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Motivation:

Our project was inspired by the creation of a square-wheeled bicycle. We had heard of this possi-

bility in class, and our original idea was to create our own square-wheeled bicycle. The square-wheeled

bicycle rolls smoothly on a track comprised of a series of upside-down catenary-shaped humps. We

found many simulations of this bicycle online, and learned that a bicycle with wheels shaped like any

regular polygon can be created with a catenary-shaped track. As the number of sides of the polygon

increases, the height of the upside-down catenaries decreases, and the track approaches a �at surface.

Figure 1: Square wheel and track

In our research for the square-wheeled bicycle, we came across a mathematics web page for children

that mentioned brie�y the possibility of creating a bicycle wheel of any rotationally symmetric shape

and forming the appropriate track based upon this shape. This web page included no mathematical

description for how this was to be done, but did include a picture of a �ower-shaped wheel running on

a zig-zag shaped track.
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Figure 2: Flower-shaped wheel and track

This idea of a �ower-shaped wheel intrigued us for several reasons. First, we thought that it would be

easier to construct a right-angle zig-zag track than it would be to construct a catenary-shaped track.

Second, it was something very original - as far as we could tell, no one had ever actually created a

�ower-wheeled bicycle before. Because of these reasons, we decided to change our project from creating

a square-wheeled bicycle to creating a �ower-wheeled bicycle.

Mathematics:

Before beginning our work on the �ower-wheeled bicycle, we spent some time making sure that

we understood the mathematics behind the square-wheeled bicycle. Our original thought was that

the �ower-wheeled bicycle would be a sort of inverse problem to the square-wheeled bicycle since our

track was a series of squares. We assumed that our �ower would be comprised of eight catenaries,

two for each petal. We �rst approached the problem from this angle, and tried to use the geometry

of the situation and the general catenary equation to extract a model for our �ower. However, this

method turned out to be ine�ective and di�cult due to the complexity of the catenary equation (the

inverse of an arccosine function involves complex numbers), so we decided to approach the problem

di�erently. Instead of assuming that the equation for each side of each petal would be the equation of

a catenary on a rotated axis, we decided to make no assumptions on the nature of the curve and just

use the necessary properties to extract our own di�erential equation. There were several things that

needed to be ful�lled by the situation, and these were the restricting factors that we used to develop

our di�erential equation:

• The arclength of one side of a petal needed to be equal to the length of one side of our track.
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• The center of the �ower needed to remain at the same height during the entire rotation to ensure

that our bike wouldn't wobble.

• The tangent vectors of the �ower at the petal tips and inner petal crease needed to form right

angles

With these factors in mind, we drew up a model for the situation and created a di�erential equation.

Our initial model looked like this:

Figure 3: Model of one petal

In this model, −→α (x) = (x, f(x)) is curve that describes one half of one petal of our �ower. Since the

arclength of this curve must be equal to the length of the side, we took a line integral and set it equal

to the side length of part of our track:

−→α ′(x) = (1, f ′(x))

arclength of purple section of curve =
´ x
0

√
1 + f ′(xζ)2dζ = length of purple section of track

=
√
2g(x)

This gives us an equation in terms of the functions f(x) and g(x). To simplify, we need to �nd g(x)

in terms of f(x) by considering the equation of the pink line. The pink line passes through the points

(x, f(x)) and (0, H), so its equation is:
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pink line: l(χ) = f(x)−H
x χ+H

At χ = g(x), l(χ) = g(x) because the triangle created by the section of the track, the pink vertical

line, and the x-axis is a 45-45-90 triangle. So,

g(x) = f(x)−H
x g(x) +H

g(x)[1− f(x)−H
x ] = H

g(x) = Hx
x−f(x)+H

This gives us an equation for g(x) in terms of f(x) , which we can plug into our equation for arclength

above.

´ x
0

√
1 + f ′(ζ)2dζ =

√
2Hx

x−f(x)+H

Di�erentiating both sides, we get

√
1 + f ′(x)2 −

√
1 + f ′(0)2 = d

dx (
√
2Hx

x−f(x)+H )

But we know that the track must be tangent to the curve, so f ′(0) will just be the slope of the ramp,

which is 1. This leaves us with

√
1 + f ′(x)2 −

√
2 = (x−f(x)+H)

√
2H−

√
2Hx(1−f ′(x))

(x−f(x)+H)2

1 + f ′(x)2 = (−
√
2H(f(x)−xf ′(x)−H)
(x−f(x)+H)2 +

√
2)2

Simplifying this, our resulting di�erential was

f ′(x) =
√
(−
√
2H(f(x)−xf ′(x)−H)
(x−f(x)+H)2 +

√
2)2 − 1

The solution to this di�erential equation would give us the equation for the curve representing one

side of one petal of our �ower. We need to consider this curve on the interval x ∈ [0, c] where c is the

x-value corresponding to the endpoint of the curve. This x-value will depend on the side length of our

track, and also the equation of our curve. To solve for this x-value, we can set g(x) = s
√
2

2 , where s is

the side length of our track.

s
√
2

2 = Hx
x−f(x)+H
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x = s
√
2(f(x)−H)

s
√
2−2H

Therefore, Our di�erential equation gives us the equation for a graph on the interval x ∈ [0, s
√
2(f(x)−H)

s
√
2−2H ].

To �nd the rest of our �ower, we can �rst re�ect this section of a curve in the y-axis, which will give

us one petal of our �ower. Then we can rotate this petal about the point (0, H), which is the center

of our petal, by π/2 three times to give us the other three petals and create the entire �ower.

The problem with this method for approaching our problem is that the di�erential equation that we

found is not an easy di�erential equation to solve. We attempted to use numerical methods in maple

and mathematica to get a graph of our situation, but we were unsuccessful. But this did not stop us

from actually designing and creating our bicycle. Instead of using a speci�c equation to model the

situation, we used the three necessary properties that I mentioned earlier and some vector modeling

software to create a template.

Vector modeling:

Figure 4: Vector models of �ower wheel and track
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In our attempt at creating a viable model for our wheel track, we pursued the idea of using vector

graphics software to model our curve. In vector graphic software one may de�ne images as nodes,

lines, and tangent vectors at the nodes, which de�ne the curvature of the lines connecting them. Our

idea, then, was to begin with an isosceles triangle, representing one petal of our wheel, and de�ne the

vectors from each node to ensure the angles we required at each point. Unfortunately, our software

was intended for graphic design artists, not mathematicians. Therefore, one cannot de�ne vectors by

their equations. (Notice the �vector square� de�ning the petals tangent vectors in �gure 4.)

Now, with a somewhat arbitrary triangle height (we chose 1� so all calculations that followed might

be made more simple), we could determine the length of each square from which would form our track.

Unfortunately, this gave rise to the question of, in de�ning the petal curvature, what length vectors we

should use to create an arc length equal to our newly de�ned track. The solution to this was founded

more in intuition than in our not-yet-solved di�erential equation. As seen in �gure 4, the pedal was

embedded in �ve 1�x1� squares, yielding a track square of 1.124�. We then arbitrarily de�ned vectors

for the petal which, to no surprise, did not produce a su�cient arc length. Then, based on two parts

visual intuition, one part luck, and three parts mathemagic, we decided to de�ne the curve by vectors

of 1/3�. Amazingly, this gave us the perfect arc for our now de�ned track.

Utilizing the same software, we tested the design for the wheel by placing it at di�erent rotations

on a track of proper length and checked the following:

1. That the center of the wheel remained at the same height no matter the rotation angle.

2. That the tip of the petal never passes through the track (which, of course, would have made a

physical model impossible).

3. That it would look neat if done in di�erent colors.

Fortunately, all three criteria were met, and we proceeded to model the wheel in 3D in order to animate

it (the animation can be seen at http://www.youtube.com/watch?v=twHyywnJrr4), thereby further

validating the design. After a successful 3D modeling, we decided to move the wheel and track into

production.

Construction:

The main part of our project was the actual construction of this bicycle. Being mathematicians,

this was a task that was somewhat foreign to us. Our �rst step was to decide what type of material
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that we wanted to use. We decided that 3/4� plywood would be strong enough to hold up the bicycle

frame, and that we could make our track out of thicker boards. A trip to Home Depot supplied us

with one sheet of 3/4� plywood, two 12� boards, and six cans of spray paint. A friend donated an old

bicycle frame to our cause, giving us all of our necessary materials.

Our next step was to make an accurate, to-scale stencil of our �ower. We measured the size of the

bicycle wheels in the bike, and made this the tip-to-tip distance of our �ower. The vector-constructed

�ower was made for a 1-by-1 square track, making the conversions simple matters of multiplication. To

create this stencil, we projected our vector image onto a blank white wall, and adjusted the size until

it was accurate. Then we held up a piece of poster board and traced the projected image, creating our

wheel template.

Armed with our to-scale template, we spent a series of Saturdays constructing. Using the template

and a jig saw, we cut out our �ower-shaped wheels from the plywood. We also started constructing the

track by cutting the boards into pieces and screwing them together at right angles. Once we had made

a few pieces of the track, we tried out our wheels and they rolled very well. From here, we continued

and made as long of a track as we could with our two boards. Once the track was constructed, we

decided to use the extra plywood to make siding for the track to hold it in place and ensure that the

right angles stayed as right angles and didn't give under the weight of the bicycle.

The next obvious step in our construction was decoration. We painted our track and wheels, and

decided on designs of cats and canaries, since we think the curve is a rotated catenary. (Cat + Canary

= Catenary!) We also needed to attach some grip to the track and the wheels because wood rolling

on wood is too slippery, and the wheels didn't have enough traction to turn properly. We used some

sticky cabinet grip that Anna's roommate happened to have lying around the kitchen as the grip on

the track, and attached it with spray adhesive.

Our next task was to attach the wheels to the bicycle frame, which proved to be the most di�cult

part of construction. Luckily, a friend of Dave's with some knowledge in bicycle repair agreed to help

us. We decided that the best way to attach our wheels, while still letting them spin, was to �x dowels

to the bike frame, and have the wheels rotate around the �xed dowels. First, we drilled holes barely

larger than the dowels in the center of each wheel. We then attached extra plywood to the wheels, at

either side of the holes, for added stability. Initially, after pushing the dowels through the wheels, the

�t was too snug for proper rotation. After some sanding, the wheels began to rotate as needed. All

we then had to do was detach the brakes which were now rendered useless. Another thing that was
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rendered useless by this construction were the pedals. We had spent some time debating whether or

not to actually make the bike rideable, and in the end decided against it. To begin with, we were a

little nervous about the plywood wheels having the strength to hold a person's weight. And making

the brakes and gears function with these new wheels would have been a whole new task in itself. So we

decided that it would be better to make a bike that would roll over the tracks, but not that someone

would actually ride.

Our �nal task was to attach some sort of grip onto the wheels, and hope that our whole contraption

worked. We chose bike tubes instead of bike tires, because we wanted to keep the shape of the wheels

as well as possible. We cut open an old bike tube and used a staple gun to attach it to the edges of

the wheels. Then, we held our breath and tried out the �nished product.

Unfortunately, it didn't work too well. The grip on the track was tearing when the wheels hit it,

and the bike didn't roll very smoothly. We decided to take the grip o� the track and try the contraption

on just wood. This did make the bike roll more smoothly, but it still wasn't the perfect �t that we

were expecting. We were somewhat upset about this result, but we were still left with a cool looking

bike, so we accepted out shortcomings and decided to analyze our errors.

Error Analysis:

As �pure� mathematicians, dealing with rounded �gures was somewhat foreign to us. While the

curve we came up with in the vector software required an irrational track length, that same software

required we round our �gures to three decimal places. Then, to make the wheel, accuracy was lost

in tracing the initial template. Further error came in mapping that template to the plywood, and,

�nally, in cutting the plywood with a rather old jigsaw. Used to dealing with exact �gures, we were

somewhat worried that all this error would amount to a botched product. Much to our surprise,

however, we found that real life allows for quite a bit of error tolerance. When we began to make the

track, introducing more error terms, the wheel seemed to work on it quite nicely.

While we cannot say exactly what our error tolerance was, we do know we started by rounding to

three decimal places. This, along with the error form tracing and cutting, did not seem to adversely

a�ect the project. Unfortunately, however, the tread we added to the wheel did adversely a�ect the

�t of the wheel on the track. While its added thickness has made for a somewhat �clunkier� ride, it

was needed to prevent too much slipping. The steep angle of the track made it very di�cult to create

enough traction for the wheel to roll smoothly without slipping down the side of the track.

Conclusion:
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In the end, our project turned out as well as we could have expected it to. We realized once we

had chosen our topic and put some considerable e�ort into it that we had taken on an immense task.

When we were researching the square-wheeled bicycle, we found that many college classes will take

the entire semester to design and construct a square-wheeled bicycle. So the two of us attempted a

task on our own in two months that it took an entire class an entire semester to complete. So with

that in mind, we were very happy with our not-so-perfect results. As mathematics students who lean

towards the �pure� side of the math spectrum, it was a great experience for us to use our math to

design something real, and then try to create it. This �real-world� application was something that

we did not have much experience with, and we learned a lot about the inevitable addition of error

tolerance in construction. And �nally, this project also enabled us to get out of the darkness of the

TILT building, and spend a few Saturdays sitting outside in the sun getting covered in saw dust, which

was probably very bene�cial to our general well-being.
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