L. Bahiense • N. Maculan • C. Sagastizábal

The volume algorithm revisited: relation with bundle methods

Received: December 1999 / Accepted: September 2002
Published online: December 19, 2002 - © Springer-Verlag 2002

Abstract

We revise the Volume Algorithm (VA) for linear programming and relate it to bundle methods. When first introduced, VA was presented as a subgradient-like method for solving the original problem in its dual form. In a way similar to the serious/null steps philosophy of bundle methods, VA produces green, yellow or red steps. In order to give convergence results, we introduce in VA a precise measure for the improvement needed to declare a green or serious step. This addition yields a revised formulation (RVA) that is halfway between VA and a specific bundle method, that we call BVA. We analyze the convergence properties of both RVA and BVA. Finally, we compare the performance of the modified algorithms versus VA on a set of Rectilinear Steiner problems of various sizes and increasing complexity, derived from real world VLSI design instances.

Key words. volume algorithm - bundle methods - Steiner problems

1. Introduction

Consider the problem of solving large-scale linear programs of the form

$$
\left\{\begin{align*}
& \min _{x \in \mathbb{R}^{n}}\langle c, x\rangle \tag{1}\\
& A x=b \\
& D x=e \\
& x \geq 0
\end{align*}\right.
$$

where $c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, D \in \mathbb{R}^{d \times n}, e \in \mathbb{R}^{d}$, and $\operatorname{rank} D=d$. When constraints (1)(a) are difficult to deal with, a possible approach is to solve a dual problem, obtained via Lagrangian relaxation. For this approach to be efficient, two critical points are:

- how to solve the nondifferentiable dual problem,
- how to recover a primal solution.

The Volume Algorithm (VA) introduced in [2] appears as a good answer to the questions above:

[^0]- a dual optimum is obtained by applying what the authors call an extension of the subgradient algorithm, [16]. Such extension aims at keeping the simplicity of the subgradient methods while mimicking a bundle-like strategy, in the spirit of the very first works [14] and [21], i.e., with quadratic subproblems that are easy to solve, because they are bivariate;
- a primal solution is simultaneously produced by estimating certain volumes associated to active faces in (1)(a).
To assess the validity of VA, in [2, Section 6] successful numerical experience is reported on set partitioning, set covering, max-cut and facility location problems.

Actually, [2] mostly stresses numerical concerns, and does not consider theoretical properties of VA, such as when the proposed algorithm converges, or its relation with other methods. In this paper we address this issue and show that VA can be interpreted as an extragradient method, [13], [17]. More precisely, each iteration of VA generates a sampling point by using an ε-extragradient, see Theorem 1 below. A sampling point is declared to be green in [2] when there is an improvement in the dual function, somewhat similarly to a serious-step in bundle methods. However, unlike bundle methods, in VA the objective improvement is not rigorously measured.

In order to keep track of the improvement produced by each green or serious step, it is important to supply VA with the notion of a model of the objective dual function θ. As a first step towards analyzing convergence, we present a revised variant, that we call RVA. This revised formulation introduces a precise measure for the improvement needed to declare a green iteration. Such measure, known also as expected gain, relates exact values of θ to values predicted by a computable function modelling θ. We conclude our analysis by relating RVA to BVA, an economic variant of bundle methods.

Our paper is organized as follows. In Section 2 we revise some essential notions of duality and convexity. Next, in Section 3, we present VA and study some of its main features. All the elements needed to introduce a model in VA are developed in Section 4. Section 5 is devoted to RVA: description and convergence analysis. When RVA generates an infinite sequence of null steps, we only obtain a convergence result that depends on a rather strong assumption, namely (41) below. In order to give a full convergence analysis, we are bound to further modify RVA and mold it as a bundle method, yielding BVA. This is the subject of Section 6, where we also give an a-posteriori error bound for the approximated primal solution obtained from RVA. Finally, we report in Section 7 successful numerical results comparing RVA and and BVA with VA on a battery of rectilinear Steiner problems of various sizes, [12] and [3].

2. A glimpse of duality and convexity

We first review some basic notions of classical Lagrangian relaxation and convex(concave) analysis, [4, Ch. VIII]. In particular, in Section 2.2, we recall the important concept of ε-supergradient.

2.1. The dual problem

In order to relax constraints (1)(a) we use the Lagrangian function

$$
\begin{equation*}
L(x, \pi):=\langle c, x\rangle+\langle A x-b, \pi\rangle, \tag{2}
\end{equation*}
$$

where $\pi \in \mathbb{R}^{m}$ is the associated vector of Lagrange multipliers.
We suppose that (1) is feasible. In addition, we denote by Ψ the nonempty polyhedron gathering the "easy" constraints:

$$
\begin{equation*}
\Psi:=\left\{x \in \mathbb{R}^{n}: D x=e, x \geq 0\right\} \tag{3}
\end{equation*}
$$

In this context, the weak duality relationship

$$
\begin{equation*}
\min _{x \in \Psi} \max _{\pi \in \mathbb{R}^{m}} L(x, \pi) \geq \max _{\pi \in \mathbb{R}^{m}} \min _{x \in \Psi} L(x, \pi) \tag{4}
\end{equation*}
$$

holds. The left-hand side of (4), or primal problem, has the same optimal value as (1). The right-hand side in (4) is the dual problem

$$
\begin{equation*}
\max _{\pi \in \mathbb{R}^{m}} \theta(\pi), \tag{5}
\end{equation*}
$$

whose objective is the dual function

$$
\begin{equation*}
\theta(\pi):=\min _{x \in \Psi} L(x, \pi) . \tag{6}
\end{equation*}
$$

Equality in (4) means that there is no duality gap. That is to say, solving (5) amounts to solve (1). For our problem, given a point $p^{\star} \in \mathcal{P}^{\star}$, the solution set of (5), any $x\left(p^{\star}\right)$ satisfying

$$
x\left(p^{\star}\right) \in \underset{x \in \Psi}{\operatorname{Argmin}} L\left(x, p^{\star}\right) \quad \text { such that } A x\left(p^{\star}\right)=b
$$

is a solution of (1).

2.2. Supergradients and ε-supergradients

Being defined as the pointwise minimum of affine functions of π, the dual function (6) is concave and nondifferentiable. To maximize θ, it is known that any nonsmooth optimization method uses the information given by an "oracle". Specifically, for any given π, the oracle returns the values $\theta(\pi)$ and a subgradient of the convex function $-\theta$ at π. Since throughout this paper we refer to the concave function θ, we find convenient to introduce here the notion of supergradients.

Definition 1. Let θ be a concave function and let $\pi \in \mathbb{R}^{m}$. The point $v \in \mathbb{R}^{m}$ is called a supergradient of θ at π whenever

$$
\begin{equation*}
\theta\left(\pi^{\prime}\right) \leq \theta(\pi)+\left\langle v, \pi^{\prime}-\pi\right\rangle \text { for all } \pi^{\prime} \in \mathbb{R}^{m} . \tag{7}
\end{equation*}
$$

In this case, we write $v \in \partial \theta(\pi)$.
Given $\varepsilon \geq 0$, the point $w \in \mathbb{R}^{m}$ is an ε-supergradient of θ at $p \in \mathbb{R}^{m}$ whenever

$$
\begin{equation*}
\theta\left(\pi^{\prime}\right) \leq \theta(p)+\left\langle w, \pi^{\prime}-p\right\rangle+\varepsilon \text { for all } \pi^{\prime} \in \mathbb{R}^{m} . \tag{8}
\end{equation*}
$$

In this case, we write $w \in \partial \theta_{\varepsilon}(p)$.
The ε-superdifferential $\partial_{\varepsilon} \theta(p)$ has good continuity properties, see [7, XI.4.1.1]. In particular, it is a closed multi-function of ε and p :

$$
\begin{equation*}
\left\{\varepsilon_{t}, p_{t}, w_{t} \in \partial_{\varepsilon_{t}} \theta\left(p_{t}\right)\right\} \longrightarrow\left\{\varepsilon^{*}, p^{*}, w^{*}\right\} \Longrightarrow w^{*} \in \partial_{\varepsilon^{*}} \theta\left(p^{*}\right) . \tag{9}
\end{equation*}
$$

When specialized to our dual function (6), we see that to evaluate $\theta(\pi)$ the oracle must solve the subproblem

$$
\begin{equation*}
\theta(\pi)=\min _{x \in \Psi} L(x, \pi)=\min _{x \in \Psi}\{\langle c, x\rangle+\langle A x-b, \pi\rangle\} . \tag{10}
\end{equation*}
$$

Let $x(\pi) \in \operatorname{Argmin} L(\cdot, \pi)$ be a solution of (10). Then, for any $\pi^{\prime} \in \mathbb{R}^{m}$, straightforward calculations yield

$$
\begin{aligned}
\theta\left(\pi^{\prime}\right) & =\min _{x \in \Psi} L\left(x, \pi^{\prime}\right) \leq L\left(x(\pi), \pi^{\prime}\right)\langle c, x(\pi)\rangle+\left\langle A x(\pi)-b, \pi^{\prime}\right\rangle \\
& =\langle c, x(\pi)\rangle+\left\langle A x(\pi)-b, \pi^{\prime}\right\rangle \pm\langle A x(\pi)-b, \pi\rangle \\
& =\theta(\pi)+\left\langle A x(\pi)-b, \pi^{\prime}-\pi\right\rangle .
\end{aligned}
$$

It follows that the supergradient

$$
\begin{equation*}
v:=A x(\pi)-b \in \partial \theta(\pi) \tag{11}
\end{equation*}
$$

can be computed for free once the oracle has solved (10). Clearly, the difficulty for solving (10) depends on the nature of the constraints defining the polyhedron Ψ of (3). The easier this subproblem solution will be, the more efficient will be the dual approach. This is precisely the case of Steiner problems considered in our numerical experience, see Section 7.2 below.

3. On the volume method

The dual problem (5) needs to be solved by using a nonsmooth optimization method, such as subgradients, cutting-planes, analytic centers, or bundle methods, see [7]. All of these methods have advantages and drawbacks, and their efficiency depends on the nature of the problem to be solved. For instance, subgradient methods are known by their simplicity, but also for the lack of well defined stopping criteria. On the other hand, bundle methods are known to be robust and precise, but at each iteration the solution of a (potentially heavy) quadratic program is required.

The volume methodology was introduced in [2] in an effort to combine the best features of subgradients and bundle methods. Roughly speaking, to produce a dual solution VA generates sampling points π_{t} by solving a subproblem as in (10), with π_{t} depending on:

- a given stability center $\hat{\pi}_{k}$,
- a certain steplength s_{t}, and
$-w_{t}$, a convex combination of available supergradients.
Stability centers are special sampling points, providing a "good enough" improvement in the optimization process; in other words, $\left\{\hat{\pi}_{k}\right\}$ is a selected subsequence of $\left\{\pi_{t}\right\}$. Primal solutions are approximated by z_{t}, a convex combination of past primal points. The coefficients used in such convex sums are the same than those used to compute w_{t}, see (14), (15) below.

3.1. The Volume Algorithm VA

STEP 0. Given an initial $\pi_{0} \in \mathbb{R}^{m}$, compute $x_{0} \in \operatorname{Argmin} L\left(x, \pi_{0}\right)$, a solution of (10) written for $\pi=\pi_{0}$. Let $v_{0}:=A x_{0}-b$. Initialize $z_{1}=x_{0}, w_{1}:=v_{0}$, and $\hat{\pi}_{1}=\pi_{0}$. Set $k=t=1$ and $T_{s}=\emptyset$.

STEP 1. Having the stability center $\hat{\pi}_{k}$, and a steplength $s_{t}>0$, make the move

$$
\begin{equation*}
\pi_{t}=\hat{\pi}_{k}+s_{t} w_{t} . \tag{12}
\end{equation*}
$$

STEP 2. Compute $x_{t} \in \operatorname{Argmin} L\left(x, \pi_{t}\right)$, a solution of (10) written for $\pi=\pi_{t}$. Let $v_{t}:=A x_{t}-b$.

STEP 3. Depending on whether

$$
\begin{equation*}
\theta\left(\pi_{t}\right)>\theta\left(\hat{\pi}_{k}\right) \quad \text { and } \quad\left\langle w_{t}, v_{t}\right\rangle>0 \tag{13}
\end{equation*}
$$

is false or true, decide to make, respectively,

- either a null-step: (13) does not hold, just do nothing,
- or a serious-step: (13) holds. In this case, update the stability center: $\hat{\pi}_{k+1}=\pi_{t}$, set $t_{k}:=t, T_{s}=T_{s} \cup\left\{t_{k}\right\}$, and increase k by 1 .

STEP 4. Compute a new stepsize s_{t+1}.
Given a parameter $0 \leq \alpha_{t} \leq 1$, define

$$
\begin{align*}
z_{t+1} & :=\alpha_{t} x_{t}+\left(1-\alpha_{t}\right) z_{t} \tag{14}\\
w_{t+1} & :=\alpha_{t} v_{t}+\left(1-\alpha_{t}\right) w_{t} . \tag{15}
\end{align*}
$$

This completes the $t^{t h}$ iteration: set $t=t+1$ and loop to 1 .
When comparing our description with the original statement of VA in [2] a few minor differences arise:

- Serious steps correspond to green iterations in the Volume Algorithm, but we have collapsed yellow and red iterations in our null steps.
- The original Volume Algorithm further specifies the stepsize as

$$
\begin{equation*}
s_{t}=\mu \frac{\mathrm{UB}-\theta\left(\pi_{t}\right)}{\left\|w_{t}\right\|^{2}}, \tag{16}
\end{equation*}
$$

where UB is an upper bound for the optimal value in (1) and $\mu \in(0,2)$ is a relaxation factor. Since our development does not rely on this particular choice of steplength, we prefer to omit it in our description of VA. Instead, for our convergence results, we will establish abstract conditions to be satisfied by the sequence of stepsizes, such as (36), (38) and (42) given in Section 5.2 below.

- A suitable choice of the convex parameter α_{t} is discussed in Section 4 below.

3.2. Some useful relations

We now establish some relations satisfied by the recurrent formulæ of VA.
Lemma 1. Let $\left\{z_{t}\right\},\left\{v_{t}\right\}$ and $\left\{w_{t}\right\}$ be the sequences generated by VA. Then for all t, $v_{t} \in \partial \theta\left(\pi_{t}\right)$ and $w_{t}=A z_{t}-b$.

Proof. The first statement is just (11), written with $(\pi, v, x(\pi)):=\left(\pi_{t}, v_{t}, x_{t}\right)$. The second one is straightforward from the definition of each sequence involved, using the linearity of A.

Since $v_{t} \in \partial \theta\left(\pi_{t}\right)$ for all t, from (7) it can be seen that the righthand side condition in (13) implies the lefthand side condition in the same equation. We conjecture that this relation was the reason behind the distinction between yellow and red iterations in the original Volume Algorithm.

Lemma 2. For any $t \geq 1$, consider the following coefficients

$$
\begin{equation*}
\mu_{t, j}:=\alpha_{t-j} \prod_{i=t-j+1}^{t}\left(1-\alpha_{i}\right) \quad \text { for } j=0, \ldots, t \tag{17}
\end{equation*}
$$

where $\alpha_{0}:=1$ and the product $\prod_{i=i_{0}}^{i_{f}}\left(1-\alpha_{i}\right)$ is defined to be 1 whenever $i_{f}<i_{0}$. The following hold:
(i) for all $j \leq t, \mu_{t, j} \geq 0$, and $\sum_{j=0}^{t} \mu_{t, j}=1$; and
(ii) both (14) and (15) can be expressed using the convex multipliers $\mu_{t, j}$:

$$
z_{t+1}=\sum_{j=0}^{t} \mu_{t, j} x_{t-j} \quad \text { and } \quad w_{t+1}=\sum_{j=0}^{t} \mu_{t, j} v_{t-j}
$$

Proof. (i) Since $\alpha_{t} \in[0,1]$ for all t, positivity of $\mu_{t, j}$ is clear. To see that the coefficients sum up to 1 , expand the terms of the sum taking nested factors:

$$
\begin{aligned}
\sum_{j=0}^{t} \mu_{t, j} & =\alpha_{t} 1+\alpha_{t-1}\left(1-\alpha_{t}\right)+\alpha_{t-2}\left(1-\alpha_{t}\right)\left(1-\alpha_{t-1}\right)+\cdots \\
& =\alpha_{t}+\left(1-\alpha_{t}\right)\left[\alpha_{t-1}+\left(1-\alpha_{t-1}\right)\left(\alpha_{t-2}+\left(1-\alpha_{t-2}\right)\left(\cdots\left(1-\alpha_{2}\right)\left(\alpha_{1}+1-\alpha_{1}\right) \cdots\right)\right]\right. \\
& =\alpha_{t}+\left(1-\alpha_{t}\right)\left[\alpha_{t-1}+\left(1-\alpha_{t-1}\right)\left(\alpha_{t-2}+\left(1-\alpha_{t-2}\right) 1\right)\right] \\
& =\alpha_{t}+\left(1-\alpha_{t}\right)\left[\alpha_{t-1}+\left(1-\alpha_{t-1}\right) 1\right] \\
& =1
\end{aligned}
$$

The proof of (ii) follows from (14) (resp. (15)), by induction on t.
We now show that each w_{t} is an approximate supergradient of θ at a point p_{t}, that can be defined recursively using a formula like the ones in (14), (15). Namely, letting $p_{1}:=\pi_{0}$, at STEP 4 of VA we also compute

$$
\begin{equation*}
p_{t+1}:=\alpha_{t} \pi_{t}+\left(1-\alpha_{t}\right) p_{t} . \tag{18}
\end{equation*}
$$

An equivalent expression, obtained by reasoning like in Lemma 2(ii), is

$$
\begin{equation*}
p_{t+1}=\sum_{j=0}^{t} \mu_{t, j} \pi_{t-j} . \tag{19}
\end{equation*}
$$

Theorem 1. Let $\left\{z_{t}\right\},\left\{w_{t}\right\}$ and $\left\{p_{t}\right\}$ be the sequences generated by (14), (15) and (18), respectively. For any $t \geq 1$, consider the coefficients $\left\{\varepsilon_{t}\right\}$ defined as

$$
\begin{equation*}
\varepsilon_{t+1}:=\alpha_{t}\left(1-\alpha_{t}\right)\left\langle v_{t}-w_{t}, p_{t}-\pi_{t}\right\rangle+\left(1-\alpha_{t}\right) \varepsilon_{t}, \tag{20}
\end{equation*}
$$

with $\varepsilon_{1}:=0$. Then $\varepsilon_{t} \geq 0$ and $w_{t} \in \partial_{\varepsilon_{t}} \theta\left(p_{t}\right)$.
Proof. When $t=1, w_{1}=v_{0}=A x_{0}-b \in \partial \theta\left(\pi_{0}\right)$ by Lemma 1. Since $p_{1}=\pi_{0}$ and $\varepsilon_{1}=0, w_{1} \in \partial_{\varepsilon_{1}} \theta\left(p_{1}\right)=\partial \theta\left(\pi_{0}\right)$.
For all $t \geq 1$, make the inductive assumption that $w_{t} \in \partial_{\varepsilon_{t}} \theta\left(p_{t}\right)$. Since $v_{t} \in \partial \theta\left(\pi_{t}\right)$ by Lemma 1, using (7) and (8), we have for all $\pi^{\prime} \in \mathbb{R}^{m}$:

$$
\begin{align*}
& \theta\left(\pi^{\prime}\right) \leq \theta\left(\pi_{t}\right)+\left\langle v_{t}, \pi^{\prime}-\pi_{t}\right\rangle \tag{a}\\
& \theta\left(\pi^{\prime}\right) \leq \theta\left(p_{t}\right)+\left\langle w_{t}, \pi^{\prime}-p_{t}\right\rangle+\varepsilon_{t} \tag{b}
\end{align*}
$$

Make the convex combination $\alpha_{t}(\mathrm{a})+\left(1-\alpha_{t}\right)(\mathrm{b})$, use (18) and the concavity of θ to write, for all $\pi^{\prime} \in \mathbb{R}^{m}$,

$$
\theta\left(\pi^{\prime}\right) \leq \theta\left(p_{t+1}\right)+\left\langle w_{t+1}, \pi^{\prime}\right\rangle-\left\langle\alpha_{t} v_{t}, \pi_{t}\right\rangle-\left\langle\left(1-\alpha_{t}\right) w_{t}, p_{t}\right\rangle+\left(1-\alpha_{t}\right) \varepsilon_{t}
$$

Call ε_{t+1} the term such that the inequality above can be written as

$$
\begin{gathered}
\theta\left(\pi^{\prime}\right) \leq \theta\left(p_{t+1}\right)+\left\langle w_{t+1}, \pi^{\prime}-p_{t+1}\right\rangle+\varepsilon_{t+1} \\
\text { i.e., } \begin{array}{c}
\varepsilon_{t+1} \\
:=\left\langle w_{t+1}, p_{t+1}\right\rangle-\left\langle\alpha_{t} v_{t}, \pi_{t}\right\rangle-\left\langle\left(1-\alpha_{t}\right) w_{t}, p_{t}\right\rangle+\left(1-\alpha_{t}\right) \varepsilon_{t} \\
=\left\langle\alpha_{t} v_{t}, p_{t+1}-\pi_{t}\right\rangle+\left\langle\left(1-\alpha_{t}\right) w_{t}, p_{t+1}-p_{t}\right\rangle+\left(1-\alpha_{t}\right) \varepsilon_{t} .
\end{array}
\end{gathered}
$$

By (18), $p_{t+1}-\pi_{t}=\left(1-\alpha_{t}\right)\left(p_{t}-\pi_{t}\right)$ and $p_{t+1}-p_{t}=\alpha_{t}\left(\pi_{t}-p_{t}\right)$. Thus,

$$
\varepsilon_{t+1}=\left\langle\alpha_{t} v_{t},\left(1-\alpha_{t}\right)\left(p_{t}-\pi_{t}\right)\right\rangle+\left\langle\left(1-\alpha_{t}\right) w_{t}, \alpha_{t}\left(\pi_{t}-p_{t}\right)\right\rangle+\left(1-\alpha_{t}\right) \varepsilon_{t},
$$

which equals (20) after rearranging some terms. Finally, apply (7) with $\left(\pi^{\prime}, \pi, v\right)=$ $\left(p_{t}, \pi_{t}, v_{t}\right)$ and (8) with $\left(\pi^{\prime}, p, \varepsilon, w\right)=\left(\pi_{t}, p_{t}, \varepsilon_{t}, w_{t}\right)$, respectively, to see that $\left\langle v_{t}-\right.$ $\left.w_{t}, \pi_{t}-p_{t}\right\rangle \leq \varepsilon_{t}$ Altogether, we obtain

$$
\varepsilon_{t+1} \geq-\alpha_{t}\left(1-\alpha_{t}\right) \varepsilon_{t}+\left(1-\alpha_{t}\right) \varepsilon_{t}=\left(1-\alpha_{t}\right)^{2} \varepsilon_{t}
$$

a nonnegative quantity, by construction.
The sequence $\left\{\varepsilon_{t}\right\}$ is defined by the recursion (20), analogous to those defining $\left\{z_{t}\right\}$, $\left\{w_{t}\right\}$ and $\left\{p_{t}\right\}$. As a result, a formula along the lines of the similar ones in Lemma 2(ii) and in (19) also holds for $\left\{\varepsilon_{t}\right\}$:

$$
\begin{equation*}
\varepsilon_{t+1}=\sum_{j=0}^{t} \mu_{t, j} \sigma_{t-j} \quad \text { for } \sigma_{t}:=\left(1-\alpha_{t}\right)\left\langle v_{t}-w_{t}, p_{t}-\pi_{t}\right\rangle \tag{21}
\end{equation*}
$$

Theorem 1 shows that STEP 1 in VA uses an ε_{t}-supergradient that is not computed at the current iterate $\hat{\pi}_{k}$, but at a different point, namely p_{t}. In this respect, VA is closer to the extragradient approach [13], than to a subgradient method. Note also that, since $w_{t} \in \partial_{\varepsilon_{t}} \theta\left(p_{t}\right)$, the extragradient used by VA is only an approximate one.

Although the "inexact" move (12) is not the most common extragradient update, it is not the most unusual either. There are other methods that do use "inexacteness" both
in the point where the gradient is computed and in the gradient itself (i.e., $\varepsilon_{t}>0$). For example, the modified forward-backward splitting method of [19], that can be regarded as an implementation of the approximate extragradient proximal method for generalized equations, see [17, Section 5].

In addition, note that, when compared to a typical bundle iteration, the crucial distinction between serious- and null-steps is not kept with precision, since (13) in VA does not measure the gain obtained. Specifically, when passing from $\hat{\pi}_{k}$ to $\hat{\pi}_{k+1}$, it is not known how much "better" the serious step is, we only know that $\theta\left(\hat{\pi}_{k+1}\right)$ is bigger than $\theta\left(\hat{\pi}_{k}\right)$.

We address this point in the next section, by introducing the concept of expected gain in a revised version of VA.

4. Towards a convergent method

In order to keep track of the improvement produced by each serious step, it is important to replace (13) by a condition of the type $\theta\left(\pi_{t}\right) \geq \theta\left(\hat{\pi}_{k}\right)+m_{1} \delta_{t}$, where m_{1} is an Armijolike tolerance and, more importantly, $\delta_{t}>0$ measures the expected gain, associated to a computable function modelling θ.

4.1. Introducing a model

Typically, bundle methods make use of a model $\hat{\theta}$ to approximate the unknown function θ. The modelling concave function varies along iterations and is defined as the minimum of planes that are tangent to $\operatorname{graph} \theta$. Given π_{j}, a call to the oracle (i.e., solving (10)) gives $\theta\left(\pi_{j}\right)$ and $v_{j} \in \partial \theta\left(\pi_{j}\right)$. The corresponding cutting plane is

$$
\theta\left(\pi_{j}\right)+\left\langle v_{j}, \pi-\pi_{j}\right\rangle
$$

An equivalent expression, more convenient for our development, refers this plane to the last serious-step $\hat{\pi}_{k}$:

$$
\theta\left(\hat{\pi}_{k}\right)+\left\langle v_{j}, \pi-\hat{\pi}_{k}\right\rangle+e_{j} \quad \text { with } e_{j}:=\theta\left(\pi_{j}\right)+\left\langle v_{j}, \hat{\pi}_{k}-\pi_{j}\right\rangle-\theta\left(\hat{\pi}_{k}\right) .
$$

The model is defined by the function value at the last serious-step and by a given number of cutting planes. Here we use an economic bundle of information, containing only two cutting planes: first, the plane generated by the last π_{t}, and, second, the so-called aggregate plane. More precisely, suppose that at STEP 4 in VA the following (non negative) quantities are available:

$$
\begin{align*}
& e_{t}:=\theta\left(\pi_{t}\right)+\left\langle v_{t}, \hat{\pi}_{k}-\pi_{t}\right\rangle-\theta\left(\hat{\pi}_{k}\right) \quad \text { and } \tag{22}\\
& \hat{e}_{t}:=\theta\left(p_{t}\right)+\left\langle w_{t}, \hat{\pi}_{k}-p_{t}\right\rangle+\varepsilon_{t}-\theta\left(\hat{\pi}_{k}\right) . \tag{23}
\end{align*}
$$

The corresponding economic model $\hat{\theta}_{t}$ has the form

$$
\hat{\theta}_{t}(\pi):=\min \left\{\theta\left(\pi_{t}\right)+\left\langle v_{t}, \pi-\pi_{t}\right\rangle, \theta\left(p_{t}\right)+\left\langle w_{t}, \pi-p_{k}\right\rangle\right\},
$$

or, using the linearization errors above,

$$
\begin{equation*}
\hat{\theta}_{t}(\pi)=\theta\left(\hat{\pi}_{k}\right)+\min \left\{e_{t}+\left\langle v_{t}, \pi-\hat{\pi}_{k}\right\rangle, \hat{e}_{t}+\left\langle w_{t}, \pi-\hat{\pi}_{k}\right\rangle\right\} . \tag{24}
\end{equation*}
$$

By concavity, the hyperplane $\mathcal{H}:=\theta\left(\hat{\pi}_{k}\right)+\left\{\pi \in \mathbb{R}^{m}:\left\langle v_{t}, \pi-\hat{\pi}_{k}\right\rangle+e_{t}=0\right\}$ supports (from above) the graph of θ at π_{t}. Likewise, the hyperplane $\mathcal{H}_{\varepsilon}:=\theta\left(\hat{\pi}_{k}\right)+\left\{\pi \in \mathbb{R}^{m}\right.$: $\left.\left\langle w_{t}, \pi-\hat{\pi}_{k}\right\rangle+\hat{e}_{t}=0\right\}$ supports within ε_{t} the graph of θ at p_{t}.

Then, as shown in Figure 1, the function $\hat{\theta}_{t}$ from (24) is a cutting-planes model for θ that satisfies

$$
\begin{equation*}
\hat{\theta}_{t}(\pi) \geq \theta(\pi) \text { for all } \pi \in \mathbb{R}^{m} . \tag{25}
\end{equation*}
$$

The model $\hat{\theta}_{t}$ is used to compute the next iterate, say π_{t+1}. The expected gain δ_{t}, relating exact value functions to approximate ones predicted by the model is usually defined as $\delta_{t}:=\hat{\theta}_{t}\left(\pi_{t+1}\right)-\theta\left(\hat{\pi}_{k}\right)$. In view of (24), this yields

$$
\begin{equation*}
\delta_{t+1}:=\min \left\{e_{t}+\left\langle v_{t}, \pi_{t+1}-\hat{\pi}_{k}\right\rangle, \hat{e}_{t}+\left\langle w_{t}, \pi_{t+1}-\hat{\pi}_{k}\right\rangle\right\} . \tag{26}
\end{equation*}
$$

A more concise form for δ_{t} makes use of the parameters α_{t}, see (30) below.

4.2. Choosing α_{t}

So far, nothing has been said on how to choose α_{t} in Step 4 in VA. We now show how to make a sound choice of these parameters, if a model $\hat{\theta}_{t}$ is available.

More precisely, consider the (strongly convex) problem

$$
\begin{equation*}
\max _{\pi \in \mathbb{R}^{m}} \hat{\theta}_{t}(\pi)-\frac{1}{2 s_{t+1}}\left\|\pi-\hat{\pi}_{k}\right\|^{2}, \tag{27}
\end{equation*}
$$

whose unique solution π^{\prime} is characterized by the optimality condition

$$
\left.\exists w^{\prime} \in \partial \hat{\theta}_{t}\left(\pi^{\prime}\right) \text { such that } w^{\prime}-\frac{1}{s_{t+1}}\left(\pi^{\prime}-\hat{\pi}_{k}\right)=0 \quad \text { [i.e., } \pi^{\prime}=\hat{\pi}_{k}+s_{t+1} w^{\prime} .\right]
$$

Since $\hat{\theta}_{t}$ is the maximum of two affine functions, its superdifferential is $\partial \hat{\theta}_{t}(\pi)=$ $\left\{\alpha v_{t}+(1-\alpha) w_{t}: \alpha \in[0,1]\right\}$ for all π. Thus, the optimality condition becomes
$\exists \alpha^{\prime} \in[0,1]$ such that $\pi^{\prime}=\hat{\pi}_{k}+s_{t+1} w^{\prime}$ with $w^{\prime}=\alpha^{\prime} v_{t}+\left(1-\alpha^{\prime}\right) w_{t}$.

Fig. 1. Model $\hat{\theta}_{t}=\min \left\{\mathcal{H}, \mathcal{H}_{\varepsilon}\right\}$.

As a result, choosing in Step 4 of VA $\alpha_{t}:=\alpha^{\prime}$ implies that the gradient w^{\prime} given by the optimality condition is precisely w_{t+1} from (15). Furthermore, with this choice of α_{t} the next iterate π_{t+1} from (12) will be precisely the unique point π^{\prime} given by the optimality condition above:

$$
\begin{equation*}
\exists \alpha_{t} \in[0,1] \text { such that } w_{t+1} \in \partial \hat{\theta}_{t}\left(\pi_{t+1}\right) \text { and } \pi_{t+1}=\hat{\pi}_{k}+s_{t+1} w_{t+1} \tag{28}
\end{equation*}
$$

The convex parameter α_{t} can also be found by solving a problem dual to (27):

$$
\begin{equation*}
\min _{\alpha \in[0,1]} \frac{s_{t+1}}{2}\left\|\alpha v_{t}+(1-\alpha) w_{t}\right\|^{2}+\alpha e_{t}+(1-\alpha) \hat{e}_{t} . \tag{29}
\end{equation*}
$$

This dual computation of α_{t} yields the following expression for the expected gain:

$$
\begin{equation*}
\delta_{t+1}=s_{t+1}\left\|w_{t+1}\right\|^{2}+\alpha_{t} e_{t}+\left(1-\alpha_{t}\right) \hat{e}_{t} \tag{30}
\end{equation*}
$$

4.3. Supplying the volume method with a model

When trying to incorporate the notion of a model in VA, an important question arises. Namely, to define \hat{e}_{t} in (23), one needs to know $\theta\left(p_{t}\right)$, a value that is not computed in VA. The only available functional values are $\theta\left(\pi_{t}\right)$, computed at STEP 2. To address this issue, we consider two possibilities:

- a "minimalistic" approach, in which we keep as close as possible to VA and, instead of computing the extra value function $\theta\left(p_{t}\right)$, we approximate \hat{e}_{t} with quantities that are already available.
- an "everything-changes" approach, in which a reorganization of calculations allows us to define \hat{e}_{t} without using p_{t}.
The first approach results in the revised volume algorithm RVA, while the second is BVA, the economic variant of bundle methods. We analyze here the first variant, and defer the analysis of the second one to Section 6.2.

To approximate the unknown $\theta\left(p_{t}\right)$ we use in (23) the best available functional value, i.e., $\theta\left(\hat{\pi}_{k}\right)$:

$$
\hat{e}_{t}=\theta\left(p_{t}\right)+\left\langle w_{t}, \hat{\pi}_{k}-p_{t}\right\rangle+\varepsilon_{t}-\theta\left(\hat{\pi}_{k}\right) \approx\left\langle w_{t}, \hat{\pi}_{k}-p_{t}\right\rangle,
$$

and similarly in (22), for the sake of consistency. Hence, we use the quantities

$$
\begin{align*}
& E_{t}:=\left\langle v_{t}, \hat{\pi}_{k}-\pi_{t}\right\rangle \quad \text { and } \tag{31}\\
& \hat{E}_{t}:=\left\langle w_{t}, \hat{\pi}_{k}-p_{t}\right\rangle+\varepsilon_{t} . \tag{32}
\end{align*}
$$

The resulting model $\hat{\Theta}_{t}(\pi):=\theta\left(\hat{\pi}_{k}\right)+\min \left\{E_{t}+\left\langle v_{t}, \pi-\hat{\pi}_{k}\right\rangle, \hat{E}_{t}+\left\langle w_{t}, \pi-\hat{\pi}_{k}\right\rangle\right\}$

$$
=\theta\left(\hat{\pi}_{k}\right)+\min \left\{\left\langle v_{t}, \pi-\pi_{t}\right\rangle,\left\langle w_{t}, \pi-p_{k}\right\rangle+\varepsilon_{t}\right\}
$$

is shown in Figure 2. The nominal decrease (30) is likewise approximated by

$$
\begin{equation*}
s_{t+1}\left\|w_{t+1}\right\|^{2}+\alpha_{t} E_{t}+\left(1-\alpha_{t}\right) \hat{E}_{t} \tag{33}
\end{equation*}
$$

Fig. 2. Model $\hat{\Theta}_{t}=\min \left\{\mathcal{H}, \mathcal{H}_{\varepsilon}\right\}$.

Proposition 1. The following relation holds

$$
\alpha_{t} E_{t}+\left(1-\alpha_{t}\right) \hat{E}_{t}=\left\langle w_{t+1}, \hat{\pi}_{k}-p_{t+1}\right\rangle+\varepsilon_{t+1}
$$

Proof. Let $\mathcal{E}:=\alpha_{t} E_{t}+\left(1-\alpha_{t}\right) \hat{E}_{t}$. For simplicity, we drop subindices t and use + to denote subindices $t+1$. Using (31) and (32), write \mathcal{E} as follows

$$
\begin{array}{rlr}
\mathcal{E} & =\alpha\left\langle v, \hat{\pi}_{k}-\pi\right\rangle+(1-\alpha)\left\langle w, \hat{\pi}_{k}-p\right\rangle+(1-\alpha) \varepsilon \\
& =\left\langle w_{+}, \hat{\pi}_{k}\right\rangle-\alpha\langle v, \pi\rangle-(1-\alpha)\langle w, p\rangle+(1-\alpha) \varepsilon & {[b y(15)]} \tag{15}\\
& =\left\langle w_{+}, \hat{\pi}_{k}-p_{+}\right\rangle+\left\langle w_{+}, p_{+}\right\rangle-\alpha\langle v, \pi\rangle-(1-\alpha)\langle w, p\rangle+(1-\alpha) \varepsilon & {\left[\text { add } \pm\left\langle w_{+}, p_{+}\right\rangle\right]} \\
& =\left\langle w_{+}, \hat{\pi}_{k}-p_{+}\right\rangle+\alpha\left\langle v, p_{+}-\pi\right\rangle+(1-\alpha)\left\langle w, p_{+}-p\right\rangle+(1-\alpha) \varepsilon & {[\text { by }(15)]} \\
& =\left\langle w_{+}, \hat{\pi}_{k}-p_{+}\right\rangle+\alpha(1-\alpha)\langle v-w, p-\pi\rangle+(1-\alpha) \varepsilon & {[b y(18)]} \\
& =\left\langle w_{+}, \hat{\pi}_{k}-p_{+}\right\rangle+\varepsilon_{+},
\end{array}
$$

by (20).
We now incorporate these new elements in the algorithmic pattern of VA.

5. A revised formulation of the volume method

In this section we describe the "minimalistic" approach, in which the unknown value of $\theta\left(p_{t}\right)$ is replaced by $\theta\left(\hat{\pi}_{k}\right)$. In order to make the sequence $\left\{\theta\left(\hat{\pi}_{k}\right)\right\}$ monotone, and based on (33) and Proposition 1, in (34) below we define the expected gain so that it is always positive. The detailed algorithm follows.

5.1. The Revised Volume Algorithm

STEP 0. Let $m_{1} \in(0,1)$ be a given tolerance. Given an initial $\pi_{0} \in \mathbb{R}^{m}$, compute $x_{0} \in \operatorname{Argmin} L\left(x, \pi_{0}\right)$, a solution of (10) written for $\pi=\pi_{0}$. Let $v_{0}:=A x_{0}-b$.

Initialize $z_{1}=x_{0}, \hat{\pi}_{1}=\pi_{0}$, and $w_{1}:=v_{0}$, as well as $p_{1}=\pi_{0}$ and $\varepsilon_{1}=0$. Set $k=t=1$ and $T_{s}=\emptyset$.
STEP 1. Having the center $\hat{\pi}_{k}$ and a steplength $s_{t}>0$ make the move (12):

$$
\pi_{t}=\hat{\pi}_{k}+s_{t} w_{t}
$$

Compute the ascent measure

$$
\begin{equation*}
\delta_{t}=s_{t}\left\|w_{t}\right\|^{2}+\left|\left\langle w_{t}, \hat{\pi}_{k}-p_{t}\right\rangle\right|+\varepsilon_{t} . \tag{34}
\end{equation*}
$$

STEP 2. Compute $x_{t} \in \operatorname{Argmin} L\left(x, \pi_{t}\right)$, a solution of (10) written for $\pi=\pi_{t}$. Let $v_{t}:=A x_{t}-b$.
STEP 3. Depending on whether

$$
\begin{equation*}
\theta\left(\pi_{t}\right) \geq \theta\left(\hat{\pi}_{k}\right)+m_{1} \delta_{t} \tag{35}
\end{equation*}
$$

is false or true, decide to make, respectively,

- either a null-step: (35) does not hold, just do nothing,
- or a serious-step: (35) holds. Update the stability center: $\hat{\pi}_{k+1}=\pi_{t}$, set $t_{k}:=t$, $T_{s}=T_{s} \cup\left\{t_{k}\right\}$, and increase k by 1.
STEP 4. Compute a new stepsize s_{t+1}. Let $\alpha_{t} \in[0,1]$ be the solution of (29) with e_{t} and \hat{e}_{t} therein replaced by E_{t} and \hat{E}_{t} from (31) and (32), respectively.
Compute

$$
\begin{aligned}
z_{t+1} & =\alpha_{t} x_{t}+\left(1-\alpha_{t}\right) z_{t} \\
w_{t+1} & =\alpha_{t} v_{t}+\left(1-\alpha_{t}\right) w_{t} \\
p_{t+1} & =\alpha_{t} \pi_{t}+\left(1-\alpha_{t}\right) p_{t} \\
\varepsilon_{t+1} & =\alpha_{t} \sigma_{t}+\left(1-\alpha_{t}\right) \varepsilon_{t}
\end{aligned}
$$

where σ_{t} is defined in (21). This completes the $t^{t h}$ iteration: set $t=t+1$ and loop to 1 .

To get a better understanding of the sequence generated by RVA, we refer again to Figure 2. Note that now the hyperplanes \mathcal{H} and $\mathcal{H}_{\varepsilon}$ only support the graph of θ at π_{t} within $\theta\left(\hat{\pi}_{k}\right)$, and at p_{t} within $\theta\left(\hat{\pi}_{k}\right)+\varepsilon_{t}$, respectively. We know that $\theta\left(\hat{\pi}_{k}\right) \geq \theta\left(\pi_{t}\right)$ for all $t \leq t_{k}$, so, when compared to Figure $1, \mathcal{H}$ will always be shifted to the outside of graph θ. For the hyperplane $\mathcal{H}_{\varepsilon}$ this may not always be the case: if $\theta\left(\hat{\pi}_{k}\right)<\theta\left(p_{t}\right)-\varepsilon_{t}$, then $\mathcal{H}_{\varepsilon}$ will be shifted down, towards $\operatorname{graph} \theta$. In other words, with this model an inequality along the lines of (25), i.e., $\hat{\Theta}_{t}(\pi) \geq \theta(\pi)$, may not hold for all $\pi \in \mathbb{R}^{m}$. As a result, we might be cutting off a region containing a maximum of θ. This nasty feature explains why we have not been able to get a satisfactory convergence result when RVA generates only a finite number of serious steps, see Lemma 4 below. In order to get a full convergence result, we need to make additional changes in RVA. We will come back to this point in Section 6.2.

5.2. Convergence properties

Even though RVA's model $\hat{\Theta}_{t}$ may not support the whole graph of θ, this revised version of VA represents an improvement in terms of convergence properties.
We start with a result on boundedness.

Lemma 3. Let (1) be such that Ψ from (3) is bounded. Then the following sequences generated by RVA are bounded:

$$
\left\{x_{t}\right\},\left\{v_{t}\right\},\left\{z_{t}\right\},\left\{w_{t}\right\} .
$$

Furthermore, if $\left\{\pi_{t}\right\}$ is bounded, so is $\left\{p_{t}\right\}$.
Proof. Since by definition $x_{t} \in \Psi$ for all t, our assumption on Ψ implies that the sequence $\left\{x_{t}\right\}$ is bounded. Thus, so is the sequence $\left\{v_{t}=A x_{t}-b\right\}$ defined in STEP 2 of RVA. Together with Lemma 2(ii), this implies that the sequences $\left\{z_{t}\right\}$ and $\left\{w_{t}\right\}$ are bounded. Finally, from (19), the same result applies for $\left\{p_{t}\right\}$, provided $\left\{\pi_{t}\right\}$ is bounded.

As usually done in bundle methods, for our analysis we first suppose the cardinality of T_{s} is infinite. To prove convergence in this situation, we give general conditions on the stepsize s_{t}, updated at STEP 4 of RVA.

Theorem 2. Suppose that RVA generates infinitely many serious steps, i.e, $k \rightarrow \infty$. The following holds:
(i) Either $\theta\left(\hat{\pi}_{k}\right) \rightarrow+\infty$ or $\lim _{t \in T_{s}} \delta_{t}=0$.
(ii) As a result, $\lim _{t \in T_{s}} \varepsilon_{t}=0$.
(iii) Suppose, in addition, that

$$
\begin{equation*}
\sum_{t \in T_{s}} s_{t}=+\infty \tag{36}
\end{equation*}
$$

Then $\lim _{t \in T_{s}} w_{t}=0$.
(iv) Suppose, in addition to (36), that

$$
\begin{equation*}
\mathcal{P}^{\star} \text {, the solution set of (5), is non empty, } \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { the sequence }\left\{s_{t}\right\} \text { is bounded. } \tag{38}
\end{equation*}
$$

Then the sequence $\left\{\hat{\pi}_{k}\right\}$ is bounded.
(v) Suppose, in addition to (36), (37) and (38), that

$$
\begin{equation*}
\text { the sequence }\left\{w_{t}\right\} \text { is bounded. } \tag{39}
\end{equation*}
$$

Then the whole sequence $\left\{\pi_{t}\right\}$ is bounded.
Proof. [(i)] Suppose $\left\{\theta\left(\hat{\pi}_{k}\right)\right\} \nrightarrow+\infty$. Then summing (35) over k implies that

$$
m_{1} \sum_{k=1}^{\infty} \delta_{t_{k}} \leq \sum_{k=1}^{\infty}\left(\theta\left(\hat{\pi}_{k+1}\right)-\theta\left(\hat{\pi}_{k}\right)\right)=\lim _{k} \theta\left(\hat{\pi}_{k}\right)-\theta\left(\hat{\pi}_{1}\right)<+\infty
$$

Since $\sum_{t \in T_{s}} \delta_{t}=\sum_{k=1}^{\infty} \delta_{t_{k}}$ is finite, the result follows.
[(ii)] By (34), $0 \leq \varepsilon_{t} \leq \delta_{t}$, so this item is straightforward from (i).
[(iii)] Use again (34) to see that $s_{t}\left\|w_{t}\right\|^{2} \leq \delta_{t}$ for all t. Thus, using (i), the series
$\sum_{t \in T_{s}} s_{t}\left\|w_{t}\right\|^{2}$ is finite and, by (36), this means that $\lim \inf _{t \in T_{s}}\left\|w_{t}\right\|^{2}=0$.
$[(i v)]$ Take $p^{\star} \in \mathcal{P}^{\star} \neq \emptyset$, by (37). Since $w_{t_{k}} \in \partial_{\varepsilon_{t_{k}}} \theta\left(p_{t_{k}}\right)$, the ε-supergradient inequality (8) written with $\left(\pi^{\prime}, v, p, \varepsilon\right)=\left(p^{\star}, w_{t_{k}}, p_{t_{k}}, \varepsilon_{t_{k}}\right)$ yields
$\theta\left(p^{\star}\right) \leq \theta\left(p_{t_{k}}\right)+\left\langle w_{t_{k}}, p^{\star}-p_{t_{k}}\right\rangle+\varepsilon_{t_{k}} \Rightarrow\left\langle w_{t_{k}}, p_{t_{k}}-p^{\star}\right\rangle \leq \theta\left(p_{t_{k}}\right)-\theta\left(p^{\star}\right)+\varepsilon_{t_{k}} \leq \varepsilon_{t_{k}}$.
Letting $\Pi:=\left\|\hat{\pi}_{k+1}-p^{\star}\right\|^{2}$, write the following algebraic steps

$$
\begin{array}{rlr}
\Pi & =\left\|\hat{\pi}_{k}-p^{\star}\right\|^{2}+\left\|\hat{\pi}_{k+1}-\hat{\pi}_{k}\right\|^{2}+2\left\langle\hat{\pi}_{k+1}-\hat{\pi}_{k}, \hat{\pi}_{k}-p^{\star}\right\rangle \\
& =\left\|\hat{\pi}_{k}-p^{\star}\right\|^{2}+s_{t_{k}}^{2}\left\|w_{t_{k}}\right\|^{2}+2 s_{t_{k}}\left\langle w_{t_{k}}, \hat{\pi}_{k}-p^{\star}\right\rangle & {\left[\text { add } \pm \hat{\pi}_{k}\right]} \\
& =\left\|\hat{\pi}_{k}-p^{\star}\right\|^{2}+s_{t_{k}}\left(s_{t_{k}}\left\|w_{t_{k}}\right\|^{2}+2\left\langle w_{t_{k}}, \hat{\pi}_{k}-p_{t_{k}}\right\rangle+2\left\langle w_{t_{k}}, p_{t_{k}}-p^{\star}\right\rangle\right) \\
& \leq\left\|\hat{\pi}_{k}-p^{\star}\right\|^{2}+s_{t_{k}}\left(s_{t_{k}}\left\|w_{t_{k}}\right\|^{2}+2\left\langle w_{t_{k}}, \hat{\pi}_{k}-p_{t_{k}}\right\rangle+2 \varepsilon_{t_{k}}\right) \\
& \left.\leq \| \hat{\pi}_{t_{k}}\right] \\
\text { [use (40)] } \\
\text { [use (34)] }
\end{array}
$$

Together with (38), there exists some $s_{\max }>0$ such that

$$
\left\|\hat{\pi}_{k+1}-p^{\star}\right\|^{2} \leq\left\|\hat{\pi}_{k}-p^{\star}\right\|^{2}+2 s_{\max } \delta_{t_{k}} .
$$

Since the series $\sum_{t_{k}} \delta_{t_{k}}$ converges, the result follows.
$[(v)]$ In view of $(i v)$, we only need to check boundedness of the subsequence of null steps. Between two serious steps, say k and $k+1$, there is a finite number of null steps indexed by t, with $t_{k-1}<t<t_{k}$. For any such t, from (12), $\pi_{t}=\hat{\pi}_{k}+s_{t} w_{t}$. Hence, $\left\|\pi_{t}-\hat{\pi}_{k}\right\|=s_{t}\left\|w_{t}\right\| \leq s_{\max } V_{\max }$, where $s_{\max }$ and $V_{\max }$ are the bounds given, respectively, by (38) and (39). Then, for each k, the subset of null steps $\left\{\pi_{t}\right\}_{t_{k-1}<t<t_{k}}$ is in a ball $B\left(\hat{\pi}_{k}, s_{\max } V_{\max }\right)$. Since the radius is uniform in k, using (iv) the proof is complete.

The following corollary summarizes the convergence result obtained so far.
Corollary 1. Let (1) be such that Ψ from (3) is bounded. Assume that \mathcal{P}^{\star}, the solution set of (5), is nonempty and $\operatorname{dom} \theta=\mathbb{R}^{m}$. Suppose that RVA generates infinitely many serious steps. If the stepsizes s_{t} are chosen so that (36) and (38) hold, then the sequence $\left\{p_{t}\right\}_{t \in T_{s}}$ is maximizing.

Proof. By Lemma 3, (39) holds, so Theorem 2(v) applies: the sequence $\left\{\pi_{t}\right\}$ is bounded. Again by Lemma 3, this implies that the sequence $\left\{p_{t}\right\}$ is bounded. Therefore, the (bounded) subsequence $\left\{p_{t}\right\}_{t \in T_{s}}$ has a limit point p^{\star}. Using items (iii) and (ii) of Theorem 2, we obtain from (9) that $0 \in \partial \theta\left(p^{\star}\right)$.

Note that the original stepsize in the Volume Algorithm (cf. (16)) is consistent with conditions (36) and (38), typical in subgradient methods.

If the cardinality of T_{s} is finite, there is a last serious step $\hat{\pi}:=\hat{\pi}_{k_{\text {last }}}=\hat{\pi}_{t_{\text {last }}}$, followed by an infinite number of null steps. In this case, we only have a partial answer, depending essentially on a rather strong assumption, namely (41) below, where we require two (bounded) sequences to have unique accumulation points.

Lemma 4. Assume RVA generates finitely many serious steps. The following holds:
(i) If (38) and (39) hold, the sequence $\left\{\pi_{t}\right\}$ is bounded.
(ii) Suppose, in addition, that

$$
\begin{equation*}
\text { the sequences }\left\{\pi_{t}\right\} \text { and }\left\{v_{t}\right\} \text { converge to } \pi^{\star} \text { and } v^{\star} \text {, respectively. } \tag{41}
\end{equation*}
$$

Take m_{1} in RVA such that $m_{1} \in\left(0, \frac{1}{2}\right)$ and suppose that

$$
\begin{equation*}
\exists s_{\text {min }}>0 \text { such that the sequence of stepsizes }\left\{s_{t}\right\}_{t \notin T_{s}} \text { converges to } s_{\text {min }} . \tag{42}
\end{equation*}
$$

Then both π^{\star} and $\hat{\pi}$ solve (5).
Proof. Since for all $t>t_{\text {last }}, \hat{\pi}$ remains fixed, item (i) is straightforward from our assumptions.
To prove (ii), first note that by (19) and (41), Silverman-Toeplitz's Theorem applies (see for instance [11, Chapter II Theorem 2]):

$$
\lim p_{t}=\lim \pi_{t}=\pi^{\star} \quad \text { and } \quad \lim w_{t}=\lim v_{t}=v^{\star} .
$$

Moreover, the closedness of $\partial \theta$ implies that $v^{\star} \in \partial \theta\left(\pi^{\star}\right)$. In addition, (41), together with (12), (39), and (42), implies that

$$
\begin{equation*}
\pi^{\star}=\lim \pi_{t}=\lim \hat{\pi}+s_{t} w_{t}=\hat{\pi}+s_{\min } v^{\star} . \tag{43}
\end{equation*}
$$

Consider now the sequence $\left\{\varepsilon_{t}\right\}$ and recall (21). Since with our assumptions $\sigma_{t} \rightarrow 0$, by Toeplitz's Theorem,

$$
\lim \varepsilon_{t}=0
$$

This result, combined with (43), yields that, in the limit, the expected gain from (34) satisfies

$$
\lim \delta_{t}=\lim s_{t}\left\|w_{t}\right\|^{2}+\left|\left\langle w_{t}, \hat{\pi}-p_{t}\right\rangle\right|+\varepsilon_{t}=2 s_{\min }\left\|v^{\star}\right\|^{2} .
$$

Because for all $t>t_{\text {last }}$ only null steps are done, (35) never holds: $\theta\left(\pi_{t}\right)<\theta(\hat{\pi})+m_{1} \delta_{t}$. Passing to the limit,

$$
\theta\left(\pi^{\star}\right) \leq \theta(\hat{\pi})+2 m_{1} s_{\text {min }}\left\|v^{\star}\right\|^{2} .
$$

Since $v^{\star} \in \partial \theta\left(\pi^{\star}\right)$, the supergradient inequality (7) written at $\pi^{\prime}=\hat{\pi}$ and (43) imply that

$$
\theta(\hat{\pi}) \leq \theta\left(\pi^{\star}\right)+\left\langle v^{\star}, \hat{\pi}-\pi^{\star}\right\rangle=\theta\left(\pi^{\star}\right)-s_{\min }\left\|v^{\star}\right\|^{2} .
$$

Altogether,

$$
\begin{equation*}
\theta\left(\pi^{\star}\right) \leq \theta(\hat{\pi})+2 m_{1} s_{\min }\left\|v^{\star}\right\|^{2} \leq \theta\left(\pi^{\star}\right)+\left(2 m_{1}-1\right) s_{\min }\left\|v^{\star}\right\|^{2} \tag{44}
\end{equation*}
$$

Thus, $\left(1-2 m_{1}\right) s_{\text {min }}\left\|v^{\star}\right\|^{2} \leq 0$. Since, by assumption, $m_{1}<1 / 2$, the last inequality only holds if $v^{\star}=0$, i.e., if π^{\star} solves (5). Finally, $\hat{\pi}$ is also a maximizer, because from (44) we deduce that $\theta\left(\pi^{\star}\right)=\theta(\hat{\pi})$,

We point out that, in view of the strong assumption (41), the convergence analysis of RVA cannot be considered complete. To give a full convergence analysis, we are bound to further modify VA. We consider the resulting modification, as well as how to recover primal solutions in the next section.

6. Further properties of RVA

The primal sequence from (14) was not yet considered in our analysis. To relate this sequence to a solution of (1), we introduce a stopping test in RVA.

6.1. RVA with stopping test

Consider the following simple modifications in the revised volume algorithm:
STEP 0. Same than for RVA. A stopping-tolerance $\delta_{\min }>0$ is also given.
STEP 1. Same than for RVA. After computing $\delta_{t}=s_{t}\left\|w_{t}\right\|^{2}+\left|\left\langle w_{t}, \hat{\pi}_{k}-p_{t}\right\rangle\right|+\varepsilon_{t}$ in (34), make the stopping test:

$$
\begin{equation*}
\text { If } \delta_{t} \leq \delta_{\min } \text {, STOP. } \tag{45}
\end{equation*}
$$

STEP 2. Same than for RVA.
StEP 3. Same than for RVA.
STEP 4. Same than for RVA.
It is possible to replace the stopping test in STEP 1 by the pair of conditions:

$$
\begin{equation*}
\left\|w_{t}\right\|^{2} \leq \delta_{w}^{2} \quad \text { and } \quad\left|\left\langle w_{t}, \hat{\pi}_{k}-p_{t}\right\rangle\right|+\varepsilon_{t} \leq \delta_{\varepsilon} \tag{46}
\end{equation*}
$$

for $\delta_{w}, \delta_{\varepsilon}$ two tolerances given at STEP 0. Moreover, if $s_{t} \delta_{w}^{2}+\delta_{\varepsilon} \leq \delta_{\text {min }}$, we see that (46) implies (45). A potential advantage of (46) is that it does not depend on s_{t}, which may become unduly small as t increases.

When $\delta_{\min }$ is set to 0 , the algorithm loops forever and we are in the framework of Section 5.2. When $\delta_{\min }$ (or $\delta_{w}, \delta_{\varepsilon}$) is positive, if (41) holds, the stopping test is activated and there is a last index $t_{\text {last }}$. Our next result establishes an a-posteriori error bound relating the last generated primal approximation in (14) to a primal solution, i.e., a solution of (1).

Proposition 2. Consider RVA with stopping test (46). Suppose there is an index $t_{\text {last }}$ such that (45) occurs and let $z_{\text {last }}$ be the corresponding z_{t} generated last. If rankA $=m$ in (1), then there exist $L \in(0,+\infty)$ depending only on the data of (1) such that, for any x^{\star} solving (1),

$$
\left\|x^{\star}-z_{\text {last }}\right\| \leq L \delta_{w} .
$$

Proof. Since x^{\star} solves (1), $A x^{\star}=b$ and, thus, $A\left(z_{\text {last }}-x^{\star}\right)=A z_{\text {last }}-b=w_{\text {last }}$, by Lemma 1. As a result,

$$
\left\|x^{\star}-z_{\text {last }}\right\|=\left\|\left(A^{\top} A\right)^{-1} A^{\top} A\left(x^{\star}-z_{\text {last }}\right)\right\|=\left\|\left(A^{\top} A\right)^{-1} A^{\top} w_{\text {last }}\right\| \leq L\left\|w_{\text {last }}\right\|
$$

Together with (46), the result follows.
The proposition above just shows that $z_{\text {last }}$ is at distance smaller than $L \delta_{w}$ from the feasible set $\{x \in \Psi: A x=b\}$, containing the solution set of (1).

6.2. A bundle method derived from RVA

We now show how to transform RVA in a bundle method. The key is to organize the calculations so that the model $\hat{\theta}_{t}$ used in (27) never cuts off a section of $\operatorname{graph} \theta$, i.e., such that $\hat{\theta}_{t}(\pi) \geq \theta(\pi)$ for all $\pi \in \mathbb{R}^{m}$. If this is the case, we have

$$
\begin{aligned}
\theta(\pi) \leq \hat{\theta}_{t}(\pi) & \leq \hat{\theta}_{t}\left(\pi_{t+1}\right)+\left\langle w_{t+1}, \pi-\pi_{t+1}\right\rangle \\
& =\theta\left(\hat{\pi}_{k}\right)+\left\langle w_{t+1}, \pi-\hat{\pi}_{k}\right\rangle+\left(\hat{\theta}_{t}\left(\pi_{t+1}\right)-\theta\left(\hat{\pi}_{k}\right)+\left\langle w_{t+1}, \hat{\pi}_{k}-\pi_{t+1}\right\rangle\right) .
\end{aligned}
$$

for all $\pi \in \mathbb{R}^{m}$. Since by (28), $\left\langle w_{t+1}, \hat{\pi}_{k}-\pi_{t+1}\right\rangle=s_{t+1}\left\|w_{t+1}\right\|^{2}$,

$$
\theta(\pi) \leq \theta\left(\hat{\pi}_{k}\right)+\left\langle w_{t+1}, \pi-\hat{\pi}_{k}\right\rangle+\mathcal{E}_{t+1}
$$

where we defined $\mathcal{E}_{t+1}:=\hat{\theta}_{t}\left(\pi_{t+1}\right)-\theta\left(\hat{\pi}_{k}\right)-s_{t+1}\left\|v_{t+1}\right\|^{2}$.Writing (\star) at $\pi=\hat{\pi}_{k}$ yields that $\mathcal{E}_{t+1} \geq 0$ and, thus, $w_{t+1} \in \partial_{\mathcal{E}_{t+1}} \theta\left(\hat{\pi}_{k}\right)$. Therefore, the update (12) can now be interpreted as an approximate supergradient move, no (unknown) extragradient point p_{t} is involved.

Accordingly, the model used in the calculations will be

$$
\hat{\theta}_{t}(\pi):=\theta\left(\hat{\pi}_{k}\right)+\min \left\{e_{t}+\left\langle v_{t}, \pi-\hat{\pi}_{k}\right\rangle, \mathcal{E}_{t}+\left\langle w_{t}, \pi-\hat{\pi}_{k}\right\rangle\right\},
$$

with $\mathcal{E}_{1}=0$. Subsequent \mathcal{E}_{t+1} can be computed using the definition above, or using α_{t}, as described next. The primal optimal value giving α_{t} in (27) is

$$
\hat{\theta}_{t}\left(\pi_{t+1}\right)-\frac{1}{2 s_{t+1}}\left\|\pi_{t+1}-\hat{\pi}_{k}\right\|^{2}=\hat{\theta}_{t}\left(\pi_{t+1}\right)-\frac{s_{t+1}}{2}\left\|w_{t+1}\right\|^{2},
$$

by (28). The dual value from (29) is
$\frac{s_{t+1}}{2}\left\|\alpha_{t} v_{t}+\left(1-\alpha_{t}\right) w_{t}\right\|^{2}+\alpha_{t} e_{t}+\left(1-\alpha_{t}\right) \mathcal{E}_{t}=\frac{s_{t+1}}{2}\left\|w_{t+1}\right\|^{2}+\alpha_{t} e_{t}+\left(1-\alpha_{t}\right) \mathcal{E}_{t}$,
by (15). Problem (29) is strongly convex, so both optimal values are equal and

$$
\mathcal{E}_{t+1}=\hat{\theta}_{t}\left(\pi_{t+1}\right)-\hat{\theta}_{t}\left(\pi_{t+1}\right)-s_{t+1}\left\|w_{t+1}\right\|^{2}=\alpha_{t} e_{t}+\left(1-\alpha_{t}\right) \mathcal{E}_{t}
$$

The corresponding modifications in the revised volume algorithm of Section 5.1 yield the following scheme, that we call BVA:
STEP 0. Same than for RVA. Replace $\varepsilon_{1}=0$ by $\mathcal{E}_{1}=0$.
Step 1. Same than for RVA, replacing (34) by

$$
\begin{equation*}
\delta_{t}=s_{t}\left\|w_{t}\right\|^{2}+\mathcal{E}_{t} . \tag{34}
\end{equation*}
$$

STEP 2. Same than for RVA.
StEP 3. Same than for RVA.
STEP 4. Compute a new stepsize s_{t+1}. Let $\alpha_{t} \in[0,1]$ be the solution of (29) with ε_{t} as defined in (22) and \hat{e}_{t} replaced by \mathcal{E}_{t}. Compute

$$
\begin{aligned}
w_{t+1} & =\alpha_{t} v_{t}+\left(1-\alpha_{t}\right) w_{t} \\
\mathcal{E}_{t+1} & =\alpha_{t} e_{t}+\left(1-\alpha_{t}\right) \mathcal{E}_{t} .
\end{aligned}
$$

This completes the $t^{t h}$ iteration: set $t=t+1$ and loop to 1 .

This algorithm falls within the class of penalized bundle methods, implemented with maximum bundle compression at each iteration. More specifically, BVA is Algorithm 3.14 in [7, Ch. XV], with maximum bundle size equal to 2 . For a proof of convergence, we refer to Theorems 3.2.2 and 3.2.4 therein. Barring the objectionable condition (41), it is interesting to compare the assumptions on the stepsizes s_{t} required by these theorems with our own assumptions for RVA:

ALGORITHM	∞ SERIOUS STEPS	∞ NULL STEPS
RVA	(36) and (38)	(38) and (42)
BVA	(36) and $\left\{s_{t}\right\}_{t \in T_{s}}$ bounded	$\left\{s_{t}\right\}_{t \notin T_{s}}$ non increasing and $\sum_{t \notin T_{s}} \frac{s_{t+1}^{2}}{s_{t}}=\infty$

Our condition (38) is implied by $\left\{s_{t}\right\}_{t \in T_{s}}$ bounded together with $\left\{s_{t}\right\}_{t \notin T_{s}}$ non increasing. On the other hand, we do not require this last monotony assumption on the subsequence $\left\{s_{t}\right\}_{t \notin T_{s}}$. Finally, when compared to (42), the two conditions for proving convergence for infinite null steps in BVA imply that the decreasing sequence $\left\{s_{t}\right\}_{t \notin T_{s}}$ is bounded away from zero.

We finish by mentioning that a result along the lines of Proposition 2 can also be proved for the sequence $\left\{z_{t}\right\}$ computed in STEP 4 of BVA. In fact, for such a result to hold, it is only required from the algorithm to have a stopping test measuring $\left\|w_{t}\right\|$ like in (45), or (46), with $w_{t} \in \partial \theta\left(z_{t}\right)$.

7. Computational experience

We now compare VA, RVA and BVA on a set of Rectilinear Steiner problems.

7.1. Formulation of the problem

Given an undirected weighted graph $G=(V, E)$, a set of terminal vertices $T \subseteq V$, with $|T| \geq 3$ and non-negative edge weights c_{e} for all $e \in E$, the Steiner Problem in Graphs consists in finding a connected subgraph S of G (called the Steiner Tree) that includes all terminal vertices at minimum edge cost, i.e., $\min \sum_{e \in S} c_{e}$. This problem is known to be $\mathcal{N} \mathcal{P}$-hard, specially for grid graphs, see [10], [6]. In this section we report computational results on Rectilinear Steiner Problems, i.e., instances in which the graph G is a grid, possibly with holes. Rectilinear instances are known to be the hardest ones, and the existence of holes makes the problem even harder.

Motivated by the increasing demand in the VLSI design of electronic circuits, the solution of Steiner problems has received considerable attention in the last years. Among the proposed solution methods are cutting-planes algorithms, heuristic procedures, approximation algorithms, Lagrangian relaxations, and polyhedral approaches. Related surveys are [20], [15], [8], [9] and, more recently, [12] and [3].

We use VA, RVA and BVA to solve a linear relaxation of the nonsimultaneous sin-gle-commodity flow integer formulation of the Steiner problem from [5], [22]. In order
to obtain this formulation, we first express the original (undirected weighted graph) problem as a directed weighted graph problem, as follows:

$$
\left\{\begin{array}{l}
\min _{(x, f) \in \mathcal{A}}\langle c, x\rangle \tag{47}\\
\sum_{j \in O(s)}^{k} f_{s j}^{k}-\sum_{j \in I(s)} f_{j s}^{k}=1, \quad k=1, \ldots, T_{0} \\
\sum_{j \in O(k)} f_{k j}^{k}-\sum_{j \in I(k)} f_{j k}^{k}=-1, \quad k=1, \ldots, T_{0} \\
\sum_{j \in O(i)} f_{i j}^{k}-\sum_{j \in I(i)} f_{j i}^{k}=0, \quad i \in V \backslash\{s, k\}, \quad k=1, \ldots, T_{0} \\
x_{i j} \in\{0,1\}, \quad(i, j) \in E_{d} . \\
0 \leq f_{i j}^{k} \leq x_{i j}, \quad(i, j) \in E_{d}, \quad k=1, \ldots, T_{0}
\end{array}\right.
$$

In this formulation:

- For each edge $e=[i, j] \in E$ we create $\operatorname{arcs}(i, j)$ and $(j, i) \in E_{d}$ with $c_{i j}=c_{j i}=c_{e}$, yielding the directed graph $G_{d}=\left(V, E_{d}\right)$;
- We choose one vertex $s \in T$ to be the source offering $T_{0}:=|T \backslash\{s\}|$ commodities, one commodity for each of the remaining $\left|T_{0}\right|$ terminal vertices;
- For $k=1, \ldots, T_{0}$ and $(i, j) \in E_{d}$, let $f_{i j}^{k}$ be the amount of commodity k on the arc (i, j), and let $x_{i j}$ be a binary variable indicating whether the $\operatorname{arc}(i, j)$ is in the Steiner Tree $\left(x_{i j}=1\right)$ or not ($x_{i j}=0$);
- Consider further that $I(i)$ (resp. $O(i)$) is the set of all input (resp. output) vertices $j \in V$ such that $(j, i) \in E_{d}$ (resp. $\left.(i, j) \in E_{d}\right)$.
Altogether, defining $\mathcal{A}:=\left\{(x, f)=\left(x_{i j}, f_{i j}^{k}\right):(i, j) \in E_{d}, k=1, \ldots, T_{0}\right\}$ and $c:=\left(c_{i j}\right)_{(i, j) \in E_{d}}$, we obtain the formulation (47).

Constraints (47) $\left(a_{1}\right),\left(a_{2}\right)$, and (a_{3}) represent the flow conservation equations for, respectively, the terminal vertex chosen to be the source, the remaining terminal vertices, and the non-terminal vertices. The constraint set (47)(Ψ) allows a non-zero flow $f_{i j}^{k}$ of any commodity k through an arc (i, j) only if this arc is included in the Steiner Tree. Finally, the objective function is defined as the total sum of the arcs included in the Steiner Tree, i.e., arcs (i, j) such that $x_{i j}=1$. In particular, since the costs $c_{i j}$ are integer, this means that the objective function $\langle c, x\rangle$ only takes integer values.

7.2. Dual problem

We now derive the corresponding dual problem (5). To obtain a continuous linear program as in (1) we consider, instead of (47), its linear relaxation, i.e., a problem with (47)(int) replaced by

$$
\begin{equation*}
x_{i j} \in[0,1], \quad(i, j) \in E_{d} \tag{47}
\end{equation*}
$$

We have relaxed constraints (47)($\left.a_{1}\right)-\left(a_{3}\right)$, playing the role of constraints (1)(a). Accordingly, the number of dual and primal variables are, respectively
$m:=(1+1+|V|-2) T_{0}=|V|(|T|-1)$ and $n:=|\mathcal{A}|=2\left|E_{d}\right|+2\left|E_{d}\right| T_{0}=2\left|E_{d}\right||T|$.
For convenience, we consider for each dual variable $\pi \in \mathfrak{R}^{m}$ subvectors $\pi^{k} \in \mathfrak{R}^{|V|}$, with $k=1, \ldots, T_{0}$. With this notation the dualization of, for example, (47)(a_{1}) with k fixed, gives a scalar term $\pi_{s}^{k}\left(\sum_{j \in O(s)} f_{s j}^{k}-\sum_{j \in I(s)} f_{j s}^{k}-1\right)$ in the Lagrangian function (2). The righthand side vector $b \in \mathfrak{R}^{m}$ in (1) is defined by $b_{s}^{k}:=1, b_{k}^{k}:=-1$ and $b_{i}^{k}=0$ for all $i \neq s, k$ and for all $k=1, \ldots, T_{0}$. The $m \times n$ matrix A from (1) can be defined likewise.

The remaining constraints, (47)(lin) and (47)(Ψ), form the feasible polyhedron Ψ from (3). Altogether, the dual function from (10) has the expression

$$
\theta(\pi)=\left\{\begin{array}{ll}
\min _{(x, f) \in \mathcal{A}}\langle c, x\rangle+\sum_{k=1}^{T_{0}} \sum_{(i, j) \in E_{d}}\left(\pi_{i}^{k}-\pi_{j}^{k}\right) f_{i j}^{k}-\langle b, \pi\rangle \\
x_{i j} \in[0,1], & (i, j) \in E_{d} \\
0 \leq f_{i j}^{k} \leq x_{i j}, & (i, j) \in E_{d}, k=1, \ldots, T_{0}
\end{array}\right]=: \Psi
$$

Each call to the oracle entails solving this subproblem by inspection on Ψ. Namely, letting $\ell_{i j}^{k}:=\pi_{i}^{k}-\pi_{j}^{k}$, a solution $(x(\pi), f(\pi))$ satisfies

$$
\begin{aligned}
& \text { If } \sum_{k: \ell_{i j}^{k}<0}\left|\ell_{i j}^{k}\right|>c_{i j}, \text { then } \begin{cases}x_{i j}(\pi):=1, \\
f_{i j}^{k}(\pi):=1 & \text { for every } k \text { such that } \ell_{i j}^{k}<0, \\
f_{i j}^{k}(\pi):=0 & \text { for every } k \text { such that } \ell_{i j}^{k} \geq 0 .\end{cases} \\
& \text { If } \sum_{k: \ell_{i j}^{k}<0}\left|\ell_{i j}^{k}\right| \leq c_{i j}, \text { then } \begin{cases}x_{i j}(\pi):=0, \\
f_{i j}^{k}(\pi):=0 & \text { for every } k .\end{cases}
\end{aligned}
$$

Finally, by (11), the supergradient $v=A(x(\pi), f(\pi))-b$ is readily available.

7.3. Description of the solution method

We now give the general algorithmic scheme we use for all the three dual methods VA, RVA, BVA. We start with a description on how to compute upper bounds.

Upper bounds. Let $z_{t}=\left(\hat{x}_{t}, \hat{f}_{t}\right)$ be the primal approximation (of a solution of the linear programming relaxation of (47)) computed in VA, RVA and BVA using (14). We use this primal information to derive heuristics yielding an upper bound (i.e., an integer feasible point) for problem (47).

In what follows we denote by \hat{x} the vector \hat{x}_{t} and for every edge $(i, j) \in G=(V, E)$, we let $\hat{y}_{i j}:=\hat{x}_{i j}+\hat{x}_{j i}$.
1.- Minimum spanning tree with volumetric weights (MSTV). This heuristic is defined by the following steps:

- Find a minimum spanning tree $M S T V$ in the graph G with arc weights equal to $c_{i j}$ if $t=0$ and $-\hat{y}_{i j}$ for all $t>0$.
- Prune all non-terminal leaves of MSTV.
- Find a minimum spanning tree $M S T$ in the subgraph induced by the vertices remaining in MSTV after the pruning, considering the original costs $c_{i j}$ as weights.
- Prune all non-terminal leaves of MST.
2.-Minimum spanning tree in a modified graph (MSTM). This heuristic is applied in a subgraph of G. For a given $\beta \in[0,1]$, let $G_{\beta}=\left(V_{\beta}, E_{\beta}\right)$ be the subgraph induced by the set of vertices V_{β} consisting of all terminal vertices and the nonterminal vertices i satisfying $\sum_{j} \hat{y}_{i j} \geq \beta$. The steps are:
- Find the largest value of $\beta \in\{0,0.1,0.2, \ldots, 0.9,1\}$ such that G_{β} is connected.
- Find a minimum spanning tree $M S T M$ in G_{β} with arc weights equal to $c_{i j}$ if $t=0$ and $\left(1-\hat{y}_{i j}\right) c_{i j}$ for all $t>0$.
- Prune all non-terminal leaves of $M S T M$.
- Find a minimum spanning tree $M S T$ in the graph induced by the vertices remaining in MSTM after the pruning, considering the original costs $c_{i j}$ as weights.
- Prune all non-terminal leaves of $M S T$.
3.- Takahashi \& Matsuyama heuristic with volumetric weights (T\&MV). Given a graph $G=(V, E)$ with nonnegative arc costs $c_{i j}$, for each $(i, j) \in E$, the Takahashi \& Matsuyama heuristic is defined in [18] by:

1. Choose an initial terminal vertex v_{i} and set $k=1$.
2. Connect v_{i} with the terminal vertex $v_{j}, j \neq i$, that is closest to v_{i} using the shortest path. Let T_{1} be the subtree obtained.
3. Connect T_{k} with the terminal vertex $v_{l}, l \notin T_{k}$, that is closest to T_{k} using the shortest path. Let T_{k+1} be the subtree obtained;
4. Stop if all terminals are connected; otherwise set $k \leftarrow k+1$ and loop to 3 .

Our third heuristic performs the following steps:

- Given a starting vertex v_{i}, run the Takahashi \& Matsuyama heuristic for the digraph $D=\left(V, E_{d}\right)$ with arc weights equal to $c_{i j}^{\prime}:=c_{j i}^{\prime}:=c_{i j}$ if $t=0$ and $c_{i j}^{\prime}:=c_{j i}^{\prime}:=$ $\left(1-\hat{y}_{i j}\right) c_{i j}$ for all $t>0$.
- Find a minimum spanning tree in the subgraph induced by the vertices included in the tree obtained in the previous step, considering the original costs $c_{i j}$ as weights.
- Prune all non-terminal leaves.

The heuristics above are used to compute, at certain iterations of the general algorithm, three primal feasible points \hat{x}. The upper bound UB used in (16) is the minimum of the three corresponding objective values $\langle c, \hat{x}\rangle$ in (1).

Stopping tests. Since (47) has integer cost function depending only on the $0-1$ variables $x_{i j}$, its optimal value is integer. As a result, at every iteration, say t, UB is an integer value, bigger, by weak duality, than the dual value $\mathrm{LB}:=\theta\left(\pi_{t}\right)$, possibly non integer. This observation yields the stopping test

$$
\begin{equation*}
\text { If } \mathrm{UB}-\mathrm{LB}<1 \quad \text { STOP, } \tag{IDG}
\end{equation*}
$$

that we call IDG, by integer duality gap. When a method stops with this test, the solution found is optimal.

Because VA does not have a stopping criterion, we check in this case primal and dual feasibility:

$$
\begin{equation*}
\text { If } \quad\left|\left\langle c, \hat{x}_{t}\right\rangle-\mathrm{LB}\right| \leq \operatorname{TOL}_{p} \mathrm{LB} \quad \text { and } \quad\left\|w_{t}\right\| \leq \operatorname{TOL}_{w} \quad \text { STOP, } \tag{PDF}
\end{equation*}
$$

for given initial tolerances, $\operatorname{TOL}_{p, w}$.
As a final exit, we also set a maximum of iterations and CPU time:

$$
\begin{equation*}
\text { If } t>\text { MAXITER or } \mathrm{CPU}_{\text {time }}>\text { MAXTIME } \text { STOP. } \tag{!!}
\end{equation*}
$$

General Algorithm.

Start. Choose the stopping tolerances and the initial parameters of the dual method to run (VA, RVA, BVA). Set $t=0$.
Lower bound. Make one iteration of the dual method. Update Lb. The primal approximation z_{t} is available.
UPPER BOUND. If the iteration gives a serious step, or if too many null steps have been done, run the three heuristics, starting from z_{t}. Update UB and define a new stepsize s_{t+1}.
Stopping Test. Check (IDG). For VA, check (PDF), for RVA and BVA, check, for instance, (46). Check (!!).
Loop. Set $t=t+1$ and loop to LOWER BOUND.

7.4. Numerical results

Now we report on the computational experiences. Our code is implemented in C++ and all runs have been performed on a Pentium 133 MHz .

VLSI layout applications yield Steiner Tree Problems over rectangular grid graphs with many irregularly placed holes. These instances are known to be the hardest ones to be solved by current methods. For our comparisons, we use the preprocessed version [3] of the 116 VLSI problems from the library SteinLib available at ftp://ftp.zib. de/ pub/mp-testdata/steinlib. After preprocessing, 42 out of the 116 instances are solved straightforwardly. From the remaining 74 instances, we chose 50 cases, classified in 6 groups, as shown in Table 1.

In our General Algorithm, we use the following initial tolerances and parameters: $\mu=0.1$ for the stepsize (16), $m_{1}=0.001$ for the serious test (35), $\operatorname{TOL}_{p}=\operatorname{TOL}_{w}=$ 0.00001 in (PDF), and $\delta_{w}=\delta_{\epsilon}=0.00001$ in (46). Finally, in (!!) we set MAXITER= 500,000 and MAXTIME $=7,200$ seconds.

Table 1. Size of VLSI Instances

Name	$\|V\|$	$\|E\|$	$\|T\|$	$n=\mid$ Primal $P b \mid$	$m=\mid$ Dual $P b \mid$
dmxa1721	4	5	3	20	8
dmxa1109	9	13	5	104	36
dmxa0903	53	90	7	1080	318
dmxa0848	34	54	11	1080	340
dmxa1200	29	42	13	1008	348
dmxa0368	47	76	9	1216	376
dmxa1801	310	553	17	17696	4960
taq0631	8	11	4	66	24
taq0023	37	63	7	756	222
taq0739	64	105	12	2310	704
taq0431	108	188	10	3384	972
taq0741	84	140	14	3640	1092
taq0751	104	178	14	4628	1352
taq0365	984	1771	21	70840	19680
alue2087	40	65	13	1560	480
alue5067	300	504	38	37296	11100
gap1904	7	9	4	54	21
gap2740	13	19	5	152	52
gap3100	16	25	8	350	112
gap3036	28	42	9	672	224
gap2007	41	70	9	1120	328
msm1931	4	5	3	20	8
msm2705	4	5	3	20	8
msm1844	6	8	4	48	18
msm0580	7	9	4	54	21
msm0920	7	9	4	54	21
msm1234	7	9	4	54	21
msm2802	7	11	4	66	21
msm2326	9	12	5	96	36
msm2525	11	15	6	150	55
msm1477	12	16	6	160	60
msm1008	13	18	6	180	65
msm4515	35	55	8	770	245
msm2492	39	61	9	976	312
msm2601	178	305	12	6710	1958
msm3829	338	594	10	10692	3042
msm2152	191	333	24	15318	4393
msm4312	1299	2355	10	42390	11691
msm 2846	347	595	58	67830	19779
diw0487	4	5	3	20	8
diw0473	14	22	6	220	70
diw0459	19	30	8	420	133
diw0445	27	42	10	756	243
diw0559	83	141	11	2820	830
diw0795	225	400	10	7200	2025
diw0778	187	337	15	9436	2618
diw0801	334	605	10	10890	3006
diw0234	760	1413	21	56520	15200
diw0819	1394	2604	26	130200	34850
diw0820	1816	3407	32	211234	56296

The complete set of results for the 50 examples are included in the Appendix, on Tables 5, 6, and 7, corresponding, respectively, to VA, RVA, and BVA. We summarize these results in Tables 2, 3, and 4. Each table reports both primal and dual average results for each one of the 6 groups of instances.

Table 2. Summary of primal and dual results (VA)

	Primal Results			Dual Results		
	$(\%) O P T$	$(\%) P r$ Dist	Heu	$(\#) S u b P b$	Stop T	$C P U_{\text {Time }}(s)$
DMXA	100.00	16.49	MSTM	6480	(IDG)	349.38
TAQ	85.71	13.38	MSTM	311085	(IDG)	4723.29
ALUE	100.00	18.23	T\&MV	2340	(IDG)	574.23
GAP	80.00	15.44	MSTM/MSTV	503340	(IDG)	158.20
MSM	83.33	20.22	MSTV	558800	(IDG)	14961.70
DIW	81.82	14.05	MSTM/MSTV	18480	(IDG)	15244.00

Table 3. Summary of primal and dual results (RVA)

	Primal Results			Dual Results		
	$(\%) O P T$	$(\%) P r$ Dist	$H e u$	$(\#) S u b P b$	Stop T	$C P U_{\text {Time }}(s)$
DMXA	100.00	15.17	MSTM/ MSTV	6896	(IDG)	369.19
TAQ	100.00	12.33	MSTM	268205	(IDG)	9094.70
ALUE	100.00	14.68	T\&MV	2770	(IDG)	412.71
GAP	80.00	15.28	MSTV	503330	(IDG)	240.56
MSM	83.33	19.18	MSTV	557269	(IDG)	15537.75
DIW	81.82	15.38	MSTV	23503	(IDG)	15572.89

Table 4. Summary of primal and dual results (BVA)

Group	Primal Results			Dual Results		
	$(\%) O P T$	$(\%) P r$ Dist	$H e u$	(\#)SubPb	Stop	$C P U_{\text {Time }}(s)$
DMXA	100.00	17.00	MSTM/MSTV	6297	(IDG)	347.68
TAQ	71.43	13.81	T\&MV	531927	(IDG)	10403.76
ALUE	100.00	17.16	T\&MV / MSTM	2437	(IDG)	719.18
GAP	80.00	15.35	MSTV	503176	(IDG)	1554.05
MSM	83.33	21.53	MSTV	601998	(IDG)	16951.51
DIW	81.82	15.12	MSTV	18601	(IDG)	15436.81

The two first columns on Primal Results show the percentage of the instances solved to optimality, and $\operatorname{Pr} A p$, the (average) distance between UB and the objective values $\left\langle c, \hat{x}_{t}\right\rangle$ computed using the primal approximations obtained by each method. Finally, a third column Heu shows the heuristic(s) giving best results in average. The columns on Dual Results report the total number of subproblems solved (i.e., the total number of calls to the oracle, to evaluate the dual function and to compute a supergradient), the most frequently verified stopping test, and the total average CPU time in seconds.

In terms of primal results, two good measures for analyzing the quality of the algorithm are the number of instances for which optimality was found, and the quality of the primal approximation produced by the algorithm. From this point of view, we see that RVA behaves better than both VA and BVA, because the primal approximations generated by RVA are better in average for almost all groups. Furthermore, the primal information obtained with RVA resulted in optimality for all the problems of the group TAQ. More precisely, Table 6 in the Appendix shows that the stopping test (IDG) held for all the problems, but TAQ0739. Yet, for this problem, RVA gave a primal approximation value $\left\langle c, \hat{x}_{t}\right\rangle$ (693.32) that can be considered optimal (693).

In terms of dual results, a good measure for the algorithm quality is the number of subproblems solved. In this case, RVA also behaves better than both VA and BVA.

Table 5. Volume Algorithm (VA)

Name	LB	UB	PrAp	SubPb	(\%)Ser.	Best H	Stop T	$C P U(s)$
dmxa1721	172.15	173*	239.94	420	9	MSTV	(IDG)	0.08
dmxa1 109	161.00	161*	209.80	540	8	MSTM	(IDG)	0.39
dmxa0903	419.95	420*	463.18	1000	12	MSTM	(IDG)	8.18
dmxa0848	424.10	425*	516.12	760	12	MSTM	(IDG)	4.80
dmxa1200	482.05	483*	572.43	1060	21	MSTM	(IDG)	7.78
dmxa0368	491.81	492*	570.20	1040	11	MSTM	(IDG)	8.01
dmxa1801	1205.12	1206*	1309.82	1660	14	MSTV	(IDG)	320.14
taq0631	219.21	220 *	277.33	720	11	MSTM	(IDG)	0.52
taq0023	384.93	385*	525.11	820	14	MSTM	(IDG)	4.82
taq0739	692.50	695	694.75	301205	1	T\&MV	(PDF)	1771.18
taq0431	674.22	675*	804.70	960	11	MSTV	(IDG)	23.76
taq0741	784.38	$785 *$	883.71	1300	12	MSTM	(IDG)	29.60
taq0751	784.24	785^{\star}	914.50	1360	28	MSTM	(IDG)	66.44
taq0365	1743.04	1744*	1838.91	4720	4	T\&MV	(IDG)	2826.97
alue2087	378.79	379*	509.60	900	19	T\&MV	(IDG)	9.88
alue5067	1458.12	1459*	1636.01	1440	16	T\&MV	(IDG)	564.35
gap1904	117.27	118*	151.94	680	9	MSTV	(IDG)	0.41
gap2740	385.23	386*	462.18	880	10	MSTM	(IDG)	0.93
gap3100	488.49	489*	624.20	720	30	T\&MV	(IDG)	2.52
gap3036	310.13	311*	356.41	1060	22	MSTV	(IDG)	6.48
gap2007	488.00	493	513.53	500000	1	MSTM	!!	147.86
msm1931	417.00	417*	599.35	460	16	MSTV	(IDG)	0.13
msm2705	98.79	99*	148.05	360	11	MSTV	(IDG)	0.03
msm1844	65.42	66*	100.01	460	16	T\&MV	(IDG)	0.33
msm0580	99.66	100^{*}	131.75	440	10	MSTM	(IDG)	0.23
msm0920	131.24	132*	171.53	600	19	MSTV	(IDG)	0.51
msm1234	163.43	164^{\star}	213.72	640	12	MSTV	(IDG)	0.34
msm2802	120.71	$121 *$	191.16	460	14	MSTM	(IDG)	0.22
msm2326	112.37	113*	160.93	580	22	MSTV	(IDG)	0.73
msm2525	160.47	161**	201.75	860	20	MSTV	(IDG)	1.30
msm1477	143.14	144^{\star}	196.48	660	26	T\&MV	(IDG)	1.23
msm1008	244.42	$245 *$	316.16	640	24	MSTV	(IDG)	1.31
msm4515	434.62	435*	571.31	680	16	MSTV	(IDG)	4.04
msm2492	519.50	522	542.43	500000	1	T\&MV	!!	135.25
msm2601	998.28	999*	1127.85	1260	6	T\&MV	(IDG)	50.29
msm3829	1140.08	1141*	1149.35	1660	6	MSTV	(IDG)	134.94
msm2152	1145.29	$1146{ }^{\star}$	1299.89	1660	16	MSTM	(IDG)	230.82
msm4312	1850.91	1887	1990.06	13760	1	T\&MV	!!	7200.00
msm2846	2185.17	2192	2266.18	33620	1	MSTM	!!	7200.00
diw0487	83.47	84*	116.39	520	10	MSTV	(IDG)	0.17
diw0473	226.14	227*	284.49	720	18	MSTV	(IDG)	1.35
diw0459	326.32	$327 *$	390.94	840	12	MSTV	(IDG)	2.25
diw0445	405.15	406*	481.49	1020	13	MSTM	(IDG)	4.72
diw0559	872.32	873*	967.97	1380	13	MSTM	(IDG)	26.92
diw0795	1377.24	1378*	1535.27	1420	8	T\&MV	(IDG)	88.35
diw0778	1272.22	1273*	1400.51	1420	12	MSTV	(IDG)	88.16
diw0801	1480.29	1481*	1593.87	1740	11	T\&MV	(IDG)	200.70
diw0234	1753.25	1754*	2257.63	1040	10	MSTM	(IDG)	431.38
diw0819	3044.33	3097	3314.21	6280	2	MSTM	!!	7200.00
diw0820	3404.60	3809	4202.29	2100	11	T\&MV	!!	7200.00

Table 6. Revised Volume Algorithm (RVA)

Name	LB	UB	PrAp	$S u b P b$	(\%)Ser.	Best H	StopT	$C P U(s)$
dmxa1721	172.13	173^	222.35	573	7	MSTV	(IDG)	0.25
dmxa1109	160.09	$161{ }^{\star}$	211.14	436	12	MSTM	(IDG)	0.41
dmxa0903	419.07	420*	478.73	964	19	T\&MV	(IDG)	8.56
dmxa0848	424.17	425*	508.88	774	20	MSTM	(IDG)	5.24
dmxa1200	482.20	483*	552.74	1072	26	MSTV	(IDG)	7.96
dmxa0368	491.39	492*	560.88	1042	21	MSTM	(IDG)	8.57
dmxa1801	1205.15	1206*	1291.38	2035	25	MSTV	(IDG)	338.20
taq0631	219.42	220*	259.07	845	13	MSTM	(IDG)	0.62
taq0023	384.78	385*	474.01	803	22	MSTM	(IDG)	4.99
taq0739	692.47	695	693.32	250449	13	T\&MV	(46)	2123.38
taq0431	674.33	675*	820.68	1408	18	MSTV	(IDG)	29.22
taq0741	784.17	785*	867.85	1399	18	MSTM	(IDG)	30.64
taq0751	784.31	785 ${ }^{\text {® }}$	911.03	1426	35	MSTV	(IDG)	69.90
taq0365	1743.31	1744*	1972.46	11875	19	T\&MV	(IDG)	6835.95
alue2087	378.23	379*	491.89	767	29	T\&MV	(IDG)	7.02
alue5067	1458.32	1459*	1558.89	2003	26	T\&MV	(IDG)	405.69
gap1904	117.11	118*	158.08	648	13	MSTV	(IDG)	0.36
gap2740	385.52	386*	476.25	836	16	MSTV	(IDG)	1.02
gap3100	488.64	489*	592.93	840	31	T\&MV	(IDG)	2.77
gap3036	310.16	311*	349.33	1006	27	T\&MV	(IDG)	5.65
gap2007	487.89	493	511.49	500000	18	MSTV	!!	230.76
msm1931	417.00	417*	532.19	691	21	MSTV	(IDG)	0.30
msm2705	98.94	99*	144.64	441	12	MSTV	(IDG)	0.12
msm1844	65.32	66*	93.48	423	13	MSTV	(IDG)	0.25
msm0580	99.13	100^{\star}	128.74	413	13	MSTM	(IDG)	0.26
msm0920	131.08	132^{\star}	171.86	710	18	MSTV	(IDG)	0.44
msm1234	163.37	164^{\star}	228.65	486	14	MSTV	(IDG)	0.25
msm2802	120.04	121^{\star}	179.23	589	12	MSTM	(IDG)	0.30
msm2326	112.13	113*	162.85	639	22	MSTV	(IDG)	0.65
msm2525	160.20	161^{\star}	214.54	809	22	MSTV	(IDG)	1.16
msm1477	143.04	144*	186.47	781	24	T\&MV	(IDG)	1.20
msm1008	244.43	245*	317.31	816	24	MSTV	(IDG)	1.60
msm4515	434.16	435*	573.04	597	26	MSTV	(IDG)	3.78
msm2492	519.42	522	538.56	500000	25	T\&MV	!!	241.73
msm2601	998.23	999*	1171.62	1570	16	MSTV	(IDG)	62.84
msm3829	1140.75	1141*	1147.81	9156	24	MSTV	(IDG)	561.36
msm2152	1145.36	1146*	1199.42	2008	25	MSTV	(IDG)	261.51
msm4312	1852.66	1893	1951.36	11320	18	T\&MV	!!	7200.00
msm2846	2186.10	2191	2315.53	25820	20	T\&MV	!!	7200.00
diw0487	83.20	84*	109.26	418	10	MSTV	(IDG)	0.08
diw0473	226.24	227*	291.73	734	21	MSTV	(IDG)	1.08
diw0459	326.02	$327 *$	379.63	900	18	MSTV	(IDG)	2.12
diw0445	405.08	406*	452.54	820	22	T\&MV	(IDG)	3.44
diw0559	872.10	873*	930.41	1502	21	MSTM	(IDG)	22.87
diw0795	1377.32	1378*	1500.89	1710	23	T\&MV	(IDG)	109.82
diw0778	1272.54	1273*	1381.91	2008	24	MSTV	(IDG)	97.34
diw0801	1480.22	1481*	1596.24	6744	17	MSTV	(IDG)	525.96
diw0234	1753.33	1754*	2042.07	1687	25	T\&MV	(IDG)	410.18
diw0819	3024.48	3115	3620.67	5100	20	MSTV	!!	7200.00
diw0820	3081.41	3833	6634.23	1880	25	T\&MV	!!	7200.00

Finally, in terms of CPU time, VA is 10% faster than RVA, that is in turn 10% faster than BVA.

We conclude from Tables 2, 3 and 4 that RVA is better suited to solve difficult instances coming from real-world VLSI design problems. Moreover, since the good numerical performances of RVA are backgrounded by some convergence results, RVA can be considered as a good compromise between practice and theory. Altogether, when solving

Table 7. Bundle Version of the Revised Volume Algorithm (BVA)

Name	LB	UB	PrAp	SubPb	(\%)Ser.	Best H	StopT	$C P U(s)$
dmxa1721	172.14	173*	241.64	411	10	MSTV	(IDG)	0.16
dmxa1109	160.10	$161 *$	215.53	474	12	MSTM	(IDG)	0.50
dmxa0903	419.11	420*	491.78	849	23	T\&MV	(IDG)	8.34
dmxa0848	424.42	425*	512.47	768	20	MSTM	(IDG)	5.15
dmxa1200	482.11	483*	561.40	1030	30	MSTV	(IDG)	8.04
dmxa0368	491.94	492*	564.91	1018	18	MSTM	(IDG)	7.90
dmxa1801	1205.05	1206*	1294.03	1747	25	MSTV	(IDG)	317.59
taq0631	219.27	$220{ }^{\star}$	272.01	799	13	MSTM	(IDG)	0.56
taq0023	384.86	385*	514.81	856	20	T\&MV	(IDG)	4.86
taq0739	692.45	695	697.68	500000	1	T\&MV	!!	3071.25
taq0431	674.18	675*	835.81	1164	18	MSTV	(IDG)	25.78
taq0741	784.52	785*	883.44	1414	18	T\&MV	(IDG)	31.92
taq0751	784.06	785*	934.19	1274	38	MSTV	(IDG)	69.39
taq0365	1732.62	1744	1841.82	26420	3	T\&MV	!!	7200.00
alue2087	378.73	379*	498.06	766	31	T\&MV	(IDG)	9.43
alue5067	1458.05	1459*	1628.90	1671	24	MSTM	(IDG)	709.75
gap1904	117.19	118*	152.33	680	13	MSTV	(IDG)	0.45
gap2740	385.21	386*	479.01	727	17	MSTV	(IDG)	1.13
gap3100	488.45	489*	606.91	769	34	T\&MV	(IDG)	2.77
gap3036	310.14	311*	364.67	1000	30	MSTM	(IDG)	6.14
gap2007	488.00	493	496.25	500000	1	MSTV	!!	1543.56
msm1931	417.00	417*	599.34	460	19	MSTV	(IDG)	0.19
msm2705	98.79	99*	149.46	342	14	MSTV	(IDG)	0.12
msm1844	65.26	66^{\star}	99.17	472	19	MSTV	(IDG)	0.36
msm0580	99.47	100^{\star}	132.06	435	14	MSTM	(IDG)	0.34
msm0920	131.28	132*	166.56	661	21	MSTV	(IDG)	0.62
msm1234	163.64	164^{\star}	216.34	603	15	MSTV	(IDG)	0.47
msm2802	120.42	121*	192.90	448	17	MSTM	(IDG)	0.36
msm2326	112.44	113^{\star}	161.45	574	26	MSTV	(IDG)	0.79
msm2525	160.19	161*	203.64	836	25	MSTV	(IDG)	1.61
msm1477	143.61	144^{\star}	184.75	795	26	T\&MV	(IDG)	1.45
msm1008	244.51	245^{\star}	317.56	633	30	MSTV	(IDG)	1.44
msm4515	434.09	435^	577.85	648	23	MSTV	(IDG)	3.77
msm2492	519.40	522	593.55	500000	1	T\&MV	!!	1356.71
msm2601	998.22	999^	1114.70	1277	17	MSTV	(IDG)	53.80
msm3829	1140.96	1141*	1170.60	18140	16	MSTM	(IDG)	895.31
msm2152	1145.09	1146*	1266.43	1634	26	MSTM	(IDG)	234.17
msm4312	1794.09	1893	1981.25	39020	2	T\&MV	!!	7200.00
msm2846	2174.43	2192	2246.70	35020	1	T\&MV	!!	7200.00
diw0487	83.39	84*	113.13	580	11	MSTV	(IDG)	0.17
diw0473	226.10	227*	292.29	642	24	MSTV	(IDG)	1.19
diw0459	326.02	$327{ }^{\star}$	383.37	895	17	MSTV	(IDG)	2.30
diw0445	405.24	406*	449.98	1039	20	MSTM	(IDG)	4.78
diw0559	872.20	873^	965.39	1366	22	MSTV	(IDG)	30.33
diw0795	1377.08	1378*	1553.04	1316	21	T\&MV	(IDG)	84.85
diw0778	1272.02	1273*	1406.10	1305	22	MSTV	(IDG)	92.35
diw0801	1480.08	1481*	1581.98	1996	21	MSTV	(IDG)	211.82
diw0234	1753.35	1754*	2258.90	1522	20	MSTM	(IDG)	609.02
diw0819	3041.46	3097	3243.44	6060	17	MSTV	!!	7200.00
diw0820	3181.67	3833	5493.79	1880	23	T\&MV	!!	7200.00

linear relaxations of difficult combinatorial problems, and based on our analysis and experience, we think that RVA should be preferred to both VA and BVA.

Appendix. We give here the complete tables with primal and dual results, for each preprocessed instance (see Table 1) and for each algorithm. Tables 5, 6, and 7, correspond, respectively, to VA, RVA, and BVA. A superscript * in the column UB indicates that optimality was found.

Table 8. Additional costs to recover the VLSI Instances after preprocessing

Name	cost $_{\text {add }}$
dmxa1721	607
dmxa1109	293
dmxa0903	160
dmxa0848	169
dmxa1200	267
dmxa0368	525
dmxa1801	159
taq0631	361
taq0023	236
taq0739	153
taq0431	222
taq0741	62
taq0751	154
taq0365	170
alue2087	670
alue5067	1127
gap1904	645
gap2740	359
gap3100	151
gap3036	146
gap2007	611
msm1931	187
msm2705	615
msm1844	122
msm0580	367
msm0920	674
msm1234	386
msm2802	805
msm2326	286
msm2525	1129
msm1477	924
msm1008	249
msm4515	195
msm2492	937
msm2601	441
msm3829	430
msm2152	444
msm4312	149
msm2846	944
diw0487	1340
diw0473	871
diw0459	1035
diw0445	957
diw0559	697
diw0795	172
diw0778	900
diw0801	106
diw0234	242
diw0819	302
diw0820	428

Table 8 shows the additional costs that must be added to the optimal costs obtained with the preprocessed instances of Table 1in order to recover the original optimal costs (before preprocessing).

Acknowledgements. The research of the first author was supported by CNPq under Grant No 142401/96-0. The research of the second author was partially supported by CNPq, FAPERJ and PRONEX. The research of the third author was partially supported by FAPERJ under Grant No E26/150.205/98 and by CNPq under Grant No 301800/96.

The code for the Volume Algorithm applied to the Steiner Problem in Graphs, which is the basis algorithm for RVA and BVA, was jointly developed by the first author and Francisco Barahona from the IBM Research Center at Yorktown Heighs, NY, USA, see [1].

The preprocessed VLSI instances were provided by Eduardo Barboza, see [3].

References

1. Bahiense, L., Barahona, F., Porto. O.: Solving Steiner tree problems in graphs with Lagrangian relaxation. Accepted for publication in J. Combinatorial Optim. 2002
2. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with a subgradient method. Math. Program. 87(3, Ser. A), 385-399 (2000)
3. Barboza, E., Aragao, M.V., Ribeiro, C.: Preprocessing Steiner problems from VLSI layout. Networks 40, 38-50 (2002)
4. Bonnans, J.F., Gilbert, J.Ch., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization. Theoretical and Practical Aspects. Springer-Verlag, Berlin, to appear in 2003
5. Claus, A., Maculan, N.: Une nouvelle formulation du Problème de Steiner sur un graphe. Tech. Rep. 280, Centre de Recherche sur les Transports, Université de Montréal, 1983
6. Garey, M.R., Johnson, D.S.: The Rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 826-834 (1977)
7. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and minimization algorithms. Number 305-306 in Grund. der math. Wiss. Springer-Verlag, Berlin, 1993
8. Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22, 55-89 (1992)
9. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner tree problem. In North Holland, ed. Ann. Dis. Math. Vol. 53, 1992
10. Karp, R.M.: Reducibility among combinatorial problems. In: R.E. Miller, J.W. Thatcher (eds), Complexity of Computer Computations, pp. 85-103. Plenum Press, 1972
11. Knopp, K.: Infinite Sequences and Series. Dover Publications Inc., New York, 1956
12. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 32, 207-232 (1998)
13. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Matecon 12, 747-756 (1976)
14. Lemaréchal, C.: An extension of Davidon methods to nondifferentiable problems. Math. Program. Study 3, 95-109 (1975)
15. Maculan, N.: The Steiner problem in graphs. Ann. Dis. Math. 31, 185-212 (1987)
16. Shor, N.: Minimization Methods for Non-differentiable Functions. Springer-Verlag, Berlin, 1985
17. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Analysis 7, 323-345 (1999)
18. Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem in graphs. Math. Japon. 24(6), 573-577 (1979/80)
19. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431-446 (2000)
20. Winter, P.: Steiner problems in networks: a survey. Networks 17, 129-167 (1987)
21. Wolfe, P.: A method of conjugate subgradients for minimizing nondifferentiable functions. Math. Program. Study 3, 145-173 (1975)
22. Wong, R.T.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Program. 28, 271-287 (1984)

[^0]: L. Bahiense, N. Maculan: Universidade Federal do Rio de Janeiro, COPPE-Sistemas e Computacão, P.O.Box 68511, Rio de Janeiro, RJ 21945-970, Brazil, e-mail: bahiense@impa.br, maculan@cos.ufrj.br
 C. Sagastizábal: IMPA, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro RJ 22460-320, Brazil. On leave from INRIA- Rocquencourt, BP 105, 78153 Le Chesnay, France

 Correspondence to: Claudia A. Sagastizábal, e-mail: sagastiz@impa.br

