
Motivation
Interval trees

Priority search trees

Windowing queries

Computational Geometry

Lecture 14: Windowing queries

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees
Windowing queries

Windowing

Zoom in; re-center and zoom in; select by outlining

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees
Windowing queries

Windowing

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees
Windowing queries

Windowing

Given a set of n axis-parallel line
segments, preprocess them into a
data structure so that the ones that
intersect a query rectangle can be
reported efficiently

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees
Windowing queries

Windowing

How can a rectangle and an axis-parallel line segment
intersect?

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees
Windowing queries

Windowing

Essentially two types:

Segments whose endpoint lies in
the rectangle (or both endpoints)

Segments with both endpoints
outside the rectangle

Segments of the latter type always
intersect the boundary of the rectangle
(even the left and/or bottom side)

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees
Windowing queries

Windowing

Instead of storing axis-parallel
segments and searching with a
rectangle, we will:

store the segment endpoints and
query with the rectangle

store the segments and query
with the left side and the
bottom side of the rectangle

Note that the query problem is at
least as hard as rectangular range
searching in point sets

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees
Windowing queries

Windowing

Instead of storing axis-parallel
segments and searching with a
rectangle, we will:

store the segment endpoints and
query with the rectangle

store the segments and query
with the left side and the
bottom side of the rectangle

Question: How often might we
report the same segment?

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees
Windowing queries

Avoiding reporting the same segment several times

Use one representation of each segment, and store a mark bit
with it that is initially false

When we think we should report a segment, we first check its
mark bit:

- if false, then report it and set the mark bit to true

- otherwise, don’t do anything

After a query, we need to reset all mark bits to false, for the
next query (how?)

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees
Windowing queries

Windowing

Instead of storing axis-parallel segments and searching with a
rectangle, we will:

store the segment endpoints and query with the rectangle

use range tree (from Chapter 5)

store the segments and query with the left side and the
bottom side of the rectangle

need to develop data structure

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees
Windowing queries

Windowing

Current problem of our interest:

Given a set of horizontal (vertical) line
segments, preprocess them into a data
structure so that the ones intersecting a
vertical (horizontal) query segment can be
reported efficiently

Question: Do we also need to store
vertical segments for querying with vertical
segments?

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees
Windowing queries

Windowing

Simpler query problem:

What if the vertical query segment is a
full line?

Then the problem is essentially
1-dimensional

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval querying

Given a set I of n intervals on the real line, preprocess them
into a data structure so that the ones containing a query
point (value) can be reported efficiently

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Splitting a set of intervals

The median x of the 2n endpoints partitions the intervals into
three subsets:

Intervals Ileft fully left of x

Intervals Imid that contain (intersect) x

Intervals Iright fully right of x

x

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: recursive definition

The interval tree for I has a root node ν that contains x and

the intervals Ileft are stored in the left subtree of ν

the intervals Imid are stored with ν

the intervals Iright are stored in the right subtree of ν

The left and right subtrees are proper interval trees for Ileft
and Iright

How many intervals can be in Imid? How should we store Imid?

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: left and right lists

How is Imid stored?

x

Observe: If the query point is left of x, then only the left
endpoint determines if an interval is an answer

Symmetrically: If the query point is right of x, then only the
right endpoint determines if an interval is an answer

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: left and right lists

x

Make a list Lleft using the left-to-right order of the left
endpoints of Imid

Make a list Lright using the right-to-left order of the right
endpoints of Imid

Store both lists as associated structures with ν

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: storage

The main tree has O(n) nodes

The total length of all lists is 2n because each interval is
stored exactly twice: in Lleft and Lright and only at one node

Consequently, the interval tree uses O(n) storage

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval querying

Algorithm QueryIntervalTree(ν ,qx)
1. if ν is not a leaf
2. then if qx < xmid(ν)
3. then Traverse list Lleft(ν), starting at the interval

with the leftmost endpoint, reporting all the
intervals that contain qx. Stop as soon as
an interval does not contain qx.

4. QueryIntervalTree(lc(ν),qx)
5. else Traverse list Lright(ν), starting at the interval

with the rightmost endpoint, reporting all
the intervals that contain qx. Stop as soon
as an interval does not contain qx.

6. QueryIntervalTree(rc(ν),qx)

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query time

The query follows only one path in the tree, and that path
has length O(logn)

The query traverses O(logn) lists. Traversing a list with k′

answers takes O(1+ k′) time

The total time for list traversal is therefore O(log+k), with
the total number of answers reported (no answer is found
more than once)

The query time is O(logn)+O(logn+ k) = O(logn+ k)

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: query example

Algorithm ConstructIntervalTree(I)
Input. A set I of intervals on the real line
Output. The root of an interval tree for I
1. if I = /0
2. then return an empty leaf
3. else Create a node ν . Compute xmid, the median of the

set of interval endpoints, and store xmid with ν

4. Compute Imid and construct two sorted lists for Imid:
a list Lleft(ν) sorted on left endpoint and a list
Lright(ν) sorted on right endpoint. Store these two
lists at ν

5. lc(ν) ← ConstructIntervalTree(Ileft)
6. rc(ν) ← ConstructIntervalTree(Iright)
7. return ν

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying
Construction

Interval tree: result

Theorem: An interval tree for a set I of n intervals uses O(n)
storage and can be built in O(n logn) time. All intervals that
contain a query point can be reported in O(logn+ k) time,
where k is the number of reported intervals.

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Back to the plane

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Back to the plane

Suppose we use an interval tree on the x-intervals of the
horizontal line segments?

Then the lists Lleft and Lright are not suitable anymore to solve
the query problem for the segments corresponding to Imid

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Back to the plane

s1

s2

s3

s4

s5

s7

s8

s9

s10

s11

s12

s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Back to the plane

s1

s2

s3

s4

s5

s7

s8

s9

s10

s11

s12

s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s11, s12
s12, s11

s4, s3, s2
s4, s3, s2

s1
s1

q

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Back to the plane

s5

s7

s6

s7, s5, s6
s5, s6, s7

q

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Back to the plane

s7

s6

s7, s5, s6
s5, s6, s7

q

s5

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Back to the plane

s7

s6

{ s2, s5, s6, s7, s9, s22 }

q

s5

s9

s2

s22

{ s2, s5, s6, s7, s9, s22 }

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Back to the plane

s7

s6

{ s2, s5, s6, s7, s9, s22 }

q

s5

s9

s2

s22

{ s2, s5, s6, s7, s9, s22 }

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Back to the plane

s7

s6

{ s2, s5, s6, s7, s9, s22 }

q

s5

s9

s2

s22

{ s2, s5, s6, s7, s9, s22 }

q

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Segment intersection queries

We can use a range tree (chapter 5) as the associated
structure; we only need one that stores all of the endpoints,
to replace Lleft and Lright

Instead of traversing Lleft or Lright, we perform a query with
the region left or right, respectively, of q

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Segment intersection queries

s7

s6

q

s5

s9

s2

s22

q

{ s2, s5, s6, s7, s9, s22 }
all endpoints of

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Segment intersection queries

In total, there are O(n) range trees that together store 2n
points, so the total storage needed by all associated structures
is O(n logn)

A query with a vertical segment leads to O(logn) range
queries

If fractional cascading is used in the associated structures, the
overall query time is O(log2 n+ k)

Question: How about the construction time?

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

3- and 4-sided ranges

Considering the associated structure, we only need 3-sided
range queries, whereas the range tree provides 4-sided range
queries

Can the 3-sided range query problem be solved more efficiently
than the 4-sided (rectangular) range query problem?

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Scheme of structure

s7

s6

q

s5

s9

s2

s22

q

{ s2, s5, s6, s7, s9, s22 }
all right endpoints ofall left endpoints of

{ s2, s5, s6, s7, s9, s22 }

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Heap and search tree

A priority search tree is like a heap on x-coordinate and binary
search tree on y-coordinate at the same time

Recall the heap:

6

1

2

3 7

4

8 11

5

131014129

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Heap and search tree

A priority search tree is like a heap on x-coordinate and binary
search tree on y-coordinate at the same time

Recall the heap:

6

1

2

3 7

4

8 11

5

131014129

Report all values ≤ 4

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

If P = /0, then a priority search tree is an empty leaf

Otherwise, let pmin be the leftmost point in P, and let ymid be
the median y-coordinate of P\{pmin}

The priority search tree has a node ν that stores pmin and
ymid, and a left subtree and right subtree for the points in
P\{pmin} with y-coordinate ≤ ymid and > ymid

pmin
ymid

pmin
ymid

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p1

p8

p12

p14

p13

p10

p11

p9

p2

p3

p4

p7

p5

p6

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p1

p8

p12

p14

p13

p10

p11

p9

p2

p3

p4

p7

p5

p6

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p1

p8

p12

p14

p13

p10

p11

p9

p2

p3

p4

p7

p5

p6

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p1

p8

p12

p14

p13

p10

p11

p9

p2

p3

p4

p7

p5

p6

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p1

p8

p12

p14

p13

p10

p11

p9

p2

p3

p4

p7

p5

p6

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p1

p8

p12

p14

p13

p10

p11

p9

p2

p3

p4

p7

p5

p6

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p1

p8

p12

p14

p13

p10

p11

p9

p2

p3

p4

p7

p5

p6

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p1

p8

p12

p14

p13

p10

p11

p9

p2

p3

p4

p7

p5

p6

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p1

p8

p12

p14

p13

p10

p11

p9

p2

p3

p4

p7

p5

p6

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p1

p8

p12

p14

p13

p10

p11

p9

p2

p3

p4

p7

p5

p6

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p1

p8

p12

p14

p13

p10

p11

p9

p2

p3

p4

p7

p5

p6

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Query algorithm

Algorithm QueryPrioSearchTree(T,(−∞ : qx]× [qy : q′y])
1. Search with qy and q′y in T

2. Let νsplit be the node where the two search paths split
3. for each node ν on the search path of qy or q′y
4. do if p(ν) ∈ (−∞ : qx]× [qy : q′y] then report p(ν)
5. for each node ν on the path of qy in the left subtree of νsplit
6. do if the search path goes left at ν

7. then ReportInSubtree(rc(ν),qx)
8. for each node ν on the path of q′y in the right subtree of νsplit
9. do if the search path goes right at ν

10. then ReportInSubtree(lc(ν),qx)

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Structure of the query

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Structure of the query

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Query algorithm

ReportInSubtree(ν ,qx)
Input. The root ν of a subtree of a priority search tree and a

value qx

Output. All points in the subtree with x-coordinate at most qx

1. if ν is not a leaf and (p(ν))x ≤ qx

2. then Report p(ν)
3. ReportInSubtree(lc(ν),qx)
4. ReportInSubtree(rc(ν),qx)

This subroutine takes O(1+ k) time, for k reported answers

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Query algorithm

The search paths to y and y′ have O(logn) nodes. At each
node O(1) time is spent

No nodes outside the search paths are ever visited

Subtrees of nodes between the search paths are queried like a
heap, and we spend O(1+ k′) time on each one

The total query time is O(logn+ k), if k points are reported

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Definition
Querying

Priority search tree: result

Theorem: A priority search tree for a set P of n points uses
O(n) storage and can be built in O(n logn) time. All points
that lie in a 3-sided query range can be reported in
O(logn+ k) time, where k is the number of reported points

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Scheme of structure

s7

s6

q

s5

s9

s2

s22

q

{ s2, s5, s6, s7, s9, s22 }
all right endpoints ofall left endpoints of

{ s2, s5, s6, s7, s9, s22 }

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Storage of the structure

Question: What are the storage requirements of the
structure for querying with a vertical segment in a set of
horizontal segments?

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Query time of the structure

Question: What is the query time of the structure for
querying with a vertical segment in a set of horizontal
segments?

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Result

Theorem: A set of n horizontal line segments can be stored in
a data structure with size O(n) such that intersection queries
with a vertical line segment can be performed in O(log2 n+ k)
time, where k is the number of segments reported

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Result

Recall that the windowing problem is solved with a
combination of a range tree and the structure just described

Theorem: A set of n axis-parallel line segments can be stored
in a data structure with size O(n logn) such that windowing
queries can be performed in O(log2 n+ k) time, where k is the
number of segments reported

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Interesting

Just to confuse you (even more)....

A priority search tree can be used to solve the interval
stabbing problem (store 1-dim intervals, query with a point)
(!?)

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Transformation

Let I be a set of n intervals. Transform each 1-dim interval
[a,b] to the point (a,b) in the plane

A query with value q is transformed to the 2-sided range
(−∞,q]× [q,+∞)

Correctness: q ∈ [a,b] if and only if (a,b) ∈ (−∞,q]× [q,+∞)

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Transformation

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Example query

(8,8)

8

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Example query

(26,26)

26

Computational Geometry Lecture 14: Windowing queries

Motivation
Interval trees

Priority search trees

Food for thought

Question: Can an interval tree be used (after some
transformation) to answer 3-sided range queries?

Question: Can the priority search tree be used as the main
tree for the structure that queries with a vertical line segment
in horizontal line segments?

Question: Can the priority search tree or the interval tree be
augmented for interval stabbing counting queries?

Computational Geometry Lecture 14: Windowing queries

	Motivation
	Windowing queries

	Interval trees
	Definition
	Querying
	Construction

	
	Priority search trees
	Definition
	Querying

	

