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Abstract. We revise the Volume Algorithm (VA) for linear programming and relate it to bundle methods.
When first introduced, VA was presented as a subgradient-like method for solving the original problem in its
dual form. In a way similar to the serious/null steps philosophy of bundle methods, VA produces green, yellow
or red steps. In order to give convergence results, we introduce in VA a precise measure for the improvement
needed to declare a green or serious step. This addition yields a revised formulation (RVA) that is halfway
between VA and a specific bundle method, that we call BVA. We analyze the convergence properties of both
RVA and BVA. Finally, we compare the performance of the modified algorithms versus VA on a set of Rec-
tilinear Steiner problems of various sizes and increasing complexity, derived from real world VLSI design
instances.
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1. Introduction

Consider the problem of solving large-scale linear programs of the form



min
x∈Rn

〈c, x〉

Ax=b (a)
D x=e
x≥0 ,

(1)

where c ∈ R
n , A ∈ R

m×n , b ∈ R
m , D ∈ R

d×n , e ∈ R
d , and rank D = d. When

constraints (1)(a) are difficult to deal with, a possible approach is to solve a dual problem,
obtained via Lagrangian relaxation. For this approach to be efficient, two critical points
are:
– how to solve the nondifferentiable dual problem,
– how to recover a primal solution.

The Volume Algorithm (VA) introduced in [2] appears as a good answer to the ques-
tions above:
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– a dual optimum is obtained by applying what the authors call an extension of the
subgradient algorithm, [16]. Such extension aims at keeping the simplicity of the sub-
gradient methods while mimicking a bundle-like strategy, in the spirit of the very first
works [14] and [21], i.e., with quadratic subproblems that are easy to solve, because
they are bivariate;

– a primal solution is simultaneously produced by estimating certain volumes associated
to active faces in (1)(a).

To assess the validity of VA, in [2, Section 6] successful numerical experience is
reported on set partitioning, set covering, max-cut and facility location problems.

Actually, [2] mostly stresses numerical concerns, and does not consider theoretical
properties of VA, such as when the proposed algorithm converges, or its relation with
other methods. In this paper we address this issue and show that VA can be interpreted
as an extragradient method, [13], [17]. More precisely, each iteration of VA generates a
sampling point by using an ε-extragradient, see Theorem 1 below. A sampling point is
declared to be green in [2] when there is an improvement in the dual function, somewhat
similarly to a serious-step in bundle methods. However, unlike bundle methods, in VA
the objective improvement is not rigorously measured.

In order to keep track of the improvement produced by each green or serious step,
it is important to supply VA with the notion of a model of the objective dual function
θ . As a first step towards analyzing convergence, we present a revised variant, that we
call RVA. This revised formulation introduces a precise measure for the improvement
needed to declare a green iteration. Such measure, known also as expected gain, relates
exact values of θ to values predicted by a computable function modelling θ . We conclude
our analysis by relating RVA to BVA, an economic variant of bundle methods.

Our paper is organized as follows. In Section 2 we revise some essential notions of
duality and convexity. Next, in Section 3, we present VA and study some of its main
features. All the elements needed to introduce a model in VA are developed in Section 4.
Section 5 is devoted to RVA: description and convergence analysis. When RVA gener-
ates an infinite sequence of null steps, we only obtain a convergence result that depends
on a rather strong assumption, namely (41) below. In order to give a full convergence
analysis, we are bound to further modify RVA and mold it as a bundle method, yielding
BVA. This is the subject of Section 6, where we also give an a-posteriori error bound for
the approximated primal solution obtained from RVA. Finally, we report in Section 7
successful numerical results comparing RVA and and BVA with VA on a battery of
rectilinear Steiner problems of various sizes, [12] and [3].

2. A glimpse of duality and convexity

We first review some basic notions of classical Lagrangian relaxation and convex(con-
cave) analysis, [4, Ch. VIII]. In particular, in Section 2.2, we recall the important concept
of ε-supergradient.

2.1. The dual problem

In order to relax constraints (1)(a) we use the Lagrangian function
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L(x, π) := 〈c, x〉 + 〈Ax − b, π〉 , (2)

where π ∈ R
m is the associated vector of Lagrange multipliers.

We suppose that (1) is feasible. In addition, we denote by� the nonempty polyhedron
gathering the “easy” constraints:

� := {x ∈ R
n : Dx = e , x ≥ 0 } . (3)

In this context, the weak duality relationship

min
x∈�

max
π∈Rm

L(x, π) ≥ max
π∈Rm

min
x∈�

L(x, π) (4)

holds. The left-hand side of (4), or primal problem, has the same optimal value as (1).
The right-hand side in (4) is the dual problem

max
π∈Rm

θ(π) , (5)

whose objective is the dual function

θ(π) := min
x∈�

L(x, π) . (6)

Equality in (4) means that there is no duality gap. That is to say, solving (5) amounts
to solve (1). For our problem, given a point p� ∈ P�, the solution set of (5), any x(p�)
satisfying

x(p�) ∈ Argmin
x∈�

L(x, p�) such that Ax(p�) = b

is a solution of (1).

2.2. Supergradients and ε-supergradients

Being defined as the pointwise minimum of affine functions of π , the dual function
(6) is concave and nondifferentiable. To maximize θ , it is known that any nonsmooth
optimization method uses the information given by an “oracle”. Specifically, for any
given π , the oracle returns the values θ(π) and a subgradient of the convex function −θ
at π . Since throughout this paper we refer to the concave function θ , we find convenient
to introduce here the notion of supergradients.

Definition 1. Let θ be a concave function and let π ∈ R
m. The point v ∈ R

m is called
a supergradient of θ at π whenever

θ(π ′) ≤ θ(π)+ 〈v, π ′ − π〉 for all π ′ ∈ R
m. (7)

In this case, we write v ∈ ∂θ(π).
Given ε ≥ 0, the point w ∈ R

m is an ε-supergradient of θ at p ∈ R
m whenever

θ(π ′) ≤ θ(p)+ 〈w,π ′ − p〉 + ε for all π ′ ∈ R
m . (8)

In this case, we write w ∈ ∂θε(p). ��
The ε-superdifferential ∂εθ(p) has good continuity properties, see [7, XI.4.1.1]. In par-
ticular, it is a closed multi-function of ε and p:{

εt , pt , wt ∈ ∂εt θ(pt )
} −→ {

ε∗ , p∗ , w∗} �⇒ w∗ ∈ ∂ε∗θ(p
∗) . (9)

When specialized to our dual function (6), we see that to evaluate θ(π) the oracle
must solve the subproblem
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θ(π) = min
x∈�

L(x, π) = min
x∈�

{〈c, x〉 + 〈Ax − b, π〉} . (10)

Let x(π) ∈ ArgminL(·, π) be a solution of (10). Then, for anyπ ′ ∈ R
m, straightforward

calculations yield

θ(π ′) = min
x∈�

L(x, π ′) ≤ L(x(π), π ′)〈c, x(π)〉 + 〈Ax(π)− b, π ′〉
= 〈c, x(π)〉 + 〈Ax(π)− b, π ′〉 ± 〈Ax(π)− b, π〉
= θ(π)+ 〈Ax(π)− b, π ′ − π〉 .

It follows that the supergradient

v := Ax(π)− b ∈ ∂θ(π) (11)

can be computed for free once the oracle has solved (10). Clearly, the difficulty for
solving (10) depends on the nature of the constraints defining the polyhedron � of (3).
The easier this subproblem solution will be, the more efficient will be the dual approach.
This is precisely the case of Steiner problems considered in our numerical experience,
see Section 7.2 below.

3. On the volume method

The dual problem (5) needs to be solved by using a nonsmooth optimization method,
such as subgradients, cutting-planes, analytic centers, or bundle methods, see [7]. All
of these methods have advantages and drawbacks, and their efficiency depends on the
nature of the problem to be solved. For instance, subgradient methods are known by
their simplicity, but also for the lack of well defined stopping criteria. On the other hand,
bundle methods are known to be robust and precise, but at each iteration the solution of
a (potentially heavy) quadratic program is required.

The volume methodology was introduced in [2] in an effort to combine the best fea-
tures of subgradients and bundle methods. Roughly speaking, to produce a dual solution
VA generates sampling points πt by solving a subproblem as in (10), with πt depending
on:
– a given stability center π̂k ,
– a certain steplength st , and
– wt , a convex combination of available supergradients.
Stability centers are special sampling points, providing a “good enough” improvement
in the optimization process; in other words, {π̂k} is a selected subsequence of {πt }. Pri-
mal solutions are approximated by zt , a convex combination of past primal points. The
coefficients used in such convex sums are the same than those used to compute wt , see
(14), (15) below.

3.1. The Volume Algorithm VA

Step 0. Given an initial π0 ∈ R
m, compute x0 ∈ ArgminL(x, π0), a solution of (10)

written for π = π0. Let v0 := Ax0 − b. Initialize z1 = x0, w1 := v0, and π̂1 = π0.
Set k = t = 1 and Ts = ∅.
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Step 1. Having the stability center π̂k , and a steplength st > 0, make the move

πt = π̂k + stwt . (12)

Step 2. Compute xt ∈ ArgminL(x, πt ), a solution of (10) written for π = πt . Let
vt := Axt − b.

Step 3. Depending on whether

θ(πt ) > θ(π̂k) and 〈wt, vt 〉 > 0 (13)

is false or true, decide to make, respectively,
– either a null-step: (13) does not hold, just do nothing,
– or a serious-step: (13) holds. In this case, update the stability center: π̂k+1 = πt ,

set tk := t , Ts = Ts ∪ {tk}, and increase k by 1.

Step 4. Compute a new stepsize st+1.
Given a parameter 0 ≤ αt ≤ 1, define

zt+1 := αtxt + (1 − αt )zt (14)

wt+1 := αtvt + (1 − αt )wt . (15)

This completes the t th iteration: set t = t + 1 and loop to 1. ��
When comparing our description with the original statement of VA in [2] a few minor

differences arise:
– Serious steps correspond to green iterations in the Volume Algorithm, but we have

collapsed yellow and red iterations in our null steps.
– The original Volume Algorithm further specifies the stepsize as

st = µ
ub− θ(πt )

‖wt‖2 , (16)

where ub is an upper bound for the optimal value in (1) and µ ∈ (0, 2) is a relaxation
factor. Since our development does not rely on this particular choice of steplength, we
prefer to omit it in our description of VA. Instead, for our convergence results, we will
establish abstract conditions to be satisfied by the sequence of stepsizes, such as (36),
(38) and (42) given in Section 5.2 below.

– A suitable choice of the convex parameter αt is discussed in Section 4 below.

3.2. Some useful relations

We now establish some relations satisfied by the recurrent formulæ of VA.

Lemma 1. Let {zt }, {vt } and {wt } be the sequences generated by VA. Then for all t ,
vt ∈ ∂θ(πt ) and wt = Azt − b.
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Proof. The first statement is just (11), written with (π, v, x(π)) := (πt , vt , xt ). The
second one is straightforward from the definition of each sequence involved, using the
linearity of A. ��

Since vt ∈ ∂θ(πt ) for all t , from (7) it can be seen that the righthand side condition
in (13) implies the lefthand side condition in the same equation. We conjecture that this
relation was the reason behind the distinction between yellow and red iterations in the
original Volume Algorithm.

Lemma 2. For any t ≥ 1, consider the following coefficients

µt,j := αt−j
t∏

i=t−j+1

(1 − αi) for j = 0, . . . , t , (17)

where α0 := 1 and the product

if∏
i=i0

(1 − αi) is defined to be 1 whenever if < i0. The

following hold:

(i) for all j ≤ t , µt,j ≥ 0, and
∑t

j=0 µt,j = 1; and
(ii) both (14) and (15) can be expressed using the convex multipliers µt,j :

zt+1 =
t∑

j=0

µt,j xt−j and wt+1 =
t∑

j=0

µt,j vt−j .

Proof. (i) Since αt ∈ [0, 1] for all t , positivity ofµt,j is clear. To see that the coefficients
sum up to 1, expand the terms of the sum taking nested factors:

t∑
j=0

µt,j =αt1 + αt−1(1 − αt )+ αt−2(1 − αt )(1 − αt−1)+ · · ·

=αt+(1−αt )
[
αt−1+(1−αt−1)(αt−2+(1−αt−2)(· · ·(1−α2)(α1+1−α1)· · ·)

]
= αt + (1 − αt )[αt−1 + (1 − αt−1)(αt−2 + (1 − αt−2)1)]
= αt + (1 − αt )[αt−1 + (1 − αt−1)1]
= 1 .

The proof of (ii) follows from (14) (resp. (15)), by induction on t . ��
We now show that each wt is an approximate supergradient of θ at a point pt , that

can be defined recursively using a formula like the ones in (14), (15). Namely, letting
p1 := π0, at Step 4 of VA we also compute

pt+1 := αtπt + (1 − αt )pt . (18)

An equivalent expression, obtained by reasoning like in Lemma 2(ii), is

pt+1 =
t∑

j=0

µt,jπt−j . (19)
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Theorem 1. Let {zt }, {wt } and {pt } be the sequences generated by (14), (15) and (18),
respectively. For any t ≥ 1, consider the coefficients {εt } defined as

εt+1 := αt (1 − αt )〈vt − wt, pt − πt 〉 + (1 − αt )εt , (20)

with ε1 := 0. Then εt ≥ 0 and wt ∈ ∂εt θ(pt ).

Proof. When t = 1, w1 = v0 = Ax0 − b ∈ ∂θ(π0) by Lemma 1. Since p1 = π0 and
ε1 = 0, w1 ∈ ∂ε1θ(p1) = ∂θ(π0).
For all t ≥ 1, make the inductive assumption that wt ∈ ∂εt θ(pt ). Since vt ∈ ∂θ(πt ) by
Lemma 1, using (7) and (8), we have for all π ′ ∈ R

m:

θ(π ′) ≤ θ(πt ) + 〈vt , π ′ − πt 〉 (a)
θ(π ′) ≤ θ(pt ) + 〈wt, π

′ − pt 〉 + εt (b).

Make the convex combination αt (a)+(1 − αt )(b), use (18) and the concavity of θ to
write, for all π ′ ∈ R

m,

θ(π ′) ≤ θ(pt+1)+ 〈wt+1, π
′〉 − 〈αtvt , πt 〉 − 〈(1 − αt )wt , pt 〉 + (1 − αt )εt .

Call εt+1 the term such that the inequality above can be written as

θ(π ′) ≤ θ(pt+1)+ 〈wt+1, π
′ − pt+1〉 + εt+1 ,

i.e., εt+1 := 〈wt+1, pt+1〉 − 〈αtvt , πt 〉 − 〈(1 − αt )wt , pt 〉 + (1 − αt )εt
= 〈αtvt , pt+1 − πt 〉 + 〈(1 − αt )wt , pt+1 − pt 〉 + (1 − αt )εt .

By (18), pt+1 − πt = (1 − αt ) (pt − πt ) and pt+1 − pt = αt (πt − pt ). Thus,

εt+1 = 〈αtvt , (1 − αt ) (pt − πt )〉 + 〈(1 − αt )wt , αt (πt − pt )〉 + (1 − αt )εt ,

which equals (20) after rearranging some terms. Finally, apply (7) with (π ′, π, v) =
(pt , πt , vt ) and (8) with (π ′, p, ε,w) = (πt , pt , εt , wt ), respectively, to see that 〈vt −
wt, πt − pt 〉 ≤ εt Altogether, we obtain

εt+1 ≥ −αt (1 − αt )εt + (1 − αt )εt = (1 − αt )
2 εt ,

a nonnegative quantity, by construction. ��
The sequence {εt } is defined by the recursion (20), analogous to those defining {zt },

{wt } and {pt }. As a result, a formula along the lines of the similar ones in Lemma 2(ii)
and in (19) also holds for {εt }:

εt+1 =
t∑

j=0

µt,j σt−j for σt := (1 − αt )〈vt − wt, pt − πt 〉 . (21)

Theorem 1 shows that Step 1 in VA uses an εt -supergradient that is not computed
at the current iterate π̂k , but at a different point, namely pt . In this respect, VA is closer
to the extragradient approach [13], than to a subgradient method. Note also that, since
wt ∈ ∂εt θ(pt ), the extragradient used by VA is only an approximate one.

Although the “inexact” move (12) is not the most common extragradient update, it
is not the most unusual either. There are other methods that do use “inexacteness” both
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in the point where the gradient is computed and in the gradient itself (i.e., εt > 0). For
example, the modified forward-backward splitting method of [19], that can be regarded
as an implementation of the approximate extragradient proximal method for generalized
equations, see [17, Section 5].

In addition, note that, when compared to a typical bundle iteration, the crucial distinc-
tion between serious- and null-steps is not kept with precision, since (13) in VA does not
measure the gain obtained. Specifically, when passing from π̂k to π̂k+1, it is not known
how much “better” the serious step is, we only know that θ(π̂k+1) is bigger than θ(π̂k).

We address this point in the next section, by introducing the concept of expected
gain in a revised version of VA.

4. Towards a convergent method

In order to keep track of the improvement produced by each serious step, it is important
to replace (13) by a condition of the type θ(πt ) ≥ θ(π̂k)+m1δt , wherem1 is an Armijo-
like tolerance and, more importantly, δt > 0 measures the expected gain, associated to
a computable function modelling θ .

4.1. Introducing a model

Typically, bundle methods make use of a model θ̂ to approximate the unknown function
θ . The modelling concave function varies along iterations and is defined as the minimum
of planes that are tangent to graph θ . Given πj , a call to the oracle (i.e., solving (10))
gives θ(πj ) and vj ∈ ∂θ(πj ). The corresponding cutting plane is

θ(πj )+ 〈vj , π − πj 〉 .
An equivalent expression, more convenient for our development, refers this plane to the
last serious-step π̂k:

θ(π̂k)+ 〈vj , π − π̂k〉 + ej with ej := θ(πj )+ 〈vj , π̂k − πj 〉 − θ(π̂k) .

The model is defined by the function value at the last serious-step and by a given number
of cutting planes. Here we use an economic bundle of information, containing only two
cutting planes: first, the plane generated by the last πt , and, second, the so-called aggre-
gate plane. More precisely, suppose that at Step 4 in VA the following (non negative)
quantities are available:

et := θ(πt )+
〈
vt , π̂k − πt

〉 − θ(π̂k) and (22)

êt := θ(pt )+
〈
wt, π̂k − pt

〉 + εt − θ(π̂k) . (23)

The corresponding economic model θ̂t has the form

θ̂t (π) := min{θ(πt )+ 〈vt , π − πt 〉 , θ(pt )+ 〈wt, π − pk〉},
or, using the linearization errors above,

θ̂t (π) = θ(π̂k)+ min{et +
〈
vt , π − π̂k

〉
, êt +

〈
wt, π − π̂k

〉} . (24)

By concavity, the hyperplane H := θ(π̂k)+ {π ∈ R
m :

〈
vt , π − π̂k

〉+ et = 0} supports
(from above) the graph of θ at πt . Likewise, the hyperplane Hε := θ(π̂k)+ {π ∈ R

m :〈
wt, π − π̂k

〉 + êt = 0} supports within εt the graph of θ at pt .
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Then, as shown in Figure 1, the function θ̂t from (24) is a cutting-planes model for
θ that satisfies

θ̂t (π) ≥ θ(π) for all π ∈ R
m. (25)

The model θ̂t is used to compute the next iterate, say πt+1. The expected gain δt ,
relating exact value functions to approximate ones predicted by the model is usually
defined as δt := θ̂t (πt+1)− θ(π̂k). In view of (24), this yields

δt+1 := min{et + 〈vt , πt+1 − π̂k〉, êt + 〈wt, πt+1 − π̂k〉} . (26)

A more concise form for δt makes use of the parameters αt , see (30) below.

4.2. Choosing αt

So far, nothing has been said on how to choose αt in Step 4 in VA. We now show how
to make a sound choice of these parameters, if a model θ̂t is available.

More precisely, consider the (strongly convex) problem

max
π∈Rm

θ̂t (π)− 1

2st+1
‖π − π̂k‖2 , (27)

whose unique solution π ′ is characterized by the optimality condition

∃w′ ∈ ∂θ̂t (π
′) such that w′ − 1

st+1
(π ′ − π̂k) = 0 [i.e., π ′ = π̂k + st+1w

′ .]

Since θ̂t is the maximum of two affine functions, its superdifferential is ∂θ̂t (π) =
{αvt + (1 − α)wt : α ∈ [0, 1]} for all π . Thus, the optimality condition becomes

∃α′ ∈ [0, 1] such that π ′ = π̂k + st+1w
′ with w′ = α′vt + (1 − α′)wt .

H

Hε

εt

θ

πt π̂k pt

Fig. 1. Model θ̂t = min{H,Hε}.
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As a result, choosing in Step 4 of VA αt := α′ implies that the gradient w′ given by the
optimality condition is preciselywt+1 from (15). Furthermore, with this choice of αt the
next iterate πt+1 from (12) will be precisely the unique point π ′ given by the optimality
condition above:

∃αt ∈ [0, 1] such that wt+1 ∈ ∂θ̂t (πt+1) and πt+1 = π̂k + st+1wt+1 . (28)

The convex parameter αt can also be found by solving a problem dual to (27):

min
α∈[0,1]

st+1

2
‖αvt + (1 − α)wt‖2 + αet + (1 − α)êt . (29)

This dual computation of αt yields the following expression for the expected gain:

δt+1 = st+1‖wt+1‖2 + αtet + (1 − αt )êt . (30)

4.3. Supplying the volume method with a model

When trying to incorporate the notion of a model in VA, an important question arises.
Namely, to define êt in (23), one needs to know θ(pt ), a value that is not computed in
VA. The only available functional values are θ(πt ), computed at Step 2. To address this
issue, we consider two possibilities:
– a “minimalistic” approach, in which we keep as close as possible to VA and, instead

of computing the extra value function θ(pt ), we approximate êt with quantities that
are already available.

– an “everything-changes” approach, in which a reorganization of calculations allows
us to define êt without using pt .

The first approach results in the revised volume algorithm RVA, while the second is
BVA, the economic variant of bundle methods. We analyze here the first variant, and
defer the analysis of the second one to Section 6.2.

To approximate the unknown θ(pt )we use in (23) the best available functional value,
i.e., θ(π̂k) :

êt = θ(pt )+
〈
wt, π̂k − pt

〉 + εt − θ(π̂k) ≈
〈
wt, π̂k − pt

〉
,

and similarly in (22), for the sake of consistency. Hence, we use the quantities

Et := 〈vt , π̂k − πt 〉 and (31)

Êt := 〈wt, π̂k − pt 〉 + εt . (32)

The resulting model +̂t (π) := θ(π̂k)+ min{Et +
〈
vt , π − π̂k

〉
, Êt +

〈
wt, π − π̂k

〉}
= θ(π̂k)+ min{〈vt , π − πt 〉 , 〈wt, π − pk〉 + εt }

is shown in Figure 2. The nominal decrease (30) is likewise approximated by

st+1‖wt+1‖2 + αtEt + (1 − αt )Êt . (33)
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H

Hε

εt

θ

πt π̂k pt

θ(π̂k)− θ(πt )

θ(π̂k)− θ(pt )

Fig. 2. Model +̂t = min{H,Hε}.

Proposition 1. The following relation holds

αtEt + (1 − αt )Êt = 〈wt+1, π̂k − pt+1〉 + εt+1 .

Proof. Let E := αtEt + (1 − αt )Êt . For simplicity, we drop subindices t and use + to
denote subindices t + 1. Using (31) and (32), write E as follows

E = α〈v, π̂k − π〉 + (1 − α)〈w, π̂k − p〉 + (1 − α)ε

= 〈w+, π̂k〉 − α〈v, π〉 − (1 − α)〈w,p〉 + (1 − α)ε [by (15)]

= 〈w+, π̂k−p+〉+〈w+, p+〉−α〈v, π〉−(1 − α)〈w,p〉+(1 − α)ε [add ±〈w+, p+〉]
= 〈w+, π̂k − p+〉 + α〈v, p+ − π〉 + (1 − α)〈w,p+ − p〉+(1−α)ε [by (15)]

= 〈w+, π̂k − p+〉 + α(1 − α)〈v − w,p − π〉 + (1 − α)ε [by (18)]

= 〈w+, π̂k − p+〉 + ε+ ,

by (20). ��
We now incorporate these new elements in the algorithmic pattern of VA.

5. A revised formulation of the volume method

In this section we describe the “minimalistic” approach, in which the unknown value of
θ(pt ) is replaced by θ(π̂k). In order to make the sequence {θ(π̂k)} monotone, and based
on (33) and Proposition 1, in (34) below we define the expected gain so that it is always
positive. The detailed algorithm follows.

5.1. The Revised Volume Algorithm

Step 0. Let m1 ∈ (0, 1) be a given tolerance. Given an initial π0 ∈ R
m, compute

x0 ∈ ArgminL(x, π0), a solution of (10) written for π = π0. Let v0 := Ax0 − b.
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Initialize z1 = x0, π̂1 = π0, and w1 := v0, as well as p1 = π0 and ε1 = 0. Set
k = t = 1 and Ts = ∅.

Step 1. Having the center π̂k and a steplength st > 0make the move (12):

πt = π̂k + stwt .

Compute the ascent measure

δt = st‖wt‖2 + |〈wt, π̂k − pt 〉| + εt . (34)

Step 2. Compute xt ∈ ArgminL(x, πt ), a solution of (10) written for π = πt . Let
vt := Axt − b.

Step 3. Depending on whether

θ(πt ) ≥ θ(π̂k)+m1δt (35)

is false or true, decide to make, respectively,
– either a null-step: (35) does not hold, just do nothing,
– or a serious-step: (35) holds. Update the stability center: π̂k+1 = πt , set tk := t ,
Ts = Ts ∪ {tk}, and increase k by 1.

Step 4. Compute a new stepsize st+1. Let αt ∈ [0, 1] be the solution of (29) with et and
êt therein replaced by Et and Êt from (31) and (32), respectively.
Compute zt+1 = αtxt + (1 − αt )zt

wt+1 = αtvt + (1 − αt )wt

pt+1 = αtπt + (1 − αt )pt
εt+1 = αtσt + (1 − αt )εt ,

where σt is defined in (21). This completes the t th iteration: set t = t + 1 and loop
to 1. ��
To get a better understanding of the sequence generated by RVA, we refer again to

Figure 2. Note that now the hyperplanes H and Hε only support the graph of θ at πt
within θ(π̂k), and at pt within θ(π̂k) + εt , respectively. We know that θ(π̂k) ≥ θ(πt )

for all t ≤ tk , so, when compared to Figure 1, H will always be shifted to the outside of
graph θ . For the hyperplane Hε this may not always be the case: if θ(π̂k) < θ(pt )− εt ,
then Hε will be shifted down, towards graph θ . In other words, with this model an
inequality along the lines of (25), i.e., +̂t (π) ≥ θ(π), may not hold for all π ∈ R

m. As
a result, we might be cutting off a region containing a maximum of θ . This nasty feature
explains why we have not been able to get a satisfactory convergence result when RVA
generates only a finite number of serious steps, see Lemma 4 below. In order to get a full
convergence result, we need to make additional changes in RVA. We will come back to
this point in Section 6.2.

5.2. Convergence properties

Even though RVA’s model +̂t may not support the whole graph of θ , this revised version
of VA represents an improvement in terms of convergence properties.
We start with a result on boundedness.
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Lemma 3. Let (1) be such that � from (3) is bounded. Then the following sequences
generated by RVA are bounded:

{xt } , {vt } , {zt } , {wt } .
Furthermore, if {πt } is bounded, so is {pt }.
Proof. Since by definition xt ∈ � for all t , our assumption on � implies that the se-
quence {xt } is bounded. Thus, so is the sequence {vt = Axt − b} defined in Step 2
of RVA. Together with Lemma 2(ii), this implies that the sequences {zt } and {wt } are
bounded. Finally, from (19), the same result applies for {pt }, provided {πt } is bounded.
��

As usually done in bundle methods, for our analysis we first suppose the cardinality
of Ts is infinite. To prove convergence in this situation, we give general conditions on
the stepsize st , updated at Step 4 of RVA.

Theorem 2. Suppose that RVA generates infinitely many serious steps, i.e, k → ∞. The
following holds:

(i) Either θ(π̂k) → +∞ or lim
t∈Ts

δt = 0.

(ii) As a result, lim
t∈Ts

εt = 0.

(iii) Suppose, in addition, that ∑
t∈Ts

st = +∞ . (36)

Then lim
t∈Ts

wt = 0.

(iv) Suppose, in addition to (36), that

P�, the solution set of (5), is non empty, (37)

and
the sequence {st } is bounded. (38)

Then the sequence {π̂k} is bounded.
(v) Suppose, in addition to (36), (37) and (38), that

the sequence {wt } is bounded. (39)

Then the whole sequence {πt } is bounded.

Proof. [(i)] Suppose {θ(π̂k)} �→ +∞. Then summing (35) over k implies that

m1

∞∑
k=1

δtk ≤
∞∑
k=1

(
θ(π̂k+1)− θ(π̂k)

)
= lim

k
θ(π̂k)− θ(π̂1) < +∞ .

Since
∑

t∈Ts δt =
∑∞

k=1 δtk is finite, the result follows.
[(ii)] By (34), 0 ≤ εt ≤ δt , so this item is straightforward from (i).
[(iii)] Use again (34) to see that st‖wt‖2 ≤ δt for all t . Thus, using (i), the series
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∑
t∈Ts st‖wt‖2 is finite and, by (36), this means that lim inf t∈Ts ‖wt‖2 = 0.

[(iv)] Takep� ∈ P� �= ∅, by (37). Sincewtk ∈ ∂εtk θ(ptk ), the ε-supergradient inequality
(8) written with (π ′, v, p, ε) = (p�,wtk , ptk , εtk ) yields

θ(p�) ≤ θ(ptk )+〈wtk , p
�−ptk 〉+εtk ⇒ 〈wtk , ptk −p�〉 ≤ θ(ptk )−θ(p�)+εtk ≤ εtk .

(40)
Letting , := ‖π̂k+1 − p�‖2, write the following algebraic steps

,= ‖π̂k − p�‖2 + ‖π̂k+1 − π̂k‖2 + 2〈π̂k+1 − π̂k, π̂k − p�〉 [add ±π̂k]

= ‖π̂k − p�‖2 + s2
tk
‖wtk‖2 + 2stk 〈wtk , π̂k − p�〉 [use (12)]

= ‖π̂k − p�‖2 + stk
(
stk‖wtk‖2 + 2〈wtk , π̂k − ptk 〉 + 2〈wtk , ptk−p�〉) [add ±ptk ]

≤ ‖π̂k − p�‖2 + stk
(
stk‖wtk‖2 + 2〈wtk , π̂k − ptk 〉 + 2εtk

)
[use (40)]

≤ ‖π̂k − p�‖2 + 2stk δtk . [use (34)]

Together with (38), there exists some smax > 0 such that

‖π̂k+1 − p�‖2 ≤ ‖π̂k − p�‖2 + 2smaxδtk .

Since the series
∑

tk
δtk converges, the result follows.

[(v)] In view of (iv), we only need to check boundedness of the subsequence of null
steps. Between two serious steps, say k and k + 1, there is a finite number of null
steps indexed by t , with tk−1 < t < tk . For any such t , from (12), πt = π̂k + stwt .
Hence, ‖πt − π̂k‖ = st‖wt‖ ≤ smaxVmax , where smax and Vmax are the bounds given,
respectively, by (38) and (39). Then, for each k, the subset of null steps {πt }tk−1<t<tk

is in a ball B(π̂k, smaxVmax). Since the radius is uniform in k, using (iv) the proof is
complete. ��

The following corollary summarizes the convergence result obtained so far.

Corollary 1. Let (1) be such that � from (3) is bounded. Assume that P�, the solution
set of (5), is nonempty and dom θ = R

m. Suppose that RVA generates infinitely many
serious steps. If the stepsizes st are chosen so that (36) and (38) hold, then the sequence
{pt }t∈Ts is maximizing.

Proof. By Lemma 3, (39) holds, so Theorem 2(v) applies: the sequence {πt } is bounded.
Again by Lemma 3, this implies that the sequence {pt } is bounded. Therefore, the
(bounded) subsequence {pt }t∈Ts has a limit point p�. Using items (iii) and (ii) of
Theorem 2, we obtain from (9) that 0 ∈ ∂θ(p�). ��
Note that the original stepsize in the Volume Algorithm (cf. (16)) is consistent with
conditions (36) and (38), typical in subgradient methods.

If the cardinality of Ts is finite, there is a last serious step π̂ := π̂klast = π̂tlast ,
followed by an infinite number of null steps. In this case, we only have a partial answer,
depending essentially on a rather strong assumption, namely (41) below, where we
require two (bounded) sequences to have unique accumulation points.

Lemma 4. Assume RVA generates finitely many serious steps. The following holds:
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(i) If (38) and (39) hold, the sequence {πt } is bounded.
(ii) Suppose, in addition, that

the sequences {πt } and {vt } converge to π� and v�, respectively. (41)

Take m1 in RVA such that m1 ∈ (0, 1
2 ) and suppose that

∃smin > 0 such that the sequence of stepsizes {st }t �∈Ts converges to smin. (42)

Then both π� and π̂ solve (5).

Proof. Since for all t > tlast, π̂ remains fixed, item (i) is straightforward from our
assumptions.
To prove (ii), first note that by (19) and (41), Silverman-Toeplitz’s Theorem applies (see
for instance [11, Chapter II Theorem 2]):

lim pt = lim πt = π� and limwt = lim vt = v� .

Moreover, the closedness of ∂θ implies that v� ∈ ∂θ(π�) . In addition, (41), together
with (12), (39), and (42), implies that

π� = lim πt = lim π̂ + stwt = π̂ + sminv
� . (43)

Consider now the sequence {εt } and recall (21). Since with our assumptions σt → 0, by
Toeplitz’s Theorem,

lim εt = 0 .

This result, combined with (43), yields that, in the limit, the expected gain from (34)
satisfies

lim δt = lim st‖wt‖2 + |〈wt, π̂ − pt 〉| + εt = 2smin‖v�‖2 .

Because for all t > tlast only null steps are done, (35) never holds: θ(πt ) < θ(π̂)+m1δt .
Passing to the limit,

θ(π�) ≤ θ(π̂)+ 2m1smin‖v�‖2 .

Since v� ∈ ∂θ(π�), the supergradient inequality (7) written at π ′ = π̂ and (43) imply
that

θ(π̂) ≤ θ(π�)+ 〈v�, π̂ − π�〉 = θ(π�)− smin‖v�‖2 .

Altogether,

θ(π�) ≤ θ(π̂)+ 2m1smin‖v�‖2 ≤ θ(π�)+ (2m1 − 1)smin‖v�‖2 (44)

Thus, (1 − 2m1)smin‖v�‖2 ≤ 0. Since, by assumption, m1 < 1/2, the last inequality
only holds if v� = 0, i.e., if π� solves (5). Finally, π̂ is also a maximizer, because from
(44) we deduce that θ(π�) = θ(π̂), ��

We point out that, in view of the strong assumption (41), the convergence analysis of
RVA cannot be considered complete. To give a full convergence analysis, we are bound
to further modify VA. We consider the resulting modification, as well as how to recover
primal solutions in the next section.
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6. Further properties of RVA

The primal sequence from (14) was not yet considered in our analysis. To relate this
sequence to a solution of (1), we introduce a stopping test in RVA.

6.1. RVA with stopping test

Consider the following simple modifications in the revised volume algorithm:

Step 0. Same than for RVA. A stopping-tolerance δmin > 0 is also given.
Step 1. Same than for RVA. After computing δt = st‖wt‖2 + |〈wt, π̂k − pt 〉| + εt in

(34), make the stopping test:

If δt ≤ δmin, STOP. (45)

Step 2. Same than for RVA.
Step 3. Same than for RVA.
Step 4. Same than for RVA. ��
It is possible to replace the stopping test in Step 1 by the pair of conditions:

‖wt‖2 ≤ δ2
w and |〈wt, π̂k − pt 〉| + εt ≤ δε (46)

for δw , δε two tolerances given at Step 0. Moreover, if st δ2
w + δε ≤ δmin , we see that

(46) implies (45). A potential advantage of (46) is that it does not depend on st , which
may become unduly small as t increases.

When δmin is set to 0, the algorithm loops forever and we are in the framework of
Section 5.2. When δmin (or δw , δε) is positive, if (41) holds, the stopping test is activated
and there is a last index tlast . Our next result establishes an a-posteriori error bound
relating the last generated primal approximation in (14) to a primal solution, i.e., a
solution of (1).

Proposition 2. Consider RVA with stopping test (46). Suppose there is an index tlast
such that (45) occurs and let zlast be the corresponding zt generated last. If rankA = m

in (1), then there exist L ∈ (0,+∞) depending only on the data of (1) such that, for any
x� solving (1),

‖x� − zlast‖ ≤ Lδw .

Proof. Since x� solves (1), Ax� = b and, thus, A(zlast − x�) = Azlast − b = wlast,
by Lemma 1. As a result,

‖x� − zlast‖ = ‖(A�A)−1A�A(x� − zlast)‖ = ‖(A�A)−1A�wlast‖ ≤ L‖wlast‖ .

Together with (46), the result follows. ��

The proposition above just shows that zlast is at distance smaller than Lδw from the
feasible set {x ∈ � : Ax = b}, containing the solution set of (1).
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6.2. A bundle method derived from RVA

We now show how to transform RVA in a bundle method. The key is to organize the
calculations so that the model θ̂t used in (27) never cuts off a section of graph θ , i.e.,
such that θ̂t (π) ≥ θ(π) for all π ∈ R

m. If this is the case, we have

θ(π)≤ θ̂t (π)≤ θ̂t (πt+1)+ 〈wt+1, π − πt+1〉 (�)

= θ(π̂k)+ 〈wt+1, π − π̂k〉 +
(
θ̂t (πt+1)− θ(π̂k)+ 〈wt+1, π̂k − πt+1〉

)
.

for all π ∈ R
m. Since by (28), 〈wt+1, π̂k − πt+1〉 = st+1‖wt+1‖2,

θ(π) ≤ θ(π̂k)+ 〈wt+1, π − π̂k〉 + Et+1

where we defined Et+1 := θ̂t (πt+1) − θ(π̂k) − st+1‖vt+1‖2 .Writing (�) at π = π̂k
yields that Et+1 ≥ 0 and, thus, wt+1 ∈ ∂Et+1θ(π̂k). Therefore, the update (12) can now
be interpreted as an approximate supergradient move, no (unknown) extragradient point
pt is involved.

Accordingly, the model used in the calculations will be

θ̂t (π) := θ(π̂k)+ min{et +
〈
vt , π − π̂k

〉
, Et +

〈
wt, π − π̂k

〉} ,
with E1 = 0. Subsequent Et+1 can be computed using the definition above, or using αt ,
as described next. The primal optimal value giving αt in (27) is

θ̂t (πt+1)− 1

2st+1
‖πt+1 − π̂k‖2 = θ̂t (πt+1)− st+1

2
‖wt+1‖2 ,

by (28). The dual value from (29) is

st+1

2
‖αtvt + (1 − αt )wt‖2 + αtet + (1 − αt )Et = st+1

2
‖wt+1‖2 + αtet + (1 − αt )Et ,

by (15). Problem (29) is strongly convex, so both optimal values are equal and

Et+1 = θ̂t (πt+1)− θ̂t (πt+1)− st+1‖wt+1‖2 = αtet + (1 − αt )Et .
The corresponding modifications in the revised volume algorithm of Section 5.1 yield
the following scheme, that we call BVA:

Step 0. Same than for RVA. Replace ε1 = 0 by E1 = 0.
Step 1. Same than for RVA, replacing (34) by

δt = st‖wt‖2 + Et . (34)′

Step 2. Same than for RVA.
Step 3. Same than for RVA.
Step 4. Compute a new stepsize st+1. Let αt ∈ [0, 1] be the solution of (29) with εt

as defined in (22) and êt replaced by Et . Compute

wt+1 = αtvt + (1 − αt )wt

Et+1 = αtet + (1 − αt )Et .
This completes the t th iteration: set t = t + 1 and loop to 1. ��



58 L. Bahiense et al.

This algorithm falls within the class of penalized bundle methods, implemented with
maximum bundle compression at each iteration. More specifically, BVA is Algorithm
3.14 in [7, Ch. XV], with maximum bundle size equal to 2. For a proof of convergence,
we refer to Theorems 3.2.2 and 3.2.4 therein. Barring the objectionable condition (41), it
is interesting to compare the assumptions on the stepsizes st required by these theorems
with our own assumptions for RVA:

Algorithm ∞ Serious Steps ∞ Null Steps

RVA (36) and (38) (38) and (42)

BVA (36) and {st }t∈Ts bounded {st }t �∈Ts non increasing and
∑
t �∈Ts

s2
t+1

st
= ∞

Our condition (38) is implied by {st }t∈Ts bounded together with {st }t �∈Ts non in-
creasing. On the other hand, we do not require this last monotony assumption on the
subsequence {st }t �∈Ts . Finally, when compared to (42), the two conditions for proving
convergence for infinite null steps in BVA imply that the decreasing sequence {st }t �∈Ts
is bounded away from zero.

We finish by mentioning that a result along the lines of Proposition 2 can also be
proved for the sequence {zt } computed in Step 4 of BVA. In fact, for such a result to
hold, it is only required from the algorithm to have a stopping test measuring ‖wt‖ like
in (45), or (46), with wt ∈ ∂θ(zt ).

7. Computational experience

We now compare VA, RVA and BVA on a set of Rectilinear Steiner problems.

7.1. Formulation of the problem

Given an undirected weighted graph G = (V ,E), a set of terminal vertices T ⊆ V ,
with |T | ≥ 3 and non-negative edge weights ce for all e ∈ E, the Steiner Problem in
Graphs consists in finding a connected subgraph S of G (called the Steiner Tree) that
includes all terminal vertices at minimum edge cost, i.e., min

∑
e∈S ce. This problem is

known to be NP-hard, specially for grid graphs, see [10], [6]. In this section we report
computational results on Rectilinear Steiner Problems, i.e., instances in which the graph
G is a grid, possibly with holes. Rectilinear instances are known to be the hardest ones,
and the existence of holes makes the problem even harder.

Motivated by the increasing demand in the VLSI design of electronic circuits, the
solution of Steiner problems has received considerable attention in the last years. Among
the proposed solution methods are cutting-planes algorithms, heuristic procedures, ap-
proximation algorithms, Lagrangian relaxations, and polyhedral approaches. Related
surveys are [20], [15], [8], [9] and, more recently, [12] and [3].

We use VA, RVA and BVA to solve a linear relaxation of the nonsimultaneous sin-
gle-commodity flow integer formulation of the Steiner problem from [5], [22]. In order
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to obtain this formulation, we first express the original (undirected weighted graph)
problem as a directed weighted graph problem, as follows:




min
(x,f )∈A

〈c, x〉∑
j∈O(s)

f k
sj −

∑
j∈I (s)

f k
js = 1 , k = 1, . . . , T0 (a1)

∑
j∈O(k)

f k
kj −

∑
j∈I (k)

f k
jk = −1 , k = 1, . . . , T0 (a2)

∑
j∈O(i)

f k
ij −

∑
j∈I (i)

f k
ji = 0 , i ∈ V \ {s, k}, k = 1, . . . , T0 (a3)

xij ∈ {0, 1} , (i, j) ∈ Ed . (int)

0 ≤ f k
ij ≤ xij , (i, j) ∈ Ed , k = 1, . . . , T0 (�).

(47)

In this formulation:
– For each edge e = [i, j ] ∈ E we create arcs (i, j) and (j, i) ∈ Ed with cij = cji = ce,

yielding the directed graph Gd = (V ,Ed);
– We choose one vertex s ∈ T to be the source offering T0 := |T \ {s}| commodities,

one commodity for each of the remaining |T0| terminal vertices;
– For k = 1, . . . , T0 and (i, j) ∈ Ed , let f k

ij be the amount of commodity k on the arc
(i, j), and let xij be a binary variable indicating whether the arc (i, j) is in the Steiner
Tree (xij = 1) or not (xij = 0);

– Consider further that I (i) (resp. O(i)) is the set of all input (resp. output) vertices
j ∈ V such that (j, i) ∈ Ed (resp. (i, j) ∈ Ed ).

Altogether, defining A := {(x, f ) = (xij , f
k
ij ) : (i, j) ∈ Ed , k = 1, . . . , T0} and

c := (cij )(i,j)∈Ed
, we obtain the formulation (47).

Constraints (47)(a1), (a2), and (a3) represent the flow conservation equations for,
respectively, the terminal vertex chosen to be the source, the remaining terminal verti-
ces, and the non-terminal vertices. The constraint set (47)(�) allows a non-zero flow
f k
ij of any commodity k through an arc (i, j) only if this arc is included in the Steiner

Tree. Finally, the objective function is defined as the total sum of the arcs included in
the Steiner Tree, i.e., arcs (i, j) such that xij = 1. In particular, since the costs cij are
integer, this means that the objective function 〈c, x〉 only takes integer values.

7.2. Dual problem

We now derive the corresponding dual problem (5). To obtain a continuous linear pro-
gram as in (1) we consider, instead of (47), its linear relaxation, i.e., a problem with
(47)(int) replaced by

xij ∈ [0, 1] , (i, j) ∈ Ed . (47)(lin)
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We have relaxed constraints (47)(a1)–(a3), playing the role of constraints (1)(a). Accord-
ingly, the number of dual and primal variables are, respectively

m :=(1+ 1+|V |− 2)T0 = |V |(|T |− 1) and n :=|A| = 2|Ed |+ 2|Ed |T0 = 2|Ed ||T | .

For convenience, we consider for each dual variable π ∈ !m subvectors πk ∈ !|V |,
with k = 1, . . . , T0. With this notation the dualization of, for example, (47)(a1) with k

fixed, gives a scalar term πk
s

(∑
j∈O(s) f

k
sj −

∑
j∈I (s) f

k
js − 1

)
in the Lagrangian func-

tion (2). The righthand side vector b ∈ !m in (1) is defined by bks := 1, bkk := −1 and
bki = 0 for all i �= s , k and for all k = 1, . . . , T0. The m× n matrix A from (1) can be
defined likewise.

The remaining constraints, (47)(lin) and (47)(�), form the feasible polyhedron �
from (3). Altogether, the dual function from (10) has the expression

θ(π) =




min
(x,f )∈A

〈c, x〉 +
T0∑
k=1

∑
(i,j)∈Ed

(πk
i − πk

j )f
k
ij − 〈b, π〉

xij ∈ [0, 1] , (i, j) ∈ Ed

0 ≤ f k
ij ≤ xij , (i, j) ∈ Ed , k = 1, . . . , T0 .

]
=: �

Each call to the oracle entails solving this subproblem by inspection on �. Namely,
letting 6kij := πk

i − πk
j , a solution (x(π), f (π)) satisfies

If
∑

k: 6kij<0

|6kij | > cij , then




xij (π) := 1 ,

f k
ij (π) := 1 for every k such that 6kij < 0 ,

f k
ij (π) := 0 for every k such that 6kij ≥ 0 .

If
∑

k: 6kij<0

|6kij | ≤ cij , then



xij (π) := 0 ,

f k
ij (π) := 0 for every k .

Finally, by (11), the supergradient v = A
(
x(π), f (π)

)
− b is readily available.

7.3. Description of the solution method

We now give the general algorithmic scheme we use for all the three dual methods VA,
RVA, BVA. We start with a description on how to compute upper bounds.

Upper bounds. Let zt = (x̂t , f̂t ) be the primal approximation (of a solution of the
linear programming relaxation of (47)) computed in VA, RVA and BVA using (14). We
use this primal information to derive heuristics yielding an upper bound (i.e., an integer
feasible point) for problem (47).
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In what follows we denote by x̂ the vector x̂t and for every edge (i, j) ∈ G = (V ,E),
we let ŷij := x̂ij + x̂j i .

1.- Minimum spanning tree with volumetric weights (MSTV). This heuristic is defined
by the following steps:
– Find a minimum spanning tree MST V in the graph G with arc weights equal to cij if
t = 0 and −ŷij for all t > 0.

– Prune all non-terminal leaves of MST V .
– Find a minimum spanning treeMST in the subgraph induced by the vertices remaining

in MST V after the pruning, considering the original costs cij as weights.
– Prune all non-terminal leaves of MST.

2.-Minimum spanning tree in a modified graph (MSTM). This heuristic is applied in a
subgraph of G. For a given β ∈ [0, 1], let Gβ = (Vβ,Eβ) be the subgraph induced by
the set of vertices Vβ consisting of all terminal vertices and the nonterminal vertices i
satisfying

∑
j ŷij ≥ β . The steps are:

– Find the largest value of β ∈ {0, 0.1, 0.2, . . . , 0.9, 1} such that Gβ is connected.
– Find a minimum spanning tree MSTM in Gβ with arc weights equal to cij if t = 0

and (1 − ŷij )cij for all t > 0.
– Prune all non-terminal leaves of MSTM .
– Find a minimum spanning tree MST in the graph induced by the vertices remaining

in MSTM after the pruning, considering the original costs cij as weights.
– Prune all non-terminal leaves of MST .

3.- Takahashi & Matsuyama heuristic with volumetric weights (T&MV). Given a graph
G = (V ,E) with nonnegative arc costs cij , for each (i, j) ∈ E, the Takahashi &
Matsuyama heuristic is defined in [18] by:

1. Choose an initial terminal vertex vi and set k = 1.
2. Connect vi with the terminal vertex vj , j �= i, that is closest to vi using the shortest

path. Let T1 be the subtree obtained.
3. Connect Tk with the terminal vertex vl , l /∈ Tk , that is closest to Tk using the shortest

path. Let Tk+1 be the subtree obtained;
4. Stop if all terminals are connected; otherwise set k ← k + 1 and loop to 3.

Our third heuristic performs the following steps:
– Given a starting vertex vi , run the Takahashi & Matsuyama heuristic for the digraph
D = (V ,Ed) with arc weights equal to c′ij := c′ji := cij if t = 0 and c′ij := c′ji :=
(1 − ŷij )cij for all t > 0.

– Find a minimum spanning tree in the subgraph induced by the vertices included in the
tree obtained in the previous step, considering the original costs cij as weights.

– Prune all non-terminal leaves.
The heuristics above are used to compute, at certain iterations of the general algo-

rithm, three primal feasible points x̂. The upper bound ub used in (16) is the minimum
of the three corresponding objective values 〈c, x̂〉 in (1).
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Stopping tests. Since (47) has integer cost function depending only on the 0–1 vari-
ables xij , its optimal value is integer. As a result, at every iteration, say t , ub is an integer
value, bigger, by weak duality, than the dual value lb:=θ(πt ), possibly non integer. This
observation yields the stopping test

If ub − lb< 1 STOP, (idg)

that we call idg, by integer duality gap. When a method stops with this test, the solution
found is optimal.

Because VA does not have a stopping criterion, we check in this case primal and
dual feasibility:

If |〈c, x̂t 〉 − lb| ≤ tolplb and ‖wt‖ ≤ tolw STOP , (pdf)

for given initial tolerances, tolp,w.
As a final exit, we also set a maximum of iterations and CPU time:

If t > maxiter or CPUtime > maxtime STOP. (!!)

General Algorithm.
Start. Choose the stopping tolerances and the initial parameters of the dual method

to run (VA, RVA, BVA). Set t = 0.
Lower bound. Make one iteration of the dual method. Update lb. The primal ap-

proximation zt is available.
Upper bound. If the iteration gives a serious step, or if too many null steps have been

done, run the three heuristics, starting from zt . Update ub and define a new stepsize
st+1.

Stopping Test. Check (idg). For VA, check (pdf), for RVA and BVA, check, for in-
stance, (46). Check (!!).

Loop. Set t= t + 1 and loop to Lower bound. ��

7.4. Numerical results

Now we report on the computational experiences. Our code is implemented in C++ and
all runs have been performed on a Pentium 133MHz.

VLSI layout applications yield Steiner Tree Problems over rectangular grid graphs
with many irregularly placed holes. These instances are known to be the hardest ones to be
solved by current methods. For our comparisons, we use the preprocessed version [3] of
the 116 VLSI problems from the library SteinLib available at ftp://ftp.zib.de/
pub/mp-testdata/steinlib.After preprocessing, 42 out of the 116 instances are
solved straightforwardly. From the remaining 74 instances, we chose 50 cases, classified
in 6 groups, as shown in Table 1.

In our General Algorithm, we use the following initial tolerances and parameters:
µ = 0.1 for the stepsize (16), m1 = 0.001 for the serious test (35), tolp = tolw =
0.00001 in (pdf), and δw = δε = 0.00001 in (46). Finally, in (!!) we set maxiter=
500,000 and maxtime=7,200 seconds.
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Table 1. Size of VLSI Instances

Name |V | |E| |T | n = |PrimalPb| m = |DualPb|
dmxa1721 4 5 3 20 8
dmxa1109 9 13 5 104 36
dmxa0903 53 90 7 1080 318
dmxa0848 34 54 11 1080 340
dmxa1200 29 42 13 1008 348
dmxa0368 47 76 9 1216 376
dmxa1801 310 553 17 17696 4960
taq0631 8 11 4 66 24
taq0023 37 63 7 756 222
taq0739 64 105 12 2310 704
taq0431 108 188 10 3384 972
taq0741 84 140 14 3640 1092
taq0751 104 178 14 4628 1352
taq0365 984 1771 21 70840 19680
alue2087 40 65 13 1560 480
alue5067 300 504 38 37296 11100
gap1904 7 9 4 54 21
gap2740 13 19 5 152 52
gap3100 16 25 8 350 112
gap3036 28 42 9 672 224
gap2007 41 70 9 1120 328
msm1931 4 5 3 20 8
msm2705 4 5 3 20 8
msm1844 6 8 4 48 18
msm0580 7 9 4 54 21
msm0920 7 9 4 54 21
msm1234 7 9 4 54 21
msm2802 7 11 4 66 21
msm2326 9 12 5 96 36
msm2525 11 15 6 150 55
msm1477 12 16 6 160 60
msm1008 13 18 6 180 65
msm4515 35 55 8 770 245
msm2492 39 61 9 976 312
msm2601 178 305 12 6710 1958
msm3829 338 594 10 10692 3042
msm2152 191 333 24 15318 4393
msm4312 1299 2355 10 42390 11691
msm2846 347 595 58 67830 19779
diw0487 4 5 3 20 8
diw0473 14 22 6 220 70
diw0459 19 30 8 420 133
diw0445 27 42 10 756 243
diw0559 83 141 11 2820 830
diw0795 225 400 10 7200 2025
diw0778 187 337 15 9436 2618
diw0801 334 605 10 10890 3006
diw0234 760 1413 21 56520 15200
diw0819 1394 2604 26 130200 34850
diw0820 1816 3407 32 211234 56296

The complete set of results for the 50 examples are included in the Appendix, on
Tables 5, 6, and 7, corresponding, respectively, to VA, RVA, and BVA. We summarize
these results in Tables 2, 3, and 4. Each table reports both primal and dual average
results for each one of the 6 groups of instances.
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Table 2. Summary of primal and dual results (VA)

Primal Results Dual Results

Group (%)OPT (%)P rDist Heu (#)SubPb StopT CPUTime(s)

dmxa 100.00 16.49 mstm 6480 (idg) 349.38
taq 85.71 13.38 mstm 311085 (idg) 4723.29
alue 100.00 18.23 t&mv 2340 (idg) 574.23
gap 80.00 15.44 mstm / mstv 503340 (idg) 158.20
msm 83.33 20.22 mstv 558800 (idg) 14961.70
diw 81.82 14.05 mstm / mstv 18480 (idg) 15244.00

Table 3. Summary of primal and dual results (RVA)

Primal Results Dual Results

Group (%)OPT (%)P rDist Heu (#)SubPb StopT CPUTime(s)

dmxa 100.00 15.17 mstm / mstv 6896 (idg) 369.19
taq 100.00 12.33 mstm 268205 (idg) 9094.70
alue 100.00 14.68 t&mv 2770 (idg) 412.71
gap 80.00 15.28 mstv 503330 (idg) 240.56
msm 83.33 19.18 mstv 557269 (idg) 15537.75
diw 81.82 15.38 mstv 23503 (idg) 15572.89

Table 4. Summary of primal and dual results (BVA)

Primal Results Dual Results

Group (%)OPT (%)P rDist Heu (#)SubPb StopT CPUTime(s)

dmxa 100.00 17.00 mstm / mstv 6297 (idg) 347.68
taq 71.43 13.81 t&mv 531927 (idg) 10403.76
alue 100.00 17.16 t&mv / mstm 2437 (idg) 719.18
gap 80.00 15.35 mstv 503176 (idg) 1554.05
msm 83.33 21.53 mstv 601998 (idg) 16951.51
diw 81.82 15.12 mstv 18601 (idg) 15436.81

The two first columns on Primal Results show the percentage of the instances solved
to optimality, and PrAp, the (average) distance between ub and the objective values
〈c, x̂t 〉 computed using the primal approximations obtained by each method. Finally, a
third column Heu shows the heuristic(s) giving best results in average. The columns
on Dual Results report the total number of subproblems solved (i.e., the total number
of calls to the oracle, to evaluate the dual function and to compute a supergradient), the
most frequently verified stopping test, and the total average CPU time in seconds.

In terms of primal results, two good measures for analyzing the quality of the al-
gorithm are the number of instances for which optimality was found, and the quality
of the primal approximation produced by the algorithm. From this point of view, we
see that RVA behaves better than both VA and BVA, because the primal approximations
generated by RVA are better in average for almost all groups. Furthermore, the primal
information obtained with RVA resulted in optimality for all the problems of the group
taq. More precisely, Table 6 in the Appendix shows that the stopping test (idg) held for
all the problems, but taq0739. Yet, for this problem, RVA gave a primal approximation
value 〈c, x̂t 〉 (693.32) that can be considered optimal (693).

In terms of dual results, a good measure for the algorithm quality is the number of
subproblems solved. In this case, RVA also behaves better than both VA and BVA.
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Table 5. Volume Algorithm (VA)

Name LB UB PrAp SubPb (%)Ser. BestH StopT CPU(s)

dmxa1721 172.15 173� 239.94 420 9 MSTV (idg) 0.08
dmxa1109 161.00 161� 209.80 540 8 MSTM (idg) 0.39
dmxa0903 419.95 420� 463.18 1000 12 MSTM (idg) 8.18
dmxa0848 424.10 425� 516.12 760 12 MSTM (idg) 4.80
dmxa1200 482.05 483� 572.43 1060 21 MSTM (idg) 7.78
dmxa0368 491.81 492� 570.20 1040 11 MSTM (idg) 8.01
dmxa1801 1205.12 1206� 1309.82 1660 14 MSTV (idg) 320.14

taq0631 219.21 220� 277.33 720 11 MSTM (idg) 0.52
taq0023 384.93 385� 525.11 820 14 MSTM (idg) 4.82
taq0739 692.50 695 694.75 301205 1 T&MV (pdf) 1771.18
taq0431 674.22 675� 804.70 960 11 MSTV (idg) 23.76
taq0741 784.38 785� 883.71 1300 12 MSTM (idg) 29.60
taq0751 784.24 785� 914.50 1360 28 MSTM (idg) 66.44
taq0365 1743.04 1744� 1838.91 4720 4 T&MV (idg) 2826.97

alue2087 378.79 379� 509.60 900 19 T&MV (idg) 9.88
alue5067 1458.12 1459� 1636.01 1440 16 T&MV (idg) 564.35

gap1904 117.27 118� 151.94 680 9 MSTV (idg) 0.41
gap2740 385.23 386� 462.18 880 10 MSTM (idg) 0.93
gap3100 488.49 489� 624.20 720 30 T&MV (idg) 2.52
gap3036 310.13 311� 356.41 1060 22 MSTV (idg) 6.48
gap2007 488.00 493 513.53 500000 1 MSTM !! 147.86

msm1931 417.00 417� 599.35 460 16 MSTV (idg) 0.13
msm2705 98.79 99� 148.05 360 11 MSTV (idg) 0.03
msm1844 65.42 66� 100.01 460 16 T&MV (idg) 0.33
msm0580 99.66 100� 131.75 440 10 MSTM (idg) 0.23
msm0920 131.24 132� 171.53 600 19 MSTV (idg) 0.51
msm1234 163.43 164� 213.72 640 12 MSTV (idg) 0.34
msm2802 120.71 121� 191.16 460 14 MSTM (idg) 0.22
msm2326 112.37 113� 160.93 580 22 MSTV (idg) 0.73
msm2525 160.47 161� 201.75 860 20 MSTV (idg) 1.30
msm1477 143.14 144� 196.48 660 26 T&MV (idg) 1.23
msm1008 244.42 245� 316.16 640 24 MSTV (idg) 1.31
msm4515 434.62 435� 571.31 680 16 MSTV (idg) 4.04
msm2492 519.50 522 542.43 500000 1 T&MV !! 135.25
msm2601 998.28 999� 1127.85 1260 6 T&MV (idg) 50.29
msm3829 1140.08 1141� 1149.35 1660 6 MSTV (idg) 134.94
msm2152 1145.29 1146� 1299.89 1660 16 MSTM (idg) 230.82
msm4312 1850.91 1887 1990.06 13760 1 T&MV !! 7200.00
msm2846 2185.17 2192 2266.18 33620 1 MSTM !! 7200.00

diw0487 83.47 84� 116.39 520 10 MSTV (idg) 0.17
diw0473 226.14 227� 284.49 720 18 MSTV (idg) 1.35
diw0459 326.32 327� 390.94 840 12 MSTV (idg) 2.25
diw0445 405.15 406� 481.49 1020 13 MSTM (idg) 4.72
diw0559 872.32 873� 967.97 1380 13 MSTM (idg) 26.92
diw0795 1377.24 1378� 1535.27 1420 8 T&MV (idg) 88.35
diw0778 1272.22 1273� 1400.51 1420 12 MSTV (idg) 88.16
diw0801 1480.29 1481� 1593.87 1740 11 T&MV (idg) 200.70
diw0234 1753.25 1754� 2257.63 1040 10 MSTM (idg) 431.38
diw0819 3044.33 3097 3314.21 6280 2 MSTM !! 7200.00
diw0820 3404.60 3809 4202.29 2100 11 T&MV !! 7200.00
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Table 6. Revised Volume Algorithm (RVA)

Name LB UB PrAp SubPb (%)Ser. BestH StopT CPU(s)

dmxa1721 172.13 173� 222.35 573 7 MSTV (idg) 0.25
dmxa1109 160.09 161� 211.14 436 12 MSTM (idg) 0.41
dmxa0903 419.07 420� 478.73 964 19 T&MV (idg) 8.56
dmxa0848 424.17 425� 508.88 774 20 MSTM (idg) 5.24
dmxa1200 482.20 483� 552.74 1072 26 MSTV (idg) 7.96
dmxa0368 491.39 492� 560.88 1042 21 MSTM (idg) 8.57
dmxa1801 1205.15 1206� 1291.38 2035 25 MSTV (idg) 338.20

taq0631 219.42 220� 259.07 845 13 MSTM (idg) 0.62
taq0023 384.78 385� 474.01 803 22 MSTM (idg) 4.99
taq0739 692.47 695 693.32 250449 13 T&MV (46) 2123.38
taq0431 674.33 675� 820.68 1408 18 MSTV (idg) 29.22
taq0741 784.17 785� 867.85 1399 18 MSTM (idg) 30.64
taq0751 784.31 785� 911.03 1426 35 MSTV (idg) 69.90
taq0365 1743.31 1744� 1972.46 11875 19 T&MV (idg) 6835.95

alue2087 378.23 379� 491.89 767 29 T&MV (idg) 7.02
alue5067 1458.32 1459� 1558.89 2003 26 T&MV (idg) 405.69

gap1904 117.11 118� 158.08 648 13 MSTV (idg) 0.36
gap2740 385.52 386� 476.25 836 16 MSTV (idg) 1.02
gap3100 488.64 489� 592.93 840 31 T&MV (idg) 2.77
gap3036 310.16 311� 349.33 1006 27 T&MV (idg) 5.65
gap2007 487.89 493 511.49 500000 18 MSTV !! 230.76

msm1931 417.00 417� 532.19 691 21 MSTV (idg) 0.30
msm2705 98.94 99� 144.64 441 12 MSTV (idg) 0.12
msm1844 65.32 66� 93.48 423 13 MSTV (idg) 0.25
msm0580 99.13 100� 128.74 413 13 MSTM (idg) 0.26
msm0920 131.08 132� 171.86 710 18 MSTV (idg) 0.44
msm1234 163.37 164� 228.65 486 14 MSTV (idg) 0.25
msm2802 120.04 121� 179.23 589 12 MSTM (idg) 0.30
msm2326 112.13 113� 162.85 639 22 MSTV (idg) 0.65
msm2525 160.20 161� 214.54 809 22 MSTV (idg) 1.16
msm1477 143.04 144� 186.47 781 24 T&MV (idg) 1.20
msm1008 244.43 245� 317.31 816 24 MSTV (idg) 1.60
msm4515 434.16 435� 573.04 597 26 MSTV (idg) 3.78
msm2492 519.42 522 538.56 500000 25 T&MV !! 241.73
msm2601 998.23 999� 1171.62 1570 16 MSTV (idg) 62.84
msm3829 1140.75 1141� 1147.81 9156 24 MSTV (idg) 561.36
msm2152 1145.36 1146� 1199.42 2008 25 MSTV (idg) 261.51
msm4312 1852.66 1893 1951.36 11320 18 T&MV !! 7200.00
msm2846 2186.10 2191 2315.53 25820 20 T&MV !! 7200.00

diw0487 83.20 84� 109.26 418 10 MSTV (idg) 0.08
diw0473 226.24 227� 291.73 734 21 MSTV (idg) 1.08
diw0459 326.02 327� 379.63 900 18 MSTV (idg) 2.12
diw0445 405.08 406� 452.54 820 22 T&MV (idg) 3.44
diw0559 872.10 873� 930.41 1502 21 MSTM (idg) 22.87
diw0795 1377.32 1378� 1500.89 1710 23 T&MV (idg) 109.82
diw0778 1272.54 1273� 1381.91 2008 24 MSTV (idg) 97.34
diw0801 1480.22 1481� 1596.24 6744 17 MSTV (idg) 525.96
diw0234 1753.33 1754� 2042.07 1687 25 T&MV (idg) 410.18
diw0819 3024.48 3115 3620.67 5100 20 MSTV !! 7200.00
diw0820 3081.41 3833 6634.23 1880 25 T&MV !! 7200.00

Finally, in terms of CPU time, VA is 10% faster than RVA, that is in turn 10% faster
than BVA.

We conclude from Tables 2, 3 and 4 that RVA is better suited to solve difficult instanc-
es coming from real-world VLSI design problems. Moreover, since the good numerical
performances of RVA are backgrounded by some convergence results, RVA can be con-
sidered as a good compromise between practice and theory. Altogether, when solving
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Table 7. Bundle Version of the Revised Volume Algorithm (BVA)

Name LB UB PrAp SubPb (%)Ser. BestH StopT CPU(s)

dmxa1721 172.14 173� 241.64 411 10 MSTV (idg) 0.16
dmxa1109 160.10 161� 215.53 474 12 MSTM (idg) 0.50
dmxa0903 419.11 420� 491.78 849 23 T&MV (idg) 8.34
dmxa0848 424.42 425� 512.47 768 20 MSTM (idg) 5.15
dmxa1200 482.11 483� 561.40 1030 30 MSTV (idg) 8.04
dmxa0368 491.94 492� 564.91 1018 18 MSTM (idg) 7.90
dmxa1801 1205.05 1206� 1294.03 1747 25 MSTV (idg) 317.59

taq0631 219.27 220� 272.01 799 13 MSTM (idg) 0.56
taq0023 384.86 385� 514.81 856 20 T&MV (idg) 4.86
taq0739 692.45 695 697.68 500000 1 T&MV !! 3071.25
taq0431 674.18 675� 835.81 1164 18 MSTV (idg) 25.78
taq0741 784.52 785� 883.44 1414 18 T&MV (idg) 31.92
taq0751 784.06 785� 934.19 1274 38 MSTV (idg) 69.39
taq0365 1732.62 1744 1841.82 26420 3 T&MV !! 7200.00

alue2087 378.73 379� 498.06 766 31 T&MV (idg) 9.43
alue5067 1458.05 1459� 1628.90 1671 24 MSTM (idg) 709.75

gap1904 117.19 118� 152.33 680 13 MSTV (idg) 0.45
gap2740 385.21 386� 479.01 727 17 MSTV (idg) 1.13
gap3100 488.45 489� 606.91 769 34 T&MV (idg) 2.77
gap3036 310.14 311� 364.67 1000 30 MSTM (idg) 6.14
gap2007 488.00 493 496.25 500000 1 MSTV !! 1543.56

msm1931 417.00 417� 599.34 460 19 MSTV (idg) 0.19
msm2705 98.79 99� 149.46 342 14 MSTV (idg) 0.12
msm1844 65.26 66� 99.17 472 19 MSTV (idg) 0.36
msm0580 99.47 100� 132.06 435 14 MSTM (idg) 0.34
msm0920 131.28 132� 166.56 661 21 MSTV (idg) 0.62
msm1234 163.64 164� 216.34 603 15 MSTV (idg) 0.47
msm2802 120.42 121� 192.90 448 17 MSTM (idg) 0.36
msm2326 112.44 113� 161.45 574 26 MSTV (idg) 0.79
msm2525 160.19 161� 203.64 836 25 MSTV (idg) 1.61
msm1477 143.61 144� 184.75 795 26 T&MV (idg) 1.45
msm1008 244.51 245� 317.56 633 30 MSTV (idg) 1.44
msm4515 434.09 435� 577.85 648 23 MSTV (idg) 3.77
msm2492 519.40 522 593.55 500000 1 T&MV !! 1356.71
msm2601 998.22 999� 1114.70 1277 17 MSTV (idg) 53.80
msm3829 1140.96 1141� 1170.60 18140 16 MSTM (idg) 895.31
msm2152 1145.09 1146� 1266.43 1634 26 MSTM (idg) 234.17
msm4312 1794.09 1893 1981.25 39020 2 T&MV !! 7200.00
msm2846 2174.43 2192 2246.70 35020 1 T&MV !! 7200.00

diw0487 83.39 84� 113.13 580 11 MSTV (idg) 0.17
diw0473 226.10 227� 292.29 642 24 MSTV (idg) 1.19
diw0459 326.02 327� 383.37 895 17 MSTV (idg) 2.30
diw0445 405.24 406� 449.98 1039 20 MSTM (idg) 4.78
diw0559 872.20 873� 965.39 1366 22 MSTV (idg) 30.33
diw0795 1377.08 1378� 1553.04 1316 21 T&MV (idg) 84.85
diw0778 1272.02 1273� 1406.10 1305 22 MSTV (idg) 92.35
diw0801 1480.08 1481� 1581.98 1996 21 MSTV (idg) 211.82
diw0234 1753.35 1754� 2258.90 1522 20 MSTM (idg) 609.02
diw0819 3041.46 3097 3243.44 6060 17 MSTV !! 7200.00
diw0820 3181.67 3833 5493.79 1880 23 T&MV !! 7200.00

linear relaxations of difficult combinatorial problems, and based on our analysis and
experience, we think that RVA should be preferred to both VA and BVA.

Appendix. We give here the complete tables with primal and dual results, for each
preprocessed instance (see Table 1) and for each algorithm. Tables 5, 6, and 7, corre-
spond, respectively, to VA, RVA, and BVA. A superscript � in the column ub indicates
that optimality was found.
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Table 8. Additional costs to recover the VLSI Instances after preprocessing

Name costadd

dmxa1721 607
dmxa1109 293
dmxa0903 160
dmxa0848 169
dmxa1200 267
dmxa0368 525
dmxa1801 159

taq0631 361
taq0023 236
taq0739 153
taq0431 222
taq0741 62
taq0751 154
taq0365 170

alue2087 670
alue5067 1127

gap1904 645
gap2740 359
gap3100 151
gap3036 146
gap2007 611

msm1931 187
msm2705 615
msm1844 122
msm0580 367
msm0920 674
msm1234 386
msm2802 805
msm2326 286
msm2525 1129
msm1477 924
msm1008 249
msm4515 195
msm2492 937
msm2601 441
msm3829 430
msm2152 444
msm4312 149
msm2846 944

diw0487 1340
diw0473 871
diw0459 1035
diw0445 957
diw0559 697
diw0795 172
diw0778 900
diw0801 106
diw0234 242
diw0819 302
diw0820 428

Table 8 shows the additional costs that must be added to the optimal costs obtained
with the preprocessed instances of Table 1in order to recover the original optimal costs
(before preprocessing).
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The code for the Volume Algorithm applied to the Steiner Problem in Graphs, which is the basis algorithm
for RVA and BVA, was jointly developed by the first author and Francisco Barahona from the IBM Research
Center at Yorktown Heighs, NY, USA, see [1].

The preprocessed VLSI instances were provided by Eduardo Barboza, see [3].

References

1. Bahiense, L., Barahona, F., Porto. O.: Solving Steiner tree problems in graphs with Lagrangian relaxation.
Accepted for publication in J. Combinatorial Optim. 2002

2. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with a subgradient method.
Math. Program. 87(3, Ser. A), 385–399 (2000)

3. Barboza, E., Aragao, M.V., Ribeiro, C.: Preprocessing Steiner problems from VLSI layout. Networks 40,
38–50 (2002)
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