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Preface
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 “I was shocked to see a student’s report on performance 

comparisons between support vector machines (SVMs) and fuzzy 

classifiers that we had developed with our best endeavors. 

Classification performance of our fuzzy classifiers was 

comparable, but in most cases inferior, to that of support vector 

machines.”

“Professor Shigeo Abe”, “Kobe University, Kobe, Japan”, 

“Support Vector Machines for Pattern Classification”, “Springer-

Verlag London Limited 2005”.



Introduction
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 Two general approaches for classification: 
 parametric approach:

a priori knowledge of data distributions is assumed.
 nonparametric approach:

no a priori knowledge is assumed.

 Neural networks, fuzzy systems, and support vector 

machines are nonparametric classifiers. 

 SVM is one of the supervised learning algorithms.



Linear SVM:
Linearly Separable Case
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Two-Class Classification Problem

 Consider a two-class, linearly separable classification 

problem.

 Let {x1, ..., xn} be our training data set.

 Define an indicator vector y:

 There is a hyperplane which separates all data: 

 Decision function: 
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 Many possible choices of w and b

 but there is only one that 

maximizes the margin. (the 

optimal separating hyper plane)
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 Because the training data are linearly 

separable, no training data satisfy

 Thus, to control separability, we consider the 

following inequalities:

 Here, 1 and −1 can be: constant a  and −a.

 Equation is equivalent to:
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 The generalization region for the 

decision function:

 Thus there are an infinite number of 

decision functions, which are 

separating hyperplanes.

 the hyperplane with the maximum 

margin is called the optimal separating 

hyperplane.
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Linear SVM Mathematically

What we know:

 w . x+ + b = +1 

 w . x- + b = -1 

 w . (x+-x-) = 2 
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 Distance between and 

is 

 Maximizing the margin = minimizing

 Therefore, the optimal separating hyperplane can 

be obtained by the following quadratic problem:
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Because of the quadratic problem with the inequality constraints, the value of the

objective function is unique (there is one global extremum point).This is one of the

advantages over multilayer neural networks with numerous local minima.
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?

How can we solve this 

problem? 
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Lagrangian Function

 Suppose we want to: 

 minimize f(x)

 subject to constrained g(x) ≥0

 We define the unconstrained Primal

Lagrangian function:

 Where α≥0 is the Lagrange multiplier.

 Then we find the stationary (saddle)

point of L with respect to x and α

(a0).
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Saddle Point

 A saddle point on the 

graph of z=x2−y2 (in 

red)
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 Saddle Points: 

Lagrangian L has to be minimized with 

respect to w and b, and maximized with 

respect to αi (αi ≥ 0):

 It satisfies the following Karush-Kuhn-

Tucker (KKT) conditions: 
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Substituting these equations into a primal Lagrangian 

L(w, b, α) , we change to the dual Lagrangian L(α):

 
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max min ( ,b, )
a w

wL a



 We can find αi by training

 Data that are associated with positive 

αi are Support Vectors for Classes 1 

and 2.

 As before we had:

 αi≠0 only if Xi is a support vector.

 Where Xi is a support vector.

 It is better to take the average, among 

the support vectors :
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Formulation Summary
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Example

 Example: Consider a very simple linearly separable one-

dimensional case:

 X1=-1  ,  X2=0  ,  X3=1

 Because α1≥0 and α3≥0,  L(α)is maximized when α3=0 (X3 

is not a support vector):
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 Therefore X1 , X2 are Support Vectors.

 Decision boundary:
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Lagrangian Matrix Form

 Dual Lagrangian can be rewritten into matrix 

format as:
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MATLAB Function

 Function z=quadprog(H,f,[],[],a,K,Kl,Ku) in 

MATLAB solves the problem:

 z = α

 H = YRY

 f = −1

 a = yt

 K = 0

 Kl = 0 and Ku = C

21






 

t t

l u

1
min  z Hz f z

2

 az K
s.t    

K z K

0 5

0

0

t t

d

t

i

max  L ( ) . YRY f

 y  
s.t    

       i=1,...,n

a a a a

a

a

  

 






Linear SVM
Linearly Non-Separable Case
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Linearly Non-Separable

 What if the problem is not separable in 

feature space? 

 We allow “Error” in classification. (ξi ≥ 0)

 So the separating hyperplane must satisfy:

 The value of  C is a trade-off between 

maximization of the margin and 

minimization of the errors and is 

determined by user.
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 Introducing the nonnegative Lagrange 

multipliers αi and βi, Primal Lagrangian 

function is:

 As befor, the problem is solved by the 

saddle point of the Lagrange functional 

(Lagrangian): 
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 For the optimal solution, the following KKT 

conditions are satisfied:

 Substituting these equations into a primal 

variables Lagrangian L(w, b, ξ,α,β) , we 

change to the dual variables Lagrangian 

L(α):
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 The solution to this maximization problem is 

identical to the separable case except for a 

modification of the bounds of the Lagrange 

multipliers.

 i approximates the number of misclassified 

samples.

 i are “slack variables” in optimization

 Note that i=0 if there is no error for xi

 i is an upper bound of the number of errors

 The penalty parameter C, which is now the 

upper bound on αi, is determined by the user.
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MATLAB

Example

svm_iris.m
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SVM

Non-Linear Case
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Non-Linear SVM

 What if the training set is not linearly 
separable?

 The input space can be mapped to higher-
dimensional feature space (Φ), where the 
training set is separable.

 The solution for the linear case:

 For the nonlinear classifier (in the hilbert

space):
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Φ:  x → φ(x)

Input Space Feature Space (Hilbert space)



Non-Linear SVM

 Dual Lagrange function:

 Introducing the Kernel Function we’ll have:

 Change all inner products to kernel functions

 Dual  Lagrangian problem:
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Kernel Trick

φ(xi)?
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Kernel Trick
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Matrix Format

 Matrix format for nonlinear dual program:
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Example

 Example: Consider a very simple 

nonlinearly separable one-dimensional 

case with:



 C=2
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Summary: Steps for Classification

 Prepare the pattern matrix.

 Select the kernel function to use.

 Select the parameter of the kernel function and the value 
of C.

 You can use the values suggested by the SVM software, or 
you can set apart a validation set to determine the values of 
the parameter.

 Execute the training algorithm and obtain the ai .

 Unseen data can be classified using the ai and the 
support vectors.
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Strengths and Weaknesses of SVM

 Strengths

 Training is relatively easy 

 No local optimal, unlike in neural networks

 It scales relatively well to high dimensional data

 Tradeoff between classifier complexity and error can 

be controlled explicitly

 Weaknesses

 Need to choose a “good” kernel function.
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SVM 

Applications
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Handwriting Recognition
41

 60,000 training 

examples, and10,000 

test examples, 28x28.

 Linear SVM has around 

8.5% test error.

 Polynomial SVM has 

around 1% test error.
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Other applications

 Face Detection

 Face Recognition

 Text region Detection

 3D object recognition

 Antenna array processing

 ….
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