also a pole. 
From this it follows that if h[n] is the delta response of an all-pass system, then 

the delta response of its inverse is h [ -n]: 

00 

H(z) = Lh[n1z-n 
n=O 

1 00 

-- = LhLn]z" 
H(z) n=O 

(12B-4) 

where both series converge in a ring containing the unit circle. 

PROBLEMS 

12-1 Find the mean and variance of the random variable 

I IT nT = 2T X(I) dt 
-T 

where x(t) = 10 + lI(t) 

for T = 5 and for T = 100. Assume that E{II(t)} = 0, Rv('r:) = 28(1'). 
12-2 Show that if a process is normal and distribution-ergodic as in (12-35), then it is also 

mean-ergodic. 
12-3 Show tbat if X(I) is normal with T/x = 0 and Rx(1') = 0 for 11'1 > a, then it is correlation­

ergodic. 
12-4 Show that the process ae/(""+") is not correlation-ergodic. 
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12-5 Show that 

1 iT , RZ1 ()..) = lim - X(I + >")y(/) dt 
T .... oo 2T -T 

iff 

;~~ 2~ 1:: (1 - ~i) E{x(t + ).. + l" )Y(I + t )X(I + )..)y(t)} d. = R!,,(A) 

12-6 The process X(I) is cycJostationary with period T, mean 71(t), and correlation R(t\. 12). 
Show that if R(t + -c. t) -+ 712(t) as l-ct -+ 00, then 

I[ I[T lim -2 x(t) dt = -T 17(/) de 
c-oooo e -c 0 

Hint: The process x(t) = x(t - 8) is mean-ergodic. 
12-7 Show that if 

C(/+t,t)--O 
,-+co 

unifonnIy in t; then X(/) is mean-ergodic. 
12-8 The process x(t) is nonnal with 0 mean and WSS. (a) Show that (I;g. P12-8a) 

R()") 
E{x(t +)..) I x(t) = xl = R(O) x 

(b) Show that if D is an arbitrary set of real numbers x/ and x = E{x(t) I X(/) e D}, then 
(Fig. P12-8b) 

R(J..L 
E{x(1 + A) I x(t) e D} = R(O) x 

(e) Using this, design an analog correlometer for normal processes. 

(a) (b) 

FIGURE P12·8 

12-9 The processes x(t) and yet) are Jointly normal with zero mean. Show that: (a) If wet) = 
X(I + )..)y(t), then 

ClI/W('r) = Cx"o.. + .)Cz,,(J.. - 1:) + Cxx(t)Cyy(l") 

(b) If the functions C ..... (r), Cyy(t), and Cx,,(1:) tend to 0 as. -+ 00 then the processes x(t) 
and yet) are cross-variance ergodic. 
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12-10 Using Schwarz's inequality (lOB-I), show that 

lIb f(X)dXI
2 
!: (b -0) Ib If(x)I'dx 

12·11 We wish to estimate the mean 17 of a process x(t) == TJ + l1(t), where Rv.(T) == 58(t). 
(0) Using (5-88), find the 0.95 confidence interval of 7/. (b) Improve the estimate if lI(t) is 
a normal process. 

12·12 (0) Show that if we use as estimate of the power spectrum Sew) of a discrete-time Process 
x[n] the function 

then 

N 

S ... (w) = L WmR[mje-imlllr 

m=-N 

N 11t1 S ... (w) = 2u -tl S(y}W(w - y)d)' W(w) = L wne-Jn",r 

-N 

(b) Find W(w) if N = 10 and WH = 1 - Inl/ll. 
12·13 Show that if x(t) is zero-mean normal process with sample spectrum 

Sr(w) = 2~ 11: x(t)e-iO/l d{ 
and Sew) is sufficiently smooth, then 

E2{Sr(w)} !: Var Sr(w) ~ 2E2{Sr(w)} 

The right side is an equality if w = O. The left side is an approximate equality ifT » l/w. 
Hint: Use (11-74). 

12-14 Show that the weighted sample spectrum 

S,(w) = 2~ 11: c(t)x(t)e-J"" d{ 
of a process x(t) is the Fourier transform of the function 

Rc(T) = -.!...lr-lrl12 c(t + !.)c(t -!.)x(t + !.)x(t -!) dt 
2T -r+ltI/2 2 2 2 2 

12-15 Given a normal process X(I) with zero mean and power spectrum S(w), we form its sample 
autocorrelation Rr(T) as in (12-38). Show that for large T, 

1 100 
Var Rr(A) ~ 4nT -00 (1 + ej2).J.u)S'(w) dw 

12-16 Show that if 

1 1r - I't1l2 
Rr(r) = - x(t + !')x(t - !.) dt 

2T -T+I'tI/2 2 2 

is the estimate of the autocorrelation R( r) of a zero-mean normal process, then 

1 12T
-
,r, (') O'ir = 2T (R'(a) + R(a + T)R(a - T)] 1 - ITI;la da 

-2r+I~1 
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J2-17 Show.that in Levinson's algorithm. 

N-I ar + KNa~_K 
ale = l-K~ 

12-18 Show that if R{O] = 8 and R[l] = 4, then the MEM estimate of Sew) equals 

6 
SMEM(W) = 11 _ 0.5e-JOII2 

12-19 Find tbe maximum entropy estimate SMEM(W) and the line-spectral estimate (12-111) of a 
process x{n] if 

R[O] = 13 R[l] = 5 R(2) = 2 

12-20 Let P,,(z) represent the Levinson polynomial of the first kind in (12-171). (a) If one of the 
. roots of PII (z) lie on the unit circle, then show that all other roots of Pn (d are simple and lie 

on the unit circle. (b) If the reflection coefficient St. ::f:. 0, then show that p.(z) and PHI (z) 
have no roots in common. 

12·21 If the reflection coefficients satisfy Sic = II. k = 1 -. 00, whele Ipi < 1. then show that 
all zeros of the Levinson polynomial Pn(z). n = 1 -. 00 lie on the circle ofradius 1/ p. 

12-22 Let Pn (z). n = 0 -. 00. represent the Levinson polynomials associated with the reflection 
coefficients (SI: .:.,. Define 

IAI = 1. k = 1 -. 00. 

Show that the new set of Levinson polynomials are given by P.(lz). n = 0 -. 00. Thus 
if (SI:.:', is replaced by {(-l)ksk.~I' the new set of Levinson polynomials are Jiven by 
Pn(-z). n = 0 -. 00. 

12-23 Consider an MA(1) process with transfer function 

H(z) = l-z. 

(a) Show that At = k + 2. k 2: 0, and 
1 

sk=-k+l' k=I-.oo. 

(b) Consider the new process with reflection coefficients 

I 1 
8" = -S" = k + 1 • k = 1 -. 00. 

and 70 = 70 = 2. Clearly E:, 18; 12 < 00, Show that the new auto-correlation sequence 
rk is given by 

7~ = 2, 7~ = 1, k 2: 1. 

and hence S(w) is not integrable since 71c fr 0 as k _ 00. 
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CHAPTER 

13 
MEAN 
SQUARE 
ESTIMATION 

13-1 INTRODUCTION1,Z 

In this chapter, we consider the problem of estimating the value of a stochastic process 
8(t) at a specific time in terms of the values (data) of another process x(~) specified for 
every ~ in an interval a ~ ~ ~ b of finite or infinite length. In the digital case, the solution 
of this problem is a direct application of the orthogonality principle (see Sec. 7-4). In 
the analog case, the linear estimator §(t) of set) is not a sum. It is an integral 

t:. A 

§(t) = E(8(r) I x(~), a ~ ~ ~ b} 

= 111 h(a)x(a)da (13-1) 

and our objective is to find h(a) so as to minimize the MS error 

P = Ens(t) - I(t)]') = E ([set) - .r. h(a)x<a)dal:} (13-2) 

The function h(a) involves a noncountable number of unknowns, namely, its values for 
every a in the interval (a, b). To determine h(a), we shall use the following extension 

I N. Wiener: Extrapolation, Interpolation, and Smoothing of SUitionary Time series, MIT Press, 1950; 
1. Makhoul: "Unear Prediction: A Tutorial Review:' Proceedings of the IEEE. vol. 63, 1975. 
21'. Kailath: "A View of Three Decades of Linear Ftltering Theory," IEEE Transactions Information Theory, 
vol. IT-lOt 1974. 
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of. the orthogonality principle: 

~ The MS error P of the estimation of a process set) by 'the integral in (13-1) is 
minimum if the data x(~) are orthogonal to the error set) - §(t): 

E {[ set) -lb h(a)x(ex) dex] X(~)} = 0 a !:: ~ !:: b (13-3) 

or, equivalently, if heal is the solution of the integral equation 

Rsx(t.~)= lbh(ex)Rxx(a.~)da a!::~!::b (13-4) 

Proof. We shall give a fonnal proof based on the approximation of the integral in (13-1) by its 
Riemann sum. Dividing the interval (a. b) into m segments (ak. a. + ail), we obtain 

m 

§(t) :: L h(at)x(at) 6.a 
b-a 

aa= -­
m 

Applying (7-82) with ak = h(a,,) aa, we conclude that the resulting MS error P is minimum if 

E {[.(t) -:th(.')XI.')"" 1 X(II)} - 0 

where ~j is a point in the interval (a). aj + aa). This yields the system 
m 

RIA (t. ~J) = L h(ak)R ... (ab ~j) aa j = l •...• m (13-5) 
k=1 

The integral equation (13-4) is the limit of (13-5) as aa -+ O. 
From (7-85) it follows that the LMS error of the estimation of set) by the integral in (13-1) 

equals 

P = E ([set) -11> h(a)X(a)da] S(t)} = R.,(O) -1" h(a)Ru(r,a)da (13-6) 

~ 

In general, the integral equation (13-4) can only be solved numerically, In fact, if 
we assign to the variable ~ the values ~j and we approximate the integral by a sum, we 
obtain the system (13-5), In this chapter, we consider various special cases that lead to 
explicit solutions. Unless stated otherwise, it will be assumed that all pro,cesses are WSS 
and real. 

We shall use the following terminology: 

If the time t in (13-1) is in the interior of the data interval (a, b), then the estimate 
§(t) of s(t) will be called smoothing. 

If t is outside this interval and x(t) = 8(t) (no noise), then 8(t) is a predictor of 
set). If t > b, then 8(t) is a "forward predictor"; if t < a, it is a "backward predictor," 

If t is outside the data interval and x(t) ::/: set), then the estimate is called filtering 
and prediction. 
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Simple mustrations 

In this section. we present a number of simple estimation problems involving a finite 
number of data and we conclude with the smoothing problem when the data xC;) are 
available from (-00.00). In this case. the solution of the integral equation (13-4) is 
readily obtained in tenns of Fourier transforms. 

Prediction. We wish to estimate the future value set + A) of a stationary process Set) in 
terms of its present value 

S(t + A) = 2(s(t +A) Is(t)} = as(t) 

~m(7-71)and(7-72)itfollowswithn = 1 that 

E{[s(t + A) - as(t)]s(t)} = 0 
R(A) 

a = R(O) 

P = E([s(t + A) - as(t)]s(t + A)} = R(O) - aR(A) 

Special case If 

R(t:) = Ae-a1rl then a = e-al. 

In this case, the difference set + A) - as(t) is orthogonal to set - ~) for every ~ ~ 0: 

EUs(t + A) - as(t)]s(t -~)} = R(A +~) - aR(~) 

= Ae-a(A~) - Ae-al.e- af = 0 

This shows that as(t) is the estimate of set + A) in terms of its entire past. Such a process 
is called wide-sense Markov of order l. 

We shall now find the estimate of set + A) in terms of set) and s'(t): 

S(t + A) = alsCt) + azs'(t) 

The orthogonality condition (7-82) yields 
( set + 1) - ACt + A) ..L sCt), S' (t) 

Using the identities 

Rs,,,(r) = -R"(t:) 
"iI 

we obtain 

al = R(A)jR(O) az = R'(A)/R"(O) 

P = EUs(1 + 1) - als(t) - a2s'(t)1s(t + A)} = R(O) - aIR(A) + azR'(A) 

If 1 is small. then 

R(A) ~ R(O) R'(A) ~ R'(O) + R"(O)l ~ R"(O»).. 

at ~ 1 a2 ~ 1 t(t + A) ~ set) + }..s'(t) 
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>""'~S(t+A) . 

~ T '-.-/ 

.. .-M- ... 
, - NT t + NT FIGURE 13.1 

Filtering. We shall estimate the present value of a process s(t) in terms of the present 
value of another process x(t): 

§(t) = E{s(t) I x(t)} = aX(/) 

From (7-71) and (7-72) it follows that 

EHs(t) - ax(t)]x(/)} = 0 a = R.sx(O)/ Rxx(O) 

.P = E{[s(/) - ax(t)]s(t)} = Rs.s(O) - aRsx(O) 

Interpolation. We wish to estimate the value set + A) of a process set) at a point t + A 
in the interval (t. t + T), in terms of its 2N + 1 samples set + kT) that are nearest to t 
(Fig. 13-1) 

N 

A(t + A) = 2: aks(t + kT) 
k=-N 

The orthogonality principle now yields 

E {[set + A) - tN ",set + kT) l.(t + nT) } = 0 

from which it follows that 
N 

2: akR(kT - nT) = R(A - nT) 
k=-N 

-N~n ~N 

(13-7) 

(13-8) 

This is a system of 2N + 1 equations and its solution yields the 2N + 1 unknowns at. 
The MS value P of the estimation error 

equals 

N 

8N(t) = set + A) - 2: als(t + kT) 
k=-N 

N 

P = E{8N(t)s(t + A)} = R(O) - L: akR(A - kT) 
k=-N 

(13-9) 

II 

(13-10) 

Interpolation as deterministic approximation The error B N (t) can be considered 
as the output of the system 

N 

EN(cu) = ejllJ). - L akelkTllJ 

k=-N 
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(error filter) with input Set). Denoting by Sew) the power spectrum of s(t), we conclUde 
from (9-152) that 

(13-11) 

This shows that the minimization of P is equivalent to the deterministic problem of 
minimizing the weighted mean square error of the approximation of the exponential 
ej(J)l. by a trigonometric polynomial (truncated Fourier series). 

Quadrature We shall estimate the integral 

z = fob s(t)dt 

of a process set) in terms of its N + 1 samples senT): 

Applying (1-82), we obtain 

E {[fob set) dt - i] S(kT)} = 0 

Hence 

b 
T=­

N 

Os.ks.N 

fob R(t - kT) dt = QoR(kT) + ... + aN R(kT - NT) 

This is a system of N + 1 equations and its solution yields the coefficients ak. 

Smoothing 

We wish to estimate the present value of a process set) in terms of the values x(~) of the 
sum 

X(/) = set) + l1(t) 

available for every ~ from -00 to 00. The desirable estimate 

§(t) = E{s(t) I x(~), -00 < $ < oo} 

will be written in the form 

§(t) = I: h(a)x(t - a) da 

IS 

(13-12) 

In this notation, h(a) is independent of t and §(t) can be considered as the output of a 
linear time-invariant noncausal system with input xV) and impulse response h(t). Our 
problem is to find h(t). 

Clearly, 

set) - A(t) .1 x(~) all ~ 
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setting ~ = t - -r, we obtain 

E { [s(t) - I: h(a)x~t - a) da] x(t - -r) } = <> all '/: 

This yields 

Ru('r) = r h(a) Rxx (-r - a)da all '/: (13-13) 

Thus, to determine h(t), we must solve the above integral equation. This equation can 
be solved easily because it holds for all -r and the integral is a convolution of h(-r) with 
Rxxfr). Taking transforms of both sides. we obtain S,fX(w) = H(w)Sxx(w). Hence 

H(w) = S.rx(w) 
Sxx(w) 

The resulting system is called the noncausal Wiener filter. 
The MS estimation error P equals 

P = E {[S(t) - I: h(a)x(t - a)da] S(t)} 

= R.r.r(O) - f: h (a) Ru (a) da 

1 100 = -2 [Su(w) - H"(w)Sax(w)ldw 
7r -00 

If the signal set) and the noise pet) are orthogono.l, then 

Hence (Fig. 13-2) 

H(w) = Su(w) 
S".r(w) + S.1111(W) 

(13-14) 

(13-15) 

If the spectra S.r,(w) and SIIII(W) do not overlap, then H(w) = 1 in the band of the signal 
and H(w) = 0 in the band of the noise. In this case, P = o. 

~~M)ho 
x(t) = s(t) + 11(/) 

FIGURE 13-2 
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EX \\lPl L 13-2 

"'If 

D~CRETE-TIME PROCESSES. The noncausal estimate ern] of a discrete-time process 
in terms of the data 

x[n] = sln] + 'In] 

is the output 
00 

&Ln] = L h[k]x[n - kJ 
k=-oo 

of a linear time-invariant noncausal system with input x[n] and delta response kIn J. The 
orthog~ty principle yields 

E { (8(-]-.t., A[k].[. - k]) x[. - 10] } - 0 all In 

Hence 
00 

RuLm] = L h[k]R,u[m - k] 
1=-00 

Taking transforms of both sides. we obtain 

The resulting MS error equals 

H(z) = S"x(z) 
Sxx(z) 

P = E {[s[n]-.t~ h[k]x[n - k]l.[-]} 

all m (13-17) 

(13·18) 

... Suppose-that sIn] is a first-order AR process and 'In) is white noise orthogonal to 
sEn]: 

No 
5",(z) = (1 - az-1)(l - az) 
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In, this case, 

aN(l - bz-I )(1 - bz) 
Sxx(Z) = SueZ) + N = b(I,- az- I )(1- az) 

where 

Hence 

Hez) = bNo 
aN(1 - bz-I )(1 - bz) 

h[nl = cbllli 
bNo 

c=~~~~ 
aN(1- b2) 

-~ [_ ~ Ikl]_ bNo P - 1 _ a2 1 c L...J (ab) - a(1 _ b2) 
ka-oo 

13-2 PREDICTION 

Prediction is the estimation of the future set + .A.) of a process set) in terms of its past 
set - 't'), 't' > O. This problem has three parts: The past (data) is known in the interval 
(-00, t); it is known in the interval (I - T, t) offinitelengtb T; it is known in the interval 
(0, I) of variable length t. We shall develop all three parts for digital processes only. The 
discussion of analog predictors will be limited to the first part. In the digital case, we 
find it more convenient to predict the present s[n] of the given process in terms of its 
past s[n - kl. k ~ r. 

Infinite Past 

We start with the estimation of a process sIn] in terms of its entire past s[n - k], k ~ 1: 
00 

A[n) = E{sIn] I s[n - kl, k ~ I} = L h[k]s[n - k] (13-19) 
k=1 

This estimator will be called the one-step predictor of sLn]. Thus 8[n] is the response of 
the predictor filter 

H(z) = h[I]z-1 + ... + h[k]z-k + ... (13-20) 

to the input s[n] and our objective is to find the constants h[k] so as to minimize the 
MS estimation error. From the orthogonality principle it follows that the error ern1 = 
s[n] - 8[n] must be orthogonal to the data s[n - mJ: 

E {( s[nJ- t.h[k]s[n - kJ) s[n - mJ} = 0 m ~ i (13-21) 

This Y;ields 
00 

R[m] - L h[k]R[m - k) = 0 m ::: 1 (13-22) 
k=1 

We have thus obtained a system of infinitely many equations expressing the unknowns 
h(k] in terms of the autocorrelation R[m] of sen]. These equations are called Wiener­
Hopf (digital form). 
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The Wiener-Hopf equations cannot be solved directly with z transforms even 
though the right side equals the convolution of hem] with R[m]. The reason is that 
unlike (13-17), the two sides of (13-22) are not equal for every m. A solution based o~ 
the analytic properties of the z transforms of causal and anticausal sequences can be 
found (see Prob. 13-12); however, the underlying theory is not simple. We shall give 
presently a very simple solution based on the concept of innovations. We comment first 
on a basic property of the estimation error B [n] and of the error filter 

00 

E(z) = 1 - H(z) = 1 - L h[n]z-k (13-23) 
k=1 

The error B[n] is orthogonal to the data sen - ml for every m ~ 1; furthermore, 
B[n - m] is a linear function of sfn - m] and its past because B[n] is the response of 
the causal system E(z) to the input sen]. From this it follows that B[n] is orthogonal to 
B[n - m] for every m ~ 1 and every n. Hence B[n] is white noise: 

Rulm] = E{e[n]B[n - m]} = P8[m] (13-24) 

where 
00 

P = E(s2[n]} = E{(s[n] - §[n])s[n]) = R[O] - Lh[k]R[k] 
k=l 

is the LMS error. This error can be expressed in terms of the power spectrum Sew) of 
sen]; as we see from (9-152). 

(13-25) 

Using this, we shall show that the function E(z) has no O's outside the unit circle. 

V If 

Proof. We fonn the function 

then IZi I ::: 1 

I -1/ • 
Eo(z;) = E(z) 1- Z ~l 

-ZiZ-

(13-26) 

This function is an error filter because it is causal and Eo(oo) = E(oo) = 1. Furthennore, if IZ/I > 1, 
then [see (l2B-2)J 

IEo(eJIII)j = _1 /E(e''')1 < IE(e1w)1 
Izil 

Inserting into (13-25), we conclude that if we use as the estimator filter the function 1 - Eo(z), the 
resul~ng MS error will be smaller than P. This, however, is impossible because P is minimum; 
hence /zd :S 1. ~ 

Regular Processes 

We shall solve the Wiener-Hopf equations (13-22) under the assumption that the process 
s(n] is regular. As we have shown in Sec. 11-1. such a process is linearly equivalent to 



a white-noise process len] in the sense that 

00 

sLn] = Ll[k]i[n - k] 
k=O 

00 

len] = Ly(k]8[n - k] 
.1:=0 

(13-27) 

(13-28) 

From this it follows that the predictor _[n I of 8[n] can be written as a linear sum involving 
the past of l[n]: 

00 

lien] = LhILk]i[n - k] (13-29) 
.1; .. 1 

To find §[n], it suffices, therefore, to find the constants hiCk] and to express iLn] in terms 
of s[n] using (13-28). To do so, we shall determine first the cross-correlation of 8Ln] and 
i[n]. We maintain that 

Rsi[mJ = l[m] (13-30) 

Proof. We multiply (13-27) by iLn - m] and take expected values. This gives 
00 00 

E{s[n]l[n - m]} = L1[k]E{1[n - k]l[n - m]} = L1[k]8[m - k] 
.1:=0 .1:=0 

because Ri/[m] = B[m], and (13-30) results. 
To find h;rk], we apply the orthogonality principle: 

E {(S[OJ - ~MkJl[n -kJ) i[o -mJ} =0 m ~ 1 

':fhis yields 
00 00 

Rsi[m] - LhiLk]Ri/[m - k] = R.ri[m] - Lh;[k]8[m - k] = 0 
k=1 .t-l 

and since the last sum equals h;[m], we conclude that hl[m] = Rsi[m]. From this and 
(13-30) it follows that the predictor §[n] , expressed in terms of its innovations, equals 

00 

8[n] = L llkJiLn - k] 
.. 

(13-31) 
.1:=1 

We shall rederive this important result using (13-27). To do so, it suffices to show 
I that the difference 5Ln] - 8[n] is orthogonal to I[n - m] for every m ~ 1. This is indeed 

the case because 
00 00 

s[n] = Ll[k]i[n - k] - Ll[k]l[n - k] = l[OJiLnJ (13-32) 
1..0 .1:-1 

and len] is white noise. 
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EXAl\1PLE 13-3 

s[n] 

1 
s[n] L(z) i[n] 

FIGURE 13-3 

s[nJ 

FIGVRE134 

I 
L(z) i[nJ 

One-step predictor 

The sum in (13-31) is the response of the filter 
00 

Ll[k]Z-k = L(z) -1[0] 
k=l 

to the input I[n]. To complete the specification of §[n], we must express I[n] in terms 
of sen]. Since l[n1 is the response of the filter 1/L(z) to the input s[n], we conclude, 
cascading as in Fig. 13-3. that the predictor filter of sen] is the product 

1 1[0] 
H(z) = L(z) (L(z) -1[0]) = 1 - L(z) (13-33) 

shown in Fig. 13-4. Thus, to obtain H(z), it suffices to factor S(z) as in (11-6). The 
constant I[OJ is determined from the initial value theorem: 

1[0] = lim L(z) 
~-+oo 

~ Suppose that 

S ,.,) __ 5 - 4 cos (J) 2z - 1 
(..., L(z)=--

10 - 6 cos (J) 3z - 1 
as in Example 11-4. In this case, (13-33) yields 

2 
1l0] = -

3 

2 3z - 1 -Z-I 

H(z) = 1- 3" x 2z -1 = 6(1- z-I/2) 

Note that jLn] can be determined recursively: 

§[n] - !§[n - 1] = -isLn - IJ 

The Kolmogorov-Szego MS error formula.3 As we have seen from (13-32), the MS 
estimation error equals 

'V. Orenander and G. Szego: Toepiitt. Forms and Their Applications, Berkeley University Press, 1958 [16). 
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Furthermore [see (l2A-l)J 

In l2[0] = - In IL(eilll )12 dw 1 11£ 
23T -1( 

Since Sew) = IL(e j (l»1 2• this yields the identity 

P = exp {_I 11£ In Sew) dW} 
23T -7C 

expressing P directly in terms of S(w). 

(13-34) 

Autoregressive processes. If s[n] is an AR process as in (11-39), then 1[0] = bo and 

H(z) = -alcl - ... - aNz-N 
(13-35) 

This shows that the predictor §[n] of sen] in teons of its entire past is the same as the 
predictor in teons of the N most recent past values. This result can be established directly: 
From (11-39) and (13-35) it follows that sen] - §[n] = boi[n]. This is orthogonal to the 
past of s[n]; hence 

E{sln] I sfn - k], 1 :S k :S N} = E{s[n] I sen - k], k::: I} 

A process with this property is called wide-sense Markov of order N. 

THE r-STEP PREDICTOR. We shall determine the predictor 

§r[n] = E{s[n11 sen - k1, k ::: r} 

of s[n] in terms of sen - r] and its past using innovations. We maintain that 
00 

§rln] = L 1 [k]i[n - k] 
k=, 

Proof. It suffices to show that the difference 
,-I 

8r Ln] = s[n1 - §r[n] = 2)(k]i(n - k] 
k=O 

(13-36) 

is orthogonal to the data sen - k1. k ::: r. This is a consequence of the fact that sen - k] 
is linearly equivalent to i[n - k] and its past for k::: r; hence it is orthogonal to i[n], 
i[n - 11, ... , i[n - r + 1]. 

The prediction error Br[n] is the response of the MA filter 1[0] + 1[11z-J + ... + 
l[r-l]z-r+1 of Fig. 13-5 to the input i[n]. Cascading this filter with l/L(Z)as in Fig. 13-5, 
we conclude that the process §r[n] = s[n1- i, [n] is the response of the system 

1 r-l 

H, (z) = 1 - L( ) 2: l[k]z-k (13-37) 
Z k ... O 

to the input sen]. This is the r-step predictor filter of sen]. The resulting MS error equals 
r-l 

Pr = E{8;[n1} = 2:z2[k] (13-38) 
k=O 



EX \\IPI.E lJ---l 

sen] 

Fl6VREl3-S 

I i[n) 

L(z) 

T-step predictor 

~ We are given a process s[n] with autocorrelation R[m] = a Inti and we wish to deter­
mine its r-step predictor. In this case (see Example 9-30) 

Hence 

a-I -a b2 
5(2:) - = b2 = 1 - a2 

- (a- l + a) - (Z-l + z) (1 - az-1)(1 - az) 

b 
L(z) = 1 1 I[n] = ballU[n] 

-az-

r-1 

Pr = b2 L: a2k = 1 - a2r 

k=O 

ANALOG PROCESSES. We consider now the problem of predicting the future value 
set + J..) of a process set) in terms of its entire past set - 'f), 'f ::! O. In this problem, our 
estimator is an integral: 

i(t + J..) = t{s(t + J..) I set - t:), t' ::! OJ = f h(a)s(t - a) da (13-39) 

and the problem is to find the function heal. From the analog form (13-4) of the orthog­
onality principle. it follows that 

E{[S(t + J..) -100 
h(a)s(t - a)] set - t:)} = 0 

This yields the Wiener-Hopf integral equation 

R(t: + J..) = 100 
h(a)R(t' - a) da 

The solution of this equation is the impulse response of the causal Wzener filter 

H(s) = 100 
h(l)e-Sf dt 

(13-40) 
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The; con:espon4ing MS error eql;lals 

P = EUs(t + A) - A(t + A)js(t + A)} = R(O) - (00 h(a)R(A + a) da (13-41) 10 . , 
Equation (13-40) cannot be solved directly with transforms because the two sides 

are equal for 't ::: 0 only. A solution based on the analytic properties of Laplace trans­
forms is outlined in Prob. 13-11. We give next a solution using innovations. 

As we have shown in (11-8), the process set) is the response of its innovations 
filter L(s) to the white-noise process i(t). From this it follows that 

set + A) = 100 
l(a)i(t + A - a)da (13-42) 

We maintain that 8(t + A) is the part of the above integral involving only the past oft(t): 

8(t + A) = [ l(a)i(t + A - a) da = 100 
I(P + A)i(t - P) dP (13-43) 

Proof. The difference 

set + A) - A(t + A) = 1'" l{a)i{t + A - a) da (13-44) 

depends only on the values ofi(t) in the interval (t, t + A); hence it is orthogonal to the 
past of I(t) and. therefore. it is also orthogonal to the past of set). 

The predictor i(t + A) of S(/) is the response of the system 

H/(s) = [ hj(t)e-Il dt hj(t) = let + A)U(t) (13-45) 

(Fig. 13-6) to the input I(t). Cascading with l/L(s). we conclude that A(t + A) is the 
response of the system 

y(t) 

all) res) 
i(t) 

~ Hes) = r(s)H;(s) I 

FIGURE 13-6 

H(s) = Hj(s) 
L(a) 

-:L 
o ,\ I 

1.(s) 
s(t) eA' 

MnL 
0 r 

H/(s) 

(13-46) 

-;(i+1) 

i(l +,\) 
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EX \~!I'Ll' 13-5 

I\,\ \ IPI L 13-(. 

to the input set). Thus, to determine the predictor filter H(s) ofs(t). proceed as follOWs: 

Factor the spectrum of set) as in (11-3): S(s) = L(s)L( -s). 

Fmd the inverse transfonnl(t) of L(s) and form the function hi(t) = let +J..)U(t). 

Find the transform HI(S) of hi(t) and detennine H(s) from (13-46). 

The MS estimation error is determined from (13-44): 

P = E{11).l«l')i(t +J.. - a)d({} = fo). 12(a) da (13-47) 

... We are given a process set) with autocorrelation Rtr) = 2<le-I'f1 and we wish to 
determine its predictor. In this problem, 

1 1 
S(s) = 2 2 L{s) = -- l(t) = e-'U(t) 

a -s a+s 
e-A 

hi(t) = e-Ae-rU(t) Hi(S) = --
a+s 

H(s) = e-IlIA §(t + J..) = e-llI).s(t) 

This shows that the predictor of set + J..) in terms of its entire past is the same as the 
predictor in terms of its present set). In other words, if set) is specified, the past has no 
effect on the linear prediction of the future. ..... 

The determination of H(s) is simple if set) has a rational spectrum. Assuming that 
the poles of H(s) are simple, we obtain 

L(s) = N(s) = L ~ let) = LCteS/rU(t) 
D(s) I S - Sj , 

"""' ...f). I H) """' c;e"'" Ni(s) h,(t) = L-,Clf: I es' U(t) ,(s = L-, -- = --
liS - St D(s) 

and (13-46) yields H(s) = Nl (s)/N(s). 
If N(s) = 1. then H(s) is a polynomial: 

H(s) = NI(s) = bo + hIS + ... +b"s" 

and jet + A) is a linear sum of set) and its first n derivatives: 

I(t + J..) = bos(t) + bts' (t) + ... + hns(n)(t) 

... We are given a process set) with 

49 - 25s2 

Sea) = (1 _ s2)(9 _ S2) 
Ls _ 7+5s 
( ) - (1 + s)(3 + s) 

(13-48) 



and we wish to estimate its future s(t + A.) for A. = log 2. In this problem, eA = 2: 

1 4 e-l. 4e-31. 8 +2 
L(s) = s + 1 + 8 + 3 H,(s) = 8 + 1 + 8 + 3 = (8 + 1)(8 + 3) 

8 + 2 1 3 -141 
H(s) = -- h(t) = -8(1) + -e . U(t) 

58+7 5 25 
Hence 

E{s(t + A.) I set - .), • ~ O} = 0.2s(t) + t{s(t + A.) I set - r), • > O} ~ 

Notes 1. The integral 

y('r) = 100 
h(IlI)R(T - CI)dlll 

in (13-40) is the response of the Wiener filter H(s) to the input R(T). Prom (13-40) and (13-41) itfoUows that 

yeT) = R(f + J..) for I' ~ 0 and y(-J..) = R(O) - P 

2. In all MS estimation problems. only second-order moments are used. If. themfore, two processes 
have the same autocorrelation. then their predictors are identical. nus suggests the following derivatiCHl of the 
Wiener-Hopf equation: Suppoee that 0) is a random variable with density 1(0) and z(t) = ';"". Clearly. 

Ru(f) = E {.JfI(.+T)e-JfII } = [/(O)eil#r dO) 

From this it follows that the power spectrum ofz(t) equals 21r/(OJ) (see also (9-140)]. If. therefore. a(t) is a 
process with power spectrum 5(OJ) = 27r/(OJ}, then its prccI.ictor h(/) will equal the predictor of z(t): 

i(1 + J..) = t { elOl(·+l.) I e}o*-) • a ~ O} =: 100 
h(a)eiOl(t-flt) dill 

= eifll [h(CI)e-J- da = eililt H(O) 

And since I(t + 1) - i(t + J..) .l I(t - f). for f ~ O. we conclude from the last equatiCHl that 

a{[elfl('+l.) - eifll H(O)].-J .. (t-Tl} = 0 I' ~ 0 

Hence 

J~ I(OJ) [eJ .. (T+J.) - ei,," H(ll1)] dO) = 0 T:! 0 

1blsyields (13-40) because theinvezse ttansform of I(OJ}.}"(T+A) equals R(T +l.) and the inverse ttansfonn 
of I(OJ)el~ H (OJ) equals the integ!:8l in (13-40). 

Predictable processes. We shall say that a process s[nl is predictable if it equals its 
predictor: 

00 

sen] = L h[k]s[n - k] (13-49) 
k ... 1 

In this case [see (13-25)] 

(13-50) 
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Since SeW) ~ 0, the above integral is 0 if Sew) =F 0 only in a region R of the (J) axis 
where E(eiO) = O. It can be shown that this region consists of a countable number of 
points wi-the proof is based on the Paley-Wiener condition (11-9). From this it follows 
that 

III 

Sew) = 21r LCl;8(w - (J)i) 

1=1 

Thus a process sIn] is predictable if it is a sum of exponentials as in (11-43): 
m 

s[n] = L cieibl/II 

i=J 

(13-51) 

(13-52) 

We maintain that the converse is also true: If s[n] is a sum of m exponentials as in 
(13-52), then it is predictable and its predictor filter equals 1 - D(z), where 

D(z) = (1 - eiO)1 Z-l) ... (1 - eiw.. Z-l) (l3-53) 

Proof. In this case, E(z) = D(z) and E(eill1l ) = 0; hence E(eiltl)S(w) =0 because E(eiltl) 
8(w - Wi) = E{ei tr>;)8(w - WI) = O. From this it follows that P = O. In that case I Till I = 
Am = 0 and .6.m-l > 0 (see footnote 13, page 564, ch. 12). 

Note The preceding result seems to be in conflict with the sampling expansion (10·201) of a BL process 
set): This expansion shows thats(t) is predictable in the sense that it can be approximated within an arbitmy 
error e by a linear sum involving only its past samples s(nTo). From this it follows that the digital process 
s[n) = s(nTo) is predictable in the same sense. Such an expansion, however, does Rot violate (13-50). It is 
only an approximation and its coefficients tend to 00 as e -+ O. 

GENERAL PROCESSES AND WOLD'S DECOMPOSITION.4 We show finally that an 
arbitrary process 5fn] can be written as a sum 

5[n] = sl[n] + 82[n] (13-54) 

of a regular process st[n] and a predictable process 82[n], that these processes are or­
thogonal, and that they have the same predictor filter. We thus reestablish constructively 
Wold's decomposition (11-89) in the context of MS estimation. 

As we know [see (13-24)], the elTor ern] of the one-step estimate of 5[nJ is a 
white-noise process. We form the estimator 51 [n] of s[n] in terms of 8[n] and its past: 

00 

51[n] = E{s[n] le[n - k], k ~ O} = L wke[n - k] II 

Thus st[n] is the response of the system (Fig. 13-7) 
00 

W(z) = L WkZ-k 

k=O 

k=O 
(13-55) 

"A. Papoulis: Predictable Processes and Wold's Decomposition: A Review. IEEE Transactions on Acoustics, 
Spuch. and SiglllJl Processing, vol. 22, 1985. 



s[n] 

~[n] 

~[n] z{n] 
E(z) H(z) 

FIGURE 13·7 

to the input ern]. The difference 82[n] = 8[nJ - 81 [n] is the estimation enor (Fig. 13-7). 
Clearly ( orthogonality principle) 

82[n] .L e[n - k] k~O (13-56) 

Note that if 8[n] is a regular process, then (see (13-32)] ern] = 1 [OJUn]; in this case, 
sl[n] = s[n]. 

I» (a) The processes slln] and s2[n] are orthogonal: 

81 [n] .L s2[n - k] all k (13-57) 

(b) 81[n] is a regular process. 
(c) s2[n] is a predictable process and its predictor filter is the sum in (13-19): 

00 

s2[n] = Lh[k]s2[n - k] 
k=l 

(13-58) 

Proof. (a) The process ern) is orthogonal. to sen - k] for every k > O. Furthermore, l2[n - k] 
is a linear function of sen - k] and its past; hence $z[n - k] .J.. ern) for k > O. Combining with 
(13-56), we conclude that 

&len - k] .J.. 8[n] aU k (13-59) 

And since s,[n] depends linearly on ern) and its past, (13-57) follows. 
(b) The process sl[n] is the response of the system W(z) to the white noise B[n]. To prove 

that it is regular, it suffices to show that 

(13-60) 

From (13-54) and (13-55) it follows that 

00 

E(s2[n]} = E{~[n]} +E{~[n]}?! E{~[n]} = LW~ 

This' yields (13-60) because E{s2[n)} = R(O) < 00. 

(e) To prove (13-58), it suffices to show that the difference 

00 

zen) = &len] - Lh[k]S;z(n - k] 

equals O. From (13-59) it follows that zLn] .J.. e[n - k) for all k. But z[n) is the response of the 
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s[n] s[n - 11 
L..-_ .... 

+ 

FIGURE 13-8 

system 1 - H(Z) = E(Z) to the input s2[n] = sen] - 51(n]; hence (see Fig. 13-8) 
00 

zen] = ern] - 51 [n] + L h(k]SI [n - k] (13-61) 
k=1 

This shows that zen] is a linear function of ern] and its past. And since it is also orthogonal to 
e[n], we conclude that zen] = O. 

Note finally that [see (13-61)] 
00 

8. [n1 - L h[k]sl [n - k] = ern] .1 51 [11 - m] m ~ 1 
1-1 

Hence this sum is the predictor of 51 en}. We thus conclude that the sum H(.z) in (13-20) is the 
predictor filter of the processes 5[n], 51 [n], and s2[n). ~ 

FIR PREDIcroRS. We shall find the estimate §N[n] ofa process sen] in terms ofits N 
most recent past values: 

N 

iN[n] = t{s[nl Is[n - kl,l ::: k::: N} = Lars[n - k] (13-62) 
k=1 

This estimate will be called the forward predictor of order N. The superscript in a: 
identifies the order. The process §N[n] is the response of theforward predictor filter 

N 

AN(z) = Laf,-Ie (13-63) 
Ie=1 

to the input s[n]. Our objective is to determine the constants af so as.:to minimize the 
MSvalue 

PH = E {§~[n]} = E{(s[nJ - 8N[nDs[n]} 

of the forward prediction error 'N[n] = sen] - tN[nJ. 

The Yule-Walker equations. From the orthogonality principle it follows that 

E{ (O[nl - t.aro[. -kl) s[. - ml} = 0 1:; m:; N 

(13--64) 
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This yields the system 
N 

R[ml- LafR[m-k]=O (13-65) 
k-l 

Solving, we obtain the coefficients af of the predictor filter AN(z). The resulting MS 
error equals [see (12-83)J 

N 
" N A.N+l PN = R[O] - L...Jak R[k] = --
k=1 A.N 

(13-66) 

In Fig. 13-8 we show the ladder realization of A N (z) and the forward error filter EN (z) = 
1- AN(z). 

As we have shown in Sec. 12-3. the error filter can be realized by the lattice 
structure of Fig. 13-9. In that figure, the input is sen] and the upper output iN{N]. The 
lower output B N [n J is the backward prediction error defined as follows: The processes 
sen] and s[ -n] have the same autocorrelation; hence their predictor filters are identical. 
From this it follows that the backward predictor sN[n], that is, the predictor of sen] in 
terms of its N most recent future values, equals 

N 

sN[n] = E{s[n]ls[n + k],1 ~ k ~ N} = Eafs[n +k] 
k=1 

The backward error 

is the response of the filter 

EN(Z) = Z-N (I - afz - ... - a~zN) = CN~N(1/Z) 
with input sen]. From this and (12-94) it follows that the lower output of the lattice of 
Fig. 13-8 is BN[n]. 

In S.;c. 12-3, we used the ladder-lattice equivalence to simplify the solution of 
the Yule-Walker equations. We summarize next the main results in the context of the 
prediction problem. We note that the lattice realization also has the following advantage. 
Suppose that we have a predictor of order N and we wish to find the predictor of order 
N + 1. In the ladder realization, we must find a new set of N + 1 coefficients af+J. 
In the lattice realization, we need only the new reflection coefficient KN+I; the first N 
reflection coefficients Kk do not change. 

A 

sen] 

FIGURE 13-9 

I-------I~------+f .:)-__ B~'8N£n] 

~-I ~~-----+f- 'l---,-sN£nl c 
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Levinson's algorithm. We shall determine the constants at', KN, and PN recursively. 
This involves the following steps: Start with 

at = KI = R[l]/ R[O] PI = (1 - KnR[O] 

Assume that the N + 1 constants a:- I , KN-I. and PN-I are known. Find KN and PN 
from (12-107) and (12-108): 

N-I 

PN-l KN = R[N] - L a:-1 R[N - k] 
k=1 

Find at' from (12-97) 

aZ =KN (13-68) 

In Levinson's algorithm, the order N of the iteration is finite but it can continue 
indefinitely. We shall examine the properties of the predictor and of the MS error PH as 
N -+ 00. It is obvious that PH is a nonincreasing sequence of positive numbers; hence 
it tends to a positive limit: 

PI :.:: P2 .. - ::: PN N--+ P ::: 0 
..... 00 

As we have shown in Sec. 11-3, the zeros z/ of the error filter 
N 

EH(Z) = 1- Lat'Z-k 
k=l 

are either all inside the unit circle or they are all on the unit circle: 
If PH> O. then IKkl < 1 for every k::: N and IZil < 1 for every i [see (12-99)]. 
If PN-l > o and PH =0, then IKkl < 1 for every k:s N -l.IKNI = 1. and Iz;\ = 1 

for every i [see (12-101)]. In this case. the process sen] is predictable and its spectrum 
consists of lines. 

If P > 0, then Izd :s 1 for every i [see (13-26)], In this case, the predictor §N[n1 
of sen] tends to the Wiener predictor§[n] as in (13-19), From this and (13-34) it follows 
that 

{ I 171 } ,AN+l P = exp -2. lnS(co)dco = leO] = lim --
Tr -71 N-+-oo AN 

(13-70) 

This shows the connection between the LMS error P of the prediction of s[n] in tellllS of 
its entire past, the power spectrum S(w) of sen]. the initial value 1[0] of the delta response 
len] of its innovations filter, and the correlation determinant AN-

Suppose, finally, that PM-I> PM and 

PM = PM-l = .. -= P (13-71) 

In this 'case, Kk = 0 for Ikl > M; hence the algorithm terminates at the Mth step. From 
this it follows that the Mth order predictor ~M[n] of sen] equals its Wiener predictor: 

AM[n] = E{s[n] I sen - k]. 1 :s k ::: M} = E{s[n] I sen - k], k ~ I} 

In other words, the process sen} is wide-sense Markov of order M. This leads to the 
conclusion that the prediction error eM[n] = sen] - §M[n] is white noise with average 
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power P. [see (13-24)]: 

M 

s[n] - Lat's[n - k] = BM[n] 
k=J 

and it shows that sln] is an AR process. Conversely, if sln] is AR, then it is also wide-sense 
Markov. 

Autoregressive processes and maximum entropy. Suppose that s[n] is an AR process 
of order M with autocorrelation R[m] and sln] is a general process with autocorrelation 
'RfmJ such that 

R[m] = R[m] for Iml ~ M 

The predictors of these processes of order M are identical because they depend on the 
values of R[m] for Iml !S M only. From this it follows that the corresponding prediction 
errors PM and PM are equal. As we have noted, PM = P for the AR process s[n] and 
PM ~ P for the general process s[n]. 

Consider now the class CM of processes with identical autocorrelations (data) 
for Iml!S M. Each R[m] is a p.d. extrapolation of the given data. We have shown in 
Sec. 12-3 that the extrapolating sequence obtained with the maximum entropy (ME) 
method is the autocorrelation of an AR process [see (12-182)]. This leads to the following 
relationship between MS estimation and maximum entropy: The ME extrapolation is the 
autocorrelation of a process s[n] in the class C M. the predictor of which maximu.es the 
minimum. MS error P. In this sense, the ME method maximizes our uncertainty about 
the values of R[m] for Iml > M. 

Causal Data 

We wish to estimate the present value of a regular process sen] in terms of its finite past, 
starting from some origin. The data are now available from 0 to n - 1 and the desired 
estimate is given by 

/I 

An[n] = E{s[n] Is[n - kj, 1 ~ k !S n} = LQZs[n - k] (13-72) 
bot 

Unlike the fixed length N of the FIR predictor AN[n] considered in (13-62), the length n 
of this estimate is not constant. Furthermore, the values aZ of the coefficients of the filter 
specified by (13-72) depend on n. Thus the estimator of the process s[ni in tenns of its 
causal past is a linear time-varying filter. If it is realized by a tapped-delay line as in 
Fig. 13-8. the number of the taps increases and the values of the weights change as n 
increases. 

The coefficients aZ of in [nl can be determined recursively from Levinson's algo­
rithm where now N = n. Introducing the backward estimate sen] of s[n] in terms of its 
n most recent future values, we conclude from (12-92) that 

An[n] = In-J[n] + Kn(sLO] - i n- 1[0]) 

8/1[0] = Sn-l[O] + Kn(s[n] - An-lIn]) 
(13-73) 



s[n] 

FIGURE 13·10 

In Fig. 13-10, we show the normalized lattice realization oftbe error :tilter EIl(z), 
where we use as upper output the process 

i[n] = ~BIl[n] E{i2[n]} = 1 (13·74) 
""Pn 

The filter is fanned by switching "on" successively a new lattice section starting from the 
left. This filter is again time-varying; however, unlike the tapped-delay line realization, 
the elements of each section remain unchanged as n increases. We should point out that 
whereas 'kIn] is the value of the upper response of the kth section at time n, the process 
l[n] does not appear at a fixed position. It is the output of the last section that is switched 
"on" and as n increases, the point where l[n] is observed changes. 

We conclude with the observation that if the process sIn] is AR of order M [see 
(12-81)], then the lattice stops increasing for n > M, realizing, thus, the time invariant 
system EM (z)/-I PM. The corresponding inverse lattice (see Fig. 12-15) realizes the 
all-pole system 

./PM 
EM(Z) 

We shall now show that the output i[n] of the normalized lattice is white noise 

Ri/[m] = 8[m] .. (13·75) 

Indeed, as we know. 'n[n] J. sIn - k] for 1 S k S n. Furthermore. '"-k[n - r] depends 
linearly only on s[n - r] and its past values. Hence 

'"[n] J. 'n-1[n - 1] (13-76) 

This yields (13·75) because Pn = E{B:[n]}. 

Note In a lattice of fixed length, the output 'Nln] is not white noise and it is not onhogonal to 'H-I[n]. 
Howover for a specific It, the random variables 'N [n) and i N-J [n - 1] are orthogonal. 
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KALMAN INNOVATIONS.s The output i[n] of the time-varying lattice ofAg. 13-10 is 
an orthonormal process that depends linearly on sen - kJ. Denoting by y; the response 
of the lattice at time n to the input sen] = 81n - k), we obtain 

i[O] = ygs[O] 

i[l] = yAs[O] + yfs[l] (13-77) 

lIn] = y~s[O] + ... + yCs[k] + ... + y,:'s[n] 

or in vector foon 

[
yg 

fn+l = o ~; ::: ~;l 
y,:' 

where Sn+l and In+l are row vectors with components 

s[O] •..•• s[nl and i[O] •...• ilnJ 

respectively. 
From this it follows that if 

s[nJ = o[n - k] then i[n] = Yk 
This shows that to detennine the delta response of the lattice of Fig. 13-10, we use as 
input the delta sequence 8[n - k] and we observe the moving output i[n] for n ;::: k. 

The elements yC of the triangular matrix r n+l can be expressed in terms of the 
weights a: of the causal predictor §n [n]. Since 

'n[n] = sen] - §n In] = JP,. i[n] 

it follows from (13-72) that 

11 1ft -1 n 
Yn = ../p" Yn-k = .;p;,ak k ;::: 1 

The inverse of the lattice of Fig. 13-10 is obtained by reversing the Bow direction 
of the upper line and the sign of the upward weights - Kn as in Fig. 12-15. The tum-on 
switches close again in succession starting from the left. and the input i[n] is applied at 
the terminal of the section that is connected last. The output at A is thus given by 

s[O] = 18i[0] 

s[IJ = l6iLO] + lfi[l] 

stn) = 18iLOj + ... + l:i[n] 

From this it follows that if 

i[n] = o[n - k] then sln] = 1: n;:::k 

ST. Kailadt, A. Vieira, and M. Mod: "Inverses ofToeplitz Operators, Innovations, and Orthogonal 
Polynomials," SIAM Review. vol. 20. no. 1.1978. 

(13-78) 
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Thus, to determine the delta response lZ of the inverse lattice, we use as moving input 
the delta sequence .s[n - k] and we observe the left output sen] for n ~ k. 

From the preceding discussion it follows that the random vector SII is linearly 
equivalent to the orthonormal vector In. Thus Eqs. (13-77) and (13-78) correspond 
to the Gram-Schmidt ortbononnalization equations (7-100) and (7-103) of Sec. 7-3. 
Applying the terminology of Sec. 11-1 to causal signals, we shall call the process len] 
the Kalman innovations of sen] and the lattice filter and its inverse Kalman whitening 
and Kalman. innovations filters, respectively. These filters are time-varying and their 
tran~ition matrices equal r ll and Ln. respectively. Their elements can be expressed in 
terms of the parameters Kn and Pn of Levinson's algorithm because these parameters 
specify completely the filters . 

. Cholesky factorization We maintain that the correlation matrix RII and its inverse 
can be written as products 

R- 1 = r r' n n n (13-79) 

where r n and Ln are the triangular matrices introduced earlier. Indeed, from the or­
thonormality oiln and the definition of Rn, it follows that 

E{I~ln} = In E{S~SII} = RII 

where In is the identity matrix. Since In = slIrll and S/I = IIIL/I. these equations yield 

and (13-79) results. 

Autocorrelation as lattice response. We shall determine the autocorrelation R[m] of 
the process sen] in terms of the Levinson parameters KN and PN. For this purpose. we 
form a lattice of order No and we denote by qN[m] andqN[m] respectively its upper and 
lower responses (I3-lIa) to the input R[m]. As we see from the figure 

qN-l[m] = qN[m] + KNqN-l[m -1] 

qN[m] = qN-l[m - 1] - KNqN_l[m] 

qo[m] = qolm] = R[m] 

(I3-BOa) 

(I3-S0b) 

(13-80c) 

Using this development, we shall show that R[m] can be determined as the response 
of the inverse lattice of Fig. i3-lib provided that the following boundary and initial 
conditions are satisfied6: The input to the system (point B) is identically'p: 

all m (13-81) 

The initial conditions of all delay elements except the first are 0: 

(13-82) 

6E. A. Robinson and S. Treitel: "Maximmn Entropy and the Relationsbip of the Partial Autocorrelation to the 
ReflectiOil Coefficients of a Layaed System," IEEE TrallSacrions on AcolUtic8. SpeICh. and Signal Process. 
voL ASSP-28, no. 2, 1980. 
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------~------~----~----; 

R[m] 

90[m] 
------ t- I 

(a) 

~------qolmJ 

R[m] 
A 

n=oL ______ 
t- I 

90[m] 

(b) 

FIGURE 13-11 

The first delay element is connected to the system at m = 0 and its initial condition equals 
R[O]: 

(13-83) 

From the above and (13-81) it follows that 

We maintain that under the stated conditions, the left output of the inverse latti~e 
(point A) equals R[m] and the right output of the mtb section equals the MS error Pm: 

4o[m] = R[m] (13-84) 

Proof. The proof is based on the fact that the responses of the lattice of Fig. 13-100 
satisfy the equations (see Prob. 13-24) 

4N[m] = qN[m] = 0 

heN] = PN 

l:sm:sN-l (13-85) 

(13-86) 

From (13-80) it follows that, if we know 4N[m] and qN-l[m - 1], then we can find 
4N-l[m] and qN[m]. By a simple induction, this leads to the conclusion thatif4No[m] is 
specified for every m (boundary conditions) and qN[l] is specified for every N (initial 
conditions), then all responses of the lattice are determined uniquely. The two systems of 
Fig. 13-11 satisfy the same equations (13-80) and, as we noted, they have identical initial 
and boundary conditions. Hence all their responses are identical. This yields (13-84). 



606 STOCHAmC PROCESSES 

13 .. 3 FILTERING AND PREDICTION 

In this section, we consider the problem of estimating the future value set + A) of 
a stochastic process set) (signal) in terms of the present and past values of a regular 
process x(t) (signal plus noise) 

8(t + l) = E{s(t + l) I X(I - .), t' ~ O} = l CO 
hAa),,(t - a) da (13-87) 

Thus 8(t + l) is the output of a linear time-invariant causal system Hx (s) with input x(t). 
To determine Hx(s), we use the orthogonality principle 

E ([set + l) -lCO 
hx(a)x(t - a) da] x(t - t') } = 0 • :! 0 

This yields the Wiener-Hopf equation 

Rsx(T + l) = 100 
hx (a) R,u {. - a) da t' ::! 0 (13-88) 

The solution h x (t) of (13~88) is the impulse response of the prediction and filtering 
system known as the Wiener filter. If x(t) = set), then hx{t) is a pure predictor as in 
(13-39). If l = 0, then hJt(t) is a pure filter. 

To solve (13-88), we express x(t) in terms of its innovations iJt(t) (Fig. 13-12) 

xCt) = lcoZx(Ot)lx(t-a)da Rjj('r)=8(t') (13-89) 

where IAt) is the impulse response of the innovations filter Lx (s) obtained by factoring 
the spectrum ofx(t) as in (11-3): 

(13-90) 

As we know. the processes ix(t) and x(t) are linearly equivalent; hence the estimate 
8(t + l) can be expressed as the output of a causal filter Hi. (s) with input iAI): 

8(t +>..) = 1000 
hii(a)ix(t -a)da (13-91) 

To determine hi, (t), we use the orthogonality principle 

E{[S(t+l)- IoCOh; .. <a)lxv-a)da]ix(t-f)} =0 t':!O 

-- L .. (s) rJs) r-- H1.{s) 
I..{/) x{t) i .. {/) s(t + A) 

-s{f) 
Hx(s) = HI.(s) r xCs) HxCs) 

i{t + A) 

FIGURE 13-12 
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Since ix(t) is white noise, this yields 

Rsix (7: + >..) = 100 
hi, (ex)8(7: - ex) dex = hi, (.) 

This determines hi, ('r) for all. because hi, (.) = 0 for 7: < 0: 

hi. (7:) = R.S/Jr: +>")U(7:) 

(13·92) 

(13-93) 

In (13-92)-(13-93), Rsi, (7:) is the cross-correlation between the signal set) and the 
process iA (i). The function Rs;'(.) can be expressed in terms of the cross-correlation 
Rsx(-r:) between set) and x(t). Indeed, since iAt) is the output of the whitening filter 
rx(s) with input X(/), we can show as in (9-130) and (9-170) that 

(13-94) 

Thus, since SS~ (8) is assumed known, (13-94) yields RSlx (7:). Shifting to the left 
and truncating as in (13-93), we obtain hi. (.). 

To complete the specification of HAs), we multiply the transform Hi. (s) of the 
function hix(t) so obtained with rx(s) (see Fig. 13-12) 

Hx(s) = Hi. (s)rx(s) (13-95) 

The function Hi. (s) can be determined directly from (13-94): As we know (shifting 
theorem) the transfOim of Rsi• (. + >..) equals 

S~(s) = SSi, (s)eM = Ssx(s)rx(-s)eM (13-96) 

To find Hi. (s), it suffices to write SACS) as a sum 

S).(s) = siCs) + S;:(s) (13-97) 

where siCs) is analytic in the right-hand s plane and S;:(s) is analytic in the left­
hand s plane. Since the inverse transforms of the function S[(s) and S;:(s) equal 
Rsi.(. +>")U(.) and R,;.(. + )")U(-.), respectively, we conclude from (13-93) that 
(see also, the next Note) 

(13-98) 

To determine the system function Hx(s) of the Wiener filter, proceed, thus, as follows: 

Factor Sxx(s) as in (13-90) and set rx(s) = IJLx(s). 

Evaluate Ssi. (s) from (13-94) and form the function SACS) using ~13-96). 
Decompose S~(s) as in (13-97) and form the function Hi.(S) using (13-98). 
Determine Hx(s) from (13-95). 

If the function S).(s) is rational, then the decomposition (13-97) can be accom­
plished by expanding Ssi.(S) into partial fractions. Assuming that Ssi.(S) is a proper 
fraction with simple poles, we obtain 

L al L bk 
Ssi.(S) = -- + --

i S - Sj k S - Zk Re Zk > 0 

Re Sj < 0 
(13-99) 

The inverse of the second sum is 0 for 7: > O. If, therefore, it is shifted to the left, it 
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I XAi\I!'I F 1~-7 

will remain 0 for 't' > O. This shows that only the first sum will contribute to the tenu 
R'i,,('t' + )")U(,&). In other words, 

R,I.('t' + ),,)U('r) = [aJe.l'l(t+l.) + ... +ane'n(f+l.)]U(r) 

The transform of this equation yields 

QJ elil. a"e&"l. 
SiCs) = -- + ... +--

s - SI S - an 

~ Suppose that X(I) = set) + lI(t) and 

No 
S,,(lI) = 2 2 S",,(lI) = N a +lI) 

as in Example 13-1. In this case, Ssx(S) = 5s,(s) and 

Hence 

No fJ2 - a2 
Sxx(s) = 2 2 + N = N 2 2 a -a 0: -8 

h;S+fJ 
Lx(a) = vN-­

s+a 
1 a - s 

rx(-s)=--­-IN fJ--s 
Inserting into (13-94) and expanding into partial fractions. we obtain 

(13-100) 

(13-101) 

(13-102) 

Ss; (a) = No a - s = ~ _ ~ A = No 
• 0:2 - 82 (fJ - 8),J"N s + a s - fJ (0: + fJ),J"N 

and with SI = -a, (13-100) yields 

Hence 

(13-103) 

~ 

Note In !be decomposition (13-97) of 5" (s). the functiOllS st(s) and SAlt) are unique within an additive 
constant. This causes an ambiguity in the detemunadon of hi. (t). The ambiguity is removed if we impose the 
condition that 

S;:(oo) =0 

In the pure filtering case (1 :: O); !be resulting h.r(t) might contain impulses at the origin. This is 
acceptable because, by assumption the estimate I(t) of s(t) is a functional of the past and dle present value of 
the data X(I). 

Filtering white noise. In the pure filtering problem, the determination of the estimator 
Hz(s) can be simplified if R,,(O) < 00 and vet) is white noise orthogonal to the signal 
as in (13-101). We maintain, in fact, that in this case 

Hx(s) = 1 - .../Nrz(8) (13-104) 

where rz(8) is the whitening filterofx(t). 
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Proof. From these assumptions it follows that 58S (oo) = 0; hence 

5u (s) = 5vs (s) = 5xx (s) - N = Lx (s)LA-s) - N 

5sx (00) = 0 5u (00) = N Lx(±oo) =-IN 
Inserting into (13-94), we obtain 

Ssix(S) = L.T(s) - Nrx(-s) = LAs) + K - Nrx{-s) - K 

From the preceding note it follows that the constant K must be such that the 
noncausal component of 5s/x (s) satisfies the infinity condition -Nrx { -00) - K = O. 
And since rx{-oo) = l/Lx{-oo) = 1/.JN, (13-104) follows from (13-95). 

~ We shall determine the pure filter of the process in Example 13-7. From (13-102) 
and (13-104) it follows that 

a+s ft-a 
Hx(s) = 1- --=--

ft+s s+ft 

in agreement with (13-103). Note that the resulting MS error equals 

P = E{[S(t) -100 
hx(a)x(t - a) da] set)} = a ~ ft 

Discrete-Time Processes 

We shall state briefly the discrete-time version of the preceding results. Our problem 
now is the determination of the future value sen + r] of a stochastic process in terms of 
the present and past values of another process x[n]: 

00 

irln + r] = L: h~[k]x[n - k] (13-105) 
k=O 

In this case, 

sIn + rJ - A,.[n + r] J..x[n - m) m :! 0 

hence 
00 

Rsx[m + r] = L: h~[k]R.u[m - k] m :! 0 (13-106) 
k=O 

This is the discrete version of the Wiener-Hopf equation (13-88). 
To determine h~[n]. we proceed as in the analog case: We express .r[n + r] in 

terms of the innovations ix[n] ofx[n] (Fig. 13-13) 
00 

§r[n + r] = L: hjJk]ix[n - k] 
k=O 

From this and (7-82) it follows that 
00 

Rsi .. [m + r] = L:hi)k18[m - k] = hUm] 
k=O 

(13-107) 
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EX \l\IPLE 13-9 

iZ1 Liz) 
x{n] 

r...(t) ~ 
i.[n) Hi.W sr[n + r) 

-s[n) 

H~(z) 
5r[n + r) 

FIGURE 13·13 

because R;.[mJ = oem]. Hence 

hUm] = RSiJm + r]U[m] all m (13-108) 

. The function Rsl.£ml can be expressed in terms of Ru[m] as in (13-94) 

Ss;,(z) = Su(z)rx(z-t) (13-109) 

Thus the transform of Rsl~ [m + r] equals 

s, (z) = Z' S$;~ (z) = zrSu(z)r.,(z-t) 

The function Sr(Z) is then written as a sum 

Sr(Z) = st(z) + S;-(z) 

(13-110) 

(13-111) 

where st(z) is analytic for Izl > 1 and S;(z) is analytic for Izi < 1. Furthermore, the 
inverse of S;-(z) at the origin is O. Thus st(z) is the transform of the causal function 
Rsls[m+r]U[m]. And since ix[n] is the response of the whitening filter rx(z) with input 
x[nJ. we conclude from (12-108) that 

(13-112) 

~ We shall determine the one-step predictor Atln + 1] of the process sen]. where 

No 
SSS(Z) = (1 _ az-1)(1 _ az) S",,(Z) = N S,,,(Z) = 0 

In this case (see Example 13-2) 

ff-a I-bz-l 
Lx(z) = - ---:­

b 1-az-J 

From (13-110) it follows with r = I that 

zNo../liTNa Aaz Az/b 
zSs/s(z) = (l-az- J)(1- bz) = z -a - z -lib A = (a -b) (if V;b 

Since 0 < a < 1 and l/b > 1, we conclude from the above that st(z) = Aaz/(z - a) 
and (13-112) yields 

z 
H!(z) = (a - b)--b 

z-

We discuss presently a more direct method for determining H~(z) [see (13-118)J. ~ 



CHAPTEft 13 MEANSQUARE£STIMATI<»I 611 

i .. [n) L..(:) x[nJ 

FIGURE 13·14 

White noise. We shall examine the nature of the predictor H~ (z) of s[n + r 1 under the 
assumption that the noise is white and orthogonal to the signal 

R",,[m] = N8[m] (13-113) 

Pure filter Suppose first that r = O. In this case. H~ (z) is a pure filter and lo[n] 
is the estimate of the signal s[n] in terms ofx[n} and its past. 

We maintain that (Fig. 13-14) 

o D 
H (z)=I--

x Lx(z) 

Proof. From (13-113) it follows that 

N 
D = lx[Ol 

S,x(z) = Ss.r(z) = Sxx(z) - N = lx(z)lx(Z-I) - N 

Inserting into (13-109), we obtain 

s,;,(z) = Lx(z) - Nrx(z-l) 

(13-114~ 

(13-115~ 

We wish to find the causal part of the above, including the value of its inverse at n = O. 
Since the inverse z transform ofrx(l/z) is 0 for n > 0 and for n = Oit equals rx(oo). 
we conclude that 

H~(Z) = Lx(z) - Nrx(oo) 

Multiplying by r xed. we obtain (13-114) because rxCoo) = II MOl. 

(13-116; 

Filtering and prediction We shall now show that the estimate A,.[n + r] of sen +r] 
equals the pure predictor lo[n + r] of the estimate Io[n] ofs[n] (Fig. 13-14) 

., [n + r] = lo[n + r] = t{IoLn + r] I §o[n - k). k ~ O} (13-11T, 

Proof. From (13-110) and (13-115) it follows that 

S,.(z) = .{[Lx(z) - Nrx (C1)] 

But the inverse of z"rA (liz) is 0 for n ~ O. Hence st(z) is the causal part of z' L,.r(z). 
Inserting into (13-112), we obtain 

W,(t} = z' ( L,(<) - ~l.[kl'''' ) r,(.) = z' (1 - 9 :(~~k"') (13-118; 
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i.Jn] 

As weseefromFig.13~14, theinnovationsflterofio[n] equals Lx(.z)H~(z). Todetennine 
the pure predictor Ar(z) of §o[n + rl. it suffices. therefore. to multiply (13-37) by zr 
(we are predicting now the future) and to replace the function L(z) by Lx(z)H~(z). This 
yields 

A ( ) = 1 (1- E~:~lx[klCk - D) 
r Z Z Lx (z) _ D 

because the inverse of Lx{z) - D equals lx[n] - D8[n]. Comparing with (13-118), we 
conclude that 

H~(Z) = H~(z)Ar{z) 

The preceding discussion leads to the following important consequences of the 
white-noise assumption (13~113): 

1. The innovations ix[n] ofx[n] are proportional to the difference x[n] - §o[n]: 

x[n] - ~o[n] = Dix[n] 

Indeed. x[n] - ~[n] is the output of the filter 

N 
D = lxfO] 

Lx(z) - (Lx(z) - Dl = D 

(l3~119) 

with input ix[n] (Fig. 13-15a). Thus the process ix[n] can be realized simply by a 
feedback system (Fig. 13~15b) involving merely the filter H~ (z). 

2. The r-step filtering and prediction estimate ~o[n + r] can be obtained by cascading 
the pure filter H~(z) ofs[n] with the pure predictor Ar(z) of §o[n + rl. 

3. If the signal s[n] is an ARMA process, then its estimate ~[n] is also an ARMA 
process. 

Indeed, if Lx(z) = A(z)/ B(z) is rational, then [see (13-114)], the filter H~(z) 
is also rational. Furthennore, the denominator B(z) of Lx (z) is the same as the 
denominator of the forward component Lx (z) - D of the feedback realization of 
H~(z) shown in Fig. 13-15b. 

As we shall presently see, these results are central in the development of Kalman 
filters. 

L,,(z) - D 

(ll) 

FIGURE 13·15 

N 
D = 1..[0] 

D-1 

~ TSo[nl 
l.z(z) - D x[nl :: ___ ----l 

(b) 
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13-4 KALMAN FILTERS' 

In this section we extend the preceding results to nonstationary processes with causal 
data and we show that the results can be simplified if the noise is white and the signal is 
an ARMA process. The estimate At [n + r] of s[n + r) in terms of the data 

xLn] = 8ln] + lIln] 

takes the form 
II 

Ar[n + r] = E{sln + r] I x[k], O!: k !: n) = I:h~[n. k]x[k] (13-120) 
k=O 

Thus 1I,[n + r) is the output of a causal, time-varying system with input x[n]U[n]. and 
our problem is to find its delta response h~[n, k). 

As we know, 

sen + r] - ir[n + rJ.l xLm] 

This yields 
n 

R1x[n + r. m] = I:h~[n, kJRxx[k. m] 0 !: m !: n (13-121) 
1:=0 

Thus h~{n, kl must be such that its response to R.u[n. m] (the time variable is n) equals 
R.s.r [n + r, m] for every 0 :s m !: n. For a specific n, this yields n + 1 equations for the 
n + 1 unknowns h~[n, k]. 

To simplify the determination of h~ [n, k]. we shall express the desired estimates 
ir[n + r] in terms of the Kalman innovations [see (13-77)] 

n 

ix[n] = I: YxLn. k]x[k] (13-122) 
k=O 

oftheprocessx[n]U[nJ. where Yx[n, k] is the Kalman whitening filter. The process ix[n] 
is orthononnal and, if the data are linearly independent, then the processes x[n] and Ix [n] 
are linearly equivalent. This leads to the conclusion that Ar[n + r] can be expressed in 
tenns ofix[nJ and its past (Fig. 13-16) 

n 

A,[n + r] = I: hr)n. k]ix[k] 
k=O 

To detennine hi. en, k], we apply the orthogonality principle. Since 

this yields 

RI .. [m. n] = 8[m - n] 

n 

R'i..[n + r, m] = I: hUn, k]8[k - m] 
ka:O 

(13-123) 

7R. E. Kalman: "A New Approach to Unear Filtering and PIedic:tion Problems," ASME Transactions, 
voL 820, 1960. 
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rI -I ., 
- 1.Jn. k] "Y~[n, kJ r-:-- h~Jn.k] i.Jn) XCn] 1~[nJ e,[n + rJ 

., 
h~[n. k] 

e,[n + r) 
FIGURE 13-16 

Hence 

hi)n, m] = RSix[n + r, m] (13-124) 

This function can be expressed in terms of the cross-correlation R,x[m, n]. MultiplYing 
(13-122) by sCm]. we obtain 

n 

Rllx[m, nJ = LYk[n, k]R.u:[m, k] (13-125) 
k...o 

Thus, for a specific m I R'l~ [m I n J is the response of the Kalman whitening filter of x[n 1 to 
the function R,x [m, n], where n is the variable. To complete the specification oUr [n + r J, 
we cascade the filter hi)n, m] with the whitening filter yx[n, k] as in Fig. 13~16. 

ARMA Signals in White Noise 

In the numerical implementation of the above, we are faced with two problems: (1) the 
realization of the Kalman innovations process ix[n]: (2) the determination of the sum 
in (13-123). In general, these problems are complex, involving storage capacity and 
number of computations proportional to n. However, as we show next, under certain 
realistic assumptions the problem can be simplified drastically. 

ASSUMPTION 1. The noise is white and orthogonal to the signal: 

Rv,,[m,.n] = N,,8[m - nl (13~126) 

This leads to the following conclusions. 
Property 1 If lorn] is the estimate of s[n] in terms of xLn] and its past and D;' is 

the MS estimation error, then the difference x[n] - 8(,[n] is proporti0naJ to the Kalman 
innovations ix[n] of the data x[n]: 

x[n) - torn] = D"iAn] 

D; = E{lx(n] - to[n]12} 

(13-127a) 

(13-127b) 

Proof. The difference x[n)-Io[n] depends linearly on x[n] and its past Furthermore, 
the processes vIn] and sen] - lorn] are orthogonal to the past of x[n]. Hence 

x[n] - torn] = slnJ -Io[n] + lI[n] .lx[k] k < n 
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x[n) 

+ 
So[n) i,[n + r] 

h~[n] t---..-~ h,Vt. k] Io[n + r] 

FIGURE 13-17 

From this it follows that the process x[n] - Io[n] is white noise and 

x[n] - Io[n) ..1 ix[k] 0 =:: k =:: n - 1 

because the processes x[k] and iz[k] are linearly equivalent. And since x[n] - torn] 
depends linearly on ix[k] for 0 =:: k =:: n, (13-127a) results. Equation (13-127b) is a 
consequence of the requirement that E{t;[n]} = 1. 

Property 1 shows that the process ix[n) can be realized simply by the feedback 
system of FIg. 13-17. This eliminates the need for designing the whitening filter Yx [n. k]. 

Property 2 The estimate A, [n + r] of sIn + r] equals the pure predictor lorn + r] 
of the estimate§o[n] ofs[n] (Fig. 13-17) 

n 

Ar[n +r1 = ioLn + r] = L~r[n. k]lo[k] 
k=O 

provided that, for every n ;::: 0, 

EIIo[n]lx[nl} = E{x[n]ix[n]} - D" #: 0 

(13-128) 

(13-129) 

Proof. The process 8o[n] is linearly dependent on x[n] and its past. Condition (13-129) 
means that the component of io(n) in the Ix [n] direction is not O. Hence the processes 
8o[n] and x[n] are linearly equivalent. And since 

.~+~-~~+~..l.W O=::k=::n 

we conclude that 

io[n + r] - .[n + r] ..1 x[k] 0 =:: k =:: n 

Furthennore, 

sIn + r] - ioLn + r] ..1 x[k] 

because Io[n + r 1 is the estimate of s[n + r] in tenus of x[k] for 0 =:: k =:: n + r. Finally, 

. sIn + r] - io[n + ,] = (s[n + r] - .[n + r]) + (.[n + r] - io(n + r]) 
Hence 

sIn + r] - io[n + r] ..1 x[k] 0 =:: k =:: n 

and (13-128) results. 



616 STOCHASTIC PROCI!SSSS 

(a) 

io[n] 

Kalman filter 

(b) 

FIGURE 13·18 

This property shows that filtering and prediction can be reduced to a cascade of a 
pure filter and a pure predictor. 

ASSUMPTION 2. The signal sen] is a time·varying ARMA process (Fig. 13-18a) 

M-l 

s[nJ - a~s[n - IJ - ... - a1,s[n - MJ = L ~~[n - kJ 
k=O 

R,c[m.n] = Vn8[m - n] 

Property 3 The estimate 8o[n) is also an ARMA process 

M-l 

8o[n1- a\'8o[n - 1] - .•. - a~io[n - MJ = L cZix[n - k]. 
«-=0 .. 

(13-130) 

(13-131) 

where the coefficients a& are the same as in (13-130) and the coefficients cZ are M 
constants to be determined. -

Proof. We assume that (13-131) is true for all past estimates Io[n - k] and we shall prove 
thatifloln] is given by (13-131), then it is the estimateofs[n]. Itsuffices to show that if 
the constants cZ are suitably chosen; then -the resulting error satisfies the orthogonality 
pri~iple 

s[n] = sIn] - 80[n] J. x[r] (13-132) 
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Subtracting (13-131) from (13-130), we obtain 

M M-l 

ern] = La;e[n - k] + L (bk~{n - k] - ci:ix[n - kJ) (13-133) 
k=l k=<J 

But 

for r < nl 

and ern - k] J.. x[r] for r ~ n - k (induction hypothesis). Hence (13-132) is true for 
r ~ n - M. It suffices, therefore, to select the M constants dr: such that 

E{e[n]x[r]} = 0 n-M+1~r:Sn (13-134) 

We have thus expressed 10 [n] in terms ofi t [n J. To complete the specification of the 
filter. we use (13-127 a). This yields the feedback system of Fig. 13-18b involving M + 1 
unknown parameters: the constant D" and the M coefficients cZ. These parameters can 
be determined from (13-127b) and the M equations in (13-134). 

The recursion equation (13-131) can be written as a system of M first-order equa­
tions (state equations) or, equivalently, as a first-order vector equation (see Sec. 11-2). 
The unknowns are then the scalar DII and the coefficients cZ. To simplify the analysis, 
we shall carry out the determination of the unknown parameters for the first-order scalar 
case only. The results hold also for the vector case mutatis mutandis. 

FIRST-ORDER. If 

sen] - Ans[n - 1] = ~[n] (13-135) 

then (13-131) yields 

lorn] - AnJo(n - Ij = K.,(xLn] - JoLn]) (13-136) 

where KII = c8/ Dn. This is a first-order system as in Fig. 13-19a. To complete its spec­
ification, we must find the constant K". We maintain that 

(13-137) 

In (13-137), Nn is the average intensity of "[n], which we assume known. 

io[n) 

io(n) 

(4) (b) 

FIGURE 13-19 
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The MS error Pn can be determined recursively 

P" A~Pn-l + v,. 
-:-:---::- = 
NII - P" Nn 

Proof. Multiplying the data x[n] = sen] + v[nl by the error 

ern] = s[n] - §o[n] = x[n] - §o[n] - v[n] 

and using the orthogonality condition (13-132), we obtain 

E{elnlx[n]} = 0 = P" + E{e[n]v[n]} 

From (13-135) and (13-136) it follows that 

Hence 

ern] = Ane[n - 1] + ~[n] - KII(e[n] + v(n]) 

(1 + Kn)e[n] = Alle[n - 1] + ~(n] - Knv[n) 

and (13-137) results. 

(13-138) 

(13-139) 

To prove (13-138), we multiply each side of (13-139) by each side of the identity 
s[n] = A/ls[n - 1] + ~[nJ. This yields 

(1 + K/I)P" = A~P/I-l + Vn 

Since 1 + KN = N"/(N,, - P/I), the above equation yields (13-138). 

Note Using (13-135), we can readily show that 

Io[n] - A,,§o(n - 1] = K,,(x[nj - A"Io[n- IJ) (13-140) 

where 

Kn = P" = A;P,,_I + V" (13.141) 
N" A~P"-J + V" +N. 

The corresponding system is shown in Fig. 13·19b. In the same diagram, we also show the realization of the 
one-step predictor 

81 (n + 1] = lo[n + I] = A"Io[n) 

ofs[n+ 11. This follows readily from (13·128) because the process§o[n] is AR; hence its pure predictor equals 
A"io(nj. " 

The iteration The estimate §o[n] of s[n) is determined recursively: If K /I-I and 
§o[n - 1] are known, then K/I is determined from (13-141) and §o[n] from (13-140). To 
start the iteration, we must specify the initial conditions of (13-135). We shall assume 
that 

s[O] = ~[O] 
This leads to the initial estimate 

§orO] = K ox[O) 
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from which it follows that 

- E{s[O)x[O)} E{~2(0)} 
Ko = E{x2[0]} = E{~2[0]} + E{p2(0J} 

Hence 

- Vo no __ VoNo Ko=--- ., 
Vo+No Vo+No 

(13-142) 

LiMarizatiQn Equation (13-138) and its equivalent (13-141) are nonlinear. How­
ever, each can be replaced by two linear equations. Indeed, if F" and G" are two sequences 
such that 

then 

Fn = A!Fn-l + VIIG,,_l 

NnGn = A!Fn_1 + (V,. + N,,)Gn_1 

FII 
P,,=­

Gil 

Fo = VoNo 
Go = Vo+No 

(13-143) 

~ We shall detemline the noncausal, the causal. and the Kalman estimate of a process 
sen] in terms of the data x[k] = s[k] + l1[k]. and the corresponding MS error P. We 
assume that the process sen] satisfies the equation 

sen] - 0.8sLn - 1] = ~[n] 
and that 

Rn·[m] = 0.36&[m] R"l/[m] = 6[n - m] 

This is a special case of the process considered in Example 13-2 with 

Hence 

a=0.8 N= 1 No = 0.36 b = 0.5 

0.36 
56S (z) = (1 - 0.8z- I)(I- 0.8z) R16 [m] = 0.81ml 

/f'LZ - 0.5 
L% (z) = '" 1.6 z _ 0.8 5xz(z) = L%(z)Lz(z-l) 

(a) Smoothing: x{k] is available for all k.ln this case the solution is obtained from 
Example 13-2 with b = 0.5 and c = 0.375: .. 

hen] = 0.3 x 0.51111 P=0.3 

(b) Causal filter: x[k] is available for k ~ n. The unknown filter is detemlined 
from (13-114) where now Mal =.J'f.6: 

HO _ _ z - 0.8 0.375z 
%(z) - 1 1.6(z _ 0.5) = z - 0.5 h[n] = 0.375 x O.SnU[n] 

This shows that the estimate 8[n] of s[n] satisfies the recursion equation 

§[n] - 0.5.[n - 1] = 0.375x[n] n ~ 0 
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EX,\!\IPLE 13-11 

The resulting MS error equals 

00 

P = Rss[O] - 2: Rssrk]h[k] = 0.375 
k=O 

(c) Kalmanfilter: x[k] is available for 0 S k S n. Our process is a special case of 
(13-135) with 

An = O.S 

Inserting into (13-143), we obtain 

Fn = 0.64Fn_l + 0.36Gn_l 
Gn = 0.64Fn_1 + 1.36Gn_1 

Fo =0.36 

Go = 1.36 

This is a system of linear recursion equations and can be readily solved with z transforms. 
Since 

K _ Pn _ Fn 
n - N - Gn 

and N = 1, the solution yields 

In partiCUlar, 

K _ ~ _ O.48z~ - 0.12z; 
n - n - 1.28z~ + O.OSzi 

n= 

Zl = 1.6 
42 = 0.4 

4 

0.375 

Thus, although the number of the available data increases as n increases, the MS error 
Pn also increases. The reason is that sen] is a nonstationary process with initial second 
moment Vo = 0.36 because s[O] = tIO], and. as n increases, E{s2[n]} approaches the 
value 1. 

We note, finally, that 

and (13-140) yields 

- 0.48 
KII = PII ---+ - = 0.375 

n-o-oo 1.28 

§o[n] - 0.8§o[n - 1] = 0.375x[n] - 0.3§o[n - 1] 

This shows that. if the process s[n] is WSS, then its Kalman filter approaches the causal 
Wiener filter as n -+ 00. This is the case for any Po because the limit of Fn G n as n -+ 00 

equals 0.375 regardless of the initial conditions. ~ 

~ We wish to estimate the random variable s in terms of the sum 

x[n] = s + v[n] where E{sv[n1} = 0 R",,[m, n] = N8[m - n] 

The estimate §o[n] in terms of the data x[n] can be obtained as the output of a Kalman 
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filter if we consider the random variable s as a stochastic proc{:Ss satisfying trivially 
(13-135) 

s[n] = s[n - 1] + s[n] 

{s n=O 
sLn] = 0 n > 0 

s[-l] = 0 

{ E{S7} = M n = 0 
VII = 0 ·n > 0 

In this case, An = 1, Nil = N, and (13-143) yields 

Fa = Fn-l 

Solving. we obtain 

NG" = Fn-I + NGn_1 Fo=MN Go=M+N 

Fn=MN Gn. = M +N+Mn 

Hence 
N+Mn M 

§o[n] = M + N + Mn §o[n - 1] + M + N + Mn x[n] 

Continuous~ Time Processes 

We wish, finally. to determine the estimate 

§o(t) = E{s(t) I x(1:). 0 !: 1: !: I} 

of a continuous-time process s(t) in terms of the data 

x(t) = s(t) + »(1) 

(13-144) 

(13-145) 

The solution of this problem parallels the discrete-time solution if recursion equations 
are replaced by differential equations and sums by integrals. It might be instructive, 
however, to rederive the principal results using a different approach. 

To avoid repetition, we start directly with the white-noise assumption 

- R"v(t. 1') = N(r)8(t - r) 

and we show that the process 

N(r) > 0 

w(t) = x(t) - 8o(t) 

is white noise with autocorrelation 

Proof. As we know 

e(t) = set) - 8o(t) .L x(-r) pet) 1. x(1') 

for 1: < t. Furthermore. w(r) depends linearly on x(r) and its past. Hence 

wet) = e(t) + 11(1) .L w(r) r < t 

(13-146) 

(13-147) 

(13-148) 

To complete the proof of (13-147), we shall assume that So(t) is continuous from the left 

§Ocr) = 8o(t) 
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This is not true at the origin if s(O) ¥= O. However, for sufficiently large t, the effect of 
the initial condition can be neglected. From this it follows that 

pet) = E{e2(t)} < 00 

and since e(t) 1. ,,( t') for t' > t, we conclude that 

RwlII(t. t') = R"III(t. 1") = RIIII(l, t') = N(r)8(t - t') 

Using a limit argument, we can show that, as in the discrete-time case, the nor­
malized process w(t)/../N(t) is the Kalman innovations ofx(t). The details, however. 
will be omitted. This leads to the conclusion that §OCt) can be expressed in terms of Wet) 
[see also (13-123)] 

§OCt) = 10' hw(t, a)w(a) da (13-149) 

Sinces(t) - §o(e) 1. wet') for t' ~ t, we conclude from the above and (13-147) that 

R,III(t, 1') = l' hw(t, a)N(a)8(1' - a)da = hw(t,1:)N(1') 

and (13-149) yields 

§o(t) = l' N~a)Rsw(t,a)W(a)da 
We note that [see (13-148) and (13-146)] 

Rsw(t, t) = E{s(t)[e(t) + vet)]} = pet) 

(13-150) 

WJDE--SENSE MARKOV PROCESSES. Using the material just discussed, we shall 
show that, if the signal set) is WS Markov, that is, if it satisfies a differential equation 
driven by white noise. then its estimate ~(t) satisfies a similar equation. For simplicity. 
we consider the first-order case 

i(t) + A(t)s(t) = ~(t) Ree(t. r) = V(1:)8(t - 1") 

The Kalman-Bucy equations.s We maintain that 

~(t) + A(t)§o(t) = K(t)[x(t) - §OCt)] 

where 

K(t) = pet) 
N(t) 

Furthennore, theMS etTOr pet) satisfies the Riccati equation 

P/(t) + 2A(t)P(t) = Vet) _ _ 1_p2(t) 
N(t) 

" 

BR. E. Kalman and R. C. Buey: "New Results in Linear Filtering and Prediction Theory," ASME 
Transactions. voL 83D. 1961. 

(13-151) 

(13-152) 

(13-153) 

(13-154) 
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Proof.; Multiplying the differential equativn in'(13-151) by w(r.), we Obtain 
a at R,w(t. 1') + A(t)R.rw(t. 1') = 0 t' < t (13-IS5) 

We next equate the derivatives of both sides of (13-1S0) 

1 f' 1 a 
eo(t) = N(t) RIlIII{t. t)w{t) + 10 N(a) at RslII(t, a) da 

Fmally, we multiply (13-1S0) by A{t) and add with the last equation. This yields (13-152) 
because, as we see from (13-155), the sum of the two integrals is O. 

To prove (13-154), we use the following version of (9-99): If z(t) is a process with 
E(Z2(t») = I (t) and such that 

z(t) + B(t)z(t) = ~(t) Rf~(t. t') = Q(t')8(t - 1') (13-156) 

then (see Prob. 9·28b) 

]' (t) + 2B(t)] (t) = Q(t) (13-157) 

Returning to (13-152). we observe, subtracting from (13-15I), that the estimation 
error e(l) satisfies the equation 

a'(t) + [A(t) + K(t)]8{1) = t(t) - K{t).,(t) 

In the above, the right side ~(t) = t(t) - K(t).,(t) is white noise as in (13-156) with 

Q(t') = V(t') + K2(t')N(t') 

Hence the function pet) = E{a2(t}} satisfies (13-157), where B(t) = A(t)+K(t).1bis 
yields 

PI(t) + 2[A(t) + K(t»)P(t) = Vet) + K2(t)N(t) 

and (13-154) results. 

Unearization We shall now show that the nonlinear equation (13-154) is equiv­
alent to two linear equations. For this purpose, we introduce the functions F(t) and G(t) 
such that 

Clearly, 

and (13·154) yields 

P( ) = F(t) 
I G(t) 

F'(t) + A(t)F(t) - V(t)G(t) = pet) [G'(t) - A(t)G(t) - ~~:~] 
This is satisfied if 

F'(t) = -A(t)F(t) + V(I)G(I) 

G'(t) = ~~:~ + A(t)G(I) 

(13-158) 

(13-159) 
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Th solve this system, we must specify F(O) and G(O). Setting arbitrarily G(O) == 1 
we obtain F(O) = P(O), where ' 

P(O) = E{S2(O)} 

is the initial value of the MS error P(t). The determination of the Kalman filter thus 
depends on the second moment of s(O). 

.. We shall determine the noncausal, the causal, and the Kalman estimate of a process 
set) in tenns of the data x(t) = set) + lI(t), and the corresponding MS error P. We 
assmne that set) satisfies the equation 

s'(t) + 2s(t) = ~(t) 
and that 

This is a special case of the process considered in Example 13-7 with 

a = 2 N = 1 No = 12 P = 4 

Hence 
12 

S.rs(w) = 4 + fJil Rss{.) = 3e-21rl 

16+w:! s+4 
Sxx(w) = 4 2 Lx(S) = --2 +w $+ 

(a) Smoothing: x{~) is available for all ~. In this case, (13-16) yields 

H(w) = 12 h(t) = ~e-4Irl 
16+w2 2 

The MS error is obtained from (13-15) 

P = 3 - ~ 100 e-4Ifle-2Irl d. = I.S 
2 -00 

(b) Causal filter: xes) is available for ~ ::; t. The unknown filter is specified in 
Example 13-8 with 

a=2 N= 12 

Thus 
2 

Hx(s) = --4 hx(t) = 2e-41U(t) P = 2 S+ 
This shows that the estimate set) of set) satisfies the differential equation .. 

s'(t) + 48(t) = 2x(t) 

(c) Kalman filter: x(~) is available for 0 ::; ~ ::; t. Our problem is a special case of 
(13-151) with 

A(t) =2 Vet) = 12 N(t) = 1 

Hence [see (13-159)] 

FI(t) = -:-2F(t) + 12G(t) 

TO solve this system, we must know P(O). 

G'(t) = F(t) + 2G(t) 
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Case 1 If S(O) = 0, then P(O) = O. In tliis case, F(O) = 0.0(0) = 1. Inserting 
the solution of the last system into (B-153): we obtain 

6e41 - 6e--41 
K(t) = pet) = 3 4t --41 ---+ 2 

e + e ' ..... 00 

Case 2 We now assume that set) is the stationary solution of the differential 
equation specifying set). In this case. E{S2(O)} = 3; hence P(O) = P(O) = 3 and 

18e41 + 6e-41 
K(t) = pet) = 9 41 -41 ---:-+- 2 e - e 1-00 

Thus, in both cases, the solution 8o(t) of the Kalman-Buey equation (13-152) tends to 
the solution of the causal Wiener filter 

§O(t) +- 2Ao(t) = 2x(t) - 2§o(t) 

as t '"'"* 00. ~ 

~ We wish to estimate the random variable s in terms of the sum 

x(t) = s + 11(t) E{sv(t)} = 0 RIIII('r) = N8(r) 

This is a special case of (13-151) if 

A(t) = 0 s(t) = s ((t) = 0 N(t) = N 

In this case, V (t) = 0, P(O) = E{r} = M, and (13-159) yields 

P/(t) = 0 G'(t) = F(t) F(O) = M G(O) = 1 
N 

Hence 

F(t) = M 
Mt 

G(t) = 1 +­
N 

Inserting into (13-152), we obtain 

I M M 
§o(t) + N + Mt 8o(t) = N + Mtx(t) 

PROBLEMS 

13-1 If R,C.,;) = Ie-1rVT and 

Els(t - T/2) Is(t).S(1 - T)} = as(t) +bS(1 - T) ~ 

find the constants a and b and the MS error. 
13-2 Show that if t = as(O) + bs(T) is the MS estimate of 

i T K R.(-r)d-r 
Z = 0 sell dt then a = b = 

~(O)+ R,(T) 

13·3 Show that ifx(t) = set) + vet). R,.tr) = 0 and 

E{s'(t) I X(I). X(t - r)} = aX(I) + bx(t - -r) 

then for small 1'. a = -b ~ R:'(O)/r R: .. (O). 



13-4 Show that, if S",(w) = 0 for Iwl > 0' = 1t/ T. then the Unear MS estimate ofx(t) in tenns 
of its samples x(nT) equals 

",. ECCI sin(O't - nT) 
.c.{x(t) I x(nT). n = -00 •...• oo} = x(nT) 

at -n7f 

and the MS eaor equals O. 
13-5 Show that if 

t{s(t + A) I set). set - T)} = t{s(t + A) I set)} 

then R, (,£,) = Ie-'rITl. 
13·6 A random sequence x" is called a martingale if E{x" = O} and 

E{x,,1 x,,-It·.·. Xl} = x,,-I 

Show that if the random variables y" are independent. then their sum x.. = YI + ... + 1. 
is a martingale. 

13-7 A random sequence x" is called wide-sense martingale if 

t{x,,1 Xn-It ., .• XI} = x,,-I 

(a) Show that a sequence x.. is WS martingale ifit can be written as a sum x" = YI + ... +1 •• 
whete the random variables y" are orthogonal. 
(b) Show that if the sequence x" is WS martingale. then 

E{~} ~ E{~_I} ~ ... ~ E{~} 
Bint: XII = x" - x,,-1 + x,,-I and x. - x,,-I .L x,,-I. 

13-8 Find the noncausal estimators BI(w) and B2(W) respectively of a process sell and its 
derivative s' (t) in tenDs of the data x(t) = set) + !J(l), where 

sin2 aT 
R.(T) = A--2 - Ru(T) = N8('r) R,v(T) = 0 

T 

13-9 We denote by B,(w) and B,(w), respectively. the noncausal estimatoIs of the input set) 
and the output yet) of the system T(w) in tenDs of the data x(/) (Fig. P13-9), Show tbat 
Hy(O» = H,(o»T(w). 

:00 I H,(o>ll t-- .... ~-t)--:_7t_Q)_) :-j(-t)~· 
FIGURE Pllo9 

13-10 Show that if Sew) = 1/(1 +(4), then the predictorofs(t) in terms of its entire past equals 
8(t + A) = bos(t) + bls'(I), where 

13-11 (a) Find a function h(t) satisfying the integral equation (Wiener-Hopf) 

100 
h(tt)R(T - ttl dtt = R(T + In 2) 
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(b) rhe function H(s) is rational with poles iiI the left-hand plane. The function Yes) is 
analytic 10 the left-hand pIane, Find H(s) and yes) if 

[H(s) _ 2$] 49 - 25s2 = yes) . 
9 - lOs2 +s· 

(c) Discuss the relationship between (a) and (b). 

13-12 (a) Find a sequence h. satisfying the system 

co 

LkkRIII-' = RIII+1 

k=O 

m? 0 
1 1 

Rm =-+-
2'" 3m 

(b) The function H(z) is rational with poles in the unit circle. The function Y(z) is rational 
with poles outside the unit circle. Find H(z) and Y(z) if 

70 - 25(z + Z-I) 
[H(z) - z] 6(z + 2:-1)2 _ 35(z + 2:-1) + 50 = Y(z) 

(C) Discuss the relationship between (0) and (b). 
13-13 Show that if H(z) is a predictor of a process sen] and H,,(z) is an all-pass function such 

that IH,,(ei"')1 = 1, then the function 1-(1- H(z»H,,(z) is also a predictorwitb the same 
MS eITOr P. 

13-14 We have shown that the one-step predictor §I en] of an AR process of order lit in tenns of 
its entire past equals [see (13-35)] 

m 

t[s[n] I s[n - k), k ? I} = - L iZks[n - k] 
k-t 

Show that its two-step predictor Mn) is given by 

.. 
t[s[n) I sen - k), k ? 2} = -aiSI [n - 1] - L iZks[n - k] 

k-2 

13-15 Using (13-70) show that 

• LlN+1 • log AN 1 111 
lim log ~ = lim -N = ,,_ log S.(w) dw 

N ... oo ~N N .. oo """ -IC 

Hint: 
N 

1 L Ant I 1 1 . AN+l - log -- = -log AN+I - -log AI -+ hm log--
N A" N N N ... oo AN 

" .. 1 

13-16 Find the predictor 

§N[n] = t(s[nJ I s[n - k], 1 ~ k ~ N]} 

of a process s[n] and realize the error filter EN (Z) as an FIR filter (Fig. 13-8) and as a lattice 
filter (Fig. 12-15) for N = 1, 2. and 3 if 

[ ] _ {5(3 -1m!) Iml < 3 
R. m - 0 Iml ? 3 

13-~7 The lattice filter ofa process s[n] is shown in Fig. P13-17 for N = 3. Fmd the corresponding 
FIR filter for N = 1,2, and 3 and the values of R[m] for Iml ~ 3 if R[O] = 5. 
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FIGURE Pl3-17 

13·18 We wish to find the estimate i(t) of the random telegraph signal set) in tenns of the sum 
x(t} = set) + v(t) and its past, where 

R,(r) = e-V-Itl R.(r) = N8(r) R,.(-r) = 0 

Show that 

i(t) = (e - 2.>..) 1"" x(t - a)e-ca da e =2.>....)1 + 1 
AN 

13-19 Show that if iN[n] is the forward prediction error and iN[n] is the backward prediction 
error of a process s[n], then (a) iN[n] .1. iN+m[n + m], (b) iN[II] .1. BN+m[n - ml 
(e) iN[n] .1. BN+m[n - N - m]. 

13-20 Ifx(l) =5(1) + v(t) and 

R,,(r) = 58(r) R,.(r) = 0 

find the following MS estimates and the corresponding MS errors: (a) the noncausal filter 
of set); (b) the causal filter of S(I); (e) the estimate of set + 2) in tenns of set) and its past; 
(d) the estimate of set + 2) in terms of x(t) and its past. 

13-21 Ifx[n] = 5[n] + 17[n]: 

R~ em] = 5 x 0.8lml 

Find the following MS estimates and the corresponding MS errors: (a) the noncausal filter 
ofs[n]; (b) the causal filterofs[n); (e) the estimate ofs[n + 1] in terms ofs[n] and its past; 
(d) the estimate ofs[n + 1] in terms ofx[n] and its past. 

13·22 Find the Kalman estimate 

io[n] = E{s[nJ Is[k] + v[k], 0 :s k :s n} 

of sen] and the MS error P" = E(s[n] - §o[n])2} if 

~[mJ = 5 X o.slml R,.[m) = 58[m] R •• [m] = 0 

13·23 Find the Kalman estimate 

§o(t) = E{s(t) I s(r) + 11(1'),0 :s .. :s t} 

of set) and the MS error pet) = E{[s(t) - §o{t)]2} if 

R,(r) = 5e-0.2Il'1 R,,{r) = ~8(-r) R,.(r) = 0 

13·24 Show that the sequences 4,y[mJ and CiN[m] of the inverse lattice of Fig. 13-Ub satisfy 
(13-85) and (13-86) (see Note 1, page 595), 



CHAPTER 

14 
ENTROPY 

14-1 INTRODUCTION 

As we have noted in Chap. 1, the probability P(A) of an event A can be interpreted as a 
measure of our uncertainty about the occurrence or nonoccurrence of A in a single.perfor­
mance of the underlying experiment S.1f P(A) ~ 0.999, then we are almost certain that 
A will occur; if P(A) = 0.1, then we are reasonably certain that A will not occur; our un­
certainty is maximum if P (A) = 0.5. In this chapter, we consider the problem of assign­
ing a measure of uncertainty to the occurrence or nonoccurrence not of a single event of 
S, but of any event Ai of a partition U of S where, as we recall, a partition is a collection of 
mutually exclusive events whose union equals S (Pig. 14-1). The measure of uncertainty 
about U will be denoted by H(U) and will be called the entropy of the partitioning U. 

Historically, the functional H (U) was derived from a number of postulates based 
on our heuristic understanding of uncertainty. The following is a typical set of such 
postulates! : 

1. H(U) is a continuous function of Pi = P(Aj }. 

2. If PI = ... = PH = 1/ N, then H(U) is an increasing function of N. 
3. If a new partition B is formed by subdividing one of the sets of U, then 

H(B) ~ H(U). ~ 

It can be shown that the sum2 

H(U) = -Pl1ogPl - ... - PN logpN (14-1) 

Ie. E. Shannon and W. Weaver: The Mathemlllical Theory of CommlUlication. University of Illinois Press. 
1949. 
2We shall use as logarithmic base either the number 2 or the number e. In the first case, the unit of entropy is 
the bit. 

629 
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A 

FIGURE 14-1 

satisfies these postulates and it is unique within a constant factor. The proof of this 
assertion is not difficult but we choose not to reproduce it. We propose, instead, to 
introduce (14-1) as the definition of entropy and to develop axiomatically all its properties 
within the framework of probability. It is true that the introduction of entropy in terms of 
postulates establishes a link between the sum in (14-1) and our heuristic understanding 
of uncertainty. However, for our purposes, this is only incidental. In the last analysis. the 
justification of the concept must ultimately rely on the usefulness of the resulting theory. 

The applications of entropy can be divided into two categories. The first deals with 
problems involving the determination of unknown distributions (Sec. 144). The available 
information is in the form of known expected values or other statistical functionals. and 
the solution is based on the principle of maximum entropy: We determine the unknown 
distributions so as to maximize the entropy H(U) of some partition U subject to the 
given constraints (statistical mechanics). In the second category (coding theory), we are 
given RCU) (source entropy) and we wish to construct various random variables (code 
lengths) so as to minimize their expected values (Sec. 14-5). The solution involves the 
construction of optimum mappings (codes) of the random variables under consideration, 
into the given probability space. 

Uncertainty and information In the heuristic interpretation of entropy, the num­
ber H (U) is a measure of our uncertainty about the events Ai of the partition U prior to 
the performance of the underlying experiment. If the experiment is performed and the 
results concerning Ai become known, the uncertainty is removed. We can thus say that 
the experiment provides iIiformation about the events A, equ$ll to the entropy of their par­
tition. Thus uncertainty equals information and both are measured by the sum in (14-1). 

~ (a) We shall determine the entropy of the partition U = [even, odd] in the fair-me 
experiment. Clearly. P{even} = P{odd) = 1/2. Hence " 

H(U) = -410g4 - 410g4 = log 2 

(b) In the same experiment, V is the partition consisting of the elementary events 
{.fi}. In this case, P{Ji} = 1/6; hence 

H (V) = - t log ~ - ... - ~ log i = log 6 

If the die is rolled and we are told which face showed, then we gain information 
abo~t the partition V equallO its entropy log 6. If we are told merely that "even" or "odd" 
showed, then we gain information about the partition U equal to its entropy log 2. In this 
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h(P) = ~p logp - (1 - p) log (J - p) 

P FIGURE 14·2 

case, the information gained about the partition V equals again log 2. As we shall see, 
the difference log 6 - log 2 = log 3 is the uncertainty about V assuming U (conditional 
entropy). ~ 

~ We consider now the coin experiment where P{h} = p. In this case, the entropy of 
V equals 

H(V) = -p log P - (1 - p)log(-p) == h(p) (14-2) 

The function h(p) is shown in Fig. 14-2 for 0 ::: p ::: 1. This function is symmetrical, 
convex, even about the point p = 0.5, and it reaches its maximum at that point. Further­
more, h(O) = h(l) = O. ~ 

Historical note The term entropy as a scientific concept was first used in thermodynamics 
(Clausius 1850). Its probabilistic interpretation in the context of statistical mechanics is at­
tributed to Boltzmann (1877). However. the explicit relationship between entropy and prob­
ability was recorded several years later (planck, 1906). Shannon. in his celebrated paper 
(1948). used the concept to give an economical description of the properties of long se­
quences of symbols. and applied the results to a number of basic problems in coding theory 
and data transmission. His remarkable contributions form the basis of modem infonnation 
theory. Jaynes3 (1957) reexamined the method of maximum entropy and applied it to a vari­
ety of problems involving the determination of unknown parameters from incomplete data. 

Maximum entropy and classical definition. An important application of entropy is 
the detennination of the probabilities Pi of the events of a partition U. subject to various 
constraints, with the method of maximum entropy (MEM). The method states that the 
unknown Pi'S must be so chosen as to maximize the entropy of U subject to the given 
constraints. This topic is considered in Sec. 14-4. In the following we introduce the 

3E. T. Jaynes: PhYSical Review, vols. 106-107, 1957. 
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EXAi\IPLE 14-3 

main idea and we show the equivalence between the MEM and the classical definition 
of probability (principle of insufficient reason), using as illustration the die experiment. 

~ (a) We wish to determine the probabilities Pi of the six faces of a die, having access 
to no prior information. The MEM states that the Pi'S must be such as to maximize the 
sum 

H(V) = -PI log PI - ... - P6 10gp6 

Since PI + ... + P6 = 1. this yields 

PI = ... = P6 = i 
in agreement with the classical definition. 

(b) Suppose now that we are given the following information: A player places a 
bet of one dollar on "odd" and he wins, on the average. 20 cents per game. We wish again 
to determine the PI'S using the MEM; however. now we must satisfy the constraints 

PI + P3 + Ps = 0.6 P2 + P4 + P6 = 0.4 

This is a consequence of the available information because an average gain of 20 cents 
means that P{odd} - P{even} = 0.2. Maximizing H(V) subject to the earlier con­
straints, we obtain 

PI = P3 = Ps = 0.2 P2 = P4 = P6 = 0.133 ... 

This agrees again with the classical definition if we apply the principle of insufficient 
reason to the outcomes of the events {odd} and {even} separately. ..... 

Although conceptually the ME principle is equivalent to the principle of insufficient 
reason. operationally the MEM simplifies the analysis drastically when. as is the case in 
most applications, the constraints are phrased in terms of probabilities in the space sn 
of repeated trials. In such cases the equivalence still holds. although it is less obvious. 
but the reasoning is involved and rather forced if we derive the unknown probabilities 
starting from the classical definition. 

The MBM is thus a valuable tool in the solution of applied problems. It is used. 
in fact, even in deterministic problems involving the estimation of unknown parameters 
from insufficient data. The ME principle is then accepted as a smoothness criterion. We 
should emphasize, however. that as in the case of the classical definition, the conclusions 
drawn from the ME principle must be accepted with skepticism particularly when they 
involve elaborate constraints. This is evident even in the interpretation of the results in 
Example 14-3: In the absence of prior constraints. we conclude that all Pi'S must be 
equal. This conclusion we accept readily because it is not in con1tict with our experience 
concerning dice. The second conclusion, however, that 1'2 = P4 = P6 = 0.133 ... and 
PI = P3 = Ps = 0.2 is not as convincing. we would think, even though we have no basis 
for any other conclusion. In our experience, no crooked dice exhibit such symmetries. 

One might argue that $is apparent conflict between the MEM and our exp~ence 
is due to the fact that we did not make total use of our prior knowledge. Had we included 
among the constraints everything we know about dice. there would be no confiict. This 
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might be tlu.e; however. it is not always clea'r how such constrain~ can be phrased 
analytically and. even if they can, how complex the required computations might be. 

Typical Sequences and Relative Frequency 

Suppose that U = [AI, ... , AN] is an N-element partition of an experiment S. In the 
space sn of repeated trials, the elements Ai of U fonn N n sequences of the form 

{Ai occurs ni times in a specific order} 

and the probability of each sequence equals 

(14-3) 

(14-4) 

where Pi = P(Ai). The numbers ni are arbitrary subject only to the constraintnl + ... + 
nN = n. However. according to the relative frequency interpretation of probability. if n 
is "sufficiently large," then "almost certainly" 

nj ~ npi i = 1, ... , N (14-5) 

This is, of course, only a heuristic statement; hence the resulting consequences 
must be interpreted accordingly. However. as we know, the approximation (14-5) can 
be given a precise interpretation in the fonn of the law of large numbers. Following a 
similar approach, we prove at the end of the section the main consequence [Eq. (14-10)] 
of (14-5) in the context of entropy. 

Guided by (14-5), we shall separate the Nn sequences of the fonn (14-3) into two 
groups: (a) typical and (b) rare. We shall say that a sequence is typical, if nj ~npi. All 
other sequences will be called rare. A typical sequence will be identified with the letter t: 

t = {Ai occurs nj ~ npi times in a specific order} (14-6) 

From the definition it follows that to each set of numbers n I , ... , n N "close" to the 
numbers npl, ... , np N there corresponds one typical sequence. The union of all typical 
sequences will be denoted by T. Thus T is the totality of all sequences of the fonn (14-3) 
where nj ~ np. As we noted, it is almost certain that for large n, each observed sequence 
is typical. This leads to the conclusion that 

peT) ~ 1 (14-7) 

The complement T of T is the union of all rare sequences and its probability is negligible 
for large n: 

peT) ~o 

Since nj ~ npi for all typical sequences, (14-4) yields 

pet) = p~1 ... p';t ~ enpdogpl+ . +npNiogpN 

Hence the probability of each typical sequence equals 

pet) = e-nH(U) 

(14-8) 

(14-9) 

where B(U) is the entropy of the partition U. Denoting by nT the number of typical 
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sequences, we conclude from (14-7) and (14-9) that 

nT = P(T) ::::: enH(U) 

P(t) (14-10) 

We have thus expressed the number of typical sequences in terms of the entropy 
of U. Ifall the events of U are equally likely, then H(U) = 10gN and nT = Nn. In all 
other cases, H(U) < log N [see (14-38)]. Hence 

for n» 1 (14-11) 

This leads to the important conclusion that, if n is sufficiently large. then most sequences 
are rare even though "almost certainly" none will occur. 

Notes· 1. We should point out that each typical sequence is not more likely than each rare sequence. In f;: 
the sequence with the largest probability is the rare sequence (Am occurs n timesJ, where Am is the eVent 
with the largest probability. As we presently show, the distinction between typical and rare sequences is best 
expressed in terms of the events 

{Ai occurs ni times in any order} 

As we know [see (4-102)J. the probability of these events equals 

n! k. kN 
k)! ... kN!PI ",PN 

and for large n, it takes significant values only in a small vicinity of the point (k, = nl PI •... ,kN = nN PlY). 
This follows by repeating the argument leading to (3-17) or, from the DeMoivre-Laplace approximation (3-39). 

2. On page I of Chap. I we noted that the theory of probability applied to averages of mass phenomena 
leads to useful results only if the ratio kill approaches a constant as n increases and this constant is the same 
for any subsequence. This apparently mild requirement results in severe restrictions on the properties of 
the resulting sequences. It leads to the conclusion that of all possible Nn sequences fomled with the N 
elements of a partition U, only the e',H(U) typical sequences are likely to occur; all other sequences are nearly 
impossible. 

1)pical Sequences and the Law of Large Numbers 

We show next that the preceding results can be reestablished rigorously as consequences 
of the law of large numbers. For simplicity. we consider only two-element partitions and, 
to be concrete, we assume that A and A are the events "heads" and "tails" respectively 
in the coin experiment. In the space Sri, the probability of the elementary event ({k I = 
{k heads in a specific order} equals 

P{~k} = pkq'l-k 

and the probability of the event" 

Ak = {k heads in any order} 

equals 

(14-12) 

4The event Ak is not, of course, an element of the partition U = [A, 1J 
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OL---~--~----==~~~~·k 
(b) 

O~--~~~--~n~------~~~k 

2 

(c) FIGURE 14-3 

In Fig. 14-3 we plot the probability P(Al). tbegeometric progressionqll(p/q)k, and the 
binomial coefficients 

(14-13) 

as functions of k. 

a·TYPICAL SEQUENCES. Given a number a between 0 and I, we fonn the number s 
such that 

a = 2G(sJn/pq) - 1 (14·14) 

where G(x) is the normal distribution. We shaI1 say that the sequence ~l is a-typical if 
k is such that 

where kJ = n(p - s) k2 = n(p + 8) (14-15) .. 
The union of all a-typical sequences is a set T consisting of 

(14-16) 

elements and its probability equals a [see (4-92) and (4-96)] 

P(T)= ~ (;)N-' "'1£+~) -I =0 
(14-17) 



636 STOCHASnC PROCIlSSI!S 

FUNDAMENTAL THEOREM. For any a < 1. the number nr of a-typical sequences 
tends to enH(U) in the following sense 

Innr ---+ H(U) (14-18) 
n n-+oo 

Proot If p = q = 0.5, then the OeMoivre--Laplace approximation yields 

(n):::::::: 2n e-2(k-n/2)2/n 

k • ./Jrn/2 
for k in the ..;n vicinity of n /2. This approximation cannot be used to evaluate the sum 
in (14-16) for p::J: 0.5 because then the center np of the interval (kl. k2) is notn/2. We 
shall bound nT using (14-13) and (14-16). Clearly. 

k, 

nr = L p-kqk-n peAk) 
k=kl 

(14-19) 

where we assume that p < q. As k increases, the term p-k qk-/I increases monotonically. 
Hence 

q_n(i)k' t peAk) < nr < q-n (i)k2 t peAk) 
p k=kl P k=kl 

And since [see (14-17)] 

k2 

L peAk) = P(T) = a 
k-kl 

(14-20) yields 

~ (i)k' < k2 (n) < ~ (i)k2 
qn p L k q" P 

k=kJ 

Setting kl = np - n6 and k2 = np + n8 in (14-21) and using the identity 
p-npq-nq = e-n(plnp+qlnq) = enH(U) 

we conclude from (14-21) that 

ae"H(U) (~) -ne < nr < aenH(U) (~) 11$ 

Hence 

nH(U)+lna-neln i < lnnr < nH(U) + Ina +neln"i 
p p 

(14-20) 

(14-21) 

Dividing by n, we obtain (14-18) because ex is constant and. as we see from (14-14), 
6 --+- 0 as n --+- 00. 

Important conclusion Theorem (14-18) holds for any a < 1; it will be assumed, 
however. that a :::::::: 1 and the corresponding sequences will be called typical. With this 
assumption 

peT) = ex :::::::: 1 peT) = 1 - ex :::::::: 0 (14-22) 
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The proBability of an arbitrary event M equals, therefore. its conditional probability 

P(M) = P(M I T)P(T) + P(M I T)PCT) -::::',P(M IT) (14-23) 

In other words. in any conclusions .concerning probabilities in the space sn. it suffices 
to consider the subspace of sn consisting of typical sequences only. This is. of course, 
only approximately true for finite n. It is, however, exact in the limit as n ~ 00. 

CONCLUDING REMARKS. In Chap. 1, we presented the following interpretations of 
the probability peA) of an event A. 

Axiomatic. peA) is a number assigned to the event A. This number satisfies three 
axio~ but is otherwise arbitrary. 

Empirical. For large n, 

k 
peA) -::::.­

n 

where k is the number of times A occurs in n repetitions of the underlying experiment S. 

Subjective. peA) is a measure of our uncertainty about the occurrence of A in a single 
performance of S. 

Principle of insufficient reason. If A, are N events of a partition U of S and nothing 
is known about their probabilities, then P (Ai) = 1/ N . 

We give next four related interpretations of the entropy H (U) of U. 

Axiomatic. H(U) is a number assigned to each partition of S. This number equals the 
sum - L Pi log Pi. where Pi = P(AI). 

Empirical. This interpretation involves the repeated performance not of the experiment 
S. but of the experiment sn of repeated trials. In this experiment, a specific typical 
sequence t j is an event with probability e-nH(U). Applying the relative frequency inter­
pretation of probability to this event, we conclude that if the experiment sn is repeated 
m times and the event t j occurs m j times. then for sufficiently large m, 

m' I m' pet j) = e-nH(U) -::::. _J hence H(U) -::::. __ In_J 
m n m 

This relates the theoretical quantity H (U) to the experimental numbers' m j and m. 

Subjective. H (U) is a measure of our uncertainty about the occurrence of the events 
Ai of the partition U in a single performance of S. 

Principle of maximum entropy. The probabilities PI = P (Ai) must be such as to max­
imize H(U) subject to the given constraints. Since n, = enH(U), the ME principle is 
equivalent to the principle of maximizing the number of typical sequences. If there are no 
constraints, that is, if nothing is known about the probabilities Pi, then the ME principle 
leads to the estimates Pi = 1/ N, H (U) = log N, and n, = N". 
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B<A 

FIGURE 14-4 

14-2 BASIC CONCEPTS 

In this section, we develop deductively the properties of entropy starting with various 
notations and set operations. At the end of the section, we reexamine the results in tenns 
of tlie heuristic notion of entropy as a measure of uncertainty, and we conclude with a 
typical sequence interpretation of the main theorems. 

DE~ONS. The notation 

U = [AI, ... , At] or simply U = [Ail 

will mean that U is a partition consisting of the events Ai. These events will be called 
elementsS of U. 

I. A partition with only two elements will be called binary. Thus 

U = [A, A] 

is a binary partition consisting of the event A and its complement A. 
n. A partition whose elements are the elementary events {~t } of the space S will be 

denoted by V and will be called the element partition. 
In. A refinement of a partition U is a partition B such that each element Bj of B is a 

subset of some element Ai of U (Fig. 14-4). We shall use the notation B -< U to 
indicate that B is a refinement of U and we shall say that U is larger6 than B. Thus 

B -< U iff Bj C Ai (14-24) 

A common refinement of two partitions is a refinement of both. 
The partition D in Fig. 14-5 is a common refinement of the partitions U and B. 

Iv. The product' of two partitions U = [Ai] and B = [B j] is a partition whose 
elements are all intersections Ai B j of the elements of U and B. This partition will 
be denoted by II 

U·B 

Clearly, U • B is the largest common refinement of U and B. 

SIt will be clear from the context whether the word element means an event AI of a partition U or an 
element 'I of the space S. 
6ne symbol -< is not an ordering of two arbiuary partitions. It has a meaning only if B is a refinement of U. 
'We should emphasize that partltion product is not a set operation. 
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·A B C D 

C=A'B C<A C<B D<A D<B 

FlGURE14·5 

Properties From the definition it follows that 

V -< U forany U 

U . B = B • U U • (B • C) = (U . B) • C 

then UI-<U3 

then U·B=B 

~ The entropy of a partition U is by definition the sum 
N 

H(U) = -(PI log PI + ... + PNlogpN) = Erp(p/) 
1=1 

where Pi = P(AI) andrp(p) = -plogp. 
Since rp(p) ~ 0 for 0 ~ P ~ 1. it follows from (14-25) that 

H(U) ~ 0 

where H(U) = 0 iff one of the Pi'S equals 1; all others are then equal to O. 

then 

Binary partitions If U = [A, Al and P(A) = P. then (Fig. 14-2) 

H(U) = -P log P - (1- p)log(l- p) = h(p) 

Equally likely events If 

PI = P2 = ... = PN 

1 1 1 1 
H(U) = - N log N -." - N log N = logN • 

If, in particular. N = 2m• then H (U) = m. -( 

(14-25) 

(14-26) 

(14-27) 

(14-28) 

INEQUALITIES. The function rp(p) = -plogp is convex. Therefore (see Fig. 14-6 
and Prob. 14-2) 

rp(PI + P2) < rp(PI) + rp(P2) < rp(PI + e) + rp(p'}. - e) (14-29) 

where 

PI < PI + e ~ P2 - e < P2 (14-30) 
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tp(pl + e) 

FIGURE 14-6 

This leads to the following properties of entropy: 

1. Given a partition U = [A I, Az • ...• AN 1. we form the partition 
B = [BII • Bb. A2 • .•. , AN] obtained by splitting Al into the elements BII and Bb as 
in Fig. 14-7. We maintain that 

H(U):::: H(B) (14-31) 

Proof. Clearly, 

because each side equals the contribution to H (U) and H (B). respectively. due to 
the common elements of U and B. Hence (14-31) follows from the first inequality 
in (14-29). oJ 

A p=P.+P" 
r---;';'---' 

B<A 
H(B) it H(A) 

FIGURE 14-7 
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~ In the next table we list the probabilities of the events of a partition U and of its 
refinement B obtained as above. 

In this case, 

U I P = 0.4 I 0.35 I 0.25 
B Po = 0.22 Pb = 0.18 0.35 0.25 

H (U) = -(0.410g0.4 + 0.3510g 0.35 + 0.2510g 0.25) = 1.559 

H(B) = -(0.2210g0.22 + 0.1810g0.18 + 0.3510g0.35 + 0.2510g0.25) = 1.956 

Thus 

H(U) = 1.559 < 1.956 = H(B) 

in agreement with (14-31). ~ 

2. If 

B~U then H(B) ~ H(U) 

Proof. Repeating the construction of Fig. 14-7. we form a chain of refinements 

U = U I ~ ... ~ U m-I -< U m -< •.. -< Un = B 

(14-32) 

where U m is obtained by splitting one of the elements of U m-l as in Fig. 14-8. From 
this and (14-31) it follows that 

H(U) = H(UI ) .::: ... .::: H(Un ) = H(B) 

and (14-32) results. 

3. For any U: 

H(U).::: H(V) (14-33) 

where V is the element partition. 

Proof. It follows from (14-31) because V is a refinement of U. 

FIGURE 14·8 



642 STOCHASTIC PROCESSes 

EX.\\lI'LT(, 14-5 

4. For any U and B: 

H(U· B) ~ H(U) H(U·B) 2! H(B) (l4-34) 

Proof. It follows from (14-31) because U . B is a refinement of U and of B. 

~ In the die experiment. the probabilities of the six events {/l}t ... , {f6} equal 

0.1 0.1 0.15 0.2 0.2 0.25 

respectively. The probabilities of the events of the partitions 

U = [even, oddl B = [i ::: 3, i > 3) 

are given by 

P{even} = 0.55 P{odd} = 0.45 P{i ::: 3} = 0.35 P{i > 3} = 0.65 

The product U . B is a partition consisting of the four elements 

{fa} 

with respective probabilities 

0.1 

From the above it follows that 

H(U) = 0.993 

in agreement with (14-34). .... 

{fs} 

0.25 0.45 0.2 

H(B) =0.934 H(U· B) = 1.815 

5. Suppose that U and B are two partitions that have the same elements except the 
first two (Fig. 14-9) 

PI ( 
I' 

...... 

We maintain that if 

P(AJ) = PJ 

as in (14-30), then 

A 

P2 _ 

B 

H (U) ::: H (B) 

PI +8<P2-& 
H(B) Ii!: H(A) 

(14-35) 

FIGURE 14-9 
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Proof.. Clearly, 

H(U) - "(PI) - rp(P2) = H(B) - "(PI + 8) - rp(P2 + 8) 

because each side equals the contribution to H(U) and H(B), respectively, due to the 
common elements of U and B. Hence (14-35) follows from the second inequality in 
(14-29). 

~ In the next table we list the probabilities of the events of the partitions U and B. 

u I 0.1 I 0 3 I 0.35 I 0.25 PI = 0.1 
B 0.18 0.22 0.35 0.25 P1 = 0.3 

In t!rls case, 

H(U) = 1.883 

in agreement with (14-35). ~ 

H(B) = 1.956 

e=O.08 

6. If we equalize the entropies of two elements of a partition, leaving all others 
unchanged, its entropy increases. 

Proof. It follows from the above with e = (P2 - Pl)/2. 

7. The entropy of a partition is maximum if all its elements are equally likely as in 
(14-28), 

Proof. Suppose that U is a partition such that H (U) = Hm is maximum and two of its 
elements have unequal probabilities. If they are made equal, then (property 6) H (U) 
increases. But this is impossible because Hm is maximum by assumption. 

A usefoI inequality. If at and bi are N positive numbers such that 

al + ... + aN = 1 bl + ... + bN :::: 1 (14-36) 

then 

- La; log a; ~ - Lai 10gb, (14-37) 
I 1 

with equality iff a; = hi. 

Proof. From the inequality e' ~ 1 + y it follows that Inx ~ x -1 (Fig. 14-10). With 
x = b;/ tlj., this yields 

bi b· 
lnbi -Ina/ = In - :::: ....!.. - 1 

a; ai 
Multiplying by a; and adding, we obtain 

La/(lnb; -lnai) ~ Lal (bl - 1) = L(b; - a,l ~ 0 
i I ai i 

and (14-37) results. 
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FIGURE 14-10 

y 

x-til 
Inx:S;x - 1 

Maximum entropy. Using (14-37), we shall rederive property 7. It suffices to show that 

- LP;logpl ~ logN 
; 

(14-38) 

Proof. The numbers a, = PI and bl = 1/ N satisfy (14-36). Inserting into (14·37), we 
conclude that 

Conditional Entropy and Mutual Information 

The conditional entropy of a partition U assuming M is by definition the sum 

Nv 

H(U 1M) = - LP(A; I M) log P(A; 1M) 
1 ... 1 

where P(M) ". 0, Nu is the number of elements AI of U, and 

peA IM)= P(A;M) 
I P(M) 

(14-39) 

As we explain later. H (U I M) is the uncertainty about U in the subsequence of trials in 
which M occurs. ~ 

Suppose now that B is a partition consisting of the N B elements B j. Oearly, 

Nv 

H(U I Bj) = - L P(AI I Bj)logP(Ai I Bj) (14-40) 

is the conditional entropy of U assuming Bj defined as in (14-39). The conditional 
entropy of U assuming B is the weighted average of H (U I B j): 

N. 

R(U I B) = L P(Bj)H(U I Bj ) (14-41) 
j=1 
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This equals the uncertainty about V if at each trial we know which of the events B j of 
B has occurred. 

~ We shall detennine the conditional entropy H (V I B) of the element partition V in 
the fair-die experiment where B = [even, odd]. 

Clearly, PI/; I even} = j if i is even and P{ji I even} = 0 if i is odd Similarly, 
PI/; I odd} = t ifi is odd and PI/; I odd} = 0 ifi is even. Hence 

H(V I even) = -U log t + t log t + t log t) = log 3 = H(V I odd) 

And since P(even} = P{odd} = 0.5, we conclude from (1441) that 

H(V I B) = 0.510g3 + 0.5 log 3 = log 3 

Thus, in the absence of any information, oUI uncertainty about V equals H (V) = log 6. 
If we know, however. whether at each trial "even" or "odd" showed, then our uncertainty 
is reduced to H (V I B) = log 3. ... 

~ If 

B-<.V then H tv I B) = 0 (1442) 

Proof. Since B is a refinement of U. each element B j of B is a subset of some element Ai of U 
and, therefore, it is disjoint with aU other elements of U. Hence Ai B j = B j if i = k and Ai B j = 0 
otherwise. This leads to the conclusion that 

P(A;B,) {I i = k 
P(Ad Bj ) = P(Bj } = 0 i:# k 

And since p log p = 0 for p = 0 and p = 1, we conclude that all tenns in (14-40) equal. 0; hence 

for every j. From this and (1441) it follows that H(U I B) = O. 
Independent partitions Two partitions U = [Ad and B = [Bj ] are called independent if 

the events A; and B j are independent for every i and j: 

(1443) 

.. ~ 

~ If the partitions V and B are independent, then 

H(U I B) = H(V) H(B I V) = H(B) (1444) 

Proof. Clearly, peA; I BJ) = peA;); hence [see (14-40») 

H(U I Bj) = - L peA;) log P(Aj) = H(U) 
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. ~ -, 

TllEOREl\1-14-3 ., . 

COROLLARY 

THEOREM 14-4 

Inserting into (14-41), we obtain 

H(U I B) = H(U) L: PCB)~ = H(U) 
) 

and (14-43) results. We can show similarly that H (B I U) = H (B). .... 

..... For any U and B: 

Proof. As we know [see (2-41)] 

Hence 

H(U • B) ~ H(U) + H(B) 

peA;) = L: P(AIB]) 
j 

H(U) - L: P(A;) log P(A;) = - L:P(A;Bj)logP(A;) 
; i.j 

Writing a similar equation for H(B) and adding, we obtain 

(1445) 

H(U) + H(B) = - .L: P(AIB) log[P(A,)P(Bj )] (14-46) 

'.j 
Clearly, H (U • B) is a partition with elements A; B j. Hence 

H(U· B) = - L: P(A;B) log P(A,B) (14-'m 

',) 

To prove (14-45), we shall apply (14-37) identifying the numbers a; and b, with the numbers 
P(A/B) and P(A;)P(Bj }. respectively. We can do so because 

L: P(A;B) = 1 L: P(A;)P(BJ) = 1 
I.J i,j 

From (14-37) it follows that the sum in (14-47) cannot exceed the sum in (14-46); hence (14-45) 
must be true. -4 

H(V. B) = H(U) + H(B) (14-48) 

iff the partitions V and B are independent. 

Proof. 'Ibis follows from (14-45) because (14-37) is an equality iff at = bt for every i. Hence 
(14-45) is an equality iff 

for every i andj, ~ 

~ For any U and B: 

H(V· B) = HCB) + H(V I B) = H(V) + H(B I V) (14-49) 

Proof, Since 
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we conclude frOm (14-40) that 

P(Bj)H(U I Bj } = - L P(Bj}P(A; I B]) log P(AII BJ) 

Summing over allj, we obtain 

I . 

= - LP(A;Bj)[logP(A;Bj) -logP(BJ)] 
; 

= - LP(AIBj)logP(AIBJ)+P(Bj)logP(Bj) 
I 

LP(Bj)H(UIBj ) = - LP(AIBj)logP(AIBj ) + LP(Bj)logP(Bj ) 

j ;.} J 

and the first equation in (14-49) follows because the above three sums equal H(U I B), HCU • B), 
and -8(B) respectively. The second equation follows because U· B = B· U. "4j 

COROLLARIES ~ The following relationships follow readily from the last two theorems: For any U 
andB: 

EX \i\JPLE 14-0 

H(B) ~ H(U • B) ~ H(U) + H(B) 

H(U I B) ~ H(U) 

H(U) - H(U I B) = H(B) - H(B I U) 

Mutual information. The function 

I(U, B) = H(U) + H(B) - H(U. B) 

(14-50) 

(14-51) 

(14-52) ... 

(14-53) 

is called the mutual information of the partitions U and B. From (14-49) it follows that 

I(U, B) = H(U) - H(U I B) = H(B) - H(B I u) 

Clearly [see (14-51)] 

I(U,B)~O 

(14-54) 

(14-55) 

As we shall presently see. I (U. B) can be interpreted as the "information about U 
contained in B" and it equals the "information about B contained in U ;' 

... In the fair-rue experiment of Example 14-7. 

H(V) = log 6 H(V 1 B) = log 3 R(B) = log 2 H(BI V) =0 

Hence 

I(V, B) = 10g2 

Thus the information about the element partition V resulting from the observation of the 
even-odd partition B equals log 2. ~ 



Generalizations. These results can be readily generalized to an arbitrary number of 
partitions. We list below several special cases leaving the simple proofs as problems: 

(a) If 

B-<V then H(V I B) :::: H(V I V) 

(b) If the partitions V, B and V are independent. then 

H(V • B· V) = H(U) + H{B· V) = H(V) + H(B) + H(V) 

(e) Chain rule For any V, B, and V: 

H(B·V I U) = H(B I U) + H(V I U· B) 

(14-56) 

(14-57) 

(14-58) 

H(U ·B· V) = H(U) + H(B. VIU) = H(U) + H(B I U) + H(V IU ·B) 

(14-59) 

Repeated trials. In the space SIt of repeated trials aU outcomes are sequences of the 
form 

(14-60) 

where each ~it is an element of S. Consider a partition U of S consisting of N events. 
At the kth trial, one and only one of these events will occur, namely the event Ai, that 
contains the element ~it' The cartesian product 

Aj.A: = S X • .. S x Aj• x S· .. x S ~lt E Ail (14-61) 

is an event in sn with probability 

(14-62) 

because it occurs iff the event A it occurs at the kth trial. For specific k, the events A jot 

form an N element partition of the space sn 0 This partition will be denoted by V It.. From 
(14-62) it follows readily that 

H(VIt.) = H(V) (14-63) 

We can define similarly the partition Bit. of sn formed with the elements of another 
partition B of S. Reasoning as in (14-63), we conclude that H(Bk) = H(B) and 

H(Vk I Bit.) = H(U I B) /(Uk. Bt) = leU, B) (14-64) 

We next form the product of the n partitions V It.: .. 
Un = VI' V 2' 0 0 • V n (14-65) 

The elements of this partition are cartesian products of the form 

Ail x .. 0 x Ajt x .. · x Ai. (14·66) 

If U is the element partition of S, then vn is the element partition of sn 0 In general. 
however, the elements of V n are events consisting of a large number of sequences of 
the form (14-60). If we picture these sequences as wires, then the elements (14-66) of 
the partition Un can be viewed as cables and their union as a collection of such cables 
(Fig. 14-11). 
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(1\ ... (i. /'it .........•...... ~ ..•.•.•... 
1 k n 

A, x .. · XA, A'1 
I • ,( I 

(.} ..•...•....•• {eye .•••••. 41:.) 

I' , 

- --------T~i-----f r.t ••••••••••• P~.f' •••••• r·~ 
~. ---------~--;----~~ 

\ / , 
FIGV~l4-11 

From the independence of the trials, it follows that the n partitions U 1, ••• , U 11 of 
SR are independent Hence [see (14-57) and (14-63)] 

H(UR ) = H(Ut) + ... + H(UII) = nH(U) (14-67) 

Defining similarly the partition Bn. we conclude as in (14-64) that 

H(UR IBn) = nH(B I U) I(Un , Bn) = nl(U, B) 

... In the coin experiment, the entropy of the element partition equals 

H(V) = -p log p - q logq 

In the space S2, the element partition consists of four events with 

P{hh} = p2 P{ht} = P(th} = pq P(tt} = q'l 

Hence 

Thus 

in agreement with (14-67). ~ 

(14-68) 

CONDITIONAL ENTROPY AND UNCERTAINTY. As we have noted, the entropy H (U) 
of a partition U = [Ai] gives us a measure of uncertainty about the ocCurrence of the 
events Ai at a given trial. Once the trial is performed and the events A, are observed, the 
uncertainty is removed. We give next a similar interpretation to the conditional entropy 
H(U I·M) of U assuming that the event M has been observed, and of the conditional 
entropy H(U I B) of U assuming that the partitioning B has been observed.s 

If in the definition (14-25) of entropy we replace the probabilities peA,) by the 
conditional probabilities peAl I M), we obtain the conditional entropy H(U I M) of U 

8The expression Q partitWn B is observed will mean that we know which of the events of B has occuned. 
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assuming M [see (14·39)]. The relative frequency interpretation of P(A; I M) is the 
same as that of P(A;) if we consider not the entire sequence of n trials but only the 
subsequence of trials in which the event M occurs. From this it follows that H (U I At) 
is the uncertainty about V per trial in that subsequence. In other words, if at a given trial 
we know that M occurs, then our uncertainty about V equals H (V I M); if we know that 
M occurs, then our uncertainty equals H (V I M). The weighted sum 

P(M)H(U I M) + P(M)H(V I M) 

is the uncertainty about V assuming that the binary partition (M, MJ is observed. 
Suppose now that at each trial we observe the partition B = [Bj]. We maintain 

that, under this assumption. the uncertainty per trial about V equalS H(V I B). Indeed, 
in a sequence of n trials, the number of times the event B j occurs equals 

nj ~ nP(Bj ) 

In this subsequence, the uncertainty about V equals H (V I B j) per trial. Hence the total 
uncertainty about V equals 

EnjH(V I B) ~ EnP(Bj)H(V I Bj } = nH(V I B) 
j j 

and the uncertainty per trial equals H(V I B). 
Thus the observation of B reduces the uncertainty about V from H (V) to H (V I B). 

The difference 

I(V, B) = H(V) - H(V I B) 

is the reduction of the uncertainty about B resulting from the observation of B. This 
justifies the statement that the mutual information I (U, B) equals the iTiformation about 
U contained in B. 

We show next the consistency between the properties of entropy developed earlier 
and the subjective notion of uncertainty. 

1. If B is a refinement of V and B is observed, then we know which of the event" of 
V occurred. Hence H(V I B) = 0 in agreement with (14-42). 

2. If the partitions U and B are independent and B is observed, no information about 
V is gained. Hence H(V I B) = H(V) in agreement with (14-44). 

3. If we observe B, our uncertainty about V can only decrease. Hence 
H(U I B) =:: H(V) in agreement with (14-51). 

• c 
4. To observe U . B. we must observe U and B. If only B IS observed, the 

information gained equals H(B). The uncertainty about U assuming B equals, 
therefore, the remaining uncertainty H (V I B) about B. Hence 
H(U·. B) - H(B) = H(V I B) in agreement with (14·49). 

5. Combining 3 and 4, we conclude that H (U • B) - H (B) =:: H (V) in agreement 
with (14-45). 

6. If B is observed, then the information that is gained about V equals I (V, B). If 
B -< C and B is observed, then C is known. But knowledge of C yields 
information about U equal to /(V, C). Hence, if B -< C, then /(U, B) ~ /(V, C) 
or, equivalently, H(U I B) =:: H(U I C) in agreement with (14-56). 
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1 n 

(a) (b) 

FIGURE 14·12 

CONDITIONAL ENTROPY AND TYPICAL SEQUENCES. We give next a typical se­
quence interpretation of the properties of conditional entropy limiting the discussion 
to (14-45) and (14·49). The underlying reasoning is used in the proof of the channel 
capacity theorem (Sec. 14-6). 

We denote by t U , t B , and t U•B the typical sequences of the partition U, B. and 
U· B, respectively, and by TU, T B , and T U•B their unions (Fig. 14-12a). As we know 
[see (14-7)] 

P(TU) ::::::: P(TB ) ::::::: P(TU•B ) ::::::: 1 

Furthermore, the number of typical sequences in each of these three sets equals [see 
(14-10)] 

L We maintain that 

n '" e'IH(B) TB -

H(U· B) ~ H(U) + H(B) 

(14-69) 

(14-70) 

Proof. Each t U•B sequence specifies a pair (tU, I B ). The total number of such pairs 
formed with all the elements of T U and TB equals nTu ·nTB. However, not all such 
pairs generate t U•B sequences because, if the partitions U and B are nOt independent, 
then not all pairs can occur. For example, if Ai = B j for some i and j and A, occurs at 
the kth trial, then B j must also occur at this trial. From this it follows that 

and (14·70) follows from (14-69). 

n. We shall show, finally. that 

H (U • B) = H (B) + H (U I B) (14-71) 

Proof. There are nTB sequences in the set TB and nTu B sequences in the set T U-B • The 
ratio 

nTU-B ::::::: en[H(U.B)-H{B)) 

nTB 
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FIGURE 14·13 

equal~, therefore, the number of t U•B sequences contained in a single t B sequence on the 
average. To prove (14-71), we must prove, therefore, that this number equals e"H(lJIB). 

We shall prove a stronger statement: The number of t U•B sequences contained in a single 
t B sequence (Fig. 14-13) equals e"H(U)B). 

As we know [see (1-1)], the number of times the event Bj occurs in a t B sequence 
"almost certainly" equals 

(14·72) 

We denote by tB, subsequence (Fig. 14-12b) of t B in which the number of occurrences 
of Bj satisfies (14-72). In this subsequence, the relative frequency of the occurrence of 
an event Ai equals P(Aj I Bj ) [see page 29]. 

We shall use (14-10) to show that the number of typical sequences formed with 
the elements Ai of U that are included in a t B; sequence equals 

(14-73) 

Indeed, this follows from (14-10) if we introduce the following changes: We replace 
P(Aj) by P(Aj I Bj),thelengthn oftheoriginalsequences with the length nj :::::::: nP(Bj}. 
and the entropy H(U) of U with the conditional entropy H(U I Bj). 

Returning to the original t B sequence. we note that it is formed by combining the 
tB, sequences that are included in t B. This shows that the total number of tV sequences 
that are included in t B equals the product 

II e"PCBj)H(U I Bj) = e'IH(U)B) 

j 

(14-74) 

But each t U sequence that is included in t B is a t U•B sequence. Hence the number of 
t U.B sequences that is included in t B equals enH(UIB). 

14·3 RANDOM VARIABLES 
AND STOCHASTIC PROCESSES 

Entropy is a number assigned to a partition. To define the entropy of a random variable 
we must, therefore, form a suitable partition. This is simple if the random variable is 
of discrete type. However, for continuous-type random variables we can do so only 
indirectly. 
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Discrete *y~ Suppose that x is a ranQom varl8ble talcing the values Xi with 

P{x=X;}=Pi 

The events {x = Xi} are mutually exclusive and their union is the certain event; hence 
they fonn a partition. This partition will be denoted by U x and will be called the partition 
of x. 

Definition The entropy H (x) of a discrete-type random variable x is the entropy 
H (U x) of its partition U x: 

H(x) = H(Ux ) = - LP/lnpt (14-75) 

Continuous ~ The entropy of a continuous-type random variable cannot be so de­
fined because the events {x = Xi} do not form a partition (they are not countable). To 
define H (x). we foxm, first, the discrete-type random variable X, obtained by rounding 
off x as in Fig. 14-14: 

Oearly. 

x, = n8 if n8 - 6 < x ~ n8 

P{x, = n8} = P{n6 - 8 < x ~ 8} = 1'" f(x}dx = 8/(n8) 
"'-6 

(14-76) 

where / (n8) is a number between the maximum and the minimum of f (x) in the interval 
(n8 - 8, n8). Applying (14-15) to the random variable x,. we obtain 

00 

H(x,) = - L 8/(n8) In[8!(n6)] 
11=-00 

and since 

00 100 L 8/(n8) = f(x}dx = 1 
11=-00 -00 

o 8 x 

FIGURE 14-14 
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we conclude that 
();) 

H('X&) = -ln8 - L 8/(n8)ln/(n8) (14-77) 
n.=-oo 

As 8 ..... 0, the random variable 'X& tends to x; however, its entropy H('X&) tends to 00 

because -In 8 ..... 00. For this reason, we define the entropy H (x) of x not as the limit 
of H (x,,) but as the limit of the sum H (x,,) + In 8 as 8 ..... O. This yields 

H(x,,) + ln8 ~ -!();) lex) In/(x)dx 
0_0 -00 

(14-78) 

Definition The entropy of a continuous-type random variable x is by definition 
the iQtegral 

H(x) = -1: I(x) In/(x)dx (14-79) 

The integration extends only over the region where I(x) :j: 0 because I(x) In I(x) = 0 
if I(x) = o. 

~ Ifx is unifonn in the interval (0. a), then 

114 I H (x) = - - In - dx = In a 
a 0 a 

(14-80) 

-4 

Notes 1. The entropy H (XI) of XI is a measure of our uncertainty about the random variable" rounded off 
to the nearest n8. If 8 is small. the resulting uncertainty is large and it tends to 00 as 8 - O. This conclusion is 
based on the assumption that:r can be observed perfectly; that is, its various values can be recognized as distinct 
no matter how close they are. In a physicaI experiment. however, this assumption is not realistic. Values of x 
that differ slightly cannot always be treated as distinct (noise considerations or round-off errors, for example). 
The presence of the term In 8 in (14-78) is, in a sense, a recognition of this ambiguity. 

2. As in the case of arbitrary partitions. the entropy of a discrete-type random variable x is positive and 
it is used as a measure of uncertainty about x. This is not so, however, for continuous-ty,P.e random variables. 
Their entropy can take any value from -00 to 00 and it is used ~ measure only changes in uncertainty. The 
various properties of partitions also apply to continuous-type random variables if, as is geoeraIly the case, they 
involve only differences of entropies. 

Entropy as expected value. The integral in (14-79) is the expected valu~ of the random 
variable y = -in I (x) obtained through the transfonnation g(x) = -in I (x): 

H(x) = E{-ln/(x)} = - !: I(x)ln/(x)dx (14-81) 

Similarly, the sum in (14-75) can be written as the expected value of the random 
variable -In p(x): 

H(x} = E{-lnp(x)} = - L p;ln Pi (14-82) 

where now p(x} is a function defined only for x = Xi and such that p(Xj) = PI. 
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~If 

~ If 

then 

j(x) = ce-CXU(x) 

Since E{cx} = 1, this yields 

then E{-lnj(x)}=E{cx-lnc} 

e 
H (x) = 1 - In c = In -

c 

{ (x - 1])2} 0"2 
E{-lnj(x)} = InO".J2i + E 20"2 = InO".J2i + 20"2 

Hence the entropy of a normal random variable equals 

H(x) = InO"J2ne 

04-83) 

~ 

(14-84) 

~ 

Joint entropy. Suppose that x and y are two discrete-type random variables taking the 
values Xi and y), respectively, with 

P{x=Xj,Y = Yj} = Pi) 

Their joint entropy, denoted by H (x. y). is by definition the entropy of the product of their 
respective partitions. Clearly, the elements of U x • U y are the events {x = Xi, Y = Yi}. 
Hence 

. H(x. y) = H(Ux' U y} = -I:Pij In Pi) 
t.} 

This can be written as an expected value 

H(x, y) = E{-lnp(x, y)} 

where p(x, y) is a function defined only for X = x, and Y = Yi and.it is such that 
p(x;, Yi) = Pij· 

The joint entropy H(x. y) of two continuous-type random variables x and y is 
defined as the limit of the sum 

H(x&, Y8) + 2lneS 

where x.s and Y8 are their staircase approximation. Reasoning as in (14-78). we obtain 

H(x.y) = - [:[: j(x,y)lnj(x,y)dxdy = E{-Inj(x,y)} (14-85) 



1< X \I\IPLE 14-13 ~ If the random variables x and y are jointly normal as in (6-23), then 

In/(x, y) = -1 [(X - 111)2 _ 2r (X - 711)(Y - 712) + (y -71)/2)2] 
2(1- ,2) <7t <71<72 <7; 

-ln21r<71<72\-ft - ,2 

In this case, 

E { (x - 111)2 _ 2r (x - 111)(Y - 712) + (y - 712)2} = 1 _ 2r2 + 1 
~ ~~ ~ 

Hence 

E{-ln I(x, y)} = 1 + ln21r<71<72"h - ,2 

, Prom this and (14-85) it follows that the joint entropy of two jointly nonnal random 
variables equals 

H (x, y) = In 21r eJA (14-86) 

where 

Conditional entropy. Consider two discrete-type random variables x and y taking the 
values XI and Yj with 

P{x = Xi Iy = Yj} = 1rJI = pjt/Pi 

The conditional entropy H (x 1 Y j) of x assuming y = Yj is by definition the conditional 
entropy of the partition U z of x assuming {y = Yl}' Prom the above and (14-39) it 
follows that 

H(xly,) = - L1ri/ln1rjl (14-87) 
/ 

The conditional entropy H (x I y) of x aSSuming y is the conditional entropy of U x 
assuming U" Thus [see (14-41)] 

H(x 1 y) = - L pjH(x 1 Yj) = - L pji In1rJ} (14-88) 
j I.j 

For continuous-type random variables the corresponding concepts are defined 
similarly 

H(x 1 y) = - I: I(x 1 y) In/(x I y)dx c 

H(xly) = -I: 1(y)H(xly)dy = 1:/: /(x,y)ln/(x Iy)dxdy 

These integrals can be written as expected values Lsee also (6-240)] 

H(xly) = E{-ln/(xly)ly=y} 

H(xly) = E{-ln/(xly)} = E{E{-ln/(xIY) Iy}} 

The discrete case leads to similar expressions. 

(14-89) 

(14-90) 

(14-91) 

(14-92) 
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Mutual information. Guided by (14-53), we snall call the function 

lex, y) = H(x) + H(y) - H(x, y) 

the mutual information of the random variables x and y. 

(14-93) 

From (14-81) and (14-85) it follows that 1 (x, y) can be written as an expected 
value 

I(x,y) = E [ID ~~;f~)] 
Since I(x, y) = I(x I y)/(y) it follows from (14-94) and (14-92) that 

I(x,y) = H(x) - H(xly) = H(y) - H(Ylx) 

(14-94) 

(14-95) 

~ If two random variables x and y are jointly normal with zero mean, then [see (6-209)] 
the conditional density I(x I y) is normal with mean rux/uy and variance u;(l - r2). 
From this and (14-84) it follows that 

Hex I y) = E{ -In I(x I y)} = In Ux v'2Jre(1 - r2) (14-96) 

Since this is independent of y, it follows from (14-92) that 

H(xly) = H(xly) 

This yields [see (14-95)] 

I (x, y) = H (x) - H(x I y) = -0.51n(1 - r2) 

We note finally that [see (14-86)] 

H(xly) + H(y) = In2JreJa = H(x,Y) 

(14-97) 

(14-98) 

Special Case. Suppose thaty = x + D, where D is independent ofx and E{n2} = N. In 
this case, 

E{xy} = u~ 

Inserting into (14-98), we obtain 

I (x, y) = 0.5 In ( 1 + ~) 

~ 

(14-99) 

~ 

PROPERTIES. The P1'9perties of entropy, developed in Sec. 14-2 for arbitrary partitions, 
are obviously true for the entropy of discrete-type random variables and can be simply 
established as appropriate limits for continuous-type random variables. It might be of 
interest however, to prove directly theorems (1445) and (14-49) using the representation 
of entropy as expected value. The proofs are based on the following version of ineqUality 
(14-38): Ifx and y are two random variables with respective densities a(x) andb(y), then 

E{lna(x)} ::: E{lnb(x)} (14-100) 

Equality holds iff a(x) = hex). 
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THEORE1\l 14-5 . . . 

COROLLARY 

Proof. Applying the inequality In z ~ z - 1 to the function z = b(x)/a(x), we Obtain 

b(x) b(x) 
Inb(x) -lna(x) = In - < - - 1 

a(x) - a(x) 

Multiplying by a(x) and integrating, we obtain 1: a(x)[lnb(x) -lna{x)] dx ~ 1: [b(x) - a(x)] dx = 0 

and (14-100) results. The right side is 0 because the functions a (x) and h(x) are densities 
by assumption. 

Inequality (14-100) can be readily extended to n-dimensional densities. For exam­
ple, if a(x. y) and b(z. w) are the joint densities of the random variables x, y and z, w. 
res~ctively. then 

E{lna(x, y)} ~ E{lnb(x, y)} (14-101) 

H(x. y) ~ Hex) + H(y) (14-102) 

Proof. Suppose that j",(x, y) is the joint density of the random variables x and y and f,,(x) 
and f'l(Y) their marginal densities. Clearly, the product fAz)fy(w) is the joint density of two 
independent random variables z and w. Applying (14-101), we conclude that 

E{ln f .. ,(x, y» ::=. E{ln[f,,(x)fy(Y)]} = E{ln f .. (x)} + E{ln f,(y)} 

and (14-102) results. ~ 

H(x, y) = H(x I y) + H(y) = H(y I x) + H(x) 

Proof. Inserting the identity f(x, y) = f(x I y)f(y) into (14-85). we obtain 

H(x, y) = E(-ln t(x, y)} = E{-Inf(x I y)} + E{-lnf(Y)} 

(14-103) 

and the first equality in (14-103) results. The second follows because H(x, y) = H(y, x). ~ 

~ Comparing (14-102) with (14-103), we conclude that 

H(x I y) ~ H(x) (14-104) 

~ 

Note If the random variable y is of discrete type, then Hcr Ix) ~ 0 and (14-103) yields H(x) ~ H(x. y). 
This is not, however, true in general if y is of continuous type. 

Generalizations. The preceding results can be readily generalized to an arbitrary num­
ber of random variables: Suppose that Xl, •••• Xn are n random variables with joint 
density /(xJ, ...• xn). Extending (14-85), we define their joint entropy as an expected 
value 

H(xt. ... ,xn) = E{-lnf(xlt ...• Xn)} (14-105) 
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If the f8!1dom variables Xi are independent. then 

I(x" ... , xn) = I(x,) ... I(xn) 

and (14-105) yields 

H(x! •...• x,.) = H(xt) + ... + H(x,.) (14-106) 

Conditional entropies are defined similarly. For example [see (14-92)] 

H(xII I X,I-I ..... Xl) = E{-ln I (x,. I x,.-Io ... , XI)} (14-107) 

Chain rule From the identity [see (7-37)] 

I(Xl • ••. , xn) = I(xn I Xn-It • ••• Xl)'" I(X21 x,)/(Xt) 

and (14-107) it follows that 

H(XI •••• , X'I) = H(x'i I x,.-l •... , Xl) + '" + H(X21 xI> + H(x1) (14-108) 

The following relationships are simple extensions of (14-102) and (14-103): 

H(x,ylz)!:: H(xlz)+ H(Ylz) 

H(x, y I z) = H(x I z) + H(y I x, z) (14-109) 

H(xt .... , x,.) !:: H(x,) + ... + H(x,.) 

.. If the random variables x, are jointly normal with covariance matrix C as in (7-58), 
then 

E{-ln I(x!> ... , XII)} = In ../(21r)"t:.. + !E{XC-tX'} 

This yields (see Prob. 7-23) 

H(X1 ••.. ,XII) = In../(21re)nt:.. 

Transformations of Random Variables 

We shall compare the entropy of the random variables X and y = g(x). 

DISCRETE TYPE. If the random variable X is of discrete type. then 

H(y) !:: H(x) 

with equality iff the transformation y = g(x) has a unique inverse. 

(14-110) 

(14-111) 

~ 

(14-112) 

Proof. Suppose that X takes the values Xi with probability Pi and g(x) has a unique 
inverse. In this case, 

Ply = Yi} = P{x = xd = Pi Yi = s(Xj) 

hence H (y) = H (x). If the transfonnation is not one-to-one, then y = YI for more than 
one value of So This results in a reduction of H (x) [see (14-31)]. 



Continuous type. If the random variable x is of continuous type. then 

H(y) ~ H(x) + E{ln Ig'(x)!} , 

with equality iff the transfonnation y = g(x) has a unique inverse. 

(14-113) 

Proof. As we know [see (5-16)] if y = g(x) has a unique inverse x = g<-I)(y), then 

Iz(x) 
I,(Y) = Ig'(x) I dy = g'(x) dx 

Hence 

H(y) = -I: fy(y) lnfy(y) dy = - L fx(x) In I~~;;;I fix 

= -100 
fx(x) lnfz(x) dx + 100 lor (x) In Ig'(x)1 dx 

-00 -00 

and (14-113) results. 

SEVERAL RANDOM VARIABLFS. Reasoning as in (14-113). we can similarly show 
that if 

Yi = g/(xl •...• x,,) 

are n functions of the random variables Xi. then 

i = l ..... n 

H(yl •...• y,,) ~ H(xl •...• x,,) + E{lnIJ(xl •...• x,,)J} (14-114) 

where J (Xl • •••• xn) is the jacobian of the above transfonnation [see (7-9»). Equality 
holds iff the transformation has a unique inverse. 

Linear transformations Suppose that 

YI = ailxI + ... + Q;1Ix" 

Denoting by /l. the determinant of the coefficients. we conclude from (14-114) that if 
A;l: o then 

(14-115) 

because the transformation has a unique inverse and A does not depend on 'Xi. 

Stochastic Processes and Entropy Rate 

As we know. the statistics of most stochastic processes are determined in terms of the 
joint density I(xl ••••• xm) of the random variables x(tt) ..... x(tm).1bejointentropy 

H(x ...... xm) = E{-lnl(xlt ...• x".)} (14-116) 

of these random variables is the mth-order entropy of the process x(t). This function 
equals the uncertainty about these random variables and it equals the infonnation gained 
when they are observed. 
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In gene~, the uncertainty about the values ofx(t) on the entire t axis or even on a 
finite interval, no matter how small, is infinite. However, if x(t) can be expressed in terms 
of its values on a countable set of points, as is the case for bandli,mited processes, then a 
rate of uncertainty can be introduced. It suffices, therefore, to consider only discrete-time 
processes. 

The mth-order entropy of a discrete-time process Xn is the joint entropy H (XI, ..• , 
xm) of the m random variables 

X,,, Xn-I.·.·, Xn-m+l (14-117) 

defined as in (14-116). We shall assume throughout that the process Xn is SSS. In this 
case, H(xi ... Xm) is the uncertainty about any m consecutive values of the process x". 
The first-order entropy will be denoted by H (x). Thus H (x) equals the uncertainty about 
lI'n fora specific n. 

Clearly [see (14-109)1 

H(xt, ... , XIII) :::: H(xt) + ... + H(xm) = mH(x) (14-118) 

Special cases (a) If the process Xn is strictly white, that is, if the random variables 
Xn , Xn-lo •.• are independent, then [see (14-106)J 

H(xt. ... , xm) = mH(x) (14-119) 

(b) If the process Xn is Markov, then Isee (15-2)] 

This yields 

H(xt. ... , xm) = H(x", I Xm-l) + ... + H(X21 XI) + H(Xt) 

From (14-103) and the stationarity of Xn it follows, therefore, that 

H(x), .... xm) = (m -l)H(Xl. X2) - (m - 2)H(x) 

(14-120) 

(14-121) 

(14-122) 

We have thus expressed the mth-order entropy of a Markov process in terms of its first­
and second-order entropies. 

CONDITIONAL ENTROPY. The conditional entropy of order m: 

H(x" IX,,-I, ...• x,,_"') 

of a process x" is the uncertainty about its present under the assumption that its m most 
recent values have been observed. Extending (14-104), we can readily show that 

" (14-123) 

Thus the described conditional entropy is a decreasing function of m. If, therefore. it is 
bounded from below, it tends to a limit. This is certainly the case if the random variables 
Xn are of discrete type because then all entropies are positive. The limit will be denoted 
by Hc(x) and will be called the conditional entropy of the process X,,: 

Hc(x) = lim H(x" I Xn-l.· .. , x,,-m) 
m .... OO 

(14-124) 

The .function Hc(x) is a measure of our uncertainty about the present of Xn under the 
assumption that its entire past is observed. 
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Special cases (a) Ifxn is strictly white. then 

He(x) = H(x) 

(b) lfxn is a Markov process, then 

H(x'1 I Xn-l •••.• Xn-m) = H(Xn I Xn-l) 

Since x,. is a stationary process, this equation equals H(x21 XI)' Hence 

He(x) = H(x21 Xl) = H(xi. X2) - H(x) (14-125) 

This shows that if XtI-1 is observed, then the past has no effect on the uncertainty 
of the present 

ENTROPY RATE. The ratio H (XI' •• xm) / m is the average uncertainty per sample in a 
block of m consecutive samples. The limit of this average as m ~ 00 will be denoted 
by H(x) and will be called the entropy rate of the process x,.: 

- 1 
H(x) = lim -H(x., ... t x",) (14-126) 

m .... oom 

If Xn is strictly white. then 

H(x) = H(x) = H~(x) 
IfXn is Markov. then [see (14-122)] 

H(x) = H(XI.X2) - H(x) = H~(x) (14-127) 

Thus, in both cases, the limit in (14-126) exists and it equals He(x). We show next that 
this is true in general. 

~ The entropy rate of a process Xn equals its conditional entropy 

H(x) = H~(x) (14-128) 

Proof. This is a consequence of the following simple property of convergent sequences: If 

Since Xn is stationary we conclude, as in (14-108). that 

'" 
H(XIo""x.n) = H(x) + LH(x"lxn-, ..... x..-t) " 

Dividing by m and using (14-129). we obtain (14-128) because 

H(xn IXn-h •••• X .. _k) 

tends to Hc(x) as k -+ 00. 44 

(14-129) 

Note If Xn equals the samples x(nT) of x(t). then the entropy rate is measured in bits per T seconds. If we 
wish to measure it in bits per second, we must divide by T. 
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NonnaJ processes. We shall show that if x .. is' a normal process with power spectrum 
S(w), then 

1 j'll H(x) = InJ27re + -4 In S(w)dw 
7r -'Il 

Proof. As we know, the function f(Xm+1 1 Xm • ••• , Xl) is a one-dimensional normal 
density with variance I::.m+1I I::.m [see (7-97) and (13-66)]. Hence 

H(x .. 1 Xn-It •.• , Xn-m) = In (14-131) 

as in (14-84). This leads to the conclusion that 

r;:;--- 1. am+ 1 
Hc(x) = In",27re + -2 hm In--

m-+oo I::.m 
(14-132) 

and (14-130) follows from (13-70) and Prob. 13-15. 

ENTROPY RATE OF SYSTEM RESPONSE. We shall show that the entropy rate H (y) 
of the output Y n of a linear system l(z) is given by 

- - I1Jr 
j H(y) = H(x) + 27r -If In Il(e (1)1 dw (14-133) 

where H(x) is the entropy rate of the input Xn (Fig. 14-15). 
Suppose, first. that Xn is a normal process. In this case Yn is also nonnal and its 

entropy rate is given by (14-130) where 

Sew) = Sy(w) = Sx(w)ll(ej ll)12 (14-134) 

This yields 

(14-135) 

and (14-133) follows. 
The proof for arbitrary processes is involved. We shall sketch ajustification based 

on (14-115): If the random variables Y I •...• Y m depend linearly on the random variables 
XI •••• , Xm. then 

(14-136) 

where Ko = log 11::.1 is a constant that depends only on the coefficients of the transfor-
mation. The process Yn depends linearly on x,.: ,; 

n = -00 •... ,00 (14-137) 

L(t) 
y" Be,) = B(x) + l;. r lnlL(BJ",)1 dru 

-", 
B(x) He,) 

FIGURE 14-15 
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where now the transformation matrix is of infinity order. Extending (14-136) to infinitely 
many variables. we conclude with (14-126) that 

H(y) = H(x) + K (14-138) 

where again K is a constant that depends only on the parameters of the system l(z). As 
we have seen. if X'I is normal, then K equals the integral in (14-133). And since K is 
independent of X'I, it must equal that integral for My Xn • 

14-4 THE MAXIMUM ENTROPY METHOD 

The MEM is used to determine various parameters of a probability space subject to 
given constraints. The resulting problem can be solved, in general, only numerically and 
it involves the evaluation of the maximum of a function of several variables. In a number 
of important cases, however, the solution can be found analytically or it can be reduced 
to a system of algebraic equations. In this section, we consider certain special cases, 
concentrating on constraints in the form of expected values. The results can be obtained 
with the familiar variational techniques involving Lagrange multipliers or Euler's equa­
tions. For most problems under consideration, however, it suffices to use the following 
form of (14-100). 

If f(x) and ~(x) are two arbitrary densities, then 

- [: ~(x)lll~(x)dx ~ - [: ~(x)lnf(x)dx (14-139) 

~ In the coin expenment. the probability of heads is often viewed as a random variable 
p (see bayesian estimation, Sec. 8-2). We shall show that if no prior information about p is 
available, then, according to the ME principle, its density f (p) is uniform in the interval 
(0, 1). In this problem we must maximize H (p) subject to the constraint (dictated by the 
meaning of p) that f(p) = 0 outside the interval (0, l). The corresponding entropy is, 
therefore, given by 

H(p) = -11 
f(p) Inf(p) dp 

and our problem is to find f (p) such as to maximize this integral. 
We maintain that H (p) is maximum if 

f(p) = 1 H(p) = 0 

Indeed, if ~(p) is any other density such that ~(p) = 0 outside the interval (0. I), then 
rsee(14-139)] " 

-11 q1(p)1n~(p) ~ -11 
q1(p)lnf(p)dp = 0 = H(p) ~ 

~ Suppose that X is a random variable vanishing outside the interval (-1C, 1C). Using the 
MEM, we shall determine the density l (x) of x under the assumpti~n that the coefficients 
ell of its Fourier series expansion 

00 

lex) = L cneinx 
11=-00 
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are known for In I :::: N. Our problem now is to maximize the integral 

H(x) = - f: f(x)ln f(x)dx 

subject to the constraints 

CII = _1_11f f(x)e-jIl)C dx 
21r -1f Inl::::N 

Clearly, H (x) depends on the unknown coefficients en and it is maximum iff 

aH = aH af = -11f [In f(x) + l]eJllz dx = 0 Inl > N 
Ben Bf BCn -1f 

(14-140) 

This' shows that the coefficients jI/I of the Fourier series expansion of the function 
In f(x) + 1 in the interval (-7r, 7r) are 0 for Inl > N. Hence 

N 

Inf(x) + 1 = L jlk ejlex 

k=-N 

From this it follows that 

I(x) = exp{-1 + t YkejU } 
k=-N 

(14-141) 

We have thus shown that the unknown function is given by an exponential involving the 
parameters )ft. These parameters can be determined from (14-140). The resulting system 
is nonlinear and can only be solved numerically. ..... 

Constraints as Expected Values 

We shall consider now a class of problems involving constraints in the form of expected 
values. Such problems are common in statistical mechanics. We start with the one­
dimension case. 

We wish to determine the density I(x) of a random variable x subject to the 
condition that the expected values 11; of n known functions gi (x) of x are given 

E{gi(X)} = f: g;(x)f(x)dx = Tli i = 1, ... ,n (14-142) 

Using (14-139). we sball show that the MEM leads to the conclusion that I(x) 
must be an exponential 

I(x) = Aexp{-Algl(X) - ... - A/,gn(X)} (14-143) 

where Ai are n constants determined from (14-142) and A is such as to satisfy the density 
condition 

A f: exp{-A\g\ (x) - ... - Align (x)} dx = 1 (14-144) 
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Proof. Suppose that I(x) is given by (14-143). In this case, 

l: I(x)ln/(x)dx = I: l(x)[1nA -A181(X) - ... -J..n8n(x)]dx 

Hence 

H(x) = AI171 + ... + Anl1n -logA (14-145) 

To prove (14-143), it suffices. therefore, to show that. if q/(X) is any other density satis­
fying the constraints (14-142), then its entropy cannot exceed the right side of (14-145). 
This follows readily from (14-139): 

-I: q/(x) Inq/(x) dx ::s - I: q>(x)ln/(x)dx 

= I: q/(X)[AI81 (x) + ... + AII811(X) -In A] dx 

= AI171 + ... + An1111 -InA 

We note that, if I(x) = 0 outside a certain set R, then I(x) is again given by 
(14-143) for every x in R and the region of integration in (14-144) is the set R. 

~ We shall determine I(x) assuming that x is a positive random variable with known 
mean 17. With 8(X) = x, it follows from (14-143) that 

I(x) = {oAe-Ax x> 0 
x<O 

We have thus shown that if a random variable is positive with specified mean, then its 
density obtained with the MEM. is an exponential. .... 

THE PARTITION FUNCTION. In certain problems. it is more convenient to express the 
given constraints in terms of the partition function (Zustandsumme) 

1 feo Z(AIo ...• An) = - = exp{-J..181 (x) - ... - An8n(X)}dx 
A -eo (14-146) 

Indeed. differentiating with respect to AI. we obtain 

" 
-8a~ = leo 8i(X)exp{-t Ak8k(X)}dX = Z i 81(x)/(x)dx 

AI -eo i-I J-eo 
This yields 

1 az a 
--- = --1nZ = 111 

Z 8AI 8AI 
i = 1 •... ,n (14-147) 

The above is a system of n equations equivalent to (14-142) and can be used to determine 
the n parameters AI. 
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FIGURE 14-16 

~ In the coin experiment of Example 14-16, we assume that p is a random variable 
with known mean". Since f(p) = 0 outside the interval (0, I), (14-143) yields 

{ = {Ae-'J..p 0 ~ p ~ 1 
J p) 0 otherwise 11 1- e-). 

Z = e-'J..Pdp = ---
o A 

The constant A is determined from (14-147): 

1 0 Z 1 - e-'J.. - Ae-'J.. 
-Z OA = A(1-e->') = YJ 

In Fig. 14-16, we plot A and f(p) for various values of '71. Note that if TJ = 0.5, then 
A = 0 and f{p) = 1. ~ 

~ A collection of particles moves in a conservative field whose potential equals V (x). 
For a specific t, the x component of the position of a particle is a random variable x with 
density f (x) independent of t (stationary state). Thus the probability that the particle is 
between x and x + dx equals f (x) dx and the total energy per unit mass of the ensemble 
equals 

1= f: V(x)f(x)dx = E{V(x)} 

We shall find f (x) under the assumption that the function 8 (x) = V (x) and the mean I 
of V(x) are given. Inserting into (14-143), we obtain 

where 

f(x) = 1.e->.V(X) 

Z 

Z = 100 e-'J..V(x) dx 
-00 

- V (x)e-l.V(X) dx = I 1100 

Z -00 

(14-148) 

Special Cose. In a gravitational field, the potential V (x) = Mgx is proportional to the 
distance x from the ground. Since f (x) = 0 for x < 0, it follows from (14-148) that 

f(x) = Mg e-Mgx/1U(x) 
I 

The resulting atmospheric pressure is proportional to 1 - F(x). ~ 
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~ We shall find I(x) such that E{x2} = mz. With gl (x) = xl, (14-143) yields 

I(x) = Ae-).x2 (14-149) 

Thus, if the second moment m2 of a random variable x is specified, then x is N (0, m:!). 
We can show similarly that if the variance 0'2 ofx is specified, then x is N(,q, (12) where 
"I is an arbitrary constant. 

SpecUd Case. We consider again a collection of particles in stationary motion and we 
denote by v x the x component of their velocity. We shall detennine the density I (vx ) of 
Vx under the constraint that the corresponding average kinetic energy Kx = E{M~/2} 
is specified. This is a special case of (14-149) with m2 = 2Kxl M. Hence 

ICvx) =.j M e-Mu2/4K" 
47rKx 

Discrete type random variables. Suppose that a random variable x takes the values Xt 
with probability Pt. We shall use the MEM to determine Pk under the assumption that 
the expected values 

E{8j(X)} = L8j(Xk)Pk = "I; (14-150) 
k 

of the n known functions gj(x) are given. 
Using (14-37). we can show as in (14-143) that the unknown probabilities equal 

Pk = A exp{ -Algi (Xk) - .•. - Angn(Xk)} (14-151) 

where 
1 
- = Z = LeXp{-[AI81(Xk) + ... + All gil (Xk)]} 
A k 

(14-152) 

The n constants Ai are determined either from (14-150) or from the equivalent 
system 

1 az 
-2 8Aj ="1; i = 1 • ...• n (14-153) 

~ A die is rolled a large number of times and the average number of dots up equals 1'/. 
Assuming that "I is known. we shall determine the probabilities Pk of the six faces Ik using 
the MEM. For this purpose, we form a random variable x such that X(fk) = k. Clearly, 

E{x} = PI + 2P2 + ... + 6P6 = "I ~ 

With g(x) = x. it follows from (14-151) that 
1 _ 

Pk = -e k)' 
Z 

where w = e-).. Hence 

wk W + 2wz + ... + 6w6 

Pk = = 7J 
w+w2 +"'+W6 w+w2 + .. ·+w6 

as in Fig. 14-17. We note that if 17 = 3.5, then Pk = i. ~ 
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FIGURE 14-17 

Joint density. The MEM can be used to determine the density I(X) of the random 
vector X: [Xl •••.• XM] subject to the n constraints 

E{g;(X)} = 1'1; i = 1 • .... n 

Reasoning as in the scalar case. we conclude that 

I(X) = Aexp{-Algl(X) - ... -Angn(XH 

Second-Order Moments and Normality 

We are given the correlation matrix 

R=E{X'X} 

(14-154) 

(14-155) 

(14-156) 

of the random vector X and we wish to find its density using the MEM. We maintain 
that I(X) is normal with zero mean as in (7-58) 

1 
I(X) = exp { - ~XR-l XI} (14-157) 

J(21C)M f:J. 

Proof. The elements Rjk = E{XjXk} of R are the expected values of the M2 random 
variables gjk(X) = XjXk. Changing the subscript i in (14-154) to double subscript, we 
conclude from (14-155) that 

I(X) = A exp { - ~AjkXjXk} (14-158) 
).k .; 

This shows that I (X) is nonnal. The M2 coefficients A jk can be determined from the M2 
constraints in (14-156). As we know [see (8-58)], these coefficients equal the elements 
of the matrix R-I/2 as in (14-157). 

These results are acceptable only if the matrix R is positive definite. Otherwise. 
the function I(X) in (14-157) is not a density. The p.d. condition is. of course, satisfied 
if the given R is a true correlation matrix. However, even then (14-157) might not be 
acceptable if only a subset of the elements of R is specified. In such cases, it might 
be necessary, as we shali presently see, to introduce the unspecified elements of R as 
auxiliary constraints. 
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Suppose. first. that we are given only the diagonal elements of R: 

E{x;} = Rj; i = 1 •...• M 

Inserting the functions gi/(x) = xl into (14-155). we obtain 

!(X) = A exp { - Al1xf _ ... - }"MMX~} 

(14,159) 

(14-160) 

This shows that the random variables XI are normal. independent, with zero mean and 
variance Ru = 1/2/...1/. 

This solution is acceptable because R/i > O. If, however, we are given N < M2 
arbitrary joint moments, then the corresponding quadratic in (14-158) will contain only 
the terms x jXIc corresponding to the given moments. The resulting! (X) might not then 
be a d(msity. To find the ME solution for this case. we proceed as follows: We introduce 
as constraints the M2 joint moments R j/o where now only N of these moments are given 
and the other M2 - N moments are unknown parameters. Applying the MEM, we obtain 
(14-157). The corresponding entropy equals [see (14-111») 

H(xlt .... XM) = InV(2:rre)M.6. .6. = IRI (14-161) 

This entropy depends on the unspecified parameters of R and it is maximum if its 
determinant .6. is maximum. Thus the random variables Xi are again normal with density 
as in (14-157) where the unspecified parameters of R are such as to maximize .6.. 

Note From the developments just discussed it follows that the determinant t:. of a correlation matrix R is 
such that 

Il::: RII'" RMM 

with equality iff R is diagonal. Indeed, (14-159) is a restricted moment set; hence the ME solution (14-160) 
maximizes t:.. 

Stochastic processes. The MEM can be used to determine the statistics of a stochastic 
process subject to given constraints. We shall discuss the following case. 

Suppose that XII is a WSS process with autocorrelation 

R[m) = E{xlI+mxlI } 

We wish to find its various densities assuming that R[m) is specified either for some or 
for all values ofm. As we know [see (14-158)] theMEM leads to the conclusion that. in 
both cases, Xn must be a normal process with zero mean. This completes~the statistical 
description ofXn if R[m] is known for all m. If, however. we know R[m) only partially, 
then we must find its unspecified values. For finite-order densities. this involves the 
maximization of the corresponding entropy with respect to the unknown values of Rlm) 
and it is equivalent to the maxiniization of the correlation determinant .6. [see (14-161 »). 
An important special case is the MEM solution to the extrapolation problem considered 
in Sec. 12-3. We shall reexamine this problem in the context of the entropy rate. 

We start with the simplest case: Given the average power E{x~} = R[O] ofXn. we 
wish to find its power spectrum. In this case. the entropy of the random variables 

"n •... ,Xn+M 
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is maximum if these random variables are normal and independent for any M [see 
(14-160)], that is, if the process Xn is normal white noise with R[m} = Rl018[m}. 

Suppose now that we are given the N + I values (data) 

R[O], ... , R[NJ 

of R[m] and we wish to find the density I(X) of the M + I random variables XII' •••• 

Xn+M. If M ~ N, then the correlation matrix of X is specified in terms of the data and 
I(X) is given by (14-157). This is not the case, however, if M > N because then only 
the center diagonal and the N upper and lower diagonals of the correlation matrix 

R[O] ······.·::··.···.:····:··:···.···R[N) ~ .. ~~ .. .... ~RlMl· . .' '. :.': '.' '. .... " 
.. : .. : .. .':.:~: :,:: ... :,,': ::.: .. ,'.: ::: .... : ........ "::":'::' ': . ::.. . Unb,ow;;:' 

_ ~:: .:::~;": .':.,;::: : .. , ~,~:; ~ ;., .: .. ,::~ .. H f7. 
R[M] ~.; ...... :: ....... : .. ,.,' •. : ...... : •. -: ..• ,.:- .• ::R[O) .. 
,-~ : .. ' ... : ... :<:.' .'. 

are known. To complete the specification of RM+1t we maximize the determinant aM+1 
with respect to the unknown values of R[m]. . 

~ Given R[O] and R[l}, we shall find R[21 using the maximum determinant method. 
In this case, 

Hence 

R[O] R[I] R[2] 
a = R11] R[O} R[l] 

R[2} R[l} R[O] 

a~~2] = -2R[O}R[2] + 2R2[1] = 0 R[2] = R2[t} 
R[O] 

THE MEM IN SPECTRAL ESTIMATION. We are given again R[m} for Iml ~ N. The 
pow~spectrum ~ 

00 

Sew) = R[O} +2 LR[m1cosmlU 
m=l 

of Xn involves the values of R [m} for every m. To find its unspecified values, we maximize 
the correlation determinant aM and examine the form of the resulting R[m] as M -+ 00. 

This is equivalent to the maximization of the entropy rate H (x) of the process x". Using 
this equivalence, we shall develop a more direct method for determining Sew). 

. As we know, the MEM leads to the conclusion that under the given constraints 
(second-order moments), the process Xn must be normal with zero mean. From this and 
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(14-130) it follows that 

1 I1f H(x) = InJ21re + -4 lnS(w) dw 
1r -1f 

The entropy rate H(x) depends on the unspecified values of Rlm] and it is maximum if 
- If 
~ __ 1 1 _1_ -jmll)d -0 
8R[m] - 21r -1f Sew) e w - Iml>N (14-162) 

This shows that the coefficients of the Fourier series expansion of I/S(w) are 0 for 
Iml > N. Hence 

1 N 

Sew) = L c/ce-jlu» 
Ic=-N 

Factoring the resulting S(z) as in (11-6), we obtain 

I 
Sew) = lbo + ble-jll) + ... + bNe-JNIII12 (14-163) 

This is the spectrum obtained in Sec. 12-4 [see (12-182)] and it shows that the MEM 
leads to an AR model. The coefficients bk can be obtained either from the Yule-Walker 
equations or from Levinson's algorithm. 

Note The MEM also has applications in nonprobabilistic problems involving the detenninatioo ofunk/lown 
parameters from insufficlentdala.ln suchcases, probabilisnc models arecreated where the unknown parametea 

take the form of statistical variables that are determined with the MEM. We should point oat, however, that 
the results obtained are not unique because more than one model can be used in the same problem. In the 
following, we illustrate this approach usinJ as an example the one-cIimensionai form of an important problem 
in crystIlllbgraphy. 

A determbiistie application of the MEM. We wish to find a nonneptive periodic function I(x) with 
penod21r: 

co 

o < lex} = L c"eln• 
_-co 

having access only to partial information about its Fourier series coefficients 

The truncation problem We assume that Cn is known only for Inl :S N. 

Solution 1. We Cl'88IC the followinJ probabilistic m<idel: In the interval (-71:, 71:), the anknown fUnction f (x) 
is the density of a random variable x taking w\ues between -71: and 71:. We determine lex} so as to maximize 
the entropy 

of x. This yields [see (14-141») 

I~) = ex)) {-I + t Yllelnx } __ N 

The constants YII are detennlned in terms of the known values of CIt. 
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Solution 2. We assume that I(x) is the power spectrum'ofa stochastic process x.. and we determine I(x) so 
as to maximize the entropy tate (we omit incidental constants) 

1= 111" In/(x)dx 
-It 

of XH , In this case, I(x) is given by [see (14-163)] 

I 
(x) = ----,~--

, "",N d ej.x 
L..J,,--N " 

The conSlants d" are again delermined ill lerms of the known values of c. (Levinson's algorithm). 
The phase problem We assume that we know only the amplitudes r. of Cn for In[ !5 N. 
10 solve the problem. we fonn again the integral I, either as the enttopy or as the enttopy rate, and we 

malumize i! with respect to the unknown parameters that are now the coefficients c" (amplitudes and phases) 
for [/II > N. and the phase "" for Inl !5 N. An equivalent approach involves the determination of lex) as 
in the truncation problem, treating the phases "" as parameters, and the maximization of the resulting I with 
respect to these parameters. In either case, the required computations are not simple. 

14-5 CODING 

Coding belongs to a class of problems involving the efficient search and identification of 
an object ~I from a set S of N objects. This topic is extensive and it has many applications. 
We shall present here merely certain aspects related to entropy and probability, limiting 
the discussion to binary instantly decodable codes. The underlying ideas can be readily 
generalized. 

Binary coding can be also described in terms of the familiar game of 20 questions: 
A person selects an object ,; from a set S. Another person wants to identify the object by 
asking "yes" or "no~' questions. The purpose of the game is to find 'i using the smallest 
possible number of questions. 

The various search techniques can be described in three equivalent forms: (a) as 
chains of dichotomies of the set S; (b) in the form of a binary tree; (c) as binary codes 
(Fig. 14-18). We start with an explanation of these approacbes, ignoring for the moment 
optimality considerations. The criteria for selecting the "best" search method will be 
developed later. 

Set dichotomies. We subdivide the set S into two Donempty sets Ao and AI (tirst­
generation sets). We subdivide each of the sets Ao and At into two nonempty sets 
Aoo. AOI and AID. All (second-generation sets). We continue with such dichotomies 
until the final sets consist of a single element each. 

The indices of the sets of each generation are binary numbers form~ by attaching 
o or 1 to the indices of the preceding generation sets. 

In Fig. 14-18, we illustrate the above with a set consisting of nine elements. We shall 
use the chain of sets so formed to identify the element '7 by a sequence of appropriate 
questions (set dichotomies): Is it in Ao? No. Is it in AIO? No. Is it in Auo? Yes. Is it in 
AlIoo? Yes. Hence the unknown element is '7 because AllOO = U'7}. 

Binary trees. A tree is a simply connected graph consisting of line segments called 
branches. In a binary tree, each branch splits into two other branches or it terminates. 
The points of termination are the endpoints of the tree and the starting point R is its root 
(Fig. 14-18). A path is a part of the tree from R to an endpoint The two branches closest 
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FIGURE 14·18 

to the root are the first-generation branches. They split into two branches each, forming 
the second generation. Since each branch splits into two or it terminates. the number of 
branches in each generation is always even. The length of a path is the total number of 
its branches. 

There is one-to-one correspondence between set dichotomies and trees. The kth· 
generation sets corresp.ond to the kth·generation branches and each set dichotomy to the 
splitting of the corresponding branch. The terminal sets {Si} correspond to the terminal 
branches and the elements Si to the endpoints of the tree. The indices of the sets are also 
used to identify the corresponding branches where we use the following convention: 
When a branch splits. 0 is assigned to the left new branch and 1 to the right The index 
of a terminal branch is also used to identify the corresponding endpoint Si. Thus each 
element Si of S is identified by a binary number Xi (Fig. 14-18). The number of digits li 
of Xi equals the length of the path ending at Si. This number also equals the number of 
questions (dichotomies) required to identify Si. 

Binary codes. A binary code is a one-to-one correspondence between the elements Si 
of a set S and the elements Xi of a set X = {x 1 , X2, ... } of binary numbers. Encoding is 
the process of constructing such a correspondence. e 

The set S will be called the source and its elements Si the source words. The corre· 
sponding binary numbers Xj will be called the code words. The binary digits 0 and 1 form 
the code alphabet. The length Ii of a code word Xi is the total number of its binary digits. 

A message is a sequence of source words 

Sil ... Sit ... Si. Sit E S (14.164) 

The sequence of the corresponding code words 

(14·165) 

is a coded message. 
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Tree contraction 

FIGURE 14·19 

The indices of the terminal elements of a tree, or, equivalently, of a chain of set 
dichotomies, specify a code. Codes can, of course, be formed in other ways; however, 
other codes will not be considered here. The term code will mean a binary code specified 
by a tree as above. 

Ii1 Fig. 14·18, we show the code words Xi of a source S consisting of N =9 
elements, and the corresponding word lengths Ij. 

.. If a source S has N words and the lengths of the corresponding code words equal 
Ii, then 

N 1 
L21i = 1 
;=1 

(14-166) 

Proof. The last·generation branches of the tree are tenninal and they form pairs. The two branches 
of one such pair are the ends of two paths of length 1, (Fig. 14·19). If they are removed, the tree 
contracts into a tree with N - 1 endpoints. In this operation. the two paths are replaced with one 
path oflength I, - 1 and the two terms r t, in (14-166) are replaced with the term 2-(/'-1). Since 

(14-167) 

the sum does not change. Thus the binary length sum in (14-]66) is invariant to a contraction. 
Repeating the process until we are left with only two first-generation branches, we ~tain (14-166) 
because 2-1 + 2-1 = 1. -4lI 

~ Given N integers 1; satisfying (14-166), we can construct a code with lengths Ij • 

Proof. [t suffices to construct a binary tree with path lengths 1/. From (14-166) it follows that if 
I, is the largest of the integers II, then the number n oflengths that equalir is even. Using n = 2m 
segments, we form the rth (last) generation branches of our tree. If each of the m pairs of integers 
1, is replaced by a single integer lr - 1 and all others are not changed, the resulting set of numbers 
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FIGURE 14-20 

will satisfy (14-166) [see (14-167)]. We can, therefore, continue this process until we are left with 
only two terms. These terms yield the two first-generation branches. This procedure is illustrated 
in Fig. )4-20 for N = 8. ~ 

Decoding. In the earlier discussion. we presented a method for encoding the words ~i 
of a source S. Encoding of an entire message of the form (14-164) can be obtained by 
encoding each word successively. The result is a coded message as in (14-165). Decoding 
is the reverse process: Given a coded message, find the corresponding source message. 

Since word coding is a one-to-one correspondence between ~i and Xi , the decoding 
of each word of a message is unique. However. an entire message cannot always be so 
decoded because there is no space separating the code words (this would require an 
additional letter in the code alphabet). The problem of separation does not exist for 
codes constructed through dichotomies (they are, we repeat. the only codes considered 
here) because such codes have the following property: No code word is the beginning 
of another code word. This property is a consequence of the fact that in any tree, each 
path terminates at an endpoint; therefore, it cannot be part of another path. Codes with 
this property are called "instantaneous" because they are instantly decodable; that is, if 
we start from the beginning of a message, we can identify in real time the end of each 
word without any reference to the future. 

~ We wish to decode the message 

10110100001010001011111000000010 

formed with the code shown in Fig. 14-18. Starting from the beginning. we identify the 
code words by underlying them with the help of the table of Fig. 14-18: 

10 1101 000 010 10 0010 ill 1100 000 0010 

The corresponding source message is the sequence 

~6~8~J ~4~6~2~9~7~1 ~2 
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Note We have identified each source word with a single symbol C; It is possible, however, that Cl might be a 
grouping of other symbols. For example, !he SOUR:e S might consist of: Allihe limen of !he English alphabet, 
certatn frequently used words (for instance, the word the) and even a number of common phrases like happy 
birthday. Such sources are equivalent to single-symbol sources if each word IS viewed as a single element. 

Optimum Codes 

In the absence of prior information, the two subsets of each set dichotomy are so cho­
sen as to have nearly equal elements. The resulting code lengths are then nearly equal 
to log N. If, however. prior information is available, then more efficient codes can be 
constructed. The information is usually given in terms of relative frequencies and it is 
used, to form codes with minimum average length. Since relative frequencies are best 
described in terms of probabilities. we shall assume from now OD that the source S is a 
probability space. 

DEFINITIONS. A random code is a process of assigning to every source word {i a binary 
number Xi. 

Since ~i is an element of the probability space S, a random code defines a random 
variable x such that 

X({i) = Xi 

The length of a random code is a random variable L such that 

L(s/) = li 
where li is the length of the code word Xi assigned to the element S/. 

(14-168) 

The expected value of L is denoted by L and it is called the average length of the 
random code x. Thus 

(14-169) 

where Pi = PIx = x;} = PIs;}. 

Optimum code. An optimum code is a code whose average length does not exceed the 
average length of any other code. A basic objective of coding theory is the determination 
of such a code. Optimum codes have these properties: 

1. Suppose that ~a and ~b are two elements of S such that 

Pa = P{Sa} Pb = P{Sb} l(sa) = la 

We maintain that if the code is optimum and 

Pa > Pb (14-170) 

Proof. Suppose that la > lb' Interchanging the codes assigned to the elements Sa and 
Sb, we obtain a new code with average length 

L, = L - (Pala + Pb1b) + (Pa1b + Pbla) = L - (Pa - Pb)(la -lb) 

Andsince(pa - Pb)(la -Ib) > 0, weconcludethatL\ < L. This,however, is impossible 
because L is the optimum code length; hence la =:: lb. 
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Repeated application of (14-170) leads to the conclusion that if 

PI ~ P2 ~ ... ~ PN (14-171) 

2. The elements (source words) with the two smallest probabilities PN-J and PN are 
in the last generation of the tree; that is, their code lengths are IN-I and IN. 

Proof. This is a consequence of (14-171) and the fact that the number of branches in 
each generation is even. 

The following basic theorem shows the relationship between the entropy 
N 

H(V) = - LPi log Pi 
i=1 

of the source word partition V and the average length L of an arbitrary random code x. 

H(V) :::: L (14-172) 

Proof. As we have seen from (14-166), if Ii are the lengths of the code words of x and q, = 1/2';, 
then the sum of the qi 's equals 1. With a; = Pi and bi = qi it follows, therefore, from (14-37) that 

- 2:P; logp; ~ - LPi logq; = 2: Pi 1/ = L (14-173) 
/ / 

and (14-172) results. 
In general, H (V) < L . We maintain, however, that H (V) = L iff the probabilities P; are 

binary decimals, that is, iff Pi = 1 /2ft; • 

Proof. If H(V) = L, then (14-173) is an equality; hence Pi = q/ = 1/2'/ [see (14-37)] and our 
assertion is true because the lengths Ii are integers. 

Conversely, if Pi = 1/2n, and ni are integers, then we can construct a code with lengths 
I, = ni because the sum of the Pi'S equals I. The length L of this code equals H(V). In other 
words, if all Pi'S are binary decimals, then the code with lengths I, = ni is optimum. ~ 

Shannon, Fano, and Huffman Codes 

The last theorem gives us a low bound for the average code length L but it does not say 
how close we can come to this bound. At the end of the section we show that, if we 
encode not each word but an entire message, then we can construct codes with average 
length per word less than H (V) + e for any e > O. ~ 

Now, we present three well-known codes including the optimum code (Huffman). 
The description ofth~e co~es is clarified in Example 14-25. 

THE SHANNON CODE. As we noted, if all probabilities Pi are binary decimals. then 
the code with lengths Ii = -'log Pi is optimum. Guided by this, we shall construct a code 
for all other cases. 

Each Pi specifies an integer ni such that 

1 I 
2"1 ~ Pi < 2"1- 1 (14-174) 
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where Pi '> 1/2"/ for at least one Pi (assumption). With nm the largest of the integers 
ni, it follows from (14-174) that 

NIl 
L 2"1 =s 1 - 2".. (14-175) 
1=1 

because the left side is a binary integer smaller than 1. If, therefore, nm is changed to 
nm - I, the resulting value of the sum in (14-175) will not exceed 1. We continue the 
process of reducing the largest integer by 1 until we reach a set of integers Ii such that 

N 1 L 2// = 1 1; =s H; (14-176) 
;=1 

With 'this set of integers we construct a code and we denote by La its average length. 
Thus 

N N 
LQ = LP;l; ~ LP;n; 

1=1 i-I 

We maintain that 

H(Y) =s La < H(Y) + 1 (14-177) 

Proof. From(14-174)itfollowsthatnl < -logpi + 1. Multiplying by Pi and adding, 
we obtain 

N H 

LPln; < LPi(-logpl + 1) = H(V) + I 
1=1 1=1 

and (14-177) results [see (14-172)]. 

THE FANO CODE. We shall describe this code in terms of set dichotomies based on the 
following rule of subdivision. We number the probabilities PI in descending order 

PI ~ P2 ~ ... ~ PN (14-178) 

and we select the sets Ao and A I of the first generation so as to have equal or nearly 
equal probabilities. To do so, we determine k such that 

• 
Pi + ... + Pic ~ 0.5 =s Pk+1 + ... + PH 

and we set Ao equal to g'" ... , ~k) or to {~lt ... , ~k+.}. The same rule is used in all 
subsequent subdivisions. As we see in Example 14-25. the length L" 8f the resulting 
code is close to the Shannon code length La. 

We note that, since there is an ambiguity in the choice of the subsets in each 
dichotomy. the Fano code is not unique. 

THE HUFFMAN CODE. We denote by i1 the optimum N -element code and by L ~ 
its average length. We shall determine x~ using the following operation: We arrange 
the probabilities Pi of the elements ~i of S in descending order as in (14-178) and 
we number the corresponding elements ~l accordingly. We then replace the last two 
elements ~N-l and ~N with a new element and we assign to this element the probability 
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PN-l + PN· A new source results with N - 1 elements. This operation will be called 
Huffman contraction. 

In the table of Example 14-25, the new element is identified by a box in which the 
replaced elements are shown. 

Rearranging the probabilities of the new source in descending order, we repeat the 
Huffman contraction operation until we reach a set with only two elements. 

To each element ~i of the source S, we shall assign a code word XI starting from the 
last digit: We assign the numbers 0 and 1, respectively, to the last digits of the code words 
of the elements SN-I and {N. At each subsequent contraction, we assign the numbers 0 
and 1 to the left of the partially completed code words of all elements that are included 
in the last two boxes. 

The code so formed (Huffman) will be denoted by x';. and its average length by 
L';.. We shall show that this code is optimal. 

Proof. The proof of the optimality is based on the folIowing observation. We can readily 
see thatthe lasttwo code words XN-I and XN have the same lengthlr • In Example 14-25, 

N=9 Xg = 00000 X9 = 00001 IF = 5 

If we replace these two words with a single word consisting of their common part, we 
obtain the Huffman code X';._I forthe set of N - 1 elements and the code length of the 
new element equals [,-1' This leads to the conclusion that 

L'N - (PN-I + PN)lr = LN_1 - (PN-I + PN)(Lr - 1) 

Hence 

LN = LN_1 + PN-I + PN 04-179) 

In the example 

7 7 

L9 = LPiLi +5P8 +5P9 L8 = L Pili +4(ps + P9) 
1=1 ;=1 

Induction The Huffman code is optimum for N = 2 because there is only one 
code with two words. We assume that it is optimum for every source with k ~ N - 1 
elements and we shall show that it is optimum for k = N. Suppose that there is an 
N -element source S for which this is not true, that is, suppose that 

LO < LC 
N N (14-180) 

As we know, the two elements {N-I and ~N with the smallest probabilities are in the 
last-genet:ation branches of the optimum code tree. If they are removed. the contracted 
tree specifies a new code with length L N- I • Reasoning as in (14-179), we conclude with 
(14-180) that 

LN-l + PN-I + PN = L~ < LN = LN_1 + PN-I + PH 

hence LH-I < L';._I' But this is impossible because the Huffman code of order N - I 
is optimum by assumption. 
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~ We shall describe the above codes using as source a set S with nine elements. Their 
probabilities are shown in the table below: 

9 

Pi 0.04 

The resulting entropy equals 

9 

H(V) = - L:Pi log Pi = 2.703 
;=1 

Arbitrary code We form a code using a chain of dichotomies chosen arbitrarily 
as in Fig. 14-19. In the table below we show the code words and their lengths. 

i I 2 3 4 5 

Xi 000 0010 0011 010 011 

I; 3 4 4 3 3 

6 7 

10 1100 

2 4 

8 

1101 

4 

9 

111 

3 

9 

L = L: Pill = 3.40 
1.1 

Shannon code In the table below we show the integers ni determined from 
(14-174) and the required reductions until the final lengths i; are reached. The cor­
responding code tree is shown in Fig. 14-20. 

Pi 0.22 0.19 0.15 0.12 0.08 0.Q7 I 0.07 0.06 I 0.04 
N 

1 1 I 1 1 1 
L:2!' 23 :5 PI < 22 24 :5 Pi < 23 2s :5Pi<24 
/",1 

ni 3 3 3 4 4 4 4 5 5 12/16 
3 3 3 3 3 4 4 4 4 14/16 

i/ 3 3 3 3 3 3 3 4 4 1 
Xi 000 001 010 011 100 101 110 1110 1111 Ltl =3.1 

Fano code In the table below we show the subsets obtained with the Fano di­
chotomies, and their probabilities. The last-generation sets are the elements ~l of S; their 
probabilities are shown on the first row of the table. The dichotomies start with 

P(Ao} = 0.22 + 0.19 + 0.15 = 0.56 

Pi 0.22 0.19 0.15 0.12 0.08 0.07 o.en 0.06 0.04 
Ao 0.56 AI 0.44 
Aoo AOI 0.34 Alo 0.20 All 0.24 

AolO AOll AlOO AIOI A 110 0.14 Am 0.10 

A 1100 AIIOl AJllo AIlIl 

'I '2 '3 ~4 {5 ~6 ~1 ~a ~9 
Xj 00 010 011 100 101 1100 1101 1110 1111 
I; 2 3 3 3 3 4 4 4 4 Lb =3.02 

Optimum code In the table below we show the original set 89 consisting of nine 
elements and the sets obtained with each Huffman contraction. The elements ti are 
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identified by their indices and the combined elements by boxes. Each box contains all 
elements ~I of the original source involved in each contraction, and the evolution of 
their code words Xj starting with the last digit. The rows below each Sj line show the 
probabilities of the various elements of SI . For example, the number 0.10 in the line below 
S, is the probability of the box (element of S,) that contains the elements ~8 and ~g. 

The column at the extreme right shows the sum of the two smallest probabilities of 
the elements in Sj. This number is used to form the row Sj+l by reordering the elements 
of Sj. 

Evolution of Huffman code 

~ 1 2 3 4 5 6 7 8 9 

.PI.9 0.22 019 0.15 0.12 008 0,07 0.07 0.06 0.04 0.10 

Sa 1 2 3 4 8 9 5 6 7 
0 1 

PI.S 0.22 019 0.\5 0.12 0.10 O.OS 0.Q7 0.07 0.14 
S, 1 2 3 6 7 4 8 9 5 

0 1 0 1 

PI.' 0.22 0.19 0.15 0.14 0.12 0.10 OOS 0.18 

S6 1 2 8 9 5 3 6 7 4 
00 01 t 0 1 

PI.6 0.22 0.19 018 015 0.14 0.12 0.26 

Ss 6 7 4 1 2 8 9 5 3 
00 01 1 00 01 1 

PI.S 0.26 0.22 0.19 0.18 0.15 0.33 
S4 8 9 5 3 6 7 4 1 2 

000 001 01 I 100 01 1 

PI.4 0.33 0.26 0.22 0.19 0.41 
S3 1 2 8 9 5 3 6 7 4 

0 I 000 001 01 I 00 01 1 

PI. 3 0.41 0.33 0.26 0.59 
S2 8 9 5 3 6 7 4 1 2 

0000 001 001 01 100 101 11 0 1 

Pi.2 0.59 0.41 1 
$1 8 9 5 3 6 7 4 1 2 

00000 00001 0001 001 0100 0101 011 10 11 

The completed code words XI taken from the last line of the table and their code 
lengths l; are listed below. 

1 2 3 4 5 6 7 8 9 c 
Xi 10 11 001 011 0001 0100 0101 00000 00001 LO = 3.01 

I; 2 2 3 3 4 4 4 5 5 

The Shannon Coding Theorem 

In the earlier discussion. we considered only codes of the elements ~i of a set S and we 
showed that the optimum code is between H(V) and H(V) + 1: 

H(V) ~ LO ~ H(V) + 1 (14-181) 
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This follows ftom tl4-172) and (14-177). We show next that if we encode not merely 
single words but entire messages, then the code length per word can be reduced to less 
than H(V) + E for any e > O. . 

A message of length n is any element of the product space sn. The number of such 
messages is Nn and a code of the space sn is a correspondence between its elements 
and a set of Nil binary numbers. This correspondence defines the random variable Xn 
(random code) on the space sn and the lengths of the code words form another random 
variable L" (random code length). The expected value Ln of Ln is the average code 
length. From the definition it follows that Ln is the average number of digits required to 
encode the elements of S". The ratio 

- Ln 
L = - (14-182) 

n 
is the average code length per word. The term word. means, of course, an element of S. 

We shall assume that sn is the space of n independent trials. 

~ We can construct a code of the space St. such that 

- 1 
H(V) ::; L ::; H(V) + - (14-183) 

n 

Proof. We shaU give two proofs. The first is a direct consequence of (14-181). The second is 
based on the concept of typical sequences. 

1. Applying the earlier results to the source sn, we construct a code L" such that 

H(Y") ::: L. < H(yn) + 1 (14-184) 

This yields (14-183) because L" = nT. and H(yn) = nH(Y) [see (14-67)}. 

2. As we know the space S· can be divided into two sets: the set T of all typical sequences and 
the set T of all rare sequences. To prove (14-183), we construct a code tree consisting of 
2nH(V) - I short paths of length I, = "H (Y) and 2' paths of length I, + l. The short paths 
are used as the code words of the typical sequences and the long paths for the long 
sequences (Fig. 14-21). Since P(T} ::::: 1 and P(T) ::::: 0, we conclude that the average 
length of the resulting code equals 

Lit = l,P(T) + (1 + 1,)P(T) ::::: I, = nH(Y) 

Thus T. ::::: H(V) and (14-183) results. 

it L I I 

: --j 
I .,. ... _ ... : __ ... 

r---l, = nH(A)----l ,.e::......... __ ... 
: I ", ..... :: __ ... 

I __ -~, ... 

I ~"' __ ~" ......... -:..--: ., '............. -- ... 
1 ;' ......... _ ... _-_ .. 

., --- .. 
- Typical paths 

2"-1 + 2'= Nil 

- - - Rare path 

Number of rare paths 2' 

Number of typical paths ... 2nH(A.) - I 

FIGURE 14·21 
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leX \~IPLE 14-26 

We note that (14-184) holds even jf the trials are not independent. In this case, the 
theorem is true if H (V) is replaced by H (V") / n. 41 

14-6 CHANNEL CAPACITY 

We wish to transmit a message from point A to point B by means of a communications 
channel (a telephone cable, for example). The message to be transmitted is a stationary 
process Xn generating at the receiving end another process y". The output Yn depends not 
only on the input Xn but also on the nature of the channel. Our objective is to determine the 
maximum rate of information that can be transmitted through the channel. To simplify 
the discussion, we make the following assumptions: 

1. The channel is binary; that is, the input x" and the output y" take only the values 0 
and 1. 

2. The channel is memoryless; that is. the present value of Yn depends only on the 
present value of Xn • 

3. The input x" is strictly white noise. 

From assumptions 2 and 3 it follows that Yn is also white noise. 

4. The messages are transmitted at the rate of one word per second. 

This is a mere normalization stating that the duration T of each transmitted state 
equals one second. 

... In Fig. 14-22 we show a simple realization of a channel as a system with input XII 

and output Yn' The input to the physical channel is a time signalx(t) taking the values E 
and - E (binary transmission). These values correspond to the two states 1 and 0 of XI" 

The received signal yet) is a distorted version of x(t) contaminated possibly by noise. 
The system output YII is obtained by some decision rule (detector) translating the time 
signal yet) into a discrete-time signal consisting ofO's and l's. .... 

Noiseless Channel 

We shall say that a channel is noiseless9 if there is a one-to-one correspondence between 
the input X,I and the output y". For a binary channel this means that if"" = O. then 
Yn = 0; if x" = I, then y" = 1. 

In a given channel. the uncertainty per transmitted word equals the entropy rate 
H (x) = 'H (x) of the input XII' If the channel is noiseless, then the observed output YII 
determines Xn uniquely; hence it removes this uncertainty. Thus the rate of transmitted 
information equals H(x). 

'This definition does not lead to any conclusion about the actual presence of noise in the channel. 
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Channel 

x~ 1 I x(l) I Physical I y(l) I ~ Y /I 
~ Modulator I Detector ~ 

.. .1001.. ~ I channel I ~ I ... 1001. .. 

-E 

FIGURE 14-22 

DEFINITION OF CHANNEL CAPACITY. The maximum value of H(x), as x ranges 
over all possible inputs, is denoted by C and is called the channel capacity 

C =maxH(x) 
x. 

(14-185) 

It appears that C does not depend on the channel but that is not so because the 
channel determines the number of the input states. If it is binary. then X" has two possible 
states with probabilities p and q = 1 - P. respectively; hence 

H(x) = -plogp - (1- p)1og(1- p) = h(p) (14-186) 

where h(p) is the function of Fig. 14-2. Since h(p) is maximum for p=O.5 and 
h (0.5) = 1. we conclude that the capacity of a binary noiseless channel equals 1 bit/so 

Similarly. if the channel accepts N input states. then its capacity equals log N bit/so 

RATE OF INFORMATION TRANSMISSION. We repeat: The channel transmits mes­
sages at the rate of 1 word/so It transmits information at the rate H (x) bits/so This rate 
depends on the source and it is maximum if the two states of the source are equally likely. 

1:;." The maximum rate of 1 bit/s can be reached even if the input Xn is arbitrary, provided 
that it is properly encoded prior to transmission. 

Proof. I. An m-word message is a binary number with m digits. There are 2'" such messages 
forming the space S': and every realization of the input x,. is a sequence of such messages. We 
encode optimally the space S;' into a set of binary numbers i" using the techniques of the last 
section (Fig. 14-23). The number of digits (code length) of each i" is a random variable Lilt with 

Message 
1001 ... 111 
~m-t 

FIGURE 14-23 

Coded message 

10 ... 01 
-..j Lm t-

Yn 
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DEFINITION 

mean L", = E{Lm }. As we know, 

mH(x) :5 Lon < mH(x) + I 04-187) 

Hence Lm ::::: H(x) for large m. A code word x,. requires Lon seconds to be transmitted because 
it consists of Lm binary digits. Hence the average time required to transmit the m-word messages 
of x" in code form equals Lm ::: mH (x) seconds. And since the information contained in each 
message equals m H (x) bits, we conclude that the average rate of information transmission equals 
mH(x)/mH(x) = 1 bit/s. 

Proof. 2. We have 2m messages of length m. In a direct transmission (not encoded), each mes­
sage requires the same transmission time: m seconds. However, of all these messages, only 2"'HIX) 

are likely to occur (typical sequences). To reduce the time of transmission, we encode all tyP­
ical sequences into words of length It ::: mH(x) as in Fig. 14-21. The rare sequences require 
longer codes; however, the probability of their occurrence is negligible. Hence the average time 
of transmission of each message is reduced from m seconds to m H (x) seconds. ~ 

Noisy Channel 

Due to a variety of factors, a physical channel establishes not a functional but a statistical 
relationship between the input x" and the output Y n. For a binary channel, this relationship 
is completely specified in terms of the probabilities 

P{Xn = O} = P P{Xn = I} = q 

of the two states of the input. and the conditional probabilities 

P{Yn = j Ix" = i} = Trij 

The probabilities of the output states are given by 

i, j = 0,1 

P{YII = I} = TrOIP +Trllq 

(14-188) 

(14-189) 

~ A noisy channel is a random system establishing a statistical relationship between 
the input Xn and the output Y II. 

For a memoryless channel, this relationship is completely specified in terms of 
the channel matrix n whose elements Trij are the conditional probabilities between the 
input states and the output states. For a binary channel 

n = [TrOO TrOJ] 
TrIO Trll 

h Troo + TrOI = I were 
TrIO + TrH = 1 

(14-190) 

The channel is called symmetrical if TrIO = TrOt = p. In a symmetrical channel, 
Troo = 7rll = 1 - P and 

n= [
1- P 

f3 
(14-191) 
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x{t) yet) 

- E roo- T "" 

0 T t T 

- '--
-E 

y" 0101010 -E 0 E v 

FIGURE 14-24 

~ To give some idea of the nature cjf the channel matrix, we show in Fig. 14-24 a simple 
version of a symmetrical channel. The input x(t) is a time signal as in Example 14-26, 
and the resulting output yet) is the sum 

yet) = x(t) + lin nT ~ t < nT +T (14-192) 

where lin is a sequence of independent random variables with density the even function 
f (v). The output states are determined as follows: 

{
I if y(t)::: 0 

y" = 0 if yet) < 0 

From this we conclude that the channel is symmetrical and 

.B = P{Yn = llx" = O} = roo f(v + E)dv = P{v > E} ~ . Jo 
CHANNEL CAPACITY. Prior to transmission, the uncertainty about the input Xn equals 
H (x) per word. In a noiseless channel, the observed output Yn reduces the uncertainty 
to O. This is not so, however, for a noisy channel because Yn does not determine XII 

uniquely. Knowledge of Yn reduces the uncertainty about Xn from H(x) to H(x I y) and 
the difference 

I (x, Y) = H (x) - H (x I y) (14-193) 

is the rate of information transmission. JO 

If the channel is noiseless, then H (x I y) = 0; hence I (x, y) = H (x). If the output 
YII is independent of the input, then H(x I y) = H(x); hence l(x, y) = O. In other words, 
such a channel is useJess (it does not transmit any infonnation). It 

~ The function I (x, y) depends on the matrix n and on the input x". The capacity C 
of a noi~y channel is the maximum value of 1 (x, y) as Xn ranges over all possible inputs 

C = maxl(x,y) 
x. 

(14-194) 

This is consistent with (14-185) because. for noiseless channels, 1 (x, y) = H(x). ~ 

IDnie conditional entropy H (x I y) is Shannon's equivocation. 
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FIGURE 14-25 
Binary symmetric channel 

.. We shall show that the capacity of a binary symmetrical channel with channel matrix 
as in (14-191) (Fig. 14-25) equals 

C = 1 - h(fl) where h(p) = -plogp - q logq (14-195) 

Proof. The entropy of a two-state partition equals h(p), where p is the probability of one oftbe 
states. Thus the entropy H (x) of the input to the channel equals h (p) and the entropy of the output 
equals 

HfJ) = hey) y = (1- 2fJ)p + fJ 

because [see (14-189») 

P(Yn = O} = (I - fJ)p + fJ(l - p) = y 

This holds also for conditional entropies. Thus, since 

P{y" = 01"" = O} = P{Yn = 11"" = I} = 1- fJ 

we conclude that 

HfJ 1 x.. =0) = H(yl"n = 1)=h(1-fJ) 

Inserting into (14-41) and using the fact that h(fJ) = h(t - fJ), we obtain 

H(xly) = HCyI") = ph(fJ) +qh(fJ) = h(fJ) 

(14-196) 

From the above it follows that I (x, y) = hey) - h(fJ). This yields (14-195) because h(fJ) 
does not depend on p and hey) is maximum if y = 0.5. ~ 

Redundant aru:l random codes Consider a set A (soUrce) with N elements and a 
set B (code) with M elements where N < M. A redundant code is a one-to-one corre­
spondence between the elements of A and the elements of a subset B, of B. 

The subset B, consists of N elements that can be selected in many ways. If the 
elements of BJ are chosen at random from the M elements of B. the resulting code is 
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~2(3 - 2{3)LL" 
O.S 

r----.., 
o O.S ~ 

0110 0110 

FIGU~14-26 

called random. It From the definition it follows that the probability that a specific element 
of B is in the randomly selected set B1 equals N / M. 

In Example 14-29 we show that redundant encoding can be used to reduce the 
probability of error in transmission. 

~ In a symmetrical channel, the probability of error equals ~. To reduce this error, 
we encode the input set A = {O, I} into the subset B I = {OOO. Ill} of the set B of all 
three-digit binary numbers. In the earlier notation, N = 2 and M = 8. 

The input Xn is thus encoded into a signal Xn consisting of triplets of O's arid 1 's 
yielding as output a signal 1" (Fig. 14-26). The decoding scheme is the majority rule: If 
the received triplet consists of at least two O's, then y" = 0, otherwise y" = 1. 

It can be readily seen that (Prob. 14-23) the probability that a transmitted word 
will be detected incorrectly equals ~2(3 - 2~). This is less than ~ if ~ < 0.5. However, 
the rate of transmission is also reduced from 1 word per second to 1 word per three 
seconds. ~ 

It appears from the above that reduction of the probability of error by redundant 
encoding must result in transmission rates that tend to 0 as the error tends to O. This, 
however, is not so. As the following remarkable theorem shows, it is possible to achieve 
arbitrarily small error probabilities while maintaining the rate of information transmis­
sion close to the channel capacity. 

The Channel Capacity Theorem 

Information can be transmitted through a noisy channel at a rate nearly equal to the channel 
capacIty C with negligible probability of elTor. 

Proof. " PrelimiTUlry remarks From the definition of channel capacity, it follows that 
the maximum of H (x) is at least equal to C because 

H(x) = I (x, y) + H(x I y) ~ 1 (x, y) (14-197) 

I I This delinition of a nlDdom code is nOI the definition given on page 677. 



This shows that we can find a source with entropy rate as close to C as we want. We 
shall show that if x" is a source with entropy rate 

H(x) < C (14-198) 

then it can be transmitted at the rate of 1 word per second with probability of error less 
than a for any a > O. This will prove the theorem because the information per word 
equals H(x). 

As in the noiseless case, the proof is based on proper encoding of the space sm 
consisting of all possible segments of x .. of length m. However. as the following remarks 
show. the objectives are different. 

. Noiseless channel The code set consists of two groups of binary numbers 
(Fig. 14-27a). The first group has 2m• elements of length ml = mH(x) and it is used 
to encode the 2m) typical sequences of the input space S,:. The second group is used 
to encode the rare sequences of S,:. Since the set of all rare sequences has negligible 
probability, the average length of the code equals mi. 

Thus, in the noiseless case, the purpose of coding is reduction of the time of 
transmission of m-word messages from m seconds to ml seconds. This results in an 
increase of the rate of information transmission from mH(x) bits per m seconds to 
mH (x) bits per m 1 = mH (x) seconds. 

Noiseless channel 
Input mCssages Coded messages 

~-------- ~-------------r-------- r-------------r-------- ................ 1--------------r-------- r-------------r-------- r-------------
2'" r-------- 1--------------

m I+-m.---- ilia 

§~~~~§}!~~....... Lm"" m. - mH(x) 

---1Ypical ----- Rare 
(a) 

XII 
Noisy channel 

r--------
m 

~ in . 
/ 

c 

... 1ft 

. .... 

---T(x,,) --- T(i,,) -._._._. W(y,,) 

--- T(z,.) .. _-- .... -..... Y(1;.) 

(b) 

FIGURE 14-27 
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Noisy channel Reasoning as in (14-197): we conclude that, given s > 0, we can 
find a process Zn such that 

H (z) - H (z I y) > C - s (14-199) 

Choosing s < C - H (x), we obtain . 

H(z) > H(x) + H(z I y) ~ H(x) (14-200) 

because H (z I Y) > O. 

AU sequences of z" of length m form a space S:' consisting of 2m elements. We 
can, therefore, encode the input set s~n into the set s~n. The resulting code is one-to-one 
(Fig. 14-27b). The code can, however, be viewed as redundant jf we consider only the 
mapping of the subset T(x,.) of all typical sequences of S': into the subset T(zm) of 
all typical sequences of S;'. Indeed, T(x.,) has N = zmH(x) elements and T(z,,) has 
M = 2mH(z) elements where 

N = 2mH(X) « 2mH(z) = M (14-201) 

because H (x) < H (z) and m » 1. We denote by ZII the code word of a typical Xn message 
and by T(zll) the set of all such code words. Clearly, T(z,,) is a subset of the set T(zn) 
consisting of N « M elements. 

The purpose of the coding is to select the set T (Zn) such that its elements are at 
a "large distance" from each other in the following sense: Since the channel is noisy, 
the output due to a specific element ZII is not unique. We denote by Y(Z'I) the set of all 
output sequences due to this element, and we attempt to design the code such that the 
probability of the intersection of the output sets Y (fn) as zn ranges over every element 
of the set T (zn) is negligible. This will ensure the unique determination of zn in terms 
of the observed output YI/' 

Random code To complete the proof, we shall show that among all N -element 
subsets of the set T(zll) there exists at least one that meets our requirements. In fact, 
we shall prove a stronger statement: If we select at random N elements ZII from the M 
elements of T(zn) and use the resulting set T(Zn) to encode the set T(xn) then, almost 
certainly, the probability of error in transmission will be negligible. 

We note that, once the code set T (fn) has been selected, the probability that an 
element of T(zll) is in T(f,,) equals N / M. From this it follows that, if W is a randomly 
selected subset of T(zlI) consisting of Nw elements, then the probability Pw that it will 
intersect the set T (ZII) equals " 

( N)N'" NN 
Pw = -1- 1- M ~ M w (14-202) 

because N « M. 
Suppose that we transmit the selected m-word message ZII through the channel and 

we observe at the output the m-word message YII' Since the channel is noisy, the same 
Y/I might result from many other input messages. We denote by W (yn) the set consisting 
of all elements of T(zlI) that will produce the same output Yn. excluding the actually 



transmitted message zn (Fig. 14-27b). If the set W(y/l) does not intersect the COde set 
T<Zn), there is no error because the observed signal y,. determines uniquely the trans­
mitted signal ZII' The error probability equals. therefore. the probability P w that the sets 
W(yn) and T(Zn) intersect. As we know [see (14-74)1 the number Nw of typical elements 
in W(Y/l) equals 2mH(zIJ>. Neglecting all others, we conclude from (14-202) that 

This shows that 

Pw ::: NNw = 2mH(zIJ'2m(H{X)-H(zll 

M 

Pw -+ 0 as m -+ 00 

because H (z I y) + H (x) - H (z) < O. and the proof is complete. 
We note, finally. that the maximum rate of information transmission cannot exceed 

C bi~ per second. 
Indeed. to achieve a rate higher than C, we would need to transmit a signal Zn such 

that H(z) - H(z I y) > C. This, however, is impossible [see (14-194)]. 

PROBLEMS 

14-1 Show that H(U • B I B) = H(U I B). 
14·2 Show that if rp(P) = - p log P and PI < PI + 8 < P2 - e < 1'2, then 

rp(PI + (12) < f'(PI) + f'(P2) < q>(PI + e) + f'(P2 - e) 

14-3 In Fig. Pl4-3a, we give a schematic representation of the identities 

H(U· B) = H(U) + H(B I U) = HCU) + H(B) - I(U, B) 

where each qu8nnty equals the area of the corresponding region. Extending formally this 
representation to three partitions (Fig. Pl4-3b), we obtain the identities 

H(U·B·C) = H(U) + H(B ,CIU) = H(U ·B) + H(CIU ·B) 

H(U • B· C) = H(U) + H(BIU) + H(CIU • B) 

H(B·CIU) = H(BIU)+H(CIU·B) 

Show that these identities are correct. 

H(C) 

Ca) (b) 

ftGUREPl4-3 
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144 Show that 

I(V· B, C) + I(V, B) = I(V, C, B) + I~V, C) 

and identify each quantity in the representation of Fig. PI4-3b. 
14·5 The conditional mutual information of two partitions V and B assuming C is by definition 

J(V, BIC) = H(VIC) + H(BIC) - H(V. BIC) 

(a) Show that 

I(V, BIC) = I(V, B· C)-/CV, C) (i) 

and identify each quantity in the representation of Fig. Pl4-3b. 
(b) From (i) it follows that 1 (V, B • C) ::: I (V, C). Interpret this inequality in terms of the 
'subjective notion of mutual information. 

14-6 In an experiment S, the entropy of the binary partition V = [A, AJ equals h(p) where 
p = peA). Show that in the experimentS' = S x S x S, the entropy of the eight-element 
partition V 3 = V • V • V equals 3h(p) as in (14-67). 

14·7 Show that 

H(x+a) = H(x) H (x + y I x) = H (y I x) 

In this, H (x + a) is the entropy of the random variable s + a and H (x + Y I x) IS the 
conditional entropy of the random variable x + y. 

14·8 The random variables x and y are of discrete type and independent. Show that if z = x + y 
and the line x + y = t.j contains no more than one mass point. then 

H(zlx) = H(y) ~ H(z) 

Hint: Show that V; = V" • V]' 
14·9 The random variable x is uniform in the interval (0, a) and the random variable y equals 

the value ofx rounded off to the nearest multiple of 8. Show that I (x, y) = log aIlS. 
14-10 Show that, if the transformation y = g (x) is one-to-one and x is of discrete type, then 

H(x, y) = H(x) 

Hint: Pii = P{x = x;}8[i - j). 
14·11 Show that for discrete-type random variables 

H(x, x) = H(x) H(xlx) = 0 H(y Ix) = H(y, xix) 

For continuous-type random variables, the relevant densities are singular. This holds, how­
ever, if we set H(x, x) = H(x) and use theorem (14-103) and its extensions to several 
variables to define recursively all conditional entropies. 

14·12 The process x.. is normal white noise with E{x~} = 5, and 

(a) Fmd the mutual information of random variables x" and Yn' (b) Find the entropy rate 
of the process y n. 



14·13 The random variables x.. are independent and each is uniform in the interval (4, 6). F"llld 
the entropy rate of the process 

..., 
y" = 5 E 2"'x,,-t 

k.o 

14-14 Find the ME density of a random variable x if I(x) = 0 for Ixl > 1 and E{x} = 0.31. 
14-15 It is observed that the duration of the telephone calls is a number x between 1 and 5 minutes 

and its mean is 3 min 37 sec. Find its ME density. 
14-16 We are given a die with P{even} = 0.5 and are told that the mean of the number x of faces 

up equals 4.44. Find the ME values of Pi = Pix = i}. 
14-17 Suppose that x is a random variable with entropy H(x) and y = 3x. Express the entropy 

Hf.:1) ofy in terms of H(x) (a) ifx is of discrete type. (b) ifx is of continuous type. 
14-18 In the experiment of two f~r dice. U is a partition consisting of the events AI = (seven). 

A2 = {eleven}, and AJ = At UA2. (a) Find its entropy. (b) 1be dice were rolled 100 times. 
Find the number of typical and atypical sequepces formed with the events AI, A2• and AJ• 

14·19 The process x[n] is SSS with entropy rate H{x). Show that, if 

then 
1 -

lim --IH{wo •... , wII ) = H(x) +logho 
II .... ...,n+ 

14-20 In the coin experiment, the probability of "heads" is a random variable p with E{p} = 0.6. 
Using the MBM. find its density f(p). 

14-21 (The Brandeis dice probloml2) In a die experiment, the average number of dots up equals 
4.5. Using the MEM, find Pi = P{Ji}. 

14-22 Using the MEM, find the joint density I(xi. X2, X3) of the random variables Xl. Xl, and X3 

if 

E{~} = E{~} = E{~} =4 
14·23 A source has seven elements with probabilities 

0.3 0.2 0.15 0.15 0.1 0.06 0.04 

respectively. Construct a Shannon, a Fano, and a Huffman code and find their average code 
lengths. 

14·24 Show that in the redundant coding of Example 14-29, the probability of error equals 
P2(3 -2P). 

Hint: P{y" = 11 XII = Ol = p3 + 3p2(1 - P). 
14-25 Fmd the channel capacity of a symmetrical binary channel if the received information is 

always wrong. 

128. T. Jaynes: Brandeis leclUre$, 1962. 
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Markov processes represent the simplest generalization of independent processes by 
pennitting the outcome at any instant to depend only on the outcome that preceeds it and 
none before that. Thus in a Markov process x(t). the past has no inftuence on the future 
if the present is specified. This means that if t,,_1 < tn. then 

P[x(tn ) ~ XII I x{t), t ~ tn-I] = P[x(tll ) ~ XII I X(tll-I)] (15-1) 

From (15-1) it follows that if tl < t2 < ... < til' then 

P[x(tll ) ~ Xn I X(tll_I), ... ,X(fl)] = P[x(tll ) ~ Xn I X(t,,_I)] (15-2) 

A special kind of Markov process is a Markov chain where the system can occupy a finite 
or countably infinite number of states el, e2, .•• , e j • ••• such that the future evolution of 
the process, once it is in a given state, depends only on the present state and not on how 
it arrived at that state. Both Markov chains and Markov processes can be discrete-time 
or continuous-time, depending on whether the time index set is discrete "Or continuous. 
This chapter is mostly concerned with the transient and steady state limiting behavior of 
discrete-tiIl'le Markov chains. In addition, the behavior of various occupation times, first 
passag~ times, state occupancy times, and their probability distributions are of special 
interest. Examples 15-1 to 15-15 illustrate the abundance of Markov processes in nature 
and day-to-day problems. 

Markov processes are named after A. A. Markov (1856-1922). who introduced 
this concept for discrete parameter systems with a finite number of states (1907). The 
theory for denumerable (countably infinite) chains was initiated by Kolmogorov (1936) 
followed by Doeblin (1937). Doob (1942), Levy (1951), and many others. 
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... The one-dimensional random walk model considered in Sec. 10-1 is a special case 
of a Markov chain. The sequence of Bernoulli trials XI, X2, ••• , XII' •••• at each staoe 
are independent. and the accumulated partial sum s" in (10-1) that represents the r:1-
ative position of the particle satisfies the recursion 8,,+ 1 = Sll + X,,+ I· Given SII = j, for 
j = 0, ±l, ±2, ... , ±n, ... , the random variable SII+J can assume only two values: 
811+ I = j + 1 with probability p, and 8,,+ 1 = j - 1 with probability q. Thus 

P(SII+I = j + 11 SII = j) = p 

P(8n+1 = j - 11811 = j) = q 
(15-3) 

These conditional probabilities for SII+I depend only on the values of 8,. and are not 
affected by the values of S I. S2, ... ,S,._I. ..... 

... Consider a population that is able to produce new offspring of like kind. For each 
member let Pk, k = 0, I, 2, ... represent the probability of creating k new members. The 
direct descendents of the nth generation form the (n + 1 )st generation. The members of 
each generation are independent of each other. Suppose X,. represents the size of the nth 
generation. It is clear that x,. depends only on XII-1 since Xn = E~':'i' Yi, where Yi repre­
sents the number of offspring of the i th member of the (n - 1) generation, and the manner 
in which the value of XII_I was reached is of no consequence. Thus ~, represents a Markov 
chain. Nuclear chain reactions. survival of family surnames, gene mutations, and waiting 
lines in a queueing system are all examples of branching processes. In a nuclear chain 
reaction, a particle such as a neutron scores a hit with probability p, creating m new parti­
cles, and q = 1-p represents the probability that it remains inactive with no descendants. 
In that case, the only possible number of descendants is zero and m with probabilities 
q and p. If P is close to one, the number of particles is likely to increase indefinitely, 
leading to an explosion, whereas if P is close to zero the process may never start. .. 

~ In the family surname survival scene, let Pk represent the probability of a newborn to 
become the progenitor of exactly k descendents. If Pk, k = 0, I, 2, ... are assumed to be 
constants over generations, the probability of finding a total of m carriers of the family 
name in the nth generation is of interest; in particular the probability of extinction of 
the line (m = 0) and the conditions under which that is possible are of special interest. 
This problem was first treated by Francis Galton (1873) and the first solution was given 
by Galton and Watson in 1874. In 1930, Steffensen gave the complete solution to the 
problem. In the gene mutation problem, every gene has a chance to reappear in its k direct 
descendants with probability Pk, k = 1,2, .... and a spontaneous mutftion produces a 
single gene that plays the role of a zero-generation particle. The spread of the mutant 
gene through later generations follows a Markov process. and the probability of a mutant 
gene being present in k new offspring is of interest. ~ 

... In any type of queue or a waiting line, customers Gobs) arrive randomly and wait for 
service. A customer arriving when the server is free receives immediate service; otherwise 
the customer joins the queue and waits for service. The server continues service according 
to some schedule such as first in, first out, as long as there are customers in the queue 
waiting for service. The total duration of uninterrupted service beginning at t = 0 is 
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known as the busy period. Under the assumption that various arrivals and service times 
are mutually independent random variables, the total number of customers during the 
busy period, the duration of the busy period, and the probability of its terminatiqn are 
of special interest. As we shall see, queues are universally characterized depending on 
the type of interarrival time distribution as well as the service time distribution and the 
total number of channels or servers employed. For example, the interanivals and service 
times can be independent exponential distributions, while the number of servers may be 
just one 01' several of them in paralle\. 

Let XII denote the number of customers (jobs) waiting in line for service at the 
instant tIl when the nth customer departs after completing service. If we consider the first 
customer arriving at an empty counter and receiving immediate service as representing 
the zeroth generation, then the direct descendents are the XI customers arriving during 
the service time of the first customer and forming a waiting line. The process continues 
as long as the queue lasts. Referring to the family surname survival problem, it is clear 
that the number of customers X,I waiting for service at the departure instant til of the nth 
customer form a Markov chain. The probability of busy time termination corresponds to 

the extinction probability of a famil y line. Note that the Markov chain {XII} defined here is 
known as an imbedded Markov chain, since it corresponds to observing the underlying 
stochastic process x(t), that represents the total number of customers at time t, at a 
sequence of random time instants {t,,} corresponding to the instants when successive 
customers depart after completing service from the system. The underlying stochastic 
process x(t) in general requires additional information regarding the actual service time 
of each customer to predict its future bahavior and hence x(t) need not be markovian. .... 

TRANSITION PROBABILITIES. In a discrete-time Markov chain {xn} with a finite or 
infinite set of states el, e2, ... , ej, ... , let XII = XVII) represent the state of the system 
at t = t'l' If til = nT, then for n ::: m ::: 0, the sequence Xm ~ xm+ t ~ ••• X,I> ••• 

represents the evolution of the system. Let 

p;(m) = P{xm = e;} (15-4) 

represent the probability that at time t = tm the system occupies the state el, and 
A 

pij(m, n) = PlXn = ej I Xm = ej} (15-5) 

the probability that the system goes into state e j at t = til given that it was in state ej 
at t = tm (regardless of its behavior prior to tm)' The numbers pij{m, n) represent the 
transition probabilities of the Markov chain from state ej at tm to ej at 1'1' Notice that 
(15-4)-(15-5) completely determine the system, since for m < n < r, 

PIx, = ej, X'I = ej, XIII = ek} 

= PIx,. = e; I XII = ej}P{xlI = ej I Xm = ek }P{XIlI = ek} 

= pj;{n, r)Pkj{m. n)Pk(m) (15-6) 

HOMOGENEOUS !> A Markov chain is said to be homogeneous in time if pij(m, n) depends only on the 
CHAIN difference n - m. In that case, the transition probabilities are said to be stationary and 

P{xlII+" = ej I XIII = e;} ~ pij{n) = pt) (15-7) 

represents the conditional probability that a homogeneous Markov chain will move from 
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state e; to stale e j in n steps. The one-step transition probabilities are usually denoted 
simply as Pi}. Thus 

tIS-8) 

The time duration y that a homogeneous Markov process spends in a given state 
(interarrival time) must be memoryless. since the present state is sufficient to deter­
mine the future. Thus in the discrete case if the time instants tn are uniformly placed at 
tn = nT, then y satisfies the relation 

P(y > m + n I y > m) = P(y > n) (15-9) 

which shows that y is a geometric random variable. Thus the duration that a homo­
geneous discrete-time (uniform) Markov chain spends in any state has a geometric dis­
tribunon. <ta 

~ It is convenient to arrange the transition probabilities Plj (m, n) in a matrix form 
P(m,n) as 

P(m,n) = 

PH (m, n) P12(m, n) 
P21(m,n) P22(m,n) 

pl\(m. n) 

Plj(m, n) 

(15-10) 

pij(m, n) 

Clearly P (m, n) is a matrix whose entries are all nonnegative, and elements in each row 
add to unity, since 

(15-11) 
j j 

Such a matrix represents a stochastic matrix. As we show later. together with the initial 
distribution in (15-4), the transition probability matrices completely define the Markov 
chain. In the special case of a homogeneous Markov chain, the one step transition matrix 
P is given by 

PIJ P12 PI3 PI) 

P21 P22 P23 

P= 
P31 P32 P33 

(15-12) 

PH PI2 Pi3 PI) 

and along with the initial probability distribution 

~ 
PIcCO) = P{Xo = e,,} (15-13) 

it completely defines the process. ~ 
The one-step probability transition matrices for several interesting problems are 

given in Examples 15-5 to 15-15. Starting from some initial distribution, our immediate 
goal is to study the evolutionary behavior of these Markov processes. 
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O~------------~~----~O 

x. ---... ~ ---;~~X"~I 

l-~ 

FIGURE IS-1 
Binary communication channel. 

~ Figure 15-1 represents a time-invariant binary communication channel. where Xn 

denotes the input and Xn+l the output. The input and the output each possess two states 
eo and el that represent the two binary symbols "0" and "1," respectively. The channel 
delivers the input symbol to the output with a certain error probability that may depend on 
the symbol being transmitted. As Fig. 15-1 shows. let Q! < 1/2 and fJ < 1/2 represent 
the two kinds of channel error probabilities. Ip a time-invariant channel, these error 
probabilities remain constant over various transmitted symbols so that 

P {Xn+! = 11 Xn = O} = POI = a P{Xn+1 = 0 I Xn = I} = PIO = fJ (15-14) 

and the corresponding Markov chain is homogeneous. 
The 2 x 2 homogeneous probability transition matrix P in this case is given by 

P _ (POO POI) _ (1 -Q! a) 
- PIO PII - {J 1 - {J 

(15-15) 

In a binary symmetric channel. the two kinds of error probabilities are equal so that 
Q! = {J = p . .... 

~ Consider a general one-dimensional random walk on the possible states eo, elt ez, .... 
Let Sn represent the location of the particle at time n on a straight line such that at each 
interior state e j. the particle either moves to the right to e j+ 1 with probability P j, or to 
the left to ej-l with probability qj or remains where it is at ej with pf9bability rj (see 
Fig. 15-2). Obviously when at state eo. it can either stay there with probability ro or move 
to the right to el with probability Pl. This gives the corresponding transition matrix P 
to be 

ro Po 0 0 0 
ql 1'1 PI 0 0 

P= 0 q2 r2 P2 0 
o Oq3r3P3 

(l5-16) 
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FIGURE 15·2 
Random walk on a line. 

with 

'i 

rO + Po = 1 qi +rj + Pi = 1 i = 1,2, ... 

Thus. 

Poo = ro 
and fori ~ 1 

POI = Po 

{

Pi> 0 
ri ~ 0 

Pij = ~i > 0 

POj =0 

j = i+ 1 
j =i 
j=i-l 
otherwise 

j> 1 

(15-17) 

(15-18) 

This model" with Pi = P, qi = 1 - p, rj = 0 for i > 1, and ro = 1 corresponds to 
the gambler's ruin problem discussed in Chap. 3 (Ex. 3-21) where one of the players is 
infinitely wealthy (e.g., a gambling casino). For the unrestricted one-dimensional random 
walk considered in Sec. 10-1, we have Pi = p, qi = q, and rj = 0 for all integers i 
(positive and negative), and the matrix P is infinitely large in all four directions there. 
The following special cases of the random walk are also of interest. .... 

~ Let the number of states in a random walk be finite (eo, el, ea, ••.• eN), and consider 
the special case of (15-16) given by 

1 0 0 0 0 
q 0 p 0 0 0 
0 q 0 P 0 0 

P= (15-20) 

0 0 q 0 P e 
0 0 0 0 1 

Thus from the interior states el; ea • ..•• eN-to transitions to the left and right neighbors 
are pos~ible with probabilities q and p. respectively, while no transition is possible from 
eo and eN to any other state. The system may move from one interior state to the other. 
but once it reaches a boundary it stays there forever (the particle gets absorbed). It is 
easy to see that the gambler's ruin problem discussed in Example 3-21. where both 
players have finite wealth. corresponds to this case with N =a + b. In that case the 
game starts from the fixed pomt a (state ea) of the interval (0. a + b). which corresponds 
to the mitial distribution Pix = ea } = 1 and zero otherwise in (15-13). On the other 
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hand, if toe initial state was randomly chosen, that would correspond to the distribution 
P{xo = ek} = 1/(N + 1). In Example 15-26 (page 747) we shall make use of this model 
to analyze the game of tennis in detail. ... 

~ Suppose the two boundaries in Example 15-7 reflect the particle back to the adjacent 
state instead of absorbing it. With el, e2 • ... , eN representing the N states. the end 
reflection probabilities to the right and left are given by 

PI.2 = P and PN.N-I = q (15-21) 

and this gives the N x N transition matrix to be 

q P 0 0 0 
q 0 P 0 0 
0 q 0 P 0 

P= (15-22) 

0 0 0 q 0 p 
0 0 0 0 q P 

In gambling. this corresponds to a fun game where every time a player loses the game, 
his adversary returns just the stake amount so that the game is kept alive and it continues 
forever .... 

~ Here the two end-boundary states eo and eN-l loop together to form a circle so 
that eN-l has neighbors eo and eN-2 (Fig. 15-3). The random walk continues on this 
circular boundary by passing from one state either to the right or left neighbor and this 
corresponds to the following N x N transition matrix 

0 P 0 0 0 q 
q 0 p 0 0 
0 q 0 p 0 0 

P= (15-23) 

0 0 q 0 p 
P 0 0 q 0 

More generally, if we permit transition between any two states eo. eh ... , eN-I, then 
since moving k steps to the right on a circle is the same as moving N - k to the left 
(Fig 15-3). we obtain the following circulant transition matrix 

qo ql 
qN-I qo 

P= qN-2 qN-I 

ql q2 
Here 

q2 
ql 
qo 

... qN-J 

qN-l 
qN-2 
qN-3 

qo 

~ 

(15-24) 

(15-25) ... 
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, XAMPLE 15-10 

EHRENFEST'S 
DIFFUSION 
MODEL (NON· 
UNIFORM 
RANDOM 
WALK) 

EXAMPLE] 5-11 

SUCCESS 
RUNS 
(RANDOM 
WALK) 

FIGURE 15-3 
Cyclic Random Walk in (15-23). 

~ Let N represent the combined population of two cities A and B. Suppose migration 
occurs between the cities one at a time with probability proportional to the population of 
tbecity. and let the population of A determine the state of the system. Then eo. elt ...• eN 
represent the possible states, and from state ek. at the next step, A can move into either 
ek-l or ek+l with probabilities k/ Nor 1 - k/ N. respectively. Thus 

0 1 0 0 
p 0 I-p 0 0 
0 2p 0 1-2p 0 

p= 0 0 3p 0 1-3p 0 0 (15-26) 

0 0 I-p 0 p 
0 0 0 1 0 

where p = 1/ N. We can also think of this model as a random walk with totally reflective 
barriers where the probability of a step varies with the position or state. From (15-26), 
if k < N /2, the particle is more likely to move to the right, while if k > N /2, it is more 
likely to move to the left. Thus the particle has a tendency to move toward the center, 
which should correspond to an equilibrium distribution. ~ 

~ Consider a type of one-dimensional random walk over O. I, 2, ... , where the particle 
moves from i to i + 1 with probability P or moves back to the origin with probability q. 
This gives 

{
p j = i + 1 

Pij = q j = 0 
o otherwise 

(15-27) 

Thus at the nth trial the system is in state ej only if the previous failure occurred at n - i, 
and the index i represents the number of uninterrupted successes up to the nth trial. More 
generally, we can let 

{

Pi j = i + 1 
Pij = qi j = 0 

o otherwise 
(15-28) 

where Pi + qi = 1. In this case the probability that the time between two successive 
returns to zero equals k is given by the product PIP2'" Pk-lqk. ~ 
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~ . Consider N cells (compartments) and a sequence of independent trials where a new 
ball is placed at random into one of the cells at each trial. Each cell can hold mUltiple 
balls. Let ek. k = 0. 1, ...• N, representthe state where k cells are occupied (and N - k 
cells are empty). At the next trial, the next ball can go into one of the occupied cells 
(ek -+ ek) with probability k/ N or an empty cell (ek -+ ek+!) withprobabiIity (N -k)/ N. 
This gives the transition probabilities to be 

k 
Pkk =­

N 

k 
Pk.k·~1 = 1 - N Pkj = ° j=f:.k j=f:.k+l (15-29) 

An all empty initial distribution in this case corresponds to P{xo = eo} = 1, P{xo = ek} = 
0, k =f:. ° in (15-13). 

This model can be used to study an interesting birthday statistics problem: What is 
the mInimum number of people required in a random group so that every day is a birthday 
for someone in that group (with probability p)? (See Example 15-18 for solution.) ~ 

~ Suppose each cell of an organism contains two types of genes A and B, where the 
total number of genes in each cell adds up to N. The cell is in state e j, j = 0, 1, 2, ... , N, 
if it contains exactly j genes of type A and N - i genes of type B. Prior to cell division 
each gene duplicates itself so that the two new cells in the next generation each inherit N 
genes chosen at random from the pool of2j genes of type A and 2N - 2j genes of type B. 
The probability that a new cell has moved into state ek is given by the hypergeometric 
distribution 

e:) eZ=!j) 
Pjk = j, k = 0,1, ... , max(0,2j - N) ~ k ~ min(2j, N) 

(15-30) 

In another genetic model, let e j represent the present state as defined above so that 
the probability of selecting a gene of type A in the next generation is simply P = j / N . 
Suppose the N genes in the next generation are determined by random selection resulting 
from N Bernoulli trails with the A-gene probability equal to p. In that case, the transition 
probability that the next generation has moved into state ek (k genes of type A and N - k 
genes of type B) from state e j is given by the binomial distribution with 

_ (N) (j ) k ( j ) N-k 
Pjk - k N 1- N i, k = 0, I, ... , N- (15-31) 

It will be interesting to study the limiting behavior of the population based on these 
model~ after several generations!. Notice that in both models, the states eo and eN 
contain genes of the same type, and no exit from these states is possible. (For further 
generalization and insight into these models. see Appendix 15A.) ~ 

ITbrs problem was originalIy studied by R. A. Fisher and S. Wright in connection with the evolution of 
cornfield population. 
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EXAi\IPLE 15-14 

IMBEDDED 
MARKOV 
CHAINS 

DOUBLY 
STOCHASTIC 
MATRICES 

~ Consider an imbedded Markov chain {xn } that represents the number of Customers 
or jobs waiting for service in a queue at the departure of the nth customer. as defined 
in Example 15-4. To determine the transition probabilities, let Yn denote the number of 
customers aniving at tile queue during the service time of the nth customer. Then the 
number of customers waiting for service at the departure of the (n + l)st customer is 
given by 

XII+I = { 
Xn + YII+I - 1 Xn i: 0 

YII+1 X,I = 0 
(15-32) 

If the queue was empty at the departure of the nth customer, then Xn = 0, and the next 
customer to arrive is the (n + 1)st one. During tbat service. YII+ 1 customers anive, so that 
Xn+1' = YII+1. otherwise the number of customers left behind by the (n + l)st customer 
is X'I - 1 + Yn+1. 

We can use (15-32) to compute the transition probabilities of an imbedded Markov 
chain. Thus 

. . {P(YI/+I =j}~aj ;=0 
Pij = P{XII+1 = ) I Xn = l} = (15-33) 

P{Yn+l = j - i + I} £ aj-i+1 i 2: 1 

and the probability transition matrix is given by 

ao al a2 a3 

Go al a2 a3 
0 ao a1 a2 

P= 0 0 ao al (15-34) 

0 0 0 ao 

Recall that the underlying stochastic process xCt) need not be markovian, whereas the 
sequence XII = X(/II) generated at the random departure time instants tn is markovian. 
Thus the method of imbedded Markov chains converts a non-markovian problem into 
markovian, and the limiting .behavior of the imbedded chain can be used to study the 
underlying process x(t) since it has been shown that when such limiting behavior exists 
(Cohen [38], Khintchin [39]) (see also page 810) 

lim P{x(t) = k) = lim P{X'I = k} 
1-+00 n~oo 

(15-35) 

that is, for certain queues after a long time, the limiting behavior at an arbitrary time 
instant t is the same as those at the random departure instants. ~ 

~ A transition probability matrix P is called doubly stochastic· if in addition to the 
row sums, the column sums_ a~ ~so unity. For example, a symmetric binary com­
munication channel as in (1S-15) with a = P corresponds to a doubly stochastic 
matrix. ~ 
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15 .. 2 HIGHER TRANSITION PROBABILITIES 
ANDTHECHAPMAN-KOLMOGOROV 
EQUATION 

The transition probability function of any Markov chain {xn } satisfies the Chapman.J 
Kolmogorovequation. We can use the basic Markov relation in (15-6) to derive thi~ 
fundamental equation that governs the evolution of all chains. For n > r > m, we have'i 

P(x.z = ej, Xm = eil = L P{XII = ej, x, = ekt Xm = ed 
Ie 

= L P{XII = ej I x, = elco Xm = ei}P{x, = elc, Xm = e;} 
Ie 

= LP{xll =ejlx, =elc}P{x, =ele,XIII =e;} 
Ie 

Thus 

or 

Plj(m, n) = P{xli = ej I XIII = eil 

= L P{X'I = ej Ix, = ek}P{x, = elc IXm = eil 
Ie 

pij(m, n) = L p;k(m, r)plcj(r, n) (15-37; 
Ie 

In terms of the probability transition matrices in (15-10), this relation reduces to 

P(m, n) = P(m, r)P(r. n) (15-38; 
j 

where m < r < n. and by letting r = m + I, m + 2, ... we get 

P(m,n) = P(m,m+ l)P(m+ l,m+2) .. ·P(n -1,n) (15-39J 

Thus to obtain P(m. n) for all n ~ m, it is sufficient to know the one-step transitiol1 
probability matrices 

P(O, I), pel, 2), P(2, 3), ... , P(n, n + I), ... (15-40) 

For a homogeneous Markov chain, all transition probability matrices in (15-39) and 
(15-40) are equal to P in (15-12), so that (15-39) reduces to 

P(m, n) = p n- m (l5-'Hl 

... From (15-7), fora homogeneous chain p;j) represents the (i, i)th entry of P (0, n) d 
pn. Thus 

pn ~ (pfj») (15-42) 

and since pll+m = pm pll = pll pm. we obtain the useful relation 

(m+lI) ,,(m) (II) ~ (n) (III) 
Pij = L., Pu, Pie} = L., Pilc Plcj (15-43) 

Ie 
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In particular, the one-step recursion relation is given by 
(n+l) ~ (II) ~ (/I) 

Pi) = ~pjkPk) = ~Pjk Pkj 
k k 

Finally, the unconditional probability distribution at t = nT is given by 

or 

where 

p)(n) = P{xn = ej} = L P{Xn = ej I XIII = el}P{xm = e;} 
; 

pen) = p(m)P(m,n) 

A 
pen) = [PI (n), P2(n), ... , pj(n), ... ] 

For a homogeneous chain, (15-46) and (15-47) reduce to 

pen) = p(O)pll 

(15-44) 

(1S-45) 

(15-46) 

(1S-47) 

(1S-48) 

~ 

In general, it is difficult to obtain explicit formulas for the n-step transition probabili­
ties p!j). However, for a homogeneous Markov chain with finitely many states elt e2, ... , 
eN, the transition matrix. P is N x N and certain simplifications are possible. 

Because the matrix. Pis N x N, it has N eigenvalues AI, A2, ••• , AN. For sim­
plicity, we shall slightly restrict the generality and begin by focusing on the case where 
the eigenvalues are simple (distinct) and nonzero. The assumption that the eigenvalues 
are distinct is satisfied in many practical cases, except for decomposable (reducible) and 
periodic chains, and they require only minor changes to modify. However, zero could 
be among the eigenvalues. and if it is of multiplicity one, as we show later. it is easy to 
modify that case also. Under these assumptions. let (A.;, Ui), i = 1.2 •...• N represent 
the N eigenvalue-eigenvector pairs for P. Thus 

PUj = A.IUi i = 1-+ N (15-49) 
or 

PU=UA 
where the square matrix U is given by 

A 
U = Lu), U2,.· •• UN] 

and 

(

AI 
A A2 

A= . 

o ] 

(15-50) 

(15-51) 

(15-52) 

Since U/. i = 1. 2, ... , N are N x l1inearly independent column vectors. U is an N x N 
nonsingular matrix. Hence from (15-S0), ' 

P = UAU- I £ UAV (15-53) 

or 
VP=AV (15-54) 
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V h- l = [z] (l~S~ 
with Vk, k = 1, 2, ...• N, representing the kl:b row vector of V. Thus 

VU = I or VkUl = I, Vjll.k = 0 i :F k i, k = 1,2, ... , NOS-56) 

From (15-53) we also obtain 

or 

N 

pn = UA" V = LAZ"kVk 

k=1 

N 
(n) ~ ,n 

Pij = L.JAlll.l/tVkj 

1e=1 

(l5-57) 

(15-58) 

To summarize, from (15-50) and (15-54) for each eigenvalue Ak. k = 1,2, ...• N. the 
vectors Uk and Vk satisfy two sets of N linear equations given by 

(15-59) 

and 
N 

Lyfle) Pij = AkY}") (15-60) 
;=1 

respectively. To start with. one can obtain the eigenvalues Ale for k = I, 2, ..•• N by 
solving the characteristic equation det(P - AI) = o. For each Ale. obtain the (Xflc)} 

and {yfk)} vector components from (15-59) and (15-60). The normalization condition in 
(15-56) gives 

or 

N 

Vk"k = Ck L xfk) lk) = 1 
;=1 

1 
Ck = "N X (k)y(lc) 

L.J;=J i i 

Finally in terms of X(k). y{k). and Ck, we may rewrite (15-58) as 
N 

(15-61) 

p~) = L Cle AZ x;(k)yJk) (15-62) 
1c=1 

If one of the eigenvalues of P is zero (with multiplicity one), then by letting AN = O. 
the representation in (15-62) is seen to be valid for all n ~ I, and for n = 0 the zero 
eigenvalue contributes an additional constant tenn to pt). Thus pt) is the sum of N - 1 
terms ib (15-62) for n ~ 1 if P is singUlar with a simple zero eigenvalue. Next, we 
illustrate this procedure for obtaining the higher transition probabilities p~) through 
several examples. 
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EXAi\IPLE 15-16 

BINARY COM· 
MUNICATION 
CHANNEL 

EXAMPLE 15-17 

CYCLIC 
RANDOM 
WALK 

~ Referring to the nonsymmetric binary communication channel model in Exam~ 
pIe 15-5, we get the characteristic equation of the transition matrix in (15-15) to be 

det(P - AI) = 11 - ~ - A 1 _ ~ _ A I 
= A 2 - ),(2 - a - 13) + (1 - ex - 13) = 0 (l5~63) 

By inspection, Al = 1 and A2 = I - ex - 13 < 1 are the two eigenvalues of P. By sOlving 
(15-59) and (15-60), after normalization, we get 

(1 -a) 
U = 1 13 v __ l (13 a) 

- a + 13 -1 1 

This giv~s the n-step transition probability matrix as 

P"=a~tJ C)(tJ,a)+(1~:~tJ)n (-;)(-1,1) 
= _1 (13 a) + (1 - a - tJ)n (a -a) 

a + tJ tJ a a + 13 -tJ 13 (15-64) 

Notice that physically pn corresponds to the transition probability matrix of a cascade 
of n binary channels each given by (15-15). 

We can use (15-64) to compute the probability that a digit arriving as 1 through 
this cascaded channel was in fact transmitted as 1. From Bayes' theorem, this is given by 

P{Xo = llxn = I} = P{xtl = Ilxo = I} P{Xo = I} 
P{xn = I} 

p~~) PI (0) p~~) P 

= Pl(n) = pWp+ p~~)q 
[a + (1 - a - 13)" 13] P 

= a + (1 - a - tJ)n{fJp - aq) (15-65) 

where p ~ P{Xo = I} and q ~ P{Xo = OJ. Notice thatas n -+ 00. P{Xo = 11 Xn = 1} 
as well as P{Xo = 11 Xn = O} tend to its unconditional value P implying that even 
if the individual error probabilities a and 13 are negligibly small, too many sections in 
cascade tend to increase the overall unreliability of the channel making the final output 
practically useless in terms of containing any useful information. .... 

~ 

~ The transition matrix in (15-23) corresponding to a cyclic random walk is a special 
case of the more general circulant transition matrix in (15-24). For an N x N circulant 
matrix with first row equal to qo, q to •••• q N _ to its eigenvalues and eigenvectors are given 
by2 

N-\ 

Am = L qjei21r;m/N 
;=0 

m =0, 1 •... ,N-1 

2"Matrix computations," by G. H. Golub and C. F. Van Loan, Johns Hopkins Press. 3rd Ed., 1996. 
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and 

x~m) = ej21rim/N 
I Y~t/I) = e-j21tim/N 

I . 

Notice that the eigenvalues represent the discrete Fourier transform (DFT) of the sequence 
(qi }. and xim) and yf'") represent the DFT vectors, so that em = II N, and using (15-62) 

p~lI) = ~ {I + ~ An ei21rm(l-kl/N} 
lk N L.J m 

m=J 

(15-66) 

For the circulant random walk model in (15-23), the eigenvalues are given by 

AO = 1, Am = em (p + qOm(N-2») m = 1,2, ... , N - 1 (15-67) 

where e = ej21t/ N • If N is even, we have N = 2K so that e = ei1r/ K , which gives 
AK = eK (p + qej21r (K-I» = eK = -1. In particular for N = 4, we get Ao = 1, 
Al = j(p - q),A2 = -1, and A3 = -j(p -q) . .... 

~ Referring to Example 15-12, the system is in state el if there are i occupied cells 
and N - i empty cells. If n additional balls are placed at random into this situation, then 
p~) represents the probability that there will be j occupied cells and N - j empty cells. 
Clearly j ~ i and hence p1j> = 0 if j < i. 

From (15-29), we have pu = ilN and Pi,l+l = (N -i)1 N so that (15-59) reduces 
to (suppressing the superscripts) 

(NA - i)x; = (N - i)Xi+l (15-68) 

For A = I, this gives Xi = 1 for all i. When A :f: 1, with i = N in (15-68) we obtain 
XN = 0, and by direct substitution of i = N - 1 in (15-68) we get XN-l = 0, and so on. 
Since the eigenvectors are not identically zero vectors, for each such eigenvalue there 
must exist an integer k such that Xk+l = 0 but Xk :f: O. In that case from (15-68) we get 
NA - k = 0, and hence the eigenvalues are given by 

k 
Ak = N k = 1, 2 .... , N (15-69) 

The corresponding solutions for (15-68) are given by 

or 

(k i)x(k) - (N i)x(k) - i - - 1+1 

(k) (k-i+l) (k) (N-i)! k! 
Xi = (N _ i + 1) xi-! = N! (k - i)! 

{ 
(~) i<k 

= (~) -

o i > k 

Similarly for Ak = kiN, the system of equations in (15-60) reduces to 

y]lc},lPi-J,j + yY) Pjj = Aky]k) 

(15-70) 

(15-71) 
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or 

(k - j)yjk) = (N - j + l)Y}~l 

which gives y~~ I = 0 and so on. Thus 

{
o j <k 

Ylk) = (_1)j-k ( ~ : : ) j ~ k 
(15-72) 

Sincex1k) = o fori >kandy}k) =Ofori < k,from(15-61)we get Ck = (Z).Substituting 
(15-70) and (15-72) into (15-62), we get 

j 

PI~) = LA~CkX1k)yy) 
Jc=i 

j (k)" (N - 01 (_l)j-k 

= ~ N (N - j)! U -k)!(k -i)1 

= (Z = ~) t(-l)1-k(~)" (i =:) 
= (Z = ~) ~(-l)l-i-r (' ;ir (j ~ i) j ~ i (15-73) 

and p~) = 0 for j < i. In particular. for an all empty initial state (i = 0), Eq. (15-73) 
reduces to 

p~~; = (N ~ j) ~ (~)" (;) (_l)i-r (15-74) 

and it represents the probability of finding j cells occupied (or N - j cells empty) when 
n balls are distributed randomly among N initially empty cells. We can use tbis formula 
to answer the particular birthday problem raised in Example 15-12. To simplify (15-74) 
further, let m = N - j represent the number of empty cells at stage n. and define the 
new variable v = N - m - r so that 

pa~J = (~) ~ (_l)V ( N ~ m) (I _ m; V) n 

1 N-m (-1)11 NI (m + v)" 
= m! ~ VI (N-m-v)! 1-~ (15-7S) 
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where) '= N - m. To derive the limiting form of (15-75) observe that when N ~ 00, 

andn~ 00, 

N! m+v-I 
---= II (N-k) 
(N - m - v)! k=O 

m+v-l ( k) 
= Nm+lJ II 1- - ~Nm+" 

k=O N 

and 

(1 _ m; V)" ~ e-(m+v)n/N 

Substituting these into (15-75), we obtain 

where 

lim p(n) = lim ~ ~ (-1)" Nm+"e-(m+lJ)n/N 
N.n-+oo O.N-m N,n-+oo m! L....., v! 

)...m 
-A =-e 

ml 

11=0 

(15-76) 

(15-77) 

(15-78) 

(15-79) 

a fonnula originally derived by R. von Mises ([3]. Vol. I), To summarize, if N and 
n increase such that)... in (15-79) remains constrained, then the probability of finding 
m empty cells when n balls are distributed randomly among N (initially empty) cells 
is given by the Poisson distribution in (15-78). For example, the probability that all 
365 days in a year correspond to birthdays in a population of size 2000 is given by 
e-A = e-l.S226 = 0.2181 [with m = 0 in (15-78)], where)... = 365e-2000/365 = 1.5226. 
However, the probability of finding 3 days in a year that are not birthdays in that group 
is only 0.128. For fixed).... from (15-79), 

n = N log N + N 10g(1/)...) (15-80) 

and in that case, when n balls are distributed among N initially empty cells. the probability 
of finding all N cells occupied is given by e-A• It follows that for a11 365 days in a 
year to ~ birthdays with 98% probability for at least someone in a crowd. we get 
)... = log(1/0.98) = 0.0202, and from (15-80) the size of that crowd should be around 
3500. 

By the same token, a bank with an average -daily volume of 500 customers is 
guaranteed to be busy (with 60% probability) throughout the day with a customer arriving 
every 5 minutes (here "a day" bas 8 hours with 96 slots of 5 minutes duration so that 
N = 96, n = 500 gives)... = 0.525 and p = e-A = 0.591). If it takes on the average 
10 minutes of service time/customer. then at least two employees must be dedicated for 
customer service. ~ 
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ex \l\IPLL 15-19 

RANDOM 
WALK WITH 
REFLECTING 
BARRIERS 

~ Refening to Example 15-8. let el, e2 • .•. ,eN represent the states with two end­
refiecting barriers and transition matrix as in (15-22). Thus Pi.;+! = p. Pi.i-l == q for 
2 =s i =s N - 1. pu = q. P12 = P. and PN,H-I = q. PNN = p. Substituting these into 
(15-59) we get 

Xl = s(qxJ + PX2) 

Xi = S(qXi-l + PXi+l) 

XN = S(qXN-l + PXN) 

i = 2,3, ...• N-l 

(15-81) 

(15-82) 

(15-83) 

where we have used s = 1/ A.. Clearly A. = 1 corresponds to the specific solution Xi == 1. 
To find all other solutions. notice that (15-82) satisfies the particular solution 

Xi = ~i 
provided ~ is a root of the quadratic equation 

~ = qs + pS~2 
The two roots of this equation are 

~l(S) = 1 + VI - 4pqs2 
2ps 

1- VI-4pqs2 
~2(S) = 2ps 

and the general solution to (15-82) is given by 

(15-84) 

(15-85) 

XI = a(s)~:(s) + b(s)~~(s) i = 2, ...• N - 1 (15-86) 

where a(s) and b(s) are yet to be determined. For (15-81) to satisfy (15-86), it must 
have the same form as (15-82). and hence we must have XI = Xo. Similarly for (15-83) 
to satisfy (15-86), on comparing it with (15-82), we must have XN = XN+l. But 

XI = Xo => a(s)l1- ~l(s)1 = -b(s)!1 - ~2(S)] 

and 

XN = XN+l => a(s)ll - ~I (s)J~r (s) = -b($)[l - ~(s)]~: ($) 

and from (15-87) and (15-88) we must have 

~r ($) = ~: ($) with ~I (s) "# ~2(S) 

But from (15-84), we get ~1 (S)~2(S) = q / p so that (15-89) reduces to 

[VP/q~l(S)tN = 1 

Thus ../Pli ~l (s) is a 2Nth root of unity. and hence 

~I(Sk) = vq/peikK/ N 

and from (15-84) this corresponds to 

O~k~2N-l 

~J (Sk) 1 
Sir. = q + p~l(s,,) = -=-2.Jiili-:p=q=-cos---:(-nk-:-/":":'"N~) 

(15-87) 

( 15-88) 

(15-89) 

(15-90) 

(15-91) 
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or. 
1 

A.k = - = 2ffqcos(rrkjN) 
Sk 

For '>"0 = 1 we obtain directly 

k = 1,2, .. : ' N - 1 (1S-92) 

xfO) = 1 (IS-93) 

as before, and solving (15-87) and (15-88) using (15-91) and substituting into (15-86) 
we get 

x~) = - SlO- - - SlO--::-:--
k (q)i/2. rrki (q)(Hl)/2. rrk(i -1) 

, P N p N 
k = 1,2, ... , N-l 

Proc~ding in a similar manner. the equations in (15-60) reduce to 

YI = sq(Yl + )/2) 

Yi = S(PYk_1 + qYk+l) 

YN = SP(YN-I + YN). 

k = 2,3, .. . ,N - 1 

(15-94) 

(15-95) 

(15-96) 

(15-97) 

Notice that (15-96) is the same as (15-82) provided P and q arc interchanged, and hence 
its general solution is given by (15-86) with P and q interchanged. Equations (15-95) 
and (15-97) are satisfied if qYl = PYo and PYN = qYN+I. After some calculations, the 
solutions to (15-95) and (15-97) turn out to be 

and 

l'= - SlO-- - S1D-~-
k (P)j/2. rrkj (P) (j-I)/2 . rrk(j - 1) 

J q N q N 

Finally, using (15-61) we get 

q 1- (pjq) 
co= 

p 1- (pjq)N 

and 
2pjN 

Ck = ----=:..,.:----
1 - 2.JPij cos(rr k j N) 

(15-98) 

k = 1,2 •...• N-1 

(1S-99) 

(IS-100) 

(15-101) 

Using (15-92HlS-94) and (15-98}-{15-101) in (1S-62) we get the higher transition 
probabilities for the random walk model with two reflecting barriers to be 

(11) =' 1- (pjq) (!!.)j-I + 2p ~ x?)yY·l[2.JPijcos(rrkjN)]" (IS-102) 
Plj 1 - (pjq)N q N 6 1 - 2.JPijcos{rrkjN) 

Repeating Eigenvalues 

Equation (15-62) has been derived under the assumption that all eigenvalues of P are 
distinct. However, some of the eigenvalues of P can repeat with multiplicity greater than 
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one. For example, if a stochastic matrix P is of the fann 

(
PI 0 0) 

P= 0 ~: 0 (15-103) 

where Pi. i ~ I, are themselves stochastic matrices, then Al = 1 is a multiple eigenvalue 
of P irrespective of whether some of the other eigenvalues are multiple or otherwise. 

In general, suPF that the ei~envalue Ai ~urs with multiplicity rj ~ I, i == 
I, 2, ...• k so that L:,=I " = N. the SlZe of the matriX P. In that case, P has the Jordan 
canonical representation 

where A is given by 

(

AI 0 0 
o A2 0 

A= o 0 . 

(15-104) 

lJ (15-105) 

Here AI is an'i x r, square matrix that is no longer diagonal and given by 

Ai = (: ~ .~ 1) (1)l~ 
From (15-104), 

P" = UA"U-I (15-107) 

where 

c-
O 

:J A'= :' 
A~ 0 

0 

(15-108) 

and 

A7, (n) A~-l ... , ( n ) )..'.'-,.,+1 
1 t • '1 -1 I 

A"- 0 AI! ( n ) ).."-11+2 
I- I rl -2 I 

.. 
(15-109) 

0 0 )..'1 
I 

Thus, in the general case of multiple roots, we have (15-107)-(15-109), where the 
columns of U represent the generalized eigenvectors of P as in (15-104). 

Inexamp~s 15-16,1~-17, and 15-19. wenoticethatthefirsttenninp~) converges 
to a·limit independent of the starting state e;, and the remaining terms converge to zero as 
n -+ 00, indicating that plI converges to a matrix with identical rows. We shall see that 
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this is usually.the case, implying that the influence of the initial state should gradually 
wear off. and for large n. pj(n) = P(x" = ej} in (1547) should be independent of 
the initial distribution. In other words, regardless of the initial ~tate, the Markov chain 
(under some restrictions) reaches a steady or stable limiting distribution after a large 
number of transitions. When such limits exist, the system settles down and becomes 
stable. However. there are exceptions. and to investigate the conditions for stability, we 
begin with a classification of states and chains. 

15·3 CLASSIFICATION OF STATES 

Given aoy two states ej and ej. if the probability p~) > 0 for some n, then there is a 
positive probability of reaching the state e j starting from ej in n steps. Iii that case the 
state -e j is said to be accessible from the state ej. If ej and e j are accessible from each 
other (i.e., if either state can be reached from the other one). then we say ei communicates 
with e j. If every state in a Markov chain is accessible from every other state (possibly in 
different number of transitions), then the chain and the corresponding transition matrix is 
said to be irreducible (communicating chain). For example, in the random walk model in 
Example IS-I, every state can be reached from every other state. and hence it represents 
an irreducible chain. Evidently. the same is true for the binary c<?mmunication model in 
Example 15-5, as well as the cyclic model in Example 15-9. 

Closed sets. If C is a set of states such that no state outside C can be reached from any 
state in C, then C is said to be closed. Thus if C is a closed set and if ei E C, e j ~ C. 
then Pi} = O. In that case pg> = Lk Pik Pkj = 0, since one term in the product is always 
zero, and more generally p~) = 0, n 2!: 1. so that no state outside C can be reached 
from any state inside C in any number of transitions. A closed set may contain one or 
more states. If a closed set contains only one state, then it is called an absorbing state. 
If ej is an absorbing state, then Pii = 1 and Pij = 0, i =F j. Once the system enters an 
absorbing state. it gets trapped there. Nothing ever escapes from an absorbing state. 

In Examples 15-7 and 15-13, the states eo and eN are absorbing states. It follows 
that a Markov chain and the corresponding transition matrix. are irreducible it there exists 
no closed set other than the set of all states. Thus a chain is irreducible if and only if 
every state can be reached from every other state (if and only if all states communicate 
with each other). 

In a chain with states el, e2 • ... ,en • ... suppose a subset of states el, e2 • ...• er• 
form a closed set C. Then the r x r upper left-band matrix. in P is itself stochastic. and 
we can exhibit P in the fonn 

(15-110) 

where U and W are square matrices, and Pij = 0 whenever ej E C, and e j belongs to 
its complement This gives 

(15-111) 

which shows that pt) = 0 if ei E C, but ej ~ C. Moreover un in (16-157) indicates1hat 
when both ej and e j are in C. the transition probabilities pfjl are obtained by restricting 
the summation over the closed set C only. Similarly, wn indicates that the same is true 
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if both ei and e j belong to the complement of C. in which case summation is only over 
the complement of C. 

As an example, consider the following 7 x 7 transition matrix 

0 0 0 0 alS 0 a17 
0 0 0 aZ4 0 0 0 
0 0 a33 0 0 0 0 

P= 0 a42 0 a44 0 0 0 (15-112) 
aSI 0 0 0 0 0 aS7 
0 tl62 a63 0 0 066 a6' 

a'i 0 0 0 a7S 0 a77 

where aij > 0 represent positive probabilities. Since a24 and a33 are the only nonzero 
entries in rows 2 and 3, we have a24 = 1, a33 = 1, and hence the state e3 is absorbing. 
From ez, transition takes place to e4 and from there to ez or itself. Hence e2 and e4 form 
a closed set. Similarly from el, transitions are possible to es and e, and from there to el, 
es, and e, only. As a result el, es, and e, form another closed set. From e6 transitions 
are possible to all seven states. On rearranging the states as e3, ez, e4, eJ, es. e,. and 
e6. the new transition matrix has the general structure shown in (15-103), with block 
square matrices PJ, P2 and P3 along the main diagonal followed by P4 • Notice that PI 
corresponds to e3, P2 to ez and e4, and P3 to elt es and e" while the 1 x 7 matrix 
P4 ~ lV, W] is as in (15-11 0), where W is 1 x 1 and it equals 066. 

PERSISTENT OR RECURRENT AND TRANSIENT STATES. Starting from any state 
e;, whether the system ever returns with certainty to the same state is an important 
question. If so, one may ask how long does it take on the average for that event to 
happen? To analyze these questions. we first generalize the event "the first return to 
ori~in" introduced in Sec. 10-1 in connection with the random walk: model, and define 
!;)n to be the probability that starting from state ei, the chain reaches the state e j for the 
first time in n steps. Thus [37] 

(15-113) 

and !;~n) represents the first passage probability from e, to e j in n steps. Notice that p:jl) 
represents the probability of reaching e j starting from el in n steps, but not necessarily 
for the first time. 

It is easy to establish a relation between !;r) and ptl ) by arguing as in (10-10). 
Starting from ei , the state e j can be reached for the first time at the rth step with probability 
!;Y), r ::; n, and again in the remaining n - r steps with probability p)rr) tor 1 ::; r ::; n. 
Summing over all these mutually exclusive possibilities, we obtain a key relation 

with 

,(0) - 0 Jij -

n 

p~) = L !;<;) pJtr1 

r=l 

(0) 
Pij = 0 

(15-114) 

'.J.' d 1'(1) 
l r J an Jij = Pij (15-115) 

Let Pij(z) and Fij(z) represent the moment generating functions of the sequences 
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{pt'} and (fi~n)}. respectively. Then proceciiing as in (10-] 1) 
00 00 II 

Pij(z) = LPtlzn = prJ> + LLft<;)p~rr)zl/ 
n=O n=1 r=1 

00 00 

= p~) + L ftjlzr L p~~)l = p3) + Fij(z)Pjj(z) 
r=1 .1:=0 

where 
00 

F;)(z) = L fi~l/)zn 
In particular for i = j. we obtain the useful relation 

Pjj(z) = 1 + F;;(Z)Pii(Z) 

or 
1 

Pu (z) = 1 - Fii (Z) 

Clearly, 
00 

h) ~ I: fi~") = F;) (1 ) 
11=1 

(15-116) 

(15-117) 

05-118) 

(15-119) 

(15-120) 

represents the first passage probability that starting from state ej, the system will sooner 
or later ever pass through state e). Thus h) :$ 1 always, and when h) = I, the sequence 
(!;r)} represents a proper probability distribution, and we refer to it as the first passage 
distribution for the state ej, with !;~") defined as in (15-113). In particular, if fjj = 1. 

then (fj~)} represents the distribution for the recurrence times of ej, and in that case if 
Y j represents the recurrence time random variable for the state e), then 

P{Yi = n} = fj~l) (15-121) 
and 

00 

/-Lj = E{y)} = Lnf$) (15-122) 
11=1 

represents the mean recurrence time for the state e j • 

~ The state e j is said to be persistenr if hi = 1 (i.e., starting from state e i' return 
to the state e j is certain). If fjj < I, then e j is said to be transient (return to e i is not 
absolutely certain). 

For example, in (15-112) the state e6 represents a transient state> while all other 
states are persistent states. 

A pCrsistent state e j is called a null state if its mean recurrence time in (1.5-122) 
/-L) = .00, and nonnull if /-L) < 00. ~ 

~ A state e) is said to be periodic with period T, if return to that state is possible only 
at instants T, 2T. 3T •... (multiples of T), that is. p~j) = 0 unless n = kT, where T is 

3 Sometimes the tenn TeCJUrent is also used to identify persistent states, and nont'llClll'relu to identify 
transient states. See Chung [371 and Parzen [46]. 
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the greatest common divisor of all n for which pl~) > 0 (see also Appendix 15-B). The 
state ej is aperiodic if no such T (> 1) exits. ) 

For example. the m x m transition matrix 

(

0 1 0 0 ... 0) o 0 1 0 .. , 0 
p= 0 0 0 1 .,. 0 

0000· .. 1 
1 0 0 0 ." 0 

represents a periodic chain with period T = m. 

(15-123) 

In an unrestricted random walk (Sec. 10-1) and the cyclic random walk model 
with an even number of states in (15-23) (Example 15-9) all states have period 2. In the 
randOm walk model with absorbing barriers in Example 15-7. the absorbing states eo and 
eN are aperiodic. whereas the internal states are periodic with period 2. In the random 
walk model with reflecting barriers inExample 15-8. aU states are aperiodic. ~ 

Finally. a persistent. nonnull. and aperiodic state is said to be an ergodic state. A 
Markov chain, all of whose states are ergodic, is said to be an ergodic chain. 

Theorem 15-1 expresses the conditions for the various type of states in terms of 
the transition probabilities pt). 

~ (i) The state ej is persistent if and only if 
00 

LPf7) =00 
n=O 

and transient if and only if 

If state e j is transient. then for all i 
00 

LPi;> < 00 
n=O 

(ii) The state e j is a persistent null state if and only if 

and 

In this case, for all i 

P~)~o 
JJ 

as n~oo 

(15-124) 

(15-125) 

(15-126) 

(15-127) 

pit ~ 0 as n....,. 00 (15-128) 

(iii) An aperiodic persistent state ej is ergodic if and only if /J-j < 00. In that case 
asn~ 00, 

/~) ~ iij 
I) ILj 

(15-129) 

(iv) If state e j is persistent and periodic with period T. then 

p(IIT) ~ T 
jj ILj (15-130) 
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Proof. (i) To say that t, is persistent means that 
co 

Iii = '" fi~"l = lim F/i (z) = 1 L...J t-J 
11=1 ' 

or equivalently from (15-119) 

Conversely. suppose 1::-0 pWI < 00. Then, since pr,) are all nonnegative. PII (z) increases mono. 
tonically as z -+ 1. and 

N co 

L (HI l' .. () L: (It) P/i :S 1m eli z:S Pit ,-.1 
11.0 "...0 

for every N. and hence. taking the limit as N -+ 00. we get 
co 

lim Pu (z) = '" p1;> < 00 ~ ... I L...J ,,-0 
Thus P;; (z) approacbes a finite limit as z -+ 1 if and only if (16-166) holds. In that case from 
(15-119) and (16-163), we have III < I, that is. the state B, is transient. Equivalently, Pu (z) -+ 00 

as z -+ 1. that is, the state B, is persistent if and only if (16-165) holds. 
To prove (16-167). we can make use of (16-159). From there 

co 0011 co 00 00 

L ptl = L L fir) p~-'l = L pJj) L 1fJ) :S L: p}j) < 00 (15-131) 
.-0 ,,-0 ,...0 m-O,..o .. -o 

if eJ is transient [use (16-166)]. This proves (16-167). In particular. if state eJ is transient, then 
from (16-173) we obtain 

To prove (ii) and (iii) formally. define 

so that 

and using (15-119) 

Thus 

But 

V _ p(lI) p(n-l) 
,,- jj- Jj n ~ I, (0) 

Vo = Pjj 

lim V(z) = lim 1 = __ - 2-
t ... l t ... , (1 - FjJ(z»/(1 - z) Fi/l) - 1-£J 

co II 

lim V{z) = lim'" VkZk = lim '" V,t = lim p}jl ~1 ' .... 1 L...J .... co L...J _co 
k=O .taO 

(15-132) 

(15-133) 

.. 
(15-134) 

(15-135) 

(15-136) 
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-,~..,.------,-. --

THEOREI\I 15-2 
~ ~ 

where we have used (16-176). From (16-182) and (16-185) we get 

1. (nl 1 
1m Pjj =­

/I-+CO ILj 
(15-137) 

Together with (16-165), equation (16-186) shows thatej is a persistent Dull state (jJ.j = 00) if and 
only if (16-168) holds. In that case p}j) -4 O. 

From (16-159) and (16-186), we obtain 

" co ,,(k) 

1· (Ill li L f,(k) (,,-k) L J Ij lij l1Dp - m p - ---
/I .... CO Ij - .. -co I} j} - J.Lj - J.L) 

1 .. 1 k_1 

If e J is a persistent null state, then IL J = 00, so that 

which proves (16-169). 

lim p~nl ~ 0 
n .... co ij 

(15-138) 

Finally if ej is aperiodic, persistent, and ergodic, then by definition ILj < 00. Conversely. if 
ILl < 00, from (16-186), p~) tends to a nonzero constantas n ~ 00, and hence limn_co E. p~) = 
00 SO that e} is persistent and ergodic. In that case, we also have (16-187), proving (16-170). 

To prove (iv), note that if e j is periodic with period T, then Il~) = 0 unless n is a mUltiple of 
T, and hence Fjj(z) only contains powers of ZT. Let 

Fjj(z) = tp(ZT) 

so that from (15-119) 

or 
1 co 

p. (zIIT) = = ~ p~nT)zn 
jJ 1 - tp(z) ~ jJ 

.. ...0 

and arguing as in (16-181)-(16-186), we get 

(nT) 1 T T 
Pi) ~ qI(l) = F1J (I) = ILj 

which proves (16-171) and p}j) ~ 0 ifm :F kT. This completes the proof ofTheorem 15-1. ~ 

Thus returns to persistent states are bound to happen with probability 1. In fact, as 
Theorem 15-2 states. it is possible to specify the total number of visits to both persistent 
and transient states. 

.. If an initial state el is persistent, then with probability 1 the system retilrns infinitely 
often to el as n -t 00. If ei is transient, the system returns to ei only finitely often, and 
after certain number of visits, the system never returns to ej again. 

Proof. Suppose the system first returns to el after NJ steps, returns for a second time after N2 
steps, etc. In that case the event {Nt < oo} represents that there are at least k returns to e;, and 

co 

PIN] < co} = III = Lh<;") (15-139) 

represents the probability of the system returning to ej sooner or later at least once. After every 
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return to ,el, the system starts all over again, artd hence after the first return the behavior gets 
repeated till the second return occurs. Thus, ' 

P{N2 < col NI < co} =:{;; (15-140) 

Moreover {NI = co} implies {N2 = co.} and hence {N2 < co} implies (NI < co). Thus 

P{N2 < co} = P{N2 < co I NI < co}P(NI < oo} = /;7 (15-141) 

and in general. 

PINk < co} = /;1 
If el is transient, then :{;I < I and hence 

(15-142) 

co co 1 L PINk < co} = L /;~ = -- < co (15-143) 
ot .. 1 b.1 1 - :{;j 

In that case, by the first part of Borel-Cantelli lemma [see (2-69)], with probability 1 only finitely 
many of the events {Nk < co} do occur. Thus the system returns to a transient state only fora finite 
number of times with probability one, and after a certain number of steps the system never returns 
to a transient state. If on the other hand ej is persistent, then fll = I and hence for every k 

PINk < co} = 1 (15-144) 

Let N be the number of times the system returns to el as n -+- co. Since the events {Not < oo} 
and (N ~ k) are equivalent, (16-200) implies that N exceeds any preassigned number k with 
probability one, that is, for every k, 

PIN > k} = 1 

or 

PIN = co} = I (15-145) 

Thus the system returns to a persistent state infinitely often as n -+ co, and this completes the 
proof. <I 

Theorem 15-3 shows that all states that are accessible from a persistent state are 
themselves persistent. 

~ If a state ej is accessible from a persistent state e" then ej is also accessible from 
e j' and moreover e j is persistent. 

Proof. Suppose a state e j is accessible from a persistent state ej, but ei is not accessible from 
e j. Thus the system goes from ej to e j in a certain number of steps with positive probability 
p:jl = a > 0, and after that it does not return to el. Consequently starting from el the probability 
of the system not returning to el is at least Q. or the probability of the system eventually returning 
to el cannot exceed I - Q. Thus :{;I :::: 1 - Q. But 1 - a is strictly less than 1, contradicting the 
assumption that ei is persistent. Hence el must be accessible from tj, that is, pt) = b > 0 for 
some r. From (15-43), we have 

and hence 

P(n+m) > p{m)p(ll) 
Ii - it ki for any k 

P0+m+r) > p!m)p(n+r) > p('!')p(I~lp(r) = abn(n) 
It - 'i JI - IJ jJ j/ r jJ 

(15-146) 

(15-147) 
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Similarly 

Pen ~m+ll > p(rlp(n)p(m) _ abp(a) 
jj - ji /I Ij - il (15-148) 

Thus the two series E:-o p~7) and E:~ Pj/ converge or diverge together. But E" pf:> == 00, 
since el is ~istent, and it now follows that e j is also persistent. This completes the proof of the 
theorem. ~ 

If the Markov chain is also irreducible, then all states are accessible from each 
other, and the proof of Theorem 15-3 shows that in that case all states are of the same 
type, that is, they are all either transient or persistent. Theorem 15-4 summarizes this 
observation. 

I!'J> In an irreducible Markov chain. all states are of the same type. They are either all 
transient, all persistent null or all persistent nonnull. All the states are either aperiodic 
or periodic with the same period. 

Proof. The chain is irreducible, and hence every state is accessible from every other state. In that 
case, from (16-213) and (16-214) for any two states, the series Ell p1~) and Ell p}j) converge or 
diverge together. and hence all states are either transient or persistent. If ttl is persistent nUll, then 
pf7) ~ 0 as n ... 00 and from (16-213), p}j) -+ 0 as n ~ 00 so that eJ and all other states are also 
persistent null. Finally if ttl is persistent nonnull and has period T, then p:~) > 0 whenever n is a 
multiple of T only. From (16-212) 

P~~+I) > P~'!')P<!I) = ab > 0 
" - IJ J 

(15-149) 

since ttl and ej are mutually accessible. Hence from (16-216), (m + r) must be a multiple of T. 
Finally from (16-214), 

P(~+m+rl > abp~n) > 0 
JJ - 1/ 

where n and hence (n + m + r) are multiples of T. Thus T is also the period of the state e J' and 
this proves the theorem. ~ 

One way to show that an irreducible chain is aperiodic is to exhibit a state ek for 
which PH; > O. Such a state is clearly aperiodic. 

Next. we shall use Theorems 15-1-15-4 to analyze the limiting behavior of various 
random walk models in one and higher dimensions . 

.. One-dimensional random walk. Consider the one-dimensional unrestricted random 
walk model introduced in Sec. 10-1. Every state is accessible there from every other 
state (see Fig. 10-1a) and hence all of them are of the same type. The one-step transition 
probabilities in that case are given by 

{
p j = i + 1 

Pi} = q j = i-I 
o otherwise 

(15-150) 
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and moreover from (10-5) for any state ej . 

(II) _ {U'2k n = 2k 
Pu - 0 n = 2k + 1 

Thus all states are periodic with period 2. and 

(2n) ( 2n ) n 2n! ( )'1 Pii = U2n = n (pq) = -, -, pq 
n.n . 

.J4:7rn(2n)2ne-2n n (4pq)n 
~ (pq) =--

(.J2:7rnnne-n )2 fo n ::: 1 

whe:e we have made use of Stirling's approximation!ormu[a given by 

n~oo 

From (16-219), both the series 

and 

either converge or diverge together. Since 

4pq = (p + q)2 _ (p _ q)2 = 1 _ (p _ q)2 :::: 1, 

(15-151) 

(15-152) 

(15-153) 

(15-154) 

for p #: q, we have 4 pq < 1, and the later series in (16-221) converges since it is bounded 
by 1/(1 - 4pq), and hence 

forevery ej (15-155) 

Thus if p #: q. then every state is transient in a one-dimensional random walk. If p > q. 
the particle will gradually work its way out to the right and eventually will permanently 
abandon any state ej. However, if p = q = 1{2. we have 4pq = 1. and the later 
series in (16-221) diverges. In that case E~ pI; diverges, and every state is persistent 
and from Theorem 15-2 the particle will return to each state infinitely often. Note that 
these conclusions also have been obtained more directly in (10-15) by making use of the 
generating function Fu(z) = V(z) in (10-13). From (10-16), the mean recurrence time 
lLi = V'(l) = 00 if p = q. and from Theorem 15-1 it now follows that all states in a 
symmetric random walk are persistent null with periodicity 2. From (16-169), we also 
have p!;) ~ 0 as n ~ 00. ~ 

1Wo-dimensional random walk. In a two-dimensional random walk, the partible moves 
in unit steps in both the x and y directions independently, starting at the origin, so that 
its path contains all points on the plane with integer-valued coordinates. Each position 
of the particle has four neighbors. Once again every state is accessible from every other 
state, and a return to origin is possible only if the number of steps in the positive x and 
y directions equal those in the negative x and y directions. Hence (16-218) holds in this 
ca.se also and all states are periodic with period 2. If n represents the total number of 
steps in the positive x and y directions, and k those in the positive x direction, then for 
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a symmetric random walk using the multinomial distribution we get 

(211) II 2n! (1) 2Il (1)2Il 
Pii = t; k!k!(n - k)!(n - k)! 2: 2: 

1 
~-

1rn 
n --+ 00 (15-156) 

Since the series E:'l lIn diverges, E:O pft") also diverges. and all statesarepersistent 
In addition, from (16-239) pr> ~ 0 as n ~ 00, and hence all states are persistent null 
with periodicity 2. It is interesting to note that in a two-dimensional symmetric random 
walk, in spite of the greater freedom present (compared to one dimension) to wander 
away. the particle does return to each state infinitely often. Figure 15-4 illustrates four 
separate runs of a two-dimensional random walk each consisting of 1250 trials. 
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FIGURE 15-4 
Two-dimensional random walk. Pour different runs each coDSisting of 1250 trials. 
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Three-dimensional random walk. In a general three-dimensional random walk, the 
particle undergoes a one-dimensional random walk at every step along anyone of the 
three axes chosen at random. Thus the particle moves independently in one of the six 
directions generated by the x. y. or z axes at every step. In that case, each position has 
six neighbors. In a slightly restricted model, the particle undergoes three independent 
one-dimensional random walks at every step along the three axes simultaneously, and 
that model gives rise to eight neighbors for each position (corners of the cube as opposed 
to centers of the faces of the cube). In this case also, every state is accessible from every 
other state and all states are periodic with period 2. A return to the origin is possible 
in the later case if and only if we have returns to origin in all three directions. By the 
independent assumption. this gives 

p~;n) ~ p{~~) = O}p{s~;> = O}p{s~ = O} = {(~) 2-211 r (15-157) 

so that for large n, 

(211) ...., 1 
Pii - n:3/ 2n3/2 (15-158) 

In this case, however, the series :E:l l/n3/2 < 3 converges, and hence :E:o pfr) also 
converges. Using (16-166), it follows that all states in a three-dimensional random walk 
are transient. Thus after a certain number of visits the particle never returns to the initial 
position. By direct computation using (16-240), we obtain 

100 

L p~;n) = 1.3574 ~ Pjj (1) 
n=O 

and from (15-119) and (16-163), this gives the probability of ever-returning to the origin 
(or any other state) to be 

1 
fjj = Fjj (1) = 1 - -- ~ 0.2633 (15-159) 

Pjj (1) 

for a three-dimensional symmetric random walk with eight neighbors for each position. 
In the general model referred to earlier with six neighbors for each state, the probability of 
ever revisiting the origin is slightly higher due to the lower number of neighbors present 
there, and it is given by 0.2633 x 8/6 ~ 0.351. The expected number of returns in that 
case equals 0.649 :Ek(0.351)k = 0.351/0.649 ~ 0.54, an old result due to Polya ([3], 
Vol. I). 

To summarize, in a symmetric random walk in one and two dimensions, with 
probability one, the particle will sooner or later return to the origin. Ho'Wever, in three 
dimensions this probability is only about 0.26 (or 0.35). Thus in a three dimensional 
symmetric' random walk, all states are transient, and after a certain number of visits the 
particle never again returns to the initial position.4 The extra degrees of freedom do seem 
to have made a difference in the three-dimensional case. It follows that two independent 
random walks on a plane will meet infinitely often, whereas in three dimensions there 

4Polya had remarked the dimensional breakdown n ::: 2 versus n ::: 3 as "newsworthy" and not intuitively 
obvious. 
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is. a positive probability that they will never meet. In a diffusion process containing a 
large number of particles. it goes without saying that the probability of even a small 
number, let alone all particles. regrouping to origin at a later point in time is essentially 
zero. Similar conclusions hold in higher dimensional random walks also. In the case of 
a four-dimensional symmetric random walk, the probability that a particle will return to 
the origin is approximately 0.105 or 0.2 depending on whether the model assumes that 
each state has eight neighbors (faces of the hypercube) or 16 neighbors (comers of the 
hypercube). .... 

More on classification. For every persistent state el interestingly there exists a subset 
C of states that are accessible from ej. From Theorem 15-3, all such states are persistent 
and accessible from each other. forming an irreducible closed set C. Further. for every 
pair of states ej and e j in C . 

fij = 1 (15-160) 

To prove (15-160), we can argue as follows: Let a denote the probability of the event 
"starting from the state ej the system reaches e j without returning to ei:' and on reaching 
e j the probability of never returning to ej is given by 1 - Iii. Hence the probability of 
the event, "starting from ej, the system never returns to ej," is at least a(1 - hi). But 
since ei is persistent fii = 1. and hence this no-return probability is zero. Hence fjj = 1 
for every e j that can be reached from ei that is persistent. Since e J is also persistent, we 
get fi) = 1. If C denotes the set of all states that can be reached from ej, then all of 
them are persistent and accessible from each other. Using this argument it follows that 
(15-160) is true for every pair in C. According to (15-160), starting from any state in C. 
the system is certain to pass through every other state in C, and no exit from C is ever 
possible. 

Thus every persistent state is contained in an irreducible closed set containing other 
persistent states that are accessible from each other. As a r~sult no transient state can be 
ever reached from a persistent state. Hence. if ej is persistent and e j is transient, then 

(15-161) 

In summary, if a chain contains both persistent and transient states, then the transition 
matrix P can be partitioned as in (16-156), where U corresponds to persistent states. U 
can consist of several irreducible subsets such as PI> P2, ... , as in (15-103) in which 
case no transition between such subsets is possible. Together with Theorem 15-4, this 
leads us to Theorem 15-5. 

~ A Markov chain can be partitioned in a unique manner into nonoverlapping sets 
T, Ct. C2, .. , where T consists of all transient states and CI. C2 • ... are irreducible 
closed sets containing persistent states of the same type. Further if el belongs to some 
Cr , then 

fu = 1 for all ej E C, file. = 0 (15-162) 

~ 
Example 15-20 shows that all states in a chain can be transient (p #- q), in which case. 
as Theorem 15-6 shows, the chain must be necessarily infinite. 
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... In a finite chain it is impossible that all-states are transient. Further, if all states are 
accessible from each other, then all of them are persistent nonnuH. 

Proof. Since there are only a finite number of states, the system must return to at least one of 
them infinitely often as n -+ 00. From Theorem 15-2. all states cannot be transient in that case, 
and at least one of them must be persistent. In addition, if all states are accessible from each other. 
then since one of them is persistent, from Theorem 15-3 all of them are persistent and fonn an 
irreducible closed set. Since the rows for pit contain a finite number of elements and each row 
adds to unity, it is impossible that p t' -+ 0 for every pair j. k. Hence all states cannot be persistent 
null, and consequently at least one of them must be persistent nonnull. But then by Theorem 15-4. 
all states are persistent nonnun. This completes the proof. ~ 

. Of course, a finite chain can have more than one closed set containing persistent 
states (e.g., random walk with absorbing barriers). In that case, obviously all states are 
not accessible from each other. 

15-4 STATIONARY DISTRIBUTIONS 
AND LIMITING PROBABILITIES 

So far we have seen that every persistent state belongs to an irreducible closed set C 
containing similar states. Since no exit from C is ever possible, its asymptotic behavior 
can be studied independently of the remaining states. 

An important question in this context is whether in the long run a Markov chain 
can reach a limiting distribution irrespective of the initial distribution? Thus under what 
conditions. if any, does 

as n --+ 00 (15-163) 

regardless of the initial starting state e j? When such limits do exist, the system shows 
long-run regularity or stationary behavior. Interestingly, for irreducible chains containing 
aperiodic, persistent nonnull states (ergodic chain), from Theorem 15-1. (16-170), and 
(15-160), it at once follows that 

• (II) Iii 1 b. 0 
hm Pij ~ - = - = qj > 

11 .... 00 jJ. j JL j 
(15-164) 

As Theorem 15-7 shows, the converse is also true. 

~ In an irreducible ergodic chain, the limits 

qk ~ lim p}i/ > 0 
11 .... 00 

(15-165) 

exist independent of the initial state e j. Further 

Lqk = 1 (15-166) 
k 

and these limiting probabilities satisfy the equations 

qj = L qjpjj (15-167) 
i 
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Conversely, if a chain is irreducible and aperiodic and there exist numbers qk ~ 0 
satisfying (15-166) and (15-167), then the chain is ergodic, and 

1 
qk = - > 0 

Ji.k 

where Ji.k is the mean recurrence time for the persistent nonnull state ek. 

(15-168) 

Proof. Let the chain be irreduc:ibleand ergodic. Then (15-164) establishes (15-165). Further, since 
(n+l) ~ (n) 

Pkj = L- Pi; PI) (15-169) 
I 

as n -+ 00, we have p~j+l) -+ qj and p~7) PI) -+ qi PI). Thking only finitely many terms in the sum 
of (15-169) and letting n -+ 00, we get 

q) ~ LqiP,j 
I 

Since 1:) pt+l ) = 1, we have 1:j qj = I, and summing over j in (15-170) we get 

Lqj~Lqi 
j I 

(15-170) 

in which the inequality is impossible. Hence (15-170) holds with equality for all j, and this proves 
(15-166) and (15-167). Conversely, letqk ~ o and (15-166) and (15-167) be true. Then by repeated 
use of (15-167) we get 

qlr. = LqiPI~) (15-171) 
I 

Since the chain is irreducible, all states are of the same type. But they cannot be transient or null 
states since in that case p~:) -+ 0, and 1: qk = 1 cannot be satisfied. Thus all states are persistent 
non-null. and the chain is ergodic. Then from (15-164) we get 

qk= Lq,~=~ 
I /J.1r. ILk 

and this completes the proof of the theorem. -4l 

Since the probability of the state e j at the nth step is given by 

P{xn = ej} = L P{xn = ej I Xo = edP{Xo = el} = L: p~j) PI (0) 
i 

where Pi(O) represents the initial distribution, we have 
~ 

lim P{x" = ejl = ~ qj Pi (0) = qj ~ Pi (0) = qj > 0 
n-+oo L- L." 

i i 

(15.172) 

(15-173) 

(15-174) 

Thus when the ch~ exhibits steady state or stationary behavior, then the system in the 
long run settles down to the invariant probability distribution in (15-174) irrespective 
of the initial distribution. If there are N independent activities involved, then after a 
long time. N qk among them will be in state ek. reaching a steady state or equilibrium 
distribution. 

Interestingly. (15-171) also shows that if ek is either a transient state or a persistent 
null·state then qk = O. To summarize, an irreducible chain possesses an invariant positive 
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probability distribution if and only if it is ergodic (consists of aperiodic, persistent nonnull 
states). In that case qk > 0 and limll-.oo P{XII = ed -? qk. 

Finite Chains and Perron's Theorem 

If a Markov chain has only a finite number of states el, e2 • ...• eN, then Eq. (15-163) 
can be ex.pressed in matrix form as 

(IS-17S) 

where P is the probability transition matrix in (1S-12), and Q is a matrix with identical 
rows equal to q given by 

q = lq" q2,· .. , qN] 

Moreover, in that case (15-167) can be rewritten as 

q=qP 

with 
N 

2:qj = 1 
i=l 

(1S-176) 

(15-177) 

(1S-178) 

Equation (15-177) represents the left-eigenvector equation of P corresponding to the 
eigenvalue A = 1. This raises an interesting question: Is A = 1 an eigenvalue of any 
probability transition matrix P, and if so, why should the left eigenvector q associated 
with A = 1 always consist of all strictly positive entries? 

Since P is a stochastic matrix, it is easy to establish that A = 1 is indeed an eigen­
value of P. In fact, since each row of P sums to unity we have 

PXt = Xl with XI = [1, 1,1, ... , If (IS-179) 

which proves the claim. To establish the strictly positive nature of the left eigenvector 
q, we can make use of a theorem by Perron (1907) in connection with positive matrices 
and later generalized by Frobenius (1912) for nonnegative irreducible matrices. 

A matrix is said to be positive (not positive-definite) if its entries are all strictly 
positive. Let p (A) represent the spectral radius of A (i.e., maximum of the absolute value 
of the eigenvalues of A). Thus 

p(A) = max IAj(A)1 
j .. 

(IS-180) 

It is easy to show that if ri. Cj, represent respectively the ith row sum and the ith column 
sum of A for i = 1,2, ... , N, then 

~nri ::: p(A) ::: m!iXri (IS-181) 
I I 

and 

~nCj ::: p(A) ::: ffiiiXCi (IS-182) 
I I 

Using (1S-181), it follows that the spectral radius of a probability transition matrix is 
unity. 
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PERRON'S 
THEOREW 

~ For a positive matrix A. 

(I) p(A) > 0 and p(A) is an eigenvalue of A with multiplicity one. 
(U) There exists an eigenvector with all positive entries corresponding to the 

eigenvalue p(A). 

(iii) If A. is any other eigenvalue of A, then IAI < p(A). In particular, there are no other 
eigenvalues A such that IAI = p(A). 

A probability transition matrix with all positive entries would correspond to all one­
step transition probabilities being positive. and as we have seen that is not the case in 
most of the Markov chains. Fortunately Perron's theorem can be shown to be true even 
if some of the entries of A are zeros, provided An is a positive matrix for some integer n. 
In that case A is said to be a primitive matrix. Thus, if the probability transition matrix 
P is primitive, then for some n 

minp~'!) > 0 
n I) 

(15-183) 

implying that all states are accessible from each other at the same stage n. This need 
not be the case with all irreducible chains (see definition on page 715). For example. the 
matrix 

(15-184) 

is irreducible6 since pW = p~~) = 1, and p2 = I gives pi~) = pfi = 1. But P is not 
primitive since p~~) = 0 if n is odd and p~~) = 0 if n is even. Note that P is periodic 
here with period 2. Primitive matrices exclude periodicity. More generally a nonnegative 
matrix A is primitive if and only if it is irreducible and aperiodic. The m x m matrix in 
(15-123) is also not primitive, since all of its eigenvalues have absolute value equal to 
unity. However, the m x m matrix P given by 

P= 

o 1 0 0 0 
o 0 1 0 0 

o 000 
p q 0 0 

o 1 
o 

(15-185) 

is primitive for any p > 0 and q > 0 since pn is positive for n = m2 - 2m + 2. Similarly, 

SMatrix Algebra alld Its Applications to Statistics and Ecollometrics. C. R. Rao and M. B. Rao, World 
Scientific. 1998; The Theory of Matrices. P. Lancaster and M. Tismenetsky, Academic Press, 1985. 

6If P is an irreducible matrix. then for any states ej, e j we have /(j' > 0 for some m = mij. Note that for a 
primitive matrix there exists an 11 in (1S-183) that is independent of i, j there, whereas for an irreducible 
matrix no such 11 may exist, although every state ej is still accessible from every other state e J at some stage 
mij (nol necessarily at the same stage). 

If A is a nonnegative irreducible matrix with period T, then A has exacdy T eigenvalues given by 
AI = p(A)e2trlj/ T , i = 1,2, ... , T, that are related through the T-th roots of unity. and all other eigenvalues 
are stric~ly less than p(A) in magnitude (compare this with (iii) in Perron's theorem). See (1S-67) with N 
even for an example and Appendix lS-B for a proof. 
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(15-186) 

with Ei Pi = 1 also forms a primitive stochastic matrix since p2 is a positive matrix. 
If A is primitive. then A N is positive for some N. and bence Perron's theorem must 

be true for AN. Thus p(A)N is a simple eigenvalue of AN with all positive entries in its 
corresponding eigenvector. Moreover. all other eigenvalues of AN are strictly less than 
p(A)N in magnitude. Since A and AN have the same set of eigenvectors. it follows that 
peA) is a simple eigenvalue of A with the same positive entries in its eigenvector, and all 
other eigenvalues of A are strictly less than peA) in magnitude. Thus Perron's theorem 
is true if and only if A is a primitive matrix. 

If P is a stochastic matrix, then p (P) = 1 and it follows that the eigenvector associ­
ated with J.. = 1 has all positive entries, with all other eigenvalues being strictly less than 
un~ty in magnitude, if and only if P is also a primitive matrix. We can apply Perron's 
theorem to its transpose P' to obtain the desired result. Since pep') = pep) = I, in that 
case also there exists a vector Yl with positive entries (left-Perron vector of P) such that 

or (1S-187) 

On comparing (IS-187) with (1S-177). we obtain q = y~. Thus, the desired invariant 
distribution, if it exists, is given by the left-Perron vector of P subject to the normalization 
condition in (1S-1~8). Finally to examine whether such an invariant distribution exists, 
we can make use of the eigen decomposition for P with XI and Ylt as defined in (1S-179) 
and (15-187) and Xl" Yk, k = 2 •... , N representing the remaining eigenvectors of P 
and P' respectively. Thus 

N N 

P = AIXIY~ + L>kXkY~ = x,q + I>kXkY~ (1S-188) 
k=2 k=2 

Since IAk I < 1 for k ::: 2 and q is a positive row vector if and only if P is a primitive 
stochastic matrix, we obtain 

N 

pn = x,q + 2: AZXkYk -+-x.q = Q (IS-189) 
k=2 

To summarize. for finite Markov chains P" -+- Q, a positive matrix wit~ identicall'Ows 
equal to q, if and only if the transition matrix P is a primitive stochastic matrix. In that 
case the invariant distribution q is given by the left-Perron vector of P. <i 

It may be remarked that (1S-177) and (1S-178) may have a positive solution 
even if P is not primitive. For example. the random walk with two absorbing barri­
ers (Example IS-7) represents a nonprimitive transition matrix P in (1S-20). Hence 
there exists no invariant distribution. However, every probability distribution of the form 
q = (a, O. 0, ... ,0, I-a), 0 < a !: 1 assigning positive weights to the absorbing states 
satisfies the equation q = q P. Similarly for the transition matrix example in (lS-123), 
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EX-\i\IPLE 15-:~1 

it is easy to see that 

- - - -[ 1 1 1 ] 
q- m·m·····m (15-190) 

is an obvious solution to q P = q, but nevertheless pn does not converge to a positive 
matrix Q with identical rows, since P there is not a primitive matrix. The solution to 
(15-177) is meaningful as the unique invariant distribution to the Markov chain if and 
only if P is a primitive stochastic matrix. It follows that a doubly stochastic matrix (as 
in Example 15-15) bas an equally likely invariant distribution given in (15-190) if and 
only if it is also a primitive matrix. 

~ (0 The m x m probability transition matrix given in (15-185) is primitive, and 
hence an invariant distribution exists. In that case solving q P = q. we obtain the stable 
distribution 

1 
q2 = q3 = ... = qm = -p-+-m--~l (15-191) 

Figure 15-5 shows the state transition probabilities and the steady state matrix Q for m == 5 
with probabilities as in (15-191). In steady state, every state communicates with every 
other state-even states that do not initially communicate directly, end up communicating 
with each other with positive probability. 

(ii) As another example. consider the primitive transition matrix in (15-186). In 
that case, the matrix equation q P = q leads to 

m 

qo = qoPo + Lq" 
"=1 

The normalization in (15-178) gives 
m m 

k2::1 

L q" = qo + qo L Pk = qo + qo(1 - po) = qo(2 - Po) = 1 
"=0 /(.=1 

(b) 

FIGURE 15·5 
State rransition probabilities and steady state distn'bution. 
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State transition probabilities. 

Thus 
1 Pk 

(jo = -- qk = -- k = 1,2, .. . ,m (15-192) 
2-po 2-po 

represents the unique steady state distribution. Ou:ce again although the state transition 
probabilities are as in Fig. 15-6, in the long run, every state communicates with every 
other state with probabilities given by (15-192). 

For the binary communication channel in Example 15-5, clearly P is primitive if 
ex > 0 and fJ > 0, and in that case the steady state distribution is given by 

fJ ex 
qo = -- ql = -- (15-193) 

ex+fJ ex+fJ 

Notice that (15-193) agrees with the steady state part of the solution for p}~ in 
(15-64) .... 

~ One reflecting barrier. The general random walk model in Example 15-6 (page 
699) with possible states eo, el, e2 • ..• represents an irreducible aperiodic chain since 
Poo =70 < 1 (reflecting barrier). To examine the conditions under which the chain ex­
hibits a steady state solution, let Uo. UI. U2, ••• represent the invariant probabilities if 
they exist. Thus 

(15-194) 

and 
co 

EUk = 1 (15-195) 
k..o 

The sequence {Uk} satisfies the equation [see (15-166)-(15-167)] 

Uk = E Uj Plk (15-196) 
I 

and using (15-18)-(15-19), this reduces to 

Uo = uoro + Ulql 

Uj = Uj-lPj-l + Uj7j + Uj+lqj+1 j::: 1 

Sincero = 1-Po, and7j = 1- Pj -qj. j::: 1. we get 

Ulql = UoPO and Uj+lqj+l - UjPi = uJqJ - Uj-lPj-1 j::: 1 (15-197) 
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which gives iteratively 

Thus 

(15-198) 

where 
Pop,'" PI:-J 

Pi = (15-199) 
q,q2" ·qk 

For {Uk} to satisfy (15-195), from (15-198) it is necessary and sufficient that 
00 00 

" " PoPI ..• Pk-I L..JPk = L..J < 00 
k-I 1:=1 qlq2' "Qk 

(IS-2OO) 

In that case the general random walk: in (IS-16) with one refiecting barrier possesses a 
steady state distribution. Using the nonnalization condition (IS-19S) we get 

1 PI: 
Uo = 00 Uk = 00 1 + E'_l Pi 1 + Ej=l Pi 

(15-201) 

In the special case when all steps in the random walk are identical, we have PI: = P, 
ql: = q, and Pk = (p/q)". so that for P < q, 

P uo=I-­
q Uk = ( 1 - ~) (~r k~1 (15-202) 

The steady state distribution in (IS-202) represents a geometric random variable with 
expected value equal to p/(q - pl. From the general random walk model in Exam­
ple 15-20 (see page 723) it is clear that the states are transient when P > q. and 
persistent null when p = q in this case. For P < q, the states are all persistent DOnnull, 
although from (15-202) the probability of the system occupying higher and higher states 
becomes more and more unlikely. 

For the unrestricted random walk model in Sec. 10-1, since all states are either 
transient (p = q) or persistent null (p =F q). as shown in Example IS-20. there is no 
stationary distribution in the limiting case. 

Two reflecting barriers. For the random walk model with two reflecting barriers over 
a finite number of states el, ez • ••• ,eN (Example IS-8. page 701), from (15-198) the 
steady state distribution satisfies 

Uk=(~r-'UI k=1,2 •... ,N oJ 

and 

N N ()I:-I I (/)N LUk = UJ L E. = U1 - P q = 1 
Awl k=1 q 1 - p/q 

Thus the steady state distribution is given by (p =F q) 

U = 1- (p/q) (!!.)'-I 
, 1 _ (p/q)N q j = 1.2, .... N (15-203) 
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For this 'finite chain there is no restriction on the size of p relative to q, and the states 
are all persistent nonnull. Referring to the exact expression for pJj> in (15-102) for the 
reflecting barrier model (Example 15-19), as n --? 00. the terms inside the summation 
there tend to zero (since pq < I), and the remaining first term agrees with (15-203). 

Cyclic random walk. The steady state behavior of the cyclic random walk in Example 
15-9 (page 701) is easy to analyze. In that case, since P is doubly stochastic, the equally 
likely distribution in (15-190) holds good in the steady state provided P is primitive. For 
the special case in (15-23) (cyclic random walk), P is primitive only if the number of 
states are odd. (In the even case, P is not primitive since both 1 and -1 are eigenvalues 
for P; see also (15-67) with N = 2K). 

Nonuniform random walk. For the nonuniform random walk model with finite number 
of states (Ehrenfest's diffusion model) discussed in Example 15-10 (page 702), the 
transition matrix P in (15-26) is primitive and with Pk as defined in (15-16), we have 
Pk = 1 - k/ N so that from (15-199) 

(1- "!")(1-1.) ... (1- Ie-I) (N) 
n- N N N_ 
,,/c- .L1. ... !. - k 

N-N N 

and hence from (15-198), Uk = PkUO =( Z )uo. Using the normalization condition 

r:f=o Uk = I, we get 

Uk = (Z) 2-N k = 0, 1,2, ... , N (15-204) 

since r:f=o ( Z) = (1 + l)N = 2N. Notice that for large N, the binomial distribution in 
(15-204) can be replaced by the normal approximation 

(15-205) 

which shows that the states in a very large system have Gaussian distribution, and the 
maximum of their probabilities correspond to k = N /2. Thus, in steady state, the system 
will most likely stay in those states for which k = N /2 or very close to it, and from 
(15-205) they are equiprobable states. For example, if N = 1()6, the probability that k 
is off by 0.5% from its equilibrium value is about 10-24• The initial state of the system 
has no bearing on the final eqUilibrium distribution. ~ 

Note Referring to Example 15-10, if A and B represent any imaginary partition of equal size in a container, 
then in steady state from (1 S·205) it is certain that one· half the molecules will be on each side of every such 
partition. Since the partition is arbitrary, it follows that at a macroscopic level, the molecules must be unifonnly 
distributed inside the container in steady Slate. All other states. although not improbable, have a negligible 
probability of occurrence. It is possible that the system may once in a while drift into one of these improbable 
stales, but then as time progresses the system is more likely to drift back toward equilibrium during the next 
transition than away from it, simply because of the probability distribution in (15-205). Technically all states 
are accessible from each other, however, the large 'lumber of particles involved makes it practically certain 
that only the "most likely states" are ever visited by the system in equilibrium. Since equiprobable stales 
correspond to maximum disorder. the arrow of time does seem to indicate transitions from order to disorder. 
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EXAl\lPLE 15-23 

SUCCESS 
RUNS 

~ Referring to the return to zero random walk model of (IS-27) and (15-28) in Ex­
ample IS-II (page 702), every state is accessible from every other state there. since for 
Pi = P and q/ = q by expanding pn sequentially we get 

{ 
qpk k = 0, 1,2 •... , n - 1 

p}~) = pn k = j + n 
o otherwise 

Thus p}nl > 0 for all j and k and the chain is irreducible so that all states are either 
transient or persistent. If the system is initially at state eo, then the product POPl .•. Pk-l 
represents the probability of k consecutive transitions from eo to el:. Hence, I1~ PI: 
represents the probability of the system never returning to zero. Let 

I: 

lim IIp; = Vo 
k-oo i_O 

so that 100 = 1 - tlo represents the probability of the system returning to eo. If tlo > 0, 
then 100 < I and the state eo is transient and hence so are all other states. Then as n -+ 00, 

the particle moves off to infinity in the positive direction. 
But if Vo = 0, then 100 = 1, and in that case eo and all other states are persistent. 

To determine the conditions under which a steady state distribution exists, using (1S-28) 
in (1S-196) we get for k ~ 1 

and 

fUk = (1 + fpOPl'" Pk-l) Uo = 1 
k=O 1:=1 

From (15-206), a stationary solution exists if and only if the series 

In that case 
1 

00 

1 + I: POPI ..• Pk-I < 00 

1:=1 

POPI ..• Pj-t 
UO = ,",00 

1 + L.Jk=! PoP! •.. Pk-I 
Uj = 00 

1 + 2:k=1 POPI ... Pk-I 

In particular, if all steps are identical, then PI = P < 1 as in (15-27) and 

00 00 1 1 
I:ul:=I:l=-=-
k=O 1:=0 1-p q 

so that 

k~O 

(15-206) 

(15-207) 

(15-208) 

(15-209) 

Thus the steady state distribution in the case of uniform success runs is also geometric 
[compare this result with (15-202)] with mean value equal to p/q. ~ 
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.. Referrmg to the imbedded Markov chinn fannulation in Example 15-14 (page 704), 
using the transition matrix in (15-33)-(15-34) the system of equations in (15-167) reo 
duces to . 

j+1 

q) = qoaj + Lq;aJ-I+l 
;=1 

Define the moment generating functions 

co 

Q(x) = LqjX) 
)=0 

so that using (15·210) we get 

or 

00 00 )+1 

Q(z) = qo Lajx) + LLqjaj-i+lxj 

j=O }=o 1=1 

co co 

= qoA(x) + LqiXj LamZm . Z-I 

i=1 m=O 

= qoA(z) + (Q{z) - qo)A(z)/z 

Q(z) = qo(l - z)A(z) 
A(z) - x 

Since .Q(1) = A(l) = I, using !'HOpital's rule above, we obtain 

Q(1) = lim qo (1- z)A'(x) - A(z) = ~ = 1 
t .... 1 A' (x) - 1 1 - p 

where 
00 00 

p = A'(1) = Lkak = LkP{Yn = k} = E{Yn} 
k=O k=O 

(15-210) 

(15-211) 

(15-212) 

(15-213) 

(15-214: 

represents the average number of new customers (jobs) arriving per service period, 01 

the traffic rate. Thus qo = 1 - p > 0, and 

Q(z) = (1 - p)(1 - z)A(z) 
A(z) - x 

p<1 (15-215: 

From (15-35), Eq. (15-215) can be used to determine the long-term behavior of the un· 
derlying queue. For example, from (15-174) limn .... co P{xn =k} =qk. and the average 
number of customers (jobs) in the system in steady state is given by 

co 

lim E{xn} = Q'(l) = '" kqk 
n .... oo L...J 

k=O 

(15-216 

and for various appropriate input and service time distributions this quantity can be 
computed [see (16-211)]. 



For example. if s denotes the general service time random variable with probabiliy 
density function !s(t), under the Poisson arrival assumption at the input. we get (k new 
arrivals in duration s = t) 

( -Ar (M)k 
P Yn+l = k I s = t} = e k! (15-217) 

and from (15-33) this gives 

ak = P{Yn+l = k} = 100 
P{Yn+1 = k Is = t}!s(t)dt 

= 100 
e,·At (~t h(t) dt (15-218) 

From (15-211), 

A(z) = 100 
e-Ar (~ (Z~~)k) I,(t)dt 

= 100 
e-A(I-z)r Is(t) dt ~ cI>,{l.{l- z» (15-219) 

where cI>, represents the Laplace transform of the service time probability density func­
tion fs(t). With (15-219) in (15-215), we obtain the well-known Pollaczek-Khinchin 
formula. 

In particular if we assume the service times to be also exponentially distributed, 
then f,(t) = f.1.e-ILI. t ~ 0, and (15-219) reduces to 

f.L f.L 00 ( A )k 
A(z) = f.L + A(1 - z) = f.L + At; f.L + A t (15-220) 

and A'(l) = P = >"1f.L. so that 

f.L ( A)k 1 ( P )k 
ak=f.L+>" /L+A =l+p l+p 

k = 0, 1,2, .. . (15-221) 

Further 

Q(z)= I-p =(1_p)I:lzk 
1- PZ taO 

P < 1 (15-222) 

Thus under the Poisson input arrivals and exponential service time assumptions, for 
P < 1 from (15-222) we get 

lim P{x(t) = k} = lim P{xn = k} = qk = (1- p)/. k 2:: 0 (15-223) 
1-+00 11-+00 

and E[xnl -+ pl(l - p). 
From (15-223), as time goes on the number of customers waiting for service 

approaches a geometric distribution in such a queue, provided the average number 
of customers arriving per service period is strictly less than one. Thus, if the ser­
vice rate is faster than the arrival rate, then the queue attains a steady state geomet­
ric distribution. From (15-221), the arrivals during the interservice periods are also 
geometrically distributed. Interestingly, unlike the queue, the arrival distribution in 
(15-221) is valid for all values of p in that case [see also (10-89)]. ~ 
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15-5 TRANSIENT STATES AND ABSORPTION 
PROBABILITIES 

In general, as we have seen a chain can contaj.n both persistent and transient states. 
From Theorem 15-5, every state is either persistent and is contained in one of the closed 
irreducible sets C 1, C2, C3 • ... , or it is in the set T containing all transient states. From 
(15-162), if the system is in a persistent state, it stays forever in the irreducible set C, 
to which that state belongs. What if the system started from a transient state? As far as 
the evolution from a transient state is concerned. only two possibilities can occur. The 
system can either stay among the transient states forever, or it moves over (gets absorbed) 
into one of the closed sets C and stays there from then onwards. Notice that the first 
possibility is impossible in a finite state system since from Theorem 15-2 the system 
visits a transient state only a finite number of times, and hence ultimately the system 
must get absorbed into a closed set of persistent states (s) that are guaranteed to exist by 
Theorem 15-6. Of course, if the states are infinitely many, then both possibilities have 
finite probability, and our immediate goal is to determine these probabilities. 

First, we start with an easy situation involving special chains known as martingales. 

MARTINGALES ~ A Markov chain is said to be a martingale if for every i the expectation of the 
probability distribution {Pij} equals i. Thus in a martingale, we have 

LjP;j =i 
j 

(15-224) 

In the genetics models in Example 15-13, both probability transition matrices (15-30) 
and (15-31) satisfy this definition. Hence they represent finite-chain martingales. 

It is easy to compute the absorption probabilities for such chains. Let eo, e., ... , eN 
represent the states in a martingale. With i =0 and i = N in (15-224), we obtain Poo = 
P N N = 1, and hence eo and eN are absorbing states. If we assume that these are the 
only persistent states in the chain, then el, e2, ... , eN-I are transient states, and hence 
the system ultimately gets absorbed into either eo or eN. From (15-224), by induction 
we also obtain 7 

N 

~kp~~) = j (15-225) 
k=O 

for all n. But pY;> ~ 0 for every transient state ek, k = 1.2, ... , N - 1, and hence for 
j > 0 (15-225) gives the only solution 

p(/l) ~ 1... 
IN N 

Since there are only two absorbing states, we also obtain 

(11) 1 j 
p,o~ --

j. N 

(15-226) 

(15-227) 

7From (15-225), we have E{x,,+1n I x".} = X,II for all n. m. which is usually the definition for a marlingale. 
Tlie concept of martingales originally introduced by Levy was developed by Doob [12) who recognized its 
potential usefulness in probability theory. 
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Thus if the system starts from e j, the probabilities of ultimate absorption into eo and eN 
are 1 - j j Nand j j N, respectively. If all states are equally likely to start with, then the 
probability of ultimate absorption into eN is given by 

N N 1 . 1 
lim" ~o) ~J) = ,, __ 1.. =_ 

n-oo L...J P; P;.N L...J N + 1 N 2 
j=CJ j=1 

(15-228) 

Hence for a randomly chosen initial distribution, ultimate absorption into either eo Or eN 
are both equally likely events for a finite state martingale. ~ 

Returning to the martingale models in Ex.ample 15-13, it follows that irrespective 
of the actual mechanism of the model, starting from an initial state e j, the ultimate 
absorptiqn probabilities into eo (all A genes) and eN (all B genes) are 1- jjN and jjN, 
respectively. In the long run, only "pure breeds" are allowed to survive in this case, and 
"mixed breeds" become gradually extinct. 

Transient State Probabilities 

To study the evolution of the system among transient states, we can make use of the 
general partition of the probability transition matrix P as in (15-156), where U represents 
the transition probabilities within the irreducible sets C), C2, ... containing all persistent 
states, and W represents the transition probabilities among all transient states8• Notice 
that 

wt) = pt) eit ej e T (15-229) 

represents the transition probability from transient state e, into transient state e j in n steps. 
Thus wn represents the evolutionary behavior among transient states, where W is the 
substochastic matrix obtained from P by deleting all rows and columns associated with 
persistent states. From (15-229), starting from a transient state ei. the ith row sum of wn 
given by 

o}n) = Lwt) 05-230) 
jeT 

represents the probability of the system staying among the transient states after n tran­
sitions. To study its limiting behavior we can make use of the relation 

ei, ej e T (15-231) 

that follows from the identity W"+ 1 = WW". Using (15-231) in (15-230), we get 
" ..... (11+1) - "w ..... (11) 

Vi - L...J ,leVIe ej e T (15-232) 
keT 

Since dj{l) = LkET Wilf. ~ 1. from (15-232) we get 

d?) = L WikUP) ~ L Wile = uP) 
leeT keT 

8Recall th'at U is a block diagonal stochastic matrix with block entries PJ. P2 .••• that correspond to the 
irreducible sets Cl. C2.··· [see (IS-I03)]. 
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and ~y induction a}"+1l =:: atll. Thus the sequence {a/nl} decreases monotonically to a 
limit 

ai = lim a.l'11 = lim ""' w~~) 
"-'00' "-'00 ~ J 

jeT 

ei e T (15-233) 

and these limiting values satisfy equation (15-232) given by 

al = L Pijaj el e T (15-234) 
jeT 

Notice that these equations are different from the steady state equations derived in 
(15-167). When infinitely many states are involved. nonzero solutions can exist to the 
set of equations in (15-234) that satisfy 0 .::; aj =:: 1. However, when the chain consists 
offmitely many states, as we show below ai = 0, for ej e T is the only solution. 

H ej is transient, then from Theorem 15-1, (16-174), we have P~> -+ 0 for all i, 
and hence in particular w!j) -+ 0 for all ej e T. In the finite state situation. al is a sum 
of finitely many tenns in (15-233) and it follows that 

ai = ""' lim wJt -+ 0 ~1I-'00 
jeT 

We can also arrive at the same conclusion by making use of the condition for equality 
in (15-181). In either case, equality is attained there if and only if all the row sums 
rl, r2, •.. , rN are equal. In a finite substochastic matrix since at least one row sum is 
strictly less than unity (why?), it follows that p(W) < 1, and hence all eigenvalues Ai of 
W are strictly less than unity in magnitude. In the case of a finite chain, W is also finite and 
it yields a Jordan canonical representation as in (15-104)-(15-106) with allIA;1 < 1. As 
a result W" = U A"U- I -+ 0 so that wW -+ 0, and all aj -+ 0 in (15-234). Equivalently, 
(15-234) reads W x = A.X, with x representing a column eigenvector corresponding to 
A. = 1. But all eigenvalues of W are strictly less than 1 in magnitude, and hence x == O. 
This shows that in a finite chain, starting from any transient state, the probability of the 
system remaining forever among the set of transient states is zero. In other words, in a 
finite chain, the system will ultimately settle down among the persistent states. 

On the other hand, in a chain involving infinitely many transient states, starting 
from a transient state el, the system can remainforever among the transient states with 
probabilityai > 0, and these probabilities satisfy the set of equations in (15-234). These 
equations may yield no solution, or give one or several independent valid solutions {Xi} 

that satisfy 0 ~ Xi .::; 1. Which among these solutions should one choose? To identify 
the desired solution, notice that if {Xj} represents such a solution set, then Xj =:: 1, and 
since they satisfy Xi = L: jeT PijX j ~ 2: jeT Plj = ap>, by induction X'f =:: a/(m) implies 

""' ""' (1/1 I (111+ 1) Xi = ~ PijXj =:: ~ PljO) = <1; 
jeT jeT 

Thus Xi =:: ai(lI) for all n and hence 

o =:: Xi .::; 1 implies 1 ~ ai ~ Xi (15-235) 

From Eq. (15-235) it follows that the desired solution {ud in (15-234) satisfies the 
maximal property in (15-235) among all solutions, and they represent the probability 
that starting from any transient state, the system never moves into a persistent state. Thus 
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starting from a tr~nsient state, the probability that the system stays forever among the 
transient states is given by the maximal solution of (15-234). 

As Feller [3] has shown, we can use this result to derive the necessary and SUfficient 
condition for an irreducible chain with states eo. el, ... to be persistent. In that case the 
solution to the system of equations 

00 

Xi = L. PijXj i ~ 1 (15-236) 
j=1 

represent the probability of the system staying forever among the states e1, e2. e3 • ...• 
and never entering the state eo. But since the states are persistent and the chain is 
irreducible, Ji.o = 1 and hence Xi = 0 for all i. Hence eo and all other states in an 
irreducible chain are persistent if and only if the system of equations in (15-236) admits 
no solution except the identically zero solution. 

Equation (15-236) can be used to determine the conditions for a general random 
walk model in Example 15-6 with possible states eo. el. e2, ••• to be persistent. In that 
case. using (15-16)-(15-19), (15-236) reduces to 

and 

Xj = qjXj-l + fjXj + PjXj+1 j ~ 2 

Since rj = 1 - P j - qj. these equations simplify to 
ql 

X2-XI = -XI 
PI 

and 

where we define 

j~l 

From (15-237) 

Xk+1 = (1 + t (11) XI = (t (1i) XI 
,=1 ,=0 

(15-237) 

(15-238) 

with (10 = 1. From the above equation. clearly a bounded nonnegative s'llution {xt} 
exists if and only if the series 

00 

L (1k < 00 (15-239) 
k=O 

If the states are persistent. such a solution does not exist, and hence this series must 
diverge. Hence the necessary and sufficient condition for the general random walk model 
to be persistent is that the series in (15-239) diverge. In the special case if Pi = P.qj = q. 
then (1k = (q / p)k and the series in (15-239) diverges if and only if q / P ~ 1 or P !:: q. 
Referring to Example 15-22 (page 734), this condition agrees with the conclusions 
reached there for the states of a uniform random walk with one reflecting barrier to be 
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persistent. In that case the steady state distribution in (15-202) corresponds to the set of 
persistent states {~k). 

Mean TIme to Absorption 

Interestingly, we can use (1j(n) in (15-230) to compute the mean time mj that; starting 
from a transient state el, the system spends among the transient states before absorption 
into a persistent state. Thus, starting at ej E T, let m~n) represent the mean time that the 
chain spends among the transient states at the completion of n transitions. Then after 
one more transition, since the chain occupies one more unit of time among the transient 
states with probability (1,(n+1), we have 

n+l 
mY'+I) = m~lI) + (1.(11+1) = ~ u.(k). 

I I I L..JI 

k=O 

Hence the mean time to absorption mi (starting at e/ E T, the mean time that the chain 
spends among the transient states) is given by 

00 00 

ml = n~m~n) = Lut) = LLP~) 
11=0 n..o jeT 

00 00 

= 1 + LLpft = 1+ LLLpjkp~-l) 
lI=l jeT 11=1 JeT keT 

00 

= 1 + LPikLLp1j> = 1 + LPlkmk. (15-240) 
keT no:O jeT kET 

For finite chains the above equation simplifies to [with W as in (15-110)] 

m=(l-W)-IE=ME 

where 

m ~ [mltm2,'" ,m;,···J' for all 8j e T E ~ [1, I, ···,I,··.J' 

and 

M ~ (1- W)-1 

represents the fundamental matrix of the absorbing chain. The above equation has a 
unique positive (finite) solution for finite chains. Notice that m; = E'ET M;j. so that 
Mjj represents the mean time that the chain spends in the transient state e J starting from 
the transient state e/. Finally if Vi denotes the initial probability of the system belonging 
to the transient state ej, then 

represents the mean time to absorption for the chain. 
As an example, referring back to the random walk with two absorbing barriers 

in Example J5-7 (page 700), there are (N - 1) transient states in (15-20), and the 
fundamental matrix M is the inverse of a tridiagonal Toeplitz matrix. With 

r = p/q 
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the elements of M in that case are given by [42] 

{ 

(rj - 1)(rN- i - 1) 

(p - q)(rN - 1) 
M··-

'J - (ri _ l)(rN-j _ rj-i) 

(p - q)(rN - 1) 

for P :¢ q. and for p = q = 1/2 

{ 2j(1- i/N) 
Mij = 2i(l- j/N) 

These expressions can be verified also by direct substitution into the identify 
M(/-W)=l. 

Usmg these results. starting from ej E T. the mean time to absorption m; for the 
chain in (15-20) is given by 

N-l {I (1 - r- i .) 
mj = L Mij = P - q n 1 _ r-1I - l 

j=l i(n - i) 

p =/:1/2 

p:¢ 1/2 

In particular for a random walk over three transient states [N = 4 in (15-20) J. we obtain 

W = (~ ~~) M = 2 1 2 (P ~q2 f ~) 
o q 0 p + q q2 q p2 + q 

and the mean time to absorption vector equals 

m = (:~) = 2 1 2 (1 + ;P2) 
m3 p +q 1 +2q2 

For a symmetric random walk this gives the mean time to absorption vector to be m = 
(3,4.3)' . 

Absorption Probabilities 

Starting from a transient state ej. the other alternative is for the system to visit a persistent 
state ej and stay in the closed set C, containing that state ej. In fact, for finite chains 
this is the only choice, and hence such systems ultimately get absorbed into a closed set 
of persistent state(s). Since J;j represents the probability of the system ever visiting the 
stateej starting from ej, in the present situation for an ej E T andej E Cr. an irreducible 
closed set of persistent nonnull states, J;j represents the probability of absorption to 
state e j starting from the transient state ei. To compute these absorption probabilities we 
can make use of the fundamental relation (15-44) and Theorem 15-1. Using (16-170) in 
(15-44) we obtain the useful relation 

J;j = L Pik!kj ej E Cr (15-241) 
k 

where C, denotes as before the closed set containing the persistent state e j. In particular, 
if ej E T, then this relation simplifies into 

J;j = L Pik!kj + L Pik (15-242) 
kET keC, 
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siFlce 

{ I ej E Cr. ek E Cr 
Ikj = 0 

e j E C" ek ¢ C" ek ¢ T 

In fact for any two persistent states e j and em that belong to the same Cr. Eq. (15-242) 
yields the same solution. Thus for any ej E T 

and hence. starting from any transient state ej, the probability of absorption into any 
persistent state in a closed set Cr is the same. and is given by flj = flfr) for all ej E Cr. 
In that case from (15-242), the probability of absorption into any closed set Cr satisfies 
the r~lation 

R(r) _ """ P R(r) + a(r) 
f'j - L....J ikf'k i' 

(r) A """ a j = L....J Pik ej E T (15-243) 
keT kee, 

which for finite chains translates into 

flr = (1- W)-I a, = Mar (15-244) 

where M represents the fundamental matrix of the absorbing chain and 

flr £ (fl~r). fit) . ... ,pt) ... ]', ar £ (afr) , af) • ... ,at) .. . y for all ej e T. 

Note that the set of Eq. (15-243) possesses a unique solution if and only if its homoge­
neous part given by 

flY) = L Pikfl~') ej e T (15-245) 
keT 

possess the null solution as its only bounded solution. Notice that (15-245) is identical 
to the transient probability Eq. (15-234), and, in the finite state situation from the dis­
cussion there. it is guaranteed to have the null solution as its only solution. Hence in a 
finite Markov chain the absorption probabilities flY> = /;r for ej e T always exist as a 
unique solution to (15-243). 

Next we illustrate the computation of the absorption probabilities for the random 
walk model in Example 15-7 and compare them with certain results obtained earlier in 
Chap. 3. 

~ For the random walk model with two absorbing barriers in Example 1,?-7 (page 700), 
consider a slight generalization of the transition probability matrix in (15-20) with Pij as 
in(I5-19)fori ~ 1. In that case states eo and eN areabsorbingstates,andet. e2, ..• , eN-I 
are transient states. Hence 

10.0 = 1 fN,N = 1 IN,O = 0 (15-246) 

and Eq. (15-241) directly yields for j = 0 

/;,0 = qi /;-1,0 + ri /;,0 + Pi /;+1.0 i ~ 1 (15-247) 

or 

(/;+1.0 - /;,O)Pi = qi(fi,O - /;-1,0) 
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Thus 

where 

Hence 

ql ql'll-I .. 'Ill 
fl+l,O - Ao = -(:/;,0 - 1;-1.0) = (!t.O - 1) 

PI PI PI-I' . , PI 

= aj(!t.O - 1) 

A q;QI-l'" ql 
a; = 

PIPi-1 ... PI 
aO = 1 

k-I k-I 

fk,o - 1 = L{fi+,.o - Ao) = Lal(!t.o - 1) 
1=0 1=0 

(15-248) 

(15-249) 

(15-250) 

With k = N in (15-250) we gel!t.o - 1 = -II E~I a;, and hence starting from any 
transient state ek the desired probability of absorption into state eo is given by 

"k-I 
~ _ 1 _ £"1=0 al 

Jk.O - "N-I 
£"1=0 al 

k = 1,2, ... , N-l (15-251) 

Inthespecialcaseofauniformrandomwalkpi = p. III =q, rj = O.as in (15-20), we have 

1 - (i)k (i)k - (it 
F. -1- p - p P 

J k,O - 1 _ (; t - I _ (!) N 

1_(I!)N-k 
- q 
- 1 _ (~)N 

k = 1,2"", N-l (15-252) 

Referring to the gambler's ruin problem in Example 3-15, since the total wealth S(a + b) 
of the two .players corresponds to N here, we have the absorption probability starting at 
state ea (probability of ruin for player A starting with Sa) is given by 

l_(I!)b 
fa.o = 1 _ (~)a+b (15-253) 

which agrees with the expression in (3-47) for the probability of ruin Pa for player A. 
Here P corresponds to the probability of winning for A at each play. As remarked earlier 
[see also (3-52)] 

~ --+ {(qIP)fl P > Il 
Ja,O 1 

p~q 

.. 
(15-254) 

Thus A is sure to be ruined while playing against a rich adversary who is also more skillful 
(q ~ p), such as a casino. From (15-254), the only situation where it makes sense to 

play against a rich adversary is when the game is advantageous to A as in that case the 
probability of ruin fa,o --+ 0 as a increases. The expected return (gainlloss) is given by 

TJ = (N - k)(1 - fk,o) - klk,o = b(l - la.o) - ala.o 

and as expected it is negative when P < q. ~ 

(15-255) 
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We conclude this section with a detailed analysis of the game of tennis as a Markov 
chain, and its absorption probabilities (winlIoss). 

~ Tennis is played between two players-the server and the receiver. The scoring system 
in tennis is 15,30,40, and 60, so that if the server wins the first point, the score is 15: 0, 
otherwise it is 0: 15 in favor of the receiver. lfthe server also wins the second point, the 
score becomes 30: O. After winning the third point the score is 40 : 0, and after winning 
the fourth point the score is 60: 0 and the server wins the game. When a player loses the 
second point after winning the first point, 15 is scored by the opponent so that the score is 
15: 15. Deuce is a tie in points starting with the sixth point. Advantage in/advantage out 
(Adv. in! Adv. out) starts with the seventh point if the server scoreslloses the point after 
deuce. If the server scores the next point after advantage in, the server wins the game. If the 
receiver scores the point after advantage out, the receiver wins the game. Thus the score 
in a game can be only one of the following (server's score is always the first number): 
15: 0, 0: 15, 15: 15,30 :0, 30: 15, 30: 30,15: 30. 0: 30,40: 0,40: 15,40: 30,30 :40. 
15: 40, 0: 40, deuce, advantage in, advantage out, the game. 

Once the first game is over, the second game starts with the server and receiver 
alternating their roles until one side wins at least six games with a margin of at least two 
games. This completes a set. Thus the score in a completed set can be only one of the 
following: 6: 0, 6: 1, 6: 2,6: 3,6: 4, 7: 5,8: 6, orin its reverse order and so on. One set 
is followed by another set until one player wins the match by taking two sets out of three 
(or three-sets out of five), depending on the rules of the match. 

As we shall see, the requirement that there be a two-point margin in every game 
as well as every set enables us to model the later portion of every game (and set) as a 
random walk over five states with two absorbing barriers. In principle. the match could 
continue for a very long time, and to conserve time and players' energy, sets are not 
continued indefinitely until a two-game margin is realized by one side. Instead, at the 
score of 6 : 6, a tie-breaker gameis played in which the player who scores the first seven 
points with a two-point lead wins the game and the set. Otherwise the game is continued 
till a two-point margin is achieved. 

Game Figure 15-7 shows the state diagram for a game where states are identified by 
scores. Transition from one state to the next depends only on the present state and the 
corresponding transition probabilities, and not on the previous history, and hence the 
game can be modeled as a Markov chain. Let p denote the probability of the server 
winning a point, and q = I - P that of the receiver winning a point. Thus the first point 
is scored with probabilities 

P{15:0} = p pro: IS} = q 

The second point is scored with probabilities P{30:0}=p2,p{lS:15}=2pq, 
P(0:30}=q2. Similarly the third point is scored with probabilities P{40:0}=p3, 
P{30: IS} = 3p2q. P{15: 30} = 3pq2, P{O: 40} = q3, and the fourth point is scored 

9Patented in 1874 by a retired British major. W. Wingfield, tenms probably goes back to thirteenth-century 
France, where a similar game was played by throwing the ball to each other. The present-day scoring system 
is derived from stake values used in those olden day French games. 



FIGURE 15·7 
State diagram for a game in tennis. Each game results in a random walk among five states that are initialized 
by the probability distribuuOll in (15-2S6)-(lS-2SS). 

with probabilities 

P {server wins} = p4 P{40: IS} = 4p3q P {deuce} = 6p2l 
P{1S :40} = 4pq3 P {receiver wins} = q4 

Fmally. the fifth point is scored with probabilities 

Po = P {server wins} = p4(1 + 4q) PI = P (adl~ in) = 4p3q2 (15-256) 

P2 = P (deuce) = 6p2q2 (15-257) 

P4 = P = {receiver wins} = q4(1 + 4p) e (15-258) 

The rest of the game resembles a random walk over five states with two absorption states 
at the two ends (eo. t.4) == (server wins; receiver wins) and three transient states (adv. in, 
deuce, adv. out). The transition probability matrix for this random walk is given by 

P = (i ~ i H) (15-259) 
o 0 p 0 q 
o 0 0 0 1 
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and from '(15:'256) and (15-258) this random walk starts with the initial distribution 

(15-260) 

For the three transient states ej, j = 1. 2. 3, from (16-174) we have P:;) -+ 0, and since 
the chain has only a finite number of states, from Theorem 15-6 the system must get 
absorbed into one of the two end barriers in this case, We can use the results from 
Example 15-25 to compute the absorption probabilities /k.o and /k,4 from the transient 
states ekt k = 1. 2. 3 into the absorbing states eo and e4, respectively. Thus in the long 
run 

( /~,o ~ ~ ~ /~4) 
pll -+ Q = /2.0 0 0 0 12.4 

/3,0 0 0 0 13.4 
o 000 1 

(15-261) 

where /k.o are given by (15-252) as [on comparing (15-20) and (15-259) the roles of p 
and q should be reversed in (15-252)] 

1- (q/p)N-k 
/k.O = 1 _ (q/ p)N (15-262) 

with N = 4, and 

/k,4 = 1 - /k,O (15·263) 

Using (15-260) in (15-48) we obtain the long-run distribution for the game to be 

lim pen) = lim p(o)pn = p(O)Q ~ [p" 0,0,0, 1 - p,] (15-264) 
n .... OO n .... oo 

where 

4 1 _ 2::4 ( / )4-k 
Pg = P {server wins the game} = L Pk/k,O = k=O Pk q / (15-265) 

k=O 1- (q/p) 

with Pko k = 0, 1, ... ,4, as in (15-260). For example, if the server plays twice as well 
as the receiver (p = 2/3, q = 1/3), from (15-265) we get the probability of the server 
winning a game to be 0.856 and the receiver winning the game to be 0.144. On the 
other hand, if the players are of about the same strength, with the server having a slight 
advantage so thatp = 0.52andq = 0.48, then the probabilities for winning the game for 
the server and receiver are 0.55 and 0.45, respectively. Notice that while the probability 
of winning a point differs only by 0.04, the probability of winning a gaJUe differs by 0.1. 
As we shall see. this amplification of even the slightest advantage of the stronger player 
is brought out in an even more pronounced manner in a set by the underlying random 
walk there. 

Set To complete a set, games are played sequentially until one side wins at least six 
games with a margin of at least two games. Figure IS-Sa shows the state diagram for 
a set where the states are once again identified by scores. Notice that the probability of 
the server winning a game is given by p g in (15-265) and that of the receiver winning a 
gamebyq, = 1-p,. Thus P(6:0) = p:,andfromFig.15-8a at the 11th or 12th game 
a new random walk phenomenon similar to (15-259) takes place with p and q replaced 
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by pg and qg. respectively. Proceeding as is (15-256)-(15-258), it is easy to show that 
the 11th game is scored with probabilities 

Vo g, P (server wins} = P{6 :0) U (6: 1) U (6:2) U (6: 3) U (6 :4} 

= p; + 6p;qg + 21p~q; + 56p!q; + 126p~q; (15-266) 

and 

VI g, P {one game server adv.} = P {6 : 5} = 252p!qi 

t. 
V2 = P {equal score after five all} = 0 

V3 g, P {one game receiver adv.} = P{5: 6} = 252q;p~ 

(15-267) 

(15-268) 

(15-269) 

(15-270) 

These probabilities act as the initial distribution for the random walk in Fig. 15-8b, 
Proceeding as in (15-261)-(15-265) we obtain the long run probability distribution for 
a set of games to be 

lim p(n)....,. [vo. VI> V2. 113. V4] Qg g, [PSt 0, O. 0.1 - P,] 
n-+oo 

(15-271) 

wh~re (Qg represents the counter part of Q in (15-261) for sets) 

1 - E:=o vt,(qg/pg)4-k 
Ps = --=="---=;.;...;;.,."----

1 - (qg/pg)4 
(15-272) 

with Vk> k = 0.1. ...• 4 as in (15-266)-(15-270) and pg as in (15-265). In summary, PI 

represents the probability of winning a set for the server. 
Table 15-1 shows the probability of winning a set for various levels of player skills. 

For example. an opponent with twice the skills will win each set with probability 0.9987. 
whereas among two equally seeded players. the one with a slight advantage (p = 0.51) 
will win each set only with probability 0.5734. In the later case, the odds in favor of the 
stronger player are not very significant in anyone set, and hence several sets must be 
played to bring out the better among the two top seeded players. 

Match Usually three or five sets are played to complete the match. To win a three-set 
match, a player needs to score either a (2: 0) or (2: 1), and hence the probability of 

TABLE1S·1 
Game of tennis 

Player Prob. of winning Prob. of winning 
Prob. of wfn~ng the matcb 

skills a game a set 3 sets Ssets 

P q Pc I-pg P. 1- P. Pm I-Pm Pm I-Pm 

0.75 0.25 0.949 0.051 1.000 0 0 0 
0.66 0.34 0.856 0.144 0.9987 0.0013 1 0 1 0 
0.60 0.40 0.736 0.264 0.9661 0.0339 0.9966 0.0034 0.9996 0.0004 
0.55 0.45 0.623 0.377 0.8215 0.1785 0.9158 0.0842 0.9573 0.0427 
0.52 0.48 0.550 0.450 0.6446 0.3554 0.7109 0.2891 0.7564 0.2436 
0.51 0.49 0.525 0.475 0.5734 0.4266 0.6093 0.3907 0.6357 0.3643 
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(b) 

FIGURE 15-8 
State diagram for a set in tennis (a) Set initialization. Each circle represents a game. (b) Bach set results in a 
random walk among five states that are initialized by the distribution in (15·266)-(15-270). 



752 STOCHASTIC PROCESSES 

winning a three-set match is given by 

Pm = P{2:0} + P{2: l} = p; + 2p;qs (15-273) 

where Ps represents the probability of winning a set for the player as given in (15-272), 
and qs = 1-Ps. Similarly, the probability of winning a five-sel match for the same player 
is given by (Fig. 15-9) 

(15-274) 

Referring to Table 15-1, top seeds and their low-ranked opponents (p = 0.66, q = 0.34) 
should be able to settle the match in three sets in favor of the top seed with probability 
one, which is almost always the case in the early part of any tournament. For closely 
seeded players of approximately equal skills (p = 0.51, q = 0.49), the probability of 
winning a three-set match is 0.609, and winning a five set match is 0.636 for the player 
with the slight advantage. Thus to bring out the contrast between two closely seeded 
players (0.51 vs. 0.49), it is necessary to play at least a five-set match (0.636 vs. 0.364), 
or even a seven-set match. the later of course being physically much more strenuous on 
the players in addition to being far too long. Recall that a game is usually 5 to 10 minutes 
long and an average set consists of about 10 games. Hence a three-set match lasts about 
3 to 4 hours, and a five-set match about 4 to 5 hours long 10. 

The game of tennis has two random walk models imbedded in it at two levels-one 
at the game level and the other at the set level-and they are designed to bring out the 
better among two players of approximately equal skill. Using the 5 x 5 transition matrix 
for the random walk in a set, it is easy to show that the total games in a set can continue to 
a considerable number (beyond 12) before an absorption takes place especially between 
top seeded players, and to conserve time and players' energy, tie-breakers are introduced 
into sets. 

Tie-breakers [49] At the score of 6 : 6 in every set. tie-breakers are played, and the 
player whose turn it is to serve starts the game. The opponent serves the next two points 
and the server is alternated after every two points until the player who scores the first 
seven points with a two-point lead wins the game and the set. Notice that the two-point 
lead requirement once again introduces yet another random walk model towards the later 
part of the tie-breaker game. 

The players' strategy in a tie-breaker game is quite different from that in regular 
games, since it is a decisive game for the set. It is quite natural that after losing a pOint, 

IOBoth the initialization portion as well as the random walk part of a game (and set) contribute \0 its average 
duration (mean absorption time). Thus the average duration of a game m, is given by m, = mi "+ mr • where 
the (4 or 5 point) initialization part contributes [use (15-256)-(15-258)] 

mi = 4(p4 + 6p2q2 + q4) + 5(4p4q + 4p3q2 + 4p2q3 + 4pl) 

and the rando~ walk part with two absorbing states and three transient states as in (15-259) contributes (see 
page 744) 

1 
m, = Plml + P2m2 + p)m3 = -2--2 {(I + 2q2)4p3q2 + 2(6p2q2) + (1 + 2p2)4p2q3J 

p +q 
Between two equally skilled players (p = q = 1/2) the above expressions give the average duration of a 
game to be 6 ~ points. If each point is played in about 1-2 minute duration. then each game lasts for 
approximately 10 mmures. Similarly the average duration of a set between two .equally skilled players is 
about 10.Q3 games. (Show this!). 
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FIGURE 15-9 
Stare diagram for the "match" in tennis. Each circle here lqIfCSCDlS a set. 

each player puts in a little more effort and determination to win the next point. After 
winning a point the player may not be under that much pressure to win the next point. 
Thus with 

P {server wins the next point I receiver won the last point) = ex (15-275) 

and 

P{receiver wins the next point I server won the last point} = P (15-276) 

we can assume both ex > 0.5 and f3 > 0.5, and the 2 x 2 transition matrix for the tie­
breaker points has the form 

Pt = server won last 
receiver won last 

server wins receiver wins 
next next 

(15-277) 

as in (15-15) for a nonsymmetric binary communication channel! The chain in (15-277) 
is ergodic, and its steady state probability distribution is given by (see (15-64) with ex 
and f3 reversed) 

Ptn-+ex~f3(: ~) 
Thus irrespective of which player wins the first point, after four or five points, the 
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probability of the server winning the next point in a tie-breaker game settles down to 
ex 

p=-­
ex+{3 

(15-278) 

and the receiver winning the next point settles down to 

{3 
1-p=-­

ex+{3 
(15-279) 

and they remain as steady state values for the rest of the tie-breaker game. For example, 
if ex = 0.7 and {3 = 0.6, then after four or five points are scored, the server wins the 
next point with probability 7/13 and the receiver wins it with probability 6/13. From 
(15-278) and (15-279), if ex > {3, then p > 1/2, and hence in a tie-breaker game, after 
losing a point, to score the next one it is advantageous to yourself to exert more than 
your opponent in the same situation. 

The state diagram for a tie-breaker game is quite similar to that of a set in 
Fig. 15-8 with Pg and qg there are replaced by p and 1 - p respectively. Once again as 
in Fig. 15-8b at the 11th or 12th point, the game enters a random walk with transition 
probability matrix as in (15-259), where p and q are replaced this time by p and 1-p,re­
spectively. However, the initial probability distribution for this random walk is somewhat 
different from those in (15-266)-(15-270) because of the slightly different requirement 
that to win a player must score seven points (compared to six in a set) with a two-point 
margin. Proceeding as before, under this rule. the 11 th game is scored with probabilities 

and 

Uo = P{7:0} + P{7: I} + P{7:2} + P{7:3} + P{7:4} 

= p7 {I + 7(1 - p) + 28(1 - p)2 + 84(1 - p)3 + 210{1 _ p)4} (15-280) 

U3 = P{5: 6} = 462ps(l- p)6 

(15-281) 

(15-282) 

These probabilities act as initial distribution for the random walk ahead. Finally. using 
these quantities and proceeding as in (15-271)-(15-272), we obtain the probability of 
winning a tie-breaker game for the server to be 

1 - EZ=o Uk [(1 _ p)/ p]4-k 
P, = 1 _ [(1 _ p)/ p]4 (15-283) 

For p = 7/13, the probability of winning a tie-breaker game is 0.6197. On "comparing 
(15-283) with the probability of winning a set in (15-272), if we let Ps = "'(Pg). then" 

P, ~ "'(p) (15-284) 

and it shows that the tie-breaker game is played essentially in the same spirit of an entire 
set. The tie-breaker is a set played rapidly within a set at an accelerated pace. 

liThe relation (15-284) is only approximate because of the difference in the initial distributions (Ui) and 
{Vi}. For example, p = 7/13 gives PI = 0.6197 but 1/r(p) = 0.612. 
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Note thal the initial probability distribution in (15-280)-(15-282) is somewhat 
idealized since it assumes that the chain represented in (15-277) has attained steady state 
from the first point onward. The chain reaches steady state only after four or five points, 
and the probability distribution during those initial points is slightly different from the 
steady state values in (15-278) an~ (15-279). To compute these probabilities exactly, let 
Po represent the probability of the server winning the first point and qo = 1 - Po that of 
the receiver winning the first point in a tie-breaker game. Then with (Pt, ql) representing 
the probabilities of the server/receiver winning the second point in a tie-breaker, we get 

[PI. q( J = [Po, qo]P, = [Po(1 - f;) + qoex, poP + qo(1 - ex)] (15-285) 

Similarly with [Pk, qk 1 representing the probabilities of the server/receiver winning the 
(k + l)st point in a tie-breaker, we have 

] _ {[Pk-l> qk-dP, k = 1,2,3,4 
[Pk, qk - [ I _] k > 5 p, p -

(15-286) 

These probabilities can be used in (15-280)-(15-282) to recompute the initial distribution 
{Uj}. For example, in that case the first tenn in (15-280) becomes 

P(7: 0) = PoPIP2P3P4p2 

Other terms can be obtained similarly; however, the computations become more 
involved. ~ 

Note A closer examination of Fig. 15-9 reveals that each circle there represenlB the set colfligurtllion in 
Fig. 15·8, each with its own random walk in it. Looking further into !he circles in each set diagram, one notices 
the march configuration in Fig. 15-7 embedded in every one of them. If we include also rie·breaken, !hen 
sometimes sets are played wi!hin sets. Thus !he game of tennis represenlB a self-similar process !hat exhibits 
similar behavior for !hree layetS deep into ils segments. 

15-6 BRANCHING PROCESSES 

Consider a population that is able to reproduce, and let X/I represent the size of the nth 
generation (total number of offspring of the (n - l)th generation). If YI represents the 
number of offspring of the ith member of the nth generation, then 

x" 

Xn+1 = LY; (15-287) 
;=1 

Let us assume that the various offspring of different individuals are independent, identi­
cally distributed, random variables with common distribution ~iven by (over all genera­
tions) 

Pk = Ply = k} = Plan individual has k offspring} ::: 0 

and common moment generating function 
00 

P(z) = E{zY} = L PkZk 
k=O 

(15-288) 

(15-289: 
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with Po> 0, Po + PI < I, Pi :#: I, for all i. To compute the transition probabilities 

Pjlr. = P{X,,+I = k I x,. = j} (15-290) 

in this case, we can use the conditional moment generating function 
co co 

I: pj"l = L:i P{x,.+1 = k I x,. = j} ~ E[Zx,,+l I x,. = j] 
k..o "..0 

= E[,L:: .. 1Y1 1x,. = j] = [E{zYI}]i = pi(z) (15-291) 

Thus the one-step transition probability P ilr. is given by the coefficient of z" in the 
expansion of pi (z) i.e., using the notation developed earlier [see (12-193)] 

Pilr. = {pi(z)lk . 
From (15-291), we also get the (unconditional) moment generating function of 

X,,+1 to be 

since 

where 

Thus 

co 

= E {pJ(Z) Ix" = j} = L:[P(z)]i PIx,. = j} 
J..o 

co 

P,,(z) = E{zXa ) = L pj(n)zj 
j=O 

pj(n) = P{x,. = j} 

P,,(z) = Pn-I (P(z» 

(15-292) 

(15-293) 

(15-294) 

which gives ~(z) = P(P(z», P3(Z) = P2(P(Z», and so on. Iterating (15-294), we 
obtain 

(15-295) 

For n = 3, this gives P3(Z) = P(Pa(Z», and once again iterating the above equation, 
we get 

and in general 

PII(z) = P,,-Ir.(P,,(z» k = 0, 1,2, ... ,n 

which for k :::; n - 1 gives 

P,,(z) = PJ(P,,-l(Z» = P(PII-J(z» 

Together with (15-295), we obtain the useful relation 
co 

PII(') = P,,-l (P(z» = P(P,,-I (z» ~ I: plr.(n)z" 

"..0 

(15-296) 

(15-297) 
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Foi example, if we assume that the direct descendants follow a geometric distri­
bution:12 given by Pic = qplc in (15-288), then P(z) = q/(l - pt.) in (15-289), and an 
explicit calculation for P2(Z), P3(Z) leads to the general formula 

p:f:q (15-298) 

and for p = q. we get 

PII(Z) = n - (n -l)z 
n+1-nz 

(15-299) 

In a slightly different model. if we assume the direct descendent distribution to be 

{
epic k::: 1 

Pic = cp (15-300) 
po=I--- k=O 

1-p 

then 

00 cpt. 
P(z) = Po + LPlct' = Po + -1 -

k=l - pz 
(15-301) 

According to Lotka (1931), the statistics for the average American family (~ 19208) 
satisfy(15-300)withp = 0.7358, Po = 0.4823 (roughly48%familieshavenocbildren). 
so that c = 0.1859. and the moment-generating function in (15-301) simplifies to 

P(z) = 0.4823 - 0.2181z 
1 _ 0.7358z (15-302) 

In a similar manner, to determine the higher order transition probabilities P~~. we can 
proceed as in (15-291). Thus, 

00 00 

LpWl = L~P{xII = kl"o = j} = E{zXaI "o = j} 
k-o k=O 

00 00 

= L L~ P{xII = k I Xn-I = i. "0 = iJP{XII-1 = i 1"0 = j} 
k=O ;=0 

00 

= LE{zx..lxn_, = ilP{Xn-l = i 1"0 = j} 
1..0 
00 

= L: [p(z)i P{Xn-l = i 1"0 = j) 
;=0 

= E{[P(z)]x,,-1 I Xo = iJ 

.. 

= E{(P(P(z))]x..-2Ixo = j} = E{[PII_1(z)]XI 1"0 = j} 

= {E [Pn_1(Z)]YI}i = [P(Pn-l (z))]i = [PII(z»)} (15-303) 

12Refer to Example ISA-3 in Appendix lSA for an interesting pbysic:al justification for the geometric model. 
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since XI = 2:,1=1 Yi· Equation (IS-303) represents the moment generating function of 
the nth generation given that the process starts with j ances~ors. Thus pW is given by 
the coefficient of Zk in the power series expansion of [Pn(z)]l, that is, 

p~/~) = {[Pn(z)]i}k 

Notice that p~/:l is the same as Pk(n) in (1S-297). 

Extinction Probability 

An important question, first raised by Galton (1873) in connection with extinction of 
family surnames, is to detennine the extinction probability 

no = lim po(n) = lim p~n6 = Pn(O) (IS-304) 
n .... oo /1 .... 00· 

the limit of the probability P~~6 = P {xn = 0 I Xo = I} of zero individuals in the nth gen­
eration, given that Xc = 1. For the geometric distribution model in (15-298), we have 

po(n) -+ {q / p P > q (IS-30S) 
1 p-:=q 

To find its analogue for any general distribution in (lS-289),let 

Zn ~ P~~6 = Pn (0) 

so that 1.1 = P(O) = Po and 

Zn = P(Pn- t (0» = P(Zn-l) (IS-306) 

If Po = 0, then z I = 0, 1.2 = 0, ... , Zn = O. and so on. Similarly if Po = 1. then Z I = 
P (1) = 1. 1.2 = 1 •... , Zn = 1, ... , that is, if the probability of no offspring is one, then 
extinction is bound to occur after the zeroth generation. Excluding these extreme cases, 
we have 0 < Po < 1. Since P(z) is a strictly increasing (convex) function of 1., we have 
Z2 = P(ZI) > P(O) = Po = Zit and by induction Zl < 1.2 < ... < Zn < 1.'1+1 -:= 1. 
Thus po(n) is a bounded increasing sequence, and a limit no -:= 1 exists. From (1S-306), 
it is clear that the above limit satisfies the equation 13 

1. = P(z) (1S-307) 

Referring to Fig. 15-10, in the interval 0 -:= 1. -:= 1. the convex curve P(z) starts at the 
point (0, po) above the bisector and ends at the point (1, 1) on the bisector. As a result, 
two situations are possible, as shown in Fig. IS-lOa and IS-lOb. 

In Fig. IS-lOa, the graph P(z) is entirely above the bisector line. In this case, 
l. = 1 is the unique root of the equation z = P(z), and hence Zn -+ 1. Since P(z) ::: z 
in 0 -:= z :::: I, we have 1 - P(z) -:= 1 - 1. or (1 - P(l.»/(l - z) :::: I, and letting l. -+ I, 
we also obtain in that case the mean value f..L = pl(l) :::: 1 (see also Fig. IS-lOa). The 
slope at 1. = 1 is less than or equal to one. 

In Fig. IS-lOb, the graph P(z) intersects the bisector line at some point no < 1, 
in addition to that at z = 1. Since a convex curve can intersect a straight line at most 

13Starting with ZI = P(O). the recursion in (15-306) can be used to determine the extinction probability 
numerically (alternating projections onto convex sets). The condition pO + PI < 1 guarantees strict 
convexity for P{z). 
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P(z) 

1 --------------~--------

Po 

'ITo z 
(a) p. __ 1 (b) p. > 1 

FIGURE 15·10 
Probability of extinction for branching processes. 

at two points, we have P(z) > z for z < 1l'oand P(z) < Z for 1l'0 < Z < 1. To start with, 
since 0 < 1l'o, we get Zl = P(O) = Po < P(1l'o) = 1l'o, and by induction Zn = P(ZIl-l) < 
P(1l'o) = 1l'0. In that case, ZII -+-1l'0 < 1, and the graph P(z) crosses over the bisector at 
Z = 1. Hence we must have JL = pI (1) > 1 here. This also follows from the mean value 
theorem by which there exists a point between 1l'0 and 1 at which the derivative equals 
(P(1)-P(1l'o»/(1:-1l'o) = 1. Since the derivative PI(Z) is monotone, we have p l (1) > 1. 
Thus the two cases are characterized by the mean value JL of the descendant's distribution 
being greater than unity or otherwise. We summarize these observations in Theorem 15·8. 

~ Let {Pk} represent the common descendant distribution of a branching process, and 
fez) = 2::'0 Pkl its moment-generating function. If the mean value 

00 

JL = Lkpk = p l (1) ::: 1 (15-308) 
k=O 

then the process dies out eventually with probability one, and if JL > I, the probability 
that the process terminates on or before the nth generation tends to the unique positive 
root 1l'0 < 1 of the equation P(z) = z. ~ ~ 

As an example, consider the moment generating function given by (15-301). In 
that case the identity P(z) = z leads to a quadratic equation whose roots are given by 
unity and 

1 - p(l + c) 1 
1l'0= < 

p(1- p) 
(15-309) 

In particular, for the simplified American population model in (15-302), we get 1l'0 = 
0.6554. Thus in a broad sense, the probability of extinction is about 0.65 for the American 
population represented by (15-302). However, immigration into the population makes 
the matters more interesting. 
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In general, the average size of the population at the nth stage is given by 

IJ." = E{x,,} = P,:(l) 

But from (15-294), P~(z) = P:'- l (P(z»P'(z), so that 

{o IJ. < 1 
IJ.n = P~(l) = P'(1)P~_I(1) = 1J.1J.1I-1 = IJ.n -+ 00 IJ. > 1 

(15-310) 

(15-311) 

Thus it is not surprising that the process is bound for extinction when IJ. < I, but that 
a stable solution is still impossible for IJ. = 1 is somewhat surprising. Finally It > I 
corresponds to a geometric growth in population, with a probability of extinction equal t~ 
:Ito. For IJ. ~ 1. the probability of extinction is unity, implying that almost surely there will 
be no descendants in the long run. On the other hand, for IJ. > 1. after a sufficient number 
of generations it is quite likely that either there are no descendants with probability 1('0. 

or a great (infinitely) many descendants with probability 1 - 1ro. Thus the two extreme 
situations (zero population and infinite population) correspond to absorbing states, and 
all intermediate states with finite population are transient states. To summarize, in the 
long run, irrespective of the mean value of the descendant distribution, every species 
either dies Oftt completely, or its population explodes without bound, both unpleasant 
conclusions either way. 

We can also arrive at this conclusion by observing that 

lim Pn(z) = lim P,,-l(P(Z» = 1ro 
n-+oo n-+oo 

(15-312) 

since the limit satisfies the equation P (z) = Z, irrespective of the mean value IJ. of the 
descendents' distribution. From (15-312), the coefficients of z, Z2, Z3, ••• all tend to zero 
in Pn(z). Thus using (15-292) and (15-293), we get 

lim P{xn = O} = 1ro lim P{xn = k} = ° <15-313) 
n_oo n .... oo 

for any finite positive k, and hence 

lim P{xn = oo} = 1 -1ro (15-314) 
n-+oo 

Total Number of Descendants' Distribution 

Let Sn represent the total number of descendants up to and including the nth generation. 
Then 

5" = 1 + XI + X2 + ... + Xn (15-315) 

To detennine the long-term behavior of the total population size and its distribution 
function, let Hn (z) represent the moment generation function of the total population 511 , 

Then 
00 

Hn(z) = L P{Sn = kIt = zGn(z) (15-316) 
k=O 

where G n (z) represents the ~oment-generating function of the random variable 

Un = XI + X2 + ... + X'I 
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that is, the total population up to the nth ge~er8tion without the ancestor X() = 1. Thus 

00 

G,,(z) = L P{u" = k}Zk = E{zUo } 

k=O 

= E{E(zU" 'Xl = j)} = E{E(z(j+x2+oo+x.> IXI = j)} 
= E {z1 E(Z(Xl+ 0 +x,,) I Xl = j)} 

= E [zl {E (Z(XI+XZ+ooo+x,,_I) I Xo = i)}] 

= E[z1 {E(ZU.-, I Xo = j)}] = EUZG,,-l (z)]}) 

= LP1[zGn- 1Cz)]J = P(zGn-l(z» = P(H,,-l(Z» (15-317) 

where we have made use of the fact that if the process starts with one ancestor, the 
moment generating function of the succeeding n generations is given by G,,(.t), and if 
starts with j ancestors, then the corresponding moment generating function is given by 
(G,,(z»i (see also (15-303». Substituting (15-317) into (15-316) we obtain the desired 
recursion formula 

(15-318) 

for the total population size. If H" (z) = Ef=o h?) t, from (15-316) h111) represents the 
probability that the total population size up to and including the nth generation equals 
k. Thus 

(15-319) 

From (15-315)-(15-316). and (15-287)-(15-289) forO < z < l,sinceHl(Z) = loP(z) < 
Z, from the convexity of P(z) we have P(zP(z» < P(z), and hence 

H\ (z) = zP(z) > ,P(HI (z» = H2(Z) 

and by induction assuming that Hm (z) < Hm-l (z), we get 

(15-320) 

where we have made use of the convexity property of P(z). Hence H,,(z) < H,,_I (z) for 
all n > 0 for every 0 < z < I, and H" (z) represents a monotone decre.Psing sequence 
that is bounded from below. Let 

00 

lim H" (z) = H (z) = '" hkl 
""'00 L-i 

(15-321) 
k=O 

represent this limit. Then hk are nonnegative numbers such that H (1) = E:O hk =:: 1 
and taking the limit in (15-318), we obtain that the limiting function in (15-321) satisfies 
the equation 

H(z) = zP(H(z» O<z<1 (15-322) 
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DESCENDANT'S 
DISTRIBUTION 

~ The function H(z) in (15-322) is the unique root of the equation 

x = zP(x) (15-323) 

such that H (z) =: 1ro, where 1ro is the smallest positive root of the equation 

x = P(x) (15-324) 

Proof. ForO < z ~ 1 let x = H(z) in (15-322) so that the desired H(1.) is the solutionof(15-323) 
that is bounded by unity. Let 11'0 represent the smallest positive root of (15-324). From Theorem 
15-8, clearly 'fo ~ 1. For every fixed z < I. it is easy to see that the convex function y == zP(x) 
lies enti.rely below the function y = P(x) for 0 ~ x ~ I in Fig. 15-tO, and hence the function 
zP(x) intersects the line y = x at a unique point that is strictly less than 11'0. This unique point 
H(1.) < 11'0 for z < 1. At Z = 1, H(l) is the smallest root 11'0 of the Eq. (15-324) and hence for 
0<1. < 1 we have a unique function H(z) ~ 1, and this completes the proof. ..... 

From Theorem 15-9, if the mean value Jl. =: 1, then H(1) = Ef=ohk = 1ro = 1, 
and the limiting function in (15-321) represents a proper moment-generating function. 
However, if Ii. > 1, then 1ro < I, and 

lim P{sn = co} = 1 -1ro > 0 
n-+oo 

that is, the total population explodes with probability 1 - 1ro, a conclusion that agrees 
with (15-314). Interestingly, as we shall see in Chap. 16, the limiting distribution Htz) 
also represents the total number of customers served during the busy periods in certain 
type of queues [see (16-230)-(16-236)]. 

Immigration 

Several species (plants, animals) have been eliminated from the face of this planet. 
and total extinction is certainly possible. Thus left to themselves. populations either 
die out completely or grow without bound. However, immigration from outside into an 
otherwise unstable population (/1- =: 1) can have stabilizing effects on the population. 
To see this, consider a population model with descendant distribution {Pk} and moment 
generating function P (z) as in (15-288) and (15-289). Suppose l1ln immigrants enter the 
nth generation independently with probability distribution function 

j = 0,1, 2 •... \i (15-325) 

The totality of immigrants mil' n = 0, 1.2 •... entering into successive generations are 
independent, identically distributed, random variables with common moment generating 
function 

00 

B(z) = E{zm.} = Lbkl (15-326) 
k=O 

and they contribute to the next generations in the same way as those already present in 
the population. Thus with Xn representing the size of the population prior to immigration 
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at the nth stage, let 

Wn = x" + D1n (15-327) 

represent the total population size at that stage, so that similar to 05-287), we get 

In this case the transition probabilities P ik for the total population satisfy 

00 00 

LPikZk = LZk P(Wn+l = k I Wn = j} 
k=O 1=0 

00 

= LiP{xn+l +mn+l =klwn =j} 
1=0 
00 00 

= L 2:>k-; P{Xn+1 = k - i j Wn = i}i P{mn+l = i} 
k=O 1=0 

= E{ZX.H IWn = j}E(Zm..+I} = E(zE:.IY;)B(Z) 

= [p(z)]i B(z) 

(15-328) 

(15-329) 

Thus Pik is given by the coefficient of Zk in B(z)[p(z)]i. Further, let Qn(Z) denote the 
moment generating function of the total population Wn at stage n. Thus 

Qn(Z) = LiP{wn = k} = LZkp{x" +mn = k} 
k k 

= LLi-; P(xn = k - i}i P{mn = i} 
k j 

00 

= L E{zx. I Wn-l = m}P{wn-l = m}E(Zm..} 
m=O 

00 

= B(z) L E {ZE:'aI Y1 } P(Wn-l = m} 
111=0 

where we have made use of (15-326)-(15-328). Hence 
00 

Qn(Z) = B(z) L[E(zYl}]mp{Wn_l =m} 
m=O 

= B(z) L[P(z)JIII P{Wn-l = m} 
III 

= B(z) Qn-l (P(z» 

Thus if lim,. ...... oo Qn (z) = G(z) = E:'o gki, then it satisfies the equation 

G(z) = B(z)G(P(z» 

(15-330) 

(15-331) 
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and in that case, if G(z) represents a proper probability-generating function, then the lim­
iting distribution limn~oo P {w n = k} = gk exists for all k. It has been shown by Heathcote 
that if the descendants' mean value J.L < I and B'(1) < 00, then G(z) satisfying (15-331) 
exists as a proper probability generating function if and only if E:J bk log k < 00. In 
that case 

lim P{w" = k} ~ gk 
n~oo 

k=0,1,2 •... (15-332) 

Finally if J.L = I, and if the descendants' distribution has finite variance. then Seneta has 
shown that wn/n converges in distribution to a gamma random variable. Thus under 
immigration, the transient states become persistent nonnull states. In summary. it is 
possible to avoid population extinction and achieve stabilization through immigration. 

The assumption that the descendants' distribution {Pk} in (IS-288) remains the 
same throughout all generations may be an oversimplification, and it has been replaced by 
a time-dependent offspring distribution {Pn,k} for the nth generation by J agers and others. 
In yet another generalization by Wilkinson and others, the offspring distribution for each 
generation is selected randomly from a class of distributions. and interesting results in 
random environments have been obtained by Wilkinson, Atheya, Karlin, Kaplan. and 
many others [34-3S. 42. 44. 48]. 

APPENDIX lSA 
MIXED TYPE POPULATION OF CONSTANT SIZE 

Consider two populations of types A and B each multiplying independently according 
to branching processes {xn} and {y n} given by 

Let 

y. 

Yn+J = LlIj 
j=J 

k = 0,1, 2, ... 

(lSA-I) 

(lSA-2) 

represent the respective progency distributions for single individuals in each population. 
Then 

00 00 

A(z) = Lakl B(z) = Lbkl (ISA-3) 
k=O i=O 

represent their respective moment generating functions, and from (1S-290) and ( 15-291). 
Ai (z) gives the generating function for the number of offspring of i individuals for the 
type-A population14, that is, 

(ISA-4) 

14 A$ before, the notation (P(z)}} :represents the coefficient of zj in P(z). 
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The two-dimensional process evolves as a sequence of pairs of random variables (x". y,,) 
compOsed of the independent branching processes {XII} and {Yn} so that 

P{Xn+1 = jlo Yn+1 = h I XII = ij, Yn = hl 

= P{x,,+! ~ j) I XII = idP{Y1I+l = hi Y" = i2l 

= {Ail (Z)}jl {Bil (Z)}h (15A-5) 

Consider the special situation. where the combined population remains fixed over all 
generations. Thus 

XII +Yn =N n = 0,1.2, ... (lSA-6) 

In !hal: case if {xn = i}. then necessarily {yn = N - i}. so that the one-step transition 
probability for event {x,,+l = j} given {XII = i} simplifies as [42] 

P{Xn+l +Yn+l = Nix" = i'YII = N - i} 

{Ai (Z) }j{BN- 1 (Z)}N-j 

= {Ai (Z)BN-i (Z)}N 
i. j = 0, 1 •...• N (lSA-7) 

Here we have used (lSA-S) in simplifying the numerator, and the denominator expression 
follows, since the moment generating function for the sum random variable 

x. Y. 

Zn+l = Xn+1 + Y,,+1 = 2:= ~m + 2: 11m (lSA-8) 
m=1 m=1 

under the condition XII = i, YII = N -i. is given by Ai (Z)BN-i (z). Interestingly (ISA-7) 
represents the transition probability matrix for a finite Markov chain with state space 
to, 1,2, .... N}. 

As Ex.amples 15A-l and lSA-2 show the genetic models in Example IS-13 can 
be derived as special cases of this model. 

.. 
~ Suppose the individuals in either population A or B can have at most two progeny 
with common probabilities (for ~ i or 'II i) 

P{~i = O} = q2 P{~i = I} = 2pq P(~i = 2} = p2 q = 1- p 0 < p < 1 

so that their common moment generating function is given by 

A(z) = B(z) = (q + pZ)2 

(15A-9) 
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EX,\i\IPLE 15A-2 

POISSON 
POPULATION 
MODEL 

LOCALLY 
POISSON 
POPULATION 
MODEL 

In this case, (15A-7) reduces to 

_ (lj)e<;:j») 
Pil - e:) i, j = 0, 1, ...• N 

which coincides with the hyper geometric genetic model in (15-30). ..... 

(lSA-I0) 

~ As another example, suppose the two branching processes A and B follow indepen­
dent Poisson progency distributions with mean values A and fl, respectively. Then. 

A(z) = e~(l:-I) B(z) = e$£(l-I) (15A-ll) 

and hence from (ISA-7) we obtain 

(e-iA.(iA)lO!)(e-(N-i)$£[(N - i)fl,]N-j /(N - j)!) 
Pij = e-(iH(N-i)/L)([iA + (N - i)fl,]N / N!) 

( N) ( iA )j ( eN - Ofl, )N-i 
= j i>..+(N-i)fl, iA+(N-i)f.J. 

i, j = O. 1,2, ... , N 

(15A-12) 

which represents a binomial model. Notice that in the special case when A = fl" (15A -12) 
simflifies to 

(N) ( . ) j ( . ) N - j 
Pi) = j ~ 1- ~ i, j = 0.1. ... , N (1SA-13) 

and it coincides with the binomial sampling model in (15-31). Interestingly. A> IJ. ex­
presses certain bias in teons of advantage of type-A over type-B individuals, and the 
general distribution in (15A-12) can be used to analyze the natural selection phenomenon 
in that case. ..... 

~ Consider the population model over a large area where the progeny distribution is 
locally Poisson with parameter A. Suppose that A is a random variable depending on 
the sub area as shown in Fig 15-11, and the distribution of A over the whole area is 
exponential with parameter a > O. Thus 

Ak 
P{~i = k I A} = e-A k! k = 0, 1,2, ... I(A) = ae-aA A ~ 0 (15A-14) 

and hence from (l5A-2) 

roo roo )..k 
ak = P{~i = k} = fo P(~i = k I>") I()..) d>" = fo e-~ k! ae-J.tJ d).. 

a I ~ k ( )
k 

= 1 +a 1 +a = qp k = 0,1.2, ... (15A-15) 

with P = 1/(1 + a) and q = 1 - p. Thus the progency distribution is geometric in this 
case with moment generating function 

q 
A(z) = 1 _ pz (15A-16) 
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FIGURE 15·11 
Locally Poisson population with exponentially clislrlbutcd mean value. 

and if we assume the two independent populations to have this common progency dis­
tribution, then the corresponding transition probabilities for the finite Markov chain 
(ISA-7) tum out to be 

i,j = 0,1, .... N (ISA-I7) 

An obvious generalization in this case is to relax the exponential assumption in 
(15A-14) to a gamma random variable with m degrees of freedom. In that case (ISA-IS) 
corresponds to a negative binomial distribution and the generalization to (lSA-16)­
(lSA-I7) is immediate. ~ 

.. 
APPENDIX 15B 

STRUCTURE OF PERIODIC CHAINS 

For an irreducible Markov chain, if (see pages 715. 730) 

P(II) - 0 
li - if n:;:' kT (lSB-l) 

then the chain is said to be periodic with period T. By Theorem 15-4 all states in a chain 
have the same period, and since the chain is irreducible, for any two states el and e J there 
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exist integers m and n such that pIj} > 0 and p~} > O. But 

P(m+n> > p~'.")p(n) > 0 
Ii - IJ Ji (158-2) 

and hence from (ISB-I), m + n = kT in (ISB-2), or simplifying we get m = r + sT, 
where 1 ::: r ~ T. Here r is a fixed integer that is characteristic of the states e; and e l. 
Thus starting with any state eio.let Cr represent the set of states {e] } for which p~=j) > 0, 
where 1110 is of the form 

1110 =r+kT (158-3) 

Continuing this procedure over all states in the chain, the reminder r exhausts all integer 
values in (ISB-3) (if not, the period will be less than T). 

Thus the set of states can be divided into T mutually exclusive classes C I, C2, .•. , 
Cr such that 

Pi] =0 (15B-4) 

and hence 

L Pii = 1 (15B-S) 
lEe .... 

These T classes can be cyclically ordered so that one-step transitions are possible only 
to a state in a neighboring class to the right (el to C.t:+1 and finally CT to CI), and T 
such steps always lead b~k to a state of the same class. IS In this sense the chain has a 
periodic behavior. As a result. the transition matrix for a periodic chain has the following 
block structure (see (15-123) for an example): 

0 PI 0 0 0 
0 0 P2 0 0 

p= (15B-6) 

0 0 0 PT-l 
Pr 0 0 

By direct computation 

0 0 AI 0 0 
0 0 0 A2 0 

p2= (15B-7) 

AT-l 0 0 0 
0 AT 0 0 

!SNote that it may not be possible to reach an states in the next class after one ttansition. Similarly to get 
back to the Same state it may take several rounds of T ttansilions. 
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Finally, the'1lh power of P gives the block diagonal stochastic matrix 

BI 0 0 0 
o B2 0 0 

pT = (lSB-8) 

o 0 
o 0 

where the block entries Bl, Ba, ...• BT correspond to the T -step transition matrices for 
the set of states in classes Clo C2 • ..•• CT respectively. Thus each class Cit. forms an 
irreducible closed set with respect to a chain with transition matrix B". From Theo­
rem 15-5, since every state can be reached with certainty within the same irreducible 
closed set, we have fij = 1 if ej. ej e C" and together with (1S-130), from (15-114) we 
obtain 

'nT) { I... ej, e j e Ckt k = 1. 2 .... , T 
P'ij -+ /L

Oi (lSB-9) 
otherwise 

For finite chains, these steady state probabilities in (15B-9) also can be computed 
directly from the uncoupled set of equations 

k = 1.2 •... , T (lSB-IO) 

that follow from (lS-177) and (lSB-8) with XII representing the steady state probability 
row vector for the states in the class Ck • Note that the largest eigenvalue of each stochastic 
matrix Bit. equals unity, and hence pT in (ISB-8) possesses T repeated eigenvalues that 
equal unity. It follows that for a chain with period T. the T roots of unity are among the 
eigenvalues of the original transition matrix P (see also footnote 6. page 730). 

PROBLEMS 

15-1 Classify the states of the Markov chains with the following transition probabilities 

( 0 1/2 1/2) 
P = 1/2 0 1/2 

1/2 1/2 0 

(
0 0 1/3 2/3) 

p= 10 0 0 
o 1 0 0 
o 0 1 0 

(

1/2 1/2 0 0 0 1 
1/2 1/2 0 0 0 

p = 0 0 1/3 2/3 0 
o 0 2/3 1/3 0 

1/3 1/3 0 0 1/3 .. 
15-2 Consider a Markov chain (x" l with states eo. el, ... , em and transition probability matrix 

p = (~ ~ ~ ~ : : ~) 
o 0 . . . q p 
pO· .. 0 q 

Detennine P". and the limiting distribution 

lim P{x" = e.d k =O.1.2 •...• m 
" .... 00 
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15-3 Find the stationary distribution qo. ql • ... for the Markov chain whose only nonzero sta­
tionary probabilities are 

i 1 
Pi.! = i + 1 PU+I = i + 1 i = 1.2 •... 

15-4 Show that the probability of extinction of a population given that the zeroth generation has 
size m is given by 1l'{{'. where 1l'0 is the smallest positive root in Theorem 15-8. Show that 
the probability that the population grows indefinitely in that case is 1 - 1l'&, • 

15-5 Consider a population in which the number of offspring for any individual is at most 
two. Show that if the probability of occurrence of two offspring/individual is less than the 
probability of occurrence of zero offspring/individual, then the entire population is bound 
to extinct with probability one. 

15-6 Let x, denote the size of the nth generation in a branching process with probability gener­
ating function P (1.) and mean value /-L = P' (I). Define W. = x.I/-LIt • Show that 

E{wlI+m' WII} = w" 

15-7 Show that the sums s. = XI + X2 + ... + x. of independent zero mean random variables 
form a martingale. 

15-8 TIme Reversible Markov Chains. Consider a stationary Markov chain ... X •• Ko+l. 
""+2 •... with transition probabilities {p;j} and steady state probabilities {q;}. (a) Show 
that the reversed sequence ... x •• x,,- I • X._ 2 •••• is also a stationaty Markov process with 
transition probabilities 

PI .' .} Ii. QjPll X. = J X.+I = I = Pij = -­
qi 

and steady state probabilities {q;}. 
A Markov chain is said to be time reversible if pij = Pij for all i. j. (b) Show that a 

necessary condition for time reversibility is that 

for all i, j. k 

which states that the transition ei -+ e j -+ el -+ el has the same probability as the reversed 
transition e; -+ ek ...... e j -+ ei. In fact. for a reversible chain starting at any state ell any path 
back to e; has the same probability as the reversed path. 

15-9 Let A = (ai i) represent a symmetric matrix with positive entries. and consider an associated 
probability transition matrix P generated by 

ail 
P;j=--

2:k aik 

(a) Show that this transition matrix represents a time-reversible Markov chain. 
(b) Show that the stationary probabilities of this chain is given by 

'" 2: j aij 
q; = C L.J aij = "" . 

j LJi LJJa'j 

Note: In a connected graph. if alj represents the weight associated with the segment 
(i. j). then Pu represents the probability of transition from node i to j. 

15-10 For transient states el. ej in a Markov chain, starting from state el. let mij represent the 
average time spent by the chain in state e J. Show that [see also (15-240)] 

mij = Dij + L Pikmkj 

ekET 
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or· 

M = (1- W)-I 

where M = (mIj), and W represents the substochastic matrix associated with the transient 
states [see (15-110)). Determine 14 for 

w=(i H H) o 0 q 0 p 
o 0 0 q 0 

lSall Every Stochastic matrix corresponds to a Markov chain for whichitis theone-step transition 
• matrix. However. show that nat every stochastic matrix can comspond to the two-step 

transition matrix of a Markov chain. In particular, a 2 x 2 stochastic matrix is the two-step 
transition matrix of a Markov chain if and only if the sum of its diagonal elements is greater 
than or equal to UDity. 

15-12 Genetic model with mutation. In the genetic model (IS·31), consider the possibility that 
prior to the formation of a new generation each gene can spontaneously mutate into a gene 
of the other kind with probabilities 

PtA -+ B} = a > 0 and P{B-+A}=~ >0 

Thus for a system in state e j, after mutation there are N A = j (1 - a) + (N - j)fJ genes of 
type A and NB = ja + (N - j)(l-~) genes of type B. Hence the modified probabilities 
prior to forming a new generation are . 

NA j (j) Pi = - = -(1-a)+ 1- - fJ N N N 

and 

qi = ~ = ~a + (1 -~) (l - ~) 
for the A and B genes, respectively. This gives 

j,k=O.1,2 .... ,N 

to be the modified transition probabilines for the Morkov chain with mutation. Derive the 
steady state distribution for this model, and show that, unlike the models in (lS-30) and 
(15-31), fixation to "the pure gene states" does not occur in this case. 

15-13 [41] (a) Show that the eigenvalues for the finite state Markov chain with,probability tran­
sition matrix as in (15-30) are given by 

AO= I AI = 1 
(2N-') 

A,='1! (~ < 1 r =2.3 .... ,N 

(b) Show that the eigenvalues for the finite state Markov chain with probability 
transition matrix as in (15·31) are given by 

r = 1,2 •...• N 
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(c) Consider a finite state Markov chain with transition probabilities lsee Example 
15A-3, in Appendix 15A) 

(i+~-I) CW"iJ::tl) 
Pi) = (2NN-I) i, j = 0, 1,2, ... , N 

Show that the eigenvalues of the corresponding probability transition matrix are given by 

(W-I) 
1 ' 1 ' N-r 1 2 3 N J..o = "I = A, = r"N-1) < r = , , ... , 

Note: The eigenvalues J..o = 1 and Al = 1 conespond to the two absorbing "fixecf' states in 
all these Markov chains, and A2 measures the rate of approach to absorption for the system. 

15-14 Determine the mean time to absorption for the genetic models in Example 15-13. [Hint: 
Use (15-240).] 

15-15 Deteimine the mean time to absorption for the random walk model in Example 15-25. 
In the context of the gambler's ruin problem discussed there, show that the mean time to 
absorption for player A (starting with $a) reduces to Eq. (3-53). (See page 65.) 
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In this chapter we shall study Markov processes that represent the continuous analogue 
of Markov chains discussed in Chap. 15. Thus in a Markov process, the time index t 
varies continuously, and the process can occupy either a finite or infinite number of 
states eo. eJ, e2, e3, ... , as before. In general, for a Markov process the state space can 
vary continuously, and the time index can be discrete or continuous. In addition, starting 
from some initial state at t = 0, the process changes its state randomly as time goes 
on. Once again infonnation about the past has no effect on the future if the present state 
of the process is specified. As we shall see, the evolution of the Markov processes is 
governed by the Kolmogorov equations, and their transient and steady state analysis will 
characterize the near-term and long-term (steady state) behavior of the processes. 

A wide variety of queueing phenomena can be modeled as Markov processes. 
Recall that a queue, or a waiting line, involves arriving items (customers, jobs) that 
demand service at a service station, such as incoming telephone callS' at a trunk sta­
tion or inoperative machines that wait for a repairman for service. If the server is busy 
with another item, the newly arrived items form a waiting line until the server is free, 
or they may get impatient and leave the system with or without waiting for service. 
In the meantime, other items may arrive for service. The queue so formed can be de­
scribed by the arrival (input) process, the queue discipline, and the service mechanism. 
The queue discipline determines the manner in which arriving items form a queue and 
behave while waiting. The input process and service mechanism are specified by the 
chjU'acteristics of the inter arrival times and service times, respectively. It is reasonable 
to assume that the successive service times are independent of each other and also 

773 
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independent of the sequence of interarrival times. In addition, if one or both of the 
associated processes are assumed to have specific markovian characteristics, then the 
Kolmogorov equations can be used to analyze their behavior for better understanding of 
the queues in terms of their waiting time distributions and other useful features. As we 
shall see, the specific fonn of the queueing parameters distinguishes various queueing 
phenomena. 

The first major contribution to queueing theory dates back to the work of A. K. 
Erlangl (1908) on telephone traffic problems. Erlang's primary interest was with the 
equilibrium behavior of traffic at telephone exchanges, and he derived the equilibrium 
form of Kolmogorov equations for Markov processes along with results for the prob­
ability of the different number of calls waiting, equilibrium waiting time for calls and 
the probability of a call loss. Erlang's work stimulated further research in this area (Fry, 
Molina. O'Dell), and new mathematical ideas such as link systems, where a set of sources 
may have limited access to a set of destinations, were introduced. Among other things, 
Pollaczek developed results for the single-channel non-markovian queue with various 
types of input, service times, and arbitrary queue disciplines. The waiting time distribu. 
tion in the transient case for an ordered queue with Poisson input with time dependent 
parameter and for arbitrary service time distribution was developed by L. Takacs (1955) 
[35, 39,48. 52]. 

The concept of imbedded Markov chains was first introduced by D. G. Kendall 
(1951) based on the point of regeneration concept due to Palm, and it was followed 
by a queue classification paper (1953), both of which have been in wide use since 
that time. O'Brien followed by Jackson studied the first "network of queues" (1954) 
by investigating two and three queues in series and giving expressions for the length 
distribution and waiting time for Poisson input and exponential service time. Burke, 
Reich, and Cohen have independently established that the output from a Poisson queue 
is also Poisson [39. 43, 48]. 

The theory of queues has been applied to a wide variety of problems that pro~ 
vide service for randomly arising demands-telephone traffic (Erlang. O'Dell, Vaulot, 
Pollaczek. Kendall. Takacs etc.), machine breakdown and repair (Khinchin. 1943, 
Kronig, Mondria, Palm, Takacs, Ashcroft, Cox), air-traffic control (PoUaczek, Pearcey), 
inventory control (Arrow, Karlin, Scarf). insurance risk theory (Lundberg, Seal), data 
communications networks (Jackson, Burke, Sondhi), and dams and storage systems 
(Downton. GanL Moran, Prabhu). By examining the input process, the service mech­
anism and the queue discipline, it is possible to develop a unified approach to analyze 
these seemingly diverse problems. 

16·2 MARKOV PROCESSES 

A continuous-time Markov process X(I) can occupy randomly a finite or infinite number 
of states eo, e" e2, e3 • ... at time t. The status of the process at time t is described by 
x(t) and it equals the state ej that the process occupies at that time. Suppose that the 
process x(t) is in state ej at time to. For a Markov process, from (15-2) the probability 

I Danish scientist who for many years (1908.,. L 922) worked for the Copenhagen TeLephone Company. 
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that the"pfoceSs goes into the state e j at time to + t is given by 

P{x(to + I) = ej Ix(to) = ell (16-1) 

and this probability is independent of the behavior of the process x(t) prior to the instant 
to. If x(t) is a homogeneous Markov process, then this transition probability from state 
ei to state e j does not depend on the initial epoch to but depends only on the elapsed 
time t between the transitions. Thus in the case of a homogeneous Markov chain (16-1) 
reduces to 

Pij(t) = P{x(to + t) = ej Ix(to) = eil (16-2) 

In particular, we have 

Pij(t) = P{x(t) = ej I x(O) = e;} (16-3) 

where 

Pi(O) = P{x(D) = ei} (16-4) 

represents the initial probability distribution of the states. For all states ej, e j we have 

2: PIj(t) = 1 
j 

and the unconditional probability of the event "X(I) is in state e /' is given by 

Pj(t) = P{x(t) = ejl = 2: P{X(/) = ej I x (D) = el}P{x(D) = el} 
i 

= LP/(D)pij(t) 
I 

More generally for arbitrary t and s, we have 

Pij(1 + s) = P(x«t + s) = ej I xeD) = ed 

(l6-5) 

(16-6) 

= 2: P{x(t + s) = ej I x(t) = eJ:. xeD) = e!lP{x(t) = elc I xeD) = ell 
k 

= 2: P{X(t) = elc I xeD) = e/ }P(x(t + s) = eJ I X(I) = eAi} 
Ai 

= l: P/Ic(t)Pkj(S) (16-7) 
II 

and it represents the continuous version of the Chaprnan-Kolmogo~ov equation in 
(15-43). 

~ All Markov processes share the interesting property that the time it takes for a change 
of state (sojourn time) is an exponentially distributed random variable. To see this. let 
T i represent the waiting time for a change of state for a Markov process x(t), given that 
it is in state ej at time to. If T j > s, then the process will be in the same state el at time 
to + s as at to. and (being a Markov process) its subsequent behavior is independent of 
s.Hence 

~ 
P{T/ > t + SiT; > s} = P{T; > t} = 'Pi(t) (16-8) 
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represents the probability that the event {T; > t + s} given that {T; > s}. But 

q>j(t+s) = PIT; > t+s} = PIT; > t+s, T; > s} 

= P{T; > t + s I TI > S)P{TI > s} = q>/(t)q>t(s) 

or 

(16-9) 

Notice that the only function that satisfies (16-9) for arbitrary t and s is either of the 
form ct, where c is a constant or unbounded in every interval. Thus 

logq>;(t) = -Ait q>;(t) = P(T; > t} = e-A;I t ;:: 0 

or 

t;::O (16·10) 

which shows that the sojourn time (waiting time in any state) has an exponential distri­
bution for all Markov processes. The parameter Ai represents the density of transition 
out of the state el and in general it can depenp. on the final state e j also. If Ai > 0 the 
probability of the process undergoing a change of state from e; in a small interval at is 
given by 

PIT :s at} = 1 - e-A;ilt = Ajat + o(at) (16·11) 

and the probability that there is no change of state from e; in the same interval is given by 

P(T > at} = 1 - A;at + o(at) (16·12) 

where o(at) represents an infinitesimal of higher order than at. ~ 

The Kolmogorov Equations 

We can make use ofEq. (16·7) to study the evolution of a Markov process. Using (16·7) 
we obtain 

P;j(t + at) = 'L,P;k(t)Pkj(at) = 'L,p;k(at)Pkj(t) (16·13) 
k k 

But from (16-11) and (16-12) for a Markov process 

1e.(M) = {P{T/cj :S at} = Akjat + oeM) k ¥: j 
P:j P{Tj>ll.t}=l-A,ll.t+o(M) k=j 

(16·14) 

and substituting this into (16·13) we obtain II 

PUCI + at) - pijet ) "" (t)' ()' + oCat) = ~Pjk Akj - Pi} I Aj --at k::j.j . at 
(16·15) 

and 

Pliel + at) - p;jet ) _ "" , (t)' (t) + oCat) 
- L...JAikPkj - AiPij --at k::j.1 at 

(16·16) 

Define 

i = 0,1.2, ... (16·17) 
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so that ri8ht sides of (l6-15) and (16-16)" become L,kPilt(t»I.kj + O(AI)/At and 
L,k Alit Pltj (I) + o( At) / At, respectively. Both sums have definite limits as At ~ 0 
in the case of finite chains, since O(At) / At ~ 0 in that case. As' a result tbe left sides of 
(16-15)..:.(16-16) tend to the derivative,p~j (I). and it gives rise to the differential equations 

and 

P;j(t) = L Pik(t)Akj 
k 

P:j(t) = LAlkPkj(t) 
k 

under the initial conditions 

Pij{O) = 0 i¥:i 

i, j = 0.1,2 •... (16-18) 

i, j = O. 1. 2, ... (16-19) 

PIi(O) = 1 (16-20) 

Thus the transition probabilities satisfy the two systems of linear differential equa­
tions given by (16-18) and (16-19), and they are known as the forward and back­
ward Kolmogorov equations, respectively. Using (16-14) and (16-17), the condition 
Ej PU(At) = 1 reduces to 

or we obtain 

L Plj{At) = 1 + L Alj At = 1 
j j 

Ajj = - L Aij 
j;6i 

(16-21) 

The Kolmogorov equations also hold in the case of a countably infinite number of states, 
provided the error term O(At)/AI tends to zero unifonnly for all i. j. 

Using (16-14) and (16-20), we also get 

Aij = At - At (16-22) { 

Plj(AI) _ Pij(At) - Plj(O) i =F j 

Plj{At) - 1 = PuCAt) - Pli(O) i = j 
At At 

and hence 

Aij = dptJ(t) I 
dl 1=0 

are known as the transition densities of the process. Let 

IJ. 
A=(Aij) i,j=O,1,2, ... 

(16-23) 

(16-24) 

represent the matrix consisting of the transition densities Aij. From (l6-21), all diagonal 
entries of A are negative, the off-diagonal entries are all positive, and row elements in 
each row sum to zero. Let 

IJ. pet) = (Pij{t» i, j = 0,1.2, ... (16-25) 

represent the matrix of transition probabilities. In this notation, the forward and backward 
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EX \\JPLE )(;-1 

THE POISSON 
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Kolmogorov equations simplify to 

PI(t) = P(t)A = AP(t) (16-26) 

under the initial condition P{O) = 1. 
For a finite state process eo, el, ... , enlt the transient solution of (16-26) takes the 

form 

pet) = eAr (16-27) 

where 
00 A" II 

Ar J " t e = + L----
11=1 n! 

(16-28) 

Explicit solutions for pet) in terms of the A/jS are often difficult except in simple situa­
tions. In the event when the transition density matrix A has distinct eigenvalues. (16-27) 
can be e~pressed in a rather compact form. Since zero is always an eigenvalue of A, 
let d l • d2, ...• din represent the remaining distinct nonzero eigenvalues of A. Then from 
(15-53), A = UDU-1 so that An = UD"U- 1 and (16-27) and (16-28) simplify to 

pet) = UeDrU- 1 (16-29) 

where 
1 0 

ell' 
eDt = efl2t 

(16-30) 

0 elmr 

The forward Kolmogorov equations are concerned with ways of reaching a state e j from 
other states; the backward equations consider ways of getting out of a state e j to other 
states. In general. their solutions with same initial conditions are identical. 

The structure of the transition density matrix A characterizes various Markov 
processes. and the class of processes for which 

Aij = 0 Ii - jl > 1 (16-31) 

are known as the birth and death processes. Thus for birth and death processes transitions 
occur only between adjacent neighbors. Specific values of Alj for Ii - il:s 1 in (16-31) 
give rise to various birth-death processes, the simplest among them being the Poisson 
process. 

~ Consider a Markov process x(t) with states eo, el. e2 • ••• that can only change from 
state el by going into the state ei+l with probability that is independent of the state. 
Therefore the transition densities are 

and from (16-21), we obtain 

{ A j =k+ 1 
AIcj = 0 j # k. k + 1 

AU =-A 

(16-32) 

(16-33) 
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The forward Kolmogorov equations in (16-18) become 

P~i(t) = -'Apu(t) 

j = i + l.i +2, ... 

(16-34) 

(16-35) 

Let Pj(t) = P{x(t) = ej} and Pi (0) = 0 for all i # 0 in (16-4). Then Po(O) = 1 and 
using (16-6) we get Pj(/) = Pflj(t), and hence (16-34) and (16-35) reduce to 

poet) = -'Apo(t) (16-36) 

and 

n = 1.2, ... (16-37) 

under the initial conditions poCO) = 1. Pn(O) = 0, n ::j:. 1. To solve (16-36) and (16-37). 
define 

n = 0, 1,2, ... (16-38) 

Then 

(16-39) 

and 

q~(t) = eAlp~(t) +'Aq,,(t) 

= eA, {'AP,,-1 (t) - 'Apn(t)} + Aqn(t) = 'Aqn-l(t) (16-40) 

withqo(O) = 1, qn(O) = O. n # 1. Under these initial conditions (16-39) givesqo(t) = 1, 
and (16-40) iteratively yield 

and hence from (16-38) we obtain 

(At)" 
Pn(t) = P{x(t) = n} = e-)..'-­

n! 
n=O,1,2 •... (16-41) 

and it represents a valid probability density function to be the desired solution. Notice 
that. for a Poisson process, from (16-32) the transition probabilities are independent of 
the current state, and at any time the process can either remain in the current state or 
move over to the next state with constant probability. ~ .. 

Historically. Poisson processes were initially observed to fonn in telephone traffic, 
where calls originated by a Poisson process, and the duration of calls was experimentally 
verified to have an exponential distribution as well. Poisson distributions are character­
ized by the property that in a small interval chances are very small that more than a single 
arrival occurs, and together with the "memory less" property of the exponential distribu­
tion lsee (4-32)1, they have wide applicability. Since transitions occur only in one direc­
tion (ej -7 ei+I), Poisson processes represent a special case of the pure birth processes. 
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~ If the constant transition probability assumption is relaxed in the Poisson case in 
(16-32) so that 

{ Ak j = k + 1 
Ati = 0 j ¥= k, k + 1 

then we get the pure birth process. In that case. from (16-21) 

AI,I+I = Ai Au = - L Ai} = -AI,I+1 = -Ai 
j.pl 

and the forward Kolmogorov equations take the fonn 

and 

(16-42) 

(16-43) 

(16-44) 

Thus in a pure birth process, the transition probability (birth rate) is a function of the 
state that the system is in at time t. Once again, transitions take place only in the forward 
direction (see (16-42» so that if e j represents the population size, then the population is 
a strictly increasing function of time. If we assume that the birth rate is proportional to 
the "current population size," then Aj = jA in (16-43) and (16-44), and it gives size to 
a linear birth process whose explicit solution has been shown to be 

{ (! - ~ ) e-iA1 (1 - e-At)i-i j =:: i 
PIJ(t) = J -I 

o othe~ 

(16-45) 

In the general birth process, since the birth rate depends on the current state, it 
is possible that a rapid increase in the birth rate can lead to the degenerate condition 
E~ P j (t) < 1, that corresponds to a "population explosion" in a finite time. It has 
been shown by Feller and Lundberg that for "nondegenerate behavior' of a birth process 
<Ej=o Pj(t) = 1), the necessary and sufficient (FeUer-Lundberg) condition is given by 

00 1 
L-=oo 
k=O Ate 

(16-46) 

~ In this case the process X(I) is a strictly decreasing function of time so that if the 
process is in state el at time t, it can only go into state e'_1 at I + At with probability 
/J-i At. Thus 

which gives 

{ /J-k j = k-l 
Ak} = 0 j :F k. k - 1 

AU = - LAkj = -Aa:,k-1 = -/J-k 
j.pk 

(16-47) 

(16-48) 
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and he:nce the forward KolmQgorov equations become 

p~j(r) = f.Lj+lPi.i+1(t) - f.LjPij(t) . (16-49) 

~ 
More generally, we have the birth-death processes, where transitions to/from adjacent 
neighboring states are allOWed. 

~ Consider a process xCt} that combines the features of a pure birth process as well as 
the simple death process, that is, if the process is in state el at t, it can go into state ei+1 
at time t + at with probability Ai at or to state ei-l with probability f.Li at. This gives 

{
Ak j = k+ 1 

Akj = f.Lk j = k - 1 (16-50) 

so that 

and 

o j~k.k-l,k+l 

Ak.k-l = f.Lk 

AU = - L: Akj = -(AU+l + Ak.k-l) = -(Ak + f.Lk) 
j#c 

In this case the forward Kolmogorov equations reduce to (Fig. 16-1) 

P~j(t) = Aj-JPi.j-1 (I) - (Aj + f.Lj)Pij(t) + f.Lj+lPi.j+l(t) 

P:oCt) = -AOPiO(t) + f.LIPi.l(t) 

(16-51) 

(16-52) 

(16-53) 

The transition density matrix A for the general birth-death process has the form 

-AO AO 0 0 0 
f.Ll -(AI + f.L1) AI 0 
0 f.L2 -(A2 + f.L2) A2 

A= (16-54) 

f.Li -(Ai + f.Li) AI 

where Alj = 0 if Ii - jl > 1. Ai > 0 for i ~ 0, f.Li > 0 for i ~ 1. and ~ ~ o. 

..\,,-1 All 

FIGURE 16-1 
SWII diagram for the birth-death process. 
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If All = A. JJ.n = /.L. the birth-death equation in (16-52) and (l6-53) describes a 
single channel process, since in that case in a small interval At the process either remains 
in the current state with no arrivals and departures with probability 1 - (A + /J.)At, 
or moves over to the next state (single arrival) with probability 'AAt, or moves back 
to the previous state (one departure) with probability /.LAt. Similarly, the backward 
Kolmogorov equation has the form 

(16-55) 

The birth-death process is of considerable interest. as this model is encountered 
in many fields of application including queueing theory, where "births" correspond to 
arriving customers and "deaths" correspond to customers departing after completing 
service at the server. Recall that these processes are characterized by the property that 
the interval of time between state transitions of the same type (births or deaths) is a 
random variable with exponential distribution. ~ 

The general solution of (16-52) for arbitrary time t is quite complicated. However, 
a special case with two states (eo and el) and constant birth (arrival) and death (departure) 
rates (J"k = A, /.Lk = /.L) can be readily solved using the method in (16-26)-(16-30) . 

.. Suppose a system is either free (state eo) or remains busy (state ell and the lengths of 
the free period as well as the busy period are independent exponential random variables 
with parameters A and /.L, respectively. Hence the probability POI (At) of the system 
going from eo to el in At is lAt + o(AI) and similarly PloCAt) = /.LAt + O(AI). This 
gives the probability transition matrix in (16-24) to be 

A = (-A l) (16-56) 
/.L -/.L 

where Lsee (16-25») 

pet) = (Poo(t) POI (I») (16-57) 
PIO(t) PII (I) 

The eigenvalues of A can be readily verified to be 0 and -(A + p.), and hence 

A = U (~ -('A ~ p.») u-I ~ (16-58) 

where 

U = (1 l) 
1 -p. u- I __ 1 (p. 'A) 

->..+p. 1 -1 
(16-59) 

and using (16-29) and (16-30) we obtain 

(1 0) 1 (p. + le-().+j4)t >.. - Ae-CMIoI)I) 
P(t) = U 0 e-(A,+IoI)1 V-I = >.. + p. /.L _ p.e-<>..+p.}t >.. + /.Le-(Mj4)t (16-60) 
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Eq~librium. Behavior and Limiting ¥robabilities 

The equilibrium behavior of the process is governed by the limiting probabilities P j = 
limr-.oo P j (t) in (16-6). An important problem is to determine conditions under which 
the above limiting probabilities Pi exist. 

For a Markov process x(t) that is irreducible and ergodic, with states eo, e I , e2, ... , 
the limiting probabilities 

Pi = lim Pij(t) ~ ° 
1-+00 

(16-61) 

i 

do exist, and they do not depend on the initial state e;. The proof is essentially the same 
as that of Theorem 15-7 for Markov chains, and similar definitions for classification of 
states hold here also. Moreover. for irreducible finite chains, the continuous analogue of 
the conditions (15-183) is automatically satisfied here. 

In particular. taking the limit as t ~ 00 in (16-7) and using (16-61) we get 
Pi = Ek Pit. Pkj(s). or 

(16-62) 

Suppose the transition probabilities satisfy (16-18)-(16-23). Differentiating (16-62) and 
setting t = 0, we obtain 

LP;A;j = 0 j =0,1,2, ... (16-63) 

where Ai} represents the transition density from state ej to ej as defined in (16-22)­
(16-23). In matrix form (16-63) has the representation 

pA=O (16-64) 

where 

P = [Po, PI. P2,"" Pj,···J (16-65) 

Notice that (16-64) is $imilar in structure to its discrete counterpart in (15-177). The 
matrices A and (P - I) both have nonnegative off-diagonal elements. zero row sums, 
and a unique positive eigenvector corresponding to the simple zero eigenvalue. Equation 
(16-64) can also be obtained directly from the forward.-Kolmogorov equations in (16-26) 
by putting 

Pj = lim P;j(t) 
I~oo 

lim p;J(t) = 0 
I~OO 

(16-66) 

~ Using (16-50) and (16-51) in (16-63), the (forward) steady state equations for the 
general birth-death process are given by 

(16-67) 

and 

0= -AoPO + JJ.IPI (16-68) 
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Rewriting these equations. we obtain the iterative identity 

J,Lj+lPj+1 - AjPj = }1.jPj - Aj-lPj-J = Ji.j-IPj-1 - Aj-2Pj-2 

= Ji.IP, - AOPO = 0 (16-69) 

which gives 

or 

TI
n Ak-l 

Pn = --Po 
k=1 Ji.k 

n=I,2, ... 

The condition 2::=0 Pn = 1 gives 

( 1 + fIT Ak~l) Po = 1 
n=! k=l Ji. 

(16-70) 

(16-71) 

(16-72) 

and hence the necessary and sufficient condition for the existence of a steady state solu­
tionin (16-52) and (16-53) is the convergence of the infinite series L::I ill=l 0 .. ,,-11 Ji.t) 

in (16-72) (Karlin and McGregor). When that series converges, the steady state proba­
bilities for the birth-death process is given by 

. ( TIn A.t-I 
Pn = lim P xCt) = n} = - . Po 

' .... 00 .t-I J,Lk 
n = 1,2, ... (16-73) 

where 

(16-74) 

In particular, if An = A, and J,Ln = J,L. n = 0, I, 2, ... , then we obtain the steady state 
solutions 

Pn = ( 1 - ;) (; r n = 0,1,2, ... (16-75) 

provided AI Ji. < 1. ..... 

We shall use several variations of this birth-death model in Sec. 16-3 to study 
various markovian queues that are popular models in queueing theory. 

16·3 QUEUEING THEORY 

Queueing theory dates back to A. K. Erlang's (1878-1929) fundamental work on the 
study of cOngestion in telephone traffic, and since then it has been applied to a wide 
variety of applications such as inventory control, road traffic congestion, aviation traffic 
control, machine interference problem, biology, astronomy, nuclear cascade theory and. 
of course, voice and data communication networks. Simple queues collectively form a 
chain of queues, where queues, in turn, feed other queues, and this process can go on for 
several layers forming complex networks of queues. The mathematical characterization 
and study of these phenomena constitute queueing theory. 
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A queue, or a waiting line, is formed oy arriving customers/jobs requiring service 
from a service station. If service is not immediately available, the arriving units may 
join the queue and wait for service and leave the system after being served, or may leave 
sooner without being served for various reasons. In the meantime. other units may arrive 
for service. The source from which the arriving units come may be finite or infinite. An 
arrival may consist of a single unit or in bulk (several units in a group). The service 
system may have either a limited or unlimited capacity for holding units (waiting room 
capacity), and depending on that. an arriving unit may join or leave the system. Service 
may be rendered either singly or in bulk (in batches). The basic features of a queue are: 
(i) the input process, (U) the service mechanism, (iil) the queue discipline, and (iv) the 
server's capacity. 

The input process specifies the probability law governing the arrival statistics 
of tht: customers at the server at times tit t2 •...• tn. where t; < t;+1 (Fig. 16-2). Let 
Tn = tn+l - t,. represent the interarrival time between the (n + 1)8t and nth customers. 
Then the input process is specified by the probability distribution of the sequence of 
arrival instants {t,.} and the sequence ofinterarrival times {Tn}. The simplest model 
for the input process is one in which the arrival times follow a Poisson process with 
parameter A (see Examples 9-5,16-1 and Sec. 10-2 for Poisson process). In that case. as 
we have seen the interarrival times ( sojourn time) '/1 are independent exponential random 
variables with common parameter A (see (16-10» and the input process is markovian or 
memoryless. A strong argument in favor of the Poisson arrivals is that the limiting form 
of a binomial distribution is Poisson [see (4-107)]. Thus if a phenomenon is the collective 
sum of several bernoulli-type events. all of which are independent and each has a small 
probability of occurrence, then as we have seen, the overall phenomenon tends to be 
Poisson. The exponential assumption may be relaxed to include an arbitrary distribution 
A ('f) for the interarrival times while maintaining their independence assumption. in 
which case the input process is no longer markovian. (Not all queues are markovian!) 

The service mechanism is specified by the sequence of service times (sn}. where 
SI/ denotes the time required to serve the nth customer (Fig. 16-2). It is reasonable to 

IV 
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Arrivals and departures at a queue. Here (t;} refer to tlte arrival instants, tal} refer to the service times. and N 
reprCsents tlte number of customers in the system. 
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assume that the successive durations {sn} are statistically independent of one another and 
also of the sequence of interarrival times {Tn). The simplest models in this case are either 
a constant service duration (sn = T), or an exponential distribution with parameter /.t. 
Recall that both these models can be represented as special cases of the Erlang -n density 
function (see also (4-38» 

(16-76) 

Since (16-76) represents the p.d.f. of the sum of 12 independent exponential random 
variables with parameter n/1-, if the service duration satisfies the above model, the input 
unit must pass through n "phases" of service before a new unit is admitted for service. 
Although·the Erlang model can be given a phase-type interpretation, it is obviously 
not restricted to modeling situations where there are only phases of service. As (16-76) 
shows, the Erlang model has greater flexibility than the exponential model and it gives 
a better fitting in many practical situations. In general,let B(r) represent the common 
service duration distribution. 

The queue discipline specifies the rule by which the arriving units form a queue, 
the manner in which they behave while waiting (patient vs. impatient customers) and 
the type of service offered at the server. The usual discipline is to process the units in the 
order of their arrival, that is, "fust come, first served" (FIFO or first in, first out). However, 
other forms such as "last in, first served," "random selection for service," and ''priority 
servicing" (emergency rooms) also can be adopted. The behavior of the customers that 
do not receive immediate service can vary widely. An arriving unit may choose to wait 
for service, or may immediately decide not to join the queue (balking), perhaps because 
of the length of the queue. A unit may join the queue, but may become impatient and 
leave the queue (renege), if the wait becomes longer than ex.pected. The units may arrive 
later than scheduled, and when there are several queues, impatient units may jockey back 
and forth among them. The present discussion will assume the most common first in, 
first out procedure. 

The service system may have one or several channels that provide service at the 
same or different rates to the arriving units, and in addition the system may have either 
a limited or unlimited capacity for holding waiting units. In a single channel case, the 
ratio 

}.. mean arrival rate (number of arrivals/unit time) 
p = -; = -m-e-an-se-r-v-:-ic-e-r-at-e-=(-nu-m--:-b-er-s-erv-e-d/:-:"u-n-=-it-tt":'" m-e)~ (16-77) 

denotes the traffic intensity, and it can be modified appropriately in other situ~tions. 

Description of queues. A notational system proposed by Kendall (1951) is universally 
used to specify queues. In this description, a three-part symbol (sometimes four-part) 
is used, where the first symbol specifies the input process (interarrival distribution), 
the second symbol specifies the service mechanism (service time distribution), and the 
third symbol denotes the number of channels or servers in use. If the system has a 
limited holding capacity for waiting items, then a fourth symbol is used to specify this 
information. The following symbols are usually used to specify the input process and 
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the service mechanism: 

M: Poisson or exponential (markovian or memoryless) 
D: deterministic or regular 

E,,: Erlangian distribution 
G: arbitrary service time distribution function B('r) 

G I: arbitrary independent inter-arrival distribution function A (.) 

In this notation, M / G / r stands for a queue with Poisson arrivals, no special 
assumption about service-time distribution B(.), and r number of servers. Notice that 
only for M / M / r queues, the associated stochastic processes are markovian. 401 

Characterization of queues. To quantify the queueing systems and to determine their 
performance, the following parameters are generally used: 

The number of waiting units in the system at time t, including the one being served, 
if any. 

The waiting time distribution for the queue, that is, the distribution of the duration 
of the time wq(t) that a unit has to spend in the queue, and ws(t) that it has to spend in 
the system, and the waiting time distribution for the nth arrival. 

The busy period distribution. that is, the interval from the instant a unit arrives at 
an empty counter to the instant the server becomes free for the first time. 

A complete characterization of the queueing system is given by their time­
dependent solutions, which are usually difficult to obtain in general. Fortunately, often 
one is more interested in the steady state behavior resulting from the system being in op­
eration for a long time. If such limiting behavior as in (16-66) exists, then the system goes 
into equilibrium and the steady state solutions can be used to determine the long-term 
properties of the system. 

WAITING TIME DISTRIBUTIONS. An arriving item mayor may not have to wait in 
the queue, and if the queue is empty it directly goes for service into the system. Let W q 

represent the random waiting time duration in the queue, and if s denotes the service 
duration of an item, then the waiting time duration Ws in the system is given by 

Ws = Wq +S (16-78) 

Notice that unlike W q, the waiting time in the system is always nonzero for all units. since 
the service time of each item is always nonzero. We can make use of lihe conditional 
probability law 

(16-79) 
n 

where p" denotes the probability that there are n items waiting in the queue, to determine 
the p.d.f.s of these waiting times. If the queue has r channels in parallel, then the waiting 
time is zero if the number of items in the system n is less than r. In that case 

00 

iwEt) = PIn ~ r -l}o(r) + LPniw(t In) (16-80) 
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A general result that does not rely on any special conditions about the input and the 
nature of the system can be derived assuming that all processes are s~ct sense stationary 
with finite second order moments. Let N(t) represent the number of units in the system 
and {t;} the input arrival instants and {fl} the output departure instants. If Wi represents 
the total time spend by the ith unit in the system (waiting time and service time), then 
(Fig. 16-3) 

fl = t; + Wi 

Thus N(t) increases by 1 at t; and decreases by 1 at ~i' 

~ Suppose that the processes ti and Wi are mean-ergodic 

(16-81) 

1 ,. -E Wi: -+- E{w,.} as n -+- 00 (16-82) 
n 1=1 

DT T -+-).. as T -+- 00; 

In (16-82), DT is the number of points t; in the interval (0. T) and)" = E {DT} / T is the 
mean density of these points. 

In that easel 

E{N(t}} = )"E{wil or L=)..W (16-83) 

where L is the expected number of units in the system, and W is the expected waiting 
time in the system in the steady state. In fact, we shall establish the stronger statement 
that N(t) is also mean-ergodic: 

llaT lim -r N(t) dt = AE{wtl = E{N(t)} 
T~oo 0 

(16-84) 

Equations (16-83) seem reasonable: The mean E{N(t)} of the number of units in 
the system equals the mean number).. of arrivals per second multiplied by the mean time 

IF. J. Beutler: "Mean Sojourn TImes .•. ;' IEEE Trr.msactions In/ormatwn Theory. Marcl1l983. 
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E{Wi} that each unit remains in the system.· It is not, however, always true, although it 
holds under general conditions. . 

Proof. We start with the observation that 
N(T) T liT N(O) 

-LWr ~ 1 N(t)dt - LWI/ ~ LWi (16-85) 
rc:tl 0 ns:l 1=1 

In (16-85), the terms w" of the second sum are due to the DT units that arrived in the interval 
(0, T); the terms Wi of the last sum are due to the N(O) units that are in the system at t = 0; the 
terms Wr of the first sum are due to the N(T) units that are still in the system at t = T. The details 
of the reasoning that establishes (16-85) are omitted. As we know (see Prob. 7-9) 

(16-86) 

Dividing (16-85) by T, we conclude that if T is sufficiently large, then 

liT 1 DT 

T N(t)dt::::: T L w• 
o ,,=J 

(16-87) 

because the left and right sides of (16-85) tend to 0 after the division by T (see (16-86». Further­
more, assumption (16-82) yields DT ::::: AT and 

1 DT A liT 

- ~w~::::: - ~wn :::::AE{w,,} 
T £...., nT £...., 

n-=l n=1 

Inserting into (16-87), we obtain the first equality in (16-84). The second follows because the mean 
of the left side equal~ E {N (t)}. ~ 

Next we shall examine the steady state behavior of some of the specific queueing 
systems starting with the classic markovian queue with a single server. 

Markovian Queues 

~ In this case, as Fig. 16-4 shows, the arrivals occur according to a Poisson process 
with parameter A, so that from (16-11) and (16-32) the probability that a single arrival 
occurs in At is AAt+o(At) while that of more than one arrival is o(At). Theinterarrlval 
durations Tn are independent'exponential random variables with p.d.f. given by a(.) = 
Ae-At ,. > 0, and the service time durations Sn are also independent exponential with 
p.d.f. given by b(.) = /Le-IJ.t. Thus the probability that service for one unit is completed 
in an interval At is given by /LAt + o(/::..t), and that of more than one completion there is 
o(At). Let N(t) denote the number of items n in the system (those in the queue and the 
one being served, if any) at t ~ O. Then N (t) is a continuous-time Markov process of the 

Input _P_{_At_) --i~'" 1I11-1----i~~8t----.... Output 

Queue 

FIGURE 16-4 
MIMll queue. 

Server 
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birth-death type discussed in Example 16-4, with A,l = A, JJ.n = JJ., and from Example 
16-6 its limiting probabilities are given by (16-75). Thus the probability that there are n 
items in the system is given by 

Pn = lim P{N(t) = n} = (1 _ p)pn 
1-+00 

(16-88) 

provided the traffic intensity p = A / JJ. < 1. Notice that 1 - P represents the probability 
that the system is empty. and the probability that the system is not empty is given by 
P (N (t) ::: 1) = p. Since (16-88) represents a geometric distribution. the expected number 
in the system is given by 

L = lim E{N(t)} = _P_ = _A_ 
1-+00 1 - P JJ. - A 

(16-89) 

and 

P AJJ. 2 
I~~ Var{N(t)} = (1 _ p)2 = (A _ JJ.)2 = L + L (16-90) 

Clearly Var{N (t)} is quite large compared to L and it increases rapidly as p -+- 1. Hence 
the mean value in (16-89) has a great amount of uncertainly in the immediate neighbor­
hood of p = 1. 

WAITING TIME DISTRIBUTIONS. We can make use of (16-78)-(16-80) to determine 
the waiting time distributions in the queue as well as in the system. Given that there are 
n units in the system, the waiting time for the nth item in the queue is given by 

Wq =s~ +52+···+5n (16-91) 

where st represents the residual service time of the item being served, and 52,53 •••.• Sn. 

the service times of the n - 1 units ahead in the queue. Since 5~ is the residual of an 
exponential random variable with mean 1/ JJ.. it is also an exponential distribution with 
the same mean, and 52, 5:h •.• , 5n represent independent exponential distributions with 
mean 1/ JJ.. Hence !wq (t I n) in (16-91) is a gamma random variable as in (4-37) or (l0-
87) with A replaced by JJ.. and substituting this into (16-80) with r = I. we obtain the 
probability density function for the waiting time in the queue to be 

00 ntn- I 

!WI{(t) = (1- p)8(t) + ~(1- p)p" ~ _I)!e-~ 

_ ~ (JJ.pt)n = (1 - p)8(t) + JJ.(I - p)pe P,I L.J -- " 
n=O n! 

= (1 - p)8(t) + 1J.(1 - p)pe-p,(I-P)1 t > 0 (16-92) 

where the first term represents the probability that the waiting time is zero in the queue. 
From (16-92) 

E{wq } = (1- p). 0 + f: tJJ.(l - p)pe-/J.(1-P)1 dt 

p A = =---
JJ.(1 - p) IJ.{JJ. - 1) 

(16-93) 
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Tbe probabili.ty that the waiting time in an M I Mil queue is no more than t is given by 

P{Wq .5 t} = 1 - P(Wq > t) = 1 -100 
/w,(x)dx 

= 1 - pe-P.O-P)I (16-94) 

and there is a finite probability equal to (1 - p) that the waiting time in the queue is in 
fact zero. 

To determine the total waiting time distribution in the system, we can make use 
of relations (16-78)-(16-79) and (16-91). From there, for the nth item in the queue, the 
total waiting time in the system equals the waiting time in the queue plus its own service 
time s,,+J' Thus given that there are n units in the system 

Ws = Wq + 5n+1 = s; + 52 + S3 + ... + 5n + 5n+1 

and its conditional distribution is given by the gamma distribution 

(16-95) 

/1-n+1 tn 
/w, (t In) = --I -e-Jl.1 (16-96) 

n. 
Hence using (16-79) the distribution of the waiting time in the Mj Mil queueing system 
is given by 

00 00 n+ltn 
/1II,(t) = LPn/w,(/1 n) = L(l - P)pn!!:..-.-e-Jl.1 

11=0 11=0 n. 

00 (J1, t)" = /1-(1 - p)e-I'I L -p- = /1-(1 - p)e-Jl.\l-P)I 
=0 n! 

11-

and it represents an exponential p.d.f. with mean 
1 

E{ws } = IL(1- p) = -IL---).. 

t2!O 

Clearly Eqs. (16-89) and (16-98) agree with Little's formula in (16-83). ~ 

(16-97) 

(16-98) 

~ Consider a queueing model where a Poisson input with parameter).. feeds r identical 
servers (channels) that operate in parallel as shown in Fig. 16-5. Each server has an 
independent, identically distributed exponential service time holding distribution with 
parameter /1-. If n < r channels are busy, then the system is in state ell' and the total 
number of services completed form a Poisson process with parameter n/1-. and the time 
between two successive service completions is exponential with parameter nIL. On the 
other hand, if n > r, the time between two successive service completions is exponential 
with parameter r IL for aU values of n. If the number N (t) of items present in the system 
is in state en at time t, then transition from ell to e'l+l takes place in a small interval 
At with probability )'At + o(M), and the probability that anyone of the busy channels 
becomes free is IJ.At + o(At). Hence for 1Z < r, the probability that none of the n busy 
channels become free equals [1 - IJ.At + O(At)]II, since the channels are independent 
Thus the probability that at least one server becomes free in the interval At is given by 

II {nlLAt + o(At) n < r 
1 - [1 - ILtl.t + o(At)] = A (A ) (16-99) 

r/1- t + 0 t n 2! r 
For small intervals At, the probability that one or more servers become free is the 

same as the probability that one server becomes free, and hence (16-99) in fact represents 
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the probability of transition from en to en-I. The transitions from state e j to states other 
than ej_1 or ej+l bave probability of order o(.~t). This gives the nonzero probability 
transition densities in (16-50) and (16-51) for this specific "birth-death" process to be 

and 

{
-(A + iJL) j <r 

Aj' = -(A' + IL') = 
J J J -(A + r#L) j ~ r 

(16-100) 

(16-101) 

and hence the steady state probabilities Pj satisfy the equations (16-67) and (16-68) 
with pm:ameters as in (16-100) and (16-101). Thus N(t) is a birth-death process with 
constant birth (arrival) rate and state dependent service rates. Substituting these values 
into (16·71), we obtain the steady state probabilities to be 

{ 

A·A,,·i.. (i../IL)" 
#L . 2JL .•. nIL Po = ---;;! Po 

Pn = 
i.. ·A·"i.. r' 

--:--------Po = -(A/rJL)" Po n ~ r 
1L·2j.L .. ·rlL·r#L .. ·rJL r! 

n <r 

(16-102) 

The condition 1::0 Pn = 1 gives 

{ 
r-I (i../)" roo} 

1 + L :: + ~! L(i../rJL)" Po = I 
11=1 ,,-r 

(16·103) 

and the series in (16·103) is guaranteed to converge, provided i../ r JL < 1. In tbe r channel 
case, 

p = i../rJL (16·104) 
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rep,resents. the ,traffic intensity, and 
1 

Po = (16-105) 

2:,-1 ('AIIJ.)n ('Alf.LY 
--+.-:.....:...;,...~ 

n=O n! r!(l - p) 

We can use the above steady state probability distribution to compute various parameters 
that measure the effectiveness of a parallel queueing system. 

The average number of items waiting in an M 1M I r queue is given by 

where 
('AI f.L)' 

Pr = --,-Po 
r. 

(16-106) 

(16-107) 

CALL WAITING. The probability that an arriving item has to wait in an M 1M I r queue 
is given by the probability that there are at least r items in the queue. Thus 

00 ('AI f.L)' Pr 
Pew = P{N(t) ~ r} = '" P" = Po = -- (16-108) 

;;; r!(l - p) 1 - P 

This is also the probability that all r channels are occupied in an M / M I r queue. This 
formula has wide application in telephone traffic theory, and it gives the probability of 
call waiting in an exchange with r trunk lines. where no server is available to handle 

10-23 U-_~--L--:-'----::'---:L:--"':'L:----:l:::----::L:--:-':-_..J 
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

p 

FIGURE 16-6 
Probability of call waiting Pew in an M I M I r queue. 
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an incoming call. It is refen'ed to as Erlang'S delayed-call formula. Figure 16-6 shows 
the probability of call waiting given in 06-108) as a function of the load factor p. From 
there it is clear that the probability that all channels are occupied (a call has to wait) 
is negligible when the servers are lightly loaded and the wait is almost certain when 
they are heavily loaded. This well-known queueing phenomenon-high sensitivity to 
increase in the load factor when the system is already substantially loaded-should be 
taken into account in system design [39]. 

til> The probability that there will be some item waiting in the queue is given by 
00 

L Pn = p, ~ (16-109) 
n=,+1 - p 

From (16A 106) and (16-109). the average number of waiting items. for those who actually 
wait in an M / M / r queue, is given by 

2::"+1 (n - r)PII rIL 
~oo p = 1- p = r" - A LJII=r+1 n ,-

(16-110) 

and it represents the average number of waiting items in front of a waiting customer. 
These items must go into service before the waiting customer can actually obtain service. 
Hence the mean waiting time in the queue for those who actually wait is given by 

1 1 1 
Tr = --- = -- (16-111) 

rIL 1 - P rIL - A 
since l/rIL represents the average time between two successive service completions in 
a busy queue. Interestingly, we can use the above results to show the superiority of an 
M / M / r configuration compared to r distinct M / M /1 queues in parallel that operate 
independently, each with its own waiting line. 

For an M / M /1 channel, the average waiting time for those who actually wait is 
given by (r = 1) in (16-111) 

(16-112) 

If the same Poisson process with arrival rate A feeds r parallel queues of the M / M /1 
type randomly, then from (9-25) each such input to these M / M /1 queues is Poisson with 
parameter).,' = A/r and replacing)., by A/r in (16-112), we obtain the average waiting 
time for those who actually wait in such r separate M / M /1 parallel queues to be 

r 
T.(A/r) = -- = rT, (16-113) 

rIL - A .. 
From (16-111) and (16-113), clearly the average wait is smaller by a factor of r in 
an M/M/r queue compared to r separate M/M/l parallel queues, and hence when r 
servers are available it is much more efficient to operate with a single queue rather than 
several independent queues. ~ 

WAITING TIME DISTRIBUTION. Let Wq denote the random variable representing the 
waiting time in the queue as before. From (16-108) 

P{Wq = O} = P(N(t) ::: r - 1) = 1 - P(N(t) ::: r) = 1 - -1 P, (16-114) 
-p 
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and W q > 0, if the number of items in the s.ystem is n ~ r, out of which r of them are 
in servers, and n - r items are in the queue. Hence given that there are n items in the 
system. the waiting time in the queue is given by 

Wq = min(5~. sl.- ...• s~) + 51 + 52 + ... + 511 - r (16-115) 

where the first term represents the least residual service time among the r items in the 
servers. Since each residual service time s~ is independent and exponentially distributed 
with parameter J.L, min(5~. sl ..... s~) is an exponentially distributed random. variable 
with parameter r J.L. From (16-99). the remaining n - r independent service times 5i 
are also exponentially distributed with parameter r J.L (the time between two successive 
service completions is r U), since all the channels are busy, and hence (16-115) represents 
a g~ random variable with parameters (n - r + 1) and nJ.L. Thus 

(r )"-r+1 
I' (t I ) = J.L t"-' -, p.t 
JIDt n (n _ r)! e t~O (16-116) 

and from (16-79)-(16-80), the waiting time distribution fwq(t) for t > 0 is given by 

00 r' ( >")" (r ll )"-r+l 
fill (t) = '"' - - po'" t"-' e-rp.l 

9 L..J r! rJ.L (n - r)1 
11=' 

(>"/J.LY _, 00 (M)"-r = rJ.L--poe p.I '"' -:--~~ 
r! L..J (n - r)! 

11=' 
= rJ.Lp,e-(rp,->.)t t > 0 (16-117) 

and P{Wq = OJ is given by (16-114). Notice that the probability that an arriving item 
has to wait in an M / M / r queue is given by 

100 p,. 
P{Wq > O} = fw,(t)dt = -1-

0+ -p 
(16-118) 

which is the same as the probability in (16-108) that there are r or more items in the 
system. Similarly the probability that the waiting time in an M / M / r queue is longer 
than T is given by 

P{Wq > T} = roo fw V) = ~e-rJL(l-p)T = P{Wq > O}e-r l'(1-p)T (16-119) iT 9 1- p 

From (16-117) the average waiting time in the queue for all arrivals turns out to be 

roo rJ.Lp, • 
E{Wq} = io+ tflll,(t)dt = (rJ.L _ >..)2 

p,/rp. p, p 
= (1 - p)2 = >.. (1 _ p)2 

From Little's formula, the expected number of items in the queue is given by 
p 

L = >..E{wq ) = p, (1 _ p)2 

and it agrees with (16-106). 

(16-120) 
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From (16-108) and (16-120), the average waiting time in an M / M / r queue, given 
that the arriving unit has to wait. equals 

E{wq } P, IrIL(l - p)2 1 
1::r PII = Prl(1- p) = rIL(1 - p) = rlL - A 

(16-121) 

Similarly, using (16-109) the average waiting time in an MI Mlr queue, for those 
who actually wait is given by 

E{wq } PrPIA(1- p)2 1 rlL 
TJr = 00 = = = -~-

1:1I=r+1 Pn Prp/(1 - p) A(1 - p) A(rlL - A) 
(16-122) 

Once again similar conclusions as in (16-113) follow, showing the superiority of 
the M I M I r configuration over r distinct M I M 11 queues operating in parallel. 

From (16-77), the average waiting time in the system is given by 

1 p, 1 
E{wsl = E{s} + E{wq } = - + - (1 )2 

IL rlL - P 
(16-123) 

and the average number of items in the system equals 

A p 
Ls = AE(w,} = -;. + Pr (1 _ p)2 (16-124) 

~ 

.. In this case, the number of servers are the same as before, but there is no facility in the 
system to wait and fonn a queue. If an arriving item finds all channels busy, it leaves the 
system without waiting for service (impatient customer). Brlang had originally used this 
loss model to investigate the distribution of busy channels in telephone systems. Such 
a system can handle up to r incoming calls at once. An incoming call "goes through" 
if at least one server is free, otherwise it is rejected (the call is lost) if all servers are 
busy (i.e., AJ = 0, j > r). If the arrivals are assumed to be Poisson with parameter A, 
and the service durations (call holding time) are also exponential with parameter IL, then 
Erlang's model represents a birth-death process with 

{ A j ~ r 
Aj = 0 . J>r 

{ jlL j<r 
ILj = rlL j ~ r 

From (16-71), this gives the steady state probabilities to be 

n = 0,1,2, ... , r 
otherwise 

The nonnalization condition 1:~=o Pk = 1 gives 

1 

Po = t (AIIL)" 

k=O k! 

(16-125) 

(16-126) 

(16-127) 

and hence the probability that n channels are busy in the steady state is given by (Erlang's 
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fir.stfoYJIiUla). 

~ 
Pn = n! n = 0, 1.2, ... ,'r (16-128) t (A/Jl.)* 

k=O k! ' 

Notice that (16-128) represents a truncated Poisson distribution with parameter p = A / Jl., 
and it is defined for all values of A and Jl.. The main characteristic of the quality of service 
of a system with refusals (zero waiting room capacity), is measured by the probability 
of refusal or loss of a customer. In the Erlang model, from (16-128), the probability that 
an arriving item is lost (call congestion) is given by 

(A/Jl.)' 

P _ rl 
r - t (AI Jl.)1c 

k=O kl 

(16-129) 

and it is the same as the probability that all channels are busy (time congestion). Equation 
(16-129) represents Erlang's loss formula or blocking formula. It has been shown by 
Pollaczek. Palm, Vaulot, and others that Erlang's loss formula holds for any distribution 
of service time, provided the input is Poisson with parameter A (i.e., MIGlr queue). 
(See also Prob. 16-16 for a related result.) The average number of busy servers in an 
MIMlr/r queue is given by 

1 

Ns = LnPn = p(l- p,) (16-130) 
n=O 

A slight generalization of the M / M / r / r queue (Erlang's model) can be obtained 
by considering a model with a limited waiting room capacity. ~ 

~ In this case m > r. and the number of servers are the same as in an M / M / r model, 
Qut a limited number of items can wait on a first-come basis if they find all r channels 
busy. This gives the probability transition rates to be 

{
A j <m 

A) = 0 j ~ m {
jJl. j ===r 

j.L'= 
J rJl. j > r 

(16-131) 

Here m represents the holding capacity of the system and m - r the waiting room 
capacity. From (16-71) and (16-131), we get .., 

where 

--I -Po n === r n. {

(AI Jl.),1 

Pn = (AI j.L)n 
--Po r<n<m rlrn-r -

1 
Pp = r (AI Jl.)n 1 m (AI j.L)n 

"'-+- "'-L...J nl r! L...J rn-r 
n=O n=r+l 

(16-132) 

(16-133) 
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Notice that when m = r, (16-132) coincides with Erlang's model. The probability ofa 
call loss in this case is given by 

(16-134) 

The mean number of busy servers in steady state is given by 

(16-135) 

Table 16-1 and Fig. 16-7 show the probability of call loss for various values of the 
load factor p = AI/-L, for the Erlang model without and with waiting room facility. From 
Pig. 16-7 it is clear that when the servers are lightly loaded, the probability of losses 
decrease substantially with an increase in the number of servers. However, the situation 
is almost the same in all cases if the load is large. Interestingly, even one additional 
waiting facility reduces the probability of call loss. provided the load factor is not very 
large. ~ 

.. Here the number of servers is assumed to be unlimited so that there is no queue, 
and an arriving item is instantly served. In this can AI/ = A. /-Ln = n/-L, n = 0, 1.2 •... 
so that the steady state solutions can be obtained by letting r-+-oo in the M / M I r or 

TABLE 16-1 
Probability of call loss for an Erlang queue without and with waiting room capacity 
(M/M/r/r vs. M/M/r/r + 1) 

Probability of call loss Pm 

Waiting room capacity = 0, (m = r), Waiting room capacity = I, (m = r + 1), 
r r 

p Z 4 8 2 4 8 

0.1 0.0045 0 0 0.0002 0 0" 
0.2 0.0164 0 0 0.0016 0 0 
0.4 0.0541 0.0007 0 0.0107 0 0 
0.8 0.1509 0.0077 0 0.0569 0.0015 0 
1 0.2000 0.0154 0 0.0909 0.0038 0 
2 0.4000 0.0952 0.0009 0.2857 0.0455 0.0002 
4 0.6154 0.3107 0.0304 0.5517 0.2370 0.0150 
8 0.7805 0.5746 0.2356 0.7574 0.5347 0.1907 

12 0.8471 0.6985 0.4227 0.8356 0.6769 0.3880 
16 0.8828 0.7674 0.5452 0.8760 0.7543 0.5216 
20 0.9050 0.8109 0.6270 0.900S 0.8020 0.6105 
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FIGURE 16·7 
Probability of call loss for an Erlang queue without and with waiting room capacity. For r = 2. 4. 8. the 
waiting room capacity is either zero or one. For r = 50. the waiting room capacity is zero or 25. 

M/M/r/r cases. From (16-127), 

P 1 = e-(l./J.l.J 

0= f ('A//-L)k 

k=O k! 

(16-136) 

and 

Pn = ~o ('A//-L)n = e-(l./iJ,) (A/JL)ft n = 0,1,2,... (16-137) 
n! n! 

Thus in steady state, the number of items in an M / M / 00 queue is Poisson distributed 
with parameter A/ JL (see also Prob. 16-16 for a similar result on M / G /00 queues). When 
the number of servers is large, (16-137) can be used in an M / M / r / r model to compute 
P'l reasonably accurately. ~ ~ 

~ In some' systems, an arriving item that finds all servers busy joins the queue but waits 
only for a limited duration, and after that it departs the queue (reneging). The item may 
also decide to leave the queue depending on the existing size of the queue. Suppose the 
system has Poisson input arrivals with rate A, and r independent identical servers with 
exponential service rate f.k. Further, there is no limitation regarding the waiting space. 
In that case Aj = A, j = 0.1.2 •...• and /-Lj = jJ.l. for j ~ r. For j > r, the transition 
from state ej to state ej_1 in an interval At can occur in two mutually exclusive ways: 
either one of the r busy servers becomes free with probability r f.k6.t + O(At) or one of 
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the waiting units in the queue departs with probability Vj Il.t + o(ll.t). Thus the resulting 
markovian process has the probability transition densities given by 

{
jIJ. j~r 

J.I. = 
J rIJ.+vj j>r 

(16-138) 

Substituting these values into (16-73) and (16-74), we obtain the long-run probability 
that there are n items in the system to be 

(16-139) 
n>r 

where 
1 

Po-~------------~-------------
- r (A/IJ.)n 1 00 An 
L-,- + -,-r L Ilil ( + ) 
n=O n. r.f.L n=I+1 1=1+1 rf.L Vj 

(16-140) 

In particular, if we assume the waiting time of a unit is an independent exponentially 
distributed random variable with paranleter v, then arguing as before, the probability 
that one of the (n - r) waiting items departs the queue prior to service is given by 

1 - (1 - vll.t)n-r = (n - r)vll.t 

so that 

Vj = U - r)v (16-141) 

and this value can be used in (16-139) and (16-140) to determine the steady state prob­
abilities of such a qtleue. ~ 

So far, we have analyzed queues with an infinite source population. That need not 
be the case always, and in many situations sources may have only finite resources. Next 
we shall examine finite source models with m items that are served by r servers (r < m). 

Finite Input Sources and Machine 
Servicing Problem 

Finite input situations occur in machine servicing problems, where a set of m machines 
that break down from time to time are serviced by r repainnen (r <m). Each time 
a machine breaks down, a repairman works on it to put it in operational form. If the 
number of inoperative machines at any time exceeds the total number of repairmen, then 
the excess machines will have to wait till repairmen are available for servicing them. 
In this context, the rate of machine breakdown. the time taken to repair an inoperative 
machine, and an optimum strategy that minimizes the overall cost in terms of repairmen 
and inoperative machine loss are of special interest. 

In the queueing theory terminology, the machines that breakdown are the cus­
tomers, the repairmen are the servers. and customers waiting time corresponds to the 
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idle time of.an inoperative machine before rep~ir is pelformed. However, unlike the 
queueing models studied earlier, the arrival of customers is finite here, since when all the 
machines are inoperative, another machine cannot break. down and no further customer 
can join the queue. Thus the probability of an additional customer joining the queue 
depends on how many customers are already waiting in the queue at that time. 

Here, we first review the classical M J M J r model due to Palm (1947), and a more 
general MIGII model due to Takacs (1957) in connection with the machine servicing 
problem. 

~ Suppose the input population consists of 111 machines that break down independently 
and call for service, by an exponential distribution with parameter J... Thus the probability 
deI\sity function of the operating time of a working machine is given by 

{
J.. -AI 

f(t) = 0 e 
t;::O 
otherwise 

(16-142) 

Hence from (16-1]) the probability that a working machine at time t breaks down in the 
interval (t, t + M) is given by )...!:it + oeM). and the average working time of a machine 
is l/A. Lete" represent the state thatn out ofm machines are not working at time t. Thus 
the probability of transition from state ell to e,,+1 in the interval (t, t + !:it) equals the 
probability that at least one of the m - n working machines break down in that interval, 
and it is given by 1 - [1 - A!:it + o(!:it)1l11-n = (m - n)J..!:it + oeM). Thus 

{
em -n)J.. n = 0.1,2, .. . ,m-l 

A" ,,+1 = A" = 0 • n;::m 
(16-143) 

Service is provided by r repairmen, r < m, and duration of each service is an exponential 
random variable with parameter j.J.. Thus when a machine is being serviced at time t, the 
probability that the servicing will be completed in (t. t + !:it) is given by j.J.!).t + o(!).t). 
As before. when n machines are being serviced, the probability that one service gets 
completed in (t, t + !:it) equals 1 - [1 - j.J.!:it + o(!).t)]n = nj.J.!:it + oeM) for n ::: r, 
and equals rj.J.M + o(!:it) for n > r. This gives 

{
nj.J. n ~ r 

j.J.,,= 
rj.J. n;:: r 

(16-144) 

When a machine breaks down, it is at once serviced if one of the r repairmen is available, 
otherwise it forms a queue and waits for service. Machine interference time corresponds 
to the duration when a machine breaks down and waits for a repairman (idle time). who 
in turn may be busy repairing other machines or doing related work. Thus the machine 
servicing problem is equivalent to a birth-death Markov process (Examples 16-4 and 
16-6) x(t) with parameters as in (16-143) and (16-144), where x(t) represents the num­
ber of nonworking machines at time t. Using (16-73) and (16-74), the steady state 
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probabilities that n out of m machines are not working turn out to be 

1 n-1 (A)n () (A)n , II (m - i) - Po = m - Po n=O.I •.... r 
n. ;==0 JJ. n JJ. 

Pn = 
1 n-l . (A)'I m!r' ( A )" 

-- (m - L) - Po = - Po 
r!r'I-J g JJ. (m - n)!r! rJJ. 

(16-145) 
where 

(16-146) 

This solution was first obtained. by Palm (1947). Following Naor (1956). if we use the 
notation [48J 

and 

tJ. A 
p=­

rp, 

tJ. pk 
p(k, p) = e-P k! 

00 

P{n, p) ~ Ep(k, p) 
k=n 

,-1 n r-l 
A ~r r 

SCm, r. p) = Lt ,p(m - n, p) + -( -_-1-)1 [1- P(m - r + 1. p)] 
n=O n. r. 

then (16-145) and (16-146) reduce to the compact form (show this) 

{

rn p(m-n.l/p) 

n! SCm, r.l/ p) 
Pn = 

r,-1 p(m - n, l/p) 

(r -1)! S(m,r.l/p) 

n<r 

(16-147) 

(16-148) 

(16-149) 

(16-150) 

(16-151) 

and it can be verified by direct substitution. For a single repairman case. (16-151) sim­
plifies to 

Pn = t (l/pi 

k=O k! 

(l/p)lII-n 
(III-n)! 

n =0.1.2 •...• m " (16-152) 

and it represents the probability that n out of m machines are not working. We can use 
(16-151) to deduce several interesting conclusions. First, the long-term probability that 
s machines are in working order is given by Pm-so Notice the close similarity of Pm-s 

in the single repairman case with Erlang's first formula in (16-128). 
Let the random variables x. y, and z represent, respectively. the number of ma­

chines in working order. the number of machines being serviced, and the number of 
machines waiting in line for service at any time. Then 

(16-153) 
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and using (1~.l51) their aver~ge values are given by (show this) 

_ E{ } _ ~ _ W S(m - I, r, l/p) 
a - x - ~(m - n)Pn - T S(m.r.l/p) (16·154) 

I-I In 

b = E{y} = LnPn +r LPn 

,-1 
= r _ Lcr _ n)Pn = r SCm - I, r. I/p) 

n=O SCm. r. 1/ p) 
(16-155) 

and 
In 

C = E{z} = L (n - r)Pll (16·156) 
11=+1 

so that 

a+b+e=m (16-157) 

Equations (16-153) and (16-157) state that a machine has to be in one of these three 
states. From (16-154) and (16-155) we also get 

~ = i (16-158) 

which states that the ratio of the average number of working machines to those deing 
serviced equals the ratio of the average working time of a machine (1/ A) to the average 
servicing time (1/ fJ.), an obvious equality. We can define a / m to be the machine efficiency 
factor. so that from (16-157), it is given by 1- (b/m - e/m), where b/m represents the 
loss factor due to repairs. and c / m the loss factor due to interference that occurs because 
of other machines being repaired. Interestingly. b also represents the average number of 
occupied (busy) repainnen so that 

Averag~ numbe.1' of } = r _ b = r (1 _ SCm - I, r, 1/ p» (16-159) 
unoccupIed repamnen SCm, r, 1/ p) 

and 
b(r) SCm - I, r, lip) 
-= 

r 
represents repairmen efficiency. 

SCm, r, 1/ p) 
(16-160) 

For maximum repainnen efficiency the optimization criterion is b(r) = r, or b(r) / r 
needs to be maximized. and for maximum machine efficiency, the quantity a(r)/rn = 
(1/ pm)b(r)/ r needs to be maximized. These two requirements are conflicting, since 
to keep up servicemen efficiency, r should be as small as possible, wMreas to keep up 
machine efficiency r should be as large as possible. Equating b (r) I r and a (r) / m, we get 
the optimum number of servicemen to be ro = rnA / fJ.. Figure 16-8 shows b(r) / r as well 
as th~machineefficiency a(r)/m form = 100 and A/fJ. = 0.15. From Fig. 16-8, r :::: 10 
keeps the servicemen completely busy, whereas at least 30% of the machines will be un­
productive in that case. On the other hand, ro = 15 gives about 85% machine efficiency 
and also keeps the servicemen occupied 85% of the time. Increasing the servicemen 
beyond 15 does not result in any significant gain in machine efficiency in this case. ~ 

Several variations to the above model are possible. Different machines can have 
different stoppage parameters Ai and different service parameters IJ-i. Further, each 
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FIGURE 16·8 
Machine ServIcing Problem: Servicemen efficiency (blr) and Machine efficiency (aim). Here m = 100 and 
)..111. = 0.15. 

repairman may specialize in one or several (not all) types of repairs. The repairmen 
may also spend part of their working time attending related work such as collecting 
materials or traveling between inoperative machines. Benson and Cox have investigated 
this ancillary work problem. 

The general machine interference problem involving finite Poisson input popu­
lation and arbitrary service-time distribution has been studied for a single repairman 
case (MIG/I) by Khinchin. Kronig. Palm. Ashcroft. and Takacs. Next we examine an 
elegant technique due to Takacs that is based on a method given by Ashcroft. 

~ In the Takacs' model. the queueing system consists of m machines that work inde­
pendently and a single repairman. The operating time of each machine is exponential as 
in (16-142), so that the probability that a working machine at time t breaks down in the 
interval (t, t + ..6..t) is given by AM + o(..6..t). When a breakdown occurs, the machine 
will be serviced immediately unless the repairman is servicing another machine. in which 
case it joins a queue of machines waiting to be repaired. The service time is assumed 
to be a positive random variable with arbitrary density function Is(t), and hence the 
underlying queueing system is of type M / GIL .. 

Unlike the Palm model. Takacs defines xCt) to represent the number of working 
machines at time t. Since the process x(t) is in general non-markovian, Takacs first 
examines the imbedded chain obtained by observing the number of working machines 
just before the termination of service of machines under repair. Thus if t1, t2, .••• tn • ... 
denote the end points of consecutive service-time periods, then Xn = x(tll - 0) rep­
resents an imbedded Markov chain that is aperiodic with a finite number of states 
j = 0, 1. 2, ...• m - 1. Notice that it does not make sense to talk about m working 
machines just before the termination of a service, since there is a total of only m ma­
chines, and at the time of observation, at least one of them is still under repair. Since 
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tl. ~2, ... corre~pond to the dep~re instants. or"customers in a regular queue, on com~ 
paring with Exanlples 15-14 and 15-24, the present method is very similar to that of 
generating imbedded Markov chains in those cases. 

To compute the limiting probabilities 1f i' where 

1fj = lim P{xn = j} 
n4>OO 

j = 0, 1. 2 .... , m - 1 (16-161) 

define Pii to be the probability that there are j working machines just before the end of 
the current service, given that there were i working machines just before the end of the 
previous service, that is. 

Pij = P{xn =jIXn-l =i} (16-162) 

To evaluate these transition probabilities we argue as follows: During the service time 
t of a machine, from (16-142) the probability that a machine is in working order is 
given by P = P(. > t) = e-"', and the probability that it calls for service equals 
q = 1 - e-At• After the previous machine under repair has finished repair work. there 
are i + 1 working machines, and to have j of them work during the current service time 
t is given by the binomial expression (T)e-P.t(l - e-"')i+l-j. Since the probability 
density of the service time duration t is !s(t)dt. we have [53] 

Pi) = 100 c; l)e-iAt (l_ e->.t)I+I-j !s(t)dt i = 1,2, ...• m - 2 j::: i + 1 

(16-163) 

and 

Pm-I,) = Pm-2.; i =m-l (16-164) 

At least one machine is under repair during a service time, so that always i ::: m - 1. 
The ergodic nature of the Markov chain gives the desired steady state probabilities 1f j 

in (16-161) as the solution of the linear equations (15-167) given by 

m-I 

1fj = L 1fi Pij 
;=)-1 

l:::j:::m-l. 

To obtain explicit expressions for 1f i consider its moment generating function 

m-I m-I til-I 

P(z) = I>iZi = L L 11:; pijZi 
j=O j=OI=j-\ 

= 100 {I: I: 11:; C ~ l)<zP)i(1_ p)i+l-J 
o j=O l=j-1 J 

+ 11:m-l ~ (m ~ l)(ZP)j(1- p)m-l-i } !&(t)dt 
}=O J 

(16-165) 

(16-166) 

where we have used (16-163) and (16-164) with P ~ e->'t. But the terms inside the 
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parenthesis in (16-l66) simplify to 

/11-2 1+1 (i + 1) , L 1Ti L ' (zp)J(l - p),+J-J +:ltm-I(1- P +zp)m-I 
1=0 J=O J 

m-2 

= L1ri(l- p +Zp)l+l +11"m-l(1- P -I- zp)m-l 
1=0 

= (1 - p + zp)P(l - p + zp) -:ltm-I(Z - l)p(l- P + zp)m-l (16-167) 

where P(z) is as defined in (16-166), Substituting (16-167) into (16-166) we get 

P(z) = loCO [1 + (z - l)e-Ar]P(l + (z - l)e-A,) f6 (t) dt 

-11"m-l(Z -1) 100 
e-Ar[l + (z -1)e-A.lr-1!s(t)dt (16-168) 

Write 

where B) represents the binomial moments of :It). and they are related as 

m-l (') 
:It) = L(-l)/-) Z, Bi 

i=1 J 

Notice that Bo = 1 and Bm-1 = 7rm-l. Using (16-169) we get 

m-\ 

P(l + (z - ne-At) = L Bj{z - l»)e-JAl 

)=D 

Flnally, substituting (16-171) into (16-168), we obtain 

where the constant 

(16-169) 

(16-170) 

(16-171) 

oS (16-172) 

(16-173) 

represents the Laplace transform of the service-time distribution evaluated at kA. On 
comparing (16-169) and (16-172), we get 

(m-1) 
B)(1 - t/Jj) - BJ-lt/Jj = -7rm-l j -1 tP) l~j~m-l (16-174) 
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Sill~e Bm- t = 1l'1II-J, define 

B· Pj = -}- 0 ;:: j ;:: m - 1 
1rm-l 

(16-175) 

so that Pm-l = 1. and (16-174) can be expressed as 

1 ~ j ~ m - 1 (16-176) 

with M) = tP j / (1 - tP]) and N )-1 = (7=:). Iterating the above equation we get 

= Cj Po - I: m - -[ 
]-1 ( 1) 1 1 
k..o k Ck 

where we define 

j tP 
Co = 1 Cj = II __ 'k - 1 ;:: k ;:: m - 1 

Jr.",1 1 - tPk 

With j = m -1 in (16-177) we obtain 

1 m-2 (m -1) 1 m-I (m - 1) 1 Po=-+I: -=2: -
Cm- 1 k=O k Ck k=O k Ck 

so that from (16-177) 

m-1 ( 1) 1 Pj = Cj L: m - -
k . k Ck 
=} 

and j = 0 in 06-175) gives 

Bo 1 
1rm-1 = Po = 'E"'~l (In;l)(I/Ck) 

Finally. using (16-180) and (16-181) in (16-175), we obtain 

,,~.:.l (m:-l)(l/C.) 
B'-C .i.J'-J I I O~j;::m-l 

J - ) 'r;/!.r} ('n~I)(1/C;) 

(16-177) 

(16-178) 

(16-179) 

(16-180) 

(16-181) 

(16-182) 

Using (16-181) in (16-170), the desired steady state probabilities 1rk. that there are k 
machines in working order just prior to the completion of a service, simplify to 

"J?-l(_l)}-k(j)C. ,,~-l (m-l)(l/C.) 
.i.JJ=k k} .i.J1=} t I 

1rk = 2:7..01 (m~I)(l/C;) O;::k;::m-l (16-183) 
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If, in particular, the service times are exponentially distributed, then 

fs(t) = Il-e-/J./ t ~ 0 

and 
Il-

~j = Il- + j'A 
c. _ tll-l'A)} 

J - ., 
J. 

so that (16-183) simplifies to 

(J.LI'A)k 
Trk = k! 0 ~ k :::: m - 1 

III-I (1l-1'A)j 
L-·-, 
j=O J. 

(16-184) 

The absolute probabilities 

pj=limP{x(t)=j} j=O.I, ... ,m 
/-.-00 

(16-185) 

can be similarly derived by using the transition probabilities rij instead of Pij in (16-163) 
and (16-164), obtained by replacing fs{t) in 06-163) with the remaining service time 
distribution P{s > t} = [1 - Fs(t)]. This gives [35,48] 

and 

mTr,,_1 
P,,=------

n(TrIl_1 +m'AIIl-) 
n = 1.2, ... ,m 

III 

Po = 1- LP" 
,,=1 

(16-186) 

(16-187) 

~ 

The above non-markovian queue assumes finite input source models. Next we 
examine general non-markovian queues of the M / Gil and GIl M /1 type, where either 
the service times or the interarrival times do not possess the memoryless propelty. Thus 
the process x(t) that represents the state of the system will no longer be Markovian; 
however, by examining the discrete-time process generated just immediately after each 
departure instant til (or just before each arrival instant til), an imbedded Markov chain 
x" = x(tn + 0) (or XII = X(tll - 0») can be extracted, and its steady state behavior can be 
studied using techniques developed in Chap. 15. When such steady state probabilities 
exist for the chain, Khinchin has also shown that they represent the steady-state behavior 
of the non-markovian process at arbitrary times (see (l5-35)) [40]. 

Interestingly, this approach of Takacs can be used to analyze a generaltzed Brlang 
model for telephone traffic, where the input arrivals are no longer Poisson, but possess 
an arbitrary distribution. 

~ Let the interarrival durations of the input process be independent random variables 
with commOn distribution A(.) and mean value l/'A. The service times in all r servers 
in the system are assumed to be independent exponential distributions with common 
parameter J1,. Once again the system has no facility to wait, and if an arriving unit finds 
all channels busy, it simply leaves the system (call is lost). Hence the possible states of 
the system are eo, el, e2 • ...• er • and let x(t) represent the number of busy channels at 
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t~me t. If tl, f2> .•• , ttl, ... denote the call arrival instants, then Xn = x(tn - 0) denotes 
the number of busy channels just prior to the nth arrival. and 

j = 0,1.2, ...• r (16-188) 

their limiting probabilities. In this case. following the arguments for computing the tran­
sition probabilities Pij in (16-163) that there are j busy channels (each with probability 
P = e-f.L1) just before a new arrival. given that there were i busy channels just before the 
previous arrival. we obtain (with service period replaced by inter-arrival duration t with 
distribution A(t» 

and for i = r, we have 

P',j = Pr-I.j 

i = 0, 1. 2 ..... r - 1 j S i + 1 

(16-189) 

(16-190) 

Proceeding as in (16-164)-(16-182) with m - 1 replaced by r, we find the desired 
probability that n channels are occupied prior to the next arrival equals 

Ej=II(-l)j-lI(~)Cj ~=j (~)(1/Ci) 
'!rtf = ~r (r) n =0.1.2 ..... r 

where 

with 

L."i=O i (1 I Cj ) 

Co = 1 
j iff 

Cj= II-k­
k=1 1 - Vtk 

{16-191) 

(16-192) 

(16-193) 

representing the Laplace transform of the interarrival distribution ACt') evaluated at kf.J.. 
Notice that '!rr in (16-191) represents the probability of call congestion in a GJ IMlrlr 
queue, and it generalizes the formula in (16-128) for an arbitrary interarrival distribution 
A ( r). In particular. if the interarrival distribution is also assumed to be exponential with 
parameter A. then trn in (16-191) reduces to Erlang's first formula in (16-128). ~ 

SINGLE SERVER QUEUES WITH POISSON INPUT AND GENERAL SERVICE 
" 

~ The single server queue with a homogeneous Poisson arrival input and independent 
identically. distributed (general) service times is known as the MIGII queue. Let B(t') 
represent the common service time distribution in this case. 

Examples 15-4,15-14. and 15-24 in fact discuss the MIGll queue in detail. From 
there, Xn represents the number of customers waiting for service just immediately after 
the departure of the nth customer. and Yn the number of customers that arrive during 
the service time of the nth customer. These quantities are related as in (15-32), and the 
transition matrix for the associated Markov chain is given by (15-34), where 

P{Yn = k} = ak (16-194) 
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represents the probability of.< arrivals during the service time of any customer. Let 

qj = lim P{xlI == j} 
n-+co 

j = 0, 1,2, ... (16-195) 

represent the steady state probabilities of the Markov chain {XII}' When the chain is 
ergodic, these probabilities satisfy (15-167) and their characteristic function is given by 
(see (15-211 )-(15-215» 

Q( ) _ ~ k _ (1 - p)(l - z)A(z) 
z - ~ q"z - A( ) _ 

k=O Z Z 
p<l (16-196) 

where 
00 00 

A(z) = E P{YII = k}zt = LakZk (16-197) 
k=O k=O 

and 

p = A'(l) == E{YII} (16-198) 

represents the average number of customers arriving per service period. 
Interestingly, we can use Theorem 15-8 to investigate the conditions under which 

Q(z) defines a proper probability generating function, thereby making the Markov chain 
{XII} ergodic. From Theorem 15-8, if the mean value p = A'(l) :::: 1 in (16-198), then in 
the interval 0 .$ z .$ 1 the equation A(z) = z has only one root at z = 1. Hence 

and 

A(z) - Z = (1- z)B(z) 

A(z) 
Q(z) == (1 - p)­

B(z) 

(16-199) 

(16-200) 

If Q(z) represents a proper probability generating function, then it must be analytic in 
Izi :::: 1. or B(z) must be free of zeros within the closed unit circle. To examine this. 
from (16-199) 

B(z) = A(z) - z = 1 _ 1 - A(z) = 1 - cez) 
l-z l-z 

(16-201) 

where 

C( ) 1 - A(z) ~ ~ k 
Z == = " ,CkZ l-z ~ k=O 

(16-202) 

Notice that Co = l-ao > 0, -ak = Ck -Ck-I, k ~ ]. sothatcn = 1-I:Z=l ak ::: 0 and 
Cn -+ 0, since I::'Oak = I, ak ::: O. Moreover. C(1) = I:r=oCk = A'(l) = p < I, 
and hence IC(z) I $.p < 1. inside the closed unit circle. From (16-201) and (16-202) it 
now follows that when p < 1. the function B(z) = 1- C(z) is in fact free of zeros inside 
the closed unit circle (Rouche's theorem; see hint for Problem 16-8. Use /(1,) == 1 
and g(z) = -C(z).), and Q(z) in (16-200) is analytic in 11,1 $. 1 with qk ~ O. Since 
Er=oQk = 1, Q(z) in (16-196) represents a probability generating function provided 
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p:;: A'(l) < 1. In that case, from (16-200)-(16-202), we get 
00 

Q(~) = (1 - p)A(z) I: CIn(Z) 
rII=O 

and if we let 
00 

Cm(z) ~ 2>~In)i 
k=O 

then we obtain the steady state probabilities for a general single server queue (under the 
imbedded Markov chain assumption) to be 

where 

00 II 

q,1 = (1- p) LLakc~~1 

co=l-ao 

m=O k=O 

n 

en = 1- Lak 
k .. 1 

(16-203) 

(16-204) 

Here the sequence {c~m)} represents the m-fold convolution of the sequence {Ck}. 
In particular. if the input arrivals are Poisson with rate A. then (+ (15-218» 

(00 o.:r)k ak = P{y" = k} = Jo e-l.T ~dB(1:) (16-205) 

and from (15-219), A(z) = <l>s (>..(1 - z)), where <I>,(s) represents the Laplace transform 
of the service time distribution B(1:). Substituting this into (16-196), we obtain the well 
known Pollaczek-Khinchin fonnula 

Q(z) = (1 - p)(1 - z)<I>s(A(l - z») 
<l>S<>"(1 - z)) - z (16-206) 

for the steady state distribution {qj} of M / G /1 queues that exists under the condition 
P'< 1. 

WAITING TIME DISTRIBUTION. We can use (16-206) to obtain the limiting distribu­
tion of the waiting time random variable w for an M / G /] queue. Let Fw (t) represent the 
waiting time distribution in the long run and \lJw(s) its Laplace transform. A departing 
customer at t = tn leaves behind X'I customers, all of whom must have arrived during 
the total time spent by the departing customer (waiting time plus servic"e time), Thus if 
s denotes the service time of the departing customer, then we also have [51] 

100 (>..t)i 
qj = P{x,. = j} = e-A1-.,-P{w + s ~ t}dt 

o J. 
and hence 

(16-207) 
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Equating (16-206) and (16-207), we get 

lJIw ((1 - Z)A) = (1 - p)(l - z) 
<:IIs«(1 - Z)A) - Z 

(16.208) 

or the Laplace transform of the waiting time distribution is given by [replace (1 - Z)A 
with s in (16-208)] 

'Y') (1 - p)s 'fI'wts =----­
S - A + A<:IIs(S) 

(16-209) 

Using the relationp = A'(I) = -A<:II~(O) =AE{s}, and from (16-209), them.ean waiting 
time for an M / G /1 queue equals 

E{w} = _\{I' (0) = AE{sl} = A2 Var{s} + p2 (16-210) 
w 2(1 - p) 2A(1 - p) 

and from (16-207) the mean queue length is given by 

I I A2E{S2} A2 Var{s}+p2 
L = Q (1) = p - A\{Iw(O) = p + 2(1 _ p) = p + 2(1- p) (16-211) 

Equations (16-210) and (16-211) indicate that for given average amval and service times 
we can decrease the expected queue length and expected waiting time by decreasing the 
variance of service time. Hence it follows that the constant service time (M / D /1) queue 
is optimum in that sense. ......:: 

Examples 16-7 and 16·8 illustrate two specific M/G/L queues: M/EmI1 and 
MID/I. 

.. In this case, the service time is Erlang-m with p.d.f. as in (16-76) (with n replaced by 
m), and from the discussion there the service-time consists of m independent identical 
phases of exponential type. each with parameter mJJ.. Thus a customer enters phase 1 of 
the service, progresses through the remaining phases sequentially, and must complete 
the last phase before the next customer is allowed into the first phase of the service. In 
that case, we have 

and 

where 

1 
A(z) = <:lis (A(1 - z» = (1 + p(1 _ z)lm)m 

A 
p = A'(I) = -AcI>~(O) = AE{s} = -

JJ. 
Substituting (16-213) into (16-206), we get 

Q(t) = (1- pHI - z) 
I - z (1 + p(1 - z)/m)m 

(16-212) 

(16·213) 
.; 

(16-214) 

from which the steady state queue distribution {qll} as well as their mean and variances 
can be determined. Note that m = 1 gives the M / Mil queue. .... 
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~ In'this case, the service time is of constant duration and it follows as a special 
case of Erlang-m, since from (4-37) with A = mfJ.., as m -+ 00 the distribution tends to 
concentrate at t = 1 I j.J.., that is, 

F {I t>l/fJ. 
At) = 0 otherwise (l6-215) 

Thus the service time is of constant duration II j.J.., From (16-213), for constant service 
time we get (m -+ 00) 

CPs (A(1 - z») -+ e-p(H) (16-216) 

so that 

Q( ) = (1 - pHI - z) = (1 _ ) (1 _ ) ~ k kp -kpt 
Z 1 _ P(l-z) P Z L....i z e e 

ze k=O 

= (1- p) (1- z) fliP f (-k~z)i 
k=O j:O J, 

00 II ( -kp )n-k 
= (1- p) (1- z) 2: 2: i p z" 

,,=0 k=O (n - k)! 
(16-217) 

which gives the steady state probabilities to be 

qo = 1 - p 

11 ~ 1 (16-218) 

Next we examine the busy period distribution for MIG 11 type queues. 

BUSY PERIOD DISTRIBUTION FOR M / G /1 QUEUES (KENDALL. TAKACS). A busy 
period starts when an item goes into service (at the end of an idle period), and it ends 
when the last item in the queue formed during that uninterrupted service operation has 
completed service, with no items arriving inunediately thereafter (see Fig. 16-9). Thus the 
busy periods correspond to the durations of uninterrupted service periods. The duration 
of a busy period may be thought of as consisting of the duration of the service period for 
the first item followed by the durations of the busy periods for subsequent items arriving 
during the first service period. 

As Fig. 16-9 shows, let Zl, Z2, Z3 ••••• Zn • ••• represent independent identically 
distributed busy period durations with common probability distribution G(t) = P (zn ~ t) 
for a single channel MIGll queue with Poisson input with parameter A. and arbitrary 
service time distribution B( 1'). The length of the busy period z does not exceed t. if the 
service time for the first item lasts 1'(0 < r ~ t), and if the service times of all items 
arriving during that l' does not exceed the remaining time t - r. The probability that 
the service time for first item lasts l' is given by B(r), and to compute the probability 
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FIGURE 16·' 
Busy periods in a queue. 

of the second event we argue as follows: The probability that n customers arrive during 
the service time. of the initial customer is given by 

O;r)n -AT 
--e n = 0, 1,2, ..• (16-219) 

n! 
Notice that as far as the computations of the busy period are concerned, the particular 
order in which arriving items are served is irrelevant. This affects the customers only, but 
the distribution function of the busy period remains the same. Hence suppose that the first 
among these newly arrived n items goes into service immediately after the completion 
of service of the initial item, and if any further arrivals occur during its service. they are 
all served first After completion of all such items associated with the first item (which 
corresponds to a busy period), another item from the remaining n - 1 items is admitted 
for service. Hence the later portion (t - 't) of the busy period consists of the sum of n 
independent busy periods, each with distribution G(x). and their cumulative distribution 
Gn(x) is given by the n-fold convolution of G(x). Thus the probability that the service 
time of the n customers (that have arrived during the service time of the initial customer) 
does not exceed t - 't is given by Gn(t - 't). Hence ... 

G(t) = [f (A'&t)n e'""AT Gn(t - '&) dB(.,;) 
o 11=0 n 

To simplify this expression, let 

r(s) = 100 
e-$IdO(t) 

(16-220) 

represent the Laplace transforms of the unknown busy-time distribution OCt) and the 
service-time distribution B(t). Then r ll (s) represents the Laplace transfonn of the n-fold 



BUSY PERIODS 
FORMIGll 
QUEUE 

CHAPTER 16 MARKOV PROCESSES AND QUEUEING THEORY 815 

c~nvolution Gil (x). and the Laplace transform of (16-220) is given by 

res) = t (Aft:»n to ."e-(H).)t'dB(i) 
11=0 n. Jo 

= 100 e':'[HJ.->..r(S))t'dB(i) 

= <t>(s + A - Ar(S») (16-221) 

The functional equation in (16-221) was first obtained by Kendall. Takacs gives a proof 
that the busy time distribution function G(t) can be uniquely determined from (16-22]), 
and it represents a proper distribution function provided p = AI /L ~ 1, where 1/ /L 
represents the mean service time. Otherwise, the busy-time period can be infinite with 
probability equal to [1 - lim G(t)]. This result can be stated as follows: 

' ..... 00 

~ The busy period distribution transform ns) for an M/G/1 queue is the unique 
solution ofEq. (16-221) for Re s > 0 subject to the condition Ins)1 ~ ]. Further, if Jro 
denotes the smallest root of the equation 

ct>(A(l - z» = z (16-222) 

then 

G(oo) = no 

If p = A/ /L ~ 1, then no = 1 and G(t) is a proper distribution function. Otherwise Jro is 
strictly less than one, and 1 - Jro represents the probability that the busy period is infinite. 

Proof. If G(t) represents a proper probability distribution function, then for Res> 0, !r(s) I :5 1 
and reO) = 1. Let z = r(s) so that (16-221) reads 

z = <t>(s + A(l - z» (16-224) 

and we have Izl < 1 for Re s > O. Note that for every s that is real and positive, Eq. (16-224) yields 
a positive solution ?roes) that is bounded by unity (see Fig. 16-10b). Since ~(s) is continuous 

1 ------------------

<t>(s + A) 

(a) (b) 

FIGURE 16-10 
Busy period distribution res) = 1I'0(s). 
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and positive for Re s > O. the two sides of (16-224) intersect at a point 11"o(s) < 1. This root is 
also unique since <I>(s) is a convex function (Fig. I6-10a). As a result. res) = 11"o(s) is uniquely 
detennined on the positive real semiaxis. By analytic continuation, res) can be extended uniquely 
over the entire right half plane. 

As s -+ O. the function <l>ls + A(1 - z») tends to <I>(A) < 1 at l = 0, and it equals unity at 
l = I. This situation refers to Fig. 15-10. and there are two cases to be distinguished depending 
on the value of <1>' (A(I - Z))l~_1 = -A<I>' (0) = AI JL = p. If p ~ 1. the situation con-esponds to 
Fig IS-lOa. and z = 1 is the only solution of the equation 

l = <I>(A(1 - z» (16-225) 

However. if p > I, the solution corresponds to Fig. IS-lOb and from there 11"0 < 1 is the unique 
smallest root of (16-225). Hence 

lim 11"o(s) = 11"0 = lim r(s) = reO) = G(oo) 
.-.0 .' .... 0 

so that the probability that the busy period z" equals infinity is given by 

P{zn = oo} = 1- P{z" ~ oo} = 1 - G(oo) = 1-11'0 (16-226) 

In summary, if p ::: 1. the busy periods for an MIG II queue will always end with proba­
bility 1. Otherwise they will explode with probability given by (16-226). 

This completes the proof of the theorem. ~ 

From (16-221), the mean value of the busy time distribution simplifies to 

E{z} = [tdGCt) = -r'(O) = E(s} = l/JJ- = _1_ 
o 1-)..E{s} l-)..I/J- /J--).. 

where E{s} = -$'(0) = 1//J-, and with p = }..I/J- we also get 

E(Z2} = E{S2} 
(1- p)3 

This gives the variance of the busy time distribution to be 

U { } = Var{s} + p(E{S})2 
var Z (1- p)3 (16-227) 

and for given average arrival and service times. once again an M / D 11 queue attains 
minimum variance for the busy time distribution as well [see also (16-210)-(16-211)J. 

Takacs has also derived the waiting time distribution for MIG II queue, for the 
probability pew, t) that for an item arriving at t the waiting time {w(t) ~ w}. as an 
integrodifferential c-..quation involving the service time distribution B(t). 

Next we illustrate Theorem 16-1 by computing the busy period distribution for an 
MIM/1 queue. 

~ Determine the busy period distribution for an M / M /1 queue. 
For an MIMII queue, the service time transform $(s) = /J-/(s + /J-), so that the 

functional equation (16-221) becomes 

r(s) = /J- (16-228) 
s + }.. + /J- - >..rcs) 

which simplifies to 

)..r2(s) - (s +).. + /J-)r(s) + jJ. = 0 

This quadratic equation in r has two roots, one with magnitude greater than unity in 
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Res> 0, and another with magnitude less than unity. Since lr(s)1 ~ 1 in Re s > 0, the 
desired solution is given by the smaller root 

res) = ($ + A + /.l) - V($ + A + f.l.)2 - 4AJi. 
2'\' 

and its inverse transform represents the busy time distribution G(t). 

(16-229) 

If p = AI J.1. > I, the unique smallest root of (16-225) in this case is given by (s = 0 
in (16-229») 

/.L 7To = - < 1 
A 

and from (16-226) an MIMII queue becomes a never-ending one with probability 
1 - /.LIA, when the load factor p is greater than unity. ~ 

DISTRIBUTION OF THE NUMBER OF CUSTOMERS SERVED DURING BUSY 
PERIODS. A busy period is initiated by a single customer whose service begins instantly, 
and let YI represent the number of customers that arrive during the first customer's ser­
vice period, Y2 those who arrive during the service periods of the YI customers prior to 
them and so on. Then with 

81/ = 1 + YI + Y2 + ... + y" (16-230) 

we have 

lim P{SII = k} ~ hk 
n-oo 

(16-231) 

represents the limiting distribution of the total number of customers served during any 
busy period. Further, let 

(16-232) 

represent the corresponding moment generating function. From Sec. 15-6 and Theorem 
15-9, this situation is identical to the total number of descendents' distribution in a 
population, and B(z) in (16-232) satisfies the functional equation in (15-322), which 
translates in this case into 

H(z) = zA(H(z» = Z<t>(A - ,\H(z» O<z<I (16-233) 

Here A (z) = 2::~0 P (YII = k }Zk represents the moment generating function of the ran­
dom variable representing the number of customers arriving per service period as in 
(16-197), and <t> (s) represents the Laplace transform of the service time.,distribution in 
an MIGII queue. From Theorem 15-9, the solution to (16-233) is given by the unique 
root x (z) of the equation 

x = z¢(J..(l - x» (16-234) 

such that H (z) = x (z) ~ 7To, where 7ro is the smallest positive root of the equation 

x = $(,\(1 - x») (16-235) 

and H(I) = 2:::'0 hk = 7To ~ 1. From Theorem 15-9, if p ~ I, then H(1) = 1. and H(z) 
represents a proper moment generating function. However if p > I, then no < 1 and 

lim P{8n = co} = 1 -no (16-236) 
""""""'00 
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EXAi\IPLE HI-H) 

GI/M/l 
QUEUE 

~ Returning back to the M / M /1 queue in Example 16~9. the moment generating 
function for the number of customers served during a busy period satisfies the equation 

AH2(z) - (.>.. + j.t)H(z) + IJ.Z = 0 

Here IH(z)1 ~ 1 in 11.1 < 1 gives the unique solution 

H( ) = (.>.. + J.L) - J(A + 1J.)2 - 4>..lJ.z 
z 2A 

= (.>.. + J.L) ~(_I)k-l (1/2) ( 4.>..1J. )k k 
2.>.. ~ k (.>.. + J.L)2 Z 

= (.>.. + IJ.) f (2k)T2k ( 4>"1oL )k i 
2'>" k=l k (A + J.L)2 

(A + J.L) 00 1 ( 4.>..J.L )k k 
::::::: 2'>" t:r.j1ik (A + j.t)2 Z 

(l6~237) 

Thus 

h '" (It + A) ( 4.>..J.L ) k _ (1 + p) ( 4p ) k k ;::: 1 
k - 2AM (.>.. + J.L)2 - 2p../1ik (1 + p)2 

represents the probability that k customers are served during a busy period in an M / M /1 
queue. If p $1. then L::o hk = 1. whereas it equals 1/ p < 1 if p> 1. In that case 
from (16-236). the quantity (1 - 1/ p) < 1 represents the probability that the number of 
customers served during a busy period becomes infinite. ~ 

GENERAL INPUT AND EXPONENTIAL SERVICE 

~ A single server queue with an arbitrary inter-arrival distribution A (?:) and exponential 
service time with parameter J.L gives rises to an G I / M /1 queue. Compared to the M / G /1 
queue. since the roles of the exponential and arbitrary distributions are reversed here. 
let tl. t2 •...• tn • ... represent the arrival instants of the items (rather than the departure 
instants). and define Xn = xCt,. - 0) to represent the number of customers in the system 
just before the arrival of the nth customer. Further. let Zit denote the number of customers 
served during the interanival time (tn. t,,+l) between the nth and (n + 1)st customers. 
Then as in (15-32) 

Xn+1 = Xn + 1 - Zn if xn;::: 0 .. (16-238) 

and Zn ~ Xn + 1. The sequence {xn} represents a Markov chain and the transition proba­
bilities Pij = P {Xn+l = j 1 Xn = i} are given by 

{
P{Zn = i - j + I} = bi-j+l 

Pij = o 
where 

i+I;:::j;:::1 

j > i + 1 

j = 0, 1,2, ... 

(16~239) 

(16-240) 
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represents Pte probability that j items were served during the inter.arrival time T between 
the llth and (n + l)st item. Since the distribution of T is ACT) and the service times are 
exponential, proceeding as in (15-218) we get 

100 (/-I:r:)i 
P{zn = j} = bj = e-J.l.r_. - dAft') 

o J! 
(16-241) 

and this gives the moment generating function of the random variable Zn to be 

00 roo 00 ( )1 
B(z) = 2::)]Zi = 10 2:= zJJ:~ e-J.l.r dA{T) 

]=0 0 i=O J. 

= 100 
e-J.l.(l-dr dA('r:) = '11 A (p.(l - z» (16-242) 

where 'IIA(S) represents the Laplace transfonn of the interarrival distribution A('r:). 
Since (16-239) is only valid for j !::: 1, to obtain Pi,O, we can make use of the 

identity ~:~ Pi] = 1 for i = 0, 1,2 •... , which gives 

i+l HI i 

Pi,O = 1- LPiJ = 1- 2:=hi-j+l = 1 - 2:=bk ~ Cj i::: 0 (16-243) 
J=l j=1 k=O 

From (16-239) and (16-243), we get the probability transition matrix to be 

coho 0 0 
Cl hI ho 0 
C2 ~ bl ho 0 

p= (16-244) 

As in (16-195), let qj, j =0,1,2, '" represent the steady state probabilities of the 
Markov chain {xn}. When the chain is ergodic. once again these probabilities satisfy 
the matrix equation q = q P with P as in (16-244), and it can be rewritten as a set of 
linear equations 

(16-245) 

and 
00 

qj = 2:=q,l:+J-lbk j!::: 1 ~ (16-246) 
k=O 

As before let Q (z) represent the moment generating function of these steady state prob­
abilities {q j }. Then 

00 00 00 

Q{z) = 2:= qjZi = qo + 2:= 2:= qk+J-1bkZJ 
1=0 ]=1 k=O 

00 00 

= qo + 2:=qm 2:= bd n-k+1 = qo +zQ(z)B(l/z) (16-247) 
m=O .1:=0 
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or 

Q qo 
(Z) = 1 - zB(1lz) (16-248) 

where Q(z) must be analytic in Izi ~ 1 for it to represent a valid probability generating 
function. Equation (16-248) can be fonnally rewritten as 

Q(l/z) = qoz (16-249) 
z - B(z) 

where Q(l/z) must be analytic in Izl ~ 1. Once again from Theorem 15-8, if B'(I) > I, 
then the equation B(z) - z has a real positive root 7ro with magnitude strictly less than 
unity, and arguing as in (16-201)-(16-202), it follows that B(z) - z is free of any other 
zeros in Izl < 1. Using this in (16-248) and (16-249), after some simplifications we get 

Q(z) = 1 qo + R(z) 0 < 7ro < 1 
- 7roZ 

where R(z) must be analytic in the entire z plane. Thus R(z) is a constant, and z = 0 in 
the above identity gives R(z) to be zero. Finally, using the condition E:oqn = 1, we 
obtain 

n=O,l,2, ... 0< 7ro < 1 (16-250) 

Thus the steady state distribution in an GIl MIl queue exists under the condition 

B' (1) = -I-I-W~ (0) = fl-/>" = II p > 1 (16-251) 

where II>" represents the mean arrival time of the interarrival distribution A(r). To 
summarize, when the traffic rate p = A I 1-1- < I, the steady state distribution in an G I I MIl 
queue isgeom.etric as in an MIMI1 queue. However, unlike the MIMI1 case, the queue 
parameter here is not easily related to P. and it is given by the unique positive root 7ro < 1 
of the equation 

B(z) - z = \II A (1-1-(1 - z» - z = 0 (16-252) 

that exists whenever p < 1. 
The waiting time distribution for the GIl MIl is the same that as in (16-92) with 

p replaced by 7ro there. ~ 

Next we examine the queue structure resulting from interconnection of various 
queues. 

16-4 NETWORKS OF QUEUES 

Networks of queues arise when a set of resources are shared by a set of customers. Each 
resource represents a service center that may have multiple servers operating in parallel. 
If an incoming item finds a particular center busy, it will join the queue at that center 
and wait for service (or may leave that queue and may go for another type of service). 
After completion of service at one station, the item may move to another service center, 
or reenter the same center, or leave the system. 

IQ a chain of queues that are connected in series as in Fig. 16-11, once an item 
is in the system, it stays on for service through all phases of the system. In general, 
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Network of queues. 
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waiting is allowed before each server. Note that the phase type service discussed earlier 
in connection with Erlang-n models is a special case of this series model, where no 
waitmg is allowed before the servers except the first one. In that case a new item is 
admitted into the system for service only after the previous item has completed service 
through all of the n identical phases. 

The behavior of networks of queues is characterized by the output distributions 
and the service time distributions of the servers in addition to the input distribution and 
the various service disciplines. In a series network, since the output from one server 
forms the inpu t to the next server, the steady state properties of the network are dictated 
by the queue output distributions. 

In this context, Burke has shown that in an M / M / r queue. the interdeparture time 
intervals are independent random variables in steady state. Moreover. the outputs from 
such a queue form a Poisson process with the same parameter A as that of the input. It 
foHows from Burke's result that when a Poisson input process with parameter A feeds 
a series network of M / M / r queues, all subsequent input and output processes are also 
Poisson with the same parameter A in the steady state. We next prove this important 
result. 

~ The steady state output of an M / M / r queue. with (Poisson) input parameter A, is 
also Poisson with parameter A. 

Proof. Let T denote the length of interval between any two consecutive departures, and net) the 
number of items in the system after the previous departure, The joint distribution of these two 
random variables is given by 

F,,(t) £ PIT > t, net) = n} 06-253) 

where 

F.(O) = p" (16-254) 

represents the steady state probability of n units in the system as in (16-102), From (16-253), we 
get G 

00 

F(l) ~ PIT > t} = L F,,(t) {16-255) 
n=O 

and 1 - F(t) = peT ~ t) represents the marginal distribution of the length of time between 
departures. Since the interarrival distributions are independent exponential random variables with 
parameter A. a new arrival occurs in any interval of length At with probability lAt + O(AI), and 
a new departure occurs with probability ILnAt + O(At), where n represents the number of items 
in the system. Thus 

(1- lAt + o(At»(l - IL.AI + O(At» 
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represents the probability that there are no arrivals or departures in an interval of length Ilt. Now 

£.,(t + Ill) = PIT > t + Ill, net + Ilt) = n} 

and the system is in state en at I + III either because the system was at state e,,_1 at t and one 
arrival occurred in (t. t + Ill) with probability }"Ilt so that the system moved over to state ell, or 
the system was at ell at t and it remained In en with probability (1 - }"1ll)(l-ILIIllt). Notice that 
since the inter-departure dumtion T > t + Ill, there is no departure in the interval (0, t + Ilr). 
This gives 

FII(I + Ilt) = (l - }"Ilr)(l - 1L"llt)F,,(t) + )..£,,-1 (t) + o(llt) (16-256) 

where ILR is as given in (16-100). Proceeding as in (16-15) and (16-16), the above equations 
simplify to 

and 

FoCt) = -}..Fo(t) 

{ -().. + IIIJ.) F" (I) + )..F,,-I(t) 
F~(t) = -().. + rlL)F,,(t) + )..FII_1 (t) 

n<r 

n?:r 

(16-257) 

(16-258) 

Under the initial condition (16-254), the Laplace transforms of (16-257) and (16-258) yield 

(16-259) 

where PI/(s) represents the Laplace transform of F" (t). Direct substitution using (16-102) for p" 
shows that (16-259) satisfies the solution 

(16-260) 

or 

1>0 (16-261) 

Using this in (16-255) we obtain 

(16-262) 

or 

P{T :s I} = I - F{t) = 1 - e-)/ {16-263) 

that is, in the case of Poisson arrivals, the marginal distribution of the intervals between departures 
is the same as the distribution between arrivals. Using the markovian property of the system. 
it follows that T is also independent of the set of lengths of all subsequent intervals between 
departures and hence the ODtput stream is also Poisson with pammeter A. This proves the theorem. 

It is easy to show that net) and T are in fact independent random variables since 

P{I < T < I + Ill,n(r) = n} = F,,+I (/)lLn+1 Ilt +o(llt) " (16-264) 

and using (16-261), this factors into the probability distribution functions ofn(t) and T, establishing 
their independence. ~ 

A partial converse of this result. due to Reich, can be stated as follows: If the 
arrivals and departures of a single server queue are Poisson distributed, then the service 
time distribution is either exponential or a step function at zero. 

One may argue on intuitive grounds that in steady state "what goes in must come 
out," thus justifying Burke's result. However, as the following result due to Reich shows, 
such conclusions are often erroneous. 
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REICH'S RESULT. The distribution of 'the interdeparture time from a single-server 
queue. where interarrival time variables and service-time variables are each the Sum 
of two identically distributed exponential random variables with parameters J.. and J.L. 
respectiv~ly. is not the sum of two exponentially distributed random variables. 

Jackson has considered the general problem where every server in a network has 
independent Poisson arrivals in addition to feedbacks from other server outputs. In steady 
state, such a complex network essentially reduces to a series network with independent 
servers where each server has an equivalent input rate and service rate. As a prelude to 
the study of arbitrary networks of queues with feedback and Poisson arrivals at various 
servers, we first examine the simplest network of two single-server M / M /1 queues in 
series. 

~ C:::onsider a two-stage series (tandem) network consisting of two servers with service 
rates J.L) and J.L2. respectively, as in Fig. 16-12. The input to the first server is Poisson with 
parameter A, and the output of the first server becomes the input to the second server. 
The system can be modeled as a stochastic process whose states are specified by the 
pair (lIt. n2), where nl ~ 0 represents the number of items in the ith phase (queue plus 
server) of the system. A change of state occurs either on completion of service at one 
of the two servers (first server to second (nl + I, n2 - 1) --+ (nJ, n2) or second server 
to output (n t • n2 + 1) --+ (n I. n2), or on an external arrival «n) - 1, n2) --+ (n J, n2») as 
shown in Fig. 16-13. Let p(nt, n2, t) represent the probability that there are n) items in 
the first phase. and n2 items in the second phase. From Fig. 16-13, the transient equations 
are given by 

p'COt 0, t) = ->..p(O. 0, t) + J.L2P(O.1, t) (16-265) 

and 

pi (n j, n2. t) = -(J.. + J.Ll + J.L2)p(nlt n2, t) + J.Ll pent + 1. n2 - I, t) 

+J.L2P(nJ, n2 + I, t) + )"p(n) - 1, n2. t) (16-268) 

From Burke's theorem, interdeparture time intervals at both phases are exponential 
in steady state, and the stochastic process is markovian. The steady state equations 
corresponding to (16-267) and (16-268) have the solution 

nz - 1 nt - 1 

p(A<)-II1l--G~---,P(,->"t'-) -_~"--,-......... 
FIGURE 16-12 
'I\vo queues in series. 

(16-269) 

P(>..t) 
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(a) 

(b) 

FIGURE 16·13 
State diagram for a two-srage series network. 

where 
A A 

PI = - P2 = - (16-270) 
IJ-l 1J-2 

and it can be verified by direct substitution. From (16--269), the probability of ni items 
in phase i in steady state is given by 

Pi(ni) = (1 - PI)p~' nj :?: 0 i = 1,2 (16-271) 
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which represents solU11on similar to an M/ M /1' queue. Since both phases have Poisson 
arrivals. with tate A in steady state and exponential service times, they both represent 
M/M/l queues. Further. from (16-269) and (16-271). we have 

(16-272) 

which shows that the number of items in each phase are independent random variables. 
Thus the two queues are independent M / M / I queues. «j 

Generalizing this argument to a cascade connection of m phases it follows that 
when the input to the first phase is Poisson. all intermediate inputs and outputs to sub­
sequent phases become Poisson with the same rate. and each phase behaves like an 
independent M / M /1 ql1eue in steady state. The expected number of items in such a 
series interconnection of m phases is given by 

L = L (17 1 + 112 + ... + 17 m)p(nl. n2.·.·. nm) 

"hnl .. h lll 

III 00 m 00 

= L LniPi(ni) = 2)1 - Pi) LntP;'; 
1=1 

m 
" Pi = ,L... 1 _ p' (16-273) 
/=1 I 

Using Little's formula. this gives the average waiting time in the system to be 

L III 1 In 

W = - = L -- = L Wi (16-274) 
A 1=1 J.LI - ).. i=1 

which is the sum of the waiting times in each M / M /1 queue. 

MULTIPLE SERVERS IN SERIES AND PARALLEL. R. R. P. Jackson has generalized 
the series interconnection of single server queues to a series interconnection of m phases. 
where the ith phase consists of rj parallel channels. all with exponential service-rate lJ.i. 
as shown in Fig. 16-14. The input to the first phase is an unlimited Poisson input with 
parameter A, and queueing is allowed before each phase. With nl units in the ith phase. 
the probability that an item finishes service in At is given by IJ.n, At + O(At), where 

{
nilJ.i Ili < rj 

J.Lnl = 
rj J.Li Ilj::: rj 

(16-275) 

In steady state, repeated use of Burke • s theorem shows that all inputs and outputs are 
Poisson with rate A. and proceeding as in (16-265)-(16-268) the steady state equations. 
for example. become 

( A + tJ.Li) p(nl. 1l2.· ..• nll/) = tJ.LnIP(nl' n2,···. III + 1. ni+1 -1, ...• Ilm) 
i=1 i=1 

+Ap(lll-l.n2 •••.• nm) nj > 0 (16-276) 

with IJ.n, as in (16-275). Here p(nl' n2 • ...• nm) represents the probability that there are 
III items in the first phase. n2 items in tbe second phase. and so on. R. R P. Jackson has 
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shown that the unique solution to (16-276) is given by the product fonn 

p(nl, n2 • •..• nm) = PI (nl)P2(n2)'" PI (nj) ... Pm (nm) 

where 

Here 
1 

PiO = --------
• ~ (A/JJ,/)" + (A/JJ,iYI 

~ n! 1',1(1- PI) 

and 

(16-277) 

(16-278) 

(16-279) 

P, = A/rilJ.1 (16-280) 

Equation (16-278) gives the probability of n, items in the ith phase. Notice that 
(16-278)-{16-280) represents an M/M/ri queue with n; items, and from (l6-2n) it 
follows that in steady state a series-parallel network as in Fig. 16-14 will behave like a 
cascade of independent M / M / I"j queues, provided all servers in each parallel configu­
ration have identical service rates. Using (16-106) and (16-107). the average number of 
items waiting in such a network is given by 

m m 

" pj " L = ~Pli (1- p.)2 = ~Li 
1=1 I 1=1 

(16-281) 

where 

(AI JJ,i )1; (16-282) 
P'j = I PI.O rj. 

and it equals the sum of the average number of items waiting in each phase. 

1---+-" ... 

FIGURE 16-14 
Servers in series and parallel. 
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11 

(0) 

(b) 

FIGURE 16-15 
(0) Three queues with feedback and feed-forward (b) Equivalent network in steady state 

R. R. Jackson has generalized this result by permitting additional Poisson arrivals 
to each phase from outside the system. and feedbacks from various phases within the 
system (Fig. 16-15). Thus a unit arrives at a phase with different probabilities. The service 
distributions are exponential. with the ith phase consisting of ri parallel channels with 
identical service rates f.J.i' Poisson arrivals from outside the system occur at the ith phase 
with rate Yi. and after finishing service at the ith phase. an item either leaves for the 
jth phase with probability qij. where it is served in the order of their arrival along with 
Poisson arrivals from outside. or it leaves the system with probability 

1/1 

qi,O = 1- Lqij 
j=1 

(16-283) 

Figure 16-15a shows such an interconnected network for m = 3. Let Ai represent the 
average arrival rate at the ith phase. Then Ais satisfy 

m 

Ai = Yi + LqkiAk i = 1.2 • .... m (16-284) 
k=1 

R. R. Jackson has shown that in steady state. the distribution of the number of 
items in each phase of such an interconnected network is independent of'the distribution 
of the number of items in any other phase, and they satisfy (16-277). Proceeding as in 
(16-278) with A replaced by AI. ),,2 ••• • • Am for each state. Jackson has shown that an 
interconnected feedback/feed-forward network with Poisson arrivals at various phases 
behaves like a cascade connection of independent queues with input rate Ai and service 
rate f.J.i at the ith phase. 

~ Consider a network of m phases with the ith phase consisting of rj parallel servers, 
all with identical service rate f.J.l. The network allows feedback and feed forward from 
phase i to j with probability q/j. in addition to Poisson arrivals from outside to each 
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phase at rate YI. Then the probability that there are ni items in phase i, i = I, 2, ... , m 
is given by 

m 

p(n"n2 •.... flm) = II Pi (n/) (16-285) 
1=1 

where pj(nj) is as in (16-278) and (16-279) with A replaced by Aj given by (16-284). 

~ 
From (16-283) we also obtain 

m m 

Lql.oA/ = LYi 
j=1 i"') 

and the total output from the system equals the total input into the system. 
Thus any complex network with external Poisson feeds behaves like a cascade 

connection of MI Mlri queues in steady state. Jackson's theorem is noteworthy consid­
ering that the combined input to each phase in presence of feedback is no longer Poisson, 
and consequently the server outputs are no longer Poisson. Nevertheless from (16-285) 
the phases are independent and they behave like M / M / rj queues with input rate Ai and 
service rate lLi. i = 1,2, ...• m. 

PROBLEMS 

16-1 M 1M 111m queue. Consider a single server Poisson queue with limited system capacity m .. 
Write down the steady state equations and show that the steady state probability that there 
are n items in the system is given by 

{ 
I-p n ....,Ll 

1- pm+1 P P r 

Pn = 1 
-- p=l 
r+l 

where p = A/,u. (Him: Refer to (16-132) with r = 1.) 

16-2 (a) Let nl(t) represent the total number of items in two identical MIM/1 queues, each 
operating independently with input rate A and service rate ,u. Show that in the steady state 

P{nl(t) = n} = (n + 1)(! - p)2pn n ~ 0 

whenp=)..IfJ.<1. 
(b) If the two queues are merged to form the input to a single MIM/2 queue. show 

that the number of items in steady state in the system is given by 

P{D2(t) = n} = {2(1 - p)pft /(1 + p) n ~ 1 
(1 - p)/(l + p) n = 0 

(c) Let LI and L2 represent the average number of items waiting in the two config­
urations.above. Prove that 

2p2 
L 1=-­

I-p 

which shows a single queue configuration is more efficient than separate queues. (Hint: 
Use (16-106) and (16-107).) 

16-3 A system bas m components that become ON and OFF independently. Suppose the ON and 
OFF processes are indepencientPoisson processes with parameter).. and ,u, respectively. De­
termine the steady state probability of exactly k components being ON, k = 0, 1. 2, ... , m. 
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16:-4 Stare.dependent service. Consider an M 1M 11 queue where the mean service rate depends 
on the state of the system. Suppose the server has two rates, the slow rate f.1.1 and the fast 
rate f.1.2. The server works at the slow rate till there are m customers in the system, after 
which it switches over to the fast rate. (a) Show that the steady state probabilities are given 
by 

where 

n~m 

(
1- pj PlPt-1 )-1 

Po= I-PI+I-Pl 

with PI = A/f.1.1o and P2 = )..1p.2' 
(b) Determine the mean system size L = I::=onPn' 

16-5 Patient and impatient customers. Consider an MIMlr queue with arrival rate A and 
service rate p. that contains both patient and impatient customers at its input. If all servers 
are busy, patient customers join the queue and wait for service, while impatient customers 
leave the system instantly. If P represents the probability of an arriving customer to be 
patient, show that when pAlrp. < 1 the steady state distribution in the system is given by 

{ 

(J..lp.)H 
~po n<r 

Pn = CAl p.)' ('1 )"_' 
~ pI\. rp. Po 11 ~ r 

where 
1 

PO=-r_~I-----------------

~ _(A_I f.1._)n + tAl f.1.Y 
L.J n! r!(l - p>"ln'/') 
n=O 

(Hospitals, restaurants, barber shops, department stores, and telephone exchanges all lose 
customers who are either inherently impatient or cannot afford to wait.) 

16-6 Let w represent the waiting time in an MIMlrim queue (m > r). Show that 

P e-'p.l m-r-I (r!J.t)k 
. P{w> t} = _r __ ~ ---CpA: _ pm-A:) 

1- p L.J k! 
k=O 

where p = >"Irp.. and 
(>"I(.LY Ir! 

~ =~r------~~~---------

L (,) .. Ip.)n ()..Ip.), pel - pm-,) 
--+-'-'-..:....;..:'-:-'----:-~ 

n! rl(1 - p) " 
n=O 

(Hint: P(w > t) = J,ClO fw(i:) d. = I::':} PH J,ClO fw(i: In) di:.) 

16·7 Bulk arrivals (M[x) / M 11) queue. [n certain siruatlons. arrivals and/or service can occur in 
groups (in bulk or batches). The simplest such generalization with respect to arrival process 
is to assume that the arrival instants are markovian as in an M I M II queue, but each arrival 
is a random variable of size x with 

PIx = k} = Ck k = 1,2 •... ,00 

that is. arrivals occur in batches of random size x with the above probability distribution. 
Referring to (10-113)-(10-115), the input process to the system represents a compound 
Poisson process. 
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(a) Show that the steady probabilities (Pnl for a smgle-server queue with Com­
pound Poisson arrivals and exponential service times lMlx'1 M 11) satisfy the system of 
equations [40] 

If 

0= -(A. + lJ.)p" + ILPn •• + A. E Pn-~ek n ~ J 

0= -A.Po + IJ.P. 

Hint: For the forward Kolmogorov equations in (16-18), the transition densities in this case 
are given by 

{
A.CI j = k + i. 

Akj= IJ. j=k-l 
o otherwise 

i = 1. 2 .... 

Notice that although the process MIX) 1M II is markovian, it represents a non-birth/death 
process. 

(b) Let P(z) = 2::"oP"Z· and C(z) = 2::'. c~Zk represent the moment generating 
functions of the desired steady state probabilities {p" J and the bulk anival probabilities (Ci), 
respectively. Show that 

pet) = (I - PoW - z) = 1 - Po 
I - z - pz(l - Clz» I - pzD(z) 

where p = A/IJ.. Po = pE{x} = pC'(l) < I and 

D(z) = 1 - C(z) = ~ dkl 
l-z L..., 

k-O 

with do = I - CO. dk = I - ~..o CI ~ O. k ~ 1. Hence for Po < 1. show that 

" 
Pn = lim P{X(I) = n) = (1 - Po) "" pkd!k}.k 

''''00 L..., 
k-<l 

where {d!») represents the k-foJd convolution of the sequence {d,,} above with itself. 
(e) Detennine the mean system size L in terms of E{x} and E{x2). 

(d) M!ntll MIl queue: Suppose me bulk arrivals are of constant size m. Determine 
P(z) and the mean value L. 

(e) Suppose the bulk arrivals are geometric random variables with parameter p. 
Determine P(z) and the mean value L. 

(f) Suppose the bulk arrivals are binomial random variables with parameters m and 
p. Detennine pel) and the mean value L. 

16-8 Bulk service (M I M[Yl/1). Consider a single-server queue with Poisson arrlvlIs, where 
items are served on a first-come first-served basis in batches not exceeding a certain num­
ber m. Thus m items are served together, if the length of the queue is greater than m, 
otherwise, the entire queue is served in a batch. and new arrivals immediately enter into 
service up to the limit m and finish along with the others. The amount of time required for 
the server is exponential, irrespective of the batch size (::; m). 

(a) Show that the steady state probabilities {Pn} for the bulk service mechanism 
described above satisfy the equations [40] 

0= -(A + p,)p" + IJ.P"+III + APa-1 n ~ 1 

o = -A.po + P,PI + p,p,. + ... + P,p", 
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'HifJt: The transition densities for this non-birth/death process are given by 

A' _ {A j =k+ 1 
k}- f.L j=k-m 

(b) Let P(z) represent the moment-generating function of the steady state probabilities in 
part (a). Show that 

where p = A/f.L. 
(e) Using Rouche's theorem show that P(t.) in part (b) can be simplified as 

P(z) = Zo -1 
to -z 

where .to represents the unique positive root that is greater than unity of the denominator 
polynomial pt"+1 - (p + 1)zm + 1. Hence 

p" = (1 - 70)70 n ~ 0 

where ro = 11 lo, and the bulk service model presented here behaves like an M I M 11 queue. 
(Hint: Roucbets theorem: If I (t.) and g (z) are analytic inside and on a closed contour 

C and if II (t.)1 > 18 (t.) I on the contour C. then I (z) and I (t.)+ 8 (z) have the same number 
of zeros inside C. 

Try fez) = (p + 1)t". g(z) = Pl",+1 + 1 on a contour C defined by the circle 
III = 1 + E with E > 0.) 

(d) Derive the average system size for this model. 
16·9 Bulk service M I Mlm) 11. In Prob. 16-8, assume that the batch size must be exactly m for 

the server to commence service, and if not the server waits until such a time to start service. 
(a) Show that the steady state probabilities {p,,} satisfy the equations [401 

0= -()" + f.L)P. + f.LPIf+IIf + AP,,_I 

o = -lop,. + f.LPn+m + Ap.-l l:::;n<m 

o = -)"Po + f.LPm 

(b) Show that the moment generating functIOn In this case is given by 

( I nI) ",,,,-I k ( 1) ",m-I k 
pel) = - l L..k=O PkZ = Zo - L..J:=O l 

p1."'+1 - (p + l)z" + 1 m(zo - z) 

where the latter form is obtained by applying Rouche's theorem with Zo and p as defined 
in Prob. 16-8. 

(e) Determine the steady state probabilities (p,,} and the mean system size in this case. 
16·10 E .. I M 11 queue versus buJk service. Consider an Erlang-m input queue with arrival rate 

A and exponential service rate f.L. From the GIl MIl analysis it follows that such a queue 
behaves like an MI MIl queue with parameter X'o. where X'o < 1 is the unique solution of 
~eequation B(z) =Z, providedA/f.L < 1. Here B(z) = \I104(f.L(I-z)),and lI104 (s) equals the 
Laplace transform of the interarrival probability density function. Show that the parameter 
X'o satisfies the characteristic equation 

px"' ... 1 - (p + l)x'" + 1 = 0 

with p = mAl f.L. 
(Hint: Use the transformation z = x-" in B(z) = z. which corresponds to a phase 

approach to the Erlang arrivals.) 
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On comparing the last equation with the bulk service model in Prob. 16-9. conclude 
that an Erlang arrival model with exponential service is essentially equivalent to a bulk ser­
vice model with exponential arrivals. This analogy. however. is true only in a broad sense in 
terms of the steady state probabilities. since in bulk service several items leave together after 
completing service. whereas in the Em / M / I model items leave one by one after service. 

16-11 MIE,n/l versus bulk arrivals. Consider an Erlang-m service model with service rate IL 
and Poisson arrivals with parameter ).. Using the M / G / I analysis in Example 16-4 show 
by proper transformation. the charactelistic equation in that case can be rewlitten as 

pz"'+1 - (I + p)z + I = 0 

Hence conclude that M / Em/ I queue exhibits similar characteristics in terms of steady state 
probabilities as the constant the bulk arrival model Mlml/ M/ I discussed in Prob. 16-7. 

16·}2 M I.G 11 queue. (a) Suppose the servIce mechanism is described by a k-point distribution 
where 

dB(!) ~k -- = cj 8(t - 11) 
dt 

;=1 

Determine the steady state probabilities {Pn}. 

k 

~Cj= 1 
i=l 

(b) Find the steady state probabilities for a state-dependent MIG /1 queue where 

{ I - e-1L11 i = 1 
Bj (l) = 1- e- I<2' i >!I 

Thus service is provided at the rate of ILl if there is no queue, and at the rate of iJ-z if there 
is a queue. 

16-13 Show that the waiting time distribution Fw (t) for an M / G /1 queue can be expressed as 

co 

F.,(t) = 0- p) ~pIlF,<nl(t) 
11=0 

where F, (t) represents the residual service time dIstribution given by 

F, (t) = f.l.l' [1 - B(,r)]dr 

and F;n)(t) is the n-fold convolution of Fr(t) with itself. 
(Hint: Use (16-209).) 

16·14 Thansient MIG/} queue. Show that an M/G/} queueing system is transient if the mean 
value of the number of customers that anive during a service period is greater than one. 

(Hint: In (16-197) and (16-198) if p > I. then the equation A(z) = z has a unique root 
1fo < 1. Show that OJ = 1ft satisfies the transient state probability equation in (1'5-236).) 

16-15 MIGl11m queue. Consider a finite capacity M/G/l queue where atmost m - I items 
are allowed to wait. (a) Show that the m x m probability transition matrix for such a finite 
M/G/l queue is given by them x (m-l) upper left hand block matrix in (15-34)followed 
by an mth column that makes each row sum equal to unity. 

(b) Show that the steady state probabilities {qj lj;6 satisty the first m - 1 equations 
in (15-210) together with the normalization condition 2::;::;: qj = 1. Hence conclude that 
qj = cqj,j = 0,1 • ...• m - 1. where (qj} correspond to the M/G/I/oo queue (see 
(16-203». 

16-16 M/ G I 00 queues. Consider Poisson arrivals with parameter A and general service times s 
with distribution B('t) at a counter with infinitely many servers. Let x(t) denote the number 
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of. busy servers at time t. Show that [52] (a1 

P{x(t) = k} = e-A<l(I) [Aa(t))k 
kl 

where 

k = 0,1.2, ... 

aCt) ~ l' [1 - B(r)}dr 

and (b) 
k 

lim P(x(t) = k} = e-pE­
/->00 k! 

k = 0.1,2, ... 

wherep = AE{s}. Thus in the long run, all M/G/oo queues behave like M/M/ooqueues. 
Hint: The event {xCi) = k} can occur in several mutually exclusive ways, namely. in 

the interval (0, t). n customers arrive and k of them continue their service beyond t. Let 
An = "n arrivals in (0, t)," and Bt .n = "exactly k services among the n arrivals continue 
beyond t ," then by the theorem of total probability 

00 00 

P{X(t) = k} = I: prAll n Bt .• } = L P{Bk ... IA,,}P(A .. ) 
.. =k 

But P(An} = e-A'O.t)· fn!,andtoevaluate P{Bk ... I A .. }, we argue as follows: From (9-28), 
under the condition that there are n arrivals in (0, t), the joint distribution of the arrival 
instants agrees with the joint ~stribution of n independent random variables arranged in 
increasiQg order and distributed uniformly in (0. t). Hence the probability that a service 
time s does not tenninate by t, given that its starting time x has a uniform distribution in 
(0. t) is given by 

p, = l' P{s > t -x Ix =x}fAx)dx 

l ' 1 11' aCt) = [l-B(t-x)]-dx=- [I-B(r)]dr=-
ott 0 t 

It follows that Bt n given A .. has a binomial distribution, so that 

P{Bk .• 1 An} = G) p:(1 - p,),,-k k = 0, 1,2 .... , n 

and 

00 (At)" (n) (a(t»).I: (11' )n-t 
P{x(t) = k} = I: e-AJ 7 k -t- t 0 B(r) d. 

,,=Ie 

k = 0,1,2, ... 

.. 
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Constraints. 665-666 
Continuity, 419 
Continuous RVs. 81. 83 

distributions. 84-92 
beta. 91-92 
Cauchy,92 
exponential. 85-87 (See also Exponential 

distributions) 
gamma. 87-89. 188-189.206 

LlIplace. 92 
Maxwell. 92 
Nakagami-m. 90 
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normal (Gaussian). 84-85. 126. 191 
Rayleigh. 90 
unifonn.9O-91 

and entropy. 653-654. 655, 656 
Continuous-state process. 373 
Continuous-time processes 

and Kalman filters. 6214)25 
sampling. 529 

Convergence 
CLT. 278-284 
concepts. 272-278 
law of large numbers. 275-276 

Converse theorem, 675-676 
Convolution. 216-217 

and CLT. 278-279 
Convolution theorem. 216-211. 424-425,524 
Correlation 
c~s-.384-385,399,408 

of WSS processes. 419 
lack of. 249 
tnatrix. 250-25 1 
properties. 418 
and stochastic processes. 383-386 

Correlation coeffiCJent. 210. 384 
Correlauon determinant. 251-252 
Correlation matrix. 250 
Correlation time. 389, 471-472 
Correlometers, 534. 535 
Cosme inequality, 211 
Covariance. 210 

cross-.385.533.534 
of energy spectrum. 514 
matrix, 249-250 
of stochastic processes. 383-386 

Covariance spectra. 409. 413 
Covariance-ergodic processes. 531 
Cramer theorem. 217. 573 
Cram6r-Rao bound, 327, 330-334 

improvements on, 345-353 
and maximum likelihood. 354 
mUltiparameter case, 343-345 

Cramer-Wold theorem, 216 
Critical region, 355. 356 
Cross-corre1ation. 384-385, 399 .. 

and power spectrum. 408 
Cross-covariance, 385, 533, 534 
Cumulants. 154-155 
Cyclostationary processes. 473-474 

Data window. 540 
de Morgan's Law. 18-19 
Death processes, 780-782 

transitions. 781 
Decision theory, 356 
Decoding, 676 
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Deduetive reasoning, 4 
Delayed calls. 794 
Delta response, 420 
Demographics. See Birth processes; 

Branching processes 
DeMoivre-Laplace theorem. 105-111. 

156-157,634n 
andCLT,280 
and sequences. 634n 

Density 
Cauch~ 131. 136-137 

and joint RVs. 187-188 
and charactenstlc functions, 161-164 
chi. 133 
chi-square, 89, 149. 154 
circular'symmetry, 176-177 
conditional (see Conditional density) 
of distribution-ergodic, 537 
exponential, 149, 154 
first-order, 375 
gamma, 87-88 
and independence, 182 
joint (bivanate). 171-180.199-201.214. 223n 

defined. 243 
and entlOpy. 669 
and vectors, 257. 669 

lognormal. 134,284 
marginal,I71-172 
Maxwell. 133, 149 
and mean, 142 
nonuniform. 119. 379 
nornuU.84-85.669-672 
nth order, 394 
of Poisson points. 110 
posterior. 318 
of random vectors, 244 
Rayleigh. 133, 149 
spectral. 408-420 
of sum of two RVs, 182 
table. 162 
transition, 777-778 
Weibull, 229 

Density function. 81-83 
~-dependent processes. 385 
Deterministic problems, 298-299. 546-548 
Deterministic systems, 393 
Dichotomies, set, 673 
Differential equations 

and finite order systems, 504 
and linear systems, 404 

Differentiation rule, 181-183 
Diffetentiators.402-403 
Diffusion. constant, 449 

equations, 450 
Diffusion processes, 726 

Ehrenfest model, 702, 735 
Digital processes. 420-426 

minimum-phase, 501-502 
power spectrum, 421 

lallonal spectra, 502 
and sampling. 425-426 
and Slutsky's Iheorem. 528 
smoothing, 586-587 
and system identification, 492-493 
and white noise filtering. 609-612 

Digital systems, 506-509 
Discrete Fourier transform. 155.421,519 
Discrete RVs. 81. 82. 83 

characteristic functions. 1:'15-159 
and CLT. 279-280. 283 
and conditional density. 254 
dIstributions, 92- I 05 

Bernoulli,93 
binomial. 93-94, 95. 96-97. 105,156 
discrete uniform. 98 
expected value, 140-141 
geometric, 95-96, 166 
mean. 140 
POisson, 93-96 
variance,93,145,308,358 

and entropy. 653, 655, 65.6, 668 
and g(x) distribution. 127. 129 
joint (bivariate), 177-179,225 

Discrete uniform distribution. 98 
Discrete-state process, 373, 378 
Discrete-time processes. 273, 373, 420-426 

Fourier transfOrm. 519 
minimum-phase, 501 
power spectrum. 421 
and queues. 808 
rational spectra, 502 
and sampling. 425 
and SIut8ky's Iheorem, 528 
smoothing. 586 
and system identification, 492 
and white noise filtering. 609-612 

Discrete-time systems. 506-509 
Distance. between random points, 454-456 
Distribution 

busy time, 787. 813-817 
descendant, ill branching, 759 
estimating, 316 
first-order. 375 
g(x). 124-138 

IOverse.138 
nth order, 376. 383 .. 
of progeny (see Branching processes) 
in queues. 787, 790 
second-onde~37S-383 
steady state, of Markov chain, 732, 735n, 736 

in queues, 808--810.821,823 
in tennis. 753 

test of, 363 
ID very large systems. 735n 
waiting time, 787. 790. 794-796. 811. 816 

Distribution functions. 75-83 
Distributions 

arbitrary. 289 



Bernoulli. 93 
beta. 91, ISS· 
binomIal, 93. 95, 105 

and branching processes, 765 
independent, 226 
negative, 96, 166,767 
and Poisson points, 382 
and I andom numbers, 291 

Cauchy. 92,207 
chi-square (X 2), 89-90,126 

and F distribution. 208 
conditional. 98-105. 220-223 
conve~encein,274 

of e~odicity, 536 
Erlang, 88-89. 295 
esfi mation of. 316 
exponential. 85-87,89 

and estimation, 310-312 
independent, 183 

F,208 
FlSher's variance. 208 
gamma, 87-89. 154 
geometnc. 95,166 

and Poisson processes. 456 
of g(.x). 124-140 
hype~eometrJc conditional, 226 
hypothesis testing, 361. 363 
Joint (bivanate). 169-179 

and stochastic processes, 383 
Laplace, 92 
lognormal. 295 
marginal. 171.821 
Maxwell. 92 
Nakagami-m. 90 
normal, 84-85. 126 

and independence, 217-220 
and regression, 233 
and RNs, 295 
truncated. 100 
zero mean independent RV, 191.203 

Pascal. 166 (.ree also Binomial distribution. 
negative) 

Poisson. 93-96 (see also Poisson distribution) 
Rayleigh, 90 

of zero mean Gaussian RV. 191. 203 
Rician.191 
andRNs,295 
Student t, 207, 295 
uniform. 90. 139 

discrete, 98 
independent, 183-) 85 
of zero mean independent Gaussian RY, 

191,203 
Weibull,89 

Domain 
of function, 73 
of g(x). 123 

Doppler effect, 410-411 
Duality principle, 19 

Efficiency. machme, 803 
Efficiency. repairmen. 803 
Efficient estimator, 329-330 
Ehrenfest model. 702, 735 
Eigenvalues. repeating. 713-715 
Electron transit, 460 
EYenlentpartinon.638 
Empirical distribution. 78 
Energy spectrum, 514 
Entropy 

and coding, 678 
conditional, 644-652, 656, 659 

if mth order. 661 
and rate, 662 

historical note, 631 
inequalities. 639-644 
and information tranSllllssion. 685 
Joint, 655-658 
maximum. 630 (see also Maximunl 

entropy) 
mth-order. 660 
normal RVs, 655 
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of partitioning U. 629. 630, 638-644 
of RVs. 652-664. 659-664 

as expected value, 654-655 
Entropy rare. 660. 662-664 

and MEM, 670-672 
Envelope, optimum. 468-469 
Equality 

of events. 21 
of stochastic processes. 374 

Equally likely events, 639 
Equilibrium behavior. 783 
Equivocation, Shannon. 677n 
Ergodicity. 276, 523-537 

autocovariance. 532-537 
variance. 531 

distnbution. 536-537 
and Markov chains. 727-728.810 
nlean.523-529, 531-532 

Slutsky's theorem, 526-528 
spectral intetpretation, 529-530 

Erlang delayed call. 793-794 
Erlang disttibution. 88-89 

and Poisson processes, 457-459 
and random nUnlbers, 295 

Erlang first formula. 796-797. 802 
Erlang loss formula, 797 
Erlang queue model. 796-797. 808-809 
Error(s) 

aliasing. 482 
backward predicnon, 599 
in binary COnlnlUnications channel, 699 
and CLT. 280-281 
Hagen theory, 85 
in hypothesis testing. 355 
information transmission. 689-691 
nleasurement, 247 
in MS estimation, 264 
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Estimation. 306-320. See a/so Parameter 
estimation; Spectral estimation 

bayesian, 317-320 
of distributions. 316 
of expected value. 308 
intet val, 316-317 
maximum likelihood, 320-322. 354 
mean, 150,215 
mean square, 261-262 
objective of. 306-307 
percentiles, 315-316 
probabilities. 312-313 
variance. 150-151 

Estimators. See also Best estimators 
analog, 530 
maximum 1ikelihood. 320-322. 354 
nonlinear. 533 
unbiased. 327-334. 35l-353 

with lowest variance, 334-343 
UMVUE. 334-343, 351 

Evenl(s) 
defined,23 
equally likely, 639 
mutually exclusive. 170 

Evolution, 703 
Existence theorem. 172, 386 
Expected value 

approximate, 107, 150 
conditional, 231-235, 254 

as RV. 234-235 
defined,l40 
entropy as. 654, 658, 659 
estimation of. 308 
MEM constraints as. 665-666 

Experiments 
defined,23 
independent, 11.48-51. 174 

repeated,245 
Exponential density, 149, 154 
Exponential distributions, 85-87. 89 

and estimation. 3 J 0-312 
independent RVs. 183.203 

Exponential RVs. 183,246 
Extinction, 759-762 
Extrapolation 

parametric, 548 
spectral estimation, 548-562 

F, class. 22-28 
F distnbutions, 208 
Fabry-Perot interferometer, 536 
Factorization, 499-502 

avoiding, 561-562 
Failure rate. 228, 247 

relative expected. 247 
Failure, time to. 227 
Family surnames. 696. 697. 758-760 
Fano code, 679. 681 

Fej~r-Rie$llheorem. 479-480. 561-562 
Feller-Lundberg condition. 780 
Feltketter identity. 569 
Fermi-Dirac statistics, 11 
Fields, 22-26 
Filtel innovaliolls, 499 
Filtering, 581-583 
Filters 

causal,624 
forward-precUctor, 598 
high pass. 414 
Kalman (see Kalman filters) 
ladder, 552-554 
lattice. 552-555, 602 
low pass, 413, 512 
matched, 483 
moving average as, 413 
quadrature. 415 
r-step predictor. 591. 
time-varying, 601-604 
Wiener. 606 

causal. 592. 595n, 611-612 
Finite impulse response (FIR), 598 
Finite-order processes, 507. 670 
FIR predictors. 598-599 
FIrst par.age, 444, 717 
First-order density, 375 
First-order distribution, 375, 617-618 
Fisher infonnation. 329, 343, 344, 346. 353 
Fisher matrix, 343-145 
Fisher's vanance ration distribution. 208 
Forward predictors, 581. 598-599 
Forward system functions. 554 
Fourier series, 509-513,561-562,665 
Fourier transforms, 153,408,471-472 

blSpectl'a, 519-521 
discrete, 155.421.519 
of discrete-time processes, 519 
IOtegrated. 530 
measuring. 534 
and Poisson sum, 493 
and random sampling. 481 
and spectral bias, S40 
of stationary process, 515 
of stochastic process. 513 
and third-order moment, 488 
and windows, 515 

Fourier-Stieltjes representation, 516 
Franklin, J. M., 285 
Free motion, 448-450 

Langevin equation, 448 
Frequency axis, 416 
Prequency interpretations, 21 

of conditional density, 100 
of distribution functions. 78 
of joint moments, 209 
of law of large numbers. 276 
Lebesgue integral, 141 
linearity, 399 



of mean .square estimation, 261 
stochastic proCesses, 375 

Frequency modulation, 470-473 
instantaneous frequency, 469 
wide- and narrowband, 472-473 
Woodward's theorem, 471-472 

Frequency, relative. See Relative frequency 
Frobenius. 729 
Functions 

all-pass, 575-576 
bound-real. 564-574 
defined,72 
distribution. 75-83 
mean, 140-144 
mill and max, 192-196 
minimum-phase, 424, 574-575 
moments, 146-152 
positive-real. 564-574 
required of RVs. 123 
table.~. 161-162 
variance. 144-146 

Fundamental matrices, 743 

Galton, and family surnames, 758 
Galton's law. 232-235 
Gambling. 58-71 

break even, 438 
craps. 67-70 
ruination problem. 63-66, 746 
wait for gain. 444 

Gamma density, 87 
and branching processes. 764 
characteristic function. 154 
and joint RVs, 188-189,206 
moments, 154 

Gamma distributions, 87-89, 154 
Gamma RVs. independent. 206 
GauSSian distribution. 84-85, 126 

and independence. 217-220 
and large systems. 735 
and mean square estimates. 264 
and regre.~sion, 223 
and unbiased estimators. 351-353 
zero mean independentRV. 191. 203 

Genetics, 703. See also Branching processes; 
Galton's law 

Geometric distribution. 95-96 
memoryless property. 95 
and Poisson process, 456 

OIIMII queues. 818-820 
OllMIlif queues, 808-809 
Goodman's theorem, 259 
Goodnes.~ of fit test, 362 
Gram-Schmidt method, 271, 604 
Group independence, 248 

Hagen's theory. 85 
Hard limiters, 127-128.396.397 

and arcsine law, 396, 533 

Hazard rale. 228-229 
Hermite polynomials, 280-281 
Hermitian 1beplitz matrices. 422 
Hidden periodiCities, 559-560 
Hilbert transforms, 415-416 

Rice's representation, 467, 469 
Huffman code. 679-680, 681-682 
Huffman contraction. 679-680 
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Hurwitz polynomials, 505. 552, 556, 561 
and Levinson algonthm, 574 

Hypergeometric distribution, 226 
Hypothesis 

alternative, 355 
working, 10 

Hypothesis testing, 304. 354-367 
chi-square tests. 361-364 
computer simulation. 366 
of distrIbutions. 361, 363 

Kolmogorov-Smlmov test, 361 
error types. 355-356 
of mean. 358 
of probability, 359 
of variance. 360 

Identification of systems. 490-493. 
550-562 

phase problem. 491 
Li.d., 245 

sample variance, 260 
Image, 429 
Imbedded Markov chams. 697,704,737-738 

and queues, n4, 808-811 
Immigration. 762-764 
Impul~ response. 503-504 
Increments. 385-386 
Independence. 244-252 

and convolution, 216 
and density. 182 
and distribution-ergodic, 537 
group, 248 
and hypothesis testing. 362 
linear. lSI 

statistical, 173 
and Markov Plocesses, 77S 
and uncorrelatedness. 212 

Independent events 
three even!.\, 38-42 
two events, 35-38 

.. 

Independent experiments. 11,48-51. 114 
repeated, 245 

Independent partitions, 645-646 
Independent~esses,385 
Independent RVs 

identically distributed, 245 
sample variance, 260 

Independent stochastic pcocesses, 385 
Independent variables, 244 
Inductive reasoning. 4. 11-12 
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Inequahtles, 150-152 
cosine, 211 
and entropy. 639--644 
and joint (bivariate) RVs. 186 

Inference, 11-12 
Infinite additivity. 23, 41-42 
Infinite past, 587-588 
Information 

and entropy. 630. 644-649. 657 
Fisher, 329. 343. 344, 346. 353 
mutual. 644-649. 657 
transmission rate, 685-692 

Inmal value theolem. 50s 
Innovations. -1-99-502, 589 

filter. 499 
Kalman, 603-605. 613-615 
and white noise filtering. 611-612 

Inphase component, 467 
Instantaneous frequency, 469 
Insufficient reason. 8, 637. See also 

maximum enuopy 
Insufficient statistic, 324 
Integral equations. 511-513 
Integrated spectrum, 417 
Intensity 

average. 402 
Interferometers 

Fabry-Perot. 536 
Michelson. 535, 548 

Interpolation. 583-584 
Interval estimates. 307. 316-317 
Interval prediction. 304 
In'educible Markov chains. 715-716.722,726 

3.nd limiting probabilities, 727-728.736 
periodic, 767-769 

lack.~on theorem. 825-828 
loint (bivariate) RVs, 169-179 

one function. 180-197 
two function, 197-208 

Joint characteristic functions. 215-220 
Joint density, 171-180, 199-201,214-215, 223n 

defined. 243 
and entropy, 669 
and ve.ctors. 257, 669 

Joint entropy. 655-658 
loint moments. 209-215 
loint normality. 175-176,202-206 

correlation coefficient. 210 
and entropy. 656 
mean square e.~lJmalion. 269 

Joint probabihtles. In 

Kalman filters 
ARMA.612-625 
and continuous-time processes, 621-625 
first order. 617-621 

linearization. 619 

Kalman-Suey equations, 622-625 
Riccali equation, 622 

special CII~, 624-625 
Kalman innovations. 603-605, 613-615 
Karhunen-Lo~ve expansIon,S 11-S 13 
Kendall queues, 8! 5 
Khinchin theorem, 277-'278. See also 

Wiener-Khinchin theorem 
Kirchhov's laws. 7 
Kolmogorov equations, 776-778 
Kolmogorov-Smirnov test 

and hypothesis testing, 361 
and random numbers, 288 

Kolmogorov-Szego error formula, 590-591 

Lag window. 541 
Langevin equation. 448-449 
Laplace distribution. 92 
Laplace transform. 593. 738 

and queues, 806. 809, 814, 816. 822 
Lmge numbers. See Law of large numbers 
Lattice filtels 

and autocorrelation. 604 
extrapolating spectra. 562 
invelse. 556, 603 
LevlI\son's algorithm, 552-555 
tIme-varying, 602. 603 

Law of large numbers, 110-111, 27S-276 
strong. 276 
and typical sequences. 634-637 

Lebesgue integral, 141 
Lehmer algorithm. 287 
Leibnitz differentiation, 181-183 
Letter/envelope pairing. 160-161 
Levinson algorithm, 551. 555, 574 

Burg's lIeration. 560 
and entropy. 672. 673 
Fejcr-Riesz theorem, 561 
and lattIce filters. 5S2-555 
in prediction. 600. 604 

I'H6pital'~ rule, 737 
Likelihood. mall:imum. 320-322. 354 
Likelihood ratio test, 364-365 

asymptotic form. 365-366 
Limiters, 126-127.233 

hard, 127-128.396 .:; 
Lilniting probabilities, of Markov chain. 727-738 
Line masses, 179 
Line spectra. 411-412, 508 

and random sampling. 481-483 
Wold's decomposition 

Linear equivalency, 271 
Linear independence. 25 J 
Linear systems, 397-407 

and bispectra, 489 
delta response, 420 
differential equations. 404 
differentiators,402 



fundamentallhcorem. 398 
moments, 40S 
output autocorrelatlon. 399-401 
outputspecua,421-426 
and power spectrum. 412 
state variables. 502-S09 

finite order. 505. 507 
and third-order moment, 489 

Linear transformation, 201 
Linearily. of joint moments. 209 
wttle's Iheorem, 788-789 
Localization. of power, 416 
LognOI mal density, 134,284 

InCLT.284 
Lognormal disuibution, 295 
Lognormal distribution, of RNs. 295 
Lolenzian spectrum. 448-449, 472 
Loss function, 266 
Loss,lecovery of, 438-439 
Lyapunovinequruit~ 152 

MIDI! queues. 813 
MI EmIl queues. 812 
MIG 11 queues, 804-808 
M 1M 100 queucs, 798-799 
M 1M 11 queues, 820. 825 
MIMII/m queues, 797-798 
MIM/r queues, 791-799, 801-804. 

821-822 
MIM/r/I queues.796-797 
Machine interference times. 801 
Machine serviCing, 800-809 
Magnitude, 192-196 
Marginru characteristic funcl.tons, 215-216 
Marginru distribution. 1 71-172, 821 
Marginal probabilities. 177 
Markov chains, 695-769 

and absorption. 739-747 
tennis. 747-7SS 

continuous time (see Markov processes) 
ergodic. 727, 810. 819 
homogeneous. 697. 699. 70S, 775 
imbedded, 697.704, 737, 774 

and queues. 808-811.819 
infinite and finite, 726, 729-731, 744 
and initial distribution, 727-729 
irreducible. 7lS, 722, 726 

limiting probabilities, 727, 736 
periodic, 767-769 

limiting probabilities, 727-738 
state cJassificabon, 715-727 
time reversible, 770 
transient, 739-755 

and persistent, 7l6-728. 741 
transition probabilities, 697-704 

higher. 705-115 
Markov inequality. lSI 
Markov matrix. 22S 

Markov processes. 69S. 714.-784 
birth processes. 778-780 
continuous time. 714 

probability rates. 774 
equilibrium behaviOl, 783 
homogeneous. 775 
Kolmogorov equation.~, 716-718 
limiting probabihties. 783 
mth-older entropy, 661. 662 
transition densities, 777 

Markov theorem, 217 
Markov. Wide-sense. 582, 600. 622 
Markovian queues. 790-791 
Marsaglia. G .. 296 
Marungales.739-740 
Matched filler, 483 
Max function, 192-196 
Maximum entropy 

and atltolegression. 601 
constraints. 665-669 

partition funclion. 666 
correlation matrix, 671 
deterministic applications. 672-673 
extensions. 572 
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method of(MEM), 631"'()33, 664-673 
prmciple of. 637 
proof rederivation. 644 
in spectral esllmation. 671-673 

Maximum likelihoOd, 320-322 
and Cramer-Rao bound, 354 

Maximum-modulus theorem. 566 
Maxwell density, 133 

and moments. 149 
Maxwell distnbution, 92 
Maxwell-Boltzmann statistics, 10 
Mean 

of busy time distribution. 816 
conditional. 140.231-233 
and covariance, 249 
defined, 140 
estimate, 150. 21S, 307 
as expected ~alue, 140 
of g(x). 142. 150,215 
hypothesis testing, 358, 360 
known.313,360,S31 
and linear systems, 404 
of random variable, 142-144 
of stochastic processes, 376 
unknown,314,360.532 
zero. 471,508 

versus non-zero, 191 
Mean recurrence time. 717 
Mean square 

and convergence. 274 
differentiable, 427 
periodicity, 392 

Mean square continuity, 426-427 
differentiation, 427-428 
equality, 314 
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Mean square contmuity-Conl. 
integl<lls. 428 
periodicity. 392 

Mean square estimation. 261-272 
error. 581. 586. 590. 593. 594 

and prediction. 600. 60 J 
frequency interpretation. 261-262 
geometnc interpretation. 267 

projection theorem. 267 
aodjoint normahty. 269 
iinear. 263-264. 266-267 
moments. 5950 
nonlineru~263.268-270 

orthogonality principle. 264. 265. 268 
regression line, 263 

orthonormalization, 270-272 
and spectral window, 546-548 

Mean-ergodic processes. 523-529, 531 
Measurement errors, 247-248 
Median. 266 
Memoryless channel. 686 
Memoryless property. 86-87. 89. 96 

of geometric RY, 101 
and Markov chains, 698 
of systems, 229. 394 

Message. coded, 674 
Michelson mterferometer, 535. 548 
Min function, 192-196 
Mimmum phase systems. 566 
Minimum-pha.~e factor, 499, 500 
Minimum-phase functions, 424, 574-575 
Mixing method. 293. 296 
Mode.83n 
Modulation. 463-465 

frequency, 470-473 
optimum envelope, 468-469 
Rice's representation, 465-473 

Moment generating functions, 153, 155, 158-159. 
See also Characteristic functions 

and branching processes. 756, 759-760 
Moment problem, 147n 
Moment theorem. 153. 155.218 
Moments, 146-152 

absolute. 147 
central, 147 
chi-square. 154 
fourth-order. 514 
general, 405 
generalized. ) 47 
Joint, 209-215 
Maxwell. 149 
normal. 148 
Poisson, 149 
Rayleigh. 148 
second-order. 595n. 669-672 
third order, 488, 519-521 

bispeClra, 488-489 
trigonometric, 562 

Monochromatic processes, 467-468 

Monte Carlo integration, 285 
Motioll, types of, 447-449 
Moving average, 413. 487 

alltoregresstve (ARMA). 509, 551, 612 
process (MAJ. 50S. 551 

Multivariate RVs. See Joint (bivariate) RVs 
Mutual information_ 644-649, 657 

Nakagami-m distribution. 90 
Names. survival of family, 696. 697, 758-760 
Necessary condition, 418 
Networks, queues in. 820-828 
NOise, 483-487 

colored. 484-485 
signal to noise ratio, 484--485 
smoothing. 485-487 
tapped delay line. 485 

Noiseless channel. 684. 687. 690 
Noisy channel. 691 
Nonlinear estimators. 533 
Nonlinear systems, 219 
Nonnull states. 717, 744 
Nonuniform density, 119, 379 
Normal density, 669-672 
Nonnal distribution, 84-85 126 

and conditional denSity, i69-270 
and independence, 217-220 
and regression, 233 
and RNs. 295-296 
truncated. 100 
zero mean independent RV. 191,203 

NOlmal processes 
and energy spectrum. 514 
entropy rate, 663 
and frequency. 47) 
statistics of (stochastic), 386 
and third-order moment, 488 

Normal quadlatic forms, 259 
Normal RVs 

conditional mean. 233 
entropy. 655 
moments, 148 
unbiased estimators. 351-353 
variance, 313 
zero mean Independent, 190, 202 

Normal vectors, 257-258 
complex, 258-259 

Normalized processes, 384 
Null hypothesis, 355 
Null set. IS 
Null states, 717 
Nyquist interval. 478 
Nyquist theorem, 452-453 

Occupancy, tandom. 703 
Operating characteristic, 355 
Optimum code, 677. 681 
Optimum envelope, 468-469 



Order. speciflc, 53 
Order statistics. 192-197, 246-247 
Ordered pairs. See Cartesian products 
Origin, return to, 436-442, 716,720 

random walk, 725 
Omstein-Uhlenbeck process, 448-449 
Orthogonal RVs, 21 1 
Orthogonality principle, 264 

in filtering, 606-608, 613-617 
geometric interpretation, 265, 267 
linear, 265, 266-267 
and mean square estimation, 581, 

582,583 
nonlinear. 268-269 
and prediction, 589, 597. 598-599 
risJ< and loss, 266 

Orthonormalization, 270-272 

Pairing problem, 160-161 
Pai rs, ordered. See Cartesian products 
Paley-Wiener condition. 423, 500. 564. 596 
Palm queues, 801-809 
Parabolic windows, 487 
Parallel systems, 229-230 
Parameter estimation. 304. 320-354 

max.imum likelihood, 320-322, 354 
sufficient statistic, 322-326 

Parametric extrapolation, 548 
Partition functIOn, 666-669 
Partition theorem, 186 
Partitions, 18 

arbitrary, 654n 
binary. 638 
element, 638 
Uldependenl. 645 
product of. 638 
for RVs, 652-664 
two-state. 688 

Pascal distribution, 166. See also Binomial 
distribution. negative 

Past, infinite, 587-588 
Pearson's test statistic, 361 
Percentile transformation, 289 
Percentiles 

chi-square (table), 314 
defined, 77-78 
and estimation. 315 
Student I (table). 310 

Periodic chains. 767-769 
Periodic processes, 509-510 
Periodic srates. 717-718. 720,722 
Periodicities 

hidden, 559-562 
mean-square, 392. 419 
and transition matrices, 730 

Periodogram. 538-539 
modified. 540 

Permutations, 51 

Perron theorem. 729-731 
'Perslstent states, 716-727, 742 
Phase determination, 491-492 
Phase modulation. 463,-465. 470-471 
Point estimate, 306 
Point masses, 177-178 
Point prediction, 305 
Point processes, 387 

Poisson (see Poisson points) 
renewal processes, 387 

Poisson approximation, 111-119 
Poisson distribution, 94-96 

and estimation, 311 
and independence, 196.216.226 
and Markov chains. 738 
mean and variance. 145 
and moments, 149, 156 
and order statistics. 196 
and random numbers. 291 
and sum of two RVs, 216 

Poisson impulses, 403. 482 
spectrum, 409 

Poisson integlol. 423 
Poisson points. 110. 146 

binomial distribution. 382 
in random intervals. 116-119 
redefined, 457 
and shot noise, 453-457 
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and stochastic processes, 378, 381-383 
Poisson population model, 766-767 
POisson processes. 378-383 

and birth processes. 778-780 
compound. 461-463 
and Erlang processes. 457-459 
and geometric distribution. 456 
and linear systems. 403-404 
and mean-square continuity. 427. 428 
and queues. 785. 791-794. 821-828 
and shot noise, 461-463 

Poisson RVs, 93-94 
moment function. 153 
moments, 149 

POIsson sum tormula. 482. 493 
Poisson theorem, 113. 116,256-257 
Polar coordinates, 296-297 
Pollaczek-Khinchin formula, 811 
Polya's criterion, 418 
Population model, 766 ~ 

Positive-real functions, 564-574 
Posterior density, 318 
Power lo;::alization, 416 

of test, 355 
Power. of test, 355-356 
Powerspectta.408-420 

digital processes, 421 
and discrete Fourier transform, 42 I 
integrated. 530 
and positive-real functions, 565 

Predictable processes, 595-596 
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Prediction, 304-306 
causal data, 601 , 611 

Kalman innovations, 603-605,613 
defined, 587 
filtering, 581-583 
FIR predictors, 598 
lIS lOference, 12 
infinite past, 587 

analog processes, 592-596 
r-step, 591 

Levinson's algorithm, 600. 604 
Predictors, 581. 598-599 
Price's theorem. 219-220, 397 
Primitive matrices, 730-733 
Primitive root, 287 
Probabilities 

ofabsorpnon,739-7S5 
conditional; 220-223 
transition. 697-704 

and branching. 756 
higher. 105-715 

Probability 
applying to problems. 4 
axioms, 5,19-21 
conditional. 28-32. 98, 223n 
convergence in. 274 
definitions. 5-11. 24 
and estimation, 312 
first passage, 717 
history of, 14 
hypothesis testing, 359 
totaJ,32-35,IOI-103.224 

Probability density function. 81-83 
Probability mass function, 82 
Probability masses, 26-28.172-173,232 
Probability space, 19-28 
Processes 

predictable, 595-596 
rational,612 
self-similar, 755n 
two-state, 782 

Product, of partitions, 638 
Product space, 318 
Profile. 223n 
Projection theorem, 266-267. Su also 

Orthogonality principle 
Pulse amplitude modulation (PAM). 474 

Quadratic fonna. normal, 259-260 
Quadrature component, 467 
Quadrature filter. 415 
Quantization, 128 
Quasimonocbromatic processes, 467 
Queueing theory. 774, 784-828 

arrivals and departures, 785-812 
Little's theorem, 788-789 

and birth-death processes. 782 
machine servicing, 800-809 

single servel. 809-820 
busy period, 787 
POllaczek-Khlncbin fonnula, 811 

Queues, 696-697,704. 737-738 
basic features. 785 
tillite source, 800-809 
GI/M/l,8l8-820 
GI/M/I/r, 808 
M/D/I.813 
M/Em/I,812 
M/G/l. 804-808, 809-812.813-817 
M/Mloo, 798 
MIMI1, 820, 825 
AI/M/r.791-799.801-804.821-822 
M/M/rlm, 797 
M/M/r/r.796 
machine breakdowns. 800-809 
Markovian, 789-791 
multiple servers, 825-828 
in networks, 774. 820-828 
notation, 786 
performance parameters, 787 
reneging. 799 
in series, 823-825 
single server. 809-820 
single versus several, 794 
tenninology. 773, 800 
unlimited servers, 798 
waiting time distribution, 787, 790, 794 

Queuing theory 
Burke theorem. 821. 823. 825 
Jackson theorem. 825-828 

Random codes. 677,688,691 
Random Impulses, 428 
Random numbers (RNs), 284-299 

binomial, 294 
Box-Muller. 297 
chi-square, 295 
definitions. 285 
Erlang, 295 
generation. 286-299 

generalllansformations, 294 
mixing, 293, 296 
percentile-transformation, 289-292 
rejection. 292, 296 

lognormal, 295 
polar coordinates. 296 
sequences, 289 
Student t. 295 

Random occupancy, 703, 709-711 
Random points, 146 
Random processes, discrete. See Discrete--ttme 

processes 
Random sampling, 481~83 
Random sequences. 273. 285-286 
Random signals, 380 
Random variables (RVs) 

auxiliary, 204 



complex (~~e Complex RVs) 
continuous, 81.83. 84-92 
defined,72-75.373 
discrete, 81. 82. 83 
events generated ~y. 73-75 
exponential, 246 

independent. 183. 203 
geometric, 95 
independent. 183,203.212,216.226 (see also 

Joint (bivanate) RVs) 
notation. 73 
one functIon of two, 180-197 
orthogonal, 211 
properties. 123 
required functions, 123 (see also Functions) 
sequences of (see Discrete-time processes; 

Random walles) 
statistics of. 80 
table of functions, 162 
transformations. 244, 429 
two functions. 197-208 
uncorrelated. 211, 212-214. 249 
and vectors. 211-212 

Random vectors, 243, 288 
characteristic functions. 255-257 

Random walks. 435-453 
absorption probabilities. 745-747 
coin toss. 442 
four-dimensional, 726 
generalized. 447 
and Markov chains, 696. 699-702. 708-709, 

712-713 
limiting behavior. 722-726. 733-735 

return to origin. 436-442 
symmetric. 724, 725, 726,744 
and tennis. 747-755 
three-dimensional, 725 
two-dimensIOnal, 723-724 
wailing time for gain, 443-445 
Wiener process, 445-450 

Randomness, 10. 13-14 
Range. of function, 73 
Rao-Blackwell theorem, 334-343, 349 
Rao-Cramer bound. See Cram6r-Rao 

bound 
Rare sequences. 634 
Rational processes, 6 J 2 
Rational Spectl"cI. 500-50 J. 594 
Rational systems. 566 
Rayleigh density, 133 

and moment.~, 148 
Rayleigh distribution, 90 

and random numbers, 290 
of zero mean independent RV, 190,203 

Real line, 24-26 
Real processes, 515 
Recovery, of loss. 438-439 
Recurrence times, 717 
Recursion equations, 502 

Redundant code, 689 
Refinement, 638 
Reftection coefficients, 554, 556 
RegIon. critical, 355 
Region of acceptance, 355 
Regression, 233 
Regression line, 232-234, 263 
Regression surface, 268 
Regular process, 499. 517-518 
Reich result. 822-823 
Rejection method, 292, 296 
Relative l'requency,6-7, 14n 

and axioms, 21 
and conditional probability. 29 
of independent events, 35 
law oflarge numbers. 110 
and typical sequences. 633 

Reliability. 227-230 
Reneging, 799-800 
Renewal processes, 387 
Repairmen efficiency. 803 
Repetitions, 51-58, 110-111 

of eigenvalues. 713-715 
and entropy, 648 
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and independent experiments, 245 
and mean square estimation. 261-263 

Residual sequence, 552 
Resistance, 5 
Return to origin. 436-442. 716, 720 

random walk, 725 
Riccati equations, 622-623 
Rice's representation, 465-473 
Richards' tneorem. 567 
Rician distribution, 191 
Riemann integral, 141,377 
Riemann sum, 481-482 
Riemann-Stieltjes integral, 417 
Risk, average, 266 
Rocket example, 13 
Root(s) 

primitive. 287 
and reflection coefficients. 556 
on unit circle. 556 

Rouche theorem, 570.810,831 
r-step pledictor filter, 591-592 

Sample. mean, 146 
variance. 146,260 

Sampling 
continuous-time processes. 529 
digital processes. 425 

Sampling expansions 
Papoulis.480 
past samples, 478-480 
random sampling, 481-483 

Scaling factor, 543 
Schur algorithm, 566, 568 
Schwarz inequality, 4i8, 484, 493-494. See also 

Cauchy-Schwarz·inequality 



Uncenainty. 629-631 
and conditonal entropy, 649-650 

Uncorrelatedness, 211, 212-214. 249 
Uniform distribution. 90-91. 139 

discrete, 98 
of zero mean independent RV. 191. 203 

Unifonn RVs. 183 
Union. 17 
Uniqueness theorem. 161 

Variables 
and conditional line, 253-254 
random (see Random variables) 
state. 502-509 

Variance. 144-146 
conditional. 231 
estimate. 150-151 
in hypothesis testing. 360 
known. 3OS. 358 
lowest possible, 334-343 
ofnonnal RV. 313 
sample, 146 
smoothed spectrum. 541 
spectral. 540-548 
of sum of two RVs. 213 
table. 162 
of time ~verage, 524-527 
unknown. 309. 358 

Variance-ergodic processes. 531-532 
Vector processes 

and multitenninal systems. 406 
spectra, 417 

Vector space. 211 
Vector spectra. 417 
Vectors 

and multitennmal systems. 406 
normal. 257-259 
random. 243. 288 
state. 502 

Venn diagrams, 17-19 

WeibulJ density. 229 
WeibuU distribution. 89-90 
Weierstrass approxImation, 479-480 

WhIte noise. 385.401-402, 413 
ARMA signals, 614-625 
and discrete-time processes, 420 
filtering. 608-609. 611-612, 621-622 
and mean-ergodic, 528 
and pulse-amplitude modulation. 475-476 
and stochastic processes, 484 

Whitening filters. 499. 607 
Kalman. 604. 612-625 

Wide-sense Markov. 582. 600. 622 
Wiener factors, 572 
Wiener filters. 592, 595n. 606-612 
Wiener process. 427, 445-450 

Karhunen-Loeve expansion. 512 
Wiener-Hopf equations, 587-590.592.606 

discrete-time version. 609 
Wiener-Khinchin theorem, 416 
Windows. 515-516 

method of. 549 
parabolic. 487 
selection. 542-548 
spectral estimation. 542-548 

data. 540, 545 
lag, 541 
minimum bia,. 545 
optimum. 545 
spectral. 54 t. 546 

Wold's decomposition, 517. 529. 530 
and general processes, 596-602 

Woodward's theorem, 471 
Worst case scenarios, 192 

You!a parametrization, 563-564. 566. 570 
Yule-Walker equations, 50s. 552-553, 598-601 

and entropy, 672 
iterative solution. 557-559 

Zero. See Ongin, retUrn to 
Zero crossings. 436 
Zero mean, 191,471, 50s 

and third-order moment, 488 
Zero state, 502 
Zero-state response, 398 
Zustandsllmmt, 666 
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