
ELEC 372 Winter 2004

Lecture U Week 2: Linearization and Block Diagrams

Lecturer: Peyman Gohari

2.1 Linearization of nonlinear systems

Consider a nonlinear equation in two variables x and y:

f(x, y) = 0 (2.1)

Let (x0, y0) be a pair of real numbers. Then f(x, y) can be expanded into a Taylor series
around (x0, y0) according to:

f(x, y) =

f(x0, y0)+
∂f

∂x
|(x0,y0)(x−x0)+

∂f

∂y
|(x0,y0)(y−y0)+

1

2!

∂2f

∂x2
|(x0,y0)(x−x0)

2+
1

2!

∂2f

∂y2
|(x0,y0)(y−y0)

2+· · ·

If (x0, y0) is a solution of (2.1), i.e. f(x0, y0) = 0, and assuming that variables x and y take
values within a small neighborhood of x0 and y0, respectively, then (2.1) can be simplified
to the following linear approximation:

∂f

∂x
|(x0,y0)(x− x0) +

∂f

∂y
|(x0,y0)(y − y0) ≈ 0 (2.2)

In future examples we use ≈ and = interchangeably.

Example 1 Consider the equation
y − x2 = 0 (2.3)

Note that (x0, y0) = (1, 1) is a solution to (2.3). The linear approximation will be:

∂(y − x2)

∂x
|(1,1)(x− 1) +

∂(y − x2)

∂y
|(1,1)(y − 1) ≈ 0

⇔ (−2x)|(1,1)(x− 1) + 1|(1,1)(y − 1) ≈ 0

⇔ −2(x− 1) + (y − 1) ≈ 0

⇔ y ≈ 2x− 1

2-1
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1

y = x2 y = 2x− 1

1

Figure 2.1: In the small neighborhood demarcated by the dashed-circle, y = x2 behaves like
y ≈ 2x− 1.

The meaning of all this is that as shown in Figure 2.1, the curve y = x2 can be approximated
by the straight line y ≈ 2x− 1 in a small neighborhood around (1, 1).

2

To emphasize the fact that x and y take values in a small neighborhood around x0 and y0,
we write:

x =: x0 + δx and y =: y0 + δy.

Then (2.2) becomes
∂f

∂x
|(x0,y0)δx+

∂f

∂y
|(x0,y0)δy ≈ 0

Example 2 Back to Example 1, the linear approximation of y = x2 around (1, 1) is δy =
2δx. This the same straight line (i.e. y = 2x − 1) rewritten around a new coordinate with
origin located at (1, 1). See Figure 2.2. 2

We generalize the above result in three different directions.

1. The result is equally valid for nonlinear functions of more than two variables. For ex-
ample, let f(x, y, z) = 0 be a nonlinear equation with a given solution (x0, y0, z0). Then
in a small neighborhood around (x0, y0, z0) the nonlinear equation can be approximated
by

∂f

∂x
|(x0,y0,z0)δx+

∂f

∂y
|(x0,y0,z0)δy +

∂f

∂z
|(x0,y0,z0)δz ≈ 0

where δx := x − x0, δy := y − y0, and δz := z − z0. In case of three variables, one
linearizes a 3-dimensional surface with a plane.
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δyy = x2 δy = 2δx

1

1

δx

Figure 2.2: The straight line δy = 2δx is the linear approximation of y = x2.

2. The variables x, y, z, . . . can be functions of time, or signals. Likewise, the solution of
the equation x0, y0, z0, . . . can be signals as well. They together are called the operating

point of the system.

Example 3 Linearize the nonlinear equation

(t+ 1)y(t)− tx2(t) = 0

around the operating point x0(t) = t+ 1 and y0(t) = t(t+ 1).

Solution. We have:

∂f

∂x
|(x=x0,y=y0)(x− x0) +

∂f

∂y
|(x=x0,y=y0)(y − y0) ≈ 0

⇔ (−2tx)|(x=t+1,y=t(t+1))(x− x0) + (t+ 1)|(x=t+1,y=t(t+1))(y − y0) ≈ 0

⇔ −2t(t+ 1)δx(t) + (t+ 1)δy(t) ≈ 0

⇔ −2tδx(t) + δy(t) ≈ 0

Note that the last equation is linear, but time-variant. 2

3. The approach can be applied to linearize nonlinear differential equations as well. For
example, let

f(x, ẋ, y, ẏ, ÿ) = 0 (2.4)

be a second-order nonlinear differential equation. If op =
(

x0(t), ẋ0(t), y0(t), ẏ0(t), ÿ0(t)
)

is a solution of (2.4) (in other words, op is an operating point), then one can linearize
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the equation by expanding f around the operating point into a Taylor series as a
function of variables x, ẋ, y, ẏ, ÿ:

∂f

∂x
|opδx+

∂f

∂ẋ
|op ˙δx+

∂f

∂y
|opδy +

∂f

∂ẏ
|opδ̇y +

∂f

∂ÿ
|opδ̈y ≈ 0

Example 4 Linearize the nonlinear differential equation

2tx(t)− ẋ(t)y2(t) + x(t)ẏ3(t) = t(t+ 1)

around the operating point x0(t) = y0(t) = t.

Solution. First note that
(

x0(t), ẋ0(t), y0(t), ẏ0(t)) = (t, 1, t, 1) is a solution of the
above equation. Let

f(x, ẋ, y, ẏ) = 2tx− ẋy2 + xẏ3 − t(t+ 1)

The linear approximation of f(x, ẋ, y, ẏ) = 0 around the operating point will be

∂f

∂x
|(x0,ẋ0,y0,ẏ0)=(t,1,t,1)δx+

∂f

∂ẋ
|(t,1,t,1) ˙δx+

∂f

∂y
|(t,1,t,1)δy +

∂f

∂ẏ
|(t,1,t,1)δ̇y ≈ 0

⇔ (2t+ ẏ3)|(x0,ẋ0,y0,ẏ0)=(t,1,t,1)δx− y2|(t,1,t,1) ˙δx− 2ẋy|(t,1,t,1)δy + 3xẏ2|(t,1,t,1)δ̇y ≈ 0

⇔ −2tδy + 3tδ̇y ≈ −(2t+ 1)δx+ t2 ˙δx

2

An operating point is called an equilibrium point if the derivatives of all system variables
are equal to zero. Informally speaking, at equilibrium all system variables have reached
constant values.

Example 5 Find an equilibrium point for the system described by the nonlinear dif-
ferential equation

θ̈ + θ̇ + cos θ =

√
2

2
(2.5)

and linearize the system around it.

Solution. At equilibrium we must have θ̈0 = θ̇0 = 0, implying that cos θ0 =
√

2
2
. So

for instance θ0 = π
4
is an equilibrium point and a solution of (2.5). Denote eq :=

(θ0, θ̇0, θ̈0) = (π
4
, 0, 0) and let

f(θ̈, θ̇, θ) = θ̈ + θ̇ + cos θ −
√
2

2

The linear approximation of f(θ̈, θ̇, θ) = 0 around the equilibrium point will be
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1|eq δ̈θ + 1|eq δ̇θ − sin θ|eqδθ = 0

After substituting for θ, θ̇, and θ̈ at equilibrium, we obtain:

δ̈θ + δ̇θ −
√
2

2
δθ = 0

2

Example 6 Consider a system described by the nonlinear differential equation

yÿ + x2ẏ +
√
y = x (2.6)

Assume that input is constant x := x0. Find an equilibrium point and linearize the system
around it.

Solution. Since at equilibrium point (x0, y0) all derivatives are zero we must have
√
y0 = x0,

implying that y0 = x2
0. Let:

f(ÿ, ẏ, y, x) = yÿ + x2ẏ +
√
y − x

The linear approximation of f(ÿ, ẏ, y, x) = 0 around the equilibrium point will be

∂f

∂ÿ
|(x0,x

2

0
)δ̈y +

∂f

∂ẏ
|(x0,x

2

0
)δ̇y +

∂f

∂y
|(x0,x

2

0
)δy +

∂f

∂x
|(x0,x

2

0
)δx ≈ 0

⇔ (y)|(x0,x
2

0
)δ̈y + (x2)|(x0,x

2

0
)δ̇y + (ÿ +

1

2
√
y
)|(x0,x

2

0
)δy + (2xẏ − 1)|(x0,x

2

0
)δx ≈ 0

⇔ x2
0δ̈y + x2

0δ̇y +
1

2x0

δy − δx ≈ 0

2

2.2 Block diagrams

We use block diagrams to model systems and to describe how their different subsystems are
interconnected. A signal traverses a block diagram in the direction of arrows. Each block

represents a subsystem. When a subsystem is LTI, its representing block is labelled by the
transfer function from input to output. Finally, a sensing device, represented by a circle,
performs mathematical operations such as addition, subtraction, and multiplication on the
incoming signals.

To obtain the transfer function of the entire system from input U(s) to output Y (s), we
introduce auxiliary variables as necessary and write down linear algebraic equations at the
output of blocks and sensing devices. Then we proceed by eliminating auxiliary variables
to obtain an expression relating Y (s) to U(s), which can be rewritten to obtain the system
transfer function.
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Example 7 The block diagram of an LTI system is shown in Figure 2.3.

X3X1 X2
Σ

H1

G4

H2

− +
−

+ +−

+
+

G3G1 G2

R Y
ΣΣ Σ Σ

Figure 2.3: Block diagram of Example 7.

Find the transfer function Y (s)
R(s)

.

Solution. We start by introducing 3 auxiliary variables X1, X2 and X3. Therefore, we
need to write 4 equations to fully describe the system.

X1 = R− Y (2.7)

X2 = X1 −G2H1X3 (2.8)

X3 = G1X2 −H2Y (2.9)

Y = G4X3 +G2G3X3 (2.10)

To eliminate the auxiliary variables, first solve (2.10) for X3 to obtain

X3 =
Y

G2G3 +G4

(2.11)

Substitute X3 from (2.11) into (2.9) to obtain

Y

G2G3 +G4

= G1X2 −H2Y

⇔ Y (
1

G2G3 +G4

+H2) = G1X2

⇔ Y
G2G3H2 +G4H2 + 1

G2G3 +G4

= G1X2

gohari


gohari

gohari
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Therefore

X2 = Y
G2G3H2 +G4H2 + 1

G1G2G3 +G1G4

(2.12)

Finally, substitute X1 from (2.7), X2 from (2.12) and X3 from (2.11) into (2.8) to obtain a
relationship between R and Y :

Y
G2G3H2 +G4H2 + 1

G1G2G3 +G1G4

= R− Y −G2H1
Y

G2G3 +G4

⇔ Y (
G2G3H2 +G4H2 + 1

G1G2G3 +G1G4

+
G2H1

G2G3 +G4

+ 1) = R

⇔ Y (
G2G3H2 +G4H2 + 1 +G1G2H1 +G1G2G3 +G1G4

G1G2G3 +G1G4

) = R

It follows that

Y

R
=

G1G2G3 +G1G4

1 +G1G2G3 +G1G2H1 +G1G4 +G2G3H2 +G4H2

.

2

Important remark. The problem of finding the transfer function of a block diagram
boils down to solving a set of linear algebraic equations. In the above example, there are
4 equations (2.7), (2.8), (2.9) and (2.10) in 4 unknowns X1, X2, X3 and Y . The system
transfer function is obtained upon solving the set of equations for Y . You can use the

method of your choice to solve the set of equations. 2

2.2.1 Block diagram reduction

A block diagram can be reduced in several ways to a simpler block diagram with fewer
blocks than the original, yet the same transfer function from input to output. Table BT 2.6
shows a few simple tricks for simplifying block diagrams. They all can be derived by simple
manipulation of equations representing blocks.

Example 8 The block diagram of BF 2.26 is repeated in Figure 2.4.

The block diagram reduction method presented in the textbook relies on elimination of the
system’s 3 feedback loops. That is, it applies the 6th reduction rule of table BT 2.6 to
eliminate all feedback loops. To make the block diagram ready for the first application of
rule # 6, rule # 4 is applied to move the pickoff point labelled by (*) in Figure 2.4 ahead
of the block with transfer function G4. As a result of this move, gain of the corresponding
branch is divided by G4. The procedure is illustrated in BF 2.27.
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X2X1
Σ Σ Σ

+

−

+
−

G1(s) G2(s)

H3(s)

H1(s)

G4(s)G3(s)

H2(s)

+

R
Y

(∗)

+

Figure 2.4: A multiple-loop feedback control system.

Alternative approach. We write all the block diagram equations from scratch. Referring
to Figure 2.4, after defining 2 auxiliary variables, we must write down 3 equations.

X1 = G1(R−H3Y )−G3H2X2 (2.13)

X2 = G2X1 +H1Y (2.14)

Y = G3G4X2 (2.15)

From (2.15) we obtain

X2 =
Y

G3G4

(2.16)

Next, substitute the above value for X2 in (2.14) to obtain X1 in terms of Y :

Y

G3G4

= G2X1 +H1Y

⇔ Y

G3G4

−H1Y = G2X1

It follows that

X1 = Y
1−G3G4H1

G2G3G4

(2.17)
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Finally substitute X1 from (2.17) and X2 from (2.16) into (2.13) to obtain:

Y
1−G3G4H1

G2G3G4

= G1(R−H3Y )−G3H2
Y

G3G4

⇔ Y (
1−G3G4H1

G2G3G4

+G1H3 +
G3H2

G3G4

) = G1R

⇔ Y (
1−G3G4H1 +G1G2G3G4H3 +G2G3H2

G2G3G4

= G1R

It follows that
Y

R
=

G1G2G3G4

1−G3G4H1 +G1G2G3G4H3 +G2G3H2

2

Which method is more effective? The choice is yours. Perhaps a combination of both
techniques will result in the right answer in the shortest amount of time, i.e. apply a
reduction rule wherever you see its immediate application. Then, solve the reduced diagram
by writing its algebraic equations.




