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Evaluating Classifier Accuracy:
Holdout & Cross-Validation Methods

Qg

a

a

d
a

U

Holdout method

Given data is randomly partitioned into two independent sets
O Training set (e.g., 2/3) for model construction
O Test set (e.g., 1/3) for accuracy estimation

Random sampling: a variation of holdout

O Repeat holdout k times, accuracy = avg. of the accuracies obtained
Cross-validation (k-fold, where k = 10 is most popular)

Randomly partition the data into kK mutually exclusive subsets, each
approximately equal size

At i-th iteration, use D, as test set and others as training set
Leave-one-out: k folds where k = # of tuples, for small sized data

*Stratified cross-validation*: folds are stratified so that class dist. in each fold is
approx. the same as that in the initial data
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Evaluating Classifier Accuracy: Bootstrap

O Bootstrap
O Works well with small data sets
O Samples the given training tuples uniformly with replacement

0 Each time a tuple is selected, it is equally likely to be selected again and re-added
to the training set

a Several bootstrap methods, and a common one is .632 bootstrap

O A data set with d tuples is sampled d times, with replacement, resulting in a training
set of d samples. The data tuples that did not make it into the training set end up
forming the test set. About 63.2% of the original data end up in the bootstrap, and
the remaining 36.8% form the test set (since (1 —1/d)4 = e1 =0.368)

O Repeat the sampling procedure k times, overall accuracy of the model:
) k

1 | | ..
Ace(M) = + > (0.632 x Ace(M;)test_set + 0-368 x Ace(M;)train_set)

X / ;2
g=—=1



Model Selection: ROC Curves
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Qg

ROC (Receiver Operating Characteristics) curves:
for visual comparison of classification models

Originated from signal detection theory

Shows the trade-off between the true positive
rate and the false positive rate

The area under the ROC curve is a measure of
the accuracy of the model

Rank the test tuples in decreasing order: the one -
that is most likely to belong to the positive class
appears at the top of the list Q
The closer to the diagonal line (i.e., the closer the a
area is to 0.5), the less accurate is the model

d

10

Gz _:.-é:x:'. e IR
Vertical axis represents the
true positive rate
(TP/P=sensitivity)
Horizontal axis rep. the false
positive rate (FP/N=1-specifity)
The plot also shows a diagonal
line
A model with perfect accuracy
will have an area of 1.0
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Issues Affecting Model Selection

a Accuracy
d classifier accuracy: predicting class label
a Speed
2 time to construct the model (training time)
O time to use the model (classification/prediction time)
a Robustness: handling noise and missing values
Q Scalability: efficiency in disk-resident databases
Q Interpretability
d understanding and insight provided by the model

Q Other measures, e.g., goodness of rules, such as decision tree size or compactness
of classification rules
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Chapter 8. Classification: Basic Concepts
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d Techniques to Improve Classification Accuracy: Ensemble Methods “

ad Summary



Ensemble Methods: Increasing the Accuracy

Class
prediction

Combine
violes

ad Ensemble methods
d Use a combination of models to increase accuracy

O Combine a series of k learned models, M, M,, ..., M,, with the
aim of creating an improved model M*

Q Popular ensemble methods
O Bagging: averaging the prediction over a collection of classifiers
O Boosting: weighted vote with a collection of classifiers
d  Ensemble: combining a set of heterogeneous classifiers

50
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Bagging: Boostrap Aggregation

O Analogy: Diagnosis based on multiple doctors’ majority vote
Q Training
O Given a set D of d tuples, at each iteration j, a training set D, of d tuples is
sampled with replacement from D (i.e., bootstrap)
O Aclassifier model M. is learned for each training set D,
A Classification: classify an unknown sample X
O Each classifier M, returns its class prediction

O The bagged classifier M* counts the votes and assigns the class with the most
votes to X

A Prediction: can be applied to the prediction of continuous values by taking the
average value of each prediction for a given test tuple

a Accuracy: Proved improved accuracy in prediction
O Often significantly better than a single classifier derived from D
O For noise data: not considerably worse, more robust
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Boosting

Analogy: Consult several doctors, based on a combination of weighted diagnoses—
weight assigned based on the previous diagnosis accuracy

How boosting works?
O  Weights are assigned to each training tuple
O Aseries of k classifiers is iteratively learned

O After a classifier M., is learned, the weights are updated to allow the subsequent
classifier, M., ,, to pay more attention to the training tuples that were
misclassified by M.

2 The final M* combines the votes of each individual classifier, where the weight
of each classifier's vote is a function of its accuracy

Boosting algorithm can be extended for numeric prediction

Comparing with bagging: Boosting tends to have greater accuracy, but it also risks
overfitting the model to misclassified data
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Adaboost (Freund and Schapire, 1997)

i N

Given a set of d class-labeled tuples, (X;, y;), -, (Xg, Yg)
Initially, all the weights of tuples are set the same (1/d)
Generate k classifiers in k rounds. At round i,

a

0O 0O

a

Tuples from D are sampled (with replacement) to form a training set D, of the
same size

Each tuple’s chance of being selected is based on its weight

A classification model M. is derived from D,

Its error rate is calculated using D, as a test set

If a tuple is misclassified, its weight is increased, o.w. it is decreased

Error rate: err(X;) is the misclassification error of tuple X;. Classifier M, error rate is

the sum of the weights of the misclassified tuples:

d

error (M ;) = Z w, xerr (X;)

The weight of classifier Ms vote is !

1 —error(M,)

log
error(M,)




Random Forest (Breiman 2001)

d Random Forest:

O Each classifier in the ensemble is a decision tree classifier and is generated using
a random selection of attributes at each node to determine the split

d  During classification, each tree votes and the most popular class is returned
ad Two Methods to construct Random Forest:

O Forest-RIl (random input selection): Randomly select, at each node, F attributes
as candidates for the split at the node. The CART methodology is used to grow
the trees to maximum size

d  Forest-RC (random linear combinations): Creates new attributes (or features)
that are a linear combination of the existing attributes (reduces the correlation
between individual classifiers)

O Comparablein accuracy to Adaboost, but more robust to errors and outliers

a Insensitive to the number of attributes selected for consideration at each split, and
54 faster than bagging or boosting



Classification of Class-imbalanced Data Sets

A Class-imbalance problem: Rare positive example but numerous negative ones, e.g.,

medical diagnosis, fraud, oil-spill, fault, etc.

A Traditional methods assume a balanced distribution of classes and equal error

costs: not suitable for class-imbalanced data
A Typical methods in two-class classification:
d  Oversampling: re-sampling of data from positive class

U

Under-sampling: randomly eliminate tuples from negative class

O  Threshold-moving: move the decision threshold, t, so that the
rare class tuples are easier to classify, and hence, less chance of
costly false negative errors

O Ensemble techniques: Ensemble multiple classifiers introduced
above

Q Still difficult for class imbalance problem on multiclass tasks
55
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Chapter 8. Classification: Basic Concepts
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Summary

a
g

Qg

Qg

Classification: Extracting models describing important data classes
Effective and scalable methods

d Decision tree induction, Naive Bayesian classification, rule-based classification,
and many other classification methods

Evaluation metrics:
O Accuracy, sensitivity, specificity, precision, recall, F measure, and Fj3 measure
d  Stratified k-fold cross-validation is recommended for accuracy estimation

Enemble: Bagging and boosting can be used to increase overall accuracy by learning
and combining a series of individual models

Model selection: Significance tests and ROC curves

No single method has been found to be superior over all others for all data sets
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