

Formal Languages & Automata

Ali Shakiba Vali-e-Asr University of Rafsanjan <ali.shakiba@vru.ac.ir>

Chapter 2: Finite Automata

Automata

- An automaton is an abstract model of a digital computer.
 - Plural: automata

Transition Function

- The transition function determines the next state of the control unit based on:
 - the current state
 - the current input symbol
 - information currently in the temporary storage

Automaton Configuration

- A configuration refers to a particular state of:
 - the control unit
 - the input
 - the temporary storage
- The transition of the automaton from one configuration to the next is a move.

Acceptors and Transducers

- An automaton whose output is limited to "yes" or "no" for any given input is an acceptor.
 - It either accepts the input string or not.
- An automaton that can produce any string of symbols as output is a transducer.

Deterministic vs. Nondeterministic

• Deterministic automaton

• Each move is uniquely determined by the current configuration.

Nondeterministic automaton

• At each point, the automaton can have several possible moves

The relationship between deterministic and nondeterministic automata will play a significant role in our study of formal languages and computation.

Deterministic Acceptors

• A deterministic finite acceptor (DFA) is the quintuple $M = (Q, \Sigma, \delta, q_0, F)$

where:

- Q is the finite set of internal states
- Σ is the input alphabet, a finite set of symbols
- $\delta: Q \times \Sigma \to Q$ is a total transition function
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is a set of final states

Total function: A function that is defined for all inputs of the right type (*i.e.*, for all inputs from a given domain).

DFA Operation

- At the initial time:
 - In internal state q_0
 - Input mechanism on the leftmost input symbol
- During each move:
 - Consume one input symbol by advancing the input one symbol to the right.

DFA Operation, *cont'd*

- The transition from one internal state to another is governed by the transition function
- Example:
 - If the automaton is at the initial state q_0 , and
 - If the input symbol is *a*, and
 - If $\delta(q_0, a) = q_1$, then the DFA will go to state q_1 .
- We can visualize and represent a finite automaton with a transition graph.

Transition Graph Example

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$$

where δ is given by

$$\begin{aligned} \delta(q_0, 0) &= q_0 & \delta(q_0, 1) = q_1 \\ \delta(q_1, 0) &= q_0 & \delta(q_1, 1) = q_2 \\ \delta(q_2, 0) &= q_2 & \delta(q_2, 1) = q_1 \end{aligned}$$

DFA Operation, *cont'd*

- The automaton accepts its input string if:
 - The automaton reaches the end of the input string.
 - And it's in one of its final states.
- Otherwise, the automaton rejects the string.

Transition Graph Example, *cont'd*

Will this automaton accept or reject?

JFLAP demo

Extended Transition Function

 $\delta^*\!\!:\! Q \times \Sigma^* \to Q$

- Transition on a string rather than a single symbol.
 - Do a regular transition on each symbol of the string.
- Give the state after reading the entire string.

State Transition Matrix

A Practical Application

- You are given the text of the novel *War and Peace* as a plain text file.
- Write a program to search the text for these names:
 - Boris Drubetskoy
 - Joseph Bazdeev
 - Makar Alexeevich
- For each name found, print the line number and the position within the line.
 - Line and position numbers start with 1

Mehr, 13th, 1395

- A name can span two lines.
 - First name at the end of one line.
 - Last name at the beginning of the next line.
- How efficiently can this program run?
 - Run and time the program 10 times and time each run.
 - Print the minimum, maximum, and median times (in milliseconds).
 - To compare among different machines, also calculate the "performance number":

(run time in ms) × (processor speed in GHz)
 (lower performance numbers are better)

• State transition diagram to recognize "Boris" and "Makar":

The state transition matrix

		В	Μ	а	i	k	ο	r	S
0	0	1	5	0	0	0	0	0	0
1	0	0	0	0	0	0	2	0	0
2	0	0	0	0	0	0	0	3	0
3	0	0	0	0	4	0	0	0	0
4	0	0	0	0	0	0	0	0	
5	0	0	0	6	0	0	0	0	0
6	0	0	0	0	0	7	0	0	0
7	0	0	0	8	0	0	0	0	0
8	0	0	0	0	0	0	0		0

private static final int MATRIX[][] = { // Starting state 0 other,A,B,D,J,M,a,b,c,d,e,h,i,k,l,o,p,r,s,t,u,v,x,y,z,sp,\n */ /* // Boris Drubetskoy /* other,A,B,D,J,M,a,b,c,d,e,h,i,k,l,o,p,r,s,t,u,v,x,y,z,sp,\n */ };

21

switch (ch)	{		
case 'A	':	return	1;
case 'B	':	return	2;
case 'D	':	return	3;
case 'J	':	return	4;
case 'M	':	return	5;
case 'a	':	return	6;
case 'b	':	return	7;
case 'c	':	return	8;
case 'd	':	return	9;
case 'e	':	return	10;
case 'h	':	return	11;
case 'i	':	return	12;
case 'k	':	return	13;
case 'l	':	return	14;
case 'o	':	return	15;
case 'p	':	return	16;
case 'r	':	return	17;
case 's	':	return	18;
case 't	':	return	19;
case 'u	':	return	20;
case 'v	':	return	21;
case 'x	':	return	22;
case 'y	':	return	23;
case 'z	':	return	24;
case '	':	return	25;
case '\	n' :	return	26;
default	:	return	0;

Languages and DFAs

- Recall that an acceptor is an automaton that either accepts or rejects input strings.
- The set of all strings that the DFA
 M = (Q, Σ, δ, q₀, F)
 accepts constitutes the language

 $L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}$

• The DFA represents the language's rules.

DFA and Associated Transition Graph

• If we have a DFA

$$M = (Q, \Sigma, \delta, q_0, F)$$

and its associated transition graph G_M , can we treat them both equally?

- Theorem 2.1 of the textbook basically says yes.
 - For every q_i , q_j in Q, and w in Σ^+ :
 - $\delta^*(q_i, w) = q_j$ if and only if there is a path labeled w in G_M from q_i to q_j .
 - Proof by induction on the length of *w*.

DFA Example #1

- Create a DFA that accepts all strings on {0, 1} that begin and end with the same symbol.
- How can an automaton remember what was the beginning symbol of a string?
- Have a different set of states depending on the first symbol!

DFA Example #1, *cont'd*

DFA Example #2

- Create a DFA that accepts all strings on {0, 1} that do <u>not</u> contain the substring 001.
- The basic idea is that if the automaton ever reads 001, it should be in a non-final state.
 - Actually, that state should be a trap.
- How can the automaton remember the previous two symbols whenever it reads a 1?

DFA Example #2, *cont'd*

- Again, we must accomplish this with states:
 - A state for having read a 0.
 - A state for having read 00.
 - A state for having read 001.
- We can label the states accordingly.

