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Preface 

Logic is one of the most ancient intellectual disciplines, and one of the 

most modern. Its beginnings go back to the 4th century BC. The only 

older disciplines are philosophy and mathematics, with both of which it 

has always been intimately connected. It was revolutionized around the 

turn of the twentieth century, by the application of new mathematical 

techniques, and in the last half-century it has found radically new and 

important roles in computation and information processing. It is thus a 

subject that is central to much human thought and endeavour. 

This book is an introduction to logic, as contemporary logicians now 

understand the subject. It does not attempt to be a textbook, however. 

There are numerous such books currently available. The point of this 

one is to explore the roots of logic, which sink deep into philosophy. 

Some formal logic will be explained along the way. 

In each of the main chapters, I star t  by taking up some particular 

philosophical problem or logical puzzle. I then explain one approach to 

it. Often this is a fairly standard one; but in some of the areas there is no 

standard answer: logicians sti l l  disagree. In such cases, I have just 

chosen one that is interesting. Nearly all the approaches, whether 

standard or not, may be challenged. I finish each chapter with some 

problems for the approach that I have explained. Sometimes these 

problems are standard; sometimes they are not. Sometimes they may 



have easy answers; sometimes they may not. The aim is to challenge 

you to figure out what you make of the matter. 

Modern logic is a highly mathematical subject. I have tried to write the 

material in such a way as to avoid nearly all mathematics. The most that 

is required is a little high-school algebra in the last few chapters. It is 

true that you will need the determination to master some symbolism 

that may be new to you; but this is a lot less than is required to have a 

basic grasp of any new language. And the perspicuity that the 

symbolism gives to difficult questions makes any trouble one may have 

in mastering it well worth it. One warning, though: reading a book on 

logic or philosophy is not like reading a novel. There will be times when 

you will have to read slowly and carefully. Sometimes you may have to 

stop and think about things; and you should be prepared to go back and 

reread a paragraph if necessary. 

The final chapter of the book is on the development of logic. In this, I 

have tried to put some of the issues that the book deals with in an 

historical perspective, to show that logic is a living subject, which has 

always evolved, and which will continue to do so. The chapter also 

contains suggestions for further reading. 

There are two appendices. The first contains a glossary of terms and 

symbols. You may consult this if you forget the meaning of a word or 

symbol. The second appendix contains a question relevant to each 

chapter, with which you can test your understanding of i t s  main ideas. 

The book goes for breadth rather than depth. It would be easy to write a 

book on the topic of every single chapter - indeed, many such books 

have been written. And even so, there are very many important issues in 

logic that I have not even touched on here. But if you hang in there till 

the end of the book, you will have a pretty good idea of the 

fundamentals of modern logic, and why people find it worth thinking 

about the subject. 
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Chapter 1 

idity: What Fol 
from What? 

Most people like to think of themselves as logical. Telling someone 'You 

are not being logical' is  normally a form of criticism. To be illogical is to 

be confused, muddled, irrational. But what is logic? In Lewis Carroll's 

Through the Looking Class, Alice meets the logic-chopping pair 

Tweedledum and Tweedledee. When Alice is lost for words, they go 

onto the attack: 

'I know what you are thinking abouts, said Tweedledum: 'but it isn't so, 

nohow.' 

'Contrariwise,' continued Tweedledee, 'if it was so, it might be; and if it 

were so, it would be: but as it isn't, it ain't. That's logic.' 

What Tweedledee is doing - a t  least, in Carroll's parody - is reasoning. 

And that, as he says, is what logic is about. 

We all reason. V?e try to figure out what is so, reasoning on the basis of 

what we already know. We try to persuade others that something is so 

by giving them reasons. Logic is the study of what counts as a good 

reason for what, and why. You have to understand this claim in a certain 

way, though. Here are two bits of reasoning - logicians call them 

inferences: 

1 



1. Tweedledurn and Tweedledee debate the finer points of logic with Alice 



1. Rome is the capital of Italy, and this plane lands in Rome; so the 

plane lands in Italy. 

2. Moscow is the capital of the USA; so you can't go to Moscow 

without going to the USA. 

In each case, the claims before the 'so' - logicians call them premisses - 
are giving reasons; the claims after the 'so' - logicians call them 

conclusions - are what the reasons are supposed to be reasons for. The 

first piece of reasoning is fine; but the second is pretty hopeless, and 

wouldn't persuade anyone with an elementary knowledge of 

geography: the premiss. that Moscow is the capital of the USA, is simply 

false. Notice, though, that if the premiss had been true - if, say, the USA 

had bought the whole of Russia (not just Alaska) and had moved the 

White House to Moscow to be nearer the centres of power in Europe - 
the conclusion would indeed have been true. It would have followed 

from the premisses; and that is what logic is concerned with. It is not 

concerned with whether the premisses of an inference are true or !i - 
B 

false. That's somebody else's business (in this case, the geographer's). = 
It is interested simply in whether the conclusion follows from the 

premisses. Logicians call an inference where the conclusion really does 

follow from the premisses valid. So the central aim of logic is to 

understand validity. 

You might think this a rather dull task - an intellectual exercise with 

somewhat less appeal than solving crossword puzzles. But it turns out 

that this is not only a very hard matter; it is one that cannot be divorced 

from a number of important (and sometimes profound) philosophical 

questions. We will see some of these as we go along. For the moment, 

let us get a few more of the basic facts about validity straight. 

To star t  with, it is common to distinguish between two different kinds 

of validity. To understand this, consider the following three inferences: 

I.  If the burglar had broken in through the kitchen window, there 

3 



would be footprints outside; but there are no footprints; so the 

burglar didn't break in through the kitchen window. 

2. Jones has nicotine-stained fingers; so Jones is a smoker. 

3. Jones buys two packets of cigarettes a day; so someone left 

footprints outside the kitchen window. 

The first inference is a very straightforward one. If the premisses are 

true, so must the conclusion be. Or, to put it another way, the premisses 

couldn't be true without the conclusion also being true. Logicians call 

an inference of this kind deductively valid. Inference number two i s  a bit 

different. The premiss clearly gives a good reason for the conclusion, 

but it is not completely conclusive. After all, Jones could simply have 

stained his hands to make people think that he was a smoker. So the 

inference is  not deductively valid. Inferences like this are usually said to 

be inductively valid. Inference number three, by contrast, appears pretty 

hopeless by any standard. The premiss seems to provide no kind of 
u - reason for the conclusion a t  all. It is invalid - both deductively and 8 
d 

inductively. In fact, since people are not complete idiots, if someone 

actually offered a reason like this, one would assume that there is some 

extra premiss that they had not bothered to tell us (maybe that 

someone passes Jones his cigarettes through the kitchen window). 

Inductive validity is a very important notion. We reason inductively all 

the time; for example, in trying to solve problems such as why the car 

has broken down, why a person is ill, or who committed a crime. The 

fictional logician Sherlock Holmes was a master of it. Despite this, 

historically, much more effort has gone into understanding deductive 

validity - maybe because logicians have tended to be philosophers or 

mathematicians (in whose studies deductively valid inferences are 

centrally important), and not doctors or detectives. We will come back 

to the notion of induction later in the book. For the present, let's think 

some more about deductive validity. (It is natural to suppose that 

deductive validity is the simpler notion, since valid inferences are more 

cut-and-dried. So it's not a bad idea to try to understand this first. That, 

4 



as we shall see, is hard enough.) Until further notice 'valid' will simply 

mean 'deductively valid'. 

So what is a valid inference? One, we saw, where the premisses can't be 

true without the conclusion also being true. But what does that mean? 

In particular, what does the can't mean? In general, 'can't' can mean 

many different things. Consider, for example: 'Mary can play the piano, 

but john can't'; here we are talking about human abilities. Compare: 

'You can't go in here: you need a permit'; here we are talking about 

what some code of rules permits. 

it is natural to understand the 'can't' relevant to the present case in this 

way: to say that the premisses can't be true without the conclusion 

being true is  to say that in all situations in which all the premisses are 

true, so is  the conclusion. So far so good; but what, exactly, is a 

situation? What sorts of things go into their makeup, and how do these 

things relate to each other? And what is it to be true? Now, there's a g 
f 

philosophical problem for you, as Tweedledee might have said. 

These issues will concern us by and by; but let us leave them for the 

time being, and finish with one more thing. One shouldn't run away 

with the idea that the explanation of deductive validity that I have 

just given is itself unproblematic. (In philosophy, all interesting claims 

are contentious.) Here is one problem. Assuming that the account 

is correct, to know that an inference is deductively valid is to know 

that there are no situations in which the premisses are true and the 

conclusion is not. Now, on any reasonable understanding of what it 

is to be a situation, there are an awful lot of them: situations about 

things on the planets of distant stars; situations about events before 

there were any living beings in the cosmos; situations described in 

works of fiction; situations imagined by visionaries. How can one know 

what holds in all situations? Worse, there would appear to be an infinite 

number of situations (situations one year hence, situations two years 

hence, situations three years hence, . . .). It is therefore impossible, even 

5 



in principle, to survey all situations. So if this account of validity is 

correct, and given that we can recognize inferences as valid or invalid (at 

least in many cases) we must have some insight into this, from some 

special source. What source? 

Do we need to invoke some sort of mystic intuition? Not necessarily. 

Consider an analogous problem. We can all distinguish between 

grammatical and ungrammatical strings of words of our native 

language without too much problem. For example, any native speaker 

of English would recognize that 'This is a chair' is  a grammatical 

sentence, but 'A chair is is a' is not. But there would appear to be an 

infinite number of both grammatical and ungrammatical sentences. 

(For example, 'One is  a number', 'Two is  a number', 'Three is  a number', 

. . . are all grammatical sentences. And it is easy enough to produce 

word salads ad libitum). So how do we do it? Perhaps the most 

influential of modern linguists, Noam Chomsky, suggested that we can 
U 

b do this because the infinite collections are encapsulated in a finite set of 
4 

rules that are hard-wired into us; that evolution has programmed us 

with an innate grammar. Could logic be the same? Are the rules of logic 

hard-wired into us in the same way? 

Main Ideas of the Chapter 

A valid inference is one where the conclusion follows from 

the premiss(es). 

A deductively valid inference is one for which there is no 

situation in which all the premisses are true, but the conclusion 

is not. 



Chapter 2 
a* Truth F U D C L Z Q ~ S  - OF N a t ?  

Whether or not the rules of validity are hard-wired into us, we all have 

pretty strong intuitions about the validity or otherwise of various 

inferences. There wouldn't be much disagreement, for example, that 

the following inference is valid: 'She's a woman and a banker; so she's 

a bankers. Or that the following inference is invalid: 'He's a carpenter; 

so he's a carpenter and plays baseball'. 

But our intuitions can get us into trouble sometimes. What do you think 

of the following inference? The two premisses occur above the line; the 

conclusion below it. 

The Queen is  rich. The Queen isn't rich. 

Pigs can fly. 

It certainly doesn't seem valid. The wealth of the Queen - great or 

not - would seem to have no bearing on the aviatory abilities of 

pigs. 

But what do you think about the following two inferences? 

The Queen i s  rich. 

Either the Queen is  rich or pigs can fly. 

7 



Either the Queen is  rich or pigs can fly. The Queen isn't rich. 

Pigs can fly. 

The first of these seems valid. Consider i t s  conclusion. Logicians call 

sentences like this a disjunction; and the clauses on either side of the 'or' 

are called disjuncts. Now, what does it take for a disjunction to be true? 

Just that one or other of the disjuncts i s  true. So in any situation where 

the premiss is  true, so is  the conclusion. The second inference also 

seems valid. If one or other of two claims is  true and one of these isn't, 

the other must be. 

Now, the trouble is  that by putting these two apparently valid 

inferences together, we get the apparently invalid inference, like this: 

The Queen is  rich. 
Either the Queen is rich or pigs can fly. The Queen isn't rich. 

Pigs can fly. 

4 

This can't be right. Chaining valid inferences together in this way can't 

give you an invalid inference. If all the premises are true in any situation, 

then so are their conclusions, the conclusions that follow from these; 

and so on, till we reach the final conclusion. What has gone wrong? 

To give an orthodox answer to this question, let us focus a bit more on 

the details. For a start, let's write the sentence 'Pigs can fly' asp, and the 

sentence 'The Queen is  rich' as q. This makes things a bit more compact; 

but not only that: if you think about it for a moment, you can see that 

the two particular sentences actually used in the examples above don't 

have much to do with things; I could have set everything up using pretty 

much any two sentences; so we can ignore their content. This is what 

we do in writing the sentences as single letters. 

The sentence 'Either the Queen is  rich or pigs can fly' now becomes 

'Either q or p'. Logicians often write this as q V p. What of 'The Queen 

isn't rich'? Let us rewrite this as 'It i s  not the case that the Queen is  

8 



rich', pulling the negative particle to the front of the sentence. Hence, 

the sentence becomes 'It is  not the case that q'. Logicians often write 

this as ~ q ,  and call it the negation of q. While we are a t  it, what about 

the sentence 'The Queen is rich and pigs can fly', that is, 'q and p'? 

Logicians often write this as q & p and call it the conjunction of q and p, q 

and p being the conjuncts. With this machinery under our belt, we can 

write the chain-inference that we met thus: 

What are we to say about this inference? 

Sentences can be true, and sentences can be false. Let us use Tfor truth, 3 

and Ffor falsity. After one of the founders of modern logic, the German g 
P 

philosopherlmathematician Cottlob Frege, these are often called truth a 
values. Given any old sentence, a, what is the connection between the 8 

I 

truth value of a and that of i t s  negation, la? A natural answer is that if q 
z 

one is  true, the other is false, and vice versa. Thus, if 'The Queen is rich' g 
i s  true, 'The Queen isn't rich' i s  false, and vice versa. We can record this 

as follows: 

la has the value T just if a has the value F. 

la has the value Fjust if a has the value T. 

Logicians call these the truth conditions for negation. If we assume that 

every sentence is  either true or false, but not both, we can depict the 

conditions in the following table, which logicians call a truth table: 



2. Cottlob Frege (1 848-1 925), one of the founders of modern logic 



If a has the truth value given in the column under it, ~a has the 

corresponding value to its right. 

What of disjunction, V? As I have already noted, a natural assumption is  

that a disjunction, a V b, is true if one or other (or maybe both) of a and 

b are true, and false otherwise. We can record this in the truth 

conditions for disjunction: 

a V b has the value Tjust if a t  least one of a and b has the value T. 

a V b has the value F just if both of a and b have the value F. 

These conditions can be depicted in the following truth table: 

Each row - except the first, which is the header - now records a possible 

combination of the values for a (first column) and b (second column). 

There are four such possible combinations, and so four rows. For each 

combination, the corresponding value of a V b is given to i t s  right (third 

column). 

Again, while we are about it, what is the connection between the truth 

values of a and b, and that of a & b? A natural assumption is that a & b is 

true if both a and b are true, and false otherwise. Thus, for example, 

'John is 35 and has brown hair' is true just if 'John is 35' and 'John has 

brown hair' are both true. We can record this in the truth conditions for 

conjunction: 

a & b has the value Tjust if both of a and b have the value T. 

a & b has the value Fjust if a t  least one of a and b has the value F. 
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These conditions can be depicted in the following truth table: 

Now, how does all this bear on the problem we started with? Let us 

come back to the question I raised a t  the end of the last chapter: what is 

a situation? A natural thought is that whatever a situation is, it 

determines a truth value for every sentence. So, for example, in one 

particular situation, it might be true that the Queen is  rich and false that 

pigs can fly. In another it might be false that the Queen is rich, and true 

that pigs can fly. (Note that these situations may be purely 

hypothetical!) In other words, a situation determines each relevant 

sentence to be either Tor F. The relevant sentences here do not contain 

any occurrences of 'and', 'or' or 'not'. Given the basic information about 

a situation, we can use truth tables to work out the truth values of the 

sentences that do. 

For example, suppose we have the following situation: 

(r might be the sentence 'Rhubarb is nutritious', and 'p : T' means that p 

i s  assigned the truth value T, etc.) What i s  the truth value of, say, 

p & (,r V q)? We work out the truth value of this in exactly the same 

way that we would work out the numerical value of 3 x (-6 + 2) using 

tables for multiplication and addition. The truth value of r is T. So the 

12 



truth table for tells us that the truth value of -r is F. But since the 

value of q i s  F, the truth table for V tells us that the value of 7rVq is F. 
And since the truth value of p i s  T, the truth table for & tells us that the 

value of p & (lr Vq) i s  F. In this step-by-step way, we can work out the 

truth value of any formula containing occurrences of &, V, and T. 

Now, recall from the last chapter that an inference is valid provided that 

there is no situation which makes all the premisses true, and the 

conclusion untrue (false). That is, it is  valid if there is no way of assigning 

Ts and Fs to the relevant sentences, which results in all the premisses 

having the value T and the conclusion having the value F. Consider, for 

example, the inference that we have already met, q/q V p. (I write this 

on a single line to save Oxford University Press money.) The relevant 

sentences are q and p. There are four combinations of truth values, and 

for each of these we can work out the truth values for the premiss and 

conclusion. We can represent the result as follows: 
8 
2' 
1 a 
b 
3 
H 
I 

The first two columns give us all the possible combinations of truth 

values for q and p. The last two columns give us the corresponding truth 

values for the premiss and the conclusion. The third column is  the same 

as the first. This is an accident of this example, due to the fact that, in 

this particular case, the premiss happens to be one of the relevant 

sentences. The fourth column can be read off from the truth table for 

disjunction. Given this information, we can see that the inference is  

valid. For there is  no row where the premiss, q, is  true and the 

conclusion, q V p, is not. 
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What about the inference qVp, lq/p? Proceeding in the same way, we 

obtain: 

This time, there are five columns, because there are two premisses. The 

truth values of the premisses and conclusion can be read off from the 

truth tables for disjunction and negation. And again, there is  no row 

where both of the premisses are true and the conclusion is not. Hence, 

the inference is valid. 

;I 

What about the inference with which we started: 9, +/p? Proceeding 

as before, we get: 

Again, the inference is  valid; and now we see why. There is no row in 

which both of the premisses are true and the conclusion is false. Indeed, 

there is no row in which both of the premisses are true. The conclusion 

doesn't really matter at all! Sometimes, logicians describe this situation 

by saying that the inference is vacuously valid, just because the 

premisses could never be true together. 
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Here, then, is a solution to the problem with which we started. 

According to this account, our original intuitions about this inference 

were wrong. After all, people's intuitions can often be misleading. It 

seems obvious to everyone that the earth is motionless - until they take 

a course in physics, and find out that it i s  really hurtling through space. 

We can even offer an explanation as to why our logical intuitions go 

wrong. Most of the inferences we meet in practice are not of the 

vacuous kind. Our intuitions develop in this sort of context, and don't 

apply generally -just as the habits you build up learning to walk (for 

example, not to lean to the side) don't always work in other contexts 

(for example, when you to learn to ride a bike). 

We will come back to this matter in a later chapter. But let us end this 

one with a brief look a t  the adequacy of the machinery we have used. 

Things here are not as straightforward as one might have hoped. 2' 
9 

According to this account, the truth value of a sentence i s  P 
3 
2 completely determined by the truth value of the sentence a. In a similar = 
a 

way, the truth values of the sentences aV b and a & b are completely 'f 
S determined by the truth values of a and 6. Logicians call operations that 
* 

work like this truth functions. But there are good reasons to suppose 4 

that 'or' and 'and', as they occur in English, are not truth functions - at  

least, not always. 

For example, according to the truth table for & , 'a and b' always 

has the same truth value as 'b and a': namely, they are both true if 

a and b are both true, and false otherwise. But consider the 

sentences: 

I .  John hit his head and fell down. 

2. John fell down and hit his head. 

The first says that John hit his head and then fell down. The second says 

that John fell down and then hit his head. Clearly, the first could be true 

whilst the second is  false, and vice versa. Thus, it is not just the truth 
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values of the conjuncts that are important, but which conjunct caused 

which. 

Similar problems beset 'or'. According to the account we had, 'a or 6' is  

true if one or other of a and b is true. But suppose a friend says: 

Either you come now or we will be late; 

and so you come. Given the truth table for V, the disjunction is  true. But 

suppose you discover that your friend had been tricking you: you could 

have left half an hour later and still been on time. Under these 

circumstances, you would surely say that your friend had lied: what he 

had said was false. Again, it is not merely the truth values of the 

disjuncts that are important, but the existence of a connection of a 

certain kind between them. 

U 

I' I will leave you to think about these matters. The material we have been 
II 

looking a t  gives us at least a working account of how certain logical 

machinery functions; and we will draw on this in succeeding chapters, 

unless the ideas in those chapters explicitly override it - which they will 

sometimes. 

The machinery in question deals only with certain kinds of inferences: 

there are many others. We have only just started. 

r 

Main Ideas of the Chapter 

In a situation, a unique truth value (Tor F)  is assigned to  each 

relevant sentence. 

-a is T just if a is f. 

a V b is T just if at least one of a and b is T. 

a & b is Tjust if both of a and b are T. 



Chapter 3 

Names and Quantifiers: 
1s Nothing Something? 

The inferences that we looked a t  in the last chapter involved phrases like 

'or' and 'it is  not the case that', words that add to, or join, whole 

sentences to make other whole sentences: but there are lots of 

inferences that appear to work in a quite different way. Consider, for 

example, the inference: 

Marcus gave me a book. 

Someone gave me a book. 

Neither the premiss nor the conclusion has a part which is itself a whole 

sentence. If this inference is valid, it is so because of what is going on 

within whole sentences. 

Traditional grammar tells us that the simplest whole sentences are 

composed of a subject and a predicate. Thus, consider the examples: 

1. Marcus saw the elephant. 

2. Annika fell asleep. 

3. Someone hit me. 

4. Nobody came to my party. 

The first word, in each case, is the subject of the sentence: it tells us 

what the sentence is about. The rest is the predicate: this tells us what is 
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said about it. Now, when is  such a sentence true? Take the second 

example. It is true if the object referred to by the subject 'Annika* has 

the property expressed by the predicate, that is, fell asleep. 

All well and good. But what does the subject of sentence 3 refer to? The 

person who hit me? But maybe nobody hit me. No one said that this 

was a trde sentence. The case with sentence 4 is  even worse. To whom 

does 'nobody' refer? In Through the Looking Class, just before her 

encounter with the Lion and the Unicorn, Alice comes across the White 

King, who is  waiting for a messenger. (For some reason, when the 

messenger turns up, it looks disconcertingly like a rabbit.) When the 

King meets Alice, he says: 

'Just look along the road, and tell me if you can see. . . [the Messenger].' 

'I see nobody on the road,' said Alice. 

'I onlywish I had such eyes,' the King remarked in a fretful tone. 'To be able 

to see Nobody1 And at that distance tool Why. it's as much as I can do to 8 Q. 

see real people. by this light!' @ m 

B 
1 

Carroll is  making a logical joke, as he often does. When Alice says that 

she can see nobody, she is not saying that she can see a person - real 

or otherwise. 'Nobody' does not refer to a person - or to anything 

else. 

Words like 'nobody', 'someone', 'everyone' are called by modern 

logicians quantifiers, and they are distinguished from names like 

'Marcus' and 'Annika'. What we have just seen is that, even if both 

quantifiers and names can be the grammatical subjects of sentences, 

they must function in quite different ways. So, how do quantifiers work? 

Here is a standard modern answer. A situation comes furnished with a 

stock of objects. In our case, the relevant objects are all people. All the 

names which occur in our reasoning about this situation refer to one of 

the objects in this collection. Thus, if we write m for 'Marcus', m refers 
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to one of these objects. And if we write H for 'is happy', then the 

sentence mH is true in the situation just if the object referred to by m 

has the property expressed by H. (For perverse reasons of their own, 

logicians usually reverse the order, and write Hm, instead of mH. This is 

just a matter of convention.) 

Now consider the sentence 'Someone is happy'. This is true in the 

situation just if there is some object or other, in the collection of objects, 

that is happy - that is, some object in the collection, call it x, is such that 

x is happy. Let us write 'Some object, x, is such that' as 3x. Then we may 

write the sentence as: '3x x is happy'; or remembering that we are 

writing 'is happy' as H, as: 3x xH. Logicians sometimes call 3x a 

particular quantifier. 

What about 'Everyone is happy'? This is  true in a situation if every object 

in the relevant collection is happy. That is, every object, x, in the 
V 

b collection is such that x is  happy. If we write 'Every object, x, is such that' 
-I 

as Vx, then we can write this as Vx xH. Logicians usually call Vx a 

universal quantifier. 

There are now no prizes for guessing how we are to understand 

'Nobody is happy'. This just means that there is no object, x, in the 

relevant collection, such that x is happy. We could have a special symbol 

meaning 'No object, x, is  such that', but as a matter of fact, logicians 

don't normally bother with one. For to say that no one is happy is  to say 

it is not the case that somebody is happy. So we may write this as 

7 3 ~  xH. 

This analysis of quantifiers shows us that names and quantifiers work 

quite differently. In particular, the fact that 'Marcus is happy' and 

'Someone is happy' get written, very differently, as mH and 3x xH, 

respectively, shows us this. It shows us, moreover, that apparently 

simple grammatical form may be misleading. Not all grammatical 

subjects are equal. The account, incidentally, shows us why the 
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inference with which we started is valid. Let us write C for 'gave me the 

book'. Then the inference is: 

It is clear that if, in some situation, the object referred to by the name m 

gave me the book, then some object in the relevant collection gave me 

the book. By contrast, the White King is inferring from the fact that 

Alice saw nobody that she saw somebody (viz., Nobody). If we write 'is 

seen by Alice' as A then the King's inference is: 

This is  clearly invalid. If there is  no object in the relevant domain that g 
3 

was seen by Alice, it is obviously not true that there is some object in the 8 

relevant domain that was seen by her. E a 
rO 

I 
C; You might think that this is all a lot of fuss about nothing - in fact, just a a 

way of spoiling a good joke. But it 's a lot more serious than that. For 
f 

quantifiers play a central role in many important arguments in 

mathematics and philosophy. Here is one philosophical example. It 's a 

natural assumption that nothing happens without an explanation: 

people don't get ill for no reason; cars don't break down without a fault. 

Everything, then, has a cause. But what could the cause of everything 

be? Obviously it can't be anything physical, like a person; or even 

something like the Big Bang of cosmology. Such things must themselves 

have causes. So it must be something metaphysical. God is the obvious 

candidate. 

This is  one version of an argument for the existence of God, often called 

the Cosmological Argument. One might object to the argument in 

various ways. But a t  i t s  heart, there is an enormous logical fallacy. The 

sentence 'Everything has a cause* is ambiguous. It can mean that 
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everything that happens has some cause or other - that is, for every x, 

there is  a y, such that x is  caused by y; or it can mean that there is  

something which is the cause of everything - that is, there is some y 

such that for every x, x is  caused by y. Suppose we think of the relevant 

domain of objects as causes and effects, and write 'x is caused by y' as 

xCy. Then we can write these two meanings as, respectively: 

1. vx 3y xcy 

2. 3y vx xcy 

Now, these are not logically equivalent. The first follows from the 

second. If there is a thing which is the cause of everything, then 

certainly, everything that happens has some cause or other. But if 

everything has some cause or other, it does not follow that there is  one 

and the same thing which is the cause of everything. (Compare: 

Everyone has a mother; it does not follow that there is  someone who is 
Y 

I' the mother of everyone.) 

This version of the Cosmological Argument trades on this ambiguity. 

What is  established by talk of illnesses and cars is 1. But immediately, 

the argument goes on to ask what that cause is, assuming that it is  2 

that has been established. Moreover, this slide is hidden because, in 

English, 'Everything has a cause' can be used to express either 1 or 2. 

Notice, also, that there is no ambiguity if the quantifiers are replaced by 

names. 'The background radiation of the cosmos is caused by the Big 

Bang' is not a t  all ambiguous. It may well be that a failure to distinguish 

between names and quantifiers is  a further reason why one may fail to 

see the ambiguity. 

So a correct understanding of quantifiers is important - and not just for 

logic. The words 'something', 'nothing', etc., do not stand for objects, 

but function in a completely different way. Or a t  least, they can do: 

things are not quite that simple. Consider the cosmos again. Either it 

stretches back infinitely into time past, or a t  some particular time it 
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came into existence. In the first case, it had no beginning, but was 

always there; in the second, it began a t  some particular time. At 

different times, physics has, in fact, told us different things about the 

truth of this matter. Never mind this, however; just consider the second 

possibility. In this case, the cosmos came into existence out of nothing - 
or nothing physical, anyway, the cosmos being the totality of 

everything physical. Now consider that sentence, 'The cosmos came 

into existence out of nothing'. Let c be the cosmos, and let us write 'x 

came into existence out of y' as xEy. Then given our understanding of 

quantifiers, this sentence should mean J x  cEx. But it does not mean 

this; for this is equally true in the first alternative cosmology. In this, the 

cosmos, being infinite in time past, did not come into being a t  all. In 

particular, then, it is  not the case that it came into being from 

something or other. When we say that in the second cosmology the 

cosmos came into existence out of nothing, we mean that it came into g 
3 

being from nothingness. So nothing can be a thing. The White King was 8 
not so foolish after all. E a 

I Main Ideas of the Chapter 

The sentence nP is true in a situation if the object referred to 

by n has the property expressed by P in that situation. 
3x xP is true in a situation just if some object in the situ- 

ation, x, is such that xP. 
Vx xP is true in a situation just if every object in the situ- 

ation, x, is such that xP. 



DescriptDons and Existence: 

Did t h e  Creeks Worship 

While we are on the topic of subjects and predicates, there is a certain 

kind of phrase that can be the subject of sentences, which we haven't 

talked a bout yet. Logicians usually call them definite descriptions, or 

sometimes just descriptions - though be warned that this is a technical 

term. Descriptions are phrases like 'the man who first landed on the 

Moon' and 'the only man-made object on the Earth that is visible from 

space'. In general, descriptions have the form: the thing satisfying such 

and such a condition. Following the English philosopher/mathematician, 

Bertrand Russell, one of the founders of modem logic, we can write 

them as follows. Rewrite 'the man who first landed on the Moon' as 'the 

object, x, such that x is  a man and x landed first on the Moon'. Now 

write IX for 'the object, x, such that', and this becomes 'IX(X is a man and 

x landed first on the Moon)'. If we write M for 'is a man' and F for 'landed 

first on the Moon*, we then get: ~x(xM & xF). In general, a description is  

something of the form rxc,, where c, is some condition containing 

occurrences of x. (That's what the little subscript x is there to remind 

you of.) 

Since descriptions are subjects, they can be combined with predicates 

to make whole sentences. Thus, if we write U for 'was born in the USA', 

then 'the man who first landed on the Moon was born in the USA' is: 

rx(xM & xF)U. Let us write p as a shorthand for rx(xM & xF). (I use a Creek 
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4. Bertrand Russell (1 872-1 970). another of the founders of modern logic 



letter to remind you that it is  really a description.) Then this is  pU. 

Similarly, 'The first man to land on the Moon is a man and he landed first 

on the Moon' is pM & pF. 

In terms of the division of the last chapter, descriptions are names, not 

quantifiers. That is, they refer to objects - if we are lucky: we'll come 

back to that. Thus, 'The man who first landed on the Moon was born in 

the USA', p U, is true just if the particular person referred to by the 

phrase p has the property expressed by U. 

But descriptions are a special kind of name. Unlike what we might call 

proper names, like 'Annika* and 'the Big Bang', they carry information 

about the object referred to. Thus, for example, 'the man who first 

landed on the Moon' carries the information that the object referred to 

has the property of being a man and being first on the Moon. This might 

all seem banal and obvious, but things are not as simple as they appear. 
U 5 Because descriptions carry information in this way, they are often 
4 

central to important arguments in mathematics and philosophy; and 

one way to appreciate some of these complexities is  to look a t  an 

example of such an argument. This is  another argument for the 

existence of Cod, often called the Ontological Argument. The argument 

comes in a number of versions, but here is  a simple form of it: 

Cod is the being with all the perfections. 

But existence is a perfection. 

50 Cod possesses existence. 

i.e., Cod exists. If you haven't met this argument before, it will appear 

rather puzzling. For a start, what is a perfection? Loosely, a perfection is 

something like omniscience (knowing everything that there is to know), 

omnipotence (being able to do everything that can be done), and being 

morally perfect (acting always in the best possible way). In general, the 

perfections are all those properties that it is a jolly good thing to have. 

Now, the second premiss says that existence is  a perfection. Why on 
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earth should this be so? The reason one might suppose this to be so is 

a rather complex one, with its roots in the philosophy of one of the 

two most influential ancient Creek philosophers, Plato. Fortunately, 

we can work around this issue. We can make a list of properties like 

omniscience, omnipotence, etc., include existence in the list, and simply 

let 'perfection' mean any property on the list. Moreover, we can take 

'Cod' to be synonymous with a certain description, namely, 'the being 

which has all the perfections (i.e., those properties on the list)'. In the 

Ontological Argument, both premisses are now true by definition, and 

so drop out of the picture. The Argument then reduces to a one-liner: 

The object which is omniscient, omnipotent, morally perfect, . . . and 

exists. exists 

- and, we might add, is omnipotent, omniscient, morally perfect, and so 1 
a. 

on. This certainly looks to be true. To make things more perspicuous, 1 
suppose we write the l ist  of Cod's properties as P,, P,, . . . , P,,. So the last 

3 
one, P,,, is  existence. The definition of 'Cod' is: ~x(xP, & . . . & xP,). Let us a 

C 
G' write this as y .  Then the one-liner is yP, & . . . & yPn (from which yPn 
3 

follows). G 

This is a special case of something more general, namely: the thing 

satisfying such and such a condition, satisfies that very condition. This is 

often called the Characterization Principle (a thing has those properties 

by which it is characterized). We'll abbreviate this as CP. We have 

already met an example of the CP, with 'The first man to land on the 

Moon is a man and he landed first on the moon', pM & p F. In general, 

we obtain a case of the CP if we take some description, rxc,, and 

substitute it for every occurrence of x in the condition c,. 

Now, for all the world, the CP looks to be true by definition. Of course 

things have those properties that they are characterized as having. 

Unfortunately, in general, it is false. For many things follow from it that 

are indisputably untrue. 
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For a start, we can use it to deduce the existence of all kinds of things 

that do not really exist. Consider the (non-negative) integers: o, i ,2,3,  

. . . There is no greatest. But using the CP, we can show the existence 

of a greatest. Let cx be the condition 'x is the greatest integer & x exists'. 

Let d be rxc,. Then the CP gives us '6 is the greatest integer, and 6 

exists'. The absurdities do not end there. Consider some unmarried 

person, say the Pope. We can prove that he is married. Let cx be the 

condition 'x married the Pope'. Let d be the description rxc,. The CP 

gives us 'dmarried the Pope'. So someone married the Pope, i.e., the 

Pope is  married. 

What is  to be said about all this? A fairly standard modern answer goes 

as follows. Consider the description rxc,. If there is a unique object that 

satisfies the condition cx in some situation, then the description refers to 

it. Otherwise, it refers to nothing: it is an 'empty name'. Thus, there is a 

unique x, such that x is  a man and x landed first on the moon, 

Armstrong. So 'the x such that x is a man and x landed first on the 

moon' refers to Armstrong. Similarly, there is  a unique least integer, 

namely o; hence, the description 'the object which is  the least integer' 

denotes o. But since there is no greatest integer, 'the object which is the 

greatest integer' fails to refer to anything. Similarly, the description 'the 

city in Australia which has more than a million people' also fails to refer. 

Not, this time, because there are no such cities, but because there are 

several of them. 

What has this to do with the CP? Well, if there is  a unique object 

satisfying cx in some situation, then rxcX refers to it. So the instance of the 

CP concerning cx is true: txcX is  one of the things - in fact, the only thing - 
that satisfies cx. In particular, the least integer is (indeed) the least integer; 

the city which is the federal capital of Australia, is  indeed, the federal 

capital of Australia, etc. So some iristances of the CP hold. 

But what if there is  no unique object satisfying c,? If n i s  a name and Pis 

a predicate, the sentence nP is true just if there is an object that n refers 
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to, and it has the property expressed by P. Hence, if n denotes no object, 

nP must be false. Thus, if there is  no unique thing having the property P, 

(if, for example, P is  'is a winged horse') (ix xP)P is false. As is to be 

expected, under these conditions, the CP may fail. 

Now, how does all this bear on the Ontological Argument? Recall that 

the instance of the CP invoked there is yP, & . . . & yP,, where y is 

the description rx(xP1 & . . . & xPn). Either there is something 

satisfying xP1 & . . . & xP,, or there is not. If there is, it must be 

unique. (There cannot be two omnipotent objects: if I am 

omnipotent, I can stop you doing things, so you cannot be 

omnipotent.) So y refers to this thing, and yPl & . . . & yPn is true. If 

there is  not, then y refers to nothing; so each conjunct of yPl & . . . 
& yP, is false; as, therefore, is the whole conjunction. In other words, 

the instance of the CP used in the argument is true enough if Cod B 
R 
2. 

exists; but it is false if God does not exist. So if one is arguing for the 1 
existence of God, one cannot simply invoke this instance of the CP: 3H e 

a 
that would just be assuming what one is supposed to be proving. o 

E 
Philosophers say that such an argument begs the question; that is, # 

a 
begs to be granted exactly what is in question. And an argument 0 

iD 

that begs the question clearly does not work. 

So much for the Ontological Argument. Let us finish this chapter by 

seeing that the account of descriptions that I have explained is itself 

problematic in certain ways. According to this account, if 6P is a 

sentence where 6 is a description that does not refer to anything, it is 

false. But this does not always seem to be right. For example, it 

would seem to be true that the most powerful of the ancient Creek 

gods was called 'Zeus', lived on Mount Olympus, was worshipped by 

the Creeks, and so on. Yet there were, in reality, no ancient Creek 

gods. They did not, in fact, exist. If this is right, then the description 

'the most powerful of the ancient Creek gods' does not refer to 

anything. But in that case, there are true subjectlpredicate sentences 

in which the subject term fails to refer to anything, such as 'The most 
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powerful of the ancient Creek gods was worshipped by the Creeks'. 

To put it tendentiously, there are truths about non-existent objects, 

after all. 

1 

Main idea of the Chapter 

~ x c p  is true in a situation just if, in that situation, there is a 

unique object, a, satisfying c,, and UP. 



Chapter 5 

Self-Reference: What is  

this Chapter About? 

Often, things seem simple when one thinks about normal cases; but 

this can be deceptive. When one considers more unusual cases, the 

simplicity may well disappear. So it is with reference. We saw in the last 

chapter that things are not as straightforward as one might have 

supposed, once one takes into account the fact that some names may 

not refer to anything. Further complexities arise when we consider 

another kind of unusual case: self-reference. 

It is quite possible for a name to refer to something of which it, itself, is  

part. For example, consider the sentence 'This sentence contains five 

words'. The name which is the subject of this sentence, 'this sentence*, 

refers to the whole sentence, of which that name is a part. Similar things 

happen in a set of regulations which contain the clause 'These 

regulations may be revised by a majority decision of the Department of 

Philosophy', or by a person who thinks 'If I am thinking this thought, 

then I must be conscious'. 

These are all relatively unproblematic cases of self-reference. There are 

other cases which are quite different. For example, suppose someone 

says: 

This very sentence that I am now uttering is false. 
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Call this sentence A. Is A true or false? Well, if it is  true, then what it says 

is the case, so A is  false. But if it is  false, then, since this is  exactly what it 

claims, it is true. In either case, A would seem to be both true and false. 

The sentence is like a Mobius strip, a topological configuration where, 

because of a twist, the inside is the outside, and the outside is the 

inside: truth is  falsity, and falsity is truth. 

Or suppose someone says: 

This very sentence that I am now uttering is true. 

Is that true or false? Well, if it is true, it is true. since that is what it says. 

And if it is false, then it is false, since it says that it is  true. Hence, both 

the assumption that it is  true and the assumption that it is false appear 

to be consistent. Moreover, there would seem to be no other fact that 

settles the matter of what truth value it has. It's not just that it has some 
V 

8 value which we don't, or even can't, know. Rather, there would seem to 

be nothing that determines it as either true or false a t  all. It would seem 

to be neither true nor false. 

These paradoxes are very ancient. The first of them appears to have 

been discovered by the ancient Creek philosopher Eubulides, and is 

often called the liar paradox. There are many more, and more recent, 

paradoxes of the same kind, some of which play a crucial role in central 

parts of mathematical reasoning. Here is another example. A set is  a 

collection of objects. Thus, for example, one may have the set of all 

people, the set of all numbers, the set of all abstract ideas. Sets can be 

members of other sets. Thus, for example, the set of all the people in a 

room is a set, and hence is a member of the set of all sets. Some sets can 

even be members of themselves: the set of all the objects mentioned on 

this page is an object mentioned on this page (I have just mentioned it), 

and so a member of itself; the set of all sets is a set, and so a member of 

itself. And some sets are certainly not members of themselves: the set 



5. A Mobius strip. Inside is outside, and outside in. Truth is falsity, and 
falsity truth 



of all people is not a person, and so not a member of the set of all 

people. 

Now, consider the set of all those sets that are not members of 

themselves. Call this R. Is R a member of itself, or is it not? If it is a 

member of itself, then it is  one of the things that is not a member of 

itself, and so it is not a member of itself. If, on the other hand, it i s  not a 

member of itself, it is  one of those sets that are not members of 

themselves, and so it is a member of itself. It would seem that R both is 

and is  not a member of itself. 

This paradox was discovered by Bertrand Russell, whom we met in the 

last chapter, and so is called Russell's paradox. Like the liar paradox, it has 

a cousin. What about the set of all sets that are members of themselves. 

Is this d member of itself, or is it not? Well, if it is, it is; and if it i s  not, it is 

not. Again, there would seem to be nothing to determine the matter 
V p either way. 
d 

What examples of this kind do, is challenge the assumption we made in 

Chapter 2, that every sentence is either true or false, but not both. 'This 

sentence is false', and 'R is not a member of i tsel f  seem to be both true 

and false; and their cousins seem to be neither true nor false. 

How can this idea be accommodated? Simply by taking these other pos- 

sibilities into account. Assume that in any situation, every sentence is 

true but not false, false but not true, both true and false, or neither true 

nor false. Recall from Chapter 2 that the truth conditions for negation, 

conjunction and disjunction are the following. In any situation: 

~a has the value Tjust if a has the value F. 

-la has the value Fjust if a has the value T. 

a & b has the value T just if both a and b have the value T. 

a & b has the value Fjust if a t  least one of a and b has the value F. 
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a V b has the value Tjust if a t  least one of a and b has the value T. 

a V b has the value F just if both a and b have the value F. 

Using this information, it i s  easy to work out the truth values of 

sentences under the new regime. For example: 

Suppose that a i s  F but not T. Then, since a i s  F, ,a is T (by the first 

clause for negation). And since a i s  not T, - , a  is not F (by the second 

clause for negation). Hence, - , a  is T but not F. 

Suppose that a is T and F, and that b is just T. Then both a and b are 

T, so a & b i s  T (by the first clause for conjunction). But, because a is 

F, a t  least one of a and b is F, so a & b i s  F (by the second clause for 

conjunction). So a & b is both T and F. 

Suppose that a is  just T, and that b is neither T nor F. Then since a is 

T, a t  least one of a and b is T, and hence aVb is T (by the first clause 

for disjunction). But since a is  not F, then it is not the case that a and 

b are both F. So aV b is  not F (by the second clause for disjunction). 

Hence, aV b is just T. 

What does this tell us about validity? A valid argument is st i l l  one where 

there is no situation where the premisses are true, and the conclusion is 

not true. And a situation is sti l l  something that gives a truth value to 

each relevant sentence. Only now, the situation may give a sentence 

one truth value, two, or none. So consider the inference q/qVp. In any 

situation where q has the value T, the conditions for V assure us that 

g V p  also has the value T. (It may have the value F also, but no matter.) 

Thus, if the premiss has the value T, so does the conclusion. The 

inference is valid. 

A t  this point, it is worth returning to the inference with which we started in 

Chapter 2: q, - , g / p .  As we saw in that chapter, given the assumptions 

made there, this inference is valid. But given the new assumptions, things 

are different. To see why, just take a situation where q has the values T 

and F, but p has just the value F. Since 9 is both T and F, --q is also both 
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T and F. Hence, both premisses are T (and F as well, but that is  not 

relevant), and the conclusion, p, is not T. This gives us another diagnosis 

of why we find the inference intuitively invalid. It is invalid. 

That's not the end of the matter, though. As we saw in Chapter 2, this 

inference follows from two other inferences. The first of these (q/qVp) 

we have just seen to be valid on the present account. The other must 

therefore be invalid; and so it is. The other inference is: 

Now consider a situation where q gets the values T and F, and p gets just 

the value F. It is easy enough to check that both premisses get the value 

T (as well as f). But the conclusion does not get the value 1. Hence, the 

inference is invalid. 

A 
In Chapter 2, I said that this inference does seem intuitively valid. So, 

given the new account, our intuitions about this must be wrong. One 

can offer an explanation of this fact, however. The inference appears to 

be valid because, if ~q is true, this seems to rule out the truth of q, 

leaving us with p. But on the present account, the truth of ~q does not 

rule out that of q. It would do so only if something could not be both 

true and false. When we think the inference to be valid, we are perhaps 

forgetting such possibilities, which can arise in unusual cases, like those 

which are provided by self-reference. 

Which explanation of the situation is better, the one that we ended up 

with in Chapter 2, or the one we now have? That is  a question which I 

will leave you to think about. Let us end, instead, by noting that, as 

always, one may challenge some of the ideas on which the new account 

rests. Consider the liar paradox and its cousin. Take the latter first. The 

sentence 'This sentence is  true* was supposed to be an example of 

something that is neither true nor false. Let us suppose that this is so. 
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Then, in particular, it is  not true. But it, itself, says that it is true. So it 

must be false, contrary to our supposition that it is neither true nor 

false. We seem to have ended up in a contradiction. Or take the liar 

sentence, 'This sentence is false'. This was supposed to be an example of 

a sentence that is both true and false. Let's tweak it a bit. Consider, 

instead, the sentence 'This sentence is  not true'. What is  the truth value 

of this? If it is  true, then what it says is the case; so it is not true. But if it 's 

not true, then, since that is  what it says, it is true. Either way, it would 

seem to be both true and not true. Again, we have a contradiction on 

our hands. It's not just that a sentence may take the values T and F; 

rather, a sentence can both be T and not be 1. 

It is situations of this kind that have made the subject of self-reference 

a contentious one, ever since Eubulides. It is, indeed, a very tangled 

issue. 

Main ldea of the Chapter 

Sentences may be true, false, both, or neither. 



fl- Chapter. ~3 

@ec@ssity and Possibi%ity: 
What bWi I be blust be? 

We often claim not just that something is so, but that it must be so. We 

say: 'It must be going to rain9, 'It can't fail to rain', 'Necessarily, it 's 

going to rain9. We also have many ways of saying that, though 

something may, in fact, not be the case, it could be. We say: 'It could 

rain tomorrow', 'It is possible that it will rain tomorrow', 'It's not 

impossible that it will rain tomorrow'. If a is any sentence, logicians 

usually write the claim that a must be true as a, and the claim that a 

could be true as Oa. 

and Oare called modal operators, since they express the modes with 

which things are true or false (necessarily, possibly). The two operators 

are, in fact, connected. To say that something must be the case is to say 

that it is not possible for it not to be the case. That is, D a  means the 

same as 1070.  Similarly, to say that it is possible for something to be 

the case is  to say that it is not necessarily the case that it is false. That is, 

0 a means the same as la. For good measure, we can express the 

fact that it is impossible for a to be true, indifferently, as (it is  not 

possible that a), or as Ella (a is necessarily false). 

Unlike the operators we have met so far, and 0 are not truth 

functions. As we saw in Chapter 2, when you know the truth value of a, 

you can work out the truth value of ,a. Similarly, when you know the 

truth values of a and b, you can work out the truth values of a V b and 
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a & b. But you cannot infer the truth value of Oa simply from knowledge 

of the truth value of a. For example, let r be the sentence 'I will rise 

before 7 a.m. tomorrow'. r is, as a matter of fact, false. But it certainly 

could be true: I could set my alarm clock and rise early. Hence, Or is true. 

By contrast, le t j  be the sentence 'I will jump out of bed and hover 2m 

above the ground'. Like r, this is false too. But unlike r, it is  not even 

possible that it is true. That would violate the laws of gravity. Hence, O j  

is false. So the truth value of a sentence, a, does not determine that of 

00: rand j are both false, but Or is true and O j  is  false. Similarly, the truth 

value of a does not determine the truth value of nu. Let r now be the 

sentence 'I will rise before 8 a.m. tomorrow'. This is, in fact, true; but it 

is not necessarily true. I could stay in bed. Let j now be the sentence 'If I 

jump out of bed tomorrow morning, I will have moved'. That is also 

true, but there is no way that that could be false. It's necessarily true. 

Hence, rand j are both true, but one is necessarily true, and the other is  
m 

not. 

Modal operators are therefore operators of a kind quite different from 
C -- - 

anything that we have met so far. They are also important and often g 
puzzling operators. To illustrate this, here is an argument for fatalism, d 

given by the other of the two most influential ancient Creek 

philosophers, Aristotle. 

Fatalism is the view that whatever happens must happen: it could not 

have been avoided. When an accident occurs, or a person dies, there is 

nothing that could have been done to prevent it. Fatalism is  a view 

that has appealed to some. When something goes wrong, there is  a 

certain amount of comfort to be derived from the thought that it 

could not have been otherwise. None the less, fatalism entails that 

I am powerless to alter what happens, and this seems plainly false. 

If I am involved in a traffic accident today, I could have avoided it 

simply by taking a different route. So what is  Aristotle's argument? 

It goes like this. (Ignore the boldface for the present; we will come 

back to this.) 
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Take any claim you like - say, for the sake of illustration, that I will 

be involved in a traffic accident tomorrow. Now, we may not know 

yet whether or not this is true, but we know that either I will be 

involved in an accident or I won't. Suppose the first of these. Then, 

as a matter of fact, I will be involved in a traffic accident. And if it 
is true to say that I will be involved in an accident then it cannot 

fail to be the case that I will be involved. That is, it must be the 

case that I will be involved. Suppose, on the other hand, that I will 

not, as a matter of fact, be involved in a traffic accident tomorrow. 

Then it is  true to say that I will not be involved in an accident; and 

if this is so, it cannot fail to be the case that I won't be in an accident. 

That is, it must be the case that I am not involved in an accident. 

Whichever of these two does happen, then, it must happen. This is 

fatalism. 

What is  one to say about this? To answer this, let us look at a 

standard modern understanding of modal operators. We suppose P) 3 

that every situation, s, comes furnished with a bunch of possibilities, 

that is, situations that are possible as far as s goes - to be definite, let 

us say situations that could arise without violating the laws of 

physics. Thus, if s is the situation that I am presently in (being in 

Australia), my being in London in a week's time is a possible 

situation; whilst my being on Alpha Centauri (over four light-years 

away) is not. Following the 17th-century philosopher and logician 

Leibniz, logicians often call these possible situations, colourfully, 

possible worlds. Now, to say that Oa (it is  possibly the case that a) is 

true in s, is  just to say that a is in fact true in at least one of the 

possible worlds associated with s. And to say that a (it is necessarily 

the case that a) is  true in s, is  just to say that a is  true in all the 

possible worlds associated with s. This is  why and 0 are not truth 

functions. For a and 6 may have the same truth value in s, say F, but 

may have different truth values in the worlds associated with s. For 

example, a may be true in one of them (say, s'), but b may be true in 

none, like this: 
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This account gives us a way of analysing inferences employing modal 

operators. For example, consider the inference: 

U - 
4 This is invalid. To see why, suppose that the situations associated with 

s are s, and s,, and that truth values are as follows: 

a is Tat s,; hence, 0 a i s  true in s. Similarly, b is true in s,; hence, 0 b is true 

in s. But a & b is true in no associated world; hence, O(a & b) is not 

true in s. 
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BY contrast, the following inference is valid: 

For if the premisses are true in a situation s, then a and b are true in all 

the worlds associated with s. But then a & b is true in all those worlds. 

That is, 0 (a & b) is true in s. 

Before we can get back to the question as to how this bears on 

Aristotle's argument, we need to talk briefly about another logical 

operator that we have not yet met. Let us write 'if a then b' as a + 6. 
Sentences of this form are called conditionals, and will concern us a 

good deal in the next chapter. All we need to note for the present 

is that the major inference that conditionals seem to be involved z 
in is this: 

2 

b 

(For example: 'If she works out regularly then she is fit. She does 

work out regularly; so she is  fit'.) Modern logicians usually call this 

inference by the name with which it was tagged by medieval 

logicians: modus ponens. Literally, this means 'the method of 

positing'. (Don't ask.) 

Now, for Aristotle's argument, we need to think a little about 

conditionals of the form: 

if a then it cannot fail to be the case that b. 

Such sentences are, in fact, ambiguous. One thing they can mean is  that 

if a is, as a matter of fact, true, then b is  necessarily true. That is, if a is 

true in the situation we are talking about, s, then b is  true in all the 

possible situations associated with s. We can write this as a + 6. The 
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sentence is being used like this when we say things like: 'You can't 

change the past. If something is true of the past, it cannot now fail to 

be true. There is nothing you can do to make it otherwise: it's 

irrevocable.' 

The second meaning of a conditional of the form 'If a then it cannot 

fail to be the case that b', is  quite different. We often use this form of 

words to express the fact that b follows from a. We would be using 

the sentence like this if we said something like 'If Fred is  going to be 

divorced then he cannot fail to be married'. We are not saying that if 

Fred is going to be divorced, his marriage is  irrevocable. We are 

saying that you can't get a divorce unless you are married. There is  

no possible situation in which you have the one, but not the other. 

That is, in any possible situation, if one is  true, so is the other. That is, 

(a + b)  is true. 

U 

5 Now, a + 0 b and 0 (a 4 6) mean quite different things. And 
4 

certainly, the first does not follow from the second. The mere fact 

that a b is  true in every situation associated with s, does not 

mean that a + 0 b i s  true in s. a could be true in s, whilst b is 

not: both b and a may fail to be true in some associated world. 

Or, to give a concrete counter-example: it is necessarily true that if 

john is  getting a divorce, he is married; but it is certainly not true 

that if john is getting a divorce he is necessarily (irrevocably) 

married. 

To come back to Aristotle's argument a t  last, consider the sentence that 

I put in boldface: 'If it is true to say that I will be involved in an accident 

then it cannot fail to be the case that I will be involved'. This i s  exactly of 

the form we have just been talking about. It is  therefore ambiguous. 

Moreover, the argument trades on this ambiguity. If a i s  the sentence 'It 

is  true to say that I will be involved in a traffic accident', and b is the 

sentence 'I will be involved (in a traffic accident)', then the boldface 

conditional is true in the sense: 
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Necessarily, if it is true to say something, then that something i s  indeed 

the case. But what needs to be established is: 

After all, the next step of the argument is  precisely to infer b from a 

by modus ponens. But as we have seen, 2 does not follow from 1 a t  all. 

Hence, Aristotle's argument is invalid. For good measure, exactly the 

same problem arises in the second part of the argument, with the 

conditional 'If it is true to say that I will not be involved in an accident 

then it cannot fail to be the case that I won't be involved in an 

accident'. 

i 
This seems a satisfactory reply to Aristotle's argument. But there is  a 

d 
a" 

closely related argument that cannot be answered so easily. Come back 
a 

to the example we had about changing the past. It does seem to be true B 
t 

that if some statement about the past is true, it is now necessarily true. g 
It is impossible, now, to render it false. The Battle of Hastings was @ 

fought in 1066, and there is  now nothing that one can do to make it 

have been fought in 1067. Thus, if p is some statement about the past, 

P + ~ P *  

Now consider some statement about the future. Again, for example, let 

it be the claim that I will be involved in a traffic accident tomorrow. 

Suppose this is true. Then if someone uttered this sentence loo years 

ago, they spoke truly. And even if no one actually uttered it, if anyone 

had uttered it, they would have spoken truly. Thus, that I will be 

involved in a traffic accident tomorrow was true loo years ago. This 

statement (p) is certainly a statement about the past, and so, since true, 

necessarily true (Up). So it must necessarily be true that I will be 

involved in a traffic accident tomorrow. But that was just an example; 

the same reasoning could be applied to anything. Thus, anything that 
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happens, must happen. This argument for fatalism does not commit the 

same fallacy (that is, use the same invalid argument) as the first one 

that I gave. So is  fatalism true after all? 

Main Ideas of the Chapter 

Each situation comes with a collection of assodated possible 

situations. 

Oa is true in a situation, s, if a is true in every situation 

associated with s. 

Oa is true in a situation, s, if a is true in some situation associ- 

ated with s. 



In this chapter we'll turn to the logical operator that I introduced in 

passing in the last chapter, the conditional. Recall that a conditional is  a 

sentence of the form 'if a then c', which we are writing as a + c. 
Logicians call a the antecedent of the conditional, and c the consequent. 

We also noted that one of the most fundamental inferences concerning 

the conditional is modus ponens: a, a + c/c. Conditionals are 

fundamental to much of our reasoning. The previous chapter showed 

just one example of this. Yet they are deeply puzzling. They have been 

studied in logic ever since i ts  earliest times. In fact, it was reported by 

one ancient commentator (Callimachus) that a t  one time even the 

crows on the rooftops were cawing about conditionals. 

Let us see why - or, a t  least, one reason why - conditionals are puzzling. 

If you know that a + c, it would seem that you can infer that l(a & lc) 

(it is  not the case that a and not c). Suppose, for example, that someone 

informs you that if you miss the bus, you will be late. You can infer from 

this that it is false that you will miss the bus and not be late. Conversely, 

if you know that l(a & lc), it would seem that you can infer a c from 

this. Suppose, for example, that someone tells you that you won't go to 

the movies without spending money (it's not the case that you go to 

the movies and do not spend money). You can infer that if you go to the 

movies, you will spend money. 
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l(a & -c) is  often written as a 2 c, and called the material conditional. 

Thus, it would appear that a + c and a 3 c mean much the same thing. 

In particular, assuming the machinery of Chapter 2, they must have the 

same truth table. It is a simple exercise, which I leave to you, to show 

that this is as follows: 

But this is odd. It means that if c is true in a situation (first and third 

rows), so is a + c. This hardly seems right. It is  true, for example, that 

Canberra is the federal capital of Australia, but the conditional 'If 
0 
4 

Canberra is  not the federal capital of Australia, Canberra is  the federal 

capital of Australia' seems plainly false. Similarly, the truth table shows 

us that if a is false (third and fourth rows), a + c is true. But this hardly 

seems right either. The conditional 'If Sydney is the federal capital of 

Australia, then Brisbane is the federal capital' also appears patently 

false. What has gone wrong? 

What these examples seem to show is that + is not a truth function: the 

truth value of a + c is  not determined by the truth values of a and c. 

Both of 'Rome is in France' and 'Beijing i s  in France' are false; but it's 

true that: 

If Italy is part of France, Rome is  in France. 

While it 's false that: 

If Italy is part of France, Beijing is  in France. 
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So how do conditionals work? 

One answer can be given using the machinery of possible worlds of the 

last chapter. Consider the last two conditionals. In any possible 

situation in which ltaly had become incorporated into France, Rome 

would indeed have been in France. But there are possible situations in 

which ltaly was incorporated in France, but this had no effect on China 

a t  all. So Beijing was st i l l  not in France. This suggests that the 

conditional a + c is true in some situation, s, just if c is true in every one 

of the possible situations associated with s in which a is  true; and it is  

false in s if c is  false in some possible situation associated with s in 

which a is  true. 

This gives a plausible account of +. For example, it shows why modus 

ponens is  valid - a t  least on one assumption. The assumption is  that 

we counts itself as one of the possible situations associated with s. 

This seems reasonable: anything that is actually the case in s is surely 

possible. Now, suppose that a and a + care true in some situation, s. 

Then c is  true in all situations associated with s in which a is true. But 

s is  one of those situations, and a is true in it. Hence, so is c, as 

required. 

Going back to the argument with which we started, we can now 

see where it fails. The inference on which the argument depends 

is: 

And this is not valid. For example, if a is Fin some situation, s, this 

suffices to make the premiss true in s. But this tells us nothing about 

how a and c behave in the possible situations associated with s. It 

could well be that in one of these, say sf, a is true and c is not, like 

this: 
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So o + c i s  not true a t  s. 

What about the example we had earlier, where you are informed that 

you won't go to the movies without spending money. Didn't the 

inference seem valid in this case? Suppose you know that you won't go 
Y 

S to the movies without spending money: l(g & lm). Are you really 

entitled to conclude that if you go to the movies you will spend money: 

g + m? Not necessarily. Suppose you are not going to go to the movies, 

come what may, even if admission i s  free that night. (There is a 

programme on the television that is much more interesting.) Then you 

know that it is not true that you will go (lg), and so that it is  not true 

that you will go and not spend money: -,@ & lm). Are you then 

entitled to infer that if you go you will spend money? Certainly not: it 

may be a free night. 

It is  important to note that in the kind of situation where you learn that 

the premiss is  true by being informed of it, other factors are usually 

operating. When someone tells you something like l(g & lm), they do 

not normally do this on the basis that they know that ,g is true. (If they 

knew this, there wouldn't normally be a point in telling you anything 

much about the situation.) If they tell you this, it is on the basis that 

there is some connection between g and m: that you can't have g true 

without m being true - and that is exactly what it takes for the 
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7. Jumping to conclusions 

conditional to be true. So in the case where you are informed of the 

premiss, it would normally be reasonable to infer g + m; but not from 

the content of what was said - rather, from the fact that it was said. 

In fact, we often correctly make inferences of this kind without thinking. 

Suppose, for example that I ask someone how to get my computer to do 

something or other, and they reply 'There is  a manual on the shelf. I 

infer that it is a computer manual. This does not follow from what was 

actually said, but the remark would not have been relevant unless the 



manual was a computer manual, and people are normally relevant in 

what they say. Hence, I can conclude that it is a computer manual from 

the fact that they said what they did. The inference is  not a deductive 

one. After all, the person could have said this, and it not be a computer 

manual. But the inference is st i l l  an excellent inductive inference. It is  of 

a kind usually called conversational implicature. 

The account of the conditional that we have just been looking a t  seems 

to fare well - a t  least as far as we have looked. It faces a number of 

problems, though. Here is  one. Consider the following inferences: 

If you go to Rome you will be in Italy. 

If you are in Italy, you are in Europe. 

Hence, if you go to Rome, you will be in Europe. 

If x is greater than l o  then x is greater than 5. 

Hence, if x is greater than l o  and less than too, then x is  greater 

than 5. 

These inferences seem perfectly valid, and so they are on the present 

account. We can write the first inference as: 

To see that this comes out valid, suppose the premisses are true in some 

situation, s. Then 6 is true in every possible situation associated with s 

where a is true; and likewise, c is true in every associated situation 

where b is. So c is true in every such situation where a is true. That is, 

a + c is true in s. 

We can write the second inference as: 



To see that this comes out valid, suppose the premiss is true in some 

situation, s. Then c is true in every possible situation associated with s 

where a is  true. Now, suppose a & b i s  true in an associated situation; 

then a is certainly true in that situation, and hence c is. Hence, 

(a & 6) + c is  true in s. 

So far so good. The problem is  that there are inferences that are exactly 

of these forms, but which appear to be invalid. For example, suppose 

that there is an election for Prime Minister with only two candidates, 

Smith, the present Prime Minister, and Jones. Now consider the 

following inference: 

If Smith dies before the election, Jones will win. If Jones wins the election, 

Smith will retire and take her pension. Hence, if Smith dies before the 

election, she will retire and take her pension. 

This is exactly an inference of the form 1. But it seems clear that 

there could be a situation in which both premisses are true. But 

not the conclusion - unless we are considering a bizarre situation 

in which the government can effect pension payments in the 

after-life! 

Or consider the following inference concerning said Smith: 

If Smith jumps from the top of tall precipice, she will die from the fall. 

Hence, if Smith jumps from the top of a tall precipice and wears a 

parachute, she will die from the fall. 

This is an inference of the form 2. Yet, again, it would seem clear that 

there could be situations where the premiss is  true and the conclusion is  

not. 

What is one to say about this state of affairs? I'll leave you to think about 

that. Despite the fact that conditionals are central to how we reason 
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about most things, they are still one of the most contentious areas of 

logic. If birds are no longer crowing about conditionals, logicians 

certainly are. 

Main Idea of the Chapter 

a + 6 is true in a situation, s, just if 6 is true in every situation 

associated with s where a is true. 



Chapter 8 

The Future and the  Past: 
s Time Real? 

Time is something that we are all very familiar with. We plan to do 

things in the future; we remember things in the past; and sometimes we 

enjoy just being in the present. And part of our finding our way around 

in time is  making inferences that concern time. For example, the two 

following inferences are intuitively valid: 

It is raining. It will be true that it has always been raining. 

It will have been raining. It is  raining. 

All this seems elementary. 

But as soon as one starts to think about time, one seems to get tangled 

in knots. As Augustine said, if no one asks me what time is, then I know 

very well; but when someone asks me, I cease to know. One of the 

most puzzling things about time is  that it seems to flow. The present 

seems to move: first it is today; then it is  tomorrow; and so on. But how 

can time change? Time is what measures the rate a t  which everything 

else changes. This problem is at the heart of several conundrums 

concerning time. One such was put forward, early in the 20th century, 

by the British philosopher John McTaggart Ellis McTaggart. (That's 

right.) Like many philosophers, McTaggart was tempted by the view 

that time is unreal - that, in the ultimate order of things, time is an 

illusion. 
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To explain McTaggart's argument for this, it will help to have a little 

symbolism. Take a past-tense sentence, such as 'The sun was shining'. 

We can express this equivalently, if a little awkwardly, as 'It was the case 

that the sun is shining'. Let us write 'It was the case that' as P (for 

'past'). Then we can write this sentence as 'P the sun is shining', or, 

writing s for 'The sun is shining', simply Ps. Similarly, take any future 

tense sentence, say, 'The sun will be shining'. (Strictly speaking, 

grammarians will tell you, English has no proper future tense, unlike 

French or Latin. But you know what I mean.) We can write this as 'It will 

be the case that the sun is shining'. If we write 'It will be the case that' as 

F (for 'future'), then we can write this as Fs. (Don't confuse this F with 

the truth value F.) 

P and F are operators, like and 0, that affix to whole sentences to 

make whole sentences. Moreover, like 13 and 0, they are not truth 

functions. 'It is 4 p.m.' and 'It is 4 p.m. on August 2nd. 1999' are both 
U true (at the instant I write); 'It will be 4 p.m.' is  also true (at the present 
0 
d 

instant) - it is 4 p.m. once every day - though 'It will be 4 p.m. August 

2nd, 1999' is not. Logicians call P and F tense operators. Tense operators 

can be iterated, or compounded. For example, we can say 'The sun will 

have been shining', that is, 'It will be the case that it was the case that 

the sun is shining': FPs. Or we can say 'The sun had been shining', that is, 

'It was the case that it was the case that the sun is shining': PPs. (The 

modal operators that we met in the last chapter can also be iterated in 

this way, though we did not consider this there.) Not all iterations of 

tense operators have snappy English expressions. For example, there is 

not a much better way to express FPFs than as the rather lame 'It will be 

the case that it was the case that the sun will be shining'. The iterations, 

though, make perfectly good grammatical sense. We can call iterations 

of P and F, like FP, PP, FFP, compound tenses. 

Now, back to McTaggart. McTaggart reasoned that there would be no 

time if there were no past and future: these are of i t s  essence. Yet 

pastness and futurity, he argued, are inherently contradictory; so 
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nothing in reality can correspond to them. Well, maybe. But why are 

past and future contradictory? For a start, past and future are 

incompatible. If some instantaneous event is past, it is not future, and 

vice versa. Let e be some instantaneous event. It can be anything you 

like, but let us suppose that it is the passing of the first bullet through 

the heart of Czar Nicholas in the Russian Revolution. Let h be the 

sentence 'e is occurring'. Then we have: 

7 (Ph & Fh) 

But e, like all events, is past and future. Because time flows, all events 

have the property of being future (before they happen) and the 

property of being past (after they happen): 

So we have a contradiction. 

5 
This argument isn't likely to persuade anyone for very long. An event 2 
can't be past and future at the same time. The instant the bullet passed 3 

through the Gar's heart was past and future at different times. It started 

off as future; became present for a painful instant; and then was past. 

But now - and this is the cunning part of McTaggart's argument - what 

are we saying here? We are applying compound tenses to h. We are 

saying that it was the case that the event was future, PFh; then it was 

the case that it was past, PPh. Now, many compound tenses, like simple 

tenses, are incompatible. For example, if any event will be future, it is  

not the case that it was past: 

7 (PPh & FFh) 

But, just as with the simple tenses, the flow of time suffices to ensure 

that all events have all compound tenses too. In the past, Fh; so in the 

distant past FFh. In the future, Ph; so in the distant future, PPh: 
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PPh & FFh 

And we are back with a contradiction. 

Those who have kept their wits about them will reply, just as before, 

that h has its compound tenses a t  different times. It was the case 

that FFh; then, later on, it was the case that PPh. But what are we 

saying here? We are applying more complex compound tenses to 

h: PFFh and PPPh; and we can run exactly the same argument 

again with these. These compound tenses are not all consistent 

with each other, but the flow of time ensures that h possesses 

all of them. We may make the same reply again, but it, too, is 

open to the same counter-reply. Whenever we try to get out of 

the contradiction with one set of tenses, we do so only by 

describing things in terms of other tenses that are equally 

contradictory; so we never escape contradiction. That is 
U 

b McTaggart's argument. 
d 

What is one to say about this? To answer this, let us look a t  the validity 

of inferences concerning tenses. To account for this, we suppose that 

every situation, so, comes together with a bunch of other situations - 
not, this time, situations that represent possibilities associated with so 

(as with modal operators), but situations that are either before so or 

after so. Assuming, as we normally do, that time is one-dimensional and 

infinite in both directions, past and future, we can represent the 

situations in a familiar way: 

Left is earlier; right is later. As usual, each s provides a truth value, Tor F, 

for every sentence without tense operators. What about sentences with 

tense operators? Well, Pa is Tin any situation, s, just if a is  true in some 

si:uation to the left of s; and Fa is true in s just if a is true in some 

situation to the right of s. 
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While we are doing all this, we can add two new tense operators, C and 

H. C can be read 'It is always Going to be the case that', and Ca i s  true in 

any situation, s, just if a is true in all situations to the right of s. H can be 

read as 'It Has always been the case that', and Ha is true in any situation, 

s, just if a is true in all situations to the left of s. (G and H correspond to F 

and P, respectively, in just the way that corresponds to 0.) 

This machinery shows us why the two inferences with which we started 

the chapter are valid. Employing tense operators, these inferences can 

be written, respectively, as: 

r - FHr - 
FPr r 

The first inference is  valid, since if r is true in some situation, so, then in 3 
ID 
n any situation to the right of so, says,, Pr is true (since so is to i t s  left). But 3 

then, FPr i s  true in so, since s, is to i t s  right. We can depict things like 

this: 

. . . s, 5-, so 5, 52 S3 ' ' ' 

r 

Pr 

FPr 

The second inference is valid, since if FHr i s  true in so, then in some 

situation to the right of so, says,, Hr is true. But then in all situations to 

the left of s,, and so in particular so, r is true: 

. . . 5-3 s-, s., so 5, s z  s3 . . . 
FHr 

Hr 

Moreover, certain combinations of tenses are impossible, as one would 
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expect. Thus, if h is a sentence that is true in just one situation, say so, 

then Ph & Fh is false in every s. Both conjuncts are false in so; the first 

conjunct is false to the left of so; the second conjunct is false to the 

right. Similarly, e.g., PPh & FFh is false in every s. I leave you to check 

the details. 

Now, how does all this bear on McTaggart's argument? The upshot of 

McTaggart's argument, recall, was that, given that h has every possible 

tense, it is never possible to avoid contradiction. Resolving contradic- 

tions in one level of complexity for compound tenses only creates them 

in another. The account of the tense operators that I have just given, 

shows this to be false. Suppose that h is true in just so. Then any statement 

with a compound tense concerning h is true somewhere. For example, 

consider FPPFh. This is  true in s ,, as the following diagram shows: 

...s-3 S-, s-, so s, 5, s 3 * * .  

h 

Fh 

PFh 

Pffh 

FPPFh 

Clearly, we can do the same for every compound tense composed of F 

and P, zigzagging left or right, as required. And all this is perfectly 

consistent. The infinitude of different situations allows us to assign h all 

i t s  compound tenses in appropriate places without violating the various 

incompatibilities between them, e.g., by having Fh and Ph true in the 

same situation. McTaggart's argument, therefore, fails. 

This is a happy outcome for those who wish to believe in the reality of 

time. But those who agree with McTaggart might yet not be persuaded 

by our considerations. Suppose I give you a set of specifications for 

constructing a house: the front door goes here; a window here . . . How 

do you know that all the specifications are consistent? How do you 

60 



8. Space does not flow. Salvador Dali's The Persistence of Memory 



know that, when you perform the construction, everything will work 

out, and that you will not be required, for example, to put the door in 

incompatible positions? One way to determine this is to build a scale 

model in accordance with all the specifications. If such a model can be 

built, the specifications are consistent. That is exactly what we have 

done with our tensed talk. The model is  the sequence of situations, 

together with the way of assigning T and F to tensed sentences. It is a 

little more abstract than a model of a house, but the principle is 

essentially the same. 

It may be possible to object to a model, though. Sometimes a model 

will ignore important things. For example in a scale model of a house, a 

beam may not collapse, because it bears a lot less stress than the 

corresponding beam would in a full-scale construction. The full-scale 

beam may be required to take an impossible load, making the full-scale 

building impossible - the model notwithstanding. Similarly, it may be 
U 

5 suggested that our model of time ignores important things. After all, 
d 

what we have done is give a spatial model of time (left, right, etc.). But 

space and time are quite different things. Space does not flow in the 

way that time does (whatever, indeed, that might mean). Now, it is 

exactly the flow of time that produces the supposed contradiction that 

McTaggart was pointing to. No wonder this does not show up in the 

model! Exactly what, then, is missing from the model? And once that is 

taken into account, does the contradiction reappear? 

I 

Main Ideas of the Chapter 

Every situation comes with an associated collection of earlier 
and later situations. 

Fa is true in a situation if a is true in some later situation. 
Pa is true in a situation if a is true in some earlier situation. 

Ca is true in a situation if a is true in every later situation. 

Ho is true in a situation if a is true in every earlier situation. 
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ldentity and Change: Is 

We have not finished with time yet. Time is involved in various other 

conundrums, one kind of which we will look a t  in this chapter. This kind 

concerns problems that arise when things change; and specifically, the 

question of what is  to be said about the identity of objects that change 

through time. 

Here is an example. We all think that objects can survive through 

change. For example, when I paint a cupboard, although i ts  colour may 

change, it is st i l l  the same cupboard. Or when you change your hair 

style, or if you are unfortunate enough to lose a limb, you are sti l l  you. 

But how can anything survive change? After all, when you change your 

hairstyle, the person that results is different, not the same at all. And if 

the person is  different, it is  a different person; so the old you has gone 

out of existence. In exactly the same way, it may be argued, no object 

persists through any change whatsoever. For any change means that the 

old object goes out of existence, and is replaced by a quite different 

object. 

Arguments like this appear a t  various places in the history of philosophy, 

but it would be generally agreed by logicians, now, that they are 

mistaken, and rest on a simple ambiguity. We must distinguish 

between an object and its properties. When we say that you, with a 

different hairstyle, are different, we are saying that you have different 
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properties. It does not follow that you are literally a different person, in 

the way that I am a different person from you. 

One reason why one may fail to distinguish between being a certain 

object and having certain properties is that, in English, the verb 'to be' 

and i ts  various grammatical forms - 'is', 'am', and so on - can be used to 

express both of these things. (And the same goes for similar words in 

other languages.) If we say 'The table is red', 'Your hair is now short', 

and similar things, we are attributing a property to an object. But if 

someone says 'I am Graham Priest', 'The person who won the race is the 

same person who won it last year', and so on, then they are identifying 

an object in a certain way. That is, they are stating i ts  identity. 

Logicians call the first use of 'is' the 'is' of predication; they call the 

second use of 'is' the 'is'of identity. And because these have somewhat 

different properties, they write them in different ways. The 'is' of 

predication we have already met in Chapter 3. 'John is red' is typically 
0 
d 

written in the form jR. (Actually, as I noted in Chapter 3, it is more 

common to write this the other way round, as Rj.) The 'is' of identity is 

written with =, familiar from school mathematics. Thus, 'John is the 

person who won the race' is written: j = w. (The name w is a description 

here; but this is  of no significance in the present matter.) Sentences like 

this are called identities. 

What properties does identity have? First, it is  a relation. A relation is 

something that relates two objects. For example, seeing is a relation. If 

we say 'John sees Mary' we are stating a relation between them. The 

objects related by a relation do not necessarily have to be different. If we 

say 'John sees himself' (maybe in a mirror), we are stating a relation that 

John bears to John. Now, identity is a very special relation. It is a relation 

that every object bears to itself and to nothing else. 

You might think that this would make identity a rather useless relation, 

but, in fact, this is not so. For example, if I say 'John is the person who 

64 



won the race', I am saying that the relation of identity holds between 

the object referred to by 'John' and the object referred to by 'the person 

who won the race' - in other words, that these two names refer to one 

and the same person. This can be a highly significant piece of 

information. 

The most important things about identity, though, are the inferences 

that it is involved in. Here is an example: 

john is the person who won the race. 

The person who won the race got a prize. 

So John got a prize. 

We can write this as: 

3 
J This inference is valid in virtue of the fact that, for any objects, x and y, 

if x = y, then x has any properties that y has, and vice versa. One and the 

same object either has the property in question, or it doesn't. This is 

usually called Leibniz's law, after Leibniz, whom we met in Chapter 6. In 

an application of Leibniz's Law, one premiss is an identity statement, say 

m = n; the second premiss is  a sentence containing one of the names 

that flanks the identity sign, say m; and the conclusion is obtained by 

substituting n form in this. 

Leibniz's Law is a very important one, and has many quite 

unproblematic applications. For example, high school algebra 

assures us that (x + y)(x - y) = x' - y'. So if you are solving a problem, 

and establish that, say, x' - y' =j, you can apply Leibniz's Law to infer 

that (x + y)(x - y) = 3. I ts deceptive simplicity hides a multitude of 

problems, though. In particular, there seem to be many counter- 

examples to it. Consider, for example, the following inference: 
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John is the person who won the race. 

Mary knows that the person who won the race got a prize. 

So Mary knows that John got a prize. 

This looks like an application of Leibniz's Law since the conclusion is 

obtained by substituting 'John' for 'the person who won the race' in the 

second premiss. Yet it is clear that the premisses could well be true 

without the conclusion being true: Mary might not know that John is 

the person who won the race. Is this a violation of Leibniz's Law? Not 
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necessarily. The Law says that if x = y then any property of x is a property 

of y. Now, does the condition 'Mary knows that x got a prize' express a 

property of x? Not really: it would seem, rather, to express a property of 

Mary. If Mary were suddenly to go out of existence, this would not 

change x a t  all1 (The logic of phrases such as 'knows that' is st i l l  very 

much sub judice in logic.) 

Another sort of problem is as follows. Here is  a road: it is a tarmac road; 

call it t .  And here is a road; it is a dirt road; call it d. The two roads, 

though, are the same road, t = d. It is just that the tarmac runs out 

towards the end of the road. So Leibniz's Law tells us that t is a dirt road, 

and d is a tarmac road - which they are not. What has gone wrong here? 

We cannot say that being dirt or tarmac are not really properties of the 

road. They certainly are. What has gone wrong (arguably) is this: we are 

not being precise enough in our specification of properties. The relevant 
10 

properties are being tarmac at such and such a point, and being dirt at $ 
Q 

such and such a point. Since t and d are the same road, they have both y 
eL 

properties, and we do not have a violation of Leibniz's Law. 9 
al 
3 

% 
So far so good. These problems are relatively easy. Let's now have one 

that isn't. And here, time comes back into the issue. To explain what the 

problem is, it will be useful to employ the tense operators of the last 

chapter, and specifically, C ('it is always going to be the case that'). Let x 

be anything you like, a tree, a person; and consider the statement x = x. 

This says that x has the property of being identical to x - which is 

obviously true: it's part of the very meaning of identity. And this is so, 

regardless of time. It is true now, true a t  all times future, and true a t  all 

times past. In particular, then, C x = x is true. Now, here is an instance of 

Lei bniz's Law: 

(Don't let the fact that we have substituted y for only one of the 
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occurrences of x in the second premiss throw you. Such applications of 

Leibniz's Law make perfectly good sense. Just consider: 'John is the 

person who won the race; John sees john; so John sees the person who 

won the race'.) What the inference shows is that if x is identical toy, and 

x has the property of being identical to x at all future times, so does y. 

And since the second premiss is true, as we have just noted, it follows 

that if two things are identical, they will always be identical. 

And what of that? Simply, it doesn't always seem to be true. For 

example, consider an amoeba. Amoebas are single-celled water 

creatures that multiply by fission: an amoeba will split down the middle 

to become two amoebas. Now, take some amoeba, A, that divides to 

become two amoebas, B and C. Before the split, both B and C were A. So 

before the split, B = C. After the split, though, B and C are distinct 

amoebas, = C. So if two things are the same, it does not necessarily 

follow that they are always going to be the same. 

-I 

We can't get out of this problem in the same way that we got out of the 

previous ones. The property of being identical to x at all future times is 

certainly a property of x. And it doesn't appear to be the case that the 

property is insufficiently fine-grained. There seems to be no way to 

make it more precise to avoid the problem. 

What else can one say? A natural thought is this. Before the split, B 

wasn't A: it was only part ofA. But B is an amoeba, and A is a single- 

celled creature: it has no parts that are amoebas. So B can't be part of A. 

More radically, one might suggest that B and C did not really exist 

before the split, that they came into existence then. If they did not exist 

before the split, then they were not A before the split. So it's not the 

case that B = C before the split. But that seems wrong too. B is not a new 

amoeba; it is simply A, though some of i ts  properties have changed. If 

this is not clear, just imagine that Cwere to die a t  the split. In this case, 

we would have no hesitation in saying that B is A. (It would just be like a 
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snake shedding i ts  skin.) Now, the identity of something can't be 

affected by whether there are other things around. So A is B. Likewise, A 

is C. 

Of course, one might insist that just because A takes on new properties, 

it is, strictly speaking, a new object; not merely an old object with new 

properties. So B is not really A. Likewise C. But now we are back with the 

problem with which we started the chapter. 

Main Ideas of the Chapter 

rn = n is true just if the names m and n refer to the same 
object, 

if two objects are the same, any property of one is a property 

of the other (Leibniz's Law). 
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While we are on the subject of identity, here is another problem about 

it. Everything wears out in time. Sometimes, parts get replaced. Motor 

bikes and cars get new clutches; houses get new roofs; and even the 

individual cells in people's bodies are replaced over time. Changes like 

this do not affect the identity of the object in question. When I replace 

the clutch on my bike, it remains the same bike. Now suppose that over 

a period of a few years, I replace every part of the bike, Black Thunder. 

Being a careful fellow, I keep all the old parts. When everything has 

been replaced, I put all the old parts back together to recreate the 

original bike. But I started off with Black Thunder; and changing one 

part on a bike does not affect i t s  identity: it is still the same bike. So a t  

each replacement, the machine is sti l l  Black Thunder; until, a t  the end, it 

is - Black Thunder. But we know that that can't be right. Black Thunder 

now stands next to it in the garage. 

Here is another example of the same problem. A person who is 5 years 

old is a (biological) child. If someone is a child, they are still a child one 

second later. In which case, they are st i l l  a child one second after that, 

and one second after that, and one second after that,. . . So after 

630,720,ooo seconds, they are still a child. But then they are 25 years 

old! 

70 



10. A bike-rider's dilemma 



Arguments like this are reputed to have been invented by Eubulides, the 

same Eubulides who invented the liar paradox of Chapter 5. They are 

now called sorites paradoxes. (A standard form of the argument is to the 

effect that by adding one grain of sand a t  a time, one can never form a 

heap; 'sorites' comes from 'soros', the Creek for heap.) These are some 

of the most annoying paradoxes in logic. They arise when the predicate 

employed ('is Black Thunder', 'is a child') is  vague, in a certain sense; 

that is, when i t s  applicability is tolerant with respect to very small 

changes: if it applies to an object, then a very small change in the object 

will not alter this fact. Virtually all of the predicates that we employ in 

normal discourse are vague in this sense: 'is red', 'is awake', 'is happy', 

'is drunk' - even 'is dead' (dying takes time). Thus, slippery slope 

arguments of the sorites kind are potentially endemic in our reasoning. 

To focus the issue concerning them, let us look a t  one of these 

arguments in more detail. Let jack be the five year old child. Let a, be 
U 

l' the sentence 'jack is a child after o seconds'. Let a, be the sentence 'Jack 
-I 

is a child after 1 second', and so on. If n is any number, a,, is the sentence 

'Jack is a child after n seconds'. Let k be some enormous number, a t  

least as great as 630,720,000. We know that a, is true. (After o seconds 

have elapsed, Jack is still 5.) And for each number, n, we know that 

a, + a,,. (If jack is a child a t  any time, he is a child one second later.) We 

can chain all these premisses together by a sequence of modus ponens 

inferences, like this: 

The final conclusion is a,, which we know not to be true. Something has 

gone wrong, and there doesn't seem much scope to manoeuvre. 
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So what are we to say? Here is one answer, which is sometimes called 

fuzzy logic. Being a child seems to fade out, gradually, just as being a 

(biological) adult seems to fade in gradually. It seems natural to 

suppose that the truth value of 'Jack is a child' also fades from true to 

false. Truth, then, comes by degrees. Suppose we measure these 

degrees by numbers between 1 and o, 1 being complete truth, o 

complete falsity. Every situation, then, assigns each basic sentence such 

a number. 

What about sentences containing operators like negation and 

conjunction? As jack gets older, the truth value of 'Jack is a child' goes 

down. The truth value of 'jack is not a child' would seem to go up 

correspondingly. This suggests that the truth value of ~a is 1 minus the 

truth value of a. Suppose we write the truth value of a as I a I ; then we 

have: 

Here is a table of some sample values: 

What about the truth value of conjunctions? A conjunction can only be 

as good as i t s  worst bit. So it's natural to suppose that the truth value of 

a & b is the minimum (lesser) of I a I and I b I : 



Here is a table of some sample values. Values of a are down the left 

hand column; values of b are along the top row. The corresponding 

values of a & b are where the appropriate row and column meet, For 

example, if we want to find I a & b I , where I a I = 0.25 and I b I = 0.5, 

we see where the italicized row and column meet. The result is in 

boldface. 

w 

B Similarly, the value of a disjunction is the maximum (greater) of the 
a 

values of the disjuncts: 

I leave it to you to construct a table of some sample values. Notice that, 

according to the above, T, & , and V are still truth functions. That is, for 

example, the truth value of a & b is determined by the truth values of a 

and 6. It is just that those values are now numbers between o and I, 

instead of Tand F. (It is perhaps worth noting, though, that if we think 

of 1 as T, and o as F, the results where only 1 and o are involved are the 

same as for the truth functions of Chapter 2, as you can check for 

yourself.) 

What of conditionals? We saw in Chapter 7 that there are good reasons 

to suppose that + is not a truth function, but let us set those worries 

aside for the present. If it is a truth function, which one is it, now that 

we have to take into account degrees of truth? No answer seems 
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terribly obvious. Here is one (fairly standard) suggestion, which a t  least 

seems to give the right sorts of results. 

(< means 'is less than': 5 means 'is less than or equal to'.) Thus, if the 

antecedent is less true than the consequent, the conditional is 

completely true. If the antecedent is more true than the consequent, 

then the conditional is less than the maximal truth by the difference 

between their values. Here is a table of some sample values. (Recall that 

the values of a are down the left-hand column and those of b are along 

the top row.) 

What of validity? An inference is valid if the conclusion holds in every 

situation where the premisses hold. But what is it now for something to 

hold in a situation? When it is true enough. But how true is true 

enough? That will just depend on the context. For example, 'is a new 

bike' is a vague predicate. If you go to a bike dealer who tells you that a 

certain bike is new, you expect i t  never to have been used before. That 

is, you expect 'This is a new bike' to have value I. Suppose, on the other 

hand, that you go to a bike rally, and are asked to pick out the new 

bikes. You will pick out the bikes that are less than a year or so old. In 

other words, your criterion for what is acceptable as a new bike is more 

lax. 'This is a new bike' need have value only, say, 0.9 or greater. 
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So we suppose that there is some level of acceptability, fixed by the 

context. This will be a number somewhere between o and 1 - maybe 1 

itself in extreme cases. Let us write this number as E. Then an inference 

is valid for that context just if the conclusion has a value a t  least as great 

as E in every situation where the premisses all have values a t  least as 

great as E. 

Now, how does all this bear on the sorites paradox? Suppose we have a 

sorites sequence. As above, let a, be the sentence 'jack is a child after n 

seconds'; but to keep things manageable, let us suppose that Jack grows 

up in four seconds! Then a record of truth values might be: 

2 
a, + a, has value 0.75 (= (I- (I - 0.75)); so does a, + a,; in fact, every 

conditional of the form a, + a,,, has the value 0.75. 

What this tells us about the sorites paradox depends on the level of 

acceptability, E, that is  in force here. Suppose the context is one that 

imposes the highest level of acceptability; E is I. In this case, modus 

ponens is valid. For suppose that I a I = 1 and I a + b I =I. Since 

I a + b I  =i,wemusthave l a 1  5 Ibl.ltfollowsthat I b I  =i.Thus 

the sorites argument is valid. In this case, though, each conditional 

premiss, having value 0.75, is unacceptable. 

If, on the other hand, we set the level of acceptability lower than I ,  then 

modus ponens turns out to be invalid. Suppose, for the sake of 

illustration, that E is 0.75. As we have already seen, a, and a, + a, both 

have value 0.75, but a, has value 0.5, which is less than 0.75. 

Either way you look at it, then, the argument fails. Either some of the 
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premisses aren't acceptable; or, if they are, the conclusions don't follow 

validly. Why are we taken in by sorites arguments so easily? Maybe 

because we confuse complete truth with near-complete truth. A failure 

to draw the distinction doesn't make much difference normally. But if 

you do it again, and again, and again, . . . it does. 

That's one diagnosis of the problem. But with vagueness, nothing is 

straightforward. What was the problem about saying that 'jack is a 

child' is simply true, until a particular point in time, when it becomes 

simply false? just that there seems to be no such point. Any place one 

chooses to draw the line is completely arbitrary; it can be, a t  best, a 

matter of convention. But now, a t  what point in jack's growing up does 

he cease to be loo% a child; that is, a t  what point does 'jack is a child' 

change from having the value of exactly I ,  to a value below 17 Any place 

one chooses to draw this line would seem to be just as arbitrary as 

before. (This is sometimes called the problem of higher-order vagueness.) 3 
10 If that is  right, we haven't really solved the most fundamental problem 
3 

about vagueness: we have just relocated it. 8 m 

Main Ideas of the Chapter 

Truth values are numbers between 0 and 1 (inclusive). 
17aI =1-  la1  

l a V b l  = M a x ( i u l ,  I b l )  
I a & b l  =Min( la l ,  161) 
l a + b i  = 1  if l a1  s I b l :  
) a + b i  = l  - ( l a 1  - fb])othewise. 
A sentence is true In a situation just if its truth value is at least 

as great as the (contextually determined) level of acceptability. 



af the !i4%aatnq Wefereia6;;e 

The preceding chapters have given us at least some feel for which 

inferences are deductively valid, and why. It's now time to come back to 

the question of inductive validity: that is, the validity of those inferences 

where the premisses give some ground for the conclusion; yet where, 

even if the premisses are true in some situation, the conclusion could 

still turn out to be false. 

As I noted in Chapter I ,  Sherlock Holmes was very good a t  this kind of 

inference. Let us start with an example from him. The mystery of The 

Red-Headed League commences when Holmes and Dr. Watson receive a 

visit from a certain Mr. Jabez Wilson. When Wilson enters, Watson looks 

to see what Holmes has inferred about him: 

'Beyond the obvious fact that he has at some time done manual labour. 

that he takes snuff, that he is a Freemason, that he has been in China, and 

that he has done a considerable amount of writing lately, I can deduce 

nothing else.' 

Mr. jabez Wilson started up in his chair with his forefinger upon the 

paper, but his eyes upon my companion. 

'How, in the name of good fortune, did you know all that, Mr. Holmes?' 

he asked. 
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11. Holmes displays his logical prowess 

Holmes is pleased to explain. For example, concerning the writing: 

'What else can be indicated by that right cuff so very shiny for five inches, 

and the left one with the smooth patch near the elbow where you rest it 

upon the desk.' 

Despite the fact that Holmes is wont to call this kind of inference a 

deduction, the inference is, in fact, an inductive one. It is entirely 

possible that Wilson's coat should have shown these patterns without 

his having done much writing. He could, for example, have stolen it 

from someone who had. None the less, the inference is clearly a pretty 

good one. What makes it, and inferences like it, good? One plausible 

answer is in terms of probability. So let's talk about this, and then we 

can return to the question. 

A probability is a number assigned to a sentence, which measures how 

likely it is, in some sense, that the sentence is true. Let us write pr(a) for 
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the probability of a. Conventionally, we measure probabilities on a scale 

between o and I. If pr(a) = o, a is certainly false; then as pr(a) increases, 

it gets more likely that a is true; until when pr(a) =I, a is certainly true. 

What else can one say about these numbers? Let me illustrate with a 

simple example. Suppose we consider the days of any one particular 

week. Let w be a sentence that is either true or false every day - say, 'It is 

warm' - and let r be another - say, 'It is raining'. Let the relevant 

information be given by the following table: 

" A tick indicates that the sentence is true that day; a blank that it is  not. 4 

w 

r 

Now, if we are talking about this particular week, what is the probability 

that on any day, chosen a t  random, it was warm? There were four warm 

days, and seven days in total. So the probability is  417. Similarly, there 

were three days where it rained, so the probability that it rained is 317: 

Mon Tue Wed Thu Fri Sat Sun 

J J J J 

J J J 

In general, if we write # a  to mean the number of days a t  which the 

sentence a is true, and N for the total number of days: 

How does probability relate to negation, conjunction and disjunction? 

Negation first. What is the probability of -w? Well, there were three 
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days on which it was not warm, so ~ r ( ~ w )  = 3/7. Notice that pr(w) and 

pr(-w) add up to I .  This is no accident. We have: 

Dividing both sides by N, we get: 

That is, pr(w) + pr(, w )  = I .  

For conjunction and disjunction: there are two days on which it was 

both warm and rainy, so pr(w & r) = # (w & r)/N = 2/7. And there are five 

days on which it was either warm or rainy, sopr(w V r)  = # (w V r)/N = 5/7. 

What is the relation between these two numbers? To find the number of 

days when w V r is true, we can start by adding up the days when w is 9 
0 

true, then add the number of days where r is true. This won't quite do, $ z - 
since some days will have been counted twice: Wednesday and 2 
Saturday. These are the days when it was both rainy and warm. So to get 

the correct figure, we have to subtract the number of days when it was 

both: 

Dividing both sides by N, we get: 

That is: 

This is the general relationship between probabilities of conjunctions and 

of disjunctions. 
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In the last chapter, we saw that degrees of truth can also be measured 

by numbers between o and I, and it might be natural to suppose that 

degrees of truth and probabilities are the same. They are not. In 

particular, conjunction and disjunction work quite differently. For 

degrees of truth, disjunction is a truth function. Specifically, ) w V rl is 

the maximum of I wl and Irl. But pr(w V r) is not determined by pr(w) 

and pr(r) alone, as we have just seen. In particular, for our w and r, 

pr(w) = 417, pdr) = 317, and pr(w V r) = 517. But if l w l = 417 and I rl = 317, 

I w V rl = 417, not 517. 

Before we can get back to inductive inferences, there is one more bit of 

information about probability that we need. Given our sample week, 

the probability that it was raining on some day, chosen a t  random, is 

317. But suppose you know that the day in question was a warm one. 

What is the probability now that it rained? Well, there were four warm 

days, but only two of those were rainy, so the probability is 214. This 
V 
) figure is called a conditional probability, and written like this: pr(r 1 w), 
4 

the probability of r given w. If we think about it a little, we can give a 

general formula for calculating conditional probabilities. How did we 

arrive a t  the figure 2/4? First, we restricted ourselves to those days 

when w is true; then we divided this into the number of those days 

when r is true, that is, the number of days when both wand rare true. 

In other words: 

A little algebra tells us that this is equal to: 

And this is pr(w & r) c pr(w). 

So here is  our general formula for conditional probability: 
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CP: pr(w 1 r) = pr(w & r)/pr(w) 

A modicum of care is required in applying this formula. Dividing by 

the number o makes no sense. 310, for example, has no value. 

Mathematicians call this ratio undefined. In the formula for pr(wlr), 

we have divided by pr(w), which makes sense only if this is not zero. 

that is, only if w is true at least sometimes. Otherwise, the conditional 

probability is undefined. 

Now, a t  last, we can come back to inductive inferences. What is it for an 

inference to be inductively valid? Simply that the premisses make the 

conclusion more probable than not. That is, the conditional probability 

of c, the conclusion, given p, the premiss (or the conjunction of the 

premisses if there are more than one) is  greater than that of the 

negation of c: 

Thus, if we are reasoning about the week of our illustration, the 

inference: 

It was a rainy day; so it was a warm day; 

is inductively valid. As is easy to check, pr(w I r) = 213, and pd7 w I r) = i/3. 

The analysis can be applied to show why the inference of Holmes with 

which we started is valid. Holmes concluded that Jabez Wilson had been 

doing a lot of writing (c). His premiss was to the effect that there were 

certain marks of wear on Wilson's jacket (p). Now, had we gone around 

the London of Holmes's day, and collected all those people with worn 

cuffs of the kind in question, then the majority of those would have 

been clerks, people who spent their working lives writing - or so we 

may suppose. Thus, the probability that Jabez had been doing a lot of 

writing, given that his coat bore those marks, is greater than the 
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probability that he had not. Holmes's inference is indeed inductively 

valid. 

Let me finish by noting one puzzle to which the machinery we have just 

deployed gives rise. As we have seen, a probability can be calculated as 

a ratio: we take a certain reference class; then we calculate the numbers 

of various groups within it; then we do some dividing. But which 

reference class do we use? In the illustrative example concerning the 

weather, I started by specifying the reference class in question: the days 

of that particular week. But real-life problems are not posed in this way. 

Come back to Jabez Wilson. To work out the probabilities relevant in 

this case, I suggested that we take the reference class to comprise the 

people living in London in Holmes's day. But why this? Why not the 

people living in the whole of England then, or in Europe, or just the 

males in London, or just the people who could afford to come and see 

Holmes? Maybe. in some of these cases. it wouldn't make much l' 
difference. But certainly in others it would. For example, the people who 

came to see Holmes were all relatively well off, and not likely to wear 

second-hand coats. Things would be quite different with a wider 

population. So what should the appropriate reference class have been? 

This is the sort of question that keeps actuaries (the people who try to 

figure out risk-factors for insurance companies) awake a t  night. 

In the last analysis, the most accurate reference class would seem to be 

the one comprising just Wilson himself. After all, what do facts about 

other people ultimately have to do with him? But in that case, he had 

either been doing a lot of writing, or he had not. In the first case, the 

probability that he has been writing given that he has a shiny cuff. is I.  

and the inference is valid; in the second, it is o, and the inference is  not 

valid. In other words, the validity of the inference depends entirely on 

the truth of the conclusion. So you can't employ the inference in order 

to determine whether or not the conclusion is true. If we go this far, the 

notion of validity delivered is entirely useless. 
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Main Ideas of the Chapter 

The probability of a statement is the number of cases in 

which it is true, divided by the number of cases in the reference 

class. 

pr(-.a)=f -pr(a) 

p 4 a  V 6) = pda) + p m -  pr(o & b)  

~r (o Ib )=pr (a&b) I~ r lb )  
An inference is inductively valid just if the conditional prob- 

ability of the conclusion given the (conjunction of the) prem- 
iss(es) is greater than that of its negation given the premisses. 

=o 
7 
0 
u 
I e 
5 



Chapter 1 2 

ndiHerent About it! 

The previous chapter gave us a basic understanding of probability and 

the role it may have in inductive inferences. In this chapter, we'll look a t  

some further aspects of this. Let's start by considering a very famous 

inductive inference. 

The physical cosmos is not a purely random mess. It shows very 

distinctive patterns: matter is structured into galaxies, which are 

structured, in turn, into stars and planetary systems, and on some of 

those planetary systems, matter is structured in such a way as to 

produce living creatures like you and me. What is the explanation for 

this? You might say that the explanation is provided by the laws of 

physics and biology. And so it may be. But why are the laws of physics 

and biology the way they are? After all, they could have been quite 

different. For example, gravity could have been a force of repulsion, not 

attraction. In that case, there would never have been stable chunks of 

matter, and life as we know it would have been impossible anywhere in 

the cosmos. Does this not give us excellent reason to believe in the 

existence of a creator of the cosmos: an intelligent being who brought 

into existence the cosmos, together with i ts  physical and biological 

laws, for some purpose or other? In short, does not the fact that the 

physical cosmos is ordered in the way that it is  give us reason to believe 

in the existence of a god of a certain kind? 
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12. Matter has a distinctive structure. A whirlpool galaxy a 
P 
0 =: 
3 

This argument is often called the 'Argument from Design9 (for the 

existence of god). It might better be called the Argument to Design; but 

never mind that. Let us think about it more closely. The premiss of the 

argument, o, is a statement to the effect that the cosmos is ordered in a 

certain way. The conclusion, g, asserts the existence of a creator-god. 

Unless g were true, o would be most unlikely; so, the argument goes, 

given that o, g is likely. 

Now, it is certainly true that the conditional probability of o given that g 

is true, is much higher than that of o given that g is false: 

But this does not give us what we want. For o to be a good inductive 
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reason for g, we need the probability of g, given o, to be greater than 

that of i ts  negation: 

And the fact that pr(o Ig) is high does not necessarily mean that pr(g 1 o) is 

high. For example, the probability that you are in Australia, given that you 

see a kangaroo in the wild, is very high. (Everywhere else, it would have 

to have escaped from a zoo.) But the probability that you will see a 

kangaroo in the wild, given that you are in Australia, is very low. (I lived in 

Australia for about l o  years before I saw one.) 

pr(olg) and pr(g lo) are called inverseprobabilities, and what we have seen 

is  that for the design argument to work, the relationship between them 

must be such as to get us from 1 to 2. IS it? There is, in fact, a very 

simple relationship between inverse probabilities. Recall from the 
" equation CP of the last chapter that, by definition: J 

so: 

3 pr(a I b) x pdb) = pr(a & b) 

Similarly: 

pr(bIa) = pr(b & a)/pr(a) 

so: 

4- pr(b la) x pr(a) = pr(b & a). 

Butpr(a & b) = pr(b & a) (since a & band b & a are true in exactly the same 

situations). Thus, 3 and 4 give us: 
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Assuming that pr(b) is not o - I shall make assumptions of this kind 

without further mention - we can rearrange this equation to get: 

This is the relationship between inverse probabilities. (To remember 

this, it may help to note that on the right hand side, it's first a b followed 

by an a, and then an a followed by a 6.) 

Using Inv to rewrite the inverse probabilities in 1, we get: 

And cancelling the pr(o) on both sides gives: 

Or, rearranging the equation: 

Recall that for the Argument to Design to work, we have to get to 2, 

which is equivalent to: 

It would appear that the only plausible thing that will take us to this 

from 5 is pr(g) 
1 I ,  that is: 
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The values p a )  and pr(,g) are called prior probabilities; that is, the 

probabilities of g and -g prior to the application of any evidence, such 

as o. Hence, what we seem to need to make the Argument go through is 

that the prior probability that there is a creator-god is greater than (or 

equal to) the prior probability that there is not. 

Is it? Unfortunately, there is no reason to believe so. In fact, it would 

seem that it is the other way around. Suppose you don't know what day 

of the week it is. Let m be the hypothesis that it is Monday. Then ~ r n  is 

the hypothesis that it is not Monday. Which is more likely, m or lm? 

Surely, -m: because there are lots more ways for it not to be Monday 

than there are for it to be Monday. (It could be Tuesday, Wednesday, 

Thursday, . .) Similarly with god. Conceivably, there are many different 

ways that the cosmos could have been. And intuitively, relatively few of 
U - those are significantly ordered: order is something special. That, after 8 
4 

all, is what-gives the Argument to Design i t s  bite. But then there are 

relatively few possible cosmoses in which there is an orderer. So a priori, 

it is much more likely that there is  no creator than that there is. 

What we see, then, is that the Argument to Design fails. It is seductive 

because people often confuse probabilities with their inverses, and so 

slide over a crucial part of the argument. 

Many inductive arguments require us to reason about inverse 

probabilities. The Argument to Design is not special in this regard. But 

many arguments are more successful in doing this. Let me illustrate. 

Suppose you visit the local casino. They have two roulette wheels. Call 

them A and B. You have been told by a friend that one of them is  fixed - 
though the friend couldn't tell you which one. Instead of coming up red 

half of the time, and black half of the time, as a fair wheel should, it 

comes up red 314 of the time, and black 114 of the time. (Strictly 

speaking, real roulette wheels come up green occasionally as well: but 
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let's ignore this fact to keep things simple.) Now, suppose you watch 

one of the wheels, say wheel A, and on five successive spins it comes up 

with the results: 

(R is red, B is black). Are you justified in inferring that this is the wheel 

that is fixed? In other words, let c be a statement to the effect that this 

particular sequence came up, and f be the statement that wheel A is 

fixed. Is the inference from c to f a  good inductive inference? 

We need to know whether pr(f 1 c) > pd7 f 1 c). Using the equation Inv to 

convert this into a relationship between inverse probabilities, what this 

means is  that: 

Multiplying both sides by pr(c) gives: 

Is this true? For a start, what are the prior probabilities o f f  and -f? We 

know that either A or 6 is fixed (but not both). We have no more reason 

to believe that it is  wheel A, rather than wheel 6, or vice versa. So the 

probability that it is  wheel A is 112, and the probability that it is wheel B 
is also 112. In other words, pr(f) = 1/2, and pr(,f) = 1/2. SO we can cancel 

these out so that the relevant condition becomes: 

The probability of observing the sequence stated by c, given that the 

wheel is fixed in the way described, pr(cl f), is (%)4 x (%). (Never mind if 

you don't know why: you can take my word for it.) This is 81/4=, which 
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works out to 0.079. The probability that the sequence is observed, 

given that the wheel is not fixed, and so fair, pr(c17 f), is  (%)5 (again, 

take my word for this if you wish), which works out to 0.031. This is less 

than 0.079. So the inference is  valid. 

The way that we worked out prior probabilities here is worth noting. We 

have two possibilities: either wheel A is fixed, or wheel B is. And we have 

no information that distinguishes between these two possibilities. So 

we assign them the same probability. This is an application of 

something called the Principle of lndirerence. The Principle tells us that 

when we have a number of possibilities, with no relevant difference 

between any of them, they all have the same probability. Thus, if there 

are N possibilities in all, each has probability i/N. The Principle of 

lndifference is a sort of symmetry principle. 

Notice that we could not apply the Principle in the Argument to Design. 
U 

b In the roulette case, there are two possible situations which are 
A 

completely symmetric: wheel A is fixed; wheel 6 is fixed. In the 

Argument to Design, there are two situations: a creator-god exists; a 

creator-god does not exist. But these two situations are no more 

symmetric than: today is  Monday; today is not Monday. As we saw, 

intuitively, there are lots more possibilities in which there is no creator 

than possibilities in which there is. 

The Principle of lndifference is an important part of intuitive reasoning 

about probability. Let us end this chapter by noting that it is not without 

i ts problems. It is  well known that it leads to paradoxes in certain 

applications. Here is one. 

Suppose a car leaves Brisbane a t  noon, travelling to a town 3ookm 

away. The car averages a constant velocity somewhere between 5okm/h 

and iookm/h. What can we say about the probability of the time of i ts  

arrival? Well, if it is going a t  iookm/h it will arrive a t  3 p.m.; and if it is 

going a t  5okm/h, it will arrive a t  6 p.m. Hence, it will arrive between 
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these two times. The mid-point between these times is 4.30 p.m. So by 

the Principle of Indifference, the car is  as likely to arrive before 4-30 p.m. 

as after it. But now, half way between sokm/h and iookm/h is  75km/h. 

So again by the Principle of Indifference, the car is  as likely to be 

travelling over 75km/h as under 75 km/h. If it is travelling a t  75 kmlh, it 

will arrive a t  4 p.m. So it is as likely to arrive before 4 p.m. as after it. In 

particular, then, it is more likely to arrive before 4.30 p.m. than after it. 

(That gives it an extra half an hour.) 

I'll leave you to think about this. We have had quite enough about 

probability for one chapter! 

Main Ideas of the Chapter 

pr(a) ~ r ( ~ l b )  = pr(bla) x - 
pdb) 

Given a number of possibilities, with no relevant difference 

between them, they all have the same probability (Principle of 

Indifference). 



Let us look a t  one final issue concerning inductive reasoning. This topic 

is  sometimes called practical reasoning, since it is reasoning about how 

one should act. Here is  a famous piece of practical reasoning. 

You can choose to believe in the existence of (a Christian) Cod; you can 

choose not to. Let us suppose that you choose to believe. Either Cod 

exists or Cod does not. If Cod exists, all well and good. If not, then your 

belief is a minor inconvenience: it means that you will have wasted a bit 

of time in church, and maybe done a few other things that you would 

not otherwise have wanted to do; but none of this is  disastrous. Now 

suppose, on the other hand, that you choose not to believe in the 

existence of Cod. Again, either Cod exists or not. If Cod does not exist, 

all well and good. But if Cod does exist, boy are you in trouble! You are in 

for a lot of suffering in the afterlife; maybe for all eternity if a bit of 

mercy isn't thrown in. So any wise person ought to believe in the 

existence of Cod. It's the only prudent course of action. 

The argument is now usually called Pascal's Wager, after the 17th- 

century philosopher Blaise Pascal, who first put it forward. What is one 

to say about the Wager? 

Let us think a little about how this kind of reasoning works, starting 

with a slightly less contentious example. When we perform actions, we 
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often cannot be sure of the results, which may not be entirely under our 

control. But we can usually estimate how likely the various possible 

results are; and, just as importantly, we can estimate the value to 

ourselves of the various results. Conventionally, we can measure the 

value of an outcome by assigning it a number on the following scale, 

open ended in both directions: 

. . . , -4, -3, -2, -1, 0, +I, +2, +3, +4, . . . 

Positive numbers are good, and the further to the right, the better. 

Negative numbers are bad, and the further to the left, the worse. o is a 

point of indifference: we don't care either way. 

Now, suppose there is some action we may perform, say going for a 

bike ride. It may, however, rain. A bike ride when it is not raining is great 
0 fun, so we would value that at, say, +lo. But a bike ride when it is b 

raining can be pretty miserable, so we would value that at, say, -5. $ 3 

What value should be put on the only thing that is under our control: 
4 

going on the ride? We could just add the two figures, -5 and lo, w 

together, but that would be missing an important part of the picture. It 

may be that it is most unlikely to rain, so although the possibility of rain 

is bad, we do not want to give it too much weight. Suppose the 

probability of rain is, say, 0.1; correspondingly, the probability of no rain 

is 0.9. Then we can weight the values with the appropriate probabilities 

to arrive a t  an overall value: 

This is equal to 8.5, and is called the expectation of the action in 

question, going for a ride. ('Expectation', here, is  a technical term; it has 

virtually nothing to do with the meaning of the word as used normally 

in English.) 

In general, let u be the statement that we perform some action or other. 
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Suppose, for simplicity, that there are two possible outcomes; let o, 

state that one of these occurs, and let o, state that the other occurs. 

Finally, let V(o) be the value we attach to o being true. Then the 

expectation of a, €(a), is the number defined by: 

(Strictly speaking, the probabilities in question should be conditional 

probabilities, pr(ol I a) and pr(o, I a), respectively. But in the example, 

going for a ride has no effect on the probability of rain. The same is true 

in all the other examples we will look at. So we can stick with the simple 

prior probabilities here.) 

So far so good. But how does this help me to decide whether or not to 

go for the bike ride? I know the overall value of my going for a ride. I ts  

expectation is 8.5, as we have just seen. What is the expectation of not 
U 

2' going for a ride? Again, either it will rain or it will not - with the same 
4 

probabilities. The two outcomes now are (i) that it will rain and I stay a t  

home; and (ii) that it will not rain and I stay a t  home. In each of these 

cases, I derive no pleasure from a bike ride. It might be slightly worse if 

it doesn't rain. In that case I might be annoyed that I didn't go. But in 

neither case is it as bad as getting soaked. So the values might be o if it 

rains, and -1 if it does not. I can now calculate the expectation of 

staying a t  home: 

This comes to -0.9, and gives me the information I need; for I should 

choose that action which has the highest overall value, that is, 

expectation. In this case, going has expectation 8.5, whilst staying a t  

home has value -0.9. So I should go for a ride. 

Thus, given a choice between a and --, a, I should choose whichever has 

the greater expectation. (If they are the same, I can simply choose a t  
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random, say by tossing a coin.) In the previous case, there are only two 

possibilities. In general, there might be more (say, going for a ride, 

going to the movies, and staying a t  home). The principle is the same, 

though: I calculate the expectation of each possibility, and choose 

whichever has the greatest expectation. This sort of reasoning is a 

simple example from the branch of logic called decision theory. 

Now let's come back to Pascal's Wager. In this case, there are two 

possible actions: believing or not; and there are two relevant 

possibilities: Cod exists or does not. We can represent the relevant 

information in the form of the following table. 

The figures to the left of the backward slashes are the relevant 

I believe (b) 

I don't believe ( -, b) 

probabilities, 0.1 that God exists, say, and 0.9 that Cod doesn't exist. 

(Whether or not I believe has no effect on whether or not God exists, so 

the probabilities are the same in both rows.) The figures to the right of 

the slashes are the relevant values. I don't much mind whether or not 

God exists; the important thing is that I get it right; so the value in each 

of these cases is +lo2. (Perhaps one's preferences here might not be 

exactly the same, but it doesn't matter too much, as we shall see.) 

Believing, when God doesn't exist, is  a minor inconvenience, so gets 

the value -10. Not believing, when God does exist, is really bad, 

though. It gets the value -lo6. 

God exists God doesn't exist 

O.I\ +lo2 o.g\ -10 

o.l\ -lo6 o.g\ +lo2 

Given these values, we can compute the relevant expectations: 



( -- means 'is approximately equal to'.) I should choose whichever 

action has the greater expectation, which is to believe. 

You may think that the precise values I have chosen are somewhat 

artificial; and so they are. But in fact, the precise values don't really 

matter too much. The important one is the -lo6. This figure represents 

something that is really bad. (Sometimes, a decision theorist might 

write this as - =.) It is so bad that it will swamp all the other figures, 

even if the probability of God's existence is very low. That is the punch 

in Pascal's Wager. 

The Wager might look fairly persuasive, but in fact it makes a rather 

simple decision-theoretic error. It omits some relevant possibilities. 

There is not just one possible god, there are many: a Christian god 

(Cod), Islam's Allah, Hinduism's Brahman, and lots more that various 

minor religions worship. And a number of these are very jealous gods. If 
u 

God exists, and you don't believe, you are in trouble; but if Allah exists 
0 
4 

and you don't believe, you are equally in trouble; and so on. Moreover, if 

God exists, and you believe in Allah - or vice versa - this is even worse. 

For in both Christianity and Islam, believing in false gods is  worse than 

being a simple non-believer. 

Let's draw up a table with some more realistic information. 

If we compute the expectations on even this limited amount of 

information, we get: 
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No belief (n) 
Believe in God (g) 

Believe in Allah (a) 

No God exists God exists Allah exists . . . 

o.g\ +lo2 O.OI\ -lo6 O.OI\ -lo6 . . . 
o.g\ -lo o.oi\ +lo2 o.oi\ -lo9 . . . 
o.g\ -lo o.oi\ -109 o.oi\ +lo2 .. . 



Things are looking pretty bleak all round. But it is clear that theistic 

beliefs are coming off worst. You shouldn't have any of them. 

Let me end, as I have ended all the chapters, with some reasons as to 

why one might be worried about the general framework deployed - 
specifically, in this case, the policy of deciding according to the greatest 

expectation. There are situations where this definitely seems to give the 

wrong results. 

Let's suppose you take the wrong gamble on Pascal's Wager, and end 

up in Hell. After a few days, the Devil appears with an offer. God has 

commanded that you be shown some mercy. So the Devil has hatched a a 
plan. He will give you one chance to get out of Hell. You can toss a coin; 

31 if it comes down heads, you are out and go to Heaven. If it comes down a 
tails, you stay in Hell forever. The coin is not a fair one, however, and the 12 

Devil has control of the odds. If you toss it today, the chance of heads is 

1/2 (i.e., 1-112). If you wait till tomorrow, the chances go up to 314 (i.e., 

1-112'). You sum up the information: 

Escaping has a very large positive value; staying in Hell has a very large 

negative value. Moreover, these values are the same today as 

tomorrow. It is true that if you wait till tomorrow, you might have to 

spend an extra day in Hell, but one day is negligible compared with the 

infinite number of days that are to follow. Then you do the calculations: 
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Toss today (6) 
Toss tomorrow ( m )  

Escape Stay in Hell 

0.5\ +lo6 0.5\ -lo6 

0.75\ +lo6 0.25\ -lo6 



13. A devilish plan: never do today what you should put off until tomorrow 

So you decide to wait till tomorrow. 

But tomorrow the Devil comes to you and says that if you wait one more 

day, the odds will get even better: they will go up to 7/8 (i.e., 1 - 1/2)). 1 

will let you do the calculations: you should decide to wait till the next 

day. The trouble is that every day the Devil comes to you and offers you 
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better odds if you will wait till the next day. The odds get better, day by 

day, as follows: 

Every day you do the calculation. The expectation of tossing on the nth 

day is: 

A little arithmetic tells us that this is lo6 x (I - 212") = lo6 x (I - 112"-I). 

The expectation for waiting till the next, n + 1st. day is  the same, with n 

replaced by n +I. That is, lo6 x (I - 1/27 - which is larger. (1/2" is smaller 

than 112"-'.) Every day, the expectation goes up. 

Hence. every day you do the rational thing and wait till the next day. The f -. 
result is that you never toss the coin a t  all, so you stay in Hell for ever! 8 

31 Tossing on any day has to be better than that. So it looks as though the 

only rational thing to do is to be irrational! $ 

Main Ideas of the Chapter 

€(a) = pr(ol) x V(o,) + . . . +pr(o,) x V(o,), where ol, . . . , on 
state all the possible outcomes that might result from a being 

true. 
The rational action is  the one which makes true the state- 

ment with the greatest expectation. 



The ideas that we have been looking a t  in this book were developed a t  

various different times and places. In this chapter I will describe the 

history of logic, and locate the ideas in their historical context. I will first 

outline briefly the history of logic in general; then I will go through, 

chapter by chapter, and explain how the details fit into the bigger 

picture. 

As we go along, I will also give some further reading, where you can 

follow up a number of the issues if you wish. This is not as easy as might 

be thought. By and large, logicians, philosophers, and mathematicians 

prefer to write for each other. Finding things written for relative 

beginners is  not easy, but I have done my best. 

In Western intellectual history, there have been three great periods of 

development in logic, with somewhat barren periods sandwiched 

between them. The first great period was ancient Greece between 

about qoo BCE and zoo BCE. The most influential figure here is Aristotle 

(384-322). whom we met in Chapter 6. Aristotle developed a systematic 

theory of inferences called 'syllogisms', which have the form: 

All [some] As are [are not] 6s. 

All [some] 8s are [are not] Cs. 

So, all [some] As are [are not] Cs. 
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Aristotle lived in Athens much of his life, founded a school of philosophy 

called the Lyceum, and is usually reckoned to be the founder of logic. 

But a t  about the same time, there was another flourishing school of 

logic in Megara, about 5okm west of Athens. Less is known about the 

Megarian logicians, but they seem to have been particularly interested 

in conditionals, and also in logical paradoxes. Eubulides (whom we met 

in Chapters 5 and lo) was a Megarian. Another important philosophical 

movement started in Athens around 300 BCE. It was called Stoicism, 

after the porch (Creek, 'stoa') where early meetings were held. Though 

the philosophical concerns of Stoicism were much wider than logic, 

logic was an important one of them. It is  generally supposed that 

Megarian logic exerted an influence on the Stoic logicians. At any rate, a 

major concern of Stoic logicians was the investigation of the behaviour 

of negation, conjunction, disjunction, and the conditional. = 
8 
3 

It should also be mentioned that at around the same time as all this was g a 
happening in Creece, theories of logic were being developed in India, 

principally by Buddhist logicians. Important as these theories are, $ % 
though, they never developed to the sophisticated levels to which logic 

B 
developed in the West. fn 3 

The second growth period in Western logic was in the medieval 

European universities, such as Paris and Oxford, from the 12th to the 

14th centuries. The medieval logicians included such notables as Duns 

Scotus (1266-1308) and William of Ockham (1285-134g), and they 

systematized and greatly developed the logic that they inherited from 

ancient Greece. After this period, logic largely stagnated till the 

second half of the 19th century, the only bright spot on the horizon 

during this period being Leibniz (1646-1716), whom we met in 

Chapters 6 and 9. Leibniz anticipated some of the modern 

developments in logic, but the mathematics of his day was just not 

up to allowing his ideas to take off. 

The development of abstract algebra in the -19th century provided just 
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what was required, and triggered the start of the third, and possibly the 

greatest, of the three periods. Radically new logical ideas were 

developed by thinkers such as Frege (1848-1925) and Russell (1872- 

1970), whom we met in Chapters 2 and 4, respectively. The logical 

theories developing from this work are normally referred to as modern 

logic, as opposed to the traditional logic that preceded it. Developments 

in logic continued apace throughout the 20th century, and show no sign 

of slowing down yet. 

A standard history of logic is Kneale and Kneale (1975). This is a little 

dated now, and is  characterized by more optimism than is perhaps 

justified, in i ts  attitude that early modern logicians had finally got 

everything pretty much right; but it is st i l l  an excellent reference 

work. 

a 
Chapter 1. The distinction between deductive and inductive validity 

goes back to Aristotle. Theories of deductive validity have been 

articulated since that time. The view described in Chapter 1 - that an 

inference is deductively valid just if the conclusion is true in any 

situation where i ts  premisses are true - can be traced back, arguably, 

to medieval logic; but i ts  articulation is a central part of modern logic. A 

warning: what I have called a situation is more commonly called an 

interpretation, structure, or sometimes, model. The word 'situation' itself 

has a different, and technical, sense in one area of logic. Lewis Carroll 

(whose real name was Charles Dodgson) was no mean logician himself, 

and published a number of works on traditional logic. 

Chapter 2. The argument to the effect that contradictions imply 

everything is a medieval invention. Exactly who invented it is unclear, 

but it is certainly to be found in Scotus. The truth-functional 

understanding of negation, conjunction and disjunction itself seems to 

have arisen in the Middle Ages. (The Stoic account was not truth- 
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functional in the modern sense.) In i t s  fully articulated form, it appears 

in the founders of modern logic, Frege and Russell. A modern dissident 

is Strawson (1952, ch. 3). 

Chapter 3. The distinction between names and quantifiers is largely a 

creature of modern logic. Indeed, the analysis of quantifiers is  often 

reckoned to be a defining moment in modern logic. It was provided by 

Frege, and later taken up by Russell. At around the same time, the US 

philosopher and logician, C. 5. Peirce, was developing similar ideas. 3 is 

often called the existential quantifier; but this terminology smuggles in a 

somewhat contentious theory of existence. Lewis Carroll's works on 

Alice are replete with philosophical jokes. For an excellent commentary 

on them, see Heath (1974). For many of Heath's own jokes about 

nothing, see Heath (1967). 

a 
The theories explained in Chapters 1-3 can be found in any standard s Y 

P 

modern logic text. Hodges (1977) is one that is not pitched a t  too 

formidable a level; neither is Lemmon (1971). $ 5 
0 
Y 
E 

Chapter 4. The isolation of descriptions as an important logical rn 3 

category is also something to be found only in modern logic. Perhaps 

the most famous analysis of them was given by Russell in 1905. The 

account given in this chapter is not Russell's, but it is very close in spirit. 

Descriptions are discussed in some, but not all, standard modern logic 

texts. Hodges ( ign)  has a good clear account. 

Chapter 5. Various different versions of the liar paradox can be found in 

ancient Creek philosophy. More paradoxes of self-reference were 

invented and discussed throughout medieval logic. Even more were 

discovered around the turn of the 20th century - and this time a t  the 

very core of mathematics itself. Since then, they have become a very 

central issue in logic. Suggestions for solving them are legion. The idea 

that there might be some sentences that are neither true nor false goes 

back to Aristotle (De Interpretatione, ch. 9); however, he would have had 
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no sympathy with the symmetric idea that some sentences might be 

both true and false. That there might be such sentences, and that 

paradoxical sentences might be amongst them, is an unorthodox view 

that has been advanced by some logicians in the last 40 years. 

Discussions of the paradoxes of self-reference tend to get very technical 

very fast. Good introductory discussions can be found in Read (1994, ch. 

6) and Sainsbury (1995, chs. 5, 6). The whole area remains highly 

contentious. 

Chapter 6. The study of inferences involving modal operators goes 

back to Aristotle, and was continued in the Middle Ages. The modern 

investigations were started by the US philosopher C. I. Lewis, roughly 

between 1915 and 1930. The notion of a possible world i s  to be found in 

Leibniz, but the way it is applied in this chapter is  due largely to another 

US philosopher, Saul Kripke, who produced the ideas in the 1960s. A 

standard introduction to the area is  Hughes and Cresswell (1996); but 
Y 

f you are unlikely to get much out of this before you have mastered an 

introductory logic book of a more standard kind. Aristotle's argument 

for fatalism comes from De Interpretatione, ch. 9. He thought it 

fallacious, though not for the reasons given in this chapter. A 

reasonably accessible discussion of it can be found in Haack (1974, ch. 

3). The argument with which the chapter finishes is  a version of the 

'Master Argument' put forward by the Megarian logician Diodorus 

Cronus. 

Chapter 7. Debate about the nature of conditionals goes back to the 

Megarians and Stoics, who produced a number of different theories. 

The issue was also widely discussed in the Middle Ages. The idea that 

the conditional is truth-functional is one of the Megarian views. It was 

endorsed in early modern logic by Frege and Russell. The account given 

in this chapter can certainly be found in medieval logic; in i t s  modern 

form, it is due to C. I. ~ewis, who developed modal logic around it. The 

notion of conversational implicature is due to the British philosopher 

Paul Grice in the 1970s (though he used it in defence of the material 
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conditional). The nature of conditionals remains highly contentious. 

Read (1994, ch. 3) i s  a readable introduction, as is Par t?  of Sanford 

(1989). 

Chapter 8. Temporal reasoning is  discussed by a number of medieval 

logicians. The approach described in this chapter was invented largely 

by the New Zealand logician Arthur Prior in the 1g6os, inspired by 

developments in modal logic. A readable account of the subject can be 

found in Bhrstrcam and Hasle (1995). McTaggart's argument appeared 

originally in 1908, though his presentation is  somewhat different from 

mine. My presentation follows Mellor (1981, ch. 7). 

Chapter g. The distinction between the is of identity and the is of 

predication goes back to Plato (Aristotle's teacher) in ancient Creek z 
philosophy. The origin of the account of identity I have given here is a 

3 
uncertain. The thought that you can substitute equals for equals is to be 

a 
found in Euclid (c. 300 BCE). Something like the account given here can 

5 be found in Ockham, and certainly in Leibniz. In i t s  modern form, it is  to 
I 

be found in Frege and Russell. There are presentations in most standard g 
P 

modern logic texts, such as Hodges ( ign)  and Lemmon (1971). Puzzles 

about identity are legion in philosophy. The one with which the chapter 

ends is due, as far as I know, to Prior. 

Chapter lo. Sorites problems go back to Megarian logic. The problem 

with which the chapter starts is a version of one called the Ship of 

Theseus, a ship which was, supposedly, rebuilt plank by plank. As far as I 

know, the example is first used by the 17th-century English philosopher, 

Thomas Hobbes, in the section De Corpore of his Elements of Philosophy. 

Intense investigation of problems of this kind is largely a feature of the 

last 30 years. The logical details described in this chapter were 

developed initially by the Polish logician Jan tukasiewicz (pronounced 

Woo/ka/zye/vitz) in the igzos, quite independently of worries about 

vagueness. (He was motivated initially by Aristotle's argument about 

fatalism.) Good discussions of vagueness can be found in Read (1994, 
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ch. 7) and Sainsbury (1995, ch. 2). A much lengthier introduction is 

Williamson (1994). 

Chapter 1.1. Historically, inductive validity i s  quite under-developed, 

compared with deductive validity. Probability theory was developed in 

the 18th century, in connection with games of chance, largely by French- 

speaking mathematicians, such as Pierre de Laplace and members of the 

prodigious Bernoulli family. The idea of applying it to inductive 

inference is  due mainly to the German logician Rudolph Carnap in the 

1950s. There are many notions of probability. The one described in this 

chapter i s  usually called the frequency interpretation. A good 

introduction to the whole area is  Skyrms (1975). 

Chapter it. Investigations of the connection between inverse 

probabilities go back to the 18th-century British mathematician, 

Thomas Bayes. The connection described in this chapter is often 
U *- (incorrectly) called Bayes' Theorem. Problems concerning the Principle 0" 
d 

of Indifference also go back to the origins of probability theory. A 

standard introduction to reasoning of this kind is Howson and Urbach 

(1989); but this is not a book for those with a fear of mathematics. 

Chapter 13. Decision theory also has its roots in the investigations of 

probability theory of the 18th century, but became a serious business in 

the 20th century, with many important applications being found in 

economics and game theory. A good introduction is Jeffrey (1985), 

though, again, this book is  not for those with a fear of mathematics. The 

problem with which the chapter ends comes from Gracely (1988). 

Many of the arguments we have met in this book concern Cod, one way 

or another. This i s  not because Cod is  a particularly logical topic. It is just 

that philosophers have had a long time to come up with interesting 

arguments concerning Cod. In Chapter 3, we met the Cosmological 

Argument. Perhaps the most famous version of this was proposed by 

the medieval philosopher Thomas Aquinas. (His version is much more 
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sophisticated than the argument of Chapter 3, and does not suffer from 

the problem pointed out there.) The Ontological Argument for the 

existence of Cod was proposed by the medieval philosopher Anselm of 

Canterbury. The version given in Chapter 4 is  essentially due to the 17th- 

century philosopher Rene Descartes in his Fifth Meditation. Biological 

versions of the Argument to Design were popular in the 19th century, 

but were destroyed by the Theory of Evolution. Cosmological versions, 

of the kind given in Chapter 12, became very popular in the 20th 

century. A good little reference work on arguments for the existence of 

Cod is  Hick (1964). 

There is, of course, much more to the history of logic than the above z 
details tell. Likewise, there is much to logic itself that is entirely absent 3 

4 
from this book. We have been skating over the surface of logic. It has 

& 

great depths and beauty that one could not even begin to convey in a 9 book of this kind. But many of the great logicians of the past became 

engaged with the subject because of exactly the sorts of considerations 
& - 

and problems that this book discusses. If they have engaged you too, I 2 
can ask no more. 



The following glossary contains the terms of art and logical symbols 

that are employed in this book. The entries are not meant to be precise 

definitions, but are meant to convey the main idea for quick reference. 

By and large, the terms and symbols are reasonably standard, though 

there are several other sets of symbols that are also in common use. 

antecedent: what follows the 'if' in a conditional. 

conclusion: the part of an inference for which reasons are given. 

conditional: i f .  . . then . . . 
conditional probability: the probability of some statement, given some 

other information. 

conjunction:. . . and . . . 
conjuncts: the two sentences involved in a conjunction. 

consequent: what follows the 'then' in a conditional. 

conversational implicature: an inference, not from what is  said, but from 

the fact that it is said. 

decision theory: the theory of how to make decisions under conditions of 

uncertain information. 

deductive validity: an inference is deductively valid when the premisses 

cannot be true without the conclusion also being true. 

(definite) description: a name of the form 'the thing with such and such 

properties*. 

disjunction: either. . . or. . . 



disjuncts: the two sentences involved in a disjunction. 

expectation: the result of taking each possible outcome, multiplying i t s  

value by its probability, and adding all the results together. 

fuzzy logic: a kind of logic in which sentences take truth values that may 

be any number between o and 1. 

inductive validity: an inference is  inductively valid when the premisses 

provide some reasonable ground for the conclusion, though not 

necessarily a conclusive one. 

inference: a piece of reasoning, where premisses are given as reasons for 

a conclusion. 

inverse probability: the relationship between the conditional probability 

of a given b, and of b given a. 

'is'of identity: . . . is the same object as . . . 
'is' of predication: part of a predicate indicating the application of the 

property expressed by the rest of it. 

Leibniz's Law if two objects are identical, any property of one is a 
U - property of the other. 8' 
II 

liar paradox: 'This sentence is false'. 

material conditional: not both (. . . and not . . .). 
modal operator: a phrase attaching to a sentence, to form another 

sentence expressing the way in which the first sentence is true or false 

(possibly, necessarily, etc.). 

modern logic: the logical theories and techniques arising out of the 

revolution in logic around the turn of the 20th century. 

modus ponens: the form of inference a, a + c/c. 

name: grammatical category for a word that refers to an object (all 

being well). 

necessity: it must be the case that.. . 
negation: it is not the case that. . . 
particular quantifier: something is  such that. . . 
possibility: it may be the case that. . . 
possible world: a situation associated with another, s, where things 

actually are as they merely might be in s. 

predicate: for the grammatically simplest kind of sentence, the part 
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which expresses whatever is said about what the sentence is 

about. 

premisses: the part of an inference that gives reasons. 

Principle of Indifference: given a number of possibilities, with no relevant 

difference between them, they al l  have the same probability. 

prior probability: the probability of some statement before any evidence 

is taken into account. 

probability: a number between o and I, measuring how likely something 

is. 

proper name: a name that is not a description. 

quantifier: a word or phrase that can be the subject of a sentence, but 

which does not refer to an object. 

reference class: the group of objects from which probability ratios are 

computed. 

Russell's paradox: concerns the set of all sets that are not members of 

themselves. 

self-reference: a sentence about a situation which reflects back on itself. 

situation: a state of affairs, maybe hypothetical, in which premisses and 

conclusions may be true or false. 

sorites paradox: a kind of paradox involving repeated applications of a 

vague predicate. 

subject: for the grammatically simplest kind of sentence, the part which 

tells you what the sentence is about. 

syllogism: a form of inference with two premisses and a conclusion, a 

theory of which was first produced by Aristotle. 

tense: past, present or future. 

tense operator: a phrase attaching to a sentence, to form another 

sentence expressing when the first sentence is true or false (past or 

future). 

traditional logic: logical theories and techniques that were employed 

before the 20th century. 

truth conditions: sentences that spell out how the truth value(s) of a 

sentence depend(s) on the truth values of i t s  components. 

truth function: a logical symbol which, when applied to sentences to 
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give a more complex sentence, is  such that the truth value of the 

compound is completely determined by the truth value(s) of i t s  

component(s). 

truth table: a diagram depicting truth conditions. 

truth value: true ( T )  or false (F). 

universal quantifier: everything is such that. . . 
vagueness: a property of a predicate expressing the idea that small 

changes in an object make no difference to the applicability of the 

predicate. 

valid: applies to an inference in which the premisses really do provide a 

reason of some kind for the conclusion. 



Symbol Meaning Name 

I X  

0 

0 

+ 
3 

P 

F 

H 

G 

- - 

< 

I 

I ... I 
Max 

Min 

Pr 

pr( . .. I .. 
E 

v 

true (in a situation) 

false (in a situation) 

either. . . or .  . . 
. . .  and ... 
it's not the case that .  . . 
some object, x, i s  such that .  . . 
every object, x, is such that. . . 
the object, x, such that. . . 
it must be the case that. . . 
it may be the case that. . . 
i f . .  . then..  . 
not both ( . . . and not.  . . ) 
it was the case that. . . 
it wi l l  be the case that .  . . 
it has always been the case that .  . . 
it will always be the case that. . . 
. . . is  the same object as . . . 
. . . is less than . . . 
. . . is less than or equal t o .  . . 
the number which is the truth value of .  . . 
the greater o f .  . . and . . . 
the lesser of .  . . and . . . 
the probability that .  . . 

, ) the probability that. . . given that .  . . conditional probablity 

the expectation of i ts being the case that. . . 
the value of its being the case that .  . . 
. . . is approximately equal to . . . 

disjunction 

conjunction 

negation 

particular quantifier 

universal quantifier 

description operator 

I modal operators 

conditional 

material conditional 

I tense operators 

identitity 

I truth values 



For each of the main chapters of the book, the following gives an 

exercise whereby you can test your understanding of the contents of 

that chapter. Solutions to the problems can be found a t  the website 

with the following address: 

Chapter 1 Is the following inference deductively valid, inductively valid, 

or neither? Why? lose is Spanish; most Spanish people are Catholics; so 

lose is Cotholic. 

Chapter 2 Symbolize the following inference, and evaluate i ts  validity. 

Eitherlones is a knave or he is a fool; but he is certainly a knave; so he is 

not a fool. 

Chapter 3 Symbolize the following inference, and evaluate i ts  validity. 

Someone either saw the shooting or heard it; so either someone saw the 

shooting or someone heard it. 

Chapter 4 Symbolize the following inference, and evaluate i t s  validity. 

Everyone wanted to win the prize; so the person who won the race 

wanted to win the prize. 

Chapter 5 Symbolize the following inference, and evaluate i t s  validity. 

You made an omelette, and you don't make an omelette and not break an 

egg; so you broke an egg. 

Chapter 6 Symbolize the following inference, and evaluate its validity. 
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It's impossible for pigs to fl' and it's impossible for pigs to breathe under 

water; so i t  must be the case that pigs neither fly nor breathe under water. 

Chapter 7 Symbolize the following inference, and evaluate i ts  validity. 

If you believe in God, then you go to church; but you go to church; so you 

believe in God. 

Chapter 8 Symbolize the following inference, and evaluate i t s  validity. 

It has always rained, and it always will rain; so it's raining now. 

Chapter g Symbolize the following inference, and evaluate i t s  validity. 

Pat is a woman, and the person who cleaned the windows is not a 

woman; so Pat is not the person who cleaned the windows. 

Chapter l o  Symbolize the following inference, and evaluate its validity, 

where the level of acceptability is 0.5.jenny is clever; and eitherjenny is 

not clever or she is beautiful; so jenny is beautiful. 

Chapter 11 The following set of statistics was collected from ten people 

(called 1-10). 

If r i s  a randomly chosen person in this collection, assess the inductive 

validity of the following inference. r is tall and rich; so r is happy. 

Chapter 12 Suppose there are two illnesses, A and B, that have exactly 

the same observable symptoms. go% of those who present with the 

symptoms have illness A; the other 10% have illness B. Suppose, also, 

that there is a pathology test to distinguish between A and B. The test 

gives the correct answer g times out of lo. 

I. What is the probability that the test, when applied to a randomly 

chosen person with the symptoms, will say that they have illness B? 

(Hint: consider a typical sample of l oo  people with the symptoms, 

and work out how many the test will say to have illness B.) 
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2. What is the probability that someone with the symptoms has 

illness B, given that the test says that they do? (Hint: you have to 

use the first question.) 

Chapter 13 You hire a car. If you do not take out insurance, and you 

have an accident, it will cost you $1,500. If you take out insurance, and 

have an accident, it will cost you $300. The insurance costs $90, and 

you estimate that the probability of an accident is 0.05. Assuming 

that the only considerations are financial ones, should you take out 

the insurance? 



Bibliography 

Gracely, E. J. 'Playing Games with Eternity: the Devil's Offer', Analysis 48 

(1988)~ p. 113. 
Haack, S. Deviant Logic (Cambridge: Cambridge University Press, 1974). 

Heath, P. 'Nothing', pp. 524-5, Vol. 5, of P. Edwards (ed.), Encyclopedia of 

Philosophy (London: Macmillan, 1967). 

Heath, P. The Philosopher's Alice (New York, NY: St. Martin's Press, 1974). 

Hick, J. Arguments for the Otistence of Cod (London: Collier-Macmillan Ltd., 

1964). 
Hodges, W. Logic (London: Penguin Books, 1977). 

Howson, C. and Urbach, P. Scientific Reasoning: the Bayesean Approach 

(La Salle, IL: Open Court, 1989). 

Hughes, G. E. and Cresswell, M. A New Introduction to Modal Logic 

(London: Routledge, 1996). 

Jeffrey, R. The Logic of Decision (Chicago: University of Chicago Press, 

2nd edition, 1983). 

Lemmon, E. J. Beginning Logic (London: Thomas Nelson and Sons Ltd., 

1971). 
Kneale, W. and M. The Development of Logic (Oxford: Clarendon Press, 

1975). 
Mellor, D. H. Real Time (Cambridge: Cambridge University Press, 1981. 

2nd edition, London: Routledge, 1998). 

Bhrstrsm, P. and Hasle, P. F. V. Temporal Logic: from Ancient Ideas to 

Artificial Intelligence (Dordrecht: Kluwer Academic Publishers, 1995). 

121 



Read, S. Thinking obout Logic: an lntroduction to the Philosophy of Logic 

(Oxford: Oxford University Press, 1994). 

Sainsbury, R. M. Paradoxes (Cambridge: Cambridge University Press, 

2nd edition, 1995). 

Sanford, D. H. /f P then Q: Conditionals and the Foundations of Reasoning 

(London: Routledge, 1989). 

Skyrms, B. Choice and Chance (Encino, CA: Dickenson Publishing Co., 

1975). 
Strawson. P. Introduction to Logicol Theory (London: Methuen & Co., 

7952). 
Williamson, T. Vagueness (London: Routledge, 1994). 



: w f: 13rLa 6 2 1..46 4 -,.. description (definite) ch. 4,105, 
C2L., &.: $ 1  t+,,~<<;{ 

111, 115 
disjunction 8,11,16,34f, 7477, 

81f, 85,103,104,111,115 
References are to pages unless 
preceded by 'ch.', in which case 

6-- 

they are to whole chapters. c- 
Principal references, in cases existence 27ff 

where there is more than one expectation ggff, ioi,112,115 

reference, are printed in bold. 

F 
S 

fatalism 39,45f 
.&-I, Aristotle's argument for f. 

acceptability, level of 76ff sgff, 106f 
Alice (in Wonderland and Through 'Master Argument' for f. qgf, 

the Looking Class) if, 18f, 21 106 
antecedent q7,75,1ii future, see past 

E4 
begging the question 29 

c"̂  t, 
change 63ff 
Characterization Principle (CP) 

27ff 
conclusion, see premiss(es) 

conditional 43, ch. 7,74ff, 103, 

106,111,115 
material c. 48,112,115 

conjunction g, iif, 15,16,34f, 73, 

77,81f, 85,103,104,111,115 
consequent 47,75,111 
conversational implicature 5off, 

106,111 

r3 
?d 

decision theory ch. 13,108,111 

P" 
t s 
Cod: 

Argument to (from) Design for 
the existence of C. 86ff, 92, 

709 
Cosmological Argument for 

the existence of C. t lf, 108 

Ontological Argument for the 

existence of C. 26ff, log  
Pascal's Wager for belief in the 

existence of C. gqff, 97ff 

grammar 6,2o, 56 

i 
identity ch. g, 70,107,115 
inference iff, 6, 7f, 13ff, i7,75ff, 

78ff, 83ff, 86,102,104,106, 

107,112 

interpretation 104 
123 



is (of identity or predication) a, 
107,112 

L 
Leibniz's Law 65ff, 112 
logic: 

ancient Creek I. 102f, 105,106, 

107 
fuzzy I. ch. lo ,  112 

Indian 1.103 

medieval 1.43,103, loqff 
Megarian 1.i03,106,107 

modal I. ch. 6,106,107 
modem I. 104, iosff, 112 

Stoic I.i03,104,io6 
traditional I. 104,113 

Mobius strip 32f 
model 104 

modus ponens 43,45,47,72,76, 
112 

N 
name ch. 3,26,105,112 

empty n. 28ff 
proper n. 26,113 

necessity ch. 6,112 
negation g, i6,34f, 73f, n, 8of. 

85,103,104,112,115 
nothing(ness) ch. 4 

0 
object igff, 26,28f, 30, 63ff 
operator: 

modal o. ch. 6,56,59,106, 
112,115 

tense o. ch. 8,67,113, 

115 

P 
paradox 103 

liar p. ch. 5,105,112 
Russell's p. ch. 5,113 
sorites p. ch. lo ,  107,113 

past and future ch. 8,113 

possibility ch. 6,112 
possible world qrff, qgf, 112 

predicate 17ff, 24,112 
premiss(es) and conclusion 3, 

4ff, 13ff, 35ff, 75,789 83, 

113 
Principle of Indifference 92f, 108, 

113 
probability ch. 11, ch. 12, ch. 13, 

108 
conditional p. 82ff, ch. 12, 96, 

111,115 
frequency interpretation of p. 

108 
inverse p. ch. 12,108,112 

prior p. 93,113 
property igff, 23,26,63ff 

quantifier ch. 3,26,105,113 

particular (existential) q. no, 
23,105,112,115 

universal q. 20,23,105,113, 

715 

124 



R 
reasoning i f f  

practical r. 94 
reference class 84,113 

5 
self-reference ch. 5, losf, 1-13 

Sherlock Holmes 4,78ff, 83ff 
Ship of Theseus 107 

situation gf, 12,16, igff, 23,28ff, 

34f, 4lff, 46,49, 52ff, 58f, 

62,73,75,77 104,113 
structure 104 
subject 17ff, 24,113 

syllogism l o t ,  113 

T 
tense 56 

compound t. 56ff, 60 

time 55ff, 63,67,76 
flow oft. 55, 57f, 61f 
McTaggart's argument against 

the reality oft. 55ff, 6off 

truth 5 

t. conditions gff, 34,113 
t. and context. 75ff 
degrees oft. 73ff, 82 

t. and falsity g,31ff, iogf 

t. function ch. 2,38,56,74, 

104,106,113 
t. table gff, 48,113 

t. value gff, 34f, 37,58,73f, 77, 
113-14,115 

see also situation 

V 
vagueness ch. lo ,  113 

higher order v. n 
validity ch. 1,104,113 P 

deductive v. qff, 13.35~75, 2 
104,108,111 2 s 

inductive v. 4,52, ch. i i ,g i ,  0 x 

104,108,112 
vacuous v. 14f 

value (of a state of affairs) 95ff, 

115 



j% 
:. -2. 
2 ., 

Anselm (of Canterbury) 109 

Aquinas (Thomas) 108 
Aristotle 39.40, lozf, 105,106, 

107 
Augustine 55 

r - 2  
.-.* 
i3 

Bayes, T. 108 

Bernoullis, the 108 

Callimachus 47 

Carnap, R. 108 

Carroll, L. I, 108,109,104, 

105 
Chomsky, N. 6 

Cresswell, M. 106 

?-.-. 
j j 
:- d 

Dali, S. 61 

Descartes, R. 109 
Diodorus Cronus 106 

Dodgson C., see Carroll, L. 

.."- ' 

Cracely, E. 108 
Crice, P. 106 

.( t, 
y-i 

Haack, 5.106 

Hasle, P. 107 

Heath, P. 105 

Hick, J. 109 

Hobbes, T. 107 

Hodges, W. 105,106 
Howson, C. 108 

Hughes, C. 106 

4 . t 
Jeffrey, R. 108 

ii' 
",".* 

Kneale, W. & M. 104 

Kripke, S.106 

3 ".. 
Laplace, P. de 108 

Leibniz, C. 41.65, 66,103,106, 

107 
Lemmon, E. 105,107 

Lewis, C. 106 

tukasiewicz, J. 107 

Eubulides 32,37,72,103 McTaggart, J. 55,107 

Euclid 107 Mellor, D. 107 

127 



{.-*'% 

Lr 

Ockham (William of) -103,107 
ahrstram, P. 107 

P 
Pascal, B. 94 

Peirce, C. 105 
Plato 27,107 
Prior, A. 107 

R 
Read, S. 106,107 
Russell, B. 24,25, 34.104, 105, 

106,107 

? .'- 
Sainsbury, M. 106,108 
Sanford, D. 107 
Scotus (Duns) 103,104 
Skyrms, B. 108 
Strawson, P. 105 

tj 
Urbach, P. 108 

W 
Williamson, T. 108 



Visit the 

VERY 5HORT 
I NTRODUCTION5 

Web site 

Information about all published titles 

News of forthcoming books 

Extracts from the books, including titles 
not yet published 

Reviews and views 

Links to other web sites and main 
OUP web page 

lnformation about VSls in translation 

Contact the editors 

b Order other VSls on-line 






