

Basic4Android

Rapid App Development for Android

By Wyken Seagrave

Published by Penny Press Ltd
176 Greendale Road, Coventry CV5 8AY, United Kingdom

sales@pennypress.co.uk

Please report errors to errors@Basic4Android.info

Copyrights

Basic4Android screens copyright © 2011, 2012, 2013 Anywhere Software

Other text copyright © 2013 by Penny Press

Trademarks

Android™ and Google Play™ are trademarks of Google Inc.

Microsoft® and Visual Basic® are registered trademarks of Microsoft Corporation.

The Android robot is reproduced or modified from work created and shared by Google and

used according to terms described in the Creative Commons 3.0 Attribution License.

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by

any means, electronic, mechanical, photocopying, recording or otherwise, without the prior

written permission of the publisher. To obtain permission contact

permissions@pennypress.co.uk

mailto:sales@pennypress.co.uk

The right of Wyken Seagrave to be identified as the author of this work has been asserted in

accordance with the UK Copyright, Designs and Patents Act 1988

License

This ebook is licensed for your personal enjoyment only. This ebook may not be re-sold or

given away to other people. If you would like to share this book with another person, please

purchase an additional copy for each recipient. If this book was not purchased for your

personal use, then please purchase your own copy.

Thank you for respecting the hard work of this author.

Notice of Liability

The information contained in this book is distributed on an “As Is” basis without warranty.

While every precaution has been taken in the preparation of this book, neither the author

nor the publisher assumes any responsibility for errors or omissions, or for damages

resulting from the use of the information it contains.

ISBN

9781871281200 (ebook)

9781491226735 (paperback)

Cover by Edgar ‘Feo’ Ibarra

Corrections

Replaced missing # before #Region and #End Region in sample code

 Preface

 - iii -

Foreword by Erel Uziel
I started developing Basic4ppc, a development tool for Pocket PC devices (later renamed to

Windows Mobile) in 2005. It was a real challenge for me to build a new programming

language and development environment. Five years later, when Microsoft decided to stop

developing Windows Mobile in favor of a different platform, and with the first signs of the

new Android operating system, I decided that it was time to change direction and

Basic4Android was born. I had a rare opportunity to go back to the drawing board and then,

with the many lessons learnt from the previous project, build a powerful and simple

development tool for native Android applications.

In the last three years, since the first release, Basic4Android has improved dramatically.

Today, Basic4Android supports 99% of the advanced features of Android. Features such as

NFC, Wifi-Direct, serial ports, graphics and many more are supported, and all of the features

are designed to be simple to use yet powerful enough to meet your real-world requirements.

Basic4Android is used by companies, organizations, educational institutes and individuals

from all over the world. I honestly believe that Basic4Android is the best development tool

for native Android applications available today

Over the years, a very active online community has evolved around Basic4Android. This

community is the heart of Basic4Android. In our forums, there are almost 200 thousand

messages with questions, answers, examples, bugs, tutorials, classes and libraries. The

ecosystem around Basic4Android is huge.

Many customers have asked for a full, comprehensive book to help them with their own

development. I was thrilled to hear that Wyken has taken on himself the challenging task of

mapping this ecosystem. I’m happy to say that Wyken, an experienced software developer

and author, has done a great job.

I’m sure that this book will help you to quickly get started with development of your own

Android apps.

I’m looking forward to see you becoming part of our community!

Erel Uziel

CEO, Anywhere Software

 Preface

 - iv -

Introduction
Basic4Android is widely recognized as the simplest and most powerful Rapid App

Development tool available for Android. It is used by tens of thousands of enthusiastic

developers. A complete list of its features and benefits can be found here.

Who this Book is For
This book serves two audiences:

For the Beginner
For those new to Basic4Android, new to BASIC, or even new to programming, this book

contains step-by-step tutorials for the complete beginner. It explains everything you need to

know to use this exciting and easy application development environment design to create and

sell your app on Android devices in the shortest possible time without having to climb the

steep learning curve of learning Java.

For the Professional
For experienced Basic4Android developers, this book brings together a huge range of

reference material never previously assembled in one place and organizes it into an easily

accessible form.

It contains all the key terms used by the core language and its official libraries. It includes

examples to show how the code is used and links to further on-line information.

What You Need to Run Basic4Android
You will need a PC running Windows with at least 512 Mb of RAM.

You can test your app on either an emulator (a virtual device running on your PC) or a real

device. We recommend you have a real device available as it usually takes less time to install

your app there than on an emulator and apps running there usually excute faster.

If you use a real device it should be running Android 1.6 or above (that is Android 2.x, 3.x

etc.).

Version of Basic4Android
This book covers the functionality of Version 3.00 of Basic4Android, which includes the

amazing Rapid Debugger, a feature which is not available in any other native Android

development tool.

How to Obtain this Book
You can buy copies of this in book in various formats.

As a Kindle book from the Amazon USA site go here.

http://www.basic4ppc.com/android/why.html
http://amzn.to/11FFWjP

 Preface

 - v -

As a PDF or EPUB document from the Penny Press store go here.

The EPUB version will also be available from the Barnes & Noble web store.

How this Book is Organized
Part 1 – Basics

We begin with a tutorial which walks you gently through the process of installing the free

Trial Version of Basic4Android, connecting it to your device, then writing, running, designing

and debugging your very first Android app.

We explain every feature of the Integrated Development Environment and show you how to

upgrade to the Full Version of Basic4Android. This will give you access to the Libraries

discussed in Part 4.

Part 2 – Creating Your App

Here we go in detail through the process of creating a real app, including the principles of

design, how your app can communicate with the user, how you can use Designer Scripts to

automatically modify your app to suit different devices, and how to compile, debug and test

your app using either real or virtual devices.

We discuss creating graphics and databases. We examine how processes, services and

activities live and die in Android. We look at the various types of modules you can create,

examine ways you can make money from your app and finally explore ways you can get more

help in using Basic4Android.

Part 3 – Language and Core Objects

Parts 3 and 4 form the reference sections of this book.

Part 3 includes two chapters of reference material which cover every part of Basic4Android’s

language and core objects (that is, objects accessible from every app).

We also compare Basic4Android’s language with Microsoft’s Visual Basic.

Part 4 – Libraries

In this reference section we discuss libraries (only available if you have upgraded to the Full

Version of Basic4Android), and explain how to create your own libraries and share them with

others (should you wish to).

We give full details of the Standard Libraries included in the Full Version installation. We

also discuss some of the many Additional Libraries and Modules, including all the “Official”

ones created by Anywhere Software, which you can download from the Basic4Android

website.

Conventions Used in this Book

Code
Examples of Basic4Android code are shown indented, like this:

http://bit.ly/16ycjX1

 Preface

 - vi -

Sub Globals

 'These global variables will be redeclared each time the activity is

created.

 'These variables can only be accessed from this module.

End Sub

Sub Activity_Create(FirstTime As Boolean)

 'Do not forget to load the layout file created with the visual

designer. For example:

 Msgbox("Welcome to Basic4Android!", "")

End Sub

Code which is shown within the text is often shown like this: Sub Process_Globals.

However, this is not always possible, since the electronic versions of this book include many

links (to make it easy to find related parts of the book), which overlap code and have a

different font.

We also use the same font to highlight options in on-screen dialog boxes.

Specifying Menus
We specify menus within Basic4Android by surrounded by [square brackets] and separating

the parts by a greater than symbol “>” and. So the following would be shown as [Edit >

Copy]:

Specifying Functional Arguments
When we specify the types of the arguments which are used to call functions, we adopt a

different convention than that used in the Basic4Android on-line documentation. On-line

they include the full path to the argument types, for example:

DrawBitmap (Bitmap1 As android.graphics.Bitmap, SrcRect As android.graphics.Rect,

DestRect As android.graphics.Rect)

We find this difficult to read, so in this book we simply write:

DrawBitmap (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect)

The reason that the full paths are specified on-line is that Basic4Android types, such as

Bitmap, are actually “wrappers” for the full Java class. This allows for greater flexibility in

extending the Basic4Android language in the future. But in most cases you do not need to

worry about this when developing your apps.

 Preface

 - vii -

Icons
The following icons are used in this book and within the IDE:

 Keywords and methods have a pink flying box

 Key constants have a blue box

Functions defined in your code have a pink box with a lock

Global variables (defined in Process_Globals) have a blue box with a key

Local variables (defined in current Sub) have a blue box with a lock

 Properties have a hand pointing to a list

Acronyms
We use the following acroynms in this book:

ADB Android Debug Bridge

AES-256 Advanced Encryption Standard

ANSI American National Standards Institute

API Application Program Interface

APK Filename extension for Android Package

.APK Android Package (filename extension)

ARGB Alpha,Red,Green,Blue (Color Specification)

ASCII American Standard Code for Information Interchange

AVD Android Virtual Device

B4A Basic4Android

BA A Basic4Android object which library developers can use to raise events and to

get access to the user activity, application context and other resources.

.BAS Filename extension for BASic files

BASIC Beginner’s All-Purpose Symbolic Instruction Code

BOM Byte Order Mark

C2DM Cloud To Device Messaging

CPU Central Processing Unit

CSV Comma-Separated Values

DBMS DataBase Management System

dip density independent pixel

DOS Disk Operating System

dpi dots per inch

DSA Digital Signature Algorithm

DTMF Dual-tone multi-frequency

EAS Embedded Audio Synthesizer

.EXE Filename extension for an EXEcutable file

FTP File Transfer Protocol

GMT Greenwich Mean Time

GPS Global Positioning System

GPU Graphics Processing Unit

HD High Definition

HDPI High-density Dots Per Inch

HSV Hue, Saturation and Value (Color Specification)

 Preface

 - viii -

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

IME Input Method Editor

IP Internet Protocol (as in "IP address")

.JAR File extension for Java ARchive

JDK Java Development Kit

JET The SONiVOX interactive music engine.

JSON JavaScript Object Notation

LDPI Low-density Dots Per Inch

MAC Media Access Control address of a device

MDPI Medium-density Dots Per Inch

MIDI Musical Instrument Digital Interface

MIME Multi-Purpose Internet Mail Extensions

NDEF NFC Data Exchange Format

NFC Near-Field Communication

NMEA National Marine Electronics Association

OEM Original Equipment Manufacturer

OS Operating System

PC Personal Computer

.PNG Filename extension for a Portable Network Graphic

POP3 Post Office Protocol 3

PPC Pocket Personal Computer

PRN Pseudo-Random Number

px pixels

RAM Random Access Memory

RFCOMM Radio Frequency COMMunication

RGB Red,Green,Blue (Color Specification)

SAX Simple API for XML

SD Secure Digital

SDK Software Development Kit

SFTP SSH File Transfer Protocol or Secured File Transfer Protocol

SIM Subscriber Identity Module

SIP Session Initiation Protocol

SKU Stock Keeping Unit

SMS Short Message Service

SQL Structured Query Language

SSH Secure Shell Protocol

SSL Secure Sockets Layer

TCP/IP Transmission Control Protocol/Internet Protocol

TTS Text to Speech

TTS Text-To-Speech

UDP User Datagram Protocol

UI User Interface: the images, sounds, keyboards and other objects which allow the

user to communicate with the device.

URI Uniform Resource Identifier

 Preface

 - ix -

URL Uniform Resource Locator

USB Universal Serial Bus

UTC Coordinated Universal Time (equivalent to Greenwich Mean Time).

UTF-16 16-bit Universal Character Set Transformation Format

UTF-8 8-bit Universal Character Set Transformation Format

UUID Universal Unique Identifier

VB6 Visual Basic 6.0

VM Virtual Memory

VOIP Voice Over Internet Protocol

WYSIWYG What You See Is What You Get

XHDPI Extra-High-density Dots Per Inch

XLS Microsoft Excel Spreadsheet (File Extension)

XML eXtensible Markup Language

Support
Resources to support this book can be found at resources.Basic4Android.info

The main source of support is the active community of enthusiastic developers around the

world who already use Basic4Android and are very happy to support others who have

problems.

See the Getting More Help Chapter for details.

Acknowledgements
We would like to thank the creator of Basic4Android, Erel Uziel, for his help in creating this

book, and Klaus Christl who wrote the original Beginner’s Guide and User Guide which have

been the inspiration for this book. We also thank those who have reviewed drafts of the book

and made constructive comments, especially Bob Paehr.

We’d Like to Hear from You
We hope you will enjoy this book and find it useful. If you have any comments, we would be

very happy to hear them. Please write to info@Basic4Android.info

We would also be very grateful if you would take the time to rate it on the main Amazon

website: USA Amazon site

About the Author
Wyken Seagrave is a professional developer of applications and websites using Visual Basic,

Visual Basic for Applications, PHP and MySQL, among other languages. He has taught

computer programming at college and university, and written many user manuals for the

applications he has developed.

His great passion in life is to bring knowledge of the history of the universe to a wider public.

To this end he has written books and websites dealing with the subject both as fact and

http://resources.basic4android.info/
mailto:info@basic4android.info
http://amzn.to/11FFWjP

 Preface

 - x -

fiction, including the History of the Universe website (also available as an eBook on Amazon)

and the Time Crystal series.

http://historyoftheuniverse.com/
http://amzn.to/1446HTw
http://timecrystal.co.uk/

 Part 1: Basics

 - 11 -

Part 1: Basics

We begin with a tutorial which walks you gently through the process of installing the free

Trial Version of Basic4Android, connecting it to your device, then writing, running, designing

and debugging your very first Android app.

We explain every feature of the Integrated Development Environment.

Then we show you how to upgrade to the Full Version of Basic4Android. This will give you

access to the Libraries discussed in Part 4.

 1.1 Getting Started

 - 12 -

1.1 Getting Started
Note: Basic4Android runs on PCs with Windows 2000 and above, including Windows 8. Both

32-bit and 64-bit systems are supported.

Two Versions
There are two versions of Basic4Android: the trial and the full version. The main differences

are in brief:

Price: the trial version is FREE! The price of the full version depends upon which flavor you

purchase.

Remote Compilation Mode which makes compiling your apps simple and painless only runs

under the free trial. This means you do not need to install the Java JDK and Android SDK

packages if you are running the free version, although you may if you wish. They are both

required for the full version.

Note that Basic4Android includes a Rapid Debugger which can greatly shorten development

times. You can use this feature with both the trial and full versions, but in both cases it

requires that you install the Java JDK, even when you use Remote Compilation with the

trial version.

Advanced features: the full version supports libraries and other advanced features missing

from the trial.

Installing the Trial Version
In the tutorials, we assume you will be using the free trial version of Basic4Android. We also

assume you will not want to install the Java JDK to begin with, so we will postpone

explanation of the Rapid Debugger until Chapter 2.

Download Basic4Android Trial
Download the latest version of the Basic4Android Trial version from here:

http://www.basic4ppc.com/android/downloads.html

Install and Run the Trial

Installing .NET Framework
Basic4Android requires .NET Framework 3.5. If it is not present on your machine, you will

be prompted to download and install it.

http://www.basic4ppc.com/android/downloads.html

 1.1 Getting Started

 - 13 -

After you run the Trial, you will see this screen:

We will say more about local and remote compilation soon.

Click Close

You then see the IDE (Integrated Development Environment).

 1.1 Getting Started

 - 14 -

This is where you create, test and compile your apps. Apps are developed within projects and

projects are stored in folders.

Your First App
When you create a new Basic4Android app, a sample project is already loaded, allowing you

to run this simple app without any additional code. The code should be as follows. If your

code is different, you can either copy this or edit your code to be the same, or download “Your

First App” from this book’s resource page and unzip it to a new folder within your projects

folder.

http://resources.basic4android.info/

 1.1 Getting Started

 - 15 -

#Region Project Attributes

 #ApplicationLabel: B4A Example

 #VersionCode: 1

 #VersionName:

 'SupportedOrientations possible values: unspecified, landscape or

portrait.

 #SupportedOrientations: unspecified

 #CanInstallToExternalStorage: False

#End Region

#Region Activity Attributes

 #FullScreen: False

 #IncludeTitle: True

#End Region

Sub Process_Globals

 'These global variables will be declared once when the application

starts.

 'These variables can be accessed from all modules.

End Sub

Sub Globals

 'These global variables will be redeclared each time the activity is

created.

 'These variables can only be accessed from this module.

End Sub

Sub Activity_Create(FirstTime As Boolean)

 'Do not forget to load the layout file created with the visual

designer. For example:

 Msgbox("Welcome to Basic4Android!", "")

End Sub

Sub Activity_Resume

End Sub

Sub Activity_Pause (UserClosed As Boolean)

End Sub

This is just about the minimum code required to create an app.

Before you can run the app, first you must save the code into a project folder.

Save the program
Use the [File > Save] menu

 1.1 Getting Started

 - 16 -

We recommend you create a folder to hold all your Basic4Android projects, and within this

folder, create separate folders, one for each project. When you create a new program,

Basic4Android will create sub-folders called Files and Objects in the selected folder. For this

reason you must put every program in a separate sub-folder of your projects folder.

The project folder for this program, we will call “B4A Example”.

B4A-Bridge
Before you can run the program, you need to connect Basic4Android to a device or an

emulator. There are several options (see Testing Options), but as a first step we recommend

using B4A-Bridge to connect to your device. B4A-Bridge is a free app which runs on an

Android mobile phone or tablet. It was built using Basic4Android! The source code is

available here.

B4A-Bridge is made of two components. One component runs on the device and allows the

second component (which is part of the IDE) to connect and communicate with the device.

The connection is done over the local network or with a Bluetooth connection. Once

connected, B4A-Bridge supports all of the IDE features which include: installing

applications, viewing the logs, debugging and the visual designer (taking screenshots is not

supported).

Android doesn’t allow applications to quietly install other applications. Therefore, when you

run your application using B4A-Bridge, you will see a dialog asking you to approve the

installation.

Notes on Bluetooth Connection
Many devices, especially older devices running Android 2.1 or 2.2, can have problems with

Bluetooth connections and especially with multiple connections. All kinds of workarounds

were implemented because of these issues. However, there are devices (HTC desire for

example) that do not work reliably enough.

If there are connection problems, the Reset Bluetooth button within B4A-Bridge might help.

It disables and then re-enables the Bluetooth adapters. If your connection is still not stable,

you should avoid using the debugger and designer on your device; both require an additional

connection.

Install the B4A-Bridge app on your device
B4A-Bridge is available free in Google Play and Amazon Market. Search for: B4A Bridge.

Install the app on your device (Android mobile phone or tablet).

http://bit.ly/141A2MC

 1.1 Getting Started

 - 17 -

Run B4A-Bridge on your device
It will display a screen similar to:

You should choose either Start - Wireless or Start - Bluetooth depending on the working

mode. The Make Discoverable checkbox will make your device Bluetooth discoverable for 5

minutes. This is only needed if the device and computer weren’t paired before.

Note: the My IP: address at the top of the app. This is what you will need in the next step.

Connect the IDE to the device
Go back to the Basic4Android IDE running on your PC.

Go to [Tools > B4A-Bridge] and choose either Connect Wireless or Connect Bluetooth.

When using the trial version, checking the Remote Compilation Mode option will allow rapid

compilation without installing any further software.

Wireless connections
If you selet [Tools > B4A Bridge > Connect – Wireless] you will see a list of up to five IP

addresses previously selected, and and option to enter another address:

 1.1 Getting Started

 - 18 -

You can quickly connect to the last IP address using F2.

The IP address which you need to enter for a new connection is displayed in the B4A Bridge

app on the device. In some cases, the address displayed may be the mobile network address.

In that case you can find the local wireless address in the wireless advanced settings page.

Bluetooth connections
Most devices include Bluetooth, although many PCs do not. Verify that your PC has

Bluetooth. If not, and if you wish to use Bluetooth, dongles are available to provide this

facility. To connect to your PC to your device using Bluetooth, you must turn Bluetooth on,

using Wireless and Networks Settings, and also make your device discoverable using the

Bluetooth Settings. Discoverability might only last for a minute or two.

When you select [Tools > B4A-Bridge > Connect Bluetooth] within Basic4Android, you will

see a dialog box. Click Find Devices.

All paired devices, and new devices in discoverable mode, will be listed. You should choose

the correct one and click Connect. If the connection succeeds, the dialog will close. The status

bar at the bottom of the IDE screen shows the current status:

 1.1 Getting Started

 - 19 -

Or

B4A Designer
When B4A-Bridge gets connected, it first checks if another App, B4A Designer, needs to be

updated. B4A Designer allows you to design your app directly on your device. If B4A

Designer has not been installed, B4A-Bridge will ask whether to install it. You might see a

screen something like this:

Select Verify and install, so Google can check the app for viruses. You will then see the

following:

Click on Install. The app will be installed and you will see the confirmation page.

 1.1 Getting Started

 - 20 -

At this point, you do not need to open the designer, but you can do so as it will be useful soon.

B4A-Bridge should then continue to install your app. However, it may have “timed out” (got

tired and stopped trying), in which case you need to start the install again from the IDE.

As the install proceeds, you might see the Complete Action Using dialog again, because now

B4A-Bridge is trying to install your test app. You can click on either option in that dialog.

Stopping B4A-Bridge
B4A-Bridge keeps running as a service until you press on the Stop button. You can always

reach it by pulling down the notifications screen from the notification bar at the top of the

device’s screen.

Pressing on the B4A-Bridge notification will open the main screen.

 1.1 Getting Started

 - 21 -

Running your new app
Now you can compile your app (that is, convert it into Java) and run it on your device. There

are a number of ways to do this. Let’s start with the simplest:

Compile and Run
In the toolbar of the IDE on your PC, first ensure that Debug (legacy) is selected in the

compile options dropdown list (as shown below), then either

select [Project > Compile & Run] or type Alt+1 or click on the blue triangle in the toolbar:

Note: Basic4Android includes a Rapid Debugger feature, but to use it you need to install the

Java JDK. To keep things simple for this introduction, we explain the older form of the

debugger.

During compilation you’ll see a dialog box:

This is for information only. Either click Close or click on another window and the dialog will

close automatically.

Remote Compilation
The Trial Version of Basic4Android includes a facility called Remote Compilation. This works

by compiling your code over the web using Basic4Android servers. This means that you can

compile your app without installing the Java JDK or Android SDK.

However, Remote Compilation has limits to the size of code it will compile. If you get an error

message saying the limit has been reached, you can install the Java JDK and the Android

SDK (as described in Upgrade to Full Version) and compile locally. You do NOT need to buy

the full version to do this.

Also note that, with Remote Compilation, you cannot use the Rapid Debugger unless you

install the Java JDK on your PC. For the purpose of this tutorial, therefore, we will use the

legacy debugger and introduce the Rapid Debugger later.

Approve the app on your device
As mentioned above, when you run an application, you are required to approve it. You might

see the Complete Action Using dialog.

 1.1 Getting Started

 - 22 -

Note: If you have already run this app before on your device, you would see the following:

If you saw this, you would click on OK. If this is your first run, that screen will not be shown.

In any case, you will then see the following screen:

Note: the Bluetooth permission and Internet permission are automatically added in debug

mode. Click on Install.

 1.1 Getting Started

 - 23 -

Having installed the app, you will see the following:

Click on Open

You should then see the app running on the device. There might be a delay while the IDE

debugger connects to the app. This is to allow you to debug your app, as we discuss later.

Rotate your device
When you rotate your device you should see the app rotate. How does this happen? Let’s try

debugging the app and find out!

Debugging
To learn more about the above events and discover how to debug an app, we are going to look

at setting breakpoints and logging events. Note that Basic4Android has an amazing feature

called the Rapid Debugger, but to use it with Remote Compilation, you would need to install

the Java JDK. For the purposes of keeping things simple during this introduction, we will

use the legacy debugger, and introduce the Rapid Debugger later.

 1.1 Getting Started

 - 24 -

Setting a breakpoint
We now explain how to debug your app using the legacy debugger.

Return to the IDE on your PC. If you can still see the Compile & Debug window:

Click Close. You can then see the IDE in debug mode.

Notice the debug area near the bottom-left corner. The code is now “read only”.

We are trying to discover why the message box is shown when the device is rotated. Clearly

the following line of code must be executed:
Msgbox("Welcome to Basic4Android!", "")

You will find it in the
Sub Activity_Create(FirstTime As Boolean)

As we discuss below, this subroutine runs whenever the orientation of the screen changes. To

verify this, and gain some experience in debugging, let’s add a breakpoint at this statement.

Click in the grey column on the left side of the screen at the Msgbox line. A red dot appears

and the line is highlighted in red:

 1.1 Getting Started

 - 25 -

In addition, a red bar appears in the scroll-bar on the right of the code area to indicate the

position of the breakpoint. Now try rotating your device again. A message will be shown on

the device:

Execution of the program in the IDE will stop at the breakpoint:

Click on the Run icon or press F5 to continue execution of the program:

The program will continue on the device and the Msgbox will be shown.

When the User Rotates a Device
Note: that when the user rotates the device, Android calls Activity_Pause, Activity_Create

and Activity_Resume, in that order.

 1.1 Getting Started

 - 26 -

More about Debugging
For more information, see the Debugging section.

Logging Events
You can also write into the IDE Log in order to keep track of events while the app is running.

Let’s try it. To do that we need to add some code. Stop the debugger by clicking on the Debug

Stop button or by pressing F11:

Scroll down to the line
Msgbox("Welcome to Basic4Android!", "")

And add the line
Log ("Height = " & Activity.Height)

Now run the app and, once it is running, rotate the device. Click on the Logs tab in the IDE:

In the Detail Area above the Tabs you will then see something like the following:
Installing file.

PackageAdded: package:b4a.example

** Activity (main) Create, isFirst = true **

Height = 430

** Activity (main) Resume **

** Activity (main) Pause, UserClosed = false **

** Activity (main) Create, isFirst = false **

Height = 270

** Activity (main) Resume **

** Activity (main) Pause, UserClosed = false **

** Activity (main) Create, isFirst = false **

Height = 430

** Activity (main) Resume **

The IDE is logging information. You can use this method to record information while the app

is running and so help debug your app. Note: you might need to click on the Connect button

in the logging area. It will be easier to see just activity from your app if you select the Filter

checkbox:

We will now try changing the appearance of the app. This will be the first step towards

designing an effective user interface.

 1.1 Getting Started

 - 27 -

Your Second App: Using the Designer
We are going to make this app more interesting by adding a button.

The View and Layout Concepts
First a few key concepts. In Basic4Android, a page displayed to a user is called an Activity

and a control which can be added to the Activity is called a View. The details of Views are

collected in a file called a Layout.

The code which controls the Layout is called an Activity Module. To be visible to the user, the

Layout must be loaded into the Activity. This normally happens within the

Activity_Create sub.

The tool we normally use to create a Layout is the Designer. So next, we learn to use the

Designer.

Running the Designer
Run the Designer by clicking Designer in the main menu. The Designer and Abstract

Designer Windows appear:

This is where you add views (controls) and configure their properties.

 1.1 Getting Started

 - 28 -

Here you will see the Views of the Layout, but note the Abstract Designer is NOT “What you

see is what you get” (WYSIWYG). So how do you see your Layout as the user will see it?

Connect the Designer to your device.
To see the Layout in WYSIWYG, you need to connect Basic4Android to either a device or an

emulator. In this tutorial, we will use your device and B4A-Bridge. (We describe how to use

the emulator in Testing Your App.)

First start B4A-Bridge on your device if it is not already running. Then connect

Basic4Android to your device, if it is not already connected. You can do this from the IDE as

described above.

Now connect the Designer to your device within the Designer menu

[Tools > Connect to Device / Emulator] or by double-clicking the broken chain:

The B4A Designer app will start on your device and a blank screen appears on your device

since the layout has no views.

 1.1 Getting Started

 - 29 -

Add a button
In the Designer Window click [Add View > Button]

Three things will happen:

You will see the parameters of your button in the Designer:

You will see the button in the Abstract Designer

 1.1 Getting Started

 - 30 -

And you will see it on your device as WYSIWYG (What You See Is What You Get).

Configure your button
You can resize and reposition the button either in the Abstract designer or on your device.

You can also set its position in the Designer (using Common Properties: Left, Top, Width and

Height) but normally you use the Designer to change the name, colors and other features.

Note: Basic4Android offers a more powerful way of controlling the position of Views using

Designer Scripts. We describe this in a separate chapter.

We recommend you change the name of the button to something like btnTest. (This type of

name uses the so-called Hungarian naming convention.)

Use the Designer to change the Text field to “Click Me!”. This is what will be displayed to the

user.

Save your layout by clicking [File > Save] in the Designer. You can choose any name, but it

makes sense to use the same name as the Activity Module, in this case “Main”.

(This will create a file called “main.bal” within the Files folder of your project.)

 1.1 Getting Started

 - 31 -

Generate Members
In order to control the button in code, we need to declare it in the relevant Activity Module.

The best way to make sure you do this correctly is to ask the either Designer or the Abstract

Designer to generate this code for you.

First make sure the correct Activity tab is selected in the IDE, since any code you generate

will be added to the current activity.

If your app only has one activity, then you should select the Main tab.

Using the Designer Tools
Select your new button and use the Designer’s [Tools > Generate Members] option. This will

display the following (you might need to expand the btnTest list by clicking the + sign:

Check btnTest and Click, as shown.

Click Generate members and Close.

Two entries will be generated within your code. The first is a new line within Sub Globals:
Sub Globals

 'These global variables will be re-declared each time the activity is

created.

 'These variables can only be accessed from this module.

 Dim btnTest As Button

End Sub

This tells your code what type of object btnTest is. The reason why view variables must be

declared in Sub Globals and not in Sub Process_Globals is explained here.

The Generate Members dialog will also generate a new empty Sub:
Sub btnTest_click

End Sub

Explanation of Sub’s name
You might wonder why this sub has to be called btnTest_Click. This code is an example of

an event handler. We explain how events work here. Essentially, some objects can generate

events, for example when a user does something, and your code has to handle that event. The

 1.1 Getting Started

 - 32 -

first part of the event handler name “btnTest” tells Basic4Android which object generated

the event. The “Click” part of the name specifies which event we are responding to. These

two parts have to be joined by an underscore to create the name of the event handler sub.

Using the Abstract Designer
An alternative way to generate these two pieces of code is to use the Abstract Designer’s

context (or popup) menu. If you right-click on btnTest in the Abstract Designer, the

following menu appears:

By hovering over Generate, you see the sub-menu:

First, select [Dim btnTest as Button], then repeat the process and select [Click]. This will

achieve the same result as before. Note: there is no danger about asking the Designer or

Abstract Designer to generate the code twice. If the code already exists in your Activity, the

request will be ignored.

Add code to button
Now we are going to write the code to handle this event. Move the existing Msgbox code from

the Sub Activity_Create into the new sub. It should now read
Sub btnTest_Click

 Msgbox("Welcome to Basic4Android!", "")

End Sub

Load the Layout
To make this work we need to load this new layout when the app starts.

Edit Activity_Create to read:

 1.1 Getting Started

 - 33 -

Sub Activity_Create(FirstTime As Boolean)

 Activity.LoadLayout("Main")

End Sub

Note: you need to use the same name which was used to save the Layout in the Designer.

Run your app
This time B4A Bridge will ask:

Click OK. You should now see your button and the message when you click it.

 1.1 Getting Started

 - 34 -

Your Third App
Now let’s see if you can create an app on your own! You are going to create an app which will

show the time when the user clicks a button. To do this, you need to add a label to your view.

A label is an object (a “view” in Android jargon) which can display text. Call it Label1.

Use the designer to declare the label (that is, add a Dim statement to your code). Now change

your app so that your btnText will run the following code when the user clicks it:
Label1.Text = "The time now is " & DateTime.Time(DateTime.Now)

This defines the message which Label1 will show. DateTime is a Basic4Android object

which provides a wide range of time-related and date-related functions. For example:

DateTime.Now returns the number of milliseconds since 1-1-70, and DateTime.Time

converts this number into the current time.

It may sound a bit complex but you do not need to understand the details at this stage. It’s

just to give an example program, so see if you can make it work. If you get stuck, you can

download the solution (Your Third App) from this book’s resource page.

Stopping B4A-Bridge
After you have finished developing, you should navigate to B4A-Bridge on your device and

press on the Stop button, in order to save its battery.

More about Designer
For more details about the Designer see the Designer Chapter.

http://resources.basic4android.info/

 1.2 The Integrated Development Environment

 - 35 -

1.2 The Integrated Development Environment
Now we will look more closely at the parts of the Integrated Development Environment

(IDE). This is what you use to develop your app. The IDE consists of the following areas:

Menu and Toolbar

Code Area

Detail Area

Tabs Area

Menu and Toolbar

File menu

 1.2 The Integrated Development Environment

 - 36 -

New

 Generate a new empty project.

Open Source

 Load a project.

Save

 Save the current project.

Export As Zip

 Export the whole project in a zip file.

Page Setup

 Page setup for printing

Print Preview

 Show a print preview.

Print

 Print the code.

Exit

 Leave the IDE.

Below this is a list of the last loaded programs.

Edit menu

Cut (Ctrl+X)

 Cut the selected text and copy it to the clipboard.

Cut Line (Ctrl+Y)

 Cut the line at the cursor position. Note: in other programs, Ctrl+Y often redoes the

previous action, which is Ctrl+Shift+Z in Basic4Android.

Copy (Ctrl+C)

 Copy the selected text to the clipboard.

Paste (Ctrl+V)

 Paste the text in the clipboard at the cursor position.

 1.2 The Integrated Development Environment

 - 37 -

Undo (Ctrl+Z)

 Undo the last operation.

Redo (Ctrl+Shift+Z)

 Redo the previous operation.

Find (F3 or Ctrl+F)

 Activate the Find and Replace function.

Find All References (F7)

 Show a list of all references to the selected string. You can click a reference to quickly go

to that line of code.

Block Comment

 Set the selected lines as comments.

Block Uncomment

 Uncomment the selected lines.

Remove All Bookmarks

 Bookmarks.

Remove All Breakpoints

 Breakpoints.

Outlining

 Open a sub-menu containing three functions to expand or collapse code:

 - Toggle All (Ctrl-Shift-o) - Expand collapsed code and collapse extended code.

 - Expand All - Expand all code.

 - Collapse All - Collapse all code.

Designer
This menu option opens the Designer.

Project menu

Modules
The first five options deal with Modules:

 1.2 The Integrated Development Environment

 - 38 -

Add New Module

 lets you choose which type of module to create:

Add Existing Module

 lets you select a module (probably from another project) which will then be copied into

this project. It will be added to the list of modules in the Modules Tab and shown as the

active module.

The following 3 options are available only if a module other than Main is active:

Change Module Name

 Change the name used in the IDE

Remove Module

 This will not delete the module, merely remove it from the list of active modules in the

Modules Tab.

Hide Module

 When a Module is hidden it will still be visible in the Modules Tab. Clicking there will

make it visible in the editor.

Package Options
The next 5 options in the Project menu deal with the overall program:

Choose Icon

 Choose an icon for the program,

Package Name

 Change the package name

Manifest Editor

 Run the Manifest Editor.

Do Not Overwrite Manifest File

 This option is available only for backwards compatibility. It is recommended to use the

Manifest Editor instead.

Where Are the Other Object Properties?

 This is for backward compatibility and takes you to a web page which explains about

Project Attributes and Activity Attributes.

Compile Options
The bottom options in the Project Menu deal with the different compiling options.

Compile & Run (Alt+1)

 has the same effect as pressing the run icon . The result will depend upon which

compile mode is selected in the IDE.

 For example, it will produce these files in the Objects folder if the Debug mode is selected:

 1.2 The Integrated Development Environment

 - 39 -

Test Compilation (Alt+2)

 Run the Warning Engine which helps find errors in your code.

Compile & Run (background) (Alt+3)

 The same as Compile & Run except no progress dialog box is shown.

Run Last Deployment (Alt+4)

 Re-run the code installed already on the device, without recompiling or re-installing.

Compile to Library (Alt+5)

 Compile your project into a library which you can use in other projects and share with

other users. More details can be found at How to Compile a Library.

Compile (without signing)

 Compile the code but do not produce an apk file in the Objects folder. You might want to

do this, for example, if you want to sign an app with a non-Basic4Android keystore. See

here for a tutorial on how to do this, and here for more about keystores.

Tools menu
IDE Options

 These are explained below.

B4A Bridge

 See the B4A-Bridge section for details of this method of designing and debugging your app

on a real Android device. B4A-Bridge must be running on the device before you can

connect. The options are to connect via Bluetooth or Wireless, or to disconnect the device.

Clean Files Folder (unused files)

 Delete files that are located under the Files folder but are not used by the project. It will

not delete any file referenced by any of the project layouts. A list of unused files will be

displayed before deletion, and you will be allowed to cancel the operation.

 Be careful: copies of deleted files are NOT kept in the Recycle Bin!

Clean Project

 Delete all files that are generated during compilation.

Run AVD Manager

 See Using the AVD Manager for details.

Configure Paths

 Tell Basic4Android the location of your javac.exe, android.jar and (optionally) your

additional libraries.

 See the Configure Paths section for details

Restart ADB Server

 In some cases the connected emulator or device fails to respond and you might need to end

the link and restart it. The link is managed by the ADB (Android Debug Bridge) server

http://bit.ly/17rLYeo
http://bit.ly/17rLYeo

 1.2 The Integrated Development Environment

 - 40 -

process, hence the name of this menu option. See here for details about the ADB server

from the Android Developer site.

Private Sign Key

 Allows you to create and sign your app to make it ready for publication. See the

Publishing Your App chapter for details.

Take Screenshot

 You can capture screens from the emulator and perhaps from devices connected via USB,

but not from devices connected via B4A-Bridge. For USB connections to devices, see here.

 The Take Screenshot function can also be called from:

 Tools menu when the IDE is in edit mode

 Debug menu when the IDE is in debug mode

 These options start the following dialog:

 Click on Take Picture to take the screenshot from the device or the emulator. If several

devices are connected, you will be asked to select which one to use for the screenshot.

 You can resize the image, change the orientation of the picture, save it as a PNG file or

copy it to the clipboard by right-clicking on the image. A Copy to clipboard button will pop

up:

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://bit.ly/141xVIP

 1.2 The Integrated Development Environment

 - 41 -

IDE Options Sub-Menu

Tab Size

 Set the size of the indent when you press the tab key in the editor. The default is 4

(although 2 is probably a better value).

Change Font

 Shows the following dialog box:

Word wrap

 Without word wrap, long lines may extend beyond the visible window. With word wrap,

such lines are wrapped to the next line.

Auto Save

 Saves the program and the layout in the Designer whenever you run the app on a

connected device or emulator.

Show Tooltips During Typing

 Tooltips are hints and prompts for data you can enter:

 You can create your own tooltips. See Comments As Documentation

Configure Process Timeout

 Specify how many seconds the IDE should wait as it tries to connect to the emulator.

After this number of seconds, the IDE will show an error message in the Compile &

Debug dialog box. This is called a Process Timeout. The default is 30 seconds.

 1.2 The Integrated Development Environment

 - 42 -

Test Compile When Saving

 With this option selected, the IDE runs a test compilation every time the project is saved.

Help Menu
This contains a link to the on-line help and tutorials, and an About option which shows the

version number, copyright and other information about Anywhere Software.

Toolbar

 Generates a new empty project.

 Loads a project.

 Saves the current project.

 Copies the selected text to the clipboard.

 Cuts the selected text and copies it to the clipboard.

 Pastes the text in the clipboard at the cursor position.

 Undoes the last edit.

 Redoes the previous “Undo”.

 Activates the Find and Replace function.

 Sets the selected lines as comments.

 Uncomments the selected lines.

 Navigate backwards

 Navigate forwards

 Adds a bookmark.

 Removes a bookmark.

 Go back to the previous bookmark.

 Go forward to the next bookmark.

 Autocomplete function (Ctrl+space).

 Decrease the indentation of the selected lines.

 Increase the indentation of the selected lines.

 Runs the compiler using the mode selected in the compiler options list

 Compiler options list. See Compilation Modes.

 Select routine to edit.

Code area
Below the Toolbar is a row of tabs, one for each module in the project.

http://www.basic4ppc.com/android/documentation.html

 1.2 The Integrated Development Environment

 - 43 -

Clicking a tab brings the corresponding module to the front. This is where you edit your code.

Code consists of some header information, such as Project Attributes and Activity

Attributes. It then contains a series of Subroutines. This is typical of Basic programs.

Regions
For your convenience while editing, your code is divided into blocks called Regions. A Region

is an area of your code which you can rapidly expand or collapse. You can do the same with

Subroutines. You can expand or collapse regions and subs by clicking on the “+” and “–“ signs

on the left of the Code area:

You can define your own regions using #Region and #End Region and embed several

subroutines within them. The benefit is that by collapsing the code, you make it easier to

navigate to the required section.

Collapse the whole code
The [Edit > Outlining] menu contains three functions to expand or collapse code:

Toggle All (Ctrl-Shift-o)- Expands collapsed code and simultaneously collapses extended

code.

Expand All - Expands the whole code

Collapse All - Collapses the whole code.

Hovering over Collapsed Code
Hovering with the mouse over a collapsed Region or subroutine shows the beginning of its

content.

Code header
There are two pre-defined Regions in the Main Module: Project Attributes and

Activity Attributes, which we describe next.

Project Attributes Region
This Region contains attributes valid for the whole project. It is displayed only in the Main

module.

 1.2 The Integrated Development Environment

 - 44 -

#Region Project Attributes

 #ApplicationLabel: B4A Example

 #VersionCode: 1

 #VersionName:

 'SupportedOrientations possible values: unspecified, landscape or

portrait.

 #SupportedOrientations: unspecified

 #CanInstallToExternalStorage: False

#End Region

For details see the Project Attributes section.

Activity Attributes Region
This Region determines attributes of the current activity.
#Region Activity Attributes

 #FullScreen: False

 #IncludeTitle: True

#End Region

See Activity Attributes for details.

Service Attributes
When you add a new Service, you'll find the Service Attributes header:
#Region Service Attributes

 #StartAtBoot: False

#End Region

See Service Attributes for details.

Commenting and uncommenting code
A selected part of the code can be set to comment lines or set to normal.

Original code:

Select the code and click on .

The lines are now set as comments.

 1.2 The Integrated Development Environment

 - 45 -

To reset the lines to normal, select the lines and click on .

Bookmarks
You can set ‘bookmarks’ anywhere in the code and jump between these bookmarks. To set a

bookmark, position the cursor on the desired line:

Click on or type Ctrl-M. The bookmark sign is displayed in the left margin:

To remove a bookmark, position the cursor on the line and click on .

Click on to jump forward to the next bookmark.

Click on to jump backward to the previous bookmark.

You can remove all bookmarks with [Edit > Remove All Bookmarks]

Indentation
A good practice is to use the Tab key to indent code and so make its structure (of subroutines,

loops etc.) more obvious and easier to verify. The indentation size created by the Tab key can

be set in the Tools menu. For example consider the following:

 1.2 The Integrated Development Environment

 - 46 -

This is clearer if the text is indented to reveal its logical structure:

Whole blocks of code can be indented forth and back at once by selecting the code block and

clicking or , or by selecting the block and pressing the tab key to indent or shift-tab to

un-indent.

Autocomplete
The autocomplete function helps you write your code. Enter the first few letters of a keyword

or variable name and press Ctrl+Space, or click on . For example, if you type “ty” and

Ctrl+Space you will see:

The popup menu shows all variables, views and property names beginning with “ty”, plus

online help for the highlighted variable, view or property name.

Note: if there are no property names, views, or variables that match what you have started to

type before pressing CTRL+Space, a popup list will not appear. Also, if there is only one

entry in the popup list that matches what you have typed, the IDE assumes that this is what

you want autocompleted, and that entry will be typed out completely for you, without

showing the popup list.

Icons
The following icons are used here (or in other parts of the IDE):

 Keywords and methods have a pink flying box

 Key constants have a blue box

 1.2 The Integrated Development Environment

 - 47 -

 Functions defined in your code have a pink box with a lock

 Global variables (defined in Sub Process_Globals) have a blue box with a key

 Local variables (defined in current Sub) have a blue box with a lock

 Properties have a hand pointing to a list

Select the required word by using the mouse or the arrow keys, then press Enter or Return.

Autocomplete Properties and Methods
Once a variable or object name has been selected, type a dot. All properties and methods are

displayed in a popup menu:

Properties have a hand icon and methods have a pink box.

Autocomplete event subroutines
A second Autocomplete function allows you to create Event subroutines with the correct

arguments. Enter the Sub word plus a blank character and press the Tab key. A list of

available types is displayed:

Select the required type and press Enter. A list of possible events is then displayed:

Select the type and press Enter. The Sub name is automatically created together with its

arguments:

Now you must enter the EventName. This will have been specified when the source object

was Initialized.

 1.2 The Integrated Development Environment

 - 48 -

Comments as Documentation
The documentation feature built into Basic4Android is very useful. Comments above subs,

such as:
' Split strCurrent into substrings using strDelimiter

' and return a list

' strCurrent - the string to split

' strDelimiter - the character(s) to use to split strCurrent

' Example: <code>

' lst = splitString("Abcdefcghi", "c")

' </code>

Sub splitString(strCurrent As String, strDelimiter As String) As List

 Dim splitResult As List

will automatically appear in the popup window:

Any comment immediately before Sub Process_Globals is treated as the main module

comment.

Context Menu
Right-clicking in the Code Area produces the Context Menu:

Many of these occur in the Edit menu.

 1.2 The Integrated Development Environment

 - 49 -

Note: Cut and Copy apply to any text which is selected and beneath the cursor when you

right-click, such as btnSmallPanel in the example above. If no text was selected, the line at

the cursor will be cut or copied.

Other items in the Context Menu are:

Goto Sub Declaration
Sometimes it is useful to jump from a subroutine call to the subroutine definition. This can

easily be done from [Goto Sub Declaration] in the context menu.

Find All References
This shows a modal dialog box with a list of all lines in the code which contain the selected

word.

You can quickly go to any of these by clicking the line.

Color Picker
Selecting this option from the Context Menu shows:

Clicking on a color will copy the color to the clipboard as a hexadecimal quadruplet, that is, a

hex literal with four bytes or eight digits. The format is the same as given by the

Colors.ARGB function, that is, Alpha channel, Red, Green and Blue values. For example:

0xFFFFFFFF = fully opaque white

0xFF000000 = fully opaque black

 1.2 The Integrated Development Environment

 - 50 -

0xFFFF0000 = fully opaque red

Highlighting occurrences of words
When selecting a word, the word is highlighted in dark blue (A in the following diagram) and

all other occurrences in the code are highlighted in light blue (B) while the scrollview on the

right side indicates the position of this word (A) in the document (C) in light blue.

With the slider, you can move up or down the code to go to the other occurrences.

Breakpoints are also marked on the scrollview, this time in red (D).

Detail Area
The content of this area depends upon which of the tabs has been selected. We therefore

show the detail area in the following Tabs section.

Tabs

There are 4 tabs at the bottom right corner of the IDE that display the following information.

Modules Tab
An app can contain several modules (pieces of code). Clicking on the Modules Tab shows a

list of the modules in the top of the Detail Area, and a list of Subroutines below it.

 1.2 The Integrated Development Environment

 - 51 -

Clicking on one of the module names brings that module to the top. Clicking on one of the

subroutine names moves the cursor directly to the selected routine.

Files Tab
Clicking on the Files Tab brings into the Detail Area a list of all the files that have been

added to the project.

Click on Add Files to add files to the list. These can be any kind of files: layouts, images,

texts, etc. On your PC, the selected files will be copied to the Files folder of your project. On

the device, these files will be saved in the Files.DirAssets folder.

Checking one or more files in the list enables the Remove Selected button.

 1.2 The Integrated Development Environment

 - 52 -

Clicking on the Remove Selected button shows the following dialog:

Yes: removes the selected files from the list and from the Files folder of the project. Make

sure to have a copy of the files you remove, because they are removed from the Files folder,

but not transferred to the recycle bin. This means they are definitively lost if you don’t have

a copy.

No: removes the selected files from the list but does not delete them from the project’s Files

folder.

See Files chapter for file handling.

Logs Tab
Clicking on the Logs tab displays in the Detail Area a list of comments generated by the

program when it is running. We explain its use in the Logging section.

Warning Area
An area at the top of the Logs Tab. See the Warning Engine below for details.

Libs Tab
This option is only available in the Full version of Basic4Android.

Clicking on the Libs tab brings into the Detail Area a list of the available libraries that can

be used in the project.

 1.2 The Integrated Development Environment

 - 53 -

This includes a link here that allows you to download more libraries including user-

generated ones. More information about libraries can be found in this book here.

Check the libraries you need to reference in your project. All projects reference the Core

Library. Some other libraries (the Standard Libraries) are included with the installation.

Others are Additional Libraries, generated both by Anywhere Software (the makers of

Basic4Android) and by users.

The Warning Engine
Basic4Android version 2.7 introduces the Warning Engine which helps find errors in and

warnings about your code. It gives a warning after you choose one of the compile options in

the Project menu or type Alt+1, Alt+2, Alt+3 or Alt+5, or when you save the project (if the

[Tools > IDE Options > Test Compile When Saving] option is selected).

The offending lines of code are underlined in green (A in the following diagram), their

position is marked in green in the scrollbar (B) and they are listed in the Warning Area of

the Logs Tab (C).

Warnings are too long to fit in the space, but hovering over a warning reveals the full text

and clicking on a warning will take you to the relevant line in the source code. These lines

are also highlighted in the editor, as described next.

Editor Highlighting
The Warning Engine highlights errors and warnings. Errors are underlined in red in the

Editor. If you hover your mouse near an error, you see its error message:

http://bit.ly/16H9C7s

 1.2 The Integrated Development Environment

 - 54 -

Warnings are underlined in green, and the warning revealed when you hover:

Ignoring Warnings
You can disable warnings, either for specific lines or for a specific type of warning in a

module. To ignore warnings for a line, add a comment with the word “ignore”:
Sub Activity_KeyPress(KeyCode As Int) As Boolean 'ignore

To disable specific types of warnings in a module, add the #IgnoreWarning attribute.

For example, to disable warnings #10 and #12 in an Activity module:
#Region Activity Attributes

 #FullScreen: False

 #IncludeTitle: True

 ' add the following line

 #IgnoreWarnings: 10, 12

#End Region

For modules which have no Attributes Region, add the line near the top of the code, for

example:
'Class Person module

 IgnoreWarnings: 12

The warnings
1: Unreachable code detected.

2: Not all code paths return a value.

3: Return type (in Sub signature) should be set explicitly.

4: Return value is missing. Default value will be used instead.

5: Variable declaration type is missing. String type will be used.

6: The following value misses screen units (‘dip’ or %x / %y): {1}.

7: Object converted to String. This is probably a programming mistake.

8: Undeclared variable ‘{1}’.

9: Unused variable ‘{1}’.

10: Variable ‘{1}’ is never assigned any value.

11: Variable ‘{1}’ was not initialized.

12: Sub ‘{1}’ is not used.

13: Variable ‘{1}’ should be declared in Sub Process_Globals.

14: File ‘{1}’ in Files folder was not added to the Files tab. You should either delete it or add

it to the project. You can choose Tools - Clean unused files.

15: File ‘{1}’ is not used.

16: Layout file ‘{1}’ is not used. Are you missing a call to Activity.LoadLayout?

17: File ‘{1}’ is missing from the Files tab.

18: TextSize value should not be scaled as it is scaled internally.

19: Empty Catch block. You should at least add Log(LastException.Message).

 1.2 The Integrated Development Environment

 - 55 -

20: View ‘{1}’ was added with the designer. You should not initialize it.

21: Cannot access view’s dimension before it is added to its parent.

22: Types do not match.

23: Modal dialogs are not allowed in Sub Activity_Pause. It will be ignored.

24: Accessing fields from other modules in Sub Process_Globals can be dangerous as the

initialization order is not deterministic.

In addition, Basic4Android gives the following runtime warnings:

1001: Panel.LoadLayout should only be called after the panel was added to its parent.

1002: The same object was added to the list. You should call Dim again to create a new object.

1003: Object was already initialized.

1004: FullScreen or IncludeTitle properties in layout file do not match the activity

attributes settings.

 1.3 Upgrade to Full Version

 - 56 -

1.3 Upgrade to Full Version
Once you have tried Basic4Android free for 30 days, you might want to upgrade to a Full

Version. There are several of these:

About Full Versions
They support libraries (an important part of Basic4Android) and give you full access to the

Basic4Android forum. Applications developed with Basic4Android are royalty free. You can

sell any number of developed applications. The full version only supports local compilation,

not remote compilation mode. Licenses are per developer. Each developer requires a single

license.

Basic4Android Standard Version
A single developer license with 2 months of free upgrades and full access to Basic4Android

forum. Buy Now

Basic4Android Enterprise Version
2 years of free upgrades with a single developer license. Buy Now

Basic4Android Site License
2 years of free upgrades for up to 30 developers on a single site, each with full access to the

Basic4Android forum. Buy Now

Academic Licenses
Academic licenses (for students, teachers and researchers) are available for half the price.

Please contact support@basic4ppc.com and include your academic details.

Purchase
You can use Paypal to purchase any of the above versions from:

http://www.basic4ppc.com/android/purchase.html

Java JDK and Android SDK Installation
The full version does not support remote compilation, only local compilation, so you must

install Java JDK and Android SDK. (These are optional with the trial version.) So we must

now visit the murky world of Java. Luckily you have chosen Basic4Android so our visit will

be brief!

Check if the Java JDK is already installed
You might want to verify whether the Java JDK is already installed on your PC.

Open [Control Panel > Programs and Features] and search for the JDK. Confusingly, this

will be called “Java SE Development Kit N Update X” where N and X are numbers.

http://bit.ly/14uTuGS
http://bit.ly/1e4kAZD
http://bit.ly/1e4kHV5
http://www.basic4ppc.com/android/purchase.html

 1.3 Upgrade to Full Version

 - 57 -

If you already have JDK 64 Bit
In some cases, the Android SDK installer fails to find JDK 64bit. Therefore, it is

recommended to install the 32bit version of the JDK. However, if the SDK is already

installed, then it should work. Skip the next step and proceed to install the Android SDK. If

it finds the JDK then it’s fine. If it fails, then come back to the step below and install the

32bit version.

Install the 32 bit Java JDK
For all machines, even 64 bit, it is recommended to select 32bit “Windows x86” in the

platforms list. This is because in some cases the Android SDK installer fails to find JDK

64bit. See the note above if you already have the 64bit JDK.

Installation
The first step should be to install the Java JDK, also known as the Java SE Development

Kit. Note: there is no problem with having several versions of Java installed on the same

computer. The steps are:

- Goto the Java SE Development Kit download web page at http://bit.ly/1cUdx1r

- Check the Accept License Agreement radio button.

- Find the Java SE Development Kit NuNN section (N will vary depending on the latest

version available).

Note: Demos and Samples are not needed.

- Download the relevant exe (X86 recommended, see above) and run it.

- Note the folder in which you install the JDK. You will need this information later.

Install the Android SDK and a platform
The Android software development kit (SDK) is a comprehensive set of development tools

including a debugger, libraries, a device emulator, documentation, sample code, and

tutorials. It provides the API libraries and developer tools to build, test, and debug apps for

Android, and is required in order to use the full version of Basic4Android. With the trial

version it is optional.

You need to install the SDK but do not need the ADT Bundle (which includes a version of the

Eclipse IDE, since you will be using the (far superior) Basic4Android!).

Install the SDK
Goto the SDK page http://developer.android.com/sdk/index.html

Do not click “Download the SDK ADT Bundle for Windows” since you do not need the ADT!

Instead, scroll down, click “DOWNLOAD FOR OTHER PLATFORMS” and select the “SDK

Tools Only” option. We recommend you select the installer_rNNNN.exe

Agree to the terms and conditions. If necessary, select the appropriate version then download

and run the installer.

If asked whether to “install for anyone using this computer” or “just for me”, select whichever

seems more appropriate.

The SDK doesn’t always behave properly when it is installed in a path with spaces (like

“Program Files”). It is recommended to install it to a custom folder similar to C:\android-

sdks.

Note the folder where you install it. You will need this information later.

http://bit.ly/1cUdx1r
http://developer.android.com/sdk/index.html

 1.3 Upgrade to Full Version

 - 58 -

You now need to download the required packages. You should automatically see the Android

SDK Manager, as shown below. (You can also run this from the SDK folder).

You need the Android SDK Tools and SDK Platform-tools. In the above example, the Android

SDK Tools have already been installed. The platform tools and the latest platform image

(API) are selected for installation by default. Platform images are named “Android VVV (API

 1.3 Upgrade to Full Version

 - 59 -

NN)” where VVV is the version and NN is the API number. Select any older ones you need,

depending on the hardware you wish to emulate. In the example, API 8 has been chosen.

For each API, the SDK Platform is needed. The ARM, Intel and MIPS System Images will be

used by the emulator.

Note: installation might take a very long time if you have select many APIs, especially if you

have a slow Internet connection, since each one has to be downloaded to your PC.

The Google APIs are also needed. Documentation, Samples and Sources are not required.

Under “Extras”, you can also install the Google USB Driver, if you need to connect a physical

device with USB.

Information about OEM drivers is available here.

Note: Basic4Android allows you to connect to any device over the local network by using the

B4A-Bridge tool.

You can install more packages later.

Click Install NN Selected to install your selected packages.

A dialog box is shown. Click on Accept License and Install.

Install and configure Basic4Android
When you install a full version, you do NOT need to uninstall the trial version. The full

version overwrites it.

Download and install Basic4Android
When you purchase the full version, you will receive an email containing a link to the

download, with a username and password, plus a text file containing your license.

Open Basic4Android
The first time you run Basic4Android, it will check to see if .Net Framework is installed and

if not, it will show a dialog box shown previously. You must download and install .Net

Framework or Basic4Android will not run.

http://developer.android.com/intl/fr/sdk/oem-usb.html
http://bit.ly/14C3DMz

 1.3 Upgrade to Full Version

 - 60 -

Common Windows XP Error
Windows XP users might see an error on start-up of Basic4Android:

“Basic4Android.exe Application could not be initialised correctly error 0xc0000135”

This is because Basic4Android requires .Net Framework 2.0 or above.

Windows XP users who didn’t install it before should first install the framework.

License
The email you receive contains a license file (b4a-license.txt) which you should store on your

computer. On the first run, Basic4Android will ask you to first locate the license file and

afterwards it will ask you for the email address you have used when you purchased

Basic4Android.

Notes
The license is not a text file, so you should not open it with a text editor.

It is a good idea to save a copy in a different folder, since the license will be deleted after it is

authenticated. This will allow you to re-install if you move to a different version of Windows,

for example.

Configure Paths
Once B4A has installed and is running, you need to configure several path options for the

system to work correctly.

Select menu [Tools > Configure Paths]. The following dialog appears:

To complete this, you will need the paths which you noted during the installation process.

Javac.exe
This is typically C:\Program Files\Java\jdk1.7.0_09\bin\javac.exe

- Use the browse buttons to locate “javac.exe” and “android.jar”

javac is located under <java folder>\bin.

Android.jar
This file is located under <android-sdk-windows>\platforms\android-17

The folder depends where you installed the Android SDK.

You might have recorded this location when you installed the SDK. If not, you will need to

find it. It could be:

http://bit.ly/15IDe60

 1.3 Upgrade to Full Version

 - 61 -

C:\Android\platforms\android-17\android.jar or C:\Android\platforms\android-

8\android.jar.

The number depends on the Android version you loaded.

On older versions it could be under:

C:\Android\android-sdk-windows\platforms\android-8\android.jar.

On Windows 64 bit, Java will probably be installed under C:\Program Files (x86).

You might have have several android.jar files, for example:

D:\android-sdks\platforms\android-10

D:\android-sdks\platforms\android-17

In that case, you need to select one of these, for example:

D:\android-sdks\platforms\android-10\android.jar

Additional Libraries
The Full Version of Basic4Android allows you to download Additional Libraries which

provide extra functionality. For example, there are libraries for OpenGL, Camera access,

Barcode Readers, FTP and HTTP functions, to name but a few. More details in Additional

libraries Chapter.

You use the “Additional Libraries” option to tell B4A where those downloaded library files

are stored on your computer.

If you have the trial version or do not have any additional libraries, you can leave the

“Additional Libraries” option blank for initial testing.

It is recommended to use a specific folder for Additional libraries.

Now your Paths Configuration dialog box will look something like this:

Click OK.

That completes the installation of the files required for B4A to run. Much of what follows will

work with the trial version. The main difference is that Libraries are only available in the

full version.

Updating to a new version
When a new version is released, you will receive an email with the subject “Basic4Android

vNNN is released” containing a link to the download.

 - 62 -

Part 2: Creating Your App
Here we go through the process of creating a real app, including the principles of design, how

your app can communicate with the user, how you can use Designer Scripts to automatically

modify your app to suit different devices, and how to compile, debug and test your app using

either real or virtual devices.

We discuss creating graphics and databases. We examine how processes, services and

activities live and die in Android. We look at the various types of modules you can create,

examine ways you can make money from your app and finally explore ways you can get more

help in using Basic4Android.

 2.1 The Project

 - 63 -

2.1 The Project
Every Project has an Activity Module called “Main” and a number of project attributes, some

of which are specified within the Main module.

Project Attributes
Project Attributes are valid for the whole project but are displayed only in the Main Activity

Module:
#Region Project Attributes

 #ApplicationLabel: B4A Example

 #VersionCode: 1

 #VersionName:

 'SupportedOrientations possible values: unspecified, landscape or

portrait.

 #SupportedOrientations: unspecified

 #CanInstallToExternalStorage: False

#End Region

These attributes will be added automatically to existing projects when they are first loaded

with the latest version of Basic4Android. Available project attributes are:

ApplicationLabel:
The application label, a string which will appear in lists of applications on the device, for

example in [Settings > Apps].

CanInstallToExternalStorage:
Whether the application can be installed to external storage. Values: True or False

CustomBuildAction:
The build process is made of a number of steps. You can add additional steps that will run as

part of the build process. For example, you can run a batch file that will copy the latest

resource files from some folder before the files are packed.

Note: you can add any number of build actions.

CustomBuildAction should be added to the main activity.

The running folder is set to the program objects folder.

Syntax
The syntax is:

<step id>, <program to run>, <program arguments>

step id can be one of the following:

1 - Before the compiler cleans the objects folder (it happens after the code is parsed).

2 – Before the R.java file is generated.

3 - Before the package is signed (the APK file at this point is: bin\temp.ap_).

4 - Before the APK is installed.

 2.1 The Project

 - 64 -

5 - After the APK is installed.

Example
To mark all files under the res folder as read-only (and so prevent the compiler from deleting

them):
CustomBuildAction: 1, c:\windows\system32\attrib.exe, +r res*.* /s

SupportedOrientations:
Sets the orientations supported by this app. Values (case is important): unspecified, portrait

or landscape

VersionCode:
Must be an integer

VersionName:
Is a string

Library compilation attributes
In addition to the project attributes mentioned above, there exist Library compilation

attributes which are covered in the library compilation section.

Project Icon
This icon (called the Launcher Icon in Android documentation) can be set with the menu

[Project > Choose Icon]. More details in the Launcher Icon section.

Package name
Every app needs a unique Package Name. The package name is a unique identifier for the

application and the default name for the application process. In Basic4Android, it can be set

with the menu

[Project > Package Name].

Unique name
The name must be unique. To avoid conflicts with other developers, you should use an

Internet domain which you own as the basis for your package names, written in reverse, for

example:

uk.co.pennypress.Basic4Android_book

You can register a domain name with a Domain Name Registrar.

Allowed Characters
The name may contain dots, lower case letters (‘a’ through ‘z’ but see Note below), numbers,

and underscores (‘_’). Individual package name parts (between dots) may only start with

letters. Package names should contain at least two components separated with “.” (a dot).

 2.1 The Project

 - 65 -

Note: the use of lower case is a convention. Upper case letters A through Z are also accepted

but can occasionally lead to problems, so it is safer to use only lower case.

The name you enter will be validated before it is accepted.

Google Play URL
The Package Name will be used by Google Play to determine the URL of your app. So if the

package name is uk.co.pennypress.abc, it will appear on Google Play as:

https://play.google.com/store/apps/details?id=uk.co.pennypress.abc

Caution: Name cannot be changed
Once you publish your application, you cannot change the package name. The package name

defines your application’s identity, so if you change it, then it is considered to be a different

application and users of the previous version cannot update to the new version.

The Manifest
Every app running on an Android device requires a file named AndroidManifest.xml.

Basic4Android compiler stores this code in the project’s b4a file and generates the XML file

automatically. In most cases, there is no need to change anything.

However, in some cases, especially when using third-party libraries (ads for example), the

developer is required to add some elements to the manifest file. This can be achieved with

the Manifest Editor.

Manifest Editor
Basic4Android includes a Manifest Editor (available from the menu [Project > Manifest

Editor]) which allows you to add or modify elements in the manifest while also allowing the

compiler to add the standard elements.

If you open the Manifest Editor (which is a modal dialog, so you will not be able to use the

IDE or Designer while it is open), you will see something like:
'This code will be applied to the manifest file during compilation.

'You do not need to modify it in most cases.

'See this link for for more information:

http://www.basic4ppc.com/forum/showthread.php?p=78136

AddManifestText(

<uses-sdk android:minSdkVersion="4" android:targetSdkVersion="14"/>

<supports-screens android:largeScreens="true"

 android:normalScreens="true"

 android:smallScreens="true"

 android:anyDensity="true"/>)

SetApplicationAttribute(android:icon, "@drawable/icon")

SetApplicationAttribute(android:label, "$LABEL$")

'End of default text.

You can modify these elements or add other elements as needed. To make it easier to add

multiline strings and strings that contain quote characters, the manifest editor treats all

 2.1 The Project

 - 66 -

characters between the open parenthesis and the closing parenthesis or comma (for

commands with multiple parameters) as a single string.

Escaping end of string characters
If you need to write a string with a comma, you should write two commas: ,, The same thing

is true for strings with closing parenthesis:))

Editor commands
You can add commands at the bottom of the manifest. There are several types of commands:

commands that add an additional text inside an element, commands that set the value of an

attribute (replacing the old value if it already exists) and two other commands which will be

discussed later.

Note: you can call ‘add text’ commands multiple times.

AddApplicationText
Can be used to add permissions, although this is normally achieved with AddPermission.

AddManifestText
These commands add text. Both expect a single parameter which is the text to add.

AddActivityText

AddServiceText

AddReceiverText
These commands expect two parameters: component name and the text to add. For example,

to use C2DM push framework you should add some text to the receiver. Note: a Service

module in Basic4Android is actually made of a native service and a native receiver. The

name of the receiver is the same as the service module.

Example:
AddReceiverText(PushService,

<intent-filter>

<action android:name="com.google.android.c2dm.intent.RECEIVE" />

<category android:name="anywheresoftware.b4a.samples.push" />

</intent-filter>

<intent-filter>

<action android:name="com.google.android.c2dm.intent.REGISTRATION" />

<category android:name="anywheresoftware.b4a.samples.push" />

</intent-filter>)

SetActivityAttribute

SetReceiverAttribute

SetServiceAttribute
These commands set attributes. Note: the attributes keys are case sensitive. They expect

three parameters: component name, attribute key and attribute value. For example, the

following command can be used to set the orientation of a specific activity:

 2.1 The Project

 - 67 -

SetActivityAttribute(Main, android:screenOrientation, "portrait")

SetManifestAttribute

SetApplicationAttribute
These commands expect two parameters: attribute key and attribute value. For example if

you wish to use accelerated hardware, you would add the line:
SetApplicationAttribute(android:hardwareAccelerated, "true")

AddReplacement
This method allows you to declare a string that will be replaced with a second string. The

compiler automatically adds the following declarations: $PACKAGE$ (replaced with the

package name), $LABEL$ (replaced with the application label) and $ORIENTATION$

(replaced with the orientation value).

The string replacement happens as the last step. You can use it to delete other strings by

replacing them with an empty string.

Syntax: AddReplacement (OldString, NewString)

AddPermission
Adds a permission if it doesn’t already exist. You can also add permissions using

AddApplicationText. The advantage of AddPermission is that it makes sure to only add each

permission once.

Syntax: AddPermission (Permission)

Example: AddPermission (android.permission.INTERNET)

Tips
- Deleting the whole text will restore the default text (after you reopen the manifest editor).

- As stated above, in most cases you do not need to add anything to the manifest editor.

- Open AndroidManifest.xml to better understand how it is built.

More information
For more about the Android Manifest see

http://developer.android.com/guide/topics/manifest/manifest-intro.html

Do Not Overwrite Manifest File Option
This option (available from the Project Menu) is available only for backwards compatibility.

It is recommended to use the Manifest Editor instead.

Project Menu
The IDE has a Project Menu for setting properties of and compiling Projects.

http://developer.android.com/guide/topics/manifest/manifest-intro.html

 2.2. Designing Your App

 - 68 -

2.2. Designing Your App

Fulfilling Wants and Needs
Any successful product has to fulfill the wants and needs of a specific audience. Before you

begin to design your app, therefore, it is wise to think about these questions and talk to

potential customers to understand what they really need and want.

You should also look at other similar apps on the market and identify where there is a gap,

evaluate their strengths and weaknesses and decide how your app will be better.

Evolving Environment
One of the main problems about creating Android apps is that the environment is rapidly

changing. New versions of the Android API appear on a regular basis, introducing new

features, while there are still many devices which have old versions. You must decide

whether you want to use the new features or design your app for one of the old versions.

Android 2.x is a fairly safe basis on which to start if you want your app to be compatible with

a wide range of devices.

Backward Compatible
Note: Android is backward compatible. You can use the latest API and it will still work on

devices with an earlier version. But your app will have problems if your users try to use new

features not available in the old API.

Play Store Compatibility Check
To ensure compatibility, Play Store checks the version of the user’s device and will not allow

downloads of apps built with incompatible APIs.

Note: Play Store uses the “minSDKversion” value in your project’s manifest to determine its

SDK version. An example from a manifest showing default values:
<uses-sdk android:minSdkVersion="4" android:targetSdkVersion="14"/>

You can change these values. See Manifest Editor for details.

Discovering the API of the current device
How to cope with this situation? You could use the most up-to-date SDK and then use the

Phone library SdkVersion to discover the API level of the user’s device. You could then use

features appropriate to that type of device. But be aware of the comment above regarding

Play Store’s compatibility check. See here for a list of API levels.

Playing Safe
If you want to be safe, you might decide to use an old API. This prevents compilation if you

try to add new features. You tell Basic4Android which version of the API you wish to use by

specifying it in the “android.jar” entry of the Paths Configuration dialog.

http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels

 2.2. Designing Your App

 - 69 -

The Android Screen
The appearance of the screen within which your app runs will vary depending not just on the

size of the device but the version of Android.

We discuss how to cope with different screen sizes in the Designer Scripts Reference.

The parts of the screen surrounding your app will normally consist of the Status Bar at the

top of the screen and, for Android 4.x, a Navigation Bar at the bottom.

Status Bar
The Status Bar at the top of the screen shows pending Notifications on the left and status

information (such as time, battery level, and signal strength) on the right.

You should not hide the Status Bar (by using Activity Attribute #FullScreen:True) unless

absolutely necessary.

Navigation Bar
For devices running Android 4.x, a Navigation Bar is shown at the bottom of the screen (if

the device does not have the traditional hardware keys). It houses the device navigation

controls Back, Home, and Recents, and also displays a menu for apps written for Android 2.3

or earlier.

Notifications
The user can swipe down from the status bar to show notification details.

Consider whether your app needs to give Notifications to the user.

App Design Step by Step
You want your app to be appealing and useful, so you need to think about the user interface

early in the design process.

Basic Design Principles
Make your app visually appealing. Where possible, use graphics instead of words, and if you

must use words, keep them brief.

Always offer your user a consistent experience, for example, when moving between screens.

Be faithful to the Android experience, for example, by swiping to navigate.

Break your app into logical chunks and offer each on a separate screen. Organize your

screens logically and let your users know where they are and how to get somewhere else.

Title Bar
If the #IncludeTitle Activity Attribute is set to True, an activity will display a Title Bar

below the Status Bar at the top of the screen. On later versions of Android, it also includes

the Launcher Icon:

 2.2. Designing Your App

 - 70 -

Action Bar
You might want an Action Bar at the top of your app to let your user select the action to take.

The Android Action Bar was introduced with Android 3.0 (API level 11). Read more about

this here.

AHActionBar
The AHActionBar Library available here lets you create an Action Bar on older devices.

(Note: the Full Version of Basic4Android is required to use libraries.)

Menu
An easy way of allowing your user to make selections is by adding a menu. The menu is

shown if the user presses the Menu button (on older devices) or selects the overflow symbol

(3 vertical dots) on the Action Bar, as in the previous image.

The Activity.AddMenuItem commands (with 3 variants) allow you to do this easily.

If you use AddMenuItem3 (which tries to install an entry directly in the Action Bar), it will

still work when run on Android 2.x, but will appear in the Menu instead, revealed by the

device’s Menu button.

Tabbed Views
TabHost is a View which allows you to create a row of tabs which call different pages.

TabHostExtras Library is a user-generated extension of this view which gives you more

power over its appearance.

Sliding Pages
There is another library, AHViewPager, which allows the user to slide pages sideways. It

works with Android 2.x and allows you to use tabs to activate the pages.

The library and sample project are available here.

You can also combine the above Action Bar and View Pager into a single app which uses the

action bar to select a page:

http://developer.android.com/guide/topics/ui/actionbar.html
http://developer.android.com/guide/topics/ui/actionbar.html
http://bit.ly/176cKvc
http://bit.ly/1bAV9Iu

 2.2. Designing Your App

 - 71 -

It can be downloaded from this book’s resource page.

Navigation Drawer
A navigation drawer is a panel that slides in from the left edge of the screen and displays the

app’s main navigation options. The user can bring the navigation drawer onto the screen by

swiping from the left edge of the screen or by touching the application icon on the action bar.

At present, there is no navigation drawer which is backward compatible with early versions

of Android, but you might consider using Sliding Pages, Tabbed Views or simply use a

ListView as a popup menu.

Advertising
If you are going to include advertising in your app, you need to plan the screen layout to

allow space for them. See here for more about advertising plans.

Android Themes
Themes are Android's mechanism for applying a consistent style to an app or activity. The

style specifies the visual properties of the elements that make up your user interface, such as

color, height, padding and font size. For more about Themes, see here.

For a Basic4Android tutorial which shows you how to select an android theme based on what

version of Android the device is using, see here.

More Advice
The Android Developer website has a lot of advice on how to design an effective app. Start

from http://developer.android.com/design/index.html

http://resources.basic4android.info/
http://bit.ly/1gvrvtm
http://bit.ly/17j7KOL
http://developer.android.com/design/index.html

 2.2. Designing Your App

 - 72 -

Managing Settings

Editing Settings
Your app will almost certainly need to have settings, that is, user preferences and details.

You will need to allow the user to change them. There is an easy way to do this in

Basic4Android: the Preference Activity Library. There is a tutorial here about how to use it.

Saving and Retrieving Settings
StateManager is a code module you can add to your projects to handle saving user settings to

persistent storage and retrieving them when needed.

Screens and Layouts
With the large and increasing number of devices available on the market, all with different

screen sizes and resolutions, it becomes increasingly difficult to design an app that looks

good on all of them.

There is no universal rule to manage this problem. It depends on:

 What kind of project you are designing

 What devices and screen sizes you are targeting

 What you want to show on the different screens

For example, it might be enough to show the same layout simply stretched according to the

different screen sizes. Or you might need different layout variants for the different sizes. A

layout which looks good on a small screen seldom appeals on a big one, where increased

http://bit.ly/11jIyFd

 2.2. Designing Your App

 - 73 -

space means that more views (such as both the View Control and the Content Area) can be

displayed at the same time.

The same layout might not look good in both portrait and landscape orientations, although

your work will be simpler if you can design one which does.

Multiple activities
If you have complex coding for each page then it would be better to have separate activity

modules. You would normally create a separate layout for each activity.

In order to call the second activity from the first, use StartActivity(Activity2).

The second activity automatically runs Sub Activity_Create which will load the relevant

Layout by calling Activity.LoadLayout("Layout2")

Returning from an Activity
To return to the first activity, the second would typically:

 Save any data to return in a Process_Globals variable

 Close the current activity with Activity.Finish

In Activity1 you could use Sub Activity_Resume to check the value of the saved data.

Overlays

Menu Overlay
You might want to have a menu popup over an Activity. The simplest way to do this is to use

a ListView, as we describe here.

Layout as Overlay
You can also call a second layout from within the first Activity, using

Activity.LoadLayout("Layout2"). In this case the second layout will be seen floating

above the first. To hide parts of the first, the second must have opaque panels (Alpha set to

255). It is probably rare to use such a strategy.

The Designer
The most common way to create a layout is to use the Designer. We describe this in detail in

the next chapter.

How to Detect the Display Type

LayoutValues
Use LayoutValues to get information about the screen. This object holds values related to

the display. For more details, see the LayoutValues main entry.

You can get the values of the current display by calling GetDeviceLayoutValues

For example:

 2.2. Designing Your App

 - 74 -

Dim lv As LayoutValues

lv = GetDeviceLayoutValues

Log(lv)

This will print the following line to the log:

320 x 480, scale = 1.0 (160 dpi)

Note: Activity.LoadLayout and Panel.LoadLayout return a LayoutValues object with

the values of the chosen layout variant.

You can use LayoutValues.scale to check the device type. This returns the scale, where 1

is a screen with 160 dpi.

For example, you could then use TextSizeRatio to scale text on the screen:
Dim TextSizeRatio As Float

Dim LayoutVals As LayoutValues

LayoutVals = GetDeviceLayoutValues

TextSizeRatio = GetDeviceLayoutValues.Scale

lblSample.TextSize = lblSample.TextSize * TextSizeRatio

Detecting Device Orientation
You may need to know whether the screen is portrait or landscape.

You could use either:
If Activity.Width > Activity.Height Then

Or the equivalent but longer:
Dim lv As LayoutValues

lv = GetDeviceLayoutValues

If lv.Width > lv.Height Then

Allowed Screen Orientation
The screen orientation values which an app can support can be set to portrait only, landscape

only or both. These orientations can be defined either 1) in the Project Attributes or 2) using

the Phone Library.

1) Using Project Attribute
#Region Project Attributes

 #ApplicationLabel: MyFirstProgram

 #VersionCode: 1

 #VersionName:

 #SupportedOrientations: unspecified

 #CanInstallToExternalStorage: False

#End Region

where #SupportedOrientations can have the values portrait, landscape or

unspecified (meaning both portrait and landscape).

2) With the Phone library

Or your project can use the Phone Library to set the allowed screen orientation:

 2.2. Designing Your App

 - 75 -

Dim Phone1 As Phone

Phone1.SetScreenOrientation (-1)

Possible values are 0 (Landscape only), 1 (Portrait only) or -1 (Both)

Adding views by code
Layouts are most commonly defined using the Designer, but it is also possible to create and

modify views directly in your Activity code.

Advantage: you have full control of the view.

Disadvantage: you have to define almost everything. For example, you must initialize any

view added in code, as shown in the following:

Example
The source code for an example project, AddViewsByCode, is in this book’s Resource web

page. This is part of it:

Sub Globals

 Dim lblTitle As Label

End Sub

Sub Activity_Create(FirstTime As Boolean)

 lblTitle.Initialize("")

 lblTitle.Color = Colors.Red

 lblTitle.TextSize = 20

 lblTitle.TextColor = Colors.Blue

 lblTitle.Gravity = Gravity.CENTER_HORIZONTAL +

Gravity.CENTER_VERTICAL

 lblTitle.Text = "Title"

 Activity.AddView(lblTitle, 20%x, 10dip, 60%x, 30dip)

End Sub

dips
To write code, you need to be aware of Density Independent Pixels (dips).

Dips are a way of solving the uncertainty caused by the variety of screen resolutions

available on different devices. Dips are defined so that, on all devices

160dip = 1 inch

Thus, if you want a button to be 2 inches wide on any device, you would write:
btnStop.Width = 320dip

Any number followed by the string dip will be converted. Note: no spaces are allowed

between the number and the word dip. Read more about dips here.

DipToCurrent(Length as Int)
You can also set the size of a view using DipToCurrent. This function converts Length,

given in dips, into a value for the current screen. For example, the following code will set the

width value of this button to be 1 inch wide on all devices.

http://pennypress.co.uk/?p=86
http://pennypress.co.uk/?p=86

 2.2. Designing Your App

 - 76 -

EditText1.Width = DipToCurrent(160)

You might consider that simply saying 160dip is easier!

Percentage of Activity
As well as specifying the absolute size of an object, you can set the size as a percentage of the

screen (actually of the current Activity).

PerXToCurrent (Percentage As Float) As Int
Returns the given percentage of the activity width, converted to dip.

Example: set the width of Button1 to 50% of the width of the current activity:
EditText1.Width = PerXToCurrent(50)

A shorthand syntax for this method is available. See below.

PerYToCurrent performs a similar function for the height.

%x and %y
These are shorthand ways of achieving the same result. 50%x means 50% of the width of the

current activity, converted to dip. So the previous code is equivalent to:
EditText1.Width = 50%x

Note: there is no space between the number and the %.

To specify 5% of the height of the screen: EditText1.Height = 5%y

Does the device have a keyboard?
You can find out with the following code. This requires the Reflection Library.
Dim r As Reflector

r.Target = r.GetContext

r.Target = r.RunMethod("getResources")

r.Target = r.RunMethod("getConfiguration")

Dim keyboard As Int = r.GetField("keyboard")

Log ("keyboard=" & keyboard)

The possible values of keyboard are:

1 = KEYBOARD_NOKEYS

2 = KEYBOARD_QWERTY

3 = KEYBOARD_12KEY

App or Widget ?
Basic4Android supports the creation of miniature application views called App Widgets that

can be embedded in other applications (such as the Home screen) and receive periodic

updates. These views are referred to as Widgets in the user interface.

An application component that is able to hold other App Widgets is called an App Widget

host, which is typically the home screen.

Because another application is hosting your widget, it is not possible to directly access the

widget’s views. Instead, you must use a special object called RemoteViews which gives you

indirect access to the widget’s views.

You create a RemoteViews object based on the layout file using ConfigureHomeWidget.

 2.2. Designing Your App

 - 77 -

Sub Process_Globals

 Dim rv As RemoteViews

End Sub

Sub Service_Create

 rv = ConfigureHomeWidget("LayoutFile", "rv", 0, "Widget Name")

End Sub

Each widget is tied to a Service module. The widget is created and updated through this

module.

Widgets do not support all view types. The following views are supported:

 Button (default drawable)

 Label (ColorDrawable or GradientDrawable)

 Panel (ColorDrawable or GradientDrawable)

 ImageView

 ProgressBar (both modes)

All views support the Click event and no other event.

The widget layout and configuration must be defined with XML files. During compilation,

Basic4Android reads the layout file created with the designer and generates the required

XML files. For a tutorial on creating widgets with Basic4Android, see here for part 1 and an

example program. For part 2 of the tutorial, building a more extensive example, see here.

Managing Permissions
When an Android app is installed, it must tell the user what resources and data it needs to

access on the device, and the user has the opportunity to cancel the installation. This is

achieved by your app including a list of the required permissions in the Manifest file.

Normally, Basic4Android will create this Manifest for you, automatically detecting the

required permissions. We list these required permissions in this book, within the

documentation for objects which need them.

However, it might be that you need to manually add permissions to the Manifest. You

achieve this by using the AddPermission command in the Manifest editor.

http://bit.ly/14Lm40H
http://bit.ly/16TSq09

 2.3 Communicating with your User

 - 78 -

2.3 Communicating with your User
As your program runs, you will need to send messages to your user from time to time. We

deal here with the methods of doing this. Of course, there are many Views (such as buttons)

which allow the user to take actions during an Activity, but here we are thinking about

how you can take specific actions to gain your user’s attention.

Modal Dialogs
There are several ways to show your user a message in a dialog box which remains visible

until the user clicks (sometimes called “modal” or “blocking” dialogs). The program will not

continue and timers will be suspended until the user responds. See the section below about

how to handle modal dialogs if Android interrupts your app, for example when the user

rotates the device.

Msgbox
Use the Msgbox keyword to show a simple message without any options. You can specify the

message and the box title:
Msgbox ("Please select a route first", "Error")

Msgbox2
If you want to show more options, Msgbox2 allows you to include any combination of the

following: a positive button, a negative button, a cancel button and/or an icon. It will return

one of the DialogResponse constants, and you can detect the user’s response and act

accordingly:
Dim bmp As Bitmap

Dim choice As Int

bmp.Initialize(File.DirAssets, "question.png")

choice = Msgbox2("Would you like to select a route?", "Please specify

your choice", "Yes please", "", "No thank you", bmp)

If choice = DialogResponse.POSITIVE Then ...

 2.3 Communicating with your User

 - 79 -

InputList
InputList shows the user a modal dialog with a list of options. It ends when the user clicks on

an option and returns either the index of the selected item, or DialogResponse.Cancel if

the user presses the back key.
Dim choice As Int

Dim lst As List

lst.Initialize2(Array As String("1", "More than 10", "I don't care"))

choice = InputList(lst, "How many friends do you want?", 1)

InputMultiList
InputMultiList lets you show a list from which the user can select multiple items before

returning.
Dim choice As Int

Dim lstInput, lstOutput As List

lstInput.Initialize2(Array As String("Apples", "Bananas", "Mangos",

"Oranges"))

lstOutput = InputMultiList (lstInput, "Select all the fruits you

want")

For Each index As Int In lstOutput

 Log (index)

Next

 2.3 Communicating with your User

 - 80 -

If Bananas and Oranges are selected, the numbers 1 and 3 will be logged.

InputMap
This looks and acts much like an InputMultiList, but items in the list can be pre-selected

and the result is returned in a different way.
Dim m As Map

m.Initialize

m.Put("Apples", True)

m.Put("Bananas", False)

m.Put("Mangos", False)

m.Put("Oranges", True)

InputMap(m, "Select all the fruits you want")

This will show an input list with the True items pre-selected:

To process the result, check the map:

 2.3 Communicating with your User

 - 81 -

For Each fruit As String In m.Keys

 If m.Get(fruit) Then

 Log(fruit)

 End If

Next

Handling Long Lists
InputList, InputMultiList and InputMap can all display long lists, but if the list is too

long to fit on the screen, parts of it will be hidden so that not all the items will be visible.

Although the user can drag the list to reveal hidden items, there is no visual indication of

this to the user. This is normal with Android. It might be wise to add a message indicating

this to the user:
Dim choice As Int

Dim lst As List

lst.Initialize

For i = 0 To 9

 lst.Add ("Item " & i)

Next

choice = InputList (lst, "Select all the items you want (drag up/down

for more)", 1)

Notice also thqthe list has already scrolled down to show the selected item.

Dialogs Library
This library, written by Andrew Graham, contains several modal dialogs (meaning they

remain visible until the user takes some action). They are useful if you need your user to

enter data. At present, they are an InputDialog for text, a TimeDialog for times, a

DateDialog for dates, both a ColorDialog and a ColorPickerDialog for colors, a NumberDialog

 2.3 Communicating with your User

 - 82 -

for numbers, a FileDialog for folders and file names, and a CustomDialog. We describe them

in the Dialogs Library section.

Handling Modal Dialogs when your App Pauses
Android does not provide modal dialogs, but a special mechanism in Basic4Android permits

them. The Android Activity lifetime system makes this support complicated because

Activities can be created and destroyed at will by Android. To avoid stack runaway on the

GUI thread when an Activity is destroyed, the stack must be unwound to the lowest level.

The Basic4Android modal mechanism does this by closing any modal dialog being shown and

exiting the Sub that called the dialog, and any Sub that called that Sub and so on, in order to

return the main thread to the message loop.

This means that the application does not necessarily receive a return value from the dialog

and has its expected flow of execution interrupted. This will probably most often happen if

the device is rotated while a modal dialog is displayed, so the Activity is destroyed and

rebuilt with a new layout.

Because this may happen unexpectedly, applications (depending upon their logical structure)

may need code in the Pause and Resume Subs to deal with the fact that modal dialog closure

may not always be detected. Setting a variable defined in Sub Process_Globals when a

modal dialog is shown, and clearing it when it returns with some checking code in the

Resume Sub, is one way of dealing with this possibility.

The above discussion applies to Dialogs Library objects as well as the Basic4Android modal

dialogs InputList, InputMultiList, Msgbox and Msgbox2.

ToastMessageShow
ToastMessageShow shows a message to the user which lasts for only a few seconds.
ToastMessageShow ("No messages received", False)

You can make it last a bit longer by setting the last parameter to True.

Alarms
You can create a Service module which will sound an alarm and perhaps show a notification

at a certain time. You can use the StartServiceAt method to schedule when your service will

start. See Simple Alarm for an example of how to implement this type of alarm. You could

also use a Timer to do something similar, but a service will continue to run even when your

app is not running.

http://bit.ly/14yNI4n

 2.3 Communicating with your User

 - 83 -

Notifications
Both activities and services can display status bar notifications. For services; it is their main

way of interacting with the user.

The notification displays an icon in the status bar.

When the user swipes the bar down, she or he sees the notification. The user can press on the

message, which will open an activity as configured by the Notification object.

ProgressDialog
You can use ProgressDialogShow to show a dialog with a circular spinning disc and the

specified text, telling the user that a long-running task it in progress.
ProgressDialogShow("Please wait while we fetch your information")

Unlike Msgbox and InputList methods, the code will not be blocked; so the activity can

continue to run until the task is completed.

You should call ProgressDialogHide to remove the dialog. The dialog will also be removed if

the user presses on the Back key. However by using ProgressDialogShow2 you can

prevent this.
ProgressDialogShow2("Please wait while we fetch your information",

False)

The second argument specifies whether the user can dismiss the dialog by pressing on the

Back key.

ProgressBar
Unlike a ProgressDialog, which floats above an activity, a ProgressBar belongs to the

Activity. It gives your user information about how far a long-running process has

progressed. The exact nature of the visible bar depends upon the device. Here is one

example

Example code:

 2.3 Communicating with your User

 - 84 -

Sub Activity_Create(FirstTime As Boolean)

 Activity.LoadLayout("Main")

 ProgressBar1.Progress = 0

 Timer1.Initialize("Timer1", 1000)

 Timer1.Enabled = True

End Sub

Sub timer1_Tick

 'Handle tick events

 ProgressBar1.Progress = ProgressBar1.Progress + 10

 If ProgressBar1.Progress = 100 Then

 Timer1.Enabled = False

 End If

End Sub

See ProgressBar for more details.

 2.4 The Designer

 - 85 -

2.4 The Designer
We introduced the Designer in an earlier tutorial. It allows you to generate layouts and see

how they look on either an emulator or a real device. We describe how to connect to one of

these in Testing Your App. We recommend that for designing, the emulator is the preferred

option since the screen on a real device will normally blank out after a minute or two to save

battery.

In the following sections remember that; in Basic4Android; a View is a component on a page.

Start the Designer using the Basic4Android Designer menu. The Designer looks like this:

File menu
This menu allows you to open and save layouts. It also lists the layouts in the current

project.

AddView menu
This menu allows you to select the view (object) you want to add on the current layout on the

device or the Emulator. The views you can add are: AutoCompleteEditText, Button,

 2.4 The Designer

 - 86 -

CheckBox, CustomView, EditText, ImageView, HorizontalScrollView, Label, ListView, Panel

, ProgressBar, RadioButton, ScrollView, SeekBar, Spinner, TabHost, ToggleButton,

WebView

Tools Menu
The Designer Tools Menu contains the following items:

We explain these next. Note: some of these options can also be achieved by right-clicking the

view in the Abstract Designer and using the popup context menu.

Generate Members
Generates Dim statements and skeleton Subroutines within the code editor. Select the Views

for which you wish the Dim statements to be created (in Sub Globals), and the Events for

which you want to generate a skeleton Sub.

Click Generate members then Close.

 2.4 The Designer

 - 87 -

This will add the following to the Activity module:
Sub Globals

 Dim btnAddPerson As Button

End Sub

And
Sub btnAddPerson_Click

End Sub

Bring To Front and Send To Back
Change the layering position of overlapping Views. This is especially useful for large Panels.

Selecting Views
Select a view by either chosing from the Designer drop-down menu:

or by clicking on the view in the Abstract Designer or in the emulator or a connected device

(see “Connect to Device or Emulator” below).

You can select multiple views by dragging the cursor around them in the Abstract Designer,

or by control-clicking them. They become highlighted in yellow.

Duplicate Selected View
First, select the view or views you want to duplicate, then use this option to duplicate

it/them.

Remove Selected View
First, select the view or views to remove.

Note: Be careful: you will not be asked to confirm you want to remove the view(s) and the

action cannot be undone!

Change grid
The (invisible) grid determines the minimum distance (in pixels) which a View moves when

you drag it in the Abstract Designer or in a connected device or emulator. This option lets

you change the grid size. The default is 10 pixels.

Connect to Device or Emulator
Note: if the Designer is already connected to a device or emulator, then this option has no

effect. You first need to use the “Disconnect from Device”.

The way a layout looks in the Abstract Designer is not exactly the same as on a real device,

as shown below:

 2.4 The Designer

 - 88 -

It is therefore very useful to connect the Designer to a device or an emulator to see how your

layout will look when in use.

To connect the Designer, you first need to start the emulator(s) (using the [Tools > Run AVD

Manager] in the IDE) or connect the device to Basic4Android using [Tools > B4A Bridge].

Note: many emulators can be running simultaneously but only one device can be connected

at any one time. If different devices or Emulators are connected when you select [Tools >

Connect to Device] (or Connect to Emulator) in the Designer, you will be asked which you

want to connect to.

Note also: once a device or emulator is connected, you can select, move and resize the views

there as well as in the Abstract Designer.

Disconnect From Device
This option disconnects the Designer from the Device or Emulator.

Show Abstract Designer
See the Abstract Designer section below.

Run Script
Runs the script code in the Designer Scripts tab. This is only available when this tab is

active.

Send To UI Cloud
The Designer [Tools > Send To UI Cloud] menu allows you to see how layouts look on

different devices. The layout file will be sent to the Basic4Android site and, after a short

delay, a page will be opened in your web-browser showing your layout on different devices

 2.4 The Designer

 - 89 -

with different screen resolutions and densities. It’s a very convenient tool to check the layout

look without needing to have physical devices.

Example of a UI Cloud screen
The top of a typical web page looks like this:

Note: in the web-browser, you can click on an image to show it full-size, and you can scroll

down to see the layout on many other devices.

Designer Status Line

Connection Status
Below the Designer Menu there is a status line to show whether the Designer is connected to

a device or emulator. To connect, first start the emulator (in the Basic4Android IDE [Tools >

Run AVD Manager] menu) or B4A Bridge on your device and run IDE [Tools > B4A Bridge].

Then connect by either double-clicking on the Designer’s Disconnected icon or select the

Designer menu [Tools > Connect to Device / Emulator].

 2.4 The Designer

 - 90 -

Top Most
The Designer window can be set to stay always on top of all other windows by selecting the

“Top Most” checkbox in the Status line, shown above.

Designer Main Tab
Below the Status Line there are two tabs: Main and Designer Scripts.

The Main tab consists of the following parts:

Properties Editor
This consists of the following parts:

View Selector

This drop-down list contains all the views in the activity, and the Activity itself, allowing you

to select which you wish to edit. If you select a view in the Abstract Designer or a connected

device or emulator, the same view is automatically selected here.

Properties list
This lists all the properties of the selected view (or the Activity, if selected) organized in

groups, and allows you to modify them.

 2.4 The Designer

 - 91 -

Main Properties
These properties can be changed by entering data or selecting items from drop-down lists in

the column on the right.

Name: Name of the view. It is good practice to give meaningful names. Common usage is to

give a 3 character prefix and add the purpose of the view. In the example, the view is of type

Label and its purpose is to enter a result. So we give it the name “lblResult”, “lbl” for Label

and “Result” for the purpose. This does not take much time during the design of the layout

but saves a lot time during coding and maintenance of the program.

Type: Type of the view, not editable. It is not possible to change the type of a view. If you

need to, you must remove the view and add a new one.

Event Name: Prefix for the subroutines which manage this view’s events. By default the

Event Name is the same as the view’s name. Thus, for a label called lblResult, the Designer

menu [Tools > Generate Members] would generate a sub such as
Sub lblResult_Click

The Events of several Views can be redirected to a single subroutine. In that case, you must

enter the name of that routine in the Event Name field.

Parent: Name of the parent view (Activity in the example). The parent view can be changed

by selecting a new one from the pull-down list:

Left: X coordinate of the left edge of the View from the left edge of its parent View, in dips.

Top: Y coordinate of the upper edge of the View from the upper edge of its parent View, in

dips.

Width: Width of the View in dips.

Height: Height of the View in dips.

Enabled: Enables or disables the use of the View

Visible: Determines if the View is visible to the user or not.

Tag: This is a place holder which can be used to store additional data. Tag can simply be text

but can also be any other kind of object when accessed in code.

Warning: If you want to set both the Width and the Right side, set the Width first. Similarly

you should set the Height before setting the Bottom. This can be summarized as: set the

internal dimensions before the external position.

Help area
When a property is selected, a gray box at the foot of the Main tab shows help information

about what the property does. For example, if the “Tag” property is selected, the following

appears in the help area:

 2.4 The Designer

 - 92 -

Note that the Help Area can be expanded or contracted by clicking and dragging on the space

between the Help Area and the overall properties box area. If you only see the word "Tag",

you can click and drag the top of the Help Area upward to see the rest of the Help

information.

Image files
This area of the Main tab allows you to add (or remove) images on the layout:

Add Images: Allows you to select an image, which will be copied to the Files folder of the

project. Once added, you can add an ImageView to your layout and select the required image

in the Image file property.

Remove Selected: shows the following dialog:

Yes: removes the selected files from the list and from the Files folder of the project. Make

sure to have a copy of the files you remove, because they are removed from the Files folder,

but not transferred to the recycle bin. This means they are definitively lost if you don’t have

a copy.

No: removes the selected files from the list but does not delete them from the project’s Files

folder.

Layout variants
One of the most common issues that Android developers face is the need to adapt the user

interface to devices with different screen sizes and orientations.

 2.4 The Designer

 - 93 -

One solution is to create multiple layout variants, one to match every different device, and to

adapt to changes in device orientation.

Note that it is neither feasible nor recommended to create many layout variants. A better

solution is to use the minimum number of variants, perhaps one for portrait and one for

landscape, and adapt them using the AutoScale function in Designer Scripts.

Nevertheless, it is often necessary to create different variants to suit different sized devices.

It’s probably not the best solution to have the same layout stretched for all screen sizes. It

could be more interesting to show more views on bigger screens.

Multiple variants can all be managed in a single layout file.

New Variant: shows the following dialog:

You can select a pre-defined standard value or define a new one.

Standard Variant
The default or standard variant or standard screen used by Basic4Android is 320 x 480

pixels with a scale of 1.

Adding a Standard Variant
You can pick one of the other standard values and click OK. This is then added to your

variant list.

 2.4 The Designer

 - 94 -

Adding Other Variants
It is possible to select Other and add the Width and Height (in pixels) and the Scale. The new

variant will be added to the Layout Variants list.

Do not add too many variants
Note that in most cases it is not recommended to add variants other than these

recommended ones. It is all too easy to create many variants, but they are very difficult to

maintain. Instead, you should use the designer script feature to adjust (or fine tune) your

layout.

Normalized Variants
Normalized variants are variants with a scale of 1.0. The layout you create with the designer

is scaled (not stretched or resized) automatically. This means that the layout will look

exactly the same on two phones with the same physical size. The scale doesn’t matter.

It is highly recommended to design your layout with normalized variants only. For example,

a variant of 480x800, scale=1.5, matches the normalized variant: 320x533, scale=1.0 (divide

each value by the scale value). Now it is easy to see that this device is slightly longer than

the “standard” variant: 320x480, scale=1.0.

Add Only Normalized Variants
It is recommended only to create variants with scales of 1.0. When you add such a variant,

you will be given an option to add a normalized variant instead with a scale of 1.0.

Why this recommendation?
Consider a device (such as the Samsung Galaxy Nexus phone) whose screen data is 720x1184

at 320 dpi (scale 2). It may seem completely different from the default phone which is

320x480 at 160 dpi (scale 1), but if you calculate the normalized values of the Galaxy Nexus

to scale 1, its layout actually matches: 360x592 at 160 dpi. This means that it is slightly

wider and longer than the default phone size. It should be easier to handle these differences

in the designer script.

Rotating the Emulator
If the layout selected is in landscape, you will need to change your Emulator to the same

mode. Select the Emulator and press Ctrl + F11 to change its orientation.

Warning: Bug in Emulator
There is a bug in the Emulator using Android 2.3.x (API 9 or 10) for the AVD. It can get

stuck in a certain orientation so that pressing Ctrl + F11 repeatedly can cause the Emulator

to become confused, rotating the text on its screen but not resizing correctly:

 2.4 The Designer

 - 95 -

One solution is to create a new AVD with the same specifications but using a different API

level (such as 7 or 8). Or use B4A-Bridge to connect to a real device.

Designer Scripts Tab
Every layout file can include script code. The script is written in the Designer Scripts tab:

We describe Designer Scripting in the Designer Scripting Reference Chapter.

The Abstract Designer
The Abstract Designer shows the layout you are creating in the Designer. Its main purpose is

to help you create your layout and its variants. The different views are not shown with their

exact shape but only as colored rectangles. Clicking on a view shows its properties in the

Designer.

 2.4 The Designer

 - 96 -

Layout Menu
It allows you to quickly match the size of the Abstract Designer with the variant selected in

the Designer Main tab, or match the size of the Connected Device.

It also lists the most popular current screen sizes and resolutions.

 2.4 The Designer

 - 97 -

After you select your target variant, you can position the views according to the new

dimensions and scale.

Zoom Menu
You can use the Abstract Designer full-size or reduced by 50%.

Tools Menu
You can resize the form (window) to fit the layout, and add the current layout (selected in the

Layout Menu) as a new layout variant in the Designer.

Context menus
Clicking with the right button on a view in the Abstract Designer shows a context menu

which has the options:

 2.4 The Designer

 - 98 -

Generate: Generates the Dim statement or an event routine for the selected View. It is very

similar to the Designer [Tools > Generate Members] menu.

Selecting views
The selected views have a yellow border. You can select a single view by clicking on the view.

Select several views by clicking on the first view, holding the Ctrl key and selecting more

views or by dragging the cursor around them in the Abstract Designer.

After making a selection you can:

- Move the selected views with the arrow keys of the keyboard in the four directions.

- Use the Context menu (as described above).

With several views selected in the Abstract Designer, you can change various properties for

them all in the Designer:

Example
Suppose we have a layout in portrait mode:

 2.4 The Designer

 - 99 -

To make a landscape variant, click on [Layout > Phone (landscape)…]

Now rearrange the views to fit the new orientation. Select Abstract Designer [Tools menu >

Resize Form To Fit Layout] to see exactly what the user will see.

 2.4 The Designer

 - 100 -

When the user rotates their phone, you want them to automatically see this layout, so you

must add this as a new variant using the Abstract Designer menu [Tools > Add Current

Layout As New Variant]. The new variant appears in the Designer Main tab:

When you select a different variant in this list you will see it reflected in the Abstract

Designer.

Designer Scripts
As well as the Main tab, the Designer includes a Designer Scripts tab. This is explained in

the Designer Scripts chapter.

Adding views by code
Instead of using the Designer, it is also possible to create and modify views directly in your

Activity code. See the section below for details.

 2.5 Designer Scripts Reference

 - 101 -

2.5 Designer Scripts Reference

Background
One of the most common issues that Android developers face is the need to adapt the user

interface to devices with different screen sizes. As described in the Designer Chapter, you

can create multiple layout variants to match different devices. However, it is neither feasible

nor recommended to create and maintain a lot of layout variants.

To solve this problem, Basic4Android supports designer scripts which help you fine-tune

your layout and easily adjust it to different screens and resolutions. The idea is to combine

the usefulness of the visual designer with the flexibility and power of programming code.

You can write a simple script to adjust the layout based on the dimensions of the current

device and immediately see the results on a connected device or emulator. There is no need

to compile and install the full program each time. You can also immediately see the results in

the Abstract Designer. This allows you to quickly test your layout on many different screen

sizes.

Designer Scripts and Activity Code
Note: a designer script runs before the code in your activity. If, for example, you have

designer scripts for different orientation variants, when the user rotates the screen, the

designer script will run first, then your activity code will be run as explained in Process and

Activity Life Cycle.

Key Concepts
First, we define some key concepts for working with layouts and devices.

Pixel
A pixel (or picture element) is the smallest addressable physical element on a screen. It

corresponds to a glowing dot of light.

Resolution
The number of pixels on the device, for example, 320 x 480

dpi : dots per inch
Dots per inch (also called dpi or pixels per inch or ppi or density) is a measure of the physical

number of pixels in one inch of a device. A pixel is the smallest addressable element of the

display. dpi will vary from one device to another, and vertical and horizontal dpi may differ

on a single device. Things can get pretty complicated!

Basic4Android developers do not need to worry about this, however! See dip below.

Screen Size
Typically the diagonal dimension of a screen is quoted in inches.

 2.5 Designer Scripts Reference

 - 102 -

dip
We now come to a key concept. Suppose you want a button in your app to always be ½ inch

wide. If you know the device will 160 dpi then you know the button should be 80 pixels wide.

Your code might be:
Button1.Width = 80 'This can cause a problem

But what if your app runs on a device with a screen resolution of 240 dpi? Your button will

only be 1/3 inch wide! This is the problem for which dips were created to solve.

dips are Density Independent Pixels (sometimes called Device Independent Pixels). They are

abstract units that are independent of the dpi of the device. One dip is defined as equal to

1/160 inch. It is equal in size to one pixel on a 160 dpi screen. 160 dips will always measure

exactly one inch, no matter what the density of the device. 80 dips are always half an inch.

Magic! So your code should say:
Button1.Width = 80dip 'Always 1/2 inch wide!

Use dip units for all specified sizes (except TextSize - see below).

By using dip units, the values will be sized correctly on devices with higher or lower

resolution. You should always use dips when specifying the size or position of a view

(control). This way the view’s physical position and size will be the same on any device. This

is true for both regular code and designer script.

Text Size
Note: text size is measured in physical units: you should not use dips with text size values.

Standard Screen
The Standard Screen is assumed to have a density of 160 dpi and a resolution of 320 x 480

pixels. This is the same as the Designer’s Standard Variant.

Scale
The standard screen resolution is 160 dpi. This is said to have a scale of 1. To calculate the

scale of a specific device, divide the dpi by 160. So, a phone with 320 dpi has a scale of

320/160 = 2 and a screen with 240 dpi has a scale of 240/160 = 1.5.

Typical scale values are: 0.75, 1.0, 1.5 and 2. Most phones today have 240 dpi, so their scale

is 1.5. Most tablets have a scale of 1.0.

Should you want to, you can convert dips to physical pixels by multiplying by the scale. So,

80dip on a device with scale 2 would be 160 pixels.

You can find the scale value for the current device by using the Scale property of a

LayoutValues object.

Dock and Fill Strategy
A common way of designing a layout is to dock some views to the edges of the screen, then

use the other views to fill in the space between them. You can dock a button, for example,

with the Designer Script:
button1.Right = 100%x

It is often useful to dock a panel and then fill it with views, such as buttons in a ToolBox

Panel.

 2.5 Designer Scripts Reference

 - 103 -

Designer Scripting Basics
The top of the Designer Scripts tab includes the following items:

Run Script Button

If you click this button (or press F5), the current script will be run and the results will be

shown on the connected device / emulator and in the Abstract Designer. The same thing

happens when you run your compiled program. The (now compiled) script is executed after

the layout is loaded. The general script is first executed followed by the variant script specific

to the device and orientation. The system will automatically decide which variant to apply.

Current Variant Option
If you have added more than one variant in the Layout Variants section of the Designer’s

Main Tab, then here you can select which variant you wish to use for the script. Changing

this will update the Abstract Designer to show the selected variant and also update the

Variant Specific Script area of the Designer Script Tab.

Scripting Areas
There are two scripting areas: All Variants (at top) and Variant Specific

All Variants Script Area
The script written here will be applied to all variants.

Variant Specific Script Area
The lower half of the Designer Scripts screen provides a script which is specific for the

Current Variant.

Activating Designer Scripts
There are two tabs in the Designer window, Main and Designer Scripts:

 2.5 Designer Scripts Reference

 - 104 -

What you see in the Abstract Designer (and in a device or emulator connected to the

Designer) depends on which of these tabs is selected.

If Main is selected, the Views are in their original position.

If Designer Scripts is selected, the Views move to the positions specified by the relevant

scripts.

Script Language
The script language is simple and is optimized for managing layouts.

Variables
You can use variables in Designer Scripts. You do not need to declare the variables before

using them. There is no Dim keyword in the script.
gap = 3dip

cmd0.Left = gap

%x and %y
50%x means 50% of the maximum width available.

100%y means 100% of the height available.

These values are relative to the view that loads the layout. Usually it will be the activity

(page). However, if you use Panel.LoadLayout, then it will be relative to this panel.

Note: ScrollView inner panel width is set to -1. This is a special value that causes the

panel to fill its parent’s available size.

If you want to load a layout file (with a script) to the inner panel then you will need to first

set the panel width:
ScrollView1.Panel.Width = ScrollView1.Width

Screen Size
The screen width is 100%x and its height is 100%y. So to set view EditText1 at the bottom of

the screen, you would use:
EditText1.bottom = 100%y

Properties Within Scripts
You can get or set a view’s position using the properties Width, Height, Left, Right,
Top, Bottom, HorizontalCenter, VerticalCenter.

For example:

 2.5 Designer Scripts Reference

 - 105 -

EditText1.Left = 0

EditText1.Top = 0

lblTitle.Right = 100%x

lblTitle.Bottom = 100%y

Warning: Set Internal Properties before External
It is important that you set internal properties (Width or Height) BEFORE you set the

external properties (Left, Right, Top, Bottom, HorizontalCenter,

VerticalCenter). If you set the external properties first, then the view will be positioned

wrongly. For example, suppose you want a button positioned at the bottom of the screen.

You might use the script:
btnTest.Bottom = 100%y

btnTest.Height = 10%x

But this will produce the following in the Abstract Designer:

Clearly the button is not at the bottom of the screen! The reason is that you have specified

the external property (Bottom) before the internal (Height). If you swap them round:
btnTest.Height = 10%x

btnTest.Bottom = 100%y

the button will be positioned correctly:

So remember to set internal before external properties. The letters “IE” might help to remind

you of this. Alternatively, you could use SetLeftAndRight or SetTopAndBottom. See below

for details.

Text Properties
You can get or set the text size and textual content of views such as labels and buttons which

show text:

- TextSize - Gets or sets the text size.

You should not use ‘dip’ units with this value as it is already measured in physical units.

- Text - Gets or sets the view’s text.

Other Properties
- Image - Sets the image file (write-only). Only supported by ImageView.

- Visible - Gets or sets the view’s visible property.

 2.5 Designer Scripts Reference

 - 106 -

Methods
- SetLeftAndRight (Left, Right) - Sets the view’s left and right properties. This method

changes the width of the view based on the two values.

- SetTopAndBottom (Top, Bottom) - Sets the view’s top and bottom properties. This method

changes the height of the view based on the two values.

Other Keywords
- Min / Max - Same as the standard Min / Max keywords.

- ActivitySize - Returns the approximate activity size measured in inches.

- If ... Then condition blocks

Both single line and multiline statements are supported. The syntax is the same as for

regular If blocks.

Activity Methods

Activity.RerunDesignerScript (LayoutFile As String, Width As

Int, Height As Int)
A Designer Script will be called automatically when your app starts and if the device

orientation changes (see Note below), but in some cases it may be desirable to run the script

again while your app is executing. For example, you may want to update the layout when the

soft keyboard becomes visible. The Activity.RerunDesignerScript method allows you to

run the script again and specify the width and height that will represent 100%x and 100%y.

In order for this method to work, all the views referenced in the script must be declared in

Sub Globals.

Note: this method should not be used to handle screen orientation changes. When the

device’s orientation changes, the activity will automatically be recreated and the script will

run during the Activity.LoadLayout call.

AutoScale: Layouts for Different Sized Devices
Larger devices offer a lot more available space. The result is that, if the physical size of a

view is the same, it looks smaller. Some developers use %x and %y to specify the view’s size.

However, the result is far from perfect. The layout will just be stretched. The solution is to

combine the dock and fill strategy with a smart algorithm that increases the view’s size and

text size based on the running device’s physical size.

Note: AutoScale is the only way to automatically change the TextSize.

How AutoScale works
Basic4Android internally calculates the values given below. You do not need to understand

these calculations, but we include them here for reference:

Delta: a measure of the ratio of the current screen compared to the standard variant,

calculated by the formula

 2.5 Designer Scripts Reference

 - 107 -

delta = ((100%x + 100%y) / (320dip + 480dip) - 1)

Rate: How much we want to stretch the views. Normally a value between 0.3 and 1 is used.

The default is 0.3, but this can be changed with the AutoScaleRate() function.

Scale: The multiplication factor applied to individual views, calculated by
scale = 1 + rate * delta

These values have no effect until either AutoScale or AutoScaleAll are called by the

Designer Script.

How to See the Effect of AutoScale
AutoScale bases its calculations upon the standard variant: resolution 320 x 480, 160 dpi,

scale = 1. Therefore, when used with this variant, AutoScale will have no effect. To see the

effect of AutoScale, you need to add a different sized variant. Go to the Main tab in the

Designer and do the following:

1) add a New Variant, such as 960 x 600, then

2) select the variant in the Layout Variants list:

You can also select the Current Variant (step 2) in the Designer Scripts tab of the Designer:

Now you can use the AutoScale commands, as described next, and see their effect.

How to See the Effect of AutoScale on Text Size
Note: because the Abstract Designer is not WYSIWYG, you will not see the effect of

AutoScale on text size. You must attach the Designer to an emulator or a real device to see

the actual results. Note also: the device will ignore the Current Variant you have selected

and automatically select the variant suitable to the device.

How to Use AutoScale
Often your script will select the AutoScaleRate and then you will AutoScaleAll so that

all views are scaled. So your script might be something like this:

 2.5 Designer Scripts Reference

 - 108 -

AutoScaleRate(0.5)

AutoScaleAll

By changing the value for AutoScaleRate, you can find the best value for different variants.

Occasionally you might need to scale individual views, in which case you would use the

AutoScale function. We describe these functions next:

AutoScaleRate(rate)
Sets the rate value for above scale calculation. The rate determines the change amount in

relation to the device physical size. Example:
AutoScaleRate(0.5)

Value of 0 means no change at all. Value of 1 is almost similar to using %x and %y: If the

physical size is twice the size of the standard phone, then the size will be twice the original

size. Values between 0.2 to 0.5 seem to give good results. If this is not called, rate defaults to

0.3.

If a view has a Text property, its TextSize is also multiplied by the scale value.

Note: AutoScaleRate cannot be called by Basic4Android code, only by a Designer Script.

AutoScaleAll
Scales all the views in the selected layout using the algorithm shown above. Normally you

call it after AutoScaleRate.

AutoScale(View)
Scales the specified view using the scale value calculated as explained above.

Example: AutoScale(btnTest1)

This is equivalent to:
 btnTest1.Left = btnTest1.Left * scale

 btnTest1.Top = btnTest1.Top * scale

 btnTest1.Width = btnTest1.Width * scale

 btnTest1.Height = btnTest1.Height * scale

 btnTest1.TextSize = btnTest1.TextSize * scale

AutoScale multiplies the Left/Top/Width and Height properties by the scale value.

Note: “scale” is not a keyword so it cannot be used in your scripts.

Different Layouts for Portrait and Landscape
A layout rarely looks good in both portrait and landscape mode. For example, a row of

buttons might look better along the bottom in portrait but down the side in landscape.

Therefore, it can be a good idea to create different layouts, one for each orientation. Suppose

we have already created a Designer Script for portrait mode. To make it work for both

portrait and landscape, the Designer Script code must be changed.

For the portrait variant, we keep only the most general code in the All variants script

area of the Main layout file. For example:
'All variants script

AutoScaleRate(0.5)

AutoScaleAll

All the other code is moved to the Variant specific script areas.

 2.5 Designer Scripts Reference

 - 109 -

Scaling strategy
You should decide what will happen with your layout when it runs on a larger device.

Usually some views will be docked to the edges. This can be done easily with a designer

script. For example, to dock a button to the right side:
Button1.Right = 100%x

Some views should fill the available area.

This is done with the SetTopAndButtom and SetLeftAndRight methods:
'Make an EditText fill the available height between two buttons:

EditText1.SetTopAndBottom(Button1.Bottom, Button2.Top)

'Make a Button fill the entire PARENT panel:

Button1.SetLeftAndRight(0, Parent1.Width)

Button1.SetTopAndBottom(0, Parent1.Height)

Editing Views in a program
As well as using the Designer to create a Layout, you can create or modify Views in code.

Example
Here is some code which will produce the following screen:

 2.5 Designer Scripts Reference

 - 110 -

Sub Activity_Create(FirstTime As Boolean)

 Dim i, j, k, nx, ny, x0, x1, x2 As Int

 x0 = 4dip

 x1 = 60dip

 x2 = x0 + x1

 nx = Floor(Activity.Width / x2) - 1

 ny = Floor(Activity.Height / x2) - 1

 k = 0

 For j = 0 To ny

 For i = 0 To nx

 k = k + 1

 Dim btn As Button

 btn.Initialize("btn")

 btn.Color = Colors.Red

 Activity.AddView(btn, x0 + i * x2, x0 + j * x2, x1, x1)

 btn.Text = k

 btn.TextSize = 20

 Next

 Next

End Sub

 2.6 Compiling, Debugging & Testing

 - 111 -

2.6 Compiling, Debugging & Testing

Compiling
To test and later distribute your project, you must compile it either using the Project menu,

the Run icon or Alt-3 (Compile and Run).

Compilation Modes
There are four compilation modes which are selected by a drop-down list box at the top of the

IDE:

Debug Legacy Mode
This mode requires a device or emulator to be attached to the IDE. This option will sign the

package file with a debug key, ready for debugging, and produce a file

projectname_DEBUG.apk in the project\Objects folder. If no device is attached, it will still

compile the code, but produce an error message. See Legacy Debugging for details.

Debug Rapid Mode
This mode requires a device or emulator to be attached to the IDE. This option will sign the

package file with a debug key, ready for debugging, and produce a file

projectname_RAPID_DEBUG.apk in the project\Objects folder. If no device is attached, it

will still compile the code, but produce an error message. See Rapid Debugging for details.

Release Mode
In this mode, the debugger code will not be added to the apk file.

Release (obfuscated)
Basic4Android includes a code obfuscation feature. During compilation, Basic4Android

generates Java code which is then compiled with the Java compiler and converted to Dalvik

(Android byte code format). There are tools that people can use to decompile the Dalvik byte

code which Basic4Android creates back into Java code. The purpose of obfuscation is to make

the decompiled code less readable, harder to understand and make it more difficult to extract

strings like developer account keys.

It is important to understand how the obfuscator works.

 2.6 Compiling, Debugging & Testing

 - 112 -

When compiled in this mode, the debugger code will not be added to the apk file, but the

program file will be modified, as follows:

Strings obfuscation
Any string written in Sub Process_Globals (and only in this sub) will be obfuscated,

making it much harder to extract important keys. The strings are deobfuscated at runtime.

Note: several keys are used during obfuscation including the package name, version name

and version code. Modifying these values with the manifest editor will break the

deobfuscation process, so your code will not run.

Renaming of Variables
The names of global variables and subs are converted to meaningless strings. Local variables

are not affected as their names are lost anyway during the compilation.

The following identifiers are not renamed:

- Identifiers that contain an underscore (which is required for handlers of events).

- Subs that appear in CallSub statements. If the sub name appears as a static string, the

identifier will not be renamed.

- Names of Designer views.

Tip: If, for some reason, you need to prevent the obfuscator from renaming an identifier, you

should add an underscore in the identifier name.

A file named ObfuscatorMap.txt will be created under the Objects folder. This file maps

the original names of identifiers to their obfuscated names. This mapping can be helpful to

analyze crash reports.

Debugging
Debugging is the process of finding “bugs” or faults in your code.

The two major methods for debugging are setting Breakpoints and Logging. There are two

debugging modes in Basic4Android: Legacy Debugging and Rapid Debugging. We describe

these next.

Select the required mode from the toolbar:

Then either select [Project > Compile & Run] or type Alt+1 or click on the blue triangle in the

toolbar, to compile and run the app.

 2.6 Compiling, Debugging & Testing

 - 113 -

Breakpoints
You can create “breakpoints” in your code. When the program runs, it stops when it meets a

breakpoint.

You can mark lines of code as breakpoints. This is done by clicking on the grey margin at the

left of the IDE. The breakpoint is shown as a red dot in the left margin, as a line of code

highlighted in red, and as a red bar in the scroll-bar at the right:

When the program has stopped at a breakpoint, the breakpoint line is highlighted in yellow

in the IDE:

In the app, a blocking dialog with a circular spinning disc and the line number and code at

the breakpoint is shown:

Breakpoint Limitations
 Breakpoints in the following subs will be ignored: Globals, Process_Globals and

Activity_Pause.

 Services - Breakpoints that appear after a call to StartService will be ignored.

 Breakpoints set in Service_Create and Service_Start will pause the program for up

to a specific time (about 12 seconds). This is to avoid Android from killing the Service.

 Events that fire when the program is paused will be executed. Breakpoints in the event

code will be ignored (only when the program is already paused).

Debugger Control
When in either of the debug modes, buttons are available to control the execution of your

program while debugging:

 Continue code execution (equivalent to F5)

 2.6 Compiling, Debugging & Testing

 - 114 -

 Step to the next line (equivalent to F8). This steps through the program line by line,

very useful to see the real program flow and the evolution of variable values.

 Pause the code as soon as possible.

 Stop the current program (equivalent to F11). Also stops the program in the

Emulator. Note: stopping the program in the Emulator or on a device does not stop it in the

IDE.

 If you are using the Legacy Debugger, you will see the Connected Icon which tells you

that the debugger is connected to a device or emulator. Click the icon to detach.

 If you are using the Rapid Debugger, you will see the Restart Program icon, which forces

the code to reload and execute from the beginning.

Debugger Menus
Once the debugger is running, you will see the Debug Menu, the Help Menu and perhaps the

Edit Menu at the top of the IDE.

The Edit Menu is visible only if you are using the Rapid Debugger.

The Debug Menu is:

Continue (F5)

Makes the app continue to run until the next breakpoint.

Step (F8)

Steps to the next line of code. If the current line calls a sub, the first line of the sub will be

executed.

Step Over (F9)

This will step over a sub. So, if the current line calls a sub, the whole sub will be executed

without stepping through each line, and the code will stop at the line after the sub call. If

the current line does not call a sub, the result will be the same as Step (F8).

 2.6 Compiling, Debugging & Testing

 - 115 -

Step Out (F10)

This steps out of the current sub. The code will run until execution has left the current

sub.

Pause

Pause the code as soon as possible.

Stop

Stop the current program (equivalent to F11). Also stops the program in the Emulator.

Note: stopping the program in the Emulator or on a device does not stop it in the IDE.

Remove All Breakpoints

This will clear any breakpoints you have set in the code.

Take Screenshot

This calls the Screenshots dialog box.

The Help Menu is the standard one for Basic4Android.

Legacy Debugging
To use legacy debugging, you must activate the Debug (legacy) option at the top of the IDE,

as shown above. If this option is selected, then the compiled code will contain debugging code.

The debugging code allows the IDE to connect to the program and inspect it while it runs.

When the program starts, it will wait for up to 10 seconds for the IDE to connect. Usually the

IDE will connect immediately. However, if you run your program manually from the phone,

you will see it waiting.

The name of the compiled APK file will end with _DEBUG.apk. You should not distribute this

apk file as it contains the debugging code which adds a significant overhead. To distribute

files, you must select the Release option.

Legacy Debugger Information Area
When the program stops at a breakpoint in legacy mode, you find information about

variables at the bottom of the IDE:

The meaning of the icons on the left are explained under Debugger Control below.

Global variables in Legacy Debugger
This list of the global objects and variables used by the program with their values and

properties can be useful. Hover over the list to see more details.

Note: data sent from the device to the IDE is limited in size, so long strings may be

truncated.

 2.6 Compiling, Debugging & Testing

 - 116 -

When the legacy debugger is running, the code in the IDE is read-only. You cannot change

any of the program text. However, using the Rapid Debugger you can do exactly that.

Local variables in Legacy Debugger
Local variables (variables defined within the current sub) are also listed at the bottom of the

IDE while in debug mode. In addition, you can see the value of variables by hovering the

mouse over a variable within the code:

Hovering the mouse over an object shows its properties:

Rapid Debugging
Version 3 of Basic4Android introduced a very powerful tool, the Rapid Debugger, which

provides features not available in any other native Android development tool. Using this

feature, you can compile and install your app on your device very quickly, usually within a

few seconds. You can modify your code while your app is running and re-deploy it to your

device immediately; you will not need to reinstall it. Similarly, the next time you start

Basic4Android, you will not need to re-install the app to the device.

Limitations of the Rapid Debugger
 If you are using the free Trial Version of Basic4Android, then you will need to install

Java JDK version 6 or 7 on your PC before the Rapid Debugger option will work. See

here for how to install the JDK.

 Execution of apps using the Rapid Debugger is slower than using any of the other

compile options. It is not recommended to use the Rapid Debugger for any apps which

require a lot of computation or graphics manipulation such as games.

 You cannot add or remove Globals variables when using the Rapid Debugger.

 You cannot run the app on a device if it is not connected to the IDE. The reason is that

the app actually runs in a Debugger Engine within the IDE, as explained below.

How the Rapid Debugger Works
The Rapid Debugger sends a simple “Shell App” to the device. This handles the user

interface but provides no other functionality. Your app actually runs in a “Debugger Engine”

which is a virtual device running on your PC, as shown in the following diagram:

 2.6 Compiling, Debugging & Testing

 - 117 -

Thus, when you modify your app, only the code within the Debugger Engine needs to be

changed. This is why deployment is so incredibly quick.

Note that if you add files to your app or modify the manifest, then a new Shell App will need

to be uploaded to the device, but you will not need to re-approve the installation on the

device, so this upload will be rapid.

Note also that, if you are using the Trial Version of Basic4Android and using remote

compilation, the remote server will only need to be accessed in those rare circumstances

when the Shell App needs to be changed. So modifying your app will usually be extremely

rapid, as you normally only change the code in the Debugger Engine. See the limitations

section above for more about using the Rapid Debugger with the Trial Version.

Rapid Debugger Information Area
When the Rapid Debugger meets a breakpoint, information similar to the following is

displayed at the foot of the IDE:

The control icons on the left are described under Debugger Control.

The area on the right contains a tree showing details about all current variables.

If you hover the mouse over a variable name in your code, the tree will automatically scroll to

the corresponding variable.

Editing Code using the Rapid Debugger
The great benefit that the Rapid Debugger offers over the legacy debugger is that the code is

not frozen. You can modify the code and very quickly recompile it simply by saving it (by

using Control + S). This will send the new code to the Debugger Engine and show the

message “Hot code swap completed successfully” at the foot of the IDE.

You can do this whether the code is stopped at a breakpoint or not.

 2.6 Compiling, Debugging & Testing

 - 118 -

Logging
The other useful way of debugging your app is to use logging. This produces messages in the

Logs tab at the right of the IDE:

It shows messages related to the components life cycle (for example when a Sub

Activity_Create runs) and it can also show messages that you specify with the Log

keyword.

Consider the following Sub:
Sub btnTest_Click

 Log ("Button pressed at " & DateTime.Time(DateTime.Now))

 Msgbox ("Test for book", "It works")

End Sub

Run the program. If you are running several devices or emulators you will need to click on

Connect in the Logs tab to connect the logger to the correct device. In the Logs Tab, you will

see the flow of the program:
LogCat connected to: B4A-Bridge: asus Nexus 7-

--------- beginning of /dev/log/main

Installing file.

PackageAdded: package:pennypress.TestForBook

** Activity (main) Create, isFirst = true **

** Activity (main) Resume **

Button pressed at 13:29:00

When Filter is checked (see the image above), you will only see messages related to your

program. When it is unchecked, you will see all the messages running in the system. If you

are encountering an error and do not see any relevant message in the log, it is worth

unchecking the filter option and looking for an error message.

Click Clear to delete the data in the Logs window. Note: the log is maintained by the device.

When you connect to a device, you will also see previous messages.

 2.6 Compiling, Debugging & Testing

 - 119 -

Testing your App
There are several options for testing your app:

 Connect to a real device with B4A-Bridge.

 Connect to a real device in USB debugging mode

 Android emulator

B4A-Bridge
B4A-Bridge is a way to debug your app on a real device. You need to connect your PC to the

device via wireless connections over the local network or Bluetooth connections. This is the

recommended option. It is easier than USB connection and faster than an emulator. We

explain the details in this tutorial.

USB Debugging
Unfortunately, not all devices support USB debugging. In that case, you should use one of

the following options. To use USB debugging, you will need to first configure your device to

support USB debugging. You might find this in one of the following, or perhaps something

similar, depending how menus are configured on your device:

[Settings > Development > USB debugging]

[Settings > Developer Options > USB debugging]

[Settings > Applications > Development > USB debugging]

You will also need to install a Windows driver specific to your device. You should download

the Google USB Driver in the Android SDK Manager. If this driver doesn’t work, you must

search for a specific driver for your device. There are more details about connecting your

device via USB here and here.

The Emulator or Android Virtual Device (AVD) Manager
Another way to run your app is by using an emulator. These are created and managed by the

AVD Manager. Note: an emulator can be quite memory-hungry.

Introduction
The AVD (Android Virtual Device) Manager is a utility provided by Google as part of the

Android SDK which allows you to create emulated Android devices. You can run the AVD

from the IDE by clicking on [Tools > Run AVD Manager].

You can create as many devices as you require, with different hardware specifications and

with different screen resolutions. You are not restricted to running just one emulated device

at a time. You can start as many devices as you need (dependent upon the memory on your

computer of course) and you can keep those devices running as you edit and compile your

code within Basic4Android. But note that emulators can consume a lot of memory.

http://bit.ly/141xVIP
http://bit.ly/141zLJG

 2.6 Compiling, Debugging & Testing

 - 120 -

How Basic4Android interacts with Emulated Devices
On successful code compilation, Basic4Android will look for any active Device Emulators, or

real devices which have been connected to your computer and will provide a list of those

devices. You can then choose which device - real or emulated - to run the compiled code on

from that list.

Since you can have multiple emulated devices running at one time, this means that you can

test your code against several different devices in a reasonably fast manner - you just run

your code against each device in the list.

Using the Android Virtual Device Manager
In the IDE, select [Tools > Run AVD Manager]. A window similar to the following appears:

Missing Tabs
Exactly what you see will depend on which Revision of the Android SDK Tools you have

installed on your PC. Those with newer versions will see the two tabs, Android Virtual

Devices and Device Definitions, below the menu. Those with older versions will simply see a

list of the existing Android Virtual Devices.

How to upgrade
If you need access to the Device Definitions tab, described below, then you should use the

[Tools > Manage SDK…] menu and upgrade to a later version of the Android SDK Tools, for

example 22.n.n:

 2.6 Compiling, Debugging & Testing

 - 121 -

Android Virtual Devices (AVDs)
The emulators you will run are Android Virtual Devices (AVD). Each one is based upon a

Device Definition. Initially, the AVD list will be empty, but there is a pre-populated list of

Device Definitions.

Creating an AVD
Every virtual device is based upon a Device Definition. The emulator comes with a list of

device definitions pre-defined, and you can create new ones using the Device Definitions tab.

Choose “New”. A dialog box will open for creating a new emulator:

 2.6 Compiling, Debugging & Testing

 - 122 -

AVD Name
A name for your Virtual device. Spaces are not allowed in this field. You can give it a name

like “HTCDesireHD” or “Xoom10.1”, but since you can use a particular size to emulate

different devices which have the same specs, you may want to use names like “480x320x160”

and “800x480x240”, where the last number is the pixel density of the layout.

 2.6 Compiling, Debugging & Testing

 - 123 -

Device
Choose the device upon which this AVD will be based. Note: you can also create new devices

using the Device Definitions tab in the AVD Manager.

Target
The options available here depend upon which Android APIs you have installed using the

Android SDK Manager. Basic4Android supports all versions of the API from 1.6.

CPU / ABI

Keyboard
This option is intended for devices which have an external hardware keyboard.

It is recommended to leave this option selected. This allows you to use the keyboard on your

computer to enter data into fields in the emulator. Otherwise, you have to use the emulator’s

keyboard.

Skin
If you select this option, you will see a keyboard to the right of the emulator screen

The keyboard option determines whether these keys are active.

Front / Back Camera
This allows you to specify whether a front and/or back camera (if present in this Device

Definition) is inactive, emulated or uses a webcam attached to the computer on which the

AVD is running.

 2.6 Compiling, Debugging & Testing

 - 124 -

Memory Options
These will be set by the Device Definition you have selected but can be over-ridden.

RAM
Set the amount of RAM in Mb. Under Windows, emulating RAM greater than 768 Mb might

fail if you do not have enough RAM available on your PC. If the emulator fails to run, reduce

the amount of RAM allocated.

VM Heap
The VM Heap specifies the heap size of the virtual machine in MB. You should increase the

heap size if you allocate more RAM. The heap is used to store instance variables of

instantiated class objects. Garbage collection is used by the VM to free the heap space.

Internal Storage
This assumes a default value of 200 Mb but can be changed. Enter the number and select the

units (Kb, Mb or Gb).

SD Card

Size
This allows you to specify the size of the SD card fitted to your device. Note: this will

consume hard disk space, so don’t be tempted to create a 32GB card by entering 32000 or

else you will be waiting a long time as the SDK creates the SD card, and consumes 32GB of

your drive!

The minimum size is 9Mb, and a useful size is probably 16 or 32 MB. Enter the number and

select the units (Kb, Mb or Gb). It might be useful to have an emulator without an SD card so

you can check that your app will still work.

File
This allows you to specify a File which represents an SD card. This allows you to share

virtual SD cards between emulators.

In order to create a File, you need to use a tool which is provided by the Android SDK,

“mksdcard”, and a reference to this tool can be found in the Android Documentation here:

http://developer.android.com/guide/developing/tools/mksdcard.html

For example, if you wanted to create a file with a volume name of “mySDCard”, and a size of

128M, you would follow these steps:

 Open a Command Prompt Window (on Windows 7, this is found under “All Programs-

Accessories-Command Prompt”)

 If your computer’s Path does not contain the Android SDK (which it probably doesn’t),

you will need to navigate to the folder “C:\Program Files (x86)\Android\android-sdk-

windows\tools” using DOS commands. On 32-bit systems, the path will be “C:\Program

Files\Android\android-sdk-windows\tools”.

 Enter “mksdcard -l mySDCard 128M mySDCardFile.img”

 This will create a file called mySDCardFile.img. You can then use this as your SD Card

file in the AVD Manager.

http://developer.android.com/guide/developing/tools/mksdcard.html

 2.6 Compiling, Debugging & Testing

 - 125 -

For Mac users, If you are running Basic4Android inside a Virtual machine running a

Windows O/S, you can go back to the Mac O/S and mount this SD image file. This allows you

to copy files onto the SD Card. These files will be available on the SD Card when viewed on a

Virtual Device using this SD Card file.

Emulation Options

Snapshot
Taking a snapshot means that the emulator will launch to that saved state, thus launching

faster. For example, adding the Snapshot option can change the startup time from 24

seconds to 2 seconds! The first time it runs after you enble this option, the launch dialog box

shows options to save snapshop and launch from the snapshop:

The first time it runs, the emulator starts normally. But when it closes, a snapshot will be

saved so the next time it starts, this saved state will be used to launch the emulator much

more quickly.

Use Host GPU
This option allows the emulator to use the graphics processing unit (GPU) of the host

machine the emulator is running on. This results in a faster emulator. This option is not

available in some older version of the SDK.

Creating a Device Definition
As well as using the pre-defined device definitions, you can create your own. Within the AVD

Manager, click Device Definitions tab and click the New Device… button:

 2.6 Compiling, Debugging & Testing

 - 126 -

The following dialog will open:

The main parameters you need to set are Name, Screen Size (in inches) and Resolution

(width and height in pixels). The Size, Screen Ratio and Density parameters on the

right are not critical. More information can be found at

http://developer.android.com/guide/practices/screens_support.html

Running a Virtual Device and scaling for Real Size

Emulation
From the “Virtual Devices” section of the Android SDK AVD Manager, select the Virtual

Device that you want to run from the list of defined devices, and then click “Start”. You will

be presented with the Launch Options dialog box (shown above). This is where you can set

the size of your Virtual device screen as it appears on your computer monitor.

http://developer.android.com/guide/practices/screens_support.html

 2.6 Compiling, Debugging & Testing

 - 127 -

The dialog box will tell you what the screen resolution has been set to - this refers to the

Virtual Device resolution. It will also tell you what the pixel density is for that device. These

parameters are the parameters that were entered when the device was set up.

You have two options as to how AVD Manager will present your Virtual Device on your

computer monitor: No Scaling and Scale display to real size. These are described

next.

No Scaling
If you leave the Scale display to real size option unchecked, then AVD Manager will

directly map the Virtual Device screen’s pixels to your monitor’s pixels, one for one. A 1280

by 800 screen will therefore take up 1280x800 pixels on your monitor. A 480 by 800 screen

will take up 480 by 800 pixels on your monitor. This could create problems for you - for

example, if you’re running on a 1024 by 768 monitor and you try and run a 1280 by 800

Virtual device, the Virtual Device screen will be bigger than your monitor, so you’ll only see

part of the Virtual Device screen.

Scale display to real size
If you select the Scale display to real size option, then AVD Manager will attempt to

scale your device so that it shows with the correct physical dimensions on your computer

monitor. To do this, AVD Manager needs some more information about your requirement, so

you need to fill in the following fields:

Screen Size (inches)
This is the length of the diagonal measured from top left to bottom right across your desired

device screen. (This is the standard used when quoting screen sizes). So if you want to

emulate an HTC Desire HD, you would enter 4.3 here as that device has a 4.3in screen. For

something like the Xoom, you would enter 10.1, as that device has a 10.1 inch screen. The

emulator will try and make your emulated device screen match that size on your computer

monitor.

Monitor dpi
Scaling involves interpolating between real pixel sizes (on your computer monitor) and

emulated device pixel sizes (on your emulated device), so AVD Manager needs to know about

your monitor. Click on the “?” next to this option, and you will see the Monitor Density

dialog box. These values refer to your computer monitor, not the emulated device. This little

dialog will try and work out a monitor density for you.

The resolution shown in the Resolution dropdown menu should match your computer

monitor’s resolution. The one bit that this dialog doesn’t know is your computer monitor size

- so you need to enter that into the Screen Size dropdown box. With that piece of

information, AVD Manager can now scale the Virtual Device correctly so that it appears to

be the correct size on your computer monitor.

Having set up all the required parameters, click on Launch to launch the desired Virtual

Device. There will be a delay as the Virtual Device is created (if this is the first time it has

been used) or launched. Be patient - this can take some time.

Eventually your device will appear in a window of its own. You may have to unlock the

device by sliding the green Android button across the screen.

 2.6 Compiling, Debugging & Testing

 - 128 -

Interacting with your Virtual Device
When the emulator is running, you can interact with the emulated mobile device just as you

would an actual mobile device, except that you use your mouse pointer to “touch” the

touchscreen and your keyboard keys to “press” the simulated device keys. The table below

summarizes the mappings between the emulator keys and and the keys of your keyboard.

One of the most useful functions is CTRL-F11 - this rotates the Virtual Display from

landscape to portrait and back.

 2.6 Compiling, Debugging & Testing

 - 129 -

PC Keyboard Shortcuts
Emulator Function PC Keyboard Key

Home Home

 (left softkey) F2 or Page-up button

Star (right softkey) Shift-F2 or Page Down

Back ESC

Call/dial button F3

Hangup/end call button F4

Search F5

Power button F7

Audio volume up button KEYPAD_PLUS, Ctrl-5

Audio volume down button KEYPAD_MINUS, Ctrl-F6

Camera button Ctrl-KEYPAD_5, Ctrl-F3

Switch to previous layout orientation (for

example, portrait, landscape)

KEYPAD_7, Ctrl-F11

Switch to next layout orientation (for example,

portrait, landscape)

KEYPAD_9, Ctrl-F12

Toggle cell networking on/off F8

Toggle code profiling F9 (only with -trace startup

option)

Toggle fullscreen mode Alt-Enter

Toggle trackball mode F6

Enter trackball mode temporarily (while key is

pressed)

Delete

DPad left/up/right/down KEYPAD_4/8/6/2

DPad center click KEYPAD_5

Onion alpha increase/decrease KEYPAD_MULTIPLY(*) /

KEYPAD_DIVIDE(/)

Mac Keyboard Shortcuts
The following assumes you are using Parallels to run Windows on a Mac.

Emulator Function Mac Keyboard Key (in Parallels)

 (left softkey) fn-F2

Back ESC

Call/dial button fn-F3

Hangup/end call button fn-F4

Search fn-F5

Power button fn-F7

Toggle cell networking on/off fn-F8

Toggle code profiling fn-F9

Enabling Hardware Buttons
By default, the buttons on the emulator are disabled in the AVD, as shown by the following:

http://www.parallels.com/

 2.6 Compiling, Debugging & Testing

 - 130 -

You cannot use the above keys. If you want to activate these Hardware Buttons, you need to

modify the Device Definitions. To do this, find the Device Definitions tab in the Android

Virtual Device Manager. Every AVD is based upon a Device Definition. Select the Device

Definition for the AVD you want to modify.

Select the device you’re using and click Edit…. You will see the following

 2.6 Compiling, Debugging & Testing

 - 131 -

Under Input you should enable Keyboard.

Now when you run an AVD based on this device, the keys will work.

You enable them with the option “Display a skin with hardware controls”:

 2.6 Compiling, Debugging & Testing

 - 132 -

Exchanging files with the PC
To get access to files in the Emulator, you can use the Dalvik Debug Monitor.

The name is ddms.bat and it is located in the folder where you copied the Android SDK, for

example C:\android-sdks\tools

Make sure that an Emulator is running. Run the ddms.bat file. A window like this one will

appear:

 2.6 Compiling, Debugging & Testing

 - 133 -

Wait a moment and the Dalvik Debug Monitor will be displayed. You might see a message

from Google asking if you are willing to send them certain statistics. You can decide whether

you agree or not. Then you should see something like this:

In the upper-left panel you should see a reference to the currently running Emulator.

Select it. Then select the menu [Device > File Explorer...]

The Device File Explorer will be displayed, something like this:

 2.6 Compiling, Debugging & Testing

 - 134 -

In data\data\ , you will find files your app has copied to File.DirAssets. You need to

search for the Package Name you gave your app in the IDE [Project > Package Name] menu.

In the mnt\sdcard folder, you will find files your app has created in

File.DirRootExternal.

In the upper left corner you see three icons:

 Pull file from device, copies the file to the PC

 Push file onto device, copies a file to the device

 Deletes the file

Clicking on either or shows the standard Windows file explorer to select the

destination or source folder for the selected file.

If the Dalvik Debug Monitor doesn’t run, you will need to add the path where the ddms.bat

file is located to the environment variables.

 From the desktop, right-click My Computer and click Properties.

 In the System Properties window, click on the Advanced tab.

 In the Advanced section, click the Environment Variables button.

 Finally, in the Environment Variables window, highlight the Path variable in the

Systems Variable section and click the Edit (Modifier) button. Add or modify the path lines

with the paths you wish the computer to access. Note: directories are separated with a

semicolon.

 2.6 Compiling, Debugging & Testing

 - 135 -

Troubleshoot Connection Problems
Sometimes when you run an app or try connect to the Emulator, you will see the following

error:

This indicates that Emulator is still running a program or that the Emulator is still

connected to another project. In this case try one of the following:

 Use the [Tools > Restart ADB Server] menu option

 Go to the Emulator and press the Back button until you reach the Emulator’s home

screen, then try to connect again.

 Close the Emulator and start another.

 If this problem happens repeatedly, try increasing the Process Timeout in the [Tools >

Configure Process Timeout] menu.

 2.7 Graphics and Drawing

 - 136 -

2.7 Graphics and Drawing
The details of the core Basic4Android drawing types are explained in the Core Objects

chapter. Here we explain how to use them.

Canvas Object
To draw graphics, we normally use a Canvas object. A Canvas is an object that draws on

other views or editable (also called “mutable”) bitmaps.

Initializing a Canvas
When we initialize the Canvas, we must specify which view or bitmap it can draw onto. The

simplest case is to draw onto the Activity background:
Dim Canvas1 As Canvas

Canvas1.Initialize(Activity)

Then we can draw onto the Canvas:
Canvas1.DrawLine(20dip, 20dip, 160dip, 20dip, Colors.Red, 3dip)

When our drawing is complete, we make the Canvas draw itself onto its target by making

the target invalid:
Activity.Invalidate

More Details
When the Canvas is initialized and set to draw on a view, a new mutable bitmap is created

for that view background, the current view’s background is first copied to the new bitmap

and the Canvas is set to draw on the new bitmap. In this way, we can prepare our drawing

over the top of the old background.

Canvas drawings are not immediately updated on the screen. You should call the target view

Invalidate method to make it refresh the view. This is useful as it allows you to make

several drawings and only refresh the display when everything is ready.

The Canvas can be temporarily limited to a specific region (and thus only affect this region).

This is done by calling ClipPath. Removing the clipping is done by calling RemoveClip.

You can get the bitmap that the Canvas draws on with the Bitmap property.

This is an Activity object; it cannot be declared under Sub Process_Globals.

A Canvas can draw onto the following views:

Activity, ImageView, Panel and Bitmap

A bitmap must be “mutable” in order for a Canvas to draw upon it.

Most common Canvas functions
See the Canvas object for details.

 2.7 Graphics and Drawing

 - 137 -

DrawBitmap (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As

Rect)
Draws a source bitmap (or part of it) onto a destination. If the source and destination sizes

are different, the destination drawing is stretched or shrunk.

DrawBitmapRotated (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As

Rect, Degrees As Float)
Same functionality as DrawBitmap, but with a rotation around the centre of the bitmap.

DrawCircle (x As Float, y As Float, Radius As Float, Color As Int,

Filled As Boolean, StrokeWidth As Float)
Draws a circle with left edge of x and top of y. It can be filled with a given color and, if filled,

the perimeter can be outlined with a stroke of a given width.

DrawColor (Color As Int)
Fills the whole view with the given color. The color can be Colors.Transparent making the

whole view transparent.

DrawLine (x1 As Float, y1 As Float, x2 As Float, y2 As Float, Color

As Int, StrokeWidth As Float)
Draw a straight line from (x1,y1) to (x2,y2) with specified color and stroke width (in dips).

DrawRect (Rect1 As Rect, Color As Int, Filled As Boolean,

StrokeWidth As Float)
Draw a rectangle with given size, color, whether filled, and line width.

DrawRectRotated (Rect1 As Rect, Color As Int, Filled As Boolean,

StrokeWidth As Float, Degrees As Float)
Same as DrawRect, but rotated by the given angle

DrawText (Text As String, x As Float, y As Float, Typeface1 As

Typeface, TextSize As Float, Color As Int, Align1 As Align)
Draws the given text in the given typeface, size and color.

Align1 is the alignment relative to the chosen position, and can have one of the following

values: LEFT, CENTER, RIGHT.

DrawTextRotated (Text As String, x As Float, y As Float, Typeface1 As

Typeface, TextSize As Float, Color As Int, Align1 As Align, Degree

As Float)
Same as DrawText, but with the text rotated.

 2.7 Graphics and Drawing

 - 138 -

Full details of all Canvas methods can be found here.

Example Program
In this example, we draw some sample shapes on the Main Activity. We put the code in the

Sub Activity_Resume because this is always run whenever the app starts or restarts.

Thus, we do not need to call Activity.Invalidate. We also add a button and draw a circle

when it is pressed. In this case, we need to call Activity.Invalidate so that the Canvas

will be transferred to the Activity’s background.

Sub Globals

 Dim cvsActivity As Canvas

 Dim btnTest As Button

End Sub

Sub Activity_Create(FirstTime As Boolean)

End Sub

Sub Activity_Resume

 ' create a button

 btnTest.Initialize("btnTest")

 Activity.AddView(btnTest,10dip, 240dip, 200dip, 50dip)

 btnTest.Text = "Draw Another Circle"

 ' initialize the canvas

 cvsActivity.Initialize(Activity)

 ' draw a horizontal line

 cvsActivity.DrawLine(20dip, 20dip, 160dip, 20dip, Colors.Red, 3dip)

 ' draw an empty rectangle

 Dim rect1 As Rect

 rect1.Initialize(50dip, 40dip, 150dip, 100dip)

 cvsActivity.DrawRect(rect1, Colors.Blue, False, 3dip)

 ' draw an empty circle

 cvsActivity.DrawCircle(50dip, 200dip, 30dip, Colors.Green, False,

3dip)

 ' draw a text

 cvsActivity.DrawText("Test text", 50dip, 150dip, Typeface.DEFAULT,

20, Colors.Yellow, "LEFT")

 ' draw a filled circle with a boarder

 cvsActivity.DrawCircle(50dip, 340dip, 30dip, Colors.Green, True,

3dip)

 ' the above will always be drawn because

 ' the Activity is automatically redrawn on activity_resume

End Sub

Sub btnTest_Click

 cvsActivity.DrawCircle(100dip, 40dip, 30dip, Colors.Green, False,

3dip)

 ' make the drawing visible

 2.7 Graphics and Drawing

 - 139 -

 Activity.Invalidate

End Sub

The resulting screen is:

More Complex Examples
A good way to learn is to play with projects and figure out how they work. You can download

several graphics example projects from this book’s resource page. The RotatingNeedle project

will draw a compass which will rotate either the compass or the needle.

http://resources.basic4android.info/

 2.7 Graphics and Drawing

 - 140 -

It uses a Timer to control the rotation.

The SimpleDrawFunctions project uses more common drawing functions and Panels which

can be shown or hidden with buttons.

The blue circle with a transparent center can be dragged around the screen.

 2.7 Graphics and Drawing

 - 141 -

Drawing Methods
There are three main ways you can draw:

 By setting the properties of View Drawables

 By copying BitMaps to Panels or ImageViews

 By drawing lines or other shapes

View Drawables
Views are the objects shown on an Activity. They each have default backgrounds when they

are defined either in the Designer or by code.

Drawables
Objects such as BitmapDrawable, ColorDrawable, GradientDrawable,

StateListDrawable and the background of a View are termed “drawables” in Android,

which is a concept meaning “capable of being drawn”.

These objects can be drawn onto a canvas in various ways, for example, using

Canvas.DrawDrawable.

Background Property
There exist three drawables which can be assigned to the Background property of various

objects, such as the Activity itself:

ColorDrawable

The ColorDrawable object has a solid single color. The corners can be rounded or not.

GradientDrawable

The GradientDrawable object has two colors with a gradient change from the first to the

second color.

BitmapDrawable

The BitmapDrawable object has two properties: Bitmap and Gravity. The

BitmapDrawable object has no rounded corner property; if you want rounded corners; they

must be part of the bitmap.

You can define all of these properties in the Designer, but in the following example; we define

them in code as backgrounds of panels. (If you want to run this you will need to provide your

own background.png file, which you would add to the Files folder of your project).

Example Code

Sub Globals

 Dim pnlColor As Panel

 Dim pnlGradient As Panel

 Dim pnlBitmap As Panel

End Sub

Sub Activity_Create(FirstTime As Boolean)

 2.7 Graphics and Drawing

 - 142 -

 pnlColor.Initialize("")

 Activity.AddView(pnlColor, 10%x, 40dip, 80%x, 80dip)

 Dim cdwColor As ColorDrawable

 cdwColor.Initialize(Colors.Red, 5dip)

 pnlColor.Background = cdwColor

 pnlGradient.Initialize("")

 Activity.AddView(pnlGradient, 10%x, 140dip, 80%x, 80dip)

 Dim gdwGradient As GradientDrawable

 Dim Cols(2) As Int

 Cols(0) = Colors.Blue

 Cols(1) = Colors.White

 gdwGradient.Initialize("TOP_BOTTOM", Cols)

 gdwGradient.CornerRadius = 10dip

 pnlGradient.Background = gdwGradient

 pnlBitmap.Initialize("")

 Activity.AddView(pnlBitmap, 10%x, 250dip, 80%x, 80dip)

 Dim bdwBitmap As BitmapDrawable

 bdwBitmap.Initialize(LoadBitmap(File.DirAssets, "background.png"))

 bdwBitmap.Gravity = Gravity.FILL

 pnlBitmap.Background = bdwBitmap

End Sub

The result would be:

StateListDrawable
A StateListDrawable is a drawable object that holds other drawables and chooses the

current one based on the view’s state. It can be defined either in code:
Dim sld As StateListDrawable

or in the Designer as the Background property of Buttons.

 2.7 Graphics and Drawing

 - 143 -

There are two options for the Drawable property of a button:

 DefaultDrawable, which is set by default and uses default colors

 StatelistDrawable, which allows you to chose custom colors

A button with the StatelistDrawable property has three states:

 Enabled Drawable – What you see when the button is enabled

 Disabled Drawable – What you see when it’s disabled

 Pressed Drawable – What it looks like when pressed

Each state has its own Drawable, which could be either ColorDrawable,

GradientDrawable or BitmapDrawable.

Example Project
For a sample project which uses both code and a Designer-created layout to create buttons

with a StateListDrawable set to ColorDrawable, GradientDrawable and

BitmapDrawable, download the ButtonStateDrawables project from this book’s resources

page. It produces the following:

NinePatchDrawable
Android supports a special format of PNG images that can be resized by replicating specific

parts of the image. These images also include padding information. Such images are named

“nine-patch images”. You can read more about this format here.

http://resources.basic4android.info/
http://resources.basic4android.info/
http://developer.android.com/guide/topics/graphics/2d-graphics.html#nine-patch

 2.7 Graphics and Drawing

 - 144 -

The Android SDK includes a tool named draw9patch.bat that can help you with building and

modifying such images. This tool is available in the Tools folder of your Android SDK. You

can read more about it here.

Example Project
NinePatchExample is a simple example of a project which uses SetNinePatchDrawable to

demonstrate the power and usage of NinePatchDrawable.

Note: this project requires the use of the Reflection library, so it cannot be run with the Trial

Version of Basic4Android. The project is available from this book’s resources page, and

produces the result shown below:

Drawing Bitmaps on Panels or ImageViews
The second main way to draw is by using a Canvas to draw a bitmap onto a Panel or

ImageView. Several layers may be needed to achieve the required effect. If the image needs

to be changed often, then you would draw onto a canvas first. The code to draw is essentially:

Dim cvs As Canvas

Dim imv As ImageView

Dim img As Bitmap

Dim Rect1 As Rect

imv.Initialize("")

Activity.AddView(imv, 0, 0, 100%x, 100%y)

cvs.Initialize(imv)

img.Initialize(File.DirAssets, "horse.png")

Rect1.Initialize(0, 45%y, img.Width, 45%y + img.Height)

cvs.DrawBitmap(img, Null, Rect1)

imv.Invalidate2(Rect1)

http://developer.android.com/intl/fr/guide/developing/tools/draw9patch.html
http://resources.basic4android.info/

 2.7 Graphics and Drawing

 - 145 -

“Layers” is an example project, whose source code is available from this book’s resource

webpage. It uses DrawBitmap with two ImageViews to animate a horse galloping across a

moving background.

The ImageView, which shows the horse, is transparent and is drawn by a Canvas. The

background ImageView merely moves so it does not require a Canvas. There are two Timers

to control the movements of horse and background.

Diagrams / Charts
The third main way to draw is by drawing lines, circles, etc., to create the required images.

The Canvas object has the following methods which allow you to draw: DrawCircle,

DrawLine, DrawOval, DrawOvalRotated, DrawPath, DrawPoint, DrawRect,

DrawRectRotated, DrawText and DrawTextRotated. You can specify their positions, colors,

width of the line and (for closed shapes) whether they are filled.

Oscilloscope is a demonstration of this technique, written by Klaus Christl.

The project can be downloaded from the Basic4Android Book page

Charts Framework
The Charts Framework module allows to draw several types of diagrams:

 Pie charts

 Bar charts

 Stacked Bar charts

http://pennypress.co.uk/?p=86
http://pennypress.co.uk/?p=86
http://resources.basic4android.info/

 2.7 Graphics and Drawing

 - 146 -

 Curves

The Charts Framework is a code module (not a library) charts.bas which must be included in

your project if you wish to use it. It can be downloaded here: Charts Framework

http://bit.ly/10enSTK

 2.8 Databases

 - 147 -

2.8 Databases

Database fundamentals
Android supports the SQLite database engine which your app can use to store data on the

device. Basic4Android provides DBUtils which allow you to easily manipulate tables and

data without any special knowledge. If you need something more sophisticated, you can write

commands in the SQL database manipulation language.

First, let’s look at some fundamental facts about databases.

Database
A database is a collection of data organised into tables, fields and records. A database

management system (DBMS) such as SQLite allows the creation of these structures and lets

you input and retrieve data.

Table
Data within a database is organised into tables. A table corresponds to an object about which

data is to be stored. For example, a table could contain information about cities or countries.

Record
A record is the data about one object in a table. Thus, the city table might contain one record

for Toyko and a different one for London.

A table is often pictured as an array, like a spreadsheet in which the rows contain the

records.

Field
The fields within a table are the individual pieces of information which need to be stored for

the objects in the table. For example, the city table might store City Name, Country and

Population fields.

If a table is pictured like a spreadsheet, then the columns would contain the fields:

 2.8 Databases

 - 148 -

Primary Key
Every table should contain one special field, called the primary key, which is used to quickly

identify and locate a single record. In the country table, we might want to use the city name

as the key, but that would cause a problem if two cities in different countries share the same

name. So it is safest to create a special key field, using an integer, which is usually

incremented automatically when a new record is added.

Field Type
The DBMS needs to know what type of data will be added to each field. Typical types are:

NULL: The value is a Null value.

INTEGER: The value is a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes depending on the

magnitude of the value.

REAL: The value is a floating point value, stored as an 8-byte IEEE floating point number.

TEXT: The value is a text string, stored using the database encoding (UTF-8 by default for

Android).

BLOB: The value is a blob of data, stored exactly as it was input.

Relational Data
Let us look again at our Country table.

Because countries contain many cities, the name of each country occurs more than once. So if

the name of the country changes, we would need to change many records. Also, it would be

very slow to find every city belonging to a particular country. A better way to store this data

would be to have two tables, one for cities and one for countries:

 2.8 Databases

 - 149 -

One of the benefits of most DBMS is that you can establish links (or relationships) between

tables. Thus, for example, you might have a city table and a country table. Instead of the

name of the country, we store only its key in the city table. To find which country a city

belongs to, we look up its country key in the country table.

Database Files
In SQLite, a database is contained within a single file. You can create this file before you

publish your app, or your app can create the database from scratch. If you want to ship your

database file with your app, you should copy the file into the Files folder of your project.

Your app will need to copy the database to a writable location because it is not possible to

access a database located in File.DirAssets. You can use CopyDBFromAssets to copy it.

KeyValueStore Class
Note: the additional KeyValueStore class provides a useful way to easily store data to

persistent storage using an SQLite database in a transparent fashion. It can be used, for

example, to store user preferences before Android calls Activity_Pause, then restore them

on Activity_Resume.

Encrypting Databases
The SQLCipher additional library allows you to encrypt the SQLite database file.

http://bit.ly/165Z6Uq

 2.8 Databases

 - 150 -

Database Administration

DBMS Tools
While it is possible to create a database from within your app using SQL, it is sometimes

necessary to create it during the development process and ship it with your app (see the

previous section). The easiest way to create a database is to use one of the following tools.

SQLiteBrowser
SQLite Database Browser is a freeware, public domain, open source visual tool used to

create, design and edit database files compatible with SQLite. It is meant to be used for

users and developers that want to create databases, and edit and search data using a

familiar spreadsheet-like interface, without the need to learn complicated SQL commands.

It has an excellent GUI which lets you create and manipulate SQLite databases without

SQL, but also lets you run SQL against them.

This tool is not currently being maintained, but it is very valuable nevertheless.

http://sourceforge.net/projects/sqlitebrowser/

SQLiteSpy
For those who know SQL, if you want an SQL-based database management tool to create

SQLite databases, try SQLiteSpy, a fast and compact GUI database manager for SQLite. It

reads SQLite3 files and executes SQL against them. Its graphical user interface makes it

very easy to explore, analyze, and manipulate SQLite3 databases.

It is frequently updated. The problem with it is that it relies entirely upon SQL. Unlike

SQLiteBrowser, it has no GUI tools for table manipulation. http://bit.ly/1agKxQx

SQL Object
This is the main object which accesses a database. It is defined in the SQL Library. Before

you can use SQL, you need to reference the library and declare the object, as follows.

Reference SQL Library
Your project needs to reference the SQL library, even if you do not want to write SQL

yourself, since DBUtils needs it. Use the Libs Tab within the IDE to create the reference.

Declare SQL Object
For the SQL Library to work, you need to declare an SQL object in Process_Globals:
Sub Process_Globals

 Dim SQL1 As SQL

End Sub

Initialize SQL Object
As well as declaring the SQL Object, you must initialize it. This ties the SQL to the named

database file and opens the database file.

http://sourceforge.net/projects/sqlitebrowser/
http://bit.ly/1agKxQx

 2.8 Databases

 - 151 -

Note that a new database will be created if it does not exist and only if Initialize’s third

parameter CreateIfNecessary is true.

You can have several database files open by using multiple SQL Objects. See the File

Location section for information on where to store your files.

Example
Sub Activity_Create(FirstTime As Boolean)

 If FirstTime Then

 SQL1.Initialize(File.DirRootExternal, "1.db", True)

 End If

End Sub

DBUtils

DBUtils Fundamentals
DBUtils is a code module which lets you manipulate databases without writing much SQL.

However, it is probable you will still need a little SQL, which we explain in the SQLite

Reference section.

Installing DBUtils
DBUtils is a code module and not a library, so you have to include it in your project:

 First, see here to find the DBUtils web page, scroll down to the bottom of the tutorial and

download the zip file.

 Unzip the file into a folder. You might want to study the project contained in that folder

to learn about how to use DBUtils.

 When you want to use it in your own project, add DBUtils.bas to your project with the

menu [Project > Add Existing Module]. Navigate to the DBUtils project and select

DBUtils.bas.

 Click Open. A message will appear telling you the file has been copied to your project,

and “DBUtils” will appear in the Modules tab (on the right of the IDE) and in the

modules tabs (near the top of the IDE).

Preliminary SQL Steps

SQL Object
You need to reference the SQL Library and declare the object, as described above.

Versioning
Your database structure might change over time.

DBUtils introduces the concept of database version, so that your code can set and test the

version number of the database and update it if necessary. Use the functions GetDBVersion

and SetDBVersion to control the version of your database.

DBUtils Field Types
DBUtils includes the following which are used as constants for defining field types:

http://bit.ly/1cUgfEi

 2.8 Databases

 - 152 -

DB_BLOB

DB_INTEGER

DB_REAL

DB_TEXT

For an example, see CreateTable

DBUtils Functions

CopyDBFromAssets (FileName As String) As String
If you have shipped your database file with your app (by adding it in the Files tab), then the

database must be copied to a writable location because it is not possible to access a database

located in File.DirAssets. You can use CopyDBFromAssets to copy it. Note: If the

database file already exists, then no copying is done.

Location of Database
If the storage card is available, this method copies the database to the storage card folder

File.DirDefaultExternal. If the storage card is not available, the file is copied to the

internal folder File.DirInternal. The target folder is returned.

Creating Tables
You can use a DBMS tool to create your database and its tables before shipping your app,

then use CopyDBFromAssets to move it into storage, or you can create tables when the app

is running using CreateTable.

CreateTable (SQL As SQL, TableName As String, FieldsAndTypes As Map,

PrimaryKey As String)
This function creates a new table with the given name within the file previously opened

when the SQL object was initialized.

FieldsAndTypes – A map with the field names as keys and the types as values.

You can use the DBUtils Field Types for the types.

PrimaryKey – The column that will be the primary key. Pass an empty string if not needed.

Example:
Dim m As Map

m.Initialize

m.Put("Id", DBUtils.DB_INTEGER)

m.Put("First Name", DBUtils.DB_TEXT)

m.Put("Last Name", DBUtils.DB_TEXT)

m.Put("Birthday", DBUtils.DB_INTEGER)

DBUtils.CreateTable(SQL, "Students", m, "Id")

DeleteRecord (SQL As SQL, TableName As String, WhereFieldEquals As

Map)
Deletes the specified record in TableName.

WhereFieldEquals is a map in which the field names are the keys and the values to search

for are the map’s values.

DropTable (SQL As SQL, TableName As String)
Deletes the given table.

 2.8 Databases

 - 153 -

ExecuteHtml(SQL As SQL, Query As String, StringArgs() As String, Limit

As Int, Clickable As Boolean) As String
Creates HTML which, when viewed in a WebView, displays the data in a table. This method

can be used rapidly to visualize data during development, or to show reports to users. You

can change the table style by modifying the Cascading Style Sheet (CSS) variable HtmlCSS

within Process_Globals of the DBUtils module.

StringArgs() – Values to replace question marks in the query. Pass Null if not needed.

Limit – Limits the number of records returned. Pass 0 to get all the records.

Clickable – Defines whether the values will be clickable or not. If the values are clickable,

you should catch the WebView_OverrideUrl event to find the clicked cell. Example:
Sub WebView1_OverrideUrl (Url As String) As Boolean

 'parse the row and column numbers from the URL

 Dim values() As String

 values = Regex.Split("[.]", Url.SubString(7))

 Dim col, row As Int

 col = values(0)

 row = values(1)

 ToastMessageShow("User pressed on column: " & col & " and row: " &

row, False)

 Return True 'Don't try to navigate to this URL

End Sub

You might want to change HtmlCSS to make it obvious that there is a hyperlink. By default,

hyperlinks are not differentiated from other text. Thus, you might change the CSS code from

the default:
a { text-decoration:none; color: #000;}

to make hyperlinks underlined and blue with the following:
a { text-decoration:underline; color: #0000FF;}

ExecuteJSON(SQL As SQL, Query As String, StringArgs() As String, Limit

As Int, DBTypes As List) As Map
Executes the given query and creates a Map that you can pass to JSONGenerator and

generate JSON text.

StringArgs() – Values to replace question marks in the query. Pass Null if not needed.

Limit – Limits the number of records returned. Pass 0 to get all the records.

DBTypes – Lists the type of each column in the result set.

Usage example (requires a reference to the JSON library):
Dim gen As JSONGenerator

gen.Initialize(DBUtils.ExecuteJSON(SQL, "SELECT Id, Birthday FROM

Students", Null, 0, Array As String(DBUtils.DB_TEXT,

DBUtils.DB_INTEGER)))

Dim JSONString As String

JSONString = gen.ToPrettyString(4)

Msgbox(JSONString, "")

ExecuteListView(SQL As SQL, Query As String, StringArgs() As String,

Limit As Int, ListView1 As ListView, TwoLines As Boolean)
Executes the Query and fills the ListView with the values, one row for each record.

 2.8 Databases

 - 154 -

StringArgs() – Values to replace question marks in the Query. Pass Null if not needed.

Limit – Limits the number of records returned. Pass 0 to get all the records.

TwoLines – if True, then the first column in the ListView is mapped to the first field and the

second column is mapped to the second field.

Example:
'Find all tests of this student with grade lower than 55.

DBUtils.ExecuteListView(SQL, "SELECT test, grade FROM Grades WHERE id

= ? AND grade <= 55", Array As String(StudentId), 0, lstFailedTest,

True)

The result will be as follows, depending on whether TwoLines is True or False

ExecuteMap(SQL As SQL, Query As String, StringArgs() As String) As Map
Executes Query and returns a Map with the column names as the keys and the first record

values as the map’s values.

StringArgs() – Values to replace question marks in the Query. Pass Null if not needed.

The keys are lower-cased. Returns Null if no results found.

Example:
mFirstRecord = DBUtils.ExecuteMap(SQL, "SELECT Id, [First Name], [Last

Name], Birthday FROM students WHERE id = ?", Array As String(Value))

ExecuteMemoryTable(SQL As SQL, Query As String, StringArgs() As String,

Limit As Int) As List
Executes the Query and returns the result as a List of arrays. Each item in the list is an

array of strings.

StringArgs() – Values to replace question marks in the Query. Pass Null if not needed.

Limit – Limits the number of records returned. Pass 0 to get all the records.

Example:

 2.8 Databases

 - 155 -

Dim lstTable As List

Dim strFields() As String

Dim lstRecords As List

Dim iCountStudents As Int

'lstTable is a list of string arrays. Each array holds a single

record.

lstTable = DBUtils.ExecuteMemoryTable(SQL, "SELECT Id, [First Name]

FROM Students", Null, 0)

lstRecords.Initialize

For iCountStudents = 0 To lstTable.Size - 1

 strFields = lstTable.Get(iCountStudents)

 Log("Id: " & strFields(0))

 Log("Name: " & strFields(1))

Next

Example using StringArgs:
lstTable = DBUtils.ExecuteMemoryTable(SQL, "SELECT Id FROM Students

where Id > ?", Array As String(intMinID), 0)

ExecuteSpinner(SQL As SQL, Query As String, StringArgs() As String, Limit

As Int, Spinner1 As Spinner)
Executes the Query and fills the Spinner with the values in the first column.

StringArgs() – Values to replace question marks in the query. Pass Null if not needed.

Limit – Limits the results. Pass 0 for all results.

Examples:
'If parameter is known to developer

DBUtils.ExecuteSpinner(SQL, "SELECT * FROM Students WHERE Id < 40000",

Null, 0, spnrStudentId)

'If parameter is a variable Value

DBUtils.ExecuteSpinner(SQL, "SELECT * FROM Students WHERE Id = ?",

Array As String(Value), 0, spnrStudentId)

GetDBVersion(SQL As SQL) As Int
Gets the current version of the database.

If the DBVersion table does not exist within the initialized database, it is created and the

current version is set to version 1.

Example:

 2.8 Databases

 - 156 -

Dim DBVersion, CurrentDBVersion As Int

DBVersion = DBUtils.GetDBVersion(SQL)

CurrentDBVersion = 2

Do While DBVersion < CurrentDBVersion

 Select DBVersion

 Case 1

 UpdateDB1_2(SQL)

 Case 2

 UpdateDB2_3

 End Select

 DBVersion = DBUtils.GetDBVersion(SQL)

Loop

InsertMaps (SQL As SQL, TableName As String, ListOfMaps As List)
This is the way to insert one or more records into a table. The data is passed as a List that

contains maps as items. Each map holds the fields for one record and their values.

ListOfMaps – A list with maps as items. Each Map represents a record, where the map keys

are the field names and the map values are the values.

Note: you should create a new map for each record (this can be done by calling Dim to redim

the map). Example:
Dim allRecords As List

allRecords.Initialize

Dim id As Int

For id = 1 To 40

 Dim oneRecord As Map

 oneRecord.Initialize

 oneRecord.Put("Id", id)

 oneRecord.Put("First Name", "John")

 oneRecord.Put("Last Name", "Smith" & id)

 allRecords.Add(oneRecord)

Next

DBUtils.InsertMaps(SQL, "Students", allRecords)

SetDBVersion(SQL As SQL, Version As Int)
Sets the database version to the given version number.

UpdateRecord(SQL As SQL, TableName As String, Field As String,

NewValue As Object, WhereFieldEquals As Map)
Update (that is change) an existing record in the database.

TableName – The table where the record exists.

Field – The name of the field to update.

NewValue – The new value.

WhereFieldEquals – This identifies which record to update. It is a Map, where the keys are

the column names and the map values are the values to look for.

Example:

 2.8 Databases

 - 157 -

Dim WhereFields As Map

WhereFields.Initialize

WhereFields.Put("id", spnrStudentId.SelectedItem)

WhereFields.Put("test", spnrTests.SelectedItem)

DBUtils.UpdateRecord(SQL, "Grades", "Grade", txtGrade.Text,

WhereFields)

UpdateRecord2(SQL As SQL, TableName As String, Fields As Map,

WhereFieldEquals As Map)
Update (that is change) several fields in an existing record in the database.

TableName – The table where the record exists.

Fields – A map of the fields to update, where the field names to update are the keys and the

values are the new values these fields should be given.

WhereFieldEquals – This identifies which record to update. It is a Map where the keys are

the column names and the map values are the values to look for.

Example:
Dim mapNewFieldsValues As Map

mapNewFieldsValues.Initialize

mapNewFieldsValues.Put("tries", iTries + 1)

Dim mapWhere As Map

mapWhere.Initialize

mapWhere.Put("id", iRandRecord)

mapNewFieldsValues.Put("correct", iCorrect + 1)

DBUtils.UpdateRecord2(SQL1, "aorde", mapNewFieldsValues, mapWhere)

Sample DBUtils Program
A sample project using DBUtils is SQLiteViewer, an Android-based database browser. It is

available from this book’s online resource page. Screen shots:

http://resources.basic4android.info/

 2.8 Databases

 - 158 -

SQLite

SQL
If DBUtils is not adequate for your needs, you are going to have to write code in your app

using Structured Query Language (SQL). This allows you to create tables, define their fields

and other attributes, and add, retrieve and manipulate records.

There are many websites which help you to learn SQL, for example W3Schools SQL.

SQLite
SQLite is the DBMS built into Android. It is the most widely deployed SQL DBMS in the

world. Below, we give an outline of how to write SQLite without using DBUtils.

More Information on SQLite
You can find more about SQLite here: http://www.sqlite.org/. Here you will find the SQLite

syntax: SQLite syntax. See here for details of keywords and commands.

Sample SQLite Program
SQLExample is a demonstration program, available from this book’s Resource page, which

uses SQLite to create and manipulate a database.

Manifest Typing
Most DBMS use “static typing”, in which one datatype is associated with each field in a table,

and only values of that particular datatype are allowed to be stored in that field. SQLite, on

the other hand, uses “manifest typing”.

In “manifest typing”, the datatype is a property of the value itself, not of the field in which

the value is stored. SQLite thus allows you to store any value of any datatype into any field

regardless of the declared type of that field.

There are some exceptions to this rule: An INTEGER PRIMARY KEY field may only store

integers. And SQLite attempts to coerce values into the declared datatype of the field when it

can.

SQLiteExceptions
Because interacting with SQLite might raise runtime exceptions, it might be wise to wrap

your code in TRY-CATCH blocks so you can handle any problems.

SQL Library
In order to use SQLite, you need to enable the SQL library in your project. See here for the

method of referencing a library. For details of all SQL types and functions, see the SQL

Library reference section.

SQL Object
You need to declare an SQL object and initialize it, as described above.

http://www.w3schools.com/sql/
http://www.sqlite.org/
http://www.sqlite.org/lang.html
http://www.sqlite.org/lang_keywords.html
http://resources.basic4android.info/

 2.8 Databases

 - 159 -

ExecQueries and ExecNonQueries
Basic4Android SQL functions consist largely of queries which return results (ExecQueries),

or commands which perform actions on the database but do not return results

(ExecNonQueries). Several flavors are available in each category.

Cursor
A Cursor is the object returned from an ExecQuery. It consists of a set of records and a

pointer to the current record. It is similar to a recordset in Visual Basic. More details in the

SQL Library section.

Transactions
A transaction consists of a set of SQL statements. No changes will be made to the database

unless all the statements are completed successfully. This ensures the integrity of the

database. Statements inside a transaction will be executed significantly faster than separate

statements.

It is very important to close transactions in order to commit the changes. This is a situation

where the Try-Catch block is useful.

Example:
SQL.BeginTransaction

Try

 'block of statements

 For i = 1 To 10

 SQL.ExecNonQuery2("INSERT INTO demo VALUES (?,?)", Array As Object(i,

"Tom Brown"))

 Next

 SQL.TransactionSuccessful

Catch

 Log(LastException.Message) 'no changes will be made

End Try

SQL.EndTransaction

Note: a transaction is implicitly created for every normal statement and automatically

closed.

SQLite Commands
Note that what follows is only an introduction to SQL programming. Consult the SQLite

website for complete details of the language.

Database Creation
You can create a database (that is, a file containing all the tables of the database) using the

SQL.Initialize statement, for example:
SQL.Initialize(File.DirRootExternal, "mydatabase.db", True)

Note: if the database file already exists, it will be opened rather than created.

Table creation
Having created your database, you need to add tables using the SQLite command CREATE

TABLE. A simple example would be:

http://www.sqlite.org/lang.html
http://www.sqlite.org/lang.html

 2.8 Databases

 - 160 -

CREATE TABLE TableName(ID INTEGER PRIMARY KEY, Col1 TEXT, Col2 REAL)

Execute this command with the ExecNonQuery function, or the ExecNonQuery2 function

which allows you to easily parameterize this type of command.

The parameters of CREATE TABLE are:

TableName: It is usually an error to attempt to create a new table in a database that already

contains a table, index or view of the same name.

Field List: TableName is followed by parentheses, containing a list of fields separated by

commas. Thus, the example above defines 3 fields.

Field Definition: Each field is defined by its name and, optionally, a type and a contraint.

Field Type: This is the word after the field name. It is optional except in the case of

INTEGER PRIMARY KEYS. As mentioned above, SQLite uses Manifest Typing, so the type

specification is not necessary. If you specify it, variables of other types can still be stored here

but will be converted to the specified type.

The declaration merely determines the Type Affinity of the field, the preferred type of data.

The type affinities available are: TEXT, NUMERIC, INTEGER, REAL and NONE.

A field with TEXT affinity stores all data using storage classes NULL, TEXT or BLOB. If

numerical data is inserted into a field with TEXT affinity, it is converted into text form

before being stored.

IF NOT EXISTS: It is usually an error to attempt to create a new table in a database that

already contains a table, index or view of the same name. However, if the IF NOT EXISTS

clause is specified as part of the CREATE TABLE statement and a table or view of the same

name already exists, the CREATE TABLE command simply has no effect (and no error

message is returned).
CREATE TABLE IF NOT EXISTS TableName(etc)

An error is still returned if the table cannot be created because of an existing index, even if

the IF NOT EXISTS clause is specified.

PRIMARY KEY: A primary key is one or more fields which are indexed to ensure rapid

access and are required to contain unique data. Usually it is an integer. Example:
CREATE TABLE IF NOT EXISTS Students (Id INTEGER PRIMARY KEY, Name

TEXT, etc)

To specify a composite key, you need to add a primary key clause:
CREATE TABLE TableName (ID1 INTEGER, ID2 INTEGER, Col1 TEXT, Col2

REAL, CONSTRAINT PrimaryKeyName PRIMARY KEY (ID1, ID2))

Adding records
Use the INSERT INTO command to add records to a table. There are two main ways to

specify the data to add.

1) Either you specify the names of specific fields and the values to inserted, for example:
INSERT INTO TableName (col1) VALUES ('Fred')

In this case, a new record will be inserted into table called “TableName”, the “col1” field will

be set to the value “Fred” and the primary key will be automatically incremented.

2) Or you specify the values of all fields in the correct sequence, in which case you do not

need to include their names:
INSERT INTO TableName VALUES (NULL, 'Tom', 26)

Note: passing NULL will automatically increment the integer primary key for this record.

 2.8 Databases

 - 161 -

Execute this command with the ExecNonQuery function, or the ExecNonQuery2 function

which allows you to easily parameterize this type of command.

Updating records
You can change one or more fields in an existing record:
UPDATE TableName Set Col1 = 'Fred', Col2 = 32 WHERE ID = 2

Execute this command with the ExecNonQuery function, or the ExecNonQuery2 function

which allows you to easily parameterize this type of command.

Retrieving data
The SQL command SELECT is used to retrieve data from a database. Specify the fields you

want and which table to read:
SELECT col1, col2 FROM table1

To select all fields from a table, use an asterisk (*):
SELECT * FROM TableName

Processing the SQL
In Basic4Android, execute the SELECT command with the ExecQuery function, which returns

a Cursor object:
Dim Cursor1 As Cursor

Cursor1 = SQL.ExecQuery("SELECT col1, col2 FROM table1")

For i = 0 To Cursor1.RowCount - 1

 Cursor1.Position = i

 Log(Cursor1.GetString("col1"))

 Log(Cursor1.GetInt("col2"))

Next

Parameterize the Command
Use ExecQuery2 to parameterize the SELECT command with variables:
Dim Cursor1 As Cursor

Cursor1 = SQL.ExecQuery2("SELECT col1 FROM table1 WHERE id = ?", Array

As String(intId))

Filtering
Specify which records you want to read using WHERE:
SELECT id, col1 FROM Tablename WHERE id >= 2

The percent character (%) can be used as a wildcard, substituting zero or more characters:
SELECT * FROM TableName WHERE Col1 LIKE 'T%'

SELECT * FROM Customers WHERE City LIKE '%es%'

Max and Min Values
Find the maxiumum/minimum value of a field:
SELECT MAX(Col1) FROM TableName

SELECT MIN(Col1) FROM TableName

Count Records
Find the total number of records in a table:

 2.8 Databases

 - 162 -

SELECT COUNT() FROM TableName

Ordering
Specify how you want the results sorted, either in ascending order:
SELECT * FROM TableName ORDER BY Col1

or in descending order:
SELECT * FROM TableName ORDER BY Col1 DESC

ExecQueryAsync
If a query will take a long time to run, you can issue an ExecQueryAsync command which

will raise an event when it finishes.

Deleting data
Delete selected records from a table:
DELETE FROM TableName WHERE ID = idVal

Delete ALL records from a table!
DELETE FROM TableName

Execute this command with the ExecNonQuery function.

Rename a table
Rename a given table with:
ALTER TABLE TableName RENAME TO NewTableName

Execute this command with the ExecNonQuery function.

Add a field
Add a new field to a table.
ALTER TABLE TableName ADD COLUMN Age REAL

Execute this command with the ExecNonQuery function.

 2.9 Process and Activity Life Cycle

 - 163 -

2.9 Process and Activity Life Cycle

Process
Each Basic4Android program runs in its own process. A process has one main thread (also

named the UI thread) which lives as long as the process lives. A process can also have more

threads which are useful for background tasks.

A process starts when the user launches your application (assuming it is not running already

in the background). The end of the process is more variable. It will happen sometime after

the user or system has closed all the activities.

If, for example, you have one activity and the user pressed on the back key, the activity gets

closed. Later, when the phone gets low on memory (and eventually it will happen), the

process will quit. If the user launches your program again and the process was not killed,

then the same process will be reused.

A Basic4Android application is made of one or more activities. Android supports several

other “main” components. These will be added to Basic4Android in the future.

Services
Within Android, code written in an activity module is paused once the activity is not visible.

So, by only using activities, it is not possible to run any code while your application is not

visible. A service, on the other hand, is (almost) unaffected by the currently visible activity.

This allows you to run tasks in the background.

See the Service Module section for details.

The Activity Concept
A fundamental concept within most apps is the Activity. This corresponds to a page which

is displayed to the user. It might have a Layout (created with the Designer) which

determines the views (elements of the page) and their position, or they might be created in

code and added to the activity.

Activity_Pause and Activity_Resume
When an activity is not in the foreground, Android can kill it to preserve memory. Before it

kills your app, Android will call your Sub Activity_Pause. You will usually want to use

this to save the state of the activity either in persistent storage or in memory. Later, when

Android calls your Sub Activity_Resume, you can restore this data.

The same thing happens when the user rotates the device. Thus, in Sub Activity_Resume,

you might need to check the screen dimensions, or you might have a Designer Script to

handle this.

 2.9 Process and Activity Life Cycle

 - 164 -

Activity Module
There is one Module for every Activity. If you want a new Activity in your app, you would use

the menu [Project > Add New Module > Activity Module].

For details of an Activity Module’s events and members, see the Activity reference section in

the Core Views Chapter. For more about the Activity Module code, see Activity Module in the

Modules Chapter.

The Activity Template
When you create a new activity, you will start with the following code template:

Sub Process_Globals

 'These global variables will be declared once when the application

starts.

 'These variables can be accessed from all modules.

End Sub

Sub Globals

 'These global variables will be redeclared each time the activity is

created.

 'These variables can only be accessed from this module.

End Sub

Sub Activity_Create(FirstTime As Boolean)

 'Do not forget to load the layout file created with the visual

designer. For

 example:

 'Activity.LoadLayout("Layout1")

End Sub

Sub Activity_Resume

End Sub

Sub Activity_Pause (UserClosed As Boolean)

End Sub

Activity Attributes
Every activity has Attributes, which are described here.

Variables within an Activity
Variables can be either local or global.

Local Variables
Local variables are variables that are declared inside a Sub other than Process_Globals or

Globals.

 2.9 Process and Activity Life Cycle

 - 165 -

Local variables are local to the containing Sub. Once the Sub ends, these variables no longer

exist.

Global Variables
Global variables can be accessed from all subs. There are two types of global variables:

Process variables and Activity variables. See the relevant sections for details.

Activity Globals
Every Activity Module has two subs dealing with global variables.

Sub Process_Globals
This code is executed once, when the application starts. It is dedicated to the declaration of

Sub Process_Globals variables.
Sub Process_Globals

 Dim lstHistory As List

End Sub

This sub is a place where you declare Sub Process_Globals variables. These are variables

that are valid during the whole lifetime of the process (normally the same as the app). These

variables are accessible from every module in the program. You declare variables here and

use them inside Subroutines. You can also initialize primitive type Process_Globals (such

as integers) here.
Dim bFreeVersion As Boolean = True

It is recommended to initialize more complex types within Sub Activity_Create when the

Activity first runs (check this using the FirstTime parameter).

Sub Globals
This sub contains global variables which are valid only during the lifetime of this activity

and accessible only inside it.
Sub Globals

 Dim EditText1 As EditText

 Dim strTest As String

End Sub

As soon as the activity is paused, these variables are no longer available. If the activity is

resumed, these variables will be declared again. You can initialize primitive type globals

here:
Dim intMaxRuns As Int = 20

Sub Activity_Create (FirstTime As Boolean)
This sub is automatically called when the activity is created.

The activity is created when:

 the user first launches the application

 the device configuration has changed (user rotated the device) and the activity was

destroyed

 2.9 Process and Activity Life Cycle

 - 166 -

 the activity was in the background and the operating system decided to destroy it in

order to free memory.

The primary purpose of this sub is to initialize activity variables and load or create the

layout.
Sub Activity_Create(FirstTime As Boolean)

 Activity.LoadLayout("Main")

 If FirstTime Then

 LoadLstHistory

 End If

End Sub

FirstTime parameter
The FirstTime parameter tells the app if this is the first time that this activity has been

created during the current process. If the user exits the app, or restarts the device, then the

next time the app runs, FirstTime is reset to True. You can use FirstTime to initialize

those variables or objects which must be initialized only once, such as process variables. For

example, suppose you have a file with a list of values that you need to read. You can read the

file if FirstTime is True and store the list as a process variable by declaring the list

variable within Process_Globals so it will be available as long as the process lives. There

will be no need to reload it when the activity is recreated.

To summarize, you can test whether FirstTime is True and then initialize the process

variables that are declared in Sub Process_Globals.

Sub Activity_Pause (UserClosed As Boolean)
This Sub is called when the activity is going to be paused. Here you need to save activity

parameters you want to get back when the activity is resumed.

When is Activity_Pause called?
Activity_Pause is called when one of the following happens:

 A different activity was started. Note that when you open a different activity (by calling

StartActivity), the current activity is first paused and then the other activity will be

created if needed and will run its own version of Activity_Resume.

 The Home button was pressed

 A configuration changed event was raised (device rotated for example). This is one of the

most frequent reasons that Activity_Pause is called. In this case, the current activity

is ‘paused’ and re-activated with the new orientation. It then goes through the subs

Globals, Activity_Create (with FirstTime set to False) and Activity_Resume.

 The Back button was pressed.

 Activity_Create finishes.

 Any time the Activity moves from the foreground to the background.

How to use Activity_Pause
Activity_Pause is the last place to save important information before the app pauses.

 2.9 Process and Activity Life Cycle

 - 167 -

UserClosed parameter
The parameter UserClosed can be used to decide whether the Activity has been paused by

the Operating System (for example by an orientation change) or by the user (for example by

a back button click). The UserClosed parameter will be True either when the user clicks

the Back button or when the program calls Activity.Finish. You can use the

UserClosed parameter to decide which data to save and whether to reset any related

process variables to their initial state, as we discuss next.

Saving Data
Activity_Pause is the last place to save important information. Generally there are two

types of mechanisms that allow you to save the activity state:

 Information that is only relevant to the current run of the application can be stored in

one or more process variables.

 Information which you want to keep between one run of your app and the next, for

example the user’s settings, should be saved to persistent storage (a file or database).

One way to store data to persistent storage is provided by the KeyValueStore class. But you

might prefer to use StateManager to save the current state as well as settings. For example,

if the user has entered some text in an EditText view, then you might want to keep this

text and restore it when the activity resumes.

Sub Activity_Resume
This routine is called every time an activity is launched or re-activated. Activity_Resume

is automatically called right after Activity_Create finishes and after resuming a paused

activity, typically when an activity moved to the background and then it returns to the

foreground. Here you can restore any activity parameters which you stored when

Activity_Pause was called.

Note: when you open a different activity (by calling StartActivity), the current activity is first

paused and then the other activity will be created if needed and (always) resumed.

StartActivity (Activity As Object)
You can start an Activity or bring it to front if it already exists. The Activity can be a

string with the target activity name, or it can be the actual activity. An Activity Module with

this name must exist.

Examples:
StartActivity(Activity2)

StartActivity("Activity2")

The target activity will be started once the program is free to process its message queue.

After this call, the current activity will be paused and the target activity will be resumed.

This method can also be used to send Intents objects to the system.

Note: contrary to some documentation on the Basic4Android website, it IS possible to call

StartActivity from a Service.

 2.9 Process and Activity Life Cycle

 - 168 -

Activity.Finish vs ExitApplication
There are two ways to end your app: Activity.Finish and ExitApplication.

Most applications should not use ExitApplication but prefer Activity.Finish, which

lets Android decide when the process is killed. You should only use ExitApplication if you

really need to fully kill the process. An interesting article about the functioning of Android

can be found here: Multitasking the Android way.

Should we use Activity.Finish before starting another activity? Consider first the

following example, which shows the flow of execution of code which does not use

Activity.Finish:

Main activity

StartActivity(SecondActivity)

 SecondActivity activity

 StartActivity(ThirdActivity)

 ThirdActivity activity

 Click on Back button

 Android goes back to previous activity, SecondActivity

 SecondActivity activity

 Click on Back button

 Android goes back to previous activity, Main

Main activity

Click on Back button

Android leaves the program

Now consider following example, which calls Activity.Finish before each

StartActivity:

Main activity

Activity.Finish

StartActivity(SecondActivity)

 SecondActivity activity

 Activity.Finish

 StartActivity(ThirdActivity)

 ThirdActivity activity

 Click on Back button

 Android leaves the program

We should use Activity.Finish before starting another activity only if we don’t want to go

back to this activity with the Back button.

http://android-developers.blogspot.com/2010/04/multitasking-android-way.html

 2.10 Modules

 - 169 -

2.10 Modules
An app consists of chunks of code called modules. At least one module exists, the main one.

Its name is always Main and cannot be changed. There are four different types of modules:

 Activity modules

 Class modules

 Code modules

 Service modules

Creating or Adding Modules
You can add either an existing module or a new module.

To add a new module, select the IDE menu [Project > Add New Module]:

Click on either Activity, Class, Code or Service Module.

To bring in an existing module (and so reuse the code), click on [Project > Add Existing

Module] in the IDE menu.

Each module (except Main) is saved in a .bas file within the project folder. Main is part of the

.b4a file.

Activity Module
This is where you write the code for an Activity. Every Basic4Android app must have at least

one Activity called Main. Activities have three special life-cycle related events:

Activity_Create, Activity_Pause and Activity_Resume. See Process and Activity Life Cycle

for more information about activities and the process’s life cycle.

Activity Attributes
You can set attributes which are valid for the current activity within the Activity Attributes

Region at the top of an Activity Module.

Defaults
By default, Attributes are set as follows:

 2.10 Modules

 - 170 -

#Region Activity Attributes

 #FullScreen: False

 #IncludeTitle: True

#End Region

FullScreen
Whether to show the Status Bar at the top of the screen. Values: True or False, default

False. You should not hide the Status Bar unless absolutely necessary.

IncludeTitle
Whether to include a Title Bar at the top of your app. Values: True or False. Default value

True.

Creating the Page
An Activity can either have a Layout which determines the views (elements of the page) and

their position, or the views can be created in the code itself. You load a layout file with

LoadLayout. You can add views to this activity with AddView, and remove them with

RemoveViewAt.

Activity Events
The Activity can respond to several user events, for example:

Touch (Action As Int, X As Float, Y As Float) Event
The Touch event can be used to handle user touches.

Action: specifies the user’s action. It’s values can be:

 Activity.ACTION_DOWN: The user has touched the screen at X,Y.

 Activity.ACTION_MOVE: The user’s touch has moved to X,Y.

 Activity.ACTION_UP: The user has stopped touching the screen at X,Y.

KeyPress and KeyUp
The KeyPress and KeyUp events occur when the user presses or releases a key on a physical

keyboard attached to the device or on Android’s-on-screen keyboard. Note: it is possible for a

view (such as a EditText) to consume this event, in which case the Activity will not see it.

When handling the KeyPress or KeyUp event, you should return a boolean value which tells

whether the event has been consumed by our code. For example, if the user pressed on the

Back key and you return True then Android will not see the back key and so will not close

your activity.
Sub Activity_KeyPress (KeyCode As Int) As Boolean

 If Keycode = KeyCodes.KEYCODE_BACK Then

 Return True

 Else

 Return False

 End If

End Sub

For a complete list of Activity events, see here.

 2.10 Modules

 - 171 -

Creating a Menu
You can add menu items to the activity with Activity.AddMenuItem method. The menu is

shown if the user presses the Menu button (on older devices) or selects the overflow symbol

(3 vertical dots) on the Action Bar. Note: AddMenuItem should only be called inside the

Activity_Create event.

Activities vs Windows Forms
Activities are similar to what are called Forms in Microsoft Visual Basic. One major

difference is that, while an activity is not in the foreground, it can be killed in order to

preserve memory. Usually, you will want to save the state of the activity before the data is

lost. It can be stored either in persistent storage or in memory that is associated with the

process. Later, this activity will be recreated when needed.

Another delicate point happens when there is a major configuration change in the device.

The most common is an orientation change (the user rotates the device). When such a change

occurs, the current activities are destroyed and then recreated by calling

Activity_Create(). Then it is possible to create the activity according to the new

configuration (for example, the new screen dimensions).

Variables in other Activity Modules
If there are several Activity Modules in an application, they can access the

Process_Globals variables in other modules using references such as
Main.Value2

where Main is an activity name.

More Information
See Process and Activities Life Cycle for more information about Activities and Processes

Life Cycle.

Multiple Activity Modules
An app might need several different screens. Each one of these will (normally) require its

own activity module. To access any object or variable in a module other than the module

where they were declared, you must add the module name as a prefix to the object or

variable name separated by a dot. For example, suppose variables Value1 and Value2 are

declared in Main module in Sub Process_Globals:
Sub Process_Globals

 Dim Value1, Value2, Value3 As String

End Sub

To access these variables from another module, the variable name is Main.Value1 or

Main.Value2.
Sub Activity_Pause (UserClosed As Boolean)

 Main.Value2 = edtValue2_P2.Text

End Sub

It is not possible to access any view from another activity module, because when a new

activity is started, the current activity is paused and it is no longer accessible.

 2.10 Modules

 - 172 -

Class module

What is a Class?
A class represents an object such as a person, place or thing and encapsulates the data and

functionality of that object. For example, a “Customer” class would represent your customers.

A single, particular customer would be an instance of the “Customer” class, an object of the

type “Customer”.

A class contains properties, such as strForeName, which gives the state of a particular

instance, and methods, such as AddOrder (), which allow the properties of an instance to be

manipulated or queried.

Benefits of Classes
Writing code which focuses on the objects involved is called object-oriented programming.

There are number of benefits to this style of coding:

 It provides a clear, modular structure, which makes it good for defining abstract

datatypes where implementation details are hidden and the unit has a clearly defined

interface.

 It simplifies code maintenance, as new objects can be created with small differences to

existing ones.

 It delivers a framework for code libraries where supplied software components can be

easily adapted and modified.

Example
We give here an example of a class module. (You can download the complete Classes example

project here). Consider a “Person” class. We want to store a person’s forename, last name and

date of birth. We want to make it easy to change the two names, so we make these values

public. The date of birth will be stored as a Long so we can do calculations. Therefore, this

value must be hidden and accessed through functions within the class.

When we create a Person, we need to state their two names and their date of birth as a

string:

http://resources.basic4android.info/

 2.10 Modules

 - 173 -

'Class Person module

Sub Class_Globals

 Public FirstName, LastName As String

 Private BirthDate As Long

End Sub

Sub Initialize (strFirstName As String, strLastName As String,

strBirthDate As String)

 FirstName = strFirstName

 LastName = strLastName

 Try

 BirthDate = DateTime.DateParse(strBirthDate)

 Catch

 Msgbox (strBirthDate, "Invalid Date Format")

 End Try

End Sub

Public Sub GetName As String

 Return FirstName & " " & LastName

End Sub

Public Sub GetCurrentAge As Int

 Return GetAgeAt(DateTime.Now)

End Sub

Public Sub GetAgeAt(Date As Long) As Int

 Dim diff As Long

 diff = Date - BirthDate

 Return Floor(diff / DateTime.TicksPerDay / 365)

End Sub

Main module.

Sub Activity_Create(FirstTime As Boolean)

 Dim Fred As Person

 Fred.Initialize("Fred", "Smith", "1/2/1950")

 Log (Fred.GetName & " is aged " & Fred.GetCurrentAge)

 Fred.LastName = "Jones"

 Log (Fred.GetName & " is aged " & Fred.GetCurrentAge)

End Sub

The log shows
Fred Smith is aged 63

Fred Jones is aged 63

Public vs Private Variables
Public variables can be read and written to directly:

 2.10 Modules

 - 174 -

Fred.LastName = "Jones"

Private variables are hidden, and we must provide special functions to access them:
Fred.GetCurrentAge

We might do this because we want to store the data in a special format which the user would

never want to access, for example storing the date of birth as a Long.

Classes vs Types
Basic4Android allows you to declare simple data structures using the Type keyword, as

explained here.

What are the similaries and differences between a class module and a type?

 Both classes and types are templates. From these templates, you can instantiate any

number of objects.

 Type fields are similar to the global variables of a class. However, unlike types which

only define the data structure, classes also define the data’s behavior. The behavior is

defined in the class’s subs.

Classes vs Code Modules
How does a class module compare with a code module?

 A code module is a collection of subs, unlike a class, which is a template for an object.

 A code module always runs in the context of the calling sub (the activity or service that

called the sub) and the code module doesn’t hold a reference to any context. For that

reason, it is impossible to handle events or use CallSub within code modules.

A class, on the other hand, stores a reference to the context of the activity or service

module that called the Initialize sub. This means that class objects share the same life

cycle as the service or activity that initialized them.

Adding a class module
Add a new or existing class module by choosing [Project > Add New Module > Class Module]

or [Project > Add Existing Module]. Like other modules, classes are saved as files with a

“bas” extension.

Classes structures
Classes must have the following two subs:

Sub Class_Globals - This sub is similar to the activity Globals sub. These variables will

be the class global variables (sometimes referred to as instance variables or instance

members).

Sub Initialize - A class object should be initialized before you can call any other sub.

Initializing an object is done by calling the Initialize sub. When you call Initialize,

you set the object’s context (the parent activity or service).

Note that you can chose the arguments you need to instantiate an instance of your class. In

the above code, we created a class named Person and later instantiated an object of this type:
Dim Fred As Person

Fred.Initialize("Fred", "Smith", "1/2/1950")

Note that Initialize is not required if you make a copy of an object which was already

initialized:

http://bit.ly/13uxb1r
http://bit.ly/15IAy8o

 2.10 Modules

 - 175 -

Dim p2 As Person

p2 = Fred 'both variables now point to the same Person object.

Log(p2.GetCurrentAge)

Polymorphism
Polymorphism allows you to treat different classes of objects that adhere to the same

interface in the same way. As an example, we will create two classes named: Square and

Circle. Each class has a sub named Draw that draws the object on a canvas:

Class Square module
Sub Class_Globals

 Private mx, my, mLength As Int

End Sub

'Initializes the object. You can add parameters to this method if

needed.

Sub Initialize (x As Int, y As Int, length As Int)

 mx = x

 my = y

 mLength = length

End Sub

Sub Draw(c As Canvas)

 Dim r As Rect

 r.Initialize(mx, my, mx + mLength, my + mLength)

 c.DrawRect(r, Colors.White, False, 1dip)

End Sub

Class Circle module
Sub Class_Globals

 Private mx, my, mRadius As Int

End Sub

'Initializes the object. You can add parameters to this method if

needed.

Sub Initialize (x As Int, y As Int, radius As Int)

 mx = x

 my = y

 mRadius = radius

End Sub

Sub Draw(cvs As Canvas)

 cvs.DrawCircle(mx, my, mRadius, Colors.Yellow, False, 1dip)

End Sub

In the main module
Create a list with Squares and Circles. We then go over the list and draw all the objects:

 2.10 Modules

 - 176 -

Sub Process_Globals

End Sub

Sub Globals

 Dim shapes As List

 Dim cvs As Canvas

End Sub

Sub Activity_Create(FirstTime As Boolean)

 cvs.Initialize(Activity)

 Dim sq1, sq2 As Square

 Dim circle1 As Circle

 sq1.Initialize(100dip, 100dip, 50dip)

 sq2.Initialize(2dip, 2dip, 100dip)

 circle1.Initialize(50%x, 50%y, 100dip)

 ' add the items to the list

 shapes.Initialize

 shapes.Add(sq1)

 shapes.Add(sq2)

 shapes.Add(circle1)

 DrawAllShapes

End Sub

Sub DrawAllShapes

 For i = 0 To shapes.Size - 1

 Log(shapes.Get(i))

 CallSub2(shapes.Get(i), "Draw", cvs)

 Next

 Activity.Invalidate

End Sub

We do not need to know the specific class of each object in the list. We know that it has a

Draw method that expects a single Canvas argument. Later we can easily add more classes

of shapes. You can use the SubExists keyword to check whether an object includes a

specific sub. You can also use the Is keyword to check if an object is of a specific type.

Self reference
The Me keyword returns a reference to the current object. Me can only be used inside a class

module. Consider the above example. We could have passed the shapes list to the

Initialize sub and then added each object to the list from the Initialize sub:
Sub Initialize (Shapes As List, x As Int, y As Int, radius As Int)

 mx = x

 my = y

 mRadius = radius

 Shapes.Add(Me)

End Sub

In that case, the calls from Main to Initialize would have been:

 2.10 Modules

 - 177 -

sq1.Initialize(shapes, 100dip, 100dip, 50dip)

Classes and Activity Object
Android UI elements such as views hold a reference to the parent activity. But, since Android

is allowed to kill background activities in order to free memory, UI elements cannot be

declared as Sub Process_Globals variables because these variables live as long as the

process lives. They should be declared in Sub Globals instead. This is discussed further in

the Process and Activities Life Cycle chapter.

The same is true for instances of a class. If one or more of the class global variables is of a UI

type (or any activity object type), then the class will be treated as an “activity object”,

meaning that instances of this class cannot be declared as Sub Process_Globals

variables.

Limitations of Classes
Basic4Android’s implementation of classes is only partial. For example, it does not support

inheritance, overriding or overloading.

Code module
Code modules contain only code. No Activity is allowed in Code modules. The purpose and

advantage of code modules is that they allow the same code to be shared in different

programs, mainly for calculations or other general management.

Examples of code modules are:

DBUtils, database management utilities.

StateManager, helps managing Android application settings and states.

Service Module

Why use a Service
If you want to run code when your app is not visible, you need to use a service. Activity

modules are paused when they are not visible, so it is not possible to run any code while your

application is not visible if you only use activities. A service is almost unaffected by the

currently visible activity. This allows you to run tasks in the background.

Services usually use status bar notifications to interact with the user. They do not have any

other visible elements. Services cannot show any dialog (except toast messages).

Note: when an error occurs in a service code module, you will not see the “Do you want to

continue?” dialog. Android’s regular “Process has crashed” message will appear instead.

Alternative to an Activity
Because a service is never paused or resumed, and because services are not recreated when

the user rotates the screen, services are often easier to code than activities. There is nothing

special about the code written in a service.

Code in a service module runs in the same process and the same thread as all other code.

 2.10 Modules

 - 178 -

When Does Android Kill a Process?
When Android is low on memory, it will select a process to kill. If the process is needed later,

it will be re-created. It is important to understand how Android chooses which process to kill.

A process can be in one of the three following states:

Paused - There are no visible activities and no started services.

Paused processes are the first to be killed when needed.

Background - None of the activities of the process are visible, however there is a started

service.

If there is still not enough memory, background processes will be killed.

Foreground - The user currently sees one of the process activities.

Foreground processes will usually not be killed. A service can bring a process to the

foreground.

Android’s View of Services
For more about how Android sees services, consult

http://developer.android.com/reference/android/app/Service.html

How to Start a Service
Call StartService during Activity_Create. This will run Sub Service_Create followed

by Sub Service_Start (see below).

You can then use the service’s code.

Service Code
Adding a service module is done using the menu [Project > Add New Module > Service

Module].

This creates a new service with the skeleton code:

#Region Service Attributes

 #StartAtBoot: False

#End Region

http://developer.android.com/reference/android/app/Service.html

 2.10 Modules

 - 179 -

Sub Process_Globals

 'These global variables will be declared once when the application

starts.

 'These variables can be accessed from all modules.

End Sub

Sub Service_Create

End Sub

Sub Service_Start (StartingIntent As Intent)

End Sub

Sub Service_Destroy

End Sub

Service Attributes
These are defined in the #Region at the top of the code.

The possible options are:

 #StartAtBoot: Whether this service should start automatically after boot. Values: True

or False. Defaults to False.

 #StartCommandReturnValue: (advanced) Sets the value that will be returned from

onStartCommand. The default value is android.app.Service.START_NOT_STICKY. For

possible values, see Android’s view of services.

SubRoutines
Every service module must include at least the following subs:

Sub Process_Globals

The place to declare the service global variables. Unlike an Activity, there is no Globals sub

as Services do not support Activity objects. Sub Process_Globals should only be used to

declare variables. It should not run any other code as it might fail. This is true for other

modules as well. Note: Process_Globals variables are kept as long as the process runs and

are accessible from other modules.

Sub Service_Create

This is called when the service is first started. This is the place to initialize and set the Sub

Process_Globals variables. Once a service is started, it stays alive until you call

StopService, or until the whole process is destroyed.

Sub Service_Start (StartingIntent As Intent)

This is called each time you call StartService (or StartServiceAt). It can also be called if this

service is a broadcast receiver. For more on this, see this page. When this sub runs, the

process is moved to the foreground state, which means that Android will not kill your process

until this sub finishes running. If you want to run some code periodically, you should

schedule the next task with StartServiceAt inside this sub.

StartingIntent: The argument will be set by Android if this service is a broadcast receiver.

For more information, see this page on the Basic4Android website. See here for more on

Intents.

Sub Service_Destroy

http://developer.android.com/reference/android/app/Service.html
http://bit.ly/12QWZBw
http://bit.ly/12QWZBw

 2.10 Modules

 - 180 -

This is called when you call StopService. The service will not be running until you call

StartService again.

When to Use a Service
There are probably four main use-cases for services:

1) Separating the user interface (UI) code from logical code.

Writing the non-UI code in a service is easier than implementing it inside an Activity module

as the service is not paused and resumed and it will usually not be recreated (whereas an

Activity can be).

You can call StartService during Activity_Create and from then-on work with the service

module.

A good design is to make the activity fetch the required data from the service in Sub

Activity_Resume. The activity can fetch data stored in a Sub Process_Globals variable

or it can call a service Sub with the CallSub method.

2) Running a long operation.

For example, downloading a large file from the internet. In this case you can call

Service.StartForeground (from the service module). This will move your service to the

foreground state and will make sure that Android doesn’t kill it. Make sure to eventually call

Service.StopForeground.

3) Scheduling a repeating task.

By calling StartServiceAt, you can schedule your service to run at a specific time. You can

call StartServiceAt in Sub Service_Start to schedule the next time and create a

repeating task (for example, a task that checks for updates every couple of minutes).

4) Run a service after the device boots, that is, when it powers up.

Your service will run after boot is completed if you set:
#Region Service Attributes

 #StartAtBoot: True

#End Region

Notifications
Both activities and services can display status bar notifications, but for services it is their

main way of interacting with the user.

The notification displays an icon in the status bar.

The user can swipe down the notifications screen and press on the notification.

 2.10 Modules

 - 181 -

The user can press on the message, which will open an activity as configured by the

Notification object.

Accessing other modules
Sub Process_Globals objects are public and can be accessed from other modules. Using

the CallSub method you can also call a sub in a different module, provided the other module

is not paused. You can use IsPaused to check if the target module is paused.

This means that one activity can never access a sub of a different activity as there could only

be one running activity. However, an activity can access a running service and a service can

access a running activity. Note: if the target component is paused, then an empty string is

returned. No exception is thrown. For example, suppose a service has finished downloading

some new information. It can call:
CallSub(Main, "RefreshData")

If the Main activity is running, it can fetch the data from the service Process_Globals

variables and update the display. It is also possible to pass the new information to the

activity sub, but it is better to keep the information as a Process_Globals variable. This

allows the activity to call the required sub (in this case RefreshData) whenever it wants and

fetch the information (as the activity might be paused when the new information arrived).

Note: it is NOT possible to use CallSub to access subs of a Code module.

Sample Projects Using Services
Examples of projects using services are available from the Basic4Android website:

Downloading a file using a service module

Periodically checking Twitter feeds

http://bit.ly/17yeXPZ
http://bit.ly/17yfyRP

 2.11 Publishing and Monetizing Your App

 - 182 -

2.11 Publishing and Monetizing Your App
Once you have developed your app, you will want to distribute it. This can be done either

through the Google Play website or one of the other distribution channels such as Amazon, or

by distributing the APK file from a website or via email.

This chapter will take you through the whole process of preparing your app for publication,

including ways to make money from it, then sending it out into the world.

User Help
Users will probably need help about how to use your app most effectively. You can provide

some information in a splash screen, in an activity or on a web page which you display in a

WebView.

Branding and Marketing
Before you begin to distribute your app, you will need to think about what to call it, whether

it needs its own website, and if so, whether the domain name is available, the design of your

logo, whether you need to register the trademark, and how you are going to advertise and

market the product. To do all these things effectively requires a different set of skills from

development, and you might want to find a partner who can spend time on these important

aspects of app distribution.

Setting Your Project Parameters
Before generating the APK, you should check that the following parameters are set correctly:

Package Name
This is set in [Project > Package Name]. See Package Name for what is required.

Project Attributes
A number of attributes should be set in the Project Attributes Region at the top of the Main

Activity. See here for details.

Setting Icons
Your app will need a number of icons before it can be distributed. There are several sorts of

icons you might consider: launcher, menu, action bar, status bar, tab, dialog and list view

icons are all possible. Your app may also need to display icons in the Notification Area. We

discuss some of these below. For more details, see here.

See here for Launcher Icon tips

See here for a wider view of Android Icons

http://bit.ly/13WB1xW
http://developer.android.com/guide/practices/ui_guidelines/icon_design.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://developer.android.com/design/style/iconography.html

 2.11 Publishing and Monetizing Your App

 - 183 -

Google Play Store Icon
For the Google Play Store you will need an icon 512x512 pixels, 32-bit PNG with an alpha

channel and maximum size of 1024KB (more details here).

Launcher Icon
Every app needs a Launcher Icon so the user can identify and run it.

The Launcher icon incorporated into the app is always 48x48 pixels.

This icon will be shown in several places on the user’s device:

 on the installation panel

 in the Title Bar (for later versions of Android)

 on the Home page

 in the [Settings > Apps] list

A 512x512 pixel version is also required for Google Play.

[Project > Choose Icon]
You set the Launcher Icon with the menu [Project > Choose Icon]. You can navigate to any

folder and choose any file with an extension of BMP, JPG, GIF or PNG. The file will be

copied into the project’s Objects\res\drawable folder and automatically renamed to icon.xxx,

where xxx is the original filename extension. Android will search for a file with this name to

use for the Launcher, therefore you should not rename it once it has been copied, although

you can select a new Launcher Icon at any time.

Creating Icons
An icon is a file in BMP, JPG, GIF or PNG format.

You can create a PNG file using the free Inkscape program. This allows you to control the

opacity (alpha channel) of your image, which is important in achieving a good result, as

explained here.

Tip: Use filenames which contain only lower case letters, numbers and underscores so when

you export the image to PNG, it’s name will be acceptable to Basic4Android.

Sources of Icons
You can find some ready-made icons at http://www.iconarchive.com/

Notification Icon Recommendations
Notification icons are shown in the notification area at the top of the screen. For notification

icons, the recommended practice is to use half the size of the corresponding launcher icon.

You can specify which icon to use using the notification Icon property.

Icon Sizes
Provide icons for use within your app in all prescribed sizes to make sure it looks good at all

resolutions. Otherwise, Android can downsize large images, but that may result in jagged

edges. More information here. Also, if you use large icons, they might be trimmed instead of

resized when shown in the notifications pull-down list, resulting in inappropriate images.

However, if for some reason you can only provide a single icon, 48x48 is the best size to use.

It looks passable on most devices.

http://support.google.com/googleplay/android-developer/answer/1078870?hl=en
http://inkscape.org/
http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://www.iconarchive.com/
http://developer.android.com/guide/practices/screens_support.html

 2.11 Publishing and Monetizing Your App

 - 184 -

Prescribed Resolutions
There are 4 prescribed resolutions, and each have their own recommended icon sizes, as

shown below. Note: “px” means pixels.

LDPI
dpi .. 120

Screen Resolution (px) 240x320

Notification Icon Size (px) 18x18

Launcher Icon Size (px) 36x36

Folder .. drawable-ldpi

MDPI
dpi .. 160

Screen Resolution (px) 320x480

Notification Icon Size (px) 24x24

Launcher Icon Size (px) 48x48

Folder .. drawable-mdpi

HDPI
dpi .. 240

Screen Resolution (px) 480x800

Notification Icon Size (px) 36x36

Launcher Icon Size (px) 72x72

Folder .. drawable-hdpi

XHDPI
dpi .. 320

Screen Resolution (px) 720x1280 and above

Notification Icon Size (px) 48x48

Launcher Icon Size (px) 96x96

Folder .. drawable-xhdpi

Installing Icons
This is how to include your other icons into the project:

 In your project’s Objects\res folder, create one sub-folder for each desired resolution.

They must be named drawable-ldpi, drawable-mdpi, drawable-hdpi and drawable-xhdpi.

 For each of the desired icon sizes, create icons with the desired size. Their file names

must contain only lower case letters a-z, numbers 0-9, underscore or period(.)

 Copy the icons into their appropriate folder.

 Make sure you mark all those files and folders as read only (otherwise they will get

deleted during compilation).

Now when you install the app on a device, the Android system will use the icons in the folder

corresponding to the device’s screen resolution.

Generating Your APK
Now you are ready to create your APK.

 2.11 Publishing and Monetizing Your App

 - 185 -

APK File
The APK is a package which contains the compiled source code and the assets files.

Keys and Certificates
Electronic documents (such as APKs) can be “signed” using other electronic documents called

Certificates. Certificates contain the identity of the owner and a key. Certificates occur in

pairs, one containing a private key, the other a public key. Some certificates are issued by

certificate authorities, who authenticate the owner’s identity. Other certificates are simply

generated by the owner, without any authentication.

Signing
Android requires that all installed apps are signed before they can be installed. Details from

the Android Developer website. Android devices will not install an unsigned APK. The

Android system uses certificates as a means of identifying the author of an application and

establishing trust relationships between applications. The certificate is not used to control

which applications the user can install.

The developer signs his app using the private key and then distributes it along with the

certificate containing the public key. After an app is signed, it is not possible to modify it

without the private key that was used to sign it.

Debugging Certificates
To test and debug your app, Basic4Android signs it with a special debug key that is created

by the Android SDK build tools. Basic4Android uses a default “debug key” to sign apps. This

key is fine during debugging. However, Google Play doesn’t accept APK files signed with this

key.

For an app called “abc”, the debug key would be stored in a file called abc_DEBUG.apk in the

Objects folder of the abc project.

Signing for Distribution
An Android certificate does not need to be signed by a certificate authority; it is perfectly

allowable, and typical, for Android applications to use self-signed certificates, but before you

can distribute your app, you must sign it with a certificate whose private key you hold. Also,

it is very important that you keep this certificate safe. See below.

Creating A Private Key
You therefore need to create your own private key. Basic4Android makes it easy to create

such a key.

Select [Tools > Private Sign Key] to see the following dialog:

http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html

 2.11 Publishing and Monetizing Your App

 - 186 -

You can create a new key, load an existing one or use the debug key.

Creating a New Key
If you create a new key, you need to provide your two-letter Country Code. There is a list of

codes here. See below for more about keystores.

The private key which Basic4Android generates will have an expiry date set to the maximum

allowed by the certificate system, a date about 38 years in the future. Basic4Android uses the

DSA 1024 algorithm to generate keys.

The KeyStore
Keys are stored in a “keystore” file. You can store the key in any file with any name you

wish. It might be a good idea to give it the extension “keystore” so you will know what it is. It

is not possible to read such a file without its password, so make sure you can remember the

password.

Once you have created a new keystore file, Basic4Android will use this key for all your

projects. You should be very careful with this file. If you lose this file, you will not be able to

update your applications in the market. You will need to publish updates as new

applications. Therefore, it is recommended to backup this file.

Note: while it is possible to have several keystores, it then becomes difficult to keep track of

which key is in which keystore. It is probably best to use a single key in a single keystore to

sign all your apps. However, problems might arise if you wish to sell your app to another

developer in the future, as you would then need to give them a copy of your keystore and its

password.

After signing, you can continue to debug. Your private key will then be used to sign the APK.

If you wish, you can revert to using a debug key, but there is no need.

Keystore Explorer
If you need to, Keystore Explorer 4.01 allows you to explore your keystore. Download it free.

Compiling the APK
Compile your app, either in Release Mode or Release Obfuscated Mode. See the Compilation

Modes section for details.

http://www.digicert.com/ssl-certificate-country-codes.htm
http://www.lazgosoftware.com/kse/

 2.11 Publishing and Monetizing Your App

 - 187 -

This will create an APK file in the Objects folder of your project.

Monetising Your App

Before you publish your app, you need to consider whether you are going to try to make

money from it. If not then you can skip this section.

Ways of Monetizing Your App
There are a number of ways you can earn money from your app:

 Give your app away but include advertisements

 Sell it, perhaps as an add-free alternative

 Ask for donations if people find your app useful

 Use in-app billing

 Verify the user is licensed to use the app

 Find a sponsor and link your app to their site

 Write an app for a client and sell your time

 Use the PayPal library

Libraries Supporting Advertising
There are several Basic4Android libraries which allow you to easily include advertisements

in your app. They are all official libraries (that is, produced by Anywhere Software) but are

not included in the core distribution, so they require the library (or wrapper) to be

downloaded.

Note that advertisements take up space on the device’s display, so you need to consider the

implications when designing the user interface.

AdMob
Google is perhaps the best-known source of advertising. Use the AdMob library to display

Google ads in your applications. This has the benefit that you can also use Google Analytics

to analyse your results.

Library and Tutorial
Download the AdMob library here. This library also requires configuration. Of course, in

order to get your ads and get paid, you will need to register with Google’s Admob site. See

here for a tutorial with all the details.

AdiQuity
AdiQuity is another advertisement solution. See here for details of Adiquity and see here for

the library and a tutorial.

Matomy
This is another provider of mobile ads. For details of the service see here, and for the library

go here.

http://bit.ly/19UeAy4
http://bit.ly/19UeDcY
http://bit.ly/19UeDcY
http://adiquity.com/app-developer/
http://bit.ly/19UgZbZ
http://publishers.matomymobile.com/join.mat?ref=3
http://bit.ly/19UkLSx

 2.11 Publishing and Monetizing Your App

 - 188 -

TapForTap
Tap for Tap offers a way to promote your app and a way of generating ad revenue, or perhaps

to do both. When users “tap” on a link in your app and install an app advertised on the tap

exchange, you can either earn credits (and hence have your app advertised) or you can make

money; or you can choose a mix of these options.

For more information about the service, see here. See here for the Basic4Android wrapper

around the SDK.

Selling Your App
Google Play is the main place users go to find new apps, although you can distribute your

app through other channels. If you charge for your app, then the distributor will charge you a

transaction fee.

Note: once you publish an app as free on Google Play, you can’t change it to a paid app later.

However you can sell a license within your app via in-app billing.

In-App Billing
Google Play provides an in-app billing service which you can use to accept payments from

within your app. You define your products (using Google Play Developer Console) including

product type, SKU, price, description, and so on. This could include a key which removes

advertisements.

In-app products, which are declared in the Google Play Developer Console, can include

licenses, subscriptions and managed items which your app can consume. You would typically

implement consumption for items that can be purchased multiple times (such as in-game

currency, fuel, or magic spells). Once purchased, a managed item cannot be purchased again

until you consume the item, by sending a consumption request to Google Play. Read the

official documentation here. Get the library here and read the tutorial here.

Licensing
A good way to protect your app is to use Google Play App Licensing, a service that lets you

enforce licensing policies for applications that you publish on Google Play. Your app can

query Google Play at run time to obtain the licensing status for the current user, then allow

or disallow further use as appropriate. This way you can be sure that the user has the right

to use your app. For more information about licensing, see here. To download the library see

here. For a tutorial on how to use it, follow this link.

Registering as a Google Play Developer
Whether you want to sell your app or give it away, the best outlet for Android Apps is the

Google Play store, and before you can publish there, you must register as a Developer. This

has a one-time registration fee of $25. Any number of apps can be distributed once you have

registered.

Register as a Google Play Developer
Go to the Google Play Developer sign-up page: https://play.google.com/apps/publish/signup/.

https://tapfortap.com/
http://bit.ly/14Lhsrc
https://play.google.com/store
http://developer.android.com/google/play/billing/api.html
http://developer.android.com/google/play/billing/api.html
http://bit.ly/19UimHB
http://bit.ly/19UidUJ
http://bit.ly/14Li2VV
http://bit.ly/14LiaF2
http://bit.ly/14LiaF2
http://bit.ly/14LikMx
https://play.google.com/apps/publish/signup/

 2.11 Publishing and Monetizing Your App

 - 189 -

Review and agree to the Google Play Developer distribution agreement:

https://play.google.com/about/developer-distribution-agreement.html. This includes

important information about user privacy and legal rights.

Review the distribution countries where you can distribute and sell applications to ensure

you can sell into your target markets.

Check if you can have a merchant account in your country.

Pay your one-time registration fee of $25. You will need a credit card if you have not already

registered one with Google Wallet.

Merchant Account
If you are planning to sell apps or in-app products, you will need a Merchant Account. Before

you register as a developer, you need to check if you can have a merchant account in your

country. If you have a Google Wallet, this will automatically be used as your merchant

account.

Prepare Your App’s Google Play Page
You must upload at least two screenshots of your app in approved formats, and a large 512 x

512-pixel icon for your app, as well as listing details.

It’s worth spending some time on these details, since they’ll represent the entirety of your

“shopfront” in Google Play.

User Support
Before you begin selling your app (or even distributing it free), consider how you are going to

support your users. On Google Play for example, you will be solely responsible for support

and maintenance of your products and any complaints about them. Your contact information

will be displayed in each application detail page and made available to users for customer

support purposes. You need to respond to these complaints quickly, otherwise your ratings

will go down.

Google Play Developer Console
For information on how to use the Google Play Developer Console to upload and manage your

app, see the following page:

https://developer.android.com/distribute/googleplay/publish/console.html

Upload your App to Google Play
You will need to choose a title and decide whether to just upload the APK or prepare a store

listing. An app you upload is a draft until you publish it, at which time Google Play makes

your store listing page and app available to users. You can unpublish the app at any time.

Distributing Apps elsewhere
There are several other ways to distribute your app in addition to Google Play.

https://play.google.com/about/developer-distribution-agreement.html
http://www.google.com/wallet/
http://www.google.com/wallet/
https://developer.android.com/distribute/googleplay/publish/console.html

 2.11 Publishing and Monetizing Your App

 - 190 -

Preparing the User’s Device
If they obtain the app from anywhere other than Google Play, users will need to allow their

device to run it by selecting

either: [Settings > Applications > Unknown sources]

or: [Settings > Security > Unknown sources]

(This might frighten some users!)

Amazon Appstore
The Amazon Mobile App Distribution Program enables developers to make their apps

available for sale on any Android device running Android 2.2 and higher. This costs $99 per

year, although the first year may be free.

Details from https://developer.amazon.com/help/faq.html

Full terms and conditions from https://developer.amazon.com/help/da.html

To install your app, users need to install an app called “Appstore for Android”. It is pre-

installed on Kindle Fire devices or can be downloaded from the Amazon website to other

Android devices. The sites are

http://www.amazon.co.uk/appstore-web or

http://www.amazon.com/appstore-web

By Email
If you attach your app to an email, when a user running Gmail on Android 4 tries to

download the attachment, they will be asked whether they want to install it.

Downloading from a website
If you upload your app to a web-server, then you can publish a link to your app on any web

page. If a user clicks the link, it will be saved by their browser, then their device will show a

notification (in the status bar at the top of the screen) which they can tap to install the app.

Other App Publishers
Other places you might want to consider publishing your app include the following. You will

have to pay to advertise on some of these. Their appearance in this list is NOT meant as an

endorsement of these sites:

pandaapp.com

android.brothersoft.com

appsapk.com

freewarelovers.com

appszoom.com/android

androidfreedownload.net

https://developer.amazon.com/help/faq.html
https://developer.amazon.com/help/da.html
http://www.amazon.co.uk/appstore-web
http://www.amazon.com/appstore-web
http://download.pandaapp.com/?controller=android
http://android.brothersoft.com/
http://www.appsapk.com/
http://www.freewarelovers.com/
http://www.appszoom.com/android
http://www.androidfreedownload.net/

 2.12 Getting More Help

 - 191 -

2.12 Getting More Help

Anywhere Software
The producers of Basic4Android provide an excellent level of service, usually answering

queries very rapidly via the Forum (see below). In addition, there is a lively on-line

community of enthusiastic Basic4Android developers who not only contribute their own

Additional Libraries, but also support other users by answering questions.

The on-line documentation for Basic4Android is available here.

Forum
The main place to find help and support is http://www.basic4ppc.com/forum/

Here you can find information on updates, get answers to questions and, if you have bought a

copy of Basic4Android, download the Additional Libraries.

Chat Room
You can chat live with other Basic4Android enthusiasts and get help and support at

http://jonsap.com/b4achat/. When you see the sign-on screen…

…simply enter a Username. You can enter without a password.

The busiest times are between 17:00 and 00:00 GMT. To convert 17:00 GMT to your local

time, you could use http://www.timebie.com/std/gmt.php?q=17

http://www.basic4ppc.com/android/documentation.html
http://www.basic4ppc.com/forum/
http://jonsap.com/b4achat/
http://www.timebie.com/std/gmt.php?q=17

 2.12 Getting More Help

 - 192 -

Video Tutorials
Andy McAdam has published several tutorials on YouTube. Erel Uziel has also put some

videos on YouTube.

On-Line Tutorials
The Basic4Android website includes many tutorials covering many aspects of developing

apps and using the IDE. See here for a list. Andy McAdam is a developer who is so keen to

help others to use Basic4Android that he has created a website containing tutorials.

Twitter
Basic4Android has a Twitter account @Basic4Android.

Linked In
There is a small LinkedIn group called Basic4Android Developers.

On-line Documentation
The main on-line source for documentation is:

http://www.basic4ppc.com/android/documentation.html

PDF Guides
Although most of the material is covered in this book, you might want to refer to the valuable

assistance with using Basic4Android which can be found in the following two guides, written

by Klaus Christl: Beginner’s Guide, a zip file which includes many example programs and a

pdf with tutorials; and User’s Guide which explains advanced features and also includes

example programs and accompanying files.

Library Browsers
The XML files that describe a library to Basic4Android contain descriptions of object

members and sometimes an overall description of the library itself and of each object within

the library. This information is shown in the online help but is not accessible in the IDE.

There are two programs you can download to your PC which will browse through the library

XML files:

B4a Object Browser
Vader has produced the B4A Object Browser (also called the DocLoader Help

Documentation) which allows you to browse the help information contained in the XML files

in your Basic4Android installation library, similar to the Visual Studio Object Browser. It

requires .NET Framework 3.5 and Basic4Android to be installed on your PC.

http://www.youtube.com/amcadam26
http://bit.ly/15IGy13
http://www.basic4ppc.com/search?query=tutorial
http://easyandroidcoding.wordpress.com/
https://twitter.com/Basic4android
http://www.basic4ppc.com/android/documentation.html
http://www.basic4ppc.com/android/files/guide.zip
http://www.basic4ppc.com/android/files/UserGuide.zip
http://www.basic4ppc.com/forum/members/vader.html
http://bit.ly/12RRrcI

 2.12 Getting More Help

 - 193 -

B4AHelp
B4AHelp is another XML browser program written by Andrew Graham (agraham) which

shows this help information. It can be downloaded here.

http://bit.ly/13uEAxN

 - 194 -

Part 3: Language and Core Objects
Part 3 includes two chapters of reference material which cover every part of Basic4Android’s

language and core objects (that is, objects accessible from every app).

We compare Basic4Android’s language with Microsoft’s Visual Basic.

 3.1 Basic4Android’s language

 - 195 -

3.1 Basic4Android’s Language

BASIC
Basic4Android is a dialect of BASIC (Beginner’s All-purpose Symbolic Instruction Code), a

family of high-level programming languages designed to be easy to use. Created in 1964 at a

time when writing programs was still technically difficult, BASIC was designed to be easy to

use and became widespread as microcomputers were introduced.

Many dialects appeared and the ones written by the young Microsoft were especially popular.

The company’s Visual Basic is widely used to develop programs for Windows.

Basic4Android
In 2005, Israeli company Anywhere Software created “Basic for PPC”, a system for

developing apps for Pocket PC computers. In 2010, a version appeared which could create

apps for Android devices and this evolved into Basic4Android in 2011.

Lexical Rules
Lexical rules determine how code should be written. Ground rules are:

 Basic4Android is not case sensitive. The editor will automatically change the case of

keywords.

 Unlike some languages, a semi-colon(;) is not required at the end of each line. They are

simply terminated by a carriage return.

Statement Separator
Two statements can be written on one line by separating them with a colon:
Dim intX As Int: If intY > 3 Then intX = 2 Else intX = 9

(You might consider your code would be easier to read if such code were placed on separate

lines.)

Comments
For many apps, more time is spent maintaining and enhancing the code than was originally

spent writing them, so it is essential that they are easy to read and understand. For this

purpose, comments are important. They explain the purpose of variables and subs. The

single quote is used to add a comment on a line. For example:

 3.1 Basic4Android’s language

 - 196 -

'Send a POST request with the given file as the post data.

'This method doesn't work with assets files.

Public Sub PostFile(Link As String, Dir As String, FileName As String)

 If Dir = File.DirAssets Then ' Dir is not valid

 Msgbox("Cannot send files from the assets folder.", "Error")

 Return

 Else

 '...

 End If

End Sub

This illustrates some important principles which will help improve the ease of maintenance

of your code:

Meaningful names
Choose meaningful names for variables and subs, so their function is clear.

Comments as Documentation
Document your subs by adding comments before them. See here for more information.

Splitting Long Lines
Long lines of code are difficult to read:
Sub dblSecsToJ2000 (intYear As Int, intMonth As Int, intDay As Int,

intHour As Int, intMin As Int, intSec As Int, floLat As Float, floLong

As Float, bRound As Boolean) As Double

The underscore character can be used to split long lines. For example:
Sub dblSecsToJ2000 (_

 intYear As Int, intMonth As Int, intDay As Int, _

 intHour As Int, intMin As Int, intSec As Int, _

 floLat As Float, floLong As Float, bRound As Boolean _

) As Double

Variables
A variable is a symbolic name given to some quantity or information to allow the data to be

easily manipulated and changed.

Constants
Unlike Visual Basic, Basic4Android does not allow you to define constants, but you can use a

variable as if it were a constant. You might want to use the prefix “const”, or use

UPPERCASE names, to remind yourself that this is a constant.

Types
The type of a variable is the sort of data which it can contain. The Basic4Android type

system is derived directly from the Java type system. There are two types of variables:

primitive and non-primitive types.

 3.1 Basic4Android’s language

 - 197 -

Primitive Types
These are the fundamental types in Basic4Android.

In the following list of primitive types with their ranges, “~” means “approximately equal to”

Boolean
Type .. boolean

min value FALSE

max value TRUE

Byte
Type .. 8 bits (1 byte signed)

min value - 2 7 = -128

max value 2 7 – 1 = 127

Short
Type .. integer 16 bits (2 bytes signed)

min value - 2 15 = -32768

max value 2 15 -1 = 32767

Int
Type .. integer 32 bits (4 bytes signed)

min value - 2 31 = -2147483648

max value 2 31 -1 = 2147483647

Long
Type .. long integer 64 bits (8 bytes signed)

min value - 2 63 = -9,223,372,036,854,775,808

max value 2 63 -1 = 9,223,372,036,854,775,807

Float
Type .. floating point number 32 bits (4 bytes, ~7 digits)

max negative value - (2 -2 -23) * 2 127 ~ - 3.4028235*1038

min negative value - 2 -149 ~ - 1.4*10-45

min positive value 2 -149 ~ 1.4*10-45

max positive value (2 -2 -23) * 2 127 ~ 3.4028235*1038

Double
Type .. double precision number 64 bits (8 bytes, ~15 digits)

max negative value - (2 -2 -52) * 2 1023 ~ - 1.7976931348623157*10308

min negative value - 2 -1074 ~ - 2.2250738585072014*10-308

min positive value 2 -1074 ~ 2.2250738585072014*10-308

max positive value (2 -2 -52) * 2 1023 ~ 1.7976931348623157*10308

Char
Type .. character, 2 bytes unsigned

String
Type .. array of characters

 3.1 Basic4Android’s language

 - 198 -

Hex Literals
Basic4Android supports the writing of integers in hexadecimal notation, (often shortened to

“hex”). For more details about hex, see here.

You must prefix the number with 0x (the 0 is the number zero). Thus you can write
Dim iSize As Int

iSize = 0x2C

Log (iSize) ' produces 44

Non-Primitive Types
All other types, including arrays of primitive types, are categorized as non-primitive types.

Core Types
In the following sections, we give details of the non-primitive types built into Basic4Android;

the so-called Core Types.

Reference to Non-Primitives
When you pass a non-primitive to a Sub, or when you assign a non-primitive to a different

variable, a copy of the reference is passed. This means that the data itself isn’t duplicated.

For examples, see below Pass by Reference.

Type Conversion
In Basic4Android, variable types are automatically converted as needed. For example:
Dim str As String

Dim i As Int

i = 3

str = i ' automatic type conversion

Log (str) ' produces 3

' conversion string to int

str = "4"

i = str ' automatic type conversion

Log (i) ' produces 4

Note that type conversion does not always work
str = "hello"

i = str

The last line cannot be executed and produces a

runtime error: NumberFormatException

This problem can be solved by using code like:
If IsNumber(str) Then

 i = str

End If

Rank
You might sometimes see a compile-time error such as:
Cannot cast type: {Type=Int,Rank=0} to: {Type=Int,Rank=1}

Rank=0 is a simple variable, Rank=1 means an array.

http://en.wikipedia.org/wiki/Hexadecimal

 3.1 Basic4Android’s language

 - 199 -

Creating Your Own Types
You can create a new type using the Type keyword. See here for details.

Objects
An Object is a useful concept in computer programming which allows us to represent real-

world objects in our code. This helps us to design better and more robust apps. Objects can

have attributes (also called properties) and behaviours (also called functions or methods). In

Basic4Android, these are collectively called Members.

In addition, an object can respond to user actions by raising Events, which we describe

elsewhere.

For example, a Button has attributes of Left and Top (which determine its position on the

screen), and it has behaviours which determine how it responds to commands.
Dim btn As Button

btn.Initialize("Menu")

btn.Left = 20dip

btn.BringToFront

If we are not sure what type of variable we will be dealing with, we can declare a variable to

be an Object. An Object can contain any type of variable.
Dim objThing As Object

Later we can test its type:
If objThing Is Bitmap Then

If one variable containing an Object is assigned to a second variable, they both refer to the

same Object:
Dim btnTest As Button

Dim btnCopy As Button

btnCopy = btnTest

Now anything you do to btnCopy also affects btnTest. This is an example of passing by

reference.

A collection, such as a List or a Map, works with objects and therefore can store any type of

data. It is not necessary that all its elements contain the same type. On the other hand, an

array can store only a single type in all of its elements.

Initialization of Objects
Objects must be initialized (i.e. assigned a value) before use. Otherwise they cannot be used.

Consider a button, for example. First we declare it:
Sub Globals

 Dim btnAddRoute As Button

End Sub

Then we initialize it and declare the event name which will be used to handle its events:
Sub Activity_Create(FirstTime As Boolean)

 btnAddRoute.Initialize("GetPath")

End Sub

Then we create subs to handle each required event:

 3.1 Basic4Android’s language

 - 200 -

Sub GetPath_click

 ' do something

End Sub

Sub GetPath_LongClick

 ' do something

End Sub

The IDE provides an easy way to create these subs and ensures we have the correct

arguments.

Declaring Variables
The “declare a variable” means “to tell Android the name, type and (perhaps) number of

dimensions of a variable”.

Dim Statement
The way you declare a variable is to use the Dim statement. The word “Dim” comes from

“dimension” because, if you wish to use an array, it has to be declared and the number of

dimensions specified.

In Basic4Android, it is not essential to declare a variable before you use it, but it is good

practice to do so. This is a good way to reduce logical errors within your code, because it tells

the compiler to only allow values of a specific type to be assigned to that variable. If you do

not declare a variable before you use it, Basic4Android assumes it is a String type.

Variables are declared with the Dim keyword followed by the variable name, the As

keyword and the variable’s type. If it is an array, the variable name is followed by

parentheses enclosing the number of dimensions. Variables can also be initialized when they

are declared. Examples:
Dim dblCapital As Double

Dim i = 0 As Int

Dim intData(3, 5, 10) As Int

Variables of the same type can be declared together with their names separated by commas

and followed by the type declaration. They can be initialized at the same time:
Dim dblCapital, dblInterest, dblRate As Double

Dim i = 0, j = 2, k = 5 As Int

Variables of different types can be declared on the same line:
Dim txt As String, value As Double, flag As Boolean

However, this can be difficult to read:
Dim txt = "test" As String, value = 1.05 As Double, flag = False As

Boolean

These might be better spread over several Dim statements. It is usually best to make your

code as easy as possible for humans to read and understand, in particular yourself, when you

have to maintain your own app!

No Option Explicit
Programmers can sometimes waste time searching for errors caused by mis-spelt variable

names. Unlike Microsoft Visual Basic, there is no Option Explicit in Basic4Android. Option

Explicit required that all variables were declared using the Dim statement before they were

 3.1 Basic4Android’s language

 - 201 -

used, but you do not have to declare variables in Basic4Android. Thus the following lines will

compile without problem with Basic4Android:
Sub Activity_Create(bFirstTime As Boolean)

 intX = 16

 Log (intX)

End Sub

Note: the IDE editor highlights an undeclared variable in red (intX in this case) as a

warning, and also puts a message in the Warning Area, but the code will nevertheless

compile.

Note also: intX will be automatically declared as a String, which is clearly not the

programmer’s intention!

Allocating Values
To allocate a value to a variable, write its name followed by the equal sign and followed by

the value, like:
Capital = 1200

LastName = "SMITH"

Note: the values of strings, such as LastName, must be written between double quotes.

Type Checking
The main benefit of declaring a variable is that, if you try to assign the wrong type of data to

a variable (which indicates a logical error on your part), there will be a run-time error and

the program will stop, highlighting the error in the code:

An exception will be raised and shown at the foot of the IDE:

Such errors should be caught during testing, if your testing is effective.

Use of Unassigned Variables
Variables, whether declared or not, cannot be used before they are assigned a value. The

following (which mis-types the variable name) will produce an error when you try to compile

the code:
myAge = 16

yourAge = myAg * 2

The error produced will be:

 3.1 Basic4Android’s language

 - 202 -

Error parsing program.

Error description: Undeclared variable 'myag' is used before it was

assigned any value.

Occurred on line: 33

yourAge = myAg * 2

Pass by Value
Primitive types are always passed by value to other subs or when assigned to other variables.

The alternative, passing a reference to a primitive variable, is not implemented. This means

you cannot alter the original value from within a subroutine.

Example:
Sub S1

 Dim A As Int

 A = 12

 ' pass a copy of A's value to routine S2

 S2(A)

 Log(A)

 ' Prints 12. This value of A is unchanged

End Sub

Sub S2(A As Int)

 ' This A Is a local copy

 A = 45

 ' Only the value of the local copy is changed

End Sub

Pass by Reference
Non-primitive types, such as arrays, are always passed to other subs by reference1. For

example:

1 Technically this is not passing by reference, since only a copy of the reference is passed. You

cannot change the reference, only the original object.

 3.1 Basic4Android’s language

 - 203 -

Sub S1

 Dim A(3) As Int

 A(0) = 12

 ' pass a reference A to routine S2

 S2(A)

 Log(A(0))

 ' Prints 45

End Sub

Sub S2(B() As Int)

 ' This B Is a reference to the original

 B(0) = 45

 ' The original value A(0) is changed

End Sub

The same is true when a non-primitive such as an array is assigned to another variable. The

second variable is a reference to the first. Example:
Dim A(3), B(3) As Int

A(0) = 12

B = A

' B is a reference to A

Log(B(0)) ' prints 12

' Change both A and B

A(0) = 45

Log(B(0)) ' prints 45

The same is true for any non-primitive, such as an object:
Dim lbl1, lbl2 As Label

lbl1.Initialize("")

lbl2.Initialize("")

lbl1.TextSize = 20

Log (lbl1.TextSize) ' prints 20

lbl2 = lbl1

' lbl2 is a reference to lbl1

' if change lbl2 we also change lbl1

lbl2.TextSize = 40

Log (lbl1.TextSize) ' prints 40

Naming of Variables
You must identify your variables by giving them names. A variable name must begin with a

letter and must be composed of the following characters: A-Z, a-z, 0-9, and underscore “_”.

You cannot use spaces, brackets, etc.

Variable names are not case-sensitive. This means that “Index” and “index” refer to the same

variable. You cannot use reserved words (keywords listed in this chapter) as variable names.

You can use Object types such as Bitmap (but see the note below). Thus:

 3.1 Basic4Android’s language

 - 204 -

Dim Int As Int ' this is an error

Dim Bitmap As Bitmap ' this is OK, although not good practice

Dim Bitmap1 As Bitmap ' this is good

Dim bmpMyPhoto As Bitmap ' this is perfect

Note: using Object types as variable names (Bitmap, for example) is widely regarded as bad

practice, since it can cause confusion; for example, the IDE will color-code the variable

wrongly. The best practice is to use Hungarian notation (see below).

Hungarian Notation
It can help to remember which type of data a variable needs by using the so-called

Hungarian notation. In Hungary (and other cultures), the family name is cited before the

given name. So, in variables which use this convention, the first part of the variable’s name

tells you what type of object you are handling. For example, an integer could be named

intMyAge, a string could be called strMyName and so on. More examples:
Dim intAge As Int

Dim strName As String

Dim dblWeight As Double

Dim bMale As Boolean

Dim lblCapital As Label

Dim edtInterest As EditText

Dim btnNext As Button

For a suggested list of prefixes, see http://support.microsoft.com/kb/173738

Arrays
An array is a collection of values or objects of the same type. These elements are held within

the array in a fixed order and individual elements can be selected by specifying their position

using an index number.

Dimensions
Arrays can have multiple dimensions. Think of a one-dimensional array as a row of objects.

You pick one of them by counting along the row until you find the one you want. A two-

dimensional array is like a chequer-board with each square containing an object. To pick one

of them, you must specify two numbers, one for the horizontal position and one for the

vertical. This plan can be extended to any number of dimensions, although they get

increasing difficult to imagine!

Declaring an Array
A one-dimensional array is declared as follows:
Dim strLastName(50) As String

The declaration contains the Dim keyword followed by the variable name strLastName, the

dimensions between brackets (50), the keyword As and the variable type String.

This array can hold a total of 50 Strings.

Other Examples
Two dimensional array of Doubles, total number of items 9:

http://support.microsoft.com/kb/173738

 3.1 Basic4Android’s language

 - 205 -

Dim dblMatrix(3, 3) As Double

Three dimensional array of integers, total number of items 150:
Dim intData(3, 5, 10) As Int

Saving and Retrieving Data
To store data in an array, you have to specify at which position you want to store it. You do

this by giving an index-number, starting with 0 as the first position.
Dim strLastName(2) As String

strLastName(0) = "Jones"

strLastName(1) = "Smith"

You can read data from an array if you know its position within the structure. For example,

to pick the first item, you would say:
Dim strPatient As String

strPatient = strLastName(0)

Now strPatient will be "Jones"

The first index of each dimension in an array is 0:
strLastName(0), dblMatrix(0,0), intData(0,0,0)

The last index is equal to the number of items in each dimension minus 1.
Dim dblMatrix(3,3) As Double

dblMatrix(2,2) = 1.233

Dim intData(3,5,10) As Int

intData(2,4,9) = 36676

The following example shows how to access all items in a three dimensional

array:
Dim intData(3,5,10) As Int

For i = 0 To 2

 For j = 0 To 4

 For k = 0 To 9

 intData(i,j,k) = i + j + k

 Next

 Next

Next

Variable Can Specify Dimensions
The above example demonstrates that you can use variables (i, j and k) to specify the index

when you store or retrieve data. You can also use variables to specify the number of elements

when you declare an array, as shown in the last line of this code:
Dim intFriends As Int

' read number of friends from user input

intFriends = txtNumFriends.Text

' declare array to hold friends names

Dim strLastName(intFriends) As String

Filling an array using the Array keyword
An array can be declared without specifying its length:

 3.1 Basic4Android’s language

 - 206 -

Dim strNames() As String

At this point, the Length of the array is zero.
Log(strNames.Length) ' shows 0

The array can then be filled using the Array keyword:
strNames = Array As String("Miller", "Smith", "Johnson", "Jordan")

The array now has length of 4.

You can declare and fill an array at the same time:
Dim strName() As String = Array As String("a", "b", "c")

Arrays of Objects
Views or other objects can be stored in an Array. An example is given in the Shared Event

Handler section.

Array Dimensions are Fixed
One of the limitations of arrays is that their dimensions are fixed. Once you have created an

array, the number of elements it can hold is fixed. You cannot later decide to make it bigger

unless you replace it with a new array:
strNames = Array As String("Jones", "Windor")

' replace the original data with some new strings

strNames = Array As String("Miller", "Smith", "Johnson", "Jordan")

The array has changed its dimensions but the original data is lost.

This limitation can be overcome by using Lists or Maps, which allow you to add data to

existing structures:

Lists
Lists are similar to arrays but they are dynamic: you can add and remove items from a list

and it will change its size accordingly:
List1.Add(Value)

Lists resemble arrays in that you access their elements by using an index number:
number = List1.Get(i)

List1.RemoveAt(12)

There are other benefits of using lists. For example, lists can hold any type of object. A

detailed description of all functions is in the List section.

Maps
A Map resembles a List, but you access its members not with an index number but with a

key. A key can be a string or a number. Like a List, a Map can store any type of object.
Dim mapPerson As Map

Dim photo As Bitmap

...

mapPerson.Put("name", "smith")

mapPerson.Put("age", 23)

mapPerson.Put("photo", photo)

More details in the Map section.

 3.1 Basic4Android’s language

 - 207 -

Type variables
The Type keyword is used to create your own types or structures. You can use such types to

create simple structures that group some values. However, you can also use it to create more

complex collections. Define a type with the Type keyword:
Sub Process_Globals

 Type Person(_

 LastName As String, FirstName As String, _

 Address As String, City As String _

)

End Sub

We can declare either single variables or arrays of this type:
Dim CurrentUser As Person

Dim User(intUsers) As Person

To access a particular item, we use the variable name and its data item, separated by a

period:
CurrentUser.FirstName = "Wyken"

CurrentUser.LastName = "Seagrave"

If the variable is an array, then the name is followed by the desired index between

parentheses:
User(1).LastName = "Seagrave"

It is possible to assign a typed variable to another variable of the same type:
CurrentUser = User(1)

Declaring Types
Types must be declared in Process_Globals.

A Type cannot be private. Once declared, it is available everywhere (similar to Class

modules).

Recursive Types
It is possible to use the current type as a type for one of the variable’s fields.
Sub Process_Globals

 Type Element (NextElement As Element, Val As Int)

 Dim Head As Element 'declare a variable of that type

 Dim Last As Element

End Sub

The ability to declare such recursive types is very powerful. The above example could be used

for a linked list, as explained in this on-line tutorial

Initializing a Recursive Type
Before we can access any of the type fields in a recursive type, it should be initialized by

calling its Initialize method:
Head.Initialize

Note: if your type only includes numeric fields and strings, then there is no need to call

Initialize (although there is no harm in calling it).

http://bit.ly/13uxb1r

 3.1 Basic4Android’s language

 - 208 -

Casting
Casting means changing an object’s type. Basic4Android casts types automatically as needed.

It also converts numbers to strings and vice versa automatically. In many cases, you need to

explicitly cast an Object to a specific type.

For example, you might have an event handler which needs to read data from the object

which raised the event. You can get a reference to that object by using the “Sender” keyword,

but to use the properties of that object, you must cast it to the correct type. This can be done

by assigning the Object to a variable of the required type.
Sub Btn_Click

 ' Create an object of the correct type so we can access its

properties

 Dim btn As Button

 ' Copy the Object which raised this event.

 ' This will cast its type to Button

 btn = Sender

 ' Now we can access its properties

 btn.Color = Colors.RGB(Rnd(0, 255), Rnd(0, 255), Rnd(0, 255))

End Sub

Visibility and Lifetime of Variables and Subs
This section will cover the rules which determine from where a variable or a sub can be

accessed. This is called “visibility” or “scope”. We will also discuss how long they endure.

First we will deal with visibility between modules. Then we will explain visibility inside

modules.

Visibility Between Modules
There are two access modifiers which determine the visibility of variables and subroutines

between modules: Public and Private. Public means that the object can be accessed from

other modules as well as the one in which it is declared. Private means it is hidden from

other modules. You can declare them with:
Private intLocal As Int

Public intGlobal As Int

Default
The default accessibility is Public. Therefore this modifier is not needed:
' The following are identical

Dim intGlobal As Int

Public intGlobal As Int

You might choose to use Public instead of Dim if you have a mixture of public and private

variables and want the difference to be clear to other programmers (or to yourself in later

months).

 3.1 Basic4Android’s language

 - 209 -

Sub Process_Globals

Public by Default
Variables defined in Sub Process_Globals of activity, service and code modules are public

by default, but you can hide them by using the Private modifier:
Sub Process_Globals

 ' define a variable visible from any module

 Dim strThisIsAPublicVariable As String

 ' define a variable only visible in this module

 Private strThisIsAPrivateVariable As String

End Sub

Process_Globals variables are the only public variables.

Lifetimes of Process_Globals Variables
Sub Process_Globals is called once when the process starts. This is true for all activities,

not just the first activity. Variables declared inside Sub Process_Globals live as long as

the process lives.

Rotating Device
Note: if you need variables to retain their value after the user rotates the device, you should

put the variables in Process_Globals and not in Globals.

How to Access Process_Globals Variables
To access Process_Globals variables in other modules than the module where they were

declared, their names must be prefixed by the name of the module they were declared in.

Example:

In MyModule
'declare the variable

Sub Process_Globals

 Dim MyVar As String

End Sub

...

'use the variable

MyVar = "Text"

In OtherModule
'use the variable

MyModule.MyVar = "Text"

Sub Globals

Always Private

Activity Global Variables
Variables defined in Sub Globals of a module are always private within this module and

can only be accessed from within the current activity module. All object types can be declared

as activity variables. Every time the activity is created, Sub Globals is called (before

Activity_Create). These variables exist as long as the activity exists.

 3.1 Basic4Android’s language

 - 210 -

View Variables Must be Here
Views must be declared inside the Sub Globals, not Sub Process_Globals nor within

any other Sub. The reason is as follows. We do not want to hold a reference to objects that

should be destroyed together with the activity. When the activity is destroyed, all of the

views which are contained in the activity are destroyed as well. If we hold a reference to a

Process_Globals view, the garbage collector would not be able to free the resource and we

will have a memory leak. Therefore, the Basic4Android compiler enforces this requirement!

Likewise, views cannot be local variables as such variables only endure while the sub is

running, whereas views endure while the activity exists.

Summary: views must be declared inside the Sub Globals.

Class_Globals
Variables declared in Sub Class_Globals of a class module are public by default, but can

be hidden by using the Private modifier, as above.

Subroutines
Subs declared in Activity and Service modules are private.

Subs declared in Code modules and Class modules are public by default, but they can be

hidden by using the Private modifier, so they are visible only in this module:
Private Sub ThisIsAPrivateSub(x As Int)

' code here can only be run within this module

End Sub

The Public modifier can also be used, although it doesn’t have any effect.

Running Subs in other modules
CallSub and CallSubDelayed can be used to call subs in other services, activities and classes.

These methods can be used to access both private and public subs.

Variables in Subs

Local variables
Variables that are declared inside a Sub (other than Process_Globals or Globals) are

local to this subroutine. They are “private” and can only be accessed from within the

subroutine where they were declared. Once the sub ends, these variables no longer exist. All

object types can be declared as local variables. At each call of the subroutine, the local

variables are initialized to their default value or to any other value you have defined in the

code and are ‘destroyed’ when the subroutine ends.

Expressions and Operators
An expression is a combination of values, constants, variables, operators, and functions

which are combined using operators to produce a value, for example:

 3.1 Basic4Android’s language

 - 211 -

2 + intAge

strName.Length - 1

Mathematical expressions
The mathematical operators (“+”, “-” etc) have to be executed in a particular order. This is

called their precedence. Precedence 1 is highest. Precedence Level is abbreviated PL in the

following table:

Operator Example PL Operation

Power Power(x,y) 1 Power of, xy

Mod x Mod y 2 Modulo

* x * y 2 Multiplication

/ x / y 2 Division

+ x + y 3 Addition

- x – y 3 Subtraction

Thus, for example, in the expression 4 + 5 * 3 + 2, the multiplication is evaluated first, to

produce 4 + 15 + 2, so the returned value is 21.

Power means multiplying a number by itself several times, so Power(2,3) means 2 * 2 * 2.

Mod (short for modulo or modulus) returns the remainder after a division. Thus, 11 Mod 4 is

the remainder of 11 / 4, so it returns 3.

Relational Operators
Relational operators compare two values and decide if they are equal, if one is larger than

the other, etc. These operators return True or False.

Operator Example Returns True if

= x = y the two values are equal

<> x <> y the two values are not equal

> x > y the value of the left expression is greater

than that of the right

< x < y the value of the left expression is less than

that of the right

>= x >= y the value of the left expression is greater

than or equal to that of the right

<= x <= y the value of the left expression is less than

or equal to that of the right

Logical Operators
Logical or “Boolean” operators are used to determine whether an expression is True or

False. They are typically used in conditional statements such as If-Then. They return

values of True or False

 3.1 Basic4Android’s language

 - 212 -

Operator Example Returns True if

Or X Or Y if either X or Y is True, or if both are True

And X And Y True only if both X and Y are True

Not () Not(X) True only if X is False

Regular Expressions
Regular Expressions occur several times in Basic4Android, and provide a very powerful

(although not very programmer-friendly) method of specifying a pattern (sometimes very

complex) to search for within a string. For example:

 to search for a tab character you would use the expression “\t”

 to match any single character you use a dot “.”

 to match one or more characters you would use “.*”

Thus, for example:

 “c.t” would match “cat” and “cot” but not “cart”

 “c.*t” would match “cat”, “cot” and “cart” but not “ct”

There are many of these rules. Regular expressions are used in the delimiters of the String

Functions Library.

Getting Help with Regular Expressions
For an on-line primer see here.

You can test your expressions on-line using http://gskinner.com/RegExr/

If you need to use regular expressions regularly, I recommend you invest in RegexBuddy. It

not only provides a tool for creating and testing regular expressions, but it has useful

(although not easily digested) tutorials to explain the more abstruse parts of the arcane

syntax.

Conditional statements
Different conditional statements are available in Basic4Android.

If – Then – Else – End If
The If-Then-Else-End If structure allows you to operate conditional tests and execute

different code sections according to the test result.

General case:
If test1 Then

 ' code1

Else If test2 Then

 ' code2

' more tests are possible

Else

 ' codeN

End If

The If-Then-Else structure works as follows:

http://bit.ly/15HuBDW
http://bit.ly/15HuBDW
http://docs.activestate.com/komodo/4.4/regex-intro.html
http://gskinner.com/RegExr/
http://www.regexbuddy.com/

 3.1 Basic4Android’s language

 - 213 -

 When reaching the line with the If keyword, “test1” is evaluated. The test can be any

kind of conditional test with two possibilities: True or False.

 If the test result is True, then “code1” is executed until the line with the Else If

keyword, then execution jumps to the line following the End If keyword and continues.

 If the result of test1 is False, then “test2” is evaluated.

 The same thing is repeated.

 If all tests fail, then the code after the Else keyword is executed.

Example of If-Then
If intA = 20 Then

 intA = intA - 3

End If

If only simple code is to be executed when the condition is True, then it can be placed on the

same line as the If statement:
If intA = 20 Then intA = intA - 3

Note that in this case, the End If is not needed.

Example of If-Then-Else
If intA = 20 Then

 intA = intA - 3

Else

 intA = intA + 1

End If

This could be written as
If intA = 20 Then intA = intA - 3 Else intA = intA + 1

But you might decide that having the structure spread over several lines makes the code

more readable.

Differences between Basic4Android and Visual Basic
1. B4A uses Else If whereas VB uses: ElseIf

2. The following line is interpreted differently in B4A and VB:
If b = 0 Then a = 0: c = 1

In B4A this is equivalent to:
If b = 0 Then

 a = 0

End If

c = 1

But in VB it is:
If b = 0 Then

 a = 0

 c = 1

End If

Select – Case
The Select - Case structure allows you to compare a test expression with other

expressions and to execute different code sections according to the matches with the test

expression:

 3.1 Basic4Android’s language

 - 214 -

Select TestExpression

 Case ExpressionList1

 ' code1

 Case ExpressionList2

 ' code2

 Case Else

 ' code3

End Select

“TestExpression” is any expression or value.

“ExpressionList1” is a list of any expressions or values, separated by commas.

The Select - Case structure works as follows:

 “TestExpression” is evaluated.

 If one element in the “ExpressionList1” matches “TestExpression”, then “code1” is

executed and control passes to the line following the End Select keyword.

 If one element in the “ExpressionList2” matches “TestExpression”, then “code2” is

executed and control passes to the line following the End Select keyword.

 If no expression matches “TestExpression”, then “code3” is executed and control

continues at the line following the End Select keyword.

Note: the type of each value in each ExpressionList has to be the same as the type of the

TestExpression. If not, either a compiletime error or a runtime error will result.

Some examples:
Dim intA As Int

intA = Rnd(1,100)

Select intA

 Case 1, 2, 99

 ' code

 Case 5

 ' code

 Case Else

 ' code

End Select

Note: if you accidentally use the same expression in two lists, a compile error is reported.

Some more examples:
Dim intA As Int

intA = Rnd(1,100)

Select intA < 10

Case True

 Log("small")

Case False

 Log("big")

End Select

'----------

Dim intA, intB As Int

intA = Rnd(1,100)

intB = Rnd(1,100)

Select intA + intB

Case 1,2,3,4,5

 3.1 Basic4Android’s language

 - 215 -

 Log("small")

Case Else

 Log("big")

End Select

'----------

Dim strCode As String

Select strCode

 Case "walk"

 ' code

 Case "run"

 ' code

 Case Else

 ' code

End Select

'----------

Sub Activity_Touch (Action As Int, X As Float, Y As Float)

 Select Action

 Case Activity.ACTION_DOWN

 ' code

 Case Activity.ACTION_MOVE

 ' code

 Case Activity.ACTION_UP

 ' code

 End Select

End Sub

Differences between Basic4Android and Visual Basic:
 B4A uses Select, where VB uses Select Case.

 B4A allows only a list for example: Case 1,2,3, where VB also allows a range for

example: Case 1 To 3

Loop structures
Various loop structures are available in Basic:

For – Next
In a For–Next loop, the same code will be executed a number of times controlled by a

variable called an “iterator”. For example:
For i = 1 To 10 Step 2

 ' your code

Next

In this case i is the iterator. This is how the code is executed:

 Iterator i set to the first value 1 and your code will be executed.

 When execution reaches Next, execution will return to the For statement and i will be

incremented by the Step value 2 to 1+2 or 3.

 If i is less than or equal to the upper value 10, then your code will be executed again.

 This will be repeated until i is greater than the upper value

 3.1 Basic4Android’s language

 - 216 -

 Control then passes the line after Next.

So your code in the above example will execute exactly five times, when i = 1,3,5,7 and 9.

If the iterator variable i was not previously declared, it will be of type Int.

Note: the loop limits (in the above case, 1 and 10) might be expressions which depend on

variables. In that case, they will only be calculated once, before the first iteration.

Step Value
Note: if the Step value is omitted, then it is assumed to be 1, no matter what the starting

value of the iterator. So:
For i = 1 To 10

is the same as
For i = 1 To 10 Step 1

Step variable can be negative:
For i = 10 To 6 Step -1

Non-integer Iterators
Note that the iterator (i in the above examples) is assumed to be in integer, unless it is

declared beforehand. But if declared correctly, then any numeric value can be used as the

iterator:
Dim i As Float

For i = 1.1 To 1.4 Step 0.1

 ' your code

Next

Exit
It is possible to exit a For–Next loop with the Exit keyword. When code execution meets the

Exit keyword, it continues on the line after Next. The following will log 1-4:
For i = 1 To 10

 If i = 5 Then Exit

 Log (i)

Next

Continue
If you want to stop executing the current iteration but continue with the next one, use

Continue. The following will log 1-4 and 6-10, but not 5:
For i = 1 To 10

 If i = 5 Then Continue

 Log (i)

Next

Differences between Basic4Android and Visual Basic
 B4A uses Next, whereas VB uses Next i

 B4A uses Exit, VB uses Exit For

For-Each
For-Each is a variant of the For-Next loop, but while For-Next is limited to using an

integer to control the loop, For-Each can use arrays, lists, maps or any other “IterableList”

you may create. Example:

 3.1 Basic4Android’s language

 - 217 -

Dim strName() As String = Array As String("a", "b", "c")

For Each name As String In strName

 Log (name)

Next

Each value of strName is assigned, in turn, to the variable name, so the result is:
a

b

c

An example iterating over a Map:
Dim balances As Map

balances.Initialize

balances.Put("Fred", 123.45)

balances.Put("Tom", 543.21)

Dim value As Float

For Each Person As String In balances.Keys

 value = balances.Get(Person)

 Log (Person & " has balance " & value)

Next

The views in an activity are an IterableList:
For Each vw As View In Activity

 ' check its type

 If vw Is Button Then

 ' need object with correct type so

 ' can gain access to properties

 Dim btn As Button

 ' make copy of original view

 btn = vw

 Log (btn.Text)

 End If

Next

Do-While
You can loop while a certain condition is True. For example, this will randomly decrease a

number starting with 10000 and log the result while it is greater than 0:
Dim i As Int = 10000

Do While i > 0

 ' randomly decrease i

 i = i - Rnd(20, 200)

 Log (i)

Loop

Do-While is useful if you know the starting condition when the loop starts. For example,

when you read a text file. The following reads a text file and uses it as the text for a Label:

 3.1 Basic4Android’s language

 - 218 -

Dim lbl As Label

Dim strLines As String

Dim tr As TextReader

tr.Initialize(File.OpenInput(File.DirAssets, "test.txt"))

lbl.Initialize("")

strLines = tr.ReadLine

Do While strLines <> Null

 lbl.Text = lbl.Text & CRLF & strLines

 strLines = tr.ReadLine

Loop

tr.Close

Activity.AddView(lbl, 10dip, 10dip, 100dip, 100dip)

Do-While may not be executed
Note: in some languages, such as C, the syntax causes a do-while loop to always be executed

at least once, because the condition which controls the loop is not tested until after the code

is run. For example:
// Example of C code

do {

 /* "Hello, world!" is printed at least one time

 even though the condition is false */

 printf("Hello, world!\n");

} while (x != 0);

In Basic4Android, on the other hand, the condition is tested before the loop is executed. For

example, the following B4A code will produce NO log entries:
Dim i As Int = 0

Do While i > 3

 Log (i)

 i = i - 1

Loop

Do-Until
Sometimes, we do not know the initial value which we want to use. We only know when we

want to stop the loop. In this case, we use the Do Until loop:
i = Rnd(20, 200)

Do Until i <= 0

 ' randomly decrease i

 i = i - Rnd(20, 200)

 Log (i)

Loop

Exit a Loop
It is possible to exit either of these Do-Loop structures by using the Exit keyword.

 3.1 Basic4Android’s language

 - 219 -

Dim i As Int = 10000

Dim magicNumber As Int = 1234

Do While i > 0

 ' randomly decrease i

 i = i - Rnd(20, 200)

 Log (i)

 If i = magicNumber Then

 Log ("Hit magic number so ending loop")

 Exit

 Else

 Log (i)

 End If

Loop

Differences between Basic4Android and Visual Basic
In Visual Basic, the loop type is specified after Exit, for example, Exit Loop

In Basic4Android, only Exit is used.

Visual Basic also accepts the following loops:
Do ... Loop While test

Do ... Loop Until test

These are NOT supported in Basic4Android.

Subs
A Subroutine (“Sub”) is a piece of code. It has a distinctive name and a defined visibility (as

discussed earlier). In Basic4Android, a subroutine is called Sub, and is equivalent to

procedures, functions, methods and subs in other programming languages. Example:
Sub CalcInterest(Capital As Double, Rate As Double) As Double

 Return Capital * Rate / 100

End Sub

Using Subs to encapsulate logical units of your code can help it to be more readable and more

robust, since you can test each Sub separately from all the other code. It is not recommended

to have Subs that are too long; they get less readable.

Declaring a Sub
A Sub is declared in the following way:
Sub CalcInterest(Capital As Double, Rate As Double) As Double

' code goes here

End Sub

It starts with the keyword Sub, followed by the Sub’s name CalcInterest, followed by a

parameter list enclosed in parentheses (Capital As Double, Rate As Double),

followed by the return type Double. This is followed by the code which the sub executes. The

sub ends with the keywords End Sub.

There is no limit on the number of subs you can add to your program, but you are not allowed

to have two subs with the same name in the same module.

 3.1 Basic4Android’s language

 - 220 -

Subs are always declared at the top level of the module. That is so say, you CANNOT nest

two Subs one inside the other.

Naming
For a Sub, you can use any name that’s legal for a variable. It is highly recommended to

name the Sub with a meaningful name so that your code is self-documenting.

Calling a Sub
When you want to execute a Sub in the same module, you simply use the Sub’s name.
Sub Activity_Resume

 doSomething

End Sub

Sub doSomething

 ' code goes here

End Sub

Calling a Sub from another module
A subroutine declared in a code module can be accessed from any other module by prefixing

the name of the module where the Sub was declared to the name of the sub, joined by a dot:
MyModule.mySub

Parameters
Input parameters can be transmitted to the Sub. This allows you to make the sub do

different things depending on its inputs. The parameter list is enclosed in parentheses, and

their types are required:
Sub CalcInterest(Capital As Double, Rate As Double) As Double

 Return Capital * Rate / 100

End Sub

To invoke a sub which needs parameters, add the parameters to the call:
Interest = CalcInterest(1234.56, 3.2)

If a sub needs no parameters, then the parentheses are not required when the sub is defined

or called:
i = getRate

...

Sub getRate

 Return 3

End Sub

Returned value
A sub can return a value. This can be any object. Returning a value is done with the Return

keyword. The type of the return value is defined after the parameter list. So the following

will return a Double

 3.1 Basic4Android’s language

 - 221 -

Sub CalcInterest(Capital As Int, Rate As Int) As Double

Creating Tooltips for Subs
You can create a tooltip to remind yourself what a Sub does. See Comments As

Documentation for more information.

Events
In Object-oriented programming, objects can react to things called Events. These could be

actions by the user or system-generated events. The number and the type of events an object

can raise depends on the type of the object.

Core Object Events
Many Core Objects generate events. Examples are Animation, AudioRecordApp, Camera,

DayDream, GameView, GPS, HTTPClient, IME, MediaPlayerStream, Timer, etc. Consult

the documentation for each of these objects to discover what events they can raise.

Reacting to an Event
To react to an event, you must write a subroutine with the correct name. You must write a

Sub with the name of the object which is raising the event, followed by an underscore

followed by the event name. For example:
Sub Timer1_Tick

Timer1 is the name of the object which is raising the event. You decide this name when you

initialize the object, for example
Timer1.Initialize("Timer1", 1000)

The Tick part of the subroutine name is the name of the event. This is determined by the

object itself. You need to consult the object’s documentation to discover what events it can

raise. Some objects can raise several events.

You must join these two parts of the name together with an underscore _, for example

Timer1_Tick.

Note: the IDE provides a way of easily autocompleting Event Subroutines.

Example
To give a concrete example, a Timer will run in the background until it has finished its task,

then it will raise an event (in this case Tick) which your code needs to respond to. For

example, Timer1_Tick as in the following sample:

 3.1 Basic4Android’s language

 - 222 -

Sub Process_Globals

 ' declare here so dont get multiple timers when activity recreated

 Dim Timer1 As Timer

End Sub

Sub Globals

End Sub

Sub Activity_Create(FirstTime As Boolean)

 ' make the timer last 1000 milliseconds

 Timer1.Initialize("Timer1", 1000)

 ' start the timer

 Timer1.Enabled = True

End Sub

Sub Timer1_Tick

 ' timer has ended

 Log ("Timer finished")

End Sub

Shared Event Handler
You can use a single Sub to handle the events of many objects. For example, you might have

several buttons, all of which perform a similar function, so you only need a single event

handler. You can determine which object raised the event by using the Sender keyword. The

following produces a column of buttons labeled Test 1 to Test 7, all of which share the same

handler Buttons_Click:

 3.1 Basic4Android’s language

 - 223 -

Sub Globals

 Dim b1, b2, b3, b4, b5, b6, b7 As Button

 Dim Buttons() As Button

End Sub

Sub Activity_Create(FirstTime As Boolean)

 ' index to handle buttons

 Dim i As Int

 Buttons = Array As Button(b1, b2, b3, b4, b5, b6, b7)

 For i = 0 To 6

 ' all buttons share same event handler

 Buttons(i).Initialize("Buttons")

 ' use index to position buttons correctly

 Activity.AddView(Buttons(i), 10dip, 10dip + i * 60dip, 150dip, 50dip)

 ' add tag so can identify which button this is

 Buttons(i).Tag = i + 1

 Buttons(i).Text = "Test " & (i + 1)

 Next

End Sub

Sub Buttons_Click

 ' event handler for all buttons

 Dim btn As Button

 btn = Sender

 Activity.Title = "Button " & btn.Tag & " clicked"

End Sub

View Events
Many events are raised by Views which are handled by your code in the same way as Core

Object Events. The Designer is able to generate the skeleton subs for you, such as:
Sub btnTest_Click

 ' add your code here

End Sub

Here is a summary of the events for different views:

 3.1 Basic4Android’s language

 - 224 -

Commonest View Events
The most common events are as follows. Note that the events supported vary with the type of

view:

Click
Event raised when the user clicks on the view. Example:
Sub Button1_Click

 ' Your code

End Sub

LongClick
Event raised when the user clicks on the view and holds it pressed for about one second.

Example:
Sub Button1_LongClick

 ' Your code

End Sub

Touch(Action As Int, X As Float, Y As Float)
Event raised when the user touches the screen.

Three different actions are handled:

 Activity.Action_DOWN: the user touches the screen.

 Activity.Action_MOVE: the user moves the finger without leaving the screen.

 Activity.Action_UP: the user stops touching the screen.

 3.1 Basic4Android’s language

 - 225 -

The X and Y coordinates of the finger position are given. Example:
Sub Activity_Touch (Action As Int, X As Float, Y As Float)

 Select Action

 Case Activity.ACTION_DOWN

 ' Your code for DOWN action

 Case Activity.ACTION_MOVE

 ' Your code for MOVE action

 Case Activity.ACTION_UP

 ' Your code for UP action

 End Select

End Sub

CheckChanged (Checked As Boolean)
Event raised when the user clicks on a CheckBox or a RadioButton.

Checked is equal to True if the view is checked or False if not checked.

Example:
Sub CheckBox1_CheckedChange(Checked As Boolean)

 If Checked = True Then

 ' Your code if CheckBox1 is checked

 Else

 ' Your code if CheckBox1 is not checked

 End If

End Sub

KeyPress (KeyCode As Int) As Boolean
This event (which only belongs to the Activity object) is raised when the user presses a

physical or virtual key (except the Home key, which calls Activity_Pause).

KeyCode is the code of the pressed key, you can get a list of them in the IDE by typing

KeyCodes and a dot:

The KeyPress event returns either True, in which case the event is consumed and never

seen by the operating system, or False, in which case the event is transmitted to the system

for further action.

Example:

 3.1 Basic4Android’s language

 - 226 -

Sub Activity_KeyPress(KeyCode As Int) As Boolean

 ' Confirm user wants to quit if press back key

 Dim Answ As Int

 Dim Txt As String

 ' Check if KeyCode is BackKey

 If KeyCode = KeyCodes.KEYCODE_BACK Then

 ' Confirm user wants to quit

 Txt = "Do you really want to quit the program ?"

 Answ = Msgbox2(Txt, "A T T E N T I O N", "Yes", "", "No", Null)

 If Answ = DialogResponse.POSITIVE Then

 ' User wants to quit

 Return False

 Else

 ' Do not quit

 Return True

 End If

 End If

End Sub

Error Handling

Runtime Errors
Some errors are caught by the compiler, but some more subtle errors are only revealed when

the code runs. Such a “runtime error” is produced by the following example:
Dim str As String

Dim i As Int

str = "hello"

i = str

The last line produces a runtime error because Java (which is what Android uses) cannot

convert a non-numeric string to a number.

Exceptions
When a runtime error occurs, a Java language Exception is raised. You can add Try-Catch

code to your app to handle Exceptions. If you have not added this code when an Exception

occurs, the program stops and an error is shown on the device or emulator, as described next.

Uncaught Runtime Exceptions
If a runtime error occurs outside a Try-Catch block, what the user sees will depend on how

you have distributed the app. If you distribute your application directly with an apk file and

it crashes without any error handling, the user will see an error crash report and asked if

they wish to continue.

 3.1 Basic4Android’s language

 - 227 -

On the other hand, if you distribute via Google Play, when your application crashes outside a

Try-Catch block, the user will be asked to send a crash report. This happens automatically.

You can see the reports in Google Play Developer Console.

Try-Catch
Basic4Android provides a mechanism to handle runtime errors, called a Try-Catch block.

Example:
Try

 'block of statements

Catch

 Log(LastException.Message)

 'handle the problem if necessary

End Try

Now when the Exception occurs in the Try block, control moves to the Catch block. Your

program can take steps to handle the problem.

When to use a Try-Catch
Try-Catch should not be used to protect from programming mistakes. You should make

sure your code is logically and syntactically correct by testing before distribution.

Try-Catch should only be used when there might be a problem which you cannot control.

For example, when you parse a downloaded feed, the feed itself might have problems. Or

when you try to update a database using a Transaction and there is a problem. For example:

 3.1 Basic4Android’s language

 - 228 -

SQL.BeginTransaction

Try

 'block of statements

 For i = 1 To 10

 SQL.ExecNonQuery2("INSERT INTO demo VALUES (?,?)", Array As Object(i,

"Tom Brown"))

 Next

 SQL.TransactionSuccessful

Catch

 Log(LastException.Message) 'no changes will be made

End Try

SQL.EndTransaction

Try-Catch is of use mainly during development.

Note: if an error is caught in the middle of a large subroutine, you cannot make a correction

and resume within the code you were executing. Only the code in the Catch block gets

executed.

String manipulation
Basic4Android allows string manipulations like other Basic languages, but with some

differences. These manipulations can be done directly on a string.

Example:
strTxt = "123,234,45,23"

strTxt = strTxt.Replace(",", ";")

Result: 123;234;45;23

Mutable Strings
Repetitive manipulation of strings can be very slow. Since they are immutable, a new string

has to be created every time you want to change a string. If you are doing extensive string

manipulation, you should consider using StringBuilder.

The String functions
Here we list the string functions. For more details, see below.

CharAt(Index)

 Returns the character at the position given by Index, where the first character is at 0.

CompareTo(Other)

 Lexicographically compares the string with the Other string.

Contains(SearchFor)

 Returns True if the string contains the given SearchFor string.

EndsWith(Suffix)

 Returns True if the string ends with the given Suffix substring.

EqualsIgnoreCase(Other)

 Returns True if both strings are equal ignoring their case. Example:
 If firstString.EqualsIgnoreCase("Abc") Then

GetBytes(Charset)

 Encodes the Charset string into a new array of bytes.

 3.1 Basic4Android’s language

 - 229 -

IndexOf(SearchFor)

 Returns the index of the first occurrence of SearchFor in the string, or -1 if not found.

IndexOf2(SearchFor, Index)

 Returns the index of the first occurrence of SearchFor in the string, or -1 if not found.

Starts searching from the given Index.

LastIndexOf(SearchFor)

 Returns the index of the first occurrence of SearchFor in the string, or -1 if not found.

Starts searching from the end of the string.

Length

 Returns the number of characters in the string.

Replace(Target, Replacement)

 Returns a new string resulting from the replacement of all the occurrences of Target with

Replacement.

StartsWith(Prefix)

 Returns True if this string starts with the given Prefix.

Substring(BeginIndex)

 Returns a new string which is a substring of the original string. The new string will

include the character at BeginIndex and will extend to the end of the string.

Substring2(BeginIndex,EndIndex)

 Returns a new string which is a substring of the original string. The new string will

include the character at BeginIndex and will extend to the character before EndIndex.

ToLowerCase

 Returns a new string which is the result of lower casing this string.

ToUpperCase

 Returns a new string which is the result of upper casing this string.

Trim

 Returns a copy of the original string without any leading or trailing white spaces.

Number formatting
Numbers can be displayed as strings with different formats. There are two keywords:

NumberFormat and NumberFormat2.

NumberFormat (Number As Double, MinimumIntegers As Int, MaximumFractions As Int)

Follow the link for the meaning of the arguments. Examples:
NumberFormat(12345.6789, 0, 2)

' produces 12,345.68

NumberFormat(1, 3 ,0)

' produces 001

NumberFormat(Value, 3 ,0)

' variables can be used.

NumberFormat(Value + 10, 3 ,0)

' arithmetic operations can be used.

NumberFormat((lblscore.Text + 10), 0, 0)

' parentheses needed If one variable Is a String.

NumberFormat2(Number As Double, MinimumIntegers As Int, MaximumFractions As Int,

MinimumFractions As Int, GroupingUsed As Boolean)

Follow the link for the meaning of the arguments. Example:

 3.1 Basic4Android’s language

 - 230 -

NumberFormat2(12345.67, 0, 3, 3, True)

' This will produce “12,345.670”.

Keywords
In this section we list alphabetically the keywords used by Basic4Android and define their

functions. We list separately the objects which are included in the core of the language.

Abs (Number As Double) As Double
Returns the absolute value of a number, that is, the value of the number but with negative

numbers changed to positive. Thus both of the following produce 123.45:
Log (Abs(123.45))

Log (Abs(-123.45))

ACos (Value As Double) As Double
Given a cosine, this function returns the angle, measured as radians. Thus
Log (ACos(0.5))

will produce 1.0471975511965979 since 60° is just over 1 radian.

ACosD (Value As Double) As Double
Given a cosine, this returns the angle measured in degrees. Thus
Log (ACosD(0.5))

will produce 60 (or something very close).

Array
Creates a one-dimensional array of the specified type.

The syntax is: Array As type (list of values).

Example
Dim Days() As String

Days = Array As String("Sunday", "Monday", ...)

See Arrays for more details.

Asc (Char As Char) As Int
Returns the unicode code point of the given character or first character in the given string.

Thus, Log (Asc("A")) and Log (Asc("ABC")) will both produce 65. See http://unicode-

table.com/en/ for a list of characters and their codes.

ASin (Value As Double) As Double
Given the sine of an angle, this function returns the angle measured in radians.

ASinD (Value As Double) As Double
Given the sine of an angle, this function returns the angle measured in degrees.

ATan (Value As Double) As Double
Given the tangent of an angle, this function returns the angle measured in radians. Thus,

the following returns 0.7853981633974483

http://bit.ly/10alZFl
http://unicode-table.com/en/
http://unicode-table.com/en/

 3.1 Basic4Android’s language

 - 231 -

Log (ATan(1))

ATan2 (Y As Double, X As Double) As Double
Given the opposite Y and adjacent X sides of a right-triangle, this function returns the

tangent of the angle measured in radians. Thus, Log (ATan2(1,1)) returns

0.7853981633974483

ATan2D (Y As Double, X As Double) As Double
Given the opposite Y and adjacent X sides of a right-triangle, this function returns the angle

measured in degrees. Thus, Log (ATan2D(1,1)) returns 45

ATanD (Value As Double) As Double
Given the tangent of an angle, this function returns the angle measured in degrees. Thus,

Log (ATanD(1)) returns 45

BytesToString (Data() As Byte, StartOffset As Int, Length As

Int, CharSet As String) As String
Decodes the given byte array as a string.

Data - The byte array.

StartOffset - The first byte to read.

Length - Number of bytes to read.

CharSet - The name of the character set. See Text Encoding for details.

The following example will produce ABCDE:
Dim Buffer() As Byte = Array As Byte(65,66,67,68,69)

Dim str As String

str = BytesToString(Buffer, 0, Buffer.Length, "UTF-8")

Log (str)

CallSub (Component As Object, Sub As String) As String
CallSub allows an activity to call a Sub in a service module or a service to call a Sub in an

activity. CallSub can also be used to call subs in the current module. Pass an empty string as

the component in that case.

Component - name of a module. Should not be a string.

Sub – name of Sub to call. Must be a string.

Example
CallSub(Main, "RefreshData")

Restrictions
A sub will only be called if the called module is not paused. But if it is paused, an empty

string will be returned. This is why one activity cannot call a sub of a different activity since

the other activity will certainly be paused. You can use IsPaused to test whether a module

is paused.

Nor is it possible to use this function to call Subs of code modules. To call a Sub in a code

module, use a call like moduleName.subName.

 3.1 Basic4Android’s language

 - 232 -

CallSub2 (Component As Object, Sub As String, Argument As

Object) As String
Similar to CallSub. Calls a sub with a single argument.

CallSub3 (Component As Object, Sub As String, Argument1 As

Object, Argument2 As Object) As String
Similar to CallSub. Calls a sub with two arguments.

CallSubDelayed (Component As Object, Sub As String)
CallSubDelayed is a combination of StartActivity, StartService and CallSub.

Unlike CallSub (which only works with currently running components), CallSubDelayed will

first start the target component if needed.

CallSubDelayed can also be used to call subs in the current module. Instead of calling these

subs directly, a message will be sent to the message queue.

The sub will be called when the message is processed. This is useful in cases where you want

to do something “right after” the current sub (usually related to UI events).

Note: if you call an Activity while the whole application is in the background (no visible

activities), the sub will be executed once the target activity is resumed.

CallSubDelayed2 (Component As Object, Sub As String,

Argument As Object)
Similar to CallSubDelayed. Calls a sub with a single argument.

CallSubDelayed3 (Component As Object, Sub As String,

Argument1 As Object, Argument2 As Object)
Similar to CallSubDelayed. Calls a sub with two arguments.

CancelScheduledService (Service As Object)
Cancels previously scheduled tasks for this service.

Catch
Any exception thrown inside a Try block will be caught in the Catch block.

Call LastException to get the caught exception. See Try-Catch for details.

Syntax
Try

...

Catch

...

End Try

cE As Double
e (natural logarithm base) constant, approximately 2.718281828459045

 3.1 Basic4Android’s language

 - 233 -

Ceil (Number As Double) As Double
Returns the smallest whole number that is greater than or equal to the specified number.

Thus, Ceil(4.321) will return 5. The word is an abbreviation of “ceiling”. For the opposite

function, see Floor.

CharsToString (Chars() As Char, StartOffset As Int, Length As

Int) As String
Creates a new String by copying the characters from the array Chars().

Copying starts from StartOffset and the number of characters copied is specified by

Length. The following will produce “cd”:
Dim chars() As Char

chars = Array As Char("a", "b", "c", "d", "e")

Log (CharsToString(chars, 2,2))

Chr (UnicodeValue As Int) As Char
Returns the character that is represented by the given unicode value. Thus, Log (Chr(65))

will produce “A”. See http://unicode-table.com/en/ for a list of characters and their codes.

ConfigureHomeWidget (LayoutFile As String, EventName As

String, UpdateIntervalMinutes As Int, WidgetName As String) As

RemoteViews
At compile time, the compiler generates the required XML files based on the arguments of

this keyword. At runtime, this command creates a RemoteViews object based on the

LayoutFile. Note that all parameters must be strings or numbers (not variables) so they

can be read by the compiler.

LayoutFile - The widget layout file.

EventName - Sets the Sub that will handle events from RemoteViews, such as

RequestUpdate event in the example below.

UpdateIntervalMinutes - Sets the update interval in minutes. Pass 0 to disable automatic

updates. Otherwise, the minimum value is 30.

WidgetName - The name of the widget as it appears in the widgets list.

http://unicode-table.com/en/

 3.1 Basic4Android’s language

 - 234 -

Example
Sub Process_Globals

 Dim rv As RemoteViews

End Sub

Sub Service_Create

 rv = ConfigureHomeWidget("LayoutFile", "rv", 0, "Widget Name")

End Sub

Sub rv_RequestUpdate

 rv.UpdateWidget

End Sub

Reference
See here for more information about Widgets.

Continue
Stops executing the current iteration and continues with the next one. The following will log

1-4 and 6-10 but not 5:
For i = 1 To 10

 If i = 5 Then Continue

 Log (i)

Next

Compare to Exit.

Cos (Radians As Double) As Double
Calculate the cosine of the angle given in radians.

CosD (Degrees As Double) As Double
Calculate the cosine of the angle given in degrees.

cPI As Double
The constant PI, approximately 3.141592653589793

CRLF As String
The line feed character whose value is Chr(10).

Note: The name CRLF sometimes causes confusion. Despite its name, this is NOT the

combination of

CR = Carriage Return = Chr(13) and LF = Line Feed =Chr(10)

which Windows uses in its documents! Android is a Linux-based system in which lines are

terminated just by a LF.

Density As Float
Returns the screen’s density, which is number of dots per inch / 160.

More information about the screen can be found using GetDeviceLayoutValues

 3.1 Basic4Android’s language

 - 235 -

Dim
Declares a variable.

To declare a single variable:

Dim variable name [As type]
Dim intSize As Int

The default type is String.

To declare and initialize a single variable, two alternatives are possible:

Dim variable name [As type] [= expression]

Dim variable name [= expression] [As type]
Dim intA As Int = 1

Dim intB = 2 As Int

To declare multiple variables, all of the same type:

Dim variable1 [= expression], variable2 [= expression], ..., [As type]
Dim intA, intB, intC As Int

Dim intA = 1, intB = 2, intC = 3 As Int

Declare an array and specify the size of each dimension:

Dim variable(size1, size2, ...) [As type]
Dim strDayNames(7) As String

The size can be omitted for zero length arrays:
Dim payments() As Long

Log(payments.Length) ' this will produce 0

DipToCurrent (Length As Int) As Int
DipToCurrent(Length as Int) scales Length given in dips. For example, the following code

will set the width value of an EditText to be 1 inch wide on all devices.
EditText1.Width = DipToCurrent(160)

Note: a shorthand syntax for this method is available. Any number followed by the string dip

will be converted in the same manner (no spaces are allowed between the number and “dip”).

So the previous code is equivalent to
EditText1.Width = 160dip

DoEvents
Processes waiting messages in the message queue. DoEvents can be called inside lengthy

loops to allow your app to update the screen. Other waiting events will not be handled by

DoEvents.

Exit
Exits the inner -most loop. The following will log 1-4:
For i = 1 To 10

 If i = 5 Then Exit

 Log (i)

Next

Compare to Continue.

 3.1 Basic4Android’s language

 - 236 -

ExitApplication
Immediately ends the application and stops the process. Most applications should not use

this method, with the use of Activity.Finish being the preferred method to allow Android

to decide when the process will be killed. See Activity.Finish vs ExitApplication for a

discussion.

False As Boolean
A constant which can be used to compare or set logical values, for example:
#Region Activity Attributes

 #FullScreen: False

 #IncludeTitle: True

#End Region

File As File
File-related methods. See the File Object for details of its members and here for a discussion

of its usage.

Floor (Number As Double) As Double
Returns the largest whole number that is smaller than or equal to the specified number.

Thus, Floor(123.456) is 123.

For the opposite function, see Ceil.

For
Begins a loop controlled by a variable called an “iterator”. Syntax:
For variable = value1 To value2 [Step interval]

 ...

Next

Step is optional. If not specified it defaults to 1. Example:
For i = 1 To 10

 Log(i) 'Will print 1 to 10 (inclusive).

Next

If the iterator variable i was not previously declared, it will be of type Int.

Note: the loop limits will only be calculated once, before the first iteration.

For Each
Iterates a loop over an IterableList. Syntax:

 3.1 Basic4Android’s language

 - 237 -

For Each variable As Type In collection

 ...

Next

Examples
Dim strName() As String = Array As String("a", "b", "c")

For Each name As String In strName

 Log (name)

Next

For Each vw As View In Activity

 If vw Is Button Then

 ...

 End If

Next

GetDeviceLayoutValues As LayoutValues
Returns the device LayoutValues. For example:
Dim lv As LayoutValues

lv = GetDeviceLayoutValues

Log(lv)

Dim scale As Float

scale = lv.Scale

This will print the following line to the log:

320 x 480, scale = 1.0 (160 dpi)

GetType (object As Object) As String
Returns a string representing the object’s java type.

 3.1 Basic4Android’s language

 - 238 -

If

Single line
If condition Then true-statement [Else false-statement]

Multiline
If condition Then

 statements

 ...

Else If condition Then

 statements

 ...

Else

 statements

 ...

End If

InputList (Items As List, Title As String, CheckedItem As Int)

As Int
Shows a modal dialog with a list of items and radio buttons. Pressing on an item will close

the dialog and return the index of the selected item or DialogResponse.Cancel if the user

pressed on the Back key.

List - Items to display.

Title - Dialog title.

CheckedItem - The index of the item that will be preselected. If you want the top item to be

selected, set this to 0. Pass -1 if no item should be preselected.

Example which makes a label act like a spinner:
Sub tgtLabel_Click

 Dim myarray(4) As String

 myarray(0)="January"

 myarray(1)="February"

 myarray(2)="March"

 myarray(3)="May"

 choice = InputList(myarray, "Select Month", 1)

 tgtlabel.Text = myarray(choice)

End Sub

 3.1 Basic4Android’s language

 - 239 -

InputMap (Items As Map, Title As String)
Shows a modal dialog with a title, a list of items and checkboxes, and an Ok button . The

user can select multiple items. The dialog closes when the user presses Ok or the Back

button.

The text displayed are the keys of the Items map. The values of this map determine whether

they are checked. Items with a value of True will be checked.

When the user checks or unchecks an item, the related item value gets updated.

The updated values are returned whether the user presses Ok or Back.

Items - A map object with the items as keys and their checked state as values.

Example:
Dim m As Map

m.Initialize

m.Put("Apples", True)

m.Put("Bananas", False)

m.Put("Mangos", False)

m.Put("Oranges", True)

InputMap(m, "Select all the fruits you want")

The InputMap looks something like this:

Its exact appearance will vary, depending on the device and the version of Android running.

InputMultiList (Items As List, Title As String) As List
Shows a modal dialog with a title, a list of items and checkboxes, and an Ok button. The user

can select multiple items. The dialog is closed when the user presses Ok or Back.

If the user presses Ok, it returns a list with the indices of the selected items, sorted in

ascending order.

It returns an empty list if the user has pressed on the Back key.

 3.1 Basic4Android’s language

 - 240 -

Dim choice As Int

Dim lstInput, lstOutput As List

lstInput.Initialize2(Array As String("Apples", "Bananas", "Mangos",

"Oranges"))

lstOutput = InputMultiList (lstInput, "Select all the fruits you

want")

For Each index As Int In lstOutput

 Log (index)

Next

The InputMultiList will appear to the user as:

If Bananas and Oranges are selected, the numbers 1 and 3 will be logged.

Is
Returns TRUE if the object is of the given type. Example:
For i = 0 To Activity.NumberOfViews - 1

If Activity.GetView(i) Is Button Then

 Dim b As Button

 b = Activity.GetView(i)

 b.Color = Colors.Blue

End If

Next

IsBackgroundTaskRunning (ContainerObject As Object, TaskId

As Int) As Boolean
Returns TRUE if a background task is running which was submitted by the container object

and with the specified id. Example:

 3.1 Basic4Android’s language

 - 241 -

Dim hc As HttpClient

Dim req As HttpRequest

Dim TaskID As Int = 1

req.InitializePost2("http://abc.com/query.php",

Query.GetBytes("UTF8"))

hc.Execute(req, TaskId)

If IsBackgroundTaskRunning(hc, TaskId) Then

 ToastMessageShow("Wait for previous call to finish.", False)

End If

IsNumber (Text As String) As Boolean
Returns TRUE if the specified string can be converted to a number.

IsPaused (Component As Object) As Boolean
Returns TRUE if the given component is paused. Will also return True for components that

were not started yet. Example:
If IsPaused(Main) = False Then CallSub(Main, "RefreshData")

LastException As Exception
Returns the last exception that was caught (if such exists). If there has not been an

exception, LastException will be uninitialized. Thus you should only check for

LastException inside the Catch block of a Try-Catch. Example:
Try

 'block of statements

Catch

 Log(LastException.Message)

 'handle the problem if necessary

End Try

LoadBitmap (Dir As String, FileName As String) As Bitmap
Loads the bitmap. Note: the Android file system is case sensitive.

You should consider using LoadBitmapSample if the image size is large.

The actual file size is not relevant as images are usually stored compressed.

Example:
Activity.SetBackgroundImage(LoadBitmap(File.DirAssets,

"SomeFile.jpg"))

LoadBitmapSample (Dir As String, FileName As String,

MaxWidth As Int, MaxHeight As Int) As Bitmap
Loads the bitmap. The decoder will sub-sample the bitmap if either MaxWidth or MaxHeight

is smaller than the bitmap dimensions. This can save a lot of memory when loading large

images. The width / height ratio is preserved. Example:

 3.1 Basic4Android’s language

 - 242 -

Activity.SetBackgroundImage(LoadBitmapSample(File.DirAssets,

"SomeFile.jpg", Activity.Width, Activity.Height))

Log (Message As String)
Logs a message. When debugging, the log can be viewed in the Logs tab. When the app is

released, this command has no effect.

Logarithm (Number As Double, Base As Double) As Double
The power you need to raise Base to in order to create Number. Examples:
Logarithm(10,10) is 1, Logarithm(8,2) is 3 and Logarithm(100,10) is 2.

Max (Number1 As Double, Number2 As Double) As Double
Returns the larger number of two numbers.

Me As Object
For classes: returns a reference to the current instance.

For activities and services: returns a reference to an object that can be used with CallSub,

CallSubDelayed and SubExists keywords. Example:
CallSub(Me, "test")

Cannot be used in code modules.

Min (Number1 As Double, Number2 As Double) As Double
Returns the smaller of two numbers.

Msgbox (Message As String, Title As String)
Shows a modal message box with the specified message and title.

The dialog will show one OK button.

Example:
Msgbox("Hello world", "This is the title")

See Modal Dialogs for more.

Msgbox2 (Message As String, Title As String, Positive As String,

Cancel As String, Negative As String, Icon As Bitmap) As Int
Shows a modal message box with the specified message and title.

Message - The dialog message.

Title - The dialog title.

Positive - The text to show for the “positive” button. Pass "" if you don’t want to show the

button.

Cancel - The text to show for the “cancel” button. Pass "" if you don’t want to show the

button.

Negative - The text to show for the “negative” button. Pass "" if you don’t want to show the

button.

Icon - A bitmap that will be drawn near the title. Pass Null if you don’t want to show an icon.

Returns one of the DialogResponse values. Example:

 3.1 Basic4Android’s language

 - 243 -

Dim bmp As Bitmap

Dim choice As Int

bmp.Initialize(File.DirAssets, "question.png")

choice = Msgbox2("Would you like to select a route?", "Please specify

your choice", "Yes please", "", "No thank you", bmp)

If choice = DialogResponse.POSITIVE Then ...

See Modal Dialogs for more.

Not (Value As Boolean) As Boolean
Inverts the value of the given boolean. Example:
If Not (startMarker.IsInitialized) Then

Null As Object
The value of an object which does not exist. It will be returned, for example, if you try to

access a non-existent key in a map. In the following, obj has the value null:
Dim m As Map

m.Initialize

Dim obj As Object

obj = m.Get("test")

If obj = Null Then …

NumberFormat (Number As Double, MinimumIntegers As Int,

MaximumFractions As Int) As String
Converts Number to a string with at least MinimumIntegers integer digits and at most

MaximumFractions decimal digits. Examples:
NumberFormat(12345.6789, 0, 2) '12,345.68

NumberFormat(1, 3 ,0) '001

NumberFormat2 (Number As Double, MinimumIntegers As Int,

MaximumFractions As Int, MinimumFractions As Int,

GroupingUsed As Boolean) As String
Converts Number to a string with at least MinimumIntegers, at most MaximumFractions

decimal digits and at least MinimumFractions decimal digits.

GroupingUsed - Determines whether to group every three integers. Example:
NumberFormat2(12345.67, 0, 3, 3, false) ' 12345.670

NumberFormat2(12345, 0, 2, 2, True) ' 12,345.00

PerXToCurrent (Percentage As Float) As Int
Returns the actual size of the given percentage of the activity width.

Example: set the width of Button1 to 50% of the width of the current activity:
EditText1.Width = PerXToCurrent(50)

A shorthand syntax for this method is available. Any number followed by %x will be

converted in the same manner.

So the previous code is equivalent to

 3.1 Basic4Android’s language

 - 244 -

EditText1.Width = 50%x

Note: there is no space between the 0 and the %.

PerYToCurrent (Percentage As Float) As Int
Returns the actual size of the given percentage of the activity height.

Example: set the height of Button1 to 50% of the current activity:
EditText1.Height = PerYToCurrent(50)

A shorthand syntax for this method is available. Any number followed by %y will be

converted in the same manner.

So the previous code is equivalent to
EditText1.Height = 50%y

Note: there is no space between the 0 and the %.

Power (Base As Double, Exponent As Double) As Double
Returns the Base value raised to the Exponent power.

ProgressDialogHide
Hides a visible progress dialog. Does not do anything if no progress dialog is visible.

ProgressDialogShow (Text As String)
Shows a dialog with a circular spinning bar and the specified Text.

Unlike Msgbox and InputList methods, the code will not block, or in other words, the

program will continue to run and not wait for the user to take some action.

You should call ProgressDialogHide to remove the dialog.

The dialog will also be removed if the user presses on the Back key.

ProgressDialogShow2 (Text As String, Cancelable As Boolean)
Shows a dialog with a circular spinning bar and the specified Text.

Unlike Msgbox and InputList methods, the code will not block, or in other words, the

program will continue to run and not wait for the user to take some action.

You should call ProgressDialogHide to remove the dialog.

Cancelable - Whether the user can dismiss the dialog by pressing on the Back key.

QUOTE As String
Quote character. The value of Chr(34).

Regex As Regex
Regular expression related methods. Follow the link for more on this subject.

The following example requires the Reflection library.

Suppose we want to replace the “a” with “x” in the string “abcde”:

 3.1 Basic4Android’s language

 - 245 -

Sub Activity_Resume

 Log (RegexReplace("a", "abcde", "x"))

 Activity.Finish

End Sub

Sub RegexReplace(Pattern As String, Text As String, Replacement As

String) As String

 Dim m As Matcher

 m = Regex.Matcher(Pattern, Text)

 Dim r As Reflector

 r.Target = m

 Return r.RunMethod2("replaceAll", Replacement, "java.lang.String")

End Sub

The result is “xbcde”.

This will also work for more complex regular expressions, such as
RegexReplace("abc(d)(e)", "abcde", "$2 $1")

This will produce “e d”

Return
Returns from the current sub and optionally returns the given value.

Syntax: Return [value]

Rnd (Min As Int, Max As Int) As Int
Returns a random integer between Min (inclusive) and Max (exclusive).

RndSeed (Seed As Long)
Sets the random seed value.

This method can be used for debugging as it allows you to get the same results each time.

Round (Number As Double) As Long
Returns the closest long number to the given number.

Round2 (Number As Double, DecimalPlaces As Int) As Double
Rounds Number, retaining at most the specified number of decimal digits.
Log(Round2(1234.5678, 2)) ' result is 1234.57

Log(Round2(1234, 2)) ' result is 1234

Select
Compares a single value to multiple values.

Example

 3.1 Basic4Android’s language

 - 246 -

Dim value As Int

value = Rnd(-10, 10)

Log("Value = " & value)

Select value

 Case 1

 Log("One")

 Case 2, 4, 6, 8

 Log("Positive even")

 Case 3, 5, 7, 9

 Log("Positive odd")

 Case Else

 If value < 1 Then

 Log("Less than 1")

 Else

 Log("Larger than 9")

 End If

End Select

Sender As Object
Returns the object that raised the event. Only valid while inside the event sub. Example:
Sub Button_Click

 Dim b As Button

 b = Sender

 b.Text = "I've been clicked"

End Sub

Sin (Radians As Double) As Double
Calculates the trigonometric sine function. Angle measured in radians.

SinD (Degrees As Double) As Double
Calculates the trigonometric sine function. Angle measured in degrees.

Sqrt (Value As Double) As Double
Returns the positive square root.

StartActivity (Activity As Object)
Starts an activity or brings it to the front if it already exists.

The target activity will be started once the program is free to process its message queue.

Activity can be a string with the target activity name or it can be the actual activity.

After this call, the current activity will be paused and the target activity will be resumed.

This method can also be used to send Intents objects to the system.

Note: you should usually not call StartActivity from a Service.

Example: StartActivity (Activity2)

StartService (Service As Object)
Starts the given Service. The Service will be first created if it was not previously started.

The target Service will be started once the program is free to process its message queue.

 3.1 Basic4Android’s language

 - 247 -

Service - The service module or the service name.

Note: you cannot show a Msgbox after this call and before the service starts.

Example: StartService(SQLService)

StartServiceAt (Service As Object, Time As Long, DuringSleep

As Boolean)
Schedules the given Service to start at the given Time. This is an alternative to using a

timer.

Service - The service module or service name. Pass an empty string when calling from a

service module that schedules itself.

Time - The time to start the service, specified as a Long. You can use the DateTime object to

calculate this, for example, to specify 1 hour from now:
 DateTime.Now + 3600 * 1000

 If the selected time has already passed, the Service will be started immediately.

DuringSleep - Whether to start the Service when the device is sleeping. If set to False and

the device is sleeping at the specified time, the Service will be started when the device

wakes up.

StartServiceAt can be used to schedule a repeating task. You should call it under Sub

Service_Start to schedule the next task. This call cancels previous scheduled tasks (for

the same service).

Example:
StartServiceAt(SQLService, DateTime.Now + 30 * 1000, false) 'will

start after 30 seconds.

StopService (Service As Object)
Stops the given service. Sub Service_Destroy will be called. Calling StartService

afterwards will first create the Service.

Service - The service module or service name. Pass an empty string to stop the current

service (from the service module).

Example:
StopService(SQLService)

Sub
Declares a sub with the parameters and return type. Syntax:
Sub name [(list of parameters)] [As return-type]

Any parameters which are given must include a name and type. You can pass an array as a

parameter but it must be one-dimensional. The size of the dimension should not be included.

Multi-dimensional arrays are not allowed. For example, a sub which requires a parameter

iScores which is a one-dimensional array would be declared as:
Sub dWeightedMean (strName As String, iScores() As Int) As Double

A sub can return an object of any type. It can also return a one-dimensional array. For

example, a sub which returns an array of Double would be declared as:

 3.1 Basic4Android’s language

 - 248 -

Sub getArray (iCount As Int) As Double()

SubExists (Object As Object, Sub As String) As Boolean
Returns TRUE if the Object includes the specified method.

Returns False if the Object was not initialized, or is not an instance of a user class.

TAB As String
Tab character equivalent to Chr(9).

Tan (Radians As Double) As Double
Calculates the trigonometric tangent function. Angle measured in radians.

TanD (Degrees As Double) As Double
Calculates the trigonometric tangent function. Angle measured in degrees.

ToastMessageShow (Message As String, LongDuration As

Boolean)
Shows a small message that fades automatically.

Message - The text message to show.

LongDuration - If True, shows the message for a long period. If False, shows the message

for a short period.

True As Boolean
A constant which can be used to compare or set logical values, for example:
ToastMessageShow("Email sent", True)

Try
Any exception thrown inside a Try block will be caught in the Catch block.

Call LastException to get the caught exception. Syntax:
Try

...

Catch

...

End Try

See Try-Catch for more details.

Type
Declares a structure. Can only be used inside sub Globals or Sub Process_Globals.

Syntax:
Type type-name (field1, field2, ...)

Fields must include their name and type. Example:

 3.1 Basic4Android’s language

 - 249 -

Type MyType (Name As String, Items(10) As Int)

Dim a, b As MyType

a.Initialize

a.Items(2) = 123

See here for details.

Until
Loops until the condition is True. Syntax:
Do Until condition

...

Loop

See Do-Until for more details.

While
Loops while the condition is True. Syntax:
Do While condition

...

Loop

See Do-While for more details.

 3.2 VB6 versus B4A

 - 250 -

3.2 VB6 versus B4A
There are some differences between Basic4Android and Visual Basic from Microsoft. The

following analysis of the differences between Basic4Android and Visual Basic 6 is extracted

from work by nfordbscndrd, a member of the Basic4Android forum. It highlights some of the

differences between the two IDEs and their languages. It might be useful for experienced

VB6 programmers.

Controls vs. Views
The objects which Basic4Android calls Views (buttons, edittext, labels, etc.) are called

Controls in Visual Basic.

In the VB6 code window, the top left drop-down list contains all the controls you have placed

in the current form and the right list contains all the events for each control. The equivalent

in Basic4Android can be found by clicking on the Designer menu [Tools > Generate

Members]. Once you have created Subs in the program coding window, the tab “Modules” on

the right side will list each of the Subs.

In Basic4Android, you start by typing “Sub” followed by a space. The IDE will then prompt

you for details. We describe this in the Autocomplete Event Subroutines section.

In VB6, you can leave ".Text" off the names of controls when assigning

text to them, but this is not allowed in B4A.

Dim
VB6: Dim name(n) will give you n+1 elements with index 0 to n. For example, Dim

strName(12) will give you 13 strings.

B4A: Dim name(n) will give you n elements with index 0 to n-1. This can be confusing since,

for Dim strName(12), the last element is actually strName(11).

ReDim
VB6: ReDim name(n) does not exist in B4A, where you would simply use another Dim

name(n). Likewise, VB6 “ReDim Preserve” does not exist. If you need this, you would be

better to use a list or map.

Boolean Operations
Suppose the following have been declared in either language:
Dim i Int

Dim b as Boolean

Not
VB6 does not require parentheses: “If Not b Then”

http://www.basic4ppc.com/forum/members/nfordbscndrd.html

 3.2 VB6 versus B4A

 - 251 -

In B4A, parentheses are reqired: If Not(b) Then

Using Integers as Boolean
In VB6, an integer that equals zero is considered as the same as a Boolean FALSE; anything

non-zero is TRUE. For example: “If i Then”

In Basic4Android, a Boolean value CANNOT be used in a math function. Instead, you must

test the value of a variable, for example:
If i > 0 Then

Global Const
Basic4Android does not have a Global Const function.

In VB6 you can say
Global Const x=1

In Basic4Android you say

Sub Globals
Dim x as Int = 1

However, x is not a constant. Its value can be changed.

Repeating Structures

For…Next
VB6: For i...Next i

B4A: For i…Next

Loops, If-Then, Select Case
VB6: Loop…Until, Loop…While

This structure is not allowed in Basic4Android. You can, however, use the alternative form:

B4A: Do While…Loop, Do Until… Loop

See Do-While and Do-Until for more details.

Exit
VB6: Exit Do/For

B4A: Exit

ElseIf/EndIf
VB6: ElseIf/EndIf

B4A: Else If/End If

Colors
In VB6, colors have names such as “vbRed”. In B4A, you use the Colors object, for example:
Colors.Red

 3.2 VB6 versus B4A

 - 252 -

Subroutines

Declaring a Sub
VB6: Sub SubName()

B4A: Sub SubName() As Int/String/etc.

Calling a sub
VB6: SubName x, y

B4A: SubName(x, y)

Functions
Functions do not exist in Basic4Android. Instead, any Sub can be used as a Function by

adding a variable type.

VB6: Function FName() As Int

B4A: Sub FName() As Int

If no Return is given, then zero or False or "" is returned.

Exit Sub
Exit Sub does not exist in Basic4Android. Use Return instead.

VB6: Exit Sub / Exit Function

B4A: Return / Return [value]

DoEvents
While DoEvents exists in Basic4Android, calling DoEvents in a loop consumes a lot of

resources and uses excessive battery power because Android will never get back to the main

“idle loop” where the hardware power saving measures are invoked. Also, DoEvents doesn’t

allow the system to process all waiting messages properly. In short, looping for long periods

should be avoided where possible on mobile devices.

Format
VB6: Format()

B4A: NumberFormat & NumberFormat2

InputBox
In VB6, InputBox() shows a dialog box and waits for the user to input text or click a button,

and then returns a string containing the contents of the text box.

B4A has no dialog box which allows the user to enter text. Instead, you create something

similar using an EditText on a layout. Alternatively, you could use one of the following:

 The user-created Dialogs Library, which offers InputDialog for text, a TimeDialog for

 3.2 VB6 versus B4A

 - 253 -

times, a DateDialog for dates, both a ColorDialog and a ColorPickerDialog for colors, a

NumberDialog for numbers, a FileDialog for folders and file names, and a CustomDialog.

 InputList to show a modal dialog with a list of choices and radio buttons and return an

index indicating which one the user has selected.

 InputMultiList to show a list from which the user can select multiple items before

returning.

 InputMap to show a modal dialog with a list of items and checkboxes. The user can select

multiple items.

MsgBox
VB6: MsgBox "text" / i=MsgBox()

B4A: has several alternatives:

MsgBox("text", "title")

MsgBox2(Message, Title, Positive, Cancel, Negative, Icon) as Int

ToastMessageShow(text, b)

Random Numbers
Random numbers generated by computers are not really random. They are “pseudo-random”

and are created using an algorithm which starts from one number, the “seed”, to generate

the next.

Rnd
In VB6, Rnd() returns a float < 1.

In B4A, Rnd(min, max) returns an integer >= min and < max.

RndSeed
If # is a number, then in VB6, Rnd(-#) sets the “seed” of the random number generator to #.

After this call, Rnd will return the same series of numbers every time.

In B4A, RndSeed(#) sets the random number generator seed in the same way. # must be a

Long type number.

Randomize
If # is a number, then in VB6, Randomize(#) uses # to initialize the Rnd function's random

number generator, using # as the new seed value. Randomize() without the number uses the

value returned by the system timer as the new seed value. If Randomize is not used, the Rnd

function (with no arguments) always uses the same number as a seed the first time it is

called, and thereafter uses the last-generated number as a seed value.

In Basic4Android, there is no equivalent of Randomize, because the seed of Rnd is always

randomized automatically.

Round
VB6: Round(n) where n is a floating point number.

 3.2 VB6 versus B4A

 - 254 -

B4A: Round(n) or Round2(n, x) where n is a Double and x=number of decimal places

Val()
VB6: i = Val(string)

B4A: If IsNumber(string) Then i = string Else i = 0

An attempt to use i=string throws a NumberFormatException if the string is not a valid

number.

SetFocus
VB6: control.SetFocus

B4A: view.RequestFocus

Divide by Zero
VB6 throws an exception for division by 0. Basic4Android returns either 2147483647 or

Infinity, depending whether the result is set to an integer or a string:
Dim i As Int

i = 12/0

Log (i) ' 2147483647

Dim str As String

str = 12/0

Log (str) ' Infinity

Shell
VB6: x = Shell("...")

B4A: See "Intent".

This is not a complete replacement, but allows code such as the following:
Dim Intent1 As Intent

Intent1.Initialize(Intent1.ACTION_MAIN, "")

Intent1.SetComponent("com.google.android.youtube/.HomeActivity")

StartActivity(Intent1)

Timer
VB6: t = Timer

B4A: t = DateTime.Now, which returns the number of milliseconds since 1-1-70

TabIndex
In VB6, TabIndex can be set to control the order in which controls get focus in a form when

Tab is pressed.

 3.2 VB6 versus B4A

 - 255 -

On an Android device, Android handles the sequence according to their position. However, in

the Designer or in code, you can set EditText.ForceDone to True in all your EditTexts:

EditText1.ForceDoneButton = True. This forces the virtual keyboard to show the Done

button. You can then catch the EditText_EnterPressed event and explicitly set the focus

to the next view (with EditText.RequestFocus).

Setting Label Transparency
You can control the transparency of a label as follows:

VB6: [Properties > Back Style]

B4A Designer: [Drawable > Alpha]

Constants
There are a number of useful predefined constants in VB6, for example,

VB6: vbCr, vbCrLf

B4A: CRLF (Android’s equivalent of Windows CRLF, although in fact it is the Line Feed

character Chr(10)).

String “Members”
VB6 uses a character position pointer starting with 1.

Basic4Android function CharAt() uses a character Index pointer starting with 0.

All the following produce “a”:

VB6: Mid$("abcde", 1)

VB6: Mid$("abcde", 1, 1)

B4A: "abcde".CharAt(0)

B4A: "abcde".SubString2(0,1)

The following produce “abc”:

VB6: Mid$("abcde", 1, 3)

B4A: "abcde". SubString2(0, 3)

Left$ and Right$
These do not exist in Basic4Android. You can recreate them as follows:

VB6: Left$("abcde", 3)

B4A: "abcde".SubString2(0, 3)

VB6: Right$("abcde", 2)

B4A: "abcde".SubString("abcde".Length - 2)

VB6: If Right$(text, n) = text2

B4A: If text.EndsWith(text2)...

VB6: If Left$(text, n) = text2

 3.2 VB6 versus B4A

 - 256 -

B4A: If text.StartsWith(text2)...

VB6: If Lcase$(text) = Lcase$(text2)

B4A: If text.EqualsIgnoreCase(text2)

Len
VB6: x = Len(text)

B4A: x = text.Length

Replace
VB6: text = Replace(text, str, str2)

B4A: text.Replace(str, str2)

Case
VB6: Lcase(text)

B4A: text.ToLowerCase

VB6: Ucase(text)

B4A: text.ToUpperCase

Trim
VB6: Trim(text)

B4A: text.Trim

There is no LTrim or RTrim in Basic4Android

Instr
VB6: Instr(text, string)

B4A: text.IndexOf(string)

VB6: Instr(int, text, string)

B4A: text.IndexOf2(string, int)

VB6: If Lcase$(x) = Lcase$(y)

B4A: If x.EqualsIgnoreCase(y)

VB6: text = Left$(text, n) & s & Right$(Text, y)

B4A: text.Insert(n, s)

 3.2 VB6 versus B4A

 - 257 -

Error Trapping

VB6
Sub SomeSub

 On [Local] Error GoTo ErrorTrap

 ...some code...

 On Error GoTo 0 [optional end to error trapping]

 ...optional additional code...

 Exit Sub [to avoid executing ErrorTrap code]

ErrorTrap:

 ...optional code for error correction...

 Resume [optional: "Resume Next" or "Resume [line label]".

End Sub

Basic4Android
Sub SomeSub

 Try

 ...some code...

 Catch [only executes if error above]

 Log(LastException) [optional]

 ...optional code for error correction...

 End Try

 ...optional additional code...

End Sub

With Basic4Android, if you get an error caught in the middle of a large subroutine, you

CANNOT make a correction and resume within the code you were executing. Only the code

in “Catch” gets executed. That would seem to make Try-Catch-End Try of use mainly

during development.

“Immediate Window” vs. “Logs” Tab
Comments, variable values, etc., can be displayed in VB6’s Immediate

Window by entering into the code “Debug.Print ...”.

In Basic4Android, show values of variables, etc. in the Logs tab.

Both VB6 and Basic4Android allow single-stepping through the code while it is running and

viewing the values of variables. VB6 also allows changing the value of variables, changing

the code, jumping to other lines from the current line, etc. Because Basic4Android runs on a

PC while the app runs on a separate device, Basic4Android is currently unable to duplicate

all of these VB6 debug features.

 3.3 Core Objects

 - 258 -

3.3 Core Objects
These objects are in the core library of the IDE and can be used without referring to any

other libraries. These are included in both the Trial and the Full versions of Basic4Android.

For example your code can simply say:
Sub Globals

 Dim map1 As Map

 Dim match1 As Matcher

 Dim mediaPlayer1 As MediaPlayer

End Sub

List of Core Objects
In the following lists, we group the core objects (and constants) according to their function

where possible. The remainder we group under “General”.

General
Activity

Bit

DateTime

Exception

Intent

LayoutValues

List

Map

MediaPlayer

Notification

RemoteViews

Service

String

StringBuilder

Timer

Constants

Colors

DialogResponse

Gravity

KeyCodes

Typeface

Drawing Objects

Bitmap

BitmapDrawable

Canvas

ColorDrawable

 3.3 Core Objects

 - 259 -

GradientDrawable

Path

Rect

StateListDrawable

File Objects

File

InputStream

OutputStream

TextReader

TextWriter

Views

Activity

AutoCompleteEditText

Button

CheckBox

EditText

HorizontalScrollView

ImageView

Label

ListView

Panel

ProgressBar

RadioButton

ScrollView

SeekBar

Spinner

TabHost

ToggleButton

View

WebView

Activity
Activity is the main component of your application. We describe its usage in the Activity

Concept Chapter. In the following section, we detail its events and members.

If you iterate over an Activity, you will find each of the views it consists of:

 3.3 Core Objects

 - 260 -

For Each vw As View In Activity

 ' check its type

 If vw Is Button Then

 ' need object with correct type so

 ' can gain access to properties

 Dim btn As Button

 ' make copy of original view

 btn = vw

 Log (btn.Text)

 End If

Next

Activity Events

Click
This event is generated when the user touches the screen, provided that no other view has

consumed the event (such as an EditText), and provided that no handler exists for the

Touch event. Touch takes priority over Click.

KeyPress and KeyUp Events
The KeyPress and KeyUp events occur when the user presses or releases a key on the

Android keyboard, assuming that no other view has consumed this event (like EditText).

When handling the KeyPress or KeyUp event, you should return a boolean value which tells

whether the event was consumed. Return True to consume the event. For example, if the

user pressed on the Back key and you return True, then Android will not close your activity.
Sub Activity_KeyPress (KeyCode As Int) As Boolean

 If Keycode = KeyCodes.KEYCODE_BACK Then

 Return True

 Else

 Return False

 End If

End Sub

LongClick
This event is generated when the user touches the screen for a long time (about one second)

provided that no other view has consumed the event (such as an EditText), and provided

that no handler exists for the Touch event. Touch takes priority over LongClick.

Touch (Action As Int, X As Float, Y As Float)
The Touch event can be used to handle user touches. If a handler exists for the Touch event,

then handlers for the Click and LongClick events will not work.

The Action parameter values can be:

 Activity.ACTION_DOWN: The user has touched the screen at X,Y.

 Activity.ACTION_MOVE: The user’s touch has moved to X,Y.

 Activity.ACTION_UP: The user has stopped touching the screen at X,Y.

Use this value to find the user current action.

 3.3 Core Objects

 - 261 -

Activity Members
 ACTION_DOWN As Int

 ACTION_MOVE As Int

 ACTION_UP As Int

 AddMenuItem (Title As String, EventName As String)

 AddMenuItem2 (Title As String, EventName As String, Bitmap1 As Bitmap)

 AddMenuItem3 (Title As String, EventName As String, Bitmap1 As Bitmap,

AddToActionBar As Boolean)

 AddView (View1 As View, Left As Int, Top As Int, Width As Int, Height As Int)

 Background As Drawable

 CloseMenu

 Color As Int [write only]

 Finish

 GetAllViewsRecursive As IterableList

 GetStartingIntent As Intent

 GetView (Index As Int) As View

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 LoadLayout (Layout As String) As LayoutValues

 NumberOfViews As Int [read only]

 OpenMenu

 RemoveAllViews

 RemoveViewAt (Index As Int)

 RequestFocus As Boolean

 RerunDesignerScript (Layout As String, Width As Int, Height As Int)

 SendToBack

 SetActivityResult (Result As Int, Data As Intent)

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Title As CharSequence

 TitleColor As Int

 Top As Int

 Width As Int

 3.3 Core Objects

 - 262 -

ACTION_DOWN As Int

ACTION_MOVE As Int

ACTION_UP As Int

AddMenuItem (Title As String, EventName As String)
Adds a menu item to the activity. On devices running Android less than 3.0, the menu is

evoked by pressing the menu key. On 3.0 and above it is shown as an overflow symbol (3

vertical dots) on the Action Bar.

See here for more about the options menu and here for more about the Action Bar in Android

3.0+.

Title – Text shown in menu.

EventName - The prefix name of the sub that will handle the click event.

This method should only be called inside Sub Activity_Create.

Note: the Sender keyword inside the click event equals to the clicked menu item text.

Example:
Activity.AddMenuItem("Test Menu", "TestMenu")

' ...

Sub TestMenu_Click

 Log (Sender) ' will log "Test Menu"

End Sub

AddMenuItem2 (Title As String, EventName As String,

Bitmap1 As Bitmap)
Adds a menu item with a Bitmap to the activity. See previous topic for more details.

Title – Text shown in menu.

EventName – The prefix name of the sub that will handle the click event.

Bitmap – Bitmap to draw as the item background.

Only the first five (or six if there are six total) menu items display icons.

This method should only be called inside Sub Activity_Create.

Note: the Sender keyword inside the click event equals to the clicked menu item text.

Example:

http://developer.android.com/guide/topics/ui/menus.html#OptionsMenu
http://developer.android.com/guide/topics/ui/actionbar.html

 3.3 Core Objects

 - 263 -

Activity.AddMenuItem2("Open File", "OpenFile",

LoadBitmap(File.DirAssets, "SomeImage.png"))

...

Sub OpenFile_Click

...

End Sub

AddMenuItem3 (Title As String, EventName As String,

Bitmap1 As Bitmap, AddToActionBar As Boolean)
Adds a menu item with a Bitmap to the activity, with the option to add the action bar on

Android 3.00+ devices. See below for more details.

Title – Text shown in menu.

EventName – The prefix name of the sub that will handle the click event.

Bitmap – Bitmap to draw as the item background.

AddToActionBar – if True, then the item will be displayed in the action bar (on Android 3.0+

devices) if there is enough room. If there is not enough room, then the item will be displayed

together with the other menu items in the overflow options. See here for more about the

options menu in Android 3.0+

Note: the Sender keyword inside the click event equals to the clicked menu item text.

Example
Dim bm As Bitmap

bm.Initialize (File.DirAssets, "menuIcon.png")

Activity.AddMenuItem3 ("Open File", "OpenFile", bm, True)

...

Sub OpenFile_click()

...

End Sub

AddView (View1 As View, Left As Int, Top As Int, Width As Int,

Height As Int)
Adds a view to this activity.

Background As Drawable
Gets or sets the background drawable.

CloseMenu
Programmatically closes the menu.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

http://bit.ly/19E7ppF

 3.3 Core Objects

 - 264 -

Finish
Closes this activity. See Activity.Finish vs ExitApplication for details of when you should use

Finish.

GetAllViewsRecursive As IterableList
Returns an iterator that iterates over all the views belonging to the Activity, including views

which are children of other views. Example:
For Each vw As View In Activity.GetAllViewsRecursive

 vw.Color = Colors.RGB(Rnd(0,255), Rnd(0,255), Rnd(0,255))

Next

GetStartingIntent As Intent
(Advanced) Gets the intent object that started this Activity.

This can be used together with SetActivityResult to return results to 3rd party

applications.

GetView (Index As Int) As View
Gets the view that is stored at the specified index.

Height As Int
Gets or sets the Activity’s height.

Initialize (EventName As String)
Initializes the Activity and sets the subs that will handle the events.

Note: this function is never needed since the Activity will be automatically initialized. It only

exists because, technically, Activity is a sub-type of View.

Invalidate
Invalidates the whole Activity, forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this Activity. Redrawing will

only happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As

Int)
Invalidates anything inside the given rectangle that is part of this Activity. Redrawing will

only happen when the program can process messages, usually when it finishes running the

current code.

 3.3 Core Objects

 - 265 -

IsInitialized As Boolean
This always returns True. It only exists because, technically, Activity is a sub-type of View.

Left As Int
This is always 0 for an Activity.

LoadLayout (Layout As String) As LayoutValues
Loads a layout file (.bal). Returns the LayoutValues of the actual layout variant that was

loaded.

NumberOfViews As Int [read only]
Returns the number of child views.

OpenMenu
Programmatically opens the menu.

RemoveAllViews
Removes all child views.

RemoveViewAt (Index As Int)
Removes the view that is stored at the specified index. Example:
Dim vw As View

For i = 0 To Activity.NumberOfViews - 1

 vw = Activity.GetView(i)

 If vw.Tag = "btnNew" Then

 Activity.RemoveViewAt(i)

 End If

Next

RequestFocus As Boolean
This function is never needed. It will always return False. It only exists because,

technically, Activity is a sub-type of View.

RerunDesignerScript (Layout As String, Width As Int, Height

As Int)
Runs the designer script again with the specified width and height. See the designer scripts

chapter for more information.

SendToBack
This function is never needed. It only exists because, technically, Activity is a sub-type of

View.

 3.3 Core Objects

 - 266 -

SetActivityResult (Result As Int, Data As Intent)
This advanced feature allows an Activity to return a result to an external app that calls

startActivityForResult to start the app and get a result. For example, you can use it to

build a file chooser app with a defined external API. SetActivityResult sets the result

that the calling Activity will get after calling StartActivityForResult.

Note: IOnActivityResult, OnActivityResult, SetActivityResult and

StartActivityForResult are all advanced features which are beyond the scope of this

book. For more information, see here.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Tag As Object
Gets or sets the Activity’s Tag value. This can be used to store additional data.

Title As CharSequence
Gets or sets the Activity’s title.

TitleColor As Int
Gets or sets the title color.

Note: the title color doesn’t have any effect on devices using the holo style, which was

introduced in Android 4. For more about Themes, see here.

Top As Int
This is always 0 for an Activity.

Width As Int
Gets or sets the view’s width.

Bit
Bit is a predefined object containing bitwise related methods.

Example:
Dim flags As Int

flags = Bit.Or(100, 200)

Bitwise Operations
In bitwise operations, the numbers are first converted to their binary form (which consists of

1 and 0 digits). Then the operation is performed on each pair of binary digits, and the result

assembled into a new binary number which is then converted back into a decimal form. For

example, 3 AND 6 would be processed as follows to produce the decimal number 2:

 3 is converted to binary 011

http://bit.ly/1gvOvso

 3.3 Core Objects

 - 267 -

 2 is converted to binary 110

 The left-hand digits are ANDED together: 0 AND 1 evaluate to 0

 The middle two digits are ANDED; 1 AND 1 = 1

 The right-hand digits are ANDED; 1 AND 0 evaluate to 0

 The three results are assembled to make the binary number 010

 The binary number 010 is converted to decimal 2

Members:
 And (N1 As Int, N2 As Int) As Int

 Not (N As Int) As Int

 Or (N1 As Int, N2 As Int) As Int

 ParseInt (Value As String, Radix As Int) As Int

 ShiftLeft (N As Int, Shift As Int) As Int

 ShiftRight (N As Int, Shift As Int) As Int

 ToBinaryString (N As Int) As String

 ToHexString (N As Int) As String

 ToOctalString (N As Int) As String

 UnsignedShiftRight (N As Int, Shift As Int) As Int

 Xor (N1 As Int, N2 As Int) As Int

And (N1 As Int, N2 As Int) As Int
Returns the bitwise AND of the two values. For each pair of corresponding bits in N1 and N2,

the result is 1 if both both bits are 1, otherwise it is 0.

Not (N As Int) As Int
Returns the bitwise complement of the given value. For each bit in N, the corresponding bit

in the result has the opposite value (1s are replace by 0s and 0s by 1s).

Or (N1 As Int, N2 As Int) As Int
Returns the bitwise OR of the two values. For each pair of corresponding bits in N1 and N2,

the result is 0 if both both bits are 0, otherwise it is 1.

ParseInt (Value As String, Radix As Int) As Int
Converts Value from base Radix to base 10. So the following example will convert 100 in

base 2 to base 10, and produce the result 4:
Log (Bit.ParseInt("100",2))

Radix should be from 2 to 36. Other examples:
Log (Bit.ParseInt("100",8)) ' 64

Log (Bit.ParseInt("100",10)) ' 100

Log (Bit.ParseInt("100",13)) ' 169

ShiftLeft (N As Int, Shift As Int) As Int
Shifts the bits in N to the left. The new right-most bits are set to 0.

 3.3 Core Objects

 - 268 -

Shift - Number of positions to shift.

ShiftRight (N As Int, Shift As Int) As Int
Shifts the bits in N to the right. Keeps the original value sign, meaning that the new left-

most bits have the same value as the original left-most bit.

Shift - Number of positions to shift.

ToBinaryString (N As Int) As String
Returns a string representation of N in base 2.

ToHexString (N As Int) As String
Returns a string representation of N in base 16.

ToOctalString (N As Int) As String
Returns a string representation of N in base 8.

UnsignedShiftRight (N As Int, Shift As Int) As Int
Shifts N right and inserts a zero in the left-most position for each shift performed.

Shift - Number of positions to shift.

Xor (N1 As Int, N2 As Int) As Int
Returns the bitwise “exclusive or” of the two values. For each pair of bits, the result is 1 if

only one of the two is 1, otherwise the result is 0.

Constants

Colors
A predefined object containing color constants.

For example: Activity.Color = Colors.Green

Members:

 ARGB (Alpha As Int, R As Int, G As Int, B As Int) As Int

 Black As Int

 Blue As Int

 Cyan As Int

 DarkGray As Int

 Gray As Int

 Green As Int

 LightGray As Int

 Magenta As Int

 Red As Int

 RGB (R As Int, G As Int, B As Int) As Int

 3.3 Core Objects

 - 269 -

 Transparent As Int

 White As Int

 Yellow As Int

 ARGB (Alpha As Int, Red As Int, Green As Int, Blue As Int) As Int
Returns an integer value representing the color built from the three components Red, Green

and Blue, and with the specified Alpha value, which determines the transparency of the

color. Each component should be a value from 0 to 255 (inclusive).

Alpha - A value from 0 to 255, where 0 is fully transparent and 255 is fully opaque.

Note: you can get the same result by using a hex literal. Thus Colors.ARGB(255,0,0,0) is the

same as 0xFF000000.

 Black As Int

 Blue As Int

 Cyan As Int

 DarkGray As Int

 Gray As Int

 Green As Int

 LightGray As Int

 Magenta As Int

 Red As Int

 RGB (Red As Int, Green As Int, Blue As Int) As Int
Returns an integer value representing the color built from the three components Red, Green

and Blue. Each component should be a value from 0 to 255 (inclusive). This is the same as

ARGB with Alpha set to 255 (opaque).

Note: you can get the same result by using a hex literal. Thus Colors.RGB(255,0,0) is the

same as 0xFF0000.

 Transparent As Int

 White As Int

 Yellow As Int

DialogResponse
A predefined object containing the possible values that dialogs return. For example:

 3.3 Core Objects

 - 270 -

Dim result As Int

result = Msgbox2("Save changes?", "", "Yes", "", "No", Null)

If result = DialogResponse.POSITIVE Then

 'save changes

End If

 CANCEL As Int

 NEGATIVE As Int

 POSITIVE As Int

Gravity
Predefined object containing "gravity" values. These values affect the alignment of text or

images. Example:
Dim EditText1 As EditText

EditText1.Initialize("")

EditText1.Gravity = Gravity.CENTER

 BOTTOM As Int

 CENTER As Int

 CENTER_HORIZONTAL As Int

 CENTER_VERTICAL As Int

 FILL As Int

 LEFT As Int

 NO_GRAVITY As Int

 RIGHT As Int

 TOP As Int

KeyCodes
A predefined object with the KeyCode constants. These constants are passed to the

Activity KeyPressed event, for example:
Sub Activity_KeyPress(KeyCode As Int) As Boolean

 If KeyCode = KeyCodes.KEYCODE_BACK Then

 Log ("KEYCODE_BACK")

 Return False

 End If

End Sub

Events
None

Members
All the following are integer constants:

KEYCODE_0 KEYCODE_1

 3.3 Core Objects

 - 271 -

KEYCODE_2

KEYCODE_3

KEYCODE_4

KEYCODE_5

KEYCODE_6

KEYCODE_7

KEYCODE_8

KEYCODE_9

KEYCODE_A

KEYCODE_ALT_LEFT

KEYCODE_ALT_RIGHT

KEYCODE_APOSTROPHE

KEYCODE_AT

KEYCODE_B

KEYCODE_BACK

KEYCODE_BACKSLASH

KEYCODE_C

KEYCODE_CALL

KEYCODE_CAMERA

KEYCODE_CLEAR

KEYCODE_COMMA

KEYCODE_D

KEYCODE_DEL

KEYCODE_DPAD_CENTER

KEYCODE_DPAD_DOWN

KEYCODE_DPAD_LEFT

KEYCODE_DPAD_RIGHT

KEYCODE_DPAD_UP

KEYCODE_E

KEYCODE_ENDCALL

KEYCODE_ENTER

KEYCODE_ENVELOPE

KEYCODE_EQUALS

KEYCODE_EXPLORER

KEYCODE_F

KEYCODE_FOCUS

KEYCODE_G

KEYCODE_GRAVE

KEYCODE_H

KEYCODE_HEADSETHOOK

KEYCODE_HOME

KEYCODE_I

KEYCODE_J

KEYCODE_K

KEYCODE_L

KEYCODE_LEFT_BRACKET

KEYCODE_M

KEYCODE_MEDIA_FAST_FORW

ARD

KEYCODE_MEDIA_NEXT

KEYCODE_MEDIA_PLAY_PAUS

E

KEYCODE_MEDIA_PREVIOUS

KEYCODE_MEDIA_REWIND

KEYCODE_MEDIA_STOP

KEYCODE_MENU

KEYCODE_MINUS

KEYCODE_MUTE

KEYCODE_N

KEYCODE_NOTIFICATION

KEYCODE_NUM

KEYCODE_O

KEYCODE_P

KEYCODE_PERIOD

 3.3 Core Objects

 - 272 -

KEYCODE_PLUS

KEYCODE_POUND

KEYCODE_POWER

KEYCODE_Q

KEYCODE_R

KEYCODE_RIGHT_BRACKET

KEYCODE_S

KEYCODE_SEARCH

KEYCODE_SEMICOLON

KEYCODE_SHIFT_LEFT

KEYCODE_SHIFT_RIGHT

KEYCODE_SLASH

KEYCODE_SOFT_LEFT

KEYCODE_SOFT_RIGHT

KEYCODE_SPACE

KEYCODE_STAR

KEYCODE_SYM

KEYCODE_T

KEYCODE_TAB

KEYCODE_U

KEYCODE_UNKNOWN

KEYCODE_V

KEYCODE_VOLUME_DOWN

KEYCODE_VOLUME_UP

KEYCODE_W

KEYCODE_X

KEYCODE_Y

KEYCODE_Z

Typeface
Typeface is a predefined object that holds the typeface styles and the default installed fonts.

Note: unlike most other predefined objects, you can declare new objects of this type.

Example:
EditText1.Typeface = Typeface.DEFAULT_BOLD

Events
None

Members

 CreateNew (Typeface1 As Typeface, Style As Int) As Typeface

 DEFAULT As Typeface

 DEFAULT_BOLD As Typeface

 IsInitialized As Boolean

 LoadFromAssets (FileName As String) As Typeface

 MONOSPACE As Typeface

 SANS_SERIF As Typeface

 SERIF As Typeface

 STYLE_BOLD As Int

 STYLE_BOLD_ITALIC As Int

 STYLE_ITALIC As Int

 STYLE_NORMAL As Int

 3.3 Core Objects

 - 273 -

 CreateNew (Typeface1 As Typeface, Style As Int) As Typeface
Returns a typeface with the specified Style. Example:
Typeface.CreateNew(Typeface.MONOSPACE, Typeface.STYLE_ITALIC)

 DEFAULT As Typeface

 DEFAULT_BOLD As Typeface

 IsInitialized As Boolean
Whether this object has been initialized by calling LoadFromAssets.

 LoadFromAssets (FileName As String) As Typeface
Loads a font file that was added with the file manager. Example:
Dim MyFont As Typeface

MyFont = Typeface.LoadFromAssets("MyFont.ttf")

EditText1.Typeface = MyFont

 MONOSPACE As Typeface

 SANS_SERIF As Typeface

 SERIF As Typeface

 STYLE_BOLD As Int

 STYLE_BOLD_ITALIC As Int

 STYLE_ITALIC As Int

 STYLE_NORMAL As Int

DateTime
Date and time related methods. DateTime is a predefined object. You should not declare it

yourself. Date and time values are stored as ticks.

Ticks
Ticks are the number of milliseconds since January 1, 1970 00:00:00 UTC (Coordinated

Universal Time). This value is too large to be stored in an Int variable. It should only be

stored in a Long variable. The methods DateTime.Date and DateTime.Time convert the

ticks value to a string. You can get the current time with DateTime.Now.

Example:
Dim now As Long

now = DateTime.Now

Msgbox("The date is: " & DateTime.Date(now) & CRLF & _

 "The time is: " & DateTime.Time(now), "")

Members:
 Add (Ticks As Long, Years As Int, Months As Int, Days As Int) As Long

 Date (Ticks As Long) As String

 DateFormat As String

 3.3 Core Objects

 - 274 -

 DateParse (Date As String) As Long

 DateTimeParse (Date As String, Time As String) As Long

 DeviceDefaultDateFormat As String [read only]

 DeviceDefaultTimeFormat As String [read only]

 GetDayOfMonth (Ticks As Long) As Int

 GetDayOfWeek (Ticks As Long) As Int

 GetDayOfYear (Ticks As Long) As Int

 GetHour (Ticks As Long) As Int

 GetMinute (Ticks As Long) As Int

 GetMonth (Ticks As Long) As Int

 GetSecond (Ticks As Long) As Int

 GetTimeZoneOffsetAt (Date As Long) As Double

 GetYear (Ticks As Long) As Int

 Now As Long [read only]

 SetTimeZone (OffsetHours As Int)

 TicksPerDay As Long

 TicksPerHour As Long

 TicksPerMinute As Long

 TicksPerSecond As Long

 Time (Ticks As Long) As String

 TimeFormat As String

 TimeParse (Time As String) As Long

 TimeZoneOffset As Double [read only]

Add (Ticks As Long, Years As Int, Months As Int, Days As Int)

As Long
Returns a ticks value which is the result of adding the specified time spans to the given Ticks

value. Pass negative values if you want to subtract the values. Example:
Dim Tomorrow As Long

Tomorrow = DateTime.Add(DateTime.Now, 0, 0, 1)

Log("Tomorrow’s date is: " & DateTime.Date(Tomorrow))

Date (Ticks As Long) As String
Returns a string representation of the date (which is stored as ticks). The date format can be

set with the DateFormat keyword. Example:
Log("Today is: " & DateTime.Date(DateTime.Now))

DateFormat As String
Gets or sets the format used to parse date strings. See this page for the supported patterns:

formats. The default pattern is MM/dd/yyyy (04/23/2002 for example).

http://bit.ly/15IH0fK

 3.3 Core Objects

 - 275 -

DateParse (Date As String) As Long
Parses the given Date string and returns its ticks representation. An exception will be

thrown if parsing fails. Example:
Dim SomeTime As Long

SomeTime = DateTime.DateParse("02/23/2007")

DateTimeParse (Date As String, Time As String) As Long
Parses the given date and time strings and returns the ticks representation.

DeviceDefaultDateFormat As String [read only]
Returns the default date format based on the language used by the Android device.

DeviceDefaultTimeFormat As String [read only]
Returns the default time format based on the language used by the Android device.

GetDayOfMonth (Ticks As Long) As Int
Returns the day of month component from the ticks value.

Values are from 1 to 31.

GetDayOfWeek (Ticks As Long) As Int
Returns the day of week component from the ticks value.

Values are from 1 to 7, where 1 means Sunday.

You can use the AHLocale library if you need to change the first day.

GetDayOfYear (Ticks As Long) As Int
Returns the day of year component from the ticks value.

Values are from 1 to 366.

GetHour (Ticks As Long) As Int
Returns the hour of day component from the ticks value.

Values are from 0 to 23.

GetMinute (Ticks As Long) As Int
Returns the minutes within an hour component from the ticks value.

Values are from 0 to 59.

GetMonth (Ticks As Long) As Int
Returns the month of year component from the ticks value.

Values are from 1 to 12.

GetSecond (Ticks As Long) As Int
Returns the seconds within a minute component from the ticks value.

Values are from 0 to 59.

 3.3 Core Objects

 - 276 -

GetTimeZoneOffsetAt (Date As Long) As Double
Returns the difference, measured in hours, between the time used by the Android device and

UTC (Coordinated Universal Time, equivalent to Greenwich Mean Time). You can specify

which Date you want to use for the calculation. The offset can change due to daylight-saving

settings. For example, if you were in Paris in the summer, then the following would give the

result of 2, because France is 1 hour ahead of UTC in winter and another hour ahead in the

summer:
Log(DateTime.GetTimeZoneOffsetAt(DateTime.Now))

GetYear (Ticks As Long) As Int
Returns the year component from the ticks value.

ListenToExternalTimeChanges
Creates a dynamic broadcast receiver that listens to the “time-zone changed” event and "time

set" event. By calling this method, the time-zone will update automatically when the device

time-zone changes. The DateTime_TimeChanged event will be raised when the time-zone

changes or when the time is set.

Now As Long [read only]
Gets the current time as ticks (number of milliseconds since January 1, 1970).

SetTimeZone (OffsetHours As Int)
Sets the time zone which your application uses to convert dates to ticks and vice versa. Note:

the time zone used by the Android device is not changed.

TicksPerDay As Long
Contains the number of milliseconds in a day: 86400000

TicksPerHour As Long
Contains the number of milliseconds in an hour: 3600000

TicksPerMinute As Long
Contains the number of milliseconds in a minute: 60000

TicksPerSecond As Long
Contains the number of milliseconds in a second: 1000

Time (Ticks As Long) As String
Returns a string representation of the time (which is stored as ticks).

The time format can be set with the TimeFormat keyword.

Example:

 3.3 Core Objects

 - 277 -

Log("The time now is: " & DateTime.Time(DateTime.Now))

TimeFormat As String
Gets or sets the format used to parse time strings. The default pattern is HH:mm:ss

(23:45:12 for example). See this page for the supported patterns: formats.

TimeParse (Time As String) As Long
Parses the given Time string and returns its ticks representation, based on today’s date.

Example:
Log(DateTime.TimeParse("13:45:57"))

Note: if the format of Time does not match the format specified by DateTime.TimeFormat,

then a ParseException will be raised and the app will crash.

TimeZoneOffset As Double [read only]
Returns the current offset measured in hours from UTC (Coordinated Universal Time).

Drawing Objects

Bitmap
An object that holds a bitmap image. The bitmap can be loaded from a file or other input

stream, or can be set from a different bitmap. Loading large bitmaps can easily lead to out-of-

memory exceptions. This is true even if the file is compressed and not large, as the bitmap is

stored uncompressed in memory. For large images, you can call InitializeSample and

load a subsample of the image. The whole image will be loaded with a lower resolution.

Members:

 GetPixel (x As Int, y As Int) As Int

 Height As Int [read only]

 Initialize (Dir As String, FileName As String)

 Initialize2 (InputStream As java.io.InputStream)

 Initialize3 (Bitmap As Bitmap)

 InitializeMutable (Width As Int, Height As Int)

 InitializeSample (Dir As String, FileName As String, MaxWidth As Int, MaxHeight As

Int)

 IsInitialized As Boolean

 Width As Int [read only]

 WriteToStream (OutputStream As java.io.OutputStream, Quality As Int, Format As

Bitmap.CompressFormat)

GetPixel (x As Int, y As Int) As Int
Returns the color of the pixel at the specified position.

Height As Int [read only]
Returns the bitmap height.

http://docs.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html

 3.3 Core Objects

 - 278 -

Initialize (Dir As String, FileName As String)
Reads the image from the given file and uses it to create the Bitmap. Note that the image

will be downsampled if there is not enough memory available. Example:
Dim Bitmap1 As Bitmap

Bitmap1.Initialize(File.DirAssets, "X.jpg")

Initialize2 (InputStream As java.io.InputStream)
Initializes the bitmap from the given stream.

Initialize3 (Bitmap1 As Bitmap)
Initializes the bitmap with a copy of the original image (copying is done if necessary).

InitializeMutable (Width As Int, Height As Int)
Creates a new mutable bitmap with the specified dimensions. You can use a Canvas object to

draw on this bitmap.

InitializeSample (Dir As String, FileName As String, MaxWidth As Int,

MaxHeight As Int)
Initializes the bitmap from the given file. The decoder will subsample the bitmap if

MaxWidth or MaxHeight are smaller than the bitmap dimensions. This can save a lot of

memory when loading large images. Note that the actual dimensions may be larger than the

specified values.

IsInitialized As Boolean
Whether the Bitmap has been initialized using one of the Initialize methods.

Width As Int [read only]
Returns the bitmap width.

WriteToStream (OutputStream As java.io.OutputStream, Quality As Int,

Format As CompressFormat)
Writes the bitmap to the output stream.

Quality - Value from 0 (smaller size, lower quality) to 100 (larger size, higher quality), which

is a hint for the compressor for the required quality.

Format – can be “JPEG” or “PNG”. Any other format will produce a runtime exception.

Notes: “JPG” is not an allowed format, but you can use “.jpg” as the filename extension if you

wish. Also you can read an image in format and write it in the other. Example:
Dim bm As Bitmap

bm.Initialize(File.DirAssets, "horse.png")

Dim Out As OutputStream

Out = File.OpenOutput(File.DirRootExternal, "horse.jpg", False)

bm.WriteToStream(Out, 100, "JPEG")

Out.Close

BitmapDrawable
A drawable that draws a bitmap. The bitmap is set during initialization. You can change the

way the bitmap appears by changing the Gravity property. Example:

 3.3 Core Objects

 - 279 -

Dim bd As BitmapDrawable

bd.Initialize(LoadBitmap(File.DirAssets, "SomeImage.png"))

bd.Gravity = Gravity.FILL

Activity.Background = bd

This is an Activity object; it cannot be declared under Sub Process_Globals.

Members:

 Bitmap As Bitmap [read only]

 Gravity As Int

 Initialize (Bitmap1 As Bitmap)

 IsInitialized As Boolean

Bitmap As Bitmap [read only]
Returns the internal Bitmap.

Gravity As Int
Gets or sets the gravity value. This value affects the way the image will be drawn.

Example:
BitmapDrawable1.Gravity = Gravity.FILL

Initialize (Bitmap1 As Bitmap)

IsInitialized As Boolean
Whether the BitmapDrawable has been initialized using one of the Initialize methods.

Canvas
A Canvas is an object that draws on other views or bitmaps which are editable (also called

“mutable”). When the canvas is initialized and set to draw on a view, a new mutable bitmap

is created for that view’s background, the current view’s background is copied to the new

bitmap and the canvas is set to draw on the new bitmap.

The canvas drawings are not immediately updated on the screen. You should call the target

view’s Invalidate method to make it refresh the view. This is useful as it allows you to

make several drawings and only then refresh the display.

The canvas can be temporarily limited to a specific region (and thus only affect this region).

This is done by calling ClipPath. Removing the clipping is done by calling RemoveClip.

You can get the bitmap that the canvas draws on with the Bitmap property.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Members:

 Bitmap As Bitmap [read only]

 ClipPath (Path1 As Path)

 DrawBitmap (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect)

 DrawBitmapFlipped (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect, Vertically

As Boolean, Horizontally As Boolean)

 DrawBitmapRotated (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect, Degrees

As Float)

 3.3 Core Objects

 - 280 -

 DrawCircle (x As Float, y As Float, Radius As Float, Color As Int, Filled As Boolean,

StrokeWidth As Float)

 DrawColor (Color As Int)

 DrawDrawable (Drawable1 As Drawable, DestRect As Rect)

 DrawDrawableRotate (Drawable1 As Drawable, DestRect As Rect, Degrees As Float)

 DrawLine (x1 As Float, y1 As Float, x2 As Float, y2 As Float, Color As Int, StrokeWidth

As Float)

 DrawOval (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As Float)

 DrawOvalRotated (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As Float,

Degrees As Float)

 DrawPath (Path1 As Path, Color As Int, Filled As Boolean, StrokeWidth As Float)

 DrawPoint (x As Float, y As Float, Color As Int)

 DrawRect (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As Float)

 DrawRectRotated (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As Float,

Degrees As Float)

 DrawText (Text As String, x As Float, y As Float, Typeface1 As Typeface, TextSize As

Float, Color As Int, Align1 As Align)

 DrawTextRotated (Text As String, x As Float, y As Float, Typeface1 As Typeface,

TextSize As Float, Color As Int, Align1 As Align, Degree As Float)

 Initialize (Target As View)

 Initialize2 (Bitmap1 As Bitmap)

 MeasureStringHeight (Text As String, Typeface1 As Typeface, TextSize As Float) As

Float

 MeasureStringWidth (Text As String, Typeface1 As Typeface, TextSize As Float) As

Float

 RemoveClip

Bitmap As Bitmap [read only]
Returns the bitmap that the canvas draws to. The following example saves the drawing to a

file:
Dim Out As OutputStream

Out = File.OpenOutput(File.DirRootExternal, "Test.png", False)

Canvas1.Bitmap.WriteToStream(out, 100, "PNG")

Out.Close

ClipPath (Path1 As Path)
Clips the drawing area to the given path.

 3.3 Core Objects

 - 281 -

Example: Fills a diamond shape with gradient color.
Dim Canvas1 As Canvas

Dim DestRect As Rect

Dim Gradient1 As GradientDrawable

Dim Clrs(2) As Int

Clrs(0) = Colors.Black

Clrs(1) = Colors.White

Gradient1.Initialize("TOP_BOTTOM", Clrs)

Dim Path1 As Path

Path1.Initialize(50%x, 100%y)

Path1.LineTo(100%x, 50%y)

Path1.LineTo(50%x, 0%y)

Path1.LineTo(0%x, 50%y)

Path1.LineTo(50%x, 100%y)

Canvas1.Initialize(Activity)

Canvas1.ClipPath(Path1) 'clip the drawing area to the path

DestRect.Initialize(0%y,0%y,100%x,100%y)

Canvas1.DrawDrawable(Gradient1, DestRect) 'fill the drawing area with

the gradient.

Activity.Invalidate

DrawBitmap (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect)
Draws a bitmap.

SrcRect - The subset of the bitmap that will be drawn. If Null, then the complete bitmap will

be drawn.

DestRect - The rectangle that the bitmap will be drawn to.

The following example first draws the whole bitmap, then draws just the left half . The

image must be included in the Files folder of the project:
Dim Canvas1 As Canvas

Canvas1.Initialize(Activity)

'draw the whole bitmap to the top half of the Activity

Dim Bitmap1 As Bitmap

Bitmap1.Initialize(File.DirAssets, "horse.png")

Dim DestRect As Rect

DestRect.Initialize(0, 0, 100%x, 50%y)

Canvas1.DrawBitmap(Bitmap1, Null, DestRect)

' draw the left half of the bitmap to bottom half of Activity

Dim SrcRect As Rect

SrcRect.Initialize(0, 0, Bitmap1.Width / 2, Bitmap1.Height)

DestRect.Top = 50%y

DestRect.Bottom = 100%y

Canvas1.DrawBitmap(Bitmap1, SrcRect, DestRect)

Activity.Invalidate

DrawBitmapFlipped (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As

Rect, Vertically As Boolean, Horizontally As Boolean)
Flips the bitmap and draws it.

 3.3 Core Objects

 - 282 -

SrcRect - The subset of the bitmap that will be drawn. If Null, then the complete bitmap will

be drawn.

DestRect - The rectangle that the bitmap will be drawn to.

Vertically - Whether to flip the bitmap vertically.

Horizontally - Whether to flip the bitmap horizontally.

Example:
Canvas1.DrawBitmapFlipped(Bitmap1, Null, DestRect, False, True)

DrawBitmapRotated (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As

Rect, Degrees As Float)
Rotates the bitmap and draws it.

SrcRect - The subset of the bitmap that will be drawn. If Null, then the complete bitmap will

be drawn.

DestRect - The rectangle that the bitmap will be drawn to.

Degrees - Number of degrees to rotate the bitmap clockwise. Negative numbers will rotate

anti-clockwise.

Example:
Dim Canvas1 As Canvas

Canvas1.Initialize(Activity)

Dim Bitmap1 As Bitmap

Bitmap1.Initialize(File.DirAssets, "horse.png")

Dim DestRect As Rect

DestRect.Initialize(0, 0, 100%x, 50%y)

' draw the bitmap rotated by 70 degrees

Canvas1.DrawBitmapRotated(Bitmap1, Null, DestRect, 70)

DrawCircle (x As Float, y As Float, Radius As Float, Color As Int, Filled

As Boolean, StrokeWidth As Float)
Draws a circle.

x - the left edge of the circle

y - the top of the circle

Filled - Whether the circle will be filled.

StrokeWidth - The stroke width (only relevant when Filled = False)

Example:
Dim Canvas1 As Canvas

Canvas1.Initialize(Activity)

Canvas1.DrawCircle(150dip, 150dip, 20dip, Colors.Red, False, 10dip)

DrawColor (Color As Int)
Fills the entire canvas with the given color.

Example:
'fill with semi-transparent red color

Canvas1.DrawColor(Colors.ARGB(100, 255, 0, 0))

Activity.Invalidate

DrawDrawable (Drawable1 As Drawable, DestRect As Rect)
Draws a Drawable into the specified rectangle.

Example:

 3.3 Core Objects

 - 283 -

' Fill a rectangle with a Gradient

Dim Canvas1 As Canvas

Dim DestRect As Rect

Dim Gradient1 As GradientDrawable

Dim Clrs(2) As Int

Canvas1.Initialize(Activity)

DestRect.Initialize(0, 0, 100%x, 100%y)

Clrs(0) = Colors.Green

Clrs(1) = Colors.Blue

Gradient1.Initialize("TOP_BOTTOM", Clrs)

Canvas1.DrawDrawable(Gradient1, DestRect)

Activity.Invalidate

DrawDrawableRotate (Drawable1 As Drawable, DestRect As Rect, Degrees

As Float)
Rotates and draws a Drawable into the specified rectangle.

Degrees - Number of degrees to rotate clockwise. Negative numbers will rotate anti-

clockwise.

DrawLine (x1 As Float, y1 As Float, x2 As Float, y2 As Float, Color As Int,

StrokeWidth As Float)
Draws a line from (x1, y1) to (x2, y2). StrokeWidth determines the width of the line.

Example:
Canvas1.DrawLine(100dip, 100dip, 200dip, 200dip, Colors.Red, 10dip)

Activity.Invalidate

DrawOval (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As

Float)
Draws an oval shape.

Filled - Whether the rectangle will be filled.

StrokeWidth - The stroke width. Relevant only when Filled = False.

Example:
Dim Rect1 As Rect

Rect1.Initialize(100dip, 100dip, 200dip, 150dip)

Canvas1.DrawOval(Rect1, Colors.Gray, False, 5dip)

Activity.Invalidate

DrawOvalRotated (Rect1 As Rect, Color As Int, Filled As Boolean,

StrokeWidth As Float, Degrees As Float)
Rotates the oval and draws it.

Filled - Whether the rectangle will be filled.

StrokeWidth - The stroke width. Relevant when Filled = False.

Degrees - Number of degrees to rotate the oval clockwise. Negative numbers will rotate anti-

clockwise.

DrawPath (Path1 As Path, Color As Int, Filled As Boolean, StrokeWidth As

Float)
Draws the path.

 3.3 Core Objects

 - 284 -

Filled - Whether the path will be filled.

StrokeWidth - The stroke width. Relevant when Filled = False.

Example:
' Draw a magenta diamond

Dim Canvas1 As Canvas

Dim DestRect As Rect

Dim Path1 As Path

Canvas1.Initialize(Activity)

DestRect.Initialize(0, 0, 100%x, 50%y)

Path1.Initialize(50%x, 100%y)

Path1.LineTo(100%x, 50%y)

Path1.LineTo(50%x, 0%y)

Path1.LineTo(0%x, 50%y)

Path1.LineTo(50%x, 100%y)

Canvas1.DrawPath(Path1, Colors.Magenta, False, 10dip)

DrawPoint (x As Float, y As Float, Color As Int)
Draws a point at the specified position and color. Example to draw a point in the middle of

the screen:
Dim Canvas1 As Canvas

Canvas1.Initialize(Activity)

Canvas1.DrawPoint(50%x, 50%y, Colors.Yellow)

DrawRect (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As

Float)
Draws a rectangle.

Filled - Whether the rectangle will be filled.

StrokeWidth - The stroke width. Relevant when Filled = False

Example to draw an outlined rectangle:
Dim Canvas1 As Canvas

Dim Rect1 As Rect

Canvas1.Initialize(Activity)

Rect1.Initialize(100dip, 100dip, 200dip, 150dip)

Canvas1.DrawRect(Rect1, Colors.Gray, False, 5dip)

Activity.Invalidate

DrawRectRotated (Rect1 As Rect, Color As Int, Filled As Boolean,

StrokeWidth As Float, Degrees As Float)
Rotates the rectangle and draws it.

Filled - Whether the rectangle will be filled.

StrokeWidth - The stroke width. Relevant when Filled = False.

Degrees - Number of degrees to rotate the rectangle clockwise. Negative numbers will rotate

anti-clockwise.

DrawText (Text As String, x As Float, y As Float, Typeface1 As Typeface,

TextSize As Float, Color As Int, Align1 As Align)
Draws the text.

Text - The text to be drawn.

 3.3 Core Objects

 - 285 -

x, y - The origin point.

Typeface1 - Typeface (font) to use.

TextSize - This value will be automatically scaled, so do not scale it yourself.

Color - Text color.

Align - The alignment related to the origin. One of the following values: "LEFT", "CENTER",

"RIGHT". Example to draw text in middle of screen:
Dim Canvas1 As Canvas

Canvas1.Initialize(Activity)

Canvas1.DrawText("Basic4Android is fantastic!", _

 50%x, 50%y, Typeface.DEFAULT_BOLD, 20, Colors.Blue, "CENTER")

Activity.Invalidate

DrawTextRotated (Text As String, x As Float, y As Float, Typeface1 As

Typeface, TextSize As Float, Color As Int, Align1 As Align, Degree As Float)
Rotates the text and draws it.

Text - The text to be drawn.

x, y - The origin point.

Typeface1 - Typeface (font) to use.

TextSize - This value will be automatically scaled, so do not scale it yourself.

Color - Text color.

Align - The alignment related to the origin. One of the following values: "LEFT", "CENTER",

"RIGHT".

Degrees - Number of degrees to rotate clockwise. Negative numbers will rotate anti-

clockwise.

Example to draw rotated text in middle of screen:
Dim Canvas1 As Canvas

Canvas1.Initialize(Activity)

Canvas1.DrawTextRotated("Basic4Android is fantastic!", _

 50%x, 50%y, Typeface.DEFAULT_BOLD, 20, Colors.Blue, "CENTER", 90)

Activity.Invalidate

Initialize (Target As View)
Initializes the canvas for drawing on a view.

The view background will be drawn on the canvas during initialization.

Note that you should not change the view’s background after calling this method. Example:
Dim Canvas1 As Canvas

Canvas1.Initialize(Activity) 'this canvas will draw on the activity

background

Initialize2 (Bitmap1 As Bitmap)
Initializes the canvas for drawing on this bitmap. The bitmap must be mutable. Bitmaps

created from files or input streams are NOT mutable.

MeasureStringHeight (Text As String, Typeface As Typeface, TextSize As

Float) As Float
Returns the height of the given text. Example of drawing a blue text with white rectangle as

the background:

 3.3 Core Objects

 - 286 -

Dim Canvas1 As Canvas

Dim Rect1 As Rect

Dim width, height As Float

Dim t As String

Canvas1.Initialize(Activity)

t = "Text to write"

width = Canvas1.MeasureStringWidth(t, Typeface.DEFAULT, 14)

height = Canvas1.MeasureStringHeight(t, Typeface.DEFAULT, 14)

Rect1.Initialize(100dip, 100dip, 100dip + width, 100dip + height)

Canvas1.DrawRect(Rect1, Colors.White, True, 0)

Canvas1.DrawText(t, Rect1.Left, Rect1.Bottom, Typeface.DEFAULT, 14,

Colors.Blue, "LEFT")

Activity.Invalidate

MeasureStringWidth (Text As String, Typeface1 As Typeface, TextSize As

Float) As Float
Returns the width of the given text. See MeasureStringHeight above for an example.

RemoveClip
Removes previous clipped region.

ColorDrawable
A drawable that has a solid color and can have round corners. Example to color a button

green:
Dim Button1 As Button

Dim cd As ColorDrawable

Button1.Initialize("test")

Activity.AddView(Button1, 10dip, 10dip, 80dip, 50dip)

cd.Initialize(Colors.Green, 5dip)

Button1.Background = cd

Button1.Text = "Test"

Activity.Invalidate

This is an Activity object; it cannot be declared under Sub Process_Globals.

Initialize (Color As Int, CornerRadius As Int)
Initializes the drawable with the given color and corner radius.

IsInitialized As Boolean
Whether the ColorDrawable has been initialized using the Initialize method.

GradientDrawable
A drawable that has a gradient color and can have round corners.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Example to draw a gradient, with rounded corners, within a panel:

 3.3 Core Objects

 - 287 -

' create the panel to receive the gradient

Dim pnlTest As Panel

pnlTest.Initialize("")

Activity.AddView(pnlTest,20dip,20dip,100dip,100dip)

' create gradient colors

Dim cols(2) As Int

cols(0) = Colors.Red

cols(1) = Colors.Blue

' create the gradient

Dim gd1 As GradientDrawable

gd1.Initialize("TL_BR",cols)

gd1.CornerRadius = 20dip

' add gradient to panel

pnlTest.Background=gd1

Members:

 CornerRadius As Float [write only]

 Initialize (Orientation1 As Orientation, Colors() As Int)

 IsInitialized As Boolean

CornerRadius As Float [write only]
Sets the radius of the "rectangle" corners. Set to 0 for square corners. Example:
Gradient1.CornerRadius = 20dip

Initialize (Orientation1 As Orientation, Colors() As Int)
Initializes this object.

Orientation - The gradient orientation. Can be one of the following value:

"TOP_BOTTOM"

"TR_BL" (Top-Right to Bottom-Left)

"RIGHT_LEFT"

"BR_TL" (Bottom-Right to Top-Left)

"BOTTOM_TOP"

"BL_TR" (Bottom-Left to Top-Right)

"LEFT_RIGHT"

"TL_BR" (Top-Left to Bottom-Right)

Colors - An array with the gradient colors.

Example:
Dim Gradient1 As GradientDrawable

Dim Clrs(2) As Int

Clrs(0) = Colors.Black

Clrs(1) = Colors.White

Gradient1.Initialize("TOP_BOTTOM", Clrs)

IsInitialized As Boolean
Whether the GradientDrawable has been initialized using the Initialize method.

 3.3 Core Objects

 - 288 -

Path
A Path is a collection of points that represent a connected path. The first point is set when

the path is initialized, and then other points are added with LineTo.

Members:

Initialize (x As Float, y As Float)
Initializes the path and sets the value of the first point.

IsInitialized As Boolean
Whether the Path has been initialized using the Initialize method.

LineTo (x As Float, y As Float)
Adds a line from the last point to the specified point.

Rect
Holds four coordinates which represent a rectangle.

Members:

 Bottom As Int

 CenterX As Int [read only]

 CenterY As Int [read only]

 Initialize (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 Right As Int

 Top As Int

Bottom As Int

CenterX As Int [read only]
Returns the horizontal center.

CenterY As Int [read only]
Returns the vertical center.

Initialize (Left As Int, Top As Int, Right As Int, Bottom As Int)

IsInitialized As Boolean
Whether the Rect has been initialized using the Initialize method.

 3.3 Core Objects

 - 289 -

Left As Int

Right As Int

Top As Int

StateListDrawable
A drawable that holds other drawables and chooses the current one based on the view’s state,

such as State_Checked. This is an Activity object; it cannot be declared under Sub

Process_Globals. Example:
' create button to use StateListDrawable as background

Dim tb As ToggleButton

tb.Initialize("")

tb.Checked = False

tb.TextColor = Colors.Blue

tb.TextSize = 20

tb.Typeface = Typeface.DEFAULT_BOLD

' create colorDrawables

Dim checked, unchecked As ColorDrawable

checked.Initialize(Colors.Green, 10dip)

unchecked.Initialize(Colors.Red, 10dip)

' create StateListDrawable

Dim sld As StateListDrawable

sld.Initialize

' add colorDrawables to StateListDrawable

sld.AddState(sld.State_Checked, checked)

sld.AddState(sld.State_Unchecked, unchecked)

' add StateListDrawable to button

tb.Background = sld

' show button

Activity.AddView(tb, 100dip, 100dip, 100dip, 100dip)

Members:

 AddCatchAllState (Drawable1 As Drawable)

 AddState (State As Int, Drawable1 As Drawable)

 AddState2 (State() As Int, Drawable1 As Drawable)

 Initialize

 IsInitialized As Boolean

 State_Checked As Int

 State_Disabled As Int

 State_Enabled As Int

 State_Focused As Int

 State_Pressed As Int

 State_Selected As Int

 State_Unchecked As Int

 3.3 Core Objects

 - 290 -

AddCatchAllState (Drawable1 As Drawable)
Adds the Drawable that will be used if no other state matched the current state.

Note: this should always be the last state. States added after this one will never be used.

AddState (State As Int, Drawable1 As Drawable)
Adds a State and Drawable pair. Example (see above for complete code):
sld.AddState(sld.State_Checked, checked)

Note: if you add the same state twice, the first one added will be used.

AddState2 (State() As Int, Drawable1 As Drawable)
Adds a State and Drawable pair. The state is made from a combination of states.

Note: You should not reuse the array specified as it is used internally by

StateListDrawable.

Note also: the order of states is very important. The first state that matches will be used.

Initialize
Initializes the object.

IsInitialized As Boolean
Whether the StateListDrawable has been initialized using the Initialize method.

State_Checked As Int

State_Disabled As Int

State_Enabled As Int

State_Focused As Int

State_Pressed As Int

State_Selected As Int

State_Unchecked As Int

Exception
Holds a thrown exception. You can access the last thrown exception by calling

LastException.

Example:
Try

 Dim in As InputStream

 in = File.OpenInput(File.DirInternal, "SomeMissingFile.txt")

 ' etc

Catch

 ' come here if there is an exception

 Log(LastException.Message)

End Try

If in.IsInitialized Then in.Close

Members:
 IsInitialized As Boolean

 3.3 Core Objects

 - 291 -

 Message As String [read only]

IsInitialized As Boolean
Whether the Exception has been initialized. Example:
If LastException.IsInitialized Then

Message As String [read only]

File Object
Many applications require access to persistent storage. The two most common storage types

are files and databases. We deal with files here. Databases have a chapter of their own.

Filenames
Android file names allow the following characters:

a to z, A to Z, 0 to 9 . _ + - % &

Spaces, “*” and “?” are not allowed.

Note that Android file names are case sensitive , so “MyFile.txt” is different from

“myfile.txt”.

Adding Files to your Project
You must add files to your app by using the Files tab in the IDE and clicking “Add Files”.

This will place a copy of the selected file in the Files folder of your project.

File locations
There are several important locations where you can retrieve and perhaps store files: the

folder where your app is installed; the main memory; or an external storage card.

File.DirAssets
The assets folder includes the files that were added with the file manager in the IDE. It’s

created from the Files folder in your project.

These files are read-only.

Your app cannot create new files in this folder (which is actually located inside the apk file).

If you have a database file in the DirAssets folder, you need to copy it to another folder before

you can use it. You can use the DBUtils.CopyDBFromAssets function to achieve this.

File.DirInternal / File.DirInternalCache
These two folders are stored in the main memory of the device and are private to your

application. Other applications cannot access these files. The cache folder may get deleted by

Android if it needs more space.

Storage Card Folders
The next two locations are on the storage card. You can check if there is a storage card and

whether it is available with File.ExternalReadable and File.ExternalWritable.

Using either of the following will add the EXTERNAL_STORAGE permission to your

application.

 3.3 Core Objects

 - 292 -

File.DirRootExternal
The storage card root folder: mnt\sdcard.

File.DirDefaultExternal
The default folder for your application in the SD card.

The folder is: <storage card>/Android/data/<package>/files/

It will be created if required.

Text encoding
Sometimes it is useful to read or write text files using Basic4Android. There are two objects

to help you to do this: TextReader and TextWriter. Here we describe how text is encoded and

stored within a file. Since your app might deal with different languages and might import

files with various formats, basic understanding can help overcome some possible problems.

Encoding is a way of converting a set of characters into binary data in a standard format so

the data can be exchanged between systems.

Originally, (back in 1963), English characters were encoded in ASCII. As computing spread

to other languages, the Unicode system was invented (in 1988), allowing all the world’s

languages to be encoded.

See http://unicode-table.com/en/ for a list of characters and their Unicode codes.

Unicode can be implemented by different encoding systems (also called Code Pages or

Character Sets). The most commonly used encodings are UTF-8 and UTF-16.

Android Character Sets
Android can use following character sets:

 UTF-8 default character-set

 UTF-16

 UTF-16 BE

 UTF-LE

 US-ASCII ASCII character set

 ISO-8859-1 almost equivalent to the ANSI character-set

 Windows-1252

The default character set in Android is Unicode UTF-8.

Windows Character Sets
In Windows, the most common character sets are ASCII and Windows-1252 (often called

ANSI).

ASCII is a 7 bit encoding, allowing definitions for 128 characters. 33 are non-printing control

characters (now mostly obsolete) that affect how text and space is processed.

Windows-1252
Windows-1252 or CP-1252, (often called ANSI), is a character encoding of the Latin alphabet,

used by default in the legacy components of Microsoft Windows in English and some other

Western languages with 256 definitions (one byte). The first 128 characters are the same as

in the ASCII encoding.

Many files generated by Windows programs are encoded with the Windows-1252 character-

set in western countries, for example, Excel CSV files and Notepad files by default. (Note

that Notepad can also save files with UTF-8 encoding.)

http://unicode-table.com/en/

 3.3 Core Objects

 - 293 -

To read Windows files encoded with Windows-1252, you should use the Windows-1252

character-set. If you need to write files for use with Windows, you should also use the

Windows-1252 character-set.

To read or write files with a different encoding, you must use the TextReader or TextWriter

objects with the Initialize2 methods.

End-of-Line Character(s)
Another difference between Windows and Android is the end-of-line character. In Android

(following the Linux model), only the LF (Line Feed) character, Chr(10), is added at the end

of a line. In Windows, two characters, CR (Carriage Return Chr(13)) and LF Chr(10), are

added at the end of a line. If you need to write files for Windows, you must add CR yourself.

The symbol for the end-of-line is CRLF = Chr(10). Its name can be slightly confusing, since it

is actually only the LF character. The name was chosen because it has the same effect as

CR+LF in Windows.

Reading and Writing Excel Files
Excel can save spreadsheets in CSV (“Comma Separated Values”) format. There are two

functions, LoadCSV and LoadCSV2 in the StringUtils library, which can read CSV files and

one which can save a CSV file. See the StringUtils library documentation for examples. You

do NOT need to change the format of the files when you move these CSV files between a

Windows PC and an Android device.

Notepad and Notepad++
When you save a file with NotePad, three additional bytes are added. These bytes are called

BOM characters (Byte Order Mark). In UTF-8 they are represented by this byte sequence:

0xEF,0xBB,0xBF.A text editor or web browser interpreting the text as Windows-1252 will

display the characters ï»¿.

To avoid this, you can use Notepad++ instead of NotePad and use the menu [Encoding >

Encode in UTF-8 without BOM].

Another possibility to change text from Windows-1252 to UTF-8 is to use this code:
Dim var, result As String

var = "Gestió"

Dim arrByte() As Byte

arrByte = var.GetBytes("Windows-1252")

result = BytesToString(arrByte, 0, arrByte.Length, "UTF8")

File
File is a predefined object that holds methods for working with files. The File object includes

several methods for writing to files and reading from files. To be able to write to a file or to

read from a file, it must be opened.

“Predefined” means that you do not need to declare it yourself. Thus, for each of the

following, you would prefix the method with File. For example, File.Exists.

Note: the Android file system is case sensitive.

Members:

 Combine (Dir As String, FileName As String) As String

 Copy (DirSource As String, FileSource As String, DirTarget As String, FileTarget As

String)

http://notepad-plus-plus.org/

 3.3 Core Objects

 - 294 -

 Copy2 (In As java.io.InputStream, Out As java.io.OutputStream)

 Delete (Dir As String, FileName As String) As Boolean

 DirAssets As String [read only]

 DirDefaultExternal As String [read only]

 DirInternal As String [read only]

 DirInternalCache As String [read only]

 DirRootExternal As String [read only]

 Exists (Dir As String, FileName As String) As Boolean

 ExternalReadable As Boolean [read only]

 ExternalWritable As Boolean [read only]

 GetText (Dir As String, FileName As String) As String

 IsDirectory (Dir As String, FileName As String) As Boolean

 LastModified (Dir As String, FileName As String) As Long

 ListFiles (Dir As String) As List

 MakeDir (Parent As String, Dir As String)

 OpenInput (Dir As String, FileName As String) As InputStream

 OpenOutput (Dir As String, FileName As String, Append As Boolean) As OutputStream

 ReadList (Dir As String, FileName As String) As List

 ReadMap (Dir As String, FileName As String) As Map

 ReadMap2 (Dir As String, FileName As String, Map As Map) As Map

 ReadString (Dir As String, FileName As String) As String

 Size (Dir As String, FileName As String) As Long

 WriteList (Dir As String, FileName As String, List As List)

 WriteMap (Dir As String, FileName As String, Map As Map)

 WriteString (Dir As String, FileName As String, Text As String)

Combine (Dir As String, FileName As String) As String
Returns the full path to the given file.

This method does not support files in the assets folder.

Copy (DirSource As String, FileSource As String, DirTarget As String,

FileTarget As String)
Copies the specified source file to the target file name.

Note: it is not possible to copy files to the Assets folder.

Copy2 (In As java.io.InputStream, Out As java.io.OutputStream)
Copies all the available data from the input stream into the output stream.

The input stream is automatically closed at the end.

Delete (Dir As String, FileName As String) As Boolean
Deletes the specified file FileName in the specified directory Dir. If FileName is the name of

a directory, then it must be empty in order to be deleted. Returns True if the file was

successfully deleted. Example:

 3.3 Core Objects

 - 295 -

File.MakeDir(File.DirRootExternal, "A123Test")

If File.Delete(File.DirRootExternal, "A123Test") Then

 ToastMessageShow("Success", False)

Else

 ToastMessageShow("Success", False)

End If

Note: files in the assets folder cannot be deleted.

DirAssets As String [read only]
Returns a reference to the files added to the Files tab. These files are read-only.

DirDefaultExternal As String [read only]
Returns the application default external folder which is based on the package name.

The folder is created if needed.

DirInternal As String [read only]
Returns the folder in the device internal storage that is used to save application private data.

DirInternalCache As String [read only]
Returns the folder in the device internal storage that is used to save application cache data.

This data will be deleted automatically when the device runs low on storage.

DirRootExternal As String [read only]
Returns the root folder of the external storage media.

Exists (Dir As String, FileName As String) As Boolean
Returns True if the specified FileName exists in the specified Dir.

Note that the Android file system is case sensitive.

Example:
If File.Exists(File.DirDefaultExternal, "MyFile.txt") Then ...

ExternalReadable As Boolean [read only]
Returns TRUE if the external storage media can be read from.

ExternalWritable As Boolean [read only]
Returns TRUE if the external storage media can be written to (and also read from)
Dim directory As String

If File.ExternalWritable Then

 directory = File.DirDefaultExternal

Else

 directory = File.DirInternal

End If

GetText (Dir As String, FileName As String) As String
Reads the entire file and returns its text. The file is assumed to be encoded with UTF8.

IsDirectory (Dir As String, FileName As String) As Boolean
Returns TRUE if the specified file is a directory.

LastModified (Dir As String, FileName As String) As Long
Returns the last modified date of the specified file. This method does not support files in the

assets folder. Example:

 3.3 Core Objects

 - 296 -

Dim d As Long

d = File.LastModified(File.DirRootExternal, "1.txt")

Msgbox(DateTime.Date(d), "Last modified")

ListFiles (Dir As String) As List
Returns a read only list with all the files and directories which are stored in the specified

path. Example:
Dim List1 As List

List1 = File.ListFiles(File.DirRootExternal)

List1 can be declared in Sub Globals.

An uninitialized list will be returned if the folder is not accessible.

MakeDir (Parent As String, Dir As String)
Creates the given folder. Example:
File.MakeDir(File.DirInternal, "Pictures")

Can also create a subfolder. All folders will be created as needed. Example:
File.MakeDir(File.DirInternal, "music/90/pop/favorites")

To access a file in the folder use either
ImageView1.Bitmap = LoadBitmap(File.DirInternal &

"/music/90/pop/favorites", "test1.png")

Or
ImageView1.Bitmap = LoadBitmap(File.DirInternal, "

music/90/pop/favorites/test1.png")

OpenInput (Dir As String, FileName As String) As InputStream
Opens the file for reading. The file, specified by FileName, is located in the folder specified by

Dir.

Note: the Android file system is case sensitive.

OpenOutput (Dir As String, FileName As String, Append As Boolean) As

OutputStream
Opens (or creates) the file specified by FileName which is located in the Dir folder for

writing. If Append is True, then the new data will be written at the end of the existing file. If

the file doesn’t exist, it will be created.

Example:
Dim outFile As TextWriter

outFile.Initialize(File.OpenOutput(strMyFolder,"temp.txt",False))

outFile.Write("hello")

outFile.Close

ReadList (Dir As String, FileName As String) As List
Reads the entire file and returns all lines as a List of strings.

Example:

 3.3 Core Objects

 - 297 -

Dim List1 As List

List1 = File.ReadList(File.DirDefaultExternal, "1.txt")

For i = 0 to List1.Size - 1

 Log(List1.Get(i))

Next

ReadMap (Dir As String, FileName As String) As Map
Reads a file which has been previously written by File.WriteMap. ReadMap parses each

line as a key-value pair (of strings) and adds them to a Map object, which it then returns.
mapCopy = File.ReadMap(File.DirDefaultExternal, "savedMap")

The original mapCopy is over-written by the saved data. Note that the order of entries

returned might be different than the original order.

ReadMap2 (Dir As String, FileName As String, Map As Map) As Map
Same as ReadMap except the items retrieved from the file are appended to the existing Map.

ReadString (Dir As String, FileName As String) As String
Reads the file and returns its content as a string. Example:
Dim text As String

text = File.ReadString(File.DirRootExternal, "1.txt")

Size (Dir As String, FileName As String) As Long
Returns the size in bytes of the specified file. This method does not support files in the assets

folder.

WriteList (Dir As String, FileName As String, List As List)
Writes each item in the List as a single line in the output file. All values are converted to

string type if required. Each value will be stored in a separate line.

Note: a value in List containing CRLF, or a new-line character, will be saved as two lines.

When subsequently reading the file with ReadList, they will be read as two items.

Example:
File.WriteList (File.DirInternal, "mylist.txt", List1)

WriteMap (Dir As String, FileName As String, Map1 As Map)
Takes a Map object (holding pairs of key and value elements), converts all values to strings,

creates a new text file and stores the key-value pairs, each pair as a single line. This file

format makes it easy to edit the file manually.

One common usage of File.WriteMap is to save a map of "settings" to a file.

You can use File.ReadMap to read this file.

WriteString (Dir As String, FileName As String, Text As String)
Writes the given text to a new file.

Example:
File.WriteString(File.DirRootExternal, "1.txt", "Some text")

InputStream
A stream that you can read from. Usually you will pass the stream to a “higher level” object

like TextReader that will handle the reading. You can use File.OpenInput to get a file

input stream. Example:

 3.3 Core Objects

 - 298 -

Dim streamInput As InputStream

streamInput = File.OpenInput(File.DirAssets, "test.txt")

Dim tr As TextReader

tr.Initialize(streamInput)

Members:

BytesAvailable As Int
Returns an estimation of the number of bytes available.

Note: if you call InputStream.ReadBytes on a network stream, then the thread will wait

for at least a single byte to be available. In most cases this will cause your app to crash! So

you should always use InputStream.BytesAvailable before calling ReadBytes, to avoid

blocking the main thread.

Close
Closes the stream.

InitializeFromBytesArray (Buffer() As Byte, StartOffset As Int, MaxCount

As Int)
Use File.OpenInput to get a file input stream. This method should be used to initialize the

input stream and set it to read from the the Buffer() byte-array.

StartOffset - The first byte that will be read.

MaxCount - Maximum number of bytes to read.

IsInitialized As Boolean
Whether the InpuStream has been initialized using InitializeFromBytesArray.

ReadBytes (Buffer() As Byte, StartOffset As Int, MaxCount As Int) As Int
Reads up to MaxCount bytes from the stream and writes it to the given Buffer. The first byte

will be written at StartOffset. Returns the number of bytes actually read. Returns -1 if there

are no more bytes to read. Otherwise, returns at least one byte.

Note: if you call InputStream.ReadBytes on a network stream, then the thread will wait

for at least a single byte to be available. In most cases this will cause your app to crash! So

you should always use InputStream.BytesAvailable before calling ReadBytes, to avoid

blocking the main thread. Example:
Dim buffer(1024) As byte

count = InputStream1.ReadBytes(buffer, 0, buffer.length)

OutputStream
A stream that you can write to. Usually, you will pass the stream to a "higher level" object

like TextWriter which will handle the writing.

Use File.OpenOutput to get a file output stream.

Members:

 Close

 Flush

 InitializeToBytesArray (StartSize As Int)

 IsInitialized As Boolean

 3.3 Core Objects

 - 299 -

 ToBytesArray As Byte()

 WriteBytes (Buffer() As Byte, StartOffset As Int, Length As Int)

Close
Closes the stream.

Flush
Flushes any buffered data.

InitializeToBytesArray (StartSize As Int)
Use File.OpenOutput to get a file output stream. This method should be used to write data

to a byte-array.

StartSize - The starting size of the internal byte-array. The size will increase if needed.

IsInitialized As Boolean
Whether the OutputStream has been initialized using InitializeFromBytesArray.

ToBytesArray As Byte()
Returns a copy of the internal byte-array. Can only be used when the output stream was

initialized with InitializeToBytesArray.

WriteBytes (Buffer() As Byte, StartOffset As Int, Length As Int)
Writes the buffer to the stream. The first byte to be written is Buffer(StartOffset),

and the last is Buffer(StartOffset + Length - 1).

TextReader
Reads text from the underlying stream. Example:
Dim streamInput As InputStream

streamInput = File.OpenInput(File.DirAssets, "test.txt")

Dim tr As TextReader

tr.Initialize(streamInput)

Dim strLine As String

strLine = tr.ReadLine

Do While strLine <> Null

 Log (strLine)

 strLine = tr.ReadLine

Loop

streamInput.Close

Members:

Close
Closes the stream.

Initialize (InputStream As java.io.InputStream)
Initializes a TextReader by wrapping the given InputStream using the UTF8 encoding.

Example:

 3.3 Core Objects

 - 300 -

In = File.OpenInput(File.DirAssets, "myFile.txt")

txtReader.Initialize(In)

strRead = txtReader.ReadAll

Initialize2 (InputStream As java.io.InputStream, Encoding As String)
Initializes this object by wrapping the given InputStream using the specified encoding.

Example:
Dim txt As String

Dim tr As TextReader

tr.Initialize2(File.OpenInput(File.DirAssets, "TestCSV1_W.csv"),

"Windows-1252")

txt = tr.ReadAll

tr.Close

IsInitialized As Boolean
Whether the TextReader has been initialized using one of the Initialize methods.

Read (Buffer() As Char, StartOffset As Int, Length As Int) As Int
Reads characters from the stream and into the Buffer. Reads up to Length characters and

puts them in the Buffer starting at StartOffset. Returns the actual number of characters

read from the stream. Returns -1 if there are no more characters available.

ReadAll As String
Reads all of the remaining text and closes the stream.

ReadLine As String
Reads the next line from the stream. Any new-line characters at the end of the line are not

returned. Returns Null if there are no more characters to read. Example:
Dim Reader As TextReader

Reader.Initialize(File.OpenInput(File.InternalDir, "1.txt"))

Dim line As String

line = Reader.ReadLine

Do While line <> Null

 Log(line)

 line = Reader.ReadLine

Loop

Reader.Close

ReadList As List
Reads the remaining text and returns a List object filled with the lines. Closes the stream

when done.

Ready As Boolean
Returns TRUE if there is at least one character ready for reading without stopping execution

of the program (sometimes called blocking).

Skip (NumberOfCharacters As Int) As Int
Skips the specified number of characters. Returns the actual number of characters that were

skipped (which may be less than the specified value).

 3.3 Core Objects

 - 301 -

TextWriter
Writes text to the underlying stream.

Example:
Dim Writer As TextWriter

Writer.Initialize(File.OpenOutput(File.DirDefaultExternal, "1.txt",

False))

Writer.WriteLine("This is the first line.")

Writer.WriteLine("This is the second line.")

Writer.Close

Members:

 Close

 Flush

 Initialize (OutputStream As java.io.OutputStream)

 Initialize2 (OutputStream As java.io.OutputStream, Encoding As String)

 IsInitialized As Boolean

 Write (Text As String)

 WriteLine (Text As String)

 WriteList (List As List)

Close
Closes the stream.

Flush
Flushes any buffered data.

Initialize (OutputStream As java.io.OutputStream)
Initializes this object by wrapping the given OutputStream using the UTF8 encoding.

Example:
Writer.Initialize(File.OpenOutput(File.DirRootExternal, "Test.txt" ,

False))

Initialize2 (OutputStream As java.io.OutputStream, Encoding As String)
Initializes this object by wrapping the given OutputStream using the specified encoding.
Dim strText As String

strText = "Hello World"

Dim tw As TextWriter

tw.Initialize2(File.OpenOutput(File.DirInternal, "Test.txt", False),

"ISO-8859-1")

tw.Write(strText)

tw.Close

IsInitialized As Boolean
Whether the TextWriter has been initialized using one of the Initialize methods.

Write (Text As String)
Writes the given Text to the stream.

 3.3 Core Objects

 - 302 -

WriteLine (Text As String)
Writes the given Text to the stream followed by a new-line character Chr(10).

Example:
Dim Writer As TextWriter

Writer.Initialize(File.OpenOutput(File.DirDefaultExternal, "1.txt",

False))

Writer.WriteLine("This is the first line.")

Writer.WriteLine("This is the second line.")

Writer.Close

WriteList (List As List)
Writes each item in the List as a single line. All values will be converted to strings.

Note: a value containing CRLF will be saved as two lines (which will return two items when

read with ReadList).

Intent
Intent objects are messages which you can send to Android in order to do some external

action. A service can also receive an Intent from Android if it is a Broadcast Receiver. For

more about this, see this page on the Basic4Android website. The Intent object should be

sent with the StartActivity keyword. See this page for a list of Android’s standard

constants. Example to launch a YouTube application:
Dim Intent1 As Intent

Intent1.Initialize(Intent1.ACTION_MAIN, "")

Intent1.SetComponent("com.google.android.youtube/.HomeActivity")

StartActivity(Intent1)

Members:
 Action As String

 ACTION_APPWIDGET_UPDATE As String

 ACTION_CALL As String

 ACTION_EDIT As String

 ACTION_MAIN As String

 ACTION_PICK As String

 ACTION_SEND As String

 ACTION_VIEW As String

 AddCategory (Category As String)

 ExtrasToString As String

 Flags As Int

 GetData As String

 GetExtra (Name As String) As Object

 HasExtra (Name As String) As Boolean

 Initialize (Action As String, URI As String)

 Initialize2 (URI As String, Flags As Int)

http://bit.ly/12QWZBw
http://developer.android.com/reference/android/content/Intent.html

 3.3 Core Objects

 - 303 -

 IsInitialized As Boolean

 PutExtra (Name As String, Value As Object)

 SetComponent (Component As String)

 SetType (Type As String)

 WrapAsIntentChooser (Title As String)

Action As String
Gets or sets the Intent action.

ACTION_APPWIDGET_UPDATE As String
See here for more information about Widgets and here for more about the Android

AppWidgetmanager.

ACTION_CALL As String

ACTION_EDIT As String

ACTION_MAIN As String

ACTION_PICK As String

ACTION_SEND As String

ACTION_VIEW As String

AddCategory (Category As String)
Adds a category describing the intent required operation.

ExtrasToString As String
Returns a string containing the extra items. This is useful for debugging.

Flags As Int
Gets or sets the Flags component.

GetData As String
Retrieves the data component as a string.

GetExtra (Key As String) As Object
Returns the item value with the given Key.

HasExtra (Key As String) As Boolean
Returns TRUE if an item with the given Key exists.

Initialize (Action As String, URI As String)
Initializes the object using the given Action and data URI.

http://developer.android.com/reference/android/appwidget/AppWidgetManager.html

 3.3 Core Objects

 - 304 -

Action - can be one of the action constants or any other string.

URI – a “Uniform Resource Identifier” identifying the resource to initialize. Pass an empty

string if a URI is not required.

Initialize2 (URI As String, Flags As Int)
Initializes the object by parsing the URI.

URI – the “Uniform Resource Identifier” identifying the resource to initialize.

Flags - Additional integer value. Pass 0 if it is not required.

Example:
Dim Intent1 As Intent

Intent1.Initialize2("http://www.basic4ppc.com", 0)

StartActivity(Intent1)

IsInitialized As Boolean
Whether the Intent has been initialized using one of the Initialize methods.

PutExtra (Name As String, Value As Object)
Adds extra data to the intent.

SetComponent (Component As String)
Explicitly sets the component that will handle this intent.

SetType (Type As String)
Sets the MIME type (the Internet media type). See here for details of MIME types.

Example:
Intent1.SetType("text/plain")

WrapAsIntentChooser (Title As String)
Wraps the intent in another “chooser” intent. A dialog will be displayed to the user with the

available services that can act on the intent.

WrapAsIntentChooser should be the last method called before sending the intent.

LayoutValues
This object holds values related to the display. You can get the values of the current display

by calling GetDeviceLayoutValues. For example:
Dim lv As LayoutValues

lv = GetDeviceLayoutValues

Log(lv) 'will print the values to the log

Dim scale As Float

scale = lv.Scale

This will print the following line to the log:
320 x 480, scale = 1.0 (160 dpi)

Activity.LoadLayout and Panel.LoadLayout return a LayoutValues object with the

values of the chosen layout variant.

http://bit.ly/1f1wI8U

 3.3 Core Objects

 - 305 -

Members:
 ApproximateScreenSize As Double [read only]

 Height As Int

 Scale As Float

 toString As String

 Width As Int

ApproximateScreenSize As Double [read only]
Returns the approximate diagonal screen size in inches.

Height As Int
The display height (in pixels).

Scale As Float
The device scale value which is equal to 'dots per inch' / 160.

toString As String

Width As Int
The display width (in pixels).

List
Lists are similar to dynamic arrays. You can add and remove items from a list and it will

change its size accordingly. A list can hold any type of object. However, if a list is declared as

a Process_Globals object, it cannot hold activity objects (such as views). Basic4Android

automatically converts regular arrays to lists. So, when a List parameter is expected, you can

pass an array instead. For example:
Dim List1 As List

List1.Initialize

List1.AddAll(Array As Int(1, 2, 3, 4, 5))

Use the Get method to get an item from the list.
number = List1.Get(i)

Lists can be saved and loaded from files using File.WriteList and File.ReadList.

You can use a For loop to iterate over all the values:
For i = 0 To List1.Size - 1

 Dim number As Int

 number = List1.Get(i)

 ...

Next

How to use a List
We summarise the main points here. Details are given in the reference section below.

 3.3 Core Objects

 - 306 -

Initialize
Before it can be used, a list must be initialized with the Initialize method. This initializes

an empty list:
Dim List1 As List

List1.Initialize

List1.AddAll(Array As Int(1, 2, 3, 4, 5))

Add Elements
You can add and remove items from a list and it will change its size accordingly.

To add a value at the end of the list:
List1.Add(Value)

To add all elements of an array at the end of the list:
List1.AddAll(Array As Int(1, 2, 3, 4, 5))

To insert the specified element at the specified index, and shift down all items with larger

index to make room:
List1.InsertAt(5, Value)

To insert all elements of an array in the list starting at the given position:
List1.AddAllAt(3, Array As Int(1, 2, 3, 4, 5))

Remove Elements
Remove a specified element at the given position from the list.
List1.RemoveAt(12)

Retrieve Elements
Use the Get method to get an item from the list with:
number = List1.Get(i)

Change an Element
A single item can be changed with:
List1.Set(12, Value)

Get the size of a List
List1.Size

Iterate a List
Either you can use a For loop to iterate over all the values:
Dim List1 As List

List1.Initialize2(Array As Int(1, 2, 3, 4, 5))

For i = 0 To List1.Size - 1

 Log(List1.Get(i))

Next

Or you can use a For Each loop:
Dim List1 As List

List1.Initialize2(Array As Int(1, 2, 3, 4, 5))

For Each i As Int In List1

 Log (i)

Next

Save to and Load from Files
Lists can be saved to and loaded from files:

 3.3 Core Objects

 - 307 -

File.WriteList(File.DirRootExternal, "Test.txt", List1)

List1 = File.ReadList(File.DirRootExternal, "Test.txt")

Sort a List
A List whose items are numbers or strings can be sorted with:
List1.Sort(True) 'sort ascending

List1.Sort(False) 'sort descending

List1.SortCaseInsensitive(True)

Clear a List
List1.Clear

Convert Array to List
You can convert an array to a list using
Initialize2 (SomeArray)

Note that if you pass a list to this method, then both objects will share the same list, and if

you pass an array, the list will be of a fixed size, meaning you cannot later add or remove

items.

Members:
 Add (Item As Object)

 AddAll (List As List)

 AddAllAt (Index As Int, List As List)

 Clear

 Get (Index As Int) As Object

 IndexOf (Item As Object) As Int

 Initialize

 Initialize2 (Array As List)

 InsertAt (Index As Int, Item As Object)

 IsInitialized As Boolean

 RemoveAt (Index As Int)

 Set (Index As Int, Item As Object)

 Size As Int [read only]

 Sort (Ascending As Boolean)

 SortCaseInsensitive (Ascending As Boolean)

 SortType (FieldName As String, Ascending As Boolean)

 SortTypeCaseInsensitive (FieldName As String, Ascending As Boolean)

Add (Item As Object)
Adds an Item at the end of the list.

AddAll (List As List)
Adds all elements in the specified List to the end of the list.

Note that you can add an array directly.

Example:

 3.3 Core Objects

 - 308 -

List.AddAll(Array As String("value1", "value2"))

AddAllAt (Index As Int, List As List)
Adds all elements in the specified collection starting at the specified index.

Clear
Removes all the items from the list.

Get (Index As Int) As Object
Gets the item at the specified index. The item is not removed from the list.

IndexOf (Item As Object) As Int
Returns the index of the specified item, or -1 if it was not found.

Initialize
Initializes an empty list.

Initialize2 (Array As List)
Initializes a list with the given values. This method should be used to convert arrays to lists.

Note that if you pass a list to this method, then both objects will share the same list, and if

you pass an array, the list will be of a fixed size, meaning that you cannot later add or

remove items. Example:
Dim List1 As List

List1.Initialize2(Array As Int(1,2,3,4,5))

Example:

Dim List1 As List

Dim SomeArray(10) As String

'Fill array...

List1.Initialize2(SomeArray)

InsertAt (Index As Int, Item As Object)
Inserts the specified Item at the specified index. As a result, all items with an index larger

than the specified Index are shifted down to make room.

IsInitialized As Boolean
Whether the List has been initialized using one of the Initialize methods.

RemoveAt (Index As Int)
Removes the item at the specified index.

Set (Index As Int, Item As Object)
Replaces the current item at the specified index with the new item.

Size As Int [read only]
Returns the number of items in the list.

Sort (Ascending As Boolean)
Sorts the list. The items must all be numbers or strings.

Ascending - True to sort ascending, False to sort descending.

SortCaseInsensitive (Ascending As Boolean)
Lexicographically sorts the list, ignoring the characters’ case. The items must all be numbers

or strings.

 3.3 Core Objects

 - 309 -

Ascending - True to sort ascending, False to sort descending.

SortType (FieldName As String, Ascending As Boolean)
Sorts a list with items of user defined type. The list is sorted based on the specified field.

FieldName - The case-sensitive field name that will be used for sorting. Field must contain

numbers or strings.

Ascending - True to sort ascending, False to sort descending.

Example:
Sub Process_Globals

 Type Person(Name As String, Age As Int)

End Sub

Sub Activity_Create(FirstTime As Boolean)

 Dim Persons As List

 Persons.Initialize

 For i = 1 To 50

 Dim p As Person

 p.Name = "Person" & i

 p.Age = Rnd(0, 121)

 Persons.Add(p)

 Next

 Persons.SortType("Age", True) 'Sort the list based on the Age field

 For i = 0 To Persons.Size - 1

 Dim p As Person

 p = Persons.Get(i)

 Log(p)

 Next

End Sub

SortTypeCaseInsensitive (FieldName As String, Ascending As Boolean)
Sorts a list with items of user defined type. The list is sorted based on the specified field.

FieldName - The field name that will be used for sorting. The case of strings in this field will

be ignored. Field must contain numbers or strings.

Ascending - Whether to sort ascending or descending.

Example:

 3.3 Core Objects

 - 310 -

Sub Process_Globals

 Type Person(Name As String, Age As Int)

End Sub

Sub Activity_Create(FirstTime As Boolean)

 Dim Persons As List

 Persons.Initialize

 Persons.Add(makePerson("dick"))

 Persons.Add(makePerson("Harry"))

 Persons.Add(makePerson("alex"))

 Persons.Add(makePerson("Brigit"))

 Persons.Add(makePerson("tom"))

 ' sort the people by name case insensitive

 Persons.SortTypeCaseInsensitive("Name", True)

 For i = 0 To Persons.Size - 1

 Dim p As Person

 p = Persons.Get(i)

 Log(p.Name & "," & p.age)

 Next

End Sub

Sub makePerson(strName As String) As Person

 ' create person with given name and random age

 Dim p As Person

 p.Initialize

 p.Name = strName

 p.Age = Rnd(0, 121)

 Return p

End Sub

Map
A collection that holds pairs of keys and values. Keys can be strings or numbers. The strings

are case-sensitive. Keys are unique, which means that if you add a key/value pair and the

collection already holds an entry with the same key, the previous entry will be removed from

the map. Similar to a list, the values of a map can be any type of object.
Dim mapPerson As Map

mapPerson.Initialize

Dim photo As Bitmap

photo.Initialize(File.DirAssets, "smith.bmp")

mapPerson.Put("name", "smith")

mapPerson.Put("age", 23)

mapPerson.Put("photo", photo)

Fetching an item is done by looking for its key.
photo = mapPerson.Get("photo")

This is usually a very fast operation compared to using an array because a Map uses a

system called “hashing”. A Map is sometimes referred to as a Dictionary, Hashtable or

 3.3 Core Objects

 - 311 -

HashMap. Usually you will use Put to add items and Get or GetDefault to get the values

based on the key. If you need to iterate over all the items, you can use a For Each loop:
For Each key As String In mapPerson.Keys

 Log (key)

Next

Note that this iteration does not necessarily return items in the same order as they were

added. Similar to a list, a map that is a Process_Globals variable cannot hold activity

objects (such as views). Maps are very useful for storing applications settings.

You can save and load maps with File.WriteMap and File.ReadMap.

How to use a Map
We summarise the main points here. Details are given in the reference section below.

Initialize
A map must be initialized before it can be used.
Dim Map1 As Map

Map1.Initialize

Adding Entry
Add a new entry with Put(Key As Object, Value As Object)
Map1.Put("Language", "English")

Retrieve Entry
Get(Key As Object)
Language = Map1.Get("Language")

Iteration
You can retrieve each of the items in a map in two different ways:

Method 1

GetKeyAt and GetValueAt retrieve items with a given index and can be used to iterate over

all the items:
For i = 0 To mapPerson.Size - 1

 Log("Key: " & mapPerson.GetKeyAt(i))

 Log("Value: " & mapPerson.GetValueAt(i))

Next

Method 2
For Each key As String In mapPerson.Keys

 Log ("Key: " & key)

 Log ("Value: " & mapPerson.Get(key))

Next

The order in which the items are retrieved may be different for these two methods.

 3.3 Core Objects

 - 312 -

Check if a Map contains an entry
If Map1.ContainsKey("Language") Then ...

Remove an entry
Map1.Remove("Language")

Clear all items from the map
Map1.Clear

Save to and Load from a File
The File object contains some useful functions for reading and writing maps.

Save a map to a file:
File.WriteMap(File.DirInternal, "settings.txt", mapSettings)

Read it back from the file:
mapSettings = File.ReadMap(File.DirInternal, "settings.txt")

The order in which the elements in a map read from the file will not necessarily be the same

as the order in the original map. Normally this is not a problem. If you want to fix the order,

see below.

Appending to a Map
You can use File.ReadMap2 to add items to a Map.
mapCopy.Put("newItem", "someValue")

mapCopy = File.ReadMap2(File.DirDefaultExternal, "savedMap", mapCopy)

The elements read from the file are appended to the existing elements. If an existing element

has the same name as an element in the file, its value is overwritten.

Fixing Order in a Map
Normally we do not care about the order in which elements are stored in a Map. However, if

this is important to you, you can use File.ReadMap2 to force the elements to be added in a

particular order. The trick is to first create a Map with the keys in the order you want but

with no values. Then read the data from a file. The values from the file will be added to the

keys you have specified, (assuming the keys are the same).
Dim mapCopy As Map

mapCopy.Initialize

' add empty elements to fix their order in the map

mapCopy.Put("Item #1", "")

mapCopy.Put("Item #2", "")

' now read elements from file

mapCopy = File.ReadMap2(File.DirInternal, "settings.txt", mapCopy)

Members:
 Clear

 ContainsKey (Key As Object) As Boolean

 Get (Key As Object) As Object

 GetDefault (Key As Object, Default As Object) As Object

 GetKeyAt (Index As Int) As Object

 GetValueAt (Index As Int) As Object

 Initialize

 3.3 Core Objects

 - 313 -

 IsInitialized As Boolean

 Keys As IterableList

 Put (Key As Object, Value As Object) As Object

 Remove (Key As Object) As Object

 Size As Int [read only]

 Values As IterableList

Clear
Clears all items from the map.

ContainsKey (Key As Object) As Boolean
Returns TRUE if there is an item with the given key.

Example:
If Map.ContainsKey("some key") Then ...

Get (Key As Object) As Object
Returns the value of the item with the given key. If the key does not exist, it returns Null.

GetDefault (Key As Object, Default As Object) As Object
Returns the value of the item with the given key. If no such item exists, the specified default

value is returned.

GetKeyAt (Index As Int) As Object
Returns the key of the item at the given index. GetKeyAt and GetValueAt should be used

to iterate over all the items. These methods are optimized for iterating over the items in

ascending order. Example:
For i = 0 to Map.Size - 1

 Log("Key: " & Map.GetKeyAt(i))

 Log("Value: " & Map.GetValueAt(i))

Next

GetValueAt (Index As Int) As Object
Returns the value of the item at the given index. GetKeyAt and GetValueAt should be used

to iterate over all the items. These methods are optimized for iterating over the items in

ascending order. Example:
For i = 0 to Map.Size - 1

 Log("Key: " & Map.GetKeyAt(i))

 Log("Value: " & Map.GetValueAt(i))

Next

Initialize
Initializes the object.

Example:
Dim Map1 As Map

Map1.Initialize

IsInitialized As Boolean
Whether the Map has been initialized using the Initialize method.

 3.3 Core Objects

 - 314 -

Keys As IterableList
Returns an object which can be used to iterate over all the keys with a For Each loop.

Example:
For Each k As String In map1.Keys

 Log(k)

Next

Put (Key As Object, Value As Object) As Object
Puts a key/value pair in the map, overwriting the previous item with this key (if such exists).

Returns the previous item with this key or null if there was no such item. Note that if you

are using strings as the keys, then the keys are case sensitive. Example:
Map1.Put("Key", "Value")

Remove (Key As Object) As Object
Removes the item with the given key, if such exists. Returns the item removed or null if no

matching item was found.

Size As Int [read only]
Returns the number of items stored in the map.

Values As IterableList
Returns an object which can be used to iterate over all the values with a For Each loop.

Example:
For Each v As Int In map1.Values

 Log(v)

Next

MediaPlayer
The MediaPlayer can be used to play audio files. See the media player tutorial for more

information.

Note: The media player should be declared as a Process_Globals object.

Event: Complete
The Complete event is raised when playback completes. It will only be raised if you initialize

the object with Initialize2.

Members:
 Duration As Int [read only]

 Initialize

 Initialize2 (EventName As String)

 IsPlaying As Boolean

 Load (Dir As String, FileName As String)

 Looping As Boolean

 Pause

 Play

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/6591-mediaplayer-tutorial.html

 3.3 Core Objects

 - 315 -

 Position As Int

 Release

 SetVolume (Right As Float, Left As Float)

 Stop

Duration As Int [read only]
Returns the total duration of the loaded file (in milliseconds).

Initialize
Initializes the object. You should use Initialize2 if you want to handle the Complete

event. Example:
Dim MP As MediaPlayer 'should be done in Sub Process_Globals

MP.Initialize2("MP")

MP.Load(File.DirAssets, "SomeFile.mp3")

MP.Play

Initialize2 (EventName As String)
Similar to Initialize, but raises the Complete event when play-back completes.

EventName - The Sub that will handle the Complete event.

IsPlaying As Boolean
Returns True if the media player is currently playing.

Load (Dir As String, FileName As String)
Loads an audio file and prepares it for playing.

Looping As Boolean
Gets or sets whether the media player will restart playing automatically.

Pause
Pauses playback. You can resume playback from the current position by calling Play.

Play
Starts (or resumes) playing the loaded audio file.

Position As Int
Gets or sets the current position (in milliseconds).

Release
Releases all resources allocated by the media player.

SetVolume (Right As Float, Left As Float)
Sets the playing volume for each channel. The values should be from 0 to 1.

 3.3 Core Objects

 - 316 -

Stop
Stops playing. You must call Load before trying to play again.

Notification
A notification object allows an activity or a service to display an icon on the left of the Status

Bar at the top of the device’s screen:

The user can swipe down the notifications screen and press on the notification.

Ongoing notifications are not removed if the user presses “Clear”, whereas normal

notifications are. Pressing the notification will start an activity as set by the notification

object SetInfo command. Notifications are usually used by services because services are not

expected to directly start activities. The notification must have an icon and its "info" must be

set.

Example:
Dim n As Notification

n.Initialize

n.Icon = "icon"

n.SetInfo("This is the title", "and this is the body.", Main)

'Change Main to "" if this code is in the main module.

n.Notify(1)

Permissions:
android.permission.VIBRATE

Members:
 AutoCancel As Boolean [write only]

 Cancel (Id As Int)

 3.3 Core Objects

 - 317 -

 Icon As String [write only]

 Initialize

 Insistent As Boolean [write only]

 IsInitialized As Boolean

 Light As Boolean [write only]

 Notify (Id As Int)

 Number As Int

 OnGoingEvent As Boolean [write only]

 SetInfo (Title As String, Body As String, Activity As Object)

 SetInfo2 (Title As String, Body As String, Tag As String, Activity As Object)

 Sound As Boolean [write only]

 Vibrate As Boolean [write only]

AutoCancel As Boolean [write only]
Sets whether the notification will be canceled automatically when the user clicks on it.

Cancel (Id As Int)
Cancels the notification with the given Id.

Icon As String [write only]
Sets the icon displayed. The icon value is the name of the image file without the extension.

The name is case sensitive.

Note: the image file must be manually copied to the following folder within your project:
\Objects\res\drawable

You can use “icon” to specify the application icon (which is also located in this folder):
n.Icon = "icon"

Initialize
Initializes the notification. By default, the notification plays a sound, shows a light and

vibrates the phone.

Insistent As Boolean [write only]
Sets whether the sound will play repeatedly until the user opens the notifications screen.

IsInitialized As Boolean
Whether the Notification has been initialized using the Initialize method.

Light As Boolean [write only]
Sets whether the notification will show a light. Example:
n.Light = False

Notify (Id As Int)
Displays the notification.

 3.3 Core Objects

 - 318 -

Id - The notification id. This can be used to later update this Notification (by calling

Notify again with the same Id), or to cancel the Notification.

Number As Int
Gets or sets a number that will be displayed on the icon. This is useful to represent multiple

events in a single notification.

OnGoingEvent As Boolean [write only]
Sets whether this notification is an "ongoing event". The notification will be displayed in the

ongoing section and it will not be cleared.

SetInfo (Title As String, Body As String, Activity As Object)
Sets the message text and action.

Title - The message title.

Body - The message body.

Activity - The activity to start when the user presses on the notification.

Pass an empty string to start the current activity (when calling from an activity module).

Example:
n.SetInfo("Some title", "Some text", Main)

SetInfo2 (Title As String, Body As String, Tag As String,

Activity As Object)
Similar to SetInfo. Also sets a string that can be later extracted in Activity_Resume.

Title - The message title.

Body - The message body.

Tag - An arbitrary string that can be later extracted when the user clicks on the notification.

Activity - The activity to start when the user presses on the notification.

Pass an empty string to start the current activity (when calling from an activity module).

Example of extracting the tag:
Sub Activity_Resume

 Dim in As Intent

 in = Activity.GetStartingIntent

 If in.HasExtra("Notification_Tag") Then

 Log(in.GetExtra("Notification_Tag")) 'Will log the tag

 End If

End Sub

Sound As Boolean [write only]
Sets whether the notification will play a sound.

Example:
n.Sound = False

Vibrate As Boolean [write only]
Sets whether the notification will vibrate.

Example:

 3.3 Core Objects

 - 319 -

n.Vibrate = False

RemoteViews
RemoteViews allows indirect access to a home screen widget.

See here for more information about Widgets.

Events:
RequestUpdate

Disabled

Members:
 HandleWidgetEvents (StartingIntent As Intent) As Boolean

 SetImage (ImageViewName As String, Image As Bitmap)

 SetProgress (ProgressBarName As String, Progress As Int)

 SetText (ViewName As String, Text As String)

 SetTextColor (ViewName As String, Color As Int)

 SetTextSize (ViewName As String, Size As Float)

 SetVisible (ViewName As String, Visible As Boolean)

 UpdateWidget

HandleWidgetEvents (StartingIntent As Intent) As Boolean
Checks if the intent starting this service was sent from the widget and raises events based on

the intent. Returns True if an event was raised.

See here for more information about Widgets.

SetImage (ImageViewName As String, Image As Bitmap)
Sets the image of the given ImageView. Example:
rv.SetImage("ImageView1", LoadBitmap(File.DirAssets, "1.jpg"))

SetProgress (ProgressBarName As String, Progress As Int)
Sets the progress value of the given ProgressBar. Value should be from 0 to 100.

Example:
rv.SetProgress("ProgressBar1", 50)

SetText (ViewName As String, Text As String)
Sets the text of the given view. Example:
rv.SetText("Label1", "New text")

SetTextColor (ViewName As String, Color As Int)
Sets the text color of the given button or label. Example:

 3.3 Core Objects

 - 320 -

rv.SetTextColor("Label1", Colors.Red)

SetTextSize (ViewName As String, Size As Float)
Sets the text size of the given button or label. Example:
rv.SetTextSize("Label1", 20)

SetVisible (ViewName As String, Visible As Boolean)
Sets the visibility of the given view. Example:
rv.SetVisibile("Button1", False)

UpdateWidget
Updates the widget with the changes done. This method is also responsible for configuring

the events.

See here for more information about Widgets.

Service
Each Service module includes a Service object which is used to bring the service in and out of

the foreground state. See the Services module section for more information.

Members:

StartForeground (Id As Int, Notification1 As Notification)
Brings the current service to the foreground state and displays the given notification.

Id - The notification Id (see the notification object documentation).

Notification - The notification that will be displayed.

StopForeground (Id As Int)
Takes the current service out of the foreground state and cancels the notification with the

given Id.

String

Immutable Strings
Strings are immutable in Basic4Android, which means that you can change the value of a

string variable, but you cannot change the text stored in a string object. So methods like

SubString, Trim and ToLowerCase return a new string; they do not change the value of

the current string. Typical usage:
Dim s As String

s = "some text"

s = s.Replace("a", "b")

You can use StringBuilder if you need a mutable string. Note that string literals are also

string objects:

 3.3 Core Objects

 - 321 -

Log(" some text ".Trim)

Mutable Strings
Repetitive manipulation of strings can be very slow. Since they are immutable, a new string

has to be created every time you want to change a string. If you are doing extensive string

manipulation, you should consider using StringBuilder.

Number formatting
Numbers can be displayed as strings with different formats. There are two keywords:

 NumberFormat (Number As Double, MinimumIntegers As Int, MaximumFractions As

Int) As String

 NumberFormat2 (Number As Double, MinimumIntegers As Int, MaximumFractions As

Int, MinimumFractions As Int, GroupingUsed As Boolean) As String

String Functions Library
As well as the built-in members, the user-generated String Functions Library is useful.

Members:
 CharAt (Index As Int) As Char

 CompareTo (Other As String) As Int

 Contains (SearchFor As String) As Boolean

 EndsWith (Suffix As String) As Boolean

 EqualsIgnoreCase (other As String) As Boolean

 GetBytes (Charset As String) As Byte()

 IndexOf (SearchFor As String) As Int

 IndexOf2 (SearchFor As String, Index As Int) As Int

 LastIndexOf (SearchFor As String) As Int

 LastIndexOf2 (SearchFor As String, Index As Int) As Int

 Length As Int

 Replace (Target As String, Replacement As String) As String

 StartsWith (Prefix As String) As Boolean

 SubString (BeginIndex As Int) As String

 SubString2 (BeginIndex As Int, EndIndex As Int) As String

 ToLowerCase As String

 ToUpperCase As String

 Trim As String

CharAt (Index As Int) As Char
Returns the character at the given index.

http://bit.ly/15HuBDW

 3.3 Core Objects

 - 322 -

CompareTo (Other As String) As Int
Lexicographically compares the two strings, that is, as they would appear in a dictionary.

Returns a value less than 0 if the current string comes before Other. Returns 0 if both

strings are equal. Returns a value larger than 0 if the current string comes after Other. Note:

upper case characters precede lower case characters. The exact value returned depends in

part upon the unicode values of the strings involved. Examples:
"abc".CompareTo("da") ' < 0

"abc".CompareTo("Abc") ' > 0

"abc".CompareTo("abca")' < 0

Contains (SearchFor As String) As Boolean
Returns TRUE if the string contains the given string parameter.

EndsWith (Suffix As String) As Boolean
Returns True if this string ends with the given Suffix.

EqualsIgnoreCase (other As String) As Boolean
Returns True if both strings are equal (ignoring their case).

GetBytes (Charset As String) As Byte()
Encodes the string into a new array of bytes. Example:
Dim Data() As Byte

Data = "Some string".GetBytes("UTF8")

IndexOf (SearchFor As String) As Int
Returns the index of the first occurrence of SearchFor in the string. Returns -1 if SearchFor

was not found.

IndexOf2 (SearchFor As String, Index As Int) As Int
Returns the index of the first occurrence of SearchFor in the string. Starts searching from

Index. Returns -1 if SearchFor was not found.

LastIndexOf (SearchFor As String) As Int
Returns the index of the first occurrence of SearchFor in the string. The search starts at the

end of the string and advances to the beginning.

LastIndexOf2 (SearchFor As String, Index As Int) As Int
Returns the index of the first occurrence of SearchFor in the string. The search starts at

Index and advances to the beginning.

Length As Int
Returns the length of this string.

 3.3 Core Objects

 - 323 -

Replace (Target As String, Replacement As String) As String
Returns a new string resulting from the replacement of all the occurrences of Target with

Replacement.

StartsWith (Prefix As String) As Boolean
Returns True if this string starts with the given Prefix.

SubString (BeginIndex As Int) As String
Returns a new string which is a substring of the original string. The new string will include

the character at BeginIndex and will extend to the end of the string. Example:
"012345".SubString(2) 'returns "2345"

SubString2 (BeginIndex As Int, EndIndex As Int) As String
Returns a new string which is a substring of the original. The new string will include the

character at BeginIndex, where first character counts as index 0. The last character returned

will be the one before EndIndex. Examples:
Log("ABCDEF".SubString2(0, 3)) 'result is "ABC"

Log("ABCDEF".SubString2(2, 4)) 'result is "CD"

ToLowerCase As String
Returns a new string which is the result of lower casing this string.

ToUpperCase As String
Returns a new string which is the result of upper casing this string.

Trim As String
Returns a copy of the original string without any leading or trailing white spaces.

StringBuilder
StringBuilder is a mutable string, unlike regular strings which are immutable. StringBuilder

is especially useful when you need to concatenate many strings. The following code

demonstrates the performance boosting of StringBuilder:

 3.3 Core Objects

 - 324 -

Dim start As Long

start = DateTime.Now

'Regular string

Dim s As String

For i = 1 To 5000

 s = s & i

Next

Log(DateTime.Now - start)

'StringBuilder

start = DateTime.Now

Dim sb As StringBuilder

sb.Initialize

For i = 1 To 5000

 sb.Append(i)

Next

Log(DateTime.Now - start)

Tested on a real device, the first ‘for loop’ took about 20 seconds and the second took less

than one tenth of a second. The reason is that the code: s = s & i creates a new string each

iteration because strings are immutable.

The method StringBuilder.ToString converts the object to a string.

Members:
 Append (Text As String) As StringBuilder

 Initialize

 Insert (Offset As Int, Text As String) As StringBuilder

 IsInitialized As Boolean

 Length As Int [read only]

 Remove (StartOffset As Int, EndOffset As Int) As StringBuilder

 ToString As String

Append (Text As String) As StringBuilder
Appends the specified text at the end. Returns the same object, so you can chain methods.

Example:
sb.Append("First line").Append(CRLF).Append("Second line")

Initialize
Initializes the object. Example:
Dim sb As StringBuilder

sb.Initialize

sb.Append("The value is: ").Append(SomeOtherVariable).Append(CRLF)

Insert (Offset As Int, Text As String) As StringBuilder
Inserts the specified text at the specified offset.

 3.3 Core Objects

 - 325 -

IsInitialized As Boolean
Whether the StringBuilder has been initialized using the Initialize method.

Length As Int [read only]
Returns the number of characters.

Remove (StartOffset As Int, EndOffset As Int) As StringBuilder
Removes the specified characters.

StartOffset - The first character to remove.

EndOffset - The ending index. This character will not be removed. Examples:
Dim sb As StringBuilder

sb.Initialize

sb.Append("ABCDEF")

Log(sb.Remove(0, 3)) 'result is "DEF"

sb.Initialize

sb.Append("ABCDEF")

Log(sb.Remove(2, 4)) 'result is "ABEF"

ToString As String
Converts the object to a string.

Timer
A Timer object generates Tick events at specified intervals. Using a timer is a good

alternative to a long loop, as it allows the UI thread to handle other events and messages.

The timer Enabled property is set to False by default. To start the timer, you should

change Enabled to True.

Note: timer events will not fire while the UI thread is busy running other code unless you

call the DoEvents keyword within a loop. In addition, Timer events will not fire when the

activity is paused, or if a blocking dialog (like Msgbox) is visible. An alternative approach,

which overcomes this limitation, is to start a service at a given time using StartServiceAt.

Timers should be declared in Sub Process_Globals. Otherwise you may get multiple timers

running when the activity is recreated. It is also important to disable the timer when the

activity is pausing and then enable it when it resumes. This will save CPU and battery.

The Timer must be declared in a Sub Process_Globals routine.
Sub Process_Globals

' declare here so dont get multiple timers when activity recreated

 Dim Timer1 As Timer

End Sub

A Timer must be initialized in the Activity_Create routine in the module where the timer

tick event routine is used.

 3.3 Core Objects

 - 326 -

Sub Activity_Create(FirstTime As Boolean)

 If FirstTime = True Then

 ' Call every 1000 milliseconds

 Timer1.Initialize("Timer1", 1000)

 Timer1.Enabled = True

 End If

End Sub

Event: Tick
When a timer is Enabled, the Tick event is called after the time interval set by the

Initialize method. Tick will continue to be called until Enabled is set to False.

Example:
Timer1.Initialize("Timer1", 1000)

Timer1.Enabled = True

' ...

Sub Timer1_Tick

 'Handle tick events

 ProgressBar1.Progress = ProgressBar1.Progress + 10

 If ProgressBar1.Progress = 100 Then

 Timer1.Enabled = False

 End If

End Sub

Example:
You find an example of using a Timer in the RotatingNeedle example program available from

this book’s resources website.

Members:
 Enabled As Boolean

 Initialize (EventName As String, Interval As Long)

 Interval As Long

 IsInitialized As Boolean

Enabled As Boolean
Gets or sets whether the timer is enabled (ticking). It is False by default, which means to

start a timer you must call:
Timer1.Enabled = True

Initialize (EventName As String, Interval As Long)
Initializes the timer with the event sub prefix and the specified interval (measured in

milliseconds). Important: this object should be declared in Sub Process_Globals.

EventName - The name used for the Tick event, for example, Sub Timer1_Tick.

Interval - Sets the timer interval in milliseconds. Interval can be changed by calling

TimerName.Interval = Interval, for example:

http://resources.basic4android.info/

 3.3 Core Objects

 - 327 -

Sub Process_Globals

Dim timer1 As Timer

End Sub

Sub Activity_Create(FirstTime As Boolean)

 timer1.Initialize("Timer1", 1000)

 timer1.Enabled = True

End Sub

Sub Timer1_Tick

 'Handle tick events

 'Shorten the timer interval

 timer1.Interval = timer1.Interval – 10

 If Timer1.Interval <= 0 Then

 Timer1.Enabled = False

 End If

End Sub

Interval As Long
Gets or sets the interval between tick events, measured in milliseconds.

IsInitialized As Boolean
Whether the timer has been initialized.

Views
Most views are objects which can be added to a layout either using the Designer or in code.

Here we list all views and give their methods. The view types are:

AutoCompleteEditText, Button, CheckBox, CustomView, EditText, ImageView,

HorizontalScrollView, Label, ListView, Panel , ProgressBar, RadioButton, ScrollView,

SeekBar, Spinner, TabHost, ToggleButton, WebView

AutoCompleteEditText
An enhanced version of EditText which shows the user a drop down list with all items

matching the currently entered characters. Items matching are items starting with the

current input or items that include a word that starts with the current input (words must be

separated by spaces).

 3.3 Core Objects

 - 328 -

Call SetItems with the list of possible items.

Note: the SearchView class offers similar functionality but with faster search and other

benefits.

Example:
Sub Process_Globals

End Sub

Sub Globals

 Dim ACT As AutoCompleteEditText

End Sub

Sub Activity_Create(FirstTime As Boolean)

 ACT.Initialize("ACT")

 Activity.AddView(ACT, 10dip, 10dip, 500dip, 80dip)

 Dim people() As String

 people = Array As String(_

 "Alan", "Albert", "Algernon", "Alice", "Andorra")

 ACT.SetItems(people)

End Sub

Sub Activity_Pause (UserClosed As Boolean)

End Sub

Events:

ItemClick (Value As String)
The ItemClick event is raised when the user clicks on an item from the list.

TextChanged (Old As String, New As String)
This is raised every time the user edits the text in the AutoCompleteEditText. Old and New

contain the text before and after the edit.

EnterPressed
This event is raised when the user presses the “Done” or “Enter” keys on the keyboard.

FocusChanged (HasFocus As Boolean)
This event is raised when the user touches the AutoCompleteEditText, in which case

HasFocus will be True, or when the user moves from here to another view (when HasFocus

will be False).

Members:

 Background As Drawable

 BringToFront

 Color As Int [write only]

 DismissDropDown

 Enabled As Boolean

 ForceDoneButton As Boolean [write only]

 Gravity As Int

 Height As Int

 Hint As String

 HintColor As Int

 3.3 Core Objects

 - 329 -

 Initialize (EventName As String)

 INPUT_TYPE_DECIMAL_NUMBERS As Int

 INPUT_TYPE_NONE As Int

 INPUT_TYPE_NUMBERS As Int

 INPUT_TYPE_PHONE As Int

 INPUT_TYPE_TEXT As Int

 InputType As Int

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 PasswordMode As Boolean [write only]

 RemoveView

 RequestFocus As Boolean

 SelectAll

 SelectionStart As Int

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetItems (Items As List)

 SetItems2 (Items As List, Typeface1 As Typeface, Gravity As Int, TextSize As Float,

TextColor As Int)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 ShowDropDown

 SingleLine As Boolean [write only]

 Tag As Object

 Text As String

 TextColor As Int

 TextSize As Float

 Top As Int

 Typeface As Typeface

 Visible As Boolean

 Width As Int

 Wrap As Boolean [write only]

Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

 3.3 Core Objects

 - 330 -

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

DismissDropDown
Forces the drop down list to disappear.

Enabled As Boolean
If set to True then the AutoCompleteEditText will respond to events. If set to False,

events are ignored.

ForceDoneButton As Boolean [write only]
By default, Android sets the virtual keyboard action key to display Done or Next according to

the specific layout. You can force it to display Done by setting this value to True. Example:
EditText1.ForceDoneButton = True

Gravity As Int
Gets or sets the gravity value. This value affects the way the text will be drawn.

Height As Int
Gets or sets the view’s height.

Hint As String
Gets or sets the text that will appear when the EditText is empty. Example:
EditText1.Hint = "Enter username"

HintColor As Int
Gets or sets the hint text color.

Example:
EditText1.HintColor = Colors.Gray

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

INPUT_TYPE_DECIMAL_NUMBERS As Int
Numeric keyboard will be displayed. Numbers, decimal point and minus sign are accepted.

INPUT_TYPE_NONE As Int
No keyboard will be displayed. This could be useful, for example, if you use a read-only

AutoCompleteEditText for which you do not want a keyboard to be displayed.

INPUT_TYPE_NUMBERS As Int
Numeric keyboard will be displayed. Only numbers are accepted.

INPUT_TYPE_PHONE As Int
Keyboard will be displayed in phone mode.

INPUT_TYPE_TEXT As Int
Default text mode.

 3.3 Core Objects

 - 331 -

InputType As Int
Gets or sets the input type flag. This flag is used to determine the settings of the virtual

keyboard. Note that changing the input type will set the EditText to be in single line mode.

Example:
EditText1.InputType = EditText1.INPUT_TYPE_NUMBERS

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

PasswordMode As Boolean [write only]
Sets whether the EditText should be in password mode and hide the actual characters.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view.

Returns True if the focus was set.

SelectAll
Selects the entire text.

SelectionStart As Int
Gets or sets the selection start position (or the cursor position). Returns -1 if there is no

selection or cursor.

SendToBack
Changes the Z order of this view and sends it to the back.

 3.3 Core Objects

 - 332 -

SetBackgroundImage (Bitmap1 As Bitmap)

SetItems (Items As List)
Sets the list of possible items. The items’ visual style will be the same as the style of the

main text.

SetItems2 (Items As List, Typeface1 As Typeface, Gravity As Int, TextSize

As Float, TextColor As Int)
Sets the list of possible items and specifies their style.

Gravity: sets the gravity value. This value affects the way the text will be drawn.

Example:
Dim act As AutoCompleteEditText

act.Initialize("act")

Activity.AddView(act, 10dip, 10dip, 200dip, 80dip)

act.SetItems2(Array As String("aab", "abc"), act.Typeface,

Gravity.LEFT, 12, Colors.Green)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

ShowDropDown
Forces the drop down list to appear.

SingleLine As Boolean [write only]
Sets whether the EditText should be in single-line mode or multiline mode.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Text As String

TextColor As Int

TextSize As Float

Top As Int
Gets or sets the view’s top position.

Typeface As Typeface

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

Wrap As Boolean [write only]
Sets whether the text content will wrap within the EditText bounds. Relevant when the

EditText is in multiline mode. Example:

 3.3 Core Objects

 - 333 -

EditText1.Wrap = False

Button
A Button view. If you change the button’s background, you will usually want to use

StateListDrawable which allows you to set the "default" Drawable and the "pressed"

drawable.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Events:

Down
Occurs when the user first presses on the button.

Up
Occurs when the user releases the button.

Click
Occurs when the user presses and releases the button. The Down and Up events also fire.

They are called in this sequence: Down, Up, Click.

LongClick
Occurs when the user presses on the button for roughly one second. The Down and Up events

also fire. They are called in this sequence: Down, LongClick, Up.

Members:

 Background As Drawable

 BringToFront

 Color As Int [write only]

 Enabled As Boolean

 Gravity As Int

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Text As String

 TextColor As Int

 3.3 Core Objects

 - 334 -

 TextSize As Float

 Top As Int

 Typeface As Typeface

 Visible As Boolean

 Width As Int

Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
If set to True then the Button will respond to events. If set to False, events are ignored.

Gravity As Int
Gets or sets the gravity value. This value affects the way the text will be drawn.

Height As Int
Gets or sets the view’s height.

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

 3.3 Core Objects

 - 335 -

Left As Int
Gets or sets the view’s left position.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Text As String

TextColor As Int

TextSize As Float

Top As Int
Gets or sets the view’s top position.

Typeface As Typeface

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

CheckBox
A CheckBox view. Unlike RadioButtons, each CheckBox can be checked independently.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Events:
CheckedChange(Checked As Boolean)

Members:

 Background As Drawable

 BringToFront

 Checked As Boolean

 Color As Int [write only]

 Enabled As Boolean

 Gravity As Int

 Height As Int

 3.3 Core Objects

 - 336 -

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Text As String

 TextColor As Int

 TextSize As Float

 Top As Int

 Typeface As Typeface

 Visible As Boolean

 Width As Int

 Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Checked As Boolean

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
If set to True then the CheckBox will respond to events. If set to False, events are ignored.

Gravity As Int
Gets or sets the gravity value. This value affects the way the text will be drawn.

Height As Int
Gets or sets the view’s height.

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

 3.3 Core Objects

 - 337 -

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Text As String

TextColor As Int

TextSize As Float

Top As Int
Gets or sets the view’s top position.

Typeface As Typeface

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

 3.3 Core Objects

 - 338 -

CustomView
A Custom View allows you to create your own types of views which you implement either as

a class or in a library. Your class could also be compiled into a library.

First create the class (or library) and add it to your project. Now use the Designer menu [Add

View > CustomView]

The custom type will be automatically added to the Custom Type list.

Ensure that the correct type is selected in the Custom Type list:

You can now set the view properties and also treat it like any other view in the designer

script.

You must include a Dim statement in your Activity Module declaring every CustomView. The

simplest way is to use either the Designer menu [Tools > Generate Members] or the context

menu in the Abstract Designer

In order for your object to be supported by the designer, your code must include the following

two subs. When a layout file is loaded, the Initialize method will be called followed by a

call to DesignerCreateView.

Sub Initialize (TargetModule As Object, EventName As String)
TargetModule - references the module that loads the layout file.

EventName - the event’s name property.

These two parameters allow you to later raise events like all standard views.

Sub DesignerCreateView(Base As Panel, Lbl As Label, Props As Map)
Base - a panel that will be the parent for your custom view. The panel background and layout

will be based on the values from the designer. Note that you are free to do whatever you need

to do with this panel.

Lbl - the purpose of the label is to hold all the text-related properties. The label will not

appear (unless you explicitly add it).

Props - a Map with additional entries. Currently, the only entry is an “activity” key that

holds a reference to the parent Activity object.

Some sample code for using a Custom View with Designer support can be found here.

EditText
EditText is a view that allows the user to write free text (similar to TextBox in VB forms).

The EditText has two modes; SingleLine and MultiLine. You can set it to be multiline by

calling EditText1.SingleLine = False

On most devices, the soft keyboard will show automatically when the user presses on the

EditText. You can change the InputType property and change the type of keyboard that

appears. For example:

http://bit.ly/17gbqCR

 3.3 Core Objects

 - 339 -

EditText1.InputType = EditText1.INPUT_TYPE_NUMBERS

will cause the numeric keyboard to appear when the user presses on the EditText. Note that

it will also cause the EditText to only accept numbers. Note also that most views are not

focusable. For example, pressing on a Button will not change the focus state of an EditText.

This is an Activity object; it cannot be declared under Sub Process_Globals.

TextChanged (Old As String, New As String)
The TextChanged event fires whenever the text changes and it includes the old and new

strings.

EnterPressed
The EnterPressed event fires when the user presses on the enter key or action key (Done or

Next).

FocusChanged (HasFocus As Boolean)
The FocusChanged event fires when the view is focused or loses focus. The HasFocus

parameter value will be set accordingly.

Members:

 Background As Drawable

 BringToFront

 Color As Int [write only]

 Enabled As Boolean

 ForceDoneButton As Boolean [write only]

 Gravity As Int

 Height As Int

 Hint As String

 HintColor As Int

 Initialize (EventName As String)

 INPUT_TYPE_DECIMAL_NUMBERS As Int

 INPUT_TYPE_NONE As Int

 INPUT_TYPE_NUMBERS As Int

 INPUT_TYPE_PHONE As Int

 INPUT_TYPE_TEXT As Int

 InputType As Int

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 PasswordMode As Boolean [write only]

 RemoveView

 RequestFocus As Boolean

 SelectAll

 3.3 Core Objects

 - 340 -

 SelectionStart As Int

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 SingleLine As Boolean [write only]

 Tag As Object

 Text As String

 TextColor As Int

 TextSize As Float

 Top As Int

 Typeface As Typeface

 Visible As Boolean

 Width As Int

 Wrap As Boolean [write only]

 Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
If set to True then the EditText will respond to events. If set to False, events are ignored.

ForceDoneButton As Boolean [write only]
By default, Android sets the virtual keyboard action key to display Done or Next according to

the specific layout. You can force it to display Done by setting this value to True.

Example:
EditText1.ForceDoneButton = True

Gravity As Int
Gets or sets the gravity value. This value affects the way the text will be drawn.

Height As Int
Gets or sets the view’s height.

Hint As String
Gets or sets the text that will appear when the EditText is empty.

Example:
EditText1.Hint = "Enter username"

HintColor As Int
Gets or sets the hint text color.

 3.3 Core Objects

 - 341 -

Example:
EditText1.HintColor = Colors.Gray

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

INPUT_TYPE_DECIMAL_NUMBERS As Int
Numeric keyboard will be displayed. Numbers, decimal point and minus sign are accepted.

INPUT_TYPE_NONE As Int
No keyboard will be displayed and clicking on the EditText will do nothing.

INPUT_TYPE_NUMBERS As Int
Numeric keyboard will be displayed. Only numbers are accepted.

INPUT_TYPE_PHONE As Int
Keyboard will be displayed in phone mode.

INPUT_TYPE_TEXT As Int
Default text mode.

InputType As Int
Gets or sets the input type flag. This flag is used to determine the settings of the virtual

keyboard. Note that changing the input type will set the EditText to be in single line mode.

Example:
EditText1.InputType = EditText1.INPUT_TYPE_NUMBERS

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

PasswordMode As Boolean [write only]
Sets whether the EditText should be in password mode and hide the actual characters.

 3.3 Core Objects

 - 342 -

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

SelectAll
Selects the entire text.

SelectionStart As Int
Gets or sets the selection start position (or the cursor position). Returns -1 if there is no

selection or cursor.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

SingleLine As Boolean [write only]
Sets whether the EditText should be in single-line mode or multiline mode.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Text As String

TextColor As Int

TextSize As Float

Top As Int
Gets or sets the view’s top position.

Typeface As Typeface

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

Wrap As Boolean [write only]
Sets whether the text content will wrap within the EditText bounds. Relevant when the

EditText is in multiline mode. Example:
EditText1.Wrap = False

HorizontalScrollView
HorizontalScrollView is a view that contains other views and allows the user to horizontally

scroll those views. The HorizontalScrollView is similar to ScrollView which scrolls vertically.

See the ScrollView tutorial for more information.

The HorizontalScrollView has an inner panel which actually contains the child views.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/6612-scrollview-example.html

 3.3 Core Objects

 - 343 -

You can add views by calling: HorizontalScrollView1.Panel.AddView(...)

Note that it is not possible to nest scrolling views.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Events:
ScrollChanged(Position As Int)

Members:

 Background As Drawable

 BringToFront

 Color As Int [write only]

 Enabled As Boolean

 FullScroll (Right As Boolean)

 Height As Int

 Initialize (Width As Int, EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 Panel As Panel [read only]

 RemoveView

 RequestFocus As Boolean

 ScrollPosition As Int

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Top As Int

 Visible As Boolean

 Width As Int

Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

 3.3 Core Objects

 - 344 -

Enabled As Boolean
If set to True then the HorizontalScrollView will respond to events. If set to False,

events are ignored.

FullScroll (Right As Boolean)
Set to True to scroll the view to the right. Set to False to scroll to the left.

Height As Int
Gets or sets the view’s height.

Initialize (Width As Int, EventName As String)
Initializes the object.

Width - The width of the inner panel.

EventName - Sets the sub that will handle the event.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

Panel As Panel [read only]
Returns the panel which you can use to add views to. Example:
HorizontalScrollView1.Panel.AddView(...)

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

ScrollPosition As Int
Gets or sets the scroll position.

SendToBack
Changes the Z order of this view and sends it to the back.

 3.3 Core Objects

 - 345 -

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Top As Int
Gets or sets the view’s top position.

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

ImageView
A view that shows an image. You can assign a bitmap using the Bitmap property. The

Gravity property changes the way the image appears. The two most relevant values are:

Gravity.FILL (which will cause the image to fill the entire view)

and Gravity.CENTER (which will draw the image in the view’s center).

This is an Activity object; it cannot be declared under Sub Process_Globals.

Events:

Click
Occurs when the user presses and releases the ImageView.

LongClick
Occurs when the user presses on the ImageView for roughly one second.

Members:

 Background As Drawable

 Bitmap As Bitmap

 BringToFront

 Color As Int [write only]

 Enabled As Boolean

 Gravity As Int

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 RemoveView

 RequestFocus As Boolean

 3.3 Core Objects

 - 346 -

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Top As Int

 Visible As Boolean

 Width As Int

Background As Drawable
Gets or sets the background drawable.

Bitmap As Bitmap
Gets or sets the bitmap assigned to the ImageView.

Example:
ImageView1.Bitmap = LoadBitmap(File.DirAssets, "someimage.jpg")

BringToFront
Changes the Z order of this view and brings it to the front.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
If set to True then the ImageView will respond to events. If set to False, events are ignored.

Gravity As Int
Gets or sets the gravity assigned to the bitmap.

Example:
ImageView1.Gravity = Gravity.Fill

Height As Int
Gets or sets the view’s height.

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

 3.3 Core Objects

 - 347 -

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Top As Int
Gets or sets the view’s top position.

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

Label
A Label view that shows read-only text.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Events:

Click
Occurs when the user presses and releases the label.

LongClick
Occurs when the user presses on the label for roughly one second.

Members:

 Background As Drawable

 BringToFront

 Color As Int [write only]

 3.3 Core Objects

 - 348 -

 Enabled As Boolean

 Gravity As Int

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Text As String

 TextColor As Int

 TextSize As Float

 Top As Int

 Typeface As Typeface

 Visible As Boolean

 Width As Int

Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color.

If the current background is of type GradientDrawable or ColorDrawable, the round

corners will be kept.

Enabled As Boolean
If set to True then the label will respond to the Click and LongClick events. If set to

False, these events are ignored.

Gravity As Int
Gets or sets the gravity value. This value affects the way the text will be drawn.

Height As Int
Gets or sets the view’s height.

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

 3.3 Core Objects

 - 349 -

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view.

Returns True if the focus was set.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Text As String
Get or set the text which this label shows.

TextColor As Int
The color of the text used by this label.

TextSize As Float
The size of the text this label uses.

Top As Int
Gets or sets the view’s top position.

 3.3 Core Objects

 - 350 -

Typeface As Typeface
The typeface this label uses.

Visible As Boolean
Whether the user can see this label.

Width As Int
Gets or sets the label’s width.

ListView
ListView is a view that displays lists. The ListView can have one or two lines. A two-line

item can also have an icon. You can mix all three types of lines in a single ListView:

ListView has two events which allow you to determine which item the user clicked.

Unfortunately, you cannot respond by changing the appearance of the selected item, so you

might want to consider using a Custom List View instead.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Changing Text Appearance
You can change the appearance of each of these three types of line by editing the layout, for

example:
Dim label1 As Label

label1 = ListView1.SingleLineLayout.Label

label1.TextSize = 20

label1.TextColor = Colors.Blue

 This will change the appearance of all items in the list with SingleLineLayout.

Note that a TwoLine item has two labels, one for each line:
Dim Label1 As Label

Label1 = ListView1.TwoLinesLayout.SecondLabel

Label1.TextSize = 20

Label1.TextColor = Colors.Green

ListView as a Menu
You can use a ListView as a popup menu on any Activity. For example:

 3.3 Core Objects

 - 351 -

Sub Globals

 ' Could create either in Layout or here

 Dim lstMenu As ListView

End Sub

Sub Activity_Create(FirstTime As Boolean)

 Activity.LoadLayout("main")

 lstMenu.Initialize("lstMenu")

 Activity.AddView(lstMenu, 10%x, 10%y, 80%x, 80%y)

 lstMenu.AddSingleLine2("Help", "help")

 lstMenu.AddSingleLine2("Settings", "settings")

 ' Set colors since default background is transparent

 lstMenu.Color = Colors.White

 Dim lstLabel As Label

 lstLabel = lstMenu.SingleLineLayout.Label

 ' default text color is white

 lstLabel.TextColor = Colors.Black

 lstMenu.Visible = False

End Sub

Sub btnTest_Click

 ' StartActivity(test) will hide this activity

 ' Activity.LoadLayout("testActivity")

 lstMenu.Visible = True

End Sub

Sub lstMenu_ItemClick (Position As Int, Value As Object)

 Select Value

 Case "help"

 lstMenu.Visible = False

 StartActivity("help")

 Case "settings"

 lstMenu.Visible = False

 StartActivity("settings")

 End Select

End Sub

Tutorial
See the ListView tutorial for more information.

Events:

ItemClick (Position As Int, Value As Object)
ItemClick is raised when an item is touched and released.

ItemLongClick (Position As Int, Value As Object)
ItemLongClick is raised when an item is touched and held.

http://bit.ly/181bNV6

 3.3 Core Objects

 - 352 -

Members:

 AddSingleLine (Text As String)

 AddSingleLine2 (Text As String, ReturnValue As Object)

 AddTwoLines (Text1 As String, Text2 As String)

 AddTwoLines2 (Text1 As String, Text2 As String, ReturnValue As Object)

 AddTwoLinesAndBitmap (Text1 As String, Text2 As String, Bitmap1 As Bitmap)

 AddTwoLinesAndBitmap2 (Text1 As String, Text2 As String, Bitmap1 As Bitmap,

ReturnValue As Object)

 Background As Drawable

 BringToFront

 Clear

 Color As Int [write only]

 Enabled As Boolean

 FastScrollEnabled As Boolean

 GetItem (Index As Int) As Object

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 RemoveAt (Index As Int)

 RemoveView

 RequestFocus As Boolean

 ScrollingBackgroundColor As Int [write only]

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 SetSelection (Position As Int)

 SingleLineLayout As SingleLineLayout [read only]

 Size As Int [read only]

 Tag As Object

 Top As Int

 TwoLinesAndBitmap As TwoLinesAndBitmapLayout [read only]

 TwoLinesLayout As TwoLinesLayout [read only]

 Visible As Boolean

 Width As Int

 3.3 Core Objects

 - 353 -

AddSingleLine (Text As String)
Adds a single line item.

Example:
 ListView1.AddSingleLine("Sunday")

AddSingleLine2 (Text As String, ReturnValue As Object)
Adds a single line item.

The specified return value will be returned when calling GetItem or in the ItemClick

event.

Example:
ListView1.AddSingleLine2("Sunday", 1)

AddTwoLines (Text1 As String, Text2 As String)
Adds a two-lines item.

Example:
ListView1.AddTwoLines("This is the first line.", "And this is the

second")

AddTwoLines2 (Text1 As String, Text2 As String, ReturnValue As Object)
Adds a two-lines item. ReturnValue will be returned when calling GetItem or in the

ItemClick event.

AddTwoLinesAndBitmap (Text1 As String, Text2 As String, Bitmap1 As

Bitmap)
Adds two lines and a bitmap item.

Example:
ListView1.AddTwoLinesAndBitmap("First line", "Second line",

LoadBitmap(File.DirAssets, "SomeImage.png"))

AddTwoLinesAndBitmap2 (Text1 As String, Text2 As String, Bitmap1 As

Bitmap, ReturnValue As Object)
Adds two lines and a bitmap item. ReturnValue will be returned when calling GetItem or in

the ItemClick event.

Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Clear
Clears all items from the list.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color.

If the current background is of type GradientDrawable or ColorDrawable, the round

corners will be kept.

 3.3 Core Objects

 - 354 -

Enabled As Boolean
If set to True then the ListView will respond to the ItemClick and ItemLongClick

events. If set to False, these events are ignored.

FastScrollEnabled As Boolean
Gets or sets whether the fast scroll icon will appear when the user scrolls the list.

The default is False.

GetItem (Index As Int) As Object
Returns the value of the item at the specified position. Returns the “return value” if it was

set, and if not, returns the text of the first line.

Height As Int
Gets or sets the view’s height.

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

RemoveAt (Index As Int)
Removes the item at the specified position.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

 3.3 Core Objects

 - 355 -

ScrollingBackgroundColor As Int [write only]
Sets the background color that will be used while scrolling the list. This is an optimization

done to make the scrolling smoother. Set to Colors.Transparent if the background behind

the list is not a solid color. The default is black.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

SetSelection (Position As Int)
Sets the currently selected item. Calling this method will make this item visible. If the user

is interacting with the list with the keyboard or the wheel button, the item will also be

visibly selected. Example:
ListView1.SetSelection(10)

SingleLineLayout As SingleLineLayout [read only]
Returns the layout that is used to show single line items. You can change the layout values

to change the appearance of such items. Example:
Dim Label1 As Label

Label1 = ListView1.SingleLineLayout.Label

Label1.TextSize = 20

Label1.TextColor = Colors.Green

Size As Int [read only]
Returns the number of items stored in the list.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Top As Int
Gets or sets the view’s top position.

TwoLinesAndBitmap As TwoLinesAndBitmapLayout [read only]
Returns the layout that is used to show items containing two lines and bitmap. You can

change the layout values to change the appearance of such items. For example, if you want to

remove the second label (in all items with this layout):
ListView1.TwoLinesAndBitmap.SecondLabel.Visible = False

TwoLinesLayout As TwoLinesLayout [read only]
Returns the layout that is used to show two-lines items.

You can change the layout values to change the appearance of such items.

Example:

 3.3 Core Objects

 - 356 -

Dim Label1 As Label

Label1 = ListView1.TwoLinesLayout.SecondLabel

Label1.TextSize = 20

Label1.TextColor = Colors.Green

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

Panel
A Panel is a view that holds other child views. You can add child views programmatically or

by loading a layout file. This is an Activity object; it cannot be declared under Sub

Process_Globals.

Events:

Touch (Action As Int, X As Float, Y As Float)
When the user touches a Panel, it raises the Touch event. The first parameter of this event is

the Action which is one of the Activity action constants. X and Y indicate where the panel

was touched.

If the user keeps touching the panel, it will continue to raise the Touch event.

Return True from the Touch event sub to consume the event (otherwise other views behind

the Panel will receive the event).

Click
If there is no Touch event handler in your app, then Android will raise the Click event if the

user touches the panel briefly.

LongClick
If there is no Touch event handler in your app, then Android will raise the LongClick event if

the user touches the panel for an extended period.

Members:

 AddView (View1 As View, Left As Int, Top As Int, Width As Int, Height As Int)

 Background As Drawable

 BringToFront

 Color As Int [write only]

 Enabled As Boolean

 GetAllViewsRecursive As IterableList

 GetView (Index As Int) As View

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 3.3 Core Objects

 - 357 -

 IsInitialized As Boolean

 Left As Int

 LoadLayout (Layout As String) As LayoutValues

 NumberOfViews As Int [read only]

 RemoveAllViews

 RemoveView

 RemoveViewAt (Index As Int)

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Top As Int

 Visible As Boolean

 Width As Int

AddView (View1 As View, Left As Int, Top As Int, Width As Int, Height As

Int)
Adds a view to this panel.

Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
If set to True then the Panel will respond to events. If set to False, events are ignored.

GetAllViewsRecursive As IterableList
Returns an iterator that iterates over all the views belonging to the panel, including views

which are children of other views. Example:
For Each vw As View In pnlMain.GetAllViewsRecursive

 vw.Color = Colors.RGB(Rnd(0,255), Rnd(0,255), Rnd(0,255))

Next

GetView (Index As Int) As View
Gets the view that is stored at the specified index.

Height As Int
Gets or sets the view’s height.

 3.3 Core Objects

 - 358 -

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

LoadLayout (Layout As String) As LayoutValues
Loads a layout file to this panel. Returns the value of the chosen layout variant.

NumberOfViews As Int [read only]
Returns the number of child views.

RemoveAllViews
Removes all child views.

RemoveView
Removes this view from its parent.

RemoveViewAt (Index As Int)
Removes the view that is stored at the specified index.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

 3.3 Core Objects

 - 359 -

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Top As Int
Gets or sets the view’s top position.

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

ProgressBar
A progress bar view which lets you show the progress of a long-running process.

Example:
Sub Activity_Create(FirstTime As Boolean)

 Activity.LoadLayout("Main")

 ProgressBar1.Progress = 0

 Timer1.Initialize("Timer1", 1000)

 Timer1.Enabled = True

End Sub

Sub timer1_Tick

 'Handle tick events

 ProgressBar1.Progress = ProgressBar1.Progress + 10

 If ProgressBar1.Progress = 100 Then

 Timer1.Enabled = False

 End If

End Sub

The exact nature of the visible bar depends upon the device and the size you have chosen.

Here is one example:

The Progress property sets the progress value which is from 0 to 100.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Members:

 Background As Drawable

 BringToFront

 Color As Int [write only]

 Enabled As Boolean

 Height As Int

 Indeterminate As Boolean

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 3.3 Core Objects

 - 360 -

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 Progress As Int

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Top As Int

 Visible As Boolean

 Width As Int

Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
This property has no effect since a ProgressBar has no events.

Height As Int
Gets or sets the view’s height.

Indeterminate As Boolean
Gets or sets whether the progress bar is in indeterminate mode (cyclic animation).

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

 3.3 Core Objects

 - 361 -

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

Progress As Int
Gets or sets the progress value.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view.

Returns True if the focus was set.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Top As Int
Gets or sets the view’s top position.

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

RadioButton
A RadioButton view. Only one RadioButton in a group can be checked. When a different

RadioButton is checked, all others will automatically be unchecked.

Note that the CheckedChange event only runs for the button which has been checked.

Grouping is done by adding RadioButtons to the same activity or panel.

This is an Activity object; it cannot be declared under Sub Process_Globals.

 3.3 Core Objects

 - 362 -

Event:

CheckedChange(Checked As Boolean)
Note that the CheckedChange event only runs for the button which has been checked. Thus,

Checked is never False, and your code should test whether each RadioButton has been

checked.

Members:

 Background As Drawable

 BringToFront

 Checked As Boolean

 Color As Int [write only]

 Enabled As Boolean

 Gravity As Int

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Text As String

 TextColor As Int

 TextSize As Float

 Top As Int

 Typeface As Typeface

 Visible As Boolean

 Width As Int

 Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

 3.3 Core Objects

 - 363 -

Checked As Boolean

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
If set to True then the RadioButton will respond to events. If set to False, events are

ignored.

Gravity As Int
Gets or sets the gravity value. This value affects the way the text will be drawn.

Height As Int
Gets or sets the view’s height.

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

SendToBack
Changes the Z order of this view and sends it to the back.

 3.3 Core Objects

 - 364 -

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Text As String

TextColor As Int

TextSize As Float

Top As Int
Gets or sets the view’s top position.

Typeface As Typeface

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

ScrollView
ScrollView is a view that contains other views and allows the user to vertically scroll those

views. See the ScrollView example for more information.

The ScrollView has an inner panel which actually contains the child views. You can add

views by calling: ScrollView1.Panel.AddView(...)

Note that it is not possible to nest scrolling views. For example, a multiline EditText cannot

be located inside a ScrollView.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Showing Tables
There is a tutorial here for a way of creating a table using a ScrollView.

Note: for showing large tables, the additional TableView class is a better alternative.

Events:
ScrollChanged(Position As Int)

Members:

 Background As Drawable

 BringToFront

 Color As Int [write only]

 Enabled As Boolean

 FullScroll (Bottom As Boolean)

 Height As Int

 Initialize (Height As Int)

 Initialize2 (Height As Int, EventName As String)

http://bit.ly/ZQMe5Q
http://bit.ly/16611bH
http://bit.ly/165ZUIM

 3.3 Core Objects

 - 365 -

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 Panel As Panel [read only]

 RemoveView

 RequestFocus As Boolean

 ScrollPosition As Int

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Top As Int

 Visible As Boolean

 Width As Int

 Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
If set to True then the ScrollView will respond to events. If set to False, events are

ignored.

FullScroll (Bottom As Boolean)
Scrolls the scroll view to the top or bottom.

Height As Int
Gets or sets the view’s height.

Initialize (Height As Int)
Initializes the ScrollView and sets its inner panel height to the given height. You can later

change this height by calling ScrollView.Panel.Height.
Dim ScrollView1 As ScrollView

ScrollView1.Initialize(1000dip)

Initialize2 (Height As Int, EventName As String)
Similar to Initialize. Sets the Sub that will handle the ScrollChanged event.

 3.3 Core Objects

 - 366 -

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

Panel As Panel [read only]
Returns the panel which you can use to add views to. Example:
ScrollView1.Panel.AddView(...)

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view.

Returns True if the focus was set.

ScrollPosition As Int
Gets or sets the scroll position.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Top As Int
Gets or sets the view’s top position.

Visible As Boolean
Whether the user can see the object.

 3.3 Core Objects

 - 367 -

Width As Int
Gets or sets the view’s width.

SeekBar
A view that allows the user to set a value by dragging a slider. Similar to WinForms

TrackBar. The ValueChanged event is raised whenever the value is changed. The

UserChanged parameter can be used to distinguish between changes done by the user and

changes done programmatically.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Events:
ValueChanged (Value As Int, UserChanged As Boolean)

Members:

 Background As Drawable

 BringToFront

 Color As Int [write only]

 Enabled As Boolean

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 Max As Int

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Top As Int

 Value As Int

 Visible As Boolean

 Width As Int

 Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

 3.3 Core Objects

 - 368 -

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
If set to True then the SeekBar will respond to events. If set to False, events are ignored.

Height As Int
Gets or sets the view’s height.

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

Max As Int
Gets or sets the maximum allowed value.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

SendToBack
Changes the Z order of this view and sends it to the back.

 3.3 Core Objects

 - 369 -

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Top As Int
Gets or sets the view’s top position.

Value As Int
Gets or sets the current value.

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

Spinner
A folded list that opens when the user clicks on it and allows the user to choose an item.

Similar to WinForms ComboBox.

This is an Activity object; it cannot be declared under Sub Process_Globals.

A spinner behaves and looks like an InputList.

Example
Sub Globals

 Dim i As Int

 Dim tgtlabel As Label

 Dim tgtspin As Spinner

 Dim myarray(4) As String

End Sub

Sub Activity_Create(FirstTime As Boolean)

 Activity.LoadLayout("main")

 myarray(0)="January"

 myarray(1)="February"

 myarray(2)="March"

 myarray(3)="May"

 tgtspin.Initialize("spin")

 tgtspin.Prompt="Select Month"

 tgtspin.AddAll(myarray)

 Activity.AddView(tgtspin,10dip,10dip,200dip,40dip)

End Sub

Sub spin_ItemClick (Position As Int, Value As Object)

 ' what to do when the user selects an option

End Sub

 3.3 Core Objects

 - 370 -

Event:

ItemClick (Position As Int, Value As Object)
The ItemClick event is raised each time a user presses on an item (even if the item is

already selected). The arguments indicate which item has been clicked, both its position

within the list of items and its value.

Members:

 Add (Item As String)

 AddAll (List As List)

 Background As Drawable

 BringToFront

 Clear

 Color As Int [write only]

 DropdownTextColor As Int

 Enabled As Boolean

 GetItem (Index As Int) As String

 Height As Int

 IndexOf (value As String) As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 Prompt As String

 3.3 Core Objects

 - 371 -

 RemoveAt (Index As Int)

 RemoveView

 RequestFocus As Boolean

 SelectedIndex As Int

 SelectedItem As String [read only]

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Size As Int [read only]

 Tag As Object

 TextColor As Int

 TextSize As Float

 Top As Int

 Visible As Boolean

 Width As Int

Add (Item As String)
Adds an item.

Example:
Spinner1.Add("Sunday")

AddAll (List As List)
Adds multiple items.

Example:
Spinner1.AddAll(Array As String("Sunday", "Monday", ...))

Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Clear
Clears all items.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

 DropdownTextColor As Int
Gets or sets the color of the text of the spinner’s dropdown items.

Enabled As Boolean
If set to True then the Spinner will respond to events. If set to False, events are ignored.

GetItem (Index As Int) As String
Returns the item at the specified index.

 3.3 Core Objects

 - 372 -

Height As Int
Gets or sets the view’s height.

IndexOf (value As String) As Int

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

Prompt As String
Gets or sets the title that will be displayed when the spinner is opened.

RemoveAt (Index As Int)
Removes the item at the specified index.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

SelectedIndex As Int
Gets or sets the index of the selected item. Returns -1 if no item is selected.

SelectedItem As String [read only]
Returns the value of the selected item.

SendToBack
Changes the Z order of this view and sends it to the back.

 3.3 Core Objects

 - 373 -

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Size As Int [read only]
Returns the number of items.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

TextColor As Int
Gets or sets the text color. The color should be set before adding items. Setting the color to

transparent will make the spinner use the default text color.

TextSize As Float
Gets or sets the text size. The size should be set before adding items.

Top As Int
Gets or sets the view’s top position.

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

TabHost
TabHost is a view that contains multiple tab pages. Each tab page contains other child

views.

At present you can use the Designer to add a TabHost to a Layout, but you must use code to

add pages to it. The simplest way to do this is to create separate layouts for each page. For

 3.3 Core Objects

 - 374 -

example, if layout “main” contains TabHost1 and “page1”, “page2” and “page3” contain the

pages to be added to it, then your code might say:
Activity.LoadLayout("main")

TabHost1.AddTab("Name", "page1")

TabHost1.AddTab("Color", "page2")

TabHost1.AddTab("Animal", "page3")

A TabHost is an Activity object; it cannot be declared under Sub Process_Globals.

See the TabHost tutorial for more information. Note that TabHostExtras Library is a user-

generated extension of this view which gives you more power over its appearance.

Events:

TabChanged
This event is raised when the user presses on the TabHost menu to select a different page.

Click
This event is never actually fired. It exists because it is inherited from the view object.

LongClick
This event is raised when the user presses and holds one of the pages of the TabHost.

Members:

 AddTab (Title As String, LayoutFile As String)

 AddTab2 (Title As String, View1 As View)

 AddTabWithIcon (Title As String, DefaultBitmap As Bitmap, SelectedBitmap As Bitmap,

LayoutFile As String)

 AddTabWithIcon2 (Title As String, DefaultBitmap As Bitmap, SelectedBitmap As

Bitmap, View1 As View)

 Background As Drawable

 BringToFront

 Color As Int [write only]

 CurrentTab As Int

 Enabled As Boolean

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/6721-tabhost-tutorial.html

 3.3 Core Objects

 - 375 -

 TabCount As Int [read only]

 Tag As Object

 Top As Int

 Visible As Boolean

 Width As Int

AddTab (Title As String, LayoutFile As String)
Adds a tab page.

Title - The page title.

LayoutFile - A layout file describing the page layout.

Example:
TabHost1.AddTab("Page 1", "page1.bal")

AddTab2 (Title As String, View1 As View)
Adds a tab page.

Title - The page title.

View - The page content. Usually the view should be a panel containing other views.

AddTabWithIcon (Title As String, DefaultBitmap As Bitmap,

SelectedBitmap As Bitmap, LayoutFile As String)
Adds a tab page. The tab title includes an icon.

Title - The page title.

DefaultBitmap - The icon that will be drawn when the page is not selected.

SelectedBitmap - The icon that will be drawn when the page is selected.

LayoutFile - A layout file describing the page layout.

Example:
Dim bmp1, bmp2 As Bitmap

bmp1 = LoadBitmap(File.DirAssets, "ic.png")

bmp2 = LoadBitmap(File.DirAssets, "ic_selected.png")

TabHost1.AddTabWithIcon("Page 1", bmp1, bmp2,"tabpage1.bal")

AddTabWithIcon2 (Title As String, DefaultBitmap As Bitmap,

SelectedBitmap As Bitmap, View1 As View)
Adds a tab page. The tab title includes an icon.

Title - The page title.

DefaultBitmap - The icon that will be drawn when the page is not selected.

SelectedBitmap - The icon that will be drawn when the page is selected.

View - The page content. Usually the view should be a panel containing other views.

Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

 3.3 Core Objects

 - 376 -

CurrentTab As Int
Gets or sets the current tab.

Example:
TabHost1.CurrentTab = (TabHost1.CurrentTab + 1) Mod TabHost1.TabCount

'switch to the next tab.

Enabled As Boolean
If set to True then the TabHost will respond to events. If set to False, events are ignored.

Height As Int
Gets or sets the view’s height.

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

 3.3 Core Objects

 - 377 -

TabCount As Int [read only]
Returns the number of tab pages.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Top As Int
Gets or sets the view’s top position.

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

ToggleButton
A ToggleButton view. This view, which is similar to a button, has two modes: ON and OFF.

When the user presses on it, it will change its mode. You can set the text with the TextOn

and TextOff properties.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Event:
CheckedChange(Checked As Boolean)

Members:

 Background As Drawable

 BringToFront

 Checked As Boolean

 Color As Int [write only]

 Enabled As Boolean

 Gravity As Int

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 TextColor As Int

 3.3 Core Objects

 - 378 -

 TextOff As String

 TextOn As String

 TextSize As Float

 Top As Int

 Typeface As Typeface

 Visible As Boolean

 Width As Int

 Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

Checked As Boolean

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
If set to True then the ToggleButton will respond to events. If set to False, events are

ignored.

Gravity As Int
Gets or sets the gravity value. This value affects the way the text will be drawn.

Height As Int
Gets or sets the view’s height.

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

 3.3 Core Objects

 - 379 -

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

TextColor As Int

TextOff As String
Gets or sets the text that will appear in the OFF mode.

TextOn As String
Gets or sets the text that will appear in the ON mode.

TextSize As Float

Top As Int
Gets or sets the view’s top position.

Typeface As Typeface

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

View
View is a special type of object. You cannot create new View objects. However, all view types

can be assigned to a view variable. This allows you to access the shared properties of all

views. For example, this code hides all views of an activity:

 3.3 Core Objects

 - 380 -

For i = 0 To Activity.NumberOfViews - 1

 Dim v As View

 v = Activity.GetView(i)

 v.Visible = False

Next

This is an Activity object; it cannot be declared under Sub Process_Globals.

Events:

Click
This event is raised when the user presses on the View.

LongClick
This event is raised when the user presses on the View and holds for about one second.

Members:

 Background As Drawable

 BringToFront

 Color As Int [write only]

 Enabled As Boolean

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 Left As Int

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 Tag As Object

 Top As Int

 Visible As Boolean

 Width As Int

Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

 3.3 Core Objects

 - 381 -

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
If set to True then the View will respond to events. If set to False, events are ignored.

Height As Int
Gets or sets the view’s height.

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int
Gets or sets the view’s left position.

RemoveView
Removes this view from its parent. If this view has child views, then they are also removed.

RequestFocus As Boolean
Tries to set the focus to this view. Returns True if the focus was set.

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

 3.3 Core Objects

 - 382 -

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Top As Int
Gets or sets the view’s top position.

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

WebView
The WebView view uses the internal WebKit engine to display HTML pages. The page

displayed can be an online page loaded with LoadUrl or an HTML string loaded with

LoadHtml. This is an Activity object; it cannot be declared under Sub

Process_Globals.

Permissions:
android.permission.INTERNET

Events:

PageFinished (Url As String)
The PageFinished event is raised after the page loads.

OverrideUrl (Url As String) As Boolean
OverrideUrl is called before loading any URL. If this method returns True, then the given

Url will not be loaded. You can use this event as a way to handle click events in your code.

UserAndPasswordRequired (Host As String, Realm As String) As String()
This event is raised when accessing a site that requires basic authentication. You should

return an array of strings with the username as the first element and password as the

second element. For example:
Return Array As String("someuser", "password123")

Returning Null will cancel the request. Sending incorrect credentials will cause this event to

be raised again.

Members:

 Back

 Background As Drawable

 BringToFront

 CaptureBitmap As Bitmap

 Color As Int [write only]

 Enabled As Boolean

 Forward

 Height As Int

 Initialize (EventName As String)

 3.3 Core Objects

 - 383 -

 Invalidate

 Invalidate2 (Rect1 As Rect)

 Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)

 IsInitialized As Boolean

 JavaScriptEnabled As Boolean

 Left As Int

 LoadHtml (HTML As String)

 LoadUrl (Url As String)

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (Bitmap1 As Bitmap)

 SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)

 StopLoading

 Tag As Object

 Top As Int

 Url As String [read only]

 Visible As Boolean

 Width As Int

 Zoom (In As Boolean) As Boolean

 ZoomEnabled As Boolean

Back
Goes back to the previous URL.

Background As Drawable
Gets or sets the background drawable.

BringToFront
Changes the Z order of this view and brings it to the front.

CaptureBitmap As Bitmap
Returns the complete HTML page as a bitmap.

Color As Int [write only]
Sets the background of the view to be a ColorDrawable with the given color. If the current

background is of type GradientDrawable or ColorDrawable, the round corners will be

kept.

Enabled As Boolean
If set to True then the WebView will respond to events. If set to False, events are ignored.

Forward
Goes forward to the next URL.

 3.3 Core Objects

 - 384 -

Height As Int
Gets or sets the view’s height.

Initialize (EventName As String)
Initializes the view and sets the subs that will handle the events.

Views added with the designer should NOT be initialized. These views are initialized when

the layout is loaded.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

JavaScriptEnabled As Boolean
Gets or sets whether JavaScript is enabled.

JavaScript is enabled by default.

Left As Int
Gets or sets the view’s left position.

LoadHtml (HTML As String)
Loads the given HTML. Example:
WebView1.LoadHtml("<html><body>Hello world!</body></html>")

You can use “file:///android_asset” to access files added with the file manager:
WebView1.LoadHtml("<html><body><img

src='file:///android_asset/someimage.jpg'/></body></html>")

Note that files added with the file manager should be accessed with a lower cased name.

LoadUrl (Url As String)
Loads the given Url. Example:
WebView1.LoadUrl("http://www.google.com")

RemoveView
Removes this view from its parent.

RequestFocus As Boolean
Tries to set the focus to this view.

Returns True if the focus was set.

 3.3 Core Objects

 - 385 -

SendToBack
Changes the Z order of this view and sends it to the back.

SetBackgroundImage (Bitmap1 As Bitmap)

SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
Changes the view position and size.

StopLoading
Stops the current load.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

Top As Int
Gets or sets the view’s top position.

Url As String [read only]
Returns the current URL.

Visible As Boolean
Whether the user can see the object.

Width As Int
Gets or sets the view’s width.

Zoom (In As Boolean) As Boolean
Zooms in or out according to the value of In.

Returns True if zoom has changed.

ZoomEnabled As Boolean
Gets or sets whether the internal zoom feature is enabled.

The zoom feature is enabled by default.

 - 386 -

Part 4: Libraries
In this reference section, we discuss libraries (only available if you have upgraded to the Full

Version of Basic4Android), and explain how to create your own libraries and share them with

others (should you wish to).

We give full details of the Standard Libraries included in the Full Version installation. We

also discuss some of the many Additional Libraries and Modules, including all the “Official”

ones created by Anywhere Software, which you can download from the Basic4Android

website.

 4.1 Libraries

 - 387 -

4.1 Libraries

Introduction
Libraries are key to gaining the full benefit of Basic4Android. Note that, apart from the Core

Library, they are only available in the Full Version.

What is a library?
A Basic4Android library is an encapsulation of part or all of a project into a jar and an XML

file which can easily be reused and shared with others. You can create your own, as described

below.

Types of Libraries
There are several types of libraries in Basic4Android: The Core Library, Standard Libraries,

Additional Official Libraries and Additional User Libraries.

Core Library
This is included in both the Trial and the Full versions of Basic4Android, and defines the

Core Objects. Follow the link for more information.

Standard Libraries
When you upgrade from the Trial to the Full version, you get the Standard Libraries which

are saved in the Libraries folder in the B4A program folder. They are normally found in:

C:\Program Files\Anywhere Software\Basic4Android\Libraries

Additional Official Libraries
Additional Official Libraries are produced by Anywhere Software (the makers of

Basic4Android) but are not included with the IDE. For a list of these, with links to the source

for download, see the Additional Official Libraries section.

Additional User Libraries
Additional User Libraries have been produced by enthusiastic and generous users of

Basic4Android who have published their own libraries for the benefit of others. These add

significantly to the capabilities of the product.

Additional libraries folder
It is required that you set up a special folder to save additional libraries, for example:

C:\Basic4Android\AddLibraries.

When you install a new version of B4A, all standard libraries are automatically updated, but

the additional libraries are not included. The advantage of the special folder is that this

folder is not affected when you install the new version of B4A.

 4.1 Libraries

 - 388 -

Subscribing to Additional Library Updates
Because additional libraries are not systematically updated with new versions of B4A, you

might want to subscribe here to be notified about updates.

Telling the IDE where to find Additional Libraries
When the IDE starts, it looks first for the available libraries in the Libraries folder of B4A

and then in the folder for the additional libraries.

If you setup a special additional libraries folder, you must specify it in the IDE menu [Tools >

Configure Paths]. The dialog allows you to specify the Additional Libraries folder.

Error message “Are you missing a library reference?”
If you get this message in the Compile & Debug dialog, it means that you either forgot to

check the specified library in the Lib Tab list, or the library is missing from the folder.

Referencing Libraries
Before you can use the types and functions within a library, you need to add a reference to it

in your project. Use the Libs Tab within the IDE.

If it’s an additional library, you might have to download and install it first. Note that it is

worth checking periodically if you have the latest version, or subscribing to notifications

about updates, as explained above.

Creating Libraries
You can create your own libraries and, if you wish, you can share them with other developers

via the Basic4Android website.

There are two ways to build libraries: the easy way and the hard way.

The easy way is to compile modules from your project into a library. We describe this below.

The hard way is to write the code in Java and follow the instructions here. Although more

difficult, it allows you to add features not possible using the easy method.

http://bit.ly/18WJsgk
http://www.basic4ppc.com/forum/libraries-developers-questions/6810-creating-libraries-basic4android-2.html#post39444

 4.1 Libraries

 - 389 -

More Information Creating Libraries
An on-line tutorial is available here. A YouTube video on creating libraries can be found

here. Details of a Simple Library Compiler tool, which allows you to build simple libraries

without Eclipse, is available here. You will still need to write the Java code, however.

Benefits of creating Libraries
There are several benefits from compiling your own library:

Modular code: If your project is large, it will be easier to create and maintain if you can break

it into several smaller projects.

Reusable components: You can reuse modules in several projects.

Share components: You can share your work with other developers.

Protect your code: Once compiled, the library can be distributed to others without revealing

the source code.

Create different versions: You can have various versions of an app, for example, “Free” and

“Paid for”, by reusing the same core library.

Preparing Your Library

Main Activity Excluded
Except for the Project Attributes region, the Main Activity is not included in your library.

This is necessary because the projects in which your library will be reused already contain a

Main Activity.

The Main Activity in your development copy of the library can therefore be used to add code

to test the library. You should add modules to contain the code of your library.

For details of what should be entered into the Project Attributes, see below.

Library specific attributes
The following attributes are specific for library compilation:

Project attributes
These are placed in the Project Attributes region of the main activity:

LibraryAuthor: The library author. This value is added to the library XML file.

LibraryName: The compiled library name. Sets the library name instead of showing the save

dialog.

LibraryVersion: A number that represents the library version. This number will appear next

to the library name in the libraries list.

Module Attributes
ExcludeFromLibrary: Whether to exclude this module during library compilation. Values:

True or False.

Note that the Main activity is always excluded.

http://bit.ly/10GrdLE
http://bit.ly/10GrYnU
http://bit.ly/10GrYnU
http://bit.ly/10GrA91

 4.1 Libraries

 - 390 -

Classes Attributes
Event: Adds an event to the list of events. This attribute can be used multiple times. Note

that the events list only affects the IDE events Autocomplete feature.

How to Compile a Library
 First select the compilation mode you wish to use: Release or Release Obfuscated. (Note

that Strings will not be obfuscated.)

 Select menu [Project > Compile To Library] or type Alt+5. When you choose this option,

all the modules except the main activity are compiled into a library. You can exclude

other modules with the ExcludeFromLibrary attribute.

 The main activity (and the other excluded modules) can now be used to test the library.

You can reference the library from other projects and access the same functionality as in the

original project. There is more information on creating your own libraries on the web here.

Output
When you select menu [Project > Compile To Library], two files are created, both with the

same name as the project:

 a jar (Java) file with the compiled code

 an XML file that includes the metadata that is required by the IDE.

These two files will be saved in the Additional Libraries folder specified in the [Tools >

Configure Paths] menu dialog.

No Home Screen Widget Libraries
Services that host home screen widgets cannot be compiled into a library. See here for more

information about Widgets.

How to publish your library
Developers should edit the list of libraries at

http://www.basic4ppc.com/android/wiki/index.php/Libraries

and add their libraries. (Contact support@basic4ppc.com if you do not have write

permission.) For information about the impact of using libraries, see this thread.

http://www.basic4ppc.com/forum/libraries-developers-questions/6810-creating-libraries-basic4android.html
http://www.basic4ppc.com/android/wiki/index.php/Libraries
http://www.basic4ppc.com/forum/basic4android-updates-questions/16171-what-performance-ramifications-adding-multiple-libraries-my-app.html

 4.2 Standard Libraries included with Full Version

 - 391 -

4.2 Standard Libraries included with Full Version

Introduction
Libraries and official updates are only available for users who have purchased

Basic4Android. If you have bought Basic4Android but cannot download files, then please

contact support@basic4ppc.com and send the User name and Email address used when

purchasing Basic4Android. See Libraries for more information.

The following libraries are included in the Full version installation package. They are saved

in the Libraries folder in the B4A program folder and are normally found in:

C:\Program Files\Anywhere Software\Basic4Android\Libraries

In order to use an object in one of these libraries, you need to reference its library in the

library tab of the IDE.

In fact, the Core library is also included in the installation, but since you do not need to

reference it, we deal with its objects in the Core Objects Chapter.

List of Standard Libraries
Accessibility

Administrator

Animation

Audio

Camera

Core

Daydream

GameView

GPS

HTTP

IME

JSON

LiveWallpaper

Network

NFC

Phone

PreferenceActivity

RandomAccessFile

Serial

Sip

SQL

StringUtils

TTS

USB

 4.2 Standard Libraries included with Full Version

 - 392 -

XmlSax

Accessibility Library
This library is included in the IDE installation package. It includes several accessibility

related methods.

List of types:
Accessiblity (note the spelling).

Accessiblity
This library includes several accessibility related methods. The SetNextFocus methods

allow you to explicitly set the focus order. This order is important when the user navigates

your application with a directional controller (such as D-Pad). SetContentDescription

sets the content that will be used by accessibility services such as TalkBack to describe the

interface.

Members:
 GetUserFontScale As Float

 SetContentDescription (View1 As View, Content As CharSequence)

 SetNextFocusDown (ThisView As View, NextView As View)

 SetNextFocusLeft (ThisView As View, NextView As View)

 SetNextFocusRight (ThisView As View, NextView As View)

 SetNextFocusUp (ThisView As View, NextView As View)

 GetUserFontScale As Float
Returns the user-set font scale. The user can adjust this scale in the device Settings.

This scale is applied automatically to all text based views.

 SetContentDescription (View1 As View, Content As

CharSequence)
Sets the view’s description. This text will be used by accessibility services to describe the

view.

 SetNextFocusDown (ThisView As View, NextView As View)
Sets the next view that will get the focus when the user presses on the down key (when this

view is focused). Example:

 4.2 Standard Libraries included with Full Version

 - 393 -

Dim Access As Accessibility

Access.SetNextFocusDown(Button1, Button2) 'When the focus is on

Button1 and the user presses on the down key,

'the focus will move to Button2.

 SetNextFocusLeft (ThisView As View, NextView As View)
Sets the next view that will get the focus when the user presses on the left key (when this

view is focused).

 SetNextFocusRight (ThisView As View, NextView As View)
Sets the next view that will get the focus when the user presses on the right key (when this

view is focused).

 SetNextFocusUp (ThisView As View, NextView As View)
Sets the next view that will get the focus when the user presses on the up key (when this

view is focused).

Administrator Library
This library is included in the IDE installation package. Starting from Android 2.2 (api level

8), Android allows an application to be registered as an administrator. Administrator apps

have the following special features

 Manually lock the screen

 Set the minimum password length and quality

 Wipe the entire device

 Set the maximum allowed time before the device locks

 Request the user to change password

 Manually set a new password

 Disable the camera

 Track password changes

 Some other security features as described here.

Note that the password is the screen lock password. Other passwords are not affected. The

user needs to enable the admin app before it can have any special privileges. This is done

either by calling Manager.Enable or from the Security settings page.

OnLine Link
For more details about using the Administrator Library, and an example program, see here.

List of types:
AdminManager

AdminManager

Members:
 Disable

http://bit.ly/15k06pn

 4.2 Standard Libraries included with Full Version

 - 394 -

 Enable (Explanation As String)

 Enabled As Boolean [read only]

 LockScreen

 MaximumTimeToLock As Long [write only]

 PASSWORD_QUALITY_ALPHABETIC As Int

 PASSWORD_QUALITY_ALPHANUMERIC As Int

 PASSWORD_QUALITY_NUMERIC As Int

 PASSWORD_QUALITY_UNSPECIFIED As Int

 PasswordSufficient As Boolean [read only]

 RequestNewPassword

 ResetPassword (NewPassword As String) As Boolean

 SetPasswordQuality (QualityFlag As Int, MinimumLength As Int)

 Disable
Disables the admin policy.

 Enable (Explanation As String)
Enables the admin policy. The user will be shown a dialog with the requested features. This

method can only be called from an Activity context.

Explanation - A message shown at the top of the dialog.

 Enabled As Boolean [read only]
Returns True if the admin policy is active.

 LockScreen
Immediately locks the screen. Requires the force-lock tag in the policies file.

 MaximumTimeToLock As Long [write only]
Sets the maximum time (measured in milliseconds) before the device locks. This limits the

maximum length of time that the user can set in the Security menu:

[Settings > Security > Automatically Lock]. This is not available on early versions of Android.

Requires the force-lock tag in the policies file.

 PASSWORD_QUALITY_ALPHABETIC As Int

 PASSWORD_QUALITY_ALPHANUMERIC As Int

 PASSWORD_QUALITY_NUMERIC As Int

 PASSWORD_QUALITY_UNSPECIFIED As Int

 PasswordSufficient As Boolean [read only]
Returns TRUE if the current password meets the requirements. Requires the limit-password

tag in the policies file.

 RequestNewPassword
Shows the new password activity. Note that the user might cancel the change.

 4.2 Standard Libraries included with Full Version

 - 395 -

 ResetPassword (NewPassword As String) As Boolean
Sets the given password as the device password. Requires the reset-password tag in the

policies file.

 SetPasswordQuality (QualityFlag As Int, MinimumLength As Int)
Sets the minimum allowed length and quality for device passwords. These settings will affect

new passwords. Requires the limit-password tag in the policies file.

QualityFlag - One of the password quality flags shown above.

MinimumLength - Password minimum length.

Example:
manager.SetPasswordQuality(manager.PASSWORD_QUALITY_ALPHANUMERIC, 4)

Animation Library
This library is included in the IDE installation package.

Animation
The Animation object allows you to animate views (controls). These small animations can

improve the user overall impression of your application. There are several types of

animations. The Initialize methods determine the animation type.

This is an Activity object; it cannot be declared under Sub Process_Globals.

For a sample program demonstrating animations, see here.

List of types:
Animation

Event: AnimationEnd
You can use this event to fire off another animation when the current one ends. Example:
Dim a6, a7, a8 As Animation

a6.InitializeTranslate("Animation", 0, 0, 0dip, 200dip)

Sub Animation_AnimationEnd

 If Sender = a6 Then

 a7.Start(Button6)

 Else If Sender = a7 Then

 a8.Start(Button6)

 End If

End Sub

Members:

 Duration As Long

 InitializeAlpha (EventName As String, FromAlpha As Float, ToAlpha As Float)

 InitializeRotate (EventName As String, FromDegrees As Float, ToDegrees As Float)

 InitializeRotateCenter (EventName As String, FromDegrees As Float, ToDegrees As

Float, View1 As View)

http://bit.ly/1dcOZ6u

 4.2 Standard Libraries included with Full Version

 - 396 -

 InitializeScale (EventName As String, FromX As Float, FromY As Float, ToX As Float,

ToY As Float)

 InitializeScaleCenter (EventName As String, FromX As Float, FromY As Float, ToX As

Float, ToY As Float, View1 As View)

 InitializeTranslate (EventName As String, FromDX As Float, FromDY As Float, ToDX

As Float, ToDY As Float)

 IsInitialized As Boolean

 REPEAT_RESTART As Int

 REPEAT_REVERSE As Int

 RepeatCount As Int

 RepeatMode As Int

 Start (View1 As View)

 Stop (View1 As View)

Duration As Long
Gets or sets the animation duration. Value is measured in milliseconds.

Example: Animation1.Duration = 1000

InitializeAlpha (EventName As String, FromAlpha As Float, ToAlpha As

Float)
Initializes an alpha animation. This animation affects the view’s transparency (fading effect).

The alpha values are from 0 to 1, where 0 is fully transparent and 1 is fully opaque.

FromAlpha - The first frame value.

ToAlpha - The last frame value.

InitializeRotate (EventName As String, FromDegrees As Float, ToDegrees

As Float)
Initializes a rotation animation. The view will rotate between the given values. Rotation

pivot is set to the top left corner.

FromDegrees - The first frame rotation value.

ToDegrees - The last frame rotation value.

InitializeRotateCenter (EventName As String, FromDegrees As Float,

ToDegrees As Float, View1 As View)
Similar to InitializeRotate, with the pivot set to the given view’s center.

InitializeScale (EventName As String, FromX As Float, FromY As Float,

ToX As Float, ToY As Float)
Initializes a scale animation. The view will be scaled (resized) during the animation. The

scaling centre will be set to the view’s top left corner.

FromX - The first frame horizontal scale.

FromY - The first frame vertical scale.

ToX - The last frame horizontal scale.

ToY - The last frame vertical scale.

 4.2 Standard Libraries included with Full Version

 - 397 -

InitializeScaleCenter (EventName As String, FromX As Float, FromY As

Float, ToX As Float, ToY As Float, View1 As View)
Similar to InitializeScale with the scaling center set to the given view’s center.

InitializeTranslate (EventName As String, FromDX As Float, FromDY As

Float, ToDX As Float, ToDY As Float)
Initializes a translation animation. The view will move according to the given values.

FromDX - First frame horizontal position relative to the original position.

FromDY - First frame vertical position relative to the original position.

ToDX - Last frame horizontal position relative to the original position.

ToDY - Last frame vertical position relative to the original position.

IsInitialized As Boolean
Whether this object has been initialized by calling one of the Initialize methods.

REPEAT_RESTART As Int
A constant used by RepeatMode.

REPEAT_REVERSE As Int
A constant used by RepeatMode.

RepeatCount As Int
Gets or sets the number of times the animation will repeat after the first play. A value of 0

means that it will play once. A value of 1 means that it will play and then repeat once.

Set to -1 for a non-stopping animation.

Example: Animation1.RepeatCount = 1

RepeatMode As Int
Gets or sets the repeat mode. Relevant only when RepeatCount is not 0. The default is

REPEAT_RESTART, which means that the animation will restart each time.

REPEAT_REVERSE causes the animation to repeat in reverse each time.

For example, if the animation moves the view to the right 100 pixels, in the next repeat it

will move to the left. Example:
Animation1.RepeatMode = Animation1.REPEAT_REVERSE

Start (View1 As View)
Starts animating the given view. Note that a single animation should not be applied to more

than one view at a time. Example:
Animation1.Start(Button1)

Stop (View1 As View)
Stops animating the given view.

Audio Library
This library is included in the IDE installation package.

List of types:
AudioRecordApp

 4.2 Standard Libraries included with Full Version

 - 398 -

Beeper

JetPlayer

MediaPlayerStream

SoundPool

VideoRecordApp

VideoView

AudioRecordApp
AudioRecordApp lets you use the default audio recorder application to record audio. After

initializing the object, you should call Record to start recording. Example:
Sub Process_Globals

 Dim audioRecorder As AudioRecordApp

 Dim videoRecorder As VideoRecordApp

End Sub

Sub Globals

 Dim vv As VideoView

End Sub

Sub Activity_Create(FirstTime As Boolean)

 If FirstTime Then

 audioRecorder.Initialize("audioRecorder")

 videoRecorder.Initialize("videoRecorder")

 End If

 vv.Initialize("vv")

 Activity.AddView(vv, 0, 0, 100%x, 100%y)

 Activity.AddMenuItem("Record Video", "RecordVideo")

 Activity.AddMenuItem("Record Audio", "RecordAudio")

 ToastMessageShow("Press on Menu button...", True)

End Sub

Sub RecordVideo_Click

 videoRecorder.Record(File.DirRootExternal, "1.mp4")

End Sub

Sub RecordAudio_Click

 audioRecorder.Record(File.DirRootExternal, "1.3gpp")

End Sub

Sub videoRecorder_RecordComplete (Success As Boolean)

 Log(Success)

 If Success Then

 vv.LoadVideo(File.DirRootExternal, "1.mp4")

 vv.Play

 End If

End Sub

Sub audioRecorder_RecordComplete (Success As Boolean)

 Log(Success)

 If Success Then

 vv.LoadVideo(File.DirRootExternal, "1.3gpp")

 vv.Play

 End If

End Sub

 4.2 Standard Libraries included with Full Version

 - 399 -

Event:

RecordComplete (Success As Boolean)
The RecordComplete event will be raised when recording completes.

Members:

 Initialize (EventName As String)

 Record (Dir As String, FileName As String)

Initialize (EventName As String)
Initializes the object and sets the sub that will handle the event.

Record (Dir As String, FileName As String)
Calls the recording application. Dir and FileName set the output file location.

Beeper
Plays a “beep” sound with the given duration and frequency. Example:
Dim b As Beeper

b.Initialize(300, 500)

b.Beep

Members:

 Beep

 Initialize (Duration As Int, Frequency As Int)

 Initialize2 (Duration As Int, Frequency As Int, VoiceChannel As Int)

 Release

 VOLUME_ALARM As Int

 VOLUME_MUSIC As Int

 VOLUME_NOTIFICATION As Int

 VOLUME_RING As Int

 VOLUME_SYSTEM As Int

 VOLUME_VOICE_CALL As Int

Beep
Plays the sound.

Initialize (Duration As Int, Frequency As Int)
Initializes the object with the given duration, measured in milliseconds, and the given

frequency, measured in Hertz. The music volume channel will be used.

Initialize2 (Duration As Int, Frequency As Int, VoiceChannel As Int)
Similar to Initialize. Allows you to set the volume channel.

Release
Releases the resources used by this beeper.

VOLUME_ALARM As Int
Alarms channel.

 4.2 Standard Libraries included with Full Version

 - 400 -

VOLUME_MUSIC As Int
Music channel.

VOLUME_NOTIFICATION As Int
Notifications channel.

VOLUME_RING As Int
Phone ring channel.

VOLUME_SYSTEM As Int
System sounds channel.

VOLUME_VOICE_CALL As Int
Voice calls channel.

JetPlayer
JET is an interactive music player for small embedded devices. It works in conjunction with

SONiVOX’s Embedded Audio Synthesizer (EAS) which is the MIDI playback device for

Android. Both the JET and EAS engines are integrated into the Android embedded platform

through the JetPlayer class, as well as inherent in the JET Creator application. As such, the

JET content author can be sure that the playback will sound exactly the same in both the

JET Creator and the final Android application playing back on Android mobile devices. More

details here.

Events:

QueuedSegmentsCountChanged (Count As Int)

CurrentUserIdChanged (UserId As Int, RepeatCount As Int)

Members:

 ClearQueue

 CloseFile

 Initialize (EventName As String)

 IsInitialized As Boolean

 LoadFile (Dir As String, File As String)

 MaxTracks As Int [read only]

 Pause

 Play

 QueueSegment (SegmentNum As Int, LibNum As Int, RepeatCount As Int, Transpose As

Int, MuteArray() As Boolean, UserId As Byte)

 Release

 SetMute (MuteArray() As Boolean, Sync As Boolean)

 SetTrackMute (Track As Int, Mute As Boolean, Sync As Boolean)

ClearQueue
Clears the segments queue.

http://developer.android.com/guide/topics/media/jet/jetcreator_manual.html

 4.2 Standard Libraries included with Full Version

 - 401 -

CloseFile
Closes the resources related to the loaded file.

Initialize (EventName As String)
Initializes the object and sets the Subs that will handle the JetPlayer events.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

LoadFile (Dir As String, File As String)
Loads a JET file.

MaxTracks As Int [read only]
Returns the maximum number of simultaneous tracks.

Pause
Pauses playback.

Play
Starts playing the segments queue.

QueueSegment (SegmentNum As Int, LibNum As Int, RepeatCount As Int,

Transpose As Int, MuteArray() As Boolean, UserId As Byte)
Adds a segment to the queue. No more than 3 segments are allowed.

SegmentNum - The segment identifier.

LibNum - The index of the sound bank associated with this segment. Pass -1 if there is no

sound bank.

RepeatCount - Number of times the segment will be repeated. 0 means that it will be played

once. Pass -1 to repeat indefinitely.

Transpose - The pitch transition. Should be from -12 to 12.

MuteArray - An array of booleans that sets the mute value of each track. The array length

must be equal to MaxTracks value.

UserId - An id given to this segment. When the current segment changes, the

CurrentUserIdChanged event is raised with this id (assuming that the id of the previous

segment was different).

Release
Releases all resources allocated for the JetPlayer.

SetMute (MuteArray() As Boolean, Sync As Boolean)
Sets the tracks’ mute state.

MuteArray - An array of booleans that sets the mute state of each track. The array length

must be equal to MaxTracks value.

Sync - If False, the change will be applied as soon as possible, otherwise the change will be

applied at the start of the next segment or next repeat.

SetTrackMute (Track As Int, Mute As Boolean, Sync As Boolean)
Similar to SetMute but only changes the state of a single track.

 4.2 Standard Libraries included with Full Version

 - 402 -

MediaPlayerStream
MediaPlayerStream is similar to MediaPlayer. Unlike MediaPlayer, which plays local files,

MediaPlayerStream plays audio streams which are available online. Another difference

between the objects is that, in this case, the Load method is asynchronous. Only when the

file is ready, the StreamReady event will be fired and you can start playing. According to the

Android documentation, the online resource must support progressive download.

Example:
Sub Process_Globals

 Dim mp As MediaPlayerStream

End Sub

Sub Globals

End Sub

Sub Activity_Create(FirstTime As Boolean)

 If FirstTime Then

 mp.Initialize("mp")

 End If

 mp.Load("http://www...")

End Sub

Sub mp_StreamReady

 Log("starts playing")

 mp.Play

End Sub

Sub mp_StreamError (ErrorCode As String, ExtraData As Int)

 Log("Error: " & ErrorCode & ", " & ExtraData)

 ToastMessageShow("Error: " & ErrorCode & ", " & ExtraData, True)

End Sub

Sub mp_StreamBuffer(Percentage As Int)

 Log(Percentage)

End Sub

Permissions:
android.permission.INTERNET

Events:

StreamReady
Fired when the file is ready to play. Once this event has fired, call Play to start playing the

stream.

StreamError (ErrorCode As String, ExtraData As Int)
This event is fired when there is an error with the stream. For example, if the target URL

does not exist, you would get an error with ErrorCode= MEDIA_ERROR_UNKNOWN and

ExtraData= -1004. For more about MediaPlayer errors, and lists of ErrorCodes and

EstraData Constants, see here.

StreamBuffer(Percentage As Int)
Percentage of a stream which has been downloaded.

Complete
This event fires when the stream has finished playing.

http://bit.ly/GVziCW

 4.2 Standard Libraries included with Full Version

 - 403 -

Members:

 Duration As Int [read only]

 Initialize (EventName As String)

 IsPlaying As Boolean

 Load (URL As String)

 Looping As Boolean

 Pause

 Play

 Release

 SetVolume (Right As Float, Left As Float)

 Stop

Duration As Int [read only]

Initialize (EventName As String)
Initializes the object.

EventName - Name of Subs that will handle the events.

IsPlaying As Boolean

Load (Url As String)
Starts loading the resource from the given Url. StreamReady event will be raised when the

stream is ready.

Looping As Boolean

Pause

Play

Release

SetVolume (Right As Float, Left As Float)
Sets the playing volume for each channel. The value should be from 0 to 1.

Stop

SoundPool
SoundPool holds a collection of short sounds which can be played with low latency. Each

sound has two Id values which you should work with. The first is the LoadId, which is

returned when loading the sound with Load. The second is the PlayId, which is returned

when you call Play. When working with SoundPool, it is useful to watch the unfiltered

LogCat for messages (for example when the sound is too long).

Members:

 Initialize (MaxStreams As Int)

 IsInitialized As Boolean

 Load (Dir As String, File As String) As Int

 Pause (PlayId As Int)

 4.2 Standard Libraries included with Full Version

 - 404 -

 Play (LoadId As Int, LeftVolume As Float, RightVolume As Float, Priority As Int, Loop

As Int, Rate As Float) As Int

 Release

 Resume (PlayId As Int)

 SetRate (PlayId As Int, Rate As Float)

 SetVolume (PlayId As Int, Left As Float, Right As Float)

 Stop (PlayId As Int)

 Unload (LoadId As Int)

Initialize (MaxStreams As Int)
Initializes the SoundPool and sets the maximum number of simultaneous streams.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Load (Dir As String, File As String) As Int
Loads a sound file and returns the sound LoadId. Example:
Dim LoadId As Int

LoadId = SP.Load(File.DirAssets, "sound.wav")

Pause (PlayId As Int)
Pauses the stream with the given PlayId.

Play (LoadId As Int, LeftVolume As Float, RightVolume As Float, Priority

As Int, Loop As Int, Rate As Float) As Int
Plays the sound with the matching LoadId and returns the PlayId. Returns 0 if there was an

error.

LoadId - The value returned when loading the file.

LeftVolume / RightVolume - The volume value (0 - 1)

Priority - A priority value which you assign to this sound. The higher the value, the higher

the priority. When the number of simultaneous streams is higher than the value set in

Initialize, the lowest priority stream will be stopped.

Loop - Number of times to repeat. Pass -1 to repeat indefinitely.

Rate - Playback rate (0 - 2).

Release
Releases all resources allocated to this object.

Resume (PlayId As Int)
Resumes the stream with the given PlayId.

SetRate (PlayId As Int, Rate As Float)
Sets the rate of the stream with the given PlayId. Rate is from 0 to 2.

SetVolume (PlayId As Int, Left As Float, Right As Float)
Sets the volume of the stream with the given PlayId. Left and Right are from 0 to 1.

Stop (PlayId As Int)
Stops the stream with the given PlayId.

 4.2 Standard Libraries included with Full Version

 - 405 -

Unload (LoadId As Int)
Unloads the stream with the given LoadId.

VideoRecordApp
VideoRecordApp lets you use the default video recorder application to record video.

After initializing the object, you should call Record to start recording. Example:
Sub Process_Globals

 Dim audioRecorder As AudioRecordApp

 Dim videoRecorder As VideoRecordApp

End Sub

Sub Globals

 Dim vv As VideoView

End Sub

Sub Activity_Create(FirstTime As Boolean)

 If FirstTime Then

 audioRecorder.Initialize("audioRecorder")

 videoRecorder.Initialize("videoRecorder")

 End If

 vv.Initialize("vv")

 Activity.AddView(vv, 0, 0, 100%x, 100%y)

 Activity.AddMenuItem("Record Video", "RecordVideo")

 Activity.AddMenuItem("Record Audio", "RecordAudio")

 ToastMessageShow("Press on Menu button...", True)

End Sub

Sub RecordVideo_Click

 videoRecorder.Record(File.DirRootExternal, "1.mp4")

End Sub

Sub RecordAudio_Click

 audioRecorder.Record(File.DirRootExternal, "1.3gpp")

End Sub

Sub videoRecorder_RecordComplete (Success As Boolean)

 Log(Success)

 If Success Then

 vv.LoadVideo(File.DirRootExternal, "1.mp4")

 vv.Play

 End If

End Sub

Sub audioRecorder_RecordComplete (Success As Boolean)

 Log(Success)

 If Success Then

 vv.LoadVideo(File.DirRootExternal, "1.3gpp")

 vv.Play

 End If

End Sub

Sub Activity_Resume

End Sub

Sub Activity_Pause (UserClosed As Boolean)

End Sub

 4.2 Standard Libraries included with Full Version

 - 406 -

Event RecordComplete (Success As Boolean)
The RecordComplete event will be raised when record completes.

Members:

 Initialize (EventName As String)

 Record (Dir As String, FileName As String)

Initialize (EventName As String)
Initializes the object and sets the sub that will handle the event.

Record (Dir As String, FileName As String)
Calls the recording application. Dir and FileName set the output file location.

VideoView
VideoView is a view that allows you to play video media inside your application. The

VideoView optionally shows a media controller when the user touches the view. The

Complete event is raised when playback is completed. A simple example of using VideoView:
Sub Globals

 Dim vv As VideoView

End Sub

Sub Activity_Create(FirstTime As Boolean)

 vv.Initialize("vv")

 Activity.AddView(vv, 10dip, 10dip, 250dip, 250dip)

 vv.LoadVideo(File.DirRootExternal, "somefile.mp4")

 vv.Play

End Sub

Sub vv_Complete

 Log("Playing completed")

End Sub

This is an Activity object; it cannot be declared under Sub Process_Globals.

Event: Complete
The Complete event is raised when playback is completed.

Members:

 Background As Drawable

 BringToFront

 Color As Int [write only]

 Duration As Int [read only]

 Enabled As Boolean

 Height As Int

 Initialize (EventName As String)

 Invalidate

 Invalidate2 (arg0 As Rect)

 Invalidate3 (arg0 As Int, arg1 As Int, arg2 As Int, arg3 As Int)

 IsInitialized As Boolean

 4.2 Standard Libraries included with Full Version

 - 407 -

 IsPlaying As Boolean

 Left As Int

 LoadVideo (Dir As String, FileName As String)

 MediaControllerEnabled As Boolean [write only]

 Pause

 Play

 Position As Int

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (arg0 As Bitmap)

 SetLayout (arg0 As Int, arg1 As Int, arg2 As Int, arg3 As Int)

 Stop

 Tag As Object

 Top As Int

 toString As String

 Visible As Boolean

 Width As Int

Background As Drawable

BringToFront

Color As Int [write only]

Duration As Int [read only]
Gets the video duration (in milliseconds).

Enabled As Boolean
If set to True then the VideoView will respond to events. If set to False, events are ignored.

Height As Int

Initialize (EventName As String)
Initialize the object and sets the name of the subs that will handle the events.

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

 4.2 Standard Libraries included with Full Version

 - 408 -

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

IsPlaying As Boolean
Returns TRUE if the video is currently playing.

Left As Int

LoadVideo (Dir As String, FileName As String)
Loads a video file and prepares it for playing. It is not possible to load files from the assets

folder.

Advanced: you can pass “http” to the Dir parameter and then a full URL (including http) to

the FileName. In this case, the online video will be streamed. Note that you need to add the

INTERNET permission for this to work.

MediaControllerEnabled As Boolean [write only]
Sets whether the media controller is enabled. It is enabled by default. Note that the media

player gets attached to the VideoView parent.

Pause
Pauses the playback.

Play
Starts or resumes playing.

Position As Int
Gets or sets the playing position (in milliseconds).

RemoveView

RequestFocus As Boolean

SendToBack

SetBackgroundImage (arg0 As Bitmap)

SetLayout (arg0 As Int, arg1 As Int, arg2 As Int, arg3 As Int)

Stop
Stops the playback.

Tag As Object

Top As Int

toString As String

Visible As Boolean
Whether the user can see the object.

 4.2 Standard Libraries included with Full Version

 - 409 -

Width As Int

Camera Library
This library is included in the IDE installation package.

List of types:
Camera

Camera
The camera object allows you to access the device cameras. This library is supported by

Android 1.6+. Note: if possible, it is recommended to work with the CameraEx class that

wraps this object and adds many features. The CameraEx class requires Android 2.3+.

Camera is an Activity object; it cannot be declared under Sub Process_Globals.

Permissions:
android.permission.CAMERA

Events:

Ready (Success As Boolean)
The Ready event will be raised when the Initialize action has finished opening the camera.

PictureTaken (Data() As Byte)
The PictureTaken event will be raised when the TakePicture action finishes and the picture

is ready.

Preview (Data() As Byte)
Once the StartPreview action has been taken on a Camera, the Preview event is raised

automatically whenever an image is ready.

FocusDone (Success As Boolean)
The FocusDone event will be raised when AutoFocus completes.

Members:

 AutoFocus

 CancelAutoFocus

 Initialize (Panel As ViewGroup, EventName As String)

 Initialize2 (Panel As ViewGroup, EventName As String, CameraId As Int)

 Release

 StartPreview

 StopPreview

 TakePicture

AutoFocus
Starts auto-focus function. The FocusDone event will be raised when the operation

completes. You can check whether the “auto” focus mode is supported with CameraEx class.

 4.2 Standard Libraries included with Full Version

 - 410 -

CancelAutoFocus
Cancels the auto-focus operation. Does nothing if no such operation is in progress.

Initialize (Panel As ViewGroup, EventName As String)
Initializes the rear-facing camera. If the device only has one camera which is front-facing,

use Initialize2.

Panel - The preview images will be displayed on the panel.

EventName - Events subs prefix.

The Ready event will be raised when the camera has finished opening.

Initialize2 (Panel As ViewGroup, EventName As String, CameraId As Int)
Same as Initialize, but you can specify which camera to use.

CameraId - the Id of the hardware camera. If there is only one camera on the device, its Id is

0. If there are two cameras, use 0 for the rear-facing camera, 1 for the front-facing one.

The Ready event will be raised when the camera has finished opening.

This method is only available from Android 2.3+.

Release
Releases the camera object and allows other processes to access the camera.

StartPreview
Starts displaying the preview images. Once the StartPreview action has been taken on a

Camera, the Preview event is raised automatically whenever an image is ready.

StopPreview
Stops displaying the preview images.

TakePicture
Takes a picture. When the picture is ready, the PictureTaken event will be raised. You

should not call TakePicture while another picture is currently being taken. The preview

images are stopped after calling this method. You can call StartPreview to restart the

preview images.

The image will be stored in the folder: /mnt/sdcard/DCIM/Camera.

Daydream Library
This library is included in the IDE installation package.

List of types:
Daydream

Daydream
Daydream is a new “screen saver” feature introduced in Android 4.2. See the Daydream

tutorial for more information.

http://bit.ly/15mgqWA
http://bit.ly/15mgqWA

 4.2 Standard Libraries included with Full Version

 - 411 -

Events:

DreamStarted

SizeChanged

DreamStopped

Members:

 Canvas As CanvasWrapper [read only]

 Finish

 FullScreen As Boolean

 Initialize (EventName As String)

 Interactive As Boolean

 Panel As PanelWrapper [read only]

 ScreenBright As Boolean

Canvas As CanvasWrapper [read only]
A placeholder for Canvas.

Finish
Manually finishes the dream.

FullScreen As Boolean
Gets or sets whether the system bar appears.

Initialize (EventName As String)
Initializes the object and sets the subs that will handle the events.

Interactive As Boolean
Gets or sets whether user interactions will be handled instead of finishing the dream.

Panel As PanelWrapper [read only]
Returns the main panel.

ScreenBright As Boolean
Gets or sets whether the screen should stay bright.

GameView Library
This library is included in the IDE installation package. GameView is a view that allows you

to draw hardware accelerated graphics. Compared to software accelerated graphics,

hardware accelerated graphics are many times faster. Using hardware accelerated graphics,

it is possible to create smooth, real-time games.

Note: the acceleration method used by GameView is only available from Android 3.0 and

above. This also means that, under [Tools > Configure paths], you need to reference

android.jar on Android platform 11 or above.

Tutorial
For a tutorial on creating a 2D game using GameView see

 4.2 Standard Libraries included with Full Version

 - 412 -

http://www.basic4ppc.com/forum/Basic4Android-getting-started-tutorials/20038-gameview-

create-2d-android-games-part-i.html

List of types:
BitmapData

GameView

BitmapData

Members:

 Bitmap As BitmapWrapper

 Delete As Boolean

 DestRect As RectWrapper

 Flip As Int

 FLIP_BOTH As Int

 FLIP_HORIZONTALLY As Int

 FLIP_NONE As Int

 FLIP_VERTICALLY As Int

 Rotate As Int

 SrcRect As RectWrapper

Bitmap As BitmapWrapper
The bitmap that will be drawn.

Delete As Boolean
If Delete is True, then the BitmapData will be removed from the list when GameView is

redrawn.

DestRect As RectWrapper
The target rectangle. Determines the location and size of the drawn bitmap.

Flip As Int
Flips the bitmap based on one of the FLIP constants.

FLIP_BOTH As Int

FLIP_HORIZONTALLY As Int

FLIP_NONE As Int

FLIP_VERTICALLY As Int

Rotate As Int
Number of degrees to rotate the bitmap.

SrcRect As RectWrapper
The source rectangle. Determines the bitmap’s region that will be drawn. The complete

bitmap will be drawn if the rectangle is uninitialized.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/20038-gameview-create-2d-android-games-part-i.html
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/20038-gameview-create-2d-android-games-part-i.html

 4.2 Standard Libraries included with Full Version

 - 413 -

GameView
A view that draws itself with hardware accelerated graphics. Suitable for 2d games. See this

tutorial. The hardware acceleration method used is only available in Android 3.0 and above

(API level 11 and above).

This is an Activity object; it cannot be declared under Sub Process_Globals.

Events:
Touch (Action As Int, X As Float, Y As Float)

Members:

 Background As Drawable

 BitmapsData As List [read only]

 BringToFront

 Color As Int [write only]

 Enabled As Boolean

 Height As Int

 Initialize (arg1 As String)

 Invalidate

 Invalidate2 (arg0 As Rect)

 Invalidate3 (arg0 As Int, arg1 As Int, arg2 As Int, arg3 As Int)

 IsHardwareAccelerated As Boolean [read only]

 IsInitialized As Boolean

 Left As Int

 RemoveView

 RequestFocus As Boolean

 SendToBack

 SetBackgroundImage (arg0 As Bitmap)

 SetLayout (arg0 As Int, arg1 As Int, arg2 As Int, arg3 As Int)

 Tag As Object

 Top As Int

 Visible As Boolean

 Width As Int

Background As Drawable

BitmapsData As List [read only]
Returns the list of BitmapData objects.

BringToFront

Color As Int [write only]

Enabled As Boolean
If set to True then the GameView will respond to events. If set to False, events are ignored.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/20038-gameview-create-2d-android-games-part-i.html

 4.2 Standard Libraries included with Full Version

 - 414 -

Height As Int

Initialize (arg1 As String)

Invalidate
Invalidates the whole view forcing the view to redraw itself. Redrawing will only happen

when the program can process messages, usually when it finishes running the current code.

If you only need to redraw part of the view, it is usually quicker to use Invalidate2 or

Invalidate3.

Invalidate2 (Rect1 As Rect)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
Invalidates anything inside the given rectangle that is part of this view. Redrawing will only

happen when the program can process messages, usually when it finishes running the

current code.

IsHardwareAccelerated As Boolean [read only]
Returns TRUE if hardware acceleration is supported.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Left As Int

RemoveView

RequestFocus As Boolean

SendToBack

SetBackgroundImage (arg0 As Bitmap)

SetLayout (arg0 As Int, arg1 As Int, arg2 As Int, arg3 As Int)

Tag As Object

Top As Int

Visible As Boolean
Whether the user can see the object.

Width As Int

GPS Library
This library is included in the IDE installation package. The GPS library allows you to get

information from the phone’s GPS device. There are three types of relevant objects:

 The main one is GPS. The GPS manages the connection and events.

 The second is Location. A Location is a structure that holds the data available regarding

a specific “fix”. The data includes the latitude and longitude coordinates, the time

 4.2 Standard Libraries included with Full Version

 - 415 -

(expressed as ticks) of this fix and other information like bearing, altitude and so on. It

may happen that not all information is available (due to poor reception for example). The

Location also includes other functionalities like calculating the distance and bearing to

another location and methods to convert the coordinates string formats. Usually you will

work with Location objects passed to you in the LocationChanged events. However, you

can also initialize such objects yourself (this is useful for calculating distance and bearing

between locations).

 The third relevant object is GPSSatellite. This is a structure that holds various

information regarding the currently known satellites. It is passed to you in the

GPSStatus event.

See the GPS tutorial for more information about this library.

List of types:
GPS

GPSSatellite

Location

GPS
The main object that raises GPS events.

Note that this library requires Android 2.0 or above.

Permissions:
android.permission.ACCESS_FINE_LOCATION

Events:

GpsStatus (Satellites As List)
This event, which returns a list of GPSSatellite objects, is raised once per second, regardless

of the MinimumTime parameter of the Start command.

LocationChanged (Location1 As Location)
This event is generated when the GPS detects that the device has moved. Its frequency

depends upon the MinimumDistance of the Start command.

Location1 – The new location of the device.

NMEA (TimeStamp As Long, Sentence As String)
This event contains Sentences (lines of data) in NMEA format (as specified by the National

Marine Electronics Association) containing details about the GPS sensor. These events are

raised every few seconds.

UserEnabled (Enabled As Boolean)
This event is generated when the user changes the status of the GPS sensor.

Members:

 GPSEnabled As Boolean [read only]

 Initialize (EventName As String)

 IsInitialized As Boolean

 LocationSettingsIntent As Intent [read only]

 Start (MinimumTime As Long, MinimumDistance As Float)

http://bit.ly/18OcTkc

 4.2 Standard Libraries included with Full Version

 - 416 -

 Stop

GPSEnabled As Boolean [read only]
Returns TRUE if the user has enabled the GPS.

Initialize (EventName As String)

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

LocationSettingsIntent As Intent [read only]
Returns the intent that is used to show the global locations settings.

Example:
If GPS1.GPSEnabled = False Then

StartActivity(GPS1.LocationSettingsIntent)

Start (MinimumTime As Long, MinimumDistance As Float)
Starts listening for events.

MinimumTime - The shortest period (measured in milliseconds) between events (other than

GpsStatus). Pass 0 for highest frequency.

MinimumDistance - The shortest change in distance (measured in meters) for which the

LocationChanged event is raised. Pass 0 for highest frequency.

Stop
Stops listening to the GPS. You will usually want to call Stop inside Sub Activity_Pause.

GPSSatellite
The GPSSatellite object holds various information about a GPS satellite. A List with the

available satellites is passed to the GpsStatus event.

Members:

 Azimuth As Float [read only]

 Elevation As Float [read only]

 IsInitialized As Boolean

 Prn As Int [read only]

 Snr As Float [read only]

 UsedInFix As Boolean [read only]

Azimuth As Float [read only]
Returns the satellite azimuth in degrees (0 - 360).

Elevation As Float [read only]
Returns the satellite elevation in degrees (0 - 90).

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Prn As Int [read only]
Returns the PRN (pseudo-random number) for the satellite.

 4.2 Standard Libraries included with Full Version

 - 417 -

Snr As Float [read only]
Returns the signal to noise ratio for the satellite.

UsedInFix As Boolean [read only]
Returns TRUE if this satellite was used to calculate the most recent fix.

Location
A Location object holds various information about a specific GPS fix. In most cases, you will

work with locations that are passed to the GPS LocationChanged event. The Location

object can also be used to calculate distance and bearing to other locations.

Members:

 Accuracy As Float

 AccuracyValid As Boolean [read only]

 Altitude As Double

 AltitudeValid As Boolean [read only]

 Bearing As Float

 BearingTo (TargetLocation As Location) As Float

 BearingValid As Boolean [read only]

 ConvertToMinutes (Coordinate As Double) As String

 ConvertToSeconds (Coordinate As Double) As String

 DistanceTo (TargetLocation As Location) As Float

 Initialize

 Initialize2 (Latitude As String, Longitude As String)

 IsInitialized As Boolean

 Latitude As Double

 Longitude As Double

 Speed As Float

 SpeedValid As Boolean [read only]

 Time As Long

Accuracy As Float
Gets or sets the fix accuracy (meters).

AccuracyValid As Boolean [read only]
Returns True if the fix includes accuracy value.

Altitude As Double
Gets or sets the fix altitude (meters).

AltitudeValid As Boolean [read only]
Returns True if the fix includes altitude value.

 4.2 Standard Libraries included with Full Version

 - 418 -

Bearing As Float
Gets or sets the bearing of the current location relative to the previous location. The value is

given in degrees measured clockwise from true North. Check the value of BearingValid

before using this value.

BearingTo (TargetLocation As Location) As Float
Calculates the bearing to TargetLocation from the current location, measured clockwise in

degrees, starting from North.

BearingValid As Boolean [read only]
Returns True if the location includes bearing value.

ConvertToMinutes (Coordinate As Double) As String
Converts the given Coordinate to a string formatted with the following format:

[+-]DDD:MM.MMMMM (Minute = 1 / 60 of a degree)

ConvertToSeconds (Coordinate As Double) As String
Converts the given Coordinate to a string formatted with the following format:

[+-]DDD:MM:SS.SSSSS (Minute = 1 / 60 of a degree, Second = 1 / 3600 of a degree)

DistanceTo (TargetLocation As Location) As Float
Returns the distance from the current location to the given TargetLocation, measured in

meters.

Initialize
Initializes an empty Location object.

Initialize2 (Latitude As String, Longitude As String)
Initializes the Location object with the given Latitude and Longitude.

Values can be formatted in any of the three formats:

Degrees: [+-]DDD.DDDDD

Minutes: [+-]DDD:MM.MMMMM (Minute = 1 / 60 of a degree)

Seconds: [+-]DDD:MM:SS.SSSSS (Second = 1 / 3600 of a degree)

Example:
Dim L1 As Location

L1.Initialize2("45:30:30", "45:20:15")

IsInitialized As Boolean
Whether this object has been initialized by calling one of the Initialize methods.

Latitude As Double
Gets or sets the fix latitude (degrees from -90 (South Pole) to 90 (North Pole)).

Longitude As Double
Gets or sets the fix longitude (degrees from -180 to 180, positive values represent the eastern

hemisphere).

Speed As Float
Gets or sets the fix speed (meters / second).

SpeedValid As Boolean [read only]
Returns True if the fix includes speed value.

 4.2 Standard Libraries included with Full Version

 - 419 -

Time As Long
Gets or sets the time of the GPS fix, given in ticks.

HTTP Library
This library is included in the IDE installation package. It allows you to communicate with

web services and to download resources from the web. Because network communication can

be slow and fragile, this library handles the requests and responses in the background and

raises events when a task is ready.

Note that two modules, available from HttpUtils2, extend the functionality of this library

and make it easier to access web services.

List of types:
HttpClient

HttpRequest

HttpResponse

HttpClient
HttpClient allows you to make HTTP requests. Instead of using HttpClient directly, it is

recommended to use HttpUtil2 modules which are much simpler to use.

Permissions:
android.permission.INTERNET

Events:

ResponseSuccess (Response As HttpResponse, TaskId As Int)

ResponseError (Response As HttpResponse, Reason As String, StatusCode

As Int, TaskId As Int)

Members:

 Execute (HttpRequest As HttpRequest, TaskId As Int) As Boolean

 ExecuteCredentials (HttpRequest As HttpRequest, TaskId As Int, UserName As String,

Password As String) As Boolean

 Initialize (EventName As String)

 InitializeAcceptAll (EventName As String)

 IsInitialized As Boolean

 SetHttpParameter (Name As String, Value As Object)

 SetProxy (Host As String, Port As Int, Scheme As String)

 SetProxy2 (Host As String, Port As Int, Scheme As String, Username As String,

Password As String)

Execute (HttpRequest As HttpRequest, TaskId As Int) As Boolean
Executes the HttpRequest asynchronously. ResponseSuccess or ResponseError events

will be fired later. Note that in many cases the Response object passed in the

http://bit.ly/19SbQnA
http://bit.ly/19SbQnA

 4.2 Standard Libraries included with Full Version

 - 420 -

ResponseError event will be Null. If there is a request with the same TaskId already

running, then this method will return False and the new request will not be submitted.

ExecuteCredentials (HttpRequest As HttpRequest, TaskId As Int,

UserName As String, Password As String) As Boolean
Same behavior as Execute. The UserName and Password will be used for Basic or Digest

authentication. Digest authentication is only supported for GET requests.

Initialize (EventName As String)
Initializes this object. IMPORTANT: this object should be declared in Sub

Process_Globals.

EventName - The prefix that will be used for ResponseSuccess and ResponseError events.

InitializeAcceptAll (EventName As String)
Similar to Initialize, with one important difference. All SSL certificates will be automatically

accepted.

This method should only be used when trying to connect to a server located in a secured

network.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

SetHttpParameter (Name As String, Value As Object)
Sets the value of the parameter with the given name.

SetProxy (Host As String, Port As Int, Scheme As String)
Sets the proxy to use for the connections.

Host - Proxy host name or IP.

Port - Proxy port.

Scheme - Scheme name. Usually “http”.

SetProxy2 (Host As String, Port As Int, Scheme As String, Username As

String, Password As String)
Sets the proxy to use for the connections, with the required credentials.

HttpRequest
Holds the target URL and other data sent to the web server.

The initial time-out is to 30000 milliseconds (30 seconds).

Members:

 InitializeDelete (Url As String)

 InitializeGet (Url As String)

 InitializeHead (Url As String)

 InitializePost (Url As String, InputStream As java.io.InputStream, Length As Int)

 InitializePost2 (Url As String, Data() As Byte)

 InitializePut (Url As String, InputStream As java.io.InputStream, Length As Int)

 InitializePut2 (Url As String, Data() As Byte)

 RemoveHeaders (Name As String)

 4.2 Standard Libraries included with Full Version

 - 421 -

 SetContentEncoding (Encoding As String)

 SetContentType (ContentType As String)

 SetHeader (Name As String, Value As String)

 Timeout As Int [write only]

InitializeDelete (Url As String)
Initializes the request and sets it to be an HTTP Delete method.

InitializeGet (Url As String)
Initializes the request and sets it to be an HTTP Get method.

InitializeHead (Url As String)
Initializes the request and sets it to be an HTTP Head method.

InitializePost (Url As String, InputStream As java.io.InputStream, Length

As Int)
Initializes the request and sets it to be an HTTP Post method. The specified InputStream

will be read and added to the request.

InitializePost2 (Url As String, Data() As Byte)
Initializes the request and sets it to be an HTTP Post method. The specified Data array will

be added to the request. Unlike InitializePost, this method will enable the request to

retry and send the data several times in case of IO errors.

InitializePut (Url As String, InputStream As java.io.InputStream, Length

As Int)
Initializes the request and sets it to be an HTTP Put method. The specified InputStream will

be read and added to the request.

InitializePut2 (Url As String, Data() As Byte)
Initializes the request and sets it to be an HTTP Put method. The specified Data array will

be added to the request.

RemoveHeaders (Name As String)
Removes all headers with the given name.

SetContentEncoding (Encoding As String)
Sets the encoding header of the request.

This method should only be used with Post or Put requests.

SetContentType (ContentType As String)
Sets the Mime header of the request. This method should only be used with Post or Put

requests.

SetHeader (Name As String, Value As String)
Sets the value of the first header with the given name. If no such header exists, then a new

header will be added.

Timeout As Int [write only]
Sets the request timeout (measured in milliseconds).

 4.2 Standard Libraries included with Full Version

 - 422 -

HttpResponse
An object that holds the response returned from the server. The object is passed in the

ResponseSuccess event. You can choose to read the response synchronously or

asynchronously. It is important to release this object when it is not used anymore by calling

Release.

Events:
StreamFinish (Success As Boolean, TaskId As Int)

Members:

 ContentEncoding As String [read only]

 ContentLength As Long [read only]

 ContentType As String [read only]

 GetAsynchronously (EventName As String, Output As java.io.OutputStream,

CloseOutput As Boolean, TaskId As Int) As Boolean

 GetHeaders As Map

 GetInputStream As InputStreamWrapper

 GetString (DefaultCharset As String) As String

 Release

 StatusCode As Int [read only]

ContentEncoding As String [read only]
Returns the content encoding header.

ContentLength As Long [read only]
Returns the content length header.

ContentType As String [read only]
Returns the content type header.

GetAsynchronously (EventName As String, Output As

java.io.OutputStream, CloseOutput As Boolean, TaskId As Int) As Boolean
Asynchronously reads the response and writes it to the given OutputStream. If there is a

request with the same TaskId already running, then this method will return False, and the

response object will be released. The StreamFinish event will be raised after the response

has been fully read.

EventName - The sub that will handle the StreamFinish event.

Output - The stream from the server will be written to this stream.

CloseOutput - Whether to close the specified output stream when done.

TaskId - The task id given to this task.

Example:

 4.2 Standard Libraries included with Full Version

 - 423 -

Sub Http_ResponseSuccess (Response As HttpResponse, TaskId As Int)

 Response.GetAsynchronously("ImageResponse", _

 File.OpenOutput(File.DirInternalCache, "image.jpg", False), True,

TaskId)

End Sub

Sub ImageResponse_StreamFinish (Success As Boolean, TaskId As Int)

 If Success = False Then

 Msgbox(LastException.Message, "Error")

 Return

 End If

 ImageView1.Bitmap = LoadBitmap(File.DirInternalCache, "image.jpg")

End Sub

GetHeaders As Map
Returns a Map object with the response headers. Each element is made of a key which is the

header name and a value which is a list containing the values (one or more). Example:
Dim list1 As List

list1 = response.GetHeaders.Get("Set-Cookie")

For i = 0 To list1.Size - 1

 Log(list1.Get(i))

Next

GetInputStream As InputStreamWrapper
This method is deprecated and will not work properly on Android 4+ device.

Use GetAsynchronously instead.

GetString (DefaultCharset As String) As String
This method is deprecated and will not work properly on Android 4+ device.

Use GetAsynchronously instead.

Release
Frees resources allocated for this object.

StatusCode As Int [read only]
Returns the response HTTP code.

IME Library
Android has very good support for custom input method editors (IMEs). The downside for

this powerful feature is that interacting with the soft keyboard can be sometimes quite

complicated. This library, which is included in the IDE installation package, includes several

utilities that will help you better handle the soft keyboard. A tutorial with a working

example is available here.

http://bit.ly/14hx2OB

 4.2 Standard Libraries included with Full Version

 - 424 -

Example
Sub Globals

 Dim IME1 As IME

End Sub

Sub Activity_Create(FirstTime As Boolean)

 IME1.Initialize("IME")

End Sub

List of types:
IME

IME
This is an Activity object; it cannot be declared under Sub Process_Globals.

Events:

HeightChanged (NewHeight As Int, OldHeight As Int)
This event is raised when the height of the keyboard changes.

HandleAction As Boolean
This event is raised by the EditText which is specified by the member

AddHandleActionEvent when the user clicks the action button (the button that shows
Next or Done) on the keyboard. For an example, see below. The return value specifies

whether to keep the keyboard visible. Returning True will keep it visible, returning False

will close the keyboard.

Members:

 AddHandleActionEvent (EditText1 As EditText)

 AddHeightChangedEvent

 HideKeyboard

 Initialize (EventName As String)

 SetCustomFilter (EditText1 As EditText, DefaultInputType As Int, AcceptedCharacters

As String)

 ShowKeyboard (View1 As View)

AddHandleActionEvent (EditText1 As EditText)
Adds the HandleAction event to the given EditText. Example:
Sub Activity_Create(FirstTime As Boolean)

 IME1.Initialize("IME1")

 IME1.AddHandleActionEvent(edtTextToSpeak)

End Sub

 4.2 Standard Libraries included with Full Version

 - 425 -

Sub IME1_HandleAction As Boolean

 Dim edtTxt As EditText

 edtTxt = Sender

 If edtTxt.Text.StartsWith("a") = False Then

 ToastMessageShow("Text must start with 'a'", True)

 'Consume the event.

 'The keyboard will not be closed

 Return True

 Else

 Return False 'will close the keyboard

 End If

End Sub

AddHeightChangedEvent
Enables the HeightChanged event. This event is raised when the soft keyboard state

changes. You can use this event to resize other views to fit the new screen size.

Note that this event will not be raised in full screen activities (an Android limitation).

HideKeyboard
Hides the soft keyboard if it is visible.

Initialize (EventName As String)
Initializes the object and sets the subs that will handle the events.

SetCustomFilter (EditText1 As EditText, DefaultInputType As Int,

AcceptedCharacters As String)
Sets a custom filter.

EditText - The target EditText.

DefaultInputType - Sets the keyboard mode.

AcceptedCharacters - The accepted characters.

Example: Create a filter that will accept IP addresses (numbers with multiple dots)
IME.SetCustomFilter(EditText1, EditText1.INPUT_TYPE_NUMBERS,

"0123456789.")

ShowKeyboard (View1 As View)
Sets the focus to the given view and opens the soft keyboard.

The keyboard will only show if the view has received the focus.

JSON Library
This library is included in the IDE installation package.

List of types:
JSONGenerator

JSONParser

JSONGenerator
This object generates JSON strings. It can be initialized with a Map or a List. Both can

contain other Maps or Lists. See the JSON tutorial.

http://bit.ly/18clue0

 4.2 Standard Libraries included with Full Version

 - 426 -

Members:

 Initialize (Map As Map)

 Initialize2 (List As List)

 ToPrettyString (Indent As Int) As String

 ToString As String

Initialize (Map As Map)
Initializes the object with the given Map.

Initialize2 (List As List)
Initializes the object with the given List.

ToPrettyString (Indent As Int) As String
Creates a JSON string from the initialized object. The string will be indented and easier for

reading. Note that the string created is a valid JSON string.

Indent - Number of spaces to add to each level.

ToString As String
Creates a JSON string from the initialized object. This string does not include any extra

whitespace.

JSONParser
Parses JSON formatted strings. See here for a description of JSON. JSON objects are

converted to Maps and JSON arrays are converted to Lists. After initializing the object, you

will usually call NextObject to get a single Map object. If the JSON string top level value is

an array, you should call NextArray. Afterward, you should work with the Map or List and

fetch the required data. See the JSON tutorial for more information. Typical code:
Dim JSON As JSONParser

Dim Map1 As Map

JSON.Initialize(File.ReadString(File.DirAssets, "example.json")) 'Read

the text from a file.

Map1 = JSON.NextObject

Members:

 Initialize (Text As String)

 IsInitialized As Boolean

 NextArray As List

 NextObject As Map

 NextValue As Object

Initialize (Text As String)
Initializes the object and sets the text that will be parsed.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

NextArray As List
Parses the text assuming that the top level value is an array.

http://www.json.org/
http://bit.ly/18clue0

 4.2 Standard Libraries included with Full Version

 - 427 -

NextObject As Map
Parses the text assuming that the top level value is an object.

NextValue As Object
Parses the text assuming that the top level value is a simple value.

LiveWallpaper Library
This library is included in the IDE installation package.

List of types:
LWEngine

LWManager

LWEngine
Represents a wallpaper instance.

A tutorial is available here.

Members:

 Canvas As CanvasWrapper [read only]

 CurrentOffsetX As Int [read only]

 CurrentOffsetY As Int [read only]

 FullWallpaperHeight As Int [read only]

 FullWallpaperWidth As Int [read only]

 IsInitialized As Boolean

 IsPreview As Boolean [read only]

 IsVisible As Boolean [read only]

 Rect As RectWrapper

 Refresh (DirtyRect As Rect)

 RefreshAll

 ScreenHeight As Int [read only]

 ScreenWidth As Int [read only]

 Tag As Object

Canvas As CanvasWrapper [read only]
Returns the canvas which is used to draw on the wallpaper.

Changes will not be visible till you call Refresh or RefreshAll.

CurrentOffsetX As Int [read only]
Returns the current horizontal offset related to the full wallpaper width.

CurrentOffsetY As Int [read only]
Returns the current vertical offset related to the full wallpaper height.

FullWallpaperHeight As Int [read only]
Returns the full wallpaper height.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/12605-android-live-wallpaper-tutorial.html

 4.2 Standard Libraries included with Full Version

 - 428 -

FullWallpaperWidth As Int [read only]
Returns the full wallpaper width. A wallpaper can be made of several screens.

IsInitialized As Boolean
Returns TRUE if this object is initialized.

IsPreview As Boolean [read only]
Returns TRUE if this wallpaper is running in “preview mode”.

IsVisible As Boolean [read only]
Returns TRUE if this wallpaper is visible.

Rect As RectWrapper
A convenient Rect object which you can use. This object is not used internally.

Refresh (DirtyRect As Rect)
Refreshes the given region.

RefreshAll
Refreshes the complete screen.

ScreenHeight As Int [read only]
Returns the screen height.

ScreenWidth As Int [read only]
Returns the screen width.

Tag As Object
Gets or sets the Tag value. This is a place holder which can be used to store additional data.

LWManager
Manages the wallpaper events and the timer. A tutorial is available here.

Events:

SizeChanged (Engine As LWEngine)

Touch (Engine As LWEngine, Action As Int, X As Float, Y As Float)

VisibilityChanged (Engine As LWEngine, Visible As Boolean)

EngineDestroyed (Engine As LWEngine)

Tick (Engine As LWEngine)

OffsetChanged (Engine As LWEngine)

Members:

 Initialize (EventName As String, TouchEventsEnabled As Boolean)

 StartTicking (IntervalMs As Int)

 StopTicking

Initialize (EventName As String, TouchEventsEnabled As Boolean)
Initializes the object.

EventName - Sets the Subs that will handle the events.

http://bit.ly/17dre8v

 4.2 Standard Libraries included with Full Version

 - 429 -

TouchEventsEnabled - Whether the wallpaper should raise the Touch event when the user

touches the screen.

StartTicking (IntervalMs As Int)
Starts the internal timer.

IntervalMs - Interval (in milliseconds).

StopTicking
Stops the internal timer.

Network Library
This library, which is included in the IDE installation package, includes two objects for

working with TCP (Socket and ServerSocket) and two objects for working with UDP

(UDPSocket and UDPPacket).

Using a Socket, you can communicate with other devices and computers over TCP/IP.

ServerSocket allows you to listen for incoming connections. Once a connection is

established, you will receive a Socket object that will be used for handling this specific

connection. See the Network tutorial for more information.

A UDPSocket supports sending and receiving UDPPackets.

List of types:
ServerSocket

Socket

UDPPacket

UDPSocket

ServerSocket
The ServerSocket object allows other machines to connect to this machine.

The ServerSocket listens to a specific port. Once a connection arrives, the NewConnection

event is raised with a Socket object. This Socket object should be used to communicate with

this client. You may call Listen again and receive more connections. A single ServerSocket

can handle many connections. For each connection, there should be one Socket object.

Permissions:
android.permission.INTERNET

android.permission.ACCESS_WIFI_STATE

Event: NewConnection (Successful As Boolean, NewSocket As Socket)

Members:

 Close

 GetMyIP As String

 GetMyWifiIP As String

 Initialize (Port As Int, EventName As String)

 IsInitialized As Boolean

 Listen

http://bit.ly/17c4yY7

 4.2 Standard Libraries included with Full Version

 - 430 -

Close
Closes the ServerSocket. This will not close any other sockets.

You should call Initialize if you want to use this object again.

GetMyIP As String
Returns the server’s IP. Will return “127.0.0.1” (localhost) if no other IP is found. This

method will return the wifi network IP if it is available.

GetMyWifiIP As String
Returns the IP address of the wifi network. Returns “127.0.0.1” (localhost) if not connected.

Initialize (Port As Int, EventName As String)
Initializes the ServerSocket.

Port - The port that the server will listen to. Note that you should call Listen to start

listening. Port numbers lower than 1024 are restricted by the system.

EventName - The event Sub prefix name.

IsInitialized As Boolean
Returns TRUE if the object is initialized.

Listen
Starts listening in the background for incoming connections. When a connection is

established, the NewConnection event is raised. If the connection is successful, a Socket

object will be passed in the event. Calling Listen while the ServerSocket is listening will not

do anything.

Socket
The Socket object is an endpoint for network communication. If you are connecting to a

server, then you should initialize a Socket object and call Connect with the server address.

The Connected event will be raised when the connection is ready or if the connection has

failed.

Sockets are also used by the server. Once a new incoming connection is established, the

NewConnection event will be raised and an initialized Socket object will be passed as a

parameter.

Once a socket is connected, you should use its InputStream and OutputStream to

communicate with the other machine.

Permissions:
android.permission.INTERNET

Event: Connected (Successful As Boolean)

Members:

 Close

 Connect (Host As String, Port As Int, TimeOut As Int)

 Connected As Boolean [read only]

 Initialize (EventName As String)

 InputStream As java.io.InputStream [read only]

 4.2 Standard Libraries included with Full Version

 - 431 -

 IsInitialized As Boolean

 OutputStream As java.io.OutputStream [read only]

 ResolveHost (Host As String) As String

 TimeOut As Int

Close
Closes the socket and the streams. It is safe to call this method multiple times.

Connect (Host As String, Port As Int, TimeOut As Int)
Tries to connect to the given address. The connection is done in the background. The

Connected event will be raised when the connection is ready or if it has failed.

Host - The host name or IP.

Port - Port number.

TimeOut - Connection timeout. Value is specified in milliseconds. Pass 0 to disable the

timeout.

Connected As Boolean [read only]
Returns TRUE if the socket is connected.

Initialize (EventName As String)
Initializes a new socket.

InputStream As java.io.InputStream [read only]
Returns the socket’s InputStream which is used to read data.

IsInitialized As Boolean
Returns TRUE if the object was initialized.

OutputStream As java.io.OutputStream [read only]
Returns the socket’s OutputStream which is used to write data.

ResolveHost (Host As String) As String
Resolves the host name and returns the IP address.

This method is deprecated and will not work properly on Android 4+ devices.

TimeOut As Int
Gets or sets the timeout of the socket’s InputStream. Value is specified in milliseconds. By

default there is no timeout.

UDPPacket
A packet of data that is being sent or received. To send a packet, call one of the Initialize

methods and then send the packet by passing it to UDPSocket.Send. When a packet arrives,

you can get the data in the packet from the available properties.

Members:

 Data() As Byte [read only]

 Host As String [read only]

 HostAddress As String [read only]

 Initialize (Data() As Byte, Host As String, Port As Int)

 4.2 Standard Libraries included with Full Version

 - 432 -

 Initialize2 (Data() As Byte, Offset As Int, Length As Int, Host As String, Port As Int)

 IsInitialized As Boolean

 Length As Int [read only]

 Offset As Int [read only]

 Port As Int [read only]

 toString As String

Data() As Byte [read only]
Gets the data array received.

Host As String [read only]
This method is deprecated and will not work properly on Android 4+ device.

Use HostAddress instead.

HostAddress As String [read only]
Gets the IP address of the sending machine.

Initialize (Data() As Byte, Host As String, Port As Int)
Initializes the packet and makes it ready for sending.

Data - The data that will be sent.

Host - The target host name or IP address.

Port - The target port.

Initialize2 (Data() As Byte, Offset As Int, Length As Int, Host As String,

Port As Int)
Similar to Initialize. The data sent is based on the Offset and Length values.

IsInitialized As Boolean
Whether this object has been initialized by calling one of the Initialize methods.

Length As Int [read only]
Gets the length of available bytes in the data. This can be shorter than the array length.

Offset As Int [read only]
Gets the offset in the data array where the available data starts.

Port As Int [read only]
Gets the port of the sending machine.

toString As String

UDPSocket
UDPSocket supports sending and receiving UDPPackets. Sending packets is done by calling

the Send method. When a packet arrives, the PacketArrived event is raised with the

packet.

This example sends a string message to some other machine. When a packet arrives, it

converts it to string and shows it:
Sub Process_Globals

 Dim UDPSocket1 As UDPSocket

End Sub

 4.2 Standard Libraries included with Full Version

 - 433 -

Sub Globals

End Sub

Sub Activity_Create(FirstTime As Boolean)

 If FirstTime Then

 UDPSocket1.Initialize("UDP", 0, 8000)

 End If

 Dim Packet As UDPPacket

 Dim data() As Byte

 data = "Hello from Android".GetBytes("UTF8")

 Packet.Initialize(data, "10.0.0.1", 5000)

 UDPSocket1.Send(Packet)

End Sub

Sub UDP_PacketArrived (Packet As UDPPacket)

 Dim msg As String

 msg = BytesToString(Packet.Data, Packet.Offset, Packet.Length,

"UTF8")

 Msgbox("Message received: " & msg, "")

End Sub

Permission: android.permission.INTERNET

Event: PacketArrived (Packet As UDPPacket)

Members:

 Close

 Initialize (EventName As String, Port As Int, ReceiveBufferSize As Int)

 IsInitialized As Boolean

 Port As Int [read only]

 Send (Packet As UDPPacket)

 toString As String

Close
Closes the socket.

Initialize (EventName As String, Port As Int, ReceiveBufferSize As Int)
Initializes the socket and starts listening for packets.

EventName - The name of the Sub that will handle the events.

Port - Local port to listen on. Passing 0 will cause Android to choose an available port

automatically.

ReceiveBufferSize - The size of the receiving packet. Packets larger than this value will be

truncated. Pass 0 if you do not want to receive any packets.

IsInitialized As Boolean
Returns TRUE if this object is initialized.

Port As Int [read only]
Gets the local port that this socket listens to.

Send (Packet As UDPPacket)
Sends a Packet. The packet will be sent in the background (asynchronously).

 4.2 Standard Libraries included with Full Version

 - 434 -

toString As String

NFC Library
This library, which is included in the IDE installation package, requires Android version

2.3.3 or above (API level 10 or above). It lets you read NFC tags formatted in NDEF form

(NFC Data Exchange Format). You can find more about the internal process here:

http://developer.android.com/guide/topics/connectivity/nfc/nfc.html

List of types:
NdefRecord

NFC

NdefRecord

Members:

 GetAsTextType As String

 GetAsUriType As String

 GetPayload As Byte()

 IsInitialized As Boolean

GetAsTextType As String
Reads the payload and returns the stored text.

GetAsUriType As String
Reads the payload and returns the stored URI (“Uniform Resource Identifier” identifying the

resource to get).

GetPayload As Byte()
Returns the whole payload.

IsInitialized As Boolean
Whether this object has been initialized.

NFC
Supports reading NDEF (NFC Data Exchange Format) tags.

See this tutorial for more information.

Permissions:
android.permission.NFC

Members:

GetNdefRecords (Intent1 As Intent) As List
Retrieves the NdefRecords stored in the Intent object.

IsNdefIntent (Intent1 As Intent) As Boolean
Returns TRUE if the Intent contains data read from an NDef tag.

http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/14931-reading-ndef-data-nfc-tags.html

 4.2 Standard Libraries included with Full Version

 - 435 -

Phone Library
The Phone library contains all kinds of features related to the Android phone.

CallLog and CallItem give access to the phone calls log.

Contacts2 (or the legacy Contacts) give access to the stored contacts, retrieved as a Contact.

ContentChooser allows the user to choose content from other applications. For example, the

user can choose an image from the Gallery application.

Email helps with building an Intent that sends an email.

LogCat tracks the internal phone logs.

PackageManager allows you to retrieve information about the installed applications.

Phone object includes information about the device and also other general features.

PhoneAccelerometer and PhoneOrientation objects are legacy objects, now replaced with

PhoneSensors.

PhoneEvents allows you to handle all kinds of system events.

PhoneId gives access to the the specific phone values.

PhoneIntents and PhoneCalls include several useful intents.

PhoneSensors support many sensors such as accelerometer and orientation.

PhoneSms supports sending Sms messages.

PhoneVibrate vibrates the phone.

PhoneWakeState allows you to force the screen and power to remain switched on.

RingtoneManager allows you to control the ringtone.

SmsInterceptor intercepts incoming Sms messages.

SmsMessages together with Sms support fetching messages from the phone database.

VoiceRecognition converts speech to text.

CallItem
Represents a single call in the call logs. See CallLog for more information.

Members:

 CachedName As String

 CallType As Int

 Date As Long

 Duration As Long

 Id As Int

 Number As String

 TYPE_INCOMING As Int

 TYPE_MISSED As Int

 TYPE_OUTGOING As Int

CachedName As String
Returns the cached name assigned to this call number at the time of call.

Returns an empty string if no name was assigned.

 4.2 Standard Libraries included with Full Version

 - 436 -

CallType As Int
The call type. This value matches one of the TYPE constants.

Date As Long
The call date measured as ticks.

Duration As Long
The call duration in seconds.

Id As Int
The call internal id.

Number As String
The call phone number.

TYPE_INCOMING As Int
CallType for incoming calls.

TYPE_MISSED As Int
CallType for missed calls.

TYPE_OUTGOING As Int
CallType for calls made from this device.

CallLog
CallLog allows you to browse the call logs.

Retrieved calls are always ordered by descending date.

Usage example:
Dim Calls As List

Dim CallLog1 As CallLog

Calls = CallLog1.GetAll(10) 'Get the last 10 calls

For i = 0 To Calls.Size - 1

 Dim c As CallItem

 c = Calls.Get(i)

 Dim callType, name As String

 Select c.CallType

 Case c.TYPE_INCOMING

 callType="Incoming"

 Case c.TYPE_MISSED

 callType = "Missed"

 Case c.TYPE_OUTGOING

 callType = "Outgoing"

 End Select

 name = c.CachedName

 If name = "" Then name = "N/A"

 Log("Number=" & c.Number & ", Name=" & name _

 & ", Type=" & callType & ", Date=" & DateTime.Date(c.Date))

Next

Permissions:
android.permission.READ_CONTACTS

 4.2 Standard Libraries included with Full Version

 - 437 -

Members:

 GetAll (Limit As Int) As List

 GetById (Id As Int) As CallItem

 GetSince (Date As Long, Limit As Int) As List

GetAll (Limit As Int) As List
Returns all calls, ordered by date (descending), as a List of CallItems.

Limit - Maximum number of CallItems to return. Pass 0 to return all items.

GetById (Id As Int) As CallItem
Returns the CallItem with the specified Id.

Returns Null if no matching CallItem found.

GetSince (Date As Long, Limit As Int) As List
Returns all CallItems with a date value on or after the specified Date.

Limit - Maximum number of items to return. Pass 0 to return all items.

Example:
Dim cl As CallLog

Dim logList As List

Dim startDate As Long

startDate = DateTime.DateParse("01/16/2013")

logList.Initialize2(cl.GetSince(startDate,0))

For Each call As CallItem In logList

 Log(DateTime.Date(call.Date))

Next

Contact
Represents a single contact. The Contacts or Contacts2 objects should be used to get lists of

Contact objects.

The available email types are identified by constants named EMAIL_x.

The available phone types are identified by constants named PHONE_x.

Members:

 DisplayName As String

 EMAIL_CUSTOM As Int

 EMAIL_HOME As Int

 EMAIL_MOBILE As Int

 EMAIL_OTHER As Int

 EMAIL_WORK As Int

 GetEmails As Map

 GetPhones As Map

 GetPhoto As BitmapWrapper

 Id As Int

 LastTimeContacted As Long

 Name As String

 4.2 Standard Libraries included with Full Version

 - 438 -

 Notes As String

 PHONE_CUSTOM As Int

 PHONE_FAX_HOME As Int

 PHONE_FAX_WORK As Int

 PHONE_HOME As Int

 PHONE_MOBILE As Int

 PHONE_OTHER As Int

 PHONE_PAGER As Int

 PHONE_WORK As Int

 PhoneNumber As String

 Starred As Boolean

 TimesContacted As Int

DisplayName As String
The displayed name. Equal to the Contact Name if the Name is not empty; otherwise equal

to the contact’s first email address.

EMAIL_CUSTOM As Int

EMAIL_HOME As Int

EMAIL_MOBILE As Int

EMAIL_OTHER As Int

EMAIL_WORK As Int

GetEmails As Map
Returns a Map with the email addresses of the Contact as keys and the email types as

values. This will send a query to the device’s contacts service, so it might be slow.

GetPhones As Map
Returns a Map with all the contact’s phone numbers as keys and the phone types as values.

This will send a query to the device’s contacts service, so it might be slow.

GetPhoto As BitmapWrapper
Returns the contact photo or Null if there is no attached photo. This will send a query to the

device’s contacts service, so it might be slow.

Id As Int
Internal Id.

LastTimeContacted As Long
Last time that this contact was contacted. Value is given in ticks.

Name As String
Contact name.

 4.2 Standard Libraries included with Full Version

 - 439 -

Notes As String

PHONE_CUSTOM As Int

PHONE_FAX_HOME As Int

PHONE_FAX_WORK As Int

PHONE_HOME As Int

PHONE_MOBILE As Int

PHONE_OTHER As Int

PHONE_PAGER As Int

PHONE_WORK As Int

PhoneNumber As String
Primary phone number.

Starred As Boolean
Whether this contact is a "favorite" contact.

TimesContacted As Int
Number of times that this contact was contacted.

Contacts
This is a legacy object and has been replaced by Contacts2. For new projects, it might be

better to consider using the ContactsUtils module with the ContentResolver Library instead

of Contacts or Contacts2.

The Contacts object allows you to access contacts stored on the device.

Permissions:
android.permission.READ_CONTACTS

Members:

FindByMail (Email As String, Exact As Boolean) As List
Returns a List of Contact objects with all contacts matching the given email.

Email - The email to search for.

Exact - If True, then only contacts with the exact Email address (case sensitive) will be

returned, otherwise all contacts’ email addresses that include the Email string (case

insensitive) will be returned.

FindByName (Name As String, Exact As Boolean) As List
Returns a List of Contact objects with all contacts matching the given name.

Name - The name to search for.

Exact - If True, then only contacts with the exact Name value (case sensitive) will be

returned, otherwise all contacts’ names that include the Name string (case insensitive) will

be returned.

GetAll As List
Returns a List of Contact objects with all the contacts. This list can be very large.

http://bit.ly/180A35y
http://bit.ly/1djfesb

 4.2 Standard Libraries included with Full Version

 - 440 -

GetById (Id As Int) As Contact
Returns the Contact with the specified Id. Returns Null if no matching contact found.

Contacts2
The Contacts2 object allows you to access contacts stored on the device. This type is based on

a new API supported by Android 2.0 and above and supersedes the legacy Contacts type. For

new projects, it might be better to consider using the ContactsUtils module with the

ContentResolver Library instead of Contacts2.

The following example finds all contacts whose name contains the string "john", and print

their fields to the Log. It will also fetch the contact photo and other details, if they exist:
Dim allContacts As Contacts2

Dim listOfContacts As List

listOfContacts = allContacts.FindByName("John", False, True, True)

For i = 0 To listOfContacts.Size - 1

 Dim Contact1 As Contact

 Contact1 = listOfContacts.Get(i)

 Log(Contact1) 'will print the fields to the LogCat

 Dim photo As Bitmap

 photo = Contact1.GetPhoto

 If photo <> Null Then Activity.SetBackgroundImage(photo)

 Dim emails As Map

 emails = Contact1.GetEmails

 If emails.Size > 0 Then Log("Email addresses: " & emails)

 Dim phones As Map

 phones = Contact1.GetPhones

 If phones.Size > 0 Then Log("Phone numbers: " & phones)

Next

Permissions:
android.permission.READ_CONTACTS

Events:
Complete (ListOfContacts As List)

Members:

 FindByMail (Email As String, Exact As Boolean, IncludePhoneNumber As Boolean,

IncludeNotes As Boolean) As List

 FindByName (Name As String, Exact As Boolean, IncludePhoneNumber As Boolean,

IncludeNotes As Boolean) As List

 GetAll (IncludePhoneNumber As Boolean, IncludeNotes As Boolean) As List

 GetById (Id As Int, IncludePhoneNumber As Boolean, IncludeNotes As Boolean) As

Contact

 GetContactsAsync (EventName As String, Query As String, Arguments() As String,

IncludePhoneNumber As Boolean, IncludeNotes As Boolean)

 GetContactsByQuery (Query As String, Arguments() As String, IncludePhoneNumber As

Boolean, IncludeNotes As Boolean) As List

http://bit.ly/180A35y
http://bit.ly/1djfesb

 4.2 Standard Libraries included with Full Version

 - 441 -

FindByMail (Email As String, Exact As Boolean, IncludePhoneNumber As

Boolean, IncludeNotes As Boolean) As List
Returns a List of Contact objects with all contacts matching the given Email.

Email - The email to search for.

Exact - If True, then only contacts with the exact Email address (case sensitive) will be

returned, otherwise all contacts’ email addresses that include the Email string (case

insensitive) will be returned.

IncludePhoneNumber - Whether to fetch the default phone number.

IncludeNotes - Whether to fetch the notes field.

FindByName (Name As String, Exact As Boolean, IncludePhoneNumber

As Boolean, IncludeNotes As Boolean) As List
Returns a List of Contact objects with all contacts matching the given name.

Name - The name to search for.

Exact - If True, then only contacts with the exact Name value (case sensitive) will be

returned, otherwise all contacts’ names that include the Name string (case insensitive) will

be returned.

IncludePhoneNumber - Whether to fetch the default phone number.

IncludeNotes - Whether to fetch the notes field.

GetAll (IncludePhoneNumber As Boolean, IncludeNotes As Boolean) As

List
Returns a List of Contact objects with all the contacts. This list can be very large.

GetById (Id As Int, IncludePhoneNumber As Boolean, IncludeNotes As

Boolean) As Contact
Returns the Contact with the specified Id. Returns Null if no matching contact found.

IncludePhoneNumber - Whether to fetch the default phone number.

IncludeNotes - Whether to fetch the notes field.

GetContactsAsync (EventName As String, Query As String, Arguments()

As String, IncludePhoneNumber As Boolean, IncludeNotes As Boolean)
This method is an asynchronous version of GetContactsByQuery. Once the list is ready, the

Complete event will be raised. The EventName parameter sets the sub that will handle this

event.

GetContactsByQuery (Query As String, Arguments() As String,

IncludePhoneNumber As Boolean, IncludeNotes As Boolean) As List
Returns a list of contacts based on the specified query and arguments.

Query - The SQL query. Pass an empty string to return all contacts.

Arguments - An array of strings used for parameterized queries. Pass Null if not needed.

IncludePhoneNumber - Whether to fetch the phone number for each contact.

IncludeNotes - Whether to fetch the notes field for each contact.

ContentChooser
The ContentChooser object allows the user to select a specific type of content using other

installed applications. For example, the user can use the internal Gallery application to

 4.2 Standard Libraries included with Full Version

 - 442 -

select an image. If the user has installed a file manager, then the ContentChooser can be

used to select general files. This object should usually be declared as a Sub

Process_Globals object. After initializing the object, you can let the user select content by

calling Show with the required MIME types.

The Result event will be raised with a Success flag and with the content Dir and

FileName. Note that these values may point to resources other than regular files. Still, you

can pass them to methods that expect Dir and FileName.

Only content types that can be opened with an InputStream are supported.

Event: Result (Success As Boolean, Dir As String, FileName As String)

Members:

 Initialize (EventName As String)

 IsInitialized As Boolean

 Show (Mime As String, Title As String)

Initialize (EventName As String)
Initializes the object and sets the Sub that will handle the Result event.

Example:
Dim CC As ContentChooser

CC.Initialize("CC")

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Show (Mime As String, Title As String)
Sends the request to the system. If there is more than one application that supports the

given Mime, then a list with the applications will be displayed to the user. The Result event

will be raised after the user chooses an item or cancels the dialog.

Mime - The content MIME type.

Title - The title of the chooser dialog (when there is more than one application).

Examples:
CC.Show("image/*", "Choose image")

CC.Show("audio/*", "Choose audio file")

Email
Using an Email object, you can create an intent that holds a complete email message. You

can then launch the email application by calling StartActivity. Note that the email will not

be sent automatically. The user will need to press on the “Send” button. Example:
Dim Message As Email

Message.To.Add("SomeEmail@example.com")

Message.Attachments.Add(File.Combine(File.DirRootExternal,

"SomeFile.txt"))

StartActivity(Message.GetIntent)

Members:

 Attachments As List

 BCC As List

 4.2 Standard Libraries included with Full Version

 - 443 -

 Body As String

 CC As List

 GetHtmlIntent As Intent

 GetIntent As Intent

 Subject As String

 To As List

Attachments As List

BCC As List

Body As String

CC As List

GetHtmlIntent As Intent
Returns the Intent that should be sent with StartActivity. The email message will be an

HTML message.

GetIntent As Intent
Returns the Intent that should be sent with StartActivity.

Subject As String

To As List

LogCat
LogCat allows you to read the internal phone logs. Refer to the LogCat documentation for

more information about the optional arguments. The LogCatData event is raised when there

is new data available. You should use BytesToString to convert the raw bytes to string.

Note that the LogCatData event is raised in a different thread. This means that you can only

log the messages.

You can also use the Threading library to delegate the data to the main thread.

Permissions:
android.permission.READ_LOGS

Event: LogCatData (Buffer() As Byte, Length As Int)
The LogCatData event is raised when there is new data available.

Members:

 LogCatStart (Args() As String, EventName As String)

 LogCatStop

LogCatStart (Args() As String, EventName As String)
Starts tracking the logs.

Args - Optional arguments passed to the internal LogCat command.

EventName - The Sub that will handle the LogCatData event.

LogCatStop
Stops tracking the logs.

http://developer.android.com/intl/fr/guide/developing/tools/adb.html#logcat

 4.2 Standard Libraries included with Full Version

 - 444 -

PackageManager
The PackageManager allows you to find information about installed applications.

Applications are referenced using their package name. You can get a list of all the packages

by calling GetInstalledPackages.

Members:

 GetApplicationIcon (Package As String) As Drawable

 GetApplicationIntent (Package As String) As IntentWrapper

 GetApplicationLabel (Package As String) As String

 GetInstalledPackages As List

 GetVersionCode (Package As String) As Int

 GetVersionName (Package As String) As String

 QueryIntentActivities (Intent1 As Intent) As List

GetApplicationIcon (Package As String) As Drawable
Returns the application icon. Example:
Dim pm As PackageManager

Activity.Background = pm.GetApplicationIcon(

"com.google.android.youtube")

GetApplicationIntent (Package As String) As IntentWrapper
Returns an Intent object that can be used to start the given application. Example:
Dim In As Intent

Dim pm As PackageManager

In = pm.GetApplicationIntent("com.google.android.youtube")

If In.IsInitialized Then StartActivity(In)

GetApplicationLabel (Package As String) As String
Returns the application label.

GetInstalledPackages As List
Returns a list of the installed packages. Example:
Dim pm As PackageManager

Dim packages As List

packages = pm.GetInstalledPackages

For i = 0 To packages.Size - 1

 Log(packages.Get(i))

Next

GetVersionCode (Package As String) As Int
Returns the application version code.

GetVersionName (Package As String) As String
Returns the application version name.

QueryIntentActivities (Intent1 As Intent) As List
Returns a list of the installed activities that can handle the given intent. Each item in the

list is the "component name" of an activity. You can use Intent.SetComponent to explicitly

 4.2 Standard Libraries included with Full Version

 - 445 -

choose the activity. The first item is considered the best match. For example, the following

code lists all the activities that can "view" a text file:
Dim pm As PackageManager

Dim Intent1 As Intent

Intent1.Initialize(Intent1.ACTION_VIEW, "file://")

Intent1.SetType("text/*")

For Each cn As String In pm.QueryIntentActivities(Intent1)

 Log(cn)

Next

Phone

Members:

 GetDataState As String

 GetMaxVolume (Channel As Int) As Int

 GetNetworkOperatorName As String

 GetNetworkType As String

 GetPhoneType As String

 GetResourceDrawable (ResourceId As Int) As Drawable

 GetRingerMode As Int

 GetSettings (Settings As String) As String

 GetSimOperator As String

 GetVolume (Channel As Int) As Int

 HideKeyboard (Activity As ActivityWrapper)

 IsAirplaneModeOn As Boolean

 IsNetworkRoaming As Boolean

 Manufacturer As String [read only]

 Model As String [read only]

 Product As String [read only]

 RINGER_NORMAL As Int

 RINGER_SILENT As Int

 RINGER_VIBRATE As Int

 SdkVersion As Int [read only]

 SendBroadcastIntent (Intent1 As Intent)

 SetMute (Channel As Int, Mute As Boolean)

 SetRingerMode (Mode As Int)

 SetScreenBrightness (Value As Float)

 SetScreenOrientation (Orientation As Int)

 SetVolume (Channel As Int, VolumeIndex As Int, ShowUI As Boolean)

 Shell (Command As String, Args() As String, StdOut As StringBuilder, StdErr As

StringBuilder) As Int

 VOLUME_ALARM As Int

 4.2 Standard Libraries included with Full Version

 - 446 -

 VOLUME_MUSIC As Int

 VOLUME_NOTIFICATION As Int

 VOLUME_RING As Int

 VOLUME_SYSTEM As Int

 VOLUME_VOICE_CALL As Int

GetDataState As String
Returns the current cellular data connection state.

Possible values: DISCONNECTED, CONNECTING, CONNECTED, SUSPENDED.

GetMaxVolume (Channel As Int) As Int
Gets the maximum volume index (value) for the given channel.

Channel - One of the VOLUME constants given above.

GetNetworkOperatorName As String
Returns the name of the current registered operator. Returns an empty string if it is not

available.

GetNetworkType As String
Returns the currently used cellular network type. Possible values:

1xRTT, CDMA, EDGE, EHRPD, EVDO_0, EVDO_A, EVDO_B, GPRS, HSDPA, HSPA,

HSPAP, HSUPA, IDEN, LTE, UMTS, UNKNOWN.

GetPhoneType As String
Returns the phone radio type. Possible values: CDMA, GSM, NONE.

GetResourceDrawable (ResourceId As Int) As Drawable
Returns an internal drawable object. See this page for a list of available resources.

Example:
Dim p As Phone

Dim bd As BitmapDrawable

bd = p.GetResourceDrawable(17301618)

Activity.AddMenuItem2("Menu1", "Menu1", bd.Bitmap)

GetRingerMode As Int
Returns the phone ringer mode. Value will be one of the RINGER constants.

GetSettings (Settings As String) As String
Returns the value of the phone settings based on the given key. The possible keys are listed

here. The keys are lower cased. Example:
Dim p As Phone

Log(GetSettings("android_id"))

GetSimOperator As String
Returns the code of the SIM provider. Returns an empty string if it is not available.

GetVolume (Channel As Int) As Int
Returns the volume of the specified channel.

Channel - One of the VOLUME constants.

http://developer.android.com/intl/fr/reference/android/R.drawable.html
http://developer.android.com/intl/fr/reference/android/provider/Settings.Secure.html

 4.2 Standard Libraries included with Full Version

 - 447 -

HideKeyboard (Activity As ActivityWrapper)
Hides the soft keyboard if it is displayed. Example:
Dim p As Phone

p.HideKeyboard(Activity)

IsAirplaneModeOn As Boolean
Returns TRUE if the phone "airplane mode" is on.

IsNetworkRoaming As Boolean
Returns True if the device is considered roaming on the current network.

Manufacturer As String [read only]

Model As String [read only]

Product As String [read only]

RINGER_NORMAL As Int
Normal phone ringer mode.

RINGER_SILENT As Int
Phone ringer will be silent and the device will NOT vibrate.

RINGER_VIBRATE As Int
Phone ringer will be silent and the device will vibrate.

SdkVersion As Int [read only]
Returns an integer describing the SDK version.

SendBroadcastIntent (Intent1 As Intent)
Sends an intent to all BroadcastReceivers that listen to this type of intent. Example of

asking the media scanner to rescan a file:
Dim i As Intent

i.Initialize("android.intent.action.MEDIA_SCANNER_SCAN_FILE", _

 "file://" & File.Combine(File.DirRootExternal, "pictures/1.jpg"))

Dim p As Phone

p.SendBroadcastIntent(i)

SetMute (Channel As Int, Mute As Boolean)
Mutes or unmutes the given channel.

Channel - One of the VOLUME constants.

Mute - Whether to mute or unmute the channel.

SetRingerMode (Mode As Int)
Sets the phone ringer mode.

Mode - One of the RINGER constants.

Example:
Dim p As Phone

p.SetRingerMode(p.RINGER_VIBRATE)

SetScreenBrightness (Value As Float)
Sets the brightness of the current activity. This method cannot be called from a service

module.

 4.2 Standard Libraries included with Full Version

 - 448 -

Value - A float from 0 to 1. Set -1 for automatic brightness.

Example:
Sub Process_Globals

 Dim phone1 As Phone

End Sub

Sub Globals

 Dim sb As SeekBar

End Sub

Sub Activity_Create(FirstTime As Boolean)

 sb.Initialize("sb")

 sb.Max = 100

 sb.Value = 50

 Activity.AddView(sb, 10dip, 10dip, 90%x, 30dip)

End Sub

Sub sb_ValueChanged (Value As Int, UserChanged As Boolean)

 phone1.SetScreenBrightness(Max(Value, 5) / 100)

End Sub

SetScreenOrientation (Orientation As Int)
Changes the current activity orientation. This method cannot be called from a service

module.

Orientation - -1 (minus 1) for unspecified, 0 for landscape and 1 for portrait.

SetVolume (Channel As Int, VolumeIndex As Int, ShowUI As Boolean)
Sets the volume of the specified channel.

Channel - One of the VOLUME constants.

VolumeIndex - The volume index. GetMaxVolume can be used to find the largest possible

value.

ShowUI - Whether to show the volume UI windows.

Example:
Dim p As Phone

p.SetVolume(p.VOLUME_MUSIC, 3, True)

Shell (Command As String, Args() As String, StdOut As StringBuilder,

StdErr As StringBuilder) As Int
Runs a native shell command. Many commands are inaccessible because of OS security

restrictions. Returns the process exit value.

Command - Command to run.

Args - Additional arguments. Can be Null if not needed.

StdOut - A StringBuilder that will hold the standard output value. Can be Null if not

needed.

StdErr - A StringBuilder that will hold the standard error value. Can be Null if not needed.

Example:

 4.2 Standard Libraries included with Full Version

 - 449 -

Dim p As Phone

Dim sb As StringBuilder

sb.Initialize

p.Shell("df", Null, sb, Null)

Msgbox(sb.ToString, "Free space:")

VOLUME_ALARM As Int
Alarms channel.

VOLUME_MUSIC As Int
Music channel.

VOLUME_NOTIFICATION As Int
Notifications channel.

VOLUME_RING As Int
Phone ring channel.

VOLUME_SYSTEM As Int
System sounds channel.

VOLUME_VOICE_CALL As Int
Voice calls channel.

PhoneAccelerometer
This is a legacy object and should not be used. The PhoneSensors object provides greater

functionality, supports all existing sensors and will be expanded to support future ones. That

should be used instead.

PhoneCalls
This object creates an intent that launches the phone application. The reason that it is not

part of the PhoneIntents library is that it requires an additional permission.

Permissions:
android.permission.CALL_PHONE

Member:

Call (PhoneNumber As String) As Intent
Creates an intent that will call a phone number.

Example:
Dim p As PhoneCalls

StartActivity(p.Call("1234567890"))

PhoneEvents
The Android OS sends all kinds of messages to notify applications of changes in the system.

The PhoneEvents object allows you to catch such messages and handle those events in your

program.

Usually, you will want to add this object to a Service module instead of an Activity module in

order not to miss events that happen while your activity is paused. You should declare this

 4.2 Standard Libraries included with Full Version

 - 450 -

object in Sub Process_Globals and initialize it in Sub Service_Create. For example, to

monitor the level of the battery you could use:
Sub Process_Globals

 Dim phoneEvent As PhoneEvents

End Sub

Sub Activity_Create(FirstTime As Boolean)

 phoneEvent.Initialize("phoneEvent")

End Sub

Sub phoneEvent_BatteryChanged (Level As Int, Scale As Int, _

 Plugged As Boolean, Intent As Intent)

 Log(Intent.GetExtra("level"))

End Sub

Events:
Note that each event has an Intent, sent by Android, carrying extra information.

AirplaneModeChanged (State As Boolean, Intent As Intent)
Raised when the "airplane mode" state changes.

State - True when airplane mode is active.

Intent - this object is sent by Android.

BatteryChanged (Level As Int, Scale As Int, Plugged As Boolean, Intent As

Intent)
Raised when the battery status changes.

Level - The current level.

Scale - The maximum level.

Plugged - Whether the device is plugged to an electricity source.

Intent - this object is sent by Android.

ConnectivityChanged (NetworkType As String, State As String, Intent As

Intent)
There was a change in the state of the WIFI network or the MOBILE network (other

network).

NetworkType - WIFI or MOBILE.

State - One of the following values: CONNECTING, CONNECTED, SUSPENDED,

DISCONNECTING, DISCONNECTED, UNKNOWN.

Intent - this object is sent by Android.

DeviceStorageLow (Intent As Intent)
Raised when the device internal memory condition is low.

Intent - this object is sent by Android.

DeviceStorageOk (Intent As Intent)
Raised when the device internal low memory condition no longer exists.

Intent - this object is sent by Android.

PackageAdded (Package As String, Intent As Intent)
An application was installed.

 4.2 Standard Libraries included with Full Version

 - 451 -

Package - The application package name.

Intent - this object is sent by Android.

PackageRemoved (Package As String, Intent As Intent)
An application was uninstalled.

Package - The application package name.

Intent - this object is sent by Android.

PhoneStateChanged (State As String, IncomingNumber As String, Intent As

Intent)
The phone state has changed.

State - One of the three values: IDLE, OFFHOOK, RINGING. OFFHOOK means that there

is a call or that the phone is dialing.

IncomingCall - Available when the State value is RINGING.

Intent - this object is sent by Android.

ScreenOff (Intent As Intent)
The screen has turned off.

Intent - this object is sent by Android.

ScreenOn (Intent As Intent)
The screen has turned on.

Intent - this object is sent by Android.

SmsDelivered (PhoneNumber As String, Intent As Intent)
An Sms message sent by your application was delivered to the recipient.

PhoneNumber - The target phone number.

Intent - this object is sent by Android.

SmsSentStatus (Success As Boolean, ErrorMessage As String, PhoneNumber

As String, Intent As Intent)
Raised after your application sends an Sms message.

Success - Whether the message was sent successfully.

ErrorMessage - One of the following values: GENERIC_FAILURE, NO_SERVICE,

RADIO_OFF, NULL_PDU or OK.

PhoneNumber - The target phone number.

Intent - this object is sent by Android.

Shutdown (Intent As Intent)
The phone is shutting down (turned off, not just sleeping).

Intent - this object is sent by Android.

TextToSpeechFinish (Intent As Intent)
The Text-To-Speech engine has finished processing the messages in the queue.

Intent - this object is sent by Android.

UserPresent (Intent As Intent)
The user has unlocked the keyguard screen.

Intent - this object is sent by Android.

 4.2 Standard Libraries included with Full Version

 - 452 -

Members:

 Initialize (EventName As String)

 InitializeWithPhoneState (EventName As String, PhoneId As PhoneId)

 StopListening

Initialize (EventName As String)
Initializes the object and starts listening for events.

The PhoneStateEvent will not be raised. Use InitializeWithPhoneState instead if it is

needed.

InitializeWithPhoneState (EventName As String, PhoneId As PhoneId)
Initializes the object and starts listening for events. The PhoneStateEvent will also be

handled. Example:
Dim PhoneId1 As PhoneId

Dim PE As PhoneEvents

PE.InitializeWithPhoneState("PE", PhoneId1)

StopListening
Stops listening for events. You can later call Initialize to start listening for events again.

PhoneId

Permissions:
android.permission.READ_PHONE_STATE

Members:

GetDeviceId As String
Returns a unique device Id. Returns an empty string if the device Id is not available (usually

on wifi only devices).

GetLine1Number As String
Returns the phone number string for line 1 as configured in the SIM card. Returns an empty

string if it is not available.

GetSimSerialNumber As String
Returns the serial number of the SIM card. Returns an empty string if it is not available.

GetSubscriberId As String
Returns the unique subscriber Id. Returns an empty string if it is not available.

PhoneIntents
This object contains methods that create intents objects. An intent does nothing until you

call StartActivity with the intent. Calling StartActivity sends the intent to Android.

Members:

OpenBrowser (URI As String) As Intent
Creates an intent that will open the specified URI.

URI – a “Uniform Resource Identifier” identifying the web address of the page to open.

Example:

 4.2 Standard Libraries included with Full Version

 - 453 -

StartActivity (PhoneIntents.OpenBrowser("http://www.google.com"))

PlayAudio (Dir As String, File As String) As Intent
Creates an intent that will start playing the given audio file with the default player.

This method cannot work with internal files.

PlayVideo (Dir As String, File As String) As Intent
Creates an intent that will start playing the given video file with the default player.

This method cannot work with internal files.

PhoneOrientation
This is a legacy object and should not be used. The PhoneSensors object provides greater

functionality, supports all existing sensors and will be expanded to support future ones. It

should be used instead.

PhoneSensors
Most Android-powered devices have built-in sensors that measure motion, orientation, and

various environmental conditions. See the Members list below for the possible sensor types.

Bear in mind that most devices do not support all possible sensors. The StartListening

method returns False if the requested sensor is not supported.

Sensors are capable of providing raw data with high precision and accuracy, and are useful if

you want to monitor three-dimensional device movement or positioning, or you want to

monitor changes in the ambient environment near a device.

The PhoneSensors object allows you to listen for changes in one of the device sensors.

Example to check accelerometer and show values:
Sub Process_Globals

 Dim accel As PhoneSensors

End Sub

Sub Globals

 Dim lbl As Label

End Sub

Sub Activity_Create(FirstTime As Boolean)

 If FirstTime Then

 ' Initialize accelerometer

 accel.Initialize(accel.TYPE_ACCELEROMETER)

 End If

 ' Prepare label to receive data

 lbl.Initialize("")

 lbl.TextColor = Colors.White

 Activity.AddView(lbl, 10dip, 10dip, 100%x - 10dip, 45dip)

End Sub

Sub Activity_Resume

 'Here we start listening for SensorChanged events.

 4.2 Standard Libraries included with Full Version

 - 454 -

 'By checking the return value we know if the sensor is supported.

 If accel.StartListening("accel") = False Then

 lbl.Text = "Accelerometer is not supported."

 Log("Accelerometer is not supported.")

 End If

End Sub

Sub Activity_Pause (UserClosed As Boolean)

 'Stop listening for events.

 accel.StopListening

End Sub

Sub accel_SensorChanged (Values() As Float)

 Dim ps As PhoneSensors

 'Get the PhoneSensors object that raised this event.

 ps = Sender

 If Sender = accel Then

 lbl.Text = "Accelerometer data: " _

 & " X=" & NumberFormat(Values(0), 0, 3) _

 & ", Y=" & NumberFormat(Values(1), 0, 3) _

 & ", Z=" & NumberFormat(Values(2), 0, 3)

 Else

 Log ("xxx")

 End If

End Sub

See here for a more detailed example.

Event: SensorChanged (Values() As Float)
After initializing the object and calling StartListening, the SensorChanged event will be

raised each time the sensor value changes. The value is passed as an array of Floats. Some

sensors pass a single value and some pass three values. Example:

http://bit.ly/16oqRsm

 4.2 Standard Libraries included with Full Version

 - 455 -

Sub Sensor_SensorChanged (Values() As Float)

 Dim ps As PhoneSensors

 Dim sd As SensorData

 Dim lbl As Label

 'Get the PhoneSensors object that raised this event.

 ps = Sender

 sd = SensorsMap.Get(ps) 'Get the associated SensorData object

 lbl = SensorsLabels.Get(ps) 'Get the associated Label

 If sd.ThreeValues Then

 lbl.Text = sd.Name & " X=" _

 & NumberFormat(Values(0), 0, 3) & ", Y=" & NumberFormat(Values(1),

0, 3) _

 & ", Z=" & NumberFormat(Values(2), 0, 3)

 Else

 lbl.Text = sd.Name & " = " & NumberFormat(Values(0), 0, 3)

 End If

End Sub

Members:

 Initialize (SensorType As Int)

 Initialize2 (SensorType As Int, SensorDelay As Int)

 MaxValue As Float [read only]

 StartListening (EventName As String) As Boolean

 StopListening

 TYPE_ACCELEROMETER As Int

 TYPE_GYROSCOPE As Int

 TYPE_LIGHT As Int

 TYPE_MAGNETIC_FIELD As Int

 TYPE_ORIENTATION As Int

 TYPE_PRESSURE As Int

 TYPE_PROXIMITY As Int

 TYPE_TEMPERATURE As Int

Initialize (SensorType As Int)
Initializes the object and sets the sensor type (one of the TYPE constants).

Initialize2 (SensorType As Int, SensorDelay As Int)
Initializes the object and sets the sensor type and sensor events rate.

SensorType - One of the TYPE constants.

SensorDelay - A value from 0 (fastest rate) to 3 (slowest rate). This is only a hint to the

system.

MaxValue As Float [read only]
Returns the maximum value for this sensor.

Returns -1 if this sensor is not supported.

 4.2 Standard Libraries included with Full Version

 - 456 -

StartListening (EventName As String) As Boolean
Starts listening for sensor events. Returns True if the sensor is supported. Usually, you will

want to start listening in Sub Activity_Resume and stop listening in Sub

Activity_Pause.

StopListening
Stops listening for events.

TYPE_ACCELEROMETER As Int
A constant identifying the Accelerometer sensor.
Dim accel As PhoneSensors

accel.Initialize(accel.TYPE_ACCELEROMETER)

The SensorChanged event receives an array of three values when this type of sensor

changes. See example above. The values give the acceleration measured in Meters / Second ^

2 for each axis (X, Y and Z).

TYPE_GYROSCOPE As Int
A constant identifying the Gyroscope sensor. The SensorChanged event receives an array of

three values when this type of sensor changes. See example above. The values give the

angular velocity measured in Radians / Second around each of the three axis.

TYPE_LIGHT As Int
A constant identifying the Light sensor. The SensorChanged event receives a single value

when this type of sensor changes. See example above. The values give the ambient light level

measured in SI lux units.

TYPE_MAGNETIC_FIELD As Int
A constant identifying the Magnetic field sensor. The SensorChanged event receives an array

of three values when this type of sensor changes. See example above. The values give the

ambient magnetic field measured in micro-Tesla for the X, Y and Z axis.

TYPE_ORIENTATION As Int
A constant identifying the Orientation sensor. The SensorChanged event receives an array of

three values when this type of sensor changes. See example above. The values give the

orientation measured in degrees for azimuth, pitch and roll.

TYPE_PRESSURE As Int
A constant identifying the Pressure sensor. The SensorChanged event receives a single value

when this type of sensor changes. See example above. The values give the atmospheric

pressure in units of hectoPascals (hPa) or, equivalently, millibars (mbar).

TYPE_PROXIMITY As Int
A constant identifying the Proximity sensor. The SensorChanged event receives a single

value when this type of sensor changes. See example above. The values give the proximity

measured in centimeters. Most devices will return only two possible values representing

"near" and "far".

"far" should match MaxRange and "near" should be a value smaller than MaxRange.

 4.2 Standard Libraries included with Full Version

 - 457 -

TYPE_TEMPERATURE As Int
A constant identifying the Temperature sensor. The SensorChanged event receives a single

value when this type of sensor changes. See example above. The values give the ambient

temperature in degrees Celsius.

PhoneSms

Permissions:
android.permission.SEND_SMS

Members:

Send (PhoneNumber As String, Text As String)
Sends an Sms message. Note that this method actually sends the message (unlike most other

methods that create an intent object). You can use PhoneEvents to handle the

SmsSentStatus and SmsDelivered events. This method is equivalent to calling
PhoneSms.Send2(PhoneNumber, Text, True, True)

Send2 (PhoneNumber As String, Text As String, ReceiveSentNotification

As Boolean, ReceiveDeliveredNotification As Boolean)
Sends an Sms message without notification. Note that this method actually sends the

message (unlike most other methods that create an intent object). You can use PhoneEvents

to handle the SmsSentStatus and SmsDelivered events.

ReceiveSentNotification - If True then the SmsSentStatus PhoneEvent will be raised when

the message is sent.

ReceiveDeliveredNotification - If True then the PhoneEvent SmsDelivered will be raised

when the message is delivered.

Example:
Sub Globals

 Dim Sms As PhoneSms

 Dim PE As PhoneEvents

 Dim btnTest As Button

 Dim strPhoneNumber As String = "01234567890"

End Sub

Sub Activity_Create(FirstTime As Boolean)

 PE.Initialize("PE")

 Sms.Send2(strPhoneNumber, "This sms was sent from Basic4Android",

True, True)

End Sub

Sub PE_SmsDelivered (PhoneNumber As String, Intent As Intent)

 Log ("SMS delivered to " & PhoneNumber)

End Sub

 4.2 Standard Libraries included with Full Version

 - 458 -

Sub PE_SmsSentStatus (Success As Boolean, ErrorMessage As String,

PhoneNumber As String, Intent As Intent)

 If Success = True Then

 Log ("SMS Sent to " & PhoneNumber)

 Else

 Log ("Failed to send SMS to " & PhoneNumber & ". Error = " &

ErrorMessage)

 End If

End Sub

PhoneVibrate

Permissions:
android.permission.VIBRATE

Members:

Vibrate (TimeMs As Long)
Vibrates the phone for the specified duration.

PhoneWakeState
The PhoneWakeState object allows you to prevent the device from turning off the screen.

Once you call KeepAlive, the phone screen will stay on till you call ReleaseKeepAlive. It is

important to eventually release it. A recommended usage is to call KeepAlive in

Activity_Resume and call ReleaseKeepAlive in Activity_Pause.

Note that the user can still turn off the screen by pressing on the power button.

Calling PartialLock will prevent the CPU from going to sleep even if the user presses on

the power button. It will not, however, affect the screen.

Permissions:
android.permission.WAKE_LOCK

Members:

KeepAlive (BrightScreen As Boolean)
Prevents the device from going to sleep. Call ReleaseKeepAlive to release the power lock.

BrightScreen - Whether to keep the screen bright or dimmed.

PartialLock
Acquires a partial lock. This will prevent the CPU from going to sleep, even if the user

presses on the power button. Make sure to call ReleasePartialLock eventually to release this

lock.

ReleaseKeepAlive
Releases the power lock and allows the device to go to sleep.

ReleasePartialLock
Releases a partial lock that was previously acquired by calling PartialLock.

 4.2 Standard Libraries included with Full Version

 - 459 -

RingtoneManager
The RingtoneManager object allows you to set or get the default ringtone. It also provides

access to the default ringtone picker. The PickerResult event will be raised when the

picker is closed with the URI (“Uniform Resource Identifier”, ie the address) of the selected

ringtone. Note that an empty string will be returned if the "Silence" option was selected.

Example of playing the selected ringtone with MediaPlayer:
Sub Process_Globals

 Dim rm As RingtoneManager

 Dim mp As MediaPlayer

End Sub

Sub Globals

End Sub

Sub Activity_Create(FirstTime As Boolean)

 mp.Initialize

 rm.ShowRingtonePicker("rm", rm.TYPE_RINGTONE, True, "")

End Sub

Sub rm_PickerResult (Success As Boolean, URI As String)

 If Success Then

 If URI = "" Then

 ToastMessageShow("Silent was chosen", True)

 Else

 mp.Load(rm.GetContentDir, URI)

 mp.Play

 End If

 Else

 ToastMessageShow("Error loading ringtone.", True)

 End If

End Sub

Permissions:
android.permission.WRITE_SETTINGS

Event: PickerResult (Success As Boolean, URI As String)
URI – the “Uniform Resource Identifier” specifying the address of the selected ringtone.

Members:

AddToMediaStore (Dir As String, FileName As String, Title As String,

IsAlarm As Boolean, IsNotification As Boolean, IsRingtone As Boolean,

IsMusic As Boolean) As String
Adds a sound file to the internal media store and returns the URI (address) to the new entry.

Dir - The file folder. Should be a folder under the storage card (public folder).

FileName - The file name.

Title - The entry title.

IsAlarm - Whether this entry should be added to the alarms sound list.

IsNotification - Whether this entry should be added to the notifications sound list.

IsRingtone - Whether this entry should be added to the ringtones sound list.

IsMusic - Whether this entry should be added to the music list.

 4.2 Standard Libraries included with Full Version

 - 460 -

Example:
Dim r As RingtoneManager

Dim u As String

u = r.AddToMediaStore(File.DirRootExternal, "bounce.mp3", "Bounce!",

True, True, True, True)

r.SetDefault(r.TYPE_RINGTONE, u)

DeleteRingtone (URI As String)
Deletes the given entry.

URI – the “Uniform Resource Identifier” (the address) of the ringtone to delete.

GetContentDir As String

Returns a string that represents the virtual content folder. This can be used to play a

Ringtone with MediaPlayer.

GetDefault (Type As Int) As String
Returns the URI (address) of the default ringtone of a specific type, or an empty string if no

default is available. Example:
Dim mp As MediaPlayer

mp.Initialize

Dim r As RingtoneManager

mp.Load(r.GetContentDir, r.GetDefault(r.TYPE_NOTIFICATION))

mp.Play

SetDefault (Type As Int, URI As String)
Sets the default ringtone for the given type.

URI – the “Uniform Resource Identifier” (the address) of the new ringtone default. In order

to get the URI, you should use AddToMediaStore (for new sounds) or

ShowRingtonePicker (for existing sounds).

ShowRingtonePicker (EventName As String, Type As Int, IncludeSilence

As Boolean, ChosenRingtone As String)
Shows the ringtone picker activity. The PickerResult will be raised after the user selects a

ringtone.

EventName - Sets the sub that will handle the PickerResult event.

Type - Defines the type(s) of sounds that will be listed. Multiple types can be set using

Bit.Or.

IncludeSilence - Whether to include the Silence option in the list.

ChosenRingtone - The URI (address) of the ringtone that will be selected when the dialog

opens. Pass an empty string if not needed.

TYPE_ALARM As Int

TYPE_NOTIFICATION As Int

TYPE_RINGTONE As Int

Sms
Represents an SMS message. SMS messages are retrieved using an SmsMessages object.

 4.2 Standard Libraries included with Full Version

 - 461 -

Members:

 Address As String

 Body As String

 Date As Long

 Id As Int

 PersonId As Int

 Read As Boolean

 ThreadId As Int

 Type As Int

Address As String
The message address.

Body As String
Message body.

Date As Long
The date of this message.

Id As Int
Message internal Id.

PersonId As Int
The Id of the person who sent the message. It will be -1 if this data is missing.

You can find more information about this person by calling Contacts.GetById.

Read As Boolean
Whether this message has been read.

ThreadId As Int
Thread Id.

Type As Int
The message type. One of the SmsMessages constant values.

SmsInterceptor
Listens for incoming SMS messages. The MessageReceived event is raised when a new

message arrives. Returning True from the MessageReceived event will cause the

broadcasted message to be aborted.

This can be used to prevent the message from reaching the standard SMS application.

However, in order for your application to receive the message before other applications, you

should use Initialize2 and set the priority value to a value larger than 0. It should be 999

according to the Android documentation.

Permissions:
android.permission.RECEIVE_SMS

 4.2 Standard Libraries included with Full Version

 - 462 -

Event: MessageReceived (From As String, Body As String) As Boolean

Members:

Initialize (EventName As String)
Initializes the object and starts listening for new messages.

Initialize2 (EventName As String, Priority As Int)
Initializes the object and starts listening for new messages. Priority defines the application

priority compared to other applications that listen to incoming messages.

According to the official Android documentation, in order to receive the message first, you

should set Priority to 999. However, it is possible that a third party application has used a

higher value. The highest possible value is the maximum value of an Int, 2147483647.

StopListening
Stops listening for events. You can later call Initialize to start listening again.

SmsMessages
Provides access to the stored SMS messages. Note that you can use PhoneSms to send SMS

messages. Example of printing all messages from the last week:
Dim SmsMessages1 As SmsMessages

Dim List1 As List

List1 = SmsMessages1.GetAllSince(DateTime.Add(DateTime.Now, 0, 0, -7))

For i = 0 To List1.Size - 1

 Dim Sms1 As Sms

 Sms1 = List1.Get(i)

 Log(Sms1)

Next

Permissions:
android.permission.READ_SMS

Members:

 GetAll As List

 GetAllSince (Date As Long) As List

 GetBetweenDates (StartDate As Long, EndDate As Long) As List

 GetByPersonId (PersonId As Int) As List

 GetByThreadId (ThreadId As Int) As List

 GetByType (Type As Int) As List

 GetUnreadMessages As List

The following are the defined TYPE constants:

 TYPE_DRAFT As Int

 TYPE_FAILED As Int

 TYPE_INBOX As Int

 TYPE_OUTBOX As Int

 TYPE_QUEUED As Int

 TYPE_SENT As Int

 4.2 Standard Libraries included with Full Version

 - 463 -

 TYPE_UNKNOWN As Int

GetAll As List
Returns all stored messages.

GetAllSince (Date As Long) As List
Returns all messages with a date value on or after the given date.

GetBetweenDates (StartDate As Long, EndDate As Long) As List
Returns all messages between the given dates. Start value is inclusive and end value is

exclusive.

GetByPersonId (PersonId As Int) As List
Returns a list with all messages received from the person with the given Id.

GetByThreadId (ThreadId As Int) As List
Returns a list with all messages with the given ThreadId.

GetByType (Type As Int) As List
Returns a list with all messages of the given type. The type should be one of the TYPE

constants.

GetUnreadMessages As List
Returns all unread messages.

TYPE_DRAFT As Int

TYPE_FAILED As Int

TYPE_INBOX As Int

TYPE_OUTBOX As Int

TYPE_QUEUED As Int

TYPE_SENT As Int

TYPE_UNKNOWN As Int

VoiceRecognition
Most Android devices support voice recognition (speech to text). Usually, the service works

by sending the audio stream to some external server which analyzes the stream and returns

the possible results. Therefore, a data connection is required.

You should declare a VoiceRecognition object as a Sub Process_Globals object and

initialize it in Activity_Create when FirstTime is True. Later, when you call Listen, a

dialog will be displayed, asking the user to speak.

Event: Result (Success As Boolean, Texts As List)
The Result event will be raised with a Success flag and a list with the possible results

(usually one result). You will need a Sub to process the result:

 4.2 Standard Libraries included with Full Version

 - 464 -

Sub VR_Result (Success As Boolean, Texts As List)

 If Success = True Then

 ToastMessageShow(Texts.Get(0), True)

 End If

End Sub

Members:

 Initialize (EventName As String)

 IsSupported As Boolean

 Language As String [write only]

 Listen

 Prompt As String [write only]

Initialize (EventName As String)
Initializes the object and sets the Sub that will catch the Ready event. Example:
Dim VR As VoiceRecognition

VR.Initialize("VR")

IsSupported As Boolean
Returns TRUE if voice recognition is supported on this device.

Language As String [write only]
Sets the language used. By default, the device default language is used. Example:
VR.Language = "en"

Listen
Starts listening. The Ready event will be raised when the result arrives.

Prompt As String [write only]
Sets the prompt that is displayed in the "Speak now" dialog in addition to the "Speak now"

message.

PreferenceActivity Library
The PreferenceActivity library (included in the IDE installation package) allows you to show

the standard settings interface and provides an easy way to handle applications settings.

 4.2 Standard Libraries included with Full Version

 - 465 -

In order to use this library, you need to edit the manifest file (using the Manifest Editor) and

add the line:
AddApplicationText(<activity

android:name="anywheresoftware.b4a.objects.preferenceactivity"/>)

See the tutorial (and the example project which it contains) for more information about how

to use this library. Note: although the modification to the manifest is not visible in the

example project (because the manifest is read-only), it is still required in any projects you

create that use this library.

List of types:
PreferenceCategory

PreferenceManager

PreferenceScreen

PreferenceCategory
PreferenceCategory holds a group of other preferences.

Members:

 AddCheckBox (Key As String, Title As String, Summary As String, DefaultValue As

Boolean)

 AddEditText (Key As String, Title As String, Summary As String, DefaultValue As

String)

 AddList (Key As String, Title As String, Summary As String, DefaultValue As String,

Values As List)

 AddPreferenceCategory (PreferenceCategory As PreferenceCategory)

 AddPreferenceScreen (PreferenceScreen As PreferenceScreen)

 CreateIntent As Intent

http://bit.ly/11jIyFd

 4.2 Standard Libraries included with Full Version

 - 466 -

 Initialize (Title As String)

AddCheckBox (Key As String, Title As String, Summary As String,

DefaultValue As Boolean)
Adds a preference entry with a check box. The entry values can be either True or False.

Key - The preference key associated with the value.

Title - Entry title.

Summary - Entry summary (second row).

DefaultValue - The default value of this preference entry if the key does not already exist.

AddEditText (Key As String, Title As String, Summary As String,

DefaultValue As String)
Adds a preference entry which allows the user to enter free text.

Key - The preference key associated with the value.

Title - Entry title.

Summary - Entry summary (second row).

DefaultValue - The default value of this preference entry if the key does not already exist.

AddList (Key As String, Title As String, Summary As String, DefaultValue

As String, Values As List)
Adds a preference entry which allows the user to choose a single item out of a list.

Key - The preference key associated with the value.

Title - Entry title.

Summary - Entry summary (second row).

DefaultValue - The default value of this preference entry, if the key does not already exist.

Should match one of the strings in Values.

Values - A list of strings with the possible values.

AddPreferenceCategory (PreferenceCategory As PreferenceCategory)
Adds a PreferenceCategory. A preference category is made of a title and a group of entries.

Note that a PreferenceCategory cannot hold other PreferenceCategories.

AddPreferenceScreen (PreferenceScreen As PreferenceScreen)
Adds a secondary PreferenceScreen. When the user presses on this entry, the second screen

will appear.

CreateIntent As Intent
Creates the Intent object that is required for showing the PreferencesActivity. Example:
StartActivity(PreferenceScreen1.CreateIntent)

Initialize (Title As String)
Initializes the object and sets the category title.

PreferenceManager
Provides access to the saved settings. Using PreferenceManager, you can get the stored

values and modify them.

Members:

 ClearAll

 4.2 Standard Libraries included with Full Version

 - 467 -

 GetAll As Map

 GetBoolean (Key As String) As Boolean

 GetString (Key As String) As String

 GetUpdatedKeys As List

 SetBoolean (Key As String, Value As Boolean)

 SetString (Key As String, Value As String)

ClearAll
Clears all stored entries.

GetAll As Map
Returns a Map with all the Keys and Values. Note that changes to this map will not affect

the stored values.

GetBoolean (Key As String) As Boolean
Returns the Boolean value mapped to the given key. Returns False if the key is not found.

GetString (Key As String) As String
Returns the String value mapped to the given key. Returns an empty string if the key is not

found.

GetUpdatedKeys As List
Returns a list with the keys that were updated since the last call to GetUpdatedKeys.

Note that the updated keys may include keys with unchanged values. If, for example, the

user changed the value of an item, and then restored it to the original value, this item would

still be returned in the list of updated keys.

SetBoolean (Key As String, Value As Boolean)
Maps the given key to the given Boolean value.

SetString (Key As String, Value As String)
Maps the given key to the given String value.

PreferenceScreen

Members:

 AddCheckBox (Key As String, Title As String, Summary As String, DefaultValue As

Boolean)

 AddEditText (Key As String, Title As String, Summary As String, DefaultValue As

String)

 AddList (Key As String, Title As String, Summary As String, DefaultValue As String,

Values As List)

 AddPreferenceCategory (PreferenceCategory As PreferenceCategory)

 AddPreferenceScreen (PreferenceScreen As PreferenceScreen)

 CreateIntent As Intent

 Initialize (Title As String, Summary As String)

 4.2 Standard Libraries included with Full Version

 - 468 -

AddCheckBox (Key As String, Title As String, Summary As String,

DefaultValue As Boolean)
Adds a preference entry with a check box. The entry values can be either True or False.

Key - The preference key associated with the value.

Title - Entry title.

Summary - Entry summary (second row).

DefaultValue - The default value of this preference entry if the key does not already exist.

AddEditText (Key As String, Title As String, Summary As String,

DefaultValue As String)
Adds a preference entry which allows the user to enter free text.

Key - The preference key associated with the value.

Title - Entry title.

Summary - Entry summary (second row).

DefaultValue - The default value of this preference entry if the key does not already exist.

AddList (Key As String, Title As String, Summary As String, DefaultValue

As String, Values As List)
Adds a preference entry which allows the user to choose a single item out of a list.

Key - The preference key associated with the value.

Title - Entry title.

Summary - Entry summary (second row).

DefaultValue - The default value of this preference entry if the key does not already exist.

Should match one of the strings in Values.

Values - A list of strings with the possible values.

AddPreferenceCategory (PreferenceCategory As PreferenceCategory)
Adds a PreferenceCategory. A preference category is made of a title and a group of entries.

Note that a PreferenceCategory cannot hold other PreferenceCategories.

AddPreferenceScreen (PreferenceScreen As PreferenceScreen)
Adds a secondary PreferenceScreen. When the user presses on this entry, the second screen

will appear.

CreateIntent As Intent
Creates the Intent object that is required for showing the PreferencesActivity. Example:
StartActivity(PreferenceScreen1.CreateIntent)

Initialize (Title As String, Summary As String)
Initializes the object and sets the title that will show. The summary will show for secondary

PreferenceScreens.

RandomAccessFile Library
This library is included in the IDE installation package.

 4.2 Standard Libraries included with Full Version

 - 469 -

List of types:

AsyncStreams
The AsyncStreams object allows you to read from an InputStream and write to an

OutputStream in the background without blocking the main thread.

See the AsyncStreams Tutorial.

Events:

NewData (Buffer() As Byte)
NewData event is raised only with full messages (not including the 4-bytes length value).

Error
Error event is raised when an error is encountered. You should check LastException to find

the error.

Terminated
The Terminated event is raised when the other side has terminated the connection.

Members:

Close
Closes the associated streams.

Initialize (In As java.io.InputStream, Out As java.io.OutputStream,

EventName As String)
Initializes the object. Unlike in prefix mode, the NewData event will be raised with new data

as soon as it is available.

In - The InputStream that will be read. Pass Null if you only want to write with this object.

Out - The OutputStream that is used for writing the data. Pass Null if you only want to read

with this object.

EventName - Determines the Subs that handle the NewData and Error events.

InitializePrefix (In As java.io.InputStream, BigEndian As Boolean, Out As

java.io.OutputStream, EventName As String)
Initializes the object and sets it in “prefix” mode. In this mode, incoming data should adhere

to the following protocol: every message should begin with the message length as an Int

value (4 bytes). This length should not include the additional 4 bytes.

The NewData event will be raised only with full messages (not including the 4 bytes length

value). The prefix Int value will be added to the output messages automatically. This makes

it easier as you do not need to deal with broken messages.

In - The InputStream that will be read. Pass Null if you only want to write with this object.

BigEndian - Whether the length value is encoded in BigEndian or LittleEndian.

Out - The OutputStream that is used for writing the data. Pass Null if you only want to read

with this object.

EventName - Determines the Subs that handle the NewData and Error events.

IsInitialized As Boolean
Returns TRUE if this object has been initialized.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/7669-asyncstreams-tutorial.html

 4.2 Standard Libraries included with Full Version

 - 470 -

OutputQueueSize As Int [read only]
Returns the number of messages waiting in the output queue.

Write (Buffer() As Byte) As Boolean
Adds the given byte-array to the output stream queue. If the object was initialized with

InitializePrefix, then the array length will be added before the array. Returns False if

the queue is full and it is not possible to queue the data.

Write2 (Buffer() As Byte, Start As Int, Length As Int) As Boolean
Adds the given byte-array to the output stream queue. If the object was initialized with

InitializePrefix, then the array length will be added before the array. Returns False if

the queue is full and it is not possible to queue the data.

CompressedStreams
The CompressedStreams object allows you to compress and decompress data using the gzip

or the zlib compression methods. For more information about these, see

http://en.wikipedia.org/wiki/Gzip and http://en.wikipedia.org/wiki/Zlib.

There are two options for working with CompressedStreams:

 Wrapping another stream by calling WrapInputStream or WrapOutputStream.

 Compressing or decompressing the data in memory.

The following example demonstrates the use of this object:
Sub Activity_Create(FirstTime As Boolean)

 Dim sb As StringBuilder

 sb.Initialize

 'Concatenation operations are much faster with StringBuilder than

with String.

 For i = 1 To 10000

 sb.Append("Playing with compressed streams.").Append(CRLF)

 Next

 Dim out As OutputStream

 Dim s As String

 Dim compress As CompressedStreams

 s = sb.ToString

 'Write the string without compressing it (we could have used

File.WriteString instead).

 out = File.OpenOutput(File.DirRootExternal, "test.txt", False)

 WriteStringToStream(out, s)

 'Write the string with gzip compression.

 out = File.OpenOutput(File.DirRootExternal, "test.gz", False)

 out = compress.WrapOutputStream(out, "gzip")

 WriteStringToStream(out, s)

 'Write the string with zlib compression

 out = File.OpenOutput(File.DirRootExternal, "test.zlib", False)

 out = compress.WrapOutputStream(out, "zlib")

 WriteStringToStream(out, s)

http://en.wikipedia.org/wiki/Gzip
http://en.wikipedia.org/wiki/Zlib

 4.2 Standard Libraries included with Full Version

 - 471 -

 'Show the files sizes

 Msgbox("No compression: " & File.Size(File.DirRootExternal,

"test.txt") & CRLF _

 & "Gzip: " & File.Size(File.DirRootExternal, "test.gz") & CRLF _

 & "zlib: " & File.Size(File.DirRootExternal, "test.zlib"), "Files

sizes")

 'Read data from a compressed file

 Dim in As InputStream

 in = File.OpenInput(File.DirRootExternal, "test.zlib")

 in = compress.WrapInputStream(in, "zlib")

 Dim reader As TextReader

 reader.Initialize(in)

 Dim line As String

 line = reader.ReadLine

 Msgbox(line, "First line")

 reader.Close

 'In memory compression / decompression

 Dim data() As Byte

 data = "Playing with in-memory compression.".GetBytes("UTF8")

 Dim compressed(), decompressed() As Byte

 compressed = compress.CompressBytes(data, "gzip")

 decompressed = compress.DecompressBytes(compressed, "gzip")

 'In this case the compressed data is longer than the decompressed

data.

 'The data is too short for the compression to be useful.

 Log("Compressed: " & compressed.Length)

 Log("Decompressed: " & decompressed.Length)

 Msgbox(BytesToString(decompressed,0, decompressed.Length, "UTF8"),

"")

End Sub

Sub WriteStringToStream(Out As OutputStream, s As String)

 Dim t As TextWriter

 t.Initialize(Out)

 t.Write(s)

 t.Close 'Closes the internal stream as well

End Sub

Members:

CompressBytes (Data() As Byte, CompressMethod As String) As Byte()
Returns a byte array with the compressed data.

Data - Data to compress.

CompressMethod - The name of the compression method (gzip or zlib).

DecompressBytes (CompressedData() As Byte, CompressMethod As String)

As Byte()
Returns a byte array with the decompressed data.

CompressedData - The compressed data that should be decompressed.

 4.2 Standard Libraries included with Full Version

 - 472 -

CompressMethod - The name of the compression method (gzip or zlib).

WrapInputStream (In As java.io.InputStream, CompressMethod As String)

As InputStreamWrapper
Wraps an input stream and returns an input stream that automatically decompresses the

stream when it is read.

In - The original input stream.

CompressMethod - The name of the compression method (gzip or zlib).

WrapOutputStream (Out As java.io.OutputStream, CompressMethod As

String) As OutputStreamWrapper
Wraps an output stream and returns an output stream that automatically compresses the

data when it is written to the stream.

Out - The original output stream.

CompressMethod - The name of the compression method (gzip or zlib).

CountingInputStream
CountingInputStream and CountingOutputStream allow you to monitor the reading or

writing progress. Counting streams wrap the actual stream and provide a Count property

which allows you to get the number of bytes read or written. Counting streams are useful

when the reading or writing operations are done in the background. You can then use a timer

to monitor the progress. This example logs the downloading progress:
Sub Process_Globals

 Dim hc As HttpClient

 Dim cout As CountingOutputStream

 Dim length As Int

 Dim timer1 As Timer

End Sub

Sub Globals

End Sub

Sub Activity_Create(FirstTime As Boolean)

 If FirstTime Then

 hc.Initialize("hc")

 timer1.Initialize("Timer1", 500)

 End If

 Dim req As HttpRequest

 req.InitializeGet("http://www.basic4ppc.com/android/files/b4a-

trial.zip")

 hc.Execute(req, 1)

End Sub

Sub hc_ResponseSuccess (Response As HttpResponse, TaskId As Int)

 cout.Initialize(File.OpenOutput(File.DirRootExternal, "1.zip",

False))

 Timer1.Enabled = True

 length = Response.ContentLength

 Response.GetAsynchronously("response", cOut, True, TaskId)

End Sub

 4.2 Standard Libraries included with Full Version

 - 473 -

Sub hc_ResponseError (Response As HttpResponse, Reason As String,

StatusCode As Int, TaskId As Int)

 Log("Error: " & Reason)

 If Response <> Null Then

 Log(Response.GetString("UTF8"))

 Response.Release

 End If

End Sub

Sub Response_StreamFinish (Success As Boolean, TaskId As Int)

 timer1.Enabled = False

 If Success Then

 Timer1_Tick 'Show the current counter status

 Log("Success!")

 Else

 Log("Error: " & LastException.Message)

 End If

End Sub

Sub Timer1_Tick

 Log(cout.Count & " out of " & length)

End Sub

Members:

BytesAvailable As Int

Close

Count As Long
Gets or sets the number of bytes read.

Initialize (InputStream As java.io.InputStream)
Initializes the counting stream by wrapping the given input stream.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

ReadBytes (arg0() As Byte, arg1 As Int, arg2 As Int) As Int

CountingOutputStream
See CountingInputStream for more information.

Members:

Close

Count As Long
Gets or sets the number of bytes written.

Flush

Initialize (OutputStream As java.io.OutputStream)
Initializes the counting stream by wrapping the given output stream.

 4.2 Standard Libraries included with Full Version

 - 474 -

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

ToBytesArray As Byte()

WriteBytes (arg0() As Byte, arg1 As Int, arg2 As Int)

RandomAccessFile
This object allows you to non-sequentially access files and byte-arrays. You can also use it to

encode numbers to bytes (and vice versa). Note that assets files (files added with the file

manager) cannot be opened with this object as those files are actually packed inside the APK

file. A short tutorial about the encryption methods is available here.

Members:

 Close

 CurrentPosition As Long

 Flush

 Initialize (Dir As String, File As String, ReadOnly As Boolean)

 Initialize2 (Dir As String, File As String, ReadOnly As Boolean, LittleEndian As

Boolean)

 Initialize3 (Buffer() As Byte, LittleEndian As Boolean)

 ReadBytes (Buffer() As Byte, StartOffset As Int, Length As Int, Position As Long) As Int

 ReadDouble (Position As Long) As Double

 ReadEncryptedObject (Password As String, Position As Long) As Object

 ReadFloat (Position As Long) As Float

 ReadInt (Position As Long) As Int

 ReadLong (Position As Long) As Long

 ReadObject (Position As Long) As Object

 ReadShort (Position As Long) As Short

 ReadSignedByte (Position As Long) As Byte

 ReadUnsignedByte (Position As Long) As Int

 Size As Long [read only]

 WriteByte (Byte As Byte, Position As Long)

 WriteBytes (Buffer() As Byte, StartOffset As Int, Length As Int, Position As Long) As Int

 WriteDouble (Value As Double, Position As Long)

 WriteEncryptedObject (Object As Object, Password As String, Position As Long)

 WriteFloat (Value As Float, Position As Long)

 WriteInt (Value As Int, Position As Long)

 WriteLong (Value As Long, Position As Long)

 WriteObject (Object As Object, Compress As Boolean, Position As Long)

 WriteShort (Value As Short, Position As Long)

http://bit.ly/159hDmT

 4.2 Standard Libraries included with Full Version

 - 475 -

Close
Closes the stream.

CurrentPosition As Long
Holds the current file position. This value is updated automatically after each read or write

operation.

Flush
Flushes any cached data.

Initialize (Dir As String, File As String, ReadOnly As Boolean)
Opens the specified file. Note that it is not possible to open a file saved in the assets folder

with this object. If needed, you can copy the file to another location and then open it.

ReadOnly - Whether to open the file in read-only mode (otherwise, it will be readable and

writable).

Example:
Dim raf As RandomAccessFile

raf.Initialize(File.DirInternal, "1.dat", false)

Initialize2 (Dir As String, File As String, ReadOnly As Boolean,

LittleEndian As Boolean)
Same as Initialize with the option to set the byte order to Little Endian instead of the default

Big Endian. This can be useful when sharing files with Windows computers.

Initialize3 (Buffer() As Byte, LittleEndian As Boolean)
Treats the given buffer as a random access file with a constant size. This allows you to read

and write values to an array of bytes.

ReadBytes (Buffer() As Byte, StartOffset As Int, Length As Int, Position As

Long) As Int
Reads bytes from the stream and into to the given array. Returns the number of bytes read

(which is equal or smaller than Length).

Buffer - Array of bytes where the data will be written to.

StartOffset - The first byte read will be written to Buffer(StartOffset).

Length - Number of bytes to read.

Position - The position of the first byte to read.

ReadDouble (Position As Long) As Double
Reads a Double value stored at the specified position. Reads 8 bytes.

ReadEncryptedObject (Password As String, Position As Long) As Object
Reads an encrypted object from the stream.

Password - The password used when the object was written.

Position - Stream position.

ReadFloat (Position As Long) As Float
Reads a Float value stored at the specified position. Reads 4 bytes.

ReadInt (Position As Long) As Int
Reads an Int value stored at the specified position. Reads 4 bytes.

 4.2 Standard Libraries included with Full Version

 - 476 -

ReadLong (Position As Long) As Long
Reads a Long value stored at the specified position. Reads 8 bytes.

ReadObject (Position As Long) As Object
Reads an object from the stream. See WriteObject for supported types.

ReadShort (Position As Long) As Short
Reads a Short value stored at the specified position. Reads 2 bytes.

ReadSignedByte (Position As Long) As Byte
Reads a signed byte (-128 to 127) stored at the specified position.

ReadUnsignedByte (Position As Long) As Int
Reads an unsigned byte (0 to 255) stored at the specified position. The value returned is of

type Int (because a Byte can only store values from -128 to 127).

Size As Long [read only]
Returns the file size.

WriteByte (Byte As Byte, Position As Long)
Writes a Byte value at the specified position. Writes 1 byte.

WriteBytes (Buffer() As Byte, StartOffset As Int, Length As Int, Position

As Long) As Int
Writes the given buffer to the stream. The first byte written is Buffer(StartOffset)

and the last is Buffer(StartOffset + Length - 1). Returns the numbers of bytes written.

WriteDouble (Value As Double, Position As Long)
Writes a Double value at the specified position. Writes 8 bytes.

WriteEncryptedObject (Object As Object, Password As String, Position As

Long)
Similar to WriteObject. The object is encrypted with AES-256 and then written to the

stream. Note that it is faster to write a single large object compared to many smaller objects.

Object - The object that will be written.

Password - The password that protects the object.

Position - The position in the file that this object will be written to.

WriteFloat (Value As Float, Position As Long)
Writes a Float value at the specified position. Writes 4 bytes.

WriteInt (Value As Int, Position As Long)
Writes an Int value at the specified position. Writes 4 bytes.

WriteLong (Value As Long, Position As Long)
Writes a Long value at the specified position. Writes 8 bytes.

WriteObject (Object As Object, Compress As Boolean, Position As Long)
Writes the given object to the stream. This method is capable of writing the following types of

objects: Lists, Arrays, Maps, Strings, primitive types and user defined types. Combinations of

these types are also supported. For example, a map with several lists of arrays can be

written. The element type inside a collection must be a String or primitive type. Note that

 4.2 Standard Libraries included with Full Version

 - 477 -

changing your package name may make older object files unusable (requiring you to write

them again).

Object - The object that will be written.

Compress - Whether to compress the data before writing it. Should be True in most cases.

Position - The position in the file that this object will be written to.

WriteShort (Value As Short, Position As Long)
Writes a Short value (2 bytes) at the specified position.

Serial Library
This library is included in the IDE installation package.

List of types:
BluetoothAdmin

Serial

BluetoothAdmin
BluetoothAdmin allows you to administrate the Bluetooth adapter. Using this object, you can

enable or disable the adapter, monitor its state and discover devices in range.

Permissions:
android.permission.BLUETOOTH

android.permission.BLUETOOTH_ADMIN

Events:

StateChanged (NewState As Int, OldState As Int)
The StateChanged event is raised whenever the adapter state changes. The new state and

the previous state are passed. The values correspond to the STATE_xxxx constants.

DiscoveryStarted / DiscoveryFinished
The DiscoveryStarted and DiscoveryFinished events are raised when a discovery process

starts or finishes.

DeviceFound (Name As String, MacAddress As String)
The DeviceFound event is raised when a device is discovered. The device name and MAC

address are passed.

Members:

 CancelDiscovery As Boolean

 Disable As Boolean

 Enable As Boolean

 Initialize (EventName As String)

 IsEnabled As Boolean

 IsInitialized As Boolean

 StartDiscovery As Boolean

The following are STATE contants:

 4.2 Standard Libraries included with Full Version

 - 478 -

 STATE_OFF As Int

 STATE_ON As Int

 STATE_TURNING_OFF As Int

 STATE_TURNING_ON As Int

CancelDiscovery As Boolean
Cancels a discovery process.

Returns False if the operation has failed.

Disable As Boolean
Turns off the Bluetooth adpater. The adapter will not be immediately disabled. You should

use the StateChanged event to monitor the adapter.

This method returns False if the adapter cannot be disabled or is already disabled.

Enable As Boolean
Turns on the Bluetooth adapter. The adapter will not be immediately ready. You should use

the StateChanged event to find when it is enabled. This method returns False if the adapter

cannot be enabled or is already enabled.

Initialize (EventName As String)
Initializes the object and sets the subs that will handle the events.

IsEnabled As Boolean
Returns TRUE if the Bluetooth adapter is enabled.

IsInitialized As Boolean
Returns TRUE if the object is initialized.

StartDiscovery As Boolean
Starts a discovery process. You should handle DiscoveryStarted, DiscoveryFinished and

DeviceFound events to get more information about the process. Returns False if the

operation has failed.

STATE_OFF As Int

STATE_ON As Int

STATE_TURNING_OFF As Int

STATE_TURNING_ON As Int

Serial
The Serial library allows you to connect with other Bluetooth devices using the Radio

Frequency Communication protocol RFCOMM, which emulates serial ports.

This library requires Android 2.0 (API level 5) or above.

The Serial object should be declared as a Sub Process_Globals object. After initializing

the object you can connect to other devices by calling Connect with the target device MAC

address. This can be done by first getting the paired devices map. This map contains the

friendly name and address of each paired device.

To allow other devices to connect to your device, you should call Listen.

http://bit.ly/1dgYl19

 4.2 Standard Libraries included with Full Version

 - 479 -

When a connection is established, the Connected event will be raised. There is no problem

with both listening to connections and trying to connect to a different device (this allows you

to use the same application on two devices without defining a server and client).

One Serial object can handle a single connection. If a new connection is established, it will

replace the previous one. See this tutorial for more information.

Permissions:
android.permission.BLUETOOTH

Event: Connected (Success As Boolean)
The Connected event will be raised after the Connect, Connect2, Listen or Listen2

command is issued, when the connection is ready (or fails).

Members:

 Address As String [read only]

 Connect (MacAddress As String)

 Connect2 (MacAddress As String, UUID As String)

 Connect3 (MacAddress As String, Port As Int)

 ConnectInsecure (Admin As BluetoothAdmin, MacAddress As String, Port As Int)

 Disconnect

 GetPairedDevices As Map

 Initialize (EventName As String)

 InputStream As java.io.InputStream [read only]

 IsEnabled As Boolean

 IsInitialized As Boolean

 Listen

 Listen2 (Name As String, UUID As String)

 ListenInsecure (Admin As BluetoothAdmin, Port As Int)

 Name As String [read only]

 OutputStream As java.io.OutputStream [read only]

 StopListening

Address As String [read only]
Returns the current device MAC address.

Connect (MacAddress As String)
Tries to connect to a device with the given address. The connection is done in the

background. The Connected event will be raised when the connection is ready (or fails).

The UUID used for the connection is the default UUID: 00001101-0000-1000-8000-

00805F9B34FB.

Connect2 (MacAddress As String, UUID As String)
Tries to connect to a device with the given address and UUID. The connection is done in the

background. The Connected event will be raised when the connection is ready (or fails).

http://bit.ly/19FCUCS

 4.2 Standard Libraries included with Full Version

 - 480 -

Connect3 (MacAddress As String, Port As Int)
This method is a workaround for hardware devices that do not connect with Connect or

Connect2. See this issue for more information.

ConnectInsecure (Admin As BluetoothAdmin, MacAddress As String, Port

As Int)
Tries to connect to a device over an unencrypted connection.

Admin - Object of type BluetoothAdmin.

MacAddress - The address of the remote device.

Port - RFCOMM channel.

Disconnect
Disconnects the connection (if such exists) and stops listening for new connections.

GetPairedDevices As Map
Returns a map with the paired devices’ friendly names as keys and their addresses as values.

The following code shows a list of available devices and allows the user to connect to one:
Dim PairedDevices As Map

PairedDevices = Serial1.GetPairedDevices

Dim l As List

l.Initialize

For i = 0 To PairedDevices.Size - 1

 l.Add(PairedDevices.GetKeyAt(i))

Next

Dim res As Int

res = InputList(l, "Choose device", -1) 'show list with paired devices

If res <> DialogResponse.CANCEL Then

 Serial1.Connect(PairedDevices.Get(l.Get(res))) 'convert the name to

MAC address and connect

End If

Initialize (EventName As String)
Initialized the object. You may want to call IsEnabled before trying to work with the object.

InputStream As java.io.InputStream [read only]
Returns the InputStream that is used to read data from the other device. Should be called

after a connection is established.

IsEnabled As Boolean
Returns TRUE if the Bluetooth is enabled.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Listen
Starts listening for incoming connections using the default UUID. The Connected event will

be raised when the connection is established. Nothing happens if the device is already

listening for connections.

http://code.google.com/p/android/issues/detail?id=5427
http://bit.ly/1dgYl19

 4.2 Standard Libraries included with Full Version

 - 481 -

Listen2 (Name As String, UUID As String)
Starts listening for incoming connections. The Connected event will be raised when the

connection is established. Nothing happens if the device is already listening for connections.

Name - An arbitrary string that will be used for internal registration.

UUID - The UUID defined for this record.

ListenInsecure (Admin As BluetoothAdmin, Port As Int)
Starts listening for incoming unencrypted connections.

Admin - An object of type BluetoothAdmin.

Port - The RFCOMM channel.

Name As String [read only]
Returns the current device friendly name.

OutputStream As java.io.OutputStream [read only]
Returns the OutputStream that is used to write data to the other device. Should be called

after a connection is established.

StopListening
Stops listening for incoming connections. This will not disconnect any active connection.

Sip Library
The Sip library lets you make audio calls using Voice over IP (Voip) services. Sip features

were added in Android 2.3 (API level 9). Note that not all devices above Android 2.3 support

Sip features. In order to use this library, you will need to set android.jar in [Tools >

Configure Paths] to platform-9 or above.

This library is included in the IDE installation package. A tutorial is available here.

List of types:
Sip

SipAudioCall

Sip
Sip is the main object which manages the Sip services. Once you make a call or receive an

incoming call, you will get a SipAudioCall object, which represents the call.

Permissions:
android.permission.USE_SIP

android.permission.INTERNET

android.permission.RECORD_AUDIO

android.permission.ACCESS_WIFI_STATE

android.permission.WAKE_LOCK

android.permission.MODIFY_AUDIO_SETTINGS

http://bit.ly/14tU0mz

 4.2 Standard Libraries included with Full Version

 - 482 -

Events:

Registering

RegistrationDone (ExpiryTime As Long)

RegistrationFailed (ErrorCode As Int, ErrorMessage As String)

CallEstablished

CallEnded

Calling

CallError (ErrorCode As Int, ErrorMessage As String)

CallRinging (IncomingCall As SipAudioCall)

Members:

 AutoRegistration As Boolean [write only]

 Close

 DisplayName As String [write only]

 Initialize (EventName As String, User As String, Host As String, Password As String)

 Initialize2 (EventName As String, URI As String, Password As String)

 IsInitialized As Boolean [read only]

 IsSipSupported As Boolean [read only]

 IsVoipSupported As Boolean [read only]

 MakeCall (TargetUri As String, TimeoutSeconds As Int) As SipAudioCall

 OutboundProxy As String [write only]

 Port As Int [write only]

 ProfileName As String [write only]

 Protocol As String [write only]

 Register

 SendKeepAlive As Boolean [write only]

AutoRegistration As Boolean [write only]
Sets whether the Sip manager will register automatically if needed.

Close
Closes the connection.

DisplayName As String [write only]
Sets the user display name.

Initialize (EventName As String, User As String, Host As String, Password

As String)
Initializes the object.

EventName - Sets the subs that will handle the events.

User - User name.

Host - Host name or IP address.

 4.2 Standard Libraries included with Full Version

 - 483 -

Password - Account password.

Initialize2 (EventName As String, URI As String, Password As String)
Initializes the object.

EventName - Sets the subs that will handle the events.

URI – the “Uniform Resource Identifier” (address) of the profile resource, for example:

“sip:zzz@iptel.org”

Password - Account password.

IsInitialized As Boolean [read only]
Returns TRUE if the object was initialized.

IsSipSupported As Boolean [read only]
Returns TRUE if Sip API is supported on the device.

IsVoipSupported As Boolean [read only]
Returns TRUE if Voip is supported on this device.

MakeCall (TargetUri As String, TimeoutSeconds As Int) As SipAudioCall
Makes an audio call. This method should only be called after registering.

TargetUri - The address of the target.

TimeoutSeconds - The timeout (measured in seconds).

OutboundProxy As String [write only]
Sets the outbound proxy address.

Port As Int [write only]
Sets the connection port.

ProfileName As String [write only]
Sets the user-defined profile name.

Protocol As String [write only]
Sets the protocol. Either “TCP” or “UDP”.

Register
Sends a registration request to the server. The following events will be raised: either

Registering and RegistrationDone, or RegistrationFail.

SendKeepAlive As Boolean [write only]
Sets whether keep-alive messages will be sent automatically.

SipAudioCall
Represents an audio call. This object is created by calling Sip.MakeCall or from the

CallRinging event.

Members:

AnswerCall (TimeoutSeconds As Int)
Answers an incoming call.

TimeoutSeconds - Allowed time for the call to be established.

 4.2 Standard Libraries included with Full Version

 - 484 -

EndCall
Ends the current call.

IsInCall As Boolean [read only]
Returns TRUE if the call was established.

IsInitialized As Boolean
Whether this object has been initialized.

IsMuted As Boolean [read only]
Returns TRUE if the microphone is muted.

PeerUri As String [read only]
Gets the address of the peer.

SendDtmf (Code As Int)
Sends a Dtmf tone. Values can be 0-15, where 0-9 are the digits, 10 is ‘*’, 11 is ‘# and 12-15

are ‘A’-’D’.

SpeakerMode As Boolean [write only]
Sets the speaker mode.

StartAudio
Starts the audio for the call. Should be called in CallEstablished event.

ToggleMute
Toggles the microphone mute.

SQL Library
This library (included in the IDE installation package) allows you to create and manage

SQLite databases. See the Databases Chapter for more information.

List of types:
Cursor

SQL

Cursor
A cursor is the object returned from a database query. It consists of a set of records and a

pointer to the current record.

It is similar to a recordset in Visual Basic.

Members:

 Close

 ColumnCount As Int [read only]

 GetBlob (ColumnName As String) As Byte()

 GetBlob2 (Index As Int) As Byte()

 GetColumnName (Index As Int) As String

 GetDouble (ColumnName As String) As Double

 4.2 Standard Libraries included with Full Version

 - 485 -

 GetDouble2 (Index As Int) As Double

 GetInt (ColumnName As String) As Int

 GetInt2 (Index As Int) As Int

 GetLong (ColumnName As String) As Long

 GetLong2 (Index As Int) As Long

 GetString (ColumnName As String) As String

 GetString2 (Index As Int) As String

 IsInitialized As Boolean

 Position As Int

 RowCount As Int [read only]

Close
Closes the cursor and frees resources.

ColumnCount As Int [read only]
Gets the number of fields available in the result set.

GetBlob (ColumnName As String) As Byte()
Returns the blob stored in the given column. Example:
Dim Buffer() As Byte

Buffer = Cursor.GetBlob("col1")

GetBlob2 (Index As Int) As Byte()
Returns the blob stored in the column at the given ordinal. Example:
Dim Buffer() As Byte

Buffer = Cursor.GetBlob2(0)

GetColumnName (Index As Int) As String
Returns the name of the column at the specified index. The first column index is 0.

GetDouble (ColumnName As String) As Double
Returns the Double value stored in the given column. The value will be converted to Double

if it is of different type. Example:
Log(Cursor.GetDouble("col2"))

GetDouble2 (Index As Int) As Double
Returns the Double value stored in the column at the given ordinal. The value will be

converted to Double if it is of different type. Example:
Log(Cursor.GetDouble2(0))

GetInt (ColumnName As String) As Int
Returns the Int value stored in the given column. The value will be converted to Int if it is of

different type. Example:
Log(Cursor.GetInt("col2"))

GetInt2 (Index As Int) As Int
Returns the Int value stored in the column at the given ordinal. The value will be converted

to Int if it is of different type. Example:

 4.2 Standard Libraries included with Full Version

 - 486 -

Log(Cursor.GetInt2(0))

GetLong (ColumnName As String) As Long
Returns the Long value stored in the given column. The value will be converted to Long if it

is of different type. Example:
Log(Cursor.GetLong("col2"))

GetLong2 (Index As Int) As Long
Returns the Long value stored in the column at the given ordinal. The value will be

converted to Long if it is of different type. Example:
Log(Cursor.GetLong2(0))

GetString (ColumnName As String) As String
Returns the String value stored in the given column. The value will be converted to String if

it is of different type. Example:
Log(Cursor.GetString("col2"))

GetString2 (Index As Int) As String
Returns the String value stored in the column at the given ordinal. The value will be

converted to String if it is of different type. Example:
Log(Cursor.GetString2(0))

IsInitialized As Boolean
Whether this object has been initialized.

Position As Int
Gets or sets the current position (row). Note that the starting position of a cursor returned

from a query is -1. The first valid position is 0. Example:
Dim SQL1 As SQL

Dim Cursor1 As Cursor

Cursor1 = SQL1.ExecQuery("SELECT col1, col2 FROM table1")

For i = 0 To Cursor1.RowCount - 1

 Cursor1.Position = i

 Log(Cursor1.GetString("col1"))

 Log(Cursor1.GetInt("col2"))

Next

Cursor1.Close

RowCount As Int [read only]
Gets the numbers of rows available in the result set.

SQL
The main object that accesses the SQLite database built-into Android. See the Databases

Chapter for more information.

 4.2 Standard Libraries included with Full Version

 - 487 -

Events:

QueryComplete (Success As Boolean, Crsr As Cursor)

NonQueryComplete (Success As Boolean)

Members:

 AddNonQueryToBatch (Statement As String, Args As List)

 BeginTransaction

 Close

 EndTransaction

 ExecNonQuery (Statement As String)

 ExecNonQuery2 (Statement As String, Args As List)

 ExecNonQueryBatch (EventName As String)

 ExecQuery (Query As String) As Cursor

 ExecQuery2 (Query As String, StringArgs() As String) As Cursor

 ExecQueryAsync (EventName As String, Query As String, StringArgs() As String)

 ExecQuerySingleResult (Query As String) As String

 ExecQuerySingleResult2 (Query As String, StringArgs() As String) As String

 Initialize (Dir As String, FileName As String, CreateIfNecessary As Boolean)

 IsInitialized As Boolean

 TransactionSuccessful

AddNonQueryToBatch (Statement As String, Args As List)
Adds a non-query statement to the batch of statements. The statements are (asynchronously)

executed when you call ExecNonQueryBatch. Args can be Null if it is not needed. Example:
For i = 1 To 10000

 sql1.AddNonQueryToBatch("INSERT INTO table1 VALUES (?)", Array As

Object(Rnd(0, 100000)))

Next

sql1.ExecNonQueryBatch("SQL")

...

Sub SQL_NonQueryComplete (Success As Boolean)

 Log("NonQuery: " & Success)

 If Success = False Then Log(LastException)

End Sub

BeginTransaction
Begins a transaction. A transaction is a set of multiple “writing” statements for which either

all or no changes will be saved to the database. Changes are held in a temporary form and, if

there is an error, all changes are reversed so the database is restored to its original state. It

is very important to handle transactions carefully and close them. The transaction is

considered successful only if TransactionSuccessful is called. Otherwise, no changes will

be saved.

 4.2 Standard Libraries included with Full Version

 - 488 -

Close
Closes the database. Does not do anything if the database was never opened or has already

been closed.

EndTransaction
Ends the transaction.

ExecNonQuery (Statement As String)
Executes a single non query SQL statement. Example:
SQL1.ExecNonQuery("CREATE TABLE table1 (col1 TEXT , col2 INTEGER, col3

INTEGER)")

If you plan to do many “writing” queries one after another, then you should consider using

BeginTransaction and EndTransaction, which will execute significantly faster.

ExecNonQuery2 (Statement As String, Args As List)
Executes a single non query SQL statement. The statement can include question marks

which will be replaced by the items in the given list. Note that Basic4Android converts

arrays to lists implicitly. The values in the list should be strings, numbers or byte-arrays.

Example:
SQL1.ExecNonQuery2("INSERT INTO table1 VALUES (?, ?, 0)", Array As

Object("some text", 2))

ExecNonQueryBatch (EventName As String)
Asynchronously executes a batch of non-query statements (such as INSERT).

The NonQueryComplete event is raised after the statements are completed.

You should call AddNonQueryToBatch one or more times before calling this method to add

statements to the batch. Note that this method internally begins and ends a transaction.

ExecQuery (Query As String) As Cursor
Executes the query and returns a cursor which is used to go over the results. Example:
Dim SQL1 As SQL

Dim Cursor1 As Cursor

Cursor1 = SQL1.ExecQuery("SELECT col1, col2 FROM table1")

For i = 0 To Cursor1.RowCount - 1

 Cursor1.Position = i

 Log(Cursor1.GetString("col1"))

 Log(Cursor1.GetInt("col2"))

Next

ExecQuery2 (Query As String, StringArgs() As String) As Cursor
Executes the query and returns a cursor which is used to go over the results. The query can

include question marks which will be replaced with the values in the array. Example:
Dim SQL1 As SQL

Dim Cursor1 As Cursor

Cursor1 = SQL1.ExecQuery2("SELECT col1 FROM table1 WHERE col3 = ?",

Array As String(22))

SQLite will try to convert the string values based on the column types.

 4.2 Standard Libraries included with Full Version

 - 489 -

ExecQueryAsync (EventName As String, Query As String, StringArgs() As

String)
Asynchronously executes the given query. The QueryComplete event will be raised when the

results are ready. Example:
sql1.ExecQueryAsync("SQL", "SELECT * FROM table1", Null)

...

Sub SQL_QueryComplete (Success As Boolean, Crsr As Cursor)

 If Success Then

 For i = 0 To Crsr.RowCount - 1

 Crsr.Position = i

 Log(Crsr.GetInt2(0))

 Next

 Else

 Log(LastException)

 End If

End Sub

ExecQuerySingleResult (Query As String) As String
Executes the query and returns the value in the first column and the first row (in the result

set). Returns Null if no results were found. Example:
Dim NumberOfMatches As Int

NumberOfMatches = SQL1.ExecQuerySingleResult("SELECT count(*) FROM

table1 WHERE col2 > 300")

ExecQuerySingleResult2 (Query As String, StringArgs() As String) As

String
Executes the query and returns the value in the first column and the first row (in the result

set). Returns Null if no results were found. Example:
Dim NumberOfMatches As Int

NumberOfMatches = SQL1.ExecQuerySingleResult2("SELECT count(*) FROM

table1 WHERE col2 > ?", Array As String(300))

Initialize (Dir As String, FileName As String, CreateIfNecessary As

Boolean)
Opens the database file. A new database will be created if it does not exist and

CreateIfNecessary is True. Example:
Sub Process_Globals

 Dim SQL1 As SQL

End Sub

Sub Activity_Create(FirstTime As Boolean)

 If FirstTime Then

 SQL1.Initialize(File.DirRootExternal, "1.db", True)

 End If

End Sub

IsInitialized As Boolean
Returns TRUE if the database is initialized and opened.

 4.2 Standard Libraries included with Full Version

 - 490 -

TransactionSuccessful
Marks the transaction as a successful transaction. No further statements should be executed

till calling EndTransaction.

StringUtils Library
This library is included in the IDE installation package.

List of types:
StringUtils

StringUtils
Collection of string-related functions.

DecodeBase64 (Data As String) As Byte()
Decodes data from Base64 notation.

DecodeUrl (Url As String, CharSet As String) As String
Decodes an application/x-www-form-urlencoded string. See Text Encoding for details of

character sets.

EncodeBase64 (Data() As Byte) As String
Encodes the given byte-array into Base64 notation. Example:
Dim su As StringUtils

Dim encoded As String

encoded = su.EncodeBase64(data) 'data is a byte-array

EncodeUrl (Url As String, CharSet As String) As String
Encodes a string into application/x-www-form-urlencoded format.

Url - String to encode.

CharSet - The character encoding name. See Text Encoding for details of character sets.

Example:
Dim su As StringUtils

Dim url, encodedUrl As String

encodedUrl = su.EncodeUrl(url, "UTF8")

LoadCSV (Dir As String, FileName As String, SeparatorChar As Char) As

List
Loads a CSV file and stores it in a list of string arrays.

Dir - CSV file folder.

FileName - CSV file name.

SeparatorChar - The character used in the original file to separate fields. For the tab

character, use Chr(9).

Example:

 4.2 Standard Libraries included with Full Version

 - 491 -

Dim lvTest As ListView

Dim lstCSV As List

Dim StrUtil As StringUtils

Dim strRow(), strOneLine As String

Dim iRowCount As Int

' prepare ListView to show data

lvTest.Initialize("")

Activity.AddView(lvTest, 0,0,100%x, 100%y)

 ' Read the csv file

lstCSV.Initialize

lstCSV = StrUtil.LoadCSV(File.DirAssets, "book2.csv", ",")

For iRowCount = 0 To lstCSV.Size - 1

 strRow = lstCSV.Get(iRowCount)

 strOneLine = ""

 For i = 0 To strRow.Length - 1

 strOneLine = strOneLine & strRow(i)

 If i < strRow.Length - 1 Then

 strOneLine = strOneLine & ", "

 End If

 Next

 lvTest.AddSingleLine(strOneLine)

Next

LoadCSV2 (Dir As String, FileName As String, SeparatorChar As Char,

Headers As List) As List
Similar to LoadCSV, except that it loads the first row into the Headers list of strings.

MeasureMultilineTextHeight (TextView1 As TextView, Text As String) As

Int
Returns the required height in order to show the given text in a label. This can be used to

show dynamic text in a label. Note that the label must first be added to its parent and only

then its height can be set. Example:
Dim Label1 As Label

Label1.Initialize("")

Label1.Text = "this is a long sentence, and we need to " _

 & "know the height required in order To show it completely."

Label1.TextSize = 20

Activity.AddView(Label1, 10dip, 10dip, 200dip, 30dip)

Dim su As StringUtils

Label1.Height = su.MeasureMultilineTextHeight(Label1, Label1.Text)

SaveCSV (Dir As String, FileName As String, SeparatorChar As Char,

Table As List)
Saves the table as a CSV file.

Dir - Output file folder.

FileName - Output file name.

 4.2 Standard Libraries included with Full Version

 - 492 -

SeparatorChar - Separator character. The character that will separate the fields in the

output file.

Table - A List with arrays of strings as items. Each array represents a row. All arrays should

be of the same length.

Example to create a CSV file:
Dim lstCSV As List

Dim StrUtil As StringUtils

Dim iRowCount As Int = 10

Dim iColCount As Int = 5

lstCSV.Initialize

' create a list of string arrays containing the data

For iRowCount = 0 To 9

 Dim strRow(iColCount) As String

 For iColCount = 0 To 4

 strRow(iColCount) = "Row " & iRowCount & ", Col " & iColCount

 Next

 lstCSV.Add(strRow)

Next

StrUtil.SaveCSV(File.DirDefaultExternal,"book2_output.csv", ",",

lstCSV)

SaveCSV2 (Dir As String, FileName As String, SeparatorChar As Char,

Table As List, Headers As List)
Similar to SaveCSV, except the first row will come from the Headers list, which should be a

list (or array) of strings.

TTS Library
This library (included in the IDE installation package) provides for text to speech (TTS). For

an example program which performs both TTS and Voice Recognition, see this web page.

TTS
Synthesizes text to speech and plays it. After initializing the object you should wait for the

Ready event. See this example.

Event: Ready (Success As Boolean)

Members:

Initialize (EventName As String)
Initializes the object. The Ready event will be raised when the text to speech engine is ready.

EventName - The Sub that will handle the Ready event.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

http://bit.ly/14kXKG4
http://bit.ly/11lo8KN

 4.2 Standard Libraries included with Full Version

 - 493 -

Pitch As Float [write only]
Sets the pitch value. Default is 1. Example:
TTS1.Pitch = 1.5

Release
Releases any resources related to this object. You will then need to initialize the object again

before use. Note that it is safe to call this method with an uninitialized object.

SetLanguage (Language As String, Country As String) As Boolean
Sets the spoken language.

Language - Language code. Two lowercase letters.

Country - Country code. Two uppercase letters. Pass an empty string if not needed.

Returns True if a matching language is available. The country value will be ignored if the

language code matches and the country code does not match.

Speak (Text As String, ClearQueue As Boolean)
Speaks the given text.

ClearQueue - If True, then all waiting texts are dismissed and the new text is spoken.

Otherwise, the new text is added to the queue.

SpeechRate As Float [write only]
Sets the speech rate. Default is 1. Example:
TTS1.SpeechRate = 0.5

Stop
Stops speaking any currently-playing text (and dismisses texts in the queue).

USB Library
This library is included in the IDE installation package. Note that detailed explanation of

this library is outside the scope of this book. A complete working example with a tutorial is

available here.

List of types:
MtpDevice

UsbAccessory

UsbDevice

UsbDeviceConnection

UsbEndpoint

UsbInterface

UsbManager

UsbRequest

http://bit.ly/1deHpbH

 4.2 Standard Libraries included with Full Version

 - 494 -

MtpDevice

Members:

Close

Initialize (EventName As String, UsbDevice1 As UsbDevice)

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Open (Connection As UsbDeviceConnection)

test

UsbAccessory
Represents a Usb accessory.

Members:

 Close

 Description As String [read only]

 InputStream As InputStreamWrapper [read only]

 Manufacturer As String [read only]

 Model As String [read only]

 OutputStream As OutputStreamWrapper [read only]

 Serial As String [read only]

 URI As String [read only]

 Version As String [read only]

Close
Closes the accessory. The accessory input and output streams should be individually closed

first.

Description As String [read only]
Gets the description of the accessory.

InputStream As InputStreamWrapper [read only]
Gets the input stream for the accessory. When reading data from an accessory, ensure that

the buffer that you use is big enough to store the USB packet data. The Android accessory

protocol supports packet buffers up to 16384 bytes, so you can choose to always declare your

buffer to be of this size for simplicity.

Manufacturer As String [read only]
Gets the manufacturer of the accessory.

Model As String [read only]
Gets the model name of the accessory.

OutputStream As OutputStreamWrapper [read only]
Gets the output stream for the accessory.

 4.2 Standard Libraries included with Full Version

 - 495 -

Serial As String [read only]
Gets the unique serial number for the accessory.

URI As String [read only]
Gets the URI (Internet address) for the website of the accessory.

Version As String [read only]
Gets the version of the accessory.

UsbDevice
Represents a Usb device.

Members:

 DeviceClass As Int [read only]

 DeviceId As Int [read only]

 DeviceName As String [read only]

 DeviceSubclass As Int [read only]

 GetInterface (Index As Int) As UsbInterface

 InterfaceCount As Int [read only]

 IsInitialized As Boolean

 ProductId As Int [read only]

 VendorId As Int [read only]

DeviceClass As Int [read only]
Gets the device class.

DeviceId As Int [read only]
Gets the device Id.

DeviceName As String [read only]
Gets the device name.

DeviceSubclass As Int [read only]
Gets the device subclass.

GetInterface (Index As Int) As UsbInterface
Gets the interface at the given index.

InterfaceCount As Int [read only]
Gets the number of interfaces.

IsInitialized As Boolean
Whether this object has been initialized.

ProductId As Int [read only]
Gets the product Id.

VendorId As Int [read only]
Gets the vendor Id.

 4.2 Standard Libraries included with Full Version

 - 496 -

UsbDeviceConnection
Represents a connection between the host and a client. UsbDeviceConnection is created by

calling UsbManager.OpenDevice. Once connected, you should call StartListening to

start listening for completed requests. Sending requests is done with UsbRequest.Queue.

You should call ContinueListening to allow the listener to listen to the next completed

request (after another IN request is sent).

Calling StopListening will close the connection. ControlTransfer method sends

requests to endpoint zero which is the control endpoint. ControlTransfer is a blocking

method (it waits for the transaction to finish, unlike UsbRequest.Queue which is

asynchronous).

Event: NewData (Request As UsbRequest, InDirection As Boolean)
The NewData event is raised when a request completes. The request is passed as a

parameter.

Members:

BulkTransfer (Endpoint As UsbEndpoint, Buffer() As Byte, Length As Int,

Timeout As Int) As Int
Sends a synchronous request.

Endpoint - The endpoint for this transaction. The transfer direction is determined by this

endpoint.

Buffer - Buffer for data to send or receive.

Length - The length of the data.

Timeout - Request timeout (in milliseconds).

CloseSynchronous
Like StopListening, CloseSynchronous closes the connection.

Note: this method should only be used when the asynchronous listener was not started.

ContinueListening
Notifies the listener to continue listening for completed requests.

ControlTransfer (RequestType As Int, Request As Int, Value As Int, Index

As Int, Buffer() As Byte, Length As Int, Timeout As Int) As Int
Performs a control transaction on endpoint zero. Returns the number of bytes transferred.

RequestType - The request type. It should be either UsbManager.USB_DIR_IN or

UsbManager.USB_DIR_OUT to set the request direction.

Request - Request Id.

Value - Value field.

Index - Index field.

Buffer - Buffer for data portion. Pass Null if not needed.

Length - The length of the data to send or receive.

Timeout - Timeout (in milliseconds).

GetRawDescriptors As Byte()
Returns the raw descriptors as an array of bytes.

 4.2 Standard Libraries included with Full Version

 - 497 -

This method is only available in Android 3.2 or above. It will return an empty array in

Android 3.1 and earlier versions.

IsInitialized As Boolean
Returns TRUE if the object was initialized.

Serial As String [read only]
Returns the connected device serial number.

StartListening (EventName As String)
Starts listening for completed requests. When such are available, the NewData event will be

raised.

EventName - The name of the sub that will handle the events.

StopListening
Stops listening to requests and closes the connection.

UsbEndpoint
Represents an endpoint in a specific interface.

Members:

Address As Int [read only]
Gets the endpoint address.

Attributes As Int [read only]
Gets the endpoint attributes.

Direction As Int [read only]
Gets the endpoint direction. Can be UsbManager.USB_DIR_IN or

UsbManager.USB_DIR_OUT.

EndpointNumber As Int [read only]
Gets the endpoint number.

Interval As Int [read only]
Gets the interval field.

IsInitialized As Boolean
Whether this object has been initialized.

MaxPacketSize As Int [read only]
Gets the maximum packet size.

Type As Int [read only]
Gets the endpoint type.

UsbInterface
Represents a USB interface on a specific device.

Members:

EndpointCount As Int [read only]
Gets the number of endpoints available in this interface.

 4.2 Standard Libraries included with Full Version

 - 498 -

GetEndpoint (Index As Int) As UsbEndpoint
Gets the endpoint at the given index.

InterfaceClass As Int [read only]
Gets the interface class.

InterfaceProtocol As Int [read only]
Gets the interface protocol.

InterfaceSubclass As Int [read only]
Gets the interface subclass.

IsInitialized As Boolean
Whether this object has been initialized.

UsbManager
UsbManager gives access to the connected USB devices. It also holds the related constants.

This library requires Android SDK 12 or above (Android 3.1 or above). You should configure

Basic4Android to use android.jar from android-12 or above.

Members:

GetAccessories As UsbAccessory()
Returns an array of UsbAccessories with all the connected USB accessories.

GetDevices As UsbDevice()
Returns an array of UsbDevices with all the connected USB devices.

HasAccessoryPermission (Accessory As UsbAccessory) As Boolean
Returns TRUE if your application has permission to access this accessory. Call

RequestAccessoryPermission to receive such permission.

HasPermission (Device As UsbDevice) As Boolean
Returns TRUE if your application has permission to access this device. Call

RequestPermission to receive such permission.

Initialize
Initializes the object.

OpenAccessory (Accessory As UsbAccessory)
Connects to the given accessory

OpenDevice (Device As UsbDevice, Interface As UsbInterface, ForceClaim

As Boolean) As UsbDeviceConnection
Connects to the given device and claims exclusive access to the given interface.

ForceClaim - Whether the system should disconnect kernel drivers if necessary.

RequestAccessoryPermission (Accessory As UsbAccessory)
Shows a dialog that asks the user to allow your application to access the USB accessory.

RequestPermission (Device As UsbDevice)
Shows a dialog that asks the user to allow your application to access the USB device.

 4.2 Standard Libraries included with Full Version

 - 499 -

USB_CLASS_APP_SPEC As Int

USB_CLASS_AUDIO As Int

USB_CLASS_CDC_DATA As Int

USB_CLASS_COMM As Int

USB_CLASS_CONTENT_SEC As Int

USB_CLASS_CSCID As Int

USB_CLASS_HID As Int

USB_CLASS_HUB As Int

USB_CLASS_MASS_STORAGE As Int

USB_CLASS_MISC As Int

USB_CLASS_PER_INTERFACE As Int

USB_CLASS_PHYSICA As Int

USB_CLASS_PRINTER As Int

USB_CLASS_STILL_IMAGE As Int

USB_CLASS_VENDOR_SPEC As Int

USB_CLASS_VIDEO As Int

USB_CLASS_WIRELESS_CONTROLLER As Int

USB_DIR_IN As Int

USB_DIR_OUT As Int

USB_ENDPOINT_DIR_MASK As Int

USB_ENDPOINT_NUMBER_MASK As Int

USB_ENDPOINT_XFER_BULK As Int

USB_ENDPOINT_XFER_CONTROL As Int

USB_ENDPOINT_XFER_INT As Int

USB_ENDPOINT_XFER_ISOC As Int

USB_ENDPOINT_XFERTYPE_MASK As Int

USB_INTERFACE_SUBCLASS_BOOT As Int

USB_SUBCLASS_VENDOR_SPEC As Int

USB_TYPE_CLASS As Int

USB_TYPE_MASK As Int

USB_TYPE_RESERVED As Int

 4.2 Standard Libraries included with Full Version

 - 500 -

USB_TYPE_STANDARD As Int

USB_TYPE_VENDOR As Int

UsbRequest
This object represents a USB request packet. The Queue method sends the request.

Members:

Buffer() As Byte [read only]
Returns the buffer associated with the request.

Initialize (Connection As UsbDeviceConnection, Endpoint As UsbEndpoint)
Initializes the request. The request will be binded to the given connection and endpoint. Note

that for control transactions you should use: UsbDeviceConnection.ControlTransfer.

IsInitialized As Boolean
Whether this object has been initialized by calling Initialize.

Name As String
Gets or sets an arbitrary string that can be used to identify the request.

Queue (Buffer() As Byte, Length As Int)
Queues the request for sending. The UsbDeviceConnection_NewData event will be raised

when the transaction completes.

UsbEndpoint As UsbEndpoint [read only]

XmlSax Library
This library (included in the IDE installation package) provides an XML Sax Parser.

XML
XML (Extensible Markup Language) is a way of encoding data into a document which can be

read both by humans and computers. It is widely used to send structured data over the

Internet. More information here.

Sax
SAX (Simple API for XML) is a standard method of parsing (processing the elements of) an

XML document. It is event-based. See this tutorial for a working example.

List of types:
Attributes

SaxParser

Attributes
This object is passed in the StartElement event.

Members:

 GetName (Index As Int) As String

http://en.wikipedia.org/wiki/XML
http://bit.ly/143HXuY

 4.2 Standard Libraries included with Full Version

 - 501 -

 GetValue (Index As Int) As String

 GetValue2 (URI As String, Name As String) As String

 IsInitialized As Boolean

 Size As Int [read only]

GetName (Index As Int) As String
Returns the name of the attribute at the specified index. Note that the order of elements can

change.

GetValue (Index As Int) As String
Returns the value of the attribute at the specified index. Note that the order of elements can

change.

GetValue2 (URI As String, Name As String) As String
Returns the value of the attribute in the namespace specified by the given URI (an empty

string if no namespace is used) and Name. Returns an empty string if no such attribute was

found.

IsInitialized As Boolean
Whether this object has been initialized.

Size As Int [read only]
Returns the number of attributes in this element.

SaxParser
A parser that sequentially reads a stream and raises events at the beginning and end of each

element.

Events:

StartElement (URI As String, Name As String, Attributes As Attributes)
URI - Uniform Resource Identifier (address) of namespace, or an empty string if there is no

namespace.

Name - The element name.

Attributes - An Attributes object holding the element’s attributes.

EndElement (URI As String, Name As String, Text As StringBuilder)
URI - Uniform Resource Identifier (address) of namespace, or empty string if there is no

namespace.

Name - The element name.

Text - The element text (if such exists).

Members:

Initialize
Initializes the object. Usually this object should be a Sub Process_Globals object.

Parents As List
A list that holds the names of the parent elements. During parsing you can use this list to

recognize the current element.

 4.2 Standard Libraries included with Full Version

 - 502 -

Parse (InputStream As java.io.InputStream, EventName As String)
Parses the given InputStream.

EventName - The prefix of event subs.

Parse2 (TextReader As java.io.Reader, EventName As String)
Parses the given TextReader.

EventName - The prefix of event subs.

 4.3 Additional Libraries and Modules

 - 503 -

4.3 Additional Libraries and Modules

Introduction
Additional libraries are libraries which you either create yourself or download from the

Basic4Android website or receive from somebody else. It is necessary to use a specific folder

for Additional libraries. You need to specify this location within [Tools > Configure Paths]. In

the following, we divide libraries into:

 Additional Official Libraries: libraries created by Anywhere Software (the makers of

Basic4Android)

 Additional User Libraries: libraries which users have created and published on the

Basic4Android website.

Note: some of the following are not actually libraries but code modules (classes or services)

which you include directly in your project.

Additional libraries folder
You need to set up a special folder to save additional libraries, for example:

C:\Basic4Android\AddLibraries. When you install a new version of B4A, all standard

libraries are automatically updated, but the additional libraries are not included. The

advantage of the special folder is that this folder is not affected when you install the new

version of B4A. Note the additional libraries are not systematically updated with each new

version of B4A. You might want to periodically check for updates.

Telling the IDE where to find additional libraries
When the IDE starts, it looks first for the available libraries in the Libraries folder of B4A

and then in the folder for the additional libraries. You must specify your additional libraries

folder in the IDE menu [Tools > Configure Paths]. The dialog allows you to specify the

Additional Libraries folder.

List of Additional Libraries
The latest list of additional libraries is available here:

http://www.basic4ppc.com/android/wiki/index.php/Libraries

Additional Official Libraries
These libraries (only available if you have the Full version) were created by Anywhere

Software, the makers of Basic4Android. We do not have the space to describe them all here.

The links below will take you to the Basic4Android website where you can learn more about

each library. Follow the first links to download the library.

Adiquity

this library adds support for AdiQuity advertising.

http://www.basic4ppc.com/android/wiki/index.php/Libraries
http://bit.ly/19UgZbZ
http://adiquity.com/

 4.3 Additional Libraries and Modules

 - 504 -

AdMob

this library lets you display Google ads in your applications.

AnotherDatePicker class

a class module which provides a “web style” date picker.

AsyncStreamsText

a class module which allows you to read a text stream over a network.

Analytics

a library which adds the power of Google Analytics V2 to your application and track its

usage.

Audio v1.31

a library which includes objects which let you record audio and video, play video, play beeps

and choose short sounds from a pool, use the JetPlayer and stream audio over the Internet.

Formal specification here.

Camera

A library which allows access to the device’s camera(s) and lets the user take and preview

pictures. It is supported by Android 1.6+. If possible, it is recommended to work with the

CameraEx class that wraps this object and adds many features. Formal specification here.

CameraEx

This library extends the Camera library functionality. The CameraEx class requires Android

2.3+. It allows you to easily open the back or front camera, preview and save images, and

includes methods to convert preview images to JPEG, to save the pictures taken, etc.

CustomListView

A class module providing a flexible list based on ScrollView. It is suited for lists of up to 2000

items. Each item is made of a Panel that can hold any views. Each item can have a different

height and the height can be set automatically based on the text.

DateUtils

A code module providing date and time related methods. Formal specification here.

DBUtils

A code module providing database utilities which help you integrate SQLite databases in

your program. We discuss this in the DBUtils section of this book.

DropBox Sync

This library wraps the Dropbox Sync API. Using this API, it is quite simple to store (and

retrieve) data in a folder inside the user’s Dropbox account.

Excel

This library wraps the open source jexcel project and allows you to read or write Excel

workbooks. This library supports only XLS files; XSLX is not supported. Formal specification

here.

http://bit.ly/11PfPuO
http://bit.ly/GMbTE6
http://bit.ly/16FcRfw
http://bit.ly/16FcTUT
http://bit.ly/1gbwqlN
http://developer.android.com/guide/topics/media/jetplayer.html
http://www.basic4ppc.com/android/help/audio.html
http://www.basic4ppc.com/android/help/audio.html
http://bit.ly/15ymkoe
http://www.basic4ppc.com/android/help/camera.html
http://bit.ly/16XWdKt
http://bit.ly/Zoo9Rv
http://bit.ly/1gbwP7N
http://www.basic4ppc.com/android/help/dateutils.html
http://bit.ly/1eihJc5
http://bit.ly/11PhQap
https://www.dropbox.com/developers/sync
http://bit.ly/1cK2gDC
http://www.andykhan.com/jexcelapi/
http://www.basic4ppc.com/android/help/excel.html
http://www.basic4ppc.com/android/help/excel.html

 4.3 Additional Libraries and Modules

 - 505 -

GamePad

This class module implements a multitouch gamepad made of two “joysticks”.

Google Maps

A library which allows you to add Google maps to your application. This library requires

Android 3+ and will only work on devices with Google Play service. There is an on-line

tutorial to support this library. Formal specification here.

HttpServer

A library which allows you to easily embed an HTTP server in your application. Formal

specification here.

HttpUtils2

Two code modules (HttpUtils2Service and HttpJob) which allow you to use POST and GET to

retrieve data from a web server, and then handle the data when it eventually arrives. Formal

specification here.

InAppBilling

This library is described elsewhere in this book.

JSch

A library supporting SFTP (SSH File Transfer Protocol, also called Secured File Transfer

Protocol). Formal specification here.

JTidy

A library which allows you to convert an HTML page to XHTML. This can then be parsed

with an XML parser, which can be more efficient than parsing the HTML using regular

expressions. Formal specification here.

KeyValueStore

A class which uses an SQLite database to store and retrieve any kind of values you need to

store persistently, such as user parameters, where each value is mapped to a key. A Keystore

is very similar to a Map except that the data are stored in the file system. It can be used to

store user preferences before Android calls Activity_Pause, then restore them on

Activity_Resume. However, you might want to consider using StateManager for this

purpose. See below.

Licensing

This library is described elsewhere in this book.

Net

This library supports FTP, SMTP and POP3 protocols. Both regular connections and SSL

connections are supported. Formal specification here.

OAuth

A library which implements the OAuth protocol to allow you to sign HTTP requests (as

required by some servers). Formal specification here.

http://bit.ly/GXt2ud
http://bit.ly/GXt3yj
http://bit.ly/10koqra
http://bit.ly/10koqra
http://www.basic4ppc.com/android/help/googlemaps.html
http://bit.ly/16XWCg2
http://www.basic4ppc.com/android/help/httpserver.html
http://www.basic4ppc.com/android/help/httpserver.html
http://www.basic4ppc.com/forum/showthread.php?p=109068
http://www.basic4ppc.com/android/help/httputils2.html
http://www.basic4ppc.com/android/help/httputils2.html
http://bit.ly/19UidUJ
http://bit.ly/17ndfMr
http://www.basic4ppc.com/android/help/jsch.html
http://bit.ly/16FdINo
http://www.basic4ppc.com/android/help/jtidy.html
http://bit.ly/1fu3UdE
http://bit.ly/123LkwZ
http://www.basic4ppc.com/android/help/net.html
http://bit.ly/ZRSPuG
http://www.basic4ppc.com/android/help/oauth.html

 4.3 Additional Libraries and Modules

 - 506 -

PayPal

This library is a wrapper for the PayPal Mobile Payments Libraries (MPL) SDK. It allows

users to pay for something using their PayPal account. Note that, as this book goes to press,

PayPal is in the process of migrating to a new SDK named Mobile SDK.

SearchView

A class providing a more powerful alternative to AutoCompleteEditText. SearchView is

quicker than AutoCompleteEditText and shows items that contain the input text anywhere,

not just at the start of the item.

SMB

This library provides access to a Microsoft Windows Network. There is a tutorial here on how

to use it. Formal specification here.

Speak Button

This class makes it easy to add a button which allows users to input data into an EditText

field by speaking.

SQLCipher

This library allows you to encrypt an SQLite database.

StateManager

A code module which takes care of handling the application UI state and settings including

saving them to a file. It is available within the StateManagerExample which can be found

here, where documentation can also be found.

TableView

This class makes it easy to add to your project and instantiate any number of tables in a

layout. It is possible for tables to contain 500,000 cells. This is much better than

implementing a table using a ScrollView.

Tap for Tap

Tap for Tap offers a way to promote your app and a way of generating ad revenue, or perhaps

to do both. It is described elsewhere in this book.

USB Host

This library allows you to connect your device (Android 3.1 and above) to support USB host

mode. With this feature you can connect to regular client usb devices. A tutorial is available

here. Formal specification here.

USBSerial

This library supports various popular chips that support serial emulation over a USB

connection and provides a common API to communicate with them all. Formal specification

here.

XMLBuilder

This library allow you to create simple XML documents quickly and painlessly. Formal

specification here.

http://bit.ly/11PgPPN
http://bit.ly/GXuDAq
http://bit.ly/ZRU0Kz
http://bit.ly/165Yoqn
http://bit.ly/165YEWk
http://www.basic4ppc.com/android/help/smb.html
http://bit.ly/11Pf1X2
http://bit.ly/165Z6Uq
http://bit.ly/10mRVZv
http://bit.ly/10mRVZv
http://bit.ly/165ZUIM
http://bit.ly/11Pjzwu
http://bit.ly/11Pj3hZ
http://bit.ly/11Pj3hZ
http://www.basic4ppc.com/android/help/usb.html
http://bit.ly/11PiqoA
http://www.basic4ppc.com/android/help/usbserial.html
http://www.basic4ppc.com/android/help/usbserial.html
http://bit.ly/1663zXh
http://www.basic4ppc.com/android/help/xmlbuilder.html
http://www.basic4ppc.com/android/help/xmlbuilder.html

 4.3 Additional Libraries and Modules

 - 507 -

YouTube

This library allows you to play YouTube videos inside your application. Formal specification

here.

Additional User Libraries

Introduction
There are many superb user-created libraries because the Basic4Android community is very

fortunate to have some great library developers who love Basic4Android and want to share

their work freely with others.

There are too many libraries for us to describe them all, and new ones are being added all the

time. We provide links to lists of them and give details below of several of them to give a

flavor of the types of libraries available.

List of libraries

Additional User Libraries
We give some examples of user-created libraries below. For a list of other user libraries with

links to their documentation, see:

http://www.basic4ppc.com/android/documentation.html#libraries

Downloading User Libraries
For a list sorted by the user who created the library with links to the download page, see:

http://www.basic4ppc.com/android/wiki/index.php/Libraries

How to create a library
For details on how to create your own library, see here.

How to Share your Library

License
Unless otherwise stated, user-created libraries (jar files) which are uploaded to the

Basic4Android website are licensed with the creative commons CC BY 3.0 license. Only

Basic4Android licensed users can use the JAR files and XML files to create apps, and

distribute apps that have these libraries included, but the individual jar and XML files

should not be distributed separately.

To load or update a library
 Download the library zip file somewhere.

 Unzip it.

 Copy the xxx.jar and xxx.xml files to either the

http://bit.ly/16648QF
http://www.basic4ppc.com/android/help/youtube.html
http://www.basic4ppc.com/android/help/youtube.html
http://www.basic4ppc.com/android/documentation.html#libraries
http://www.basic4ppc.com/android/wiki/index.php/Libraries
http://creativecommons.org/licenses/by/3.0/

 4.3 Additional Libraries and Modules

 - 508 -

 - Basic4Android Library folder for a standard Basic4Android library or

 - Additional libraries folder for an additional library.

 Right-click the Lib Tab list to select Refresh.

Which ones does a project need?
To discover which additional libraries a project needs, you can open the Basic4Android (.b4a)

file with a text editor. The libraries are listed in the file headers.

When you add libraries, you do not need to restart the IDE. You can just right-click on the

list of libraries and select Refresh.

Dialogs Library
This library (written by Andrew Graham) contains several modal, that is blocking, dialogs by

which the user can enter data. Presently, they are an InputDialog for text, a TimeDialog for

times, a DateDialog for dates, both a ColorDialog and a ColorPickerDialog for colors, a

NumberDialog for numbers, a FileDialog for folders and file names, and a CustomDialog.

Source
Download the library here.

Notes
Android does not provide modal dialogs, but Basic4Android has a special mechanism to

permit them. The Android Activity lifetime system makes this support complicated because

Activities can be created and destroyed at will by Android. To avoid stack runaway on the

GUI thread when an Activity is destroyed, the stack must be unwound to the lowest level.

The Basic4Android modal mechanism does this by closing any modal dialog being shown and

exiting the Sub that called the dialog, plus exiting any Sub that called that Sub, and so on, in

order to return the main thread to the message loop. This means that the application does

not necessarily receive a return value from the dialog and has its expected flow of execution

interrupted. This will probably most often happen if the device is rotated while a modal

dialog is displayed, so the Activity is destroyed and rebuilt with a new layout.

Because this may happen unexpectedly, applications (depending upon their logical structure)

may need code in the Pause and Resume Subs to deal with the fact that modal dialog closure

may not always be detected. For example, when a modal dialog is shown, you could set a

Boolean as True. This variable would have to be declared within Sub Process_Globals.

When the modal dialog returns you could clear the Boolean with some checking code in the

Resume Sub.

The above discussion also applies to the Basic4Android modal dialogs InputList,

InputMultiList, Msgbox and Msgbox2.

The value returned from the dialogs, called the “dialog return value” is:

-1 if the user clicks the left button (called “Positive” in the documentation below)

http://bit.ly/168SKTs

 4.3 Additional Libraries and Modules

 - 509 -

-3 if the user clicks the center button (called “Cancel” in the documentation below)

-2 if the user clicks the left button (called “Negative” in the documentation below)

List of types:
ColorDialog

ColorDialogHSV

ColorPickerDialog

CustomDialog

CustomDialog2

DateDialog

FileDialog

InputDialog

NumberDialog

TimeDialog

ColorDialog
This modal dialog allows the user to define a color by its Red, Green and Blue components.

This is an Activity object; it cannot be declared under Sub Process_Globals.

Members:

 ARGB (Alpha As Int) As Int

 Blue As Int

 Green As Int

 Red As Int

 Response As Int [read only]

 RGB As Int

 Show (title As String, Positive As String, Cancel As String, Negative As String, icon As

Bitmap) As Int

 Version As Double [read only]

ARGB (Alpha As Int) As Int
Returns an integer value representing the color built from the three components and with

the specified alpha value.

Alpha - A value from 0 to 255, where 0 is fully transparent and 255 is fully opaque.

Blue As Int
Sets the value of the blue component of the dialog when it is initially shown. Returns the

value of the blue component of the dialog when it was closed.

Green As Int
Sets the value of the green component of the dialog when it is initially shown. Returns the

value of the green component of the dialog when it was closed.

Red As Int
Sets the value of the red component of the dialog when it is initially shown. Returns the

value of the red component of the dialog when it was closed.

 4.3 Additional Libraries and Modules

 - 510 -

Response As Int [read only]
Returns the response code that the dialog returned when it last closed.

RGB As Int
Sets the value of the red, green and blue components of the dialog when it is initially shown.

Returns the color of the red, green and blue components of the dialog when it was closed.

Alpha of the provided color is ignored; the alpha of the dialog is set to 255 (opaque).

Show (title As String, Positive As String, Cancel As String, Negative As

String, icon As Bitmap) As Int
Shows a modal color dialog with the specified title.

Title - The dialog title.

Positive - The text to show for the “positive” button. Pass "" if you don’t want to show the

button.

Cancel - The text to show for the “cancel” button. Pass "" if you don’t want to show the

button.

Negative - The text to show for the “negative” button. Pass "" if you don’t want to show the

button.

Icon - A bitmap that will be drawn near the title. Pass Null if you don’t want to show an

icon.

Returns one of the DialogResponse values.

Version As Double [read only]
Returns the version of the library.

ColorDialogHSV
This modal dialog allows the user to define a color by its Hue, Saturation and Value

components. This is an Activity object; it cannot be declared under Sub

Process_Globals.

Members:

 ARGB (alpha As Int) As Int

 Hue As Float

 Response As Int [read only]

 RGB As Int

 Saturation As Float

 Show (title As String, Positive As String, Cancel As String, Negative As String, icon As

Bitmap) As Int

 Value As Float

 Version As Double [read only]

ARGB (Alpha As Int) As Int
Returns an integer value representing the color built from the three components and with

the specified alpha value.

Alpha - A value from 0 to 255, where 0 is fully transparent and 255 is fully opaque.

 4.3 Additional Libraries and Modules

 - 511 -

Hue As Float
Sets the value of the hue component of the dialog when it is initially shown. Returns the

value of the hue component of the dialog when it was closed. The range of valid numbers for

hue is 0.0 to 360.0.

Response As Int [read only]
Returns the response code that the dialog returned when it last closed.

RGB As Int
Sets the value of the red, green and blue components of the dialog when it is initially shown.

Returns the color of the red, green and blue components of the dialog when it was closed.

Alpha of the provided color is ignored and the alpha of the dialog is set to 255 (opaque).

Saturation As Float
Sets the value of the saturation component of the dialog when it is initially shown. Returns

the value of the saturation component of the dialog when it was closed. The range of valid

numbers for saturation is 0.0 to 1.0.

Show (title As String, Positive As String, Cancel As String, Negative As

String, icon As Bitmap) As Int
Shows a modal color dialog with the specified title.

Title - The dialog title.

Positive - The text to show for the “positive” button. Pass "" if you don’t want to show the

button. Cancel - The text to show for the “cancel” button. Pass "" if you don’t want to show

the button.

Negative - The text to show for the “negative” button. Pass "" if you don’t want to show the

button.

Icon - A bitmap that will be drawn near the title. Pass Null if you don’t want to show an

icon.

Returns one of the DialogResponse values.

Value As Float
Sets the value component of the dialog when it is initially shown. Returns the value of the

dialog when it was closed. The range of valid numbers for Value is from 0.0 to 1.0.

Version As Double [read only]
Returns the version of the library.

ColorPickerDialog
This modal dialog allows the user to select a color from a palette of colors. The color may be

from a standard palette in the dialog or a custom programmed palette. This is an Activity

object; it cannot be declared under Sub Process_Globals.

Members:

 ARGB (Alpha As Int) As Int

 GetPaletteAt (index As Int) As Int

 Palette() As Int

 ResetPalette

 4.3 Additional Libraries and Modules

 - 512 -

 Response As Int [read only]

 RGB As Int

 SetPaletteAt (index As Int, color As Int)

 Show (title As String, Positive As String, Cancel As String, Negative As String, icon As

Bitmap) As Int

 Version As Double [read only]

ARGB (Alpha As Int) As Int
Returns an integer value representing the color built from the chosen color and with the

specified alpha value.

Alpha - A value from 0 to 255 where 0 is fully transparent and 255 is fully opaque.

GetPaletteAt (index As Int) As Int
Gets the value of the color at the specified index in the current palette.

Palette() As Int
Copies the colors in the array provided to the palette of colors in the dialog. The provided

array should contain 15 colors. Returns an integer array that is a copy of the present palette.

ResetPalette
Reset the palette of colors to the standard palette of the dialog.

Response As Int [read only]
Returns the response code that the dialog returned when it last closed.

RGB As Int
Sets the value of the chosen color of the dialog when it is initially shown. Returns the value

of the chosen color of the dialog when it was closed.

SetPaletteAt (index As Int, color As Int)
Sets the value of the color at the specified index in the current palette. This allows replacing

just one or two colors without defining an entire palette.

Show (title As String, Positive As String, Cancel As String, Negative As

String, icon As Bitmap) As Int
Shows a modal color picker dialog with the specified title.

Title - The dialog title.

Positive - The text to show for the “positive” button. Pass "" if you don’t want to show the

button.

Cancel - The text to show for the “cancel” button. Pass "" if you don’t want to show the

button.

Negative - The text to show for the “negative” button. Pass "" if you don’t want to show the

button.

Icon - A bitmap that will be drawn near the title. Pass Null if you don’t want to show an

icon.

Returns one of the DialogResponse values.

Version As Double [read only]
Returns the version of the library.

 4.3 Additional Libraries and Modules

 - 513 -

CustomDialog
This modal dialog displays a custom set of controls laid out on a Basic4Android Panel. The

Panel is displayed at an abolute position and size within the dialog. This is an Activity

object; it cannot be declared under Sub Process_Globals.

Members:

AddView (view1 As View, left As Int, top As Int, width As Int, height As

Int)
Adds the custom layout view, most probably a Panel, to the custom dialog. Although named

AddView to match Basic4Android syntax, only one view can be added. Adding a view

replaces any existing view previously added to the dialog.

Response As Int [read only]
Returns the response code that the dialog returned when it last closed.

Show (Title As String, Positive As String, Cancel As String, Negative As

String, icon As Bitmap) As Int
Shows a modal custom dialog with the specified title.

Title - The dialog title.

Positive - The text to show for the “positive” button. Pass "" if you don’t want to show the

button.

Cancel - The text to show for the “cancel” button. Pass "" if you don’t want to show the

button.

Negative - The text to show for the “negative” button. Pass "" if you don’t want to show the

button.

Icon - A bitmap that will be drawn near the title. Pass Null if you don’t want to show an

icon. Returns one of the DialogResponse values.

Version As Double [read only]
Returns the version of the library.

CustomDialog2
This modal dialog displays a custom set of controls laid out on a Basic4Android Panel. The

Panel will be automatically centred in the displayed dialog. This is an Activity object; it

cannot be declared under Sub Process_Globals.

Members:

AddView (view1 As View, width As Int, height As Int)
Adds the custom layout view, most probably a Panel, to the custom dialog. Although named

AddView to match Basic4Android syntax, only one view can be added. Adding a view

replaces any existing view previously added to the dialog.

Response As Int [read only]
Returns the response code that the dialog returned when it last closed.

 4.3 Additional Libraries and Modules

 - 514 -

Show (Title As String, Positive As String, Cancel As String, Negative As

String, icon As Bitmap) As Int
Shows a modal custom dialog with the specified title.

Title - The dialog title.

Positive - The text to show for the “positive” button. Pass "" if you don’t want to show the

button.

Cancel - The text to show for the “cancel” button. Pass "" if you don’t want to show the

button.

Negative - The text to show for the “negative” button. Pass "" if you don’t want to show the

button.

Icon - A bitmap that will be drawn near the title. Pass Null if you don’t want to show an

icon.

Returns one of the DialogResponse values.

Version As Double [read only]
Returns the version of the library.

DateDialog
This modal dialog allows the collection of user-entered data in the form of a date. This is an

Activity object; it cannot be declared under Sub Process_Globals.

Members:

 DateTicks As Long

 DayOfMonth As Int

 Month As Int

 Response As Int [read only]

 SetDate (dayofmonth As Int, month As Int, year As Int)

 Show (Message As String, Title As String, Positive As String, Cancel As String, Negative

As String, icon As Bitmap) As Int

 ShowCalendar As Boolean

 Version As Double [read only]

 Year As Int

DateTicks As Long
Sets the date value of the dialog when it is initially shown. Returns the date value in ticks of

the dialog when it is closed.

DayOfMonth As Int
Sets the day of month value of the dialog when it is initially shown. Returns the day of

month value of the dialog when it is closed.

Month As Int
Sets the month value of the dialog when it is initially shown. Returns the month value of the

dialog when it is closed.

Response As Int [read only]
Returns the response code that the dialog returned when it last closed.

 4.3 Additional Libraries and Modules

 - 515 -

SetDate (dayofmonth As Int, month As Int, year As Int)
Sets the date values of the dialog when it is initially shown.

Show (Message As String, Title As String, Positive As String, Cancel As

String, Negative As String, icon As Bitmap) As Int
Shows a modal date input dialog with the specified message and title.

Message - The dialog message.

Title - The dialog title.

Positive - The text to show for the “positive” button. Pass "" if you don’t want to show the

button.

Cancel - The text to show for the “cancel” button. Pass "" if you don’t want to show the

button.

Negative - The text to show for the “negative” button. Pass "" if you don’t want to show the

button.

Icon - A bitmap that will be drawn near the title. Pass Null if you don’t want to show an

icon.

Returns one of the DialogResponse values.

ShowCalendar As Boolean
Gets or sets a flag indicating whether to show the Calendar part of the DateDialog. This only

works on devices supporting API 11 (Honeycomb 3.0.x) or later

Version As Double [read only]
Returns the version of the library.

Year As Int
Sets the year value of the dialog when it is initially shown. Returns the year value of the

dialog when it is closed.

FileDialog
This modal dialog allows the user to choose a folder and choose or enter a filename. This is

an Activity object; it cannot be declared under Sub Process_Globals.

Members:

 ChosenName As String

 FastScroll As Boolean

 FileFilter As String

 FilePath As String

 KeyboardPopUp As Boolean

 Response As Int [read only]

 ScrollingBackgroundColor As Int

 Show (Title As String, Positive As String, Cancel As String, Negative As String, icon As

Bitmap) As Int

 ShowOnlyFolders As Boolean

 Version As Double [read only]

 4.3 Additional Libraries and Modules

 - 516 -

ChosenName As String
Sets the filename initially shown to the user. Returns the filename entered or chosen by the

user.

FastScroll As Boolean
Gets or sets whether the fast scroll thumb (an indicator that can be dragged to quickly scroll

through the list) is displayed by the dialog.

FileFilter As String
Gets or sets the filter values of the dialog. The filter can be a single value “.txt”. The filter

can also be a comma-separated list of values “.jpg,.png”. Note that spaces in filter values are

significant and are not ignored. If a filename contains the text of a filter value, the file will be

displayed. A value of an empty string, the default, will show all files.

FilePath As String
Sets the file path of the dialog when it is initially shown. Returns the file path of the dialog

when it is closed. Note that setting the file path also sets ChosenName to an empty string.

KeyboardPopUp As Boolean
Gets or sets whether the keyboard only pops up when the EditText is clicked.

Response As Int [read only]
Returns the response code that the dialog returned when it last closed.

ScrollingBackgroundColor As Int
Gets or sets the background color that will be used while scrolling the list. This is an

optimization done to make the scrolling smoother. Set to Colors.Transparent if the

background behind the list is not a solid color. The default is whatever is the default for the

particular device.

Show (Title As String, Positive As String, Cancel As String, Negative As

String, icon As Bitmap) As Int
Shows a modal file dialog with the specified title.

Title - The dialog title.

Positive - The text to show for the “positive” button. Pass "" if you don’t want to show the

button.

Cancel - The text to show for the “cancel” button. Pass "" if you don’t want to show the

button.

Negative - The text to show for the “negative” button. Pass "" if you don’t want to show the

button.

Icon - A bitmap that will be drawn near the title. Pass Null if you don’t want to show an

icon. Returns one of the DialogResponse values.

ShowOnlyFolders As Boolean
Gets or sets whether to show only folders and not files in the dialog.

Version As Double [read only]
Returns the version of the library.

 4.3 Additional Libraries and Modules

 - 517 -

InputDialog
This modal dialog allows the collection of user-entered data in the form of text. The default is

free text, but the input can be restricted to numeric characters only or to signed numbers,

including a decimal point. This is an Activity object; it cannot be declared under Sub

Process_Globals.

Members:

 Hint As String

 HintColor As Int

 Input As String

 INPUT_TYPE_DECIMAL_NUMBERS As Int

 INPUT_TYPE_NONE As Int

 INPUT_TYPE_NUMBERS As Int

 INPUT_TYPE_PHONE As Int

 INPUT_TYPE_TEXT As Int

 InputType As Int

 PasswordMode As Boolean

 Response As Int [read only]

 Show (message As String, title As String, Positive As String, Cancel As String, Negative

As String, icon As Bitmap) As Int

 Version As Double [read only]

Hint As String
Gets or sets the text that will appear when the dialog is empty.

HintColor As Int
Gets or sets the hint text color.

Input As String
Sets the initial text when the dialog is shown and returns the text entered by the user.

INPUT_TYPE_DECIMAL_NUMBERS As Int

INPUT_TYPE_NONE As Int
This can be useful, for example, if you use a read-only InputDialog for which you do not

want a keyboard to be displayed.

INPUT_TYPE_NUMBERS As Int

INPUT_TYPE_PHONE As Int

INPUT_TYPE_TEXT As Int

InputType As Int
Sets or returns the input type accepted by the input box. Possible values are:

 ThisDialogName.INPUT_TYPE_NUMBERS for integer numbers.

 ThisDialogName.INPUT_TYPE_DECIMAL_NUMBER for signed decimal numbers.

 ThisDialogName.INPUT_TYPE_TEXT for free text.

 4.3 Additional Libraries and Modules

 - 518 -

 ThisDialogName.INPUT_TYPE_PHONE for telephone numbers.

PasswordMode As Boolean
Sets or returns whether this dialog hides the actual characters entered by the user.

Response As Int [read only]
Returns the response code that the dialog returned when it last closed.

Show (message As String, title As String, Positive As String, Cancel As

String, Negative As String, icon As Bitmap) As Int
Shows a modal text input dialog with the specified message and title.

Message - The dialog message. Title - The dialog title.

Positive - The text to show for the “positive” button. Pass "" if you don’t want to show the

button.

Cancel - The text to show for the “cancel” button. Pass "" if you don’t want to show the

button.

Negative - The text to show for the “negative” button. Pass "" if you don’t want to show the

button.

Icon - A bitmap that will be drawn near the title. Pass Null if you don’t want to show an

icon. Returns one of the DialogResponse values.

Version As Double [read only]
Returns the version of the library.

NumberDialog
This configurable modal dialog allows the user to enter a number. The dialog is configurable

to show any number of digits between a minimum of one and a maximum of nine The display

of a decimal point is optional and the character displayed as the decimal indicator is

configurable. Note that the number accepted and returned by the dialog is an integer value

and so may need scaling appropriately. This is an Activity object; it cannot be declared

under Sub Process_Globals.

Members:

 Decimal As Int

 DecimalChar As Char

 Digits As Int

 Number As Int

 Response As Int [read only]

 Show (title As String, Positive As String, Cancel As String, Negative As String, icon As

Bitmap) As Int

 ShowSign As Boolean

 Version As Double [read only]

Decimal As Int
Gets or sets the position of a displayed decimal point in the dialog. Zero (the default) displays

no decimals, one indicates a single decimal, and so on.

 4.3 Additional Libraries and Modules

 - 519 -

DecimalChar As Char
Gets or sets the displayed decimal character in the dialog. The default is “.”.

Digits As Int
Gets or sets the number of digits displayed in the dialog when it is open. One is the

minimum, nine is the maximum. The default is five. If ShowSign is True, then the leftmost

digit will display a “+” or “-” and only eight digits will be shown.

Number As Int
Sets the number initially displayed in the dialog when it is shown. If the number is negative

and ShowSign is False, then the absolute value is displayed. Gets the number entered by

the user after the dialog is closed. If ShowSign is True, the sign of the number corresponds to

the sign entered by the user.

Response As Int [read only]
Returns the response code that the dialog returned when it last closed.

Show (title As String, Positive As String, Cancel As String, Negative As

String, icon As Bitmap) As Int
Shows a modal number picker dialog with the specified title.

Title - The dialog title.

Positive - The text to show for the “positive” button. Pass "" if you don’t want to show the

button.

Cancel - The text to show for the “cancel” button. Pass "" if you don’t want to show the

button.

Negative - The text to show for the “negative” button. Pass "" if you don’t want to show the

button.

Icon - A bitmap that will be drawn near the title. Pass Null if you don’t want to show an

icon.

Returns one of the DialogResponse values.

ShowSign As Boolean
Gets or sets whether the displayed number includes a sign character. The default is False,

so no minus sign is displayed if the number is negative.

Version As Double [read only]
Returns the version of the library.

TimeDialog
This modal dialog allows the collection of user entered data in the form of a time. The time

may be entered in 12 or 24 hour format as determined by the programmer. This is an

Activity object; it cannot be declared under Sub Process_Globals.

Members:

 Hour As Int

 Is24Hours As Boolean

 Minute As Int

 Response As Int [read only]

 4.3 Additional Libraries and Modules

 - 520 -

 SetTime (hour As Int, minutes As Int, hours24 As Boolean)

 Show (Message As String, Title As String, Positive As String, Cancel As String, Negative

As String, icon As Bitmap) As Int

 TimeTicks As Long

 Version As Double [read only]

Hour As Int
Sets the hour value of the dialog when it is initially shown. Returns the hour value of the

dialog when it is closed.

Is24Hours As Boolean
Sets or returns whether the dialog shows the time in 24 hour format.

Minute As Int
Sets the minute value of the dialog when it is initially shown. Returns the minute value of

the dialog when it is closed.

Response As Int [read only]
Returns the response code that the dialog returned when it last closed.

SetTime (hour As Int, minutes As Int, hours24 As Boolean)
Sets the time values of the dialog when it is initially shown.

Show (Message As String, Title As String, Positive As String, Cancel As

String, Negative As String, icon As Bitmap) As Int
Shows a modal time input dialog with the specified message and title.

Message - The dialog message.

Title - The dialog title.

Positive - The text to show for the “positive” button. Pass "" if you don’t want to show the

button.

Cancel - The text to show for the “cancel” button. Pass "" if you don’t want to show the

button.

Negative - The text to show for the “negative” button. Pass "" if you don’t want to show the

button.

Icon - A bitmap that will be drawn near the title. Pass Null if you don’t want to show an

icon.

Returns one of the DialogResponse values.

TimeTicks As Long
Sets the time value of the dialog when it is initially shown. Returns the time value in ticks of

the dialog when it is closed.

Version As Double [read only]
Returns the version of the library.

Reflection Library
This library (written by Andrew Graham) is perhaps one of the most useful user

contributions. It contains the Reflector object which allows access to methods and fields of

http://www.basic4ppc.com/forum/members/agraham.html

 4.3 Additional Libraries and Modules

 - 521 -

Android objects that are not exposed in the Basic4Android language. It does this by means of

a facility called “Reflection” that uses meta-data for objects that are included in the

application package and allows dynamic access to fields and methods at runtime.

Source
Download the library here.

Notes
For more information about this library see here,

List of types:
Reflector

Reflector
This is the object that does the reflection. In order to use this successfully, you will need an

understanding of the use of Java classes and their fields and methods.

Technical documentation (although often lacking useful explanatory details) is available on

the Google Android website at http://developer.android.com.

Java is case sensitive and, as used for Android, does not support properties. Properties, as

implemented in Basic4Android, are actually methods with lower-case prefixes ‘set’ and ‘get’.

‘set’ methods take a single parameter and return void, ‘get’ methods take no parameters and

return the requested values. Any other method signatures are exposed by Basic4Android as

normal methods. For example, the Left property of a View is actually implemented in Java

code as two methods, int getLeft() and void setLeft(int left). The Basic4Android

compiler makes them look like a single property to the programmer.

Events:
Click(ViewTag As Object); LongClick(ViewTag As Object) As Boolean; Focus(ViewTag As

Object, Focus As Boolean); Key(ViewTag As Object, KeyCode As Int, KeyEvent As Object) As

Boolean; Touch(ViewTag As Object, Action As Int, X As Float, Y As Float, MotionEvent As

Object) As Boolean.

Example
Sub RegexReplace(Pattern As String, Text As String, Replacement As

String) As String

' example RegexReplace("abc(d)(e)", "abcde", "$2 $1")

 Dim m As Matcher

 m = Regex.Matcher(Pattern, Text)

 Dim r As Reflector

 r.Target = m

 Return r.RunMethod2("replaceAll", Replacement, "java.lang.String")

End Sub

Members:

 CreateObject (type As String) As Object

 CreateObject2 (type As String, args() As Object, types() As String) As Object

 GetActivity As Activity

http://bit.ly/11f1e7K
http://www.basic4ppc.com/android/help/reflection.html
http://developer.android.com/

 4.3 Additional Libraries and Modules

 - 522 -

 GetActivityBA As BA

 GetArray (indices() As Int) As Object

 GetB4AClass (component As String) As Class

 GetContext As Context

 GetField (field As String) As Object

 GetField2 (fieldinfo As Field) As Object

 GetFieldInfo (field As String) As Field

 GetMethod (method As String, types() As String) As Method

 GetMostCurrent (component As String) As Object

 GetProcessBA (component As String) As BA

 GetProxy (interfacenames() As String, b4asubname As String) As Proxy

 GetPublicField (field As String) As Object

 GetStaticField (classname As String, field As String) As Object

 InvokeMethod (instance As Object, method As Method, args() As Object) As Object

 IsNull As Boolean [read only]

 RunMethod (method As String) As Object

 RunMethod2 (method As String, arg1 As String, type1 As String) As Object

 RunMethod3 (method As String, arg1 As String, type1 As String, arg2 As String, type2

As String) As Object

 RunMethod4 (method As String, args() As Object, types() As String) As Object

 RunPublicmethod (Method As String, Args() As Object, types() As String) As Object

 RunStaticMethod (classname As String, method As String, args() As Object, types() As

String) As Object

 SetArray (indices() As Int, value As String, type As String)

 SetArray2 (indices() As Int, value As Object)

 SetField (field As String, value As String, type As String)

 SetField2 (field As String, value As Object)

 SetField3 (fieldinfo As Field, value As String, type As String)

 SetField4 (fieldinfo As Field, value As Object)

 SetOnClickListener (sub As String)

 SetOnCreateContextMenuListener (sub As String)

 SetOnFocusListener (sub As String)

 SetOnKeyListener (sub As String)

 SetOnLongClickListener (sub As String)

 SetOnTouchListener (sub As String)

 SetPublicField (field As String, value As String, type As String)

 SetPublicField2 (field As String, value As Object)

 SetStaticField (classname As String, field As String, value As String, type As String)

 SetStaticField2 (classname As String, field As String, value As Object)

 4.3 Additional Libraries and Modules

 - 523 -

 Target As Object

 TargetRank As Int()

 ToString As String

 TypeName As String [read only]

 Version As Double [read only]

CreateObject (type As String) As Object
Creates and returns a new object of the specified type using the default constructor.

CreateObject2 (type As String, args() As Object, types() As String) As

Object
Creates and returns a new object of the specified type using the constructor that matches the

array of type names given and passes it the arguments provided. The array of type names is

needed in order to find the correct constructor because primitives passed in the Args array

are boxed and so CreateNew cannot tell whether to look for a target constructor that accepts

a primitive parameter type or a boxed primitive object type.

GetActivity As Activity
Returns the current activity if any. To avoid memory leaks, this should not be used by a

Reflector that is a Sub Process_Globals object. To use this requires a knowledge of the

structure of a Basic4Android application.

GetActivityBA As BA
Returns the Activity BA of the current activity. To use this requires a knowledge of the

structure of a Basic4Android application and an explanation is beyond the scope of this book.

To avoid memory leaks this should not be used by a Reflector that is a Sub

Process_Globals object.

GetArray (indices() As Int) As Object
Returns the Object at the position(s) in an array specified by the contents of indices.

indices - must be an integer array of the same rank as the Target array or an error will

occur.

GetB4AClass (component As String) As Class
Returns the Java Class for the specified B4A Activity, Service or Code module. To use this

requires a knowledge of the structure of a Basic4Android application.

GetContext As Context
Returns the Context of the Process to which the Reflection object belongs. This is the

Application object returned from Activity.getApplicationContext().

GetField (field As String) As Object
Returns the value of the field of the current target. Protected and private fields may be

accessed if allowed by any security manager which may be present. Target must be an

instance of a Class, not a Class object.

GetField2 (fieldinfo As Field) As Object
Returns the value of the field of the current target. Target must be an instance of a Class,

not a Class object.

 4.3 Additional Libraries and Modules

 - 524 -

GetFieldInfo (field As String) As Field
Finding a field from its string representation is expensive, so this method can be used to get

the Field information object and save it for multiple accesses of the same field. Protected and

private fields may be accessed if allowed by any security manager which may be present.

GetMethod (method As String, types() As String) As Method
Finding a method from its string representation is expensive, so this method can be used to

get the Method information object and save it for multiple invocations of the same method.

The String array of type names is needed in order to find the correct variant of the method.

GetMostCurrent (component As String) As Object
Returns the current instance for the specified B4A Activity or Service module. This might

return Null if the Activity or Service is not instantiated. Note that Code modules do not

have a current instance. To use this requires a knowledge of the structure of a Basic4Android

application.

GetProcessBA (component As String) As BA
Returns the processBA instance for the specified B4A Activity or Service module. To use this

requires a knowledge of the structure of a Basic4Android application.

GetProxy (interfacenames() As String, b4asubname As String) As Proxy
In Java, you can generate an interface at runtime and have it run a pre-compiled method.

Many events in Android are handled by an interface that typically has an “onXxxxx” method

that is called with some parameters relevant to the event. The interface is typically set on an

object using that object’s “setOnXxxxxListener” method.

This GetProxy method dynamically creates a proxy instance that implements one or more

specified interfaces and which contains the code to call a specified Basic4Android Sub when

any of the interface methods are called.

Typically, this instance will implement one or more listeners and will then be assigned to an

object instance using RunMethod4 and its setOnXxxxxListener method.

When a method of one of the specified interfaces is called, the proxy will call the specified

Basic4Android Sub passing the method name as a string and any arguments in an object

array.

Note that interfaces declared as internal to a class will need a “$” instead of a “.” as their

final separator and all interfaces need to be fully qualified. e.g

android.view.View$OnTouchListener.

The Basic4Android Sub called must have the signature Sub WhateverName(method As

String, anyargs() As Object) As Object.

GetPublicField (field As String) As Object
Returns the value of the public field of the current target. This is more efficient than

GetField but can only access public fields. Target must be an instance of a Class, not a Class

object.

GetStaticField (classname As String, field As String) As Object
Returns the value of the specified static field of the specified class. Protected and private

fields may be accessed if allowed by any security manager which may be present. Static

fields may also be accessed with GetField and an instance of the class.

 4.3 Additional Libraries and Modules

 - 525 -

InvokeMethod (instance As Object, method As Method, args() As Object) As

Object
Invoke the provided Method on the provided object instance and return the result.

IsNull As Boolean [read only]
Returns True if the present value of Target is Null.

RunMethod (method As String) As Object
Runs the specified method on the current target. Protected and private methods may be

accessed if allowed by any security manager which may be present.

RunMethod2 (method As String, arg1 As String, type1 As String) As Object
Runs the specified method on the current target passing it the argument provided. Protected

and private methods may be accessed if allowed by any security manager which may be

present.

RunMethod3 (method As String, arg1 As String, type1 As String, arg2 As

String, type2 As String) As Object
Runs the specified method on the current object passing it the arguments provided. Protected

and private methods may be accessed if allowed by any security manager which may be

present.

RunMethod4 (method As String, args() As Object, types() As String) As

Object
Runs the specified method on the current target passing it the arguments provided.

Protected and private methods may be accessed if allowed by any security manager which

may be present.

The String array of type names is needed in order to find the correct method because

primitives passed in the Args array are boxed and so RunMethod cannot tell whether to look

for a target method that accepts a primitive parameter type or a boxed primitive object type.

RunPublicmethod (Method As String, Args() As Object, types() As String)

As Object
Runs the specified method on the current target passing it the arguments provided. This is

more efficient that RunMethod4 but the method must be public.

The String array of type names is needed in order to find the correct method because

primitives passed in the Args array are boxed and so RunMethod cannot tell whether to look

for a target method that accepts a primitive parameter type or a boxed primitive object type.

RunStaticMethod (classname As String, method As String, args() As

Object, types() As String) As Object
Runs the specified static method of the specified class passing it the arguments provided.

Protected and private methods may be accessed if allowed by any security manager which

may be present.

The String array of type names is needed in order to find the correct method because

primitives passed in the Args array are boxed and so RunMethod cannot tell whether to look

for a target method that accepts a primitive parameter type or a boxed primitive object type.

For methods that take no parameters, Null may passed for args and types.

 4.3 Additional Libraries and Modules

 - 526 -

SetArray (indices() As Int, value As String, type As String)
Set the position(s) in an array specified by the contents of indices to the specified value.

indices must be an integer array of the same rank as the Target array or an error will occur.

SetArray2 (indices() As Int, value As Object)
Set the position(s) in an array specified by the contents of indices to the specified value.

indices must be an integer array of the same rank as the Target array or an error will occur.

SetField (field As String, value As String, type As String)
Sets the specified field of the current target to the value provided. Protected and private

fields may be accessed if allowed by any security manager which may be present. Target

must be an instance of a Class, not a Class object.

SetField2 (field As String, value As Object)
Sets the specified field of the current target to the value provided. Protected and private

fields may be accessed if allowed by any security manager which may be present. Target

must be an instance of a Class, not a Class object.

SetField3 (fieldinfo As Field, value As String, type As String)
Sets the specified field of the current target to the value provided. Target must be an

instance of a Class, not a Class object.

SetField4 (fieldinfo As Field, value As Object)
Sets the specified field of the current target to the value provided. Target must be an

instance of a Class, not a Class object.

SetOnClickListener (sub As String)
Target must be a View of some sort. In most cases, Basic4Android will have already exposed

this as a Click event. Sets the OnClickListener of the view to a Sub that must have a

signature of Sub Whatever(viewtag As Object).

SetOnCreateContextMenuListener (sub As String)
Target must be a View of some sort. This is included for completeness of all the Listeners

that class View supports. Sets the OnCreateContextMenuListener of the view to a Sub that

must have a signature of Sub Whatever(viewtag As Object, menu As Object, menuinfo As

Object)

SetOnFocusListener (sub As String)
Target must be a View of some sort. Sets the onFocusChangeListener of the view to a Sub

that must have a signature of Sub Whatever(viewtag As Object, focus As Boolean).

You should make sure not to call DoEvents, Msgbox or any modal Dialog inside this event as

it will fail in Android 4.0.3 and above.

It may also fail if Debug is paused in the event in Android 4.0.3 and above.

SetOnKeyListener (sub As String)
Target must be a View of some sort. Sets the onKeyListener of the view to a Sub that must

have a signature of Sub Whatever(viewtag As Object, keycode As Int, keyevent As Object) As

Boolean.

This Sub must return True if it wants to consume the event or False otherwise.

 4.3 Additional Libraries and Modules

 - 527 -

SetOnLongClickListener (sub As String)
Target must be a View of some sort. In most cases Basic4Android will have already exposed

this as a LongClick event. Sets the OnLongClickListener of the view to a Sub that must have

a signature of Sub Whatever(viewtag As Object) As Boolean. This Sub must return True if it

wants to consume the event or False otherwise.

SetOnTouchListener (sub As String)
Target must be a View of some sort. Sets the onTouchListener of the view to a Sub that must

have a signature of Sub Whatever (viewtag As Object, action As Int, X As Float, Y As Float,

motionevent As Object) As Boolean.

This Sub must return True if it wants to consume the event or False otherwise.

You should make sure not to call DoEvents, Msgbox or any modal Dialog inside this event as

it will fail in Android 4.0.3 and above. If you want to do so, put the code in another sub and

call this sub with CallSubDelayed.

It may also fail if Debug is paused in the event in Android 4.0.3 and above.

SetPublicField (field As String, value As String, type As String)
Sets the specified field of the current target to the value provided. This is more efficient than

SetField but can only access public fields. Target must be an instance of a Class, not a Class

object.

SetPublicField2 (field As String, value As Object)
Sets the specified field of the current target to the value provided. This is more efficient than

SetField but can only access public fields. Target must be an instance of a Class, not a Class

object.

SetStaticField (classname As String, field As String, value As String, type

As String)
Sets the specified static field of the specified class to the value provided. Protected and

private fields may be accessed if allowed by any security manager which may be present.

Static fields may also be accessed with SetField and an instance of the class.

SetStaticField2 (classname As String, field As String, value As Object)
Sets the specified static field of the specified class to the value provided. Protected and

private fields may be accessed if allowed by any security manager which may be present.

Static fields may also be accessed with SetField and an instance of the class.

Target As Object
This field holds the object that is being reflected upon. The target object is assigned to this

field where it can then be manipulated as required.

TargetRank As Int()
Returns an int array whose length is the number of dimensions of the array and whose

contents are the length of the first element of each array dimension. A zero length integer

array is returned if Target is not an array.

ToString As String
Returns the result of running the “toString()” method of the current object.

 4.3 Additional Libraries and Modules

 - 528 -

TypeName As String [read only]
Returns the name of the class of the current object.

Version As Double [read only]
Returns the version number of the library.

TabHostExtras Library
This library, created by WarWound, adds functionality to the TabHost view.

For the library and a sample project, see here.

getTabContentViewPadding (tabHost1 As TabHost) As

RectWrapper
Gets the layout padding of tabHost1 TabContentView. Returns a Rect object containing pixel

values.

getTabEnabled (tabHost1 As TabHost, index As Int) As Boolean
Get the Enabled state of TabIndicator #index in tabHost1.

getTabHeight (tabHost1 As TabHost) As Int
Get the height (in pixels) of the TabIndicators in tabHost1.

getTabHostPadding (tabHost1 As TabHost) As RectWrapper
Get the layout padding of tabHost1 container View. Returns a Rect object containing pixel

values.

getTabTextSize (tabHost1 As TabHost) As Float
Get the text size (in pixels) of all TabIndicators.

getTabVisibility (tabHost1 As TabHost, index As Int) As Boolean
Get the visibility of TabIndicators #index in tabHost1.

setTabContentViewPadding (tabHost1 As TabHost, left As Int, top

As Int, right As Int, bottom As Int)
Set the layout padding (in dip) of tabHost1 TabContentView.

setTabEnabled (tabHost1 As TabHost, enabled As Boolean)
Enable or disable all TabIndicators in tabHost1.

setTabEnabled2 (tabHost1 As TabHost, enabled As Boolean, index

As Int)
Enable or disable TabIndicator #index in tabHost1.

http://www.basic4ppc.com/forum/members/warwound.html
http://bit.ly/16Bb09a

 4.3 Additional Libraries and Modules

 - 529 -

setTabGradientDrawable (tabHost1 As TabHost, orientation As

String, color1 As Int, color2 As Int, cornerRadius As Float)
Set a GradientDrawable as the background on all TabIndicators in tabHost1. All four

corner radii of the GradientDrawable are set to the value of cornerRadius (in pixels).

setTabGradientDrawable2 (tabHost1 As TabHost, orientation As

String, color1 As Int, color2 As Int, cornerRadius As Float())
Set a GradientDrawable as the background on all TabIndicators in tabHost1. Corner radii

of the GradientDrawable are set individually (in pixels) based upon the number of

elements in the array cornerRadius:

1 element defines all corner radii

2 elements define corner radii in order top left and right, bottom left and right

4 elements define corner radii in order top-left, top-right, bottom-right, bottom-left

setTabHeight (tabHost1 As TabHost, tabHeight As Int)
Set the height (in pixels) of all TabIndicators in tabHost1.

setTabHostPadding (tabHost1 As TabHost, left As Int, top As Int,

right As Int, bottom As Int)
Set the layout padding (in dip) of tabHost1 container View.

setTabTextColor (tabHost1 As TabHost, Color As Int)
Set the color to be used for all tab indicators text.

This color will be used for all tab indicators regardless of their selected state.

setTabTextColorStateList (tabHost1 As TabHost,

ColorStateListName As String)
Set a ColorStateList to be used for the text color of all tab indicators.

The ColorStateList must be defined in XML in your application Objects/res/drawable folder.

Color for selected and not-selected tab state can be defined.

setTabTextSize (tabHost1 As TabHost, TextSize As Float)
Set the text size of all TabIndicators. TextSize is assumed to be in units of dip.

setTabTitle (tabHost1 As TabHost, Title As String, TabIndex As

Int)
Set the Title text of TabIndicator #TabIndex in tabHost1.

setTabVisibility (tabHost1 As TabHost, visible As Boolean)
Set the visibility of all TabIndicators in tabHost1.

 4.3 Additional Libraries and Modules

 - 530 -

setTabVisibility2 (tabHost1 As TabHost, visible As Boolean, index

As Int)
Set the visibility of TabIndicator #index in tabHost1.

 Index

 - 531 -

Index
%xand%y, 76, 104

“ImmediateWindow” vs. “Logs”Tab, 257

1.1GettingStarted, 12

1.2The Integrated

DevelopmentEnvironment, 35

1.3Upgrade to FullVersion, 56

2.10Modules, 169

2.11Publishing and Monetizing YourApp,

182

2.12Getting MoreHelp, 191

2.1TheProject, 63

2.2.Designing YourApp, 68

2.3Communicating with yourUser, 78

2.4TheDesigner, 85

2.5Designer ScriptsReference, 101

2.6Compiling, Debugging &Testing, 111

2.7Graphics and Drawing, 136

2.8Databases, 147

2.9Process and Activity LifeCycle, 163

3.1Basic4Android’sLanguage, 195

3.2VB6 versusB4A, 250

3.3Core Objects, 258

4.1Libraries, 387

4.2Standard Libraries included with

FullVersion, 391

4.3Additional Libraries and Modules, 503

AboutFullVersions, 56

AbouttheAuthor, 9

Abs, 230

AcademicLicenses, 56

AccessibilityLibrary, 392

Accessiblity, 392

Accessingothermodules, 181

Accuracy, 417

AccuracyValid, 417

Acknowledgements, 9

ACos, 230

ACosD, 230

Acronyms, 7

Action, 303

ACTION_APPWIDGET_UPDATE, 303

ACTION_CALL, 303

ACTION_DOWN, 262

ACTION_EDIT, 303

ACTION_MAIN, 303

ACTION_MOVE, 262

ACTION_PICK, 303

ACTION_SEND, 303

ACTION_UP, 262

ACTION_VIEW, 303

ActionBar, 70

ActivatingDesignerScripts, 103

Activitiesvs WindowsForms, 171

Activity, 259

Activity.FinishvsExitApplication, 168

Activity.RerunDesignerScript, 106

Activity_PauseandActivity_Resume, 163

ActivityAttributes, 164, 169

ActivityAttributesRegion, 44

ActivityEvents, 170, 260

ActivityGlobals, 165

ActivityGlobalVariables, 209

ActivityMembers, 261

ActivityMethods, 106

ActivityModule, 164, 169

Add, 274, 307, 371

Addabutton, 29

AddActivityText, 66

Addafield, 162

AddAll, 307, 371

AddAllAt, 308

AddApplicationText, 66

AddCatchAllState, 290

AddCategory, 303

AddCheckBox, 466, 468

Addcode tobutton, 32

AddEditText, 466, 468

AddElements, 306

AddHandleActionEvent, 424

AddHeightChangedEvent, 425

Addinga classmodule, 174

Addinga StandardVariant, 93

AddingEntry, 311

AddingFiles to yourProject, 291

 Index

 - 532 -

AddingOtherVariants, 94

Addingrecords, 160

Addingviews bycode, 75, 100

AdditionalLibraries, 61

Additionallibrariesfolder, 387, 503

AdditionalOfficialLibraries, 387, 503

AdditionalUserLibraries, 387, 507

AddList, 466, 468

AddManifestText, 66

AddMenuItem, 262

AddMenuItem2, 262

AddMenuItem3, 263

AddNonQueryToBatch, 487

AddOnly NormalizedVariants, 94

AddPermission, 67

AddPreferenceCategory, 466, 468

AddPreferenceScreen, 466, 468

AddReceiverText, 66

AddReplacement, 67

Address, 461, 479, 497

AddServiceText, 66

AddSingleLine, 353

AddSingleLine2, 353

AddState, 290

AddState2, 290

AddTab, 375

AddTab2, 375

AddTabWithIcon, 375

AddTabWithIcon2, 375

AddToMediaStore, 459

AddTwoLines, 353

AddTwoLines2, 353

AddTwoLinesAndBitmap, 353

AddTwoLinesAndBitmap2, 353

AddView, 263, 357, 513

AddViewmenu, 85

Adiquity, 503

AdiQuity, 187

AdministratorLibrary, 393

AdminManager, 393

AdMob, 187, 504

Advertising, 71

AHActionBar, 70

AirplaneModeChanged, 450

Alarms, 82

AllocatingValues, 201

AllowedCharacters, 64

AllowedScreenOrientation, 74

AllVariants ScriptArea, 103

Alternativeto anActivity, 177

Altitude, 417

AltitudeValid, 417

AlwaysPrivate, 209

AmazonAppstore, 190

Analytics, 504

And, 267

Android.jar, 60

Android’sView ofServices, 178

AndroidCharacterSets, 292

AndroidThemes, 71

AndroidVirtual Devices, 121

Animation, 395

AnimationLibrary, 395

AnotherDatePickerclass, 504

AnswerCall, 483

AnywhereSoftware, 191

APKFile, 185

AppDesign Step byStep, 69

Append, 324

Appendingto aMap, 312

ApplicationLabel, 63

Appor Widget?, 76

Approvethe app on yourdevice, 21

ApproximateScreenSize, 305

ARGB, 269, 509, 510, 512

Array, 230

ArrayDimensions areFixed, 206

Arrays, 204

ArraysofObjects, 206

Asc, 230

ASin, 230

ASinD, 230

AsyncStreams, 469

AsyncStreamsText, 504

ATan, 230

ATan2, 231

ATan2D, 231

ATanD, 231

Attachments, 443

Attributes, 497, 500

AudioLibrary, 397

AudioRecordApp, 398

 Index

 - 533 -

Audiov1.31, 504

AutoCancel, 317

Autocomplete, 46

AutoCompleteEditText, 327

Autocompleteeventsubroutines, 47

AutocompleteProperties andMethods, 47

AutoFocus, 409

AutoRegistration, 482

AutoScale, 108

AutoScaleAll, 108

AutoScaleLayouts for Different

SizedDevices, 106

AutoScaleRate, 108

AVDName, 122

Azimuth, 416

B4A-Bridge, 16, 119

B4ADesigner, 19

B4AHelp, 193

B4aObject Browser, 192

Back, 383

Background, 101, 263, 329, 334, 336, 340,

343, 346, 348, 353, 357, 360, 362, 365,

367, 371, 375, 378, 380, 383, 407, 413

BackgroundProperty, 141

BackwardCompatible, 68

BASIC, 195

Basic4Android, 195, 257

Basic4AndroidEnterpriseVersion, 56

Basic4AndroidSiteLicense, 56

Basic4AndroidStandardVersion, 56

BasicDesignPrinciples, 69

BatteryChanged, 450

BCC, 443

Bearing, 418

BearingTo, 418

BearingValid, 418

Beep, 399

Beeper, 399

BeginTransaction, 487

Benefitsof creatingLibraries, 389

BenefitsofClasses, 172

Bit, 266

Bitmap, 277, 279, 280, 346, 412

BitmapData, 412

BitmapDrawable, 278

BitmapsData, 413

BitwiseOperations, 266

Black, 269

Blue, 269, 509

BluetoothAdmin, 477

Bluetoothconnections, 18

Body, 443, 461

Bookmarks, 45

Boolean, 197

BooleanOperations, 250

Bottom, 288

BOTTOM, 270

BrandingandMarketing, 182

BreakpointLimitations, 113

Breakpoints, 113

BringTo Front and Send ToBack, 87

BringToFront, 329, 334, 336, 340, 343,

346, 348, 353, 357, 360, 362, 365, 367,

371, 375, 378, 380, 383, 407, 413

Buffer, 500

BulkTransfer, 496

Button, 333

ByEmail, 190

Byte, 197

BytesAvailable, 298, 473

BytesToString, 231

CachedName, 435

Call, 449

CallEnded, 482

CallError, 482

CallEstablished, 482

Calling, 482

Callinga Sub from anothermodule, 220

Callingasub, 252

CallingaSub, 220

CallItem, 435

CallLog, 436

CallRinging, 482

CallSub, 231

CallSub2, 232

CallSub3, 232

CallSubDelayed, 232

CallSubDelayed2, 232

CallSubDelayed3, 232

CallType, 436

Camera, 409, 504

CameraEx, 504

 Index

 - 534 -

CameraLibrary, 409

Cancel, 317

CANCEL, 270

CancelAutoFocus, 410

CancelDiscovery, 478

CancelScheduledService, 232

CanInstallToExternalStorage, 63

Canvas, 279, 411, 427

CanvasObject, 136

CaptureBitmap, 383

Case, 256

Casting, 208

Catch, 232

CautionName cannot bechanged, 65

CC, 443

cE, 232

Ceil, 233

CENTER, 270

CENTER_HORIZONTAL, 270

CENTER_VERTICAL, 270

CenterX, 288

CenterY, 288

ChangeanElement, 306

Changegrid, 87

ChangingTextAppearance, 350

Char, 197

CharAt, 321

CharsToString, 233

ChartsFramework, 145

ChatRoom, 191

CheckBox, 335

CheckChanged, 225

Checked, 336, 363, 378

CheckedChange, 362

Checkif a Map contains anentry, 312

Checkif the Java JDK is alreadyinstalled,

56

ChosenName, 516

Chr, 233

Class_Globals, 210

ClassCirclemodule, 175

Classesand ActivityObject, 177

ClassesAttributes, 390

Classesstructures, 174

Classesvs CodeModules, 174

ClassesvsTypes, 174

Classmodule, 172

ClassSquaremodule, 175

Clear, 308, 313, 353, 371

ClearaList, 307

ClearAll, 467

Clearall items from themap, 312

ClearQueue, 400

Click, 224, 260, 333, 345, 347, 356, 374,

380

ClipPath, 280

Close, 298, 299, 301, 430, 431, 433, 469,

473, 475, 482, 485, 488, 494

CloseFile, 401

CloseMenu, 263

CloseSynchronous, 496

Code, 5

Codearea, 42

Codeheader, 43

Codemodule, 177

Collapsethe wholecode, 43

Color, 263, 330, 334, 336, 340, 343, 346,

348, 353, 357, 360, 363, 365, 368, 371,

375, 378, 381, 383, 407, 413

ColorDialog, 509

ColorDialogHSV, 510

ColorDrawable, 141, 286

ColorPicker, 49

ColorPickerDialog, 511

Colors, 251, 268

ColumnCount, 485

Combine, 294

Commentingand uncommenting code, 44

Comments, 195

CommentsasDocumentation, 48, 196

CommonestViewEvents, 224

CommonWindows XPError, 60

CompareTo, 322

CompilationModes, 111

CompileandRun, 21

CompileOptions, 38

Compiling, 111

CompilingtheAPK, 186

Complete, 402

CompressBytes, 471

CompressedStreams, 470

Conditionalstatements, 212

 Index

 - 535 -

ConfigureHomeWidget, 233

ConfigurePaths, 60

Configureyourbutton, 30

Connect, 431, 479

Connect2, 479

Connect3, 480

Connected, 431

ConnectInsecure, 480

ConnectionStatus, 89

ConnectivityChanged, 450

Connectthe Designer to yourdevice., 28

Connectthe IDE to thedevice, 17

Connectto Device orEmulator, 87

Constants, 196, 255, 258, 268

Contact, 437

Contacts, 439

Contacts2, 440

Contains, 322

ContainsKey, 313

ContentChooser, 441

ContentEncoding, 422

ContentLength, 422

ContentType, 422

ContextMenu, 48

Contextmenus, 97

Continue, 216, 234

ContinueListening, 496

Controlsvs.Views, 250

ControlTransfer, 496

ConventionsUsed in thisBook, 5

ConvertArray toList, 307

ConvertToMinutes, 418

ConvertToSeconds, 418

Copy, 294

Copy2, 294

CopyDBFromAssets, 152

CoreLibrary, 387

CoreObjectEvents, 221

CoreTypes, 198

CornerRadius, 287

Cos, 234

CosD, 234

Count, 473

CountingInputStream, 472

CountingOutputStream, 473

CountRecords, 161

cPI, 234

CPUABI, 123

CreateIntent, 466, 468

CreateNew, 273

CreateObject, 523

CreateObject2, 523

CreateTable, 152

Creatinga DeviceDefinition, 125

Creatinga NewKey, 186

CreatingA PrivateKey, 185

CreatingaMenu, 171

CreatinganAVD, 121

CreatingIcons, 183

CreatingLibraries, 388

Creatingor AddingModules, 169

CreatingTables, 152

CreatingthePage, 170

CreatingTooltips forSubs, 221

CreatingYour OwnTypes, 199

CRLF, 234

CurrentOffsetX, 427

CurrentOffsetY, 427

CurrentPosition, 475

CurrentTab, 376

CurrentUserIdChanged, 400

CurrentVariantOption, 103

Cursor, 159, 484

CustomBuildAction, 63

CustomDialog, 513

CustomDialog2, 513

CustomListView, 504

CustomView, 338

Cyan, 269

DarkGray, 269

Data, 432

Database, 147

DatabaseAdministration, 150

DatabaseCreation, 159

DatabaseFiles, 149

Databasefundamentals, 147

Date, 274, 436, 461

DateDialog, 514

DateFormat, 274

DateParse, 275

DateTicks, 514

DateTime, 273

 Index

 - 536 -

DateTimeParse, 275

DateUtils, 504

Daydream, 410

DaydreamLibrary, 410

DayOfMonth, 514

DBMSTools, 150

DBUtils, 151, 504

DBUtilsFieldTypes, 151

DBUtilsFunctions, 152

DBUtilsFundamentals, 151

DebuggerControl, 113

DebuggerMenus, 114

Debugging, 23, 112

DebuggingCertificates, 185

DebugLegacyMode, 111

DebugRapidMode, 111

Decimal, 518

DecimalChar, 519

DeclareSQLObject, 150

DeclaringanArray, 204

DeclaringaSub, 219, 252

DeclaringTypes, 207

DeclaringVariables, 200

DecodeBase64, 490

DecodeUrl, 490

DecompressBytes, 471

Default, 208

DEFAULT, 273

DEFAULT_BOLD, 273

Defaults, 169

Delete, 294, 412

DeleteRecord, 152

DeleteRingtone, 460

Deletingdata, 162

Density, 234

Description, 494

Designer, 37

DesignerMainTab, 90

DesignerScriptingBasics, 103

DesignerScripts, 100

DesignerScripts and ActivityCode, 101

DesignerScriptsTab, 95

DesignerStatusLine, 89

DestRect, 412

DetailArea, 50

DetectingDeviceOrientation, 74

Device, 123

DeviceClass, 495

DeviceDefaultDateFormat, 275

DeviceDefaultTimeFormat, 275

DeviceFound, 477

DeviceId, 495

DeviceName, 495

DeviceStorageLow, 450

DeviceStorageOk, 450

DeviceSubclass, 495

DiagramsCharts, 145

DialogResponse, 269

DialogsLibrary, 81, 508

Differencesbetween Basic4Android and

VisualBasic, 213, 215, 216, 219

DifferentLayouts for Portrait

andLandscape, 108

Digits, 519

Dim, 235, 250

Dimensions, 204

DimStatement, 200

dip, 102

dips, 75

DipToCurrent, 75, 235

DirAssets, 295

DirDefaultExternal, 295

Direction, 497

DirInternal, 295

DirInternalCache, 295

DirRootExternal, 295

Disable, 394, 478

Disconnect, 480

DisconnectFromDevice, 88

Discoveringthe API of the currentdevice,

68

DiscoveryStartedDiscoveryFinished, 477

DismissDropDown, 330

DisplayName, 438, 482

DistanceTo, 418

DistributingAppselsewhere, 189

DividebyZero, 254

Dockand FillStrategy, 102

Doesthe device have akeyboard?, 76

DoEvents, 235, 252

Donot add too manyvariants, 94

DoNot Overwrite Manifest FileOption, 67

 Index

 - 537 -

Double, 197

Do-Until, 218

Do-While, 217

Do-Whilemay not beexecuted, 218

Down, 333

Downloadand installBasic4Android, 59

DownloadBasic4AndroidTrial, 12

Downloadingfrom awebsite, 190

DownloadingUserLibraries, 507

dpidots perinch, 101

Drawables, 141

DrawBitmap, 137, 281

DrawBitmapFlipped, 281

DrawBitmapRotated, 137, 282

DrawCircle, 137, 282

DrawColor, 137, 282

DrawDrawable, 282

DrawDrawableRotate, 283

DrawingBitmaps on Panels

orImageViews, 144

DrawingMethods, 141

DrawingObjects, 258, 277

DrawLine, 137, 283

DrawOval, 283

DrawOvalRotated, 283

DrawPath, 283

DrawPoint, 284

DrawRect, 137, 284

DrawRectRotated, 137, 284

DrawText, 137, 284

DrawTextRotated, 137, 285

DreamStarted, 411

DreamStopped, 411

DropBoxSync, 504

DropdownTextColor, 371

DropTable, 152

DuplicateSelected View, 87

Duration, 315, 396, 403, 407, 436

EditingCode using the RapidDebugger,

117

EditingSettings, 72

EditingViews in aprogram, 109

Editmenu, 36

Editorcommands, 66

EditorHighlighting, 53

EditText, 338

Elevation, 416

ElseIfEndIf, 251

Email, 442

EMAIL_CUSTOM, 438

EMAIL_HOME, 438

EMAIL_MOBILE, 438

EMAIL_OTHER, 438

EMAIL_WORK, 438

EmulationOptions, 125

Enable, 394, 478

Enabled, 330, 334, 336, 340, 344, 346, 348,

354, 357, 360, 363, 365, 368, 371, 376,

378, 381, 383, 407, 413

EnablingHardwareButtons, 129

EncodeBase64, 490

EncodeUrl, 490

EncryptingDatabases, 149

EndCall, 484

EndElement, 501

End-of-LineCharacter, 293

EndpointCount, 497

EndpointNumber, 497

EndsWith, 322

EndTransaction, 488

EngineDestroyed, 428

EnterPressed, 328, 339

EqualsIgnoreCase, 322

Error, 469

ErrorHandling, 226

Errormessage “Are you missing a

libraryreference?”, 388

ErrorTrapping, 257

Escapingend of stringcharacters, 66

Event, 362, 370, 377, 399

EventAnimationEnd, 395

EventComplete, 314, 406

EventConnected, 430, 479

EventLogCatData, 443

EventMessageReceived, 462

EventNewConnection, 429

EventNewData, 496

EventPacketArrived, 433

EventPickerResult, 459

EventReady, 492

EventRecordComplete, 406

EventResult, 442, 463

 Index

 - 538 -

EventSensorChanged, 454

EventTick, 326

EvolvingEnvironment, 68

Example, 64, 75, 98, 109, 151, 172, 221,

231, 234, 326, 369, 424, 521

ExampleCode, 141

Exampleof a UI Cloudscreen, 89

ExampleofIf-Then, 213

ExampleofIf-Then-Else, 213

ExampleProgram, 138

ExampleProject, 143, 144

Examples, 237

Excel, 504

Exception, 290

Exceptions, 226

Exchangingfiles with thePC, 132

ExecNonQuery, 488

ExecNonQuery2, 488

ExecNonQueryBatch, 488

ExecQueriesandExecNonQueries, 159

ExecQuery, 488

ExecQuery2, 488

ExecQueryAsync, 162, 489

ExecQuerySingleResult, 489

ExecQuerySingleResult2, 489

Execute, 419

ExecuteCredentials, 420

ExecuteHtml, 153

ExecuteJSON, 153

ExecuteListView, 153

ExecuteMap, 154

ExecuteMemoryTable, 154

ExecuteSpinner, 155

Exists, 295

Exit, 216, 235, 251

ExitaLoop, 218

ExitApplication, 236

ExitSub, 252

Explanationof Sub’sname, 31

ExpressionsandOperators, 210

ExternalReadable, 295

ExternalWritable, 295

ExtrasToString, 303

False, 236

FastScroll, 516

FastScrollEnabled, 354

Field, 147

FieldType, 148

File, 124, 236, 293

File.DirAssets, 291

File.DirDefaultExternal, 292

File.DirInternalFile.DirInternalCache,

291

File.DirRootExternal, 292

FileDialog, 515

FileFilter, 516

Filelocations, 291

Filemenu, 35, 85

Filenames, 291

FileObject, 291

FileObjects, 259

FilePath, 516

FilesTab, 51

FILL, 270

Fillingan array using the Arraykeyword,

205

Filtering, 161

FindAllReferences, 49

FindByMail, 439, 441

FindByName, 439, 441

Finish, 264, 411

FirstTimeparameter, 166

FixingOrder in aMap, 312

Flags, 303

Flip, 412

FLIP_BOTH, 412

FLIP_HORIZONTALLY, 412

FLIP_NONE, 412

FLIP_VERTICALLY, 412

Float, 197

Floor, 236

Flush, 299, 301, 473, 475

FocusChanged, 328, 339

FocusDone, 409

For, 236

For…Next, 251

ForceDoneButton, 330, 340

ForEach, 236

For-Each, 216

Forewordby ErelUziel, 3

Format, 252

For–Next, 215

 Index

 - 539 -

FortheBeginner, 4

FortheProfessional, 4

Forum, 191

Forward, 383

FrontBackCamera, 123

FulfillingWants andNeeds, 68

FullScreen, 170, 411

FullScroll, 344, 365

FullWallpaperHeight, 427

FullWallpaperWidth, 428

Functions, 252

GamePad, 505

GameView, 413

GameViewLibrary, 411

General, 258

GenerateMembers, 31, 86

GeneratingYourAPK, 184

Get, 308, 313

GetAccessories, 498

GetActivity, 523

GetActivityBA, 523

GetAll, 437, 439, 441, 463, 467

GetAllSince, 463

GetAllViewsRecursive, 264, 357

GetApplicationIcon, 444

GetApplicationIntent, 444

GetApplicationLabel, 444

GetArray, 523

GetAsTextType, 434

GetAsUriType, 434

GetAsynchronously, 422

GetB4AClass, 523

GetBetweenDates, 463

GetBlob, 485

GetBlob2, 485

GetBoolean, 467

GetById, 437, 440, 441

GetByPersonId, 463

GetBytes, 322

GetByThreadId, 463

GetByType, 463

GetColumnName, 485

GetContactsAsync, 441

GetContactsByQuery, 441

GetContext, 523

GetData, 303

GetDataState, 446

GetDayOfMonth, 275

GetDayOfWeek, 275

GetDayOfYear, 275

GetDBVersion, 155

GetDefault, 313, 460

GetDeviceId, 452

GetDeviceLayoutValues, 237

GetDevices, 498

GetDouble, 485

GetDouble2, 485

GetEmails, 438

GetEndpoint, 498

GetExtra, 303

GetField, 523

GetField2, 523

GetFieldInfo, 524

GetHeaders, 423

GetHour, 275

GetHtmlIntent, 443

GetInputStream, 423

GetInstalledPackages, 444

GetInt, 485

GetInt2, 485

GetIntent, 443

GetInterface, 495

GetItem, 354, 371

GetKeyAt, 313

GetLine1Number, 452

GetLong, 486

GetLong2, 486

GetMaxVolume, 446

GetMethod, 524

GetMinute, 275

GetMonth, 275

GetMostCurrent, 524

GetMyIP, 430

GetMyWifiIP, 430

GetName, 501

GetNdefRecords, 434

GetNetworkOperatorName, 446

GetNetworkType, 446

GetPairedDevices, 480

GetPaletteAt, 512

GetPayload, 434

GetPhones, 438

 Index

 - 540 -

GetPhoneType, 446

GetPhoto, 438

GetPixel, 277

GetProcessBA, 524

GetProxy, 524

GetPublicField, 524

GetRawDescriptors, 496

GetResourceDrawable, 446

GetRingerMode, 446

GetSecond, 275

GetSettings, 446

GetSimOperator, 446

GetSimSerialNumber, 452

GetSince, 437

GetStartingIntent, 264

GetStaticField, 524

GetString, 423, 467, 486

GetString2, 486

GetSubscriberId, 452

getTabContentViewPadding, 528

getTabEnabled, 528

getTabHeight, 528

getTabHostPadding, 528

getTabTextSize, 528

getTabVisibility, 528

GetText, 295

Getthe size of aList, 306

GetTimeZoneOffsetAt, 276

GettingHelp with RegularExpressions,

212

GetType, 237

GetUnreadMessages, 463

GetUpdatedKeys, 467

GetUserFontScale, 392

GetValue, 501

GetValue2, 501

GetValueAt, 313

GetVersionCode, 444

GetVersionName, 444

GetView, 264, 357

GetVolume, 446

GetYear, 276

GlobalConst, 251

GlobalVariables, 165

Globalvariables in LegacyDebugger, 115

GoogleMaps, 505

GooglePlay DeveloperConsole, 189

GooglePlay StoreIcon, 183

GooglePlayURL, 65

GotoSubDeclaration, 49

GPS, 415

GPSEnabled, 416

GPSLibrary, 414

GPSSatellite, 416

GpsStatus, 415

GradientDrawable, 141, 286

Gravity, 270, 279, 340, 346

Gravity, 330, 334, 336, 348, 363, 378

Gray, 269

Green, 269, 509

HandleAction, 424

HandleWidgetEvents, 319

HandlingLongLists, 81

HandlingModal Dialogs when your

AppPauses, 82

HasAccessoryPermission, 498

HasExtra, 303

HasPermission, 498

HDPI, 184

Height, 264, 277, 305, 330, 334, 336, 340,

344, 346, 348, 354, 357, 360, 363, 365,

368, 372, 376, 378, 381, 384, 407, 414

HeightChanged, 424

Helparea, 91

HelpMenu, 42

HexLiterals, 198

HideKeyboard, 425, 447

Highlightingoccurrences ofwords, 50

Hint, 330, 340, 517

HintColor, 330, 340, 517

HorizontalScrollView, 342

Host, 432

HostAddress, 432

Hour, 520

Hoveringover CollapsedCode, 43

HowAutoScaleworks, 106

HowBasic4Android interacts with

EmulatedDevices, 120

Howthe Rapid DebuggerWorks, 116

Howthis Book isOrganized, 5

Howto Access Process_GlobalsVariables,

209

 Index

 - 541 -

Howto Compile aLibrary, 390

Howto create alibrary, 507

Howto Detect the DisplayType, 73

Howto Obtain thisBook, 4

Howto publish yourlibrary, 390

Howto See the Effect of AutoScale on

TextSize, 107

Howto See the Effect ofAutoScale, 107

Howto Share yourLibrary, 507

Howto Start aService, 178

Howto use aList, 305

Howto use aMap, 311

Howto useActivity_Pause, 166

Howto UseAutoScale, 107

Howtoupgrade, 120

HttpClient, 419

HTTPLibrary, 419

HttpRequest, 420

HttpResponse, 422

HttpServer, 505

HttpUtils2, 505

Hue, 511

HungarianNotation, 204

Icon, 317

Icons, 7, 46

IconSizes, 183

Id, 436, 438, 461

IDEOptionsSub-Menu, 41

If, 238

If– Then – Else – EndIf, 212

Ifyou already have JDK 64Bit, 57

IgnoringWarnings, 54

Imagefiles, 92

ImageView, 345

IME, 424

IMELibrary, 423

ImmutableStrings, 320

InAppBilling, 505

In-AppBilling, 188

IncludeTitle, 170

Indentation, 45

Indeterminate, 360

IndexOf, 308, 322, 372

IndexOf2, 322

InitializationofObjects, 199

Initialize2, 278, 285, 300, 301, 304, 308,

315, 365, 399, 410, 418, 426, 432, 455,

462, 475, 483

Initialize3, 278, 475

InitializeAcceptAll, 420

InitializeAlpha, 396

InitializeDelete, 421

InitializeFromBytesArray, 298

InitializeGet, 421

InitializeHead, 421

InitializeMutable, 278

InitializePost, 421

InitializePost2, 421

InitializePrefix, 469

InitializePut, 421

InitializePut2, 421

InitializeRotate, 396

InitializeRotateCenter, 396

InitializeSample, 278

InitializeScale, 396

InitializeScaleCenter, 397

InitializeSQLObject, 150

InitializeToBytesArray, 299

InitializeTranslate, 397

InitializeWithPhoneState, 452

Initializinga RecursiveType, 207

InitializingaCanvas, 136

Input, 517

INPUT_TYPE_DECIMAL_NUMBERS,

330, 341, 517

INPUT_TYPE_NONE, 330, 341

INPUT_TYPE_NONE, 517

INPUT_TYPE_NUMBERS, 330, 341, 517

INPUT_TYPE_PHONE, 330, 341, 517

INPUT_TYPE_TEXT, 330, 341, 517

InputBox, 252

InputDialog, 517

InputList, 79, 238

InputMap, 80, 239

InputMultiList, 79, 239

InputStream, 297, 494

InputStream.io.InputStream, 431, 480

InputType, 331, 341, 517

Insert, 324

InsertAt, 308

InsertMaps, 156

 Index

 - 542 -

Insistent, 317

Installand configureBasic4Android, 59

Installand Run theTrial, 12

Installation, 57

Installing.NETFramework, 12

InstallingDBUtils, 151

InstallingIcons, 184

Installingthe TrialVersion, 12

Installthe 32 bit JavaJDK, 57

Installthe Android SDK and aplatform, 57

Installthe B4A-Bridge app on yourdevice,

16

InstalltheSDK, 57

Instr, 256

Int, 197

Intent, 302

Interactingwith your VirtualDevice, 128

Interactive, 411

InterfaceClass, 498

InterfaceCount, 495

InterfaceProtocol, 498

InterfaceSubclass, 498

InternalStorage, 124

Interval, 327, 497

Inthe main module, 175

Introduction, 4, 119, 387, 391, 503, 507

Invalidate, 264, 331, 334, 337, 341, 344,

346, 349, 354, 358, 360, 363, 366, 368,

372, 376, 378, 381, 384, 407, 414

Invalidate2, 264, 331, 334, 337, 341, 344,

346, 349, 354, 358, 361, 363, 366, 368,

372, 376, 378, 381, 384, 407, 414

Invalidate3, 264, 331, 334, 337, 341, 344,

347, 349, 354, 358, 361, 363, 366, 368,

372, 376, 379, 381, 384, 408, 414

InvokeMethod, 525

Is, 240

Is24Hours, 520

IsAirplaneModeOn, 447

IsBackgroundTaskRunning, 240

IsDirectory, 295

IsEnabled, 478, 480

IsHardwareAccelerated, 414

IsInCall, 484

IsInitialized, 265, 273, 278, 279, 286, 287,

288, 290, 291, 298, 299, 300, 301, 304,

308, 313, 317, 325, 327, 331, 334, 337,

341, 344, 347, 349, 354, 358, 361, 363,

366, 368, 372, 376, 379, 381, 384, 397,

401, 404, 408, 414, 416, 418, 420, 426,

432, 434, 442, 473, 474,480, 484, 486,

492, 494, 495, 497, 498, 500, 501

IsMuted, 484

IsNdefIntent, 434

IsNetworkRoaming, 447

IsNull, 525

IsNumber, 241

IsPaused, 241

IsPlaying, 315, 403, 408

IsPreview, 428

IsSipSupported, 483

IsSupported, 464

IsVisible, 428

IsVoipSupported, 483

ItemClick, 328, 351, 370

ItemLongClick, 351

IterateaList, 306

Iteration, 311

Javac.exe, 60

JavaJDK and Android SDKInstallation,

56

JavaScriptEnabled, 384

JetPlayer, 400

JSch, 505

JSONGenerator, 425

JSONLibrary, 425

JSONParser, 426

JTidy, 505

KeepAlive, 458

Keyboard, 123

KeyboardPopUp, 516

KeyCodes, 270

KeyConcepts, 101

KeyPress, 225

KeyPressand KeyUpEvents, 260

KeyPressandKeyUp, 170

Keys, 314

KeysandCertificates, 185

KeystoreExplorer, 186

KeyValueStore, 505

KeyValueStoreClass, 149

Keywords, 230

 Index

 - 543 -

Label, 347

Language, 464

LastException, 241

LastIndexOf, 322

LastIndexOf2, 322

LastModified, 295

LastTimeContacted, 438

Latitude, 418

LauncherIcon, 183

LayoutasOverlay, 73

LayoutMenu, 96

LayoutValues, 73, 304

Layoutvariants, 92

LDPI, 184

Left, 289, 331, 335, 337, 341, 344, 347,

349, 354, 358, 361, 363, 366, 368, 372,

376, 379, 381, 384, 408, 414

Left, 265

LEFT, 270

Left$andRight$, 255

LegacyDebugger InformationArea, 115

LegacyDebugging, 115

Len, 256

Length, 322, 325, 432

LexicalRules, 195

LibrariesSupportingAdvertising, 187

LibraryandTutorial, 187

LibraryBrowsers, 192

Librarycompilationattributes, 64

Libraryspecificattributes, 389

LibsTab, 52

License, 60, 507

Licensing, 188, 505

Lifetimesof Process_Globals Variables,

209

Light, 317

LightGray, 269

Limitationsof the RapidDebugger, 116

LimitationsofClasses, 177

LineTo, 288

LinkedIn, 192

List, 305

Listen, 430, 464, 480

Listen2, 481

ListenInsecure, 481

ListenToExternalTimeChanges, 276

ListFiles, 296

Listof AdditionalLibraries, 503

Listof CoreObjects, 258

Listof StandardLibraries, 391

Listoflibraries, 507

Listoftypes, 392, 393, 395, 397, 409, 410,

412, 415, 419, 424, 425, 427, 429, 434,

465, 469, 477, 481, 484, 490, 493, 500,

509, 521

Lists, 206

ListView, 350

ListViewas aMenu, 350

LiveWallpaperLibrary, 427

Load, 315, 403, 404

LoadBitmap, 241

LoadBitmapSample, 241

LoadCSV, 490

LoadCSV2, 491

LoadFile, 401

LoadFromAssets, 273

LoadHtml, 384

LoadLayout, 265, 358

LoadtheLayout, 32

LoadUrl, 384

LoadVideo, 408

Localvariables, 210

LocalVariables, 164

Localvariables in LegacyDebugger, 116

Location, 417

LocationChanged, 415

LocationofDatabase, 152

LocationSettingsIntent, 416

LockScreen, 394

Log, 242

Logarithm, 242

LogCat, 443

LogCatStart, 443

LogCatStop, 443

Logging, 118

LoggingEvents, 26

LogicalOperators, 211

LogsTab, 52

Long, 197

LongClick, 224, 260, 333, 345, 347, 356,

374, 380

Longitude, 418

 Index

 - 544 -

Looping, 315, 403

Loops,If-Then, SelectCase, 251

Loopstructures, 215

LWEngine, 427

LWManager, 428

MacKeyboardShortcuts, 129

Magenta, 269

MainActivityExcluded, 389

MainProperties, 91

MakeCall, 483

MakeDir, 296

ManagingPermissions, 77

ManagingSettings, 72

ManifestEditor, 65

ManifestTyping, 158

Manufacturer, 447, 494

Map, 310

Maps, 206

Mathematicalexpressions, 211

Matomy, 187

Max, 242, 368

Maxand MinValues, 161

MaximumTimeToLock, 394

MaxPacketSize, 497

MaxTracks, 401

MaxValue, 455

MDPI, 184

Me, 242

Meaningfulnames, 196

MeasureMultilineTextHeight, 491

MeasureStringHeight, 285

MeasureStringWidth, 286

MediaControllerEnabled, 408

MediaPlayer, 314

MediaPlayerStream, 402

Member, 449

MemoryOptions, 124

Menu, 70

MenuandToolbar, 35

MenuOverlay, 73

MerchantAccount, 189

Message, 291

Methods, 106

Min, 242

Minute, 520

MissingTabs, 120

ModalDialogs, 78

Model, 447, 494

ModuleAttributes, 389

Modules, 37

ModulesTab, 50

MonetisingYourApp, 187

Monitordpi, 127

MONOSPACE, 273

Month, 514

MoreaboutDebugging, 26

MoreaboutDesigner, 34

MoreAdvice, 71

MoreComplexExamples, 139

MoreDetails, 136

Moreinformation, 67

MoreInformation, 171

MoreInformation CreatingLibraries, 389

MoreInformation onSQLite, 158

Mostcommon Canvasfunctions, 136

Msgbox, 78, 242

MsgBox, 253

Msgbox2, 78, 242

MtpDevice, 494

Multiline, 238

Multipleactivities, 73

MultipleActivityModules, 171

MutableStrings, 228, 321

Name, 438, 481, 500

Naming, 220

NamingofVariables, 203

NavigationBar, 69

NavigationDrawer, 71

NdefRecord, 434

NEGATIVE, 270

Net, 505

NetworkLibrary, 429

NewData, 469

NextArray, 426

NextObject, 427

NextValue, 427

NFC, 434

NFCLibrary, 434

NinePatchDrawable, 143

NMEA, 415

NO_GRAVITY, 270

NoHome Screen WidgetLibraries, 390

 Index

 - 545 -

Non-integerIterators, 216

Non-PrimitiveTypes, 198

NonQueryComplete, 487

NoOptionExplicit, 200

NormalizedVariants, 94

NoScaling, 127

Not, 243, 250, 267

NotepadandNotepad++, 293

Notes, 60, 439, 508, 521

Noteson BluetoothConnection, 16

Notethat type conversion does not

alwayswork, 198

Notification, 316

NotificationIconRecommendations, 183

Notifications, 69, 83, 180

Notify, 317

Now, 276

Null, 243

Number, 318, 436, 519

NumberDialog, 518

NumberFormat, 243

NumberFormat2, 243

Numberformatting, 229, 321

NumberOfViews, 265, 358

OAuth, 505

Objects, 199

Offset, 432

OffsetChanged, 428

OnGoingEvent, 318

On-lineDocumentation, 192

OnLineLink, 393

On-LineTutorials, 192

Open, 494

OpenAccessory, 498

OpenBasic4Android, 59

OpenBrowser, 452

OpenDevice, 498

OpenInput, 296

OpenMenu, 265

OpenOutput, 296

Or, 267

Ordering, 162

OtherAppPublishers, 190

OtherExamples, 204

OtherKeywords, 106

OtherProperties, 105

OutboundProxy, 483

Output, 390

OutputQueueSize, 470

OutputStream, 298, 494

OutputStream.io.OutputStream, 431, 481

Overlays, 73

OverrideUrl, 382

PackageAdded, 450

PackageManager, 444

Packagename, 64

PackageName, 182

PackageOptions, 38

PackageRemoved, 451

PageFinished, 382

Palette, 512

Panel, 344, 356, 366, 411

ParameterizetheCommand, 161

Parameters, 220

Parents, 501

Parse, 502

Parse2, 502

ParseInt, 267

Part1Basics, 11

Part2 Creating YourApp, 62

Part3 Language and CoreObjects, 194

Part4Libraries, 386

PartialLock, 458

PassbyReference, 202

PassbyValue, 202

PASSWORD_QUALITY_ALPHABETIC,

394

PASSWORD_QUALITY_ALPHANUMERI

C, 394

PASSWORD_QUALITY_NUMERIC, 394

PASSWORD_QUALITY_UNSPECIFIED,

394

PasswordMode, 331, 341, 518

PasswordSufficient, 394

Path, 288

Pause, 315, 401, 403, 404, 408

PayPal, 506

PCKeyboardShortcuts, 129

PDFGuides, 192

PeerUri, 484

PercentageofActivity, 76

 Index

 - 546 -

Permissionandroid.permission.INTERNE

T, 433

Permissions, 316, 382, 402, 409, 415, 419,

429, 430, 434, 436, 439, 440, 443, 449,

452, 457, 458, 459, 461, 462, 477, 479,

481

PersonId, 461

PerXToCurrent, 76, 243

PerYToCurrent, 244

Phone, 445

PHONE_CUSTOM, 439

PHONE_FAX_HOME, 439

PHONE_FAX_WORK, 439

PHONE_HOME, 439

PHONE_MOBILE, 439

PHONE_OTHER, 439

PHONE_PAGER, 439

PHONE_WORK, 439

PhoneAccelerometer, 449

PhoneCalls, 449

PhoneEvents, 449

PhoneId, 452

PhoneIntents, 452

PhoneLibrary, 435

PhoneNumber, 439

PhoneOrientation, 453

PhoneSensors, 453

PhoneSms, 457

PhoneStateChanged, 451

PhoneVibrate, 458

PhoneWakeState, 458

PictureTaken, 409

Pitch, 493

Pixel, 101

Play, 315, 401, 403, 404, 408

PlayAudio, 453

PlayingSafe, 68

PlayStore CompatibilityCheck, 68

PlayVideo, 453

Polymorphism, 175

Port, 432, 433, 483

Position, 315, 408, 486

POSITIVE, 270

Power, 244

PreferenceActivityLibrary, 464

PreferenceCategory, 465

PreferenceManager, 466

PreferenceScreen, 467

PreliminarySQLSteps, 151

PrepareYour App’s Google PlayPage, 189

Preparingthe User’sDevice, 190

PreparingYourLibrary, 389

PrescribedResolutions, 184

Preview, 409

PrimaryKey, 148

PrimitiveTypes, 197

Prn, 416

Process, 163

ProcessingtheSQL, 161

Product, 447

ProductId, 495

ProfileName, 483

Progress, 361

ProgressBar, 83, 359

ProgressDialog, 83

ProgressDialogHide, 244

ProgressDialogShow, 244

ProgressDialogShow2, 244

Projectattributes, 389

ProjectAttributes, 63, 182

ProjectAttributesRegion, 43

ProjectIcon, 64

Projectmenu, 37

ProjectMenu, 67

Prompt, 372, 464

PropertiesEditor, 90

Propertieslist, 90

PropertiesWithinScripts, 104

Protocol, 483

PublicbyDefault, 209

Publicvs PrivateVariables, 173

Purchase, 56

Put, 314

PutExtra, 304

QueryComplete, 487

QueryIntentActivities, 444

Queue, 500

QueuedSegmentsCountChanged, 400

QueueSegment, 401

QUOTE, 244

RadioButton, 361

RAM, 124

 Index

 - 547 -

RandomAccessFile, 474

RandomAccessFileLibrary, 468

Randomize, 253

RandomNumbers, 253

Rank, 198

RapidDebugger InformationArea, 117

RapidDebugging, 116

Reactingto anEvent, 221

Read, 300, 461

ReadAll, 300

ReadBytes, 298, 473, 475

ReadDouble, 475

ReadEncryptedObject, 475

ReadFloat, 475

Readingand Writing ExcelFiles, 293

ReadInt, 475

ReadLine, 300

ReadList, 296, 300

ReadLong, 476

ReadMap, 297

ReadMap2, 297

ReadObject, 476

ReadShort, 476

ReadSignedByte, 476

ReadString, 297

ReadUnsignedByte, 476

Ready, 300, 409

Record, 147, 399, 406

RecordComplete, 399

Rect, 288, 428

RecursiveTypes, 207

Red, 269, 509

ReDim, 250

Reference, 234

ReferenceSQLLibrary, 150

ReferencetoNon-Primitives, 198

ReferencingLibraries, 388

ReflectionLibrary, 520

Reflector, 521

Refresh, 428

RefreshAll, 428

Regex, 244

Regions, 43

Register, 483

Registeras a Google PlayDeveloper, 188

Registering, 482

Registeringas a Google PlayDeveloper,

188

RegistrationDone, 482

RegistrationFailed, 482

RegularExpressions, 212

RelationalData, 148

RelationalOperators, 211

Release, 111, 315, 399, 401, 403, 404, 410,

423, 493

ReleaseKeepAlive, 458

ReleaseMode, 111

ReleasePartialLock, 458

RemoteCompilation, 21

RemoteViews, 319

Remove, 314, 325

RemoveAllViews, 265, 358

Removeanentry, 312

RemoveAt, 308, 354, 372

RemoveClip, 286

RemoveElements, 306

RemoveHeaders, 421

RemoveSelectedView, 87

RemoveView, 331, 335, 337, 342, 344, 347,

349, 354, 358, 361, 363, 366, 368, 372,

376, 379, 381, 384, 408, 414

RemoveViewAt, 265, 358

Renameatable, 162

RenamingofVariables, 112

REPEAT_RESTART, 397

REPEAT_REVERSE, 397

RepeatCount, 397

RepeatingStructures, 251

RepeatMode, 397

Replace, 256, 323

RequestAccessoryPermission, 498

RequestFocus, 331, 335, 337, 342, 344,

347, 349, 354, 358, 361, 363, 366, 368,

372, 376, 379, 381, 384, 408, 414

RequestFocus, 265

RequestNewPassword, 394

RequestPermission, 498

RerunDesignerScript, 265

ResetPalette, 512

ResetPassword, 395

Resolution, 101

ResolveHost, 431

 Index

 - 548 -

Response, 510, 511, 512, 513, 514, 516,

518, 519, 520

ResponseError, 419

ResponseSuccess, 419

Restrictions, 231

Resume, 404

RetrieveElements, 306

RetrieveEntry, 311

Retrievingdata, 161

Return, 245

Returnedvalue, 220

Returningfrom anActivity, 73

RGB, 269, 510, 511, 512

Right, 289

RIGHT, 270

RINGER_NORMAL, 447

RINGER_SILENT, 447

RINGER_VIBRATE, 447

RingtoneManager, 459

Rnd, 245, 253

RndSeed, 245, 253

Rotate, 412

Rotateyourdevice, 23

RotatingDevice, 209

RotatingtheEmulator, 94

Round, 245, 253

Round2, 245

RowCount, 486

RunB4A-Bridge on yourdevice, 17

RunMethod, 525

RunMethod2, 525

RunMethod3, 525

RunMethod4, 525

Runninga Virtual Device and scaling for

Real SizeEmulation, 126

RunningSubs in othermodules, 210

RunningtheDesigner, 27

Runningyour newapp, 21

RunPublicmethod, 525

RunScript, 88

RunScriptButton, 103

RunStaticMethod, 525

RuntimeErrors, 226

Runyourapp, 33

SampleDBUtilsProgram, 157

SampleProjects UsingServices, 181

SampleSQLiteProgram, 158

SANS_SERIF, 273

Saturation, 511

SaveCSV, 491

SaveCSV2, 492

Savetheprogram, 15

Saveto and Load from aFile, 312

Saveto and Load fromFiles, 306

Savingand RetrievingData, 205

Savingand RetrievingSettings, 72

SavingData, 167

Sax, 500

SaxParser, 501

Scale, 102, 305

Scaledisplay to realsize, 127

Scalingstrategy, 109

ScreenBright, 411

ScreenHeight, 428

ScreenOff, 451

ScreenOn, 451

ScreensandLayouts, 72

ScreenSize, 101, 104, 127

ScreenWidth, 428

ScriptingAreas, 103

ScriptLanguage, 104

ScrollingBackgroundColor, 355, 516

ScrollPosition, 344, 366

ScrollView, 364

SDCard, 124

SdkVersion, 447

SearchView, 506

SeekBar, 367

Select, 245

SelectAll, 331, 342

Select–Case, 213

SelectedIndex, 372

SelectedItem, 372

Selectingviews, 98

SelectingViews, 87

SelectionStart, 331, 342

Selfreference, 176

SellingYourApp, 188

Send, 433, 457

Send2, 457

SendBroadcastIntent, 447

SendDtmf, 484

 Index

 - 549 -

Sender, 246

SendKeepAlive, 483

SendTo UICloud, 88

SendToBack, 265, 331, 335, 337, 342, 344,

347, 349, 355, 358, 361, 363, 366, 368,

372, 376, 379, 381, 385, 408, 414

Serial, 478, 495, 497

SerialLibrary, 477

SERIF, 273

ServerSocket, 429

Service, 320

ServiceAttributes, 44, 179

ServiceCode, 178

ServiceModule, 177

Services, 163

Set, 308

SetActivityAttribute, 66

SetActivityResult, 266

SetApplicationAttribute, 67

SetArray, 526

SetArray2, 526

SetBackgroundImage, 266, 332, 335, 337,

342, 345, 347, 349, 355, 358, 361, 364,

366, 369, 373, 376, 379, 381, 385, 408,

414

SetBoolean, 467

SetComponent, 304

SetContentDescription, 392

SetContentEncoding, 421

SetContentType, 421

SetCustomFilter, 425

SetDate, 515

SetDBVersion, 156

SetDefault, 460

SetField, 526

SetField2, 526

SetField3, 526

SetField4, 526

SetFocus, 254

SetHeader, 421

SetHttpParameter, 420

SetImage, 319

SetInfo, 318

SetInfo2, 318

SetItems, 332

SetItems2, 332

SetLanguage, 493

SetLayout, 266, 332, 335, 337, 342, 345,

347, 349, 355, 358, 361, 364, 366, 369,

373, 376, 379, 381, 385, 408, 414

SetManifestAttribute, 67

SetMute, 401, 447

SetNextFocusDown, 392

SetNextFocusLeft, 393

SetNextFocusRight, 393

SetNextFocusUp, 393

SetOnClickListener, 526

SetOnCreateContextMenuListener, 526

SetOnFocusListener, 526

SetOnKeyListener, 526

SetOnLongClickListener, 527

SetOnTouchListener, 527

SetPaletteAt, 512

SetPasswordQuality, 395

SetProgress, 319

SetProxy, 420

SetProxy2, 420

SetPublicField, 527

SetPublicField2, 527

SetRate, 404

SetReceiverAttribute, 66

SetRingerMode, 447

SetScreenBrightness, 447

SetScreenOrientation, 448

SetSelection, 355

SetServiceAttribute, 66

SetStaticField, 527

SetStaticField2, 527

SetString, 467

setTabContentViewPadding, 528

setTabEnabled, 528

setTabEnabled2, 528

setTabGradientDrawable, 529

setTabGradientDrawable2, 529

setTabHeight, 529

setTabHostPadding, 529

setTabTextColor, 529

setTabTextColorStateList, 529

setTabTextSize, 529

setTabTitle, 529

setTabVisibility, 529

setTabVisibility2, 530

 Index

 - 550 -

SetText, 319

SetTextColor, 319

SetTextSize, 320

SetTime, 520

SetTimeZone, 276

Settingabreakpoint, 24

SettingIcons, 182

SettingLabelTransparency, 255

SettingYour ProjectParameters, 182

SetTrackMute, 401

SetType, 304

SetVisible, 320

SetVolume, 315, 403, 404, 448

SharedEventHandler, 222

Shell, 254, 448

ShiftLeft, 267

ShiftRight, 268

Short, 197

Show, 442, 510, 511, 512, 513, 514, 515,

516, 518, 519, 520

ShowAbstractDesigner, 88

ShowCalendar, 515

ShowDropDown, 332

ShowingTables, 364

ShowKeyboard, 425

ShowOnlyFolders, 516

ShowRingtonePicker, 460

ShowSign, 519

Shutdown, 451

Signing, 185

SigningforDistribution, 185

Sin, 246

SinD, 246

Singleline, 238

SingleLine, 332, 342

SingleLineLayout, 355

Sip, 481

SipAudioCall, 483

SipLibrary, 481

Size, 124, 297, 308, 314, 355, 373, 476, 501

SizeChanged, 411, 428

Skin, 123

Skip, 300

SlidingPages, 70

SMB, 506

Sms, 460

SmsDelivered, 451

SmsInterceptor, 461

SmsMessages, 462

SmsSentStatus, 451

Snapshot, 125

Snr, 417

Socket, 430

Sort, 308

SortaList, 307

SortCaseInsensitive, 308

SortType, 309

SortTypeCaseInsensitive, 309

Sound, 318

SoundPool, 403

Source, 508, 521

SourcesofIcons, 183

Speak, 493

SpeakButton, 506

SpeakerMode, 484

SpecifyingFunctionalArguments, 6

SpecifyingMenus, 6

SpeechRate, 493

Speed, 418

SpeedValid, 418

Spinner, 369

SplittingLongLines, 196

SQL, 158, 486

SQLCipher, 506

SQLite, 158

SQLiteBrowser, 150

SQLiteCommands, 159

SQLiteExceptions, 158

SQLiteSpy, 150

SQLLibrary, 158, 484

SQLObject, 150, 151, 158

Sqrt, 246

SrcRect, 412

StandardLibraries, 387

StandardScreen, 102

StandardVariant, 93

Starred, 439

Start, 397, 416

StartActivity, 167, 246

StartAudio, 484

StartDiscovery, 478

StartElement, 501

 Index

 - 551 -

StartForeground, 320

StartListening, 456, 497

StartPreview, 410

StartService, 246

StartServiceAt, 247

StartsWith, 323

StartTicking, 429

State_Checked, 290

State_Disabled, 290

State_Enabled, 290

State_Focused, 290

STATE_OFF, 478

STATE_ON, 478

State_Pressed, 290

State_Selected, 290

STATE_TURNING_OFF, 478

STATE_TURNING_ON, 478

State_Unchecked, 290

StateChanged, 477

StateListDrawable, 142, 289

StateManager, 506

StatementSeparator, 195

StatusBar, 69

StatusCode, 423

StepValue, 216

Stop, 316, 397, 403, 404, 408, 416, 493

StopForeground, 320

StopListening, 452, 456, 462, 481, 497

StopLoading, 385

StoppingB4A-Bridge, 20, 34

StopPreview, 410

StopService, 247

StopTicking, 429

StorageCardFolders, 291

StreamBuffer, 402

StreamError, 402

StreamReady, 402

String, 197, 320

String“Members”, 255

StringBuilder, 323

StringFunctionsLibrary, 321

Stringmanipulation, 228

Stringsobfuscation, 112

StringUtils, 490

StringUtilsLibrary, 490

STYLE_BOLD, 273

STYLE_BOLD_ITALIC, 273

STYLE_ITALIC, 273

STYLE_NORMAL, 273

Sub, 247

SubActivity_Create, 165

SubActivity_Pause, 166

SubActivity_Resume, 167

SubDesignerCreateView, 338

SubExists, 248

SubGlobals, 165, 209

SubInitialize, 338

Subject, 443

SubProcess_Globals, 165, 209

Subroutines, 210, 252

SubRoutines, 179

Subs, 219

Subscribingto Additional LibraryUpdates,

388

SubString, 323

SubString2, 323

Support, 9

SupportedOrientations, 64

Syntax, 63

TAB, 248

TabbedViews, 70

TabChanged, 374

TabCount, 377

TabHost, 373

TabHostExtrasLibrary, 528

TabIndex, 254

Table, 147

Tablecreation, 159

TableView, 506

Tabs, 50

Tag, 266, 332, 335, 337, 342, 345, 347,

349, 355, 359, 361, 364, 366, 369, 373,

377, 379, 382, 385, 408, 414, 428

TakePicture, 410

Tan, 248

TanD, 248

TapforTap, 506

TapForTap, 188

Target, 123, 527

TargetRank, 527

Tellingthe IDE where to find

additionallibraries, 503

 Index

 - 552 -

Tellingthe IDE where to find

AdditionalLibraries, 388

Terminated, 469

test, 494

TestingyourApp, 119

Text, 332, 335, 337, 342, 364

Text, 349

TextChanged, 328, 339

TextColor, 332, 335, 337, 342, 364, 373,

379

TextColor, 349

Textencoding, 292

TextOff, 379

TextOn, 379

TextProperties, 105

TextReader, 299

TextSize, 102, 332, 335, 337, 342, 364,

373, 379

TextSize, 349

TextToSpeechFinish, 451

TextWriter, 301

TheAbstractDesigner, 95

TheActivityConcept, 163

TheActivityTemplate, 164

TheAndroidScreen, 69

TheDesigner, 73

TheEmulator or Android Virtual Device

Manager, 119

TheKeyStore, 186

TheManifest, 65

TheStringfunctions, 228

TheView and LayoutConcepts, 27

TheWarningEngine, 53

Thewarnings, 54

ThreadId, 461

Tick, 428

Ticks, 273

TicksPerDay, 276

TicksPerHour, 276

TicksPerMinute, 276

TicksPerSecond, 276

Time, 276, 419

TimeDialog, 519

TimeFormat, 277

Timeout, 421

TimeOut, 431

TimeParse, 277

Timer, 254, 325

TimesContacted, 439

TimeTicks, 520

TimeZoneOffset, 277

Tips, 67

Title, 266

TitleBar, 69

TitleColor, 266

To, 443

ToastMessageShow, 82, 248

ToBinaryString, 268

ToBytesArray, 299, 474

ToggleButton, 377

ToggleMute, 484

ToHexString, 268

Toload or update alibrary, 507

ToLowerCase, 323

ToOctalString, 268

Toolbar, 42

Toolsmenu, 39

ToolsMenu, 86, 97

Top, 289, 332, 335, 337, 342, 345, 347,

349, 355, 359, 361, 364, 366, 369, 373,

377, 379, 382, 385, 408, 414

Top, 266

TOP, 270

TopMost, 90

ToPrettyString, 426

toString, 305, 408, 432, 434

ToString, 325, 426, 527

Touch, 224, 260, 356, 428

TouchEvent, 170

ToUpperCase, 323

Transactions, 159

TransactionSuccessful, 490

Transparent, 269

Trim, 256, 323

TroubleshootConnectionProblems, 135

True, 248

Try, 248

Try-Catch, 227

TTS, 492

TTSLibrary, 492

Tutorial, 351, 411

Twitter, 192

 Index

 - 553 -

TwoLinesAndBitmap, 355

TwoLinesLayout, 355

TwoVersions, 12

Type, 248, 461, 497

TYPE_ACCELEROMETER, 456

TYPE_ALARM, 460

TYPE_DRAFT, 463

TYPE_FAILED, 463

TYPE_GYROSCOPE, 456

TYPE_INBOX, 463

TYPE_INCOMING, 436

TYPE_LIGHT, 456

TYPE_MAGNETIC_FIELD, 456

TYPE_MISSED, 436

TYPE_NOTIFICATION, 460

TYPE_ORIENTATION, 456

TYPE_OUTBOX, 463

TYPE_OUTGOING, 436

TYPE_PRESSURE, 456

TYPE_PROXIMITY, 456

TYPE_QUEUED, 463

TYPE_RINGTONE, 460

TYPE_SENT, 463

TYPE_TEMPERATURE, 457

TYPE_UNKNOWN, 463

TypeChecking, 201

TypeConversion, 198

Typeface, 272, 332, 335, 337, 342, 364, 379

Typeface, 350

TypeName, 528

Types, 196

TypesofLibraries, 387

Typevariables, 207

UDPPacket, 431

UDPSocket, 432

UncaughtRuntimeExceptions, 226

Uniquename, 64

Unload, 405

UnsignedShiftRight, 268

Until, 249

Up, 333

UpdateRecord, 156

UpdateRecord2, 157

UpdateWidget, 320

Updatingrecords, 161

Updatingto a newversion, 61

Uploadyour App to GooglePlay, 189

URI, 495

Url, 385

USB_CLASS_APP_SPEC, 499

USB_CLASS_AUDIO, 499

USB_CLASS_CDC_DATA, 499

USB_CLASS_COMM, 499

USB_CLASS_CONTENT_SEC, 499

USB_CLASS_CSCID, 499

USB_CLASS_HID, 499

USB_CLASS_HUB, 499

USB_CLASS_MASS_STORAGE, 499

USB_CLASS_MISC, 499

USB_CLASS_PER_INTERFACE, 499

USB_CLASS_PHYSICA, 499

USB_CLASS_PRINTER, 499

USB_CLASS_STILL_IMAGE, 499

USB_CLASS_VENDOR_SPEC, 499

USB_CLASS_VIDEO, 499

USB_CLASS_WIRELESS_CONTROLLER

, 499

USB_DIR_IN, 499

USB_DIR_OUT, 499

USB_ENDPOINT_DIR_MASK, 499

USB_ENDPOINT_NUMBER_MASK, 499

USB_ENDPOINT_XFER_BULK, 499

USB_ENDPOINT_XFER_CONTROL, 499

USB_ENDPOINT_XFER_INT, 499

USB_ENDPOINT_XFER_ISOC, 499

USB_ENDPOINT_XFERTYPE_MASK,

499

USB_INTERFACE_SUBCLASS_BOOT,

499

USB_SUBCLASS_VENDOR_SPEC, 499

USB_TYPE_CLASS, 499

USB_TYPE_MASK, 499

USB_TYPE_RESERVED, 499

USB_TYPE_STANDARD, 500

USB_TYPE_VENDOR, 500

UsbAccessory, 494

USBDebugging, 119

UsbDevice, 495

UsbDeviceConnection, 496

UsbEndpoint, 497, 500

USBHost, 506

UsbInterface, 497

 Index

 - 554 -

USBLibrary, 493

UsbManager, 498

UsbRequest, 500

USBSerial, 506

UsedInFix, 417

UseHostGPU, 125

Useof UnassignedVariables, 201

UserAndPasswordRequired, 382

UserClosedparameter, 167

UserEnabled, 415

UserHelp, 182

UserPresent, 451

UserSupport, 189

UsingIntegers asBoolean, 251

Usingthe AbstractDesigner, 32

Usingthe Android Virtual DeviceManager,

120

Usingthe DesignerTools, 31

Val, 254

Value, 369, 511

Values, 314

VariableCan SpecifyDimensions, 205

Variables, 104, 196

Variablesin other ActivityModules, 171

VariablesinSubs, 210

Variableswithin anActivity, 164

VariantSpecific ScriptArea, 103

VB6, 257

VendorId, 495

Version, 495, 510, 511, 512, 513, 514, 515,

516, 518, 519, 520, 528

VersionCode, 64

Versioning, 151

VersionName, 64

VersionofBasic4Android, 4

Vibrate, 318, 458

VideoRecordApp, 405

VideoTutorials, 192

VideoView, 406

View, 379

ViewDrawables, 141

ViewEvents, 223

Views, 259, 327

ViewSelector, 90

ViewVariables Must beHere, 210

Visibilityand Lifetime of Variables

andSubs, 208

VisibilityBetweenModules, 208

VisibilityChanged, 428

Visible, 332, 335, 337, 342, 345, 347, 350,

356, 359, 361, 364, 366, 369, 373, 377,

379, 382, 385, 408, 414

VMHeap, 124

VoiceRecognition, 463

VOLUME_ALARM, 399, 449

VOLUME_MUSIC, 400, 449

VOLUME_NOTIFICATION, 400, 449

VOLUME_RING, 400, 449

VOLUME_SYSTEM, 400, 449

VOLUME_VOICE_CALL, 400, 449

WarningArea, 52

WarningBug inEmulator, 94

WarningSet Internal Properties

beforeExternal, 105

Waysof Monetizing YourApp, 187

We’dLike to Hear fromYou, 9

WebView, 382

Whatis aClass?, 172

Whatis alibrary?, 387

WhatYou Need to RunBasic4Android, 4

WhenDoes Android Kill aProcess?, 178

Whenis Activity_Pausecalled?, 166

Whenthe User Rotates aDevice, 25

Whento Use aService, 180

Whento use aTry-Catch, 227

Whichones does a projectneed?, 508

While, 249

White, 269

Whothis Book isFor, 4

Whythisrecommendation?, 94

Whyuse aService, 177

Width, 266, 278, 305, 332, 335, 337, 342,

345, 347, 350, 356, 359, 361, 364, 367,

369, 373, 377, 379, 382, 385, 409, 414

Windows-1252, 292

WindowsCharacterSets, 292

Wirelessconnections, 17

Wrap, 332, 342

WrapAsIntentChooser, 304

WrapInputStream, 472

WrapOutputStream, 472

 Index

 - 555 -

Write, 301, 470

Write2, 470

WriteByte, 476

WriteBytes, 299, 474, 476

WriteDouble, 476

WriteEncryptedObject, 476

WriteFloat, 476

WriteInt, 476

WriteLine, 302

WriteList, 297, 302

WriteLong, 476

WriteMap, 297

WriteObject, 476

WriteShort, 477

WriteString, 297

WriteToStream, 278

XHDPI, 184

XML, 500

XMLBuilder, 506

XmlSaxLibrary, 500

Xor, 268

Year, 515

Yellow, 269

YourFirstApp, 14

YourSecond App Using the Designer, 27

YourThirdApp, 34

YouTube, 507

Zoom, 385

ZoomEnabled, 385

ZoomMenu, 97

	Cover
	Basic4Android
	Foreword by Erel Uziel
	Introduction
	Who this Book is For
	For the Beginner
	For the Professional

	What You Need to Run Basic4Android
	Version of Basic4Android
	How to Obtain this Book
	How this Book is Organized
	Conventions Used in this Book
	Code
	Specifying Menus
	Specifying Functional Arguments
	Icons
	Acronyms

	Support
	Acknowledgements
	We’d Like to Hear from You
	About the Author

	Part 1: Basics
	1.1 Getting Started
	Two Versions
	Installing the Trial Version
	Download Basic4Android Trial
	Install and Run the Trial
	Installing .NET Framework

	Your First App
	Save the program

	B4A-Bridge
	Notes on Bluetooth Connection
	Install the B4A-Bridge app on your device
	Run B4A-Bridge on your device

	Connect the IDE to the device
	Wireless connections
	Bluetooth connections
	B4A Designer
	Stopping B4A-Bridge

	Running your new app
	Compile and Run
	Remote Compilation
	Approve the app on your device
	Rotate your device

	Debugging
	Setting a breakpoint
	When the User Rotates a Device
	More about Debugging
	Logging Events

	Your Second App: Using the Designer
	The View and Layout Concepts
	Running the Designer
	Connect the Designer to your device.
	Add a button
	Configure your button
	Generate Members
	Using the Designer Tools
	Explanation of Sub’s name
	Using the Abstract Designer

	Add code to button
	Load the Layout
	Run your app

	Your Third App
	Stopping B4A-Bridge
	More about Designer

	1.2 The Integrated Development Environment
	Menu and Toolbar
	File menu
	Edit menu
	Designer
	Project menu
	Modules
	Package Options
	Compile Options

	Tools menu
	IDE Options Sub-Menu

	Help Menu
	Toolbar

	Code area
	Regions
	Collapse the whole code
	Hovering over Collapsed Code

	Code header
	Project Attributes Region
	Activity Attributes Region
	Service Attributes

	Commenting and uncommenting code
	Bookmarks
	Indentation
	Autocomplete
	Icons
	Autocomplete Properties and Methods

	Autocomplete event subroutines
	Comments as Documentation
	Context Menu
	Goto Sub Declaration
	Find All References
	Color Picker

	Highlighting occurrences of words

	Detail Area
	Tabs
	Modules Tab
	Files Tab
	Logs Tab
	Warning Area

	Libs Tab

	The Warning Engine
	Editor Highlighting
	Ignoring Warnings
	The warnings

	1.3 Upgrade to Full Version
	About Full Versions
	Basic4Android Standard Version
	Basic4Android Enterprise Version
	Basic4Android Site License
	Academic Licenses
	Purchase

	Java JDK and Android SDK Installation
	Check if the Java JDK is already installed
	If you already have JDK 64 Bit

	Install the 32 bit Java JDK
	Installation

	Install the Android SDK and a platform
	Install the SDK

	Install and configure Basic4Android
	Download and install Basic4Android
	Open Basic4Android
	Common Windows XP Error

	License
	Notes

	Configure Paths
	Javac.exe
	Android.jar
	Additional Libraries

	Updating to a new version

	Part 2: Creating Your App
	2.1 The Project
	Project Attributes
	ApplicationLabel:
	CanInstallToExternalStorage:
	CustomBuildAction:
	Syntax
	Example

	SupportedOrientations:
	VersionCode:
	VersionName:

	Library compilation attributes
	Project Icon
	Package name
	Unique name
	Allowed Characters
	Google Play URL
	Caution: Name cannot be changed

	The Manifest
	Manifest Editor
	Escaping end of string characters
	Editor commands
	AddApplicationText
	AddManifestText
	AddActivityText
	AddServiceText
	AddReceiverText
	SetActivityAttribute
	SetReceiverAttribute
	SetServiceAttribute
	SetManifestAttribute
	SetApplicationAttribute
	AddReplacement
	AddPermission
	Tips

	More information
	Do Not Overwrite Manifest File Option

	Project Menu

	2.2. Designing Your App
	Fulfilling Wants and Needs
	Evolving Environment
	Backward Compatible
	Play Store Compatibility Check
	Discovering the API of the current device
	Playing Safe

	The Android Screen
	Status Bar
	Navigation Bar
	Notifications

	App Design Step by Step
	Basic Design Principles
	Title Bar
	Action Bar
	AHActionBar

	Menu
	Tabbed Views
	Sliding Pages
	Navigation Drawer
	Advertising
	Android Themes
	More Advice

	Managing Settings
	Editing Settings
	Saving and Retrieving Settings

	Screens and Layouts
	Multiple activities
	Returning from an Activity

	Overlays
	Menu Overlay
	Layout as Overlay

	The Designer
	How to Detect the Display Type
	LayoutValues

	Detecting Device Orientation
	Allowed Screen Orientation
	Adding views by code
	Example

	dips
	DipToCurrent(Length as Int)
	Percentage of Activity
	PerXToCurrent (Percentage As Float) As Int
	%x and %y

	Does the device have a keyboard?
	App or Widget ?
	Managing Permissions

	2.3 Communicating with your User
	Modal Dialogs
	Msgbox
	Msgbox2
	InputList
	InputMultiList
	InputMap
	Handling Long Lists
	Dialogs Library
	Handling Modal Dialogs when your App Pauses

	ToastMessageShow
	Alarms
	Notifications
	ProgressDialog
	ProgressBar

	2.4 The Designer
	File menu
	AddView menu
	Tools Menu
	Generate Members
	Bring To Front and Send To Back
	Selecting Views
	Duplicate Selected View
	Remove Selected View
	Change grid
	Connect to Device or Emulator
	Disconnect From Device
	Show Abstract Designer
	Run Script
	Send To UI Cloud
	Example of a UI Cloud screen

	Designer Status Line
	Connection Status
	Top Most

	Designer Main Tab
	Properties Editor
	View Selector
	Properties list
	Main Properties
	Help area

	Image files
	Layout variants
	Standard Variant
	Adding a Standard Variant
	Adding Other Variants
	Do not add too many variants
	Normalized Variants
	Add Only Normalized Variants
	Why this recommendation?

	Rotating the Emulator
	Warning: Bug in Emulator

	Designer Scripts Tab
	The Abstract Designer
	Layout Menu
	Zoom Menu
	Tools Menu
	Context menus
	Selecting views
	Example

	Designer Scripts
	Adding views by code

	2.5 Designer Scripts Reference
	Background
	Designer Scripts and Activity Code

	Key Concepts
	Pixel
	Resolution
	dpi : dots per inch
	Screen Size
	dip
	Text Size
	Standard Screen
	Scale
	Dock and Fill Strategy

	Designer Scripting Basics
	Run Script Button
	Current Variant Option

	Scripting Areas
	All Variants Script Area
	Variant Specific Script Area
	Activating Designer Scripts

	Script Language
	Variables
	%x and %y
	Screen Size

	Properties Within Scripts
	Warning: Set Internal Properties before External
	Text Properties
	Other Properties

	Methods
	Other Keywords
	Activity Methods
	Activity.RerunDesignerScript (LayoutFile As String, Width As Int, Height As Int)

	AutoScale: Layouts for Different Sized Devices
	How AutoScale works
	How to See the Effect of AutoScale
	How to See the Effect of AutoScale on Text Size
	How to Use AutoScale
	AutoScaleRate(rate)
	AutoScaleAll
	AutoScale(View)

	Different Layouts for Portrait and Landscape
	Scaling strategy
	Editing Views in a program
	Example

	2.6 Compiling, Debugging & Testing
	Compiling
	Compilation Modes
	Debug Legacy Mode
	Debug Rapid Mode
	Release Mode
	Release (obfuscated)
	Strings obfuscation
	Renaming of Variables

	Debugging
	Breakpoints
	Breakpoint Limitations
	Debugger Control
	Debugger Menus

	Legacy Debugging
	Legacy Debugger Information Area
	Global variables in Legacy Debugger
	Local variables in Legacy Debugger

	Rapid Debugging
	Limitations of the Rapid Debugger
	How the Rapid Debugger Works
	Rapid Debugger Information Area
	Editing Code using the Rapid Debugger

	Logging
	Testing your App
	B4A-Bridge
	USB Debugging
	The Emulator or Android Virtual Device (AVD) Manager
	Introduction
	How Basic4Android interacts with Emulated Devices

	Using the Android Virtual Device Manager
	Missing Tabs
	How to upgrade

	Android Virtual Devices (AVDs)

	Creating an AVD
	AVD Name
	Device
	Target
	CPU / ABI
	Keyboard
	Skin
	Front / Back Camera
	Memory Options
	RAM
	VM Heap

	Internal Storage
	SD Card
	Size
	File

	Emulation Options
	Snapshot
	Use Host GPU

	Creating a Device Definition
	Running a Virtual Device and scaling for Real Size Emulation
	No Scaling
	Scale display to real size
	Screen Size (inches)
	Monitor dpi

	Interacting with your Virtual Device
	PC Keyboard Shortcuts
	Mac Keyboard Shortcuts
	Enabling Hardware Buttons
	Exchanging files with the PC
	Troubleshoot Connection Problems

	2.7 Graphics and Drawing
	Canvas Object
	Initializing a Canvas
	More Details

	Most common Canvas functions
	DrawBitmap (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect)
	DrawBitmapRotated (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect, Degrees As Float)
	DrawCircle (x As Float, y As Float, Radius As Float, Color As Int, Filled As Boolean, StrokeWidth As Float)
	DrawColor (Color As Int)
	DrawLine (x1 As Float, y1 As Float, x2 As Float, y2 As Float, Color As Int, StrokeWidth As Float)
	DrawRect (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As Float)
	DrawRectRotated (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As Float, Degrees As Float)
	DrawText (Text As String, x As Float, y As Float, Typeface1 As Typeface, TextSize As Float, Color As Int, Align1 As Align)
	DrawTextRotated (Text As String, x As Float, y As Float, Typeface1 As Typeface, TextSize As Float, Color As Int, Align1 As Align, Degree As Float)
	Example Program
	More Complex Examples

	Drawing Methods
	View Drawables
	Drawables
	Background Property
	ColorDrawable
	GradientDrawable

	Example Code
	StateListDrawable
	Example Project

	NinePatchDrawable
	Example Project

	Drawing Bitmaps on Panels or ImageViews
	Diagrams / Charts
	Charts Framework

	2.8 Databases
	Database fundamentals
	Database
	Table
	Record
	Field
	Primary Key
	Field Type
	Relational Data
	Database Files
	KeyValueStore Class
	Encrypting Databases

	Database Administration
	DBMS Tools
	SQLiteBrowser
	SQLiteSpy

	SQL Object
	Reference SQL Library
	Declare SQL Object
	Initialize SQL Object
	Example

	DBUtils
	DBUtils Fundamentals
	Installing DBUtils

	Preliminary SQL Steps
	SQL Object
	Versioning

	DBUtils Field Types
	DBUtils Functions
	CopyDBFromAssets (FileName As String) As String
	Location of Database
	Creating Tables
	CreateTable (SQL As SQL, TableName As String, FieldsAndTypes As Map, PrimaryKey As String)
	DeleteRecord (SQL As SQL, TableName As String, WhereFieldEquals As Map)
	DropTable (SQL As SQL, TableName As String)
	ExecuteHtml(SQL As SQL, Query As String, StringArgs() As String, Limit As Int, Clickable As Boolean) As String
	ExecuteJSON(SQL As SQL, Query As String, StringArgs() As String, Limit As Int, DBTypes As List) As Map
	ExecuteListView(SQL As SQL, Query As String, StringArgs() As String, Limit As Int, ListView1 As ListView, TwoLines As Boolean)
	ExecuteMap(SQL As SQL, Query As String, StringArgs() As String) As Map
	ExecuteMemoryTable(SQL As SQL, Query As String, StringArgs() As String, Limit As Int) As List
	ExecuteSpinner(SQL As SQL, Query As String, StringArgs() As String, Limit As Int, Spinner1 As Spinner)
	GetDBVersion(SQL As SQL) As Int
	InsertMaps (SQL As SQL, TableName As String, ListOfMaps As List)
	SetDBVersion(SQL As SQL, Version As Int)
	UpdateRecord(SQL As SQL, TableName As String, Field As String, NewValue As Object, WhereFieldEquals As Map)
	UpdateRecord2(SQL As SQL, TableName As String, Fields As Map, WhereFieldEquals As Map)

	Sample DBUtils Program

	SQLite
	SQL
	SQLite
	More Information on SQLite
	Sample SQLite Program
	Manifest Typing
	SQLiteExceptions
	SQL Library
	SQL Object
	ExecQueries and ExecNonQueries
	Cursor
	Transactions

	SQLite Commands
	Database Creation
	Table creation
	Adding records
	Updating records
	Retrieving data
	Processing the SQL
	Parameterize the Command
	Filtering
	Max and Min Values
	Count Records
	Ordering
	ExecQueryAsync

	Deleting data
	Rename a table
	Add a field

	2.9 Process and Activity Life Cycle
	Process
	Services
	The Activity Concept
	Activity_Pause and Activity_Resume
	Activity Module
	The Activity Template
	Activity Attributes

	Variables within an Activity
	Local Variables
	Global Variables

	Activity Globals
	Sub Process_Globals
	Sub Globals

	Sub Activity_Create (FirstTime As Boolean)
	FirstTime parameter

	Sub Activity_Pause (UserClosed As Boolean)
	When is Activity_Pause called?
	How to use Activity_Pause
	UserClosed parameter
	Saving Data

	Sub Activity_Resume
	StartActivity (Activity As Object)
	Activity.Finish vs ExitApplication

	2.10 Modules
	Creating or Adding Modules
	Activity Module
	Activity Attributes
	Defaults
	FullScreen
	IncludeTitle

	Creating the Page
	Activity Events
	Touch (Action As Int, X As Float, Y As Float) Event
	KeyPress and KeyUp

	Creating a Menu
	Activities vs Windows Forms
	Variables in other Activity Modules
	More Information

	Multiple Activity Modules

	Class module
	What is a Class?
	Benefits of Classes
	Example
	Public vs Private Variables
	Classes vs Types
	Classes vs Code Modules
	Adding a class module
	Classes structures
	Polymorphism
	Class Square module
	Class Circle module
	In the main module

	Self reference
	Classes and Activity Object
	Limitations of Classes

	Code module
	Service Module
	Why use a Service
	Alternative to an Activity
	When Does Android Kill a Process?
	Android’s View of Services
	How to Start a Service
	Service Code
	Service Attributes
	SubRoutines
	When to Use a Service
	Notifications
	Accessing other modules

	Sample Projects Using Services

	2.11 Publishing and Monetizing Your App
	User Help
	Branding and Marketing
	Setting Your Project Parameters
	Package Name
	Project Attributes

	Setting Icons
	Google Play Store Icon
	Launcher Icon
	[Project > Choose Icon]

	Creating Icons
	Sources of Icons
	Notification Icon Recommendations
	Icon Sizes
	Prescribed Resolutions
	LDPI
	MDPI
	HDPI
	XHDPI

	Installing Icons

	Generating Your APK
	APK File
	Keys and Certificates
	Signing
	Debugging Certificates
	Signing for Distribution
	Creating A Private Key
	Creating a New Key

	The KeyStore
	Keystore Explorer

	Compiling the APK

	Monetising Your App
	Ways of Monetizing Your App

	Libraries Supporting Advertising
	AdMob
	Library and Tutorial

	AdiQuity
	Matomy
	TapForTap

	Selling Your App
	In-App Billing
	Licensing

	Registering as a Google Play Developer
	Register as a Google Play Developer
	Merchant Account

	Prepare Your App’s Google Play Page
	User Support
	Google Play Developer Console
	Upload your App to Google Play

	Distributing Apps elsewhere
	Preparing the User’s Device
	Amazon Appstore
	By Email
	Downloading from a website
	Other App Publishers

	2.12 Getting More Help
	Anywhere Software
	Forum
	Chat Room
	Video Tutorials
	On-Line Tutorials
	Twitter
	Linked In
	On-line Documentation
	PDF Guides
	Library Browsers
	B4a Object Browser
	B4AHelp

	Part 3: Language and Core Objects
	3.1 Basic4Android’s Language
	BASIC
	Basic4Android
	Lexical Rules
	Statement Separator
	Comments
	Meaningful names
	Comments as Documentation

	Splitting Long Lines

	Variables
	Constants
	Types
	Primitive Types
	Boolean
	Byte
	Short
	Int
	Long
	Float
	Double
	Char
	String

	Hex Literals
	Non-Primitive Types
	Core Types
	Reference to Non-Primitives
	Type Conversion
	Note that type conversion does not always work

	Rank
	Creating Your Own Types

	Objects
	Initialization of Objects

	Declaring Variables
	Dim Statement
	No Option Explicit
	Allocating Values
	Type Checking
	Use of Unassigned Variables
	Pass by Value
	Pass by Reference

	Naming of Variables
	Hungarian Notation

	Arrays
	Dimensions
	Declaring an Array
	Other Examples

	Saving and Retrieving Data
	Variable Can Specify Dimensions

	Filling an array using the Array keyword
	Arrays of Objects
	Array Dimensions are Fixed

	Lists
	Maps
	Type variables
	Declaring Types
	Recursive Types
	Initializing a Recursive Type

	Casting
	Visibility and Lifetime of Variables and Subs
	Visibility Between Modules
	Default

	Sub Process_Globals
	Public by Default
	Lifetimes of Process_Globals Variables
	Rotating Device
	How to Access Process_Globals Variables

	Sub Globals
	Always Private

	Activity Global Variables
	View Variables Must be Here

	Class_Globals
	Subroutines
	Running Subs in other modules

	Variables in Subs
	Local variables

	Expressions and Operators
	Mathematical expressions
	Relational Operators
	Logical Operators
	Regular Expressions
	Getting Help with Regular Expressions

	Conditional statements
	If – Then – Else – End If
	Example of If-Then
	Example of If-Then-Else
	Differences between Basic4Android and Visual Basic

	Select – Case
	Differences between Basic4Android and Visual Basic:

	Loop structures
	For – Next
	Step Value
	Non-integer Iterators
	Exit
	Continue
	Differences between Basic4Android and Visual Basic

	For-Each
	Do-While
	Do-While may not be executed

	Do-Until
	Exit a Loop
	Differences between Basic4Android and Visual Basic

	Subs
	Declaring a Sub
	Naming
	Calling a Sub
	Calling a Sub from another module

	Parameters
	Returned value
	Creating Tooltips for Subs

	Events
	Core Object Events
	Reacting to an Event
	Example
	Shared Event Handler
	View Events
	Commonest View Events
	Click
	LongClick
	Touch(Action As Int, X As Float, Y As Float)
	CheckChanged (Checked As Boolean)
	KeyPress (KeyCode As Int) As Boolean

	Error Handling
	Runtime Errors
	Exceptions
	Uncaught Runtime Exceptions
	Try-Catch
	When to use a Try-Catch

	String manipulation
	Mutable Strings
	The String functions
	Number formatting

	Keywords
	Abs (Number As Double) As Double
	ACos (Value As Double) As Double
	ACosD (Value As Double) As Double
	Array
	Asc (Char As Char) As Int
	ASin (Value As Double) As Double
	ASinD (Value As Double) As Double
	ATan (Value As Double) As Double
	ATan2 (Y As Double, X As Double) As Double
	ATan2D (Y As Double, X As Double) As Double
	ATanD (Value As Double) As Double
	BytesToString (Data() As Byte, StartOffset As Int, Length As Int, CharSet As String) As String
	CallSub (Component As Object, Sub As String) As String
	Example
	Restrictions

	CallSub2 (Component As Object, Sub As String, Argument As Object) As String
	CallSub3 (Component As Object, Sub As String, Argument1 As Object, Argument2 As Object) As String
	CallSubDelayed (Component As Object, Sub As String)
	CallSubDelayed2 (Component As Object, Sub As String, Argument As Object)
	CallSubDelayed3 (Component As Object, Sub As String, Argument1 As Object, Argument2 As Object)
	CancelScheduledService (Service As Object)
	Catch
	cE As Double
	Ceil (Number As Double) As Double
	CharsToString (Chars() As Char, StartOffset As Int, Length As Int) As String
	Chr (UnicodeValue As Int) As Char
	ConfigureHomeWidget (LayoutFile As String, EventName As String, UpdateIntervalMinutes As Int, WidgetName As String) As RemoteViews
	Example
	Reference

	Continue
	Cos (Radians As Double) As Double
	CosD (Degrees As Double) As Double
	cPI As Double
	CRLF As String
	Density As Float
	Dim
	DipToCurrent (Length As Int) As Int
	DoEvents
	Exit
	ExitApplication
	False As Boolean
	File As File
	Floor (Number As Double) As Double
	For
	For Each
	Examples

	GetDeviceLayoutValues As LayoutValues
	GetType (object As Object) As String
	If
	Single line
	Multiline

	InputList (Items As List, Title As String, CheckedItem As Int) As Int
	InputMap (Items As Map, Title As String)
	InputMultiList (Items As List, Title As String) As List
	Is
	IsBackgroundTaskRunning (ContainerObject As Object, TaskId As Int) As Boolean
	IsNumber (Text As String) As Boolean
	IsPaused (Component As Object) As Boolean
	LastException As Exception
	LoadBitmap (Dir As String, FileName As String) As Bitmap
	LoadBitmapSample (Dir As String, FileName As String, MaxWidth As Int, MaxHeight As Int) As Bitmap
	Log (Message As String)
	Logarithm (Number As Double, Base As Double) As Double
	Max (Number1 As Double, Number2 As Double) As Double
	Me As Object
	Min (Number1 As Double, Number2 As Double) As Double
	Msgbox (Message As String, Title As String)
	Msgbox2 (Message As String, Title As String, Positive As String, Cancel As String, Negative As String, Icon As Bitmap) As Int
	Not (Value As Boolean) As Boolean
	Null As Object
	NumberFormat (Number As Double, MinimumIntegers As Int, MaximumFractions As Int) As String
	NumberFormat2 (Number As Double, MinimumIntegers As Int, MaximumFractions As Int, MinimumFractions As Int, GroupingUsed As Boolean) As String
	PerXToCurrent (Percentage As Float) As Int
	PerYToCurrent (Percentage As Float) As Int
	Power (Base As Double, Exponent As Double) As Double
	ProgressDialogHide
	ProgressDialogShow (Text As String)
	ProgressDialogShow2 (Text As String, Cancelable As Boolean)
	QUOTE As String
	Regex As Regex
	Return
	Rnd (Min As Int, Max As Int) As Int
	RndSeed (Seed As Long)
	Round (Number As Double) As Long
	Round2 (Number As Double, DecimalPlaces As Int) As Double
	Select
	Sender As Object
	Sin (Radians As Double) As Double
	SinD (Degrees As Double) As Double
	Sqrt (Value As Double) As Double
	StartActivity (Activity As Object)
	StartService (Service As Object)
	StartServiceAt (Service As Object, Time As Long, DuringSleep As Boolean)
	StopService (Service As Object)
	Sub
	SubExists (Object As Object, Sub As String) As Boolean
	TAB As String
	Tan (Radians As Double) As Double
	TanD (Degrees As Double) As Double
	ToastMessageShow (Message As String, LongDuration As Boolean)
	True As Boolean
	Try
	Type
	Until
	While

	3.2 VB6 versus B4A
	Controls vs. Views
	Dim
	ReDim
	Boolean Operations
	Not
	Using Integers as Boolean

	Global Const
	Repeating Structures
	For…Next
	Loops, If-Then, Select Case
	Exit
	ElseIf/EndIf

	Colors
	Subroutines
	Declaring a Sub
	Calling a sub

	Functions
	Exit Sub
	DoEvents
	Format
	InputBox
	MsgBox
	Random Numbers
	Rnd
	RndSeed
	Randomize

	Round
	Val()
	SetFocus
	Divide by Zero
	Shell
	Timer
	TabIndex
	Setting Label Transparency
	Constants
	String “Members”
	Left$ and Right$
	Len
	Replace
	Case
	Trim
	Instr

	Error Trapping
	VB6
	Basic4Android

	“Immediate Window” vs. “Logs” Tab

	3.3 Core Objects
	List of Core Objects
	General
	Constants
	Drawing Objects
	File Objects
	Views

	Activity
	Activity Events
	Click
	KeyPress and KeyUp Events
	LongClick
	Touch (Action As Int, X As Float, Y As Float)
	Activity Members
	ACTION_DOWN As Int
	ACTION_MOVE As Int
	ACTION_UP As Int
	AddMenuItem (Title As String, EventName As String)
	AddMenuItem2 (Title As String, EventName As String, Bitmap1 As Bitmap)
	AddMenuItem3 (Title As String, EventName As String, Bitmap1 As Bitmap, AddToActionBar As Boolean)
	AddView (View1 As View, Left As Int, Top As Int, Width As Int, Height As Int)
	Background As Drawable
	CloseMenu
	Color As Int [write only]
	Finish
	GetAllViewsRecursive As IterableList
	GetStartingIntent As Intent
	GetView (Index As Int) As View
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	LoadLayout (Layout As String) As LayoutValues
	NumberOfViews As Int [read only]
	OpenMenu
	RemoveAllViews
	RemoveViewAt (Index As Int)
	RequestFocus As Boolean
	RerunDesignerScript (Layout As String, Width As Int, Height As Int)
	SendToBack
	SetActivityResult (Result As Int, Data As Intent)
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Title As CharSequence
	TitleColor As Int
	Top As Int
	Width As Int

	Bit
	Bitwise Operations
	Members:
	And (N1 As Int, N2 As Int) As Int
	Not (N As Int) As Int
	Or (N1 As Int, N2 As Int) As Int
	ParseInt (Value As String, Radix As Int) As Int
	ShiftLeft (N As Int, Shift As Int) As Int
	ShiftRight (N As Int, Shift As Int) As Int
	ToBinaryString (N As Int) As String
	ToHexString (N As Int) As String
	ToOctalString (N As Int) As String
	UnsignedShiftRight (N As Int, Shift As Int) As Int
	Xor (N1 As Int, N2 As Int) As Int

	Constants
	Colors
	Members:
	ARGB (Alpha As Int, Red As Int, Green As Int, Blue As Int) As Int
	Black As Int
	Blue As Int
	Cyan As Int
	DarkGray As Int
	Gray As Int
	Green As Int
	LightGray As Int
	Magenta As Int
	Red As Int
	RGB (Red As Int, Green As Int, Blue As Int) As Int
	Transparent As Int
	White As Int
	Yellow As Int

	DialogResponse
	CANCEL As Int
	NEGATIVE As Int
	POSITIVE As Int

	Gravity
	BOTTOM As Int
	CENTER As Int
	CENTER_HORIZONTAL As Int
	CENTER_VERTICAL As Int
	FILL As Int
	LEFT As Int
	NO_GRAVITY As Int
	RIGHT As Int
	TOP As Int

	KeyCodes
	Events
	Members
	KEYCODE_0
	KEYCODE_1
	KEYCODE_2
	KEYCODE_3
	KEYCODE_4
	KEYCODE_5
	KEYCODE_6
	KEYCODE_7
	KEYCODE_8
	KEYCODE_9
	KEYCODE_A
	KEYCODE_ALT_LEFT
	KEYCODE_ALT_RIGHT
	KEYCODE_APOSTROPHE
	KEYCODE_AT
	KEYCODE_B
	KEYCODE_BACK
	KEYCODE_BACKSLASH
	KEYCODE_C
	KEYCODE_CALL
	KEYCODE_CAMERA
	KEYCODE_CLEAR
	KEYCODE_COMMA
	KEYCODE_D
	KEYCODE_DEL
	KEYCODE_DPAD_CENTER
	KEYCODE_DPAD_DOWN
	KEYCODE_DPAD_LEFT
	KEYCODE_DPAD_RIGHT
	KEYCODE_DPAD_UP
	KEYCODE_E
	KEYCODE_ENDCALL
	KEYCODE_ENTER
	KEYCODE_ENVELOPE
	KEYCODE_EQUALS
	KEYCODE_EXPLORER
	KEYCODE_F
	KEYCODE_FOCUS
	KEYCODE_G
	KEYCODE_GRAVE
	KEYCODE_H
	KEYCODE_HEADSETHOOK
	KEYCODE_HOME
	KEYCODE_I
	KEYCODE_J
	KEYCODE_K
	KEYCODE_L
	KEYCODE_LEFT_BRACKET
	KEYCODE_M
	KEYCODE_MEDIA_FAST_FORWARD
	KEYCODE_MEDIA_NEXT
	KEYCODE_MEDIA_PLAY_PAUSE
	KEYCODE_MEDIA_PREVIOUS
	KEYCODE_MEDIA_REWIND
	KEYCODE_MEDIA_STOP
	KEYCODE_MENU
	KEYCODE_MINUS
	KEYCODE_MUTE
	KEYCODE_N
	KEYCODE_NOTIFICATION
	KEYCODE_NUM
	KEYCODE_O
	KEYCODE_P
	KEYCODE_PERIOD
	KEYCODE_PLUS
	KEYCODE_POUND
	KEYCODE_POWER
	KEYCODE_Q
	KEYCODE_R
	KEYCODE_RIGHT_BRACKET
	KEYCODE_S
	KEYCODE_SEARCH
	KEYCODE_SEMICOLON
	KEYCODE_SHIFT_LEFT
	KEYCODE_SHIFT_RIGHT
	KEYCODE_SLASH
	KEYCODE_SOFT_LEFT
	KEYCODE_SOFT_RIGHT
	KEYCODE_SPACE
	KEYCODE_STAR
	KEYCODE_SYM
	KEYCODE_T
	KEYCODE_TAB
	KEYCODE_U
	KEYCODE_UNKNOWN
	KEYCODE_V
	KEYCODE_VOLUME_DOWN
	KEYCODE_VOLUME_UP
	KEYCODE_W
	KEYCODE_X
	KEYCODE_Y
	KEYCODE_Z

	Typeface
	Events
	Members
	CreateNew (Typeface1 As Typeface, Style As Int) As Typeface
	DEFAULT As Typeface
	DEFAULT_BOLD As Typeface
	IsInitialized As Boolean
	LoadFromAssets (FileName As String) As Typeface
	MONOSPACE As Typeface
	SANS_SERIF As Typeface
	SERIF As Typeface
	STYLE_BOLD As Int
	STYLE_BOLD_ITALIC As Int
	STYLE_ITALIC As Int
	STYLE_NORMAL As Int

	DateTime
	Ticks
	Members:
	Add (Ticks As Long, Years As Int, Months As Int, Days As Int) As Long
	Date (Ticks As Long) As String
	DateFormat As String
	DateParse (Date As String) As Long
	DateTimeParse (Date As String, Time As String) As Long
	DeviceDefaultDateFormat As String [read only]
	DeviceDefaultTimeFormat As String [read only]
	GetDayOfMonth (Ticks As Long) As Int
	GetDayOfWeek (Ticks As Long) As Int
	GetDayOfYear (Ticks As Long) As Int
	GetHour (Ticks As Long) As Int
	GetMinute (Ticks As Long) As Int
	GetMonth (Ticks As Long) As Int
	GetSecond (Ticks As Long) As Int
	GetTimeZoneOffsetAt (Date As Long) As Double
	GetYear (Ticks As Long) As Int
	ListenToExternalTimeChanges
	Now As Long [read only]
	SetTimeZone (OffsetHours As Int)
	TicksPerDay As Long
	TicksPerHour As Long
	TicksPerMinute As Long
	TicksPerSecond As Long
	Time (Ticks As Long) As String
	TimeFormat As String
	TimeParse (Time As String) As Long
	TimeZoneOffset As Double [read only]

	Drawing Objects
	Bitmap
	Members:
	GetPixel (x As Int, y As Int) As Int
	Height As Int [read only]
	Initialize (Dir As String, FileName As String)
	Initialize2 (InputStream As java.io.InputStream)
	Initialize3 (Bitmap1 As Bitmap)
	InitializeMutable (Width As Int, Height As Int)
	InitializeSample (Dir As String, FileName As String, MaxWidth As Int, MaxHeight As Int)
	IsInitialized As Boolean
	Width As Int [read only]
	WriteToStream (OutputStream As java.io.OutputStream, Quality As Int, Format As CompressFormat)

	BitmapDrawable
	Members:
	Bitmap As Bitmap [read only]
	Gravity As Int
	Initialize (Bitmap1 As Bitmap)
	IsInitialized As Boolean

	Canvas
	Members:
	Bitmap As Bitmap [read only]
	ClipPath (Path1 As Path)
	DrawBitmap (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect)
	DrawBitmapFlipped (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect, Vertically As Boolean, Horizontally As Boolean)
	DrawBitmapRotated (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect, Degrees As Float)
	DrawCircle (x As Float, y As Float, Radius As Float, Color As Int, Filled As Boolean, StrokeWidth As Float)
	DrawColor (Color As Int)
	DrawDrawable (Drawable1 As Drawable, DestRect As Rect)
	DrawDrawableRotate (Drawable1 As Drawable, DestRect As Rect, Degrees As Float)
	DrawLine (x1 As Float, y1 As Float, x2 As Float, y2 As Float, Color As Int, StrokeWidth As Float)
	DrawOval (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As Float)
	DrawOvalRotated (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As Float, Degrees As Float)
	DrawPath (Path1 As Path, Color As Int, Filled As Boolean, StrokeWidth As Float)
	DrawPoint (x As Float, y As Float, Color As Int)
	DrawRect (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As Float)
	DrawRectRotated (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As Float, Degrees As Float)
	DrawText (Text As String, x As Float, y As Float, Typeface1 As Typeface, TextSize As Float, Color As Int, Align1 As Align)
	DrawTextRotated (Text As String, x As Float, y As Float, Typeface1 As Typeface, TextSize As Float, Color As Int, Align1 As Align, Degree As Float)
	Initialize (Target As View)
	Initialize2 (Bitmap1 As Bitmap)
	MeasureStringHeight (Text As String, Typeface As Typeface, TextSize As Float) As Float
	MeasureStringWidth (Text As String, Typeface1 As Typeface, TextSize As Float) As Float
	RemoveClip

	ColorDrawable
	Initialize (Color As Int, CornerRadius As Int)
	IsInitialized As Boolean

	GradientDrawable
	Members:
	CornerRadius As Float [write only]
	Initialize (Orientation1 As Orientation, Colors() As Int)
	IsInitialized As Boolean

	Path
	Members:
	Initialize (x As Float, y As Float)
	IsInitialized As Boolean
	LineTo (x As Float, y As Float)

	Rect
	Members:
	Bottom As Int
	CenterX As Int [read only]
	CenterY As Int [read only]
	Initialize (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	Right As Int
	Top As Int

	StateListDrawable
	Members:
	AddCatchAllState (Drawable1 As Drawable)
	AddState (State As Int, Drawable1 As Drawable)
	AddState2 (State() As Int, Drawable1 As Drawable)
	Initialize
	IsInitialized As Boolean
	State_Checked As Int
	State_Disabled As Int
	State_Enabled As Int
	State_Focused As Int
	State_Pressed As Int
	State_Selected As Int
	State_Unchecked As Int

	Exception
	Members:
	IsInitialized As Boolean
	Message As String [read only]

	File Object
	Filenames
	Adding Files to your Project
	File locations
	File.DirAssets
	File.DirInternal / File.DirInternalCache

	Storage Card Folders
	File.DirRootExternal
	File.DirDefaultExternal

	Text encoding
	Android Character Sets
	Windows Character Sets
	Windows-1252
	End-of-Line Character(s)
	Reading and Writing Excel Files
	Notepad and Notepad++

	File
	Members:
	Combine (Dir As String, FileName As String) As String
	Copy (DirSource As String, FileSource As String, DirTarget As String, FileTarget As String)
	Copy2 (In As java.io.InputStream, Out As java.io.OutputStream)
	Delete (Dir As String, FileName As String) As Boolean
	DirAssets As String [read only]
	DirDefaultExternal As String [read only]
	DirInternal As String [read only]
	DirInternalCache As String [read only]
	DirRootExternal As String [read only]
	Exists (Dir As String, FileName As String) As Boolean
	ExternalReadable As Boolean [read only]
	ExternalWritable As Boolean [read only]
	GetText (Dir As String, FileName As String) As String
	IsDirectory (Dir As String, FileName As String) As Boolean
	LastModified (Dir As String, FileName As String) As Long
	ListFiles (Dir As String) As List
	MakeDir (Parent As String, Dir As String)
	OpenInput (Dir As String, FileName As String) As InputStream
	OpenOutput (Dir As String, FileName As String, Append As Boolean) As OutputStream
	ReadList (Dir As String, FileName As String) As List
	ReadMap (Dir As String, FileName As String) As Map
	ReadMap2 (Dir As String, FileName As String, Map As Map) As Map
	ReadString (Dir As String, FileName As String) As String
	Size (Dir As String, FileName As String) As Long
	WriteList (Dir As String, FileName As String, List As List)
	WriteMap (Dir As String, FileName As String, Map1 As Map)
	WriteString (Dir As String, FileName As String, Text As String)

	InputStream
	Members:
	BytesAvailable As Int
	Close
	InitializeFromBytesArray (Buffer() As Byte, StartOffset As Int, MaxCount As Int)
	IsInitialized As Boolean
	ReadBytes (Buffer() As Byte, StartOffset As Int, MaxCount As Int) As Int

	OutputStream
	Members:
	Close
	Flush
	InitializeToBytesArray (StartSize As Int)
	IsInitialized As Boolean
	ToBytesArray As Byte()
	WriteBytes (Buffer() As Byte, StartOffset As Int, Length As Int)

	TextReader
	Members:
	Close
	Initialize (InputStream As java.io.InputStream)
	Initialize2 (InputStream As java.io.InputStream, Encoding As String)
	IsInitialized As Boolean
	Read (Buffer() As Char, StartOffset As Int, Length As Int) As Int
	ReadAll As String
	ReadLine As String
	ReadList As List
	Ready As Boolean
	Skip (NumberOfCharacters As Int) As Int

	TextWriter
	Members:
	Close
	Flush
	Initialize (OutputStream As java.io.OutputStream)
	Initialize2 (OutputStream As java.io.OutputStream, Encoding As String)
	IsInitialized As Boolean
	Write (Text As String)
	WriteLine (Text As String)
	WriteList (List As List)

	Intent
	Members:
	Action As String
	ACTION_APPWIDGET_UPDATE As String
	ACTION_CALL As String
	ACTION_EDIT As String
	ACTION_MAIN As String
	ACTION_PICK As String
	ACTION_SEND As String
	ACTION_VIEW As String
	AddCategory (Category As String)
	ExtrasToString As String
	Flags As Int
	GetData As String
	GetExtra (Key As String) As Object
	HasExtra (Key As String) As Boolean
	Initialize (Action As String, URI As String)
	Initialize2 (URI As String, Flags As Int)
	IsInitialized As Boolean
	PutExtra (Name As String, Value As Object)
	SetComponent (Component As String)
	SetType (Type As String)
	WrapAsIntentChooser (Title As String)

	LayoutValues
	Members:
	ApproximateScreenSize As Double [read only]
	Height As Int
	Scale As Float
	toString As String
	Width As Int

	List
	How to use a List
	Initialize
	Add Elements
	Remove Elements
	Retrieve Elements
	Change an Element
	Get the size of a List
	Iterate a List
	Save to and Load from Files
	Sort a List
	Clear a List
	Convert Array to List

	Members:
	Add (Item As Object)
	AddAll (List As List)
	AddAllAt (Index As Int, List As List)
	Clear
	Get (Index As Int) As Object
	IndexOf (Item As Object) As Int
	Initialize
	Initialize2 (Array As List)
	InsertAt (Index As Int, Item As Object)
	IsInitialized As Boolean
	RemoveAt (Index As Int)
	Set (Index As Int, Item As Object)
	Size As Int [read only]
	Sort (Ascending As Boolean)
	SortCaseInsensitive (Ascending As Boolean)
	SortType (FieldName As String, Ascending As Boolean)
	SortTypeCaseInsensitive (FieldName As String, Ascending As Boolean)

	Map
	How to use a Map
	Initialize
	Adding Entry
	Retrieve Entry
	Iteration
	Check if a Map contains an entry
	Remove an entry
	Clear all items from the map
	Save to and Load from a File
	Appending to a Map
	Fixing Order in a Map

	Members:
	Clear
	ContainsKey (Key As Object) As Boolean
	Get (Key As Object) As Object
	GetDefault (Key As Object, Default As Object) As Object
	GetKeyAt (Index As Int) As Object
	GetValueAt (Index As Int) As Object
	Initialize
	IsInitialized As Boolean
	Keys As IterableList
	Put (Key As Object, Value As Object) As Object
	Remove (Key As Object) As Object
	Size As Int [read only]
	Values As IterableList

	MediaPlayer
	Event: Complete
	Members:
	Duration As Int [read only]
	Initialize
	Initialize2 (EventName As String)
	IsPlaying As Boolean
	Load (Dir As String, FileName As String)
	Looping As Boolean
	Pause
	Play
	Position As Int
	Release
	SetVolume (Right As Float, Left As Float)
	Stop

	Notification
	Permissions:
	Members:
	AutoCancel As Boolean [write only]
	Cancel (Id As Int)
	Icon As String [write only]
	Initialize
	Insistent As Boolean [write only]
	IsInitialized As Boolean
	Light As Boolean [write only]
	Notify (Id As Int)
	Number As Int
	OnGoingEvent As Boolean [write only]
	SetInfo (Title As String, Body As String, Activity As Object)
	SetInfo2 (Title As String, Body As String, Tag As String, Activity As Object)
	Sound As Boolean [write only]
	Vibrate As Boolean [write only]

	RemoteViews
	Events:
	Members:
	HandleWidgetEvents (StartingIntent As Intent) As Boolean
	SetImage (ImageViewName As String, Image As Bitmap)
	SetProgress (ProgressBarName As String, Progress As Int)
	SetText (ViewName As String, Text As String)
	SetTextColor (ViewName As String, Color As Int)
	SetTextSize (ViewName As String, Size As Float)
	SetVisible (ViewName As String, Visible As Boolean)
	UpdateWidget

	Service
	Members:
	StartForeground (Id As Int, Notification1 As Notification)
	StopForeground (Id As Int)

	String
	Immutable Strings
	Mutable Strings
	Number formatting
	String Functions Library
	Members:
	CharAt (Index As Int) As Char
	CompareTo (Other As String) As Int
	Contains (SearchFor As String) As Boolean
	EndsWith (Suffix As String) As Boolean
	EqualsIgnoreCase (other As String) As Boolean
	GetBytes (Charset As String) As Byte()
	IndexOf (SearchFor As String) As Int
	IndexOf2 (SearchFor As String, Index As Int) As Int
	LastIndexOf (SearchFor As String) As Int
	LastIndexOf2 (SearchFor As String, Index As Int) As Int
	Length As Int
	Replace (Target As String, Replacement As String) As String
	StartsWith (Prefix As String) As Boolean
	SubString (BeginIndex As Int) As String
	SubString2 (BeginIndex As Int, EndIndex As Int) As String
	ToLowerCase As String
	ToUpperCase As String
	Trim As String

	StringBuilder
	Members:
	Append (Text As String) As StringBuilder
	Initialize
	Insert (Offset As Int, Text As String) As StringBuilder
	IsInitialized As Boolean
	Length As Int [read only]
	Remove (StartOffset As Int, EndOffset As Int) As StringBuilder
	ToString As String

	Timer
	Event: Tick
	Example:
	Members:
	Enabled As Boolean
	Initialize (EventName As String, Interval As Long)
	Interval As Long
	IsInitialized As Boolean

	Views
	AutoCompleteEditText
	Events:
	ItemClick (Value As String)
	TextChanged (Old As String, New As String)
	EnterPressed
	FocusChanged (HasFocus As Boolean)
	Members:
	Background As Drawable
	BringToFront
	Color As Int [write only]
	DismissDropDown
	Enabled As Boolean
	ForceDoneButton As Boolean [write only]
	Gravity As Int
	Height As Int
	Hint As String
	HintColor As Int
	Initialize (EventName As String)
	INPUT_TYPE_DECIMAL_NUMBERS As Int
	INPUT_TYPE_NONE As Int
	INPUT_TYPE_NUMBERS As Int
	INPUT_TYPE_PHONE As Int
	INPUT_TYPE_TEXT As Int
	InputType As Int
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	PasswordMode As Boolean [write only]
	RemoveView
	RequestFocus As Boolean
	SelectAll
	SelectionStart As Int
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetItems (Items As List)
	SetItems2 (Items As List, Typeface1 As Typeface, Gravity As Int, TextSize As Float, TextColor As Int)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	ShowDropDown
	SingleLine As Boolean [write only]
	Tag As Object
	Text As String
	TextColor As Int
	TextSize As Float
	Top As Int
	Typeface As Typeface
	Visible As Boolean
	Width As Int
	Wrap As Boolean [write only]

	Button
	Events:
	Down
	Up
	Click
	LongClick
	Members:
	Background As Drawable
	BringToFront
	Color As Int [write only]
	Enabled As Boolean
	Gravity As Int
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Text As String
	TextColor As Int
	TextSize As Float
	Top As Int
	Typeface As Typeface
	Visible As Boolean
	Width As Int

	CheckBox
	Events:
	Members:
	Background As Drawable
	BringToFront
	Checked As Boolean
	Color As Int [write only]
	Enabled As Boolean
	Gravity As Int
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Text As String
	TextColor As Int
	TextSize As Float
	Top As Int
	Typeface As Typeface
	Visible As Boolean
	Width As Int

	CustomView
	Sub Initialize (TargetModule As Object, EventName As String)
	Sub DesignerCreateView(Base As Panel, Lbl As Label, Props As Map)

	EditText
	TextChanged (Old As String, New As String)
	EnterPressed
	FocusChanged (HasFocus As Boolean)
	Members:
	Background As Drawable
	BringToFront
	Color As Int [write only]
	Enabled As Boolean
	ForceDoneButton As Boolean [write only]
	Gravity As Int
	Height As Int
	Hint As String
	HintColor As Int
	Initialize (EventName As String)
	INPUT_TYPE_DECIMAL_NUMBERS As Int
	INPUT_TYPE_NONE As Int
	INPUT_TYPE_NUMBERS As Int
	INPUT_TYPE_PHONE As Int
	INPUT_TYPE_TEXT As Int
	InputType As Int
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	PasswordMode As Boolean [write only]
	RemoveView
	RequestFocus As Boolean
	SelectAll
	SelectionStart As Int
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	SingleLine As Boolean [write only]
	Tag As Object
	Text As String
	TextColor As Int
	TextSize As Float
	Top As Int
	Typeface As Typeface
	Visible As Boolean
	Width As Int
	Wrap As Boolean [write only]

	HorizontalScrollView
	Events:
	Members:
	Background As Drawable
	BringToFront
	Color As Int [write only]
	Enabled As Boolean
	FullScroll (Right As Boolean)
	Height As Int
	Initialize (Width As Int, EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	Panel As Panel [read only]
	RemoveView
	RequestFocus As Boolean
	ScrollPosition As Int
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Top As Int
	Visible As Boolean
	Width As Int

	ImageView
	Events:
	Click
	LongClick
	Members:
	Background As Drawable
	Bitmap As Bitmap
	BringToFront
	Color As Int [write only]
	Enabled As Boolean
	Gravity As Int
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Top As Int
	Visible As Boolean
	Width As Int

	Label
	Events:
	Click
	LongClick
	Members:
	Background As Drawable
	BringToFront
	Color As Int [write only]
	Enabled As Boolean
	Gravity As Int
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Text As String
	TextColor As Int
	TextSize As Float
	Top As Int
	Typeface As Typeface
	Visible As Boolean
	Width As Int

	ListView
	Changing Text Appearance
	ListView as a Menu
	Tutorial
	Events:
	ItemClick (Position As Int, Value As Object)
	ItemLongClick (Position As Int, Value As Object)
	Members:
	AddSingleLine (Text As String)
	AddSingleLine2 (Text As String, ReturnValue As Object)
	AddTwoLines (Text1 As String, Text2 As String)
	AddTwoLines2 (Text1 As String, Text2 As String, ReturnValue As Object)
	AddTwoLinesAndBitmap (Text1 As String, Text2 As String, Bitmap1 As Bitmap)
	AddTwoLinesAndBitmap2 (Text1 As String, Text2 As String, Bitmap1 As Bitmap, ReturnValue As Object)
	Background As Drawable
	BringToFront
	Clear
	Color As Int [write only]
	Enabled As Boolean
	FastScrollEnabled As Boolean
	GetItem (Index As Int) As Object
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	RemoveAt (Index As Int)
	RemoveView
	RequestFocus As Boolean
	ScrollingBackgroundColor As Int [write only]
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	SetSelection (Position As Int)
	SingleLineLayout As SingleLineLayout [read only]
	Size As Int [read only]
	Tag As Object
	Top As Int
	TwoLinesAndBitmap As TwoLinesAndBitmapLayout [read only]
	TwoLinesLayout As TwoLinesLayout [read only]
	Visible As Boolean
	Width As Int

	Panel
	Events:
	Touch (Action As Int, X As Float, Y As Float)
	Click
	LongClick
	Members:
	AddView (View1 As View, Left As Int, Top As Int, Width As Int, Height As Int)
	Background As Drawable
	BringToFront
	Color As Int [write only]
	Enabled As Boolean
	GetAllViewsRecursive As IterableList
	GetView (Index As Int) As View
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	LoadLayout (Layout As String) As LayoutValues
	NumberOfViews As Int [read only]
	RemoveAllViews
	RemoveView
	RemoveViewAt (Index As Int)
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Top As Int
	Visible As Boolean
	Width As Int

	ProgressBar
	Members:
	Background As Drawable
	BringToFront
	Color As Int [write only]
	Enabled As Boolean
	Height As Int
	Indeterminate As Boolean
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	Progress As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Top As Int
	Visible As Boolean
	Width As Int

	RadioButton
	Event:
	CheckedChange(Checked As Boolean)
	Members:
	Background As Drawable
	BringToFront
	Checked As Boolean
	Color As Int [write only]
	Enabled As Boolean
	Gravity As Int
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Text As String
	TextColor As Int
	TextSize As Float
	Top As Int
	Typeface As Typeface
	Visible As Boolean
	Width As Int

	ScrollView
	Showing Tables
	Events:
	Members:
	Background As Drawable
	BringToFront
	Color As Int [write only]
	Enabled As Boolean
	FullScroll (Bottom As Boolean)
	Height As Int
	Initialize (Height As Int)
	Initialize2 (Height As Int, EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	Panel As Panel [read only]
	RemoveView
	RequestFocus As Boolean
	ScrollPosition As Int
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Top As Int
	Visible As Boolean
	Width As Int

	SeekBar
	Events:
	Members:
	Background As Drawable
	BringToFront
	Color As Int [write only]
	Enabled As Boolean
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	Max As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Top As Int
	Value As Int
	Visible As Boolean
	Width As Int

	Spinner
	Example
	Event:
	ItemClick (Position As Int, Value As Object)
	Members:
	Add (Item As String)
	AddAll (List As List)
	Background As Drawable
	BringToFront
	Clear
	Color As Int [write only]
	DropdownTextColor As Int
	Enabled As Boolean
	GetItem (Index As Int) As String
	Height As Int
	IndexOf (value As String) As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	Prompt As String
	RemoveAt (Index As Int)
	RemoveView
	RequestFocus As Boolean
	SelectedIndex As Int
	SelectedItem As String [read only]
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Size As Int [read only]
	Tag As Object
	TextColor As Int
	TextSize As Float
	Top As Int
	Visible As Boolean
	Width As Int

	TabHost
	Events:
	TabChanged
	Click
	LongClick
	Members:
	AddTab (Title As String, LayoutFile As String)
	AddTab2 (Title As String, View1 As View)
	AddTabWithIcon (Title As String, DefaultBitmap As Bitmap, SelectedBitmap As Bitmap, LayoutFile As String)
	AddTabWithIcon2 (Title As String, DefaultBitmap As Bitmap, SelectedBitmap As Bitmap, View1 As View)
	Background As Drawable
	BringToFront
	Color As Int [write only]
	CurrentTab As Int
	Enabled As Boolean
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	TabCount As Int [read only]
	Tag As Object
	Top As Int
	Visible As Boolean
	Width As Int

	ToggleButton
	Event:
	Members:
	Background As Drawable
	BringToFront
	Checked As Boolean
	Color As Int [write only]
	Enabled As Boolean
	Gravity As Int
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	TextColor As Int
	TextOff As String
	TextOn As String
	TextSize As Float
	Top As Int
	Typeface As Typeface
	Visible As Boolean
	Width As Int

	View
	Events:
	Click
	LongClick
	Members:
	Background As Drawable
	BringToFront
	Color As Int [write only]
	Enabled As Boolean
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	Left As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	Tag As Object
	Top As Int
	Visible As Boolean
	Width As Int

	WebView
	Permissions:
	Events:
	PageFinished (Url As String)
	OverrideUrl (Url As String) As Boolean
	UserAndPasswordRequired (Host As String, Realm As String) As String()
	Members:
	Back
	Background As Drawable
	BringToFront
	CaptureBitmap As Bitmap
	Color As Int [write only]
	Enabled As Boolean
	Forward
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	JavaScriptEnabled As Boolean
	Left As Int
	LoadHtml (HTML As String)
	LoadUrl (Url As String)
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (Bitmap1 As Bitmap)
	SetLayout (Left As Int, Top As Int, Width As Int, Height As Int)
	StopLoading
	Tag As Object
	Top As Int
	Url As String [read only]
	Visible As Boolean
	Width As Int
	Zoom (In As Boolean) As Boolean
	ZoomEnabled As Boolean

	Part 4: Libraries
	4.1 Libraries
	Introduction
	What is a library?

	Types of Libraries
	Core Library
	Standard Libraries
	Additional Official Libraries
	Additional User Libraries
	Additional libraries folder
	Subscribing to Additional Library Updates

	Telling the IDE where to find Additional Libraries
	Error message “Are you missing a library reference?”

	Referencing Libraries
	Creating Libraries
	More Information Creating Libraries
	Benefits of creating Libraries

	Preparing Your Library
	Main Activity Excluded

	Library specific attributes
	Project attributes
	Module Attributes
	Classes Attributes

	How to Compile a Library
	Output
	No Home Screen Widget Libraries

	How to publish your library

	4.2 Standard Libraries included with Full Version
	Introduction
	List of Standard Libraries
	Accessibility Library
	List of types:
	Accessiblity
	Members:
	GetUserFontScale As Float
	SetContentDescription (View1 As View, Content As CharSequence)
	SetNextFocusDown (ThisView As View, NextView As View)
	SetNextFocusLeft (ThisView As View, NextView As View)
	SetNextFocusRight (ThisView As View, NextView As View)
	SetNextFocusUp (ThisView As View, NextView As View)

	Administrator Library
	OnLine Link
	List of types:
	AdminManager
	Members:
	Disable
	Enable (Explanation As String)
	Enabled As Boolean [read only]
	LockScreen
	MaximumTimeToLock As Long [write only]
	PASSWORD_QUALITY_ALPHABETIC As Int
	PASSWORD_QUALITY_ALPHANUMERIC As Int
	PASSWORD_QUALITY_NUMERIC As Int
	PASSWORD_QUALITY_UNSPECIFIED As Int
	PasswordSufficient As Boolean [read only]
	RequestNewPassword
	ResetPassword (NewPassword As String) As Boolean
	SetPasswordQuality (QualityFlag As Int, MinimumLength As Int)

	Animation Library
	Animation
	List of types:
	Event: AnimationEnd
	Members:
	Duration As Long
	InitializeAlpha (EventName As String, FromAlpha As Float, ToAlpha As Float)
	InitializeRotate (EventName As String, FromDegrees As Float, ToDegrees As Float)
	InitializeRotateCenter (EventName As String, FromDegrees As Float, ToDegrees As Float, View1 As View)
	InitializeScale (EventName As String, FromX As Float, FromY As Float, ToX As Float, ToY As Float)
	InitializeScaleCenter (EventName As String, FromX As Float, FromY As Float, ToX As Float, ToY As Float, View1 As View)
	InitializeTranslate (EventName As String, FromDX As Float, FromDY As Float, ToDX As Float, ToDY As Float)
	IsInitialized As Boolean
	REPEAT_RESTART As Int
	REPEAT_REVERSE As Int
	RepeatCount As Int
	RepeatMode As Int
	Start (View1 As View)
	Stop (View1 As View)

	Audio Library
	List of types:
	AudioRecordApp
	Event:
	RecordComplete (Success As Boolean)
	Members:
	Initialize (EventName As String)
	Record (Dir As String, FileName As String)

	Beeper
	Members:
	Beep
	Initialize (Duration As Int, Frequency As Int)
	Initialize2 (Duration As Int, Frequency As Int, VoiceChannel As Int)
	Release
	VOLUME_ALARM As Int
	VOLUME_MUSIC As Int
	VOLUME_NOTIFICATION As Int
	VOLUME_RING As Int
	VOLUME_SYSTEM As Int
	VOLUME_VOICE_CALL As Int

	JetPlayer
	Events:
	QueuedSegmentsCountChanged (Count As Int)
	CurrentUserIdChanged (UserId As Int, RepeatCount As Int)
	Members:
	ClearQueue
	CloseFile
	Initialize (EventName As String)
	IsInitialized As Boolean
	LoadFile (Dir As String, File As String)
	MaxTracks As Int [read only]
	Pause
	Play
	QueueSegment (SegmentNum As Int, LibNum As Int, RepeatCount As Int, Transpose As Int, MuteArray() As Boolean, UserId As Byte)
	Release
	SetMute (MuteArray() As Boolean, Sync As Boolean)
	SetTrackMute (Track As Int, Mute As Boolean, Sync As Boolean)

	MediaPlayerStream
	Permissions:
	Events:
	StreamReady
	StreamError (ErrorCode As String, ExtraData As Int)
	StreamBuffer(Percentage As Int)
	Complete
	Members:
	Duration As Int [read only]
	Initialize (EventName As String)
	IsPlaying As Boolean
	Load (Url As String)
	Looping As Boolean
	Pause
	Play
	Release
	SetVolume (Right As Float, Left As Float)
	Stop

	SoundPool
	Members:
	Initialize (MaxStreams As Int)
	IsInitialized As Boolean
	Load (Dir As String, File As String) As Int
	Pause (PlayId As Int)
	Play (LoadId As Int, LeftVolume As Float, RightVolume As Float, Priority As Int, Loop As Int, Rate As Float) As Int
	Release
	Resume (PlayId As Int)
	SetRate (PlayId As Int, Rate As Float)
	SetVolume (PlayId As Int, Left As Float, Right As Float)
	Stop (PlayId As Int)
	Unload (LoadId As Int)

	VideoRecordApp
	Event RecordComplete (Success As Boolean)
	Members:
	Initialize (EventName As String)
	Record (Dir As String, FileName As String)

	VideoView
	Event: Complete
	Members:
	Background As Drawable
	BringToFront
	Color As Int [write only]
	Duration As Int [read only]
	Enabled As Boolean
	Height As Int
	Initialize (EventName As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsInitialized As Boolean
	IsPlaying As Boolean
	Left As Int
	LoadVideo (Dir As String, FileName As String)
	MediaControllerEnabled As Boolean [write only]
	Pause
	Play
	Position As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (arg0 As Bitmap)
	SetLayout (arg0 As Int, arg1 As Int, arg2 As Int, arg3 As Int)
	Stop
	Tag As Object
	Top As Int
	toString As String
	Visible As Boolean
	Width As Int

	Camera Library
	List of types:
	Camera
	Permissions:
	Events:
	Ready (Success As Boolean)
	PictureTaken (Data() As Byte)
	Preview (Data() As Byte)
	FocusDone (Success As Boolean)
	Members:
	AutoFocus
	CancelAutoFocus
	Initialize (Panel As ViewGroup, EventName As String)
	Initialize2 (Panel As ViewGroup, EventName As String, CameraId As Int)
	Release
	StartPreview
	StopPreview
	TakePicture

	Daydream Library
	List of types:
	Daydream
	Events:
	DreamStarted
	SizeChanged
	DreamStopped
	Members:
	Canvas As CanvasWrapper [read only]
	Finish
	FullScreen As Boolean
	Initialize (EventName As String)
	Interactive As Boolean
	Panel As PanelWrapper [read only]
	ScreenBright As Boolean

	GameView Library
	Tutorial
	List of types:
	BitmapData
	Members:
	Bitmap As BitmapWrapper
	Delete As Boolean
	DestRect As RectWrapper
	Flip As Int
	FLIP_BOTH As Int
	FLIP_HORIZONTALLY As Int
	FLIP_NONE As Int
	FLIP_VERTICALLY As Int
	Rotate As Int
	SrcRect As RectWrapper

	GameView
	Events:
	Members:
	Background As Drawable
	BitmapsData As List [read only]
	BringToFront
	Color As Int [write only]
	Enabled As Boolean
	Height As Int
	Initialize (arg1 As String)
	Invalidate
	Invalidate2 (Rect1 As Rect)
	Invalidate3 (Left As Int, Top As Int, Right As Int, Bottom As Int)
	IsHardwareAccelerated As Boolean [read only]
	IsInitialized As Boolean
	Left As Int
	RemoveView
	RequestFocus As Boolean
	SendToBack
	SetBackgroundImage (arg0 As Bitmap)
	SetLayout (arg0 As Int, arg1 As Int, arg2 As Int, arg3 As Int)
	Tag As Object
	Top As Int
	Visible As Boolean
	Width As Int

	GPS Library
	List of types:
	GPS
	Permissions:
	Events:
	GpsStatus (Satellites As List)
	LocationChanged (Location1 As Location)
	NMEA (TimeStamp As Long, Sentence As String)
	UserEnabled (Enabled As Boolean)
	Members:
	GPSEnabled As Boolean [read only]
	Initialize (EventName As String)
	IsInitialized As Boolean
	LocationSettingsIntent As Intent [read only]
	Start (MinimumTime As Long, MinimumDistance As Float)
	Stop

	GPSSatellite
	Members:
	Azimuth As Float [read only]
	Elevation As Float [read only]
	IsInitialized As Boolean
	Prn As Int [read only]
	Snr As Float [read only]
	UsedInFix As Boolean [read only]

	Location
	Members:
	Accuracy As Float
	AccuracyValid As Boolean [read only]
	Altitude As Double
	AltitudeValid As Boolean [read only]
	Bearing As Float
	BearingTo (TargetLocation As Location) As Float
	BearingValid As Boolean [read only]
	ConvertToMinutes (Coordinate As Double) As String
	ConvertToSeconds (Coordinate As Double) As String
	DistanceTo (TargetLocation As Location) As Float
	Initialize
	Initialize2 (Latitude As String, Longitude As String)
	IsInitialized As Boolean
	Latitude As Double
	Longitude As Double
	Speed As Float
	SpeedValid As Boolean [read only]
	Time As Long

	HTTP Library
	List of types:
	HttpClient
	Permissions:
	Events:
	ResponseSuccess (Response As HttpResponse, TaskId As Int)
	ResponseError (Response As HttpResponse, Reason As String, StatusCode As Int, TaskId As Int)
	Members:
	Execute (HttpRequest As HttpRequest, TaskId As Int) As Boolean
	ExecuteCredentials (HttpRequest As HttpRequest, TaskId As Int, UserName As String, Password As String) As Boolean
	Initialize (EventName As String)
	InitializeAcceptAll (EventName As String)
	IsInitialized As Boolean
	SetHttpParameter (Name As String, Value As Object)
	SetProxy (Host As String, Port As Int, Scheme As String)
	SetProxy2 (Host As String, Port As Int, Scheme As String, Username As String, Password As String)

	HttpRequest
	Members:
	InitializeDelete (Url As String)
	InitializeGet (Url As String)
	InitializeHead (Url As String)
	InitializePost (Url As String, InputStream As java.io.InputStream, Length As Int)
	InitializePost2 (Url As String, Data() As Byte)
	InitializePut (Url As String, InputStream As java.io.InputStream, Length As Int)
	InitializePut2 (Url As String, Data() As Byte)
	RemoveHeaders (Name As String)
	SetContentEncoding (Encoding As String)
	SetContentType (ContentType As String)
	SetHeader (Name As String, Value As String)
	Timeout As Int [write only]

	HttpResponse
	Events:
	Members:
	ContentEncoding As String [read only]
	ContentLength As Long [read only]
	ContentType As String [read only]
	GetAsynchronously (EventName As String, Output As java.io.OutputStream, CloseOutput As Boolean, TaskId As Int) As Boolean
	GetHeaders As Map
	GetInputStream As InputStreamWrapper
	GetString (DefaultCharset As String) As String
	Release
	StatusCode As Int [read only]

	IME Library
	Example
	List of types:
	IME
	Events:
	HeightChanged (NewHeight As Int, OldHeight As Int)
	HandleAction As Boolean
	Members:
	AddHandleActionEvent (EditText1 As EditText)
	AddHeightChangedEvent
	HideKeyboard
	Initialize (EventName As String)
	SetCustomFilter (EditText1 As EditText, DefaultInputType As Int, AcceptedCharacters As String)
	ShowKeyboard (View1 As View)

	JSON Library
	List of types:
	JSONGenerator
	Members:
	Initialize (Map As Map)
	Initialize2 (List As List)
	ToPrettyString (Indent As Int) As String
	ToString As String

	JSONParser
	Members:
	Initialize (Text As String)
	IsInitialized As Boolean
	NextArray As List
	NextObject As Map
	NextValue As Object

	LiveWallpaper Library
	List of types:
	LWEngine
	Members:
	Canvas As CanvasWrapper [read only]
	CurrentOffsetX As Int [read only]
	CurrentOffsetY As Int [read only]
	FullWallpaperHeight As Int [read only]
	FullWallpaperWidth As Int [read only]
	IsInitialized As Boolean
	IsPreview As Boolean [read only]
	IsVisible As Boolean [read only]
	Rect As RectWrapper
	Refresh (DirtyRect As Rect)
	RefreshAll
	ScreenHeight As Int [read only]
	ScreenWidth As Int [read only]
	Tag As Object

	LWManager
	Events:
	SizeChanged (Engine As LWEngine)
	Touch (Engine As LWEngine, Action As Int, X As Float, Y As Float)
	VisibilityChanged (Engine As LWEngine, Visible As Boolean)
	EngineDestroyed (Engine As LWEngine)
	Tick (Engine As LWEngine)
	OffsetChanged (Engine As LWEngine)
	Members:
	Initialize (EventName As String, TouchEventsEnabled As Boolean)
	StartTicking (IntervalMs As Int)
	StopTicking

	Network Library
	List of types:
	ServerSocket
	Permissions:
	Event: NewConnection (Successful As Boolean, NewSocket As Socket)
	Members:
	Close
	GetMyIP As String
	GetMyWifiIP As String
	Initialize (Port As Int, EventName As String)
	IsInitialized As Boolean
	Listen

	Socket
	Permissions:
	Event: Connected (Successful As Boolean)
	Members:
	Close
	Connect (Host As String, Port As Int, TimeOut As Int)
	Connected As Boolean [read only]
	Initialize (EventName As String)
	InputStream As java.io.InputStream [read only]
	IsInitialized As Boolean
	OutputStream As java.io.OutputStream [read only]
	ResolveHost (Host As String) As String
	TimeOut As Int

	UDPPacket
	Members:
	Data() As Byte [read only]
	Host As String [read only]
	HostAddress As String [read only]
	Initialize (Data() As Byte, Host As String, Port As Int)
	Initialize2 (Data() As Byte, Offset As Int, Length As Int, Host As String, Port As Int)
	IsInitialized As Boolean
	Length As Int [read only]
	Offset As Int [read only]
	Port As Int [read only]
	toString As String

	UDPSocket
	Permission: android.permission.INTERNET
	Event: PacketArrived (Packet As UDPPacket)
	Members:
	Close
	Initialize (EventName As String, Port As Int, ReceiveBufferSize As Int)
	IsInitialized As Boolean
	Port As Int [read only]
	Send (Packet As UDPPacket)
	toString As String

	NFC Library
	List of types:
	NdefRecord
	Members:
	GetAsTextType As String
	GetAsUriType As String
	GetPayload As Byte()
	IsInitialized As Boolean

	NFC
	Permissions:
	Members:
	GetNdefRecords (Intent1 As Intent) As List
	IsNdefIntent (Intent1 As Intent) As Boolean

	Phone Library
	CallItem
	Members:
	CachedName As String
	CallType As Int
	Date As Long
	Duration As Long
	Id As Int
	Number As String
	TYPE_INCOMING As Int
	TYPE_MISSED As Int
	TYPE_OUTGOING As Int

	CallLog
	Permissions:
	Members:
	GetAll (Limit As Int) As List
	GetById (Id As Int) As CallItem
	GetSince (Date As Long, Limit As Int) As List

	Contact
	Members:
	DisplayName As String
	EMAIL_CUSTOM As Int
	EMAIL_HOME As Int
	EMAIL_MOBILE As Int
	EMAIL_OTHER As Int
	EMAIL_WORK As Int
	GetEmails As Map
	GetPhones As Map
	GetPhoto As BitmapWrapper
	Id As Int
	LastTimeContacted As Long
	Name As String
	Notes As String
	PHONE_CUSTOM As Int
	PHONE_FAX_HOME As Int
	PHONE_FAX_WORK As Int
	PHONE_HOME As Int
	PHONE_MOBILE As Int
	PHONE_OTHER As Int
	PHONE_PAGER As Int
	PHONE_WORK As Int
	PhoneNumber As String
	Starred As Boolean
	TimesContacted As Int

	Contacts
	Permissions:
	Members:
	FindByMail (Email As String, Exact As Boolean) As List
	FindByName (Name As String, Exact As Boolean) As List
	GetAll As List
	GetById (Id As Int) As Contact

	Contacts2
	Permissions:
	Events:
	Members:
	FindByMail (Email As String, Exact As Boolean, IncludePhoneNumber As Boolean, IncludeNotes As Boolean) As List
	FindByName (Name As String, Exact As Boolean, IncludePhoneNumber As Boolean, IncludeNotes As Boolean) As List
	GetAll (IncludePhoneNumber As Boolean, IncludeNotes As Boolean) As List
	GetById (Id As Int, IncludePhoneNumber As Boolean, IncludeNotes As Boolean) As Contact
	GetContactsAsync (EventName As String, Query As String, Arguments() As String, IncludePhoneNumber As Boolean, IncludeNotes As Boolean)
	GetContactsByQuery (Query As String, Arguments() As String, IncludePhoneNumber As Boolean, IncludeNotes As Boolean) As List

	ContentChooser
	Event: Result (Success As Boolean, Dir As String, FileName As String)
	Members:
	Initialize (EventName As String)
	IsInitialized As Boolean
	Show (Mime As String, Title As String)

	Email
	Members:
	Attachments As List
	BCC As List
	Body As String
	CC As List
	GetHtmlIntent As Intent
	GetIntent As Intent
	Subject As String
	To As List

	LogCat
	Permissions:
	Event: LogCatData (Buffer() As Byte, Length As Int)
	Members:
	LogCatStart (Args() As String, EventName As String)
	LogCatStop

	PackageManager
	Members:
	GetApplicationIcon (Package As String) As Drawable
	GetApplicationIntent (Package As String) As IntentWrapper
	GetApplicationLabel (Package As String) As String
	GetInstalledPackages As List
	GetVersionCode (Package As String) As Int
	GetVersionName (Package As String) As String
	QueryIntentActivities (Intent1 As Intent) As List

	Phone
	Members:
	GetDataState As String
	GetMaxVolume (Channel As Int) As Int
	GetNetworkOperatorName As String
	GetNetworkType As String
	GetPhoneType As String
	GetResourceDrawable (ResourceId As Int) As Drawable
	GetRingerMode As Int
	GetSettings (Settings As String) As String
	GetSimOperator As String
	GetVolume (Channel As Int) As Int
	HideKeyboard (Activity As ActivityWrapper)
	IsAirplaneModeOn As Boolean
	IsNetworkRoaming As Boolean
	Manufacturer As String [read only]
	Model As String [read only]
	Product As String [read only]
	RINGER_NORMAL As Int
	RINGER_SILENT As Int
	RINGER_VIBRATE As Int
	SdkVersion As Int [read only]
	SendBroadcastIntent (Intent1 As Intent)
	SetMute (Channel As Int, Mute As Boolean)
	SetRingerMode (Mode As Int)
	SetScreenBrightness (Value As Float)
	SetScreenOrientation (Orientation As Int)
	SetVolume (Channel As Int, VolumeIndex As Int, ShowUI As Boolean)
	Shell (Command As String, Args() As String, StdOut As StringBuilder, StdErr As StringBuilder) As Int
	VOLUME_ALARM As Int
	VOLUME_MUSIC As Int
	VOLUME_NOTIFICATION As Int
	VOLUME_RING As Int
	VOLUME_SYSTEM As Int
	VOLUME_VOICE_CALL As Int

	PhoneAccelerometer
	PhoneCalls
	Permissions:
	Member:
	Call (PhoneNumber As String) As Intent

	PhoneEvents
	Events:
	AirplaneModeChanged (State As Boolean, Intent As Intent)
	BatteryChanged (Level As Int, Scale As Int, Plugged As Boolean, Intent As Intent)
	ConnectivityChanged (NetworkType As String, State As String, Intent As Intent)
	DeviceStorageLow (Intent As Intent)
	DeviceStorageOk (Intent As Intent)
	PackageAdded (Package As String, Intent As Intent)
	PackageRemoved (Package As String, Intent As Intent)
	PhoneStateChanged (State As String, IncomingNumber As String, Intent As Intent)
	ScreenOff (Intent As Intent)
	ScreenOn (Intent As Intent)
	SmsDelivered (PhoneNumber As String, Intent As Intent)
	SmsSentStatus (Success As Boolean, ErrorMessage As String, PhoneNumber As String, Intent As Intent)
	Shutdown (Intent As Intent)
	TextToSpeechFinish (Intent As Intent)
	UserPresent (Intent As Intent)
	Members:
	Initialize (EventName As String)
	InitializeWithPhoneState (EventName As String, PhoneId As PhoneId)
	StopListening

	PhoneId
	Permissions:
	Members:
	GetDeviceId As String
	GetLine1Number As String
	GetSimSerialNumber As String
	GetSubscriberId As String

	PhoneIntents
	Members:
	OpenBrowser (URI As String) As Intent
	PlayAudio (Dir As String, File As String) As Intent
	PlayVideo (Dir As String, File As String) As Intent

	PhoneOrientation
	PhoneSensors
	Event: SensorChanged (Values() As Float)
	Members:
	Initialize (SensorType As Int)
	Initialize2 (SensorType As Int, SensorDelay As Int)
	MaxValue As Float [read only]
	StartListening (EventName As String) As Boolean
	StopListening
	TYPE_ACCELEROMETER As Int
	TYPE_GYROSCOPE As Int
	TYPE_LIGHT As Int
	TYPE_MAGNETIC_FIELD As Int
	TYPE_ORIENTATION As Int
	TYPE_PRESSURE As Int
	TYPE_PROXIMITY As Int
	TYPE_TEMPERATURE As Int

	PhoneSms
	Permissions:
	Members:
	Send (PhoneNumber As String, Text As String)
	Send2 (PhoneNumber As String, Text As String, ReceiveSentNotification As Boolean, ReceiveDeliveredNotification As Boolean)

	PhoneVibrate
	Permissions:
	Members:
	Vibrate (TimeMs As Long)

	PhoneWakeState
	Permissions:
	Members:
	KeepAlive (BrightScreen As Boolean)
	PartialLock
	ReleaseKeepAlive
	ReleasePartialLock

	RingtoneManager
	Permissions:
	Event: PickerResult (Success As Boolean, URI As String)
	Members:
	AddToMediaStore (Dir As String, FileName As String, Title As String, IsAlarm As Boolean, IsNotification As Boolean, IsRingtone As Boolean, IsMusic As Boolean) As String
	DeleteRingtone (URI As String)
	GetDefault (Type As Int) As String
	SetDefault (Type As Int, URI As String)
	ShowRingtonePicker (EventName As String, Type As Int, IncludeSilence As Boolean, ChosenRingtone As String)
	TYPE_ALARM As Int
	TYPE_NOTIFICATION As Int
	TYPE_RINGTONE As Int

	Sms
	Members:
	Address As String
	Body As String
	Date As Long
	Id As Int
	PersonId As Int
	Read As Boolean
	ThreadId As Int
	Type As Int

	SmsInterceptor
	Permissions:
	Event: MessageReceived (From As String, Body As String) As Boolean
	Members:
	Initialize (EventName As String)
	Initialize2 (EventName As String, Priority As Int)
	StopListening

	SmsMessages
	Permissions:
	Members:
	GetAll As List
	GetAllSince (Date As Long) As List
	GetBetweenDates (StartDate As Long, EndDate As Long) As List
	GetByPersonId (PersonId As Int) As List
	GetByThreadId (ThreadId As Int) As List
	GetByType (Type As Int) As List
	GetUnreadMessages As List
	TYPE_DRAFT As Int
	TYPE_FAILED As Int
	TYPE_INBOX As Int
	TYPE_OUTBOX As Int
	TYPE_QUEUED As Int
	TYPE_SENT As Int
	TYPE_UNKNOWN As Int

	VoiceRecognition
	Event: Result (Success As Boolean, Texts As List)
	Members:
	Initialize (EventName As String)
	IsSupported As Boolean
	Language As String [write only]
	Listen
	Prompt As String [write only]

	PreferenceActivity Library
	List of types:
	PreferenceCategory
	Members:
	AddCheckBox (Key As String, Title As String, Summary As String, DefaultValue As Boolean)
	AddEditText (Key As String, Title As String, Summary As String, DefaultValue As String)
	AddList (Key As String, Title As String, Summary As String, DefaultValue As String, Values As List)
	AddPreferenceCategory (PreferenceCategory As PreferenceCategory)
	AddPreferenceScreen (PreferenceScreen As PreferenceScreen)
	CreateIntent As Intent
	Initialize (Title As String)

	PreferenceManager
	Members:
	ClearAll
	GetAll As Map
	GetBoolean (Key As String) As Boolean
	GetString (Key As String) As String
	GetUpdatedKeys As List
	SetBoolean (Key As String, Value As Boolean)
	SetString (Key As String, Value As String)

	PreferenceScreen
	Members:
	AddCheckBox (Key As String, Title As String, Summary As String, DefaultValue As Boolean)
	AddEditText (Key As String, Title As String, Summary As String, DefaultValue As String)
	AddList (Key As String, Title As String, Summary As String, DefaultValue As String, Values As List)
	AddPreferenceCategory (PreferenceCategory As PreferenceCategory)
	AddPreferenceScreen (PreferenceScreen As PreferenceScreen)
	CreateIntent As Intent
	Initialize (Title As String, Summary As String)

	RandomAccessFile Library
	List of types:
	AsyncStreams
	Events:
	NewData (Buffer() As Byte)
	Error
	Terminated
	Members:
	Close
	Initialize (In As java.io.InputStream, Out As java.io.OutputStream, EventName As String)
	InitializePrefix (In As java.io.InputStream, BigEndian As Boolean, Out As java.io.OutputStream, EventName As String)
	IsInitialized As Boolean
	OutputQueueSize As Int [read only]
	Write (Buffer() As Byte) As Boolean
	Write2 (Buffer() As Byte, Start As Int, Length As Int) As Boolean

	CompressedStreams
	Members:
	CompressBytes (Data() As Byte, CompressMethod As String) As Byte()
	DecompressBytes (CompressedData() As Byte, CompressMethod As String) As Byte()
	WrapInputStream (In As java.io.InputStream, CompressMethod As String) As InputStreamWrapper
	WrapOutputStream (Out As java.io.OutputStream, CompressMethod As String) As OutputStreamWrapper

	CountingInputStream
	Members:
	BytesAvailable As Int
	Close
	Count As Long
	Initialize (InputStream As java.io.InputStream)
	IsInitialized As Boolean
	ReadBytes (arg0() As Byte, arg1 As Int, arg2 As Int) As Int

	CountingOutputStream
	Members:
	Close
	Count As Long
	Flush
	Initialize (OutputStream As java.io.OutputStream)
	IsInitialized As Boolean
	ToBytesArray As Byte()
	WriteBytes (arg0() As Byte, arg1 As Int, arg2 As Int)

	RandomAccessFile
	Members:
	Close
	CurrentPosition As Long
	Flush
	Initialize (Dir As String, File As String, ReadOnly As Boolean)
	Initialize2 (Dir As String, File As String, ReadOnly As Boolean, LittleEndian As Boolean)
	Initialize3 (Buffer() As Byte, LittleEndian As Boolean)
	ReadBytes (Buffer() As Byte, StartOffset As Int, Length As Int, Position As Long) As Int
	ReadDouble (Position As Long) As Double
	ReadEncryptedObject (Password As String, Position As Long) As Object
	ReadFloat (Position As Long) As Float
	ReadInt (Position As Long) As Int
	ReadLong (Position As Long) As Long
	ReadObject (Position As Long) As Object
	ReadShort (Position As Long) As Short
	ReadSignedByte (Position As Long) As Byte
	ReadUnsignedByte (Position As Long) As Int
	Size As Long [read only]
	WriteByte (Byte As Byte, Position As Long)
	WriteBytes (Buffer() As Byte, StartOffset As Int, Length As Int, Position As Long) As Int
	WriteDouble (Value As Double, Position As Long)
	WriteEncryptedObject (Object As Object, Password As String, Position As Long)
	WriteFloat (Value As Float, Position As Long)
	WriteInt (Value As Int, Position As Long)
	WriteLong (Value As Long, Position As Long)
	WriteObject (Object As Object, Compress As Boolean, Position As Long)
	WriteShort (Value As Short, Position As Long)

	Serial Library
	List of types:
	BluetoothAdmin
	Permissions:
	Events:
	StateChanged (NewState As Int, OldState As Int)
	DiscoveryStarted / DiscoveryFinished
	DeviceFound (Name As String, MacAddress As String)
	Members:
	CancelDiscovery As Boolean
	Disable As Boolean
	Enable As Boolean
	Initialize (EventName As String)
	IsEnabled As Boolean
	IsInitialized As Boolean
	StartDiscovery As Boolean
	STATE_OFF As Int
	STATE_ON As Int
	STATE_TURNING_OFF As Int
	STATE_TURNING_ON As Int

	Serial
	Permissions:
	Event: Connected (Success As Boolean)
	Members:
	Address As String [read only]
	Connect (MacAddress As String)
	Connect2 (MacAddress As String, UUID As String)
	Connect3 (MacAddress As String, Port As Int)
	ConnectInsecure (Admin As BluetoothAdmin, MacAddress As String, Port As Int)
	Disconnect
	GetPairedDevices As Map
	Initialize (EventName As String)
	InputStream As java.io.InputStream [read only]
	IsEnabled As Boolean
	IsInitialized As Boolean
	Listen
	Listen2 (Name As String, UUID As String)
	ListenInsecure (Admin As BluetoothAdmin, Port As Int)
	Name As String [read only]
	OutputStream As java.io.OutputStream [read only]
	StopListening

	Sip Library
	List of types:
	Sip
	Permissions:
	Events:
	Registering
	RegistrationDone (ExpiryTime As Long)
	RegistrationFailed (ErrorCode As Int, ErrorMessage As String)
	CallEstablished
	CallEnded
	Calling
	CallError (ErrorCode As Int, ErrorMessage As String)
	CallRinging (IncomingCall As SipAudioCall)
	Members:
	AutoRegistration As Boolean [write only]
	Close
	DisplayName As String [write only]
	Initialize (EventName As String, User As String, Host As String, Password As String)
	Initialize2 (EventName As String, URI As String, Password As String)
	IsInitialized As Boolean [read only]
	IsSipSupported As Boolean [read only]
	IsVoipSupported As Boolean [read only]
	MakeCall (TargetUri As String, TimeoutSeconds As Int) As SipAudioCall
	OutboundProxy As String [write only]
	Port As Int [write only]
	ProfileName As String [write only]
	Protocol As String [write only]
	Register
	SendKeepAlive As Boolean [write only]

	SipAudioCall
	Members:
	AnswerCall (TimeoutSeconds As Int)
	EndCall
	IsInCall As Boolean [read only]
	IsInitialized As Boolean
	IsMuted As Boolean [read only]
	PeerUri As String [read only]
	SendDtmf (Code As Int)
	SpeakerMode As Boolean [write only]
	StartAudio
	ToggleMute

	SQL Library
	List of types:
	Cursor
	Members:
	Close
	ColumnCount As Int [read only]
	GetBlob (ColumnName As String) As Byte()
	GetBlob2 (Index As Int) As Byte()
	GetColumnName (Index As Int) As String
	GetDouble (ColumnName As String) As Double
	GetDouble2 (Index As Int) As Double
	GetInt (ColumnName As String) As Int
	GetInt2 (Index As Int) As Int
	GetLong (ColumnName As String) As Long
	GetLong2 (Index As Int) As Long
	GetString (ColumnName As String) As String
	GetString2 (Index As Int) As String
	IsInitialized As Boolean
	Position As Int
	RowCount As Int [read only]

	SQL
	Events:
	QueryComplete (Success As Boolean, Crsr As Cursor)
	NonQueryComplete (Success As Boolean)
	Members:
	AddNonQueryToBatch (Statement As String, Args As List)
	BeginTransaction
	Close
	EndTransaction
	ExecNonQuery (Statement As String)
	ExecNonQuery2 (Statement As String, Args As List)
	ExecNonQueryBatch (EventName As String)
	ExecQuery (Query As String) As Cursor
	ExecQuery2 (Query As String, StringArgs() As String) As Cursor
	ExecQueryAsync (EventName As String, Query As String, StringArgs() As String)
	ExecQuerySingleResult (Query As String) As String
	ExecQuerySingleResult2 (Query As String, StringArgs() As String) As String
	Initialize (Dir As String, FileName As String, CreateIfNecessary As Boolean)
	IsInitialized As Boolean
	TransactionSuccessful

	StringUtils Library
	List of types:
	StringUtils
	DecodeBase64 (Data As String) As Byte()
	DecodeUrl (Url As String, CharSet As String) As String
	EncodeBase64 (Data() As Byte) As String
	EncodeUrl (Url As String, CharSet As String) As String
	LoadCSV (Dir As String, FileName As String, SeparatorChar As Char) As List
	LoadCSV2 (Dir As String, FileName As String, SeparatorChar As Char, Headers As List) As List
	MeasureMultilineTextHeight (TextView1 As TextView, Text As String) As Int
	SaveCSV (Dir As String, FileName As String, SeparatorChar As Char, Table As List)
	SaveCSV2 (Dir As String, FileName As String, SeparatorChar As Char, Table As List, Headers As List)

	TTS Library
	TTS
	Event: Ready (Success As Boolean)
	Members:
	Initialize (EventName As String)
	IsInitialized As Boolean
	Pitch As Float [write only]
	Release
	SetLanguage (Language As String, Country As String) As Boolean
	Speak (Text As String, ClearQueue As Boolean)
	SpeechRate As Float [write only]
	Stop

	USB Library
	List of types:
	MtpDevice
	Members:
	Close
	Initialize (EventName As String, UsbDevice1 As UsbDevice)
	IsInitialized As Boolean
	Open (Connection As UsbDeviceConnection)
	test

	UsbAccessory
	Members:
	Close
	Description As String [read only]
	InputStream As InputStreamWrapper [read only]
	Manufacturer As String [read only]
	Model As String [read only]
	OutputStream As OutputStreamWrapper [read only]
	Serial As String [read only]
	URI As String [read only]
	Version As String [read only]

	UsbDevice
	Members:
	DeviceClass As Int [read only]
	DeviceId As Int [read only]
	DeviceName As String [read only]
	DeviceSubclass As Int [read only]
	GetInterface (Index As Int) As UsbInterface
	InterfaceCount As Int [read only]
	IsInitialized As Boolean
	ProductId As Int [read only]
	VendorId As Int [read only]

	UsbDeviceConnection
	Event: NewData (Request As UsbRequest, InDirection As Boolean)
	Members:
	BulkTransfer (Endpoint As UsbEndpoint, Buffer() As Byte, Length As Int, Timeout As Int) As Int
	CloseSynchronous
	ContinueListening
	ControlTransfer (RequestType As Int, Request As Int, Value As Int, Index As Int, Buffer() As Byte, Length As Int, Timeout As Int) As Int
	GetRawDescriptors As Byte()
	IsInitialized As Boolean
	Serial As String [read only]
	StartListening (EventName As String)
	StopListening

	UsbEndpoint
	Members:
	Address As Int [read only]
	Attributes As Int [read only]
	Direction As Int [read only]
	EndpointNumber As Int [read only]
	Interval As Int [read only]
	IsInitialized As Boolean
	MaxPacketSize As Int [read only]
	Type As Int [read only]

	UsbInterface
	Members:
	EndpointCount As Int [read only]
	GetEndpoint (Index As Int) As UsbEndpoint
	InterfaceClass As Int [read only]
	InterfaceProtocol As Int [read only]
	InterfaceSubclass As Int [read only]
	IsInitialized As Boolean

	UsbManager
	Members:
	GetAccessories As UsbAccessory()
	GetDevices As UsbDevice()
	HasAccessoryPermission (Accessory As UsbAccessory) As Boolean
	HasPermission (Device As UsbDevice) As Boolean
	Initialize
	OpenAccessory (Accessory As UsbAccessory)
	OpenDevice (Device As UsbDevice, Interface As UsbInterface, ForceClaim As Boolean) As UsbDeviceConnection
	RequestAccessoryPermission (Accessory As UsbAccessory)
	RequestPermission (Device As UsbDevice)
	USB_CLASS_APP_SPEC As Int
	USB_CLASS_AUDIO As Int
	USB_CLASS_CDC_DATA As Int
	USB_CLASS_COMM As Int
	USB_CLASS_CONTENT_SEC As Int
	USB_CLASS_CSCID As Int
	USB_CLASS_HID As Int
	USB_CLASS_HUB As Int
	USB_CLASS_MASS_STORAGE As Int
	USB_CLASS_MISC As Int
	USB_CLASS_PER_INTERFACE As Int
	USB_CLASS_PHYSICA As Int
	USB_CLASS_PRINTER As Int
	USB_CLASS_STILL_IMAGE As Int
	USB_CLASS_VENDOR_SPEC As Int
	USB_CLASS_VIDEO As Int
	USB_CLASS_WIRELESS_CONTROLLER As Int
	USB_DIR_IN As Int
	USB_DIR_OUT As Int
	USB_ENDPOINT_DIR_MASK As Int
	USB_ENDPOINT_NUMBER_MASK As Int
	USB_ENDPOINT_XFER_BULK As Int
	USB_ENDPOINT_XFER_CONTROL As Int
	USB_ENDPOINT_XFER_INT As Int
	USB_ENDPOINT_XFER_ISOC As Int
	USB_ENDPOINT_XFERTYPE_MASK As Int
	USB_INTERFACE_SUBCLASS_BOOT As Int
	USB_SUBCLASS_VENDOR_SPEC As Int
	USB_TYPE_CLASS As Int
	USB_TYPE_MASK As Int
	USB_TYPE_RESERVED As Int
	USB_TYPE_STANDARD As Int
	USB_TYPE_VENDOR As Int

	UsbRequest
	Members:
	Buffer() As Byte [read only]
	Initialize (Connection As UsbDeviceConnection, Endpoint As UsbEndpoint)
	IsInitialized As Boolean
	Name As String
	Queue (Buffer() As Byte, Length As Int)
	UsbEndpoint As UsbEndpoint [read only]

	XmlSax Library
	XML
	Sax
	List of types:
	Attributes
	Members:
	GetName (Index As Int) As String
	GetValue (Index As Int) As String
	GetValue2 (URI As String, Name As String) As String
	IsInitialized As Boolean
	Size As Int [read only]

	SaxParser
	Events:
	StartElement (URI As String, Name As String, Attributes As Attributes)
	EndElement (URI As String, Name As String, Text As StringBuilder)
	Members:
	Initialize
	Parents As List
	Parse (InputStream As java.io.InputStream, EventName As String)
	Parse2 (TextReader As java.io.Reader, EventName As String)

	4.3 Additional Libraries and Modules
	Introduction
	Additional libraries folder
	Telling the IDE where to find additional libraries
	List of Additional Libraries

	Additional Official Libraries
	Adiquity
	AdMob
	AnotherDatePicker class
	AsyncStreamsText
	Analytics
	Audio v1.31
	Camera
	CameraEx
	CustomListView
	DateUtils
	DBUtils
	DropBox Sync
	Excel
	GamePad
	Google Maps
	HttpServer
	HttpUtils2
	InAppBilling
	JSch
	JTidy
	KeyValueStore
	Licensing
	Net
	OAuth
	PayPal
	SearchView
	SMB
	Speak Button
	SQLCipher
	StateManager
	TableView
	Tap for Tap
	USB Host
	USBSerial
	XMLBuilder
	YouTube

	Additional User Libraries
	Introduction

	List of libraries
	Additional User Libraries
	Downloading User Libraries

	How to create a library
	How to Share your Library
	License
	To load or update a library
	Which ones does a project need?

	Dialogs Library
	Source
	Notes
	List of types:

	ColorDialog
	Members:
	ARGB (Alpha As Int) As Int
	Blue As Int
	Green As Int
	Red As Int
	Response As Int [read only]
	RGB As Int
	Show (title As String, Positive As String, Cancel As String, Negative As String, icon As Bitmap) As Int
	Version As Double [read only]

	ColorDialogHSV
	Members:
	ARGB (Alpha As Int) As Int
	Hue As Float
	Response As Int [read only]
	RGB As Int
	Saturation As Float
	Show (title As String, Positive As String, Cancel As String, Negative As String, icon As Bitmap) As Int
	Value As Float
	Version As Double [read only]

	ColorPickerDialog
	Members:
	ARGB (Alpha As Int) As Int
	GetPaletteAt (index As Int) As Int
	Palette() As Int
	ResetPalette
	Response As Int [read only]
	RGB As Int
	SetPaletteAt (index As Int, color As Int)
	Show (title As String, Positive As String, Cancel As String, Negative As String, icon As Bitmap) As Int
	Version As Double [read only]

	CustomDialog
	Members:
	AddView (view1 As View, left As Int, top As Int, width As Int, height As Int)
	Response As Int [read only]
	Show (Title As String, Positive As String, Cancel As String, Negative As String, icon As Bitmap) As Int
	Version As Double [read only]

	CustomDialog2
	Members:
	AddView (view1 As View, width As Int, height As Int)
	Response As Int [read only]
	Show (Title As String, Positive As String, Cancel As String, Negative As String, icon As Bitmap) As Int
	Version As Double [read only]

	DateDialog
	Members:
	DateTicks As Long
	DayOfMonth As Int
	Month As Int
	Response As Int [read only]
	SetDate (dayofmonth As Int, month As Int, year As Int)
	Show (Message As String, Title As String, Positive As String, Cancel As String, Negative As String, icon As Bitmap) As Int
	ShowCalendar As Boolean
	Version As Double [read only]
	Year As Int

	FileDialog
	Members:
	ChosenName As String
	FastScroll As Boolean
	FileFilter As String
	FilePath As String
	KeyboardPopUp As Boolean
	Response As Int [read only]
	ScrollingBackgroundColor As Int
	Show (Title As String, Positive As String, Cancel As String, Negative As String, icon As Bitmap) As Int
	ShowOnlyFolders As Boolean
	Version As Double [read only]

	InputDialog
	Members:
	Hint As String
	HintColor As Int
	Input As String
	INPUT_TYPE_DECIMAL_NUMBERS As Int
	INPUT_TYPE_NONE As Int
	INPUT_TYPE_NUMBERS As Int
	INPUT_TYPE_PHONE As Int
	INPUT_TYPE_TEXT As Int
	InputType As Int
	PasswordMode As Boolean
	Response As Int [read only]
	Show (message As String, title As String, Positive As String, Cancel As String, Negative As String, icon As Bitmap) As Int
	Version As Double [read only]

	NumberDialog
	Members:
	Decimal As Int
	DecimalChar As Char
	Digits As Int
	Number As Int
	Response As Int [read only]
	Show (title As String, Positive As String, Cancel As String, Negative As String, icon As Bitmap) As Int
	ShowSign As Boolean
	Version As Double [read only]

	TimeDialog
	Members:
	Hour As Int
	Is24Hours As Boolean
	Minute As Int
	Response As Int [read only]
	SetTime (hour As Int, minutes As Int, hours24 As Boolean)
	Show (Message As String, Title As String, Positive As String, Cancel As String, Negative As String, icon As Bitmap) As Int
	TimeTicks As Long
	Version As Double [read only]

	Reflection Library
	Source
	Notes
	List of types:
	Reflector
	Events:
	Example
	Members:
	CreateObject (type As String) As Object
	CreateObject2 (type As String, args() As Object, types() As String) As Object
	GetActivity As Activity
	GetActivityBA As BA
	GetArray (indices() As Int) As Object
	GetB4AClass (component As String) As Class
	GetContext As Context
	GetField (field As String) As Object
	GetField2 (fieldinfo As Field) As Object
	GetFieldInfo (field As String) As Field
	GetMethod (method As String, types() As String) As Method
	GetMostCurrent (component As String) As Object
	GetProcessBA (component As String) As BA
	GetProxy (interfacenames() As String, b4asubname As String) As Proxy
	GetPublicField (field As String) As Object
	GetStaticField (classname As String, field As String) As Object
	InvokeMethod (instance As Object, method As Method, args() As Object) As Object
	IsNull As Boolean [read only]
	RunMethod (method As String) As Object
	RunMethod2 (method As String, arg1 As String, type1 As String) As Object
	RunMethod3 (method As String, arg1 As String, type1 As String, arg2 As String, type2 As String) As Object
	RunMethod4 (method As String, args() As Object, types() As String) As Object
	RunPublicmethod (Method As String, Args() As Object, types() As String) As Object
	RunStaticMethod (classname As String, method As String, args() As Object, types() As String) As Object
	SetArray (indices() As Int, value As String, type As String)
	SetArray2 (indices() As Int, value As Object)
	SetField (field As String, value As String, type As String)
	SetField2 (field As String, value As Object)
	SetField3 (fieldinfo As Field, value As String, type As String)
	SetField4 (fieldinfo As Field, value As Object)
	SetOnClickListener (sub As String)
	SetOnCreateContextMenuListener (sub As String)
	SetOnFocusListener (sub As String)
	SetOnKeyListener (sub As String)
	SetOnLongClickListener (sub As String)
	SetOnTouchListener (sub As String)
	SetPublicField (field As String, value As String, type As String)
	SetPublicField2 (field As String, value As Object)
	SetStaticField (classname As String, field As String, value As String, type As String)
	SetStaticField2 (classname As String, field As String, value As Object)
	Target As Object
	TargetRank As Int()
	ToString As String
	TypeName As String [read only]
	Version As Double [read only]

	TabHostExtras Library
	getTabContentViewPadding (tabHost1 As TabHost) As RectWrapper
	getTabEnabled (tabHost1 As TabHost, index As Int) As Boolean
	getTabHeight (tabHost1 As TabHost) As Int
	getTabHostPadding (tabHost1 As TabHost) As RectWrapper
	getTabTextSize (tabHost1 As TabHost) As Float
	getTabVisibility (tabHost1 As TabHost, index As Int) As Boolean
	setTabContentViewPadding (tabHost1 As TabHost, left As Int, top As Int, right As Int, bottom As Int)
	setTabEnabled (tabHost1 As TabHost, enabled As Boolean)
	setTabEnabled2 (tabHost1 As TabHost, enabled As Boolean, index As Int)
	setTabGradientDrawable (tabHost1 As TabHost, orientation As String, color1 As Int, color2 As Int, cornerRadius As Float)
	setTabGradientDrawable2 (tabHost1 As TabHost, orientation As String, color1 As Int, color2 As Int, cornerRadius As Float())
	setTabHeight (tabHost1 As TabHost, tabHeight As Int)
	setTabHostPadding (tabHost1 As TabHost, left As Int, top As Int, right As Int, bottom As Int)
	setTabTextColor (tabHost1 As TabHost, Color As Int)
	setTabTextColorStateList (tabHost1 As TabHost, ColorStateListName As String)
	setTabTextSize (tabHost1 As TabHost, TextSize As Float)
	setTabTitle (tabHost1 As TabHost, Title As String, TabIndex As Int)
	setTabVisibility (tabHost1 As TabHost, visible As Boolean)
	setTabVisibility2 (tabHost1 As TabHost, visible As Boolean, index As Int)

	Index

