EARTH AND ITS SHAPE

« Approximately 72% of the planet's surface
(~3.6x108 km?) is covered by saline water
that Is customarily divided into several
principal oceans and smaller seas, with
the ocean covering approximately 71% of
the Earth's surface.
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The Earth’s Shape

Figure 1.4: Eratosthenes’ determination of Earth’s radius.

to arrive at a radius of R = 6267 km , which differs from the actual mean Earth radius by only 104
km (1.6%).



 In 1687 Isaac Newton published the that a
rotating self-gravitating fluid body in
equilibrium takes the form of an oblate

ellipsoid of revolution which he termed an
oblate spheroid. A great many ellipsoids
have been used with various sizes and
centres but modern (post GPS) ellipsoids are
centred at the actual center of mass of the
Earth or body being modeled.
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Table 2.1: Terrestrial Ellipsoids.

Ellipsoid Name (year computed)

Semi-Major Axis, a., [m]

Inverse Flattening, 1/f

Airy (1830)

299.324964

Everest (15830)

300.8017

Bessel (1841)

299.152813

Clarke (1866)

294 978698

Clarke (1880) 6378249145 293.465
Modified Clarke ( 1880) 6378249145 293.4663
International (1924) H3TEIRK, 297

Krassovsk: (1940) 6378245, 298.3

Mercury (1960) 63ITR166. 298.3

CGeodetic Reference System (1967), GRS67T | 6378160, 298.2471674273
Modified Mercury (1968) 63TE150. 298.3
Austrahian National 6378160, 298.25

South American (1969) 6378160. 298.25

World Geodetic System (1966), WGS66 6378145, 298.25

World Geodetic System (1972), WGET2 6378135, 298.26
Geodetic Reference System (1980), GRSE0 | 6378137, 298.257222101
World Geodetic System (1984), WGSE4 6378137, 298.257223563
TOPEX/Poseidon (1992) (IERS recom.)? 6378136.3 298.257




Radius In the Meridian
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Radius in the Meridian is the radius of the great circle that passes through
the observer's station and the Earth's Polar axes.
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Also, at any point M and N are, respectively, the minimum and maximum radii of curvature for all
normal sections through that point. M and N are known as the principal radii of curvature at a
point of the ellipsoid.
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Consider a point P on the surface of the ellipsoid. The coordinates
of P referred to a system with the primary axis (denotedlx*) in the meridian

plane of P are
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The plane perpendicular to the ellipsoid normal at P, and passing

through P is called the tangent plane at P. From Figure 2-T the slope

of the tangent plane is
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The slope can also be computed from the equation of the meridian ellipse

as follows:
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and after squaring the above
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Coordinate Conversion
(zeodetic Latitude, Longitude, and Height to ECEF, X, Y, Z

X =(N+hjcosgcosd

¥=(N+h)cosgsind

Z=[N(1-¢°)+k|sing

where:

¢, A,k = geodetic latitude, longitude, and height above ellipsoid
XY Z = Earth Centered Earth Fixed Cartesian Coordinates

and

N(f)=al./l-e¢'sin’ ¢ = radius of curvature in prime vertical

¢ = semi-major earth axis (ellipsoid equatorial radius)

b= semi- minor earth axis (ellipsoid polar radius)

f=

e’ =2f- f° = eccentricity squared Peter H. Digw 873096
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Each iteration then consists of evaluating in order
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IFNOT A SPHERE, WHAT ELSE?
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Clairaut's theorem:
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Telluroid

The surface designed to approximate the physical surface of the earth is the
telluroid. The telluroid is defined as the surface whose height above a geocentric

reference ellipsoid is the same as the height of the terrain above the geoid [HIRVONEN,
1960]. F1G. 18 shows the relationship between the telluroid, terrain, geoid, and

geocentric ellipsoid.
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Fi1G. 7.18. Telluroid.



 Telluroid: Surface whose
at the Earth's
surface along the ellipsoidal normal. The telluroid

IS not an equipotential surface. The telluroid was
proposed by
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World Geodetic System

+ U.S. military references an ellipsoid known
as the GRS80 ellipsoid

+ Refined the values slightly in 1984 to make
the world geodetic system (WGS84)

+ This datum is significant because it is the
datum referenced by the GPS system



WGS 84

+ The WGS 84 defining parameters include
+ Semi-Major axis
- 6378137 meters

+ Ellipsoid flattening

- 1/298.257223563

+ Angular velocity of the earth
- 7292115x10™" radians/second

+ Earth's gravitational constant
- 9.81m/s?



International Terrestrial Reference System

+ In 1991, the International Association of Geodesy
established the International GPS Service (IGS)
to promote and support activities related to the
GPS system

+ A network was established that included an
international collaboration of 50 core tracking
stations located around the world and
supplemented by over 200 other stations (some
working continuously, others intermittently)

» The IGS provides the precise orbits of the GPS
satellites (can be found on the Internet)



International Terrestrial Reference System

The definition of the reference system in which the
coordinates of the fracking stations are expressed is the
responsibility of the Earth Rotation Service

The reference system is know as the International
Terrestrial Reference Frame (ITRF)

Defined by satellite laser ranging, baseline inferometry, and
GPS coordinate results

Each year, a new combination of precise tracking results is
performed and the resulting datum is referred to by
"ITRFxx" where "xx" is the current year

One distinguishing characteristic of the ITRF is the
definition of not only the tracking stations but also their
velocities due to regional fectonic motion
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