

Formal Languages
& Automata

Ali Shakiba
Vali-e-Asr University of Rafsanjan

<ali.shakiba@vru.ac.ir>

Chapter 2: Finite Automata

Automata

* An automaton is an abstract model of a digital computer.

e Plural: automata

Input file

Control unit

U

Qutput

Storage

Transition Function

e The transition function
determines the next state of the
control unit based on:

* the current state
* the current input symbol

* information currently in the
temporary storage

Input file

Control unit

1]
Qutput

Storage

Automaton Configuration

* A configuration refers to a particular state of:
* the control unit
* the input
* the temporary storage

* The transition of the automaton from one configuration to the next is a
move.

Acceptors and Transducers

* An automaton whose output is limited to “yes” or “no” for any given
input 1s an acceptor.
* It either accepts the input string or not.

* An automaton that can produce any string ot symbols as output is a
transducer.

Deterministic vs. Nondeterministic

* Deterministic automaton

* Each move is uniquely determined by the current configuration.

* Nondeterministic automaton

* At each point, the automaton can have several possible moves

The relationship between deterministic and nondeterministic

automata will play a significant role in our study of formal
languages and computation.

Deterministic Acceptors

* A deterministic finite acceptor (DFA) is the quintuple
M = (QJZJngO!F)
where:

* () is the finite set of internal states

*). is the input alphabet, a finite set of symbols
* 0:Q XX — (@ is a total transition function

* (o € Q is the initial state

« I C (Q is a set of final states

Total function: A function that is defined for all inputs
of the right type (i.e., for all inputs from a given

domain).

DFA Operation

e At the initial time:

* In internal state g,
* Input mechanism on the leftmost input symbol

* During each move:
* Consume one input symbol by advancing the input one symbol to the right.

DFA Operation, cont'd

* The transition from one internal state to another is governed by the
transition function

* Example:
* If the automaton is at the initial state q,, and
* If the input symbol is a, and
* If §(qg, a) = g4, then the DFA will go to state q;.

* We can visualize and represent a finite automaton with a transition

graph.

Transition Graph Example

0 0
P Y
| 0 1
.;i"l ilxv_a"' > “’ P \
—{ %) W9)) L 75

o iy AR A

initial vertex 1 final vertex T

M= ({90, 91> 92}, 10, 1}, 0, g0, 191})

where 0 is given by

(g0, 0) =g, (g0, 1) =g

5(Q29 O) - Q2 5(Q29 1) - QI

12

DFA Operation, cont'd

* The automaton accepts its input string if:

* The automaton reaches the end of the input string.
* And it’s in one of its final states.

* Otherwise, the automaton rejects the string.

Transition Graph Example, cont'd

Will this automaton accept or reject?

01 11001
00 100
101 1100
0111

JFLAP demo

14

Extended Transition Function
6§ :Q0 XX >0

* Transition on a string rather than a single symbol.
* Do a regular transition on each symbol of the string.

* Give the state after reading the entire string.

State Transition Matrix

o

';'r;j |

trap state

90

90

qi

q

4>

4>

q>

4>

q>

16

A Practical Application

* You are given the text of the novel War and Peace as a plain text file.

* Write a program to search the text for these names:
* Boris Drubetskoy

* Joseph Bazdeev
* Makar Alexeevich

* For each name found, print the line number and the position within
the line.

* Line and position numbers start with 1

Mehr, 13t, 1395 i

A Practical Application, cont'd

* A name can span two lines.
* First name at the end of one line.
* Last name at the beginning of the next line.

* How efticiently can this program run?
* Run and time the program 10 times and time each run.
* Print the minimum, maximum, and median times (in milliseconds).

* To compare among different machines, also calculate the “performance
number”:

(run time in ms) X (processor speed in GHz)
(lower performance numbers are better)

A Practical Application, cont'd

* State transition diagram to recognize “Boris” and “Makar”:

))8
N)t ()

Recognize
“Boris”

Recognize
“Makar”

19

A Practical Application, cont'd

The state transition matrix

|8 mlaliklolr s
1 5 0 0 0 0O O O

0 0
1 O 0 0 0 O O 2 0 O
>(1 o >® r \G\ i >/D s >(DRecognize
Yoo A RS L “Boris” 2 0O 0 0 0O 0O O O 3 O
3 O 0 0 0O 4 0 O 0 O
Recognize 4 O 0 0 0O o o 0 O
. “Makar”
5 O 0 0 6 0O 0O O O O
6 O 0 0 0o 0O 7 O 0 O
7 O 0 0 8 0 O O 0 O
8 O 0 0 0 0 0 O 0

A Practical Application, cont'd

{

private static final int MATRIX[][]

// Starting state 0

// Boris Drubetskoy

S~ ~ ~ " . " ~OOOOOO -~

>PoOoOoocooocoooo -~

S~ " ~ " " " "OOOOOO -~

T OO0OO0OO0OOCOOOO -~

~

~

~

S~ ~ ~ ~ ~ ~ . ~OOQN O

P OoOoOoocooocooo -~

S~ ~ N~~~ o~ ~O

NOoOOoOOoOIIMNMOOOoOOoO -~
S ~ s N s N o~ s~ ~O
HOMOOOOOMWMO -~
S~ ~ N s~ s~ ~O

OO0 O0OO0OO0OO0OOO -~

NS -)

ONOOOOOOO -~

S~ ~ s N s~ s o~ ~O

H O OOO0OOOOOoO -~

Y -]

MOOOOOOOO -~

S~ s~ N s~ s o~ ~O

H OO OO0OO0OO0OOoO -~

Y -]

00000000 -~

Y Y -]

~

o

—

~

~

o

~ O
o -~

~O+-H ~ ~O
O ~ ~0O0 -~
~O O ~ ~O
O ~ ~0O0 -~
~O 0O ~ ~O
O ~ ~oun -~
~O O ~rl O
O ~ ~O ~ ~
~O O ~O o
O ~ ~9 ~ -~

o
o
—

O O0OO0OO0OO0OO0OO0OO0O ~HOOOOO

S -

TVTOOO0OO0OO0OO0OO0OO0O ~0O0OO0OO0OO0OO0O

Y Y -

VDO O0OO0OO0OO0OO0O0OO0O ~0O0O0OO0OO0OO

S~ ~ N~~~ ~O

~

~

~

~

~

QO O0OO0OO0DO0DO0DO0OO0OHOOOOOOoO

~ L N N

~

~

~

~

~ o~

MO OOO0OO0OO0OO0OO0OO0OOOOOOO

~ ~ N N NN

~

~

~

~

~ o~

S 0O00D0D0D0DO0OO0OO0OO0OO0OO0OO0OOo0Oo

NN N N N N N NN

~

~

~

~

~

hoOoOOOOOOOOOOOOOOOoO

NN N N N N N NN

AO0ODO0OO0OO0OOMTOO0OOOOOOOO

NN N N N NN NN

~

~

~

~

~

~

~

~

~ 0~

~ 0~

MO OO0OO0ODO0ODO0ODO0OO0OO0OO0OO0OO0OOOOoO

N N N Y N

~

/* 10 */ {

~

/* 11 */ |

~

~

~ 0~

A Practical Application, cont'd

private int index(char ch)

{
switch (ch) {

case 'A' : return 1;
case 'B' : return 2;
case 'D' : return 3;
case 'J' : return 4;
case 'M' : return 5;
case 'a' : return 6;
case 'b' : return 7;
case 'c' : return 8;
case 'd' : return 9;
case 'e' : return 10;
case 'h' : return 11;
case 'i' : return 12;
case 'k' : return 13;
case 'l' : return 14;
case 'o' : return 15;
case 'p' : return 16;
case 'r' : return 17;
case 's' : return 18;
case 't' : return 19;
case 'u' : return 20;
case 'v' : return 21;
case 'x' : return 22;
case 'y' : return 23;
case 'z' : return 24;
case ' ' : return 25;
case '\n' : return

o N
~. O

default : return

Languages and DFAs

* Recall that an acceptor is an automaton that either accepts or rejects
input strings.

* The set of all strings that the DFA
M = (Q,Z,@,QO,F)

accepts constitutes the language

L(M) ={w €X"[6°(qo,w) € F}

* The DFA represents the language’s rules.

DFA and Associated Transition Graph

e [f we have a DFA
M = (Q,Z,@,QO,F)

and its associated transition graph G,,, can we treat them both equally?

* Theorem 2.1 of the textbook basically says yes.
* For every q;, q;in Q, and win 2™
* 6"(q;,w) = q; if and only if there is a path labeled w in G, from g, to g;.
* Proof by induction on the length of w.

DFA Example #1

* Create a DFA that accepts all strings on {0, 1} that begin and end with
the same symbol.

* How can an automaton remember what was the beginning symbol of a
string?

* Have a different set of states depending on the first symbol!

DFA Example #1, cont'd

Starts and ends
with 1 1

DFA Example #2

* Create a DFA that accepts all strings on {0, 1} that do not contain the
substring 001.

* The basic idea is that if the automaton ever reads 001, it should be in a
non-final state.

* Actually, that state should be a trap.

* How can the automaton remember the previous two symbols
whenever it reads a 1?

DFA Example #2, cont’d

* Again, we must accomplish this with states:

* A state for having read a 0.
* A state for having read 00.
* A state for having read 001.

* We can label the states accordingly.

A 0

28

