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Introduction

The aim of this work is to provide solutions to problems on inequalities proposed
in various countries of the world in the years 1990-2005.

In the summer of 2006, after reading Hoojoo Lee’s nice book, Topics in
Inequalities - Theorem and Techniques, I developed the idea of demonstrating
all the inequalities proposed in chapter 5, subsequently reprinted in the article
Inequalities Through Problems by the same author. After a hard and tiresome
work lasting over two months, thanks also to the help I mustered from specialised
literature and from the http://www.mathlinks.ro website, I finally managed to
bring this ambitious project to an end.

To many inequalities I have offered more than one solution and I have always
provided the source and the name of the author. In the contents I have also
marked with an asterisk all the solutions which have been devised by myself.
Furthermore I corrected the text of the problems 5, 11, 32, 79, 125, 140, 159
which seems to contain some typos (I think !).

I would greatly appreciate hearing comments and corrections from my read-
ers. You may email me at

Ercole Suppa
ercsuppa@gmail.com

To Readers

This book is addressed to challenging high schools students who take part in
mathematical competitions and to all those who are interested in inequalities
and would like improve their skills in nonroutine problems. I heartily encourage
readers to send me their own alternative solutions of the proposed inequalities:
these will be published in the definitive version of this book. Enjoy!
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Inequalities From Around the World 1995-2005

Solutions to ’Inequalities through problems’ by Hojoo Lee

Mathlink Members
27 March 2011

1 Years 2001 ~ 2005

1. (BMO 2005, Proposed by Dusan Djukié¢, Serbia and Montenegro)
(a,b,c > 0)
a? b 2 4(a — b)?
—+—+—>a+btc+ —F——
b c a a+b+c

First Solution. (Andrei, Chang Woo-JIn - ML Forum)
Rewrite the initial inequality to:
—p)? _ )2 _ )2 _ B2
(a—1b) n (b—c) n (c—a) > 4(a — b)
b c a a+b+c

This is equivalent to

(a+b+c)<(a_l)b)2 + (b—CC)Q_’_(C_aa)Q) 24(0,—())2

Using Cauchy one can prove

2 2 2
(a—bb) +(b—cc) +(c—aa)

(a+b+c)

1 > 4[max (a, b, ¢) — min (a, b, ¢)]?

In fact
(b—c)?

C

@roe) (U5 4 CoL 2D o by o e ol

WLOG! assume |c — a| = max(Ja — b, |b — ¢|, |c — a|). Then, we get
la=bl+[b—c|l>c—al

IWithout loss of generality.



So
la =0+ 1|b—c|+ |c—a|l >2|c—al

Therefore,

m+w+w)Ca;w2+(b_d2

2
: L) )24mmqm—wa—cuc—aﬁ
a

Equality hold if and only if one of two cases occur : a =b = cor ¢ = wb, a = wc,
where w = @ O

Second Solution. (Ciprian - ML Forum) With Lagrange theorem (for 3 num-
bers) we have

a? v A2 1 (acsz)2 N (bcfaZ)2 N (ab—02)2

?—’_?—’_E_(a—’_b—’—c):a—kb—i—c. be ab ac

So we have to prove that

(ac — b2)2 n (bc — a2)2 N (ab — 02)2
be ab ac -

—C2 2
But (b—c*) >0 and

ac

(ac—b2)2 N (bc—a2)2 (ac—bQ—bc+a2)2 (a—b)°(a+b+c)

> =
be ab - b(a+c) b(a+c)

By AM-GM we have

(a+b+c)’ . (a—b)*(a+b+c)

b < >4(a—0)°
(@t <= batg @b
Then we get
a? b P 4(a —b)?

—+—+—2>a+tb+tc+
c a

b a+b+ec

Remark. The Binet-Cauchy identity

(Z ai@) <Z bidi> - (Z aidi> (Z bici> = Z (aibj — ajb;) (cid; — c;jd;)

1<i<j<n



by letting ¢; = a; and d; = b; gives the Lagrange’s identity:
n n n 2
(Z ai) (Z bi) - <Z akb’“) = > (awb; —aby)’?
k=1 k=1 k=1 1<k<j<n

It implies the Cauchy-Schwarz inequality

(Bre) < () (£%)

Equality holds if and only if apb; = a;jb; for all 1 < k,j < n.

2. (Romania 2005, Cezar Lupu) (a,b,c > 0)

1 1.1
>+ 4=
a

b+c¢c c¢c+a a+bd
+ -
b ¢

a? b2 c?

Solution. (FErcole Suppa) By using the Cauchy-Schwarz inequality we have

2
11 1\? b 1
<++> :(Zm > .
a b ¢ a Vbte
b+c 1 1 1
< < .
—<Z a2 ><b+c+a+c+a+b)_ (Cauchy-Schwarz)

cyc
)(1 1 v
a b ¢

b+
< (Z o
cyc

Therefore

3. (Romania 2005, Traian Tamaian) (a,b,c > 0)

a b c d
>1
b+20+d+c+2d+a+d+2a+b+a+2b+c_




First Solution. (Ercole Suppa) From the Cauchy-Schwartz inequality we have
2 a
< -
(a+b+c+d)” < gyc P2t d CEYC a(b+2c+d)

Thus in order to prove the requested inequality is enough to show that

(a+b+c+d)?
Deyea(b+2c+d) —

The last inequality is equivalent to

(@+b+c+d)?® = a(b+2c+d) >0 —
cyc
a? + b+ +d?—2ac—2bd >0 <
(a—c)+(b—d)?>0
which is true. U

Second Solution. (Ramanujan - ML Forum) We set S =a+b+c+d. It is

a n b n c n d _
b+2c+d c¢+2d+a d+2a+b a+2b+c
B a n b n c n d
" S—(a—¢) S—(b—=d) S+(a—c) S+ (b—d)
But
a n c :(a+c)5+(afc)22a+c (1)
S—(a—¢) S+ (a—c) S2 — (a —c¢)? S
and b d b+d
> 2
S—(b-d St06-d°- s 2)
Now from (1) and (2) we get the result. O

c’

4. (Romania 2005, Cezar Lupu) (a +b+c> % + % +31 a,bc> O)

a+b+c2i
abe



Solution. (Ercole Suppa)
From the well-known inequality (z +y + x)? > 3(2y + yz + zx) it follows that

1 1 1)\?
(a+b+¢)’> <++) >
a b c

Sa(l 1 1Y)
- ab  be ca)
_3(a+b+c)

abc

Dividing by a 4+ b + ¢ we have the desidered inequality. O

5. (Romania 2005, Cezar Lupu) (1 =(a+b)(b+ ¢)(c+a), a,b,¢c > 0)

3
ab+bc+ca < 1

Solution. (Ercole Suppa) From the identity
(a+b)(b+c)(c+a)=(a+b+c)(ab+ bc+ ca) — abe

we have

1+ab
ab+bc+ca:ﬂ (1)
a+b+c

From AM-GM inequality we have

1=(a+b)(b+c)(c+a)>2Vab-2Vbc-2v/ca = 8abe —> abcgé @)

and
2a+§+c=(“+b)+(b_§c)+(c+a)2\3/(a+b)(b+c)(c+a):1 _
a—|—b+czg (3)

From (1),(2),(3) it follows that

1+ ab 1+1 3
ab+bc+ ca = +abe <—58==
a+b+c 5 4




6. (Romania 2005, Robert Szasz - Romanian JBMO TST) (a+b+c¢ =
3, a,b,c >0)
a’b?*c? > (3 —2a)(3 — 2b)(3 — 2¢)

First Solution. (Thazn! - ML Forum) The inequality is equivalent to

(a+b+e)P(—a+b+c)a—b+c)(at+b—c)<27a’b?c?

Let x=—-a+b+c,y=a—b+c, 2z =a+b— c and note that at most one of z,
y, z can be negative (since the sum of any two is positive). Assume z,y,z > 0
if not the inequality will be obvious. Denote x +y + 2 =a+ b+ ¢,z + y = 2c,
etc. so our inequality becomes

64zyz(z +y +2) < 27(x +y)2(y + 2)%(z + x)?

Note that
Iz +y)(y+2)(z+x) 28z +y+2)(xy +yz + 2z)
and
(xy +yz + 2x)? > 3ayz(z +y + 2)
Combining these completes our proof! O

Second Solution. (Fuzzylogic - Mathlink Forum) As noted in the first solution,
we may assume a, b, ¢ are the sides of a triangle. Multiplying LHS by a + b+ ¢
and RHS by 3, the inequality becomes

16A2 < 3a%h?c?
abc

where A is the area of the triangle. That is equivalent to R? > % since A = 4%,
where R is the circumradius. But this is true since

B a+b+c
2(sin A + sin B + sin C)
and
sinA+sinB +sinC < %
by Jensen. O



Third Solution. (Harazi - Mathlink Forum) Obviously, we may assume that
a, b, c are sides of a triangle. Write Schur inequality in the form

b
% >alb+c—a)+blc+a—>b)+cla+b—rc)
and apply AM-GM for the RHS. The conclusion follows. O

7. (Romania 2005) (abc > 1, a,b,c > 0)

1 1 1
1+a+b+1+b+c+1+c+a -

First Solution. (Virgil Nicula - ML Forum)
The inequality is equivalent with the relation

ZaQ(b—l—c)+2ab622(a+b+0)+2 (1)

But
2abc > 2 (2)

and
3+ a*(b+c)=) (a®b+a*c+1)>

>3 Va2h-a2c-1>
>3 a-Vabe>
>3 a=
=2> a+) a>
>2Y " a+3Vabe >
>2Y a+3

Thus we have
Y a*(b+e)>2> a (3)
From the sum of the relations (2) and (3) we obtain (1). O

Second Solution. (Gibbenergy - ML Forum)
Clear the denominator, the inequality is equivalent to:

a*(b+c)+b*(c+a)+Pla+b)+2abc>2+2(a+b+c)



Since abc > 1 so a4+ b+ ¢ > 3 and 2abc > 2. It remains to prove that
a?(b+c)+b*(a+c)+cEa+b)>2a+b+e)
It isn’t hard since
> (@*b+a’c+1)—3>> 3Valbe—3 >
> 3Ved -3 =
=3Y a-3>

>2(a+b+c)+(a+b+c—3)>
>2(a+b+c)

O

Third Solution. (Sung-yoon Kim - ML Forum)
Let be abc = k* with £ > 1. Now put a = kx3, b = ky?, ¢ = k23, and we get
zyz = 1. So

1 1
—_— = —<
Zl+a+b Zl+k(z3+y3)_
1
<) ——— <

1
< F —
*nyz+x2y+a:y2
1 1

xy.a:—i-y—kz

<1 1 1) 1
ry Yz zx)rx+y+=z
1

TYz
and we are done. O

Remark 1. The problem was proposed in Romania at IMAR Test 2005, Juniors
Problem 1. The same inequality with abc = 1, was proposed in Tournament of
the Town 1997 and can be proved in the following way:

Solution. (See [66], pag. 161)
By AM-GM inequality

a+b+c¢>3Vabe>3 and ab+bc+ca>3Vab-bc-ca> 3

Hence
(a+b+c)(ab+bc+ca—2)>3



which implies
2(a+b+c)<abla+b)+bc(b+c)+ca(c+a)

Therefore

1 1 1

Ttatb 1+btec 1tcta
24+2a+2b+2c—(a+b)(b+c)(c+a)

(14+a+b)(1+b+c)(1+c+a)

~ 2a+2b+2c—ab(a+b) —bc(b+c)—ca(c+a) <0
n (1+a+b)(14+b+c)(1+c+a) -

Remark 2. A similar problem was proposed in USAMO 1997 (problem 5)
Prove that, for all positive real numbers a,b, c we have
1 + 1 n 1 < 1
ad+b3+abc V3 +cE+abe A+ ad+abc T abe

The inequality can be proved with the same technique employed in the third
solution (see problem 87).

8. (Romania 2005, Unused) (abc =1, a,b,c > 0)

a L b L c
b2(c+1) c2(a+1) a?(b+1)

3
> 2
-2

First Solution. (Arqady - ML Forum) Let a = £, b= £ and ¢ = %, where
x>0,y >0 and z > 0. Hence, using the Cauchy-Schwarz inequality in the
Engel form, we have

3

CyZCbQ(chl) :Zyz(erz) -

cyc
4

=2 ryz(y + 2) z

cyc
(22 + 92 + 22)?
T 2zyz(x +y + 2)

Id est, remain to prove that

(x2+y2+22)2

3
IS S e VAN
2zyz(z+y+2z) — 2



which follows easily from Muirhead theorem. In fact

2 2 2\2
(2% 4+ y* + 2%) >3

> =
2eyz(z+y+2) — 2
2Zx4+42x2y2262x2yz —=
cyc cyc cyc
YILEED PEVEE) pem
sym sym sym

and

Za:4 > Znyz , Zx2y2 > ZIQyz

sym sym sym sym

Second Solution. (Travinhphuctkl4 - ML Forum) Let a = £, b = £ and
c= 5, where z > 0, y > 0 and z > 0. We need prove

3

a T 3
—_— h— >7
;bQ(c—kl) %C:yz(y—kz) —2

We have x2 + 4% > xy(x +y), ..., etc. Thus the desidered inequality follows
from Nesbit inequality:

.133 yS 2’3 1.3 y3 23

>
yz(y+z)+xz(x+z) +xy(:c+y) - y3—|—z3+z3+x3+x3+y3

3
> 2
-2

9. (Romania 2005, Unused) (a+b+c¢> ¢ +2+ < a,bc>0)

alc n ba n c3b
blc+a) cla+bd) alb+c)

>3
-2

Solution. (Zhaobin - ML Forum) First use Holder or the generalized Cauchy
inequality. We have:

adc b3a A3h
<b(a+c) + c(a+b) + a(b+c)> (2a + 2b + 2¢)(

a

b

b
o)z (atbt o)
C a

10



SO:

a’c b3a b a+b+c
+ + >
bla+c) cla+bd) alb+c) 2

but we also have:
b
atbtre>t424+5>3
b ¢ a

so the proof is over. O

10. (Romania 2005, Unused) (a +b+c=1, a,b,¢ > 0)

a n b n c >\/§
Vb+e Veta Va+b V2

First Solution. (Ercole Suppa) By Cauchy-Schwarz inequality we have

2
1—(a+b+c)2—< %%ﬁé/bw) <

< (Z\/[)‘ZTJ (a\/b+c+b\/a+c+0\/a+b>

cyc

Therefore

a 1
(Z\/b—i—c)Za\/b+c+b\/a+c+c\/a+b (1)

cyc

Since a + b+ ¢ = 1 we have

avb+c+bJa+c+ceva+b= (Z\/E\/a(b+c)> <

cyc

<Va+b+cv2ab+ 2bc + 2ca = (Cauchy-Schwarz)

= \/zx/?)ab—k 3bc + 3ac <

and from (1) we get the result.

11



Second Solution. (Ercole Suppa) Since a + b+ ¢ = 1 we must prove that:

a . b n c >\/§
Vi—a Vi-b Ji-ec V2

The function f(z) = 7i= Is convex on interval [0, 1] because

f”(x):i(l—x)fg(él—x)zo, Va € [0,1]

Thus, from Jensen inequality, follows that

> =@ 0+ 1@ 23 () =5 (3) =3

cyc

11. (Romania 2005, Unused) (ab + bc + ca + 2abc = 1, a,b,c > 0)

\/@Jr\/%Jr\/agg

Solution. (See [1], pag. 10, problem 19)
Set x = vab, y = Vbe, z = \Jca, s = & + y + z. The given relation become

2?4y + 224 2eyz =1
and, by AM-GM inequality, we have

s —2%4+1=(x4+y+2)°—-2@+y+2)+1=
=1-2zyz+2(axy+az+yz)—2(x+y+2)+1=
=2(xy+taztyz—ayz—x—y—z+1)=
—2(1—a)(1-y) (-2 < (AM-GM)

3 3
<9 l-z4+1-y+1—-2 _9 3—s
3 3

25 +952 —27<0 & (25—3)(s+3)°<0 & s<

Therefore

N W

and we are done. O

12



12. (Chzech and Slovak 2005) (abc =1, a,b,c > 0)

a b c
@+ DO+D  GxDer) T letrDat)

3
> 2
!

Solution. (FErcole Suppa) The given inequality is equivalent to
4(ab+bc+ca)+4(a+b+c) > 3(abc+ab+bc+cat+a+b+c+1)
that is, since abc = 1, to
ab+bc+cat+a+b+c>6
The latter inequality is obtained summing the inequalities
a+b+c>3Vabe=3

ab +be + ca > 3Va2b2c? = 3
which are true by AM-GM inequality. O

13. (Japan 2005) (a+b+c=1, a,b,c > 0)

ol
ol
=

a(l+b—c)*+b(l4+c—a)s+c(l+a—0)% <1

First Solution. (Darij Grinberg - ML Forum) The numbers 1+b—¢, 1+ c—a
and 1+ a — b are positive, since a +b+c = 1yieldsa < 1, b < 1 and ¢ < 1.
Now use the weighted Jensen inequality for the function f (x) = &, which is
concave on the positive halfaxis, and for the numbers 1 +b—¢, 1 + ¢ — a and
1+ a — b with the respective weights a, b and ¢ to get

a\?/1+b—c+b\3/1+c—a+c\3/m<
a+b+c -

i;/a(lerc)+b(1+ca)+c(1+ab)
a+b+c

<

Since a + b+ ¢ = 1, this simplifies to

avV1+b—c+b¥T+c—a+cvV1+a—-b<
<Ya(l+b—c)+b(1+c—a)+c(l+a—b)

But

13



Za(lerfc):(a+abfca)+(b+bcfab)+(c+cafbc):a+b+c:1

cyc

and thus

avVl+b—c+b/T+c—a+c1+a—-0< V1=1

and the inequality is proven.

O
Second Solution. (Kunny - ML Forum) Using A.M-G.M.
. . 1+1 1+b6— b—
SFb—e= T 1-(l4b—c) < +(3+ )14 3C
Therefore by a + b+ ¢ = 1 we have
avVl+b—c+bV1+c—a+c/1+a—-0<
b—c c—a a—b
< 14+ —— b1+ — 1+—— | =1
a1+ 55 ) o (145 ve (14557
O

Third Solution. (Soarer - ML Forum) By Holder with p = % and ¢ = 3 we
have

Za(l—kb—c)% :Zﬁ [a(1—|—b—c)]% <

cyc cyc

IN
ey
(e}

i
IS
~

el

I
VR
(]
d/

)
VR
(]
\Q/
I
(]
IS
Il

14



14. (Germany 2005) (¢ +b+c=1, a,b,c > 0)

9 a+b+c >1+a+1—|—b+1+c
“1-a 1-b 1-c¢

First Solution. (Arqady - ML Forum)

l14a 14b 1+c¢ a b ¢
+ + <2 -+-+- &

l—-a 1-b 1-—¢ b ¢ a
2a 2a
—_— — —1)]>0 <«
Z(b b+c >_

Z(2a402 — 2a%b%c?) + Z(a3b3 —a®b’c—a*cPb+a*c®) >0

cyc cyc

which is obviously true.

Second Solution. (Darij Grinberg - ML Forum) The inequality
1+a 1+ 1—|—c< b, c a

2= 4 =
1—a+1—b+1—c_ (a+b+c)
can be transformed to
3 a b c a ¢ b
< —4 -+ -

§+b+c+c+a+a+b_ c b a
or equivalently to

ab n be n ca
c(b+c¢)  alc+a)  bla+bd)

We will prove the last inequality by rearrangement. Since the number arrays

ab be ca
c’a’b

111
a+b b+c c+a

are oppositely sorted (in fact, e. g., if ¢ > a > b, we have %b < be < S and

1 1 1
T e 2 —Ha)7 we have

3
> 2
-2

and

ab 1 be 1 ca 1 ab 1 be 1 ca 1

. . > . . .
c b+c+a c+a+b a+b~ ¢ a+b+a b—l—c+b c+a

15



i.e.

ab . be n ca S ab n be L ca
cb+c¢) a(c+a) bla+d) ~cla+d) a(b+c) blct+a)

Hence, in order to prove the inequality

ab n be n ca S
clb+c¢) a(c+a) bla+d) —
it will be enough to show that

N W

ab n be n ca S
cla+b) a(b+c) bct+a)

But this inequality can be rewritten as

N W

ab n be n ca
ca+bc  ab+ca  bec+ ab
which follows from Nesbitt.

3
> 2
-2

Third Solution. (Hardsoul and Darij Grinberg - ML Forum) The inequality

l1+a 1+b 1+4¢ b ¢ a
<2(—+ -+ -
l—-a 1-b 1-—¢— (a+b+c)

can be transformed to

3+ a n b n c <a+c+b
2 b+c c+a a+b " c b a

or equivalently to

ab L be . ca 3
c(b+c¢) alc+a) bla+b) ~ 2

ab be ca
c(b+¢) \ alc+a)”\ bla+0)

(\/b+c,\/a+c,\/a+b>

2
LHS - (2a+ 2b+ 2c) > (\/acan\/l;va/C;)

16

Now by Cauchy to

and

we have



To establish the inequality LHS > % it will be enough to show that

([[D<)

Deﬁning,/%:x, =Y ab — » we have

c

S N L L S
b c b ¢

and similarly zz = b and xy = ¢, so that the inequality in question,
b b ’
Q/C+,ﬁa+wa> >3(a+b+c)
a b c

(z+y+2)°>3(yz+ 20+ zy)

takes the form

what is trivial because

(ty+2? -3z tatm) =5 (-2 + -0+ @ -9)°)
U

Fourth Solution. (Behzad - ML Forum) With computation we get that the
inequality is equivalent to:

2(2 a’b’ + Z atb?) > 6a*b*c* + Z a*b?c + a®bc?

which is obvious with Muirhead and AM-GM.

15. (Vietnam 2005) (a,b,c > 0)
a 3+ b 3+ c 3>§
a+b b+c c+a) T8

Solution. (Ercole Suppa) In order to prove the inequality we begin with the
following Lemma

LEMMA. Given three real numbers z,y, z > 0 such that zyz = 1 we have

(RS S S
(1422 (149> (Q+2)7° 4

17



ProoF. WLOG we can assume that xy > 1, z < 1. The problems 17 yields

L1 1z
1+2)* (1+y)°  lt+ay z+1

Thus it is easy to show that

1 n 1 n 1 S _? . 1 S 3

(I+a)”  (1+y)* (+2)°  2+1 (14274
and the lemma is proved. O

The power mean inequality implies
\3/a3—|—b3—|—c3 . \/a2+62+c2
3 - 3
1

A3+ b3+ P> — (a2 b2+ 2)Y? (1)

V3

Thus setting z = g, y =%, 2= 4%, using (1) and the Lemma we have:

() + () + (5) =
a+b b+c c+a) —

a \? bo\? c 2
<a+b> + <b+c> + (c+a>
3/2

>

LHS

3/2

v

Sl

1 n 1 n 1
(1+2)° (1+y)° (1+2)?

EANE
4 -8

\%

v

Sl Sl

O

Remark. The lemma can be proved also by means of problem 17 with a = =,
b=y,c=2d=1.

16. (China 2005) (a+b+c=1, a,b,c>0)

10(a® + 6% +¢®) —9(a® +b° +°) > 1

18



Solution. (Ercole Suppa) We must show that for all a,b,¢ > 0 with a+b+c =1

results:
Z (1Oa3 — 9a5) >1

cyc

The function f(z) = 102® — 92° is convex on [0, 1] because
£ (z) =30z (2—32%) >0, Vzel0,1]

Therefore, since f (%) = %, the Jensen inequality implies

Fl@)+ F(0)+ 1 () =3¢ (+§+) zs.f(;) 1

17. (China 2005) (abcd =1, a,b,c,d > 0)

1 1 1 1
>1
(ta? TaF02 " (xe2 " Uga2 -~

First Solution. (Lagrangia - ML Forum) The source is Old and New Inequal-
ities [4]. The one that made this inequality is Vasile Cartoaje.
I will post a solution from there:

The inequality obviously follows from:

1 n 1 S 1
(1+a)? (14052~ 1+ab

and

1 1 1
+ >
(14+¢?2 (1+d)?~ 1+cd
Only the first inequality we are going to prove as the other one is done in the
same manner: it’s same as 1 + ab(a2 + b2) > a2b? 4 2ab which is true as

1+ ab(a® +b?) — a®b* — 2ab > 1 + 2a%b* — a®b* — 2ab = (ab — 1)?
This is another explanation:

1 1 1 ab(a — b)% + (ab — 1)?

(1+a)? + (1+0)2 1+ab  (1+a)%(1+b)2ab)
Then, the given expression is greater than

1/(1+ab)+1/(14+cd)=1

with equality if a=b=c=d = 1.

19



Second Solution. (Iandrei - ML Forum) T've found a solution based on an
idea from the hardest inequality I've ever seen (it really is impossible, in my
opinon!). First, I'll post the original inequality by Vasc, from which I have taken
the idea.

Let a,b,c,d > 0 be real numbers for which a? + b? + ¢? + d?> = 1. Prove that
the following inequality holds:

(I1—-a)(1=0b)(1-c)(1—-d) > abed

T’ll leave its proof to the readers. A little historical note on this problem: it
was proposed in some Gazeta Matematica Contest in the last years and while
I was still in high-school and training for mathematical olympiads, I tried to
solve it on a very large number of occasions, but failed. So I think I will always
remember its difficult and smart solution, which I'll leave to the readers.

Now, let us get back to our original problem:

Let a,b,c,d > 0 with abcd = 1. Prove that:

1 1 1
>
(xa2 " 0302 "O7e2 T azap="!

Although this inequality also belongs to Vasc (he published it in the Gazeta
Matematica), it surprisingly made the China 2005 TSTs, thus confirming (in
my opinion) its beauty and difficulty. Now, on to the solution:

Let

1 1 1 ' 1
xr = = z = =
1+a V7140 1+¢ 1+d
Then
l—2 1—-y 1—2 1—-¢
abed =1 = z. g = =1=01-2)1-y)(1-2)(1—t) =xyzt

Y z t

We have to prove that 22 4+y2+ 22+t > 1. We will prove this by contradiction.
Assume that 22 +y? + 22 + 2 < 1.

Keeping in mind that 22 +y?+ 22 +12 < 1, let us assume that (1—z)(1—y) < 2t
and prove that it is not true (I'm talking about the last inequality here, which
we assumed to be true). Upon multiplication with 2 and expanding, this gives:

1-2(x+y)+1+22y <2zt
This implies that
2t >a? 4y + 22 12— 2@ +y) + 1+ 22y
So, 22t > (x+y)? —2(z+y) +1+22+¢2, which implies (z—t)?+ (z+y—1)2 < 0,

a contradiction. Therefore, our original assumption implies (1 — z)(1 —y) > zt.
In a similar manner, it is easy to prove that (1 — z)(1 — ¢) > zy. Multiplying

20



the two, we get that (1 —x)(1—y)(1—2)(1—t) > zyzt, which is a contradiction
with the original condition abcd = 1 rewritten in terms of z,y, z, t.
Therefore, our original assumption was false and we indeed have

242>

18. (China 2005) (ab+ bc+ca = 3, a,b,c > 0)

1 1
<
a2—b0+1+b2—ca+1+02—ab+1_

—_

3

First Solution. (Cuong - ML Forum) Our inequality is equivalent to:
1
2 - >
Ba(a+b+c¢)+2 ~a+b+ec
Since ab + bc 4 ca = %, by Cauchy we have:

(a+b+c)’
LHS 2 3(atbteo) @+ +c)+2(at+bte)
a+b+c B
3@+ +c2)+2(a+btc)
a+b+c
3 (a? + b% + % + 2ab + 2ac + 2bc)
at+b+c %
3(a—|—b—i—c)2 Ca+b+te

Second Solution. (Billzhao - ML Forum) Homogenizing, the inequality is
equivalent to

1 1
<
;a(a+b+c)+2(ab+bc+ca) ~ ab+bc+ ca

Multiply both sides by 2(ab 4 bc + ca) we have

Z 2(ab+ be + ca) <9
“ala+b+c)+2(ab+bc+ca)

21



Subtracting from 3, the above inequality is equivalent to

ala+b+c)
> 1
. ala+b+c)+2(ab+ be + ca)

Now by Cauchy we have:

Cl2

>
a+b+c)+2a(ab+be+ca) —

LHS:(a+b+c)Za2(
cyc

(a+b+¢)’
N chc [a’2 (a+b+0)+2a(ab+bc+ca)]

19. (Poland 2005) (0 < a,b,c<1)

a b c

<2
bc+1+ca+1+ab+1_

First Solution. (See [25] pag. 204 problem 95) WLOG we can assume that
0<a<b<c<1. Since 0<(1—a)(l—0>b) we have
a+b<l+ab<1+2ab =
a+b+c<a+b+1<2(1+ad)

Therefore
a b c a b c a+b+e
< <
1+bc+1+ac+1+ab_ 1+ab+1+ab+1+ab_ 1+ab —

O

Second Solution. (Ercole Suppa) We denote the LHS with f (a,b,c). The
function f is defined and continuous on the cube C' = [0,1] x [0,1] x [0,1] so,
by Wierstrass theorem, f assumes its maximum and minimum on C. Since f
is convex with respect to all variables we obtain that f take maximum value in
one of vertices of the cube. Since f is symmetric in a, b, ¢ it is enough compute
the values f(0,0,0), f(0,0,1), f(0,1,1), f(1,1,1). It’s easy verify that f take
maximum value in (0,1,1) and f(0,1,1) = 2. The convexity of f with respect
to variable a follows from the fact that

T b c
f(@be) = bc+1+cx+l+b:17+1

is the sum of three convex functions. Similarly we can prove the convexity with
respect to b and c. O
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20. (Poland 2005) (ab+ bc+ ca =3, a,b,c > 0)
a® + b + ¢ + 6abc > 9

Solution. (FErcole Suppa) Since ab + be + ca = 1 by Mac Laurin inequality we

have:
a+§+62 /ab—i—b?)c—}—ca:l (1)

By Schur inequality we have

Za(a—b)(a—c)zo =

cyc

a® + b + ¢ + 3abe > ZaQb

sym

and, from (1), it follows that

a® + 0% + A3 + 6abe > a®b+ a’c + abe + b2a + b2c + abe + Aa + b+ abe =
=(a+b+c)(ab+bc+ca) =
=3(a+b+¢c)>9

21. (Baltic Way 2005) (abc =1, a,b,c > 0)
a b c

>1
a2+2+b2+2+02+2_

Solution. (Sailor - ML Forum) We have

a a
ZaQ—&—QSZQa—i—l

We shall prove that > 5-%5 <1 or

2a 1
2507152 & Xgariz!

Clearing the denominator we have to prove that:

ZZaZG

wich is true by AM-GM. O
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22. (Serbia and Montenegro 2005) (a,b,c > 0)

a n b n c < 3( thto)
—(a c
Vb+e Vet+a a+b 2

Solution. (Ercole Suppa) Putting

a b c
r= — = —-— 2= ——————
a+b+c’ y a+b+c’ a+b+c

the proposed inequality is exctly that of problem 10.

23. (Serbia and Montenegro 2005) (a +b+c=3, a,b,c > 0)

Va+ Vb4 /e > ab+ be+ ca

Solution. (Suat Namly - ML Forum) From AM-GM inequality we have

a® +va++a>3a

By the same reasoning we obtain

b2+ Vb4 Vb >3b

4 Ve+e>3c

Adding these three inequalities, we obtain

a2+b2+c2+2(\/6+\/5+ﬁ) >3(a+b+c)=

=(a+b+c)’ =
=a® + 0%+ +2(ab+ be+ ca)

from which we get the required result.

24. (Bosnia and Hercegovina 2005) (a +b+c=1,a,b,c > 0)

1
aVb+ by +eva < 7

24



Solution. (Ercole Suppa) From the Cauchy-Schwarz inequality we have

(a\/l;—l-b\/é—i-c\/&)z = (Zﬁ\/@)Q <

cyc

(3] () -

= (ab+ bc+ ca) <

IN

1 1
Sg(a+b+c)2:§

Extracting the square root yields the required inequality.

25. (Iran 2005) (a,b,c > 0)

the inequality become

(r+y+2?>4r+y+ztaytaztyz <
Py taytaztyz >3+ ty+z

where xyz = 1. From AM-GM inequality we have

xy +x2 +yz > 3V x2y222 =3

On the other hand we have
1\? 1\? 1\?
(+=3) +(r-3) +(--3) 2
2 2 2 3
+y +z 2x+y+z+12x+y+z

Adding (1) and (2) yields the required result.

26. (Austria 2005) (a,b,c,d > 0)

1 1 1 1 a+b+c+d
S+t + _
a c

>
a3 abed

25



Solution. (Ercole Suppa) WLOG we can assume that a > b > ¢ > d so

27 2-2

SN
S| =
ol
IS

Since the RHS can be written as

atb+e+d 1 1 1 1

abcd _@+acd+@+abc
from the rearrangement (applied two times) we obtain

L1 1 11U 1 atbietd
a3 B B3 d3 T bed acd  abd  abe abed

27. (Moldova 2005) (a* +b* +¢* =3, a,b,¢ > 0)

1 n 1 n 1 <1
4—ab 4—bc 4—ca

First Solution. (Anto - ML Forum) It is easy to prove that :

1 1 a*+5
Z4—ab§24—a2§2 18

The first inequality follows from :

2 < 1 n 1
4—ab " 4—a2 4-—0b2

The second :
1 < a*+5
4—a2~ 18

is equivalent to :
0<4a*+2—a%—5a%> <0< (a®* — 1)*(2 - a?)
which is true since a* < 3 and as a result a? < 2.

Thus
1

Z 1 Za4+5*a4+b4+64+1573+15*

<
4—ab — 18 18 18

cyc cyc
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Second Solution. (Treegoner - ML Forum) By applying AM-GM inequality,
we obtain

1 1
LHS < Z at+b4 - Z 3—ct
4=/ = 4=/

Denote
3—ct 3—ct 3—ct
u = V= w =
2 ’ 2 ’ 2
Then 0 < u,v,w < 3 and u+ v+ w = 3. Let f(u) = 4_1\/5. Then
1
() —
Jilu) = 2/u(4 — /u)?
—3 1
—u7 (1 - 3u2)
fﬂ(u) = I 3 3
(dut —ur)
Hence f”(u) < 0 for every 0 < u < 3. By apply Karamata ’s inequality for the
function that is concave down, we obtain the result. O

28. (APMO 2005) (abc =8, a,b,c > 0)

a? b2 2 4
> =
\/(1+a3)(1+b3) * \/(1+b3)(1+c3) N \/(1+c3)(1+a3) -3

First Solution. (Valiowk, Billzhao - ML Forum) Note that

a®+2 (a®*—a+1)+(a+1)

5 = 5 >V —a+1)(a+1)=+vad+1

with equality when a = 2. Hence it suffices to prove

a? b2 c?

@12 +2) 1@ +2) (@112

1
> —
-3
and this is easily verified. In fact clearing the denominator, we have

3 a’(®+2) > (a® +2)(b* +2)(c* +2)

cyc

Expanding, we have

6a2 4 6b> 4 6¢® 4+ 3a%b? + 3b%c* + 3c%a? >
> a?b%c? + 2a%b% + 2% + 2c%a® + 4a® + 4% + 4% + 8

27



Recalling that abc = 8, the above is equivalent to
20 + 20 + 2¢2 + a?b? + b2 + ?a? > 72

But 2a? + 2b% 4+ 2¢% > 24 and a?b? + b%c? + c?a® > 48 through AM-GM. Adding
gives the result.

O

Second Solution. (Official solution) Observe that
1 S 2
V1+z3 2422

In fact, this is equivalent to (2 + 22)? > 4(1 + z3), or z%(z — 2)? > 0. Notice
that equality holds if and only if if x = 2. Then

a? b2 c?

V(1 +a?)(1+b?) * VI +3)(1+c3) * V(I +3)(1+a?) =
S 4q? n 42 n 4¢? S
T Q2+a)2+0) 2+ 2+A2+ ) T
2-S(a,b,c)
= 36+ S(a,b,c)
B 2
1+ 558

where
S(a,b,c) =2 (a® +b* + %) + (ab)? + (bc)* + (ca)?

By AM-GM inequality, we have

a? + 0% + ¢ > 3¢/ (abe)® = 12

(ab)® + (be)® + (ca)® > 34/ (abe)* = 48

The above inequalities yield
S(a,byc) =2 (a® + b2 + ) + (ab)* + (be)® + (ca)® > 72

Therefore
2 2 4

> — —
36 = 36
L+ S(a,b,c) L+ 72 3

which is the required inequality. Note that the equalitiy hold if and only if

a=b=c=2. O
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29. (IMO 2005) (zyz > 1,z,y,z > 0)
25 g2 v — 2 L5 2

x5+y2+z2+y5+22+x2 +z5+x2+y2

First Solution. (See [32], pag. 26) It’s equivalent to the following inequality
2_ .5 2_ .5 2 _ .5
- Yy -y 2% —z
— +1 —_— +1 — +1) <3
(x5+y2+22+ )+<y5+22+x2+ )+<25+$2+y2+ )_

R A i A A A o
.’I}5+y2+22 y5+Z2—|—x2 Z5+$2+y2_
With the Cauchy-Schwarz inequality and the fact that xyz > 1, we have

or

22 +y? + 22 - yz +y? + 22

5 2 2
x X z or .
(@ +92+22) Yz +9y° +2°) > (® +y° +27)° PR s ST B>

Taking the cyclic sum and z2 + y? + 22 > zy + yz + zx give us

2 +y?+22 2?4y 422 2?4 y? 422 Ty +yz + 2z
x5+y2+22 y5+22+$2 Z5+x2+y27 x2+y2+22*

Second Solution. (by an IMO 2005 contestant Iurie Boreico from Moldova,

see [32] pag. 28). We establish that
x5 — 22 x5 — 22

> .
x®+y? 422 7 232 +y? + 22?)

It follows immediately from the identity

25— g2 25 _ g2 (x3 - 1)2x2(y2 + 22)

1.5 +y2 + 212 o xS(xQ _|_y2 _’_22) - IES(.’EQ _|_y2 +22)($5 _|_y2 +22)

Taking the cyclic sum and using zyz > 1, we have

5 2

20—
Zx5+y2+z22x5+y 222< )_ac5+y 222 —yz) 2 0.

cyc cyc cyc

O

30. (Poland 2004) (¢ +b+c¢=0,a,b,c € R)

b2c? + 2a® + a?b® + 3 > 6abe
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First Solution. (Ercole Suppa) Since a + b+ ¢ = 0 from the identity
(ab+ be+ ca)® = a®b + b2 + 2a® + 2abc(a + b + ¢)

follows that
a?b® + b2 + *a® = (ab + be + ca)®

Then, from the AM-GM inequality we have
2
a’b? + b2 4+ 2a®> >3- (\/3 a2b262)
By putting abc = P we have
a’b® + 02?4+ 2a® + 3 — 6abe >

> 9(abc)% + 3 — 6abc =

=9P* — 6P +3 =
3 52

2
(P? - 1) 4 2P? <P— ;) +oP

>0
2

=3

Second Solution. (Darij Grinberg - ML Forum,)
For any three real numbers a, b, ¢, we have

(b202—|—62a2—|—a2b2 —|—3) — 6abc =
=0+ 1) (c+ 1)’ + (c+ D (a+1)* + (a+1)* (b+1)°
—2(a+b+c)(a+b+c+bc+ca+ ab+2)

so that, in the particular case when a + b + ¢ = 0, we have
(b2c2 +c2a® + a®b® + 3) — 6abc =
=0+ 1% (c+ 1D+ (c+ 1) (a+1)* + (a+ 1)* (b +1)*
and thus

b2c? + 2a® + a?b® + 3 > 6abe
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Third Solution. (Nguyenguockhanh, Ercole Suppa - ML Forum)
WLOG we can assume that a > 0 e b > 0. Thus, since ¢ = —a — b, we have

a®b? +b*c? + c*a® + 3 — 6abe =
= a?? + (a®> + V) (a +b)* + 3 +6ab (a +b) >
> (a® + ) (a® + ab+b%) + ab (a® + b*) + a®b* + 3+ 6ab (a + b) >
> 3ab (a® + b*) + 3 (a®b® + 1) + 6ab (a + b) =
> 3ab (a® + b*) + 6ab + 6ab (a + b) =
= 3ab (a* +b2+2+2a+2b)
o+

— 3ab b+1)] 0

31. (Baltic Way 2004) (abc = 1,a,b,c > 0,n € N)

1 1 1
<1
a”—f—b”—l—l+b”+c”+1+c”+a”—|—1_

Solution. (Frcole Suppa) By setting a”™ = z, b® = y e ¢" = 2z, we must prove
that
1 1 1

+ + <
l14+24+y 14+y+2z 1+z+4+=x
where zyz = 1. The above inequality is proven in the problem 7. O

32. (Junior Balkan 2004) ((x,y) € R? — {(0,0)})

2v/2 . Tty
Va2 T 2t —ay+y?

First Solution. (Ercole Suppa) By using the two inequalities

r+y<V2@2+y2) , 224y <20 —ay+9P)

we have:

(x+y)/22 + 42 - \/2(x2+y2)\/x2+y2
?—ry+y? T x? —xy +y?
o V2@ +9?)
— 12—y +y?
2 2
Sz(x wy+y)\/5:2\/§

(22 — zy +y?)

<
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Second Solution. (Darij Grinberg - ML Forum) You can also prove the in-
equality by squaring it (in fact, the right hand side of the inequality is obviously
> 0; if the left hand side is < 0, then the inequality is trivial, so it is enough to
consider the case when it is > 0 as well, and then we can square the inequality);
this leads to

@+y? _ 8
(#? —zy +9?)* ~ 2% +y?

This is obviously equivalent to

(z+y)* (2> +y°) < 8(z” —ay +y°)°

But actually, an easy calculation shows that
8(2 —ay +y°)? — (z+y)*(a® +y°) = (z —y)* [2(z — y)* + 52® + 5y*] > 0

so everything is proven.
O

33. (IMO Short List 2004) (ab+bc+ ca =1, a,b,c > 0)

2/1 21 5/1 1
—+6b+ /- +6c+ {/—+6a<
a b c abc

First Solution. (FErcole Suppa) The function f(z) = ¢z is concave on (0, +00).
Thus from Jensen inequality we have:

1,141 6, c
Zf(i+6b)§3'f(a+b+6+36 +6b+6) 1)

cyc
From the well-know inequality 3(zy + yz + zx) < (x + y + 2)? we have

3abc(a +b+c) =3(ab-ac+ab-bc+ac-be) < (ab+bc+ca)> =1 =
2

(a C) ~ abe ( )
The AM-GM inequality and (2) yields

1 1 1 b+ b 2 3
T4 6at6by6e) < BTTA, 2 0 (3)
a b ¢ abe abc  abe

Since f(z) is increasing from (1) and (3) we get

f(1+6b>+f<1+6c)+f(1+6a)§3-f<1>: 3 L
a b c abe abc — abc
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where in the last step we used the AM-GM inequality

3 _3\3/(abc)2:3\3/ab~bc-ca<3-“b+b3ﬂ_ 1

Yabe abc abe abc " abe
O
Second Solution. (Official solution) By the power mean inequality
1 21, . )
g(u—i—v—&—w) < g(u3+v3—|—w3)
the left-hand side does not exceed
3 ;/1 1 1 3 s/ab+bc+ ca
—4{/=+6b+—-+6 ~—+6a= —=4{/ —— +6 b
%\/Q—F + o 6t~ +6a 7 o +6(a+b+c) (¥
The condition ab + be + ca = 1 enables us to write
aibe 1—ab ab—(ab)Q’ bt e bc—(bc)Q’ ctam B (ca)?
c abe abc abc
Hence
ab + be + ca 1
T+6(a+b+c) = %+3[(a+b)+(b+c)+(c+a)] =
_4- 3[(ab)? + (be)? + (ca)?]
o abe

Now, we have
3((ab)? + (be)® + (ca)?) > (ab+bc + ca)® =1

by the well-known inequality 3(u? + v? + w?) > (u+ v+ w)?. Hence an up-
per bound for the right-hand side of (x) is 3/Vabc. So it suffices to check
3/V/abc < 1/(abe), which is equivalent to (abc)? < 1/27. This follows from the
AM-GM inequality, in view of ab + bc + ca = 1 again:

(abe)? = (ab)(be)(ca) < (‘W)g _ (1)3 .

Clearly, equality occurs if and only if a = b = ¢ = 1//3. O

Third Solution. (Official solution)
Given the conditions a, b, ¢ > 0 and ab+ bc+ ca = 1, the following more general
result holds true for all t1,ts,t3 > O:

2
3abe(ty +ty + t3) < 3+ at? + bt3 + cts. (1)
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The original inequality follows from (2) by setting

14/1 C1,4/1 C14/1
t1—3 a+6b, t2—3 b+66, t3—3 c—|—6a.

In turn, (1) is obtained by adding up the three inequalities

1

b+ cts.
3a + cl3

1 1 1 1 1
3abct; < 9 + gbc—i— at?, 3abcty < 9 + gca + bt%, 3abcts < 9 +

By symmetry, it suffices to prove the first one of them. Since 1 — be = a(b+ ¢),
the AM-GM inequality gives

aty t3 s GO
(l—bc)—l—g—a b—i—c—&-% > 3a bc-%—Satl.

Hence 3abct; < be(1 — be) + at3, and one more application of the AM-GM in-
equality completes the proof:

2 1
3abct; < be(1 — be) + at} = be ( — bc) + ~bc + at}

3 3
2
be+ (2 — be) 1 11
< (;) +§bc+at3 = §+§bc+at§.

34. (APMO 2004) (a,b,c > 0)

(a® +2)(b* +2)(c* +2) > 9(ab + bc + ca)

First Solution. (See [32], pag. 14) Choose A, B,C € (O7 %) with a = v/2tan A,
b= +/2tan B, and ¢ = v/2tan C. Using the well-known trigonometric identity

29 1 .
1+ tan“6 = —557g> One may rewrite it as

4
9 > cos A cos B cos C (cos Asin Bsin C' + sin A cos Bsin C' + sin Asin B cos C) .

One may easily check the following trigonometric identity

cos(A+B+C) =

= cos Acos BcosC — cos Asin Bsin C' — sin A cos Bsin C' — sin Asin B cos C.

Then, the above trigonometric inequality takes the form

4
9 > cos A cos B cos C (cos Acos BeosC — cos(A+ B+ ().

34



Let 6 = A"‘(#. Applying the AM-GM inequality and Jensen’s inequality, we
have
cos A + cos B + cosC

3

3
cos AcosBeosC < ( > < cos® 6.

We now need to show that
g > cos® 0(cos®  — cos 30).
Using the trigonometric identity
cos 30 =4cos®d —3cosh or cos30 — cos30 = 3cosf — 3cos® 0,
it becomes

i 4 2
o > cos 9(1 cos 9),

which follows from the AM-GM inequality

1
cos? 6 cos?0 9 3 1 [cos’0 cos?0 9 1
( D) ~(1—cos 9)) §3( 5 + > +(1—cos 9))23.
One find that the equality holds if and only if tan A = tan B = tanC = % if
andonly ifa=b=c=1. O

Second Solution. (See [32], pag. 34) After expanding, it becomes
8 + (abc)? —|—22:a2b2 +4Za2 > QZab.
cyc cyc cyc

From the inequality (ab — 1) + (bc — 1)? 4 (ca — 1)? > 0, we obtain
6+2) a’® >4 ab.
cyc cyc

Hence, it will be enough to show that

2—1—((11)0)2—1—42612 25Zab.

cyc cyc

Since 3(a? + b2 + ¢?) > 3(ab + be + ca), it will be enough to show that

2+(abc)2+2a2 22Zab,

cyc cyc

which is proved in [32], pag.33.
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Third Solution. (Darij Grinberg - ML Forum)
First we prove the auxiliary inequality
1+ 2abc + a® + b% + ¢ > 2bc + 2ca + 2ab

According to the pigeonhole principle, among the three numbers a — 1, b — 1,
c— 1 at least two have the same sign; WLOG, say that the numbers b — 1 and
¢ — 1 have the same sign so that (b — 1)(c — 1) > 0. Then according to the
inequality 22 + y? > 2y for any two reals  and y, we have

b—=1)2*+(c—1)2?>20b-1)(c—1)>—=2(a—1)(b—1)(c—1)
Thus
(14 2abc + a® 4+ b* 4 ¢*) — (2bc + 2ca + 2ab) =

=(@—-12+0-1)*+(c—-1)*+2(a—-1)b-1)(c—1) >
>(@—-1)2>0

and the lemma is proved. Now, the given inequality can be proved in the
following way:

(a® +2)(b* +2)(c* +2) — 9(ab + bc + ca) =

(b=c)?+(c—a)*+ (a—0b)?) +2((bc — 1)* + (ca — 1)* + (ab — 1)*) +
(abe — 1)® + ((1 4 2abe + a® + b® + ) — (2bc + 2ca + 2ab)) > 0

3
2
+

Fourth Solution. (Official solution.)
Let x=a+b+c, y=ab+ bc+ ca, z= abc. Then

a2+ 4+ =22 -2y
a?b? + b2 + ?a® = y* — 2u2
a2b2c? = 22
so the inequality to be proved becomes

2242 (y* —222) +4(2* —2y) +8 > 9y

or
2242 —daz+ 42 — 1Ty +8>0

Now from a2 + b 4+ ¢ > ab + bc + ca = y, we get

22 =a? + 0% + 2+ 2y >3y
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Also
a®b? +b2c? 4 a*c? = (ab)? + (be)? + (ca)? >
>ab-ac+bc-ab+ ac-bc=
=(a+b+c)abc = zz
and thus
y2a2b2 + 622 + a?cP + 2x2 > 3x2
Hence

2242 —dxz442% — 1Ty + 8 =

x\%2 8 10 35
(z—g) +§(y—3)2+§(y2—3mz)+§(x2—3y>20

as required.

35. (USA 2004) (a,b,c > 0)

(a® —a®>+3)0° —b* +3)(c® = +3) > (a+b+c)?

Solution. (See [11] pag. 19) For any positive number z, the quantities #? — 1
and 23 — 1 have the same sign. Thus, we have

0<(@®-D@E?-1)=2"-2>-2°+1 = 2°—2?2+3>23+2
It follows that
(a® —a® 4+ 3)(° — b* +3)(c® — & +3) > (a® +2)(b* + 2)(c* + 2)
It suffices to show that
(@® +2)(b> +2)(c* +2) > (a+ b+ )’ ()
Expanding both sides of inequality () and cancelling like terms gives
a®v3c® +3(a® +b° + ) + 2(a30® + b3 + 3a®) + 8 >
> 3(a?b + b?a + b2c + b + Pa + 0,26) + 6abc

By AM-GM inequality, we have a4 a3b% +1 > 3a?b. Combining similar results,
the desidered inequality reduces to

AR+ + 00+ +1+1> 6abe

which is evident by AM-GM inequality. O
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36. (Junior BMO 2003) (z,y,z > —1)

1+ 2?2 14y 1422 > 9
1+y+22 142422 14z+y>—

Solution. (Arne - ML Forum) As x < # we have
2 2

1+y+22 (1492) +2(1+ 22)
Denoting 1 + 22 = a and so on we have to prove that

a
Zb—l—Qch

but Cauchy tells us

> S alh ) 2 (Zaf

and as
(Za)2 > 3(ab + be+ ca) = Za(2b+c)

we have the result. O

37. (USA 2003) (a,b,c > 0)

(2a+b+¢)?*  (2b+c+a)?  (2c+a+b)? <3
2024+ (b+c¢)2 2024 (c+a)? 22+ (a+b)?2 —

First Solution. (See [10] pag. 21) By multipliyng a, b and ¢ by a suitable
factor, we reduce the problem to the case when a + b+ ¢ = 3. The desidered
inequality read

(a+3)° (b+3)° (c+3)° g
224+ (3—a)® 22+ (3-0)7 22+(3-¢)° "
Set ( )2
B z4+3
fle)= 222 4 (3 — z)°
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It suffices to prove that f(a) + f(b) + f(c) < 8. Note that

22 4+6x+9
3(:17272:1:+3
1(1 8xr + 6

22— 2z +3

_1 - 833+6
3 mfl

1 8r +6 1
<> (1 =
3( + 2 ) 3

fla)+ f(b)+ f(c) < L (4a+4—|—4b—|—4+4c—|—4)—8

fx) =

IN

= (dx +4)

Hence

as desidered, with equality if and only ifa=b=c. O

Second Solution. (See [10]) We can assume, WLOG, a4+ b+ ¢ = 1. Then the
first term of LHS is equal to

(a+1)*  a*+2a+1
202 + (1 —a)2  3a2—2a+1

fla) =

(When a = b= c = 3, there is equality. A simple sketch of f(z) on [0, 1] shows
the curve is below the tangent line at © = % which has the equation y = 129”4).
So we claim that

a®+2a+1 < 12a + 4
3a2 —2a+1~ 3
for a < 0 < 1. This inequality is equivalent to

360 — 150> —2a+ 1= (3a —1)*(4a+1)>0 , 0<a<l1

hence is true. Adding the similar inequalities for b and ¢ we get the desidered
inequality. (]

38. (Russia 2002) (x+y+2z=3, x,y,z > 0)

VE+ Y+ vz > ay+yz+ oz

Solution. (FErcole Suppa) See Problem 23. O
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39. (Latvia 2002) (i + e + i + e = 1, a,b,0,d > 0)

abed > 3

First Solution. (Ercole Suppa) We first prove a lemma:

LEMMA. For any real positive numbers x, y with xy > 1 we have
1 n 1 < 2
2+1 241" zy+1

PRrROOF. The required inequality follows from the identity

Lot 2 (z —y)* (zy — 1)
22+1 y?+1 ay+1 (22+41)(¥2+1) (2y+1)

the proof of which is immediate.

In order to prove the required inequality we observe at first that

1 1

4 <1l = a¥'>1 = d¥?*>1
1+ at

1+0 —
Thus by previous lemma we have

1 n 1 S 2
14+a* 1406~ a?02+1

and similarly

1 N 1 - 2
1+t 14+d*~ c2d2+1

(2)

Since ab > 1 e ed > 1 we can add (1) and (2) and we can apply again the lemma:

- 1 N 1 N 1 N L
T 1l4ar 140 14t 1444 T

1 1
>2 >
- <a2b2+1 +c2d2+1> -
4
>
~ abdc+1

Thus abed +1 > 4 so abed > 3.
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Second Solution. (See [32], pag. 14) We can write a? = tan A, b? = tan B,
2 =tanC, d?> = tan D, where A, B,C,D € (0, g) Then, the algebraic identity
becomes the following trigonometric identity

cos? A + cos?2 B + cos®2 C + cos® D = 1.

Applying the AM-GM inequality, we obtain

o

sin? A = 1 — cos? A = cos® B + cos®> C' 4 cos> D > 3 (cos Bcos C cos D)3 .
Similarly, we obtain
sin? B > 3 (cos C cos D cos A)% ,sin? C' > 3 (cos D cos A cos B)%

and )
sin? D > 3 (cos A cos B cos C)3 .

Multiplying these four inequalities, we get the result! O

40. (Albania 2002) (a,b,c > 0)

1++3
3v3

111
(a2+62+02)<a+b+c>2a—|—b+c+ a? + b2 + 2

Solution. (Ercole Suppa) From AM-GM inequality we have

b + c abc abe v abe
From AM-QM inequality we have

2 2 2
a+b+c§3\/$ (2)

From (1) and (2) we get
atbte+ V@ E R+ 2 _ VeV FDT
@+ P+ (4] CEETETo e S
3+ V3 Va2 + 2+ 2Vabe
- V3 3(a2+b2+c?)
<3+\/§,m\/@_
IR IVE] a2 + b2 + c2 B
V341
3v3

1 1 1 ab+bc+ca < 3va2b2c2 3
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Therefore

1+3
3v/3

11 1
(a2+bQ+c2)<a++c>2a+b+c+ a? + b2 + 2

b

41. (Belarus 2002) (a,b,c,d > 0)

2|ad — be|
Via+ce)2+(b+d)

Via+ o2+ (b+d)2+ = > V@ + PV + P> (a+ o)+ (b+d)?

Solution. (Sung-Yoon Kim, BoesFX) Let A(0,0), B(a,b), C(—c,—d) and let
D be the foot of perpendicular from A to BC'. Since

1 0 0 1 1
[ABC]=—|det | a b 1 = —|ad — b
2 2

—c —d 1

we have that
_ 2[ABC] lad — be]

AH = =
Va+o? + b+

BC

So the inequality becomes:
BC+2-AH > AB+ AC > BC

ZA is obtuse, since A(0,0), B is in quadran I, and C is in the third quadrant.
Since ZA is obtuse, BD + DC must be BC. By triangle inequality,

AB+AC>BC, BD+AD>AB, DC+ AD> AC

So, AB+ AC < BD + DC + 2AD = BC + 2AD and the inequality is proven.
O

42. (Canada 2002) (a,b,c > 0)

a® v E
—+—+—=>a+b+c
bc  ca ab
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First Solution. (Massimo Gobbino - Winter Campus 2006) We can assume
WLOG that a > b > ¢. Then from the rearrangement inequality we have

> > l>i>i:>aj+ﬁ+ﬁ<aj E f
= =7 7 be " ac " ab b ¢c a ~ bc ac ab
and
a2>b2>02,12121:a+b+c<j+g+cj
c b a b c a
Therefore

PRI X 3
at+btce< —+ —+—
bc  ac ab

Second Solution. (Shobber - ML Forum) By AM-GM, we have

a3
—+b+c>3a
be

Sum up and done. O

Third Solution. (Puvthuan - ML Forum) The inequality is simple applications
of 22 + y? + 22 > 2y + yz + zx for a?,b?,¢? and ab, be, ca,. We have

at + bt + ¢t > a?b? + b3 + P > abc(a+ b+ c)

O
Fourth Solution. (Davron - ML Forum) The inequality
at + b + ¢t > a?? + b2+ Pa® > abe(a 4+ b+ ¢
can be proved by Muirheads Theorem. O

43. (Vietnam 2002, Dung Tran Nam) (a® +b*> +¢*> =9, a,b,c € R)

2(a+b+c)—abc<10
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First Solution. (Nttu - ML Forum) We can suppose, WLOG, that

la| < b < e] = A>3 = 2ab<ad®>+b<6

We have
[2(a+b+c)—abd®> =[2(a+b) +c(2—ab)]* < (Cauchy-Schwarz)
<[a+0?+] [22+@-ab)’] =
= 100 + (ab + 2)® (2ab — 7) < 100
Thus
2(a+b+c) —abc <10
O
Second Solution. (See [1], pag. 88, problem 93) O

44. (Bosnia and Hercegovina 2002) (a? +b? +c¢* = 1,a,b,c € R)

a? b? 2
1+2bc+1+20a+ 1+ 2ab

3
<2
)

Solution. (Arne - ML Forum) From Cauchy-Schwartz inequality we have

1= (a®>+b"+ 02)2 < (Z 1f2bc> (Z a®(1+ 2bc)> (1)

From GM-AM-QM inequality we have:

(ZaQ (1+2bc)> =a?+ b+ +2abc(a+b+c) <

cyc
2 2 2\ 3 2 2 2
§1+2\/<a +l;+c) 3 [a +l;+c Y

_ 2 2 2 22_§
—1+3(a +b° + ) =3

The required inequality follows from (1) and (2). O

45. (Junior BMO 2002) (a,b,c > 0)

1 n 1 " 1 > 27
bla+b) cb+c) alc+a) = 2(a+b+c)?
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Solution. (Silouan, Michael Lipnowski - ML Forum) From AM-GM inequality

we have
1 1 1 3
>

b(a +b) +c(b+c) + alc+a) = XY

where X = Vabc and Y = {/(a +b)(b+ ¢)(c + a). By AM-GM again we have
that

X < a+b+e
- 3
and 2 2b 42
Y < 2a+20+2c
- 3
So
3 27
L —
XY T 2(a+b+c)?
and the result follows. O

46. (Greece 2002) (a? +b? +c? =1, a,b,c > 0)

a b c 3 2
> b
FritErit @yt 2 (evativbese)

Solution. (Massimo Gobbino - Winter Campus 2006) From Cauchy-Schwarz
inequality, a® + b 4+ ¢ = 1 and the well-knon inequality

1
a?b? + b2 + P’ < 3 (a2 + 0%+ 02)2
we have
2 f 2
a
ava+ Vb +c c) < <
(\/’ f < %C: b2—|—1> >

IN

(Z a?b? + a2> =

cyc

(
()
B (Z b2il> (14a* +0°c* + a’) <
(=#%)
1
3

[1+;(a2+b2+c2)} =
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Hence

(Z%) > Z (a\/&+b\/5+cﬁ)2

cyc

47. (Greece 2002) (bc # 0, 1202 >0, a,b,c €R)

C

10(a? + b2 + ¢ — bc®) > 2ab + 5ac

Solution. (FErcole Suppa) At first we observe that 1&‘?2 > 0 if and only if

be (1 — 02) > 0. Thus:

10 (aQ +02 42 —bcg) — 2ab — bac =
5 5 13
:5(b—c)2+§(a—c)2+(a—b)2+10bc(1—02) +4b2+502+?a2 >0
O

48. (Taiwan 2002) (a,b,c,d € (0,1])

abed < at + b+t +dt
1-a)(1-0)Q-0c)1—-d) ~ Q—a)*+(1-0*+(1—-0c)*+(1—-d)*

Solution. ( Liu Janzin - ML Forum) We first prove two auxiliary inequalities:

LEMMA 1. If a,b € [0, %[ we have

a® 4+ b? - (1—a)?+(1-b)?
ab — (1—-a)(1-0)

PROOF. Since 1 —a — b > 0 (bacause 0 < a,b < %) we get

a® 4+ v? (1fa)2+(1fb)27(17a7b)(a7b)2>0
ab  (1—a)(1-0)  ab(l—a)(1-b) =

LEMMA 2. If a,b,¢,d € [0, 5[ we have

(212" (1-a?-(1-1?
abed T (1—a)(1-=0)(1—-2¢)(1—4d)
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PROOF. Since 0 < ¢,d < % we get

(1-c(—d

o >1 (1)

Since 0 < a,b < % we get

(@-t)" (A-aP-(1-b*)" (@=b't-a=b)
ab (I—a)(1-0) ab(l1—a)(1—b) —

Therefore

(a2 — 1?)? _(—a? - b)?2)?
ab - (1—a)(1-0)

Multiplying (1) and (2) we have

(a2 — 1?)? (1—a)? = (1—1b)?)
abed T (1—-a)(1-0)(1-¢)(1—-4d)

and the LEMMA 2 is proven. U

Now we can prove the required inequality. By LEMMA 2, we have

a4+b4+c4+d4 B (a2+b2) <b2+62) B
abed abed N
(a2 =)+ (a2 — )" + (12— )’ + (2 - a?)”

2abed -

(1-a?-(1-0*) +(1-a? - (1-d*)* + (1 -0 - (1-0)*)° + (1L -b)* - (1-d)?)
)

= 21 —a)(1 —b)(1 —¢)(1—d
(I-a)'+0-b0*+1-c'+1-d)* (1-a)P+1-0)?)(1-0)?+(1—-d)?)

1-a)1-b)(1—o)(l—d 1-a)(1-b)1—-0c)(1—d

2

By LEMMA 1, we have

(a® +b?) (b* + 2) - (1=a)®+(1-0)?)(1-0c)?+(1-d)?)
abed - (I-a)(1=0b)(1-0c)(1-4d)

Thus, addingthe last two inequalities, we get

at + vt +ct+at S 1-a)*+(1-0*+(1—-c)t+ (1 —d)?
abed - I-a)(1-b1—-0c)(1—-4d)

and the desidered inequality follows:

abed - a* + bt 4t + dt
I—a)1-b1—-c)1—-d) ~ (I—af+(1—bF+(1—c)f+(1—d)*
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49. (APMO 2002) (3 +, +; =1, 7,5,z >0)
VT +yz+Vy+ze+Vz oy > oy + Ve + y+ V2

Solution. (Suat Namly) Multiplying by /zyz, we have

N L N
VIR =TT

So it is enough to prove that

\/z+xy2\/5+,/%

By squaring, this is equivalent to

Z-l—xyZz-i—%-i—Q\/ﬂTy =
z+xy>z+xy<1—i—;>+2\/:7y —
T+y>2/ry =
(Vo =) >0

50. (Ireland 2001) (z +y =2, z,y > 0)
x2y2(x2 +y2) < 2.

First Solution. (Soarer - ML Forum)

ch—|—2—xy>2_2

x2y2(gc2 + y2) = x2y2(4 —2zy) = 2x2y2(2 —zy) < 2(1) ( 5

O

Second Solution. (Pierre Bornzstein - ML Forum) WLOG, we may assume
that z <y so that x € [0,1]. Now

2?y?(@® + %) = 2*(2 - 2)* (2 + (2~ 2)*) = f(2)
Straighforward computations leads to
fl(x) =42(1 —2)(2 —2)(22° =62 +4) >0

Thus f is increasing on [0;1]. Since f(1) = 2, the result follows. Note that
equality occurs if and only if x =y = 1.
U
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Third Solution. (Kunny - ML Forum) We can set
x =2cos’0,y =2sin?0

so we have
223 (2% + %) =2 — 2cos?20 < 2

O
51. (BMO 2001) (a+ b+ c > abe, a,b,c > 0)
a?+b%+c2> V3abe
First Solution. (Fuzzylogic - ML Forum) From the well-know inequality
(x+y+2)? >3y +yz + zz)
by putting x = be,y = ca, z = ab we get
ab + be + ca > +/3abe(a+ b+ )
Then
a’ +b% +¢* > ab+be + ca > /3abe(a + b+ c) > abeV'3
O

Second Solution. (Cezar Lupu - ML Forum) Let’s assume by contradiction
that

a? +b% + < abeV3

By applying Cauchy-Schwarz inequality, 3(a? + b% + ¢2) > (a + b+ ¢)? and the
hipothesys a + b + ¢ > abc we get

abe < 3v/3
On the other hand , by AM-GM we have

abeV/3 > a? + b2 + & > 3V a2b2c2
We get from here abc > 3\/37 a contradiction.

49



Third Solution. (Cezar Lupu - ML Forum) We have

1 1
— b —>1

1
at+b+c>abcs — +
ab  bc  ca

We shall prove a stronger inequality

1 1 1
ab—l—bC-FC(lZabC\/g@*—l-g-i-*Z\/g
a c

Now, let us denote x = %, y = %, z= % and the problems becomes:

If z,y, 2z are three nonnegative real numbers such that zy + yz + zx > 1, then
the following holds:

TH+y+2z>V3

But, this last problem follows immediately from this inequality

(x+y+2)* > 3wy +yz + zx)

52. (USA 2001) (a? + b> + % +abc = 4, a,b,c > 0)

0<ab+bc+ca—abc <2

First Solution. (Richard Stong, see [9] pag. 22) From the given condition, at
least one of a, b, ¢ does not exceed 1, say a < 1. Then

ab+bc+ca—abc=alb+c)+bc(l—a)>0
It is easy to prove that the equality holds if and only if (a,b,c) is one of the
triples (2,0,0), (0,2,0) or (0,0,2).
To prove the upper bound we first note that some two of three numbers a, b, ¢

are both greater than or equal to 1 or less than or equal to 1. WLOG assume
that the numbers with this property are b and ¢. Then we have

(1=b)(1-e) =0 1)
The given equality a? + b? 4 ¢ + abc = 4 and the inequality b% + c? > 2bc imply
a’>+2bc+abc<4 <= be(2+a) <4—ad?
Dividing both sides of the last inequality by 2 + a yelds

bce<2—a (2)
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Combining (1) and (2) gives

ab+bc+ac—abc <ab+2—a+ac(l —b) =
=2—a(l+bc—b—c)
=2—a(l-0b)(1—-¢c)<2

as desidered. The last equality holds if and only if b = ¢ and a(1 —b)(1—¢) = 0.
Hence, equality for upper bound holds if and only if (a, b, ¢) is one of the triples

(1,1,1), (0,v2,v2), (v/2,0,v/2) and (v/2,v/2,0). O

Second Solution. (See [(2]) Assume WLOG a > b > ¢. If ¢ > 1, then
a’? + b2+ +abc > 1+1+1+1 = 4, contradiction. So ¢ < 1. Hence
ab + be + ca > ab > abe.

Put a =u+ v, b = u — v, so that u,v = 0. Then the equation given becomes

Q4+ +2—c?+c* =4

So if we keep c fixed and reduce v to nil, then we must increase u. But ab+ bc+

ca—abc = (u? —v?)(1—c)+2cu, so decreasing v and increasing u has the effect of

increasing ab+bc+ca—abe. Hence ab+be+ca—abe takes its maximum value when
a =b. But if a = b, then the equation gives a = b = v/2 — ¢. So to establish that
ab+bc+ ca — abe < 2 it is sufficient to show that 2—c+2¢v/2 — ¢ =24¢(2—¢).
Evidently we have equality if ¢ = 0. If ¢ is non-zero, then the relation is
equivalent to 2¢/2 —c <3 —cor (c— 1)2 > 0. Hence the relation is true and we
have equality only for ¢ =0 or ¢ = 1. O

53. (Columbia 2001) (z,y € R)

3(x+y+1)2+1>3zy

Solution. (FErcole Suppa) After setting z = y we have

3204+ 1) +1-322>0 <= (32+2)>0 (1)
where the equality holds if z = — % This suggest the following change of variable

3r+2=a , 3y+2=1»

Now for all 2,y € R we have:
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2

3(x+y+1)2+13xy3<a+3b_4+1> +1—3W:

_ (a+b—1)2+1_ab—2a—2b+4:

3 3

_a2+b2+ab_

==

a0+ (at+b)?

— ; -

(B +2)?+ By +2)°+ Bz +y) + 4 -

6

54. (KMO Winter Program Test 2001) (a,b,c > 0)

V(a2b+ b2c + c2a) (ab? + be2 + ca2) > abe+ /(a3 + abe) (b3 4 abe) (¢3 + abe)

First Solution. (See [32], pag. 38) Dividing by abe, it becomes

a b ¢\ (fc a b Ny b2 c?
-+ -+ -+ —-4+-| >abc+ — 41 —+1 —+1].
c a b a b ¢ be ca ab

After the substitution z = ¢, y = b 2= £, we obtain the constraint zyz = 1.

It takes the form

\/(x+y+z)(acy+yz+zx)>1+i/(z—kl) (%+1) (;+1).

From the constraint xyz = 1, we find two identities

(f + 1) (% + 1) (; + 1) = <x er Z) (y:;l) <Z Z y) = (z+z)(z+y)(y+2),
(@ +y+2) (zy +yz+ 2z) = (x4y)(y+2) (z+3)+zyz = (z+y) (y+2)(z+) +1.
Letting p = {/(z +y)(y + 2)(z + @), the inequality now becomes /p3 +1 >
1+p. Applying the AM-GM inequality, we have p > Q/Q\/@ “2\/yZ - 2y/zx = 2.
It follows that (p* +1) — (1 +p)2 =pp+1)(p—2) > 0. O
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Second Solution. (Based on work by an winter program participant, see [32]
pag. 43).

O

55. (IMO 2001) (a,b,c > 0)

a b c
+ + >1
VaZ+8be Vb2 +8ca V2 +8ab

Solution. (Massimo Gobbino - Winter Campus 2006) Let T is the left hand
side of the inequality. We have

(a+b+c) (Z \/mf\/ a?+ 8bc> (Cauchy-Schwarz)

cyc

T~<Za\/m> _

cyc

T- (Z Vavav/a? + 8bc> < (Cauchy-Schwarz)

cyc

1
<T-(a+b+c) 5(2@ +8abc> =

cyc

1
=T (a—i—b—}—c)% (a® + % + ¢® + 24abe) 2
Hence

(a+b+ C)%
(a3 + b + 3 + 24abc)

T> >1

Nl

where in the last step we used the inequality

(a+b+c)® > a®+ b+ + 24abe
which is true by BUNCHING, since
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(a+b+c)®>a®+ b+ + 24abe

3 (Z a2b> + 6abe > 24abe

sym

Z a’b > 6abc

sym

ZaQb > Zabc

sym sym

o4

!

!

!



2  Years 1996 ~ 2000

56. (IMO 2000, Titu Andreescu) (abc =1, a,b,c > 0)
1 1 1
(a—l+)<b—1+)<c—l+)§1
b c a

Solution. (See [32], pag. 3) Since abc = 1, we make the substitution a = %,
=%, ¢= Z for x, y, z > 0. We rewrite the given inequality in the terms of z,

y, 2
(w_lﬁ)(y_lﬁ)(z_lﬂ)gl &
Yy y/) \z z/ \z T
wz>(y+z—z)(z+tz—y)z+y-—2)
This is true by Schur inequality. O
Remark. Alternative solutions are in [32], pag. 18, 19.

57. (Czech and Slovakia 2000) (a,b > 0)
. 1 1 a 4 [b
3 |9 n(2i2)>3 /¢ 3\/7
\/ (a+0) u + N b + a

First Solution. (Massimo Gobbino - Winter Campus 2006) After setting a =
22 a b =1y the required inequality become

which is true by Power Mean inequality. The equality holds if x = y, i.e. if
a=b. (]
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Second Solution. (Official solution.) Elevating to the third power both mem-
bers of the given inequality we get the equivalent inequality

b b b
a+3§/5+3§f+24+2a+2
b b a a b a

@by \/EJF\F
b a b a

The AM-GM inequality applied to the numbers 7, 1,1 implies

a a
CH141>38-
FH1+ 3\/;
b+1+123§‘/3
a a

Adding the two last inequalities we get the required result. O

that is

Similarly we have

58. (Hong Kong 2000) (abc =1, a,b,c > 0)

1+ab2+1+bc2+1+ca2 18
3 a3 b3 T a3 b3 4B

First Solution. (Official solution) Apply Cauchy-Scwarz Inequality, we have

2
2 2 2
<1+ab SR A >(c3+a3+b3)> <§ 1+ab2>

c3 a3 b3

cyc

It remain to prove

Z\/lJrabQZ\/E

cyc

The proof goes as follows

V1+ab?+V1+b+ 1+ ca?>

2
> \/(1 +1+1)2+ (\/ ab? + vVbe? + VC(IQ) > (Minkowski Ineq)

> W = (AM-GM Ineq)

= V18
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Second Solution. (Ercole Suppa) From AM-HM inequality we have
1 1 1 9

I S . A 1
c3+a3+b3*a3—|—b3—|—c3 (1)
and
ab®>  bc?  ca? s/ adh3c3 9 9
—+—+-—=2>3 = — > (2)
3 a3 b3 BB 3V — b+ b3+ 3
Adding (1) and (2) we get the required inequality. O

59. (Czech Republic 2000) (m,n € N, z € [0,1])

Q-2 +(1-(1-2)™)">1

Solution. (See [61] pag. 83) The given inequality follow from the following
most general result:

Let x1,...,2, and y1,...,yn be nonnegative real numbers such that x; +y; =1
for eachi=1,2,... n. Prove that

(I—zzp-wy)" + 1=y A —yg") - (1—yy) >1

We use the following probabilistic model suggested by the circumstance that
z; +1y; = 1. Let n unfair coins. Let x; be the probability that a toss of the i—th
coin is a head (¢ = 1,2,...,n). Then the probability that a toss of this coin is
a tail equals 1 — x; = v;.

The probability of n heads in tossing all the coins once is 13 - - - ,,, because the
events are independent. Hence 1 — x5 - - - x,, is the probability of at least one
tail. Consequently, the probability of at least one tail in each of m consecutive
tosses af all the coins equals

(1 —z129 - 20)"

With probability 4], each of m consecutive tosses of the i-th coin is a tail; with
probability 1 — y/™, we have at least one head. Therefore the probability that
after m tosses of all coins each coin has been a head at least once equals

1=y A =ys") (1 —yy")

Denote the events given above in italics by A and B, respectively. It is easy
to observe that at leat one of them must occur as a result of m tosses. Indeed,
suppose A has not occurred. This means that the outcome of some toss has
been n heads, which implies that B has occurred. Now we need a line more to
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finish the proof. Since one of the events A and B occurs as a result of m tosses,
the sum of their probabilities is greater than or equal to 1, that is

(I—zmp-an)" + (1 =y") 1 —y3") - (1—yy) =1

O
Remark. Murray Klamkin - Problem 68-1 (STAM Review 11(1969)402-406).

60. (Macedonia 2000) (z,y,z > 0)

x2+y2+z22\@(a€y+yz)

Solution. (FErcole Suppa) By AM-GM inequality we have

1 1
x2+y2+z2:x2+§y2+§y2+z22

>opl 40 Y, =

V2 V2
=\/§xy+\/§yz=

= V3 (ay +v2)

61. (Russia 1999) (a,b,c > 0)

a?+2bc b2 +42ca  *+ 2ab
b2 +62 62 +a2 a2+b2

>3

First Solution. (Anh Cuong - ML Forum)
First let f(a,b,c) = a2 4 Bi2ac 4 ’42ab W will prove that:

b2+c2 aZtc2 aZ+b2
2bc b ¢

bo)>—¢ 1 2.¢

f(a7 70)—b2+02+c+b

Suppose that: b > ¢ > a. Since

a? + 2be 2bc
b2 _|_62 — b2 +62

we just need to prove that:

242 2+2ab_ b ¢
> -4 -
a2+ c2 a?+b2 “c b
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We have:

b>+2ac 2+2ab b ¢ _
a? + c2 a2+ ¢ b
_ b3 + 2abc — 3 —ca® A + 2abe — b — ba?
N b(c? + a?) * c(b? + a?) -

b3 _ 63 03 _ b3
> =
~ b(a? + ?) * c(a? 4+ b?)
(be — a?) (b—c)? (b* + be + ¢2)

be (a? + b2) (a? + ¢?) -
Hence: 9% b
C c
> 424 -
f(a/7b7c)—b2+02+c+b
But o8 b
c ¢ 212 2
So we have done now. O

Second Solution. (Charlie- ML Forum)
Brute force proof: Denote T'(z,y,2) =
yields

a®b¥c*. Expanding and simplifying

sym

1 1
3 -T(6,0,0)+7T(4,1,1)+2-7(3,2,1)+7(3,3,0) >2-T(4,2,0) + 3 -T(2,2,2)
which is true since

1 1
5 T(6,0,0)+ 5 - T(4,1,1) > T(5,1,0)

by Schur’s inequality, and
T(5,1,0)+17(3,3,0) >2-T(4,2,0)

by AM-GM (a®b + a®b® > 2a*b?), and

2.T7(3,2,1) >2-T(2,2,2) > = - T(2,2,2)

DO =

by bunching. O

Third Solution. (Darij Grinberg - ML Forum)
Using the chc notation for cyclic sums, the inequality in question rewrites as

a? + 2be
b2+ c?

cyc

>3
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But

a® + 2be a® + 2bc
Z b2+ 2 _Z<b2+02 - >:

cyc
DL o
- cyc b2 +62 cyc b2 +C2

Thus, we have to show that
a? b—c)?
DR Dl e
b? 4 c? b2 +c?
cyc cyc
Now, by the Cauchy-Schwarz inequality in the Engel form, we have

a’ ()"
Zb2—|—02 _§a2b2+02a2 =

cyc

< (a2 + 0%+ 02)2 _
= (a2b? + c2a?) + (b2c2 + a2b?) + (c2a? + b2c?)
(a2 + b2+ 02)2
2 (b%c? 4 c2a® + a?b?)

Hence, it remains to prove that

(a2+b2+62)2 >Z(b—c)2

2 (b2c? + c2a? + a?b?) b2 + ¢?
i. e. that
2 (b—c)?
(a2 +b6%+ 02) > 2 (b262 +c2a® + a2b2) g{; 2o
Now,

2 (b202 +c2a® + azb2)

2 2 2 2 272 _ 2 _
2 (b + *a® + a”b?) Zb2+c2_z e (b—c) =
cyc cyc
2b22 2) 9
-3 (pre vat) -0
2 2
cyc b tc

The HM-GM inequality, applied to the numbers b? and c?, yields

262 2
<Vb2c? = bc

b2 + ¢2
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thus,

2 2.2
- 2
2 (b*c® + c*a® + a*b?) E (b=c) = E ( be + 2a2> (b—c)* <
cyc

po b2 + 2 b2 + c2
<Y (be+24°) (b—c)’
cyc
Hence, instead of proving
(b—c)’
b2 + 2

(a® + 0> + 02)2 > 2 (V¢ + c®a® + a®b?) Z
cyc
it will be enough to show the stronger inequality
(a® +b* + 02)2 > Z (be +2a%) (b— )
cyc

With a bit of calculation, this is straightforward; here is a longer way to show
it without great algebra:

D (be+2a%) (b— ) =

=Y (a(a+b+c)—(c—a)(a—b)(b—c) =

=Y a(a+b+c)(b—c)*=> (c—a)(a=b)(b—c)* =

=(@+b+e)> alb-c’—(b-c)(c—a)(a—b)Y (b—c)=
cyc cyc ~-

=(a+b+c)2a(b—c)2=

= (a+b+0)Y a((b—c)(b—a)+(c—a)(c—b)) =
=(a+b+c) (Za(b—c)(b—a)+Za(c—a)(c—b)> =
=(a+b+c) (Zc(a—b)(a—c)+Zb(a—b)(a—c)) =

:(a+b+c)2(b+c)(a—b)(a—c)

cyc

Thus, in order to prove that (a* + b* + (32)2 > D eye (be + 2a?) (b— ), we will
show the equivalent inequality

(a2+b2+02)2>(a+b+c)Z(b+c)(a—b)(a—c)

cyc
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In fact, we will even show the stronger inequality

(a2—|—b2+02)2>Za2(a—b)(a—c)+(a+b+c)2(b+c)(a—b)(a—c)

cyc cyc

which is indeed stronger since ). . a?(a —b) (a — ¢) > 0 by the Schur inequal-
ity.
Now, this stronger inequality can be established as follows:

Y a®(@a-b)(a—c)+(a+b+c)> (b+c)(a—b)(a—c)=

cyc

:Z(a2+(a+b+c)(b+c))(a—b)(a—c):
22((a2+b2—|—c2)—|—(bc—|—ca+ab)—|—bc)(a—b)(a—c):

a® 4+ b + c+ca+a a—"b)(a—c ¢ (a—b)(a—-c

((a® + b + %) + (be + ca + ab)) ;( b) (a —¢) +Cyzcb (a—b)(a—c) <

=a?+bc—ca—ab<2a?+bc
=(a?2+b2+c2)—(bct+ca+ab)

< ((a®+b*+ ) + (be+ ca+ ab)) ((a® +b* + ¢*) — (be + ca + ab)) + Zbc (24 + be) =
cyc
= ((a2 +b% + 02)2 - (bc+ca—|—ab)2) + (be + ca+ ab)? = (a® +b* + 02)2

and the inequality is proven.

62. (Belarus 1999) (a? + b +¢* =3, a,b,c > 0)
1 n 1 n 1 S §
14ab 14bc 14ca ~ 2

Solution. (Ercole Suppa) From Cauchy-Schwartz inequality we have

9=(a®+V* +02)2 < (Z 1ibc> (ZaQ (1 +bc)> (1)

cyc

From GM-AM-QM inequality we have:

(Za2(1+bc)> =a*+b*+c +abcla+b+e) <

cyc
2424 c2\° 21 2 4 2
<3+\/<a+3+c>_3/a +3+c: 2)

:3+%(a2+b2+02)2:3+3:6

The required inequality follows from (1) and (2). O
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63. (Czech-Slovak Match 1999) (a,b,c > 0)

a n b n c o4
b+2¢c c¢c+2a a+2b—

Solution. (Ercole Suppa) Using Cauchy-Schwartz inequality and the well-know

(a+b+c)? > 3(ab+ be + ca)

(a+b4c)? < Z Lc . Z a(b+ 2¢) = (Cauchy-Schwarz)

cyc cyc

:Z a C-3(ab+bc—|—ca)§

<Y g latbro)?

Dividing for (a + b+ ¢)? we get the result. O

64. (Moldova 1999) (a,b,c > 0)

ab n be n ca _ _a n b n c
clc+a) ala+d) bb+c) " c+a b+a c+bd

First Solution. (Ghang Hwan, Bodom - ML Forum)
After the substitution z = ¢/a, y = a/b, z = b/c we get xyz = 1 and the
inequality becomes
z n T n y_ o 1 + 1 n 1
zr+1 y+1 2z4+41" 142 14y 14z

Taking into account that zyz = 1, this inequality can be rewritten as

z—1 zz—1 y—1
+ >0 <=
r+1 y+1 =z+1

y2 t ezttt P2 >yt 2 +3 (%)

The inequality (x) is obtained summing the well-know inequality

Pty >atytz

and
yz® + za? +ay® > 3 a3y323 = 3ayz =3
which follows from the AM-GM inequality. O
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Second Solution. (Gibbenergy - ML Forum) We have

abc[(gb+%+%— )+( +5 +b2)—(§+§+%)}

L—-—R= >0
(a+b)(b+c)(c+a) -
because
ab bc ac
072+7+b72_320

by AM-GM inequality and

b2+i+a2 (P9 50
b2 c a b))~

by the well-know inequality 22 +y? + 22 >z +y + 2.

65. (United Kingdom 1999) (p+q+r =1, p,q,r > 0)
7(pq + qr +rp) <2+ 9pgr

First Solution. (Ercole Suppa) From Schur inequality we have
(p+q+7)° +9pgr > 4(p+q +7)(pg + qr +p)
Therefore, since p + ¢ +r = 1, we obtain
L+ 9pqr > 4(pq + qr + p)
Hence
24 9pgr — 7(pq + qr +rp) 2 2+ 4(pg +qr +rp) =1 = 7(pg + qr + rp) =
=1-3(pg+qr+rp) =

=(p+q+r)*—3(pg+qr+rp) =
1

=5 -9 +@=r?+(-p?’] 20

and the inequality is proven.

Second Solution. (See [3] pag. 189)
Because p + ¢ + r = 1 the inequality is equivalent to

T(pg+qr+rp)(p+a+7) <2(p+q+r)° + Ipgr =
7> (P’q+pd® +par) < 9pgr+ > (2p° + 6p*q + 6pg® + dpgr) =
cyc cyc
2 + + 243
Zp2q+zpq2§22p3zz p q ZP q
cyc cyc cyc cyc cyc

This last inequality is true by weighted AM-GM inequality.
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66. (Canada 1999) (x +y+2=1, x,y,2 > 0)

4

2 2 2
< —
xy+yz+zx_27

First Solution. (See [8] pag. 42)
Assume WLOG that z = maz(z,y, z). If x >y > z, then

@y + s+ e <@ty +yta et zfay 4 (- y) (y - 2)] =

) 11 11 4
— — _— = - — — < —
(r+y)y 4<2 2y> (2 2y>y 57

where the last inequality follows from AM-GM inequality. Equality occurs if
and only if z = 0 (from the first inequality) and y = %7 in which case (z,y,2) =

2 1
(55 5:0)-
If If x >y > z, then
Py+yiz+ e <24+ 2y+y’r— (0 -2)(z—y) (x—y) <
4

< 2 2 2. 2

<zz+zyt+yz< 27
where the second inequality is true from the result we proved for x > y > 2z
(except with y and z reversed. Equality holds in the first inequality only when

two of z, y, z are equal, and in the second inequality only when (z,z,y) =

(%, %, 0). Because these conditions can’t both be true, the inequality is actually

strict in this case.
Therefore the inequality is indeed true, and the equality olds when (z,y, 2)

equals (%a%ao); (%;0,%) or (0,%,%) O

Second Solution. (CMO Committee - Cruxz Mathematicorum 1999, pag. 400)
Let f(x,y,2) = 2%y + y%2 + z?z. We wish to determine where f is maximal.
Since f is cyclic WLOG we may assume that x = max(z,y, z). Since

2y, 2) — f(x,2,9) = 2%y +yP2 + 220 — 2?2 — 2%y — P =
=Wy—2)(z—-y)(z-2)
we may also assume y > z. Then
fx+2,y.0) = f(2y,2) = (@ +2) y -2y -’z - 2P0 =
=2y +yz(@—y) +az(y—2)20
so we may now assume z = 0. The rest follows from AM-GM inequality

2x2y 1<x+x+2y)3_ 4

[ (x,y,0) = o

< Z
2 T2 3

Equality occurs when z = 2y, hence when (x,y, z) equals (%, %,O)7 (g, 0, %) or

0.5 5)- O
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Third Solution. (CMO Committee - Crux Mathematicorum 1999, pag. 400)
With f as above, and = = maz(z,y, z) we have

z z xz 22y 28
so we may assume that z = 0. The rest follows as for second solution. O
Fourth Solution. (See [1] pag. 46, problem 32)
Assume WLOG that « = maz(x,y, z). We have
2 2 2 Z\? <
acy+yz+zx§(:v+§> (y+§> (1)
because zyz > y2z and * £ > “2
Then by AM-GM 1nequahty and ( ) we have
r+35 x+3 z
1= 2 2 ( 7> >
5 + 5 +(y+ 5) 2
2
>3§/<y+;> (o+3)
> 1 >
- 3§/x2y+y22 + 22z
- 4
. . . . 4
from which follows the desidered inequality =y + y*z + 2%z < 2. O

67. (Proposed for 1999 USAMUO, [AB, pp.25]) (z,y,z > 1)

2 2 2
% +2yzyy +2zaczz +2zy Z (xyz)wy+yz+zx

First Solution. (See [15] pag. 67)
The required inequality is equivalent to

(w2 + 2yz) logz + (y2 + 2xz) logy + (22 + 2xy) log z >
> (zy+yz+x + zz) (logz + log y + log 2)

that is
(z—y)(xr—2)logz + (y — 2)(y —x)logy + (2 — x)(2 — y)logz > 0

We observe that logx,logy,logz > 0 because x,y,z > 1. Furthermore, since
the last inequality is symmetric, we can assume WLOG that = > y > z. Thus

(z—x)(z —y)logz >0 (1)
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and, since the function log x is increasing on = > 0, we get

(z —y)(z —z)logz = (y — 2)(x — y) logy (2)
because each factor of LHS is greater or equal of a different factor of RHS. The
required inequality follows from (1) and (2). O

Second Solution. (Soarer - ML Forum)
The required equality is equivalent to

2 IS 2 IS 2 S
xr +yz—xy mzyy +zrz—2Y yzzz +rxy—rz—yz 2 1

=0 @=2) (=) (=2) (==2) (=) >

()T g

By symmetry we can assume WLOG tath « > y > z. Therefore (x) is verifyied.
O

68. (Turkey, 1999) (¢c>b>a>0)
(a+3b)(b+ 4c)(c + 2a) > 60abe

First Solution. (ML Forum) By AM-GM inequality we have
(a + 3b) (b + 4c) (c + 2a) > 4Vab3 - 5Vbct - 3V ca? =

— 60abc-a~12b" 2015 >
> 60abc- ¢ 12¢ 36 015 —
= 60abc

where the last inequality is true because ¢ > b > a > 0 and the function
f(z) = z® (with a < 0) is decreasing. O

Second Solution. (See [8] pag. 176) By the AM-GM inequality we have a +
b+ b > 3vab2. Multiplying this inequality and the analogous inequalities for
b+ 2¢ and ¢+ 2a yields (a + 2b)(b+ 2¢)(c + 2a) > 27abe. Then

(a+2b)(b+ 2¢)(c+ 2a) >

1 8 2 10
<a+ ga—i— Sb) <b+ §b+ 3C> (c+2a) =

20
g(a +2b)(b+ 2¢)(c + 2a) > 60abe

v
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69. (Macedonia 1999) (a? +b> +¢®> =1, a,b,c > 0)

1
a+b+c+— >4V3
abc

First Solution. (Frengo, Leepakhin - ML Forum) By AM-GM, we have

1
1=a?+ b+ > 3¢/(abc)? = (abe)? < —

27
Thus, by AM-GM
Fhted +b+c+ TR I
a c+—=a c e R
abc 9abc ~ 9abc 9abc —
1
>128 — >
— TV 99%(abe)® T
12wl 43
= e
Equality holds if and only if a =b=c = ﬁ ora=b=c= %

Second Solution. (Ercole Suppa) The required inequality is equivalent to
abe (a+b+c-4V3) +120
From Schur inequality we have
(a+ b+ c)® +9abe > 4(a + b+ c)(ab + be + ca)
Since
ab+bc+ ca =

[(a+b+0)?—(a®+0*+%)] == [(a+b+c)* —1]

N[ =
N | =

we get
1
abc > g [(a+b+c)®—2(a+b+0)]
After setting S = a + b + ¢ from Cauchy-Schwarz inequality follows that

S=a+bt+c<VI+1+1Va2+b2+c2=3

and, consequently

abe (a+b+c—4V3) +12 5 (57~ 25) (S - 4v3) +1=
[(5°—25) (5-4v3) +9] =

{(\/35)4%05 (\/és)] >0

Il
Ol = O = O =
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Third Solution. (Ercole Suppa)

After setting S = a+b+c, Q = ab+bc+ ca, from the constraint a +b%+c% =1
we have S? =14 2Q > 1. Then S > 1 and, by Cauchy-Schwarz inequality we
get

S=a+bt+c<Vi+1l+ivVaz+b2+c2=3

From the well-know inequality (ab + bc + ca)? > 3abc(a + b + ¢) follows that

ﬁ > 2752 Thus, to establish the required inequality is enough to show that

s+§7§24\/§ — 4(5—4\/§Q2)Q2+12520

Sine 1 < S < v/3 we have

Fourth Solution. (Ercole Suppa) Since a? + b? + ¢? = 1, the inequality
abc(a+b+c—4\/§) +1>0
can be tranformed into a homogeneous one in the following way
abe (a + b+ ¢) — 4V3abev/a? + b2 + 2 + (a® + b +c2)2 >0

Squaring and expanding the expression we get

%Zag+4Za6b2+Za6bc+22a5b26+32a4b4+

sym sym sym sym sym
13
413 412 2 412 2
+Zabc+52abc 2242@1)0
sym sym sym

The last inequality can be obtained addind the following inequalities which are
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true by Muirhead theorem:

%Zas > %Za4b2c2 (1)

sym sym
4Za6b2 > 4Za4b202 (2)
sym sym
Z a®be > Z atb?c? (3)
sym sym
QZastC > 22(146202 (4)
sym sym
3Za4b4 > 32a4b202 (5)
sym sym
Za4b3c > 4Za4b2(12 (6)
sym sym
13 42 2 13 42 2
?Zabc EEZabc (7)
sym sym
O
Fifth Solution. (Tiks - ML Forum)
1
at+btct—— >4V3
abc
2 412 4 2)2
<:>a+b+c+w > 44/3(a2 + b2 + 2)
abe
2 b2 2\2 _ b b
— (a + +c ) abc?)(l c(a+ +C) 24( /3(a2+b2+02)7(a+b+0))
(a® + b + ¢*)? — 3abc(a + b+ c) - 3+ +c*)—(a+b+c)?
abe T oB@++A)+a+b+c
b)? + 3c?
(E)Z(a_byw ZZ(a—b)Q
2abe 3@+ +cA) +a+tb+te

but we have that \/3(a? + b2 + ¢?)+a+b+c > 2(a+b+c) so we have to prove
that

Z(a—b)z(a+b)2+30222(a—b)2 2

2abc a+b+c
5 [(a+b)? + 3c? 2
— _ — >
Z(a ) { 2abc a+b+c =0

We have that

(a+b+c)[(a+b)*+3c%] > c(a+b)* > dabe
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hence ) )
(a+b)*+3c2 2 -0
2abc a+b+c ™

So the inequality is done.

70. (Poland 1999) (a+b+c=1, a,b,c>0)

a®> + b2+ +2V3abe < 1

Solution. (Ercole Suppa) From the well-know inequality
(@ +y+2)* > 3@y +yz + 22)
by putting x = ab, y = bc e z = ca we have
(ab+be + ca)? > 3abe(a+b+c¢) =  ab+ bc+ ca > V3abe
From the constraint a + b+ ¢ = 1 follows that
1—a?> - - =(a+b+c)*—a®—b* —c? =2ab+ 2ac+ 2ca
(1) and (2) implies

1—a?—b% — % —2V3abc = 2ab + 2bc + 2ca — 2v/3abe > 0

71. (Canada 1999) (x +y+2z=1,2,y,2 > 0)

4

2 2 2
< —
ry+yz+z 33_27

Solution. (FErcole Suppa) See: problem n.66.

72. (Iran 1998) (% +lilog ayes 1)

Vitytz>vVe—1+y—1+vz-1
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Solution. (Massimo Gobbino - Winter Campus 2006)

Ve—T+y—1+vVz—1= <Z x_1ﬁ> <

cyc \/E
< Z“"”‘l §(x+ +2)% = (Cauchy-Sch
< . y+2)2 = auchy-Schwarz)
cyc
1
1 1 1)\°2
:<3_x_y_> N e
=Vety+z
O

73. (Belarus 1998, I. Gorodnin) (a,b,c > 0)

> a—i—b+ b+c

c
- 1
a  b+ec a—l—bJr

+

a n b
b ¢
Solution. (Ercole Suppa) The required inequality is equivalent to

a®b® + ab* + a>? + b3 + b* > a?b*c + 2abPc 4 2ab> P (%)

From AM-GM inequality we have

a’b® + b3c? > 2V a2b6¢? = 2ab’c (1)
1 4 14, [a*btc? 9.9
- - > —
2ab+2a672 1 a“b“c (2)
1 1
§ab4 + §a302 +b%c® > a?bPe + b2c = 2V a2bict = 2ab*c? (3)
The (%) is obtained adding (1),(2) and (3). O

74. (APMO 1998) (a,b,c > 0)

(+5) (1+2) 0+ 5) 221 552)
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Solution. (See [7] pag. 174) We have

EUICHIGTE

b ¢ a c a b

a b c
3 + + —-1=
( Vabe Vabe abc)

a+b+e a+b+ec
2 + —-1>
( abe ) ( abe )

at+b+ec
20 ——)+3-1=
( Vabe )

v

by two applications of AM-GM inequality. O

75. (Poland 1998) (a+b+c+d+e+f:1, ace + bdf > J)—Sa,b,c,d,e,f>0)

1
abc 4 bed + cde + def + efa + fab < 36

Solution. (Manlio - ML Forum) Put A = ace +bdf and B = abc+ bed + cde +
def +efa+ fab.By AM-GM inequality we have

A+B=(a+d)(b+e)(c+f)<(((a+d)+(b+e)+(c+ f))3)>=1/27

SO
B<1/27—A<1/27—1/108 =1/36

O

Remark. (Arqady) This is a private case of Walther Janous’s inequality: If
r1 + 2 + ... + £, = 1 where x; are non-negative real numbers and 2 < k <
n,k € N, then

1 1
T1X2...T + T2T3... Tt 1 + oo + TpT1.. Tp—1 < maw{k—k, F}
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76. (Korea 1998) (z +y + z = 2yz, z,y,2 > 0)

1 1 1

+ + <
Vita?  J1+y2 V1+22

| W

First Solution. (See [32], pag. 14)
We can write z = tan A, y = tan B, z = tan C, where A, B,C € (O7 %) Using

the fact that 1 + tan?6 = (L){ we rewrite it in the terms of A, B, C :

cos 6

cos A+ cosB +cosC <

(%)

we) N

It follows from tan(r —C) = —z = f”:cyy = tan(A+
(0,7) that T—C=A+Bor A+ B+C=m.
Since cos z is concave on (O, g), (%) a direct consequence of Jensen’s inequality

and we are done. O

)and from 7 —C, A+ B €

Second Solution. (See [32], pag. 17)
The starting point is letting a = %, b= %, c= % We find that a + b + ¢ = abe
is equivalent to 1 = zy + yz + zz. The inequality becomes

T 4 Y n z <3
Va2 +1  Jy2+1 V2+17 2
or
T Y z 3
+ + <z
Vel tayt+yztzr YR taytyzter 2 taytyz ez 2
or
x Y z 3
+ + <s.
Vaty)a+tz) Jy+)ly+a) JeEra)z+y) 2

By the AM-GM inequality, we have

x zy/(z+y)(+2)

(x+y)(z+2) (z+y)(z+2)
< Ll t+y) + (2 + 2)]
(@ +y)(e+2)

x x
(=)
xr+z xr+z

N~ N

In a like manner, we obtain

Y <1< y y >
(y+2)y+x)  2\y+z y+x
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and
z

1 ( z z )
e S — _
z+z)z+y)  2\z+tz z+y
Adding these three yields the required result. O

77. (Hong Kong 1998) (a,b,c > 1)
Va—T1+Vb—1+vVe—1</c(ab+1)

First Solution. (FErcole Suppa) After setting x = vVa—1,y = Vb—1, z =
ve—1, with z,y,z > 0, by easy calculations the required inequality in trans-
formed in

r+y+z< A +22) [0 +22)(1+y2) + 1] —
(z+y+2)?2<(1+2%) (% +2°+y° +2) =
(P +2® +y* +1)2° =2 +y)z + 2%y — 22y +2 >0 (%)

The (*) is true for all z,y, z € R because:

= (z+y)* -
=(@+y)°’—[2*+ (@ +y)’ -2y +1] [(a2y—1)° +1] =
= (x4 - [(ay = 1>+ (@ +9)?] [(zy - 1)* +1] =
—(zy =D = (zy = 1)* = (z +y)*(xy — 1)* =

—(zy —1)? (2+2% +y* +2%?) <0

(2% + 2% + 97 + 1) (2% — 20y +2) =
2

(]
Second Solution. (Sung-Yoon Kim - ML Forum) Use
Ve—1+yy—1<zy <= 2/(z—-1Dy-1)<(xz-1)y-1)+1
Then
\/a—l—l—\/b—l—i-\/c—lgx/%—i—\/c—lg\/c(ab—i—l)
O

Remark. The inequality used in the second solution can be generalized in the
following way (see [25], pag. 183, n.51): given threee real positive numbers a,
b, c con a > ¢, b > ¢ we have

Vela—e) +/e(b—c) < Vab

The inequality, squaring twice, is transformed in (ab — ac — bc)? > 0. The
equality holds if ¢ = ab/(a + b).

()



78. (IMO Short List 1998) (zyz =1, z,y,z > 0)
3 % 3

I19)(+2 (+20+2) O+x0l+y

>3
) — 4

First Solution. (IMO Short List Project Group - ML Forum)
The inequality is equivalent to the following one:

3
eyt > Z(x+1)(y+1)(z+1).
In fact, a stronger inequality holds true, namely

1

strat byt gt 2 > @+ )T (1) + (2 1))

(It is indeed stronger, since u? + v3 4+ w3 > 3uvw for any positive numbers u, v
and w.) To represent the difference between the left- and the right-hand sides,

put

f(t):t4+t3fi(t+1)3, g(t) = (t +1)(4¢% + 3t + 1).

We have f(t) = %(t — 1)g(t). Also, g is a strictly increasing function on (0, c0),
taking on positive values for ¢ > 0. Since

1
A A e i R O VR DR CE R N

4
—f(#) + Fw) + 1)
=z = Dg(@) + 1y~ Dgly) + 7=~ Dg(2),

it suffices to show that the last expression is nonnegative.

Assume that > y > z; then g(x) > g(y) > g(z) > 0. Since zyz = 1, we have
x> 1and z < 1. Hence (z —1)g(z) > (z—1)g(y) and (z—1)g(y) < (z—1)g(2).
So,

£}
|
—_

Jole) + 1(v ~ Daly) + 1=~ Da(2)
)+ =1+ (= Dlgy)

(x+y+2z-3)g(y)

21(3\%@ —3)g(y) =0,

vV
e S Sl > B
—
8
|
—

because zyz = 1. This completes the proof. Clearly, the equality occurs if and
onlyife =y=2=1. O
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Second Solution. (IMO Short List Project Group - ML Forum)
Assume = < y < z so that

1 1 1
< < .
(I+y)(1+2) ~ 1+2)(1+z) = (1+2)(1+vy)
Then Chebyshev’s inequality gives that

J}3 y3 223

I19)(+2  (+20+2)  (+0l+y)
1 n 1 n 1
I+y)(1+2)  (A+2)10+2)  (Q+2)(1+y)
1, 4 3 3 3+ (z+y+2)
=-(@®+y° + :
L AR e v e g
Now, setting (z+y+2)/3 = a for convenience, we have by the AM-GM inequality

> (@ + ¢+ 2%

Wl

1
g(x3+y3+z3) > a3,

T+y+z2>3Yryz =3,
QI+2)+Q+y+0+2)]°

(I+z)(1+y)(1+2) < =(1+a)

It follows that
3 3 3
T n Y n z S b 3+3 .
(I+y)A+2)  (A+2)0+z)  (A+z)(1+y) (1+a)3
So, it suffices to show that

3
6a S § ;
(14+a)3® 4
or, 8a3 > (1 + a)®. This is true, because a > 1. Clearly, the equality occurs if
and only if x = y = z = 1. The proof is complete. O

Third Solution. (Grobber - ML Forum)
Amplify the first, second and third fraction by z, y, z respectively. The LHS
becomes

> o N (2% + 9% +2%)° J @)’ 3
x(1+y)1+2) " z4+y+z+2@y+yz+ze)+3 ~ 4(@2+y?>+22) 4
I used the inequalities
x2+y2+222xy+yz+zx
224?422 >3
2
Pyttt (z+y+2) >r+y+z

O
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Fourth Solution. (MysticTerminator - ML Forum) First, note that

DR (2 97 +2)’
cyc (

by Cauchy, so we need to prove:

1@+ +22)° 2 3@+ ) +2)+ (1L +2)y(1+2) + (1 +2)(1 + )2)
Well, let © = a3, y = b3, 2z = ¢ (with abc = 1), and homogenize it to find that

we have to prove:

1+9)(142) “z20+y)A+2)+1+2)y(l+2)+ 1 +2)(1+y)z

Z (4a12 + 8a6b6) > Z (3a6b603 + 6a’b°% + 3a4b4c4)

cyc cyc

which is perfectly Muirhead.

Remark. None of the solutions 1 and 2 above actually uses the condition zyz =
1. They both work, provided that = + y 4+ z > 3. Moreover, the alternative
solution also shows that the inequality still holds if the exponent 3 is replaced

by any number greater than or equal to 3.

79. (Belarus 1997) (a,z,y,z > 0)

a+yx+a+z +a+x22$+y+22 a+zx+a+x

a—+z a—f—my a—+y a—+z a—i—yy

First Solution. (Soarer - ML Forum) First one
a—+z a+z
St e (T ) -
a+z
r+y+z a<§:a+$ )

<z+y+z

Second one

Zanry Zr+y+z
a+z

Yy—z

a—+z

Ty Tz
< Za—i—z ZZ:a—l—z

1 1
DI D D ey

z>0

which is rearrangement.

8

a—+y
z
a+z



Second Solution. (Darij Grinberg- ML Forum)
Let’s start with the first inequality:
a+z a+x a+
N y

T y+ z<zr4+y+=z
a+x a+vy a—+z

It is clearly equivalent to

a+z a+x a+
( + + Y,

- <0
P a+z) (+y+2z)<

But

a+z a+x a+
( T+ y+ y%—%x+y+@:
a+x a+y a+z

_ ((142 1> - <c1+x 1) v+ <a‘*y 1> y =

a—+x a—+y a—+z
Z—T r—y y—z_ Ny B z
a+x$+a+yy+a+zz_@ aﬂa+x+tv wa+y+wy @a+z

(s wata) (et vaty) + e o)
=1z - + |z -y + |y -z =
a+x a+x a+y a+y a+z a+z

T Y z T Y z
=|=z +a +y |z +y +z

a—+x a—+y a—+z a—+x a—+y a+z
thus, it is enough to prove the inequality

(z RS +y : )—(w ° +y b 4. = ><0

a+x a+y a+z a+x a+y a+z

This inequality is clearly equivalent to

T Y z x Y z
z +x +y <z +y +
a+x a—+y a—+z a+x a+vy a—+z

And this follows from the rearrangement inequality, applied to the equally sorted

number arrays (z; y; z) and (2ﬁ%§3 azy; aiz) (proving that these arrays are
a a

equally sorted is very easy: if, for instance, z < y, then £ > o SO that

atxr __ a a _ aty x Yy
T*;‘i’lzg‘i’lfT,SOthat a_,’_TSm)

Now we will show the second inequality:

a—+y a—+z a—+x
T+ Y+ z
a—+z a—+x a—+y

T+y+z<

It is equivalent to

Og(a+y$+a+z +a+x

s o a+ya—%x+y+@
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Since

a+ a—+z a+x
( Yo+ 22y + z>—<w+y+z)=
a—+z a+x a+vy

_ <a+y—1>x—|—<a+z—l)y+(a+x—l>z:
a+z a+x a+y
Yy—z Z—T T — 1 1 1

y f— — — [ J—
a+zw+a+xy+a+yz—(wy 2w) o (yr —ay) o (e yZ)a+y

1 1 1 1 1 1
= |xy — 2T + | yz -y + | zx — Yz =
a—+z a—+z a+x a—+x a—+y a—+y

1 1 1 1 1 1
= <xy +yz + zx ) — (zx +xy +yz )
a—+z a—+x a—+y a—+z a—+x a—+y

thus, it is enough to verify the inequality

1 1 1 1 1 1
0< <xy +yz + zx ) — (z:r + xy +yz )
a—+z a—+x a—+y a—+z a—+x a—+y
This inequality is equivalent to

1 1 1 1 1 1
2T + zy +yz < zy +yz + zx
a—+z a+x a+vy a+z a+x a—+y

But this follows from the rearrangement inequality, applied to the equally sorted
1.1, 1
atx’ m’ at+z
are equally sorted is almost trivial: if, for instance, z < y, then y > = and

yz > zx, while on the other hand a + 2 < a + y and thus —— > —1.),

number arrays (yz; zx; xy) and ( ) (proving that these arrays

atz = aty
This completes the proof of your two inequalities. !
O
80. (Ireland 1997) (a + b+ ¢ > abe, a,b,c > 0)
a? +b% + ¢ > abe
Solution. (Ercole Suppa) See problem 51. O

81. (Iran 1997) (z1z2x3x4 = 1,21, T2, T3, 24 > 0)

3 3 3 3 1 1 1 1
i +ay+axy3t+xy>mar (2 22 23+ T4, — + — + — + —
T T2 I3 Ty
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Solution. (See [15] pag. 69)
1
After setting A = > 3, A; = A — 23, from AM-GM inequality we have

=1
1 1
—Ay > V) adedad = xowsry = —
3 T1

Similarly can be proved that %A,; > i for all ¢ = 2, 3,4. Therefore

and the inequality is proven. O

82. (Hong Kong 1997) (z,y,z > 0)

3+\/§>xyz(x+y+z+ r? +y? + 22)
9 7 (@ 4y +2)(ey +yz + )

Solution. (Ercole Suppa) From QM-AM-GM inequality we have

THy+z> V32 +y? 4 22 (1)
xy +yz + zz > 3¢/ (xyz)? (2)

Va2 +y? 4 22 > V3Yyz (3)
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Therefore

xyz(w—i—y—l—z—&—\/m) < xyZ\/m(\/ngl) -
(@2 +y?+22)(zy +yz+22) T (22 42+ 22)3 (wy2)2 T
TYZ (\/§+ 1)
T3V +y2 + 22 (wyz)2 T
TYz (\/§+ 1) B
3B Yz (eyz)?
V341 3+3
=33 = 9

Remark. See: Crux Mathematicorum 1988, pag. 203, problem 1067.
83. (Belarus 1997) (a,b,c > 0)

a b ¢ a+b b+c c+a
-4 -4+ -2 +
b ¢ a c+a a+b b+c

First Solution. (Ghang Hwan - ML Forum, Siutz - ML Contest 1st Ed. 1R)
The inequality is equivalent with

I+2 14¢ 1+

C
+ -
1+ 149¢ 14

a

< -+

Sl S
Qo

olc|o e

Let x = a/b, y = ¢/a, z = b/c and note that xyz = 1. After some boring
calculation we see that the inequality become

(ac2—|—y2+z2—x—y—z)+(x22+y2m—|—22y—3) >0

This inequality is true. In fact the first and second term are not negative because

2 +y’ 420> (x+y+2)4x+§+*z >z+y+z  (by CS and AM-GM)
and

22z + a4 22y > 343823 =3 (by AM-GM)

O
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Second Solution. (See [1], pag. 43, problem 29) Let us take x = a/b, y = ¢/a,
z = b/c and note that xyz = 1. Observe that

at+c l+uay 11—z
= =X
b+c 1+y 1+y

Using similar relations, the problem reduces to proving that if xyz = 1, then

r—1ly—1 z-1
+ >0 <=
y+1lz+1 z+4+1

(@P-1D)GE+D+ - @+D+ (-1 (y+1)>0
Z$2Z+Z$ ZZer?)

But this inequality is very easy. Indeed, using the AM-GM inequality we have
Y a?z > 3 and so it remains to prove that Y x? > 3"z, which follows from the

inequalities
2
2o (7)
P eIk

Third Solution. (Darij Grinberg, ML Forum) We first prove a lemma:

LEMMA. Let a, b, ¢ be three reals; let =, y, z, u, v, w be six nonnegative reals.
Assume that the number arrays (a;b;c) and (x; y; z) are equally sorted, and

ula—b)+vb—c)+w(c—a)>0

Then,
zu(a—b)+yv(b—c)+zw(c—a) >0

PROOF Since the statement of Lemma is invariant under cyclic permutations
(of course, when these are performed for the number arrays (a;b;c), (z;y;2)
and (u;v;w) simultaneously), we can WLOG assume that b is the "medium
one” among the numbers a, b, ¢; in other words, we have either a > b > ¢,
or a < b < c. Then, since the number arrays (a;b;c) and (x;y; z) are equally
sorted, we get either x >y > z, or x < y < z, respectively. What is important
is that (x — z) (a — b) > 0 (since the numbers z — z and a —b have the same sign:
either both > 0, or both < 0), and that (y — z) (b — ¢) > 0 (since the numbers
y — z and b — ¢ have the same sign: either both > 0, or both < 0). Now,

zu(a—b)+yv(b—c)+z2w(c—a)=
=u(z—2)(a=b)+v(y—2)(b—c)+z(u(a—b)+vb—c)+w(c—a)) >0

>0 >0 >0
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and the Lemma is proven. [

Proof of inequality. The inequality

a b ¢ a+b b+c c+a
+-> + +
b ¢ a c+a a+b b+c

can be written as

c+a a a c+a
Zc+bS A ZZ_Zc+b—O

But

a c+a a c+a c
Zb_zc—i—b:Z(_c—H}) b+c b (a—1)

So it remains to prove that

o (a—10b) >
b+c b (a=8)20

In fact, denote u = ¢/b; v = a/c¢; w = b/a. Then,

Zu(a—b)zZ%(a—b)zZ(——C) Z Z(::

Y cfa? =Y cFab 13 (ca— ab)? -0
B abc B abc -

Now, denote

1 1 1
xr = N = : z =
b+c '’ c+a '’ a+b

Then, the number arrays (a;b; ¢) and (x y, ) are equally sorted (in fact, e. g.,
if a > b, then ¢+ a > b+ ¢, so that b+c > C+a, or, equivalently, z > y); thus,
according to the Lemma, the inequality

Zu(a—b)>0
qu(a—b)zo

In other words, > ﬁ %+ (a—b)>0. And the problem is solved. O

implies

84. (Bulgaria 1997) (abc =1, a,b,c > 0)

1 1 1 1 1 1
<
1+a+b+1+b+c+1+c+a_ 2+a+2+b+2+c
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Solution. (Official solution) Let x = a+ b+ ¢ and y = ab+ be + ca. It follows
from CS inequality that z > 3 and y > 3. Since both sides of the given inequality
are symmetric functions of a, b and ¢, we transform the expression as a function
of z, y. Taking into account that abc = 1, after simple calculations we get

3+ 4z +y+ a® cL2+dr+y
2e4+y+al+tay ~ 9+4dr+2y

which is equivalent to
322y + xy? + 6y — 5x® —y? — 242 — 3y — 27 >0

Write the last inequality in the form

2 2 4
<gz2y — 5x2) + (:Eg - yz) + (:cg/ - 3y> + (33:23/ — 12:0) +

3

+ (xg —330) + (3zy — 92) + (3zy — 27) > 0

When z > 3, y > 3, all terms in the left hand side are nonnegative and the

inequality is true. Equality holds when x = 3,y = 3, which impliesa =b=c=
1. O

Remark. 1 The inequality can be proved by the general result: if [[x; =1

then 1
i <!
n—1+ux;

PROOF. f(x1,x9,...xn) =) m.As [Tx:; = 1 we may assume x; > 1,29 <
1. We shall prove that f(x1,x2,....,2,) < f(1,z122,...,2,). And this is true
because after a little computation we obtain (1—z1)(z2—1)(z122+(n—1)%) >0
which is obviously true. So we have f(z1,22,...,2n) < f(1, 2129, .., zp) < ... <

F(1,n1) =1 O

Remark 2. (Darij Grinberg) I want to mention the appearance of the inequality
with solution in two sources:

1. Titu Andreescu, Vasile Cirtoaje, Gabriel Dospinescu, Mircea Lascu, Old
and New Inequalities, Zalau: GIL 2004, problem 99.

2. American Mathematics Competitions: Mathematical Olympiads 1997-
1998: Olympiad Problems from Around the World, Bulgaria 21, p. 23.

Both solutions are almost the same: Brute force. The inequality doesn’t seem
to have a better proof.
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85. (Romania 1997) (zyz =1, z,y,z > 0)

29 4 ¢ N y 4 2° P42t
I’6+I3y3+y6 y6+y323+26 ZG+ZBZ'3+IL'6 -

Solution. (Ercole Suppa) By setting a = 23, b = 3, ¢ = 2® we have abc = 1.
From the know inequality a® + b® > ab(a + b) follows that

a®+ b a® + b + 2 (a® 4 %)
aZ+ab+0® 3(a®+ab+0b?)
a® 4+ b® + 2ab(a + b)
3(a?+ ab+ b?)
(a+0b) (a®+ab+ b?)
T 3(a®+ab+b?)
_a+b
3

Similarly can be proved the following inequalities:

b + 3 >b+c ' A+ a? >c+a
b2+bc+c2~ 3 " 24+ca+a? T 3

Then, by AM-GM inequality we have:

z9+y9 N y9+2,9 29+1‘9 B
26 £ a3y3 + b | yb 4 yB23 + 26 | 26 4 2323 4 g6
a3_|_b3 b3_|_c3 83+a3

T a2+ ab+b2 b2+ be+ 2 02+ca+a2:
a+b b+c c+a
3 + 3 + 3

~ 2(a+b+o) <
s 2

3
S 2~33\/abc _

86. (Romania 1997) (a,b,c > 0)

a? n b2 n 2 1> be n ca n ab
a?24+2bc  b2+2ca  c2+2ab T T a?2+2bc  b2+2ca 24 2ab
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Solution. (Pipi - ML Forum) Let

a? b2 2 be ca ab

- , J=
a2+2bc+b2+20a+02+2ab a2+2bc+b2+20a+02+2ab

We wish to show that I > 1> J. Since z2 + y2 > 2xy we have

a® a®

>
a? 4 2bc — a? + b2 +¢?

Similarly,

b2 S b2 2 S c?
b2+2ca ~ a24+b2+c2 7 2+2ab T a2 b2+ 2

Then it is clear that I > 1. Next, note that I +2J =3 or I =3—-2J. By I > 1,
it is easy to see that J < 1. O

87. (USA 1997) (a,b,c > 0)

1 1 1 1
< —.
a3—|—b3—|—abc+b3+c3+abc+c3+a3+abc_ abe

Solution. (ML Forum) By Muirhead (or by factoring) we have
a’® + b > ab® + a?b

so we get that:

abe abe c
< = 7:1
Za3+b3+abc_zab(a+b+c) Za+b+c

cyc cyc cyc

88. (Japan 1997) (a,b,c > 0)

(b+c—a)? (c+a—1b)? (a+b—c)? >§
b+c)?+a?  (c+a)2+0 (a+b)2+c2 75

Solution. (See [10])
WLOG we can assume that a+b+c = 1. Then the first term on the left become
(1—2a)? 2

(1—a)?+a2 14+ (1—2a)?
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Next, let 1 =1 —2a, zo =1 —2b, x3 = 1 — 2¢, then 1 + x5 + x3 = 1, but
—1 < x1,x2,z3 < 1. In terms of z1, x2, x3, the desidered inequality is

1 n 1 + 1 <27
1—|—J;? 1—|—$§ 1—}—90%_10

We consider the equation of the tangent line to f(z) = 1-&-% at x = 1/3 which
is y =2 (—x+2). We have f(z) < Z (-2 +2) for —1 < z < 1 because

27 1 (32 — 1)2(4 — 32)

2 2) — = >0
L Ay 5022 +1)  —
Then
27
f(@1) + f(x2) + f(xs) < 10
and the desidered inequality follows. O

89. (Estonia 1997) (z,y € R)

PP +1l>aV2+1+yVa?+1

Solution. (Ercole Suppa) We have:
(m—\/y2—|—1) + (y—\/x2+1) >0

and, consequently,

2yt 1>y L yVa? + 1
The equality holds if and only if z = \/y2 + 1 and y = V22 + 1, i.e.
2?4yt =2 +y* 42

Since this last equality is impossible, the result is proven. O

90. (APMC 1996) (z +y+z2+t=0,22 +y> + 22+t =1,z,y,2,t € R)

-1 <zy+yz+2zt+tz <0

88



Solution. (Ercole Suppa) After setting A = xy + yz + 2t + tx we have
1
O=(r+y+z+t)>=1+244+2@24+yt) — A= —g—xz—yt

The required inequality is equivalent to

1 1 1 1
—1<——-—2z2—yt<0 <= ——<zz4yt<-<—= J|rz+yt|<=
2 2 2 2
and can be proved by means of Cauchy-Schwarz and AM-GM inequalities
oz +ytl < Vel 1y ViR 422 = (CS)
= V(@2 +y?) (12 +22) < (AM-GM)
< Bty +2 422 1
- 2 2
O

91. (Spain 1996) (a,b,c > 0)
a>+ >+ —ab—bc—ca>3(a—Db)(b—c)

Solution. (Ercole Suppa) We have:
a®> + 0%+ —ab—be —ca—3(a—b)(b—c) = a® + 4b* + ¢ — 4ab — 4bc + 2ac =
=(a—2b+¢)*>>0

92. (IMO Short List 1996) (abc =1, a,b,c > 0)

ab n be n ca <
ad+b>+ab B3+ cP+be A 4ad+ea T

Solution. (by IMO Shortlist Project Group - ML Forum)
We have
a®+b° = (a+b) (a* — a®b+ a®b® — ab® + b*) =
= (a+0b) [(a—0b)?(a® + ab+b*) + a’b?] >

> a?b*(a +b)
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with equality if and only if a = b. Hence

ab < ab _
a®+b°+ab ~ abla+b) +1
— 1 —
abla+b+c)
B ¢
Catbte

Taking into account the other two analogous inequalities we have

Z ab < c n a n b _1
ad+b+ab " a+b+c a+b+c a+b+e

and the required inequality is established. Equality holds if and only if a = b =
c=1. U

93. (Poland 1996) (a+b+c=1, a,b,c > —3)

a i b L c
a2+1 bV*+1 241

9
< 2
— 10

Solution. (Ercole Suppa) The equality holds if a = b = ¢ = 1/3. The line
tangent to the graph of f(x) = %5 in the point with abscissa z = 1/3 has
equation y = %z + % and the graph of f(x), per x > —3/4, if entirely below
that line, i.e.

Ex%—— V:U>—§
z2+1 7 25 50 4
because
18 30 T 3
— ———_— = —1)%(4 > —=
25x+50 2 Bx—1)*(4x+3) >0 , Vo> 1
Therefore

Y o S f@+ )+ 10 = 1

cyc

Remark. It is possible to show that the inequality

ZL<E
a?2+1 10

cyc

is true for all a,b, c € R such that a + b+ ¢ = 1. See ML Forum.
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94. (Hungary 1996) (¢ +b=1, a,b > 0)

a? b? 1
>z
a+1 b+1 3

Solution. (See [32], pag. 30) Using the condition a + b = 1, we can reduce the
given inequality to homogeneous one, i. e.,

a? b?

2b b2< 3 b3
athat @)  @rbhbt@rp) & T e

1o
37 (

which follows from (a® + %) — (a?b + ab?) = (a — b)?*(a + b) > 0. The equality
holds if and only if a = b = %
]

95. (Vietnam 1996) (a,b,c € R)

KIS

(a+b)*+(b+c)' + (ct+a)* > = (a* +b* + %)

First Solution. (Namdung - ML Forum) Let

4
fla,b,c)=(a+b)*+(b+c)*+ (c+a) — - (a* +b* + ).
We will show that f(a,b,c) > 0 for all a, b, c. Among a, b, ¢, there exist at
least one number which has the same sign as a + b+ ¢, say a. By long, but easy
computation, we have

b+c b+c
2 7 2

f(a,b,¢)—f(a, ) = 3a(a+b+c)(b—c)2+% (76 + 10be + 7¢?) (b—c)* > 0

So, it sufficient (and necessary) to show that f(a,t,t) >= 0 for all a, ¢t. Is
equivalent to f(0,t,t) > 0 and f(1,¢,¢t) > 0 (due homogeneousness). The first
is trivial, the second because

F(1,t,t) = 59t + 2813 + 422 + 28t + 5 =

= E(20t+ 7)? + (\/59t2 + 1t 1>2 >0
59 V59 /59
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Remark. To find the identity

b+c b+c
f(a7b7 c)—f(a, 9 ) 2

we can use the following well-known approach. Let

) = 3a(a+b+c)(b—c)2—|—53—6 (7b* + 10bc + 7¢?) (b—c)* > 0

b+c b+ec
2

h(aabac):f(aabac)ff((L )20

)
The first thing we must have is h(0,b,¢) > 0. h(0,b, ¢) is symmetric homogenus
polynomial of b, ¢ and it’s easily to find that
3
56
Now, take h(a,b,c) — h(0,b, c) and factor, we will get

h(a,b,c) — h(0,b,¢) = 3a(a + b+ c)(b—c)?

h(0,b,¢) = — (76 + 10bc + 7¢*) (b — ¢)?

Second Solution. (landrei - ML Forum)
Let f(a,b,c) = (a+b)*+ (b+c)* + (c+a)* — 3 (a® +b* + ¢*). It’s clear that
£(0,0,0) = 0. We prove that f(a,b,c) > 0. We have

fla,b,c) = L:Za4+42ab(a2+b2) +6Y a’? >0 =
gZa4+2Zab(a2+b2) +3) a0 =

53 a'+14) ab(a®+b?) +21) a’H’ >0
We prove that
g (a* +b*) + 14ab (a® + %) + 21a°0* > 0 (%)
Let « = ab , y = a® + b?. Thus

5 5
5 (y* —22%) + Moy +212° >0 <= 162° + lday + 592 >0

If © # 0, we want prove that
2
2+282 +5 (L) >0,
x x

If y/x =t with |[t| > 2 , we must prove 32 + 28t + 5t > 0. The latter second
degree function has roots

—28 +12 —28 — 12
1 10 ) 6 ’ T2 10
It’s clear that |[t| > 2 implies 32 + 28t + 5t> > 0. If z =0 thena =0 or b =0
and (%) is obviously verified. O
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Remark. A different solution is given in [4], pag. 92, problem 98.

96. (Belarus 1996) (z +y + z = /2yz, z,y,z > 0)

zy+yz+ze>9(x+y+2)

First Solution. (Ercole Suppa)
From the well-know inwquality (xy +yz + z2)® > 3zyz(z +y + 2) and AM-GM
inequality we have

(xy +yz + Z:c)‘3 >3zyz(z+y+2) =
=3z+y+2z)°> (AM-GM)

> 3(3yzyz)’ =
= 8lzyz = 81(x +y + 2)?

The required inequality follows extracting the square root. O

Second Solution. (Cezar Lupu - ML Forum)
We know that z +y + 2 = /Tyz or (z +y + 2)? = xyz. The inequality is
equivalent with this one:

1 1 1
ryz(= + -+ =) 29z +y+2),
T Yy =z

or
1 1 1
24+ =4+2)>9 .
@ty t 2+ 4020wyt 2)
Finally, our inequality is equivalent with this well-known one:

11 1
(z+y+2)(=+-+-)2>9.
r Yy =z

97. (Iran 1996) (a,b,c > 0)

1 1 1 9
(ab+be+ ca) ((a+b)2 e (c+a)2> 21

93



First Solution. (furie Boreico, see [1], pag. 108, problem 114) With the sub-
stitution y+ z = a, z+x = b,  + y = ¢ the inequality becomes after some easy

computations
2 1
E:Lw_§>w_w2

Assume LOG that a > b > ¢. If 2¢2 > ab, each term in the above expression is
positive and we are done. So, suppose 2c? < ab. First, we prove that 2b% > ac,
2a? > be. Suppose that 2b% < ac. Then (b+ ¢)? < 2(b? + ) < a(b+ ¢) and so
b+ ¢ < a, false. Clearly, we can write the inequality like that

2 1 , (2 1 ,_ (1 2 )
2 V- 2o - (-2 ) a—b
(ac 62> (a=c)"+ (bc a2) (b=e) 2 (62 ab) (a—0)
We can immediately see that the inequality (a —¢)? > (a — b)% + (b — ¢)? holds
and thus it suffices to prove that

2 2 1 1 ,_ (1 1 2 2 ,
s L2 - _ >0 - 2 2 _
(ac T T @ b2> (b-o 2 <b2 TETw ac) (a—1)

But is clear that )
112y (11
b2 2 ab b ¢

and so the right hand side is at most
(a—b)%(b = c)?
b2c?

Also, it is easy to see that

> 4>
ac + be a%2 b2 T ac + be b2 c?
which show that the left hand side is at least
(a =b)*(b—c¢)?
b2c?

and this ends the solution. O

Second Solution. (Cezar Lupu - ML Forum) We take x = p—a,y = p—b,z =
p — ¢ so the inequality becomes:

1 1 1

(p—a)(p—b)+(p—b)(p—6)+(p—C)(p—a)-(a7+*+§)2 —

9
b2 4
(p* — 16Rr + 5r°) [(4R +r)(p® — 16Rr + 5r*) + 4r (3R(5R —r) + r(R — 2r))] +
+4R*(R —2r)2 >0
But using Gerrestein’s inequality p? > 16 Rr —5r2 and Euler’s inequality R > 2r
we are done. Hope I did not make any stupid mistakes in my calculations. [
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Remark. Gerrestein’s inequality.
In the triangle ABC we have p* + 5r% > 16Rr.

Puta=z+4+y,b=y+2,¢c=2+=z,z,y,2z > 0. The inital inequality becomes
(@ +y+2)> >4z +y)(y + 2)(z + ) — dryz
This one is homogenous so consider  + y + z = 1. So we only must prove that
1>41 —2z)(1 —y)(1 — 2) — bryz & 1+ Yzyz > 4(zy + yz + 2x)
which is true by Shur . Anyway this one is weak , it also follows from
s? > 2R* + 8Rr + 3r*
which is little bit stronger.

Third Solution. (payman-pm - ML Forum)

1 1 I
@rv?  wteR  GreP
(x+y)%(y+2)°2+Wy+2)2%(z+2)?+ (z+2)%(z+y)?

(+y)2(y +2)%*(2 + 2)?

(zy + yz + zx)(

= (zy +yz + 22)(

but we have
(xy+yz+z20)(x+y)>*W+2)°+W+2)>2E=+2)>+ (z+2)@+y)°) =
5
Z(x5y + 2z%y% + §x4yz + 1323y 2 + 422y 2?)
and

5
(z+y)2(y+2)%(z+2)* = Z(x4y2 + 2tyz + 2%y + 62372 + §x2y222)
and by some algebra

Z(4x5y —aty? = 323y3 + 2ty — 22%9% 2 + 22223 > 0

and by using Sschur inequality we have > (23 — 222y +xyz) > 0 and if multiply
this inequality to xyz :

Z(x"‘yz — 223y 2 + x%%2%) > 0 (1)
and by usingAM — GM inequality we have
Y ((2°y — 2'y?) +3(a%y — 2%%)) > 0 (2)

and by using (1), (2) the problem is solved. O
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Fourth Solution. (Darij Grinberg - ML Forum) I have just found another
proof of the inequality which seems to be a bit less ugly than the familiar ones.
We first prove a lemma:

Lemma 1. If a, b, ¢, x, y, z are six nonnegative reals such that a > b > ¢ and
r <y <z then

z(b—c)? (3bc+ca+ab—a2)+y(c—a)2 (3ca+ ab+ be —b*) +
+z(a—b)? (3ab + bc + ca — ¢*) > 0.

Proof of Lemma 1. Since a > b, we have ab > b?, and since b > ¢, we have
be > ¢?. Thus, the terms 3ca + ab + be — b? and 3ab + bc + ca — ¢ must be
nonnegative. The important question is whether the term 3bc + ca + ab — a? is
nonnegative or not. If it is, then we have nothing to prove, since the whole sum

z(b—c)? (3bc—i—ca—|—ab—a2)—|—y(c—a)2 (3ca+ ab+ be — b*) +
+ 2z (a—0b)’ (3ab + bc + ca — )

is trivially nonnegative, as a sum of nonnegative expressions. So we will only
consider the case when it is not; i. e., we will consider the case when 3bc + ca +
ab — a® < 0. Then, since (b—c)®> >0, we get (b — c) (3bc + ca + ab — a?) <0,
and this, together with x < y, implies that

z(b—c)? (3bc + ca + ab — a?) >y (b—c)? (3bc + ca + ab — a?)

On the other hand, since 3ab + bc + ca — ¢ > 0 and (a — b)2 > 0, we have
(a— b)2 (3ab + bc 4+ ca — 02) > 0, which combined with y < z, yields

z(a—b)? (3ab + bc + ca — ) >y (a—b)? (3ab + be + ca — ¢*)

Hence,

z(b—c)’ (3bc + ca+ab — a®)+y (c — a)? (3ca+ ab+be — b*)+2 (a — b)? (3ab + be + ca — )
>y (b—c)? (3bc + ca+ ab — a®)+y (c — a)’ (3ca+ ab+ be — b*)+y (a — b)? (3ab + be + ca — ¢*)
:y((bfc)z (3bc + ca + ab — a?) + (¢ —a)® (3ca+ ab+ be — b%) + (a —b)? (3ab+bc+ca702))
But

(b—c)® (3bc + ca+ab — a®) + (c—a)’ (3ca + ab+be — b?) + (a —b)> (3ab + be + ca — c?)

> (b—c)? (=bc + ca+ ab— a?) + (¢ —a)? (—ca+ ab+bc —b?) + (a —b)? (—ab+ be+ ca — c?)
(since squares of real numbers are always nonnegative)

=(b-0c—a)(a=b)+(c—a)(a=b)(b—c)+(a—)*(b—c)(c—a)

=0b-c)(c—a)(a=b)(b—c)+(c—a)+(a=b) | =0

=0
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thus,
z(b—c)’ (3bc + ca + ab — a?) +y(c—a) (3ca+ ab+be —b%) +
+z(a—0b)* (3ab+bc+ca—c*) >0
and Lemma 1 is proven.
Now to the proof of the Iran 1996 inequality:

We first rewrite the inequality using the Y notation as follows:

1 9
2Rl
(b+c) 4 (bc + ca + ab)
Upon multiplication with 4(be 4 ca + ab), this becomes

4 (bc + ca + ab)
2 (b+e)’

Subtracting 9, we get

Z4(bc—|—ca+ab)

2 _9>0
(b+¢)

which is equivalent to

4 (bc + ca + ab)
Z<W3> 20

But
4 (be + ca + ab) 3 Bb+c)(a—b) (3c+b)(c—a)

(b+c)’ (b+c)? (b+c)?

Hence, it remains to prove

(Bbtc)(a=b) (3c+b)(c—a)
22( (b+c)? (b+c)? )ZO
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But

5 ((3b+c) (a—b) (3c+b)(ca)> _

(b+c)? (b+c)?
-y 3b+bc+ca—b) Z(Scz;l:z(cc);a):
3 3b+bc+cab) Z(ga(ti)gzb)
p(e .

Z a—b 3ab—|—bc—|—ca—02)
+¢)? (c+a)’

Thus, the inequality in question is equivalent to

>0

Z (a—b)* (3ab+ be + ca — ¢?)
(b+0)*(c+a)’
Upon multiplication with (b+ ¢)* (¢ + a)? (a + b)?, this becomes
Z(a+b)2 (a—b)® (3ab+bc+ca—c*) >0

In other words, we have to prove the inequality

(b+¢) (b—c)? (3bc + ca+ab — a®) + (c+a)?(c—a)’ (3ca+ ab+ be —b*) +

+ (a—&-b)2 (a—b)2 (3ab+bc+ca—02) >0
But now it’s clear how we prove this - we WLOG assume that a > b > ¢, and
define x = (b + 0)2, y=(c+ a)2 and z = (a + b)2; then, the required inequality
follows from Lemma 1 after showing that z < y < z (what is really easy: since
a>b>c wehave (a+b+c)—a < (a+b+c)—b < (a+b+c¢)— ¢, what
rewrites as b+ ¢ < c+a < a+b, and thus (b+ ¢)* < (c+a)® < (a +b)?, or, in
other words, z < y < z).
This completes the proof of the Iran 1996 inequality. Feel free to comment or

to look for mistakes (you know, chances are not too low that applying a new
method one can make a number of mistakes). O

Remark. For different solutions proof see: [19], pag.306; [65], pag.163; Crux
Mathematicorum [1994:108; 1995:205; 1996:321; 1997:170,367].

98. (Vietnam 1996) (2(ab+ ac+ ad + bec+ bd + c¢d) 4+ abe + bed + cda + dab =
16,a,b,¢,d > 0)

a+b+c+d> 3(ab+ac—|—ad+bc+bd+cd)
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Solution. (Mohammed Aassila - Cruz Mathematicorum 2000, pag.332)
We first prove a lemma:

LEMMA If z, y, z are real positive numbers such that x 4+ y + z + zyz = 4, then
TH+y+z>ay+yz+z2x
PrOOF. Suppose that  +y+ 2z < 2y +yz + zz. From Schur inequality we have
Iryz > 4(x+y+2) ey +yz+22) — (2 +y+2)°> >
>A4x+y+2)?—(+y+2)’ =
=(@+y+2)’[4-(e+y+2)=
=ayz(r +y+ 2)*

Thus
(r+y+2)?2<9 = z+y+z<3

and AM-GM implies
3
s < <JC+§/+Z) —1

Hence x +y+ z+xyz < 4 and this is impossible. Therefore we have x +y+ 2z >
xy + yz + zx and the lemma is proved. O

Now, the given inequality can be proved in the following way. Put
S = Za , Ss :Zab , S3 :Zabc.
Let
P(x) = (z —a)(z — b)(z — c)(x — d) = * — S12° + Spa? — Sz3x + abed.

Rolle’s theorem says that P’(x) has 3 positive roots u, v, w. Thus
P'(z) = 4(z—u)(z—v)(z—w) = 42° —4(u+v+w)z? +4(uwv +vw +wu)z — duvw
Since P'(x) = 42 — 39122 + 25,2 — S3 we have:

Slzg(u—kv—l—w) , Sy =2wv+ovw+wu) , S3=4duvw (1)
From (1) we have

2(ab+ ac+ ad + bc + bd + ¢d) + abc + bed + cda + dab = 16 <=
255+ 853=16 <<= 4(uwv+ovw +wu)+4duvow =16 <~
uv + vw + wu + wow = 4 (2)

From the Lemma and (1) follows that
3 1 2
u+v+w>u+ow+we = 15’12552 — 512552

ie.a+b+c+d> %(ab—&—ac—i—ad—&—bc—i—bd—i—cd) and we are done. O

Remark. A different solution is given in [6] pag. 98.
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3 Years 1990 ~ 1995

99. (Baltic Way 1995) (a,b,c,d > 0)

at+c b+d cH+a d—&—b>4
a+b b+c c¢c+d d+a

Solution. (Ercole Suppa) From HM-AM inequality we have

1 1 4
—+-> ;i Va,y € RY.
r oy r+y

Therefore:

1 1 1 1

a+b
=(a+b+c+d)(a+c) L—|— ! > (HM-AM)
N a+b c+d)
4
> _— =
_(a+b+c+d)a+b+c+d 4

100. (Canada 1995) (a,b,c > 0)

a+b+te
a®bbct > abe 3

First Solution. (Ercole Suppa) From Weighted AM-GM inequality applied to

the numbers é, %, % with weights p; = ﬁ, p2 = ﬁy p3 = ﬁ we have
1 1 1 1 P1 1 D2 1 p3
pr-—+p2-+p3-—2{(—) |7 ) |- —
a b c a b c
3 S 1
a+ b +c a+b+\c/ aabbcc
Thus, the AM-GM inequality yields:
T qabbee > %M > Vabe = a®b’c > abe ™

100



Second Solution. (See [56]pag. 15)
We can assume WLOG that a < b < ¢. Then

loga <logb < logc
and, from Chebyshev inequality we get

a+b+c loga+logb+logc < aloga + blogb + clogc
3 3 - 3

Therefore

b
aloga+blogb+clogc2#(bgaJrlongrlogc) =

a+b+c
a®’c > abe 3

O

Third Solution. (Official solution - Cruz Mathematicorum 1995, pag. 224)
We prove equivalently that

a3ab3b63c 2 (abc)aerJrc

Due to complete symmetry in a, b and ¢, we may assume WLOG that a > b >
¢>0. Thena—b>0,b—c>0,a—c>0and a/b>1, b/c>1, a/c>1.

Therefore .
adep3beie a\e—b (b ra\a—c
= (= — — >
(abc)atbte (b) (c) (c) 21

101. (IMO 1995, Nazar Agakhanov) (abc =1, a,b,c > 0)
1 n 1 n 1
ad(b+c¢) b(c+a) Ala+d)

3
> =
-2

First Solution. (See [32], pag. 17)
After the substitution a = %, b= i, c =1, we get xyz = 1. The inequality

PR
takes the form
72 Y2 42

y+z z4+x xT+yY
It follows from the Cauchy-Schwarz inequality that

x2 y2 22

+ +
y+z z+x T+Y

3
> —.
-2

[(y+z)+(z+z)+(x+y)]< )Z($+y+z)2

so that, by the AM-GM inequality,

2 2 2 1
© Y z 2x+y+z23(myz)s 3
y+z z4+2x x4y 2 2 2
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Second Solution. (See [32], pag. 36)
It’s equivalent to
1 + 1 + 1 S 3
ad(b+c)  bc+a) Ala+b) — 2(abe)d/3

Set a = 23,b = >, ¢ = 22 with z,y, 2 > 0. Then, it becomes

1 3
> .
Z 29(y3 + 23) — 2ziyizA

cyc
Clearing denominators, this becomes
me 12 +2Zm12y923 +Zx9y926 > 3Zx11y 25 4 6aByBs®
sym sym sym sym

or

(wa 2y ) 2 (29312 28 Yy )

sym sym sym sym
<§ xQ 9 6 E 1‘8 8 8>
sym sym

and every term on the left hand side is nonnegative by Muirhead’s theorem. [J

102. (Russia 1995) (z,y > 0)

1 > T n Y
ny_-T4+y2 y4+x2

Solution. (Ercole Suppa) From AM-GM inequality we have:

T Y v Y
et +y? oyt a2 T 2 /aty? 222yt
1 1 1

2ry  2xy  xy

103. (Macedonia 1995) (a,b,c > 0)

a L /b L c > 9
b+ ¢ c+a a+b—
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Solution. (Manlio Marangelli - ML Forum)
After setting A =1, B = 3¢ the HM-AM yields

VAB > 2

1 1
ats

a 2 2a
> =
bt+c 145 atbte

Similar inequalities are true also for the other two radicals. Therefore

a b c 2a 2b 2c
+ + > + + =2
b+c c+a a+b " a+b+c a+b+c a+b+c

SO

104. (APMC 1995) (m,n € N, z,y > 0)

(n—1)(m=1)(z" T +y" ")+ (n+m—1)(a"y" +2™y") > nm(z" T y+zy )

Solution. (See [5] pag. 147)
We rewrite the given inequality in the form

mn(z —y) (" 4yt > (e m = 1) (2" =) (@™ = y™)
and divide both sides by (z — y)? to get the equivalent form

nm (x7l+7n—2 + xn+m—3y et yn+nl—2) 2
Z(n +m— 1) (l,nfl N ynfl) (xmfl 4 _’_ymf2)
We now will prove a more general result. Suppose
P(z,y) = agz® + - + a_qy*

is a homogeneous polynomial of degree d with the following properties

(a) Fori=1,...,d, a; = a_; (equivalently P(z,y) = P(y,x))

d
(b) > aq =0, (equivalently P(z,x) =0)
i=—d

(¢) Fori=0,....,d—1,a4+ -+ aq—; > 0.
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Then P(z,y) > 0 for all 2,y > 0. (The properties are easily verified for P(x,y)
equal to the difference of the two sides in our desidered inequality. The third
property follows from the fact that in this case, ag > ag—1 > -+ > ag). We
prove the general result by induction on d, as it is obvious for d = 0. Suppose
P has the desidered properties, and let

Q(xa y) = (ad + ad—l) xd71 + ad_2$d72

+a—gromy®? + (a—g+a—gs1)y

d—l.

Then @ has smaller degree and satisfies the required properties, so by the in-
duction hypotesis Q(z,y) > 0. Moreover,

P(z,y) — Q(z,y) = aq (27 — 297y — 2y +y) =
=aag(z —y) (' —y?) >0

since ag > 0 and the sign of 2 — y is the same as the sign of 2¢ — y?. Adding
these two inequalities give P(z,y) > 0, as desidered. O

105. (Hong Kong 1994) (zy +yz + zz =1, z,y,z > 0)

=~
co%
w

2(1—y*)(1=2°) +y(1 - 2*)(1 —2®) + 2(1 - 2*)(1 — ) <

First Solution. (Grobber - ML Forum)
What we must prove is

4v/3
x—l—y—i—z—l—xyz(xy—i—yz—l—zx)§T\[—l—a:y(x—i—y)—l—yz(y—i—z)—|—zx(z+x).

By adding 3zyz to both sides we get (we can eliminate zy + yz + zx since it’s
equal to 1)

4v/3
x+y+z+4xyz§;—[+x+y+z.

By subtracting x + y + z from both sides and dividing by 4 we are left with
ryz < @, which is true by AM-GM applied to xy, yz, zx. O

Second Solution. (Murray Klamkin - Cruz Mathematicorum 1998, pag.394)
We first convert the inequality to the following equivalent homogeneous one:

x (T2 — y2) (T2 — 22) +yz (TQ — z2) (T2 — xz) +z (T2 — 31‘2) (T2 — y2) <
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where T = xy + yz + zx, and for subsequent use T} = x + y + z, T3 = zyz.
Expanding out, we get

o

4v/3
TT? — TQZ y? + 22 +T2T3<T(T2)

or

44/3 5
T1T2 T (Ty 2—3T3)—|—T2T3—4T2T3<T(T2)2

Squaring, we get one of the know Maclaurin inequalities for symmetric functions:

T:
6’/273§€/§

There is equality if and only if z =y = 2. O

106. (IMO Short List 1993) (a,b,c,d > 0)

a b c d 2
+ + + >z
b+2c+3d c+2d+3a d+2a+3b a+2b+3c 3

Solution. (Massimo Gobbino - Winter Campus 2006) From Cauchy-Schwarz
inequality we have:

(a+b+c+d)?

2
m\/&\/b +2c+ 3d> <

=
( b+2c+3d> (;ab+2ac+3ad>
( ) (g@) <

(Zb+20+3d>3(a+b+c+d) (1)

IN

b+2c—|—3d

The inequality of the last step can be proved by BUNCHING principle (Muir-
head Theorem) in the following way:
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sym cyc sym
i Z ab < 3 Z a?
sym cyc
Z ab <6 Z a?
sym cyc
z ab < z a?
sym sym

From (1) follows that

107. (APMC 1993) (a,b > 0)

2 . . 3
<ﬁ+\/5> _at Va?b+ Vab? +b _ a+\/%+b<J<€/a7+€/l?)
2 = 4 = 3 = 2

Solution. (Tsaossoglou - Crux Mathematicorum 1997, pag. 78)
Let A= {/a, B = v/b. The first inequality

2
(\/5+\/5> - a+ Va2b+ Vab? +b

2 - 4
is equivalent to
(ﬁ+x/5)2 < (W+ W) (€/E+ %)
— (4*+B%)7 < (A'+BY) (4% + B?)

which holds by the Cauchy inequality.
The second inequality

a+ vVa2b+ Vab? +b - a+Vab+b
4 - 3
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is equivalent to
3(a+b)+3€/c%(\3/a+%)§4(a+\/%+b)
— a+3\/3a2b+3\/3ab2+b§2(a+\/%er)
3 2
= (%Jr%) g?(\/&+\@)
A2 4 B2\® (434 B3\?
- - < (=
(7)< (57)

which holds by the power mean inequality.
The third inequality

3
a+\/ab+b< (\3/a2+\3/b2>
3 - 2

is equivalent to

AS 4 AP 4 BON® _ (A4 BTN’
3 - 2
For this it is enough to prove that

<A4 +B4)3 <A6 + A*B? +B6>2 -
2 3 =
or
9 (A*+ BY)’ —8(A° + A3B? + BY)® =
=(A - B)*(A® +4A"B + 10A°B? + 4A°B® — 2A*B*+
+4A%B® + 10A?B% + 4AB"™ 4 B®) >
>(A—B)* (A® —2A'B* + B%) =
—(A=B)*(A*'=BY* >0

108. (Poland 1993) (z,y,u,v > 0)

acy+xv+uy+uv> Ty n uv
r+y+u-+v T r+y u+twv
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Solution. (Ercole Suppa)
Is enough to note that

TY + TV + Uy + uv Ty uv
r+y+u+t+v _x+y+u+v
C(@tuyty)  ay | w
7x+y+u—|—vix+y U+ v
(ve — uy)?

(@ +y)uto)z+y+utv) ~

109. (IMO Short List 1993) (a+b-+c+d =1, a,b,c,d > 0)

1 176
< 4"
abe + bed + cda -+ dab o7 -+ o7 abed

Solution. (See [23] pag. 580)
Put f(a,b,c,d) = abc+ bed + cda + dab — L8 abed and note that f is symmetric

27
with respect to the four variables a, b, ¢, d. We can write
176
fla,b,c,d) = ab(c+d) + cd(a + b — W“b)

Ifa+b— %ab < 0, then using AM-GM for a, b, ¢ 4+ d, we have

1
fla,b,c,d) <ablc+d) = —
27
Ifa+b— %ab>0by AM-GM inequality applied to ¢, d we get
1 176 c+d c+d
< - 2 - = = -
f(a,b,qd)7ab(c+d)—|—4(c—|—d) (a+b 27ab) f(a,b, 5 3 )
Consider now the following fourtplets:
c+d c+d a+b a+b c+d c+d
PO(avbacad) 9 Pl (aab727 9 ) ) PQ( 2 5 9 ) 2 ) 2 )
1l a+b c+d 1 1111
P3 <4727 2 74> ) P4 <4a4a474>

From the above considerations we deduce that for i = 0,1,2,3 either f(P;) =
1/27 or f(P;) < f(P;41). Since f(Py) = 1/27, in every case we are led to

1

f(avbacad):f(PO): 277

, %, %, %) (with permutations) and (%, i, i, i)

O

Equality occurs only in the cases (O
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110. (Italy 1993) (0 <a,b,c <1)
A+ +A<a?b+be+AFa+1

First Solution. (Ercole Suppa) The given inequality is equivalent to
(1= +*(1—c)+c*(1—a)<1
The function
fla,bye)=a®>(1—=b)+b*(1—c)+c*(1—a)

after setting b, ¢ is convex with respect to the variable a so take its maximum
value in ¢ = 0 or in @ = 1. A similar reasoning is true if we fix a, ¢ or a, b.
Thus is enough to compute f(a,b,c) when a,b,c € {0,1}. Since f is symmetric
(with respect to a, b, ¢) and:

f(0,0,0)=0, f(0,0,1)=1, f(0,1,1)=1, f(1,1,1)=0

the result is proven. O

Second Solution. (Ercole Suppa) We have

(1=t +b*1-c)+f(1-a)<a(l-b)+b(l—c)+c(l—a)=
=a+b+c—(ab+bc+ca) =
=1-(1-a)(1-0b)(1—c)—abc<1

111. (Poland 1992) (a,b,c € R)
(a4+b—c)?b+c—a)*(c+a—0)*>(a® +b* =)+ —a?)(* +a® —b?)

Solution. (Harazi - ML Forum) It can be proved observing that
(a+b—c)(c+a—0b)?>(a®>+b* - ) (P +a® - V?)
which is true because:
(a+c—b)2b+a—c)?=(a®—(b—c)?)?=a*—2d*(b—c)* + (b—c)*
But (a? +c? = b?) (b2 + a® — ¢?) = a* — (b — ¢?)%. So, it is enough to prove that
(b2 =224 (b—c)* > 202 (b—c)? = (b+¢)*+(b—c)? > 24® —= b*+c2—a® >0

We can assume that > +c¢2 —a?> >0, 2 +a?>—-02>0,a>24+0>2-c2>0 (only
one of them could be negative and then it’s trivial), so these inequalities hold.
Multiply them and the required inequality is proved. O
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112. (Vietnam 1991) (z >y > z > 0)
2’z

Y

2 2
X z
2y v
X

z

First Solution. (Gabriel - ML Forum) Since x > y > z > 0 we have that,

2
X
%y

yi’z . Zzi 23y? + 322 4 2342
x Yy TYz
R e [ Gl o e ) I
- 3(wyz) -
3wyz(a® +y* 4 2%)
3(zyz2) -
2?2

z

by Chebyshev’s inequality O

Second Solution. (Murray Klamkin - Cruz Mathematicorum 1996, pag.111)
Let z=a,y=a+0b, 2 =a+ b+ c where a > 0 and b,c > 0. Substituting back
in the inequality, multiplying by the least common denominator, we get

%y

2

—x? -yt =

2 2
+yz z°x 9
x

_l’_i
z )
_ 1
“ala+b)(at+b+c)

+ 3b%c + a®c? + 3a2bc? + 6ab’ P + 3032 + abe® + b2 > 0

(a®b? 4 3a*b® + 3ab* + b° + a*be + 6a%b*c + 8ab®c+

and the inequality is proved. O

Third Solution. (ductrung - ML Forum) First, note that

Z ab(a —b)  (a—b)(a—c)(b—c)(ab+ bc+ ca) >0
c h abc -
Hence
ab ab?
Sy
c c
and so

a®b ab(a +b)
22z

c
It remains to show that

ZMZQ(G2+b2+02)
C
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or equivalently
Z a’b*(a + b) > 2abc(a® + b* + c?)
But

Zasz(a +b) — 2abe(a® + b + ¢?) = ZCS(Q —-0)%>0
Remark. Different solutions are given in Crux Mathematicorum 1994, pag.43.

113. (Poland 1991) (22 +y? + 22 =2, x,y,2z € R)

r+y+z<2+ayz

First Solution. (See [4], pag. 57, problem 50)
Using the Cauchy-Schwarz inequality, we find that

ety+z-zyz=a(l—yz)+ (y+2) < V2 + (y+ 2?2 [1+ (1 - y2)?

So, it is enough to prove that this last quantity is at most 2, which is equivalent
to
(242yz) [2—2yz + (y2)?] <4 <= (2y2)® < (2y2)?

which is clearly true because 2yz < y? + 22 < 2. O

Second Solution. (Cruz Mathematicorum 1989, pag. 106)
Put S=x+y+ 2, P =xyz. It is enough to show that

E=4—-(S-P)?>*>0
Now using z2 + y? + 22 = 2 we have
4F = 2° — 2% (8% — 2) + 2(4SP) — 4P* =
=25 — 22(22y + 2yz + 222) + 2 (4x2yz + dzy?z + 4xyz2) — 8z2y?2? 4+ 4P% =
= (2 — 2zy)(2 — 2y2)(2 — 2zx) + 4P?
Since
2 — 22y = 2% + (v — y)*
2 —2yz =24 (x — 2)?
2 -2z =y*+ (2 — x)?

the above quantities are nonnegative. Thus, so also is E, completing the proof.
O
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Third Solution. (Cruz Mathematicorum 1989, pag. 106)
Lagrange multipliers provide a straighforward solution. Here the Lagrangian is

£:x+y+z—xyz—)\(x2+y2+22—2)

Now setting the partial derivatives equal to zero we obtain

1—yz=2\z
1—2z=2\y
1—ay=2\z

On subtraction, we get
(z—y)(z=20) =0=(y—2)(z—-2})

Thus the critical points are t = y = z and ¢z = y, z = (1 - x2) /x and any
cyclic permutation. The maximum value corresponds to the critical point x = y,
z= (1 —a?) /z. Since 2 + y* + 2% = 2 this leads to

(32> =1) (#*—=1) =0

Finally, the critical point (1,1,0) and permutations of it give the maximum
value of z + y + z — zyz to be 2. O

Fourth Solution. (See [1] pag. 155)
If one of z, y, 2z is nagative, for example z < 0 then

24ayz—x—y—z=02—z—y)—2(1—ay) >0

since z +y < /2 (22 + y2) < 2 and 22y < 22 + 32 < 2. Thus, WLOG, we can
suppose 0 < x <y < z. If 2 <1 then

24zyz—xz—y—z=1-2)1—-y)+(1—2)1—2y) >0

If, on the contrary z > 1 then by Cauchy-Schwartz inequality we have

c+y+2z<V2(@ )2+ =2y +1<ay+2<ayz+2
O
Remark 1. This inequality was proposted in IMO shortlist 1987 by United

Kingdom.

Remark 2. The inequality admit the following generalization: Given real
numbers z,y, z such that 22 4+ y? + 22 = k, k > 0, prove the inequality

2 2
Emyz—\/Qk <z+y+z< Emyz+\/2k
When k = 2, see problem 113.
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114. (Mongolia 1991) (a® + b*> + ¢ =2, a,b,c € R)

la® + b3 + ¢ — abe| < 2v2

Solution. (ThAzN1 - ML Forum) It suffices to prove
(a® + 0 + & —abc)? < 8 = (a® + b* + )3,
This is equivalent to
(a® + % 4+ %) — (a® + % + )2 + 2abe(a® + 0% + ) — a®b*c® > 0
Z(3a4b2 + 3a%b* — 2ab?) + 2abc(a® 4+ b® 4 ) + 5a%b*c* > 0
Z(a‘lb2 +a®b* 4+ a®b*(a — b)? + a* (b + ¢)?) + 5a?b*c® > 0

115. (IMO Short List 1990) (ab+ bc+ cd+ da =1, a,b,c,d > 0)

a® b3 & d?

1
> =
b+c+d+c+d+a+d—|—a+b+a—|—b+c* 3

First Solution. (See [23] pag. 540)
Let A, B, C, D denote b+c+d, a+c+d, a+ b+ d, a+ b+ c respectively.
Since ab + bc + ¢d + da = 1 the numbers A, B, C, D are all positive. By
Cauchy-Schwarz inequality we have

A+ +E+d®>ab+be+ced+da=1

We'll prove the required inequality under a weaker condition that A, B, C,
D are all positive and a? + b2 + ¢? + d? > 1. We may assume, WLOG, that
a>b>c>d>0. Hencea32b32032d320and%2%2%2%20.
Using Chebyshev inequality and Cauchy inequality we obtain

b3 38 1

c 1 11 1
4o sz 3 3 3 3 i )>
5Tt D (a+b+c+d)(A+BC+D)

+
S

\Y
&\H Sl= =%

1 11 1
2 2 _
(a®>+b*+*+d*) (a+b+c+d) <A+BC+D>

11 1
(a®> +b* +¢? +d2)(A+B+C—|—D)( + ==+ )>

1
A"BC ' D 3

This complete the proof. O
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Second Solution. (Demetres Christofides - J. Sholes WEB site)
Put

S=a+b+c+d
a’ b3 3 a3
A= ats ot s cts4
B=a?>+b*+c%+d?
C=a(S—a)+b(S—b)+c(S—c)+d(S—d) =2+ 2ac+ 2bd

By Cauchy-Scwarz we have
AC > B?

We also have

(a—0)2+b-—0)+(c—d)?+{d—a)?>0 =
B>ab+bc+cd+da=1

and
(a—c)?+(b—-d?*>0 = B> 2ac+2bd

If 2ac + 2bd < 1 then C < 3, so by (1) and (2) we have
B
c ~—C
If 2ac + 2bd > 1 then C > 3, so by (1), (2), and (3) we have

A> 2

Wl

B> B _ 2ac+2bd_ C—-2 2
— > > =1——=>
C - C

A> -
- C C - C
This complete the proof.

W =

Third Solution. (Campos - ML Forum) By Holder we have that
3 2 4
(Cirer) (Savrera) (S1)>(Ta) =

ad (a+b+c+d)?*
Zb+c+d 160> ab+c+d))

but it’s easy to verify from the condition that
(a+b+c+d?>4(a+c)(b+d) =4

and
Ba+btc+d?>4> alb+c+d
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because

Ba+btc+d?—4) alb+ctd =
=3(a+b+c+d)* —8(ab+ ac+ ad + be + bd + cd) =
=3 (a® + b+ ® + d*) — 2(ab+ ac + ad + bc + bd + cd) =
=4 (a®>+ 0>+ +d) —(a+b+c+d)?>0 (by Cauchy-Schwarz)

This complete the proof. O

115



4 Supplementary Problems

116. (Lithuania 1987) (z,y,z > 0)

3 3 3
x Y z >x+y+z

x2+xy+y2+y2+yz+z2+22+zx+x2_ 3

Solution. (Gibbenergy - ML Forum) Since 3zy < x° + zy + y? we have

a® _ vylzt+y) Tty

x2+xy+y27x7m2+xy+y2_ 3

Then doing this for all other fractions and summing we obtain the inequality
we want to prove. O

Remark. This inequality was proposed in Tournament of the Towns 1998.

117. (Yugoslavia 1987) (a,b > 0)

%(a—&-b)Q—i—i(a—i-b) > avb+bva

First Solution. (Ercole Suppa)
From AM-GM inequality follows that ‘LTH’ > +v/ab. Therefore

1 b1 B
§(a+b) +Z(a+b)—a\/l;—b\/&—

Lo, 1
= S+ B2+ fatb) — Vab (Va+E) >

1 9 1 a+b
@)’ + J(a+b) - — (\/5+\/5):

:a;b[a+b+;—f—\/5]:
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Second Solution. (Arne- ML Forum)
The left-hand side equals

GRS
9 T T YTy

Now note that, by AM-GM inequality

a> ab a b JJa? ab a b

4 4 > — . — .- = = b

R T R R Sl
Similarly

¥» ab a b 4b* ab a D

Tt stz g s s Ve
Adding these inequalities gives the result.
118. (Yugoslavia 1984) (a,b,c,d > 0)

a b c d S 9

b+c+c+d+d+a+a+b_

Solution. (See [65] pag. 127)
From Cauchy-Schwarz inequality we have

2 a o
(a+b+c+d) SZa(b+c)Zb+c_
cyc cyc
:(ab+2ac—|—bc+2bd+cd+ad).Zbic

cyc

Then, to establish the required inequality it will be enough to show that

(ab+ 2ac + be 4 2bd + cd + ad) < =(a+ b+ ¢ + d)?

DN =

This inequality it is true because

1
§(a+b+c+d)2—(ab+2ac+bc+2bd+cd+ad):

2 2
(a C) (b d) O

The equality holds if and only if a = c e b =d.

119. (IMO 1984) (z+y+2z=1, z,y,2 > 0)

7
0§xy+yz+zx—2xyz§2—7
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First Solution. (See [32], pag. 23)

Let f(z,y,2) = ay + yz + za — 2zyz. We may assume that 0 < z < y <
z < 1. Since z +y+ 2 = 1, we find that < . It follows that f(z,y,2) =
(1 —3z)yz + xyz + zx + 2y > 0. Applying the AM-GM inequality, we obtain

yz < (y;‘z)2 = (1_7””)2 Since 1 — 2z > 0, this implies that

-2\’ 205 + a2 + 1
x) (172@:%.

Fe,9.2) = a(y+2)ty=(1-22) < z<1x>+(

Our job is now to maximize F(z) = 1(—22% + 22 + 1), where z € [0, §]. Since

F'(z) = 32 (5 —2) > 0 on [0, %], we conclude that F(z) < F(3) = 5 for all

z e [0,3]. O

Second Solution. (See [32], pag. 31)
Using the condition x+y+2 = 1, we reduce the given inequality to homogeneous
one, i. e.,

7
0<(xy+yz+zz)(x+y+z) —2zyz < E(m—l—y—i—z)g.
The left hand side inequality is trivial because it’s equivalent to

0 <azyz+ Z z2y.
sym
The right hand side inequality simplifies to
72:1:3 + 15zyz — GZIQy > 0.
cyc sym
In the view of
7 Z 234+152y2—6 Z 2y = (2 Z z3 — Z x2y> +5 <3xyz + Z i Z a:2y> ,
cyc sym cyc sym cyc sym
it’s enough to show that
22953 > Zny and 3zyz + Zx?’ > Z:ch.
cyc sym cyc sym
We note that
23 P> 2ty => (@0 +y*) =) (@Pytay’) =) (0P +y’ —aPy—ay®) > 0.
cyc sym cyc cyc cyc
The second inequality can be rewritten as
Zw(m —y)lx—2) >0,
cyc

which is a particular case of Schur’s theorem. O
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120. (USA 1980) (a,b,c € [0,1])

a N b n c
b+c+1 c+a+1 a+b+1

+(1-a)(1-b1—c) <1.

Solution. (See [13] pag. 82)
The function

a b c
f(a,b70)_b+C+1+C—|—a—|—1+a+b+1+(1_a)(1_b)(1—6)

is convex in each of the three variables a, b, ¢, so f takes its maximum value in
one of eight vertices of the cube 0 <a <1,0<b<1,0<c¢<1. Since f(a,b,c)
takes value 1 in each of these points, the required inequality is proven. O

121. (USA 1979) (z+y+z2=1, z,y,2 > 0)

1
a:3+y3+23+6xyz21.

Solution. (Ercole Suppa) The required inequality is equivalent to

4(2® +y° +2%) + 24ayz > (v +y +2)° =
3 (2 +y® +2%) + 182yz > 3Zx2y =

sym

Zx3+32xy222x2

sym

which is true for all x,y, z > 0 by Schur inequality. O

122. (IMO 1974) (a,b,c,d > 0)

a b c d

2
a+b+d+b+c+a+b+c+d+a+c+d<

1<

Solution. (Ercole Suppa) We have

a b c d

<
atbtd btcta brctd atetrd

<a+b+c+d—2
a+b b+a c+d c+d
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and

a b c d

a+b+d+b+c+a+b+c+d+a+c+d o
b c d

a
> =
a+b+c+d+a+b+c+d+a—|—b+c—|—d+a—|—b+c—|—d

O

Remark. In the problem 5 of IMO 1974 is requested to find all possible values

of
B a b c d

B a+b—|—d+b+c+a+b+c+d+a+c+d

for arbitrary positive reals a, b, ¢, d. A detailed solution is given in [59], pag.
203.

123. (IMO 1968) (iEl,ZL'Q > 0,91, Y2, 21,22 € R,xlyl > 212,$2y2 > 2’22)
1 1 8
2 + 2 Z 2
TiYy1 — 21 ZTaY2 — 22 (z1+22) (11 +y2) — (21 + 22)

Solution. ([23]pag. 369)
Define uy = \/T1y1 + 21, U2 = /T2y + 22, V1 = /T1y1 — 21 and vy = /Tayz — 23.

By expanding both sides we can easily verify

(21 + m2) (1 + 92) — (21 + 22)% = (ur +u2) (v1 + v2) + (VZ192 — VT291)°

Thus )
(X1 +22) (1 +y2) — (21 + 22)7 > (ug +u2) (v1 + v2)

Since x;y; — 22 = w;v; for i = 1,2, it suffices to prove

8 < 1 1
(u1 + UQ) (’Ul + ’UQ) T um U2vV2

< Suiugvivg < (Ul + Ug) (’Ul + 1)2) (uwl + UQ’UQ)
which trivially follows from the AM-GM inequalities

2vuiue <ugp Fug , 24/0102 Svp v, 23/ugviugve < ugvr + U2

Equality holds if and only if z1ys = x2y1, u1 = ue and v; = vy, i.e. if and only
if 1 =9, y1 = y2 and 21 = 25. O
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124. (Nesbitt’s inequality) (a,b,c > 0)
a_ b L_C s 3
c+a a+b~ 2

b+c
|, pag. 18) After the substitution z =b+¢, y=c+a, z =

Solution. (See |

a + b, it becomes
y+z—z _ 3 Y+ z
> Ty g or X =6
cyc cyc
which follows from the AM-GM inequality as following:
%
+ z z zZ T zZ 2 T T
x T xr Yy Yy z oz T T Yy Yy z z
cyc
|, are given many other proofs of this famous inequality.

Remark. In |
125. (Polya’s inequality) (a # b,a,b > 0)
a—b

1 a+b
~(2v
3( bty )>lnalnb

Solution. (Kee-Wai Lau - Cruz Mathematicorum 1999, pag.253)
We can assume WLOG that a > b. The required inequality is equivalent to

1 b —-b
S (2vap+222) > 8
3 2 In ¢
or, dividing both members by b :
1 a $+1 21
Z(92,/2 b > b
3 ( b + 2 ) ~ Ing
After setting 2 = /¢ we must show that
1 3t -1) 0 Vo > 1
S T
By putting
3 (a:2 — 1)
—lng— -~
fl@) =z 2 4+4r+1
a direct calculation show that
(z —1)*

/
xTr) =
f@) z (22 + 4z + 1)
f(z) is increasing for all x > 1). Since
U

Thus f/(x) > 0 for all x > 1 (i.e
f(1) =0, we have f(x) > 0 for all z > 1 and the the result is proven.
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126. (Klamkin’s inequality) (-1 < z,y,z < 1)

1 1
-00-9i-2  (+00+9its "

Solution. (Ercole Suppa)
From AM-GM inequality we have

1 1 2
M—o(-pi-2 0+ +91+2 - Vi) 0=

g

127. (Carlson’s inequality) (a,b,c > 0)

{,/(a+b)(b+c)(c+a) < \/ab+bc+ca
8 - 3

First Solution. (P. E. Tsaoussoglou - Crux Mathematicorum 1995, pag. 336)
It is enough to prove that for all positive real numbers a, b, ¢ the following
inequality holds

64(ab + be + ca)® < 27(a + b)%(b+ c)*(c + a)?

or

64 - 3(ab + be + ca)(ab + be + ca)® < 81[(a+ b)(b+ ¢)(c + a))’

It is know that 3(ab + bc + ca) < (a + b+ ¢)?. Thus, it is enough to prove one
of the following equivalent inequalities

8(a+b+c)(ab+bc+ca) <9(a+b)(b+c)(c+a)
8(a+b)(b+c)(c+ a)+ 8abc < 9(a+b)(b+c)(c+a)
8abc < (a+b)(b+c)(c+a)

The last inequality is well-know and this complete the proof. O

Second Solution. (See [19] pag. 141)
It is enough to prove that for all positive real numbers a, b, ¢ the following
inequality holds

64(ab 4 be + ca)® < 27(a+ b)*(b + ¢)*(c + a)?
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Write s = a4+b+c, u = ab+bc+ca, v = abe. Since a? +b%+c? > ab+bc+ca =u
we have

s = \/a2—|—b2+02+2u2 V3u
By AM-GM inequality

s>3Vabe , u> 3 (ab)(bc)(ca) = 3Vv?
and hence su > 9v. Consequently,
(a+b)(b+c)(c+a)=(s—a)(s—b)(s—c)=5>+su—v>

1 8 8
> su — §su = —su > §u\/3 =

9
8v3
= Tf\/ (ab+ be + ca)?
and raising both sides to the second power we obtain the asserted inequality.
Equality holds if and only if a = b = c. O

Remark. The problem was proposed in Austrian-Polish Competition 1992,
problem 6.

128. (See [1], Vasile Cirtoage) (a,b,c > 0)
1 1 1 1 1 1
a+-—1)(b+-—-1)+(b+—-=1)|c+—-—=1)+|(c+—-=1)|a+-—-1)2>3
b c c a a b

Solution. (See [1], pag. 89, problem 94) Assume WLOG that x = max{z,y, z}.
Then

1
b

1 1
+c+—3> >-(2+242-3)=1
C

3

>1(++) Yot tane
2> <(x Z)==|a+ —
=3y a 3

On the other hand,

1 1 1 1
1 1 1) = — 1. 1.1
+D(y+1)(z+1) abc+abc+a+b+c+a+b+c_
1 1 1
22+a+b+c+5+3+525+$+y+2
and hence
zyz +xy+yz+zx >4
Since

(c—1)2 -0

1
y+z=—-+b+
a

two cases are possible.
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(a) Case yz < 0. We have zyz < 0, and from xy + yz + zz > 4 it follows that
Ty +yz+ zx >4 > 3.

(b) Casey,z > 0. Let d = y/ ZHEFEL We have to show that d > 1. By AM-

GM we have zyz < d3. Thus 2yz + xy +yz + zx > 4 implies d® + 3d? > 4,
(d—1)(d+2)? >0, d > 1. Equality occurs for a =b=c = 1.

O

129. ([ONI], Vasile Cirtoaje) (a,b,c,d > 0)
aberbchrcfderfa >0
b+c c¢c+d d+a a+b—

Solution. (See [1], pag. 60, n. 54)
By AM-HM inequality we have

a—b b—c¢c c¢c—d d-a

b+c+c+d+d+a+a+b o
_a+tc b+d c+a d+b_
" b4+c¢ c+d d+a a+bd

—(a+0¢) (biﬁdia) L (b+d) (Jd%ib) a4
4(a +c) 4(b+d)
“(b4+c)+(d+a) (c+d)+(a+Db)

4 =

—4=0

O

130. (Elemente der Mathematik, Problem 1207, Sefket Arslanagié)
(z,y,2>0)

T
=+

Yy, oz rtyte
y oz x  Jryz

Solution. (FErcole Suppa) The required inequality is equivalent to
w2z Fyfe 4 22y > (e +y+ 2) 3/ (zy2)?

The above inequality is obtained by adding the following

%122 + %xQZ + %myz > xW
éxy? + %ny + %yzz >y ¥/ (wy2)?
éyz2 + éyz2 + éx?z > ZW
which follows from AM-GM inequality. O
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131. (VWURZEL, Walther Janous) (z+y+2z=1, z,y,z > 0)

I+2)(14+y)(1+2)>1-2")°+ 1 -y’ +(1-2%)?

First Solution. (Ercole Suppa) By setting A = xy + yz + zx, B = zyz, since

r+y+z=1, we get

Pyt = (4 y+2)? —2ay+yz+ez)=1-24

= (22 4+ 12+ 22)° =222y + P22 + 22?) =
(1—24)% =2 [(zy + yz + 22)° — 2 (2%yz + 2y’z + 2yz?) ]
=(1-24)-2[A*-2B(z+y+2)] =
(
2

The required inequality is equivalent to
1+x+y+z+xy+yz+zx+xyz2x4+y4+z4—2(x2+y2+22)+3
2+A+DB>2A%7—4A+4B+1-2(1-2A)+3
A>24%+3B
zy +yz + 2z > 2(xy + yz + 22)? + 3zyz
(x+y+2)%(xy +yz + 22) > 2(wy + yz + 20)% + 3zyz(x +y + 2)
(x2 +y? + 22) (zy +yz + 2zx) > 3zyz(z +y + 2)

The inequality (%) follows from Muirhead theorem since

(x2 + 92 +22) (xy+yz+zx) > 3ayz(z+y+2) —

By 4+ +ay e+ a2 4y > 22%yr + 20y + 20y =

Z x3y > Z a:2yz

sym sym
Alternatively is enough to observe that for all z,y, z > 0 we get

(2% +y° +2°) (zy + yz + 22) — Bayz(z +y + 2) >
>(xy +yz+ 2x) = 3ayz(z +y+2) =
1

=5 [2%(y — 2)2 + y*(z —2)? + 2% (z — y)*] > 0
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Second Solution. (Yimin Ge - ML Forum) Homogenizing gives
(@+y+2) 2 +y+2)(@+2y+2) (@ +y+22)>> (y+2)2x+y+2))°
By using the Ravi-substitution, we obtain
(a+b+c)(a+b)(b+c)c+a)>2D (alb+c))?
which is equivalent to

Z ab > Z a’b?

sym sym

which is true. O

Remark. This inequality was proposed in Austrian-Polish Competition 2000,
problem 6.

132. (VWURZEL, Heinz-Jiirgen Seiffert) (xy > 0,2,y € R)

2 2
2xy n 4 +y >
Tr+y 2 -

x+
VEy+

Solution. (Campos - ML Forum)

We have
2zy [ 22 + 92 T+y
>/ — =
m+y+ 2 = vyt 2
22 4 y? x4y  2xy
— Ty > - N
2 W= 2 T+y
(z—y)? _ (z—y)? a? +y?
> . \/ =
2 T 2x+ty) g tvw
22
rT+y> 5 + /2y &
2 2 .2
(z+y) PN s
2 2
and this is AM-GM. O
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133. (VWURZEL, Sefket Arslanagié) (a,b,c > 0)

Solution. (FErcole Suppa) First we prove the following lemma:

LEMMA. If a1, ,apn,b1, -+ ,bp,c1, -+ ,cp are real positive numbers, the fol-
lowing inequality holds

(Beoe) < (8 () (5

ProoF. By Holder and Cauchy-Schwarz inequalities we have

2

> aibic; < (Z a?)é (Z(bici)%>§ <
< (Ze)' [(Z0) ()] -
= ()" (2n)- (<)

ol

In order to show the required inequality we put
([ a b ¢
(a1,a2,a3) = %7 %’ %
(b17627b3) = (\3/57 \B/:aa \3/2)

(c1,¢9,c3) = (1,1,1)
and we use the LEMMA:
(a+b+c) = (Z aibici)g <
SIS

3 b3 3
= <a’++c) @+y+2)(1+1+1)
Ty oz

Finally, dividing by (z + y + z) we have
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134. (VWURZEL, Sefket Arslanagi¢) (abc = 1,a,b,c > 0)

1 n 1 " 1 > 3
a2(b+c) b (c+a) A(a+b) 2
Solution. (Ercole Suppa) After setting a = %7 b= %, c= % we have zyz = 1
and the required inequality is equivalent to
T z 3
+ 24 >
y+z T+z x4y 2
which is the well-know Nesbitt inequality (see Problem 124). O

135. (VWURZEL, Peter Starek, Donauwoérth) (abc = 1,a,b,¢ > 0)

1 1 1 1
— 4+ 4+ > (a+ + +c)—1.
sttt s 23 (a+b)(c+a)(b+c)—1

Solution. (Ercole Suppa) After setting a = %, b= %, c= % we have zyz = 1

and the required inequality is equivalent to

1 z4+y y+2z z+4+=x

x3+y3+z32§~ -1 <=

Ty Yz 2T

2(x3—|—y3—|—23) 2;v2y—|—:c22—|—17y2+y22—|—x22+y22 <

Zx?’ > szy

sym sym

The above inequality follows from Muirhead theorem or can be obtained adding
the three inequalities

23 B > 2y + oy, Wt 28 >y 4y, P ad > 2%+ 2

136. (VWURZEL, Peter Starek, Donauwérth) (z+y+z = 3, 22 +y%+22% =

7,2,y,z > 0)
6 1
1+2<x+y+z>
zyz ~ 3 \z x y
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Solution. (Ercole Suppa)
From the constraints z +y + z = 3, 2 + y? + 22 = 7 follows that

9=(z+y+2)°?=T4+2@y+yz+20) — ay+yz+zz=1
The required inequality is equivalent to

3xyz + 18 > 2%y + %2 + 222
3xyz +6(x +y + x)(vy +yz + z2) > 2%y + Pz + 2P
2lzyz +5 (ny + %2+ 2290) +6 (3522 +xy? + yz2) >0

g
<~
which is true for all z,y,z > 0. O

137. (VWURZEL, Sefket Arslanagi¢) (a,b,c > 0)

L b c >3(a+b+c)
b+1 c¢+1 a+1~ a+b+c+3

Solution. (Ercole Suppa)
We can assume WLOG that a+ b+ c¢ = 1. The required inequality is equivalent

to
a b c 3

brl exlar1i— 4
From Cauchy-Scwarz inequality we have

(*)

a n b n c
b+1 c+1 a+1

1:(a+b+c)2§( )[a(b+1)+b(c+1)+c(a+1)]

Thus, by using the well-know inequality (a + b+ ¢)? > 3(ab + bc + ca), we get

a b 1
T =
b+1 c¢c+1 a+1 ab+bc+cat+a+b+ec
ab+bc+ca+1 "~
1 3
21 = =
and (%) is proven. O

138. ([ONI], Gabriel Dospinescu, Mircea Lascu, Marian Tetiva) (a,b, c >
0)
a4+ 0%+ +2abc+3> (1+a)(1+b)(1+c¢)
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Solution. (See [1], pag. 75, problem T4)
Let f(a,b,c) = a®>+b?+c® + 2abc+3 — (1 +a)(1 +b)(1 + ¢). We have to prove
that all values of f are nonnegative. If a,b,c > 3, then we have

1 1 1
4+ 4+42<1l = ab+bc+ca<abe
a b ¢

hence
fla,b,e) =a®>+ >+ +abc+2—a—b—c—ab—bc—ca>
>a?+ b2+ +2—a—-b—c>0
So, we may assume that a < 3 and let m = % Easy computations show that

(8- a)b— o)

f(avbvc)_f(aamvm): 4

and so it remains to prove that

>0

fla,m,m) >0 <= (a+1)m*—2(a+1)m+a®>—a+2>0
This is cleary true, because the discriminant of the quadratic equation is

A=—4(a+1)(a—1)2<0

139. (Gazeta Matematica) (a,b,c > 0)

Va* +a2b? + bA4/b% + 02¢2 + cA/ct + 2a? + at > av/2a2 + betby/ 202 + catc\/2¢2 + ab

Solution. (See [32], pag. 43) We obtain the chain of equalities and inequalities
2p2 2p2
S Vel v a2 1bi =Y (a4+“2) + <b4+a2) >
cyc cyc
1 22 252
275 %C: (\/ 44 aT + \/64 + a) = (Cauchy-Schwarz)
1 \/ 4, a*b? \/ a?c?
= — at+ — +/at + >
V2 %C: ( 2 2 | =
252 2,2
>vaY (a5 ) (@4 55 ) 2 (AM-GM)
cyc
abe
>V2 Z a* + 5 = (Cauchy-Schwarz)
cyc
= Z vV 2a* 4+ a?bc
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140. (C?2362, Mohammed Aassila) (a,b,c > 0)

1 1 1 3
>
a(1+b)+b(1+c) +c(1+a) ~ 1+ abc

Solution. (Cruz Mathematicorum 1999, pag. 375, n.2362) We use the well-
know inequality ¢t + 1/t > 2 for ¢t > 0. Equality occurs if and only if ¢ = 1. Note
that

l+abc  1+4a +b(1+c)_1
a(1+b) a(l+b)  1+b

1+ abc 1+ c(l+a)
b(l4+¢) b(l+¢) 1+c¢
1+ abe 1+¢ a(l+0b)
c(l+a) c¢(l+a) 1+a

Then
1+ abe 1+ abe 1+ abe

a(l+b) b(l+c) c(l+a)
by the above inequality. Equality holds when

>2+4+2+2-3=3

lta _ 1+b _ 1+c |
a(l+b) b(l+c) c(l+a)
that is, when a = b=c = 1. O

141. (C2580) (a,b,c > 0)
1 1 1 b+e c+a a+b

- >
b+c_a2+bc b2+ca  c2+ab

Solution. (Cruz Mathematicorum 2001, pag. 541, n.2580)
Let D = abc (a2 + bc) (b2 + ac) (62 + ab). Clearly D > 0 and

1 1 1 b+¢ c+a a-+b

a 5+E_a2+bc_b2+ac 02+ab:
_a4b4 + bt + tat — a*b?e? — brcRa? — *a?b? _

D

B (a2b2 . bQCz)2 + (b202 . 02a2)2 + (02a2 . a2b2)2 -
N 2D -

which shows that the given inequality is true. Equality holds if and only if
a=b=c O

2CRUX with MAYHEM
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142. (C2581) (a,b,c > 0)

a?4+bc b2 +ca

2+ ab
+
b+c c+a

a+b

>a+b+ec

Let D = (a+b)(b+c)(c+a). Clearly D > 0. We show that the difference between
the left-hand side and the right-hand side of the inequality is nonnegative

Solution. (Crur Mathematicorum 2001, pag. 541, n.2581)

a2—|—bc_a+b2+ca_ +c2+ab_cz
b+c c+a a+b
_a2+bc—ab—ac b2 + ac+ ab— be c2+ab—ac—bc_
B b+c a+c a+b
(a=b)a—c) (b—a)b—c) (c—a)(c=0)
= + + =
b+c a-+c a+b
(a2—b2) (a2—02)+(b2—a2) (b2—02)+(c2—a2) (02—b2)
D
_a4 + b+t — b2 — %a? — a?b? _
= 5 =
(= 8%)" 4+ (1 =) + (2= a®)” _
N 2D 20

Equality holds if and only if a = b = c.

143. (C2532) (a* +b* +c* =1, a,b,c > 0)
11 1 2(a® + b3 + 3
7+7+7>3+M

a? b2 2 abc

Solution. (Crur Mathematicorum 2001, pag. 221, n.2532)

We have
1 2(a® + b3 + )
- —_ —_ 3——:
+b2+ abe
a®?+b>+ ¢ a2+bz—|—c a2+b2+02 a® b A2
= 5 + —-3-2(—+—4+—=| =
a bc  ca ab

1 1 1 1 a® v 2
2 2
(5 +3) (2 5) ( bz)‘2(++)
1 1\? 1 1)\? 1 1
=a’ (- —=) +0b -]+ {==%) >0
b c c a b

Equality holds if and only if a = b = c.
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144. (C3032, Vasile Cirtoaje) (a®> +b*> +c? =1, a,b,c > 0)

1 n 1 n 1
1—ab 1—bc 1-—ca

IN

9
2

Solution. (Cruz Mathematicorum 2006, pag. 190, problem 3032)
Note first that the given inequality is equivalent to
3 —5(ab + be + ca) + Tabe(a + b+ ¢) — 9a%b*c*> > 0
3 —5(ab+ bc + ca) 4+ 6abe(a+ b+ ¢) + abe(a + b+ ¢ — 9abe) > 0 (1)

By the AM-GM inequality we have

a+b+c—9abc= (a+b+c)(a®+b*+*) — 9abe >
> 3Vabc - 3Va2b2c2 — 9abe = 0 (2)

On the other hand,

3 —5(ab + bc+ ca) + 6abe(a+b+c) =
=3 (a® + b +02)2 —5(ab+ be+ ca) (a® +b* + ¢*) + 6abe(a + b+ c) =
=3 (a* +b* +c*) +6 (a®® + b*c® + *a®) + abc(a + b+ c)

-5 [ab (a2 + b2) + bc (62 + 02) +ca (02 + a2)] =
= [22&4 +62a2b2 —4Zab (a® +b2)] +

+ [a* +b* + ¢* + abe(a + b+ ¢) — ab (a® + b*) —be (b* + %) — ca (¢ + a®)] =
=[(a=b)*'+0b-0c)'+(c—a)']+

+a*(a—b)(a—c)+b*(b—a)b—c)+c*(c—a)(c—b)>0 (3)
since

(a=b)*+b—-c)*+(c—a)*>0

and
a*(a—b)(a—c)+b*(b—a)(b—c)+c*(c—a)(c—b) >0

is the well-knom Schur’s inequality. Now (1) follows from (2) and (3). The
equality holds if and only if a = b = ¢ = v/3/3. O

145. (C2645) (a,b,c > 0)

2@+ +c%)  9(a+b+c)?

33
abe (a2 4+ b2+ %) —
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First Solution. (Darij Grinberg - ML Forum)
Equivalently transform our inequality:

2(a®+0°+¢c%)  9(a+b+c)

> 33
abc a2 +b24+c2 — —
2 (a® + b3+ ¢ b+c)?
M,G + Mf27 >0 e
abe a? 4 b2 + 2

2

a3+b3+03—3abc+9(a—|—b—|—c)2—3(a2+b2+02)

>0
abc a? 4 b% + 2 -

Now, it is well-known that
a® + 0%+ ¢ — 3abe = (a+ b+ ¢) (a® +b* + ¢ — be — ca — ab)
and
(a—|—b+c)2—3(a2—|—b2—|—62) =-2(a®*+b>+ ¢ —bc— ca— ab),
so the inequality above becomes

a+b+c) (a2+b2+02—bc—ca—ab)+9—2(a2+b2+c2—bc—ca—ab)

2(
abe a? 4 b2 + ¢2

>0

Now, according to the well-known inequality a? + b + ¢ > bc + ca + ab, we
have a? + b% + ¢ — bc — ca — ab > 0, so that we can divide this inequality by
a? 4+ b? + c? — bc — ca — ab to obtain
a+b+c -2
2 9 >0
abe + a2 +02+c2 ~
a+b+c 2.9
2 — >0
abe a2+ +c2
a+b+c 9
abc T a?+ b2+ 2

< (a+b+c)(a®+b*+c*) > 9abe

But this is evident, since AM-GM yields a + b+ ¢ > 3v/abc and a? + b% + ¢ >
3Va2b%c?, so that (a+ b+ c) (a® + b + ¢?) > 3Vabc - 3V a2b?c? = 9abe.

Proof complete. O

Second Solution. (Cruz Mathematicorum 2002, pag. 279, n.2645)
On multiplying by the common denominator and performing the necessary cal-
culations, we have that the given inequality is equivalent to

2(a®+b°+ %) (a®+b* +c?) 4+ 9abe(a+ b+ ¢)* — 33abe (a® + b + ¢*) > 0
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The left side of this is the product of
a® 4+ b* 4 c* —ab—be — ca (1)
and
2(@®+ b+ +a®b+ a’c+ bPa+ b2c+ a+ b — Jabe) (2)
The product of (1) and (2) is nonnegative because

7b2 bh— 2 _ 2
a2+b2+02—abfbc—ca:(a )"+ 20) +(c—a) >0

and (by AM-GM)
2 (a3 +02+ 3 +a?b+ a’c+ bPa+bPe+ PFa+ b — 9abc) >
>2 (9\/9 a%bh9¢9 — 9abc) =0
Equality holds if and only if a = b = c. O
Remark. In order to prove that (2) is positive we can use also the S.0.S
method (=sum of squares):
2 (a3 + 0%+ 3+ ad’b+ a®c+ b?a + b2c + Ca + b — 9abc) =
=(a—b)*(@+b+3c)+(b—c)*(b+c+3a)+ (c—a)*(c+a+3b) >0

O
146. (z,y € R)
1 _G@ry-zy _1
27 (1+22)(1+9y?) — 2
First Solution. (Ercole Suppa) The required inequality is equivalent to
— (1—|—ac2) (1—|—y2) <2z+y)(1—ay) < (1—1—332) (1—|—y2) —
—(r+y)? = (1 —a2y)? <20z +y) (1 —ay) < (¢ +y)* + (1 - 2y)?
which is true by the well-know inequalitie a® + b% & 2ab > 0. O

Second Solution. (See [25], pag. 185, n.79)

Let
. 2r 1 -—a? i 1—y2 2y
a = —_— — .
142271+ 22 ’ 1+9y2" 14942

Then it is easy to verify that |@| = |b| = 1. The Cauchy-Schwarz |a@-b| < |d| - |b|
inequality implies that

. 1—9y?) +y(1—2? 1-
I P Ut 0 ) Ul B PO R ) () N P
(14 22) (1 4 y2) (1+22) (14 y?)
Dividing by 2, we get the result. O
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147. (0 <z,y<1)
24yt >1

Solution. (See [25], pag. 198, n. 66) First we prove the following lemma:

LEMMA. If u, x are real numbers such that u > 0, 0 < x < 1, we have
14+u)®* <l4uz

PrOOF. Let f(u) =1+ zu— (14 u)*. We have f(0) =0 and f is increasing in
the interval |0, 1[ because

1
_ r—1 _
Thus f(u) > 0 for all € R and the lemma is proved. O

Now, the given inequality can be proved in the following way:

Let z = H%u, Y= ﬁ, u > 0, v > 0. Then, by the LEMMA, we have
y 1 1 14w
xr7 = > =
I+wy ™ 14wy l4utw
. 1 - 1 1+u
Y (1+v)r " 1+vr 14+utwv
Thus
Vs 1+v L 1+u 14 1 o1
x = —_—
Y l1+u+v 14+u+wv 1+u+o
and the inequality is proven. O
148. (z,y,z > 0)
o+ |x—y|+|y;z\+|z—x| > x+g+z

Solution. (Ercole Suppa)
We can assume WLOG that ¢ < y < z. Let a, b, ¢ be three real numbers such
that c=a,y=a+b,z=a+b+ccona >0,b,c>0. The required inequality
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is equivalent to:

b+c+b+c> 3a+2b+c
3 - 3

Vala+b)(a+b+c)+

33/ala+b)(a+b+ec)>3a—c +—
54a2b + bda’c + 27ab® + 27abc — 9a? + 2 >0 <—

54a”b + 27ab* + 27abc + (54ac + ¢® — 9ac®) > 0
The above inequality is satisfied for all a > 0, b, ¢ > 0 since AM-GM inequality

yields
54ac + & > 2v/54a2¢* = 6v/6ac® > 9ac?

149. (a,b,c,x,y,z > 0)

Va+x)(b+y)(c+2) > Vabe + Jxyz

Solution. (Massimo Gobbino - Winter Campus 2006) By generalized Holder

inequality we have
1
e (X) () (34)
=1 =1 =1 i=1

which is true for all p,q,r € R such that % + % + % = 1. After setting a; =

=
Q=

1 1 1 1 1 1
a3,by =b3,c1 =c3 e as =x3,by =yY3,co = 23 we get:

Vabe + WZZ‘”Z’” =
(X)) (20) (Ze) =

= la+z)(b+y)(c+2)
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150. (z,y,2>0)

z
v <1

)
PR/ ey Yo BTN cyarms oy ARSI o e B

Solution. (Walther Janous, see [1], pag. 49, problem 37)
We have

(x+y)(x+2)=ay+ (m2 +yz) + zz > zy + 22/yz + 2z = (VIy + \/xz)2

Hence

DDy e e D Dy v

_ VT _
L g

and the inequality is proved.

151. (z+y+2=1, z,y,2 >0)

T Y z 3
NI :
Vi—-z VJV1i—-y J1—z V2

First Solution. (Ercole Suppa)

The function f(t) = \/% is convex on ]0, 1[ because
4—1
") = ——— >0
) A(1—t)3 ~

Then by Jensen inequality

F)+ 1)+ 1) 237 (T ) —ap (3) e

x Y z 3
NN
Vi—-z JVi—-y V1-2z 2
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Second Solution. (Ercole Suppa) After setting a = v1—x, b = /1—1y,
c=+/1— 2z wehave 0 < a,b,c < 1, a® +b* + c? = 2 and the required inequality
is equivalent to:

—= <~
a b c — V2
1+1+1>\/§+ bt (%)
a b V2 “ ¢
From Cauchy-Schwarz inequality we have
b 2
2:a2+b2+c22w = a+b+c§2\/§ (1)

From AM-HM inequality we have

1+1+1>9>9\ﬁ_3\/§ @
a b ¢ T a+btc—2V3 2

By adding (1) and (2) we get (x) and the result is proven. O

Third Solution. (Campos - ML Forum) Assume WLOG that > y > z.

Then a
1 1 1

Vi e

and, from Chebyshev and Cauchy-Schwarz inequalities, we have

Remark.
The inequality can be generalized in the following way (India MO 1995):

139



If x1,x2, ..., T, are n real positive numbers such that r1 +xo+x3+ ...+, =1
the following inequality holds

X X2 In n

+ —+ ...+ >
Vi—xz1  J1—1x2 Vi—-z, \n-1

152. (a,b,c € R)

Va2 + (1 =024 b2+ (1 —c)2+ /2 + lfa)2>£

Solution. (Ercole Suppa) After setting a + b + ¢ = t, from the Minkowski
inequality we have:

Va2 + (1 =024+ B+ 1-c)2+/2+(1-a)?>
Z\/a+b+c) +B-—a—-b—c)?=

3
= t2+(3—t)3>7\[
The last step is true since
3 9
2+ (3 - )3>i = 152+(3—t)2z5 = (2t—-3)2>0

153. (a,b,c > 0)

\/aQ—ab+b2+\/b2—bc+c2 > \/a2+ac+02

First Solution. (Ercole Suppa)
We have:

\/aQ—ab+b2+\/b2—bc+c22\/a2+ac+62 —
a? —ab+ 0>+ 0% —be+ 42/ (a2 —ab+b2) (b2 —be+ %) > a® fac+ =
2v/(a2 — ab + b2)(b2 — be + ¢2) > ab+ be + ac — 20> =
4(a® — ab+ 1) (V? — be + ) > (ab+ be + ac — 26°)° =
3(ab — ac + be)?

and we are done. O
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Second Solution. (Albanian Eagle - ML Forum)
This inequality has a nice geometric interpretation:
let O, A, B, C be four points such that ZAOB = ZBOC = 60° and OA = a,
OB = b, OC = ¢ then our inequality is just the triangle inequality for AABC.

Remark. The idea of second solution can be used to show the following in-
equality (given in a Singapore T'ST competition):
Let a, b, ¢ be real positive numbers. Show that

Va2 —ab+ b2+ a/b2 —be + 2 > byva? +ac+ c2

PROOF. By using the same notations of second solution, the required inequality
is exactly the Tolomeo inequality applied to the quadrilateral OABC. O

Third Solution. (Lovasz - ML Forum)

We have

2 V3 2 2 V3 2

2 _ 2 2 _ 2 a_ a _¢ ¢
Va2 — ab+ b2+/b2 — be + ¢ (2 b)+<2>+ (b 2>+<2>
In Cartesian Coordinate, let the two vectors (% — b, %) and (b -5, C\f)
Then
a+b= (a_c,(a+0)‘/§>.
2 2

Now use ||a|| + ||b]| > |la + b||, we get:

4 4

=+va?+ ac+ c?

“ o2 3 2
\/a2—ab+b2+\/b2—bc+c2>\/(a ) + (a+c) =

154. (zy+yz+z2x=1, z,y,2 > 0)

T LY L E 2z(1 —2?)  2y(1—y?)  2z2(1-2?%)
T+22 1492 14227 (1+22)2 (1+y2)? (1+22)2
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Solution. (See [25], pag.185, n.89)

After setting x = tan /2, y = tan 3/2, z = tan /2, by constraint xy+yz+zz =
1 follows that

tanz_l—xyzl—tan%tang_ 1 _
2 T+y tan%tang tan 22

a+p T a+p
= cot =tan| — —
2 2 2

Thus a+ B+ = 7, so we can assume that a, 5, v are the angles of a triangle.
The required inequality is equivalent to

sen « + sen b + sen
cosasen o + cos fsen B+ cosyseny < b J

2
sen 2« + sen 2 + sen 2y < sen a + sen 8 + sen 7y

(1)
By sine law, using the common notations, we have

a+b+c 2s sr S
= — e — = — = — 2
sena +sen/f +seny 2R 2R Rr rR @)
If x, y, z are the distances of circumcenter O fromi BC, C A, AB we have

sen2a + sen2f + sen 2y = 2 (sen «wcos v + sen S cos B + seny cosy) =

__acosa+bcos B+ ccosy

R

+b-%+c- 5 28

7 = (3)
From (2), (3) and Euler inequality R > 2r we get

a -

\
==

sena +senf+seny R

=—>1
sen2a +sen 2 +sen2y  2r

and (1) is proven.

155. (z,y,z > 0)

wyz > (y+z-2)(z+e—y)(z+y-2)

Solution. (See [32], pag. 2)

The inequality follows from Schur’s inequality because

wyz—(y+z-z)(z+z—y)lr+y—2) =

=z(r —y)(z—2)+yly—2)(y—2)+z2(z —x)(z —y) >0

The equality hols if and only if x = y = z or x = y and 2z
permutations.

0 and cyclic
O
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156. (a,b,c>0)

Vab(a +b) + /be(b + ¢) + v/calc + a) > \/4abe + (a + b)(b+ ¢)(c + a)

Solution. (Ercole Suppa) Squaring both members with easy computations we
get that the required inequality is equivalent to:

av/be(a + b)(a+ ¢) + by/ac(b + a) (b + ¢) + c\/ab(c + a)(c + b) > 3abe

which is true by AM-GM inequality:

av/be(a + b)(a + ¢) + by/ac(b + a)(b + ¢) + c\/ab(c + a)(c + b) >
>3/ (abc)2(a+b)(b + ¢)(c + a) >

>3+/8(abc)® = 6abe > 3abe

157. (Darij Grinberg) (z,y,z > 0)

(\/x(y+z)+\/y(z+:ﬂ)+\/z(x+y)>'\/x+y+zz2\/(y+z)(z+x)(:r+y)

First Solution. (Darij Grinberg - ML Forum)
Consider the triangle with sides a = y+z, b = z+x, ¢ = x+y and semiperimeter
§ = @EEe — 3 4 y + 2. Then, our inequality becomes

<\/(s—a)a+\/(s—b)b—l-\/(s—c)c) /s > 2Vabe

R

If we call A, B, C the angles of our triangle, then this simplifies to

or

A+ B+ C’>2
cos o +cos o +cos o >

(o A\ . (oo B\ (.. C
sin | 90 -3 +sin | 90 Y +sin | 90 -3 > 2

But 90° — g, 90° — g and 90° — % are the angles of an acute triangle (as one
can easily see); hence, we must show that if A, B, C are the angles of an acute
triangle, then

sinA+sinB+sinC > 2
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(Actually, for any non-degenerate triangle, sinA+ sinB+ sinC > 2, but I don’t
want to exclude degenerate cases.) Here is an elegant proof of this inequality

by Arthur Engel: Since triangle ABC is acute, we have A — B < C, and
c

cos A*TB > cos 5, so that

A+ B A—-B
sin A + sin B = 2sin er cos 5 =

2 A_B>
— 4 COS — COS
2 2 -

c
Z2cos25 =1+cosC

and
sinA+sinB+sinC >1+cosC +sinC > 2

Hereby, we have used the very simple inequality cos C' +sin C' > 1 for any acute
angle C.

(I admit that I did not find the proof while trying to solve the problem, but I
rather constructed the problem while searching for a reasonable application of
the sin A + sin B + sin C' > 2 inequality, but this doesn’t matter afterwards...)

t

Second Solution. (Harazi - ML Forum)

Take x 4+ y + z = 1. Square the inequality

S Val—a) =2 /I -1 -y -2
and reduce it to
D wy—2ayz <> ayly+2)(z + )
But
ny —2zyz < ny
and
D Vayle+2)y+2) = ay+ Y 2y

O

Third Solution. (Zhaobin, Darij Grinberg - ML Forum)
We have

rytz)(etytz)  xy+z)@+y+2)
(y+2)(z+z)(r+y) ~ (y+2)(z+2)(r+y)

144



then we get:

y+2)(c+y+z) ty+z)(+y+z)
Z\/y+z ) (z+2) (z +y)ZZ(y+z)(z+m)(x+y)_

(y+2)(z+z) (@ +y) +zyz
(y+2)(z+2)(z+y)

=2 > 2

158. (Darij Grinberg) (z,y,z > 0)

\/y+2+\/Z+x+\/~”€+yZ 4z +y+z) .
x Y z Vi +2)(z+2)(x+y)

Solution. (See [54], pag. 18)

By Cauchy, we have \/(a +b)(a + ¢) > a + v/be. Now,

Z\/b—f—c2 4(a+b+c)
a V(a+b)(b+c)(c+a)

szcx/(a+b)(a+c)24(a+b+c)

Substituting our result from Cauchy, it would suffice to show

Z(b+c)§22(a+b+0)

B

Assume WLOG a > b > ¢, implying b+c¢ < c+a < a+b and @ < Yea <

Hence, by Chebyshev and AM-GM,

c

E

Vab

C

+ e 4

(2(a+b+0))( )ZQ(a+b+0)

Z(b+c)@ >

as desidered. O

159. (Darij Grinberg) (a,b,c > 0)

[\

a?(b+c) N b? (c+ a) N c(a+b) U2
B2 +c2)2a+b+c) (F+a?)(2b+c+a) (a?2+b2)(2c+a+b) 3
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Solution. (Zhaobin - ML Forum)
Just notice

(b4 ¢)(a® 4 be) = ba® + ca® 4 b?c 4 bc® = b(a® + ) + c(a® + b?)

then let x :a(62+02), y= #j—c?’ z =
lent to the well-know Nesbitt inequality.

27457+ The given inequality is equiva-

T Y z
+ +
y+z xT+z xT+Yy

3
> 2
-2

160. (Darij Grinberg) (a,b,c > 0)
a? b2 c?

+ +
202+ (b+¢)® 202+ (c+a)® 22+ (a+b)

2
3

Solution. (Darij Grinberg - ML Forum) The inequality in question,
3 a2
2a2+ (b+¢)® 3

rewrites as

f—ZQGQ >0

(b+¢)?
But
2

2 a
3 Z2a2+(b+0)2_
2

2 a a
_§'Za+b+c_22a2+(b+c)2 -

2 a a?
:Z<3'a+b+c_za2 (b+c)2>:
_ alb+c—a)’+alb+c)(b+c—a)

2 3(a+b+c)(2a2 (b+c))
a(b+c—a)’ alb+c)(b+c—a)

:23(a—|—b—|—c) <2a2—|—(b—|—c)2) i 3(a+b+c) (2a2+(b+0)2>

Now, it is obvious that

a(b+c—a)’

3(a+b+c) (2a2+(b+0)2> =0
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What remains to be proven is the inequality

alb+c)(b+c—a)
3(a+b+c) (2a2+(b+c)2)

>0

which simplifies to

alb+c)(b+c—a)
Z 22 + (b+ c)? =0

Now,

alb+c)(b+c—a) ab(b+c—a)+ca(b+c—a)
Z 2%+ (b+c)? Z 202 + (b + ¢)*

ab(b+c—a) ca(b+c—a)
_Z 2 4 +Z 2 2~
2a2 + (b + c)” 2a? + (b + ¢)

bc(c+a—b) be(a+b—c)
Z 2 4 +Z 2 P
202 + (¢ + a)’ 2¢2 + (a+b)
ct+a—> a+b—c
_Z - 7t 5| =
202+ (c+a)” 22+ (a+b)
a((a+b+c) +a2—|—2bc>—I—(lH—c)(b—c)2
(2b2 + (c+ a)Q) (202 + (a+ b)Q)

:Zbc >0

161. (Vasile Cirtoaje) (a,b,c € R)

(a® 4+ b* 4 ¢*)? > 3(a®b + b3c + ca)

Solution. (Darij Grinberg - ML Forum)
Vasile Cartoaje established his inequality

(@®+ 5%+ )7 > 3(a®b+ bPc+ Pa)
using the identity
4 ((a® + 6% + &) = (be+ ca+ ab)) ((a2 +0° 42 =3 (db+ be+ c3a)) -
= ((a® + 8+ ) =5 (a®b+ bPc+ a) + 4 (Pa+ b+ a%c)) +
+3((a®+ 8+ *) — (a®b + b2c+ Pa) — 2 (ba + b+ a’c) + 6abe)”
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Actually, this may look a miracle, but there is a very natural way to find this
identity. In fact, we consider the function

g(a,b,c) = (a® +b*+ 02)2 —3(a®b+b’c+ Pa)

over all triples (a,b,c) € R3. We want to show that this function satisfies
g (a,b,c) > 0 for any three reals a, b, c. Well, fix a triple (a, b, ¢) and translate it
by some real number d; in other words, consider the triple (a+d, b+d, c+d). For
which d € R will the value g (a + d,b+ d, ¢+ d) be minimal? Well, minimizing
g(a+d,b+d,c+ d)isequivalent to minimizing g (a + d, b+ d,c + d)—g (a, b, ¢)
(since (a, b, ) is fixed), but

g(a+d,b+d,c+d)fg(a,b,c) =
=d® ((a® + b* + ¢®) — (bc + ca + ab)) +
+d((a®+0*+c*) =5 (a®b+ bPc+ ?a) + 4 (b*a+ c*b+ a’c))

so that we have to minimize a quadratic function, what is canonical, and it
comes out that the minimum is achieved for

(a3 + 0% 4 cg) -5 (a2b +b2c+ cQa) +4 (bza + b+ azc)
2 ((a? 4+ b2 4 ¢2) — (bc + ca + ab))

d=—

So this is the value of d such that g (a + d,b+ d, ¢+ d) is minimal. Hence, for
this value of d, we have g (a,b,¢) > g(a+ d, b+ d,c+ d). Thus, in order to prove
that g (a,b, ¢) > 0, it will be enough to show that g (a + d, b+ d,c+ d) > 0. But,
armed with the formula

(a3 +0% 4 03) -5 (a2b +b2c+ cQa) +4 (bza + b+ azc)
2 ((a®? 4+ b2 4 %) — (bc + ca + ab))

and with a computer algebra system or a sufficient patience, we find that

gla+d,b+d,c+d)=
3 ((a3 + 5%+ 03) — (a2b+ b%c+ CZa) -2 (b2a + b+ a2c) + 6abc)2
B 4((a? 4+ b% + ¢2) — (bc + ca + ab))

what is incontestably > 0. So we have proven the inequality. Now, writing
g(a,bc)=gla+db+d,c+d)—(9(a+d,b+d,c+d)—g(a,b,c))

and performing the necessary calculations, we arrive at Vasc’s mystic identity.
O
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A Classical Inequalities

Theorem 1. (AM-GM inequality)
Let ay,--- ,ay be positive real numbers. Then, we have

a1_|_...+an

n

Theorem 2. (Weighted AM-GM inequality)
Let \1,- -+, A\, real positive numbers with A\ +---+ X, = 1. Forallxy,--- ,x, >
0, we have

M Ti4 4 Ay Ty > 2N

Theorem 3. (GM-HM inequality)

Let ay,--- ,a, be positive real numbers. Then, we have
S n
Vai:-an 2 = 1 1
ar tag Tt
Theorem 4. (QM-AM inequality)
Let ay,--- ,ay be positive real numbers. Then, we have

\/a%.’-a%.’-.’_a% > a1+...+an
n n

Theorem 5. (Power Mean inequality)
Let x1,--+ ,xy, > 0. The power mean of order p is defined by

M0($17m2a-"7xn): n\/xl"'$n7

1
)y

Mp(xlax27"'7xn):< n

Then the function M, (z1,22,...,2,) : R — R is continuous and monotone
mcreasing.

Theorem 6. (Rearrangement inequality)
Let xy > -+ > xp and y1 > --+ > y, be real numbers. For any permutation o
of {1,...,n}, we have

n n n
Zﬁcz‘yz‘ 2 in%(i) 2 inyn-i-l—i-
i=1 i=1 i=1
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Theorem 7. (The Cauchy?-Schwarz*-Bunyakovsky® inequality)
Let ay, -+ ,an,b1,--- , by be real numbers. Then,

2

(@2 4+ an2)(bi® 44 5,%) > (aaby + - + anby)2.

Remark. This inequality apparently was firstly mentioned in a work of A.L.
Cauchy in 1821. The integral form was obtained in 1859 by V.Y. Bunyakovsky.
The corresponding version for inner-product spaces obtained by H.A. Schwartz
in 1885 is mainly known as Schwarz’s inequality. In light of the clear historical
precedence of Bunyakovsky’s work over that of Schwartz, the common practice
of referring to this inequality as CS-inequality may seem unfair. Nevertheless
in a lot of modern books the inequality is named CSB-inequality so that both
Bunyakovsky and Schwartz appear in the name of this fundamental inequality.

By setting a; = 7= and b; = /y; the CSB inequality takes the following form

Vi

Theorem 8. (Cauchy’s inequality in Engel’s form)

Let ©1,-++ ,Tn, Y1, ,Yn be positive real numbers. Then,
2?3 @2 (@it ast ot

e s g
A Y2 Yn Yy1+y2+--+Yn

Theorem 9. (Chebyshev’s inequality®)
Letxy > --- >, and y1 > -+ > y, be real numbers. We have

n - n n

TIYL A+ F Tl (x14-~-4—xn) (y1+-~--%yn>

Theorem 10. (Holder’s inequality”)
Let xy, -+ ,xpn, Y1, " ,Yn be positive real numbers. Suppose that p > 1 and
q > 1 satisfy % + % = 1. Then, we have

B =

n n D n %
> ay < (Z :Ezp> <Z yiq>
i=1 i=1 =1

3Louis Augustin Cauchy (1789-1857), french mathematician
4Hermann Amandus Schwarz (1843-1921), german mathematician
5Viktor Yakovlevich Bunyakovsky (1804-1889), russian mathematician
SPafnuty Lvovich Chebyshev (1821-1894), russian mathematician.
7Otto Ludwig Holder (1859-1937), german mathematician
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Theorem 11. (Minkowski’s inequality®)
[fxl7"' y Ty Y1,y Yn >0 GNdp > 1; then

<Z$z‘p> : + <Zy¢p> ' = (Z (i +y¢)p>

i=1

=

Definition 1. (Convex functions.)
We say that a function f(x) is convex on a segment [a,b] if for all 1,29 € [a,b)

f (Il J2r$2) < f(xl);rf(@)

Theorem 12. (Jensen’s inequality®)
Letn > 2 and A1, ..., Ay be nonnegative real numbers such that \1+-- -+, = 1.
If f(x) is convex on [a,b] then

FOaz+ -+ Apzn) <M f (1) + -+ A

for all z1,...,x, € [a,b].

Definition 2. (Majorization relation for finite sequences)

Let a = (ay,as9,...,a,) and b = (by,ba, ..., b,) be two (finite) sequences of real
numbers such that ay > ag > -+ > a, and by > by > --- > b,. We say that the
sequence a majorizes the sequence b and we write

axb or b<a

if the following two conditions are satisfyied
(i) ag+as+--+ap>by+ba+--+bg, forallk, 1 <k<n-1;

(i) a1 +ag+ -+ ap=>by +by+ -+ by,.

Theorem 13. (Majorization inequality | Karamata’s inequality'?)
Let f : [a,b] — R be a convex function. Suppose that (x1,--- ,x,) majorizes
(y17 e 7yn)7 where T, 3 Tny Y1, 3 Yn € [a7b]' Then; we obtain

flxy) +- 4 flon) = flyr) + -+ fyn)-

8Hermann Minkowski (1864-1909), german mathematician.
9Johan Ludwig William Valdemar Jensen (1859-1925), danish mathematician.
10Jovan Karamata (1902-2967), serbian mathematician.
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Theorem 14. (Muirhead’s inequality'! | Bunching Principle )
If a = (a1,a9,...,a,) and b = (b1,ba,...,b,) are two nonincreasing sequences
of nonnegative real numbers such that a majorizes b, then we have

E x?l...xzn > E xlil___xgn

sym sym

where the sums are taken over all n! permutations of variables x1, s, ..., T,.

Theorem 15. (Schur’s inequality!? )
Let x,y, z be nonnegative real numbers. For any r > 0, we have

Zwr(x —y)(x—z) >0.

cyc

Remark. The case r = 1 of Schur’s inequality is

Z (a:g — 2%y + sr:yz) >0

sym

By espanding both the sides and rearranging terms, each of following inequalities
is equivalent to the r = 1 case of Schur’s inequality

o 23+ 3+ 22 +3uyz > ay(r +y) +yz(y +2) + za(2 +2)
e zyr > (x+y—2)(y+z—z)(z+z—y)
o (z+y+2)°+92yz > 4(z +y+ 2)(ry + yz + 27)

Theorem 16. (Bernoulli’s inequality'?)
For allr > 1 and x > —1, we have

1+4+z)">1+rz.

Definition 3. (Symmetric Means)

For given arbitrary real numbers x1,--- ,,, the coefficient of t"~* in the poly-
nomial (t + x1) -+« (t + ) is called the i-th elementary symmetric function o;.
This means that

(t+xy)--(t+x,) =0pt" +o1t"  +- d o, gt + 0.

HRobert Muirhead (1860-1941), english matematician.

12Tssai Schur (1875-1941), was Jewish a mathematician who worked in Germany for most
of his life. He considered himself German rather than Jewish, even though he had been born
in the Russian Empire in what is now Belarus, and brought up partly in Latvia.

13 Jacob Bernouilli (1654-1705), swiss mathematician founded this inequality in 1689. How-
ever the same result was exploited in 1670 by the english mathematician Isaac Barrow.
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Forie {0,1,--- ,n}, the i-th elementary symmetric mean S; is defined by

Theorem 17. (Newton’s inequality'*)
Let x1,...,2n, > 0. Fori € {l,--- ,n}, we have

S2 > 8 1-Sit1

Theorem 18. (Maclaurin’s inequality'®)
Let x1,...,2, > 0. Fori e {l,--- ,n}, we have

S1> /Sy > /S>> /S,

148ir Isaac Newton (1643-1727), was the greatest English mathematician of his generation.
He laid the foundation for differential and integral calculus. His work on optics and gravitation
make him one of the greatest scientists the world has known.

15Colin Maclaurin (1698-1746), Scottish mathematican.
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