

Formal Languages
& Automata

Ali Shakiba

Vali-e-Asr University of Rafsanjan

<ali.shakiba@vru.ac.ir>

Chapter 2: Finite Automata

3

Automata

• An automaton is an abstract model of a digital computer.
• Plural: automata

4

Transition Function

• The transition function
determines the next state of the
control unit based on:

• the current state
• the current input symbol
• information currently in the

temporary storage

5

Automaton Configuration

• A configuration refers to a particular state of:
• the control unit
• the input
• the temporary storage

• The transition of the automaton from one configuration to the next is a
move.

6

Acceptors and Transducers

• An automaton whose output is limited to “yes” or “no” for any given
input is an acceptor.

• It either accepts the input string or not.

• An automaton that can produce any string of symbols as output is a
transducer.

7

Deterministic vs. Nondeterministic

• Deterministic automaton
• Each move is uniquely determined by the current configuration.

• Nondeterministic automaton
• At each point, the automaton can have several possible moves

8

The relationship between deterministic and nondeterministic
automata will play a significant role in our study of formal
languages and computation.

Deterministic Acceptors

• A deterministic finite acceptor (DFA) is the quintuple
ܯ = (ܳ, Σ, ,ߜ ,଴ݍ (ܨ

where:
• Q is the finite set of internal states

• Σ is the input alphabet, a finite set of symbols
• ܳ:ߜ × Σ → ܳ is a total transition function
• ଴ݍ ∈ ܳ is the initial state
• ܨ ⊆ ܳ is a set of final states

9

Total function: A function that is defined for all inputs
of the right type (i.e., for all inputs from a given
domain).

DFA Operation

• At the initial time:
• In internal state q0
• Input mechanism on the leftmost input symbol

• During each move:
• Consume one input symbol by advancing the input one symbol to the right.

10

DFA Operation, cont’d

• The transition from one internal state to another is governed by the
transition function

• Example:
• If the automaton is at the initial state 0ݍ, and
• If the input symbol is ܽ, and
• If ߜ ,଴ݍ ܽ = .1ݍ ଵ, then the DFA will go to stateݍ

• We can visualize and represent a finite automaton with a transition
graph.

11

Transition Graph Example

where δ is given by

12

δ(q0, 0) = q0 δ(q0, 1) = q1

δ(q1, 0) = q0 δ(q1, 1) = q2

δ(q2, 0) = q2 δ(q2, 1) = q1

M = ({q0, q1, q2}, {0, 1}, δ, q0, {q1})

initial vertex final vertex

DFA Operation, cont’d

• The automaton accepts its input string if:

• The automaton reaches the end of the input string.
• And it’s in one of its final states.

• Otherwise, the automaton rejects the string.

13

Transition Graph Example, cont’d

Will this automaton accept or reject?

14

 01
 00
 101
 0111

 11001
 100
 1100

JFLAP demo

Extended Transition Function

:∗ߜ ܳ × Σ∗ → ܳ

• Transition on a string rather than a single symbol.
• Do a regular transition on each symbol of the string.

• Give the state after reading the entire string.

15

State Transition Matrix

16

a b
q0 q0 q1

q1 q2 q2

q2 q2 q2

trap state

A Practical Application

• You are given the text of the novel War and Peace as a plain text file.

• Write a program to search the text for these names:
• Boris Drubetskoy
• Joseph Bazdeev
• Makar Alexeevich

• For each name found, print the line number and the position within
the line.

• Line and position numbers start with 1

17
Mehr, 13th, 1395Mehr, 13th, 1395

A Practical Application, cont’d

• A name can span two lines.
• First name at the end of one line.
• Last name at the beginning of the next line.

• How efficiently can this program run?
• Run and time the program 10 times and time each run.
• Print the minimum, maximum, and median times (in milliseconds).
• To compare among different machines, also calculate the “performance

number”:
(run time in ms) × (processor speed in GHz)

(lower performance numbers are better)

18

A Practical Application, cont’d

• State transition diagram to recognize “Boris” and “Makar”:

19

0 1 2 3 4

5 6 7 8

B o r i s

M

a k a r

Recognize
“Boris”

Recognize
“Makar”

A Practical Application, cont’d

20

B M a i k o r s

0 0 1 5 0 0 0 0 0 0

1 0 0 0 0 0 0 2 0 0

2 0 0 0 0 0 0 0 3 0

3 0 0 0 0 4 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 6 0 0 0 0 0

6 0 0 0 0 0 7 0 0 0

7 0 0 0 8 0 0 0 0 0

8 0 0 0 0 0 0 0 0

The state transition matrix

A Practical Application, cont’d

21

private static final int MATRIX[][] = {

// Starting state 0

/* other,A,B,D,J,M,a,b,c,d,e,h,i,k,l,o,p,r,s,t,u,v,x,y,z,sp,\n */
/* 0 */ {0,0,1,0,16,29,0},

// Boris Drubetskoy

/* other,A,B,D,J,M,a,b,c,d,e,h,i,k,l,o,p,r,s,t,u,v,x,y,z,sp,\n */
/* 1 */ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0},
/* 2 */ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0},
/* 3 */ {0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
/* 4 */ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0},
/* 5 */ {0,6,6},
/* 6 */ {0,0,0,7,0},
/* 7 */ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0},
/* 8 */ {0,9,0,0,0,0,0,0},
/* 9 */ {0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
/* 10 */ {0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
/* 11 */ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0},
/* 12 */ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0},
/* 13 */ {0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0},
/* 14 */ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,0,0,0},
/* 15 */ {0,BD,0,0,0},

…
};

A Practical Application, cont’d

22

private int index(char ch)
{

switch (ch) {
case 'A' : return 1;
case 'B' : return 2;
case 'D' : return 3;
case 'J' : return 4;
case 'M' : return 5;
case 'a' : return 6;
case 'b' : return 7;
case 'c' : return 8;
case 'd' : return 9;
case 'e' : return 10;
case 'h' : return 11;
case 'i' : return 12;
case 'k' : return 13;
case 'l' : return 14;
case 'o' : return 15;
case 'p' : return 16;
case 'r' : return 17;
case 's' : return 18;
case 't' : return 19;
case 'u' : return 20;
case 'v' : return 21;
case 'x' : return 22;
case 'y' : return 23;
case 'z' : return 24;
case ' ' : return 25;
case '\n' : return 26;
default : return 0;

}
}

Languages and DFAs

• Recall that an acceptor is an automaton that either accepts or rejects
input strings.

• The set of all strings that the DFA
ܯ = (ܳ, Σ, ,ߜ ,଴ݍ (ܨ

accepts constitutes the language
ܮ ܯ = ݓ ∈ Σ∗ | ߜ∗ ,଴ݍ ݓ ∈ ܨ

• The DFA represents the language’s rules.

23

DFA and Associated Transition Graph

• If we have a DFA
ܯ = (ܳ, Σ, ,ߜ ,଴ݍ (ܨ

and its associated transition graph ܯܩ, can we treat them both equally?

• Theorem 2.1 of the textbook basically says yes.
• For every ݆ݍ ,݅ݍ in ܳ, and w in Σା:
• ∗ߜ ௜ݍ , ݓ = ௝ݍ if and only if there is a path labeled ݓ in ܯܩ from ݅ݍ to ݆ݍ.
• Proof by induction on the length of ݓ.

24

DFA Example #1

• Create a DFA that accepts all strings on {0, 1} that begin and end with
the same symbol.

• How can an automaton remember what was the beginning symbol of a
string?

• Have a different set of states depending on the first symbol!

25

DFA Example #1, cont’d

26

S

1

0

p1

1

1

q1

0

0

po

0

Starts and ends
with 0

0

qo

1

Starts and ends
with 1

1

DFA Example #2

• Create a DFA that accepts all strings on {0, 1} that do not contain the
substring 001.

• The basic idea is that if the automaton ever reads 001, it should be in a
non-final state.

• Actually, that state should be a trap.

• How can the automaton remember the previous two symbols
whenever it reads a 1?

27

DFA Example #2, cont’d

• Again, we must accomplish this with states:
• A state for having read a 0.
• A state for having read 00.
• A state for having read 001.

• We can label the states accordingly.

28

