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Build Skills

Problem-Solving Strategy 5.2 Newton’s Second Law: Dynamics of Particles

IDENTIFY the relevant concepts: You have to use Newton’s second
law for any problem that involves forces acting on an accelerating
body.

Identify the target variable—usually an acceleration or a force.
If the target variable is something else, you’ll need to select another
concept to use. For example, suppose the target variable is how
fast a sled is moving when it reaches the bottom of a hill. Newton’s
second law will let you find the sled’s acceleration; you’ll then use
the constant-acceleration relationships from Section 2.4 to find
velocity from acceleration.

SET UP the problem using the following steps:
1. Draw a simple sketch of the situation that shows each moving

body. For each body, draw a free-body diagram that shows all
the forces acting on the body. (The acceleration of a body is
determined by the forces that act on it, not by the forces that it
exerts on anything else.) Make sure you can answer the ques-
tion “What other body is applying this force?” for each force in
your diagram. Never include the quantity in your free-body
diagram; it’s not a force!

2. Label each force with an algebraic symbol for the force’s
magnitude. Usually, one of the forces will be the body’s weight;
it’s usually best to label this as 

3. Choose your x- and y-coordinate axes for each body, and show
them in its free-body diagram. Be sure to indicate the positive
direction for each axis. If you know the direction of the acceler-
ation, it usually simplifies things to take one positive axis along
that direction. If your problem involves two or more bodies that

= mg.

maS

accelerate in different directions, you can use a different set of
axes for each body.

4. In addition to Newton’s second law, identify any
other equations you might need. For example, you might need
one or more of the equations for motion with constant accelera-
tion. If more than one body is involved, there may be relation-
ships among their motions; for example, they may be connected
by a rope. Express any such relationships as equations relating
the accelerations of the various bodies.

EXECUTE the solution as follows:
1. For each body, determine the components of the forces along

each of the body’s coordinate axes. When you represent a force
in terms of its components, draw a wiggly line through the orig-
inal force vector to remind you not to include it twice.

2. Make a list of all the known and unknown quantities. In your
list, identify the target variable or variables.

3. For each body, write a separate equation for each component of
Newton’s second law, as in Eqs. (5.4). In addition, write any
additional equations that you identified in step 4 of “Set Up.”
(You need as many equations as there are target variables.)

4. Do the easy part—the math! Solve the equations to find the tar-
get variable(s).

EVALUATE your ans er: Does your answer have the correct units?
(When appropriate, use the conversion ) Does it
have the correct algebraic sign? When possible, consider particular
values or extreme cases of quantities and compare the results with

i t iti t ti A k “D thi lt k ?”

1 N = 1 kg # m>s2.

gF
S

� maS,

Example 5.17 Toboggan ride with friction II

The same toboggan with the same coefficient of friction as in
Example 5.16 accelerates down a steeper hill. Derive an expres-
sion for the acceleration in terms of g, and w.

SOLUTION

IDENTIFY and SET UP: The toboggan is accelerating, so we must
use Newton’s second law as given in Eqs. (5.4). Our target variable
is the downhill acceleration.

Our sketch and free-body diagram (Fig. 5.23) are almost the
same as for Example 5.16. The toboggan’s y-component of accel-
eration is still zero but the x-component is not, so we’ve
drawn the downhill component of weight as a longer vector than
the (uphill) friction force.

EXECUTE: It’s convenient to express the weight as Then
Newton’s second law in component form says

aFy = n + 1-mg cos a2 = 0
aFx = mg sin a + 1-ƒk2 = max

w = mg.

axay

mk,a,

From the second equation and Eq. (5.5) we get an expression for

We substitute this into the x-component equation and solve for :

EVALUATE: As for the frictionless toboggan in Example 5.10, the
acceleration doesn’t depend on the mass m of the toboggan. That’s
because all of the forces that act on the toboggan (weight, normal
force, and kinetic friction force) are proportional to m.

Let’s check some special cases. If the hill is vertical ( )
so that and we have (the toboggan
falls freely). For a certain value of the acceleration is zero; this
happens if

This agrees with our result for the constant-velocity toboggan in
Example 5.16. If the angle is even smaller, is greater than

and is negative; if we give the toboggan an initial down-
hill push to start it moving, it will slow down and stop. Finally, if
the hill is frictionless so that , we retrieve the result of
Example 5.10: .

Notice that we started with a simple problem (Example 5.10)
and extended it to more and more general situations. The general
result we found in this example includes all the previous ones as
special cases. Don’t memorize this result, but do make sure you
understand how we obtained it and what it means.

Suppose instead we give the toboggan an initial push up the
hill. The direction of the kinetic friction force is now reversed, so
the acceleration is different from the downhill value. It turns out
that the expression for is the same as for downhill motion except
that the minus sign becomes plus. Can you show this?

ax

ax = g sin a
mk = 0

axsin a
mk cos a

sin a = mk cos a and mk = tan a

a

ax = gcos a = 0,sin a = 1
a = 90°

ax = g1sin a - mk cos a2

mg sin a + 1-mkmg cos a2 = max

ax

ƒk = mkn = mkmg cos a

n = mg cos a

ƒk:

(a) The situation (b) Free-body diagram for toboggan

5.23 Our sketches for this problem.
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A cue ball (a uniform solid sphere of mass m and radius R) is at
rest on a level pool table. Using a pool cue, you give the ball a
sharp, horizontal hit of magnitude F at a height h above the center
of the ball (Fig. 10.37). The force of the hit is much greater 
than the friction force ƒ that the table surface exerts on the ball.
The hit lasts for a short time . (a) For what value of 
h will the ball roll without slipping? (b) If you hit the ball dead
center , the ball will slide across the table for a while, but
eventually it will roll without slipping. What will the speed of its
center of mass be then?

1h = 02

¢t

BRIDGING PROBLEM Billiard Physics

3. Draw two free-body diagrams for the ball in part (b): one show-
ing the forces during the hit and the other showing the forces
after the hit but before the ball is rolling without slipping.

4. What is the angular speed of the ball in part (b) just after the
hit? While the ball is sliding, does increase or decrease?
Does increase or decrease? What is the relationship between

and when the ball is finally rolling without slipping?

EXECUTE
5. In part (a), use the impulse–momentum theorem to find the

speed of the ball’s center of mass immediately after the hit.
Then use the rotational version of the impulse–momentum the-
orem to find the angular speed immediately after the hit. (Hint:
To write down the rotational version of the impulse–momentum
theorem, remember that the relationship between torque and
angular momentum is the same as that between force and linear
momentum.)

6. Use your results from step 5 to find the value of h that will
cause the ball to roll without slipping immediately after the hit.

7. In part (b), again find the ball’s center-of-mass speed and
angular speed immediately after the hit. Then write Newton’s
second law for the translational motion and rotational motion
of the ball as it is sliding. Use these equations to write
expressions for and as functions of the elapsed time
t since the hit.

8. Using your results from step 7, find the time t when and 
have the correct relationship for rolling without slipping. Then
find the value of at this time.

EVALUATE
9. If you have access to a pool table, test out the results of parts

(a) and (b) for yourself!
10. Can you show that if you used a hollow cylinder rather than a

solid ball, you would have to hit the top of the cylinder to
cause rolling without slipping as in part (a)?

vcm

vvcm

vvcm

vvcm

v

vcm

mass mh

R

10.37

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution. 

IDENTIFY and SET UP
1. Draw a free-body diagram for the ball for the situation in part (a),

including your choice of coordinate axes. Note that the cue
exerts both an impulsive force on the ball and an impulsive
torque around the center of mass.

2. The cue force applied for a time gives the ball’s center of
mass a speed , and the cue torque applied for that same
time gives the ball an angular speed . What must be the
relationship between and for the ball to roll without
slipping?

vvcm

v

vcm

¢t
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21.24 .. BIO Base Pairing in DNA, II. Refer to Exercise 21.23.
Figure E21.24 shows the bonding of the cytosine and guanine mol-
ecules. The and distances are each 0.110 nm. In this
case, assume that the bonding is due only to the forces along the

and combinations, and
assume also that these three combinations are parallel to each other.
Calculate the net force that cytosine exerts on guanine due to the
preceding three combinations. Is this force attractive or repulsive?

O¬H¬NN¬H¬N,O¬H¬O,
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Figure E21.23

NEW! Applications of Physics 
Throughout the text, free-standing captioned photos 

apply physics to real situations, with particular emphasis 
on applications of biomedical and general interest. 

Application Moment of Inertia of a
Bird’s Wing
When a bird flaps its wings, it rotates the
wings up and down around the shoulder. A
hummingbird has small wings with a small
moment of inertia, so the bird can make its
wings move rapidly (up to 70 beats per sec-
ond). By contrast, the Andean condor (Vultur
gryphus) has immense wings that are hard to
move due to their large moment of inertia.
Condors flap their wings at about one beat per
second on takeoff, but at most times prefer to
soar while holding their wings steady.

Application Tendons Are Nonideal
Springs
Muscles exert forces via the tendons that
attach them to bones. A tendon consists of
long, stiffly elastic collagen fibers. The graph
shows how the tendon from the hind leg of 
a wallaby (a small kangaroo) stretches in
response to an applied force. The tendon does
not exhibit the simple, straight-line behavior of
an ideal spring, so the work it does has to be
found by integration [Eq. (6.7)]. Note that the
tendon exerts less force while relaxing than
while stretching. As a result, the relaxing ten-
don does only about 93% of the work that was
done to stretch it.

Application Listening for Turbulent
Flow
Normal blood flow in the human aorta is lami-
nar, but a small disturbance such as a heart
pathology can cause the flow to become turbu-
lent. Turbulence makes noise, which is why
listening to blood flow with a stethoscope is a
useful diagnostic technique.
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TO THE STUDENT

HOW TO SUCCEED IN
PHYSICS BY REALLY
TRYING
Mark Hollabaugh Normandale Community College

Physics encompasses the large and the small, the old and the new. From the atom
to galaxies, from electrical circuitry to aerodynamics, physics is very much a part
of the world around us. You probably are taking this introductory course in calculus-
based physics because it is required for subsequent courses you plan to take in
preparation for a career in science or engineering. Your professor wants you to
learn physics and to enjoy the experience. He or she is very interested in helping
you learn this fascinating subject. That is part of the reason your professor chose
this textbook for your course. That is also the reason Drs. Young and Freedman
asked me to write this introductory section. We want you to succeed!

The purpose of this section of University Physics is to give you some ideas
that will assist your learning. Specific suggestions on how to use the textbook
will follow a brief discussion of general study habits and strategies.

Preparation for This Course
If you had high school physics, you will probably learn concepts faster than those
who have not because you will be familiar with the language of physics. If Eng-
lish is a second language for you, keep a glossary of new terms that you
encounter and make sure you understand how they are used in physics. Likewise,
if you are farther along in your mathematics courses, you will pick up the mathe-
matical aspects of physics faster. Even if your mathematics is adequate, you may
find a book such as Arnold D. Pickar’s Preparing for General Physics: Math Skill
Drills and Other Useful Help (Calculus Version) to be useful. Your professor
may actually assign sections of this math review to assist your learning.

Learning to Learn
Each of us has a different learning style and a preferred means of learning.
Understanding your own learning style will help you to focus on aspects of
physics that may give you difficulty and to use those components of your course
that will help you overcome the difficulty. Obviously you will want to spend
more time on those aspects that give you the most trouble. If you learn by hear-
ing, lectures will be very important. If you learn by explaining, then working
with other students will be useful to you. If solving problems is difficult for you,
spend more time learning how to solve problems. Also, it is important to under-
stand and develop good study habits. Perhaps the most important thing you can
do for yourself is to set aside adequate, regularly scheduled study time in a
distraction-free environment.

Answer the following questions for yourself:
• Am I able to use fundamental mathematical concepts from algebra, geometry

and trigonometry? (If not, plan a program of review with help from your
professor.)

• In similar courses, what activity has given me the most trouble? (Spend more
time on this.) What has been the easiest for me? (Do this first; it will help to
build your confidence.)

xi
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• Do I understand the material better if I read the book before or after the lec-
ture? (You may learn best by skimming the material, going to lecture, and then
undertaking an in-depth reading.)

• Do I spend adequate time in studying physics? (A rule of thumb for a class
like this is to devote, on the average, 2.5 hours out of class for each hour in
class. For a course meeting 5 hours each week, that means you should spend
about 10 to 15 hours per week studying physics.)

• Do I study physics every day? (Spread that 10 to 15 hours out over an entire
week!) At what time of the day am I at my best for studying physics? (Pick a
specific time of the day and stick to it.)

• Do I work in a quiet place where I can maintain my focus? (Distractions will
break your routine and cause you to miss important points.)

Working with Others
Scientists or engineers seldom work in isolation from one another but rather
work cooperatively. You will learn more physics and have more fun doing it if
you work with other students. Some professors may formalize the use of cooper-
ative learning or facilitate the formation of study groups. You may wish to form
your own informal study group with members of your class who live in your
neighborhood or dorm. If you have access to e-mail, use it to keep in touch with
one another. Your study group is an excellent resource when reviewing for
exams.

Lectures and Taking Notes
An important component of any college course is the lecture. In physics this is
especially important because your professor will frequently do demonstrations of
physical principles, run computer simulations, or show video clips. All of these are
learning activities that will help you to understand the basic principles of physics.
Don’t miss lectures, and if for some reason you do, ask a friend or member of your
study group to provide you with notes and let you know what happened.

Take your class notes in outline form, and fill in the details later. It can be very
difficult to take word for word notes, so just write down key ideas. Your professor
may use a diagram from the textbook. Leave a space in your notes and just add
the diagram later. After class, edit your notes, filling in any gaps or omissions and
noting things you need to study further. Make references to the textbook by page,
equation number, or section number.

Make sure you ask questions in class, or see your professor during office
hours. Remember the only “dumb” question is the one that is not asked. Your col-
lege may also have teaching assistants or peer tutors who are available to help
you with difficulties you may have.

Examinations
Taking an examination is stressful. But if you feel adequately prepared and are
well-rested, your stress will be lessened. Preparing for an exam is a continual
process; it begins the moment the last exam is over. You should immediately go
over the exam and understand any mistakes you made. If you worked a problem
and made substantial errors, try this: Take a piece of paper and divide it down the
middle with a line from top to bottom. In one column, write the proper solution to
the problem. In the other column, write what you did and why, if you know, and
why your solution was incorrect. If you are uncertain why you made your mis-
take, or how to avoid making it again, talk with your professor. Physics continu-
ally builds on fundamental ideas and it is important to correct any
misunderstandings immediately. Warning: While cramming at the last minute
may get you through the present exam, you will not adequately retain the con-
cepts for use on the next exam.



TO THE INSTRUCTOR

PREFACE
This book is the product of more than six decades of leadership and innovation in
physics education. When the first edition of University Physics by Francis W.
Sears and Mark W. Zemansky was published in 1949, it was revolutionary
among calculus-based physics textbooks in its emphasis on the fundamental prin-
ciples of physics and how to apply them. The success of University Physics with
generations of several million students and educators around the world is a testa-
ment to the merits of this approach, and to the many innovations it has introduced
subsequently.

In preparing this new Thirteenth Edition, we have further enhanced and
developed University Physics to assimilate the best ideas from education
research with enhanced problem-solving instruction, pioneering visual and
conceptual pedagogy, the first systematically enhanced problems, and the most
pedagogically proven and widely used online homework and tutorial system in
the world.

New to This Edition
• Included in each chapter, Bridging Problems provide a transition between the

single-concept Examples and the more challenging end-of-chapter problems.
Each Bridging Problem poses a difficult, multiconcept problem, which often
incorporates physics from earlier chapters. In place of a full solution, it
provides a skeleton Solution Guide consisting of questions and hints, which
helps train students to approach and solve challenging problems with
confidence.

• All Examples, Conceptual Examples, and Problem-Solving Strategies are
revised to enhance conciseness and clarity for today’s students.

• The core modern physics chapters (Chapters 38–41) are revised extensively
to provide a more idea-centered, less historical approach to the material.
Chapters 42–44 are also revised significantly.

• The fluid mechanics chapter now precedes the chapters on gravitation
and periodic motion, so that the latter immediately precedes the chapter on
mechanical waves.

• Additional bioscience applications appear throughout the text, mostly in the
form of marginal photos with explanatory captions, to help students see how
physics is connected to many breakthroughs and discoveries in the biosciences.

• The text has been streamlined for tighter and more focused language.
• Using data from MasteringPhysics, changes to the end-of-chapter content

include the following:
• 15%–20% of problems are new.
• The number and level of calculus-requiring problems has been increased.
• Most chapters include five to seven biosciences-related problems.
• The number of cumulative problems (those incorporating physics from

earlier chapters) has been increased.
• Over 70 PhET simulations are linked to the Pearson eText and provided in

the Study Area of the MasteringPhysics website (with icons in the print text).
These powerful simulations allow students to interact productively with the
physics concepts they are learning. PhET clicker questions are also included
on the Instructor Resource DVD.

• Video Tutors bring key content to life throughout the text:
• Dozens of Video Tutors feature “pause-and-predict” demonstrations of

key physics concepts and incorporate assessment as the student progresses
to actively engage the student in understanding the key conceptual ideas
underlying the physics principles.

Standard, Extended,
and Three-Volume Editions

With MasteringPhysics:
• Standard Edition: Chapters 1–37

(ISBN 978-0-321-69688-5)
• Extended Edition: Chapters 1–44

(ISBN 978-0-321-67546-0)

Without MasteringPhysics:
• Standard Edition: Chapters 1–37

(ISBN 978-0-321-69689-2)
• Extended Edition: Chapters 1–44

(ISBN 978-0-321-69686-1)
• Volume 1: Chapters 1–20

(ISBN 978-0-321-73338-2)
• Volume 2: Chapters 21–37

(ISBN 978-0-321-75121-8)
• Volume 3: Chapters 37–44

(ISBN 978-0-321-75120-1)

xiii
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• Every Worked Example in the book is accompanied by a Video Tutor
Solution that walks students through the problem-solving process, provid-
ing a virtual teaching assistant on a round-the-clock basis.

• All of these Video Tutors play directly through links within the Pearson
eText. Many also appear in the Study Area within MasteringPhysics.

Key Features of University Physics
• Deep and extensive problem sets cover a wide range of difficulty and exer-

cise both physical understanding and problem-solving expertise. Many prob-
lems are based on complex real-life situations.

• This text offers a larger number of Examples and Conceptual Examples than
any other leading calculus-based text, allowing it to explore problem-solving
challenges not addressed in other texts.

• A research-based problem-solving approach (Identify, Set Up, Execute,
Evaluate) is used not just in every Example but also in the Problem-Solving
Strategies and throughout the Student and Instructor Solutions Manuals and
the Study Guide. This consistent approach teaches students to tackle problems
thoughtfully rather than cutting straight to the math.

• Problem-Solving Strategies coach students in how to approach specific types
of problems.

• The Figures use a simplified graphical style to focus on the physics of a situa-
tion, and they incorporate explanatory annotation. Both techniques have
been demonstrated to have a strong positive effect on learning.

• Figures that illustrate Example solutions often take the form of black-and-
white pencil sketches, which directly represent what a student should draw in
solving such a problem.

• The popular Caution paragraphs focus on typical misconceptions and stu-
dent problem areas.

• End-of-section Test Your Understanding questions let students check their
grasp of the material and use a multiple-choice or ranking-task format to
probe for common misconceptions.

• Visual Summaries at the end of each chapter present the key ideas in words,
equations, and thumbnail pictures, helping students to review more effectively.

Instructor Supplements
Note: For convenience, all of the following instructor supplements (except for the
Instructor Resource DVD) can be downloaded from the Instructor Area, accessed
via the left-hand navigation bar of MasteringPhysics (www.masteringphysics.com).

Instructor Solutions, prepared by A. Lewis Ford (Texas A&M University)
and Wayne Anderson, contain complete and detailed solutions to all end-of-
chapter problems. All solutions follow consistently the same Identify/Set Up/
Execute/Evaluate problem-solving framework used in the textbook. Download
only from the MasteringPhysics Instructor Area or from the Instructor
Resource Center (www.pearsonhighered.com/irc).

The cross-platform Instructor Resource DVD (ISBN 978-0-321-69661-8) pro-
vides a comprehensive library of more than 420 applets from ActivPhysics
OnLine as well as all line figures from the textbook in JPEG format. In addition,
all the key equations, problem-solving strategies, tables, and chapter summaries
are provided in editable Word format. In-class weekly multiple-choice questions
for use with various Classroom Response Systems (CRS) are also provided,
based on the Test Your Understanding questions in the text. Lecture outlines in
PowerPoint are also included along with over 70 PhET simulations.

www.masteringphysics.com
www.pearsonhighered.com/irc
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MasteringPhysics® (www.masteringphysics.com) is the most advanced, educa-
tionally effective, and widely used physics homework and tutorial system in the
world. Eight years in development, it provides instructors with a library of exten-
sively pre-tested end-of-chapter problems and rich, multipart, multistep tutorials
that incorporate a wide variety of answer types, wrong answer feedback, individ-
ualized help (comprising hints or simpler sub-problems upon request), all driven
by the largest metadatabase of student problem-solving in the world. NSF-
sponsored published research (and subsequent studies) show that Mastering-
Physics has dramatic educational results. MasteringPhysics allows instructors to
build wide-ranging homework assignments of just the right difficulty and length
and provides them with efficient tools to analyze both class trends, and the work
of any student in unprecedented detail.

MasteringPhysics routinely provides instant and individualized feedback and
guidance to more than 100,000 students every day. A wide range of tools and
support make MasteringPhysics fast and easy for instructors and students to learn
to use. Extensive class tests show that by the end of their course, an unprece-
dented eight of nine students recommend MasteringPhysics as their preferred
way to study physics and do homework.

MasteringPhysics enables instructors to:
• Quickly build homework assignments that combine regular end-of-chapter

problems and tutoring (through additional multi-step tutorial problems that
offer wrong-answer feedback and simpler problems upon request).

• Expand homework to include the widest range of automatically graded activi-
ties available—from numerical problems with randomized values, through
algebraic answers, to free-hand drawing.

• Choose from a wide range of nationally pre-tested problems that provide
accurate estimates of time to complete and difficulty.

• After an assignment is completed, quickly identify not only the problems that
were the trickiest for students but the individual problem types where students
had trouble.

• Compare class results against the system’s worldwide average for each prob-
lem assigned, to identify issues to be addressed with just-in-time teaching.

• Check the work of an individual student in detail, including time spent on
each problem, what wrong answers they submitted at each step, how much
help they asked for, and how many practice problems they worked.

ActivPhysics OnLine™ (which is accessed through the Study Area within 
www.masteringphysics.com) provides a comprehensive library of more than 420
tried and tested ActivPhysics applets updated for web delivery using the latest
online technologies. In addition, it provides a suite of highly regarded applet-
based tutorials developed by education pioneers Alan Van Heuvelen and Paul
D’Alessandris. Margin icons throughout the text direct students to specific exer-
cises that complement the textbook discussion.

The online exercises are designed to encourage students to confront miscon-
ceptions, reason qualitatively about physical processes, experiment quantitatively,
and learn to think critically. The highly acclaimed ActivPhysics OnLine compan-
ion workbooks help students work through complex concepts and understand
them more clearly. More than 420 applets from the ActivPhysics OnLine library
are also available on the Instructor Resource DVD for this text.

The Test Bank contains more than 2,000 high-quality problems, with a range of
multiple-choice, true false, short-answer, and regular homework-type questions.
Test files are provided both in TestGen (an easy-to-use, fully networkable pro-
gram for creating and editing quizzes and exams) and Word format. Download
only from the MasteringPhysics Instructor Area or from the Instructor Resource
Center (www.pearsonhighered.com irc).>

>

www.masteringphysics.com
www.masteringphysics.com
www.pearsonhighered.com/irc
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Five Easy Lessons: Strategies for Successful Physics Teaching (ISBN 978-0-
805-38702-5) by Randall D. Knight (California Polytechnic State University, San
Luis Obispo) is packed with creative ideas on how to enhance any physics course.
It is an invaluable companion for both novice and veteran physics instructors.

Student Supplements
The Study Guide by Laird Kramer reinforces the text’s emphasis on problem-
solving strategies and student misconceptions. The Study Guide for Volume 1
(ISBN 978-0-321-69665-6) covers Chapters 1–20, and the Study Guide for Vol-
umes 2 and 3 (ISBN 978-0-321-69669-4) covers Chapters 21–44.

The Student Solutions Manual by Lewis Ford (Texas A&M University) and
Wayne Anderson contains detailed, step-by-step solutions to more than half of
the odd-numbered end-of-chapter problems from the textbook. All solutions fol-
low consistently the same Identify/Set Up/Execute/Evaluate problem-solving
framework used in the textbook. The Student Solutions Manual for Volume 1
(ISBN 978-0-321-69668-7) covers Chapters 1–20, and the Student Solutions
Manual for Volumes 2 and 3 (ISBN 978-0-321-69667-0) covers Chapters 21–44.

MasteringPhysics® (www.masteringphysics.com) is a homework, tutorial, and
assessment system based on years of research into how students work physics
problems and precisely where they need help. Studies show that students who use
MasteringPhysics significantly increase their scores compared to hand-written
homework. MasteringPhysics achieves this improvement by providing students
with instantaneous feedback specific to their wrong answers, simpler sub-problems
upon request when they get stuck, and partial credit for their method(s). This
individualized, 24 7 Socratic tutoring is recommended by nine out of ten students
to their peers as the most effective and time-efficient way to study.

Pearson eText is available through MasteringPhysics, either automatically when
MasteringPhysics is packaged with new books, or available as a purchased
upgrade online. Allowing students access to the text wherever they have access to
the Internet, Pearson eText comprises the full text, including figures that can be
enlarged for better viewing. With eText, students are also able to pop up defini-
tions and terms to help with vocabulary and the reading of the material. Students
can also take notes in eText using the annotation feature at the top of each page.

Pearson Tutor Services (www.pearsontutorservices.com). Each student’s subscrip-
tion to MasteringPhysics also contains complimentary access to Pearson Tutor Ser-
vices, powered by Smarthinking, Inc. By logging in with their MasteringPhysics ID
and password, students will be connected to highly qualified e-instructors who
provide additional interactive online tutoring on the major concepts of physics.
Some restrictions apply; offer subject to change.

ActivPhysics OnLine™ (which is accessed through the Study Area within 
www.masteringphysics.com) provides students with a suite of highly regarded
applet-based tutorials (see above). The following workbooks help students work
through complex concepts and understand them more clearly.

ActivPhysics OnLine Workbook, Volume 1: Mechanics * Thermal Physics *
Oscillations & Waves (978-0-805-39060-5)

ActivPhysics OnLine Workbook, Volume 2: Electricity & Magnetism *
Optics * Modern Physics (978-0-805-39061-2)

>
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21
LEARNING GOALS

By studying this chapter, you will

learn:

• The nature of electric charge, and

how we know that electric charge is

conserved.

• How objects become electrically

charged.

• How to use Coulomb’s law to 

calculate the electric force between

charges.

• The distinction between electric

force and electric field.

• How to calculate the electric field

due to a collection of charges.

• How to use the idea of electric field

lines to visualize and interpret 

electric fields.

• How to calculate the properties 

of electric dipoles.

ELECTRIC CHARGE 
AND ELECTRIC FIELD

In Chapter 5 we mentioned the four kinds of fundamental forces. To this point
the only one of these forces that we have examined in any detail is gravity.
Now we are ready to examine the force of electromagnetism, which encom-

passes both electricity and magnetism. Electromagnetic phenomena will occupy
our attention for most of the remainder of this book.

Electromagnetic interactions involve particles that have a property called
electric charge, an attribute that is as fundamental as mass. Just as objects with
mass are accelerated by gravitational forces, so electrically charged objects are
accelerated by electric forces. The shock you feel when you scuff your shoes
across a carpet and then reach for a metal doorknob is due to charged particles
leaping between your finger and the doorknob. Electric currents are simply
streams of charged particles flowing within wires in response to electric forces.
Even the forces that hold atoms together to form solid matter, and that keep the
atoms of solid objects from passing through each other, are fundamentally due to
electric interactions between the charged particles within atoms.

We begin our study of electromagnetism in this chapter by examining the
nature of electric charge. We’ll find that charge is quantized and obeys a conser-
vation principle. When charges are at rest in our frame of reference, they exert
electrostatic forces on each other. These forces are of tremendous importance in
chemistry and biology and have many technological applications. Electrostatic
forces are governed by a simple relationship known as Coulomb’s law and are
most conveniently described by using the concept of electric field. In later chap-
ters we’ll expand our discussion to include electric charges in motion. This will
lead us to an understanding of magnetism and, remarkably, of the nature of light.

While the key ideas of electromagnetism are conceptually simple, applying
them to practical problems will make use of many of your mathematical skills,
especially your knowledge of geometry and integral calculus. For this reason you
may find this chapter and those that follow to be more mathematically demanding

? Water makes life possible: The cells of your body could not function without
water in which to dissolve essential biological molecules. What electrical 
properties of water make it such a good solvent?



than earlier chapters. The reward for your extra effort will be a deeper understand-
ing of principles that are at the heart of modern physics and technology.

21.1 Electric Charge
The ancient Greeks discovered as early as 600 B.C. that after they rubbed amber
with wool, the amber could attract other objects. Today we say that the amber has
acquired a net electric charge, or has become charged. The word “electric” is
derived from the Greek word elektron, meaning amber. When you scuff your
shoes across a nylon carpet, you become electrically charged, and you can charge
a comb by passing it through dry hair.

Plastic rods and fur (real or fake) are particularly good for demonstrating
electrostatics, the interactions between electric charges that are at rest (or nearly
so). After we charge both plastic rods in Fig. 21.1a by rubbing them with the
piece of fur, we find that the rods repel each other.

When we rub glass rods with silk, the glass rods also become charged and
repel each other (Fig. 21.1b). But a charged plastic rod attracts a charged glass
rod; furthermore, the plastic rod and the fur attract each other, and the glass rod
and the silk attract each other (Fig. 21.1c).

These experiments and many others like them have shown that there are
exactly two kinds of electric charge: the kind on the plastic rod rubbed with fur
and the kind on the glass rod rubbed with silk. Benjamin Franklin (1706–1790)
suggested calling these two kinds of charge negative and positive, respectively,
and these names are still used. The plastic rod and the silk have negative charge;
the glass rod and the fur have positive charge.

Two positive charges or two negative charges repel each other. A positive charge
and a negative charge attract each other.

CAUTION Electric attraction and repulsion The attraction and repulsion of two charged
objects are sometimes summarized as “Like charges repel, and opposite charges attract.”
But keep in mind that the phrase “like charges” does not mean that the two charges are
exactly identical, only that both charges have the same algebraic sign (both positive or
both negative). “Opposite charges” means that both objects have an electric charge, and
those charges have different signs (one positive and the other negative). ❙
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(a) Interaction between plastic rods rubbed
on fur
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... but after being
rubbed with fur,
the rods repel
each other.

Plain plastic rods neither
    attract nor repel each
          other ...

Silk Glass

(b) Interaction between glass rods rubbed
on silk
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+

+
+
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... but after being
rubbed with silk,
the rods repel
each other.

Plain glass rods neither
    attract nor repel each
        other ... 

(c) Interaction between objects with opposite
charges

++ + + +– – – – –

... and the fur and silk
each attracts the rod it
          rubbed.

The fur-rubbed plastic
rod and the silk-
rubbed glass rod

attract each
other ...

21.1 Experiments in electrostatics. (a) Negatively charged objects repel each other. (b) Positively charged objects repel each other. 
(c) Positvely charged objects and negatively charged objects attract each other.



21.1 Electric Charge 689

One application of forces between charged bodies is in a laser printer 
(Fig. 21.2). The printer’s light-sensitive imaging drum is given a positive charge.
As the drum rotates, a laser beam shines on selected areas of the drum, leaving
those areas with a negative charge. Positively charged particles of toner adhere
only to the areas of the drum “written” by the laser. When a piece of paper is
placed in contact with the drum, the toner particles stick to the paper and form an
image.

Electric Charge and the Structure of Matter
When you charge a rod by rubbing it with fur or silk as in Fig. 21.1, there is no
visible change in the appearance of the rod. What, then, actually happens to the
rod when you charge it? To answer this question, we must look more closely at
the structure of atoms, the building blocks of ordinary matter.

The structure of atoms can be described in terms of three particles: the nega-
tively charged electron, the positively charged proton, and the uncharged
neutron (Fig. 21.3). The proton and neutron are combinations of other entities
called quarks, which have charges of and times the electron charge. Iso-
lated quarks have not been observed, and there are theoretical reasons to believe
that it is impossible in principle to observe a quark in isolation.

The protons and neutrons in an atom make up a small, very dense core called
the nucleus, with dimensions of the order of Surrounding the nucleus
are the electrons, extending out to distances of the order of from the
nucleus. If an atom were a few kilometers across, its nucleus would be the size of
a tennis ball. The negatively charged electrons are held within the atom by the
attractive electric forces exerted on them by the positively charged nucleus. (The
protons and neutrons are held within stable atomic nuclei by an attractive interac-
tion, called the strong nuclear force, that overcomes the electric repulsion of the
protons. The strong nuclear force has a short range, and its effects do not extend
far beyond the nucleus.)

The masses of the individual particles, to the precision that they are presently
known, are

The numbers in parentheses are the uncertainties in the last two digits. Note that
the masses of the proton and neutron are nearly equal and are roughly 2000 times

 Mass of neutron = mn = 1.6749272111842 * 10-27 kg

 Mass of proton = mp = 1.6726216371832 * 10-27 kg

 Mass of electron = m e = 9.109382151452 * 10-31 kg

10-10 m
10-15 m.
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Toner (positively charged)

Paper (feeding to left)

Rotating
imaging

drum

1  Wire sprays ions onto drum, giving the drum
     a positive charge.

2  Laser beam “writes” on the drum, leaving negatively
     charged areas where the image will be.

3  Roller applies positively charged toner to drum.
     Toner adheres only to negatively charged areas
 of the drum “written” by the laser.

4  Wires spray a stronger negative charge
     on paper so toner will adhere to it. 

5 Fuser rollers heat paper so toner
     remains permanently attached.

6 Lamp discharges the drum, readying
     it to start the process over.
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21.2 Schematic diagram of the operation of a laser printer.
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Electron: Negative charge
Mass 5 9.109 3 10231 kg

Neutron: No charge
Mass 5 1.675 3 10227 kg

Proton:

Nucleus

Atom

Positive charge
Mass 5 1.673 3 10227 kg

~10215 m

~10210 m

The charges of the electron and
proton are equal in magnitude.

Most of the
atom’s volume
is occupied
sparsely by
electrons.

Tiny compared with the
rest of the atom, the
nucleus contains over
99.9% of the atom’s mass.

21.3 The structure of an atom. The 
particular atom depicted here is lithium
(see Fig. 21.4a).



the mass of the electron. Over 99.9% of the mass of any atom is concentrated in
its nucleus.

The negative charge of the electron has (within experimental error) exactly the
same magnitude as the positive charge of the proton. In a neutral atom the num-
ber of electrons equals the number of protons in the nucleus, and the net electric
charge (the algebraic sum of all the charges) is exactly zero (Fig. 21.4a). The
number of protons or electrons in a neutral atom of an element is called the
atomic number of the element. If one or more electrons are removed from an
atom, what remains is called a positive ion (Fig. 21.4b). A negative ion is an
atom that has gained one or more electrons (Fig. 21.4c). This gain or loss of elec-
trons is called ionization.

When the total number of protons in a macroscopic body equals the total num-
ber of electrons, the total charge is zero and the body as a whole is electrically neu-
tral. To give a body an excess negative charge, we may either add negative charges
to a neutral body or remove positive charges from that body. Similarly, we can cre-
ate an excess positive charge by either adding positive charge or removing negative
charge. In most cases, negatively charged (and highly mobile) electrons are added
or removed, and a “positively charged body” is one that has lost some of its normal
complement of electrons. When we speak of the charge of a body, we always mean
its net charge. The net charge is always a very small fraction (typically no more
than ) of the total positive charge or negative charge in the body.

Electric Charge Is Conserved
Implicit in the foregoing discussion are two very important principles. First is the
principle of conservation of charge:

The algebraic sum of all the electric charges in any closed system is constant.

If we rub together a plastic rod and a piece of fur, both initially uncharged, the
rod acquires a negative charge (since it takes electrons from the fur) and the fur
acquires a positive charge of the same magnitude (since it has lost as many elec-
trons as the rod has gained). Hence the total electric charge on the two bodies
together does not change. In any charging process, charge is not created or
destroyed; it is merely transferred from one body to another.

Conservation of charge is thought to be a universal conservation law. No
experimental evidence for any violation of this principle has ever been observed.
Even in high-energy interactions in which particles are created and destroyed,
such as the creation of electron–positron pairs, the total charge of any closed sys-
tem is exactly constant.

10-12

690 CHAPTER 21 Electric Charge and Electric Field

Protons (1) Neutrons
Electrons (2)

Electrons equal protons:
Zero net charge

(a) Neutral lithium atom (Li):
3 protons (31)

      4 neutrons

      3 electrons (32)

Fewer electrons than protons:
Positive net charge

(b) Positive lithium ion (Li1):
3 protons (31)

      4 neutrons

      2 electrons (22)

More electrons than protons:
Negative net charge

(c) Negative lithium ion (Li2):
3 protons (31)

      4 neutrons

      4 electrons (42)

21.4 (a) A neutral atom has as many
electrons as it does protons. (b) A positive
ion has a deficit of electrons. (c) A nega-
tive ion has an excess of electrons. (The
electron “shells” are a schematic represen-
tation of the actual electron distribution, a
diffuse cloud many times larger than the
nucleus.)
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The second important principle is:

The magnitude of charge of the electron or proton is a natural unit of charge.

Every observable amount of electric charge is always an integer multiple of this
basic unit. We say that charge is quantized. A familiar example of quantization is
money. When you pay cash for an item in a store, you have to do it in one-cent
increments. Cash can’t be divided into amounts smaller than one cent, and elec-
tric charge can’t be divided into amounts smaller than the charge of one electron
or proton. (The quark charges, and of the electron charge, are probably
not observable as isolated charges.) Thus the charge on any macroscopic body is
always either zero or an integer multiple (negative or positive) of the electron
charge.

Understanding the electric nature of matter gives us insight into many aspects
of the physical world (Fig. 21.5). The chemical bonds that hold atoms together to
form molecules are due to electric interactions between the atoms. They include
the strong ionic bonds that hold sodium and chlorine atoms together to make
table salt and the relatively weak bonds between the strands of DNA that record
your body’s genetic code. The normal force exerted on you by the chair in which
you’re sitting arises from electric forces between charged particles in the atoms
of your seat and in the atoms of your chair. The tension force in a stretched string
and the adhesive force of glue are likewise due to the electric interactions of
atoms.

�2
3�1

3

21.5 Most of the forces on this water
skier are electric. Electric interactions
between adjacent molecules give rise to the
force of the water on the ski, the tension in
the tow rope, and the resistance of the air
on the skier’s body. Electric interactions
also hold the atoms of the skier’s body
together. Only one wholly nonelectric force
acts on the skier: the force of gravity.

Test Your Understanding of Section 21.1 (a) Strictly speaking, does the
plastic rod in Fig. 21.1 weigh more, less, or the same after rubbing it with fur? (b) What
about the glass rod after rubbing it with silk? What about (c) the fur and (d) the silk? ❙

21.2 Conductors, Insulators, 
and Induced Charges

Some materials permit electric charge to move easily from one region of the
material to another, while others do not. For example, Fig. 21.6a shows a copper
wire supported by a nylon thread. Suppose you touch one end of the wire to a
charged plastic rod and attach the other end to a metal ball that is initially
uncharged; you then remove the charged rod and the wire. When you bring
another charged body up close to the ball (Figs. 21.6b and 21.6c), the ball is
attracted or repelled, showing that the ball has become electrically charged. Elec-
tric charge has been transferred through the copper wire between the ball and the
surface of the plastic rod.

The copper wire is called a conductor of electricity. If you repeat the experi-
ment using a rubber band or nylon thread in place of the wire, you find that no
charge is transferred to the ball. These materials are called insulators. Conduc-
tors permit the easy movement of charge through them, while insulators do not.
(The supporting nylon threads shown in Fig. 21.6 are insulators, which prevents
charge from leaving the metal ball and copper wire.)

As an example, carpet fibers on a dry day are good insulators. As you walk
across a carpet, the rubbing of your shoes against the fibers causes charge to
build up on you, and this charge remains on you because it can’t flow through the
insulating fibers. If you then touch a conducting object such as a doorknob, a
rapid charge transfer takes place between your finger and the doorknob, and you
feel a shock. One way to prevent this is to wind some of the carpet fibers around
conducting cores so that any charge that builds up on you can be transferred
harmlessly to the carpet. Another solution is to coat the carpet fibers with an anti-
static layer that does not easily transfer electrons to or from your shoes; this pre-
vents any charge from building up on you in the first place.

PhET: Balloons and Static Electricity
PhET: John Travoltage



Most metals are good conductors, while most nonmetals are insulators. Within
a solid metal such as copper, one or more outer electrons in each atom become
detached and can move freely throughout the material, just as the molecules of a
gas can move through the spaces between the grains in a bucket of sand. The
other electrons remain bound to the positively charged nuclei, which themselves
are bound in nearly fixed positions within the material. In an insulator there are
no, or very few, free electrons, and electric charge cannot move freely through
the material. Some materials called semiconductors are intermediate in their
properties between good conductors and good insulators.

Charging by Induction
We can charge a metal ball using a copper wire and an electrically charged plastic
rod, as in Fig. 21.6a. In this process, some of the excess electrons on the rod are
transferred from it to the ball, leaving the rod with a smaller negative charge. But
there is a different technique in which the plastic rod can give another body a
charge of opposite sign without losing any of its own charge. This process is
called charging by induction.

Figure 21.7 shows an example of charging by induction. An uncharged metal
ball is supported on an insulating stand (Fig. 21.7a). When you bring a negatively
charged rod near it, without actually touching it (Fig. 21.7b), the free electrons in
the metal ball are repelled by the excess electrons on the rod, and they shift
toward the right, away from the rod. They cannot escape from the ball because
the supporting stand and the surrounding air are insulators. So we get excess neg-
ative charge at the right surface of the ball and a deficiency of negative charge
(that is, a net positive charge) at the left surface. These excess charges are called
induced charges.

Not all of the free electrons move to the right surface of the ball. As soon as
any induced charge develops, it exerts forces toward the left on the other free
electrons. These electrons are repelled by the negative induced charge on the
right and attracted toward the positive induced charge on the left. The system
reaches an equilibrium state in which the force toward the right on an electron,
due to the charged rod, is just balanced by the force toward the left due to the
induced charge. If we remove the charged rod, the free electrons shift back to the
left, and the original neutral condition is restored.

What happens if, while the plastic rod is nearby, you touch one end of a conduct-
ing wire to the right surface of the ball and the other end to the earth (Fig. 21.7c)?
The earth is a conductor, and it is so large that it can act as a practically infinite
source of extra electrons or sink of unwanted electrons. Some of the negative
charge flows through the wire to the earth. Now suppose you disconnect the wire
(Fig. 21.7d) and then remove the rod (Fig. 21.7e); a net positive charge is left on
the ball. The charge on the negatively charged rod has not changed during this
process. The earth acquires a negative charge that is equal in magnitude to the
induced positive charge remaining on the ball.
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Insulating
nylon threads

Metal
ball

Copper
wire

Charged
plastic rod

Charged
glass rod

Charged
    plastic rod

The wire conducts charge from the negatively
charged plastic rod to the metal ball.

... and a positively
charged glass rod
attracts the ball.

A negatively charged
plastic rod now repels
the ball ...

(a)

(b)

(c)

21.6 Copper is a good conductor of
electricity; nylon is a good insulator. (a)
The copper wire conducts charge between
the metal ball and the charged plastic rod to
charge the ball negatively. Afterward, the
metal ball is (b) repelled by a negatively
charged plastic rod and (c) attracted to a
positively charged glass rod.
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Electron buildupElectron
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Negatively
charged
rod

Ground

Wire
Negative
charge in
ground

(a) Uncharged metal ball (b) Negative charge on rod
repels electrons, creating
zones of negative and
positive induced charge.

(c) Wire lets electron build-
up (induced negative
charge) flow into
ground.

(d) Wire removed; ball now
has only an electron-
deficient region of
positive charge.

(e) Rod removed; 
electrons rearrange
themselves, ball has
overall electron
deficiency (net 
positive charge).

21.7 Charging a metal ball by induction.
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Electric Forces on Uncharged Objects
Finally, we note that a charged body can exert forces even on objects that are
not charged themselves. If you rub a balloon on the rug and then hold the bal-
loon against the ceiling, it sticks, even though the ceiling has no net electric
charge. After you electrify a comb by running it through your hair, you can pick
up uncharged bits of paper or plastic with the comb (Fig. 21.8a). How is this
possible?

This interaction is an induced-charge effect. Even in an insulator, electric
charges can shift back and forth a little when there is charge nearby. This is
shown in Fig. 21.8b; the negatively charged plastic comb causes a slight shift-
ing of charge within the molecules of the neutral insulator, an effect called
polarization. The positive and negative charges in the material are present in
equal amounts, but the positive charges are closer to the plastic comb and so
feel an attraction that is stronger than the repulsion felt by the negative charges,
giving a net attractive force. (In Section 21.3 we will study how electric forces
depend on distance.) Note that a neutral insulator is also attracted to a positively
charged comb (Fig. 21.8c). Now the charges in the insulator shift in the oppo-
site direction; the negative charges in the insulator are closer to the comb and
feel an attractive force that is stronger than the repulsion felt by the positive
charges in the insulator. Hence a charged object of either sign exerts an attrac-
tive force on an uncharged insulator. Figure 21.9 shows an industrial applica-
tion of this effect.
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charged comb

As a result, the
(1) charges in each

molecule are closer to
the comb than are the (2)

charges and so feel a stronger
force from the comb. Therefore

the net force is attractive.

Electrons in each
molecule of the neutral
insulator shift away
from the comb.

This time, electrons in
the molecules shift
toward the comb ...

... so that the
(2) charges in each

molecule are closer to
the comb, and feel a

stronger force from it, than
the (+) charges. Again, the net

force is attractive.
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(a) A charged comb picking up uncharged
pieces of plastic

(b) How a negatively charged comb attracts an
insulator

(c) How a positively charged comb attracts an
insulator

21.8 The charges within the molecules of an insulating material can shift slightly. As a result, a comb with either sign of charge
attracts a neutral insulator. By Newton’s third law the neutral insulator exerts an equal-magnitude attractive force on the comb.

Test Your Understanding of Section 21.2 You have two lightweight metal
spheres, each hanging from an insulating nylon thread. One of the spheres has a net nega-
tive charge, while the other sphere has no net charge. (a) If the spheres are close together
but do not touch, will they (i) attract each other, (ii) repel each other, or (iii) exert no
force on each other? (b) You now allow the two spheres to touch. Once they have
touched, will the two spheres (i) attract each other, (ii) repel each other, or (iii) exert no
force on each other? ❙

21.3 Coulomb’s Law
Charles Augustin de Coulomb (1736–1806) studied the interaction forces of
charged particles in detail in 1784. He used a torsion balance (Fig. 21.10a) simi-
lar to the one used 13 years later by Cavendish to study the much weaker gravita-
tional interaction, as we discussed in Section 13.1. For point charges, charged
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–
– –

–
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Positive charge
is induced on
surface of metal.

Paint sprayer

Spray of
negatively
charged
paint droplets

Metal object
to be painted

Ground

21.9 The electrostatic painting process
(compare Figs. 21.7b and 21.7c). A metal
object to be painted is connected to the earth
(“ground”), and the paint droplets are given
an electric charge as they exit the sprayer
nozzle. Induced charges of the opposite
sign appear in the object as the droplets
approach, just as in Fig. 21.7b, and they
attract the droplets to the surface. This
process minimizes overspray from clouds
of stray paint particles and gives a particu-
larly smooth finish.

ActivPhysics 11.1: Electric Force: 
Coulomb's Law
ActivPhysics 11.2: Electric Force: 
Superposition Principle
ActivPhysics 11.3: Electric Force:
Superposition (Quantitative)



bodies that are very small in comparison with the distance between them,
Coulomb found that the electric force is proportional to That is, when the
distance doubles, the force decreases to one-quarter of its initial value; when
the distance is halved, the force increases to four times its initial value.

The electric force between two point charges also depends on the quantity of
charge on each body, which we will denote by or . To explore this depend-
ence, Coulomb divided a charge into two equal parts by placing a small charged
spherical conductor into contact with an identical but uncharged sphere; by
symmetry, the charge is shared equally between the two spheres. (Note the
essential role of the principle of conservation of charge in this procedure.) Thus
he could obtain one-half, one-quarter, and so on, of any initial charge. He found
that the forces that two point charges and exert on each other are propor-
tional to each charge and therefore are proportional to the product of the
two charges.

Thus Coulomb established what we now call Coulomb’s law:

The magnitude of the electric force between two point charges is directly propor-
tional to the product of the charges and inversely proportional to the square of
the distance between them.

In mathematical terms, the magnitude of the force that each of two point
charges and a distance apart exerts on the other can be expressed as

(21.1)

where is a proportionality constant whose numerical value depends on the sys-
tem of units used. The absolute value bars are used in Eq. (21.1) because the
charges and can be either positive or negative, while the force magnitude 
is always positive.

The directions of the forces the two charges exert on each other are always
along the line joining them. When the charges and have the same sign,
either both positive or both negative, the forces are repulsive; when the charges
have opposite signs, the forces are attractive (Fig. 21.10b). The two forces obey
Newton’s third law; they are always equal in magnitude and opposite in direc-
tion, even when the charges are not equal in magnitude.
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Application Electric Forces, Sweat,
and Cystic Fibrosis
One way to test for the genetic disease cystic
fibrosis (CF) is by measuring the salt content
of a person’s sweat. Sweat is a mixture of
water and ions, including the sodium ( )
and chloride ( ) ions that make up ordinary
salt (NaCl). When sweat is secreted by epithe-
lial cells, some of the ions flow from the
sweat back into these cells (a process called
reabsorption). The electric attraction between
negative and positive charges pulls ions
along with the . Water molecules cannot
flow back into the epithelial cells, so sweat on
the skin has a low salt content. However, in
persons with CF the reabsorption of ions
is blocked. Hence the sweat of persons with
CF is unusually salty, with up to four times the
normal concentration of and .Na+Cl-

Cl-

Cl-
Na+

Cl-

Cl-
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(a) A torsion balance of the type used by
Coulomb to measure the electric force

Torsion fiber

Charged
pith balls

Scale

(b) Interactions between point charges

r

Charges
of opposite
sign attract.

Charges of the
same sign repel.

The negatively
charged ball attracts
the positively charged
one; the positive ball
moves until the elastic
forces in the torsion
fiber balance the
electrostatic attraction.
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21.10 (a) Measuring the electric force
between point charges. (b) The electric
forces between point charges obey New-
ton’s third law: F
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The proportionality of the electric force to has been verified with great
precision. There is no reason to suspect that the exponent is different from pre-
cisely 2. Thus the form of Eq. (21.1) is the same as that of the law of gravitation.
But electric and gravitational interactions are two distinct classes of phenomena.
Electric interactions depend on electric charges and can be either attractive or
repulsive, while gravitational interactions depend on mass and are always attrac-
tive (because there is no such thing as negative mass).

Fundamental Electric Constants
The value of the proportionality constant in Coulomb’s law depends on the sys-
tem of units used. In our study of electricity and magnetism we will use SI units
exclusively. The SI electric units include most of the familiar units such as the
volt, the ampere, the ohm, and the watt. (There is no British system of electric
units.) The SI unit of electric charge is called one coulomb (1 C). In SI units the
constant in Eq. (21.1) is

The value of is known to such a large number of significant figures because this
value is closely related to the speed of light in vacuum. (We will show this in
Chapter 32 when we study electromagnetic radiation.) As we discussed in Sec-
tion 1.3, this speed is defined to be exactly The
numerical value of is defined in terms of to be precisely

You should check this expression to confirm that has the right units.
In principle we can measure the electric force between two equal charges 

at a measured distance and use Coulomb’s law to determine the charge. Thus
we could regard the value of as an operational definition of the coulomb. For
reasons of experimental precision it is better to define the coulomb instead in
terms of a unit of electric current (charge per unit time), the ampere, equal to 
1 coulomb per second. We will return to this definition in Chapter 28.

In SI units we usually write the constant in Eq. (21.1) as where 
(“epsilon-nought” or “epsilon-zero”) is another constant. This appears to compli-
cate matters, but it actually simplifies many formulas that we will encounter in
later chapters. From now on, we will usually write Coulomb’s law as

(Coulomb’s law: force between
(21.2)two point charges)

The constants in Eq. (21.2) are approximately

and

In examples and problems we will often use the approximate value

which is within about 0.1% of the correct value.
As we mentioned in Section 21.1, the most fundamental unit of charge is the

magnitude of the charge of an electron or a proton, which is denoted by . The
most precise value available as of the writing of this book is

One coulomb represents the negative of the total charge of about elec-
trons. For comparison, a copper cube 1 cm on a side contains about 2.4 * 1024
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electrons. About electrons pass through the glowing filament of a flashlight
bulb every second.

In electrostatics problems (that is, problems that involve charges at rest), it’s very
unusual to encounter charges as large as 1 coulomb. Two 1-C charges separated
by 1 m would exert forces on each other of magnitude (about 1 million
tons)! The total charge of all the electrons in a copper one-cent coin is even
greater, about which shows that we can’t disturb electric neutrality
very much without using enormous forces. More typical values of charge range
from about to about The microcoulomb and the
nanocoulomb are often used as practical units of charge.11 nC = 10-9 C2

11 mC = 10-6 C210-6 C.10-9

1.4 * 105 C,

9 * 109 N

1019
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Example 21.1 Electric force versus gravitational force

An particle (the nucleus of a helium atom) has mass 
and charge Com-

pare the magnitude of the electric repulsion between two (“alpha”)
particles with that of the gravitational attraction between them.

SOLUTION

IDENTIFY and SET UP: This problem involves Newton’s law for
the gravitational force between particles (see Section 13.1) and
Coulomb’s law for the electric force between point charges. To
compare these forces, we make our target variable the ratio 
We use Eq. (21.2) for and Eq. (13.1) for .FgFe

Fe>Fg.
Fe

Fg

a

q = +2e = 3.2 * 10-19 C.6.64 * 10-27 kg
m =a EXECUTE: Figure 21.11 shows our sketch. From Eqs. (21.2) and

(13.1),

These are both inverse-square forces, so the factors cancel when
we take the ratio:

EVALUATE: This astonishingly large number shows that the gravi-
tational force in this situation is completely negligible in compari-
son to the electric force. This is always true for interactions of
atomic and subnuclear particles. But within objects the size of a
person or a planet, the positive and negative charges are nearly
equal in magnitude, and the net electric force is usually much
smaller than the gravitational force.

= 3.1 * 1035

=
9.0 * 109 N # m2>C2

6.67 * 10-11 N # m2>kg2

13.2 * 10-19 C22

16.64 * 10-27 kg22

Fe

Fg
=

1

4pP0G

q2

m2

r 2

Fe =
1

4pP0

q2

r 2
  Fg = G

m2

r 2

21.11 Our sketch for this problem.

Superposition of Forces
Coulomb’s law as we have stated it describes only the interaction of two point
charges. Experiments show that when two charges exert forces simultaneously on
a third charge, the total force acting on that charge is the vector sum of the forces
that the two charges would exert individually. This important property, called the
principle of superposition of forces, holds for any number of charges. By using
this principle, we can apply Coulomb’s law to any collection of charges. Two of
the examples at the end of this section use the superposition principle.

Strictly speaking, Coulomb’s law as we have stated it should be used only for
point charges in vacuum. If matter is present in the space between the charges,
the net force acting on each charge is altered because charges are induced in the
molecules of the intervening material. We will describe this effect later. As a
practical matter, though, we can use Coulomb’s law unaltered for point charges
in air. At normal atmospheric pressure, the presence of air changes the electric
force from its vacuum value by only about one part in 2000.

a
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Problem-Solving Strategy 21.1 Coulomb’s Law

IDENTIFY the relevant concepts: Coulomb’s law describes the
electric force between charged particles.

SET UP the problem using the following steps:
1. Sketch the locations of the charged particles and label each par-

ticle with its charge.
2. If the charges do not all lie on a single line, set up an -

coordinate system.
3. The problem will ask you to find the electric force on one or

more particles. Identify which these are.

EXECUTE the solution as follows:
1. For each particle that exerts an electric force on a given particle

of interest, use Eq. (21.2) to calculate the magnitude of that
force.

2. Using those magnitudes, sketch a free-body diagram showing
the electric force vectors acting on each particle of interest. The
force exerted by particle 1 on particle 2 points from particle 2
toward particle 1 if the charges have opposite signs, but points
from particle 2 directly away from particle 1 if the charges have
the same sign.

3. Use the principle of superposition to calculate the total electric
force—a vector sum—on each particle of interest. (Review the

xy

vector algebra in Sections 1.7 through 1.9. The method of com-
ponents is often helpful.)

4. Use consistent units; SI units are completely consistent. With
� distances must be in meters,

charges in coulombs, and forces in newtons.
5. Some examples and problems in this and later chapters involve

continuous distributions of charge along a line, over a surface,
or throughout a volume. In these cases the vector sum in step 3
becomes a vector integral. We divide the charge distribution
into infinitesimal pieces, use Coulomb’s law for each piece, and
integrate to find the vector sum. Sometimes this can be done
without actual integration.

6. Exploit any symmetries in the charge distribution to simplify
your problem solving. For example, two identical charges 
exert zero net electric force on a charge midway between
them, because the forces on have equal magnitude and oppo-
site direction.

EVALUATE your answer: Check whether your numerical results are
reasonable. Confirm that the direction of the net electric force
agrees with the principle that charges of the same sign repel and
charges of opposite sign attract.

Q
Q

q

9.0 * 109 N # m2>C2,1>4pP0

Example 21.2 Force between two point charges

Two point charges, and are sepa-
rated by a distance (Fig. 21.12a). Find the magnitude
and direction of the electric force (a) that exerts on and (b)
that exerts on .

SOLUTION

IDENTIFY and SET UP: This problem asks for the electric forces
that two charges exert on each other. We use Coulomb’s law, Eq.
(21.2), to calculate the magnitudes of the forces. The signs of the
charges will determine the directions of the forces.

EXECUTE: (a) After converting the units of r to meters and the units
of and to coulombs, Eq. (21.2) gives us

The charges have opposite signs, so the force is attractive (to the
left in Fig. 21.12b); that is, the force that acts on is directed
toward along the line joining the two charges.q1

q2

= 0.019 N

= 19.0 * 109 N # m2>C22
ƒ 1+25 * 10-9 C21-75 * 10-9 C2 ƒ

10.030 m22

F1 on 2 =
1

4pP0

ƒ q1q2 ƒ
r 2

q2q1

q1q2

q2q1

r = 3.0 cm
q2 = -75 nC,q1 = +25 nC

(b) Proceeding as in part (a), we have

The attractive force that acts on is to the right, toward 
(Fig. 21.12c).

EVALUATE: Newton’s third law applies to the electric force. Even
though the charges have different magnitudes, the magnitude of the
force that exerts on is the same as the magnitude of the force
that exerts on , and these two forces are in opposite directions.q2q1

q1q2

q2q1

F1 on 2 =
1

4pP0

ƒ q2q1 ƒ
r 2

= F2 on 1 = 0.019 N

(a) The two charges (b) Free-body diagram
for charge q2

(c) Free-body diagram
for charge q1

q1 F2 on 1
Sq2F1 on 2

Sq1 q2

r

21.12 What force does exert on and what force does 
exert on Gravitational forces are negligible.q1?

q2q2,q1

Example 21.3 Vector addition of electric forces on a line

Two point charges are located on the -axis of a coordinate system:
is at , and is at 

. What is the total electric force exerted by and on a
charge at ?x = 0q3 = 5.0 nC

q2q1+4.0 cm
x =q2 = -3.0 nCx = +2.0 cmq1 = 1.0 nC

x SOLUTION

IDENTIFY and SET UP: Figure 21.13a shows the situation. To find
the total force on our target variable, we find the vector sum of
the two electric forces on it.

Continued

q3,
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EXECUTE: Figure 21.13b is a free-body diagram for which is
repelled by (which has the same sign) and attracted to (which
has the opposite sign): is in the –x-direction and is in
the +x-direction. After unit conversions, we have from Eq. (21.2)

In the same way you can show that . We thus have
and . The net force on

is

F
S

3 � F
S

1 on 3 � F
S

2 on 3 � 1-112 m�2ın � 184m�2ın � 1-28 m�2ın

q3

F
S

2 on 3 � 184 m�2ınF
S

1 on 3 � 1-112 m�2ın
F2 on 3 = 84 mN

= 1.12 * 10-4 N = 112 mN

= 19.0 * 109 N # m2>C22
11.0 * 10-9 C215.0 * 10-9 C2

10.020 m22

F1 on 3 =
1

4pP0

ƒ q1q3 ƒ
r 13

2

F
S

2 on 3F
S

1 on 3

q2q1

q3,

EVALUATE: As a check, note that the magnitude of is three
times that of , but is twice as far from as . Equation (21.2)
then says that must be as large as

This agrees with our calculated values: 
0.75. Because is the weaker force,

the direction of the net force is that of —that is, in the nega-
tive x-direction.

F
S

1 on 3

F2 on 31112 mN2 =184 mN2>
F2 on 3>F1 on 3 =F1 on 3.

3>22 = 3>4 = 0.75F2 on 3

q1q3q2q1

q2

(a) Our diagram of the situation (b) Free-body diagram for q3

21.13 Our sketches for this problem.

Example 21.4 Vector addition of electric forces in a plane

Two equal positive charges are located at
and respectively. What

are the magnitude and direction of the total electric force that 
and exert on a third charge at 

SOLUTION

IDENTIFY and SET UP: As in Example 21.3, we must compute the
force that each charge exerts on and then find the vector sum of
those forces. Figure 21.14 shows the situation. Since the three
charges do not all lie on a line, the best way to calculate the forces
is to use components.

Q

x = 0.40 m, y = 0?Q = 4.0 mCq2

q1

x = 0, y = -0.30 m,x = 0, y = 0.30 m
q1 = q2 = 2.0 mC EXECUTE: Figure 21.14 shows the forces and due to

the identical charges and which are at equal distances from
Q. From Coulomb’s law, both forces have magnitude

The x-components of the two forces are equal:

From symmetry we see that the -components of the two forces are
equal and opposite. Hence their sum is zero and the total force on

has only an x-component .
The total force on is in the -direction, with magnitude 0.46 N.

EVALUATE: The total force on points neither directly away from
nor directly away from Rather, this direction is a compro-

mise that points away from the system of charges and Can
you see that the total force would not be in the -direction if 
and were not equal or if the geometrical arrangement of the
changes were not so symmetric?

q2

q1+x
q2.q1

q2.q1

Q

+xQ
Fx = 0.23 N + 0.23 N = 0.46 NQ

F
S

y

1F1 or 2 on Q2x = 1F1 or 2 on Q2cos a = 10.29 N2
0.40 m

0.50 m
= 0.23 N

*
14.0 * 10-6 C212.0 * 10-6 C2

10.50 m22
= 0.29 N

F1 or 2 on Q = 19.0 * 109 N # m2>C22

q2,q1

F
S

2 on QF
S

1 on Q

21.14 Our sketch for this problem.

Test Your Understanding of Section 21.3 Suppose that charge in
Example 21.4 were In this case, the total electric force on would be
(i) in the positive -direction; (ii) in the negative -direction; (iii) in the positive 
-direction; (iv) in the negative -direction; (v) zero; (vi) none of these. ❙yy

xx
Q-2.0 mC.

q2

21.4 Electric Field and Electric Forces
When two electrically charged particles in empty space interact, how does each
one know the other is there? We can begin to answer this question, and at the
same time reformulate Coulomb’s law in a very useful way, by using the concept
of electric field.
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Electric Field
To introduce this concept, let’s look at the mutual repulsion of two positively
charged bodies and (Fig. 21.15a). Suppose has charge and let be the
electric force of on . One way to think about this force is as an “action-at-a-
distance” force—that is, as a force that acts across empty space without needing
any matter (such as a push rod or a rope) to transmit it through the intervening
space. (Gravity can also be thought of as an “action-at-a-distance” force.) But a
more fruitful way to visualize the repulsion between and is as a two-stage
process. We first envision that body , as a result of the charge that it carries,
somehow modifies the properties of the space around it. Then body , as a result
of the charge that it carries, senses how space has been modified at its position.
The response of body is to experience the force 

To elaborate how this two-stage process occurs, we first consider body by
itself: We remove body and label its former position as point (Fig. 21.15b). We
say that the charged body produces or causes an electric field at point (and at
all other points in the neighborhood). This electric field is present at even if there
is no charge at ; it is a consequence of the charge on body only. If a point charge

is then placed at point , it experiences the force We take the point of view
that this force is exerted on by the field at (Fig. 21.15c). Thus the electric field
is the intermediary through which communicates its presence to Because the
point charge would experience a force at any point in the neighborhood of , the
electric field that produces exists at all points in the region around .

We can likewise say that the point charge produces an electric field in the
space around it and that this electric field exerts the force on body . For
each force (the force of on and the force of on ), one charge sets up an
electric field that exerts a force on the second charge. We emphasize that this is
an interaction between two charged bodies. A single charge produces an electric
field in the surrounding space, but this electric field cannot exert a net force on
the charge that created it; as we discussed in Section 4.3, a body cannot exert a
net force on itself. (If this wasn’t true, you would be able to lift yourself to the
ceiling by pulling up on your belt!)

The electric force on a charged body is exerted by the electric field created by
other charged bodies.

To find out experimentally whether there is an electric field at a particular
point, we place a small charged body, which we call a test charge, at the point
(Fig. 21.15c). If the test charge experiences an electric force, then there is an
electric field at that point. This field is produced by charges other than 

Force is a vector quantity, so electric field is also a vector quantity. (Note the
use of vector signs as well as boldface letters and plus, minus, and equals signs in
the following discussion.) We define the electric field at a point as the electric
force experienced by a test charge at the point, divided by the charge 
That is, the electric field at a certain point is equal to the electric force per unit
charge experienced by a charge at that point:

(definition of electric field as electric 
(21.3)force per unit charge)

In SI units, in which the unit of force is 1 N and the unit of charge is 1 C, the unit
of electric field magnitude is 1 newton per coulomb 

If the field at a certain point is known, rearranging Eq. (21.3) gives the force
experienced by a point charge placed at that point. This force is just equal

to the electric field produced at that point by charges other than multiplied
by the charge 

(force exerted on a point charge 
(21.4)by an electric field )E

S
q0

F
S

0 � q0 E
S

q0:
q0,E

S
q0F

S
0

E
S

11 N>C2.

E
S

�
F
S

0

q0

q0.q0F
S

0

E
S

q0.

Aq0q0A
A�F

S
0

q0

AA
Aq0

q0.A
Pq0

F
S

0.Pq0

AP
P

PA
PB

A
F
S

0.B

B
A

BA

BA
F
S

0q0,BBA

A

(a) A and B exert electric forces on each other.

B

q0

A

(b) Remove body B ...

P

A

Test charge q0

(c) Body A sets up an electric field E at point P.

... and label its former
position as P.

S
2F0

S
F0

q0

S
E 5 

S
F0

E is the force per unit
charge exerted by A
on a test charge at P.

S

S

21.15 A charged body creates an
electric field in the space around it.

Application Sharks and the 
“Sixth Sense”
Sharks have the ability to locate prey (such as
flounder and other bottom-dwelling fish) that
are completely hidden beneath the sand at the
bottom of the ocean. They do this by sensing
the weak electric fields produced by muscle
contractions in their prey. Sharks derive their
sensitivity to electric fields (a “sixth sense”)
from jelly-filled canals in their bodies. These
canals end in pores on the shark’s skin (shown
in this photograph). An electric field as weak
as N C causes charge flow within
the canals and triggers a signal in the shark’s
nervous system. Because the shark has
canals with different orientations, it can meas-
ure different components of the electric-field
vector and hence determine the direction of
the field.

>5 * 10-7



The charge can be either positive or negative. If is positive, the force 
experienced by the charge is the same direction as if is negative, and
are in opposite directions (Fig. 21.16).

While the electric field concept may be new to you, the basic idea—that one
body sets up a field in the space around it and a second body responds to that
field—is one that you’ve actually used before. Compare Eq. (21.4) to the familiar
expression for the gravitational force that the earth exerts on a mass 

(21.5)

In this expression, is the acceleration due to gravity. If we divide both sides of
Eq. (21.5) by the mass we obtain

Thus can be regarded as the gravitational force per unit mass. By analogy to
Eq. (21.3), we can interpret as the gravitational field. Thus we treat the gravita-
tional interaction between the earth and the mass as a two-stage process: The
earth sets up a gravitational field in the space around it, and this gravitational
field exerts a force given by Eq. (21.5) on the mass (which we can regard as a
test mass). The gravitational field or gravitational force per unit mass, is a use-
ful concept because it does not depend on the mass of the body on which the
gravitational force is exerted; likewise, the electric field or electric force per
unit charge, is useful because it does not depend on the charge of the body on
which the electric force is exerted.

CAUTION is for point test charges only The electric force experienced by a
test charge can vary from point to point, so the electric field can also be different at dif-
ferent points. For this reason, Eq. (21.4) can be used only to find the electric force on a
point charge. If a charged body is large enough in size, the electric field may be notice-
ably different in magnitude and direction at different points on the body, and calculating
the net electric force on the body can become rather complicated. ❙

Electric Field of a Point Charge
If the source distribution is a point charge , it is easy to find the electric field that
it produces. We call the location of the charge the source point, and we call the
point where we are determining the field the field point. It is also useful to
introduce a unit vector that points along the line from source point to field point
(Fig. 21.17a). This unit vector is equal to the displacement vector from the
source point to the field point, divided by the distance between these two
points; that is, If we place a small test charge at the field point , at aPq0rN � rS>r.

r = ƒ rS ƒ
rS

rN
P

q

E
S

q0

F
S

0 � q0 E
S

0

E
S

,

gS,
m0

gS
m0

gS
gS

gS �
F
S

g

m0

m0,
gS

F
S

g � m0gS

m0:F
S

g

E
S

F
S

0q0E
S

;
F
S

0q0q0
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q0

Q

Q

q0

F0
S

F0
S

E (due to charge Q)
S

E (due to charge Q)
S

The force on a positive test charge q0 points
in the direction of the electric field.

The force on a negative test charge q0 points
opposite to the electric field.

21.16 The force exerted on a
point charge placed in an electric field E

S
.q0

F
S

0 � q0 E
S

P

q0

q

S

r̂

                 At each point P, the electric
field set up by an isolated negative point
charge q points directly toward the
charge in the opposite direction from r.^

S

P

q0

q r̂
                 At each point P, the electric
field set up by an isolated positive point
charge q points directly away from the
charge in the same direction as r.^

q r
P

q0

(c)(b)(a)

S

r^

Unit vector r points from
source point S to field point P.

^

E
S

E
S

21.17 The electric field produced at point by an isolated point charge at . Note that in both (b) and (c), is produced by
[see Eq. (21.7)] but acts on the charge at point [see Eq. (21.4)].Pq0

qE
S

SqPE
S

ActivPhysics 11.4: Electric Field: Point Charge
ActivPhysics 11.9: Motion of a Charge in an
Electric Field: Introduction
ActivPhysics 11.10: Motion in an Electric
Field: Problems
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distance from the source point, the magnitude of the force is given by
Coulomb’s law, Eq. (21.2):

From Eq. (21.3) the magnitude of the electric field at is

(21.6)

Using the unit vector we can write a vector equation that gives both the magni-
tude and direction of the electric field 

(21.7)

By definition, the electric field of a point charge always points away from a posi-
tive charge (that is, in the same direction as see Fig. 21.17b) but toward a neg-
ative charge (that is, in the direction opposite see Fig. 21.17c).

We have emphasized calculating the electric field at a certain point. But
since can vary from point to point, it is not a single vector quantity but rather
an infinite set of vector quantities, one associated with each point in space. This is
an example of a vector field. Figure 21.18 shows a number of the field vectors
produced by a positive or negative point charge. If we use a rectangular 
coordinate system, each component of at any point is in general a function 
of the coordinates of the point. We can represent the functions as

and Vector fields are an important part of the
language of physics, not just in electricity and magnetism. One everyday exam-
ple of a vector field is the velocity of wind currents; the magnitude and direc-
tion of and hence its vector components, vary from point to point in the
atmosphere.

In some situations the magnitude and direction of the field (and hence its vec-
tor components) have the same values everywhere throughout a certain region;
we then say that the field is uniform in this region. An important example of this
is the electric field inside a conductor. If there is an electric field within a conduc-
tor, the field exerts a force on every charge in the conductor, giving the free
charges a net motion. By definition an electrostatic situation is one in which the
charges have no net motion. We conclude that in electrostatics the electric field at
every point within the material of conductor must be zero. (Note that we are not
saying that the field is necessarily zero in a hole inside a conductor.)

In summary, our description of electric interactions has two parts. First, a given
charge distribution acts as a source of electric field. Second, the electric field
exerts a force on any charge that is present in the field. Our analysis often has two
corresponding steps: first, calculating the field caused by a source charge distribu-
tion; second, looking at the effect of the field in terms of force and motion. The
second step often involves Newton’s laws as well as the principles of electric
interactions. In the next section we show how to calculate fields caused by various
source distributions, but first here are three examples of calculating the field due to
a point charge and of finding the force on a charge due to a given field E

S
.

a

Y
S,

Y
S

Ez1x, y, z2.Ey1x, y, z2,Ex1x, y, z2,
1x, y, z2

E
S

1x, y, z2

E
S

E
S

rN;
rN;

E
S

�
1

4pP0

q

r 2 rN  (electric field of a point charge)

E
S

:
rN,

E =
1

4pP0

ƒq ƒ
r 2  (magnitude of electric field of a point charge)

PE

F0 =
1

4pP0

ƒqq0 ƒ
r 2

F0r

Example 21.5 Electric-field magnitude for a point charge

What is the magnitude of the electric field at a field point 2.0 m
from a point charge q = 4.0 nC?

E
S

SOLUTION

IDENTIFY and SET UP: This problem concerns the electric field
due to a point charge. We are given the magnitude of the charge

Continued

E

q

q

S

E
S

(a) The field produced by a positive point
charge points away from the charge.

(b) The field produced by a negative point
charge points toward the charge.

21.18 A point charge produces an elec-
tric field at all points in space. The field
strength decreases with increasing distance.

E
S q
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and the distance from the charge to the field point, so we use 
Eq. (21.6) to calculate the field magnitude .

EXECUTE: From Eq. (21.6),

= 9.0 N>C

E =
1

4pP0

ƒ q ƒ
r 2

= 19.0 * 109 N # m2>C22
4.0 * 10-9 C

12.0 m22

E
EVALUATE: Our result means that if we placed a 1.0-C
charge at a point 2.0 m from q, it would experience a 9.0-N 
force. The force on a 2.0-C charge at that point would be

, and so on.12.0 C219.0 N>C2 = 18 N

E = 9.0 N>C

Example 21.6 Electric-field vector for a point charge

A point charge is located at the origin. Find the elec-
tric-field vector at the field point 

SOLUTION

IDENTIFY and SET UP: We must find the electric-field vector
due to a point charge. Figure 21.19 shows the situation. We use Eq.
(21.7); to do this, we must find the distance from the source point

(the position of the charge which in this example is at the ori-q,S
r

E
S

y = -1.6 m.x = 1.2 m,
q = -8.0 nC gin ) to the field point and we must obtain an expression for

the unit vector that points from to 

EXECUTE: The distance from to is

The unit vector is then

Then, from Eq. (21.7),

EVALUATE: Since is negative, points from the field point to the
charge (the source point), in the direction opposite to (compare
Fig. 21.17c). We leave the calculation of the magnitude and direc-
tion of to you (see Exercise 21.36).E

S

rN
E
S

q

� 1-11 N>C2ın � 114 N>C2≥n

� 19.0 * 109 N # m2>C22
1-8.0 * 10-9 C2

12.0 m22
10.60ın � 0.80≥n2

E
S

�
1

4pP0

q

r 2
rN

�
11.2 m2ın � 1-1.6 m2≥n

2.0 m
� 0.60ın � 0.80≥n

�
xın � y≥n

r
rN �

rS

r

rN

r = 2x2 + y2 = 211.2 m22 + 1-1.6 m22 = 2.0 m

PS

P.SrN � rS>r
P,O

21.19 Our sketch for this problem.

Example 21.7 Electron in a uniform field

When the terminals of a battery are connected to two parallel con-
ducting plates with a small gap between them, the resulting charges
on the plates produce a nearly uniform electric field between the
plates. (In the next section we’ll see why this is.) If the plates are
1.0 cm apart and are connected to a 100-volt battery as shown in
Fig. 21.20, the field is vertically upward and has magnitude

E
S

. (a) If an electron (charge 
, mass ) is released from rest at the

upper plate, what is its acceleration? (b) What speed and kinetic
energy does it acquire while traveling 1.0 cm to the lower plate?
(c) How long does it take to travel this distance?

SOLUTION

IDENTIFY and SET UP: This example involves the relationship
between electric field and electric force. It also involves the rela-
tionship between force and acceleration, the definition of kinetic
energy, and the kinematic relationships among acceleration, dis-
tance, velocity, and time. Figure 21.20 shows our coordinate sys-
tem. We are given the electric field, so we use Eq. (21.4) to find the
force on the electron and Newton’s second law to find its accelera-
tion. Because the field is uniform, the force is constant and we can
use the constant-acceleration formulas from Chapter 2 to find the
electron’s velocity and travel time. We find the kinetic energy
using .K = 1

2 mv2

m = 9.11 * 10-31 kg10-9 C
-1.60 *-e =E = 1.00 * 104 N>C

– – – – – – – –

+ + + + + + + +

The thin arrows represent
the uniform electric field.

O

100 V 

y

1.0 cm

x

E
F 5 2eE
S

S
S

21.20 A uniform electric field between two parallel conducting
plates connected to a 100-volt battery. (The separation of the
plates is exaggerated in this figure relative to the dimensions of
the plates.)
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21.5 Electric-Field Calculations
Equation (21.7) gives the electric field caused by a single point charge. But in
most realistic situations that involve electric fields and forces, we encounter charge
that is distributed over space. The charged plastic and glass rods in Fig. 21.1 have
electric charge distributed over their surfaces, as does the imaging drum of a laser
printer (Fig. 21.2). In this section we’ll learn to calculate electric fields caused by
various distributions of electric charge. Calculations of this kind are of tremen-
dous importance for technological applications of electric forces. To determine
the trajectories of atomic nuclei in an accelerator for cancer radiotherapy or of
charged particles in a semiconductor electronic device, you have to know the
detailed nature of the electric field acting on the charges.

The Superposition of Electric Fields
To find the field caused by a charge distribution, we imagine the distribution to be
made up of many point charges . . . . (This is actually quite a realistic
description, since we have seen that charge is carried by electrons and protons
that are so small as to be almost pointlike.) At any given point each point
charge produces its own electric field . . . , so a test charge placed at

experiences a force from charge a force from
charge and so on. From the principle of superposition of forces discussed in
Section 21.3, the total force that the charge distribution exerts on is the vec-
tor sum of these individual forces:

The combined effect of all the charges in the distribution is described by the total
electric field at point . From the definition of electric field, Eq. (21.3), this is
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EXECUTE: (a) Although is upward (in the -direction), is
downward (because the electron’s charge is negative) and so 
is negative. Because is constant, the electron’s acceleration is
constant:

(b) The electron starts from rest, so its motion is in the 
-direction only (the direction of the acceleration). We can find the

electron’s speed at any position y using the constant-acceleration
Eq. (2.13), We have and

so at we have

= 5.9 * 106 m>s

ƒ vy ƒ = 22ayy = 221-1.76 * 1015 m>s221-1.0 * 10-2 m2

y = -1.0 cm = -1.0 * 10-2 my0 = 0,

v0y = 0v 2
y = v 2

0y + 2ay1y - y02.

y

= -1.76 * 1015 m>s2

ay =
Fy

m
=

-eE

m
=
1-1.60 * 10-19 C211.00 * 104 N>C2

9.11 * 10-31 kg

Fy

Fy

F
S

+yE
S

The velocity is downward, so The elec-
tron’s kinetic energy is

(c) From Eq. (2.8) for constant acceleration, 

EVALUATE: Our results show that in problems concerning sub-
atomic particles such as electrons, many quantities—including
acceleration, speed, kinetic energy, and time—will have very dif-
ferent values from those typical of everyday objects such as base-
balls and automobiles.

= 3.4 * 10-9 s

t =
vy - v0y

ay
=
1-5.9 * 106 m>s2 - 10 m>s2

-1.76 * 1015 m>s2

vy = v0y + ayt,

= 1.6 * 10-17 J

K = 1
2 mv2 = 1

2 19.11 * 10-31 kg215.9 * 106 m>s22

vy = -5.9 * 106 m>s.

Test Your Understanding of Section 21.4 (a) A negative point charge
moves along a straight-line path directly toward a stationary positive point charge.
Which aspect(s) of the electric force on the negative point charge will remain con-
stant as it moves? (i) magnitude; (ii) direction; (iii) both magnitude and direction; 
(iv) neither magnitude nor direction. (b) A negative point charge moves along a circular
orbit around a positive point charge. Which aspect(s) of the electric force on the negative
point charge will remain constant as it moves? (i) magnitude; (ii) direction; (iii) both
magnitude and direction; (iv) neither magnitude nor direction. ❙

ActivPhysics 11.5: Electric Field Due to a
Dipole
ActivPhysics 11.6: Electric Field: Problems



The total electric field at is the vector sum of the fields at due to each point
charge in the charge distribution (Fig. 21.21). This is the principle of superposi-
tion of electric fields.

When charge is distributed along a line, over a surface, or through a volume, a
few additional terms are useful. For a line charge distribution (such as a long,
thin, charged plastic rod), we use (the Greek letter lambda) to represent the
linear charge density (charge per unit length, measured in When charge
is distributed over a surface (such as the surface of the imaging drum of a laser
printer), we use (sigma) to represent the surface charge density (charge 
per unit area, measured in ). And when charge is distributed through a 
volume, we use (rho) to represent the volume charge density (charge per unit
volume, ).

Some of the calculations in the following examples may look fairly intricate.
After you’ve worked through the examples one step at a time, the process will
seem less formidable. We will use many of the calculational techniques in these
examples in Chapter 28 to calculate the magnetic fields caused by charges in
motion.

C>m3
r

C>m2
s

C>m).
l

PP
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Electric field
at P due to q1

Electric field
at P due to q2

P

The total electric field E at point
P is the vector sum of E1 and E2.

q1

q2

E2
S

E
S

S

S S

E1
S

21.21 Illustrating the principle of
superposition of electric fields.

Problem-Solving Strategy 21.2 Electric-Field Calculations

IDENTIFY the relevant concepts: Use the principle of superposition
to calculate the electric field due to a discrete or continuous charge
distribution.

SET UP the problem using the following steps:
1. Make a drawing showing the locations of the charges and your

choice of coordinate axes.
2. On your drawing, indicate the position of the field point P (the

point at which you want to calculate the electric field ).

EXECUTE the solution as follows:
1. Use consistent units. Distances must be in meters and charge

must be in coulombs. If you are given centimeters or nano-
coulombs, don’t forget to convert.

2. Distinguish between the source point S and the field point P. The
field produced by a point charge always points from S to P if the
charge is positive, and from P to S if the charge is negative.

3. Use vector addition when applying the principle of superposi-
tion; review the treatment of vector addition in Chapter 1 if
necessary.

E
S

4. Simplify your calculations by exploiting any symmetries in the
charge distribution.

5. If the charge distribution is continuous, define a small element
of charge that can be considered as a point, find its electric field
at P, and find a way to add the fields of all the charge elements
by doing an integral. Usually it is easiest to do this for each
component of separately, so you may need to evaluate more
than one integral. Ensure that the limits on your integrals are
correct; especially when the situation has symmetry, don’t
count a charge twice.

EVALUATE your answer: Check that the direction of is reason-
able. If your result for the electric-field magnitude is a function
of position (say, the coordinate ), check your result in any limits
for which you know what the magnitude should be. When possi-
ble, check your answer by calculating it in a different way.

x
E

E
S

E
S

Example 21.8 Field of an electric dipole

Point charges � and � are 0.100 m apart
(Fig. 21.22). (Such pairs of point charges with equal magnitude
and opposite sign are called electric dipoles.) Compute the electric
field caused by the field caused by and the total field (a) at
point (b) at point and (c) at point 

SOLUTION

IDENTIFY and SET UP: We must find the total electric field at vari-
ous points due to two point charges. We use the principle of super-
position: Figure 21.22 shows the coordinate
system and the locations of the field points 

EXECUTE: At each field point, depends on and there; we
first calculate the magnitudes and at each field point. At 
the magnitude of the field caused by isq1E

S
1a

aE2E1

E
S

2E
S

1E
S

a, b, and c.
E
S

� E
S

1 � E
S

2.

c.b;a;
q2,q1,

-12 nCq2+12 nCq1

We calculate the other field magnitudes in a similar way. The
results are

The directions of the corresponding fields are in all cases away
from the positive charge and toward the negative charge .q2q1

E2c = E1c = 6.39 * 103 N>C

E2b = 0.55 * 104 N>CE2a = 6.8 * 104 N>C

E1c = 6.39 * 103 N>C

E1b = 6.8 * 104 N>CE1a = 3.0 * 104 N>C

= 3.0 * 104 N>C

E1a =
1

4pP0

ƒ q1 ƒ
r 2

= 19.0 * 109 N # m2>C22
12 * 10-9 C

10.060 m22
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+ –Ea
S

Eb
S

E2
S

Ec
S

E1
S

c
a

a

a
x

4.0
cm

6.0
cm

a
b

4.0
cm

y

13.0 cm 13.0 cm

q2q1

21.22 Electric field at three points, and , set up by
charges and which form an electric dipole.q2,q1

ca, b,

(a) At a, and are both directed to the right, so

(b) At b, is directed to the left and is directed to the
right, so

E
S

b � -E1bın � E2bın � 1-6.2 * 104 N>C2ın

E
S

2bE
S

1b

E
S

a � E1aın � E2aın � 19.8 * 104 N>C2ın

E
S

2aE
S

1a

(c) Figure 21.22 shows the directions of and at c. Both
vectors have the same -component:

From symmetry, and are equal and opposite, so their sum
is zero. Hence

EVALUATE: We can also find using Eq. (21.7) for the field of a
point charge. The displacement vector from to point is

. Hence the unit vector that points from
to point c is . By symmetry, the

unit vector that points from to point c has the opposite x-
component but the same y-component: .
We can now use Eq. (21.7) to write the fields and at in
vector form, then find their sum. Since and the distance
r to c is the same for both charges,

This is the same as we calculated in part (c).

� 14.9 * 103 N>C2ın

� 219.0 * 109 N # m2>C22
12 * 10-9 C

10.13 m22
A 5

13 B ın

�
1

4pP0

q1

r2
12 cosa ın2

�
1

4pP0r 2
1q1rN1 � q2rN22 �

q1

4pP0r 2
1rN1 � rN22

E
S

c � E
S

1c � E
S

2c �
1

4pP0

q1

r 2
rN1 �

1

4pP0

q2

r 2
rN2

q2 = -q1

cE
S

2cE
S

1c

rN2 � -cosa ın � sina ≥n
q2

rN1 � rS1>r � cosa ın + sina ≥nq1

rS1 � r cosa ın � r sina ≥n
cq1rS1

E
S

c

E
S

c � 212.46 * 103 N>C2ın � 14.9 * 103 N>C2ın

E2yE1y

= 2.46 * 103 N>C

E1cx = E2cx = E1c cosa = 16.39 * 103 N>C2A 5
13 B

x
E
S

2E
S

1

Example 21.9 Field of a ring of charge

Charge is uniformly distributed around a conducting ring of
radius (Fig. 21.23). Find the electric field at a point on the ring
axis at a distance from its center.

SOLUTION

IDENTIFY and SET UP: This is a problem in the superposition of
electric fields. Each bit of charge around the ring produces an elec-
tric field at an arbitrary point on the x-axis; our target variable is
the total field at this point due to all such bits of charge.

x
Pa

Q EXECUTE: We divide the ring into infinitesimal segments ds as
shown in Fig. 21.23. In terms of the linear charge density

the charge in a segment of length is 
Consider two identical segments, one as shown in the figure at

and another halfway around the ring at . From
Example 21.4, we see that the net force they exert on a point
test charge at P, and thus their net field , are directed along the 
x-axis. The same is true for any such pair of segments around the
ring, so the net field at P is along the x-axis:

To calculate note that the square of the distance from a sin-
gle ring segment to the point is Hence the magni-
tude of this segment’s contribution to the electric field at is

The x-component of this field is . We know dQ �
ds and Fig. 21.23 shows that so

Continued

=
1

4pP0

lx

1x2 + a223>2
ds

dEx = dEcosa =
1

4pP0

dQ

x2 + a2

x

2x2 + a2

= x>r = x>1x2 + a221>2,cos al

dEx = dEcosa

dE =
1

4pP0

dQ

x2 + a2

PdE
S

r 2 = x2 + a2.P
rEx,

E
S

� Exın .

dE
S
dF
S

y = -ay = a

dQ = lds.dsl = Q>2pa,

S

x

Q

dExP

y

ds

dQ

dEy
x

r �
x 2

� a 2

dE

a

a

O

a

21.23 Calculating the electric field on the axis of a ring of
charge. In this figure, the charge is assumed to be positive.
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To find we integrate this expression over the entire ring—that is,
for s from 0 to 2pa (the circumference of the ring). The integrand
has the same value for all points on the ring, so it can be taken out-
side the integral. Hence we get

(21.8)E
S

� Exın �
1

4pP0

Qx

1x2 + a223>2
ın

=
1

4pP0

lx

1x2 + a223>2
12pa2

Ex = LdEx =
1

4pP0

lx

1x2 + a223>23
2pa

0

ds

Ex EVALUATE: Equation (21.8) shows that at the center of the
ring x � 0 . This makes sense; charges on opposite sides of the
ring push in opposite directions on a test charge at the center, and
the vector sum of each such pair of forces is zero. When the field
point is much farther from the ring than the ring’s radius, we
have and the denominator in Eq. (21.8) becomes approxi-
mately equal to . In this limit the electric field at P is

That is, when the ring is so far away that its radius is negligible in
comparison to the distance , its field is the same as that of a point
charge.

x

E
S

�
1

4pP0

Q

x2
ın

x3
x W a
P

21
E
S

� 0

Example 21.10 Field of a charged line segment

Positive charge is distributed uniformly along the -axis
between and Find the electric field at point on
the -axis at a distance from the origin.

SOLUTION

IDENTIFY and SET UP: Figure 21.24 shows the situation. As in
Example 21.9, we must find the electric field due to a continuous
distribution of charge. Our target variable is an expression for the
electric field at as a function of . The -axis is a perpendicular
bisector of the segment, so we can use a symmetry argument.

EXECUTE: We divide the line charge of length 2a into infinitesimal
segments of length dy. The linear charge density is and
the charge in a segment is . The distance r
from a segment at height y to the field point P is ,
so the magnitude of the field at P due to the segment at height y is

Figure 21.24 shows that the x- and y-components of this field are
and , where cos a � x r and

sin y r. Hence

To find the total field at P, we must sum the fields from all seg-
ments along the line—that is, we must integrate from to

You should work out the details of the integration (a table
of integrals will help). The results are

or, in vector form,

(21.9)E
S

�
1

4pP0

Q

x2x2 + a2
ın

Ey =
1

4pP0

Q

2aL
+a

-a

ydy

1x2 + y223>2
= 0

Ex =
1

4pP0

Q

2aL
+a

-a

xdy

1x2 + y223>2
=

Q

4pP0

1

x2x2 + a2

y = +a.
y = -a

dEy =
1

4pP0

Q

2a

ydy

1x2 + y223>2

dEx =
1

4pP0

Q

2a

xdy

1x2 + y223>2

>a =
>dEy = -dE sin adEx = dE cos a

dE =
1

4pP0

dQ

r 2
=

1

4pP0

Q

2a

dy

1x2 + y22

r = 1x2 + y221>2
dQ = ldy = 1Q>2a2dy

l = Q>2a,

xxP

xx
Py = +a.y = -a

yQ

points away from the line of charge if is positive and toward
the line of charge if is negative.

EVALUATE: Using a symmetry argument as in Example 21.9, we
could have guessed that would be zero; if we place a positive
test charge at , the upper half of the line of charge pushes down-
ward on it, and the lower half pushes up with equal magnitude.
Symmetry also tells us that the upper and lower halves of the seg-
ment contribute equally to the total field at P.

If the segment is very short (or the field point is very far from
the segment) so that we can neglect in the denominator
of Eq. (21.9). Then the field becomes that of a point charge, just as
in Example 21.9:

To see what happens if the segment is very long (or the field point
is very close to it) so that we first rewrite Eq. (21.9)
slightly:

(21.10)

In the limit we can neglect in the denominator of 
Eq. (21.10), so

E
S

�
l

2pP0x
ın

x2>a2a W x

E
S

�
1

2pP0

l

x21x2>a22 + 1
ın

a W x,

E
S

�
1

4pP0

Q

x2
ın

ax W a,

P
Ey

l

lE
S

21.24 Our sketch for this problem.



21.5 Electric-Field Calculations 707

This is the field of an infinitely long line of charge. At any point 
at a perpendicular distance from the line in any direction, has
magnitude

(infinite line of charge)

Note that this field is proportional to rather than to as for
a point charge.

1>r 21>r

E =
l

2pP0r

E
S

r
P There’s really no such thing in nature as an infinite line of

charge. But when the field point is close enough to the line,
there’s very little difference between the result for an infinite
line and the real-life finite case. For example, if the distance of
the field point from the center of the line is 1% of the length of
the line, the value of differs from the infinite-length value by
less than 0.02%.

E

r

Example 21.11 Field of a uniformly charged disk

A nonconducting disk of radius has a uniform positive surface
charge density . Find the electric field at a point along the axis of
the disk a distance from its center. Assume that is positive.

SOLUTION

IDENTIFY and SET UP: Figure 21.25 shows the situation. We rep-
resent the charge distribution as a collection of concentric rings of
charge . In Example 21.9 we obtained Eq. (21.8) for the field on
the axis of a single uniformly charged ring, so all we need do here
is integrate the contributions of our rings.

EXECUTE: A typical ring has charge , inner radius , and outer
radius . Its area is approximately equal to its width dr times
its circumference 2pr, or The charge per unit area is

so the charge of the ring is 
We use dQ in place of Q in Eq. (21.8), the expression for the field due
to a ring that we found in Example 21.9, and replace the ring radius 
with . Then the field component at point P due to this ring is

dEx =
1

4pP0

2psrx dr

1x2 + r 223>2

dExr
a

dQ = sdA = 2psr dr.s = dQ>dA,
dA = 2pr dr.

r + dr
rdQ

dQ

xx
s

R To find the total field due to all the rings, we integrate over 
from to (not from –R to R):

You can evaluate this integral by making the substitution 
(which yields ); you can work out the details.

The result is

(21.11)

EVALUATE: If the disk is very large (or if we are very close to it), so

that the term in Eq. (21.11) is very
much less than 1. Then Eq. (21.11) becomes

(21.12)

Our final result does not contain the distance from the plane.
Hence the electric field produced by an infinite plane sheet of charge
is independent of the distance from the sheet. The field direction is
everywhere perpendicular to the sheet, away from it. There is no
such thing as an infinite sheet of charge, but if the dimensions of the
sheet are much larger than the distance of the field point from
the sheet, the field is very nearly given by Eq. (21.12).

If is to the left of the plane , the result is the same
except that the direction of is to the left instead of the right. If
the surface charge density is negative, the directions of the fields
on both sides of the plane are toward it rather than away from it.

E
S

1x 6 02P

Px

x

E =
s

2P0

1>21R2>x22 + 1R W x,

=
s

2P0
c1 -

1

21R2>x22 + 1
d

Ex =
sx

2P0
c -

1

2x2 + R2
+

1
x
d

dt = 2r drx2 + r 2
t =

Ex = L
R

0

1

4pP0

12psr dr2x

1x2 + r 223>2
=
sx

4P0L
R

0

2r dr

1x2 + r 223>2

r = Rr = 0
rdEx

21.25 Our sketch for this problem.

Example 21.12 Field of two oppositely charged infinite sheets

Two infinite plane sheets with uniform surface charge densities
and are placed parallel to each other with separation 

(Fig. 21.26). Find the electric field between the sheets, above the
upper sheet, and below the lower sheet.

SOLUTION

IDENTIFY and SET UP: Equation (21.12) gives the electric field
due to a single infinite plane sheet of charge. To find the field due
to two such sheets, we combine the fields using the principle of
superposition (Fig. 21.26).

d-s+s

Continued

E � E1 � E2

E1

Sheet 2

y

d

x

Sheet 1

2s

1s

E2

E1 E2

E1 E2

E � E1 � E2 � 0

E � E1 � E2 � 0

S S S S S

S S S S S

S S S S S

21.26 Finding the electric field due to two oppositely charged
infinite sheets. The sheets are seen edge-on; only a portion of the
infinite sheets can be shown!



21.6 Electric Field Lines
The concept of an electric field can be a little elusive because you can’t see an
electric field directly. Electric field lines can be a big help for visualizing electric
fields and making them seem more real. An electric field line is an imaginary
line or curve drawn through a region of space so that its tangent at any point is in
the direction of the electric-field vector at that point. Figure 21.27 shows the basic
idea. (We used a similar concept in our discussion of fluid flow in Section 12.5.
A streamline is a line or curve whose tangent at any point is in the direction of the
velocity of the fluid at that point. However, the similarity between electric field
lines and fluid streamlines is a mathematical one only; there is nothing “flowing”
in an electric field.) The English scientist Michael Faraday (1791–1867) first
introduced the concept of field lines. He called them “lines of force,” but the term
“field lines” is preferable.

Electric field lines show the direction of at each point, and their spacing
gives a general idea of the magnitude of at each point. Where is strong, we
draw lines bunched closely together; where is weaker, they are farther apart.
At any particular point, the electric field has a unique direction, so only one field
line can pass through each point of the field. In other words, field lines never
intersect.

Figure 21.28 shows some of the electric field lines in a plane containing (a) a
single positive charge; (b) two equal-magnitude charges, one positive and one
negative (a dipole); and (c) two equal positive charges. Diagrams such as these
are sometimes called field maps; they are cross sections of the actual three-
dimensional patterns. The direction of the total electric field at every point in
each diagram is along the tangent to the electric field line passing through the
point. Arrowheads indicate the direction of the -field vector along each field
line. The actual field vectors have been drawn at several points in each pattern.
Notice that in general, the magnitude of the electric field is different at different
points on a given field line; a field line is not a curve of constant electric-field
magnitude!

Figure 21.28 shows that field lines are directed away from positive charges
(since close to a positive point charge, points away from the charge) andE

S

E
S

E
S

E
S

E
S

E
S
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EXECUTE: From Eq. (21.12), both and have the same magni-
tude at all points, independent of distance from either sheet:

From Example 21.11, is everywhere directed away from sheet 1,
and is everywhere directed toward sheet 2.

Between the sheets, and reinforce each other; above the
upper sheet and below the lower sheet, they cancel each other.
Thus the total field is

E
S

� E
S

1 � E
S

2 � d
0    above the upper sheet

s

P0
≥n   between the sheets

0     below the lower sheet

E
S

2E
S

1

E
S

2

E
S

1

E1 = E2 =
s

2P0

E
S

2E
S

1
EVALUATE: Because we considered the sheets to be infinite, our
result does not depend on the separation . Our result shows that
the field between oppositely charged plates is essentially uniform
if the plate separation is much smaller than the dimensions of the
plates. We actually used this result in Example 21.7 (Section 21.4).

CAUTION Electric fields are not “flows” You may have thought
that the field of sheet 1 would be unable to “penetrate” sheet 2,
and that field caused by sheet 2 would be unable to “penetrate”
sheet 1. You might conclude this if you think of the electric field as
some kind of physical substance that “flows” into or out of
charges. But in fact there is no such substance, and the electric
fields and depend only on the individual charge distribu-
tions that create them. The total field at every point is just the vec-
tor sum of and ❙E

S
2.E

S
1

E
S

2E
S

1

E
S

2

E
S

1

d

Test Your Understanding of Section 21.5 Suppose that the line of
charge in Fig. 21.25 (Example 21.11) had charge distributed uniformly
between and and had charge distributed uniformly between

and In this situation, the electric field at would be (i) in the positive 
-direction; (ii) in the negative -direction; (iii) in the positive -direction; (iv) in the

negative -direction; (v) zero; (vi) none of these. ❙y
yxx

Py = -a.y = 0
-Qy = +ay = 0

+Q

Electric
field
line

P
R

Field at
point P

Field at
point R

EP

S

ER

S

21.27 The direction of the electric field
at any point is tangent to the field line
through that point.

PhET: Charges and Fields
PhET: Electric Field of Dreams
PhET: Electric Field Hockey
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toward negative charges (since close to a negative point charge, points toward
the charge). In regions where the field magnitude is large, such as between the
positive and negative charges in Fig. 21.28b, the field lines are drawn close
together. In regions where the field magnitude is small, such as between the two
positive charges in Fig. 21.28c, the lines are widely separated. In a uniform field,
the field lines are straight, parallel, and uniformly spaced, as in Fig. 21.20.

Figure 21.29 is a view from above of a demonstration setup for visualizing
electric field lines. In the arrangement shown here, the tips of two positively
charged wires are inserted in a container of insulating liquid, and some grass
seeds are floated on the liquid. The grass seeds are electrically neutral insulators,
but the electric field of the two charged wires causes polarization of the grass
seeds; there is a slight shifting of the positive and negative charges within the
molecules of each seed, like that shown in Fig. 21.8. The positively charged end
of each grass seed is pulled in the direction of and the negatively charged end
is pulled opposite Hence the long axis of each grass seed tends to orient paral-
lel to the electric field, in the direction of the field line that passes through the
position of the seed (Fig. 21.29b).

CAUTION Electric field lines are not the same as trajectories It’s a common misconcep-
tion that if a charged particle of charge is in motion where there is an electric field, the
particle must move along an electric field line. Because at any point is tangent to the field
line that passes through that point, it is indeed true that the force on the particle, and
hence the particle’s acceleration, are tangent to the field line. But we learned in Chapter 3
that when a particle moves on a curved path, its acceleration cannot be tangent to the path.
So in general, the trajectory of a charged particle is not the same as a field line. ❙
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Field lines always point
away from (1) charges
and toward (2) charges.

At each point in space, the electric
field vector is tangent to the field
line passing through that point.

Field lines are close together where the field is
strong, farther apart where it is weaker.

(a) A single positive charge (b) Two equal and opposite charges (a dipole) (c) Two equal positive charges
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21.28 Electric field lines for three different charge distributions. In general, the magnitude of is different at different points along a
given field line.

E
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Test Your Understanding of Section 21.6 Suppose the electric field lines in a
region of space are straight lines. If a charged particle is released from rest in that region,
will the trajectory of the particle be along a field line? ❙

21.7 Electric Dipoles
An electric dipole is a pair of point charges with equal magnitude and opposite
sign (a positive charge and a negative charge ) separated by a distance . We
introduced electric dipoles in Example 21.8 (Section 21.5); the concept is worth
exploring further because many physical systems, from molecules to TV anten-
nas, can be described as electric dipoles. We will also use this concept exten-
sively in our discussion of dielectrics in Chapter 24.

d-qq

(a)

�
�

(b)

Field line

Grass seed

E
S

21.29 (a) Electric field lines produced
by two equal point charges. The pattern is
formed by grass seeds floating on a liquid
above two charged wires. Compare this
pattern with Fig. 21.28c. (b) The electric
field causes polarization of the grass seeds,
which in turn causes the seeds to align
with the field.



Figure 21.30 a shows a molecule of water which in many ways
behaves like an electric dipole. The water molecule as a whole is electri-
cally neutral, but the chemical bonds within the molecule cause a displacement
of charge; the result is a net negative charge on the oxygen end of the molecule
and a net positive charge on the hydrogen end, forming an electric dipole. The
effect is equivalent to shifting one electron only about (about the
radius of a hydrogen atom), but the consequences of this shift are profound.
Water is an excellent solvent for ionic substances such as table salt (sodium chlo-
ride, NaCl) precisely because the water molecule is an electric dipole (Fig. 21.30b).
When dissolved in water, salt dissociates into a positive sodium ion and
a negative chlorine ion which tend to be attracted to the negative and
positive ends, respectively, of water molecules; this holds the ions in solution.
If water molecules were not electric dipoles, water would be a poor solvent,
and almost all of the chemistry that occurs in aqueous solutions would be
impossible. This includes all of the biochemical reactions that occur in all of
the life on earth. In a very real sense, your existence as a living being depends
on electric dipoles!

We examine two questions about electric dipoles. First, what forces and
torques does an electric dipole experience when placed in an external electric
field (that is, a field set up by charges outside the dipole)? Second, what electric
field does an electric dipole itself produce?

Force and Torque on an Electric Dipole
To start with the first question, let’s place an electric dipole in a uniform exter-
nal electric field as shown in Fig. 21.31. The forces and on the two
charges both have magnitude , but their directions are opposite, and they add
to zero. The net force on an electric dipole in a uniform external electric field is
zero.

However, the two forces don’t act along the same line, so their torques don’t
add to zero. We calculate torques with respect to the center of the dipole. Let the
angle between the electric field and the dipole axis be then the lever arm for
both and is The torque of and the torque of both have
the same magnitude of and both torques tend to rotate the dipole
clockwise (that is, is directed into the page in Fig. 21.31). Hence the magnitude
of the net torque is twice the magnitude of either individual torque:

(21.13)

where is the perpendicular distance between the lines of action of the two
forces.

The product of the charge and the separation is the magnitude of a quantity
called the electric dipole moment, denoted by :

(21.14)

The units of are charge times distance For example, the magnitude of
the electric dipole moment of a water molecule is 

CAUTION The symbol p has multiple meanings Be careful not to confuse dipole moment
with momentum or pressure. There aren’t as many letters in the alphabet as there are phys-
ical quantities, so some letters are used several times. The context usually makes it clear
what we mean, but be careful. ❙

We further define the electric dipole moment to be a vector quantity The
magnitude of is given by Eq. (21.14), and its direction is along the dipole axis
from the negative charge to the positive charge as shown in Fig. 21.31.

In terms of , Eq. (21.13) for the magnitude of the torque exerted by the
field becomes
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p = 6.13 * 10-30 C # m.
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p = qd  (magnitude of electric dipole moment)
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(a) A water molecule, showing positive charge
as red and negative charge as blue

(b) Various substances dissolved in water

HH
p
S

S
The electric dipole moment p is
directed from the negative end to
the positive end of the molecule.

21.30 (a) A water molecule is an exam-
ple of an electric dipole. (b) Each test tube
contains a solution of a different substance
in water. The large electric dipole moment
of water makes it an excellent solvent.
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21.31 The net force on this electric
dipole is zero, but there is a torque directed
into the page that tends to rotate the dipole
clockwise.
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(21.15)

Since the angle in Fig. 21.31 is the angle between the directions of the vectors
and this is reminiscent of the expression for the magnitude of the vector

product discussed in Section 1.10. (You may want to review that discussion.)
Hence we can write the torque on the dipole in vector form as

(21.16)

You can use the right-hand rule for the vector product to verify that in the situation
shown in Fig. 21.31, is directed into the page. The torque is greatest when and

are perpendicular and is zero when they are parallel or antiparallel. The torque
always tends to turn to line it up with The position with parallel to

is a position of stable equilibrium, and the position with and 
antiparallel, is a position of unstable equilibrium. The polarization of a grass seed
in the apparatus of Fig. 21.29b gives it an electric dipole moment; the torque
exerted by then causes the seed to align with and hence with the field lines.

Potential Energy of an Electric Dipole
When a dipole changes direction in an electric field, the electric-field torque does
work on it, with a corresponding change in potential energy. The work done
by a torque during an infinitesimal displacement is given by Eq. (10.19):

Because the torque is in the direction of decreasing we must
write the torque as and

In a finite displacement from to the total work done on the dipole is

The work is the negative of the change of potential energy, just as in Chapter 7:
So a suitable definition of potential energy for this system is

(21.17)

In this expression we recognize the scalar product so we can
also write

(21.18)

The potential energy has its minimum (most negative) value at the sta-
ble equilibrium position, where and is parallel to The potential
energy is maximum when and is antiparallel to then At

where is perpendicular to is zero. We could define differently
so that it is zero at some other orientation of but our definition is simplest.

Equation (21.18) gives us another way to look at the effect shown in Fig.
21.29. The electric field gives each grass seed an electric dipole moment, and
the grass seed then aligns itself with to minimize the potential energy.E
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t = pE sinf  (magnitude of the torque on an electric dipole)

Example 21.13 Force and torque on an electric dipole

Figure 21.32a shows an electric dipole in a uniform electric field of
magnitude that is directed parallel to the plane of
the figure. The charges are both lie in the plane�1.6 * 10-19 C;

5.0 * 105 N>C
and are separated by Find (a) the
net force exerted by the field on the dipole; (b) the magnitude and

Continued

0.125 nm = 0.125 * 10-9 m.

PhET: Microwaves



In this discussion we have assumed that is uniform, so there is no net force
on the dipole. If is not uniform, the forces at the ends may not cancel com-
pletely, and the net force may not be zero. Thus a body with zero net charge but an
electric dipole moment can experience a net force in a nonuniform electric field.
As we mentioned in Section 21.1, an uncharged body can be polarized by an elec-
tric field, giving rise to a separation of charge and an electric dipole moment. This
is how uncharged bodies can experience electrostatic forces (see Fig. 21.8).

Field of an Electric Dipole
Now let’s think of an electric dipole as a source of electric field. What does the
field look like? The general shape of things is shown by the field map of Fig.
21.28b. At each point in the pattern the total field is the vector sum of the fields
from the two individual charges, as in Example 21.8 (Section 21.5). Try drawing
diagrams showing this vector sum for several points.

To get quantitative information about the field of an electric dipole, we have to
do some calculating, as illustrated in the next example. Notice the use of the prin-
ciple of superposition of electric fields to add up the contributions to the field of
the individual charges. Also notice that we need to use approximation techniques
even for the relatively simple case of a field due to two charges. Field calcula-
tions often become very complicated, and computer analysis is typically used to
determine the field due to an arbitrary charge distribution.
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direction of the electric dipole moment; (c) the magnitude and
direction of the torque; (d) the potential energy of the system in the
position shown.

SOLUTION

IDENTIFY and SET UP: This problem uses the ideas of this section
about an electric dipole placed in an electric field. We use the rela-
tionship for each point charge to find the force on the
dipole as a whole. Equation (21.14) gives the dipole moment, 
Eq. (21.16) gives the torque on the dipole, and Eq. (21.18) gives
the potential energy of the system.

F
S

� qE
S

EXECUTE: (a) The field is uniform, so the forces on the two charges
are equal and opposite. Hence the total force on the dipole is zero.

(b) The magnitude of the electric dipole moment is

The direction of is from the negative to the positive charge, 
clockwise from the electric-field direction (Fig. 21.32b).

(c) The magnitude of the torque is

From the right-hand rule for vector products (see Section 1.10), the
direction of the torque is out of the page. This corre-
sponds to a counterclockwise torque that tends to align with 

(d) The potential energy

EVALUATE: The charge magnitude, the distance between the
charges, the dipole moment, and the potential energy are all very
small, but are all typical of molecules.

= 8.2 * 10-24 J

= -12.0 * 10-29 C # m215.0 * 105 N>C21cos 145°2
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21.32 (a) An electric dipole. (b) Directions of the electric dipole
moment, electric field, and torque ( points out of the page).T
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Example 21.14 Field of an electric dipole, revisited

An electric dipole is centered at the origin, with in the direction
of the -axis (Fig. 21.33). Derive an approximate expression for
the electric field at a point P on the -axis for which is much
larger than . To do this, use the binomial expansion

(valid for the case
).ƒ x ƒ 6 1

11 + x2n � 1 + nx + n1n - 12x2>2 + Á
d

yy
+y

pS SOLUTION

IDENTIFY and SET UP: We use the principle of superposition: The
total electric field is the vector sum of the field produced by the
positive charge and the field produced by the negative charge. At
the field point P shown in Fig. 21.33, the field of the positive
charge has a positive (upward) -component and the field ofE

S
-y

E
S

+
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the negative charge has a negative (downward) -component. We
add these components to find the total field and then apply the
approximation that is much greater than .

EXECUTE: The total -component of electric field from the two
charges is

=
q

4pP0y2
c a1 -

d

2y
b

-2

- a1 +
d

2y
b

-2

d

Ey =
q

4pP0
c

1

1y - d>222
-

1

1y + d>222
d

Eyy

dy

y

We used this same approach in Example 21.8 (Section 21.5). Now
the approximation: When we are far from the dipole compared to
its size, so , we have With and with

replacing in the binomial expansion, we keep only the first
two terms (the terms we discard are much smaller). We then have

Hence is given approximately by

EVALUATE: An alternative route to this result is to put the fractions
in the first expression for over a common denominator, add, and
then approximate the denominator 
We leave the details to you (see Exercise 21.60).

For points off the coordinate axes, the expressions are more
complicated, but at all points far away from the dipole (in any
direction) the field drops off as We can compare this with the

behavior of a point charge, the behavior of a long line
charge, and the independence of for a large sheet of charge.
There are charge distributions for which the field drops off even
more quickly. At large distances, the field of an electric quadru-
pole, which consists of two equal dipoles with opposite orienta-
tion, separated by a small distance, drops off as 1>r 4.
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21.33 Finding the electric field of an electric dipole at a point
on its axis.

Test Your Understanding of Section 21.7 An electric dipole is placed
in a region of uniform electric field with the electric dipole moment pointing
in the direction opposite to Is the dipole (i) in stable equilibrium, (ii) in unstable
equilibrium, or (iii) neither? (Hint: You many want to review Section 7.5.) ❙
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CHAPTER 21 SUMMARY

Electric charge, conductors, and insulators: The fundamental quantity in electrostatics is electric
charge. There are two kinds of charge, positive and negative. Charges of the same sign repel each
other; charges of opposite sign attract. Charge is conserved; the total charge in an isolated system is
constant.

All ordinary matter is made of protons, neutrons, and electrons. The positive protons and electri-
cally neutral neutrons in the nucleus of an atom are bound together by the nuclear force; the nega-
tive electrons surround the nucleus at distances much greater than the nuclear size. Electric
interactions are chiefly responsible for the structure of atoms, molecules, and solids.

Conductors are materials in which charge moves easily; in insulators, charge does not move eas-
ily. Most metals are good conductors; most nonmetals are insulators.

Coulomb’s law: For charges and separated by a dis-
tance , the magnitude of the electric force on either
charge is proportional to the product and inversely
proportional to The force on each charge is along the
line joining the two charges—repulsive if and have
the same sign, attractive if they have opposite signs. In SI
units the unit of electric charge is the coulomb, abbrevi-
ated C. (See Examples 21.1 and 21.2.)

When two or more charges each exert a force on a
charge, the total force on that charge is the vector sum of
the forces exerted by the individual charges. (See Exam-
ples 21.3 and 21.4.)

q2q1

r 2.
q1q2

r
q2q1

(21.2)

1

4pP0
= 8.988 * 109 N # m2>C2

F =
1

4pP0

ƒq1q2 ƒ
r 2

Electric field: Electric field a vector quantity, is the
force per unit charge exerted on a test charge at any point.
The electric field produced by a point charge is directed
radially away from or toward the charge. (See Examples
21.5–21.7.)
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Superposition of electric fields: The electric field of any combination of charges is the vector 
sum of the fields caused by the individual charges. To calculate the electric field caused by a contin-
uous distribution of charge, divide the distribution into small elements, calculate the field caused by
each element, and then carry out the vector sum, usually by integrating. Charge distributions are
described by linear charge density surface charge density and volume charge density (See
Examples 21.8–21.12.)
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SElectric field lines: Field lines provide a graphical representation of electric fields. At any point on a

field line, the tangent to the line is in the direction of at that point. The number of lines per unit
area (perpendicular to their direction) is proportional to the magnitude of at the point.E
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Electric dipoles: An electric dipole is a pair of electric
charges of equal magnitude but opposite sign, separated
by a distance . The electric dipole moment has magni-
tude The direction of is from negative toward
positive charge. An electric dipole in an electric field 
experiences a torque equal to the vector product of pST
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and The magnitude of the torque depends on the angle 
between and The potential energy for an electric
dipole in an electric field also depends on the relative ori-
entation of and (See Examples 21.13 and 21.14.)E
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Positive charge Q is uniformly distributed around a semicircle of
radius a as shown in Fig. 21.34. Find the magnitude and direction
of the resulting electric field at point P, the center of curvature of
the semicircle.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. The target variables are the components of the electric field at P.
2. Divide the semicircle into infinitesimal segments, each of which

is a short circular arc of radius a and angle d . What is the
length of such a segment? How much charge is on a segment?

u

BRIDGING PROBLEM Calculating Electric Field: Half a Ring of Charge

3. Consider an infinitesimal segment located at an angular posi-
tion on the semicircle, measured from the lower right cor-
ner of the semicircle at x � a, y � 0. (Thus � p 2 at x � 0,>u

u

P

Q

a

x

y

21.34

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q21.1 If you peel two strips of transparent tape off the same roll
and immediately let them hang near each other, they will repel
each other. If you then stick the sticky side of one to the shiny side
of the other and rip them apart, they will attract each other. Give a
plausible explanation, involving transfer of electrons between the
strips of tape, for this sequence of events.
Q21.2 Two metal spheres are hanging from nylon threads. When
you bring the spheres close to each other, they tend to attract.
Based on this information alone, discuss all the possible ways that
the spheres could be charged. Is it possible that after the spheres
touch, they will cling together? Explain.
Q21.3 The electric force between two charged particles becomes
weaker with increasing distance. Suppose instead that the electric
force were independent of distance. In this case, would a charged
comb still cause a neutral insulator to become polarized as in Fig.
21.8? Why or why not? Would the neutral insulator still be
attracted to the comb? Again, why or why not?
Q21.4 Your clothing tends to cling together after going through the
dryer. Why? Would you expect more or less clinging if all your
clothing were made of the same material (say, cotton) than if you
dried different kinds of clothing together? Again, why? (You may
want to experiment with your next load of laundry.)
Q21.5 An uncharged metal sphere hangs from a nylon thread.
When a positively charged glass rod is brought close to the metal

sphere, the sphere is drawn toward the rod. But if the sphere
touches the rod, it suddenly flies away from the rod. Explain why
the sphere is first attracted and then repelled.
Q21.6 The free electrons in a metal are gravitationally attracted
toward the earth. Why, then, don’t they all settle to the bottom of
the conductor, like sediment settling to the bottom of a river?
Q21.7 . Figure Q21.7 shows some of the
electric field lines due to three point
charges arranged along the vertical axis.
All three charges have the same magni-
tude. (a) What are the signs of the three
charges? Explain your reasoning. (b) At
what point(s) is the magnitude of the elec-
tric field the smallest? Explain your rea-
soning. Explain how the fields produced 
by each individual point charge combine to
give a small net field at this point or points.
Q21.8 Good electrical conductors, such as
metals, are typically good conductors of
heat; electrical insulators, such as wood, are typically poor con-
ductors of heat. Explain why there should be a relationship
between electrical conduction and heat conduction in these
materials.

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

Figure Q21.7

y � a and p at , .) What are the x- and 
y-components of the electric field at P ( and ) produced
by just this segment?

EXECUTE
4. Integrate your expressions for and from � 0 to � p.

The results will be the x-component and y-component of the
electric field at P.

5. Use your results from step 4 to find the magnitude and direc-
tion of the field at P.

EVALUATE
6. Does your result for the electric-field magnitude have the cor-

rect units?
7. Explain how you could have found the x-component of the

electric field using a symmetry argument.
8. What would be the electric field at P if the semicircle were

extended to a full circle centered at P?

uudEydEx

dEydEx

y = 0x = -au =

www.masteringphysics.com
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Q21.22 The electric fields at point due to
the positive charges and are shown in
Fig. Q21.22. Does the fact that they cross
each other violate the statement in Section
21.6 that electric field lines never cross?
Explain.
Q21.23 The air temperature and the veloc-
ity of the air have different values at differ-
ent places in the earth’s atmosphere. Is the
air velocity a vector field? Why or why not?
Is the air temperature a vector field? Again, why or why not?

EXERCISES
Section 21.3 Coulomb’s Law
21.1 .. Excess electrons are placed on a small lead sphere with
mass so that its net charge is (a) Find the
number of excess electrons on the sphere. (b) How many excess
electrons are there per lead atom? The atomic number of lead is 82,
and its atomic mass is 
21.2 . Lightning occurs when there is a flow of electric charge
(principally electrons) between the ground and a thundercloud.
The maximum rate of charge flow in a lightning bolt is about

this lasts for or less. How much charge flows
between the ground and the cloud in this time? How many elec-
trons flow during this time?
21.3 .. BIO Estimate how many electrons there are in your body.
Make any assumptions you feel are necessary, but clearly state
what they are. (Hint: Most of the atoms in your body have equal
numbers of electrons, protons, and neutrons.) What is the com-
bined charge of all these electrons?
21.4 . Particles in a Gold Ring. You have a pure (24-karat)
gold ring with mass Gold has an atomic mass of

and an atomic number of 79. (a) How many protons
are in the ring, and what is their total positive charge? (b) If the
ring carries no net charge, how many electrons are in it?
21.5 . BIO Signal Propagation in Neurons. Neurons are com-
ponents of the nervous system of the body that transmit signals as
electrical impulses travel along their length. These impulses propa-
gate when charge suddenly rushes into and then out of a part of the
neuron called an axon. Measurements have shown that, during the
inflow part of this cycle, approximately (sodium
ions) per meter, each with charge enter the axon. How many
coulombs of charge enter a 1.5-cm length of the axon during this
process?
21.6 . Two small spheres spaced apart have equal
charge. How many excess electrons must be present on each
sphere if the magnitude of the force of repulsion between them is

21.7 .. An average human weighs about If two such
generic humans each carried 1.0 coulomb of excess charge, one
positive and one negative, how far apart would they have to be for
the electric attraction between them to equal their weight?
21.8 .. Two small aluminum spheres, each having mass 
are separated by (a) How many electrons does each sphere
contain? (The atomic mass of aluminum is and its
atomic number is 13.) (b) How many electrons would have to be
removed from one sphere and added to the other to cause an attrac-
tive force between the spheres of magnitude 
(roughly 1 ton)? Assume that the spheres may be treated as point
charges. (c) What fraction of all the electrons in each sphere does
this represent?

1.00 * 104 N

26.982 g>mol,
80.0 cm.

0.0250 kg,
650-N

650 N.
4.57 * 10-21 N?

20.0 cm

+e,
5.6 * 1011 Na+

197 g>mol
17.7 g.

100 ms20,000 C>s;

207 g>mol.

-3.20 * 10-9 C.8.00 g

q2q1

PQ21.9 . Suppose the charge shown in Fig. 21.28a is fixed in posi-
tion. A small, positively charged particle is then placed at some
point in the figure and released. Will the trajectory of the particle
follow an electric field line? Why or why not? Suppose instead that
the particle is placed at some point in Fig. 21.28b and released (the
positive and negative charges shown in the figure are fixed in posi-
tion). Will its trajectory follow an electric field line? Again, why or
why not? Explain any differences between your answers for the
two different situations.
Q21.10 Two identical metal objects are mounted on insulating
stands. Describe how you could place charges of opposite sign but
exactly equal magnitude on the two objects.
Q21.11 You can use plastic food wrap to cover a container by
stretching the material across the top and pressing the overhanging
material against the sides. What makes it stick? (Hint: The answer
involves the electric force.) Does the food wrap stick to itself with
equal tenacity? Why or why not? Does it work with metallic con-
tainers? Again, why or why not?
Q21.12 If you walk across a nylon rug and then touch a large metal
object such as a doorknob, you may get a spark and a shock. Why
does this tend to happen more on dry days than on humid days?
(Hint: See Fig. 21.30.) Why are you less likely to get a shock if
you touch a small metal object, such as a paper clip?
Q21.13 You have a negatively charged object. How can you use it
to place a net negative charge on an insulated metal sphere? To
place a net positive charge on the sphere?
Q21.14 When two point charges of equal mass and charge are
released on a frictionless table, each has an initial acceleration 
If instead you keep one fixed and release the other one, what will
be its initial acceleration: or Explain.
Q21.15 A point charge of mass and charge and another point
charge of mass but charge are released on a frictionless table.
If the charge has an initial acceleration what will be the
acceleration of : or Explain.
Q21.16 A proton is placed in a uniform electric field and then
released. Then an electron is placed at this same point and released.
Do these two particles experience the same force? The same accel-
eration? Do they move in the same direction when released?
Q21.17 In Example 21.1 (Section 21.3) we saw that the electric
force between two particles is of the order of times as
strong as the gravitational force. So why do we readily feel the
gravity of the earth but no electrical force from it?
Q21.18 What similarities do electrical forces have with gravita-
tional forces? What are the most significant differences?
Q21.19 Two irregular objects A
and B carry charges of opposite
sign. Figure Q21.19 shows the
electric field lines near each of
these objects. (a) Which object
is positive, A or B? How do you
know? (b) Where is the electric
field stronger, close to A or
close to B? How do you know?
Q21.20 Atomic nuclei are
made of protons and neutrons.
This shows that there must be
another kind of interaction in
addition to gravitational and electric forces. Explain.
Q21.21 Sufficiently strong electric fields can cause atoms to
become positively ionized—that is, to lose one or more electrons.
Explain how this can happen. What determines how strong the
field must be to make this happen?
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21.9 .. Two small plastic spheres are given positive electrical
charges. When they are apart, the repulsive force between
them has magnitude What is the charge on each sphere
(a) if the two charges are equal and (b) if one sphere has four times
the charge of the other?
21.10 .. What If We Were Not Neutral? A 75-kg person holds
out his arms so that his hands are 1.7 m apart. Typically, a person’s
hand makes up about 1.0% of his or her body weight. For round
numbers, we shall assume that all the weight of each hand is due to
the calcium in the bones, and we shall treat the hands as point
charges. One mole of Ca contains 40.18 g, and each atom has 20
protons and 20 electrons. Suppose that only 1.0% of the positive
charges in each hand were unbalanced by negative charge. 
(a) How many Ca atoms does each hand contain? (b) How many
coulombs of unbalanced charge does each hand contain? (c) What
force would the person’s arms have to exert on his hands to pre-
vent them from flying off? Does it seem likely that his arms are
capable of exerting such a force?
21.11 .. Two very small spheres, apart from cen-
ter to center, are charged by adding equal numbers of electrons to
each of them. Disregarding all other forces, how many electrons
would you have to add to each sphere so that the two spheres will
accelerate at when released? Which way will they accelerate?
21.12 .. Just How Strong Is the Electric Force? Suppose you
had two small boxes, each containing 1.0 g of protons. (a) If one were
placed on the moon by an astronaut and the other were left on the
earth, and if they were connected by a very light (and very long!)
string, what would be the tension in the string? Express your answer
in newtons and in pounds. Do you need to take into account the grav-
itational forces of the earth and moon on the protons? Why? (b) What
gravitational force would each box of protons exert on the other box?
21.13 . In an experiment in space, one proton is held fixed and
another proton is released from rest a distance of 2.50 mm away.
(a) What is the initial acceleration of the proton after it is released?
(b) Sketch qualitative (no numbers!) acceleration–time and
velocity–time graphs of the released proton’s motion.
21.14 . A negative charge of exerts an upward 
force on an unknown charge directly below it. (a) What is
the unknown charge (magnitude and sign)? (b) What are the mag-
nitude and direction of the force that the unknown charge exerts on
the charge?
21.15 .. Three point charges are arranged on a line. Charge

and is at the origin. Charge and is
at Charge is at What is 
(magnitude and sign) if the net force on is zero?
21.16 .. In Example 21.4, suppose the point charge on the -axis
at has negative charge and the other
charges remain the same. Find the magnitude and direction of the
net force on . How does your answer differ from that in Example
21.4? Explain the differences.
21.17 .. In Example 21.3, calculate the net force on charge 
21.18 .. In Example 21.4, what is the net force (magnitude and
direction) on charge exerted by the other two charges?
21.19 .. Three point charges are arranged along the -axis. Charge

is at the origin, and charge is at
Charge Where is located if the

net force on is in the 
21.20 .. Repeat Exercise 21.19 for 
21.21 .. Two point charges are located on the -axis as follows:
charge at and charge 

at the origin What is the total force (magni-
tude and direction) exerted by these two charges on a third charge

located at y = -0.400 m?q3 = +5.00 nC

1y = 02.+3.20 nC
q2 =y = -0.600 m,q1 = -1.50 nC

y
q3 = +8.00 mC.

-x-direction?7.00 Nq1

q3q3 = -8.00 mC.x = 0.200 m.
-5.00 mCq2 =q1 = +3.00 mC

x
q1

q1.

Q

-2.0 mC,y = -0.30 m
y

q3

q1x = +2.00 cm.q1x = +4.00 cm.
q2 = -3.00 nCq3 = +5.00 nC

-0.550-mC

0.300 m
0.200-N-0.550 mC

25.0g

15.0 cm8.55-g

0.220 N.
15.0 cm

21.22 .. Two point charges are placed on the -axis as follows:
Charge is located at and charge

is at What are the magnitude and
direction of the total force exerted by these two charges on a nega-
tive point charge that is placed at the origin?
21.23 .. BIO Base Pairing in DNA, I. The two sides of the
DNA double helix are connected by pairs of bases (adenine,
thymine, cytosine, and guanine). Because of the geometric shape
of these molecules, adenine bonds with thymine and cytosine
bonds with guanine. Figure E21.23 shows the thymine–adenine
bond. Each charge shown is and the distance is 
0.110 nm. (a) Calculate the net force that thymine exerts on adenine.
Is it attractive or repulsive? To keep the calculations fairly simple,
yet reasonable, consider only the forces due to the and
the combinations, assuming that these two combina-
tions are parallel to each other. Remember, however, that in the

set, the exerts a force on both the and the 
and likewise along the set. (b) Calculate the force on the
electron in the hydrogen atom, which is 0.0529 nm from the proton.
Then compare the strength of the bonding force of the electron in
hydrogen with the bonding force of the adenine–thymine molecules.

21.24 .. BIO Base Pairing in DNA, II. Refer to Exercise 21.23.
Figure E21.24 shows the bonding of the cytosine and guanine mol-
ecules. The and distances are each 0.110 nm. In this
case, assume that the bonding is due only to the forces along the

and combinations, and
assume also that these three combinations are parallel to each other.
Calculate the net force that cytosine exerts on guanine due to the
preceding three combinations. Is this force attractive or repulsive?

Section 21.4 Electric Field and Electric Forces
21.25 . CP A proton is placed in a uniform electric field of

Calculate: (a) the magnitude of the electric force
felt by the proton; (b) the proton’s acceleration; (c) the proton’s
speed after in the field, assuming it starts from rest.1.00 ms

2.75 * 103 N>C.
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21.26 . A particle has charge (a) Find the magnitude
and direction of the electric field due to this particle at a point

directly above it. (b) At what distance from this particle
does its electric field have a magnitude of 
21.27 . CP A proton is traveling horizontally to the right at

(a) Find the magnitude and direction of the
weakest electric field that can bring the proton uniformly to rest
over a distance of (b) How much time does it take the
proton to stop after entering the field? (c) What minimum field
(magnitude and direction) would be needed to stop an electron
under the conditions of part (a)?
21.28 . CP An electron is released from rest in a uniform electric
field. The electron accelerates vertically upward, traveling 
in the first after it is released. (a) What are the magnitude
and direction of the electric field? (b) Are we justified in ignoring
the effects of gravity? Justify your answer quantitatively.
21.29 .. (a) What must the charge (sign and magnitude) of a

particle be for it to remain stationary when placed in a
downward-directed electric field of magnitude (b) What
is the magnitude of an electric field in which the electric force on a
proton is equal in magnitude to its weight?
21.30 .. A point charge is placed at
each corner of a square with side
length a. The charges all have the
same magnitude q. Two of the
charges are positive and two are neg-
ative, as shown in Fig. E21.30. What
is the direction of the net electric
field at the center of the square due to
the four charges, and what is its mag-
nitude in terms of q and a?
21.31 . Two point charges are sepa-
rated by (Fig. E21.31). Find the net electric field these
charges produce at (a) point and (b) point (c) What would be
the magnitude and direction of the electric force this combination
of charges would produce on a proton at 

21.32 .. Electric Field of the Earth. The earth has a net elec-
tric charge that causes a field at points near its surface equal to

and directed in toward the center of the earth. (a) What
magnitude and sign of charge would a 60-kg human have to
acquire to overcome his or her weight by the force exerted by the
earth’s electric field? (b) What would be the force of repulsion
between two people each with the charge calculated in part (a) and
separated by a distance of Is use of the earth’s electric
field a feasible means of flight? Why or why not?
21.33 .. CP An electron is projected
with an initial speed 

into the uniform field
between the parallel plates in Fig.
E21.33. Assume that the field between
the plates is uniform and directed ver-
tically downward, and that the field
outside the plates is zero. The electron enters the field at a point

106 m>s
v0 = 1.60 *

100 m?

150 N>C

A?

B.A
25.0 cm

650 N>C?
1.45-g

3.00 ms
4.50 m

3.20 cm.

4.50 * 106 m>s.

12.0 N>C?
0.250 m

-3.00 nC. midway between the plates. (a) If the electron just misses the upper
plate as it emerges from the field, find the magnitude of the electric
field. (b) Suppose that in Fig. E21.33 the electron is replaced by a
proton with the same initial speed Would the proton hit one of
the plates? If the proton would not hit one of the plates, what
would be the magnitude and direction of its vertical displacement
as it exits the region between the plates? (c) Compare the paths
traveled by the electron and the proton and explain the differences.
(d) Discuss whether it is reasonable to ignore the effects of gravity
for each particle.
21.34 .. Point charge is at the origin and point
charge is on the -axis at Point is
on the -axis at (a) Calculate the electric fields 
and at point due to the charges and Express your results
in terms of unit vectors (see Example 21.6). (b) Use the results of 
part (a) to obtain the resultant field at expressed in unit vector
form.
21.35 .. CP In Exercise 21.33, what is the speed of the electron
as it emerges from the field?
21.36 . (a) Calculate the magnitude and direction (relative to the

) of the electric field in Example 21.6. (b) A point
charge is placed at point in Fig. 21.19. Find the magnitude and
direction of (i) the force that the charge at the origin
exerts on this charge and (ii) the force that this charge exerts on the

charge at the origin.
21.37 .. If two electrons are each 

from a proton, as shown in Fig.
E21.37, find the magnitude and direction
of the net electric force they will exert on
the proton.
21.38 .. CP A uniform electric field
exists in the region between two oppo-
sitely charged plane parallel plates. A pro-
ton is released from rest at the surface of the positively charged
plate and strikes the surface of the opposite plate, distant
from the first, in a time interval of (a) Find the
magnitude of the electric field. (b) Find the speed of the proton
when it strikes the negatively charged plate.
21.39 . A point charge is at the origin. With this point charge as
the source point, what is the unit vector in the direction of (a) the
field point at (b) the field point at

(c) the field point at 
Express your results in terms of the unit vectors 

and
21.40 .. A point
charge is glued down on a hori-
zontal frictionless table. It is tied
to a point charge by
a light, nonconducting 
wire. A uniform electric field of
magnitude is
directed parallel to the wire, as
shown in Fig. E21.40. (a) Find the tension in the wire. (b) What
would the tension be if both charges were negative?
21.41 .. (a) An electron is moving east in a uniform electric field
of directed to the west. At point the velocity of the
electron is toward the east. What is the speed of
the electron when it reaches point , 0.375 m east of point (b) A
proton is moving in the uniform electric field of part (a). At point

the velocity of the proton is east. What is the
speed of the proton at point B?
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Section 21.5 Electric-Field Calculations
21.42 . Two point charges Q and
(where q is positive) produce the net electric
field shown at point P in Fig. E21.42. The
field points parallel to the line connecting
the two charges. (a) What can you conclude
about the sign and magnitude of Q? Explain
your reasoning. (b) If the lower charge were
negative instead, would it be possible for
the field to have the direction shown in the
figure? Explain your reasoning.
21.43 .. Two positive point charges are
placed on the -axis, one at and one
at (a) Find the magnitude and
direction of the electric field at (b) Derive an expression for
the electric field at points on the -axis. Use your result to graph
the -component of the electric field as a function of , for values
of between and 
21.44 . The two charges q1
and q2 shown in Fig. E21.44
have equal magnitudes. What
is the direction of the net elec-
tric field due to these two
charges at points A (midway
between the charges), B, and C
if (a) both charges are negative,
(b) both charges are positive,
(c) q1 is positive and q2 is neg-
ative.
21.45 . A point
charge is at the origin, and a second point charge is on
the -axis at (a) Find the electric field (magnitude
and direction) at each of the following points on the -axis: (i) 

(ii) (iii) (b) Find the net
electric force that the two charges would exert on an electron
placed at each point in part (a).
21.46 .. Repeat Exercise 21.44, but now let 
21.47 . Three negative point charges lie
along a line as shown in Fig. E21.47. Find
the magnitude and direction of the electric
field this combination of charges produces
at point which lies from the

charge measured perpendicular
to the line connecting the three charges.
21.48 .. BIO Electric Field of Axons. A
nerve signal is transmitted through a neu-
ron when an excess of ions suddenly
enters the axon, a long cylindrical part 
of the neuron. Axons are approximately

in diameter, and measurements
show that about ions per meter (each of charge

) enter during this process. Although the axon is a long cylinder,
the charge does not all enter everywhere at the same time. A plau-
sible model would be a series of point charges moving along the
axon. Let us look at a 0.10-mm length of the axon and model it as a
point charge. (a) If the charge that enters each meter of the axon
gets distributed uniformly along it, how many coulombs of charge
enter a 0.10-mm length of the axon? (b) What electric field (mag-
nitude and direction) does the sudden influx of charge produce at
the surface of the body if the axon is 5.00 cm below the skin? (c)
Certain sharks can respond to electric fields as weak as 1.0 mN>C.

+e
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q
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How far from this segment of axon could a shark be and still detect
its electric field?
21.49 . In a rectangular coordinate system a positive point charge

is placed at the point 
and an identical point charge is placed at 
Find the - and -components, the magnitude, and the direction of
the electric field at the following points: (a) the origin; (b)

(c) (d) 

21.50 .. A point charge is at the point 
and a second point charge 

is at the point Calculate the magnitude and
direction of the net electric field at the origin due to these two point
charges.
21.51 .. Repeat Exercise 21.49 for the case where the point
charge at is positive and the other is nega-
tive, each with magnitude 
21.52 .. A very long, straight wire has charge per unit length

At what distance from the wire is the electric-
field magnitude equal to 
21.53 . A ring-shaped conductor with radius has a
total positive charge uniformly distributed
around it, as shown in Fig. 21.23. The center of the ring is at the
origin of coordinates (a) What is the electric field (magnitude
and direction) at point , which is on the -axis at 
(b) A point charge is placed at the point 
described in part (a). What are the magnitude and direction of the
force exerted by the charge on the ring?
21.54 .. A straight, nonconducting plastic wire long car-
ries a charge density of distributed uniformly along
its length. It is lying on a horizontal tabletop. (a) Find the magni-
tude and direction of the electric field this wire produces at a point

directly above its midpoint. (b) If the wire is now bent
into a circle lying flat on the table, find the magnitude and direction
of the electric field it produces at a point directly above its
center.
21.55 .. A charge of is spread uniformly over the sur-
face of one face of a nonconducting disk of radius 
(a) Find the magnitude and direction of the electric field this disk
produces at a point on the axis of the disk a distance of

from its center. (b) Suppose that the charge were all
pushed away from the center and distributed uniformly on the
outer rim of the disk. Find the magnitude and direction of the
electric field at point . (c) If the charge is all brought to the cen-
ter of the disk, find the magnitude and direction of the electric
field at point . (d) Why is the field in part (a) stronger than the
field in part (b)? Why is the field in part (c) the strongest of the
three fields?

Section 21.7 Electric Dipoles
21.56 . The ammonia molecule has a dipole moment of

Ammonia molecules in the gas phase are
placed in a uniform electric field with magnitude 

(a) What is the change in electric potential energy when
the dipole moment of a molecule changes its orientation with
respect to from parallel to perpendicular? (b) At what absolute
temperature is the average translational kinetic energy of a
molecule equal to the change in potential energy calculated in part
(a)? (Note: Above this temperature, thermal agitation prevents the
dipoles from aligning with the electric field.)
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21.57 . Point charges and are sep-
arated by forming an electric dipole. (a) Find the electric
dipole moment (magnitude and direction). (b) The charges are in a
uniform electric field whose direction makes an angle of 
with the line connecting the charges. What is the magnitude of
this field if the torque exerted on the dipole has magnitude

21.58 . The dipole moment of the water molecule is
Consider a water molecule located at the

origin whose dipole moment points in the A chlo-
rine ion of charge is located at

Find the magnitude and direction of the elec-
tric force that the water molecule exerts on the chlorine ion. Is this
force attractive or repulsive? Assume that is much larger than the
separation between the charges in the dipole, so that the approxi-
mate expression for the electric field along the dipole axis derived
in Example 21.14 can be used.
21.59 . Torque on a Dipole. An electric dipole with dipole
moment is in a uniform electric field (a) Find the orientations
of the dipole for which the torque on the dipole is zero. (b) Which
of the orientations in part (a) is stable, and which is unstable?
(Hint: Consider a small displacement away from the equilibrium
position and see what happens.) (c) Show that for the stable orien-
tation in part (b), the dipole’s own electric field tends to oppose the
external field.
21.60 .. Consider the electric dipole of Example 21.14. (a)
Derive an expression for the magnitude of the electric field pro-
duced by the dipole at a point on the -axis in Fig. 21.33. What is
the direction of this electric field? (b) How does the electric field at
points on the -axis depend on when is very large?
21.61 . Three charges are at
the corners of an isosceles trian-
gle as shown in Fig. E21.61.
The charges form 
a dipole. (a) Find the force
(magnitude and direction) the

charge exerts on the
dipole. (b) For an axis perpendi-
cular to the line connecting the

charges at the mid-
point of this line, find the torque
(magnitude and direction) exerted
on the dipole by the 
charge.
21.62 . A dipole consisting of charges apart, is
placed between two very large (essentially infinite) sheets carrying
equal but opposite charge densities of (a) What is the
maximum potential energy this dipole can have due to the sheets,
and how should it be oriented relative to the sheets to attain this
value? (b) What is the maximum torque the sheets can exert on the
dipole, and how should it be oriented relative to the sheets to attain
this value? (c) What net force do the two sheets exert on the
dipole?

PROBLEMS
21.63 ... Four identical charges are placed at the corners of a
square of side (a) In a free-body diagram, show all of the
forces that act on one of the charges. (b) Find the magnitude and
direction of the total force exerted on one charge by the other
three charges.
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q2 = +4.5 nCq1 = -4.5 nC 21.64 ... Two charges, one of and the other of

are placed on the -axis, one at the origin and the other
at as shown in Fig. P21.64. Find the position on the
-axis where the net force on a small charge would be zero.

21.65 .. Three point charges are arranged along the x-axis.
Charge is located at and charge

is at A positive point charge q3 is
located at the origin. (a) What must the value of q3 be for the net
force on this point charge to have magnitude (b) What is
the direction of the net force on q3? (c) Where along the x-axis can
q3 be placed and the net force on it be zero, other than the trivial
answers of and 
21.66 .. A charge is placed at the origin of an 

-coordinate system, and a charge is placed on
the positive -axis at (a) If a third charge 

is now placed at the point 
find the - and -components of the total force exerted on this
charge by the other two. (b) Find the magnitude and direction of
this force.
21.67 .. CP Two positive point charges are held fixed on the 
-axis at and A third positive point charge , with

mass , is placed on the -axis away from the origin at a coordi-
nate such that The charge , which is free to move
along the -axis, is then released. (a) Find the frequency of oscilla-
tion of the charge . (Hint: Review the definition of simple har-
monic motion in Section 14.2. Use the binomial expansion

valid for the case
) (b) Suppose instead that the charge q were placed on the

-axis at a coordinate such that and then released. If
this charge is free to move anywhere in the -plane, what will
happen to it? Explain your answer.
21.68 .. CP Two identical spheres
with mass are hung from silk
threads of length as shown in 
Fig. P21.68. Each sphere has the same
charge, so The radius of
each sphere is very small compared to
the distance between the spheres, so
they may be treated as point charges.
Show that if the angle is small, 
the equilibrium separation between
the spheres is 
(Hint: If is small, then

)
21.69 ... CP Two small spheres with
mass are hung by silk threads of length 
from a common point (Fig. P21.68). When the spheres are given
equal quantities of negative charge, so that each
thread hangs at from the vertical. (a) Draw a diagram
showing the forces on each sphere. Treat the spheres as point
charges. (b) Find the magnitude of . (c) Both threads are now
shortened to length while the charges and 
remain unchanged. What new angle will each thread make with the
vertical? (Hint: This part of the problem can be solved numerically
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by using trial values for and adjusting the values of until a self-
consistent answer is obtained.)
21.70 .. CP Two identical spheres are each attached to silk
threads of length and hung from a common point
(Fig. P21.68). Each sphere has mass The radius of
each sphere is very small compared to the distance between the
spheres, so they may be treated as point charges. One sphere is
given positive charge and the other a different positive charge

this causes the spheres to separate so that when the spheres are
in equilibrium, each thread makes an angle with the
vertical. (a) Draw a free-body diagram for each sphere when in
equilibrium, and label all the forces that act on each sphere. 
(b) Determine the magnitude of the electrostatic force that acts on
each sphere, and determine the tension in each thread. (c) Based
on the information you have been given, what can you say about
the magnitudes of and Explain your answers. (d) A small
wire is now connected between the spheres, allowing charge to 
be transferred from one sphere to the other until the two spheres
have equal charges; the wire is then removed. Each thread now
makes an angle of with the vertical. Determine the 
original charges. (Hint: The total charge on the pair of spheres is
conserved.)
21.71 .. Sodium chloride ( ordinary table salt) is made up
of positive sodium ions and negative chloride ions 
(a) If a point charge with the same charge and mass as all the

ions in 0.100 mol of is from a point charge
with the same charge and mass as all the ions, what is the
magnitude of the attractive force between these two point
charges? (b) If the positive point charge in part (a) is held in
place and the negative point charge is released from rest, what is
its initial acceleration? (See Appendix D for atomic masses.) 
(c) Does it seem reasonable that the ions in could be sepa-
rated in this way? Why or why not? (In fact, when sodium chlo-
ride dissolves in water, it breaks up into and ions.
However, in this situation there are additional electric forces
exerted by the water molecules on the ions.)
21.72 .. A point charge is on the x-axis at 
A second point charge Q is on the x-axis at What must
be the sign and magnitude of Q for the resultant electric field at the
origin to be (a) 45.0 N C in the -direction, (b) 45.0 N C in the

-direction?
21.73 .. CP A small 12.3-g plastic ball is tied
to a very light 28.6-cm string that is attached to
the vertical wall of a room (Fig. P21.73). A uni-
form horizontal electric field exists in this
room. When the ball has been given an excess
charge of you observe that it
remains suspended, with the string making an
angle of 17.4° with the wall. Find the magni-
tude and direction of the electric field in the
room.
21.74 .. CP At a very small object
with mass 0.400 mg and charge is traveling at 125 m s
in the direction. The charge is moving in a uniform electric field
that is in the +y-direction and that has magnitude .
The gravitational force on the particle can be neglected. How far is
the particle from the origin at ?
21.75 .. Two particles having charges and

are separated by a distance of At what point
along the line connecting the two charges is the total electric field
due to the two charges equal to zero?

1.20 m.q2 = 8.00 nC
q1 = 0.500 nC

t = 7.00 ms

E = 895 N>C
-x-

>+9.00 mC
t = 0

-1.11 mC,

-x
>+x>

-0.600 m.
x = 1.20 m.-5.00-nC

C1-Na+

NaCl

C1-
2.00 cmNaClNa+

1C1-2.1Na+2
NaCl,

30.0°

q2?q1

u = 20.0°
q2;

q1,

m = 8.00 g.
L = 0.500 m

uu 21.76 ... Two point charges and
are held in place apart.

Another point charge 
of mass is initially located

from each of these charges
(Fig. P21.76) and released from rest.
You observe that the initial accelera-
tion of is upward, parallel
to the line connecting the two point
charges. Find and 
21.77 . Three identical point charges

are placed at each of three corners of
a square of side Find the magnitude
and direction of the net force on a point charge placed (a) at
the center of the square and (b) at the vacant corner of the square.
In each case, draw a free-body diagram showing the forces exerted
on the charge by each of the other three charges.
21.78 ... Three point charges are placed on the -axis: a charge 
at a charge at the origin, and a charge at 
Such an arrangement is called an electric quadrupole. (a) Find the
magnitude and direction of the electric field at points on the posi-
tive -axis. (b) Use the binomial expansion to find an approximate
expression for the electric field valid for Contrast this
behavior to that of the electric field of a point charge and that of
the electric field of a dipole.
21.79 .. CP Strength of the Electric Force. Imagine two

bags of protons, one at the earth’s north pole and the other at
the south pole. (a) How many protons are in each bag? (b) Calcu-
late the gravitational attraction and the electrical repulsion that
each bag exerts on the other. (c) Are the forces in part (b) large
enough for you to feel if you were holding one of the bags?
21.80 . Electric Force Within the Nucleus. Typical dimen-
sions of atomic nuclei are of the order of (a) If
two protons in a nucleus are apart, find the magnitude of
the electric force each one exerts on the other. Express the answer
in newtons and in pounds. Would this force be large enough for a
person to feel? (b) Since the protons repel each other so strongly,
why don’t they shoot out of the nucleus?
21.81 .. If Atoms Were Not Neutral . . . Because the charges
on the electron and proton have the same absolute value, atoms are
electrically neutral. Suppose this were not precisely true, and the
absolute value of the charge of the electron were less than the
charge of the proton by 0.00100%. (a) Estimate what the net
charge of this textbook would be under these circumstances. Make
any assumptions you feel are justified, but state clearly what they
are. (Hint: Most of the atoms in this textbook have equal numbers
of electrons, protons, and neutrons.) (b) What would be the magni-
tude of the electric force between two textbooks placed 
apart? Would this force be attractive or repulsive? Estimate what
the acceleration of each book would be if the books were 
apart and there were no non-
electric forces on them. (c)
Discuss how the fact that ordi-
nary matter is stable shows
that the absolute values of the
charges on the electron and
proton must be identical to a
very high level of accuracy.
21.82 ... CP Two tiny sph-
eres of mass 6.80 mg carry
charges of equal magnitude,
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72.0 nC, but opposite sign. They are tied to the same ceiling hook
by light strings of length 0.530 m. When a horizontal uniform electric
field E that is directed to the left is turned on, the spheres hang at rest
with the angle between the strings equal to (Fig. P21.82). (a)
Which ball (the one on the right or the one on the left) has positive
charge? (b) What is the magnitude E of the field?
21.83 .. CP Consider a model of a hydrogen atom in which an
electron is in a circular orbit of radius around
a stationary proton. What is the speed of the electron in its orbit?
21.84 .. CP A small sphere with mass and charge

is moving in a circular orbit around a stationary sphere
that has charge . If the speed of the small sphere is

, what is the radius of its orbit? Treat the spheres
as point charges and ignore gravity.
21.85 .. Two small copper spheres each have radius 1.00 mm. 
(a) How many atoms does each sphere contain? (b) Assume that each
copper atom contains 29 protons and 29 electrons. We know that
electrons and protons have charges of exactly the same magnitude,
but let’s explore the effect of small differences (see also Problem
21.81). If the charge of a proton is and the magnitude of the
charge of an electron is 0.100% smaller, what is the net charge of
each sphere and what force would one sphere exert on the other if
they were separated by 
21.86 ... CP Operation of an Inkjet Printer. In an inkjet
printer, letters are built up by squirting drops of ink at the paper
from a rapidly moving nozzle. The ink drops, which have a mass
of each, leave the nozzle and travel toward the paper
at passing through a charging unit that gives each drop a
positive charge by removing some electrons from it. The drops
then pass between parallel deflecting plates long where
there is a uniform vertical electric field with magnitude

If a drop is to be deflected by the time it
reaches the end of the deflection plates, what magnitude of charge
must be given to the drop?
21.87 .. CP A proton is projected into a uniform electric field
that points vertically upward and has magnitude . The initial
velocity of the proton has a magnitude and is directed at an
angle below the horizontal. (a) Find the maximum distance 
that the proton descends vertically below its initial elevation. You
can ignore gravitational forces. (b) After what horizontal distance

does the proton return to its original elevation? (c) Sketch the
trajectory of the proton. (d) Find the numerical values of and

if and 
21.88 . A negative point charge is on the -axis
at A second point charge is on the -axis at

What must the sign and magnitude of be for the
net electric field at the origin to be (a) in the

and (b) in the 
21.89 .. CALC Positive charge

is distributed uniformly along
the -axis from to 
A positive point charge q is
located on the positive -axis at

a distance to the
right of the end of (Fig.
P21.89). (a) Calculate the - and
-components of the electric field

produced by the charge distribution at points on the positive -axis
where (b) Calculate the force (magnitude and direction) that
the charge distribution exerts on q. (c) Show that if the
magnitude of the force in part (b) is approximately 
Explain why this result is obtained.
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21.90 .. CALC Positive charge
is distributed uniformly along

the positive -axis between
and A negative

point charge lies on the posi-
tive -axis, a distance from the
origin (Fig. P21.90). (a) Calcu-
late the - and -components of
the electric field produced by the
charge distribution at points on
the positive -axis. (b) Calculate the - and -components of the
force that the charge distribution exerts on . (c) Show that if

and Explain
why this result is obtained.
21.91 .. A charged line like that shown in Fig. 21.24 extends
from to The total charge distributed
uniformly along the line is (a) Find the electric field
(magnitude and direction) on the -axis at (b) Is the
magnitude of the electric field you calculated in part (a) larger or
smaller than the electric field from a point charge that has
the same total charge as this finite line of charge? In terms of the
approximation used to derive for a point charge
from Eq. (21.9), explain why this is so. (c) At what distance does
the result for the finite line of charge differ by 1.0% from that for
the point charge?
21.92 . CP A Parallel Universe. Imagine a parallel universe in
which the electric force has the same properties as in our universe
but there is no gravity. In this parallel universe, the sun carries
charge Q, the earth carries charge and the electric attraction
between them keeps the earth in orbit. The earth in the parallel uni-
verse has the same mass, the same orbital radius, and the same
orbital period as in our universe. Calculate the value of Q. (Consult
Appendix F as needed.)
21.93 ... A uniformly charged disk like the disk in Fig. 21.25 has
radius and carries a total charge of (a)
Find the electric field (magnitude and direction) on the -axis at

(b) Show that for Eq. (21.11) becomes
where is the total charge on the disk. (c) Is the

magnitude of the electric field you calculated in part (a) larger or
smaller than the electric field 20.0 cm from a point charge that has
the same total charge as this disk? In terms of the approximation
used in part (b) to derive for a point charge from
Eq. (21.11), explain why this is so. (d) What is the percent differ-
ence between the electric fields produced by the finite disk and by
a point charge with the same charge at and at

21.94 .. BIO Electrophoresis.
Electrophoresis is a process
used by biologists to separate
different biological molecules
(such as proteins) from each
other according to their ratio of
charge to size. The materials to
be separated are in a viscous
solution that produces a drag
force proportional to the
size and speed of the molecule.
We can express this relation-
ship as where R is
the radius of the molecule (modeled as being spherical), is its
speed, and K is a constant that depends on the viscosity of the
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solution. The solution is placed in an external electric field E so
that the electric force on a particle of charge q is (a) Show
that when the electric field is adjusted so that the two forces (elec-
tric and viscous drag) just balance, the ratio of q to R is
(b) Show that if we leave the electric field on for a time T, the distance
x that the molecule moves during that time is
(c) Suppose you have a sample containing three different biologi-
cal molecules for which the molecular ratio for material 2 is
twice that of material 1 and the ratio for material 3 is three times
that of material 1. Show that the distances migrated by these mole-
cules after the same amount of time are and 
In other words, material 2 travels twice as far as material 1, and
material 3 travels three times as far as material 1. Therefore, we
have separated these molecules according to their ratio of charge to
size. In practice, this process can be carried out in a special gel or
paper, along which the biological molecules migrate. (Fig. P21.94).
The process can be rather slow, requiring several hours for separa-
tions of just a centimeter or so.
21.95 . CALC Positive charge is distributed uniformly along
the from to Negative charge is distrib-
uted uniformly along the from to (a) A
positive point charge lies on the positive -axis, a distance from
the origin. Find the force (magnitude and direction) that the posi-
tive and negative charge distributions together exert on . Show
that this force is proportional to for (b) Suppose
instead that the positive point charge lies on the positive -axis, a
distance from the origin. Find the force (magnitude and
direction) that the charge distribution exerts on . Show that this
force is proportional to for 
21.96 .. CP A small sphere with mass carries a positive charge

and is attached to one end of a silk fiber of length . The other
end of the fiber is attached to a large vertical insulating sheet that
has a positive surface charge density Show that when the sphere
is in equilibrium, the fiber makes an angle equal to arctan

with the vertical sheet.
21.97 .. CALC Negative charge is distributed uniformly
around a quarter-circle of radius that lies in the first quadrant, with
the center of curvature at the origin. Find the - and -components of
the net electric field at the origin.
21.98 .. CALC A semicircle
of radius a is in the first and
second quadrants, with the
center of curvature at the ori-
gin. Positive charge +Q is dis-
tributed uniformly around the
left half of the semicircle, and
negative charge is distrib-
uted uniformly around the right
half of the semicircle (Fig.
P21.98). What are the mag-
nitude and direction of the net
electric field at the origin pro-
duced by this distribution of
charge?
21.99 .. Two noncon-
ducting wires meet at a right
angle. One segment carries

of charge distrib-
uted uniformly along its length,
and the other carries 
distributed uniformly along it,
as shown in Fig. P21.99. 
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(a) Find the magnitude and direction of the electric field these
wires produce at point , which is from each wire. (b) If
an electron is released at , what are the magnitude and direction
of the net force that these wires exert on it?
21.100 . Two very large parallel sheets are apart. Sheet

carries a uniform surface charge density of and
sheet which is to the right of carries a uniform charge density
of . Assume the sheets are large enough to be treated
as infinite. Find the magnitude and direction of the net electric field
these sheets produce at a point (a) to the right of sheet 
(b) to the left of sheet (c) to the right of sheet 
21.101 . Repeat Problem 21.100 for the case where sheet is
positive.
21.102 . Two very large horizontal sheets are apart and
carry equal but opposite uniform surface charge densities of mag-
nitude You want to use these sheets to hold stationary in the
region between them an oil droplet of mass that carries an
excess of five electrons. Assuming that the drop is in vacuum, (a)
which way should the electric field between the plates point, and
(b) what should be?
21.103 .. An infinite sheet with positive charge per unit area 
lies in the -plane. A second infinite sheet with negative charge
per unit area lies in the -plane. Find the net electric field at
all points that do not lie in either of these planes. Express your
answer in terms of the unit vectors and 
21.104 .. CP A thin disk with a
circular hole at its center, called
an annulus, has inner radius 
and outer radius (Fig.
P21.104). The disk has a uniform
positive surface charge density 
on its surface. (a) Determine the
total electric charge on the annu-
lus. (b) The annulus lies in the 

-plane, with its center at the ori-
gin. For an arbitrary point on the
-axis (the axis of the annulus),

find the magnitude and direction of the electric field Consider
points both above and below the annulus in Fig. P21.104. (c) Show
that at points on the -axis that are sufficiently close to the origin,
the magnitude of the electric field is approximately proportional to
the distance between the center of the annulus and the point. How
close is “sufficiently close”? (d) A point particle with mass and
negative charge is free to move along the -axis (but cannot
move off the axis). The particle is originally placed at rest at

and released. Find the frequency of oscillation of the
particle. (Hint: Review Section 14.2. The annulus is held station-
ary.)

CHALLENGE PROBLEMS
21.105 ... Three charges are
placed as shown in Fig.
P21.105. The magnitude of is

but its sign and the
value of the charge are not
known. Charge is 
and the net force on is
entirely in the negative -direc-
tion. (a) Considering the different possible signs of , there are four
possible force diagrams representing the forces and that and

exert on Sketch these four possible force configurations.q3 .q2
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(b) Using the sketches from part (a) and the direction of deduce
the signs of the charges and (c) Calculate the magnitude of

(d) Determine the magnitude of the net force on 
21.106 ... Two charges are
placed as shown in Fig.
P21.106. The magnitude of is

but its sign and the
value of the charge are not
known. The direction of the net
electric field at point is
entirely in the negative -direc-
tion. (a) Considering the differ-
ent possible signs of and there are four possible diagrams
that could represent the electric fields and produced by 
and Sketch the four possible electric-field configurations. 
(b) Using the sketches from part (a) and the direction of deduce
the signs of and (c) Determine the magnitude of E
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, 21.107 ... CALC Two thin rods of length lie along the -axis,
one between and and the other between

and Each rod has positive charge 
distributed uniformly along its length. (a) Calculate the electric
field produced by the second rod at points along the positive

(b) Show that the magnitude of the force that one rod exerts
on the other is 

(c) Show that if the magnitude of this force reduces to
(Hint: Use the expansion 

valid for Carry all expansions to at
least order ) Interpret this result.L2>a2.
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Chapter Opening Question ?
Water molecules have a permanent electric dipole moment: One
end of the molecule has a positive charge and the other end has a
negative charge. These ends attract negative and positive ions,
respectively, holding the ions apart in solution. Water is less effec-
tive as a solvent for materials whose molecules do not ionize
(called nonionic substances), such as oils.

Test Your Understanding Questions
21.1 Answers: (a) the plastic rod weighs more, (b) the glass rod
weighs less, (c) the fur weighs less, (d) the silk weighs more The
plastic rod gets a negative charge by taking electrons from the fur,
so the rod weighs a little more and the fur weighs a little less after
the rubbing. By contrast, the glass rod gets a positive charge by giv-
ing electrons to the silk. Hence, after they are rubbed together, the
glass rod weighs a little less and the silk weighs a little more. The
weight change is very small: The number of electrons transferred is a
small fraction of a mole, and a mole of electrons has a mass of 
only

21.2 Answers: (a) (i), (b) (ii) Before the two spheres touch, the
negatively charged sphere exerts a repulsive force on the electrons
in the other sphere, causing zones of positive and negative
induced charge (see Fig. 21.7b). The positive zone is closer to the
negatively charged sphere than the negative zone, so there is a net
force of attraction that pulls the spheres together, like the comb
and insulator in Fig. 21.8b. Once the two metal spheres touch,
some of the excess electrons on the negatively charged sphere will
flow onto the other sphere (because metals are conductors). Then
both spheres will have a net negative charge and will repel each
other.
21.3 Answer: (iv) The force exerted by on is still as in Exam-
ple 21.4. The magnitude of the force exerted by on is still
equal to but the direction of the force is now toward at
an angle below the -axis. Hence the -components of the two
forces cancel while the (negative) -components add together, and
the total electric force is in the negative -direction.y

y
xxa

q2F1 on Q,
Qq2

Qq1

10-7 kg = 0.548 milligram!
5.48 *10-31 kg>electron2 =16.02 * 1023 electrons219.11 *

21.4 Answers: (a) (ii), (b) (i) The electric field produced by a
positive point charge points directly away from the charge (see
Fig. 21.18a) and has a magnitude that depends on the distance 
from the charge to the field point. Hence a second, negative point
charge will feel a force that points directly toward
the positive charge and has a magnitude that depends on the
distance between the two charges. If the negative charge moves
directly toward the positive charge, the direction of the force
remains the same but the force magnitude increases as the distance

decreases. If the negative charge moves in a circle around 
the positive charge, the force magnitude stays the same (because
the distance is constant) but the force direction changes.
21.5 Answer: (iv) Think of a pair of segments of length one at
coordinate and the other at coordinate The upper
segment has a positive charge and produces an electric field at

that points away from the segment, so this has a positive 
-component and a negative -component, like the vector in

Fig. 21.24. The lower segment has the same amount of negative
charge. It produces a that has the same magnitude but points
toward the lower segment, so it has a negative -component and a
negative -component. By symmetry, the two -components are
equal but opposite, so they cancel. Thus the total electric field has
only a negative -component.
21.6 Answer: yes If the field lines are straight, must point in the
same direction throughout the region. Hence the force on
a particle of charge is always in the same direction. A particle
released from rest accelerates in a straight line in the direction of

and so its trajectory is a straight line along a field line.
21.7 Answer: (ii) Equations (21.17) and (21.18) tell us that the
potential energy for a dipole in an electric field is 

where is the angle between the directions of and
If and point in opposite directions, so that we

have and This is the maximum value that
can have. From our discussion of energy diagrams in Section

7.5, it follows that this is a situation of unstable equilibrium.

Bridging Problem
Answer: in the –y-directionE = 2kQ>pa2
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22
LEARNING GOALS

By studying this chapter, you will

learn:

• How you can determine the amount

of charge within a closed surface by

examining the electric field on the

surface.

• What is meant by electric flux, and

how to calculate it.

• How Gauss’s law relates the electric

flux through a closed surface to the

charge enclosed by the surface.

• How to use Gauss’s law to calculate

the electric field due to a symmetric

charge distribution.

• Where the charge is located on a

charged conductor.

GAUSS’S LAW

Often, there are both an easy way and a hard way to do a job; the easy way
may involve nothing more than using the right tools. In physics, an impor-
tant tool for simplifying problems is the symmetry properties of systems.

Many physical systems have symmetry; for example, a cylindrical body doesn’t
look any different after you’ve rotated it around its axis, and a charged metal
sphere looks just the same after you’ve turned it about any axis through its center.

Gauss’s law is part of the key to using symmetry considerations to simplify
electric-field calculations. For example, the field of a straight-line or plane-sheet
charge distribution, which we derived in Section 21.5 using some fairly strenuous
integrations, can be obtained in a few lines with the help of Gauss’s law. But
Gauss’s law is more than just a way to make certain calculations easier. Indeed, it
is a fundamental statement about the relationship between electric charges and
electric fields. Among other things, Gauss’s law can help us understand how elec-
tric charge distributes itself over conducting bodies.

Here’s what Gauss’s law is all about. Given any general distribution of charge,
we surround it with an imaginary surface that encloses the charge. Then we look
at the electric field at various points on this imaginary surface. Gauss’s law is a
relationship between the field at all the points on the surface and the total charge
enclosed within the surface. This may sound like a rather indirect way of express-
ing things, but it turns out to be a tremendously useful relationship. Above and
beyond its use as a calculational tool, Gauss’s law can help us gain deeper
insights into electric fields. We will make use of these insights repeatedly in the
next several chapters as we pursue our study of electromagnetism.

22.1 Charge and Electric Flux
In Chapter 21 we asked the question, “Given a charge distribution, what is the
electric field produced by that distribution at a point ?” We saw that the answer
could be found by representing the distribution as an assembly of point charges,

P

? This child acquires an electric charge by touching the charged metal sphere.
The charged hairs on the child’s head repel and stand out. If the child stands
inside a large, charged metal sphere, will her hair stand on end?

The discussion of Gauss’s law in this
section is based on and inspired by the
innovative ideas of Ruth W. Chabay and
Bruce A. Sherwood in Electric and
Magnetic Interactions (John Wiley &
Sons, 1994).



each of which produces an electric field given by Eq. (21.7). The total field at 
is then the vector sum of the fields due to all the point charges.

But there is an alternative relationship between charge distributions and elec-
tric fields. To discover this relationship, let’s stand the question of Chapter 21 on
its head and ask, “If the electric field pattern is known in a given region, what can
we determine about the charge distribution in that region?”

Here’s an example. Consider the box shown in Fig. 22.1a, which may or may
not contain electric charge. We’ll imagine that the box is made of a material that
has no effect on any electric fields; it’s of the same breed as the massless rope and
the frictionless incline. Better still, let the box represent an imaginary surface that
may or may not enclose some charge. We’ll refer to the box as a closed surface
because it completely encloses a volume. How can you determine how much (if
any) electric charge lies within the box?

Knowing that a charge distribution produces an electric field and that an elec-
tric field exerts a force on a test charge, you move a test charge around the
vicinity of the box. By measuring the force experienced by the test charge at
different positions, you make a three-dimensional map of the electric field

outside the box. In the case shown in Fig. 22.1b, the map turns out 
to be the same as that of the electric field produced by a positive point charge 
(Fig. 21.28a). From the details of the map, you can find the exact value of the
point charge inside the box.

To determine the contents of the box, we actually need to measure only on
the surface of the box. In Fig. 22.2a there is a single positive point charge inside
the box, and in Fig. 22.2b there are two such charges. The field patterns on the
surfaces of the boxes are different in detail, but in each case the electric field
points out of the box. Figures 22.2c and 22.2d show cases with one and two neg-
ative point charges, respectively, inside the box. Again, the details of are differ-
ent for the two cases, but the electric field points into each box.

Electric Flux and Enclosed Charge
In Section 21.4 we mentioned the analogy between electric-field vectors and the
velocity vectors of a fluid in motion. This analogy can be helpful, even though an
electric field does not actually “flow.” Using this analogy, in Figs. 22.2a and
22.2b, in which the electric field vectors point out of the surface, we say that
there is an outward electric flux. (The word “flux” comes from a Latin word
meaning “flow.”) In Figs. 22.2c and 22.2d the vectors point into the surface,
and the electric flux is inward.

Figure 22.2 suggests a simple relationship: Positive charge inside the box goes
with an outward electric flux through the box’s surface, and negative charge
inside goes with an inward electric flux. What happens if there is zero charge
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(b) Using a test charge outside the box to probe
the amount of charge inside the box

(a) A box containing an unknown amount of
charge

22.1 How can you measure the charge
inside a box without opening it?

(a) Positive charge inside box,
outward flux
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(b) Positive charges inside box,
outward flux
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(c) Negative charge inside box,
inward flux
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(d) Negative charges inside box,
inward flux
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22.2 The electric field on the surface of boxes containing (a) a single positive point charge, (b) two positive point charges, 
(c) a single negative point charge, or (d) two negative point charges.

ActivPhysics 11.7: Electric Flux
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inside the box? In Fig. 22.3a the box is empty and everywhere, so there is
no electric flux into or out of the box. In Fig. 22.3b, one positive and one negative
point charge of equal magnitude are enclosed within the box, so the net charge
inside the box is zero. There is an electric field, but it “flows into” the box on half
of its surface and “flows out of” the box on the other half. Hence there is no net
electric flux into or out of the box.

The box is again empty in Fig. 22.3c. However, there is charge present outside
the box; the box has been placed with one end parallel to a uniformly charged
infinite sheet, which produces a uniform electric field perpendicular to the sheet
(as we learned in Example 21.11 of Section 21.5). On one end of the box, 
points into the box; on the opposite end, points out of the box; and on the sides,

is parallel to the surface and so points neither into nor out of the box. As in 
Fig. 22.3b, the inward electric flux on one part of the box exactly compensates for
the outward electric flux on the other part. So in all of the cases shown in Fig. 22.3,
there is no net electric flux through the surface of the box, and no net charge is
enclosed in the box.

Figures 22.2 and 22.3 demonstrate a connection between the sign (positive,
negative, or zero) of the net charge enclosed by a closed surface and the sense
(outward, inward, or none) of the net electric flux through the surface. There is
also a connection between the magnitude of the net charge inside the closed sur-
face and the strength of the net “flow” of over the surface. In both Figs. 22.4a
and 22.4b there is a single point charge inside the box, but in Fig. 22.4b the mag-
nitude of the charge is twice as great, and so is everywhere twice as great in
magnitude as in Fig. 22.4a. If we keep in mind the fluid-flow analogy, this means
that the net outward electric flux is also twice as great in Fig. 22.4b as in Fig.
22.4a. This suggests that the net electric flux through the surface of the box is
directly proportional to the magnitude of the net charge enclosed by the box.

This conclusion is independent of the size of the box. In Fig. 22.4c the point
charge is enclosed by a box with twice the linear dimensions of the box in
Fig. 22.4a. The magnitude of the electric field of a point charge decreases with
distance according to so the average magnitude of on each face of the
large box in Fig. 22.4c is just of the average magnitude on the corresponding
face in Fig. 22.4a. But each face of the large box has exactly four times the area
of the corresponding face of the small box. Hence the outward electric flux is the
same for the two boxes if we define electric flux as follows: For each face of the
box, take the product of the average perpendicular component of and the area
of that face; then add up the results from all faces of the box. With this definition
the net electric flux due to a single point charge inside the box is independent of
the size of the box and depends only on the net charge inside the box.
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22.3 Three cases in which there is zero net charge inside a box and no net electric flux through the surface of the box. (a) An empty
box with (b) A box containing one positive and one equal-magnitude negative point charge. (c) An empty box immersed in a
uniform electric field.
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To summarize, for the special cases of a closed surface in the shape of a rectan-
gular box and charge distributions made up of point charges or infinite charged
sheets, we have found:

1. Whether there is a net outward or inward electric flux through a closed sur-
face depends on the sign of the enclosed charge.

2. Charges outside the surface do not give a net electric flux through the sur-
face.

3. The net electric flux is directly proportional to the net amount of charge
enclosed within the surface but is otherwise independent of the size of the
closed surface.

These observations are a qualitative statement of Gauss’s law.
Do these observations hold true for other kinds of charge distributions and for

closed surfaces of arbitrary shape? The answer to these questions will prove to be
yes. But to explain why this is so, we need a precise mathematical statement of
what we mean by electric flux. We develop this in the next section.
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(a) A box containing a charge
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(b) Doubling the enclosed charge
doubles the flux.
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(c) Doubling the box dimensions
does not change the flux.
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22.4 (a) A box enclosing a positive point
charge (b) Doubling the charge causes
the magnitude of to double, and it dou-
bles the electric flux through the surface.
(c) If the charge stays the same but the
dimensions of the box are doubled, the flux
stays the same. The magnitude of on the
surface decreases by a factor of but the
area through which “flows” increases by
a factor of 4.
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Test Your Understanding of Section 22.1 If all of the dimensions of
the box in Fig. 22.2a are increased by a factor of 3, what effect will this change
have on the electric flux through the box? (i) The flux will be times
greater; (ii) the flux will be 3 times greater; (iii) the flux will be unchanged; (iv) the flux
will be as great; (v) the flux will be as great; (vi) not enough information is
given to decide. ❙

A13 B
2 = 1

9
1
3

32 = 9

22.2 Calculating Electric Flux
In the preceding section we introduced the concept of electric flux. We used this
to give a rough qualitative statement of Gauss’s law: The net electric flux through
a closed surface is directly proportional to the net charge inside that surface. To
be able to make full use of this law, we need to know how to calculate electric
flux. To do this, let’s again make use of the analogy between an electric field 
and the field of velocity vectors in a flowing fluid. (Again, keep in mind that
this is only an analogy; an electric field is not a flow.)

Flux: Fluid-Flow Analogy
Figure 22.5 shows a fluid flowing steadily from left to right. Let’s examine the
volume flow rate (in, say, cubic meters per second) through the wire rectan-
gle with area When the area is perpendicular to the flow velocity (Fig. 22.5a)
and the flow velocity is the same at all points in the fluid, the volume flow rate

is the area multiplied by the flow speed 

When the rectangle is tilted at an angle (Fig. 22.5b) so that its face is not per-
pendicular to the area that counts is the silhouette area that we see when we
look in the direction of This area, which is outlined in red and labeled in
Fig. 22.5b, is the projection of the area onto a surface perpendicular to Two
sides of the projected rectangle have the same length as the original one, but the
other two are foreshortened by a factor of so the projected area is equal
to Then the volume flow rate through is

If the wire rectangle is edge-on to the flow, and no fluid
passes through the rectangle.

dV>dt = 0;f = 90°,

dV

dt
= vAcosf

AAcosf.
A�cosf,

vS.A
A�vS.

vS,
f

dV

dt
= vA

v:AdV>dt

vSA.
dV>dt

vS
E
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Also, is the component of the vector perpendicular to the plane of
the area Calling this component we can rewrite the volume flow rate as

We can express the volume flow rate more compactly by using the concept of
vector area a vector quantity with magnitude and a direction perpendicular to
the plane of the area we are describing. The vector area describes both the size
of an area and its orientation in space. In terms of we can write the volume flow
rate of fluid through the rectangle in Fig. 22.5b as a scalar (dot) product:

Flux of a Uniform Electric Field
Using the analogy between electric field and fluid flow, we now define electric
flux in the same way as we have just defined the volume flow rate of a fluid; we
simply replace the fluid velocity by the electric field The symbol that we use
for electric flux is (the capital Greek letter phi; the subscript is a reminder
that this is electric flux). Consider first a flat area perpendicular to a uniform
electric field (Fig. 22.6a). We define the electric flux through this area to be the
product of the field magnitude and the area 

Roughly speaking, we can picture in terms of the field lines passing through
Increasing the area means that more lines of pass through the area, increas-

ing the flux; a stronger field means more closely spaced lines of and therefore
more lines per unit area, so again the flux increases.

If the area is flat but not perpendicular to the field then fewer field lines
pass through it. In this case the area that counts is the silhouette area that we see
when looking in the direction of This is the area in Fig. 22.6b and is equal
to (compare to Fig. 22.5b). We generalize our definition of electric flux
for a uniform electric field to

(electric flux for uniform flat surface) (22.1)

Since is the component of perpendicular to the area, we can rewrite 
Eq. (22.1) as

(22.2)

In terms of the vector area perpendicular to the area, we can write the elec-
tric flux as the scalar product of and 

(22.3)

Equations (22.1), (22.2), and (22.3) express the electric flux for a flat surface and
a uniform electric field in different but equivalent ways. The SI unit for electric
flux is Note that if the area is edge-on to the field, and are per-
pendicular and the flux is zero (Fig. 22.6c).

We can represent the direction of a vector area by using a unit vector per-
pendicular to the area; stands for “normal.” Then

(22.4)

A surface has two sides, so there are two possible directions for and We
must always specify which direction we choose. In Section 22.1 we related the
charge inside a closed surface to the electric flux through the surface. With a
closed surface we will always choose the direction of to be outward, and wenN
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22.5 The volume flow rate of fluid
through the wire rectangle (a) is when
the area of the rectangle is perpendicular to

and (b) is when the rectangle is
tilted at an angle f.
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Application Flux Through a Basking
Shark’s Mouth
Unlike aggressive carnivorous sharks such as
great whites, a basking shark feeds passively
on plankton in the water that passes through
the shark’s gills as it swims. To survive on
these tiny organisms requires a huge flux of
water through a basking shark’s immense
mouth, which can be up to a meter across.
The water flux—the product of the shark’s
speed through the water and the area of its
mouth—can be up to 0.5 (500 liters per
second, or almost gallons per hour).
In a similar way, the flux of electric field through
a surface depends on the magnitude of the
field and the area of the surface (as well as the
relative orientation of the field and surface).

5 * 105
m 3/s



will speak of the flux out of a closed surface. Thus what we called “outward elec-
tric flux” in Section 22.1 corresponds to a positive value of and what we
called “inward electric flux” corresponds to a negative value of 

Flux of a Nonuniform Electric Field
What happens if the electric field isn’t uniform but varies from point to point
over the area ? Or what if is part of a curved surface? Then we divide into
many small elements each of which has a unit vector perpendicular to it
and a vector area We calculate the electric flux through each element
and integrate the results to obtain the total flux:

(22.5)

We call this integral the surface integral of the component over the area, or
the surface integral of In specific problems, one form of the integral is
sometimes more convenient than another. Example 22.3 at the end of this section
illustrates the use of Eq. (22.5).

In Eq. (22.5) the electric flux is equal to the average value of the per-
pendicular component of the electric field, multiplied by the area of the surface.
This is the same definition of electric flux that we were led to in Section 22.1,
now expressed more mathematically. In the next section we will see the connec-
tion between the total electric flux through any closed surface, no matter what its
shape, and the amount of charge enclosed within that surface.
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   orientation by an angle f:
•  The angle between E and A is f.
•  The flux FE 5 E • A 5 EA cos f.
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• E and A are parallel (the angle between E
   and A is f 5 0).
•  The flux FE 5 E • A 5 EA.

(a) Surface is face-on to electric field:
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(c) Surface is edge-on to electric field:
• E and A are perpendicular (the angle
   between E and A is f 5 90°).
•  The flux FE 5 E • A 5 EA cos 90° 5 0.
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22.6 A flat surface in a uniform electric field. The electric flux through the surface equals the scalar product of the electric field 
and the area vector .A
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Example 22.1 Electric flux through a disk

A disk of radius 0.10 m is oriented with its normal unit vector 
at to a uniform electric field of magnitude 
(Fig. 22.7). (Since this isn’t a closed surface, it has no “inside”
or “outside.” That’s why we have to specify the direction of 
in the figure.) (a) What is the electric flux through the disk? 
(b) What is the flux through the disk if it is turned so that is
perpendicular to (c) What is the flux through the disk if is
parallel to E
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22.7 The electric flux through a disk depends on the angle
between its normal and the electric field E
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SOLUTION

IDENTIFY and SET UP: This problem is about a flat surface in a
uniform electric field, so we can apply the ideas of this section. We
calculate the electric flux using Eq. (22.1).

EXECUTE: (a) The area is and the
angle between and is so from Eq. (22.1),

(b) The normal to the disk is now perpendicular to so 
and £E = 0.cos f = 0,90°,

f =E
S

,

= 54 N # m2>C

£E = EA cosf = 12.0 * 103 N>C210.0314 m221cos 30°2

f = 30°,A
S

� AnNE
S

A = p10.10 m22 = 0.0314 m2

(c) The normal to the disk is parallel to so and

EVALUATE: As a check on our results, note that our answer to part
(b) is smaller than that to part (a), which is in turn smaller than that
to part (c). Is all this as it should be?

= 63 N # m2>C

£E = EA cosf = 12.0 * 103 N>C210.0314 m22112

cosf = 1:
f = 0E

S
,

Example 22.2 Electric flux through a cube

An imaginary cubical surface of side is in a region of uniform
electric field Find the electric flux through each face of the cube
and the total flux through the cube when (a) it is oriented with two
of its faces perpendicular to (Fig. 22.8a) and (b) the cube is
turned by an angle about a vertical axis (Fig. 22.8b).

SOLUTION

IDENTIFY and SET UP: Since is uniform and each of the six
faces of the cube is flat, we find the flux through each face
using Eqs. (22.3) and (22.4). The total flux through the cube is the
sum of the six individual fluxes.

EXECUTE: (a) Figure 22.8a shows the unit vectors through for
each face; each unit vector points outward from the cube’s closed
surface. The angle between and is 180°, the angle between E

S
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nN 6nN 1

£Ei
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.
L and is 0°, and the angle between and each of the other four

unit vectors is 90°. Each face of the cube has area so the fluxes
through the faces are

The flux is negative on face 1, where is directed into the cube,
and positive on face 2, where is directed out of the cube. The
total flux through the cube is

(b) The field is directed into faces 1 and 3, so the fluxes
through them are negative; is directed out of faces 2 and 4, so the
fluxes through them are positive. We find

The total flux 
through the surface of the cube is again zero.

EVALUATE: We came to the same conclusion in our discussion of
Fig. 22.3c: There is zero net flux of a uniform electric field through
a closed surface that contains no electric charge.

£E = £E1 + £E2 + £E3 + £E4 + £E5 + £E6

£E5 = £E6 = EL2cos90° = 0

£E4 = E
S # nN 4 A = EL2cos190° - u2 = +EL2 sin u

£E3 = E
S # nN 3 A = EL2cos190° + u2 = -EL2 sin u

£E2 = E
S # nN 2 A = +EL2cosu

£E1 = E
S # nN 1A = EL2cos1180° - u2 = -EL2cos u
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= -EL2 + EL2 + 0 + 0 + 0 + 0 = 0
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22.8 Electric flux of a uniform field through a cubical box of
side in two orientations.L
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Example 22.3 Electric flux through a sphere

A point charge is surrounded by an imaginary
sphere of radius centered on the charge (Fig. 22.9).
Find the resulting electric flux through the sphere.

SOLUTION

IDENTIFY and SET UP: The surface is not flat and the electric field
is not uniform, so to calculate the electric flux (our target variable)

r = 0.20 m
q = +3.0 mC we must use the general definition, Eq. (22.5). We use Eq. (22.5) to

calculate the electric flux (our target variable). Because the sphere
is centered on the point charge, at any point on the spherical sur-
face, is directed out of the sphere perpendicular to the surface.
The positive direction for both and is outward, so 
and the flux through a surface element is This
greatly simplifies the integral in Eq. (22.5).

Continued
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22.3 Gauss’s Law
Gauss’s law is an alternative to Coulomb’s law. While completely equivalent to
Coulomb’s law, Gauss’s law provides a different way to express the relationship
between electric charge and electric field. It was formulated by Carl Friedrich Gauss
(1777–1855), one of the greatest mathematicians of all time (Fig. 22.10).

Point Charge Inside a Spherical Surface
Gauss’s law states that the total electric flux through any closed surface (a surface
enclosing a definite volume) is proportional to the total (net) electric charge
inside the surface. In Section 22.1 we observed this relationship qualitatively for
certain special cases; now we’ll develop it more rigorously. We’ll start with the
field of a single positive point charge The field lines radiate out equally in all
directions. We place this charge at the center of an imaginary spherical surface
with radius The magnitude of the electric field at every point on the surface
is given by

At each point on the surface, is perpendicular to the surface, and its magnitude
is the same at every point, just as in Example 22.3 (Section 22.2). The total elec-
tric flux is the product of the field magnitude and the total area of
the sphere:

(22.6)

The flux is independent of the radius R of the sphere. It depends only on the
charge enclosed by the sphere.q

£E = EA =
1

4pP0

q

R2 14pR22 =
q

P0

A = 4pR2E

E
S

E =
1

4pP0

q

R2

ER.

q.
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EXECUTE: We must evaluate the integral of Eq. (22.5), 
. At any point on the sphere of radius r the electric field has

the same magnitude . Hence E can be taken outside
the integral, which becomes where A is the£E = E1dA = EA,

E = q>4pP0r 2
1E dA

£E =

area of the spherical surface: . Hence the total flux
through the sphere is

EVALUATE: The radius of the sphere cancels out of the result for
We would have obtained the same flux with a sphere of radius

2.0 m or 200 m. We came to essentially the same conclusion in our
discussion of Fig. 22.4 in Section 22.1, where we considered rectan-
gular closed surfaces of two different sizes enclosing a point charge.
There we found that the flux of was independent of the size of the
surface; the same result holds true for a spherical surface. Indeed,
the flux through any surface enclosing a single point charge is inde-
pendent of the shape or size of the surface, as we’ll soon see.

E
S

£E.
r

=
3.0 * 10-6 C

8.85 * 10-12 C2>N # m2
= 3.4 * 105 N # m2>C

£E = EA =
q

4pP0r 2
 4pr 2 =

q

P0

A = 4pr 2

E
S

q r

dA
S

22.9 Electric flux through a sphere centered on a point charge.

Test Your Understanding of Section 22.2 Rank the following sur-
faces in order from most positive to most negative electric flux. (i) a flat rectangu-
lar surface with vector area in a uniform electric field
(ii) a flat circular surface with vector area in a uniform electric field

(iii) a flat square surface with vector area
in a uniform electric field 

(iv) a flat oval surface with vector area in a uniform 
electric field ❙E

S
� 14.0 N>C2ıN � 12.0 N>C2≥N.

A
S

� 13.0 m22ıN � 17.0 m22≥N
E
S

� 14.0 N>C2ıN � 12.0 N>C2≥N;13.0 m22ıN � 17.0 m22≥N
A
S

�12.0 N>C2≥N;E
S

� 14.0 N>C2ıN +
A
S

� 13.0 m22≥N
E
S

� 14.0 N>C2≥N;A
S

� 16.0 m22ıN

22.10 Carl Friedrich Gauss helped
develop several branches of mathematics,
including differential geometry, real analy-
sis, and number theory. The “bell curve” of
statistics is one of his inventions. Gauss
also made state-of-the-art investigations of
the earth’s magnetism and calculated the
orbit of the first asteroid to be discovered.
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We can also interpret this result in terms of field lines. Figure 22.11 shows two
spheres with radii and centered on the point charge Every field line that
passes through the smaller sphere also passes through the larger sphere, so the
total flux through each sphere is the same.

What is true of the entire sphere is also true of any portion of its surface. In
Fig. 22.11 an area is outlined on the sphere of radius and then projected
onto the sphere of radius by drawing lines from the center through points on
the boundary of The area projected on the larger sphere is clearly 4 But
since the electric field due to a point charge is inversely proportional to the
field magnitude is as great on the sphere of radius as on the sphere of radius

Hence the electric flux is the same for both areas and is independent of the
radius of the sphere.

Point Charge Inside a Nonspherical Surface
This projection technique shows us how to extend this discussion to nonspherical
surfaces. Instead of a second sphere, let us surround the sphere of radius by a
surface of irregular shape, as in Fig. 22.12a. Consider a small element of area 
on the irregular surface; we note that this area is larger than the corresponding
element on a spherical surface at the same distance from If a normal to 
makes an angle with a radial line from two sides of the area projected onto
the spherical surface are foreshortened by a factor (Fig. 22.12b). The other
two sides are unchanged. Thus the electric flux through the spherical surface ele-
ment is equal to the flux through the corresponding irregular surface
element.

We can divide the entire irregular surface into elements compute the elec-
tric flux for each, and sum the results by integrating, as in Eq. (22.5).
Each of the area elements projects onto a corresponding spherical surface ele-
ment. Thus the total electric flux through the irregular surface, given by any of
the forms of Eq. (22.5), must be the same as the total flux through a sphere,
which Eq. (22.6) shows is equal to Thus, for the irregular surface,

(22.7)

Equation (22.7) holds for a surface of any shape or size, provided only that it is a
closed surface enclosing the charge The circle on the integral sign reminds us
that the integral is always taken over a closed surface.

The area elements and the corresponding unit vectors always point out of
the volume enclosed by the surface. The electric flux is then positive in areas

nNdA
S

q.
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S # dA
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q

P0

q>P0.

E dA cosf
dA,

E dA cosf

cosf
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dAq.

dA
R

R.
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r 2,
dA.dA.

2R
RdA

q.2RR
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The same number of field lines and the same
flux pass through both of these area elements.

R

4 dA

dA

q

R
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22.11 Projection of an element of area
of a sphere of radius onto a concentric

sphere of radius The projection multi-
plies each linear dimension by 2, so the
area element on the larger sphere is 4 dA.

2R.
RdA

(a) The outward normal to the
       surface makes an angle f
       with the direction of E.
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dA cos f

(b)
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The projection of the
area element dA onto
the spherical surface
is dA cos f.

dA

f E
S

22.12 Calculating the electric flux
through a nonspherical surface.



where the electric field points out of the surface and negative where it points
inward. Also, is positive at points where points out of the surface and nega-
tive at points where points into the surface.

If the point charge in Fig. 22.12 is negative, the field is directed radially
inward; the angle is then greater than its cosine is negative, and the
integral in Eq. (22.7) is negative. But since is also negative, Eq. (22.7) still
holds.

For a closed surface enclosing no charge,

This is the mathematical statement that when a region contains no charge, any
field lines caused by charges outside the region that enter on one side must leave
again on the other side. (In Section 22.1 we came to the same conclusion by con-
sidering the special case of a rectangular box in a uniform field.) Figure 22.13
illustrates this point. Electric field lines can begin or end inside a region of space
only when there is charge in that region.

General Form of Gauss’s Law
Now comes the final step in obtaining the general form of Gauss’s law. Suppose
the surface encloses not just one point charge but several charges 

The total (resultant) electric field at any point is the vector sum of the 
fields of the individual charges. Let be the total charge enclosed by the sur-
face: Also let be the total field at the position
of the surface area element and let be its component perpendicular to the
plane of that element (that is, parallel to ). Then we can write an equation like
Eq. (22.7) for each charge and its corresponding field and add the results. When
we do, we obtain the general statement of Gauss’s law:

(Gauss’s law) (22.8)

The total electric flux through a closed surface is equal to the total (net) electric
charge inside the surface, divided by

CAUTION Gaussian surfaces are imaginary Remember that the closed surface in
Gauss’s law is imaginary; there need not be any material object at the position of the sur-
face. We often refer to a closed surface used in Gauss’s law as a Gaussian surface. ❙

Using the definition of and the various ways to express electric flux given
in Eq. (22.5), we can express Gauss’s law in the following equivalent forms:

(22.9)

As in Eq. (22.5), the various forms of the integral all express the same thing, the
total electric flux through the Gaussian surface, in different terms. One form is
sometimes more convenient than another.

As an example, Fig. 22.14a shows a spherical Gaussian surface of radius 
around a positive point charge The electric field points out of the Gaussian sur-
face, so at every point on the surface is in the same direction as and

is equal to the field magnitude Since is the same at all pointsEE = q>4pP0 r 2.E�

f = 0,dA
S
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S
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Field line
entering surface Same field line

leaving surface

22.13 A point charge outside a closed
surface that encloses no charge. If an
electric field line from the external
charge enters the surface at one point,
it must leave at another.



22.3 Gauss’s Law 735

on the surface, we can take it outside the integral in Eq. (22.9). Then the remaining
integral is the area of the sphere. Hence Eq. (22.9) becomes

The enclosed charge is just the charge so this agrees with Gauss’s law.
If the Gaussian surface encloses a negative point charge as in Fig. 22.14b, then 
points into the surface at each point in the direction opposite Then 
and is equal to the negative of the field magnitude: 

Equation (22.9) then becomes

This again agrees with Gauss’s law because the enclosed charge in Fig. 22.14b is

In Eqs. (22.8) and (22.9), is always the algebraic sum of all the positive
and negative charges enclosed by the Gaussian surface, and is the total field at
each point on the surface. Also note that in general, this field is caused partly by
charges inside the surface and partly by charges outside. But as Fig. 22.13 shows,
the outside charges do not contribute to the total (net) flux through the surface. So
Eqs. (22.8) and (22.9) are correct even when there are charges outside the surface
that contribute to the electric field at the surface. When the total flux
through the Gaussian surface must be zero, even though some areas may have
positive flux and others may have negative flux (see Fig. 22.3b).

Gauss’s law is the definitive answer to the question we posed at the beginning
of Section 22.1: “If the electric field pattern is known in a given region, what
can we determine about the charge distribution in that region?” It provides a
relationship between the electric field on a closed surface and the charge distri-
bution within that surface. But in some cases we can use Gauss’s law to answer
the reverse question: “If the charge distribution is known, what can we deter-
mine about the electric field that the charge distribution produces?” Gauss’s law
may seem like an unappealing way to address this question, since it may look as
though evaluating the integral in Eq. (22.8) is a hopeless task. Sometimes it is,
but other times it is surprisingly easy. Here’s an example in which no integration
is involved at all; we’ll work out several more examples in the next section.

Qencl = 0,

E
S

Qencl

Qencl = -q.

£E = CE� dA = C a
-q

4pP0r 2 b dA =
-q

4pP0r 2 CdA =
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4pP0r 2 4pr 2 =
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- ƒ -q ƒ>4pP0r 2 = -q>4pP0r 2.
E� = -E =E�

180°f =dA
S
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E
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(a) Gaussian surface around positive charge:
positive (outward) flux
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r
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E
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(b) Gaussian surface around negative charge:
negative (inward) flux
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22.14 Spherical Gaussian surfaces
around (a) a positive point charge and 
(b) a negative point charge.

Conceptual Example 22.4 Electric flux and enclosed charge

Figure 22.15 shows the field produced by two point charges 
and (an electric dipole). Find the electric flux through each of
the closed surfaces and D.C,B,A,

-q
+q SOLUTION

Gauss’s law, Eq. (22.8), says that the total electric flux through a
closed surface is equal to the total enclosed charge divided by In

Continued

P0.



22.4 Applications of Gauss’s Law
Gauss’s law is valid for any distribution of charges and for any closed surface.
Gauss’s law can be used in two ways. If we know the charge distribution, and if it
has enough symmetry to let us evaluate the integral in Gauss’s law, we can find
the field. Or if we know the field, we can use Gauss’s law to find the charge dis-
tribution, such as charges on conducting surfaces.

In this section we present examples of both kinds of applications. As you
study them, watch for the role played by the symmetry properties of each system.
We will use Gauss’s law to calculate the electric fields caused by several simple
charge distributions; the results are collected in a table in the chapter summary.

In practical problems we often encounter situations in which we want to know
the electric field caused by a charge distribution on a conductor. These calcula-
tions are aided by the following remarkable fact: When excess charge is placed
on a solid conductor and is at rest, it resides entirely on the surface, not in the
interior of the material. (By excess we mean charges other than the ions and free
electrons that make up the neutral conductor.) Here’s the proof. We know from
Section 21.4 that in an electrostatic situation (with all charges at rest) the electric
field at every point in the interior of a conducting material is zero. If were
not zero, the excess charges would move. Suppose we construct a Gaussian sur-
face inside the conductor, such as surface in Fig. 22.17. Because every-
where on this surface, Gauss’s law requires that the net charge inside the surface
is zero. Now imagine shrinking the surface like a collapsing balloon until it
encloses a region so small that we may consider it as a point then the charge at
that point must be zero. We can do this anywhere inside the conductor, so there
can be no excess charge at any point within a solid conductor; any excess charge
must reside on the conductor’s surface. (This result is for a solid conductor. In the
next section we’ll discuss what can happen if the conductor has cavities in its
interior.) We will make use of this fact frequently in the examples that follow.

P;

E
S

� 0A
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S
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S
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Test Your Understanding of Section 22.3 Figure 22.16 shows six point
charges that all lie in the same plane. Five Gaussian surfaces— and

—each enclose part of this plane, and Fig. 22.16 shows the intersection of each
surface with the plane. Rank these five surfaces in order of the electric flux
through them, from most positive to most negative.

❙

S5

S1, S2, S3, S4,

11.0 mC

19.0 mC

S1S2

S4

S3
S5

210.0 mC

27.0 mC

15.0 mC

18.0 mC

22.16 Five Gaussian surfaces and six
point charges.

Conductor
(shown in

cross section)

Charge on surface
of conductor

Gaussian surface A
inside conductor

(shown in
cross section)

22.17 Under electrostatic conditions
(charges not in motion), any excess charge
on a solid conductor resides entirely on the
conductor’s surface.

Fig. 22.15, surface (shown in red) encloses the positive charge, so
surface (in blue) encloses the negative charge, 

so surface (in purple) encloses both charges, 
so and surface (in yellow) encloses no
charges, so Hence, without having to do any integration,
we have and 
These results depend only on the charges enclosed within each
Gaussian surface, not on the precise shapes of the surfaces.

We can draw similar conclusions by examining the electric field
lines. All the field lines that cross surface A are directed out of the
surface, so the flux through A must be positive. Similarly, the flux
through B must be negative since all of the field lines that cross that
surface point inward. For both surface C and surface D, there are as
many field lines pointing into the surface as there are field lines
pointing outward, so the flux through each of these surfaces is zero.

£ED = 0.£EC =£EB = -q>P0,+q>P0,£EA =
Qencl = 0.

DQencl = +q + 1-q2 = 0;
CQencl = -q;

BQencl = +q;
A

C

D
B A

2q

E
S

1q

22.15 The net number of field lines leaving a closed surface is
proportional to the total charge enclosed by that surface.
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Problem-Solving Strategy 22.1 Gauss’s Law

IDENTIFY the relevant concepts: Gauss’s law is most useful when
the charge distribution has spherical, cylindrical, or planar symme-
try. In these cases the symmetry determines the direction of . Then
Gauss’s law yields the magnitude of if we are given the charge
distribution, and vice versa. In either case, begin the analysis by
asking the question: What is the symmetry?

SET UP the problem using the following steps:
1. List the known and unknown quantities and identify the target

variable.
2. Select the appropriate closed, imaginary Gaussian surface. For

spherical symmetry, use a concentric spherical surface. For
cylindrical symmetry, use a coaxial cylindrical surface with flat
ends perpendicular to the axis of symmetry (like a soup can).
For planar symmetry, use a cylindrical surface (like a tuna can)
with its flat ends parallel to the plane.

EXECUTE the solution as follows:
1. Determine the appropriate size and placement of your Gaussian

surface. To evaluate the field magnitude at a particular point,
the surface must include that point. It may help to place one end
of a can-shaped surface within a conductor, where and there-
fore are zero, or to place its ends equidistant from a charged
plane.

2. Evaluate the integral in Eq. (22.9). In this equation 
is the perpendicular component of the total electric field at each
point on the Gaussian surface. A well-chosen Gaussian surface
should make integration trivial or unnecessary. If the surface
comprises several separate surfaces, such as the sides and ends

E�AE� dA

£
E
S

E
S

E
S

of a cylinder, the integral over the entire closed sur-
face is the sum of the integrals over the separate sur-
faces. Consider points 3–6 as you work.

3. If is perpendicular (normal) at every point to a surface with
area if it points outward from the interior of the surface, and
if it has the same magnitude at every point on the surface, then

and over that surface is equal to
(If is inward, then and ) This

should be the case for part or all of your Gaussian surface. If 
is tangent to a surface at every point, then and the inte-
gral over that surface is zero. This may be the case for parts of a
cylindrical Gaussian surface. If at every point on a sur-
face, the integral is zero.

4. Even when there is no charge within a Gaussian surface, the
field at any given point on the surface is not necessarily zero. In
that case, however, the total electric flux through the surface is
always zero.

5. The flux integral can be approximated as the differ-
ence between the numbers of electric lines of force leaving and
entering the Gaussian surface. In this sense the flux gives the
sign of the enclosed charge, but is only proportional to it; zero
flux corresponds to zero enclosed charge.

6. Once you have evaluated use Eq. (22.9) to solve for
your target variable.

EVALUATE your answer: If your result is a function that describes
how the magnitude of the electric field varies with position, ensure
that it makes sense.

AE� dA,

AE� dA

E
S

� 0

E� = 0
E
S1E� dA = -EA.E� = -EE

S
EA.

1E� dAE� = E = constant,

A,
E
S

1E� dA
AE� dA

Example 22.5 Field of a charged conducting sphere

We place a total positive charge on a solid conducting sphere
with radius (Fig. 22.18). Find at any point inside or outside the
sphere.

E
S

R
q SOLUTION

IDENTIFY and SET UP: As we discussed earlier in this section, all
of the charge must be on the surface of the sphere. The charge is
free to move on the conductor, and there is no preferred position
on the surface; the charge is therefore distributed uniformly over
the surface, and the system is spherically symmetric. To exploit
this symmetry, we take as our Gaussian surface a sphere of radius 
centered on the conductor. We can calculate the field inside or out-
side the conductor by taking or , respectively. In
either case, the point at which we want to calculate lies on the
Gaussian surface.

EXECUTE: The spherical symmetry means that the direction of the
electric field must be radial; that’s because there is no preferred
direction parallel to the surface, so can have no component par-
allel to the surface. There is also no preferred orientation of the
sphere, so the field magnitude can depend only on the distance 
from the center and must have the same value at all points on the
Gaussian surface.

For the entire conductor is within the Gaussian surface,
so the enclosed charge is The area of the Gaussian surface is

, and is uniform over the surface and perpendicular to it at
each point. The flux integral is then just and 
Eq. (22.8) gives

Continued
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Outside the sphere, the magnitude
of the electric field decreases with
the square of the radial distance
from the center of the sphere:

Inside the sphere, the
electric field is zero:
E 5 0.
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22.18 Calculating the electric field of a conducting sphere with
positive charge q. Outside the sphere, the field is the same as if all
of the charge were concentrated at the center of the sphere.
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This expression is the same as that for a point charge; outside the
charged sphere, its field is the same as though the entire charge
were concentrated at its center. Just outside the surface of the
sphere, where 

(at the surface of a charged conducting sphere)

CAUTION Flux can be positive or negative Remember that we
have chosen the charge to be positive. If the charge is negative,
the electric field is radially inward instead of radially outward, and
the electric flux through the Gaussian surface is negative. The 
electric-field magnitudes outside and at the surface of the sphere
are given by the same expressions as above, except that denotes
the magnitude (absolute value) of the charge. ❙

For we again have But now our
Gaussian surface (which lies entirely within the conductor)

E14pr 22 = Qencl>P0.r 6 R

q

q

E =
1

4pP0

q

R2

r = R,

(outside a charged 
conducting sphere)

E =
1

4pP0

q

r 2
  

E14pr 22 =
q

P0
 and

encloses no charge, so . The electric field inside the con-
ductor is therefore zero.

EVALUATE: We already knew that inside a solid conductor
(whether spherical or not) when the charges are at rest. Figure 22.18
shows as a function of the distance from the center of the
sphere. Note that in the limit as the sphere becomes a point
charge; there is then only an “outside,” and the field is everywhere
given by Thus we have deduced Coulomb’s law
from Gauss’s law. (In Section 22.3 we deduced Gauss’s law from
Coulomb’s law; the two laws are equivalent.)

We can also use this method for a conducting spherical shell (a
spherical conductor with a concentric spherical hole inside) if
there is no charge inside the hole. We use a spherical Gaussian sur-
face with radius less than the radius of the hole. If there were a
field inside the hole, it would have to be radial and spherically
symmetric as before, so But now there is no
enclosed charge, so and inside the hole.

Can you use this same technique to find the electric field in the
region between a charged sphere and a concentric hollow conduct-
ing sphere that surrounds it?

E = 0Qencl = 0
E = Qencl>4pP0r 2.

r

E = q>4pP0r 2.

RS 0,
rE

E
S

� 0

Qencl = 0

Example 22.6 Field of a uniform line charge

Electric charge is distributed uniformly along an infinitely long,
thin wire. The charge per unit length is (assumed positive). Find
the electric field using Gauss’s law.

SOLUTION

IDENTIFY and SET UP: We found in Example 21.10 (Section 21.5)
that the field of a uniformly charged, infinite wire is radially out-
ward if is positive and radially inward if is negative, and that
the field magnitude E depends only on the radial distance from the
wire. This suggests that we use a cylindrical Gaussian surface, of
radius and arbitrary length coaxial with the wire and with its
ends perpendicular to the wire (Fig. 22.19).

EXECUTE: The flux through the flat ends of our Gaussian surface is
zero because the radial electric field is parallel to these ends, and
so On the cylindrical part of our surface we have

everywhere. (If were negative, we would havelE
S # nN = E� = E

E
S # nN = 0.

l,r

ll

E
S

l

everywhere.) The area of the cylindrical surface
is so the flux through it—and hence the total flux through
the Gaussian surface—is EA The total enclosed charge
is and so from Gauss’s law, Eq. (22.8),

We found this same result in Example 21.10 with much more
effort.

If is negative, is directed radially inward, and in the above
expression for we must interpret as the absolute value of the
charge per unit length.

EVALUATE: We saw in Example 21.10 that the entire charge on the
wire contributes to the field at any point, and yet we consider only
that part of the charge within the Gaussian surface
when we apply Gauss’s law. There’s nothing inconsistent here; it
takes the entire charge to give the field the properties that allow us
to calculate so easily, and Gauss’s law always applies to the
enclosed charge only. If the wire is short, the symmetry of the infi-
nite wire is lost, and E is not uniform over a coaxial, cylindrical
Gaussian surface. Gauss’s law then cannot be used to find ; we
must solve the problem the hard way, as in Example 21.10.

We can use the Gaussian surface in Fig. 22.19 to show that the
field outside a long, uniformly charged cylinder is the same as
though all the charge were concentrated on a line along its axis
(see Problem 22.42). We can also calculate the electric field in the
space between a charged cylinder and a coaxial hollow conducting
cylinder surrounding it (see Problem 22.39).

£E

£E

Qencl = ll

lE
E
S

l

E =
1

2pP0

l

r
  (field of an infinite line of charge)

£E = 2prlE =
ll

P0
 and

Qencl = ll,
= 2prlE.

£E2prl,
E
S # nN = E� = -E

GaussianE' 5 E

dA
S

surface

l

E' 5 0

r

22.19 A coaxial cylindrical Gaussian surface is used to find the
electric field outside an infinitely long, charged wire.
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Example 22.7 Field of an infinite plane sheet of charge

Use Gauss’s law to find the electric field caused by a thin, flat, infi-
nite sheet with a uniform positive surface charge density 

SOLUTION

IDENTIFY and SET UP: In Example 21.11 (Section 21.5) we found
that the field of a uniformly charged infinite sheet is normal to the
sheet, and that its magnitude is independent of the distance from the
sheet. To take advantage of these symmetry properties, we use a
cylindrical Gaussian surface with ends of area A and with its axis
perpendicular to the sheet of charge (Fig. 22.20).

E
S

s.
EXECUTE: The flux through the cylindrical part of our Gaussian
surface is zero because everywhere. The flux through
each flat end of the surface is because 
everywhere, so the total flux through both ends—and hence the
total flux through the Gaussian surface—is The total
enclosed charge is and so from Gauss’s law,

In Example 21.11 we found this same result using a much more
complex calculation.

If is negative, is directed toward the sheet, the flux through
the Gaussian surface in Fig. 22.20 is negative, and in the expres-
sion denotes the magnitude (absolute value) of the
charge density.

EVALUATE: Again we see that, given favorable symmetry, we can
deduce electric fields using Gauss’s law much more easily than
using Coulomb’s law.

E = s>2P0

s

E
S

s

E =
s

2P0
  (field of an infinite sheet of charge)

2EA =
sA

P0
 and

Qencl = sA,
+2EA.£E

E
S # nN = E� = E+EA

E
S # nN = 0

+
+
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+

+

+
+

+
+ +

+
+
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+
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+
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+

+
+

+
+

+

+
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+
+

+
Gaussian
surface

E' 5 E

E

A

22.20 A cylindrical Gaussian surface is used to find the field of
an infinite plane sheet of charge.

Example 22.8 Field between oppositely charged parallel conducting plates

Two large plane parallel conducting plates are given charges of
equal magnitude and opposite sign; the surface charge densities are

and Find the electric field in the region between the plates.

SOLUTION

IDENTIFY and SET UP: Figure 22.21a shows the field. Because
opposite charges attract, most of the charge accumulates at the oppos-
ing faces of the plates. A small amount of charge resides on the outer
surfaces of the plates, and there is some spreading or “fringing” of

-s .+s

the field at the edges. But if the plates are very large in comparison
to the distance between them, the amount of charge on the outer
surfaces is negligibly small, and the fringing can be neglected
except near the edges. In this case we can assume that the field is
uniform in the interior region between the plates, as in Fig. 22.21b,
and that the charges are distributed uniformly over the opposing
surfaces. To exploit this symmetry, we can use the shaded Gauss-
ian surfaces and These surfaces are cylinders with
flat ends of area ; one end of each surface lies within a plate.A

S4.S2, S3,S1,
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In the idealized case
we ignore “fringing”
at the plate edges and
treat the field between
the plates as uniform.

Cylindrical Gaussian
surfaces (seen from
the side)

E
S

Between the two
plates the electric field
is nearly uniform,
pointing from the
positive plate toward
the negative one.

a
b

c
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r
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E2
S

E
S

E1
S

(a) Realistic drawing (b) Idealized model

22.21 Electric field between oppositely charged parallel plates.

Continued
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EXECUTE: The left-hand end of surface is within the positive
plate 1. Since the field is zero within the volume of any solid con-
ductor under electrostatic conditions, there is no electric flux
through this end. The electric field between the plates is perpendi-
cular to the right-hand end, so on that end, is equal to and the
flux is this is positive, since is directed out of the Gaussian
surface. There is no flux through the side walls of the cylinder,
since these walls are parallel to So the total flux integral in
Gauss’s law is The net charge enclosed by the cylinder is 
so Eq. (22.8) yields we then have

(field between oppositely charged conducting plates)E =
s

P0

EA = sA>P0;
sA,EA.

E
S

.

E
S

EA;
EE�

S1 The field is uniform and perpendicular to the plates, and its magni-
tude is independent of the distance from either plate. The Gaussian
surface yields the same result. Surfaces and yield to
the left of plate 1 and to the right of plate 2, respectively. We leave
these calculations to you (see Exercise 22.29).

EVALUATE: We obtained the same results in Example 21.11 by using
the principle of superposition of electric fields. The fields due to the
two sheets of charge (one on each plate) are and from Exam-
ple 22.7, both of these have magnitude The total electric field
at any point is the vector sum At points and in
Fig. 22.21b, and point in opposite directions, and their sum is
zero. At point , and are in the same direction; their sum has
magnitude just as we found above using Gauss’s law.E = s>P0,

E
S

2E
S

1b
E
S

2E
S

1

caE
S

� E
S

1 � E
S

2.
s>2P0.

E
S

2;E
S

1

E = 0S3S2S4

Example 22.9 Field of a uniformly charged sphere

Positive electric charge is distributed uniformly throughout the vol-
ume of an insulating sphere with radius Find the magnitude of the
electric field at a point a distance from the center of the sphere.

SOLUTION

IDENTIFY and SET UP: As in Example 22.5, the system is spheri-
cally symmetric. Hence we can use the conclusions of that exam-
ple about the direction and magnitude of To make use of the
spherical symmetry, we choose as our Gaussian surface a sphere
with radius concentric with the charge distribution.

EXECUTE: From symmetry, the direction of is radial at every
point on the Gaussian surface, so and the field magnitude

is the same at every point on the surface. Hence the total electric
flux through the Gaussian surface is the product of and the total
area of the surface —that is, 

The amount of charge enclosed within the Gaussian surface
depends on To find E inside the sphere, we choose The
volume charge density is the charge divided by the volume of
the entire charged sphere of radius 

The volume enclosed by the Gaussian surface is so the
total charge enclosed by that surface is

Then Gauss’s law, Eq. (22.8), becomes

The field magnitude is proportional to the distance of the field
point from the center of the sphere (see the graph of E versus r in
Fig. 22.22).

To find E outside the sphere, we take This surface encloses
the entire charged sphere, so and Gauss’s law gives

(field outside a uniformly
charged sphere)E =

1

4pP0

Q

r 2

4pr 2E =
Q

P0
 or

Qencl = Q,
r 7 R.

r

(field inside a uniformly
charged sphere)

E =
1

4pP0

Qr

R3
 

4pr 2E =
Q

P0

r 3

R3
 or

Qencl = rVencl = a
Q

4pR3>3
b A43pr 3 B = Q

r 3

R3

Qencl

4
3pr 3,Vencl

r =
Q

4pR3>3

R :
Qr

r 6 R.r.

£E = 4pr 2E.A = 4pr 2
E

E
E� = E

E
S

r,

E
S

.

rP
R.

Q

The field outside any spherically symmetric charged body varies as
as though the entire charge were concentrated at the center.

This is graphed in Fig. 22.22.
If the charge is negative, is radially inward and in the expres-

sions for we interpret as the absolute value of the charge.

EVALUATE: Notice that if we set in either expression for ,
we get the same result for the magnitude of the
field at the surface of the sphere. This is because the magnitude 
is a continuous function of By contrast, for the charged conduct-
ing sphere of Example 22.5 the electric-field magnitude is
discontinuous at (it jumps from just inside the sphere
to just outside the sphere). In general, the electric
field is discontinuous in magnitude, direction, or both wherever
there is a sheet of charge, such as at the surface of a charged con-
ducting sphere (Example 22.5), at the surface of an infinite charged
sheet (Example 22.7), or at the surface of a charged conducting
plate (Example 22.8).

The approach used here can be applied to any spherically sym-
metric distribution of charge, even if it is not radially uniform, as it
was here. Such charge distributions occur within many atoms and
atomic nuclei, so Gauss’s law is useful in atomic and nuclear
physics.
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22.22 The magnitude of the electric field of a uniformly
charged insulating sphere. Compare this with the field for a con-
ducting sphere (see Fig. 22.18).
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22.5 Charges on Conductors
We have learned that in an electrostatic situation (in which there is no net motion
of charge) the electric field at every point within a conductor is zero and that any
excess charge on a solid conductor is located entirely on its surface (Fig. 22.23a).
But what if there is a cavity inside the conductor (Fig. 22.23b)? If there is no
charge within the cavity, we can use a Gaussian surface such as (which lies
completely within the material of the conductor) to show that the net charge on
the surface of the cavity must be zero, because everywhere on the Gaussian
surface. In fact, we can prove in this situation that there can’t be any charge
anywhere on the cavity surface. We will postpone detailed proof of this statement
until Chapter 23.

Suppose we place a small body with a charge inside a cavity within a conduc-
tor (Fig. 22.23c). The conductor is uncharged and is insulated from the charge 
Again everywhere on surface so according to Gauss’s law the total
charge inside this surface must be zero. Therefore there must be a charge dis-
tributed on the surface of the cavity, drawn there by the charge inside the cavity.
The total charge on the conductor must remain zero, so a charge must appear+q

q
-q

A,E
S

� 0
q.

q

E
S

� 0

A

Example 22.10 Charge on a hollow sphere

A thin-walled, hollow sphere of radius 0.250 m has an unknown
charge distributed uniformly over its surface. At a distance of
0.300 m from the center of the sphere, the electric field points radi-
ally inward and has magnitude How much
charge is on the sphere?

SOLUTION

IDENTIFY and SET UP: The charge distribution is spherically sym-
metric. As in Examples 22.5 and 22.9, it follows that the electric
field is radial everywhere and its magnitude is a function only of
the radial distance from the center of the sphere. We use a spheri-
cal Gaussian surface that is concentric with the charge distribution
and has radius Our target variable is 

EXECUTE: The charge distribution is the same as if the charge were
on the surface of a 0.250-m-radius conducting sphere. Hence we
can borrow the results of Example 22.5. We note that the electric

Qencl = q.r = 0.300 m.

r

1.80 * 102 N>C.

field here is directed toward the sphere, so that q must be negative.
Furthermore, the electric field is directed into the Gaussian sur-
face, so that and 

By Gauss’s law, the flux is equal to the charge on the sphere
(all of which is enclosed by the Gaussian surface) divided by 
Solving for we find

EVALUATE: To determine the charge, we had to know the electric
field at all points on the Gaussian surface so that we could calcu-
late the flux integral. This was possible here because the charge
distribution is highly symmetric. If the charge distribution is irreg-
ular or lacks symmetry, Gauss’s law is not very useful for calculat-
ing the charge distribution from the field, or vice versa.

= -1.80 * 10-9 C = -1.80 nC

* 18.854 * 10-12 C2>N # m2210.300 m22
q = -E14pP0r 22 = -11.80 * 102 N>C214p2

q,
P0.

q
-E14pr 22.= AE� dA =£EE� = -E

Test Your Understanding of Section 22.4 You place a known amount of
charge on the irregularly shaped conductor shown in Fig. 22.17. If you know the size
and shape of the conductor, can you use Gauss’s law to calculate the electric field at an
arbitrary position outside the conductor? ❙

Q

(a) Solid conductor with charge qC (b) The same conductor with an internal cavity

qC 1 q

(c) An isolated charge q placed in the cavity

–

––
–

–
–– –

q

–
–
–
–
–
––

–

qC
qC

The charge qC resides entirely on the surface of
the conductor. The situation is electrostatic, so
E 5 0 within the conductor.

Arbitrary
Gaussian
surface A

CavityE 5 0 within
conductor

S

S

Because E 5 0 at all points within the conductor,
the electric field at all points on the Gaussian
surface must be zero.

S
For E to be zero at all points on the Gaussian
surface, the surface of the cavity must have a
total charge 2q.

S

22.23 Finding the electric field within a charged conductor.

Application Charge Distribution
Inside a Nerve Cell
The interior of a human nerve cell contains
both positive potassium ions ( ) and nega-
tively charged protein molecules ( ). Potas-
sium ions can flow out of the cell through the
cell membrane, but the much larger protein
molecules cannot. The result is that the inte-
rior of the cell has a net negative charge. (The
fluid outside the cell has a positive charge that
balances this.) The fluid within the cell is a
good conductor, so the molecules distrib-
ute themselves on the outer surface of the
fluid—that is, on the inner surface of the cell
membrane, which is an insulator. This is true
no matter what the shape of the cell.

Pr-

Pr-
K +



Testing Gauss’s Law Experimentally
We can now consider a historic experiment, shown in Fig. 22.25. We mount a
conducting container on an insulating stand. The container is initially uncharged.
Then we hang a charged metal ball from an insulating thread (Fig. 22.25a), lower
it into the container, and put the lid on (Fig. 22.25b). Charges are induced on the
walls of the container, as shown. But now we let the ball touch the inner wall
(Fig. 22.25c). The surface of the ball becomes part of the cavity surface. The sit-
uation is now the same as Fig. 22.23b; if Gauss’s law is correct, the net charge on
the cavity surface must be zero. Thus the ball must lose all its charge. Finally, we
pull the ball out; we find that it has indeed lost all its charge.

This experiment was performed in the 19th century by the English scientist
Michael Faraday, using a metal icepail with a lid, and it is called Faraday’s ice-
pail experiment. The result confirms the validity of Gauss’s law and therefore of

742 CHAPTER 22 Gauss’s Law

Conceptual Example 22.11 A conductor with a cavity

A solid conductor with a cavity carries a total charge of 
Within the cavity, insulated from the conductor, is a point charge
of How much charge is on each surface (inner and outer)
of the conductor?

SOLUTION

Figure 22.24 shows the situation. If the charge in the cavity is
the charge on the inner cavity surface must be 

The conductor carries a total charge of
none of which is in the interior of the material. If is

on the inner surface of the cavity, then there must be 
on the outer surface of the conductor.1+5 nC2 = +2 nC

1+7 nC2 -
+5 nC+7 nC,

-1-5 nC2 = +5 nC.
-q =q = -5 nC,

-5 nC.

+7 nC.

either on its outer surface or inside the material. But we showed that in an elec-
trostatic situation there can’t be any excess charge within the material of a con-
ductor. So we conclude that the charge must appear on the outer surface. By
the same reasoning, if the conductor originally had a charge then the total
charge on the outer surface must be after the charge is inserted into the
cavity.

qqC + q
qC,

+q

22.24 Our sketch for this problem. There is zero electric field
inside the bulk conductor and hence zero flux through the
Gaussian surface shown, so the charge on the cavity wall must be
the opposite of the point charge.
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Once the ball touches the container, it
is part of the interior surface; all the
charge moves to the container’s exterior.

(c)

Metal lid

22.25 (a) A charged conducting ball suspended by an insulating thread outside a conducting container on an insulating stand. (b) The
ball is lowered into the container, and the lid is put on. (c) The ball is touched to the inner surface of the container.
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Coulomb’s law. Faraday’s result was significant because Coulomb’s experimen-
tal method, using a torsion balance and dividing of charges, was not very precise;
it is very difficult to confirm the dependence of the electrostatic force by
direct force measurements. By contrast, experiments like Faraday’s test the valid-
ity of Gauss’s law, and therefore of Coulomb’s law, with much greater precision.
Modern versions of this experiment have shown that the exponent 2 in the 
of Coulomb’s law does not differ from precisely 2 by more than . So there
is no reason to believe it is anything other than exactly 2.

The same principle behind Faraday’s icepail experiment is used in a Van de
Graaff electrostatic generator (Fig. 22.26). A charged belt continuously carries
charge to the inside of a conducting shell. By Gauss’s law, there can never be any
charge on the inner surface of this shell, so the charge is immediately carried away
to the outside surface of the shell. As a result, the charge on the shell and the elec-
tric field around it can become very large very rapidly. The Van de Graaff genera-
tor is used as an accelerator of charged particles and for physics demonstrations.

This principle also forms the basis for electrostatic shielding. Suppose
we have a very sensitive electronic instrument that we want to protect from
stray electric fields that might cause erroneous measurements. We surround the
instrument with a conducting box, or we line the walls, floor, and ceiling of the
room with a conducting material such as sheet copper. The external electric field
redistributes the free electrons in the conductor, leaving a net positive charge on
the outer surface in some regions and a net negative charge in others (Fig. 22.27).
This charge distribution causes an additional electric field such that the total field
at every point inside the box is zero, as Gauss’s law says it must be. The charge
distribution on the box also alters the shapes of the field lines near the box, as the
figure shows. Such a setup is often called a Faraday cage. The same physics tells

10-16
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22.26 Cutaway view of the essential parts of a Van de Graaff electrostatic generator.
The electron sink at the bottom draws electrons from the belt, giving it a positive charge;
at the top the belt attracts electrons away from the conducting shell, giving the shell a
positive charge.

?



you that one of the safest places to be in a lightning storm is inside an automo-
bile; if the car is struck by lightning, the charge tends to remain on the metal skin
of the vehicle, and little or no electric field is produced inside the passenger com-
partment.

Field at the Surface of a Conductor
Finally, we note that there is a direct relationship between the field at a point
just outside any conductor and the surface charge density at that point. In gen-
eral, varies from point to point on the surface. We will show in Chapter 23 that
at any such point, the direction of is always perpendicular to the surface. (You
can see this effect in Fig. 22.27a.)

To find a relationship between at any point on the surface and the perpen-
dicular component of the electric field at that point, we construct a Gaussian
surface in the form of a small cylinder (Fig. 22.28). One end face, with area 
lies within the conductor and the other lies just outside. The electric field is
zero at all points within the conductor. Outside the conductor the component
of perpendicular to the side walls of the cylinder is zero, and over the end face
the perpendicular component is equal to (If is positive, the electric field
points out of the conductor and is positive; if is negative, the 
field points inward and is negative.) Hence the total flux through the sur-
face is The charge enclosed within the Gaussian surface is so from
Gauss’s law,

(22.10)

We can check this with the results we have obtained for spherical, cylindrical,
and plane surfaces.

We showed in Example 22.8 that the field magnitude between two infinite flat
oppositely charged conducting plates also equals In this case the field mag-
nitude is the same at all distances from the plates, but in all other cases 
decreases with increasing distance from the surface.

EE
s>P0.

(field at the surface
of a conductor)E�A =

sA

P0
  and  E� =

s

P0

sA,E�A.
E�

sE�

sE� .
E
S

A,

s

E
S

s

s

E
S
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E 5 0

(a) (b)

Field perpendicular to conductor surface

Field pushes electrons
toward left side.

Net positive charge
remains on right side.

E
S

E
S S

–
–
–
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–
–
––

+
+
+
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22.27 (a) A conducting box (a Faraday cage) immersed in a uniform electric field. The field of the induced charges on the box com-
bines with the uniform field to give zero total field inside the box. (b) This person is inside a Faraday cage, and so is protected from the
powerful electric discharge.

++++ ++++

Outer
surface of
charged
conductor

Gaussian
surface

E� � E

E� � 0

E � 0
A

A

22.28 The field just outside a charged
conductor is perpendicular to the surface,
and its perpendicular component is
equal to s/P0.

E�
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Conceptual Example 22.12 Field at the surface of a conducting sphere

Verify Eq. (22.10) for a conducting sphere with radius and total
charge 

SOLUTION

In Example 22.5 (Section 22.4) we showed that the electric field
just outside the surface is

E =
1

4pP0

q

R2

q.
R The surface charge density is uniform and equal to divided by

the surface area of the sphere:

Comparing these two expressions, we see that which
verifies Eq. (22.10).

E = s>P0,

s =
q

4pR2

q

Example 22.13 Electric field of the earth

The earth (a conductor) has a net electric charge. The resulting
electric field near the surface has an average value of about

directed toward the center of the earth. (a) What is the
corresponding surface charge density? (b) What is the total surface
charge of the earth?

SOLUTION

IDENTIFY and SET UP: We are given the electric-field magnitude at
the surface of the conducting earth. We can calculate the surface
charge density using Eq. (22.10). The total charge Q on the
earth’s surface is then the product of and the earth’s surface area.

EXECUTE: (a) The direction of the field means that is negative
(corresponding to being directed into the surface, so is nega-
tive). From Eq. (22.10),

(b) The earth’s surface area is where 
is the radius of the earth (see Appendix F). The total charge

is the product or4pR 2
Es,Q

106 m
RE = 6.38 *4pR 2

E ,

= -1.33 * 10-9 C>m2 = -1.33 nC>m2

s = P0E� = 18.85 * 10-12 C2>N # m221-150 N>C2

E�E
S

s

s

s

150 N>C,

EVALUATE: You can check our result in part (b) using the result of
Example 22.5. Solving for we find

One electron has a charge of Hence this much
excess negative electric charge corresponds to there being

excess elec-
trons on the earth, or about 7 moles of excess electrons. This is
compensated by an equal deficiency of electrons in the earth’s
upper atmosphere, so the combination of the earth and its atmos-
phere is electrically neutral.

1-6.8 * 105 C2>1-1.60 * 10-19 C2 = 4.2 * 1024

-1.60 * 10-19 C.

= -6.8 * 105 C

=
1

9.0 * 109 N # m2>C2
16.38 * 106 m22 1-150 N>C2

Q = 4pP0R2E�

Q,

= -6.8 * 105 C = -680 kC

Q = 4p16.38 * 106 m221-1.33 * 10-9 C>m22

Test Your Understanding of Section 22.5 A hollow conducting sphere has
no net charge. There is a positive point charge at the center of the spherical cavity
within the sphere. You connect a conducting wire from the outside of the sphere to
ground. Will you measure an electric field outside the sphere? ❙

q



746

CHAPTER 22 SUMMARY

Point in Electric Field 
Charge Distribution Electric Field Magnitude

Single point charge Distance from 

Charge on surface of conducting sphere with radius Outside sphere, 

Inside sphere, 

Infinite wire, charge per unit length Distance from wire

Infinite conducting cylinder with radius charge per Outside cylinder, 
unit length

Inside cylinder, 

Solid insulating sphere with radius charge distributed Outside sphere, 
uniformly throughout volume

Inside sphere, 

Infinite sheet of charge with uniform charge per unit area Any point

Two oppositely charged conducting plates with surface Any point between plates
charge densities and -s+s

E =
s
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E =
s

2P0
s
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Qr
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r 6 R

E =
1

4pP0

Q

r 2
r 7 RQR,
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l
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l

r
r 7 RR,
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r
rl

E = 0r 6 R
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1

4pP0

q

r 2
r 7 RRq

E =
1

4pP0

q

r 2
qrq

Electric flux: Electric flux is a measure of the “flow” of
electric field through a surface. It is equal to the product
of an area element and the perpendicular component of

integrated over a surface. (See Examples 22.1–22.3.)E
S

, (22.5)= LE� dA = LE
S # dA

S

£E = LEcosf dA

AA�

E
S

A
S

ff

R

r

q

dA

E�

Outward normal
to surface

f E
r

Gauss’s law: Gauss’s law states that the total electric
flux through a closed surface, which can be written as
the surface integral of the component of normal to the
surface, equals a constant times the total charge 
enclosed by the surface. Gauss’s law is logically equiva-
lent to Coulomb’s law, but its use greatly simplifies
problems with a high degree of symmetry. (See Exam-
ples 22.4–22.10.)

When excess charge is placed on a conductor and is
at rest, it resides entirely on the surface, and 
everywhere in the material of the conductor. (See Exam-
ples 22.11–22.13.)
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Electric field of various symmetric charge distributions: The following table lists electric fields caused by several symmetric charge
distributions. In the table, and refer to the magnitudes of the quantities.sq, Q, l,

Charged conductor Just outside the conductor E =
s

P0
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A hydrogen atom is made up of a proton of charge 
and an electron of charge 

The proton may be regarded as a point charge at 
the center of the atom. The motion of the electron causes its charge
to be “smeared out” into a spherical distribution around the proton,
so that the electron is equivalent to a charge per unit volume of

, where is called
the Bohr radius. (a) Find the total amount of the hydrogen atom’s
charge that is enclosed within a sphere with radius centered on
the proton. (b) Find the electric field (magnitude and direction)
caused by the charge of the hydrogen atom as a function of 
(c) Make a graph as a function of r of the ratio of the electric-field
magnitude to the magnitude of the field due to the proton alone.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. The charge distribution in this problem is spherically symmet-

ric, just as in Example 22.9, so you can solve it using Gauss’s
law.

2. The charge within a sphere of radius r includes the proton
charge �Q plus the portion of the electron charge distribution
that lies within the sphere. The difference from Example 22.9 is
that the electron charge distribution is not uniform, so the
charge enclosed within a sphere of radius r is not simply the
charge density multiplied by the volume of the sphere.
Instead, you’ll have to do an integral.

4pr 3>3

E

r.

r

a0 = 5.29 * 10-11 mr1r2 = -1Q>pa0
32e-2r>a0

r = 0,10-19 C.
-Q = -1.60 *1.60 * 10-19 C

+Q =

BRIDGING PROBLEM Electric Field Inside a Hydrogen Atom

3. Consider a thin spherical shell centered on the proton, with
radius and infinitesimal thickness . Since the shell is so
thin, every point within the shell is at essentially the same
radius from the proton. Hence the amount of electron charge
within this shell is equal to the electron charge density at
this radius multiplied by the volume dV of the shell. What is dV
in terms of ?

4. The total electron charge within a radius r equals the integral of
from to . Set up this integral (but don’t

solve it yet), and use it to write an expression for the total
charge (including the proton) within a sphere of radius r.

EXECUTE
5. Integrate your expression from step 4 to find the charge within

radius r. Hint: Integrate by substitution: Change the integration
variable from to . You can calculate the integral

using integration by parts, or you can look it up in a
table of integrals or on the World Wide Web.

6. Use Gauss’s law and your results from step 5 to find the electric
field at a distance r from the proton.

7. Find the ratio referred to in part (c) and graph it versus r.
(You’ll actually find it simplest to graph this function versus the
quantity .)

EVALUATE
8. How do your results for the enclosed charge and the electric-

field magnitude behave in the limit ? In the limit ?
Explain your results.

rS qrS 0

r>a0

1x2e-x dx
x = 2r¿>a0r¿

r¿ = rr¿ = 0r1r¿2dV

r¿

r1r¿2

dr¿r¿

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q22.1 A rubber balloon has a single point charge in its interior.
Does the electric flux through the balloon depend on whether or
not it is fully inflated? Explain your reasoning.
Q22.2 Suppose that in Fig. 22.15 both charges were positive. What
would be the fluxes through each of the four surfaces in the
example?
Q22.3 In Fig. 22.15, suppose a third point charge were placed out-
side the purple Gaussian surface Would this affect the electric
flux through any of the surfaces or in the figure? Why or
why not?
Q22.4 A certain region of space bounded by an imaginary closed
surface contains no charge. Is the electric field always zero every-
where on the surface? If not, under what circumstances is it zero
on the surface?
Q22.5 A spherical Gaussian surface encloses a point charge If
the point charge is moved from the center of the sphere to a point
away from the center, does the electric field at a point on the sur-
face change? Does the total flux through the Gaussian surface
change? Explain.

q.

DA, B, C,
C.

Q22.6 You find a sealed box on your doorstep. You suspect that the
box contains several charged metal spheres packed in insulating
material. How can you determine the total net charge inside the
box without opening the box? Or isn’t this possible?
Q22.7 A solid copper sphere has a net positive charge. The charge
is distributed uniformly over the surface of the sphere, and the
electric field inside the sphere is zero. Then a negative point charge
outside the sphere is brought close to the surface of the sphere. Is
all the net charge on the sphere still on its surface? If so, is this
charge still distributed uniformly over the surface? If it is not uni-
form, how is it distributed? Is the electric field inside the sphere
still zero? In each case justify your answers.
Q22.8 If the electric field of a point charge were proportional to

instead of would Gauss’s law still be valid? Explain
your reasoning. (Hint: Consider a spherical Gaussian surface cen-
tered on a single point charge.)
Q22.9 In a conductor, one or more electrons from each atom are
free to roam throughout the volume of the conductor. Does this
contradict the statement that any excess charge on a solid conduc-
tor must reside on its surface? Why or why not?

1>r 2,1>r 3

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

www.masteringphysics.com
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Q22.10 You charge up the van de Graaff generator shown in 
Fig. 22.26, and then bring an identical but uncharged hollow con-
ducting sphere near it, without letting the two spheres touch.
Sketch the distribution of charges on the second sphere. What is
the net flux through the second sphere? What is the electric field
inside the second sphere?
Q22.11 A lightning rod is a rounded copper rod mounted on top of
a building and welded to a heavy copper cable running down into
the ground. Lightning rods are used to protect houses and barns
from lightning; the lightning current runs through the copper rather
than through the building. Why? Why should the end of the rod be
rounded?
Q22.12 A solid conductor has a cavity in its interior. Would the
presence of a point charge inside the cavity affect the electric field
outside the conductor? Why or why not? Would the presence of a
point charge outside the conductor affect the electric field inside
the cavity? Again, why or why not?
Q22.13 Explain this statement: “In a static situation, the electric
field at the surface of a conductor can have no component parallel
to the surface because this would violate the condition that the
charges on the surface are at rest.” Would this same statement be
valid for the electric field at the surface of an insulator? Explain
your answer and the reason for any differences between the cases
of a conductor and an insulator.
Q22.14 In a certain region of space, the electric field is uniform.
(a) Use Gauss’s law to prove that this region of space must be elec-
trically neutral; that is, the volume charge density must be zero.
(b) Is the converse true? That is, in a region of space where there is
no charge, must be uniform? Explain.
Q22.15 (a) In a certain region of space, the volume charge density

has a uniform positive value. Can be uniform in this region?
Explain. (b) Suppose that in this region of uniform positive there
is a “bubble” within which Can be uniform within this
bubble? Explain.

EXERCISES
Section 22.2 Calculating Electric Flux
22.1 . A flat sheet of paper of area is oriented so that the
normal to the sheet is at an angle of to a uniform electric field of
magnitude (a) Find the magnitude of the electric flux
through the sheet. (b) Does the answer to part (a) depend on the shape
of the sheet? Why or why not? (c) For what angle between the nor-
mal to the sheet and the electric field is the magnitude of the flux
through the sheet (i) largest and (ii) smallest? Explain your answers.
22.2 .. A flat sheet is in the shape of a rectangle with sides of
lengths 0.400 m and 0.600 m. The sheet is immersed in a uniform
electric field of magnitude that is directed at from
the plane of the sheet (Fig. E22.2). Find the magnitude of the elec-
tric flux through the sheet.

22.3 . You measure an electric field of at a dis-
tance of 0.150 m from a point charge. There is no other source of
electric field in the region other than this point charge. (a) What is
the electric flux through the surface of a sphere that has this charge

1.25 * 106 N>C

20°75.0 N>C

f

14 N>C.
60°
0.250 m2

E
S

r = 0.
r

E
S

r

E
S

r

E
S

at its center and that has radius 0.150 m? (b) What is the magnitude
of this charge?
22.4 . It was shown in Example 21.11 (Section 21.5) that the
electric field due to an infinite line of charge is perpendicular to the
line and has magnitude Consider an imaginary
cylinder with radius and length that has
an infinite line of positive charge running along its axis. The
charge per unit length on the line is (a) What is
the electric flux through the cylinder due to this infinite line of
charge? (b) What is the flux through the cylinder if its radius is
increased to (c) What is the flux through the cylin-
der if its length is increased to 
22.5 .. A hemispherical surface with radius in a region of uni-
form electric field has its axis aligned parallel to the direction of
the field. Calculate the flux through the surface.
22.6 . The cube in Fig. E22.6
has sides of length 
The electric field is uniform,
has magnitude 

and is parallel to the
-plane at an angle of 

measured from the -axis
toward the -axis. (a) What is
the electric flux through each
of the six cube faces 

and (b) What is the
total electric flux through all
faces of the cube?

Section 22.3 Gauss’s Law
22.7 . BIO As discussed in Section 22.5, human nerve cells have
a net negative charge and the material in the interior of the cell is a
good conductor. If a cell has a net charge of �8.65 pC, what are
the magnitude and direction (inward or outward) of the net flux
through the cell boundary?
22.8 . The three small spheres shown in Fig. E22.8 carry charges

and Find the net
electric flux through each of the following closed surfaces shown
in cross section in the figure: (a) (b) (c) (d) (e) 
(f) Do your answers to parts (a)–(e) depend on how the charge is
distributed over each small sphere? Why or why not?

22.9 .. A charged paint is spread in a very thin uniform layer
over the surface of a plastic sphere of diameter 12.0 cm, giving it a
charge of Find the electric field (a) just inside the paint
layer; (b) just outside the paint layer; (c) 5.00 cm outside the sur-
face of the paint layer.
22.10 . A point charge is located on the x-axis at

and a second point charge is on the 
y-axis at What is the total electric flux due to these
two point charges through a spherical surface centered at the origin
and with radius (a) 0.500 m, (b) 1.50 m, (c) 2.50 m?

y = 1.00 m.
q2 = -6.00 nCx = 2.00 m,

q1 = 4.00 nC

-35.0 mC.

S5 .S4 ;S3 ;S2 ;S1 ;

2.40 nC.q3 =q1 = 4.00 nC, q2 = -7.80 nC,

S6?S4 , S5 ,
S1 , S2 , S3 ,

+y
+x

53.1°xy
103 N>C,

4.00 *E =
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E
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22.11 . A point charge is at the center of a cube with
sides of length 0.500 m. (a) What is the electric flux through one of
the six faces of the cube? (b) How would your answer to part 
(a) change if the sides were 0.250 m long? Explain.
22.12 . Electric Fields in an Atom. The nuclei of large atoms,
such as uranium, with 92 protons, can be modeled as spherically
symmetric spheres of charge. The radius of the uranium nucleus is
approximately (a) What is the electric field this
nucleus produces just outside its surface? (b) What magnitude of
electric field does it produce at the distance of the electrons, which
is about (c) The electrons can be modeled as
forming a uniform shell of negative charge. What net electric field
do they produce at the location of the nucleus?
22.13 . A point charge of is located on the x-axis at

next to a spherical surface of radius 3.00 m centered
at the origin. (a) Calculate the magnitude of the electric field at

(b) Calculate the magnitude of the electric field at
(c) According to Gauss’s law, the net flux through

the sphere is zero because it contains no charge. Yet the field due to
the external charge is much stronger on the near side of the sphere
(i.e., at ) than on the far side (at ). How,
then, can the flux into the sphere (on the near side) equal the flux
out of it (on the far side)? Explain. A sketch will help.

Section 22.4 Applications of Gauss’s Law and
Section 22.5 Charges on Conductors
22.14 .. A solid metal sphere with radius 0.450 m carries a net
charge of 0.250 nC. Find the magnitude of the electric field (a) at a
point 0.100 m outside the surface of the sphere and (b) at a point
inside the sphere, 0.100 m below the surface.
22.15 .. Two very long uniform lines of charge are parallel and
are separated by 0.300 m. Each line of charge has charge per unit
length . What magnitude of force does one line of
charge exert on a 0.0500-m section of the other line of charge?
22.16 . Some planetary scientists have suggested that the planet
Mars has an electric field somewhat similar to that of the earth,
producing a net electric flux of at the
planet’s surface, directed toward the center of the planet. Calcu-
late: (a) the total electric charge on the planet; (b) the electric field
at the planet’s surface (refer to the astronomical data inside the
back cover); (c) the charge density on Mars, assuming all the
charge is uniformly distributed over the planet’s surface.
22.17 .. How many excess electrons must be added to an isolated
spherical conductor 32.0 cm in diameter to produce an electric
field of just outside the surface?
22.18 .. The electric field 0.400 m from a very long uniform line
of charge is How much charge is contained in a 2.00-cm
section of the line?
22.19 .. A very long uniform line of charge has charge per unit
length and lies along the x-axis. A second long uni-
form line of charge has charge per unit length and is
parallel to the -axis at What is the net electric field
(magnitude and direction) at the following points on the y-axis:
(a) and (b) 
22.20 . (a) At a distance of 0.200 cm from the center of a charged
conducting sphere with radius 0.100 cm, the electric field is

What is the electric field 0.600 cm from the center of the
sphere? (b) At a distance of 0.200 cm from the axis of a very long
charged conducting cylinder with radius 0.100 cm, the electric
field is What is the electric field 0.600 cm from the axis
of the cylinder? (c) At a distance of 0.200 cm from a large uniform
sheet of charge, the electric field is What is the electric
field 1.20 cm from the sheet?

480 N>C.

480 N>C.

480 N>C.

y = 0.600 m?y = 0.200 m

y = 0.400 m.x
-2.40 mC>m

4.80 mC>m

840 N>C.

1150 N>C

3.63 * 1016 N # m2>C

+5.20 mC>m

x = -3.00 mx = 3.00 m

x = -3.00 m.
x = 3.00 m.

x = 4.00 m,
+5.00 mC

1.0 * 10-10 m?

7.4 * 10-15 m.

6.20-mC 22.21 .. A hollow, conducting sphere with an outer radius of
0.250 m and an inner radius of 0.200 m has a uniform surface
charge density of A charge of is
now introduced into the cavity inside the sphere. (a) What is the new
charge density on the outside of the sphere? (b) Calculate the
strength of the electric field just outside the sphere. (c) What is the
electric flux through a spherical surface just inside the inner sur-
face of the sphere?
22.22 .. A point charge of is located in the center of a
spherical cavity of radius 6.50 cm inside an insulating charged
solid. The charge density in the solid is 
Calculate the electric field inside the solid at a distance of 9.50 cm
from the center of the cavity.
22.23 .. The electric field at a distance of 0.145 m from the sur-
face of a solid insulating sphere with radius 0.355 m is 
(a) Assuming the sphere’s charge is uniformly distributed, what is
the charge density inside it? (b) Calculate the electric field inside
the sphere at a distance of 0.200 m from the center.
22.24 .. CP A very small object with mass and
positive charge is projected directly toward a very
large insulating sheet of positive charge that has uniform surface
charge density . The object is initially 0.400 m
from the sheet. What initial speed must the object have in order for
its closest distance of approach to the sheet to be 0.100 m?
22.25 .. CP At time a proton is a distance of 0.360 m from
a very large insulating sheet of charge and is moving parallel to the
sheet with speed . The sheet has uniform surface
charge density . What is the speed of the proton
at ?
22.26 .. CP An electron is released from rest at a distance of 
0.300 m from a large insulating sheet of charge that has uniform sur-
face charge density . (a) How much work is
done on the electron by the electric field of the sheet as the electron
moves from its initial position to a point 0.050 m from the sheet? (b)
What is the speed of the electron when it is 0.050 m from the sheet?
22.27 ... CP CALC An insulating sphere of radius 
has uniform charge density . A small
object that can be treated as a point charge is released from rest
just outside the surface of the sphere. The small object has positive
charge . How much work does the electric
field of the sphere do on the object as the object moves to a point
very far from the sphere?
22.28 . A conductor with an inner cavity, like that shown in Fig.
22.23c, carries a total charge of The charge within the
cavity, insulated from the conductor, is How much
charge is on (a) the inner surface of the conductor and (b) the outer
surface of the conductor?
22.29 . Apply Gauss’s law to the Gaussian surfaces and

in Fig. 22.21b to calculate the electric field between and outside
the plates.
22.30 . A square insulating sheet 80.0 cm on a side is held hori-
zontally. The sheet has 7.50 nC of charge spread uniformly over its
area. (a) Calculate the electric field at a point 0.100 mm above the
center of the sheet. (b) Estimate the electric field at a point 100 m
above the center of the sheet. (c) Would the answers to parts (a) and
(b) be different if the sheet were made of a conducting material?
Why or why not?
22.31 . An infinitely long cylindrical conductor has radius and
uniform surface charge density (a) In terms of and what is the
charge per unit length for the cylinder? (b) In terms of what is
the magnitude of the electric field produced by the charged cylinder
at a distance from its axis? (c) Express the result of part (b) in
terms of and show that the electric field outside the cylinder is thel
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same as if all the charge were on the axis. Compare your result to the
result for a line of charge in Example 22.6 (Section 22.4).
22.32 . Two very large, nonconduct-
ing plastic sheets, each 10.0 cm thick,
carry uniform charge densities 

and on their surfaces, as
shown in Fig. E22.32. These surface
charge densities have the values 

and
Use Gauss’s law to find the

magnitude and direction of the electric
field at the following points, far from
the edges of these sheets: (a) point 5.00 cm from the left face of
the left-hand sheet; (b) point 1.25 cm from the inner surface of the
right-hand sheet; (c) point in the middle of the right-hand sheet.
22.33 . A negative charge is placed inside the cavity of a
hollow metal solid. The outside of the solid is grounded by con-
necting a conducting wire between it and the earth. (a) Is there
any excess charge induced on the inner surface of the piece of
metal? If so, find its sign and magnitude. (b) Is there any excess
charge on the outside of the piece of metal? Why or why not? 
(c) Is there an electric field in the cavity? Explain. (d) Is there an
electric field within the metal? Why or why not? Is there an elec-
tric field outside the piece of metal? Explain why or why not. 
(e) Would someone outside the solid measure an electric field
due to the charge Is it reasonable to say that the grounded
conductor has shielded the region from the effects of the charge

In principle, could the same thing be done for gravity? Why
or why not?

PROBLEMS
22.34 .. A cube has sides of length It is placed
with one corner at the origin as shown in Fig. E22.6. The electric
field is not uniform but is given by 

(a) Find the electric flux through each of the six
cube faces and (b) Find the total electric
charge inside the cube.
22.35 . The electric field in 
Fig. P22.35 is everywhere parallel
to the -axis, so the components 
and are zero. The -component
of the field depends on but not
on and At points in the -plane
(where ), 
(a) What is the electric flux through
surface I in Fig. P22.35? (b) What
is the electric flux through sur-
face II? (c) The volume shown in
the figure is a small section of a
very large insulating slab 1.0 m thick. If there is a total charge of

within the volume shown, what are the magnitude and
direction of at the face opposite surface I? (d) Is the electric field
produced only by charges within the slab, or is the field also due to
charges outside the slab? How can you tell?
22.36 .. CALC In a region of space there is an electric field that
is in the z-direction and that has magnitude .
Find the flux for this field through a square in the xy-plane at 
and with side length 0.350 m. One side of the square is along the 

x-axis and another side is along the y-axis.++
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22.37 .. The electric field at
one face of a parallelepiped is uni-
form over the entire face and is
directed out of the face. At the oppo-
site face, the electric field is also
uniform over the entire face and is
directed into that face (Fig. P22.37).
The two faces in question are
inclined at from the horizontal,
while and are both horizon-
tal; has a magnitude of and has a magni-
tude of (a) Assuming that no other electric field
lines cross the surfaces of the parallelepiped, determine the net
charge contained within. (b) Is the electric field produced only by
the charges within the parallelepiped, or is the field also due to
charges outside the parallelepiped? How can you tell?
22.38 . A long line carrying a uniform linear charge density

runs parallel to and 10.0 cm from the surface of a
large, flat plastic sheet that has a uniform surface charge density of

on one side. Find the location of all points where an
particle would feel no force due to this arrangement of charged

objects.
22.39 . The Coaxial Cable. A long coaxial cable consists of an
inner cylindrical conductor with radius and an outer coaxial
cylinder with inner radius and outer radius The outer cylinder
is mounted on insulating supports and has no net charge. The inner
cylinder has a uniform positive charge per unit length Calculate
the electric field (a) at any point between the cylinders a distance 
from the axis and (b) at any point outside the outer cylinder. 
(c) Graph the magnitude of the electric field as a function of the
distance from the axis of the cable, from to 
(d) Find the charge per unit length on the inner surface and on the
outer surface of the outer cylinder.
22.40 . A very long conducting tube (hollow cylinder) has inner
radius and outer radius It carries charge per unit length 
where is a positive constant with units of A line of charge
lies along the axis of the tube. The line of charge has charge per
unit length (a) Calculate the electric field in terms of and 
the distance from the axis of the tube for (i) (ii)

(iii) Show your results in a graph of as a
function of (b) What is the charge per unit length on (i) the inner
surface of the tube and (ii) the outer surface of the tube?
22.41 . Repeat Problem 22.40, but now let the conducting tube
have charge per unit length As in Problem 22.40, the line of
charge has charge per unit length 
22.42 . A very long, solid cylinder with radius has positive
charge uniformly distributed throughout it, with charge per unit
volume (a) Derive the expression for the electric field inside the
volume at a distance from the axis of the cylinder in terms of 
the charge density (b) What is the electric field at a point outside
the volume in terms of the charge
per unit length in the cylinder?
(c) Compare the answers to parts
(a) and (b) for (d) Graph
the electric-field magnitude as a
function of from to
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sheet, as shown in Fig. P22.43. The charge density on the surface
of the sheet is uniform and equal to Find the
angle of the thread.
22.44 . A Sphere in a Sphere. A solid conducting sphere car-
rying charge has radius It is inside a concentric hollow con-
ducting sphere with inner radius and outer radius The hollow
sphere has no net charge. (a) Derive expressions for the electric-
field magnitude in terms of the distance from the center for the
regions and (b) Graph the
magnitude of the electric field as a function of from to

(c) What is the charge on the inner surface of the hollow
sphere? (d) On the outer surface? (e) Represent the charge of the
small sphere by four plus signs. Sketch the field lines of the system
within a spherical volume of radius 2
22.45 . A solid conducting sphere with radius that carries posi-
tive charge is concentric with a very thin insulating shell of radius

that also carries charge The charge is distributed uniformly
over the insulating shell. (a) Find the electric field (magnitude and
direction) in each of the regions and

(b) Graph the electric-field magnitude as a function of 
22.46 . A conducting spherical shell with inner
radius and outer radius has a positive point
charge located at its center. The total charge on
the shell is and it is insulated from its sur-
roundings (Fig. P22.46). (a) Derive expressions
for the electric-field magnitude in terms of the
distance from the center for the regions

and (b) What is the surface
charge density on the inner surface of the conducting shell? 
(c) What is the surface charge density on the outer surface of the con-
ducting shell? (d) Sketch the electric field lines and the location of all
charges. (e) Graph the electric-field magnitude as a function of 
22.47 . Concentric Spherical Shells. A
small conducting spherical shell with inner
radius and outer radius is concentric with
a larger conducting spherical shell with inner
radius and outer radius (Fig. P22.47).
The inner shell has total charge and
the outer shell has charge (a) Calcu-
late the electric field (magnitude and direc-
tion) in terms of and the distance from
the common center of the two shells for 
(i) (ii) (iii) (iv) 
(v) Show your results in a graph of the radial component of

as a function of (b) What is the total charge on the (i) inner sur-
face of the small shell; (ii) outer surface of the small shell; (iii) inner
surface of the large shell; (iv) outer surface of the large shell?
22.48 . Repeat Problem 22.47, but now let the outer shell have
charge As in Problem 22.47, the inner shell has charge 
22.49 . Repeat Problem 22.47, but now let the outer shell have
charge As in Problem 22.47, the inner shell has charge 
22.50 . A solid conducting sphere with radius carries a positive
total charge The sphere is surrounded by an insulating shell
with inner radius and outer radius The insulating shell has a
uniform charge density (a) Find the value of so that the net
charge of the entire system is zero. (b) If has the value found in
part (a), find the electric field (magnitude and direction) in each of
the regions and Show your
results in a graph of the radial component of as a function of 
(c) As a general rule, the electric field is discontinuous only at
locations where there is a thin sheet of charge. Explain how your
results in part (b) agree with this rule.

r.E
S
r 7 2R.R 6 r 6 2R,0 6 r 6 R,

r

rr.
2R.R

Q.
R

+2q.-4q.

+2q.-2q.

r.E
S

r 7 d.
c 6 r 6 d;b 6 r 6 c;a 6 r 6 b;r 6 a;

rq

+4q.
+2q,

dc

ba

r.

r 7 b.a 6 r 6 b,
r 6 a,r

-3Q,
Q

ba

r.r 7 2R.
R 6 r 6 2R,0 6 r 6 R,

QQ.2R
Q

R
c.

r = 2c.
r = 0r

r 7 c.b 6 r 6 c,a 6 r 6 b,r 6 a,
r

c.b
a.q

10-9 C>m2.2.50 *
22.51 . Negative charge is distributed uniformly over the
surface of a thin spherical insulating shell with radius Calculate
the force (magnitude and direction) that the shell exerts on a positive
point charge located (a) a distance from the center of 
the shell (outside the shell) and (b) a distance from the center
of the shell (inside the shell).
22.52 .. (a) How many excess electrons must be distributed uni-
formly within the volume of an isolated plastic sphere 30.0 cm
in diameter to produce an electric field of just outside
the surface of the sphere? (b) What is the electric field at a point
10.0 cm outside the surface of the sphere?
22.53 ... CALC An insulating hollow sphere has inner radius a
and outer radius b. Within the insulating material the volume
charge density is given by , where is a positive con-
stant. (a) In terms of and a, what is the magnitude of the electric
field at a distance r from the center of the shell, where ?
(b) A point charge q is placed at the center of the hollow space, at

. In terms of and a, what value must q have (sign and mag-
nitude) in order for the electric field to be constant in the region

, and what then is the value of the constant field in this
region?
22.54 .. CP Thomson’s Model of the Atom. In the early years
of the 20th century, a leading model of the structure of the atom
was that of the English physicist J. J. Thomson (the discoverer of
the electron). In Thomson’s model, an atom consisted of a sphere
of positively charged material in which were embedded negatively
charged electrons, like chocolate chips in a ball of cookie dough.
Consider such an atom consisting of one electron with mass and
charge which may be regarded as a point charge, and a uni-
formly charged sphere of charge and radius (a) Explain why
the equilibrium position of the electron is at the center of the
nucleus. (b) In Thomson’s model, it was assumed that the positive
material provided little or no resistance to the motion of the elec-
tron. If the electron is displaced from equilibrium by a distance less
than show that the resulting motion of the electron will be simple
harmonic, and calculate the frequency of oscillation. (Hint: Review
the definition of simple harmonic motion in Section 14.2. If it can
be shown that the net force on the electron is of this form, then it
follows that the motion is simple harmonic. Conversely, if the net
force on the electron does not follow this form, the motion is not
simple harmonic.) (c) By Thomson’s time, it was known that
excited atoms emit light waves of only certain frequencies. In his
model, the frequency of emitted light is the same as the oscillation
frequency of the electron or electrons in the atom. What would the
radius of a Thomson-model atom have to be for it to produce red light
of frequency Compare your answer to the radii of
real atoms, which are of the order of (see Appendix F for
data about the electron). (d) If the electron were displaced from
equilibrium by a distance greater than would the electron oscil-
late? Would its motion be simple harmonic? Explain your reason-
ing. (Historical note: In 1910, the atomic nucleus was discovered,
proving the Thomson model to be incorrect. An atom’s positive
charge is not spread over its volume as
Thomson supposed, but is concentrated in
the tiny nucleus of radius to

)
22.55 . Thomson’s Model of the Atom,
Continued. Using Thomson’s (outdated)
model of the atom described in Problem
22.54, consider an atom consisting of two
electrons, each of charge embedded in
a sphere of charge and radius InR.+2e
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equilibrium, each electron is a distance from the center of the
atom (Fig. P22.55). Find the distance in terms of the other prop-
erties of the atom.
22.56 . A Uniformly Charged Slab. A slab of insulating mate-
rial has thickness and is oriented so that its faces are parallel to
the -plane and given by the planes and The -
and -dimensions of the slab are very large compared to and may
be treated as essentially infinite. The slab has a uniform positive
charge density (a) Explain why the electric field due to the slab
is zero at the center of the slab (b) Using Gauss’s law,
find the electric field due to the slab (magnitude and direction) at
all points in space.
22.57 . CALC A Nonuniformly Charged Slab. Repeat Problem
22.56, but now let the charge density of the slab be given by

where is a positive constant.
22.58 . CALC A nonuniform, but spherically symmetric, distribu-
tion of charge has a charge density given as follows:

where is a positive constant. (a) Find the total charge contained
in the charge distribution. (b) Obtain an expression for the electric
field in the region (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.
22.59 . CP CALC Gauss’s Law for Gravitation. The gravita-
tional force between two point masses separated by a distance is
proportional to just like the electric force between two point
charges. Because of this similarity between gravitational and elec-
tric interactions, there is also a Gauss’s law for gravitation. (a) Let

be the acceleration due to gravity caused by a point mass at
the origin, so that Consider a spherical Gaussian
surface with radius centered on this point mass, and show that the
flux of through this surface is given by

(b) By following the same logical steps used in Section 22.3 to
obtain Gauss’s law for the electric field, show that the flux of 
through any closed surface is given by

where is the total mass enclosed within the closed surface.
22.60 . CP Applying Gauss’s Law for Gravitation. Using
Gauss’s law for gravitation (derived in part (b) of Problem 22.59),
show that the following statements are true: (a) For any spherically
symmetric mass distribution with total mass the acceleration due
to gravity outside the distribution is the same as though all the mass
were concentrated at the center. (Hint: See Example 22.5 in Section
22.4.) (b) At any point inside a spherically symmetric shell of mass,
the acceleration due to gravity is zero. (Hint: See Example 22.5.) 
(c) If we could drill a hole through a spherically symmetric planet to
its center, and if the density were uniform, we would find that the
magnitude of is directly proportional to the distance from the
center. (Hint: See Example 22.9 in Section 22.4.) We proved these
results in Section 13.6 using some fairly strenuous analysis; the
proofs using Gauss’s law for gravitation are much easier.
22.61 . (a) An insulating sphere with radius has a uniform
charge density The sphere is not centered at the origin but at

Show that the electric field inside the sphere is given byrS � b
S

.
r.
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2d

d
d (b) An insulating sphere

of radius has a spherical hole of radius 
located within its volume and centered a dis-
tance from the center of the sphere, where

(a cross section of the sphere is
shown in Fig. P22.61). The solid part of the
sphere has a uniform volume charge density

Find the magnitude and direction of the
electric field inside the hole, and show that is uniform over the
entire hole. [Hint: Use the principle of superposition and the result
of part (a).]
22.62 . A very long, solid insulating
cylinder with radius has a cylindrical
hole with radius bored along its entire
length. The axis of the hole is a distance 
from the axis of the cylinder, where 

(Fig. P22.62). The solid material
of the cylinder has a uniform volume
charge density Find the magnitude and
direction of the electric field inside the
hole, and show that is uniform over the
entire hole. (Hint: See Problem 22.61.)
22.63 . Positive charge is
distributed uniformly over each
of two spherical volumes with
radius One sphere of charge
is centered at the origin and the
other at (Fig. P22.63).
Find the magnitude and direc-
tion of the net electric field due
to these two distributions of
charge at the following points on the -axis: (a) (b)

(c) (d) 
22.64 . Repeat Problem 22.63, but now let the left-hand sphere
have positive charge and let the right-hand sphere have negative
charge 
22.65 .. CALC A nonuniform, but spherically symmetric, distri-
bution of charge has a charge density given as follows:

where is a positive constant. (a) Show that the total
charge contained in the charge distribution is (b) Show that the
electric field in the region is identical to that produced by a
point charge at (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.

CHALLENGE PROBLEMS
22.66 ... CP CALC A region in space contains a total positive
charge that is distributed spherically such that the volume
charge density is given by

Here is a positive constant having units of (a) Determine
in terms of and (b) Using Gauss’s law, derive an expression

for the magnitude of as a function of Do this separately for allr.E
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three regions. Express your answers in terms of the total charge 
Be sure to check that your results agree on the boundaries of the
regions. (c) What fraction of the total charge is contained within the
region (d) If an electron with charge is oscillat-
ing back and forth about (the center of the distribution) with
an amplitude less than show that the motion is simple har-
monic. (Hint: Review the discussion of simple harmonic motion in
Section 14.2. If, and only if, the net force on the electron is propor-
tional to its displacement from equilibrium, then the motion is sim-
ple harmonic.) (e) What is the period of the motion in part (d)? (f) If
the amplitude of the motion described in part (e) is greater than

is the motion still simple harmonic? Why or why not?
22.67 ... CP CALC A region in space contains a total positive
charge that is distributed spherically such that the volume
charge density is given byr1r2

Q

R>2,

R>2,
r = 0

q¿ = -er … R>2?

Q.

Here is a positive constant having units of (a) Determine
in terms of and (b) Using Gauss’s law, derive an expression

for the magnitude of the electric field as a function of Do this
separately for all three regions. Express your answers in terms of
the total charge (c) What fraction of the total charge is con-
tained within the region (d) What is the magnitude
of at (e) If an electron with charge is
released from rest at any point in any of the three regions, the
resulting motion will be oscillatory but not simple harmonic.
Why? (See Challenge Problem 22.66.)
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Chapter Opening Question ?
No. The electric field inside a cavity within a conductor is zero, so
there is no electric effect on the child. (See Section 22.5.)

Test Your Understanding Questions
22.1 Answer: (iii) Each part of the surface of the box will be three
times farther from the charge so the electric field will be

as strong. But the area of the box will increase by a factor
of Hence the electric flux will be multiplied by a factor of

In other words, the flux will be unchanged.
22.2 Answer: (iv), (ii), (i), (iii) In each case the electric field is
uniform, so the flux is We use the relationships for
the scalar products of unit vectors: In
case (i) we have (the electric
field and vector area are perpendicular, so there is zero flux). In 
case (ii) we have 

Similarly, in case (iii) we
have

and in
case (iv) we have 

22.3 Answer: and (tie) Gauss’s law tells us that
the flux through a closed surface is proportional to the amount of
charge enclosed within that surface. So an ordering of these sur-
faces by their fluxes is the same as an ordering by the amount of
enclosed charge. Surface encloses no charge, surface en-
closes surface en-
closes surface encloses

and surface encloses

22.4 Answer: no You might be tempted to draw a Gaussian sur-
face that is an enlarged version of the conductor, with the same
shape and placed so that it completely encloses the conductor.
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While you know the flux through this Gaussian surface (by
Gauss’s law, it’s ), the direction of the electric field
need not be perpendicular to the surface and the magnitude of the
field need not be the same at all points on the surface. It’s not pos-
sible to do the flux integral and we can’t calculate the
electric field. Gauss’s law is useful for calculating the electric field
only when the charge distribution is highly symmetric.
22.5 Answer: no Before you connect the wire to the sphere, the
presence of the point charge will induce a charge on the inner
surface of the hollow sphere and a charge on the outer surface
(the net charge on the sphere is zero). There will be an electric
field outside the sphere due to the charge on the outer surface.
Once you touch the conducting wire to the sphere, however, elec-
trons will flow from ground to the outer surface of the sphere to
neutralize the charge there (see Fig. 21.7c). As a result the sphere
will have no charge on its outer surface and no electric field out-
side.
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23
LEARNING GOALS

By studying this chapter, you will

learn:

• How to calculate the electric poten-

tial energy of a collection of charges.

• The meaning and significance of

electric potential.

• How to calculate the electric potential

that a collection of charges produces

at a point in space.

• How to use equipotential surfaces to

visualize how the electric potential

varies in space.

• How to use electric potential to 

calculate the electric field.

ELECTRIC POTENTIAL

This chapter is about energy associated with electrical interactions. Every
time you turn on a light, listen to an MP3 player, or talk on a mobile phone,
you are using electrical energy, an indispensable ingredient of our techno-

logical society. In Chapters 6 and 7 we introduced the concepts of work and
energy in the context of mechanics; now we’ll combine these concepts with what
we’ve learned about electric charge, electric forces, and electric fields. Just as we
found for many problems in mechanics, using energy ideas makes it easier to
solve a variety of problems in electricity.

When a charged particle moves in an electric field, the field exerts a force
that can do work on the particle. This work can always be expressed in terms of
electric potential energy. Just as gravitational potential energy depends on the
height of a mass above the earth’s surface, electric potential energy depends on
the position of the charged particle in the electric field. We’ll describe electric
potential energy using a new concept called electric potential, or simply potential.
In circuits, a difference in potential from one point to another is often called
voltage. The concepts of potential and voltage are crucial to understanding how
electric circuits work and have equally important applications to electron beams
used in cancer radiotherapy, high-energy particle accelerators, and many other
devices.

23.1 Electric Potential Energy
The concepts of work, potential energy, and conservation of energy proved to
be extremely useful in our study of mechanics. In this section we’ll show that
these concepts are just as useful for understanding and analyzing electrical
interactions.

? In one type of welding, electric charge flows between the welding tool and the
metal pieces that are to be joined together. This produces a glowing arc
whose high temperature fuses the pieces together. Why must the tool be held
close to the pieces being welded?
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Let’s begin by reviewing three essential points from Chapters 6 and 7. First,
when a force acts on a particle that moves from point a to point b, the work

done by the force is given by a line integral:

(work done by a force) (23.1)

where is an infinitesimal displacement along the particle’s path and is the
angle between and at each point along the path.

Second, if the force is conservative, as we defined the term in Section 7.3,
the work done by can always be expressed in terms of a potential energy U.
When the particle moves from a point where the potential energy is to a point
where it is the change in potential energy is and the work

done by the force is
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When is positive, is greater than is negative, and the potential
energy decreases. That’s what happens when a baseball falls from a high point
(a) to a lower point (b) under the influence of the earth’s gravity; the force of
gravity does positive work, and the gravitational potential energy decreases
(Fig. 23.1). When a tossed ball is moving upward, the gravitational force does
negative work during the ascent, and the potential energy increases.

Third, the work–energy theorem says that the change in kinetic energy
during a displacement equals the total work done on the parti-

cle. If only conservative forces do work, then Eq. (23.2) gives the total work, and
We usually write this as

(23.3)

That is, the total mechanical energy (kinetic plus potential) is conserved under
these circumstances.

Electric Potential Energy in a Uniform Field
Let’s look at an electrical example of these basic concepts. In Fig. 23.2 a pair of
charged parallel metal plates sets up a uniform, downward electric field with
magnitude E. The field exerts a downward force with magnitude on a
positive test charge As the charge moves downward a distance d from point
a to point b, the force on the test charge is constant and independent of its loca-
tion. So the work done by the electric field is the product of the force magni-
tude and the component of displacement in the (downward) direction of the
force:

(23.4)

This work is positive, since the force is in the same direction as the net 
displacement of the test charge.

The y-component of the electric force, is constant, and there is no 
x- or z-component. This is exactly analogous to the gravitational force on a mass m
near the earth’s surface; for this force, there is a constant y-component
and the x- and z-components are zero. Because of this analogy, we can conclude that
the force exerted on by the uniform electric field in Fig. 23.2 is conservative, just
as is the gravitational force. This means that the work done by the field is
independent of the path the particle takes from a to b. We can represent this work
with a potential-energy function U, just as we did for gravitational potential energy
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23.1 The work done on a baseball 
moving in a uniform gravitational field.

Point charge moving in
a uniform electric field
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23.2 The work done on a point charge
moving in a uniform electric field. 
Compare with Fig. 23.1.



in Section 7.1. The potential energy for the gravitational force was
hence the potential energy for the electric force is

(23.5)

When the test charge moves from height to height the work done on the
charge by the field is given by

(23.6)

When is greater than (Fig. 23.3a), the positive test charge moves down-
ward, in the same direction as the displacement is in the same direction as the
force so the field does positive work and decreases. [In particular, if

as in Fig. 23.2, Eq. (23.6) gives in agreement with
Eq. (23.4).] When is less than (Fig. 23.3b), the positive test charge moves
upward, in the opposite direction to the displacement is opposite the force, the
field does negative work, and U increases.

If the test charge is negative, the potential energy increases when it moves
with the field and decreases when it moves against the field (Fig. 23.4).

Whether the test charge is positive or negative, the following general rules
apply: U increases if the test charge moves in the direction opposite the electric
force (Figs. 23.3b and 23.4a); U decreases if moves in the sameq0F
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(a) Positive charge moves in the direction of E:
•  Field does positive work on charge.
• U decreases.
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(b) Positive charge moves opposite E:
•  Field does negative work on charge.
• U increases.
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23.3 A positive charge moving (a) in the direction of the electric field and (b) in the
direction opposite .E
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(a) Negative charge moves in the direction of E:
•  Field does negative work on charge.
• U increases.
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(b) Negative charge moves opposite E:
•  Field does positive work on charge.
• U decreases.
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23.4 A negative charge moving (a) in the direction of the electric field and (b) in the
direction opposite . Compare with Fig. 23.3.E

S E
S



23.1 Electric Potential Energy 757

direction as (Figs. 23.3a and 23.4b). This is the same behavior as for
gravitational potential energy, which increases if a mass m moves upward (oppo-
site the direction of the gravitational force) and decreases if m moves downward
(in the same direction as the gravitational force).

CAUTION Electric potential energy The relationship between electric potential energy
change and motion in an electric field is an important one that we’ll use often, but that
takes some effort to truly understand. Take the time to carefully study the preceding para-
graph as well as Figs. 23.3 and 23.4. Doing so now will help you tremendously later!

Electric Potential Energy of Two Point Charges
The idea of electric potential energy isn’t restricted to the special case of a uni-
form electric field. Indeed, we can apply this concept to a point charge in any
electric field caused by a static charge distribution. Recall from Chapter 21 that
we can represent any charge distribution as a collection of point charges. There-
fore it’s useful to calculate the work done on a test charge moving in the elec-
tric field caused by a single, stationary point charge 

We’ll consider first a displacement along the radial line in Fig. 23.5. The force
on is given by Coulomb’s law, and its radial component is

(23.7)

If q and have the same sign the force is repulsive and is posi-
tive; if the two charges have opposite signs, the force is attractive and is neg-
ative. The force is not constant during the displacement, and we have to
integrate to calculate the work done on by this force as moves from
a to b:

(23.8)

The work done by the electric force for this particular path depends only on the
endpoints.

Now let’s consider a more general displacement (Fig. 23.6) in which a and b
do not lie on the same radial line. From Eq. (23.1) the work done on during
this displacement is given by

But Fig. 23.6 shows that That is, the work done during a small
displacement depends only on the change in the distance r between the
charges, which is the radial component of the displacement. Thus Eq. (23.8) is
valid even for this more general displacement; the work done on by the electric
field produced by q depends only on and not on the details of the path.
Also, if returns to its starting point a by a different path, the total work done in
the round-trip displacement is zero (the integral in Eq. (23.8) is from back to

These are the needed characteristics for a conservative force, as we defined it
in Section 7.3. Thus the force on is a conservative force.

We see that Eqs. (23.2) and (23.8) are consistent if we define the potential
energy to be when is a distance from q, and to be

when is a distance from q. Thus the potential energy U
when the test charge is at any distance r from charge q is

(23.9)U =
1

4pP0
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(electric potential energy of 
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from a to b along
a radial line
from q.

23.5 Test charge moves along a
straight line extending radially from
charge As it moves from to the 
distance varies from to rb.ra

b,aq.

q0

f
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r

b
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rb

E
S
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S
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Test charge q0 moves from a to b
along an arbitrary path.

q0
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S

q

23.6 The work done on charge by 
the electric field of charge does not
depend on the path taken, but only on the
distances and rb.ra

q
q0
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Equation (23.9) is valid no matter what the signs of the charges and . The
potential energy is positive if the charges q and have the same sign (Fig. 23.7a)
and negative if they have opposite signs (Fig. 23.7b).

CAUTION Electric potential energy vs. electric force Don’t confuse Eq. (23.9) for the
potential energy of two point charges with the similar expression in Eq. (23.7) for the
radial component of the electric force that one charge exerts on the other. Potential energy
U is proportional to while the force component is proportional to ❙

Potential energy is always defined relative to some reference point where
In Eq. (23.9), U is zero when q and are infinitely far apart and 

Therefore U represents the work that would be done on the test charge by the
field of q if moved from an initial distance r to infinity. If q and have the
same sign, the interaction is repulsive, this work is positive, and U is positive at
any finite separation (Fig. 23.7a). If the charges have opposite signs, the interac-
tion is attractive, the work done is negative, and U is negative (Fig. 23.7b).

We emphasize that the potential energy U given by Eq. (23.9) is a shared
property of the two charges. If the distance between and is changed from 
to the change in potential energy is the same whether q is held fixed and is
moved or is held fixed and q is moved. For this reason, we never use the
phrase “the electric potential energy of a point charge.” (Likewise, if a mass m is
at a height h above the earth’s surface, the gravitational potential energy is a
shared property of the mass m and the earth. We emphasized this in Sections 7.1
and 13.3.)

Equation (23.9) also holds if the charge is outside a spherically symmetric
charge distribution with total charge q; the distance r is from to the center of
the distribution. That’s because Gauss’s law tells us that the electric field outside
such a distribution is the same as if all of its charge q were concentrated at its
center (see Example 22.9 in Section 22.4).

q0

q0

q0

q0rb,
raq0q

q0q0

q0

r = q .q0U = 0.

1>r 2.Fr1>r,

q0

q0q

Example 23.1 Conservation of energy with electric forces

A positron (the electron’s antiparticle) has mass 
and charge Suppose a positron
moves in the vicinity of an (alpha) particle, which has charge

and mass The 
particle’s mass is more than 7000 times that of the positron, so we
assume that the particle remains at rest. When the positron is

from the particle, it is moving directly away
from the particle at (a) What is the positron’s
speed when the particles are apart? (b) What is
the positron’s speed when it is very far from the particle? 
(c) Suppose the initial conditions are the same but the moving par-
ticle is an electron (with the same mass as the positron but charge

). Describe the subsequent motion.

SOLUTION

IDENTIFY and SET UP: The electric force between a positron (or
an electron) and an particle is conservative, so mechanical
energy (kinetic plus potential) is conserved. Equation (23.9) gives the
potential energy U at any separation : The potential-energy function
for parts (a) and (b) looks like that of Fig. 23.7a, and the function for
part (c) looks like that of Fig. 23.7b. We are given the positron speed

when the separation between the particles is
In parts (a) and (b) we use Eqs. (23.3) and

(23.9) to find the speed for and 
respectively. In part (c) we replace the positron with an

electron and reconsider the problem.
rc S q ,

r =r = rb = 2.00 * 10-10 m
ra = 1.00 * 10-10 m.
va = 3.00 * 106 m>s

r

a

q0 = -e

a

2.00 * 10-10 m
3.00 * 106 m>s.a

a1.00 * 10-10 m
a

a6.64 * 10-27 kg.q = +2e = 3.20 * 10-19 C
a

q0 = +e = +1.60 * 10-19 C.
9.11 * 10-31 kg EXECUTE: (a) Both particles have positive charge, so the positron

speeds up as it moves away from the particle. From the energy-
conservation equation, Eq. (23.3), the final kinetic energy is

In this expression,

Hence the positron kinetic energy and speed at 
are

vb =
A

2Kb

m
=
A

216.41 * 10-18 J2

9.11 * 10-31 kg
= 3.8 * 106 m>s

= 6.41 * 10-18 J

Kb = 1
2 mv 2

b = 4.10 * 10-18 J + 4.61 * 10-18 J - 2.30 * 10-18 J

10-10 m
r = rb = 2.00 *

Ub =
1

4pP0

qq0

rb
= 2.30 * 10-18 J

= 4.61 * 10-18 J

*
13.20 * 10-19 C211.60 * 10-19 C2

1.00 * 10-10 m

Ua =
1

4pP0

qq0

ra
= 19.0 * 109 N # m2>C22

= 4.10 * 10-18 J

Ka = 1
2 mv 2

a = 1
2 19.11 * 10-31 kg213.00 * 106 m>s22

Kb = 1
2 mv 2

b = Ka + Ua - Ub

a

23.7 Graphs of the potential energy of
two point charges and versus their
separation r.
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(b) q and q0 have opposite signs.
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(b) When the positron and particle are very far apart so that
the final potential energy approaches zero. Again

from energy conservation, the final kinetic energy and speed of the
positron in this case are

(c) The electron and particle have opposite charges, so the
force is attractive and the electron slows down as it moves away.
Changing the moving particle’s sign from to means that the
initial potential energy is now which
makes the total mechanical energy negative:

The total mechanical energy would have to be positive for the
electron to move infinitely far away from the particle. Like a
rock thrown upward at low speed from the earth’s surface, it will
reach a maximum separation from the particle before
reversing direction. At this point its speed and its kinetic energy 
are zero, so at separation we haverd

Kd

ar = rd

a

= -0.51 * 10-18 J

Ka + Ua = 14.10 * 10-18 J2 - 14.61 * 10-18 J2

Ua = -4.61 * 10-18 J,
-e+e

a

vc =
A

2Kc

m
=
A

218.71 * 10-18 J2

9.11 * 10-31 kg
= 4.4 * 106 m>s

= 8.71 * 10-18 J

Kc = Ka + Ua - Uc = 4.10 * 10-18 J + 4.61 * 10-18 J - 0

Ucr = rc S q ,
a

For we have so the
electron kinetic energy and speed at this point are

EVALUATE: Both particles behave as expected as they move away
from the particle: The positron speeds up, and the electron slows
down and eventually turns around. How fast would an electron have
to be moving at to travel infinitely far from
the particle? (Hint: See Example 13.4 in Section 13.3.)a

ra = 1.00 * 10-10 m

a

vb =
A

2Kb

m
=
A

211.79 * 10-18 J2

9.11 * 10-31 kg
= 2.0 * 106 m>s

- 1-2.30 * 10-18 J2 = 1.79 * 10-18 J

Kb = 1
2 mv 2

b = 4.10 * 10-18 J + 1-4.61 * 10-18 J2

Ub = -2.30 * 10-18 J,rb = 2.00 * 10-10 m

= 9.0 * 10-10 m

=
19.0 * 109 N # m2>C22

-0.51 * 10-18 J
13.20 * 10-19 C21-1.60 * 10-19C2

rd =
1

Ud

qq0

4pP0

Ud =
1

4pP0

qq0

rd
= -0.51 * 10-18 J

Ud = Ka + Ua - Kd = 1-0.51 * 10-18 J2 - 0

Electric Potential Energy with Several Point Charges
Suppose the electric field in which charge moves is caused by several point
charges at distances from as in Fig. 23.8. For exam-
ple, could be a positive ion moving in the presence of other ions (Fig. 23.9). The
total electric field at each point is the vector sum of the fields due to the individ-
ual charges, and the total work done on during any displacement is the sum of
the contributions from the individual charges. From Eq. (23.9) we conclude that
the potential energy associated with the test charge at point a in Fig. 23.8 is the
algebraic sum (not a vector sum):

(23.10)U =
q0

4pP0
a

q1

r1
+

q2

r2
+

q3

r3
+ Á b =

q0

4pP0
a

i

qi
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q0

q0

q0

q0,r1, r2, r3, Áq1, q2, q3, Á
q0E

S

(point charge 
and collection
of charges )qi

q0

When is at a different point the potential energy is given by the same
expression, but are the distances from to point The work
done on charge when it moves from a to b along any path is equal to the dif-
ference between the potential energies when is at a and at 

We can represent any charge distribution as a collection of point charges, so
Eq. (23.10) shows that we can always find a potential-energy function for any
static electric field. It follows that for every electric field due to a static charge
distribution, the force exerted by that field is conservative.

Equations (23.9) and (23.10) define U to be zero when all the distances
are infinite—that is, when the test charge is very far away from all

the charges that produce the field. As with any potential-energy function, the
point where is arbitrary; we can always add a constant to make U equal
zero at any point we choose. In electrostatics problems it’s usually simplest to
choose this point to be at infinity. When we analyze electric circuits in Chapters
25 and 26, other choices will be more convenient.

U = 0

q0r1, r2, Á

b.q0Ua - Ub
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b.q1, q2, Ár1, r2, Á
b,q0

23.8 The potential energy associated
with a charge at point depends on the
other charges and and on their
distances and from point a.r3r1, r2,

q3q1, q2,
aq0
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Equation (23.10) gives the potential energy associated with the presence of the
test charge in the field produced by But there is also poten-
tial energy involved in assembling these charges. If we start with charges

all separated from each other by infinite distances and then bring
them together so that the distance between and is the total potential
energy U is the sum of the potential energies of interaction for each pair of
charges. We can write this as

(23.11)

This sum extends over all pairs of charges; we don’t let (because that
would be an interaction of a charge with itself ), and we include only terms with

to make sure that we count each pair only once. Thus, to account for the
interaction between and we include a term with and but not a
term with and 

Interpreting Electric Potential Energy
As a final comment, here are two viewpoints on electric potential energy. We
have defined it in terms of the work done by the electric field on a charged parti-
cle moving in the field, just as in Chapter 7 we defined potential energy in terms
of the work done by gravity or by a spring. When a particle moves from point a
to point the work done on it by the electric field is Thus the
potential-energy difference equals the work that is done by the electric
force when the particle moves from a to When is greater than the field
does positive work on the particle as it “falls” from a point of higher potential
energy to a point of lower potential energy 

An alternative but equivalent viewpoint is to consider how much work we
would have to do to “raise” a particle from a point b where the potential energy is

to a point a where it has a greater value (pushing two positive charges
closer together, for example). To move the particle slowly (so as not to give it any
kinetic energy), we need to exert an additional external force that is equal
and opposite to the electric-field force and does positive work. The potential-
energy difference is then defined as the work that must be done by an
external force to move the particle slowly from b to a against the electric force.
Because is the negative of the electric-field force and the displacement is in
the opposite direction, this definition of the potential difference is equiv-
alent to that given above. This alternative viewpoint also works if is less than

corresponding to “lowering” the particle; an example is moving two positive
charges away from each other. In this case, is again equal to the work
done by the external force, but now this work is negative.

We will use both of these viewpoints in the next section to interpret what is
meant by electric potential, or potential energy per unit charge.
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23.9 This ion engine for spacecraft uses
electric forces to eject a stream of positive
xenon ions at speeds in excess of 
30 km/s. The thrust produced is very low
(about 0.09 newton) but can be maintained
continuously for days, in contrast to chem-
ical rockets, which produce a large thrust
for a short time (see Fig. 8.33). Such ion
engines have been used for maneuvering
interplanetary spacecraft.

1Xe+2

Example 23.2 A system of point charges

Two point charges are located on the -axis, at and
at (a) Find the work that must be done by an

external force to bring a third point charge from infinity
to (b) Find the total potential energy of the system of three
charges.

SOLUTION

IDENTIFY and SET UP: Figure 23.10 shows the final arrangement
of the three charges. In part (a) we need to find the work W that
must be done on by an external force to bring in fromq3F

S
extq3

x = 2a.
q3 = +e

x = a.q2 = +e
x = 0q1 = -ex infinity to We do this by using Eq. (23.10) to find the

potential energy associated with in the presence of and In
part (b) we use Eq. (23.11), the expression for the potential energy
of a collection of point charges, to find the total potential energy of
the system.

q2.q1q3

x = 2a.

23.10 Our sketch of the situation after the third charge has been
brought in from infinity.
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EXECUTE: (a) The work W equals the difference between (i) the
potential energy associated with when it is at and
(ii) the potential energy when it is infinitely far away. The sec-
ond of these is zero, so the work required is equal to The 
distances between the charges are and so from
Eq. (23.10),

This is positive, just as we should expect. If we bring in from
infinity along the -axis, it is attracted by but is repelled more
strongly by Hence we must do positive work to push to the
position at 

(b) From Eq. (23.11), the total potential energy of the three-
charge system is

x = 2a.
q3q2.

q1+x
q3

W = U =
q3
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r13
+
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r23
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4pP0
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+e

a
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+e2

8pP0a

r23 = a,r13 = 2a
U.

x = 2aq3U

EVALUATE: Our negative result in part (b) means that the system
has lower potential energy than it would if the three charges were
infinitely far apart. An external force would have to do negative
work to bring the three charges from infinity to assemble this
entire arrangement and would have to do positive work to move
the three charges back to infinity.

=
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1-e21e2
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23.2 Electric Potential
In Section 23.1 we looked at the potential energy U associated with a test charge

in an electric field. Now we want to describe this potential energy on a “per
unit charge” basis, just as electric field describes the force per unit charge on a
charged particle in the field. This leads us to the concept of electric potential,
often called simply potential. This concept is very useful in calculations involv-
ing energies of charged particles. It also facilitates many electric-field calcula-
tions because electric potential is closely related to the electric field When we
need to determine an electric field, it is often easier to determine the potential first
and then find the field from it.

Potential is potential energy per unit charge. We define the potential V at any
point in an electric field as the potential energy U per unit charge associated with
a test charge at that point:

(23.12)

Potential energy and charge are both scalars, so potential is a scalar. From 
Eq. (23.12) its units are the units of energy divided by those of charge. The 
SI unit of potential, called one volt (1 V) in honor of the Italian electrical experi-
menter Alessandro Volta (1745–1827), equals 1 joule per coulomb:

Let’s put Eq. (23.2), which equates the work done by the electric force during
a displacement from a to b to the quantity on a “work per
unit charge” basis. We divide this equation by obtaining

(23.13)

where is the potential energy per unit charge at point a and similarly
for We call and the potential at point a and potential at point respec-
tively. Thus the work done per unit charge by the electric force when a charged
body moves from a to b is equal to the potential at a minus the potential at b.
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q0,
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1 V = 1 volt = 1 J>C = 1 joule>coulomb

V =
U

q0
 or U = q0V

q0

E
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.
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Test Your Understanding of Section 23.1 Consider the system of
three point charges in Example 21.4 (Section 21.3) and shown in Fig. 21.14. (a)
What is the sign of the total potential energy of this system? (i) positive; (ii) nega-
tive; (iii) zero. (b) What is the sign of the total amount of work you would have to do to
move these charges infinitely far from each other? (i) positive; (ii) negative; (iii) zero. ❙

PhET: Charges and Fields
ActivPhysics 11.13: Electrical Potential
Energy and Potential



The difference is called the potential of a with respect to we some-
times abbreviate this difference as (note the order of the sub-
scripts). This is often called the potential difference between a and but that’s
ambiguous unless we specify which is the reference point. In electric circuits,
which we will analyze in later chapters, the potential difference between two
points is often called voltage (Fig. 23.11). Equation (23.13) then states: the
potential of with respect to equals the work done by the electric force
when a UNIT charge moves from to

Another way to interpret the potential difference in Eq. (23.13) is to use
the alternative viewpoint mentioned at the end of Section 23.1. In that viewpoint,

is the amount of work that must be done by an external force to move a
particle of charge slowly from b to a against the electric force. The work that
must be done per unit charge by the external force is then 

In other words: the potential of with respect to equals
the work that must be done to move a UNIT charge slowly from to against
the electric force.

An instrument that measures the difference of potential between two points is
called a voltmeter. (In Chapter 26 we’ll discuss how these devices work.) Volt-
meters that can measure a potential difference of are common, and sensitiv-
ities down to can be attained.

Calculating Electric Potential
To find the potential V due to a single point charge we divide Eq. (23.9) by 

(potential due to a point charge) (23.14)

where r is the distance from the point charge q to the point at which the potential
is evaluated. If q is positive, the potential that it produces is positive at all points;
if q is negative, it produces a potential that is negative everywhere. In either case,
V is equal to zero at an infinite distance from the point charge. Note that
potential, like electric field, is independent of the test charge that we use to
define it.

Similarly, we divide Eq. (23.10) by to find the potential due to a collection
of point charges:

(23.15)V =
U
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Vab = Va - Vb
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(potential due to a collection 
of point charge)

In this expression, is the distance from the charge, to the point at which
V is evaluated. Just as the electric field due to a collection of point charges is the
vector sum of the fields produced by each charge, the electric potential due to a
collection of point charges is the scalar sum of the potentials due to each
charge. When we have a continuous distribution of charge along a line, over a
surface, or through a volume, we divide the charge into elements and the
sum in Eq. (23.15) becomes an integral:

(23.16)V =
1

4pP0 L
dq

r

dq,

qi,ithri

23.11 The voltage of this battery equals
the difference in potential 
between its positive terminal (point a) and
its negative terminal (point b).

Vab = Va - Vb

Point a (positive terminal)

Point b (negative terminal)

Vab 5 1.5 volts

Application Electrocardiography
The electrodes used in an electrocardiogram—
EKG or ECG for short—measure the potential
differences (typically no greater than

between different parts of
the patient’s skin. These are indicative of the
potential differences between regions of the
heart, and so provide a sensitive way to detect
any abnormalities in the electrical activity that
drives cardiac function.

1 mV = 10-3 V)

(potential due to a continuous
distribution of charge)

where r is the distance from the charge element to the field point where we are
finding V. We’ll work out several examples of such cases. The potential defined
by Eqs. (23.15) and (23.16) is zero at points that are infinitely far away from all
the charges. Later we’ll encounter cases in which the charge distribution itself

dq



23.2 Electric Potential 763

extends to infinity. We’ll find that in such cases we cannot set at infinity,
and we’ll need to exercise care in using and interpreting Eqs. (23.15) and (23.16).

CAUTION What is electric potential? Before getting too involved in the details of how
to calculate electric potential, you should stop and remind yourself what potential is. The
electric potential at a certain point is the potential energy that would be associated with a
unit charge placed at that point. That’s why potential is measured in joules per coulomb, or
volts. Keep in mind, too, that there doesn’t have to be a charge at a given point for a poten-
tial V to exist at that point. (In the same way, an electric field can exist at a given point
even if there’s no charge there to respond to it.) ❙

Finding Electric Potential from Electric Field
When we are given a collection of point charges, Eq. (23.15) is usually the easi-
est way to calculate the potential V. But in some problems in which the electric
field is known or can be found easily, it is easier to determine V from The
force on a test charge can be written as so from Eq. (23.1) the
work done by the electric force as the test charge moves from a to b is given by

If we divide this by and compare the result with Eq. (23.13), we find

(23.17)Va - Vb = L
b

a
E
S # d l

S
= L

b

a
Ecosf dl

q0

WaSb = L
b

a
F
S # d l

S
= L

b

a
q0 E

S # d l
S

F
S

� q0E
S

,q0F
S

E
S

.

V = 0

(potential difference
as an integral of )E

S

The value of is independent of the path taken from a to just as the
value of is independent of the path. To interpret Eq. (23.17), remember that 

is the electric force per unit charge on a test charge. If the line integral

is positive, the electric field does positive work on a positive test
charge as it moves from a to In this case the electric potential energy decreases
as the test charge moves, so the potential energy per unit charge decreases as
well; hence is less than and is positive.

As an illustration, consider a positive point charge (Fig. 23.12a). The electric
field is directed away from the charge, and is positive at any finite
distance from the charge. If you move away from the charge, in the direction of

you move toward lower values of if you move toward the charge, in the
direction opposite you move toward greater values of V. For the negative point
charge in Fig. 23.12b, is directed toward the charge and is nega-
tive at any finite distance from the charge. In this case, if you move toward the
charge, you are moving in the direction of and in the direction of decreasing
(more negative) V. Moving away from the charge, in the direction opposite 
moves you toward increasing (less negative) values of V. The general rule, valid
for any electric field, is: Moving with the direction of means moving in the
direction of decreasing and moving against the direction of means moving
in the direction of increasing V.

Also, a positive test charge experiences an electric force in the direction of
toward lower values of a negative test charge experiences a force opposite 

toward higher values of V. Thus a positive charge tends to “fall” from a high-potential
region to a lower-potential region. The opposite is true for a negative charge.

Notice that Eq. (23.17) can be rewritten as

(23.18)

This has a negative sign compared to the integral in Eq. (23.17), and the limits
are reversed; hence Eqs. (23.17) and (23.18) are equivalent. But Eq. (23.18) has a
slightly different interpretation. To move a unit charge slowly against the electric

Va - Vb = -L
a

b
E
S # d l

S

E
S

,V;E
S

,
q0

E
S

V,
E
S

E
S

,
E
S

V = q/4pP0rE
S

E
S

,
V;E

S
,

V = q/4pP0r

Va - VbVaVb

b.
1b

a E
S # d l

S
E
S

WaSb

b,Va - Vb

V decreases
as you move
outward.

V increases
as you move
inward.

V increases
as you move
outward.

V decreases
as you move
inward.

(a) A positive point charge

(b) A negative point charge

E
S

E
S

23.12 If you move in the direction of ,
electric potential V decreases; if you move
in the direction opposite , V increases.E

S

E
S



force, we must apply an external force per unit charge equal to equal and
opposite to the electric force per unit charge Equation (23.18) says that

the potential of a with respect to equals the work done per unit
charge by this external force to move a unit charge from b to This is the same
alternative interpretation we discussed under Eq. (23.13).

Equations (23.17) and (23.18) show that the unit of potential difference 
is equal to the unit of electric field multiplied by the unit of distance

Hence the unit of electric field can be expressed as 1 volt per meter
as well as 

In practice, the volt per meter is the usual unit of electric-field magnitude.

Electron Volts
The magnitude e of the electron charge can be used to define a unit of energy that
is useful in many calculations with atomic and nuclear systems. When a particle
with charge q moves from a point where the potential is to a point where it is

the change in the potential energy U is

If the charge q equals the magnitude e of the electron charge, 
and the potential difference is the change in energy is

This quantity of energy is defined to be 1 electron volt

The multiples meV, keV, MeV, GeV, and TeV are often used.

CAUTION Electron volts vs. volts Remember that the electron volt is a unit of energy,
not a unit of potential or potential difference! ❙

When a particle with charge e moves through a potential difference of 1 volt,
the change in potential energy is 1 eV. If the charge is some multiple of e—say
Ne—the change in potential energy in electron volts is N times the potential dif-
ference in volts. For example, when an alpha particle, which has charge 2e,
moves between two points with a potential difference of 1000 V, the change in
potential energy is To confirm this, we write

Although we have defined the electron volt in terms of potential energy, we
can use it for any form of energy, such as the kinetic energy of a moving particle.
When we speak of a “one-million-electron-volt proton,” we mean a proton with a
kinetic energy of one million electron volts equal to 

J. The Large Hadron Collider near Geneva, Switzer-
land, is designed to accelerate protons to a kinetic energy of 7 TeV .17 * 1012 eV2
10-19 J2 = 1.602 * 10-13

1106211.602 *11 MeV2,

= 3.204 * 10-16 J = 2000 eV

Ua - Ub = qVab = 12e211000 V2 = 12211.602 * 10-19 C211000 V2

211000 eV2 = 2000 eV.

1 eV = 1.602 * 10-19 J

11 eV2:

Ua - Ub = 11.602 * 10-19 C211 V2 = 1.602 * 10-19 J

Vab = 1 V,10-19 C,
1.602 *

Ua - Ub = q1Va - Vb2 = qVab

Va,
Vb

1 V>m = 1 volt>meter = 1 N>C = 1 newton>coulomb

1 N>C:11 V>m2,
11 m2.

11 N>C2
11 V2

a.
b,Va - Vb = Vab,
E
S

.
�E

S
,
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Example 23.3 Electric force and electric potential

A proton (charge ) moves a distance
in a straight line between points and in a linear

accelerator. The electric field is uniform along this line, with mag-
bad = 0.50 m

+e = 1.602 * 10-19 C nitude in the direction
from to Determine (a) the force on the proton; (b) the work
done on it by the field; (c) the potential difference Va - Vb.

b.a
E = 1.5 * 107 V>m = 1.5 * 107 N>C
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SOLUTION

IDENTIFY and SET UP: This problem uses the relationship between
electric field and electric force. It also uses the relationship among
force, work, and potential-energy difference. We are given the
electric field, so it is straightforward to find the electric force on
the proton. Calculating the work is also straightforward because 
is uniform, so the force on the proton is constant. Once the work is
known, we find using Eq. (23.13).

EXECUTE: (a) The force on the proton is in the same direction as
the electric field, and its magnitude is

(b) The force is constant and in the same direction as the dis-
placement, so the work done on the proton is

= 7.5 * 106 eV = 7.5 MeV

= 11.2 * 10-12 J2
1 eV

1.602 * 10-19 J

WaSb = Fd = 12.4 * 10-12 N210.50 m2 = 1.2 * 10-12 J

= 2.4 * 10-12 N

F = qE = 11.602 * 10-19 C211.5 * 107 N>C2

Va - Vb

E
S

(c) From Eq. (23.13) the potential difference is the work per
unit charge, which is

We can get this same result even more easily by remembering that
1 electron volt equals 1 volt multiplied by the charge The work
done is and the charge is so the potential differ-
ence is 

EVALUATE: We can check our result in part (c) by using Eq. (23.17)
or Eq. (23.18). The angle between the constant field and the
displacement is zero, so Eq. (23.17) becomes

The integral of from to is just the distance so we again
find

Va - Vb = Ed = 11.5 * 107 V>m210.50 m2 = 7.5 * 106 V

d,badl

Va - Vb = L
b

a
Ecosf dl = L

b

a
E dl = EL

b

a
dl

E
S

f

17.5 * 106 eV2>e = 7.5 * 106 V.
e,7.5 * 106 eV

e.

= 7.5 MV

= 7.5 * 106 J>C = 7.5 * 106 V

Va - Vb =
WaSb

q
=

1.2 * 10-12 J

1.602 * 10-19 C

Example 23.4 Potential due to two point charges

An electric dipole consists of point charges and
placed 10.0 cm apart (Fig. 23.13). Compute the

electric potentials at points and .

SOLUTION

IDENTIFY and SET UP: This is the same arrangement as in Exam-
ple 21.8, in which we calculated the electric field at each point by
doing a vector sum. Here our target variable is the electric poten-
tial at three points, which we find by doing the algebraic sum in
Eq. (23.15).

EXECUTE: At point we have and so
Eq. (23.15) becomes

In a similar way you can show that the potential at point b (where
and ) is and that the

potential at point c (where ) is 

EVALUATE: Let’s confirm that these results make sense. Point a is
closer to the �12-nC charge than to the �12-nC charge, so the
potential at a is negative. The potential is positive at point b, which

Vc = 0.r1 = r2 = 0.130 m
Vb = 1930 Vr2 = 0.140 mr1 = 0.040 m

= 1800 V + 1-2700 V2 = -900 V

= 1800 N # m>C + 1-2700 N # m>C2
+ 19.0 * 109 N # m2>C22

1-12 * 10-9 C2

0.040 m

= 19.0 * 109 N # m2>C22
12 * 10-9 C

0.060 m

Va =
1

4pP0
a

i

qi

ri
=

1

4pP0

q1

r1
+

1

4pP0

q2

r2

r2 = 0.040 m,r1 = 0.060 ma

V

cb,a,
q2 = -12 nC

q1 = +12 nC 23.13 What are the potentials at points a, b, and c due to this
electric dipole?

q1 q2

6.0
cm

4.0
cm

4.0
cm

c

13.0 cm13.0 cm

ab

is closer to the �12-nC charge than the �12-nC charge. Finally,
point c is equidistant from the �12-nC charge and the �12-nC
charge, so the potential there is zero. (The potential is also equal to
zero at a point infinitely far from both charges.)

Comparing this example with Example 21.8 shows that it’s
much easier to calculate electric potential (a scalar) than electric
field (a vector). We’ll take advantage of this simplification when-
ever possible.



766 CHAPTER 23 Electric Potential

Example 23.5 Potential and potential energy

Compute the potential energy associated with a -nC point
charge if it is placed at points and in Fig. 23.13.

SOLUTION

IDENTIFY and SET UP: The potential energy U associated with a
point charge at a location where the electric potential is V is

We use the values of from Example 23.4.

EXECUTE: At the three points we find

All of these values correspond to and being zero at infinity.VU

Uc = qVc = 0

Ub = qVb = 14.0 * 10-9 C211930 J>C2 = 7.7 * 10-6 J

Ua = qVa = 14.0 * 10-9 C21-900 J>C2 = -3.6 * 10-6 J

VU = qV.
q

cb,a,
+4.0 EVALUATE: Note that zero net work is done on the -nC charge if

it moves from point to infinity by any path. In particular, let the
path be along the perpendicular bisector of the line joining the other
two charges and in Fig. 23.13. As shown in Example 21.8
(Section 21.5), at points on the bisector, the direction of is per-
pendicular to the bisector. Hence the force on the -nC charge is
perpendicular to the path, and no work is done in any displacement
along it.

4.0
E
S

q2q1

c
4.0

Example 23.6 Finding potential by integration

By integrating the electric field as in Eq. (23.17), find the potential
at a distance from a point charge 

SOLUTION

IDENTIFY and SET UP: We let point in Eq. (23.17) be at distance
and let point be at infinity (Fig. 23.14). As usual, we choose the

potential to be zero at an infinite distance from the charge q.

EXECUTE: To carry out the integral, we can choose any path we
like between points and . The most convenient path is a radial
line as shown in Fig. 23.14, so that is in the radial direction and
has magnitude Writing we have from Eq. (23.17)

V =
q

4pP0r

= -
q

4pP0 r
`
q

r
= 0 - a -

q

4pP0r
b

= L
q

r

1

4pP0

q

r 2
rN # rNdr = L

q

r

q

4pP0r 2
dr

V - 0 = V = L
q

r
E
S # d l

S

d l
S

� rNdr,dr.
d l

S
ba

br
a

q.r

EVALUATE: Our result agrees with Eq. (23.14) and is correct for
positive or negative q.

23.14 Calculating the potential by integrating for a single
point charge.

E
S

Example 23.7 Moving through a potential difference

In Fig. 23.15 a dust particle with mass 
and charge starts from rest and moves in 

a straight line from point to point What is its speed at
point

SOLUTION

IDENTIFY and SET UP: Only the conservative electric force acts
on the particle, so mechanical energy is conserved: 

We get the potential energies from the UUa = Kb + Ub.
Ka +

b?
vb.a

q0 = 2.0 nC=  5.0 mg
m = 5.0 * 10-9 kg 23.15 The particle moves from point a to point b; its accelera-

tion is not constant.

1.0
cm

1.0
cm

1.0
cm

a b
23.0 nC3.0 nC

Particle

corresponding potentials using Eq. (23.12): and
Ub = q0Vb.

Ua = q0VaV
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EXECUTE: We have and We substitute these
and our expressions for and into the energy-conservation
equation, then solve for We find

We calculate the potentials using Eq. (23.15), :

= 1350 V

+
1-3.0 * 10-9 C2

0.020 m
b

Va = 19.0 * 109 N # m2>C22a
3.0 * 10-9 C

0.010 m

V = q>4pP0r

v =
A

2q01Va - Vb2

m

0 + q0Va = 1
2mv2 + q0Vb

v.
UbUa

Kb = 1
2 mv2.Ka = 0

Finally,

EVALUATE: Our result makes sense: The positive test charge speeds
up as it moves away from the positive charge and toward the nega-
tive charge. To check unit consistency in the final line of the calcu-
lation, note that so the numerator under the radical
has units of or kg # m2>s2.J

1 V = 1 J>C,

v =
A

212.0 * 10-9 C212700 V2

5.0 * 10-9 kg
= 46 m>s

Va - Vb = 11350 V2 - 1-1350 V2 = 2700 V

= -1350 V

+
1-3.0 * 10-9 C2

0.010 m
b

Vb = 19.0 * 109 N # m2>C22a
3.0 * 10-9 C

0.020 m

Test Your Understanding of Section 23.2 If the electric potential at a certain
point is zero, does the electric field at that point have to be zero? (Hint: Consider point 
in Example 23.4 and Example 21.8.) ❙

c

23.3 Calculating Electric Potential
When calculating the potential due to a charge distribution, we usually follow
one of two routes. If we know the charge distribution, we can use Eq. (23.15) or
(23.16). Or if we know how the electric field depends on position, we can use Eq.
(23.17), defining the potential to be zero at some convenient place. Some prob-
lems require a combination of these approaches.

As you read through these examples, compare them with the related examples
of calculating electric field in Section 21.5. You’ll see how much easier it is to
calculate scalar electric potentials than vector electric fields. The moral is clear:
Whenever possible, solve problems using an energy approach (using electric
potential and electric potential energy) rather than a dynamics approach (using
electric fields and electric forces).

Problem-Solving Strategy 23.1 Calculating Electric Potential

IDENTIFY the relevant concepts: Remember that electric potential
is potential energy per unit charge.

SET UP the problem using the following steps:
1. Make a drawing showing the locations and values of the

charges (which may be point charges or a continuous distribu-
tion of charge) and your choice of coordinate axes.

2. Indicate on your drawing the position of the point at which you
want to calculate the electric potential . Sometimes this posi-
tion will be an arbitrary one (say, a point a distance from the
center of a charged sphere).

EXECUTE the solution as follows:
1. To find the potential due to a collection of point charges, use 

Eq. (23.15). If you are given a continuous charge distribution,
devise a way to divide it into infinitesimal elements and use 
Eq. (23.16). Carry out the integration, using appropriate limits
to include the entire charge distribution.

2. If you are given the electric field, or if you can find it using
any of the methods presented in Chapter 21 or 22, it may be

r
V

easier to find the potential difference between points a and b
using Eq. (23.17) or (23.18). When appropriate, make use of
your freedom to define to be zero at some convenient
place, and choose this place to be point (For point charges,
this will usually be at infinity. For other distributions of
charge—especially those that themselves extend to infinity—
it may be necessary to define to be zero at some finite dis-
tance from the charge distribution.) Then the potential at any
other point, say , can by found from Eq. (23.17) or (23.18)
with

3. Although potential V is a scalar quantity, you may have to use
components of the vectors and when you use Eq. (23.17)
or (23.18) to calculate V.

EVALUATE your answer: Check whether your answer agrees with
your intuition. If your result gives as a function of position,
graph the function to see whether it makes sense. If you know the
electric field, you can make a rough check of your result for by
verifying that decreases if you move in the direction of .E

S
V

V

V

d l
S

E
S

Vb = 0.
a

Vb

b.
V



Ionization and Corona Discharge
The results of Example 23.8 have numerous practical consequences. One conse-
quence relates to the maximum potential to which a conductor in air can be
raised. This potential is limited because air molecules become ionized, and air
becomes a conductor, at an electric-field magnitude of about 
Assume for the moment that q is positive. When we compare the expressions in
Example 23.8 for the potential and field magnitude at the surface
of a charged conducting sphere, we note that Thus, if rep-
resents the electric-field magnitude at which air becomes conductive (known as
the dielectric strength of air), then the maximum potential to which a spheri-
cal conductor can be raised is

For a conducting sphere in radius in air, 
No amount of “charging” could raise the potential of a conducting

sphere of this size in air higher than about attempting to raise the
potential further by adding extra charge would cause the surrounding air to
become ionized and conductive, and the extra added charge would leak into
the air.

To attain even higher potentials, high-voltage machines such as Van de Graaff
generators use spherical terminals with very large radii (see Fig. 22.26 and the
photograph that opens Chapter 22). For example, a terminal of radius 
has a maximum potential 

Our result in Example 23.8 also explains what happens with a charged con-
ductor with a very small radius of curvature, such as a sharp point or thin wire.
Because the maximum potential is proportional to the radius, even relatively

Vm = 12 m213 * 106 V>m2 = 6 * 106 V = 6 MV.
R = 2 m

30,000 V;
30,000 V.

106 V>m2 =Vm = 110-2 m213 *1 cm

Vm = REm

Vm

EmVsurface = EsurfaceR.
EsurfaceVsurface

3 * 106 V>m.
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Example 23.8 A charged conducting sphere

A solid conducting sphere of radius has a total charge Find the
electric potential everywhere, both outside and inside the sphere.

SOLUTION

IDENTIFY and SET UP: In Example 22.5 (Section 22.4) we used
Gauss’s law to find the electric field at all points for this charge dis-
tribution. We can use that result to determine the corresponding
potential.

EXECUTE: From Example 22.5, the field outside the sphere is the
same as if the sphere were removed and replaced by a point charge

We take at infinity, as we did for a point charge. Then the
potential at a point outside the sphere at a distance from its center
is the same as that due to a point charge at the center:

The potential at the surface of the sphere is 
Inside the sphere, is zero everywhere. Hence no work is

done on a test charge that moves from any point to any other point
inside the sphere. This means that the potential is the same at
every point inside the sphere and is equal to its value at
the surface.

EVALUATE: Figure 23.16 shows the field and potential for a posi-
tive charge In this case the electric field points radially awayq.

q>4pP0R

E
S

Vsurface = q>4pP0R.

V =
1

4pP0

q

r

q
r

V = 0q.

q.R from the sphere. As you move away from the sphere, in the direc-
tion of decreases (as it should).VE

S
,

+
+

+
+

+
+

+
+

+

+

+ +
+

+

+

+
+

+

+ R

O

O

V

E

r

r

q
r 2E 5

1
4pP0

q
R2E 5

E 5 0

1
4pP0

q
R

V 5
1

4pP0

q
r

V 5
1

4pP0

23.16 Electric-field magnitude E and potential V at points
inside and outside a positively charged spherical conductor.



23.3 Calculating Electric Potential 769

small potentials applied to sharp points in air produce sufficiently high fields just
outside the point to ionize the surrounding air, making it become a conductor.
The resulting current and its associated glow (visible in a dark room) are called
corona. Laser printers and photocopying machines use corona from fine wires to
spray charge on the imaging drum (see Fig. 21.2).

A large-radius conductor is used in situations where it’s important to prevent
corona. An example is the metal ball at the end of a car radio antenna, which pre-
vents the static that would be caused by corona. Another example is the blunt end
of a metal lightning rod (Fig. 23.17). If there is an excess charge in the atmos-
phere, as happens during thunderstorms, a substantial charge of the opposite sign
can build up on this blunt end. As a result, when the atmospheric charge is dis-
charged through a lightning bolt, it tends to be attracted to the charged lightning
rod rather than to other nearby structures that could be damaged. (A conducting
wire connecting the lightning rod to the ground then allows the acquired charge
to dissipate harmlessly.) A lightning rod with a sharp end would allow less charge
buildup and hence would be less effective.

23.17 The metal mast at the top of the
Empire State Building acts as a lightning
rod. It is struck by lightning as many as
500 times each year.

Example 23.9 Oppositely charged parallel plates

Find the potential at any height between the two oppositely
charged parallel plates discussed in Section 23.1 (Fig. 23.18).

SOLUTION

IDENTIFY and SET UP: We discussed this situation in Section 23.1.
From Eq. (23.5), we know the electric potential energy for a test
charge is (We set y � 0 and U � 0 at the bottom
plate.) We use Eq. (23.12), , to find the electric potential

as a function of 

EXECUTE: The potential at coordinate is the potential
energy per unit charge:

The potential decreases as we move in the direction of from the
upper to the lower plate. At point where and 

where is the potential of the positive plate with respect to the
negative plate. That is, the electric field equals the potential differ-
ence between the plates divided by the distance between them. For a
given potential difference the smaller the distance between the
two plates, the greater the magnitude of the electric field. (This
relationship between and holds only for the planar geometryVabE

E
dVab,

Vab

Va - Vb = Ed  and  E =
Va - Vb

d
=

Vab

d

V1y2 = Va,y = da,
E
S

V1y2 =
U1y2

q0
=

q0Ey

q0
= Ey

yV1y2

y.V
U = q0V

U = q0Ey.q0

U

y

we have described. It does not work for situations such as concen-
tric cylinders or spheres in which the electric field is not uniform.)

EVALUATE: Our result shows that at the bottom plate (at 
). This is consistent with our choice that for a

test charge placed at the bottom plate.

CAUTION “Zero potential” is arbitrary You might think that if a
conducting body has zero potential, it must necessarily also have
zero net charge. But that just isn’t so! As an example, the plate at

in Fig. 23.18 has zero potential but has a nonzero
charge per unit area There’s nothing particularly special about
the place where potential is zero; we can define this place to be
wherever we want it to be. ❙

-s.
1V = 02y = 0

U = q0V = 0y = 0
V = 0

a

y

dy

O

q0

b x

E
S

23.18 The charged parallel plates from Fig. 23.2.

Example 23.10 An infinite line charge or charged conducting cylinder

Find the potential at a distance from a very long line of charge
with linear charge density (charge per unit length) 

SOLUTION

IDENTIFY and SET UP: In both Example 21.10 (Section 21.5) and
Example 22.6 (Section 22.4) we found that the electric field at a

l.
r radial distance from a long straight-line charge (Fig. 23.19a)

has only a radial component given by We use 
this expression to find the potential by integrating as in 
Eq. (23.17).

EXECUTE: Since the field has only a radial component, we have
Hence from Eq. (23.17) the potential of any point aEr dr.E

S # d l
S

=

E
S

Er = l>2pP0r.
r

Continued

?



with respect to any other point at radial distances and from
the line of charge, is

If we take point at infinity and set we find that is
infinite for any finite distance from the line charge:

. This is not a useful way to define
for this problem! The difficulty is that the charge distribution

itself extends to infinity.
Instead, as recommended in Problem-Solving Strategy 23.1, we

set at point at an arbitrary but finite radial distance 
Then the potential at point at a radial distance is given
by or

EVALUATE: According to our result, if is positive, then 
decreases as increases. This is as it should be: decreases as we
move in the direction of 

From Example 22.6, the expression for with which we
started also applies outside a long, charged conducting cylinder
with charge per unit length (Fig. 23.19b). Hence our result
also gives the potential for such a cylinder, but only for values

l

Er

E
S

.
Vr

Vl

V =
l

2pP0
ln

r0

r

V - 0 = 1l>2pP02 ln1r0>r2,
raV = Va

r0.bVb = 0

V
Va = 1l>2pP02 ln1q>ra2 = q

ra

VaVb = 0,b

Va - Vb = L
b

a
E
S # d l

S
= L

b

a
Er dr =

l

2pP0L
rb

ra

dr

r
=
l

2pP0
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rbrab,
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23.19 Electric field outside (a) a long, positively charged wire
and (b) a long, positively charged cylinder.

of (the distance from the cylinder axis) equal to or greater than
the radius of the cylinder. If we choose to be the cylinder
radius so that when then at any point for which

Inside the cylinder, and has the same value (zero) as on
the cylinder’s surface.

VE
S

� 0,

V =
l

2pP0
ln

R

r

r 7 R,
r = R,V = 0R,

r0R
r

Example 23.11 A ring of charge

Electric charge Q is distributed uniformly around a thin ring of
radius (Fig. 23.20). Find the potential at a point on the ring
axis at a distance from the center of the ring.

SOLUTION

IDENTIFY and SET UP: We divide the ring into infinitesimal seg-
ments and use Eq. (23.16) to find All parts of the ring (and
therefore all elements of the charge distribution) are at the same
distance from 

EXECUTE: Figure 23.20 shows that the distance from each charge
element to is Hence we can take the factor

outside the integral in Eq. (23.16), and

EVALUATE: When is much larger than our expression for 
becomes approximately which is the potential at a
distance from a point charge . Very far away from a chargedQx

V = Q>4pP0x,
Va,x

V =
1

4pP0L
dq

r
=

1

4pP0

1

2x2 + a2Ldq =
1

4pP0

Q

2x2 + a2

1>r
r = 1x2 + a2.Pdq

P.

V.

x
Pa

ring, its electric potential looks like that of a point charge. We drew
a similar conclusion about the electric field of a ring in Example
21.9 (Section 21.5).

We know the electric field at all points along the -axis from
Example 21.9 (Section 21.5), so we can also find along this axis
by integrating as in Eq. (23.17).E

S # d l
S

V
x

r 5 �x 2
1 a 2a

O x P

Q

23.20 All the charge in a ring of charge Q is the same distance
r from a point P on the ring axis.

Example 23.12 Potential of a line of charge

Positive electric charge is distributed uniformly along a line of
length lying along the y-axis between and 
(Fig. 23.21). Find the electric potential at a point on the x-axis at
a distance from the origin.x

P
y = +ay = -a2a

Q SOLUTION

IDENTIFY and SET UP: This is the same situation as in Example
21.10 (Section 21.5), where we found an expression for the electric
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field at an arbitrary point on the -axis. We can find V at point P
by integrating over the charge distribution using Eq. (23.16).
Unlike the situation in Example 23.11, each charge element is a
different distance from point so the integration will take a little
more effort.

EXECUTE: As in Example 21.10, the element of charge corre-
sponding to an element of length on the rod is 
The distance from to is so the contribution 
that the charge element makes to the potential at is

To find the potential at due to the entire rod, we integrate 
over the length of the rod from to 

You can look up the integral in a table. The final result is

V =
1

4pP0

Q

2a
ln a
2a2 + x2 + a

2a2 + x2 - a
b

V =
1

4pP0

Q

2aL
a

-a

dy

2x2 + y2

y = a:y = -a
dVP

dV =
1

4pP0

Q

2a

dy

2x2 + y2

P
dV1x2 + y2,PdQ

dQ = 1Q>2a2dy.dy
dQ

P,
dQ

xE
S

EVALUATE: We can check our result by letting approach infinity.
In this limit the point is infinitely far from all of the charge, so
we expect to approach zero; you can verify that it does.

We know the electric field at all points along the -axis from
Example 21.10. We invite you to use this information to find 
along this axis by integrating as in Eq. (23.17).E

S
V

x
V

P
x

23.21 Our sketch for this problem.

Test Your Understanding of Section 23.3 If the electric field at a certain point
is zero, does the electric potential at that point have to be zero? (Hint: Consider the center
of the ring in Example 23.11 and Example 21.9.) ❙

23.4 Equipotential Surfaces
Field lines (see Section 21.6) help us visualize electric fields. In a similar way, the
potential at various points in an electric field can be represented graphically by
equipotential surfaces. These use the same fundamental idea as topographic maps
like those used by hikers and mountain climbers (Fig. 23.22). On a topographic
map, contour lines are drawn through points that are all at the same elevation. Any
number of these could be drawn, but typically only a few contour lines are shown
at equal spacings of elevation. If a mass m is moved over the terrain along such a
contour line, the gravitational potential energy mgy does not change because the
elevation y is constant. Thus contour lines on a topographic map are really curves
of constant gravitational potential energy. Contour lines are close together where
the terrain is steep and there are large changes in elevation over a small horizontal
distance; the contour lines are farther apart where the terrain is gently sloping. A
ball allowed to roll downhill will experience the greatest downhill gravitational
force where contour lines are closest together.

By analogy to contour lines on a topographic map, an equipotential surface is a
three-dimensional surface on which the electric potential V is the same at every
point. If a test charge is moved from point to point on such a surface, the electric
potential energy remains constant. In a region where an electric field is present,
we can construct an equipotential surface through any point. In diagrams we usu-
ally show only a few representative equipotentials, often with equal potential dif-
ferences between adjacent surfaces. No point can be at two different potentials, so
equipotential surfaces for different potentials can never touch or intersect.

Equipotential Surfaces and Field Lines
Because potential energy does not change as a test charge moves over an equipo-
tential surface, the electric field can do no work on such a charge. It follows that 
must be perpendicular to the surface at every point so that the electric force is
always perpendicular to the displacement of a charge moving on the surface.

q0E
S

E
S

q0V
q0

23.22 Contour lines on a topographic
map are curves of constant elevation and
hence of constant gravitational potential
energy.



Field lines and equipotential surfaces are always mutually perpendicular. In
general, field lines are curves, and equipotentials are curved surfaces. For the spe-
cial case of a uniform field, in which the field lines are straight, parallel, and equally
spaced, the equipotentials are parallel planes perpendicular to the field lines.

Figure 23.23 shows three arrangements of charges. The field lines in the plane
of the charges are represented by red lines, and the intersections of the equipoten-
tial surfaces with this plane (that is, cross sections of these surfaces) are shown as
blue lines. The actual equipotential surfaces are three-dimensional. At each cross-
ing of an equipotential and a field line, the two are perpendicular.

In Fig. 23.23 we have drawn equipotentials so that there are equal potential
differences between adjacent surfaces. In regions where the magnitude of is
large, the equipotential surfaces are close together because the field does a rel-
atively large amount of work on a test charge in a relatively small displace-
ment. This is the case near the point charge in Fig. 23.23a or between the two
point charges in Fig. 23.23b; note that in these regions the field lines are also
closer together. This is directly analogous to the downhill force of gravity
being greatest in regions on a topographic map where contour lines are close
together. Conversely, in regions where the field is weaker, the equipotential
surfaces are farther apart; this happens at larger radii in Fig. 23.23a, to the left
of the negative charge or the right of the positive charge in Fig. 23.23b, and at
greater distances from both charges in Fig. 23.23c. (It may appear that two
equipotential surfaces intersect at the center of Fig. 23.23c, in violation of the
rule that this can never happen. In fact this is a single figure-8–shaped equipo-
tential surface.)

CAUTION E need not be constant over an equipotential surface On a given equipotential
surface, the potential V has the same value at every point. In general, however, the electric-
field magnitude E is not the same at all points on an equipotential surface. For instance, on
the equipotential surface labeled “ ” in Fig. 23.23b, the magnitude E is less to
the left of the negative charge than it is between the two charges. On the figure-8–shaped
equipotential surface in Fig. 23.23c, at the middle point halfway between the two
charges; at any other point on this surface, E is nonzero. ❙

Equipotentials and Conductors
Here’s an important statement about equipotential surfaces: When all charges
are at rest, the surface of a conductor is always an equipotential surface.

E = 0

V = -30 V

E
S
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V 5 170 VV 5 150 VV 5 130 V
V 5 150 V

V 5 170 VV 5 270 V
V 5 250 V

V 5 230 V

V 5 170 V
V 5 150 V

V 5 130 V
V 5 0 V

V 5 130 V

(c) Two equal positive charges

Cross sections of equipotential surfacesElectric field lines

(b) An electric dipole(a) A single positive charge

23.23 Cross sections of equipotential surfaces (blue lines) and electric field lines (red lines) for assemblies of point charges. There
are equal potential differences between adjacent surfaces. Compare these diagrams to those in Fig. 21.28, which showed only the elec-
tric field lines.
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Since the electric field is always perpendicular to an equipotential surface, we
can prove this statement by proving that when all charges are at rest, the elec-
tric field just outside a conductor must be perpendicular to the surface at
every point (Fig. 23.24). We know that everywhere inside the conduc-
tor; otherwise, charges would move. In particular, at any point just inside the
surface the component of tangent to the surface is zero. It follows that the
tangential component of is also zero just outside the surface. If it were not, a
charge could move around a rectangular path partly inside and partly outside
(Fig. 23.25) and return to its starting point with a net amount of work having
been done on it. This would violate the conservative nature of electrostatic
fields, so the tangential component of just outside the surface must be zero at
every point on the surface. Thus is perpendicular to the surface at each point,
proving our statement.

It also follows that when all charges are at rest, the entire solid volume of a
conductor is at the same potential. Equation (23.17) states that the potential
difference between two points a and b within the conductor’s solid volume,

, is equal to the line integral of the electric field from a to b.

Since everywhere inside the conductor, the integral is guaranteed to be
zero for any two such points a and b. Hence the potential is the same for any two
points within the solid volume of the conductor. We describe this by saying that
the solid volume of the conductor is an equipotential volume.

Finally, we can now prove a theorem that we quoted without proof in Section
22.5. The theorem is as follows: In an electrostatic situation, if a conductor con-
tains a cavity and if no charge is present inside the cavity, then there can be no net
charge anywhere on the surface of the cavity. This means that if you’re inside a
charged conducting box, you can safely touch any point on the inside walls of the
box without being shocked. To prove this theorem, we first prove that every point
in the cavity is at the same potential. In Fig. 23.26 the conducting surface A of the
cavity is an equipotential surface, as we have just proved. Suppose point P in the
cavity is at a different potential; then we can construct a different equipotential
surface B including point P.

Now consider a Gaussian surface, shown in Fig. 23.26, between the two
equipotential surfaces. Because of the relationship between and the equipoten-
tials, we know that the field at every point between the equipotentials is from A
toward or else at every point it is from B toward A, depending on which
equipotential surface is at higher potential. In either case the flux through this
Gaussian surface is certainly not zero. But then Gauss’s law says that the charge
enclosed by the Gaussian surface cannot be zero. This contradicts our initial
assumption that there is no charge in the cavity. So the potential at P cannot be
different from that at the cavity wall.

The entire region of the cavity must therefore be at the same potential. But
for this to be true, the electric field inside the cavity must be zero everywhere.
Finally, Gauss’s law shows that the electric field at any point on the surface of
a conductor is proportional to the surface charge density at that point. We
conclude that the surface charge density on the wall of the cavity is zero at
every point. This chain of reasoning may seem tortuous, but it is worth careful
study.

CAUTION Equipotential surfaces vs. Gaussian surfaces Don’t confuse equipotential sur-
faces with the Gaussian surfaces we encountered in Chapter 22. Gaussian surfaces have
relevance only when we are using Gauss’s law, and we can choose any Gaussian surface
that’s convenient. We are not free to choose the shape of equipotential surfaces; the shape
is determined by the charge distribution. ❙

s

B,

E
S

E
S

� 0
1b

a E
S # d l

S
Va - Vb

E
S

E
S

E
S

E
S

E
S

� 0

E
S

Test Your Understanding of Section 23.4 Would the shapes of the equipo-
tential surfaces in Fig. 23.23 change if the sign of each charge were reversed? ❙
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Cross sections of equipotential surfaces

Electric field lines

23.24 When charges are at rest, a con-
ducting surface is always an equipotential
surface. Field lines are perpendicular to a
conducting surface.

            An impossible electric field
If the electric field just outside a conductor
had a tangential component Ei, a charge
could move in a loop with net work done.

Vacuum

ConductorE 5 0

E' Ei

E

S

S

23.25 At all points on the surface of a
conductor, the electric field must be per-
pendicular to the surface. If had a tan-
gential component, a net amount of work
would be done on a test charge by moving
it around a loop as shown here—which is
impossible because the electric force is
conservative.

E
S

Cross section of equipotential
surface through P

Gaussian surface
(in cross section)

Surface
of cavity

A

Conductor

B

P

23.26 A cavity in a conductor. If the
cavity contains no charge, every point in
the cavity is at the same potential, the elec-
tric field is zero everywhere in the cavity,
and there is no charge anywhere on the
surface of the cavity.



are related to the corresponding derivatives of V in the same way, so we have

(23.19)

This is consistent with the units of electric field being In terms of unit vec-
tors we can write as

(23.20)

In vector notation the following operation is called the gradient of the func-
tion

(23.21)

The operator denoted by the symbol is called “grad” or “del.” Thus in vector
notation,

(23.22)

This is read “ is the negative of the gradient of V” or “ equals negative grad
V.” The quantity is called the potential gradient.§
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23.5 Potential Gradient
Electric field and potential are closely related. Equation (23.17), restated here,
expresses one aspect of that relationship:

If we know at various points, we can use this equation to calculate potential
differences. In this section we show how to turn this around; if we know the poten-
tial V at various points, we can use it to determine Regarding V as a function of
the coordinates of a point in space, we will show that the components of 
are related to the partial derivatives of V with respect to and 

In Eq. (23.17), is the potential of a with respect to b—that is, the
change of potential encountered on a trip from b to We can write this as

where is the infinitesimal change of potential accompanying an infinitesimal
element of the path from b to Comparing to Eq. (23.17), we have

These two integrals must be equal for any pair of limits a and and for this to be
true the integrands must be equal. Thus, for any infinitesimal displacement 

To interpret this expression, we write and in terms of their components:
and Then we have

Suppose the displacement is parallel to the x-axis, so Then
or where the subscript reminds us that

only x varies in the derivative; recall that V is in general a function of and But
this is just what is meant by the partial derivative The y- and z-components of 0V>0x.

z.x, y,
Ex = -1dV>dx2y, z constant,-dV = Ex dx

dy = dz = 0.
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(components of 
in terms of V)

E
S

Application Potential Gradient
Across a Cell Membrane
The interior of a human cell is at a lower elec-
tric potential V than the exterior. (The potential
difference when the cell is inactive is about 
–70 mV in neurons and about –95 mV in skele-
tal muscle cells.) Hence there is a potential
gradient that points from the interior to the
exterior of the cell membrane, and an electric
field that points from the exterior to
the interior. This field affects how ions flow into
or out of the cell through special channels in
the membrane.
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ActivPhysics 11.12.3: Electrical Potential,
Field, and Force
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At each point, the potential gradient points in the direction in which V
increases most rapidly with a change in position. Hence at each point the direc-
tion of is the direction in which V decreases most rapidly and is always perpen-
dicular to the equipotential surface through the point. This agrees with our
observation in Section 23.2 that moving in the direction of the electric field
means moving in the direction of decreasing potential.

Equation (23.22) doesn’t depend on the particular choice of the zero point for
V. If we were to change the zero point, the effect would be to change V at every
point by the same amount; the derivatives of V would be the same.

If is radial with respect to a point or an axis and r is the distance from the
point or the axis, the relationship corresponding to Eqs. (23.19) is

(23.23)

Often we can compute the electric field caused by a charge distribution in
either of two ways: directly, by adding the fields of point charges, or by first
calculating the potential and then taking its gradient to find the field. The second
method is often easier because potential is a scalar quantity, requiring at worst
the integration of a scalar function. Electric field is a vector quantity, requiring
computation of components for each element of charge and a separate integra-
tion for each component. Thus, quite apart from its fundamental significance,
potential offers a very useful computational technique in field calculations.
Below, we present two examples in which a knowledge of V is used to find the
electric field.

We stress once more that if we know as a function of position, we can cal-
culate V using Eq. (23.17) or (23.18), and if we know V as a function of position,
we can calculate using Eq. (23.19), (23.20), or (23.23). Deriving V from
requires integration, and deriving from V requires differentiation.E
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Example 23.13 Potential and field of a point charge

From Eq. (23.14) the potential at a radial distance from a point
charge is Find the vector electric field from this
expression for 

SOLUTION

IDENTIFY and SET UP: This problem uses the general relationship
between the electric potential as a function of position and the
electric-field vector. By symmetry, the electric field here has only a
radial component We use Eq. (23.23) to find this component.

EXECUTE: From Eq. (23.23),

so the vector electric field is

EVALUATE: Our result agrees with Eq. (21.7), as it must.
An alternative approach is to ignore the radial symmetry, write

the radial distance as and take the deriva-
tives of with respect to and as in Eq. (23.20). We findzx, y,V

r = 2x2 + y2 + z2,
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and similarly

Then from Eq. (23.20),

This approach gives us the same answer, but with more effort.
Clearly it’s best to exploit the symmetry of the charge distribution
whenever possible.
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Example 23.14 Potential and field of a ring of charge

In Example 23.11 (Section 23.3) we found that for a ring of charge
with radius and total charge the potential at a point on the
ring’s symmetry axis a distance from the center is

Find the electric field at 

SOLUTION

IDENTIFY and SET UP: Figure 23.20 shows the situation. We are
given as a function of along the -axis, and we wish to find the
electric field at a point on this axis. From the symmetry of the
charge distribution, the electric field along the symmetry (x-) axis
of the ring can have only an -component. We find it using the first
of Eqs. (23.19).

x

xxV

P.

V =
1

4pP0

Q

2x2 + a2

x
PQ,a

EXECUTE: The -component of the electric field is

EVALUATE: This agrees with our result in Example 21.9.

CAUTION Don’t use expressions where they don’t apply In this
example, is not a function of or on the ring axis, so that

and But that does not mean
that it’s true everywhere; our expressions for and are valid
only on the ring axis. If we had an expression for valid at all
points in space, we could use it to find the components of at any
point using Eqs. (23.19). ❙
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Test Your Understanding of Section 23.5 In a certain region of space
the potential is given by where and are
positive constants. Which of these statements about the electric field in this
region of space is correct? (There may be more than one correct answer.) (i) Increasing
the value of will increase the value of at all points; (ii) increasing the value of will
decrease the value of at all points; (iii) has no -component; (iv) the electric field is
zero at the origin ❙1x = 0, y = 0, z = 02.
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DA, B, C,V = A + Bx + Cy3 + Dxy,
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Electric potential: Potential, denoted by V, is potential
energy per unit charge. The potential difference between
two points equals the amount of work that would be
required to move a unit positive test charge between
those points. The potential V due to a quantity of charge
can be calculated by summing (if the charge is a collec-
tion of point charges) or by integrating (if the charge is a
distribution). (See Examples 23.3, 23.4, 23.5, 23.7,
23.11, and 23.12.)

The potential difference between two points a and b,
also called the potential of a with respect to b, is given
by the line integral of The potential at a given point
can be found by first finding and then carrying out this
integral. (See Examples 23.6, 23.8, 23.9, and 23.10.)
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Finding electric field from electric potential: If the poten-
tial V is known as a function of the coordinates x, y, and
z, the components of electric field at any point are
given by partial derivatives of V. (See Examples 23.13
and 23.14.)
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(23.14)

(due to a point charge)

(23.15)

(due to a collection of point charges)

(23.16)

(due to a charge distribution)

(23.17)
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Electric field line
Cross section of
equipotential surface

Electric potential energy: The electric force caused by
any collection of charges at rest is a conservative force.
The work W done by the electric force on a charged par-
ticle moving in an electric field can be represented by
the change in a potential-energy function U.

The electric potential energy for two point charges 
and depends on their separation The electric potential
energy for a charge in the presence of a collection of
charges depends on the distance from to each
of these other charges. (See Examples 23.1 and 23.2.)

q0q1, q2, q3

q0

r.q0

q

(23.2)

(23.9)

(two point charges)

(23.10)

( in presence of other point charges)q0

=
q0

4pP0
a

i

qi

ri

U =
q0

4pP0
a

q1

r1
+

q2

r2
+

q3

r3
+ Á b

U =
1

4pP0

qq0

r

WaSb = Ua - Ub

(23.19)

(23.20)

(vector form)
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0V

0x
 Ey = -

0V

0y
 Ez = -

0V
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Equipotential surfaces: An equipotential surface is a surface on which the potential has the same
value at every point. At a point where a field line crosses an equipotential surface, the two are per-
pendicular. When all charges are at rest, the surface of a conductor is always an equipotential sur-
face and all points in the interior of a conductor are at the same potential. When a cavity within a
conductor contains no charge, the entire cavity is an equipotential region and there is no surface
charge anywhere on the surface of the cavity.
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Positive electric charge Q is distributed uniformly along a thin rod
of length 2a. The rod lies along the x-axis between x � �a and
x � �a. Calculate how much work you must do to bring a positive
point charge q from infinity to the point x � �L on the x-axis,
where L � a.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. In this problem you must first calculate the potential V at x �

�L due to the charged rod. You can then find the change in
potential energy involved in bringing the point charge q from
infinity (where ) to x � �L.

2. To find V, divide the rod into infinitesimal segments of length
. How much charge is on such a segment? Consider one

such segment located at , where . What is
the potential dV at x � �L due to this segment?

-a … x¿ … ax = x¿
dx¿

V = 0

3. The total potential at x � �L is the integral of dV, including
contributions from all of the segments for from �a to �a.
Set up this integral.

EXECUTE
4. Integrate your expression from step 3 to find the potential V at

x � �L. A simple, standard substitution will do the trick; use a
table of integrals only as a last resort.

5. Use your result from step 4 to find the potential energy for a
point charge q placed at x � �L.

6. Use your result from step 5 to find the work you must do to
bring the point charge from infinity to x � �L.

EVALUATE
7. What does your result from step 5 become in the limit ?

Does this make sense?
8. Suppose the point charge q were negative rather than positive.

How would this affect your result in step 4? In step 5?

aS 0

x¿

BRIDGING PROBLEM A Point Charge and a Line of Charge

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q23.1 A student asked, “Since electrical potential is always pro-
portional to potential energy, why bother with the concept of
potential at all?” How would you respond?
Q23.2 The potential (relative to a point at infinity) midway
between two charges of equal magnitude and opposite sign is
zero. Is it possible to bring a test charge from infinity to this mid-
point in such a way that no work is done in any part of the dis-
placement? If so, describe how it can be done. If it is not possible,
explain why.
Q23.3 Is it possible to have an arrangement of two point charges
separated by a finite distance such that the electric potential energy
of the arrangement is the same as if the two charges were infinitely
far apart? Why or why not? What if there are three charges?
Explain your reasoning.
Q23.4 Since potential can have any value you want depending on
the choice of the reference level of zero potential, how does a volt-
meter know what to read when you connect it between two points?
Q23.5 If is zero everywhere along a certain path that leads from
point to point what is the potential difference between those
two points? Does this mean that is zero everywhere along any
path from to Explain.
Q23.6 If is zero throughout a cer-
tain region of space, is the potential
necessarily also zero in this region?
Why or why not? If not, what can be
said about the potential?
Q23.7 If you carry out the integral of
the electric field for a closed
path like that shown in Fig. Q23.7,
the integral will always be equal to
zero, independent of the shape of the

1E
S # d l

S

E
S

B?A
E
S

B,A
E
S

path and independent of where charges may be located relative to
the path. Explain why.
Q23.8 The potential difference between the two terminals of an
AA battery (used in flashlights and portable stereos) is If
two AA batteries are placed end to end with the positive terminal
of one battery touching the negative terminal of the other, what is
the potential difference between the terminals at the exposed ends
of the combination? What if the two positive terminals are touch-
ing each other? Explain your reasoning.
Q23.9 It is easy to produce a potential difference of several thou-
sand volts between your body and the floor by scuffing your shoes
across a nylon carpet. When you touch a metal doorknob, you get a
mild shock. Yet contact with a power line of comparable voltage
would probably be fatal. Why is there a difference?
Q23.10 If the electric potential at a single point is known, can at
that point be determined? If so, how? If not, why not?
Q23.11 Because electric field lines and equipotential surfaces are
always perpendicular, two equipotential surfaces can never cross;
if they did, the direction of would be ambiguous at the crossing
points. Yet two equipotential surfaces appear to cross at the center
of Fig. 23.23c. Explain why there is no ambiguity about the direc-
tion of in this particular case.
Q23.12 A uniform electric field is directed due east. Point is

west of point point is east of point and
point is south of For each point, and is the
potential at that point larger, smaller, or the same as at point 
Give the reasoning behind your answers.
Q23.13 We often say that if point is at a higher potential than
point is at positive potential and is at negative potential.
Does it necessarily follow that a point at positive potential is posi-
tively charged, or that a point at negative potential is negatively
charged? Illustrate your answers with clear, simple examples.

BB, A
A

A?
D,B, C,A.2.00 mD

A,2.00 mCA,2.00 m
B

E
S

E
S

E
S

1.5 V.

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

E
S

dl
S

Figure Q23.7
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Q23.14 A conducting sphere is to be charged by bringing in posi-
tive charge a little at a time until the total charge is The total
work required for this process is alleged to be proportional to 
Is this correct? Why or why not?
Q23.15 Three pairs of parallel
metal plates are 
connected as shown in Fig.
Q23.15, and a battery maintains a
potential of across 
What can you say about the
potential difference across each
pair of plates? Why?
Q23.16 A conducting sphere is placed between two charged paral-
lel plates such as those shown in Fig. 23.2. Does the electric field
inside the sphere depend on precisely where between the plates the
sphere is placed? What about the electric potential inside the
sphere? Do the answers to these questions depend on whether or
not there is a net charge on the sphere? Explain your reasoning.
Q23.17 A conductor that carries a net charge has a hollow,
empty cavity in its interior. Does the potential vary from point to
point within the material of the conductor? What about within the
cavity? How does the potential inside the cavity compare to the
potential within the material of the conductor?
Q23.18 A high-voltage dc power line falls on a car, so the entire
metal body of the car is at a potential of with respect to
the ground. What happens to the occupants (a) when they are sit-
ting in the car and (b) when they step out of the car? Explain your
reasoning.
Q23.19 When a thunderstorm is approaching, sailors at sea some-
times observe a phenomenon called “St. Elmo’s fire,” a bluish
flickering light at the tips of masts. What causes this? Why does it
occur at the tips of masts? Why is the effect most pronounced
when the masts are wet? (Hint: Seawater is a good conductor of
electricity.)
Q23.20 A positive point charge is placed near a very large con-
ducting plane. A professor of physics asserted that the field
caused by this configuration is the same as would be obtained by
removing the plane and placing a negative point charge of equal
magnitude in the mirror-image position behind the initial posi-
tion of the plane. Is this correct? Why or why not? (Hint: Inspect
Fig. 23.23b.)
Q23.21 In electronics it is customary to define the potential of
ground (thinking of the earth as a large conductor) as zero. Is this
consistent with the fact that the earth has a net electric charge that
is not zero? (Refer to Exercise 21.32.)

EXERCISES
Section 23.1 Electric Potential Energy
23.1 .. A point charge is held stationary at the
origin. A second point charge moves from 
the point to the point 

How much work is done by the electric force on 
23.2 . A point charge is held stationary at the origin. A second
charge is placed at point and the electric potential energy of
the pair of charges is When the second charge is
moved to point the electric force on the charge does

of work. What is the electric potential energy of
the pair of charges when the second charge is at point 
23.3 .. Energy of the Nucleus. How much work is needed to
assemble an atomic nucleus containing three protons (such as Be)
if we model it as an equilateral triangle of side 2.00 * 10-15 m

b?
-1.9 * 10-8 J

b,
+5.4 * 10-8 J.

a,q2

q1

q2?y = 0.250 m.
x = 0.250 m,y = 0x = 0.150 m,

q2 = -4.30 mC
q1 = +2.40 mC

10,000 V

Q

ab.1.5 V

(A, B, and C)

Q2.
Q.

with a proton at each vertex? Assume the protons started from very
far away.
23.4 .. (a) How much work would it take to push two protons
very slowly from a separation of (a typical
atomic distance) to (a typical nuclear distance)?
(b) If the protons are both released from rest at the closer distance
in part (a), how fast are they moving when they reach their original
separation?
23.5 .. A small metal sphere,
carrying a net charge of 

is held in a station-
ary position by insulating sup-
ports. A second small metal
sphere, with a net charge of

and mass
1.50 g, is projected toward 
When the two spheres are apart, is moving toward 
with speed (Fig. E23.5). Assume that the two spheres
can be treated as point charges. You can ignore the force of gravity.
(a) What is the speed of when the spheres are apart?
(b) How close does get to 
23.6 .. BIO Energy of DNA Base Pairing, I. (See Exercise
21.23.) (a) Calculate the electric potential energy of the
adenine–thymine bond, using the same combinations of molecules
( and ) as in Exercise 21.23. (b) Compare this
energy with the potential energy of the proton–electron pair in the
hydrogen atom.
23.7 .. BIO Energy of DNA Base Pairing, II. (See Exercise
21.24.) Calculate the electric potential energy of the guanine–
cytosine bond, using the same combinations of molecules
( , , and ) as in Exercise 21.24.
23.8 .. Three equal point charges are placed at the
corners of an equilateral triangle whose sides are long.
What is the potential energy of the system? (Take as zero the
potential energy of the three charges when they are infinitely
far apart.)
23.9 .. Two protons are released from rest when they are 
0.750 nm apart. (a) What is the maximum speed they will reach?
When does this speed occur? (b) What is the maximum accelera-
tion they will achieve? When does this acceleration occur?
23.10 .. Four electrons are located at the corners of a square

on a side, with an alpha particle at its midpoint. How
much work is needed to move the alpha particle to the midpoint of
one of the sides of the square?
23.11 .. Three point charges, which initially are infinitely far
apart, are placed at the corners of an equilateral triangle with sides

Two of the point charges are identical and have charge If zero
net work is required to place the three charges at the corners of the
triangle, what must the value of the third charge be?
23.12 .. Starting from a separation of several meters, two protons
are aimed directly toward each other by a cyclotron accelerator with
speeds of measured relative to the earth. Find the maxi-
mum electrical force that these protons will exert on each other.

Section 23.2 Electric Potential
23.13 . A small particle has charge and mass

It moves from point where the electric poten-
tial is to point where the electric potential is

The electric force is the only force acting on the
particle. The particle has speed at point What is its
speed at point Is it moving faster or slower at than at 
Explain.
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A,2.00 * 10-4 kg.
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q1q20.800 m

q1.
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Figure Q23.15

Figure E23.5



23.14 . A particle with a charge of is in a uniform elec-
tric field directed to the left. It is released from rest and moves to
the left; after it has moved its kinetic energy is found to
be (a) What work was done by the electric force?
(b) What is the potential of the starting point with respect to the
end point? (c) What is the magnitude of ?
23.15 . A charge of is placed in a uniform electric field
that is directed vertically upward and has a magnitude of

What work is done by the electric force when
the charge moves (a) to the right; (b) upward; 
(c) at an angle of downward from the horizontal?
23.16 . Two stationary point charges and 
are separated by a distance of An electron is released from
rest at a point midway between the two charges and moves along
the line connecting the two charges. What is the speed of the elec-
tron when it is from the charge?
23.17 .. Point charges and are
placed at adjacent corners of a square for which the length of each
side is 3.00 cm. Point a is at the center of the square, and point b is
at the empty corner closest to . Take the electric potential to be
zero at a distance far from both charges. (a) What is the electric
potential at point a due to and ? (b) What is the electric poten-
tial at point b? (c) A point charge moves from
point a to point b. How much work is done on by the electric
forces exerted by and ? Is this work positive or negative?
23.18 . Two charges of equal magnitude are held a distance 
apart. Consider only points on the line passing through both
charges. (a) If the two charges have the same sign, find the location
of all points (if there are any) at which (i) the potential (relative to
infinity) is zero (is the electric field zero at these points?), and 
(ii) the electric field is zero (is the potential zero at these points?).
(b) Repeat part (a) for two charges having opposite signs.
23.19 . Two point charges

and
are apart.

Point is midway between
them; point is from

and from (Fig.
E23.19). Take the electric
potential to be zero at infinity.
Find (a) the potential at point 
(b) the potential at point (c) the work done by the electric field
on a charge of that travels from point to point 
23.20 . A positive charge is located at the point 

and a negative charge is located at the point 
(a) Derive an expression for the potential at points on

the -axis as a function of the coordinate Take to be zero at an
infinite distance from the charges. (b) Graph at points on the 
-axis as a function of over the range from to 

(c) Show that for the potential at a point on the positive 
-axis is given by (d) What are the answers

to parts (a) and (c) if the two charges are interchanged so that is
at and is at 
23.21 .. A positive charge is fixed at the point 
and a negative charge is fixed at the point 
(a) Show the positions of the charges in a diagram. (b) Derive an
expression for the potential at points on the -axis as a function
of the coordinate Take to be zero at an infinite distance from
the charges. (c) At which positions on the -axis is 
(d) Graph at points on the -axis as a function of in the range
from to (e) What does the answer to part 
(b) become when Explain why this result is obtained.x W a?

x = +2a.x = -2a
xxV

V = 0?x
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xV
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q2q1

0.080 m

0.060 m

0.050 m0.050 m
A

B

Figure E23.19

23.22 .. Consider the arrangement of point charges described in
Exercise 23.21. (a) Derive an expression for the potential at
points on the -axis as a function of the coordinate Take to be
zero at an infinite distance from the charges. (b) At which positions
on the -axis is (c) Graph at points on the -axis as a
function of in the range from to (d) What
does the answer to part (a) become when Explain why this
result is obtained.
23.23 .. (a) An electron is to be accelerated from 
to Through what potential difference must the
electron pass to accomplish this? (b) Through what potential 
difference must the electron pass if it is to be slowed from

to a halt?
23.24 . At a certain distance from a point charge, the potential
and electric-field magnitude due to that charge are and

respectively. (Take the potential to be zero at infinity.)
(a) What is the distance to the point charge? (b) What is the magni-
tude of the charge? (c) Is the electric field directed toward or away
from the point charge?
23.25 . A uniform electric field has magnitude and is directed in
the negative -direction. The potential difference between point 
(at ) and point (at ) is (a) Which
point, or is at the higher potential? (b) Calculate the value of 
(c) A negative point charge is moved from to 
Calculate the work done on the point charge by the electric field.
23.26 . For each of the following arrangements of two point
charges, find all the points along the line passing through both
charges for which the electric potential is zero (take infi-
nitely far from the charges) and for which the electric field is
zero: (a) charges and separated by a distance and (b)
charges and separated by a distance (c) Are both and

zero at the same places? Explain.

Section 23.3 Calculating Electric Potential
23.27 .. A thin spherical shell with radius is con-
centric with a larger thin spherical shell with radius .
Both shells are made of insulating material. The smaller shell has
charge distributed uniformly over its surface, and
the larger shell has charge distributed uniformly
over its surface. Take the electric potential to be zero at an infinite
distance from both shells. (a) What is the electric potential due to
the two shells at the following distance from their common center:
(i) ; (ii) ; (iii) ? (b) What is the
magnitude of the potential difference between the surfaces of the
two shells? Which shell is at higher potential: the inner shell or the
outer shell?
23.28 . A total electric charge of is distributed uniformly
over the surface of a metal sphere with a radius of If the
potential is zero at a point at infinity, find the value of the potential
at the following distances from the center of the sphere: (a)

(b) (c) 
23.29 .. A uniformly charged, thin ring has radius and
total charge An electron is placed on the ring’s axis a
distance from the center of the ring and is constrained to
stay on the axis of the ring. The electron is then released from rest.
(a) Describe the subsequent motion of the electron. (b) Find the
speed of the electron when it reaches the center of the ring.
23.30 .. An infinitely long line of charge has linear charge density

A proton (mass charge
) is from the line and moving directly

toward the line at (a) Calculate the proton’s initial
kinetic energy. (b) How close does the proton get to the line of charge?
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23.31 . A very long wire carries a uniform linear charge density
Using a voltmeter to measure potential difference, you find that

when one probe of the meter is placed from the wire and
the other probe is farther from the wire, the meter reads

(a) What is (b) If you now place one probe at 
from the wire and the other probe farther away, will the
voltmeter read If not, will it read more or less than 
Why? (c) If you place both probes from the wire but

from each other, what will the voltmeter read?
23.32 .. A very long insulating cylinder of charge of radius

carries a uniform linear density of If you put
one probe of a voltmeter at the surface, how far from the surface
must the other probe be placed so that the voltmeter reads 
23.33 .. A very long insulating cylindrical shell of radius

carries charge of linear density spread uni-
formly over its outer surface. What would a voltmeter read if it
were connected between (a) the surface of the cylinder and a point

above the surface, and (b) the surface and a point 
from the central axis of the cylinder?
23.34 . A ring of diameter is fixed in place and carries a
charge of uniformly spread over its circumference. 
(a) How much work does it take to move a tiny charged
ball of mass from very far away to the center of the ring?
(b) Is it necessary to take a path along the axis of the ring? Why?
(c) If the ball is slightly displaced from the center of the ring, what
will it do and what is the maximum speed it will reach?
23.35 .. A very small sphere with positive charge 
is released from rest at a point 1.50 cm from a very long line of
uniform linear charge density . What is the
kinetic energy of the sphere when it is 4.50 cm from the line of
charge if the only force on it is the force exerted by the line of
charge?
23.36 . Charge is distributed uniformly over the
volume of an insulating sphere that has radius . A
small sphere with charge and mass 
is projected toward the center of the large sphere from an initial
large distance. The large sphere is held at a fixed position and the
small sphere can be treated as a point charge. What minimum
speed must the small sphere have in order to come within 8.00 cm
of the surface of the large sphere?
23.37 . BIO Axons. Neu-
rons are the basic units of the
nervous system. They contain
long tubular structures called
axons that propagate electrical
signals away from the ends 
of the neurons. The axon con-
tains a solution of potassium 

ions and large negative
organic ions. The axon membrane prevents the large ions from
leaking out, but the smaller ions are able to penetrate the mem-
brane to some degree (Fig. E23.37). This leaves an excess negative
charge on the inner surface of the axon membrane and an excess
positive charge on the outer surface, resulting in a potential differ-
ence across the membrane that prevents further ions from leak-
ing out. Measurements show that this potential difference is
typically about 70 mV. The thickness of the axon membrane itself
varies from about 5 to 10 nm, so we’ll use an average of 7.5 nm.
We can model the membrane as a large sheet having equal and
opposite charge densities on its faces. (a) Find the electric field
inside the axon membrane, assuming (not too realistically) that it is
filled with air. Which way does it point: into or out of the axon? 

K+

K+

1K+2

6.00 * 10-5 kgq = +3.00 mC
R = 12.0 cm

Q = 5.00 mC

l = +3.00 mC/m

q = +8.00 mC

1.50 g
+3.00-mC

+5.00 mC
8.00 cm

1.00 cm4.00 cm

8.50 mC>m6.00 cm

175 V?

15.0 nC>m.2.50 cm

17.0 cm
3.50 cm

575 V?575 V?
1.00 cm

3.50 cml?575 V.
1.00 cm

2.50 cm
l.

(b) Which is at a higher potential: the inside surface or the outside
surface of the axon membrane?
23.38 . CP Two large, parallel conducting plates carrying oppo-
site charges of equal magnitude are separated by (a) If the
surface charge density for each plate has magnitude 
what is the magnitude of in the region between the plates? 
(b) What is the potential difference between the two plates? (c) If
the separation between the plates is doubled while the surface
charge density is kept constant at the value in part (a), what happens
to the magnitude of the electric field and to the potential difference?
23.39 . Two large, parallel, metal plates carry opposite charges of
equal magnitude. They are separated by and the poten-
tial difference between them is (a) What is the magnitude
of the electric field (assumed to be uniform) in the region between
the plates? (b) What is the magnitude of the force this field exerts
on a particle with charge (c) Use the results of part 
(b) to compute the work done by the field on the particle as it moves
from the higher-potential plate to the lower. (d) Compare the result
of part (c) to the change of potential energy of the same charge,
computed from the electric potential.
23.40 . BIO Electrical Sensitivity of Sharks. Certain sharks
can detect an electric field as weak as To grasp how
weak this field is, if you wanted to produce it between two parallel
metal plates by connecting an ordinary 1.5-V AA battery across
these plates, how far apart would the plates have to be?
23.41 .. (a) Show that for a spherical shell of radius that has
charge distributed uniformly over its surface, is the same as for
a solid conductor with radius and charge (b) You rub an
inflated balloon on the carpet and it acquires a potential that is

lower than its potential before it became charged. If the
charge is uniformly distributed over the surface of the balloon and
if the radius of the balloon is what is the net charge on the
balloon? (c) In light of its potential difference relative to
you, do you think this balloon is dangerous? Explain.
23.42 .. (a) How much excess charge must be placed on a copper
sphere in diameter so that the potential of its center, rela-
tive to infinity, is (b) What is the potential of the sphere’s
surface relative to infinity?
23.43 . The electric field at the surface of a charged, solid, copper
sphere with radius is directed toward the cen-
ter of the sphere. What is the potential at the center of the sphere, if
we take the potential to be zero infinitely far from the sphere?

Section 23.4 Equipotential Surfaces and
Section 23.5 Potential Gradient
23.44 . A very large plastic sheet carries a uniform charge density
of on one face. (a) As you move away from the sheet
along a line perpendicular to it, does the potential increase or
decrease? How do you know, without doing any calculations? Does
your answer depend on where you choose the reference point for
potential? (b) Find the spacing between equipotential surfaces that
differ from each other by What type of surfaces are these?
23.45 . CALC In a certain region of space, the electric potential is

where and are positive
constants. (a) Calculate the and -components of the electric
field. (b) At which points is the electric field equal to zero?
23.46 . CALC In a certain region of space the electric potential is
given by where V/m3 and
8.00 V/m3. Calculate the magnitude and direction of the electric
field at the point in the region that has coordinates m,

m, and z = 0.y = 0.400
x = 2.00

B =A = 5.00V = +Ax2y - Bxy2,

zy-,x-,
CA, B,V(x, y, z) = Axy - Bx2 + Cy,
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3800 N>C,0.200 m

1.50 kV?
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q.R
Vq

R,V
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23.47 .. CALC A metal sphere with radius is supported on an
insulating stand at the center of a hollow, metal, spherical shell
with radius There is charge on the inner sphere and charge

on the outer spherical shell. (a) Calculate the potential for
(i) (ii) (iii) (Hint: The net potential is
the sum of the potentials due to the individual spheres.) Take to
be zero when is infinite. (b) Show that the potential of the inner
sphere with respect to the outer is

(c) Use Eq. (23.23) and the result from part (a) to show that the
electric field at any point between the spheres has magnitude

(d) Use Eq. (23.23) and the result from part (a) to find the electric
field at a point outside the larger sphere at a distance from the
center, where (e) Suppose the charge on the outer sphere is
not but a negative charge of different magnitude, say 
Show that the answers for parts (b) and (c) are the same as before
but the answer for part (d) is different.
23.48 . A metal sphere with radius is supported on
an insulating stand at the center of a hollow, metal, spherical shell
with radius Charge is put on the inner sphere
and charge on the outer spherical shell. The magnitude of is
chosen to make the potential difference between the spheres

with the inner sphere at higher potential. (a) Use the
result of Exercise 23.47(b) to calculate (b) With the help of the
result of Exercise 23.47(a), sketch the equipotential surfaces that
correspond to 500, 400, 300, 200, 100, and (c) In your sketch,
show the electric field lines. Are the electric field lines and equipo-
tential surfaces mutually perpendicular? Are the equipotential sur-
faces closer together when the magnitude of is largest?
23.49 . A very long cylinder of radius carries a uniform
charge density of (a) Describe the shape of the
equipotential surfaces for this cylinder. (b) Taking the reference
level for the zero of potential to be the surface of the cylinder, 
find the radius of equipotential surfaces having potentials of

(c) Are the equipotential surfaces
equally spaced? If not, do they get closer together or farther apart
as increases?

PROBLEMS
23.50 . CP A point charge is held fixed in space.
From a horizontal distance of 6.00 cm, a small sphere with mass

and charge is fired toward the
fixed charge with an initial speed of 40.0 m/s. Gravity can be neg-
lected. What is the acceleration of the sphere at the instant when its
speed is 25.0 m/s?
23.51 ... A point charge is placed at the origin,
and a second point charge is placed on the -axis
at A third point charge is to be
placed on the -axis between and (Take as zero the potential
energy of the three charges when they are infinitely far apart.) 
(a) What is the potential energy of the system of the three charges
if is placed at (b) Where should be placed to
make the potential energy of the system equal to zero?

q3x = +10.0 cm?q3

q2.q1x
q3 = 2.00 nCx = +20.0 cm.

xq2 = -3.00 nC
q1 = 4.00 nC

q2 = +2.00 mC4.00 * 10-3 kg

q1 = +5.00 mC

r

10.0 V, 20.0 V, and 30.0 V.
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q

4pP0
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r
V

r 7 rb.ra 6 r 6 rb;r 6 ra;
V(r)-q

+qrb.

ra 23.52 ... A small sphere with mass and charge
is released from rest a distance of 0.400 m above a large

horizontal insulating sheet of charge that has uniform surface
charge density . Using energy methods, calcu-
late the speed of the sphere when it is 0.100 m above the sheet of
charge?
23.53 .. Determining the Size of the Nucleus. When radium-
226 decays radioactively, it emits an alpha particle (the nucleus of
helium), and the end product is radon-222. We can model this
decay by thinking of the radium-226 as consisting of an alpha par-
ticle emitted from the surface of the spherically symmetric radon-
222 nucleus, and we can treat the alpha particle as a point charge.
The energy of the alpha particle has been measured in the labora-
tory and has been found to be 4.79 MeV when the alpha particle is
essentially infinitely far from the nucleus. Since radon is much
heavier than the alpha particle, we can assume that there is no
appreciable recoil of the radon after the decay. The radon nucleus
contains 86 protons, while the alpha particle has 2 protons and the
radium nucleus has 88 protons. (a) What was the electric potential
energy of the alpha–radon combination just before the decay, in
MeV and in joules? (b) Use your result from part (a) to calculate
the radius of the radon nucleus.
23.54 .. CP A proton and an alpha particle are released from rest
when they are 0.225 nm apart. The alpha particle (a helium nucleus)
has essentially four times the mass and two times the charge of a
proton. Find the maximum speed and maximum acceleration of
each of these particles. When do these maxima occur: just following
the release of the particles or after a very long time?
23.55 . A particle with charge is in a uniform electric
field directed to the left. Another force, in addition to the electric
force, acts on the particle so that when it is released from rest, it
moves to the right. After it has moved the additional
force has done of work and the particle has

of kinetic energy. (a) What work was done by the
electric force? (b) What is the potential of the starting point with
respect to the end point? (c) What is the magnitude of the electric
field?
23.56 . CP In the Bohr model of the hydrogen atom, a single
electron revolves around a single proton in a circle of radius 
Assume that the proton remains at rest. (a) By equating the elec-
tric force to the electron mass times its acceleration, derive 
an expression for the electron’s speed. (b) Obtain an expression
for the electron’s kinetic energy, and show that its magnitude is
just half that of the electric potential energy. (c) Obtain an
expression for the total energy, and evaluate it using

Give your numerical result in joules and in electron
volts.
23.57 .. CALC A vacuum tube diode consists of concentric
cylindrical electrodes, the negative cathode and the positive
anode. Because of the accumulation of charge near the cathode,
the electric potential between the electrodes is not a linear function
of the position, even with planar geometry, but is given by

where is the distance from the cathode and is a constant, char-
acteristic of a particular diode and operating conditions. Assume that
the distance between the cathode and anode is and the
potential difference between electrodes is (a) Determine
the value of (b) Obtain a formula for the electric field between
the electrodes as a function of (c) Determine the force on an elec-
tron when the electron is halfway between the electrodes.

x.
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240 V.
13.0 mm

Cx

V1x2 = Cx4>3

10-11 m.
r = 5.29 *

r.

4.35 * 10-5 J
6.50 * 10-5 J

8.00 cm,

+7.60 nC

s = +8.00 pC/m2

+3.00 mC
5.00 * 10-7 kg
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23.58 .. Two oppositely charged,
identical insulating spheres, each

in diameter and carrying
a uniform charge of magnitude

are placed apart
center to center (Fig. P23.58). (a) If a voltmeter is connected
between the nearest points ( and ) on their surfaces, what will it
read? (b) Which point, or is at the higher potential? How can
you know this without any calculations?
23.59 .. An Ionic Crystal.
Figure P23.59 shows eight point
charges arranged at the corners
of a cube with sides of length 
The values of the charges are

and as shown. This is a
model of one cell of a cubic 
ionic crystal. In sodium chloride
(NaCl), for instance, the posi-
tive ions are and the nega-
tive ions are (a) Calculate
the potential energy of this
arrangement. (Take as zero the
potential energy of the eight charges when they are infinitely far
apart.) (b) In part (a), you should have found that Explain the
relationship between this result and the observation that such ionic
crystals exist in nature.
23.60 . (a) Calculate the potential energy of a system of two small
spheres, one carrying a charge of and the other a charge of

with their centers separated by a distance of 
Assume zero potential energy when the charges are infinitely sepa-
rated. (b) Suppose that one of the spheres is held in place and the
other sphere, which has a mass of is shot away from it.
What minimum initial speed would the moving sphere need in
order to escape completely from the attraction of the fixed sphere?
(To escape, the moving sphere would have to reach a velocity of
zero when it was infinitely distant from the fixed sphere.)
23.61 .. The Ion. The ion is composed of two protons,
each of charge and an electron of charge

and mass The separation between the pro-
tons is The protons and the electron may be
treated as point charges. (a) Suppose the electron is located at the
point midway between the two protons. What is the potential
energy of the interaction between the electron and the two pro-
tons? (Do not include the potential energy due to the interaction
between the two protons.) (b) Suppose the electron in part (a) has
a velocity of magnitude in a direction along the
perpendicular bisector of the line connecting the two protons.
How far from the point midway between the two protons can the
electron move? Because the masses of the protons are much
greater than the electron mass, the motions of the protons are very
slow and can be ignored.
(Note: A realistic description
of the electron motion requires
the use of quantum mechanics,
not Newtonian mechanics.)
23.62 .. CP A small sphere
with mass hangs by a
thread between two parallel
vertical plates apart
(Fig. P23.62). The plates are
insulating and have uniform

5.00 cm

1.50 g

1.50 * 106 m>s

1.07 * 10-10 m.
9.11 * 10-31 kg.-e
+e = 1.60 * 10-19 C,
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+H2
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a b

V
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q

1q

1q

1q

1q

2q

2q

2q

d

d

d

2q

–V

Counter

electron

Radiation
+

Free

surface charge densities and The charge on the sphere is
What potential difference between the plates

will cause the thread to assume an angle of with the vertical?
23.63 . CALC Coaxial Cylinders. A long metal cylinder with
radius is supported on an insulating stand on the axis of a long,
hollow, metal tube with radius The positive charge per unit
length on the inner cylinder is and there is an equal negative
charge per unit length on the outer cylinder. (a) Calculate the
potential for (i) (ii) (iii) (Hint:
The net potential is the sum of the potentials due to the individual
conductors.) Take at (b) Show that the potential of
the inner cylinder with respect to the outer is

(c) Use Eq. (23.23) and the result from part (a) to show that the
electric field at any point between the cylinders has magnitude

(d) What is the potential difference between the two cylinders if
the outer cylinder has no net charge?
23.64 .. A Geiger counter detects radiation such as alpha particles
by using the fact that the radiation ionizes the air along its path. A
thin wire lies on the axis of a hollow metal cylinder and is insulated
from it (Fig. P23.64). A large potential difference is established
between the wire and the outer cylinder, with the wire at higher
potential; this sets up a strong electric field directed radially out-
ward. When ionizing radiation enters the device, it ionizes a few air
molecules. The free electrons produced are accelerated by the elec-
tric field toward the wire and, on the way there, ionize many more
air molecules. Thus a current pulse is produced that can be detected
by appropriate electronic circuitry and converted to an audible
“click.” Suppose the radius of the central wire is and the
radius of the hollow cylinder is What potential difference
between the wire and the cylinder produces an electric field of

at a distance of from the axis of the
wire? (The wire and cylinder are both very long in comparison to
their radii, so the results of Problem 23.63 apply.)

1.20 cm2.00 * 104 V>m

1.80 cm.
145 mm

E1r2 =
Vab

ln1b>a2

1
r

Vab =
l

2pP0
ln

b

a

r = b.V = 0

r 7 b.a 6 r 6 b;r 6 a;V1r2

l,
b.

a

30.0°
q = 8.90 * 10-6 C.

-s.+s

Figure P23.64

Figure P23.62

Figure P23.59

Figure P23.58

23.65 . CP Deflection in a CRT. Cathode-ray tubes (CRTs) are
often found in oscilloscopes and computer monitors. In Fig. P23.65
an electron with an initial speed of is projected
along the axis midway between the deflection plates of a cathode-
ray tube. The potential difference between the two plates is 22.0 V
and the lower plate is the one at higher potential. (a) What is the
force (magnitude and direction) on the electron when it is between
the plates? (b) What is the acceleration of the electron (magnitude

6.50 * 106 m>s
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and direction) when acted on
by the force in part (a)? (c)
How far below the axis has the
electron moved when it reaches
the end of the plates? (d) At
what angle with the axis is it
moving as it leaves the plates? (e) How far below the axis will it
strike the fluorescent screen S?
23.66 .. CP Deflecting Plates of an Oscilloscope. The vertical
deflecting plates of a typical classroom oscilloscope are a pair of
parallel square metal plates carrying equal but opposite charges.
Typical dimensions are about on a side, with a separation
of about The potential difference between the plates is
25.0 V. The plates are close enough that we can ignore fringing at
the ends. Under these conditions: (a) how much charge is on each
plate, and (b) how strong is the electric field between the plates?
(c) If an electron is ejected at rest from the negative plate, how fast
is it moving when it reaches the positive plate?
23.67 .. Electrostatic precipi-
tators use electric forces to
remove pollutant particles from
smoke, in particular in the
smokestacks of coal-burning
power plants. One form of pre-
cipitator consists of a vertical,
hollow, metal cylinder with a
thin wire, insulated from the
cylinder, running along its axis
(Fig. P23.67). A large potential
difference is established between
the wire and the outer cylinder,
with the wire at lower poten-
tial. This sets up a strong radial
electric field directed inward.
The field produces a region of ionized air near the wire. Smoke
enters the precipitator at the bottom, ash and dust in it pick up elec-
trons, and the charged pollutants are accelerated toward the outer
cylinder wall by the electric field. Suppose the radius of the central
wire is the radius of the cylinder is and a
potential difference of is established between the wire and
the cylinder. Also assume that the wire and cylinder are both very
long in comparison to the cylinder radius, so the results of Problem
23.63 apply. (a) What is the magnitude of the electric field midway
between the wire and the cylinder wall? (b) What magnitude of
charge must a ash particle have if the electric field
computed in part (a) is to exert a force ten times the weight of the
particle?
23.68 .. CALC A disk with radius has uniform surface charge
density (a) By regarding the disk as a series of thin concentric
rings, calculate the electric potential at a point on the disk’s axis
a distance from the center of the disk. Assume that the potential
is zero at infinity. (Hint: Use the result of Example 23.11 in Sec-
tion 23.3.) (b) Calculate Show that the result agrees with
the expression for calculated in Example 21.11 (Section 21.5).
23.69 .. CALC (a) From the expression for obtained in Problem
22.42, find the expressions for the electric potential as a function
of both inside and outside the cylinder. Let at the surface
of the cylinder. In each case, express your result in terms of the
charge per unit length of the charge distribution. (b) Graph and

as functions of from to 
23.70 . CALC A thin insulating rod is bent into a semicircular arc
of radius and a total electric charge is distributed uniformlyQa,

r = 3R.r = 0rE
Vl

V = 0r,
V

E
Ex

-0V>0x.

x
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s.
R

30.0-mg

50.0 kV
14.0 cm,90.0 mm,

5.0 mm.
3.0 cm

Air flow
14.0 cm

50.0 kV

+

6.0 cm 12.0 cm

v0

2.0 cm S

along the rod. Calculate the potential at the center of curvature of
the arc if the potential is assumed to be zero at infinity.
23.71 ... CALC Self-Energy of a Sphere of Charge. A solid
sphere of radius contains a total charge distributed uniformly
throughout its volume. Find the energy needed to assemble this
charge by bringing infinitesimal charges from far away. This
energy is called the “self-energy” of the charge distribution. (Hint:
After you have assembled a charge in a sphere of radius how
much energy would it take to add a spherical shell of thickness 
having charge Then integrate to get the total energy.)
23.72 .. CALC (a) From the expression for obtained in Example
22.9 (Section 22.4), find the expression for the electric potential 
as a function of both inside and outside the uniformly charged
sphere. Assume that at infinity. (b) Graph and as func-
tions of from to 
23.73 .. Charge is distributed uniformly over the
volume of an insulating sphere that has radius . What
is the potential difference between the center of the sphere and the
surface of the sphere?
23.74 . An insulating spherical shell with inner radius 
and outer radius carries a charge of uni-
formly distributed over its outer surface (see Exercise 23.41).
Point is at the center of the shell, point is on the inner surface,
and point is on the outer surface. (a) What will a voltmeter read if
it is connected between the following points: (i) and 
(ii) and (iii) and infinity; (iv) and (b) Which is at higher
potential: (i) or (ii) or (iii) or (c) Which, if any, of the
answers would change sign if the charge were 
23.75 .. Exercise 23.41 shows that, outside a spherical shell with
uniform surface charge, the potential is the same as if all the
charge were concentrated into a point charge at the center of the
sphere. (a) Use this result to show that for two uniformly charged
insulating shells, the force they exert on each other and their
mutual electrical energy are the same as if all the charge were con-
centrated at their centers. (Hint: See Section 13.6.) (b) Does this
same result hold for solid insulating spheres, with charge distrib-
uted uniformly throughout their volume? (c) Does this same result
hold for the force between two charged conducting shells?
Between two charged solid conductors? Explain.
23.76 .. CP Two plastic spheres, each carrying charge uniformly
distributed throughout its interior, are initially placed in contact
and then released. One sphere is in diameter, has mass

, and contains of charge. The other sphere is
in diameter, has mass and contains of

charge. Find the maximum acceleration and the maximum speed
achieved by each sphere (relative to the fixed point of their initial
location in space), assuming that no other forces are acting on
them. (Hint: The uniformly distributed charges behave as though
they were concentrated at the centers of the two spheres.)
23.77 . CALC Use the electric field calculated in Problem 22.45 to
calculate the potential difference between the solid conducting
sphere and the thin insulating shell.
23.78 . CALC Consider a solid conducting sphere inside a hollow
conducting sphere, with radii and charges specified in Problem
22.44. Take as Use the electric field calculated in
Problem 22.44 to calculate the potential at the following values
of (a) (at the outer surface of the hollow sphere); (b)

(at the inner surface of the hollow sphere); (c) (at the
surface of the solid sphere); (d) (at the center of the solid
sphere).
23.79 . CALC Electric charge is distributed uniformly along a thin
rod of length with total charge Take the potential to be zero atQ.a,
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infinity. Find the potential at the
following points (Fig. P23.79):
(a) point a distance to the
right of the rod, and (b) point a
distance above the right-hand
end of the rod. (c) In parts (a)
and (b), what does your result reduce to as or becomes much
larger than 
23.80 . (a) If a spherical raindrop of radius carries a
charge of uniformly distributed over its volume, what is
the potential at its surface? (Take the potential to be zero at an infi-
nite distance from the raindrop.) (b) Two identical raindrops, each
with radius and charge specified in part (a), collide and merge into
one larger raindrop. What is the radius of this larger drop, and what
is the potential at its surface, if its charge is uniformly distributed
over its volume?
23.81 .. Two metal spheres of different sizes are charged such
that the electric potential is the same at the surface of each. Sphere

has a radius three times that of sphere Let and be the
charges on the two spheres, and let and be the electric-field
magnitudes at the surfaces of the two spheres. What are (a) the
ratio and (b) the ratio 
23.82 . An alpha particle with kinetic energy makes a
head-on collision with a lead nucleus at rest. What is the distance
of closest approach of the two particles? (Assume that the lead
nucleus remains stationary and that it may be treated as a point
charge. The atomic number of lead is 82. The alpha particle is a
helium nucleus, with atomic number 2.)
23.83 . A metal sphere with radius has a charge Take the
electric potential to be zero at an infinite distance from the sphere.
(a) What are the electric field and electric potential at the surface of
the sphere? This sphere is now connected by a long, thin conduct-
ing wire to another sphere of radius that is several meters from
the first sphere. Before the connection is made, this second sphere
is uncharged. After electrostatic equilibrium has been reached,
what are (b) the total charge on each sphere; (c) the electric poten-
tial at the surface of each sphere; (d) the electric field at the surface
of each sphere? Assume that the amount of charge on the wire is
much less than the charge on each sphere.
23.84 ... CALC Use the charge distribution and electric field cal-
culated in Problem 22.65. (a) Show that for the potential is
identical to that produced by a point charge (Take the potential
to be zero at infinity.) (b) Obtain an expression for the electric
potential valid in the region 
23.85 .. CP Nuclear Fusion in the Sun. The source of the
sun’s energy is a sequence of nuclear reactions that occur in its
core. The first of these reactions involves the collision of two pro-
tons, which fuse together to form a heavier nucleus and release
energy. For this process, called nuclear fusion, to occur, the two
protons must first approach until their surfaces are essentially in
contact. (a) Assume both protons are moving with the same speed
and they collide head-on. If the radius of the proton is

what is the minimum speed that will allow fusion
to occur? The charge distribution within a proton is spherically
symmetric, so the electric field and potential outside a proton are
the same as if it were a point charge. The mass of the proton is

(b) Another nuclear fusion reaction that occurs
in the sun’s core involves a collision between two helium nuclei,
each of which has 2.99 times the mass of the proton, charge 
and radius Assuming the same collision geometry
as in part (a), what minimum speed is required for this fusion reac-
tion to take place if the nuclei must approach a center-to-center
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distance of about As for the proton, the charge of
the helium nucleus is uniformly distributed throughout its volume. 
(c) In Section 18.3 it was shown that the average translational
kinetic energy of a particle with mass in a gas at absolute tem-
perature is where is the Boltzmann constant (given in
Appendix F). For two protons with kinetic energy equal to this
average value to be able to undergo the process described in part
(a), what absolute temperature is required? What absolute tempera-
ture is required for two average helium nuclei to be able to undergo
the process described in part (b)? (At these temperatures, atoms are
completely ionized, so nuclei and electrons move separately.) (d)
The temperature in the sun’s core is about How does
this compare to the temperatures calculated in part (c)? How can
the reactions described in parts (a) and (b) occur at all in the inte-
rior of the sun? (Hint: See the discussion of the distribution of
molecular speeds in Section 18.5.)
23.86 . CALC The electric potential in a region of space is
given by

where is a constant. (a) Derive an expression for the electric field
at any point in this region. (b) The work done by the field when a

test charge moves from the point 
to the origin is measured to be 

Determine (c) Determine the electric field at the point (0, 0,
0.250 m). (d) Show that in every plane parallel to the -plane the
equipotential contours are circles. (e) What is the radius of the
equipotential contour corresponding to and

23.87 .. Nuclear Fission. The
unstable nucleus of uranium-
236 can be regarded as a uni-
formly charged sphere of charge

and radius 
In nuclear fis-

sion, this can divide into two
smaller nuclei, each with half
the charge and half the volume
of the original uranium-236
nucleus. This is one of the reactions that occurred in the nuclear
weapon that exploded over Hiroshima, Japan, in August 1945.
(a) Find the radii of the two “daughter” nuclei of charge (b)
In a simple model for the fission process, immediately after the
uranium-236 nucleus has undergone fission, the “daughter”
nuclei are at rest and just touching, as shown in Fig. P23.87.
Calculate the kinetic energy that each of the “daughter” nuclei
will have when they are very far apart. (c) In this model the sum
of the kinetic energies of the two “daughter” nuclei, calculated
in part (b), is the energy released by the fission of one uranium-
236 nucleus. Calculate the energy released by the fission of

of uranium-236. The atomic mass of uranium-236 is
where 1 u 1 atomic mass unit

Express your answer both in joules and in kilotons of TNT
(1 kiloton of TNT releases when it explodes). 
(d) In terms of this model, discuss why an atomic bomb could
just as well be called an “electric bomb.”

CHALLENGE PROBLEMS
23.88 ... CP CALC In a certain region, a charge distribution
exists that is spherically symmetric but nonuniform. That is, the
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volume charge density depends on the distance from the
center of the distribution but not on the spherical polar angles 
and The electric potential due to this charge distribution is

where is a constant having units of and is a constant
having units of meters. (a) Derive expressions for for the regions

and [Hint: Use Eq. (23.23).] Explain why has only
a radial component. (b) Derive an expression for in each of
the two regions and [Hint: Use Gauss’s law for two
spherical shells, one of radius and the other of radius The
charge contained in the infinitesimal spherical shell of radius is

] (c) Show that the net charge contained in the
volume of a sphere of radius greater than or equal to is zero.
[Hint: Integrate the expressions derived in part (b) for over a
spherical volume of radius greater than or equal to ] Is this result
consistent with the electric field for that you calculated in
part (a)?
23.89 ... CP In experiments in which atomic nuclei collide,
head-on collisions like that described in Problem 23.82 do happen,
but “near misses” are more common. Suppose the alpha particle in
Problem 23.82 was not “aimed” at the center of the lead nucleus,
but had an initial nonzero angular momentum (with respect to the
stationary lead nucleus) of magnitude where is the
magnitude of the initial momentum of the alpha particle and

What is the distance of closest approach?
Repeat for and 
23.90 ... CALC A hollow, thin-walled insulating cylinder of
radius and length (like the cardboard tube in a roll of toilet
paper) has charge uniformly distributed over its surface. (a) Cal-
culate the electric potential at all points along the axis of the tube.
Take the origin to be at the center of the tube, and take the potential
to be zero at infinity. (b) Show that if the result of part (a)
reduces to the potential on the axis of a ring of charge of radius .
(See Example 23.11 in Section 23.3.) (c) Use the result of part (a)
to find the electric field at all points along the axis of the tube.
23.91 ... The Millikan Oil-Drop Experiment. The charge of
an electron was first measured by the American physicist Robert
Millikan during 1909–1913. In his experiment, oil is sprayed in
very fine drops (around in diameter) into the space
between two parallel horizontal plates separated by a distance A
potential difference is maintained between the parallel plates,
causing a downward electric field between them. Some of the oil
drops acquire a negative charge because of frictional effects or
because of ionization of the surrounding air by x rays or radioac-
tivity. The drops are observed through a microscope. (a) Show that
an oil drop of radius at rest between the plates will remain at rest
if the magnitude of its charge is

q =
4p

3

rr 3gd

VAB

r

VAB

d.
10-4 mm

R
L V R,

Q
LR

b = 1.00 * 10-14 m.b = 1.00 * 10-13 m
b = 1.00 * 10-12 m.

p0L = p0b,

r 7 a
a.
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a
dq = 4pr 2r1r2 dr.
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r + dr.r

r Ú a.r … a
r1r2

E
S

r Ú a.r … a
E
S

aC>m3r0

V(r) = c r0a2

18P0
c1 - 3a

r

a
b

2

+ 2a
r

a
b

3

d for r … a

0 for r Ú a

V(r)f.
u

rr1r2 where is the density of the oil. (Ignore the buoyant force of the
air.) By adjusting to keep a given drop at rest, the charge on
that drop can be determined, provided its radius is known. (b) Mil-
likan’s oil drops were much too small to measure their radii
directly. Instead, Millikan determined by cutting off the electric
field and measuring the terminal speed of the drop as it fell. (We
discussed the concept of terminal speed in Section 5.3.) The vis-
cous force on a sphere of radius moving with speed through a
fluid with viscosity is given by Stokes’s law: When
the drop is falling at the viscous force just balances the weight

of the drop. Show that the magnitude of the charge on the
drop is

Within the limits of their experimental error, every one of the thou-
sands of drops that Millikan and his coworkers measured had a
charge equal to some small integer multiple of a basic charge 
That is, they found drops with charges of and so on,
but none with values such as or A drop with charge

has acquired one extra electron; if its charge is it has
acquired two extra electrons, and so on. (c) A charged oil drop in a
Millikan oil-drop apparatus is observed to fall at constant
speed in if The same drop can be held at rest
between two plates separated by if How
many excess electrons has the drop acquired, and what is the
radius of the drop? The viscosity of air is 
and the density of the oil is 
23.92 .. CP Two point charges are moving to the right along the
x-axis. Point charge 1 has charge mass 

and speed Point charge 2 is to the right of 
and has charge mass and
speed At a particular instant, the charges are separated by a dis-
tance of and have speeds and

The only forces on the particles are the forces
they exert on each other. (a) Determine the speed of the
center of mass of the system. (b) The relative energy of the
system is defined as the total energy minus the kinetic energy
contributed by the motion of the center of mass:

where is the total energy of
the system and is the distance between the charges. Show that

where is
called the reduced mass of the system and is the rel-
ative speed of the moving particles. (c) For the numerical values
given above, calculate the numerical value of (d) Based on the
result of part (c), for the conditions given above, will the particles
escape from one another? Explain. (e) If the particles do escape,
what will be their final relative speed when If the particles
do not escape, what will be their distance of maximum separation?
That is, what will be the value of when (f) Repeat parts
(c)–(e) for and when the separa-
tion is 9.00 mm.

v2 = 1800 m>sv1 = 400 m>s
v = 0?r

rS q ?

Erel.

v = v2 - v1

m = m1m2>(m1 + m2)Erel = 1
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r
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2 m2v
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Chapter Opening Question ?
A large, constant potential difference is maintained between
the welding tool and the metal pieces to be welded From
Example 23.9 (Section 23.3) the electric field between two con-
ductors separated by a distance d has magnitude Hence
d must be small in order for the field magnitude E to be large
enough to ionize the gas between the conductors a and b (see Sec-
tion 23.3) and produce an arc through this gas.

Test Your Understanding Questions
23.1 Answers: (a) (i), (b) (ii) The three charges and are
all positive, so all three of the terms in the sum in Eq. (23.11)—

and —are positive. Hence the total
electric potential energy is positive. This means that it would
take positive work to bring the three charges from infinity to the
positions shown in Fig. 21.14, and hence negative work to move
the three charges from these positions back to infinity.
23.2 Answer: no If at a certain point, does not have to
be zero at that point. An example is point in Figs. 21.23 and
23.13, for which there is an electric field in the -direction (see
Example 21.9 in Section 21.5) even though (see Example
23.4). This isn’t a surprising result because V and are quite dif-
ferent quantities: V is the net amount of work required to bring a
unit charge from infinity to the point in question, whereas is the
electric force that acts on a unit charge when it arrives at that point.
23.3 Answer: no If at a certain point, V does not have to
be zero at that point. An example is point O at the center of the

E
S

� 0

E
S

E
S

V = 0
+x

c
E
S

V = 0

U
q2q3/r23q1q2/r12, q1q3/r13,

q3q1, q2,

E = Vab /d.

(b).(a)
Vab

charged ring in Figs. 21.23 and 23.21. From Example 21.9 (Sec-
tion 21.5), the electric field is zero at O because the electric-field
contributions from different parts of the ring completely cancel.
From Example 23.11, however, the potential at O is not zero: This
point corresponds to so This value of
V corresponds to the work that would have to be done to move a
unit positive test charge along a path from infinity to point O; it is
nonzero because the charged ring repels the test charge, so positive
work must be done to move the test charge toward the ring.
23.4 Answer: no If the positive charges in Fig. 23.23 were
replaced by negative charges, and vice versa, the equipotential sur-
faces would be the same but the sign of the potential would be
reversed. For example, the surfaces in Fig. 23.23b with potential

and would have potential 
and respectively.
23.5 Answer: (iii) From Eqs. (23.19), the components of 
the electric field are 

and The value of A has no effect,
which means that we can add a constant to the electric potential at
all points without changing or the potential difference between
two points. The potential does not depend on z, so the z-component
of is zero. Note that at the origin the electric field is not zero
because it has a nonzero -component: 

Bridging Problem

Answer:
qQ

8pP0a
ln a

L + a

L - a
b

Ex = B, Ey = 0, Ez = 0.x
E
S

E
S

Ez = -0V/0z = 0.3Cy2 + Dx,

Ey = -0V/0y =Ex = -0V/0x = B + Dy,

V = +50 V,
V = -30 VV = -50 VV = +30 V

V = (1/4pP0)(Q/a).x = 0,

Answers
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24
LEARNING GOALS

By studying this chapter, you will

learn:

• The nature of capacitors, and how

to calculate a quantity that meas-

ures their ability to store charge.

• How to analyze capacitors

connected in a network.

• How to calculate the amount of

energy stored in a capacitor.

• What dielectrics are, and how they

make capacitors more effective.

CAPACITANCE 
AND DIELECTRICS

When you set an old-fashioned spring mousetrap or pull back the string of
an archer’s bow, you are storing mechanical energy as elastic potential
energy. A capacitor is a device that stores electric potential energy and

electric charge. To make a capacitor, just insulate two conductors from each other.
To store energy in this device, transfer charge from one conductor to the other so that
one has a negative charge and the other has an equal amount of positive charge.
Work must be done to move the charges through the resulting potential difference
between the conductors, and the work done is stored as electric potential energy.

Capacitors have a tremendous number of practical applications in devices such
as electronic flash units for photography, pulsed lasers, air bag sensors for cars, and
radio and television receivers. We’ll encounter many of these applications in later
chapters (particularly Chapter 31, in which we’ll see the crucial role played by
capacitors in the alternating-current circuits that pervade our technological society).
In this chapter, however, our emphasis is on the fundamental properties of capaci-
tors. For a particular capacitor, the ratio of the charge on each conductor to the
potential difference between the conductors is a constant, called the capacitance.
The capacitance depends on the sizes and shapes of the conductors and on the insu-
lating material (if any) between them. Compared to the case in which there is only
vacuum between the conductors, the capacitance increases when an insulating
material (a dielectric) is present. This happens because a redistribution of charge,
called polarization, takes place within the insulating material. Studying polariza-
tion will give us added insight into the electrical properties of matter.

Capacitors also give us a new way to think about electric potential energy. The
energy stored in a charged capacitor is related to the electric field in the space
between the conductors. We will see that electric potential energy can be regarded
as being stored in the field itself. The idea that the electric field is itself a store-
house of energy is at the heart of the theory of electromagnetic waves and our
modern understanding of the nature of light, to be discussed in Chapter 32.

? The energy used in a camera’s flash unit is stored in a capacitor, which
consists of two closely spaced conductors that carry opposite charges. If 
the amount of charge on the conductors is doubled, by what factor does 
the stored energy increase?
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24.1 Capacitors and Capacitance
Any two conductors separated by an insulator (or a vacuum) form a capacitor
(Fig. 24.1). In most practical applications, each conductor initially has zero net
charge and electrons are transferred from one conductor to the other; this is called
charging the capacitor. Then the two conductors have charges with equal magni-
tude and opposite sign, and the net charge on the capacitor as a whole remains
zero. We will assume throughout this chapter that this is the case. When we say
that a capacitor has charge or that a charge is stored on the capacitor, we
mean that the conductor at higher potential has charge and the conductor at
lower potential has charge (assuming that is positive). Keep this in mind in
the following discussion and examples.

In circuit diagrams a capacitor is represented by either of these symbols:

Q-Q
+Q

QQ,

S

Conductor b

E

2Q

1Q
Conductor a

24.1 Any two conductors and 
insulated from each other form a 
capacitor.

ba

In either symbol the vertical lines (straight or curved) represent the conductors
and the horizontal lines represent wires connected to either conductor. One com-
mon way to charge a capacitor is to connect these two wires to opposite terminals
of a battery. Once the charges and are established on the conductors, the
battery is disconnected. This gives a fixed potential difference between the
conductors (that is, the potential of the positively charged conductor with
respect to the negatively charged conductor ) that is just equal to the voltage of
the battery.

The electric field at any point in the region between the conductors is propor-
tional to the magnitude of charge on each conductor. It follows that the poten-
tial difference between the conductors is also proportional to If we double
the magnitude of charge on each conductor, the charge density at each point dou-
bles, the electric field at each point doubles, and the potential difference between
conductors doubles; however, the ratio of charge to potential difference does not
change. This ratio is called the capacitance of the capacitor:

(definition of capacitance) (24.1)

The SI unit of capacitance is called one farad (1 F), in honor of the 19th-century
English physicist Michael Faraday. From Eq. (24.1), one farad is equal to one
coulomb per volt

CAUTION Capacitance vs. coulombs Don’t confuse the symbol for capacitance (which
is always in italics) with the abbreviation C for coulombs (which is never italicized). ❙

The greater the capacitance of a capacitor, the greater the magnitude of
charge on either conductor for a given potential difference and hence the
greater the amount of stored energy. (Remember that potential is potential energy
per unit charge.) Thus capacitance is a measure of the ability of a capacitor to
store energy. We will see that the value of the capacitance depends only on the
shapes and sizes of the conductors and on the nature of the insulating material
between them. (The above remarks about capacitance being independent of 
and do not apply to certain special types of insulating materials. We won’t
discuss these materials in this book, however.)

Calculating Capacitance: Capacitors in Vacuum
We can calculate the capacitance of a given capacitor by finding the potential
difference between the conductors for a given magnitude of charge andQVab

C

Vab

Q

Vab

QC

C

1 F = 1 farad = 1 C>V = 1 coulomb>volt

(1 C>V):

C =
Q

Vab
  

C

Q.Vab

Q

b
a

Vab

-QQ

ActivPhysics 11.11.6: Electric Potential: Qual-
itative Introduction
ActivPhysics 11.12.1 and 11.12.3: Electric
Potential, Field, and Force



then using Eq. (24.1). For now we’ll consider only capacitors in vacuum; that is,
we’ll assume that the conductors that make up the capacitor are separated by
empty space.

The simplest form of capacitor consists of two parallel conducting plates, each
with area separated by a distance that is small in comparison with their
dimensions (Fig. 24.2a). When the plates are charged, the electric field is almost
completely localized in the region between the plates (Fig. 24.2b). As we dis-
cussed in Example 22.8 (Section 22.4), the field between such plates is essen-
tially uniform, and the charges on the plates are uniformly distributed over their
opposing surfaces. We call this arrangement a parallel-plate capacitor.

We worked out the electric-field magnitude for this arrangement in Example
21.12 (Section 21.5) using the principle of superposition of electric fields and
again in Example 22.8 (Section 22.4) using Gauss’s law. It would be a good idea
to review those examples. We found that where is the magnitude
(absolute value) of the surface charge density on each plate. This is equal to the
magnitude of the total charge on each plate divided by the area of the plate,
or so the field magnitude can be expressed as

The field is uniform and the distance between the plates is so the potential dif-
ference (voltage) between the two plates is

From this we see that the capacitance of a parallel-plate capacitor in vacuum is

(capacitance of a parallel-plate 
capacitor in vacuum) (24.2)

The capacitance depends only on the geometry of the capacitor; it is directly
proportional to the area of each plate and inversely proportional to their sepa-
ration The quantities and are constants for a given capacitor, and is a
universal constant. Thus in vacuum the capacitance is a constant independent
of the charge on the capacitor or the potential difference between the plates. If
one of the capacitor plates is flexible, the capacitance C changes as the plate
separation d changes. This is the operating principle of a condenser microphone
(Fig. 24.3).

When matter is present between the plates, its properties affect the capaci-
tance. We will return to this topic in Section 24.4. Meanwhile, we remark that if
the space contains air at atmospheric pressure instead of vacuum, the capacitance
differs from the prediction of Eq. (24.2) by less than 0.06%.

In Eq. (24.2), if is in square meters and in meters, is in farads. The units
of are so we see that

Because (energy per unit charge), this is consistent with our defini-
tion Finally, the units of can be expressed as 

so

This relationship is useful in capacitance calculations, and it also helps us to ver-
ify that Eq. (24.2) is dimensionally consistent.

One farad is a very large capacitance, as the following example shows. In
many applications the most convenient units of capacitance are the microfarad

P0 = 8.85 * 10-12 F>m

1 F>m,
1 C2>N # m2 =P01 F = 1 C>V.

1 V = 1 J>C

1 F = 1 C2>N # m = 1 C2>J

C2>N # m2,P0

CdA

C
P0dAd.

A

C =
Q

Vab
= P0

A

d

C

Vab = Ed =
1
P0

Qd

A

d,

E =
s

P0
=

Q

P0A

Es = Q>A,
AQ

sE = s>P0,

E

dA,
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When the separation of the plates
is small compared to their size,
the fringing of the field is slight.

Wire

d

Plate a, area A

Plate b, area A

(a) Arrangement of the capacitor plates

Wire

+Q

–QPotential
difference 5 Vab

E
S

(b) Side view of the electric field E
S

24.2 A charged parallel-plate capacitor.

24.3 Inside a condenser microphone is a
capacitor with one rigid plate and one flex-
ible plate. The two plates are kept at a con-
stant potential difference . Sound waves
cause the flexible plate to move back and
forth, varying the capacitance and caus-
ing charge to flow to and from the capaci-
tor in accordance with the relationship

. Thus a sound wave is con-
verted to a charge flow that can be ampli-
fied and recorded digitally.

C = Q/Vab

C

Vab
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and the picofarad For example, the flash
unit in a point-and-shoot camera uses a capacitor of a few hundred microfarads
(Fig. 24.4), while capacitances in a radio tuning circuit are typically from 10 to
100 picofarads.

For any capacitor in vacuum, the capacitance depends only on the shapes,
dimensions, and separation of the conductors that make up the capacitor. If the
conductor shapes are more complex than those of the parallel-plate capacitor,
the expression for capacitance is more complicated than in Eq. (24.2). In the
following examples we show how to calculate for two other conductor
geometries.

C

C

11 pF = 10-12 F2.11 mF = 10-6 F2

Example 24.1 Size of a 1-F capacitor

The parallel plates of a 1.0-F capacitor are 1.0 mm apart. What is
their area?

SOLUTION

IDENTIFY and SET UP: This problem uses the relationship among
the capacitance C, plate separation d, and plate area A (our target
variable) for a parallel-plate capacitor. We solve Eq. (24.2) for 

EXECUTE: From Eq. (24.2),

= 1.1 * 108 m2A =
Cd

P0
=
11.0 F)11.0 * 10-3 m2

8.85 * 10-12 F>m

A.

EVALUATE: This corresponds to a square about (about 
6 miles) on a side! The volume of such a capacitor would be at least
Ad equivalent to that of a cube about 50 m on a
side. In fact, it’s possible to make 1-F capacitors a few centimeters
on a side. The trick is to have an appropriate substance between the
plates rather than a vacuum, so that (among other things) the plate
separation d can greatly reduced. We’ll explore this further in Sec-
tion 24.4.

= 1.1 * 105 m3,

10 km

24.4 A commercial capacitor is labeled
with the value of its capacitance. For these
capacitors,
470 mF.

C = 2200 mF, 1000 mF, and

Example 24.2 Properties of a parallel-plate capacitor

The plates of a parallel-plate capacitor in vacuum are 
apart and in area. A 10.0-kV potential difference is applied
across the capacitor. Compute (a) the capacitance; (b) the charge
on each plate; and (c) the magnitude of the electric field between
the plates.

SOLUTION

IDENTIFY and SET UP: We are given the plate area the plate
spacing and the potential difference for
this parallel-plate capacitor. Our target variables are the capaci-
tance the charge on each plate, and the electric-field magni-
tude We use Eq. (24.2) to calculate and then use Eq. (24.1)
and to find We use to find E.

EXECUTE: (a) From Eq. (24.2),

= 3.54 * 10-9 F = 0.00354 mF

C = P0
A

d
= 18.85 * 10-12 F>m2

12.00 m22

5.00 * 10-3 m

E = Q>P0 AQ.Vab

CE.
QC,

Vab = 1.00 * 104 Vd,
A,

2.00 m2
5.00 mm (b) The charge on the capacitor is

The plate at higher potential has charge , and the other
plate has charge 

(c) The electric-field magnitude is

EVALUATE: We can also find E by recalling that the electric field is
equal in magnitude to the potential gradient [Eq. (23.22)]. The
field between the plates is uniform, so

(Remember that 1 N>C =  1 V>m.)

E =
Vab

d
=

1.00 * 104 V

5.00 * 10-3 m
= 2.00 * 106 V>m

= 2.00 * 106 N>C

E =
s

P0
=

Q

P0A
=

3.54 * 10-5 C

18.85 * 10-12 C2>N # m2212.00 m22

-35.4 mC.
+35.4 mC

= 3.54 * 10-5 C = 35.4 mC

Q = CVab = 13.54 * 10-9 C>V211.00 * 104 V2
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Example 24.3 A spherical capacitor

Two concentric spherical conducting shells are separated by vac-
uum (Fig. 24.5). The inner shell has total charge and outer
radius and the outer shell has charge and inner radius .
Find the capacitance of this spherical capacitor.

SOLUTION

IDENTIFY and SET UP: By definition, the capacitance C is the mag-
nitude Q of the charge on either sphere divided by the potential
difference between the spheres. We first find and then use
Eq. (24.1) to find the capacitance 

EXECUTE: Using a Gaussian surface such as that shown in Fig.
24.5, we found in Example 22.5 (Section 22.4) that the charge on a
conducting sphere produces zero field inside the sphere, so the
outer sphere makes no contribution to the field between the
spheres. Therefore the electric field and the electric potential

C = Q>Vab.
Vab,Vab

rb-Qra,
+Q

between the shells are the same as those outside a charged con-
ducting sphere with charge . We considered that problem in
Example 23.8 (Section 23.3), so the same result applies here: The
potential at any point between the spheres is Hence
the potential of the inner (positive) conductor at with
respect to that of the outer (negative) conductor at is

The capacitance is then

As an example, if and 

EVALUATE: We can relate our expression for C to that for a parallel-
plate capacitor. The quantity is intermediate between the
areas and of the two spheres; in fact, it’s the geometric
mean of these two areas, which we can denote by The dis-
tance between spheres is so we can write

This has the same form as
for parallel plates: If the distance between spheres is
very small in comparison to their radii, their capacitance is the
same as that of parallel plates with the same area and spacing.

C = P0A>d.
C = 4pP0rarb>1rb - ra2 = P0Agm>d.

d = rb - ra,
Agm.

4pr 2
b4pr 2

a

4prarb

= 1.1 * 10-10 F = 110 pF

C = 4p18.85 * 10-12 F>m2
10.095 m)10.105 m2

0.010 m

rb = 10.5 cm,ra = 9.5 cm

C =
Q

Vab
= 4pP0

rarb

rb - ra

=
Q

4pP0
a

1
ra

-
1
rb
b =

Q

4pP0

rb - ra

rarb

Vab = Va - Vb =
Q

4pP0ra
-

Q

4pP0rb

r = rb

r = ra

V = Q>4pP0r.

+Q

Inner shell, charge 1Q

ra rbr
Outer shell, charge 2Q

Gaussian surface

24.5 A spherical capacitor.

Example 24.4 A cylindrical capacitor

Two long, coaxial cylindrical conductors are separated by vacuum
(Fig. 24.6). The inner cylinder has radius and linear charge den-
sity The outer cylinder has inner radius and linear charge
density . Find the capacitance per unit length for this capacitor.

SOLUTION

IDENTIFY and SET UP: As in Example 24.3, we use the definition
of capacitance, We use the result of Example 23.10C = Q>Vab.

-l
rb+l.

ra

(Section 23.3) to find the potential difference between the
cylinders, and find the charge on a length of the cylinders from
the linear charge density. We then find the corresponding capaci-
tance C using Eq. (24.1). Our target variable is this capacitance
divided by 

EXECUTE: As in Example 24.3, the potential V between the cylin-
ders is not affected by the presence of the charged outer cylinder.
Hence our result in Example 23.10 for the potential outside a
charged conducting cylinder also holds in this example for poten-
tial in the space between the cylinders:

Here is the arbitrary, finite radius at which We take
the radius of the inner surface of the outer cylinder. Then

the potential at the outer surface of the inner cylinder (at which
is just the potential of the inner (positive) cylinder 

with respect to the outer (negative) cylinder 

If is positive as in Fig. 24.6, then is positive as well: The
inner cylinder is at higher potential than the outer.

Vabl

Vab =
l

2pP0
 ln 

rb

ra

b:
aVabr = ra)

r0 = rb,
V = 0.r0

V =
l

2pP0
 ln 

r0

r

L.

LQ
Vab

L

ra

2l

1l

rb

24.6 A long cylindrical capacitor. The linear charge density is
assumed to be positive in this figure. The magnitude of charge in a
length of either cylinder is lL.L

l
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24.2 Capacitors in Series and Parallel
Capacitors are manufactured with certain standard capacitances and working
voltages (Fig. 24.7). However, these standard values may not be the ones you
actually need in a particular application. You can obtain the values you need by
combining capacitors; many combinations are possible, but the simplest combi-
nations are a series connection and a parallel connection.

Capacitors in Series
Figure 24.8a is a schematic diagram of a series connection. Two capacitors are
connected in series (one after the other) by conducting wires between points 
and Both capacitors are initially uncharged. When a constant positive potential
difference is applied between points and the capacitors become charged;
the figure shows that the charge on all conducting plates has the same magnitude.
To see why, note first that the top plate of acquires a positive charge The
electric field of this positive charge pulls negative charge up to the bottom plate of

until all of the field lines that begin on the top plate end on the bottom plate.
This requires that the bottom plate have charge These negative charges had
to come from the top plate of which becomes positively charged with charge

This positive charge then pulls negative charge from the connection at
point onto the bottom plate of The total charge on the lower plate of and
the upper plate of together must always be zero because these plates aren’t
connected to anything except each other. Thus in a series connection the magni-
tude of charge on all plates is the same.

Referring to Fig. 24.8a, we can write the potential differences between points
and and and and as

and so

(24.3)

Following a common convention, we use the symbols and to denote the
potential differences (across the first capacitor), (across the second capac-
itor), and (across the entire combination of capacitors), respectively.Vab

VcbVac

VV2,V1,

V

Q
=

1

C1
+

1

C2

Vab = V = V1 + V2 = Qa
1

C1
+

1

C2
b

Vac = V1 =
Q

C1
  Vcb = V2 =

Q

C2

bab,cc,a

C2

C1C2.b
-Q+Q.

C2,
-Q.

C1

Q.C1

b,aVab

b.
a

The total charge in a length is so from Eq. (24.1)
the capacitance of a length is

The capacitance per unit length is

C

L
=

2pP0

ln1rb>ra2

C =
Q

Vab
=

lL

l

2pP0
 ln 

rb

ra

=
2pP0L

ln1rb>ra2

LC
Q = lL,LQ Substituting we get

EVALUATE: The capacitance of coaxial cylinders is determined
entirely by their dimensions, just as for parallel-plate and spherical
capacitors. Ordinary coaxial cables are made like this but with an
insulating material instead of vacuum between the conductors. A
typical cable used for connecting a television to a cable TV feed
has a capacitance per unit length of 69 pF>m.

C

L
=

55.6 pF>m

ln1rb>ra2

P0 = 8.85 * 10-12 F>m = 8.85 pF>m,

Test Your Understanding of Section 24.1 A capacitor has vacuum in
the space between the conductors. If you double the amount of charge on each
conductor, what happens to the capacitance? (i) It increases; (ii) it decreases; (iii) it
remains the same; (iv) the answer depends on the size or shape of the conductors. ❙

24.7 An assortment of commercially
available capacitors.

+ + + +

– – – –

+ + + +

– – – –

+ + + +

– – – –

Charge is
the same 
as for the 
individual 
capacitors.

Equivalent capacitance
is less than the indi-
vidual capacitances:

Capacitors in series:
•  The capacitors have the same charge Q.
•  Their potential differences add:

Vac 1 Vcb 5 Vab.

Q
V

1
Ceq

1
C1

1Q
2Q

1Q
2Q

c

C1

C2

a

b

Vcb 5 V2

Vac 5 V1

Vab 5 V

(a) Two capacitors in series

1Q

2Q

a

b

V Ceq 5

5
1

C2
1

(b) The equivalent single capacitor

24.8 A series connection of two capacitors.



The equivalent capacitance of the series combination is defined as the
capacitance of a single capacitor for which the charge is the same as for the
combination, when the potential difference is the same. In other words, the com-
bination can be replaced by an equivalent capacitor of capacitance For such a
capacitor, shown in Fig. 24.8b,

(24.4)

Combining Eqs. (24.3) and (24.4), we find

We can extend this analysis to any number of capacitors in series. We find the fol-
lowing result for the reciprocal of the equivalent capacitance:

(24.5)

The reciprocal of the equivalent capacitance of a series combination equals
the sum of the reciprocals of the individual capacitances. In a series connec-
tion the equivalent capacitance is always less than any individual capacitance.

CAUTION Capacitors in series The magnitude of charge is the same on all plates of all
the capacitors in a series combination; however, the potential differences of the individual
capacitors are not the same unless their individual capacitances are the same. The potential
differences of the individual capacitors add to give the total potential difference across the
series combination: ❙

Capacitors in Parallel
The arrangement shown in Fig. 24.9a is called a parallel connection. Two
capacitors are connected in parallel between points and In this case the upper
plates of the two capacitors are connected by conducting wires to form an
equipotential surface, and the lower plates form another. Hence in a parallel con-
nection the potential difference for all individual capacitors is the same and is
equal to The charges and are not necessarily equal, however,
since charges can reach each capacitor independently from the source (such as a
battery) of the voltage The charges are

The total charge of the combination, and thus the total charge on the equivalent
capacitor, is

so

(24.6)

The parallel combination is equivalent to a single capacitor with the same total
charge and potential difference as the combination (Fig. 24.9b).
The equivalent capacitance of the combination, is the same as the capaci-
tance of this single equivalent capacitor. So from Eq. (24.6),

Ceq = C1 + C2

Q>V
Ceq,

VQ = Q1 + Q2

Q

V
= C1 + C2

Q = Q1 + Q2 = 1C1 + C22V

Q

Q1 = C1V and Q2 = C2V

Vab.

Q2Q1Vab = V.

b.a

Vtotal = V1 + V2 + V3 + Á .

1

Ceq
=

1

C1
+

1

C2
+

1

C3
+ Á   (capacitors in series)

1

Ceq
=

1

C1
+

1

C2

Ceq =
Q

V
 or 1

Ceq
=

V

Q

Ceq.
V

Q
Ceq
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+ + + +

– – – –
+ +

– –

+ + + +

– – – –
+ +

– –

Capacitors in parallel:
• The capacitors have the same potential V.
• The charge on each capacitor depends on its
  capacitance: Q1 5 C1V, Q2 5 C2V.

Charge is the sum of the
individual charges:

Equivalent capacitance:
Ceq 5 C1 1 C2

C1 C2

a

b

Vab  5  V

(a) Two capacitors in parallel

Q1 Q2

Ceq

a

b

V Q 5 Q1 1 Q2

1Q

2Q

(b) The equivalent single capacitor

24.9 A parallel connection of two 
capacitors.

Application Touch Screens
and Capacitance
The touch screen on a mobile phone, an MP3
player, or (as shown here) a medical device
uses the physics of capacitors. Behind the
screen are two parallel layers, one behind the
other, of thin strips of a transparent conduc-
tor such as indium tin oxide. A voltage is main-
tained between the two layers. The strips in
one layer are oriented perpendicular to those
in the other layer; the points where two strips
overlap act as a grid of capacitors. When you
bring your finger (a conductor) up to a point
on the screen, your finger and the front con-
ducting layer act like a second capacitor in
series at that point. The circuitry attached to
the conducting layers detects the location of
the capacitance change, and so detects
where you touched the screen.
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In the same way we can show that for any number of capacitors in parallel,

(24.7)

The equivalent capacitance of a parallel combination equals the sum of the
individual capacitances. In a parallel connection the equivalent capacitance is
always greater than any individual capacitance.

CAUTION Capacitors in parallel The potential differences are the same for all the capac-
itors in a parallel combination; however, the charges on individual capacitors are not the
same unless their individual capacitances are the same. The charges on the individual
capacitors add to give the total charge on the parallel combination: 

[Compare these statements to those in the “Caution” paragraph follow-
ing Eq. (24.5).] ❙
Q2 + Q3 + Á .

Qtotal = Q1 +

Ceq = C1 + C2 + C3 + Á   (capacitors in parallel)

Problem-Solving Strategy 24.1 Equivalent Capacitance

IDENTIFY the relevant concepts: The concept of equivalent capac-
itance is useful whenever two or more capacitors are connected.

SET UP the problem using the following steps:
1. Make a drawing of the capacitor arrangement.
2. Identify all groups of capacitors that are connected in series or

in parallel.
3. Keep in mind that when we say a capacitor “has charge ” we

mean that the plate at higher potential has charge and the
other plate has charge 

EXECUTE the solution as follows:
1. Use Eq. (24.5) to find the equivalent capacitance of capacitors

connected in series, as in Fig. 24.8. Such capacitors each have
the same charge if they were uncharged before they were con-
nected; that charge is the same as that on the equivalent capaci-
tor. The potential difference across the combination is the sum
of the potential differences across the individual capacitors.

-Q.
+Q

Q,

2. Use Eq. (24.7) to find the equivalent capacitance of capacitors
connected in parallel, as in Fig. 24.9. Such capacitors all have
the same potential difference across them; that potential differ-
ence is the same as that across the equivalent capacitor. The
total charge on the combination is the sum of the charges on the
individual capacitors.

3. After replacing all the series or parallel groups you initially
identified, you may find that more such groups reveal them-
selves. Replace those groups using the same procedure as
above until no more replacements are possible. If you then need
to find the charge or potential difference for an individual origi-
nal capacitor, you may have to retrace your steps.

EVALUATE your answer: Check whether your result makes sense.
If the capacitors are connected in series, the equivalent capacitance

must be smaller than any of the individual capacitances. If the
capacitors are connected in parallel, must be greater than any
of the individual capacitances.

Ceq

Ceq

Example 24.5 Capacitors in series and in parallel

In Figs. 24.8 and 24.9, let and
Find the equivalent capacitance and the charge and

potential difference for each capacitor when the capacitors are con-
nected (a) in series (see Fig. 24.8) and (b) in parallel (see Fig. 24.9).

SOLUTION

IDENTIFY and SET UP: In both parts of this example a target vari-
able is the equivalent capacitance which is given by Eq. (24.5)
for the series combination in part (a) and by Eq. (24.7) for the par-
allel combination in part (b). In each part we find the charge and
potential difference using the definition of capacitance, Eq. (24.1),
and the rules outlined in Problem-Solving Strategy 24.1.

EXECUTE: (a) From Eq. (24.5) for a series combination,

The charge on each capacitor in series is the same as that on the
equivalent capacitor:

Q = CeqV = 12.0 mF2118 V2 = 36 mC

Q

1

Ceq
=

1

C1
+

1

C2
=

1

6.0 mF
+

1

3.0 mF
  Ceq = 2.0 mF

Ceq,

Vab = 18 V.
C2 = 3.0 mF,C1 = 6.0 mF, The potential difference across each capacitor is inversely propor-

tional to its capacitance:

(b) From Eq. (24.7) for a parallel combination,

The potential difference across each of the capacitors is the same
as that across the equivalent capacitor, The charge on each
capacitor is directly proportional to its capacitance:

EVALUATE: As expected, the equivalent capacitance for the
series combination in part (a) is less than either or while

Continued

C2,C1

Ceq

Q2 = C2V = 13.0 mF2118 V2 = 54 mC

Q1 = C1V = 16.0 mF2118 V2 = 108 mC

18 V.

Ceq = C1 + C2 = 6.0 mF + 3.0 mF = 9.0 mF

Vcb = V2 =
Q

C2
=

36 mC

3.0 mF
= 12.0 V

Vac = V1 =
Q

C1
=

36 mC

6.0 mF
= 6.0 V



24.3 Energy Storage in Capacitors 
and Electric-Field Energy

Many of the most important applications of capacitors depend on their ability to
store energy. The electric potential energy stored in a charged capacitor is just
equal to the amount of work required to charge it—that is, to separate opposite
charges and place them on different conductors. When the capacitor is dis-
charged, this stored energy is recovered as work done by electrical forces.

796 CHAPTER 24 Capacitance and Dielectrics

that for the parallel combination in part (b) is greater than either 
or For two capacitors in series, as in part (a), the charge is the
same on either capacitor and the larger potential difference
appears across the capacitor with the smaller capacitance. Further-
more, the sum of the potential differences across the individual
capacitors in series equals the potential difference across the

C2.
C1 equivalent capacitor: . By contrast, for

two capacitors in parallel, as in part (b), each capacitor has the
same potential difference and the larger charge appears on the
capacitor with the larger capacitance. Can you show that the total
charge on the parallel combination is equal to the charge

on the equivalent capacitor?Q = CeqV
Q1 + Q2

Vac + Vcb = Vab = 18 V

Example 24.6 A capacitor network

Find the equivalent capacitance of the five-capacitor network
shown in Fig. 24.10a.

SOLUTION

IDENTIFY and SET UP: These capacitors are neither all in series
nor all in parallel. We can, however, identify portions of the
arrangement that are either in series or parallel. We combine these
as described in Problem-Solving Strategy 24.1 to find the net
equivalent capacitance, using Eq. (24.5) for series connections and
Eq. (24.7) for parallel connections.

EXECUTE: The caption of Fig. 24.10 outlines our procedure. We
first use Eq. (24.5) to replace the and series combina-
tion by its equivalent capacitance 

1

C¿
=

1

12 mF
+

1

6 mF
    C¿ = 4 mF

C¿:
6-mF12-mF

This gives us the equivalent combination of Fig. 24.10b. Now we
see three capacitors in parallel, and we use Eq. (24.7) to replace
them with their equivalent capacitance 

This gives us the equivalent combination of Fig. 24.10c, which has
two capacitors in series. We use Eq. (24.5) to replace them with
their equivalent capacitance , which is our target variable 
(Fig. 24.10d):

EVALUATE: If the potential difference across the entire network in
Fig. 24.10a is = 9.0 V, the net charge on the network is

. Can you find the charge
on, and the voltage across, each of the five individual capacitors?
Q = CeqVab = 16 mF219.0 V2 = 54 mC

Vab

1

Ceq
=

1

18 mF
+

1

9 mF
    Ceq = 6 mF

Ceq

C– = 3 mF + 11 mF + 4 mF = 18 mF

C–:

a

b

(a) a

b

(b) a

b

(c) a

b

(d)

3 mF 3 mF
6 mF

9 mF 9 mF

12 mF
11 mF 11 mF 4 mF 18 mF

9 mF

6 mF

... replace these series
capacitors by an equivalent
capacitor.

... replace these
parallel capacitors by
an equivalent capacitor ...

Replace these series capacitors
by an equivalent capacitor ...

24.10 (a) A capacitor network between points and (b) The and capacitors in series in (a) are replaced by an equiva-
lent capacitor. (c) The and capacitors in parallel in (b) are replaced by an equivalent capacitor. 
(d) Finally, the and capacitors in series in (c) are replaced by an equivalent capacitor.6-mF9-mF18-mF

18-mF4-mF11-mF,3-mF,4-mF
6-mF12-mFb.a

Test Your Understanding of Section 24.2 You want to connect a
capacitor and an capacitor. (a) With which type of connection will the
capacitor have a greater potential difference across it than the capaci-

tor? (i) series; (ii) parallel; (iii) either series or parallel; (iv) neither series nor parallel. 
(b) With which type of connection will the capacitor have a greater charge than the

capacitor? (i) series; (ii) parallel; (iii) either series or parallel; (iv) neither series nor
parallel. ❙

8-mF
4-mF

8-mF4-mF
8-mF4-mF
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We can calculate the potential energy of a charged capacitor by calculating the
work required to charge it. Suppose that when we are done charging the capac-
itor, the final charge is and the final potential difference is From Eq. (24.1)
these quantities are related by

Let and be the charge and potential difference, respectively, at an intermedi-
ate stage during the charging process; then At this stage the work 
required to transfer an additional element of charge is

The total work needed to increase the capacitor charge from zero to a final
value is

(work to charge a capacitor) (24.8)

This is also equal to the total work done by the electric field on the charge when
the capacitor discharges. Then q decreases from an initial value to zero as the
elements of charge “fall” through potential differences that vary from 
down to zero.

If we define the potential energy of an uncharged capacitor to be zero, then 
in Eq. (24.8) is equal to the potential energy of the charged capacitor. The final
stored charge is so we can express (which is equal to ) as

(potential energy stored 
in a capacitor)

(24.9)

When is in coulombs, in farads (coulombs per volt), and in volts (joules
per coulomb), is in joules.

The last form of Eq. (24.9), shows that the total work required
to charge the capacitor is equal to the total charge multiplied by the average
potential difference during the charging process.

The expression in Eq. (24.9) shows that a charged capacitor is
the electrical analog of a stretched spring with elastic potential energy 
The charge is analogous to the elongation and the reciprocal of the capacitance,

is analogous to the force constant The energy supplied to a capacitor in the
charging process is analogous to the work we do on a spring when we stretch it.

Equations (24.8) and (24.9) tell us that capacitance measures the ability of a
capacitor to store both energy and charge. If a capacitor is charged by connecting
it to a battery or other source that provides a fixed potential difference then
increasing the value of gives a greater charge and a greater amount of
stored energy If instead the goal is to transfer a given quantity of
charge from one conductor to another, Eq. (24.8) shows that the work 
required is inversely proportional to the greater the capacitance, the easier it is
to give a capacitor a fixed amount of charge.

Applications of Capacitors: Energy Storage
Most practical applications of capacitors take advantage of their ability to
store and release energy. In electronic flash units used by photographers, the
energy stored in a capacitor (see Fig. 24.4) is released by depressing the camera’s
shutter button. This provides a conducting path from one capacitor plate to the
other through the flash tube. Once this path is established, the stored energy is rap-
idly converted into a brief but intense flash of light. An extreme example of the
same principle is the Z machine at Sandia National Laboratories in New Mexico,

C;
WQ

U = 1
2 CV2.

Q = CVC
V,

k.1>C,
x,Q

U = 1
2 kx2.

U = 1
21Q

2>C2

1
2 V

Q
WU = 1

2 QV,
U

VCQ

U =
Q2

2C
= 1

2 CV2 = 1
2 QV

WUQ = CV,
U

W

Vvdq
Q

W = L
W

0
dW =

1

C L
Q

0
q dq =

Q2

2C

Q
qW

dW = v dq =
q dq

C

dq
dWv = q>C.

vq

V =
Q

C

V.Q
W

U
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which is used in experiments in controlled nuclear fusion (Fig. 24.11). A bank of
charged capacitors releases more than a million joules of energy in just a few bil-
lionths of a second. For that brief space of time, the power output of the Z
machine is W, or about 80 times the power output of all the electric
power plants on earth combined!

In other applications, the energy is released more slowly. Springs in the sus-
pension of an automobile help smooth out the ride by absorbing the energy from
sudden jolts and releasing that energy gradually; in an analogous way, a capacitor
in an electronic circuit can smooth out unwanted variations in voltage due to
power surges. We’ll discuss these circuits in detail in Chapter 26.

Electric-Field Energy
We can charge a capacitor by moving electrons directly from one plate to another.
This requires doing work against the electric field between the plates. Thus we can
think of the energy as being stored in the field in the region between the plates. To
develop this relationship, let’s find the energy per unit volume in the space
between the plates of a parallel-plate capacitor with plate area and separation 
We call this the energy density, denoted by From Eq. (24.9) the total stored
potential energy is and the volume between the plates is just hence the
energy density is

(24.10)

From Eq. (24.2) the capacitance is given by The potential differ-
ence is related to the electric-field magnitude by If we use these
expressions in Eq. (24.10), the geometric factors and cancel, and we find

(electric energy density in a vacuum) (24.11)

Although we have derived this relationship only for a parallel-plate capacitor, it
turns out to be valid for any capacitor in vacuum and indeed for any electric field
configuration in vacuum. This result has an interesting implication. We think of
vacuum as space with no matter in it, but vacuum can nevertheless have electric
fields and therefore energy. Thus “empty” space need not be truly empty after all.
We will use this idea and Eq. (24.11) in Chapter 32 in connection with the energy
transported by electromagnetic waves.

CAUTION Electric-field energy is electric potential energy It’s a common misconception
that electric-field energy is a new kind of energy, different from the electric potential
energy described before. This is not the case; it is simply a different way of interpreting
electric potential energy. We can regard the energy of a given system of charges as being a
shared property of all the charges, or we can think of the energy as being a property of the
electric field that the charges create. Either interpretation leads to the same value of the
potential energy. ❙

u = 1
2 P0E2  

dA
V = Ed.EV

C = P0 A>d.C

u = Energy density =
1
2 CV2

Ad

Ad;1
2 CV2

u.
d.A

2.9 * 1014
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24.11 The Z machine uses a large
number of capacitors in parallel to give a
tremendous equivalent capacitance (see
Section 24.2). Hence a large amount of
energy can be stored with even
a modest potential difference The arcs
shown here are produced when the capaci-
tors discharge their energy into a target,
which is no larger than a spool of thread.
This heats the target to a temperature
higher than K.2 * 109

V.
U = 1

2 CV2

C

Example 24.7 Transferring charge and energy between capacitors

We connect a capacitor to a power supply, charge it
to a potential difference , and disconnect the power
supply (Fig. 24.12). Switch is open. (a) What is the charge on

? (b) What is the energy stored in ? (c) Capacitor
is initially uncharged. We close switch S. After

charge no longer flows, what is the potential difference across each
capacitor, and what is the charge on each capacitor? (d) What is the
final energy of the system?

C2 = 4.0 mF
C1C1

Q0S
V0 = 120 V

C1 = 8.0 mF

Q0

V0 5 120 V

C1 5 8.0 mF C2 5 4.0 mFS

+ + + +
– – – –

24.12 When the switch is closed, the charged capacitor is
connected to an uncharged capacitor The center part of the
switch is an insulating handle; charge can flow only between the
two upper terminals and between the two lower terminals.

C2.
C1S
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SOLUTION

IDENTIFY and SET UP: In parts (a) and (b) we find the charge 
and stored energy for the single charged capacitor using
Eqs. (24.1) and (24.9), respectively. After we close switch S, one
wire connects the upper plates of the two capacitors and another
wire connects the lower plates; the capacitors are now connected
in parallel. In part (c) we use the character of the parallel connec-
tion to determine how is shared between the two capacitors. In
part (d) we again use Eq. (24.9) to find the energy stored in capaci-
tors and the energy of the system is the sum of these values.

EXECUTE: (a) The initial charge on is

(b) The energy initially stored in is

(c) When we close the switch, the positive charge is distrib-
uted over the upper plates of both capacitors and the negative
charge is distributed over the lower plates. Let and be
the magnitudes of the final charges on the capacitors. Conservation

Q2Q1-Q0

Q0

Uinitial = 1
2 Q0V0 = 1

21960 * 10-6 C21120 V2 = 0.058 J

C1

Q0 = C1V0 = 18.0 mF21120 V2 = 960 mC

C1Q0

C2;C1

Q0

C1Uinitial

Q0 of charge requires that . The potential difference 
between the plates is the same for both capacitors because they are
connected in parallel, so the charges are and .
We now have three independent equations relating the three
unknowns , , and V. Solving these, we find

(d) The final energy of the system is

EVALUATE: The final energy is less than the initial energy; the dif-
ference was converted to energy of some other form. The conduc-
tors become a little warmer because of their resistance, and some
energy is radiated as electromagnetic waves. We’ll study the behav-
ior of capacitors in more detail in Chapters 26 and 31.

= 1
2 1960 * 10-6 C2180 V2 = 0.038 J

Ufinal = 1
2 Q1V + 1

2 Q2V = 1
2 Q0V

Q1 = 640 mC  Q2 = 320 mC

V =
Q0

C1 + C2
=

960 mC

8.0 mF + 4.0 mF
= 80 V

Q2Q1

Q2 = C2VQ1 = C1V

VQ1 + Q2 = Q0

Example 24.8 Electric-field energy

(a) What is the magnitude of the electric field required to store
of electric potential energy in a volume of in vac-

uum? (b) If the field magnitude is 10 times larger than that, how
much energy is stored per cubic meter?

SOLUTION

IDENTIFY and SET UP: We use the relationship between the electric-
field magnitude and the energy density In part (a) we use the
given information to find then we use Eq. (24.11) to find the cor-
responding value of In part (b), Eq. (24.11) tells us how u varies
with

EXECUTE: (a) The desired energy density is Then
from Eq. (24.11),

u = 1.00 J>m3.

E.
E.

u;
u.E

1.00 m31.00 J

(b) Equation (24.11) shows that is proportional to If 
increases by a factor of 10, increases by a factor of 
so the energy density becomes u =

EVALUATE: Dry air can sustain an electric field of about
without experiencing dielectric breakdown, which

we will discuss in Section 24.4. There we will see that field mag-
nitudes in practical insulators can be as great as this or even
larger.

3 * 106 V>m

100 J>m3.
102 = 100,u

EE2.u

= 4.75 * 105 N>C = 4.75 * 105 V>m

E =
A

2u

P0
=
B

211.00 J>m32

8.85 * 10-12 C2>N # m2

Example 24.9 Two ways to calculate energy stored in a capacitor

The spherical capacitor described in Example 24.3 (Section 24.1)
has charges and on its inner and outer conductors. Find
the electric potential energy stored in the capacitor (a) by using the
capacitance found in Example 24.3 and (b) by integrating the
electric-field energy density u.

SOLUTION

IDENTIFY and SET UP: We can determine the energy U stored in a
capacitor in two ways: in terms of the work done to put the charges
on the two conductors, and in terms of the energy in the electric
field between the conductors. The descriptions are equivalent, so
they must give us the same result. In Example 24.3 we found the
capacitance and the field magnitude in the space between the
conductors. (The electric field is zero inside the inner sphere and is
also zero outside the inner surface of the outer sphere, because a
Gaussian surface with radius or encloses zero netr 7 rbr 6 ra

EC

C

-Q+Q
charge. Hence the energy density is nonzero only in the space
between the spheres, .) In part (a) we use Eq. (24.9) to
find In part (b) we use Eq. (24.11) to find which we integrate
over the volume between the spheres to find U.

EXECUTE: (a) From Example 24.3, the spherical capacitor has
capacitance

where and are the radii of the inner and outer conducting
spheres, respectively. From Eq. (24.9) the energy stored in this
capacitor is

Continued

U =
Q2

2C
=

Q2

8pP0

rb - ra

rarb

rbra

C = 4pP0
rarb

rb - ra

u,U.
ra 6 r 6 rb



24.4 Dielectrics
Most capacitors have a nonconducting material, or dielectric, between their con-
ducting plates. A common type of capacitor uses long strips of metal foil for the
plates, separated by strips of plastic sheet such as Mylar. A sandwich of these
materials is rolled up, forming a unit that can provide a capacitance of several
microfarads in a compact package (Fig. 24.13).

Placing a solid dielectric between the plates of a capacitor serves three func-
tions. First, it solves the mechanical problem of maintaining two large metal
sheets at a very small separation without actual contact.

Second, using a dielectric increases the maximum possible potential differ-
ence between the capacitor plates. As we described in Section 23.3, any insulat-
ing material, when subjected to a sufficiently large electric field, experiences a
partial ionization that permits conduction through it. This is called dielectric
breakdown. Many dielectric materials can tolerate stronger electric fields with-
out breakdown than can air. Thus using a dielectric allows a capacitor to sustain
a higher potential difference and so store greater amounts of charge and
energy.

Third, the capacitance of a capacitor of given dimensions is greater when
there is a dielectric material between the plates than when there is vacuum. We
can demonstrate this effect with the aid of a sensitive electrometer, a device that
measures the potential difference between two conductors without letting any
appreciable charge flow from one to the other. Figure 24.14a shows an electrom-
eter connected across a charged capacitor, with magnitude of charge on each
plate and potential difference When we insert an uncharged sheet of dielec-
tric, such as glass, paraffin, or polystyrene, between the plates, experiment shows
that the potential difference decreases to a smaller value (Fig. 24.14b). When
we remove the dielectric, the potential difference returns to its original value 
showing that the original charges on the plates have not changed.

The original capacitance is given by and the capacitance 
with the dielectric present is The charge is the same in both cases,
and is less than so we conclude that the capacitance with the dielectric
present is greater than When the space between plates is completely filled by
the dielectric, the ratio of to (equal to the ratio of to ) is called the
dielectric constant of the material, 

(24.12)K =
C

C0
  (definition of dielectric constant)

K:
VV0C0C

C0.
CV0,V

QC = Q>V.
CC0 = Q>V0,C0

V0,
V

V0.
Q

V
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(b) The electric field in the region between the two
conducting spheres has magnitude The energy
density in this region is

The energy density is not uniform; it decreases rapidly with
increasing distance from the center of the capacitor. To find the
total electric-field energy, we integrate (the energy per unit vol-
ume) over the region . We divide this region into
spherical shells of radius surface area thickness and
volume . ThendV = 4pr 2 dr

dr,4pr 2,r,
ra 6 r 6 rb

u

u = 1
2 P0E2 = 1

2 P0a
Q

4pP0r 2
b

2

=
Q2

32p2P0r 4

E = Q>4pP0r 2.
ra 6 r 6 rb

EVALUATE: Electric potential energy can be regarded as being
associated with either the charges, as in part (a), or the field, as in
part (b); the calculated amount of stored energy is the same in
either case.

=
Q2

8pP0

rb - ra

rarb

=
Q2

8pP0L
rb

ra

dr

r 2
=

Q2

8pP0
a -

1
rb

+
1
ra
b

U = Lu dV = L
rb

ra

a
Q2

32p2P0r 4
b4pr 2dr

Test Your Understanding of Section 24.3 You want to connect a 
capacitor and an capacitor. With which type of connection will the 
capacitor have a greater amount of stored energy than the capacitor? (i) series;
(ii) parallel; (iii) either series or parallel; (iv) neither series nor parallel. ❙

8-mF
4-mF8-mF

4-mF

Conductor
(metal foil)

Conductor
(metal foil) Dielectric

(plastic sheets)

24.13 A common type of capacitor uses
dielectric sheets to separate the conductors.
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When the charge is constant, and In this case,
Eq. (24.12) can be rewritten as

(24.13)

With the dielectric present, the potential difference for a given charge is
reduced by a factor 

The dielectric constant is a pure number. Because is always greater than
is always greater than unity. Some representative values of are given in

Table 24.1. For vacuum, by definition. For air at ordinary temperatures
and pressures, is about 1.0006; this is so nearly equal to 1 that for most pur-
poses an air capacitor is equivalent to one in vacuum. Note that while water has a
very large value of it is usually not a very practical dielectric for use in capac-
itors. The reason is that while pure water is a very poor conductor, it is also an
excellent ionic solvent. Any ions that are dissolved in the water will cause charge
to flow between the capacitor plates, so the capacitor discharges.

K,

K
K = 1

KKC0,
CK

K.
Q

V =
V0

K
  1when Q is constant2

C>C0 = V0>V.Q = C0V0 = CV

Table 24.1 Values of Dielectric Constant K at 20 C

Material Material

Vacuum 1 Polyvinyl chloride 3.18

Air (1 atm) 1.00059 Plexiglas® 3.40

Air (100 atm) 1.0548 Glass 5–10

Teflon 2.1 Neoprene 6.70

Polyethylene 2.25 Germanium 16

Benzene 2.28 Glycerin 42.5

Mica 3–6 Water 80.4

Mylar 3.1 Strontium titanate 310

KK

°

No real dielectric is a perfect insulator. Hence there is always some leakage
current between the charged plates of a capacitor with a dielectric. We tacitly
ignored this effect in Section 24.2 when we derived expressions for the equiva-
lent capacitances of capacitors in series, Eq. (24.5), and in parallel, Eq. (24.7).
But if a leakage current flows for a long enough time to substantially change the
charges from the values we used to derive Eqs. (24.5) and (24.7), those equations
may no longer be accurate.

Induced Charge and Polarization
When a dielectric material is inserted between the plates while the charge is kept
constant, the potential difference between the plates decreases by a factor 
Therefore the electric field between the plates must decrease by the same factor.
If is the vacuum value and is the value with the dielectric, then

(24.14)

Since the electric-field magnitude is smaller when the dielectric is present, the
surface charge density (which causes the field) must be smaller as well. The sur-
face charge on the conducting plates does not change, but an induced charge of
the opposite sign appears on each surface of the dielectric (Fig. 24.15). The
dielectric was originally electrically neutral and is still neutral; the induced sur-
face charges arise as a result of redistribution of positive and negative charge
within the dielectric material, a phenomenon called polarization. We first
encountered polarization in Section 21.2, and we suggest that you reread the dis-
cussion of Fig. 21.8. We will assume that the induced surface charge is directly
proportional to the electric-field magnitude in the material; this is indeed the
case for many common dielectrics. (This direct proportionality is analogous to

E

E =
E0

K
  1when Q is constant2

EE0

K.

+ –

+ –

Adding the dielectric
reduces the potential
difference across the
capacitor.

V0

Q

Vacuum

Electrometer
(measures potential
difference across
plates)

(a)

2Q

V

2Q

Dielectric

Q

(b)

24.14 Effect of a dielectric between the
plates of a parallel-plate capacitor. (a) With
a given charge, the potential difference is

(b) With the same charge but with a
dielectric between the plates, the potential
difference is smaller than V0.V

V0.

(a) (b)

For a given charge density s, the induced
charges on the dielectric’s surfaces reduce the
electric field between the plates.

s 2s

s 2s

E0
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s 2s
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24.15 Electric field lines with 
(a) vacuum between the plates and 
(b) dielectric between the plates.



Hooke’s law for a spring.) In that case, is a constant for any particular material.
When the electric field is very strong or if the dielectric is made of certain crys-
talline materials, the relationship between induced charge and the electric field
can be more complex; we won’t consider such cases here.

We can derive a relationship between this induced surface charge and the
charge on the plates. Let’s denote the magnitude of the charge per unit area
induced on the surfaces of the dielectric (the induced surface charge density) by

The magnitude of the surface charge density on the capacitor plates is as
usual. Then the net surface charge on each side of the capacitor has magnitude

as shown in Fig. 24.15b. As we found in Example 21.12 (Section
21.5) and in Example 22.8 (Section 22.4), the field between the plates is related
to the net surface charge density by Without and with the dielectric,
respectively, we have

(24.15)

Using these expressions in Eq. (24.14) and rearranging the result, we find

(24.16)

This equation shows that when is very large, is nearly as large as In this
case, nearly cancels and the field and potential difference are much smaller
than their values in vacuum.

The product is called the permittivity of the dielectric, denoted by 

(24.17)

In terms of we can express the electric field within the dielectric as

(24.18)

The capacitance when the dielectric is present is given by

(parallel-plate capacitor, 
dielectric between plates)

(24.19)

We can repeat the derivation of Eq. (24.11) for the energy density in an elec-
tric field for the case in which a dielectric is present. The result is

(24.20)

In empty space, where and Eqs. (24.19) and (24.20) reduce to
Eqs. (24.2) and (24.11), respectively, for a parallel-plate capacitor in vacuum. For
this reason, is sometimes called the “permittivity of free space” or the “permit-
tivity of vacuum.” Because is a pure number, and have the same units,

or
Equation (24.19) shows that extremely high capacitances can be obtained with

plates that have a large surface area and are separated by a small distance by
a dielectric with a large value of In an electrolytic double-layer capacitor, tiny
carbon granules adhere to each plate: The value of is the combined surface area
of the granules, which can be tremendous. The plates with granules attached are
separated by a very thin dielectric sheet. A capacitor of this kind can have a
capacitance of 5000 farads yet fit in the palm of your hand (compare Example
24.1 in Section 24.1).

Several practical devices make use of the way in which a capacitor responds
to a change in dielectric constant. One example is an electric stud finder, used by

A
K.

dA

F>m.C2>N # m2
P0PK

P0

P = P0K = 1,

u = 1
2 KP0E2 = 1

2 PE2  (electric energy density in a dielectric)

u

C = KC0 = KP0
A

d
= P

A

d

E =
s

P

P

P = KP0  1definition of permittivity2

P:KP0

s,si

s.siK

si = sa1 -
1

K
b  (induced surface charge density)

E0 =
s

P0
  E =

s - si

P0

E = snet>P0.

1s - si2,

s,si.

K
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24.4 Dielectrics 803

home repair workers to locate metal studs hidden behind a wall’s surface. It con-
sists of a metal plate with associated circuitry. The plate acts as one half of a
capacitor, with the wall acting as the other half. If the stud finder moves over a
metal stud, the effective dielectric constant for the capacitor changes, changing
the capacitance and triggering a signal.

Problem-Solving Strategy 24.2 Dielectrics

IDENTIFY the relevant concepts: The relationships in this section
are useful whenever there is an electric field in a dielectric, such as
a dielectric between charged capacitor plates. Typically you must
relate the potential difference between the plates, the electric
field magnitude E in the capacitor, the charge density on the
capacitor plates, and the induced charge density on the surfaces
of the capacitor.

SET UP the problem using the following steps:
1. Make a drawing of the situation.
2. Identify the target variables, and choose which equations from

this section will help you solve for those variables.

EXECUTE the solution as follows:
1. In problems such as the next example, it is easy to get lost in a

blizzard of formulas. Ask yourself at each step what kind of

si

s
Vab

quantity each symbol represents. For example, distinguish
clearly between charges and charge densities, and between
electric fields and electric potential differences.

2. Check for consistency of units. Distances must be in meters. A
microfarad is farad, and so on. Don’t confuse the numeri-
cal value of with the value of Electric-field magni-
tude can be expressed in both The units of 
are or 

EVALUATE your answer: With a dielectric present, (a) the capaci-
tance is greater than without a dielectric; (b) for a given charge on
the capacitor, the electric field and potential difference are less
than without a dielectric; and (c) the magnitude of the induced sur-
face charge density on the dielectric is less than that of the
charge density on the capacitor plates.s

si

F>m.C2>N # m2
P0N>C and V>m.

1>4pP0.P0

10-6

Example 24.10 A capacitor with and without a dielectric

Suppose the parallel plates in Fig. 24.15 each have an area of
( ) and are ( )

apart. We connect the capacitor to a power supply, charge it to a
potential difference and disconnect the power sup-
ply. We then insert a sheet of insulating plastic material between
the plates, completely filling the space between them. We find that
the potential difference decreases to 1.00 kV while the charge on
each capacitor plate remains constant. Find (a) the original capaci-
tance (b) the magnitude of charge on each plate; (c) the
capacitance after the dielectric is inserted; (d) the dielectric con-
stant of the dielectric; (e) the permittivity of the dielectric; (f )
the magnitude of the induced charge on each face of the dielectric;
(g) the original electric field between the plates; and (h) the
electric field after the dielectric is inserted.

SOLUTION

IDENTIFY and SET UP: This problem uses most of the relationships
we have discussed for capacitors and dielectrics. (Energy relation-
ships are treated in Example 24.11.) Most of the target variables
can be obtained in several ways. The methods used below are a
sample; we encourage you to think of others and compare your
results.

EXECUTE: (a) With vacuum between the plates, we use Eq. (24.19)
with

(b) From the definition of capacitance, Eq. (24.1),

= 1.77 * 10-10 F = 177 pF

C0 = P0
A

d
= 18.85 * 10-12 F>m2

2.00 * 10-1 m2

1.00 * 10-2 m

K = 1:

E
E0

Qi

PK
C

QC0;

V0 = 3.00 kV,

1.00 * 10-2 m1.00 cm2.00 * 10-1 m22000 cm2

(c) When the dielectric is inserted, Q is unchanged but the
potential difference decreases to Hence from Eq.
(24.1), the new capacitance is

(d) From Eq. (24.12), the dielectric constant is

Alternatively, from Eq. (24.13),

(e) Using from part (d) in Eq. (24.17), the permittivity is

(f) Multiplying both sides of Eq. (24.16) by the plate area A
gives the induced charge in terms of the charge 
on each plate:

Continued

= 3.54 * 10-7 C

Qi = Qa1 -
1

K
b = 15.31 * 10-7 C2a1 -

1

3.00
b

Q = sAQi = siA

= 2.66 * 10-11 C2>N # m2

P = KP0 = 13.00218.85 * 10-12 C2>N # m22

K

K =
V0

V
=

3000 V

1000 V
= 3.00

K =
C

C0
=

5.31 * 10-10 F

1.77 * 10-10 F
=

531 pF

177 pF
= 3.00

C =
Q

V
=

5.31 * 10-7 C

1.00 * 103 V
= 5.31 * 10-10 F = 531 pF

V = 1.00 kV.

= 5.31 * 10-7 C = 0.531 mC

Q = C0V0 = 11.77 * 10-10 F213.00 * 103 V2



Dielectric Breakdown
We mentioned earlier that when a dielectric is subjected to a sufficiently strong
electric field, dielectric breakdown takes place and the dielectric becomes a con-
ductor. This occurs when the electric field is so strong that electrons are ripped
loose from their molecules and crash into other molecules, liberating even more

804 CHAPTER 24 Capacitance and Dielectrics

(g) Since the electric field between the plates is uniform, its
magnitude is the potential difference divided by the plate separa-
tion:

(h) After the dielectric is inserted,

or, from Eq. (24.18),

or, from Eq. (24.15),

= 1.00 * 105 V>m

E =
s

P
=

Q

PA
=

5.31 * 10-7 C

12.66 * 10-11 C2>N # m2212.00 * 10-1 m22

E =
V

d
=

1000 V

1.00 * 10-2 m
= 1.00 * 105 V>m

E0 =
V0

d
=

3000 V

1.00 * 10-2 m
= 3.00 * 105 V>m

or, from Eq. (24.14),

EVALUATE: Inserting the dielectric increased the capacitance by a
factor of and reduced the electric field between the
plates by a factor of It did so by developing
induced charges on the faces of the dielectric of magnitude

= = 0.667Q.Q11 - 1>3.002Q11 - 1>K2

1>K = 1>3.00.
K = 3.00

E =
E0

K
=

3.00 * 105 V>m

3.00
= 1.00 * 105 V>m

= 1.00 * 105 V>m

=
15.31 - 3.542 * 10-7 C

18.85 * 10-12 C2>N # m2212.00 * 10-1 m22

E =
s - si

P0
=

Q - Qi

P0A

Example 24.11 Energy storage with and without a dielectric

Find the energy stored in the electric field of the capacitor in
Example 24.10 and the energy density, both before and after the
dielectric sheet is inserted.

SOLUTION

IDENTIFY and SET UP: We now consider the ideas of energy stored
in a capacitor and of electric-field energy density. We use Eq.
(24.9) to find the stored energy and Eq. (24.20) to find the energy
density.

EXECUTE: From Eq. (24.9), the stored energies and without
and with the dielectric in place are

The final energy is one-third of the original energy.
Equation (24.20) gives the energy densities without and with

the dielectric:

The energy density with the dielectric is one-third of the original
energy density.

EVALUATE: We can check our answer for by noting that the
volume between the plates is V = 10.200 m2210.0100 m2 =

u0

= 0.133 J>m3

u = 1
2 PE2 = 1

2 12.66 * 10-11 C2>N # m2211.00 * 105 N>C22

= 0.398 J>m3

u0 = 1
2 P0 E 2

0 = 1
2 18.85 * 10-12 C2>N # m2213.00 * 105 N>C22

U = 1
2 CV2 = 1

2 15.31 * 10-10 F211000 V22 = 2.66 * 10-4 J

U0 = 1
2 C0V 2

0 = 1
2 11.77 * 10-10 F213000 V22 = 7.97 * 10-4 J

UU0

Since the electric field between the plates is uniform,
is uniform as well and the energy density is just the stored

energy divided by the volume:

This agrees with our earlier answer. You can use the same
approach to check our result for u.

In general, when a dielectric is inserted into a capacitor while
the charge on each plate remains the same, the permittivity 
increases by a factor of (the dielectric constant), and the electric
field E and the energy density decrease by a factor of

Where does the energy go? The answer lies in the fringing
field at the edges of a real parallel-plate capacitor. As Fig. 24.16
shows, that field tends to pull the dielectric into the space between
the plates, doing work on it as it does so. We could attach a spring
to the left end of the dielectric in Fig. 24.16 and use this force to
stretch the spring. Because work is done by the field, the field
energy density decreases.

1>K.
u = 1

2PE2
K

P

u0 =
U0

V
=

7.97 * 10-4 J

0.00200 m3
= 0.398 J>m3

u0

0.00200 m3.

– – – – – – – – – – – – ––

+ + + + + + + + + + + + + +

E
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Dielectric

24.16 The fringing field at the edges of the capacitor exerts forces
and on the negative and positive induced surface charges

of a dielectric, pulling the dielectric into the capacitor.
F
S
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S
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electrons. This avalanche of moving charge forms a spark or arc discharge.
Lightning is a dramatic example of dielectric breakdown in air.

Because of dielectric breakdown, capacitors always have maximum voltage
ratings. When a capacitor is subjected to excessive voltage, an arc may form
through a layer of dielectric, burning or melting a hole in it. This arc creates a
conducting path (a short circuit) between the conductors. If a conducting path
remains after the arc is extinguished, the device is rendered permanently useless
as a capacitor.

The maximum electric-field magnitude that a material can withstand without
the occurrence of breakdown is called its dielectric strength. This quantity is
affected significantly by temperature, trace impurities, small irregularities in the
metal electrodes, and other factors that are difficult to control. For this reason we
can give only approximate figures for dielectric strengths. The dielectric strength
of dry air is about Table 24.2 lists the dielectric strengths of a few
common insulating materials. Note that the values are all substantially greater
than the value for air. For example, a layer of polycarbonate 0.01 mm thick
(about the smallest practical thickness) has 10 times the dielectric strength of air
and can withstand a maximum voltage of about 
300 V.

10-5 m2 =13 * 107 V>m211 *

3 * 106 V>m.

Table 24.2 Dielectric Constant and Dielectric Strength of Some
Insulating Materials

Dielectric Dielectric Strength,
Material Constant, K

Polycarbonate 2.8

Polyester 3.3

Polypropylene 2.2

Polystyrene 2.6

Pyrex glass 4.7 1 * 107

2 * 107

7 * 107

6 * 107

3 * 107

Em (V/m)

24.5 Molecular Model of Induced Charge
In Section 24.4 we discussed induced surface charges on a dielectric in an electric
field. Now let’s look at how these surface charges can arise. If the material were a
conductor, the answer would be simple. Conductors contain charge that is free to
move, and when an electric field is present, some of the charge redistributes itself
on the surface so that there is no electric field inside the conductor. But an ideal
dielectric has no charges that are free to move, so how can a surface charge occur?

To understand this, we have to look again at rearrangement of charge at the
molecular level. Some molecules, such as and have equal amounts of
positive and negative charges but a lopsided distribution, with excess positive
charge concentrated on one side of the molecule and negative charge on the
other. As we described in Section 21.7, such an arrangement is called an electric
dipole, and the molecule is called a polar molecule. When no electric field is
present in a gas or liquid with polar molecules, the molecules are oriented ran-
domly (Fig. 24.17a). When they are placed in an electric field, however, they tend
to orient themselves as in Fig. 24.17b, as a result of the electric-field torques
described in Section 21.7. Because of thermal agitation, the alignment of the
molecules with is not perfect.E

S

N2O,H2O

Test Your Understanding of Section 24.4 The space between the
plates of an isolated parallel-plate capacitor is filled by a slab of dielectric with
dielectric constant The two plates of the capacitor have charges and You
pull out the dielectric slab. If the charges do not change, how does the energy in the
capacitor change when you remove the slab? (i) It increases; (ii) it decreases; (iii) it
remains the same. ❙
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In the absence of
an electric field,
polar molecules
orient randomly.

When an
electric field is
applied, the 
molecules tend
to align with it.

E

(a)

(b)

24.17 Polar molecules (a) without and
(b) with an applied electric field .E

S

Application Dielectric Cell
Membrane
The membrane of a living cell behaves like a
dielectric between the plates of a capacitor.
The membrane is made of two sheets of lipid
molecules, with their water-insoluble ends in
the middle and their water-soluble ends
(shown in red) on the surfaces of the mem-
brane. The conductive fluids on either side of
the membrane (water with negative ions inside
the cell, water with positive ions outside) act
as charged capacitor plates, and the noncon-
ducting membrane acts as a dielectric with K
of about 10. The potential difference V across
the membrane is about 0.07 V and the mem-
brane thickness d is about m, so
the electric field E � V/d in the membrane is
about V/m—close to the dielectric
strength of the membrane. If the membrane
were made of air, V and E would be larger by a
factor of K and dielectric breakdown
would occur.

L 10

107

7 * 10-9



Even a molecule that is not ordinarily polar becomes a dipole when it is placed
in an electric field because the field pushes the positive charges in the molecules in
the direction of the field and pushes the negative charges in the opposite direction.
This causes a redistribution of charge within the molecule (Fig. 24.18). Such
dipoles are called induced dipoles.

With either polar or nonpolar molecules, the redistribution of charge caused
by the field leads to the formation of a layer of charge on each surface of the
dielectric material (Fig. 24.19). These layers are the surface charges described in
Section 24.4; their surface charge density is denoted by The charges are not
free to move indefinitely, as they would be in a conductor, because each charge is
bound to a molecule. They are in fact called bound charges to distinguish them
from the free charges that are added to and removed from the conducting capac-
itor plates. In the interior of the material the net charge per unit volume remains
zero. As we have seen, this redistribution of charge is called polarization, and we
say that the material is polarized.

The four parts of Fig. 24.20 show the behavior of a slab of dielectric when it
is inserted in the field between a pair of oppositely charged capacitor plates. Fig-
ure 24.20a shows the original field. Figure 24.20b is the situation after the
dielectric has been inserted but before any rearrangement of charges has
occurred. Figure 24.20c shows by thinner arrows the additional field set up in
the dielectric by its induced surface charges. This field is opposite to the original
field, but it is not great enough to cancel the original field completely because
the charges in the dielectric are not free to move indefinitely. The resultant field

si.
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24.18 Nonpolar molecules (a) without and (b) with an applied electric field .E
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In the absence of 
an electric field,
nonpolar molecules
are not electric
dipoles.

An electric field 
causes the mole-
cules’ positive and
negative charges
to separate
slightly, making
the molecule 
effectively polar.

E
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24.19 Polarization of a dielectric in an
electric field gives rise to thin layers of
bound charges on the surfaces, creating
surface charge densities and The
sizes of the molecules are greatly exagger-
ated for clarity.
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24.20 (a) Electric field of magnitude between two charged plates. (b) Introduction
of a dielectric of dielectric constant (c) The induced surface charges and their field. 
(d) Resultant field of magnitude E0/K.
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in the dielectric, shown in Fig. 24.20d, is therefore decreased in magnitude. In
the field-line representation, some of the field lines leaving the positive plate go
through the dielectric, while others terminate on the induced charges on the
faces of the dielectric.

As we discussed in Section 21.2, polarization is also the reason a charged
body, such as an electrified plastic rod, can exert a force on an uncharged body
such as a bit of paper or a pith ball. Figure 24.21 shows an uncharged dielectric
sphere in the radial field of a positively charged body The induced positive
charges on experience a force toward the right, while the force on the induced
negative charges is toward the left. The negative charges are closer to and thus
are in a stronger field, than are the positive charges. The force toward the left is
stronger than that toward the right, and is attracted toward even though its
net charge is zero. The attraction occurs whether the sign of ’s charge is positive
or negative (see Fig. 21.8). Furthermore, the effect is not limited to dielectrics; an
uncharged conducting body would be attracted in the same way.

A
A,B

A,
B

A.B

E
S

++
+

+
+
+

+
+ + +

+
+
+

+
+

+

A
–
–
– +

+
+

B

24.21 A neutral sphere in the radial
electric field of a positively charged sphere

is attracted to the charge because of
polarization.
A

B

Test Your Understanding of Section 24.5 A parallel-plate capacitor has
charges and on its two plates. A dielectric slab with is then inserted into the
space between the plates as shown in Fig. 24.20. Rank the following electric-field magni-
tudes in order from largest to smallest. (i) the field before the slab is inserted; (ii) the
resultant field after the slab is inserted; (iii) the field due to the bound charges. ❙

K = 3-QQ

24.6 Gauss’s Law in Dielectrics
We can extend the analysis of Section 24.4 to reformulate Gauss’s law in a form
that is particularly useful for dielectrics. Figure 24.22 is a close-up view of the left
capacitor plate and left surface of the dielectric in Fig. 24.15b. Let’s apply Gauss’s
law to the rectangular box shown in cross section by the purple line; the surface
area of the left and right sides is The left side is embedded in the conductor that
forms the left capacitor plate, and so the electric field everywhere on that surface
is zero. The right side is embedded in the dielectric, where the electric field has
magnitude and everywhere on the other four sides. The total charge
enclosed, including both the charge on the capacitor plate and the induced charge
on the dielectric surface, is so Gauss’s law gives

(24.21)

This equation is not very illuminating as it stands because it relates two unknown
quantities: inside the dielectric and the induced surface charge density But
now we can use Eq. (24.16), developed for this same situation, to simplify this
equation by eliminating Equation (24.16) is

Combining this with Eq. (24.21), we get

(24.22)

Equation (24.22) says that the flux of not through the Gaussian surface
in Fig. 24.22 is equal to the enclosed free charge divided by It turns out
that for any Gaussian surface, whenever the induced charge is proportional to the
electric field in the material, we can rewrite Gauss’s law as

(Gauss’s law in a dielectric) (24.23)CKE
S # dA

S
=

Qencl-free

P0
  

P0.sA
E
S

,KE
S

,

EA =
sA

KP0
 or KEA =

sA

P0

si = sa1 -
1

K
b or s - si =

s

K

si.

si.E

EA =
1s - si2A

P0

Qencl = 1s - si2A,

E� = 0E,
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+

+

+

+
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24.22 Gauss’s law with a dielectric.
This figure shows a close-up of the left-
hand capacitor plate in Fig. 24.15b. The
Gaussian surface is a rectangular box that
lies half in the conductor and half in the
dielectric.



where is the total free charge (not bound charge) enclosed by the Gaussian
surface. The significance of these results is that the right sides contain only the
free charge on the conductor, not the bound (induced) charge. In fact, although
we have not proved it, Eq. (24.23) remains valid even when different parts of the
Gaussian surface are embedded in dielectrics having different values of pro-
vided that the value of in each dielectric is independent of the electric field
(usually the case for electric fields that are not too strong) and that we use the
appropriate value of for each point on the Gaussian surface.K

K
K,

Qencl-free
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Example 24.12 A spherical capacitor with dielectric

Use Gauss’s law to find the capacitance of the spherical capacitor
of Example 24.3 (Section 24.1) if the volume between the shells is
filled with an insulating oil with dielectric constant 

SOLUTION

IDENTIFY and SET UP: The spherical symmetry of the problem is
not changed by the presence of the dielectric, so as in Example
24.3, we use a concentric spherical Gaussian surface of radius 
between the shells. Since a dielectric is present, we use Gauss’s
law in the form of Eq. (24.23).

EXECUTE: From Eq. (24.23),

E =
Q

4pKP0r 2
=

Q

4pPr 2

CKE
S # dA

S
= CKE dA = KECdA = 1KE214pr 22 =

Q

P0

r

K.

where . Compared to the case in which there is vacuum
between the shells, the electric field is reduced by a factor of 
The potential difference between the shells is reduced by the
same factor, and so the capacitance is increased by a
factor of just as for a parallel-plate capacitor when a dielectric is
inserted. Using the result of Example 24.3, we find that the capaci-
tance with the dielectric is

EVALUATE: If the dielectric fills the volume between the two con-
ductors, the capacitance is just times the value with no dielectric.
The result is more complicated if the dielectric only partially fills
this volume (see Challenge Problem 24.78).

K

C =
4pKP0rarb

rb - ra
=

4pPrarb

rb - ra

K,
C = Q>Vab

Vab

1>K.
P = KP0

Test Your Understanding of Section 24.6 A single point charge is imbedded
in a dielectric of dielectric constant At a point inside the dielectric a distance 
from the point charge, what is the magnitude of the electric field? (i) 
(ii) (iii) (iv) none of these. ❙q>4pKP0r 2;Kq>4pP0r 2;

q>4pP0r 2;
rK.

q
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CHAPTER 24 SUMMARY

Capacitors and capacitance: A capacitor is any pair of
conductors separated by an insulating material. When
the capacitor is charged, there are charges of equal mag-
nitude and opposite sign on the two conductors, and
the potential of the positively charged conductor
with respect to the negatively charged conductor is pro-
portional to The capacitance is defined as the ratio
of to The SI unit of capacitance is the farad (F):

A parallel-plate capacitor consists of two parallel
conducting plates, each with area separated by a dis-
tance If they are separated by vacuum, the capaci-
tance depends only on and For other geometries,
the capacitance can be found by using the definition

(See Examples 24.1–24.4.)C = Q>Vab.

d.A
d.

A,

1 F = 1 C>V.
Vab.Q

CQ.

Vab

Q

(24.1)

(24.2)C =
Q

Vab
= P0

A

d

C =
Q

Vab

Capacitors in series and parallel: When capacitors with
capacitances are connected in series, the
reciprocal of the equivalent capacitance equals the
sum of the reciprocals of the individual capacitances.
When capacitors are connected in parallel, the equiva-
lent capacitance equals the sum of the individual
capacitances. (See Examples 24.5 and 24.6.)

Ceq

Ceq

C3, ÁC2,C1,
(capacitors in series) (24.5)

(capacitors in parallel) (24.7)
Ceq = C1 + C2 + C3 + Á

1

Ceq
=

1

C1
+

1

C2
+

1

C3
+ Á

Energy in a capacitor: The energy required to charge a
capacitor to a potential difference and a charge is
equal to the energy stored in the capacitor. This energy
can be thought of as residing in the electric field
between the conductors; the energy density (energy
per unit volume) is proportional to the square of the
electric-field magnitude. (See Examples 24.7–24.9.)

u

QVC
U

(24.9)

(24.11)u = 1
2 P0 E2

U =
Q2

2C
= 1

2 CV2 = 1
2 QV

Dielectrics: When the space between the conductors is
filled with a dielectric material, the capacitance
increases by a factor called the dielectric constant 
of the material. The quantity is called the per-
mittivity of the dielectric. For a fixed amount of charge
on the capacitor plates, induced charges on the surface
of the dielectric decrease the electric field and potential
difference between the plates by the same factor The
surface charge results from polarization, a microscopic
rearrangement of charge in the dielectric. (See Example
24.10.)

Under sufficiently strong fields, dielectrics become
conductors, a situation called dielectric breakdown. The
maximum field that a material can withstand without
breakdown is called its dielectric strength.

In a dielectric, the expression for the energy density
is the same as in vacuum but with replaced by

(See Example 24.11.)
Gauss’s law in a dielectric has almost the same form

as in vacuum, with two key differences: is replaced
by and is replaced by which includes
only the free charge (not bound charge) enclosed by the
Gaussian surface. (See Example 24.12.)

Qencl-free,QenclKE
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E
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P = KP.
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K.

P = KP0

K, (parallel-plate capacitor 
filled with dielectric) (24.19)

(24.20)

(24.23)CKE
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A solid conducting sphere of radius R carries a charge Q. Calcu-
late the electric-field energy density at a point a distance r from
the center of the sphere for (a) r � R and (b) r � R. (c) Calculate
the total electric-field energy associated with the charged sphere.
(d) How much work is required to assemble the charge Q on
the sphere? (e) Use the result of part (c) to find the capacitance of
the sphere. (You can think of the second conductor as a hollow
conducting shell of infinite radius.)

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution

IDENTIFY and SET UP
1. You know the electric field for this situation at all values of r

from Example 22.5 (Section 22.4). You’ll use this to find the
electric-field energy density u and the total electric-field energy
U. You can then find the capacitance from the relationship

.
2. To find U, consider a spherical shell of radius r and thickness dr

that has volume . The energy stored in this volumedV = 4pr 2dr

U = Q2>2C

BRIDGING PROBLEM Electric-Field Energy and Capacitance of a Conducting Sphere

is u dV, and the total energy is the integral of u dV from r � 0 to
. Set up this integral.

EXECUTE
3. Find u for r � R and for r � R.
4. Substitute your results from step 3 into the expression from

step 2. Then calculate the integral to find the total electric-field
energy U.

5. Use your understanding of the energy stored in a charge distri-
bution to find the work required to assemble the charge Q.

6. Find the capacitance of the sphere.

EVALUATE
7. Where is the electric-field energy density greatest? Where is it

least?
8. How would the results be affected if the solid sphere were

replaced by a hollow conducting sphere of the same radius R?
9. You can find the potential difference between the sphere and

infinity from . Does this agree with the result of
Example 23.8 (Section 23.3)?

C = Q>V

rS q

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q24.1 Equation (24.2) shows that the capacitance of a parallel-
plate capacitor becomes larger as the plate separation decreases.
However, there is a practical limit to how small can be made,
which places limits on how large can be. Explain what sets the
limit on (Hint: What happens to the magnitude of the electric
field as )
Q24.2 Suppose several different parallel-plate capacitors are
charged up by a constant-voltage source. Thinking of the actual
movement and position of the charges on an atomic level, why does
it make sense that the capacitances are proportional to the surface
areas of the plates? Why does it make sense that the capacitances
are inversely proportional to the distance between the plates?
Q24.3 Suppose the two plates of a capacitor have different areas.
When the capacitor is charged by connecting it to a battery, do the
charges on the two plates have equal magnitude, or may they be
different? Explain your reasoning.
Q24.4 At the Fermi National Accelerator Laboratory (Fermilab) in
Illinois, protons are accelerated around a ring 2 km in radius to
speeds that approach that of light. The energy for this is stored in
capacitors the size of a house. When these capacitors are being
charged, they make a very loud creaking sound. What is the origin
of this sound?
Q24.5 In the parallel-plate capacitor of Fig. 24.2, suppose the
plates are pulled apart so that the separation is much larger than
the size of the plates. (a) Is it still accurate to say that the electric
field between the plates is uniform? Why or why not? (b) In the sit-

d

dS 0?
d.

C
d

d

uation shown in Fig. 24.2, the potential difference between the
plates is If the plates are pulled apart as described
above, is more or less than this formula would indicate? Explain
your reasoning. (c) With the plates pulled apart as described above,
is the capacitance more than, less than, or the same as that given by
Eq. (24.2)? Explain your reasoning.
Q24.6 A parallel-plate capacitor is charged by being connected to
a battery and is kept connected to the battery. The separation
between the plates is then doubled. How does the electric field
change? The charge on the plates? The total energy? Explain your
reasoning.
Q24.7 A parallel-plate capacitor is charged by being connected to
a battery and is then disconnected from the battery. The separation
between the plates is then doubled. How does the electric field
change? The potential difference? The total energy? Explain your
reasoning.
Q24.8 Two parallel-plate capacitors, identical except that one has
twice the plate separation of the other, are charged by the same
voltage source. Which capacitor has a stronger electric field
between the plates? Which capacitor has a greater charge? Which
has greater energy density? Explain your reasoning.
Q24.9 The charged plates of a capacitor attract each other, so to
pull the plates farther apart requires work by some external force.
What becomes of the energy added by this work? Explain your
reasoning.
Q24.10 The two plates of a capacitor are given charges The
capacitor is then disconnected from the charging device so that the

;Q.

Vab

Vab = Qd>P0A.

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

www.masteringphysics.com
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charges on the plates can’t change, and the capacitor is immersed
in a tank of oil. Does the electric field between the plates increase,
decrease, or stay the same? Explain your reasoning. How can this
field be measured?
Q24.11 As shown in Table 24.1, water has a very large dielectric
constant Why do you think water is not commonly used
as a dielectric in capacitors?
Q24.12 Is dielectric strength the same thing as dielectric constant?
Explain any differences between the two quantities. Is there a sim-
ple relationship between dielectric strength and dielectric constant
(see Table 24.2)?
Q24.13 A capacitor made of aluminum foil strips separated by
Mylar film was subjected to excessive voltage, and the resulting
dielectric breakdown melted holes in the Mylar. After this, the
capacitance was found to be about the same as before, but the
breakdown voltage was much less. Why?
Q24.14 Suppose you bring a slab of dielectric close to the gap
between the plates of a charged capacitor, preparing to slide it
between the plates. What force will you feel? What does this force
tell you about the energy stored between the plates once the dielec-
tric is in place, compared to before the dielectric is in place?
Q24.15 The freshness of fish can be measured by placing a fish
between the plates of a capacitor and measuring the capacitance.
How does this work? (Hint: As time passes, the fish dries out. See
Table 24.1.)
Q24.16 Electrolytic capacitors use as their dielectric an extremely
thin layer of nonconducting oxide between a metal plate and a con-
ducting solution. Discuss the advantage of such a capacitor over
one constructed using a solid dielectric between the metal plates.
Q24.17 In terms of the dielectric constant what happens to the
electric flux through the Gaussian surface shown in Fig. 24.22
when the dielectric is inserted into the previously empty space
between the plates? Explain.
Q24.18 A parallel-plate capacitor is connected to a power supply
that maintains a fixed potential difference between the plates. (a) If
a sheet of dielectric is then slid between the plates, what happens
to (i) the electric field between the plates, (ii) the magnitude of
charge on each plate, and (iii) the energy stored in the capacitor?
(b) Now suppose that before the dielectric is inserted, the charged
capacitor is disconnected from the power supply. In this case, what
happens to (i) the electric field between the plates, (ii) the magni-
tude of charge on each plate, and (iii) the energy stored in the
capacitor? Explain any differences between the two situations.
Q24.19 Liquid dielectrics that have polar molecules (such as
water) always have dielectric constants that decrease with increas-
ing temperature. Why?
Q24.20 A conductor is an extreme case of a dielectric, since if an
electric field is applied to a conductor, charges are free to move
within the conductor to set up “induced charges.” What is the
dielectric constant of a perfect conductor? Is it or
something in between? Explain your reasoning.

EXERCISES
Section 24.1 Capacitors and Capacitance
24.1 . The plates of a parallel-plate capacitor are 2.50 mm apart,
and each carries a charge of magnitude 80.0 nC. The plates are in
vacuum. The electric field between the plates has a magnitude of

(a) What is the potential difference between
the plates? (b) What is the area of each plate? (c) What is the
capacitance?

4.00 * 106 V>m.

KS q ,K = 0,

K,

K = 80.4.

24.2 . The plates of a parallel-plate capacitor are 3.28 mm apart,
and each has an area of Each plate carries a charge of
magnitude The plates are in vacuum. (a) What is
the capacitance? (b) What is the potential difference between the
plates? (c) What is the magnitude of the electric field between the
plates?
24.3 . A parallel-plate air capacitor of capacitance has 
a charge of magnitude on each plate. The plates are
0.328 mm apart. (a) What is the potential difference between the
plates? (b) What is the area of each plate? (c) What is the electric-
field magnitude between the plates? (d) What is the surface charge
density on each plate?
24.4 .. Capacitance of an Oscilloscope. Oscilloscopes have
parallel metal plates inside them to deflect the electron beam.
These plates are called the deflecting plates. Typically, they are
squares 3.0 cm on a side and separated by 5.0 mm, with vacuum in
between. What is the capacitance of these deflecting plates and
hence of the oscilloscope? (Note: This capacitance can sometimes
have an effect on the circuit you are trying to study and must be
taken into consideration in your calculations.)
24.5 . A parallel-plate capacitor with circular plates is
connected to a battery. (a) What is the charge on each
plate? (b) How much charge would be on the plates if their separa-
tion were doubled while the capacitor remained connected to the
battery? (c) How much charge would be on the plates if the capac-
itor were connected to the battery after the radius of each
plate was doubled without changing their separation?
24.6 . A parallel-plate capacitor is connected to a 
battery. After the capacitor is fully charged, the battery is discon-
nected without loss of any of the charge on the plates. (a) A volt-
meter is connected across the two plates without discharging them.
What does it read? (b) What would the voltmeter read if (i) the
plate separation were doubled; (ii) the radius of each plate were
doubled but their separation was unchanged?
24.7 .. How far apart would parallel pennies have to be to make a

capacitor? Does your answer suggest that you are justified
in treating these pennies as infinite sheets? Explain.
24.8 . A parallel-plate, air-filled capacitor with circular
plates is to be used in a circuit in which it will be subjected to
potentials of up to The electric field between the
plates is to be no greater than As a budding elec-
trical engineer for Live-Wire Electronics, your tasks are to (a)
design the capacitor by finding what its physical dimensions and
separation must be; (b) find the maximum charge these plates can
hold.
24.9 . A parallel-plate air capacitor is to store charge of magnitude
240.0 pC on each plate when the potential difference between the
plates is 42.0 V. (a) If the area of each plate is , what is 
the separation between the plates? (b) If the separation between the
two plates is double the value calculated in part (a), what potential
difference is required for the capacitor to store charge of magni-
tude 240.0 pC on each plate?
24.10 . A cylindrical capacitor consists of a solid inner conduct-
ing core with radius surrounded by an outer hollow con-
ducting tube. The two conductors are separated by air, and the
length of the cylinder is The capacitance is (a)
Calculate the inner radius of the hollow tube. (b) When the capaci-
tor is charged to what is the charge per unit length on the
capacitor?
24.11 . A capacitor is made from two hollow, coaxial, iron cylin-
ders, one inside the other. The inner cylinder is negatively charged

l125 V,

36.7 pF.12.0 cm.

0.250 cm,

6.80 cm2

1.00 * 104 N>C.
1.00 * 102 V.

5.00-pF,

1.00-pF

12.0-V10.0-mF

12.0-V

12.0-V
10.0-mF

0.148 mC
245 pF

4.35 * 10-8 C.
12.2 cm2.
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and the outer is positively charged; the magnitude of the charge on
each is The inner cylinder has radius the outer
one has radius and the length of each cylinder is

(a) What is the capacitance? (b) What applied potential
difference is necessary to produce these charges on the cylinders?
24.12 .. A cylindrical capacitor has an inner conductor of radius

and an outer conductor of radius The two conduc-
tors are separated by vacuum, and the entire capacitor is 
long. (a) What is the capacitance per unit length? (b) The potential
of the inner conductor is higher than that of the outer con-
ductor. Find the charge (magnitude and sign) on both conductors.
24.13 .. A spherical capacitor contains a charge of when
connected to a potential difference of 220 V. If its plates are sepa-
rated by vacuum and the inner radius of the outer shell is 
calculate: (a) the capacitance; (b) the radius of the inner sphere; (c)
the electric field just outside the surface of the inner sphere.
24.14 . A spherical capacitor is formed from two concentric,
spherical, conducting shells separated by vacuum. The inner sphere
has radius and the capacitance is (a) What is the
radius of the outer sphere? (b) If the potential difference between
the two spheres is what is the magnitude of charge on each
sphere?

Section 24.2 Capacitors in Series and Parallel
24.15 . BIO Electric Eels. Electric eels and electric fish gener-
ate large potential differences that are used to stun enemies and
prey. These potentials are produced by cells that each can generate
0.10 V. We can plausibly model such cells as charged capacitors.
(a) How should these cells be connected (in series or in parallel) 
to produce a total potential of
more than 0.10 V? (b) Using
the connection in part (a), how
many cells must be connected
together to produce the 500-V
surge of the electric eel?
24.16 . For the system of
capacitors shown in Fig. E24.16,
find the equivalent capacitance
(a) between and and (b)
between and 
24.17 . In Fig. E24.17, each
capacitor has 
and Calculate
(a) the charge on each capacitor;
(b) the potential difference across
each capacitor; (c) the potential
difference between points
and
24.18 . In Fig. 24.8a, let

and Calculate
(a) the charge on each capacitor
and (b) the potential difference
across each capacitor.
24.19 . In Fig. 24.9a, let

and
Calculate (a)

the charge on each capacitor
and (b) the potential difference across each capacitor.
24.20 . In Fig. E24.20, and

The capacitor network is connected to an applied
potential After the charges on the capacitors have reached theirVab.
C3 = 5.00 mF.

C2 = 3.00 mF,C1 = 6.00 mF,

Vab = +52.0 V.
C2 = 5.00 mF,3.00 mF,

C1 =

Vab = +52.0 V.
C2 = 5.00 mF,3.00 mF,C1 =

d.
a

Vab = +28.0 V.
C = 4.00 mF

c.a
c,b

220 V,

116 pF.15.0 cm

4.00 cm,

3.30 nC

350 mV

2.8 m
3.5 mm.1.5 mm

18.0 cm.
5.00 mm,

0.50 mm,10.0 pC.
final values, the charge on 
is (a) What are the
charges on capacitors and

(b) What is the applied
voltage
24.21 .. For the system of
capacitors shown in Fig.
E24.21, a potential difference
of 25 V is maintained across
ab. (a) What is the equivalent
capacitance of this system
between a and b? (b) How
much charge is stored by this
system? (c) How much charge
does the 6.5-nF capacitor
store? (d) What is the potential
difference across the 7.5-nF
capacitor?
24.22 . Figure E24.22 shows
a system of four capacitors,
where the potential difference
across is 50.0 V. (a) Find
the equivalent capacitance of
this system between and 
(b) How much charge is stored
by this combination of capaci-
tors? (c) How much charge is
stored in each of the 
and the capacitors?
24.23 .. Suppose the 
capacitor in Fig. 24.10a were
removed and replaced by a
different one, and that this
changed the equivalent capacitance between points and to 
What would be the capacitance of the replacement capacitor?

Section 24.3 Energy Storage in Capacitors 
and Electric-Field Energy
24.24 . A parallel-plate air capacitor has a capacitance of 
The charge on each plate is (a) What is the potential dif-
ference between the plates? (b) If the charge is kept constant, what
will be the potential difference between the plates if the separation
is doubled? (c) How much work is required to double the separa-
tion?
24.25 . A parallel-plate, air capacitor has a plate separa-
tion of and is charged to a potential difference of 
Calculate the energy density in the region between the plates, in
units of 
24.26 . An air capacitor is made from two flat parallel plates

apart. The magnitude of charge on each plate is
when the potential difference is 200 V. (a) What is the

capacitance? (b) What is the area of each plate? (c) What maxi-
mum voltage can be applied without dielectric breakdown?
(Dielectric breakdown for air occurs at an electric-field strength of

) (d) When the charge is what total
energy is stored?
24.27 . A parallel-plate vacuum capacitor with plate area and
separation has charges and on its plates. The capacitor is
disconnected from the source of charge, so the charge on each
plate remains fixed. (a) What is the total energy stored in the
capacitor? (b) The plates are pulled apart an additional distance 
What is the change in the stored energy? (c) If is the force withF

dx.
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which the plates attract each other, then the change in the stored
energy must equal the work done in pulling the plates
apart. Find an expression for (d) Explain why is not equal to

where is the electric field between the plates.
24.28 .. A parallel-plate vacuum capacitor has of energy
stored in it. The separation between the plates is If the
separation is decreased to what is the energy stored (a) if
the capacitor is disconnected from the potential source so the
charge on the plates remains constant, and (b) if the capacitor
remains connected to the potential source so the potential differ-
ence between the plates remains constant?
24.29 . You have two identical capacitors and an external poten-
tial source. (a) Compare the total energy stored in the capacitors
when they are connected to the applied potential in series and in
parallel. (b) Compare the maximum amount of charge stored in
each case. (c) Energy storage in a capacitor can be limited by the
maximum electric field between the plates. What is the ratio of the
electric field for the series and parallel combinations?
24.30 . For the capacitor net-
work shown in Fig. E24.30, the
potential difference across is
36 V. Find (a) the total charge
stored in this network; (b) the
charge on each capacitor; (c)
the total energy stored in the network; (d) the energy stored in each
capacitor; (e) the potential differences across each capacitor.
24.31 . For the capacitor net-
work shown in Fig. E24.31,
the potential difference across

is 220 V. Find (a) the total
charge stored in this network;
(b) the charge on each capaci-
tor; (c) the total energy stored
in the network; (d) the energy
stored in each capacitor; (e)
the potential difference across each capacitor.
24.32 . A 0.350-m-long cylindrical capacitor consists of a solid
conducting core with a radius of and an outer hollow
conducting tube with an inner radius of The two conduc-
tors are separated by air and charged to a potential difference of

Calculate (a) the charge per length for the capacitor; (b)
the total charge on the capacitor; (c) the capacitance; (d) the energy
stored in the capacitor when fully charged.
24.33 . A cylindrical air capacitor of length stores

of energy when the potential difference between
the two conductors is 4.00 V. (a) Calculate the magnitude of the
charge on each conductor. (b) Calculate the ratio of the radii of the
inner and outer conductors.
24.34 .. A capacitor is formed from two concentric spherical con-
ducting shells separated by vacuum. The inner sphere has radius

and the outer sphere has radius A potential dif-
ference of is applied to the capacitor. (a) What is the energy
density at just outside the inner sphere? (b) What is
the energy density at just inside the outer sphere? 
(c) For a parallel-plate capacitor the energy density is uniform in
the region between the plates, except near the edges of the plates.
Is this also true for a spherical capacitor?

Section 24.4 Dielectrics
24.35 . A capacitor is connected to a power supply that
keeps a constant potential difference of 24.0 V across the plates. A
piece of material having a dielectric constant of 3.75 is placed

12.5-mF

r = 14.7 cm,
r = 12.6 cm,
120 V

14.8 cm.12.5 cm,

3.20 * 10-9 J
15.0 m

6.00 V.

2.00 mm.
1.20 mm

ab

ab

1.15 mm,
2.30 mm.

8.38 J
EQE,

FF.
dW = Fdx

between the plates, completely filling the space between them. (a)
How much energy is stored in the capacitor before and after the
dielectric is inserted? (b) By how much did the energy change dur-
ing the insertion? Did it increase or decrease?
24.36 . A parallel-plate capacitor has capacitance 
when there is air between the plates. The separation between the
plates is (a) What is the maximum magnitude of charge

that can be placed on each plate if the electric field in the region
between the plates is not to exceed (b) A dielec-
tric with is inserted between the plates of the capacitor,
completely filling the volume between the plates. Now what is the
maximum magnitude of charge on each plate if the electric field
between the plates is not to exceed 
24.37 . Two parallel plates have equal and opposite charges.
When the space between the plates is evacuated, the electric field
is When the space is filled with dielectric,
the electric field is (a) What is the charge
density on each surface of the dielectric? (b) What is the dielectric
constant?
24.38 . A budding electronics hobbyist wants to make a simple

capacitor for tuning her crystal radio, using two sheets of
aluminum foil as plates, with a few sheets of paper between them
as a dielectric. The paper has a dielectric constant of 3.0, and the
thickness of one sheet of it is (a) If the sheets of paper
measure 22 and she cuts the aluminum foil to the same
dimensions, how many sheets of paper should she use between her
plates to get the proper capacitance? (b) Suppose for convenience
she wants to use a single sheet of posterboard, with the same dielec-
tric constant but a thickness of instead of the paper.
What area of aluminum foil will she need for her plates to get her

of capacitance? (c) Suppose she goes high-tech and finds a
sheet of Teflon of the same thickness as the posterboard to use as a
dielectric. Will she need a larger or smaller area of Teflon than of
posterboard? Explain.
24.39 . The dielectric to be used in a parallel-plate capacitor has
a dielectric constant of 3.60 and a dielectric strength of 

The capacitor is to have a capacitance of 
and must be able to withstand a maximum potential difference of

What is the minimum area the plates of the capacitor 
may have?
24.40 .. BIO Potential in Human Cells. Some cell walls in the
human body have a layer of negative charge on the inside surface
and a layer of positive charge of equal magnitude on the outside
surface. Suppose that the charge density on either surface is

the cell wall is 5.0 nm thick, and the cell-
wall material is air. (a) Find the magnitude of in the wall
between the two layers of charge. (b) Find the potential difference
between the inside and the outside of the cell. Which is at the
higher potential? (c) A typical cell in the human body has a volume of

Estimate the total electric-field energy stored in the wall
of a cell of this size. (Hint: Assume that the cell is spherical, and
calculate the volume of the cell wall.) (d) In reality, the cell wall is
made up, not of air, but of tissue with a dielectric constant of 5.4.
Repeat parts (a) and (b) in this case.
24.41 . A capacitor has parallel plates of area separated
by The space between the plates is filled with poly-
styrene (see Table 24.2). (a) Find the permittivity of polystyrene.
(b) Find the maximum permissible voltage across the capacitor to
avoid dielectric breakdown. (c) When the voltage equals the
value found in part (b), find the surface charge density on each
plate and the induced surface charge density on the surface of the
dielectric.
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24.42 . A constant potential difference of is maintained
between the terminals of a parallel-plate, air capacitor.
(a) A sheet of Mylar is inserted between the plates of the capacitor,
completely filling the space between the plates. When this is done,
how much additional charge flows onto the positive plate of the
capacitor (see Table 24.1)? (b) What is the total induced charge on
either face of the Mylar sheet? (c) What effect does the Mylar
sheet have on the electric field between the plates? Explain how
you can reconcile this with the increase in charge on the plates,
which acts to increase the electric field.
24.43 . When a 360-nF air capacitor is con-
nected to a power supply, the energy stored in the capacitor is

While the capacitor is kept connected to the power
supply, a slab of dielectric is inserted that completely fills the space
between the plates. This increases the stored energy by

(a) What is the potential difference between the
capacitor plates? (b) What is the dielectric constant of the slab?
24.44 . A parallel-plate capacitor has capacitance 
when the volume between the plates is filled with air. The plates
are circular, with radius The capacitor is connected to a
battery, and a charge of magnitude goes onto each plate.
With the capacitor still connected to the battery, a slab of dielectric
is inserted between the plates, completely filling the space between
the plates. After the dielectric has been inserted, the charge on each
plate has magnitude (a) What is the dielectric constant 
of the dielectric? (b) What is the potential difference between the
plates before and after the dielectric has been inserted? (c) What is
the electric field at a point midway between the plates before and
after the dielectric has been inserted?

Section 24.6 Gauss’s Law in Dielectrics
24.45 . A parallel-plate capacitor has the volume between its
plates filled with plastic with dielectric constant The magnitude
of the charge on each plate is Each plate has area and the dis-
tance between the plates is (a) Use Gauss’s law as stated in 
Eq. (24.23) to calculate the magnitude of the electric field in the
dielectric. (b) Use the electric field determined in part (a) to calculate
the potential difference between the two plates. (c) Use the result of
part (b) to determine the capacitance of the capacitor. Compare your
result to Eq. (24.12).
24.46 . A parallel-plate capacitor has plates with area 
separated by of Teflon. (a) Calculate the charge on the
plates when they are charged to a potential difference of 
(b) Use Gauss’s law (Eq. 24.23) to calculate the electric field
inside the Teflon. (c) Use Gauss’s law to calculate the electric field
if the voltage source is disconnected and the Teflon is removed.

PROBLEMS
24.47 . Electronic flash units for cameras contain a capacitor for
storing the energy used to produce the flash. In one such unit, the
flash lasts for with an average light power output of

(a) If the conversion of electrical energy to light is
95% efficient (the rest of the energy goes to thermal energy), how
much energy must be stored in the capacitor for one flash? (b) The
capacitor has a potential difference between its plates of 
when the stored energy equals the value calculated in part (a). What
is the capacitance?
24.48 . A parallel-plate air capacitor is made by using two plates

square, spaced apart. It is connected to a 
battery. (a) What is the capacitance? (b) What is the charge on each

12-V3.7 mm16 cm

125 V

2.70 * 105 W.

1
675 s

12.0 V.
1.00 mm

0.0225 m2

d.
A,Q.

K.

K45.0 pC.

25.0 pC
3.00 cm.

C = 12.5 pF

2.32 * 10-5 J.

1.85 * 10-5 J.

11 nF = 10-9 F2

0.25-mF,
12 V plate? (c) What is the electric field between the plates? (d) What is

the energy stored in the capacitor? (e) If the battery is disconnected
and then the plates are pulled apart to a separation of what
are the answers to parts (a)–(d)?
24.49 .. Suppose the battery in Problem 24.48 remains con-
nected while the plates are pulled apart. What are the answers then
to parts (a)–(d) after the plates have been pulled apart?
24.50 ... BIO Cell Membranes.
Cell membranes (the walled enclo-
sure around a cell) are typically
about 7.5 nm thick. They are par-
tially permeable to allow charged
material to pass in and out, as
needed. Equal but opposite charge
densities build up on the inside and
outside faces of such a membrane, and these charges prevent addi-
tional charges from passing through the cell wall. We can model a
cell membrane as a parallel-plate capacitor, with the membrane
itself containing proteins embedded in an organic material to give
the membrane a dielectric constant of about 10. (See Fig. P24.50.)
(a) What is the capacitance per square centimeter of such a cell
wall? (b) In its normal resting state, a cell has a potential difference
of 85 mV across its membrane. What is the electric field inside this
membrane?
24.51 . A capacitor is made from two hollow, coaxial copper
cylinders, one inside the other. There is air in the space between
the cylinders. The inner cylinder has net positive charge and the
outer cylinder has net negative charge. The inner cylinder has radius
2.50 mm, the outer cylinder has radius 3.10 mm, and the length of
each cylinder is 36.0 cm. If the potential difference between the
surfaces of the two cylinders is 80.0 V, what is the magnitude of
the electric field at a point between the two cylinders that is a
distance of 2.80 mm from their common axis and midway between
the ends of the cylinders?
24.52 ... In one type of computer keyboard, each key holds a
small metal plate that serves as one plate of a parallel-plate, air-
filled capacitor. When the key is depressed, the plate separation
decreases and the capacitance increases. Electronic circuitry
detects the change in capacitance and thus detects that the key has
been pressed. In one particular keyboard, the area of each metal
plate is and the separation between the plates is

before the key is depressed. (a) Calculate the capaci-
tance before the key is depressed. (b) If the circuitry can detect a
change in capacitance of how far must the key be
depressed before the circuitry detects its depression?
24.53 .. A capacitor is charged to a potential differ-
ence of 800 V. The terminals of the charged capacitor are then
connected to those of an uncharged capacitor. Compute
(a) the original charge of the system, (b) the final potential dif-
ference across each capacitor, (c) the final energy of the system,
and (d) the decrease in energy when the capacitors are con-
nected.
24.54 .. In Fig. 24.9a, let and

Suppose the charged capacitors are disconnected
from the source and from each other, and then reconnected to each
other with plates of opposite sign together. By how much does the
energy of the system decrease?
24.55 . For the capacitor network shown in Fig. P24.55, the
potential difference across is 12.0 V. Find (a) the total energy
stored in this network and (b) the energy stored in the 
capacitor.
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24.56 .. Several capacitors are available. The voltage
across each is not to exceed You need to make a capacitor
with capacitance to be connected across a potential differ-
ence of (a) Show in a diagram how an equivalent capacitor
with the desired properties can be obtained. (b) No dielectric is a
perfect insulator that would not permit the flow of any charge
through its volume. Suppose that the dielectric in one of the capac-
itors in your diagram is a moderately good conductor. What will
happen in this case when your combination of capacitors is con-
nected across the potential difference?
24.57 . In Fig. P24.57, 

and
The applied poten-

tial is (a) What is
the equivalent capacitance of
the network between points 
and (b) Calculate the charge
on each capacitor and the
potential difference across each
capacitor.
24.58 .. You are working on an electronics project requiring a
variety of capacitors, but you have only a large supply of 100-nF
capacitors available. Show how you can connect these capacitors to
produce each of the following equivalent capacitances: (a) 50 nF;
(b) 450 nF; (c) 25 nF; (d) 75 nF.
24.59 .. In Fig. E24.20, and . The
charge on capacitor is and the charge on is .
What are the values of the capacitances of and ?
24.60 . The capacitors in Fig.
P24.60 are initially uncharged
and are connected, as in the dia-
gram, with switch S open. The
applied potential difference is

(a) What is the
potential difference (b)
What is the potential difference
across each capacitor after
switch is closed? (c) How
much charge flowed through the switch when it was closed?
24.61 .. Three capacitors having capacitances of 8.4, 8.4, and

are connected in series across a potential difference.
(a) What is the charge on the capacitor? (b) What is the
total energy stored in all three capacitors? (c) The capacitors are
disconnected from the potential difference without allowing them
to discharge. They are then reconnected in parallel with each other,
with the positively charged plates connected together. What is the
voltage across each capacitor in the parallel combination? (d)
What is the total energy now stored in the capacitors?
24.62 . Capacitance of a Thundercloud. The charge center of
a thundercloud, drifting above the earth’s surface, contains

of negative charge. Assuming the charge center has a radius
of and modeling the charge center and the earth’s surface
as parallel plates, calculate: (a) the capacitance of the system; (b)

1.0 km,
20 C

3.0 km

4.2-mF
36-V4.2 mF

S

Vcd?
Vab = +210 V.

C3C2

450 mCC3150 mCC1
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C4 = 4.2 mF.

C2 = C3 =8.4 mFC5 =
C1 =

960-V

960 V.
0.25 mF

600 V.
0.25-mF

the potential difference between charge center and ground; (c) the
average strength of the electric field between cloud and ground; (d)
the electrical energy stored in the system.
24.63 .. In Fig. P24.63, each
capacitance is and each
capacitance is (a) Com-
pute the equivalent capacitance
of the network between points 
and (b) Compute the charge on
each of the three capacitors near-
est and when 
(c) With across and 
compute
24.64 . Each combination of
capacitors between points 
and in Fig. P24.64 is first
connected across a bat-
tery, charging the combination
to These combinations
are then connected to make the
circuits shown. When the switch

is thrown, a surge of charge for
the discharging capacitors flows
to trigger the signal device. How
much charge flows through the
signal device in each case?
24.65 . A parallel-plate capac-
itor with only air between the
plates is charged by connecting
it to a battery. The capacitor is
then disconnected from the bat-
tery, without any of the charge
leaving the plates. (a) A voltmeter reads when placed across
the capacitor. When a dielectric is inserted between the plates, com-
pletely filling the space, the voltmeter reads What is the
dielectric constant of this material? (b) What will the voltmeter
read if the dielectric is now pulled partway out so it fills only one-
third of the space between the plates?
24.66 .. An air capacitor is made by
using two flat plates, each with area 
separated by a distance Then a
metal slab having thickness (less
than ) and the same shape and size as
the plates is inserted between them,
parallel to the plates and not touching
either plate (Fig. P24.66). (a) What is
the capacitance of this arrangement? (b) Express the capacitance as
a multiple of the capacitance when the metal slab is not present.
(c) Discuss what happens to the capacitance in the limits 
and
24.67 .. Capacitance of the Earth. Consider a spherical
capacitor with one conductor being a solid conducting sphere of
radius R and the other conductor being at infinity. (a) Use Eq.
(24.1) and what you know about the potential at the surface of a
conducting sphere with charge Q to derive an expression for the
capacitance of the charged sphere. (b) Use your result in part (a) to
calculate the capacitance of the earth. The earth is a good conduc-
tor and has a radius of 6380 km. Compare your results to the
capacitance of typical capacitors used in electronic circuits, which
ranges from 10 pF to 100 pF.
24.68 .. A potential difference is applied across the
capacitor network of Fig. E24.17. If andC1 = C2 = 4.00 mF

Vab = 48.0 V
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, what must the capacitance be if the network is
to store of electrical energy?
24.69 . Earth-Ionosphere Capacitance. The earth can be con-
sidered as a single-conductor capacitor (see Problem 24.67). It can
also be considered in combination with a charged layer of the
atmosphere, the ionosphere, as a spherical capacitor with two
plates, the surface of the earth being the negative plate. The iono-
sphere is at a level of about and the potential difference
between earth and ionosphere is about Calculate: (a)
the capacitance of this system; (b) the total charge on the capacitor;
(c) the energy stored in the system.
24.70 . CALC The inner cylinder of a long, cylindrical capacitor
has radius and linear charge density It is surrounded by a
coaxial cylindrical conducting shell with inner radius and linear
charge density (see Fig. 24.6). (a) What is the energy density in
the region between the conductors at a distance from the axis? 
(b) Integrate the energy density calculated in part (a) over the vol-
ume between the conductors in a length of the capacitor to obtain
the total electric-field energy per unit length. (c) Use Eq. (24.9)
and the capacitance per unit length calculated in Example 24.4
(Section 24.1) to calculate Does your result agree with that
obtained in part (b)?
24.71 .. CP A capacitor has a potential difference of 

between its plates. A short aluminum wire with initial tem-
perature is connected between the plates of the capacitor
and all the energy stored in the capacitor goes into heating the
wire. The wire has mass 12.0 g. If no heat is lost to the surround-
ings and the final temperature of the wire is , what is the
capacitance of the capacitor?
24.72 .. A parallel-plate capa-
citor is made from two plates
12.0 cm on each side and 
4.50 mm apart. Half of the
space between these plates
contains only air, but the other
half is filled with Plexiglas® of
dielectric constant 3.40 (Fig.
P24.72). An 18.0-V battery is connected across the plates. (a) What
is the capacitance of this combination? (Hint: Can you think of this
capacitor as equivalent to two capacitors in parallel?) (b) How
much energy is stored in the capacitor? (c) If we remove the Plexi-
glas® but change nothing else, how much energy will be stored in
the capacitor?
24.73 .. A parallel-plate capacitor has square plates that are
8.00 cm on each side and 3.80 mm apart. The space between the
plates is completely filled with two square slabs of dielectric, each
8.00 cm on a side and 1.90 mm thick. One slab is pyrex glass and the
other is polystyrene. If the potential difference between the plates is
86.0 V, how much electrical energy is stored in the capacitor?
24.74 .. A fuel gauge uses a
capacitor to determine the height
of the fuel in a tank. The effective
dielectric constant changes
from a value of 1 when the tank is
empty to a value of the dielec-
tric constant of the fuel, when the
tank is full. The appropriate elec-
tronic circuitry can determine the
effective dielectric constant of the
combined air and fuel between
the capacitor plates. Each of the
two rectangular plates has a width

K,

Keff

34.2oC
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U>L.
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r
-l

rb

+l.ra

350,000 V.
70 km,

2.90 * 10-3 J
C3C4 = 8.00 mF and a length (Fig. P24.74). The height of the fuel between the

plates is You can ignore any fringing effects. (a) Derive an
expression for as a function of (b) What is the effective
dielectric constant for a tank full, full, and full if the fuel is
gasoline (c) Repeat part (b) for methanol

(d) For which fuel is this fuel gauge more practical?
24.75 .. Three square metal
plates and each

on a side and 
thick, are arranged as in Fig.
P24.75. The plates are sepa-
rated by sheets of paper

thick and with dielec-
tric constant 4.2. The outer
plates are connected together
and connected to point The inner plate is connected to point 
(a) Copy the diagram and show by plus and minus signs the charge
distribution on the plates when point is maintained at a positive
potential relative to point (b) What is the capacitance between
points and ?

CHALLENGE PROBLEMS
24.76 ... CP The parallel-plate air capacitor in Fig. P24.76 con-
sists of two horizontal conducting plates of equal area The bot-
tom plate rests on a fixed support, and the top plate is suspended
by four springs with spring constant positioned at each of the
four corners of the top plate as shown in the figure. When
uncharged, the plates are separated by a distance A battery is
connected to the plates and produces a potential difference 
between them. This causes the plate separation to decrease to 
Neglect any fringing effects. (a) Show that the electrostatic force
between the charged plates has a magnitude (Hint: See
Exercise 24.27.) (b) Obtain an expression that relates the plate sep-
aration to the potential difference The resulting equation will
be cubic in (c) Given the values 

and find the two values of for which
the top plate will be in equilibrium. (Hint: You can solve the cubic
equation by plugging a trial value of into the equation and then
adjusting your guess until the equation is satisfied to three signifi-
cant figures. Locating the roots of the cubic equation graphically
can help you pick starting values of for this trial-and-error proce-
dure. One root of the cubic equation has a nonphysical negative
value.) (d) For each of the two values of found in part (c), is the
equilibrium stable or unstable? For stable equilibrium a small dis-
placement of the object will give rise to a net force tending to
return the object to the equilibrium position. For unstable equilib-
rium a small displacement gives rise to a net force that takes the
object farther away from equilibrium.

24.77 ... Two square conducting plates with sides of length are
separated by a distance A dielectric slab with constant with
dimensions is inserted a distance into the space
between the plates, as shown in Fig. P24.77. (a) Find the capacitance
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of this system. (b) Suppose that the
capacitor is connected to a battery
that maintains a constant potential
difference between the plates. If the
dielectric slab is inserted an addi-
tional distance into the space
between the plates, show that the
change in stored energy is

(c) Suppose that before the slab is
moved by the plates are discon-
nected from the battery, so that the
charges on the plates remain constant. Determine the magnitude of
the charge on each plate, and then show that when the slab is
moved farther into the space between the plates, the stored
energy changes by an amount that is the negative of the expression
for given in part (b). (d) If is the force exerted on the slab by
the charges on the plates, then should equal the work done
against this force to move the slab a distance Thus

Show that applying this expression to the result of
part (b) suggests that the electric force on the slab pushes it out of
the capacitor, while the result of part (c) suggests that the force

dU = -Fdx.
dx.

dU
FdU

dx

dx,

dU = +
1K - 12P0V2L

2D
dx

dx

V

C pulls the slab into the capacitor. (e) Figure 24.16 shows that the
force in fact pulls the slab into the capacitor. Explain why the
result of part (b) gives an incorrect answer for the direction of this
force, and calculate the magnitude of the force. (This method does
not require knowledge of the nature of the fringing field.)
24.78 ... An isolated spherical capac-
itor has charge on its inner conduc-
tor (radius ) and charge on its
outer conductor (radius ). Half of the
volume between the two conductors is
then filled with a liquid dielectric of
constant as shown in cross section in
Fig. P24.78. (a) Find the capacitance of
the half-filled capacitor. (b) Find the
magnitude of in the volume between
the two conductors as a function of the
distance from the center of the capacitor. Give answers for both
the upper and lower halves of this volume. (c) Find the surface
density of free charge on the upper and lower halves of the inner
and outer conductors. (d) Find the surface density of bound charge
on the inner and outer surfaces of the dielectric.
(e) What is the surface density of bound charge on the flat surface
of the dielectric? Explain.

1r = rb21r = ra2
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Chapter Opening Question ?
Equation (24.9) shows that the energy stored in a capacitor with
capacitance and charge is If the charge is dou-
bled, the stored energy increases by a factor of Note that if
the value of is too great, the electric-field magnitude inside the
capacitor will exceed the dielectric strength of the material between
the plates and dielectric breakdown will occur (see Section 24.4).
This puts a practical limit on the amount of energy that can be stored.

Test Your Understanding Questions
24.1 Answer: (iii) The capacitance does not depend on the value
of the charge Q. Doubling the value of causes the potential dif-
ference to double, so the capacitance remains the
same. These statements are true no matter what the geometry of
the capacitor.
24.2 Answers: (a) (i), (b) (iv) In a series connection the two
capacitors carry the same charge but have different potential dif-
ferences the capacitor with the smaller capacitance 
has the greater potential difference. In a parallel connection the
two capacitors have the same potential difference but carry dif-
ferent charges the capacitor with the larger capacitance

has the greater charge. Hence a capacitor will have a
greater potential difference than an capacitor if the two are
connected in series. The capacitor cannot carry more charge
than the capacitor no matter how they are connected: In a
series connection they will carry the same charge, and in a parallel
connection the capacitor will carry more charge.
24.3 Answer: (i) Capacitors connected in series carry the same
charge Q. To compare the amount of energy stored, we use the
expression from Eq. (24.9); it shows that the capaci-
tor with the smaller capacitance has more stored1C = 4 mF2

U = Q2>2C

8-mF

8-mF
4-mF

8-mF
4-mFC

Q = CVab;
Vab

CVab = Q>C;
Q

C = Q>VabVab

Q

Q
22 = 4.

QU = Q2>2C.QC

energy in a series combination. By contrast, capacitors in parallel
have the same potential difference so to compare them we use

from Eq. (24.9). It shows that in a parallel combina-
tion, the capacitor with the larger capacitance has
more stored energy. (If we had instead used to analyze
the series combination, we would have to account for the different
potential differences across the two capacitors. Likewise, using

to study the parallel combination would require us to
account for the different charges on the capacitors.)
24.4 Answer: (i) Here remains the same, so we use 
from Eq. (24.9) for the stored energy. Removing the dielectric
lowers the capacitance by a factor of ; since is inversely
proportional to the stored energy increases by a factor of It
takes work to pull the dielectric slab out of the capacitor because
the fringing field tries to pull the slab back in (Fig. 24.16). The
work that you do goes into the energy stored in the capacitor.
24.5 Answer: (i), (iii), (ii) Equation (24.14) says that if is the
initial electric-field magnitude (before the dielectric slab is
inserted), then the resultant field magnitude after the slab is
inserted is The magnitude of the resultant field
equals the difference between the initial field magnitude and the
magnitude of the field due to the bound charges (see Fig.
24.20). Hence and 
24.6 Answer: (iii) Equation (24.23) shows that this situation is the
same as an isolated point charge in vacuum but with replaced by

Hence at the point of interest is equal to and so
As in Example 24.12, filling the space with a

dielectric reduces the electric field by a factor of 

Bridging Problem
Answers: (a) 0 (b) (c)

(d) (e) C = 4pP0RQ2>8pP0R
Q2>8pP0RQ2>32p2P0r 4

1>K.
E = q>4pKP0r 2.

q>4pP0r 2,KEKE
S

.
E
S

Ei = 2E0>3.E0 - Ei = E0>3
Ei

E0>K = E0>3.

E0

K.C,
U1>K

U = Q2>2CQ

U = Q2>2C

U = 1
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1C = 8 mF2

U = 1
2 CV2
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Answers
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25
LEARNING GOALS

By studying this chapter, you will

learn:

• The meaning of electric current, and

how charges move in a conductor.

• What is meant by the resistivity and

conductivity of a substance.

• How to calculate the resistance of a

conductor from its dimensions and

its resistivity.

• How an electromotive force (emf)

makes it possible for current to flow

in a circuit.

• How to do calculations involving

energy and power in circuits.

CURRENT, RESISTANCE,
AND ELECTROMOTIVE
FORCE

In the past four chapters we studied the interactions of electric charges at rest;
now we’re ready to study charges in motion. An electric current consists of
charges in motion from one region to another. If the charges follow a conduct-

ing path that forms a closed loop, the path is called an electric circuit.
Fundamentally, electric circuits are a means for conveying energy from one

place to another. As charged particles move within a circuit, electric potential
energy is transferred from a source (such as a battery or generator) to a device in
which that energy is either stored or converted to another form: into sound in a
stereo system or into heat and light in a toaster or light bulb. Electric circuits are
useful because they allow energy to be transported without any moving parts
(other than the moving charged particles themselves). They are at the heart of
flashlights, computers, radio and television transmitters and receivers, and house-
hold and industrial power distribution systems. Your nervous system is a special-
ized electric circuit that carries vital signals from one part of your body to
another.

In Chapter 26 we will see how to analyze electric circuits and will examine
some practical applications of circuits. Before we can do so, however, you must
understand the basic properties of electric currents. These properties are the sub-
ject of this chapter. We’ll begin by describing the nature of electric conductors
and considering how they are affected by temperature. We’ll learn why a short,
fat, cold copper wire is a better conductor than a long, skinny, hot steel wire.
We’ll study the properties of batteries and see how they cause current and energy
transfer in a circuit. In this analysis we will use the concepts of current, potential
difference (or voltage), resistance, and electromotive force. Finally, we’ll look at
electric current in a material from a microscopic viewpoint.

? In a flashlight, is the amount of current that flows out of the bulb less than,
greater than, or equal to the amount of current that flows into the bulb?
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25.1 Current
A current is any motion of charge from one region to another. In this section
we’ll discuss currents in conducting materials. The vast majority of technological
applications of charges in motion involve currents of this kind.

In electrostatic situations (discussed in Chapters 21 through 24) the electric
field is zero everywhere within the conductor, and there is no current. However,
this does not mean that all charges within the conductor are at rest. In an ordinary
metal such as copper or alumium, some of the electrons are free to move within
the conducting material. These free electrons move randomly in all directions,
somewhat like the molecules of a gas but with much greater speeds, of the order
of The electrons nonetheless do not escape from the conducting mate-
rial, because they are attracted to the positive ions of the material. The motion of
the electrons is random, so there is no net flow of charge in any direction and
hence no current.

Now consider what happens if a constant, steady electric field is established
inside a conductor. (We’ll see later how this can be done.) A charged particle
(such as a free electron) inside the conducting material is then subjected to a
steady force If the charged particle were moving in vacuum, this steady
force would cause a steady acceleration in the direction of and after a time the
charged particle would be moving in that direction at high speed. But a charged
particle moving in a conductor undergoes frequent collisions with the massive,
nearly stationary ions of the material. In each such collision the particle’s direc-
tion of motion undergoes a random change. The net effect of the electric field 
is that in addition to the random motion of the charged particles within the con-
ductor, there is also a very slow net motion or drift of the moving charged parti-
cles as a group in the direction of the electric force (Fig. 25.1). This
motion is described in terms of the drift velocity of the particles. As a result,
there is a net current in the conductor.

While the random motion of the electrons has a very fast average speed of
about the drift speed is very slow, often on the order of Given
that the electrons move so slowly, you may wonder why the light comes on
immediately when you turn on the switch of a flashlight. The reason is that the
electric field is set up in the wire with a speed approaching the speed of light, and
electrons start to move all along the wire at very nearly the same time. The time
that it takes any individual electron to get from the switch to the light bulb isn’t
really relevant. A good analogy is a group of soldiers standing at attention when
the sergeant orders them to start marching; the order reaches the soldiers’ ears at
the speed of sound, which is much faster than their marching speed, so all the sol-
diers start to march essentially in unison.

The Direction of Current Flow
The drift of moving charges through a conductor can be interpreted in terms of
work and energy. The electric field does work on the moving charges. The
resulting kinetic energy is transferred to the material of the conductor by means
of collisions with the ions, which vibrate about their equilibrium positions in the
crystalline structure of the conductor. This energy transfer increases the average
vibrational energy of the ions and therefore the temperature of the material. Thus
much of the work done by the electric field goes into heating the conductor, not
into making the moving charges move ever faster and faster. This heating is
sometimes useful, as in an electric toaster, but in many situations is simply an
unavoidable by-product of current flow.

In different current-carrying materials, the charges of the moving particles
may be positive or negative. In metals the moving charges are always (negative)
electrons, while in an ionized gas (plasma) or an ionic solution the moving
charges may include both electrons and positively charged ions. In a semiconductor
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material such as germanium or silicon, conduction is partly by electrons and
partly by motion of vacancies, also known as holes; these are sites of missing
electrons and act like positive charges.

Figure 25.2 shows segments of two different current-carrying materials. In
Fig. 25.2a the moving charges are positive, the electric force is in the same direc-
tion as and the drift velocity is from left to right. In Fig. 25.2b the charges
are negative, the electric force is opposite to and the drift velocity is from
right to left. In both cases there is a net flow of positive charge from left to right,
and positive charges end up to the right of negative ones. We define the current,
denoted by , to be in the direction in which there is a flow of positive charge.
Thus we describe currents as though they consisted entirely of positive charge
flow, even in cases in which we know that the actual current is due to electrons.
Hence the current is to the right in both Figs. 25.2a and 25.2b. This choice or
convention for the direction of current flow is called conventional current.
While the direction of the conventional current is not necessarily the same as the
direction in which charged particles are actually moving, we’ll find that the sign
of the moving charges is of little importance in analyzing electric circuits.

Figure 25.3 shows a segment of a conductor in which a current is flowing. We
consider the moving charges to be positive, so they are moving in the same direc-
tion as the current. We define the current through the cross-sectional area to be
the net charge flowing through the area per unit time. Thus, if a net charge 
flows through an area in a time , the current through the area is

(definition of current) (25.1)

CAUTION Current is not a vector Although we refer to the direction of a current, cur-
rent as defined by Eq. (25.1) is not a vector quantity. In a current-carrying wire, the
current is always along the length of the wire, regardless of whether the wire is straight
or curved. No single vector could describe motion along a curved path, which is why
current is not a vector. We’ll usually describe the direction of current either in words
(as in “the current flows clockwise around the circuit”) or by choosing a current to be
positive if it flows in one direction along a conductor and negative if it flows in the
other direction. ❙

The SI unit of current is the ampere; one ampere is defined to be one coulomb
per second This unit is named in honor of the French scientist
André Marie Ampère (1775–1836). When an ordinary flashlight (D-cell size) is
turned on, the current in the flashlight is about 0.5 to the current in the wires
of a car engine’s starter motor is around Currents in radio and television
circuits are usually expressed in milliamperes or micro-
amperes and currents in computer circuits are expressed in
nanoamperes or picoamperes

Current, Drift Velocity, and Current Density
We can express current in terms of the drift velocity of the moving charges. Let’s
consider again the situation of Fig. 25.3 of a conductor with cross-sectional area

and an electric field directed from left to right. To begin with, we’ll assume
that the free charges in the conductor are positive; then the drift velocity is in the
same direction as the field.

Suppose there are moving charged particles per unit volume. We call 
the concentration of particles; its SI unit is Assume that all the particles
move with the same drift velocity with magnitude In a time interval ,
each particle moves a distance The particles that flow out of the right
end of the shaded cylinder with length during are the particles that
were within this cylinder at the beginning of the interval . The volume of the
cylinder is and the number of particles within it is If eachnAvd dt.Avd dt,

dt
dtvd dt

vd dt.
dtvd.

m-3.
nn
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A conventional current is treated as a flow of
positive charges, regardless of whether the free
charges in the conductor are positive, negative,
or both.

In a metallic conductor, the moving charges are
electrons — but the current still points in the 
direction positive charges would flow.
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particle has a charge , the charge that flows out of the end of the cylinder
during time is

and the current is

The current per unit cross-sectional area is called the current density

The units of current density are amperes per square meter 
If the moving charges are negative rather than positive, as in Fig. 25.2b, the

drift velocity is opposite to But the current is still in the same direction as at
each point in the conductor. Hence the current and current density don’t
depend on the sign of the charge, and so in the above expressions for and we
replace the charge by its absolute value 

(general expression for current) (25.2)

(general expression for current density) (25.3)

The current in a conductor is the product of the concentration of moving charged
particles, the magnitude of charge of each such particle, the magnitude of the
drift velocity, and the cross-sectional area of the conductor.

We can also define a vector current density that includes the direction of the
drift velocity:

(vector current density) (25.4)

There are no absolute value signs in Eq. (25.4). If is positive, is in the same
direction as if is negative, is opposite to In either case, is in the
same direction as Equation (25.3) gives the magnitude of the vector current
density .

CAUTION Current density vs. current Note that current density is a vector, but current
is not. The difference is that the current density describes how charges flow at a certain

point, and the vector’s direction tells you about the direction of the flow at that point. By
contrast, the current describes how charges flow through an extended object such as a
wire. For example, has the same value at all points in the circuit of Fig. 25.3, but does
not: The current density is directed downward in the left-hand side of the loop and upward
in the right-hand side. The magnitude of can also vary around a circuit. In Fig. 25.3 the
current density magnitude is less in the battery (which has a large cross-sectional
area ) than in the wires (which have a small cross-sectional area). ❙

In general, a conductor may contain several different kinds of moving charged
particles having charges concentrations and drift veloci-
ties with magnitudes An example is current flow in an ionic solution
(Fig. 25.4). In a sodium chloride solution, current can be carried by both positive
sodium ions and negative chlorine ions; the total current is found by adding up
the currents due to each kind of charged particle, using Eq. (25.2). Likewise, the
total vector current density is found by using Eq. (25.4) for each kind of
charged particle and adding the results.

We will see in Section 25.4 that it is possible to have a current that is steady
(that is, one that is constant in time) only if the conducting material forms a
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25.4 Part of the electric circuit that
includes this light bulb passes through a
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closed loop, called a complete circuit. In such a steady situation, the total charge
in every segment of the conductor is constant. Hence the rate of flow of charge
out at one end of a segment at any instant equals the rate of flow of charge in at
the other end of the segment, and the current is the same at all cross sections of
the circuit. We’ll make use of this observation when we analyze electric circuits
later in this chapter.

In many simple circuits, such as flashlights or cordless electric drills, the
direction of the current is always the same; this is called direct current. But home
appliances such as toasters, refrigerators, and televisions use alternating current,
in which the current continuously changes direction. In this chapter we’ll con-
sider direct current only. Alternating current has many special features worthy of
detailed study, which we’ll examine in Chapter 31.

822 CHAPTER 25 Current, Resistance, and Electromotive Force

Example 25.1 Current density and drift velocity in a wire

An 18-gauge copper wire (the size usually used for lamp cords),
with a diameter of carries a constant current of 
to a 200-W lamp. The free-electron density in the wire is

per cubic meter. Find (a) the current density and (b) the
drift speed.

SOLUTION

IDENTIFY and SET UP: This problem uses the relationships among
current I, current density J, and drift speed . We are given I and
the wire diameter d, so we use Eq. (25.3) to find . We use Eq.
(25.3) again to find from and the known electron density n.

EXECUTE: (a) The cross-sectional area is

A =
pd2

4
=
p11.02 * 10-3 m22

4
= 8.17 * 10-7 m2

Jvd

J
vd

8.5 * 1028

1.67 A1.02 mm,
The magnitude of the current density is then

(b) From Eq. (25.3) for the drift velocity magnitude , we find

EVALUATE: At this speed an electron would require (almost
2 h) to travel 1 m along this wire. The speeds of random motion of
the electrons are roughly around times the drift
speed. Picture the electrons as bouncing around frantically, with a
very slow drift!

1010106 m>s,

6700 s

= 1.5 * 10-4 m>s = 0.15 mm>s

vd =
J

n ƒq ƒ
=

2.04 * 106 A>m2

18.5 * 1028 m-32 ƒ -1.60 * 10-19 C ƒ

vd

J =
I

A
=

1.67 A

8.17 * 10-7 m2
= 2.04 * 106 A>m2

Test Your Understanding of Section 25.1 Suppose we replaced the
wire in Example 25.1 with 12-gauge copper wire, which has twice the diameter of
18-gauge wire. If the current remains the same, what effect would this have on the
magnitude of the drift velocity (i) none— would be unchanged; (ii) would 
be twice as great; (iii) would be four times greater; (iv) would be half as great; 
(v) would be one-fourth as great. ❙vd

vdvd

vdvdvd?

25.2 Resistivity
The current density in a conductor depends on the electric field and on the
properties of the material. In general, this dependence can be quite complex. But
for some materials, especially metals, at a given temperature, is nearly directly
proportional to and the ratio of the magnitudes of and is constant. This
relationship, called Ohm’s law, was discovered in 1826 by the German physicist
Georg Simon Ohm (1787–1854). The word “law” should actually be in quotation
marks, since Ohm’s law, like the ideal-gas equation and Hooke’s law, is an
idealized model that describes the behavior of some materials quite well but is
not a general description of all matter. In the following discussion we’ll assume
that Ohm’s law is valid, even though there are many situations in which it is not.
The situation is comparable to our representation of the behavior of the static and
kinetic friction forces; we treated these friction forces as being directly propor-
tional to the normal force, even though we knew that this was at best an approxi-
mate description.
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Table 25.1 Resistivities at Room Temperature (20 C)

Substance Substance

Conductors Semiconductors
Metals Silver Pure carbon (graphite)

Copper Pure germanium 0.60
Gold Pure silicon 2300
Aluminum Insulators
Tungsten Amber
Steel Glass
Lead Lucite
Mercury Mica

Alloys Manganin (Cu 84%, Mn 12%, Ni 4%) Quartz (fused)
Constantan (Cu 60%, Ni 40%) Sulfur
Nichrome Teflon

Wood 108–1011
71013100 * 10-8

101549 * 10-8
75 * 101644 * 10-8
1011–101595 * 10-8

7101322 * 10-8
1010–101420 * 10-8

5 * 10145.25 * 10-8
2.75 * 10-8
2.44 * 10-8
1.72 * 10-8

3.5 * 10-51.47 * 10-8

R 1æ #m2R 1æ #m2
°

We define the resistivity of a material as the ratio of the magnitudes of elec-
tric field and current density:

(definition of resistivity) (25.5)

The greater the resistivity, the greater the field needed to cause a given current
density, or the smaller the current density caused by a given field. From Eq. (25.5)
the units of are As we will discuss in the next sec-
tion, is called one ohm ( we use the Greek letter or omega, which
is alliterative with “ohm”). So the SI units for are (ohm-meters). Table 25.1
lists some representative values of resistivity. A perfect conductor would have
zero resistivity, and a perfect insulator would have an infinite resistivity. Metals
and alloys have the smallest resistivities and are the best conductors. The resistiv-
ities of insulators are greater than those of the metals by an enormous factor, on
the order of 

The reciprocal of resistivity is conductivity. Its units are Good
conductors of electricity have larger conductivity than insulators. Conductivity is
the direct electrical analog of thermal conductivity. Comparing Table 25.1 with
Table 17.5 (Thermal Conductivities), we note that good electrical conductors,
such as metals, are usually also good conductors of heat. Poor electrical conduc-
tors, such as ceramic and plastic materials, are also poor thermal conductors. In a
metal the free electrons that carry charge in electrical conduction also provide the
principal mechanism for heat conduction, so we should expect a correlation
between electrical and thermal conductivity. Because of the enormous difference
in conductivity between electrical conductors and insulators, it is easy to confine
electric currents to well-defined paths or circuits (Fig. 25.5). The variation in
thermal conductivity is much less, only a factor of or so, and it is usually
impossible to confine heat currents to that extent.

Semiconductors have resistivities intermediate between those of metals and
those of insulators. These materials are important because of the way their resis-
tivities are affected by temperature and by small amounts of impurities.

A material that obeys Ohm’s law reasonably well is called an ohmic conductor
or a linear conductor. For such materials, at a given temperature, is a constant
that does not depend on the value of . Many materials show substantial depar-
tures from Ohm’s-law behavior; they are nonohmic, or nonlinear. In these materi-
als, depends on in a more complicated manner.

Analogies with fluid flow can be a big help in developing intuition about elec-
tric current and circuits. For example, in the making of wine or maple syrup, the
product is sometimes filtered to remove sediments. A pump forces the fluid
through the filter under pressure; if the flow rate (analogous to ) is proportional
to the pressure difference between the upstream and downstream sides (analo-
gous to E), the behavior is analogous to Ohm’s law.

J

EJ

E
r

103

1Æ # m2-1.
1022.

Æ # mr

Æ,1 Æ;1 V>A
1V>m2>1A>m22 = V # m>A.r

r =
E

J

r

Conducting paths
(traces)

25.5 The copper “wires,” or traces, on
this circuit board are printed directly onto
the surface of the dark-colored insulating
board. Even though the traces are very
close to each other (only about a millimeter
apart), the board has such a high resistivity
(and low conductivity) that no current can
flow between the traces.



Resistivity and Temperature
The resistivity of a metallic conductor nearly always increases with increasing
temperature, as shown in Fig. 25.6a. As temperature increases, the ions of the
conductor vibrate with greater amplitude, making it more likely that a moving
electron will collide with an ion as in Fig. 25.1; this impedes the drift of electrons
through the conductor and hence reduces the current. Over a small temperature
range (up to or so), the resistivity of a metal can be represented approxi-
mately by the equation

(temperature dependence 
of resistivity) (25.6)

where is the resistivity at a reference temperature (often taken as or
and is the resistivity at temperature , which may be higher or lower

than The factor is called the temperature coefficient of resistivity. Some
representative values are given in Table 25.2. The resistivity of the alloy man-
ganin is practically independent of temperature.

aT0.
Tr1T220°C2

0°CT0r0

r1T2 = r031 + a1T - T024

100 C°
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Metal: Resistivity increases
with increasing temperature.

Semiconductor: Resistivity
decreases with increasing
temperature.

Superconductor: At
temperatures below Tc,
the resistivity
is zero.

O
T

(a)

T0

r

r0 Slope 5 r0a

O
T

(b) r

O
T

(c)

Tc

r

25.6 Variation of resistivity with
absolute temperature for (a) a normal
metal, (b) a semiconductor, and (c) a
superconductor. In (a) the linear approxi-
mation to as a function of is shown as
a green line; the approximation agrees
exactly at where r = r0.T = T0,

Tr

T
r

Myelin

Axon

Application Resistivity and Nerve
Conduction
This false-color image from an electron micro-
scope shows a cross section through a nerve
fiber about 1 μm ( m) in diameter. A layer
of an insulating fatty substance called myelin is
wrapped around the conductive material of the
axon. The resistivity of myelin is much greater
than that of the axon, so an electric signal
traveling along the nerve fiber remains con-
fined to the axon. This makes it possible for a
signal to travel much more rapidly than if the
myelin were absent.

10 -6

Table 25.2 Temperature Coefficients of Resistivity 
(Approximate Values Near Room Temperature)

Material Material

Aluminum 0.0039 Lead 0.0043
Brass 0.0020 Manganin 0.00000
Carbon (graphite) Mercury 0.00088
Constantan 0.00001 Nichrome 0.0004
Copper 0.00393 Silver 0.0038
Iron 0.0050 Tungsten 0.0045

-0.0005

A 31°C2�14A 31°C2�14

The resistivity of graphite (a nonmetal) decreases with increasing tempera-
ture, since at higher temperatures, more electrons are “shaken loose” from the
atoms and become mobile; hence the temperature coefficient of resistivity of
graphite is negative. This same behavior occurs for semiconductors (Fig. 25.6b).
Measuring the resistivity of a small semiconductor crystal is therefore a sensitive
measure of temperature; this is the principle of a type of thermometer called a
thermistor.

Some materials, including several metallic alloys and oxides, show a phenom-
enon called superconductivity. As the temperature decreases, the resistivity at
first decreases smoothly, like that of any metal. But then at a certain critical tem-
perature a phase transition occurs and the resistivity suddenly drops to zero, as
shown in Fig. 25.6c. Once a current has been established in a superconducting
ring, it continues indefinitely without the presence of any driving field.

Superconductivity was discovered in 1911 by the Dutch physicist Heike
Kamerlingh Onnes (1853–1926). He discovered that at very low temperatures,
below the resistivity of mercury suddenly dropped to zero. For the next 
75 years, the highest attained was about This meant that superconductivity
occurred only when the material was cooled using expensive liquid helium, with
a boiling-point temperature of or explosive liquid hydrogen, with a boiling
point of But in 1986 Karl Müller and Johannes Bednorz discovered an
oxide of barium, lanthanum, and copper with a of nearly and the race
was on to develop “high-temperature” superconducting materials.

By 1987 a complex oxide of yttrium, copper, and barium had been found that
has a value of well above the 77 K boiling temperature of liquid nitrogen, a
refrigerant that is both inexpensive and safe. The current (2010) record for at
atmospheric pressure is 138 K, and materials that are superconductors at room
temperature may become a reality. The implications of these discoveries for
power-distribution systems, computer design, and transportation are enormous.
Meanwhile, superconducting electromagnets cooled by liquid helium are used 
in particle accelerators and some experimental magnetic-levitation railroads.

Tc

Tc

40 K,Tc

20.3 K.
4.2 K,

20 K.Tc

4.2 K,

Tc
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25.3 Resistance
For a conductor with resistivity the current density at a point where the elec-
tric field is is given by Eq. (25.5), which we can write as

(25.7)

When Ohm’s law is obeyed, is constant and independent of the magnitude of
the electric field, so is directly proportional to Often, however, we are more
interested in the total current in a conductor than in and more interested in the
potential difference between the ends of the conductor than in This is so
largely because current and potential difference are much easier to measure than
are and 

Suppose our conductor is a wire with uniform cross-sectional area and
length , as shown in Fig. 25.7. Let be the potential difference between the
higher-potential and lower-potential ends of the conductor, so that is positive.
The direction of the current is always from the higher-potential end to the lower-
potential end. That’s because current in a conductor flows in the direction of 
no matter what the sign of the moving charges (Fig. 25.2), and because points
in the direction of decreasing electric potential (see Section 23.2). As the current
flows through the potential difference, electric potential energy is lost; this
energy is transferred to the ions of the conducting material during collisions.

We can also relate the value of the current to the potential difference between
the ends of the conductor. If the magnitudes of the current density and the elec-
tric field are uniform throughout the conductor, the total current is given by

and the potential difference between the ends is When we solve
these equations for and , respectively, and substitute the results in Eq. (25.7),
we obtain

(25.8)

This shows that when is constant, the total current is proportional to the
potential difference .

The ratio of to for a particular conductor is called its resistance :

(25.9)

Comparing this definition of to Eq. (25.8), we see that the resistance of a par-
ticular conductor is related to the resistivity of its material by

(relationship between 
resistance and resistivity)

(25.10)

If is constant, as is the case for ohmic materials, then so is .
The equation

(25.11)

is often called Ohm’s law, but it is important to understand that the real content of
Ohm’s law is the direct proportionality (for some materials) of to or of to E.JIV

(relationship among voltage,
current, and resistance)
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Test Your Understanding of Section 25.2 You maintain a constant
electric field inside a piece of semiconductor while lowering the semiconductor’s
temperature. What happens to the current density in the semiconductor? (i) It
increases; (ii) it decreases; (iii) it remains the same. ❙

Current flows from
higher to lower
electric potential.

L

V 5 potential
difference
between ends

I

IA

Higher
potential

Lower
potential

J
S

E
S

25.7 A conductor with uniform cross
section. The current density is uniform
over any cross section, and the electric
field is constant along the length.

Superconductors have other exotic properties that require an understanding of
magnetism to explore; we will discuss these further in Chapter 29.

PhET: Resistance in a Wire



Equation (25.9) or (25.11) defines resistance for any conductor, whether or not
it obeys Ohm’s law, but only when is constant can we correctly call this rela-
tionship Ohm’s law.

Interpreting Resistance
Equation (25.10) shows that the resistance of a wire or other conductor of uni-
form cross section is directly proportional to its length and inversely proportional
to its cross-sectional area. It is also proportional to the resistivity of the material
of which the conductor is made.

The flowing-fluid analogy is again useful. In analogy to Eq. (25.10), a narrow
water hose offers more resistance to flow than a fat one, and a long hose has more
resistance than a short one (Fig. 25.8). We can increase the resistance to flow by
stuffing the hose with cotton or sand; this corresponds to increasing the resistiv-
ity. The flow rate is approximately proportional to the pressure difference
between the ends. Flow rate is analogous to current, and pressure difference is
analogous to potential difference (“voltage”). Let’s not stretch this analogy too
far, though; the water flow rate in a pipe is usually not proportional to its cross-
sectional area (see Section 14.6).

The SI unit of resistance is the ohm, equal to one volt per ampere 
The kilohm and the megohm are

also in common use. A length of 12-gauge copper wire, the size usually
used in household wiring, has a resistance at room temperature of about A

light bulb has a resistance (at operating temperature) of If
the same current flows in both the copper wire and the light bulb, the potential
difference is much greater across the light bulb, and much more potential
energy is lost per charge in the light bulb. This lost energy is converted by the
light bulb filament into light and heat. You don’t want your household wiring to
glow white-hot, so its resistance is kept low by using wire of low resistivity and
large cross-sectional area.

Because the resistivity of a material varies with temperature, the resistance of
a specific conductor also varies with temperature. For temperature ranges that are
not too great, this variation is approximately a linear relationship, analogous to
Eq. (25.6):

(25.12)

In this equation, is the resistance at temperature and is the resistance at
temperature often taken to be or The temperature coefficient of
resistance is the same constant that appears in Eq. (25.6) if the dimensions 
and in Eq. (25.10) do not change appreciably with temperature; this is indeed
the case for most conducting materials (see Problem 25.67). Within the limits of
validity of Eq. (25.12), the change in resistance resulting from a temperature
change is given by 

A circuit device made to have a specific value of resistance between its ends
is called a resistor. Resistors in the range 0.01 to can be bought off the
shelf. Individual resistors used in electronic circuitry are often cylindrical, a
few millimeters in diameter and length, with wires coming out of the ends. The
resistance may be marked with a standard code using three or four color bands
near one end (Fig. 25.9), according to the scheme shown in Table 25.3. The
first two bands (starting with the band nearest an end) are digits, and the third is
a power-of-10 multiplier, as shown in Fig. 25.9. For example, green–violet–red
means or The fourth band, if present, indicates the preci-
sion (tolerance) of the value; no band means a silver band and
a gold band Another important characteristic of a resistor is the maxi-
mum power it can dissipate without damage. We’ll return to this point in
Section 25.5.

�5%.
�10%,�20%,
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Table 25.3 Color Codes 
for Resistors

Value as Value as 
Color Digit Multiplier

Black 0 1
Brown 1 10
Red 2
Orange 3
Yellow 4
Green 5
Blue 6
Violet 7
Gray 8
White 9 109

108
107
106
105
104
103
102

25.8 A long fire hose offers substantial
resistance to water flow. To make water
pass through the hose rapidly, the upstream
end of the hose must be at much higher
pressure than the end where the water
emerges. In an analogous way, there must
be a large potential difference between the
ends of a long wire in order to cause a sub-
stantial electric current through the wire.

Tolerance
First digit

MultiplierSecond digit

25.9 This resistor has a resistance of
with a precision (tolerance) of

�10%.
5.7 kÆ
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For a resistor that obeys Ohm’s law, a graph of current as a function of
potential difference (voltage) is a straight line (Fig. 25.10a). The slope of the
line is . If the sign of the potential difference changes, so does the sign of
the current produced; in Fig. 25.7 this corresponds to interchanging the higher-
and lower-potential ends of the conductor, so the electric field, current density,
and current all reverse direction. In devices that do not obey Ohm’s law, the
relationship of voltage to current may not be a direct proportion, and it may be
different for the two directions of current. Figure 25.10b shows the behavior of
a semiconductor diode, a device used to convert alternating current to direct
current and to perform a wide variety of logic functions in computer circuitry.
For positive potentials of the anode (one of two terminals of the diode) with
respect to the cathode (the other terminal), increases exponentially with increas-
ing for negative potentials the current is extremely small. Thus a positive
causes a current to flow in the positive direction, but a potential difference of
the other sign causes little or no current. Hence a diode acts like a one-way valve
in a circuit.

VV;
I

V

1>R

V

Semiconductor diode: a nonohmic resistorOhmic resistor (e.g., typical metal wire): At a
given temperature, current is proportional to
voltage.

In the direction of
positive current and
voltage, I increases
nonlinearly with V.

In the direction of
negative current and
voltage, little current
flows.

(a) (b)

O

Slope 5
1
R

I

O

I

V

25.10 Current–voltage relationships for two devices. Only for a resistor that obeys
Ohm’s law as in (a) is current proportional to voltage .VI

Example 25.2 Electric field, potential difference, and resistance in a wire

The 18-gauge copper wire of Example 25.1 has a cross-sectional
area of It carries a current of Find (a) the
electric-field magnitude in the wire; (b) the potential difference
between two points in the wire apart; (c) the resistance of a

length of this wire.

SOLUTION

IDENTIFY and SET UP: We are given the cross-sectional area and
current . Our target variables are the electric-field magnitude ,
potential difference , and resistance . The current density is

. We find E from Eq. (25.5), (Table 25.1 gives the
resistivity for copper). The potential difference is then the prod-
uct of and the length of the wire. We can use either Eq. (25.10)
or Eq. (25.11) to find R.

EXECUTE: (a) From Table 25.1, � Hence,
using Eq. (25.5),

= 0.0350 V>m

E = rJ =
rI

A
=
11.72 * 10-8 Æ # m211.67 A2

8.20 * 10-7 m2

1.72 * 10-8 Æ # m.r

E
r

E = rJJ = I>A
RV

EI
A

50.0-m
50.0 m

1.67 A.8.20 * 10-7 m2.
(b) The potential difference is

(c) From Eq. (25.10) the resistance of of this wire is

Alternatively, we can find R using Eq. (25.11):

EVALUATE: We emphasize that the resistance of the wire is defined
to be the ratio of voltage to current. If the wire is made of
nonohmic material, then is different for different values of but
is always given by Resistance is also always given by

if the material is nonohmic, is not constant but
depends on (or, equivalently, on V = EL).E

rR = rL>A;
R = V>I.

VR

R =
V

I
=

1.75 V

1.67 A
= 1.05 Æ

R =
rL

A
=
11.72 * 10-8 Æ # m2150.0 m2

8.20 * 10-7 m2
= 1.05 Æ

50.0 m

V = EL = 10.0350 V>m2150.0 m2 = 1.75 V



25.4 Electromotive Force and Circuits
For a conductor to have a steady current, it must be part of a path that forms a
closed loop or complete circuit. Here’s why. If you establish an electric field 
inside an isolated conductor with resistivity that is not part of a complete cir-
cuit, a current begins to flow with current density (Fig. 25.11a). As a
result a net positive charge quickly accumulates at one end of the conductor and a
net negative charge accumulates at the other end (Fig. 25.11b). These charges
themselves produce an electric field in the direction opposite to causing
the total electric field and hence the current to decrease. Within a very small frac-
tion of a second, enough charge builds up on the conductor ends that the total
electric field inside the conductor. Then as well, and
the current stops altogether (Fig. 25.11c). So there can be no steady motion of
charge in such an incomplete circuit.

To see how to maintain a steady current in a complete circuit, we recall a basic
fact about electric potential energy: If a charge goes around a complete circuit
and returns to its starting point, the potential energy must be the same at the end
of the round trip as at the beginning. As described in Section 25.3, there is always
a decrease in potential energy when charges move through an ordinary conduct-
ing material with resistance. So there must be some part of the circuit in which
the potential energy increases.

The problem is analogous to an ornamental water fountain that recycles its
water. The water pours out of openings at the top, cascades down over the ter-
races and spouts (moving in the direction of decreasing gravitational potential
energy), and collects in a basin in the bottom. A pump then lifts it back to the top
(increasing the potential energy) for another trip. Without the pump, the water
would just fall to the bottom and stay there.

Electromotive Force
In an electric circuit there must be a device somewhere in the loop that acts like
the water pump in a water fountain (Fig. 25.12). In this device a charge travels
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Example 25.3 Temperature dependence of resistance

Suppose the resistance of a copper wire is at Find
the resistance at and 

SOLUTION

IDENTIFY and SET UP: We are given the resistance 
at a reference temperature We use Eq. (25.12) to find
the resistances at and (our target variables),
taking the temperature coefficient of resistivity from Table 25.2.

EXECUTE: From Table 25.2, for copper. Then
from Eq. (25.12),

= 0.97 Æ at T = 0°C

= 11.05 Æ251 + 30.00393 1C°2-1430°C - 20°C46

R = R031 + a1T - T024

a = 0.00393 1C°2-1

T = 100°CT = 0°C
T0 = 20°C.

R0 = 1.05 Æ

100°C.0°C
20°C.1.05 Æ

EVALUATE: The resistance at is greater than that at by a
factor of : Raising the temperature of
copper wire from to increases its resistance by 42%.
From Eq. (25.11), this means that 42% more voltage is
required to produce the same current at than at 
Designers of electric circuits that must operate over a wide temper-
ature range must take this substantial effect into account.

0°C.100°C
V = IR,

100°C0°C
11.38 Æ2>10.97 Æ2 = 1.42

0°C100°C

= 1.38 Æ at T = 100°C

R = 11.05 Æ251 + 30.00393 1C°2-143100°C - 20°C46

Test Your Understanding of Section 25.3 Suppose you increase the voltage
across the copper wire in Examples 25.2 and 25.3. The increased voltage causes more
current to flow, which makes the temperature of the wire increase. (The same thing hap-
pens to the coils of an electric oven or a toaster when a voltage is applied to them. We’ll
explore this issue in more depth in Section 25.5.) If you double the voltage across the
wire, the current in the wire increases. By what factor does it increase? (i) 2; (ii) greater
than 2; (iii) less than 2. ❙

(c) After a very short time E2 has the same
magnitude as E1; then the total field is Etotal 5 0
and the current stops completely.

II

J
S

E1
S

(a) An electric field E1 produced inside an
isolated conductor causes a current.

S

S

S

S S

–
–
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(b) The current causes charge to build up at
the ends.

The charge buildup produces an opposing
field E2, thus reducing the current.

–
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S
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25.11 If an electric field is produced 
inside a conductor that is not part of a
complete circuit, current flows for only 
a very short time.
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“uphill,” from lower to higher potential energy, even though the electrostatic
force is trying to push it from higher to lower potential energy. The direction of
current in such a device is from lower to higher potential, just the opposite of
what happens in an ordinary conductor. The influence that makes current flow
from lower to higher potential is called electromotive force (abbreviated emf
and pronounced “ee-em-eff”). This is a poor term because emf is not a force but
an energy-per-unit-charge quantity, like potential. The SI unit of emf is the
same as that for potential, the volt A typical flashlight battery
has an emf of this means that the battery does of work on every
coulomb of charge that passes through it. We’ll use the symbol (a script capital
E) for emf.

Every complete circuit with a steady current must include some device that
provides emf. Such a device is called a source of emf. Batteries, electric genera-
tors, solar cells, thermocouples, and fuel cells are all examples of sources of emf.
All such devices convert energy of some form (mechanical, chemical, thermal,
and so on) into electric potential energy and transfer it into the circuit to which
the device is connected. An ideal source of emf maintains a constant potential
difference between its terminals, independent of the current through it. We define
electromotive force quantitatively as the magnitude of this potential difference.
As we will see, such an ideal source is a mythical beast, like the frictionless plane
and the massless rope. We will discuss later how real-life sources of emf differ in
their behavior from this idealized model.

Figure 25.13 is a schematic diagram of an ideal source of emf that maintains a
potential difference between conductors and , called the terminals of the
device. Terminal , marked is maintained at higher potential than terminal ,
marked Associated with this potential difference is an electric field in the
region around the terminals, both inside and outside the source. The electric field
inside the device is directed from to , as shown. A charge within the source
experiences an electric force But the source also provides an additional
influence, which we represent as a nonelectrostatic force This force, oper-
ating inside the device, pushes charge from to in an “uphill” direction against
the electric force Thus maintains the potential difference between the ter-
minals. If were not present, charge would flow between the terminals until the
potential difference was zero. The origin of the additional influence depends
on the kind of source. In a generator it results from magnetic-field forces on mov-
ing charges. In a battery or fuel cell it is associated with diffusion processes and
varying electrolyte concentrations resulting from chemical reactions. In an elec-
trostatic machine such as a Van de Graaff generator (see Fig. 22.26), an actual
mechanical force is applied by a moving belt or wheel.

If a positive charge is moved from to inside the source, the nonelectro-
static force does a positive amount of work on the charge. This dis-
placement is opposite to the electrostatic force so the potential energy
associated with the charge increases by an amount equal to where

is the (positive) potential of point with respect to point . For
the ideal source of emf that we’ve described, and are equal in magnitude
but opposite in direction, so the total work done on the charge is zero; there is
an increase in potential energy but no change in the kinetic energy of the charge.
It’s like lifting a book from the floor to a high shelf at constant speed. The
increase in potential energy is just equal to the nonelectrostatic work so

or

(ideal source of emf) (25.13)

Now let’s make a complete circuit by connecting a wire with resistance to
the terminals of a source (Fig. 25.14). The potential difference between terminals

and sets up an electric field within the wire; this causes current to flow around
the loop from toward , from higher to lower potential. Where the wire bends,
equal amounts of positive and negative charge persist on the “inside” and “outside”
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25.12 Just as a water fountain requires a
pump, an electric circuit requires a source
of electromotive force to sustain a steady
current.
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25.13 Schematic diagram of a source of
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of the bend. These charges exert the forces that cause the current to follow the
bends in the wire.

From Eq. (25.11) the potential difference between the ends of the wire in 
Fig. 25.14 is given by Combining with Eq. (25.13), we have

(ideal source of emf) (25.14)

That is, when a positive charge flows around the circuit, the potential rise as
it passes through the ideal source is numerically equal to the potential drop

as it passes through the remainder of the circuit. Once and are
known, this relationship determines the current in the circuit.

CAUTION Current is not “used up” in a circuit It’s a common misconception that
in a closed circuit, current is something that squirts out of the positive terminal of a
battery and is consumed or “used up” by the time it reaches the negative terminal. In fact
the current is the same at every point in a simple loop circuit like that in Fig. 25.14, even if
the thickness of the wires is different at different points in the circuit. This happens
because charge is conserved (that is, it can be neither created nor destroyed) and because
charge cannot accumulate in the circuit devices we have described. If charge did accumu-
late, the potential differences would change with time. It’s like the flow of water in an
ornamental fountain; water flows out of the top of the fountain at the same rate at which it
reaches the bottom, no matter what the dimensions of the fountain. None of the water is
“used up” along the way! ❙

Internal Resistance
Real sources of emf in a circuit don’t behave in exactly the way we have
described; the potential difference across a real source in a circuit is not equal to
the emf as in Eq. (25.14). The reason is that charge moving through the material
of any real source encounters resistance. We call this the internal resistance of
the source, denoted by . If this resistance behaves according to Ohm’s law, is
constant and independent of the current . As the current moves through , it
experiences an associated drop in potential equal to . Thus, when a current is
flowing through a source from the negative terminal to the positive terminal ,
the potential difference between the terminals is

(terminal voltage, source 
(25.15)with internal resistance)

The potential called the terminal voltage, is less than the emf because of
the term representing the potential drop across the internal resistance .
Expressed another way, the increase in potential energy as a charge moves
from to within the source is now less than the work done by the nonelec-
trostatic force since some potential energy is lost in traversing the internal
resistance.

A battery has an emf of but the terminal voltage of the battery
is equal to only if no current is flowing through it so that in 
Eq. (25.15). If the battery is part of a complete circuit through which current is
flowing, the terminal voltage will be less than For a real source of emf, the
terminal voltage equals the emf only if no current is flowing through the source
(Fig. 25.15). Thus we can describe the behavior of a source in terms of two prop-
erties: an emf which supplies a constant potential difference independent of
current, in series with an internal resistance .

The current in the external circuit connected to the source terminals and is
still determined by Combining this with Eq. (25.15), we find

or (25.16)
(current, source with
internal resistance)

I =
E

R + r
E - Ir = IR

Vab = IR.
ba

r
E,

1.5 V.

I = 01.5 V
Vab1.5 V,1.5-V

F
S

n,
qEab

qqVab

rIr
EVab,

Vab = E - Ir

Vab

ab
Ir

rI
rr

REVab = IR

Eq

E = Vab = IR

Vab = IR.
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When a real
(as opposed 
to ideal) emf source
is connected to a circuit, Vab and thus Fe fall, so
that Fn . Fe and Fn does work on the charges.

E
S

E
S
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S

S

Ideal emf
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b

Vab 5 E

Vb
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Potential across terminals creates electric
field in circuit, causing charges to move.
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25.14 Schematic diagram of an ideal
source of emf in a complete circuit. The
electric-field force and the non-
electrostatic force are shown for a posi-
tive charge . The current is in the
direction from to in the external circuit
and from to within the source.ab

ba
q

F
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n

F
S

e � qE
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Application Danger: Electric Ray!
Electric rays deliver electric shocks to stun
their prey and to discourage predators. (In
ancient Rome, physicians practiced a primitive
form of electroconvulsive therapy by placing
electric rays on their patients to cure
headaches and gout.) The shocks are pro-
duced by specialized flattened cells called elec-
troplaques. Such a cell moves ions across
membranes to produce an emf of about 
0.05 V. Thousands of electroplaques are
stacked on top of each other, so their emfs
add to a total of as much as 200 V. These
stacks make up more than half of an electric
ray’s body mass. A ray can use these to
deliver an impressive current of up to 30 A for
a few milliseconds.
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That is, the current equals the source emf divided by the total circuit resistance

CAUTION A battery is not a “current source” You might have thought that a battery or
other source of emf always produces the same current, no matter what circuit it’s used in.
Equation (25.16) shows that this isn’t so! The greater the resistance R of the external cir-
cuit, the less current the source will produce. It’s analogous to pushing an object through a
thick, viscous liquid such as oil or molasses; if you exert a certain steady push (emf), you
can move a small object at high speed (small large ) or a large object at low speed
(large , small ). ❙

Symbols for Circuit Diagrams
An important part of analyzing any electric circuit is drawing a schematic circuit
diagram. Table 25.4 shows the usual symbols used in circuit diagrams. We will
use these symbols extensively in this chapter and the next. We usually assume
that the wires that connect the various elements of the circuit have negligible
resistance; from Eq. (25.11), the potential difference between the ends
of such a wire is zero.

Table 25.4 includes two meters that are used to measure the properties of cir-
cuits. Idealized meters do not disturb the circuit in which they are connected. A
voltmeter, introduced in Section 23.2, measures the potential difference between
its terminals; an idealized voltmeter has infinitely large resistance and measures
potential difference without having any current diverted through it. An ammeter
measures the current passing through it; an idealized ammeter has zero resist-
ance and has no potential difference between its terminals. Because meters act as
part of the circuit in which they are connected, these properties are important to
remember.

V = IR,

IR
IR,

1R + r2.
25.15 The emf of this battery—that is,
the terminal voltage when it’s not connected
to anything—is But because the
battery has internal resistance, the terminal
voltage of the battery is less than 
when it is supplying current to a light bulb.

12 V

12 V.

R

A

V

+E

+ E

or

+ E

Table 25.4 Symbols for Circuit Diagrams

Conductor with negligible resistance

Resistor

Source of emf (longer vertical line always represents the positive
terminal, usually the terminal with higher potential)

Source of emf with internal resistance ( can be placed on either
side)

Voltmeter (measures potential difference between its terminals)

Ammeter (measures current through it)

rr

Conceptual Example 25.4 A source in an open circuit

Figure 25.16 shows a source (a battery) with emf and
internal resistance � (For comparison, the internal resist-
ance of a commercial lead storage battery is only a few thou-
sandths of an ohm.) The wires to the left of and to the right of the
ammeter are not connected to anything. Determine the respec-
tive readings and I of the idealized voltmeter and the ideal-
ized ammeter .A

VVab

A
a

12-V
2 Æ.r

E = 12 V

Continued

+

Vab

ba
A

r 5 2 V, E 5 12 V

V

25.16 A source of emf in an open circuit.
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SOLUTION

There is zero current because there is no complete circuit. (Our
idealized voltmeter has an infinitely large resistance, so no current
flows through it.) Hence the ammeter reads Because there is
no current through the battery, there is no potential difference across

I = 0.

its internal resistance. From Eq. (25.15) with the potential
difference across the battery terminals is equal to the emf. So
the voltmeter reads The terminal voltage of a
real, nonideal source equals the emf only if there is no current
flowing through the source, as in this example.

Vab = E = 12 V.
Vab

I = 0,

Example 25.5 A source in a complete circuit

We add a resistor to the battery in Conceptual Example 25.4,
forming a complete circuit (Fig. 25.17). What are the voltmeter
and ammeter readings and I now?

SOLUTION

IDENTIFY and SET UP: Our target variables are the current 
through the circuit and the potential difference . We first
find using Eq. (25.16). To find we can use either Eq. (25.11)
or Eq. (25.15).

Vab,I
Vabaa¿b¿b

I

Vab

4-Æ EXECUTE: The ideal ammeter has zero resistance, so the total
resistance external to the source is From Eq. (25.16), the
current through the circuit is then

Our idealized conducting wires and the idealized ammeter have
zero resistance, so there is no potential difference between points 
and or between points and that is, We find 
by considering and as the terminals of the resistor: From Ohm’s
law, Eq. (25.11), we then have

Alternatively, we can consider a and b as the terminals of the
source. Then, from Eq. (25.15),

Either way, we see that the voltmeter reading is 8 V.

EVALUATE: With current flowing through the source, the terminal
voltage is less than the emf The smaller the internal resist-
ance , the less the difference between and .EVabr

.EVab

Vab = E - Ir = 12 V - 12 A212 Æ2 = 8 V

Va¿b¿ = IR = 12 A214 Æ2 = 8 V

ba
VabVab = Va¿b¿.b¿;ba¿

a

I =
E

R + r
=

12 V

4 Æ + 2 Æ
= 2 A

aa¿b¿b
R = 4 Æ.

+

Vab 5 Va�b�

ba

A

b�a�

I Ir 5 2 V, E 5 12 V

R 5 4 V

V

25.17 A source of emf in a complete circuit.

Conceptual Example 25.6 Using voltmeters and ammeters

We move the voltmeter and ammeter in Example 25.5 to different
positions in the circuit. What are the readings of the ideal volt-
meter and ammeter in the situations shown in (a) Fig. 25.18a and
(b) Fig. 25.18b?

SOLUTION

(a) The voltmeter now measures the potential difference between
points and As in Example 25.5, so the voltmeter
reads the same as in Example 25.5: Va¿b¿ = 8 V.

Vab = Va¿b¿,b¿.a¿

CAUTION Current in a simple loop As charges move through a
resistor, there is a decrease in electric potential energy, but there is
no change in the current. The current in a simple loop is the same
at every point; it is not “used up” as it moves through a resistor.
Hence the ammeter in Fig. 25.17 (“downstream” of the resis-
tor) and the ammeter in Fig. 25.18b (“upstream” of the resistor)
both read ❙

(b) There is no current through the ideal voltmeter because it
has infinitely large resistance. Since the voltmeter is now part of
the circuit, there is no current at all in the circuit, and the ammeter
reads

The voltmeter measures the potential difference between
points and Since the potential difference across the
resistor is and the potential difference between the
ends and of the idealized ammeter is also zero. So is equal
to the terminal voltage of the source. As in Conceptual Exam-
ple 25.4, there is no current, so the terminal voltage equals the emf,
and the voltmeter reading is 

This example shows that ammeters and voltmeters are circuit ele-
ments, too. Moving the voltmeter from the position in Fig. 25.18a to
that in Fig. 25.18b makes large changes in the current and potential
differences in the circuit. If you want to measure the potential differ-
ence between two points in a circuit without disturbing the circuit,
use a voltmeter as in Fig. 25.17 or 25.18a, not as in Fig. 25.18b.

Vab = E = 12 V.

Vab,
Vbb¿a¿a

Va¿b¿ = IR = 0,
I = 0,b¿.b

Vbb¿

I = 0.

I = 2 A.

4-Æ

+ +b

V

a

A

b�a�

II

(a)

Va�b�

r 5 2 V, E 5 12 V

R 5 4 V

b

V

a

A

b�a�

(b)

Vbb�

r 5 2 V, E 5 12 V

R 5 4 V

25.18 Different placements of a voltmeter and an ammeter in a
complete circuit.
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Potential Changes Around a Circuit
The net change in potential energy for a charge making a round trip around a
complete circuit must be zero. Hence the net change in potential around the cir-
cuit must also be zero; in other words, the algebraic sum of the potential differ-
ences and emfs around the loop is zero. We can see this by rewriting Eq. (25.16)
in the form

A potential gain of is associated with the emf, and potential drops of and 
are associated with the internal resistance of the source and the external circuit,
respectively. Figure 25.20 is a graph showing how the potential varies as we go
around the complete circuit of Fig. 25.17. The horizontal axis doesn’t necessar-
ily represent actual distances, but rather various points in the loop. If we take
the potential to be zero at the negative terminal of the battery, then we have a
rise and a drop in the battery and an additional drop in the external
resistor, and as we finish our trip around the loop, the potential is back where it
started.

In this section we have considered only situations in which the resistances are
ohmic. If the circuit includes a nonlinear device such as a diode (see Fig. 25.10b),
Eq. (25.16) is still valid but cannot be solved algebraically because is not a
constant. In such a situation, the current can be found by using numerical tech-
niques.

Finally, we remark that Eq. (25.15) is not always an adequate representation
of the behavior of a source. The emf may not be constant, and what we have
described as an internal resistance may actually be a more complex voltage–current
relationship that doesn’t obey Ohm’s law. Nevertheless, the concept of internal
resistance frequently provides an adequate description of batteries, generators,
and other energy converters. The principal difference between a fresh flashlight
battery and an old one is not in the emf, which decreases only slightly with use,
but in the internal resistance, which may increase from less than an ohm when the
battery is fresh to as much as or more after long use. Similarly, a car bat-
tery can deliver less current to the starter motor on a cold morning than when the
battery is warm, not because the emf is appreciably less but because the internal
resistance increases with decreasing temperature.

1000 Æ

I
R

IRIrE

IRIrE

E - Ir - IR = 0

q

Example 25.7 A source with a short circuit

In the circuit of Example 25.5 we replace the resistor with a
zero-resistance conductor. What are the meter readings now?

SOLUTION

IDENTIFY and SET UP: Figure 25.19 shows the new circuit. Our
target variables are again and There is now a zero-resistance
path between points a and , through the lower loop, so the poten-
tial difference between these points must be zero.

b
Vab.I

4-Æ EXECUTE: We must have no matter what
the current. We can therefore find the current from Eq. (25.15):

EVALUATE: The current has a different value than in Example
25.5, even though the same battery is used; the current depends
on both the internal resistance and the resistance of the external
circuit.

The situation here is called a short circuit. The external-circuit
resistance is zero, because terminals of the battery are connected
directly to each other. The short-circuit current is equal to the emf

divided by the internal resistance . Warning: Short circuits can
be dangerous! An automobile battery or a household power line
has very small internal resistance (much less than in these exam-
ples), and the short-circuit current can be great enough to melt a
small wire or cause a storage battery to explode.

rE

r

I =
E

r
=

12 V

2 Æ
= 6 A

Vab = E - Ir = 0

I
Vab = IR = I102 = 0,

25.19 Our sketch for this problem.
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+

25.20 Potential rises and drops in a
circuit.



25.5 Energy and Power in Electric Circuits
Let’s now look at some energy and power relationships in electric circuits. The
box in Fig. 25.21 represents a circuit element with potential difference

between its terminals and current passing through it in the direc-
tion from toward . This element might be a resistor, a battery, or something
else; the details don’t matter. As charge passes through the circuit element, the
electric field does work on the charge. In a source of emf, additional work is done
by the force that we mentioned in Section 25.4.

As an amount of charge passes through the circuit element, there is a change
in potential energy equal to For example, if and is
positive, potential energy decreases as the charge “falls” from potential to
lower potential The moving charges don’t gain kinetic energy, because the
current (the rate of charge flow) out of the circuit element must be the same as the
current into the element. Instead, the quantity represents energy transferred
into the circuit element. This situation occurs in the coils of a toaster or electric
oven, in which electrical energy is converted to thermal energy.

If the potential at a is lower than at b, then is negative and there is a net
transfer of energy out of the circuit element. The element then acts as a source,
delivering electrical energy into the circuit to which it is attached. This is the
usual situation for a battery, which converts chemical energy into electrical
energy and delivers it to the external circuit. Thus can denote either a quan-
tity of energy delivered to a circuit element or a quantity of energy extracted from
that element.

In electric circuits we are most often interested in the rate at which energy is
either delivered to or extracted from a circuit element. If the current through the
element is , then in a time interval an amount of charge passes
through the element. The potential energy change for this amount of charge is

Dividing this expression by , we obtain the rate at which
energy is transferred either into or out of the circuit element. The time rate of
energy transfer is power, denoted by , so we write

(rate at which energy is delivered to 
(25.17)

or extracted from a circuit element)

The unit of is one volt, or one joule per coulomb, and the unit of is one
ampere, or one coulomb per second. Hence the unit of is one watt, as it
should be:

Let’s consider a few special cases.

Power Input to a Pure Resistance
If the circuit element in Fig. 25.21 is a resistor, the potential difference is

From Eq. (25.17) the electrical power delivered to the resistor by the
circuit is

(25.18)(power delivered to a resistor)P = Vab I = I 2R =
Vab

2

R

Vab = IR.

11 J>C211 C>s2 = 1 J>s = 1 W

P = Vab I
IVab

P = Vab I

P

dtVab dQ = Vab I dt.

dQ = I dtdtI

qVab

Vab

qVab

Vb.
Va

Vab = Va - Vbq 7 0qVab.
q

F
S

n

ba
IVa - Vb = Vab
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Test Your Understanding of Section 25.4 Rank the following circuits
in order from highest to lowest current. (i) a resistor connected to a 
battery that has an internal resistance of (ii) a resistor connected to
a battery that has a terminal voltage of but an unknown internal resistance;
(iii) an unknown resistor connected to a battery that has an internal resistance of

and a terminal voltage of ❙11.0 V.0.20 Æ
12.0-V

3.6 V4.0-V
1.8-Æ0.10 Æ;

1.5-V1.4-Æ

II

a b

Va Vb

Circuit
element

25.21 The power input to the circuit
element between and is 

VabI.Vb2I =P = 1Va -
ba

PhET: Battery-Resistor Circuit
PhET: Circuit Construction Kit (AC+DC)
PhET: Circuit Construction Kit (DC Only)
PhET: Ohm’s Law
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In this case the potential at (where the current enters the resistor) is always
higher than that at (where the current exits). Current enters the higher-potential
terminal of the device, and Eq. (25.18) represents the rate of transfer of electric
potential energy into the circuit element.

What becomes of this energy? The moving charges collide with atoms in the
resistor and transfer some of their energy to these atoms, increasing the internal
energy of the material. Either the temperature of the resistor increases or there is
a flow of heat out of it, or both. In any of these cases we say that energy is
dissipated in the resistor at a rate Every resistor has a power rating, the max-
imum power the device can dissipate without becoming overheated and dam-
aged. Some devices, such as electric heaters, are designed to get hot and transfer
heat to their surroundings. But if the power rating is exceeded, even such a
device may melt or even explode.

Power Output of a Source
The upper rectangle in Fig. 25.22a represents a source with emf and internal
resistance , connected by ideal (resistanceless) conductors to an external circuit
represented by the lower box. This could describe a car battery connected to one
of the car’s headlights (Fig. 25.22b). Point is at higher potential than point , so

and is positive. Note that the current is leaving the source at the
higher-potential terminal (rather than entering there). Energy is being delivered
to the external circuit, at a rate given by Eq. (25.17):

For a source that can be described by an emf and an internal resistance , we
may use Eq. (25.15):

Multiplying this equation by , we find

(25.19)

What do the terms and mean? In Section 25.4 we defined the emf as
the work per unit charge performed on the charges by the nonelectrostatic force
as the charges are pushed “uphill” from to in the source. In a time , a charge

flows through the source; the work done on it by this nonelectrostatic
force is Thus is the rate at which work is done on the circulat-
ing charges by whatever agency causes the nonelectrostatic force in the source.
This term represents the rate of conversion of nonelectrical energy to electrical
energy within the source. The term is the rate at which electrical energy is
dissipated in the internal resistance of the source. The difference is the
net electrical power output of the source—that is, the rate at which the source
delivers electrical energy to the remainder of the circuit.

Power Input to a Source
Suppose that the lower rectangle in Fig. 25.22a is itself a source, with an emf
larger than that of the upper source and with its emf opposite to that of the
upper source. Figure 25.23 shows a practical example, an automobile battery
(the upper circuit element) being charged by the car’s alternator (the lower ele-
ment). The current in the circuit is then opposite to that shown in Fig. 25.22;
the lower source is pushing current backward through the upper source.
Because of this reversal of current, instead of Eq. (25.15) we have for the upper
source

and instead of Eq. (25.19), we have

(25.20)P = VabI = EI + I 2r

Vab = E + Ir

I

EI - I 2r
I 2r

EIE dQ = EI dt.
dQ = I dt

dtab

EI 2rEI

P = Vab I = EI - I 2r

I

Vab = E - Ir

rE

P = Vab I

IVabVa 7 Vb

ba

r
E

I 2R.

b
a

+

+

+
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Headlight
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• The emf source converts nonelectrical to
 electrical energy at a rate EI.
• Its internal resistance dissipates energy at
 a rate I2r.
• The difference EI 2 I2r is its power output.

(a) Diagrammatic circuit

(b) A real circuit of the type shown in (a)
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25.22 Energy conversion in a simple
circuit.
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25.23 When two sources are connected
in a simple loop circuit, the source with the
larger emf delivers energy to the other
source.



Work is being done on, rather than by, the agent that causes the nonelectrostatic
force in the upper source. There is a conversion of electrical energy into nonelec-
trical energy in the upper source at a rate The term in Eq. (25.20) is again
the rate of dissipation of energy in the internal resistance of the upper source, and
the sum is the total electrical power input to the upper source. This is
what happens when a rechargeable battery (a storage battery) is connected to a
charger. The charger supplies electrical energy to the battery; part of it is con-
verted to chemical energy, to be reconverted later, and the remainder is dissipated
(wasted) in the battery’s internal resistance, warming the battery and causing a
heat flow out of it. If you have a power tool or laptop computer with a recharge-
able battery, you may have noticed that it gets warm while it is charging.

EI + I 2r

I 2rEI.
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Problem-Solving Strategy 25.1 Power and Energy in Circuits

IDENTIFY the relevant concepts: The ideas of electric power input
and output can be applied to any electric circuit. Many problems
will ask you to explicitly consider power or energy.

SET UP the problem using the following steps:
1. Make a drawing of the circuit.
2. Identify the circuit elements, including sources of emf and

resistors. We will introduce other circuit elements later, includ-
ing capacitors (Chapter 26) and inductors (Chapter 30).

3. Identify the target variables. Typically they will be the power
input or output for each circuit element, or the total amount of
energy put into or taken out of a circuit element in a given time.

EXECUTE the solution as follows:
1. A source of emf delivers power into a circuit when current

flows through the source in the direction from to (For
example, energy is converted from chemical energy in a bat-
tery, or from mechanical energy in a generator.) In this case
there is a positive power output to the circuit or, equivalently, a
negative power input to the source.

2. A source of emf takes power from a circuit when current
passes through the source from to (This occurs in charg-
ing a storage battery, when electrical energy is converted to
chemical energy.) In this case there is a negative power output

- .+
IE

+ .-I
IEE

to the circuit or, equivalently, a positive power input to the
source.

3. There is always a positive power input to a resistor through
which current flows, irrespective of the direction of current
flow. This process removes energy from the circuit, converting
it to heat at the rate where is the potential
difference across the resistor.

4. Just as in item 3, there always is a positive power input to the
internal resistance of a source through which current flows,
irrespective of the direction of current flow. This process like-
wise removes energy from the circuit, converting it into heat at
the rate 

5. If the power into or out of a circuit element is constant, the
energy delivered to or extracted from that element is the product
of power and elapsed time. (In Chapter 26 we will encounter sit-
uations in which the power is not constant. In such cases, calcu-
lating the total energy requires an integral over the relevant
time interval.)

EVALUATE your answer: Check your results; in particular, check
that energy is conserved. This conservation can be expressed in
either of two forms: “ ” or “the
algebraic sum of the power inputs to the circuit elements is zero.”

net power input = net power output

I 2r.

r

VVI = I 2R = V2>R,

Example 25.8 Power input and output in a complete circuit

For the circuit that we analyzed in Example 25.5, find the rates of
energy conversion (chemical to electrical) and energy dissipation
in the battery, the rate of energy dissipation in the 4- resistor, and
the battery’s net power output.

SOLUTION

IDENTIFY and SET UP: Figure 25.24 shows the circuit, gives val-
ues of quantities known from Example 25.5, and indicates how we
find the target variables. We use Eq. (25.19) to find the battery’s
net power output, the rate of chemical-to-electrical energy conver-
sion, and the rate of energy dissipation in the battery’s internal
resistance. We use Eq. (25.18) to find the power delivered to (and
dissipated in) the 4- resistor.

EXECUTE: From the first term in Eq. (25.19), the rate of energy
conversion in the battery is

EI = 112 V212 A2 = 24 W

Æ

Æ

From the second term in Eq. (25.19), the rate of dissipation of
energy in the battery is

I 2r = 12 A2212 Æ2 = 8 W

25.24 Our sketch for this problem.
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The net electrical power output of the battery is the difference
between these: From Eq. (25.18), the electrical
power input to, and the equal rate of dissipation of electrical
energy in, the 4- resistor are

I 2R = 12 A2214 Æ2 = 16 W

Va¿b¿I = 18 V212 A2 = 16 W and

Æ

EI - I 2r = 16 W.
EVALUATE: The rate at which energy is supplied to the 4-
resistor equals the rate at which energy is dissipated there.
This is also equal to the battery’s net power output: 

In summary, the rate at which the source of
emf supplies energy is , of which is dissi-
pated in the battery’s internal resistor and is dissi-
pated in the external resistor.

I 2R = 16 W
I 2r = 8 WI = 24 WE

18 V212 A2 = 16 W.
P = VabI =

I 2R
ÆVa¿b¿I

Example 25.9 Increasing the resistance

Suppose we replace the external resistor in Fig. 25.24 with an
resistor. Hiow does this affect the electrical power dissipated

in this resistor?

SOLUTION

IDENTIFY and SET UP: Our target variable is the power dissipated
in the resistor to which the battery is connected. The situation is the
same as in Example 25.8, but with a higher external resistance .

EXECUTE: According to Eq. (25.18), the power dissipated in the
resistor is You might conclude that making the resistance

twice as great as in Example 25.8 should also make the power
twice as great, or If instead you used the for-
mula you might conclude that the power should be
one-half as great as in the preceding example, or 

Which answer is correct?
In fact, both of these answers are incorrect. The first is wrong

because changing the resistance also changes the current in the
circuit (remember, a source of emf does not generate the same cur-
rent in all situations). The second answer is wrong because the
potential difference across the resistor changes when the cur-
rent changes. To get the correct answer, we first find the current
just as we did in Example 25.5:

I =
E

R + r
=

12 V

8 Æ + 2 Æ
= 1.2 A

Vab

R

8 W.
116 W2>2 =

P = V 2
ab >R,

2116 W2 = 32 W.
R

P = I 2R.

R

8-Æ
4-Æ The greater resistance causes the current to decrease. The potential

difference across the resistor is

which is greater than that with the resistor. We can then find
the power dissipated in the resistor in either of two ways:

EVALUATE: Increasing the resistance causes a reduction in the
power input to the resistor. In the expression the decrease
in current is more important than the increase in resistance; in the
expression the increase in resistance is more impor-
tant than the increase in This same principle applies to ordi-
nary light bulbs; a light bulb has a greater resistance than
does a light bulb.

Can you show that replacing the resistor with an 
resistor decreases both the rate of energy conversion (chemical to
electrical) in the battery and the rate of energy dissipation in the
battery?

8-Æ4-Æ
100-W

50-W
Vab.

P = V 2
ab >R

P = I 2R
R

P =
V 2

ab

R
=
19.6 V22

8 Æ
= 12 W

P = I 2R = 11.2 A2218 Æ2 = 12 W or

4-Æ

Vab = IR = 11.2 A218 Æ2 = 9.6 V

Example 25.10 Power in a short circuit

For the short-circuit situation of Example 25.7, find the rates of
energy conversion and energy dissipation in the battery and the net
power output of the battery.

SOLUTION

IDENTIFY and SET UP: Our target variables are again the power
inputs and outputs associated with the battery. Figure 25.25 shows

the circuit. This is the same situation as in Example 25.8, but now
the external resistance is zero.

EXECUTE: We found in Example 25.7 that the current in this situa-
tion is From Eq. (25.19), the rate of energy conversion
(chemical to electrical) in the battery is then

and the rate of dissipation of energy in the battery is

The net power output of the source is . We get this
same result from the expression , because the terminal
voltage of the source is zero.

EVALUATE: With ideal wires and an ideal ammeter, so that 
all of the converted energy from the source is dissipated within the
source. This is why a short-circuited battery is quickly ruined and
may explode.

R = 0,

Vab

P = VabI
EI - I 2r = 0

I 2r = 16 A2212 Æ2 = 72 W

EI = 112 V216 A2 = 72 W

I = 6 A.

R

25.25 Our sketch for this problem.



25.6 Theory of Metallic Conduction
We can gain additional insight into electrical conduction by looking at the micro-
scopic origin of conductivity. We’ll consider a very simple model that treats the
electrons as classical particles and ignores their quantum-mechanical behavior in
solids. Using this model, we’ll derive an expression for the resistivity of a metal.
Even though this model is not entirely correct, it will still help you to develop an
intuitive idea of the microscopic basis of conduction.

In the simplest microscopic model of conduction in a metal, each atom in the
metallic crystal gives up one or more of its outer electrons. These electrons are
then free to move through the crystal, colliding at intervals with the stationary
positive ions. The motion of the electrons is analogous to the motion of mole-
cules of a gas moving through a porous bed of sand.

If there is no electric field, the electrons move in straight lines between colli-
sions, the directions of their velocities are random, and on average they never get
anywhere (Fig. 25.26a). But if an electric field is present, the paths curve slightly
because of the acceleration caused by electric-field forces. Figure 25.26b shows a
few paths of an electron in an electric field directed from right to left. As we men-
tioned in Section 25.1, the average speed of random motion is of the order of

while the average drift speed is much slower, of the order of 
The average time between collisions is called the mean free time, denoted by 
Figure 25.27 shows a mechanical analog of this electron motion.

We would like to derive from this model an expression for the resistivity of
a material, defined by Eq. (25.5):

(25.21)

where and are the magnitudes of electric field and current density, respec-
tively. The current density is in turn given by Eq. (25.4):

(25.22)

where is the number of free electrons per unit volume, is the charge of
each, and is their average drift velocity.

We need to relate the drift velocity to the electric field The value of is
determined by a steady-state condition in which, on average, the velocity gains
of the charges due to the force of the field are just balanced by the velocity
losses due to collisions. To clarify this process, let’s imagine turning on the two
effects one at a time. Suppose that before time there is no field. The elec-
tron motion is then completely random. A typical electron has velocity at time

and the value of averaged over many electrons (that is, the initial veloc-
ity of an average electron) is zero: Then at time we turn on a
constant electric field The field exerts a force on each charge, and this
causes an acceleration in the direction of the force, given by

where is the electron mass. Every electron has this acceleration.m

aS �
F
S

m
�

qE
S

m

aS
F
S

� qE
S

E
S

.
t = 01vS02av � 0.

vS0t = 0,
vS0

t = 0

E
S

vSdE
S

.vSd

vSd

q = -en

J
S

� nqvSd

J
S

JE

r =
E

J

r

t.
10-4 m>s.106 m>s,

838 CHAPTER 25 Current, Resistance, and Electromotive Force

Test Your Understanding of Section 25.5 Rank the following circuits
in order from highest to lowest values of the net power output of the battery. (i) a

resistor connected to a battery that has an internal resistance of
(ii) a resistor connected to a battery that has a terminal voltage of

but an unknown internal resistance; (iii) an unknown resistor connected to a 
battery that has an internal resistance of and a terminal voltage of ❙11.0 V.0.20 Æ

12.0-V3.6 V
4.0-V1.8-Æ0.10 Æ;

1.5-V1.4-Æ

(a)

(b)

Net displacement

Collision
with crystal

END START

END
START E

S

E
S

E
S

Without E field:
random motion

E
S

With E field:
random motion
plus drift

S

25.26 Random motions of an electron in
a metallic crystal (a) with zero electric
field and (b) with an electric field that
causes drift. The curvatures of the paths
are greatly exaggerated.

25.27 The motion of a ball rolling down
an inclined plane and bouncing off pegs in
its path is analogous to the motion of an
electron in a metallic conductor with an
electric field present.

PhET: Conductivity
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We wait for a time the average time between collisions, and then “turn on”
the collisions. An electron that has velocity at time has a velocity at time

equal to

The velocity of an average electron at this time is the sum of the averages of
the two terms on the right. As we have pointed out, the initial velocity is zero
for an average electron, so

(25.23)

After time the tendency of the collisions to decrease the velocity of an
average electron (by means of randomizing collisions) just balances the tendency
of the field to increase this velocity. Thus the velocity of an average electron,
given by Eq. (25.23), is maintained over time and is equal to the drift velocity 

Now we substitute this equation for the drift velocity into Eq. (25.22):

Comparing this with Eq. (25.21), which we can rewrite as and substi-
tuting for an electron, we see that the resistivity is given by

(25.24)

If and are independent of then the resistivity is independent of and the
conducting material obeys Ohm’s law.

Turning the interactions on one at a time may seem artificial. But the deriva-
tion would come out the same if each electron had its own clock and the 
times were different for different electrons. If is the average time between colli-
sions, then is still the average electron drift velocity, even though the motions
of the various electrons aren’t actually correlated in the way we postulated.

What about the temperature dependence of resistivity? In a perfect crystal
with no atoms out of place, a correct quantum-mechanical analysis would let the
free electrons move through the crystal with no collisions at all. But the atoms
vibrate about their equilibrium positions. As the temperature increases, the
amplitudes of these vibrations increase, collisions become more frequent, and the
mean free time decreases. So this theory predicts that the resistivity of a metal
increases with temperature. In a superconductor, roughly speaking, there are no
inelastic collisions, is infinite, and the resistivity is zero.

In a pure semiconductor such as silicon or germanium, the number of charge
carriers per unit volume, , is not constant but increases very rapidly with
increasing temperature. This increase in far outweighs the decrease in the mean
free time, and in a semiconductor the resistivity always decreases rapidly with
increasing temperature. At low temperatures, is very small, and the resistivity
becomes so large that the material can be considered an insulator.

Electrons gain energy between collisions through the work done on them by
the electric field. During collisions they transfer some of this energy to the atoms
of the material of the conductor. This leads to an increase in the material’s internal
energy and temperature; that’s why wires carrying current get warm. If the electric
field in the material is large enough, an electron can gain enough energy between
collisions to knock off electrons that are normally bound to atoms in the material.
These can then knock off more electrons, and so on, leading to an avalanche of
current. This is the basis of dielectric breakdown in insulators (see Section 24.4).
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Example 25.11 Mean free time in copper

Calculate the mean free time between collisions in copper at room
temperature.

SOLUTION

IDENTIFY and SET UP: We can obtain an expression for mean free
time in terms of , , and by rearranging Eq. (25.24). From
Example 25.1 and Table 25.1, for copper and

In addition, and
for electrons.m = 9.11 * 10-31 kg

e = 1.60 * 10-19 Cr = 1.72 * 10-8 Æ # m.
n = 8.5 * 1028 m-3

mer,nt

EXECUTE: From Eq. (25.24), we get

EVALUATE: The mean free time is the average time between colli-
sions for a given electron. Taking the reciprocal of this time, we
find that each electron averages collisions per
second!

1>t = 4.2 * 1013

= 2.4 * 10-14 s

=
9.11 * 10-31 kg

18.5 * 1028 m-3211.60 * 10-19 C2211.72 * 10-8 Æ # m2

t =
m

ne2r

Test Your Understanding of Section 25.6 Which of the following factors
will, if increased, make it more difficult to produce a certain amount of current in a
conductor? (There may be more than one correct answer.) (i) the mass of the moving
charged particles in the conductor; (ii) the number of moving charged particles per cubic
meter; (iii) the amount of charge on each moving particle; (iv) the average time between
collisions for a typical moving charged particle. ❙
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CHAPTER 25 SUMMARY

Current and current density: Current is the amount of
charge flowing through a specified area, per unit time.
The SI unit of current is the ampere The
current through an area depends on the concentra-
tion and charge of the charge carriers, as well as on
the magnitude of their drift velocity The current
density is current per unit cross-sectional area. Current
is usually described in terms of a flow of positive
charge, even when the charges are actually negative or
of both signs. (See Example 25.1.)

vSd.
qn

AI
11 A = 1 C>s2.

(25.2)

(25.4)J
S

� nqvSd

I =
dQ

dt
= n ƒq ƒvdA

Resistivity: The resistivity of a material is the ratio of
the magnitudes of electric field and current density.
Good conductors have small resistivity; good insulators
have large resistivity. Ohm’s law, obeyed approximately
by many materials, states that is a constant independ-
ent of the value of . Resistivity usually increases with
temperature; for small temperature changes this varia-
tion is represented approximately by Eq. (25.6), where

is the temperature coefficient of resistivity.a

E
r

r (25.5)

(25.6)r1T2 = r031 + a1T - T024

r =
E

J

Resistors: The potential difference V across a sample of
material that obeys Ohm’s law is proportional to the
current through the sample. The ratio is the
resistance of the sample. The SI unit of resistance is the
ohm The resistance of a cylindrical
conductor is related to its resistivity length and
cross-sectional area (See Examples 25.2 and 25.3.)A.

L,r,
11 Æ = 1 V>A2.

V>I = RI

(25.11)

(25.10)R =
rL

A

V = IR

Circuits and emf: A complete circuit has a continuous
current-carrying path. A complete circuit carrying a
steady current must contain a source of electromotive
force (emf) The SI unit of electromotive force is the
volt (1 V). Every real source of emf has some internal
resistance r, so its terminal potential difference 
depends on current. (See Examples 25.4–25.7.)

Vab

E.

(25.15)
(source with internal resistance)
Vab = E - Ir

Energy and power in circuits: A circuit element with a
potential difference and a current puts
energy into a circuit if the current direction is from
lower to higher potential in the device, and it takes
energy out of the circuit if the current is opposite. The
power equals the product of the potential difference
and the current. A resistor always takes electrical energy
out of a circuit. (See Examples 25.8–25.10.)

P

IVa - Vb = Vab

(25.17)

(25.18)

(power into a resistor)

P = VabI = I 2R =
Vab

2

R

(general circuit element)
P = Vab I

E
S

vd
S vd

S

vd
S vd

S

vd
S vd

S

I

O
T

Metal: r increases with 
increasing T.

T0

r

r0 Slope 5 r0a

I
L

VIA

Higher
potential

Lower
potential

J
SE

S

+

Vab 5 Va�b�

b

V

a

A

b�a�

I Ir 5 2 V, E 5 12 V

R 5 4 V

II

a b

Va Vb

Circuit
element

Conduction in metals: The microscopic basis of conduction in metals is the motion of electrons that
move freely through the metallic crystal, bumping into ion cores in the crystal. In a crude classical
model of this motion, the resistivity of the material can be related to the electron mass, charge,
speed of random motion, density, and mean free time between collisions. (See Example 25.11.)

Net displacement

E
S
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A toaster using a Nichrome heating element operates on 120 V.
When it is switched on at 20°C, the heating element carries an ini-
tial current of 1.35 A. A few seconds later the current reaches the
steady value of 1.23 A. (a) What is the final temperature of the ele-
ment? The average value of the temperature coefficient of resistiv-
ity for Nichrome over the relevant temperature range is 

(b) What is the power dissipated in the heating ele-
ment initially and when the current reaches 1.23 A?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. A heating element acts as a resistor that converts electrical

energy into thermal energy. The resistivity ρ of Nichrome de-
pends on temperature, and hence so does the resistance 

of the heating element and the current that it
carries.

2. We are given V and the initial and final values of I.
Select an equation that will allow you to find the initial and

V = 120

I = V>RrL>A
R =

10-4 1C°2-1.
4.5 *

BRIDGING PROBLEM Resistivity, Temperature, and Power

final values of resistance, and an equation that relates resistance
to temperature [the target variable in part (a)].

3. The power P dissipated in the heating element depends on I and
V. Select an equation that will allow you to calculate the initial
and final values of P.

EXECUTE
4. Combine your equations from step 2 to give a relationship

between the initial and final values of I and the initial and final
temperatures (20°C and ).

5. Solve your expression from step 4 for .
6. Use your equation from step 3 to find the initial and final

powers.

EVALUATE
7. Is the final temperature greater than or less than 20°C? Does

this make sense?
8. Is the final resistance greater than or less than the initial resist-

ance? Again, does this make sense?
9. Is the final power greater than or less than the initial power?

Does this agree with your observations in step 8?

Tfinal

Tfinal

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q25.1 The definition of resistivity implies that an elec-
tric field exists inside a conductor. Yet we saw in Chapter 21 that
there can be no electric field inside a conductor. Is there a contra-
diction here? Explain.
Q25.2 A cylindrical rod has resistance R. If we triple its length and
diameter, what is its resistance, in terms of R?
Q25.3 A cylindrical rod has resistivity If we triple its length and
diameter, what is its resistivity, in terms of 
Q25.4 Two copper wires with different diameters are joined end to
end. If a current flows in the wire combination, what happens to
electrons when they move from the larger-diameter wire into the
smaller-diameter wire? Does their drift speed increase, decrease,
or stay the same? If the drift speed changes, what is the force that
causes the change? Explain your reasoning.
Q25.5 When is a 1.5-V AAA battery not actually a 1.5-V battery?
That is, when do its terminals provide a potential difference of less
than 1.5 V?
Q25.6 Can the potential difference between the terminals of a bat-
tery ever be opposite in direction to the emf? If it can, give an
example. If it cannot, explain why not.
Q25.7 A rule of thumb used to determine the internal resistance of
a source is that it is the open-circuit voltage divided by the short-
circuit current. Is this correct? Why or why not?
Q25.8 Batteries are always labeled with their emf; for instance, an
AA flashlight battery is labeled “1.5 volts.” Would it also be appro-
priate to put a label on batteries stating how much current they pro-
vide? Why or why not?

r?
r.

1r = E>J)
Q25.9 We have seen that a coulomb is an enormous amount of
charge; it is virtually impossible to place a charge of 1 C on an
object. Yet, a current of 10 A, is quite reasonable. Explain
this apparent discrepancy.
Q25.10 Electrons in an electric circuit pass through a resistor. The
wire on either side of the resistor has the same diameter. (a) How
does the drift speed of the electrons before entering the resistor
compare to the speed after leaving the resistor? Explain your rea-
soning. (b) How does the potential energy for an electron before
entering the resistor compare to the potential energy after leaving
the resistor? Explain your reasoning.
Q25.11 Current causes the temperature of a real resistor to increase.
Why? What effect does this heating have on the resistance?
Explain.
Q25.12 Which of the graphs in Fig. Q25.12 best illustrates the cur-
rent I in a real resistor as a function of the potential difference V
across it? Explain. (Hint: See Discussion Question Q25.11.)

10 C>s,

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

(a) (b) (c) (d)
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Figure Q25.12

www.masteringphysics.com


Exercises 843

Q25.13 Why does an electric light bulb nearly always burn out just
as you turn on the light, almost never while the light is shining?
Q25.14 A light bulb glows because it has resistance. The bright-
ness of a light bulb increases with the electrical power dissi-
pated in the bulb. (a) In the circuit shown in Fig. Q25.14a, the
two bulbs A and B are identical. Compared to bulb A, does bulb
B glow more brightly, just as brightly, or less brightly? Explain
your reasoning. (b) Bulb B is removed from the circuit and the
circuit is completed as shown in Fig. Q25.14b. Compared to the
brightness of bulb A in Fig. Q25.14a, does bulb A now glow
more brightly, just as brightly, or less brightly? Explain your
reasoning.

Q25.15 (See Discussion Question Q25.14.) An ideal ammeter A is
placed in a circuit with a battery and a light bulb as shown in Fig.
Q25.15a, and the ammeter reading is noted. The circuit is then
reconnected as in Fig. Q25.15b, so that the positions of the amme-
ter and light bulb are reversed. (a) How does the ammeter reading
in the situation shown in Fig. Q25.15a compare to the reading in
the situation shown in Fig. Q25.15b? Explain your reasoning. (b)
In which situation does the light bulb glow more brightly? Explain
your reasoning.

Q25.16 (See Discussion Question Q25.14.) Will a light bulb glow
more brightly when it is connected to a battery as shown in Fig.
Q25.16a, in which an ideal ammeter A is placed in the circuit, or
when it is connected as shown in Fig. 25.16b, in which an ideal
voltmeter V is placed in the circuit? Explain your reasoning.

Q25.17 The energy that can be extracted from a storage battery is
always less than the energy that goes into it while it is being charged.
Why?
Q25.18 Eight flashlight batteries in series have an emf of about 12 V,
similar to that of a car battery. Could they be used to start a car
with a dead battery? Why or why not?
Q25.19 Small aircraft often have 24-V electrical systems rather
than the 12-V systems in automobiles, even though the electrical

power requirements are roughly the same in both applications. The
explanation given by aircraft designers is that a 24-V system
weighs less than a 12-V system because thinner wires can be used.
Explain why this is so.
Q25.20 Long-distance, electric-power, transmission lines always
operate at very high voltage, sometimes as much as 750 kV. What
are the advantages of such high voltages? What are the disadvan-
tages?
Q25.21 Ordinary household electric lines in North America usu-
ally operate at 120 V. Why is this a desirable voltage, rather than a
value considerably larger or smaller? On the other hand, automo-
biles usually have 12-V electrical systems. Why is this a desirable
voltage?
Q25.22 A fuse is a device designed to break a circuit, usually by
melting when the current exceeds a certain value. What character-
istics should the material of the fuse have?
Q25.23 High-voltage power supplies are sometimes designed inten-
tionally to have rather large internal resistance as a safety precaution.
Why is such a power supply with a large internal resistance safer
than a supply with the same voltage but lower internal resistance?
Q25.24 The text states that good thermal conductors are also good
electrical conductors. If so, why don’t the cords used to connect
toasters, irons, and similar heat-producing appliances get hot by
conduction of heat from the heating element?

EXERCISES
Section 25.1 Current
25.1 . Lightning Strikes. During lightning strikes from a cloud
to the ground, currents as high as 25,000 A can occur and last for
about How much charge is transferred from the cloud to the
earth during such a strike?
25.2 . A silver wire 2.6 mm in diameter transfers a charge of 420 C
in 80 min. Silver contains free electrons per cubic meter.
(a) What is the current in the wire? (b) What is the magnitude of
the drift velocity of the electrons in the wire?
25.3 . A 5.00-A current runs through a 12-gauge copper wire
(diameter 2.05 mm) and through a light bulb. Copper has 

free electrons per cubic meter. (a) How many electrons pass
through the light bulb each second? (b) What is the current density
in the wire? (c) At what speed does a typical electron pass by any
given point in the wire? (d) If you were to use wire of twice the
diameter, which of the above answers would change? Would they
increase or decrease?
25.4 . An 18-gauge copper wire (diameter 1.02 mm) carries a
current with a current density of The density of
free electrons for copper is electrons per cubic meter.
Calculate (a) the current in the wire and (b) the drift velocity of
electrons in the wire.
25.5 .. Copper has free electrons per cubic meter. A
71.0-cm length of 12-gauge copper wire that is 2.05 mm in diame-
ter carries 4.85 A of current. (a) How much time does it take for an
electron to travel the length of the wire? (b) Repeat part (a) for 
6-gauge copper wire (diameter 4.12 mm) of the same length that
carries the same current. (c) Generally speaking, how does changing
the diameter of a wire that carries a given amount of current affect
the drift velocity of the electrons in the wire?
25.6 . Consider the 18-gauge wire in Example 25.1. How many
atoms are in of copper? With the density of free electrons
given in the example, how many free electrons are there per copper
atom?

1.00 m3

8.5 * 1028

8.5 * 1028
1.50 * 106 A>m2.

1028
8.5 *

5.8 * 1028

40 ms .

+ +

Bulb A Bulb B Bulb A

(a) (b)E E

Figure Q25.14

+ +

Light bulb

(a) (b)

AA
Light bulb

E E

Figure Q25.15

+ +

Light bulb

(a) (b)

VA
Light bulb

E E

Figure Q25.16
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25.7 . CALC The current in a wire varies with time according to the
relationship (a) How many coulombs
of charge pass a cross section of the wire in the time interval
between and (b) What constant current would
transport the same charge in the same time interval?
25.8 . Current passes through a solution of sodium chloride. In

ions arrive at the negative electrode and
ions arrive at the positive electrode. (a) What is

the current passing between the electrodes? (b) What is the direc-
tion of the current?
25.9 . BIO Transmission of Nerve Impulses. Nerve cells
transmit electric signals through their long tubular axons. These
signals propagate due to a sudden rush of ions, each with
charge into the axon. Measurements have revealed that typi-
cally about ions enter each meter of the axon dur-
ing a time of 10 ms. What is the current during this inflow of charge
in a meter of axon?

Section 25.2 Resistivity and Section 25.3 Resistance
25.10 . (a) At room temperature what is the strength of the elec-
tric field in a 12-gauge copper wire (diameter 2.05 mm) that is
needed to cause a 2.75-A current to flow? (b) What field would be
needed if the wire were made of silver instead?
25.11 .. A 1.50-m cylindrical rod of diameter 0.500 cm is con-
nected to a power supply that maintains a constant potential differ-
ence of 15.0 V across its ends, while an ammeter measures the
current through it. You observe that at room temperature 20.0°C
the ammeter reads 18.5 A, while at 92.0°C it reads 17.2 A. You can
ignore any thermal expansion of the rod. Find (a) the resistivity at

and (b) the temperature coefficient of resistivity at for
the material of the rod.
25.12 . A copper wire has a square cross section 2.3 mm on a
side. The wire is 4.0 m long and carries a current of 3.6 A. The
density of free electrons is Find the magnitudes of
(a) the current density in the wire and (b) the electric field in the
wire. (c) How much time is required for an electron to travel the
length of the wire?
25.13 . A 14-gauge copper wire of diameter 1.628 mm carries a
current of 12.5 mA. (a) What is the potential difference across a
2.00-m length of the wire? (b) What would the potential difference
in part (a) be if the wire were silver instead of copper, but all else
were the same?
25.14 .. A wire 6.50 m long with diameter of 2.05 mm has a resist-
ance of 0.0290 What material is the wire most likely made of?
25.15 .. A cylindrical tungsten filament 15.0 cm long with a
diameter of 1.00 mm is to be used in a machine for which the tem-
perature will range from room temperature 20°C up to 120°C. It
will carry a current of 12.5 A at all temperatures (consult Tables
25.1 and 25.2). (a) What will be the maximum electric field in this
filament, and (b) what will be its resistance with that field? 
(c) What will be the maximum potential drop over the full length
of the filament?
25.16 .. A ductile metal wire has resistance R. What will be the
resistance of this wire in terms of R if it is stretched to three times
its original length, assuming that the density and resistivity of the
material do not change when the wire is stretched? (Hint: The
amount of metal does not change, so stretching out the wire will
affect its cross-sectional area.)
25.17 . In household wiring, copper wire 2.05 mm in diameter is
often used. Find the resistance of a 24.0-m length of this wire.
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t = 8.0 s?t = 0

I = 55 A - 10.65 A>s22t 2.
25.18 .. What diameter must a copper wire have if its resistance
is to be the same as that of an equal length of aluminum wire with
diameter 3.26 mm?
25.19 . You need to produce a set of cylindrical copper wires
3.50 m long that will have a resistance of each. What will
be the mass of each of these wires?
25.20 . A tightly coiled spring having 75 coils, each 3.50 cm in
diameter, is made of insulated metal wire 3.25 mm in diameter. An
ohmmeter connected across its opposite ends reads What
is the resistivity of the metal?
25.21 . An aluminum cube has sides of length 1.80 m. What is
the resistance between two opposite faces of the cube?
25.22 . You apply a potential difference of 4.50 V between the
ends of a wire that is 2.50 m in length and 0.654 mm in radius. The
resulting current through the wire is 17.6 A. What is the resistivity
of the wire?
25.23 . A current-carrying gold wire has diameter 0.84 mm. The
electric field in the wire is What are (a) the current car-
ried by the wire; (b) the potential difference between two points in
the wire 6.4 m apart; (c) the resistance of a 6.4-m length of this
wire?
25.24 . A hollow aluminum cylinder is 2.50 m long and has an
inner radius of 3.20 cm and an outer radius of 4.60 cm. Treat each
surface (inner, outer, and the two end faces) as an equipotential
surface. At room temperature, what will an ohmmeter read if it is
connected between (a) the opposite faces and (b) the inner and
outer surfaces?
25.25 . (a) What is the resistance of a Nichrome wire at 0.0°C if
its resistance is at 11.5°C? (b) What is the resistance of a
carbon rod at 25.8°C if its resistance is at 0.0°C?
25.26 . A carbon resistor is to be used as a thermometer. On a
winter day when the temperature is 4.0°C, the resistance of the car-
bon resistor is What is the temperature on a spring day
when the resistance is (Take the reference temperature

to be 4.0°C.)
25.27 . A strand of wire has resistance Find the net
resistance of 120 such strands if they are (a) placed side by side to
form a cable of the same length as a single strand, and (b) con-
nected end to end to form a wire 120 times as long as a single
strand.

Section 25.4 Electromotive Force and Circuits
25.28 . Consider the circuit
shown in Fig. E25.28. The termi-
nal voltage of the 24.0-V battery
is 21.2 V. What are (a) the inter-
nal resistance r of the battery and
(b) the resistance R of the circuit
resistor?
25.29 . A copper transmission
cable 100 km long and 10.0 cm in diameter carries a current of 125 A.
(a) What is the potential drop across the cable? (b) How much
electrical energy is dissipated as
thermal energy every hour?
25.30 . An idealized ammeter is
connected to a battery as shown in
Fig. E25.30. Find (a) the reading of
the ammeter, (b) the current through
the 4.00- resistor, (c) the terminal
voltage of the battery.
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25.31 . An ideal voltmeter V is con-
nected to a 2.0- resistor and a battery
with emf 5.0 V and internal resistance

as shown in Fig. E25.31. (a) What
is the current in the 2.0- resistor? 
(b) What is the terminal voltage of the
battery? (c) What is the reading on the
voltmeter? Explain your answers.
25.32 . The circuit shown in
Fig. E25.32 contains two bat-
teries, each with an emf and
an internal resistance, and two
resistors. Find (a) the current
in the circuit (magnitude and
direction); (b) the terminal
voltage of the 16.0-V bat-
tery; (c) the potential differ-
ence of point a with respect to point c. (d) Using Fig. 25.20 as a
model, graph the potential rises and drops in this circuit.
25.33 . When switch S in Fig. E25.33
is open, the voltmeter V of the battery
reads 3.08 V. When the switch is closed,
the voltmeter reading drops to 2.97 V,
and the ammeter A reads 1.65 A. Find
the emf, the internal resistance of the
battery, and the circuit resistance R.
Assume that the two meters are ideal,
so they don’t affect the circuit.
25.34 . In the circuit of Fig. E25.32,
the 5.0- resistor is removed and replaced by a resistor of
unknown resistance R. When this is done, an ideal voltmeter con-
nected across the points b and c reads 1.9 V. Find (a) the current in
the circuit and (b) the resistance R. (c) Graph the potential rises
and drops in this circuit (see Fig. 25.20).
25.35 . In the circuit shown in Fig. E25.32, the 16.0-V battery is
removed and reinserted with the opposite polarity, so that its nega-
tive terminal is now next to point a. Find (a) the current in the cir-
cuit (magnitude and direction); (b) the terminal voltage of the
16.0-V battery; (c) the potential difference of point a with
respect to point c. (d) Graph the potential rises and drops in this
circuit (see Fig. 25.20).
25.36 . The following measurements were made on a Thyrite
resistor:

0.50 1.00 2.00 4.00

2.55 3.11 3.77 4.58

(a) Graph as a function of I. (b) Does Thyrite obey Ohm’s law?
How can you tell? (c) Graph the resistance as a function
of I.
25.37 . The following measurements of current and potential dif-
ference were made on a resistor constructed of Nichrome wire: 

0.50 1.00 2.00 4.00

1.94 3.88 7.76 15.52

(a) Graph as a function of I. (b) Does Nichrome obey Ohm’s
law? How can you tell? (c) What is the resistance of the resistor in
ohms?
25.38 .. The circuit shown in Fig. E25.38 contains two batteries,
each with an emf and an internal resistance, and two resistors. Find

Vab

Vab 1V2

I 1A2

R = Vab>I
Vab

Vab 1V2

I 1A2

Vac

Vba

Æ

Vac

Vab

Æ
0.5 Æ

Æ
(a) the current in the circuit (magnitude and direction) and (b) the
terminal voltage Vab of the 16.0-V battery.

Section 25.5 Energy and Power in Electric Circuits
25.39 . Light Bulbs. The power rating of a light bulb (such as a
100-W bulb) is the power it dissipates when connected across a
120-V potential difference. What is the resistance of (a) a 100-W
bulb and (b) a 60-W bulb? (c) How much current does each bulb
draw in normal use?
25.40 . If a “75-W” bulb (see Problem 25.39) is connected across
a 220-V potential difference (as is used in Europe), how much
power does it dissipate?
25.41 . European Light Bulb. In Europe the standard voltage
in homes is 220 V instead of the 120 V used in the United States.
Therefore a “100-W” European bulb would be intended for use
with a 220-V potential difference (see Problem 25.40). (a) If you
bring a “100-W” European bulb home to the United States, what
should be its U.S. power rating? (b) How much current will the
100-W European bulb draw in normal use in the United States?
25.42 . A battery-powered global positioning system (GPS)
receiver operating on 9.0 V draws a current of 0.13 A. How much
electrical energy does it consume during 
25.43 . Consider a resistor with length L, uniform cross-sectional
area A, and uniform resistivity that is carrying a current with uni-
form current density J. Use Eq. (25.18) to find the electrical power
dissipated per unit volume, p. Express your result in terms of (a) E
and J; (b) J and ; (c) E and
25.44 . BIO Electric Eels. Electric eels generate electric pulses
along their skin that can be used to stun an enemy when they come
into contact with it. Tests have shown that these pulses can be up to
500 V and produce currents of 80 mA (or even larger). A typical
pulse lasts for 10 ms. What power and how much energy are deliv-
ered to the unfortunate enemy with a single pulse, assuming a steady
current?
25.45 . BIO Treatment of Heart Failure. A heart defibrillator
is used to enable the heart to start beating if it has stopped. This is
done by passing a large current of 12 A through the body at 25 V
for a very short time, usually about 3.0 ms. (a) What power does
the defibrillator deliver to the body, and (b) how much energy is
transferred?
25.46 . Consider the circuit of Fig. E25.32. (a) What is the total
rate at which electrical energy is dissipated in the 5.0- and 
9.0- resistors? (b) What is the power output of the 16.0-V bat-
tery? (c) At what rate is electrical energy being converted to other
forms in the 8.0-V battery? (d) Show that the power output of the
16.0-V battery equals the overall rate of dissipation of electrical
energy in the rest of the circuit.
25.47 .. The capacity of a storage battery, such as those used in
automobile electrical systems, is rated in ampere-hours A

battery can supply a current of 50 A for 1.0 h, or 25 A for
2.0 h, and so on. (a) What total energy can be supplied by a 12-V,

battery if its internal resistance is negligible? (b) What60-A # h
50-A # h

1A # h2.
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volume (in liters) of gasoline has a total heat of combustion equal
to the energy obtained in part (a)? (See Section 17.6; the density of
gasoline is ) (c) If a generator with an average electri-
cal power output of 0.45 kW is connected to the battery, how much
time will be required for it to charge the battery fully?
25.48 . In the circuit analyzed in Example 25.8 the 4.0- resistor
is replaced by a 8.0- resistor, as in Example 25.9. (a) Calculate the
rate of conversion of chemical energy to electrical energy in the bat-
tery. How does your answer compare to the result calculated in
Example 25.8? (b) Calculate the rate of electrical energy dissipation
in the internal resistance of the battery. How does your answer com-
pare to the result calculated in Example 25.8? (c) Use the results of
parts (a) and (b) to calculate the net power output of the battery.
How does your result compare to the electrical power dissipated in
the 8.0- resistor as calculated for this circuit in Example 25.9?
25.49 .. A 25.0- bulb is connected across the terminals of a
12.0-V battery having of internal resistance. What percent-
age of the power of the battery is dissipated across the internal
resistance and hence is not available to the bulb?
25.50 . An idealized voltmeter is connected across the terminals
of a 15.0-V battery, and a 75.0- appliance is also connected
across its terminals. If the voltmeter reads 11.3 V: (a) how much
power is being dissipated by the appliance, and (b) what is the
internal resistance of the battery?
25.51 . In the circuit in Fig. E25.51,
find (a) the rate of conversion of internal
(chemical) energy to electrical energy
within the battery; (b) the rate of dissipa-
tion of electrical energy in the battery;
(c) the rate of dissipation of electrical
energy in the external resistor.
25.52 .. A typical small flashlight
contains two batteries, each having an emf of 1.5 V, connected in
series with a bulb having resistance (a) If the internal resist-
ance of the batteries is negligible, what power is delivered to the
bulb? (b) If the batteries last for 5.0 h, what is the total energy deliv-
ered to the bulb? (c) The resistance of real batteries increases as
they run down. If the initial internal resistance is negligible, what
is the combined internal resistance of both batteries when the power
to the bulb has decreased to half its initial value? (Assume that the
resistance of the bulb is constant. Actually, it will change some-
what when the current through the filament changes, because this
changes the temperature of the filament and hence the resistivity of
the filament wire.)
25.53 . A “540-W” electric heater is designed to operate from 
120-V lines. (a) What is its resistance? (b) What current does it draw?
(c) If the line voltage drops to 110 V, what power does the heater
take? (Assume that the resistance is constant. Actually, it will change
because of the change in temperature.) (d) The heater coils are
metallic, so that the resistance of the heater decreases with decreas-
ing temperature. If the change of resistance with temperature is
taken into account, will the electrical power consumed by the heater
be larger or smaller than what you calculated in part (c)? Explain.

Section 25.6 Theory of Metallic Conduction
25.54 .. Pure silicon contains approximately free
electrons per cubic meter. (a) Referring to Table 25.1, calculate the
mean free time for silicon at room temperature. (b) Your answer
in part (a) is much greater than the mean free time for copper given
in Example 25.11. Why, then, does pure silicon have such a high
resistivity compared to copper?

t
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PROBLEMS
25.55 . An electrical conductor designed to carry large currents
has a circular cross section 2.50 mm in diameter and is 14.0 m
long. The resistance between its ends is (a) What is the
resistivity of the material? (b) If the electric-field magnitude in the
conductor is what is the total current? (c) If the mate-
rial has free electrons per cubic meter, find the average
drift speed under the conditions of part (b).
25.56 .. A plastic tube 25.0 m long and 3.00 cm in diameter is
dipped into a silver solution, depositing a layer of silver 0.100 mm
thick uniformly over the outer surface of the tube. If this coated tube
is then connected across a 12.0-V battery, what will be the current?
25.57 .. On your first day at work as an electrical technician, you
are asked to determine the resistance per meter of a long piece of
wire. The company you work for is poorly equipped. You find a
battery, a voltmeter, and an ammeter, but no meter for directly
measuring resistance (an ohmmeter). You put the leads from the
voltmeter across the terminals of the battery, and the meter reads
12.6 V. You cut off a 20.0-m length of wire and connect it to the
battery, with an ammeter in series with it to measure the current in
the wire. The ammeter reads 7.00 A. You then cut off a 40.0-m
length of wire and connect it to the battery, again with the ammeter
in series to measure the current. The ammeter reads 4.20 A. Even
though the equipment you have available to you is limited, your
boss assures you of its high quality: The ammeter has very small
resistance, and the voltmeter has very large resistance. What is the
resistance of 1 meter of wire?
25.58 . A 2.0-mm length of wire is made by welding the end of a
120-cm-long silver wire to the end of an 80-cm-long copper wire.
Each piece of wire is 0.60 mm in diameter. The wire is at room
temperature, so the resistivities are as given in Table 25.1. A poten-
tial difference of 5.0 V is maintained between the ends of the 
2.0-m composite wire. (a) What is the current in the copper section?
(b) What is the current in the silver section? (c) What is the magni-
tude of in the copper? (d) What is the magnitude of in the sil-
ver? (e) What is the potential difference between the ends of the
silver section of wire?
25.59 . A 3.00-m length of copper wire at 20°C has a 1.20-m-
long section with diameter 1.60 mm and a 1.80-m-long section
with diameter 0.80 mm. There is a current of 2.5 mA in the 1.60-
mm-diameter section. (a) What is the current in the 0.80-mm-
diameter section? (b) What is the magnitude of in the
1.60-mm-diameter section? (c) What is the magnitude of in the
0.80-mm-diameter section? (d) What is the potential difference
between the ends of the 3.00-m length of wire?
25.60 . Critical Current Density in Superconductors. One
problem with some of the newer high-temperature superconduc-
tors is getting a large enough current density for practical use with-
out causing the resistance to reappear. The maximum current
density for which the material will remain a superconductor is
called the critical current density of the material. In 1987, IBM
research labs had produced thin films with critical current densities
of (a) How much current could an 18-gauge wire
(see Example 25.1 in Section 25.1) of this material carry and still
remain superconducting? (b) Researchers are trying to develop
superconductors with critical current densities of 
What diameter cylindrical wire of such a material would be needed to
carry 1000 A without losing its superconductivity?
25.61 .. CP A Nichrome heating element that has resistance
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resistance . An aluminum cup with mass 0.130 kg contains
0.200 kg of water. The heating element is placed in the water and
the electrical energy dissipated in the resistance of the heating ele-
ment all goes into the cup and water. The element itself has very
small mass. How much time does it take for the temperature of the
cup and water to rise from to ? (The change of the
resistance of the Nichrome due to its temperature change can be
neglected.)
25.62 .. A resistor with resistance R is connected to a battery that
has emf 12.0 V and internal resistance . For what two
values of R will the power dissipated in the resistor be 80.0 W?
25.63 .. CP BIO Struck by Lightning. Lightning strikes can
involve currents as high as 25,000 A that last for about If a
person is struck by a bolt of lightning with these properties, the
current will pass through his body. We shall assume that his mass
is 75 kg, that he is wet (after all, he is in a rainstorm) and therefore
has a resistance of and that his body is all water (which is
reasonable for a rough, but plausible, approximation). (a) By how
many degrees Celsius would this lightning bolt increase the tem-
perature of 75 kg of water? (b) Given that the internal body tem-
perature is about 37°C, would the person’s temperature actually
increase that much? Why not? What would happen first?
25.64 .. In the Bohr model of the hydrogen atom, the electron
makes around the nucleus. What is the average
current at a point on the orbit of the electron?
25.65 . CALC A material of resistivity is
formed into a solid, truncated cone of height h
and radii and at either end (Fig. P25.65).
(a) Calculate the resistance of the cone between
the two flat end faces. (Hint: Imagine slicing the
cone into very many thin disks, and calculate the
resistance of one such disk.) (b) Show that your
result agrees with Eq. (25.10) when 
25.66 . CALC The region between two concen-
tric conducting spheres with radii a and b is
filled with a conducting material with resistivity

(a) Show that the resistance between the spheres is given by 

(b) Derive an expression for the current density as a function of
radius, in terms of the potential difference between the spheres.
(c) Show that the result in part (a) reduces to Eq. (25.10) when the
separation between the spheres is small.
25.67 ... The temperature coefficient of resistance in Eq.
(25.12) equals the temperature coefficient of resistivity in Eq.
(25.6) only if the coefficient of thermal expansion is small. A
cylindrical column of mercury is in a vertical glass tube. At 20°C,
the length of the mercury column is 12.0 cm. The diameter of the
mercury column is 1.6 mm and doesn’t change with temperature
because glass has a small coefficient of thermal expansion. The coef-
ficient of volume expansion of the mercury is given in Table 17.2,
its resistivity at 20°C is given in Table 25.1, and its temperature
coefficient of resistivity is given in Table 25.2. (a) At 20°C, what is
the resistance between the ends of the mercury column? (b) The
mercury column is heated to 60°C. What is the change in its resis-
tivity? (c) What is the change in its length? Explain why the coeffi-
cient of volume expansion, rather than the coefficient of linear
expansion, determines the change in length. (d) What is the change
in its resistance? (Hint: Since the percentage changes in and L
are small, you may find it helpful to derive from Eq. (25.10) an
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1.2 Æ equation for in terms of and (e) What is the tempera-
ture coefficient of resistance for the mercury column, as defined
in Eq. (25.12)? How does this value compare with the temperature
coefficient of resistivity? Is the effect of the change in length
important?
25.68 . (a) What is the poten-
tial difference in the circuit
of Fig. P25.68? (b) What is the
terminal voltage of the 4.00-V
battery? (c) A battery with emf
10.30 V and internal resistance

is inserted in the cir-
cuit at d, with its negative
terminal connected to the neg-
ative terminal of the 8.00-V battery. What is the difference of poten-
tial between the terminals of the 4.00-V battery now?
25.69 . The potential difference across the terminals of a battery
is 8.40 V when there is a current of 1.50 A in the battery from the
negative to the positive terminal. When the current is 3.50 A in the
reverse direction, the potential difference becomes 10.20 V. (a) What
is the internal resistance of the battery? (b) What is the emf of the
battery?
25.70 .. BIO A person with body resistance between his hands of

accidentally grasps the terminals of a 14-kV power supply.
(a) If the internal resistance of the power supply is what
is the current through the person’s body? (b) What is the power
dissipated in his body? (c) If the power supply is to be made safe by
increasing its internal resistance, what should the internal resistance
be for the maximum current in the above situation to be 1.00 mA
or less?
25.71 . BIO The average bulk resistivity of the human body
(apart from surface resistance of the skin) is about The
conducting path between the hands can be represented approxi-
mately as a cylinder 1.6 m long and 0.10 m in diameter. The skin
resistance can be made negligible by soaking the hands in salt
water. (a) What is the resistance between the hands if the skin
resistance is negligible? (b) What potential difference between the
hands is needed for a lethal shock current of 100 mA? (Note that
your result shows that small potential differences produce danger-
ous currents when the skin is damp.) (c) With the current in part
(b), what power is dissipated in the body?
25.72 . A typical cost for electric power is per kilowatt-
hour. (a) Some people leave their porch light on all the time. What is
the yearly cost to keep a 75-W bulb burning day and night? (b) Sup-
pose your refrigerator uses 400 W of power when it’s running, and
it runs 8 hours a day. What is the yearly cost of operating your
refrigerator?
25.73 .. A 12.6-V car battery with negligible internal resistance
is connected to a series combination of a 3.2- resistor that obeys
Ohm’s law and a thermistor that does not obey Ohm’s law but
instead has a current–voltage relationship with

and What is the current through the 3.2-
resistor?
25.74 .. A cylindrical copper cable 1.50 km long is connected
across a 220.0-V potential difference. (a) What should be its diam-
eter so that it produces heat at a rate of 75.0 W? (b) What is the
electric field inside the cable under these conditions?
25.75 .. A Nonideal Ammeter. Unlike the idealized amme-
ter described in Section 25.4, any real ammeter has a nonzero
resistance. (a) An ammeter with resistance is connected in
series with a resistor R and a battery of emf and internal resist-
ance r. The current measured by the ammeter is Find the currentIA.
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through the circuit if the ammeter is removed so that the battery
and the resistor form a complete circuit. Express your answer in
terms of r, and R. The more “ideal” the ammeter, the
smaller the difference between this current and the current 
(b) If and find the maxi-
mum value of the ammeter resistance so that is within 1.0%
of the current in the circuit when the ammeter is absent. (c) Explain
why your answer in part (b) represents a maximum value.
25.76 . CALC A 1.50-m cylinder of radius 1.10 cm is made of a
complicated mixture of materials. Its resistivity depends on the
distance x from the left end and obeys the formula 

where a and b are constants. At the left end, the resistiv-
ity is while at the right end it is 

(a) What is the resistance of this rod? (b) What is the
electric field at its midpoint if it carries a 1.75-A current? (c) If we cut
the rod into two 75.0-cm halves, what is the resistance of each half?
25.77 .. According to the U.S. National Electrical Code, copper
wire used for interior wiring of houses, hotels, office buildings,
and industrial plants is permitted to carry no more than a specified
maximum amount of current. The table below shows the maxi-
mum current for several common sizes of wire with varnished
cambric insulation. The “wire gauge” is a standard used to
describe the diameter of wires. Note that the larger the diameter of
the wire, the smaller the wire gauge. 

Wire gauge Diameter (cm)
14 0.163 18
12 0.205 25
10 0.259 30
8 0.326 40
6 0.412 60
5 0.462 65
4 0.519 85

(a) What considerations determine the maximum current-carrying
capacity of household wiring? (b) A total of 4200 W of power is to
be supplied through the wires of a house to the household electri-
cal appliances. If the potential difference across the group of appli-
ances is 120 V, determine the gauge of the thinnest permissible
wire that can be used. (c) Suppose the wire used in this house is of
the gauge found in part (b) and has total length 42.0 m. At what
rate is energy dissipated in the wires? (d) The house is built in a
community where the consumer cost of electric energy is $0.11 per
kilowatt-hour. If the house were built with wire of the next larger
diameter than that found in part (b), what would be the savings in
electricity costs in one year? Assume that the appliances are kept
on for an average of 12 hours a day.
25.78 .. Compact Fluorescent Bulbs. Compact fluorescent
bulbs are much more efficient at producing light than are ordinary
incandescent bulbs. They initially cost much more, but they last far
longer and use much less electricity. According to one study of
these bulbs, a compact bulb that produces as much light as a 100-W
incandescent bulb uses only 23 W of power. The compact bulb
lasts 10,000 hours, on the average, and costs $11.00, whereas the
incandescent bulb costs only $0.75, but lasts just 750 hours. The
study assumed that electricity costs $0.080 per kilowatt-hour and that
the bulbs are on for 4.0 h per day. (a) What is the total cost (includ-
ing the price of the bulbs) to run each bulb for 3.0 years? (b) How
much do you save over 3.0 years if you use a compact fluorescent
bulb instead of an incandescent bulb? (c) What is the resistance of
a “100-W” fluorescent bulb? (Remember, it actually uses only 23 W
of power and operates across 120 V.)

Imax 1A2

Imax

10-8 Æ # m.
8.50 *2.25 * 10-8 Æ # m,

a + bx2,
r1x2 =

IARA

r = 0.45 Æ,E = 7.50 V,R = 3.80 Æ,
IA.

RA,IA,

25.79 . In the circuit of Fig.
P25.79, find (a) the current
through the 8.0- resistor and
(b) the total rate of dissipation
of electrical energy in the 8.0-
resistor and in the internal
resistance of the batteries. (c) In
one of the batteries, chemical
energy is being converted into
electrical energy. In which one is this happening, and at what rate?
(d) In one of the batteries, electrical energy is being converted into
chemical energy. In which one is this happening, and at what rate?
(e) Show that the overall rate of production of electrical energy
equals the overall rate of consumption of electrical energy in the
circuit.
25.80 . A lightning bolt strikes one end of a steel lightning rod,
producing a 15,000-A current burst that lasts for The rod
is 2.0 m long and 1.8 cm in diameter, and its other end is con-
nected to the ground by 35 m of 8.0-mm-diameter copper wire.
(a) Find the potential difference between the top of the steel rod
and the lower end of the copper wire during the current burst. 
(b) Find the total energy deposited in the rod and wire by the cur-
rent burst.
25.81 . A 12.0-V battery has an internal resistance of and
a capacity of (see Exercise 25.47). The battery is
charged by passing a 10-A current through it for 5.0 h. (a) What is
the terminal voltage during charging? (b) What total electrical
energy is supplied to the battery during charging? (c) What electri-
cal energy is dissipated in the internal resistance during charging?
(d) The battery is now completely discharged through a resistor,
again with a constant current of 10 A. What is the external circuit
resistance? (e) What total electrical energy is supplied to the exter-
nal resistor? (f) What total electrical energy is dissipated in the
internal resistance? (g) Why are the answers to parts (b) and (e) not
the same?
25.82 . Repeat Problem 25.81 with charge and discharge currents
of 30 A. The charging and discharging times will now be 1.7 h
rather than 5.0 h. What differences in performance do you see?
25.83 .. CP Consider the cir-
cuit shown in Fig. P25.83. The
emf source has negligible inter-
nal resistance. The resistors
have resistances 
and . The capacitor
has capacitance .
When the capacitor is fully
charged, the magnitude of the charge on its plates is .
Calculate the emf .
25.84 .. CP Consider the circuit shown in Fig. P25.84. The battery
has emf 60.0 V and negligible internal resistance. ,

, and . After the capacitors have attained
their final charges, the charge on is . (a) What is
the final charge on ? (b) What is the resistance ?R1C2

18.0 mCQ1 =C1

C2 = 6.00 mFC1 = 3.00 mF
2.00 ÆR2 =

E

36.0 mCQ =

C = 9.00 mF
R2 = 4.00 Æ

R1 = 6.00 Æ

50.0 A # h
0.24 Æ

65 ms.

Æ

Æ +

+

E2 5 8.0  V

E1 5 12.0  V r1 5 1.0 V

r2 5 1.0 V

R 5 8.0 V

Figure P25.79

+

R2

R1 CE

Figure P25.83

+

R1

R2 C2E C1

Figure P25.84
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CHALLENGE PROBLEMS
25.85 ... The Tolman-Stewart ex-
periment in 1916 demonstrated
that the free charges in a metal
have negative charge and pro-
vided a quantitative measurement
of their charge-to-mass ratio,

The experiment consisted of abruptly stopping a rapidly
rotating spool of wire and measuring the potential difference that
this produced between the ends of the wire. In a simplified model
of this experiment, consider a metal rod of length L that is given a
uniform acceleration to the right. Initially the free charges in the
metal lag behind the rod’s motion, thus setting up an electric field

in the rod. In the steady state this field exerts a force on the free
charges that makes them accelerate along with the rod. (a) Apply

to the free charges to obtain an expression for in
terms of the magnitudes of the induced electric field and the
acceleration (b) If all the free charges in the metal rod have the
same acceleration, the electric field is the same at all points in
the rod. Use this fact to rewrite the expression for in terms of
the potential between the ends of the rod (Fig. P25.85). (c) If
the free charges have negative charge, which end of the rod, b or c,
is at higher potential? (d) If the rod is 0.50 m long and the free

Vbc

ƒq ƒ >m
E
S

aS.
E
S

ƒq ƒ >mgF
S

� maS

E
S

aS

ƒq ƒ >m.

charges are electrons (charge mass
what magnitude of acceleration is required to

produce a potential difference of 1.0 mV between the ends of the
rod? (e) Discuss why the actual experiment used a rotating spool
of thin wire rather than a moving bar as in our simplified analysis.
25.86 ... CALC A source with emf and internal resistance is
connected to an external circuit. (a) Show that the power output of
the source is maximum when the current in the circuit is one-half
the short-circuit current of the source. (b) If the external circuit
consists of a resistance R, show that the power output is maximum
when and that the maximum power is 
25.87 ... CALC The resistivity of a semiconductor can be modi-
fied by adding different amounts of impurities. A rod of semicon-
ducting material of length L and cross-sectional area A lies along
the x-axis between and The material obeys Ohm’s
law, and its resistivity varies along the rod according to 

The end of the rod at is at a potential 
greater than the end at (a) Find the total resistance of the
rod and the current in the rod. (b) Find the electric-field magnitude

in the rod as a function of x. (c) Find the electric potential
in the rod as a function of x. (d) Graph the functions

and for values of x between and x = L.x = 0V1x2r1x2, E1x2,
V1x2
E1x2

x = L.
V0x = 0r0 exp1-x>L2.

r1x2 =
x = L.x = 0

E
2>4r.R = r

rE

9.11 * 10-31 kg2,
q = -1.60 * 10-19 C,

L
b

a

c

Figure P25.85

Chapter Opening Question ?
The current out equals the current in. In other words, charge must
enter the bulb at the same rate as it exits the bulb. It is not “used
up” or consumed as it flows through the bulb.

Test Your Understanding Questions
25.1 Answer: (v) Doubling the diameter increases the cross-
sectional area by a factor of 4. Hence the current-density magni-
tude is reduced to of the value in Example 25.1, and the
magnitude of the drift velocity is reduced by the same
factor. The new magnitude is
This behavior is the same as that of an incompressible fluid, which
slows down when it moves from a narrow pipe to a broader one
(see Section 14.4).
25.2 Answer: (ii) Figure 25.6b shows that the resistivity of a
semiconductor increases as the temperature decreases. From Eq.
(25.5), the magnitude of the current density is so the cur-
rent density decreases as the temperature drops and the resistivity
increases.
25.3 Answer: (iii) Solving Eq. (25.11) for the current shows that

If the resistance of the wire remained the same, dou-
bling the voltage would make the current double as well. How-
ever, we saw in Example 25.3 that the resistance is not constant:
As the current increases and the temperature increases, increases
as well. Thus doubling the voltage produces a current that is less
than double the original current. An ohmic conductor is one for
which has the same value no matter what the voltage, so
the wire is nonohmic. (In many practical problems the temperature

R = V>I

R

IV
RI = V>R.

J = E>r,

r

vd = 10.15 mm>s2>4 = 0.038 mm>s.
vd = J>n ƒq ƒ

1
4J = I>A

A

change of the wire is so small that it can be ignored, so we can
safely regard the wire as being ohmic. We do so in almost all
examples in this book.)
25.4 Answer: (iii), (ii), (i) For circuit (i), we find the current from
Eq. (25.16): 
For circuit (ii), we note that the terminal voltage 
equals the voltage across the resistor: so

For circuit (iii), we use
Eq. (25.15) for the terminal voltage: so 

25.5 Answer: (iii), (ii), (i) These are the same circuits that we ana-
lyzed in Test Your Understanding of Section 25.4. In each case the
net power output of the battery is where is the bat-
tery terminal voltage. For circuit (i), we found that 
so so 

For circuit (ii), we have 
and found that so For
circuit (iii), we have and found that so

25.6 Answer: (i) The difficulty of producing a certain amount of
current increases as the resistivity increases. From Eq. (25.24),

so increasing the mass will increase the resistivity.
That’s because a more massive charged particle will respond more
sluggishly to an applied electric field and hence drift more slowly.
To produce the same current, a greater electric field would be
needed. (Increasing or would decrease the resistivity and
make it easier to produce a given current.)

Bridging Problem
Answers: (a) 237°C (b) 162 W initially, 148 W at 1.23 A

tn, e,

mr = m>ne2t,
r

P = 111.0 V215.0 A2 = 55 A.
I = 5.0 A,Vab = 11.0 V

P = 13.6 V212.0 A2 = 7.2 W.I = 2.0 A,
Vab =  3.6 V11.4 V211.0 A2 = 1.4 W.

P =Vab = E - Ir = 1.5 V - 11.0 A210.10 Æ2 = 1.4 V,
I = 1.0 A,

VabP = Vab I,

1E - Vab2>r = 112.0 V - 11.0 V2>10.20 Æ2 = 5.0 A.
I =Vab = E - Ir,

I = Vab>R = 13.6 V2>11.8 Æ2 =  2.0 A.
Vab = IR,1.8-ÆIR
vab = 3.6 V

1.0 A.I = E>1R + r2 = 11.5 V2>11.4 Æ + 0.10 Æ2 =

Answers
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26
LEARNING GOALS

By studying this chapter, you will

learn:

• How to analyze circuits with multiple

resistors in series or parallel.

• Rules that you can apply to any 

circuit with more than one loop.

• How to use an ammeter, voltmeter,

ohmmeter, or potentiometer in a 

circuit.

• How to analyze circuits that include

both a resistor and a capacitor.

• How electric power is distributed in

the home.

DIRECT-CURRENT
CIRCUITS

If you look inside your TV, your computer, or under the hood of a car, you will
find circuits of much greater complexity than the simple circuits we studied in
Chapter 25. Whether connected by wires or integrated in a semiconductor chip,

these circuits often include several sources, resistors, and other circuit elements
interconnected in a network.

In this chapter we study general methods for analyzing such networks, including
how to find voltages and currents of circuit elements. We’ll learn how to determine
the equivalent resistance for several resistors connected in series or in parallel. For
more general networks we need two rules called Kirchhoff’s rules. One is based on
the principle of conservation of charge applied to a junction; the other is derived
from energy conservation for a charge moving around a closed loop. We’ll discuss
instruments for measuring various electrical quantities. We’ll also look at a circuit
containing resistance and capacitance, in which the current varies with time.

Our principal concern in this chapter is with direct-current (dc) circuits, in
which the direction of the current does not change with time. Flashlights and auto-
mobile wiring systems are examples of direct-current circuits. Household electri-
cal power is supplied in the form of alternating current (ac), in which the current
oscillates back and forth. The same principles for analyzing networks apply to
both kinds of circuits, and we conclude this chapter with a look at household
wiring systems. We’ll discuss alternating-current circuits in detail in Chapter 31.

26.1 Resistors in Series and Parallel
Resistors turn up in all kinds of circuits, ranging from hair dryers and space
heaters to circuits that limit or divide current or reduce or divide a voltage. Such
circuits often contain several resistors, so it’s appropriate to consider combinations
of resistors. A simple example is a string of light bulbs used for holiday decorations;

? In a complex circuit like the one on this circuit board, is it possible to connect
several resistors with different resistances so that they all have the same
potential difference? If so, will the current be the same through all of the 
resistors?

ActivPhysics 12.1: DC Series Circuits 
(Qualitative)
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each bulb acts as a resistor, and from a circuit-analysis perspective the string of
bulbs is simply a combination of resistors.

Suppose we have three resistors with resistances and Figure 26.1
shows four different ways in which they might be connected between points a
and b. When several circuit elements such as resistors, batteries, and motors
are connected in sequence as in Fig. 26.1a, with only a single current path
between the points, we say that they are connected in series. We studied
capacitors in series in Section 24.2; we found that, because of conservation of
charge, capacitors in series all have the same charge if they are initially
uncharged. In circuits we’re often more interested in the current, which is
charge flow per unit time.

The resistors in Fig. 26.1b are said to be connected in parallel between points
a and b. Each resistor provides an alternative path between the points. For circuit
elements that are connected in parallel, the potential difference is the same across
each element. We studied capacitors in parallel in Section 24.2.

In Fig. 26.1c, resistors and are in parallel, and this combination is in
series with In Fig. 26.1d, and are in series, and this combination is in
parallel with 

For any combination of resistors we can always find a single resistor that
could replace the combination and result in the same total current and potential
difference. For example, a string of holiday light bulbs could be replaced by a
single, appropriately chosen light bulb that would draw the same current and
have the same potential difference between its terminals as the original string of
bulbs. The resistance of this single resistor is called the equivalent resistance of
the combination. If any one of the networks in Fig. 26.1 were replaced by its
equivalent resistance we could write

where is the potential difference between terminals a and b of the network
and I is the current at point a or b. To compute an equivalent resistance, we
assume a potential difference across the actual network, compute the corre-
sponding current I, and take the ratio 

Resistors in Series
We can derive general equations for the equivalent resistance of a series or parallel
combination of resistors. If the resistors are in series, as in Fig. 26.1a, the current I
must be the same in all of them. (As we discussed in Section 25.4, current is not
“used up” as it passes through a circuit.) Applying to each resistor, we have

The potential differences across each resistor need not be the same (except for the
special case in which all three resistances are equal). The potential difference 
across the entire combination is the sum of these individual potential differences:

and so

The ratio is, by definition, the equivalent resistance Therefore

It is easy to generalize this to any number of resistors:

(resistors in series) (26.1)Req = R1 + R2 + R3 + Á

Req = R1 + R2 + R3

Req.Vab>I

Vab

I
= R1 + R2 + R3

Vab = Vax + Vxy + Vyb = I1R1 + R2 + R32

Vab

Vax = IR1  Vxy = IR2  Vyb = IR3

V = IR

Vab>I.
Vab

Vab

Vab = IReq or Req =
Vab

I

Req,

R1.
R3R2R1.

R3R2

R3.R2,R1,

1 2 3

R

R

3

2

1

3

R

1

R

(a) R1, R2, and R3 in series

(b) R1, R2, and R3 in parallel

(c) R1 in series with parallel combination
of R2 and R3

(d) R1 in parallel with series combination
of R2 and R3

a x y b
R R R

II

1

a b
2

R II

R

a b
R

R II

2

a b

R

3

II

26.1 Four different ways of connecting
three resistors.
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The equivalent resistance of any number of resistors in series equals the sum of
their individual resistances.

The equivalent resistance is greater than any individual resistance.
Let’s compare this result with Eq. (24.5) for capacitors in series. Resistors in

series add directly because the voltage across each is directly proportional to its
resistance and to the common current. Capacitors in series add reciprocally
because the voltage across each is directly proportional to the common charge
but inversely proportional to the individual capacitance.

Resistors in Parallel
If the resistors are in parallel, as in Fig. 26.1b, the current through each
resistor need not be the same. But the potential difference between the termi-
nals of each resistor must be the same and equal to (Fig. 26.2). (Remember
that the potential difference between any two points does not depend on the path
taken between the points.) Let’s call the currents in the three resistors and

Then from 

In general, the current is different through each resistor. Because charge is not
accumulating or draining out of point a, the total current I must equal the sum of
the three currents in the resistors:

But by the definition of the equivalent resistance so

Again it is easy to generalize to any number of resistors in parallel:

(resistors in parallel) (26.2)

For any number of resistors in parallel, the reciprocal of the equivalent resistance
equals the sum of the reciprocals of their individual resistances.

1

Req
=

1

R1
+

1

R2
+

1

R3
+ Á

1

Req
=

1

R1
+

1

R2
+

1

R3

I>Vab = 1>Req,Req,

I

Vab
=

1

R1
+

1

R2
+

1

R3

I = I1 + I2 + I3 = Vaba
1

R1
+

1

R2
+

1

R3
b or

I1 =
Vab

R1
  I2 =

Vab

R2
  I3 =

Vab

R3

I = V>R,I3.
I2,I1,

Vab

The equivalent resistance is always less than any individual resistance.
Compare this with Eq. (24.7) for capacitors in parallel. Resistors in parallel

add reciprocally because the current in each is proportional to the common volt-
age across them and inversely proportional to the resistance of each. Capacitors
in parallel add directly because the charge on each is proportional to the common
voltage across them and directly proportional to the capacitance of each.

For the special case of two resistors in parallel,

(two resistors in parallel) (26.3)Req =
R1R2

R1 + R2
  

1

Req
=

1

R1
+

1

R2
=

R1 + R2

R1R2
 and

?26.2 A car’s headlights and taillights are
connected in parallel. Hence each light is
exposed to the full potential difference
supplied by the car’s electrical system,
giving maximum brightness. Another
advantage is that if one headlight or tail-
light burns out, the other one keeps shining
(see Example 26.2).

ActivPhysics 12.2: DC Parallel Circuits
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Because it follows that

(two resistors in parallel) (26.4)

This shows that the currents carried by two resistors in parallel are inversely
proportional to their resistances. More current goes through the path of least
resistance.

I1

I2
=

R2

R1

Vab = I1R1 = I2R2,

Problem-Solving Strategy 26.1 Resistors in Series and Parallel

IDENTIFY the relevant concepts: As in Fig. 26.1, many resistor net-
works are made up of resistors in series, in parallel, or a combination
thereof. Such networks can be replaced by a single equivalent resis-
tor. The logic is similar to that of Problem-Solving Strategy 24.1 for
networks of capacitors.

SET UP the problem using the following steps:
1. Make a drawing of the resistor network.
2. Identify groups of resistors connected in series or parallel.
3. Identify the target variables. They could include the equivalent

resistance of the network, the potential difference across each
resistor, or the current through each resistor.

EXECUTE the solution as follows:
1. Use Eq. (26.1) or (26.2), respectively, to find the equivalent

resistance for series or parallel combinations.
2. If the network is more complex, try reducing it to series and paral-

lel combinations. For example, in Fig. 26.1c we first replace the
parallel combination of and with its equivalent resistance;R3R2

this then forms a series combination with In Fig. 26.1d, the
combination of and in series forms a parallel combina-
tion with 

3. Keep in mind that the total potential difference across resistors
connected in series is the sum of the individual potential differ-
ences. The potential difference across resistors connected in
parallel is the same for every resistor and equals the potential
difference across the combination.

4. The current through resistors connected in series is the same
through every resistor and equals the current through the
combination. The total current through resistors connected in
parallel is the sum of the currents through the individual
resistors.

EVALUATE your answer: Check whether your results are consis-
tent. The equivalent resistance of resistors connected in series
should be greater than that of any individual resistor; that of resis-
tors in parallel should be less than that of any individual resistor.

R1.
R3R2

R1.

Example 26.1 Equivalent resistance

Find the equivalent resistance of the network in Fig. 26.3a and the
current in each resistor. The source of emf has negligible internal
resistance.

SOLUTION

IDENTIFY and SET UP: This network of three resistors is a combination
of series and parallel resistances, as in Fig. 26.1c. We determine

(a)

+

a c b

E � 18 V, r � 0

6 V

3 V

4 V

(b) (c) (f )(e)(d)

26.3 Steps in reducing a combination of resistors to a single equivalent resistor and finding the current in each resistor.

Continued



the equivalent resistance of the parallel and resistors, and
then that of their series combination with the resistor: This is
the equivalent resistance of the network as a whole. We then
find the current in the emf, which is the same as that in the 
resistor. The potential difference is the same across each of the par-
allel and resistors; we use this to determine how the cur-
rent is divided between these.

EXECUTE: Figures 26.3b and 26.3c show successive steps in 
reducing the network to a single equivalent resistance From 
Eq. (26.2), the and resistors in parallel in Fig. 26.3a are
equivalent to the single resistor in Fig. 26.3b:

[Equation (26.3) gives the same result.] From Eq. (26.1) the series
combination of this resistor with the resistor is equiva-
lent to the single resistor in Fig. 26.3c.6-Æ

4-Æ2-Æ

1

R6 Æ+3 Æ
=

1

6 Æ
+

1

3 Æ
=

1

2 Æ

2-Æ
3-Æ6-Æ

Req.

3-Æ6-Æ

4-Æ
Req

4-Æ
3-Æ6-Æ
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We reverse these steps to find the current in each resistor of the
original network. In the circuit shown in Fig. 26.3d (identical to
Fig. 26.3c), the current is So
the current in the and resistors in Fig. 26.3e (identical to
Fig. 26.3b) is also 3 A. The potential difference across the 

resistor is therefore This
potential difference must also be 6 V in Fig. 26.3f (identical to 
Fig. 26.3a). From the currents in the and 
resistors in Fig. 26.3f are respectively and

.

EVALUATE: Note that for the two resistors in parallel between
points c and b in Fig. 26.3f, there is twice as much current
through the resistor as through the resistor; more cur-
rent goes through the path of least resistance, in accordance with
Eq. (26.4). Note also that the total current through these two
resistors is 3 A, the same as it is through the resistor between
points a and c.

4-Æ

6-Æ3-Æ

16 V2>13 Æ2 = 2 A
16 V2>16 Æ2 = 1 A

3-Æ6-ÆI = Vcb>R,

Vcb = IR = 13 A212 Æ2 = 6 V.2-Æ
Vcb

2-Æ4-Æ
I = Vab>R = 118 V2>16 Æ2 = 3 A.

Example 26.2 Series versus parallel combinations

Two identical light bulbs, each with resistance are
connected to a source with and negligible internal
resistance. Find the current through each bulb, the potential 
difference across each bulb, and the power delivered to each
bulb and to the entire network if the bulbs are connected (a) in
series and (b) in parallel. (c) Suppose one of the bulbs burns out;
that is, its filament breaks and current can no longer flow
through it. What happens to the other bulb in the series case? In
the parallel case?

SOLUTION

IDENTIFY and SET UP: The light bulbs are just resistors in simple
series and parallel connections (Figs. 26.4a and 26.4b). Once we
find the current I through each bulb, we can find the power deliv-
ered to each bulb using Eq. (25.18), 

EXECUTE: (a) From Eq. (26.1) the equivalent resistance of the two
bulbs between points a and c in Fig. 26.4a is 

. In series, the current is the same through each bulb:

Since the bulbs have the same resistance, the potential difference is
the same across each bulb:

From Eq. (25.18), the power delivered to each bulb is

The total power delivered to both bulbs is 
(b) If the bulbs are in parallel, as in Fig. 26.4b, the potential differ-

ence across each bulb is the same and equal to 8 V, the terminal
voltage of the source. Hence the current through each light bulb is

Vde

Ptot = 2P = 16 W.

P =
Vab

2

R
=

Vbc
2

R
=
14 V22

2 Æ
= 8 W

P = I 2R = 12 A2212 Æ2 = 8 W  or

Vab = Vbc = IR = 12 A212 Æ2 = 4 V

I =
Vac

Req
=

8 V

4 Æ
= 2 A

4 Æ
Req = 2R = 212 Æ2 =

P = I 2R = V2>R.

E = 8 V
R = 2 Æ,

(a) Light bulbs in series

(b) Light bulbs in parallel

26.4 Our sketches for this problem.

and the power delivered to each bulb is

Both the potential difference across each bulb and the current
through each bulb are twice as great as in the series case. Hence
the power delivered to each bulb is four times greater, and each
bulb is brighter.

The total power delivered to the parallel network is 
four times greater than in the series case. The2P = 64 W,

Ptotal =

P =
Vde

2

R
=
18 V22

2 Æ
= 32 W

P = I 2R = 14 A2212 Æ2 = 32 W  or

I =
Vde

R
=

8 V

2 Æ
= 4 A
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increased power compared to the series case isn’t obtained “for
free”; energy is extracted from the source four times more rapidly
in the parallel case than in the series case. If the source is a battery,
it will be used up four times as fast.

(c) In the series case the same current flows through both bulbs.
If one bulb burns out, there will be no current in the circuit, and
neither bulb will glow.

In the parallel case the potential difference across either bulb is
unchanged if a bulb burns out. The current through the functional
bulb and the power delivered to it are unchanged.

EVALUATE: Our calculation isn’t completely accurate, because the
resistance of real light bulbs depends on the potential dif-
ference V across the bulb. That’s because the filament resistance
increases with increasing operating temperature and therefore with
increasing V. But bulbs connected in series across a source do in
fact glow less brightly than when connected in parallel across the
same source (Fig. 26.5).

R = V>I

26.5 When connected to the same source, two light bulbs in
series (shown at top) draw less power and glow less brightly than
when they are in parallel (shown at bottom).

26.2 Kirchhoff’s Rules
Many practical resistor networks cannot be reduced to simple series-parallel
combinations. Figure 26.6a shows a dc power supply with emf charging a bat-
tery with a smaller emf and feeding current to a light bulb with resistance R.
Figure 26.6b is a “bridge” circuit, used in many different types of measurement
and control systems. (Problem 26.81 describes one important application of a
“bridge” circuit.) To compute the currents in these networks, we’ll use the 
techniques developed by the German physicist Gustav Robert Kirchhoff
(1824–1887).

First, here are two terms that we will use often. A junction in a circuit is 
a point where three or more conductors meet. A loop is any closed conducting
path. In Fig. 26.6a points a and b are junctions, but points c and d are not; 
in Fig. 26.6b the points a, b, c, and d are junctions, but points e and f are not.
The blue lines in Figs. 26.6a and 26.6b show some possible loops in these 
circuits.

Kirchhoff’s rules are the following two statements:
Kirchhoff’s junction rule: The algebraic sum of the currents into any junction
is zero. That is,

(junction rule, valid at any junction) (26.5)

Kirchhoff’s loop rule: The algebraic sum of the potential differences in any
loop, including those associated with emfs and those of resistive elements, must
equal zero. That is,

(loop rule, valid for any closed loop) (26.6)aV = 0  

a I = 0  

E2

E1

Test Your Understanding of Section 26.1 Suppose all three of the
resistors shown in Fig. 26.1 have the same resistance, so 
Rank the four arrangements shown in parts (a)–(d) of Fig. 26.1 in order of their
equivalent resistance, from highest to lowest. ❙

R1 = R2 = R3 = R.

Junction

Not a 
junction

Not a 
junction

Junction

Loop 2

Loop 1

(1)

(2)
(3)

(4)

Loop 3

(a)

(b)

R

bc d

a

r2

E2

r1

E1

r

E

c

f

e

a

d

b

R1 R2

R3 R4

Rm

++

+

26.6 Two networks that cannot be
reduced to simple series-parallel combina-
tions of resistors.



The junction rule is based on conservation of electric charge. No charge
can accumulate at a junction, so the total charge entering the junction per unit
time must equal the total charge leaving per unit time (Fig. 26.7a). Charge per
unit time is current, so if we consider the currents entering a junction to be
positive and those leaving to be negative, the algebraic sum of currents into a
junction must be zero. It’s like a T branch in a water pipe (Fig. 26.7b); if you
have a total of 1 liter per minute coming in the two pipes, you can’t have 
3 liters per minute going out the third pipe. We may as well confess that we
used the junction rule (without saying so) in Section 26.1 in the derivation of
Eq. (26.2) for resistors in parallel.

The loop rule is a statement that the electrostatic force is conservative. Sup-
pose we go around a loop, measuring potential differences across successive cir-
cuit elements as we go. When we return to the starting point, we must find that
the algebraic sum of these differences is zero; otherwise, we could not say that
the potential at this point has a definite value.

Sign Conventions for the Loop Rule
In applying the loop rule, we need some sign conventions. Problem-Solving
Strategy 26.2 describes in detail how to use these, but here’s a quick overview.
We first assume a direction for the current in each branch of the circuit and mark
it on a diagram of the circuit. Then, starting at any point in the circuit, we imag-
ine traveling around a loop, adding emfs and IR terms as we come to them. When
we travel through a source in the direction from to the emf is considered to
be positive; when we travel from to the emf is considered to be negative
(Fig. 26.8a). When we travel through a resistor in the same direction as the
assumed current, the IR term is negative because the current goes in the direction
of decreasing potential. When we travel through a resistor in the direction
opposite to the assumed current, the IR term is positive because this represents a
rise of potential (Fig. 26.8b).

Kirchhoff’s two rules are all we need to solve a wide variety of network
problems. Usually, some of the emfs, currents, and resistances are known, 
and others are unknown. We must always obtain from Kirchhoff’s rules a
number of independent equations equal to the number of unknowns so that 
we can solve the equations simultaneously. Often the hardest part of the solu-
tion is not understanding the basic principles but keeping track of algebraic
signs!

- ,+
+ ,-

856 CHAPTER 26 Direct-Current Circuits

26.7 Kirchhoff’s junction rule states that
as much current flows into a junction as
flows out of it.

(b) Sign conventions for resistors(a) Sign conventions for emfs

Travel Travel Travel Travel

R

+–

E

1E: Travel direction
from – to +:

1IR: Travel opposite
to current direction: 

2IR: Travel in
current direction: 

2E: Travel direction
from + to –:

+
+

– –

R

+–

E

II

26.8 Use these sign conventions when
you apply Kirchhoff’s loop rule. In each
part of the figure “Travel” is the direction
that we imagine going around the loop,
which is not necessarily the direction of
the current.

The flow rate of 
water leaving the
pipe equals the flow
rate entering it.

The current leaving
a junction equals the
current entering it.

(b) Water-pipe analogy(a) Kirchhoff’s junction rule

I2

I1 � I2

I1

Junction
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Problem-Solving Strategy 26.2 Kirchhoff’s Rules

IDENTIFY the relevant concepts: Kirchhoff’s rules are useful for
analyzing any electric circuit.

SET UP the problem using the following steps:
1. Draw a circuit diagram, leaving room to label all quantities,

known and unknown. Indicate an assumed direction for each
unknown current and emf. (Kirchhoff’s rules will yield the
magnitudes and directions of unknown currents and emfs. If the
actual direction of a quantity is opposite to your assumption,
the resulting quantity will have a negative sign.)

2. As you label currents, it helpful to use Kirchhoff’s junction
rule, as in Fig. 26.9, so as to express the currents in terms of as
few quantities as possible.

3. Identify the target variables.

EXECUTE the solution as follows:
1. Choose any loop in the network and choose a direction (clock-

wise or counterclockwise) to travel around the loop as you
apply Kirchhoff’s loop rule. The direction need not be the same
as any assumed current direction.

2. Travel around the loop in the chosen direction, adding potential
differences algebraically as you cross them. Use the sign con-
ventions of Fig. 26.8.

3. Equate the sum obtained in step 2 to zero in accordance with
the loop rule.

4. If you need more independent equations, choose another loop
and repeat steps 1–3; continue until you have as many inde-
pendent equations as unknowns or until every circuit element
has been included in at least one loop.

5. Solve the equations simultaneously to determine the unknowns.
6. You can use the loop-rule bookkeeping system to find the

potential of any point a with respect to any other point b.
Start at b and add the potential changes you encounter in going
from b to a, using the same sign rules as in step 2. The alge-
braic sum of these changes is 

EVALUATE your answer: Check all the steps in your algebra. Apply
steps 1 and 2 to a loop you have not yet considered; if the sum of
potential drops isn’t zero, you’ve made an error somewhere.

Vab = Va - Vb.

Vab

(a) Three unknown currents: I1, I2, I3 (b) Applying the junction rule to point a eliminates I3.

r1 E1 r2 E2

R1 R2
a

R3I3
I1 I2

I1 I2

r1 E1 r2 E2

R1 R2
a

R3I1 1 I2

I1 I2

I1 I2

+ + + +

26.9 Applying the junction rule to point a reduces the number of unknown currents from three to two.

Example 26.3 A single-loop circuit

The circuit shown in Fig. 26.10a contains two batteries, each with
an emf and an internal resistance, and two resistors. Find (a) the
current in the circuit, (b) the potential difference and (c) the
power output of the emf of each battery.

SOLUTION

IDENTIFY and SET UP: There are no junctions in this single-loop
circuit, so we don’t need Kirchhoff’s junction rule. To apply
Kirchhoff’s loop rule, we first assume a direction for the current;
let’s assume a counterclockwise direction as shown in Fig. 26.10a.

EXECUTE: (a) Starting at a and traveling counterclockwise with the
current, we add potential increases and decreases and equate the
sum to zero as in Eq. (26.6):

Collecting like terms and solving for I, we find

The positive result for I shows that our assumed current direction
is correct.

8 V = I116 Æ2  and  I = 0.5 A

- I14 Æ2 - 4 V - I17 Æ2 + 12 V - I12 Æ2 - I13 Æ2 = 0

Vab,

(b) To find the potential at a with respect to b, we start at b
and add potential changes as we go toward a. There are two paths
from b to a; taking the lower one, we find

Point a is at 9.5 V higher potential than b. All the terms in this sum,
including the IR terms, are positive because each represents an
increase in potential as we go from b to a. Taking the upper path,
we find

Here the IR terms are negative because our path goes in the
direction of the current, with potential decreases through the
resistors. The results for are the same for both paths, as they
must be in order for the total potential change around the loop to
be zero.

Vab

= 9.5 V

Vab = 12 V - 10.5 A212 Æ2 - 10.5 A213 Æ2

= 9.5 V

Vab = 10.5 A217 Æ2 + 4 V + 10.5 A214 Æ2

Vab,

Continued



(c) The power outputs of the emf of the 12-V and 4-V batteries are

The negative sign in for the 4-V battery appears because the cur-
rent actually runs from the higher-potential side of the battery to
the lower-potential side. The negative value of P means that we are
storing energy in that battery; the 12-V battery is recharging it (if
it is in fact rechargeable; otherwise, we’re destroying it).

EVALUATE: By applying the expression to each of the
four resistors in Fig. 26.10a, you can show that the total power

P = I 2R

E

P4V = EI = 1-4 V210.5 A2 = -2 W

P12V = EI = 112 V210.5 A2 = 6 W
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dissipated in all four resistors is 4 W. Of the 6 W provided by the
emf of the 12-V battery, 2 W goes into storing energy in the 4-V
battery and 4 W is dissipated in the resistances.

The circuit shown in Fig. 26.10a is much like that used when a
fully charged 12-V storage battery (in a car with its engine run-
ning) is used to “jump-start” a car with a run-down battery (Fig.
26.10b). The run-down battery is slightly recharged in the
process. The and resistors in Fig. 26.10a represent the
resistances of the jumper cables and of the conducting path
through the automobile with the run-down battery. (The values of
the resistances in actual automobiles and jumper cables are con-
siderably lower.)

7-Æ3-Æ

+

+

Travel

Dead
battery Live

battery

(a)

12 V

a

b

4 V

2 V

4 V

3 V 7 V

(b)

I

I

II

26.10 (a) In this example we travel around the loop in the same direction as the assumed current, so all the IR terms are negative.
The potential decreases as we travel from to through the bottom emf but increases as we travel from to through the top emf.
(b) A real-life example of a circuit of this kind.

+--+

Example 26.4 Charging a battery

In the circuit shown in Fig. 26.11, a 12-V power supply with
unknown internal resistance r is connected to a run-down
rechargeable battery with unknown emf and internal resistance

and to an indicator light bulb of resistance carrying a
current of 2 A. The current through the run-down battery is 1 A in
the direction shown. Find r, , and the current I through the power
supply.

SOLUTION

IDENTIFY and SET UP: This circuit has more than one loop, so we
must apply both the junction and loop rules. We assume the direc-
tion of the current through the 12-V power supply, and the polarity
of the run-down battery, to be as shown in Fig. 26.11. There are
three target variables, so we need three equations.

E

3 Æ1 Æ
E

EXECUTE: We apply the junction rule, Eq. (26.5), to point a:

To determine r, we apply the loop rule, Eq. (26.6), to the large,
outer loop (1):

To determine we apply the loop rule to the left-hand loop (2):

The negative value for shows that the actual polarity of this emf
is opposite to that shown in Fig. 26.11. As in Example 26.3, the
battery is being recharged.

EVALUATE: Try applying the junction rule at point b instead of
point a, and try applying the loop rule by traveling counterclock-
wise rather than clockwise around loop (1). You’ll get the same
results for I and r. We can check our result for by using the right-
hand loop (3):

which again gives us .
As an additional check, we note that equals the

voltage across the resistance, which is 
Going from a to b by the top branch, we encounter potential differ-
ences and going by the middle
branch, we find The three
ways of getting give the same results.Vba

-1-5 V2 + 11 A211 Æ2 = +6 V.
+12 V - 13 A212 Æ2 = +6 V,

12 A213 Æ2 = 6 V.3-Æ
Vba = Vb - Va

E = -5 V

12 V - 13 A212 Æ2 - 11 A211 Æ2 + E = 0

E

E

-E + 11 A211 Æ2 - 12 A213 Æ2 = 0  so  E = -5 V

E,

12 V - 13 A2r - 12 A213 Æ2 = 0  so  r = 2 Æ

- I + 1 A + 2 A = 0  so  I = 3 A

26.11 In this circuit a power supply charges a run-down 
battery and lights a bulb. An assumption has been made about the
polarity of the emf of the run-down battery. Is this assumption
correct?

E

12 V

1 A I

a

b

r
2 A

(2)

(1)

E

1 V
3 V

(3)

+

+
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Example 26.5 Power in a battery-charging circuit

In the circuit of Example 26.4 (shown in Fig. 26.11), find the
power delivered by the 12-V power supply and by the battery
being recharged, and find the power dissipated in each resistor.

SOLUTION

IDENTIFY and SET UP: We use the results of Section 25.5, in
which we found that the power delivered from an emf to a circuit
is and the power delivered to a resistor from a circuit is

We know the values of all relevant quantities from
Example 26.4.

EXECUTE: The power output from the emf of the power supply is

The power dissipated in the power supply’s internal resistance r is

so the power supply’s net power output is 
Alternatively, from Example 26.4 the terminal

voltage of the battery is so the net power output is

Pnet = Vba Isupply = 16 V213 A2 = 18 W

Vba = 6 V,
18 W = 18 W.

Pnet = 36 W -

Pr- supply = I supply
2rsupply = 13 A2212 Æ2 = 18 W

Psupply = EsupplyIsupply = 112 V213 A2 = 36 W

Ps

VabI = I 2R.
EI

The power output of the emf of the battery being charged is

This is negative because the 1-A current runs through the battery
from the higher-potential side to the lower-potential side. (As we
mentioned in Example 26.4, the polarity assumed for this battery
in Fig. 26.11 was wrong.) We are storing energy in the battery as
we charge it. Additional power is dissipated in the battery’s inter-
nal resistance; this power is

The total power input to the battery is thus 
Of this, 5 W represents useful energy stored in the battery;

the remainder is wasted in its internal resistance.
The power dissipated in the light bulb is

EVALUATE: As a check, note that all of the power from the supply
is accounted for. Of the 18 W of net power from the power supply,
5 W goes to recharge the battery, 1 W is dissipated in the battery’s
internal resistance, and 12 W is dissipated in the light bulb.

Pbulb = I bulb
2Rbulb = 12 A2213 Æ2 = 12 W

6 W.
1 W + ƒ -5 W ƒ =

Pr-battery = I battery
2rbattery = 11 A2211 Æ2 = 1 W

Pemf = EIbattery = 1-5 V211 A2 = -5 W

E

Example 26.6 A complex network

Figure 26.12 shows a “bridge” circuit of the type described at the
beginning of this section (see Fig. 26.6b). Find the current in
each resistor and the equivalent resistance of the network of five
resistors.

SOLUTION

IDENTIFY and SET UP: This network is neither a series combina-
tion nor a parallel combination. Hence we must use Kirchhoff’s
rules to find the values of the target variables. There are five
unknown currents, but by applying the junction rule to junctions a
and b, we can represent them in terms of three unknown currents

and , as shown in Fig. 26.12.I3I2,I1,

EXECUTE: We apply the loop rule to the three loops shown:

(1)

(2)

(3)

One way to solve these simultaneous equations is to solve Eq. (3)
for obtaining and then substitute this expression
into Eq. (2) to eliminate We then have

(1 )

(2 )

Now we can eliminate by multiplying Eq. by 5 and adding
the two equations. We obtain

We substitute this result into Eq. to obtain and
from Eq. (3) we find The negative value of tells us
that its direction is opposite to the direction we assumed.

The total current through the network is and
the potential drop across it is equal to the battery emf, 13 V. The
equivalent resistance of the network is therefore

EVALUATE: You can check our results for and by substitut-
ing them back into Eqs. (1)–(3). What do you find?

I3I2,I1,

Req =
13 V

11 A
= 1.2 Æ

I1 + I2 = 11 A,

I3I2 = 5 A.
I3 = -1 A,(1¿)

78 V = I1113 Æ2  I1 = 6 A

(1¿)I3

¿13 V = I113 Æ2 + I315 Æ2
¿13 V = I112 Æ2 - I311 Æ2

I2.
I2 = I1 + I3,I2,

- I111 Æ2 - I311 Æ2 + I211 Æ2 = 0

- I211 Æ2 - 1I2 + I3212 Æ2 + 13 V = 0

13 V - I111 Æ2 - 1I1 - I3211 Æ2 = 0

c

b

I1 I2

I1 – I3

(2)

I3

(3)

2 V1 V

1 V
1 V

1 V+

(1)

13 V a

d

I2 + I3

I1 + I2

26.12 A network circuit with several resistors.



26.3 Electrical Measuring Instruments
We’ve been talking about potential difference, current, and resistance for two
chapters, so it’s about time we said something about how to measure these quan-
tities. Many common devices, including car instrument panels, battery chargers,
and inexpensive electrical instruments, measure potential difference (voltage),
current, or resistance using a d’Arsonval galvanometer (Fig. 26.13). In the fol-
lowing discussion we’ll often call it just a meter. A pivoted coil of fine wire is
placed in the magnetic field of a permanent magnet (Fig. 26.14). Attached to the
coil is a spring, similar to the hairspring on the balance wheel of a watch. In the
equilibrium position, with no current in the coil, the pointer is at zero. When
there is a current in the coil, the magnetic field exerts a torque on the coil that is
proportional to the current. (We’ll discuss this magnetic interaction in detail in
Chapter 27.) As the coil turns, the spring exerts a restoring torque that is propor-
tional to the angular displacement.

Thus the angular deflection of the coil and pointer is directly proportional to
the coil current, and the device can be calibrated to measure current. The maxi-
mum deflection, typically or so, is called full-scale deflection. The essential
electrical characteristics of the meter are the current required for full-scale
deflection (typically on the order of to 10 mA) and the resistance of the
coil (typically on the order of 10 to ).

The meter deflection is proportional to the current in the coil. If the coil obeys
Ohm’s law, the current is proportional to the potential difference between the ter-
minals of the coil, and the deflection is also proportional to this potential differ-
ence. For example, consider a meter whose coil has a resistance 
and that deflects full scale when the current in its coil is The cor-
responding potential difference for full-scale deflection is

Ammeters
A current-measuring instrument is usually called an ammeter (or milliammeter,
microammeter, and so forth, depending on the range). An ammeter always meas-
ures the current passing through it. An ideal ammeter, discussed in Section 25.4,
would have zero resistance, so including it in a branch of a circuit would not

V = IfsRc = 11.00 * 10-3 A2120.0 Æ2 = 0.0200 V

Ifs = 1.00 mA.
Rc = 20.0 Æ

1000 Æ
Rc10 mA

Ifs

90°
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Test Your Understanding of Section 26.2 Subtract Eq. (1) from Eq. (2) in
Example 26.6. To which loop in Fig. 26.12 does this equation correspond? Would this
equation have simplified the solution of Example 26.6? ❙

Example 26.7 A potential difference in a complex network

In the circuit of Example 26.6 (Fig. 26.12), find the potential
difference

SOLUTION

IDENTIFY and SET UP: Our target variable is the
potential at point a with respect to point b. To find it, we start at
point b and follow a path to point a, adding potential rises and
drops as we go. We can follow any of several paths from b to a; the
result must be the same for all such paths, which gives us a way to
check our result.

EXECUTE: The simplest path is through the center resistor. 
In Example 26.6 we found showing that the actualI3 = -1 A,

1-Æ

Vab = Va - Vb

Vab.
current direction through this resistor is from right to left. Thus, as
we go from b to a, there is a drop of potential with magnitude

Hence , and the poten-
tial at a is 1 V less than at point b.

EVALUATE: To check our result, let’s try a path from b to a that goes
through the lower two resistors. The currents through these are

and so

You can confirm this result using some other paths from b to a.

Vab = -14 A212 Æ2 + 17 A211 Æ2 = -1 V

I1 - I3 = 6 A - 1-1 A2 = 7 A

I2 + I3 = 5 A + 1-1 A2 = 4 A and

Vab = -1 Vƒ I3 ƒR = 11 A211 Æ2 = 1 V.

26.13 This ammeter (top) and volt-
meter (bottom) are both d’Arsonval gal-
vanometers. The difference has to do with
their internal connections (see Fig. 26.15).

Spring

Magnetic
field

Soft-iron
core

Permanent
magnet

Pivoted coil

Spring torque
  tends to push
    pointer
      toward zero.

Magnetic-field torque
tends to push
pointer away
from zero.

5

10

0

26.14 A d’Arsonval galvanometer,
showing a pivoted coil with attached
pointer, a permanent magnet supplying a
magnetic field that is uniform in magnitude,
and a spring to provide restoring torque,
which opposes magnetic-field torque.



26.3 Electrical Measuring Instruments 861

affect the current in that branch. Real ammeters always have some finite resist-
ance, but it is always desirable for an ammeter to have as little resistance as
possible.

We can adapt any meter to measure currents that are larger than its full-scale
reading by connecting a resistor in parallel with it (Fig. 26.15a) so that some of
the current bypasses the meter coil. The parallel resistor is called a shunt resistor
or simply a shunt, denoted as 

Suppose we want to make a meter with full-scale current and coil resistance
into an ammeter with full-scale reading To determine the shunt resistance
needed, note that at full-scale deflection the total current through the parallel

combination is the current through the coil of the meter is and the current
through the shunt is the difference The potential difference is the
same for both paths, so

(26.7)IfsRc = 1Ia - Ifs2Rsh  (for an ammeter)

VabIa - Ifs.
Ifs,Ia,

Rsh

Ia.Rc

Ifs

Rsh.

| |
| |

| | | | | | | | | | | | | | | | | | | | | | | |
| |

| | | | | | | | | | | | | | | | | | | | | |

a bI I

I I

Rc Rc

Va Vb

(a) (b)

–+–+
a bRsh

Circuit
element

Rs

Moving-coil
ammeter

Moving-coil
voltmeter

26.15 Using the same meter to measure
(a) current and (b) voltage.

Example 26.8 Designing an ammeter

What shunt resistance is required to make the 1.00-mA, 
meter described above into an ammeter with a range of 0 to 
50.0 mA?

SOLUTION

IDENTIFY and SET UP: Since the meter is being used as an amme-
ter, its internal connections are as shown in Fig. 26.15a. Our target
variable is the shunt resistance , which we will find using 
Eq. (26.7). The ammeter must handle a maximum current

The coil resistance is and the
meter shows full-scale deflection when the current through the coil
is

EXECUTE: Solving Eq. (26.7) for we find

= 0.408 Æ

Rsh =
IfsRc

Ia - Ifs
=

11.00 * 10-3 A2120.0 Æ2

50.0 * 10-3 A - 1.00 * 10-3 A

Rsh,

Ifs = 1.00 * 10-3 A.

Rc = 20.0 Æ,Ia = 50.0 * 10-3 A.

Rsh

20.0-Æ EVALUATE: It’s useful to consider the equivalent resistance of
the ammeter as a whole. From Eq. (26.2),

The shunt resistance is so small in comparison to the coil resist-
ance that the equivalent resistance is very nearly equal to the shunt
resistance. The result is an ammeter with a low equivalent resist-
ance and the desired 0–50.0-mA range. At full-scale deflection,

the current through the galvanometer is 1.00
mA, the current through the shunt resistor is 49.0 mA, and

If the current I is less than 50.0 mA, the coil cur-
rent and the deflection are proportionally less.
Vab = 0.0200 V.

I = Ia = 50.0 mA,

= 0.400 Æ

Req = a
1

Rc
+

1

Rsh
b

-1

= a
1

20.0 Æ
+

1

0.408 Æ
b

-1

Req

Application Electromyography
A fine needle containing two electrodes is
being inserted into a muscle in this patient’s
hand. By using a sensitive voltmeter to mea-
sure the potential difference between these
electrodes, a physician can probe the muscle’s
electrical activity. This is an important 
technique for diagnosing neurological and 
neuromuscular diseases.

Voltmeters
This same basic meter may also be used to measure potential difference or
voltage. A voltage-measuring device is called a voltmeter. A voltmeter always
measures the potential difference between two points, and its terminals must be
connected to these points. (Example 25.6 in Section 25.4 described what can hap-
pen if a voltmeter is connected incorrectly.) As we discussed in Section 25.4, an
ideal voltmeter would have infinite resistance, so connecting it between two points
in a circuit would not alter any of the currents. Real voltmeters always have finite
resistance, but a voltmeter should have large enough resistance that connecting it
in a circuit does not change the other currents appreciably.

For the meter described in Example 26.8 the voltage across the meter coil at
full-scale deflection is only We
can extend this range by connecting a resistor in series with the coil (Fig.
26.15b). Then only a fraction of the total potential difference appears across the
coil itself, and the remainder appears across For a voltmeter with full-scale
reading we need a series resistor in Fig. 26.15b such that

(for a voltmeter) (26.8)VV = Ifs1Rc + Rs2  
RsVV,

Rs.

Rs

IfsRc = 11.00 * 10-3 A2120.0 Æ2 = 0.0200 V.
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Example 26.9 Designing a voltmeter

What series resistance is required to make the 1.00-mA, 
meter described above into a voltmeter with a range of 0 to 10.0 V?

SOLUTION

IDENTIFY and SET UP: Since this meter is being used as a volt-
meter, its internal connections are as shown in Fig. 26.15b. Our
target variable is the series resistance The maximum allowable
voltage across the voltmeter is We want this to
occur when the current through the coil is 
Our target variable is the series resistance , which we find using
Eq. (26.8).

EXECUTE: From Eq. (26.8),

Rs =
VV

Ifs
- Rc =

10.0 V

0.00100 A
- 20.0 Æ = 9980 Æ

Rs

Ifs = 1.00 * 10-3 A.
VV = 10.0 V.

Rs.

20.0-Æ EVALUATE: At full-scale deflection, the voltage
across the meter is 0.0200 V, the voltage across is 9.98 V, and
the current through the voltmeter is 0.00100 A. Most of the voltage
appears across the series resistor. The meter’s equivalent resistance
is a desirably high � � Such a
meter is called a “1000 ohms-per-volt” meter, referring to the ratio
of resistance to full-scale deflection. In normal operation the cur-
rent through the circuit element being measured (I in Fig. 26.15b)
is much greater than 0.00100 A, and the resistance between points
a and b in the circuit is much less than The voltmeter
draws off only a small fraction of the current and thus disturbs the
circuit being measured only slightly.

10,000 Æ.

10,000 Æ.20.0 Æ + 9980 ÆReq

Rs

Vab = 10.0 V,

Ammeters and Voltmeters in Combination
A voltmeter and an ammeter can be used together to measure resistance and
power. The resistance R of a resistor equals the potential difference between
its terminals divided by the current I; that is, The power input P to any
circuit element is the product of the potential difference across it and the current
through it: In principle, the most straightforward way to measure R or
P is to measure and I simultaneously.

With practical ammeters and voltmeters this isn’t quite as simple as it seems.
In Fig. 26.16a, ammeter A reads the current I in the resistor R. Voltmeter V,
however, reads the sum of the potential difference across the resistor and
the potential difference across the ammeter. If we transfer the voltmeter ter-
minal from c to b, as in Fig. 26.16b, then the voltmeter reads the potential dif-
ference correctly, but the ammeter now reads the sum of the current I in the
resistor and the current in the voltmeter. Either way, we have to correct the
reading of one instrument or the other unless the corrections are small enough
to be negligible.

IV

Vab

Vbc

Vab

Vab

P = Vab I.

R = Vab>I.
Vab

a b cR

RV

(a)

I

RA

A

V

I

a b cR

RV

(b)

IV

A

V

26.16 Ammeter–voltmeter method for measuring resistance.

Example 26.10 Measuring resistance I

The voltmeter in the circuit of Fig. 26.16a reads 12.0 V and the
ammeter reads 0.100 A. The meter resistances are 
(for the voltmeter) and (for the ammeter). What are
the resistance R and the power dissipated in the resistor?

SOLUTION

IDENTIFY and SET UP: The ammeter reads the current 
through the resistor, and the voltmeter reads the potential difference

I = 0.100 A

RA = 2.00 Æ
RV = 10,000 Æ

between a and c. If the ammeter were ideal (that is, if ),
there would be zero potential difference between b and c, the volt-
meter reading would be equal to the potential differ-
ence across the resistor, and the resistance would simply be
equal to The amme-
ter is not ideal, however (its resistance is ), so the
voltmeter reading V is actually the sum of the potential differences

(across the ammeter) and (across the resistor). We use
Ohm’s law to find the voltage from the known current andVbc

VabVbc

RA = 2.00 Æ
10.100 A2 = 120 Æ.R = V>I = 112.0 V2>

Vab

V = 12.0 V

RA = 0

ActivPhysics 12.4: Using Ammeters and
Voltmeters
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Example 26.11 Measuring resistance II

Suppose the meters of Example 26.10 are connected to a differ-
ent resistor as shown in Fig. 26.16b, and the readings obtained on
the meters are the same as in Example 26.10. What is the value of
this new resistance R, and what is the power dissipated in the
resistor?

SOLUTION

IDENTIFY and SET UP: In Example 26.10 the ammeter read the
actual current through the resistor, but the voltmeter reading was
not the same as the potential difference across the resistor. Now the
situation is reversed: The voltmeter reading shows the
actual potential difference across the resistor, but the ammeter
reading is not equal to the current I through the
resistor. Applying the junction rule at b in Fig. 26.16b shows that

where is the current through the voltmeter. We
find from the given values of V and the voltmeter resistance 
and we use this value to find the resistor current I. We then deter-
mine the resistance R from I and the voltmeter reading, and calcu-
late the power as in Example 26.10.

RV,IV

IVIA = I + IV,

IA = 0.100 A
Vab

V = 12.0 V

EXECUTE: We have 
1.20 mA. The actual current I in the resistor is 

and the resistance is

The power dissipated in the resistor is

EVALUATE: Had the meters been ideal, our results would have 
been and 

both here and in Example 26.10. The actual
(correct) results are not too different in either case. That’s because
the ammeter and voltmeter are nearly ideal: Compared with the
resistance R under test, the ammeter resistance is very small
and the voltmeter resistance is very large. Under these condi-
tions, treating the meters as ideal yields pretty good results; accu-
rate work requires calculations as in these two examples.

RV

RA

10.100 A2 = 1.2 W
P = VI = 112.0 V2 *R = 12.0 V>0.100 A = 120 Æ

P = VabI = 112.0 V210.0988 A2 = 1.19 W

R =
Vab

I
=

12.0 V

0.0988 A
= 121 Æ

0.100 A - 0.0012 A = 0.0988 A,
I = IA - IV =

IV = V>RV = 112.0 V2>110,000 Æ2 =

Ohmmeters
An alternative method for measuring resistance is to use a d’Arsonval meter in an
arrangement called an ohmmeter. It consists of a meter, a resistor, and a source
(often a flashlight battery) connected in series (Fig. 26.17). The resistance R to be
measured is connected between terminals x and y.

The series resistance is variable; it is adjusted so that when terminals x and
y are short-circuited (that is, when ), the meter deflects full scale. When
nothing is connected to terminals x and y, so that the circuit between x and y is
open (that is, when ), there is no current and hence no deflection. For any
intermediate value of R the meter deflection depends on the value of R, and the
meter scale can be calibrated to read the resistance R directly. Larger currents
correspond to smaller resistances, so this scale reads backward compared to the
scale showing the current.

In situations in which high precision is required, instruments containing 
d’Arsonval meters have been supplanted by electronic instruments with direct
digital readouts. Digital voltmeters can be made with extremely high internal
resistance, of the order of Figure 26.18 shows a digital multimeter, an
instrument that can measure voltage, current, or resistance over a wide range.

The Potentiometer
The potentiometer is an instrument that can be used to measure the emf of a
source without drawing any current from the source; it also has a number of other
useful applications. Essentially, it balances an unknown potential difference
against an adjustable, measurable potential difference.

100 MÆ.

RS q

R = 0
Rs

ammeter resistance. Then we solve for and the resistance 
R. Given these, we are able to calculate the power P into the
resistor.

EXECUTE: From Ohm’s law, 
and The sum of these is so the

potential difference across the resistor is 
Hence the resistance is112.0 V2 - 10.200 V2 = 11.8 V.

Vab = V - Vbc =
V = 12.0 V,Vab = IR.0.200 V

Vbc = IRA = 10.100 A212.00 Æ2 =

Vab

The power dissipated in this resistor is

EVALUATE: You can confirm this result for the power by using the
alternative formula Do you get the same answer?P = I 2R.

P = VabI = 111.8 V210.100 A2 = 1.18 W

R =
Vab

I
=

11.8 V

0.100 A
= 118 Æ

| | |

| |
| | | | | | | | | |

|

|

x y

Rs

R

` 0

+

E

26.17 Ohmmeter circuit. The resistor 
has a variable resistance, as is indicated by
the arrow through the resistor symbol. To
use the ohmmeter, first connect x directly
to y and adjust until the meter reads
zero. Then connect x and y across the 
resistor R and read the scale.

Rs

Rs



The principle of the potentiometer is shown schematically in Fig. 26.19a. A
resistance wire ab of total resistance is permanently connected to the ter-
minals of a source of known emf A sliding contact c is connected through
the galvanometer G to a second source whose emf is to be measured. As
contact c is moved along the resistance wire, the resistance between points
c and b varies; if the resistance wire is uniform, is proportional to the
length of wire between c and b. To determine the value of contact c is
moved until a position is found at which the galvanometer shows no deflection;
this corresponds to zero current passing through With Kirchhoff’s
loop rule gives

With the current I produced by the emf has the same value no matter
what the value of the emf We calibrate the device by replacing by a
source of known emf; then any unknown emf can be found by measuring the
length of wire cb for which . Note that for this to work, must be greater
than

The term potentiometer is also used for any variable resistor, usually having a
circular resistance element and a sliding contact controlled by a rotating shaft and
knob. The circuit symbol for a potentiometer is shown in Fig. 26.19b.

E2.
VabI2 = 0

E2

E2E2.
E1I2 = 0,

E2 = IRcb

I2 = 0,E2.

E2,
Rcb

Rcb

E2

E1.
Rab
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26.18 This digital multimeter can be
used as a voltmeter (red arc), ammeter
(yellow arc), or ohmmeter (green arc).

a b

I
I

I
I

rG

+

c

+
E1

E2, r

I2 � 0

G

(b) Circuit symbol
for potentiometer
(variable resistor)

(a) Potentiometer circuit

26.19 A potentiometer.

Test Your Understanding of Section 26.3 You want to measure the
current through and the potential difference across the resistor shown in
Fig. 26.12 (Example 26.6 in Section 26.2). (a) How should you connect an
ammeter and a voltmeter to do this? (i) ammeter and voltmeter both in series with the

resistor; (ii) ammeter in series with the resistor and voltmeter connected
between points b and d; (iii) ammeter connected between points b and d and voltmeter
in series with the resistor; (iv) ammeter and voltmeter both connected between
points b and d. (b) What resistances should these meters have? (i) Ammeter and volt-
meter resistances should both be much greater than (ii) ammeter resistance should
be much greater than and voltmeter resistance should be much less than (iii)
ammeter resistance should be much less than and voltmeter resistance should be
much greater than (iv) ammeter and voltmeter resistances should both be much
less than ❙2 Æ.

2 Æ;
2 Æ

2 Æ;2 Æ
2 Æ;

2-Æ

2-Æ2-Æ

2-Æ

26.4 R-C Circuits
In the circuits we have analyzed up to this point, we have assumed that all the
emfs and resistances are constant (time independent) so that all the potentials,
currents, and powers are also independent of time. But in the simple act of charg-
ing or discharging a capacitor we find a situation in which the currents, voltages,
and powers do change with time.

Many devices incorporate circuits in which a capacitor is alternately charged
and discharged. These include flashing traffic lights, automobile turn signals, and
electronic flash units. Understanding what happens in such circuits is thus of
great practical importance.

Charging a Capacitor
Figure 26.20 shows a simple circuit for charging a capacitor. A circuit such as this
that has a resistor and a capacitor in series is called an R-C circuit. We idealize
the battery (or power supply) to have a constant emf and zero internal resist-
ance and we neglect the resistance of all the connecting conductors.

We begin with the capacitor initially uncharged (Fig. 26.20a); then at some
initial time we close the switch, completing the circuit and permitting cur-
rent around the loop to begin charging the capacitor (Fig. 26.20b). For all practi-
cal purposes, the current begins at the same instant in every conducting part of
the circuit, and at each instant the current is the same in every part.

t = 0

1r = 02,
E
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CAUTION Lowercase means time-varying Up to this point we have been working with
constant potential differences (voltages), currents, and charges, and we have used capital
letters V, I, and Q, respectively, to denote these quantities. To distinguish between quanti-
ties that vary with time and those that are constant, we will use lowercase letters i, and q
for time-varying voltages, currents, and charges, respectively. We suggest that you follow
this same convention in your own work. ❙

Because the capacitor in Fig. 26.20 is initially uncharged, the potential differ-
ence across it is zero at At this time, from Kirchhoff’s loop law, the
voltage across the resistor R is equal to the battery emf The initial 
current through the resistor, which we will call is given by Ohm’s law:

As the capacitor charges, its voltage increases and the potential difference
across the resistor decreases, corresponding to a decrease in current. The sum

of these two voltages is constant and equal to After a long time the capacitor
becomes fully charged, the current decreases to zero, and the potential difference

across the resistor becomes zero. Then the entire battery emf appears across
the capacitor and 

Let q represent the charge on the capacitor and i the current in the circuit at
some time t after the switch has been closed. We choose the positive direction
for the current to correspond to positive charge flowing onto the left-hand
capacitor plate, as in Fig. 26.20b. The instantaneous potential differences 
and are

Using these in Kirchhoff’s loop rule, we find

(26.9)

The potential drops by an amount iR as we travel from a to b and by as we
travel from b to c. Solving Eq. (26.9) for i, we find

(26.10)

At time when the switch is first closed, the capacitor is uncharged, and so
Substituting into Eq. (26.10), we find that the initial current is

given by as we have already noted. If the capacitor were not in the cir-
cuit, the last term in Eq. (26.10) would not be present; then the current would be
constant and equal to 

As the charge q increases, the term becomes larger and the capacitor
charge approaches its final value, which we will call The current decreases
and eventually becomes zero. When Eq. (26.10) gives

(26.11)

Note that the final charge does not depend on R.
Figure 26.21 shows the current and capacitor charge as functions of time. At

the instant the switch is closed the current jumps from zero to its initial
value after that, it gradually approaches zero. The capacitor charge
starts at zero and gradually approaches the final value given by Eq. (26.11),

We can derive general expressions for the charge q and current i as functions
of time. With our choice of the positive direction for current (Fig. 26.20b),
i equals the rate at which positive charge arrives at the left-hand (positive)

Qf = CE.

I0 = E>R;
1t = 02,

Qf

E

R
=

Qf

RC
  Qf = CE

i = 0,
Qf.

q>RC
E>R.

I0 = E>R,
I0q = 0q = 0.

t = 0,

i =
E

R
-

q

RC

q>C

E - iR -
q

C
= 0

vab = iR  vbc =
q

C

vbc

vab

vbc = E.
Evab

E.
vab

vbc

I0 = vab>R = E>R.
I0,

1t = 02E.vab

t = 0.vbc

v,

+

When the switch is
closed, the charge
on the capacitor
increases over
time while the 
current decreases.

(a) Capacitor initially uncharged

cba

q 5 0i 5 0

R
C

Switch
openE

(b) Charging the capacitor

1q 2q

cba R
C

i

Switch
closed

i

E

+

26.20 Charging a capacitor. (a) Just
before the switch is closed, the charge q is
zero. (b) When the switch closes (at ),
the current jumps from zero to As
time passes, q approaches and the 
current i approaches zero.

Qf

E>R.
t = 0

The current decreases
      exponentially with time as
             the capacitor charges.

The charge on the
capacitor increases
exponentially with
time toward the
final value Qf.

O

i

I0 /e
I0 /2

I0

t
RC

(a) Graph of current versus time for a charging
capacitor

O

Qf/2

Qf

t
RC

(b) Graph of capacitor charge versus time for a
charging capacitor

Qf/e

q

26.21 Current i and capacitor charge q
as functions of time for the circuit of Fig.
26.20. The initial current is and the ini-
tial capacitor charge is zero. The current
asymptotically approaches zero, and the
capacitor charge asymptotically approaches
a final value of Qf.

I0



plate of the capacitor, so Making this substitution in Eq. (26.10),
we have

We can rearrange this to

and then integrate both sides. We change the integration variables to and 
so that we can use q and t for the upper limits. The lower limits are and

When we carry out the integration, we get

Exponentiating both sides (that is, taking the inverse logarithm) and solving for
q, we find

(26.12)q = CE11 - e-t/RC2 = Qf11 - e-t/RC2

q - CE

-CE
= e-t/RC

lna
q - CE

-CE
b = -

t

RC

L
q

0

dq¿
q¿ - CE

= -L
t

0

dt¿
RC

t¿ = 0:
q¿ = 0

t¿q¿

dq

q - CE
= -

dt

RC

dq

dt
=

E

R
-

q

RC
= -

1

RC
1q - CE2

i = dq>dt.
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(R-C circuit, charging
capacitor)

The instantaneous current i is just the time derivative of Eq. (26.12):

(26.13)i =
dq

dt
=

E

R
e-t/RC = I0e-t/RC (R-C circuit, charging

capacitor)

The charge and current are both exponential functions of time. Figure 26.21a is a
graph of Eq. (26.13) and Fig. 26.21b is a graph of Eq. (26.12).

Time Constant
After a time equal to RC, the current in the R-C circuit has decreased to 
(about 0.368) of its initial value. At this time, the capacitor charge has reached

of its final value The product RC is therefore a
measure of how quickly the capacitor charges. We call RC the time constant, or
the relaxation time, of the circuit, denoted by 

(26.14)

When is small, the capacitor charges quickly; when it is larger, the charging
takes more time. If the resistance is small, it’s easier for current to flow, and the
capacitor charges more quickly. If R is in ohms and C in farads, is in seconds.

In Fig. 26.21a the horizontal axis is an asymptote for the curve. Strictly speak-
ing, i never becomes exactly zero. But the longer we wait, the closer it gets. After
a time equal to 10RC, the current has decreased to 0.000045 of its initial value.
Similarly, the curve in Fig. 26.21b approaches the horizontal dashed line labeled

as an asymptote. The charge q never attains exactly this value, but after a time
equal to 10RC, the difference between q and is only 0.000045 of We invite
you to verify that the product RC has units of time.

Qf.Qf

Qf

t

t

t = RC  (time constant for R-C circuit)

t:

Qf = CE.11 - 1>e2 = 0.632

1>e

Pacemaker Electrical lead

Lung Lung

Heart

Application Pacemakers
and Capacitors
This x-ray image shows a pacemaker
implanted in a patient with a malfunctioning
sinoatrial node, the part of the heart that gen-
erates the electrical signal to trigger heart-
beats. The pacemaker circuit contains a
battery, a capacitor, and a computer-controlled
switch. To maintain regular beating, once per
second the switch discharges the capacitor
and sends an electrical pulse along the lead to
the heart. The switch then flips to allow the
capacitor to recharge for the next pulse.

PhET: Circuit Construction Kit (AC+DC) 
PhET: Circuit Construction Kit (DC Only)
ActivPhysics 12.6: Capacitance
ActivPhysics 12.7: Series and Parallel
Capacitors
ActivPhysics 12.8: Circuit Time Constants
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Discharging a Capacitor
Now suppose that after the capacitor in Fig. 26.21b has acquired a charge we
remove the battery from our R-C circuit and connect points a and c to an open
switch (Fig. 26.22a). We then close the switch and at the same instant reset our
stopwatch to at that time, The capacitor then discharges through
the resistor, and its charge eventually decreases to zero.

Again let i and q represent the time-varying current and charge at some instant
after the connection is made. In Fig. 26.22b we make the same choice of the pos-
itive direction for current as in Fig. 26.20b. Then Kirchhoff’s loop rule gives Eq.
(26.10) but with that is,

(26.15)

The current i is now negative; this is because positive charge q is leaving the left-
hand capacitor plate in Fig. 26.22b, so the current is in the direction opposite to
that shown in the figure. At time when the initial current is

To find q as a function of time, we rearrange Eq. (26.15), again change the
names of the variables to and and integrate. This time the limits for are

to q. We get

(26.16)

The instantaneous current i is the derivative of this with respect to time:

(26.17)i =
dq

dt
= -

Q0

RC
e-t/RC = I0e-t/RC

q = Q0e-t/RC  (R-C circuit, discharging capacitor)

 ln 
q

Q0
= -

t

RC

L
q

Q0

dq¿
q¿

= -
1

RC L
t

0
dt¿

Q0

q¿t¿,q¿

I0 = -Q0>RC.
q = Q0,t = 0,

i =
dq

dt
= -

q

RC

E = 0;

q = Q0.t = 0;

Q0,

(a) Capacitor initially charged

Switch
open

i � 0

cba R
C

+Q0 –Q0

When the switch is
closed, the charge
on the capacitor
and the current
both decrease
over time.

(b) Discharging the capacitor

i

Switch
closed

cba R
C

i +q –q

26.22 Discharging a capacitor. 
(a) Before the switch is closed at time

the capacitor charge is and the
current is zero. (b) At time t after the
switch is closed, the capacitor charge is 
q and the current is i. The actual current
direction is opposite to the direction
shown; i is negative. After a long time, 
q and i both approach zero.

Q0t = 0,

(R-C circuit,
discharging capacitor)

We graph the current and the charge in Fig. 26.23; both quantities approach zero
exponentially with time. Comparing these results with Eqs. (26.12) and (26.13),
we note that the expressions for the current are identical, apart from the sign of

The capacitor charge approaches zero asymptotically in Eq. (26.16), while the
difference between q and Q approaches zero asymptotically in Eq. (26.12).

Energy considerations give us additional insight into the behavior of an R-C
circuit. While the capacitor is charging, the instantaneous rate at which the bat-
tery delivers energy to the circuit is The instantaneous rate at which elec-
trical energy is dissipated in the resistor is , and the rate at which energy is
stored in the capacitor is Multiplying Eq. (26.9) by i, we find

(26.18)

This means that of the power supplied by the battery, part is dissipated
in the resistor and part is stored in the capacitor.

The total energy supplied by the battery during charging of the capacitor
equals the battery emf multiplied by the total charge or The total
energy stored in the capacitor, from Eq. (24.9), is Thus, of the energy
supplied by the battery, exactly half is stored in the capacitor, and the other half is
dissipated in the resistor. This half-and-half division of energy doesn’t depend on
C, R, or You can verify this result by taking the integral over time of each of
the power quantities in Eq. (26.18) (see Problem 26.88).

E.

Qf E>2.
EQf.Qf,E

1iq>C2
1i2R2Ei

Ei = i2R +
iq

C

ivbc = iq>C.
i2R

P = Ei.

I0.

The current
decreases exponen-

tially as the capacitor
discharges. (The current is

negative because its direction
is opposite to that in Fig. 26.22.)

The charge on the capacitor
       decreases exponentially as the
                capacitor discharges.

O

Q0/e
Q0/2

t
RC

Q0

q

(b) Graph of capacitor charge versus time
for a discharging capacitor

I0

O

i

I0/2

(a) Graph of current versus time for a
discharging capacitor

I0/e

RC
t

26.23 Current i and capacitor charge 
q as functions of time for the circuit of 
Fig. 26.22. The initial current is and the 
initial capacitor charge is Both i and
q asymptotically approach zero.

Q0.
I0
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Test Your Understanding of Section 26.4 The energy stored in a
capacitor is equal to When a capacitor is discharged, what fraction of 
the initial energy remains after an elapsed time of one time constant? (i) 
(ii) (iii) (iv) (v) answer depends on how much energy 
was stored initially. ❙

11 - 1/e22;1 - 1/e;1/e2;
1/e;

q2/2C.

Example 26.12 Charging a capacitor

A resistor is connected in series with a capacitor
and a battery with emf 12.0 V. Before the switch is closed at time

the capacitor is uncharged. (a) What is the time constant?
(b) What fraction of the final charge is on the capacitor at

(c) What fraction of the initial current is still flowing
at

SOLUTION

IDENTIFY and SET UP: This is the same situation as shown in Fig.
26.20, with and The
charge q and current i vary with time as shown in Fig. 26.21. Our tar-
get variables are (a) the time constant (b) the ratio at s,
and (c) the ratio at s. Equation (26.14) gives For a
capacitor being charged, Eq. (26.12) gives q and Eq. (26.13) gives i.

t.t = 46i>I0

t = 46q>Qft,

E = 12.0 V.C = 1.0 mF,R = 10 MÆ,

t = 46 s?
I0t = 46 s?

Qf

t = 0,

1.0-mF10-MÆ EXECUTE: (a) From Eq. (26.14),

(b) From Eq. (26.12),

(c) From Eq. (26.13),

EVALUATE: After 4.6 time constants the capacitor is 99% charged
and the charging current has decreased to 1.0% of its initial value.
The circuit would charge more rapidly if we reduced the time con-
stant by using a smaller resistance.

i

I0
= e-t>RC = e-146 s2>110 s2 = 0.010

q

Qf
= 1 - e-t>RC = 1 - e-146 s2>110 s2 = 0.99

t = RC = 110 * 106 Æ211.0 * 10-6 F2 = 10 s

Example 26.13 Discharging a capacitor

The resistor and capacitor of Example 26.12 are reconnected as
shown in Fig. 26.22. The capacitor has an initial charge of 
and is discharged by closing the switch at (a) At what time will
the charge be equal to (b) What is the current at this time?

SOLUTION

IDENTIFY and SET UP: Now the capacitor is being discharged, so q
and i vary with time as in Fig. 26.23, with 
Again we have RC � Our target variables are (a) the
value of t at which and (b) the value of i at this
time. We first solve Eq. (26.16) for t, and then solve Eq. (26.17)
for i.

q = 0.50 mC
t = 10 s.

Q0 = 5.0 * 10-6 C.

0.50 mC?
t = 0.

5.0 mC
EXECUTE: (a) Solving Eq. (26.16) for the time t gives

(b) From Eq. (26.17), with 

EVALUATE: The current in part (b) is negative because i has the
opposite sign when the capacitor is discharging than when it is
charging. Note that we could have avoided evaluating by
noticing that at the time in question, from Eq. (26.16)
this means that e-t>RC = 0.10.

q = 0.10Q0;
e-t>RC

i = -
Q0

RC
e-t>RC = -

5.0 * 10-6 C

10 s
e-2.3 = -5.0 * 10-8 A

Q0 = 5.0 mC = 5.0 * 10-6 C,

t = -RC ln
q

Q0
= -110 s2 ln

0.50 mC

5.0 mC
= 23 s = 2.3t

26.5 Power Distribution Systems
We conclude this chapter with a brief discussion of practical household and auto-
motive electric-power distribution systems. Automobiles use direct-current (dc)
systems, while nearly all household, commercial, and industrial systems use
alternating current (ac) because of the ease of stepping voltage up and down with
transformers. Most of the same basic wiring concepts apply to both. We’ll talk
about alternating-current circuits in greater detail in Chapter 31.

The various lamps, motors, and other appliances to be operated are always con-
nected in parallel to the power source (the wires from the power company for
houses, or from the battery and alternator for a car). If appliances were connected in
series, shutting one appliance off would shut them all off (see Example 26.2 in Sec-
tion 26.1). Figure 26.24 shows the basic idea of house wiring. One side of the “line,”
as the pair of conductors is called, is called the neutral side; it is always connected to
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“ground” at the entrance panel. For houses, ground is an actual electrode driven into
the earth (which is usually a good conductor) or sometimes connected to the house-
hold water pipes. Electricians speak of the “hot” side and the “neutral” side of the
line. Most modern house wiring systems have two hot lines with opposite polarity
with respect to the neutral. We’ll return to this detail later.

Household voltage is nominally 120 V in the United States and Canada, and
often 240 V in Europe. (For alternating current, which varies sinusoidally with
time, these numbers represent the root-mean-square voltage, which is times
the peak voltage. We’ll discuss this further in Section 31.1.) The amount of current
I drawn by a given device is determined by its power input P, given by Eq. (25.17):

Hence For example, the current in a 100-W light bulb is

The power input to this bulb is actually determined by its resistance R. Using 
Eq. (25.18), which states that for a resistor, the resist-
ance of this bulb at operating temperature is

Similarly, a 1500-W waffle iron draws a current of 
and has a resistance, at operating temperature, of Because of the temperature
dependence of resistivity, the resistances of these devices are considerably less
when they are cold. If you measure the resistance of a 100-W light bulb with an
ohmmeter (whose small current causes very little temperature rise), you will prob-
ably get a value of about When a light bulb is turned on, this low resistance
causes an initial surge of current until the filament heats up. That’s why a light
bulb that’s ready to burn out nearly always does so just when you turn it on.

Circuit Overloads and Short Circuits
The maximum current available from an individual circuit is limited by the resist-
ance of the wires. As we discussed in Section 25.5, the power loss in the wires
causes them to become hot, and in extreme cases this can cause a fire or melt the
wires. Ordinary lighting and outlet wiring in houses usually uses 12-gauge wire.
This has a diameter of 2.05 mm and can carry a maximum current of 20 A safely
(without overheating). Larger-diameter wires of the same length have lower resist-
ance [see Eq. (25.10)]. Hence 8-gauge (3.26 mm) or 6-gauge (4.11 mm) are used
for high-current appliances such as clothes dryers, and 2-gauge (6.54 mm) or
larger is used for the main power lines entering a house.

I 2R

10 Æ.

9.6 Æ.
11500 W2>1120 V2 = 12.5 A

R =
V

I
=

120 V

0.83 A
= 144 Æ  or  R =

V2

P
=
1120 V22

100 W
= 144 Æ

P = VI = I 2R = V2>R

I =
P

V
=

100 W

120 V
= 0.83 A

I = P>V.P = VI.

1>12

Hot
line

Neutral
line

Hot
line

Neutral
line

Main
fuse

From power
company

Meter

Outlets
Switch

Light

Fuse

Outlets
Switch

Light

Fuse

Ground

26.24 Schematic diagram of part of a house wiring system. Only two branch circuits are shown; an actual system might have four to
thirty branch circuits. Lamps and appliances may be plugged into the outlets. The grounding wires, which normally carry no current, are
not shown.



Protection against overloading and overheating of circuits is provided by fuses
or circuit breakers. A fuse contains a link of lead–tin alloy with a very low melting
temperature; the link melts and breaks the circuit when its rated current is exceeded
(Fig. 26.25a). A circuit breaker is an electromechanical device that performs the
same function, using an electromagnet or a bimetallic strip to “trip” the breaker and
interrupt the circuit when the current exceeds a specified value (Fig. 26.25b).
Circuit breakers have the advantage that they can be reset after they are tripped,
while a blown fuse must be replaced.

If your system has fuses and you plug too many high-current appliances into
the same outlet, the fuse blows. Do not replace the fuse with one of larger rating;
if you do, you risk overheating the wires and starting a fire. The only safe solu-
tion is to distribute the appliances among several circuits. Modern kitchens often
have three or four separate 20-A circuits.

Contact between the hot and neutral sides of the line causes a short circuit.
Such a situation, which can be caused by faulty insulation or by any of a variety
of mechanical malfunctions, provides a very low-resistance current path, permit-
ting a very large current that would quickly melt the wires and ignite their insula-
tion if the current were not interrupted by a fuse or circuit breaker (see Example
25.10 in Section 25.5). An equally dangerous situation is a broken wire that inter-
rupts the current path, creating an open circuit. This is hazardous because of the
sparking that can occur at the point of intermittent contact.

In approved wiring practice, a fuse or breaker is placed only in the hot side of
the line, never in the neutral side. Otherwise, if a short circuit should develop
because of faulty insulation or other malfunction, the ground-side fuse could
blow. The hot side would still be live and would pose a shock hazard if you
touched the live conductor and a grounded object such as a water pipe. For simi-
lar reasons the wall switch for a light fixture is always in the hot side of the line,
never the neutral side.

Further protection against shock hazard is provided by a third conductor
called the grounding wire, included in all present-day wiring. This conductor cor-
responds to the long round or U-shaped prong of the three-prong connector plug
on an appliance or power tool. It is connected to the neutral side of the line at the
entrance panel. The grounding wire normally carries no current, but it connects
the metal case or frame of the device to ground. If a conductor on the hot side of
the line accidentally contacts the frame or case, the grounding conductor pro-
vides a current path, and the fuse blows. Without the ground wire, the frame
could become “live”—that is, at a potential 120 V above ground. Then if you
touched it and a water pipe (or even a damp basement floor) at the same time, you
could get a dangerous shock (Fig. 26.26). In some situations, especially outlets
located outdoors or near a sink or other water pipes, a special kind of circuit
breaker called a ground-fault interrupter (GFI or GFCI) is used. This device
senses the difference in current between the hot and neutral conductors (which is
normally zero) and trips when this difference exceeds some very small value,
typically 5 mA.

Household and Automotive Wiring
Most modern household wiring systems actually use a slight elaboration of the sys-
tem described above. The power company provides three conductors. One is neu-
tral; the other two are both at 120 V with respect to the neutral but with opposite
polarity, giving a voltage between them of 240 V. The power company calls this a
three-wire line, in contrast to the 120-V two-wire (plus ground wire) line described
above. With a three-wire line, 120-V lamps and appliances can be connected
between neutral and either hot conductor, and high-power devices requiring 240 V,
such as electric ranges and clothes dryers, are connected between the two hot lines.

All of the above discussion can be applied directly to automobile wiring. The
voltage is about 13 V (direct current); the power is supplied by the battery and by
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(a)

(b)

26.25 (a) Excess current will melt the
thin wire of lead–tin alloy that runs along
the length of a fuse, inside the transparent
housing. (b) The switch on this circuit
breaker will flip if the maximum allowable
current is exceeded.
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the alternator, which charges the battery when the engine is running. The neutral
side of each circuit is connected to the body and frame of the vehicle. For this
low voltage a separate grounding conductor is not required for safety. The fuse or
circuit breaker arrangement is the same in principle as in household wiring.
Because of the lower voltage (less energy per charge), more current (a greater
number of charges per second) is required for the same power; a 100-W headlight
bulb requires a current of about 

Although we spoke of power in the above discussion, what we buy from the
power company is energy. Power is energy transferred per unit time, so energy is
average power multiplied by time. The usual unit of energy sold by the power
company is the kilowatt-hour 

In the United States, one kilowatt-hour typically costs 8 to 27 cents, depending
on the location and quantity of energy purchased. To operate a 1500-W (1.5-kW)
waffle iron continuously for 1 hour requires of energy; at 10 cents per
kilowatt-hour, the energy cost is 15 cents. The cost of operating any lamp or
appliance for a specified time can be calculated in the same way if the power rat-
ing is known. However, many electric cooking utensils (including waffle irons)
cycle on and off to maintain a constant temperature, so the average power may be
less than the power rating marked on the device.

1.5 kW # h

1 kW # h = 1103 W213600 s2 = 3.6 * 106 W # s = 3.6 * 106 J

11 kW # h2:

1100 W2>113 V2 = 8 A.

(b) Three-prong plug(a) Two-prong plug 26.26 (a) If a malfunctioning electric
drill is connected to a wall socket via a
two-prong plug, a person may receive a
shock. (b) When the drill malfunctions
when connected via a three-prong plug, a
person touching it receives no shock,
because electric charge flows through the
ground wire (shown in green) to the third
prong and into the ground rather than into
the person’s body. If the ground current is
appreciable, the fuse blows.

Example 26.14 A kitchen circuit

An 1800-W toaster, a 1.3-kW electric frying pan, and a 100-W
lamp are plugged into the same 20-A, 120-V circuit. (a) What cur-
rent is drawn by each device, and what is the resistance of each
device? (b) Will this combination trip the circuit breaker?

SOLUTION

IDENTIFY and SET UP: When plugged into the same circuit, the
three devices are connected in parallel, so the voltage across each
appliance is We find the current I drawn by each
device using the relationship where P is the power input
of the device. To find the resistance R of each device we use the
relationship P = V2>R.

P = VI,
V = 120 V.

EXECUTE: (a) To simplify the calculation of current and resistance,
we note that and Hence

For constant voltage the device with the least resistance (in this case
the toaster) draws the most current and receives the most power.

Rlamp =
1120 V22

100 W
= 144 ÆIlamp =

100 W

120 V
= 0.83 A

Rfrying pan =
1120 V22

1300 W
= 11 ÆIfrying pan =

1300 W

120 V
= 11 A

Rtoaster =
1120 V22

1800 W
= 8 ÆItoaster =

1800 W

120 V
= 15 A

R = V2>P.I = P>V

Continued
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Test Your Understanding of Section 26.5 To prevent the circuit breaker in
Example 26.14 from blowing, a home electrician replaces the circuit breaker with one
rated at 40 A. Is this a reasonable thing to do? ❙

(b) The total current through the line is the sum of the currents
drawn by the three devices:

This exceeds the 20-A rating of the line, and the circuit breaker
will indeed trip.

EVALUATE: We could also find the total current by using 
and dividing the total power P delivered to all three devices by the
voltage:

=
1800 W + 1300 W + 100 W

120 V
= 27 A

I =
Ptoaster + Pfrying pan + Plamp

V

I = P>V

= 15 A + 11 A + 0.83 A = 27 A

I = Itoaster + Ifrying pan + Ilamp

A third way to determine I is to use , where is the
equivalent resistance of the three devices in parallel:

Appliances with such current demands are common, so modern
kitchens have more than one 20-A circuit. To keep currents safely
below 20 A, the toaster and frying pan should be plugged into dif-
ferent circuits.

I =
V

Req
= 1120 V2a

1

8 Æ
+

1

11 Æ
+

1

144 Æ
b = 27 A

ReqI = V>Req
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CHAPTER 26 SUMMARY

a x y bR1 R2 R3

Resistors in series

II

a b

Resistors
in parallel

II

R1

R2

R3

Kirchhoff’s rules: Kirchhoff’s junction rule is based on
conservation of charge. It states that the algebraic sum
of the currents into any junction must be zero. Kirch-
hoff’s loop rule is based on conservation of energy and
the conservative nature of electrostatic fields. It states
that the algebraic sum of potential differences around
any loop must be zero. Careful use of consistent sign
rules is essential in applying Kirchhoff’s rules. (See
Examples 26.3–26.7.)

Household wiring: In household wiring systems, the various electrical devices are connected in 
parallel across the power line, which consists of a pair of conductors, one “hot” and the other 
“neutral.” An additional “ground” wire is included for safety. The maximum permissible current 
in a circuit is determined by the size of the wires and the maximum temperature they can tolerate.
Protection against excessive current and the resulting fire hazard is provided by fuses or circuit
breakers. (See Example 26.14.)

(junction rule) (26.5)

(loop rule) (26.6)aV = 0
a I = 0

++

At any junction:
SI 5 0

Around any loop: SV 5 0

I2

I1 1 I2

I1

Junction

Loop 2

Loop 1

Loop 3 R
E E

O

i, q
q versus t

i versus t

t

+

1q 2q

R C

i
i

E

Resistors in series and parallel: When several resistors
are connected in series, the equivalent

resistance is the sum of the individual resistances.
The same current flows through all the resistors in a
series connection. When several resistors are connected
in parallel, the reciprocal of the equivalent resistance

is the sum of the reciprocals of the individual resist-
ances. All resistors in a parallel connection have the
same potential difference between their terminals. (See
Examples 26.1 and 26.2.)

Req

Req

R1, R2, R3, Á
(26.1)

(resistors in series)

(26.2)

(resistors in parallel)

1

Req
=

1

R1
+

1

R2
+

1

R3
+ Á

Req = R1 + R2 + R3 + Á

R-C circuits: When a capacitor is charged by a battery in
series with a resistor, the current and capacitor charge are
not constant. The charge approaches its final value asymp-
totically and the current approaches zero asymptotically.
The charge and current in the circuit are given by 
Eqs. (26.12) and (26.13). After a time the charge
has approached within of its final value. This time is
called the time constant or relaxation time of the circuit.
When the capacitor discharges, the charge and current are
given as functions of time by Eqs. (26.16) and (26.17).
The time constant is the same for charging and discharg-
ing. (See Examples 26.12 and 26.13.)

1>e
t = RC,

Electrical measuring instruments: In a d’Arsonval galvanometer, the deflection is proportional to
the current in the coil. For a larger current range, a shunt resistor is added, so some of the current
bypasses the meter coil. Such an instrument is called an ammeter. If the coil and any additional
series resistance included obey Ohm’s law, the meter can also be calibrated to read potential differ-
ence or voltage. The instrument is then called a voltmeter. A good ammeter has very low resistance;
a good voltmeter has very high resistance. (See Examples 26.8–26.11.)

a b

R s

R c

Va Vb

| |
| |

| | | | | | | | | | | | | | | | | | | | | |

–+

Circuit
element

I I

I Ia bR sh

R c

| |
| |

| | | | | | | | | | | | | | | | | | | | | |

+ –

Ammeter Voltmeter

Capacitor charging:

(26.12)

(26.13)

Capacitor discharging:

(26.16)

(26.17)

= I0e-t/RC

i =
dq

dt
= -

Q0

RC
e-t/RC

q = Q0e-t/RC

= I0e-t/RC

i =
dq

dt
=

E

R
e-t/RC

= Qf A1 - e-t/RC B

q = CE A1 - e-t/RC B
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A 2.40- F capacitor and a 3.60- F capacitor are connected in
series. (a) A charge of 5.20 mC is placed on each capacitor. What is
the energy stored in the capacitors? (b) A 655- resistor is con-
nected to the terminals of the capacitor combination, and a voltmeter
with resistance is connected across the resistor. What
is the rate of change of the energy stored in the capacitors just after
the connection is made? (c) How long after the connection is made
has the energy stored in the capacitors decreased to 1 e of its initial
value? (d) At the instant calculated in part (c), what is the rate of
change of the energy stored in the capacitors?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. The two capacitors act as a single equivalent capacitor (see

Section 24.2), and the resistor and voltmeter act as a single
equivalent resistor. Select equations that will allow you to cal-
culate the values of these equivalent circuit elements.

>

Æ4.58 * 104

Æ

mm 2. Equation (24.9) gives the energy stored in a capacitor. Equa-
tions (26.16) and (26.17) give the capacitor charge and current
as functions of time. Use these to set up the solutions to the var-
ious parts of this problem. (Hint: The rate at which energy is
lost by the capacitors equals the rate at which energy is dissi-
pated in the resistances.)

EXECUTE
3. Find the stored energy at t � 0.
4. Find the rate of change of the stored energy at t � 0.
5. Find the value of t at which the stored energy has 1 e of the

value you found in step 3.
6. Find the rate of change of the stored energy at the time you

found in step 5.

EVALUATE
7. Check your results from steps 4 and 6 by calculating the rate of

change in a different way. (Hint: The rate of change of the
stored energy U is dU dt.)>

>

BRIDGING PROBLEM Two Capacitors and Two Resistors

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q26.1 In which 120-V light bulb does the filament have greater
resistance: a 60-W bulb or a 120-W bulb? If the two bulbs are con-
nected to a 120-V line in series, through which bulb will there be
the greater voltage drop? What if they are connected in parallel?
Explain your reasoning.
Q26.2 Two 120-V light bulbs, one 25-W and one 200-W, were
connected in series across a 240-V line. It seemed like a good idea
at the time, but one bulb burned out almost immediately. Which
one burned out, and why?
Q26.3 You connect a number of identical light bulbs to a flashlight
battery. (a) What happens to the brightness of each bulb as more
and more bulbs are added to the circuit if you connect them (i) in
series and (ii) in parallel? (b) Will the battery last longer if the
bulbs are in series or in parallel? Explain your reasoning.
Q26.4 In the circuit shown in Fig. Q26.4, three
identical light bulbs are connected to a flashlight
battery. How do the brightnesses of the bulbs
compare? Which light bulb has the greatest cur-
rent passing through it? Which light bulb has
the greatest potential difference between its ter-
minals? What happens if bulb A is unscrewed?
Bulb B? Bulb C? Explain your reasoning.
Q26.5 If two resistors and 

are connected in series as shown in
Fig. Q26.5, which of the following must
be true? In each case justify your
answer. (a) (b) The current is greater in than in 
(c) The electrical power consumption is the same for both resistors.
(d) The electrical power consumption is greater in than in R1.R2

R2.R1I1 = I2 = I3.

R12
1R2 7R2R1

(e) The potential drop is the same across both resistors. (f) The
potential at point a is the same as at point c. (g) The potential at
point b is lower than at point c. (h) The potential at point c is lower
than at point b.
Q26.6 If two resistors and 

are connected in parallel as shown
in Fig. Q26.6, which of the following
must be true? In each case justify your
answer. (a) (b) (c) The
current is greater in than in 
(d) The rate of electrical energy con-
sumption is the same for both resistors. (e) The rate of electrical
energy consumption is greater in than in (f) 
(g) Point c is at higher potential than point d. (h) Point f is at
higher potential than point e. (i) Point c is at higher potential than
point e.
Q26.7 Why do the lights on a car
become dimmer when the starter
is operated?
Q26.8 A resistor consists of three
identical metal strips connected as
shown in Fig. Q26.8. If one of the
strips is cut out, does the ammeter
reading increase, decrease, or stay
the same? Why?
Q26.9 A light bulb is connected in
the circuit shown in Fig. Q26.9. If
we close the switch S, does the
bulb’s brightness increase, decrease,
or remain the same? Explain why.

Vcd = Vef = Vab.R1.R2

R2.R1

I3 = I4.I1 = I2.

R12
1R2 7R2R1

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.
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Exercises 875

Q26.10 A real battery, having nonnegligible
internal resistance, is connected across a light
bulb as shown in Fig. Q26.10. When the
switch S is closed, what happens to the bright-
ness of the bulb? Why?
Q26.11 If the battery in Discussion Question
Q26.10 is ideal with no internal resistance,
what will happen to the brightness of the bulb
when S is closed? Why?
Q26.12 For the circuit shown in Fig. Q26.12
what happens to the brightness of the bulbs
when the switch S is closed if the battery
(a) has no internal resistance and (b) has
nonnegligible internal resistance? Explain
why.
Q26.13 Is it possible to connect resistors together in a way that
cannot be reduced to some combination of series and parallel com-
binations? If so, give examples. If not, state why not.
Q26.14 The direction of current in a battery can be reversed by con-
necting it to a second battery of greater emf with the positive termi-
nals of the two batteries together. When the direction of current is
reversed in a battery, does its emf also reverse? Why or why not?
Q26.15 In a two-cell flashlight, the batteries are usually connected in
series. Why not connect them in parallel? What possible advantage
could there be in connecting several identical batteries in parallel?
Q26.16 The greater the diameter of the wire used in household
wiring, the greater the maximum current that can safely be carried
by the wire. Why is this? Does the maximum permissible current
depend on the length of the wire? Does it depend on what the wire
is made of? Explain your reasoning.
Q26.17 The emf of a flashlight battery is roughly constant with
time, but its internal resistance increases with age and use. What
sort of meter should be used to test the freshness of a battery?
Q26.18 Is it possible to have a circuit in which the potential differ-
ence across the terminals of a battery in the circuit is zero? If so,
give an example. If not, explain why not.
Q26.19 Verify that the time constant RC has units of time.
Q26.20 For very large resistances it is easy to construct R-C cir-
cuits that have time constants of several seconds or minutes. How
might this fact be used to measure very large resistances, those that
are too large to measure by more conventional means?
Q26.21 Whan a capacitor, battery, and resistor are connected in
series, does the resistor affect the maximum charge stored on the
capacitor? Why or why not? What purpose does the resistor serve?

EXERCISES
Section 26.1 Resistors in Series and Parallel
26.1 .. A uniform wire of resistance R is
cut into three equal lengths. One of these
is formed into a circle and connected
between the other two (Fig. E26.1). What
is the resistance between the opposite ends
a and b?
26.2 .. A machine part has a
resistor X protruding from an
opening in the side. This resistor
is connected to three other resis-
tors, as shown in Fig. E26.2. An
ohmmeter connected across a
and b reads What is
the resistance of X?

2.00 Æ.

26.3 . A resistor with is connected to a battery that
has negligible internal resistance and electrical energy is dissipated
by at a rate of 36.0 W. If a second resistor with is
connected in series with , what is the total rate at which electri-
cal energy is dissipated by the two resistors?
26.4 . A resistor and a resistor are connected in par-
allel, and the combination is connected across a 240-V dc line. 
(a) What is the resistance of the parallel combination? (b) What is
the total current through the parallel combination? (c) What is the
current through each resistor?
26.5 . A triangular array of resistors is
shown in Fig. E26.5. What current will
this array draw from a 35.0-V battery
having negligible internal resistance if
we connect it across (a) ab; (b) bc; (c) ac?
(d) If the battery has an internal resistance
of what current will the array
draw if the battery is connected across bc?
26.6 .. For the circuit shown
in Fig. E26.6 both meters are
idealized, the battery has no
appreciable internal resistance,
and the ammeter reads 1.25 A.
(a) What does the voltmeter
read? (b) What is the emf of
the battery?
26.7 .. For the circuit shown in
Fig. E26.7 find the reading of the
idealized ammeter if the battery has
an internal resistance of 
26.8 . Three resistors having
resistances of and

are connected in parallel to
a 28.0-V battery that has negligible
internal resistance. Find (a) the
equivalent resistance of the combination; (b) the current in each
resistor; (c) the total current through the battery; (d) the voltage
across each resistor; (e) the power dissipated in each resistor. (f)
Which resistor dissipates the most power: the one with the greatest
resistance or the least resistance? Explain why this should be.
26.9 . Now the three resistors of Exercise 26.8 are connected in
series to the same battery. Answer the same questions for this
situation.
26.10 .. Power Rating of a Resistor. The power rating of a
resistor is the maximum power the resistor can safely dissipate with-
out too great a rise in temperature and hence damage to the resistor.
(a) If the power rating of a resistor is 5.0 W, what is the max-
imum allowable potential difference across the terminals of the
resistor? (b) A resistor is to be connected across a 120-V
potential difference. What power rating is required? (c) A
and a resistor, both rated at 2.00 W, are connected in series
across a variable potential difference. What is the greatest this poten-
tial difference can be without overheating either resistor, and what is
the rate of heat generated in each
resistor under these conditions?
26.11 . In Fig. E26.11, 

, , and
. The battery has

negligible internal resistance.
The current through is
4.00 A. (a) What are the cur-
rents and ? (b) What is the
emf of the battery?
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26.25 . In the circuit shown
in Fig. E26.25 find (a) the current in resistor
R; (b) the resistance R; (c) the unknown emf

(d) If the circuit is broken at point x, what
is the current in resistor R?
26.26 . Find the emfs and in the cir-
cuit of Fig. E26.26, and find the potential
difference of point b relative to point a.

26.27 . In the circuit shown in Fig. E26.27, find (a) the current in
the resistor; (b) the unknown emfs and (c) the resist-
ance R. Note that three currents are given.

E2;E13.00-Æ

E2E1

E.

26.12 .. In Fig. E26.11 the battery has emf 25.0 V and negligible
internal resistance. . The current through is 1.50 A
and the current through .
What are the resistances and ?
26.13 . Compute the equivalent resistance
of the network in Fig. E26.13, and find the
current in each resistor. The battery has
negligible internal resistance.
26.14 . Compute the equivalent resistance
of the network in Fig. E26.14, and find the
current in each resistor. The battery has
negligible internal resistance.
26.15 . In the circuit of Fig. E26.15, 
each resistor represents a light bulb. Let

and
(a) Find the current in each bulb.

(b) Find the power dissipated in each bulb.
Which bulb or bulbs glow the brightest?
(c) Bulb is now removed from the cir-
cuit, leaving a break in the wire at its posi-
tion. Now what is the current in each of the
remaining bulbs and (d) With
bulb removed, what is the power dissi-
pated in each of the remaining bulbs? 
(e) Which light bulb(s) glow brighter as a
result of removing Which bulb(s) glow
less brightly? Discuss why there are differ-
ent effects on different bulbs.
26.16 . Consider the circuit shown in
Fig. E26.16. The current through the

resistor is 4.00 A, in the direction
shown. What are the currents through the

and resistors?
26.17 . In the circuit shown in Fig.
E26.17, the voltage across the 
resistor is 12.0 V. What are the emf of the
battery and the current through the 
resistor?
26.18 . A Three-Way Light Bulb. A
three-way light bulb has three brightness
settings (low, medium, and high) but only two filaments. (a) A par-
ticular three-way light bulb connected across a 120-V line can dis-
sipate 60 W, 120 W, or 180 W. Describe how the two filaments are
arranged in the bulb, and calculate the resistance of each filament.
(b) Suppose the filament with the higher resistance burns out. How
much power will the bulb dissipate on each of the three brightness
settings? What will be the brightness (low, medium, or high) on
each setting? (c) Repeat part (b) for the situation in which the fila-
ment with the lower resistance burns out.
26.19 .. Working Late! You are working late in your electronics
shop and find that you need various resistors for a project. But alas, all
you have is a big box of resistors. Show how you can make
each of the following equivalent resistances by a combination of your

resistors: (a) (b) (c) (d) 
26.20 . In the circuit shown in Fig.
E26.20, the rate at which is dissi-
pating electrical energy is 20.0 W.
(a) Find and (b) What is the
emf of the battery? (c) Find the cur-
rent through both and the 
resistor. (d) Calculate the total elec-
trical power consumption in all the
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R2.R1

R1
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+
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resistors and the electrical power delivered by the battery. Show
that your results are consistent with conservation of energy.
26.21 . Light Bulbs in Series and in Parallel. Two light bulbs
have resistances of and If the two light bulbs are
connected in series across a 120-V line, find (a) the current through
each bulb; (b) the power dissipated in each bulb; (c) the total
power dissipated in both bulbs. The two light bulbs are now con-
nected in parallel across the 120-V line. Find (d) the current
through each bulb; (e) the power dissipated in each bulb; (f) the
total power dissipated in both bulbs. (g) In each situation, which of
the two bulbs glows the brightest? (h) In which situation is there a
greater total light output from both bulbs combined?
26.22 . Light Bulbs in Series. A 60-W, 120-V light bulb and a
200-W, 120-V light bulb are connected in series across a 240-V
line. Assume that the resistance of each bulb does not vary with
current. (Note: This description of a light bulb gives the power it
dissipates when connected to the stated potential difference; that
is, a 25-W, 120-V light bulb dissipates 25 W when connected to a
120-V line.) (a) Find the current through the bulbs. (b) Find the
power dissipated in each bulb. (c) One bulb burns out very quickly.
Which one? Why?
26.23 .. CP In the circuit in Fig.
E26.23, a resistor is inside
100 g of pure water that is surrounded
by insulating styrofoam. If the water
is initially at how long will it
take for its temperature to rise to

Section 26.2 Kirchhoff’s Rules
26.24 .. The batteries shown in
the circuit in Fig. E26.24 have
negligibly small internal resist-
ances. Find the current through
(a) the resistor; (b) the

resistor; (c) the 10.0-V
battery.
20.0-Æ

30.0-Æ

58.0°C?

10.0°C,

20.0-Æ

800 Æ.400 Æ
E � 60.0 V, r 5 0

3.00 V 12.0 V

6.00 V 4.00 V

+

Figure E26.13

R1

R2 R4

R3+

E

Figure E26.15

25.0 V

6.00 V

8.00 V

20.0 V

+

E

4.00 A

Figure E26.16

1.00 V 2.00 V
6.00 V

+
E

Figure E26.17

10.0 V 10.0 V

10.0 V20.0 V

Water

10.0 V

5.0 V 5.0 V

5.0 V30.0 V
+

Figure E26.20

E R1R2
10.0 V

2.00 A

3.50 A

+

Figure E26.23

+

+

28.0 V R

x

4.00 A

6.00 A

3.00 V

6.00 V

E

Figure E26.25

10.0 V
20.0 V

5.00 V

30.0
V

+

+

Figure E26.24

1.00 V
+

1.00 V

20.0 V1.00 V
+

4.00 V

+

1.00 A

a

2.00 A
b

6.00 V

2.00 V
E2

E1

Figure E26.26



26.28 .. In the circuit shown
in Fig. E26.28, find (a) the cur-
rent in each branch and (b) the
potential difference of
point a relative to point b.
26.29 . The 10.00-V battery
in Fig. E26.28 is removed
from the circuit and reinserted
with the opposite polarity, so
that its positive terminal is now next to point a. The rest of the cir-
cuit is as shown in the figure. Find (a) the current in each branch
and (b) the potential difference of point a relative to point b.
26.30 . The 5.00-V battery in Fig. E26.28 is removed from the
circuit and replaced by a 20.00-V battery, with its negative termi-
nal next to point b. The rest of the circuit is as shown in the figure.
Find (a) the current in each branch and (b) the potential difference

of point a relative to point b.
26.31 .. In the circuit shown in Fig. E26.31 the batteries have
negligible internal resistance and the meters are both idealized.
With the switch S open, the voltmeter reads 15.0 V. (a) Find the
emf of the battery. (b) What will the ammeter read when the
switch is closed?

26.32 .. In the circuit shown
in Fig. E26.32 both batteries
have insignificant internal
resistance and the idealized
ammeter reads 1.50 A in the
direction shown. Find the emf

of the battery. Is the polarity
shown correct?
26.33 . In the circuit shown
in Fig. E26.33 all meters are
idealized and the batteries
have no appreciable internal
resistance. (a) Find the read-
ing of the voltmeter with the
switch S open. Which point is
at a higher potential: a or b?
(b) With the switch closed, find the reading of the voltmeter and
the ammeter. Which way (up or down) does the current flow
through the switch?
26.34 .. In the circuit shown in Fig. E26.34, the resistor is
consuming energy at a rate of 24 J/s when the current through it flows 
as shown. (a) Find the current through the ammeter A. (b) What are
the polarity and emf of the battery, assuming it has negligible inter-
nal resistance?

E

6.0-Æ

E

E

Vab

Vab

Vab

Exercises 877

Section 26.3 Electrical Measuring Instruments
26.35 . The resistance of a galvanometer coil is and the
current required for full-scale deflection is (a) Show in a
diagram how to convert the galvanometer to an ammeter reading
20.0 mA full scale, and compute the shunt resistance. (b) Show
how to convert the galvanometer to a voltmeter reading 500 mV
full scale, and compute the series resistance.
26.36 . The resistance of the coil of a 
pivoted-coil galvanometer is and a
current of 0.0224 A causes it to deflect full
scale. We want to convert this galvanome-
ter to an ammeter reading 20.0 A full scale.
The only shunt available has a resistance of

What resistance R must be connected in series with the
coil (Fig. E26.36)?
26.37 . A circuit consists of a series combination of and

resistors connected across a 50.0-V battery having negli-
gible internal resistance. You want to measure the true potential
difference (that is, the potential difference without the meter pres-
ent) across the resistor using a voltmeter having an inter-
nal resistance of (a) What potential difference does the
voltmeter measure across the resistor? (b) What is the
true potential difference across this resistor when the meter is not
present? (c) By what percentage is the voltmeter reading in error
from the true potential difference?
26.38 . A galvanometer having a resistance of has a

shunt resistance installed to convert it to an ammeter. It is
then used to measure the current in a circuit consisting of a 
resistor connected across the terminals of a 25.0-V battery having
no appreciable internal resistance. (a) What current does the
ammeter measure? (b) What should be the true current in the cir-
cuit (that is, the current without the ammeter present)? (c) By what
percentage is the ammeter reading in error from the true current?
26.39 . In the ohmmeter in Fig. E26.39 M is
a 2.50-mA meter of resistance (A
2.50-mA meter deflects full scale when the
current through it is 2.50 mA.) The battery B
has an emf of 1.52 V and negligible internal
resistance. R is chosen so that when the ter-
minals a and b are shorted the meter reads full scale.
When a and b are open the meter reads zero. (a) What
is the resistance of the resistor R? (b) What current indicates a
resistance of (c) What values of correspond to meter
deflections of and of full scale if the deflection is propor-
tional to the current through the galvanometer?

Section 26.4 R-C Circuits
26.40 . A capacitor that is initially uncharged is con-
nected in series with a resistor and an emf source with

and negligible internal resistance. Just after the circuit
is completed, what are (a) the voltage drop across the capacitor; 
E = 245 V
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(b) the voltage drop across the resistor; (c) the charge on the capac-
itor; (d) the current through the resistor? (e) A long time after the
circuit is completed (after many time constants) what are the val-
ues of the quantities in parts (a)–(d)?
26.41 . A capacitor is charged to a potential of 12.0 V and is then
connected to a voltmeter having an internal resistance of 
After a time of 4.00 s the voltmeter reads 3.0 V. What are (a) the
capacitance and (b) the time constant of the circuit?
26.42 . A capacitor is connected through a 
resistor to a constant potential difference of 60.0 V. (a) Compute
the charge on the capacitor at the following times after the connec-
tions are made: 0, 5.0 s, 10.0 s, 20.0 s, and 100.0 s. (b) Compute
the charging currents at the same instants. (c) Graph the results of
parts (a) and (b) for t between 0 and 20 s.
26.43 .. CP In the circuit shown in
Fig. E26.43 both capacitors are ini-
tially charged to 45.0 V. (a) How
long after closing the switch S will
the potential across each capacitor
be reduced to 10.0 V, and (b) what
will be the current at that time?
26.44 . A resistor and a capacitor
are connected in series to an emf source. The time constant for the
circuit is 0.870 s. (a) A second capacitor, identical to the first, is
added in series. What is the time constant for this new circuit? (b)
In the original circuit a second capacitor, identical to the first, is
connected in parallel with the first capacitor. What is the time con-
stant for this new circuit?
26.45 . An emf source with a resistor with 

and a capacitor with are connected in series.
As the capacitor charges, when the current in the resistor is 0.900 A,
what is the magnitude of the charge on each plate of the capacitor?
26.46 . A capacitor is charging through a resis-
tor using a 10.0-V battery. What will be the current when the
capacitor has acquired of its maximum charge? Will it be of the
maximum current?
26.47 .. CP In the circuit shown in
Fig. E26.47 each capacitor initially
has a charge of magnitude 3.50 nC
on its plates. After the switch S is
closed, what will be the current in
the circuit at the instant that the
capacitors have lost 80.0% of their
initial stored energy?
26.48 . A capacitor is
charged to a potential of 50.0 V and then discharged through a

resistor. How long does it take the capacitor to lose (a) half
of its charge and (b) half of its stored energy?
26.49 . In the circuit in Fig. E26.49 the capacitors are all initially
uncharged, the battery has no internal resistance, and the ammeter is
idealized. Find the reading of the ammeter (a) just after the switch S
is closed and (b) after the switch has been closed for a very long time.

175-Æ

12.0-mF

1
4

1
4

12.0-Æ1.50-mF

C = 4.00 mF80.0 Æ,
R =E = 120 V,

0.895-MÆ12.4-mF

3.40 MÆ.

26.50 . In the circuit shown 
in Fig. E26.50, 

and the emf has negli-
gible resistance. Initially the capac-
itor is uncharged and the switch S is
in position 1. The switch is then
moved to position 2, so that the
capacitor begins to charge. (a) What
will be the charge on the capacitor a
long time after the switch is moved
to position 2? (b) After the switch has been in position 2 for 3.00 ms,
the charge on the capacitor is measured to be What is the
value of the resistance R? (c) How long after the switch is moved
to position 2 will the charge on the capacitor be equal to 99.0% of
the final value found in part (a)?
26.51 . A capacitor with is connected as
shown in Fig. E26.50 with a resistor with and an emf
source with and negligible internal resistance. Initially
the capacitor is uncharged and the switch S is in position 1. The
switch is then moved to position 2, so that the capacitor begins to
charge. After the switch has been in position 2 for 10.0 ms, the switch
is moved back to position 1 so that the capacitor begins to discharge.
(a) Compute the charge on the capacitor just before the switch is
thrown from position 2 back to position 1. (b) Compute the voltage
drops across the resistor and across the capacitor at the instant
described in part (a). (c) Compute the voltage drops across the resis-
tor and across the capacitor just after the switch is thrown from posi-
tion 2 back to position 1. (d) Compute the charge on the capacitor
10.0 ms after the switch is thrown from position 2 back to position 1.

Section 26.5 Power Distribution Systems
26.52 . The heating element of an electric dryer is rated at 4.1 kW
when connected to a 240-V line. (a) What is the current in the heat-
ing element? Is 12-gauge wire large enough to supply this current?
(b) What is the resistance of the dryer’s heating element at its oper-
ating temperature? (c) At 11 cents per kWh, how much does it cost
per hour to operate the dryer?
26.53 . A 1500-W electric heater is plugged into the outlet of a
120-V circuit that has a 20-A circuit breaker. You plug an electric
hair dryer into the same outlet. The hair dryer has power settings of
600 W, 900 W, 1200 W, and 1500 W. You start with the hair dryer
on the 600-W setting and increase the power setting until the circuit
breaker trips. What power setting caused the breaker to trip?
26.54 . CP The heating element of an electric stove consists of a
heater wire embedded within an electrically insulating material,
which in turn is inside a metal casing. The heater wire has a resist-
ance of at room temperature and a temperature
coefficient of resistivity The heating ele-
ment operates from a 120-V line. (a) When the heating element is
first turned on, what current does it draw and what electrical power
does it dissipate? (b) When the heating element has reached an
operating temperature of what current does it draw
and what electrical power does it dissipate?

PROBLEMS
26.55 .. In Fig. P26.55, the
battery has negligible internal re-
sistance and . 

and .
What must the resistance be
for the resistor network to dis-
sipate electrical energy at a rate
of 295 W?
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26.56 . A 2.4-W resistor is needed, but only several
1.2-W resistors are available (see Exercise 26.10). (a)

What two different combinations of the available units give the
required resistance and power rating? (b) For each of the resistor
networks from part (a), what power is dissipated in each resistor
when 2.4 W is dissipated by the combination?
26.57 . CP A 20.0-m-long cable consists of a solid-inner, cylin-
drical, nickel core 10.0 cm in diameter surrounded by a solid-outer
cylindrical shell of copper 10.0 cm in inside diameter and 20.0 cm
in outside diameter. The resistivity of nickel is 
(a) What is the resistance of this cable? (b) If we think of this cable
as a single material, what is its equivalent resistivity?
26.58 . Two identical wires are laid side by side and sol-
dered together so they touch each other for half of their lengths.
What is the equivalent resistance of this combination?
26.59 . The two identical light bulbs in Example 26.2 (Section
26.1) are connected in parallel to a different source, one with

and internal resistance Each light bulb has a
resistance (assumed independent of the current
through the bulb). (a) Find the current through each bulb, the
potential difference across each bulb, and the power delivered to
each bulb. (b) Suppose one of the bulbs burns out, so that its fila-
ment breaks and current no longer flows through it. Find the power
delivered to the remaining bulb. Does the remaining bulb glow
more or less brightly after the other bulb burns out than before?
26.60 .. Each of the three resistors in Fig.
P26.60 has a resistance of and can
dissipate a maximum of 48 W without
becoming excessively heated. What is the
maximum power the circuit can dissipate?
26.61 . If an ohmmeter is connected between points a and b in
each of the circuits shown in Fig. P26.61, what will it read?

26.62 .. CP For the circuit shown in Fig. P26.62 a resis-
tor is embedded in a large block of ice at 0.00°C, and the battery
has negligible internal resistance. At what rate (in ) is this cir-
cuit melting the ice? (The latent heat of fusion for ice is 

)

26.63 . Calculate the three currents and indicated in the
circuit diagram shown in Fig. P26.63.

I3I2,I1,

105 J>kg.
3.34 *
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R = 2.0 Æ
0.8 Æ.E = 8.0 V

3.00-Æ

7.8 * 10-8 Æ # m.

400-Æ,
400-Æ, 26.64 ... What must the emf in Fig. P26.64 be in order for the

current through the resistor to be 1.80 A? Each emf source
has negligible internal resistance.
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26.65 . Find the current through each of the three resistors of the
circuit shown in Fig. P26.65. The emf sources have negligible
internal resistance.
26.66 . (a) Find the current through the battery and each resistor
in the circuit shown in Fig. P26.66. (b) What is the equivalent
resistance of the resistor network?
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Figure P26.60

26.67 .. (a) Find the potential of point a with respect to point b in
Fig. P26.67. (b) If points a and b are connected by a wire with neg-
ligible resistance, find the current in the 12.0-V battery.
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26.68 .. Consider the circuit shown in Fig. P26.68. (a) What
must the emf of the battery be in order for a current of 2.00 A to
flow through the 5.00-V battery as shown? Is the polarity of the
battery correct as shown? (b) How long does it take for 60.0 J of
thermal energy to be produced in the resistor?10.0-Æ
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3.00
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1.00 V 10.0 Vba
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+
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26.69 .. CP A 1.00-km cable having a cross-sectional area of
is to be constructed out of equal lengths of copper 0.500 cm2



26.72 .. Three identical resistors are connected in series. When a
certain potential difference is applied across the combination, the
total power dissipated is 36 W. What power would be dissipated if
the three resistors were connected in parallel across the same
potential difference?
26.73 . A resistor consumes electrical power when con-
nected to an emf When resistor is connected to the same emf,
it consumes electrical power In terms of and what is the
total electrical power consumed when they are both connected to
this emf source (a) in parallel and (b) in series?
26.74 . The capacitor in Fig.
P26.74 is initially uncharged.
The switch is closed at 
(a) Immediately after the switch
is closed, what is the current
through each resistor? (b) What
is the final charge on the capaci-
tor?

t = 0.

P2,P1P2.
R2E.

P1R1
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26.70 ... In the circuit shown in Fig. P26.70 all the resistors
are rated at a maximum power of 2.00 W. What is the maximum
emf that the battery can have without burning up any of the
resistors?

E

and aluminum. This could 
be accomplished either by
making a 0.50-km cable of
each one and welding them
together end to end or by
making two parallel 1.00-km
cables, one of each metal 
(Fig. P26.69). Calculate the
resistance of the 1.00-km
cable for both designs to see
which one provides the least
resistance.

1.00 km

1.00 km

0.500 cm2

0.500 cm2

or

Al

Cu

Cu

Al

Figure P26.69

50.0 V

50.0 V
E

25.0 V 30.0 V

40.0 V

15.0 V

25.0 V

20.0 V

20.0 V10.0 V

Figure P26.70

26.75 .. A capacitor that is initially uncharged is con-
nected in series with a resistor and an emf source with

and negligible internal resistance. The circuit is com-
pleted at . (a) Just after the circuit is completed, what is the
rate at which electrical energy is being dissipated in the resistor?
(b) At what value of t is the rate at which electrical energy is being
dissipated in the resistor equal to the rate at which electrical
energy is being stored in the capacitor? (c) At the time calculated
in part (b), what is the rate at which electrical energy is being dis-
sipated in the resistor?
26.76 .. A capacitor that is initially uncharged is con-
nected in series with a resistor and an emf source with

and negligible internal resistance. At the instant when
the resistor is dissipating electrical energy at a rate of 250 W, how
much energy has been stored in the capacitor?
26.77 . Figure P26.77 employs a
convention often used in circuit dia-
grams. The battery (or other power
supply) is not shown explicitly. It is
understood that the point at the top,
labeled “36.0 V,” is connected to the
positive terminal of a 36.0-V battery
having negligible internal resistance,
and that the “ground” symbol at the
bottom is connected to the negative
terminal of the battery. The circuit is completed through the bat-
tery, even though it is not shown on the diagram. (a) What is the
potential difference the potential of point a relative to point b,
when the switch S is open? (b) What is the current through switch
S when it is closed? (c) What is the equivalent resistance when
switch S is closed?
26.78 . (See Problem 26.77.) (a) What
is the potential of point a with respect
to point b in Fig. P26.78 when switch
S is open? (b) Which point, a or b, is
at the higher potential? (c) What is the
final potential of point b with respect
to ground when switch S is closed? 
(d) How much does the charge on each
capacitor change when S is closed?
26.79 . Point a in Fig. P26.79 is
maintained at a constant potential of
400 V above ground. (See Problem
26.77.) (a) What is the reading of a
voltmeter with the proper range and
with resistance when connected between point b
and ground? (b) What is the reading of a voltmeter with resistance

(c) What is the reading of a voltmeter with infinite
resistance?
26.80 .. A 150-V voltmeter has a resistance of When
connected in series with a large resistance R across a 110-V line,
the meter reads 74 V. Find the resistance R.
26.81 .. The Wheatstone Bridge.
The circuit shown in Fig. P26.81,
called a Wheatstone bridge, is used
to determine the value of an
unknown resistor X by comparison
with three resistors M, N, and P
whose resistances can be varied.
For each setting, the resistance of
each resistor is precisely known.
With switches and closed,K2K1

30,000 Æ.

5.00 * 106 Æ?

5.00 * 104 Æ

Vab,

E = 50.0 V
5.00-Æ

6.00-mF

t = 0
E = 90.0 V

6.00-kÆ
2.00-mF

18.0 V

20.0 V

200.0 V
8.00 V

5.00 A

30.0 V R

20.0 V R

IX

Figure P26.71

R3 5 3.00 V
R2 5

6.00 V

E 5 42.0 V

C 5 4.00 mF

R1 5 8.00 V

+

Figure P26.74

6.00 V

3.00 V

3.00
V

3.00 V

6.00 V
S

V 5 36.0 V

a b

Figure P26.77

6.00 V

3.00 V
S

V 5 18.0 V

a b

6.00 mF

3.00 mF

Figure P26.78

ba

100 kV 200 kV

Figure P26.79

G

N

+
K2

K1

a

d

b c

P

M X
E

Figure P26.81

26.71 . In the circuit shown in Fig. P26.71, the current in the
20.0-V battery is 5.00 A in the direction shown and the voltage
across the resistor is 16.0 V, with the lower end of the
resistor at higher potential. Find (a) the emf (including its polarity)
of the battery X; (b) the current I through the 200.0-V battery
(including its direction); (c) the resistance R.

8.00-Æ
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these resistors are varied until the current in the galvanometer G is
zero; the bridge is then said to be balanced. (a) Show that under
this condition the unknown resistance is given by 
(This method permits very high precision in comparing resistors.)
(b) If the galvanometer G shows zero deflection when

and what is the
unknown resistance X?
26.82 . A capacitor that is initially uncharged is con-
nected in series with a resistor and an emf source with

and negligible internal resistance. (a) Just after the
connection is made, what are (i) the rate at which electrical energy
is being dissipated in the resistor; (ii) the rate at which the electri-
cal energy stored in the capacitor is increasing; (iii) the electrical
power output of the source? How do the answers to parts (i), (ii),
and (iii) compare? (b) Answer the same questions as in part (a) at a
long time after the connection is made. (c) Answer the same ques-
tions as in part (a) at the instant when the charge on the capacitor is
one-half its final value.
26.83 . A resistor and a resistor are connected in
series across a 90.0-V line. (a) What is the voltage across each
resistor? (b) A voltmeter connected across the resistor reads
23.8 V. Find the voltmeter resistance. (c) Find the reading of the
same voltmeter if it is connected across the resistor. (d) The
readings on this voltmeter are lower than the “true” voltages (that is,
without the voltmeter present). Would it be possible to design a volt-
meter that gave readings higher than the “true” voltages? Explain.
26.84 . A resistor with is connected to the plates of a
charged capacitor with capacitance Just before the
connection is made, the charge on the capacitor is (a)
What is the energy initially stored in the capacitor? (b) What is the
electrical power dissipated in the resistor just after the connection
is made? (c) What is the electrical power dissipated in the resistor
at the instant when the energy stored in the capacitor has decreased
to half the value calculated in part (a)?
26.85 . A capacitor that is initially uncharged is connected in
series with a resistor and an emf source with and neg-
ligible internal resistance. Just after the circuit is completed, the
current through the resistor is The time constant for
the circuit is What are the resistance of the resistor and the
capacitance of the capacitor?
26.86 ... An R-C circuit has a time constant RC. (a) If the circuit is
discharging, how long will it take for its stored energy to be reduced
to of its initial value? (b) If it is charging, how long will it take
for the stored energy to reach of its maximum value?
26.87 . Strictly speaking, Eq. (26.16) implies that an infinite
amount of time is required to discharge a capacitor completely. Yet
for practical purposes, a capacitor may be considered to be fully
discharged after a finite length of time. To be specific, consider a
capacitor with capacitance C connected to a resistor R to be fully
discharged if its charge q differs from zero by no more than the
charge of one electron. (a) Calculate the time required to reach this
state if and How
many time constants is this? (b) For a given is the time
required to reach this state always the same number of time con-
stants, independent of the values of C and R? Why or why not?
26.88 . CALC The current in a charging capacitor is given by Eq.
(26.13). (a) The instantaneous power supplied by the battery is 
Integrate this to find the total energy supplied by the battery. (b)
The instantaneous power dissipated in the resistor is Integrate
this to find the total energy dissipated in the resistor. (c) Find the
final energy stored in the capacitor, and show that this equals the
total energy supplied by the battery less the energy dissipated in

i2R.

Ei.

Q0,
Q0 = 7.00 mC.R = 670 kÆ,C = 0.920 mF,

1>e
1>e

5.2 s.
6.5 * 10-5 A.

E = 110 V

6.90 mC.
C = 4.62 mF.

R = 850 Æ

589-Æ

224-Æ

589-Æ224-Æ

E = 120 V
5.86-Æ

2.36-mF

P = 33.48 Æ,N = 15.00 Æ,M = 850.0 Æ,

X = MP>N.

the resistor, as obtained in parts (a) and (b). (d) What fraction of
the energy supplied by the battery is stored in the capacitor? How
does this fraction depend on R?
26.89 ... CALC (a) Using Eq. (26.17) for the current in a discharg-
ing capacitor, derive an expression for the instantaneous power

dissipated in the resistor. (b) Integrate the expression for P
to find the total energy dissipated in the resistor, and show that this
is equal to the total energy initially stored in the capacitor.

CHALLENGE PROBLEMS
26.90 ... A Capacitor Burglar Alarm.
The capacitance of a capacitor can be
affected by dielectric material that,
although not inside the capacitor, is near
enough to the capacitor to be polarized by
the fringing electric field that exists near a
charged capacitor. This effect is usually of
the order of picofarads (pF), but it can be used with appropriate
electronic circuitry to detect a change in the dielectric material sur-
rounding the capacitor. Such a dielectric material might be the
human body, and the effect described above might be used in the
design of a burglar alarm. Consider the simplified circuit shown in
Fig. P26.90. The voltage source has emf and the
capacitor has capacitance The electronic circuitry
for detecting the current, represented as an ammeter in the dia-
gram, has negligible resistance and is capable of detecting a cur-
rent that persists at a level of at least for at least 
after the capacitance has changed abruptly from C to The bur-
glar alarm is designed to be activated if the capacitance changes by
10%. (a) Determine the charge on the capacitor when it is
fully charged. (b) If the capacitor is fully charged before the
intruder is detected, assuming that the time taken for the capaci-
tance to change by 10% is short enough to be ignored, derive an
equation that expresses the current through the resistor R as a func-
tion of the time t since the capacitance has changed. (c) Determine
the range of values of the resistance R that will meet the design
specifications of the burglar alarm. What happens if R is too small?
Too large? (Hint: You will not be able to solve this part analytically
but must use numerical methods. Express R as a logarithmic func-
tion of R plus known quantities. Use a trial value of R and calculate
from the expression a new value. Continue to do this until the input
and output values of R agree to within three significant figures.)
26.91 ... An Infinite Network.
As shown in Fig. P26.91, a net-
work of resistors of resistances

and extends to infinity
toward the right. Prove that the
total resistance of the infinite
network is equal to 

(Hint: Since the network is infinite, the resistance of the network to
the right of points c and d is also equal to )
26.92 ... Suppose a resistor R lies along
each edge of a cube (12 resistors in all)
with connections at the corners. Find the
equivalent resistance between two diago-
nally opposite corners of the cube (points a
and b in Fig. P26.92).
26.93 ... BIO Attenuator Chains and
Axons. The infinite network of resistors shown in Fig. P26.91 is

RT.

RT = R1 + 2R 2
1 + 2R1R2

RT

R2R1

10.0-pF

C¿.
200 ms1.00 mA

C = 10.0 pF.
E = 1000 V,

P = i2R

C

R
+

E

A

Figure P26.90

R1R1R1

R1R1R1

and
so on

R2 R2 R2

a

b

c

d

�x

Figure P26.91

b

a

Figure P26.92
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known as an attenuator chain, since this chain of resistors causes
the potential difference between the upper and lower wires to
decrease, or attenuate, along the length of the chain. (a) Show that if
the potential difference between the points a and b in Fig. 26.91 is

then the potential difference between points c and d is
where and the

total resistance of the network, is given in Challenge Problem
26.91. (See the hint given in that problem.) (b) If the potential dif-
ference between terminals a and b at the left end of the infinite net-
work is show that the potential difference between the upper
and lower wires n segments from the left end is

If how many segments are needed to
decrease the potential difference to less than 1.0% of (c) An
infinite attenuator chain provides a model of the propagation of a
voltage pulse along a nerve fiber, or axon. Each segment of the net-
work in Fig. P26.91 represents a short segment of the axon of
length The resistors represent the resistance of the fluid
inside and outside the membrane wall of the axon. The resistance
of the membrane to current flowing through the wall is represented
by For an axon segment of length 

and (the membrane wallR2 = 8.0 * 108 ÆR1 = 6.4 * 103 Æ
¢x = 1.0 mm,R2.

R1¢x.

V0?Vn

R1 = R2,Vn = V0>11 + b2n.

V0,

RT,b = 2R11RT + R22>RTR2Vcd = Vab>11 + b2,
Vab,

is a good insulator). Calculate the total resistance and for an
infinitely long axon. (This is a good approximation, since the
length of an axon is much greater than its width; the largest axons
in the human nervous system are longer than 1 m but only about

in radius.) (d) By what fraction does the potential differ-
ence between the inside and outside of the axon decrease over a
distance of (e) The attenuation of the potential difference
calculated in part (d) shows that the axon cannot simply be a pas-
sive, current-carrying electrical cable; the potential difference
must periodically be reinforced along the axon’s length. This rein-
forcement mechanism is slow, so a signal propagates along the
axon at only about In situations where faster response is
required, axons are covered with a segmented sheath of fatty
myelin. The segments are about long, separated by gaps
called the nodes of Ranvier. The myelin increases the resistance of
a segment of the membrane to 
For such a myelinated axon, by what fraction does the potential
difference between the inside and outside of the axon decrease
over the distance from one node of Ranvier to the next? This
smaller attenuation means the propagation speed is increased.

3.3 * 1012 Æ.R2 =1.0-mm-long

2 mm

30 m>s.

2.0 mm?

10-7 m

bRT

Chapter Opening Question ?
The potential difference V is the same across resistors connected in
parallel. However, there is a different current I through each resis-
tor if the resistances R are different: 

Test Your Understanding Questions
26.1 Answer: (a), (c), (d), (b) Here’s why: The three resistors in
Fig. 26.1a are in series, so In Fig. 26.1b
the three resistors are in parallel, so 

and In Fig. 26.1c the second and third
resistors are in parallel, so their equivalent resistance is given
by hence This combina-
tion is in series with the first resistor, so the three resistors together
have equivalent resistance In Fig. 26.1d
the second and third resistors are in series, so their equivalent resist-
ance is This combination is in parallel with
the first resistor, so the equivalent resistance of the three-resistor
combination is given by Hence

26.2 Answer: loop cbdac Equation (2) minus Eq. (1) gives

We can obtain this equation by applying the loop rule around the
path from c to b to d to a to c in Fig. 26.12. This isn’t a new equa-

- I211 Æ2 - 1I2 + I3212 Æ2 + 1I1 - I3211 Æ2 + I111 Æ2 = 0.

Req = 2R>3.
1>Req = 1>R + 1>2R = 3>2R.

R23 = R + R = 2R.

Req = R + R>2 = 3R>2.

R23 = R>2.1>R23 = 1>R + 1>R = 2>R;
R23

Req = R>3.1>R = 3>R
1>R +1>Req = 1>R +

Req = R + R + R = 3R.

I = V>R.

tion, so it would not have helped with the solution of Example 26.6.
26.3 Answers: (a) (ii), (b) (iii) An ammeter must always be
placed in series with the circuit element of interest, and a voltmeter
must always be placed in parallel. Ideally the ammeter would have
zero resistance and the voltmeter would have infinite resistance so
that their presence would have no effect on either the resistor cur-
rent or the voltage. Neither of these idealizations is possible, but
the ammeter resistance should be much less than and the volt-
meter resistance should be much greater than 
26.4 Answer: (ii) After one time constant, and the initial
charge has decreased to 

Hence the stored energy has decreased from to
a fraction of its initial

value. This result doesn’t depend on the initial value of the
energy.
26.5 Answer: no This is a very dangerous thing to do. The circuit
breaker will allow currents up to 40 A, double the rated value of
the wiring. The amount of power dissipated in a section
of wire can therefore be up to four times the rated value, so the
wires could get very warm and start a fire.

Bridging Problem
Answers: (a) 9.39 J (b) W (c) s
(d) W7.43 * 103

4.65 * 10-42.02 * 104

P = I 2R

1>e2 = 0.1351Q0>e2
2>2C =Q0

2>2Ce2,
Q0

2>2CQ0>e.
Q0e-t/RC = Q0e-RC/RC = Q0e-1 =Q0

t = RC
2 Æ.

2 Æ

Answers
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27
LEARNING GOALS

By studying this chapter, you will

learn:

• The properties of magnets, and how

magnets interact with each other.

• The nature of the force that a mov-

ing charged particle experiences in 

a magnetic field.

• How magnetic field lines are different

from electric field lines.

• How to analyze the motion of a

charged particle in a magnetic field.

• Some practical applications of mag-

netic fields in chemistry and physics.

• How to analyze magnetic forces on

current-carrying conductors.

• How current loops behave when

placed in a magnetic field.

MAGNETIC FIELD AND
MAGNETIC FORCES

Everybody uses magnetic forces. They are at the heart of electric motors,
microwave ovens, loudspeakers, computer printers, and disk drives. The
most familiar examples of magnetism are permanent magnets, which attract

unmagnetized iron objects and can also attract or repel other magnets. A compass
needle aligning itself with the earth’s magnetism is an example of this interac-
tion. But the fundamental nature of magnetism is the interaction of moving elec-
tric charges. Unlike electric forces, which act on electric charges whether they
are moving or not, magnetic forces act only on moving charges.

We saw in Chapter 21 that the electric force arises in two stages: (1) a charge
produces an electric field in the space around it, and (2) a second charge responds
to this field. Magnetic forces also arise in two stages. First, a moving charge or a
collection of moving charges (that is, an electric current) produces a magnetic
field. Next, a second current or moving charge responds to this magnetic field,
and so experiences a magnetic force.

In this chapter we study the second stage in the magnetic interaction—that is,
how moving charges and currents respond to magnetic fields. In particular, we
will see how to calculate magnetic forces and torques, and we will discover why
magnets can pick up iron objects like paper clips. In Chapter 28 we will complete
our picture of the magnetic interaction by examining how moving charges and
currents produce magnetic fields.

27.1 Magnetism
Magnetic phenomena were first observed at least 2500 years ago in fragments of
magnetized iron ore found near the ancient city of Magnesia (now Manisa, in west-
ern Turkey). These fragments were examples of what are now called permanent
magnets; you probably have several permanent magnets on your refrigerator

? Magnetic resonance imaging (MRI) makes it possible to see details of soft tis-
sue (such as in the foot shown here) that aren’t visible in x-ray images. Yet soft
tissue isn’t a magnetic material (it’s not attracted to a magnet). How does MRI
work?
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door at home. Permanent magnets were found to exert forces on each other as
well as on pieces of iron that were not magnetized. It was discovered that when
an iron rod is brought in contact with a natural magnet, the rod also becomes
magnetized. When such a rod is floated on water or suspended by a string from
its center, it tends to line itself up in a north-south direction. The needle of an
ordinary compass is just such a piece of magnetized iron.

Before the relationship of magnetic interactions to moving charges was under-
stood, the interactions of permanent magnets and compass needles were described
in terms of magnetic poles. If a bar-shaped permanent magnet, or bar magnet, is
free to rotate, one end points north. This end is called a north pole or N pole; the
other end is a south pole or S pole. Opposite poles attract each other, and like
poles repel each other (Fig. 27.1). An object that contains iron but is not itself
magnetized (that is, it shows no tendency to point north or south) is attracted by
either pole of a permanent magnet (Fig. 27.2). This is the attraction that acts
between a magnet and the unmagnetized steel door of a refrigerator. By analogy
to electric interactions, we describe the interactions in Figs. 27.1 and 27.2 by say-
ing that a bar magnet sets up a magnetic field in the space around it and a second
body responds to that field. A compass needle tends to align with the magnetic
field at the needle’s position.

The earth itself is a magnet. Its north geographic pole is close to a magnetic
south pole, which is why the north pole of a compass needle points north. The
earth’s magnetic axis is not quite parallel to its geographic axis (the axis of rotation),
so a compass reading deviates somewhat from geographic north. This deviation,
which varies with location, is called magnetic declination or magnetic variation.
Also, the magnetic field is not horizontal at most points on the earth’s surface; its
angle up or down is called magnetic inclination. At the magnetic poles the mag-
netic field is vertical.

Figure 27.3 is a sketch of the earth’s magnetic field. The lines, called magnetic
field lines, show the direction that a compass would point at each location; they
are discussed in detail in Section 27.3. The direction of the field at any point can
be defined as the direction of the force that the field would exert on a magnetic

The geomagnetic
south pole is actually a
magnetic north (N) pole.

The geomagnetic north pole is actually
a magnetic south (S) pole—it attracts
the N pole of a compass.

Magnetic field lines show
  the direction a compass
    would point at a given
      location.

          The earth’s magnetic axis is
offset from its geographic axis.

         The earth’s magnetic
          field has a shape
          similar to that pro-
         duced by a simple
        bar magnet (although
      actually it is caused by
    electric currents in the
core).

North geographic pole
(earth’s rotation axis)

South geographic pole

Compass

N

S

27.3 A sketch of the earth’s magnetic field. The field, which is caused by currents in
the earth’s molten core, changes with time; geologic evidence shows that it reverses
direction entirely at irregular intervals of to years.106104

FF

(a) Opposite poles attract.

FF

(b) Like poles repel.

F

F F

F

N S

N S

N S

N S

NS NS

NS

NS

27.1 (a) Two bar magnets attract when
opposite poles (N and S, or S and N) are
next to each other. (b) The bar magnets
repel when like poles (N and N, or S and S)
are next to each other.

F

(a)

F

F

F

(b)

NS

N S

27.2 (a) Either pole of a bar magnet
attracts an unmagnetized object that con-
tains iron, such as a nail. (b) A real-life
example of this effect.



north pole. In Section 27.2 we’ll describe a more fundamental way to define the
direction and magnitude of a magnetic field.

Magnetic Poles Versus Electric Charge
The concept of magnetic poles may appear similar to that of electric charge, and
north and south poles may seem analogous to positive and negative charge. But
the analogy can be misleading. While isolated positive and negative charges exist,
there is no experimental evidence that a single isolated magnetic pole exists; poles
always appear in pairs. If a bar magnet is broken in two, each broken end becomes
a pole (Fig. 27.4). The existence of an isolated magnetic pole, or magnetic
monopole, would have sweeping implications for theoretical physics. Extensive
searches for magnetic monopoles have been carried out, but so far without
success.

The first evidence of the relationship of magnetism to moving charges was
discovered in 1820 by the Danish scientist Hans Christian Oersted. He found that
a compass needle was deflected by a current-carrying wire, as shown in Fig. 27.5
Similar investigations were carried out in France by André Ampère. A few years
later, Michael Faraday in England and Joseph Henry in the United States discov-
ered that moving a magnet near a conducting loop can cause a current in the loop.
We now know that the magnetic forces between two bodies shown in Figs. 27.1
and 27.2 are fundamentally due to interactions between moving electrons in the
atoms of the bodies. (There are also electric interactions between the two bodies,
but these are far weaker than the magnetic interactions because the two bodies
are electrically neutral.) Inside a magnetized body such as a permanent magnet,
there is a coordinated motion of certain of the atomic electrons; in an unmagne-
tized body these motions are not coordinated. (We’ll describe these motions fur-
ther in Section 27.7, and see how the interactions shown in Figs. 27.1 and 27.2
come about.)

Electric and magnetic interactions prove to be intimately connected. Over the
next several chapters we will develop the unifying principles of electromagnet-
ism, culminating in the expression of these principles in Maxwell’s equations.
These equations represent the synthesis of electromagnetism, just as Newton’s
laws of motion are the synthesis of mechanics, and like Newton’s laws they rep-
resent a towering achievement of the human intellect.

27.2 Magnetic Field 885

In contrast to electric charges, magnetic poles
always come in pairs and can't be isolated.

Breaking a magnet in two ...

... yields two magnets,
not two isolated poles.

N S

N S N S

27.4 Breaking a bar magnet. Each piece
has a north and south pole, even if the
pieces are different sizes. (The smaller the
piece, the weaker its magnetism.)

(a)

(b)

When the wire
   carries no
    current, the
   compass needle
 points north.

When the wire carries a current, the compass
needle deflects. The direction of deflection
depends on the direction of the current.

N

S

I 5 0

I

I

I

I

N

S

W E

N

S

W E

W E

27.5 In Oersted’s experiment, a compass
is placed directly over a horizontal wire
(here viewed from above). When the com-
pass is placed directly under the wire, the
compass deflection is reversed.

Test Your Understanding of Section 27.1 Suppose you cut off the part of the
compass needle shown in Fig. 27.5a that is painted gray. You discard this part, drill a hole
in the remaining red part, and place the red part on the pivot at the center of the compass.
Will the red part still swing east and west when a current is applied as in Fig. 27.5b? ❙

27.2 Magnetic Field
To introduce the concept of magnetic field properly, let’s review our formulation
of electric interactions in Chapter 21, where we introduced the concept of electric
field. We represented electric interactions in two steps:

1. A distribution of electric charge at rest creates an electric field in the sur-
rounding space.

2. The electric field exerts a force on any other charge that is pres-
ent in the field.

We can describe magnetic interactions in a similar way:

1. A moving charge or a current creates a magnetic field in the surrounding
space (in addition to its electric field).

2. The magnetic field exerts a force on any other moving charge or current
that is present in the field.

F
S

qF
S

� qE
S

E
S
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In this chapter we’ll concentrate on the second aspect of the interaction: Given
the presence of a magnetic field, what force does it exert on a moving charge or a
current? In Chapter 28 we will come back to the problem of how magnetic fields
are created by moving charges and currents.

Like electric field, magnetic field is a vector field—that is, a vector quantity
associated with each point in space. We will use the symbol for magnetic field.
At any position the direction of is defined as the direction in which the north
pole of a compass needle tends to point. The arrows in Fig. 27.3 suggest the
direction of the earth’s magnetic field; for any magnet, points out of its north
pole and into its south pole.

Magnetic Forces on Moving Charges
There are four key characteristics of the magnetic force on a moving charge.
First, its magnitude is proportional to the magnitude of the charge. If a 
charge and a charge move through a given magnetic field with the same
velocity, experiments show that the force on the charge is twice as great as
the force on the charge. Second, the magnitude of the force is also propor-
tional to the magnitude, or “strength,” of the field; if we double the magnitude of
the field (for example, by using two identical bar magnets instead of one) without
changing the charge or its velocity, the force doubles.

A third characteristic is that the magnetic force depends on the particle’s
velocity. This is quite different from the electric-field force, which is the same
whether the charge is moving or not. A charged particle at rest experiences no
magnetic force. And fourth, we find by experiment that the magnetic force 
does not have the same direction as the magnetic field but instead is always
perpendicular to both and the velocity The magnitude of the force is
found to be proportional to the component of perpendicular to the field; when
that component is zero (that is, when and are parallel or antiparallel), the
force is zero.

Figure 27.6 shows these relationships. The direction of is always perpendi-
cular to the plane containing and Its magnitude is given by

(27.1)

where is the magnitude of the charge and is the angle measured from the
direction of to the direction of as shown in the figure.

This description does not specify the direction of completely; there are
always two directions, opposite to each other, that are both perpendicular to the
plane of and To complete the description, we use the same right-hand rule
that we used to define the vector product in Section 1.10. (It would be a good idea
to review that section before you go on.) Draw the vectors and with their tails
together, as in Fig. 27.7a. Imagine turning until it points in the direction of 
(turning through the smaller of the two possible angles). Wrap the fingers of your
right hand around the line perpendicular to the plane of and so that they curl
around with the sense of rotation from to Your thumb then points in the direc-
tion of the force on a positive charge. (Alternatively, the direction of the force

on a positive charge is the direction in which a right-hand-thread screw would
advance if turned the same way.)

This discussion shows that the force on a charge moving with velocity in a
magnetic field is given, both in magnitude and in direction, by

(magnetic force on a moving charged particle) (27.2)

This is the first of several vector products we will encounter in our study of
magnetic-field relationships. It’s important to note that Eq. (27.2) was not
deduced theoretically; it is an observation based on experiment.
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Application Spiny Lobsters 
and Magnetic Compasses
Although the Caribbean spiny lobster (Panulirus
argus) has a relatively simple nervous system,
it is remarkably sensitive to magnetic fields. It
has an internal magnetic “compass” that
allows it to distinguish north, east, south, and
west. This lobster can also sense small differ-
ences in the earth’s magnetic field from one
location to another, and may use these differ-
ences to help it navigate.

+

+

A charge moving parallel to a magnetic field
experiences zero
magnetic
force.

(a)

(c)

(b)

A charge moving at an angle f to a magnetic
field experiences a magnetic force with
magnitude F 5 0q 0 v�B 5 0q 0vB sin f.

A charge moving perpendicular to a magnetic
field experiences a maximal magnetic force
with magnitude
Fmax 5 qvB.

F is perpendic-
ular to the plane
containing
v and B.
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27.6 The magnetic force acting on a
positive charge moving with velocity 
is perpendicular to both and the mag-
netic field For given values of the speed

and magnetic field strength B, the force
is greatest when and are perpendicular.B
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Equation (27.2) is valid for both positive and negative charges. When is neg-
ative, the direction of the force is opposite to that of (Fig. 27.7b). If two
charges with equal magnitude and opposite sign move in the same field with
the same velocity (Fig. 27.8), the forces have equal magnitude and opposite
direction. Figures 27.6, 27.7, and 27.8 show several examples of the relationships
of the directions of and for both positive and negative charges. Be sure
you understand the relationships shown in these figures.

Equation (27.1) gives the magnitude of the magnetic force in Eq. (27.2). We
can express this magnitude in a different but equivalent way. Since is the angle
between the directions of vectors and we may interpret as the com-
ponent of perpendicular to —that is, With this notation the force magni-
tude is

(27.3)

This form is sometimes more convenient, especially in problems involving
currents rather than individual particles. We will discuss forces on currents later
in this chapter.

From Eq. (27.1) the units of must be the same as the units of There-
fore the SI unit of is equivalent to or, since one ampere is one
coulomb per second This unit is called the tesla
(abbreviated T), in honor of Nikola Tesla (1856–1943), the prominent Serbian-
American scientist and inventor:

Another unit of the gauss is also in common use.
The magnetic field of the earth is of the order of or 1 G. Magnetic

fields of the order of 10 T occur in the interior of atoms and are important in the
analysis of atomic spectra. The largest steady magnetic field that can be produced
at present in the laboratory is about 45 T. Some pulsed-current electromagnets
can produce fields of the order of 120 T for millisecond time intervals.

Measuring Magnetic Fields with Test Charges
To explore an unknown magnetic field, we can measure the magnitude and direc-
tion of the force on a moving test charge and then use Eq. (27.2) to determine 
The electron beam in a cathode-ray tube, such as that in an older television set
(not a flat screen), is a convenient device for this. The electron gun shoots out a
narrow beam of electrons at a known speed. If there is no force to deflect the
beam, it strikes the center of the screen.
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Right
hand!

Right-hand rule for the direction of magnetic force on a positive charge moving in a magnetic field: If the charge is negative, the direction
of the force is opposite to that given by
the right-hand rule.Place the v and B vectors tail to tail.

Force acts along this line.

SS

Imagine turning v toward B in the v-B
plane (through the smaller angle).

The force acts along a line perpen-
dicular to the v-B plane. Curl the
fingers of your right hand around
this line in the same direction you
rotated v. Your thumb now points
in the direction the force acts.
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27.7 Finding the direction of the magnetic force on a moving charged particle.

Positive and negative charges
moving in the same direction
through a magnetic field
experience magnetic
forces in opposite
directions.
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q1 5 q . 0

q2 5 2q , 0

27.8 Two charges of the same magnitude
but opposite sign moving with the same
velocity in the same magnetic field. The
magnetic forces on the charges are equal in
magnitude but opposite in direction.

Application Magnetic Fields 
of the Body
All living cells are electrically active, and the
feeble electric currents within the body pro-
duce weak but measurable magnetic fields.
The fields produced by skeletal muscles have
magnitudes less than T, about one-
millionth as strong as the earth’s magnetic
field. The brain produces magnetic fields that
are far weaker, only about T.10-12

10-10
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Problem-Solving Strategy 27.1 Magnetic Forces

IDENTIFY the relevant concepts: The equation allows
you to determine the magnetic force on a moving charged particle.

SET UP the problem using the following steps:
1. Draw the velocity and magnetic field with their tails

together so that you can visualize the plane that contains them.
2. Determine the angle between and .
3. Identify the target variables.

EXECUTE the solution as follows:
1. Express the magnetic force using Eq. (27.2), 

Equation (27.1) gives the magnitude of the force, 
qvB sinf.

F =
F
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2. Remember that is perpendicular to the plane containing 
and The right-hand rule (see Fig. 27.7) gives the direction of

. If q is negative, is opposite to

EVALUATE your answer: Whenever possible, solve the problem in
two ways to confirm that the results agree. Do it directly from the
geometric definition of the vector product. Then find the compo-
nents of the vectors in some convenient coordinate system and cal-
culate the vector product from the components. Verify that the
results agree.
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Example 27.1 Magnetic force on a proton

A beam of protons moves at 
through a uniform 2.0-T magnetic field directed along the positive

as in Fig. 27.10. The velocity of each proton lies in the z-axis,

3.0 * 105 m>s1q = 1.6 * 10-19 C2 xz-plane and is directed at to the Find the force on a
proton.

+z-axis.30°

If a magnetic field is present, in general the electron beam is deflected. But if
the beam is parallel or antiparallel to the field, then or in Eq. (27.1) and

there is no force and hence no deflection. If we find that the electron
beam is not deflected when its direction is parallel to a certain axis as in Fig.
27.9a, the vector must point either up or down along that axis.

If we then turn the tube (Fig. 27.9b), in Eq. (27.1) and the mag-
netic force is maximum; the beam is deflected in a direction perpendicular to the
plane of and The direction and magnitude of the deflection determine the
direction and magnitude of We can perform additional experiments in which
the angle between and is between zero and 90° to confirm Eq. (27.1). We
note that the electron has a negative charge; the force in Fig. 27.9b is opposite in
direction to the force on a positive charge.

When a charged particle moves through a region of space where both electric
and magnetic fields are present, both fields exert forces on the particle. The total
force is the vector sum of the electric and magnetic forces:
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(a) If the tube axis
is parallel to the
y-axis, the beam is
undeflected, so B is
in either the 1y- or
the 2y-direction.
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(b) If the tube axis is parallel to the x-axis, the
beam is deflected in the 2z-direction, so B is in
the 1y-direction.
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27.9 Determining the direction of a
magnetic field using a cathode-ray tube.
Because electrons have a negative charge,
the magnetic force in part
(b) points opposite to the direction given
by the right-hand rule (see Fig. 27.7b).
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SOLUTION

IDENTIFY and SET UP: This problem uses the expression 
for the magnetic force on a moving charged particle.

The target variable is 

EXECUTE: The charge is positive, so the force is in the same direc-
tion as the vector product From the right-hand rule, this
direction is along the negative y-axis. The magnitude of the force,
from Eq. (27.1), is
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EVALUATE: We check our result by evaluating the force using vec-
tor language and Eq. (27.2). We have

(Recall that and We again find that the
force is in the negative y-direction with magnitude 

If the beam consists of electrons rather than protons, the charge
is negative and the direction of the force
is reversed. The force is now directed along the positive y-axis, but
the magnitude is the same as before, F = 4.8 * 10-14 N.

1q = -1.6 * 10-19 C2

4.8 * 10-14 N.
kN : kN � 0.2ın : kN � - ≥n

� 1-4.8 * 10-14 N2≥n

* 1sin 30°ın � cos 30°kN2 : kN
� 11.6 * 10-19 C213.0 * 105 m>s212.0 T2
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= 11.6 * 10-19 C213.0 * 105 m>s212.0 T21sin 30°2

F = qvB sin f
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27.10 Directions of and for a proton in a magnetic field.B
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Test Your Understanding of Section 27.2 The figure at right shows a
uniform magnetic field directed into the plane of the paper (shown by the blue

A particle with a negative charge moves in the plane. Which of the three
paths—1, 2, or 3—does the particle follow?

❙

* ’s).
B
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Path 1

Path 2

Path 3
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27.3 Magnetic Field Lines and Magnetic Flux
We can represent any magnetic field by magnetic field lines, just as we did for
the earth’s magnetic field in Fig. 27.3. The idea is the same as for the electric field
lines we introduced in Section 21.6. We draw the lines so that the line through
any point is tangent to the magnetic field vector at that point (Fig. 27.11). Just
as with electric field lines, we draw only a few representative lines; otherwise,
the lines would fill up all of space. Where adjacent field lines are close together,
the field magnitude is large; where these field lines are far apart, the field magni-
tude is small. Also, because the direction of at each point is unique, field lines
never intersect.

CAUTION Magnetic field lines are not “lines of force” Magnetic field lines are some-
times called “magnetic lines of force,” but that’s not a good name for them; unlike electric
field lines, they do not point in the direction of the force on a charge (Fig. 27.12). Equation
(27.2) shows that the force on a moving charged particle is always perpendicular to the
magnetic field, and hence to the magnetic field line that passes through the particle’s posi-
tion. The direction of the force depends on the particle’s velocity and the sign of its charge,
so just looking at magnetic field lines cannot in itself tell you the direction of the force on
an arbitrary moving charged particle. Magnetic field lines do have the direction that a
compass needle would point at each location; this may help you to visualize them. ❙

Figures 27.11 and 27.13 show magnetic field lines produced by several com-
mon sources of magnetic field. In the gap between the poles of the magnet shown
in Fig. 27.13a, the field lines are approximately straight, parallel, and equally
spaced, showing that the magnetic field in this region is approximately uniform
(that is, constant in magnitude and direction).
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S N
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At each point, the
field line is tangent
to the magnetic
field vector B.

S

The more densely
the field lines are
packed, the stronger
the field is at that point.

At each point, the
field lines point in
the same direction a
compass would . . .

. . . therefore, magnetic
field lines point away
from N poles and
toward S poles.

B
S

27.11 The magnetic field lines of a per-
manent magnet. Note that the field lines
pass through the interior of the magnet.
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Because magnetic-field patterns are three-dimensional, it’s often necessary to
draw magnetic field lines that point into or out of the plane of a drawing. To do
this we use a dot to represent a vector directed out of the plane and a cross

to represent a vector directed into the plane (Fig. 27.13b). To remember
these, think of a dot as the head of an arrow coming directly toward you, and
think of a cross as the feathers of an arrow flying directly away from you.

Iron filings, like compass needles, tend to align with magnetic field lines.
Hence they provide an easy way to visualize field lines (Fig. 27.14).

Magnetic Flux and Gauss’s Law for Magnetism
We define the magnetic flux through a surface just as we defined electric flux
in connection with Gauss’s law in Section 22.2. We can divide any surface into
elements of area (Fig. 27.15). For each element we determine the compo-
nent of normal to the surface at the position of that element, as shown. From the
figure, where is the angle between the direction of and a line
perpendicular to the surface. (Be careful not to confuse with In general,£B.2f
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The direction of the magnetic force depends
on the velocity v, as expressed by the
magnetic force law F 5 qv 3 B.
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Magnetic field lines are not “lines of force.”
The force on a charged particle is not along
the direction of a field line.
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27.12 Magnetic field lines are not “lines
of force.”

S

Notice that the field of the
loop and, especially, that of
the coil look like the field
of a bar magnet (see Fig. 27.11).

To represent a field coming out of or
going into the plane of the paper, we
use dots and crosses, respectively.

Between flat, parallel magnetic poles,
the magnetic field is nearly uniform.

(b) Magnetic field of a straight current-carrying wire(a) Magnetic field of a C-shaped magnet
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(c) Magnetic fields of a current-carrying loop and a current-carrying coil (solenoid)
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27.13 Magnetic field lines produced by some common sources of magnetic field.

27.14 (a) Like little compass 
needles, iron filings line up tangent 
to magnetic field lines. (b) Drawing
of the field lines for the situation
shown in (a).

(b)(a)
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this component varies from point to point on the surface. We define the magnetic
flux through this area as

(27.5)

The total magnetic flux through the surface is the sum of the contributions from
the individual area elements:

(27.6)

(This equation uses the concepts of vector area and surface integral that we intro-
duced in Section 22.2; you may want to review that discussion.)

Magnetic flux is a scalar quantity. If is uniform over a plane surface with
total area then and are the same at all points on the surface, and

(27.7)

If happens to be perpendicular to the surface, then and Eq. (27.7)
reduces to We will use the concept of magnetic flux extensively dur-
ing our study of electromagnetic induction in Chapter 29.

The SI unit of magnetic flux is equal to the unit of magnetic field (1 T) times the
unit of area This unit is called the weber (1 Wb), in honor of the German
physicist Wilhelm Weber (1804–1891):

Also, so

In Gauss’s law the total electric flux through a closed surface is proportional
to the total electric charge enclosed by the surface. For example, if the closed sur-
face encloses an electric dipole, the total electric flux is zero because the total
charge is zero. (You may want to review Section 22.3 on Gauss’s law.) By anal-
ogy, if there were such a thing as a single magnetic charge (magnetic monopole),
the total magnetic flux through a closed surface would be proportional to the total
magnetic charge enclosed. But we have mentioned that no magnetic monopole
has ever been observed, despite intensive searches. We conclude:

The total magnetic flux through a closed surface is always zero.

Symbolically,

(magnetic flux through any closed surface) (27.8)

This equation is sometimes called Gauss’s law for magnetism. You can verify it
by examining Figs. 27.11 and 27.13; if you draw a closed surface anywhere in
any of the field maps shown in those figures, you will see that every field line
that enters the surface also exits from it; the net flux through the surface is zero.
It also follows from Eq. (27.8) that magnetic field lines always form closed
loops.

CAUTION Magnetic field lines have no ends Unlike electric field lines that begin and
end on electric charges, magnetic field lines never have end points; such a point would
indicate the presence of a monopole. You might be tempted to draw magnetic field lines
that begin at the north pole of a magnet and end at a south pole. But as Fig. 27.11 shows,
the field lines of a magnet actually continue through the interior of the magnet. Like all
other magnetic field lines, they form closed loops. ❙
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For Gauss’s law, which always deals with closed surfaces, the vector area ele-
ment in Eq. (27.6) always points out of the surface. However, some applica-
tions of magnetic flux involve an open surface with a boundary line; there is then
an ambiguity of sign in Eq. (27.6) because of the two possible choices of direc-
tion for In these cases we choose one of the two sides of the surface to be the
“positive” side and use that choice consistently.

If the element of area in Eq. (27.5) is at right angles to the field lines, then
calling the area we have

(27.9)

That is, the magnitude of magnetic field is equal to flux per unit area across an
area at right angles to the magnetic field. For this reason, magnetic field is
sometimes called magnetic flux density.
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Example 27.2 Magnetic flux calculations

Figure 27.16a is a perspective view of a flat surface with area
in a uniform magnetic field . The magnetic flux through

this surface is +0.90 mWb. Find the magnitude of the magnetic
field and the direction of the area vector .A

S

B
S

3.0 cm2
SOLUTION

IDENTIFY and SET UP: Our target variables are the field magnitude
B and the direction of the area vector. Because is uniform, B and

are the same at all points on the surface. Hence we can use 
Eq. (27.7), 

EXECUTE: The area A is the direction of is per-
pendicular to the surface, so could be either or But

B, and A are all positive, so must also be positive. This
rules out so (Fig. 27.16b). Hence we find

EVALUATE: In many problems we are asked to calculate the flux of
a given magnetic field through a given area. This example is some-
what different: It tests your understanding of the definition of mag-
netic flux.

B =
£B

A cos f
=

0.90 * 10-3 Wb

13.0 * 10-4 m221cos 60°2
= 6.0 T

f = 60°120°,
cosf£B,

120°.60°f

A
S

3.0 * 10-4 m2;

£B = BA cosf.
f

B
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(a) Perspective view

30°

B
S

A

(b) Our sketch of the problem
(edge-on view)

27.16 (a) A flat area in a uniform magnetic field (b) The
area vector makes a angle with (If we had chosen to
point in the opposite direction, would have been and the
magnetic flux would have been negative.)£B

120°f
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S B

S
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Test Your Understanding of Section 27.3 Imagine moving along the
axis of the current-carrying loop in Fig. 27.13c, starting at a point well to the left
of the loop and ending at a point well to the right of the loop. (a) How would the
magnetic field strength vary as you moved along this path? (i) It would be the same 
at all points along the path; (ii) it would increase and then decrease; (iii) it would
decrease and then increase. (b) Would the magnetic field direction vary as you 
moved along the path? ❙

27.4 Motion of Charged Particles 
in a Magnetic Field

When a charged particle moves in a magnetic field, it is acted on by the magnetic
force given by Eq. (27.2), and the motion is determined by Newton’s laws.
Figure 27.17a shows a simple example. A particle with positive charge is at
point moving with velocity in a uniform magnetic field directed into the
plane of the figure. The vectors and are perpendicular, so the magnetic force

has magnitude and a direction as shown in the figure.
The force is always perpendicular to so it cannot change the magnitude of the
velocity, only its direction. To put it differently, the magnetic force never has a

vS,
F = qvBF
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B
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component parallel to the particle’s motion, so the magnetic force can never do
work on the particle. This is true even if the magnetic field is not uniform.

Motion of a charged particle under the action of a magnetic field alone is always
motion with constant speed.

Using this principle, we see that in the situation shown in Fig. 27.17a the mag-
nitudes of both and are constant. At points such as and the directions of
force and velocity have changed as shown, but their magnitudes are the same.
The particle therefore moves under the influence of a constant-magnitude force
that is always at right angles to the velocity of the particle. Comparing the discus-
sion of circular motion in Sections 3.4 and 5.4, we see that the particle’s path is a
circle, traced out with constant speed The centripetal acceleration is and
only the magnetic force acts, so from Newton’s second law,

(27.10)

where is the mass of the particle. Solving Eq. (27.10) for the radius of the
circular path, we find

(radius of a circular orbit in a magnetic field) (27.11)

We can also write this as where is the magnitude of the
particle’s momentum. If the charge is negative, the particle moves clockwise
around the orbit in Fig. 27.17a.

The angular speed of the particle can be found from Eq. (9.13), 
Combining this with Eq. (27.11), we get

(27.12)

The number of revolutions per unit time is This frequency is inde-
pendent of the radius of the path. It is called the cyclotron frequency; in a par-
ticle accelerator called a cyclotron, particles moving in nearly circular paths are
given a boost twice each revolution, increasing their energy and their orbital radii
but not their angular speed or frequency. Similarly, one type of magnetron, a
common source of microwave radiation for microwave ovens and radar systems,
emits radiation with a frequency equal to the frequency of circular motion of
electrons in a vacuum chamber between the poles of a magnet.

If the direction of the initial velocity is not perpendicular to the field, the
velocity component parallel to the field is constant because there is no force par-
allel to the field. Then the particle moves in a helix (Fig. 27.18). The radius of the
helix is given by Eq. (27.11), where is now the component of velocity perpen-
dicular to the field.

Motion of a charged particle in a nonuniform magnetic field is more complex.
Figure 27.19 shows a field produced by two circular coils separated by some dis-
tance. Particles near either coil experience a magnetic force toward the center of
the region; particles with appropriate speeds spiral repeatedly from one end of
the region to the other and back. Because charged particles can be trapped in such
a magnetic field, it is called a magnetic bottle. This technique is used to confine
very hot plasmas with temperatures of the order of In a similar way the
earth’s nonuniform magnetic field traps charged particles coming from the sun in
doughnut-shaped regions around the earth, as shown in Fig. 27.20. These
regions, called the Van Allen radiation belts, were discovered in 1958 using data
obtained by instruments aboard the Explorer I satellite.
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q
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A charge moving at right angles to a uniform B
field moves in a circle at constant speed
because F and v are always perpendicular to
each other.
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(a) The orbit of a charged particle in a uniform
magnetic field

(b) An electron beam (seen as a white arc)
curving in a magnetic field

27.17 A charged particle moves in 
a plane perpendicular to a uniform 
magnetic field B
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z
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q
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vi
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This particle’s motion has components both
parallel (vi) and perpendicular (v') to the
magnetic field, so it moves in a helical path.

27.18 The general case of a charged
particle moving in a uniform magnetic
field The magnetic field does no work
on the particle, so its speed and kinetic
energy remain constant.
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Problem-Solving Strategy 27.2 Motion in Magnetic Fields

IDENTIFY the relevant concepts: In analyzing the motion of a
charged particle in electric and magnetic fields, you will apply
Newton’s second law of motion, with the net force
given by Often other forces such as grav-
ity can be neglected. Many of the problems are similar to the tra-
jectory and circular-motion problems in Sections 3.3, 3.4, and 5.4;
it would be a good idea to review those sections.

SET UP the problem using the following steps:
1. Determine the target variable(s).
2. Often the use of components is the most efficient approach.

Choose a coordinate system and then express all vector quanti-

aF
S

� q1E
S

� vS : B
S
2.
aF

S
� maS,

ties (including , and ) in terms of their components in this sys-
tem.

EXECUTE the solution as follows:
1. If the particle moves perpendicular to a uniform magnetic field,

the trajectory is a circle with a radius and angular speed given
by Eqs. (27.11) and (27.12), respectively.

2. If your calculation involves a more complex trajectory, use
in component form: and so forth.

This approach is particularly useful when both electric and mag-
netic fields are present.

EVALUATE your answer: Check whether your results are reasonable.

aFx = max,gF
S

� maS

Magnetic forces on charged particles play an important role in studies of ele-
mentary particles. Figure 27.21 shows a chamber filled with liquid hydrogen and
with a magnetic field directed into the plane of the photograph. A high-energy
gamma ray dislodges an electron from a hydrogen atom, sending it off at high
speed and creating a visible track in the liquid hydrogen. The track shows the
electron curving downward due to the magnetic force. The energy of the collision
also produces another electron and a positron (a positively charged electron).
Because of their opposite charges, the trajectories of the electron and the positron
curve in opposite directions. As these particles plow through the liquid hydrogen,
they collide with other charged particles, losing energy and speed. As a result, the
radius of curvature decreases as suggested by Eq. (27.11). (The electron’s speed
is comparable to the speed of light, so Eq. (27.11) isn’t directly applicable here.)
Similar experiments allow physicists to determine the mass and charge of newly
discovered particles.
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27.19 A magnetic bottle. Particles near
either end of the region experience a mag-
netic force toward the center of the region.
This is one way of containing an ionized
gas that has a temperature of the order of

which would vaporize any material
container.
106 K,

(a) (b)

South
Pole

North
Pole

Protons trapped
in inner radiation
belts

Charged particles
from sun enter earth’s
magnetic field

27.20 (a) The Van Allen radiation belts
around the earth. Near the poles, charged
particles from these belts can enter the
atmosphere, producing the aurora borealis
(“northern lights”) and aurora australis
(“southern lights”). (b) A photograph of
the aurora borealis.

Slow-moving
positron
(q . 0)

Path of
incoming

gamma ray

Hydrogen
atom

B
S

Slow-moving
electron
(q , 0)

Fast-moving
electron
(q , 0)

27.21 This bubble chamber image shows
the result of a high-energy gamma ray
(which does not leave a track) that collides
with an electron in a hydrogen atom. This
electron flies off to the right at high speed.
Some of the energy in the collision is trans-
formed into a second electron and a positron
(a positively charged electron). A magnetic
field is directed into the plane of the image,
which makes the positive and negative
particles curve off in different directions.
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Example 27.3 Electron motion in a magnetron

A magnetron in a microwave oven emits electromagnetic waves
with frequency What magnetic field strength is
required for electrons to move in circular paths with this
frequency?

SOLUTION

IDENTIFY and SET UP: The problem refers to circular motion as
shown in Fig. 27.17a. We use Eq. (27.12) to solve for the field
magnitude B.

ƒ = 2450 MHz.
EXECUTE: The angular speed that corresponds to the frequency 
is Then
from Eq. (27.12),

EVALUATE: This is a moderate field strength, easily produced with
a permanent magnet. Incidentally, 2450-MHz electromagnetic
waves are useful for heating and cooking food because they are
strongly absorbed by water molecules.

B =
mv

ƒq ƒ
=
19.11 * 10-31 kg211.54 * 1010 s-12

1.60 * 10-19 C
= 0.0877 T

v = 2pƒ = 12p212450 * 106 s-12 = 1.54 * 1010 s-1.
ƒ

Example 27.4 Helical particle motion in a magnetic field

In a situation like that shown in Fig. 27.18, the charged particle is a
proton and the
uniform, 0.500-T magnetic field is directed along the x-axis. At 
t � 0 the proton has velocity components 

and Only the magnetic force acts
on the proton. (a) At t 0, find the force on the proton and its
acceleration. (b) Find the radius of the resulting helical path, the
angular speed of the proton, and the pitch of the helix (the distance
traveled along the helix axis per revolution).

SOLUTION

IDENTIFY and SET UP: The magnetic force is ; New-
ton’s second law gives the resulting acceleration. Because is per-
pendicular to , the proton’s speed does not change. Hence Eq.
(27.11) gives the radius of the helical trajectory if we replace 
with the velocity component perpendicular to Equation (27.12)
gives the angular speed which yields the time T for one revolu-
tion (the period). Given the velocity component parallel to the
magnetic field, we can then determine the pitch.

EXECUTE: (a) With and Eq. (27.2) yields

(Recall that that and .) The resulting acceler-
ation is

aS �
F
S

m
�

1.60 * 10-14 N

1.67 * 10-27 kg
≥n � 19.58 * 1012 m>s22≥n

kN : ın � ≥nın : ın � 0

� 11.60 * 10-14 N2≥n

� 11.60 * 10-19 C212.00 * 105 m>s210.500 T2≥n

F
S

� qvS : B
S

� q1vxın � vz kN2 : Bın � qvzB≥n

vS � vxın � vz kN ,B
S

� Bın

v,
B
S

.
v

vS
F
S

F
S

� qvS : B
S

=
vz = 2.00 * 105 m>s.vy = 0,

105 m>s,vx = 1.50 *

m = 1.67 * 10-27 kg21q = 1.60 * 10-19 C,
(b) Since the component of velocity perpendicular to 

is then from Eq. (27.11),

From Eq. (27.12) the angular speed is

The period is 
The pitch is the distance traveled along the x-axis in this

time, or

EVALUATE: Although the magnetic force has a tiny magnitude, it
produces an immense acceleration because the proton mass is so
small. Note that the pitch of the helix is almost five times greater
than the radius R, so this helix is much more “stretched out” than
that shown in Fig. 27.18.

= 0.0197 m = 19.7 mm

vxT = 11.50 * 105 m>s211.31 * 10-7 s2

10-7 s.
2p>v = 2p>14.79 * 107 s-12 = 1.31 *T =

v =
ƒq ƒB
m

=
11.60 * 10-19 C210.500 T2

1.67 * 10-27 kg
= 4.79 * 107 rad>s

= 4.18 * 10-3 m = 4.18 mm

R =
mvz

ƒq ƒB
=
11.67 * 10-27 kg212.00 * 105 m>s2

11.60 * 10-19 C210.500 T2

vz;
B
S

vy = 0,

Test Your Understanding of Section 27.4 (a) If you double the speed
of the charged particle in Fig. 27.17a while keeping the magnetic field the same
(as well as the charge and the mass), how does this affect the radius of the trajec-
tory? (i) The radius is unchanged; (ii) the radius is twice as large; (iii) the radius is 
four times as large; (iv) the radius is as large; (v) the radius is as large. (b) How does
this affect the time required for one complete circular orbit? (i) The time is unchanged;
(ii) the time is twice as long; (iii) the time is four times as long; (iv) the time is as 
long; (v) the time is as long. ❙
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27.5 Applications of Motion 
of Charged Particles

This section describes several applications of the principles introduced in this
chapter. Study them carefully, watching for applications of Problem-Solving
Strategy 27.2 (Section 27.4).

Velocity Selector
In a beam of charged particles produced by a heated cathode or a radioactive
material, not all particles move with the same speed. Many applications, how-
ever, require a beam in which all the particle speeds are the same. Particles of a
specific speed can be selected from the beam using an arrangement of electric
and magnetic fields called a velocity selector. In Fig. 27.22a a charged particle
with mass charge and speed enters a region of space where the electric
and magnetic fields are perpendicular to the particle’s velocity and to each other.
The electric field is to the left, and the magnetic field is into the plane of the
figure. If is positive, the electric force is to the left, with magnitude and 
the magnetic force is to the right, with magnitude For given field magni-
tudes and for a particular value of the electric and magnetic forces will be
equal in magnitude; the total force is then zero, and the particle travels in a
straight line with constant velocity. For zero total force, we need

solving for the speed for which there is no deflection, we
find

(27.13)

Only particles with speeds equal to can pass through without being deflected
by the fields (Fig. 27.22b). By adjusting and appropriately, we can select par-
ticles having a particular speed for use in other experiments. Because divides
out in Eq. (27.13), a velocity selector for positively charged particles also works
for electrons or other negatively charged particles.

Thomson’s Experiment
In one of the landmark experiments in physics at the end of the 19th century, 
J. J. Thomson (1856–1940) used the idea just described to measure the ratio of
charge to mass for the electron. For this experiment, carried out in 1897 at the
Cavendish Laboratory in Cambridge, England, Thomson used the apparatus shown
in Fig. 27.23. In a highly evacuated glass container, electrons from the hot cathode
are accelerated and formed into a beam by a potential difference between the two
anodes A and The speed of the electrons is determined by the acceleratingvA¿.

V

e/m

q
BE

E>B

v =
E

B

v-qE + qvB = 0;
gFy = 0,

vB,E
qvB.

qE,q
B
S

E
S

vq,m,
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FE � qE FB � qvB

By the right-hand rule,
the force of the B field
on the charge points to
the right.

The force of the E field
on the charge points to
the left.

For a negative charge,
the directions of both
forces are reversed.

        Only if a charged
        particle has v � E/B
do the electric and magnetic
forces cancel. All other
particles are deflected.

(a) Schematic diagram of velocity selector

(b) Free-body diagram for a positive particle

27.22 (a) A velocity selector for
charged particles uses perpendicular and

fields. Only charged particles with
move through undeflected. 

(b) The electric and magnetic forces on 
a positive charge. The forces are reversed
if the charge is negative.
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Between plates P and P� there
are mutually perpendicular, 
uniform E and B fields.

S S

Electrons travel from the cathode to the screen.
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27.23 Thomson’s apparatus for measur-
ing the ratio for the electron.e/m
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potential The gained kinetic energy equals the lost electric potential
energy where is the magnitude of the electron charge:

(27.14)

The electrons pass between the plates P and and strike the screen at the end
of the tube, which is coated with a material that fluoresces (glows) at the point of
impact. The electrons pass straight through the plates when Eq. (27.13) is satis-
fied; combining this with Eq. (27.14), we get

(27.15)

All the quantities on the right side can be measured, so the ratio of charge to
mass can be determined. It is not possible to measure or separately by this
method, only their ratio.

The most significant aspect of Thomson’s measurements was that he
found a single value for this quantity. It did not depend on the cathode material,
the residual gas in the tube, or anything else about the experiment. This inde-
pendence showed that the particles in the beam, which we now call electrons, are
a common constituent of all matter. Thus Thomson is credited with the first dis-
covery of a subatomic particle, the electron.

The most precise value of available as of this writing is

In this expression, (44) indicates the likely uncertainty in the last two digits, 50.
Fifteen years after Thomson’s experiments, the American physicist Robert

Millikan succeeded in measuring the charge of the electron precisely (see Chal-
lenge Problem 23.91). This value, together with the value of enables us to
determine the mass of the electron. The most precise value available at present is

Mass Spectrometers
Techniques similar to Thomson’s experiment can be used to measure masses
of ions and thus measure atomic and molecular masses. In 1919, Francis Aston
(1877–1945), a student of Thomson’s, built the first of a family of instruments
called mass spectrometers. A variation built by Bainbridge is shown in Fig. 27.24.
Positive ions from a source pass through the slits and forming a narrow
beam. Then the ions pass through a velocity selector with crossed and fields,
as we have described, to block all ions except those with speeds equal to 
Finally, the ions pass into a region with a magnetic field perpendicular to the
figure, where they move in circular arcs with radius determined by Eq. (27.11):

Ions with different masses strike the detector (in Bainbridge’s
design, a photographic plate) at different points, and the values of can be meas-
ured. We assume that each ion has lost one electron, so the net charge of each ion
is just With everything known in this equation except we can compute the
mass of the ion.

One of the earliest results from this work was the discovery that neon has two
species of atoms, with atomic masses 20 and We now call these
species isotopes of the element. Later experiments have shown that many ele-
ments have several isotopes, atoms that are identical in their chemical behavior
but different in mass owing to differing numbers of neutrons in their nuclei. This
is just one of the many applications of mass spectrometers in chemistry and
physics.

22 g>mol.
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selects particles
with speed v.

Magnetic field separates particles by mass;
the greater a particle’s mass, the larger is
the radius of its path.
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27.24 Bainbridge’s mass spectrometer
utilizes a velocity selector to produce parti-
cles with uniform speed In the region of
magnetic field particles with greater
mass travel in paths with
larger radius 1R2 7 R12.

1m2 7 m12
B¿,

v.

ActivPhysics 13.8: Velocity Selector



27.6 Magnetic Force on a 
Current-Carrying Conductor

What makes an electric motor work? Within the motor are conductors that carry
currents (that is, whose charges are in motion), as well as magnets that exert
forces on the moving charges. Hence there is a magnetic force along the length of
each current-carrying conductor, and these forces make the motor turn. The mov-
ing-coil galvanometer that we described in Section 26.3 also uses magnetic
forces on conductors.

We can compute the force on a current-carrying conductor starting with the mag-
netic force on a single moving charge. Figure 27.25 shows a straightF

S
� qvS : B

S
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Example 27.5 An demonstration experimente>m

You set out to reproduce Thomson’s experiment with an
accelerating potential of 150 V and a deflecting electric field of
magnitude (a) At what fraction of the speed of
light do the electrons move? (b) What magnetic-field magnitude
will yield zero beam deflection? (c) With this magnetic field, how
will the electron beam behave if you increase the accelerating
potential above 150 V?

SOLUTION

IDENTIFY and SET UP: This is the situation shown in Fig. 27.23.
We use Eq. (27.14) to determine the electron speed and Eq. (27.13)
to determine the required magnetic field B.

EXECUTE: (a) From Eq. (27.14), the electron speed is

= 7.27 * 106 m>s = 0.024c

v = 221e>m2V = 2211.76 * 1011 C>kg21150 V2

v

6.0 * 106 N>C.

e>m (b) From Eq. (27.13), the required field strength is

(c) Increasing the accelerating potential V increases the elec-
tron speed In Fig. 27.23 this doesn’t change the upward electric
force but it increases the downward magnetic force 
Therefore the electron beam will turn downward and will hit the
end of the tube below the undeflected position.

EVALUATE: The required magnetic field is relatively large because
the electrons are moving fairly rapidly (2.4% of the speed of light).
If the maximum available magnetic field is less than 0.83 T, the
electric field strength E would have to be reduced to maintain the
desired ratio in Eq. (27.15).E>B

evB.eE,
v.

B =
E

v
=

6.00 * 106 N>C

7.27 * 106 m>s
= 0.83 T

Example 27.6 Finding leaks in a vacuum system

There is almost no helium in ordinary air, so helium sprayed near a
leak in a vacuum system will quickly show up in the output of a
vacuum pump connected to such a system. You are designing a leak
detector that uses a mass spectrometer to detect ions (charge

mass The ions
emerge from the velocity selector with a speed of 
They are curved in a semicircular path by a magnetic field and
are detected at a distance of 10.16 cm from the slit in Fig. 27.24.
Calculate the magnitude of the magnetic field 

SOLUTION

IDENTIFY and SET UP: After it passes through the slit, the ion fol-
lows a circular path as described in Section 27.4 (see Fig. 27.17).
We solve Eq. (27.11) for .B¿

B¿.
S3

B¿
1.00 * 105 m>s.

6.65 * 10-27 kg2.+e = +1.60 * 10-19 C,
He+

EXECUTE: The distance given is the diameter of the semicircular
path shown in Fig. 27.24, so the radius is 

From Eq. (27.11), we get

EVALUATE: Helium leak detectors are widely used with high-
vacuum systems. Our result shows that only a small magnetic field
is required, so leak detectors can be relatively compact.

= 0.0818 T

B¿ =
mv
qR

=
16.65 * 10-27 kg211.00 * 105 m>s2

11.60 * 10-19 C215.08 * 10-2 m2

R = mv>qB¿,10-2 m2.
R = 1

2 110.16 *

Test Your Understanding of Section 27.5 In Example 27.6 ions with
charge move at in a straight line through a velocity selector. Suppose
the ions were replaced with ions, in which both electrons have been removed
from the helium atom and the ion charge is At what speed must the ions travel
through the same velocity selector in order to move in a straight line? (i) about 

(ii) about (iii) (iv) about 
(v) about ❙0.25 * 105 m/s.

0.50 * 105 m/s;1.00 * 105 m/s;2.00 * 105 m/s;105 m/s;
4.00 *

He2++2e.
He2+He+

1.00 * 105 m/s+e
He+

q

l

A
Drift velocity
of charge
carriers

B
S

vd
S

F
S

J
S

J
S

27.25 Forces on a moving positive
charge in a current-carrying conductor.

ActivPhysics 13.7: Mass Spectrometer
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segment of a conducting wire, with length and cross-sectional area the current
is from bottom to top. The wire is in a uniform magnetic field perpendicular to
the plane of the diagram and directed into the plane. Let’s assume first that the mov-
ing charges are positive. Later we’ll see what happens when they are negative.

The drift velocity is upward, perpendicular to The average force on each
charge is directed to the left as shown in the figure; since and

are perpendicular, the magnitude of the force is 
We can derive an expression for the total force on all the moving charges in a

length l of conductor with cross-sectional area A using the same language we
used in Eqs. (25.2) and (25.3) of Section 25.1. The number of charges per unit
volume is ; a segment of conductor with length has volume and contains a
number of charges equal to The total force on all the moving charges in
this segment has magnitude

(27.16)

From Eq. (25.3) the current density is The product is the total cur-
rent so we can rewrite Eq. (27.16) as

(27.17)

If the field is not perpendicular to the wire but makes an angle with it, we
handle the situation the same way we did in Section 27.2 for a single charge.
Only the component of perpendicular to the wire (and to the drift velocities of
the charges) exerts a force; this component is The magnetic force
on the wire segment is then

(27.18)

The force is always perpendicular to both the conductor and the field, with the
direction determined by the same right-hand rule we used for a moving positive
charge (Fig. 27.26). Hence this force can be expressed as a vector product, just like
the force on a single moving charge. We represent the segment of wire with a vector

along the wire in the direction of the current; then the force on this segment is

(magnetic force on a straight wire segment) (27.19)

Figure 27.27 illustrates the directions of and for several cases.
If the conductor is not straight, we can divide it into infinitesimal segments
The force on each segment is

(magnetic force on an infinitesimal wire section) (27.20)

Then we can integrate this expression along the wire to find the total force on a con-
ductor of any shape. The integral is a line integral, the same mathematical operation
we have used to define work (Section 6.3) and electric potential (Section 23.2).

CAUTION Current is not a vector Recall from Section 25.1 that the current is not a
vector. The direction of current flow is described by not If the conductor is curved,
the current is the same at all points along its length, but changes direction so that it is
always tangent to the conductor. ❙

Finally, what happens when the moving charges are negative, such as elec-
trons in a metal? Then in Fig. 27.25 an upward current corresponds to a down-
ward drift velocity. But because is now negative, the direction of the force is
the same as before. Thus Eqs. (27.17) through (27.20) are valid for both positive
and negative charges and even when both signs of charge are present at once.
This happens in some semiconductor materials and in ionic solutions.

A common application of the magnetic forces on a current-carrying wire is found
in loudspeakers (Fig. 27.28). The radial magnetic field created by the permanent
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length carries a current I in the 
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magnet exerts a force on the voice coil that is proportional to the current in the
coil; the direction of the force is either to the left or to the right, depending on the
direction of the current. The signal from the amplifier causes the current to oscil-
late in direction and magnitude. The coil and the speaker cone to which it is
attached respond by oscillating with an amplitude proportional to the amplitude
of the current in the coil. Turning up the volume knob on the amplifier increases
the current amplitude and hence the amplitudes of the cone’s oscillation and of
the sound wave produced by the moving cone.
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27.28 (a) Components of a loudspeaker. (b) The permanent magnet creates a magnetic field that exerts forces on the current in the
voice coil; for a current I in the direction shown, the force is to the right. If the electric current in the voice coil oscillates, the speaker
cone attached to the voice coil oscillates at the same frequency.

Example 27.7 Magnetic force on a straight conductor

A straight horizontal copper rod carries a current of 50.0 A from west
to east in a region between the poles of a large electromagnet. In this
region there is a horizontal magnetic field toward the northeast (that
is, 45° north of east) with magnitude 1.20 T. (a) Find the magnitude
and direction of the force on a 1.00-m section of rod. (b) While keep-
ing the rod horizontal, how should it be oriented to maximize the
magnitude of the force? What is the force magnitude in this case?

SOLUTION

IDENTIFY and SET UP: Figure 27.29 shows the situation. This is a
straight wire segment in a uniform magnetic field, as in Fig. 27.26.
Our target variables are the force on the segment and the angle 
for which the force magnitude F is greatest. We find the magnitude
of the magnetic force using Eq. (27.18) and the direction from the
right-hand rule.

EXECUTE: (a) The angle between the directions of current and
field is 45°. From Eq. (27.18) we obtain

f

fF
S

The direction of the force is perpendicular to the plane of the cur-
rent and the field, both of which lie in the horizontal plane. Thus
the force must be vertical; the right-hand rule shows that it is verti-
cally upward (out of the plane of the figure).

(b) From F is maximum for , so that 
and are perpendicular. To keep upward, we rotate
the rod clockwise by from its orientation in Fig. 27.29, so 
that the current runs toward the southeast. Then 

60.0 N.

EVALUATE: You can check the result in part (a) by using Eq.
(27.19) to calculate the force vector. If we use a coordinate system
with the x-axis pointing east, the y-axis north, and the z-axis
upward, we have , 

, and

Note that the maximum upward force of 60.0 N can hold the
conductor in midair against the force of gravity—that is,
magnetically levitate the conductor—if its weight is 60.0 N and its
mass is 6.12 kg. Magnetic
levitation is used in some high-speed trains to suspend the train
over the tracks. Eliminating rolling friction in this way allows the
train to achieve speeds of over .400 km>h

160.0 N2>19.8 m>s22 =m = w>g =

� 142.4 N2kN
� 150 A211.00 m2ın : 11.20 T231cos45°2ın � 1sin45°2≥n4

F
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� I l
S

: B
S

1sin45°2≥n4
B
S

� 11.20 T231cos45°2ın �l
S

� 11.00 m2ın

150.0 A211.00 m211.20 T2 =
F = IlB =

45°
F
S

� I l
S

: B
S

B
S

l
S

f = 90°F = IlB sinf,

F = IlB sinf = 150.0 A211.00 m211.20 T21sin 45°2 = 42.4 N

27.29 Our sketch of the copper rod as seen from overhead.
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27.7 Force and Torque on a Current Loop
Current-carrying conductors usually form closed loops, so it is worthwhile to use
the results of Section 27.6 to find the total magnetic force and torque on a con-
ductor in the form of a loop. Many practical devices make use of the magnetic
force or torque on a conducting loop, including loudspeakers (see Fig. 27.28) and
galvanometers (see Section 26.3). Hence the results of this section are of substan-
tial practical importance. These results will also help us understand the behavior
of bar magnets described in Section 27.1.

As an example, let’s look at a rectangular current loop in a uniform magnetic
field. We can represent the loop as a series of straight line segments. We will find

Example 27.8 Magnetic force on a curved conductor

In Fig. 27.30 the magnetic field is uniform and perpendicular to
the plane of the figure, pointing out of the page. The conductor,
carrying current I to the left, has three segments: (1) a straight seg-
ment with length L perpendicular to the plane of the figure, (2) a
semicircle with radius , and (3) another straight segment with
length parallel to the Find the total magnetic force on this
conductor.

SOLUTION

IDENTIFY and SET UP: The magnetic field is uniform, so
we find the forces and on the straight segments (1) and (3)
using Eq. (27.19). We divide the curved segment (2) into infinites-
imal straight segments and find the corresponding force on
each straight segment using Eq. (27.20). We then integrate to find

The total magnetic force on the conductor is then 
F
S

1 � F
S

2 � F
S

3.
F
S

�F
S

2.

dF
S
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F
S

3F
S

1

B
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� BkN

x-axis .L
R

B
S

EXECUTE: For segment (1), . Hence from Eq. (27.19),
For segment (3), so 

For the curved segment (2), Fig. 27.20 shows a segment 
with length at angle The right-hand rule shows that
the direction of is radially outward from the center; make
sure you can verify this. Because and are perpendicular, the
magnitude of the force on the segment is just 

. The components of the force on this segment
are

To find the components of the total force, we integrate these
expressions with respect to θ from to to take in the
whole semicircle. The results are

Hence . Finally, adding the forces on all three seg-
ments, we find that the total force is in the positive y-direction:

EVALUATE: We could have predicted from symmetry that the 
x-component of would be zero: On the right half of the semicircle
the x-component of the force is positive (to the right) and on the
left half it is negative (to the left); the positive and negative contri-
butions to the integral cancel. The result is that is the force that
would be exerted if we replaced the semicircle with a straight seg-
ment of length 2R along the x-axis. Do you see why?
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27.30 What is the total magnetic force on the conductor?

Test Your Understanding of Section 27.6 The figure at right shows a top
view of two conducting rails on which a conducting bar can slide. A uniform magnetic
field is directed perpendicular to the plane of the figure as shown. A battery is to be con-
nected to the two rails so that when the switch is closed, current will flow through the bar
and cause a magnetic force to push the bar to the right. In which orientation, A or B,
should the battery be placed in the circuit?

❙

Conducting
bar

Conducting
rails

Which
orientation?

Switch

A B

F
S

B
S

ActivPhysics 13.6: Magnetic Torque on a
Loop



that the total force on the loop is zero but that there can be a net torque acting on
the loop, with some interesting properties.

Figure 27.31a shows a rectangular loop of wire with side lengths and A
line perpendicular to the plane of the loop (i.e., a normal to the plane) makes an
angle with the direction of the magnetic field and the loop carries a current

The wires leading the current into and out of the loop and the source of emf are
omitted to keep the diagram simple.

The force on the right side of the loop (length is to the right, in the
as shown. On this side, is perpendicular to the current direction,

and the force on this side has magnitude

(27.21)

A force with the same magnitude but opposite direction acts on the opposite
side of the loop, as shown in the figure.

The sides with length make an angle with the direction of The
forces on these sides are the vectors and their magnitude is given by

The lines of action of both forces lie along the 
The total force on the loop is zero because the forces on opposite sides cancel

out in pairs.

The net force on a current loop in a uniform magnetic field is zero. However, the
net torque is not in general equal to zero.

(You may find it helpful at this point to review the discussion of torque in Section
10.1.) The two forces and in Fig. 27.31a lie along the same line and so
give rise to zero net torque with respect to any point. The two forces and 
lie along different lines, and each gives rise to a torque about the y-axis. Accord-
ing to the right-hand rule for determining the direction of torques, the vector
torques due to and are both in the hence the net vector
torque is in the as well. The moment arm for each of these forces+y-directionT

S
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S
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The two pairs of forces acting on the loop cancel, so no net force acts on the loop.

However, the forces on the a sides of the loop (F and 2F ) produce a torque
t 5 (IBa)(b sinf) on the loop.

f is the angle
between a vector
normal to the loop
and the magnetic
field.

The torque is maximal
when f 5 90° (so B is in
the plane of the loop).

The torque is zero when 
f 5 0° (as shown here) or
f 5 180°. In both cases,
B is perpendicular to the
plane of the loop.

The loop is in stable equi-
librium when f 5 0; it is
in unstable equilibrium
when f 5 180°.
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27.31 Finding the torque on a current-carrying loop in a uniform magnetic field.
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(equal to the perpendicular distance from the rotation axis to the line of action of
the force) is so the torque due to each force has magnitude

If we use Eq. (27.21) for the magnitude of the net torque is

(27.22)

The torque is greatest when is in the plane of the loop, and the nor-
mal to this plane is perpendicular to (Fig. 27.31b). The torque is zero when is

or and the normal to the loop is parallel or antiparallel to the field (Fig.
27.31c). The value is a stable equilibrium position because the torque is
zero there, and when the loop is rotated slightly from this position, the resulting
torque tends to rotate it back toward The position is an
unstable equilibrium position; if displaced slightly from this position, the loop
tends to move farther away from Figure 27.31 shows rotation about
the y-axis, but because the net force on the loop is zero, Eq. (27.22) for the torque
is valid for any choice of axis.

The area of the loop is equal to so we can rewrite Eq. (27.22) as

(magnitude of torque on a current loop) (27.23)

The product is called the magnetic dipole moment or magnetic moment of
the loop, for which we use the symbol (the Greek letter mu):

(27.24)

It is analogous to the electric dipole moment introduced in Section 21.7. In terms
of the magnitude of the torque on a current loop is

(27.25)

where is the angle between the normal to the loop (the direction of the vector
area and The torque tends to rotate the loop in the direction of decreasing

—that is, toward its stable equilibrium position in which the loop lies in the
perpendicular to the direction of the field (Fig. 27.31c). A current

loop, or any other body that experiences a magnetic torque given by Eq. (27.25),
is also called a magnetic dipole.

Magnetic Torque: Vector Form
We can also define a vector magnetic moment with magnitude This is shown
in Fig. 27.31. The direction of is defined to be perpendicular to the plane of the
loop, with a sense determined by a right-hand rule, as shown in Fig. 27.32. Wrap
the fingers of your right hand around the perimeter of the loop in the direction of
the current. Then extend your thumb so that it is perpendicular to the plane of the
loop; its direction is the direction of (and of the vector area of the loop). The
torque is greatest when and are perpendicular and is zero when they are par-
allel or antiparallel. In the stable equilibrium position, and are parallel.

Finally, we can express this interaction in terms of the torque vector which
we used for electric-dipole interactions in Section 21.7. From Eq. (27.25) the
magnitude of is equal to the magnitude of and reference to Fig. 27.31
shows that the directions are also the same. So we have

(vector torque on a current loop) (27.26)

This result is directly analogous to the result we found in Section 21.7 for the
torque exerted by an electric field on an electric dipole with dipole moment 

Potential Energy for a Magnetic Dipole
When a magnetic dipole changes orientation in a magnetic field, the field does
work on it. In an infinitesimal angular displacement , the work is given bydWdf

pS.E
S

T
S

� M
S : B

S

M
S : B

S
,T

S

T
S,

B
S

M
S

B
S

M
S

A
S

M
S

M
S

IA:M
S

B
S

xy-plane
f

B
S

.A
S
2
f

t = mB sinf

m,

m = IA

m

IA

t = IBA sinf

ab,A

f = 180°.

f = 180°f = 0°.

f = 0°
180°0°

fB
S

B
S

f = 90°,

t = 2F1b>22 sinf = 1IBa21b sinf2

F,F1b>22 sinf.
1b>22 sinf,

I

I

I

I

A
S

m
S

27.32 The right-hand rule determines
the direction of the magnetic moment of a
current-carrying loop. This is also the
direction of the loop’s area vector 
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and there is a corresponding change in potential energy. As the above dis-
cussion suggests, the potential energy is least when and are parallel and
greatest when they are antiparallel. To find an expression for the potential energy

as a function of orientation, we can make use of the beautiful symmetry
between the electric and magnetic dipole interactions. The torque on an electric
dipole in an electric field is we found in Section 21.7 that the corre-
sponding potential energy is The torque on a magnetic dipole in a
magnetic field is so we can conclude immediately that the corre-
sponding potential energy is

(potential energy for a magnetic dipole) (27.27)

With this definition, is zero when the magnetic dipole moment is perpendicular
to the magnetic field.

Magnetic Torque: Loops and Coils
Although we have derived Eqs. (27.21) through (27.27) for a rectangular current
loop, all these relationships are valid for a plane loop of any shape at all. Any pla-
nar loop may be approximated as closely as we wish by a very large number of
rectangular loops, as shown in Fig. 27.33. If these loops all carry equal currents
in the same clockwise sense, then the forces and torques on the sides of two loops
adjacent to each other cancel, and the only forces and torques that do not cancel
are due to currents around the boundary. Thus all the above relationships are
valid for a plane current loop of any shape, with the magnetic moment given
by

We can also generalize this whole formulation to a coil consisting of planar
loops close together; the effect is simply to multiply each force, the magnetic
moment, the torque, and the potential energy by a factor of 

An arrangement of particular interest is the solenoid, a helical winding of
wire, such as a coil wound on a circular cylinder (Fig. 27.34). If the windings are
closely spaced, the solenoid can be approximated by a number of circular loops
lying in planes at right angles to its long axis. The total torque on a solenoid in a
magnetic field is simply the sum of the torques on the individual turns. For a sole-
noid with turns in a uniform field the magnetic moment is and

(27.28)

where is the angle between the axis of the solenoid and the direction of the
field. The magnetic moment vector is along the solenoid axis. The torque is
greatest when the solenoid axis is perpendicular to the magnetic field and zero
when they are parallel. The effect of this torque is to tend to rotate the solenoid
into a position where its axis is parallel to the field. Solenoids are also useful as
sources of magnetic field, as we’ll discuss in Chapter 28.

The d’Arsonval galvanometer, described in Section 26.3, makes use of a mag-
netic torque on a coil carrying a current. As Fig. 26.14 shows, the magnetic field
is not uniform but is radial, so the side thrusts on the coil are always perpendicu-
lar to its plane. Thus the angle in Eq. (27.28) is always and the magnetic
torque is directly proportional to the current, no matter what the orientation of the
coil. A restoring torque proportional to the angular displacement of the coil is
provided by two hairsprings, which also serve as current leads to the coil. When
current is supplied to the coil, it rotates along with its attached pointer until the
restoring spring torque just balances the magnetic torque. Thus the pointer
deflection is proportional to the current.

An important medical application of the torque on a magnetic dipole is
magnetic resonance imaging (MRI). A patient is placed in a magnetic field
of about 1.5 T, more than times stronger than the earth’s field. The nucleus of
each hydrogen atom in the tissue to be imaged has a magnetic dipole moment,
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The torque tends to make the solenoid rotate
clockwise in the plane of the page, aligning
magnetic moment m with field B.
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27.34 The torque on this
solenoid in a uniform magnetic field is
directed straight into the page. An actual
solenoid has many more turns, wrapped
closely together.
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which experiences a torque that aligns it with the applied field. The tissue is then
illuminated with radio waves of just the right frequency to flip these magnetic
moments out of alignment. The extent to which these radio waves are absorbed in
the tissue is proportional to the amount of hydrogen present. Hence hydrogen-
rich soft tissue looks quite different from hydrogen-deficient bone, which makes
MRI ideal for analyzing details in soft tissue that cannot be seen in x-ray images
(see the image that opens this chapter).

Example 27.9 Magnetic torque on a circular coil

A circular coil 0.0500 m in radius, with 30 turns of wire, lies in a
horizontal plane. It carries a counterclockwise (as viewed from
above) current of 5.00 A. The coil is in a uniform 1.20-T magnetic
field directed toward the right. Find the magnitudes of the mag-
netic moment and the torque on the coil.

SOLUTION

IDENTIFY and SET UP: This problem uses the definition of mag-
netic moment and the expression for the torque on a magnetic
dipole in a magnetic field. Figure 27.35 shows the situation.
Equation (27.24) gives the magnitude of the magnetic moment
of a single turn of wire; for N turns, the magnetic moment is N
times greater. Equation (27.25) gives the magnitude of the
torque.

EXECUTE: The area of the coil is . From Eq. (27.24), the
total magnetic moment of all 30 turns is

mtotal = NIA = 3015.00 A2p10.0500 m22 = 1.18 A # m2

A = pr 2

t

m

The angle between the direction of and the direction of 
(which is along the normal to the plane of the coil) is From
Eq. (27.25), the torque on the coil is

EVALUATE: The torque tends to rotate the right side of the coil
down and the left side up, into a position where the normal to its
plane is parallel to B

S
.

= 1.41 N # m
t = mtotalB sin f = 11.18 A # m2211.20 T21sin 90°2

90°.
M
SB

S
f

27.35 Our sketch for this problem.

Example 27.10 Potential energy for a coil in a magnetic field

If the coil in Example 27.9 rotates from its initial orientation to one
in which its magnetic moment is parallel to what is the
change in potential energy?

SOLUTION

IDENTIFY and SET UP: Equation (27.27) gives the potential energy
for each orientation. The initial position is as shown in Fig. 27.35,
with In the final orientation, the coil has been rotated

clockwise so that and are parallel, so the angle between
these vectors is f2 = 0.

B
S

M
S90°

f1 = 90°.

B
S

,M
S

EXECUTE: From Eq. (27.27), the potential energy change is

EVALUATE: The potential energy decreases because the rotation is in
the direction of the magnetic torque that we found in Example 27.9.

= -11.18 A # m2211.20 T21cos0° - cos90°2 = -1.41 J

= -mB1cosf2 - cosf12

¢U = U2 - U1 = -mB cosf2 - 1-mB cosf12

Magnetic Dipole in a Nonuniform Magnetic Field
We have seen that a current loop (that is, a magnetic dipole) experiences zero net
force in a uniform magnetic field. Figure 27.36 shows two current loops in the
nonuniform field of a bar magnet; in both cases the net force on the loop is not
zero. In Fig. 27.36a the magnetic moment is in the direction opposite to the
field, and the force on a segment of the loop has both a radial
component and a component to the right. When these forces are summed to find
the net force on the loop, the radial components cancel so that the net force is
to the right, away from the magnet. Note that in this case the force is toward the
region where the field lines are farther apart and the field magnitude is less. The
polarity of the bar magnet is reversed in Fig. 27.36b, so and are parallel;B
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now the net force on the loop is to the left, toward the region of greater field mag-
nitude near the magnet. Later in this section we’ll use these observations to
explain why bar magnets can pick up unmagnetized iron objects.

Magnetic Dipoles and How Magnets Work
The behavior of a solenoid in a magnetic field (see Fig. 27.34) resembles that of a
bar magnet or compass needle; if free to turn, both the solenoid and the magnet ori-
ent themselves with their axes parallel to the field. In both cases this is due to the
interaction of moving electric charges with a magnetic field; the difference is that
in a bar magnet the motion of charge occurs on the microscopic scale of the atom.

Think of an electron as being like a spinning ball of charge. In this analogy the
circulation of charge around the spin axis is like a current loop, and so the elec-
tron has a net magnetic moment. (This analogy, while helpful, is inexact; an elec-
tron isn’t really a spinning sphere. A full explanation of the origin of an electron’s
magnetic moment involves quantum mechanics, which is beyond our scope
here.) In an iron atom a substantial fraction of the electron magnetic moments
align with each other, and the atom has a nonzero magnetic moment. (By con-
trast, the atoms of most elements have little or no net magnetic moment.) In an
unmagnetized piece of iron there is no overall alignment of the magnetic
moments of the atoms; their vector sum is zero, and the net magnetic moment is
zero (Fig. 27.37a). But in an iron bar magnet the magnetic moments of many of
the atoms are parallel, and there is a substantial net magnetic moment (Fig.
27.37b). If the magnet is placed in a magnetic field the field exerts a torque
given by Eq. (27.26) that tends to align with (Fig. 27.37c). A bar magnet
tends to align with a field so that a line from the south pole to the north pole of
the magnet is in the direction of hence the real significance of a magnet’s north
and south poles is that they represent the head and tail, respectively, of the mag-
net’s dipole moment 

The torque experienced by a current loop in a magnetic field also explains
how an unmagnetized iron object like that in Fig. 27.37a becomes magnetized. If
an unmagnetized iron paper clip is placed next to a powerful magnet, the mag-
netic moments of the paper clip’s atoms tend to align with the field of the mag-
net. When the paper clip is removed, its atomic dipoles tend to remain aligned,
and the paper clip has a net magnetic moment. The paper clip can be demagnet-
ized by being dropped on the floor or heated; the added internal energy jostles
and re-randomizes the atomic dipoles.

The magnetic-dipole picture of a bar magnet explains the attractive and repul-
sive forces between bar magnets shown in Fig. 27.1. The magnetic moment of
a bar magnet points from its south pole to its north pole, so the current loops in
Figs. 27.36a and 27.36b are both equivalent to a magnet with its north pole on the
left. Hence the situation in Fig. 27.36a is equivalent to two bar magnets with their
north poles next to each other; the resultant force is repulsive, just as in Fig.
27.1b. In Fig. 27.36b we again have the equivalent of two bar magnets end to
end, but with the south pole of the left-hand magnet next to the north pole of the
right-hand magnet. The resultant force is attractive, as in Fig. 27.1a.

Finally, we can explain how a magnet can attract an unmagnetized iron object
(see Fig. 27.2). It’s a two-step process. First, the atomic magnetic moments of the
iron tend to align with the field of the magnet, so the iron acquires a net mag-
netic dipole moment parallel to the field. Second, the nonuniform field of the
magnet attracts the magnetic dipole. Figure 27.38a shows an example. The north
pole of the magnet is closer to the nail (which contains iron), and the magnetic
dipole produced in the nail is equivalent to a loop with a current that circulates in a
direction opposite to that shown in Fig. 27.36a. Hence the net magnetic force on
the nail is opposite to the force on the loop in Fig. 27.36a, and the nail is attracted
toward the magnet. Changing the polarity of the magnet, as in Fig. 27.38b,
reverses the directions of both and The situation is now equivalent to thatM
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pole of magnet.
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27.36 Forces on current loops in a
nonuniform field. In each case the axis
of the bar magnet is perpendicular to the
plane of the loop and passes through the
center of the loop.
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(a) Unmagnetized iron: magnetic moments
are oriented randomly.
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(b) In a bar magnet, the magnetic moments
are aligned.
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(c) A magnetic field creates a torque on the
bar magnet that tends to align its dipole
moment with the B field.

m
S

t
S

B
S

S

N

S

N

S

27.37 (a) An unmagnetized piece of
iron. (Only a few representative atomic
moments are shown.) (b) A magnetized
piece of iron (bar magnet). The net mag-
netic moment of the bar magnet points
from its south pole to its north pole. 
(c) A bar magnet in a magnetic field.
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shown in Fig. 27.36b; like the loop in that figure, the nail is attracted toward the
magnet. Hence a previously unmagnetized object containing iron is attracted to
either pole of a magnet. By contrast, objects made of brass, aluminum, or wood
hardly respond at all to a magnet; the atomic magnetic dipoles of these materials,
if present at all, have less tendency to align with an external field.

Our discussion of how magnets and pieces of iron interact has just scratched
the surface of a diverse subject known as magnetic properties of materials. We’ll
discuss these properties in more depth in Section 28.8.

Test Your Understanding of Section 27.7 Figure 27.13c depicts the mag-
netic field lines due to a circular current-carrying loop. (a) What is the direction of the
magnetic moment of this loop? (b) Which side of the loop is equivalent to the north pole
of a magnet, and which side is equivalent to the south pole? ❙

27.8 The Direct-Current Motor
Electric motors play an important role in contemporary society. In a motor a
magnetic torque acts on a current-carrying conductor, and electric energy is con-
verted to mechanical energy. As an example, let’s look at a simple type of direct-
current (dc) motor, shown in Fig. 27.39.

The moving part of the motor is the rotor, a length of wire formed into an
open-ended loop and free to rotate about an axis. The ends of the rotor wires are
attached to circular conducting segments that form a commutator. In Fig. 27.39a,
each of the two commutator segments makes contact with one of the terminals, or
brushes, of an external circuit that includes a source of emf. This causes a current
to flow into the rotor on one side, shown in red, and out of the rotor on the other
side, shown in blue. Hence the rotor is a current loop with a magnetic moment 
The rotor lies between opposing poles of a permanent magnet, so there is a mag-
netic field that exerts a torque on the rotor. For the rotor orienta-
tion shown in Fig. 27.39a the torque causes the rotor to turn counterclockwise, in
the direction that will align with 

In Fig. 27.39b the rotor has rotated by from its orientation in Fig. 27.39a.
If the current through the rotor were constant, the rotor would now be in its equi-
librium orientation; it would simply oscillate around this orientation. But here’s
where the commutator comes into play; each brush is now in contact with both
segments of the commutator. There is no potential difference between the
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27.38 A bar magnet attracts an unmag-
netized iron nail in two steps. First, the 

field of the bar magnet gives rise to a net
magnetic moment in the nail. Second,
because the field of the bar magnet is not
uniform, this magnetic dipole is attracted
toward the magnet. The attraction is the
same whether the nail is closer to (a) the
magnet’s north pole or (b) the magnet’s
south pole.
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• Each brush is in contact with both
   commutator segments, so the current
   bypasses the rotor altogether.
• No magnetic torque acts on the rotor.

(c) Rotor has turned 180°.
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• The brushes are again aligned with commutator
   segments. This time the current flows into the
   blue side of the rotor and out of the red side.
• Therefore the magnetic torque again causes the
   rotor to spin counterclockwise.

(b) Rotor has turned 90°.
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• Current flows into the red side of the rotor
   and out of the blue side.
• Therefore the magnetic torque causes the
   rotor to spin counterclockwise.

27.39 Schematic diagram of a simple dc motor. The rotor is a wire loop that is free to rotate about an axis; the rotor ends are attached
to the two curved conductors that form the commutator. (The rotor halves are colored red and blue for clarity.) The commutator
segments are insulated from one another.



commutators, so at this instant no current flows through the rotor, and the mag-
netic moment is zero. The rotor continues to rotate counterclockwise because of
its inertia, and current again flows through the rotor as in Fig. 27.39c. But now
current enters on the blue side of the rotor and exits on the red side, just the oppo-
site of the situation in Fig. 27.39a. While the direction of the current has reversed
with respect to the rotor, the rotor itself has rotated and the magnetic
moment is in the same direction with respect to the magnetic field. Hence the
magnetic torque is in the same direction in Fig. 27.39c as in Fig. 27.39a.
Thanks to the commutator, the current reverses after every 180° of rotation, so
the torque is always in the direction to rotate the rotor counterclockwise. When
the motor has come “up to speed,” the average magnetic torque is just balanced
by an opposing torque due to air resistance, friction in the rotor bearings, and
friction between the commutator and brushes.

The simple motor shown in Fig. 27.39 has only a single turn of wire in its
rotor. In practical motors, the rotor has many turns; this increases the magnetic
moment and the torque so that the motor can spin larger loads. The torque can
also be increased by using a stronger magnetic field, which is why many motor
designs use electromagnets instead of a permanent magnet. Another drawback of
the simple design in Fig. 27.39 is that the magnitude of the torque rises and falls
as the rotor spins. This can be remedied by having the rotor include several inde-
pendent coils of wire oriented at different angles (Fig. 27.40).

Power for Electric Motors
Because a motor converts electric energy to mechanical energy or work, it
requires electric energy input. If the potential difference between its terminals is

and the current is then the power input is Even if the motor coils
have negligible resistance, there must be a potential difference between the ter-
minals if is to be different from zero. This potential difference results princi-
pally from magnetic forces exerted on the currents in the conductors of the rotor
as they rotate through the magnetic field. The associated electromotive force is
called an induced emf; it is also called a back emf because its sense is opposite to
that of the current. In Chapter 29 we will study induced emfs resulting from
motion of conductors in magnetic fields.

E

P

P = VabI.I,Vab

T
S

M
S

180°
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Coils

27.40 This motor from a computer disk
drive has 12 current-carrying coils. They
interact with permanent magnets on the
turntable (not shown) to make the turntable
rotate. (This design is the reverse of the
design in Fig. 27.39, in which the perma-
nent magnets are stationary and the coil
rotates.) Because there are multiple coils,
the magnetic torque is very nearly constant
and the turntable spins at a very constant
rate.

Example 27.11 A series dc motor

A dc motor with its rotor and field coils connected in series has an
internal resistance of When running at full load on a 120-V
line, it draws a 4.00-A current. (a) What is the emf in the rotor? 
(b) What is the power delivered to the motor? (c) What is the rate
of dissipation of energy in the internal resistance? (d) What is the
mechanical power developed? (e) What is the motor’s efficiency?
(f) What happens if the machine being driven by the motor jams,
so that the rotor suddenly stops turning?

SOLUTION

IDENTIFY and SET UP: This problem uses the ideas of power and
potential drop in a series dc motor. We are given the internal

2.00 Æ.
resistance the voltage across the
motor, and the current through the motor. We use
Eq. (27.29) to determine the emf from these quantities. The
power delivered to the motor is the rate of energy dissipa-
tion is and the power output by the motor is the difference
between the power input and the power dissipated. The effi-
ciency is the ratio of mechanical power output to electric
power input.

EXECUTE: (a) From Eq. (27.29), we have

120 V = E + 14.00 A212.00 Æ2  and so  E = 112 V

Vab = E + Ir,

e

I 2r,
VabI,
E

I = 4.00 A
Vab = 120 Vr = 2.00 Æ,

(27.29)

Because the magnetic force is proportional to velocity, is not constant but is
proportional to the speed of rotation of the rotor.

E

Vab = E + Ir

In a series motor the rotor is connected in series with the electromagnet that
produces the magnetic field; in a shunt motor they are connected in parallel. In a
series motor with internal resistance is greater than and the difference is
the potential drop across the internal resistance. That is,Ir

E,Vabr,
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27.9 The Hall Effect
The reality of the forces acting on the moving charges in a conductor in a magnetic
field is strikingly demonstrated by the Hall effect, an effect analogous to the trans-
verse deflection of an electron beam in a magnetic field in vacuum. (The effect was
discovered by the American physicist Edwin Hall in 1879 while he was still a grad-
uate student.) To describe this effect, let’s consider a conductor in the form of a flat
strip, as shown in Fig. 27.41. The current is in the direction of the and
there is a uniform magnetic field perpendicular to the plane of the strip, in the

The drift velocity of the moving charges (charge magnitude has
magnitude Figure 27.41a shows the case of negative charges, such as electrons
in a metal, and Fig. 27.41b shows positive charges. In both cases the magnetic
force is upward, just as the magnetic force on a conductor is the same whether the
moving charges are positive or negative. In either case a moving charge is driven
toward the upper edge of the strip by the magnetic force 

If the charge carriers are electrons, as in Fig. 27.41a, an excess negative
charge accumulates at the upper edge of the strip, leaving an excess positive
charge at its lower edge. This accumulation continues until the resulting trans-
verse electrostatic field becomes large enough to cause a force (magnitude

that is equal and opposite to the magnetic force (magnitude After
that, there is no longer any net transverse force to deflect the moving charges.
This electric field causes a transverse potential difference between opposite edges
of the strip, called the Hall voltage or the Hall emf. The polarity depends on
whether the moving charges are positive or negative. Experiments show that for
metals the upper edge of the strip in Fig. 27.41a does become negatively charged,
showing that the charge carriers in a metal are indeed negative electrons.

However, if the charge carriers are positive, as in Fig. 27.41b, then positive
charge accumulates at the upper edge, and the potential difference is opposite to
the situation with negative charges. Soon after the discovery of the Hall effect in
1879, it was observed that some materials, particularly some semiconductors,
show a Hall emf opposite to that of the metals, as if their charge carriers were
positively charged. We now know that these materials conduct by a process
known as hole conduction. Within such a material there are locations, called
holes, that would normally be occupied by an electron but are actually empty. A
missing negative charge is equivalent to a positive charge. When an electron
moves in one direction to fill a hole, it leaves another hole behind it. The hole
migrates in the direction opposite to that of the electron.

ƒq ƒvdB).ƒq ƒEe)
E
S

e

Fz = ƒq ƒvdB.

vd.
ƒq ƒ)+y-direction.

B
S

+x-axis

(b) The power delivered to the motor from the source is

(c) The power dissipated in the resistance is

(d) The mechanical power output is the electric power input
minus the rate of dissipation of energy in the motor’s resistance
(assuming that there are no other power losses):

(e) The efficiency is the ratio of mechanical power output to
electric power input:

e =
Poutput

Pinput
=

448 W

480 W
= 0.93 = 93%

e

Poutput = Pinput - Pdissipated = 480 W - 32 W = 448 W

Pdissipated = I 2r = 14.00 A2212.00 Æ2 = 32 W

r

Pinput = VabI = 1120 V214.00 A2 = 480 W

(f) With the rotor stalled, the back emf (which is proportional
to rotor speed) goes to zero. From Eq. (27.29) the current becomes

and the power dissipated in the resistance becomes

EVALUATE: If this massive overload doesn’t blow a fuse or trip a
circuit breaker, the coils will quickly melt. When the motor is first
turned on, there’s a momentary surge of current until the motor
picks up speed. This surge causes greater-than-usual voltage drops

in the power lines supplying the current. Similar effects
are responsible for the momentary dimming of lights in a house
when an air conditioner or dishwasher motor starts.

1V = IR2

Pdissipated = I 2r = 160 A2212.00 Æ2 = 7200 W

r

I =
Vab

r
=

120 V

2.00 Æ
= 60 A

E

Test Your Understanding of Section 27.8 In the circuit shown in Fig. 27.39,
you add a switch in series with the source of emf so that the current can be turned on and
off. When you close the switch and allow current to flow, will the rotor begin to turn no
matter what its original orientation? ❙
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... so point a is at a higher potential than point b.

... so the polarity of the potential difference is
opposite to that for negative charge carriers. 
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27.41 Forces on charge carriers in a
conductor in a magnetic field.



In terms of the coordinate axes in Fig. 27.41b, the electrostatic field for the
positive-q case is in the its z-component is negative. The mag-
netic field is in the and we write it as The magnetic force (in the

is The current density is in the In the
steady state, when the forces and are equal in magnitude and opposite
in direction,

This confirms that when is positive, is negative. The current density is

Eliminating between these equations, we find

(Hall effect) (27.30)

Note that this result (as well as the entire derivation) is valid for both positive and
negative When is negative, is positive, and conversely.

We can measure and so we can compute the product In both
metals and semiconductors, is equal in magnitude to the electron charge, so the
Hall effect permits a direct measurement of the concentration of current-carrying
charges in the material. The sign of the charges is determined by the polarity of
the Hall emf, as we have described.

The Hall effect can also be used for a direct measurement of electron drift
speed in metals. As we saw in Chapter 25, these speeds are very small, often of
the order of or less. If we move the entire conductor in the opposite direc-
tion to the current with a speed equal to the drift speed, then the electrons are at
rest with respect to the magnetic field, and the Hall emf disappears. Thus the con-
ductor speed needed to make the Hall emf vanish is equal to the drift speed.

1 mm>s
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Example 27.12 A Hall-effect measurement

You place a strip of copper, 2.0 mm thick and 1.50 cm wide, in a uni-
form 0.40-T magnetic field as shown in Fig. 27.41a. When you run a
75-A current in the you find that the potential at the
bottom of the slab is higher than at the top. From this meas-
urement, determine the concentration of mobile electrons in copper.

SOLUTION

IDENTIFY and SET UP: This problem describes a Hall-effect exper-
iment. We use Eq. (27.30) to determine the mobile electron con-
centration

EXECUTE: First we find the current density and the electric 
field

Ez =
V

d
=

0.81 * 10-6 V

1.5 * 10-2 m
= 5.4 * 10-5 V>m

Jx =
I

A
=

75 A

12.0 * 10-3 m211.50 * 10-2 m2
= 2.5 * 106 A>m2

Ez:
Jx

n.

0.81mV
+x-direction,

Then, from Eq. (27.30),

EVALUATE: The actual value of for copper is .
The difference shows that our simple model of the Hall effect,
which ignores quantum effects and electron interactions with the
ions, must be used with caution. This example also shows that with
good conductors, the Hall emf is very small even with large cur-
rent densities. In practice, Hall-effect devices for magnetic-field
measurements use semiconductor materials, for which moderate
current densities give much larger Hall emfs.

8.5 * 1028 m-3n

= 11.6 * 1028 m-3

n =
-JxBy

qEz
=

-12.5 * 106 A>m2210.40 T2

1-1.60 * 10-19 C215.4 * 10-5 V>m2

Test Your Understanding of Section 27.9 A copper wire of square cross sec-
tion is oriented vertically. The four sides of the wire face north, south, east, and west.
There is a uniform magnetic field directed from east to west, and the wire carries current
downward. Which side of the wire is at the highest electric potential? (i) north side; (ii)
south side; (iii) east side; (iv) west side. ❙
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CHAPTER 27 SUMMARY

Magnetic forces: Magnetic interactions are fundamen-
tally interactions between moving charged particles.
These interactions are described by the vector magnetic
field, denoted by A particle with charge moving
with velocity in a magnetic field experiences a force

that is perpendicular to both and The SI unit of
magnetic field is the tesla (See
Example 27.1.)

11 T = 1 N>A # m2.
B
S

.vSF
S

B
S

vS
qB

S
.

(27.2)F
S

� qvS : B
S

Magnetic field lines and flux: A magnetic field can be
represented graphically by magnetic field lines. At each
point a magnetic field line is tangent to the direction of

at that point. Where field lines are close together the
field magnitude is large, and vice versa. Magnetic flux

through an area is defined in an analogous way to
electric flux. The SI unit of magnetic flux is the weber

The net magnetic flux through any
closed surface is zero (Gauss’s law for magnetism). As a
result, magnetic field lines always close on themselves.
(See Example 27.2.)

11 Wb = 1 T # m22.

£B

B
S (27.6)

(closed surface) (27.8)CB
S # dA

S
= 0

= LB
S # dA

S

= LBcosf dA

£B = LB�dA

Motion in a magnetic field: The magnetic force is always
perpendicular to a particle moving under the action of
a magnetic field alone moves with constant speed. In a
uniform field, a particle with initial velocity perpendicu-
lar to the field moves in a circle with radius R that
depends on the magnetic field strength and the parti-
cle mass speed and charge (See Examples 27.3
and 27.4.)

Crossed electric and magnetic fields can be used as a
velocity selector. The electric and magnetic forces exactly
cancel when (See Examples 27.5 and 27.6.)v = E>B.

q.v,m,
B

vS;
(27.11)R =

mv

ƒq ƒB

Magnetic force on a conductor: A straight segment of a
conductor carrying current in a uniform magnetic field

experiences a force that is perpendicular to both 
and the vector which points in the direction of the
current and has magnitude equal to the length of the
segment. A similar relationship gives the force on an
infinitesimal current-carrying segment . (See Exam-
ples 27.7 and 27.8.)
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Magnetic torque: A current loop with area A and current
I in a uniform magnetic field experiences no net mag-
netic force, but does experience a magnetic torque of
magnitude The vector torque can be expressed in
terms of the magnetic moment of the loop, as
can the potential energy U of a magnetic moment in a
magnetic field The magnetic moment of a loop
depends only on the current and the area; it is independ-
ent of the shape of the loop. (See Examples 27.9 and
27.10.)
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Electric motors: In a dc motor a magnetic field exerts a torque on a current in the rotor. Motion of the
rotor through the magnetic field causes an induced emf called a back emf. For a series motor, in which
the rotor coil is in parallel with coils that produce the magnetic field, the terminal voltage is the sum of
the back emf and the drop across the internal resistance. (See Example 27.11.)Ir

The Hall effect: The Hall effect is a potential difference
perpendicular to the direction of current in a conductor,
when the conductor is placed in a magnetic field. The
Hall potential is determined by the requirement that the
associated electric field must just balance the magnetic
force on a moving charge. Hall-effect measurements can
be used to determine the sign of charge carriers and
their concentration (See Example 27.12.)n.
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A circular ring with area is carrying a current of 12.5 A.
The ring, initially at rest, is immersed in a region of uniform mag-
netic field given by The
ring is positioned initially such that its magnetic moment is given
by where is the (positive) magni-
tude of the magnetic moment. (a) Find the initial magnetic torque
on the ring. (b) The ring (which is free to rotate around one diame-
ter) is released and turns through an angle of at which point
its magnetic moment is given by Determine the
decrease in potential energy. (c) If the moment of inertia of the ring
about a diameter is determine the angular
speed of the ring as it passes through the second position.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. The current-carrying ring acts as a magnetic dipole, so you can

use the equations for a magnetic dipole in a uniform magnetic
field.

8.50 * 10-7 kg # m2,

M
S

f � -mkN .
90.0°,

mM
S

i � m1-0.800ın � 0.600≥n2,

B
S

� 11.15 * 10-2 T2112ın � 3≥n � 4kN2.

4.45 cm2

BRIDGING PROBLEM Magnetic Torque on a Current-Carrying Ring

2. There are no nonconservative forces acting on the ring as it
rotates, so the sum of its rotational kinetic energy (discussed in
Section 9.4) and the potential energy is conserved.

EXECUTE
3. Use the vector expression for the torque on a magnetic dipole

to find the answer to part (a). (Hint: You may want to review
Section 1.10.)

4. Find the change in potential energy from the first orientation of
the ring to the second orientation.

5. Use your result from step 4 to find the rotational kinetic energy
of the ring when it is in the second orientation.

6. Use your result from step 5 to find the ring’s angular speed
when it is in the second orientation.

EVALUATE
7. If the ring were free to rotate around any diameter, in what

direction would the magnetic moment point when the ring is in
a state of stable equilibrium?

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q27.1 Can a charged particle move through a magnetic field with-
out experiencing any force? If so, how? If not, why not?
Q27.2 At any point in space, the electric field is defined to be in
the direction of the electric force on a positively charged particle at
that point. Why don’t we similarly define the magnetic field toB

S

E
S

be in the direction of the magnetic force on a moving, positively
charged particle?
Q27.3 Section 27.2 describes a procedure for finding the direction
of the magnetic force using your right hand. If you use the same
procedure, but with your left hand, will you get the correct direc-
tion for the force? Explain.

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.
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Q27.4 The magnetic force on a moving charged particle is always
perpendicular to the magnetic field Is the trajectory of a moving
charged particle always perpendicular to the magnetic field lines?
Explain your reasoning.
Q27.5 A charged particle is fired into a cubical region of space
where there is a uniform magnetic field. Outside this region, there
is no magnetic field. Is it possible that the particle will remain
inside the cubical region? Why or why not?
Q27.6 If the magnetic force does no work on a charged particle,
how can it have any effect on the particle’s motion? Are there other
examples of forces that do no work but have a significant effect on
a particle’s motion?
Q27.7 A charged particle moves through a region of space with
constant velocity (magnitude and direction). If the external mag-
netic field is zero in this region, can you conclude that the external
electric field in the region is also zero? Explain. (By “external” we
mean fields other than those produced by the charged particle.) If
the external electric field is zero in the region, can you conclude
that the external magnetic field in the region is also zero?
Q27.8 How might a loop of wire carrying a current be used as a
compass? Could such a compass distinguish between north and
south? Why or why not?
Q27.9 How could the direction of a magnetic field be determined
by making only qualitative observations of the magnetic force on a
straight wire carrying a current?
Q27.10 A loose, floppy loop of wire is carrying current The loop
of wire is placed on a horizontal table in a uniform magnetic field 
perpendicular to the plane of the table. This causes the loop of wire
to expand into a circular shape while still lying on the table. In a
diagram, show all possible orientations of the current and mag-
netic field that could cause this to occur. Explain your reasoning.
Q27.11 Several charges enter a uniform magnetic field directed
into the page. (a) What path would a positive charge moving with
a velocity of magnitude follow through the field? (b) What path
would a positive charge q moving with a velocity of magnitude 
follow through the field? (c) What path would a negative charge 
moving with a velocity of magnitude follow through the field? 
(d) What path would a neutral particle follow through the field?
Q27.12 Each of the lettered
points at the corners of the cube
in Fig. Q27.12 represents a
positive charge moving with
a velocity of magnitude in the
direction indicated. The region
in the figure is in a uniform
magnetic field parallel to the

and directed toward 
the right. Which charges expe-
rience a force due to What
is the direction of the force on
each charge?
Q27.13 A student claims that
if lightning strikes a metal flagpole, the force exerted by the earth’s
magnetic field on the current in the pole can be large enough to
bend it. Typical lightning currents are of the order of to 
Is the student’s opinion justified? Explain your reasoning.
Q27.14 Could an accelerator be built in which all the forces on the
particles, for steering and for increasing speed, are magnetic forces?
Why or why not?
Q27.15 An ordinary loudspeaker such as that shown in Fig. 27.28
should not be placed next to a computer monitor or TV screen.
Why not?
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Q27.16 The magnetic force acting on a charged particle can never
do work because at every instant the force is perpendicular to the
velocity. The torque exerted by a magnetic field can do work on a
current loop when the loop rotates. Explain how these seemingly
contradictory statements can be reconciled.
Q27.17 If an emf is produced in a dc motor, would it be possible to
use the motor somehow as a generator or source, taking power out
of it rather than putting power into it? How might this be done?
Q27.18 When the polarity of the voltage applied to a dc motor is
reversed, the direction of motion does not reverse. Why not? How
could the direction of motion be reversed?
Q27.19 In a Hall-effect experiment, is it possible that no trans-
verse potential difference will be observed? Under what circum-
stances might this happen?
Q27.20 Hall-effect voltages are much greater for relatively poor
conductors (such as germanium) than for good conductors (such as
copper), for comparable currents, fields, and dimensions. Why?

EXERCISES
Section 27.2 Magnetic Field
27.1 . A particle with a charge of is moving
with instantaneous velocity

What is the force exerted on this particle by a mag-
netic field (a) and (b) 
27.2 . A particle of mass 0.195 g carries a charge of 

The particle is given an initial horizontal velocity that is
due north and has magnitude What are the mag-
nitude and direction of the minimum magnetic field that will keep
the particle moving in the earth’s gravitational field in the same
horizontal, northward direction?
27.3 . In a 1.25-T magnetic field directed vertically upward, a par-
ticle having a charge of magnitude and initially moving
northward at is deflected toward the east. (a) What is the
sign of the charge of this particle? Make a sketch to illustrate how
you found your answer. (b) Find the magnetic force on the particle.
27.4 . A particle with mass and a charge of

has, at a given instant, a velocity 
What are the magnitude and direction of the particle’s

acceleration produced by a uniform magnetic field 

27.5 . An electron experiences a magnetic force of magnitude
when moving at an angle of with respect to

a magnetic field of magnitude Find the speed of
the electron.
27.6 . An electron moves at through a region in
which there is a magnetic field of unspecified direction and magni-
tude (a) What are the largest and smallest possible
magnitudes of the acceleration of the electron due to the magnetic
field? (b) If the actual acceleration of the electron is one-fourth of
the largest magnitude in part (a), what is the angle between the
electron velocity and the magnetic field?
27.7 .. CP A particle with charge is moving with veloc-
ity The magnetic force on the particle

is measured to be 
(a) Calculate all the components of the magnetic field you can
from this information. (b) Are there components of the magnetic
field that are not determined by the measurement of the force?
Explain. (c) Calculate the scalar product . What is the angle
between and 
27.8 .. CP A particle with charge is moving in a uni-
form magnetic field The magnetic force on theB
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particle is measured to be 
(a) Calculate all the components of the velocity of the

particle that you can from this information. (b) Are there compo-
nents of the velocity that are not determined by the measurement
of the force? Explain. (c) Calculate the scalar product What
is the angle between and 
27.9 .. A group of particles is traveling in a magnetic field of
unknown magnitude and direction. You observe that a proton mov-
ing at in the experiences a force of

in the and an electron moving at
in the experiences a force of 

in the y-direction. (a) What are the magnitude and
direction of the magnetic field? (b) What are the magnitude and
direction of the magnetic force on an electron moving in the

at

Section 27.3 Magnetic Field Lines and Magnetic Flux
27.10 . A flat, square surface with side length 3.40 cm is in the 
xy-plane at . Calculate the magnitude of the flux through 
this surface produced by a magnetic field

.
27.11 . A circular area with a radius of 6.50 cm lies in the

What is the magnitude of the magnetic flux through this
circle due to a uniform magnetic field (a) in the 

-direction; (b) at an angle of from the -direction; (c) in
the direction?
27.12 . A horizontal rectangular surface has dimensions 2.80 cm
by 3.20 cm and is in a uniform magnetic field that is directed at an
angle of above the horizontal. What must the magnitude of
the magnetic field be in order to produce a flux of 
through the surface?
27.13 .. An open plastic soda bottle with an opening diameter of
2.5 cm is placed on a table. A uniform 1.75-T magnetic field directed
upward and oriented from vertical encompasses the bottle. What
is the total magnetic flux through the plastic of the soda bottle?
27.14 .. The magnetic field 
in a certain region is 0.128 T,
and its direction is that of the 

-axis in Fig. E27.14. (a) What
is the magnetic flux across the
surface abcd in the figure? 
(b) What is the magnetic flux
across the surface befc? (c) What
is the magnetic flux across the
surface aefd? (d) What is the net
flux through all five surfaces that
enclose the shaded volume?

Section 27.4 Motion of Charged Particles in a
Magnetic Field
27.15 .. An electron at point 
in Fig. E27.15 has a speed of

Find (a) the
magnitude and direction of 
the magnetic field that will cause
the electron to follow the semi-
circular path from to and
(b) the time required for the
electron to move from to 
27.16 .. Repeat Exercise 27.15 for the case in which the particle
is a proton rather than an electron.
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� �13.40 * 10-7 N2ın � 27.17 . CP A 150-g ball containing excess electrons

is dropped into a 125-m vertical shaft. At the bottom of the shaft,
the ball suddenly enters a uniform horizontal magnetic field that
has magnitude 0.250 T and direction from east to west. If air resist-
ance is negligibly small, find the magnitude and direction of the
force that this magnetic field exerts on the ball just as it enters the
field.
27.18 . An alpha particle (a He nucleus, containing two protons
and two neutrons and having a mass of ) traveling
horizontally at enters a uniform, vertical, 1.10-T mag-
netic field. (a) What is the diameter of the path followed by this
alpha particle? (b) What effect does the magnetic field have on the
speed of the particle? (c) What are the magnitude and direction of
the acceleration of the alpha particle while it is in the magnetic
field? (d) Explain why the speed of the particle does not change
even though an unbalanced external force acts on it.
27.19 . CP A particle with charge travels in a
circular orbit with radius 4.68 mm due to the force exerted on it by
a magnetic field with magnitude 1.65 T and perpendicular to the
orbit. (a) What is the magnitude of the linear momentum of the
particle? (b) What is the magnitude of the angular momentum of
the particle?
27.20 . (a) An nucleus (charge moving horizontally
from west to east with a speed of experiences a mag-
netic force of 0.00320 nN vertically downward. Find the magni-
tude and direction of the weakest magnetic field required to
produce this force. Explain how this same force could be caused
by a larger magnetic field. (b) An electron moves in a uniform,
horizontal, 2.10-T magnetic field that is toward the west. What
must the magnitude and direction of the minimum velocity of the
electron be so that the magnetic force on it will be 4.60 pN, verti-
cally upward? Explain how the velocity could be greater than this
minimum value and the force still have this same magnitude and
direction.
27.21 . A deuteron (the nucleus of an isotope of hydrogen) has a
mass of and a charge of The deuteron travels
in a circular path with a radius of 6.96 mm in a magnetic field with
magnitude 2.50 T. (a) Find the speed of the deuteron. (b) Find the
time required for it to make half a revolution. (c) Through what
potential difference would the deuteron have to be accelerated to
acquire this speed?
27.22 . In an experiment with
cosmic rays, a vertical beam of par-
ticles that have charge of magnitude

and mass 12 times the proton
mass enters a uniform horizontal
magnetic field of 0.250 T and is
bent in a semicircle of diameter
95.0 cm, as shown in Fig. E27.22.
(a) Find the speed of the particles
and the sign of their charge. (b) Is
it reasonable to ignore the gravity force on the particles? (c) How
does the speed of the particles as they enter the field compare to
their speed as they exit the field?
27.23 . A physicist wishes to produce electromagnetic waves of
frequency 3.0 THz using a
magnetron (see Example 27.3). (a) What magnetic field would be
required? Compare this field with the strongest constant magnetic
fields yet produced on earth, about 45 T. (b) Would there be any
advantage to using protons instead of electrons in the magnetron?
Why or why not?
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27.24 .. A beam of protons traveling at
enters a uniform magnetic

field, traveling perpendicular to the field.
The beam exits the magnetic field, leav-
ing the field in a direction perpendicular
to its original direction (Fig. E27.24).
The beam travels a distance of 1.18 cm
while in the field. What is the magnitude
of the magnetic field?
27.25 . An electron in the beam of a
TV picture tube is accelerated by a potential difference of 2.00 kV.
Then it passes through a region of transverse magnetic field, where
it moves in a circular arc with radius 0.180 m. What is the magni-
tude of the field?
27.26 . A singly charged ion of (an isotope of lithium) has a
mass of It is accelerated through a potential dif-
ference of 220 V and then enters a magnetic field with magnitude
0.723 T perpendicular to the path of the ion. What is the radius of
the ion’s path in the magnetic field?
27.27 .. A proton 

moves in a uniform magnetic field At the
proton has velocity components 
and (see Example 27.4). (a) What are the
magnitude and direction of the magnetic force acting on the pro-
ton? In addition to the magnetic field there is a uniform electric
field in the -direction, (b) Will the
proton have a component of acceleration in the direction of 
the electric field? (c) Describe the path of the proton. Does the
electric field affect the radius of the helix? Explain. (d) At 
where is the period of the circular motion of the proton, what is
the x-component of the displacement of the proton from its posi-
tion at 

Section 27.5 Applications of Motion 
of Charged Particles
27.28 . (a) What is the speed of a beam of electrons when the
simultaneous influence of an electric field of and
a magnetic field of with both fields normal to the
beam and to each other, produces no deflection of the electrons?
(b) In a diagram, show the relative orientation of the vectors

(c) When the electric field is removed, what is the
radius of the electron orbit? What is the period of the orbit?
27.29 . In designing a velocity selector that uses uniform perpen-
dicular electric and magnetic fields, you want to select positive
ions of charge that are traveling perpendicular to the fields at
8.75 km s. The magnetic field available to you has a magnitude of
0.550 T. (a) What magnitude of electric field do you need? (b) Show
how the two fields should be oriented relative to each other and to
the velocity of the ions. (c) Will your velocity selector also allow
the following ions (having the same velocity as the ions) to
pass through undeflected: (i) negative ions of charge (ii) pos-
itive ions of charge different from 
27.30 . Crossed and Fields. A particle with initial veloc-
ity enters a region of uniform electric
and magnetic fields. The magnetic field in the region is 

Calculate the magnitude and direction of the electric
field in the region if the particle is to pass through undeflected, for
a particle of charge (a) and (b) You can
ignore the weight of the particle.
27.31 .. A 150-V battery is connected across two parallel metal
plates of area and separation 8.20 mm. A beam of alpha
particles (charge mass is accelerated from6.64 * 10-27 kg2+2e,
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rest through a potential differ-
ence of 1.75 kV and enters the
region between the plates per-
pendicular to the electric field,
as shown in Fig. E27.31. What
magnitude and direction of
magnetic field are needed so
that the alpha particles emerge undeflected from between the
plates?
27.32 . A singly ionized (one electron removed) 40K atom passes
through a velocity selector consisting of uniform perpendicular
electric and magnetic fields. The selector is adjusted to allow ions
having a speed of 4.50 km s to pass through undeflected when the
magnetic field is 0.0250 T. The ions next enter a second uniform
magnetic field oriented at right angles to their velocity. 40K
contains 19 protons and 21 neutrons and has a mass of

(a) What is the magnitude of the electric field in
the velocity selector? (b) What must be the magnitude of so that
the ions will be bent into a semicircle of radius 12.5 cm?
27.33 . Singly ionized (one electron removed) atoms are acceler-
ated and then passed through a velocity selector consisting of per-
pendicular electric and magnetic fields. The electric field is 155 V m
and the magnetic field is 0.0315 T. The ions next enter a uniform
magnetic field of magnitude 0.0175 T that is oriented perpendicu-
lar to their velocity. (a) How fast are the ions moving when they
emerge from the velocity selector? (b) If the radius of the path of
the ions in the second magnetic field is 17.5 cm, what is their
mass?
27.34 . In the Bainbridge mass spectrometer (see Fig. 27.24), the
magnetic-field magnitude in the velocity selector is 0.650 T, and
ions having a speed of pass through undeflected.
(a) What is the electric-field magnitude in the velocity selector? 
(b) If the separation of the plates is 5.20 mm, what is the potential
difference between plates and 
27.35 .. BIO Ancient Meat Eating. The amount of meat in pre-
historic diets can be determined by measuring the ratio of the iso-
topes nitrogen-15 to nitrogen-14 in bone from human remains.
Carnivores concentrate 15N, so this ratio tells archaeologists how
much meat was consumed by ancient people. Use the spectrometer
of Exercise 27.34 to find the separation of the 14N and 15N isotopes
at the detector. The measured masses of these isotopes are

(14N) and (15N).

Section 27.6 Magnetic Force 
on a Current-Carrying Conductor
27.36 . A straight, 2.5-m wire carries a typical household current
of 1.5 A (in one direction) at a location where the earth’s magnetic
field is 0.55 gauss from south to north. Find the magnitude and
direction of the force that our planet’s magnetic field exerts on this
wire if is oriented so that the current in it is running (a) from west
to east, (b) vertically upward, (c) from north to south. (d) Is the
magnetic force ever large enough to cause significant effects under
normal household conditions?
27.37 . A straight, 2.00-m, 150-g wire carries a current in a
region where the earth’s magnetic field is horizontal with a magni-
tude of 0.55 gauss. (a) What is the minimum value of the current in
this wire so that its weight is completely supported by the mag-
netic force due to earth’s field, assuming that no other forces
except gravity act on it? Does it seem likely that such a wire could
support this size of current? (b) Show how the wire would have to
be oriented relative to the earth’s magnetic field to be supported in
this way.
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27.38 .. An electromagnet produces a magnetic field of 0.550 T
in a cylindrical region of radius 2.50 cm between its poles. A
straight wire carrying a current of 10.8 A passes through the center
of this region and is perpendicular to both the axis of the cylindri-
cal region and the magnetic field. What magnitude of force is
exerted on the wire?
27.39 .. A long wire carry-
ing 4.50 A of current makes
two bends, as shown in
Fig. E27.39. The bent part of
the wire passes through a
uniform 0.240-T magnetic
field directed as shown in the
figure and confined to a lim-
ited region of space. Find the
magnitude and direction of
the force that the magnetic
field exerts on the wire.
27.40 . A straight, vertical wire carries a current of 1.20 A down-
ward in a region between the poles of a large superconducting
electromagnet, where the magnetic field has magnitude 

and is horizontal. What are the magnitude and direction of
the magnetic force on a 1.00-cm section of the wire that is in this
uniform magnetic field, if the magnetic field direction is (a) east;
(b) south; (c) south of west?
27.41 . A thin, 50.0-cm-long
metal bar with mass 750 g rests
on, but is not attached to, two
metallic supports in a uniform
0.450-T magnetic field, as shown
in Fig. E27.41. A battery and a
25.0- resistor in series are
connected to the supports. (a)
What is the highest voltage the
battery can have without breaking the circuit at the supports? 
(b) The battery voltage has the maximum value calculated in part
(a). If the resistor suddenly gets partially short-circuited, decreas-
ing its resistance to 2.0 find the initial acceleration of the bar.
27.42 . Magnetic Balance.
The circuit shown in Fig. E27.42
is used to make a magnetic bal-
ance to weigh objects. The mass

to be measured is hung from
the center of the bar that is in a
uniform magnetic field of 1.50 T,
directed into the plane of the fig-
ure. The battery voltage can be
adjusted to vary the current in the
circuit. The horizontal bar is 
60.0 cm long and is made of extremely light-weight material. It is
connected to the battery by thin vertical wires that can support no
appreciable tension; all the weight of the suspended mass is sup-
ported by the magnetic force on the bar. A resistor with 
is in series with the bar; the resistance of the rest of the circuit is much
less than this. (a) Which point, or should be the positive terminal
of the battery? (b) If the maximum terminal voltage of the battery is
175 V, what is the greatest mass that this instrument can measure?
27.43 . Consider the conductor and current in Example 27.8, but
now let the magnetic field be parallel to the x-axis. (a) What are the
magnitude and direction of the total magnetic force on the conduc-
tor? (b) In Example 27.8, the total force is the same as if we
replaced the semicircle with a straight segment along the x-axis. Is

m

b,a
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m
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Æ,
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30.0°

0.588 T
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90°

that still true when the magnetic field is in this different direction?
Can you explain why, or why not?

Section 27.7 Force and Torque on a Current Loop
27.44 .. The plane of a rectangular loop of
wire is parallel to a 0.19-T magnetic field. The loop carries a cur-
rent of 6.2 A. (a) What torque acts on the loop? (b) What is the
magnetic moment of the loop? (c) What is the maximum torque
that can be obtained with the same total length of wire carrying the
same current in this magnetic field?
27.45 . The 20.0 cm 35.0 cm rectangular circuit shown in Fig.
E27.45 is hinged along side ab.
It carries a clockwise 5.00-A
current and is located in a uni-
form 1.20-T magnetic field ori-
ented perpendicular to two of
its sides, as shown. (a) Draw a
clear diagram showing the
direction of the force that the
magnetic field exerts on each
segment of the circuit (ab, bc,
etc.). (b) Of the four forces you
drew in part (a), decide which
ones exert a torque about the hinge ab. Then calculate only those
forces that exert this torque. (c) Use your results from part (b) to
calculate the torque that the magnetic field exerts on the circuit
about the hinge axis ab.
27.46 . A rectangular coil of
wire, 22.0 cm by 35.0 cm and
carrying a current of 1.40 A, is
oriented with the plane of its
loop perpendicular to a uniform
1.50-T magnetic field, as shown
in Fig. E27.46. (a) Calculate the
net force and torque that the
magnetic field exerts on the coil.
(b) The coil is rotated through a angle about the axis shown,
with the left side coming out of the plane of the figure and the right
side going into the plane. Calculate the net force and torque that
the magnetic field now exerts on the coil. (Hint: In order to help
visualize this three-dimensional problem, make a careful drawing
of the coil as viewed along the rotation axis.)
27.47 . CP A uniform rectan-
gular coil of total mass 212 g
and dimensions 

is oriented with its plane
parallel to a uniform 3.00-T
magnetic field (Fig. E27.47). A
current of 2.00 A is suddenly
started in the coil. (a) About
which axis or will the
coil begin to rotate? Why? 
(b) Find the initial angular accel-
eration of the coil just after the current is started.
27.48 . A circular coil with
area and turns is free to
rotate about a diameter that
coincides with the x-axis.
Current is circulating in the
coil. There is a uniform mag-
netic field in the positive 
y-direction. Calculate the magnitude and direction of the torque TS
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and the value of the potential energy as given in Eq. (27.27),
when the coil is oriented as shown in parts (a) through (d) of Fig.
E27.48.
27.49 .. A coil with magnetic moment is oriented ini-
tially with its magnetic moment antiparallel to a uniform 0.835-T
magnetic field. What is the change in potential energy of the coil
when it is rotated so that its magnetic moment is parallel to
the field?

Section 27.8 The Direct-Current Motor
27.50 . A dc motor with its rotor and field coils connected in
series has an internal resistance of When the motor is run-
ning at full load on a 120-V line, the emf in the rotor is 105 V. 
(a) What is the current drawn by the motor from the line? (b) What
is the power delivered to the motor? (c) What is the mechanical
power developed by the motor?
27.51 .. In a shunt-wound dc
motor with the field coils and
rotor connected in parallel (Fig.
E27.51), the resistance of the
field coils is and the
resistance of the rotor is

When a potential differ-
ence of 120 V is applied to the
brushes and the motor is running at full speed delivering mechani-
cal power, the current supplied to it is 4.82 A. (a) What is the cur-
rent in the field coils? (b) What is the current in the rotor? (c) What
is the induced emf developed by the motor? (d) How much
mechanical power is developed by this motor?
27.52 . A shunt-wound dc motor with the field coils and rotor
connected in parallel (see Fig. E27.51) operates from a 120-V dc
power line. The resistance of the field windings, is The
resistance of the rotor, is When the motor is running, the
rotor develops an emf The motor draws a current of 4.82 A from
the line. Friction losses amount to 45.0 W. Compute (a) the field
current; (b) the rotor current; (c) the emf (d) the rate of develop-
ment of thermal energy in the field windings; (e) the rate of devel-
opment of thermal energy in the rotor; (f) the power input to the
motor; (g) the efficiency of the motor.

Section 27.9 The Hall Effect
27.53 . Figure E27.53 shows a
portion of a silver ribbon with

and
carrying a current of

120 A in the -direction. The
ribbon lies in a uniform magnetic
field, in the y-direction, with
magnitude 0.95 T. Apply the sim-
plified model of the Hall effect
presented in Section 27.9. If
there are free electrons per cubic meter, find (a) the
magnitude of the drift velocity of the electrons in the x-direction; (b)
the magnitude and direction of the electric field in the z-direction
due to the Hall effect; (c) the Hall emf.
27.54 . Let Fig. E27.53 represent a strip of an unknown metal of
the same dimensions as those of the silver ribbon in Exercise 27.53.
When the magnetic field is 2.29 T and the current is 78.0 A, the
Hall emf is found to be What does the simplified model
of the Hall effect presented in Section 27.9 give for the density of
free electrons in the unknown metal?
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U, PROBLEMS
27.55 . When a particle of charge moves with a velocity
of at from the -axis in the xy-plane, a uniform mag-
netic field exerts a force along the -axis (Fig. P27.55). When
the same particle moves with a velocity with the same magni-
tude as but along the -axis, a force of magnitude is
exerted on it along the -axis. (a) What are the magnitude (in
terms of and ) and direction of the magnetic field? (b)
What is the magnitude of in terms of 

27.56 . A particle with charge is moving in a
region where there is a uniform magnetic field of 0.650 T in the

-direction. At a particular instant of time the velocity of the
particle has components

and What are the components of
the force on the particle at this time?
27.57 ... CP Fusion Reactor. If two deuterium nuclei (charge

mass ) get close enough together, the attrac-
tion of the strong nuclear force will fuse them to make an isotope
of helium, releasing vast amounts of energy. The range of this
force is about This is the principle behind the fusion
reactor. The deuterium nuclei are moving much too fast to be
contained by physical walls, so they are confined magnetically. 
(a) How fast would two nuclei have to move so that in a head-on
collision they would get close enough to fuse? (Assume their
speeds are equal. Treat the nuclei as point charges, and assume that a
separation of is required for fusion.) (b) What strength
magnetic field is needed to make deuterium nuclei with this speed
travel in a circle of diameter 2.50 m?
27.58 .. Magnetic Moment of the Hydrogen Atom. In the
Bohr model of the hydrogen atom (see Section 38.5), in the lowest
energy state the electron orbits the proton at a speed of 

in a circular orbit of radius (a) What is
the orbital period of the electron? (b) If the orbiting electron is con-
sidered to be a current loop, what is the current ? (c) What is the
magnetic moment of the atom due to the motion of the electron?
27.59 .. You wish to hit a target from several meters away with a
charged coin having a mass of 4.25 g and a charge of 
The coin is given an initial velocity of and a downward,
uniform electric field with field strength exists through-
out the region. If you aim directly at the target and fire the coin
horizontally, what magnitude and direction of uniform magnetic
field are needed in the region for the coin to hit the target?
27.60 . A cyclotron is to accelerate protons to an energy of 
5.4 MeV. The superconducting electromagnet of the cyclotron pro-
duces a 2.9-T magnetic field perpendicular to the proton orbits. 
(a) When the protons have achieved a kinetic energy of 2.7 MeV,
what is the radius of their circular orbit and what is their angular
speed? (b) Repeat part (a) when the protons have achieved their
final kinetic energy of 5.4 MeV.
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27.61 . The magnetic poles of a small cyclotron produce a mag-
netic field with magnitude 0.85 T. The poles have a radius of 0.40 m,
which is the maximum radius of the orbits of the accelerated 
particles. (a) What is the maximum energy to which protons

can be acceler-
ated by this cyclotron? Give your answer in electron volts and in
joules. (b) What is the time for one revolution of a proton orbiting
at this maximum radius? (c) What would the magnetic-field mag-
nitude have to be for the maximum energy to which a proton can
be accelerated to be twice that calculated in part (a)? (d) For

what is the maximum energy to which alpha particles
can be acceler-

ated by this cyclotron? How does this compare to the maximum
energy for protons?
27.62 .. A particle with charge is moving with speed in the

-direction. It is moving in a uniform magnetic field 
(a) What are the components of the force 

exerted on the particle by the magnetic field? (b) If what
must the signs of the components of be if the components of 
are all nonnegative? (c) If and find the
direction of and find the magnitude of in terms of and 
27.63 .. A particle with negative charge and mass 

is traveling through a region containing a uniform magnetic
field At a particular instant of time the velocity
of the particle is and
the force on the particle has a magnitude of 2.45 N. (a) Deter-
mine the charge (b) Determine the acceleration of the particle.
(c) Explain why the path of the particle is a helix, and determine
the radius of curvature of the circular component of the helical
path. (d) Determine the cyclotron frequency of the particle. 
(e) Although helical motion is not periodic in the full sense of the
word, the x- and y-coordinates do vary in a periodic way. If the
coordinates of the particle at are 
determine its coordinates at a time where T is the period
of the motion in the xy-plane.
27.64 .. BIO Medical Uses of Cyclotrons. The largest cyclotron
in the United States is the Tevatron at Fermilab, near Chicago, Illi-
nois. It is called a Tevatron because it can accelerate particles to
energies in the TeV range: Its circumference
is 6.4 km, and it currently can produce a maximum energy of 
2.0 TeV. In a certain medical experiment, protons will be acceler-
ated to energies of 1.25 MeV and aimed at a tumor to destroy its
cells. (a) How fast are these protons moving when they hit the
tumor? (b) How strong must the magnetic field be to bend the pro-
tons in the circle indicated?
27.65 . A magnetic field exerts a torque on a round current-
carrying loop of wire. What will be the torque on this loop (in
terms of ) if its diameter is tripled?
27.66 .. A particle of charge is moving at speed in the

-direction through a region of uniform magnetic field The
magnetic force on the particle is where is a
positive constant. (a) Determine the components and or
at least as many of the three components as is possible from the
information given. (b) If it is given in addition that the magnetic
field has magnitude determine as much as you can about
the remaining components of 
27.67 .. Suppose the electric field between the plates in Fig.
27.24 is and the magnetic field in both regions is
0.682 T. If the source contains the three isotopes of krypton, 

and and the ions are singly charged, find the distance
between the lines formed by the three isotopes on the particle
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detector. Assume the atomic masses of the isotopes (in atomic mass
units) are equal to their mass numbers, 82, 84, and 86. (One atomic
mass )
27.68 .. Mass Spectrograph. A mass spectrograph is used to
measure the masses of ions, or to separate ions of different masses
(see Section 27.5). In one design for such an instrument, ions with
mass m and charge are accelerated through a potential difference

They then enter a uniform magnetic field that is perpendicular to
their velocity, and they are deflected in a semicircular path of
radius A detector measures where the ions complete the semicir-
cle and from this it is easy to calculate (a) Derive the equation
for calculating the mass of the ion from measurements of 
and (b) What potential difference is needed so that singly ion-
ized atoms will have in a 0.150-T magnetic
field? (c) Suppose the beam consists of a mixture of and 
ions. If and have the same values as in part (b), calculate the
separation of these two isotopes at the detector. Do you think that
this beam separation is sufficient for the two ions to be distin-
guished? (Make the assumption described in Problem 27.67 for the
masses of the ions.)
27.69 .. A straight piece of
conducting wire with mass and
length is placed on a friction-
less incline tilted at an angle 
from the horizontal (Fig. P27.69).
There is a uniform, vertical mag-
netic field at all points (pro-
duced by an arrangement of
magnets not shown in the fig-
ure). To keep the wire from sliding down the incline, a voltage
source is attached to the ends of the wire. When just the right
amount of current flows through the wire, the wire remains at rest.
Determine the magnitude and direction of the current in the wire
that will cause the wire to remain at rest. Copy the figure and draw
the direction of the current on your copy. In addition, show in a
free-body diagram all the forces that act on the wire.
27.70 .. CP A 2.60-N metal bar, 1.50 m long and having a resist-
ance of rests horizontally on conducting wires connecting
it to the circuit shown in Fig. P27.70. The bar is in a uniform, hori-
zontal, 1.60-T magnetic field and is not attached to the wires in the
circuit. What is the acceleration of the bar just after the switch S is
closed?

27.71 .. Using Gauss’s Law for Magnetism. In a certain
region of space, the magnetic field is not uniform. The magnetic
field has both a z-component and a component that points radially
away from or toward the z-axis. The z-component is given by

where is a positive constant. The radial component
depends only on r, the radial distance from the z-axis. (a) Use

Gauss’s law for magnetism, Eq. (27.8), to find the radial compo-
nent as a function of r. (Hint: Try a cylindrical Gaussian surface
of radius concentric with the z-axis, with one end at and
the other at ) (b) Sketch the magnetic field lines.z = L.
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27.72 .. CP A plastic circular loop has radius , and a positive
charge is distributed uniformly around the circumference of the
loop. The loop is then rotated around its central axis, perpendicular
to the plane of the loop, with angular speed If the loop is in a
region where there is a uniform magnetic field directed parallel
to the plane of the loop, calculate the magnitude of the magnetic
torque on the loop.
27.73 .. BIO Determining Diet. One method for determining
the amount of corn in early Native American diets is the stable iso-
tope ratio analysis (SIRA) technique. As corn photosynthesizes, it
concentrates the isotope carbon-13, whereas most other plants con-
centrate carbon-12. Overreliance on corn consumption can then be
correlated with certain diseases, because corn lacks the essential
amino acid lysine. Archaeologists use a mass spectrometer to sepa-
rate the and isotopes in samples of human remains. Sup-
pose you use a velocity selector to obtain singly ionized (missing
one electron) atoms of speed and you want to bend
them within a uniform magnetic field in a semicircle of diameter
25.0 cm for the The measured masses of these isotopes are

and (a) What
strength of magnetic field is required? (b) What is the diameter of
the semicircle? (c) What is the separation of the and 
ions at the detector at the end of the semicircle? Is this distance
large enough to be easily observed?
27.74 .. CP An Electromagnetic Rail Gun. A conducting bar
with mass and length slides over horizontal rails that are con-
nected to a voltage source. The voltage source maintains a constant
current in the rails and bar, and a constant, uniform, vertical mag-
netic field fills the region between the rails (Fig. P27.74).
(a) Find the magnitude and direction of the net force on the con-
ducting bar. Ignore friction, air resistance, and electrical resistance.
(b) If the bar has mass find the distance that the bar must
move along the rails from rest to attain speed (c) It has been sug-
gested that rail guns based on this principle could accelerate pay-
loads into earth orbit or beyond. Find the distance the bar must
travel along the rails if it is to reach the escape speed for the earth

Let
and For simplicity asssume the net force on the object
is equal to the magnetic force, as in parts (a) and (b), even though
gravity plays an important role in an actual launch in space.

27.75 . A long wire carrying a
6.00-A current reverses direc-
tion by means of two right-
angle bends, as shown in Fig.
P27.75. The part of the wire
where the bend occurs is in a
magnetic field of 0.666 T con-
fined to the circular region of
diameter 75 cm, as shown. Find
the magnitude and direction of
the net force that the magnetic
field exerts on this wire.
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R 27.76 . A wire 25.0 cm long lies along the z-axis and carries a

current of 7.40 A in the -direction. The magnetic field is uni-
form and has components and

(a) Find the components of the magnetic force on
the wire. (b) What is the magnitude of the net magnetic force on
the wire?
27.77 .. CP The rectangular loop
of wire shown in Fig. P27.77
has a mass of 0.15 g per cen-
timeter of length and is pivoted
about side on a frictionless
axis. The current in the wire is
8.2 A in the direction shown.
Find the magnitude and direction
of the magnetic field parallel to
the y-axis that will cause the
loop to swing up until its plane
makes an angle of with the
yz-plane.
27.78 .. The rectangular loop
shown in Fig. P27.78 is pivoted
about the y-axis and carries a
current of 15.0 A in the direction
indicated. (a) If the loop is in a
uniform magnetic field with
magnitude 0.48 T in the -
direction, find the magnitude and
direction of the torque required
to hold the loop in the position
shown. (b) Repeat part (a) for the
case in which the field is in the

-direction. (c) For each of 
the above magnetic fields, what
torque would be required if the
loop were pivoted about an axis
through its center, parallel to the
y-axis?
27.79 .. CP CALC A thin, uniform
rod with negligible mass and length
0.200 m is attached to the floor by a
frictionless hinge at point P (Fig.
P27.79). A horizontal spring with
force constant con-
nects the other end of the rod to a ver-
tical wall. The rod is in a uniform
magnetic field directed
into the plane of the figure. There is
current in the rod, in the
direction shown. (a) Calculate the
torque due to the magnetic force on the rod, for an axis at P. Is it
correct to take the total magnetic force to act at the center of grav-
ity of the rod when calculating the torque? Explain. (b) When the
rod is in equilibrium and makes an angle of with the floor, is
the spring stretched or compressed? (c) How much energy is stored
in the spring when the rod is in equilibrium?
27.80 .. The loop of wire shown in Fig. P27.80 forms a right tri-
angle and carries a current in the direction shown. The
loop is in a uniform magnetic field that has magnitude 
and the same direction as the current in side PQ of the loop. 
(a) Find the force exerted by the magnetic field on each side of the
triangle. If the force is not zero, specify its direction. (b) What is the
net force on the loop? (c) The loop is pivoted about an axis that lies
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along side PR. Use the forces cal-
culated in part (a) to calculate the
torque on each side of the loop
(see Problem 27.79). (d) What is
the magnitude of the net torque
on the loop? Calculate the net
torque from the torques calcu-
lated in part (c) and also from
Eq. (27.28). Do these two results
agree? (e) Is the net torque
directed to rotate point Q into the plane of the figure or out of the
plane of the figure?
27.81 .. CP A uniform, 458-g metal bar
75.0 cm long carries a current I in a uniform,
horizontal 1.25-T magnetic field as shown in
Fig. P27.81. The directions of I and are
shown in the figure. The bar is free to rotate
about a frictionless hinge at point b. The other
end of the bar rests on a conducting support at
point a but is not attached there. The bar rests
at an angle of above the horizontal.
What is the largest value the current I can have without breaking
the electrical contact at a? (See Problem 27.77.)
27.82 .. Paleoclimate. Climatologists can determine the past
temperature of the earth by comparing the ratio of the isotope oxy-
gen-18 to the isotope oxygen-16 in air trapped in ancient ice
sheets, such as those in Greenland. In one method for separating
these isotopes, a sample containing both of them is first singly ion-
ized (one electron is removed) and then accelerated from rest
through a potential difference This beam then enters a magnetic
field at right angles to the field and is bent into a quarter-circle. A
particle detector at the end of the path measures the amount of
each isotope. (a) Show that the separation of the two isotopes at
the detector is given by

where and are the masses of the two oxygen isotopes, 
(b) The measured masses of the two isotopes are 

and If the magnetic field
is 0.050 T, what must be the accelerating potential so that these
two isotopes will be separated by 4.00 cm at the detector?
27.83 .. CALC A Voice Coil. It
was shown in Section 27.7 that the
net force on a current loop in a
uniform magnetic field is zero. The
magnetic force on the voice coil of a
loudspeaker (see Fig. 27.28) is
nonzero because the magnetic field
at the coil is not uniform. A voice
coil in a loudspeaker has 50 turns of
wire and a diameter of 1.56 cm, and
the current in the coil is 0.950 A.
Assume that the magnetic field at each point of the coil has a con-
stant magnitude of 0.220 T and is directed at an angle of out-
ward from the normal to the plane of the coil (Fig. P27.83). Let the
axis of the coil be in the y-direction. The current in the coil is in 
the direction shown (counterclockwise as viewed from a point above
the coil on the y-axis). Calculate the magnitude and direction of the
net magnetic force on the coil.
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27.84 .. Quark Model of the
Neutron. The neutron is a par-
ticle with zero charge. Nonethe-
less, it has a nonzero magnetic
moment with z-component

This can be ex-
plained by the internal structure of
the neutron. A substantial body of
evidence indicates that a neutron
is composed of three fundamental
particles called quarks: an “up”
(u) quark, of charge and
two “down” (d) quarks, each of charge The combination of
the three quarks produces a net charge of 
If the quarks are in motion, they can produce a nonzero magnetic
moment. As a very simple model, suppose the u quark moves in a
counterclockwise circular path and the quarks move in a clock-
wise circular path, all of radius and all with the same speed 
(Fig. P27.84). (a) Determine the current due to the circulation of
the quark. (b) Determine the magnitude of the magnetic moment
due to the circulating u quark. (c) Determine the magnitude of the
magnetic moment of the three-quark system. (Be careful to use the
correct magnetic moment directions.) (d) With what speed must
the quarks move if this model is to reproduce the magnetic
moment of the neutron? Use (the radius of
the neutron) for the radius of the orbits.
27.85 .. CALC Force on a Current
Loop in a Nonuniform Magnetic
Field. It was shown in Section 27.7
that the net force on a current loop in a
uniform magnetic field is zero. But
what if is not uniform? Figure
P27.85 shows a square loop of wire
that lies in the xy-plane. The loop has
corners at and

and carries a constant current 
in the clockwise direction. The mag-
netic field has no x-component but has both y- and z-components:

where is a positive constant. 
(a) Sketch the magnetic field lines in the yz-plane. (b) Find the mag-
nitude and direction of the magnetic force exerted on each of the
sides of the loop by integrating Eq. (27.20). (c) Find the magnitude
and direction of the net magnetic force on the loop.
27.86 . CALC Torque on a Current Loop in a Nonuniform
Magnetic Field. In Section 27.7 the expression for the torque on a
current loop was derived assuming that the magnetic field was
uniform. But what if is not uniform? Figure P27.85 shows a
square loop of wire that lies in the xy-plane. The loop has corners at

and and carries a constant current in
the clockwise direction. The magnetic field has no z-component but
has both x- and y-components: where

is a positive constant. (a) Sketch the magnetic field lines in the
xy-plane. (b) Find the magnitude and direction of the magnetic force
exerted on each of the sides of the loop by integrating Eq. (27.20).
(c) If the loop is free to rotate about the x-axis, find the magnitude
and direction of the magnetic torque on the loop. (d) Repeat part (c)
for the case in which the loop is free to rotate about the y-axis. (e) Is
Eq. (27.26), an appropriate description of the torque
on this loop? Why or why not?
27.87 .. CP An insulated wire with mass 
is bent into the shape of an inverted U such that the horizontal part
has a length The bent ends of the wire are partiallyl = 15.0 cm.
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immersed in two pools of mercury, with 2.5 cm of each end below
the mercury’s surface. The entire structure is in a region containing
a uniform 0.00650-T magnetic field directed into the page 
(Fig. P27.87). An electrical connection from the mercury pools is
made through the ends of the wires. The mercury pools are connected
to a 1.50-V battery and a switch S. When switch S is closed, the wire
jumps 35.0 cm into the air, measured from its initial position.
(a) Determine the speed of the wire as it leaves the mercury. 
(b) Assuming that the current I through the wire was constant from
the time the switch was closed until the wire left the mercury, deter-
mine (c) Ignoring the resistance of the mercury and the circuit
wires, determine the resistance of the moving wire.

27.88 .. A circular loop of wire with area lies in the xy-plane.
As viewed along the z-axis looking in the -direction toward the
origin, a current is circulating clockwise around the loop. The
torque produced by an external magnetic field is given by

where is a positive constant, and for this ori-
entation of the loop the magnetic potential energy is
negative. The magnitude of the magnetic field is 
(a) Determine the vector magnetic moment of the current loop. 
(b) Determine the components and of 

CHALLENGE PROBLEMS
27.89 ... A particle with charge and mass 

is initially traveling in the -direction with a speed
It then enters a region containing a uni-

form magnetic field that is directed into, and perpendicular to, the
page in Fig. P27.89. The magnitude of the field is 0.420 T. The
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region extends a distance of 25.0 cm along the initial direction of
travel; 75.0 cm from the point of entry into the magnetic field
region is a wall. The length of the field-free region is thus 50.0 cm.
When the charged particle enters the magnetic field, it follows a
curved path whose radius of curvature is It then leaves the mag-
netic field after a time having been deflected a distance 
The particle then travels in the field-free region and strikes the wall
after undergoing a total deflection (a) Determine the radius R
of the curved part of the path. (b) Determine the time the parti-
cle spends in the magnetic field. (c) Determine the horizontal
deflection at the point of exit from the field. (d) Determine the
total horizontal deflection.
27.90 ... The Electromagnetic
Pump. Magnetic forces acting
on conducting fluids provide a
convenient means of pumping
these fluids. For example, this
method can be used to pump blood
without the damage to the cells
that can be caused by a mechani-
cal pump. A horizontal tube with
rectangular cross section (height

width is placed at right
angles to a uniform magnetic
field with magnitude so that a
length is in the field (Fig.
P27.90). The tube is filled with a
conducting liquid, and an electric
current of density is maintained in the third mutually perpendicu-
lar direction. (a) Show that the difference of pressure between a
point in the liquid on a vertical plane through and a point in the
liquid on another vertical plane through under conditions in
which the liquid is prevented from flowing, is (b) What
current density is needed to provide a pressure difference of 1.00 atm
between these two points if and 
27.91 ... CP A Cycloidal Path. A particle with mass m and
positive charge starts from rest at the origin shown in Fig. P27.91.
There is a uniform electric field in the -direction and a uni-
form magnetic field directed out of the page. It is shown in more
advanced books that the path is a cycloid whose radius of curva-
ture at the top points is twice the y-coordinate at that level. (a)
Explain why the path has this general shape and why it is repeti-
tive. (b) Prove that the speed at any point is equal to 
(Hint: Use energy conservation.) (c) Applying Newton’s second
law at the top point and taking as given that the radius of curvature
here equals 2y, prove that the speed at this point is 2E>B.

22qEy>m.
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Chapter Opening Question ?
In MRI the nuclei of hydrogen atoms within soft tissue act like
miniature current loops whose magnetic moments align with an
applied field. See Section 27.7 for details.

Test Your Understanding Questions
27.1 Answer: yes When a magnet is cut apart, each part has a
north and south pole (see Fig. 27.4). Hence the small red part
behaves much like the original, full-sized compass needle.
27.2 Answer: path 3 Applying the right-hand rule to the vectors 
(which points to the right) and (which points into the plane of
the figure) says that the force on a positive charge
would point upward. Since the charge is negative, the force points
downward and the particle follows a trajectory that curves down-
ward.
27.3 Answers: (a) (ii), (b) no The magnitude of would increase
as you moved to the right, reaching a maximum as you pass
through the plane of the loop. As you moved beyond the plane of
the loop, the field magnitude would decrease. You can tell this
from the spacing of the field lines: The closer the field lines, the
stronger the field. The direction of the field would be to the right at
all points along the path, since the path is along a field line and the
direction of at any point is tangent to the field line through that
point.
27.4 Answers: (a) (ii), (b) (i) The radius of the orbit as given by
Eq. (27.11) is directly proportional to the speed, so doubling the
particle speed causes the radius to double as well. The particle has
twice as far to travel to complete one orbit but is traveling at dou-
ble the speed, so the time for one orbit is unchanged. This result
also follows from Eq. (27.12), which states that the angular speed

is independent of the linear speed Hence the time per orbit,
likewise does not depend on 

27.5 Answer: (iii) From Eq. (27.13), the speed at which
particles travel straight through the velocity selector does not
depend on the magnitude or sign of the charge or the mass of the
particle. All that is required is that the particles (in this case, ions)
have a nonzero charge.

v = E>B
v.T = 2p>v,

v.v
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� qvS : B
S

B
S

vS

27.6 Answer: A This orientation will cause current to flow clock-
wise around the circuit and hence through the conducting bar in
the direction from the top to the bottom of the figure. From the
right-hand rule, the magnetic force on the bar will
then point to the right.
27.7 Answers: (a) to the right; (b) north pole on the right,
south pole on the left If you wrap the fingers of your right hand
around the coil in the direction of the current, your right thumb
points to the right (perpendicular to the plane of the coil). This is
the direction of the magnetic moment The magnetic moment
points from the south pole to the north pole, so the right side of the
loop is equivalent to a north pole and the left side is equivalent to a
south pole.
27.8 Answer: no The rotor will not begin to turn when the switch
is closed if the rotor is initially oriented as shown in Fig. 27.39b.
In this case there is no current through the rotor and hence no mag-
netic torque. This situation can be remedied by using multiple
rotor coils oriented at different angles around the rotation axis.
With this arrangement, there is always a magnetic torque no mat-
ter what the orientation.
27.9 Answer: (ii) The mobile charge carriers in copper are nega-
tively charged electrons, which move upward through the wire to
give a downward current. From the right-hand rule, the force on a
positively charged particle moving upward in a westward-pointing
magnetic field would be to the south;
hence the force on a negatively charged
particle is to the north. The result is an
excess of negative charge on the north
side of the wire, leaving an excess of
positive charge—and hence a higher
electric potential—on the south side.

Bridging Problem
Answers: (a) N m, 

N m, 

N m

(b) J (c) 42.1 rad s>-7.55 * 10-4

#tz = -6.14 * 10-4

#ty = -2.05 * 10-4

#tx = -1.54 * 10-4
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28
LEARNING GOALS

By studying this chapter, you will

learn:

• The nature of the magnetic field 

produced by a single moving

charged particle.

• How to describe the magnetic 

field produced by an element of a

current-carrying conductor.

• How to calculate the magnetic 

field produced by a long, straight,

current-carrying wire.

• Why wires carrying current in the

same direction attract, while wires

carrying opposing currents repel.

• How to calculate the magnetic field

produced by a current-carrying wire

bent into a circle.

• What Ampere’s law is, and what it

tells us about magnetic fields.

• How to use Ampere’s law to 

calculate the magnetic field of 

symmetric current distributions.

SOURCES OF 
MAGNETIC FIELD

In Chapter 27 we studied the forces exerted on moving charges and on current-
carrying conductors in a magnetic field. We didn’t worry about how the mag-
netic field got there; we simply took its existence as a given fact. But how are

magnetic fields created? We know that both permanent magnets and electric cur-
rents in electromagnets create magnetic fields. In this chapter we will study these
sources of magnetic field in detail.

We’ve learned that a charge creates an electric field and that an electric field
exerts a force on a charge. But a magnetic field exerts a force only on a moving
charge. Is it also true that a charge creates a magnetic field only when the charge
is moving? In a word, yes.

Our analysis will begin with the magnetic field created by a single moving
point charge. We can use this analysis to determine the field created by a small
segment of a current-carrying conductor. Once we can do that, we can in princi-
ple find the magnetic field produced by any shape of conductor.

Then we will introduce Ampere’s law, which plays a role in magnetism analo-
gous to the role of Gauss’s law in electrostatics. Ampere’s law lets us exploit
symmetry properties in relating magnetic fields to their sources.

Moving charged particles within atoms respond to magnetic fields and can
also act as sources of magnetic field. We’ll use these ideas to understand how cer-
tain magnetic materials can be used to intensify magnetic fields as well as why
some materials such as iron act as permanent magnets.

28.1 Magnetic Field of a Moving Charge
Let’s start with the basics, the magnetic field of a single point charge q moving
with a constant velocity In practical applications, such as the solenoid shown
in the photo that opens this chapter, magnetic fields are produced by tremendous

vS.

? The immense cylinder in this photograph is actually a current-carrying coil, 
or solenoid, that generates a uniform magnetic field in its interior as part 
of an experiment at CERN, the European Organization for Nuclear Research. 
If two such solenoids were joined end to end, how much stronger would the
magnetic field become?
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numbers of charged particles moving together in a current. But once we under-
stand how to calculate the magnetic field due to a single point charge, it’s a small
leap to calculate the field due to a current-carrying wire or collection of wires.

As we did for electric fields, we call the location of the moving charge at a
given instant the source point and the point P where we want to find the field the
field point. In Section 21.4 we found that at a field point a distance r from a point
charge q, the magnitude of the electric field caused by the charge is propor-
tional to the charge magnitude and to and the direction of (for positive q)
is along the line from source point to field point. The corresponding relationship
for the magnetic field of a point charge q moving with constant velocity has
some similarities and some interesting differences.

Experiments show that the magnitude of is also proportional to and to
But the direction of is not along the line from source point to field point.

Instead, is perpendicular to the plane containing this line and the particle’s
velocity vector as shown in Fig. 28.1. Furthermore, the field magnitude B is
also proportional to the particle’s speed and to the sine of the angle Thus the
magnetic field magnitude at point P is given by

(28.1)

where is a proportionality constant ( is read as “mu-nought” or “mu-sub-
zero”). The reason for writing the constant in this particular way will emerge
shortly. We did something similar with Coulomb’s law in Section 21.3.

Moving Charge: Vector Magnetic Field
We can incorporate both the magnitude and direction of into a single vector
equation using the vector product. To avoid having to say “the direction from the
source q to the field point P” over and over, we introduce a unit vector (“r-hat”)
that points from the source point to the field point. (We used for the same pur-
pose in Section 21.4.) This unit vector is equal to the vector from the source to
the field point divided by its magnitude: Then the field of a moving
point charge is

(28.2)

Figure 28.1 shows the relationship of to P and also shows the magnetic field
at several points in the vicinity of the charge. At all points along a line through

the charge parallel to the velocity the field is zero because at all such
points. At any distance r from q, has its greatest magnitude at points lying in the
plane perpendicular to , because there and If q is negative,
the directions of are opposite to those shown in Fig. 28.1.

Moving Charge: Magnetic Field Lines
A point charge in motion also produces an electric field, with field lines that radiate
outward from a positive charge. The magnetic field lines are completely different.
For a point charge moving with velocity the magnetic field lines are circles cen-
tered on the line of and lying in planes perpendicular to this line. The field-line
directions for a positive charge are given by the following right-hand rule, one of
several that we will encounter in this chapter: Grasp the velocity vector with your
right hand so that your right thumb points in the direction of your fingers then
curl around the line of in the same sense as the magnetic field lines, assuming q is
positive. Figure 28.1a shows parts of a few field lines; Fig. 28.1b shows some field
lines in a plane through q, perpendicular to If the point charge is negative, the
directions of the field and field lines are the opposite of those shown in Fig. 28.1.
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(a) Perspective view

Right-hand rule for the magnetic field due to
a positive charge moving at constant velocity:
Point the thumb of your right hand in the
direction of the velocity. Your fingers now curl
around the charge in the direction of the
magnetic field lines. (If the charge is negative,
the field lines are in the opposite direction.)

(b) View from behind the charge

r

B

28.1 (a) Magnetic-field vectors due to 
a moving positive point charge q. At each
point, is perpendicular to the plane of 
and and its magnitude is proportional to
the sine of the angle between them. (b)
Magnetic field lines in a plane containing
a moving positive charge.
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Equations (28.1) and (28.2) describe the field of a point charge moving with
constant velocity. If the charge accelerates, the field can be much more compli-
cated. We won’t need these more complicated results for our purposes. (The mov-
ing charged particles that make up a current in a wire accelerate at points where
the wire bends and the direction of changes. But because the magnitude of
the drift velocity in a conductor is typically very small, the centripetal accelera-
tion is so small that we can ignore its effects.)

As we discussed in Section 27.2, the unit of B is one tesla (1 T):

Using this with Eq. (28.1) or (28.2), we find that the units of the constant are

In SI units the numerical value of is exactly Thus

(28.3)

It may seem incredible that has exactly this numerical value! In fact this is a
defined value that arises from the definition of the ampere, as we’ll discuss in
Section 28.4.

We mentioned in Section 21.3 that the constant in Coulomb’s law is
related to the speed of light c:

When we study electromagnetic waves in Chapter 32, we will find that their speed
of propagation in vacuum, which is equal to the speed of light is given by

(28.4)

If we solve the equation for substitute the resulting expression
into Eq. (28.4), and solve for we indeed get the value of stated above. This
discussion is a little premature, but it may give you a hint that electric and mag-
netic fields are intimately related to the nature of light.
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Example 28.1 Forces between two moving protons

Two protons move parallel to the x-axis in opposite directions 
(Fig. 28.2) at the same speed (small compared to the speed of
light c). At the instant shown, find the electric and magnetic forces
on the upper proton and compare their magnitudes.

SOLUTION

IDENTIFY and SET UP: Coulomb’s law [Eq. (21.2)] gives the elec-
tric force on the upper proton. The magnetic force law [Eq.
(27.2)] gives the magnetic force on the upper proton; to use it, we
must first use Eq. (28.2) to find the magnetic field that the lower
proton produces at the position of the upper proton. The unit vector
from the lower proton (the source) to the position of the upper pro-
ton is 

EXECUTE: From Coulomb’s law, the magnitude of the electric force
on the upper proton is

FE =
1

4pP0

q2

r 2

rn � ≥n .

FE

v
28.2 Electric and magnetic forces between two moving protons.
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The forces are repulsive, and the force on the upper proton is verti-
cally upward (in the 

The velocity of the lower proton is . From the right-
hand rule for the cross product in Eq. (28.2), the due
to the lower proton at the position of the upper proton is in the

(see Fig. 28.2). From Eq. (28.2), the field is

The velocity of the upper proton is , so the magnetic
force on it is

The magnetic interaction in this situation is also repulsive. The
ratio of the force magnitudes is
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Test Your Understanding of Section 28.1 (a) If two protons are traveling
parallel to each other in the same direction and at the same speed, is the magnetic force
between them (i) attractive or (ii) repulsive? (b) Is the net force between them (i) attrac-
tive, (ii) repulsive, or (iii) zero? (Assume that the protons’ speed is much slower than the
speed of light.) ❙

With the relationship Eq. (28.4), this becomes

When is small in comparison to the speed of light, the magnetic
force is much smaller than the electric force.

EVALUATE: We have described the velocities, fields, and forces as
they are measured by an observer who is stationary in the coordinate
system of Fig. 28.2. In a coordinate system that moves with one of
the charges, one of the velocities would be zero, so there would be
no magnetic force. The explanation of this apparent paradox pro-
vided one of the paths that led to the special theory of relativity.

v
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= P0m0v

2

28.2 Magnetic Field of a Current Element
Just as for the electric field, there is a principle of superposition of magnetic
fields:

The total magnetic field caused by several moving charges is the vector sum of
the fields caused by the individual charges.

We can use this principle with the results of Section 28.1 to find the magnetic
field produced by a current in a conductor.

We begin by calculating the magnetic field caused by a short segment of a
current-carrying conductor, as shown in Fig. 28.3a. The volume of the segment is
A dl, where A is the cross-sectional area of the conductor. If there are n moving
charged particles per unit volume, each of charge q, the total moving charge dQ
in the segment is

The moving charges in this segment are equivalent to a single charge dQ, trav-
eling with a velocity equal to the drift velocity (Magnetic fields due to the
random motions of the charges will, on average, cancel out at every point.) From
Eq. (28.1) the magnitude of the resulting field at any field point P is

But from Eq. (25.2), equals the current I in the element. So

(28.5)

Current Element: Vector Magnetic Field
In vector form, using the unit vector as in Section 28.1, we have

(magnetic field of a current element) (28.6)dB
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(a) Perspective view

Right-hand rule for the magnetic field due to
a current element: Point the thumb of your
right hand in the direction of the current. Your
fingers now curl around the current element in
the direction of the magnetic field lines.

For these field points, r and dl both lie in the
beige plane, and dB is perpendicular to this
plane.
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28.3 (a) Magnetic-field vectors due to 
a current element (b) Magnetic field
lines in a plane containing the current ele-
ment Compare this figure to Fig. 28.1
for the field of a moving point charge.
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where is a vector with length dl, in the same direction as the current in the
conductor.

Equations (28.5) and (28.6) are called the law of Biot and Savart (pro-
nounced “Bee-oh” and “Suh-var”). We can use this law to find the total magnetic
field at any point in space due to the current in a complete circuit. To do this,
we integrate Eq. (28.6) over all segments that carry current; symbolically,

(28.7)

In the following sections we will carry out this vector integration for several
examples.

Current Element: Magnetic Field Lines
As Fig. 28.3 shows, the field vectors and the magnetic field lines of a current
element are exactly like those set up by a positive charge dQ moving in the direc-
tion of the drift velocity The field lines are circles in planes perpendicular to

and centered on the line of Their directions are given by the same right-
hand rule that we introduced for point charges in Section 28.1.

We can’t verify Eq. (28.5) or (28.6) directly because we can never experiment
with an isolated segment of a current-carrying circuit. What we measure experi-
mentally is the total for a complete circuit. But we can still verify these equations
indirectly by calculating for various current configurations using Eq. (28.7) and
comparing the results with experimental measurements.

If matter is present in the space around a current-carrying conductor, the field
at a field point P in its vicinity will have an additional contribution resulting from
the magnetization of the material. We’ll return to this point in Section 28.8. How-
ever, unless the material is iron or some other ferromagnetic material, the addi-
tional field is small and is usually negligible. Additional complications arise if
time-varying electric or magnetic fields are present or if the material is a super-
conductor; we’ll return to these topics later.
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Problem-Solving Strategy 28.1 Magnetic-Field Calculations

IDENTIFY the relevant concepts: The Biot–Savart law [Eqs. (28.5)
and (28.6)] allows you to calculate the magnetic field at a field
point P due to a current-carrying wire of any shape. The idea is to
calculate the field element at P due to a representative current
element in the wire and integrate all such field elements to find the
field at P.

SET UP the problem using the following steps:
1. Make a diagram showing a representative current element and

the field point P.
2. Draw the current element being careful that it points in the

direction of the current.
3. Draw the unit vector directed from the current element (the

source point) to P.
4. Identify the target variable (usually ).

EXECUTE the solution as follows:
1. Use Eq. (28.5) or (28.6) to express the magnetic field at P

from the representative current element.
2. Add up all the ’s to find the total field at point P. In some sit-

uations the ’s at point P have the same direction for all the
current elements; then the magnitude of the total field is theB

S
dB
S

dB
S

dB
S

B
S

rn

d l
S

,

B
S

dB
S

sum of the magnitudes of the ’s. But often the ’s have dif-
ferent directions for different current elements. Then you have
to set up a coordinate system and represent each in terms of
its components. The integral for the total is then expressed in
terms of an integral for each component.

3. Sometimes you can use the symmetry of the situation to prove
that one component of must vanish. Always be alert for ways
to use symmetry to simplify the problem.

4. Look for ways to use the principle of superposition of mag-
netic fields. Later in this chapter we’ll determine the fields pro-
duced by certain simple conductor shapes; if you encounter a
conductor of a complex shape that can be represented as a
combination of these simple shapes, you can use superposition
to find the field of the complex shape. Examples include a rec-
tangular loop and a semicircle with straight line segments on
both sides.

EVALUATE your answer: Often your answer will be a mathemati-
cal expression for as a function of the position of the field point.
Check the answer by examining its behavior in as many limits as
you can.
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28.3 Magnetic Field of a Straight 
Current-Carrying Conductor

Let’s use the law of Biot and Savart to find the magnetic field produced by a
straight current-carrying conductor. This result is useful because straight conduct-
ing wires are found in essentially all electric and electronic devices. Figure 28.5
shows such a conductor with length 2a carrying a current I. We will find at a
point a distance x from the conductor on its perpendicular bisector.

We first use the law of Biot and Savart, Eq. (28.5), to find the field caused by
the element of conductor of length shown in Fig. 28.5. From the figure,

and The right-hand rule
for the vector product shows that the direction of is into the plane of
the figure, perpendicular to the plane; furthermore, the directions of the 
from all elements of the conductor are the same. Thus in integrating Eq. (28.7),
we can just add the magnitudes of the a significant simplification.dB

S
’s,

dB
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dl = dy
dB
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Example 28.2 Magnetic field of a current segment

A copper wire carries a steady 125-A current to an electroplating
tank (Fig. 28.4). Find the magnetic field due to a 1.0-cm segment
of this wire at a point 1.2 m away from it, if the point is (a) point

straight out to the side of the segment, and (b) point in the 
xy-plane and on a line at to the segment.

SOLUTION

IDENTIFY and SET UP: Although Eqs. (28.5) and (28.6) apply only
to infinitesimal current elements, we may use either of them here
because the segment length is much less than the distance to the
field point. The current element is shown in red in Fig. 28.4 and
points in the (the direction of the current), so 

The unit vector for each field point is directed from
the current element toward that point: is in the for
point and at an angle of above the for point P2.-x-direction30°P1

+y-directionrn
rndl1- ın2.

d l
S

�-x-direction

30°
P2,P1,

EXECUTE: (a) At point so

The direction of at is into the xy-plane of Fig. 28.4.
(b) At , the unit vector is .

From Eq. (28.6),

The direction of at is also into the xy-plane of Fig. 28.4.

EVALUATE: We can check our results for the direction of by
comparing them with Fig. 28.3. The xy-plane in Fig. 28.4 corre-
sponds to the beige plane in Fig. 28.3, but here the direction of the
current and hence of is the reverse of that shown in Fig. 28.3.
Hence the direction of the magnetic field is reversed as well.
Hence the field at points in the xy-plane in Fig. 28.4 must point
into, not out of, that plane. This is just what we concluded above.
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Test Your Understanding of Section 28.2 An infinitesimal current
element located at the origin carries current I in the positive 
y-direction. Rank the following locations in order of the strength of the magnetic
field that the current element produces at that location, from largest to smallest value. 
(i) (ii) (iii) 

(iv) ❙z = 0.y = L>12 ,x = L>12 ,

z = L;y = 0,x = 0,z = 0;y = L,x = 0,z = 0;y = 0,x = L,

1x = y = z = 02

28.4 Finding the magnetic field at two points due to a 1.0-cm
segment of current-carrying wire (not shown to scale).

x

y

P1

125 A

1.2 m

30°
125 A

1.2 m

z 1.0 cm

P2

28.5 Magnetic field produced by a
straight current-carrying conductor of
length 2a.
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Putting the pieces together, we find that the magnitude of the total field is

We can integrate this by trigonometric substitution or by using an integral table:

(28.8)

When the length 2a of the conductor is very great in comparison to its distance x
from point P, we can consider it to be infinitely long. When a is much larger than

x, is approximately equal to a; hence in the limit Eq. (28.8)
becomes

The physical situation has axial symmetry about the y-axis. Hence must
have the same magnitude at all points on a circle centered on the conductor and
lying in a plane perpendicular to it, and the direction of must be everywhere
tangent to such a circle (Fig. 28.6). Thus, at all points on a circle of radius r
around the conductor, the magnitude B is

(near a long, straight, current-carrying conductor) (28.9)

The geometry of this problem is similar to that of Example 21.10 (Section
21.5), in which we solved the problem of the electric field caused by an infinite
line of charge. The same integral appears in both problems, and the field magni-
tudes in both problems are proportional to But the lines of in the magnetic
problem have completely different shapes than the lines of in the analogous
electrical problem. Electric field lines radiate outward from a positive line charge
distribution (inward for negative charges). By contrast, magnetic field lines
encircle the current that acts as their source. Electric field lines due to charges
begin and end at those charges, but magnetic field lines always form closed loops
and never have end points, irrespective of the shape of the current-carrying con-
ductor that sets up the field. As we discussed in Section 27.3, this is a conse-
quence of Gauss’s law for magnetism, which states that the total magnetic flux
through any closed surface is always zero:

(magnetic flux through any closed surface) (28.10)

Any magnetic field line that enters a closed surface must also emerge from that
surface.
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28.3 Magnetic Field of a Straight Current-Carrying Conductor 929

28.6 Magnetic field around a long,
straight, current-carrying conductor. The
field lines are circles, with directions
determined by the right-hand rule.

Right-hand rule for the magnetic field
around a current-carrying wire: Point the
thumb of your right hand in the direction of the
current. Your fingers now curl around the wire
in the direction of the magnetic field lines.

I

I
B
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B
S

B
S

B
S B

S
B
S

Example 28.3 Magnetic field of a single wire

A long, straight conductor carries a 1.0-A current. At what distance
from the axis of the conductor does the resulting magnetic field
have magnitude (about that of the earth’s mag-
netic field in Pittsburgh)?

SOLUTION

IDENTIFY and SET UP: The length of a “long” conductor is much
greater than the distance from the conductor to the field point.
Hence we can use the ideas of this section. The geometry is the
same as that of Fig. 28.6, so we use Eq. (28.9). All of the quantities
in this equation are known except the target variable, the distance r.

B = 0.5 * 10-4 T

EXECUTE: We solve Eq. (28.9) for r:

EVALUATE: As we saw in Example 26.14, currents of an ampere or
more are typical of those found in the wiring of home appliances.
This example shows that the magnetic fields produced by these appli-
ances are very weak even very close to the wire; the fields are propor-
tional to 1 r, so they become even weaker at greater distances.>

= 4 * 10-3 m = 4 mm

r =
m0I

2pB
=
14p * 10-7 T # m>A211.0 A2

12p210.5 * 10-4 T2

ActivPhysics 13.1: Magnetic Field of a Wire
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Example 28.4 Magnetic field of two wires

Figure 28.7a is an end-on view of two long, straight, parallel wires
perpendicular to the xy-plane, each carrying a current I but in
opposite directions. (a) Find at points and (b) Find an
expression for at any point on the x-axis to the right of wire 2.

SOLUTION

IDENTIFY and SET UP: We can find the magnetic fields and 
due to wires 1 and 2 at each point using the ideas of this section.
By the superposition principle, the magnetic field at each point is
then We use Eq. (28.9) to find the magnitudes 
and of these fields and the right-hand rule to find the correspon-
ding directions. Figure 28.7a shows and at each
point; you should confirm that the directions and relative magni-
tudes shown are correct. Figure 28.7b shows some of the magnetic
field lines due to this two-wire system.

EXECUTE: (a) Since point is a distance 2d from wire 1 and a dis-
tance 4d from wire 2, and 

. The right-hand rule shows that is in
the negative y-direction and is in the positive y-direction, so

(point )

At point a distance d from both wires, and are both in the
positive y-direction, and both have the same magnitude 

. Hence

(point )

Finally, at point the right-hand rule shows that is in the posi-
tive y-direction and is in the negative y-direction. This point is a
distance 3d from wire 1 and a distance d from wire 2, so

and . The total field
at is

(point )

The same technique can be used to find at any point; for
points off the x-axis, caution must be taken in vector addition,
since and need no longer be simply parallel or antiparallel.B
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(b) At any point on the x-axis to the right of wire 2 (that is, for
), and are in the same directions as at . Such a point

is a distance x + d from wire 1 and a distance x – d from wire 2, so
the total field is

where we combined the two terms using a common denominator.

EVALUATE: Consider our result from part (b) at a point very far
from the wires, so that x is much larger than d. Then the term in
the denominator can be neglected, and the magnitude of the total
field is approximately . For a single wire, Eq.
(28.9) shows that the magnetic field decreases with distance in pro-
portion to ; for two wires carrying opposite currents, and 
partially cancel each other, and so decreases more rapidly, in
proportion to This effect is used in communication systems
such as telephone or computer networks. The wiring is arranged so
that a conductor carrying a signal in one direction and the conduc-
tor carrying the return signal are side by side, as in Fig. 28.7a, or
twisted around each other (Fig. 28.8). As a result, the magnetic
field due to these signals outside the conductors is very small, mak-
ing it less likely to exert unwanted forces on other information-
carrying currents.
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28.7 (a) Two long, straight conductors carrying equal currents in opposite directions. The conductors are seen end-on. (b) Map of the
magnetic field produced by the two conductors. The field lines are closest together between the conductors, where the field is strongest.

28.8 Computer cables, or cables for audio-video equipment,
create little or no magnetic field. This is because within each
cable, closely spaced wires carry current in both directions along
the length of the cable. The magnetic fields from these opposing
currents cancel each other.
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28.4 Force Between Parallel Conductors
In Example 28.4 (Section 28.3) we showed how to use the principle of superposi-
tion of magnetic fields to find the total field due to two long current-carrying con-
ductors. Another important aspect of this configuration is the interaction force
between the conductors. This force plays a role in many practical situations in
which current-carrying wires are close to each other. Figure 28.9 shows segments
of two long, straight, parallel conductors separated by a distance r and carrying
currents I and in the same direction. Each conductor lies in the magnetic field
set up by the other, so each experiences a force. The figure shows some of the
field lines set up by the current in the lower conductor.

From Eq. (28.9) the lower conductor produces a field that, at the position of
the upper conductor, has magnitude

From Eq. (27.19) the force that this field exerts on a length L of the upper con-
ductor is where the vector is in the direction of the current 
and has magnitude L. Since is perpendicular to the length of the conductor and
hence to the magnitude of this force is

and the force per unit length is

(two long, parallel, current-carrying conductors) (28.11)

Applying the right-hand rule to shows that the force on the upper
conductor is directed downward.

The current in the upper conductor also sets up a field at the position of the
lower one. Two successive applications of the right-hand rule for vector products
(one to find the direction of the field due to the upper conductor, as in Section
28.2, and one to find the direction of the force that this field exerts on the lower con-
ductor, as in Section 27.6) show that the force on the lower conductor is upward.
Thus two parallel conductors carrying current in the same direction attract each
other. If the direction of either current is reversed, the forces also reverse. Parallel
conductors carrying currents in opposite directions repel each other.

Magnetic Forces and Defining the Ampere
The attraction or repulsion between two straight, parallel, current-carrying con-
ductors is the basis of the official SI definition of the ampere:

One ampere is that unvarying current that, if present in each of two parallel con-
ductors of infinite length and one meter apart in empty space, causes each con-
ductor to experience a force of exactly newtons per meter of length.

From Eq. (28.11) you can see that this definition of the ampere is what leads us to
choose the value of for It also forms the basis of the SIm0.4p * 10-7 T # m>A
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Test Your Understanding of Section 28.3 The figure at right shows a circuit
that lies on a horizontal table. A compass is placed on top of the circuit as shown. A bat-
tery is to be connected to the circuit so that when the switch is closed, the compass needle
deflects counterclockwise. In which orientation, A or B, should the battery be placed in
the circuit?
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Needle
deflects
counter-
clockwise.

A B

The magnetic field of the lower wire exerts an
attractive force on the upper wire. By the same
token, the upper wire attracts the lower one.

If the wires had currents in opposite directions,
they would repel each other.
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28.9 Parallel conductors carrying cur-
rents in the same direction attract each
other. The diagrams show how the mag-
netic field caused by the current in the
lower conductor exerts a force on the
upper conductor.
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definition of the coulomb, which is the amount of charge transferred in one sec-
ond by a current of one ampere.

This is an operational definition; it gives us an actual experimental procedure
for measuring current and defining a unit of current. For high-precision standardiza-
tion of the ampere, coils of wire are used instead of straight wires, and their separa-
tion is only a few centimeters. Even more precise measurements of the standardized
ampere are possible using a version of the Hall effect (see Section 27.9).

Mutual forces of attraction exist not only between wires carrying currents in
the same direction, but also between the longitudinal elements of a single current-
carrying conductor. If the conductor is a liquid or an ionized gas (a plasma), these
forces result in a constriction of the conductor. This is called the pinch effect. The
high temperature produced by the pinch effect in a plasma has been used in one
technique to bring about nuclear fusion.
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Example 28.5 Forces between parallel wires

Two straight, parallel, superconducting wires 4.5 mm apart carry
equal currents of 15,000 A in opposite directions. What force, per
unit length, does each wire exert on the other?

SOLUTION

IDENTIFY and SET UP: Figure 28.10 shows the situation. We find
F L, the magnetic force per unit length of wire, using Eq. (28.11).>

EXECUTE: The conductors repel each other because the currents are
in opposite directions. From Eq. (28.11) the force per unit length is

EVALUATE: This is a large force, more than one ton per meter. Cur-
rents and separations of this magnitude are used in superconduct-
ing electromagnets in particle accelerators, and mechanical stress
analysis is a crucial part of the design process.

= 1.0 * 104 N>m

F

L
=
m0II¿
2pr

=
14p * 10-7 T # m>A2115,000 A22

12p214.5 * 10-3 m2

28.10 Our sketch for this problem.

Test Your Understanding of Section 28.4 A solenoid is a wire wound
into a helical coil. The figure at left shows a solenoid that carries a current I.
(a) Is the magnetic force that one turn of the coil exerts on an adjacent turn (i)
attractive, (ii) repulsive, or (iii) zero? (b) Is the electric force that one turn of the coil
exerts on an adjacent turn (i) attractive, (ii) repulsive, or (iii) zero? (c) Is the magnetic
force between opposite sides of the same turn of the coil (i) attractive, (ii) repulsive, or
(iii) zero? (d) Is the electric force between opposite sides of the same turn of the 
coil (i) attractive, (ii) repulsive, or (iii) zero? ❙

I

28.5 Magnetic Field of a Circular Current Loop
If you look inside a doorbell, a transformer, an electric motor, or an electromag-
net (Fig. 28.11), you will find coils of wire with a large number of turns, spaced
so closely that each turn is very nearly a planar circular loop. A current in such a
coil is used to establish a magnetic field. So it is worthwhile to derive an expres-
sion for the magnetic field produced by a single circular conducting loop carrying
a current or by N closely spaced circular loops forming a coil. In Section 27.7 we
considered the force and torque on such a current loop placed in an external mag-
netic field produced by other currents; we are now about to find the magnetic
field produced by the loop itself.

Figure 28.12 shows a circular conductor with radius a. A current I is led into
and out of the loop through two long, straight wires side by side; the currents in
these straight wires are in opposite directions, and their magnetic fields very
nearly cancel each other (see Example 28.4 in Section 28.3).

28.11 This electromagnet contains a
current-carrying coil with numerous turns
of wire. The resulting magnetic field can
pick up large quantities of steel bars and
other iron-bearing items.
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We can use the law of Biot and Savart, Eq. (28.5) or (28.6), to find the mag-
netic field at a point P on the axis of the loop, at a distance x from the center. As
the figure shows, and are perpendicular, and the direction of the field 
caused by this particular element lies in the xy-plane. Since 
the magnitude dB of the field due to element is

(28.12)

The components of the vector are

(28.13)

(28.14)

The total field at P has only an x-component (it is perpendicular to the plane
of the loop). Here’s why: For every element there is a corresponding element
on the opposite side of the loop, with opposite direction. These two elements give
equal contributions to the x-component of given by Eq. (28.13), but opposite
components perpendicular to the x-axis. Thus all the perpendicular components
cancel and only the x-components survive.

To obtain the x-component of the total field we integrate Eq. (28.13),
including all the ’s around the loop. Everything in this expression except dl is
constant and can be taken outside the integral, and we have

The integral of dl is just the circumference of the circle, and we
finally get

(on the axis of a circular loop) (28.15)

The direction of the magnetic field on the axis of a current-carrying loop is
given by a right-hand rule. If you curl the fingers of your right hand around the
loop in the direction of the current, your right thumb points in the direction of the
field (Fig. 28.13).

Magnetic Field on the Axis of a Coil
Now suppose that instead of the single loop in Fig. 28.12 we have a coil consist-
ing of N loops, all with the same radius. The loops are closely spaced so that the
plane of each loop is essentially the same distance x from the field point P. Then
the total field is N times the field of a single loop:

(on the axis of N circular loops) (28.16)

The factor N in Eq. (28.16) is the reason coils of wire, not single loops, are used
to produce strong magnetic fields; for a desired field strength, using a single loop
might require a current I so great as to exceed the rating of the loop’s wire.

Figure 28.14 shows a graph of as a function of x. The maximum value of
the field is at the center of the loop or coil:

(at the center of N circular loops) (28.17)

As we go out along the axis, the field decreases in magnitude.
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28.12 Magnetic field on the axis of a
circular loop. The current in the segment

causes the field which lies in the
xy-plane. The currents in other ’s cause

’s with different components perpendi-
cular to the x-axis; these components add
to zero. The x-components of the ’s
combine to give the total field at point P.B
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28.13 The right-hand rule for the
direction of the magnetic field produced 
on the axis of a current-carrying coil.
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28.14 Graph of the magnetic field along
the axis of a circular coil with N turns. When
x is much larger than a, the field magnitude
decreases approximately as 1/x3.
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PhET: Magnets and Electromagnets
ActivPhysics 13.2: Magnetic Field of a Loop



In Section 27.7 we defined the magnetic dipole moment (or magnetic
moment) of a current-carrying loop to be equal to IA, where A is the cross-
sectional area of the loop. If there are N loops, the total magnetic moment is
NIA. The circular loop in Fig. 28.12 has area so the magnetic
moment of a single loop is for N loops, Substituting
these results into Eqs. (28.15) and (28.16), we find that both of these expres-
sions can be written as

(28.18)

We described a magnetic dipole in Section 27.7 in terms of its response to a mag-
netic field produced by currents outside the dipole. But a magnetic dipole is also
a source of magnetic field; Eq. (28.18) describes the magnetic field produced by a
magnetic dipole for points along the dipole axis. This field is directly propor-
tional to the magnetic dipole moment Note that the field along the x-axis is in
the same direction as the vector magnetic moment this is true on both the pos-
itive and negative x-axis.

CAUTION Magnetic field of a coil Equations (28.15), (28.16), and (28.18) are valid only
on the axis of a loop or coil. Don’t attempt to apply these equations at other points! ❙

Figure 28.15 shows some of the magnetic field lines surrounding a circular
current loop (magnetic dipole) in planes through the axis. The directions of the
field lines are given by the same right-hand rule as for a long, straight conductor.
Grab the conductor with your right hand, with your thumb in the direction of the
current; your fingers curl around in the same direction as the field lines. The field
lines for the circular current loop are closed curves that encircle the conductor;
they are not circles, however.

M
S ;

m.

(on the axis of any number
of circular loops)

Bx =
m0m

2p1x2 + a223>2

m = NIpa2.m = Ipa2;
A = pa2,

m
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Example 28.6 Magnetic field of a coil

A coil consisting of 100 circular loops with radius 0.60 m carries a
5.0-A current. (a) Find the magnetic field at a point along the axis
of the coil, 0.80 m from the center. (b) Along the axis, at what dis-
tance from the center of the coil is the field magnitude as great as
it is at the center?

SOLUTION

IDENTIFY and SET UP: This problem concerns the magnetic field
magnitude B along the axis of a current-carrying coil, so we can
use the ideas of this section, and in particular Eq. (28.16). We are
given and In part (a) our target
variable is at a given value of x. In part (b) the target variable is
the value of x at which the field has of the magnitude that it has at
the origin.

EXECUTE: (a) Using from Eq. (28.16) we have

= 1.1 * 10-4 T

Bx =
14p * 10-7 T # m/A21100215.0 A210.60 m22

2310.80 m22 + 10.60 m2243>2

x = 0.80 m,

1
8

Bx

a = 0.60 m.I = 5.0 A,N = 100,

1
8

(b) Considering Eq. (28.16), we want to find a value of x such
that

To solve this for x, we take the reciprocal of the whole thing and
then take the power of both sides; the result is

EVALUATE: We check our answer in part (a) by finding the coil’s
magnetic moment and substituting the result into Eq. (28.18):

The magnetic moment is relatively large, yet it produces a rather
small field, comparable to that of the earth. This illustrates how
difficult it is to produce strong fields of 1 T or more.

m

Bx =
14p * 10-7 T # m>A215.7 * 102 A # m22

2p310.80 m22 + 10.60 m2243>2
= 1.1 * 10-4 T

m = NIpa2 = 1100215.0 A2p10.60 m22 = 5.7 * 102 A # m2

x = �23a = �1.04 m
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28.15 Magnetic field lines produced by
the current in a circular loop. At points on
the axis the field has the same direction
as the magnetic moment of the loop.
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Application Magnetic Fields for MRI
The diagnostic technique called MRI, or mag-
netic resonance imaging (see Section 27.7),
requires a magnetic field of about 1.5 T. In a
typical MRI scan, the patient lies inside a coil
that produces the intense field. The currents
required are very high, so the coils are bathed
in liquid helium at a temperature of 4.2 K to
keep them from overheating.
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28.6 Ampere’s Law
So far our calculations of the magnetic field due to a current have involved find-
ing the infinitesimal field due to a current element and then summing all the

’s to find the total field. This approach is directly analogous to our electric-
field calculations in Chapter 21.

For the electric-field problem we found that in situations with a highly sym-
metric charge distribution, it was often easier to use Gauss’s law to find There
is likewise a law that allows us to more easily find the magnetic fields caused by
highly symmetric current distributions. But the law that allows us to do this,
called Ampere’s law, is rather different in character from Gauss’s law.

Gauss’s law for electric fields involves the flux of through a closed surface;
it states that this flux is equal to the total charge enclosed within the surface,
divided by the constant Thus this law relates electric fields and charge distri-
butions. By contrast, Gauss’s law for magnetic fields, Eq. (28.10), is not a rela-
tionship between magnetic fields and current distributions; it states that the flux
of through any closed surface is always zero, whether or not there are currents
within the surface. So Gauss’s law for can’t be used to determine the magnetic
field produced by a particular current distribution.

Ampere’s law is formulated not in terms of magnetic flux, but rather in terms
of the line integral of around a closed path, denoted by

We used line integrals to define work in Chapter 6 and to calculate electric poten-
tial in Chapter 23. To evaluate this integral, we divide the path into infinitesimal
segments calculate the scalar product of for each segment, and sum
these products. In general, varies from point to point, and we must use the
value of at the location of each An alternative notation is where 
is the component of parallel to at each point. The circle on the integral sign
indicates that this integral is always computed for a closed path, one whose
beginning and end points are the same.

Ampere’s Law for a Long, Straight Conductor
To introduce the basic idea of Ampere’s law, let’s consider again the magnetic
field caused by a long, straight conductor carrying a current I. We found in Sec-
tion 28.3 that the field at a distance r from the conductor has magnitude

The magnetic field lines are circles centered on the conductor. Let’s take the
line integral of around one such circle with radius r, as in Fig. 28.16a. At
every point on the circle, and are parallel, and so since r is
constant around the circle, B is constant as well. Alternatively, we can say that

is constant and equal to B at every point on the circle. Hence we can take BBŒ
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Test Your Understanding of Section 28.5 Figure 28.12 shows the
magnetic field produced at point P by a segment that lies on the positive 
y-axis (at the top of the loop). This field has components 

(a) What are the signs of the components of the field produced at P by a segment 
on the negative (at the bottom of the loop)? (i) 

(ii) (iii) (iv) 
(v) none of these. (b) What are the signs of the components of the

field produced at P by a segment on the negative (at the right-hand side 
of the loop)? (i) (ii) 
(iii) (iv) (v) none of 
these. ❙
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28.16 Three integration paths for the
line integral of in the vicinity of a long,
straight conductor carrying current I out of
the plane of the page (as indicated by the
circle with a dot). The conductor is seen
end-on.
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(a) Integration path is a circle centered on the
conductor; integration goes around the circle
counterclockwise.
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integration goes around the circle clockwise.
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outside of the integral. The remaining integral is just the circumference of the
circle, so

The line integral is thus independent of the radius of the circle and is equal to 
multiplied by the current passing through the area bounded by the circle.

In Fig. 28.16b the situation is the same, but the integration path now goes
around the circle in the opposite direction. Now and are antiparallel, so

and the line integral equals We get the same result if the
integration path is the same as in Fig. 28.16a, but the direction of the current is
reversed. Thus equals multiplied by the current passing through the
area bounded by the integration path, with a positive or negative sign depending
on the direction of the current relative to the direction of integration.

There’s a simple rule for the sign of the current; you won’t be surprised to
learn that it uses your right hand. Curl the fingers of your right hand around the
integration path so that they curl in the direction of integration (that is, the direc-
tion that you use to evaluate Then your right thumb indicates the posi-
tive current direction. Currents that pass through the integration path in this
direction are positive; those in the opposite direction are negative. Using this
rule, you should be able to convince yourself that the current is positive in Fig.
28.16a and negative in Fig. 28.16b. Here’s another way to say the same thing:
Looking at the surface bounded by the integration path, integrate counterclock-
wise around the path as in Fig. 28.16a. Currents moving toward you through the
surface are positive, and those going away from you are negative.

An integration path that does not enclose the conductor is used in Fig. 28.16c.
Along the circular arc ab of radius and are parallel, and 

along the circular arc cd of radius and are antiparallel and
The field is perpendicular to at each point on the

straight sections bc and da, so and these sections contribute zero to the
line integral. The total line integral is then

The magnitude of is greater on arc cd than on arc ab, but the arc length is less,
so the contributions from the two arcs exactly cancel. Even though there is a
magnetic field everywhere along the integration path, the line integral is
zero if there is no current passing through the area bounded by the path.

We can also derive these results for more general integration paths, such as the
one in Fig. 28.17a. At the position of the line element the angle between 
and is and

From the figure, where is the angle subtended by at the
position of the conductor and r is the distance of from the conductor. Thus

But is just equal to the total angle swept out by the radial line from the
conductor to during a complete trip around the path. So we getd l
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28.17 (a) A more general integration
path for the line integral of around a long,
straight conductor carrying current I out of
the plane of the page. The conductor is seen
end-on. (b) A more general integration path
that does not enclose the conductor.
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(28.19)

This result doesn’t depend on the shape of the path or on the position of the wire
inside it. If the current in the wire is opposite to that shown, the integral has the
opposite sign. But if the path doesn’t enclose the wire (Fig. 28.17b), then the net
change in during the trip around the integration path is zero; is zero
instead of and the line integral is zero.

Ampere’s Law: General Statement
Equation (28.19) is almost, but not quite, the general statement of Ampere’s law.
To generalize it even further, suppose several long, straight conductors pass
through the surface bounded by the integration path. The total magnetic field at
any point on the path is the vector sum of the fields produced by the individual
conductors. Thus the line integral of the total equals times the algebraic
sum of the currents. In calculating this sum, we use the sign rule for currents
described above. If the integration path does not enclose a particular wire, the
line integral of the field of that wire is zero, because the angle for that wire
sweeps through a net change of zero rather than during the integration. Any
conductors present that are not enclosed by a particular path may still contribute
to the value of at every point, but the line integrals of their fields around the
path are zero.

Thus we can replace I in Eq. (28.19) with the algebraic sum of the cur-
rents enclosed or linked by the integration path, with the sum evaluated by
using the sign rule just described (Fig. 28.18). Our statement of Ampere’s law
is then

(Ampere’s law) (28.20)

While we have derived Ampere’s law only for the special case of the field of sev-
eral long, straight, parallel conductors, Eq. (28.20) is in fact valid for conductors
and paths of any shape. The general derivation is no different in principle from
what we have presented, but the geometry is more complicated.

If it does not necessarily mean that everywhere along
the path, only that the total current through an area bounded by the path is zero. In
Figs. 28.16c and 28.17b, the integration paths enclose no current at all; in Fig. 28.19
there are positive and negative currents of equal magnitude through the area
enclosed by the path. In both cases, and the line integral is zero.

CAUTION Line integrals of electric and magnetic fields In Chapter 23 we saw that the
line integral of the electrostatic field around any closed path is equal to zero; this is a
statement that the electrostatic force on a point charge q is conservative, so this
force does zero work on a charge that moves around a closed path that returns to the start-
ing point. You might think that the value of the line integral is similarly related to
the question of whether the magnetic force is conservative. This isn’t the case at all.
Remember that the magnetic force on a moving charged particle is always
perpendicular to so is not related to the work done by the magnetic force; as
stated in Ampere’s law, this integral is related only to the total current through a surface
bounded by the integration path. In fact, the magnetic force on a moving charged particle
is not conservative. A conservative force depends only on the position of the body on
which the force is exerted, but the magnetic force on a moving charged particle also
depends on the velocity of the particle. ❙

Equation (28.20) turns out to be valid only if the currents are steady and if no
magnetic materials or time-varying electric fields are present. In Chapter 29 we
will see how to generalize Ampere’s law for time-varying fields.

A B
S # d l

S
B
S

,
F
S

� qvS : B
S

A B
S # d l

S

F
S

� qE
S

E
S

Iencl = 0

B
S

� 0AB
S # d l

S
= 0,

CB
S # d l

S
= m0Iencl

Iencl,

B
S

2p
uB

S

m0B
S

B
S

2p
A duu

CB
S # d l

S
= m0I

Perspective view

Top view

Plane of
curve

B
S

Iencl 5 I1 2 I2 1 I3

B
S

Ampere’s law:  If we calculate the line integral 
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28.18 Ampere’s law.
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28.19 Two long, straight conductors
carrying equal currents in opposite direc-
tions. The conductors are seen end-on, and
the integration path is counterclockwise.
The line integral gets zero contri-
bution from the upper and lower segments,
a positive contribution from the left seg-
ment, and a negative contribution from the
right segment; the net integral is zero.
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28.7 Applications of Ampere’s Law
Ampere’s law is useful when we can exploit the symmetry of a situation to eval-
uate the line integral of Several examples are given below. Problem-Solving
Strategy 28.2 is directly analogous to Problem-Solving Strategy 22.1 (Section
22.4) for applications of Gauss’s law; we suggest you review that strategy now
and compare the two methods.
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Test Your Understanding of Section 28.6 The figure at left shows magnetic
field lines through the center of a permanent magnet. The magnet is not connected to a
source of emf. One of the field lines is colored red. What can you conclude about the cur-
rents inside the permanent magnet within the region enclosed by this field line? (i) There
are no currents inside the magnet; (ii) there are currents directed out of the plane of the
page; (iii) there are currents directed into the plane of the page; (iv) not enough informa-
tion is given to decide.

❙

SSS NNN

B
S

Problem-Solving Strategy 28.2 Ampere’s Law

IDENTIFY the relevant concepts: Like Gauss’s law, Ampere’s law
is most useful when the magnetic field is highly symmetric. In the
form it can yield the magnitude of as a func-
tion of position if we are given the magnitude and direction of the
field-generating electric current.

SET UP the problem using the following steps:
1. Determine the target variable(s). Usually one will be the mag-

nitude of the field as a function of position.
2. Select the integration path you will use with Ampere’s law. If

you want to determine the magnetic field at a certain point, then
the path must pass through that point. The integration path
doesn’t have to be any actual physical boundary. Usually it is a
purely geometric curve; it may be in empty space, embedded in
a solid body, or some of each. The integration path has to have
enough symmetry to make evaluation of the integral possible.
Ideally the path will be tangent to in regions of interest; else-
where the path should be perpendicular to or should run
through regions in which 

EXECUTE the solution as follows:
1. Carry out the integral along the chosen path. If is

tangent to all or some portion of the path and has the same
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magnitude B at every point, then its line integral is the product
of B and the length of that portion of the path. If is perpendi-
cular to some portion of the path, or if that portion
makes no contribution to the integral.

2. In the integral is the total magnetic field at each
point on the path; it can be caused by currents enclosed or not
enclosed by the path. If no net current is enclosed by the path,
the field at points on the path need not be zero, but the integral

is always zero.
3. Determine the current enclosed by the integration path. A

right-hand rule gives the sign of this current: If you curl the fin-
gers of your right hand so that they follow the path in the direc-
tion of integration, then your right thumb points in the direction
of positive current. If is tangent to the path everywhere and

is positive, the direction of is the same as the direction of
integration. If instead is negative, is in the direction
opposite to that of the integration.

4. Use Ampere’s law to solve for the target variable.

EVALUATE your answer: If your result is an expression for the field
magnitude as a function of position, check it by examining how the
expression behaves in different limits.
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Example 28.7 Field of a long, straight, current-carrying conductor

In Section 28.6 we derived Ampere’s law using Eq. (28.9) for the
field of a long, straight, current-carrying conductor. Reverse this
process, and use Ampere’s law to find for this situation.

SOLUTION

IDENTIFY and SET UP: The situation has cylindrical symmetry, so
in Ampere’s law we take our integration path to be a circle with
radius r centered on the conductor and lying in a plane perpendicu-
lar to it, as in Fig. 28.16a. The field is everywhere tangent to this
circle and has the same magnitude B everywhere on the circle.

EXECUTE: With our choice of integration path, Ampere’s law [Eq.
(28.20)] becomes
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Equation (28.9), follows immediately.
Ampere’s law determines the direction of as well as its mag-

nitude. Since we chose to go counterclockwise around the integra-
tion path, the positive direction for current is out of the plane of
Fig. 28.16a; this is the same as the actual current direction in the
figure, so I is positive and the integral is also positive.
Since the ’s run counterclockwise, the direction of must be
counterclockwise as well, as shown in Fig. 28.16a.

EVALUATE: Our results are consistent with those in Section 28.6.
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Example 28.8 Field of a long cylindrical conductor

A cylindrical conductor with radius R carries a current I (Fig. 28.20).
The current is uniformly distributed over the cross-sectional area of
the conductor. Find the magnetic field as a function of the distance
r from the conductor axis for points both inside and out-
side the conductor.

SOLUTION

IDENTIFY and SET UP: As in Example 28.7, the current distribu-
tion has cylindrical symmetry, and the magnetic field lines must
be circles concentric with the conductor axis. To find the mag-
netic field inside and outside the conductor, we choose circular
integration paths with radii and , respectively (see
Fig. 28.20).

EXECUTE: In either case the field has the same magnitude at
every point on the circular integration path and is tangent to the
path. Thus the magnitude of the line integral is simply To
find the current enclosed by a circular integration path inside
the conductor , note that the current density (current per unit
area) is so Hence Ampere’s
law gives , orB12pr2 = m0Ir 2>R2

Iencl = J1pr 22 = Ir 2>R2.J = I>pR2,
1r 6 R,2

Iencl

B12pr2.
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1r 7 R2
1r 6 R2

(28.21)

A circular integration path outside the conductor encloses the
total current in the conductor, so . Applying Ampere’s law
gives the same equation as in Example 28.7, with the same result
for B:

(28.22)

Outside the conductor, the magnetic field is the same as that of a
long, straight conductor carrying current I, independent of the
radius R over which the current is distributed. Indeed, the magnetic
field outside any cylindrically symmetric current distribution is the
same as if the entire current were concentrated along the axis of
the distribution. This is analogous to the results of Examples 22.5
and 22.9 (Section 22.4), in which we found that the electric field
outside a spherically symmetric charged body is the same as
though the entire charge were concentrated at the center.

EVALUATE: Note that at the surface of the conductor Eqs.
(28.21) and (28.22) agree, as they must. Figure 28.21 shows a
graph of B as a function of r.
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28.20 To find the magnetic field at radius we apply
Ampere’s law to the circle enclosing the gray area. The current
through the red area is To find the magnetic field at
radius we apply Ampere’s law to the circle enclosing the
entire conductor.

r 7 R,
1r 2>R22I.

r 6 R,

Example 28.9 Field of a solenoid

A solenoid consists of a helical winding of wire on a cylinder, usu-
ally circular in cross section. There can be thousands of closely
spaced turns (often in several layers), each of which can be
regarded as a circular loop. For simplicity, Fig. 28.22 shows a sole-
noid with only a few turns. All turns carry the same current I, and
the total field at every point is the vector sum of the fields caused
by the individual turns. The figure shows field lines in the xy- and
xz-planes. We draw field lines that are uniformly spaced at the cen-
ter of the solenoid. Exact calculations show that for a long, closely
wound solenoid, half of these field lines emerge from the ends and
half “leak out” through the windings between the center and the
end, as the figure suggests.

If the solenoid is long in comparison with its cross-sectional
diameter and the coils are tightly wound, the field inside the solenoid
near its midpoint is very nearly uniform over the cross section and
parallel to the axis; the external field near the midpoint is very small.
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28.21 Magnitude of the magnetic field inside and outside a long,
straight cylindrical conductor with radius R carrying a current I.
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28.22 Magnetic field lines produced by the current in a sole-
noid. For clarity, only a few turns are shown.
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Use Ampere’s law to find the field at or near the center of such
a solenoid if it has n turns per unit length and carries current I.

SOLUTION

IDENTIFY and SET UP: We assume that is uniform inside the
solenoid and zero outside. Figure 28.23 shows the situation and our
chosen integration path, rectangle abcd. Side ab, with length L, is
parallel to the axis of the solenoid. Sides bc and da are taken to be
very long so that side cd is far from the solenoid; then the field at
side cd is negligibly small.

EXECUTE: Along side ab, is parallel to the path and is constant.
Our Ampere’s-law integration takes us along side ab in the same
direction as so here and

Along sides bc and da, is perpendicular to the path and so
; along side cd, and so Around the entire

closed path, then, we have BL.
In a length L there are nL turns, each of which passes once

through abcd carrying current I. Hence the total current
enclosed by the rectangle is The integral isAB
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positive, so from Ampere’s law must be positive as well. This
means that the current passing through the surface bounded by the
integration path must be in the direction shown in Fig. 28.23.
Ampere’s law then gives , or

(solenoid) (28.23)

Side ab need not lie on the axis of the solenoid, so this result
demonstrates that the field is uniform over the entire cross section
at the center of the solenoid’s length.

EVALUATE: Note that the direction of inside the solenoid is in the
same direction as the solenoid’s vector magnetic moment as we
found in Section 28.5 for a single current-carrying loop.

For points along the axis, the field is strongest at the center of
the solenoid and drops off near the ends. For a solenoid very long
in comparison to its diameter, the field magnitude at each end is
exactly half that at the center. This is approximately the case even
for a relatively short solenoid, as Fig. 28.24 shows.

M
S ,

B
S

B = m0nI

BL = m0nLI

Iencl

5

S

28.23 Our sketch for this problem.
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28.24 Magnitude of the magnetic field at points along the axis
of a solenoid with length 4a, equal to four times its radius a. The
field magnitude at each end is about half its value at the center.
(Compare with Fig. 28.14 for the field of N circular loops.)

Example 28.10 Field of a toroidal solenoid

Figure 28.25a shows a doughnut-shaped toroidal solenoid, tightly
wound with N turns of wire carrying a current I. (In a practical
solenoid the turns would be much more closely spaced than they
are in the figure.) Find the magnetic field at all points.

SOLUTION

IDENTIFY and SET UP: Ignoring the slight pitch of the helical wind-
ings, we can consider each turn of a tightly wound toroidal solenoid
as a loop lying in a plane perpendicular to the large, circular axis of
the toroid. The symmetry of the situation then tells us that the mag-
netic field lines must be circles concentric with the toroid axis. There-
fore we choose circular integration paths (of which Fig. 28.25b
shows three) for use with Ampere’s law, so that the field (if any) is
tangent to each path at all points along the path.

EXECUTE: Along each path, equals the product of B and
the path circumference . The total current enclosed by
path 1 is zero, so from Ampere’s law the field everywhere
on this path.

Each turn of the winding passes twice through the area bounded
by path 3, carrying equal currents in opposite directions. The net
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The magnetic field is confined almost entirely
to the space enclosed by the windings (in blue).

28.25 (a) A toroidal solenoid. For clarity, only a few turns of
the winding are shown. (b) Integration paths (black circles) used
to compute the magnetic field set up by the current (shown as
dots and crosses).
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current enclosed is therefore zero, and hence at all points
on this path as well. We conclude that the field of an ideal toroidal
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28.8 Magnetic Materials
In discussing how currents cause magnetic fields, we have assumed that the con-
ductors are surrounded by vacuum. But the coils in transformers, motors, genera-
tors, and electromagnets nearly always have iron cores to increase the magnetic
field and confine it to desired regions. Permanent magnets, magnetic recording
tapes, and computer disks depend directly on the magnetic properties of materi-
als; when you store information on a computer disk, you are actually setting up
an array of microscopic permanent magnets on the disk. So it is worthwhile to
examine some aspects of the magnetic properties of materials. After describing
the atomic origins of magnetic properties, we will discuss three broad classes of
magnetic behavior that occur in materials; these are called paramagnetism, dia-
magnetism, and ferromagnetism.

The Bohr Magneton
As we discussed briefly in Section 27.7, the atoms that make up all matter con-
tain moving electrons, and these electrons form microscopic current loops that
produce magnetic fields of their own. In many materials these currents are ran-
domly oriented and cause no net magnetic field. But in some materials an exter-
nal field (a field produced by currents outside the material) can cause these loops
to become oriented preferentially with the field, so their magnetic fields add to
the external field. We then say that the material is magnetized.

Let’s look at how these microscopic currents come about. Figure 28.26 shows
a primitive model of an electron in an atom. We picture the electron (mass m,
charge as moving in a circular orbit with radius r and speed This moving
charge is equivalent to a current loop. In Section 27.7 we found that a current
loop with area A and current I has a magnetic dipole moment given by 
for the orbiting electron the area of the loop is To find the currentA = pr 2.

m = IA;m

v.-e)

solenoid is confined to the space enclosed by the windings. We can
think of such a solenoid as a tightly wound, straight solenoid that
has been bent into a circle.

For path 2, we have Each turn of the wind-
ing passes once through the area bounded by this path, so

We note that is positive for the clockwise direction
of integration in Fig. 28.25b, so is in the direction shown.
Ampere’s law then says that , so

(toroidal solenoid) (28.24)

EVALUATE: Equation (28.24) indicates that B is not uniform over
the interior of the core, because different points in the interior are
difference distances r from the toroid axis. However, if the radial
extent of the core is small in comparison to r, the variation is
slight. In that case, considering that is the circumferential2pr

B =
m0NI

2pr

2prB = m0NI
B
S

IenclIencl = NI.

2prB.AB
S # d l

S
=

length of the toroid and that is the number of turns per unit
length n, the field may be written as , just as it is at the
center of a long, straight solenoid.

In a real toroidal solenoid the turns are not precisely circular
loops but rather segments of a bent helix. As a result, the external
field is not exactly zero. To estimate its magnitude, we imagine
Fig. 28.25a as being very roughly equivalent, for points outside the
torus, to a single-turn circular loop with radius r. At the center of
such a loop, Eq. (28.17) gives this is smaller than the
field inside the solenoid by the factor 

The equations we have derived for the field in a closely wound
straight or toroidal solenoid are strictly correct only for windings
in vacuum. For most practical purposes, however, they can be used
for windings in air or on a core of any nonmagnetic, nonsupercon-
ducting material. In the next section we will show how these equa-
tions are modified if the core is a magnetic material.

N>p.
B = m0I>2r;

B = m0nI
N>2pr

Test Your Understanding of Section 28.7 Consider a conducting wire that
runs along the central axis of a hollow conducting cylinder. Such an arrangement, called a
coaxial cable, has many applications in telecommunications. (The cable that connects a
television set to a local cable provider is an example of a coaxial cable.) In such a cable 
a current I runs in one direction along the hollow conducting cylinder and is spread uni-
formly over the cylinder’s cross-sectional area. An equal current runs in the opposite
direction along the central wire. How does the magnitude B of the magnetic field 
outside such a cable depend on the distance r from the central axis of the cable? (i) B is
proportional to (ii) B is proportional to (iii) B is zero at all points outside the
cable.

❙

1>r 2;1>r ;

Hollow conducting cylinder Central wireInsulator

r

I

I

I

2e

A

L

m
S

vS

S

28.26 An electron moving with speed 
in a circular orbit of radius r has an angu-
lar momentum and an oppositely
directed orbital magnetic dipole moment

It also has a spin angular momentum
and an oppositely directed spin magnetic
dipole moment.

M
S .

L
S

v



associated with the electron, we note that the orbital period T (the time for the
electron to make one complete orbit) is the orbit circumference divided by the
electron speed: The equivalent current I is the total charge passing
any point on the orbit per unit time, which is just the magnitude e of the electron
charge divided by the orbital period T:

The magnetic moment is then

(28.25)

It is useful to express in terms of the angular momentum L of the electron. For
a particle moving in a circular path, the magnitude of angular momentum equals
the magnitude of momentum multiplied by the radius r—that is, 
(see Section 10.5). Comparing this with Eq. (28.25), we can write

(28.26)

Equation (28.26) is useful in this discussion because atomic angular momen-
tum is quantized; its component in a particular direction is always an integer
multiple of where h is a fundamental physical constant called Planck’s
constant. The numerical value of h is

The quantity thus represents a fundamental unit of angular momentum in
atomic systems, just as e is a fundamental unit of charge. Associated with the
quantization of is a fundamental uncertainty in the direction of and therefore
of In the following discussion, when we speak of the magnitude of a magnetic
moment, a more precise statement would be “maximum component in a given
direction.” Thus, to say that a magnetic moment is aligned with a magnetic
field really means that has its maximum possible component in the direction
of such components are always quantized.

Equation (28.26) shows that associated with the fundamental unit of angular
momentum is a corresponding fundamental unit of magnetic moment. If 

then

(28.27)

This quantity is called the Bohr magneton, denoted by Its numerical value is

You should verify that these two sets of units are consistent. The second set is
useful when we compute the potential energy for a magnetic
moment in a magnetic field.

Electrons also have an intrinsic angular momentum, called spin, that is not
related to orbital motion but that can be pictured in a classical model as spinning
on an axis. This angular momentum also has an associated magnetic moment,
and its magnitude turns out to be almost exactly one Bohr magneton. (Effects
having to do with quantization of the electromagnetic field cause the spin mag-
netic moment to be about 

Paramagnetism
In an atom, most of the various orbital and spin magnetic moments of the elec-
trons add up to zero. However, in some cases the atom has a net magnetic
moment that is of the order of When such a material is placed in a magneticmB.

1.001 mB.)

U = -MS # BS
mB = 9.274 * 10-24 A # m2 = 9.274 * 10-24 J>T

mB.

m =
e

2m
a

h

2p
b =

eh

4pm

h>2p,
L =

B
S

;
M
SB

S
M
S

M
S .

L
S

L
S

h>2p

h = 6.626 * 10-34 J # s

h>2p,

m =
e

2m
L

L = mvrmv

m

m =
ev

2pr
1pr 22 =

evr

2

m = IA

I =
e

T
=

ev
2pr

T = 2pr>v.

942 CHAPTER 28 Sources of Magnetic Field



28.8 Magnetic Materials 943

field, the field exerts a torque on each magnetic moment, as given by Eq. (27.26):
These torques tend to align the magnetic moments with the field, as

we discussed in Section 27.7. In this position, the directions of the current loops
are such as to add to the externally applied magnetic field.

We saw in Section 28.5 that the field produced by a current loop is propor-
tional to the loop’s magnetic dipole moment. In the same way, the additional 
field produced by microscopic electron current loops is proportional to the total
magnetic moment per unit volume V in the material. We call this vector
quantity the magnetization of the material, denoted by 

(28.28)

The additional magnetic field due to magnetization of the material turns out to
be equal simply to where is the same constant that appears in the law of
Biot and Savart and Ampere’s law. When such a material completely surrounds a
current-carrying conductor, the total magnetic field in the material is

(28.29)

where is the field caused by the current in the conductor.
To check that the units in Eq. (28.29) are consistent, note that magnetization
is magnetic moment per unit volume. The units of magnetic moment are cur-

rent times area so the units of magnetization are 
From Section 28.1, the units of the constant are So the units of 
are the same as the units of 

A material showing the behavior just described is said to be paramagnetic.
The result is that the magnetic field at any point in such a material is greater by a
dimensionless factor called the relative permeability of the material, than it
would be if the material were replaced by vacuum. The value of is different
for different materials; for common paramagnetic solids and liquids at room tem-
perature, typically ranges from 1.00001 to 1.003.

All of the equations in this chapter that relate magnetic fields to their sources
can be adapted to the situation in which the current-carrying conductor is embed-
ded in a paramagnetic material. All that need be done is to replace by 
This product is usually denoted as and is called the permeability of the
material:

(28.30)

CAUTION Two meanings of the symbol Equation (28.30) involves some really dan-
gerous notation because we have also used for magnetic dipole moment. It’s customary
to use for both quantities, but beware: From now on, every time you see a make sure
you know whether it is permeability or magnetic moment. You can usually tell from the
context. ❙

The amount by which the relative permeability differs from unity is called the
magnetic susceptibility, denoted by 

(28.31)

Both and are dimensionless quantities. Table 28.1 lists values of magnetic
susceptibility for several materials. For example, for aluminum, 
and The first group of materials in the table are paramagnetic;
we’ll discuss the second group of materials, which are called diamagnetic, very
shortly.

The tendency of atomic magnetic moments to align themselves parallel to
the magnetic field (where the potential energy is minimum) is opposed by ran-
dom thermal motion, which tends to randomize their orientations. For this rea-
son, paramagnetic susceptibility always decreases with increasing temperature.

Km = 1.000022.
xm = 2.2 * 10-5

xmKm

xm = Km - 1
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m,m
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Table 28.1 Magnetic
Susceptibilities of Paramagnetic
and Diamagnetic Materials at

Material

Paramagnetic

Iron ammonium alum 66

Uranium 40

Platinum 26

Aluminum 2.2

Sodium 0.72

Oxygen gas 0.19

Diamagnetic

Bismuth 16.6

Mercury 2.9

Silver 2.6

Carbon (diamond) 2.1

Lead 1.8

Sodium chloride 1.4

Copper 1.0-

-

-

-

-

-

-

Xm � Km � 1 1* 10-52

T � 20°C



In many cases it is inversely proportional to the absolute temperature T, and the
magnetization M can be expressed as

(28.32)

This relationship is called Curie’s law, after its discoverer, Pierre Curie
(1859–1906). The quantity C is a constant, different for different materials, called
the Curie constant.

As we described in Section 27.7, a body with atomic magnetic dipoles is
attracted to the poles of a magnet. In most paramagnetic substances this attraction
is very weak due to thermal randomization of the atomic magnetic moments. But
at very low temperatures the thermal effects are reduced, the magnetization
increases in accordance with Curie’s law, and the attractive forces are greater.

M = C
B

T
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Example 28.11 Magnetic dipoles in a paramagnetic material

Nitric oxide is a paramagnetic compound. The magnetic
moment of each NO molecule has a maximum component in any
direction of about one Bohr magneton. Compare the interaction
energy of such magnetic moments in a 1.5-T magnetic field with
the average translational kinetic energy of molecules at 300 K.

SOLUTION

IDENTIFY and SET UP: This problem involves the energy of a
magnetic moment in a magnetic field and the average thermal
kinetic energy. We have Eq. (27.27), , for the interac-
tion energy of a magnetic moment with a field, and Eq.
(18.16), for the average translational kinetic energy of a
molecule at temperature T.

EXECUTE: We can write where is the component of
the magnetic moment in the direction of the field. Here the
maximum value of is about somB,mŒ

B
S

M
S

mŒU = -mŒB,

K = 3
2 kT,

B
S

M
S

U = -MS # BS

1NO2

The average translational kinetic energy K is

EVALUATE: At 300 K the magnetic interaction energy is only about
0.2% of the thermal kinetic energy, so we expect only a slight
degree of alignment. This is why paramagnetic susceptibilities at
ordinary temperature are usually very small.

= 6.2 * 10-21 J = 0.039 eV

K = 3
2 kT = 3

2 11.38 * 10-23 J>K21300 K2

= 1.4 * 10-23 J = 8.7 * 10-5 eV

ƒU ƒmax L mBB = 19.27 * 10-24 J>T211.5 T2

Diamagnetism
In some materials the total magnetic moment of all the atomic current loops is
zero when no magnetic field is present. But even these materials have magnetic
effects because an external field alters electron motions within the atoms, causing
additional current loops and induced magnetic dipoles comparable to the induced
electric dipoles we studied in Section 28.5. In this case the additional field caused
by these current loops is always opposite in direction to that of the external field.
(This behavior is explained by Faraday’s law of induction, which we will study in
Chapter 29. An induced current always tends to cancel the field change that
caused it.)

Such materials are said to be diamagnetic. They always have negative sus-
ceptibility, as shown in Table 28.1, and relative permeability slightly less than
unity, typically of the order of 0.99990 to 0.99999 for solids and liquids. Diamag-
netic susceptibilities are very nearly temperature independent.

Ferromagnetism
There is a third class of materials, called ferromagnetic materials, that includes
iron, nickel, cobalt, and many alloys containing these elements. In these materials,
strong interactions between atomic magnetic moments cause them to line up par-
allel to each other in regions called magnetic domains, even when no external

Km
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field is present. Figure 28.27 shows an example of magnetic domain structure.
Within each domain, nearly all of the atomic magnetic moments are parallel.

When there is no externally applied field, the domain magnetizations are ran-
domly oriented. But when a field (caused by external currents) is present, the
domains tend to orient themselves parallel to the field. The domain boundaries
also shift; the domains that are magnetized in the field direction grow, and those
that are magnetized in other directions shrink. Because the total magnetic
moment of a domain may be many thousands of Bohr magnetons, the torques
that tend to align the domains with an external field are much stronger than occur
with paramagnetic materials. The relative permeability is much larger than
unity, typically of the order of 1000 to 100,000. As a result, an object made of a
ferromagnetic material such as iron is strongly magnetized by the field from a
permanent magnet and is attracted to the magnet (see Fig. 27.38). A paramagnetic
material such as aluminum is also attracted to a permanent magnet, but for
paramagnetic materials is so much smaller for such a material than for ferromag-
netic materials that the attraction is very weak. Thus a magnet can pick up iron
nails, but not aluminum cans.

As the external field is increased, a point is eventually reached at which nearly
all the magnetic moments in the ferromagnetic material are aligned parallel to the
external field. This condition is called saturation magnetization; after it is
reached, further increase in the external field causes no increase in magnetization
or in the additional field caused by the magnetization.

Figure 28.28 shows a “magnetization curve,” a graph of magnetization M as a
function of external magnetic field for soft iron. An alternative description of
this behavior is that is not constant but decreases as increases. (Paramag-
netic materials also show saturation at sufficiently strong fields. But the magnetic
fields required are so large that departures from a linear relationship between M and

in these materials can be observed only at very low temperatures, 1 K or so.)
For many ferromagnetic materials the relationship of magnetization to exter-

nal magnetic field is different when the external field is increasing from when it is
decreasing. Figure 28.29a shows this relationship for such a material. When the
material is magnetized to saturation and then the external field is reduced to zero,
some magnetization remains. This behavior is characteristic of permanent mag-
nets, which retain most of their saturation magnetization when the magnetizing
field is removed. To reduce the magnetization to zero requires a magnetic field in
the reverse direction.

This behavior is called hysteresis, and the curves in Fig. 28.29 are called
hysteresis loops. Magnetizing and demagnetizing a material that has hysteresis
involve the dissipation of energy, and the temperature of the material increases
during such a process.

B0

B0Km

B0,

Km

Km

B
S

0

M

Msat

B0
O

28.28 A magnetization curve for a fer-
romagnetic material. The magnetization M
approaches its saturation value as the
magnetic field (caused by external cur-
rents) becomes large.

B0

Msat

(a) No field

(b) Weak field

B
S

(c) Stronger field

B
S

28.27 In this drawing adapted from a
magnified photo, the arrows show the
directions of magnetization in the domains
of a single crystal of nickel. Domains that
are magnetized in the direction of an
applied magnetic field grow larger.

(a) (b) (c)

B0

M

B0

M

Applied external
field B0

Magnetization
M

Material is magnetized
to saturation by an external field.

1 These materials can
be magnetized to
saturation and
demagnetized by
smaller external
fields than in (a).

Increasing the external field
in the original direction
again reduces the
magnetization to zero.

6

External field is reduced to
zero; magnetization remains.

2A large external field in the
opposite direction is needed to
reduce the magnetization to zero.

3

Further increasing the
reversed external field gives
the material a magnetization
in the reverse direction.

4

This magnetization remains if
the external field is reduced to zero.

5

28.29 Hysteresis loops. The materials of both (a) and (b) remain strongly magnetized when is reduced to zero. Since (a) is also
hard to demagnetize, it would be good for permanent magnets. Since (b) magnetizes and demagnetizes more easily, it could be used as a
computer memory material. The material of (c) would be useful for transformers and other alternating-current devices where zero
hysteresis would be optimal.

B0



Ferromagnetic materials are widely used in electromagnets, transformer cores,
and motors and generators, in which it is desirable to have as large a magnetic
field as possible for a given current. Because hysteresis dissipates energy, materi-
als that are used in these applications should usually have as narrow a hysteresis
loop as possible. Soft iron is often used; it has high permeability without appre-
ciable hysteresis. For permanent magnets a broad hysteresis loop is usually desir-
able, with large zero-field magnetization and large reverse field needed to
demagnetize. Many kinds of steel and many alloys, such as Alnico, are com-
monly used for permanent magnets. The remaining magnetic field in such a
material, after it has been magnetized to near saturation, is typically of the order
of 1 T, corresponding to a remaining magnetization of about
800,000 A>m.

M = B>m0
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Example 28.12 A ferromagnetic material

A cube-shaped permanent magnet is made of a ferromagnetic
material with a magnetization M of about The side
length is 2 cm. (a) Find the magnetic dipole moment of the magnet.
(b) Estimate the magnetic field due to the magnet at a point 10 cm
from the magnet along its axis.

SOLUTION

IDENTIFY and SET UP: This problem uses the relationship between
magnetization M and magnetic dipole moment and the idea
that a magnetic dipole produces a magnetic field. We find using
Eq. (28.28). To estimate the field, we approximate the magnet as a
current loop with this same magnetic moment and use Eq. (28.18).

EXECUTE: (a) From Eq. (28.28),

(b) From Eq. (28.18), the magnetic field on the axis of a current
loop with magnetic moment is

B =
m0mtotal

2p1x2 + a223>2

mtotal

mtotal = MV = 18 * 105 A>m212 * 10-2 m23 = 6 A # m2

mtotal

mtotal

8 * 105 A>m.
where x is the distance from the loop and a is its radius. We can use
this expression here if we take a to refer to the size of the perma-
nent magnet. Strictly speaking, there are complications because our
magnet does not have the same geometry as a circular current loop.
But because is fairly large in comparison to the 2-cm
size of the magnet, the term is negligible in comparison to 
and can be ignored. So

which is about ten times stronger than the earth’s magnetic field.

EVALUATE: We calculated B at a point outside the magnetic mate-
rial and therefore used not the permeability of the magnetic
material, in our calculation. You would substitute permeability 
for if you were calculating B inside a material with relative per-
meability for which m = Kmm0.Km,
m0

m

mm0,

= 1 * 10-3 T = 10 G

B L
m0mtotal

2px3
=
14p * 10-7 T # m>A216 A # m22

2p10.1 m23

x2a2
x = 10 cm

Application Magnetic Nanoparticles
for Cancer Therapy
The violet blobs in this microscope image are
cancer cells that have broken away from a
tumor and threaten to spread throughout a
patient’s body. An experimental technique for
fighting these cells uses particles of a mag-
netic material (shown in brown) injected into
the body. These particles are coated with a
chemical that preferentially attaches to cancer
cells. A magnet outside the patient is then
used to “steer” the particles out of the body,
taking the cancer cells with them. (Photo
courtesy of cancer researcher Dr. Kenneth
Scarberry.)

Test Your Understanding of Section 28.8 Which of the following materials
are attracted to a magnet? (i) sodium; (ii) bismuth; (iii) lead; (iv) uranium. ❙
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Magnetic field of a moving charge: The magnetic field 
created by a charge q moving with velocity depends
on the distance r from the source point (the location of q)
to the field point (where is measured). The field is
perpendicular to and to the unit vector directed
from the source point to the field point. The principle of
superposition of magnetic fields states that the total 
field produced by several moving charges is the vector
sum of the fields produced by the individual charges.
(See Example 28.1.)

B
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rN,vS
B
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B
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vS
B
S

(28.2)B
S

�
m0

4p

qvS : rN

r 2

Magnetic field of a current-carrying conductor: The law
of Biot and Savart gives the magnetic field created by
an element of a conductor carrying current I. The field

is perpendicular to both and the unit vector from
the element to the field point. The field created by a
finite current-carrying conductor is the integral of 
over the length of the conductor. (See Example 28.2.)
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Magnetic field of a long, straight, current-carrying
conductor: The magnetic field at a distance r from a
long, straight conductor carrying a current I has a mag-
nitude that is inversely proportional to r. The magnetic
field lines are circles coaxial with the wire, with direc-
tions given by the right-hand rule. (See Examples 28.3
and 28.4.)

B
S (28.9)B =

m0I

2pr

Magnetic force between current-carrying conductors:
Two long, parallel, current-carrying conductors attract if
the currents are in the same direction and repel if the
currents are in opposite directions. The magnetic force
per unit length between the conductors depends on their
currents I and and their separation r. The definition of
the ampere is based on this relationship. (See Example
28.5.)

I¿

(28.11)
F

L
=
m0II¿
2pr

Magnetic field of a current loop: The law of Biot and
Savart allows us to calculate the magnetic field pro-
duced along the axis of a circular conducting loop of
radius a carrying current I. The field depends on the
distance x along the axis from the center of the loop 
to the field point. If there are N loops, the field is multi-
plied by N. At the center of the loop, (See
Example 28.6.)

x = 0.

(28.15)

(circular loop)

(28.17)

(center of N circular loops)
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Ampere’s law: Ampere’s law states that the line integral
of around any closed path equals times the net cur-
rent through the area enclosed by the path. The positive
sense of current is determined by a right-hand rule. (See
Examples 28.7–28.10.)

m0B
S (28.20)A B

S # d l
S

= m0Iencl
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Current Distribution Point in Magnetic Field Magnetic-Field Magnitude

Long, straight conductor Distance r from conductor

Circular loop of radius a On axis of loop

At center of loop

Long cylindrical conductor of radius R Inside conductor, 

Outside conductor, 

Long, closely wound solenoid Inside solenoid, near center
with n turns per unit length, near
its midpoint Outside solenoid

Tightly wound toroidal solenoid Within the space enclosed by the windings,
(toroid) with N turns distance r from symmetry axis

Outside the space enclosed by the windings B L 0

B =
m0NI

2pr

B L 0

B = m0nI

B =
m0I

2pr
r 7 R

B =
m0I

2p

r

R2
r 6 R

(for N loops, multiply these
expressions by N)

B =
m0I

2a

B =
m0Ia2

21x2 + a223>2

B =
m0I

2pr

Magnetic fields due to current distributions: The table lists magnetic fields caused by several current distributions. In each case the con-
ductor is carrying current I.

Magnetic materials: When magnetic materials are present, the magnetization of the material causes
an additional contribution to For paramagnetic and diamagnetic materials, is replaced in
magnetic-field expressions by where is the permeability of the material and is its
relative permeability. The magnetic susceptibility is defined as Magnetic sus-
ceptibilities for paramagnetic materials are small positive quantities; those for diamagnetic materi-
als are small negative quantities. For ferromagnetic materials, is much larger than unity and is
not constant. Some ferromagnetic materials are permanent magnets, retaining their magnetization
even after the external magnetic field is removed. (See Examples 28.11 and 28.12.)

Km

xm = Km - 1.xm

Kmmm = Kmm0,
m0B

S
.

B0

M

A thin dielectric disk with radius a has a total charge distrib-
uted uniformly over its surface. It rotates n times per second about
an axis perpendicular to the surface of the disk and passing
through its center. Find the magnetic field at the center of the disk.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. Think of the rotating disk as a series of concentric rotating

rings. Each ring acts as a circular current loop that produces a
magnetic field at the center of the disk.

2. Use the results of Section 28.5 to find the magnetic field due to
a single ring. Then integrate over all rings to find the total field.

EXECUTE
3. Find the charge on a ring with inner radius r and outer radius

.r + dr

+Q

BRIDGING PROBLEM Magnetic Field of a Charged, Rotating Dielectric Disk

4. How long does it take the charge found in step 3 to make a
complete trip around the rotating ring? Use this to find the cur-
rent of the rotating ring.

5. Use a result from Section 28.5 to determine the magnetic field
that this ring produces at the center of the disk.

6. Integrate your result from step 5 to find the total magnetic field
from all rings with radii from to .

EVALUATE
7. Does your answer have the correct units?
8. Suppose all of the charge were concentrated at the rim of the

disk (at r � a). Would this increase or decrease the field at the
center of the disk?

r = ar = 0



Exercises 949

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q28.1 A topic of current interest in physics research is the search
(thus far unsuccessful) for an isolated magnetic pole, or magnetic
monopole. If such an entity were found, how could it be recog-
nized? What would its properties be?
Q28.2 Streams of charged particles emitted from the sun during
periods of solar activity create a disturbance in the earth’s mag-
netic field. How does this happen?
Q28.3 The text discussed the magnetic field of an infinitely long,
straight conductor carrying a current. Of course, there is no such
thing as an infinitely long anything. How do you decide whether a
particular wire is long enough to be considered infinite?
Q28.4 Two parallel conductors carrying current in the same direc-
tion attract each other. If they are permitted to move toward each
other, the forces of attraction do work. From where does the
energy come? Does this contradict the assertion in Chapter 27 that
magnetic forces on moving charges do no work? Explain.
Q28.5 Pairs of conductors carrying current into or out of the power-
supply components of electronic equipment are sometimes twisted
together to reduce magnetic-field effects. Why does this help?
Q28.6 Suppose you have three long, parallel wires arranged so that
in cross section they are at the corners of an equilateral triangle. Is
there any way to arrange the currents so that all three wires attract
each other? So that all three wires repel each other? Explain.
Q28.7 In deriving the force on one of the long, current-carrying
conductors in Section 28.4, why did we use the magnetic field due
to only one of the conductors? That is, why didn’t we use the total
magnetic field due to both conductors?
Q28.8 Two concentric, coplanar, circular loops of wire of different
diameter carry currents in the same direction. Describe the nature
of the force exerted on the inner loop by the outer loop and on the
outer loop by the inner loop.
Q28.9 A current was sent through a helical coil spring. The spring
contracted, as though it had been compressed. Why?
Q28.10 What are the relative advantages and disadvantages of
Ampere’s law and the law of Biot and Savart for practical calcula-
tions of magnetic fields?
Q28.11 Magnetic field lines never have a beginning or an end. Use
this to explain why it is reasonable for the field of a toroidal sole-
noid to be confined entirely to its interior, while a straight solenoid
must have some field outside.
Q28.12 If the magnitude of the magnetic field a distance R from a
very long, straight, current-carrying wire is B, at what distance
from the wire will the field have magnitude 3B?
Q28.13 Two very long, parallel wires carry equal currents in oppo-
site directions. (a) Is there any place that their magnetic fields com-
pletely cancel? If so, where? If not, why not? (b) How would the
answer to part (a) change if the currents
were in the same direction?
Q28.14 In the circuit shown in Fig. Q28.14,
when switch S is suddenly closed, the wire
L is pulled toward the lower wire carrying
current I. Which (a or b) is the positive ter-
minal of the battery? How do you know?

Q28.15 A metal ring carries a current that causes a magnetic field
at the center of the ring and a field B at point P a distance x from

the center along the axis of the ring. If the radius of the ring is dou-
bled, find the magnetic field at the center. Will the field at point P
change by the same factor? Why?
Q28.16 Why should the permeability of a paramagnetic material
be expected to decrease with increasing temperature?
Q28.17 If a magnet is suspended over a container of liquid air, it
attracts droplets to its poles. The droplets contain only liquid oxygen;
even though nitrogen is the primary constituent of air, it is not
attracted to the magnet. Explain what this tells you about the mag-
netic susceptibilities of oxygen and nitrogen, and explain why a
magnet in ordinary, room-temperature air doesn’t attract molecules
of oxygen gas to its poles.
Q28.18 What features of atomic structure determine whether an
element is diamagnetic or paramagnetic? Explain.
Q28.19 The magnetic susceptibility of paramagnetic materials is
quite strongly temperature dependent, but that of diamagnetic mate-
rials is nearly independent of temperature. Why the difference?
Q28.20 A cylinder of iron is placed so that it is free to rotate
around its axis. Initially the cylinder is at rest, and a magnetic field
is applied to the cylinder so that it is magnetized in a direction par-
allel to its axis. If the direction of the external field is suddenly
reversed, the direction of magnetization will also reverse and the
cylinder will begin rotating around its axis. (This is called the
Einstein–de Haas effect.) Explain why the cylinder begins to
rotate.
Q28.21 The discussion of magnetic forces on current loops in
Section 27.7 commented that no net force is exerted on a com-
plete loop in a uniform magnetic field, only a torque. Yet magnet-
ized materials that contain atomic current loops certainly do
experience net forces in magnetic fields. How is this discrepancy
resolved?
Q28.22 Show that the units and for the Bohr magneton
are equivalent.

EXERCISES
Section 26.1 Magnetic Field of a Moving Charge
28.1 .. A point charge is moving at a constant

in the relative to a reference frame.
At the instant when the point charge is at the origin of this refer-
ence frame, what is the magnetic-field vector it produces at the
following points: (a) (b) 

(c) (d)

28.2 . Fields Within the Atom. In the Bohr model of the
hydrogen atom, the electron moves in a circular orbit of radius

with a speed of If we are viewing
the atom in such a way that the electron’s orbit is in the plane of
the paper with the electron moving clockwise, find the magni-
tude and direction of the electric and magnetic fields that the
electron produces at the location of the nucleus (treated as a
point).

2.2 * 106 m>s.5.3 * 10-11 m

z = +0.500 m?y = -0.500 m,x = 0,
z = +0.500 m;y = 0,x = 0,z = 0;y = -0.500 m,

x = 0,z = 0;y = 0,x = 0.500 m,
B
S

+y-direction,8.00 * 106 m>s
+6.00-mC

J>TA # m2

B0

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

I

L

S
a b

Figure Q28.14
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28.3 . An electron moves at 0.100c as
shown in Fig. E28.3. Find the magnitude
and direction of the magnetic field this
electon produces at the following points,
each 2.00 from the electron: (a) points
A and B; (b) point C; (c) point D.
28.4 .. An alpha particle (charge )
and an electron move in opposite directions
from the same point, each with
the speed of 
(Fig. E28.4). Find the magni-
tude and direction of the total
magnetic field these charges
produce at point P, which is
1.75 nm from each of them.
28.5 . A charge is
moving at a constant speed of in the 
relative to a reference frame. At the instant when the point charge
is at the origin, what is the magnetic-field vector it produces at the
following points: (a) (b) 

(c)
(d)
28.6 . Positive point charges 

and are
moving relative to an observer at
point P, as shown in Fig. E28.6.
The distance d is 0.120 m, 

and
(a) When the two charges

are at the locations shown in the fig-
ure, what are the magnitude and
direction of the net magnetic field
they produce at point P? (b) What are the magnitude and direction
of the electric and magnetic forces that each charge exerts on the
other, and what is the ratio of the magnitude of the electric force to
the magnitude of the magnetic force? (c) If the direction of is
reversed, so both charges are moving in the same direction, what
are the magnitude and direction of the magnetic forces that the two
charges exert on each other?
28.7 .. Figure E28.6 shows two point charges, q and moving
relative to an observer at point P. Suppose that the lower charge is
actually negative, with (a) Find the magnetic field (mag-
nitude and direction) produced by the two charges at point P if (i)

(ii) (iii) (b) Find the direction of the
magnetic force that q exerts on and find the direction of the
magnetic force that exerts on q. (c) If 

what is the ratio of the magnitude of the magnetic force
acting on each charge to that of the Coulomb force acting on each
charge?
28.8 .. An electron and a proton are each
moving at in perpendicular
paths as shown in Fig. E28.8. At the instant
when they are at the positions shown in the
figure, find the magnitude and direction of
(a) the total magnetic field they produce at
the origin; (b) the magnetic field the elec-
tron produces at the location of the proton;
(c) the total electric force and the total
magnetic force that the electron exerts on the proton.
28.9 . A negative charge is located at the
origin and has velocity 

. At this instant what are the magnitude and direction of104 m>s2≥n
104 m>s2ın � 1-4.90 *vS � 17.50 *
10-6 Cq = -3.60 *

845 km>s

105 m>s,
v = v¿ = 3.00 *q¿

q¿,
v¿ = 2v.v¿ = v;v¿ = v>2;

q¿ = -q.

q¿,

vS¿

106 m>s.
v¿ = 9.00 *4.50 * 106 m>s,

v =

q¿ = +3.00 mC+8.00 mC
q =

z = 0.500 m?y = 0,x = 0,
z = 0;y = 0.500 m,x = 0.500 m,z = 0;y = 0.500 m,
x = 0,z = 0;y = 0,x = 0.500 m,

+x-direction6.80 * 105 m>s
-4.80-mC

2.50 * 105 m>s

+2e

mm

the magnetic field produced by this charge at the point 
, , ?

Section 28.2 Magnetic Field of a Current Element
28.10 . A short current element carries a cur-
rent of 8.20 A in the same direction as . Point P is located at

. Use unit vectors to express the
magnetic field at P produced by this current element.
28.11 . A straight wire carries a
10.0-A current (Fig. E28.11).
ABCD is a rectangle with point D
in the middle of a 1.10-mm seg-
ment of the wire and point C in
the wire. Find the magnitude and
direction of the magnetic field
due to this segment at (a) point A; (b) point B; (c) point C.
28.12 . A long, straight wire,
carrying a current of 200 A,
runs through a cubical wooden
box, entering and leaving
through holes in the centers of
opposite faces (Fig. E28.12).
The length of each side of the
box is 20.0 cm. Consider an
element dl of the wire 0.100 cm
long at the center of the box.
Compute the magnitude dB of
the magnetic field produced by this element at the points a, b, c, d,
and e in Fig. E28.12. Points a, c, and d are at the centers of the
faces of the cube; point b is at the midpoint of one edge; and point
e is at a corner. Copy the figure and show the directions and rela-
tive magnitudes of the field vectors. (Note: Assume that the length
dl is small in comparison to the distances from the current element
to the points where the magnetic field is to be calculated.)
28.13 .. A long, straight wire lies along the z-axis and carries a
4.00-A current in the Find the magnetic field (magni-
tude and direction) produced at the following points by a 0.500-mm
segment of the wire centered at the origin: (a) 

(b) (c) 
(d)

28.14 .. Two parallel wires are 
5.00 cm apart and carry currents in
opposite directions, as shown in Fig.
E28.14. Find the magnitude and direc-
tion of the magnetic field at point P
due to two 1.50-mm segments of wire
that are opposite each other and each
8.00 cm from P.
28.15 . A wire carrying a
28.0-A current bends through 
a right angle. Consider two 
2.00-mm segments of wire,
each 3.00 cm from the bend
(Fig. E28.15). Find the magni-
tude and direction of the mag-
netic field these two segments
produce at point P, which is
midway between them.
28.16 .. A square wire loop 10.0 cm on each side carries a clock-
wise current of 15.0 A. Find the magnitude and direction of the
magnetic field at its center due to the four 1.20-mm wire segments
at the midpoint of each side.

z = 2.00 m.y = 0,x = 0,z = 0;
y = 2.00 m,x = 2.00 m,z = 0;y = 2.00 m,x = 0,z = 0;

y = 0,x = 2.00 m,

+z-direction.

rS � 1-0.730 m2ın � 10.390 m2kN
d l
S

d l
S

� 10.500 mm2≥n

z = 0y = -0.300 m0.200 m
x =

60°

Electron
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D
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Section 28.3 Magnetic Field of a Straight 
Current-Carrying Conductor
28.17 . The Magnetic Field from a Lightning Bolt. Lightning
bolts can carry currents up to approximately 20 kA. We can
model such a current as the equivalent of a very long, straight
wire. (a) If you were unfortunate enough to be 5.0 m away from
such a lightning bolt, how large a magnetic field would you
experience? (b) How does this field compare to one you would
experience by being 5.0 cm from a long, straight household cur-
rent of 10 A?
28.18 . A very long, straight horizontal wire carries a current such
that electrons per second pass any given point going
from west to east. What are the magnitude and direction of the mag-
netic field this wire produces at a point 4.00 cm directly above it?
28.19 . BIO Currents in the Heart. The body contains many
small currents caused by the motion of ions in the organs and cells.
Measurements of the magnetic field around the chest due to cur-
rents in the heart give values of about Although the actual
currents are rather complicated, we can gain a rough understanding
of their magnitude if we model them as a long, straight wire. If the
surface of the chest is 5.0 cm from this current, how large is the
current in the heart?
28.20 . BIO Bacteria Navigation. Certain bacteria (such as
Aquaspirillum magnetotacticum) tend to swim toward the earth’s
geographic north pole because they contain tiny particles, called
magnetosomes, that are sensitive to a magnetic field. If a transmis-
sion line carrying 100 A is laid underwater, at what range of dis-
tances would the magnetic field from this line be great enough to
interfere with the migration of these bacteria? (Assume that a field
less than 5 percent of the earth’s field would have little effect on the
bacteria. Take the earth’s field to be and ignore the
effects of the seawater.)
28.21 . (a) How large a current would a very long, straight wire
have to carry so that the magnetic field 2.00 cm from the wire is
equal to 1.00 G (comparable to the earth’s northward-pointing
magnetic field)? (b) If the wire is horizontal with the current run-
ning from east to west, at what locations would the magnetic field
of the wire point in the same direction as the horizontal component
of the earth’s magnetic field? (c) Repeat part (b) except the wire is
vertical with the current going upward.
28.22 . Two long, straight wires, one above the other, are separ-
ated by a distance 2a and are parallel to the x-axis. Let the 
be in the plane of the wires in the direction from the lower wire to
the upper wire. Each wire carries current I in the 
What are the magnitude and direction of the net magnetic field of
the two wires at a point in the plane of the wires (a) midway
between them; (b) at a distance a
above the upper wire; (c) at a dis-
tance a below the lower wire?
28.23 .. A long, straight wire lies
along the y-axis and carries a cur-
rent in the 
(Fig. E28.23). In addition to the
magnetic field due to the current in
the wire, a uniform magnetic field

with magnitude 
is in the What is 
the total field (magnitude and
direction) at the following points
in the xz-plane: (a) 

(b)
(c) z = -0.25 m?x = 0,

z = 0;x = 1.00 m,1.00 m;
z =x = 0,

+ x-direction
1.50 * 10-6 TB

S
0

-y-directionI = 8.00 A

+x-direction.

+y-axis

5.0 * 10-5 T

10 mG.

3.50 * 1018

28.24 .. BIO EMF. Currents in dc transmission lines can be
100 A or more. Some people have expressed concern that the elec-
tromagnetic fields (EMFs) from such lines near their homes could
cause health dangers. For a line with current 150 A and at a height
of 8.0 m above the ground, what magnetic field does the line pro-
duce at ground level? Express your answer in teslas and as a per-
cent of the earth’s magnetic field, which is 0.50 gauss. Does this
seem to be cause for worry?
28.25 . Two long, straight, parallel
wires, 10.0 cm apart, carry equal 4.00-A
currents in the same direction, as shown
in Fig. E28.25. Find the magnitude and
direction of the magnetic field at (a)
point midway between the wires; (b) point 25.0 cm to the
right of (c) point 20.0 cm directly above .
28.26 .. A rectangular loop with dimensions 4.20 cm by 9.50 cm
carries current I. The current in the loop produces a magnetic field
at the center of the loop that has magnitude and
direction away from you as you view the plane of the loop. What
are the magnitude and direction (clockwise or counterclockwise)
of the current in the loop?
28.27 . Four, long, parallel power lines each carry 100-A cur-
rents. A cross-sectional diagram of these lines is a square, 20.0 cm
on each side. For each of the three cases shown in Fig. E28.27, cal-
culate the magnetic field at the center of the square.

28.28 . Four very long, current-carrying wires in the same plane
intersect to form a square 40.0 cm on each side, as shown in Fig.
E28.28. Find the magnitude and direction of the current I so that
the magnetic field at the center of the square is zero.

28.29 .. Two insulated wires perpendicular to each other in the
same plane carry currents as shown in Fig. E28.29. Find the mag-
nitude of the net magnetic field these wires produce at points P and
Q if the 10.0 A-current is (a) to the right or (b) to the left.

Section 28.4 Force Between Parallel Conductors
28.30 . Three parallel wires
each carry current I in the direc-
tions shown in Fig. E28.30. If
the separation between adjacent
wires is d, calculate the magni-
tude and direction of the net
magnetic force per unit length
on each wire.

5.50 * 10-5 T

P1P3,P1;
P2,P1,

x
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y

I

I
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28.31 . Two long, parallel
wires are separated by a dis-
tance of 0.400 m (Fig. E28.31).
The currents and have the
directions shown. (a) Calcu-
late the magnitude of the force
exerted by each wire on a
1.20-m length of the other. Is
the force attractive or repulsive? (b) Each current is doubled, so
that becomes 10.0 A and becomes 4.00 A. Now what is the
magnitude of the force that each wire exerts on a 1.20-m length of
the other?
28.32 . Two long, parallel wires are separated by a distance of
2.50 cm. The force per unit length that each wire exerts on the other is

and the wires repel each other. The current in
one wire is 0.600 A. (a) What is the current in the second wire? 
(b) Are the two currents in the same direction or in opposite direc-
tions?
28.33 . Lamp Cord Wires. The wires in a household lamp
cord are typically 3.0 mm apart center to center and carry equal
currents in opposite directions. If the cord carries current to a 100-W
light bulb connected across a 120-V potential difference, what
force per meter does each wire of the cord exert on the other? Is
the force attractive or repulsive? Is this force large enough so it
should be considered in the design of the lamp cord? (Model the
lamp cord as a very long straight wire.)
28.34 . A long, horizontal
wire AB rests on the surface of
a table and carries a current I.
Horizontal wire CD is verti-
cally above wire AB and is
free to slide up and down on
the two vertical metal guides
C and D (Fig. E28.34). Wire
CD is connected through the sliding contacts to another wire that
also carries a current I, opposite in direction to the current in wire
AB. The mass per unit length of the wire CD is To what equilib-
rium height h will the wire CD rise, assuming that the magnetic
force on it is due entirely to the current in the wire AB?

Section 28.5 Magnetic Field of a Circular Current Loop
28.35 . BIO Currents in the Brain. The magnetic field around
the head has been measured to be approximately 
Although the currents that cause this field are quite complicated,
we can get a rough estimate of their size by modeling them as a
single circular current loop 16 cm (the width of a typical head) in
diameter. What is the current needed to produce such a field at the
center of the loop?
28.36 . Calculate the magni-
tude and direction of the mag-
netic field at point P due to the
current in the semicircular
section of wire shown in 
Fig. E28.36. (Hint: Does the
current in the long, straight
section of the wire produce any
field at P?)
28.37 .. Calculate the magni-
tude of the magnetic field at
point P of Fig. E28.37 in terms
of R, and What does your
expression give when I1 = I2?

I2.I1,

10-8 G.3.0 *

l.

4.00 * 10-5 N>m,

I2I1

I2I1

28.38 .. A closely wound, circular coil with radius 2.40 cm has
800 turns. (a) What must the current in the coil be if the magnetic
field at the center of the coil is 0.0580 T? (b) At what distance x
from the center of the coil, on the axis of the coil, is the magnetic
field half its value at the center?
28.39 .. A closely wound, circular coil with a diameter of 4.00 cm
has 600 turns and carries a current of 0.500 A. What is the magni-
tude of the magnetic field (a) at the center of the coil and (b) at a
point on the axis of the coil 8.00 cm from its center? 
28.40 .. A closely wound coil has a radius of 6.00 cm and carries
a current of 2.50 A. How many turns must it have if, at a point on
the coil axis 6.00 cm from the center of the coil, the magnetic field
is
28.41 .. Two concentric circular loops of wire lie on a tabletop,
one inside the other. The inner wire has a diameter of 20.0 cm and
carries a clockwise current of 12.0 A, as viewed from above, and
the outer wire has a diameter of 30.0 cm. What must be the magni-
tude and direction (as viewed from above) of the current in the
outer wire so that the net magnetic field due to this combination of
wires is zero at the common center of the wires?

Section 28.6 Ampere’s Law
28.42 . Figure E28.42 shows, in
cross section, several conductors
that carry currents through the
plane of the figure. The currents
have the magnitudes 

and and
the directions shown. Four paths,
labeled a through d, are shown.
What is the line integral 
for each path? Each integral in-
volves going around the path in 
the counterclockwise direction. Ex-
plain your answers.
28.43 . A closed curve encircles several conductors. The line
integral around this curve is (a) What
is the net current in the conductors? (b) If you were to integrate
around the curve in the opposite direction, what would be the value
of the line integral? Explain.

Section 28.7 Applications of Ampere’s Law
28.44 .. As a new electrical technician, you are designing a large
solenoid to produce a uniform 0.150-T magnetic field near the cen-
ter of the solenoid. You have enough wire for 4000 circular turns.
This solenoid must be 1.40 m long and 2.80 cm in diameter. What
current will you need to produce the necessary field?
28.45 . Coaxial Cable. A solid
conductor with radius a is sup-
ported by insulating disks on the
axis of a conducting tube with
inner radius b and outer radius c
(Fig. E28.45). The central con-
ductor and tube carry equal cur-
rents I in opposite directions.
The currents are distributed uni-
formly over the cross sections of
each conductor. Derive an expression for the magnitude of the
magnetic field (a) at points outside the central, solid conductor
but inside the tube and (b) at points outside the tube
1r 7 c2.

1a 6 r 6 b2

3.83 * 10-4 T # m.AB
S # d l
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28.46 . Repeat Exercise 28.45 for the case in which the current in
the central, solid conductor is the current in the tube is and
these currents are in the same direction rather than in opposite
directions.
28.47 . A long, straight, cylindrical wire of radius R carries a cur-
rent uniformly distributed over its cross section. At what locations
is the magnetic field produced by this current equal to half of its
largest value? Consider points inside and outside the wire.
28.48 .. A 15.0-cm-long solenoid with radius 0.750 cm is closely
wound with 600 turns of wire. The current in the windings is 8.00 A.
Compute the magnetic field at a point near the center of the
solenoid.
28.49 .. A solenoid is designed to produce a magnetic field of
0.0270 T at its center. It has radius 1.40 cm and length 40.0 cm,
and the wire can carry a maximum current of 12.0 A. (a) What
minimum number of turns per unit length must the solenoid have?
(b) What total length of wire is required?
28.50 . A toroidal solenoid has an inner radius of 12.0 cm and an
outer radius of 15.0 cm. It carries a current of 1.50 A. How many
equally spaced turns must it have so that it will produce a magnetic
field of 3.75 mT at points within the coils 14.0 cm from its center?
28.51 . A magnetic field of 37.2 T has been achieved at the MIT
Francis Bitter National Magnetic Laboratory. Find the current
needed to achieve such a field (a) 2.00 cm from a long, straight
wire; (b) at the center of a circular coil of radius 42.0 cm that has
100 turns; (c) near the center of a solenoid with radius 2.40 cm,
length 32.0 cm, and 40,000 turns.
28.52 . A toroidal solenoid (see Example 28.10) has inner radius

and outer radius The solenoid has
250 turns and carries a current of 8.50 A. What is the magnitude of
the magnetic field at the following distances from the center of the
torus: (a) 12.0 cm; (b) 16.0 cm; (c) 20.0 cm?
28.53 .. A wooden ring whose mean diameter is 14.0 cm is
wound with a closely spaced toroidal winding of 600 turns. Com-
pute the magnitude of the magnetic field at the center of the cross
section of the windings when the current in the windings is 0.650 A.

Section 28.8 Magnetic Materials
28.54 .. A toroidal solenoid with 400 turns of wire and a mean
radius of 6.0 cm carries a current of 0.25 A. The relative perme-
ability of the core is 80. (a) What is the magnetic field in the core?
(b) What part of the magnetic field is due to atomic currents?
28.55 . A toroidal solenoid with 500 turns is wound on a ring
with a mean radius of 2.90 cm. Find the current in the winding that
is required to set up a magnetic field of 0.350 T in the ring (a) if the
ring is made of annealed iron and (b) if the ring is
made of silicon steel 
28.56 . The current in the windings of a toroidal solenoid is 
2.400 A. There are 500 turns, and the mean radius is 25.00 cm. The
toroidal solenoid is filled with a magnetic material. The magnetic
field inside the windings is found to be 1.940 T. Calculate (a) the
relative permeability and (b) the magnetic susceptibility of the
material that fills the toroid.
28.57 . A long solenoid with 60 turns of wire per centimeter car-
ries a current of 0.15 A. The wire that makes up the solenoid is
wrapped around a solid core of silicon steel (The
wire of the solenoid is jacketed with an insulator so that none of
the current flows into the core.) (a) For a point inside the core, find
the magnitudes of (i) the magnetic field due to the solenoid cur-
rent; (ii) the magnetization (iii) the total magnetic field (b) In
a sketch of the solenoid and core, show the directions of the vec-
tors and inside the core.M
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28.58 . When a certain paramagnetic material is placed in an
external magnetic field of 1.5000 T, the field inside the material is
measured to be 1.5023 T. Find (a) the relative permeability and 
(b) the magnetic permeability of this material.

PROBLEMS
28.59 .. A pair of point charges,

and
are moving as shown in 

Fig. P28.59 with speeds 
and

When the charges are at
the locations shown in the figure,
what are the magnitude and
direction of (a) the magnetic field
produced at the origin and (b) the
magnetic force that exerts 
on q?
28.60 .. At a particular instant, charge is
at the point and has velocity .
Charge is at the point and
has velocity . At this instant, what are the
magnitude and direction of the magnetic force that exerts on ?
28.61 ... Two long, parallel transmission lines, 40.0 cm apart,
carry 25.0-A and 75.0-A currents. Find all locations where the net
magnetic field of the two wires is zero if these currents are in (a)
the same direction and (b) the opposite direction.
28.62 . A long, straight wire carries a current of 5.20 A. An
electron is traveling in the vicinity of the wire. At the instant
when the electron is 4.50 cm from the wire and traveling with a
speed of directly toward the wire, what are the
magnitude and direction (relative to the direction of the current)
of the force that the magnetic field of the current exerts on the
electron?
28.63 . CP A long, straight wire carries a 13.0-A current. An
electron is fired parallel to this wire with a velocity of in
the same direction as the current, 2.00 cm from the wire. (a) Find
the magnitude and direction of the electron’s initial acceleration.
(b) What should be the magnitude and direction of a uniform elec-
tric field that will allow the electron to continue to travel parallel to
the wire? (c) Is it necessary to include the effects of gravity? Jus-
tify your answer.
28.64 . Two very long, straight wires carry currents as shown in
Fig. P28.64. For each case, find all locations where the net mag-
netic field is zero.

28.65 .. CP Two identical circular, wire loops 40.0 cm in diame-
ter each carry a current of 3.80 A in the same direction. These
loops are parallel to each other and are 25.0 cm apart. Line is
normal to the plane of the loops and passes through their centers. 
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A proton is fired at perpendicular to line from a
point midway between the centers of the loops. Find the magnitude
of the magnetic force these loops exert on the proton just after it is
fired.
28.66 . A negative point charge is moving in a
reference frame. When the point charge is at the origin, the mag-
netic field it produces at the point is

and its speed is (a) What are the x-, y-,
and z-components of the velocity of the charge? (b) At this
same instant, what is the magnitude of the magnetic field that the
charge produces at the point 
28.67 . Two long, straight, parallel wires are 1.00 m apart (Fig.
P28.67). The wire on the left carries a current of 6.00 A into the
plane of the paper. (a) What must the magnitude and direction of
the current be for the net field at point P to be zero? (b) Then
what are the magnitude and direction of the net field at Q? (c) Then
what is the magnitude of the net field at S?

28.68 .. Figure P28.68 shows 
an end view of two long, parallel
wires perpendicular to the xy-
plane, each carrying a current I but
in opposite directions. (a) Copy
the diagram, and draw vectors to
show the field of each wire and
the net field at point P.
(b) Derive the expression for the
magnitude of at any point on the
x-axis in terms of the x-coordinate
of the point. What is the direction
of ? (c) Graph the magnitude of

at points on the x-axis. (d) At what value of x is the magnitude of
a maximum? (e) What is the magnitude of when 

28.69 . Refer to the situation in Problem 28.68. Suppose that a
third long, straight wire, parallel to the other two, passes through
point P (see Fig. P28.68) and that each wire carries a current

Let and Find the magni-
tude and direction of the force per unit length on the third wire, (a)
if the current in it is directed into the plane of the figure, and (b) if
the current in it is directed out of the plane of the figure.
28.70 .. CP A pair of long, rigid metal rods,
each of length L, lie parallel to each other on
a perfectly smooth table. Their ends are con-
nected by identical, very light conducting
springs of force constant k (Fig. P28.70) and
negligible unstretched length. If a current I
runs through this circuit, the springs will
stretch. At what separation will the rods remain at rest? Assume
that k is large enough so that the separation of the rods will be
much less than L.
28.71 ... CP Two long, parallel wires hang by 4.00-cm-long
cords from a common axis (Fig. P28.71). The wires have a mass
per unit length of and carry the same current in oppo-
site directions. What is the current in each wire if the cords hang at
an angle of with the vertical?6.00°
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28.72 . The long, straight
wire AB shown in Fig. P28.72
carries a current of 14.0 A. The
rectangular loop whose long
edges are parallel to the wire
carries a current of 5.00 A.
Find the magnitude and direc-
tion of the net force exerted on
the loop by the magnetic field
of the wire.
28.73 .. CP A flat, round iron ring 5.00 cm in diameter has a cur-
rent running through it that produces a magnetic field of at
its center. This ring is placed in a uniform external magnetic field
of 0.375 T. What is the maximum torque the external field can
exert on the ring? Show how the ring should be oriented relative to
the field for the torque to have its maximum value.
28.74 . The wire semicircles shown in
Fig. P28.74 have radii a and b. Calculate
the net magnetic field (magnitude and
direction) that the current in the wires
produces at point P.
28.75 . CALC Helmholtz Coils. Figure
28.75 is a sectional view of two circular
coils with radius a, each wound with N
turns of wire carrying a current I, circu-
lating in the same direction in both coils. The coils are separated
by a distance a equal to their radii. In this configuration the coils
are called Helmholtz coils; they produce a very uniform magnetic
field in the region between them. (a) Derive the expression for the
magnitude B of the magnetic field at a point on the axis a distance
x to the right of point P, which is midway between the coils. 
(b) Graph B versus x for to Compare this graph to
one for the magnetic field due to the right-hand coil alone. (c) From
part (a), obtain an expression for the magnitude of the magnetic
field at point P. (d) Calculate the magnitude of the magnetic field
at P if turns, and (e) Calculate

and at Discuss how your results show
that the field is very uniform in the vicinity of P.

P1x = 02.d2B>dx2dB>dx
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28.76 . A circular wire of diameter D lies on a horizontal table and
carries a current I. In Fig. P28.76 point A marks the center of the cir-
cle and point C is on its rim. (a) Find the magnitude and direction of
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the magnetic field at point A. (b) The wire is now unwrapped so it is
straight, centered on point C, and perpendicular to the line AC, but
the same current is maintained in it. Now find the magnetic field at
point A. (c) Which field is greater: the one in part (a) or in part (b)?
By what factor? Why is this result physically reasonable?
28.77 . CALC A long, straight wire with a circular cross section of
radius R carries a current I. Assume that the current density is not
constant across the cross section of the wire, but rather varies as

where is a constant. (a) By the requirement that J inte-
grated over the cross section of the wire gives the total current I,
calculate the constant in terms of I and R. (b) Use Ampere’s law
to calculate the magnetic field for (i) and (ii) 
Express your answers in terms of I.
28.78 . CALC The wire shown
in Fig. P28.78 is infinitely long
and carries a current I. Calculate
the magnitude and direction of
the magnetic field that this cur-
rent produces at point P.
28.79 . A conductor is made in
the form of a hollow cylinder with inner and outer radii a and b,
respectively. It carries a current I uniformly distributed over its
cross section. Derive expressions for the magnitude of the mag-
netic field in the regions (a) (b) (c) 
28.80 . A circular loop has
radius R and carries current 
in a clockwise direction (Fig.
P28.80). The center of the
loop is a distance D above a
long, straight wire. What are
the magnitude and direction
of the current in the wire if
the magnetic field at the cen-
ter of the loop is zero?
28.81 . CALC A long, straight, solid cylinder, oriented with its
axis in the z-direction, carries a current whose current density is 
The current density, although symmetric about the cylinder axis, is
not constant but varies according to the relationship

where a is the radius of the cylinder, r is the radial distance from
the cylinder axis, and is a constant having units of amperes. 
(a) Show that is the total current passing through the entire cross
section of the wire. (b) Using Ampere’s law, derive an expression
for the magnitude of the magnetic field in the region 
(c) Obtain an expression for the current I contained in a circular
cross section of radius and centered at the cylinder axis. 
(d) Using Ampere’s law, derive an expression for the magnitude of
the magnetic field in the region How do your results in
parts (b) and (d) compare for 
28.82 . A long, straight, solid cylinder, oriented with its axis in
the z-direction, carries a current whose current density is The
current density, although symmetric about the cylinder axis, is not
constant and varies according to the relationship

where the radius of the cylinder is r is the radial dis-
tance from the cylinder axis, b is a constant equal to and

is a constant equal to 2.50 cm. (a) Let be the total current passingI0d
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through the entire cross section of the wire. Obtain an expression
for in terms of b, and a. Evaluate your expression to obtain a
numerical value for (b) Using Ampere’s law, derive an expres-
sion for the magnetic field in the region Express your
answer in terms of rather than b. (c) Obtain an expression for the
current I contained in a circular cross section of radius and
centered at the cylinder axis. Express your answer in terms of 
rather than b. (d) Using Ampere’s law, derive an expression for the
magnetic field in the region (e) Evaluate the magnitude of
the magnetic field at and 
28.83 . An Infinite Current
Sheet. Long, straight conduc-
tors with square cross sections
and each carrying current I are
laid side by side to form an infi-
nite current sheet (Fig. P28.83).
The conductors lie in the 
xy-plane, are parallel to the 
y-axis, and carry current in the

There are n conductors per unit length measured
along the x-axis. (a) What are the magnitude and direction of the
magnetic field a distance a below the current sheet? (b) What are
the magnitude and direction of the magnetic field a distance a
above the current sheet?
28.84 . Long, straight conductors
with square cross section, each car-
rying current I, are laid side by side
to form an infinite current sheet
with current directed out of the
plane of the page (Fig. P28.84). A
second infinite current sheet is a
distance d below the first and is
parallel to it. The second sheet car-
ries current into the plane of the page. Each sheet has n conductors
per unit length. (Refer to Problem 28.83.) Calculate the magnitude
and direction of the net magnetic field at (a) point P (above the
upper sheet); (b) point R (midway between the two sheets); (c) point
S (below the lower sheet).
28.85 . CP A piece of iron has magnetization 

Find the average magnetic dipole moment per atom in
this piece of iron. Express your answer both in and in Bohr
magnetons. The density of iron is given in Table 14.1, and the
atomic mass of iron (in grams per mole) is given in Appendix D.
The chemical symbol for iron is Fe.

CHALLENGE PROBLEMS
28.86 ... A wide, long, insulating belt has a uniform positive
charge per unit area on its upper surface. Rollers at each end
move the belt to the right at a constant speed Calculate the mag-
nitude and direction of the magnetic field produced by the moving
belt at a point just above its surface. (Hint: At points near the sur-
face and far from its edges or ends, the moving belt can be consid-
ered to be an infinite current sheet like that in Problem 28.83.)
28.87 ... CP Two long, straight conducting wires with linear
mass density are suspended from cords so that they are each hor-
izontal, parallel to each other, and a distance d apart. The back
ends of the wires are connected to each other by a slack, low-
resistance connecting wire. A charged capacitor (capacitance C) is
now added to the system; the positive plate of the capacitor (initial
charge ) is connected to the front end of one of the wires, and
the negative plate of the capacitor (initial charge ) is con-
nected to the front end of the other wire (Fig. P28.87). Both of
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these connections are also made
by slack, low-resistance wires.
When the connection is made,
the wires are pushed aside by
the repulsive force between the
wires, and each wire has an ini-
tial horizontal velocity of mag-
nitude Assume that the time
constant for the capacitor to dis-
charge is negligible compared to
the time it takes for any appre-
ciable displacement in the position of the wires to occur. (a) Show
that the initial speed of either wire is given by

v0 =
m0Q 2

0

4plRCd

v0

v0.

where R is the total resistance of the circuit. (b) To what height h
will each wire rise as a result of the circuit connection?
28.88 ... CALC A wire in
the shape of a semicircle with
radius a is oriented in the 
yz-plane with its center of
curvature at the origin (Fig.
P28.88). If the current in the
wire is I, calculate the 
magnetic-field components
produced at point P, a distance
x out along the x-axis. (Note: Do not forget the contribution from the
straight wire at the bottom of the semicircle that runs from 
to You may use the fact that the fields of the two antiparal-
lel currents at cancel, but you must explain why they cancel.)z 7 a

z = +a.
z = -a
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Chapter Opening Question ?
There would be no change in the magnetic field strength. From
Example 28.9 (Section 28.7), the field inside a solenoid has magni-
tude where n is the number of turns of wire per unit
length. Joining two solenoids end to end doubles both the number
of turns and the length, so the number of turns per unit length is
unchanged.

Test Your Understanding Questions
28.1 Answers: (a) (i), (b) (ii) The situation is the same as shown in
Fig. 28.2 except that the upper proton has velocity rather than

The magnetic field due to the lower proton is the same as
shown in Fig. 28.2, but the direction of the magnetic force

on the upper proton is reversed. Hence the magnetic
force is attractive. Since the speed is small compared to c, the
magnetic force is much smaller in magnitude than the repulsive
electric force and the net force is still repulsive.
28.2 Answer: (i) and (iii) (tie), (iv), (ii) From Eq. (28.5), the mag-
nitude of the field dB due to a current element of length dl carrying
current I is In this expression r is the
distance from the element to the field point, and is the angle
between the direction of the current and a vector from the current
element to the field point. All four points are the same distance

from the current element, so the value of dB is proportional
to the value of For the four points the angle is (i) 
(ii) (iii) and (iv) so the values of 
are (i) 1, (ii) 0, (iii) 1, and (iv) 
28.3 Answer: A This orientation will cause current to flow clock-
wise around the circuit. Hence current will flow south through the
wire that lies under the compass. From the right-hand rule for the
magnetic field produced by a long, straight, current-carrying con-
ductor, this will produce a magnetic field that points to the left at
the position of the compass (which lies atop the wire). The combi-
nation of the northward magnetic field of the earth and the west-
ward field produced by the current gives a net magnetic field to the
northwest, so the compass needle will swing counterclockwise to
align with this field.
28.4 Answers: (a) (i), (b) (iii), (c) (ii), (d) (iii) Current flows in the
same direction in adjacent turns of the coil, so the magnetic forces
between these turns are attractive. Current flows in opposite direc-
tions on opposite sides of the same turn, so the magnetic forces
between these sides are repulsive. Thus the magnetic forces on the
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solenoid turns squeeze them together in the direction along its axis
but push them apart radially. The electric forces are zero because
the wire is electrically neutral, with as much positive charge as
there is negative charge.
28.5 Answers: (a) (ii), (b) (v) The vector is in the direction of

For a segment on the negative points
in the negative and Hence

which has a positive a negative
, and zero For a segment on the nega-

tive points in the positive and
Hence which has

a positive zero and a negative

28.6 Answer: (ii) Imagine carrying out the integral 
along an integration path that goes counterclockwise around the
red magnetic field line. At each point along the path the magnetic
field and the infinitesimal segment are both tangent to the
path, so is positive at each point and the integral is
likewise positive. It follows from Ampere’s law
and the right-hand rule that the integration path encloses a current
directed out of the plane of the page. There are no currents in the
empty space outside the magnet, so there must be currents inside
the magnet (see Section 28.8).
28.7 Answer: (iii) By symmetry, any field outside the cable
must circulate around the cable, with circular field lines like those
surrounding the solid cylindrical conductor in Fig. 28.20. Choose
an integration path like the one shown in Fig. 28.20 with radius

so that the path completely encloses the cable. As in Exam-
ple 28.8, the integral for this path has magnitude

From Ampere’s law this is equal to The net
enclosed current is zero because it includes two currents of
equal magnitude but opposite direction: one in the central wire and
one in the hollow cylinder. Hence and so for
any value of r outside the cable. (The field is nonzero inside the
cable; see Exercise 28.45.)
28.8 Answer: (i), (iv) Sodium and uranium are paramagnetic
materials and hence are attracted to a magnet, while bismuth and
lead are diamagnetic materials that are repelled by a magnet. (See
Table 28.1.)
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29
LEARNING GOALS

By studying this chapter, you will

learn:

• The experimental evidence that a

changing magnetic field induces an

emf.

• How Faraday’s law relates the

induced emf in a loop to the change

in magnetic flux through the loop.

• How to determine the direction of an

induced emf.

• How to calculate the emf induced in

a conductor moving through a mag-

netic field.

• How a changing magnetic flux gen-

erates an electric field that is very

different from that produced by an

arrangement of charges.

• The four fundamental equations that

completely describe both electricity

and magnetism.

ELECTROMAGNETIC
INDUCTION

A lmost every modern device or machine, from a computer to a washing
machine to a power drill, has electric circuits at its heart. We learned in
Chapter 25 that an electromotive force (emf) is required for a current to

flow in a circuit; in Chapters 25 and 26 we almost always took the source of emf
to be a battery. But for the vast majority of electric devices that are used in indus-
try and in the home (including any device that you plug into a wall socket), the
source of emf is not a battery but an electric generating station. Such a station
produces electric energy by converting other forms of energy: gravitational poten-
tial energy at a hydroelectric plant, chemical energy in a coal- or oil-fired plant,
nuclear energy at a nuclear plant. But how is this energy conversion done?

The answer is a phenomenon known as electromagnetic induction: If the mag-
netic flux through a circuit changes, an emf and a current are induced in the cir-
cuit. In a power-generating station, magnets move relative to coils of wire to
produce a changing magnetic flux in the coils and hence an emf. Other key com-
ponents of electric power systems, such as transformers, also depend on magnet-
ically induced emfs.

The central principle of electromagnetic induction, and the keystone of this
chapter, is Faraday’s law. This law relates induced emf to changing magnetic flux
in any loop, including a closed circuit. We also discuss Lenz’s law, which helps
us to predict the directions of induced emfs and currents. These principles will
allow us to understand electrical energy-conversion devices such as motors, gen-
erators, and transformers.

Electromagnetic induction tells us that a time-varying magnetic field can act
as a source of electric field. We will also see how a time-varying electric field can
act as a source of magnetic field. These remarkable results form part of a neat
package of formulas, called Maxwell’s equations, that describe the behavior of
electric and magnetic fields in any situation. Maxwell’s equations pave the way
toward an understanding of electromagnetic waves, the topic of Chapter 32.

? When a credit card is “swiped” through a card reader, the information coded
in a magnetic pattern on the back of the card is transmitted to the card-
holder’s bank. Why is it necessary to swipe the card rather than holding it
motionless in the card reader’s slot?



29.1 Induction Experiments
During the 1830s, several pioneering experiments with magnetically induced emf
were carried out in England by Michael Faraday and in the United States by
Joseph Henry (1797–1878), later the first director of the Smithsonian Institution.
Figure 29.1 shows several examples. In Fig. 29.1a, a coil of wire is connected to
a galvanometer. When the nearby magnet is stationary, the meter shows no cur-
rent. This isn’t surprising; there is no source of emf in the circuit. But when we
move the magnet either toward or away from the coil, the meter shows current in
the circuit, but only while the magnet is moving (Fig. 29.1b). If we keep the mag-
net stationary and move the coil, we again detect a current during the motion. We
call this an induced current, and the corresponding emf required to cause this
current is called an induced emf.

In Fig. 29.1c we replace the magnet with a second coil connected to a battery.
When the second coil is stationary, there is no current in the first coil. However,
when we move the second coil toward or away from the first or move the first
toward or away from the second, there is current in the first coil, but again only
while one coil is moving relative to the other.

Finally, using the two-coil setup in Fig. 29.1d, we keep both coils stationary
and vary the current in the second coil, either by opening and closing the switch
or by changing the resistance of the second coil with the switch closed (perhaps
by changing the second coil’s temperature). We find that as we open or close the
switch, there is a momentary current pulse in the first circuit. When we vary the
resistance (and thus the current) in the second coil, there is an induced current in
the first circuit, but only while the current in the second circuit is changing.

To explore further the common elements in these observations, let’s consider a
more detailed series of experiments (Fig. 29.2). We connect a coil of wire to a
galvanometer and then place the coil between the poles of an electromagnet
whose magnetic field we can vary. Here’s what we observe:

1. When there is no current in the electromagnet, so that the gal-
vanometer shows no current.

2. When the electromagnet is turned on, there is a momentary current
through the meter as increases.

3. When levels off at a steady value, the current drops to zero, no matter
how large is.

4. With the coil in a horizontal plane, we squeeze it so as to decrease the
cross-sectional area of the coil. The meter detects current only during the
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B
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B
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B
S

� 0,
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0 0 0

0

Meter shows
induced current.

Meter
shows zero
current.

(a) A stationary magnet does
NOT induce a current in a coil.

(b) Moving the magnet
toward or away from the coil

(c) Moving a second, current-carrying
coil toward or away from the coil

All these actions DO induce a current in the coil. What do they have in common?*

*They cause the magnetic field through the coil to change.

(d) Varying the current in the second
coil (by closing or opening a switch)

S

N

S

N

29.1 Demonstrating the phenomenon of induced current.

ActivPhysics 13.9: Electromagnetic Induction
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deformation, not before or after. When we increase the area to return the
coil to its original shape, there is current in the opposite direction, but
only while the area of the coil is changing.

5. If we rotate the coil a few degrees about a horizontal axis, the meter
detects current during the rotation, in the same direction as when we
decreased the area. When we rotate the coil back, there is a current in the
opposite direction during this rotation.

6. If we jerk the coil out of the magnetic field, there is a current during the
motion, in the same direction as when we decreased the area.

7. If we decrease the number of turns in the coil by unwinding one or more
turns, there is a current during the unwinding, in the same direction as
when we decreased the area. If we wind more turns onto the coil, there is
a current in the opposite direction during the winding.

8. When the magnet is turned off, there is a momentary current in the direc-
tion opposite to the current when it was turned on.

9. The faster we carry out any of these changes, the greater the current.
10. If all these experiments are repeated with a coil that has the same shape

but different material and different resistance, the current in each case is
inversely proportional to the total circuit resistance. This shows that the
induced emfs that are causing the current do not depend on the material of
the coil but only on its shape and the magnetic field.

The common element in all these experiments is changing magnetic flux
through the coil connected to the galvanometer. In each case the flux

changes either because the magnetic field changes with time or because the coil
is moving through a nonuniform magnetic field. Faraday’s law of induction, the
subject of the next section, states that in all of these situations the induced emf is
proportional to the rate of change of magnetic flux through the coil. The
direction of the induced emf depends on whether the flux is increasing or
decreasing. If the flux is constant, there is no induced emf.

Induced emfs are not mere laboratory curiosities but have a tremendous num-
ber of practical applications. If you are reading these words indoors, you are
making use of induced emfs right now! At the power plant that supplies your
neighborhood, an electric generator produces an emf by varying the magnetic
flux through coils of wire. (In the next section we’ll see in detail how this is
done.) This emf supplies the voltage between the terminals of the wall sockets in
your home, and this voltage supplies the power to your reading lamp. Indeed, any
appliance that you plug into a wall socket makes use of induced emfs.

Magnetically induced emfs, just like the emfs discussed in Section 25.4, are
the result of nonelectrostatic forces. We have to distinguish carefully between the
electrostatic electric fields produced by charges (according to Coulomb’s law)
and the nonelectrostatic electric fields produced by changing magnetic fields.
We’ll return to this distinction later in this chapter and the next.

29.2 Faraday’s Law
The common element in all induction effects is changing magnetic flux through
a circuit. Before stating the simple physical law that summarizes all of the
kinds of experiments described in Section 29.1, let’s first review the concept of
magnetic flux (which we introduced in Section 27.3). For an infinitesimal-
area element in a magnetic field (Fig. 29.3), the magnetic flux 
through the area is

where is the component of perpendicular to the surface of the area element
and is the angle between and (As in Chapter 27, be careful to distinguishdA
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29.2 A coil in a magnetic field. When the
field is constant and the shape, location,

and orientation of the coil do not change, no
current is induced in the coil. A current is
induced when any of these factors change.

B
S

Magnetic flux through element of area dA:
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29.3 Calculating the magnetic flux
through an area element.
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between two quantities named “phi,” and The total magnetic flux
through a finite area is the integral of this expression over the area:

(29.1)

If is uniform over a flat area then

(29.2)

Figure 29.4 reviews the rules for using Eq. (29.2).

CAUTION Choosing the direction of or In Eqs. (29.1) and (29.2) we have to be
careful to define the direction of the vector area or unambiguously. There are always
two directions perpendicular to any given area, and the sign of the magnetic flux through
the area depends on which one we choose to be positive. For example, in Fig. 29.3 we
chose to point upward so is less than and is positive. We could have cho-
sen instead to have point downward, in which case would have been greater than 
and would have been negative. Either choice is equally good, but once we make a
choice we must stick with it. ❙

Faraday’s law of induction states:

The induced emf in a closed loop equals the negative of the time rate of change of
magnetic flux through the loop.

In symbols, Faraday’s law is

(29.3)

To understand the negative sign, we have to introduce a sign convention for the
induced emf But first let’s look at a simple example of this law in action.E.

E = -
d£B

dt
  1Faraday’s law of induction)

B
S # dA
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Surface is face-on to magnetic field:
• B and A are parallel (the angle between B
   and A is f 5 0).
•  The magnetic flux FB 5 B • A 5 BA.

S S S
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f 5 90°
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Surface is edge-on to magnetic field:
• B and A are perpendicular (the angle
   between B and A is f 5 90°).
•  The magnetic flux 
   FB 5 B • A 5 BA cos 90° 5 0.
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Surface is tilted from a face-on orientation
by an angle f:
•  The angle between B and A is f.
•  The magnetic flux FB 5 B • A 5 BA cos f.

S S

S S
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f 5 0
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29.4 Calculating the flux of a uniform magnetic field through a flat area. (Compare to Fig. 22.6, which shows the rules for calculating
the flux of a uniform electric field.)

Example 29.1 Emf and current induced in a loop

The magnetic field between the poles of the electromagnet in 
Fig. 29.5 is uniform at any time, but its magnitude is increasing
at the rate of The area of the conducting loop in the
field is and the total circuit resistance, including the120 cm2,

0.020 T>s.

meter, is (a) Find the induced emf and the induced current
in the circuit. (b) If the loop is replaced by one made of an insula-
tor, what effect does this have on the induced emf and induced
current?

5.0 Æ.
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Direction of Induced emf
We can find the direction of an induced emf or current by using Eq. (29.3)
together with some simple sign rules. Here’s the procedure:

1. Define a positive direction for the vector area 
2. From the directions of and the magnetic field determine the sign of

the magnetic flux and its rate of change Figure 29.6 shows
several examples.

3. Determine the sign of the induced emf or current. If the flux is increasing, so
is positive, then the induced emf or current is negative; if the flux is

decreasing, is negative and the induced emf or current is positive.
4. Finally, determine the direction of the induced emf or current using your

right hand. Curl the fingers of your right hand around the vector, with
your right thumb in the direction of If the induced emf or current in the
circuit is positive, it is in the same direction as your curled fingers; if the
induced emf or current is negative, it is in the opposite direction.

In Example 29.1, in which is upward, a positive would be directed coun-
terclockwise around the loop, as seen from above. Both and are upward in
this example, so is positive; the magnitude B is increasing, so is pos-
itive. Hence by Eq. (29.3), in Example 29.1 is negative. Its actual direction is
thus clockwise around the loop, as seen from above.

If the loop in Fig. 29.5 is a conductor, an induced current results from this
emf; this current is also clockwise, as Fig. 29.5 shows. This induced current pro-
duces an additional magnetic field through the loop, and the right-hand rule
described in Section 28.6 shows that this field is opposite in direction to the
increasing field produced by the electromagnet. This is an example of a general
rule called Lenz’s law, which says that any induction effect tends to oppose the
change that caused it; in this case the change is the increase in the flux of the
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SOLUTION

IDENTIFY and SET UP: The magnetic flux through the loop
changes as the magnetic field changes. Hence there will be an
induced emf and an induced current I in the loop. We calculate

using Eq. (29.2), then find using Faraday’s law. Finally, we
calculate I using where R is the total resistance of the cir-
cuit that includes the loop.

EXECUTE: (a) The area vector for the loop is perpendicular to the
plane of the loop; we take to be vertically upward. Then and 
are parallel, and because is uniform the magnetic flux through
the loop is The area 
is constant, so the rate of change of magnetic flux is

A = 0.012 m2£B = B
S # AS = BA cos0 = BA.

B
S

B
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A
S

A
S

A
S

E = IR,
E£B

E

£B

This, apart from a sign that we haven’t discussed yet, is the
induced emf . The corresponding induced current is

(b) By changing to an insulating loop, we’ve made the resist-
ance of the loop very high. Faraday’s law, Eq. (29.3), does not
involve the resistance of the circuit in any way, so the induced emf
does not change. But the current will be smaller, as given by the
equation . If the loop is made of a perfect insulator with
infinite resistance, the induced current is zero. This situation is
analogous to an isolated battery whose terminals aren’t connected
to anything: An emf is present, but no current flows.

EVALUATE: Let’s verify unit consistency in this calculation. One
way to do this is to note that the magnetic-force relationship

implies that the units of are the units of force
divided by the units of (charge times velocity): 

The units of magnetic flux are then 
and the rate of change of magnetic flux is

Thus the unit of is the volt, as
required by Eq. (29.3). Also recall that the unit of magnetic flux is
the weber (Wb): so 1 V = 1 Wb>s.1 T # m2 = 1 Wb,

d£B>dt1 N # m>C = 1 J>C = 1 V.
1 N # s # m>C,

11 T211 m22 =11 C # m>s2.
1 T = 11 N2>

B
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S

� qvS : B
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I = E>R

I =
E

R
=

2.4 * 10-4 V

5.0 Æ
= 4.8 * 10-5 A = 0.048 mA

E

= 2.4 * 10-4 V = 0.24 mV

d£B

dt
=

d1BA2

dt
=

dB

dt
A = 10.020 T>s210.012 m22

A 5 120 cm2 5 0.012 m2

Total resistance in circuit
and meter 5 5.0 V

I

S
A

S

b

a

N

dB/dt 5 0.020 T/s

0

29.5 A stationary conducting loop in an increasing magnetic field.

Application Exploring the Brain 
with Induced emfs
Transcranial magnetic stimulation (TMS) is a
technique for studying the function of various
parts of the brain. A coil held to the subject’s
head carries a varying electric current, and so
produces a varying magnetic field. This field
causes an induced emf, and that triggers elec-
tric activity in the region of the brain under-
neath the coil. By observing how the TMS
subject responds (for instance, which muscles
move as a result of stimulating a certain part
of the brain), a physician can test for various
neurological conditions.



electromagnet’s field through the loop. (We’ll study this law in detail in the next
section.)

You should check out the signs of the induced emfs and currents for the list of
experiments in Section 29.1. For example, when the loop in Fig. 29.2 is in a con-
stant field and we tilt it or squeeze it to decrease the flux through it, the induced
emf and current are counterclockwise, as seen from above.

CAUTION Induced emfs are caused by changes in flux Since magnetic flux plays a cen-
tral role in Faraday’s law, it’s tempting to think that flux is the cause of induced emf and
that an induced emf will appear in a circuit whenever there is a magnetic field in the region
bordered by the circuit. But Eq. (29.3) shows that only a change in flux through a circuit,
not flux itself, can induce an emf in a circuit. If the flux through a circuit has a constant
value, whether positive, negative, or zero, there is no induced emf. ❙

If we have a coil with N identical turns, and if the flux varies at the same rate
through each turn, the total rate of change through all the turns is N times as large
as for a single turn. If is the flux through each turn, the total emf in a coil with
N turns is

(29.4)

As we discussed in this chapter’s introduction, induced emfs play an essential
role in the generation of electric power for commercial use. Several of the fol-
lowing examples explore different methods of producing emfs by the motion of a
conductor relative to a magnetic field, giving rise to a changing flux through a
circuit.

E = -N
d£B

dt

£B
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B
(increasing)

A
f

• Flux is positive (FB � 0) ...
• ... and becoming more positive (dFB/dt � 0).
• Induced emf is negative (E � 0).

E

B
(decreasing)

A

f

• Flux is positive (FB � 0) ...
• ... and becoming less positive (dFB/dt � 0).
• Induced emf is positive (E � 0).

E

B
(increasing)

A

f

• Flux is negative (FB � 0) ...
• ... and becoming more negative (dFB/dt � 0).
• Induced emf is positive (E � 0).

E

B
(decreasing)

A

f

• Flux is negative (FB � 0) ...
• ... and becoming less negative (dFB/dt � 0).
• Induced emf is negative (E � 0).

E

(d)
S

S

S S
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SS

(c)

(b)
(a)

29.6 The magnetic flux is becoming (a) more positive, (b) less positive, (c)
more negative, and (d) less negative. Therefore is increasing in (a) and (d) and
decreasing in (b) and (c). In (a) and (d) the emfs are negative (they are opposite to
the direction of the curled fingers of your right hand when your right thumb points along

In (b) and (c) the emfs are positive (in the same direction as the curled fingers).A
S

).

£B

PhET: Faraday’s Electromagnetic Lab
PhET: Faraday’s Law
PhET: Generator
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Problem-Solving Strategy 29.1 Faraday’s Law

IDENTIFY the relevant concepts: Faraday’s law applies when there
is a changing magnetic flux. To use the law, identify an area
through which there is a flux of magnetic field. This will usually be
the area enclosed by a loop made of a conducting material (though
not always—see part (b) of Example 29.1). Identify the target
variables.

SET UP the problem using the following steps:
1. Faraday’s law relates the induced emf to the rate of change of

magnetic flux. To calculate this rate of change, you first have to
understand what is making the flux change. Is the conductor
moving? Is it changing orientation? Is the magnetic field
changing? Remember that it’s not the flux itself that counts, but
its rate of change.

2. The area vector (or ) must be perpendicular to the plane of
the area. You always have two choices of its direction; for
example, if the area is in a horizontal plane, could point up orA

S

dA
S

A
S

down. Choose a direction and use it consistently throughout the
problem.

EXECUTE the solution as follows:
1. Calculate the magnetic flux using Eq. (29.2) if is uniform

over the area of the loop or Eq. (29.1) if it isn’t uniform.
Remember the direction you chose for the area vector.

2. Calculate the induced emf using Eq. (29.3) or (if your conduc-
tor has N turns in a coil) Eq. (29.4). Apply the sign rule
(described just after Example 29.1) to determine the positive
direction of emf.

3. If the circuit resistance is known, you can calculate the magni-
tude of the induced current I using

EVALUATE your answer: Check your results for the proper units,
and double-check that you have properly implemented the sign
rules for magnetic flux and induced emf.

E = IR.

B
S

Example 29.2 Magnitude and direction of an induced emf

A 500-loop circular wire coil with radius 4.00 cm is placed
between the poles of a large electromagnet. The magnetic field is
uniform and makes an angle of with the plane of the coil; it
decreases at 0.200 What are the magnitude and direction of
the induced emf?

SOLUTION

IDENTIFY and SET UP: Our target variable is the emf induced by a
varying magnetic flux through the coil. The flux varies because the
magnetic field decreases in amplitude. We choose the area vector

to be in the direction shown in Fig. 29.7. With this choice, the
geometry is similar to that of Fig. 29.6b. That figure will help us
determine the direction of the induced emf.

A
S

T>s.
60°

EXECUTE: The magnetic field is uniform over the loop, so we can
calculate the flux using Eq. (29.2): where 

In this expression, the only quantity that changes with time is
the magnitude B of the field, so .

CAUTION Remember how is defined You may have been
tempted to say that in this problem. If so, remember that

is the angle between and not the angle between and the
plane of the loop. ❙

From Eq. (29.4), the induced emf in the coil of turns is

The positive answer means that when you point your right thumb in
the direction of the area vector ( below the magnetic field in
Fig. 29.7), the positive direction for is in the direction of the curled
fingers of your right hand. If you viewed the coil from the left in Fig.
29.7 and looked in the direction of the emf would be clockwise.

EVALUATE: If the ends of the wire are connected, the direction of
current in the coil is in the same direction as the emf—that is,
clockwise as seen from the left side of the coil. A clockwise current
increases the magnetic flux through the coil, and therefore tends to
oppose the decrease in total flux. This is an example of Lenz’s law,
which we’ll discuss in Section 29.3.
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E = -N
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f = 60°
f

d£B>dt = 1dB>dt2Acosf
30°.

f =£B = BA cosf,

29.7 Our sketch for this problem.

Example 29.3 Generator I: A simple alternator

Figure 29.8a shows a simple alternator, a device that generates an
emf. A rectangular loop is rotated with constant angular speed 
about the axis shown. The magnetic field is uniform and con-
stant. At time Determine the induced emf.f = 0.t = 0,

B
S

v
SOLUTION

IDENTIFY and SET UP: The magnetic field and the area A of the
loop are both constant, but the flux through the loop varies because
the loop rotates and so the angle between and the area vector

Continued
B
S

f

B
S
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changes (Fig. 29.8a). Because the angular speed is constant and
at , the angle as a function of time is given by

EXECUTE: The magnetic field is uniform over the loop, so the mag-
netic flux is Hence, by Faraday’s
law [Eq. (29.3)] the induced emf is

EVALUATE: The induced emf varies sinusoidally with time (Fig.
29.8b). When the plane of the loop is perpendicular to 
or reaches its maximum and minimum values. At these
times, its instantaneous rate of change is zero and is zero. Con-
versely, reaches its maximum and minimum values when the
plane of the loop is parallel to or and is
changing most rapidly. We note that the induced emf does not
depend on the shape of the loop, but only on its area.

We can use the alternator as a source of emf in an external cir-
cuit by using two slip rings that rotate with the loop, as shown in
Fig. 29.8a. The rings slide against stationary contacts called
brushes, which are connected to the output terminals a and b.
Since the emf varies sinusoidally, the current that results in the cir-
cuit is an alternating current that also varies sinusoidally in magni-
tude and direction. The amplitude of the emf can be increased by
increasing the rotation speed, the field magnitude, or the loop area
or by using N loops instead of one, as in Eq. (29.4).

£B270°21f = 90°B
S

E

E

£B180°2,
1f = 0B

S
E

E = -
d£B

dt
= -

d

dt
1BA cosvt2 = vBA sinvt

BA cosvt.BA cosf =£B =

f = vt.
t = 0f = 0

A
S

Alternators are used in automobiles to generate the currents in
the ignition, the lights, and the entertainment system. The arrange-
ment is a little different than in this example; rather than having a
rotating loop in a magnetic field, the loop stays fixed and an elec-
tromagnet rotates. (The rotation is provided by a mechanical con-
nection between the alternator and the engine.) But the result is the
same; the flux through the loop varies sinusoidally, producing a
sinusoidally varying emf. Larger alternators of this same type are
used in electric power plants (Fig. 29.9).

b
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(a)

f
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(b)

E, FB

FB

BLoop (seen
end-on)

Brush

Slip
rings

Flux decreasing
most rapidly,
largest positive emf.

Flux at its most
negative value,
emf is zero.

Flux increasing
most rapidly,
largest negative emf.

Flux at its most
positive value,
emf is zero.

S

S

S

Brush

E 5 2dFB/dt

29.8 (a) Schematic diagram of an alternator. A conducting loop rotates in a magnetic field, producing an emf. Connections
from each end of the loop to the external circuit are made by means of that end’s slip ring. The system is shown at the time when
the angle (b) Graph of the flux through the loop and the resulting emf between terminals a and b, along with the
corresponding positions of the loop during one complete rotation.

f = vt = 90°.

29.9 A commercial alternator uses many loops of wire wound
around a barrel-like structure called an armature. The armature and
wire remain stationary while electromagnets rotate on a shaft (not
shown) through the center of the armature. The resulting induced
emf is far larger than would be possible with a single loop of wire.

Example 29.4 Generator II: A DC generator and back emf in a motor

The alternator in Example 29.3 produces a sinusoidally varying
emf and hence an alternating current. Figure 29.10a shows a
direct-current (dc) generator that produces an emf that always has
the same sign. The arrangement of split rings, called a commutator,
reverses the connections to the external circuit at angular positions
at which the emf reverses. Figure 29.10b shows the resulting emf.
Commercial dc generators have a large number of coils and com-
mutator segments, smoothing out the bumps in the emf so that the
terminal voltage is not only one-directional but also practically
constant. This brush-and-commutator arrangement is the same as
that in the direct-current motor discussed in Section 27.8. The

motor’s back emf is just the emf induced by the changing magnetic
flux through its rotating coil. Consider a motor with a square, 500-
turn coil 10.0 cm on a side. If the magnetic field has magnitude
0.200 T, at what rotation speed is the average back emf of the
motor equal to 112 V?

SOLUTION

IDENTIFY and SET UP: As far as the rotating loop is concerned, the
situation is the same as in Example 29.3 except that we now have
N turns of wire. Without the commutator, the emf would alternate
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29.10 (a) Schematic diagram of a dc generator, using a split-ring commutator. The ring halves are attached to the loop and
rotate with it. (b) Graph of the resulting induced emf between terminals a and b. Compare to Fig. 29.8b.

between positive and negative values and have an average value of
zero (see Fig. 29.8b). With the commutator, the emf is never nega-
tive and its average value is positive (Fig. 29.10b). We’ll use our
result from Example 29.3 to obtain an expression for this average
value and solve it for the rotational speed .

EXECUTE: Comparison of Figs. 29.8b and 29.10b shows that the
back emf of the motor is just N times the absolute value of the emf
found for an alternator in Example 29.3, as in Eq. (29.4):

. To find the average back emf, we must
replace by its average value. We find this by integrating

over half a cycle, from to and
dividing by the elapsed time During this half cycle, the sine
function is positive, so and we find

The average back emf is then

1 ƒ sinvt ƒ2av = 1
p>v

0 sinvt dt

p>v
=

2
p

ƒsinvt ƒ = sinvt,
p>v.

t = T>2 = p>v,t = 0ƒsinvt ƒ
ƒsinvt ƒ

ƒE ƒ = NvBA ƒsinvt ƒ

v

This confirms that the back emf is proportional to the rotation
speed as we stated without proof in Section 27.8. Solving for 
we obtain

(We used the unit relationships from
Example 29.1.)

EVALUATE: The average back emf is directly proportional to 
Hence the slower the rotation speed, the less the back emf and the
greater the possibility of burning out the motor, as we described in
Example 27.11 (Section 27.8).

v.

1 V = 1 Wb>s = 1 T # m2>s

=
p1112 V2

21500210.200 T210.100 m22
= 176 rad>s

v =
pEav

2NBA

v,v,

Eav =
2NvBA

p

Example 29.5 Generator III: The slidewire generator

Figure 29.11 shows a U-shaped conductor in a uniform magnetic
field perpendicular to the plane of the figure and directed into the
page. We lay a metal rod (the “slidewire”) with length L across
the two arms of the conductor, forming a circuit, and move it to the
right with constant velocity This induces an emf and a current,
which is why this device is called a slidewire generator. Find the
magnitude and direction of the resulting induced emf.

SOLUTION

IDENTIFY and SET UP: The magnetic flux changes because the
area of the loop—bounded on the right by the moving rod—is

vS.

B
S

increasing. Our target variable is the emf induced in this expand-
ing loop. The magnetic field is uniform over the area of the loop,
so we can find the flux using We choose the area
vector to point straight into the page, in the same direction as 
With this choice a positive emf will be one that is directed clock-
wise around the loop. (You can check this with the right-hand rule:
Using your right hand, point your thumb into the page and curl
your fingers as in Fig. 29.6.)

EXECUTE: Since and point in the same direction, the angle
and The magnetic field magnitude B is constant,

so the induced emf is

To calculate note that in a time dt the sliding rod moves a
distance (Fig. 29.11) and the loop area increases by an amount

Hence the induced emf is

The minus sign tells us that the emf is directed counterclockwise
around the loop. The induced current is also counterclockwise, as
shown in the figure.

Continued

E = -B
Lv dt

dt
= -BLv

dA = Lv dt.
v dt

dA>dt,

E = -
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29.11 A slidewire generator. The magnetic field and the vector
area are both directed into the figure. The increase in magnetic
flux (caused by an increase in area) induces the emf and current.
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Generators As Energy Converters
Example 29.6 shows that the slidewire generator doesn’t produce electric energy
out of nowhere; the energy is supplied by whatever body exerts the force that
keeps the rod moving. All that the generator does is convert that energy into a dif-
ferent form. The equality between the rate at which mechanical energy is sup-
plied to a generator and the rate at which electric energy is generated holds for all
types of generators. This is true in particular for the alternator described in Exam-
ple 29.3. (We are neglecting the effects of friction in the bearings of an alternator
or between the rod and the U-shaped conductor of a slidewire generator. If these
are included, the conservation of energy demands that the energy lost to friction is
not available for conversion to electric energy. In real generators the friction is
kept to a minimum to keep the energy-conversion process as efficient as possible.)

In Chapter 27 we stated that the magnetic force on moving charges can never
do work. But you might think that the magnetic force in Example
29.6 is doing (negative) work on the current-carrying rod as it moves, contradict-
ing our earlier statement. In fact, the work done by the magnetic force is actually
zero. The moving charges that make up the current in the rod in Fig. 29.12 have a
vertical component of velocity, causing a horizontal component of force on these
charges. As a result, there is a horizontal displacement of charge within the rod,

F
S

� IL
S

: B
S
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EVALUATE: The emf of a slidewire generator is constant if is con-
stant. Hence the slidewire generator is a direct-current generator.
It’s not a very practical device because the rod eventually moves

vS beyond the U-shaped conductor and loses contact, after which the
current stops.

Example 29.6 Work and power in the slidewire generator

In the slidewire generator of Example 29.5, energy is dissipated in
the circuit owing to its resistance. Let the resistance of the circuit
(made up of the moving slidewire and the U-shaped conductor that
connects the ends of the slidewire) at a given point in the
slidewire’s motion be R. Find the rate at which energy is dissipated
in the circuit and the rate at which work must be done to move the
rod through the magnetic field.

SOLUTION

IDENTIFY and SET UP: Our target variables are the rates at which
energy is dissipated and at which work is done. Energy is dissi-
pated in the circuit at the rate The current I in the
circuit equals we found an expression for the induced emf 
in this circuit in Example 29.5. There is a magnetic force

on the rod, where points along the rod in the direc-
tion of the current. Figure 29.12 shows that this force is opposite to
the rod velocity ; to maintain the motion, whoever is pushing the
rod must apply a force of equal magnitude in the direction of .
This force does work at the rate Papplied = Fv.

vS
vS

L
S

F
S

� IL
S

: B
S

EƒE ƒ>R;
Pdissipated = I 2R.

EXECUTE: First we’ll calculate From Example 29.5,
so the current in the rod is I . Hence

To calculate we first calculate the magnitude of
Since and are perpendicular, this magnitude is

The applied force has the same magnitude and does work at the rate

EVALUATE: The rate at which work is done is exactly equal to the
rate at which energy is dissipated in the resistance.

CAUTION You can’t violate energy conservation You might think
that reversing the direction of or of might make it possible to
have the magnetic force be in the same direction as

This would be a pretty neat trick. Once the rod was moving, the
changing magnetic flux would induce an emf and a current, and the
magnetic force on the rod would make it move even faster,
increasing the emf and current; this would go on until the rod was
moving at tremendous speed and producing electric power at a
prodigious rate. If this seems too good to be true, not to mention a
violation of energy conservation, that’s because it is. Reversing 
also reverses the sign of the induced emf and current and hence the
direction of so the magnetic force still opposes the motion of the
rod; a similar result holds true if we reverse ❙vS.
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29.12 The magnetic force that acts on the rod due
to the induced current is to the left, opposite to vS.
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the left side acquiring a net positive charge and the right side a net negative
charge. The result is a horizontal component of electric field, perpendicular to the
length of the rod (analogous to the Hall effect, described in Section 27.9). It is
this field, in the direction of motion of the rod, that does work on the mobile
charges in the rod and hence indirectly on the atoms making up the rod.

Test Your Understanding of Section 29.2 The figure at right shows a
wire coil being squeezed in a uniform magnetic field. (a) While the coil is being
squeezed, is the induced emf in the coil (i) clockwise, (ii) counterclockwise, or
(iii) zero? (b) Once the coil has reached its final squeezed shape, is the induced emf 
in the coil (i) clockwise, (ii) counterclockwise, or (iii) zero?

❙
Coil squeezed

into oval
Circular wire coil

B
SB

S

29.3 Lenz’s Law
Lenz’s law is a convenient alternative method for determining the direction of an
induced current or emf. Lenz’s law is not an independent principle; it can be
derived from Faraday’s law. It always gives the same results as the sign rules we
introduced in connection with Faraday’s law, but it is often easier to use. Lenz’s
law also helps us gain intuitive understanding of various induction effects and of
the role of energy conservation. H. F. E. Lenz (1804–1865) was a Russian scien-
tist who duplicated independently many of the discoveries of Faraday and Henry.
Lenz’s law states:

The direction of any magnetic induction effect is such as to oppose the cause of
the effect.

The “cause” may be changing flux through a stationary circuit due to a varying
magnetic field, changing flux due to motion of the conductors that make up the
circuit, or any combination. If the flux in a stationary circuit changes, as in Exam-
ples 29.1 and 29.2, the induced current sets up a magnetic field of its own. Within
the area bounded by the circuit, this field is opposite to the original field if the
original field is increasing but is in the same direction as the original field if the
latter is decreasing. That is, the induced current opposes the change in flux
through the circuit (not the flux itself).

If the flux change is due to motion of the conductors, as in Examples 29.3
through 29.6, the direction of the induced current in the moving conductor is
such that the direction of the magnetic-field force on the conductor is opposite in
direction to its motion. Thus the motion of the conductor, which caused the
induced current, is opposed. We saw this explicitly for the slidewire generator in
Example 29.6. In all these cases the induced current tries to preserve the status
quo by opposing motion or a change of flux.

Lenz’s law is also directly related to energy conservation. If the induced current
in Example 29.6 were in the direction opposite to that given by Lenz’s law, the mag-
netic force on the rod would accelerate it to ever-increasing speed with no external
energy source, even though electric energy is being dissipated in the circuit. This
would be a clear violation of energy conservation and doesn’t happen in nature.

Conceptual Example 29.7 Lenz’s law and the slidewire generator

In Fig. 29.11, the induced current in the loop causes an additional
magnetic field in the area bounded by the loop. The direction of the
induced current is counterclockwise, so from the discussion of
Section 28.2, this additional magnetic field is directed out of the

plane of the figure. That direction is opposite that of the original
magnetic field, so it tends to cancel the effect of that field. This is
just what Lenz’s law predicts.



Lenz’s Law and the Response to Flux Changes
Since an induced current always opposes any change in magnetic flux through a
circuit, how is it possible for the flux to change at all? The answer is that Lenz’s
law gives only the direction of an induced current; the magnitude of the current
depends on the resistance of the circuit. The greater the circuit resistance, the less
the induced current that appears to oppose any change in flux and the easier it is
for a flux change to take effect. If the loop in Fig. 29.14 were made out of wood
(an insulator), there would be almost no induced current in response to changes
in the flux through the loop.

Conversely, the less the circuit resistance, the greater the induced current and the
more difficult it is to change the flux through the circuit. If the loop in Fig. 29.14 is a
good conductor, an induced current flows as long as the magnet moves relative to
the loop. Once the magnet and loop are no longer in relative motion, the induced
current very quickly decreases to zero because of the nonzero resistance in the loop.

The extreme case occurs when the resistance of the circuit is zero. Then the
induced current in Fig. 29.14 will continue to flow even after the induced emf has
disappeared—that is, even after the magnet has stopped moving relative to the
loop. Thanks to this persistent current, it turns out that the flux through the loop is
exactly the same as it was before the magnet started to move, so the flux through a
loop of zero resistance never changes. Exotic materials called superconductors do
indeed have zero resistance; we discuss these further in Section 29.8.
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Conceptual Example 29.8 Lenz’s law and the direction of induced current

In Fig. 29.13 there is a uniform magnetic field through the coil.
The magnitude of the field is increasing, so there is an induced
emf. Use Lenz’s law to determine the direction of the resulting
induced current.

SOLUTION

This situation is the same as in Example 29.1 (Section 29.2). By
Lenz’s law the induced current must produce a magnetic field

inside the coil that is downward, opposing the change in
flux. From the right-hand rule we described in Section 28.5 for the
direction of the magnetic field produced by a circular loop, 
will be in the desired direction if the induced current flows as
shown in Fig. 29.13.

Figure 29.14 shows several applications of Lenz’s law to the
similar situation of a magnet moving near a conducting loop. In
each case, the induced current produces a magnetic field whose
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direction opposes the change in flux through the loop due to the
magnet’s motion.
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29.13 The induced current due to the change in is clockwise,
as seen from above the loop. The added field that it
causes is downward, opposing the change in the upward field B
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(a) Motion of magnet causes
      increasing downward flux
      through
      loop.

(b) Motion of magnet causes
      decreasing upward flux
      through
      loop.

(c) Motion of magnet causes
      decreasing downward flux
      through
      loop.

(d) Motion of magnet causes
      increasing upward flux
      through
      loop.

The induced magnetic field is upward to oppose the flux
change.  To produce this induced field, the induced current
must be counterclockwise as seen from above the loop.

The induced magnetic field is downward to oppose the
flux change.  To produce this induced field, the induced 
current must be clockwise as seen from above the loop.
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29.14 Directions of induced currents as a bar magnet moves along the axis of a conducting loop. If the bar magnet is stationary, there
is no induced current.
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29.4 Motional Electromotive Force
We’ve seen several situations in which a conductor moves in a magnetic field, as
in the generators discussed in Examples 29.3 through 29.6. We can gain additional
insight into the origin of the induced emf in these situations by considering the
magnetic forces on mobile charges in the conductor. Figure 29.15a shows the
same moving rod that we discussed in Example 29.5, separated for the moment
from the U-shaped conductor. The magnetic field is uniform and directed into
the page, and we move the rod to the right at a constant velocity A charged par-
ticle q in the rod then experiences a magnetic force with magnitude

We’ll assume in the following discussion that q is positive; in that case
the direction of this force is upward along the rod, from b toward a.

This magnetic force causes the free charges in the rod to move, creating an
excess of positive charge at the upper end a and negative charge at the lower end
b. This in turn creates an electric field within the rod, in the direction from a
toward b (opposite to the magnetic force). Charge continues to accumulate at the
ends of the rod until becomes large enough for the downward electric force
(with magnitude qE) to cancel exactly the upward magnetic force (with magni-
tude Then and the charges are in equilibrium.

The magnitude of the potential difference is equal to the electric-
field magnitude E multiplied by the length L of the rod. From the above discus-
sion, so

(29.5)

with point a at higher potential than point b.
Now suppose the moving rod slides along a stationary U-shaped conductor,

forming a complete circuit (Fig. 29.15b). No magnetic force acts on the charges
in the stationary U-shaped conductor, but the charge that was near points a and b
redistributes itself along the stationary conductor, creating an electric field within
it. This field establishes a current in the direction shown. The moving rod has
become a source of electromotive force; within it, charge moves from lower to
higher potential, and in the remainder of the circuit, charge moves from higher to
lower potential. We call this emf a motional electromotive force, denoted by 
From the above discussion, the magnitude of this emf is

(motional emf; length and velocity
(29.6)

perpendicular to uniform )

corresponding to a force per unit charge of magnitude acting for a distance L
along the moving rod. If the total circuit resistance of the U-shaped conductor
and the sliding rod is R, the induced current I in the circuit is given by 
This is the same result we obtained in Section 29.2 using Faraday’s law, and
indeed motional emf is a particular case of Faraday’s law, one of the several
examples described in Section 29.2.

The emf associated with the moving rod in Fig. 29.15 is analogous to that of
a battery with its positive terminal at a and its negative terminal at b, although
the origins of the two emfs are quite different. In each case a nonelectrostatic
force acts on the charges in the device, in the direction from b to a, and the emf
is the work per unit charge done by this force when a charge moves from b to a in
the device. When the device is connected to an external circuit, the direction of
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Test Your Understanding of Section 29.3 (a) Suppose the magnet in
Fig. 29.14a were stationary and the loop of wire moved upward. Would the
induced current in the loop be (i) in the same direction as shown in Fig. 29.14a,
(ii) in the direction opposite to that shown in Fig. 29.14a, or (iii) zero? (b) Suppose the
magnet and loop of wire in Fig. 29.14a both moved downward at the same velocity.
Would the induced current in the loop be (i) in the same direction as shown in Fig.
29.14a, (ii) in the direction opposite to that shown in Fig. 29.14a, or (iii) zero? ❙
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29.15 A conducting rod moving in a
uniform magnetic field. (a) The rod, the
velocity, and the field are mutually perpen-
dicular. (b) Direction of induced current in
the circuit.
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current is from b to a in the device and from a to b in the external circuit. While
we have discussed motional emf in terms of a closed circuit like that in Fig. 29.15b,
a motional emf is also present in the isolated moving rod in Fig. 29.15a, in the
same way that a battery has an emf even when it’s not part of a circuit.

The direction of the induced emf in Fig. 29.15 can be deduced by using Lenz’s
law, even if (as in Fig. 29.15a) the conductor does not form a complete circuit. In
this case we can mentally complete the circuit between the ends of the conductor
and use Lenz’s law to determine the direction of the current. From this we can
deduce the polarity of the ends of the open-circuit conductor. The direction from
the to the within the conductor is the direction the current would
have if the circuit were complete.

You should verify that if we express in meters per second, B in teslas, and L
in meters, then is in volts. (Recall that 

Motional emf: General Form
We can generalize the concept of motional emf for a conductor with any shape,
moving in any magnetic field, uniform or not (assuming that the magnetic field at
each point does not vary with time). For an element of the conductor, the contri-
bution to the emf is the magnitude dl multiplied by the component of 
(the magnetic force per unit charge) parallel to that is,

For any closed conducting loop, the total emf is

(motional emf; closed conducting loop) (29.7)

This expression looks very different from our original statement of Faraday’s
law, Eq. (29.3), which stated that In fact, though, the two state-
ments are equivalent. It can be shown that the rate of change of magnetic flux
through a moving conducting loop is always given by the negative of the expres-
sion in Eq. (29.7). Thus this equation gives us an alternative formulation of Fara-
day’s law. This alternative is often more convenient than the original one in
problems with moving conductors. But when we have stationary conductors in
changing magnetic fields, Eq. (29.7) cannot be used; in this case, 
is the only correct way to express Faraday’s law.
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Example 29.9 Motional emf in the slidewire generator

Suppose the moving rod in Fig. 29.15b is 0.10 m long, the velocity
is the total resistance of the loop is and B is

0.60 T. Find the motional emf, the induced current, and the force
acting on the rod.

SOLUTION

IDENTIFY and SET UP: The first target variable is the motional
emf due to the rod’s motion, which we’ll find using Eq. (29.6).
We’ll find the current from the values of and the resistance R.
The force on the rod is a magnetic force, exerted by on the cur-
rent in the rod; we’ll find this force using .

EXECUTE: From Eq. (29.6) the motional emf is

The induced current in the loop is

I =
E

R
=

0.15 V

0.030 Æ
= 5.0 A

E = vBL = 12.5 m>s210.60 T210.10 m2 = 0.15 V
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0.030 Æ,2.5 m>s,v
In the expression for the magnetic force, , the vec-

tor points in the same direction as the induced current in the rod
(from to in Fig. 29.15). Applying the right-hand rule for vector
products shows that this force is directed opposite to the rod’s
motion. Since and are perpendicular, the magnetic force has
magnitude

EVALUATE: We can check our answer for the direction of by
using Lenz’s law. If we take the area vector to point into the
plane of the loop, the magnetic flux is positive and increasing as
the rod moves to the right and increases the area of the loop.
Lenz’s law tells us that a force appears to oppose this increase in
flux. Hence the force on the rod is to the left, opposite its motion.
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29.5 Induced Electric Fields
When a conductor moves in a magnetic field, we can understand the induced emf
on the basis of magnetic forces on charges in the conductor, as described in Sec-
tion 29.4. But an induced emf also occurs when there is a changing flux through a
stationary conductor. What is it that pushes the charges around the circuit in this
type of situation?

As an example, let’s consider the situation shown in Fig. 29.17. A long, thin
solenoid with cross-sectional area A and turns per unit length is encircled at its
center by a circular conducting loop. The galvanometer G measures the current in
the loop. A current I in the winding of the solenoid sets up a magnetic field 
along the solenoid axis, as shown, with magnitude B as calculated in Example
28.9 (Section 28.7): where is the number of turns per unit length. nB = m0nI,

B
S

n

Example 29.10 The Faraday disk dynamo

Figure 29.16 shows a conducting disk with radius R that lies in the
xy-plane and rotates with constant angular velocity about the 
z-axis. The disk is in a uniform, constant field in the z-direction.
Find the induced emf between the center and the rim of the disk.

SOLUTION

IDENTIFY and SET UP: A motional emf arises because the con-
ducting disk moves relative to . The complication is that differentB

S

B
S

v

parts of the disk move at different speeds depending on their
distance from the rotation axis. We’ll address this by considering
small segments of the disk and integrating their contributions to
determine our target variable, the emf between the center and the
rim. Consider the small segment of the disk shown in red in 
Fig. 29.16 and labeled by its velocity vector The magnetic force
per unit charge on this segment is which points radially out-
ward from the center of the disk. Hence the induced emf tends to
make a current flow radially outward, which tells us that the mov-
ing conducting path to think about here is a straight line from the
center to the rim. We can find the emf from each small disk seg-
ment along this line using and then integrate
to find the total emf.

EXECUTE: The length vector (of length dr) associated with the
segment points radially outward, in the same direction as 
The vectors and are perpendicular, and the magnitude of is

The emf from the segment is then . The total
emf is the integral of from the center to the rim

:

EVALUATE: We can use this device as a source of emf in a circuit by
completing the circuit through two stationary brushes (labeled b in
the figure) that contact the disk and its conducting shaft as shown.
Such a disk is called a Faraday disk dynamo or a homopolar gen-
erator. Unlike the alternator in Example 29.3, the Faraday disk
dynamo is a direct-current generator; it produces an emf that is
constant in time. Can you use Lenz’s law to show that for the
direction of rotation in Fig. 29.16, the current in the external circuit
must be in the direction shown?
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of length dr at radius r is v � vr.

Emf induced across this segment is
dE � vB dr � vBr dr.
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29.16 A conducting disk with radius R rotating at an angular
speed in a magnetic field The emf is induced along radial
lines of the disk and is applied to an external circuit through the
two sliding contacts labeled b.
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Test Your Understanding of Section 29.4 The earth’s magnetic field
points toward (magnetic) north. For simplicity, assume that the field has no verti-
cal component (as is the case near the earth’s equator). (a) If you hold a metal rod
in your hand and walk toward the east, how should you orient the rod to get the maxi-
mum motional emf between its ends? (i) east-west; (ii) north-south; (iii) up-down; (iv)
you get the same motional emf with all of these orientations. (b) How should you hold it
to get zero emf as you walk toward the east? (i) east-west; (ii) north-south; (iii) up-down;
(iv) none of these. (c) In which direction should you travel so that the motional emf
across the rod is zero no matter how the rod is oriented? (i) west; (ii) north; 
(iii) south; (iv) straight up; (v) straight down. ❙



If we neglect the small field outside the solenoid and take the area vector to
point in the same direction as then the magnetic flux through the loop is

When the solenoid current I changes with time, the magnetic flux also
changes, and according to Faraday’s law the induced emf in the loop is given by

(29.8)

If the total resistance of the loop is R, the induced current in the loop, which we
may call is 

But what force makes the charges move around the wire loop? It can’t be a
magnetic force because the loop isn’t even in a magnetic field. We are forced to
conclude that there has to be an induced electric field in the conductor caused by
the changing magnetic flux. This may be a little jarring; we are accustomed to
thinking about electric field as being caused by electric charges, and now we are
saying that a changing magnetic field somehow acts as a source of electric field.
Furthermore, it’s a strange sort of electric field. When a charge q goes once
around the loop, the total work done on it by the electric field must be equal to q
times the emf That is, the electric field in the loop is not conservative, as we
used the term in Chapter 23, because the line integral of around a closed path is
not zero. Indeed, this line integral, representing the work done by the induced 
field per unit charge, is equal to the induced emf 

(29.9)

From Faraday’s law the emf is also the negative of the rate of change of mag-
netic flux through the loop. Thus for this case we can restate Faraday’s law as

(29.10)

Note that Faraday’s law is always true in the form the form given
in Eq. (29.10) is valid only if the path around which we integrate is stationary.

As an example of a situation to which Eq. (29.10) can be applied, consider the
stationary circular loop in Fig. 29.17b, which we take to have radius r. Because
of cylindrical symmetry, the electric field has the same magnitude at every
point on the circle and is tangent to it at each point. (Symmetry would also permit
the field to be radial, but then Gauss’s law would require the presence of a net
charge inside the circle, and there is none.) The line integral in Eq. (29.10)
becomes simply the magnitude E times the circumference of the loop,

and Eq. (29.10) gives

(29.11)

The directions of at points on the loop are shown in Fig. 29.17b. We know that
has to have the direction shown when in the solenoid is increasing, because

has to be negative when is positive. The same approach can be
used to find the induced electric field inside the solenoid when the solenoid 
field is changing; we leave the details to you (see Exercise 29.35).

Nonelectrostatic Electric Fields
Now let’s summarize what we’ve learned. Faraday’s law, Eq. (29.3), is valid for
two rather different situations. In one, an emf is induced by magnetic forces on
charges when a conductor moves through a magnetic field. In the other, a 
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29.17 (a) The windings of a long sole-
noid carry a current I that is increasing at a
rate The magnetic flux in the sole-
noid is increasing at a rate and this
changing flux passes through a wire loop.
An emf is induced in the
loop, inducing a current that is measured
by the galvanometer G. (b) Cross-sectional
view.
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time-varying magnetic field induces an electric field in a stationary conductor
and hence induces an emf; in fact, the field is induced even when no conductor
is present. This field differs from an electrostatic field in an important way. It is
nonconservative; the line integral around a closed path is not zero, and
when a charge moves around a closed path, the field does a nonzero amount of
work on it. It follows that for such a field the concept of potential has no mean-
ing. We call such a field a nonelectrostatic field. In contrast, an electrostatic field
is always conservative, as we discussed in Section 23.1, and always has an asso-
ciated potential function. Despite this difference, the fundamental effect of any
electric field is to exert a force on a charge q. This relationship is valid
whether is a conservative field produced by a charge distribution or a noncon-
servative field caused by changing magnetic flux.

So a changing magnetic field acts as a source of electric field of a sort that we
cannot produce with any static charge distribution. This may seem strange, but
it’s the way nature behaves. What’s more, we’ll see in Section 29.7 that a chang-
ing electric field acts as a source of magnetic field. We’ll explore this symmetry
between the two fields in greater detail in our study of electromagnetic waves in
Chapter 32.

If any doubt remains in your mind about the reality of magnetically induced
electric fields, consider a few of the many practical applications (Fig. 29.18).
Pickups in electric guitars use currents induced in stationary pickup coils by the
vibration of nearby ferromagnetic strings. Alternators in most cars use rotating
magnets to induce currents in stationary coils. Whether we realize it or not, mag-
netically induced electric fields play an important role in everyday life.
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29.18 Applications of induced electric fields. (a) Data are stored on a computer hard disk in a pattern of magnetized areas on the sur-
face of the disk. To read these data, a coil on a movable arm is placed next to the spinning disk. The coil experiences a changing mag-
netic flux, inducing a current whose characteristics depend on the pattern coded on the disk. (b) This hybrid automobile has both a
gasoline engine and an electric motor. As the car comes to a halt, the spinning wheels run the motor backward so that it acts as a genera-
tor. The resulting induced current is used to recharge the car’s batteries. (c) The rotating crankshaft of a piston-engine airplane spins a
magnet, inducing an emf in an adjacent coil and generating the spark that ignites fuel in the engine cylinders. This keeps the engine run-
ning even if the airplane’s other electrical systems fail.

(a) (b) (c)

Example 29.11 Induced electric fields

Suppose the long solenoid in Fig. 29.17a has 500 turns per meter
and cross-sectional area The current in its windings is
increasing at (a) Find the magnitude of the induced emf
in the wire loop outside the solenoid. (b) Find the magnitude of the
induced electric field within the loop if its radius is 2.0 cm.

SOLUTION

IDENTIFY and SET UP: As in Fig. 29.17b, the increasing magnetic
field inside the solenoid causes a change in the magnetic flux
through the wire loop and hence induces an electric field around
the loop. Our target variables are the induced emf and the
electric-field magnitude E. We use Eq. (29.8) to determine the emf.

E

E
S

100 A>s.
4.0 cm2.

Determining the field magnitude E is simplified because the loop
and the solenoid share the same central axis. Hence, by symmetry,
the electric field is tangent to the loop and has the same magnitude
all the way around its circumference. We can therefore use Eq.
(29.9) to find E.

EXECUTE: (a) From Eq. (29.8), the induced emf is

Continued
= -25 * 10-6 Wb>s = -25 * 10-6 V = -25 mV

* 14.0 * 10-4 m221100 A>s2

= -14p * 10-7 Wb>A # m21500 turns>m2

E = -
d£B

dt
= -m0nA

dI

dt



29.6 Eddy Currents
In the examples of induction effects that we have studied, the induced currents
have been confined to well-defined paths in conductors and other components
forming a circuit. However, many pieces of electrical equipment contain masses
of metal moving in magnetic fields or located in changing magnetic fields. In sit-
uations like these we can have induced currents that circulate throughout the vol-
ume of a material. Because their flow patterns resemble swirling eddies in a river,
we call these eddy currents.

As an example, consider a metallic disk rotating in a magnetic field perpendi-
cular to the plane of the disk but confined to a limited portion of the disk’s area,
as shown in Fig. 29.19a. Sector Ob is moving across the field and has an emf
induced in it. Sectors Oa and Oc are not in the field, but they provide return con-
ducting paths for charges displaced along Ob to return from b to O. The result is a
circulation of eddy currents in the disk, somewhat as sketched in Fig. 29.19b.

We can use Lenz’s law to decide on the direction of the induced current in the
neighborhood of sector Ob. This current must experience a magnetic force 

that opposes the rotation of the disk, and so this force must be to the
right in Fig. 29.19b. Since is directed into the plane of the disk, the current
and hence have downward components. The return currents lie outside the
field, so they do not experience magnetic forces. The interaction between the
eddy currents and the field causes a braking action on the disk. Such effects can
be used to stop the rotation of a circular saw quickly when the power is turned
off. Some sensitive balances use this effect to damp out vibrations. Eddy
current braking is used on some electrically powered rapid-transit vehicles.
Electromagnets mounted in the cars induce eddy currents in the rails; the
resulting magnetic fields cause braking forces on the electromagnets and thus
on the cars.

Eddy currents have many other practical uses. The shiny metal disk in the
electric power company’s meter outside your house rotates as a result of eddy
currents. These currents are induced in the disk by magnetic fields caused by
sinusoidally varying currents in a coil. In induction furnaces, eddy currents are
used to heat materials in completely sealed containers for processes in which it is
essential to avoid the slightest contamination of the materials. The metal detec-
tors used at airport security checkpoints (Fig. 29.20a) operate by detecting eddy
currents induced in metallic objects. Similar devices (Fig. 29.20b) are used to
find buried treasure such as bottlecaps and lost pennies.

Eddy currents also have undesirable effects. In an alternating-current trans-
former, coils wrapped around an iron core carry a sinusoidally varying current.
The resulting eddy currents in the core waste energy through heating and
themselves set up an unwanted opposing emf in the coils. To minimize these
effects, the core is designed so that the paths for eddy currents are as narrow as
possible. We’ll describe how this is done when we discuss transformers in detail
in Section 31.6.
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(b) By symmetry the line integral has absolute value
no matter which direction we integrate around the loop. This

is equal to the absolute value of the emf, so

E =
ƒE ƒ

2pr
=

25 * 10-6 V

2p12.0 * 10-2 m2
= 2.0 * 10-4 V>m

2prE
AE

S # d l
S

EVALUATE: In Fig. 29.17b the magnetic flux into the plane of the
figure is increasing. According to the right-hand rule for induced
emf (illustrated in Fig. 29.6), a positive emf would be clockwise
around the loop; the negative sign of shows that the emf is in the
counterclockwise direction. Can you also show this using Lenz’s
law?

E

Test Your Understanding of Section 29.5 If you wiggle a magnet back and
forth in your hand, are you generating an electric field? If so, is this electric field conser-
vative? ❙

O

a

Eddy currents

c

Magnetic
field

b

a c

b

(a) Metal disk rotating through a magnetic field

(b) Resulting eddy currents and braking force
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29.19 Eddy currents induced in a rotat-
ing metal disk.
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29.7 Displacement Current 
and Maxwell’s Equations

We have seen that a varying magnetic field gives rise to an induced electric field.
In one of the more remarkable examples of the symmetry of nature, it turns out
that a varying electric field gives rise to a magnetic field. This effect is of tremen-
dous importance, for it turns out to explain the existence of radio waves, gamma
rays, and visible light, as well as all other forms of electromagnetic waves.

Generalizing Ampere’s Law
To see the origin of the relationship between varying electric fields and magnetic
fields, let’s return to Ampere’s law as given in Section 28.6, Eq. (28.20):

The problem with Ampere’s law in this form is that it is incomplete. To see why, let’s
consider the process of charging a capacitor (Fig. 29.21). Conducting wires lead cur-
rent into one plate and out of the other; the charge Q increases, and the electric
field between the plates increases. The notation indicates conduction current to
distinguish it from another kind of current we are about to encounter, called
displacement current We use lowercase i’s and to denote instantaneous val-
ues of currents and potential differences, respectively, that may vary with time.

Let’s apply Ampere’s law to the circular path shown. The integral 
around this path equals For the plane circular area bounded by the circle,

is just the current in the left conductor. But the surface that bulges out to
the right is bounded by the same circle, and the current through that surface is
zero. So is equal to and at the same time it is equal to zero! This is
a clear contradiction.

But something else is happening on the bulged-out surface. As the capacitor
charges, the electric field and the electric flux through the surface are
increasing. We can determine their rates of change in terms of the charge and
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Test Your Understanding of Section 29.6 Suppose that the magnetic field in
Fig. 29.19 were directed out of the plane of the figure and the disk were rotating counter-
clockwise. Compared to the directions of the force and the eddy currents shown in Fig.
29.19b, what would the new directions be? (i) The force and the eddy currents would
both be in the same direction; (ii) the force would be in the same direction, but the
eddy currents would be in the opposite direction; (iii) the force would be in the oppo-
site direction, but the eddy currents would be in the same direction; (iv) the force and
the eddy currents would be in the opposite directions. ❙
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29.20 (a) A metal detector at an airport
security checkpoint generates an alternat-
ing magnetic field . This induces eddy
currents in a conducting object carried
through the detector. The eddy currents in
turn produce an alternating magnetic field

and this field induces a current in the
detector’s receiver coil. (b) Portable metal
detectors work on the same principle.
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Magnetic field line

Jupiter Io

Volcanic eruptions
on Io

Application Eddy Currents Help
Power Io’s Volcanoes
Jupiter’s moon Io is slightly larger than the
earth’s moon. It moves at more than 
60,000 km h through Jupiter’s intense mag-
netic field (about ten times stronger than the
earth’s field), which sets up strong eddy cur-
rents within Io that dissipate energy at a rate
of 1012 W. This dissipated energy helps to
heat Io’s interior and causes volcanic erup-
tions on its surface, as shown in the lower
close-up image. (Gravitational effects from
Jupiter cause even more heating.)
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29.21 Parallel-plate capacitor being
charged. The conduction current through
the plane surface is but there is no con-
duction current through the surface that
bulges out to pass between the plates. The
two surfaces have a common boundary, so
this difference in leads to an apparent
contradiction in applying Ampere’s law.
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current. The instantaneous charge is where C is the capacitance and is
the instantaneous potential difference. For a parallel-plate capacitor, 
where A is the plate area and d is the spacing. The potential difference between
plates is where E is the electric-field magnitude between plates. (We
neglect fringing and assume that is uniform in the region between the plates.)
If this region is filled with a material with permittivity we replace by 
everywhere; we’ll use in the following discussion.

Substituting these expressions for C and into we can express the
capacitor charge q as

(29.12)

where is the electric flux through the surface.
As the capacitor charges, the rate of change of q is the conduction current,

Taking the derivative of Eq. (29.12) with respect to time, we get

(29.13)

Now, stretching our imagination a little, we invent a fictitious displacement cur-
rent in the region between the plates, defined as

(29.14)

That is, we imagine that the changing flux through the curved surface in Fig.
29.21 is somehow equivalent, in Ampere’s law, to a conduction current through
that surface. We include this fictitious current, along with the real conduction cur-
rent in Ampere’s law:

(29.15)

Ampere’s law in this form is obeyed no matter which surface we use in Fig.
29.21. For the flat surface, is zero; for the curved surface, is zero; and for
the flat surface equals for the curved surface. Equation (29.15) remains valid
in a magnetic material, provided that the magnetization is proportional to the
external field and we replace by 

The fictitious current was invented in 1865 by the Scottish physicist James
Clerk Maxwell (1831–1879), who called it displacement current. There is a cor-
responding displacement current density using and divid-
ing Eq. (29.14) by A, we find

(29.16)

We have pulled the concept out of thin air, as Maxwell did, but we see that it
enables us to save Ampere’s law in situations such as that in Fig. 29.21.

Another benefit of displacement current is that it lets us generalize Kirchhoff’s
junction rule, discussed in Section 26.2. Considering the left plate of the capacitor,
we have conduction current into it but none out of it. But when we include the dis-
placement current, we have conduction current coming in one side and an equal
displacement current coming out the other side. With this generalized meaning of
the term “current,” we can speak of current going through the capacitor.

The Reality of Displacement Current
You might well ask at this point whether displacement current has any real physi-
cal significance or whether it is just a ruse to satisfy Ampere’s law and Kirchhoff’s
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junction rule. Here’s a fundamental experiment that helps to answer that ques-
tion. We take a plane circular area between the capacitor plates (Fig. 29.22). If
displacement current really plays the role in Ampere’s law that we have claimed,
then there ought to be a magnetic field in the region between the plates while the
capacitor is charging. We can use our generalized Ampere’s law, including dis-
placement current, to predict what this field should be.

To be specific, let’s picture round capacitor plates with radius R. To find the
magnetic field at a point in the region between the plates at a distance r from the
axis, we apply Ampere’s law to a circle of radius r passing through the point,
with This circle passes through points a and b in Fig. 29.22. The total cur-
rent enclosed by the circle is times its area, or The integral

in Ampere’s law is just B times the circumference of the circle, and
because for the charging capacitor, Ampere’s law becomes

(29.17)

This result predicts that in the region between the plates is zero at the axis and
increases linearly with distance from the axis. A similar calculation shows that
outside the region between the plates (that is, for is the same as though
the wire were continuous and the plates not present at all.

When we measure the magnetic field in this region, we find that it really is
there and that it behaves just as Eq. (29.17) predicts. This confirms directly the
role of displacement current as a source of magnetic field. It is now established
beyond reasonable doubt that displacement current, far from being just an arti-
fice, is a fundamental fact of nature. Maxwell’s discovery was the bold step of an
extraordinary genius.

Maxwell’s Equations of Electromagnetism
We are now in a position to wrap up in a single package all of the relationships
between electric and magnetic fields and their sources. This package consists of
four equations, called Maxwell’s equations. Maxwell did not discover all of
these equations single-handedly (though he did develop the concept of displace-
ment current). But he did put them together and recognized their significance,
particularly in predicting the existence of electromagnetic waves.

For now we’ll state Maxwell’s equations in their simplest form, for the case in
which we have charges and currents in otherwise empty space. In Chapter 32
we’ll discuss how to modify these equations if a dielectric or a magnetic material
is present.

Two of Maxwell’s equations involve an integral of or over a closed sur-
face. The first is simply Gauss’s law for electric fields, Eq. (22.8), which states
that the surface integral of over any closed surface equals times the total
charge enclosed within the surface:

(29.18)

The second is the analogous relationship for magnetic fields, Eq. (27.8), which
states that the surface integral of over any closed surface is always zero:

(29.19)

This statement means, among other things, that there are no magnetic monopoles
(single magnetic charges) to act as sources of magnetic field.
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29.22 A capacitor being charged by a
current has a displacement current equal
to between the plates, with displacement-
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The third equation is Ampere’s law including displacement current. This states
that both conduction current and displacement current where is
electric flux, act as sources of magnetic field:

(29.20)

The fourth and final equation is Faraday’s law. It states that a changing mag-
netic field or magnetic flux induces an electric field:

(29.21)

If there is a changing magnetic flux, the line integral in Eq. (29.21) is not zero,
which shows that the field produced by a changing magnetic flux is not conserva-
tive. Recall that this line integral must be carried out over a stationary closed path.

It’s worthwhile to look more carefully at the electric field and its role in
Maxwell’s equations. In general, the total field at a point in space can be the
superposition of an electrostatic field caused by a distribution of charges at
rest and a magnetically induced, nonelectrostatic field (The subscript c stands
for Coulomb or conservative; the subscript n stands for non-Coulomb, nonelec-
trostatic, or nonconservative.) That is,

The electrostatic part is always conservative, so This conserva-
tive part of the field does not contribute to the integral in Faraday’s law, so we can
take in Eq. (29.21) to be the total electric field including both the part due
to charges and the magnetically induced part Similarly, the nonconservative
part of the field does not contribute to the integral in Gauss’s law, because this
part of the field is not caused by static charges. Hence is always zero. We
conclude that in all the Maxwell equations, is the total electric field; these equa-
tions don’t distinguish between conservative and nonconservative fields.

Symmetry in Maxwell’s Equations
There is a remarkable symmetry in Maxwell’s four equations. In empty space
where there is no charge, the first two equations (Eqs. (29.18) and (29.19)) are
identical in form, one containing and the other containing When we com-
pare the second two equations, Eq. (29.20) says that a changing electric flux cre-
ates a magnetic field, and Eq. (29.21) says that a changing magnetic flux creates
an electric field. In empty space, where there is no conduction current, 
and the two equations have the same form, apart from a numerical constant and a
negative sign, with the roles of and exchanged in the two equations.

We can rewrite Eqs. (29.20) and (29.21) in a different but equivalent form by
introducing the definitions of electric and magnetic flux, and

respectively. In empty space, where there is no charge or con-
duction current, and and we have

(29.22)

(29.23)

Again we notice the symmetry between the roles of and in these expressions.
The most remarkable feature of these equations is that a time-varying field of

either kind induces a field of the other kind in neighboring regions of space.
Maxwell recognized that these relationships predict the existence of electromagnetic
disturbances consisting of time-varying electric and magnetic fields that travel or
propagate from one region of space to another, even if no matter is present in the
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intervening space. Such disturbances, called electromagnetic waves, provide the
physical basis for light, radio and television waves, infrared, ultraviolet, x rays,
and the rest of the electromagnetic spectrum. We will return to this vitally impor-
tant topic in Chapter 32.

Although it may not be obvious, all the basic relationships between fields and
their sources are contained in Maxwell’s equations. We can derive Coulomb’s
law from Gauss’s law, we can derive the law of Biot and Savart from Ampere’s
law, and so on. When we add the equation that defines the and fields in terms
of the forces that they exert on a charge q, namely,

(29.24)

we have all the fundamental relationships of electromagnetism!
Finally, we note that Maxwell’s equations would have even greater symmetry

between the and fields if single magnetic charges (magnetic monopoles)
existed. The right side of Eq. (29.19) would contain the total magnetic charge
enclosed by the surface, and the right side of Eq. (29.21) would include a mag-
netic monopole current term. Perhaps you can begin to see why some physicists
wish that magnetic monopoles existed; they would help to perfect the mathemat-
ical poetry of Maxwell’s equations.

The discovery that electromagnetism can be wrapped up so neatly and ele-
gantly is a very satisfying one. In conciseness and generality, Maxwell’s equations
are in the same league with Newton’s laws of motion and the laws of thermody-
namics. Indeed, a major goal of science is learning how to express very broad and
general relationships in a concise and compact form. Maxwell’s synthesis of elec-
tromagnetism stands as a towering intellectual achievement, comparable to the
Newtonian synthesis we described at the end of Section 13.5 and to the develop-
ment of relativity and quantum mechanics in the 20th century.
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Test Your Understanding of Section 29.7 (a) Which of Maxwell’s equations
explains how a credit card reader works? (b) Which one describes how a wire carrying a
steady current generates a magnetic field? ❙

29.8 Superconductivity
The most familiar property of a superconductor is the sudden disappearance of
all electrical resistance when the material is cooled below a temperature called
the critical temperature, denoted by We discussed this behavior and the cir-
cumstances of its discovery in Section 25.2. But superconductivity is far more
than just the absence of measurable resistance. As we’ll see in this section, super-
conductors also have extraordinary magnetic properties.

The first hint of unusual magnetic properties was the discovery that for any
superconducting material the critical temperature changes when the material is
placed in an externally produced magnetic field Figure 29.23 shows this
dependence for mercury, the first element in which superconductivity was
observed. As the external field magnitude increases, the superconducting tran-
sition occurs at lower and lower temperature. When is greater than 0.0412 T,
no superconducting transition occurs. The minimum magnitude of magnetic field
that is needed to eliminate superconductivity at a temperature below is called
the critical field, denoted by 

The Meissner Effect
Another aspect of the magnetic behavior of superconductors appears if we place
a homogeneous sphere of a superconducting material in a uniform applied mag-
netic field at a temperature T greater than The material is then in the normal
phase, not the superconducting phase (Fig. 29.24a). Now we lower the temperature
until the superconducting transition occurs. (We assume that the magnitude of is
not large enough to prevent the phase transition.) What happens to the field?
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Measurements of the field outside the sphere show that the field lines become
distorted as in Fig. 29.24b. There is no longer any field inside the material, except
possibly in a very thin surface layer a hundred or so atoms thick. If a coil is
wrapped around the sphere, the emf induced in the coil shows that during the
superconducting transition the magnetic flux through the coil decreases from its
initial value to zero; this is consistent with the absence of field inside the mate-
rial. Finally, if the field is now turned off while the material is still in its super-
conducting phase, no emf is induced in the coil, and measurements show no field
outside the sphere (Fig. 29.24c).

We conclude that during a superconducting transition in the presence of the
field all of the magnetic flux is expelled from the bulk of the sphere, and the
magnetic flux through the coil becomes zero. This expulsion of magnetic flux
is called the Meissner effect. As Fig. 29.24b shows, this expulsion crowds the
magnetic field lines closer together to the side of the sphere, increasing there.

Superconductor Levitation and Other Applications
The diamagnetic nature of a superconductor has some interesting mechanical con-
sequences. A paramagnetic or ferromagnetic material is attracted by a permanent
magnet because the magnetic dipoles in the material align with the nonuniform
magnetic field of the permanent magnet. (We discussed this in Section 27.7.) For a
diamagnetic material the magnetization is in the opposite sense, and a diamagnetic
material is repelled by a permanent magnet. By Newton’s third law the magnet is
also repelled by the diamagnetic material. Figure 29.25 shows the repulsion
between a specimen of a high-temperature superconductor and a magnet; the mag-
net is supported (“levitated”) by this repulsive magnetic force.

The behavior we have described is characteristic of what are called type-I
superconductors. There is another class of superconducting materials called type-II
superconductors. When such a material in the superconducting phase is placed in
a magnetic field, the bulk of the material remains superconducting, but thin fila-
ments of material, running parallel to the field, may return to the normal phase.
Currents circulate around the boundaries of these filaments, and there is magnetic
flux inside them. Type-II superconductors are used for electromagnets because
they usually have much larger values of than do type-I materials, permitting
much larger magnetic fields without destroying the superconducting state. Type-II
superconductors have two critical magnetic fields: The first, is the field at
which magnetic flux begins to enter the material, forming the filaments just
described, and the second, is the field at which the material becomes normal.

Many important and exciting applications of superconductors are under devel-
opment. Superconducting electromagnets have been used in research laboratories
for several years. Their advantages compared to conventional electromagnets
include greater efficiency, compactness, and greater field magnitudes. Once a
current is established in the coil of a superconducting electromagnet, no addi-
tional power input is required because there is no resistive energy loss. The coils
can also be made more compact because there is no need to provide channels for
the circulation of cooling fluids. Superconducting magnets routinely attain steady
fields of the order of 10 T, much larger than the maximum fields that are available
with ordinary electromagnets.

Superconductors are attractive for long-distance electric power transmission
and for energy-conversion devices, including generators, motors, and transform-
ers. Very sensitive measurements of magnetic fields can be made with supercon-
ducting quantum interference devices (SQUIDs), which can detect changes in
magnetic flux of less than these devices have applications in medi-
cine, geology, and other fields. The number of potential uses for superconductors
has increased greatly since the discovery in 1987 of high-temperature supercon-
ductors. These materials have critical temperatures that are above the tempera-
ture of liquid nitrogen (about 77 K) and so are comparatively easy to attain.
Development of practical applications of superconductor science promises to be
an exciting chapter in contemporary technology.
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The field inside the material
is very nearly equal to B0.

(a) Superconducting material in an external
magnetic field B0 at T � Tc.

(b) The temperature is lowered to T � Tc, so
the material becomes superconducting.

(c) When the external field is turned off at
T � Tc,  the field is zero everywhere.

B0
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B = 0

B

Magnetic flux is expelled from the material,
and the field inside it is zero (Meissner effect).
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change in 
magnetic flux
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29.24 A superconducting material (a)
above the critical temperature and (b), (c)
below the critical temperature.

29.25 A superconductor (the black slab)
exerts a repulsive force on a magnet (the
metallic cylinder), supporting the magnet
in midair.
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CHAPTER 29 SUMMARY

Faraday’s law: Faraday’s law states that the induced emf
in a closed loop equals the negative of the time rate of
change of magnetic flux through the loop. This relation-
ship is valid whether the flux change is caused by a
changing magnetic field, motion of the loop, or both.
(See Examples 29.1–29.6.)

(29.3)E = -
d£B

dt

Lenz’s law: Lenz’s law states that an induced current or emf always tends to oppose or cancel out
the change that caused it. Lenz’s law can be derived from Faraday’s law and is often easier to use.
(See Examples 29.7 and 29.8.)

Motional emf: If a conductor moves in a magnetic field,
a motional emf is induced. (See Examples 29.9 and
29.10.)

(29.6)
(conductor with length L moves in uni-
form field, and both perpendicu-
lar to and to each other)

(29.7)

(all or part of a closed loop moves in a
field)B

S

E = C1v
S : B

S
2 # d l
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vSL
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B
S

E = vBL

Induced electric fields: When an emf is induced by a
changing magnetic flux through a stationary conductor,
there is an induced electric field of nonelectrostatic
origin. This field is nonconservative and cannot be asso-
ciated with a potential. (See Example 29.11.)
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(29.10)CE
S # d l

S
= -

d£B

dt

Displacement current and Maxwell’s equations: A time-
varying electric field generates a displacement current

which acts as a source of magnetic field in exactly
the same way as conduction current. The relationships
between electric and magnetic fields and their sources
can be stated compactly in four equations, called
Maxwell’s equations. Together they form a complete
basis for the relationship of and fields to their
sources.
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(Ampere’s law including displacement
current)
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Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q29.1 A sheet of copper is placed between the poles of an electro-
magnet with the magnetic field perpendicular to the sheet. When
the sheet is pulled out, a considerable force is required, and the
force required increases with speed. Explain.
Q29.2 In Fig. 29.8, if the angular speed of the loop is doubled,
then the frequency with which the induced current changes direc-
tion doubles, and the maximum emf also doubles. Why? Does the
torque required to turn the loop change? Explain.
Q29.3 Two circular loops lie side by side in the same plane. One is
connected to a source that supplies an increasing current; the other
is a simple closed ring. Is the induced current in the ring in the
same direction as the current in the loop connected to the source,
or opposite? What if the current in the first loop is decreasing?
Explain.
Q29.4 For Eq. (29.6), show that if is in meters per second, B in
teslas, and L in meters, then the units of the right-hand side of the
equation are joules per coulomb or volts (the correct SI units 
for ).
Q29.5 A long, straight conductor passes through the center of a
metal ring, perpendicular to its plane. If the current in the conduc-
tor increases, is a current induced in the ring? Explain.
Q29.6 A student asserted that if a permanent magnet is dropped
down a vertical copper pipe, it eventually reaches a terminal
velocity even if there is no air resistance. Why should this be? Or
should it?
Q29.7 An airplane is in level flight over Antarctica, where the
magnetic field of the earth is mostly directed upward away from

E

v

v

the ground. As viewed by a passenger facing toward the front of
the plane, is the left or the right wingtip at higher potential? Does
your answer depend on the direction the plane is flying?
Q29.8 Consider the situation in Exercise 29.19. In part (a), find the
direction of the force that the large circuit exerts on the small one.
Explain how this result is consistent with Lenz’s law.
Q29.9 A metal rectangle is close to a long, straight, current-carrying
wire, with two of its sides parallel to the wire. If the current in the
long wire is decreasing, is the rectangle repelled by or attracted to
the wire? Explain why this result is consistent with Lenz’s law.
Q29.10 A square conducting loop is in a region of uniform, con-
stant magnetic field. Can the loop be rotated about an axis along
one side and no emf be induced in the loop? Discuss, in terms of
the orientation of the rotation axis relative to the magnetic-field
direction.
Q29.11 Example 29.6 discusses the external force that must be
applied to the slidewire to move it at constant speed. If there were
a break in the left-hand end of the U-shaped conductor, how much
force would be needed to move the slidewire at constant speed? As
in the example, you can ignore friction.
Q29.12 In the situation shown in Fig. 29.17, would it be appropri-
ate to ask how much energy an electron gains during a complete
trip around the wire loop with current Would it be appropriate
to ask what potential difference the electron moves through during
such a complete trip? Explain your answers.
Q29.13 A metal ring is oriented with the plane of its area perpendi-
cular to a spatially uniform magnetic field that increases at a steady
rate. If the radius of the ring is doubled, by what factor do (a) the

I¿?

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

A vertically oriented square loop of copper wire falls from rest in a
region in which the field is horizontal, uniform, and perpendicu-
lar to the plane of the loop, into a field-free region. The side length
of the loop is s and the wire diameter is d. The resistivity of copper
is and the density of copper is If the loop reaches its termi-
nal speed while its upper segment is still in the magnetic-field
region, find an expression for the terminal speed.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. The motion of the loop through the magnetic field induces an

emf and a current in the loop. The field then gives rise to a mag-
netic force on this current that opposes the downward force of
gravity.

2. Consider the case in which the entire loop is in the magnetic-
field region. Is there an induced emf in this case? If so, what is
its direction?

rm.rR

B
S

3. Consider the case in which only the upper segment of the loop
is in the magnetic-field region. Is there an induced emf in this
case? If so, what is its direction?

4. For the case in which there is an induced emf and hence an
induced current, what is the direction of the magnetic force on
each of the four sides of the loop? What is the direction of the
net magnetic force on the loop?

EXECUTE
5. For the case in which the loop is falling at speed and there is

an induced emf, find (i) the emf, (ii) the induced current, and
(iii) the magnetic force on the loop in terms of its resistance R.

6. Find R and the mass of the loop in terms of the given informa-
tion about the loop.

7. Use your results from steps 5 and 6 to find an expression for the
terminal speed.

EVALUATE
8. How does the terminal speed depend on the magnetic-field

magnitude B? Explain why this makes sense.

v

BRIDGING PROBLEM A Falling Square Loop

www.masteringphysics.com
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emf induced in the ring and (b) the electric field induced in the ring
change?
Q29.14 . A type-II superconductor in an external field between

and has regions that contain magnetic flux and have resist-
ance, and also has superconducting regions. What is the resistance
of a long, thin cylinder of such material?
Q29.15 Can one have a displacement current as well as a conduc-
tion current within a conductor? Explain.
Q29.16 Your physics study partner asks you to consider a parallel-
plate capacitor that has a dielectric completely filling the volume
between the plates. He then claims that Eqs. (29.13) and (29.14)
show that the conduction current in the dielectric equals the dis-
placement current in the dielectric. Do you agree? Explain.
Q29.17 Match the mathematical statements of Maxwell’s equa-
tions as given in Section 29.7 to these verbal statements. (a)
Closed electric field lines are evidently produced only by changing
magnetic flux. (b) Closed magnetic field lines are produced both
by the motion of electric charge and by changing electric flux. 
(c) Electric field lines can start on positive charges and end on neg-
ative charges. (d) Evidently there are no magnetic monopoles on
which to start and end magnetic field lines.
Q29.18 If magnetic monopoles existed, the right-hand side of 
Eq. (29.21) would include a term proportional to the current of
magnetic monopoles. Suppose a steady monopole current is mov-
ing in a long straight wire. Sketch the electric field lines that such a
current would produce.

EXERCISES
Section 29.2 Faraday’s Law
29.1 . A single loop of wire with an area of 0.0900 m2 is in a uni-
form magnetic field that has an initial value of 3.80 T, is perpendi-
cular to the plane of the loop, and is decreasing at a constant rate of
0.190 T s. (a) What emf is induced in this loop? (b) If the loop has
a resistance of find the current induced in the loop.
29.2 .. In a physics laboratory experiment, a coil with 200 turns
enclosing an area of is rotated in 0.040 s from a position
where its plane is perpendicular to the earth’s magnetic field to a
position where its plane is parallel to the field. The earth’s mag-
netic field at the lab location is (a) What is the total
magnetic flux through the coil before it is rotated? After it is
rotated? (b) What is the average emf induced in the coil?
29.3 .. Search Coils and Credit Cards. One practical way to
measure magnetic field strength uses a small, closely wound coil
called a search coil. The coil is initially held with its plane perpen-
dicular to a magnetic field. The coil is then either quickly rotated a
quarter-turn about a diameter or quickly pulled out of the field. (a)
Derive the equation relating the total charge Q that flows through a
search coil to the magnetic-field magnitude B. The search coil has
N turns, each with area A, and the flux through the coil is decreased
from its initial maximum value to zero in a time The resistance
of the coil is R, and the total charge is where I is the
average current induced by the change in flux. (b) In a credit card
reader, the magnetic strip on the back of a credit card is rapidly
“swiped” past a coil within the reader. Explain, using the same
ideas that underlie the operation of a search coil, how the reader
can decode the information stored in the pattern of magnetization
on the strip. (c) Is it necessary that the credit card be “swiped”
through the reader at exactly the right speed? Why or why not?
29.4 . A closely wound search coil (see Exercise 29.3) has an area
of 120 turns, and a resistance of It is connected60.0 Æ.3.20 cm2,

Q = I¢t,
¢t.

6.0 * 10-5 T.

12 cm2

0.600 Æ,
>

Bc2Bc1

to a charge-measuring instrument whose resistance is 
When the coil is rotated quickly from a position parallel to a uni-
form magnetic field to a position perpendicular to the field, the
instrument indicates a charge of What is the mag-
nitude of the field?
29.5 . A circular loop of wire with a radius of 12.0 cm and ori-
ented in the horizontal xy-plane is located in a region of uniform
magnetic field. A field of 1.5 T is directed along the positive 
z-direction, which is upward. (a) If the loop is removed from the
field region in a time interval of 2.0 ms, find the average emf that
will be induced in the wire loop during the extraction process. 
(b) If the coil is viewed looking down on it from above, is the
induced current in the loop clockwise or counterclockwise?
29.6 . CALC A coil 4.00 cm in radius, containing 500 turns, is
placed in a uniform magnetic field that varies with time according
to The coil is con-
nected to a resistor, and its plane is perpendicular to the
magnetic field. You can ignore the resistance of the coil. (a) Find
the magnitude of the induced emf in the coil as a function of time.
(b) What is the current in the resistor at time 
29.7 . CALC The current in the
long, straight wire AB shown in
Fig. E29.7 is upward and is
increasing steadily at a rate 
(a) At an instant when the current
is i, what are the magnitude and
direction of the field at a dis-
tance r to the right of the wire? 
(b) What is the flux through
the narrow, shaded strip? (c) What
is the total flux through the loop?
(d) What is the induced emf in 
the loop? (e) Evaluate the numeri-
cal value of the induced emf if

and
29.8 . CALC A flat, circular, steel
loop of radius 75 cm is at rest in a
uniform magnetic field, as shown in
an edge-on view in Fig. E29.8. The 
field is changing with time, accord-
ing to 
(a) Find the emf induced in the
loop as a function of time. (b) When
is the induced emf equal to of its initial value? (c) Find the
direction of the current induced in the loop, as viewed from above
the loop.
29.9 . Shrinking Loop. A circular loop of flexible iron wire
has an initial circumference of 165.0 cm, but its circumference is
decreasing at a constant rate of due to a tangential pull
on the wire. The loop is in a constant, uniform magnetic field ori-
ented perpendicular to the plane of the loop and with magnitude
0.500 T. (a) Find the emf induced in the loop at the instant when 
9.0 s have passed. (b) Find the direction of the induced current in
the loop as viewed looking along the direction of the magnetic
field.
29.10 . A closely wound rectangular coil of 80 turns has dimen-
sions of 25.0 cm by 40.0 cm. The plane of the coil is rotated from a
position where it makes an angle of 37.0° with a magnetic field of
1.10 T to a position perpendicular to the field. The rotation takes
0.0600 s. What is the average emf induced in the coil?

12.0 cm>s

1
10

11.4 T2e-10.057 s-12t.B1t2 =

9.60 A>s.di>dt =24.0 cm,
L =b = 36.0 cm,a = 12.0 cm,

d£B

B
S

di>dt.

t = 5.00 s?

600-Æ
B = 10.0120 T>s2t + 13.00 * 10-5 T>s42t 4.

3.56 * 10-5 C.

45.0 Æ.

a

i

i

b

dr

L
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B
r

Figure E29.7
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Figure E29.8
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29.11 . CALC In a region of space, a magnetic field points in the
(toward the right). Its magnitude varies with posi-

tion according to the formula where and b are
positive constants, for A flat coil of area A moves with
uniform speed from right to left with the plane of its area
always perpendicular to this field. (a) What is the emf induced
in this coil while it is to the right of the origin? (b) As viewed
from the origin, what is the direction (clockwise or counter-
clockwise) of the current induced in the coil? (c) If instead the
coil moved from left to right, what would be the answers to parts
(a) and (b)?
29.12 . Back emf. A motor with a brush-and-commutator
arrangement, as described in Example 29.4, has a circular coil with
radius 2.5 cm and 150 turns of wire. The magnetic field has magni-
tude 0.060 T, and the coil rotates at (a) What is the
maximum emf induced in the coil? (b) What is the average back emf?
29.13 .. The armature of a small generator consists of a flat,
square coil with 120 turns and sides with a length of 1.60 cm. The
coil rotates in a magnetic field of 0.0750 T. What is the angular
speed of the coil if the maximum emf produced is 24.0 mV?
29.14 . A flat, rectangular coil of
dimensions l and w is pulled with uni-
form speed through a uniform magnetic
field B with the plane of its area perpen-
dicular to the field (Fig. E29.14). (a) Find
the emf induced in this coil. (b) If the
speed and magnetic field are both tripled,
what is the induced emf?

Section 29.3 Lenz’s Law
29.15 . A circular loop of wire is
in a region of spatially uniform
magnetic field, as shown in Fig.
E29.15. The magnetic field is
directed into the plane of the fig-
ure. Determine the direction
(clockwise or counterclockwise)
of the induced current in the loop
when (a) B is increasing; (b) B is
decreasing; (c) B is constant with
value Explain your reasoning.
29.16 . The current in Fig.
E29.16 obeys the equation 
where Find the direction (clock-
wise or counterclockwise) of the current
induced in the round coil for 
29.17 . Using Lenz’s law, determine the
direction of the current in resistor ab of
Fig. E29.17 when (a) switch S is opened
after having been closed for several min-
utes; (b) coil B is brought closer to coil A with the switch closed;
(c) the resistance of R is decreased while the switch remains
closed.

t 7 0.

b 7 0.
I(t2 = I0e-bt,

B0.

v

440 rev>min.

v
x Ú 0.

B0Bx = B0 + bx,
+x-direction

29.18 . A cardboard tube is
wrapped with two windings of
insulated wire wound in oppo-
site directions, as shown in Fig.
E29.18. Terminals a and b of
winding A may be connected to
a battery through a reversing
switch. State whether the
induced current in the resistor R
is from left to right or from
right to left in the following cir-
cumstances: (a) the current in winding A is from a to b and is
increasing; (b) the current in winding A is from b to a and is decreas-
ing; (c) the current in winding A is from b to a and is increasing.
29.19 . A small, circular ring is
inside a larger loop that is con-
nected to a battery and a switch, as
shown in Fig. E29.19. Use Lenz’s
law to find the direction of the cur-
rent induced in the small ring 
(a) just after switch S is closed; (b)
after S has been closed a long time;
(c) just after S has been reopened
after being closed a long time.
29.20 . A circular loop of wire with
radius and resistance

is in a region of spatially
uniform magnetic field, as shown in Fig.
E29.20. The magnetic field is directed out
of the plane of the figure. The magnetic
field has an initial value of 8.00 T and 
is decreasing at a rate of

. (a) Is the induced current in
the loop clockwise or counterclockwise?
(b) What is the rate at which electrical energy is being dissipated by
the resistance of the loop?
29.21 . CALC A circular loop of wire
with radius and resist-
ance is in a region of spa-
tially uniform magnetic field, as shown
in Fig. E29.21. The magnetic field is
directed into the plane of the figure. 
At , . The magnetic field
then begins increasing, with

. What is the current in
the loop (magnitude and direction) at
the instant when ?

Section 29.4 Motional Electromotive Force
29.22 . A rectangular loop of wire with dimensions 1.50 cm by
8.00 cm and resistance is being pulled to the right out
of a region of uniform magnetic field. The magnetic field has mag-
nitude and is directed into the plane of Fig. E29.22. AtB = 3.50 T

R = 0.600 Æ

B = 1.33 T

s32t 310.380 T>
B1t2 =

B = 0t = 0

0.390 ÆR =
0.0250 mr =

-0.680 T>s
dB>dt =

R = 0.160 Æ
r = 0.0480 m

v
B
Sl

w

Figure E29.14
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the instant when the speed of the loop is 3.00 m s and it is still par-
tially in the field region, what force (magnitude and direction) does
the magnetic field exert on the loop?
29.23 . In Fig. E29.23 a conducting
rod of length moves in a
magnetic field of magnitude 0.450 T
directed into the plane of the figure. The
rod moves with speed 
in the direction shown. (a) What is the
potential difference between the ends
of the rod? (b) Which point, a or b, is
at higher potential? (c) When the charges in the rod are in equilib-
rium, what are the magnitude and direction of the electric field
within the rod? (d) When the charges in the rod are in equilibrium,
which point, a or b, has an excess of positive charge? (e) What is
the potential difference across the rod if it moves (i) parallel to ab
and (ii) directly out of the page?
29.24 . A rectangle measuring
30.0 cm by 40.0 cm is located
inside a region of a spatially uni-
form magnetic field of 1.25 T,
with the field perpendicular to the
plane of the coil (Fig. E29.24).
The coil is pulled out at a steady
rate of traveling per-
pendicular to the field lines. The
region of the field ends abruptly as shown. Find the emf induced in
this coil when it is (a) all inside the field; (b) partly inside the field;
(c) all outside the field.
29.25 . Are Motional emfs a Practical Source of Electricity?
How fast (in and mph) would a 5.00-cm copper bar have to
move at right angles to a 0.650-T magnetic field to generate 1.50 V
(the same as a AA battery) across its ends? Does this seem like a
practical way to generate electricity?
29.26 . Motional emfs in Transportation. Airplanes and
trains move through the earth’s magnetic field at rather high speeds,
so it is reasonable to wonder whether this field can have a substan-
tial effect on them. We shall use a typical value of 0.50 G for the
earth’s field (a) The French TGV train and the Japanese “bullet
train” reach speeds of up to 180 mph moving on tracks about 1.5 m
apart. At top speed moving perpendicular to the earth’s magnetic
field, what potential difference is induced across the tracks as the
wheels roll? Does this seem large enough to produce noticeable
effects? (b) The Boeing 747-400 aircraft has a wingspan of 64.4 m
and a cruising speed of 565 mph. If there is no wind blowing (so
that this is also their speed relative to the ground), what is the maxi-
mum potential difference that could be induced between the oppo-
site tips of the wings? Does this seem large enough to cause
problems with the plane?
29.27 . The conducting rod
ab shown in Fig. E29.27 makes
contact with metal rails ca and
db. The apparatus is in a uni-
form magnetic field of 0.800 T,
perpendicular to the plane of
the figure (a) Find the magni-
tude of the emf induced in the
rod when it is moving toward the right with a speed 
(b) In what direction does the current flow in the rod? (c) If the
resistance of the circuit abdc is (assumed to be constant),
find the force (magnitude and direction) required to keep the rod
moving to the right with a constant speed of You can7.50 m>s.

1.50 Æ

7.50 m>s.

m>s

2.00 cm>s

5.00 m>sv =

B
S

L = 30.0 cm

> ignore friction. (d) Compare the rate at which mechanical work is
done by the force with the rate at which thermal energy is
developed in the circuit 
29.28 . A 1.50-m-long metal bar
is pulled to the right at a steady

perpendicular to a uni-
form, 0.750-T magnetic field. The
bar rides on parallel metal rails
connected through a resis-
tor, as shown in Fig. E29.28, so
the apparatus makes a complete
circuit. You can ignore the resistance of the bar and the rails. 
(a) Calculate the magnitude of the emf induced in the circuit. 
(b) Find the direction of the current induced in the circuit (i) using
the magnetic force on the charges in the moving bar; (ii) using
Faraday’s law; (iii) using Lenz’s law. (c) Calculate the current
through the resistor.
29.29 . A 0.360-m-long metal
bar is pulled to the left by an
applied force F. The bar rides on
parallel metal rails connected
through a resistor, as
shown in Fig. E29.29, so the
apparatus makes a complete cir-
cuit. You can ignore the resist-
ance of the bar and rails. The
circuit is in a uniform 0.650-T magnetic field that is directed out of
the plane of the figure. At the instant when the bar is moving to the
left at 5.90 m s, (a) is the induced current in the circuit clockwise
or counterclockwise and (b) what is the rate at which the applied
force is doing work on the bar?
29.30 . Consider the circuit shown in Fig. E29.29, but with the
bar moving to the right with speed . As in Exercise 29.29, the bar
has length 0.360 m, , and . (a) Is the
induced current in the circuit clockwise or counterclockwise? 
(b) At an instant when the resistor is dissipating electrical
energy at a rate of , what is the speed of the bar?
29.31 . A 0.250-m-long bar
moves on parallel rails that are
connected through a 
resistor, as shown in Fig. E29.31,
so the apparatus makes a complete
circuit. You can ignore the resist-
ance of the bar and rails. The cir-
cuit is in a uniform magnetic field

that is directed into the plane of the figure. At an
instant when the induced current in the circuit is counterclockwise
and equal to 1.75 A, what is the velocity of the bar (magnitude and
direction)?
29.32 . . BIO Measuring
Blood Flow. Blood con-
tains positive and negative
ions and thus is a conductor.
A blood vessel, therefore, can
be viewed as an electrical
wire. We can even picture the
flowing blood as a series of parallel conducting slabs whose thick-
ness is the diameter d of the vessel moving with speed . (See 
Fig. E29.32.) (a) If the blood vessel is placed in a magnetic field B
perpendicular to the vessel, as in the figure, show that the
motional potential difference induced across it is (b) If
you expect that the blood will be flowing at 15 cm s for a vessel>

E = vBd.

v

B = 1.20 T

6.00-Æ

0.840 J>s
45.0-Æ

B = 0.650 TR = 45.0 Æ
v

>

45.0-Æ

25.0-Æ

5.0 m>s

1I 2R2.
1Fv2
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b
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S
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5.0 mm in diameter, what strength of magnetic field will you need
to produce a potential difference of 1.0 mV? (c) Show that the
volume rate of flow (R) of the blood is equal to 
(Note: Although the method developed here is useful in measur-
ing the rate of blood flow in a vessel, it is limited to use in surgery
because measurement of the potential must be made directly
across the vessel.)
29.33 . A 1.41-m bar moves through
a uniform, 1.20-T magnetic field with
a speed of (Fig. E29.33). In
each case, find the emf induced
between the ends of this bar and iden-
tify which, if any, end (a or b) is at
the higher potential. The bar moves in
the direction of (a) the (b)
the (c) the (d)
How should this bar move so that the emf across its ends has the
greatest possible value with b at a higher potential than a, and what
is this maximum emf?
29.34 .. A rectangular circuit is moved at a constant velocity of 
3.0 m s into, through, and then out of a uniform 1.25-T magnetic
field, as shown in Fig. E29.34. The magnetic-field region is consid-
erably wider than 50.0 cm. Find the magnitude and direction (clock-
wise or counterclockwise) of the current induced in the circuit as it is
(a) going into the magnetic field; (b) totally within the magnetic
field, but still moving; and (c) moving out of the field. (d) Sketch a
graph of the current in this circuit as a function of time, including the
preceding three cases.

Section 29.5 Induced Electric Fields
29.35 . The magnetic field within a long, straight solenoid with a
circular cross section and radius R is increasing at a rate of 
(a) What is the rate of change of flux through a circle with radius 
inside the solenoid, normal to the axis of the solenoid, and with
center on the solenoid axis? (b) Find the magnitude of the induced
electric field inside the solenoid, at a distance from its axis. Show
the direction of this field in a diagram. (c) What is the magnitude of
the induced electric field outside the solenoid, at a distance 
from the axis? (d) Graph the magnitude of the induced electric field
as a function of the distance r from the axis from to 
(e) What is the magnitude of the induced emf in a circular turn of
radius that has its center on the solenoid axis? (f) What is the
magnitude of the induced emf if the radius in part (e) is R? (g) What
is the induced emf if the radius in part (e) is 2R?
29.36 .. A long, thin solenoid has 900 turns per meter and
radius 2.50 cm. The current in the solenoid is increasing at a uni-
form rate of What is the magnitude of the induced elec-
tric field at a point near the center of the solenoid and (a) 0.500 cm
from the axis of the solenoid; (b) 1.00 cm from the axis of the
solenoid?
29.37 .. A long, thin solenoid has 400 turns per meter and radius
1.10 cm. The current in the solenoid is increasing at a uniform rate

The induced electric field at a point near the center of the sole-
noid and 3.50 cm from its axis is Calculate di>dt.8.00 * 10-6 V>m.
di>dt.

60.0 A>s.

R>2

r = 2R.r = 0

r2

r1

r1

dB>dt.

>

+z-axis.-y-axis;
+x-axis;

2.50 m>s

E

R = pEd>4B.

29.38 . A metal ring 4.50 cm in diameter is placed between the
north and south poles of large magnets with the plane of its area
perpendicular to the magnetic field. These magnets produce an ini-
tial uniform field of 1.12 T between them but are gradually pulled
apart, causing this field to remain uniform but decrease steadily at

(a) What is the magnitude of the electric field induced
in the ring? (b) In which direction (clockwise or counterclockwise)
does the current flow as viewed by someone on the south pole of
the magnet?
29.39 . A long, straight solenoid with a cross-sectional area of

is wound with 90 turns of wire per centimeter, and the
windings carry a current of 0.350 A. A second winding of 12 turns
encircles the solenoid at its center. The current in the solenoid is
turned off such that the magnetic field of the solenoid becomes
zero in 0.0400 s. What is the average induced emf in the second
winding?
29.40 . The magnetic field at all points within the colored cir-
cle shown in Fig. E29.15 has an initial magnitude of 0.750 T. (The
circle could represent approximately the space inside a long, thin
solenoid.) The magnetic field is directed into the plane of the dia-
gram and is decreasing at the rate of (a) What is the
shape of the field lines of the induced electric field shown in Fig.
E29.15, within the colored circle? (b) What are the magnitude and
direction of this field at any point on the circular conducting ring
with radius 0.100 m? (c) What is the current in the ring if its resist-
ance is (d) What is the emf between points a and b on the
ring? (e) If the ring is cut at some point and the ends are separated
slightly, what will be the emf between the ends?

Section 29.7 Displacement Current 
and Maxwell’s Equations
29.41 . CALC The electric flux through a certain area of a dielec-
tric is The displacement current through
that area is 12.9 pA at time ms. Calculate the dielectric
constant for the dielectric.
29.42 . A parallel-plate, air-filled capacitor is being charged as in
Fig. 29.22. The circular plates have radius 4.00 cm, and at a partic-
ular instant the conduction current in the wires is 0.280 A. (a)
What is the displacement current density in the air space
between the plates? (b) What is the rate at which the electric field
between the plates is changing? (c) What is the induced magnetic
field between the plates at a distance of 2.00 cm from the axis? 
(d) At 1.00 cm from the axis?
29.43 . Displacement Current in a Dielectric. Suppose that
the parallel plates in Fig. 29.22 have an area of and are
separated by a 2.50-mm-thick sheet of dielectric that completely
fills the volume between the plates. The dielectric has dielectric
constant 4.70. (You can ignore fringing effects.) At a certain
instant, the potential difference between the plates is 120 V and the
conduction current equals 6.00 mA. At this instant, what are (a)
the charge q on each plate; (b) the rate of change of charge on the
plates; (c) the displacement current in the dielectric?
29.44 . CALC In Fig. 29.22 the capacitor plates have area

and separation 2.00 mm. The plates are in vacuum. The
charging current has a constant value of 1.80 mA. At the
charge on the plates is zero. (a) Calculate the charge on the plates,
the electric field between the plates, and the potential difference
between the plates when (b) Calculate the
time rate of change of the electric field between the plates. Does

vary in time? (c) Calculate the displacement current density
between the plates, and from this the total displacement current
How do and compare?iDiCiD.

jD

dE>dt

dE>dt,t = 0.500 ms.

t = 0iC

5.00 cm2

iC

3.00 cm2

jD

t = 26.1
18.76 * 103 V # m>s42t 4.

4.00 Æ?

-0.0350 T>s.

B
S

8.00 cm2
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B

y

x37.0°
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29.45 . CALC Displacement Current in a Wire. A long,
straight, copper wire with a circular cross-sectional area of
carries a current of 16 A. The resistivity of the material is 

(a) What is the uniform electric field in the material?
(b) If the current is changing at the rate of at what rate is
the electric field in the material changing? (c) What is the displace-
ment current density in the material in part (b)? (Hint: Since K for
copper is very close to 1, use (d) If the current is changing
as in part (b), what is the magnitude of the magnetic field 6.0 cm
from the center of the wire? Note that both the conduction current
and the displacement current should be included in the calculation
of B. Is the contribution from the displacement current significant?

Section 29.8 Superconductivity
29.46 . At temperatures near absolute zero, approaches 0.142 T
for vanadium, a type-I superconductor. The normal phase of vana-
dium has a magnetic susceptibility close to zero. Consider a long,
thin vanadium cylinder with its axis parallel to an external magnetic
field in the -direction. At points far from the ends of the cylin-
der, by symmetry, all the magnetic vectors are parallel to the x-axis.
At temperatures near absolute zero, what are the resultant magnetic
field and the magnetization inside and outside the cylinder (far
from the ends) for (a) and (b) 
29.47 . The compound is a type-II superconductor. At temper-
atures near absolute zero the two critical fields are 
and The normal phase of has a magnetic sus-
ceptibility close to zero. A long, thin cylinder has its axis par-
allel to an external magnetic field in the -direction. At points
far from the ends of the cylinder, by symmetry, all the magnetic
vectors are parallel to the x-axis. At a temperature near absolute
zero, the external magnetic field is slowly increased from zero.
What are the resultant magnetic field and the magnetization 
inside the cylinder at points far from its ends (a) just before the
magnetic flux begins to penetrate the material, and (b) just after the
material becomes completely normal?

PROBLEMS
29.48 ... CALC A Changing Magnetic Field. You are testing a
new data-acquisition system. This system allows you to record a
graph of the current in a circuit as a function of time. As part of the
test, you are using a circuit made up of a 4.00-cm-radius, 500-turn
coil of copper wire connected in series to a resistor. Copper
has resistivity and the wire used for the coil
has diameter 0.0300 mm. You place the coil on a table that is tilted

from the horizontal and that lies between the poles of an
electromagnet. The electromagnet generates a vertically upward
magnetic field that is zero for equal to 

for and equal to 0.240 T for
(a) Draw the graph that should be produced by your

data-acquisition system. (This is a full-featured system, so the
graph will include labels and numerical values on its axes.) (b) If
you were looking vertically downward at the coil, would the cur-
rent be flowing clockwise or counterclockwise?
29.49 .. CP CALC In the circuit shown in Fig. P29.49 the capaci-
tor has capacitance and is initially charged to 100 V
with the polarity shown. The resistor has resistance At
time the switch is closed. The small circuit is not connected
in any way to the large one. The wire of the small circuit has a
resistance of and contains 25 loops. The large circuit is a1.0 Æ>m

t = 0
10 Æ.R0

C = 20 mF

t 7 1.00 s.
0 … t … 1.00 s,11 - cos pt2

10.120 T2 *t 6 0,

30.0°

1.72 * 10-8 Æ # m,
600-Æ

M
S

B
S

+xB
S

0

SiV3

SiV3Bc2 = 15.0 T.
Bc1 = 55.0 mT

SiV3

10.260 T)ın?B
S

0 �B
S

0 � 10.130 T)ın
M
S

B
S

+xB
S

0

Bc

P = P0.)

4000 A>s,
10-8 Æ # m.

2.0 *
2.1 mm2

rectangle 2.0 m by 4.0 m, while
the small one has dimensions

and
The distance c is 5.0 cm. (The
figure is not drawn to scale.)
Both circuits are held stationary.
Assume that only the wire near-
est the small circuit produces 
an appreciable magnetic field
through it. (a) Find the current in the large circuit after S is
closed. (b) Find the current in the small circuit after S is
closed. (Hint: See Exercise 29.7.) (c) Find the direction of the cur-
rent in the small circuit. (d) Justify why we can ignore the mag-
netic field from all the wires of the large circuit except for the wire
closest to the small circuit.
29.50 .. CP CALC In the circuit in Fig. P29.49, an emf of 90.0 V
is added in series with the capacitor and the resistor, and the capac-
itor is initially uncharged. The emf is placed between the capacitor
and the switch, with the positive terminal of the emf adjacent to the
capacitor. Otherwise, the two circuits are the same as in Problem
29.49. The switch is closed at . When the current in the large
circuit is 5.00 A, what are the magnitude and direction of the
induced current in the small circuit?
29.51 .. CALC A very long, straight solenoid with a cross-
sectional area of is wound with 90.0 turns of wire per
centimeter. Starting at , the current in the solenoid is increas-
ing according to . A secondary winding of 
5 turns encircles the solenoid at its center, such that the secondary
winding has the same cross-sectional area as the solenoid. What is
the magnitude of the emf induced in the secondary winding at the
instant that the current in the solenoid is 3.20 A?
29.52 . A flat coil is oriented with
the plane of its area at right angles to
a spatially uniform magnetic field.
The magnitude of this field varies
with time according to the graph in
Fig. P29.52. Sketch a qualitative
(but accurate!) graph of the emf
induced in the coil as a function of
time. Be sure to identify the times 

and on your graph.
29.53 . In Fig. P29.53 the
loop is being pulled to the right
at constant speed A constant
current I flows in the long wire,
in the direction shown. (a) Cal-
culate the magnitude of the net
emf induced in the loop. Do
this two ways: (i) by using Fara-
day’s law of induction (Hint:
See Exercise 29.7) and (ii) by
looking at the emf induced in
each segment of the loop due to
its motion. (b) Find the direction (clockwise or counterclockwise)
of the current induced in the loop. Do this two ways: (i) using
Lenz’s law and (ii) using the magnetic force on charges in the loop.
(c) Check your answer for the emf in part (a) in the following spe-
cial cases to see whether it is physically reasonable: (i) The loop is
stationary; (ii) the loop is very thin, so (iii) the loop gets
very far from the wire.
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29.54 . Suppose the loop in
Fig. P29.54 is (a) rotated about
the y-axis; (b) rotated about the
x-axis; (c) rotated about an edge
parallel to the z-axis. What is 
the maximum induced emf in 
each case if 

and
29.55 ... As a new electrical
engineer for the local power
company, you are assigned the project of designing a generator of
sinusoidal ac voltage with a maximum voltage of 120 V. Besides
plenty of wire, you have two strong magnets that can produce a
constant uniform magnetic field of 1.5 T over a square area of
10.0 cm on a side when they are 12.0 cm apart. The basic design
should consist of a square coil turning in the uniform magnetic field.
To have an acceptable coil resistance, the coil can have at most 400
loops. What is the minimum rotation rate (in rpm) of the coil so it
will produce the required voltage?
29.56 . Make a Generator? You are shipwrecked on a
deserted tropical island. You have some electrical devices that you
could operate using a generator but you have no magnets. The
earth’s magnetic field at your location is horizontal and has magni-
tude and you decide to try to use this field for a gen-
erator by rotating a large circular coil of wire at a high rate. You
need to produce a peak emf of 9.0 V and estimate that you can
rotate the coil at 30 rpm by turning a crank handle. You also decide
that to have an acceptable coil resistance, the maximum number of
turns the coil can have is 2000. (a) What area must the coil have?
(b) If the coil is circular, what is the maximum translational speed
of a point on the coil as it rotates? Do you think this device is fea-
sible? Explain.
29.57 . A flexible circular loop 6.50 cm in diameter lies in a
magnetic field with magnitude 1.35 T, directed into the plane of
the page as shown in Fig. P29.57. The loop is pulled at the points
indicated by the arrows, forming a loop of zero area in 0.250 s. 
(a) Find the average induced emf in the circuit. (b) What is the
direction of the current in R: from a to b or from b to a? Explain
your reasoning.

29.58 ... CALC A conducting rod with length , mass
, and resistance moves without friction

on metal rails as shown in Fig. 29.11. A uniform magnetic field
with magnitude is directed into the plane of the figure.
The rod is initially at rest, and then a constant force with magnitude

and directed to the right is applied to the bar. How
many seconds after the force is applied does the bar reach a speed
of ?
29.59 ... Terminal Speed. A conducting rod with length L,
mass m, and resistance R moves without friction on metal rails as
shown in Fig. 29.11. A uniform magnetic field is directed into
the plane of the figure. The rod starts from rest and is acted on by a

B
S

25.0 m>s

F = 1.90 N

B = 1.50 T

R = 80.0 Æm = 0.120 kg
L = 0.200 m

8.0 * 10-5 T,

0.450 T?B =35.0 rad>s,
v =A = 600 cm2,

constant force directed to the right. The rails are infinitely long
and have negligible resistance. (a) Graph the speed of the rod as a
function of time. (b) Find an expression for the terminal speed (the
speed when the acceleration of the rod is zero).
29.60 .. CP CALC Terminal Speed. A bar of length m is
free to slide without friction on horizontal rails, as shown in 
Fig. P29.60. There is a uni-
form magnetic field 
directed into the plane of the
figure. At one end of the rails
there is a battery with emf

and a switch. The bar
has mass 0.90 kg and resistance

and all other resistance
in the circuit can be ignored.
The switch is closed at time

(a) Sketch the speed of the bar as a function of time. 
(b) Just after the switch is closed, what is the acceleration of the
bar? (c) What is the acceleration of the bar when its speed is

(d) What is the terminal speed of the bar?
29.61 . CP Antenna emf. A satellite, orbiting the earth at the
equator at an altitude of 400 km, has an antenna that can be mod-
eled as a 2.0-m-long rod. The antenna is oriented perpendicular to
the earth’s surface. At the equator, the earth’s magnetic field is
essentially horizontal and has a value of ignore any
changes in B with altitude. Assuming the orbit is circular, deter-
mine the induced emf between the tips of the antenna.
29.62 . emf in a Bullet. At the equator, the earth’s magnetic
field is approximately horizontal, is directed toward the north, and
has a value of (a) Estimate the emf induced between
the top and bottom of a bullet shot horizontally at a target on the
equator if the bullet is shot toward the east. Assume the bullet has a
length of 1 cm and a diameter of 0.4 cm and is traveling at

Which is at higher potential: the top or bottom of the bul-
let? (b) What is the emf if the bullet travels south? (c) What is the
emf induced between the front and back of the bullet for any hori-
zontal velocity?
29.63 .. CALC A very long,
cylindrical wire of radius R
carries a current uniformly
distributed across the cross
section of the wire. Calculate
the magnetic flux through a
rectangle that has one side of
length W running down the
center of the wire and another
side of length R, as shown in
Fig. P29.63 (see Exercise 29.7).
29.64 . CALC A circular conducting
ring with radius lies in
the xy-plane in a region of uniform mag-
netic field

In this expression, 
and is constant, t is time, is

the unit vector in the -direction, and
and is constant. At

points a and b (Fig. P29.64) there is a
small gap in the ring with wires lead-
ing to an external circuit of resistance

There is no magnetic field at the location of the
external circuit. (a) Derive an expression, as a function of time, for
the total magnetic flux through the ring. (b) Determine the emf£B
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induced in the ring at time What is the polarity
of the emf? (c) Because of the internal resistance of the ring, the
current through R at the time given in part (b) is only 3.00 mA.
Determine the internal resistance of the ring. (d) Determine the
emf in the ring at a time What is the polarity of
the emf? (e) Determine the time at which the current through R
reverses its direction.
29.65 . CALC The long, straight wire shown in Fig. P29.65a car-
ries constant current I. A metal bar with length L is moving at con-
stant velocity as shown in the figure. Point a is a distance d from
the wire. (a) Calculate the emf induced in the bar. (b) Which point,
a or b, is at higher potential? (c) If the bar is replaced by a rectan-
gular wire loop of resistance R (Fig. P29.65b), what is the magni-
tude of the current induced in the loop?

29.66 . The cube shown in Fig.
P29.66, 50.0 cm on a side, is in a
uniform magnetic field of 0.120 T,
directed along the positive y-axis.
Wires A, C, and D move in the
directions indicated, each with a
speed of (Wire A
moves parallel to the xy-plane, C
moves at an angle of below
the xy-plane, and D moves paral-
lel to the xz-plane.) What is the
potential difference between the
ends of each wire?
29.67 . CALC A slender rod, 0.240 m long, rotates with an angu-
lar speed of about an axis through one end and perpen-
dicular to the rod. The plane of rotation of the rod is perpendicular
to a uniform magnetic field with a magnitude of 0.650 T. (a) What
is the induced emf in the rod? (b) What is the potential difference
between its ends? (c) Suppose instead the rod rotates at 
about an axis through its center and perpendicular to the rod. In
this case, what is the potential difference between the ends of the
rod? Between the center of the rod and one end?
29.68 . A Magnetic Exercise Machine. You have designed a
new type of exercise machine with an extremely simple mecha-
nism (Fig. E29.28). A vertical bar of silver (chosen for its low
resistivity and because it makes the machine look cool) with length

is free to move left or right without friction on silver
rails. The entire apparatus is placed in a horizontal, uniform mag-
netic field of strength 0.25 T. When you push the bar to the left or
right, the bar’s motion sets up a current in the circuit that includes
the bar. The resistance of the bar and the rails can be neglected.
The magnetic field exerts a force on the current-carrying bar, and
this force opposes the bar’s motion. The health benefit is from the
exercise that you do in working against this force. (a) Your design

L = 3.0 m

8.80 rad>s

8.80 rad>s

45.0°

0.350 m>s.

vS,

t = 1.21 * 10-2 s.

t = 5.00 * 10-3 s. goal is that the person doing the exercise is to do work at the rate
of 25 watts when moving the bar at a steady What should
be the resistance R? (b) You decide you want to be able to vary the
power required from the person, to adapt the machine to the per-
son’s strength and fitness. If the power is to be increased to 50 W
by altering R while leaving the other design parameters constant,
should R be increased or decreased? Calculate the value of R for
50 W. (c) When you start to construct a prototype machine, you
find it is difficult to produce a 0.25-T magnetic field over such a
large area. If you decrease the length of the bar to 0.20 m while
leaving B, and R the same as in part (a), what will be the power
required of the person?
29.69 .. CP CALC A rectan-
gular loop with width L and a
slide wire with mass m are as
shown in Fig. P29.69. A uni-
form magnetic field is
directed perpendicular to the
plane of the loop into the plane
of the figure. The slide wire is
given an initial speed of and then released. There is no friction
between the slide wire and the loop, and the resistance of the loop
is negligible in comparison to the resistance R of the slide wire. 
(a) Obtain an expression for F, the magnitude of the force exerted
on the wire while it is moving at speed (b) Show that the distance
x that the wire moves before coming to rest is 
29.70 .. A 25.0-cm-long metal rod lies in the xy-plane and makes
an angle of with the positive x-axis and an angle of 
with the positive y-axis. The rod is moving in the -direction
with a speed of . The rod is in a uniform magnetic field

(a) What is the
magnitude of the emf induced in the rod? (b) Indicate in a sketch
which end of the rod is at higher potential.
29.71 . The magnetic field at all
points within a circular region of
radius R, is uniform in space and
directed into the plane of the page
as shown in Fig. P29.71. (The
region could be a cross section
inside the windings of a long,
straight solenoid.) If the magnetic
field is increasing at a rate 
what are the magnitude and direc-
tion of the force on a stationary pos-
itive point charge q located at points
a, b, and c? (Point a is a distance r above the center of the region,
point b is a distance r to the right of the center, and point c is at the
center of the region.)
29.72 . CALC An airplane propeller of total length L rotates
around its center with angular speed in a magnetic field that is
perpendicular to the plane of rotation. Modeling the propeller as a
thin, uniform bar, find the potential difference between (a) the cen-
ter and either end of the propeller and (b) the two ends. (c) If the
field is the earth’s field of 0.50 G and the propeller turns at 220 rpm
and is 2.0 m long, what is the potential difference between the
middle and either end? It this large enough to be concerned about?
29.73 ... CALC A dielectric of permittivity 
completely fills the volume between two capacitor plates. For 
the electric flux through the dielectric is 
The dielectric is ideal and nonmagnetic; the conduction current in
the dielectric is zero. At what time does the displacement current in
the dielectric equal 21 mA?
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29.74 .. CP CALC A capacitor has two parallel plates with area A
separated by a distance d. The space between plates is filled with a
material having dielectric constant K. The material is not a perfect
insulator but has resistivity The capacitor is initially charged
with charge of magnitude on each plate that gradually dis-
charges by conduction through the dielectric. (a) Calculate the
conduction current density in the dielectric. (b) Show that at
any instant the displacement current density in the dielectric is
equal in magnitude to the conduction current density but opposite
in direction, so the total current density is zero at every instant.
29.75 .. CALC A rod of pure silicon (resistivity 
is carrying a current. The electric field varies sinusoidally with time
according to where 
and the frequency (a) Find the magnitude of the max-
imum conduction current density in the wire. (b) Assuming

find the maximum displacement current density in the
wire, and compare with the result of part (a). (c) At what frequency

would the maximum conduction and displacement densities
become equal if (which is not actually the case)? (d) At the
frequency determined in part (c), what is the relative phase of the
conduction and displacement currents?

CHALLENGE PROBLEMS
29.76 ... CP CALC A square, conducting, wire loop of side L,
total mass m, and total resistance R initially lies in the horizontal
xy-plane, with corners at 
and There is a uniform, upward magnetic field 
in the space within and around the loop. The side of the loop that
extends from to is held in place on the x-axis;
the rest of the loop is free to pivot around this axis. When the loop
is released, it begins to rotate due to the gravitational torque. (a)

1L, 0, 0210, 0, 02

B
S

� BkN1L, L, 02.
1x, y, z2 = 10, 0, 02, 10, L, 02, 1L, 0, 02,

E = E0

ƒ

E = E0,

ƒ = 120 Hz.
v = 2pƒ,E0 = 0.450 V>m,sinvt,E = E0

r = 2300 Æ # m2

jC1t2

Q0

r.

Find the net torque (magnitude and direction) that acts on the loop
when it has rotated through an angle from its original orientation
and is rotating downward at an angular speed (b) Find the angu-
lar acceleration of the loop at the instant described in part (a). (c)
Compared to the case with zero magnetic field, does it take the
loop a longer or shorter time to rotate through Explain. (d) Is
mechanical energy conserved as the loop rotates downward?
Explain.
29.77 ... A metal bar with length L, mass m, and resistance R is
placed on frictionless metal rails that are inclined at an angle 
above the horizontal. The rails have negligible resistance. A uni-
form magnetic field of magnitude B is directed downward as
shown in Fig. P29.77. The bar is released from rest and slides
down the rails. (a) Is the direction of the current induced in the bar
from a to b or from b to a? (b) What is the terminal speed of the
bar? (c) What is the induced current in the bar when the terminal
speed has been reached? (d) After the terminal speed has been
reached, at what rate is electrical energy being converted to ther-
mal energy in the resistance of the bar? (e) After the terminal speed
has been reached, at what rate is work being done on the bar by
gravity? Compare your answer to that in part (d).
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Chapter Opening Question ?
As the magnetic stripe moves through the card reader, the coded
pattern of magnetization in the stripe causes a varying magnetic
flux and hence an induced current in the reader’s circuits. If the
card does not move, there is no induced emf or current and none of
the credit card’s information is read.

Test Your Understanding Questions
29.2 Answers: (a) (i), (b) (iii) (a) Initially there is magnetic flux
into the plane of the page, which we call positive. While the loop is
being squeezed, the flux is becoming less positive 
and so the induced emf is positive as in Fig. 29.6b

If you point the thumb of your right hand
into the page, your fingers curl clockwise, so this is the direction of
positive induced emf. (b) Since the coil’s shape is no longer chang-
ing, the magnetic flux is not changing and there is no induced emf.
29.3 Answers: (a) (i), (b) (iii) In (a), as in the original situation,
the magnet and loop are approaching each other and the downward
flux through the loop is increasing. Hence the induced emf and
induced current are the same. In (b), since the magnet and loop are
moving together, the flux through the loop is not changing and no
emf is induced.
29.4 Answers: (a) (iii); (b) (i) or (ii); (c) (ii) or (iii) You will get
the maximum motional emf if you hold the rod vertically, so that
its length is perpendicular to both the magnetic field and the direc-

1E = -d£B>dt 7 02.

1d£B>dt 6 02

tion of motion. With this orientation, is parallel to If you
hold the rod in any horizontal orientation, will be perpendicular
to and no emf will be induced. If you walk due north or
south, and no emf will be induced for any orientation
of the rod.
29.5 Answers: yes, no The magnetic field at a fixed position
changes as you move the magnet. Such induced electric fields are
not conservative.
29.6 Answer: (iii) By Lenz’s law, the force must oppose the
motion of the disk through the magnetic field. Since the disk mate-
rial is now moving to the right through the field region, the force 
is to the left—that is, in the opposite direction to that shown in Fig.
29.19b. To produce a leftward magnetic force on
currents moving through a magnetic field directed out of the
plane of the figure, the eddy currents must be moving downward
in the figure—that is, in the same direction shown in Fig. 29.19b.
29.7 Answers: (a) Faraday’s law, (b) Ampere’s law A credit
card reader works by inducing currents in the reader’s coils as the
card’s magnetized stripe is swiped (see the answer to the chapter
opening question). Ampere’s law describes how currents of all
kinds (both conduction currents and displacement currents) give
rise to magnetic fields.

Bridging Problem
Answer: vt = 16rmrRg>B2

B
S

F
S

� IL
S

: B
S

F
S

vS : B
S

� 0
vS : B

S
L
S

vS : B
S

.L
S

Answers



991

30
LEARNING GOALS

By studying this chapter, you will

learn:

• How a time-varying current in one

coil can induce an emf in a second,

unconnected coil.

• How to relate the induced emf in a

circuit to the rate of change of

current in the same circuit.

• How to calculate the energy stored

in a magnetic field.

• How to analyze circuits that include

both a resistor and an inductor (coil).

• Why electrical oscillations occur in

circuits that include both an inductor

and a capacitor.

• Why oscillations decay in circuits

with an inductor, a resistor, and a

capacitor.

INDUCTANCE

Take a length of copper wire and wrap it around a pencil to form a coil. If you
put this coil in a circuit, does it behave any differently than a straight piece
of wire? Remarkably, the answer is yes. In an ordinary gasoline-powered

car, a coil of this kind makes it possible for the 12-volt car battery to provide
thousands of volts to the spark plugs, which in turn makes it possible for the
plugs to fire and make the engine run. Other coils of this type are used to keep
fluorescent light fixtures shining. Larger coils placed under city streets are used
to control the operation of traffic signals. All of these applications, and many oth-
ers, involve the induction effects that we studied in Chapter 29.

A changing current in a coil induces an emf in an adjacent coil. The coupling
between the coils is described by their mutual inductance. A changing current in
a coil also induces an emf in that same coil. Such a coil is called an inductor, and
the relationship of current to emf is described by the inductance (also called self-
inductance) of the coil. If a coil is initially carrying a current, energy is released
when the current decreases; this principle is used in automotive ignition systems.
We’ll find that this released energy was stored in the magnetic field caused by the
current that was initially in the coil, and we’ll look at some of the practical appli-
cations of magnetic-field energy.

We’ll also take a first look at what happens when an inductor is part of a cir-
cuit. In Chapter 31 we’ll go on to study how inductors behave in alternating-current
circuits; in that chapter we’ll learn why inductors play an essential role in modern
electronics, including communication systems, power supplies, and many other
devices.

30.1 Mutual Inductance
In Section 28.4 we considered the magnetic interaction between two wires carry-
ing steady currents; the current in one wire causes a magnetic field, which exerts
a force on the current in the second wire. But an additional interaction arises

? Many traffic lights change when a car rolls up to the intersection. How does
the light sense the presence of the car?



between two circuits when there is a changing current in one of the circuits. Con-
sider two neighboring coils of wire, as in Fig. 30.1. A current flowing in coil 1
produces a magnetic field and hence a magnetic flux through coil 2. If the current
in coil 1 changes, the flux through coil 2 changes as well; according to Faraday’s
law, this induces an emf in coil 2. In this way, a change in the current in one cir-
cuit can induce a current in a second circuit.

Let’s analyze the situation shown in Fig. 30.1 in more detail. We will use low-
ercase letters to represent quantities that vary with time; for example, a time-
varying current is often with a subscript to identify the circuit. In Fig. 30.1 a
current in coil 1 sets up a magnetic field (as indicated by the blue lines), and
some of these field lines pass through coil 2. We denote the magnetic flux
through each turn of coil 2, caused by the current in coil 1, as (If the flux
is different through different turns of the coil, then denotes the average
flux.) The magnetic field is proportional to so is also proportional to 
When changes, changes; this changing flux induces an emf in coil 2,
given by

(30.1)

We could represent the proportionality of and in the form 
but instead it is more convenient to include the number of turns 

in the relationship. Introducing a proportionality constant called the mutual
inductance of the two coils, we write

(30.2)

where is the flux through a single turn of coil 2. From this,

and we can rewrite Eq. (30.1) as

(30.3)

That is, a change in the current in coil 1 induces an emf in coil 2 that is directly
proportional to the rate of change of (Fig. 30.2).

We may also write the definition of mutual inductance, Eq. (30.2), as

If the coils are in vacuum, the flux through each turn of coil 2 is directly pro-
portional to the current Then the mutual inductance is a constant that
depends only on the geometry of the two coils (the size, shape, number of turns,
and orientation of each coil and the separation between the coils). If a magnetic
material is present, also depends on the magnetic properties of the material.
If the material has nonlinear magnetic properties—that is, if the relative perme-
ability (defined in Section 28.8) is not constant and magnetization is not pro-
portional to magnetic field—then is no longer directly proportional to In
that case the mutual inductance also depends on the value of In this discussion
we will assume that any magnetic material present has constant so that flux is
directly proportional to current and depends on geometry only.

We can repeat our discussion for the opposite case in which a changing cur-
rent in coil 2 causes a changing flux and an emf in coil 1. We might
expect that the corresponding constant would be different from because
in general the two coils are not identical and the flux through them is not the
same. It turns out, however, that is always equal to even when the two
coils are not symmetric. We call this common value simply the mutual inductance,
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Mutual inductance: If the
current in coil 1 is changing,
the changing flux through coil 2
induces an emf in coil 2.

Coil 2
N2 turns

FB2

Coil 1
N1 turns

i1

i1

30.1 A current in coil 1 gives rise to a
magnetic flux through coil 2.

i1

Toothbrush with
coil connected
to battery

Base with
recharging coil
connected to
wall socket

30.2 This electric toothbrush makes use
of mutual inductance. The base contains a
coil that is supplied with alternating cur-
rent from a wall socket. This varying cur-
rent induces an emf in a coil within the
toothbrush itself, which is used to recharge
the toothbrush battery.
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denoted by the symbol M without subscripts; it characterizes completely the
induced-emf interaction of two coils. Then we can write

(mutually induced emfs) (30.4)

where the mutual inductance M is

(mutual inductance) (30.5)

The negative signs in Eq. (30.4) are a reflection of Lenz’s law. The first equation
says that a change in current in coil 1 causes a change in flux through coil 2,
inducing an emf in coil 2 that opposes the flux change; in the second equation the
roles of the two coils are interchanged.

CAUTION Only a time-varying current induces an emf Note that only a time-varying cur-
rent in a coil can induce an emf and hence a current in a second coil. Equations (30.4)
show that the induced emf in each coil is directly proportional to the rate of change of the
current in the other coil, not to the value of the current. A steady current in one coil, no
matter how strong, cannot induce a current in a neighboring coil. ❙

The SI unit of mutual inductance is called the henry (1 H), in honor of the
American physicist Joseph Henry (1797–1878), one of the discoverers of electro-
magnetic induction. From Eq. (30.5), one henry is equal to one weber per
ampere. Other equivalent units, obtained by using Eq. (30.4), are one volt-second
per ampere, one ohm-second, and one joule per ampere squared:

Just as the farad is a rather large unit of capacitance (see Section 24.1), the henry
is a rather large unit of mutual inductance. As Example 30.1 shows, typical val-
ues of mutual inductance can be in the millihenry (mH) or microhenry 
range.

Drawbacks and Uses of Mutual Inductance
Mutual inductance can be a nuisance in electric circuits, since variations in cur-
rent in one circuit can induce unwanted emfs in other nearby circuits. To mini-
mize these effects, multiple-circuit systems must be designed so that is as
small as possible; for example, two coils would be placed far apart or with their
planes perpendicular.

Happily, mutual inductance also has many useful applications. A transformer,
used in alternating-current circuits to raise or lower voltages, is fundamentally no
different from the two coils shown in Fig. 30.1. A time-varying alternating cur-
rent in one coil of the transformer produces an alternating emf in the other coil;
the value of which depends on the geometry of the coils, determines the
amplitude of the induced emf in the second coil and hence the amplitude of the
output voltage. (We’ll describe transformers in more detail in Chapter 31 after
we’ve discussed alternating current in greater depth.)

M,

M

1mH2

1 H = 1 Wb>A = 1 V # s>A = 1 Æ # s = 1 J>A2

M =
N2£B2

i1
=

N1£B1

i2
  

E2 = -M
di1

dt
 and E1 = -M

di2

dt
  

Example 30.1 Calculating mutual inductance

In one form of Tesla coil (a high-voltage generator popular in sci-
ence museums), a long solenoid with length l and cross-sectional
area is closely wound with turns of wire. A coil with turns
surrounds it at its center (Fig. 30.3). Find the mutual inductance M.

N2N1A

SOLUTION

IDENTIFY and SET UP: Mutual inductance occurs here because a
current in either coil sets up a magnetic field that causes a flux
through the other coil. From Example 28.9 (Section 28.7) we have

Continued



30.2 Self-Inductance and Inductors
In our discussion of mutual inductance we considered two separate, independent
circuits: A current in one circuit creates a magnetic field that gives rise to a flux
through the second circuit. If the current in the first circuit changes, the flux
through the second circuit changes and an emf is induced in the second circuit.
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an expression [Eq. (28.23)] for the field magnitude at the center of
the solenoid (coil 1) in terms of the solenoid current This allows
us to determine the flux through a cross section of the solenoid. Since
there is no magnetic field outside a very long solenoid, this is also
equal to the flux through each turn of the outer coil (2). We then
use Eq. (30.5), in the form to determine 

EXECUTE: Equation (28.23) is expressed in terms of the number of
turns per unit length, which for solenoid (1) is . We
then have

n1 = N1>L

M.M = N2£B2>i1,
£B2

i1.
B1

The flux through a cross section of the solenoid equals As we
mentioned above, this also equals the flux through each turn
of the outer coil, independent of its cross-sectional area. From 
Eq. (30.5), the mutual inductance is then

EVALUATE: The mutual inductance M of any two coils is propor-
tional to the product of their numbers of turns. Notice that M
depends only on the geometry of the two coils, not on the current.

Here’s a numerical example to give you an idea of magnitudes.
Suppose
turns, and Then

= 25 * 10-6 Wb>A = 25 * 10-6 H = 25 mH

M =
14p * 10-7 Wb>A # m211.0 * 10-3 m221100021102

0.50 m

N2 = 10 turns.
N1 = 1000l = 0.50 m, A = 10 cm2 = 1.0 * 10-3 m2,

N1N2

M =
N2£B2

i1
=

N2B1A

i1
=

N2

i1

m0N1i1

l
A =

m0AN1N2

l

M

£B2

B1A.

B1 = m0n1i1 =
m0N1i1

l

Cross-sectional area A

N1 turns N2 turns

l

30.3 A long solenoid with cross-sectional area and turns is
surrounded at its center by a coil with turns.N2

N1A

Example 30.2 Emf due to mutual inductance

In Example 30.1, suppose the current in the outer coil is given by
. (Currents in wires can indeed increase this

rapidly for brief periods.) (a) At what is the average
magnetic flux through each turn of the solenoid (coil 1) due to the
current in the outer coil? (b) What is the induced emf in the solenoid?

SOLUTION

IDENTIFY and SET UP: In Example 30.1 we found the mutual
inductance by relating the current in the solenoid to the flux pro-
duced in the outer coil; to do that, we used Eq. (30.5) in the form

Here we are given the current in the outer coil
and want to find the resulting flux in the solenoid. The mutual
inductance is the same in either case, and we have 
from Example 30.1. We use Eq. (30.5) in the form 
to determine the average flux through each turn of the solenoid
caused by a given current in the outer coil. We then use Eq. (30.4)
to determine the emf induced in the solenoid by the time variation
of

EXECUTE: (a) At the current in the
outer coil is Wei2 = 12.0 * 106 A>s213.0 * 10-6 s2 = 6.0 A.

t = 3.0 ms = 3.0 * 10-6 s,

i2.

i2

£B1

M = N1£B1>i2

M = 25 mH
£1

i2M = N2£B2>i1.

t = 3.0 ms,
i2 = 12.0 * 106 A>s2t

i2 solve Eq. (30.5) for the flux through each turn of the solenoid 
(coil 1):

We emphasize that this is an average value; the flux can vary con-
siderably between the center and the ends of the solenoid.

(b) We are given , so 
then, from Eq. (30.4), the induced emf in the solenoid is

EVALUATE: This is a substantial induced emf in response to a very
rapid current change. In an operating Tesla coil, there is a high-
frequency alternating current rather than a continuously increasing
current as in this example; both and alternate as well,
with amplitudes that can be thousands of times larger than in this
example.

E1di2>dt

E1 = -M
di2

dt
= -125 * 10-6 H212.0 * 106 A>s2 = -50 V

106 A>s;
2.0 *di2>dt =i2 = 12.0 * 106 A>s2t

£B1 =
Mi2

N1
=
125 * 10-6 H216.0 A2

1000
= 1.5 * 10-7 Wb

£B1

Test Your Understanding of Section 30.1 Consider the Tesla coil
described in Example 30.1. If you make the solenoid out of twice as much wire, so
that it has twice as many turns and is twice as long, how much larger is the mutual
inductance? (i) is four times greater; (ii) is twice as great; (iii) is unchanged; 
(iv) is as great; (v) is as great. ❙

1
4M1

2M
MMM
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An important related effect occurs even if we consider only a single isolated
circuit. When a current is present in a circuit, it sets up a magnetic field that
causes a magnetic flux through the same circuit; this flux changes when the cur-
rent changes. Thus any circuit that carries a varying current has an emf induced
in it by the variation in its own magnetic field. Such an emf is called a self-
induced emf. By Lenz’s law, a self-induced emf always opposes the change in
the current that caused the emf and so tends to make it more difficult for varia-
tions in current to occur. For this reason, self-induced emfs can be of great impor-
tance whenever there is a varying current.

Self-induced emfs can occur in any circuit, since there is always some mag-
netic flux through the closed loop of a current-carrying circuit. But the effect is
greatly enhanced if the circuit includes a coil with turns of wire (Fig. 30.4). As
a result of the current there is an average magnetic flux through each turn of
the coil. In analogy to Eq. (30.5) we define the self-inductance of the circuit as

(self-inductance) (30.6)

When there is no danger of confusion with mutual inductance, the self-inductance
is called simply the inductance. Comparing Eqs. (30.5) and (30.6), we see that
the units of self-inductance are the same as those of mutual inductance; the SI
unit of self-inductance is the henry.

If the current i in the circuit changes, so does the flux from rearranging
Eq. (30.6) and taking the derivative with respect to time, the rates of change are
related by

From Faraday’s law for a coil with turns, Eq. (29.4), the self-induced emf is
so it follows that

(30.7)

The minus sign in Eq. (30.7) is a reflection of Lenz’s law; it says that the self-
induced emf in a circuit opposes any change in the current in that circuit. (Later
in this section we’ll explore in greater depth the significance of this minus sign.)

Equation (30.7) also states that the self-inductance of a circuit is the magni-
tude of the self-induced emf per unit rate of change of current. This relationship
makes it possible to measure an unknown self-inductance in a relatively simple
way: Change the current in the circuit at a known rate measure the induced
emf, and take the ratio to determine 

Inductors As Circuit Elements
A circuit device that is designed to have a particular inductance is called an
inductor, or a choke. The usual circuit symbol for an inductor is

Like resistors and capacitors, inductors are among the indispensable circuit
elements of modern electronics. Their purpose is to oppose any variations in the
current through the circuit. An inductor in a direct-current circuit helps to main-
tain a steady current despite any fluctuations in the applied emf; in an alternating-
current circuit, an inductor tends to suppress variations of the current that are
more rapid than desired. In this chapter and the next we will explore the behavior
and applications of inductors in circuits in more detail.

To understand the behavior of circuits containing inductors, we need to
develop a general principle analogous to Kirchhoff’s loop rule (discussed in

L.
di>dt,

E = -L
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dt
  1self-induced emf )

E = -N d£B>dt,
N

N
d£B

dt
= L

di

dt

£B;
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i
  

L
£Bi,

N
Self-inductance: If the current i in the coil is
changing, the changing flux through the coil
induces an emf
in the coil.

i

+
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30.4 The current i in the circuit causes a
magnetic field in the coil and hence a
flux through the coil.

B
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Application Inductors, Power 
Transmission, and 
Lightning Strikes
If lightning strikes part of an electrical power
transmission system, it causes a sudden spike
in voltage that can damage the components of
the system as well as anything connected to
that system (for example, home appliances).
To minimize these effects, large inductors are
incorporated into the transmission system.
These use the principle that an inductor
opposes and suppresses any rapid changes in
the current.



Section 26.2). To apply that rule, we go around a conducting loop, measuring
potential differences across successive circuit elements as we go. The algebraic
sum of these differences around any closed loop must be zero because the electric
field produced by charges distributed around the circuit is conservative. In Sec-
tion 29.7 we denoted such a conservative field as 

When an inductor is included in the circuit, the situation changes. The mag-
netically induced electric field within the coils of the inductor is not conservative;
as in Section 29.7, we’ll denote it by We need to think very carefully about
the roles of the various fields. Let’s assume we are dealing with an inductor
whose coils have negligible resistance. Then a negligibly small electric field is
required to make charge move through the coils, so the total electric field

within the coils must be zero, even though neither field is individually
zero. Because is nonzero, there have to be accumulations of charge on the ter-
minals of the inductor and the surfaces of its conductors to produce this field.

Consider the circuit shown in Fig. 30.5; the box contains some combination of
batteries and variable resistors that enables us to control the current i in the cir-
cuit. According to Faraday’s law, Eq. (29.10), the line integral of around the
circuit is the negative of the rate of change of flux through the circuit, which in
turn is given by Eq. (30.7). Combining these two relationships, we get

where we integrate clockwise around the loop (the direction of the assumed cur-
rent). But is different from zero only within the inductor. Therefore the inte-
gral of around the whole loop can be replaced by its integral only from a to b
through the inductor; that is,

Next, because at each point within the inductor coils, we can
rewrite this as

But this integral is just the potential of point a with respect to point b, so we
finally obtain

(30.8)

We conclude that there is a genuine potential difference between the terminals of
the inductor, associated with conservative, electrostatic forces, despite the fact
that the electric field associated with the magnetic induction effect is nonconserv-
ative. Thus we are justified in using Kirchhoff’s loop rule to analyze circuits that
include inductors. Equation (30.8) gives the potential difference across an induc-
tor in a circuit.

CAUTION Self-induced emf opposes changes in current Note that the self-induced emf
does not oppose the current i itself; rather, it opposes any change in the current. Thus
the circuit behavior of an inductor is quite different from that of a resistor. Figure 30.6 com-
pares the behaviors of a resistor and an inductor and summarizes the sign relationships. ❙

Applications of Inductors
Because an inductor opposes changes in current, it plays an important role in flu-
orescent light fixtures (Fig. 30.7). In such fixtures, current flows from the wiring
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b

a

i

i

L

Variable
source
of emf

30.5 A circuit containing a source of
emf and an inductor. The source is vari-
able, so the current i and its rate of change

can be varied.di>dt

i constant: di/dt 5 0

i increasing: di/dt . 0

i decreasing: di/dt , 0

a b

E 5 0

(a) Resistor with current i flowing from a to b:
potential drops from a to b.

(b) Inductor with constant current i flowing
from a to b: no potential difference.

(c) Inductor with increasing current i flowing
from a to b: potential drops from a to b.

(d) Inductor with decreasing current i flowing
from a to b: potential increases from a to b.

a b

+ –

+–

E

i

Vab 5 iR . 0
a b

R+ –

a b

E

. 0Vab 5 L
di
dt

, 0Vab 5 L
di
dt

5 0Vab 5 L
di
dt

30.6 (a) The potential difference across a
resistor depends on the current. (b), (c), (d)
The potential difference across an inductor
depends on the rate of change of the current.
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into the gas that fills the tube, ionizing the gas and causing it to glow. However,
an ionized gas or plasma is a highly nonohmic conductor: The greater the cur-
rent, the more highly ionized the plasma becomes and the lower its resistance. If
a sufficiently large voltage is applied to the plasma, the current can grow so much
that it damages the circuitry outside the fluorescent tube. To prevent this problem,
an inductor or magnetic ballast is put in series with the fluorescent tube to keep
the current from growing out of bounds.

The ballast also makes it possible for the fluorescent tube to work with the
alternating voltage provided by household wiring. This voltage oscillates sinu-
soidally with a frequency of 60 Hz, so that it goes momentarily to zero 120 times
per second. If there were no ballast, the plasma in the fluorescent tube would rap-
idly deionize when the voltage went to zero and the tube would shut off. With a
ballast present, a self-induced emf sustains the current and keeps the tube lit.
Magnetic ballasts are also used for this purpose in streetlights (which obtain their
light from a glowing vapor of mercury or sodium atoms) and in neon lights. (In
compact fluorescent lamps, the magnetic ballast is replaced by a more compli-
cated scheme for regulating current. This scheme utilizes transistors, discussed in
Chapter 42.)

The self-inductance of a circuit depends on its size, shape, and number of
turns. For turns close together, it is always proportional to It also depends
on the magnetic properties of the material enclosed by the circuit. In the follow-
ing examples we will assume that the circuit encloses only vacuum (or air, which
from the standpoint of magnetism is essentially vacuum). If, however, the flux is
concentrated in a region containing a magnetic material with permeability 
then in the expression for we must replace (the permeability of vacuum) by

as discussed in Section 28.8. If the material is diamagnetic or para-
magnetic, this replacement makes very little difference, since is very close to
1. If the material is ferromagnetic, however, the difference is of crucial impor-
tance. A solenoid wound on a soft iron core having can have an
inductance approximately 5000 times as great as that of the same solenoid with
an air core. Ferromagnetic-core inductors are very widely used in a variety of
electronic and electric-power applications.

An added complication is that with ferromagnetic materials the magnetization
is in general not a linear function of magnetizing current, especially as saturation
is approached. As a result, the inductance is not constant but can depend on current
in a fairly complicated way. In our discussion we will ignore this complication
and assume always that the inductance is constant. This is a reasonable assumption
even for a ferromagnetic material if the magnetization remains well below the
saturation level.

Because automobiles contain steel, a ferromagnetic material, driving an
automobile over a coil causes an appreciable increase in the coil’s induc-
tance. This effect is used in traffic light sensors, which use a large, current-carrying
coil embedded under the road surface near an intersection. The circuitry con-
nected to the coil detects the inductance change as a car drives over. When a pre-
programmed number of cars have passed over the coil, the light changes to green
to allow the cars through the intersection.

Km = 5000

Km

m = Kmm0,
m0B

m,

N 2.N

30.7 These fluorescent light tubes are
wired in series with an inductor, or ballast,
that helps to sustain the current flowing
through the tubes.

?

Example 30.3 Calculating self-inductance

Determine the self-inductance of a toroidal solenoid with cross-
sectional area and mean radius r, closely wound with turns of
wire on a nonmagnetic core (Fig. 30.8). Assume that is uniform
across a cross section (that is, neglect the variation of with dis-
tance from the toroid axis).

B
B

NA
SOLUTION

IDENTIFY and SET UP: Our target variable is the self-inductance 
of the toroidal solenoid. We can find using Eq. (30.6), which
requires knowing the flux through each turn and the current i in

Continued

£B

L
L



30.3 Magnetic-Field Energy
Establishing a current in an inductor requires an input of energy, and an inductor car-
rying a current has energy stored in it. Let’s see how this comes about. In Fig. 30.5,
an increasing current i in the inductor causes an emf between its terminals and
a corresponding potential difference between the terminals of the source, with
point a at higher potential than point b. Thus the source must be adding energy to
the inductor, and the instantaneous power (rate of transfer of energy into the
inductor) is 

Energy Stored in an Inductor
We can calculate the total energy input needed to establish a final current in
an inductor with inductance if the initial current is zero. We assume that the
inductor has zero resistance, so no energy is dissipated within the inductor. Let

L
IU

P = Vabi.
P

Vab

E
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EXECUTE: From Eq. (30.6), the self-inductance is 
From Example 28.10, the field magnitude at a distance r from the
toroid axis is If we assume that the field has this
magnitude over the entire cross-sectional area then

The flux is the same through each turn, and the self-inductance
is

(self-inductance of a toroidal solenoid)

EVALUATE: Suppose turns, 
and then

= 40 * 10-6 H = 40 mH

L =
14p * 10-7 Wb>A # m212002215.0 * 10-4 m22

2p10.10 m2

r = 0.10 m;10-4 m2,
A = 5.0 cm2 = 5.0 *N = 200

L =
N£B

i
=
m0N 2A

2pr

L
£B

£B = BA =
m0NiA

2pr

A,
B = m0Ni>2pr.

L = N£B>i.

Number of turns 5 N
(only a few are shown)

i
i

A

r

30.8 Determining the self-inductance of a closely wound
toroidal solenoid. For clarity, only a few turns of the winding are
shown. Part of the toroid has been cut away to show the cross-
sectional area and radius r.A

Example 30.4 Calculating self-induced emf

If the current in the toroidal solenoid in Example 30.3 increases
uniformly from 0 to 6.0 A in find the magnitude and direc-
tion of the self-induced emf.

SOLUTION

IDENTIFY and SET UP: We are given L, the self-inductance, and
the rate of change of the solenoid current. We find the mag-

nitude of self-induced emf using Eq. (30.7) and its direction
using Lenz’s law.

EXECUTE: We have 
From Eq. (30.7), the magnitude of the induced emf is106 A>s.

= 16.0 A2>13.0 * 10-6 s2 = 2.0 *di>dt

E

di>dt,

3.0 ms,

The current is increasing, so according to Lenz’s law the direction
of the emf is opposite to that of the current. This corresponds to the
situation in Fig. 30.6c; the emf is in the direction from b to a, like a
battery with a as the terminal and b the terminal, tending to
oppose the current increase from the external circuit.

EVALUATE: This example shows that even a small inductance can
give rise to a substantial induced emf if the current changes
rapidly.

L

-+

ƒE ƒ = L `
di

dt
` = 140 * 10-6 H212.0 * 106 A>s2 = 80 V

Test Your Understanding of Section 30.2 Rank the following induc-
tors in order of the potential difference from most positive to most negative.
In each case the inductor has zero resistance and the current flows from point a
through the inductor to point b. (i) The current through a inductor increases 
from 1.0 A to 2.0 A in 0.50 s; (ii) the current through a inductor decreases from
3.0 A to 0 in 2.0 s; (iii) the current through a inductor remains constant at 4.0 A;
(iv) the current through a inductor increases from 0 to 4.0 A in 0.25 s. ❙1.0-mH

1.0-mH
4.0-mH

2.0-mH

vab,

the coil. For this, we use the results of Example 28.10 (Section 28.7), 
in which we found the magnetic field in the interior of a toroidal
solenoid as a function of the current.
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the current at some instant be i and let its rate of change be the current is
increasing, so The voltage between the terminals a and b of the induc-
tor at this instant is and the rate at which energy is being deliv-
ered to the inductor (equal to the instantaneous power supplied by the external
source) is

The energy dU supplied to the inductor during an infinitesimal time interval dt
is so

The total energy supplied while the current increases from zero to a final value is

(energy stored in an inductor) (30.9)

After the current has reached its final steady value and no more
energy is input to the inductor. When there is no current, the stored energy is
zero; when the current is the energy is 

When the current decreases from to zero, the inductor acts as a source that
supplies a total amount of energy to the external circuit. If we interrupt the
circuit suddenly by opening a switch or yanking a plug from a wall socket, the
current decreases very rapidly, the induced emf is very large, and the energy may
be dissipated in an arc across the switch contacts. This large emf is the electrical
analog of the large force exerted by a car running into a brick wall and stopping
very suddenly.

CAUTION Energy, resistors, and inductors It’s important not to confuse the behavior of
resistors and inductors where energy is concerned (Fig. 30.9). Energy flows into a resistor
whenever a current passes through it, whether the current is steady or varying; this energy
is dissipated in the form of heat. By contrast, energy flows into an ideal, zero-resistance
inductor only when the current in the inductor increases. This energy is not dissipated; it is
stored in the inductor and released when the current decreases. When a steady current
flows through an inductor, there is no energy flow in or out. ❙

Magnetic Energy Density
The energy in an inductor is actually stored in the magnetic field within the coil,
just as the energy of a capacitor is stored in the electric field between its plates.
We can develop relationships for magnetic-field energy analogous to those we
obtained for electric-field energy in Section 24.3 [Eqs. (24.9) and (24.11)]. We
will concentrate on one simple case, the ideal toroidal solenoid. This system has
the advantage that its magnetic field is confined completely to a finite region of
space within its core. As in Example 30.3, we assume that the cross-sectional
area is small enough that we can pretend that the magnetic field is uniform over
the area. The volume enclosed by the toroidal solenoid is approximately equal 
to the circumference multiplied by the area From Example 30.3,
the self-inductance of the toroidal solenoid with vacuum within its coils is

From Eq. (30.9), the energy stored in the toroidal solenoid when the current
is is

U = 1
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dU = Li di

dU = P dt,

P = Vabi = Li
di

dt

PVab = L di>dt,
di>dt 7 0.

di>dt;

i
a b

L

i
a b

R

Resistor with current i: energy is dissipated.

Inductor with current i: energy is stored.

30.9 A resistor is a device in which
energy is irrecoverably dissipated. By con-
trast, energy stored in a current-carrying
inductor can be recovered when the current
decreases to zero.



The magnetic field and therefore this energy are localized in the volume
enclosed by the windings. The energy per unit volume, or magnetic

energy density, is

We can express this in terms of the magnitude of the magnetic field inside the
toroidal solenoid. From Eq. (28.24) in Example 28.10 (Section 28.7), this is

and so

When we substitute this into the above equation for u, we finally find the expres-
sion for magnetic energy density in vacuum:

(magnetic energy density in vacuum) (30.10)

This is the magnetic analog of the energy per unit volume in an electric field
in vacuum, which we derived in Section 24.3. As an example, the
energy density in the 1.5-T magnetic field of an MRI scanner (see Section 27.7)
is .

When the material inside the toroid is not vacuum but a material with (con-
stant) magnetic permeability we replace by in Eq. (30.10). The
energy per unit volume in the magnetic field is then

(magnetic energy density in a material) (30.11)

Although we have derived Eq. (30.11) only for one special situation, it turns
out to be the correct expression for the energy per unit volume associated with
any magnetic-field configuration in a material with constant permeability. For
vacuum, Eq. (30.11) reduces to Eq. (30.10). We will use the expressions for
electric-field and magnetic-field energy in Chapter 32 when we study the energy
associated with electromagnetic waves.

Magnetic-field energy plays an important role in the ignition systems of gasoline-
powered automobiles. A primary coil of about 250 turns is connected to the car’s
battery and produces a strong magnetic field. This coil is surrounded by a second-
ary coil with some 25,000 turns of very fine wire. When it is time for a spark plug
to fire (see Fig. 20.5 in Section 20.3), the current to the primary coil is inter-
rupted, the magnetic field quickly drops to zero, and an emf of tens of thousands
of volts is induced in the secondary coil. The energy stored in the magnetic field
thus goes into a powerful pulse of current that travels through the secondary coil
to the spark plug, generating the spark that ignites the fuel–air mixture in the
engine’s cylinders (Fig. 30.10).
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Example 30.5 Storing energy in an inductor

The electric-power industry would like to find efficient ways to
store electrical energy generated during low-demand hours to help
meet customer requirements during high-demand hours. Could a

large inductor be used? What inductance would be needed to store
of energy in a coil carrying a 200-A current?1.00 kW # h

30.10 The energy required to fire an
automobile spark plug is derived from
magnetic-field energy stored in the ignition
coil.

Application A Magnetic Eruption 
on the Sun
This composite of two images of the sun
shows a coronal mass ejection, a dramatic
event in which about 1012 kg (a billion tons) of
material from the sun’s outer atmosphere is
ejected into space at speeds of 500 km s or
faster. Such ejections happen at intervals of a
few hours to a few days. These immense
eruptions are powered by the energy stored in
the sun’s magnetic field. Unlike the earth’s rel-
atively steady magnetic field, the sun’s field is
constantly changing, and regions of unusually
strong field (and hence unusually high mag-
netic energy density) frequently form. A coro-
nal mass ejection occurs when the energy
stored in such a region is suddenly released.

>
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30.4 The R-L Circuit
Let’s look at some examples of the circuit behavior of an inductor. One thing is
clear already; an inductor in a circuit makes it difficult for rapid changes in cur-
rent to occur, thanks to the effects of self-induced emf. Equation (30.7) shows
that the greater the rate of change of current the greater the self-induced
emf and the greater the potential difference between the inductor terminals. This
equation, together with Kirchhoff’s rules (see Section 26.2), gives us the princi-
ples we need to analyze circuits containing inductors.

di>dt,

SOLUTION

IDENTIFY and SET UP: We are given the required amount of stored
energy and the current A. We use Eq. (30.9) to find the
self-inductance .

EXECUTE: We have and 
Solving Eq. (30.9) for we

find

L =
2U

I 2
=

213.60 * 106 J2

1200 A22
= 180 H

L,103 W213600 s2 = 3.60 * 106 J.
U = 1.00 kW # h = 11.00 *I = 200 A

L
I = 200U

EVALUATE: The required inductance is more than a million times
greater than the self-inductance of the toroidal solenoid of
Example 30.3. Conventional wires that are to carry 200 A would have
to be of large diameter to keep the resistance low and avoid unaccept-
able energy losses due to heating. As a result, a 180-H inductor
using conventional wire would be very large (room-size). A super-
conducting inductor could be much smaller, since the resistance of
a superconductor is zero and much thinner wires could be used; but
the wires would have to be kept at low temperature to remain super-
conducting, and maintaining this temperature would itself require
energy. This scheme is impractical with present technology.

I 2R

Test Your Understanding of Section 30.3 The current in a solenoid is
reversed in direction while keeping the same magnitude. (a) Does this change the 
magnetic field within the solenoid? (b) Does this change the magnetic energy density in 
the solenoid? ❙

Problem-Solving Strategy 30.1 Inductors in Circuits

IDENTIFY the relevant concepts: An inductor is just another circuit
element, like a source of emf, a resistor, or a capacitor. One key
difference is that when an inductor is included in a circuit, all the
voltages, currents, and capacitor charges are in general functions
of time, not constants as they have been in most of our previous
circuit analysis. But Kirchhoff’s rules (see Section 26.2) are still
valid. When the voltages and currents vary with time, Kirchhoff’s
rules hold at each instant of time.

SET UP the problem using the following steps:
1. Follow the procedure described in Problem-Solving Strategy

26.2 (Section 26.2). Draw a circuit diagram and label all quan-
tities, known and unknown. Apply the junction rule immedi-
ately so as to express the currents in terms of as few quantities
as possible.

2. Determine which quantities are the target variables.

EXECUTE the solution as follows:
1. As in Problem-Solving Strategy 26.2, apply Kirchhoff’s loop

rule to each loop in the circuit.

2. Review the sign rules given in Problem-Solving Strategy 26.2.
To get the correct sign for the potential difference between the
terminals of an inductor, apply Lenz’s law and the sign rule
described in Section 30.2 in connection with Eq. (30.7) and
Fig. 30.6. In Kirchhoff’s loop rule, when we go through an
inductor in the same direction as the assumed current, we
encounter a voltage drop equal to so the corresponding
term in the loop equation is When we go through an
inductor in the opposite direction from the assumed current, the
potential difference is reversed and the term to use in the loop
equation is 

3. Solve for the target variables.

EVALUATE your answer: Check whether your answer is consistent
with the behavior of inductors. By Lenz’s law, if the current
through an inductor is changing, your result should indicate that
the potential difference across the inductor opposes the change.

+L di>dt.

-L di>dt.
L di>dt,

Current Growth in an R-L Circuit
We can learn several basic things about inductor behavior by analyzing the cir-
cuit of Fig. 30.11. A circuit that includes both a resistor and an inductor, and pos-
sibly a source of emf, is called an R-L circuit. The inductor helps to prevent
rapid changes in current, which can be useful if a steady current is required but
the external source has a fluctuating emf. The resistor may be a separate circuitR

ActivPhysics 14.1: The RL Circuit



element, or it may be the resistance of the inductor windings; every real-life
inductor has some resistance unless it is made of superconducting wire. By clos-
ing switch we can connect the R-L combination to a source with constant emf

(We assume that the source has zero internal resistance, so the terminal voltage
equals the emf.)

Suppose both switches are open to begin with, and then at some initial time
we close switch The current cannot change suddenly from zero to some

final value, since and the induced emf in the inductor would both be infi-
nite. Instead, the current begins to grow at a rate that depends only on the value
of in the circuit.

Let i be the current at some time t after switch is closed, and let be its
rate of change at that time. The potential difference across the resistor at that
time is

and the potential difference across the inductor is

Note that if the current is in the direction shown in Fig. 30.11 and is increasing,
then both and are positive; a is at a higher potential than b, which in turn
is at a higher potential than c. (Compare to Figs. 30.6a and c.) We apply Kirch-
hoff’s loop rule, starting at the negative terminal and proceeding counterclock-
wise around the loop:

(30.12)

Solving this for we find that the rate of increase of current is

(30.13)

At the instant that switch is first closed, and the potential drop across
is zero. The initial rate of change of current is

As we would expect, the greater the inductance the more slowly the current
increases.

As the current increases, the term in Eq. (30.13) also increases, and the
rate of increase of current given by Eq. (30.13) becomes smaller and smaller.
This means that the current is approaching a final, steady-state value When the
current reaches this value, its rate of increase is zero. Then Eq. (30.13) becomes

The final current does not depend on the inductance it is the same as it would
be if the resistance alone were connected to the source with emf 

Figure 30.12 shows the behavior of the current as a function of time. To derive
the equation for this curve (that is, an expression for current as a function of
time), we proceed just as we did for the charging capacitor in Section 26.4. First
we rearrange Eq. (30.13) to the form
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Closing switch S1 connects the R-L combination
in series with a source of emf E.

Closing switch S2 while opening switch S1
disconnnects the combination from the source.

+

S1

S2

E

a b c

R L
i

30.11 An R-L circuit.
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(           )

Switch S1 is closed at t 5 0.

30.12 Graph of i versus t for growth of
current in an R-L circuit with an emf in
series. The final current is after
one time constant the current is 
of this value.

1 - 1>et,
I = E>R;
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This separates the variables, with i on the left side and t on the right. Then we
integrate both sides, renaming the integration variables and so that we can
use i and t as the upper limits. (The lower limit for each integral is zero, corre-
sponding to zero current at the initial time We get

Now we take exponentials of both sides and solve for i. We leave the details for
you to work out; the final result is

(current in an circuit with emf ) (30.14)

This is the equation of the curve in Fig. 30.12. Taking the derivative of Eq. (30.14),
we find

(30.15)

At time and As and as we
predicted.

As Fig. 30.12 shows, the instantaneous current i first rises rapidly, then increases
more slowly and approaches the final value asymptotically. At a time
equal to , the current has risen to or about 63%, of its final value.
The quantity is therefore a measure of how quickly the current builds toward
its final value; this quantity is called the time constant for the circuit, denoted by 

(30.16)

In a time equal to the current reaches 86% of its final value; in 99.3%; and
in 99.995%. (Compare the discussion in Section 26.4 of charging a capaci-
tor of capacitance that was in series with a resistor of resistance the time
constant for that situation was the product 

The graphs of i versus t have the same general shape for all values of For a
given value of the time constant is greater for greater values of When is
small, the current rises rapidly to its final value; when is large, it rises more
slowly. For example, if and 

and the current increases to about 63% of its final value in 0.10 s. (Recall that
But if and the rise

is much more rapid.
Energy considerations offer us additional insight into the behavior of an R-L

circuit. The instantaneous rate at which the source delivers energy to the circuit is
The instantaneous rate at which energy is dissipated in the resistor is 

and the rate at which energy is stored in the inductor is [or,
equivalently, ]. When we multiply Eq. (30.12) by i and
rearrange, we find

(30.17)

Of the power supplied by the source, part is dissipated in the resistor and
part goes to store energy in the inductor. This discussion is completely
analogous to our power analysis for a charging capacitor, given at the end of
Section 26.4.

1Li di>dt2
1i2R2Ei

Ei = i2R + Li
di

dt

1d>dt2A12 Li2 B = Li di>dt
ivbc = Li di>dt

i2R,P = Ei.

L = 0.010 H, t = 1.0 * 10-4 s = 0.10 ms,1 H = 1 Æ # s.2

t =
L

R
=

10 H

100 Æ
= 0.10 s

L = 10 H,R = 100 Æ
L

LL.tR,
L.

RC.)
R;C

10t,
5t,2t,

t =
L

R
  (time constant for an R-L circuit)

t:
L>R

11 - 1>e2,L>R
I = E>R

di>dtS 0,iS E>RtS q ,di>dt = E>L.i = 0t = 0,

di

dt
=
E

L
e-1R>L2t

R-Li =
E

R
11 - e-1R>L2t2  

 lna
i - 1E>R2

-E>R
b = -

R

L
t

L
i

0

di¿
i¿ - 1E>R2

= -L
t

0

R

L
dt¿

t = 0.)

t¿i¿
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Example 30.6 Analyzing an R-L circuit

A sensitive electronic device of resistance is to be
connected to a source of emf (of negligible internal resistance) by
a switch. The device is designed to operate with a 36-mA current,
but to avoid damage to the device, the current can rise to no more
than 4.9 mA in the first after the switch is closed. An inductor
is therefore connected in series with the device, as in Fig. 30.11;
the switch in question is (a) What is the required source emf 
(b) What is the required inductance L? (c) What is the R-L time
constant

SOLUTION

IDENTIFY and SET UP: This problem concerns current and current
growth in an R-L circuit, so we can use the ideas of this section.
Figure 30.12 shows the current i versus the time t that has elapsed
since closing . The graph shows that the final current is ;
we are given R , so the emf is determined by the require-
ment that the final current be I 36 mA. The other requirement is
that the current be no more than at to sat-
isfy this, we use Eq. (30.14) for the current as a function of time
and solve for the inductance, which is the only unknown quantity.
Equation (30.16) then tells us the time constant.

EXECUTE: (a) We solve for 

E = IR = 10.036 A21175 Æ2 = 6.3 V

E:I = E>R

t = 58 ms;i = 4.9 mA
=

= 175 Æ
I = E>RS1

t?

?ES1.

58 ms

R = 175 Æ (b) To find the required inductance, we solve Eq. (30.14) for 
First we multiply through by and then add 1 to both sides
to obtain

Then we take natural logs of both sides, solve for and insert the
numbers:

(c) From Eq. (30.16),

EVALUATE: Note that is much less than the time constant. In
the current builds up from zero to 4.9 mA, a small fraction

of its final value of 36 mA; after the current equals
of its final value, or about 10.632136 mA2 = 23 mA.11 - 1>e2

390 ms
58 ms

58 ms

t =
L

R
=

69 * 10-3 H

175 Æ
= 3.9 * 10-4 s = 390 ms

=
-1175 Æ2158 * 10-6 s2

ln31 - 14.9 * 10-3 A21175 Æ2>16.3 V24
= 69 mH

L =
-Rt

ln11 - iR>E2

L,

1 -
iR

E
= e-1R>L2t

1-R>E2
L.

Current Decay in an R-L Circuit
Now suppose switch in the circuit of Fig. 30.11 has been closed for a while
and the current has reached the value Resetting our stopwatch to redefine the
initial time, we close switch at time bypassing the battery. (At the same
time we should open to save the battery from ruin.) The current through and

does not instantaneously go to zero but decays smoothly, as shown in Fig.
30.13. The Kirchhoff’s-rule loop equation is obtained from Eq. (30.12) by simply
omitting the term. We challenge you to retrace the steps in the above analysis
and show that the current i varies with time according to

(30.18)

where is the initial current at time The time constant, is the
time for current to decrease to or about 37%, of its original value. In time 
it has dropped to 13.5%, in time to 0.67%, and in to 0.0045%.

The energy that is needed to maintain the current during this decay is provided
by the energy stored in the magnetic field of the inductor. The detailed energy
analysis is simpler this time. In place of Eq. (30.17) we have

(30.19)

In this case, is negative; Eq. (30.19) shows that the energy stored in the
inductor decreases at a rate equal to the rate of dissipation of energy in the
resistor.

This entire discussion should look familiar; the situation is very similar to that
of a charging and discharging capacitor, analyzed in Section 26.4. It would be a
good idea to compare that section with our discussion of the R-L circuit.

i2R
Li di>dt

0 = i2R + Li
di

dt

10t5t
2t1>e,

t = L>R,t = 0.I0

i = I0e-1R>L2t

E

L
RS1

t = 0,S2

I0.
S1

R L
i

t

i

I0

I0
e

O
t 5

L
R

t

S2

Switch S2 is closed at t 5 0.

30.13 Graph of versus for decay of
current in an R-L circuit. After one time
constant the current is of its initial
value.

1>et,

ti
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Example 30.7 Energy in an R-L circuit

When the current in an R-L circuit is decaying, what fraction of the
original energy stored in the inductor has been dissipated after 2.3
time constants?

SOLUTION

IDENTIFY and SET UP: This problem concerns current decay in an
R-L circuit as well as the relationship between the current in an
inductor and the amount of stored energy. The current at any time

is given by Eq. (30.18); the stored energy associated with this
current is given by Eq. (30.9), 

EXECUTE: From Eq. (30.18), the current at any time is

We substitute this into to obtain an expression for the
stored energy at any time:

U = 1
2 LI 2

0 e-21R>L2t = U0e-21R>L2t

U = 1
2 Li2

i = I0e-1R>L2t

ti

U = 1
2 Li2.

t
i

where is the energy at the initial time When
we have

That is, only 0.010 or 1.0% of the energy initially stored in the
inductor remains, so 99.0% has been dissipated in the resistor.

EVALUATE: To get a sense of what this result means, consider the
R-L circuit we analyzed in Example 30.6, for which 
With and we have 

Of this, 99.0% or
is dissipated in 

In other words, this circuit can be almost completely powered off
(or powered on) in 0.90 ms, so the minimum time for a complete
on–off cycle is 1.8 ms. Even shorter cycle times are required for
many purposes, such as in fast switching networks for telecom-
munications. In such cases a smaller time constant is
needed.

t = L>R

s = 0.90 ms.2.31390 ms2 = 9.0 * 10-410-5 J
4.4 *1

210.069 H210.036 A22 = 4.5 * 10-5 J.
U0 = 1

2 LI 2
0 =I0 = 36 mA,L = 69 mH

= 390 ms.t

U = U0e-212.32 = U0e-4.6 = 0.010U0

t = 2.3t = 2.3L>R,
t = 0.U0 = 1

2 LI 2
0

Test Your Understanding of Section 30.4 (a) In Fig. 30.11, what are the
algebraic signs of the potential differences and when switch is closed and
switch is open? (i) (ii) (iii) 
(iv) (b) What are the signs of and when is open, is
closed, and current is flowing in the direction shown? (i) 
(ii) (iii) (iv) ❙vbc 6 0.vab 6 0,vbc 7 0;vab 6 0,vbc 6 0;vab 7 0,

vbc 7 0;vab 7 0,
S2S1vbcvabvbc 6 0.vab 6 0,
vbc 7 0;vab 6 0,vbc 6 0;vab 7 0,vbc 7 0;vab 7 0,S2

S1vbcvab

30.5 The L-C Circuit
A circuit containing an inductor and a capacitor shows an entirely new mode of
behavior, characterized by oscillating current and charge. This is in sharp con-
trast to the exponential approach to a steady-state situation that we have seen
with both R-C and R-L circuits. In the L-C circuit in Fig. 30.14a we charge the
capacitor to a potential difference and initial charge on its left-hand
plate and then close the switch. What happens?

The capacitor begins to discharge through the inductor. Because of the
induced emf in the inductor, the current cannot change instantaneously; it starts at
zero and eventually builds up to a maximum value During this buildup the
capacitor is discharging. At each instant the capacitor potential equals the
induced emf, so as the capacitor discharges, the rate of change of current
decreases. When the capacitor potential becomes zero, the induced emf is also
zero, and the current has leveled off at its maximum value Figure 30.14b
shows this situation; the capacitor has completely discharged. The potential dif-
ference between its terminals (and those of the inductor) has decreased to zero,
and the current has reached its maximum value 

During the discharge of the capacitor, the increasing current in the inductor
has established a magnetic field in the space around it, and the energy that was
initially stored in the capacitor’s electric field is now stored in the inductor’s
magnetic field.

Although the capacitor is completely discharged in Fig. 30.14b, the current
persists (it cannot change instantaneously), and the capacitor begins to charge
with polarity opposite to that in the initial state. As the current decreases, the
magnetic field also decreases, inducing an emf in the inductor in the same direc-
tion as the current; this slows down the decrease of the current. Eventually, the

Im.

Im.

Im.

Q = CVmVm

ActivPhysics 14.2: AC Circuits: The RLC
Oscillator (Questions 1–6)



current and the magnetic field reach zero, and the capacitor has been charged in
the sense opposite to its initial polarity (Fig. 30.14c), with potential difference

and charge on its left-hand plate.
The process now repeats in the reverse direction; a little later, the capacitor

has again discharged, and there is a current in the inductor in the opposite direc-
tion (Fig. 30.14d). Still later, the capacitor charge returns to its original value
(Fig. 30.14a), and the whole process repeats. If there are no energy losses, the
charges on the capacitor continue to oscillate back and forth indefinitely. This
process is called an electrical oscillation.

From an energy standpoint the oscillations of an electrical circuit transfer
energy from the capacitor’s electric field to the inductor’s magnetic field and
back. The total energy associated with the circuit is constant. This is analogous to
the transfer of energy in an oscillating mechanical system from potential energy
to kinetic energy and back, with constant total energy. As we will see, this anal-
ogy goes much further.

Electrical Oscillations in an L-C Circuit
To study the flow of charge in detail, we proceed just as we did for the R-L cir-
cuit. Figure 30.15 shows our definitions of q and i.

CAUTION Positive current in an L-C circuit After examining Fig. 30.14, the positive
direction for current in Fig. 30.15 may seem backward to you. In fact we’ve chosen
this direction to simplify the relationship between current and capacitor charge. We
define the current at each instant to be the rate of change of the charge on
the left-hand capacitor plate. Hence if the capacitor is initially charged and begins to
discharge as in Figs. 30.14a and 30.14b, then and the initial current i is neg-
ative; the direction of the current is then opposite to the (positive) direction shown in
Fig. 30.15. ❙

dq>dt 6 0

i = dq>dt,

-Q-Vm
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(a) t 5 0 and t 5 T
(close switch at t 5 0)

(b) t 5 T
1
4

(c) t 5 T
1
2

(d) t 5 T
3
4

+
+
+
+
+
+
+

+
+
+
+
+
+
+

Circuit’s energy all
stored in electric field

Circuit’s energy all
stored in magnetic field

Circuit’s energy all
stored in electric field

Capacitor fully charged;
zero current

Capacitor fully
discharged;

current maximal

Capacitor polarity reverses.

Capacitor charging; I decreasing

Current direction reverses.

Capacitor fully charged;
zero current

Capacitor fully
discharged;

current maximal

Capacitor
discharging;
I increasing

Capacitor
charging;
I decreasing

Capacitor
discharging;
I increasing

Circuit’s energy all
stored in magnetic field

Em

+Qm –Qm

Vm

C
L BmIm Im

+Qm–Qm

Em

–Vm

BmIm Im

zero

E 5 UB 1 UE

zero

E 5 UB 1 UE

zero

E 5 UB 1 UE

zero

E 5 UB 1 UE

30.14 In an oscillating L-C circuit, the charge on the capacitor and the current through the inductor both vary sinusoidally with time.
Energy is transferred between magnetic energy in the inductor and electric energy in the capacitor As in simple harmonic
motion, the total energy remains constant. (Compare Fig. 14.14 in Section 14.3.)E

1UE2.1UB2

Travel

+q –q
C

i

L

30.15 Applying Kirchhoff’s loop rule to
the L-C circuit. The direction of travel
around the loop in the loop equation is
shown. Just after the circuit is completed
and the capacitor first begins to discharge,
as in Fig. 30.14a, the current is negative
(opposite to the direction shown).
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We apply Kirchhoff’s loop rule to the circuit in Fig. 30.15. Starting at the
lower-right corner of the circuit and adding voltages as we go clockwise around
the loop, we obtain

Since it follows that We substitute this expression
into the above equation and divide by to obtain

(30.20)

Equation (30.20) has exactly the same form as the equation we derived for
simple harmonic motion in Section 14.2, Eq. (14.4). That equation is 

or

(You should review Section 14.2 before going on with this discussion.) In the 
L-C circuit the capacitor charge q plays the role of the displacement x, and the
current is analogous to the particle’s velocity The induc-
tance is analogous to the mass m, and the reciprocal of the capacitance, is
analogous to the force constant k.

Pursuing this analogy, we recall that the angular frequency of the
harmonic oscillator is equal to and the position is given as a function of
time by Eq. (14.13),

where the amplitude and the phase angle depend on the initial conditions. In
the analogous electrical situation the capacitor charge q is given by

(30.21)

and the angular frequency of oscillation is given by

(30.22)

You should verify that Eq. (30.21) satisfies the loop equation, Eq. (30.20), when
has the value given by Eq. (30.22). In doing this, you will find that the instanta-

neous current is given by

(30.23)

Thus the charge and current in an L-C circuit oscillate sinusoidally with time,
with an angular frequency determined by the values of and The ordinary fre-
quency the number of cycles per second, is equal to as always. The con-
stants and in Eqs. (30.21) and (30.23) are determined by the initial
conditions. If at time the left-hand capacitor plate in Fig. 30.15 has its max-
imum charge and the current i is zero, then If at time then

Energy in an L-C Circuit
We can also analyze the L-C circuit using an energy approach. The analogy to
simple harmonic motion is equally useful here. In the mechanical problem a body
with mass m is attached to a spring with force constant k. Suppose we displace
the body a distance from its equilibrium position and release it from rest at time

The kinetic energy of the system at any later time is and its elastic
potential energy is Because the system is conservative, the sum of these1

2 kx2.

1
2 mvx

2,t = 0.
A

f = �p>2 rad.
t = 0,q = 0f = 0.Q

t = 0
fQ

v>2pf,
C.L

i = -vQ sin1vt + f2

i = dq>dt
v

(angular frequency of oscillation
in an L-C circuit)

v =
A

1

LC

v

q = Qcos1vt + f2

fA

x = Acos1vt + f2

1k>m21>2,
v = 2pf

1>C,L
vx = dx>dt.i = dq>dt

d2x

dt 2 +
k

m
x = 0

-1k>m2x,
d2x>dt 2 =

d2q

dt 2 +
1

LC
q = 0  1L-C circuit2

-L
di>dt = d2q>dt 2.i = dq>dt,

-L
di

dt
-

q

C
= 0



energies equals the initial energy of the system, We find the velocity at
any position x just as we did in Section 14.3, Eq. (14.22):

(30.24)

The L-C circuit is also a conservative system. Again let be the maximum
capacitor charge. The magnetic-field energy in the inductor at any time cor-
responds to the kinetic energy of the oscillating body, and the electric-field
energy in the capacitor corresponds to the elastic potential energy of
the spring. The sum of these energies equals the total energy of the sys-
tem:

(30.25)

The total energy in the L-C circuit is constant; it oscillates between the magnetic
and the electric forms, just as the constant total mechanical energy in simple har-
monic motion is constant and oscillates between the kinetic and potential forms.

Solving Eq. (30.25) for i, we find that when the charge on the capacitor is q,
the current i is

(30.26)

You can verify this equation by substituting q from Eq. (30.21) and i from
Eq. (30.23). Comparing Eqs. (30.24) and (30.26), we see that current 
and charge q are related in the same way as are velocity and position
x in the mechanical problem.

Table 30.1 summarizes the analogies between simple harmonic motion and 
L-C circuit oscillations. The striking parallels shown there are so close that we can
solve complicated mechanical and acoustical problems by setting up analogous
electric circuits and measuring the currents and voltages that correspond to the
mechanical and acoustical quantities to be determined. This is the basic principle
of many analog computers. This analogy can be extended to damped oscillations,
which we consider in the next section. In Chapter 31 we will extend the analogy
further to include forced electrical oscillations, which occur in all alternating-
current circuits.

vx = dx>dt
i = dq>dt

i = �
A

1

LC
2Q2 - q2

1
2 Li2 +

q2

2C
=

Q2

2C

Q2>2C

1
2 kx2q2>2C

1
2 mv2

1
2 Li2

Q

vx = �
A

k

m
2A2 - x2

vx
1
2 kA2.
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Table 30.1 Oscillation of a 
Mass-Spring System Compared
with Electrical Oscillation in 
an L-C Circuit

Mass-Spring System

Inductor-Capacitor Circuit

q = Qcos1vt + f2

v =
A

1

LC

i = dq>dt

i = � 21>LC2Q2 - q2

1
2 Li2 + q2>2C = Q2>2C

Electric energy = q2>2C

Magnetic energy = 1
2 Li2

x = Acos1vt + f2

v =
A

k

m

vx = dx>dt

vx = � 2k>m2A2 - x2

1
2 mvx

2 + 1
2 kx2 = 1

2 kA2

Potential energy = 1
2 kx2

Kinetic energy = 1
2 mvx

2

Example 30.8 An oscillating circuit

A 300-V dc power supply is used to charge a capacitor. After
the capacitor is fully charged, it is disconnected from the power
supply and connected across a 10-mH inductor. The resistance in
the circuit is negligible. (a) Find the frequency and period of oscil-
lation of the circuit. (b) Find the capacitor charge and the circuit
current 1.2 ms after the inductor and capacitor are connected.

SOLUTION

IDENTIFY and SET UP: Our target variables are the oscillation fre-
quency and period , as well as the charge q and current i at a
particular time t. We are given the capacitance and the induc-
tance from which we can calculate the frequency and period
using Eq. (30.22). We find the charge and current using Eqs.
(30.21) and (30.23). Initially the capacitor is fully charged and the
current is zero, as in Fig. 30.14a, so the phase angle is [see
the discussion that follows Eq. (30.23)].

f = 0

L,
C

Tƒ

25-mF EXECUTE: (a) The natural angular frequency is

The frequency and period T are then

(b) Since the period of the oscillation is 
equals this corresponds to a situation intermedi-

ate between Fig. 30.14b and Fig. 30.14c 
Comparing those figures with Fig. 30.15, we expect the capacitor
charge q to be negative (that is, there will be negative charge on

1t = T>22.1t = T>42
0.38T;t = 1.2 ms

T = 3.1 ms,

T =
1

ƒ
=

1

320 Hz
= 3.1 * 10-3 s = 3.1 ms

ƒ =
v

2p
=

2.0 * 103 rad>s

2p rad>cycle
= 320 Hz

ƒ

= 2.0 * 103 rad>s

v =
A

1

LC
=
B

1

110 * 10-3 H2125 * 10-6 F2
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30.6 The L-R-C Series Circuit
In our discussion of the L-C circuit we assumed that there was no resistance in
the circuit. This is an idealization, of course; every real inductor has resistance in
its windings, and there may also be resistance in the connecting wires. Because
of resistance, the electromagnetic energy in the circuit is dissipated and con-
verted to other forms, such as internal energy of the circuit materials. Resistance
in an electric circuit is analogous to friction in a mechanical system.

Suppose an inductor with inductance and a resistor of resistance are con-
nected in series across the terminals of a charged capacitor, forming an L-R-C
series circuit. As before, the capacitor starts to discharge as soon as the circuit is
completed. But because of losses in the resistor, the magnetic-field energy
acquired by the inductor when the capacitor is completely discharged is less than
the original electric-field energy of the capacitor. In the same way, the energy 
of the capacitor when the magnetic field has decreased to zero is still smaller, and
so on.

If the resistance is relatively small, the circuit still oscillates, but with
damped harmonic motion (Fig. 30.16a), and we say that the circuit is

R

i2R

RL

the left-hand plate of the capacitor) and the current i to be negative
as well (that is, current will flow counterclockwise).

To find the value of q, we use Eq. (30.21), .
The charge is maximum at so and 

Hence Eq. (30.21) becomes

At time t = 1.2 * 10-3 s,

q = 17.5 * 10-3 C2cos vt

10-6 F21300 V2 = 7.5 * 10-3 C.
Q = CE = 125 *f = 0t = 0,

q = Q cos1vt + f2
From Eq. (30.23), the current i at any time is . At

EVALUATE: The signs of q and i are both negative, as predicted.

i = -12.0 * 103 rad>s217.5 * 10-3 C2 sin12.4 rad2 = -10 A

t = 1.2 * 10-3 s,
i = -vQ sin vt

q = 17.5 * 10-3 C2cos12.4 rad2 = -5.5 * 10-3 C

vt = 12.0 * 103 rad>s211.2 * 10-3 s2 = 2.4 rad

Example 30.9 Energy in an oscillating circuit

For the L-C circuit of Example 30.8, find the magnetic and electric
energies (a) at and (b) at 

SOLUTION

IDENTIFY and SET UP: We must calculate the magnetic energy 
(stored in the inductor) and the electric energy (stored in the
capacitor) at two times during the L-C circuit oscillation. From
Example 30.8 we know the values of the capacitor charge q and cir-
cuit current i for both times. We use them to calculate 
and

EXECUTE: (a) At there is no current and Hence there
is no magnetic energy, and all the energy in the circuit is in the
form of electric energy in the capacitor:

UB = 1
2 Li2 = 0 UE =

Q2

2C
=
17.5 * 10-3 C22

2125 * 10-6 F2
= 1.1 J

q = Q.t = 0

UE = q2>2C.
UB = 1

2 Li2

UE

UB

t = 1.2 ms.t = 0
(b) From Example 30.8, at t � 1.2 ms we have and

. Hence

EVALUATE: The magnetic and electric energies are the same at
halfway between the situations in Figs. 30.14b

and 30.14c. We saw in Example 30.8 that the time considered in
part (b), t � 1.2 ms, equals 0.38T; this is slightly later than 0.375T,
so is slightly less than . At all times the total energy 

has the same value, 1.1 J. An L-C circuit without resist-
ance is a conservative system; no energy is dissipated.
UB + UE

E =UEUB

t = 3T>8 = 0.375T,

UE =
q2

2C
=
1-5.5 * 10-3 C22

2125 * 10-6 F2
= 0.6 J

UB = 1
2 Li2 = 1

2 110 * 10-3 H21-10 A22 = 0.5 J

q = -5.5 * 10-3 C
i = -10 A

Test Your Understanding of Section 30.5 One way to think about the energy
stored in an L-C circuit is to say that the circuit elements do positive or negative work on
the charges that move back and forth through the circuit. (a) Between stages (a) and 
(b) in Fig. 30.14, does the capacitor do positive work or negative work on the charges?
(b) What kind of force (electric or magnetic) does the capacitor exert on the charges to do
this work? (c) During this process, does the inductor do positive or negative work on the
charges? (d) What kind of force (electric or magnetic) does the inductor exert on the
charges? ❙

ActivPhysics 14.2: AC Circuits: The RLC
Oscillator (Questions 7–10)



underdamped. If we increase the oscillations die out more rapidly. When 
reaches a certain value, the circuit no longer oscillates; it is critically damped
(Fig. 30.16b). For still larger values of the circuit is overdamped (Fig.
30.16c), and the capacitor charge approaches zero even more slowly. We used
these same terms to describe the behavior of the analogous mechanical system,
the damped harmonic oscillator, in Section 14.7.

Analyzing an L-R-C Series Circuit
To analyze L-R-C series circuit behavior in detail, we consider the circuit shown
in Fig. 30.17. It is like the L-C circuit of Fig. 30.15 except for the added resistor

we also show the source that charges the capacitor initially. The labeling of the
positive senses of q and i are the same as for the L-C circuit.

First we close the switch in the upward position, connecting the capacitor to a
source of emf for a long enough time to ensure that the capacitor acquires its
final charge and any initial oscillations have died out. Then at time

we flip the switch to the downward position, removing the source from the
circuit and placing the capacitor in series with the resistor and inductor. Note that
the initial current is negative, opposite to the direction of i shown in Fig. 30.17.

To find how q and i vary with time, we apply Kirchhoff’s loop rule. Starting at
point a and going around the loop in the direction abcda, we obtain the equation

Replacing i with and rearranging, we get

(30.27)

Note that when this reduces to Eq. (30.20) for an L-C circuit.
There are general methods for obtaining solutions of Eq. (30.27). The form of

the solution is different for the underdamped (small and overdamped (large 
cases. When is less than the solution has the form

(30.28)

where and are constants. We invite you to take the first and second deriva-
tives of this function and show by direct substitution that it does satisfy 
Eq. (30.27).

This solution corresponds to the underdamped behavior shown in Fig. 30.16a;
the function represents a sinusoidal oscillation with an exponentially decaying
amplitude. (Note that the exponential factor is not the same as the factor

that we encountered in describing the R-L circuit in Section 30.4.) When
Eq. (30.28) reduces to Eq. (30.21) for the oscillations in an L-C circuit. If

is not zero, the angular frequency of the oscillation is less than
because of the term containing The angular frequency of the damped oscil-
lations is given by

(30.29)

When this reduces to Eq. (30.22), As increases, 
becomes smaller and smaller. When the quantity under the radical
becomes zero; the system no longer oscillates, and the case of critical damping
(Fig. 30.16b) has been reached. For still larger values of the system behaves as
in Fig. 30.16c. In this case the circuit is overdamped, and q is given as a function
of time by the sum of two decreasing exponential functions.

R

R2 = 4L>C,
v¿Rv = 11>LC21>2.R = 0,

v¿ =
B

1

LC
-

R2

4L2  1underdamped L-R-C series circuit)

v¿R.
1>1LC21>2R

R = 0,
e-1R>L2t

e-1R>2L2t

fA

q = Ae-1R>2L2t cosa
B

1

LC
-

R2

4L2 t + fb

4L>C,R2
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R = 0,
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R
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-
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(b) Critically damped circuit (larger resistance R)

q

O

Q

t

O
t

(a) Underdamped circuit (small resistance R)

q

Q

(c) Overdamped circuit (very large resistance R)

q

O

Q

t

30.16 Graphs of capacitor charge as a
function of time in an L-R-C series circuit
with initial charge Q.

When switch S is in this position,
the emf charges the capacitor.

When switch S is moved to this
position, the capacitor discharges
through the resistor and inductor.

+q –q
C

b

a

d

i

S

R

L

+
E

c

30.17 An L-R-C series circuit.



30.5 The L-R-C Series Circuit 1011

In the underdamped case the phase constant in the cosine function of 
Eq. (30.28) provides for the possibility of both an initial charge and an initial cur-
rent at time analogous to an underdamped harmonic oscillator given both
an initial displacement and an initial velocity (see Exercise 30.40).

We emphasize once more that the behavior of the L-R-C series circuit is com-
pletely analogous to that of the damped harmonic oscillator studied in Section
14.7. We invite you to verify, for example, that if you start with Eq. (14.41) and
substitute q for x, for m, for k, and for the damping constant b, the result
is Eq. (30.27). Similarly, the cross-over point between underdamping and over-
damping occurs at for the mechanical system and at for
the electrical one. Can you find still other aspects of this analogy?

The practical applications of the L-R-C series circuit emerge when we include
a sinusoidally varying source of emf in the circuit. This is analogous to the forced
oscillations that we discussed in Section 14.7, and there are analogous resonance
effects. Such a circuit is called an alternating-current (ac) circuit; the analysis of
ac circuits is the principal topic of the next chapter.

R2 = 4L>Cb2 = 4km

R1>CL

t = 0,

f

Example 30.10 An underdamped L-R-C series circuit

What resistance is required (in terms of and to give an L-R-C
series circuit a frequency that is one-half the undamped frequency?

SOLUTION

IDENTIFY and SET UP: This problem concerns an underdamped 
L-R-C series circuit (Fig. 30.16a). We want just enough resistance
to reduce the oscillation frequency to one-half of the undamped
value. Equation (30.29) gives the angular frequency of an
underdamped L-R-C series circuit; Eq. (30.22) gives the angular
frequency of an undamped L-C circuit. We use these two equa-
tions to solve for 

EXECUTE: From Eqs. (30.29) and (30.22), the requirement
yieldsv¿ = v>2

R.
v

v¿

C )LR

We square both sides and solve for 

For example, adding to the circuit of Example 30.8 
mH, C would reduce the frequency from 

320 Hz to 160 Hz.

EVALUATE: The circuit becomes critically damped with no oscilla-
tions when Our result for is smaller than that, as it
should be; we want the circuit to be underdamped.

RR = 24L>C.

= 25 mF21L = 10
35 Æ

R =
A

3L

C

R:

B
1

LC
-

R2

4L2
= 1

2A

1

LC

Test Your Understanding of Section 30.6 An L-R-C series circuit
includes a resistor. At the capacitor charge is For which of
the following values of the inductance and capacitance will the charge on the
capacitor not oscillate? (i) (ii) 
(iii) ❙C = 3.0 mF.L = 3.0 mH,

C = 3.0 mF;L = 6.0 mH,C = 6.0 mF;L = 3.0 mH,

2.0 mC.t = 02.0-Æ



1012

CHAPTER 30 SUMMARY

Mutual inductance: When a changing current in one
circuit causes a changing magnetic flux in a second circuit,
an emf is induced in the second circuit. Likewise, a
changing current in the second circuit induces an emf 
in the first circuit. If the circuits are coils of wire with 
and turns, the mutual inductance can be expressed in
terms of the average flux through each turn of coil 2
caused by the current in coil 1, or in terms of the aver-
age flux through each turn of coil 1 caused by the
current in coil 2. The SI unit of mutual inductance is the
henry, abbreviated H. (See Examples 30.1 and 30.2.)

i2

£B1

i1

£B2

MN2

N1

E1i2

E2

i1

(30.4)

(30.5)M =
N2£B2

i1
=

N1£B1

i2

E1 = -M
di2

dt

E2 = -M
di1
dt

 and

Self-inductance: A changing current i in any circuit causes
a self-induced emf The inductance (or self-inductance)

depends on the geometry of the circuit and the material
surrounding it. The inductance of a coil of turns is
related to the average flux through each turn caused
by the current i in the coil. An inductor is a circuit device,
usually including a coil of wire, intended to have a
substantial inductance. (See Examples 30.3 and 30.4.)

£B

N
L

E.
(30.7)

(30.6)L =
N£B

i

E = -L
di

dt

Magnetic-field energy: An inductor with inductance 
carrying current has energy associated with the
inductor’s magnetic field. The magnetic energy density
u (energy per unit volume) is proportional to the square
of the magnetic field magnitude. (See Example 30.5.)

UI
L (30.9)

(in vacuum) (30.10)

(in a material
(30.11)with magnetic 

permeability )m
u =

B2

2m

u =
B2

2m0

U = 1
2 LI 2

R-L circuits: In a circuit containing a resistor an
inductor and a source of emf, the growth and decay of
current are exponential. The time constant is the time
required for the current to approach within a fraction 
of its final value. (See Examples 30.6 and 30.7.)

1>e
t

L,
R, (30.16)t =

L

R

L-C circuits: A circuit that contains inductance and
capacitance undergoes electrical oscillations with an
angular frequency that depends on and This is anal-
ogous to a mechanical harmonic oscillator, with induc-
tance analogous to mass m, the reciprocal of capacitance

to force constant k, charge q to displacement x, and
current i to velocity (See Examples 30.8 and 30.9.)vx.
1>C

L

C.Lv

C
L

(30.22)v =
A

1
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L-R-C series circuits: A circuit that contains inductance,
resistance, and capacitance undergoes damped oscilla-
tions for sufficiently small resistance. The frequency 
of damped oscillations depends on the values of and

As increases, the damping increases; if is greater
than a certain value, the behavior becomes overdamped
and no longer oscillates. (See Example 30.10.)

RRC.
R,L,
v¿

(30.29)v¿ =
B

1

LC
-

R2

4L2

O
t

Underdamped
circuit (small R)

q

Q
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An L-C circuit consists of a inductor and a 
capacitor. The initial charge on the capacitor is and the
initial current in the inductor is 0.400 mA. (a) What is the maxi-
mum energy stored in the inductor? (b) What is the maximum cur-
rent in the inductor? (c) What is the maximum voltage across the
capacitor? (d) When the current in the inductor has half its maxi-
mum value, what is the energy stored in the inductor and the volt-
age across the capacitor?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP:
1. An L-C circuit is a conservative system because there is no

resistance to dissipate energy. The energy oscillates between
electric energy in the capacitor and magnetic energy stored in
the inductor.

6.00 mC,
250-mF60.0-mH

BRIDGING PROBLEM Analyzing an L-C Circuit

2. Which key equations are needed to describe the capacitor? To
describe the inductor?

EXECUTE:
3. Find the initial total energy in the L-C circuit. Use this to deter-

mine the maximum energy stored in the inductor during the
oscillation.

4. Use the result of step 3 to find the maximum current in the
inductor.

5. Use the result of step 3 to find the maximum energy stored in
the capacitor during the oscillation. Then use this to find the
maximum capacitor voltage.

6. Find the energy in the inductor and the capacitor charge when
the current has half the value that you found in step 4.

EVALUATE:
7. Initially, what fraction of the total energy is in the inductor? Is it

possible to tell whether this is initially increasing or decreasing?

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q30.1 In an electric trolley or bus system, the vehicle’s motor
draws current from an overhead wire by means of a long arm with
an attachment at the end that slides along the overhead wire. A bril-
liant electric spark is often seen when the attachment crosses a
junction in the wires where contact is momentarily lost. Explain
this phenomenon.
Q30.2 From Eq. (30.5) and from Eq. (30.4)

Show that these two definitions are equivalent.
Q30.3 In Fig. 30.1, if coil 2 is turned so that its axis is vertical,
does the mutual inductance increase or decrease? Explain.
Q30.4 The tightly wound toroidal solenoid is one of the few con-
figurations for which it is easy to calculate self-inductance. What
features of the toroidal solenoid give it this simplicity?
Q30.5 Two identical, closely wound, circular coils, each having
self-inductance are placed next to each other, so that they are
coaxial and almost touching. If they are connected in series, what
is the self-inductance of the combination? What if they are con-
nected in parallel? Can they be connected so that the total induc-
tance is zero? Explain.
Q30.6 Two closely wound circular coils have the same number of
turns, but one has twice the radius of the other. How are the self-
inductances of the two coils related? Explain your reasoning.
Q30.7 You are to make a resistor by winding a wire around a
cylindrical form. To make the inductance as small as possible, it is
proposed that you wind half the wire in one direction and the other
half in the opposite direction. Would this achieve the desired
result? Why or why not?
Q30.8 For the same magnetic field strength is the energy den-
sity greater in vacuum or in a magnetic material? Explain. Does

B,

L,

90°
1 H = 1 Æ # s.

1 H = 1 Wb>A,

Eq. (30.11) imply that for a long solenoid in which the current is
the energy stored is proportional to And does this mean

that for the same current less energy is stored when the solenoid
is filled with a ferromagnetic material rather than with air?
Explain.
Q30.9 In Section 30.5 Kirchhoff’s loop rule is applied to an L-C
circuit where the capacitor is initially fully charged and the equa-
tion is derived. But as the capacitor starts to
discharge, the current increases from zero. The equation says

so it says is negative. Explain how
can be negative when the current is increasing.

Q30.10 In Section 30.5 the relationship is used in deriv-
ing Eq. (30.20). But a flow of current corresponds to a decrease in
the charge on the capacitor. Explain, therefore, why this is the cor-
rect equation to use in the derivation, rather than 
Q30.11 In the R-L circuit shown in Fig. 30.11, when switch is
closed, the potential changes suddenly and discontinuously,
but the current does not. Explain why the voltage can change sud-
denly but the current can’t.
Q30.12 In the R-L circuit shown in Fig. 30.11, is the current in the
resistor always the same as the current in the inductor? How do
you know?
Q30.13 Suppose there is a steady current in an inductor. If you
attempt to reduce the current to zero instantaneously by quickly
opening a switch, an arc can appear at the switch contacts. Why? Is
it physically possible to stop the current instantaneously? Explain.
Q30.14 In an L-R-C series circuit, what criteria could be used to
decide whether the system is overdamped or underdamped? For
example, could we compare the maximum energy stored during
one cycle to the energy dissipated during one cycle? Explain.

vab

S1

i = -dq>dt.

i = dq>dt
L di>dt

L di>dtL di>dt = -q>C,

-L di>dt - q>C = 0

1>m?I

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

www.masteringphysics.com
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EXERCISES
Section 30.1 Mutual Inductance
30.1 . Two coils have mutual inductance 
The current in the first coil increases at a uniform rate of

(a) What is the magnitude of the induced emf in the sec-
ond coil? Is it constant? (b) Suppose that the current described is in
the second coil rather than the first. What is the magnitude of the
induced emf in the first coil?
30.2 . Two coils are wound around the same cylindrical form,
like the coils in Example 30.1. When the current in the first coil is
decreasing at a rate of the induced emf in the second
coil has magnitude (a) What is the mutual induc-
tance of the pair of coils? (b) If the second coil has 25 turns, what
is the flux through each turn when the current in the first coil
equals (c) If the current in the second coil increases at a
rate of what is the magnitude of the induced emf in the
first coil?
30.3 . A 10.0-cm-long solenoid of diameter 0.400 cm is wound
uniformly with 800 turns. A second coil with 50 turns is wound
around the solenoid at its center. What is the mutual inductance of
the combination of the two coils?
30.4 . A solenoidal coil with 25 turns of wire is wound tightly
around another coil with 300 turns (see Example 30.1). The inner
solenoid is 25.0 cm long and has a diameter of 2.00 cm. At a cer-
tain time, the current in the inner solenoid is 0.120 A and is
increasing at a rate of For this time, calculate: (a)
the average magnetic flux through each turn of the inner solenoid;
(b) the mutual inductance of the two solenoids; (c) the emf induced
in the outer solenoid by the changing current in the inner solenoid.
30.5 . Two toroidal solenoids are wound around the same form so
that the magnetic field of one passes through the turns of the other.
Solenoid 1 has 700 turns, and solenoid 2 has 400 turns. When the
current in solenoid 1 is 6.52 A, the average flux through each turn
of solenoid 2 is 0.0320 Wb. (a) What is the mutual inductance of
the pair of solenoids? (b) When the current in solenoid 2 is 2.54 A,
what is the average flux through each turn of solenoid 1?
30.6 .. A toroidal solenoid with mean radius r and cross-sectional
area A is wound uniformly with turns. A second toroidal sole-
noid with turns is wound uniformly on top of the first, so that
the two solenoids have the same cross-sectional area and mean
radius. (a) What is the mutual inductance of the two solenoids?
Assume that the magnetic field of the first solenoid is uniform
across the cross section of the two solenoids. (b) If 
turns, turns, , and , what is
the value of the mutual inductance?

Section 30.2 Self-Inductance and Inductors
30.7 . A 2.50-mH toroidal solenoid has an average radius of 6.00 cm
and a cross-sectional area of 2.00 cm2. (a) How many coils does it
have? (Make the same assumption as in Example 30.3.) (b) At what
rate must the current through it change so that a potential differ-
ence of 2.00 V is developed across its ends?
30.8 . A toroidal solenoid has 500 turns, cross-sectional area

and mean radius 4.00 cm. (a) Calculate the coil’s self-
inductance. (b) If the current decreases uniformly from 5.00 A to
2.00 A in 3.00 ms, calculate the self-induced emf in the coil. (c) The
current is directed from terminal a of the coil to terminal b. Is the
direction of the induced emf from a to b or from b to a?
30.9 . At the instant when the current in an inductor is increasing
at a rate of the magnitude of the self-induced emf is
0.0160 V. (a) What is the inductance of the inductor? (b) If the

0.0640 A>s,

6.25 cm2,

A = 0.800 cm2r = 10.0 cmN2 = 300
N1 = 500

N2

N1

1.75 * 103 A>s.

0.360 A>s,
1.20 A?

1.65 * 10-3 V.
-0.242 A>s,

830 A>s.
i1

M = 3.25 * 10-4 H.

inductor is a solenoid with 400 turns, what is the average magnetic
flux through each turn when the current is 0.720 A?
30.10 .. When the current in a toroidal solenoid is changing at a
rate of the magnitude of the induced emf is 12.6 mV.
When the current equals 1.40 A, the average flux through each turn
of the solenoid is 0.00285 Wb. How many turns does the solenoid
have?
30.11 . The inductor in Fig. E30.11 has
inductance 0.260 H and carries a current in
the direction shown that is decreasing 
at a uniform rate, 
(a) Find the self-induced emf. (b) Which
end of the inductor, a or b, is at a higher potential?
30.12 . The inductor shown in Fig. E30.11 has inductance 0.260 H
and carries a current in the direction shown. The current is chang-
ing at a constant rate. (a) The potential between points a and b is

with point a at higher potential. Is the current
increasing or decreasing? (b) If the current at is 12.0 A, what
is the current at 
30.13 .. A toroidal solenoid has mean radius 12.0 cm and cross-
sectional area . (a) How many turns does the solenoid
have if its inductance is 0.100 mH? (b) What is the resistance of
the solenoid if the wire from which it is wound has a resistance per
unit length of ?
30.14 . A long, straight solenoid has 800 turns. When the current
in the solenoid is 2.90 A, the average flux through each turn of the
solenoid is . What must be the magnitude of the
rate of change of the current in order for the self-induced emf to
equal 7.50 mV?
30.15 .. Inductance of a Solenoid. (a) A long, straight sole-
noid has turns, uniform cross-sectional area and length l.
Show that the inductance of this solenoid is given by the equation

Assume that the magnetic field is uniform inside
the solenoid and zero outside. (Your answer is approximate
because is actually smaller at the ends than at the center. For this
reason, your answer is actually an upper limit on the inductance.)
(b) A metallic laboratory spring is typically 5.00 cm long and
0.150 cm in diameter and has 50 coils. If you connect such a spring
in an electric circuit, how much self-inductance must you include
for it if you model it as an ideal solenoid?

Section 30.3 Magnetic-Field Energy
30.16 . An inductor used in a dc power supply has an inductance
of 12.0 H and a resistance of It carries a current of 0.300 A.
(a) What is the energy stored in the magnetic field? (b) At what rate
is thermal energy developed in the inductor? (c) Does your answer
to part (b) mean that the magnetic-field energy is decreasing with
time? Explain.
30.17 . An air-filled toroidal solenoid has a mean radius of 15.0 cm
and a cross-sectional area of When the current is 12.0 A,
the energy stored is 0.390 J. How many turns does the winding
have?
30.18 . An air-filled toroidal solenoid has 300 turns of wire, a
mean radius of 12.0 cm, and a cross-sectional area of If
the current is 5.00 A, calculate: (a) the magnetic field in the sole-
noid; (b) the self-inductance of the solenoid; (c) the energy stored
in the magnetic field; (d) the energy density in the magnetic field.
(e) Check your answer for part (d) by dividing your answer to part
(c) by the volume of the solenoid.
30.19 .. A solenoid 25.0 cm long and with a cross-sectional area
of contains 400 turns of wire and carries a current of
80.0 A. Calculate: (a) the magnetic field in the solenoid; (b) the

0.500 cm2

4.00 cm2.

5.00 cm2.

180 Æ.

B

L = m0AN 2>l.

A,N

3.25 * 10-3 Wb

0.0760 Æ>m

0.600 cm2

t = 2.00 s?
t = 0

Vab = 1.04 V,

-0.0180 A>s.di>dt =

0.0260 A>s,

La b

i

Figure E30.11
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energy density in the magnetic field if the solenoid is filled with
air; (c) the total energy contained in the coil’s magnetic field
(assume the field is uniform); (d) the inductance of the solenoid.
30.20 . It has been proposed to use large inductors as energy stor-
age devices. (a) How much electrical energy is converted to light
and thermal energy by a 200-W light bulb in one day? (b) If the
amount of energy calculated in part (a) is stored in an inductor in
which the current is 80.0 A, what is the inductance?
30.21 .. In a proton accelerator used in elementary particle
physics experiments, the trajectories of protons are controlled by
bending magnets that produce a magnetic field of 4.80 T. What is
the magnetic-field energy in a volume of space where

?
30.22 . It is proposed to store of
electrical energy in a uniform magnetic field with magnitude 0.600 T.
(a) What volume (in vacuum) must the magnetic field occupy to
store this amount of energy? (b) If instead this amount of energy is
to be stored in a volume (in vacuum) equivalent to a cube 40.0 cm
on a side, what magnetic field is required?

Section 30.4 The R-L Circuit
30.23 . An inductor with an inductance of 2.50 H and a resistance
of is connected to the terminals of a battery with an emf of
6.00 V and negligible internal resistance. Find (a) the initial rate of
increase of current in the circuit; (b) the rate of increase of current
at the instant when the current is 0.500 A; (c) the current 0.250 s
after the circuit is closed; (d) the final steady-state current.
30.24 . In Fig. 30.11, and the battery emf is 6.30 V.
With switch open, switch is closed. After several minutes, 
is opened and is closed. (a) At 2.00 ms after is opened, the
current has decayed to 0.320 A. Calculate the inductance of the coil.
(b) How long after is opened will the current reach 1.00% of its
original value?
30.25 . A 35.0-V battery with negligible internal resistance, a

resistor, and a 1.25-mH inductor with negligible resistance
are all connected in series with an open switch. The switch is
suddenly closed. (a) How long after closing the switch will the
current through the inductor reach one-half of its maximum value?
(b) How long after closing the switch will the energy stored in the
inductor reach one-half of its maximum value?
30.26 . In Fig. 30.11, switch is closed while switch is kept
open. The inductance is and the resistance is

(a) When the current has reached its final value, the
energy stored in the inductor is 0.260 J. What is the emf of the
battery? (b) After the current has reached its final value, is
opened and is closed. How much time does it take for the energy
stored in the inductor to decrease to 0.130 J, half the original value?
30.27 . In Fig. 30.11, suppose that and

With switch open, switch is left closed until a
constant current is established. Then is closed and opened,
taking the battery out of the circuit. (a) What is the initial current in
the resistor, just after is closed and is opened? (b) What is the
current in the resistor at (c) What is the poten-
tial difference between points b and c at
Which point is at a higher potential? (d) How long does it take the
current to decrease to half its initial value?
30.28 . In Fig. 30.11, suppose that and

Initially there is no current in the circuit. Switch 
is left open, and switch is closed. (a) Just after is closed, what
are the potential differences and (b) A long time (many
time constants) after is closed, what are and (c) What
are and at an intermediate time when i = 0.150 A?vbcvab

vbc?vabS1

vbc?vab

S1S1

S2L = 0.160 H.
R = 240 Æ,E = 60.0 V,

t = 4.00 * 10-4 s?
t = 4.00 * 10-4 s?

S1S2

S1S2

S1S2L = 0.160 H.
R = 240 Æ,E = 60.0 V,

S2

S1

E

R = 120 Æ.
L = 0.115 H,

S2S1

50.0-Æ

S1

S1S2

S1S1S2

R = 15.0 Æ

8.00 Æ

1.00 kW # h = 3.60 * 106 J
B = 4.80 T

10.0-cm3

30.29 . Refer to the circuit in Exercise 30.23. (a) What is the
power input to the inductor from the battery as a function of time if
the circuit is completed at (b) What is the rate of dissipation
of energy in the resistance of the inductor as a function of time? 
(c) What is the rate at which the energy of the magnetic field in the
inductor is increasing, as a function of time? (d) Compare the
results of parts (a), (b), and (c).
30.30 . In Fig. 30.11 switch is closed while switch is kept
open. The inductance is , the resistance is ,
and the emf of the battery is 18.0 V. At time t after is closed, the
current in the circuit is increasing at a rate of . At
this instant what is , the voltage across the resistor?

Section 30.5 The L-C Circuit
30.31 . CALC Show that the differential equation of Eq. (30.20) is
satisfied by the function with given by

30.32 .. A capacitor is charged by a 150.0-V power sup-
ply, then disconnected from the power and connected in series with
a 0.280-mH inductor. Calculate: (a) the oscillation frequency of
the circuit; (b) the energy stored in the capacitor at time 
(the moment of connection with the inductor); (c) the energy
stored in the inductor at 
30.33 . A 7.50-nF capacitor is charged up to 12.0 V, then discon-
nected from the power supply and connected in series through a
coil. The period of oscillation of the circuit is then measured to be

Calculate: (a) the inductance of the coil; (b) the
maximum charge on the capacitor; (c) the total energy of the cir-
cuit; (d) the maximum current in the circuit.
30.34 .. A capacitor is placed across a 22.5-V battery
for several seconds and is then connected across a 12.0-mH induc-
tor that has no appreciable resistance. (a) After the capacitor and
inductor are connected together, find the maximum current in the
circuit. When the current is a maximum, what is the charge on the
capacitor? (b) How long after the capacitor and inductor are con-
nected together does it take for the capacitor to be completely dis-
charged for the first time? For the second time? (c) Sketch graphs
of the charge on the capacitor plates and the current through the
inductor as functions of time.
30.35 . L-C Oscillations. A capacitor with capacitance 

is charged by connecting it to a battery. The capaci-
tor is disconnected from the battery and connected across an
inductor with (a) What are the angular frequency 
of the electrical oscillations and the period of these oscillations
(the time for one oscillation)? (b) What is the initial charge on the
capacitor? (c) How much energy is initially stored in the capacitor?
(d) What is the charge on the capacitor after the connec-
tion to the inductor is made? Interpret the sign of your answer. 
(e) At the time given in part (d), what is the current in the inductor?
Interpret the sign of your answer. (f) At the time given in part 
(d), how much electrical energy is stored in the capacitor and how
much is stored in the inductor?
30.36 . A Radio Tuning Circuit. The minimum capacitance of
a variable capacitor in a radio is 4.18 pF. (a) What is the inductance
of a coil connected to this capacitor if the oscillation frequency of
the L-C circuit is corresponding to one end of the
AM radio broadcast band, when the capacitor is set to its minimum
capacitance? (b) The frequency at the other end of the broadcast
band is What is the maximum capacitance of the
capacitor if the oscillation frequency is adjustable over the range
of the broadcast band?

540 * 103 Hz.

1600 * 103 Hz,

0.0230 s

vL = 1.50 H.

12.0-V10-5 F
6.00 *

18.0-mF

8.60 * 10-5 s.

t = 1.30 ms.

t = 0 ms

20.0-mF
1>1LC.

vq = Q cos1vt + f2,

vab

di>dt = 7.20 A>s
S1

R = 48.0 ÆL = 0.380 H
S2S1

t = 0?
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30.37 .. An L-C circuit containing an 80.0-mH inductor and a
1.25-nF capacitor oscillates with a maximum current of 0.750 A.
Calculate: (a) the maximum charge on the capacitor and (b) the
oscillation frequency of the circuit. (c) Assuming the capacitor had
its maximum charge at time calculate the energy stored in
the inductor after 2.50 ms of oscillation.
30.38 . In an L-C circuit, and Dur-
ing the oscillations the maximum current in the inductor is 0.850 mA.
(a) What is the maximum charge on the capacitor? (b) What is the
magnitude of the charge on the capacitor at an instant when the
current in the inductor has magnitude 0.500 mA?

Section 30.6 The L-R-C Series Circuit
30.39 . An L-R-C series circuit has 

and resistance R. (a) What is the angular frequency of the
circuit when (b) What value must R have to give a 5.0%
decrease in angular frequency compared to the value calculated in
part (a)?
30.40 . For the circuit of Fig. 30.17, let 

and . (a) Calculate the oscillation frequency of
the circuit once the capacitor has been charged and the switch has
been connected to point a. (b) How long will it take for the ampli-
tude of the oscillation to decay to of its original value? 
(c) What value of R would result in a critically damped circuit?
30.41 . CP (a) In Eq. (14.41), substitute q for x, for m, for
k, and for the damping constant b. Show that the result is 
Eq. (30.27). (b) Make these same substitutions in Eq. (14.43) and
show that Eq. (30.29) results. (c) Make these same substitutions in
Eq. (14.42) and show that Eq. (30.28) results.
30.42 . CALC (a) Take first and second derivatives with respect to
time of q given in Eq. (30.28), and show that it is a solution of Eq.
(30.27). (b) At the switch shown in Fig. 30.17 is thrown so
that it connects points d and a; at this time, and 

Show that the constants and in Eq. (30.28) are
given by

PROBLEMS
30.43 . One solenoid is centered inside another. The outer one
has a length of 50.0 cm and contains 6750 coils, while the coaxial
inner solenoid is 3.0 cm long and 0.120 cm in diameter and con-
tains 15 coils. The current in the outer solenoid is changing at

(a) What is the mutual inductance of these solenoids? 
(b) Find the emf induced in the innner solenoid.
30.44 .. CALC A coil has 400 turns and self-inductance 
The current in the coil varies with time according to

(a) What is the maximum emf
induced in the coil? (b) What is the maximum average flux through
each turn of the coil? (c) At what is the magnitude of
the induced emf?
30.45 . A Differentiating Cir-
cuit. The current in a resis-
tanceless inductor is caused to
vary with time as shown in the
graph of Fig. P30.45. (a) Sketch
the pattern that would be observed on the screen of an oscilloscope
connected to the terminals of the inductor. (The oscilloscope spot
sweeps horizontally across the screen at a constant speed, and its
vertical deflection is proportional to the potential difference between

t = 0.0180 s,

i = 1680 mA2cos1pt>0.0250 s2.

4.80 mH.

49.2 A>s.

tanf = -
R

2L211>LC2 - 1R2>4L22
 and A =

Q

cosf

Afdq>dt = 0.
i =q = Q

t = 0

R
1>CL

10.0%

R = 75.0 Æ22 mH,
L =C = 15.0 nF,

R = 0?
10-5 F,

C = 2.50 *L = 0.450 H,

C = 3.20 mF.L = 85.0 mH

t = 0,

the inductor terminals.) (b) Explain why a circuit with an inductor
can be described as a “differentiating circuit.”
30.46 .. CALC A 0.250-H inductor carries a time-varying current
given by the expression (a) Find
an expression for the induced emf as a function of time. Graph the
current and induced emf as functions of time for to 
(b) What is the maximum emf? What is the current when the
induced emf is a maximum? (c) What is the maximum current?
What is the induced emf when the current is a maximum?
30.47 .. Solar Magnetic Energy. Magnetic fields within a
sunspot can be as strong as 0.4 T. (By comparison, the earth’s mag-
netic field is about as strong.) Sunspots can be as large as
25,000 km in radius. The material in a sunspot has a density of
about Assume for the sunspot material is 
If 100% of the magnetic-field energy stored in a sunspot could be
used to eject the sunspot’s material away from the sun’s surface, at
what speed would that material be ejected? Compare to the sun’s
escape speed, which is about (Hint: Calculate the
kinetic energy the magnetic field could supply to of sunspot
material.)
30.48 .. CP CALC A Coaxial Cable. A small solid conductor
with radius a is supported by insulating, nonmagnetic disks on the
axis of a thin-walled tube with inner radius b. The inner and outer
conductors carry equal currents i in opposite directions. (a) Use
Ampere’s law to find the magnetic field at any point in the volume
between the conductors. (b) Write the expression for the flux 
through a narrow strip of length l parallel to the axis, of width dr,
at a distance from the axis of the cable and lying in a plane con-
taining the axis. (c) Integrate your expression from part (b) over
the volume between the two conductors to find the total flux pro-
duced by a current i in the central conductor. (d) Show that the
inductance of a length l of the cable is

(e) Use Eq. (30.9) to calculate the energy stored in the magnetic
field for a length l of the cable.
30.49 .. CP CALC Consider the coaxial cable of Problem 30.48.
The conductors carry equal currents i in opposite directions. 
(a) Use Ampere’s law to find the magnetic field at any point in the
volume between the conductors. (b) Use the energy density for a
magnetic field, Eq. (30.10), to calculate the energy stored in a thin,
cylindrical shell between the two conductors. Let the cylindrical
shell have inner radius r, outer radius and length l. (c) Inte-
grate your result in part (b) over the volume between the two con-
ductors to find the total energy stored in the magnetic field for a
length l of the cable. (d) Use your result in part (c) and Eq. (30.9)
to calculate the inductance L of a length l of the cable. Compare
your result to L calculated in part (d) of Problem 30.48.
30.50 .. A toroidal solenoid has a mean radius r and a cross-
sectional area A and is wound uniformly with turns. A second
toroidal solenoid with turns is wound uniformly around the
first. The two coils are wound in the same direction. (a) Derive an
expression for the inductance when only the first coil is used
and an expression for when only the second coil is used. 
(b) Show that 
30.51 . (a) What would have to be the self-inductance of a sole-
noid for it to store 10.0 J of energy when a 2.00-A current runs
through it? (b) If this solenoid’s cross-sectional diameter is 4.00 cm,
and if you could wrap its coils to a density of how
long would the solenoid be? (See Exercise 30.15.) Is this a realistic
length for ordinary laboratory use?

10 coils>mm,

M2 = L1L2.
L2

L1

N2

N1

r + dr,

L = l
m0

2p
lna

b

a
b

r

d£B

1 m3
6 * 105 m>s.

m0.m3 * 10-4 kg>m3.

1>10,000

t = 1
60 s.t = 0

i = 1124 mA2cos31240p>s2t4.
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Figure P30.45
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30.52 . An inductor is connected to the terminals of a battery that
has an emf of 12.0 V and negligible internal resistance. The current
is 4.86 mA at 0.940 ms after the connection is completed. After a
long time the current is 6.45 mA. What are (a) the resistance R of
the inductor and (b) the inductance L of the inductor?
30.53 .. CALC Continuation of Exercises 30.23 and 30.29. (a)
How much energy is stored in the magnetic field of the inductor
one time constant after the battery has been connected? Compute
this both by integrating the expression in Exercise 30.29(c) and by
using Eq. (30.9), and compare the results. (b) Integrate the expres-
sion obtained in Exercise 30.29(a) to find the total energy supplied
by the battery during the time interval considered in part (a). 
(c) Integrate the expression obtained in Exercise 30.29(b) to find
the total energy dissipated in the resistance of the inductor during
the same time period. (d) Compare the results obtained in parts 
(a), (b), and (c).
30.54 .. CALC Continuation of Exercise 30.27. (a) What is the
total energy initially stored in the inductor? (b) At 

at what rate is the energy stored in the inductor decreasing?
(c) At at what rate is electrical energy being
converted into thermal energy in the resistor? (d) Obtain an expres-
sion for the rate at which electrical energy is being converted into
thermal energy in the resistor as a function of time. Integrate this
expression from to to obtain the total electrical
energy dissipated in the resistor. Compare your result to that of
part (a).
30.55 . CALC The equation preceding Eq. (30.27) may be con-
verted into an energy relationship. Multiply both sides of this
equation by The first term then becomes Show
that the second term can be written as and that the
third term can be written as What does the resulting
equation say about energy conservation in the circuit?
30.56 . A capacitor is initially charged to a potential 
of 16.0 V. It is then connected in series with a 3.75-mH inductor.
(a) What is the total energy stored in this circuit? (b) What is the
maximum current in the inductor? What is the charge on the capac-
itor plates at the instant the current in the inductor is maximal?
30.57 . An Electromagnetic Car Alarm. Your latest invention
is a car alarm that produces sound at a particularly annoying fre-
quency of To do this, the car-alarm circuitry must pro-
duce an alternating electric current of the same frequency. That’s
why your design includes an inductor and a capacitor in series. The
maximum voltage across the capacitor is to be 12.0 V (the same
voltage as the car battery). To produce a sufficiently loud sound,
the capacitor must store 0.0160 J of energy. What values of capaci-
tance and inductance should you choose for your car-alarm circuit?
30.58 . An L-C circuit consists of a inductor and a

capacitor. The initial charge on the capacitor is 
and the initial current in the inductor is zero. (a) What is the maxi-
mum voltage across the capacitor? (b) What is the maximum cur-
rent in the inductor? (c) What is the maximum energy stored in the
inductor? (d) When the current in the inductor has half its maxi-
mum value, what is the charge on the capacitor and what is the
energy stored in the inductor?
30.59 .. A 84.0-nF capacitor is charged to 12.0 V, then discon-
nected from the power supply and connected in series with a coil
that has and negligible resistance. At an instant
when the charge on the capacitor is , what is the magni-
tude of the current in the inductor and what is the magnitude of the
rate of change of this current?
30.60 .. A charged capacitor with is connected in
series to an inductor that has and negligible resistance.L = 0.330 H

C = 590 mF

0.650 mC
L = 0.0420 H

6.00 mC,250-mF
60.0-mH

3500 Hz.

7.00-mF

d1q2>2C2>dt.
d A12Li2 B >dt,

i2R.- i = -dq>dt.

t = qt = 0

t = 4.00 * 10-4 s,
10-4 s,

t = 4.00 *

At an instant when the current in the inductor is , 
the current is increasing at a rate of . During the
current oscillations, what is the maximum voltage across the
capacitor?
30.61 ... CP In the circuit shown
in Fig. P30.61, the switch has
been open for a long time and is
suddenly closed. Neither the bat-
tery nor the inductors have any
appreciable resistance. (a) What do
the ammeter and voltmeter read
just after S is closed? (b) What do
the ammeter and the voltmeter read
after S has been closed a very long time? (c) What do the ammeter
and the voltmeter read 0.115 ms after S is closed?
30.62 .. While studying a coil
of unknown inductance and inter-
nal resistance, you connect it in
series with a battery and
a resistor. You then place
an oscilloscope across one of
these circuit elements and use
the oscilloscope to measure the
voltage across the circuit ele-
ment as a function of time. The
result is shown in Fig. P30.62.
(a) Across which circuit element (coil or resistor) is the oscillo-
scope connected? How do you know this? (b) Find the inductance
and the internal resistance of the coil. (c) Carefully make a quanti-
tative sketch showing the voltage versus time you would observe if
you put the oscilloscope across the other circuit element (resistor
or coil).
30.63 .. In the lab, you are try-
ing to find the inductance and
internal resistance of a solenoid.
You place it in series with a bat-
tery of negligible internal resist-
ance, a resistor, and a
switch. You then put an oscillo-
scope across one of these circuit
elements to measure the voltage
across that circuit element as a
function of time. You close the
switch, and the oscilloscope shows voltage versus time as shown
in Fig. P30.63. (a) Across which circuit element (solenoid or resis-
tor) is the oscilloscope connected? How do you know this? (b) Why
doesn’t the graph approach zero as (c) What is the emf of
the battery? (d) Find the maximum current in the circuit. (e) What
are the internal resistance and self-inductance of the solenoid?
30.64 .. CP In the circuit
shown in Fig. P30.64, find the
reading in each ammeter and
voltmeter (a) just after switch S
is closed and (b) after S has
been closed a very long time.
30.65 .. CP In the circuit
shown in Fig. P30.65, switch S
is closed at time with no
charge initially on the capacitor.
(a) Find the reading of each
ammeter and each voltmeter just
after S is closed. (b) Find the

t = 0

tS q?

10.0-Æ

150-Æ
25.0-V
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A
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reading of each meter after a long time has elapsed. (c) Find the
maximum charge on the capacitor. (d) Draw a qualitative graph of
the reading of voltmeter as a function of time.

30.66 . In the circuit shown in Fig.
P30.66 the battery and the inductor
have no appreciable internal resist-
ance and there is no current in the cir-
cuit. After the switch is closed, find
the readings of the ammeter (A) and
voltmeters and (a) the instant
after the switch is closed and (b) after
the switch has been closed for a very
long time. (c) Which answers in parts (a) and (b) would change if
the inductance were 24.0 mH instead?
30.67 .. CP In the circuit shown in Fig. P30.67, switch S is
closed at time (a) Find the reading of each meter just after S
is closed. (b) What does each meter read long after S is closed?

30.68 .. In the circuit shown in Fig. P30.68, switch S1 has been
closed for a long enough time so that the current reads a steady
3.50 A. Suddenly, switch is closed and is opened at the same
instant. (a) What is the maximum charge that the capacitor will
receive? (b) What is the current in the inductor at this time?

30.69 .. CP In the circuit shown
in Fig. P30.69, 

and
Switch S is closed

at Just after the switch is
closed, (a) what is the potential
difference across the resistor

(b) which point, a or b, is at a
higher potential; (c) what is the
R1;

vab

t = 0.
L = 0.300 H.

R2 = 25.0 Æ,40.0 Æ,R1 =
E = 60.0 V,

S1S2

t = 0.

V221V1

V2

potential difference across the inductor L; (d) which point, c
or d, is at a higher potential? The switch is left closed a long time
and then opened. Just after the switch is opened, (e) what is the
potential difference across the resistor (f) which point, a
or b, is at a higher potential; (g) what is the potential difference

across the inductor L; (h) which point, c or d, is at a higher
potential?
30.70 .. CP In the circuit shown in Fig. P30.69, 

and (a) Switch S is
closed. At some time t afterward, the current in the inductor is
increasing at a rate of At this instant, what are
the current through and the current through (Hint:
Analyze two separate loops: one containing and and the other
containing and L.) (b) After the switch has been closed a
long time, it is opened again. Just after it is opened, what is the
current through 
30.71 .. CALC Consider the circuit
shown in Fig. P30.71. Let 

and
(a) Switch is closed and

switch is left open. Just after is
closed, what are the current through

and the potential differences 
and (b) After has been closed a
long time is still open) so that the
current has reached its final, steady value, what are and

(c) Find the expressions for and as functions of the
time t since was closed. Your results should agree with part (a)
when and with part (b) when Graph and 
versus time.
30.72 .. After the current in the circuit of Fig. P30.71 has reached
its final, steady value with switch closed and open, switch 
is closed, thus short-circuiting the inductor. (Switch remains
closed. See Problem 30.71 for numerical values of the circuit ele-
ments.) (a) Just after is closed, what are and and what
are the currents through R, and (b) A long time after is
closed, what are and and what are the currents through 
R, and (c) Derive expressions for the currents through R,
and as functions of the time t that has elapsed since was
closed. Your results should agree with part (a) when and with
part (b) when Graph these three currents versus time.
30.73 ... CP CALC We have ig-
nored the variation of the mag-
netic field across the cross section
of a toroidal solenoid. Let’s now
examine the validity of that ap-
proximation. A certain toroidal
solenoid has a rectangular cross
section (Fig. P30.73). It has N
uniformly spaced turns, with air
inside. The magnetic field at a
point inside the toroid is given
by the equation derived in Example 28.10 (Section 28.7). Do not
assume the field is uniform over the cross section. (a) Show that the
magnetic flux through a cross section of the toroid is

(b) Show that the inductance of the toroidal solenoid is given by

L =
m0N 2h

2p
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(c) The fraction may be written as

Use the power series expansion 
valid for to show that when is much less than a, the
inductance is approximately equal to

Compare this result with the result given in Example 30.3 (Section
30.2).
30.74 ... CP In the circuit
shown in Fig. P30.74, neither the
battery nor the inductors have any
appreciable resistance, the capac-
itors are initially uncharged, and
the switch S has been in position
1 for a very long time. (a) What
is the current in the circuit? (b)
The switch is now suddenly
flipped to position 2. Find the maximum charge that each capacitor
will receive, and how much time after the switch is flipped it will
take them to acquire this charge.
30.75 ... CP CALC Demonstrating Inductance. A common
demonstration of inductance employs a circuit such as the one
shown in Fig. P30.69. Switch S is closed, and the light bulb (repre-
sented by resistance just barely glows. After a period of time,
switch S is opened, and the bulb lights up brightly for a short
period of time. To understand this effect, think of an inductor as a
device that imparts an “inertia” to the current, preventing a discon-
tinuous change in the current through it. (a) Derive, as explicit
functions of time, expressions for (the current through the light
bulb) and (the current through the inductor) after switch S is
closed. (b) After a long period of time, the currents and reach
their steady-state values. Obtain expressions for these steady-state
currents. (c) Switch S is now opened. Obtain an expression for the
current through the inductor and light bulb as an explicit function
of time. (d) You have been asked to design a demonstration appa-
ratus using the circuit shown in Fig. P30.69 with a 22.0-H inductor
and a 40.0-W light bulb. You are to connect a resistor in series with
the inductor, and represents the sum of that resistance plus the
internal resistance of the inductor. When switch S is opened, a
transient current is to be set up that starts at 0.600 A and is not to
fall below 0.150 A until after 0.0800 s. For simplicity, assume that
the resistance of the light bulb is constant and equals the resistance
the bulb must have to dissipate 40.0 W at 120 V. Determine and

for the given design considerations. (e) With the numerical val-
ues determined in part (d), what is the current through the light
bulb just before the switch is opened? Does this result confirm the
qualitative description of what is observed in the demonstration?

CHALLENGE PROBLEMS
30.76 ... CP CALC Consider the circuit shown in Fig. P30.76.
The circuit elements are as follows: 

and At time switch S is closed.
The current through the inductor is the current through the
capacitor branch is and the charge on the capacitor is 
(a) Using Kirchhoff’s rules, verify the circuit equations

q2.i2,
i1,

t = 0,R = 400 Æ.C = 2.00 mF,
L = 0.640 H,E = 32.0 V,

E

R2

R2

i2i1

i2

i1

R12

L =
m0N 2h1b - a2

2pa

b - aƒz ƒ 6 1,
ln11 + z2 = z + z2>2 + Á ,

b

a
=

a + b - a

a
= 1 +

b - a

a

b>a

(b) What are the initial values
of and (c) Show by
direct substitution that the fol-
lowing solutions for and 
satisfy the circuit equations
from part (a). Also, show that
they satisfy the initial conditions

where and (d) Deter-
mine the time at which first becomes zero.
30.77 ... CP A Volume Gauge. A tank containing a liquid has
turns of wire wrapped around it, causing it to act like an inductor. The
liquid content of the tank can be
measured by using its inductance
to determine the height of the liq-
uid in the tank. The inductance of
the tank changes from a value of

corresponding to a relative
permeability of 1 when the tank
is empty to a value of corre-
sponding to a relative permeabil-
ity of (the relative permeability of the liquid) when the tank is
full. The appropriate electronic circuitry can determine the induc-
tance to five significant figures and thus the effective relative per-
meability of the combined air and liquid within the rectangular
cavity of the tank. The four sides of the tank each have width W
and height D (Fig. P30.77). The height of the liquid in the tank is
d. You can ignore any fringing effects and assume that the relative
permeability of the material of which the tank is made can be
ignored. (a) Derive an expression for d as a function of L, the induc-
tance corresponding to a certain fluid height, and D. (b) What
is the inductance (to five significant figures) for a tank full, full, 

full, and completely full if the tank contains liquid oxygen? Take
The magnetic susceptibility of liquid oxygen is

(c) Repeat part (b) for mercury. The magnetic
susceptibility of mercury is given in Table 28.1. (d) For which mate-
rial is this volume gauge more practical?
30.78 ... Two coils are wrapped around each other as shown in
Fig. 30.3. The current travels in the same sense around each coil.
One coil has self-inductance and the other coil has self-
inductance The mutual inductance of the two coils is M. (a)
Show that if the two coils are connected in series, the equivalent 
inductance of the combination is (b) Show
that if the two coils are connected in parallel, the equivalent induc-
tance of the combination is

30.79 ... CP CALC Consider the circuit shown in Fig. P30.79.
Switch S is closed at time causing a current through the
inductive branch and a current through the capacitive branch.i2

i1t = 0,

Leq =
L1L2 - M2

L1 + L2 - 2M

Leq = L1 + L2 + 2M.

L2.
L1,

xm = 1.52 * 10-3.
L0 = 0.63000 H.

3
4

1
2

1
4

Lf,L0,

Km

Lf

L0

i2t1

v = 31LC2-1 - 12RC2-241>2.b = 12RC2-1

q2 = a
E

vR
be-bt sin1vt2

i1 = a
E

R
b31 - e-bt512vRC2-1 sin1vt2 + cos1vt264

q2i1

q2?i2,i1,

R1i1 + i22 +
q2

C
= E

R1i1 + i22 + La
di1

dt
b = E

75.0 V

125.0 V

15.0
mH

S
21

25.0
mF

35.0
mF

5.0
mH

+

Figure P30.74
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Figure P30.76
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The initial charge on the capacitor
is zero, and the charge at time t is

(a) Derive expressions for 
and as functions of time.

Express your answers in terms of 
L, C, and t. For the remain-
der of the problem let the circuit
elements have the following
values:

and
(b) What is the initial

current through the inductive branch? What is the initial current
5000 Æ.

R2 =R1 = 25 Æ,C = 20 mF,
L = 8.0 H,E = 48 V,

R2,R1,
E,

q2i2,
i1,q2.

through the capacitive branch? (c) What are the currents through
the inductive and capacitive branches a long time after the switch
has been closed? How long is a “long time”? Explain. (d) At
what time (accurate to two significant figures) will the currents

and be equal? (Hint: You might consider using series expan-
sions for the exponentials.) (e) For the conditions given in part
(d), determine (f) The total current through the battery is

At what time (accurate to two significant figures)
will i equal one-half of its final value? (Hint: The numerical
work is greatly simplified if one makes suitable approximations.
A sketch of and versus t may help you decide what approxi-
mations are valid.)

i2i1

t2i = i1 + i2.
i1.

i2i1

t1

+

S

R2

LR1

C

E

Figure P30.79

Chapter Opening Question ?
As explained in Section 30.2, traffic light sensors work by measur-
ing the change in inductance of a coil embedded under the road
surface when a car drives over it.

Test Your Understanding Questions
30.1 Answer: (iii) Doubling both the length of the solenoid 
and the number of turns of wire in the solenoid would have
no effect on the mutual inductance Example 30.1 shows that 
depends on the ratio of these quantities, which would remain
unchanged. This is because the magnetic field produced by the
solenoid depends on the number of turns per unit length, and the
proposed change has no effect on this quantity.
30.2 Answer: (iv), (i), (iii), (ii) From Eq. (30.8), the potential
difference across the inductor is For the four cases
we find (i) 
(ii) (iii) 
because the rate of change of current is zero; and (iv) 

30.3 Answers: (a) yes, (b) no Reversing the direction of the cur-
rent has no effect on the magnetic field magnitude, but it causes the
direction of the magnetic field to reverse. It has no effect on the
magnetic-field energy density, which is proportional to the square
of the magnitude of the magnetic field.
30.4 Answers: (a) (i), (b) (ii) Recall that is the potential at a
minus the potential at b, and similarly for For either arrange-
ment of the switches, current flows through the resistor from a to

vbc.
vab

11.0 mH214.0 A - 02>10.25 s2 = 16 mV.
Vab =

Vab = 0Vab = 14.0 mH210 - 3.0 A2>12.0 s2 = -6.0 mV;
Vab = 12.0 mH212.0 A - 1.0 A2>10.50 s2 = 4.0 mV;

Vab = L di>dt.

MM.
1N12

1l2

b. The upstream end of the resistor is always at the higher poten-
tial, so is positive. With closed and open, the current
through the inductor flows from b to c and is increasing. The self-
induced emf opposes this increase and is therefore directed from c
toward b, which means that b is at the higher potential. Hence 
is positive. With open and closed, the inductor current again
flows from b to c but is now decreasing. The self-induced emf is
directed from b to c in an effort to sustain the decaying current, so
c is at the higher potential and is negative.
30.5 Answers: (a) positive, (b) electric, (c) negative, (d) electric 
The capacitor loses energy between stages (a) and (b), so it does pos-
itive work on the charges. It does this by exerting an electric force
that pushes current away from the positively charged left-hand
capacitor plate and toward the negatively charged right-hand plate.
At the same time, the inductor gains energy and does negative work
on the moving charges. Although the inductor stores magnetic
energy, the force that the inductor exerts is electric. This force comes
about from the inductor’s self-induced emf (see Section 30.2).
30.6 Answer: (i) and (iii) There are no oscillations if
In each case In case (i) 

so there are no oscillations (the
system is overdamped); in case (ii) 

so there are oscillations (the system is underdamped); and
in case (iii) so there are
no oscillations (the system is critically damped).

Bridging Problem
Answers: (a) (b) 1.60 mA (c) 24.8 mV

(d) , 21.5 mV1.92 * 10-8 J
7.68 * 10-8 J

4L>C = 413.0 mH2>13.0 mF2 = 4.0 Æ2,
8.0 Æ2,

4L>C = 416.0 mH2>13.0 mF2 =
16.0 mF2 = 2.0 Æ2,413.0 mH2>

4L>C =R2 = 12.0 Æ22 = 4.0 Æ2.
R2 Ú 4L>C.

vbc

S2S1

vbc

S2S1vab

Answers
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31
LEARNING GOALS

By studying this chapter, you will

learn:

• How phasors make it easy to

describe sinusoidally varying

quantities.

• How to use reactance to describe

the voltage across a circuit element

that carries an alternating current.

• How to analyze an L-R-C series

circuit with a sinusoidal emf.

• What determines the amount of

power flowing into or out of an

alternating-current circuit.

• How an L-R-C series circuit

responds to sinusoidal emfs of

different frequencies.

• Why transformers are useful, and

how they work.

ALTERNATING 
CURRENT

During the 1880s in the United States there was a heated and acrimonious
debate between two inventors over the best method of electric-power dis-
tribution. Thomas Edison favored direct current (dc)—that is, steady cur-

rent that does not vary with time. George Westinghouse favored alternating
current (ac), with sinusoidally varying voltages and currents. He argued that
transformers (which we will study in this chapter) can be used to step the voltage
up and down with ac but not with dc; low voltages are safer for consumer use, but
high voltages and correspondingly low currents are best for long-distance power
transmission to minimize losses in the cables.

Eventually, Westinghouse prevailed, and most present-day household and
industrial power-distribution systems operate with alternating current. Any appli-
ance that you plug into a wall outlet uses ac, and many battery-powered devices
such as radios and cordless telephones make use of the dc supplied by the battery
to create or amplify alternating currents. Circuits in modern communication
equipment, including pagers and television, also make extensive use of ac.

In this chapter we will learn how resistors, inductors, and capacitors behave in cir-
cuits with sinusoidally varying voltages and currents. Many of the principles that we
found useful in Chapters 25, 28, and 30 are applicable, along with several new con-
cepts related to the circuit behavior of inductors and capacitors. A key concept in this
discussion is resonance, which we studied in Chapter 14 for mechanical systems.

31.1 Phasors and Alternating Currents
To supply an alternating current to a circuit, a source of alternating emf or volt-
age is required. An example of such a source is a coil of wire rotating with con-
stant angular velocity in a magnetic field, which we discussed in Example 29.3
(Section 29.2). This develops a sinusoidal alternating emf and is the prototype of
the commercial alternating-current generator or alternator (see Fig. 29.8).

i2R

? Waves from a broadcasting station produce an alternating current in the cir-
cuits of a radio (like the one in this classic car). If a radio is tuned to a station
at a frequency of 1000 kHz, does it also detect the transmissions from a sta-
tion broadcasting at 600 kHz?



A sinusoidal voltage might be described by a function such as

(31.1)

In this expression, (lowercase) is the instantaneous potential difference; 
(uppercase) is the maximum potential difference, which we call the voltage
amplitude; and is the angular frequency, equal to times the frequency 
(Fig. 31.1).

In the United States and Canada, commercial electric-power distribution systems
always use a frequency of corresponding to 

in much of the rest of the world, is used.
Similarly, a sinusoidal current might be described as

(31.2)

where (lowercase) is the instantaneous current and (uppercase) is the maxi-
mum current or current amplitude.

Phasor Diagrams
To represent sinusoidally varying voltages and currents, we will use rotating vec-
tor diagrams similar to those we used in the study of simple harmonic motion in
Section 14.2 (see Figs. 14.5b and 14.6). In these diagrams the instantaneous
value of a quantity that varies sinusoidally with time is represented by the
projection onto a horizontal axis of a vector with a length equal to the amplitude
of the quantity. The vector rotates counterclockwise with constant angular speed

These rotating vectors are called phasors, and diagrams containing them are
called phasor diagrams. Figure 31.2 shows a phasor diagram for the sinusoidal
current described by Eq. (31.2). The projection of the phasor onto the horizontal
axis at time is this is why we chose to use the cosine function rather
than the sine in Eq. (31.2).

CAUTION Just what is a phasor? A phasor is not a real physical quantity with a direc-
tion in space, such as velocity, momentum, or electric field. Rather, it is a geometric entity
that helps us to describe and analyze physical quantities that vary sinusoidally with time.
In Section 14.2 we used a single phasor to represent the position of a point mass undergo-
ing simple harmonic motion. In this chapter we will use phasors to add sinusoidal voltages
and currents. Combining sinusoidal quantities with phase differences then becomes a mat-
ter of vector addition. We will find a similar use for phasors in Chapters 35 and 36 in our
study of interference effects with light. ❙

Rectified Alternating Current
How do we measure a sinusoidally varying current? In Section 26.3 we used a
d’Arsonval galvanometer to measure steady currents. But if we pass a sinusoidal
current through a d’Arsonval meter, the torque on the moving coil varies sinu-
soidally, with one direction half the time and the opposite direction the other half.
The needle may wiggle a little if the frequency is low enough, but its average
deflection is zero. Hence a d’Arsonval meter by itself isn’t very useful for meas-
uring alternating currents.

Icosvt;t

v.

Ii

i = Icosvt

ƒ = 50 Hz 1v = 314 rad>s2377 rad>s;
v = 12p rad2160 s-12 =ƒ = 60 Hz,

ƒ2pv

Vv

v = Vcosvt
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We use the term ac source for any device that supplies a sinusoidally varying
voltage (potential difference) or current The usual circuit-diagram symbol for
an ac source is

i.v

Voltage
positive

Voltage
negative

Voltage
zero

O

v

t

+ +– –

31.1 The voltage across a sinusoidal ac
source.

Length of phasor
equals maximum
current I.

Phasor rotates with
frequency f and
angular speed v 5 2pf.

Projection of phasor onto
horizontal axis at time t
equals current i at that
instant: i 5 I cosvt.

O

I

Phasor

i 5 I cos vt

vt

v

31.2 A phasor diagram.
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To get a measurable one-way current through the meter, we can use diodes,
which we described in Section 25.3. A diode is a device that conducts better in
one direction than in the other; an ideal diode has zero resistance for one direc-
tion of current and infinite resistance for the other. Figure 31.3a shows one possi-
ble arrangement, called a full-wave rectifier circuit. The current through the
galvanometer G is always upward, regardless of the direction of the current from
the ac source (i.e., which part of the cycle the source is in). The graph in 
Fig. 31.3b shows the current through G: It pulsates but always has the same
direction, and the average meter deflection is not zero.

The rectified average current is defined so that during any whole number
of cycles, the total charge that flows is the same as though the current were con-
stant with a value equal to The notation and the name rectified average
current emphasize that this is not the average of the original sinusoidal current. In
Fig. 31.3b the total charge that flows in time corresponds to the area under the
curve of versus (recall that so is the integral of ); this area must
equal the rectangular area with height We see that is less than the maxi-
mum current the two are related by

(rectified average value 
of a sinusoidal current)

(31.3)

(The factor of is the average value of or of see Example 29.4
in Section 29.2.) The galvanometer deflection is proportional to The gal-
vanometer scale can be calibrated to read or, most commonly, 
(discussed below).

Root-Mean-Square (rms) Values
A more useful way to describe a quantity that can be either positive or negative is
the root-mean-square (rms) value. We used rms values in Section 18.3 in connec-
tion with the speeds of molecules in a gas. We square the instantaneous current 
take the average (mean) value of and finally take the square root of that aver-
age. This procedure defines the root-mean-square current, denoted as 
(Fig. 31.4). Even when is negative, is always positive, so is never zero
(unless is zero at every instant).

Here’s how we obtain for a sinusoidal current, like that shown in Fig. 31.4.
If the instantaneous current is given by then

Using a double-angle formula from trigonometry,

we find

The average of is zero because it is positive half the time and negative half
the time. Thus the average of is simply The square root of this is 

(31.4)Irms =
I

22
  (root-mean-square value of a sinusoidal current)

Irms:I 2>2.i2
cos2vt

i2 = I 2 1
2 11 + cos2vt2 = 1

2 I 2 + 1
2 I 2 cos2vt

cos2 A = 1
2 11 + cos2A2

i2 = I 2 cos2vt

i = Icosvt,
Irms

i
Irmsi2i

Irms

i2,
i,

IrmsIrav,I,
Irav.

ƒsinvt ƒ ;ƒcosvt ƒ2>p

Irav =
2
p

I = 0.637I

I;
IravIrav.

tqi = dq>dt,ti
t

IravIrav.

Irav

G

(a) A full-wave rectifier circuit

Source of
alternating current

Alternating
current

Diode
(arrowhead
and bar indicate the directions in
which current can and cannot pass)

t

Irav

O

I

i

(b) Graph of the full-wave rectified current
and its average value, the rectified average
current Irav

Rectified current through
galvanometer G

Area under curve 5 total charge that
flows through galvanometer in time t.

31.3 (a) A full-wave rectifier circuit. 
(b) Graph of the resulting current through
the galvanometer G.

Graph current i versus time.

Take the average (mean) value of i2.

Take the square root of that average.

Square the instantaneous current i.

O
t

(i2)av 5

(i2)av 5Irms 5

i2 5 I2 cos2vt

Meaning of the rms value of a sinusoidal
quantity (here, ac current with I 5 3 A):

i 5 I cosvt

I2

2

I
2

i, i2

I2 5 9A2

I 5 3A

2I

1

1

3

3

4

4

2

2

31.4 Calculating the root-mean-square
(rms) value of an alternating current.



In the same way, the root-mean-square value of a sinusoidal voltage with ampli-
tude (maximum value) is

(31.5)

We can convert a rectifying ammeter into a voltmeter by adding a series resistor,
just as for the dc case discussed in Section 26.3. Meters used for ac voltage and cur-
rent measurements are nearly always calibrated to read rms values, not maximum
or rectified average. Voltages and currents in power distribution systems are always
described in terms of their rms values. The usual household power supply, 
“120-volt ac,” has an rms voltage of 120 V (Fig. 31.5). The voltage amplitude is

V = 22Vrms = 221120 V2 = 170 V

Vrms =
V

22
  (root-mean-square value of a sinusoidal voltage)

V
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31.5 This wall socket delivers a root-
mean-square voltage of 120 V. Sixty 
times per second, the instantaneous 
voltage across its terminals varies from

and
back again.
11221120 V2 = 170 V to -170 V

Example 31.1 Current in a personal computer

The plate on the back of a personal computer says that it draws 
2.7 A from a 120-V, 60-Hz line. For this computer, what are (a) the
average current, (b) the average of the square of the current, and
(c) the current amplitude?

SOLUTION

IDENTIFY and SET UP: This example is about alternating current.
In part (a) we find the average, over a complete cycle, of the alter-
nating current. In part (b) we recognize that the 2.7-A current draw
of the computer is the rms value —that is, the square root of
the mean (average) of the square of the current, . In part (c)
we use Eq. (31.4) to relate to the current amplitude.

EXECUTE: (a) The average of any sinusoidally varying quantity,
over any whole number of cycles, is zero.

(b) We are given . From the definition of rms
value,

(c) From Eq. (31.4), the current amplitude is

Figure 31.6 shows graphs of and versus time t.i2i

I = 12Irms = 1212.7 A2 = 3.8 A

I

Irms = 21i22av so 1i22av = 1Irms2
2 = 12.7 A22 = 7.3 A2

Irms = 2.7 A

Irms

1i22av

Irms

EVALUATE: Why would we be interested in the average of the
square of the current? Recall that the rate at which energy is dissi-
pated in a resistor equals This rate varies if the current 
is alternating, so it is best described by its average value 

We’ll use this idea in Section 31.4.I rms
2R.

1i22avR =
i2R.R

31.6 Our graphs of the current and the square of the current 
versus time t.

i2i

Test Your Understanding of Section 31.1 The figure at left shows four dif-
ferent current phasors with the same angular frequency At the time shown, which pha-
sor corresponds to (a) a positive current that is becoming more positive; (b) a positive
current that is decreasing toward zero; (c) a negative current that is becoming more nega-
tive; (d) a negative current that is decreasing in magnitude toward zero?

❙

v.

31.2 Resistance and Reactance
In this section we will derive voltage–current relationships for individual circuit
elements carrying a sinusoidal current. We’ll consider resistors, inductors, and
capacitors.

B A

D

C

v

II

I I
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Resistor in an ac Circuit
First let’s consider a resistor with resistance through which there is a sinusoidal
current given by Eq. (31.2): The positive direction of current is
counterclockwise around the circuit, as in Fig. 31.7a. The current amplitude
(maximum current) is From Ohm’s law the instantaneous potential of point

with respect to point (that is, the instantaneous voltage across the resistor) is

(31.6)

The maximum voltage the voltage amplitude, is the coefficient of the cosine
function:

(31.7)

Hence we can also write

(31.8)

The current and voltage are both proportional to so the current is in
phase with the voltage. Equation (31.7) shows that the current and voltage ampli-
tudes are related in the same way as in a dc circuit.

Figure 31.7b shows graphs of and as functions of time. The vertical scales
for current and voltage are different, so the relative heights of the two curves are
not significant. The corresponding phasor diagram is given in Fig. 31.7c. Because

and are in phase and have the same frequency, the current and voltage pha-
sors rotate together; they are parallel at each instant. Their projections on the hor-
izontal axis represent the instantaneous current and voltage, respectively.

Inductor in an ac Circuit
Next, we replace the resistor in Fig. 31.7 with a pure inductor with self-inductance

and zero resistance (Fig. 31.8a). Again we assume that the current is 
with the positive direction of current taken as counterclockwise around

the circuit.
Although there is no resistance, there is a potential difference between the

inductor terminals and because the current varies with time, giving rise to a
self-induced emf. The induced emf in the direction of is given by Eq. (30.7),

however, the voltage is not simply equal to To see why,
notice that if the current in the inductor is in the positive (counterclockwise)
direction from a to b and is increasing, then is positive and the induced emf
is directed to the left to oppose the increase in current; hence point a is at higher
potential than is point b. Thus the potential of point a with respect to point b is
positive and is given by the negative of the induced emf. (YouvL = +L di>dt,

di>dt

E.vLE = -L di>dt;
i

ba
vL

Icosvt,
i =L

vRi

vRi

cosvt,vRi

vR = VR cosvt

VR = IR  (amplitude of voltage across a resistor, ac circuit)

VR,

vR = iR = 1IR2cosvt

ba
vRI.

i = Icosvt.
R

Voltage curve leads current curve by a quarter-
cycle (corresponding to f 5 p/2 rad 5 90°).

Voltage phasor leads current phasor
by f 5 p/2 rad 5 90°.

O

ivL

VL

I

vt

Current
phasor

Phase
angle f

Voltage
phasor

(c) Phasor diagram

I

VL

O

i, v

t

1
4 T, rad 5 90°p

2

(b) Graphs of current and voltage versus time

i 5 I cosvt

vL 5 IvL cos 1vt 1 90°2i

a L b
vL

(a) Circuit with ac source and inductor

31.8 Inductance connected across an ac source.L

Amplitudes are in the
same relationship as for
a dc circuit: VR 5 IR.

Current is in phase
with voltage: crests and
troughs occur together.

Current and voltage
phasors are in phase:
they rotate together.

i

a R
vR

b

(a) Circuit with ac source and resistor

(b) Graphs of current and voltage versus time

I

VR

O

i, v
i 5 I cosvt

vR 5 IR cosvt 5 VR cosvt

t

O

i
vR

VR

I

vt

Current
phasor

Voltage
phasor

Instantaneous
voltage

Instantaneous
current

(c) Phasor diagram

31.7 Resistance connected
across an ac source.

R



should convince yourself that this expression gives the correct sign of in all
cases, including counterclockwise and decreasing, clockwise and increasing,
and clockwise and decreasing; you should also review Section 30.2.) So we have

(31.9)

The voltage across the inductor at any instant is proportional to the rate of
change of the current. The points of maximum voltage on the graph correspond
to maximum steepness of the current curve, and the points of zero voltage are the
points where the current curve instantaneously levels off at its maximum and
minimum values (Fig. 31.8b). The voltage and current are “out of step” or out of
phase by a quarter-cycle. Since the voltage peaks occur a quarter-cycle earlier
than the current peaks, we say that the voltage leads the current by The pha-
sor diagram in Fig. 31.8c also shows this relationship; the voltage phasor is ahead
of the current phasor by 

We can also obtain this phase relationship by rewriting Eq. (31.9) using the
identity

(31.10)

This result shows that the voltage can be viewed as a cosine function with a
“head start” of relative to the current.

As we have done in Eq. (31.10), we will usually describe the phase of the
voltage relative to the current, not the reverse. Thus if the current in a circuit is

and the voltage of one point with respect to another is

we call the phase angle; it gives the phase of the voltage relative to the
current. For a pure resistor, and for a pure inductor, 

From Eq. (31.9) or  (31.10) the amplitude of the inductor voltage is

(31.11)

We define the inductive reactance of an inductor as

(31.12)

Using we can write Eq. (31.11) in a form similar to Eq. (31.7) for a resistor

(31.13)

Because is the ratio of a voltage and a current, its SI unit is the ohm, the same
as for resistance.

CAUTION Inductor voltage and current are not in phase Keep in mind that Eq. (31.13)
is a relationship between the amplitudes of the oscillating voltage and current for the
inductor in Fig. 31.8a. It does not say that the voltage at any instant is equal to the current
at that instant multiplied by As Fig. 31.8b shows, the voltage and current are out of
phase. Voltage and current are in phase only for resistors, as in Eq. (31.6). ❙

The Meaning of Inductive Reactance
The inductive reactance is really a description of the self-induced emf that
opposes any change in the current through the inductor. From Eq. (31.13), for a
given current amplitude the voltage across the inductor and the
self-induced emf both have an amplitude that is directly propor-
tional to According to Eq. (31.12), the inductive reactance and self-induced
emf increase with more rapid variation in current (that is, increasing angular fre-
quency ) and increasing inductance L.v

XL.
VLE = -L di>dt

vL = +L di>dtI

XL

90°XL.

XL

VL = IXL  (amplitude of voltage across an inductor, ac circuit)

1VR = IR2:
XL,

XL = vL  (inductive reactance)

XL

VL = IvL

VL

f = 90°.f = 0,
f

v = Vcos1vt + f2

v

i = Icosvt

i

90°

vL = IvLcos1vt + 90°2

cos1A + 90°2 = -sin A:

90°.

90°.

vL

vL = L
di

dt
= L

d

dt
1Icosvt2 = - IvL sinvt

i
ii

vL
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ActivPhysics 14.3: AC Circuits: The Driven
Oscillator (Questions 1–5)
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If an oscillating voltage of a given amplitude is applied across the inductor
terminals, the resulting current will have a smaller amplitude for larger values of

Since is proportional to frequency, a high-frequency voltage applied to the
inductor gives only a small current, while a lower-frequency voltage of the same
amplitude gives rise to a larger current. Inductors are used in some circuit applica-
tions, such as power supplies and radio-interference filters, to block high frequen-
cies while permitting lower frequencies or dc to pass through. A circuit device that
uses an inductor for this purpose is called a low-pass filter (see Problem 31.52).

XLXL.
I

VL

Example 31.2 An inductor in an ac circuit

The current amplitude in a pure inductor in a radio receiver is to be
when the voltage amplitude is 3.60 V at a frequency of

1.60 MHz (at the upper end of the AM broadcast band). (a) What
inductive reactance is needed? What inductance? (b) If the voltage
amplitude is kept constant, what will be the current amplitude
through this inductor at 16.0 MHz? At 160 kHz?

SOLUTION

IDENTIFY and SET UP: There may be other elements of this circuit,
but in this example we don’t care: All they do is provide the induc-
tor with an oscillating voltage, so the other elements are lumped
into the ac source shown in Fig. 31.8a. We are given the current
amplitude and the voltage amplitude Our target variables in part 
(a) are the inductive reactance at 1.60 MHz and the inductance

which we find using Eqs. (31.13) and  (31.12). Knowing we
use these equations in part (b) to find and I at any frequency.

EXECUTE: (a) From Eq. (31.13),

XL =
VL

I
=

3.60 V

250 * 10-6 A
= 1.44 * 104 Æ = 14.4 kÆ

XL

L,L,
XL

V.I

250 mA
From Eq. (31.12), with 

(b) Combining Eqs. (31.12) and  (31.13), we find
Thus the current amplitude is inversely pro-

portional to the frequency Since at 
the current amplitudes at 16.0 MHz and 

will be, respectively, one-tenth as great
and ten times as great .

EVALUATE: In general, the lower the frequency of an oscillating
voltage applied across an inductor, the greater the amplitude of the
resulting oscillating current.

2.50 mA212500 mA =125.0 mA2
1ƒ>1020.160 MHz

160 kHz =110ƒ2
ƒ = 1.60 MHz,I = 250 mAƒ.

VL>vL = VL>2pƒL.
VL>XL =I =

= 1.43 * 10-3 H = 1.43 mH

L =
XL

2pƒ
=

1.44 * 104 Æ
2p11.60 * 106 Hz2

v = 2pƒ,

Capacitor in an ac Circuit
Finally, we connect a capacitor with capacitance to the source, as in Fig. 31.9a,
producing a current through the capacitor. Again, the positive direc-
tion of current is counterclockwise around the circuit.

CAUTION Alternating current through a capacitor You may object that charge can’t
really move through the capacitor because its two plates are insulated from each other.
True enough, but as the capacitor charges and discharges, there is at each instant a current

into one plate, an equal current out of the other plate, and an equal displacement current
between the plates just as though the charge were being conducted through the capacitor.
(You may want to review the discussion of displacement current in Section 29.7.) Thus we
often speak about alternating current through a capacitor. ❙

To find the instantaneous voltage across the capacitor—that is, the poten-
tial of point with respect to point —we first let denote the charge on the left-
hand plate of the capacitor in Fig. 31.9a (so is the charge on the right-hand
plate). The current is related to by with this definition, positive cur-
rent corresponds to an increasing charge on the left-hand capacitor plate. Then

Integrating this, we get

(31.14)q =
I

v
sinvt

i =
dq

dt
= Icosvt

i = dq>dt;qi
-q

qba
vC

i

i = Icosvt
C
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t

a
C

b

ii q �q

I

VC

O

i, v

O

i

vC

VC

I

vt

Current
phasor

Voltage
phasor

Voltage curve lags current curve by a quarter-
cycle (corresponding to f 5 �p/2 rad 5 �90°).

Voltage phasor lags
current phasor by
f 5 �p/2 rad 5 �90°.

(c) Phasor diagram

(b) Graphs of current and voltage versus time

vC

(a) Circuit with ac source and capacitor

1
4 T, rad 5 90°p

2

I
vC

i 5 I cosvt

vC 5 cos 1vt � 90°2

Phase
angle f

31.9 Capacitor connected
across an ac source.

C Also, from Eq. (24.1) the charge equals the voltage multiplied by the capac-
itance, Using this in Eq. (31.14), we find

(31.15)

The instantaneous current is equal to the rate of change of the capacitor
charge since is also proportional to the rate of change of voltage.
(Compare to an inductor, for which the situation is reversed and is propor-
tional to the rate of change of ) Figure 31.9b shows and as functions of t.
Because the current has its greatest magnitude when the

curve is rising or falling most steeply and is zero when the curve instanta-
neously levels off at its maximum and minimum values.

The capacitor voltage and current are out of phase by a quarter-cycle. The
peaks of voltage occur a quarter-cycle after the corresponding current peaks, and
we say that the voltage lags the current by The phasor diagram in Fig. 31.9c
shows this relationship; the voltage phasor is behind the current phasor by a quarter-
cycle, or 

We can also derive this phase difference by rewriting Eq. (31.15) using the
identity

(31.16)

This corresponds to a phase angle This cosine function has a “late
start” of compared with the current 

Equations (31.15) and (31.16) show that the maximum voltage (the voltage
amplitude) is

(13.17)

To put this expression in a form similar to Eq. (31.7) for a resistor, we
define a quantity called the capacitive reactance of the capacitor, as

(31.18)

Then

(31.19)

The SI unit of is the ohm, the same as for resistance and inductive reactance,
because is the ratio of a voltage and a current.

CAUTION Capacitor voltage and current are not in phase Remember that Eq. (31.19) for
a capacitor, like Eq. (31.13) for an inductor, is not a statement about the instantaneous val-
ues of voltage and current. The instantaneous values are actually out of phase, as 
Fig. 31.9b shows. Rather, Eq. (31.19) relates the amplitudes of the voltage and current. ❙

The Meaning of Capacitive Reactance
The capacitive reactance of a capacitor is inversely proportional both to the
capacitance and to the angular frequency the greater the capacitance and the
higher the frequency, the smaller the capacitive reactance Capacitors tend to
pass high-frequency current and to block low-frequency currents and dc, just the
opposite of inductors. A device that preferentially passes signals of high fre-
quency is called a high-pass filter (see Problem 31.51).

XC.
v;C

90°

XC

XC

VC = IXC  (amplitude of voltage across a capacitor, ac circuit)

XC =
1

vC
  (capacitive reactance)

XC,
VR = IR,

VC =
I

vC

VC

i = Icosvt.90°
f = -90°.

vC =
I

vC
cos1vt - 90°2

cos1A - 90°2 = sin A:

90°.

90°.

vCvC

i = dq>dt = C dvC>dt,
ivCi.

vL

iq = CvC,q;
dq>dti

vC =
I

vC
sinvt

q = CvC.
vCq
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Comparing ac Circuit Elements
Table 31.1 summarizes the relationships of voltage and current amplitudes for the
three circuit elements we have discussed. Note again that instantaneous voltage
and current are proportional in a resistor, where there is zero phase difference
between and (see Fig. 31.7b). The instantaneous voltage and current are not
proportional in an inductor or capacitor, because there is a phase difference
in both cases (see Figs. 31.8b and 31.9b).

Figure 31.11 shows how the resistance of a resistor and the reactances of an
inductor and a capacitor vary with angular frequency Resistance is inde-
pendent of frequency, while the reactances and are not. If corre-
sponding to a dc circuit, there is no current through a capacitor because 
and there is no inductive effect because In the limit also
approaches infinity, and the current through an inductor becomes vanishingly
small; recall that the self-induced emf opposes rapid changes in current. In this
same limit, and the voltage across a capacitor both approach zero; the current
changes direction so rapidly that no charge can build up on either plate.

Figure 31.12 shows an application of the above discussion to a loudspeaker
system. Low-frequency sounds are produced by the woofer, which is a speaker
with large diameter; the tweeter, a speaker with smaller diameter, produces high-
frequency sounds. In order to route signals of different frequency to the appropri-
ate speaker, the woofer and tweeter are connected in parallel across the amplifier

XC

XLvS q ,XL = 0.
XC S q ,

v = 0,XCXL

Rv.

90°
ivR

Example 31.3 A resistor and a capacitor in an ac circuit

A resistor is connected in series with a capacitor.
The voltage across the resistor is 
(Fig. 31.10). (a) Derive an expression for the circuit current. 
(b) Determine the capacitive reactance of the capacitor. (c) Derive
an expression for the voltage across the capacitor.

SOLUTION

IDENTIFY and SET UP: Since this is a series circuit, the current is
the same through the capacitor as through the resistor. Our target
variables are the current the capacitive reactance and the
capacitor voltage We use Eq. (31.6) to find an expression for 
in terms of the angular frequency , Eq. (31.18) to
find Eq. (31.19) to find the capacitor voltage amplitude and
Eq. (31.16) to write an expression for vC.

VC,XC,
v = 2500 rad>s

ivC.
XC,i,

12500 rad>s2tvR = 11.20 V2cos
5.0-mF200-Æ EXECUTE: (a) From Eq. (31.6), we find

(b) From Eq. (31.18), the capacitive reactance at 
is

(c) From Eq. (31.19), the capacitor voltage amplitude is

(The reactance of the capacitor is 40% of the resistor’s 
resistance, so is 40% of ) The instantaneous capacitor volt-
age is given by Eq. (31.16):

EVALUATE: Although the same current passes through both the
capacitor and the resistor, the voltages across them are different in
both amplitude and phase. Note that in the expression for we
converted the to rad so that all the angular quantities have
the same units. In ac circuit analysis, phase angles are often given
in degrees, so be careful to convert to radians when necessary.

p>290°
vC

= 10.48 V2cos312500 rad>s2t - p>2 rad4

vC = VC cos1vt - 90°2

VR.VC

200-Æ80-Æ

VC = IXC = 16.0 * 10-3 A2180 Æ2 = 0.48 V

XC =
1

vC
=

1

12500 rad>s215.0 * 10-6 F2
= 80 Æ

2500 rad>s
v =

= 16.0 * 10-3 A2cos12500 rad>s2t

i =
vR

R
=
11.20 V2cos12500 rad>s2t

200 Æ

vR = iR,

31.10 Our sketch for this problem.

Table 31.1 Circuit Elements with Alternating Current

Circuit Element Amplitude Relationship Circuit Quantity Phase of 

Resistor In phase with 
Inductor Leads by 
Capacitor Lags by 90°iXC = 1>vCVC = IXC

90°iXL = vLVL = IXL

iRVR = IR

v

XC

O

R

R, X

XL

v

31.11 Graphs of and as
functions of angular frequency v.

XCXL,R,



31.3 The L-R-C Series Circuit
Many ac circuits used in practical electronic systems involve resistance, induc-
tive reactance, and capacitive reactance. Figure 31.13a shows a simple example:
A series circuit containing a resistor, an inductor, a capacitor, and an ac source.
(In Section 30.6 we considered the behavior of the current in an L-R-C series cir-
cuit without a source.)

To analyze this and similar circuits, we will use a phasor diagram that includes
the voltage and current phasors for each of the components. In this circuit,
because of Kirchhoff’s loop rule, the instantaneous total voltage across all
three components is equal to the source voltage at that instant. We will show that
the phasor representing this total voltage is the vector sum of the phasors for the
individual voltages.

Figures 31.13b and 31.13c show complete phasor diagrams for the circuit of
Fig. 31.13a. We assume that the source supplies a current given by 
Because the circuit elements are connected in series, the current at any instant is
the same at every point in the circuit. Thus a single phasor I, with length propor-
tional to the current amplitude, represents the current in all circuit elements.

As in Section 31.2, we use the symbols and for the instantaneous
voltages across and and the symbols and for the maximum
voltages. We denote the instantaneous and maximum source voltages by and 
Then, in Fig. 31.13a, and 

We have shown that the potential difference between the terminals of a resis-
tor is in phase with the current in the resistor and that its maximum value is
given by Eq. (31.7):

VR = IR

VR

vC = vcd.vL = vbc,vR = vab,v = vad,
V.v

VCVL,VR,C,L,R,
vCvL,vR,

i = Icosvt.i

vad
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Test Your Understanding of Section 31.2 An oscillating voltage of
fixed amplitude is applied across a circuit element. If the frequency of this voltage
is increased, will the amplitude of the current through the element (i) increase, 
(ii) decrease, or (iii) remain the same if it is (a) a resistor, (b) an inductor, or 
(c) a capacitor? ❙

output. The capacitor in the tweeter branch blocks the low-frequency components
of sound but passes the higher frequencies; the inductor in the woofer branch
does the opposite.

The inductor and capacitor feed low
frequencies mainly to the woofer and
high frequencies mainly to the tweeter.

(a) A crossover network in a loudspeaker system

Tweeter

Woofer

From
amplifier

V

B

A

R

L

R

C

O

(b) Graphs of rms current as functions of
frequency for a given amplifier voltage

f

Irms

Crossover
point

Tweeter

Woofer

31.12 (a) The two speakers in this loud-
speaker system are connected in parallel to
the amplifier. (b) Graphs of current ampli-
tude in the tweeter and woofer as functions
of frequency for a given amplifier voltage
amplitude.

(b) Phasor diagram for the case XL . XC

V 5 IZ

I

VR 5 IR

VC 5 IXC

VL 5 IXL

VL 2 VC

O

f
vt

(c) Phasor diagram for the case XL , XC

V 5 IZ

I

O

VC 5 IXC

VL 2 VC

VR 5 IR

VL 5 IXL

f

vt

(a) L-R-C series circuit

a

b

d

c

R

L

C

2q

q

i Source voltage phasor is the vector
sum of the VR, VL, and VC phasors.

Inductor voltage
phasor leads
current
phasor
by 90°.

Capacitor voltage
phasor lags
current phasor
by 90°. It is thus always
antiparallel to the VL phasor.

If XL , XC, the source voltage phasor lags the
current phasor, X , 0, and f is a negative angle
between 0 and 290°.

Resistor voltage
phasor is in
phase with
current phasor.

All circuit
elements have
the same
current phasor.

31.13 An L-R-C series circuit with an ac source.



31.3 The L-R-C Series Circuit 1031

The phasor in Fig. 31.13b, in phase with the current phasor represents the
voltage across the resistor. Its projection onto the horizontal axis at any instant
gives the instantaneous potential difference 

The voltage across an inductor leads the current by Its voltage amplitude
is given by Eq. (31.13):

The phasor in Fig. 31.13b represents the voltage across the inductor, and its
projection onto the horizontal axis at any instant equals 

The voltage across a capacitor lags the current by Its voltage amplitude is
given by Eq. (31.19):

The phasor in Fig. 31.13b represents the voltage across the capacitor, and its
projection onto the horizontal axis at any instant equals 

The instantaneous potential difference between terminals a and d is equal at
every instant to the (algebraic) sum of the potential differences and 
That is, it equals the sum of the projections of the phasors and But the
sum of the projections of these phasors is equal to the projection of their vector
sum. So the vector sum must be the phasor that represents the source voltage 
and the instantaneous total voltage across the series of elements.

To form this vector sum, we first subtract the phasor from the phasor 
(These two phasors always lie along the same line, with opposite directions.)
This gives the phasor This is always at right angles to the phasor so
from the Pythagorean theorem the magnitude of the phasor is

(31.20)

We define the impedance of an ac circuit as the ratio of the voltage ampli-
tude across the circuit to the current amplitude in the circuit. From Eq. (31.20)
the impedance of the L-R-C series circuit is

(31.21)

so we can rewrite Eq. (31.20) as

(31.22)

While Eq. (31.21) is valid only for an L-R-C series circuit, we can use Eq. (31.22)
to define the impedance of any network of resistors, inductors, and capacitors as
the ratio of the amplitude of the voltage across the network to the current ampli-
tude. The SI unit of impedance is the ohm.

The Meaning of Impedance and Phase Angle
Equation (31.22) has a form similar to with impedance in an ac circuit
playing the role of resistance in a dc circuit. Just as direct current tends to fol-
low the path of least resistance, so alternating current tends to follow the path of
lowest impedance (Fig. 31.14). Note, however, that impedance is actually a func-
tion of and as well as of the angular frequency We can see this by sub-
stituting Eq. (31.12) for and Eq. (31.18) for into Eq. (31.21), giving the
following complete expression for for a series circuit:

(impedance of an L-R-C
series circuit)

(31.23)
= 2R2 + 3vL - 11>vC242

Z = 2R2 + 1XL - XC2
2

Z
XCXL

v.C,L,R,

R
ZV = IR,

V = IZ  (amplitude of voltage across an ac circuit)

Z = 2R2 + 1XL - XC2
2

Z

V = I2R2 + 1XL - XC2
2

V = 2VR
2 + 1VL - VC2

2 = 21IR22 + 1IXL - IXC2
2 or

V
VR,VL - VC.

VL.VC

vad

vV

VC.VL,VR,
vC.vL,vR,

v
vC.

VC

VC = IXC

90°.
vL.

VL

VL = IXL

90°.
vR.

I,VR

31.14 This gas-filled glass sphere has
an alternating voltage between its surface
and the electrode at its center. The glowing
streamers show the resulting alternating
current that passes through the gas. When
you touch the outside of the sphere, your
fingertips and the inner surface of the
sphere act as the plates of a capacitor, and
the sphere and your body together form an
L-R-C series circuit. The current (which is
low enough to be harmless) is drawn to
your fingers because the path through your
body has a low impedance.

PhET: Circuit Construction Kit (AC+DC)
PhET: Faraday’s Electromagnetic Lab
ActivPhysics 14.3: AC Circuits: The Driven 
Oscillator (Questions 6, 7, and 10)



Hence for a given amplitude of the source voltage applied to the circuit, the
amplitude of the resulting current will be different at different frequen-
cies. We’ll explore this frequency dependence in detail in Section 31.5.

In the phasor diagram shown in Fig. 31.13b, the angle between the voltage
and current phasors is the phase angle of the source voltage with respect to the
current that is, it is the angle by which the source voltage leads the current.
From the diagram,

(31.24)

If the current is then the source voltage is

(31.25)

Figure 31.13b shows the behavior of a circuit in which Figure
31.13c shows the behavior when the voltage phasor lies on the oppo-
site side of the current phasor and the voltage lags the current. In this case,

is negative, tan is negative, and is a negative angle between 0 and
Since and depend on frequency, the phase angle depends on fre-

quency as well. We’ll examine the consequences of this in Section 31.5.
All of the expressions that we’ve developed for an L-R-C series circuit are still

valid if one of the circuit elements is missing. If the resistor is missing, we set
if the inductor is missing, we set But if the capacitor is missing,

we set corresponding to the absence of any potential difference
or any capacitive reactance 

In this entire discussion we have described magnitudes of voltages and cur-
rents in terms of their maximum values, the voltage and current amplitudes. But
we remarked at the end of Section 31.1 that these quantities are usually described
in terms of rms values, not amplitudes. For any sinusoidally varying quantity, the
rms value is always times the amplitude. All the relationships between
voltage and current that we have derived in this and the preceding sections are
still valid if we use rms quantities throughout instead of amplitudes. For exam-
ple, if we divide Eq. (31.22) by we get

which we can rewrite as

(31.26)

We can translate Eqs. (31.7),  (31.13), and  (31.19) in exactly the same way.
We have considered only ac circuits in which an inductor, a resistor, and a

capacitor are in series. You can do a similar analysis for an L-R-C parallel circuit;
see Problem 31.56.

Finally, we remark that in this section we have been describing the steady-
state condition of a circuit, the state that exists after the circuit has been con-
nected to the source for a long time. When the source is first connected, there
may be additional voltages and currents, called transients, whose nature depends
on the time in the cycle when the circuit is initially completed. A detailed analysis
of transients is beyond our scope. They always die out after a sufficiently long
time, and they do not affect the steady-state behavior of the circuit. But they can
cause dangerous and damaging surges in power lines, which is why delicate elec-
tronic systems such as computers are often provided with power-line surge
protectors.

Vrms = IrmsZ

V

12
=

I

12
Z

12 ,

1>12

1XC = 1>vC = 02.1vC = q>C = 02
C = q ,

L = 0.R = 0;

fXCXL-90°.
ffXL - XC

I
VXL 6 XC;

XL 7 XC.

v = Vcos1vt + f2

vi = Icosvt,

tanf =
vL - 1>vC

R
   (phase angle of an L-R-C series circuit2

tanf =
VL - VC

VR
=

I1XL - XC2

IR
=

XL - XC

R

i;
v
f

I = V>Z
V

1032 CHAPTER 31 Alternating Current

Application Measuring Body Fat by
Bioelectric Impedance Analysis
The electrodes attached to this overweight
patient’s chest are applying a small ac voltage
of frequency 50 kHz. The attached instrumen-
tation measures the amplitude and phase
angle of the resulting current through the
patient’s body. These depend on the relative
amounts of water and fat along the path fol-
lowed by the current, and so provide a sensi-
tive measure of body composition.
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Problem-Solving Strategy 31.1 Alternating-Current Circuits

IDENTIFY the relevant concepts: In analyzing ac circuits, we can
apply all of the concepts used to analyze direct-current circuits,
particularly those in Problem-Solving Strategies 26.1 and 26.2.
But now we must distinguish between the amplitudes of alternating
currents and voltages and their instantaneous values, and among
resistance (for resistors), reactance (for inductors or capacitors),
and impedance (for composite circuits).

SET UP the problem using the following steps:
1. Draw a diagram of the circuit and label all known and unknown

quantities.
2. Identify the target variables.

EXECUTE the solution as follows:
1. Use the relationships derived in Sections 31.2 and 31.3 to solve

for the target variables, using the following hints.
2. It’s almost always easiest to work with angular frequency

rather than ordinary frequency 
3. Keep in mind the following phase relationships: For a resistor,

voltage and current are in phase, so the corresponding phasors
always point in the same direction. For an inductor, the voltage
leads the current by (i.e., radians), so
the voltage phasor points counterclockwise from the cur-
rent phasor. For a capacitor, the voltage lags the current by 
(i.e., radians), so the voltage phasor points

clockwise from the current phasor.90°
-p>2f = -90° =

90°
90°

= p>2f = +90°90°

ƒ.v = 2pƒ

4. Kirchhoff’s rules hold at each instant. For example, in a series
circuit, the instantaneous current is the same in all circuit ele-
ments; in a parallel circuit, the instantaneous potential differ-
ence is the same across all circuit elements.

5. Inductive reactance, capacitive reactance, and impedance are
analogous to resistance; each represents the ratio of voltage
amplitude to current amplitude in a circuit element or com-
bination of elements. However, phase relationships are crucial.
In applying Kirchhoff’s loop rule, you must combine the
effects of resistance and reactance by vector addition of the cor-
responding voltage phasors, as in Figs. 31.13b and 31.13c.
When you have several circuit elements in series, for example,
you can’t just add all the numerical values of resistance and
reactance to get the impedance; that would ignore the phase
relationships.

EVALUATE your answer: When working with an L-R-C series cir-
cuit, you can check your results by comparing the values of the
inductive and capacitive reactances and If then
the voltage amplitude across the inductor is greater than that across
the capacitor and the phase angle is positive (between 0 and ).
If then the voltage amplitude across the inductor is less
than that across the capacitor and the phase angle is negative
(between 0 and ).-90°

f

XL 6 XC,
90°f

XL 7 XC,XC.XL

IV

Example 31.4 An L-R-C series circuit I

In the series circuit of Fig. 31.13a, suppose 
and

Find the reactances and the impedance the current ampli-
tude the phase angle and the voltage amplitude across each
circuit element.

SOLUTION

IDENTIFY and SET UP: This problem uses the ideas developed in
Section 31.2 and this section about the behavior of circuit elements
in an ac circuit. We use Eqs. (31.12) and  (31.18) to determine 
and and Eq. (31.23) to find Z. We then use Eq. (31.22) to find
the current amplitude and Eq. (31.24) to find the phase angle. The
relationships in Table 31.1 then yield the voltage amplitudes.

EXECUTE: The inductive and capacitive reactances are

The impedance of the circuit is then

= 500 Æ
Z = 2R2 + 1XL - XC2

2 = 21300 Æ22 + 1600 Æ - 200 Æ22

Z

XC =
1

vC
=

1

110,000 rad>s210.50 * 10-6 F2
= 200 Æ

XL = vL = 110,000 rad>s2160 mH2 = 600 Æ

XC,
XL

f,I,
Z,XC,XL

v = 10,000 rad>s.V = 50 V,C = 0.50 mF,L = 60 mH,
R = 300 Æ, With source voltage amplitude , the current amplitude I

and phase angle are

From Table 31.1, the voltage amplitudes and across the
resistor, inductor, and capacitor, respectively, are

EVALUATE: As in Fig. 31.13b, ; hence the voltage ampli-
tude across the inductor is greater than that across the capacitor
and is positive. The value means that the voltage leads
the current by 

Note that the source voltage amplitude is not equal
to the sum of the voltage amplitudes across the separate circuit ele-
ments: Instead, V is the vector sum
of the and phasors. If you draw the phasor diagram like
Fig. 31.13b for this particular situation, you’ll see that 

and constitute a 3-4-5 right triangle.VVL - VC,
VR,

VCVL,VR,
50 V Z 30 V + 60 V + 20 V.

V = 50 V
53°.

f = 53°f

XL 7 XC

VC = IXC = 10.10 A21200 Æ2 = 20 V

VL = IXL = 10.10 A21600 Æ2 = 60 V

VR = IR = 10.10 A21300 Æ2 = 30 V

VCVL,VR,

f = arctan
XL - XC

R
= arctan

400 Æ
300 Æ

= 53°

I =
V

Z
=

50 V

500 Æ
= 0.10 A

f

V = 50 V



31.4 Power in Alternating-Current Circuits
Alternating currents play a central role in systems for distributing, converting,
and using electrical energy, so it’s important to look at power relationships in ac
circuits. For an ac circuit with instantaneous current and current amplitude 
we’ll consider an element of that circuit across which the instantaneous potential
difference is with voltage amplitude The instantaneous power delivered to
this circuit element is

Let’s first see what this means for individual circuit elements. We’ll assume in
each case that 

Power in a Resistor
Suppose first that the circuit element is a pure resistor as in Fig. 31.7a; then

and are in phase. We obtain the graph representing by multiplying thepiv = vR

R,

i = Icosvt.

p = vi

pV.v

I,i
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Example 31.5 An L-R-C series circuit II

For the L-R-C series circuit of Example 31.4, find expressions for
the time dependence of the instantaneous current i and the instan-
taneous voltages across the resistor ( ), inductor ( ), capacitor
( ), and ac source ( ).

SOLUTION

IDENTIFY and SET UP: We describe the current using Eq. (31.2),
which assumes that the current is maximum at . The voltages
are then given by Eq. (31.8) for the resistor, Eq. (31.10) for the induc-
tor, Eq. (31.16) for the capacitor, and Eq. (31.25) for the source.

EXECUTE: The current and the voltages all oscillate with the same
angular frequency, and hence with the same
period,
From Eq. (31.2), the current is

The resistor voltage is in phase with the current, so

The inductor voltage leads the current by so

The capacitor voltage lags the current by so

We found in Example 31.4 that the source voltage (equal to the
voltage across the entire combination of resistor, inductor, and
capacitor) leads the current by sof = 53°,

= 120 V2 sin110,000 rad>s2t

vC = VC cos1vt - 90°2 = VC sinvt

90°,

= -160 V2 sin110,000 rad>s2t

vL = VL cos1vt + 90°2 = -VL sin vt

90°,

vR = VR cosvt = 130 V2 cos110,000 rad>s2t

i = Icosvt = 10.10 A2 cos110,000 rad>s2t

= 6.3 * 10-4 s = 0.63 ms.2p>v = 2p>110,000 rad>s2
v = 10,000 rad>s,

t = 0

vvC

vLvR

EVALUATE: Figure 31.15 graphs the four voltages versus time. The
inductor voltage has a larger amplitude than the capacitor voltage
because The instantaneous source voltage is always
equal to the sum of the instantaneous voltages and You
should verify this by measuring the values of the voltages shown
in the graph at different values of the time t.

vC.vL,vR,
vXL 7 XC.

= 150 V2cos3110,000 rad>s2t + 0.93 rad4

= 150 V2cos c110,000 rad>s2t + a
2p rad

360°
b153°2 d

v = V cos1vt + f2

KEY: v vLvR

v (V)

t (ms)

vC

60

–20

–40

–60

–0.2 0

20

40

0.2 0.6

VL 5 60 V

V 5 50 V

VR 5 30 V
VC 5 20 V

0.4

31.15 Graphs of the source voltage resistor voltage 
inductor voltage and capacitor voltage as functions of time
for the situation of Example 31.4. The current, which is not
shown, is in phase with the resistor voltage.

vCvL,
vR,v,

Test Your Understanding of Section 31.3 Rank the following ac
circuits in order of their current amplitude, from highest to lowest value. (i) the
circuit in Example 31.4; (ii) the circuit in Example 31.4 with the capacitor and
inductor both removed; (iii) the circuit in Example 31.4 with the resistor and capacitor
both removed; (iv) the circuit in Example 31.4 with the resistor and inductor both
removed. ❙
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heights of the graphs of and in Fig. 31.7b at each instant. This graph is shown
by the black curve in Fig. 31.16a. The product is always positive because 
and are always either both positive or both negative. Hence energy is supplied
to the resistor at every instant for both directions of although the power is not
constant.

The power curve for a pure resistor is symmetrical about a value equal to one-
half its maximum value VI, so the average power is

(31.27)

An equivalent expression is

(31.28)

Also, so we can express by any of the equivalent forms

(31.29)

Note that the expressions in Eq. (31.29) have the same form as the corresponding
relationships for a dc circuit, Eq. (25.18). Also note that they are valid only for
pure resistors, not for more complicated combinations of circuit elements.

Power in an Inductor
Next we connect the source to a pure inductor as in Fig. 31.8a. The voltage

leads the current by When we multiply the curves of and the
product is negative during the half of the cycle when and have opposite
signs. The power curve, shown in Fig. 31.16b, is symmetrical about the horizon-
tal axis; it is positive half the time and negative the other half, and the average
power is zero. When is positive, energy is being supplied to set up the magnetic
field in the inductor; when is negative, the field is collapsing and the inductor is
returning energy to the source. The net energy transfer over one cycle is zero.

Power in a Capacitor
Finally, we connect the source to a pure capacitor as in Fig. 31.9a. The voltage

lags the current by Figure 31.16c shows the power curve; the aver-
age power is again zero. Energy is supplied to charge the capacitor and is returned

90°.iv = vC

C,

p
p

ivvi
i,v90°.iv = vL

L,

Pav = I rms
2R =

V rms
2

R
= VrmsIrms  (for a pure resistor)

PavVrms = IrmsR,

Pav =
V

12

I

12
= VrmsIrms  (for a pure resistor)

Pav = 1
2 VI  1for a pure resistor)

Pav

i,
i

vvi
iv

For an inductor or capacitor, p � vi  is alternately
positive and negative, and the average power is zero.

For a resistor, p � vi is always positive
because v and i are either both positive
or both negative at any instant.

For an arbitrary combination of
resistors, inductors, and capacitors,
the average power is positive.

KEY: Instantaneous current, i Instantaneous voltage across device, v Instantaneous power input to device, p

(a) Pure resistor

VI

O

V

I

v, i, p
p

i

v
t

Pav � VI1
2

(b) Pure inductor

O

v, i, p

p

i

v

t

(c) Pure capacitor

O

, i, p

p

i

v
t

v, i, p

(d) Arbitrary ac circuit

Pav 5 VI cos f

t

v

i

p

1
2

v

O

31.16 Graphs of current, voltage, and power as functions of time for (a) a pure resistor, (b) a pure inductor, (c) a pure capacitor, and
(d) an arbitrary ac circuit that can have resistance, inductance, and capacitance.



to the source when the capacitor discharges. The net energy transfer over one
cycle is again zero.

Power in a General ac Circuit
In any ac circuit, with any combination of resistors, capacitors, and inductors, the
voltage across the entire circuit has some phase angle with respect to the cur-
rent Then the instantaneous power is given by

(31.30)

The instantaneous power curve has the form shown in Fig. 31.16d. The area
between the positive loops and the horizontal axis is greater than the area between
the negative loops and the horizontal axis, and the average power is positive.

We can derive from Eq. (31.30) an expression for the average power by
using the identity for the cosine of the sum of two angles:

From the discussion in Section 31.1 that led to Eq. (31.4), we see that the average
value of (over one cycle) is The average value of is zero
because this product is equal to whose average over a cycle is zero. So
the average power is

(average power into a 
general ac circuit) (31.31)

When and are in phase, so the average power equals 
when and are out of phase, the average power is zero. In the general
case, when has a phase angle with respect to the average power equals 
multiplied by the component of the voltage phasor that is in phase with the
current phasor. Figure 31.17 shows the general relationship of the current and volt-
age phasors. For the L-R-C series circuit, Figs. 31.13b and 31.13c show that 
equals the voltage amplitude for the resistor; hence Eq. (31.31) is the average
power dissipated in the resistor. On average there is no energy flow into or out of
the inductor or capacitor, so none of goes into either of these circuit elements.

The factor is called the power factor of the circuit. For a pure resist-
ance, and For a pure inductor or capacitor,

and For an L-R-C series circuit the power factor
is equal to we leave the proof of this statement to you (see Exercise 31.21).

A low power factor (large angle of lag or lead) is usually undesirable in power
circuits. The reason is that for a given potential difference, a large current is needed
to supply a given amount of power. This results in large losses in the transmis-
sion lines. Your electric power company may charge a higher rate to a client with a
low power factor. Many types of ac machinery draw a lagging current; that is, the
current drawn by the machinery lags the applied voltage. Hence the voltage leads
the current, so and The power factor can be corrected toward
the ideal value of 1 by connecting a capacitor in parallel with the load. The current
drawn by the capacitor leads the voltage (that is, the voltage across the capacitor
lags the current), which compensates for the lagging current in the other branch of
the circuit. The capacitor itself absorbs no net power from the line.

cosf 6 1.f 7 0

i2R

f

R>Z;
Pav = 0.cosf = 0,f = � 90°,

Pav = VrmsIrms.cosf = 1,f = 0,
cosf

Pav

VR

Vcosf

Vcosf,

1
2 Ii,fv

90°iv

1
2 VI = VrmsIrms;f = 0,iv

Pav = 1
2 VI cosf = VrmsIrms cosf

Pav

1
2 sin2vt,

cosvt sinvt1
2 .cos2vt

= VI cosfcos2vt - VI sinfcosvt sinvt

p = 3V1cosvtcosf - sinvt sinf243Icosvt4

Pav

p = vi = 3Vcos1vt + f243I cosvt4

pi.
fv
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Example 31.6 Power in a hair dryer

An electric hair dryer is rated at 1500 W (the average power) at
120 V (the rms voltage). Calculate (a) the resistance, (b) the rms

current, and (c) the maximum instantaneous power. Assume that
the dryer is a pure resistor. (The heating element acts as a resistor.)

Continued

1
2Average power 5 I (V cos f), where V cos f

is the component of V in phase with I.

V

I

V cos f

O

f

vt

31.17 Using phasors to calculate the
average power for an arbitrary ac circuit.
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31.5 Resonance in Alternating-Current Circuits
Much of the practical importance of L-R-C series circuits arises from the way
in which such circuits respond to sources of different angular frequency 
For example, one type of tuning circuit used in radio receivers is simply an L-R-C
series circuit. A radio signal of any given frequency produces a current of the
same frequency in the receiver circuit, but the amplitude of the current is greatest
if the signal frequency equals the particular frequency to which the receiver cir-
cuit is “tuned.” This effect is called resonance. The circuit is designed so that sig-
nals at other than the tuned frequency produce currents that are too small to make
an audible sound come out of the radio’s speakers.

To see how an L-R-C series circuit can be used in this way, suppose we con-
nect an ac source with constant voltage amplitude but adjustable angular fre-
quency across an L-R-C series circuit. The current that appears in the circuit
has the same angular frequency as the source and a current amplitude 
where is the impedance of the L-R-C series circuit. This impedance depends on
the frequency, as Eq. (31.23) shows. Figure 31.18a shows graphs of 
and as functions of We have used a logarithmic angular frequency scale
so that we can cover a wide range of frequencies. As the frequency increases,

increases and decreases; hence there is always one frequency at whichXCXL

v.Z
XC,XL,R,

Z
I = V>Z,

v

V

v.

SOLUTION

IDENTIFY and SET UP: We are given and 
Our target variables are the resistance the rms current

and the maximum value of the instantaneous power 
We solve Eq. (31.29) to find R, Eq. (31.28) to find from 
and , and Eq. (31.30) to find 

EXECUTE: (a) From Eq. (31.29), the resistance is

(b) From Eq. (31.28),

Irms =
Pav

Vrms
=

1500 W

120 V
= 12.5 A

R =
V  2

rms

Pav
=
1120 V22

1500 W
= 9.6 Æ

p max .Pav

VrmsIrms

p.p maxIrms,
R,120 V.

Vrms =Pav = 1500 W

(c) For a pure resistor, the voltage and current are in phase and
the phase angle is zero. Hence from Eq. (31.30), the instanta-
neous power is and the maximum instantaneous
power is From Eq. (31.27), this is twice the average
power so

EVALUATE: We can confirm our result in part (b) by using Eq.
(31.7): � � 12.5 A. Note that
some unscrupulous manufacturers of stereo amplifiers advertise
the peak power output rather than the lower average value.

1120 V2>19.6 Æ2 =Vrms>RIrms

pmax = VI = 2Pav = 211500 W2 = 3000 W

Pav,
pmax = VI.

p = VIcos2vt
f

Example 31.7 Power in an L-R-C series circuit

For the L-R-C series circuit of Example 31.4, (a) calculate the
power factor and (b) calculate the average power delivered to the
entire circuit and to each circuit element.

SOLUTION

IDENTIFY and SET UP: We can use the results of Example 31.4.
The power factor is the cosine of the phase angle and we use
Eq. (31.31) to find the average power delivered in terms of and
the amplitudes of voltage and current.

f

f,

EXECUTE: (a) The power factor is 
(b) From Eq. (31.31),

EVALUATE: Although is the average power delivered to the 
L-R-C combination, all of this power is dissipated in the resistor.
As Figs. 31.16b and 31.16c show, the average power delivered to a
pure inductor or pure capacitor is always zero.

Pav

Pav = 1
2 VI cosf = 1

2 150 V210.10 A210.602 = 1.5 W

cosf = cos53° = 0.60.

Test Your Understanding of Section 31.4 Figure 31.16d shows that
during part of a cycle of oscillation, the instantaneous power delivered to the cir-
cuit is negative. This means that energy is being extracted from the circuit. 
(a) Where is the energy extracted from? (i) the resistor; (ii) the inductor; (iii) the 
capacitor; (iv) the ac source; (v) more than one of these. (b) Where does the energy go?
(i) the resistor; (ii) the inductor; (iii) the capacitor; (iv) the ac source; (v) more than one
of these. ❙

? ActivPhysics 14.3: AC Circuits: The Driven
Oscillator (Questions 8, 9, and 11)



and are equal and is zero. At this frequency the impedance
has its smallest value, equal simply to the resistance 

Circuit Behavior at Resonance
As we vary the angular frequency of the source, the current amplitude 
varies as shown in Fig. 31.18b; the maximum value of occurs at the frequency at
which the impedance is minimum. This peaking of the current amplitude at a
certain frequency is called resonance. The angular frequency at which the
resonance peak occurs is called the resonance angular frequency. This is the
angular frequency at which the inductive and capacitive reactances are equal, so
at resonance,

(L-R-C series circuit 
at resonance)

(31.32)

Note that this is equal to the natural angular frequency of oscillation of an L-C
circuit, which we derived in Section 30.5, Eq. (30.22). The resonance frequency

is This is the frequency at which the greatest current appears in the cir-
cuit for a given source voltage amplitude; in other words, is the frequency to
which the circuit is “tuned.”

It’s instructive to look at what happens to the voltages in an L-R-C series circuit
at resonance. The current at any instant is the same in and The voltage across
an inductor always leads the current by or cycle, and the voltage across a
capacitor always lags the current by Therefore the instantaneous voltages
across and always differ in phase by or cycle; they have opposite signs
at each instant. At the resonance frequency, and only at the resonance frequency,

and the voltage amplitudes and are equal; then the
instantaneous voltages across and add to zero at each instant, and the total
voltage across the L-C combination in Fig. 31.13a is exactly zero. The voltage
across the resistor is then equal to the source voltage. So at the resonance fre-
quency the circuit behaves as if the inductor and capacitor weren’t there at all!

The phase of the voltage relative to the current is given by Eq. (31.24). At fre-
quencies below resonance, is greater than the capacitive reactance domi-
nates, the voltage lags the current, and the phase angle is between zero and

Above resonance, the inductive reactance dominates, the voltage leads the
current, and the phase angle is between zero and Figure 31.18b shows
this variation of with angular frequency.

Tailoring an ac Circuit
If we can vary the inductance or the capacitance of a circuit, we can also vary
the resonance frequency. This is exactly how a radio or television receiving set is
“tuned” to receive a particular station. In the early days of radio this was accom-
plished by the use of capacitors with movable metal plates whose overlap could
be varied to change (This is what is being done with the radio tuning knob
shown in the photograph that opens this chapter.) A more modern approach is to
vary by using a coil with a ferrite core that slides in or out.

In an L-R-C series circuit the impedance reaches its minimum value and the
current its maximum value at the resonance frequency. The middle curve in 
Fig. 31.19 is a graph of current as a function of frequency for such a circuit, with
source voltage amplitude and
This curve is called a response curve or a resonance curve. The resonance angu-
lar frequency is As we expect, the curve has a peak
at this angular frequency.

The resonance frequency is determined by and what happens when we
change Figure 31.19 also shows graphs of as a function of for 

and for The curves are similar for frequencies far awayR = 2000 Æ.200 Æ
R =vIR?

C;L

v0 = 1LC2-1>2 = 1000 rad>s.

R = 500 Æ.C = 0.50 mF,L = 2.0 H,V = 100 V,

L

C.

CL

f

+90°.f

-90°.
f

XL;XC

vbd

CL
VC = IXCVL = IXLXL = XC

1
2180°,CL

90°.

1
490°,

C.L

f0

v0>2p.f0

XL = XC  v0L =
1

v0C
  v0 =

1

1LC

v0

Z
I

I = V>Zv

R.2R2 + 1XL - XC2
2

Z =XL - XCXCXL
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Impedance Z is least at the angular
frequency at which XC 5 XL.

Current peaks at the angular frequency
at which impedance is least. This is the
resonance angular frequency v0.

Logarithmic
scale

Logarithmic
scale

R, X, Z

XC

XL

R

log v

XL 2 XC

O

Z 5 �R2 1 (XL 2 XC)2

v0

(a) Reactance, resistance, and impedance as
functions of angular frequency

I, Z

I
Z

O

90°
f

f

f

290°

log vv0

(b) Impedance, current, and phase angle as
functions of angular frequency

31.18 How variations in the angular
frequency of an ac circuit affect (a) reac-
tance, resistance, and impedance, and (b)
impedance, current amplitude, and phase
angle.

The lower a circuit’s
resistance, the higher
and sharper is the
resonance peak in the
current near the
resonance angular
frequency v0.

I (A)

200 V0.5

0.4

0.3

0.2

0.1

v (rad/s)
500 1000 1500 2000O

2000 V

500 V

31.19 Graph of current amplitude as a
function of angular frequency for an 
L-R-C series circuit with 

and three differ-
ent values of the resistance R.

C = 0.50 mF,L = 2.0 H,
V = 100 V,

v
I



31.5 Resonance in Alternating-Current Circuits 1039

from resonance, where the impedance is dominated by or But near reso-
nance, where and nearly cancel each other, the curve is higher and more
sharply peaked for small values of and broader and flatter for large values of 
At resonance, and so the maximum height of the curve is
inversely proportional to 

The shape of the response curve is important in the design of radio and televi-
sion receiving circuits. The sharply peaked curve is what makes it possible to dis-
criminate between two stations broadcasting on adjacent frequency bands. But if
the peak is too sharp, some of the information in the received signal is lost, such
as the high-frequency sounds in music. The shape of the resonance curve is also
related to the overdamped and underdamped oscillations that we described in
Section 30.6. A sharply peaked resonance curve corresponds to a small value of 
and a lightly damped oscillating system; a broad, flat curve goes with a large
value of and a heavily damped system.

In this section we have discussed resonance in an L-R-C series circuit. Reso-
nance can also occur in an ac circuit in which the inductor, resistor, and capacitor
are connected in parallel. We leave the details to you (see Problem 31.57).

Resonance phenomena occur not just in ac circuits, but in all areas of physics.
We discussed examples of resonance in mechanical systems in Sections 13.8 and
16.5. The amplitude of a mechanical oscillation peaks when the driving-force fre-
quency is close to a natural frequency of the system; this is analogous to the
peaking of the current in an L-R-C series circuit. We suggest that you review the
sections on mechanical resonance now, looking for the analogies.

R

R

R.
I = V>R,Z = R

R.R
XCXL

XC.XL

Example 31.8 Tuning a radio

The series circuit in Fig. 31.20 is similar to some radio tuning cir-
cuits. It is connected to a variable-frequency ac source with an rms
terminal voltage of 1.0 V. (a) Find the resonance frequency. At the
resonance frequency, find (b) the inductive reactance the
capacitive reactance and the impedance Z; (c) the rms current

; (d) the rms voltage across each circuit element.

SOLUTION

IDENTIFY and SET UP: Figure 31.20 shows an L-R-C series circuit,
with ideal meters inserted to measure the rms current and voltages,
our target variables. Equations (31.32) include the formula for the
resonance angular frequency from which we find the resonance
frequency We use Eqs. (31.12) and  (31.18) to find and ,
which are equal at resonance; at resonance, from Eq. (31.23), we

XCXLƒ0.
v0,

Irms

XC,
XL,

have Z R. We use Eqs. (31.7),  (31.13), and  (31.19) to find the
voltages across the circuit elements.

EXECUTE: (a) The values of and are

This frequency is in the lower part of the AM radio band.
(b) At this frequency,

Since at resonance as stated above, 
(c) From Eq. (31.26) the rms current at resonance is

(d) The rms potential difference across the resistor is

The rms potential differences across the inductor and capacitor are

EVALUATE: The potential differences across the inductor and the
capacitor have equal rms values and amplitudes, but are out
of phase and so add to zero at each instant. Note also that at reso-
nance, is equal to the source voltage while in this
example, and are both considerably larger than Vrms.VC-rmsVL-rms

Vrms,VR-rms

180°

VL-rms = IrmsXL = 10.0020 A212000 Æ2 = 4.0 V

VC-rms = IrmsXC = 10.0020 A212000 Æ2 = 4.0 V

VR-rms = IrmsR = 10.0020 A21500 Æ2 = 1.0 V

Irms =
Vrms

Z
=

Vrms

R
=

1.0 V

500 Æ
= 0.0020 A = 2.0 mA

Z = R = 500 Æ.XL = XC

XC =
1

vC
=

1

15.0 * 106 rad>s21100 * 10-12 F2
= 2000 Æ

XL = vL = 15.0 * 106 rad>s210.40 * 10-3 H2 = 2000 Æ

ƒ0 = 8.0 * 105 Hz = 800 kHz

= 5.0 * 106 rad>s

v0 =
1

2LC
=

1

210.40 * 10-3 H21100 * 10-12 F2

ƒ0v0

=

2.0
mA

1.0
V

1.0
V

a b c d

C 5 100 pF
R 5 500 V L 5 0.40 mH

4.0
V

4.0
V

0
V

31.20 A radio tuning circuit at resonance. The circles denote
rms current and voltages.



31.6 Transformers
One of the great advantages of ac over dc for electric-power distribution is that it
is much easier to step voltage levels up and down with ac than with dc. For long-
distance power transmission it is desirable to use as high a voltage and as small a
current as possible; this reduces losses in the transmission lines, and smaller
wires can be used, saving on material costs. Present-day transmission lines rou-
tinely operate at rms voltages of the order of 500 kV. On the other hand, safety
considerations and insulation requirements dictate relatively low voltages in gen-
erating equipment and in household and industrial power distribution. The stan-
dard voltage for household wiring is 120 V in the United States and Canada and
240 V in many other countries. The necessary voltage conversion is accomplished
by the use of transformers.

How Transformers Work
Figure 31.21 shows an idealized transformer. The key components of the trans-
former are two coils or windings, electrically insulated from each other but
wound on the same core. The core is typically made of a material, such as iron,
with a very large relative permeability This keeps the magnetic field lines
due to a current in one winding almost completely within the core. Hence almost
all of these field lines pass through the other winding, maximizing the mutual
inductance of the two windings (see Section 30.1). The winding to which power
is supplied is called the primary; the winding from which power is delivered is
called the secondary. The circuit symbol for a transformer with an iron core,
such as those used in power distribution systems, is

Km.

i2R
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Test Your Understanding of Section 31.5 How does the resonance fre-
quency of an L-R-C series circuit change if the plates of the capacitor are brought closer
together? (i) It increases; (ii) it decreases; (iii) it is unaffected. ❙

Here’s how a transformer works. The ac source causes an alternating current
in the primary, which sets up an alternating flux in the core; this induces an emf
in each winding, in accordance with Faraday’s law. The induced emf in the sec-
ondary gives rise to an alternating current in the secondary, and this delivers
energy to the device to which the secondary is connected. All currents and emfs
have the same frequency as the ac source.

Let’s see how the voltage across the secondary can be made larger or smaller
in amplitude than the voltage across the primary. We neglect the resistance of the
windings and assume that all the magnetic field lines are confined to the iron
core, so at any instant the magnetic flux is the same in each turn of the pri-
mary and secondary windings. The primary winding has turns and the second-
ary winding has turns. When the magnetic flux changes because of changing
currents in the two coils, the resulting induced emfs are

(31.33)

The flux per turn is the same in both the primary and the secondary, so
Eqs. (31.33) show that the induced emf per turn is the same in each. The ratio of
the secondary emf to the primary emf is therefore equal at any instant to the
ratio of secondary to primary turns:

(31.34)

Since and both oscillate with the same frequency as the ac source, 
Eq. (31.34) also gives the ratio of the amplitudes or of the rms values of the induced

E2E1

E2

E1
=

N2

N1

E1E2

£B

E1 = -N1
d£B

dt
 and E2 = -N2

d£B

dt

N2

N1

£B

The induced emf per turn is the same in both
coils, so we adjust the ratio of terminal voltages
by adjusting the ratio of turns:

5
N2
N1

V2
V1

R

N2

V2

N1

I1

Primary
winding

Secondary
winding

Iron core
Source of alternating
current

FB

V1

31.21 Schematic diagram of an ideal-
ized step-up transformer. The primary is
connected to an ac source; the secondary is
connected to a device with resistance R.

Application Dangers of ac Versus
dc Voltages
Alternating current at high voltage (above 
500 V) is more dangerous than direct current
at the same voltage. When a person touches
a high-voltage dc source, it usually causes a
single muscle contraction that can be strong
enough to push the person away from the
source. By contrast, touching a high-voltage
ac source can cause a continuing muscle con-
traction that prevents the victim from letting
go of the source. Lowering the ac voltage with
a transformer reduces the risk of injury.
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emfs. If the windings have zero resistance, the induced emfs and are equal to
the terminal voltages across the primary and the secondary, respectively; hence

(terminal voltages of transformer
primary and secondary) (31.35)

where and are either the amplitudes or the rms values of the terminal volt-
ages. By choosing the appropriate turns ratio we may obtain any desired
secondary voltage from a given primary voltage. If as in Fig. 31.21,
then and we have a step-up transformer; if then and
we have a step-down transformer. At a power generating station, step-up trans-
formers are used; the primary is connected to the power source and the secondary
is connected to the transmission lines, giving the desired high voltage for trans-
mission. Near the consumer, step-down transformers lower the voltage to a value
suitable for use in home or industry (Fig. 31.22).

Even the relatively low voltage provided by a household wall socket is too
high for many electronic devices, so a further step-down transformer is neces-
sary. This is the role of an “ac adapter” such as those used to recharge a mobile
phone or laptop computer from line voltage. Such adapters contain a step-down
transformer that converts line voltage to a lower value, typically 3 to 12 volts, as
well as diodes to convert alternating current to the direct current that small elec-
tronic devices require (Fig. 31.23).

Energy Considerations for Transformers
If the secondary circuit is completed by a resistance then the amplitude or rms
value of the current in the secondary circuit is From energy consider-
ations, the power delivered to the primary equals that taken out of the secondary
(since there is no resistance in the windings), so

(31.36)

We can combine Eqs. (31.35) and (31.36) and the relationship to elim-
inate and we obtain

(31.37)

This shows that when the secondary circuit is completed through a resistance 
the result is the same as if the source had been connected directly to a resistance
equal to divided by the square of the turns ratio, In other words, the
transformer “transforms” not only voltages and currents, but resistances as well.
More generally, we can regard a transformer as “transforming” the impedance of
the network to which the secondary circuit is completed.

Equation (31.37) has many practical consequences. The power supplied by a
source to a resistor depends on the resistances of both the resistor and the source. It
can be shown that the power transfer is greatest when the two resistances are equal.
The same principle applies in both dc and ac circuits. When a high-impedance ac
source must be connected to a low-impedance circuit, such as an audio amplifier
connected to a loudspeaker, the source impedance can be matched to that of the
circuit by the use of a transformer with an appropriate turns ratio 

Real transformers always have some energy losses. (That’s why an ac adapter
like the one shown in Fig. 31.23 feels warm to the touch after it’s been in use for
a while; the transformer is heated by the dissipated energy.) The windings have
some resistance, leading to losses. There are also energy losses through
hysteresis in the core (see Section 28.8). Hysteresis losses are minimized by the
use of soft iron with a narrow hysteresis loop.

Another important mechanism for energy loss in a transformer core involves
eddy currents (see Section 29.6). Consider a section AA through an iron transformer
core (Fig. 31.24a). Since iron is a conductor, any such section can be pictured as

i2R

N2>N1.

1N2>N12
2.R

R,

V1

I1
=

R

1N2>N12
2

I2;V2

I2 = V2>R

V1I1 = V2I2  (currents in transformer primary and secondary)

I2 = V2>R.
R,

V2 6 V1N2 6 N1,V2 7 V1

N2 7 N1,
N2>N1,

V2V1

V2

V1
=

N2

N1

E2E1 31.22 The cylindrical can near the top
of this power pole is a step-down trans-
former. It converts the high-voltage ac in
the power lines to low-voltage (120 V) ac,
which is then distributed to the surround-
ing homes and businesses.

31.23 An ac adapter like this one con-
verts household ac into low-voltage dc for
use in electronic devices. It contains a
step-down transformer to lower the voltage
and diodes to rectify the output current
(see Fig. 31.3).



several conducting circuits, one within the other (Fig. 31.24b). The flux through
each of these circuits is continually changing, so eddy currents circulate in the
entire volume of the core, with lines of flow that form planes perpendicular to the
flux. These eddy currents are very undesirable; they waste energy through 
heating and themselves set up an opposing flux.

The effects of eddy currents can be minimized by the use of a laminated core—
that is, one built up of thin sheets or laminae. The large electrical surface resist-
ance of each lamina, due either to a natural coating of oxide or to an insulating
varnish, effectively confines the eddy currents to individual laminae (Fig. 31.24c).
The possible eddy-current paths are narrower, the induced emf in each path is
smaller, and the eddy currents are greatly reduced. The alternating magnetic field
exerts forces on the current-carrying laminae that cause them to vibrate back and
forth; this vibration causes the characteristic “hum” of an operating transformer.
You can hear this same “hum” from the magnetic ballast of a fluorescent light fix-
ture (see Section 30.2).

Thanks to the use of soft iron cores and lamination, transformer efficiencies
are usually well over 90%; in large installations they may reach 99%.

i2R
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A

A

(a) Schematic transformer

Solid
core

Primary
winding

Secondary
winding

Eddy
currents

Section at AA

(b) Large eddy currents in solid core

Laminated
core

Eddy
currents

Section at AA

(c) Smaller eddy currents in laminated core

31.24 (a) Primary and secondary windings in a transformer. (b) Eddy currents in the iron core, shown in the cross section at AA.
(c) Using a laminated core reduces the eddy currents.

Example 31.9 “Wake up and smell the (transformer)!”

A friend returns to the United States from Europe with a 960-W
coffeemaker, designed to operate from a 240-V line. (a) What can
she do to operate it at the USA-standard 120 V? (b) What current
will the coffeemaker draw from the 120-V line? (c) What is the
resistance of the coffeemaker? (The voltages are rms values.)

SOLUTION

IDENTIFY and SET UP: Our friend needs a step-up transformer to
convert 120-V ac to the 240-V ac that the coffeemaker requires.
We use Eq. (31.35) to determine the transformer turns ratio 

for a resistor to find the current draw, and Eq. (31.37)
to calculate the resistance.

EXECUTE: (a) To get from the required
turns ratio is That is, the
secondary coil (connected to the coffeemaker) should have twice as
many turns as the primary coil (connected to the 120-V line).

N2>N1 = V2>V1 = 1240 V2>1120 V2 = 2.
V1 = 120 V,V2 = 240 V

Pav = VrmsIrms

N2>N1,

(b) We find the rms current in the 120-V primary by using
where is the average power drawn by the cof-

feemaker and hence the power supplied by the 120-V line. (We’re
assuming that no energy is lost in the transformer.) Hence =

8.0 A. The secondary current is
then = 

(c) We have and so

From Eq. (31.37),

EVALUATE: As a check, 
the same value obtained previously. You can also check this result
for R by using the expression for the power drawn by
the coffeemaker.

Pav = V 2
2 >R

V2>R = 1240 V2>160 Æ2 = 4.0 A = I2,

R = 22115 Æ2 = 60 Æ

V1

I1
=

120 V

8.0 A
= 15 Æ

N2>N1 = 2,I1 = 8.0 A,V1 = 120 V,
= 4.0 A.1960 W2>1240 V2Pav>V2I2 =

= 1960 W2>1120 V2 =Pav>V1

I1

PavPav = V1I1,
I1

Test Your Understanding of Section 31.6 Each of the following four trans-
formers has 1000 turns in its primary coil. Rank the transformers from largest to smallest
number of turns in the secondary coil. (i) converts 120-V ac into 6.0-V ac; (ii) converts
120-V ac into 240-V ac; (iii) converts 240-V ac into 6.0-V ac; (iv) converts 240-V ac into
120-V ac. ❙
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CHAPTER 31 SUMMARY

Phasors and alternating current: An alternator or ac
source produces an emf that varies sinusoidally with
time. A sinusoidal voltage or current can be represented
by a phasor, a vector that rotates counterclockwise with
constant angular velocity equal to the angular fre-
quency of the sinusoidal quantity. Its projection on the
horizontal axis at any instant represents the instanta-
neous value of the quantity.

For a sinusoidal current, the rectified average and
rms (root-mean-square) currents are proportional to the
current amplitude Similarly, the rms value of a sinu-
soidal voltage is proportional to the voltage amplitude

(See Example 31.1.)V.

I.

v

(31.3)

(31.4)

(31.5)Vrms =
V

12

Irms =
I

12

Irav =
2
p

I = 0.637I

Voltage, current, and phase angle: In general, the instan-
taneous voltage between two points in an ac circuit is
not in phase with the instantaneous current passing
through those points. The quantity is called the phase
angle of the voltage relative to the current.

f

(31.2)

v = Vcos1vt + f2

i = Icosvt

Resistance and reactance: The voltage across a resistor
is in phase with the current. The voltage across an

inductor leads the current by while
the voltage across a capacitor lags the current by

The voltage amplitude across each
type of device is proportional to the current amplitude 
An inductor has inductive reactance and a
capacitor has capacitive reactance (See
Examples 31.2 and 31.3.)

XC = 1>vC.
XL = vL,

I.
90° 1f = -90°2.

C
1f = +90°2,90°L

R

(31.7)

(31.13)

(31.19)VC = IXC

VL = IXL

VR = IR

Impedance and the L-R-C series circuit: In a general ac
circuit, the voltage and current amplitudes are related by
the circuit impedance In an L-R-C series circuit, the
values of L, R, C, and the angular frequency determine
the impedance and the phase angle of the voltage rela-
tive to the current. (See Examples 31.4 and 31.5.)

f

v

Z.

(31.22)

(31.23)

(31.24) tanf =
vL - 1>vC

R

= 2R2 + 3vL - 11>vC242

Z = 2R2 + 1XL - XC2
2

V = IZ

Power in ac circuits: The average power input to an
ac circuit depends on the voltage and current amplitudes
(or, equivalently, their rms values) and the phase angle 
of the voltage relative to the current. The quantity is
called the power factor. (See Examples 31.6 and 31.7.)

cosf
f

Pav (31.31)

= VrmsIrms cosf

Pav = 1
2 VI cosf

Resonance in ac circuits: In an L-R-C series circuit, the
current becomes maximum and the impedance becomes
minimum at an angular frequency called the resonance
angular frequency. This phenomenon is called reso-
nance. At resonance the voltage and current are in
phase, and the impedance is equal to the resistance 
(See Example 31.8.)

R.Z

(31.32)v0 =
1

2LC

O

I

i 5 I cos vt

vt

v

V

I

V cos f

O

f

vt

a
C

bi

q �q

i

a R b

i

a L b

i

V 5 IZ

I

VR 5 IR

VC 5 IXC

VL 5 IXL

VL 2 VC

O

f
vt

I (A)

2000 V

500 V

200 V
0.5
0.4
0.3
0.2
0.1

v (rad/s)
1000 2000O

v, i, p
Pav 5 VI cos f

t

v

i

p

f
v
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Transformers: A transformer is used to transform the
voltage and current levels in an ac circuit. In an ideal
transformer with no energy losses, if the primary wind-
ing has turns and the secondary winding has turns,
the amplitudes (or rms values) of the two voltages are
related by Eq. (31.35). The amplitudes (or rms values)
of the primary and secondary voltages and currents are
related by Eq. (31.36). (See Example 31.9.)

N2N1

(31.35)

(31.36)V1I1 = V2I2

V2

V1
=

N2

N1

R

N2
V2N1

I1

Primary
Secondary

V1

FB

A series circuit consists of a 1.50-mH inductor, a resistor,
and a 25.0-nF capacitor connected across an ac source having an
rms voltage of 35.0 V and variable frequency. (a) At what angular
frequencies will the current amplitude be equal to of its maxi-
mum possible value? (b) At the frequencies in part (a), what are the
current amplitude and the voltage amplitude across each circuit
element (including the ac source)?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. The maximum current amplitude occurs at the resonance angu-

lar frequency. This problem concerns the angular frequencies at
which the current amplitude is one-third of that maximum.

2. Choose the equation that will allow you to find the angular fre-
quencies in question, and choose the equations that you will

1
3

125-Æ

BRIDGING PROBLEM An Alternating-Current Circuit

then use to find the current and voltage amplitudes at each
angular frequency.

EXECUTE
3. Find the impedance at the angular frequencies in part (a); then

solve for the values of angular frequency.
4. Find the voltage amplitude across the source and the current

amplitude for each of the angular frequencies in part (a). (Hint:
Be careful to distinguish between amplitude and rms value.)

5. Use the results of steps 3 and 4 to find the reactances at each
angular frequency. Then calculate the voltage amplitudes for
the resistor, inductor, and capacitor.

EVALUATE
6. Are there any voltage amplitudes that are greater than the volt-

age amplitude of the source? If so, does this mean your results
are in error?

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q31.1 Household electric power in most of western Europe is sup-
plied at 240 V, rather than the 120 V that is standard in the United
States and Canada. What are the advantages and disadvantages of
each system?
Q31.2 The current in an ac power line changes direction 120 times
per second, and its average value is zero. Explain how it is possible
for power to be transmitted in such a system.
Q31.3 In an ac circuit, why is the average power for an inductor
and a capacitor zero, but not for a resistor?
Q31.4 Equation (31.14) was derived by using the relationship

between the current and the charge on the capacitor. In
Fig. 31.9a the positive counterclockwise current increases the
charge on the capacitor. When the charge on the left plate is posi-
tive but decreasing in time, is still correct or should it be

Is still correct when the right-hand plate
has positive charge that is increasing or decreasing in magnitude?
Explain.

i = dq>dti = -dq>dt?
i = dq>dt

i = dq>dt

Q31.5 Fluorescent lights often use an inductor, called a ballast, to
limit the current through the tubes. Why is it better to use an induc-
tor rather than a resistor for this purpose?
Q31.6 Equation (31.9) says that (see Fig. 31.8a).
Using Faraday’s law, explain why point is at higher potential
than point when is in the direction shown in Fig. 31.8a and is
increasing in magnitude. When is counterclockwise and decreas-
ing in magnitude, is still correct, or should it be

Is still correct when is clockwise
and increasing or decreasing in magnitude? Explain.
Q31.7 Is it possible for the power factor of an L-R-C series ac cir-
cuit to be zero? Justify your answer on physical grounds.
Q31.8 In an L-R-C series circuit, can the instantaneous voltage
across the capacitor exceed the source voltage at that same instant?
Can this be true for the instantaneous voltage across the inductor?
Across the resistor? Explain.
Q31.9 In an L-R-C series circuit, what are the phase angle and
power factor when the resistance is much smaller than thecosf

f

ivab = L di>dtvab = -L di>dt?
vab = L di>dt

i
ib

a
vab = L di>dt

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.

www.masteringphysics.com
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inductive or capacitive reactance and the circuit is operated far
from resonance? Explain.
Q31.10 When an L-R-C series circuit is connected across a 120-V
ac line, the voltage rating of the capacitor may be exceeded even if
it is rated at 200 or 400 V. How can this be?
Q31.11 In Example 31.6 (Section 31.4), a hair dryer is treated as a
pure resistor. But because there are coils in the heating element and
in the motor that drives the blower fan, a hair dryer also has induc-
tance. Qualitatively, does including an inductance increase or
decrease the values of and 
Q31.12 A light bulb and a parallel-plate capacitor with air between
the plates are connected in series to an ac source. What happens to
the brightness of the bulb when a dielectric is inserted between the
plates of the capacitor? Explain.
Q31.13 A coil of wire wrapped on a hollow tube and a light bulb
are connected in series to an ac source. What happens to the bright-
ness of the bulb when an iron rod is inserted in the tube?
Q31.14 A circuit consists of a light bulb, a capacitor, and an induc-
tor connected in series to an ac source. What happens to the bright-
ness of the bulb when the inductor is removed? When the inductor
is left in the circuit but the capacitor is removed? Explain.
Q31.15 A circuit consists of a light bulb, a capacitor, and an induc-
tor connected in series to an ac source. Is it possible for both the
capacitor and the inductor to be removed and the brightness of the
bulb to remain the same? Explain.
Q31.16 Can a transformer be used with dc? Explain. What
happens if a transformer designed for 120-V ac is connected to a
120-V dc line?
Q31.17 An ideal transformer has windings in the primary and

windings in its secondary. If you double only the number of
secondary windings, by what factor does (a) the voltage amplitude
in the secondary change, and (b) the effective resistance of the sec-
ondary circuit change?
Q31.18 Some electrical appliances operate equally well on ac or
dc, and others work only on ac or only on dc. Give examples of
each, and explain the differences.

EXERCISES
Section 31.1 Phasors and Alternating Currents
31.1 . You have a special light bulb with a very delicate wire fila-
ment. The wire will break if the current in it ever exceeds 1.50 A,
even for an instant. What is the largest root-mean-square current
you can run through this bulb?
31.2 . A sinusoidal current has an rms value 

(a) What is the current amplitude? (b) The current is
passed through a full-wave rectifier circuit. What is the rectified
average current? (c) Which is larger: or Explain, using
graphs of and of the rectified current.
31.3 . The voltage across the terminals of an ac power supply
varies with time according to Eq. (31.1). The voltage amplitude is

What are (a) the root-mean-square potential difference
and (b) the average potential difference between the two

terminals of the power supply?

Section 31.2 Resistance and Reactance
31.4 . A capacitor is connected across an ac source that has volt-
age amplitude 60.0 V and frequency 80.0 Hz. (a) What is the phase
angle for the source voltage relative to the current? Does the
source voltage lag or lead the current? (b) What is the capacitance
C of the capacitor if the current amplitude is 5.30 A?

f

VavVrms

V = 45.0 V.

i2
Irav?Irms

2.10 A.
Irms =i = Icosvt

N2

N1

P?Irms,R,

31.5 . An inductor with is connected across an ac
source that has voltage amplitude 45.0 V. (a) What is the phase
angle for the source voltage relative to the current? Does the
source voltage lag or lead the current? (b) What value for the fre-
quency of the source results in a current amplitude of 3.90 A?
31.6 . A capacitance and an inductance are operated at the
same angular frequency. (a) At what angular frequency will they
have the same reactance? (b) If and 
what is the numerical value of the angular frequency in part (a),
and what is the reactance of each element?
31.7 . Kitchen Capacitance. The wiring for a refrigerator con-
tains a starter capacitor. A voltage of amplitude 170 V and fre-
quency 60.0 Hz applied across the capacitor is to produce a current
amplitude of 0.850 A through the capacitor. What capacitance is
required?
31.8 . (a) Compute the reactance of a 0.450-H inductor at fre-
quencies of 60.0 Hz and 600 Hz. (b) Compute the reactance of a

capacitor at the same frequencies. (c) At what frequency
is the reactance of a 0.450-H inductor equal to that of a 
capacitor?
31.9 . (a) What is the reactance of a 3.00-H inductor at a fre-
quency of 80.0 Hz? (b) What is the inductance of an inductor
whose reactance is at 80.0 Hz? (c) What is the reactance of
a capacitor at a frequency of 80.0 Hz? (d) What is the
capacitance of a capacitor whose reactance is at 80.0 Hz?
31.10 . A Radio Inductor. You want the current amplitude
through a 0.450-mH inductor (part of the circuitry for a radio
receiver) to be 2.60 mA when a sinusoidal voltage with amplitude
12.0 V is applied across the inductor. What frequency is required?
31.11 .. A 0.180-H inductor is connected in series with a 
resistor and an ac source. The voltage across the inductor is

. (a) Derive an expression for
the voltage across the resistor. (b) What is at ?
31.12 .. A resistor is connected in series with a 
capacitor and an ac source. The voltage across the capacitor is

(a) Determine the capacitive
reactance of the capacitor. (b) Derive an expression for the voltage

across the resistor.
31.13 .. A resistor is connected in series with a 0.250-H
inductor and an ac source. The voltage across the resistor is

(a) Derive an expression for the
circuit current. (b) Determine the inductive reactance of the induc-
tor. (c) Derive an expression for the voltage across the inductor.

Section 31.3 The L-R-C Series Circuit
31.14 . You have a resistor, a 0.400-H inductor, and a

capacitor. Suppose you take the resistor and inductor and
make a series circuit with a voltage source that has voltage ampli-
tude 30.0 V and an angular frequency of (a) What is the
impedance of the circuit? (b) What is the current amplitude? 
(c) What are the voltage amplitudes across the resistor and across
the inductor? (d) What is the phase angle of the source voltage
with respect to the current? Does the source voltage lag or lead the
current? (e) Construct the phasor diagram.
31.15 . The resistor, inductor, capacitor, and voltage source
described in Exercise 31.14 are connected to form an L-R-C series
circuit. (a) What is the impedance of the circuit? (b) What is the
current amplitude? (c) What is the phase angle of the source volt-
age with respect to the current? Does the source voltage lag or lead
the current? (d) What are the voltage amplitudes across the resis-
tor, inductor, and capacitor? (e) Explain how it is possible for the

f

250 rad>s.

6.00-mF
200-Æ

vL

vR = 13.80 V2cos31720 rad>s2t4.

150-Æ
vR

vC = 17.60 V2 sin31120 rad>s2t4.

4.80-mF250-Æ
t = 2.00 msvRvR

vL = -112.0 V2 sin31480 rad>s2t4

90.0-Æ

120 Æ
4.00-mF

120 Æ

2.50-mF
2.50-mF

C

C = 3.50 mF,L = 5.00 mH

LC

f

L = 9.50 mH
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voltage amplitude across the capacitor to be greater than the volt-
age amplitude across the source.
31.16 .. A resistor, a 0.900-H inductor, and a 
capacitor are connected in series across a voltage source that has
voltage amplitude 30.0 V and an angular frequency of 250 rad s.
(a) What are , , , and at ? Compare 

to at this instant. (b) What are , , and ? Compare
V to . Explain why these two quantities are not equal.
31.17 . In an L-R-C series circuit, the rms voltage across the
resistor is 30.0 V, across the capacitor it is 90.0 V, and across the
inductor it is 50.0 V. What is the rms voltage of the source?

Section 31.4 Power in Alternating-Current Circuits
31.18 .. A resistor with and an inductor are con-
nected in series across an ac source that has voltage amplitude 
500 V. The rate at which electrical energy is dissipated in the resis-
tor is 216 W. (a) What is the impedance Z of the circuit? (b) What
is the amplitude of the voltage across the inductor? (c) What is the
power factor?
31.19 . The power of a certain CD player operating at 120 V rms
is 20.0 W. Assuming that the CD player behaves like a pure resis-
tor, find (a) the maximum instantaneous power; (b) the rms cur-
rent; (c) the resistance of this player.
31.20 .. In an L-R-C series circuit, the components have the fol-
lowing values: and The
generator has an rms voltage of 120 V and a frequency of 1.25 kHz.
Determine (a) the power supplied by the generator and (b) the
power dissipated in the resistor.
31.21 . (a) Show that for an series circuit the power factor
is equal to . (b) An series circuit has phase angle .
The voltage amplitude of the source is 90.0 V. What is the voltage
amplitude across the resistor?
31.22 . (a) Use the results of part (a) of Exercise 31.21 to show
that the average power delivered by the source in an series
circuit is given by . (b) An series series circuit
has , and the amplitude of the voltage across the resis-
tor is 36.0 V. What is the average power delivered by the source?
31.23 . An L-R-C series circuit with 
and carries an rms current of 0.450 A with a fre-
quency of 400 Hz. (a) What are the phase angle and power factor
for this circuit? (b) What is the impedance of the circuit? (c) What
is the rms voltage of the source? (d) What average power is deliv-
ered by the source? (e) What is the average rate at which electrical
energy is converted to thermal energy in the resistor? (f) What is
the average rate at which electrical energy is dissipated (converted
to other forms) in the capacitor? (g) In the inductor?
31.24 .. An L-R-C series circuit is connected to a 120-Hz ac
source that has The circuit has a resistance of 
and an impedance at this frequency of What average power
is delivered to the circuit by the source?
31.25 .. A series ac circuit contains a resistor, a 15-mH
inductor, a capacitor, and an ac power source of voltage
amplitude 45 V operating at an angular frequency of 
(a) What is the power factor of this circuit? (b) Find the average
power delivered to the entire circuit. (c) What is the average power
delivered to the resistor, to the capacitor, and to the inductor?

Section 31.5 Resonance in 
Alternating-Current Circuits
31.26 .. In an series circuit the source is operated at its
resonant angular frequency. At this frequency, the reactance ofXC

L-R-C

360 rad>s,
3.5-mF

250-Æ

105 Æ.
75.0 ÆVrms = 80.0 V.

C = 7.30 mF
R = 240 Æ,L = 0.120 H,

R = 96.0 Æ
L-R-CPav = I 2

rms R
L-R-C

-31.5oL-R-CR>Z
L-R-C

R = 350 Æ.C = 140 nF,L = 20.0 mH,

R = 300 Æ

VR + VL + VC

VCVLVRvvL + vC

vR +t = 20.0 msvCvLvRv
>

6.00-mF200-Æ

the capacitor is and the voltage amplitude across the capac-
itor is 600 V. The circuit has . What is the voltage
amplitude of the source?
31.27 . Analyzing an L-R-C Circuit. You have a resis-
tor, a 0.400-H inductor, a capacitor, and a variable-
frequency ac source with an amplitude of 3.00 V. You connect all
four elements together to form a series circuit. (a) At what fre-
quency will the current in the circuit be greatest? What will be the
current amplitude at this frequency? (b) What will be the current
amplitude at an angular frequency of At this frequency,
will the source voltage lead or lag the current?
31.28 . An L-R-C series circuit is constructed using a 
resistor, a capacitor, and an 8.00-mH inductor, all con-
nected across an ac source having a variable frequency and a volt-
age amplitude of 25.0 V. (a) At what angular frequency will the
impedance be smallest, and what is the impedance at this fre-
quency? (b) At the angular frequency in part (a), what is the maxi-
mum current through the inductor? (c) At the angular frequency in
part (a), find the potential difference across the ac source, the resis-
tor, the capacitor, and the inductor at the instant that the current is
equal to one-half its greatest positive value. (d) In part (c), how are
the potential differences across the resistor, inductor, and capacitor
related to the potential difference across the ac source?
31.29 . In an L-R-C series circuit, and

When the ac source operates at the resonance
frequency of the circuit, the current amplitude is 0.500 A. (a) What
is the voltage amplitude of the source? (b) What is the amplitude
of the voltage across the resistor, across the inductor, and across the
capacitor? (c) What is the average power supplied by the source?
31.30 . An L-R-C series circuit consists of a source with voltage
amplitude 120 V and angular frequency a resistor with

, an inductor with and a capacitor with
capacitance (a) For what value of will the current amplitude
in the circuit be a maximum? (b) When has the value calculated
in part (a), what is the amplitude of the voltage across the inductor?
31.31 . In an L-R-C series circuit, and

The source has voltage amplitude 
and a frequency equal to the resonance frequency of the circuit. 
(a) What is the power factor? (b) What is the average power deliv-
ered by the source? (c) The capacitor is replaced by one with 

and the source frequency is adjusted to the new resonance
value. Then what is the average power delivered by the source?
31.32 . In an L-R-C series circuit, and

(a) What is the resonance angular frequency of
the circuit? (b) The capacitor can withstand a peak voltage of 550 V.
If the voltage source operates at the resonance frequency, what
maximum voltage amplitude can it have if the maximum capacitor
voltage is not exceeded?
31.33 . A series circuit consists of an ac source of variable fre-
quency, a resistor, a capacitor, and a 4.50-mH
inductor. Find the impedance of this circuit when the angular fre-
quency of the ac source is adjusted to (a) the resonance angular
frequency; (b) twice the resonance angular frequency; (c) half the
resonance angular frequency.
31.34 .. In an L-R-C series circuit, and 

The voltage amplitude of the source is 120 V. (a) What is
the resonance angular frequency of the circuit? (b) When the
source operates at the resonance angular frequency, the current
amplitude in the circuit is 1.70 A. What is the resistance of the
resistor? (c) At the resonance angular frequency, what are the peak
voltages across the inductor, the capacitor, and the resistor?

R

4.00 mF.
C =L = 0.280 H

1.25-mF115-Æ

C = 0.0120 mF.
L = 0.350 H,R = 400 Æ,

0.0360 mF
C =

V = 150 VC = 0.0180 mF.
L = 0.750 H,R = 150 Æ,

C
CC.

L = 9.00 H,R = 400 Æ
50.0 rad>s,

C = 6.00 * 10-8 F.
L = 0.400 H,R = 300 Æ,

12.5-mF
175-Æ

400 rad>s?

5.00-mF
200-Æ

R = 300 Æ
200 Æ
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Section 31.6 Transformers
31.35 . A Step-Down Transformer. A transformer connected
to a 120-V (rms) ac line is to supply 12.0 V (rms) to a portable
electronic device. The load resistance in the secondary is 
(a) What should the ratio of primary to secondary turns of the
transformer be? (b) What rms current must the secondary supply?
(c) What average power is delivered to the load? (d) What resist-
ance connected directly across the 120-V line would draw the
same power as the transformer? Show that this is equal to 
times the square of the ratio of primary to secondary turns.
31.36 . A Step-Up Transformer. A transformer connected to a
120-V (rms) ac line is to supply 13,000 V (rms) for a neon sign. To
reduce shock hazard, a fuse is to be inserted in the primary circuit;
the fuse is to blow when the rms current in the secondary circuit
exceeds 8.50 mA. (a) What is the ratio of secondary to primary
turns of the transformer? (b) What power must be supplied to the
transformer when the rms secondary current is 8.50 mA? (c) What
current rating should the fuse in the primary circuit have?
31.37 . Off to Europe! You plan to take your hair dryer to
Europe, where the electrical outlets put out 240 V instead of the
120 V seen in the United States. The dryer puts out 1600 W at 120 V.
(a) What could you do to operate your dryer via the 240-V line in
Europe? (b) What current will your dryer draw from a European
outlet? (c) What resistance will your dryer appear to have when
operated at 240 V?

PROBLEMS
31.38 .. Figure 31.12a shows the crossover network in a loud-
speaker system. One branch consists of a capacitor and a resistor

in series (the tweeter). This branch is in parallel with a second
branch (the woofer) that consists of an inductor and a resistor 
in series. The same source voltage with angular frequency is
applied across each parallel branch. (a) What is the impedance of
the tweeter branch? (b) What is the impedance of the woofer
branch? (c) Explain why the currents in the two branches are equal
when the impedances of the branches are equal. (d) Derive an
expression for the frequency that corresponds to the crossover
point in Fig. 31.12b.
31.39 . A coil has a resistance of At a frequency of 80.0 Hz
the voltage across the coil leads the current in it by Determine
the inductance of the coil.
31.40 .. Five infinite-impedance voltmeters, calibrated to read
rms values, are connected as shown in Fig. P31.40. Let 

and What is the
reading of each voltmeter if (a) and (b) 
1000 rad>s?

v =v = 200 rad>s
V = 30.0 V.C = 6.00 mF,L = 0.400 H,200 Æ,

R =

52.3°.
48.0 Æ.

ƒ

v

RL
R

C

5.00 Æ

5.00 Æ.

31.41 .. CP A parallel-plate capacitor having square plates 4.50 cm
on each side and 8.00 mm apart is placed in series with an ac
source of angular frequency 650 rad s and voltage amplitude 22.5 V,
a resistor, and an ideal solenoid that is 9.00 cm long, has a
circular cross section 0.500 cm in diameter, and carries 125 coils
per centimeter. What is the resonance angular frequency of this cir-
cuit? (See Exercise 30.15.)
31.42 .. CP A toroidal solenoid has 2900 closely wound turns,
cross-sectional area , mean radius 9.00 cm, and resist-
ance . The variation of the magnetic field across the
cross section of the solenoid can be neglected. What is the ampli-
tude of the current in the solenoid if it is connected to an ac source
that has voltage amplitude 24.0 V and frequency 365 Hz?
31.43 .. An series circuit has , 
and source voltage amplitude . The source is operated
at the resonance frequency of the circuit. If the voltage across the
capacitor has amplitude 80.0 V, what is the value of R for the resis-
tor in the circuit?
31.44 . A large electromagnetic coil is connected to a 120-Hz ac
source. The coil has resistance and at this source frequency
the coil has inductive reactance (a) What is the inductance
of the coil? (b) What must the rms voltage of the source be if the
coil is to consume an average electrical power of 800 W?
31.45 .. A series circuit has an impedance of and a power
factor of 0.720 at 50.0 Hz. The source voltage lags the current. 
(a) What circuit element, an inductor or a capacitor, should be placed
in series with the circuit to raise its power factor? (b) What size
element will raise the power factor to unity?
31.46 .. An series circuit has . At the fre-
quency of the source, the inductor has reactance and
the capacitor has reactance . The amplitude of the
voltage across the inductor is 450 V. (a) What is the amplitude of
the voltage across the resistor? (b) What is the amplitude of the
voltage across the capacitor? (c) What is the voltage amplitude of
the source? (d) What is the rate at which the source is delivering
electrical energy to the circuit?
31.47 .. In an series circuit,
and The average power consumed in the resistor is
60.0 W. (a) What is the power factor of the circuit? (b) What is the
rms voltage of the source?
31.48 . A circuit consists of a resistor and a capacitor in series
with an ac source that supplies an rms voltage of 240 V. At the fre-
quency of the source the reactance of the capacitor is The
rms current in the circuit is 3.00 A. What is the average power sup-
plied by the source?
31.49 . An L-R-C series circuit consists of a resistor, a

capacitor, a 3.50-mH inductor, and an ac voltage source
of voltage amplitude 60.0 V operating at 1250 Hz. (a) Find the cur-
rent amplitude and the voltage amplitudes across the inductor, the
resistor, and the capacitor. Why can the voltage amplitudes add up
to more than 60.0 V? (b) If the frequency is now doubled, but noth-
ing else is changed, which of the quantities in part (a) will change?
Find the new values for those that do change.
31.50 . At a frequency the reactance of a certain capacitor
equals that of a certain inductor. (a) If the frequency is changed to

what is the ratio of the reactance of the inductor to that
of the capacitor? Which reactance is larger? (b) If the frequency is
changed to what is the ratio of the reactance of the
inductor to that of the capacitor? Which reactance is larger? (c) If
the capacitor and inductor are placed in series with a resistor of
resistance to form an L-R-C series circuit, what will be the reso-
nance angular frequency of the circuit?

R

v3 = v1>3,

v2 = 2v1,

v1

10.0-mF
50.0-Æ

50.0 Æ.

XL = 500 Æ .
XC = 300 Æ,R = 300 Æ,L-R-C

XC = 500 Æ
XL = 900 Æ

R = 300 ÆL-R-C

60.0 Æ

250 Æ.
400 Æ,

V = 56.0 V
L = 0.520 H,C = 4.80 mFL-R-C

R = 2.80 Æ
0.450 cm2

75.0-Æ
>

C
R L

V1 V2 V3

V4

V5

a c d b

Figure P31.40
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31.51 .. A High-Pass Filter.
One application of L-R-C series
circuits is to high-pass or low-
pass filters, which filter out
either the low- or high-frequency
components of a signal. A high-
pass filter is shown in Fig.
P31.51, where the output volt-
age is taken across the L-R combination. (The L-R combination
represents an inductive coil that also has resistance due to the large
length of wire in the coil.) Derive an expression for the
ratio of the output and source voltage amplitudes, as a function of
the angular frequency of the source. Show that when is small,
this ratio is proportional to and thus is small, and show that the
ratio approaches unity in the limit of large frequency.
31.52 .. A Low-Pass Filter. Figure P31.52 shows a low-pass
filter (see Problem 31.51); the output voltage is taken across the
capacitor in an L-R-C series circuit. Derive an expression for

the ratio of the output and source voltage amplitudes, as a
function of the angular frequency of the source. Show that when

is large, this ratio is proportional to and thus is very small,
and show that the ratio approaches unity in the limit of small
frequency.

31.53 ... An L-R-C series circuit is connected to an ac source of
constant voltage amplitude and variable angular frequency 
(a) Show that the current amplitude, as a function of is

(b) Show that the average power dissipated in the resistor is

(c) Show that and are both maximum when , the
resonance frequency of the circuit. (d) Graph as a function of 
for and Com-
pare to the light purple curve in Fig. 31.19. Discuss the behavior of

and in the limits and 
31.54 .. An L-R-C series circuit is connected to an ac source of
constant voltage amplitude and variable angular frequency 
Using the results of Problem 31.53, find an expression for (a) the
amplitude of the voltage across the inductor as a function of 

and (b) the amplitude of the voltage across the capacitor 
as a function of (c) Graph and as functions of 

and (d) Dis-
cuss the behavior of and in the limits and 
For what value of is What is the significance of this
value of 
31.55 .. In an L-R-C series circuit the magnitude of the phase
angle is with the source voltage lagging the current. The
reactance of the capacitor is and the resistor resistance is

The average power delivered by the source is 140 W. Find180 Æ.
350 Æ,

54.0°,

v?
VL = VC?v

vS q .v = 0VCVL

C = 0.50 mF.L = 2.0 H,R = 200 Æ,V = 100 V,
v for VCVLv.

VCv

VL

v.V

vS q .v = 0PI

C = 0.50 mF.L = 2.0 H,R = 200 Æ,V = 100 V,
vP

v = 1>2LCPI

P =
V2R>2

R2 + 1vL - 1>vC22

I =
V

2R2 + 1vL - 1>vC22

v,
v.V

v-2v

v

Vout>Vs,

v

vv

Vout>Vs,

(a) the reactance of the inductor; (b) the rms current; (c) the rms
voltage of the source.
31.56 .. The L-R-C Parallel Circuit. A resistor, inductor, and
capacitor are connected in parallel to an ac source with voltage
amplitude V and angular frequency Let the source voltage be
given by (a) Show that the instantaneous voltages

and at any instant are each equal to and that
where is the current through the source and 

and are the currents through the resistor, the inductor, and the
capacitor, respectively. (b) What are the phases of and 
with respect to Use current phasors to represent and 
In a phasor diagram, show the phases of these four currents with
respect to (c) Use the phasor diagram of part (b) to show that the
current amplitude for the current through the source is given by

(d) Show that the result of part (c) can be

written as with 
31.57 .. Parallel Resonance. The impedance of an L-R-C par-
allel circuit was derived in Problem 31.56. (a) Show that at the res-
onance angular frequency and is a
minimum. (b) Since is a minimum at resonance, is it correct to
say that the power delivered to the resistor is also a minimum at

Explain. (c) At resonance, what is the phase angle of the
source current with respect to the source voltage? How does this
compare to the phase angle for an L-R-C series circuit at reso-
nance? (d) Draw the circuit diagram for an L-R-C parallel circuit.
Arrange the circuit elements in your diagram so that the resistor is
closest to the ac source. Justify the following statement: When the
angular frequency of the source is there is no current
flowing between (i) the part of the circuit that includes the source
and the resistor and (ii) the part that includes the inductor and the
capacitor, so you could cut the wires connecting these two parts of
the circuit without affecting the currents. (e) Is the statement in
part (d) still valid if we consider that any real inductor or capacitor
also has some resistance of its own? Explain.
31.58 .. A resistor and a capacitor are connected
in parallel to an ac generator that supplies an rms voltage of 220 V
at an angular frequency of Use the results of Problem
31.56. Note that since there is no inductor in the circuit, the 
term is not present in the expression for Find (a) the current
amplitude in the resistor; (b) the current amplitude in the capacitor;
(c) the phase angle of the source current with respect to the source
voltage; (d) the amplitude of the current through the generator. 
(e) Does the source current lag or lead the source voltage?
31.59 .. An L-R-C parallel circuit is connected to an ac source of
constant voltage amplitude and variable angular frequency 
(a) Using the results of Problem 31.56, find expressions for the
amplitudes and of the currents through the resistor, inductor,
and capacitor as functions of (b) Graph and as func-
tions of for and

(c) Discuss the behavior of and in the limits
and Explain why and behave as they do in

these limits. (d) Calculate the resonance frequency (in Hz) of the
circuit, and sketch the phasor diagram at the resonance frequency.
(e) At the resonance frequency, what is the current amplitude
through the source? (f ) At the resonance frequency, what is the
current amplitude through the resistor, through the inductor, and
through the capacitor?
31.60 .. A resistor, a capacitor, and a 0.300-H
inductor are connected in parallel to a voltage source with ampli-
tude 240 V. (a) What is the resonance angular frequency? (b) What
is the maximum current through the source at the resonance

0.100-mF100-Æ

ICILvS q .v = 0
ICILC = 0.50 mF.

L = 2.0 H,R = 200 Æ,V = 100 V,v

ICIL,IR,v.
ICIL,IR,

v.V

Z.
1>vL

360 rad>s.

6.00-mF400-Æ

v = v0,

v = v0?

I
IIC = IL,v0 = 1>2LC,

21>R2 + 1vC - 1>vL22 .1>Z =I = V>Z,

I = 2I 2
R + 1IC - IL2

2.
iI

v.

iC.iL,iR,i,v?
iCiL,iR,

iCiL,
iR,ii = iR + iL + iC,

vvCvL,vR,
v = Vcosvt.

v.
Vs

R L

C

Vout

Figure P31.51

Vs

R L
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Figure P31.52
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frequency? (c) Find the maximum current in the resistor at reso-
nance. (d) What is the maximum current in the inductor at reso-
nance? (e) What is the maximum current in the branch containing
the capacitor at resonance? (f) Find the maximum energy stored in
the inductor and in the capacitor at resonance.
31.61 . You want to double the resonance angular frequency of
an L-R-C series circuit by changing only the pertinent circuit ele-
ments all by the same factor. (a) Which ones should you change?
(b) By what factor should you change them?
31.62 ... An L-R-C series circuit consists of a capacitor,
a inductor, and a resistor connected across an ac
source of voltage amplitude 15.0 V having variable frequency. 
(a) Under what circumstances is the average power delivered to the
circuit equal to (b) Under the conditions of part (a), what
is the average power delivered to each circuit element and what is
the maximum current through the capacitor?
31.63 .. In an L-R-C series circuit, the source has a voltage
amplitude of 120 V, and the reactance of the capac-
itor is The voltage amplitude across the capacitor is 360 V.
(a) What is the current amplitude in the circuit? (b) What is the
impedance? (c) What two values can the reactance of the induc-
tor have? (d) For which of the two values found in part (c) is the
angular frequency less than the resonance angular frequency?
Explain.
31.64 . An L-R-C series circuit has 

and (a) For calculate
and Using a single set of axes, graph and

as functions of time. Include two cycles of on your graph. 
(b) Repeat part (a) for (c) Repeat part (a) for

31.65 .. CALC The current in a
certain circuit varies with time as
shown in Fig. P31.65. Find the
average current and the rms cur-
rent in terms of 
31.66 .. The Resonance Width.
Consider an L-R-C series circuit
with a 1.80-H inductor, a 
capacitor, and a resistor. The source has terminal rms volt-
age and variable angular frequency (a) What is
the resonance angular frequency of the circuit? (b) What is the
rms current through the circuit at resonance, (c) For what
two values of the angular frequency, and is the rms current
half the resonance value? (d) The quantity defines the
resonance width. Calculate and the resonance width for

and Describe how your results com-
pare to the discussion in Section 31.5.
31.67 .. An inductor, a capacitor, and a resistor are all connected
in series across an ac source. If the resistance, inductance, and
capacitance are all doubled, by what factor does each of the follow-
ing quantities change? Indicate whether they increase or decrease:
(a) the resonance angular frequency; (b) the inductive reactance; (c)
the capacitive reactance. (d) Does the impedance double?
31.68 . A resistance capacitance and inductance are con-
nected in series to a voltage source with amplitude and variable
angular frequency If the resonance angular frequency,
find (a) the maximum current in the resistor; (b) the maximum
voltage across the capacitor; (c) the maximum voltage across the
inductor; (d) the maximum energy stored in the capacitor; (e) the
maximum energy stored in the inductor. Give your answers in
terms of and 
31.69 . Repeat Problem 31.68 for the case v = v0>2.

V.L,C,R,

v = v0,v.
V

LC,R,

3.00 Æ.30.0 Æ,R = 300 Æ,
Irms-0

ƒv1 - v2 ƒ
v2,v1

Irms-0?
v0

v.60.0 VVrms =
300-Æ

0.900-mF

I0.

v = 1250 rad>s.
v = 1000 rad>s.

vvC

vL,vR,v,f.VC,VL,VR,
v = 800 rad>s,V = 100 V.C = 0.500 mF,

L = 2.00 H,R = 500 Æ,

480 Æ.
R = 80.0 Æ,

1
2VrmsIrms?

75.0-Æ5.00-mH
2.50-mF

31.70 . Repeat Problem 31.68 for the case 
31.71 . A transformer consists of 275 primary windings and 834
secondary windings. If the potential difference across the primary
coil is 25.0 V, (a) what is the voltage across the secondary coil, and
(b) what is the effective load resistance of the secondary coil if it is
connected across a resistor?
31.72 .. An L-R-C series circuit draws 220 W from a 120-V
(rms), 50.0-Hz ac line. The power factor is 0.560, and the source
voltage leads the current. (a) What is the net resistance of the cir-
cuit? (b) Find the capacitance of the series capacitor that will result
in a power factor of unity when it is added to the original circuit.
(c) What power will then be drawn from the supply line?
31.73 .. CALC In an L-R-C series circuit the current is given by

The voltage amplitudes for the resistor, inductor, and
capacitor are and (a) Show that the instantaneous
power into the resistor is 
What does this expression give for the average power into the
resistor? (b) Show that the instantaneous power into the inductor is

What does this expres-
sion give for the average power into the inductor? (c) Show 
that the instantaneous power into the capacitor is 

What does this expression give
for the average power into the capacitor? (d) The instantaneous
power delivered by the source is shown in Section 31.4 to be

Show that 
equals at each instant of time.

CHALLENGE PROBLEMS
31.74 ... CALC (a) At what angular frequency is the voltage
amplitude across the resistor in an L-R-C series circuit at maxi-
mum value? (b) At what angular frequency is the voltage ampli-
tude across the inductor at maximum value? (c) At what angular
frequency is the voltage amplitude across the capacitor at maximum
value? (You may want to refer to the results of Problem 31.53.)
31.75 ... Complex Numbers in a Circuit. The voltage across
a circuit element in an ac circuit is not necessarily in phase with
the current through that circuit
element. Therefore the voltage
amplitudes across the circuit
elements in a branch in an ac
circuit do not add algebraically.
A method that is commonly
employed to simplify the analy-
sis of an ac circuit driven by a
sinusoidal source is to represent
the impedance as a complex number. The resistance is taken to
be the real part of the impedance, and the reactance 
is taken to be the imaginary part. Thus, for a branch containing a
resistor, inductor, and capacitor in series, the complex impedance
is where If the voltage amplitude across
the branch is we define a complex current amplitude by

The actual current amplitude is the absolute
value of the complex current amplitude; that is, 
The phase angle of the current with respect to the source voltage
is given by The voltage amplitudes

and across the resistance, inductance, and
capacitance, respectively, are found by multiplying by 
and respectively. From the complex representation for the
voltage amplitudes, the voltage across a branch is just the algebraic
sum of the voltages across each circuit element: 

The actual value of any current amplitude or volt-
age amplitude is the absolute value of the corresponding complex
VL-cpx + VC-cpx.

Vcpx = VR-cpx +

- iXC,
iXL,R,Icpx

VC-cpxVL-cpx,VR-cpx,
Im1Icpx2>Re1Icpx2.tanf =

f

I = 1Icpx*Icpx2
1>2.

Icpx = Vcpx>Zcpx.
Vcpx,

i2 = -1.Zcpx = R + iX,

X = XL - XC

RZ

ppC

pR + pL +p = VI cosvt1cosfcosvt - sinf sinvt2.

VC I sinvtcosvt = 1
2 VC I sin2vt.

pC =

pL = -VLI sinvt cosvt = -1
2 VLI sin 2vt.

pR = VR Icos2vt = 1
2 VRI11 + cos 2vt).

VC .VL ,VR ,
i = Icosvt.

R

125-Æ

v = 2v0.

t

i

I0

2I0

O
2tt

Figure P31.65

V 5 200 V
v 5 1000 rad/s

R 5 400 V

L 5 0.500 H

C 5
1.25 mF

Figure P31.75
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quantity. Consider the L-R-C series circuit shown in Fig. P31.75. The
values of the circuit elements, the source voltage amplitude, and the
source angular frequency are as shown. Use the phasor diagram tech-
niques presented in Section 31.1 to solve for (a) the current amplitude
and (b) the phase angle of the current with respect to the source
voltage. (Note that this angle is the negative of the phase angle
defined in Fig. 31.13.) Now analyze the same circuit using the
complex-number approach. (c) Determine the complex impedance
of the circuit, Take the absolute value to obtain the actualZ,Zcpx.

f

impedance of the circuit. (d) Take the voltage amplitude of the
source, to be real, and find the complex current amplitude 
Find the actual current amplitude by taking the absolute value of 
(e) Find the phase angle of the current with respect to the source
voltage by using the real and imaginary parts of as explained
above. (f) Find the complex representations of the voltages across the
resistance, the inductance, and the capacitance. (g) Adding the
answers found in part (f), verify that the sum of these complex num-
bers is real and equal to 200 V, the voltage of the source.

Icpx,
f

Icpx.
Icpx.Vcpx,

Chapter Opening Question ?
Yes. In fact, the radio simultaneously detects transmissions at all
frequencies. However, a radio is an L-R-C series circuit, and at any
given time it is tuned to have a resonance at just one frequency.
Hence the response of the radio to that frequency is much greater
than its response to any other frequency, which is why you hear
only one broadcasting station through the radio’s speaker. (You can
sometimes hear a second station if its frequency is sufficiently
close to the tuned frequency.)

Test Your Understanding Questions
31.1 Answers: (a) D; (b) A; (c) B; (d) C For each phasor, the
actual current is represented by the projection of that phasor onto
the horizontal axis. The phasors all rotate counterclockwise around
the origin with angular speed so at the instant shown the projec-
tion of phasor A is positive but trending toward zero; the projection
of phasor B is negative and becoming more negative; the projec-
tion of phasor C is negative but trending toward zero; and the pro-
jection of phasor D is positive and becoming more positive.
31.2 Answers: (a) (iii); (b) (ii); (c) (i) For a resistor, so

The voltage amplitude and resistance do not
change with frequency, so the current amplitude remains con-
stant. For an inductor, so The volt-
age amplitude and inductance are constant, so the current
amplitude decreases as the frequency increases. For a capacitor,

so The voltage amplitude and
capacitance are constant, so the current amplitude increases as
the frequency increases.
31.3 Answer: (iv), (ii), (i), (iii) For the circuit in Example 31.4,

If the capacitor and induc-
tor are removed so that only the ac source and resistor remain, the
circuit is like that shown in Fig. 31.7a; then 

If the resistor and capacitor are removed so
that only the ac source and inductor remain, the circuit is like that
1300 Æ2 = 0.17 A.

I = V>R = 150 V2>

I = V>Z = 150 V2>1500 Æ2 = 0.10 A.

IC
VCI = VCvC.VC = IXC = I>vC,

I
LVL

I = VL>vL.VL = IXL = IvL,
I

RVRI = VR>R.
VR = IR,

v,

shown in Fig. 31.8a; then 
Finally, if the resistor and inductor are removed so that

only the ac source and capacitor remain, the circuit is like that
shown in Fig. 31.9a; then 
31.4 Answers: (a) (v); (b) (iv) The energy cannot be extracted
from the resistor, since energy is dissipated in a resistor and cannot
be recovered. Instead, the energy must be extracted from either the
inductor (which stores magnetic-field energy) or the capacitor
(which stores electric-field energy). Positive power means that
energy is being transferred from the ac source to the circuit, so
negative power implies that energy is being transferred back into
the source.
31.5 Answer: (ii) The capacitance increases if the plate spacing
is decreased (see Section 24.1). Hence the resonance frequency

decreases.
31.6 Answer: (ii), (iv), (i), (iii) From Eq. (31.35) the turns ratio is

so the number of turns in the secondary is
Hence for the four cases we have (i) 

turns; (ii) 
turns; (iii) 

turns; and (iv) turns. Note
that (i), (iii), and (iv) are step-down transformers with fewer turns
in the secondary than in the primary, while (ii) is a step-up trans-
former with more turns in the secondary than in the primary.

Bridging Problem
Answers: (a) rad s and rad s 

(b) At rad s: ,
, , , 
.

At rad s: ,
, , ,
.VC = 16.5 V

VL = 63.2 VVR = 16.5 VI =  0.132 A
Vsource = 49.5 V>3.19 * 105

VC = 63.2 V
VL = 16.5 VVR = 16.5 VI = 0.132 A

Vsource = 49.5 V>8.35 * 104
>3.19 * 105>8.35 * 104

N2 = 1100021120 V2>1240 V2 = 500
N2 = 11000216.0 V2>1240 V2 = 251120 V2 = 2000

N2 = 1100021240 V2>11000216.0 V2>1120 V2 = 50
N2 =N2 = N1V2>V1.

N2>N1 = V2>V1,

ƒ0 = v0>2p = 1>2p2LC

C

150 V2>1200 Æ2 = 0.25 A.I = V>XC =

0.083 A.
150 V2>1600 Æ2 =I = V>XL =

Answers
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LEARNING GOALS

By studying this chapter, you will

learn:

• Why there are both electric and

magnetic fields in a light wave.

• How the speed of light is related to

the fundamental constants of

electricity and magnetism.

• How to describe the propagation of

a sinusoidal electromagnetic wave.

• What determines the amount of

power carried by an electromagnetic

wave.

• How to describe standing electro-

magnetic waves.

ELECTROMAGNETIC
WAVES

What is light? This question has been asked by humans for centuries,
but there was no answer until electricity and magnetism were unified
into electromagnetism, as described by Maxwell’s equations. These

equations show that a time-varying magnetic field acts as a source of electric
field and that a time-varying electric field acts as a source of magnetic field.
These and fields can sustain each other, forming an electromagnetic wave
that propagates through space. Visible light emitted by the glowing filament of a
light bulb is one example of an electromagnetic wave; other kinds of electromag-
netic waves are produced by TV and radio stations, x-ray machines, and radioac-
tive nuclei.

In this chapter we’ll use Maxwell’s equations as the theoretical basis for
understanding electromagnetic waves. We’ll find that these waves carry both
energy and momentum. In sinusoidal electromagnetic waves, the and fields are
sinusoidal functions of time and position, with a definite frequency and wave-
length. Visible light, radio, x rays, and other types of electromagnetic waves dif-
fer only in their frequency and wavelength. Our study of optics in the following
chapters will be based in part on the electromagnetic nature of light.

Unlike waves on a string or sound waves in a fluid, electromagnetic waves do
not require a material medium; the light that you see coming from the stars at
night has traveled without difficulty across tens or hundreds of light-years of
(nearly) empty space. Nonetheless, electromagnetic waves and mechanical waves
have much in common and are described in much the same language. Before read-
ing further in this chapter, you should review the properties of mechanical waves
as discussed in Chapters 15 and 16.

B
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E
S

B
S

E
S

? Metal objects reflect not only visible light but also radio waves. What aspect of
metals makes them so reflective?



32.1 Maxwell’s Equations 
and Electromagnetic Waves

In the last several chapters we studied various aspects of electric and magnetic
fields. We learned that when the fields don’t vary with time, such as an electric
field produced by charges at rest or the magnetic field of a steady current, we can
analyze the electric and magnetic fields independently without considering inter-
actions between them. But when the fields vary with time, they are no longer
independent. Faraday’s law (see Section 29.2) tells us that a time-varying mag-
netic field acts as a source of electric field, as shown by induced emfs in inductors
and transformers. Ampere’s law, including the displacement current discovered
by Maxwell (see Section 29.7), shows that a time-varying electric field acts as a
source of magnetic field. This mutual interaction between the two fields is sum-
marized in Maxwell’s equations, presented in Section 29.7.

Thus, when either an electric or a magnetic field is changing with time, a field
of the other kind is induced in adjacent regions of space. We are led (as Maxwell
was) to consider the possibility of an electromagnetic disturbance, consisting of
time-varying electric and magnetic fields, that can propagate through space from
one region to another, even when there is no matter in the intervening region.
Such a disturbance, if it exists, will have the properties of a wave, and an appro-
priate term is electromagnetic wave.

Such waves do exist; radio and television transmission, light, x rays, and many
other kinds of radiation are examples of electromagnetic waves. Our goal in this
chapter is to see how such waves are explained by the principles of electromagnet-
ism that we have studied thus far and to examine the properties of these waves.

Electricity, Magnetism, and Light
As often happens in the development of science, the theoretical understanding of
electromagnetic waves evolved along a considerably more devious path than the
one just outlined. In the early days of electromagnetic theory (the early 19th cen-
tury), two different units of electric charge were used: one for electrostatics and
the other for magnetic phenomena involving currents. In the system of units used
at that time, these two units of charge had different physical dimensions. Their
ratio had units of velocity, and measurements showed that the ratio had a numer-
ical value that was precisely equal to the speed of light, At the
time, physicists regarded this as an extraordinary coincidence and had no idea
how to explain it.

In searching to understand this result, Maxwell (Fig. 32.1) proved in 1865 that
an electromagnetic disturbance should propagate in free space with a speed equal
to that of light and hence that light waves were likely to be electromagnetic in
nature. At the same time, he discovered that the basic principles of electromag-
netism can be expressed in terms of the four equations that we now call
Maxwell’s equations, which we discussed in Section 29.7. These four equations
are (1) Gauss’s law for electric fields; (2) Gauss’s law for magnetic fields, show-
ing the absence of magnetic monopoles; (3) Ampere’s law, including displace-
ment current; and (4) Faraday’s law:

(29.18)

(29.19)

(29.20)

(29.21)CE
S # d l

S
= -

d£B

dt
  (Faraday’s law)

CB
S # d l

S
= m0a iC + P0

d£E

dt
b

encl
  (Ampere’s law)

CB
S # dA

S
= 0  (Gauss’s law for magnetism)

CE
S # dA

S
=

Qencl

P0
  (Gauss’s law)

3.00 * 108 m>s.
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32.1 James Clerk Maxwell (1831–1879)
was the first person to truly understand the
fundamental nature of light. He also made
major contributions to thermodynamics,
optics, astronomy, and color photography.
Albert Einstein described Maxwell’s
accomplishments as “the most profound
and the most fruitful that physics has expe-
rienced since the time of Newton.”
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These equations apply to electric and magnetic fields in vacuum. If a material
is present, the permittivity and permeability of free space are replaced by
the permittivity and permeability of the material. If the values of and are
different at different points in the regions of integration, then and have to be
transferred to the left sides of Eqs. (29.18) and (29.20), respectively, and placed
inside the integrals. The in Eq. (29.20) also has to be included in the integral
that gives 

According to Maxwell’s equations, a point charge at rest produces a static 
field but no field; a point charge moving with a constant velocity (see Section
28.1) produces both and fields. Maxwell’s equations can also be used to show
that in order for a point charge to produce electromagnetic waves, the charge must
accelerate. In fact, it’s a general result of Maxwell’s equations that every acceler-
ated charge radiates electromagnetic energy (Fig. 32.2).

Generating Electromagnetic Radiation
One way in which a point charge can be made to emit electromagnetic waves is
by making it oscillate in simple harmonic motion, so that it has an acceleration at
almost every instant (the exception is when the charge is passing through its equi-
librium position). Figure 32.3 shows some of the electric field lines produced by
such an oscillating point charge. Field lines are not material objects, but you may
nonetheless find it helpful to think of them as behaving somewhat like strings
that extend from the point charge off to infinity. Oscillating the charge up and
down makes waves that propagate outward from the charge along these “strings.”
Note that the charge does not emit waves equally in all directions; the waves are
strongest at to the axis of motion of the charge, while there are no waves
along this axis. This is just what the “string” picture would lead you to conclude.
There is also a magnetic disturbance that spreads outward from the charge; this is
not shown in Fig. 32.3. Because the electric and magnetic disturbances spread or
radiate away from the source, the name electromagnetic radiation is used inter-
changeably with the phrase “electromagnetic waves.”

Electromagnetic waves with macroscopic wavelengths were first produced in
the laboratory in 1887 by the German physicist Heinrich Hertz. As a source of
waves, he used charges oscillating in L-C circuits of the sort discussed in Section
30.5; he detected the resulting electromagnetic waves with other circuits tuned to
the same frequency. Hertz also produced electromagnetic standing waves and
measured the distance between adjacent nodes (one half-wavelength) to deter-
mine the wavelength. Knowing the resonant frequency of his circuits, he then
found the speed of the waves from the wavelength–frequency relationship

He established that their speed was the same as that of light; this verified
Maxwell’s theoretical prediction directly. The SI unit of frequency is named in
honor of Hertz: One hertz (1 Hz) equals one cycle per second.

v = lƒ.

90°
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32.2 (Top) Every mobile phone, wire-
less modem, or radio transmitter emits
signals in the form of electromagnetic
waves that are made by accelerating
charges. (Bottom) Power lines carry a
strong alternating current, which means
that a substantial amount of charge is
accelerating back and forth and generating
electromagnetic waves. These waves can
produce a buzzing sound from your car
radio when you drive near the lines.
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32.3 Electric field lines of a point charge oscillating in simple harmonic motion, seen at five instants during an oscillation period T.
The charge’s trajectory is in the plane of the drawings. At the point charge is at its maximum upward displacement. The arrow
shows one “kink” in the lines of as it propagates outward from the point charge. The magnetic field (not shown) comprises circles
that lie in planes perpendicular to these figures and concentric with the axis of oscillation.

E
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The modern value of the speed of light, which we denote by the symbol is
(Recall from Section 1.3 that this value is the basis of our stan-

dard of length: One meter is defined to be the distance that light travels in
second.) For our purposes, is sufficiently

accurate.
The possible use of electromagnetic waves for long-distance communication

does not seem to have occurred to Hertz. It was left to Marconi and others to make
radio communication a familiar household experience. In a radio transmitter, elec-
tric charges are made to oscillate along the length of the conducting antenna, pro-
ducing oscillating field disturbances like those shown in Fig. 32.3. Since many
charges oscillate together in the antenna, the disturbances are much stronger than
those of a single oscillating charge and can be detected at a much greater dis-
tance. In a radio receiver the antenna is also a conductor; the fields of the wave
emanating from a distant transmitter exert forces on free charges within the
receiver antenna, producing an oscillating current that is detected and amplified
by the receiver circuitry.

For the remainder of this chapter our concern will be with electromagnetic
waves themselves, not with the rather complex problem of how they are produced.

The Electromagnetic Spectrum
The electromagnetic spectrum encompasses electromagnetic waves of all frequen-
cies and wavelengths. Figure 32.4 shows approximate wavelength and frequency
ranges for the most commonly encountered portion of the spectrum. Despite vast
differences in their uses and means of production, these are all electromagnetic
waves with the same propagation speed (in vacuum) Elec-
tromagnetic waves may differ in frequency and wavelength but the relation-
ship in vacuum holds for each.

We can detect only a very small segment of this spectrum directly through our
sense of sight. We call this range visible light. Its wavelengths range from about
380 to 750 nm , with corresponding frequencies from
about 790 to 400 THz . Different parts of the visible spec-
trum evoke in humans the sensations of different colors. Table 32.1 gives the
approximate wavelengths for colors in the visible spectrum.

Ordinary white light includes all visible wavelengths. However, by using spe-
cial sources or filters, we can select a narrow band of wavelengths within a range
of a few nm. Such light is approximately monochromatic (single-color) light.
Absolutely monochromatic light with only a single wavelength is an unattainable
idealization. When we use the expression “monochromatic light with 

with reference to a laboratory experiment, we really mean a small band550 nm”
l =

17.9 to 4.0 * 1014 Hz2
1380 to 750 * 10-9 m2

c = lƒ
l,ƒ

c = 299,792,458 m>s.

c = 3.00 * 108 m>s1>299,792,458

299,792,458 m>s.
c,
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Radio,
TV
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Microwave

Infrared

Ultraviolet

X rays

Visible light

700 nm 650 600 550 500 450 400 nm

VIOLETBLUEGREENYELLOWORANGERED

Frequencies in Hz

Wavelengths in m

Gamma rays

32.4 The electromagnetic spectrum. The frequencies and wavelengths found in nature extend over such a wide range that we have to
use a logarithmic scale to show all important bands. The boundaries between bands are somewhat arbitrary.

Table 32.1 Wavelengths of 
Visible Light

380–450 nm Violet
450–495 nm Blue
495–570 nm Green
570–590 nm Yellow
590–620 nm Orange
620–750 nm Red
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of wavelengths around 550 nm. Light from a laser is much more nearly mono-
chromatic than is light obtainable in any other way.

Invisible forms of electromagnetic radiation are no less important than visible
light. Our system of global communication, for example, depends on radio waves:
AM radio uses waves with frequencies from to 
while FM radio broadcasts are at frequencies from to 

(Television broadcasts use frequencies that bracket the FM band.)
Microwaves are also used for communication (for example, by cellular phones
and wireless networks) and for weather radar (at frequencies near 
Many cameras have a device that emits a beam of infrared radiation; by analyz-
ing the properties of the infrared radiation reflected from the subject, the camera
determines the distance to the subject and automatically adjusts the focus. X rays
are able to penetrate through flesh, which makes them invaluable in dentistry and
medicine. Gamma rays, the shortest-wavelength type of electromagnetic radia-
tion, are used in medicine to destroy cancer cells.

3 * 109 Hz).

108 Hz.
1.08 *8.8 * 107 Hz

1.6 * 106 Hz,5.4 * 105 Hz

Test Your Understanding of Section 32.1 (a) Is it possible to have a
purely electric wave propagate through empty space—-that is, a wave made up of
an electric field but no magnetic field? (b) What about a purely magnetic wave,
with a magnetic field but no electric field? ❙

32.2 Plane Electromagnetic Waves 
and the Speed of Light

We are now ready to develop the basic ideas of electromagnetic waves and their
relationship to the principles of electromagnetism. Our procedure will be to pos-
tulate a simple field configuration that has wavelike behavior. We’ll assume an
electric field that has only a and a magnetic field with only a

and we’ll assume that both fields move together in the 
with a speed that is initially unknown. (As we go along, it will become clear
why we choose and to be perpendicular to the direction of propagation as
well as to each other.) Then we will test whether these fields are physically possi-
ble by asking whether they are consistent with Maxwell’s equations, particularly
Ampere’s law and Faraday’s law. We’ll find that the answer is yes, provided that

has a particular value. We’ll also show that the wave equation, which we
encountered during our study of mechanical waves in Chapter 15, can be derived
from Maxwell’s equations.

A Simple Plane Electromagnetic Wave
Using an system (Fig. 32.5), we imagine that all space is divided
into two regions by a plane perpendicular to the (parallel to the 
At every point to the left of this plane there are a uniform electric field in the

and a uniform magnetic field in the as shown. Fur-
thermore, we suppose that the boundary plane, which we call the wave front,
moves to the right in the with a constant speed the value of which
we’ll leave undetermined for now. Thus the and fields travel to the right into
previously field-free regions with a definite speed. This is a rudimentary electro-
magnetic wave. A wave such as this, in which at any instant the fields are uniform
over any plane perpendicular to the direction of propagation, is called a plane
wave. In the case shown in Fig. 32.5, the fields are zero for planes to the right of
the wave front and have the same values on all planes to the left of the wave
front; later we will consider more complex plane waves.

We won’t concern ourselves with the problem of actually producing such a
field configuration. Instead, we simply ask whether it is consistent with the laws
of electromagnetism—-that is, with Maxwell’s equations. We’ll consider each of
these four equations in turn.
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32.5 An electromagnetic wave front.
The plane representing the wave front
moves to the right (in the positive 
x-direction) with speed c.

Application Ultraviolet Vision
Many insects and birds can see ultraviolet
wavelengths that humans cannot. As an exam-
ple, the left-hand photo shows how black-eyed
Susans (genus Rudbeckia) look to us. The
right-hand photo (in false color), taken with an
ultraviolet-sensitive camera, shows how these
same flowers appear to the bees that pollinate
them. Note the prominent central spot that is
invisible to humans. Similarly, many birds with
ultraviolet vision—-including budgies, parrots,
and peacocks—-have ultraviolet patterns on
their bodies that make them even more vivid
to each other than they appear to us.



Let us first verify that our wave satisfies Maxwell’s first and second
equations—-that is, Gauss’s laws for electric and magnetic fields. To do this, we
take as our Gaussian surface a rectangular box with sides parallel to the 
and coordinate planes (Fig. 32.6). The box encloses no electric charge. The
total electric flux and magnetic flux through the box are both zero, even if part
of the box is in the region where This would not be the case if 
or had an parallel to the direction of propagation; if the wave
front were inside the box, there would be flux through the left-hand side of the
box (at ) but not the right-hand side (at ). Thus to satisfy Maxwell’s
first and second equations, the electric and magnetic fields must be perpendicu-
lar to the direction of propagation; that is, the wave must be transverse.

The next of Maxwell’s equations to be considered is Faraday’s law:

(32.1)

To test whether our wave satisfies Faraday’s law, we apply this law to a rectangle
that is parallel to the (Fig. 32.7a). As shown in Fig. 32.7b, a cross

section in the this rectangle has height and width At the time
shown, the wave front has progressed partway through the rectangle, and is
zero along the side In applying Faraday’s law we take the vector area of
rectangle to be in the With this choice the right-hand rule
requires that we integrate counterclockwise around the rectangle. At every
point on side is zero. At every point on sides and he, is either zero or
perpendicular to Only side gh contributes to the integral. On this side, and

are opposite, and we obtain

(32.2)

Hence, the left-hand side of Eq. (32.1) is nonzero.
To satisfy Faraday’s law, Eq. (32.1), there must be a component of in the

(perpendicular to so that there can be a nonzero magnetic flux 
through the rectangle and a nonzero derivative Indeed, in our wave,

has only a We have assumed that this component is in the positive
let’s see whether this assumption is consistent with Faraday’s law.

During a time interval the wave front moves a distance to the right in 
Fig. 32.7b, sweeping out an area of the rectangle During this interval
the magnetic flux through the rectangle increases by 
so the rate of change of magnetic flux is

(32.3)

Now we substitute Eqs. (32.2) and (32.3) into Faraday’s law, Eq. (32.1); we get

(32.4)

This shows that our wave is consistent with Faraday’s law only if the wave speed 
and the magnitudes of the perpendicular vectors and are related as in Eq. (32.4).
Note that if we had assumed that was in the negative there would
have been an additional minus sign in Eq. (32.4); since and are all positive
magnitudes, no solution would then have been possible. Furthermore, any com-
ponent of in the (parallel to would not contribute to the changing
magnetic flux through the rectangle (which is parallel to the 
and so would not be part of the wave.
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The electric field is the same on the top and
bottom sides of the Gaussian surface, so the
total electric flux through the surface is zero.

The magnetic field is the same on the left and
right sides of the Gaussian surface, so the total
magnetic flux through the surface is zero.
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32.6 Gaussian surface for a transverse
plane electromagnetic wave.
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32.7 (a) Applying Faraday’s law to a
plane wave. (b) In a time dt, the magnetic
flux through the rectangle in the xy-plane
increases by an amount This increase
equals the flux through the shaded rectan-
gle with area ac dt; that is, 
Thus d£B/dt = Bac.

d£B = Bac dt.
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Finally, we carry out a similar calculation using Ampere’s law, the remaining
member of Maxwell’s equations. There is no conduction current so
Ampere’s law is

(32.5)

To check whether our wave is consistent with Ampere’s law, we move our rec-
tangle so that it lies in the as shown in Fig. 32.8, and we again look at
the situation at a time when the wave front has traveled partway through the rec-
tangle. We take the vector area in the and so the right-hand rule
requires that we integrate counterclockwise around the rectangle. The 
field is zero at every point along side and at each point on sides and he it is
either zero or perpendicular to Only side gh, where and are parallel,
contributes to the integral, and we find

(32.6)

Hence, the left-hand side of Ampere’s law, Eq. (32.5), is nonzero; the right-hand
side must be nonzero as well. Thus must have a (perpendicular to

so that the electric flux through the rectangle and the time derivative
can be nonzero. We come to the same conclusion that we inferred from

Faraday’s law: In an electromagnetic wave, and must be mutually perpendi-
cular.

In a time interval the electric flux through the rectangle increases by
Since we chose to be in the this flux change is

positive; the rate of change of electric field is

(32.7)

Substituting Eqs. (32.6) and (32.7) into Ampere’s law, Eq. (32.5), we find

(32.8)

Thus our assumed wave obeys Ampere’s law only if and are related as in
Eq. (32.8).

Our electromagnetic wave must obey both Ampere’s law and Faraday’s law,
so Eqs. (32.4) and  (32.8) must both be satisfied. This can happen only if

or

(32.9)

Inserting the numerical values of these quantities, we find

Our assumed wave is consistent with all of Maxwell’s equations, provided that the
wave front moves with the speed given above, which you should recognize as the
speed of light! Note that the exact value of is defined to be 
the modern value of is defined to agree with this when used in Eq. (32.9) (see
Section 21.3).
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32.8 (a) Applying Ampere’s law to a
plane wave. (Compare to Fig. 32.7a.) 
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the rectangle in the xz-plane increases by
an amount This increase equals the
flux through the shaded rectangle with area
ac dt; that is, Thus
d£E/dt = Eac.

d£E = Eac dt.

d£E.



Key Properties of Electromagnetic Waves
We chose a simple wave for our study in order to avoid mathematical complica-
tions, but this special case illustrates several important features of all electromag-
netic waves:

1. The wave is transverse; both and are perpendicular to the direction of
propagation of the wave. The electric and magnetic fields are also perpen-
dicular to each other. The direction of propagation is the direction of the
vector product (Fig. 32.9).

2. There is a definite ratio between the magnitudes of and 
3. The wave travels in vacuum with a definite and unchanging speed.
4. Unlike mechanical waves, which need the oscillating particles of a medium

such as water or air to transmit a wave, electromagnetic waves require no
medium.

We can generalize this discussion to a more realistic situation. Suppose we
have several wave fronts in the form of parallel planes perpendicular to the

all of which are moving to the right with speed Suppose that the and
fields are the same at all points within a single region between two planes,

but that the fields differ from region to region. The overall wave is a plane wave,
but one in which the fields vary in steps along the Such a wave could be
constructed by superposing several of the simple step waves we have just dis-
cussed (shown in Fig. 32.5). This is possible because the and fields obey the
superposition principle in waves just as in static situations: When two waves are
superposed, the total field at each point is the vector sum of the fields of the
individual waves, and similarly for the total field.

We can extend the above development to show that a wave with fields that
vary in steps is also consistent with Ampere’s and Faraday’s laws, provided that
the wave fronts all move with the speed given by Eq. (32.9). In the limit that we
make the individual steps infinitesimally small, we have a wave in which the 
and fields at any instant vary continuously along the The entire field
pattern moves to the right with speed In Section 32.3 we will consider waves in
which and are sinusoidal functions of and Because at each point the
magnitudes of and are related by the periodic variations of the two
fields in any periodic traveling wave must be in phase.

Electromagnetic waves have the property of polarization. In the above dis-
cussion the choice of the for was arbitrary. We could just as well
have specified the for then would have been in the A
wave in which is always parallel to a certain axis is said to be linearly polar-
ized along that axis. More generally, any wave traveling in the can be
represented as a superposition of waves linearly polarized in the and

We will study polarization in greater detail in Chapter 33.

Derivation of the Electromagnetic Wave Equation
Here is an alternative derivation of Eq. (32.9) for the speed of electromagnetic
waves. It is more mathematical than our other treatment, but it includes a deriva-
tion of the wave equation for electromagnetic waves. This part of the section can
be omitted without loss of continuity in the chapter.

During our discussion of mechanical waves in Section 15.3, we showed that a
function that represents the displacement of any point in a mechanical
wave traveling along the must satisfy a differential equation, Eq. (15.12):

(32.10)

This equation is called the wave equation, and is the speed of propagation of
the wave.
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Right-hand rule for an electromagnetic wave:

Point the thumb of your right hand in the
wave’s direction of propagation.

Imagine rotating the E-field vector 90° in
the sense your fingers curl.

That is the direction of the B field.
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32.9 A right-hand rule for electromag-
netic waves relates the directions of and
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To derive the corresponding equation for an electromagnetic wave, we again
consider a plane wave. That is, we assume that at each instant, and are uni-
form over any plane perpendicular to the the direction of propagation. But
now we let and vary continuously as we go along the then each is a
function of and We consider the values of and on two planes perpendi-
cular to the one at and one at 

Following the same procedure as previously, we apply Faraday’s law to a rec-
tangle lying parallel to the as in Fig. 32.10. This figure is similar to Fig.
32.7. Let the left end gh of the rectangle be at position and let the right end 
be at position At time the values of on these two sides are 

and respectively. When we apply Faraday’s law to this rec-
tangle, we find that instead of as before, we have

(32.11)

To find the magnetic flux through this rectangle, we assume that is
small enough that is nearly uniform over the rectangle. In that case, 

and

We use partial-derivative notation because is a function of both and When
we substitute this expression and Eq. (32.11) into Faraday’s law, Eq. (32.1), we get

Finally, imagine shrinking the rectangle down to a sliver so that approaches
zero. When we take the limit of this equation as we get

(32.12)

This equation shows that if there is a time-varying component of magnetic
field, there must also be a component of electric field that varies with and
conversely. We put this relationship on the shelf for now; we’ll return to it soon.

Next we apply Ampere’s law to the rectangle shown in Fig. 32.11. The line
integral becomes

(32.13)

Again assuming that the rectangle is narrow, we approximate the electric flux 
through it as The rate of change of which
we need for Ampere’s law, is then

Now we substitute this expression and Eq. (32.13) into Ampere’s law, Eq. (32.5):

Again we divide both sides by and take the limit as We find

(32.14)-
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Now comes the final step. We take the partial derivatives with respect to of
both sides of Eq. (32.12), and we take the partial derivatives with respect to of
both sides of Eq. (32.14). The results are

Combining these two equations to eliminate we finally find

(32.15)

This expression has the same form as the general wave equation, Eq. (32.10).
Because the electric field must satisfy this equation, it behaves as a wave with
a pattern that travels through space with a definite speed. Furthermore, compari-
son of Eqs. (32.15) and  (32.10) shows that the wave speed is given by

This agrees with Eq. (32.9) for the speed of electromagnetic waves.
We can show that also must satisfy the same wave equation as Eq. (32.15).

To prove this, we take the partial derivative of Eq. (32.12) with respect to and the
partial derivative of Eq. (32.14) with respect to and combine the results. We leave
this derivation for you to carry out.
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Test Your Understanding of Section 32.2 For each of the following electro-
magnetic waves, state the direction of the magnetic field. (a) The wave is propagating in
the positive z-direction, and is in the positive x-direction; (b) the wave is propagating in
the positive y-direction, and is in the negative z-direction; (c) the wave is propagating
in the negative x-direction, and is in the positive z-direction. ❙E

S
E
S
E
S

32.3 Sinusoidal Electromagnetic Waves
Sinusoidal electromagnetic waves are directly analogous to sinusoidal transverse
mechanical waves on a stretched string, which we studied in Section 15.3. In a sinu-
soidal electromagnetic wave, and at any point in space are sinusoidal functions
of time, and at any instant of time the spatial variation of the fields is also sinusoidal.

Some sinusoidal electromagnetic waves are plane waves; they share with the
waves described in Section 32.2 the property that at any instant the fields are uni-
form over any plane perpendicular to the direction of propagation. The entire pat-
tern travels in the direction of propagation with speed The directions of and

are perpendicular to the direction of propagation (and to each other), so the
wave is transverse. Electromagnetic waves produced by an oscillating point
charge, shown in Fig. 32.3, are an example of sinusoidal waves that are not plane
waves. But if we restrict our observations to a relatively small region of space at
a sufficiently great distance from the source, even these waves are well approxi-
mated by plane waves (Fig. 32.12). In the same way, the curved surface of the
(nearly) spherical earth appears flat to us because of our small size relative to the
earth’s radius. In this section we’ll restrict our discussion to plane waves.

The frequency the wavelength and the speed of propagation of any
periodic wave are related by the usual wavelength–frequency relationship

If the frequency is (100 MHz), typical of commercial FM radio
broadcasts, the wavelength is

Figure 32.4 shows the inverse proportionality between wavelength and frequency.

l =
3 * 108 m>s

108 Hz
= 3 m

108 Hzƒc = lƒ.

cl,ƒ,

B
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S

c.

B
S

E
S

Source of
electromagnetic
waves

Waves that pass through a large area propagate
in different directions ...

... but waves that pass through a small area all
propagate in nearly the same direction, so we
can treat them as plane waves.

32.12 Waves passing through a small
area at a sufficiently great distance from a
source can be treated as plane waves.
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Fields of a Sinusoidal Wave
Figure 32.13 shows a linearly polarized sinusoidal electromagnetic wave travel-
ing in the The and vectors are shown for only a few points on
the positive x-axis. Note that the electric and magnetic fields oscillate in phase: 
is maximum where is maximum and is zero where is zero. Note also that
where is in the is in the where is in the

is in the At all points the vector product is
in the direction in which the wave is propagating (the We men-
tioned this in Section 32.2 in the list of characteristics of electromagnetic waves.

CAUTION In a plane wave, and are everywhere Figure 32.13 may give you the
erroneous impression that the electric and magnetic fields exist only along the In
fact, in a sinusoidal plane wave there are electric and magnetic fields at all points in space.
Imagine a plane perpendicular to the (that is, parallel to the at a particular
point, at a particular time; the fields have the same values at all points in that plane. The
values are different on different planes. ❙

We can describe electromagnetic waves by means of wave functions, just as we
did in Section 15.3 for waves on a string. One form of the wave function for a
transverse wave traveling in the along a stretched string is Eq. (15.7):

where is the transverse displacement from its equilibrium position at time
of a point with coordinate on the string. The quantity is the maximum dis-

placement, or amplitude, of the wave; is its angular frequency, equal to 
times the frequency and is the wave number, equal to where is the
wavelength.

Let and represent the instantaneous values of the y-component
of and the z-component of respectively, in Fig. 32.13, and let and 
represent the maximum values, or amplitudes, of these fields. The wave functions
for the wave are then

(32.16)

We can also write the wave functions in vector form:

(32.17)

CAUTION The symbol k has two meanings Note the two different ’s: the unit vector 
in the z-direction and the wave number Don’t get these confused! ❙

The sine curves in Fig. 32.13 represent instantaneous values of the electric and
magnetic fields as functions of at time —that is, and 

As time goes by, the wave travels to the right with speed Equations
(32.16) and (32.17) show that at any point the sinusoidal oscillations of and 
are in phase. From Eq. (32.4) the amplitudes must be related by

(32.18)

These amplitude and phase relationships are also required for and 
to satisfy Eqs. (32.12) and  (32.14), which came from Faraday’s law and
Ampere’s law, respectively. Can you verify this statement? (See Problem 32.38.)
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32.13 Representation of the electric and
magnetic fields as functions of x for a lin-
early polarized sinusoidal plane electro-
magnetic wave. One wavelength of the
wave is shown at time The fields
are shown only for points along the x-axis.
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as the direction of E 3 B.
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Figure 32.14 shows the electric and magnetic fields of a wave traveling in the
negative x-direction. At points where is in the positive y-direction, is in the
negative z-direction; where is in the negative y-direction, is in the positive
z-direction. The wave functions for this wave are

(32.19)

As with the wave traveling in the at any point the sinusoidal oscil-
lations of the and fields are in phase, and the vector product points in
the direction of propagation.

The sinusoidal waves shown in Figs. 32.13 and 32.14 are both linearly polar-
ized in the y-direction; the field is always parallel to the y-axis. Example 32.1
concerns a wave that is linearly polarized in the z-direction.
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32.14 Representation of one wave-
length of a linearly polarized sinusoidal
plane electromagnetic wave traveling in
the negative x-direction at The
fields are shown only for points along the
x-axis. (Compare with Fig. 32.13.)

t = 0.

Example 32.1 Electric and magnetic fields of a laser beam

A carbon dioxide laser emits a sinusoidal electromagnetic wave
that travels in vacuum in the negative x-direction. The wavelength
is (in the infrared; see Fig. 32.4) and the field is paral-
lel to the z-axis, with Write vector equations
for and as functions of time and position.

SOLUTION

IDENTIFY and SET UP: Equations (32.19) describe a wave travel-
ing in the negative x-direction with along the y-axis—that is, a
wave that is linearly polarized along the y-axis. By contrast, the
wave in this example is linearly polarized along the z-axis. At
points where is in the positive z-direction, must be in the posi-
tive y-direction for the vector product to be in the negative
x-direction (the direction of propagation). Figure 32.15 shows a
wave that satisfies these requirements.

EXECUTE: A possible pair of wave functions that describe the wave
shown in Fig. 32.15 are
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1x, t2 � ≥nBmaxcos1kx + vt2

E
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1x, t2 � kNEmaxcos1kx + vt2

Problem-Solving Strategy 32.1 Electromagnetic Waves

IDENTIFY the relevant concepts: Many of the same ideas that
apply to mechanical waves apply to electromagnetic waves. One
difference is that electromagnetic waves are described by two quan-
tities (in this case, electric field and magnetic field ), rather than
by a single quantity, such as the displacement of a string.

SET UP the problem using the following steps:
1. Draw a diagram showing the direction of wave propagation and

the directions of and 
2. Identify the target variables.

EXECUTE the solution as follows:
1. Review the treatment of sinusoidal mechanical waves in Chap-

ters 15 and 16, and particularly the four problem-solving strate-
gies suggested there.

2. Keep in mind the basic relationships for periodic waves:
and For electromagnetic waves in vacuum,v = vk.v = lƒ

B
S

.E
S

B
S

E
S

Distinguish between ordinary frequency usually
expressed in hertz, and angular frequency expressed
in Remember that the wave number is 

3. Concentrate on basic relationships, such as those between 
and (magnitude, direction, and relative phase), how the wave
speed is determined, and the transverse nature of the waves.

EVALUATE your answer: Check that your result is reasonable. For
electromagnetic waves in vacuum, the magnitude of the magnetic
field in teslas is much smaller (by a factor of ) than the
magnitude of the electric field in volts per meter. If your answer
suggests otherwise, you probably made an error using the relation-
ship (We’ll see later in this section that the relationship
between E and B is different for electromagnetic waves in a mate-
rial medium.)

E = cB.

3.00 * 108

B
S

E
S

k = 2p>l.rad>s.
v = 2pƒ,

ƒ,v = c.

32.15 Our sketch for this problem.
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Electromagnetic Waves in Matter
So far, our discussion of electromagnetic waves has been restricted to waves in
vacuum. But electromagnetic waves can also travel in matter; think of light trav-
eling through air, water, or glass. In this subsection we extend our analysis to
electromagnetic waves in nonconducting materials—that is, dielectrics.

In a dielectric the wave speed is not the same as in vacuum, and we denote it
by instead of Faraday’s law is unaltered, but in Eq. (32.4), derived from Fara-
day’s law, the speed is replaced by In Ampere’s law the displacement current
is given not by where is the flux of through a surface, but by

where K is the dielectric constant and is the permit-
tivity of the dielectric. (We introduced these quantities in Section 24.4.) Also, the
constant in Ampere’s law must be replaced by where is the
relative permeability of the dielectric and is its permeability (see Section 28.8).
Hence Eqs. (32.4) and  (32.8) are replaced by

(32.20)

Following the same procedure as for waves in vacuum, we find that the wave
speed is

(32.21)

For most dielectrics the relative permeability is very nearly equal to unity
(except for insulating ferromagnetic materials). When 

Because K is always greater than unity, the speed of electromagnetic waves 
in a dielectric is always less than the speed in vacuum by a factor of 
(Fig. 32.16). The ratio of the speed in vacuum to the speed in a material is
known in optics as the index of refraction of the material. When 

(32.22)

Usually, we can’t use the values of K in Table 24.1 in this equation because those
values are measured using constant electric fields. When the fields oscillate rapidly,
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The plus sign in the arguments of the cosine functions indicates
that the wave is propagating in the negative x-direction, as it
should. Faraday’s law requires that [Eq. (32.18)], so

To check unit consistency, note that and 

We have so the wave number and angular
frequency are

Substituting these values into the above wave functions, we get

* cos315.93 * 105 rad>m2x + 11.78 * 1014 rad>s2t4

E
S
1x, t2 � kN11.5 * 106 V>m2

= 1.78 * 1014 rad>s

v = ck = 13.00 * 108 m>s215.93 * 105 rad>m2

k =
2p

l
=

2p rad

10.6 * 10-6 m
= 5.93 * 105 rad>m

l = 10.6 * 10-6 m,
m2 = 1 T.1 Wb>

1 V = 1 Wb>s

Bmax =
Emax

c
=

1.5 * 106 V>m

3.0 * 108 m>s
= 5.0 * 10-3 T

Emax = cBmax

EVALUATE: As we expect, the magnitude in teslas is much
smaller than the magnitude in volts per meter. To check the
directions of and note that is in the direction of

This is as it should be for a wave that propagates in
the negative x-direction.

Our expressions for and are not the only possi-
ble solutions. We could always add a phase angle to the argu-
ments of the cosine function, so that would become

To determine the value of we would need to
know and either as functions of x at a given time t or as func-
tions of t at a given coordinate x. However, the statement of the
problem doesn’t include this information.
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32.16 The dielectric constant K of
water is about 1.8 for visible light, so the
speed of visible light in water is slower
than in vacuum by a factor of

0.75.1/1K = 1>11.8 =



there is usually not time for the reorientation of electric dipoles that occurs with
steady fields. Values of K with rapidly varying fields are usually much smaller
than the values in the table. For example, K for water is 80.4 for steady fields but
only about 1.8 in the frequency range of visible light. Thus the dielectric “con-
stant” K is actually a function of frequency (the dielectric function).
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Example 32.2 Electromagnetic waves in different materials

(a) Visiting a jewelry store one evening, you hold a diamond up to
the light of a sodium-vapor street lamp. The heated sodium vapor
emits yellow light with a frequency of Find the
wavelength in vacuum and the wave speed and wavelength in dia-
mond, for which and at this frequency. (b) A
90.0-MHz radio wave (in the FM radio band) passes from vacuum
into an insulating ferrite (a ferromagnetic material used in com-
puter cables to suppress radio interference). Find the wavelength in
vacuum and the wave speed and wavelength in the ferrite, for
which and at this frequency.

SOLUTION

IDENTIFY and SET UP: In each case we find the wavelength in vac-
uum using To use the corresponding equation to
find the wavelength in a material medium, we find the speed of
electromagnetic waves in the medium using Eq. (32.21), which
relates to the values of dielectric constant K and relative perme-
ability for the medium.

EXECUTE: (a) The wavelength in vacuum of the sodium light is

The wave speed and wavelength in diamond are

lvacuum =
c

ƒ
=

3.00 * 108 m>s

5.09 * 1014 Hz
= 5.89 * 10-7 m = 589 nm

Km

v

v
v = lƒc = lƒ.

Km = 1000K = 10.0

Km = 1.00K = 5.84

5.09 * 1014 Hz.

(b) Following the same steps as in part (a), we find

EVALUATE: The speed of light in transparent materials is typically
between 0.2c and c; our result in part (a) shows that 

. As our results in part (b) show, the speed of electromag-
netic waves in dense materials like ferrite (for which 

) can be far slower than in vacuum.0.010c
vferrite =

0.414c
vdiamond =

= 3.33 * 10-2 m = 3.33 cm

lferrite =
vferrite

ƒ
=

3.00 * 106 m>s

90.0 * 106 Hz

vferrite =
c

2KKm

=
3.00 * 108 m>s

2110.02110002
= 3.00 * 106 m>s

lvacuum =
c

ƒ
=

3.00 * 108 m>s

90.0 * 106 Hz
= 3.33 m

= 2.44 * 10-7 m = 244 nm

ldiamond =
vdiamond

ƒ
=

1.24 * 108 m>s

5.09 * 1014 Hz

vdiamond =
c

2KKm

=
3.00 * 108 m>s

215.84211.002
= 1.24 * 108 m>s

Test Your Understanding of Section 32.3 The first of Eqs. (32.17)
gives the electric field for a plane wave as measured at points along the x-axis. For
this plane wave, how does the electric field at points off the x-axis differ from the
expression in Eqs. (32.17)? (i) The amplitude is different; (ii) the phase is different; 
(iii) both the amplitude and phase are different; (iv) none of these. ❙

32.4 Energy and Momentum in 
Electromagnetic Waves

It is a familiar fact that energy is associated with electromagnetic waves; think of
the energy in the sun’s radiation. Microwave ovens, radio transmitters, and lasers
for eye surgery all make use of the energy that these waves carry. To understand
how to utilize this energy, it’s helpful to derive detailed relationships for the
energy in an electromagnetic wave.

We begin with the expressions derived in Sections 24.3 and 30.3 for the
energy densities in electric and magnetic fields; we suggest you review those
derivations now. Equations (24.11) and (30.10) show that in a region of empty
space where and fields are present, the total energy density is given by

(32.23)

where and are, respectively, the permittivity and permeability of free space.
For electromagnetic waves in vacuum, the magnitudes E and B are related by

m0P0

u = 1
2 P0E2 +

1

2m0
B2

uB
S

E
S
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(32.24)

Combining Eqs. (32.23) and (32.24), we can also express the energy density in
a simple electromagnetic wave in vacuum as

(32.25)

This shows that in vacuum, the energy density associated with the field in our
simple wave is equal to the energy density of the field. In general, the electric-
field magnitude E is a function of position and time, as for the sinusoidal wave
described by Eqs. (32.16); thus the energy density of an electromagnetic wave,
given by Eq. (32.25), also depends in general on position and time.

Electromagnetic Energy Flow and the Poynting Vector
Electromagnetic waves such as those we have described are traveling waves that
transport energy from one region to another. We can describe this energy transfer
in terms of energy transferred per unit time per unit cross-sectional area, or
power per unit area, for an area perpendicular to the direction of wave travel.

To see how the energy flow is related to the fields, consider a stationary plane,
perpendicular to the that coincides with the wave front at a certain time. In
a time after this, the wave front moves a distance to the right of the
plane. Considering an area A on this stationary plane (Fig. 32.17), we note that
the energy in the space to the right of this area must have passed through the area
to reach the new location. The volume of the relevant region is the base area A
times the length and the energy in this region is the energy density 
times this volume:

This energy passes through the area in time The energy flow per unit time
per unit area, which we will call is

(32.26)

Using Eqs. (32.4) and  (32.9), we can derive the alternative forms

(32.27)

We leave the derivation of Eq. (32.27) from Eq. (32.26) as an exercise for you.
The units of S are energy per unit time per unit area, or power per unit area. The
SI unit of S is or 

We can define a vector quantity that describes both the magnitude and direc-
tion of the energy flow rate:

(32.28)

The vector is called the Poynting vector; it was introduced by the British
physicist John Poynting (1852–1914). Its direction is in the direction of propaga-
tion of the wave (Fig. 32.18). Since and are perpendicular, the magnitude of

is from Eqs. (32.26) and  (32.27) this is the energy flow per unit
area and per unit time through a cross-sectional area perpendicular to the propa-
gation direction. The total energy flow per unit time (power, P) out of any closed
surface is the integral of over the surface:

P = CS
S # dA

S

S
S

S = EB>m0;S
S

B
S

E
S

S
S

S
S

�
1
m0

E
S

: B
S  (Poynting vector in vacuum)

1 W>m2.1 J>s # m2

S =
P0

2P0m0

E2 =
A

P0

m0
E2 =

EB

m0
  (in vacuum)

S =
1

A

dU

dt
= P0cE2  (in vacuum)

S,
dt.A

dU = u dV = 1P0E221Ac dt2

udUc dt,
dV

dx = c dtdt
x-axis,

u

B
S

E
S

u = 1
2 P0E2 +

1

2m0
12P0m0 E22 = P0E2

u

B =
E

c
= 2P0m0 E

O

At time dt, the volume between the stationary
plane and the wave front contains an amount
of electromagnetic energy dU 5 uAc dt.

y

z
x

c dt

A

Wave front at time
dt later

Poynting
vector

Stationary
plane

O

B
S

B
S

E
S

E
S

S
S

32.17 A wave front at a time dt after it
passes through the stationary plane with
area A.

32.18 These rooftop solar panels are
tilted to be face-on to the sun—that is,
face-on to the Poynting vector of electro-
magnetic waves from the sun, so that the
panels can absorb the maximum amount of
wave energy.



For the sinusoidal waves studied in Section 32.3, as well as for other more
complex waves, the electric and magnetic fields at any point vary with time, so
the Poynting vector at any point is also a function of time. Because the frequen-
cies of typical electromagnetic waves are very high, the time variation of the
Poynting vector is so rapid that it’s most appropriate to look at its average value.
The magnitude of the average value of at a point is called the intensity of the
radiation at that point. The SI unit of intensity is the same as for S, (watt
per square meter).

Let’s work out the intensity of the sinusoidal wave described by Eqs. (32.17).
We first substitute and into Eq. (32.28):

The vector product of the unit vectors is and is never
negative, so always points in the positive x-direction (the direction of
wave propagation). The x-component of the Poynting vector is

The time average value of is zero because at any point, it is posi-
tive during one half-cycle and negative during the other half. So the average
value of the Poynting vector over a full cycle is where

That is, the magnitude of the average value of for a sinusoidal wave (the
intensity I of the wave) is the maximum value. By using the relationships

and we can express the intensity in several equiva-
lent forms:

= 1
2A

P0

m0
Emax

2 = 1
2 P0cEmax

2

I = Sav =
EmaxBmax

2m0
=

Emax
2

2m0c

P0m0 = 1>c2,BmaxcEmax =

1
2

S
S

Sav =
EmaxBmax

2m0

S
S

av � ıNSav,

cos21kx - vt2

Sx1x, t2 =
EmaxBmax

m0
cos21kx - vt2 =

EmaxBmax

2m0
31 + cos21kx - vt24

S
S
1x, t2

cos21kx - vt2≥n : kN � ın

�
1
m0
3≥nEmax cos1kx - vt24 : 3kNBmax cos1kx - vt24

S
S
1x, t2 �

1
m0

E
S
1x, t2 : B

S
1x, t2

B
S

E
S

1 W>m2
S
S
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Application Laser Surgery
Lasers are used widely in medicine as ultra-
precise, bloodless “scalpels.” They can reach
and remove tumors with minimal damage to
neighboring healthy tissues, as in the brain
surgery shown here. The power output of the
laser is typically below 40 W, less than that of
a typical light bulb. However, this power is con-
centrated into a spot from 0.1 to 2.0 mm in
diameter, so the intensity of the light (equal to
the average value of the Poynting vector) can
be as high as .5 * 109 W/m2

(intensity of a sinusoidal
wave in vacuum)

(32.29)

We invite you to verify that these expressions are all equivalent.
For a wave traveling in the represented by Eqs. (32.19), the

Poynting vector is in the at every point, but its magnitude is the
same as for a wave traveling in the Verifying these statements is
left to you (see Exercise 32.24).

CAUTION Poynting vector vs. intensity At any point x, the magnitude of the Poynting
vector varies with time. Hence, the instantaneous rate at which electromagnetic energy in
a sinusoidal plane wave arrives at a surface is not constant. This may seem to contradict
everyday experience; the light from the sun, a light bulb, or the laser in a grocery-store
scanner appears steady and unvarying in strength. In fact the Poynting vector from these
sources does vary in time, but the variation isn’t noticeable because the oscillation fre-
quency is so high (around for visible light). All that you sense is the average
rate at which energy reaches your eye, which is why we commonly use intensity (the aver-
age value of S) to describe the strength of electromagnetic radiation. ❙

Throughout this discussion we have considered only electromagnetic waves
propagating in vacuum. If the waves are traveling in a dielectric medium, however,

5 * 1014 Hz

+x-direction.
-x-direction

-x-direction,
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the expressions for energy density [Eq. (32.23)], the Poynting vector [Eq. (32.28)],
and the intensity of a sinusoidal wave [Eq. (32.29)] must be modified. It turns out
that the required modifications are quite simple: Just replace with the permittiv-
ity of the dielectric, replace with the permeability of the dielectric, and
replace with the speed of electromagnetic waves in the dielectric. Remarkably,
the energy densities in the and fields are equal even in a dielectric.B

S
E
S

vc
mm0P

P0

Example 32.3 Energy in a nonsinusoidal wave

For the nonsinusoidal wave described in Section 32.2, suppose that
Find the value of B, the energy den-

sity u, and the rate of energy flow per unit area S.

SOLUTION

IDENTIFY and SET UP: In this wave and are uniform behind
the wave front (and zero ahead of it). Hence the target variables B,
u, and S must also be uniform behind the wave front. Given the
magnitude E, we use Eq. (32.4) to find B, Eq. (32.25) to find u, and
Eq. (32.27) to find S. (We cannot use Eq. (32.29), which applies to
sinusoidal waves only.)

EXECUTE: From Eq. (32.4),

From Eq. (32.25),

B =
E

c
=

100 V>m

3.00 * 108 m>s
= 3.33 * 10-7 T

B
S

E
S

E = 100 V>m = 100 N>C.

The magnitude of the Poynting vector is

EVALUATE: We can check our result for S by using Eq. (32.26):

Since and have the same values at all points behind the wave
front, u and S likewise have the same value everywhere behind the
wave front. In front of the wave front, and , and so

and where there are no fields, there is no field energy.S = 0;u = 0
B
S

� 0E
S

� 0

B
S

E
S

* 1100 N>C22 = 26.5 W>m2

S = P0cE2 = 18.85 * 10-12 C2>N # m2213.00 * 108 m>s2

= 26.5 V # A>m2 = 26.5 W>m2

S =
EB

m0
=
1100 V>m213.33 * 10-7 T2

4p * 10-7 T # m>A

= 8.85 * 10-8 N>m2 = 8.85 * 10-8 J>m3

u = P0E2 = 18.85 * 10-12 C2>N # m221100 N>C22

Example 32.4 Energy in a sinusoidal wave

A radio station on the earth’s surface emits a sinusoidal wave with
average total power 50 kW (Fig. 32.19). Assuming that the trans-
mitter radiates equally in all directions above the ground (which is
unlikely in real situations), find the electric-field and magnetic-field
amplitudes and detected by a satellite 100 km from the
antenna.

SOLUTION

IDENTIFY and SET UP: We are given the transmitter’s average total
power P. The intensity I is just the average power per unit area, so
to find I at 100 km from the transmitter we divide P by the surface
area of the hemisphere shown in Fig. 32.19. For a sinusoidal wave,
I is also equal to the magnitude of the average value of the
Poynting vector, so we can use Eqs. (32.29) to find Eq.
(32.4) then yields Bmax .

Emax ;
Sav

BmaxEmax

EXECUTE: The surface area of a hemisphere of radius 
is

All the radiated power passes through this surface, so the average
power per unit area (that is, the intensity) is

From Eqs. (32.29), so

Then from Eq. (32.4),

EVALUATE: Note that is comparable to fields commonly seen
in the laboratory, but is extremely small in comparison to 
fields we saw in previous chapters. For this reason, most detectors
of electromagnetic radiation respond to the effect of the electric
field, not the magnetic field. Loop radio antennas are an exception
(see the Bridging Problem at the end of this chapter).

B
S

Bmax

Emax

Bmax =
Emax

c
= 8.17 * 10-11 T

=  2.45 * 10-2 V>m

= 2214p * 10-7 T # m>A213.00 * 108 m>s217.96 * 10-7 W>m22

Emax = 22m0cSav

I = Sav = Emax
2>2m0c,

I =
P

A
=

P

2pR2
=

5.00 * 104 W

6.28 * 1010 m2
= 7.96 * 10-7 W>m2

A = 2pR2 = 2p11.00 * 105 m22 = 6.28 * 1010 m2

1.00 * 105 m100 km =
r =

Transmitter

Satellite

r 5 100 km

32.19 A radio station radiates waves into the hemisphere shown.



Electromagnetic Momentum Flow and Radiation Pressure
By using the observation that energy is required to establish electric and mag-
netic fields, we have shown that electromagnetic waves transport energy. It can
also be shown that electromagnetic waves carry momentum with a correspon-
ding momentum density (momentum per volume of magnitude

(32.30)

This momentum is a property of the field; it is not associated with the mass of a
moving particle in the usual sense.

There is also a corresponding momentum flow rate. The volume occupied
by an electromagnetic wave (speed that passes through an area A in time is

When we substitute this into Eq. (32.30) and rearrange, we find that
the momentum flow rate per unit area is

(32.31)

This is the momentum transferred per unit surface area per unit time. We obtain
the average rate of momentum transfer per unit area by replacing S in Eq. (32.31)
by

This momentum is responsible for radiation pressure. When an electromag-
netic wave is completely absorbed by a surface, the wave’s momentum is also
transferred to the surface. For simplicity we’ll consider a surface perpendicular to
the propagation direction. Using the ideas developed in Section 8.1, we see that the
rate at which momentum is transferred to the absorbing surface equals the
force on the surface. The average force per unit area due to the wave, or radiation
pressure is the average value of divided by the absorbing area A. (We
use the subscript “rad” to distinguish pressure from momentum, for which the
symbol is also used.) From Eq. (32.31) the radiation pressure is

(32.32)

If the wave is totally reflected, the momentum change is twice as great, and the
pressure is

(32.33)

For example, the value of I (or for direct sunlight, before it passes through
the earth’s atmosphere, is approximately From Eq. (32.32) the corre-
sponding average pressure on a completely absorbing surface is

From Eq. (32.33) the average pressure on a totally reflecting surface is twice this:
or These are very small pressures, of the order of 

but they can be measured with sensitive instruments.
The radiation pressure of sunlight is much greater inside the sun than at the

earth (see Problem 32.45). Inside stars that are much more massive and luminous
than the sun, radiation pressure is so great that it substantially augments the gas
pressure within the star and so helps to prevent the star from collapsing under its
own gravity. In some cases the radiation pressure of stars can have dramatic
effects on the material surrounding them (Fig. 32.20).

10-10 atm,9.4 * 10-6 Pa.2I>c

prad =
I

c
=

1.4 * 103 W>m2

3.0 * 108 m>s
= 4.7 * 10-6 Pa

1.4 kW>m2.
Sav)

prad =
2Sav

c
=

2I

c
  (radiation pressure, wave totally reflected)

prad =
Sav

c
=

I

c
  (radiation pressure, wave totally absorbed)

p

dp>dtprad,

dp>dt

Sav = I.

1

A

dp

dt
=

S

c
=

EB

m0c
  (flow rate of electromagnetic momentum)

dV = Ac dt.
dtc)

dV

dp

dV
=

EB

m0c2 =
S

c2

dV)dp
p,
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32.20 At the center of this interstellar
gas cloud is a group of intensely luminous
stars that exert tremendous radiation pres-
sure on their surroundings. Aided by a
“wind” of particles emanating from the
stars, over the past million years the radia-
tion pressure has carved out a bubble
within the cloud 70 light-years across.
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32.5 Standing Electromagnetic Waves
Electromagnetic waves can be reflected; the surface of a conductor (like a pol-
ished sheet of metal) or of a dielectric (such as a sheet of glass) can serve as a
reflector. The superposition principle holds for electromagnetic waves just as for
electric and magnetic fields. The superposition of an incident wave and a reflected
wave forms a standing wave. The situation is analogous to standing waves on a
stretched string, discussed in Section 15.7; you should review that discussion.

Suppose a sheet of a perfect conductor (zero resistivity) is placed in the 
yz-plane of Fig. 32.22 and a linearly polarized electromagnetic wave, travel-
ing in the negative x-direction, strikes it. As we discussed in Section 23.4, can-
not have a component parallel to the surface of a perfect conductor. Therefore in
the present situation, must be zero everywhere in the yz-plane. The electric
field of the incident electromagnetic wave is not zero at all times in the yz-plane.
But this incident wave induces oscillating currents on the surface of the conduc-
tor, and these currents give rise to an additional electric field. The net electric
field, which is the vector sum of this field and the incident is zero everywhere
inside and on the surface of the conductor.

The currents induced on the surface of the conductor also produce a reflected
wave that travels out from the plane in the Suppose the incident
wave is described by the wave functions of Eqs. (32.19) (a sinusoidal wave trav-
eling in the and the reflected wave by the negative of Eqs. (32.16)
(a sinusoidal wave traveling in the We take the negative of the+x-direction).

-x-direction)

+x-direction.

E
S

,

E
S

E
S

Example 32.5 Power and pressure from sunlight

An earth-orbiting satellite has solar energy–collecting panels with
a total area of (Fig. 32.21). If the sun’s radiation is perpen-
dicular to the panels and is completely absorbed, find the average
solar power absorbed and the average radiation-pressure force.

SOLUTION

IDENTIFY and SET UP: This problem uses the relationships among
intensity, power, radiation pressure, and force. In the above discus-
sion we calculated the intensity I (power per unit area) of sunlight
as well as the radiation pressure (force per unit area) of sun-
light on an absorbing surface. (We calculated these values for

prad

4.0 m2
points above the atmosphere, which is where the satellite orbits.)
Multiplying each value by the area of the solar panels gives the
average power absorbed and the net radiation force on the panels.

EXECUTE: The intensity I (power per unit area) is 
Although the light from the sun is not a simple sinusoidal wave,
we can still use the relationship that the average power P is the
intensity I times the area A:

The radiation pressure of sunlight on an absorbing surface is
The total force F is

the pressure times the area A:

EVALUATE: The absorbed power is quite substantial. Part of it can
be used to power the equipment aboard the satellite; the rest goes
into heating the panels, either directly or due to inefficiencies in
the photocells contained in the panels.

The total radiation force is comparable to the weight (on earth)
of a single grain of salt. Over time, however, this small force can
have a noticeable effect on the orbit of a satellite like that in Fig.
32.21, and so radiation pressure must be taken into account.

F = pradA = 14.7 * 10-6 N>m2214.0 m22 = 1.9 * 10-5 N

prad

prad = 4.7 * 10-6 Pa = 4.7 * 10-6 N>m2.

= 5.6 * 103 W = 5.6 kW

P = IA = 11.4 * 103 W>m2214.0 m22

1.4 * 103 W>m2.

Sun sensor
(to keep panels
facing the sun)

Solar panels

S
S

S
S

32.21 Solar panels on a satellite.

Test Your Understanding of Section 32.4 Figure 32.13 shows one
wavelength of a sinusoidal electromagnetic wave at time For which of the
following four values of x is (a) the energy density a maximum; (b) the energy
density a minimum; (c) the magnitude of the instantaneous (not average) Poynting vector
a maximum; (d) the magnitude of the instantaneous (not average) Poynting vector a mini-
mum? (i) (ii) (iii) (iv) ❙x = 3l>4.x = l>2;x = l>4;x = 0;

t = 0.

y

z

x

Perfect conductor

E
S

B
S

x 5 3l/4:
antinodal plane of E
nodal plane of B

S

S

x 5 l:
nodal plane of E
antinodal plane of B

S

S

32.22 Representation of the electric and
magnetic fields of a linearly polarized elec-
tromagnetic standing wave when 

In any plane perpendicular to
the E is maximum (an antinode)
where B is zero (a node), and vice versa.
As time elapses, the pattern does not move
along the instead, at every point the

and vectors simply oscillate.B
S

E
S x-axis;

x-axis,
3p>4 rad.

vt =

?



wave given by Eqs. (32.16) so that the incident and reflected electric fields cancel
at (the plane of the conductor, where the total electric field must be zero).
The superposition principle states that the total field at any point is the vector
sum of the fields of the incident and reflected waves, and similarly for the 
field. Therefore the wave functions for the superposition of the two waves are

We can expand and simplify these expressions, using the identities

The results are

(32.34)

(32.35)

Equation (32.34) is analogous to Eq. (15.28) for a stretched string. We see that
at the electric field is always zero; this is required by the
nature of the ideal conductor, which plays the same role as a fixed point at the
end of a string. Furthermore, is zero at all times at points in those planes
perpendicular to the x-axis for which —that is, 
Since the positions of these planes are

(32.36)

These planes are called the nodal planes of the field; they are the equivalent of
the nodes, or nodal points, of a standing wave on a string. Midway between any
two adjacent nodal planes is a plane on which on each such plane, the
magnitude of equals the maximum possible value of twice per
oscillation cycle. These are the antinodal planes of corresponding to the
antinodes of waves on a string.

The total magnetic field is zero at all times at points in planes on which
This occurs where

(32.37)

These are the nodal planes of the field; there is an antinodal plane of midway
between any two adjacent nodal planes.

Figure 32.22 shows a standing-wave pattern at one instant of time. The mag-
netic field is not zero at the conducting surface The surface currents that
must be present to make exactly zero at the surface cause magnetic fields at the
surface. The nodal planes of each field are separated by one half-wavelength.
The nodal planes of one field are midway between those of the other; hence the
nodes of coincide with the antinodes of and conversely. Compare this sit-
uation to the distinction between pressure nodes and displacement nodes in
Section 16.4.

The total electric field is a sine function of and the total magnetic field is a
cosine function of The sinusoidal variations of the two fields are therefore 
out of phase at each point. At times when the electric field is zero
everywhere, and the magnetic field is maximum. When the magnetic
field is zero everywhere, and the electric field is maximum. This is in contrast to
a wave traveling in one direction, as described by Eqs. (32.16) or  (32.19) sepa-
rately, in which the sinusoidal variations of and at any particular point are in
phase. You can show that Eqs. (32.34) and (32.35) satisfy the wave equation, 
Eq. (32.15). You can also show that they satisfy Eqs. (32.12) and  (32.14), the
equivalents of Faraday’s and Ampere’s laws (see Exercise 32.36).

B
S

E
S

cosvt = 0,
sinvt = 0,

90°t.
t,

B
S

,E
S

E
S

1x = 02.

B
S

B
S

x =
l

4
,

3l

4
,

5l

4
, Á   1nodal planes of B

S
2

cos kx = 0.

E
S

,
2EmaxE1x, t2

sin kx = �1;

E
S

x = 0,
l

2
, l,

3l

2
, Á   1nodal planes of E

S
2

k = 2p>l,
2p, Á .p,kx = 0,sin kx = 0

Ey1x, t2

Ey1x = 0, t2x = 0

Bz1x, t2 = -2Bmax cos kx cosvt

Ey1x, t2 = -2Emax sin kx sinvt

cos1A � B2 = cos Acos B � sin A sin B

Bz1x, t2 = Bmax3-cos1kx + vt2 - cos1kx - vt24

Ey1x, t2 = Emax3cos1kx + vt2 - cos1kx - vt24

B
S

E
S

E
S

x = 0
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Standing Waves in a Cavity
Let’s now insert a second conducting plane, parallel to the first and a distance L
from it, along the The cavity between the two planes is analogous to a
stretched string held at the points and Both conducting planes must
be nodal planes for a standing wave can exist only when the second plane is
placed at one of the positions where so L must be an integer multiple
of The wavelengths that satisfy this condition are

(32.38)

The corresponding frequencies are

(32.39)

Thus there is a set of normal modes, each with a characteristic frequency, wave
shape, and node pattern (Fig. 32.23). By measuring the node positions, we can
measure the wavelength. If the frequency is known, the wave speed can be deter-
mined. This technique was first used by Hertz in the 1880s in his pioneering
investigations of electromagnetic waves.

Conducting surfaces are not the only reflectors of electromagnetic waves.
Reflections also occur at an interface between two insulating materials with dif-
ferent dielectric or magnetic properties. The mechanical analog is a junction of
two strings with equal tension but different linear mass density. In general, a
wave incident on such a boundary surface is partly transmitted into the second
material and partly reflected back into the first. For example, light is transmitted
through a glass window, but its surfaces also reflect light.

ƒn =
c

ln
= n

c

2L
  1n = 1, 2, 3, Á 2

ln =
2L

n
  1n = 1, 2, 3, Á 2

l>2.
E1x, t2 = 0,

E
S

;
x = L.x = 0

+x-axis.

32.23 A typical microwave oven sets up
a standing electromagnetic wave with

a wavelength that is strongly
absorbed by the water in food. Because the
wave has nodes spaced 
apart, the food must be rotated while cook-
ing. Otherwise, the portion that lies at a
node—where the electric-field amplitude is
zero—will remain cold.

l>2 = 6.1 cm

l = 12.2 cm,

Example 32.6 Intensity in a standing wave

Calculate the intensity of the standing wave represented by Eqs.
(32.34) and  (32.35).

SOLUTION

IDENTIFY and SET UP: The intensity I of the wave is the time-
averaged value of the magnitude of the Poynting vector To
find we first use Eq. (32.28) to find the instantaneous value of

and then average it over a whole number of cycles of the wave.

EXECUTE: Using the wave functions of Eqs. (32.34) and (32.35) in
Eq. (32.28) for the Poynting vector we find

� ınSx1x, t2

� ın
EmaxBmax

m0
12sin kx cos kx212sinvtcosvt2

�
1

m0
3-2≥nEmaxsin kx cosvt4 : 3-2kNBmax cos kx sinvt4

S
S
1x, t2 �

1

m0
E
S
1x, t2 : B

S
1x, t2

S
S

,

S
S

Sav,
S
S

.Sav

Using the identity we can rewrite as

The average value of a sine function over any whole number of
cycles is zero. Thus the time average of at any point is zero;

EVALUATE: This result is what we should expect. The standing
wave is a superposition of two waves with the same frequency and
amplitude, traveling in opposite directions. All the energy trans-
ferred by one wave is cancelled by an equal amount transferred in
the opposite direction by the other wave. When we use electro-
magnetic waves to transmit power, it is important to avoid reflec-
tions that give rise to standing waves.

I = Sav = 0.
S
S

Sx1x, t2 =
EmaxBmaxsin2kx sin2vt

m0

Sx1x, t2sin2A = 2sin Acos A,

Example 32.7 Standing waves in a cavity

Electromagnetic standing waves are set up in a cavity with two
parallel, highly conducting walls 1.50 cm apart. (a) Calculate the
longest wavelength and lowest frequency ƒ of these standingl

waves. (b) For a standing wave of this wavelength, where in the
cavity does have maximum magnitude? Where is zero? Where
does have maximum magnitude? Where is zero?

Continued

B
S
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S
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SOLUTION

IDENTIFY and SET UP: Only certain normal modes are possible for
electromagnetic waves in a cavity, just as only certain normal
modes are possible for standing waves on a string. The longest
possible wavelength and lowest possible frequency correspond to
the mode in Eqs. (32.38) and (32.39); we use these to find 
and Equations (32.36) and (32.37) then give the locations of the
nodal planes of and . The antinodal planes of each field are
midway between adjacent nodal planes.

EXECUTE: (a) From Eqs. (32.38) and (32.39), the wave-
length and frequency are

ƒ1 =
c

2L
=

3.00 * 108 m>s

211.50 * 10-2 m2
= 1.00 * 1010 Hz = 10 GHz

l1 = 2L = 211.50 cm2 = 3.00 cm

n = 1

B
S

E
S

ƒ.
ln = 1

(b) With there is a single half-wavelength between the
walls. The electric field has nodal planes at the walls and
an antinodal plane (where has its maximum magnitude) midway
between them. The magnetic field has antinodal planes at the walls
and a nodal plane midway between them.

EVALUATE: One application of such standing waves is to produce
an oscillating field of definite frequency, which is used to probe
the behavior of a small sample of material placed in the cavity. To
subject the sample to the strongest possible field, it should be
placed near the center of the cavity, at the antinode of E

S
.

E
S

E
S

1E
S

� 02
n = 1

Test Your Understanding of Section 32.5 In the standing wave described in
Example 32.7, is there any point in the cavity where the energy density is zero at all
times? If so, where? If not, why not? ❙
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Maxwell’s equations and electromagnetic waves:
Maxwell’s equations predict the existence of electro-
magnetic waves that propagate in vacuum at the speed
of light The electromagnetic spectrum covers fre-
quencies from at least 1 to and a correspond-
ingly broad range of wavelengths. Visible light, with
wavelengths from 380 to 750 nm, is only a very small
part of this spectrum. In a plane wave, and are uni-
form over any plane perpendicular to the propagation
direction. Faraday’s law and Ampere’s law both give
relationships between the magnitudes of and 
requiring both of these relationships to be satisfied gives
an expression for in terms of and Electromag-
netic waves are transverse; the and fields are
perpendicular to the direction of propagation and to
each other. The direction of propagation is the direction
of E

S
: B

S
.

B
S

E
S

m0.P0c

B
S

;E
S

B
S

E
S

1024 Hz
c.

(32.4)

(32.8)

(32.9)c =
1

2P0m0

B = P0m0cE

E = cB

Sinusoidal electromagnetic waves: Equations (32.17)
and  (32.18) describe a sinusoidal plane electromagnetic
wave traveling in vacuum in the If the
wave is propagating in the replace

by . (See Example 32.1.)kx + vtkx - vt
-x-direction,

+x-direction.
(32.17)

(32.18)Emax = cBmax

B
S
1x, t2 � kNBmax cos1kx - vt2

E
S
1x, t2 � ≥nEmax cos1kx - vt2

Electromagnetic waves in matter: When an electromag-
netic wave travels through a dielectric, the wave speed 
is less than the speed of light in vacuum (See Exam-
ple 32.2.)

c.
v

(32.21)
=

c

2KKm

v =
1

2Pm
=

1

2KKm

1

2P0m0

Energy and momentum in electromagnetic waves: The
energy flow rate (power per unit area) in an electromag-
netic wave in vacuum is given by the Poynting vector 
The magnitude of the time-averaged value of the
Poynting vector is called the intensity I of the wave.
Electromagnetic waves also carry momentum. When an
electromagnetic wave strikes a surface, it exerts a radia-
tion pressure If the surface is perpendicular to the
wave propagation direction and is totally absorbing,

if the surface is a perfect reflector,
(See Examples 32.3–32.5.)prad = 2I>c.

prad = I>c;

prad.

S
S

.

(32.28)

(32.29)

(32.31)
1

A

dp

dt
=

S

c
=

EB

m0c

= 1
2 P0cEmax

2

= 1
2A

P0

m0
Emax

2

I = Sav =
EmaxBmax

2m0
=

Emax
2

2m0c

S
S

�
1

m0
E
S

: B
S

Standing electromagnetic waves: If a perfect reflecting surface is placed at the incident and
reflected waves form a standing wave. Nodal planes for occur at and nodal
planes for at At each point, the sinusoidal variations of and with
time are out of phase. (See Examples 32.6 and 32.7.)90°
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A circular loop of wire can be used as a radio antenna. If an 18.0-cm-
diameter antenna is located 2.50 km from a 95.0-MHz source with
a total power of 55.0 kW, what is the maximum emf induced in the
loop? Assume that the plane of the antenna loop is perpendicular to
the direction of the radiation’s magnetic field and that the source
radiates uniformly in all directions.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP:
1. The electromagnetic wave has an oscillating magnetic field.

This causes a magnetic flux through the loop antenna that
varies sinusoidally with time. By Faraday’s law, this produces
an emf equal in magnitude to the rate of change of the flux. The
target variable is the magnitude of this emf.

2. Select the equations that you will need to find (i) the intensity
of the wave at the position of the loop, a distance r � 2.50 km

BRIDGING PROBLEM Detecting Electromagnetic Waves

from the source of power P 55.0 kW; (ii) the amplitude of
the sinusoidally varying magnetic field at that position; (iii) the
magnetic flux through the loop as a function of time; and (iv)
the emf produced by the flux.

EXECUTE
3. Find the wave intensity at the position of the loop.
4. Use your result from step 3 to write expressions for the time-

dependent magnetic field at this position and the time-dependent
magnetic flux through the loop.

5. Use the results of step 4 to find the time-dependent induced emf
in the loop. The amplitude of this emf is your target variable.

EVALUATE
6. Is the induced emf large enough to detect? (If it is, a receiver

connected to this antenna will be able to pick up signals from
the source.)

=

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q32.1 By measuring the electric and magnetic fields at a point in
space where there is an electromagnetic wave, can you determine
the direction from which the wave came? Explain.
Q32.2 According to Ampere’s law, is it possible to have both a
conduction current and a displacement current at the same time? Is
it possible for the effects of the two kinds of current to cancel each
other exactly so that no magnetic field is produced? Explain.
Q32.3 Give several examples of electromagnetic waves that are
encountered in everyday life. How are they all alike? How do they
differ?
Q32.4 Sometimes neon signs located near a powerful radio station
are seen to glow faintly at night, even though they are not turned
on. What is happening?
Q32.5 Is polarization a property of all electromagnetic waves, or is
it unique to visible light? Can sound waves be polarized? What
fundamental distinction in wave properties is involved? Explain.
Q32.6 Suppose that a positive point charge q is initially at rest on
the in the path of the electromagnetic plane wave described
in Section 32.2. Will the charge move after the wave front reaches
it? If not, why not? If the charge does move, describe its motion
qualitatively. (Remember that and have the same value at all
points behind the wave front.)
Q32.7 The light beam from a searchlight may have an electric-
field magnitude of corresponding to a potential differ-
ence of 1500 V between the head and feet of a 1.5-m-tall person on
whom the light shines. Does this cause the person to feel a strong
electric shock? Why or why not?

1000 V>m,

B
S

E
S

x-axis,

Q32.8 For a certain sinusoidal wave of intensity I, the amplitude of
the magnetic field is B. What would be the amplitude (in terms of
B) in a similar wave of twice the intensity?
Q32.9 The magnetic-field amplitude of the electromagnetic wave
from the laser described in Example 32.1 (Section 32.3) is about
100 times greater than the earth’s magnetic field. If you illuminate
a compass with the light from this laser, would you expect the
compass to deflect? Why or why not?
Q32.10 Most automobiles have vertical antennas for receiving
radio broadcasts. Explain what this tells you about the direction of
polarization of in the radio waves used in broadcasting.
Q32.11 If a light beam carries momentum, should a person hold-
ing a flashlight feel a recoil analogous to the recoil of a rifle when
it is fired? Why is this recoil not actually observed?
Q32.12 A light source radiates a sinusoidal electromagnetic wave
uniformly in all directions. This wave exerts an average pressure p
on a perfectly reflecting surface a distance R away from it. What
average pressure (in terms of p) would this wave exert on a per-
fectly absorbing surface that was twice as far from the source?
Q32.13 Does an electromagnetic standing wave have energy? Does
it have momentum? Are your answers to these questions the same
as for a traveling wave? Why or why not?
Q32.14 When driving on the upper level of the Bay Bridge, west-
bound from Oakland to San Francisco, you can easily pick up a
number of radio stations on your car radio. But when driving east-
bound on the lower level of the bridge, which has steel girders on
either side to support the upper level, the radio reception is much
worse. Why is there a difference?

E
S

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems. 

www.masteringphysics.com
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EXERCISES
Section 32.2 Plane Electromagnetic Waves 
and the Speed of Light
32.1 . (a) How much time does it take light to travel from the
moon to the earth, a distance of 384,000 km? (b) Light from the
star Sirius takes 8.61 years to reach the earth. What is the distance
from earth to Sirius in kilometers?
32.2 . Consider each of the electric- and magnetic-field orienta-
tions given next. In each case, what is the direction of propagation
of the wave? (a) in the -direction, in the -direction; 
(b) in the -direction, in the -direction; (c) in the 

-direction, in the -direction; (d) in the -direction, in 
the -direction.
32.3 . A sinusoidal electromagnetic wave is propagating in vac-
uum in the If at a particular instant and at a certain
point in space the electric field is in the and has mag-
nitude what are the magnitude and direction of the
magnetic field of the wave at this same point in space and instant
in time?
32.4 . Consider each of the following electric- and magnetic-field
orientations. In each case, what is the direction of propagation of
the wave? (a) (b) (c) 

(d)

Section 32.3 Sinusoidal Electromagnetic Waves
32.5 . BIO Medical X rays. Medical x rays are taken with elec-
tromagnetic waves having a wavelength of around 0.10 nm. What
are the frequency, period, and wave number of such waves?
32.6 . BIO Ultraviolet Radiation. There are two categories of
ultraviolet light. Ultraviolet A (UVA) has a wavelength ranging
from 320 nm to 400 nm. It is not harmful to the skin and is neces-
sary for the production of vitamin D. UVB, with a wavelength
between 280 nm and 320 nm, is much more dangerous because it
causes skin cancer. (a) Find the frequency ranges of UVA and
UVB. (b) What are the ranges of the wave numbers for UVA and
UVB?
32.7 . A sinusoidal electromagnetic wave having a magnetic field
of amplitude 1.25 T and a wavelength of 432 nm is traveling in
the through empty space. (a) What is the frequency
of this wave? (b) What is the amplitude of the associated electric
field? (c) Write the equations for the electric and magnetic fields as
functions of x and t in the form of Eqs. (32.17).
32.8 . An electromagnetic wave of wavelength 435 nm is travel-
ing in vacuum in the . The electric field has amplitude

and is parallel to the x-axis. What are (a) the
frequency and (b) the magnetic-field amplitude? (c) Write the vec-
tor equations for 
32.9 . Consider electromagnetic waves propagating in air. (a)
Determine the frequency of a wave with a wavelength of (i) 5.0 km,
(ii) (iii) 5.0 nm. (b) What is the wavelength (in meters and
nanometers) of (i) gamma rays of frequency and
(ii) an AM station radio wave of frequency 590 kHz?
32.10 . The electric field of a sinusoidal electromagnetic wave
obeys the equation 

(a) What are the amplitudes of the electric
and magnetic fields of this wave? (b) What are the frequency,
wavelength, and period of the wave? Is this light visible to
humans? (c) What is the speed of the wave?
32.11 . An electromagnetic wave has an electric field given by

(a) In which direction is the wave traveling? (b) What is the wave-
length of the wave? (c) Write the vector equation for B

S
1y, t2.

1012 rad>s2t4.E
S
1y, t2 � 13.10 * 105 V>m2kN cos3ky - 112.65 *

15.97 * 1015 rad>s2t4.
E = 1375 V>m2 cos311.99 * 107 rad>m2x +

6.50 * 1021 Hz
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32.12 . An electromagnetic wave has a magnetic field given by

(a) In which direction is the wave traveling? (b) What is the fre-
quency of the wave? (c) Write the vector equation for 
32.13 . Radio station WCCO in Minneapolis broadcasts at a fre-
quency of 830 kHz. At a point some distance from the transmitter,
the magnetic-field amplitude of the electromagnetic wave from
WCCO is Calculate (a) the wavelength; (b) the
wave number; (c) the angular frequency; (d) the electric-field
amplitude.
32.14 . An electromagnetic wave with frequency 65.0 Hz travels
in an insulating magnetic material that has dielectric constant 3.64
and relative permeability 5.18 at this frequency. The electric field
has amplitude (a) What is the speed of propa-
gation of the wave? (b) What is the wavelength of the wave? 
(c) What is the amplitude of the magnetic field?
32.15 . An electromagnetic wave with frequency 
propagates with a speed of in a certain piece of
glass. Find (a) the wavelength of the wave in the glass; (b) the
wavelength of a wave of the same frequency propagating in air; 
(c) the index of refraction n of the glass for an electromagnetic
wave with this frequency; (d) the dielectric constant for glass at
this frequency, assuming that the relative permeability is unity.

Section 32.4 Energy and Momentum 
in Electromagnetic Waves
32.16 . BIO High-Energy Cancer Treatment. Scientists are
working on a new technique to kill cancer cells by zapping them
with ultrahigh-energy (in the range of 1012 W) pulses of light that
last for an extremely short time (a few nanoseconds). These short
pulses scramble the interior of a cell without causing it to explode,
as long pulses would do. We can model a typical such cell as a disk

in diameter, with the pulse lasting for 4.0 ns with an aver-
age power of We shall assume that the energy is
spread uniformly over the faces of 100 cells for each pulse. (a) How
much energy is given to the cell during this pulse? (b) What is the
intensity in W m2 delivered to the cell? (c) What are the maxi-
mum values of the electric and magnetic fields in the pulse?
32.17 .. Fields from a Light Bulb. We can reasonably model a
75-W incandescent light bulb as a sphere 6.0 cm in diameter. Typi-
cally, only about 5% of the energy goes to visible light; the rest
goes largely to nonvisible infrared radiation. (a) What is the visi-
ble-light intensity (in ) at the surface of the bulb? (b) What
are the amplitudes of the electric and magnetic fields at this sur-
face, for a sinusoidal wave with this intensity?
32.18 .. A sinusoidal electromagnetic wave from a radio station
passes perpendicularly through an open window that has area

At the window, the electric field of the wave has rms
value How much energy does this wave carry
through the window during a 30.0-s commercial?
32.19 .. Testing a Space Radio Transmitter. You are a NASA
mission specialist on your first flight aboard the space shuttle.
Thanks to your extensive training in physics, you have been
assigned to evaluate the performance of a new radio transmitter on
board the International Space Station (ISS). Perched on the shuttle’s
movable arm, you aim a sensitive detector at the ISS, which is 2.5 km
away. You find that the electric-field amplitude of the radio waves
coming from the ISS transmitter is and that the fre-
quency of the waves is 244 MHz. Find the following: (a) the inten-
sity of the radio wave at your location; (b) the magnetic-field
amplitude of the wave at your location; (c) the total power output
of the ISS radio transmitter. (d) What assumptions, if any, did you
make in your calculations?

0.090 V>m

0.0200 V>m.
0.500 m2.

W>m2

2>1

2.0 * 1012 W.
5.0 mm

2.17 * 108 m>s
5.70 * 1014 Hz

7.20 * 10-3 V>m.

4.82 * 10-11 T.
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S
1x, t2.ƒ
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1x, t2 � -18.25 * 10-9 T2≥ncos311.38 * 104 rad>m2x + vt4.
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32.20 . The intensity of a cylindrical laser beam is 
The cross-sectional area of the beam is and the
intensity is uniform across the cross section of the beam. (a) What
is the average power output of the laser? (b) What is the rms value
of the electric field in the beam?
32.21 . A space probe from a star measures the
total intensity of electromagnetic radiation from the star to be

If the star radiates uniformly in all directions,
what is its total average power output?
32.22 . A sinusoidal electromagnetic wave emitted by a cellular
phone has a wavelength of 35.4 cm and an electric-field amplitude
of at a distance of 250 m from the phone. Cal-
culate (a) the frequency of the wave; (b) the magnetic-field ampli-
tude; (c) the intensity of the wave.
32.23 . A monochromatic light source with power output 60.0 W
radiates light of wavelength 700 nm uniformly in all directions.
Calculate and for the 700-nm light at a distance of 5.00 m
from the source.
32.24 . For the electromagnetic wave represented by Eqs. (32.19),
show that the Poynting vector (a) is in the same direction as the
propagation of the wave and (b) has average magnitude given by
Eqs. (32.29).
32.25 .. An intense light source radiates uniformly in all direc-
tions. At a distance of 5.0 m from the source, the radiation pressure
on a perfectly absorbing surface is What is the
total average power output of the source?
32.26 . Television Broadcasting. Public television station
KQED in San Francisco broadcasts a sinusoidal radio signal at a
power of 316 kW. Assume that the wave spreads out uniformly
into a hemisphere above the ground. At a home 5.00 km away
from the antenna, (a) what average pressure does this wave exert
on a totally reflecting surface, (b) what are the amplitudes of the
electric and magnetic fields of the wave, and (c) what is the aver-
age density of the energy this wave carries? (d) For the energy den-
sity in part (c), what percentage is due to the electric field and what
percentage is due to the magnetic field?
32.27 .. BIO Laser Safety. If the eye receives an average
intensity greater than damage to the retina can
occur. This quantity is called the damage threshold of the retina.
(a) What is the largest average power (in mW) that a laser beam
1.5 mm in diameter can have and still be considered safe to view
head-on? (b) What are the maximum values of the electric and
magnetic fields for the beam in part (a)? (c) How much energy
would the beam in part (a) deliver per second to the retina? 
(d) Express the damage threshold in W cm2.
32.28 . In the 25-ft Space Simulator facility at NASA’s Jet
Propulsion Laboratory, a bank of overhead arc lamps can produce
light of intensity at the floor of the facility. (This sim-
ulates the intensity of sunlight near the planet Venus.) Find the
average radiation pressure (in pascals and in atmospheres) on (a) a
totally absorbing section of the floor and (b) a totally reflecting
section of the floor. (c) Find the average momentum density
(momentum per unit volume) in the light at the floor.
32.29 . Laboratory Lasers. He–Ne lasers are often used in
physics demonstrations. They produce light of wavelength 633 nm
and a power of 0.500 mW spread over a cylindrical beam 1.00 mm
in diameter (although these quantities can vary). (a) What is the
intensity of this laser beam? (b) What are the maximum values of
the electric and magnetic fields? (c) What is the average energy
density in the laser beam?
32.30 .. Solar Sail 1. During 2004, Japanese scientists suc-
cessfully tested two solar sails. One had a somewhat complicated

2500 W>m2

>

1.0 * 102 W>m2,

9.0 * 10-6 Pa.

BmaxEmax

5.40 * 10-2 V>m

5.0 * 103 W>m2.

2.0 * 1010 m

3.0 * 10-4 m2
0.800 W>m2. shape that we shall model as a disk 9.0 m in diameter and 

thick. The intensity of solar energy at that location was about 1400
W m2. (a) What force did the sun’s light exert on this sail, assum-
ing that it struck perpendicular to the sail and that the sail was per-
fectly reflecting? (b) If the sail was made of magnesium, of density

what acceleration would the sun’s radiation give to the
sail? (c) Does the acceleration seem large enough to be feasible for
space flight? In what ways could the sail be modified to increase its
acceleration?

Section 32.5 Standing Electromagnetic Waves
32.31 . Microwave Oven. The microwaves in a certain micro-
wave oven have a wavelength of 12.2 cm. (a) How wide must this
oven be so that it will contain five antinodal planes of the electric
field along its width in the standing-wave pattern? (b) What is the
frequency of these microwaves? (c) Suppose a manufacturing
error occurred and the oven was made 5.0 cm longer than specified
in part (a). In this case, what would have to be the frequency of the
microwaves for there still to be five antinodal planes of the electric
field along the width of the oven?
32.32 . An electromagnetic standing wave in air of frequency
750 MHz is set up between two conducting planes 80.0 cm apart.
At which positions between the planes could a point charge be
placed at rest so that it would remain at rest? Explain.
32.33 . A standing electromagnetic wave in a certain material has
frequency The nodal planes of are 3.55 mm
apart. Find (a) the wavelength of the wave in this material; (b) the
distance between adjacent nodal planes of the field; (c) the speed
of propagation of the wave.
32.34 . An electromagnetic standing wave in air has frequency
75.0 MHz. (a) What is the distance between nodal planes of the 
field? (b) What is the distance between a nodal plane of and the
closest nodal plane of 
32.35 . An electromagnetic standing wave in a certain material
has frequency and speed of propagation 

(a) What is the distance between a nodal plane of and
the closest antinodal plane of ? (b) What is the distance between
an antinodal plane of and the closest antinodal plane of 
(c) What is the distance between a nodal plane of and the closest
nodal plane of 
32.36 . CALC Show that the electric and magnetic fields for stand-
ing waves given by Eqs. (32.34) and (32.35) (a) satisfy the wave
equation, Eq. (32.15), and (b) satisfy Eqs. (32.12) and (32.14).

PROBLEMS
32.37 .. BIO Laser Surgery. Very short pulses of high-intensity
laser beams are used to repair detached portions of the retina of the
eye. The brief pulses of energy absorbed by the retina weld the
detached portions back into place. In one such procedure, a laser
beam has a wavelength of 810 nm and delivers 250 mW of power
spread over a circular spot in diameter. The vitreous
humor (the transparent fluid that fills most of the eye) has an index
of refraction of 1.34. (a) If the laser pulses are each 1.50 ms long,
how much energy is delivered to the retina with each pulse? 
(b) What average pressure does the pulse of the laser beam exert
on the retina as it is fully absorbed by the circular spot? (c) What
are the wavelength and frequency of the laser light inside the vitre-
ous humor of the eye? (d) What are the maximum values of the
electric and magnetic fields in the laser beam?
32.38 .. CALC Consider a sinusoidal electromagnetic wave with
fields and B

S
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with Show that if and are to satisfy Eqs. (32.12)
and (32.14), then and (The result 
means the and fields oscillate in phase.)
32.39 .. You want to support a sheet of fireproof paper horizon-
tally, using only a vertical upward beam of light spread uniformly
over the sheet. There is no other light on this paper. The sheet
measures 22.0 cm by 28.0 cm and has a mass of 1.50 g. (a) If the
paper is black and hence absorbs all the light that hits it, what must
be the intensity of the light beam? (b) For the light in part (a), what
are the amplitudes of its electric and magnetic fields? (c) If the
paper is white and hence reflects all the light that hits it, what
intensity of light beam is needed to support it? (d) To see if it is
physically reasonable to expect to support a sheet of paper this
way, calculate the intensity in a typical 0.500-mW laser beam that
is 1.00 mm in diameter, and compare this value with your answer
in part (a).
32.40 .. For a sinusoidal electromagnetic wave in vacuum, such
as that described by Eq. (32.16), show that the average energy
density in the electric field is the same as that in the magnetic field.
32.41 . A satellite 575 km above the earth’s surface transmits
sinusoidal electromagnetic waves of frequency 92.4 MHz uni-
formly in all directions, with a power of 25.0 kW. (a) What is the
intensity of these waves as they reach a receiver at the surface of
the earth directly below the satellite? (b) What are the amplitudes
of the electric and magnetic fields at the receiver? (c) If the
receiver has a totally absorbing panel measuring 15.0 cm by 40.0 cm
oriented with its plane perpendicular to the direction the waves
travel, what average force do these waves exert on the panel? Is
this force large enough to cause significant effects?
32.42 . A plane sinusoidal electromagnetic wave in air has a
wavelength of 3.84 cm and an amplitude of 
(a) What is the frequency? (b) What is the amplitude? 
(c) What is the intensity? (d) What average force does this radiation
exert on a totally absorbing surface with area perpendi-
cular to the direction of propagation?
32.43 . A small helium–neon laser emits red visible light with a
power of 4.60 mW in a beam that has a diameter of 2.50 mm. 
(a) What are the amplitudes of the electric and magnetic fields of
the light? (b) What are the average energy densities associated
with the electric field and with the magnetic field? (c) What is the
total energy contained in a 1.00-m length of the beam?
32.44 .. The electric-field component of a sinusoidal electromag-
netic wave traveling through a plastic cylinder is given by the
equation

(a) Find the frequency, wavelength, and speed of
this wave in the plastic. (b) What is the index of refraction of the
plastic? (c) Assuming that the amplitude of the electric field does
not change, write a comparable equation for the electric field if the
light is traveling in air instead of in plastic.
32.45 . The sun emits energy in the form of electromagnetic waves
at a rate of This energy is produced by nuclear reac-
tions deep in the sun’s interior. (a) Find the intensity of electromag-
netic radiation and the radiation pressure on an absorbing object at
the surface of the sun (radius and at

in the sun’s interior. Ignore any scattering of the waves
as they move radially outward from the center of the sun. Compare
to the values given in Section 32.4 for sunlight just before it enters
the earth’s atmosphere. (b) The gas pressure at the sun’s surface is
about at the gas pressure is calculated
from solar models to be about . Comparing with
your results in part (a), would you expect that radiation pressure is

4.7 * 1013 Pa
r = R>2,1.0 * 104 Pa;

r = R>2,
r = R = 6.96 * 105 km2

3.9 * 1026 W.

1015 rad>s2t4.
E = 15.35 V>m2cos311.39 * 107 rad>m2x - 13.02 *

0.240 m2
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-field
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- p … f … p. an important factor in determining the structure of the sun? Why or
why not?
32.46 .. A source of sinusoidal electromagnetic waves radiates
uniformly in all directions. At 10.0 m from this source, the ampli-
tude of the electric field is measured to be What is the
electric-field amplitude at a distance of 20.0 cm from the source?
32.47 .. CP Two square re-
flectors, each 1.50 cm on a side
and of mass 4.00 g, are located
at opposite ends of a thin, ex-
tremely light, 1.00-m rod that
can rotate without friction and
in vacuum about an axle per-
pendicular to it through its center (Fig. P32.47). These reflectors are
small enough to be treated as point masses in moment-of-inertia
calculations. Both reflectors are illuminated on one face by a sinu-
soidal light wave having an electric field of amplitude 
that falls uniformly on both surfaces and always strikes them per-
pendicular to the plane of their surfaces. One reflector is covered
with a perfectly absorbing coating, and the other is covered with a
perfectly reflecting coating. What is the angular acceleration of
this device?
32.48 .. CP A circular loop of wire has radius 7.50 cm. A sinu-
soidal electromagnetic plane wave traveling in air passes through
the loop, with the direction of the magnetic field of the wave per-
pendicular to the plane of the loop. The intensity of the wave at the
location of the loop is , and the wavelength of the
wave is 6.90 m. What is the maximum emf induced in the loop?
32.49 . CALC CP A cylindrical conductor with a circular cross
section has a radius a and a resistivity and carries a constant cur-
rent I. (a) What are the magnitude and direction of the electric-field
vector at a point just inside the wire at a distance a from the
axis? (b) What are the magnitude and direction of the magnetic-
field vector at the same point? (c) What are the magnitude and
direction of the Poynting vector at the same point? (The direc-
tion of is the direction in which electromagnetic energy flows
into or out of the conductor.) (d) Use the result in part (c) to find
the rate of flow of energy into the volume occupied by a length l of
the conductor. (Hint: Integrate over the surface of this volume.)
Compare your result to the rate of generation of thermal energy in
the same volume. Discuss why the energy dissipated in a current-
carrying conductor, due to its resistance, can be thought of as
entering through the cylindrical sides of the conductor.
32.50 . In a certain experiment, a radio transmitter emits sinu-
soidal electromagnetic waves of frequency 110.0 MHz in opposite
directions inside a narrow cavity with reflectors at both ends, caus-
ing a standing-wave pattern to occur. (a) How far apart are the
nodal planes of the magnetic field? (b) If the standing-wave pattern
is determined to be in its eighth harmonic, how long is the cavity?
32.51 .. CP Flashlight to the Rescue. You are the sole crew
member of the interplanetary spaceship T:1339 Vorga, which
makes regular cargo runs between the earth and the mining
colonies in the asteroid belt. You are working outside the ship one
day while at a distance of 2.0 AU from the sun. [1 AU (astronomi-
cal unit) is the average distance from the earth to the sun,
149,600,000 km.] Unfortunately, you lose contact with the ship’s
hull and begin to drift away into space. You use your spacesuit’s
rockets to try to push yourself back toward the ship, but they run
out of fuel and stop working before you can return to the ship. You
find yourself in an awkward position, floating 16.0 m from the
spaceship with zero velocity relative to it. Fortunately, you are
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carrying a 200-W flashlight. You turn on the flashlight and use its
beam as a “light rocket” to push yourself back toward the ship. 
(a) If you, your spacesuit, and the flashlight have a combined mass
of 150 kg, how long will it take you to get back to the ship? (b) Is
there another way you could use the flashlight to accomplish the
same job of returning you to the ship?
32.52 . The 19th-century inventor Nikola Tesla proposed to
transmit electric power via sinusoidal electromagnetic waves. Sup-
pose power is to be transmitted in a beam of cross-sectional area

What electric- and magnetic-field amplitudes are required
to transmit an amount of power comparable to that handled by
modern transmission lines (that carry voltages and currents of the
order of 500 kV and 1000 A)?
32.53 .. CP Global Positioning System (GPS). The GPS net-
work consists of 24 satellites, each of which makes two orbits
around the earth per day. Each satellite transmits a 50.0-W (or even
less) sinusoidal electromagnetic signal at two frequencies, one of
which is 1575.42 MHz. Assume that a satellite transmits half of its
power at each frequency and that the waves travel uniformly in a
downward hemisphere. (a) What average intensity does a GPS
receiver on the ground, directly below the satellite, receive? (Hint:
First use Newton’s laws to find the altitude of the satellite.) 
(b) What are the amplitudes of the electric and magnetic fields at
the GPS receiver in part (a), and how long does it take the signal to
reach the receiver? (c) If the receiver is a square panel 1.50 cm on
a side that absorbs all of the beam, what average pressure does the
signal exert on it? (d) What wavelength must the receiver be tuned
to?
32.54 .. CP Solar Sail 2. NASA is giving serious consideration
to the concept of solar sailing. A solar sailcraft uses a large, low-
mass sail and the energy and momentum of sunlight for propul-
sion. (a) Should the sail be absorbing or reflective? Why? (b) The
total power output of the sun is How large a sail is
necessary to propel a 10,000-kg spacecraft against the gravita-
tional force of the sun? Express your result in square kilometers.
(c) Explain why your answer to part (b) is independent of the dis-
tance from the sun.
32.55 .. CP Interplanetary space contains many small particles
referred to as interplanetary dust. Radiation pressure from the sun
sets a lower limit on the size of such dust particles. To see the ori-
gin of this limit, consider a spherical dust particle of radius R and
mass density (a) Write an expression for the gravitational force
exerted on this particle by the sun (mass M) when the particle is a
distance r from the sun. (b) Let L represent the luminosity of the
sun, equal to the rate at which it emits energy in electromagnetic
radiation. Find the force exerted on the (totally absorbing) particle
due to solar radiation pressure, remembering that the intensity of
the sun’s radiation also depends on the distance r. The relevant
area is the cross-sectional area of the particle, not the total surface
area of the particle. As part of your answer, explain why this is so.
(c) The mass density of a typical interplanetary dust particle is
about Find the particle radius R such that the gravita-
tional and radiation forces acting on the particle are equal in mag-
nitude. The luminosity of the sun is Does your
answer depend on the distance of the particle from the sun? Why
or why not? (d) Explain why dust particles with a radius less than

3.9 * 1026 W.

3000 kg>m3.

r.

3.9 * 1026 W.

100 m2.

that found in part (c) are unlikely to be found in the solar system.
[Hint: Construct the ratio of the two force expressions found in
parts (a) and (b).]

CHALLENGE PROBLEMS
32.56 ... CALC Electromagnetic waves propagate much differ-
ently in conductors than they do in dielectrics or in vacuum. If the
resistivity of the conductor is sufficiently low (that is, if it is a suf-
ficiently good conductor), the oscillating electric field of the wave
gives rise to an oscillating conduction current that is much larger
than the displacement current. In this case, the wave equation for an
electric field propagating in the 
within a conductor is

where is the permeability of the conductor and is its resistivity.
(a) A solution to this wave equation is

where Verify this by substituting into the
above wave equation. (b) The exponential term shows that the elec-
tric field decreases in amplitude as it propagates. Explain why this
happens. (Hint: The field does work to move charges within the con-
ductor. The current of these moving charges causes heating
within the conductor, raising its temperature. Where does the energy
to do this come from?) (c) Show that the electric-field amplitude
decreases by a factor of in a distance and cal-
culate this distance for a radio wave with frequency 
in copper (resistivity permeability 
Since this distance is so short, electromagnetic waves of this fre-
quency can hardly propagate at all into copper. Instead, they are
reflected at the surface of the metal. This is why radio waves can-
not penetrate through copper or other metals, and why radio recep-
tion is poor inside a metal structure.
32.57 ... CP Electromagnetic radiation is emitted by accelerat-
ing charges. The rate at which energy is emitted from an accelerat-
ing charge that has charge q and acceleration a is given by

where c is the speed of light. (a) Verify that this equation is dimen-
sionally correct. (b) If a proton with a kinetic energy of 6.0 MeV is
traveling in a particle accelerator in a circular orbit of radius 0.750 m,
what fraction of its energy does it radiate per second? (c) Consider
an electron orbiting with the same speed and radius. What fraction
of its energy does it radiate per second?
32.58 ... CP The Classical Hydrogen Atom. The electron in a
hydrogen atom can be considered to be in a circular orbit with a
radius of 0.0529 nm and a kinetic energy of 13.6 eV. If the electron
behaved classically, how much energy would it radiate per second
(see Challenge Problem 32.57)? What does this tell you about the
use of classical physics in describing the atom?
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Chapter Opening Question ?
Metals are reflective because they are good conductors of electric-
ity. When an electromagnetic wave strikes a conductor, the electric
field of the wave sets up currents on the conductor surface that
generate a reflected wave. For a perfect conductor, this reflected
wave is just as intense as the incident wave. Tarnished metals are
less shiny because their surface is oxidized and less conductive;
polishing the metal removes the oxide and exposes the conducting
metal.

Test Your Understanding Questions
32.1 Answers: (a) no, (b) no A purely electric wave would have a
varying electric field. Such a field necessarily generates a magnetic
field through Ampere’s law, Eq. (29.20), so a purely electric wave
is impossible. In the same way, a purely magnetic wave is impossi-
ble: The varying magnetic field in such a wave would automatically
give rise to an electric field through Faraday’s law, Eq. (29.21).
32.2 Answers: (a) positive y-direction, (b) negative x-direction,
(c) positive y-direction You can verify these answers by using the
right-hand rule to show that in each case is in the direction
of propagation, or by using the rule shown in Fig. 32.9.

E
S

: B
S

32.3 Answer: (iv) In an ideal electromagnetic plane wave, at any
instant the fields are the same anywhere in a plane perpendicular
to the direction of propagation. The plane wave described by
Eqs. (32.17) is propagating in the x-direction, so the fields depend
on the coordinate and time but do not depend on the coordi-
nates y and z.
32.4 Answers: (a) (i) and (iii), (b) (ii) and (iv), (c) (i) and (iii),
(d) (ii) and (iv) Both the energy density and the Poynting vector
magnitude S are maximum where the and fields have their
maximum magnitudes. (The directions of the fields doesn’t matter.)
From Fig. 32.13, this occurs at and Both and 
have a minimum value of zero; that occurs where and are both
zero. From Fig. 32.13, this occurs at and 
32.5 Answer: no There are places where at all times (at the
walls) and the electric energy density is always zero. There
are also places where at all times (on the plane midway
between the walls) and the magnetic energy density is
always zero. However, there are no locations where both and 
are always zero. Hence the energy density at any point in the
standing wave is always nonzero.

Bridging Problem
Answer: 0.0368 V
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APPENDIX A

THE INTERNATIONAL SYSTEM OF UNITS

The Système International d’Unités, abbreviated SI, is the system developed by the General Conference on Weights and
Measures and adopted by nearly all the industrial nations of the world. The following material is adapted from the
National Institute of Standards and Technology (http://physics.nist.gov/cuu).

Quantity Name of unit Symbol

SI base units

length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

SI derived units Equivalent units

area square meter
volume cubic meter
frequency hertz Hz
mass density (density) kilogram per cubic meter
speed, velocity meter per second
angular velocity radian per second
acceleration meter per second squared
angular acceleration radian per second squared
force newton N
pressure (mechanical stress) pascal Pa
kinematic viscosity square meter per second
dynamic viscosity newton-second per square meter
work, energy, quantity of heat joule J
power watt W J s
quantity of electricity coulomb C
potential difference, electromotive force volt V J C, W A
electric field strength volt per meter V m N C
electric resistance ohm V A
capacitance farad F
magnetic flux weber Wb
inductance henry H
magnetic flux density tesla T
magnetic field strength ampere per meter A m
magnetomotive force ampere A
luminous flux lumen lm
luminance candela per square meter
illuminance lux lx
wave number 1 per meter
entropy joule per kelvin J K
specific heat capacity joule per kilogram-kelvin
thermal conductivity watt per meter-kelvin W>m # K

J>kg # K
>

m-1
lm>m2

cd>m2
cd # sr

>
Wb>m2
V # s>A
V # s
A # s>V
>Æ
>>

>>
A # s
>

N # m
N # s>m2
m2>s

N>m2
kg # m>s2

rad>s2
m>s2
rad>s
m>s
kg>m3

s-1
m3
m2

A-1

http://physics.nist.gov/cuu


Quantity Name of unit Symbol Equivalent units

radiant intensity watt per steradian W sr
activity (of a radioactive source) becquerel Bq
radiation dose gray Gy J kg
radiation dose equivalent sievert Sv J kg

SI supplementary units

plane angle radian rad
solid angle steradian sr

>
>

s-1
>

Definitions of SI Units

meter (m) The meter is the length equal to the distance
traveled by light, in vacuum, in a time of 1 299,792,458
second.

kilogram (kg) The kilogram is the unit of mass; it is
equal to the mass of the international prototype of the kilo-
gram. (The international prototype of the kilogram is a
particular cylinder of platinum-iridium alloy that is pre-
served in a vault at Sévres, France, by the International
Bureau of Weights and Measures.)

second (s) The second is the duration of 9,192,631,770
periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the
cesium-133 atom.

ampere (A) The ampere is that constant current that, if
maintained in two straight parallel conductors of infinite
length, of negligible circular cross section, and placed 
1 meter apart in vacuum, would produce between these
conductors a force equal to newton per meter of
length.

kelvin (K) The kelvin, unit of thermodynamic tempera-
ture, is the fraction 1 273.16 of the thermodynamic tem-
perature of the triple point of water.

ohm (Ω) The ohm is the electric resistance between two
points of a conductor when a constant difference of poten-
tial of 1 volt, applied between these two points, produces
in this conductor a current of 1 ampere, this conductor not
being the source of any electromotive force.

coulomb (C) The coulomb is the quantity of electricity
transported in 1 second by a current of 1 ampere.

candela (cd) The candela is the luminous intensity, in a
given direction, of a source that emits monochromatic radi-
ation of frequency hertz and that has a radiant
intensity in that direction of 1 683 watt per steradian.

mole (mol) The mole is the amount of substance of a
system that contains as many elementary entities as there
are carbon atoms in 0.012 kg of carbon 12. The elementary
entities must be specified and may be atoms, molecules,
ions, electrons, other particles, or specified groups of such
particles.

>
540 * 1012

>

2 * 10-7

>
newton (N) The newton is that force that gives to a mass
of 1 kilogram an acceleration of 1 meter per second per
second.

joule (J) The joule is the work done when the point of
application of a constant force of 1 newton is displaced a
distance of 1 meter in the direction of the force.

watt (W) The watt is the power that gives rise to the
production of energy at the rate of 1 joule per second.

volt (V) The volt is the difference of electric potential
between two points of a conducting wire carrying a con-
stant current of 1 ampere, when the power dissipated
between these points is equal to 1 watt.

weber (Wb) The weber is the magnetic flux that, linking
a circuit of one turn, produces in it an electromotive force
of 1 volt as it is reduced to zero at a uniform rate in 
1 second.

lumen (lm) The lumen is the luminous flux emitted in a
solid angle of 1 steradian by a uniform point source having
an intensity of 1 candela.

farad (F) The farad is the capacitance of a capacitor
between the plates of which there appears a difference of
potential of 1 volt when it is charged by a quantity of elec-
tricity equal to 1 coulomb.

henry (H) The henry is the inductance of a closed cir-
cuit in which an electromotive force of 1 volt is produced
when the electric current in the circuit varies uniformly at
a rate of 1 ampere per second.

radian (rad) The radian is the plane angle between two
radii of a circle that cut off on the circumference an arc
equal in length to the radius.

steradian (sr) The steradian is the solid angle that, hav-
ing its vertex in the center of a sphere, cuts off an area of
the surface of the sphere equal to that of a square with
sides of length equal to the radius of the sphere.

SI Prefixes To form the names of multiples and submul-
tiples of SI units, apply the prefixes listed in Appendix F.

A-2
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APPENDIX B

USEFUL MATHEMATICAL RELATIONS

Algebra

Logarithms: If log then 

If ln then 

Quadratic formula: If

Binomial Theorem

Trigonometry
In the right triangle ABC,

A B

C

yr

x

a

x2 + y2 = r 2.

1a + b2n = an + nan-1b +
n1n - 12an-2b2

2!
+

n1n - 121n - 22an-3b3

3!
+ Á

x =
-b � 2b2 - 4ac

2a
.ax2 + bx + c = 0,

ln 1an2 = n ln aln a - ln b = ln 1a>b2ln a + ln b = ln 1ab2a = ex.a = x,

log 1an2 = n log alog a - log b = log 1a>b2log a + log b = log 1ab2a = 10x.a = x,

a1x-y2 =
ax

aya1x+y2 = axaya-x =
1

ax

Identities:

cosa + cosb = 2cos 1
21a + b2cos 1

21a - b2cos1a � p>22 = �sina

sina + sinb = 2sin 1
21a + b2cos 1

21a - b2sin1a � p>22 = �cos a

cos1a � b2 = cosacosb � sina sinbcos1-a2 = cosa

sin1a � b2 = sinacosb � cosa sinbsin1-a2 = -sina

cos 1
2a =

A

1 + cosa

2
sin 1

2a =
A

1 - cosa

2

= 1 - 2sin2a

cos2a = cos2a - sin2a = 2cos2a - 1sin2a = 2 sinacosa

tana =
sina
cosa

sin2a + cos2a = 1

For any triangle (not necessarily a right triangle) with sides a, b,
and c and angles , , and :

Law of sines:

Law of cosines: c2 = a2 + b2 - 2abcosg

sina
a

=
sinb

b
=

sing

c

gba

A9

g

B9

C9

ab

c
a b

A¿B¿C¿

Definitions of the trigonometric functions:
tana = y>xcosa = x>rsina = y>r

Geometry
Circumference of circle of radius r:
Area of circle of radius r:
Volume of sphere of radius r: V = 4pr 3>3

A = pr 2
C = 2pr Surface area of sphere of radius r:

Volume of cylinder of radius r and height h: V = pr 2h
A = 4pr 2



Calculus

Derivatives:

Integrals:

Power series (convergent for range of x shown):

cos x = 1 -
x2

2!
+

x4

4!
-

x6

6!
+ Á 1all x2

ln11 + x2 = x -
x2

2
+

x3

3
-

x4

4
+ Á 1 ƒ x ƒ 6 12sin x = x -

x3

3!
+

x5

5!
-

x7

7!
+ Á 1all x2

ex = 1 + x +
x2

2!
+

x3

3!
+ Á 1all x2+ Á 1 ƒ x ƒ 6 12

tan x = x +
x3

3
+

2x2

15
+

17x7

315
+ Á 1 ƒ x ƒ 6 p>2211 + x2n = 1 + nx +

n1n - 12x2

2!
+

n1n - 121n - 22

3!
x3

L
xdx

1x2 + a223>2
= -

1

2x2 + a2

L
dx

1x2 + a223>2
=

1

a2

x

2x2 + a2L
dx

x2 + a2 =
1
a

arctan
x

aL
dx

2x2 + a2
= ln Ax + 2x2 + a2 B

L
dx

2a2 - x2
= arcsin

x

aLcos axdx =
1
a

sin axLsin axdx = -
1
a

cos ax

Leax dx =
1
a

eax

L
dx

x
= ln xLxn dx =

xn+1

n + 1
 1n Z -12

d

dx
cos ax = -a sin ax

d

dx
sin ax = acos ax

d

dx
eax = aeaxd

dx
ln ax =

1
x

d

dx
xn = nxn-1

APPENDIX C

THE GREEK ALPHABET

Name Capital Lowercase Name Capital Lowercase Name Capital Lowercase

Alpha Iota Rho
Beta Kappa Sigma
Gamma Lambda Tau
Delta Mu Upsilon
Epsilon Nu Phi
Zeta Xi Chi
Eta Omicron Psi
Theta Pi Omega vÆpßu™

c°o�h�
x�j�z�
f£n	P

y�m�d¢
tl¶g≠
sgk�b�
r�i�a�
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APPENDIX D

PERIODIC TABLE OF THE ELEMENTS

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period

1
H
1.008

2
He
4.003

3
Li
6.941

11
Na
22.990

19
K
39.098

37
Rb
85.468

55
Cs
132.905

87
Fr
(223)

4
Be
9.012

12
Mg
24.305

20
Ca
40.078

38
Sr
87.62

56
Ba
137.327

88
Ra
(226)

21
Sc
44.956

39
Y
88.906

71
Lu
174.967

103
Lr
(262)

22
Ti
47.867

40
Zr
91.224

72
Hf
178.49

104
Rf
(261)

23
V
50.942

41
Nb
92.906

73
Ta
180.948

105
Db
(262)

24
Cr
51.996

42
Mo
95.94

74
W
183.84

106
Sg
(266)

25
Mn
54.938

43
Tc
(98)

75
Re
186.207

107
Bh
(264)

26
Fe
55.845

44
Ru
101.07

76
Os
190.23

108
Hs
(269)

27
Co
58.933

45
Rh
102.906

77
Ir
192.217

109
Mt
(268)

28
Ni
58.693

46
Pd
106.42

78
Pt
195.078

110
Ds
(271)

29
Cu
63.546

47
Ag
107.868

79
Au
196.967

111
Rg
(272)

30
Zn
65.409

48
Cd
112.411

80
Hg
200.59

112
Uub
(285)

113
Uut
(284)

5
B
10.811

13
Al
26.982

31
Ga
69.723

49
In
114.818

81
Tl
204.383

6
C
12.011

14
Si
28.086

32
Ge
72.64

50
Sn
118.710

82
Pb
207.2

114
Uuq
(289)

115
Uup
(288)

7
N
14.007

15
P
30.974

33
As
74.922

51
Sb
121.760

83
Bi
208.980

8
O
15.999

16
S
32.065

34
Se
78.96

52
Te
127.60

84
Po
(209)

116
Uuh
(292)

117
Uus
(294)

9
F
18.998

17
Cl
35.453

35
Br
79.904

53
I
126.904

85
At
(210)

10
Ne
20.180

18
Ar
39.948

36
Kr
83.798

54
Xe
131.293

86
Rn
(222)

118
Uuo

1

2

3

4

5

6

7

58
Ce
140.116

57
La
138.905

90
Th
(232)

89
Ac
(227)

59
Pr
140.908

91
Pa
(231)

60
Nd
144.24

92
U
(238)

61
Pm
(145)

93
Np
(237)

62
Sm
150.36

94
Pu
(244)

63
Eu
151.964

95
Am
(243)

64
Gd
157.25

96
Cm
(247)

65
Tb
158.925

97
Bk
(247)

66
Dy
162.500

98
Cf
(251)

67
Ho
164.930

99
Es
(252)

68
Er
167.259

100
Fm
(257)

69
Tm
168.934

101
Md
(258)

70
Yb
173.04

102
No
(259)

Lanthanoids

Actinoids

For each element the average atomic mass of the mixture of isotopes occurring in nature is shown. For elements having no stable iso-
tope, the approximate atomic mass of the longest-lived isotope is shown in parentheses. For elements that have been predicted but not
yet confirmed, no atomic mass is given. All atomic masses are expressed in atomic mass units 
equivalent to grams per mole .1g>mol2

11 u = 1.6605387821832 * 10-27 kg2,



Area

Volume

Time

Angle

Speed

1 furlong>fortnight = 1.662 * 10-4 m>s
1 mi>h = 1.466 ft>s = 0.4470 m>s = 1.609 km>h
1 km>h = 0.2778 m>s = 0.6214 mi>h
1 mi>min = 60 mi>h = 88 ft>s
1 ft>s = 0.3048 m>s
1 m>s = 3.281 ft>s

1 rev>min 1rpm2 = 0.1047 rad>s
1 revolution = 360° = 2p rad
1° = 0.01745 rad = p>180 rad
1 rad = 57.30° = 180°>p

1 y = 365.24 d = 3.156 * 107 s
1 d = 86,400 s
1 h = 3600 s
1 min = 60 s

1 gallon = 3.788 liters
1 ft3 = 0.02832 m3 = 28.32 liters = 7.477 gallons
1 liter = 1000 cm3 = 10-3 m3 = 0.03531 ft3 = 61.02 in.3

1 ft2 = 144 in.2 = 0.0929 m2
1 in.2 = 6.452 cm2
1 m2 = 104 cm2 = 10.76 ft2
1 cm2 = 0.155 in.2

1 light year = 9.461 * 1015 m
1 nautical mile = 6080 ft
1 Å = 10-10 m = 10-8 cm = 10-1 nm
1 mi = 5280 ft = 1.609 km
1 yd = 91.44 cm
1 ft = 30.48 cm
1 in. =  2.540 cm
1 cm = 0.3937 in.
1 m = 3.281 ft = 39.37 in.

Acceleration

Mass

Force

Pressure

Energy

Mass–Energy Equivalence

Power

1 Btu>h = 0.293 W
1 hp = 746 W = 550 ft # lb>s
1 W = 1 J>s

1 eV4 1.074 * 10-9 u
1 u4 931.5 MeV
1 kg4 8.988 * 1016 J

1 kWh = 3.600 * 106 J
1 eV = 1.602 * 10-19 J
1 Btu = 1055 J = 252 cal = 778 ft # lb
1 ft # lb = 1.356 J
1 cal = 4.186 J 1based on 15° calorie2
1 J = 107 ergs = 0.239 cal

1 mm Hg = 1 torr = 133.3 Pa
= 14.7 lb>in.2 = 2117 lb>ft2

1 atm = 1.013 * 105 Pa = 1.013 bar
1 lb>ft2 = 47.88 Pa
1 lb>in.2 = 6895 Pa
1 bar = 105 Pa
1 Pa = 1 N>m2 = 1.450 * 10-4 lb>in.2 = 0.209 lb>ft2

1 lb = 4.448 N = 4.448 * 105 dyn
1 N = 105 dyn = 0.2248 lb

1 kg has a weight of 2.205 lb when g = 9.80 m>s2
1 u = 1.661 * 10-27 kg
1 slug = 14.59 kg
1 g = 6.85 * 10-5 slug
1 kg = 103 g = 0.0685 slug

1 mi>h # s = 1.467 ft>s2
1 ft>s2 = 0.3048 m>s2 = 30.48 cm>s2
1 cm>s2 = 0.01 m>s2 = 0.03281 ft>s2
1 m>s2 = 100 cm>s2 = 3.281 ft>s2

UNIT CONVERSION FACTORS

Length

1 km = 1000 m = 0.6214 mi
1 m = 100 cm = 1000 mm = 106mm = 109 nm
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APPENDIX F

NUMERICAL CONSTANTS

Fundamental Physical Constants*

Name Symbol Value

Speed of light in vacuum c
Magnitude of charge of electron e
Gravitational constant G
Planck’s constant h
Boltzmann constant k
Avogadro’s number
Gas constant R
Mass of electron
Mass of proton
Mass of neutron
Permeability of free space
Permittivity of free space

8.987551787 Á * 109 N # m2>C21>4pP0

8.854187817 Á * 10-12 C2>N # m2P0 = 1>m0c2
4p * 10-7 Wb>A # mm0

1.6749272111842 * 10-27 kgmn

1.6726216371832 * 10-27 kgmp

9.109382151452 * 10-31 kgm e

8.3144721152 J>mol # K
6.022141791302 * 1023 molecules>molNA

1.38065041242 * 10-23 J>K
6.626068961332 * 10-34 J # s
6.674281672 * 10-11 N # m2>kg2
1.6021764871402 * 10-19 C
2.99792458 * 108 m>s

Other Useful Constants*

Mechanical equivalent of heat
Standard atmospheric pressure 1 atm
Absolute zero 0 K
Electron volt 1 eV
Atomic mass unit 1 u
Electron rest energy 0.510998910(13) MeV
Volume of ideal gas 22.413996(39) liter mol
Acceleration due to gravity (standard) g

*Source: National Institute of Standards and Technology (http://physics.nist.gov cuu). Numbers in parentheses show
the uncertainty in the final digits of the main number; for example, the number 1.6454(21) means 
Values shown without uncertainties are exact.

1.6454 � 0.0021.
>

9.80665 m>s2
>10°C and 1 atm2

mec
2

1.6605387821832 * 10-27 kg
1.6021764871402 * 10-19 J
-273.15°C
1.01325 * 105 Pa
4.186 J>cal 115° calorie2

A-7
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Astronomical Data†

Body Mass (kg) Radius (m) Orbit radius (m) Orbit period

Sun — —
Moon 27.3 d
Mercury 88.0 d
Venus 224.7 d
Earth 365.3 d
Mars 687.0 d
Jupiter 11.86 y
Saturn 29.45 y
Uranus 84.02 y
Neptune 164.8 y
Pluto‡ 247.9 y
†Source: NASA Jet Propulsion Laboratory Solar System Dynamics Group (http://ssd.jpl.nasa.gov), and P. Kenneth
Seidelmann, ed., Explanatory Supplement to the Astronomical Almanac (University Science Books, Mill Valley, CA,
1992), pp. 704–706. For each body, “radius” is its radius at its equator and “orbit radius” is its average distance from
the sun or (for the moon) from the earth.
‡In August 2006, the International Astronomical Union reclassified Pluto and other small objects that orbit the sun as
“dwarf planets.”

5.91 * 10121.15 * 1061.31 * 1022
4.50 * 10122.48 * 1071.02 * 1026
2.87 * 10122.56 * 1078.68 * 1025
1.43 * 10126.03 * 1075.68 * 1026
7.78 * 10116.91 * 1071.90 * 1027
2.28 * 10113.40 * 1066.42 * 1023
1.50 * 10116.38 * 1065.97 * 1024
1.08 * 10116.05 * 1064.87 * 1024
5.79 * 10102.44 * 1063.30 * 1023
3.84 * 1081.74 * 1067.35 * 1022

6.96 * 1081.99 * 1030

Prefixes for Powers of 10

Power of ten Prefix Abbreviation Pronunciation

yocto- y yoc-toe
zepto- z zep-toe
atto- a at-toe
femto- f fem-toe
pico- p pee-koe
nano- n nan-oe
micro- my-crow
milli- m mil-i
centi- c cen-ti
kilo- k kil-oe
mega- M meg-a
giga- G jig-a or gig-a
tera- T ter-a
peta- P pet-a
exa- E ex-a
zetta- Z zet-a
yotta- Y yot-a1024

1021
1018
1015
1012
109
106
103
10-2
10-3

m10-6
10-9
10-12
10-15
10-18
10-21
10-24

Examples:

1 gigahertz = 1 GHz = 109 Hz1 microkelvin = 1mK = 10-6 K

1 megawatt = 1 MW = 106 W1 nanocoulomb = 1 nC = 10-9 C

1 kilopascal = 1 kPa = 103 Pa1 picosecond = 1 ps = 10-12 s

1 millivolt = 1 mV = 10-3 V1 femtometer = 1 fm = 10-15 m
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ANSWERS TO ODD-NUMBERED
PROBLEMS
Chapter 1
1.1 a) 1.61 km b)
1.3 1.02 ns
1.5 5.36 L
1.7 31.7 y
1.9 a) 23.4 km L b) 1.4 tanks
1.11 9.0 cm
1.13 a) b) no
1.15 0.45%
1.17 a) no b) no c) no d) no e) no
1.19 106

1.21
1.23
1.25
1.27 7.8 km, 38° north of east
1.29 144 m, 41° south of west
1.31 , m, , Bx 5 7.50 mAy = -8.00Ax 5 0

104<
$70 million<
4 3 108<

<

1.1 3 1023%

/

3.28 3 103 ft

2.11 6.7 m s, 6.7 m s, 0, -40.0 m s, -40.0 m s, 
-40.0 m s, 0

2.13 a) no
b) (i) 12.8 m s2 (ii) 3.50 m s2

(iii) 0.718 m s2

2.15 a) 2.00 cm s, 50.0 cm, -0.125 cm s2

b) 16.0 s c) 32.0 s
d) 6.20 s, 1.23 cm s; 25.8 s,
-1.23 cm s; 36.4 s, -2.55 cm s

2.17 a) 0.500 m s2 b) 0, 1.00 m s2

2.19 a) 5.0 m s b) 1.43 m s2

2.21 a) 675 m s2 b) 0.0667 s
2.23 1.70 m
2.25 38 cm
2.27 a)

b) 1.6 ms c) no
2.29 a) (i) 5.59 m s2 (ii) 7.74 m s2

b) (i) 179 m (ii) 
2.31 a) 0, 6.3 m s2, -11.2 m s2

b) 100 m, 230 m, 320 m
2.33 a) 20.5 m s2 upward, 3.8 m s2 upward,

53.0 m s2 upward
b) 722 km

2.35 a) 2.94 m s b) 0.600 s
2.37 1.67 s
2.39 a) 33.5 m b) 15.8 m s
2.41 a) b) 0.190 s
2.43 a) 646 m b) 16.4 s, 112 m s
2.45 a) 249 m s2 b) 25.4

c) 101 m d) no (if a is constant)
2.47 0.0868 m s2

2.49 a) 3.3 s b) 9H
2.51 a) 467 m b) 110 m s

2.53 a) ,
x 5 1 0.25 m/s3 2 t 3 2 10.010 m/s4 2 t 4

vx = 10.75 m>s32t 2 - 10.040 m>s42t 3
/

/

/
/

t 5"2d/g
/

/

/
//

//
1.28 3 104 m

//

3.1 3 106 m/s2 5 3.2g

/
//

//
//

/

//
/

//

/
////

c) 5.4 m s, 297°; 2.4 m s2, 270°
d) speeding up and turning right

3.9 a) 0.600 m b) 0.385 m
c) m s, y -3.43 m s, 3.60 m s,
72.2° below the horizontal

3.11 3.32 m
3.13 a) 30.6 m s b) 36.3 m s
3.15 1.28 m s2

3.17 a) 0.683 s, 2.99 s
b) 24.0 m s, 11.3 m s; 24.0 m s, -11.3 m s
c) 30.0 m s, 36.9° below the horizontal

3.19 a) 1.5 m b) -0.89 m s
3.21 a) 13.6 m b) 34.6 m s c) 103 m
3.23 a) 296 m b) 176 m c) 198 m

d) (i) x 15.0 m s, y 58.8 m s
(ii) x 15.0 m s, y 78.8 m s

3.25 a) 0.034 m s2 0.0034g b) 1.4 h
3.27 140 m s 310 mph
3.29 a) 3.50 m s2 upward

b) 3.50 m s2 downward
c) 12.6 s

3.31 a) 14 s b) 70 s
3.33 0.36 m s, 52.5° south of west
3.35 a) 4.7 m s, 25° south of east

b) 190 s c) 380 m
3.37 b) -7.1 m s, -42 m s

c) 43 m s, 9.6° west of south
3.39 a) 24° west of south b) 5.5 h
3.41 a) A 0, B 2.00 m s2, C 50.0 m,

D 0.500 m s3

b) , aS � 14.00 m>s22ınvS � 0
/5

=>==

/
//

/
/

/
/
5/

5/
/5 2v/5v

/5 2v/5v

/
/

/
////

/
//

//=v/vx = 1.10

//

c) x � 40.0 m s, y � 150 m s, 155 m s//v/v

x = 0, 2pR, 4pR, . . . ;

d)
3.43 2b 3c
3.45 4.41 s
3.47 a) 123 m

b) 280 m
3.49 22 m s
3.51 31 m s
3.53 274 m
3.55 795 m
3.57 33.7 m
3.59 a) 42.8 m s b) 42.0 m
3.61 a) b) 30.0° c) 6.93h
3.63 a) 1.50 m s

b) 4.66 m
3.65 a) 6.91 m c) no
3.67 a) 17.8 m s

b) in the river, 28.4 m horizontally from his
launch point

3.69 a) 81.6 m b) in the cart
c) 245 m d) 53.1°

3.71 a) 49.5 m s b) 50 m
3.73 a) 2000 m b) 2180 m
3.75 °
3.77 61.2 km h, 140 km h//

�25.4

/

/

/
"2gh

/

/
/

/
rS � 1200 m2ıN � 1550 m2≥N

; ax = Rv2sinvt,y = Rv sinvtv

c) t = 0, 2p>v, 4p>v, . . . ; ay = Rv2cosvt

in the �y-direction d) noy = 0; a = Rv2

3.79 b) , x = Rv11 - cosvt2v

3.81 a) 44.7 km h, 26.6° west of south
b) 10.5° north of west

3.83 7.39 m s, 12.4° north of east
3.85 a) 0.659 s b) (i) 9.09 m s (ii) 6.46 m s

c) 3.00 m, 2.13 m
3.87 a) 49.3°, 17.5° for level ground b) -17.0°
3.89 a) 1.5 km h b) 3.5 km h

Chapter 4
4.1 a) 0° b) 90° c) 180°
4.3 3.15 N
4.5 494 N, 31.8°

//

//
/

/

Chapter 2
2.1 25.0 m
2.3 1 hr 10 min
2.5 a) 0.312 m s b) 1.56 m s
2.7 a) 12.0 m s

b) (i) 0 (ii) 15.0 m s (iii) 12.0 m s
c) 13.3 m s

2.9 a) 2.33 m s, 2.33 m s
b) 2.33 m s, 0.33 m s//

//
/

//
/

//

b) c) 8.83, yes
1.55 a) b)
1.57 a) 2200 g b) 2.1 m
1.59 a) 2.8 0.3 cm3 b) 170 20
1.61
1.63 , 
1.65 196 N, 392 N, 57.7° east of north; 360 N, 

720 N, 57.7° east of south
1.67 b) Ax 3.03 cm, Ay 8.10 cm c) 8.65 cm,

69.5°
1.69 144 m, 41° south of west
1.71 954 N, 16.8° above the forward direction
1.73 3.30 N
1.75 a) 45.5 N b) 139°
1.77 a) (87, 258) b) 136, 25° below straight left
1.79 160 N, 13° below horizontal
1.81 911 m, 8.9° west of south
1.83 29.6 m, 18.6° east of south
1.85 26.2 m, 34.2° east of south
1.87 124°
1.89 170 m2

1.91 a) 54.7° b) 35.3°
1.93 28.0 m
1.95 Cx 8.0, Cy 6.1
1.97 b) 72.2
1.99 38.5 yd, 24.6° to the right of downfield
1.101 a) 76.2 ly b) 129°

==

==

$3 3 106 per person$9 3 1014
<6 3 1027

6261

2.57rE1.64 3 104 km
-5.00ın � 2.00≥n � 7.00kn

, , 
,

1.33 a) 8.12 m b) 15.3 m
1.35 a) 9.01 m, 33.8° b) 9.01 m, 33.7°

c) 22.3 m, 250° d) 22.3 m, 70.3°
1.37 3.39 km, 31.1° north of west
1.39 a) 2.48 cm, 18.4° b) 4.09 cm, 83.7°

c) 4.09 cm, 264°

1.41 , 

,

,

1.43 a) ,

b)
c) 19.2 m, 51.2°

1.45 a) �104 m2 b) �148 m2 c) 40.6 m2

1.47 a) 165° b) 28° c) 90°
1.49 a) b)
1.51 a) 6.62 m b)
1.53 a) A 5.38, B 4.365=

5.55 m2kn22
63.9 m2kn-63.9 m2kn

C
S

� 112.0 m2ın � 114.9 m2≥n
B
S

� 1�2.08 m2ın � 1�1.20 m2≥n
A
S

� 11.23 m2 ın � 13.38 m2≥n

D
S

� 1�7.992ın � 16.02 m2≥n
C
S

� 1�10.9 m2ın � 1�5.07 m2≥n
B
S

� 17.50 m2ın � 113.0 m2≥n
A
S

� �18.00 m2≥n

2
Dy 5 6.02 mDx 5 27.99 m

Cy 5 25.07 mBy 5 13.0 m, Cx 5 210.9 m

b) 39.1 m s
2.55 a) 10.0 m

b) (i) 8.33 m s (ii) 9.09 m s (iii) 9.52 m s
2.57 b) 0.627 s, 1.59 s

c) negative at 0.627 s, positive at 1.59 s
d) 1.11 s e) 2.45 m f ) 2.00 s, 0

2.59 250 km
2.61 a) 197 m s b) 169 m s
2.63 a) 82 km h b) 31 km h
2.65 a) 3.5 m s2 b) 0 c) 1.5 m s2

2.67 a) 92.0 m b) 92.0 m
2.69 50.0 m
2.71 4.6 m s2

2.73 a) 6.17 s b) 24.8 m
c) auto: 21.0 m s, truck: 13.0 m s

2.75 a) 7.85 cm s b) 5.00 cm s
2.77 a) 15.9 s b) 393 m c) 29.5 m s
2.79 a) -4.00 m s b) 12.0 m s
2.81 a) 2.64H b) 2.64T
2.83 a) no

b) yes, 14.4 m s, not physically attainable
2.85 a) 6.69 m s b) 4.49 m c) 1.42 s
2.87 a) 7.7 m s b) 0.78 s c) 0.59 s d) 1.3 m
2.89 a) 380 m b) 184 m
2.91 a) 20.5 m s b) yes
2.93 a) 945 m b) 393 m
2.95 a) car A b) 2.27 s, 5.73 s

c) 1.00 s, 4.33 s d) 2.67 s
2.97 a) 9.55 s, 47.8 m

b) 1.62 m s d) 8.38 m s
e) no
f) 3.69 m s, 21.7 s, 80.0 m

2.99 a) 8.18 m s b) (i) 0.411 m (ii) 1.15 km
c) 9.80 m s d) 4.90 m s

Chapter 3
3.1 a) 1.4 m s, -1.3 m s

b) 1.9 m s, 317°
3.3 a) 7.1 cm s, 45°

b) 5.0 cm s, 90°; 7.1 cm s, 45°; 
11 cm s, 27°/

//
/

/
//

//
/

/

//

/

/
/

/

//
/

//
//

/

//
//
//

///

/

3.5 b) -8.67 m s2, -2.33 m s2

c) 8.98 m s2, 195°
3.7 b) , aS � �2b≥nvS � aın � 2bt≥n

/
//



4.7 46.7 N, opposite to the motion of the skater
4.9 16.0 kg
4.11 a) 3.12 m, 3.12 m s

b) 21.9 m, 6.24 m s
4.13 a) 45.0 N, between 2.0 s and 4.0 s

b) between 2.0 s and 4.0 s
c) 0 s, 6.0 s

4.15 a) A 100 N, B 12.5 N s2

b) (i) 21.6 N, 2.70 m s2 (ii) 134 N, 16.8 m s2

c) 26.6 m s2

4.17 2940 N
4.19 a) 4.49 kg b) 4.49 kg, 8.13 N
4.21 825 N, blocks
4.23 20 N
4.25
4.27 b) yes
4.29 a) yes b) no
4.31 b) 142 N
4.33 2.03 s
4.35 1840 N, 135°
4.37 a) 17 N, 90° clockwise from the +x-axis

b) 840 N
4.39 a) 4.85 m s

b) 16.2 m s2 upward
c) 1470 N upward (on him), 2360 N downward
(on ground)

4.41 a) 153 N
4.43 a) 2.50 m s2 b) 10.0 N

c) to the right, F > T
d) 25.0 N

4.45 a) 4.4 m b) 300 m s
c) (i) (ii) 

4.47 a) T � mg
b) 79.6 N

4.49 b) 0.049 N c) 410mg
4.51 a) 7.79 m s

b) 50.6 m s2 upward
c) 4530 N upward, 6.16mg

4.53 a) w b) 0 c) w 2
4.55 b) 1395 N
4.57 a) 4.34 kg

b) 5.30 kg
4.59 Fx(t) 6mBt
4.61 7.78 m

Chapter 5
5.1 a) 25.0 N b) 50.0 N
5.3 a) 990 N, 735 N

b) 926 N
5.5 48°
5.7 a) TA 0.732w, TB 0.897w, TC w

b) TA 2.73w, TB 3.35w, TC w
5.9 a) 337 N b) 343 N
5.11 a) b) 5w

c) 8.4 s
5.13 a) 4610 m s2 470g

b) 471w
c) 0.0187 s

5.15 b) 2.96 m s2 c) 191 N
5.17 b) 2.50 m s2 c) 1.37 kg

d) 0.75mg
5.19 a) 0.832 m s2 b) 17.3 s
5.21 a) 3.4 m s (c) 2.2w
5.23 a) 14.0 m

b) 18.0 m s
5.25 50°
5.27 a) 22 N b) 3.1 m
5.29 a) 0.710, 0.472 b) 258 N

c) (i) 51.8 N (ii) 4.97 m s2

5.31 a) 57.1 N
b) 146 N up the ramp

5.33 a) 54.0 m b) 16.3 m s
5.35 a) b)

5.37 a) 0.218 m s
b) 11.7 N

5.39 a)

b)
5.41 a) 0.44 kg m b) 42 m s
5.43 a) 3.61 m s b) bottom c) 3.33 m s
5.45 a) 21.0°, no b) 11,800 N; 23,600 N
5.47 1410 N, 8370 N

//
//

1/tanu

mkmg

cosu 2 mk sinu

/
mkmAgmk 1mA 1 mB 2g

/

/

/

/
/

/
/

=9.70 * 105 N
=>

1.10 * 108 N

===
===

2=

/

/
/

9.0 3 103 N2.7 3 104 N 
/

/

/
/

7.4 3 10223 m/s2

/
//

/==

/
/

5.49 a) 1.5 rev min
b) 0.92 rev min

5.51 a) 38.3 m s = 138 km h
b) 3580 N

5.53 2.42 m s
5.55 a) 1.73 m s2

c) 0.0115 N upward
d) 0.0098 N

5.57 a) rope making 60° angle b) 6400 N
5.59 a) 470 N b) 163 N
5.61 762 N
5.63 a) (i) -3.80 m s (ii) 24.6 m s

b) 4.36 m c) 2.45 s
5.65 a) 11.4 N b) 2.57 kg
5.67 10.4 kg
5.69 0.0259 (low pressure), 0.00505 (high pressure)
5.71 a)

b)
c)

5.73 a) 1.80 N b) 2.52 N
5.75 a) = 62mg

b) , at t = 1.2 ms
c) 1.2 m s

5.77 920 N
5.79 a) 11.5 m s b) 7.54 m s
5.81 0.40

5.83 a) , increase

b) 0.63 m
c) will not move for any value of d

5.85 a) 88.0 N northward
b) 78 N southward

5.87 a) 294 N, 152 N, 152 N b) 40.0 N
5.89 3.0 N
5.91 a) 12.9 kg

b) TAB 47.2 N, TBC 101 N

5.93 , 

5.95 1.46 m above the floor
5.97 g μs

5.99 b) 0.452
5.101 0.34
5.103 b) 8.8 N (c) 31.0 N

d) 1.54 m s2

5.105 a) moves up
b) remains constant
c) remains constant
d) slows down at the same rate as the monkey

5.107 a) 6.00 m s2

b) 3.80 m s2

c) 7.36 m s
d) 8.18 m s
e) 7.78 m, 6.29 m s, 1.38 m s2

f) 3.14 s
5.109 a) 0.015, 0.36 

b) 29 m s

c) t

5.111 a) y

5.113 a) 120 N
b) 3.79 m s

5.115 b) 0.28 c) no
5.117 a) right b) 120 m
5.119 a) 81.1° b) no

c) The bead rides at the bottom of the hoop.

5.121 a)

b) 14.0°

5.123

5.125 a)

b)

c)

d)

e) g
4m 1m 2m 3

4m 1m 2 1 m 2m 3 1 m 1m 3

g
4m1m2 - 3m1m3 + m2m3

4m1m2 + m2m3 + m1m3

g
4m 1m 2 2 3m 2m 3 1 m 1m 3

4m 1m 2 1 m 2m 3 1 m 1m 3

aB = -a3

g
24m 1m 2 1 m 2m 3 1 m 1m 3

4m 1m 2 1 m 2m 3 1 m 1m 3

F 5 1M 1 m 2g tana

u = tan-11mk2,

F 5
mkw

cosu 1 mk sinu

/

1t2 = v0e-kt>m + vt11 - e-kt>m2v

5"sinb 2 10.015 2 cosbv/v
/

N # s2/m2

//
/
/
/
/

/

/

a2 5
m 2g

4m 1 1 m 2
a1 5

2m 2g

4m 1 1 m 2

==

g
mB + m rope1d>L2

mA + mB + m rope

//

/
2.9 3 1024 N
1.3 3 1024 N

m 1 1 sina 1 ms cosa 2
m 1 1 sina 2 ms cosa 2 # m 2 #

m 1 1 sina 2 mk cosa 2
m 1 1 sina 1 mk cosa 2

//

/
/

//
/

/ f )

g) All the accelerations are zero, TA m2g,
TC 2m2g.

5.127

Chapter 6
6.1 a) 3.60 J b) -0.900 J

c) 0 d) 0
e) 2.70 J

6.3 a) 74 N b) 333 J
c) -330 J d) 0, 0
e) 0

6.5 a) -1750 J b) no
6.7 a) (i) 9.00 J (ii) -9.00 J

b) (i) 0 (ii) 9.00 J (iii) -9.00 J (iv) 0
c) zero for each block

6.9 a) (i) 0 (ii) 0
b) (i) 0 (ii) -25.1 J

6.11 a) 324 J b) -324 J
c) 0

6.13 a) 36,000 J b) 4
6.15 a) b) 2.4
6.17 a) 7.50 N b) (i) 9.00 J (ii) 5.40 J

c) 14.4 J, same d) 2.97 m s
6.19 a) 43.2 m s b) 101 m s

c) 5.80 m d) 3.53 m s
e) 7.35 m

6.21
6.23 32.0 N
6.25 a) 4.48 m s b) 3.61 m s
6.27 a) 4.96 m s b) 1.43 m s2, 4.96 m s

6.29 a) b) (i) 1
2 (ii) 4 (iii) 2

6.31 a) 40.0 N m b) 0.456 N
6.33 b) 14.4 cm, 13.6 cm, 12.8 cm
6.35 a) 2.83 m s b) 3.46 m s
6.37 8.5 cm
6.39 a) 1.76 b) 0.666 m s
6.41 a) 4.0 J b) 0

c) -1.0 J d) 3.0 J
e) -1.0 J

6.43 a) 2.83 m s b) 2.40 m s
6.45 a) 0.0565 m b) 0.57 J, no
6.47 8.17 m s
6.49 a) 360,000 J b) 100 m s
6.51
6.53 745 W 1 hp
6.55 a) 84.6 min b) 22.7 min
6.57 29.6 kW
6.59 0.20 W
6.61 877 J
6.63 a) 532 J b) -315 J

c) 0 d) -202 J
e) 15 J f) 1.2 m s

6.65 a) 987 J b) 3.02 s
6.67 a) b) 4800 J
6.69 a) 1.8 m s 4.0 mph

b) 180 m s2 18g, 900 N

6.71 a) , negative

b) , positive

c) same magnitude but opposite signs because
the net work is zero

6.73 a) 5.11 m b) 0.304
c) 10.3 m

6.75 a) 0.11 N b) 7.1 N c) 0.33 J
6.77 a) 2.56 m s b) 3.52 N c) 13.1 J
6.79
6.81 1.1 m
6.83 a) , 8.16 m
6.85 a) 0.600 m b) 1.50 m s
6.87 0.786
6.89 1.3 m
6.91 a) b)

c) 3.99 kW
6.93 3.6 h
6.95 a) b) 1.46 W
6.97 a) 2.4 MW b) 61 MW c) 6.0 MW
6.99 a) 513 W b) 354 W c) 52.1 W

1.26 3 105 J

1.30 3 105 J1.10 3 105 J

/
1.02 3 104 N/m

6.3 3 104 N/m
/

ka
1

x1
-

1

x2
b

k 1 1

x 2
2

1

x 1
2
</
5/

2.59 3 1012 J

/

//
<

3.9 3 1013P
/

/

//

/

//

/
/

v 2
0

2mkg

///
//

"2gh 11 1 mk/tana 2

/
//

/

1.0 * 1016 J

cos2b
=

=

g
8m 1m 2m 3

4m 1m 2 1 m 2m 3 1 m 1m 3

A-10 Answers to Odd-Numbered Problems



6.101 a) 358 N b) 47.1 hp c) 4.06 hp
d) 2.03%

6.103 a) b) 6.1 m s

c) 3.9 m s d) 0.40 J, 0.60 J

Chapter 7
7.1 a) b)
7.3 a) 820 N b) (i) 0 (ii) 740 J
7.5 a) 24.0 m s b) 24.0 m s c) part (b)
7.7 a) 2.0 m s b) , 2.0 J kg

c) 200 m, 63 m s d) 5.9 J kg
7.9 a) (i) 0 (ii) 0.98 J b) 2.8 m s

c) only gravity is constant d) 5.1 N
7.11 -5400 J
7.13 a) 880 J b) -157 J c) 470 J d) 253 J

e) 3.16 m s2, 7.11 m s, 253 J
7.15 a) 80.0 J b) 5.0 J
7.17 a) (i) 4U0 (ii) U0 4

b) (i) (ii) 
7.19 a) 6.32 cm b) 12 cm
7.21 �0.092 m
7.23 a) 3.03 m s, as it leaves the spring

b) 95.9 m s2, when the spring has its maximum
compression

7.25 a) b) 0.128 m
7.27 a) -308 J b) -616 J

c) nonconservative
7.29 a) -3.6 J b) -3.6 J

c) -7.2 J d) nonconservative
7.31 a) -59 J b) -42 J

c) -59 J d) nonconservative
7.33 a) 8.41 m s b) 638 J/

4.46 3 105 N/m
/
/

x 0/"2x 0"2
/

//

/
//

/9.8 * 10-7 J/
//

-7.7 * 105 J6.6 3 105 J

/
/

Mv2

6

Chapter 8
8.1 a) 1.20 * 105 kg # m>s

9.7 a) 4 rad, 2.00 rad s, -0.139 rad s3 b) 0
c) 19.5 rad, 9.36 rad s

9.9 a) 2.25 rad s b) 4.69 rad
9.11 a) 24.0 s b) 68.8 rev
9.13 10.5 rad s
9.15 a) 300 rpm b) 75.0 s, 312 rev
9.17 9.00 rev
9.19 a) b)

c) d) 464 m s
e) 0.0337 m s2, 0

9.21 a) 15.1 m s2 b) 15.1 m s2

9.23 a) 0.180 m s2, 0, 0.180 m s2

b) 0.180 m s2, 0.377 m s2, 0.418 m s2

c) 0.180 m s2, 0.754 m s2, 0.775 m s2

9.25 0.107 m, no
9.27 a) 0.831 m s b) 109 m s2

9.29 a) 2.29 b) 1.51 c) 15.7 m s, 108g
9.31 a) (i) 0.469 (ii) 0.117 

(iii) 0
b) (i) 0.0433 (ii) 0.0722 
c) (i) 0.0288 (ii) 0.0144 

9.33 a) 2.33 b) 7.33 
c) 0 d) 1.25 

9.35 0.193 
9.37 8.52 
9.39 5.61 m s>

kg # m2
kg # m2

kg # m2
kg # m2kg # m2

kg # m2kg # m2
kg # m2kg # m2

kg # m2kg # m2
>

>>

>>>
>>>

>>
>>

>
>2.98 * 104 m>s

7.27 * 10-5 rad>s1.99 * 10-7 rad>s

>

>
>

>>>p

Answers to Odd-Numbered Problems A-11

7.35 2.46 N, �x-direction
7.37 130 m s2, 132° counterclockwise from the 

x-axis
7.39 a)

b) 2a b 1/6, stable c) b2 4a
d) , 

7.41 a) zero, 637 N b) 2.99 m s
7.43 0.41
7.45 a) 16.0 m s b) 11,500 N
7.47 a) 20.0 m along the rough bottom

b) -78.4 J
7.49 a) 22.2 m s b) 16.4 m c) no
7.51 0.602 m
7.53 15.5 m s
7.55 4.4 m s
7.57 a) no b) yes, $150
7.59 a) 7.00 m s b) 8.82 N
7.61 a) mg 1 - h d b) 441 N

c)
7.63 48.2°
7.65 a) 0.392 b) -0.83 J
7.67 a) b) 7.85 m s
7.69 7.01 m s

7.71 a) b)

7.73 a) 0.480 m s b) 0.566 m s
7.75 a) 3.87 m s b) 0.10 m
7.77 0.456 N
7.79 a)

b) 2.7 � 103 m3,
7.81 119 J
7.83 a) -50.6 J b) -67.5 J c) nonconservative
7.85 b) 0, 3.38 J, 0, 0; 3.38 J c) nonconservative

b)

c) x 2x0, d) 0 

e)

f) first case: x0, ; second case: 3x0 2, 3x0/q

v1x2 =
C

2a

mx 2
0

B x0

x
- ¢ x0

x
≤2

-
2

9
R

=
A

a

2mx 2
0

v=

v1x2 =
C

2a

mx 2
0

B x0

x
- ¢ x0

x
≤2R7.87

9.0 3 1024 m
4.4 3 1012 J

/
//

2gh

g 1 a

m 1g 1 a 2 2

2gh

/
/U 1 x 2 5 1

2ax 2 1 1
3bx 3

"2gh 11 2 y/d 2
2/1

/

/
/

/

/

/
b 5 6.41 3 10278 J # m6

a 5 6.67 3 102138 J # m12
/2/1

F1r2 = 112a>r132 - 16b>r72
+

/

b) (i) 60.0 m s (ii) 26.8 m s
8.3 b) 0.526, baseball c) 0.641, woman
8.5 a) 22.5 , to the left

b) 838 J
8.7 562 N, not significant
8.9 a) 10.8 m s, to the right

b) 0.750 m s, to the left
8.11 a) 500 N s2 b) 5810 

c) 2.70 m s
8.13 a) 2.50 , in the direction of the force

b) (i) 6.25 m s, to the right (ii) 3.75 m s, to
the right

8.15 0.593 
8.17 0.87 , in the same direction as the bullet

is traveling
8.19 a) 6.79 m s b) 55.2 J
8.21 a) 0.790 m s b) -0.0023 J
8.23 1.53 m s for both
8.25 a) 0.0559 m s b) 0.0313 m s
8.27 a) 7.20 m s, 38.0° from Rebecca’s original

direction b) -680 J
8.29 a) 3.56 m s
8.31 a) 29.3 m s, 20.7 m s b) 19.6%
8.33 a) 0.846 m s b) 2.10 J
8.35 a) , no

b) , no
8.37 5.9 m s, 58° north of east
8.39 a) Both cars have the same magnitude

momentum change, but the lighter car has a
greater velocity change.
b) c) occupants of small car

8.41 19.5 m s, 21.9 m s
8.43 a) 2.93 cm b) 866 J c) 1.73 J
8.45 186 N
8.47 a) 3.33 J, 0.333 m s b) 1.33 m s, 0.667 m s
8.49 a) 1 3 b) K1 9 c) 10
8.51
8.53 2520 km
8.55 0.700 m to the right and 0.700 m upward
8.57 0.47 m s
8.59 Fx 1.50 N s t, Fy 0.25 N, Fz 0
8.61 a) 0.053 kg b) 5.19 N
8.63 a) 0.442 b) 800 m s c) 530 m s
8.65 45.2
8.67 a) 0.474 , upward

b) 237 N, upward
8.69 a) -1.14 , 0.330 

b) 0.04 m s, 1.8 m s
8.71 2.40 m s, 3.12 m s
8.73 a) 1.75 m s, 0.260 m s b) -0.092 J
8.75
8.77 0.946 m
8.79 1.8 m
8.81 12 m s, 21 m s
8.83 a) 2.60 m s b) 325 m s
8.85 a) 5.3 m s b) 5.7 m
8.87 53.7°
8.89 102 N
8.91 a) 0.125 b) 248 J c) 0.441 J
8.93 b) M = m c) zero
8.95 a) 9.35 m s b) 3.29 m s
8.97 a) 3.56 m s b) 5.22 m s c) 4.66 m s
8.99 13.6 m s, 6.34 m s, 65.0°
8.101 0.0544%
8.103 , to the left
8.105 1.33 m
8.107 0.400 m s
8.109 a) 71.6 m s, 14.3 m s b) 347 m
8.111 a) yes b) decreases by 4800 J
8.113 a) 1.37 ex b) 1.18 ex

c) 2.38 ex d) 2.94 km s
8.115 b) 2L 3

Chapter 9
9.1 a) 34.4° b) 6.27 cm c) 1.05 m
9.3 a) rad s, rad s3 b) (i) 0 (ii) 15.0 rad s2

c) 9.50 rad
9.5 a) b) 0.400 rad s

c) 1.30 rad s, 0.700 rad s>>
>vz = g + 3bt2

>>>

>
>v

vv

>>
>

1.61 * 10-22 kg # m>s
>>

>>>
>>

>
>>

>>

3.65 * 105 m>s
>>

>>
>>

N # sN # s
kg # m>s

>>

==2>1= -
>

10.0444 m, 0.0556 m2
>>v

>>>

>>
v2.50¢

>
-6.7 * 10-8 km>h
-1.4 * 10-6 km>h

>
>>

>

>
>>

>
>
>

kg # m>s
kg # m>s

>>
N # s
>

N # s>
>
>

kg # m>s
>>

9.75 a) 7.36 m b) 327 m s2

9.77 a) b)
9.79 a) Mb2 6 b) 182 J
9.81 a) -0.882 J

b) 5.42 rad/s
c) 5.42 m s
d) 5.42 m/s compared to 4.43 m s>

>

>
2.66 * 1033 J2.14 * 1029 J
>

9.83
C

2gd1mB - mkmA2

mA + mB + I>R2

9.85

9.87 a)

b) 3.40 m s c) 4.95 m s
9.89 13.9 m

9.91 a) b)

9.93 a) 1.05 rad s b) 5.0 J c) 78.5 J d) 6.4%

9.95

9.97 a) b) larger

9.99 a) 55.3 kg b) 0.804 

9.101 a)

b)

c) , vz1t2 =
v

2r 2
0 + 2bvt

u1t2 =
1

b
12r 2

0 + 2bvt - r02

s1u2 = r0u +
b

2
u2

kg # m2

3

5
MR2

1

4
M1R 2

1 + R 2
2 2

>

383

512
MR2247

512
MR2

>>

2.25 * 10-3 kg # m2
2g11 - cos b2>R

, no

d) 25.0 mm, 0.247 m rad, 2.13 * 104 rev>m

az1t2 = -
bv2

1r 2
0 + 2bvt23>2

9.41 a) b) 158 y, no
9.43 0.600 
9.45
9.47 a) 0.673 m b) 45.5%
9.49 46.5 kg
9.51 a) b)
9.53 an axis that is parallel to a diameter and is

0.516R from the center

9.55

9.57 a) ML 12 b) ML 12
9.59 1

2 MR
9.61 a) 14.2 rad s b) 59.6 rad
9.63 9.41 m
9.65 a) 0.600 m s3 b)

c) 3.54 s d) 17.7 rad
9.67 a) 0.0333 rad s2 b) 0.200 rad s

c) 2.40 m s2 e) 3.12 m s2, 3.87 kN
f) 50.2°

9.69 a) 1.70 m s b) 94.2 rad s
9.71 2.99 cm
9.73 b) 1.50 m/s2 d) 0.208 kg # m2

>>

>>
>>

a = 12.40 rad>s32t>

>

2>
>2>2

1

3
M1a2 + b22

6.37 * 108 Jƒ5

7.35 * 104 J
kg # m2

3.15 * 1023 J



Chapter 10
10.1 a) 40.0 , out of the page

b) 34.6 , out of the page
c) 20.0 , out of the page
d) 17.3 , into the page
e) 0 f) 0

10.3 2.50 , out of the page
10.5 b) c)
10.7 a) 8.7 counterclockwise, 0,

5.0 clockwise, 10.0 clockwise
b) 6.3 clockwise

10.9 13.1 
10.11 a) 14.8 rad s2 b) 1.52 s
10.13 a) 7.5 N, 18.2 N b) 0.016 2

10.15 0.255 2

10.17 a) 32.6 N, 35.4 N b) 2.72 m s2

c) 32.6 N, 55.0 N
10.19 a) 1.80 m s b) 7.13 J

c) (i) 3.60 m s to the right (ii) 0
(iii) 2.55 m s at 45° below the horizontal
d) (i) 1.80 m s to the right (ii) 1.80 m s to the
left (iii) 1.80 m s downward

10.21 a) 1 3 b) 2 7 c) 2 5 d) 5 13
10.23 a) 0.613 b) no c) no slipping
10.25 11.7 m
10.27 a) 3.76 m b) 8.58 m s
10.29 a) 67.9 rad s b) 8.35 J
10.31 a) 0.309 rad s b) 100 J c) 6.67 W
10.33 a) 0.377 b) 157 rad

c) 59.2 J d) 59.2 J
10.35 a) 358 b) 1790 N c) 83.8 m s
10.37 a) 115 into the page

b) 125 out of the page
10.39
10.41 4600 rad s
10.43 1.14 rev s
10.45 a) 1.38 rad s b) 1080 J, 495 J
10.47 a) 0.120 rad s b)

c) work done by bug
10.49 a) 5.88 rad s
10.51 a) 1.71 rad s
10.53 a) 1.62 N b) 1800 rev min
10.55 a) halved b) doubled

c) halved d) doubled e) unchanged
10.57 a) 67.6 N b) 62.9 N c) 3.27 s
10.59 0.483
10.61 7.47 N
10.63 a) 16.3 rad/s2 b) decreases c) 5.70 rad s
10.65 a) FR b) FR c)

d) 2F M e) 4F M
10.67 0.730 m s2, 6.08 rad s2, 36.3 N, 21.1 N
10.69 a) 293 N b) 16.2 rad s2

10.71 a) 2.88 m s2 b) 6.13 m s2

10.73 270 N

10.75 , , 

10.77 a) 1.41 s, 70.5 m s b) t larger, smaller

10.79

10.81 29.0 m s
10.83 a) 26.0 m s b) unchanged

10.85 a) b) no

c) rolling friction d)
10.87 g 3
10.89 1.87 m

10.91 a) b) 3 19

10.93 a) 5.46 rad s b) 3.17 cm c) 1010 m s
10.95 a) 2.00 rad s b) 6.58 rad s
10.97 0.30 rad s clockwise
10.99 0.710 m

10.101 a) kg,

b) c) -
MR2v 2

0

6

R2v 2
0

18mkg

a =
2mkg

R
ma =

>
>>

>>

>
6

19
v>L

>
28hy>3

220hy>7

>
>

3

5
H0

v>

T =
2mg

2(b>R)2 + 1

a =
2g

2b + R2>b
a =

2g

2 + (R>b)2

>>
>

>>
>>
24F>MR

>

>
>
>

3.20 * 10-4 J>

>
>
>

kg # m2/s4.71 * 10-6
kg # m2>s2
kg # m2>s

>N # m
N # m
>
>

>

>>>>
>

>>
>
>

>

>
kg # m

kg # m
>

N # m
N # m

N # mN # m
N # m

(-1.05 N # m)kn-kn
N # m

N # m
N # m
N # m
N # m

10.103 a)

b)

c) same

Chapter 11
11.1 29.8 cm
11.3 1.35 m
11.5 5.45 kN
11.7 a) 1000 N, 0.800 m from the end where the

600-N force is applied
b) 800 N, 0.75 m from the end where the 
600-N force is applied

11.9 a) 550 N
b) 0.614 m from A

11.11 a) 1920 N b) 1140 N
11.13 a) T 2.60w; 3.28w, 37.6°

b) T 4.10w; 5.39w, 48.8°
11.15 272 N on each hand, 130 N on each foot
11.17 246 N, 0.34 m from the front feet
11.19 270 N, 303 N, 40°
11.21 a) 0.800 m b) clockwise

c) 0.800 m, clockwise
11.23 b) 208 N
11.25 1.4 mm
11.27
11.29 a) (upper), 

(lower)
b) 1.6 mm (upper), 1.0 mm (lower)

11.31 a) 150 atm b) 1.5 km, no
11.33 8.6°
11.35 , 
11.37 b) c) 1.8 mm
11.39
11.41 10.2 m s2

11.43 20.0 kg
11.45 a) 525 N b) 222 N, 328 N c) 1.48
11.47 tail: 600 N down, wing: 7300 N up
11.49 a) 140 N b) 6 cm to the right
11.51 a) 379 N b) 141 N
11.53 160 N to the right, 213 N upward
11.55 49.9 cm
11.57 a) 370 N b) when he starts to raise 

his leg c) no
11.59 a) V mg w, H = T = aw +

mg

4
b cotu+=

>
3.41 * 107 Pa

6.6 * 105 N
2.1 * 10-10 Pa-14.8 * 109 Pa

2.0 * 10-3
3.1 * 10-3

2.0 * 1011 Pa

=
=

mv 2
1

2
r 2

1 a
1

r 2
2

-
1

r 2
1

b

mv 2
1 r 2

1 >r
3

c) (to slide), 

(to tip), 66°

11.99 h2 L + L 2; L if

11.101 a) 0.66 mm b) 0.022 J c)
d) e)

Chapter 12
12.1 41.8 N, no
12.3 7020 kg m3, yes
12.5 1.6
12.7 61.6 N
12.9 a) b) 184 m
12.11 0.581 m
12.13 a)

b) causes additional force on the walls of the
blood vessels

12.15 2.8 m
12.17
12.19
12.21 a) 636 Pa b) (i) 1170 Pa (ii) 1170 Pa
12.23 10.9
12.25 0.107 m
12.27 , 
12.29 a) 

c) above: , submerged: 

d) 32%
12.31 a) 116 Pa b) 921 Pa c) 0.822 kg, 822 kg m3

12.33 1910 kg m3

12.35 9.6 m s
12.37 a) 17.0 m s b) 0.317 m
12.39 0.956 m
12.41 28.4 m s
12.43
12.45
12.47
12.49 1.19D

12.51 a) b) 776 N

12.53 a) b)
12.55 c) independent of surface area
12.57 0.964 cm, rises
12.59 a) 1470 Pa b) 13.9 cm
12.61 , yes
12.63 a) 0.30 b) 0.70
12.65 , 3.95 kg
12.67 a) b) 83.8 kN
12.69 2.05 m
12.71 a) H 2 b) H
12.73 0.116 kg
12.75 33.4 N
12.77 b) 12.2 N c) 11.8 N
12.79 b) 2.52 � 10�4 m3, 0.124
12.81

12.83 a) b) c) 4.60 cm

12.85 a) al g b)

12.89 a) b) h

12.91 a) 0.200 m3 s b)
12.93 3h1

12.95 a) b) 1.10 m

12.97 a) 80.4 N

Chapter 13
13.1 2.18
13.3 a) b) 15 days

c) increase
13.5 , downward
13.7 a)

b)
13.9 a) 0.634 m from 3m

b) (i) unstable (ii) stable

Fmoon >Fearth = 3.5 * 10-6
2.4 * 10-3 N

2.1 * 10-9 m>s2

1.2 * 10-11 m>s2

r =
r02v0

1v 2
0 + 2gy21>4

6.97 * 104 Pa>

22h(H - h)

v2l2>2g>

a
rL - rB

rL - rw
bL1 -

rB

rL

5.57 * 10-4 m

>

8.27 * 103 m3
3.50 * 10-4 m3

9.8 * 106 kg

1.8 * 105 N5.9 * 105 N

1p0 - p2p
D2

4

2.25 * 105 Pa
2.03 * 104 Pa
1.47 * 105 Pa

>

>
>
>

>

r

rfluid
1 -

r

rfluid

r 6 rfluid

2.78 * 103 kg>m36.43 * 10-4 m3

2.27 * 105 N
6.0 * 104 Pa

1.90 * 104 Pa

1.86 * 106 Pa

>

3.04 * 10-2 J-3.04 * 10-2 J
8.35 * 10-3 J

h 7 L>22>>

F =
w

(1>9) cos u + 2 sin u

F =
msw

sin u - ms cos u

A-12 Answers to Odd-Numbered Problems

b) 926 N c) 6.00°
11.61 4900 N
11.63 b) 2000 N 2.72mg c) 4.4 mm
11.65 a) 4.90 m b) 60 N
11.67 a) 175 N at each hand, 200 N at each foot

b) 91 N at each hand and at each foot
11.69 a) 1150 N b) 1940 N

c) 918 N d) 0.473
11.71 590 N (person above), 1370 N (person below);

person above

11.73 a)

b) positive, 

11.75 a) 7140 N, tall walls b) 7900 N
11.77 a) 268 N b) 232 N

c) 366 N
11.79 a) 0.424 N (A), 1.47 N (B), 0.424 N (C)

b) 0.848 N
11.81 a) 27° to tip, 31° to slip, tips first

b) 27° to tip, 22° to slip, slips first
11.83 a) 80 N (A), 870 N (B) b) 1.92 m
11.85 a) T 3700 N, 2000 N upward
11.87 a) 0.36 mm b) 0.045 mm

c) 0.33 mm
11.89 a) 0.54 cm b) 0.42 cm
11.91 a) 0.70 m from A b) 0.60 m from A
11.93 a) 1.63 m

b) brass: , nickel: 
c) brass: , nickel: 

11.95 0.0542 L
11.97 a) 600 N b) 13.5 kN

1.90 * 10-32.22 * 10-3
4.00 * 108 Pa2.00 * 108 Pa

=

T max h

L2h2 + D2
a1 -

D2

h2 + D2
b

Tmax hD

L2h2 + D2

=



13.11
13.13 a) 0.37 m s2 b) 1700 kg m3

13.15 610 N, 735 N (on earth)
13.17 a) 5020 m s b) 60,600 m s
13.19 a) 7460 m s b) 1.68 h
13.21 6200 m s
13.23 a) 4.7 m s 11 mph, easy to achieve

b) 2.23 h
13.25 a) 82,700 m s b) 14.5 days>

=>
>
>

>>

>>
1.38 * 107 m 14.5 0.0500 s

14.7 a) 0.167 s b) 37.7 rad s c) 0.0844 kg
14.9 a) 0.150 s b) 0.0750 s
14.11 a) 0.98 m b) π 2 rad

c)

14.13 a) -2.71 m s2

14.15 120 kg
14.17 a) 0.253 kg b) 1.21 cm

c) 3.03 N
14.19 a) 1.51 s b) 26.0 N m

c) 30.8 cm s d) 1.92 N
e) -0.0125 m, 30.4 cm s, 0.216 m s2

f) 0.324 N
14.21 a) 

b) 8.3 m/s, 

c) dax dt

14.23 127 m s2

14.25 a) 1.48 m s b) 2.96 * 10-5 J>

>

6.3 * 107 m>s3* sin 312760 rad>s2t4,

16.3 * 107 m>s32=>

2.3 * 104 m>s2
x = (0.0030 m) cos 312760 rad>s2t4

>>
>

>

+ 0.715 rad4

ax = (-359 cm>s2) cos 3(15.7 rad>s)t

+ 0.715 rad4,

vx = (-22.9 cm>s) sin 3(15.7 rad>s)t

+ 0.715 rad4,

b) x = (1.46 cm) cos 3(15.7 rad>s)t

>

x = 1-0.98 m2 sin 3112.2 rad>s2t4
>

>
14.83 a) 0.150 m s b) 0.112 m s2 downward

c) 0.700 s d) 4.38 m
14.85 a) 2.6 m s b) 0.21 m c) 0.49 s>

>>

Answers to Odd-Numbered Problems A-13

13.27 b) Pluto: , 
Neptune: c) 248 y

13.29 1.2MS

13.31 a) (i) (ii) 

13.33 a) b) -GmM x

c) , attractive d) GmM x2

e) U GMm a, Fx 0
13.35 a) 53 N b) 52 N
13.37 a)

b) no c) , yes
13.39 a)

b)
c)

13.41
13.43 a) , at 45° above the +x-axis

b)
13.45 a) 1.62 m s2 b) 0.69 N c) 4.2 N
13.47 a) , 0.0077 m s2 b) 6.2 m s
13.49 b) (i) , 

(ii) c) 26.4 m
13.51 a)
13.53 177 m s>

3.59 * 107 m
2.24 * 10-5 m/s

7.46 * 10-6 m/s1.49 * 10-5 m/s
>>2.9 * 1015 kg

>
3.02 * 10-5 m/s
9.67 * 10-12 N

9.16 * 1013 N
9.28 * 109 m

3.15 * 106 MS=6.26 * 1036 kg
4.64 * 1011 m

6.32 * 1010 m
2.1 * 107 MS=4.3 * 1037 kg

=>= -

>
GmMx

(x2 + a2)3>2

>-
GmM

2x2 + a2

2.67 * 10-9 N5.31 * 10-9 N

=2.3 * 1030 kg
4.55 * 1012 m
4.45 * 1012 m

13.55 a) b)
13.57
13.59
13.61 0.28%
13.63 6060 km h

13.65

13.67 a) 13,700 m s b) 13,300 m s
c) 13,200 m s

13.69 a) (i) 2.84 y (ii) 6.11 y
b) c)

13.71 a)

b) , 

c)

13.73
13.75 a) 12,700 kg m3 (at r 0), 3150 kg m3

(at r R)
13.77 a) 7910 s b) 1.53 c) 5510 m s (apogee),

8430 m s (perigee) d) 2410 m s (perigee),
3250 m s (apogee); perigee

13.79
13.81 9.36 m s2

13.83

13.85 a) b)

13.87 a) against the direction of motion in both cases
b) 259 days c) 44.1°

13.89

Chapter 14
14.1 a) 2.15 ms, 2930 rad s

b) , 1.26 * 105 rad>s2.00 * 104 Hz

>

2GMm

a2
a1 -

x

2a2 + x2
b

7.90 * 103 m>sU(r) =
GmEm

2R 3
E

r 2

GmMx>1a2 + x223>2
>

5.36 * 109 J

>
>>
>

=
>=>

6.8 * 104 m>s

GM2>4R

T = 4p2R3>GMv = 2GM>4R

GM2>4R2
4.22 * 1011 m4.90 * 1011 m

>
>>

v2 =
C

2GmEh

RE(RE + h)

>

1.83 * 1027 kg
(0.01)RE = 6.4 * 104 m

3.59 * 107 m1.39 * 107 m

c) ; 

d) , 

14.3 5530 rad s, 1.14 ms>

3.1 * 107 rad>s2.0 * 10-7 s

2.3 * 10-15 s1.3 * 10-15 s … T …
7.5 * 1014 Hz4.3 * 1014 Hz … ƒ …

14.27 a) 1.20 m s b) 1.11 m s

c) 36 m s2 d) 13.5 m s2 e) 0.36 J

14.29 3M,

14.31 0.240 m

14.33

14.35 a) 0.0778 m b) 1.28 Hz c) 0.624 m s
14.37 a) 4.06 cm b) 1.21 m s c) 29.8 rad s
14.39 b) 23.9 cm, 1.45 Hz
14.41 a)

b)
14.43 0.0512 
14.45 a) 0.25 s b) 0.25 s
14.47 0.407 swings per second
14.49 10.7 m s2

14.51 a) 2.84 s b) 2.89 s
c) 2.89 s, -2%

14.53 0.129 

14.55 A: , B: , pendulum A

14.57 A: , B: , pendulum B

14.59 a) 0.393 Hz b) 1.73 kg s
14.61 a) A b)

c) ; negative if , 

zero if , positive if b 7 22kmb = 22km

b 6 22kmAa
b2

2m2
-

k

m
b

-Ab>2m
>

A

11

10
a2p
A

L

g
b2p

A

L

g

222

3
a2p
A

L

g
b2p

A

L

g

kg # m2

>

kg # m2
4.3 * 10-6 N # m/rad
2.7 * 10-8 kg # m2

>>
>

A>22

3>4

>>

>>

14.63 a) kg s

c) (i) (ii) 

14.65 0.353 m
14.67 a) b)

c) 23.6 m s, 125 J d) 37.5 kW

e) , 36.7 m s, 302 J, 141 kW
14.69 a) none of them change

b) as great c) as great

d) as great
e) potential energy is the same, kinetic energy
is 1 5 as great

14.71 a) 24.4 cm b) 0.221 s c) 1.19 m s
14.73 a) 0.373 Hz, 0.426 m, 2.68 s b) 1.34 s
14.75 2.00 m
14.77 a) 0.107 m b) 2.42 s

14.79

14.81 a) 1.49 s b) , shorter
c) 0.795 s

-2.12 * 10-4 s per s

(0.921)a
1

2pA

g

L
b

>
>

1>25

1>21>4

>1.21 * 104 N

>

5.00 * 103 N1.11 * 104 m>s2

2.5
F max

k
5.0

F max

k

>

ay = -v2A sin 1kx + vt2
15.11 a) 4 mm b) 0.040 s c) 0.14 m, 3.5 m s

d) 0.24 m, 6.0 m s e) no
15.13 b) x-direction
15.15 a) 16.3 m s b) 0.136 m

c) both increase by a factor of 
15.17 0.337 kg
15.19 a) 18.6 N b) 29.1 m s
15.21 a) 10.0 m s b) 0.250 m

c)
d) 1890 m s2 e) yes

15.23 4.51 mm
15.25 a) 95 km b) 0.25 W m2

c) 110 kW
15.27 a) 0.050 W m2 b) 22 kJ
15.29
15.37 a) (1.33 m)n, n 0, 1, 2, . . .

b) (1.33 m)(n ), n 0, 1, 2, . . .
15.41 a) 96.0 m s b) 461 N

c) 1.13 m s, 426 m s2

15.43 b) 2.80 cm c) 277 cm
d) 185 cm, 7.96 Hz, 0.126 s, 1470 cm s
e) 280 cm s 
f)

15.45

b) 3rd harmonic c) 39.4 Hz
15.47 a) 45.0 cm b) no
15.49 a) 311 m s b) 246 Hz

c) 245 Hz, 1.40 m
15.51 a) 20.0 Hz, 126 rad s, 3.49 rad m

b)

c)

d)

e) 0.315 m s
f) , 0

15.53 a) b) no
7L

2 A

m1

F

-2.50 * 10-3 m
>

 cos 31126 rad>s2t - 3p>2 rad4
y11.35 m, t2 = 12.50 * 10-3 m2 *

 cos 31126 rad>s2t4
y10, t2 = 12.50 * 10-3 m2 *

 cos 313.49 rad>m2x - 1126 rad>s2t4
y1x, t2 = 12.50 * 10-3 m2 *

>>

>

 sin 316.98 rad>m2x4 sin 31742 rad>s2t4
a) y1x, t2 = 14.60 mm2 *
 sin 310.0906 rad>cm2x4 sin 31133 rad>s2t4

y1x, t2 = 15.60 cm2 *
>

>

>>
>

=1>2+
=

9.48 * 1027 W
>

>m

>180.0p rad>s2t4
y1x, t2 = 13.00 cm2 cos 3p18.00 rad>m2x -

>
>

22
>

+
>

>

14.87
14.89 1.17 s
14.91 0.505 s
14.93 c) e)
14.95 0.705 Hz, 14.5°

14.97

14.99

14.101 a) k1 k2 b) k1 k2

c) d)

14.103 a) c) , 

Chapter 15
15.1 a) 0.439 m, 1.28 ms

b) 0.219 m
15.3 220 m s = 800 km h
15.5 a) 1.7 cm to 17 m

b) to 
c) 1.5 cm d) 6.4 cm

15.7 a) 25.0 Hz, 0.0400 s, 19.6 rad m 
b)

c) 4.95 cm
d) 0.0050 s

15.9 a) yes b) yes c) no
d) , vy = vA cos 1kx + vt2

1157 rad/s2t4
y1x, t2 = (0.0700 m) cos 3119.6 m-12x +

>

7.5 * 1014 Hz4.3 * 1014 Hz

>>

M¿ = M>3v =
A

3k

M
Mv2>6

22
k1k2

k1 + k2

++

1

4pC

6g

32L

2p
A

M

3k

8.39 * 1012 Hz-7.57 * 10-19 J

9.08 * 1024 kg



15.55 a) b) increase F by a factor of 4

15.57 a) 

15.59 32.4 Hz
15.61 1.83 m
15.63 330 Hz (copper), 447 Hz (aluminum)
15.65 c) C B
15.67 b) must be decreased by a 

factor of , k must be decreased by a 

factor of 
15.69 a) 7.07 cm b) 0.400 kW
15.71 d)
15.73 (0.800 Hz)n, n 1, 2, 3, . . .
15.75 c) 2A, , 
15.77 233 N
15.79 a) 0, L b) 0, L 2, L d) no
15.81 1780 kg m3

15.83 a) r 0.640 mm, L 0.40 m
b) 380 Hz

15.85 b)

e)

Chapter 16
16.1 a) 0.344 m b)

c) 6.9 m, 50 Hz
16.3 a) 7.78 Pa b) 77.8 Pa c) 778 Pa
16.5 a) 90 m b) 102 kHz c) 1.4 cm

d) 4.4 mm to 8.8 mm e) 6.2 MHz
16.7 90.8 m
16.9 81.4°C
16.11 0.208 s
16.13 a) b) 0.074 mm s
16.15 a) , 0.434 m9.44 * 10-11 m

/5.5 * 10-15 J

1.2 * 10-5 m

up =
1

2
Fk2A2 sin21kx - vt2

uk =
1

2
mv2A2 sin21kx - vt2

==
>

>

2Av22Av
=

P1x, t2 = -FkvA2 sin21kx + vt2

1>28

1>22

v
>

4p2F¢x

l2

2pA

l A

FL

M

16.69 1.27
16.71 a) 548 Hz b) 652 Hz
16.73 a) 2186 Hz, 0.157 m b) 2920 Hz, 0.118 m

c) 734 Hz
16.75 a) 0.0674 m b) 147 Hz
16.77 b) 2.0 m s
16.79 a)

b) 3.8 ly
c) 5200 ly, about 4100 BCE

16.81 a) b)

16.83 d) 9.69 cm s, 667 m s2

Chapter 17
17.1 a) �81.0°F b) 134.1°F c) 88.0°F
17.3 a) 27.2 C° b) �55.6 C°
17.5 a) �18.0 F° b) �10.0 C°
17.7 0.964 atm
17.9 a) �282°C b) 47,600 Pa, no
17.11 0.39 m
17.13 Death Valley: 1.9014 cm, Greenland: 1.8964 cm
17.15 0.26 mm
17.17 49.4°C
17.19
17.21 a) 1.431 cm2 b) 1.436 cm2

17.23 a) b)
17.25 a) 5.0 mm b)
17.27
17.29 240 
17.31 23 min
17.33 a) �1.54 kJ b) 0.0121 C°
17.35 45.2 C°
17.37 0.0613 C°
17.39 a) 215 b) water c) too small
17.41 27.5°C
17.43 a) 5.9 C° b) yes
17.45 150°C
17.47 7.6 min
17.49 36.4 kJ, 8.70 kcal, 34.5 Btu
17.51 357 m s
17.53 3.45 L
17.55
17.57 0.0674 kg
17.59 2.10 kg
17.61 190 g
17.63 a) 222 K m b) 10.7 W c) 73.3°C
17.65 a) 5.8°C b) 11 W m2

17.67
17.69 105.5°C
17.71 a) 21 kW b) 6.4 kW
17.73 2.1 cm2

17.75 a) b)
17.77 a) 35.1°M b) 39.6 C°
17.79 53.3°C
17.81 35.0°C
17.83 23.0 cm, 7.0 cm

17.85 b) 1.9 * 108 Pa

5.43 * 106 m1.61 * 1011 m

4.0 * 10-3 W>m # C°
/-

/

5.05 * 1015 kg

/

J>kg # K

J>kg # K
5.79 * 105 J

-8.4 * 107 Pa
2.6 * 109 Pa3.2 * 10-5 (C°)-1

1.7 * 10-5 (C°)-1

//

f0a
2vw

v + vw
bf0a

2vw

v - vw
b

3.6 * 1016 m =
1.2 * 106 m>s

/

g) h) 11 C° s
i) 9.17 s j) decrease k) 7.71 C° s

17.125 a) 103°C b) 27 W
17.127 a) (i) 280 W (ii) 0.248 W (iii) 2.10 kW

(iv) 116 W; radiation from the sun

b) 3.72 L h c) 1.4 L h

Chapter 18
18.1 a) 0.122 mol b) 14,700 Pa, 0.145 atm
18.3 0.100 atm
18.5 a) 0.0136 kg m3 (Mars), 67.6 kg m3 (Venus),

5.39 kg m3 (Titan)
18.7 503°C
18.9 16.8 kPa
18.11 0.159 L
18.13 0.0508V
18.15 a) 70.2°C b) yes
18.17 850 m
18.19 a) b)
18.21 22.8 kPa
18.23 a) $8720 b) 3.88 cm
18.25 a) b) no
18.27 55.6 mol, molecules
18.29 a) b)

c) about the same
18.31 b) 1.004
18.33 (d) must be true, the others could be true

18.35 a) , no b)

18.37 a) b)

c) 484 m s d)

e) f)
g)
h)

18.39 3800°C
18.41 a) 2600 J b) 1560 J
18.43 a) 741 , 

b) 5.65 kg c) 4.85 m3

18.45 a) 923 
b) The value calculated is too large by
about 1.4%.

18.47 a) 337 m s b) 380 m s c) 412 m s
18.49 a) 610 Pa b) 22.12 MPa
18.51 no, no
18.53 a) 11.8 kPa b) 0.566 L
18.55 272°C
18.57 0.213 kg
18.59 a) �179°C b)

c) The atmosphere of Titan is 4.8 times denser
than that of the earth.

18.61 1.92 atm
18.63 a) 30.7 cylinders b) 8420 N c) 7800 N
18.65 a) 26.2 m s b) 16.1 m s, 5.44 m s

c) 1.74 m
18.67
18.69 a) A b) B c) 4250°C d) B
18.71 a) b) 6.11 * 10-21 J4.65 * 10-26 kg

L 5 * 1027 atoms

///

1.2 * 1026 molecules>m3

///

J>kg # K
cw = 5.65cN2

J>kg # K

2.45 * 1022 molecules
8.17 * 1021 molecules

1.24 * 10-17 Pa1.24 * 10-19 N

2.57 * 10-23 kg # m>s/
2.34 * 105 m2>s26.21 * 10-21 J

7.3 * 1010 K1.93 * 106 m>s

3.1 * 10-10 m9.00 * 10-5 m3
3.35 * 1025

8.2 * 10-17 atm

2.32 * 10-13 kg>m36.95 * 10-16 kg

/
//

//

/-
/-1.1 * 10-4 m2>s

A-14 Answers to Odd-Numbered Problems

17.87 a) 99.4 N c) �4.2 Hz, falls
17.89 a) 87°C b) �80°C
17.91 20.2°C
17.93 a) 54.3
17.95 a) 83.6 J b) 1.86 

c) 5.60 J>mol # K
J>mol # K

b) , 0.100 m
16.17 a) 1.95 Pa b)

c) 96.6 dB
16.19 a) b) 6.4 dB4.4 * 10-12 W>m2

4.58 * 10-3 W>m2
5.66 * 10-9 m

c)
16.21 14.0 dB
16.23 a) b) 6.0 m c) 290 m
16.25 a) fundamental: displacement node at 0.60 m,

pressure nodes at 0 and 1.20 m; first overtone:
displacement nodes at 0.30 m and 0.90 m,
pressure nodes at 0, 0.60 m, 1.20 m; second
overtone: displacement nodes at 0.20 m, 
0.60 m, 1.00 m, pressure nodes at 0, 0.40 m,
0.80 m, 1.20 m
b) fundamental: displacement node at 0,
pressure node at 1.20 m; first overtone:
displacement nodes at 0 and 0.80 m, pressure
nodes at 0.40 m and 1.20 m; second overtone:
displacement nodes at 0, 0.48 m, 0.96 m,
pressure nodes at 0.24 m, 0.72 m, 1.20 m

16.27 506 Hz, 1517 Hz, 2529 Hz
16.29 a) 767 Hz b) no
16.31 a) 614 Hz b) 1230 Hz
16.33 a) 172 Hz b) 86 Hz
16.35 0.125 m
16.37 destructive
16.39 a) 433 Hz b) loosen
16.41 1.3 Hz
16.43 780 m s
16.45 a) 375 Hz b) 371 Hz c) 4 Hz
16.47 a) 0.25 m s b) 0.91 m
16.49 19.8 m s
16.51 a) 1910 Hz b) 0.188 m
16.53 0.0950c, toward us
16.55 a) 36.0° b) 2.23 s
16.57 b) 0.68%
16.59 a) 1.00 b) 8.00

c) � 47.3 nm
16.61 b) 3f0

16.63 flute harmonic 3N resonates with string
harmonic 4N, N � 1, 3, 5, . . .

16.65 a) stopped b) 7th and 9th c) 0.439 m
16.67 a) 375 m s b) 1.39 c) 0.8 cm/

4.73 * 10-8 m

/
/

/

2.0 * 10-7 W>m2

5.8 * 10-11 m

17.97 a) b) 6.89 C° c) 19.3 C°
17.99 2.5 cm
17.101 a) 86.1°C b) no ice, no steam, 0.130 kg

liquid water
17.103 a) 100°C b) 0.0214 kg steam, 0.219 kg

liquid water
17.105 1.743 kg
17.107 a) 93.9 W b) 1.35
17.109 2.9
17.111 c) 170 h d) 500 y, no
17.113 0.106 
17.115 5.82 g
17.117 a) 1.04 kW b) 87.1 W c) 1.13 kW

d) 28 g e) 1.1 bottles
17.119 a) 69.6°C
17.121 1.76 C°
17.123 b) 0°C d) 3140 C° m e) 121 W f) zero/

W>m # K
1.5 * 1010 s L

2.70 * 107 J

c) d) 12.5 kJ

18.73 b) r2 c) , r2 � R0, 2
�1/6 d) U0

18.75 a) 517 m s b) 298 m s

18.77 b) (N), (H)
c) 6370 K (N), 459 K (H)

18.79 a)
b)
c) m, no

18.81 a) 2R 16.6 b) less
18.83 CO2: 20.79 , 27%; SO2: 24.94

, 21%; H2S: 24.94 , 3.9%
18.85 3kT m
18.87 b) 0.0421N c) N

d) 0.0297N, N
e) 0.0595N, N

18.89 42.6%
18.91 a)

b) 703 m s, y)

c) d) 650 m s, evaporate

f) , �3 times the temperature of the
sun, no

2 * 105 K
/1.4 * 10-14 Pa

6.4 * 108 s (L20/
4.5 * 1011 m

4.15 * 10-21
2.08 * 10-21

2.94 * 10-21
/

J>mol # KJ>mol # K
J>mol # K

J>mol # K=
2.95 m
4.16 * 1011 molecules
1.24 * 10-14 kg

1.01 * 104 K1.40 * 105 K
//

r1 =
R0

21>6

2.04 * 1024 molecules



Chapter 19
19.1 b) 1330 J
19.3 b) �6180 J
19.5 a) 0.942 atm
19.7 a) b) Negative of work

done in reverse direction
19.9 a) 34.7 kJ b) 80.4 kJ c) no
19.11 a) 278 K b) 0, 162 J c) 53 J
19.13 a) 16.4 min b) 139 m s � 501 km h
19.15 a) 0 b) Tb 2Ta c) Ub Ua 700 J
19.17 a) positive b) WI 0, WII 0

c) into the system d) into the system for 
loop I, out of the system for loop II

19.19 b) 208 J c) on the piston d) 712 J
e) 920 J f) 208 J

19.21 a) 948 K b) 900 K
19.23 2 5
19.25 a) 25.0 K b) 17.9 K c) higher for (a)
19.27 a) �605 J b) 0 c) liberates 605 J
19.29 a) 476 kPa b) �10.6 kJ c) 1.59, heated
19.31 5.05 kJ, internal energy and temperature both

increase
19.33 b) 224 J c) �224 J
19.35 11.6°C
19.37 a) 600 J out of the gas

b) �1500 J, decreases
19.39 a) increases b) 4800 J
19.41 a) 45.0 J b) liberates 65.0 J

c) 23.0 J, 22.0 J
19.43 a) the same b) absorbs 4.0 kJ c) 8.0 kJ
19.45 b) �2460 J
19.47 a) 0.80 L b) 305 K, 1220 K, 1220 K

c) ab: 76 J, into the gas;
ca: �107 J, out of the gas
bc: 56 J, into the gas

d) ab: 76 J, increase
bc: 0, no change
ca: �76 J, decrease

19.49 a) 3.00 kJ, into the gas
b) 2.00 kJ, into the gas c) Qa � Qb

19.51 a) 899°C b) 12.2 kJ
c) 42.6 kJ d) 45.6 kJ

19.53 �0.226 m3

19.55 a) b) 648 J c) 715 kJ
d) 715 kJ e) no substantial difference

19.57
19.59 b) 11.9 C°
19.61 a) 0.173 m b) 207°C c) 74.7 kJ
19.63 a) Q 300 J, 0

b) Q 0, 300 J
c) Q 750 J, 450 J

19.65 a) W 738 J, Q 2590 J, 1850 J
b) W 0, Q 1850 J, 1850 J
c) 0

19.67 a) W 187 J, Q 654 J, 467 J
b) W 113 J, Q 0, 113 J
c) W 0, Q 580 J, 580 J

19.69 a)

b)

c) , no

Chapter 20
20.1 a) 6500 J b) 34%
20.3 a) 23% b) 12,400 J

c) 0.350 g d) 222 kW � 298 hp
20.5 a) 12.3 atm b) 5470 J (ca) c) 3723 J (bc)

d) 1747 J e) 31.9%
20.7 a) 58% b) 1.4%
20.9 a) 16.2 kJ b) 50.2 kJ
20.11 1.7 h
20.13 a) 215 J b) 378 K c) 39.0%
20.15 a) 42.4 kJ b) 441°C
20.17 a) 492 J b) 212 W c) 5.4
20.19 4.5 kJ
20.21 37.1 hp

1

2pA

g

h
a1 + p0pr 2

mg
b

- a
y

h
b1p0pr 2 + mg2

p0 +
mg

pr 2

=¢U==
= -¢U==

= -¢U= -= -
=¢U

= -¢U= -=
=¢U==

=¢U=
= -¢U=

=¢U=

3.4 * 105 J>kg

4.32 * 10-4 m3

/

67
+==

//

1p1 - p221V2 - V12

20.23 a) 429 J K b) 393 J k c) 36 J K
20.25 a) irreversible b) 1250 J K
20.27 �6.31 J K
20.29 a) 6.05 kJ K

b) about five times greater for vaporization
20.31 a) 33.3 J K b) irreversible
20.33 a) no b) 18.3 J K c) 18.3 J K
20.35 a) 121 J b) 3800 cycles
20.37 a) 33 J b) 117 J c) 45°C d) 0 e) 96.2 g
20.39 5.8 J K, decrease
20.41 b) absorbed during bc, rejected during ab

and ca c) Ta Tb 241 K, Tc 481 K
d) 610 J, 610 J e) 8.7%

20.43 a) 21.0 kJ (enters), 16.6 kJ (leaves)
b) 4.4 kJ, 21% c) 67%

20.45 a) 7.0% b) 3.0 MW, 2.8 MW
c) L h

20.47 a) 2.00 atm, 4.00 L; 2.00 atm, 6.00 L; 1.11 atm,
6.00 L; 1.67 atm, 4.00 L
b) 1 2: 1422 J, 405 J; 2 3: , 0; 

4: 274 J, ; 4 1: 339 J, 0
c) 131 J d) 7.44%, 44.4%

20.49 a) 2.26% b) 29.4 J (gravitational), 1.30 kJ
c) candy bars

20.51 a) ab: 225 kJ, 90 kJ, 135 kJ;
bc: 240 kJ, 0, 240 kJ;
ca: 45 kJ, 60 kJ, 105 kJ

b) 30 kJ, 30 kJ, 0 c) 11.1%
20.53
20.55 a) 122 J, 78 J b)

c) at b: 2.32 MPa, , 771 K; 
at c: 4.01 MPa, , 1332 K; 
at d: 0.147 MPa, , 518 K
d) 61.1%, 77.5%

20.57 b) 357 kJ, 62 kJ c) 385 kJ, 34 kJ
20.59 a) , b) zero
20.61 a) 107 J K b) 147 J K c) 0

d) 39.4 J K/
//-

nCV ln 1Ta>Td2nCV ln 1Tc>Tb2

5.10 * 10-4 m3
4.81 * 10-5 m3

4.81 * 10-5 m3
5.10 * 10-4 m3-

1 - TC>TH

-
--

1.11 * 10-3

S-274 J-3S
-1355 JSS

/6 * 105=6 * 105 kg>h

===

/-

//
/

/
/

/
//-/ for x � �a:

21.45 a) (i) 574 N C, �x-direction (ii) 268 N C, 

x-direction (iii) 404 N C, x-direction

b) (i) , x-direction

(ii) , �x-direction

(iii) , �x-direction6.48 * 10-17 N

4.30 * 10-17 N

-9.20 * 10-17 N

-/-
//

Ex = -
q

2pP0

x2 + a2

1x2 - a222

Answers to Odd-Numbered Problems A-15

Chapter 21
21.1 a) b)
21.3 , 
21.5 1.3 nC
21.7 3.7 km
21.9 a) 0.742 C on each b) 0.371 C, 1.48 C
21.11 , away from each other
21.13 a)
21.15 0.750 nC
21.17 , in the x-direction
21.19 x � �0.144 m
21.21 2.58 N, in the �y-direction
21.23 a) , attractive

b) , about 10 times larger than
the bonding force

21.25 a) b)
c)

21.27 a) , to the left b) 14.2 ns
c) , to the right

21.29 a) 21.9 C b)
21.31 a) 8740 N C, to the right/

1.02 * 10-7 N>Cm-
1.80 * 103 N>C
3.30 * 106 N>C
2.63 * 105 m>s

2.63 * 1011 m>s24.40 * 10-16 N

8.22 * 10-8 N
8.80 * 10-9 N
m

+1.8 * 10-4 N

2.21 * 104 m>s2
1.43 * 1013

mmm

-3.35 * 109 C2.1 * 1028
8.59 * 10-132.00 * 1010

b) 6540 N C, to the right c) ,
to the right

21.33 a) 364 N C b) no, 2.73 m, downward
21.35
21.37 , toward a point midway

between the two electrons

21.39 a) b)

c)

21.41 a) 633 km s b) 15.9 km s
21.43 a) 0

b) for : ;

for x � a: ; Ex =
q

2pP0

x2 + a2

1x2 - a222

Ex = -
q

pP0

ax

1x2 - a222
ƒ x ƒ 6 a

//
-0.39ın � 0.92≥n

22

2
ın �
22

2
≥n- ≥n

1.73 * 10-8 N
1.79 * 106 m>s

m/

1.40 * 10-15 N/

21.47 , toward the - C chargem-2.001.04 * 107 N>C
21.49 a) Ex Ey E 0 b) Ex 2660 N C, 

Ey 0, E 2660 N C, �x-direction
c) Ex 129 N C, Ey 510 N C, 
E 526 N C, 284° counterclockwise from 
the x-axis d) Ex 0, Ey 1380 N C, 
E 1380 N C, �y-direction

21.51 a) Ex 4790 N C, Ey 0, E 4790 N C,
x-direction b) Ex 2130 N C, Ey 0,

2130 N C, x-direction c) Ex 129 N C,
Ey 164 N C, E 209 N C, 232°
counterclockwise from the x-axis
d) Ex 1040 N C, Ey 0, E 1040 N C, 

x-direction-
/==/-=

+
/=/-=

/-=+/
E ==/=-
/==/-=

/=
/==+

/=
/=/=

/==
/====

21.55 a) , toward the center of the 

disk b) , toward the center of 

the disk c) , toward the charge
21.57 a) , from q1 toward q2

b) 860 N C
21.59 a) is aligned in either the same or the oppositepS

/
1.4 * 10-11 C # m

1.46 * 105 N>C

8.92 * 104 N>C

1.14 * 105 N>C

21.69 b) 2.80 C c) 39.5°

21.71 a) b)
c) no

21.73 , to the left
21.75 between the charges, 0.24 m from the 0.500-nC

charge

21.77 a) , away from the vacant corner

b) , toward the center of

the square

21.79 a)
b) 510 kN (electric), 
(gravitation)
c) yes for electric force, no for gravitation

21.81 a) 480 C b) , repulsive

21.83 2190 km s

21.85 a) b) 1.6 C, 

21.87 a) b)

d) 0.418 m, 2.89 m

21.89 a) , Ey � 0

b)

21.91 a) b) smaller c) 0.177 m1-6110 N>C2ın

qQ

4pP0a
a

1

r
-

1

r + a
b ın

Ex =
Q

4pP0a
a

1

x - a
-

1

x
b

mv 2
0 sin 2a

eE

mv 2
0 sin 2a

2eE

2.3 * 1010 N3.5 * 1020
/

8.3 * 1013 NL

4.1 * 10-31 N
6.0 * 1023

3q2

4pP0L2
a22 +

1

2
b

6q2

4pP0L2

3.41 * 104 N>C

5.90 * 1023 m>s22.09 * 1021 N

m

21.53 a) b) 11.75 * 10-5 N2ın17.0 N>C2ın

direction as . b) is aligned in the same
direction as .

21.61 a) 1680 N, from the �5.00- C charge toward
the �5.00- C charge
b) , clockwise

21.63 b) , away from the center

of the square

21.65 a) 3.17 nC b) �x-direction c) x � �1.76 m

21.67 a) b) accelerates away from

the origin along the y-axis

1

2pA
qQ

pP0ma3

Q2

8pP0L2
11 + 2222

22.3 N # m
m

m

E
S

pSE
S



21.93 a) 1.56 N C, �x-direction c) smaller
d) 4.7%

21.95 a)

b)

21.97

21.99 a) , 225° counterclockwise
from an axis pointing to the right at the point P

b) , opposite the electric field
direction

21.101 a) , to the left

b) , to the left

c) , to the right

21.103

21.105 b) q1 � 0, q2 � 0 c) 0.843 C d) 56.2 N

21.107 a)

Chapter 22

22.1 a) b) no c) (i) 0° (ii) 90°

22.3 a) b) 3.13 C
22.5 r2E
22.7 0.977 , inward
22.9 a) 0 b) 8.74 * 107 N>C

N # m2>C
p

m3.53 * 105 N # m2>C

1.8 N # m2>C

Q

2pP0L
a

1

2x + a
-

1

2L + 2x + a
b

m

s

2P0
a -

x

ƒ x ƒ
ın +

z

ƒ z ƒ
kN b

1.19 * 105 N>C

1.19 * 105 N>C

1.19 * 106 N>C

1.00 * 10-14 N

6.25 * 104 N>C

Ex = Ey =
Q

2p2P0a2

qQ

4pe0 a
a

1

x - a
+

1

x + a
-

2

x
b ın

-
qQ

2pP0 a
a

1

y
-

1

2a2 + y2
b ın

/ b) (i) 0 (ii) �2q (iii) �2q (iv) �2q

22.51 a) , toward the center of the shell

b) 0

22.53 a)

b) , 

22.55 R 2

22.57 (outside the slab):

; (inside the slab): 

22.61 b)

22.63 a) b)

c) 0 d)

22.65 c) e) 2R 3,

22.67 a)

b) r 	 R 2: ; R 2 	 r 	 R:

r 
 R: c) 0.807

d)

Chapter 23
23.1 �0.356 J
23.3 � 2.16 MeV
23.5 a) 12.5 m s b) 0.323 m

23.7
23.9 a) 13.6 km s b)
23.11 q 2
23.13 7.42 m s, faster

23.15 a) 0 b) 0.750 mJ c) �2.06 mJ
23.17 a) 0 b) �175 kV c) �0.875 J
23.19 a) �737 V b) �704 V c)

23.21 b)

c) x � �a, a 3

23.23 a) 156 V b) �182 V
23.25 a) point b b) 800 V m c) 48.0 J
23.27 a) (i) 180 V (ii) 270 V (iii) 

b) 719 V, inner shell
23.29 a) oscillatory b)
23.31 a) 94.9 nC m b) less c) zero
23.33 a) 78.2 kV b) zero
23.35 0.474 J
23.37 a) , inward

b) outer surface
23.39 a) 8.00 kV m b) 19.2 N c) 0.864 J

d) 0.864 J
23.41 b) 20 nC c) no
23.43 760 V
23.45 a) , , 

b) x � �C A, y � �2BC A2, any value of z

23.47 a) (i) 

(ii) (iii) V � 0

d) 0 e) E =
q - Q

4pP0r 2

V =
q

4pP0
a

1

r
-

1

rb
b

V =
q

4pP0
a

1

ra
-

1

rb
b

//
Ez = 0Ey = -Ax - CEx = -Ay + 2Bx

-
-

m-
mm/

9.3 * 106 V>m

/
1.67 * 107 m>s

-450 V-
m-/

/

V =
q

4pP0
a

1

ƒ x ƒ
-

2

ƒ x - a ƒ
b

8.2 * 10-8 J

/
/-

2.45 * 1017 m>s2/
-1.42 * 10-18 J

/
3.46 * 10-13 J

E =
180

233

Q

4pP0R2

E =
Q

4pP0r 2

E =
480Q

233pP0r 2
c
1

3
a

r

R
b

3

-
1

5
a

r

R
b

5

-
23

1920
d ;

/E =
180Qr 2

233pP0R4/

480Q

233pR3

Q

3pe0 R2/
Qr

4pP0R3
a4 -

3r

R
b

5Q

18pP0R2
ın

Q

72pP0R2
ın-

Q

16pP0R2
ın

rb
S
>3e0

r0x3

3P0d2
ınƒ x ƒ 6 d

x

ƒ x ƒ
ın

r0d

3P0

ƒ x ƒ 7 d

/
E =

a

2P0
q = 2paa2

a

2P0
a1 -

a2

r 2
b

qQ

4pP0r 2

23.49 a) cylinders coaxial with the given cylinder
b) 2.90 cm, 4.20 cm, 6.08 cm
c) get farther apart

23.51 a) �0.360 J b) x � 0.074 m
23.53 a) b)
23.55 a) �21.5 J b) �2.83 kV c) 35.4 kV m

23.57 a)

b)

c) , toward the positive anode

23.59 a)

23.61 a) � �53.7 eV

b)

23.63 a) (i) 

(ii) (iii) V � 0

d)

23.65 a) , downward
b) , downward

c) 0.822 cm d) 15.3° e) 3.29 cm

23.67 a) 97.1 kV m b) 30.3 pC

23.69 a) r � R: ;

r � R:

23.71

23.73 360 kV
23.75 b) yes c) no, no

23.77

23.79 a)

b)

c) part (a): , part (b): 

23.81 a) 1 3 b) 3

23.83 a) , 

b) , 

c) for either sphere

d) , 

23.85 a) 7580 km s b) 7260 km s
c) (protons), 
(helium)

23.87 a) b) 20.7 pJ

c) 253 kilotons of TNT

23.89 , ,

23.91 c) 3, 0.507 m

Chapter 24
24.1 a) 10.0 kV b) 22.6 cm2 c) 8.00 pF
24.3 a) 604 V b) 90.8 cm2 c) 1840 kV m

d) 16.3 C m2

24.5 a) 120 C b) 60 C c) 480 C
24.7 2.8 mm, yes
24.9 a) 1.05 mm b) 84.0 V
24.11 a) 4.35 pF b) 2.30 V
24.13 a) 15.0 pF b) 3.09 cm c) 31.2 kN C
24.15 a) series b) 5000
24.17 a) Q1 � Q2 � 22.4 C, Q3 � 44.8 C,

Q4 � 67.2 Cm
mm

/

mmm
/m

/

m
2.54 * 10-14 m

1.11 * 10-13 m1.01 * 10-12 m

=1.06 * 1015 J

5.9 * 10-15 m

6.4 * 109 K2.3 * 109 K
//

E2 =
Q1

4pP0R2(R1 + R2)

E1 =
Q1

4pP0R1(R1 + R2)

V =
Q1

4pP0(R1 + R2)

q2 =
Q1R2

R1 + R2
q1 =

Q1R1

R1 + R2

V =
Q1

4pP0R1
E =

Q1

4pP0R 2
1

/

Q

4pP0y

Q

4pP0x

Q

4pP0a
ln a

a + 2a2 + y2

y
b

Q

4pP0a
ln a

x + a

x
b

Q

8pP0R

3

5
a

Q2

4pP0R
b

Vr =
l

4pP0
c1 - a

r

R
b

2

d

Vr = -
l

2pP0
ln a

r

R
b

/

1.93 * 1014 m>s2
1.76 * 10-16 N

(l>2pP0) ln (b>a)

V = (l>2pP0) ln (b>r)

V = (l>2pP0) ln (b>a)

2.88 * 10-11 m

-8.60 * 10-18 J

-
1.46q2

pP0d

3.13 * 10-15 N

-11.05 * 105 V>m4>32x1>3Ex =
7.85 * 104 V>m4>3

/m

5.17 * 10-14 m7.66 * 10-13 J
m

A-16 Answers to Odd-Numbered Problems

22.33 a) yes, �Q b) no c) yes d) no, no
e) no, yes, no

22.35 a) b) 0

c) 577 N C, �x-direction d) charges both
within and outside

22.37 a) �0.598 nC b) charges both within and
outside

22.39 a) , radially outward b) ,
radially outward

d) (inner surface), (outer surface)

22.41 a) (i) , radially outward (ii) 0 (iii) 0

b) (i) (ii) 0
22.43 10.2°

22.45 a) 0 r � R ; R � r � 2R ,

radially outward; r � 2R ,

radially outward

22.47 a) (i) 0 (ii) 0 (iii) , radially outward

(iv) 0 (v) , radially outward

b) (i) 0 (ii) �2q (iii) �2q (iv) �6q

22.49 a) (i) 0 (ii) 0 (iii) , radially outward

(iv) 0 (v) , radially inward
q

2pP0r 2

q

2pP0r 2

3q

2pP0r 2

q

2pP0r 2

21
1

4pP0

2Q

r 2

21
1

4pP0

Q

r 2
21

-a

a

2pP0r

+l-l

l>2pP0rl>2pP0r

/
750 N # m2/C

c)
22.11 a) b) no change
22.13 a) b) 918 N C
22.15 0.0810 N
22.17
22.19 a) , y-direction

b) , y-direction

22.21 a) 5.73 C m2 b)

c)
22.23 a) 0.260 C m3 b) 1960 N C

22.25 1.16 km s
22.27 23.6 J
22.29 0 (outside the plates), (between the plates)
22.31 a) b) c) l>2pP0rsR>P0r2pRs

s>P0

m
/

//m

-5.65 * 104 N # m2>C

6.47 * 105 N>C/m

-7.2 * 104 N>C

+6.47 * 105 N>C
2.04 * 1010

/4.50 * 104 N>C
1.17 * 105 N # m2>C
2.60 * 107 N>C



b) V1 � V2 � 5.6 V, V3 � 11.2 V, V4 � 16.8 V
c) 11.2 V

24.19 a) Q1 � 156 C, Q2 � 260 C

b) V1 � V2 �52.0 V
24.21 a) 19.3 nF b) 482 nC c) 162 nC

d) 25 V
24.23 57 F
24.25 0.0283 J m3/

m

mm

25.39 a) 144 b) 240 c) 0.833 A, 0.500 A
25.41 a) 29.8 W b) 0.248 A
25.43 a) EJ b) c)
25.45 a) 300 W b) 0.90 J
25.47 a) 2.6 MJ b) 0.063 L c) 1.6 h
25.49 12.3%
25.51 a) 24.0 W b) 4.0 W c) 20.0 W
25.53 a) 26.7 b) 4.50 A c) 453 W d) larger
25.55 a) b) 172 A

c) 2.58 mm s
25.57 0.060 
25.59 a) 2.5 mA b)

c) d) 0.180 mV
25.61 42.0 s
25.63 a) 80 C° b) no

25.65 a)

25.67 a) 0.057 b)
c) 0.86 mm d) 0.00240 
e) 0.0011 (C°)�1

25.69 a) 0.20 b) 8.7 V
25.71 a) 1.0 k b) 100 V c) 10 W
25.73 1.42 A

25.75 a) b) 0.0429 

25.77 b) 8-gauge c) 106 W d) $19.25
25.79 a) 0.40 A b) 1.6 W

c) 4.8 W, in the 12.0-V battery
d) 3.2 W, in the 8.0-V battery

25.81 a) 14.4 V b) 2.59 MJ c) 0.432 MJ
d) 0.96 e) 1.73 MJ f) 0.432 MJ

25.83 6.67 V
25.85 a) a E b) aL Vbc c) point c

d) m s2

25.87 a) , 

b) E(x) � ,

c) V(x) �

Chapter 26
26.1 3R 4
26.3 22.5 W
26.5 a) 3.50 A b) 4.50 A c) 3.15 A d) 3.25 A
26.7 0.769 A
26.9 a) 8.80 b) 3.18 A c) 3.18 A d) 5.09 V,

7.63 V, 15.3 V e) 16.2 W, 24.3 W, 48.5 W
f) resistor with greater resistance

26.11 a) 8.00 A, 12.0 A b) 84.0 V
26.13 5.00 ; Ι3 8.00 Α, Ι4 9.00 Α,

Ι6 4.00 Α, Ι12 3.00 Α
26.15 a) I1 1.50 A, I2 I3 I4 0.500 A

b) P1 10.1 W, P2 P3 P4 1.12 W; R1

glows brightest c) I1 1.33 A, I2 I3

0.667 A d) P1 8.00 W, P2 P3 2.00 W
e) R1 glows less brightly; R2 and R3 glow
brighter

26.17 18.0 V, 3.00 A
26.19 a) 2 resistors in parallel and that combination

in series with 3 more resistors b) 10 resistors
in parallel c) 3 resistors in parallel
d) 2 resistors in parallel and that combination
in series with 4 resistors in parallel

26.21 a) 0.100 A b) 4.0 W, 8.0 W c) 12.0 W
d) 0.300 A, 0.150 A e) 36.0 W, 18.0 W
f) 54.0 W g) in series, the 800- bulb is
brighter; in parallel, the 400- bulb is brighter
h) parallel connection

26.23 1010 s
26.25 a) 2.00 A b) 5.00 c) 42.0 V

d) 3.50 A
26.27 a) 8.00 A b) , 

c) 9.00 

26.29 a) 1.60 A, 1.40 A, 0.20 A b) 10.4 V

Æ
e2 = 54.0 Ve1 = 36.0 V

Æ

Æ
Æ

===
===

====
====

==
==Æ

Æ

/

V0ae-x>L -
1

e
b

1 -
1

e

V0e-x>L

La1 -
1

e
b

I =
V0A

r0La1 -
1

e
b

R =
r0L

A
a1 -

1

e
b

/3.5 * 108
//

Æ

ÆIAa1 +
RA

r + R
b

Æ
Æ

Æ
3.34 * 10-8 Æ # mÆ

rh

pr1r2

8.55 * 10-5 V>m

2.14 * 10-5 V>m
Æ

/
3.65 * 10-8 Æ # m

Æ

E2>rrJ 2

ÆÆ 26.31 a) 36.4 V b) 0.500 A
26.33 a) 2.14 V, a is higher

b) 0.050 A, downward; 0
26.35 a) 0.641 b) 975 
26.37 a) 17.9 V b) 22.7 V c) 21.4%
26.39 a) 543 b) 1.88 mA

c) 1824 , 608 , 203 
26.41 a) b) 2.89 s
26.43 a) 4.21 ms b) 0.125 A
26.45
26.47 13.6 A
26.49 a) 0.937 A b) 0.606 A
26.51 a) b) 8.87 V, 9.13 V

c) 8.87 V for both d)
26.53 900 W
26.55 12.1 
26.57 a) 13.6 b)
26.59 a) 2.2 A, 4.4 V, 9.7 W b) 16.3 W, brighter
26.61 a) 18.7 b) 7.5 ÆÆ

2.14 * 10-8 Æ # mmÆ
Æ

67.4 mC
133 mC

192 mC

0.849 mF
ÆÆÆ

Æ

ÆÆ

Answers to Odd-Numbered Problems A-17

24.27 a) b) c)

24.29 a) Up � 4Us b) Qp � 2Qs c) Ep � 2Es

24.31 a) 24.2 C b) Q35 � 7.7 C, Q75 � 16.5 C
c) 2.66 mJ d) U35 � 0.85 mJ, U75 � 1.81 mJ
e) 220 V for each capacitor

24.33 a) 1.60 nC b) 8.05
24.35 a) 3.60 mJ (before), 13.5 mJ (after)

b) increased by 9.9 mJ
24.37 a) 0.620 C m2 b) 1.28
24.39 0.0135 m2

24.41 a)

b)

c) � ,

24.43 a) 10.1 V b) 2.25

24.45 a) b) c)

24.47 a) 421 J b) 0.054 F
24.49 a) 31 pF b) 0.37 nC c) 1.6 kV m

d) 2.2 nJ
24.51 133 kV m
24.53 a) 0.0160 C b) 533 V c) 4.26 J d) 2.14 J
24.55 a) 158 J b) 72.1 J
24.57 a) 2.5 F

b) Q1 550 C, Q2 370 C, Q3 Q4

180 C, Q5 550 C; V1 65 V, V2 87 V,

V3 V4 43 V, V5 65 V
24.59 C2 6.00 F, C3 4.50 F
24.61 a) 76 C b) 1.4 mJ

c) 11 V across each capacitor d) 1.3 mJ
24.63 a) 2.3 F b) Q1 � 970 C, Q2 � 640 C

c) 47 V
24.65 a) 3.91 b) 22.8 V
24.67 a) b) 710 F
24.69 a) 0.065 F b) 23,000 C

c)
24.71 48.3 F
24.73 0.185 J
24.75 b) 2.38 nF

24.77 a)

c)

Chapter 25
25.1 1.0 C
25.3 a) b)

c) 0.111 mm s d) both J and would
decrease

25.5 a) 110 min b) 440 min c) 
25.7 a) 330 C b) 41 A
25.9 9.0 A
25.11 a)

b) 0.00105 (C°)�1

25.13 a) 0.206 mV b) 0.176 mV
25.15 a) 1.21 V m b) 0.0145 c) 0.182 V
25.17 0.125 
25.19 15 g
25.21
25.23 a) 11 A b) 3.1 V c) 0.28 
25.25 a) 99.54 b) 0.0158 

25.27 a) b)
25.29 a) 27.4 V b) 12.3 MJ
25.31 a) zero b) 5.0 V c) 5.0 V
25.33 3.08 V, 0.067 , 1.80 
25.35 a) 1.41 A, clockwise b) 13.7 V c) 1.0 V
25.37 b) yes c) 3.88 Æ

-
ÆÆ

6.72 * 10-4 Æ4.67 * 10-8 Æ
ÆÆ

Æ
1.53 * 10-8 Æ

Æ
Æ/

1.06 * 10-5 Æ # m
m

vd r 1>d2

vd/
1.51 * 106 A>m23.12 * 1019

Q =
P0LV

D
3L + 1K - 12x4

P0L

D
3L + 1K - 12x4

m
m

4.0 * 109 J

mC = 4pP0R

mmm

m
m=m=

===
==m=m

==m=m=
m

mm

/

/

K
P0A

d
= KC0

Qd

P0AK

Q

P0AK

si =  2.8 * 10-4 C>m2

4.6 * 10-4 C>m2s

4.0 * 104 V

2.31 * 10-11 C2>N # m2

/m

mmm

Q2

2P0A
a

Q2

2P0A
b dx

xQ2

2P0A

26.63 I1 0.848 A, I2 2.14 A, I3 0.171 A===
26.65 I2 5.21 A, I4 1.11 A, I5 6.32 A
26.67 a) b) 0.464 A
26.69 0.447 (end-to-end), 0.423 (in parallel)
26.71 a) 186 V, upper terminal positive

b) 3.00 A, upward c) 20.0 

26.73 a) P1 � P2 b)

26.75 a) 1.35 W b) 8.31 ms c) 0.337 W
26.77 a) b) 1.71 A c) 4.21 
26.79 a) 114 V b) 263 V c) 266 V
26.81 b) 1897 
26.83 a) 24.8 V, 65.2 V b) 3840 c) 62.6 V

d) no
26.85 1.7 M , 3.1 
26.87 a) 19.4 s, 31.4 time constants b) yes

26.89 a) 

26.93 b) 4 segments c) 3.2 M , 
d) e) 0.88

Chapter 27
27.1 a) 1-6.68 * 10-4 N2kN

3.4 * 10-4
4.0 * 10-3Æ

P =
Q 2

0

RC 2
e-2t>RC

mFÆ

Æ
Æ

Æ-12.0 V

P1P2

P1 + P2

Æ

ÆÆ
+0.22 V

===

�z-direction c) 53 V

27.55 a) b) F2>22-
F2

qv1
≥n

m

toward the z-axis b) , in the7.47 * 10-16 N-
xz-plane at 50° from the x-axis toward the -

z-axis.
27.11 a) 3.05 mWb b) 1.83 mWb c) 0
27.13 �0.78 mWb
27.15 a) 0.160 mT, into the page b) 0.111 s
27.17 , toward the south
27.19 a)

b)

27.21 a) 835 km s b) 26.2 ns c) 7.27 kV
27.23 a) 107 T b) no
27.25 0.838 mT
27.27 a) b) yes

c) helix, no d) 1.40 cm
27.29 a) 4.81 kN C c) yes
27.31 0.0445 T, out of the page
27.33 a) 4.92 km s b)
27.35 2.0 cm
27.37 a) 13.4 kA, no
27.39 0.724 N, 63.4° below the direction of the

current in the upper wire segment
27.41 a) 817 V b) 113 m s2

27.43 a) b) yes- ILB ≥n
/

9.96 * 10-26 kg/

/

11.60 * 10-14 N2≥n

/
2.31 * 10-23 kg # m2>s

4.94 * 10-21 kg # m>s
7.93 * 10-10 N

m

-

b)
27.3 a) positive b) 0.0505 N
27.5 9490 km s/

16.68 * 10-4 N2ın � 17.27 * 10-4 N2 ≥n

27.7 a) Bx � T, Bz � T
b) By is not determined c) 0, 90°

27.9 a) 1.46 T, in the xz-plane at 40° from the x-axis+

-0.256-0.175

27.45 b) Fcd � 1.20 N b)
27.47 a) A2 b) 290 rad s2/

0.420 N # m
27.49 �2.42 J
27.51 a) 1.13 A b) 3.69 A c) 98.2 V

d) 362 W
27.53 a) 4.7 mm s b) , +4.5 * 10-3 V>m/



27.57 a) b) 0.14 T
27.59 3.45 T, perpendicular to the initial velocity of

the coin
27.61 a) � 5.5 MeV b) 77 ns

c) 1.2 T d) same as in (a)
27.63 a) �3.89 C

b)

c) 2.90 cm d)
e) 0.0290 m, 0, 0.874 m

27.65
27.67 1.6 mm

27.69 , right to left

27.71
27.73 a) 8.46 mT b) 27.2 cm c) 2.2 cm, yes
27.75 1.80 N, to the left
27.77 0.024 T, �y-direction
27.79 a) , clockwise b) stretched

c) 7.98 mJ
27.81 2.39 A
27.83

27.85 b) 0, 0 to 0, L :
1

2
B0LIın2121

- (0.444 N)≥n

0.0442 N # m

Br1r2 = -br>2

Mg tanu

LB

9t
21

2.88 * 107 Hz

15.70 * 1014 m>s22≥n
17.60 * 1014 m>s22ın �

m

8.9 * 10-13 J

8.3 * 106 m>s 28.47 r � R 2 and 2R
28.49 a) 1790 turns m b) 63.0 m
28.51 a) 3.72 MA b) 124 kA c) 237 A
28.53 1.11 mT
28.55 a) 72.5 mA b) 19.5 mA
28.57 a) (i) 1.13 mT (ii) 4.68 MA m (iii) 5.88 T
28.59 a) 1.00 T, into the page

b)
28.61 a) in the plane of the wires, between them,

0.300 m from the 75.0-A wire
b) in the plane of the wires, 0.200 m from the
25.0-A wire and 0.600 m from the 75.0-A wire

28.63 a) , away from the wire

b) 32.5 N C, away from the wire c) no

28.65
28.67 a) 2.00 A, out of the page

b) 2.13 T, to the right c) 2.06 T

28.69 a) 11.1 N m, �y-direction

b) 11.1 N m, �y-direction

28.71 23.2 A

28.73

28.75 a)

c) d) 20.2 mT e) 0, 0

28.77 a) b) (i) (ii)

28.79 a) 0 b) c)

28.81 b) c)

d)

28.83 a) , -direction

b) , -direction

28.85 �

28.87 b)

Chapter 29
29.1 a) 17.1 mV b) 28.5 mA
29.3 a) Q � NBA R b) no
29.5 a) 34 V b) counterclockwise

29.7 a) , into the page b)

c) d)

e) 0.506 V
29.9 a) 5.44 mV b) clockwise
29.11 a) bA b) clockwise

c) bA , counterclockwise
29.13 10.4 rad s
29.15 a) counterclockwise b) clockwise

c) no induced current
29.17 a) a to b b) b to a c) b to a
29.19 a) clockwise b) no induced current

c) counterclockwise
29.21 13.2 mA, counterclockwise
29.23 a) 0.675 V b) point b c) 2.25 V m, b to a

d) point b e) (i) 0 (ii) 0
29.25 46.2 m s � 103 mph, no
29.27 a) 3.00 V b) b to a c) 0.800 N, to the right

d) 6.00 W for each
29.29 a) counterclockwise b) 42.4 mW
29.31 35.0 m s, to the right
29.33 a) 2.55 V, point a b) 3.38 V, point a c) 0

d) 4.23 V

29.35 a) b) c)
R2

2r2

dB

dt

r1

2

dB

dt
pr 2

1
dB

dt

/

/

/

/
v
v

m

m0L

2p
ln 1b>a2

di

dt

m0iL

2p
ln 1b>a2

m0i

2pr
Ldrm0i>2pr

/

1

2g
a
m0Q 2

0

4plRCd
b

2

0.0834mB7.73 * 10-25 A # m2

- xB =
1

2
m0In

+ xB =
1

2
m0In

B =
m0I0r

2pa2
a2 -

r 2

a2
b

I0r 2

a2
a2 -

r 2

a2
bB =

m0I0

2pr

B =
m0I

2pr
B =

m0I

2pr

r 2 - a2

b2 - a2

B =
m0I

2pr
B =

m0Ir 2

2pR3

3I

2pR3

a
4

5
b

3>2m0NI

a

1

31x - a>222 + a243>2
s

m0NIa2

2
c 1

31x + a>222 + a243>2
+

2.21 * 10-3 N # m

/m

/m

mm

5.59 * 10-18 N
/

5.7 * 1012 m>s2

17.49 * 10-8 N2≥n
m

/

/
/ e) f) g)

29.37 9.21 A s
29.39 0.950 mV
29.41 2.34
29.43 a) 0.599 nC b) 6.00 mA c) 6.00 mA
29.45 a) 0.15 V m b) 38 V>m # s/

/
pR2 dB

dt
pR2 dB

dt

pR2

4

dB

dt

A-18 Answers to Odd-Numbered Problems

29.69 a) R/B2a2v

29.71 point a: , to the left; point b: ,
qr

2

dB

dt

qr

2

dB

dt

d) 90°
29.77 a) a to b b) c)

mg tan f

LB

Rmg tan f

L2B2 cos f

d) 6.58 mA
30.35 a) 105 rad s, 0.0596 s b) 0.720 mC>

c) d) 53.3 Tm3.4 * 10-10 A>m2

29.47 a) B � 0, M
S

� -14.38 * 104 A>m2ın
b) , M � 0

29.49 a) 3.7 A b) 1.33 mA c) counterclockwise
29.51 16.2 V

29.53 a) b) clockwise

29.55 190 rpm
29.57 a) 17.9 mV b) a to b

29.59 b)

29.61 1.2 V
29.63

29.65 a) b) point a c) 0

29.67 a) 0.165 V b) 0.165 V c) 0, 0.0412 V

m0Iv

2p
ln 11 + L>d2

m0IW>4p

RF

B2L2

m0Iabv

2pr1r + a2

m

B
S

� 115.0 T2ın

toward the top of the page; point c: 0
29.73 5.0 s
29.75 a) 196 A m2 b) 3.00 nA m2 c) 7.82 MHz//m

d) e)

Chapter 30
30.1 a) 0.270 V, yes b) 0.270 V
30.3 6.32 H
30.5 a) 1.96 H b) 7.11 mWb
30.7 a) 1940 b) 800 A s
30.9 a) 0.250 H b) 0.450 mWb
30.11 a) 4.68 mV b) point a
30.13 a) 1000 b) 2.09 
30.15 b) 0.111 H
30.17 2850
30.19 a) 0.161 T b) 10.3 kJ m c) 0.129 J

d) 40.2 H
30.21 91.7 J
30.23 a) 2.40 A s b) 0.800 A s c) 0.413 A

d) 0.750 A
30.25 a) 17.3 s b) 30.7 s
30.27 a) 0.250 A b) 0.137 A c) 32.9 V, point c

d) 0.462 ms

30.29 a)

b)

c)
30.33 a) 25.0 mH b) 90.0 nC c) 0.540 Jm

14.50 W21e-13.20 s- 12 t - e-16.40 s- 12 t2PL =

PR = 14.50 W211 - e-13.20 s- 12 t22

P = 14.50 W211 - e-13.20 s- 12t2

mm

>>

m

3>

m
Æ

/

m

Rm2g2 tan2f

L2B2

Rm2g2 tan2f

L2B2

d)

30.51 a) 5.00 H b) 31.7 m, no
30.53 a) 0.281 J b) 0.517 J c) 0.236 J
30.57 222 F, 9.31 H
30.59 13.0 mA, 184 A s
30.61 a) 0 A, 20.0 V b) 0.267 A, 0 V

c) 0.147 A, 9.0 V

>
mm

m0l

2p
ln 1b>a2

c) 4.32 mJ d) �0.542 mC
e) �0.050 A, counterclockwise
f) UC � 2.45 mJ, UL � 1.87 mJ

30.37 a) 7.50 C b) 15.9 kHz c) 0.0212 J
30.39 a) 298 rad s b) 83.8 
30.43 a) 0.288 H b) 14.2 V
30.47 20 km s, about 30 times smaller

30.49 a) b) c)
m0i2l

4p
ln 1b>a2

m0i2l

4pr
dr

m0i

2pr

>

mm

Æ/
m

0, L to L,L :

L, L to L, 0 : -
1

2
B0LIın2121

- IB0L≥n2121

L, 0 to 0, 0 : 0
c)

27.87 a) 2.52 m s b) 7.58 A c) 0.198 
27.89 a) 5.14 m b) 1.72 s c) 6.08 mm

d) 3.05 cm

Chapter 28
28.1 a) b) 0 c)

d)
28.3 a) 60.0 nT, out of the page, at A and B

b) 0.120 T, out of the page c) 0
28.5 a) 0 b) c)

d)

28.7 a) (i) , into the page (ii) 0

(iii) , out of the page

b) , attractive c)

28.9
28.11 a) 0.440 T, out of the page

b) 16.7 nT, out of the page c) 0
28.13 a)

b)

c) d) 0
28.15 17.6 T, into the page
28.17 a) 0.8 mT b) 40 T, 20 times larger
28.19 25 A
28.21 a) 10.0 A

b) at all points directly above the wire
c) at all points directly east of the wire

28.23 a)
b) 2.19 T, at 46.8° from the x-axis to the
z-axis c)

28.25 a) 0 b) 6.67 T, toward the top of the page
c) 7.54 T, to the left

28.27 a) 0 b) 0 c) 0.40 mT, to the left
28.29 a) at P: 41 T, into the page; at Q: 25 T, out

of the page b) at P: 9.0 T, out of the page;
at Q: 9.0 T, into the page

28.31 a) 6.00 N, repulsive b) 24.0 N
28.33 46 N m, repulsive, no
28.35 0.38 A

28.37 , 0

28.39 a) 9.42 mT b) 0.134 mT
28.41 18.0 A, counterclockwise
28.43 a) 305 A b)
28.45 a) b) 0m0I>2pr

-3.83 * 10-4 T # m

m0 ƒ I1 - I2 ƒ
4R

m
/m

mm
m

m
mm

m
m

17.9 mT2ın
m

-10.10 mT2ın

m
m

m
1-1.77 * 10-11 T21ın � ≥n2

-15.00 * 10-11 T2ın
15.00 * 10-11 T2≥n

m
197.5 nT2kN

1.00 * 10-6
m0q2v¿v

16pd2

m0qv

4pd2

m0qv

8pd2

11.31 mT2≥n
-10.462 mT2kN-11.31 mT2kN

m

16.79 mT2ın
119.2 mT2ın-119.2 mT2kn

m
Æ/

- IB0L≥n
2121



30.63 a) solenoid c) 50 V d) 3.5 A 31.61 a) L and C b) 1/2 for each
31.63 a) 0.750 A b) 160 c) 341 , 619 

d) 341 
31.65 0, 

31.67 a) decreases by 1 2 b) increases by 2
c) decreases by 1 2 d) no

31.69 a) b)

c) d)

e)

31.71 a) 75.8 V b) 13.6 
31.73 a) VRI 2 b) 0 c) 0

31.75 a) 0.400 A b) 36.9° c) 400 � 300i ,

500 d) 0.320 � 0.240i A, 0.400 A

e) 36.9° f) ,

,

Chapter 32
32.1 a) 1.28 s b) 8.15 * 1013 km

VC-cpx = 1192 - 256i2V

VL-cpx = 1-120 + 160i2V

VR-cpx = 1128 + 96i2V

21Æ
Æ21

/
Æ

1

2

LV2

R2 +
9L

4C

2LV2

R2 +
9L

4C

A

L

C

V>2

A
R2 +

9L

4C

A

L

C

2V

A
R2 +

9L

4C

V

A
R2 +

9L

4C

/
/

I0>23
Æ

ÆÆÆ d)

32.51 a) 23.6 h b) throw it
32.53 a)

b) 2.71 V m, , 67.3 ms

c)
d) 0.190 m

32.55 a) b) c) 0.19 m, no

32.57 b) c)

Chapter 33
33.1 39.4°
33.3 a)

b) 442 nm
33.5 a) 1.55 b) 550 nm
33.7 a) 47.5° b) 66.0°
33.9
33.11 a) 2.34 b) 82°
33.13 a) f, , 

b) f, , 
33.15 71.8°
33.17 a) 51.3° b) 33.6°
33.19 a) 58.1° b) 22.8°
33.21 1.77
33.23 462 nm
33.25 0.6°
33.27 0.375I0

33.29 a) I0 2, 0.125I0, 0.0938I0 b) 0
33.31 a) 1.40 b) 35.5°

33.33

33.35 6.38 W/m2

33.37 a) I0 2, 0.250I0, 0.125I0, linearly polarized
along the axis of each filter b) I0 2 linearly
polarized along the axis of the filter; 0

33.41 a) 46.7° b) 13.4°
33.43 72.1°
33.45 1.28
33.47 1.53
33.49 1.84
33.51 a) 48.6° b) 48.6°
33.53 39.1°
33.55 0.23°, about the same
33.59 b) 38.9° c) 5.0°
33.61 a) 35° b) Ip � 19.9 W m2, I0 � 10.1 W m2

33.63 23.3°

33.67 a)

b)

c) violet: � 71.55°, 233.2°;

red: � 71.94°, 230.1°

Chapter 34
34.1 39.2 cm to the right of the mirror, 4.85 cm
34.3 9.0 cm, tip of the lead
34.5 b) 33.0 cm to the left of the vertex, 1.20 cm,

inverted, real
34.7 0.213 mm
34.9 18.0 cm from the vertex, 0.50 cm, erect, virtual
34.11 b) 28.0 cm, inverted c) 8.00 cm
34.13 a) concave b) 2.50 cm, 5.00 cm
34.15 2.67 cm
34.17 3.30 m
34.19 a) at the center of the bowl, 1.33 b) no
34.21 39.5 cm
34.23 8.35 cm to the left of the vertex, 0.326 mm,

erect
34.25 a) 107 cm to the right of the lens, 17.8 mm,

real, inverted b) same as part (a)
34.27 a) 71.2 cm to the right of the lens b) �2.97
34.29 3.69 cm, 2.82 cm to the left of the lens
34.31 1.67
34.33 a) 18.6 mm b) 19 mm from the cornea

c) 0.61 mm, real, inverted
34.35 a) 36.0 cm to the right of the lens

b) 180 cm to the left of the lens

¢ =u2

¢ =u2

 cos2u2 =
n2 - 1

8

2u A
a - 6 arcsin a

sin u A
a

n
b + 2p¢ =

//

/
/

arccosa
cosu

22
b

/

1n>n¿2v1n>n¿2l
nvnl

2.51 * 108 m>s

2.04 * 108 m>s

2.54 * 10-81.39 * 10-11

m
LR2

4cr 2

4rGpMR3

3r 2

3.25 * 10-23 Pa

9.03 * 10-15 T/m

9.75 * 10-15 W>m2

rlI 2

pa2
= I 2R

Answers to Odd-Numbered Problems A-19

e) 4.3 , 43 mHÆ
30.65 a) A1 � A4 � 0.800 A, A2 � A3 � 0;

V1 � 40.0 V, V2 � V3 � V4 � V5 � 0
b) A1 � 0.480 A, A2 � 0.160 A, A3 � 0.320 A,
A4 � 0; V1 � 24.0 V, V2 � 0, V3 � V4 � V5 �
16.0 V c) 192 C

30.67 a) A1 A4 0.455 A, A2 A3 0
b) A1 0.585 A, A2 0.320 A, 
A3 0.160 A, A4 0.107 A

30.69 a) 60.0 V b) point a c) 60.0 V d) point c
e) �96.0 V f) point b g) 156 V h) point d

==
==

====
m

30.71 a) 0; ac � 0, cb � 36.0 Vvv

b) 0.180 A; ac � 9.0 V, cb � 27.0 Vvv
c) , i0 = 10.180 A211 - e-t>10.020 s22

,vac = 19.0 V211 - e-t>10.020 s22

30.75 a) , 

b) , c)

d) 21.2 , 12.7 V e) 35.3 mA

30.77 a)

b) 0.63024 H, 0.63048 H, 0.63072 H, 0.63096 H
c) 0.63000 H, 0.62999 H, 0.62999 H, 0.62998 H
d) oxygen

30.79 a) , , 

b) i1 � 0, i2 � 9.60 mA c) i1 � 1.92 A,
i2 � 0 d) 1.6 ms e) 9.4 mA f) 0.22 s

Chapter 31
31.1 1.06 A
31.3 a) 31.8 V b) 0
31.5 a) 90°, leads b) 193 Hz
31.7 13.3 F
31.9 a) 1510 b) 0.239 H c) 497 

d) 16.6 F
31.11 a) 12.5 V cos 480 rad s t b) 7.17 V

31.13 a)

b) 180 
c) vL = -14.56 V2 sin 31720 rad>s2t4

Æ
i = 10.0253 A2 cos 31720 rad>s2t4

42/1321

m
ÆÆ

m

q2 = eC11 - e-t>R2C2

i2 =
e

R2
e-t>R2Ci1 =

e

R1
11 - e-R1t>L2

d = Da
L - L0

Lf - L0
b

Æ

i =
e

R2
e-1R1+R22t>Li2 =

e

R2
i1 =

e

R1

i2 =
e

R2
11 - e-R2t>L2i1 =

e

R1

vcb = 19.0 V213.00 + e-t>10.020 s22

31.35 a) 10 b) 2.40 A c) 28.8 W d) 500 Æ

(iii) b) (i) �4.62 * 10-14 m6.0 * 1016 Hz

32.9 a) (i) 60 kHz (ii) 6.0 * 1013 Hz

4.62 * 10-5 nm

(ii) 508 m � 5.08 * 1011 nm
32.11 a) �y-direction b) 0.149 mm c) B

S
�

32.13 a) 361 m b) 0.0174 rad m/
11.265 * 1013 rad>s2t4

32.21 2.5 * 1025 W

31.15 a) 601 b) 0.0499 A c) �70.6°, lags
d) 9.98 V, 4.99 V, 33.3 V

31.17 50.0 V
31.19 a) 40.0 W b) 0.167 A c) 720 
31.21 b) 76.7 V
31.23 a) 45.8°, 0.697 b) 344 c) 155 V

d) 48.6 W e) 48.6 W f) 0 g) 0
31.25 a) 0.302 b) 0.370 W c) 0.370 W, 0, 0
31.27 a) 113 Hz, 15.0 mA b) 7.61 mA, lag
31.29 a) 150 V b) 150 V, 1290 V, 1290 V

c) 37.5 W
31.31 a) 1.00 b) 75.0 W c) 75.0 W
31.33 a) 115 b) 146 c) 146 ÆÆÆ

Æ

Æ

Æ

31.37 a) use a step-down transformer with N2 N1 � 1
2

b) 6.67 A b) 36.0 
31.39 0.124 H
31.41
31.43 230 
31.45 a) inductor b) 0.133 H
31.47 a) 0.831 b) 161 V
31.49 a) inductor: 1.15 A, 31.6 V; resistor: 1.15 A,

57.5 V; capacitor: 1.15 A, 14.6 V
b) all change; inductor: 0.860 A, 47.3 V; resistor:
0.860 A, 43.0 V; capacitor: 0.860 A, 5.46 V

31.51

31.55 a) 102 b) 0.882 A c) 270 V
31.57 b) yes c) 0 e) no
31.59 a) , , IL = V>vLIC = VvCIR = V>R

Æ

Vout

Vs
=

S

R2 + v2L2

R2 + avL -
1

vC
b

2

Æ
3.59 * 107 rad>s

Æ
//

d) 159 Hz e) 0.50 A
f) 0.50 A, 0.050 A, 0.050 A

32.3 13.3 nT, �y-direction
32.5 , , 

32.7 a) b) 375 V m c)

14.36 * 1015 rad>s2t4

11.25 mT2 cos 311.45 * 107 rad>m2x -
B1x, t2 =14.36 * 1015 rad>s2t4,

1375 V>m2 cos 311.45 * 107 rad>m2x -
E1x, t2 =/6.94 * 1014 Hz

6.3 * 1010 rad>m
3.3 * 10-19 s3.0 * 1018 Hz

11.03 mT2ın cos 314.22 * 104 rad>m2y -

out of the page

c) , radially inward
rI 2

2p2a3

32.23 12.0 V m, 40.0 nT
32.25 850 kW
32.27 a) 0.18 mW b) 274 V m, 0.913 T

c) 0.18 mJ s d) 0.010 W cm2

32.29 a) 637 W m2 b) 693 V m, 2.31 T
c) 2.12 J m3

32.31 a) 30.5 cm b) 2.46 GHz c) 2.11 GHz
32.33 a) 7.10 mm b) 3.55 mm

/m
m//

//
m/

/

c) d) 0.0144 V m
32.15 a) 0.381 m b) 0.526 m c) 1.38

d) 1.90
32.17 a) 330 W m2 b) 500 V m, 1.7 T
32.19 a) 11 W m2 b) 0.30 nT c) 840 W/m

m//

mm
/5.22 * 106 rad>s

c) 604 nm, 
d) 30.3 kV m, 101 T

32.39 a) 71.6 MW m2 b) 232 kV m, 774 T
c) 35.8 MW m2 d) 637 W m2

32.41 a) 0.00602 W m2 b) 2.13 V m, 7.10 nT
c) 1.20 pN, no

32.43 a) 840 V m, 2.80 T
b) 1.56 J m3 for each c) 15.3 pJ

32.45 a) at r � R: 64 MW m2, 0.21 Pa; at r � R 2:
260 MW m2, 0.85 Pa b) no

32.47

32.49 a) , in the direction of the current

b) , counterclockwise if the current ism0I>2pa

rI>pa2
3.89 * 10-13 rad>s2

/
//

/m
m/

//
//

m//
m/

3.70 * 1014 Hz

c)
32.35 a) 4.38 mm b) 4.38 mm c) 4.38 mm
32.37 a) 0.375 mJ b) 4.08 mPa

1.56 * 108 m>s



c) 7.20 cm to the left of the lens
d) 13.8 cm to the left of the lens

34.37 26.3 cm from the lens, 12.4 mm, erect, same
side

34.39 a) 200 cm to the right of the first lens, 4.80 cm
b) 150 cm to the right of the second lens, 
7.20 cm

34.41 a) 53.0 cm b) real c) 2.50 mm, inverted
34.43 10.2 m
34.45 a) b)

c)
34.47 a) 85 mm b) 135 mm
34.49 a) ƒ 11 b) 1 480 s � 2.1 ms
34.51 a) convex b) 50 mm to 56 mm
34.53 a) 80.0 cm b) 76.9 cm
34.55 49.4 cm, 2.02 diopters
34.57 �1.37 diopters
34.59 a) 6.06 cm b) 4.12 mm
34.61 a) 640 b) 43
34.63 a) 8.37 mm b) 21.4 c) �297
34.65 a) �6.33 b) 1.90 cm c) 0.127 rad
34.67 a) 0.661 m b) 59.1
34.69 7.20 m s
34.71 h 2
34.73 a) 20.0 cm b) 39.0 cm
34.75 a) 46 cm from the mirror, on the opposite side

of the mirror, virtual b) 29 mm, erect c) no
34.77 51 m s
34.79 b) 2.4 cm, 0.133
34.81 2.00
34.83 a) 3.3 cm b) virtual

c) 1.9 cm to the right of the vertex at the right-
hand end of the rod d) real, inverted, 1.06 mm

34.85 a) 58.7 cm, converging b) 4.48 mm, virtual
34.87 a) 6.48 mm b) no, behind the retina

c) 19.3 mm from the cornea, in front of the retina
34.89 50.3 cm
34.91 10.6 cm
34.93 a) 0.24 m b) 0.24 m
34.95 72.1 cm to the right of the surface vertex
34.97 0.80 cm
34.99 -26.7 cm
34.101 1.24 cm above the page
34.103 a) 46.7 m b) 35.0 m
34.105 134 cm to the left of the object
34.107 a) 3.5 cm b) 7.0 cm c) 100 cm

d) 57 e) no
34.109 4.17 diopters
34.111 a) 30.9 cm b) 29.2 cm
34.113 d) 36.0 cm, 21.6 cm, d � 1.2 cm
34.115 a) 552 b) 25.8 cm
34.117 a) 4ƒ
34.119 b) 1.35 cm

Chapter 35
35.1 a) 14 cm, 48 cm, 82 cm, 116 cm, 150 cm

b) 31 cm, 65 cm, 99 cm, 133 cm
35.3 b) 427 Hz b) 0.796 m
35.5 0.75 m, 2.00 m, 3.25 m, 4.50 m, 5.75 m, 

7.00 m, 8.25 m
35.7 a) 2.0 m b) constructively

c) 1.0 m, destructively
35.9 1.14 mm
35.11 0.83 mm
35.13 a) 39 b) �73.3°
35.15 12.6 cm
35.17 1200 nm
35.19 a) 0.750I0 b) 80 nm
35.21 1670 rad
35.23 71.4 m
35.25 114 nm
35.27 0.0234°
35.29 a) 55.6 nm b) (i) 2180 nm (ii) 11.0

wavelengths
35.31 a) 514 nm, green b) 603 nm, orange
35.33 0.11 m
35.35 0.570 mm
35.37 1.54 mm
35.39 a) 96.0 nm b) no, no
35.41 a) 1.58 mm (green), 1.72 mm (orange)

b) 3.45 mm (violet), 4.74 mm (green), 
5.16 mm (orange) c) 9.57 m

35.43 1.730
35.45 0°, 27.3°, 66.5°

m

m

-

-
/

/
/

//

1.5 * 10-3
5.3 * 10-41.4 * 10-4

35.47 1.57
35.49 above centerline: 3.14°, 15.9°, 29.5°, 45.4°,

68.6°; below centerline: 9.45°, 22.5°, 37.0°, 55.2°
35.51
35.53 , independent of m
35.55 b) 0.72 m
35.57 1.42

35.59 b) I �

c)

35.61 14.0

Chapter 36
36.1 506 nm
36.3 a) 226 b) �83.0°
36.5 9.07 m
36.7 a) 63.8 cm

b) �22.1°, �34.3°, �48.8°, �70.1°
36.9 �16.0°, �33.4°, �55.6°
36.11 0.920 m
36.13 a) 580 nm b) 0.128
36.15 a) 6.75 mm b) 2.43 W m2

36.17 a) 668 nm b)

36.19 a) �13.0°, �26.7°, �42.4°, �64.1°
b) 2.08 W m2

36.21 a) 3 b) 2
36.23 a) 0.0627°, 0.125° b) 0.249I0, 0.0256I0

36.25 a) 1 & 3, 2 & 4 b) 1 & 2, 3 & 4
c) 1 & 3, 2 & 4

36.27 15.0 m (width), 45.0 m (separation)
36.29 a) 4790 slits cm b) 19.1°, 40.8° c) no
36.31 a) yes b) 13.3 nm
36.33 a) 4830 lines/cm b) �37.7°, �66.5°
36.35 10.5°, 21.3°, 33.1°
36.37 a) 17,500 b) yes

c) (i) 587.8170 nm (ii) 587.7834 nm
(iii) 587.7834 nm � � 587.8170 nm

36.39 0.232 nm
36.41 0.559 nm
36.43 1.88 m
36.45 92 cm
36.47 1.45 m
36.49 a) 77 m (Hubble), 1100 km (Arecibo)

b) 1500 km
36.51 30.2 mm

l

/
mm

/

9.36 * 10-5I0

/m

m

ml0 - L1n - 12

d
sin u =

I0 cos 2bp3d sin u + L1n - 124

l0
r

l>2d
6.8 * 10-5 (C°)-1

37.37 a) b) ,
increases, no 

37.39 a) b) 52.1 cm
37.41 a) 0.867 nJ b) 0.270 nJ c) 0.452
37.43 a) 5.34 pJ (nonrel), 5.65 pJ (rel), 1.06

b) 67.8 pJ (nonrel), 331 pJ (rel), 4.88
37.45 a) 2.06 MV

b) 0.330 pJ � 2.06 MeV

37.47 a) �

b)

37.49 a) b) 34.0 GeV
37.51 0.700c
37.53 a) 0.995c b) 1%
37.55 a) b) 7000m
37.57 0.168 MeV
37.59 a) 4c 5 b) c c) (i) 145 MeV (ii) 625 MeV

d) (i) 117 MeV (ii) 469 MeV

37.65 b) c) 14.4 ns
37.67 0.357c, receding
37.69 a) 1000 y, 866 y, , 14%

b) 505 y, 71 y, , 550%
c) 501 y, 7.1 y, , 6300%

37.71
37.75 a) toward us at 13.1 km s, 39.4 km s//

2.04 * 10-13 N

6.3 * 1021 J
5.5 * 1020 J

1.4 * 1019 J

¢x¿ = 21¢x22 - c21¢t22

/

¢ = 9 * 10-9

¢ = 8.42 * 10-6

1.5 * 1013 y

4.6 * 106 tons4.2 * 109 kg

1.11 * 103 kg

4.0 * 10-13 g3.3 * 10-13%

A-20 Answers to Odd-Numbered Problems

39.3 a) 2.37 * 10-24 kg # m>s
b) � 19.3 eV3.08 * 10-18 J

39.5 a) 0.332 nm, equals the circumference of the
orbit b) 1.33 nm, 1 4 the circumference of the
orbit

39.7 a) b) no
39.9 a) 62.0 nm (photon), 0.274 nm (electron)

b) 4.96 eV (photon), 
(electron) c) 250 nm, electron

39.11 , no
39.13 a) 0.0607 V b) 248 eV c) 20.5 mm

3.90 * 10-34 m
L

2.41 * 10-5 eV

8.8 * 10-36 m

/

b)
37.33 a) 0.866c b) 0.986c
37.35 a) 0.450 nJ b)

c) 0.968c
1.94 * 10-18 kg # m>s

9.26 * 1014 m>s2

36.53 a) 78 b) 80.8° c) 555 W m2

36.55 1.68
36.57 a) 1.80 mm b) 0.796 mm
36.61 b) for : any two slits separated by one

other slit; for the other cases: any two slits
separated by three other slits

36.63 360 nm
36.65 second
36.67 c) �2.61 rad
36.69 387 km
36.71 1.40

Chapter 37
37.1 bolt A
37.3 0.867c, no
37.5 a) 0.998c b) 126 m
37.7 1.12 h, in the spacecraft
37.9 92.5 m
37.11 a) 0.66 km b) 49 s, 15 km c) 0.45 km
37.13 a) 3570 m b) 90.0 s c) 89.2 s
37.15 a) 0.806c b) 0.974c c) 0.997c
37.17 a) toward b) 0.385c
37.19 0.784c
37.21 0.611c
37.23 0.837c, away from
37.25 a) 0.159c b) 172 million dollars
37.27 3.06p0

37.29 a) 0.866c b) 0.608c
37.31 a) 5.49 * 1015 m>s2

mm
m

3p>2

/m�

37.77 a) 2494 MeV b) 2.526 c) 987.4 MeV

Chapter 38
38.1 a) K2 � 4K1 b) E2 � 2E1

38.3 , , 

� 2.40 eV

38.5 a) b) photons s
c) no

38.7 a) 4.8 eV b)

d) ƒth, , and the horizontal-axis intercept are

different, the slope is the same
38.9 249 km s
38.11 2.14 eV
38.13 a) 264 nm b) 4.70 eV
38.15 0.311 nm, same
38.17 1.13 keV
38.19 0.0714 nm, 180°
38.21 a) b) 0.04294 nm

c) 300 eV, loss d) 300 eV
38.23 51.0°
38.25 a) b)

c) 2.10 pm, less
38.27 , 

38.29 a) 1.04 eV b) 1200 nm c)
d)

38.31 a) b) 658 nm
c) 1.89 eV d)

38.33 a) 5.07 mJ b) 11.3 W
c) photons s

38.35 a) b) 705 eV

38.37 , 59.4°

38.39 a) b)
c) 0.1 mm

38.41 a) 319 eV, b) 3.89 nm
38.43 a) 4.85 pm b) 0.256 MeV

Chapter 39
39.1 a) 0.155 nm b) 8.46 * 10-14 m

1.06 * 107 m>s

4 * 10-9 deg5 * 10-33 m

6.28 * 10-24 kg # m>s
6.99 * 10-24 kg # m>s

/1.49 * 1016

6.58 * 10-34 J # s
4.56 * 1014 Hz
4.14 * 10-7 eV

2.50 * 1014 Hz

1.96 * 10-29 kg # m>s1.19 * 10-27 kg # m>s
9.46 * 10-14 J1.27 * 10-14 J

4.39 * 10-4 nm

/

f

6.1 * 10-34 J # s
/1.13 * 10195.00 * 1014 Hz

3.84 * 10-19 J

1.28 * 10-27 kg # m>s5.77 * 1014 Hz

b) , about 0.040 times the 5.96 * 109 m
earth-sun distance; �5.55 * 1029 kg
0.279 msun



39.15 a) b) 150 eV
c) 12 keV d) electron

39.17 0.432 eV
39.19 a) 2.07°, 4.14° b) 1.81 cm
39.21 a) 8260 b) electron
39.23 a) 3.63 MeV b) 3.63 MeV

c)
39.25

39.27 a) 218 eV, 16 times b) 218 eV, 16 times
c) 7.60 nm d) 1

4 hydrogen radius

39.29 a) , , 

b) , , 
c) 8.2 * 1064.13 * 10-15 s

1.22 * 10-15 s1.53 * 10-16 s

7.27 * 105 m>s

1.09 * 106 m>s2.18 * 106 m>s
/

-
3.16 * 10-34 kg # m2>s

1.32 * 107 m>s

7.3 * 106 m>s 40.23 a) (twice the width of the box),

b)
(same as the width of the box),

c) (2 3 the width of the box),

40.25 b) yes

40.27

40.29

40.31 22 fm

40.33 a) b)

40.35
40.37 a) 0.0013 b)
40.39 � ,

�

40.41 a) 0.21 eV b) 5900 N m

40.43 , increases with n

40.45 a) b) 106 m c) 0.0118 eV

40.47 a)

b)

40.49 a)

b) 0, ; , L c) 2L

d) h, which is greater than 

40.51 , 

40.53 a) 19.2 m b) 11.5 m

40.55 a) 0.818 b) 0.500 c) yes

40.57 a) 2 L dx b) 0 c) 2 L dx

40.61 a) A C, ,

where k b) ,

40.65 � ;

�

40.69 b) 134 eV

40.71 a) , n � 1, 2, . . .

b) , n � 0, 1, 2, . . .

c) same

d) part (a)’s are odd, part (b)’s are even

40.73 a) 

c) underestimates

x = �22E>K¿

En =
12n + 122h2

8mL2

En =
12n22h2

8mL2

8.30 * 10-15 eV1.33 * 10-33 J

4.14 * 10-15 eV6.63 * 10-34 J

kB cos kL - kA sin kL = -kDe-kL

kB = kC
22mE

U
=

B sin kL + A cos kL = De-kL=
2/12/1

mm

C = a
2k2

k1 + k2
b AB = a

k1 - k2

k1 + k2
b A

U>2
wx = 2p>k0� p>k0

c1x2 =
sin k0x

k0x

4p2U

mL2

ƒ °1x, t2 ƒ 2 =
2

L
c1 - cos a

4p2Ut

mL2
b d

m5.89 * 10-3 eV

12n + 12
U
2

/
1.39 * 10-14 eV2.22 * 10-33 J

6.93 * 10-15 eV1.11 * 10-33 J
10-143

1>22

4.2 * 10-44.4 * 10-8

Ba
2mE

U2
b cos a

22mE

U
xb

-Aa
2mE

U2
b sin a

22mE

U
xb -

3.43 * 10-10 m

3.3 * 10-24 kg # m>s
/2.0 * 10-10 m

2.2 * 10-24 kg # m>s

3.0 * 10-10 m1.1 * 10-24 kg # m>s
6.0 * 10-10 m 41.23 , ms �1

2

41.25 g
41.27 n � 1, l � 0, ml � 0, ms � �1

2: 2 states;

n � 2, l � 0, ml � 0, ms � �1
2: 2 states;

n � 2, l � 1, ml � �1, ms � �1
2: 6 states

41.29 a) 1s22s2 b) 1s22s22p63s2, magnesium
c) 1s22s22p63s23p64s2, calcium

41.31 4.18 eV
41.33 a) 1s22s22p b) �30.6 eV c) 1s22s22p63s23p

d) �13.6 eV
41.35 a) �13.6 eV b) �3.4 eV
41.37 a) , 3.71 keV, 

b) , 6.96 keV, 1.79 * 10-10 m1.68 * 1018 Hz

3.35 * 10-10 m8.95 * 1017 Hz

/
/
/

/=1.68 * 10-4 eV

Answers to Odd-Numbered Problems A-21

39.31 a) �17.50 eV, �4.38 eV, �1.95 eV, �1.10 eV,
�0.71 eV b) 378 nm

39.33 a) �5.08 eV b) �5.64 eV
39.35 photons s
39.37 photons s
39.39 a) b)

c)
39.41 a) 2060 K b) 1410 nm
39.43 1.06 mm, microwave
39.45 a) 1.7T b) 0.58
39.47 a) 97 nm, no b) , 12Rsun c) no
39.49 a) b) no
39.51 not valid
39.53 6.34 * 10-14 eV

4.40 * 10-32 m>s
8.2 * 109 m

5.9 * 10-9
3.5 * 10-171.2 * 10-33
/4.00 * 1017
/5.32 * 1021

39.55 a) b) �2.53 keV
c) 0.655 nm

39.57 a) 12.1 eV b) 3; 103 nm, 122 nm, 657 nm
39.59 a) 0.90 eV
39.61 a) photons s b) 30,000
39.63 29,800 K
39.65 a) h 2mc

b) , independent of n

39.67 a)

c)

39.69 a) 12 eV b) 0.15 mV, 7300 m s
c) , 4.0 m s

39.71 a) no b) 2.52 V

39.73 a) b) photon
39.75 , no

39.77 b) c)

39.79 a) b) (i) 1.53 MeV, 

(ii) 2810 MeV, 
39.81 a) b) 19 MeV

c) Ucoul � �0.29 MeV, no

39.83 , 

39.85 a) b) , no

39.87 a) no b) 1.51 V c) 1.51 eV, about 1 4 the
potential energy of the NaCl crystal
d) 1240 eV, yes

39.89 a) b) 53.3° c) smaller

39.91 a) 248 eV b) 0.0603 eV

39.93 a) , b)

Chapter 40
40.1

40.3 a) b) , yes

40.5 a) b) 0, 

40.7 no

40.11 a) b) , 

c) d) no

40.13

40.15 0.61 nm

40.19 a) 0, L 2, L b) L 4, 3L 4 c) yes///

1.66 * 10-10 m

4.9 * 10-67 J1.0 * 1033 s

1.3 * 10-33 m>s1.6 * 10-67 J

l>2, l, 3l>2, . . .l>4, 3l>4, 5l>4, . . .

4v>k8p>k

°1x, t2 = Ae-i34.27*1010 m-14xe-i31.05*1017 s-14t

E =
3

2
a

h2A2

m
b

1>3

x Z 0F = -
A ƒ x ƒ

x

2d sin u = ml

/
2.3 * 1027 y1.1 * 10-35 m>s

2.9 * 10-87.0 * 10-36 kg

1.1 * 10-20 kg # m>s
3.41 * 10-16 m

6.26 * 10-13 m
h

mc215

¢ = 8.50 * 10-8¢ =
m2c2l2

2h2

1.66 * 10-17 m
E = c22mK

/8.2 * 10-8 V
/

s = 5.67 * 10-8 W>m2 # K4

I1f2 =
2phf 5

c31ehf>kT - 12

6.61 * 10-16 m
/

/5 * 1049

1.69 * 10-28 kg

41.21 a) b) , not2.5 * 1013 m>s2.5 * 1030 rad>s
valid since v 7 c

Chapter 41
41.1 a) 1 b) 3
41.3 3.51 nm
41.5 (2, 2, 1): x � L 2, y � L 2; (2, 1, 1): x � L 2;

(1, 1, 1): none
41.7 a) 0 b)

c)

d) e) 1 6

41.9 4
41.11 , , ; as n increases, the

maximum L gets closer to .nU
199.5U19.49U1.414U

/5.27 * 10-35 kg # m2>s

3.16 * 10-34 kg # m2>s

3.65 * 10-34 kg # m2>s

///

41.13 a) 18 b) ml � �4, 153.4°
c) ml � �4, 26.6°

41.17 a) 0.468 T b) 3
41.19 a) 9 b)

c) 2.78 * 10-4 eV
3.47 * 10-5 eV

c) , 22.7 keV, 
41.39 3E1,1,1

41.41 a) 1 64 � 0.0156 b)

c)

41.43 a) b) , no

41.45 a)

with nx, ny and nz all nonnegative integers

b) , , c) one

41.47 b) n � 5 shell
41.49 a) 0, , , , 

b) 7470 nm, no
41.51 a) 1.51e, 9.49 electrons

b) (i) 1.8 (ii) �2.75 eV
41.53 a) 2a b) 0.238
41.55 b) 0.176

41.57 b)

41.59 4a, same

41.61 , , , ; 

, , , 0; 

, , , 
41.63 3.00 T
41.65 a) 0.99999978 � b) 0.9978

c) 0.978
41.67 a) 4, 20 b) 1s42s42p3

41.69 a) 122 nm b) 1.52 pm, increase
41.71 a) 0.188 nm, 0.250 nm

b) 0.0471 nm, 0.0624 nm
41.75 a) 2a Z b) 0.238, independent of Z

Chapter 42
42.1 277 nm, ultraviolet
42.3 a) 6.1 K b) 34,600 K c) He2 no, H2 yes
42.5 40.8 m
42.7
42.9 a) 0.0644 nm (carbon), 0.0484 nm (oxygen)

b) , yes

42.11 a)

b) 66.3 m s (carbon), 49.8 m s (oxygen)

c)
42.13 a) b) 166 m

42.15 b)

42.17 2170 kg m3

42.19 a) 1.12 eV
42.21
42.23 states eV
42.25 a) 0.0233R b) 0.767%

c) no, motion of the ions
42.27 31.2%
42.29 0.20 eV below the bottom of the conduction band
42.31 a) (i) 0.0204 mA (ii) �0.0196 mA

(iii) 26.8 mA (iv) �0.491 mA
b) good for V between �1.0 mV, otherwise no

42.33 a) 5.56 mA b) �5.18 mA, �3.77 mA
42.35 a) 977 N m b)
42.37 a) b)

c) 0.81 d) 0.058
42.39 a) 0.96 nm b) 1.8 nm
42.41 a) 0.129 nm b) 8, 7, 6, 5, 4 c) 485 m

d) 118 m, 134 m, 156 m, 188 m, 234 mmmmmm
m

1.3 * 10-19 C3.8 * 10-29 C # m
1.25 * 1014 Hz/

/1.5 * 1022
1.20 * 106

/

lU
2pI

m7.49 * 10-3 eV
6.10 * 10-12 s

//
1.03 * 1012 rad>s

1.45 * 10-46 kg # m2

5.65 * 10-13 m
m

/

1 - 2.2 * 10-7

-
eUB

2m
-2S -1-1S 00S 1

-1S -10S 01S 1

eUB

2m
0S -11S 02S 1

1uL2max = arccos1-21 - 1>n2

220U212U26U22U

Uav 2
1 +

3

2
v 2

2bUav 2
1 +

1

2
v 2

2b

E = U c1nx + ny + 12v 2
1 + anz +

1

2
bv 2

2 d ,

1>22a4pA2r 2e-2ar2
dr

2.06 * 10-3
7.50 * 10-4/

5.47 * 10-11 m5.48 * 1018 Hz



42.43 b) (i) 2.95 (ii) 4.73 (iii) 7.57 (iv) 0.838
(v)

42.45 a) 1.146 cm, 2.291 cm
b) 1.171 cm, 2.341 cm; 0.025 cm ,
0.050 cm 

42.47 0.274 eV, much less
42.49 a) b) (i) 4.30 m

(ii) 4.28 m (iii) 4.40 m
42.51 2.03 eV
42.53 a) atoms m3 b) 4.7 eV/4.66 * 1028

mm
m4.24 * 10-47 kg # m2

11S 02
12S 12

5.69 * 10-9
43.33 500 rad, 2000 rem, 5.0 J kg
43.35 a) 1.75 kGy, 175 krem, 1.75 kSv, 385 J

b) 1.75 kGy, 2.625 kSv, 262.5 krem, 385 J
43.37 a) 9.32 rad, 9.32 rem
43.39 a) Z � 3, A � 6 b) �10.14 MeV

c) 11.59 MeV
43.41 a) Z � 3, A � 7 b) 7.152 MeV c) 1.4 MeV
43.43 a) 173.3 MeV b) MeV g
43.45 1.586 MeV
43.47 324 MJ
43.53 a) 4.14 MeV b) 7.75 MeV nucleon
43.55 a) b) 25% c) 112 y

43.57 a) will decay into b) or
electron capture

c) 3.255 MeV, 4.277 MeV

43.59 a) b) 0.156 MeV

c) 13.5 kg, 3400 decays s

d) 530 MeV s �
e) 36 Gy, 3.6 mrad, 36 Sv, 3.6 mrem

43.61 0.960 MeV
43.63 0.001286 u, yes
43.65 94.3 rad, 1900 rem
43.67 a) b)
43.69 29.2%
43.71 a) 0.96 J s b) 0.48 mrad s c) 0.34 mrem

d) 6.9 days
43.73
43.75 a) 0.48 MeV

b) 3.270 MeV �

c) , more than a million
times larger

43.79 a) two b) 0.400 h, 1.92 h
c) (short-lived), 
(long-lived)

d) 1800 (short-lived), (long-lived)

Chapter 44
44.1 69 MeV, , 18 fm, gamma ray
44.3 a) 32 MeV
44.5
44.7 , 70%7.2 * 1019 J

9.26 * 106 m>s

1.7 * 1022 Hz

4.10 * 106

2.49 * 1071.04 * 107

3.155 * 1011 J>mol

5.239 * 10-13 J

1.0 * 104 y

//m

10-15,0005.0 * 104

mm
8.5 * 10-11 J>s/

/
e- + 14

7 N + ye
14
6 CS

b+25
12Mg25

13Al

90
39Y

/

/4.42 * 1023

/ 44.9 a) 1.18 T b) 3.42 MeV, 
44.11 a) 30.6 GeV b) 8.0 GeV
44.13 a) 3200 GeV b) 38.7 GeV
44.15 a) , b) 219.1 MeV
44.17 , 97.2
44.19 116 MeV
44.21 (b) and (d)
44.23 (c) and (d)
44.27 a) 0, 1, �1, 0 b) 0, 0, 0, 1

c) �e, 1, 0, 0 d) �e, 0, 0, �1
44.29
44.31 a) b) no c) yes
44.33 a) b) 1510 Mly
44.35 a) b) 1.5
44.37 a) 3.8 atoms m3 b) 320 c)
44.39 a) 5.494 MeV b) 20.58 MeV
44.41 �0.783 MeV, endoergic
44.43 966 nm
44.45 a) 14.0 TeV b)
44.47 a) ,

an electron and neutrinos b) 139 MeV
p- S m- +  neutrinoS e- +  3 neutrinos

1.0 * 105 TeV

2.0 * 1027/
1.1 * 105 km>s
3.28 * 107 m>s
u dd

pS e+ + n + ve

1.63 * 10-25 kg
p+p0

1.81 * 107 m>s

A-22 Answers to Odd-Numbered Problems

42.55 b) �
42.57 a) b) yes

c) d) no

42.59 a) , attractive b) , repulsive

Chapter 43
43.1 a) 14 proton, 14 neutrons

b) 37 protons, 48 neutrons
c) 81 protons, 124 neutrons

43.3 0.533 T
43.5 a) 76.21 MeV b) 76.68 MeV, 0.6%
43.7 0.5575 pm
43.9 a) 1.32 MeV b)

43.11 8.73 MeV nucleon,

8.08 MeV nucleon

43.13 a) b) c)
43.15 156 keV
43.17 a) 0.836 MeV b) 0.700 MeV
43.19
43.21 a) b) 2990 kg

c)
43.23 a) 159 decays min b) 0.43 decays min
43.25 a) 0.421 decays s b) 11.4 pCi
43.27 2.80 days
43.29 a)

b) , decays s
c) , decays s

43.31 a) 1.2 mJ b) 10 mrad, 10 mrem, 7.5 mJ
c) 6.2

/9.45 * 10102.53 * 1014
/3.78 * 10111.01 * 1015

2.02 * 1015

/
//

1.24 * 105 decays>s
4.92 * 10-18 s-1

5.01 * 104 y

15
7 N24

12Mg235
92 U

/180
73 Ta:

/86
36Kr:

1.13 * 107 m>s

+2p2

4pP0r3

-2p2

4pP0r3

6.66 * 1035 m-3
1.67 * 1033 m-3

3.76 * 105 atm3.81 * 1010 Pa

44.59 b) R R0 � 0.574
c) speeding up at 300 My, slowing down at
10.2 Gy

44.61 230 MeV, 12.5° below the �x-axis

/

c) d) 50 Sv, 5.0 krem
44.49 2.494 GeV
44.51 a) 0, �e, 1, all lepton numbers are 0, K�

b) 0, �e, 0, all lepton numbers are 0, 
c) �1, 0, 0, all lepton numbers are 0,
antineutron
d) 0, e, 0, muonic lepton number is 1, all
other lepton numbers are 0, 

44.53
44.55 a) 0.70 rad b) 0.70 rem, no

44.57 c) d) e) noR1t2 = R0eH0tH0 =
dR>dt

R

7.5 * 10-23 s
m+

-+
1n2

p-

2.24 * 1010
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Note: Page numbers followed by f indicate figures;
those followed by t indicate tables.

A
Abdus, Salam, 1500
Absolute conservation laws, 1495
Absolute pressure, 377–378
Absolute temperature, 517
Absolute temperature scale, 556, 668–669
Absolute zero, 556, 669
Absorption lines, 1203
Absorption spectra

line, 1293, 1297–1300, 1310–1314
X-ray, 1396

AC source, 1022. See also Alternating-current
circuits

Acceleration
angular, 282–285, 284t, 311–314
around curve, 74, 88
average, 42–43. See also Average acceleration
calculating by integration, 55–57
centripetal, 86–87, 154
centripetal component of, 286–287
changing, 55–57
circular motion and, 85–87
constant, 46–52. See also Constant acceleration
definition of, 43
fluid resistance and, 152–154
inertial frame of reference and, 110–112
instantaneous, 43–44. See also Instantaneous

acceleration
linear, 282, 284t
mass and, 113, 114, 118–120
net force and, 112–118
Newton’s first law and, 108–112
Newton’s second law and, 112–117, 140–146
of particle in wave, 480–482
projectile motion and, 77–80, 87
of rocket, 262–264
of rolling sphere, 319–320
signs for, 45, 46
in simple harmonic motion, 444, 448
tangential component of, 286
units of, 117
vs. velocity, 42
on vx-t graph, 44–46
weight and, 118–119
of yo-yo, 319

Acceleration due to gravity, 700
apparent weight and, 143, 422
definition of, 52
at different latitudes and elevations, 422t
in free fall, 52–55, 118, 143
magnitude of, 405
mass vs. weight and, 118–120
variation with location and, 119
vs. gravitation, 403
weightlessness and, 143

Acceleration vectors, 35, 72–77, 283
average, 73–75
instantaneous, 73–75
parallel and perpendicular components of, 75–77

Accelerators, 1485–1488. See also Particle accelerators
Acceptor level, 1425
Acceptors, 1425
Accretion disk, 425
Accuracy, 8

vs. precision, 9
Acrobats, in unstable equilibrium, 228
Action-reaction pairs, 120–123

gravitational forces as, 403
Activation energy, 610
Activity, in radioactive decay, 1456
Addition

significant figures in, 9
of vectors, 12–18

Adiabatic process, 634–635
Carnot cycle and, 663
for ideal gas, 640–642

Aging, relativity and, 1233
Air

dielectric strength of, 768, 805
as insulator, 571
ionization of, 768–771

Air conditioners, 660–661
Air drag, 152–154
Air pressure, 375–376
Air resistance, projectile motion and, 77, 79–80
Airplanes

banked curves and, 158
noise control for, 531, 532
sonic boom from, 538
wing lift and, 388–389
wing resonance in, 460

Airy disk, 1209
Airy, George, 1209
Alkali metals, 1390

Bohr atomic model for, 1306
Alkaline earth elements, 1390
Alkaline earth metals, 1390
Alpha decay, 1450–1452
Alpha particles, 1294–1295

emission of, 1450–1451
tunneling and, 1349–1350

Alternating current, 822, 850, 1021
applications of, 868
dangers of, 1040
lagging, 1036
measurement of, 1022–1024
rectified, 1022–1023
rectified average, 1023
root-mean-square value of, 1023–1024

Alternating-current circuits
capacitors in, 1027–1028, 1029–1030, 1029t
complex numbers in, 1049–1050
impedance of, 1031–1033
inductors in, 1025–1027, 1029, 1029t
L-R-C series, 1030–1034
phase angle and, 1026, 1031–1032
phasors and, 1022
power in, 1034–1037
resistance and reactance in, 1024–1030
resistors in, 1025, 1029, 1029t
resonance in, 1037–1039
tailoring, 1038–1039
transformers and, 1040–1042

Alternators, 963–964, 1021–1022
Ammeters, 831, 860–861

voltmeters and, 862–863, 1024
Amorphous solids, 1412
Ampere, 695, 820, 931–932
Ampère, André, 885
Ampere’s law, 935–941. See also Maxwell’s equations

applications of, 938–941
displacement current and, 975–977
electromagnetic waves and, 1052, 1057, 1063
general statement of, 937–938
generalization of, 975–976

Amplitude
displacement, 510, 518–519
of electromagnetic waves, 1061
of oscillation, 438
of pendulum, 454–455
pressure, 511–512, 519–521
of sound waves, 510–513

Analyzers, 1095–1096
Anderson, Carl D., 1482, 1485
Angle(s)

notation for, 71
polarizing, 1097
radians and, 279, 287

Angle of deviation, 1111
Angle of incidence, critical, 1089
Angle of reflection, 1084
Angular acceleration, 282–285

angular velocity and, 282
calculation of, 283
constant, 283–285, 284t
torque and, 311–314
as vector, 283
vs. linear acceleration, 284t

Angular displacement, 279
torque and, 320–322

Angular frequency, 438–439
of electromagnetic waves, 1061
natural, 459–460
of particle waves, 1331
period and, 438–439
in simple harmonic motion, 441–442
vs. frequency, 442

Angular magnification, vs. lateral magnification, 1147
of microscope, 1147, 1148–1149

Angular momentum
axis of symmetry and, 323–324
of the body, 324
conservation of, 325–328
definition of, 322
of electrons, 942
of gyroscope, 328–330
nuclear, 1442
orbital, 1373–1374, 1384, 1387
precession and, 328–330
rate of change of, 323, 324
rotation and, 322–328
spin, 1384–1385, 1387, 1442
torque and, 323, 324
total, 1387, 1442
as vector, 324, 328

Angular simple harmonic motion, 451
Angular size, 1146
Angular speed, 280

instantaneous, 286
precession, 329
rate of change of, 286

Angular velocity, 279–282
angular acceleration and, 282
average, 279
calculation of, 281
instantaneous, 280
rate of change of, 286
as vector, 281–282
vs. linear velocity, 280

Angular vs. linear kinematics, 285–288
Anomalous magnetic moment, 1443
Antimatter, 1516
Antineutrinos, 1492
Antineutrons, 1492
Antinodal curves, 1166
Antinodal planes, 1070
Antinodes, 492

displacement, 523
pressure, 523

Antiparallel vectors, 11, 12
Antiparticles, 1483
Antiprotons, 1491–1492
Antiquarks, 1496, 1499
Aphelion, 415
Apparent weight, 142

acceleration due to gravity and, 143, 422
Earth’s rotation and, 421–423
magnitude of, 422

Appliances, power distribution systems in, 868–872

For users of the three-volume edition: pages 1–686 are in Volume 1; pages 687–1260 are in Volume 2; and pages 1223–1522 are in Volume 3. Pages 1261–1522 are not in the
Standard Edition.
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Archimedes’ principle, 380
Arecibo telescope, 1218
Aristotle, 52
Astigmatism, 1144
Aston, Francis, 897
Astronomical distances, units for, 1503
Astronomical telescopes, 1119, 1149–1151
Atmosphere, 355, 375
Atmospheric pressure, 355, 375–376

elevation and, 594–595
measurement of, 378–380

Atom(s)
energy levels of. See Energy levels
excited, 1298
hydrogen. See Hydrogen atom
interactions between, 451–453
in magnetic field, 1379–1382
many-electron, 1387–1393
muonic, 1379
nucleus of, 689, 1295
Rydberg, 1306, 1402
structure of. See Atomic structure
Thomson’s model of, 751–752

Atomic mass, 598, 690, 1305–1306
measurement of, 897, 1441

Atomic models
Bohr’s, 1297–1306
Rutherford’s, 1294–1296
Thomson’s, 1293, 1294–1295

Atomic number, 690, 1306, 1379, 1387–1388, 1441
Atomic particles, 689–690. See also Electron(s);

Neutron(s); Proton(s)
Atomic spectra, 1292, 1297–1300

in Balmer series, 1304
in Brackett series, 1304
in Lyman series, 1304
in Pfund series, 1304

Atomic structure, 689, 1364–1398
central-field approximation and, 1388
electron spin and, 1383–1387
exclusion principle and, 1388–1393
of hydrogen atom, 1372–1378
of hydrogenlike atoms, 1378–1379
of many-electron atoms, 1387–1393
Moseley’s law and, 1394–1396
particle in three-dimensional box and, 1366–1371
periodic table and, 1389, 1390–1393
Schrödinger equation and, 1365–1366
X-ray spectra and, 1393–1396
Zeeman effect and, 1379–1382

Attenuator chains, 881–882
Audible range, 509
Automobiles

gas compression in, 593–595
ignition systems in, 1000
Newton’s second law and, 115
power distribution systems in, 868, 870–871
vertical simple harmonic motion in, 451
weight distribution for, 349

Autoradiography, 1461
Available energy, 1487–1488
Avalanche breakdown, 1428
Average acceleration, 42–43

definition of, 42
units of, 42
vs. average velocity, 42
on x-t graph, 44–46
x-component of, 42

Average acceleration vectors, 73–75
Average angular acceleration, 282
Average angular velocity, 279
Average density, 374
Average power, 193, 487
Average speed, 39
Average velocity, 36–40

definition of, 36
instantaneous velocity and, 38–41
straight-line motion and, 36–38
x-component of, 36–38
on x-t graph, 37–38

v

Average velocity vectors, 70–72
Avogadro’s number, 598
Axis

elliptical, 415
optic, 1118
polarizing, 1094–1095
semi-major, 415, 416

Axis of rotation, 281–282, 286–287
change in direction of, 281–282, 286–287
fixed, 278–279
moment of inertia for, 312
moving, 324–320
parallel-axis theorem and, 293–294
through center of mass, 294

Axis of symmetry, angular momentum and, 323–324
Axis system, right-handed, 24
Axons, 716, 781, 881–882
ax-t graphs

for changing acceleration, 55–57
for constant acceleration, 46–49

B
Back emf, 908
Background radiation, 1515
Back-of-the-envelope calculations, 10
Bacteria, rotation in, 283f
Bainbridge’s mass spectrometer, 897
Balance

Cavendish (torsion), 404
spring, 106

Ballistic pendulums, 253
Balmer series, 1304
Band spectra, 1411
Banked curves, 158
Bar, 375
Bar magnets, 883, 905–907
Bardeen, John, 1430
Barometers, mercury, 378–380
Baryons, 1492, 1493–1494, 1496
Baseball, curve ball in, 391
Batteries

charging, 835–836
as current source, 831
energy in, 834

Beams, 1083
Beats, 531–532
Becker, Herbert, 1481
Becquerel, 1457
Bednorz, Johannes, 824
Bees, vision in, 1101
Bell, Alexander Graham, 521
Bernoulli’s equation, 385–389
Beryllium, 1390
Beta decay, 1452–1453
Beta-minus particles, 1452–1453
Beta-plus particles, 1453
Bias conditions, 1426, 1427–1428
Big Bang, 1503–1504
Big Crunch, 1505
Bimetallic strip thermometer, 553
Binary star systems, 425–426, 1259
Binding energy, 1406, 1445–1446
Binoculars, 1150
Binomial theorem, 451, 452–453
Biological efficiency, 655
Biologically equivalent dose, 1460
Biot-Savart law, 927
Bipolar junction transistors, 1429
Bird song, 522
Bird vision, 1144
Bird wings

flapping frequencies of, 438f
moment of inertia of, 290f

Birefringence, 1100
Black holes, 423–426
Blackbody, 576
Blackbody radiation, 1310–1314
Blackett, Patrick, 1271
Bloch, Felix, 1416f
Blood flow, turbulence in, 390f

Blubber, as insulator, 572
Blue-ray discs, 1210, 1309
Body. See Human body
Bohr magneton, 941–942, 1380, 1442–1443
Bohr, Niels, 1273, 1389f
Bohr’s atomic model, 1297–1306

energy levels and, 1297–1300
for hydrogen, 1300–1305, 1372
limitations of, 1372
photon emission and absorption and, 1297
uncertainty principle and, 1317
vs. Schrödinger analysis, 1373

Boiling, 566
Boltzmann constant, 601
Bonds, 1405–1408

covalent, 1406–1407
hydrogen, 1407–1408
ionic, 1406, 1407
metallic, 1408
in solids, 1414–1415
strong, 1407
van der Waals, 1407
weak, 1407

Bone cancer, radioisotope imaging for, 1391
Born, Max, 1333f
Bose-Einstein distribution, 1492
Bosons, 1492, 1500, 1501
Bothe, Walther, 1481
Bottomness, 1499
Bound charges, 806
Bound state, 1343–1344
Boundary conditions

for harmonic oscillator, 1351–1351
for waves, 489–490

Bourdon pressure gauge, 379f
Brackett series, 1304
Bragg condition, 1207
Bragg reflection, 1207
Brahe, Tycho, 414–415
Breaking stress, 358
Bremsstrahlung, 1267, 1268
Brewster’s law, 1097–1098
Bridge circuits, 855–860, 880–881
Bright fringes, 1194, 1195
Brillouin, Léon, 1361
British system, 5–6, 117. See also Units of measure
British thermal unit (Btu), 562
Brittle material, 358
Bulk modulus, 355
Bulk strain, 354–356
Bulk stress, 352f, 354–356
Buoyancy, 380–382
Butterfly wings, interference and, 1179

C
Cables, winding/unwinding, 291–292, 313–314
Calcite, birefringence in, 1100
Calculations

back-of-the-envelope, 10
calorimetry, 568–570
estimation and, 10
units of measure in, 6. See also Units of measure

Calorie (cal), 562
Calorimetry calculations, 568–570
Calorimetry, phase changes and, 565–570
Cameras, 1139–1142

flash unit of, 797
focusing, 1137
gamma, 1461
resolving power and, 1210

Cancer
imaging methods in, 1180, 1391
magnetic nanoparticles for, 946
radiation effects in, 1269

Capacitance
calculation of, 789–793
definition of, 788, 789
equivalence, 794
units for, 789
vs. coulombs, 789
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Capacitive reactance, 1028–1029
Capacitors, 788–800

in ac circuits, 1027–1028, 1029–1030, 1029t,
1035–1036

applications of, 788, 797–798, 802–803
capacitance of, 789. See also Capacitance
capacitive reactance of, 1028–1029
charge storage in, 797
charging, 864–866, 975–976
cylindrical, 792–793
definition of, 788
dielectrics in, 800–805
discharging, 867–868
electric-field energy and, 798, 799
electrolytic double-layer, 802
energy storage in, 788, 796–800
in networks, 796
in pacemakers, 866
in parallel, 794–796, 852–853
parallel-plate, 790, 791, 800–805
in series, 793–794, 795–796, 852
spherical, 792, 808
symbols for, 789
in touch screens, 794
in vacuum, 789–791, 798

Carbon dating, 1458
Carbon dioxide, greenhouse effect and, 576–577
Carnot cycle, 663–669

efficiency of, 667–668
of heat engine, 663–666
for ideal gas, 664–665
Kelvin temperature scale and, 668–669
of refrigerator, 666–667
reversibility of, 667–668
second law of thermodynamics and, 667–668

Cars. See Automobiles
Cathode ray tubes, for magnetic field measurement,

887–888
Cavendish balance, 404
Celestial dynamics, 402
Cell imaging, 1180
Cell membrane

dielectric, 805
potential gradient across, 774

Celsius temperature scale, 553
Center of curvature, 1118
Center of gravity, 345–348
Center of mass, 258–262

center of gravity and, 345–347
combined rotational-translational motion and,

315–316
external forces and, 261–262
motion of, 259–262
planetary motion and, 417–418
torque and, 312

Center-of-momentum system, 1272, 1487
Centigrade scale, 553
Central force, 416
Central-field approximation, 1388
Centrifugal force, 155
Centripetal acceleration, 86–87, 154
Centripetal component of acceleration, 286–287
C̆erenkov radiation, 1257
Cgs metric system, 117
Chadwick, James, 1481
Chain reactions, 1466
Charge distribution, 703, 1390

electric fields and, 725–728, 734–735, 746t. See also
Gauss’s law

static, 759–760
Charged particles, motion in magnetic fields, 892–898
Charging by induction, 692

polarization and, 693
Charm, 1499
Chemical reactions. See Reaction(s)
Chernobyl accident, 1468
Chokes, 995–998
Chromatic resolving power, 1203–1204, 1210
Circle

circumference of, 279

reference, 440–441
Circuit breakers, 870
Circuit diagrams, 831–833
Circuits. See Electric circuits
Circular apertures, diffraction and, 1208–1211
Circular motion, 85–88, 440–442

acceleration and, 85–87, 88
dynamics of, 154–159
nonuniform, 88, 159
period of, 87
uniform. See Uniform circular motion
velocity and, 85–87
vs. projectile motion, 87

Circular orbits, 412–413, 416–417
Circular polarization, 1099–1100
Circumference, 279
Classical mechanics, 104
Classical turning point, 1361–1362
Clausius statement, 662
Climate change, 576–577
Close packing, 1415
Closed orbits, 412
Closed surface, electric flux through, 725
Clotheslines, waves on, 480
Cloud chambers, 1482
Coefficient of kinetic friction, 147
Coefficient of linear expansion, 557–558, 559
Coefficient of performance, 659
Coefficient of resistivity, 824–825
Coefficient of static friction, 148
Coefficient of volume expansion, 558–560
Coherent waves, 1165
Coils

Hemholtz, 954
inductance of. See Inductance
magnetic fields of, 932–935
magnetic torque on, 904–905
search, 983
Tesla, 993–994

Cold fusion, 1471
Cold reservoirs, 655
Colliding-beam experiments, 1489
Collisions, 251–258

atomic energy levels and, 1297–1298
classification of, 254–255
definition of, 251
elastic, 251, 254, 255–258
inelastic, 251–255
kinetic energy in, 252
momentum conservation and, 251–258

Combustion, 568
Comet Halley, orbit of, 417
Common-emitter circuits, 1429
Commutators, 907–908, 964
Compensated semiconductors, 1425
Complementarity principle, 1273
Complete circuits, 822, 828–831
Completely inelastic collisions, 251–255
Component vectors, 14–18, 106
Components, of vectors, 14–19, 21–22, 106–107

vs. component vectors, 14, 106
Compound microscope, 1147–1149
Compressibility, fluid, 356, 382
Compression

definition of, 354
fluid density and, 476

Compression ratio, 657
Compressive strain, 354
Compressive stress, 354
Compton scattering, 1269–1271
Computed tomography, 1268–1269
Concave mirrors, 1118–1122
Concentration of particles, in current, 820
Condensation, 566
Condensed matter, 1412. See also Liquid(s); Solids
Condensor microphones, 790
Conditional conservation laws, 1495
Conduction, 570–574
Conduction bands, 1416–1417
Conduction current, 975

Conductivity
electrical, 823
intrinsic, 1424
microscopic model of, 838–840
thermal, 571, 823

Conductors, 691–692
in capacitors, 789
conductivity of, 823
current density in, 821–822
current flow in, 820–822
diodes of, 827
electric charge on, 736, 741–745
electric fields at, 701, 744–745
electron motion in, 819
energy bands in, 1417
equipotential surfaces and, 772–773
holes in, 909
interaction force between, 931–932
magnetic fields of, 928–932
magnetic force of, 931–932
magnetic forces on, 898–901
metallic, 838–839
nonohmic (nonlinear), 823
ohmic (linear), 823
particle concentration in, 820–821
resistance of, 825–828, 830, 833
resistivity of, 822–825
semiconductors, 823, 827, 909
superconductors, 824, 968
thermal, 552–553

Conservation laws
absolute, 1495
conditional, 1495
universal, 690

Conservation of angular momentum, 325–328
of planets, 415–416

Conservation of baryon number, 1494
Conservation of electric charge, 690

Kirchoff’s junction rule and, 856
Conservation of electrostatic force, 856
Conservation of energy, 176, 209, 224

with electric force, 758–759
in simple harmonic motion, 446–449

Conservation of lepton number, 1492
Conservation of mass and energy, 1247–1248
Conservation of mass in fluid, 383–384
Conservation of mechanical energy, 755
Conservation of momentum, 247, 1243

collisions and, 251–258
Conservative forces, 221–229

elastic collisions and, 255
work done by, 755

Consonance, 532
Constant acceleration, 46–52

due to gravity, 52–55
equations of motion for, 49
of freely falling bodies, 52–55
Newton’s second law and, 112–117

Constant angular acceleration, 284t
rotation with, 283–285

Constant forces, 177
Constant linear acceleration, 284t
Constant torque, 321
Constant velocity, 51

Newton’s first law and, 108–112
Constant-pressure process, 635
Constant-temperature process, 635
Constant-volume process, 635
Constructive interference, 492, 530, 1164–1166,

1168–1170
in holography, 1211–1213
in X-ray diffraction, 1206–1207

Contact force, 105, 146
Contact lenses, 1143–1145
Continuity equation, 383–384
Continuous lasers, 1309
Continuous spectra, 1310–1314
Convection, 570, 574
Conventional current, 820
Converging lenses, 1131–1133



I-4 Index

Converging mirrors, 1119
Convex mirrors, 1122–1124
Cooling, evaporative, 568
Cooper pairs, 1430
Coordinate system, right-handed, 24
Coordinates

spacetime, 1238
spherical, 1366

Copernicus, Nicolaus, 414
Cornea, 1142, 1156, 1157, 1159
Corona discharge, 768–769
Correspondence principle, 1249
Cosmic background radiation, 1515
Cosmic inflation, 1511
Cosmic-ray experiments, 1489–1490
Cosmological principle, 1503
Cosmological redshift, 1505
Coulomb, 695–696

vs. capacitance, 789
Coulomb’s law, 597, 693–698

Gauss’s law and, 732
proportionality constant in, 695
statement of, 694
superposition of forces and, 696

Coupling constant, 1491
Covalent bonds, 1406–1407
Covalent crystals, 1414–1415
Cowan, Clyde, 145
Critical angle, 1089
Critical damping, 458
Critical density, 1505–1507
Critical fields, 979
Critical point, 611
Critical temperature, 596, 979
Critically damped circuits, 1010
Cross (vector) product, 23–25
Crystal(s)

covalent, 1414–1415
ideal single, 1413
imperfect, 1415
ionic, 1414–1415
liquid, 1412
metallic, 1415
perfect, 1413–1415
structure of, 1412–1415
types of, 1414–1415

Crystal lattice, 597, 1413–1414
Crystalline lens, 1142–1143
Crystalline solids, 1412–1415
Cube, electric flux through, 731
Curie, 1457
Curie constant, 944
Curie, Marie, 1454
Curie, Pierre, 944, 1454
Curie’s law, 944
Current

alternating, 822
capacitor, 1027–1028, 1029, 1029t
in circuits, 828–831
concentration of particles in, 820
conduction, 975
conventional, 820
definition of, 818, 819
direct, 822, 850. See also Direct-current circuits
direction of, 819–820, 825
displacement, 975–977
drift velocity and, 819, 820
eddy, 974–975, 1042
electric charge in, 819–820
electric field and, 819–820
electromotive force and, 991. See also Inductance
electron motion in, 819
full-wave rectifier, 1023
generation, 1427
heat, 571
induced, 958, 967–968
inductance and, 991. See also Inductance
inductor, 1025–1026, 1029, 1029t
Kirchoff’s rules for, 855–860
lagging, 1036

measurement of, 860–861
notation for, 865
Ohm’s law and, 822, 825–826
recombination, 1427
rectified average, 1023
resistance and, 825–828
resistor, 1025, 1029, 1029t
root-mean-square, 1023–1024
saturation, 1426
sinusoidal, 1022–1024. See also Alternating

current
time-varying, 865
units of, 695, 820
“using up,” 830
voltage and, 825–828
vs. current density, 821–822

Current amplitude, 1022
Current density, 821–822

definition of, 821
resistivity and, 823
vector, 821
vs. current, 821–822

Current flow, direction of, 819–820
Current loops. See also Magnetic dipoles

force and torque on, 901–907
magnetic fields of, 932–935
magnetic moment of, 903, 934
in magnetization, 941–942

Current-carrying conductor, magnetic forces on,
898–901

Curve ball, 391
Curves

acceleration around, 74, 88
antinodal, 1166
banked, 158
gravitational potential energy and, 212–216
magnetization, 945
motion along, 191–193
nodal, 1166
resonance, 528, 1038–1039
response, 1038–1039
work-energy theorem for, 187–191

Cycles, 438
Cyclic process, in heat engines, 654
Cyclotron frequency, 893
Cyclotrons, 893, 918, 1486–1487
Cylinders, moment of inertia of, 295–296
Cystic fibrosis, sweat chloride test for, 695

D
Dalton, John, 1480–1481
Damped harmonic motion, 1009
Damped oscillations, 457–460
Damping, 457

critical, 458
Dark energy, 1508
Dark fringes, 1193–1195
Dark matter, 1507
D’Arsonval galvanometer, 860, 863, 904, 1022
Daughter nucleus, 1454
Davisson, Clinton, 1287–1288
Davisson-Germer experiment, 1287–1288
DC circuits. See Direct-current circuits
De Broglie, Louis, 1286–1287
De Broglie wavelength, 1287, 1290
Decay. See Radioactive decay
Decay constant, 1456
Deceleration, 45
Decibel scale, 521
Deformation

Hooke’s law and, 352, 357–358
plastic, 358
reversible, 358
stress and strain and, 352–357

Degeneracy, 1370–1371, 1374–1375
Degrees, 553, 555
Degrees of freedom, 606
Density, 373–375, 374t

average, 374
current, 821–822

definition of, 373
displacement current, 976
of Earth, 408
energy, 798, 1064–1065
fluid, 380–381, 476
linear charge, 704
linear mass, 482
magnetic energy, 999–1000
magnetic flux, 892
mass:volume ratio and, 373–374
measurement of, 374
nuclear, 1440
probability, 1333
of states, 1418–1419
surface charge, 704
volume charge, 704
vs. pressure, 592

Depth, fluid pressure and, 376–377
Derivatives, 39

partial, 226–227, 481
Destructive interference, 492, 529, 1164–1166,

1168–1170
Detectors, 1489–1490
Deuterium, 1445
Deuterons, 1305–1306, 1445, 1511
Dewar flask, 576
Dewar, James, 576
Diamond structure, 1413–1414
Diamonds, 1090, 1092
Diatomic molecules, 605–606
Dichromism, 1094
Dielectric breakdown, 800, 804–805, 1417
Dielectric cell membrane, 805
Dielectric constant, 800–801
Dielectric function, 1064
Dielectric strength, 805

of air, 768, 805
Dielectrics, 800–805

electromagnetic waves in, 1063–1064
Gauss’s law and, 807–808
permittivity of, 802
polarization of, 801–803, 805–807

Diesel engines, 658–659
adiabatic compression in, 642

Difference tone, 532
Differential principle, 245
Diffraction, 1190–1214

bright fringes in, 1194, 1195
with circular apertures, 1208–1211
complementarity principle and, 1273–1274
dark fringes in, 1193–1195, 1194
definition of, 1191
electron, 1287–1288
Fraunhofer, 1192, 1193
Fresnel, 1192, 1193
holography and, 1211–1213
Huygen’s principle and, 1191–1192
image formation and, 1209–1210
intensity in, 1195–1199
multiple-slit, 1199–1201
photons and, 1273–1274
resolving power of, 1209–1211
single-slit, 1192–1199
of sound, 1189
vs. interference, 1192, 1200
X-ray, 1205–1208

Diffraction gratings, 1201–1205
Diffuse reflection, 1083, 1115
Digital multimeters, 863
Dimagnetism, 943t, 944, 980
Dimensional consistency, 6
Dinosaurs, physical pendulum and, 456–457
Diode(s), 827

light-emitting, 1428
p-n junction, 1426
tunnel, 1349
Zener, 1428

Diode rectifier, 1426
Diopters, 1144–1145
Dipoles
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electric, 709–713
magnetic, 903–904

Dirac distribution, 1419
Dirac equation, 1482–1483
Dirac, Paul, 1385, 1482–1483
Direct current, 822

dangers of, 1040
Direct-current circuits, 822, 850–873

in automobiles, 868
definition of, 850
Kirchoff’s rules for, 855–860
measuring instruments for, 860–864
in power distribution systems, 868–872
R-C, 864–868
resistors in series and parallel in, 850–855

Direct-current generators, 964–965
Direct-current motors, 907–908
Direction, 10

of force, 10
of vectors, 11, 16
of waves, 479, 481–482

Discus throwing, 287
Disk, electric flux through, 730–731
Dislocations, in crystals, 1415
Dispersion, 1085, 1091–1093
Displacement, 11, 12

angular, 279
definition of, 11
multiplication of, 13
in oscillation, 438
in simple harmonic motion, 439–440, 443–445
straight-line motion and, 36–38
superposition principle and, 490–491
vector sum (resultant) of, 12
wave pulse and, 489–491
work and, 177–178, 181–183

Displacement amplitude, 510
sound intensity and, 518–519

Displacement current, 975–977
Displacement nodes/antinodes, 523
Dissipative forces, 222
Dissonance, 532
Distance

astronomical, 1503
image, 1116
object, 1116
relativity of, 1233–1237

Distribution function, 608
Diverging lenses, 1133
Division

significant figures in, 9
of vectors, 70

DNA
base pairing in, 717
measurement of, 1204
X-ray diffraction of, 1207

Dogs, panting by, 460
Donor, 1424
Donor level, 1424
Doping, 1424–1425
Doppler effect

for electromagnetic waves, 537–538, 1241–1243
for sound waves, 533–537, 1242

Doppler frequency shift, 1242
Doppler shift, vs. redshift, 1502
Dosimetry, radiation, 1459
Dot (scalar) product, 20–22
Down (quark), 1496
Drag, 152–154
Drift velocity, 819

current and, 820
Hall effect and, 909

Driven oscillation, 459–460
Driving force, 459–460
Ducks, swimming speed of, 486
Ductile material, 358
Dulong-Petit rule, 565, 608
DVD players, 1202, 1210, 1309
Dynamics. See also Force; Mass; Motion

celestial, 402

of circular motion, 154–159
definition of, 35, 104
fluid, 373, 389–390
Newton’s second law and, 112–117, 140–146
of rotational motion, 308–331

Dyne, 117

E
Ear, sensitivity of, 528
Earth

density of, 407–408
magnetic fields of, 884, 887
rotation of, 421–423
surface temperature of, 576

Eccentricity, orbital, 415
Eddy currents, 974–975

in transformers, 1042
Edge dislocation, 1415
Edison, Thomas, 1021
Efflux, speed of, 387
Eggs, mechanical energy of, 209
Eightfold way, 1497–1498
Einstein, Albert, 91, 1223, 1263–1264, 1481
Elastic collisions, 251, 254, 255–258

relative velocity and, 256
Elastic deformations, Hooke’s law and, 352, 357–358
Elastic hysteresis, 358
Elastic limit, 358
Elastic modulus, 352

bulk, 354–356
shear, 356–357
Young’s, 353–354

Elastic potential energy, 216–221, 225
definition of, 217
gravitational potential energy and, 218

Elasticity, 344–359
Electric charge, 688–691

attraction and repulsion and, 688
bound, 806
in capacitors, 788. See also Capacitors
in closed surface, 726
on conductors, 736, 741–745
conservation of, 690, 856
definition of, 688
density of, 704
distribution of. See Charge distribution
electric dipole and, 709–713
electric field and, 725–728, 734–736. See also

Gauss’s law
flux and, 725–732. See also Electric flux
free, 806
induced, 692, 693, 805–807
magnetic force on, 886–887
magnitude of, 694
negative, 688
in nerve cells, 741
notation for, 865
point. See Point charges
positive, 688
quantitized, 691
structure of matter and, 689–690
superposition of forces and, 696
time-varying, 865
typical values for, 696
vs. magnetic poles, 885

Electric circuits
alternating-current, 822, 850
bridge, 855–860, 880–881
common-emitter, 1429
complete, 822, 828
critically damped, 1010
diagrams of, 831–833
direct-current, 822, 850
electromotive force and, 828–831
energy in, 834–836
incomplete, 828
inductors in, 994–998. See also Inductance
integrated, 1429–1430
junctions in, 855
Kirchoff’s rules for, 855–860

L-C, 1005–1009
loops in, 855
L-R-C series, 1009–1011, 1030–1034
open, 870
oscillating, 1005–1009
overdamped, 1010
overloaded, 869–870
potential changes around, 833–834
power in, 834–838
R-C, 864–868
relaxation times of, 866–867
R-L, 1001–1005
self-inductance and, 995–998
short, 869–870, 870
time constants for, 866–867, 1003
underdamped, 1010–1011

Electric constants, fundamental, 695–696
Electric current. See Current
Electric dipole(s), 709–713, 805

definition of, 710
electric potential of, 765
field of, 712–713
force on, 710–711
potential energy of, 711
torque on, 710–711, 904

Electric dipole moment, 710–711
Electric energy, 194

units of, 194
Electric field(s), 699–700

calculation of, 703–708, 775
of capacitor, 790
charge distribution and, 725–728, 734–735, 746t. See

also Gauss’s law
of charged conducting sphere, 737–738
at conductors, 701, 744–745
current and, 819–820
definition of, 699
direction of, 701, 708
of Earth, 745
electric dipole and, 709–713
electric forces and, 698–703
electric potential and, 761, 763–764, 774
of electromagnetic waves, 1053, 1061, 1069–1070
energy storage in, 788
flux of, 725–732, 729. See also Electric flux
Gauss’s law for, 732–746, 935, 1052, 1056
of hollow sphere, 741
impossible, 773f
induced, 971–974
line integral of, 937
magnetic fields and, 975–979
magnitude of, 701, 708
molecular orientation in, 805–807
nodal/antinodal planes of, 1070
nonelectrostatic, 959, 972–973
of parallel conducting plates, 739–740, 790
of plane sheet of charge, 739
resistivity and, 823
sharks and, 699
superposition of, 703–704
of symmetric charge distributions, 746t
test charge for, 699, 700
uniform, 709
of uniform line charge, 738
of uniformly charged sphere, 740
units for, 699, 764
in vacuum, 798
as vector quantity, 775
work done by, 755–761. See also Electric potential

energy
Electric field lines, 708–709

electromagnetic waves and, 1053
equipotential surfaces and, 771–772
point charges and, 734, 1053

Electric flux
calculation of, 728–732
charge and, 725–732
enclosed charge and, 726–728
fluid-flow analogy for, 728–729
Gauss’s law and, 732–741
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Electric flux (Continued)
of nonuniform electric field, 730–732
of uniform electric field, 729–730

Electric force, 160
conservation of energy with, 758–759
Coulomb’s law and, 693–698
direction of, 694
electric field and, 698–703
electric potential and, 764–765
potential energy and, 226–227
on uncharged particles, 693
units of, 695
vector addition of, 697–698
vs. electric potential energy, 758
vs. gravitational force, 695
work done by, 757–758, 761

Electric lines
hot side, 869, 870
household, 868–872
neutral side of, 868–869, 870

Electric motors
direct-current, 907–908
magnetic force in, 898

Electric oscillation, 1005–1009
in L-C circuits, 1005–1009

Electric potential, 761–771. See also under Potential
calculation of, 762–771
definition of, 761, 763
electric circuits and, 834–836
of electric dipole, 765
electric field and, 761, 762–764, 774
electric force and, 764–765
electric potential energy and, 763, 766
equipotential surfaces and, 771–773
field lines and, 771–772
maximum, 768–769
of a with respect to b, 762
as scalar quantity, 761, 775
of two point charges, 765
units of, 761, 764
work done by, 762

Electric potential energy, 754–761
alternative concepts of, 760
in capacitors, 788. See also Capacitors
definitions of, 760
electric potential and, 763, 766
electric-field energy and, 798
of several point charges, 759–760
of two point charges, 757–758
in uniform field, 755
vs. electric force, 758

Electric power, 194
Electric rays, 830
Electric stud finders, 802–803
Electric-field energy, 798, 799
Electricity, conductors of, 691–692
Electrocardiography, 762
Electrodynamics, quantum, 1081
Electrolytic double-layer capacitors, 802
Electromagnetic energy flow, 1065–1067
Electromagnetic induction, 957–981

changing magnetic flux and, 958–959
eddy currents and, 974–975
experiments in, 958–959
Faraday’s law and, 957, 959–967
induced electric fields and, 971–974
Lenz’s law and, 967–969
Maxwell’s equations and, 957, 977–979
motional electromotive force and, 969–971
superconductors and, 968, 979–980

Electromagnetic interaction, 159–160, 1490
Electromagnetic momentum flow, 1068–1069
Electromagnetic radiation, 574–577, 1053. See also

Electromagnetic wave(s)
Electromagnetic spectrum, 1054–1055
Electromagnetic wave(s), 1051–1073

amplitude of, 1061
angular frequency of, 1061
applications of, 1054
definition of, 1052

in dielectrics, 1063–1064
direction of, 1058
Doppler effect for, 537–538, 1241–1243
electric fields of, 1053, 1061, 1069–1070
energy in, 1064–1067
frequency of, 1060
generation of, 1053
intensity of, 1066
magnetic fields of, 1061, 1069–1070
magnitude of, 1058
in matter, 1063–1064
Maxwell’s equations and, 1052–1057
momentum of, 1068–1069
plane, 1055–1057
polarization of, 1058. See also Polarization
power in, 488
Poynting vector of, 1065–1066
properties of, 1058
radiation pressure and, 1068–1069
reflected, 1069–1071
right-hand rule for, 1058f
sinusoidal, 1060–1063
speed of, 1058, 1060, 1071
standing, 1053, 1069–1072
superposition of, 1069–1070
transverse, 1056, 1060
units for, 1053
wave functions for, 1061
wave number for, 1061

Electromagnetic wave equation, 1058–1060
Electromagnetism, 687, 885
Electrometers, 800
Electromotive force (emf), 828–831

back, 908
current and, 991. See also Inductance
of electric motor, 908
Hall, 909–910
induced, 908, 958–959
measurement of, 863–864
motional, 969–971
self-induced, 995, 998, 1026–1027
sinusoidal alternating, 1021
source of, 828, 830–831, 835–836
theory of relativity and, 1224
in transformers, 1040–1041

Electromyography, 861
Electron(s)

angular momentum of, 942
bonds and, 1405–1408
charge of, 689–690, 695. See also Electric charge
charge:mass ratio for, 896–897
concentration of, 1420–1421
creation and destruction of, 1483
discovery of, 897, 1481
excited-state, 1411
exclusion principle and, 1388–1389
ground-state configurations of, 1388–1390, 1391t
in magnetic fields, 894
magnetic moment of, 1379–1382
mass of, 689, 897, 1440
orbital angular momentum of, 1373–1374, 

1384, 1387
orbital motion of, 819, 1386
photoelectric effect and, 1261–1266
probability distributions for, 1376–1378
quantum states of, 1389t
screening by, 1391–1392
spin angular momentum of, 1384–1385, 1387
spin of, 942
spin-orbit coupling and, 1386
valence, 1390, 1416
Zeeman effect and, 1379–1382

Electron affinity, 1406
Electron capture, 1453
Electron diffraction, 1287–1288
Electron microscopes, 1290–1292
Electron shells, 1375, 1389, 1390–1391

holes in, 1394–1395
Electron spin, 1383–1387
Electron volts, 764

Electron waves, 1286–1292
atomic structure and, 1292–1296
Bohr’s hydrogen model and, 1300

Electron-gas model, 1415
Electron-positron pair annihilation, 1272
Electron-positron pair production, 1271–1272,

1482–1483
Electrophoresis, 722
Electrostatic force

conservation of, 856
line integral for, 755, 937

Electrostatic painting, 683
Electrostatic precipitators, 784
Electrostatic shielding, 743–744
Electrostatics, 688
Electrostatics problems, 696
Electroweak interactions, 160, 1500
Electroweak theory, 1500
Electroweak unification, 1500
Elements

ground state of, 1388–1390, 1391t
isotopes of, 1441
periodic table of, 1389, 1390–1391
properties of, 1389

Elevation, atmospheric pressure and, 594–595
Elliptical orbits, 415–416
Elliptical polarization, 1099–1100
Emf. See Electromotive force (emf )
Emission line spectra, 1292–1293, 1297–1300

continuous, 1310–1314
Emissivity, 575
Endoergic reactions, 1463
Endoscopes, 1090
Endothermal reactions, 1463
Energy

activation, 610
available, 1487–1488
binding, 1406, 1445–1446
conservation of, 176, 224
conversion of, 224
in damped oscillations, 458–459
dark, 1508
in electric circuits, 834–836
electrical, 194
electric-field, 798, 799
in electromagnetic waves, 1064–1067
equipartition of, 606
Fermi, 1419–1421
internal. See Internal energy
ionization, 1304–1305, 1406
kinetic. See Kinetic energy
in L-C circuits, 1005–1009
magnetic-field, 998–1001
molecular, 597
potential, 207–231. See also Potential energy
power and, 871
purchasing, 871
quantitized, 1261
reaction, 1462–1464
relativistic kinetic, 1246–1247
rest, 1247–1249
in simple harmonic motion, 446–449
threshold, 1463
total, 176, 1247
uncertainty in, 1278
units for, 764
in wave motion, 486–489
work and, 177–193. See also Work

Energy bands, 1416–1417
in insulators, 1416–1417

Energy density, 798, 1064–1065
Energy diagrams, 228–229
Energy flow, electromagnetic, 1065–1067
Energy levels, 1297–1305

degeneracy and, 1370–1371
for harmonic oscillator, 1351–1352
for hydrogen atom, 1302–1305, 1379–1382
Moseley’s law and, 1394–1396
for particle in a box, 1340–1341
quantization of, 1311–1312



Index I-7

rotational, 1408–1412
Schrödinger equation and, 1379–1382
selection rules and, 1382
vibrational, 1410
vs. states, 1307–1308
Zeeman effect and, 1379–1383

Energy storage, in capacitors, 788, 796–800. See also
Capacitors

Energy transfer
heat and, 562–565
rates of, 570

Energy-flow diagrams
for heat engines, 655–656
for refrigerators, 659

Energy-mass conservation law, 1247–1248
Energy-time uncertainty principle, 1274–1275, 1278,

1315–1316
Engine(s)

Carnot, 663–669
heat. See Heat engines
internal combustion, 642, 657–659

Engine statement, of second law of thermodynamics,
661

Enhancement-type MOSFETs, 1429
Entropy, 669

calculation of, 676
in cyclic processes, 672–673
definition of, 670
disorder and, 669–670
internal energy and, 670
in irreversible processes, 673
in living organisms, 673
microscopic interpretation of, 675–677
Newton’s second law and, 674, 677
reversibility of, 670

Enzymes, electron tunneling in, 1349
Equation(s)

Bernoulli’s, 385–389
continuity, 383–384
dimensional consistency in, 6
Dirac, 1482–1483
electromagnetic wave, 1058–1060
ideal-gas, 591–595
lensmaker’s, 1133–1135
Maxwell’s. See Maxwell’s equations
of motion, with constant acceleration, 49
Schrödinger. See Schrödinger equation
of simple harmonic motion, 440–442
of state, 591–596, 612
units of measure for, 6
van der Waals, 595–596
wave. See Wave equation

Equilibrium, 344–359
center of gravity and, 345–348
definition of, 32, 109
extended-body, 345–352
first condition of, 345
for mechanical waves, 473
net force and, 135
Newton’s first law and, 108–112, 134–139
one-dimensional, 136–137
phase, 566, 611
potential energy and, 228–229
problem-solving strategies for, 136–139
rigid-body, 345, 348–352
rotation and, 345
second condition of, 345
stable, 228
static, 345
tension and, 136–139
thermal, 552
torque and, 345
two-dimensional, 137–138
unstable, 228
weight and, 345–347
weight lifting and, 351

Equilibrium processes, 652
Equipartition, of energy, 606
Equipotential surfaces, 771–773

conductors and, 772–773

definition of, 771
vs. Gaussian surface, 773

Equipotential volume, 773
Equivalent capacitance, 794
Equivalent resistance, 851, 852
Erect image, 1117
Errors

fractional (percent), 8
in measured values, 8

Escape speed, 410–411, 413, 423, 1505–1506
Estimates, order-of-magnitude, 10
Ether, light travel through, 1224, 1881
Euler’s formula, 1340
Evaporation, 568
Event horizons, 424
Event, in frame of reference, 1227
Excited levels, 1298
Excited states, 1454
Exclusion principle, 1388–1393

bonds and, 1406, 1407
periodic table and, 1389, 1390–1393
quark colors and, 1498–1499

Exoergic reactions, 1463
Exothermal reactions, 1463
Expanding universe, 1501–1508
Experiments, 2

thought, 1227
Extended objects

definition of, 1115
gravitational potential energy for, 293, 317
image formation by lenses and, 1131–1133
image formation by mirrors and, 1120–1122

Extended-body equilibrium, 345–352
External forces, 247

center-of-mass motion and, 261–262
torque and, 312

Extracorporeal shock wave lithotripsy, 539
Eye, 1142–1146

index of refraction of, 1143
laser surgery for, 1076, 1309
resolution of, 1220
structure of, 1142–1143

Eyeglasses, corrective, 1143–1146
Eyepiece, microscope, 1147–1148

F
Fahrenheit scale, 554
Far point, of eye, 1143
Farad, 789, 790
Faraday cage, 743–744
Faraday disk dynamo, 971
Faraday, Michael, 708, 789, 885
Faraday’s icepail experiment, 742–744
Faraday’s law of induction, 957, 959–967

electromagnetic waves and, 1052, 1056, 1057, 1063.
See also Maxwell’s equations

Farsightedness, 1143–1146
Fermat’s principle of least time, 1111
Fermi energy, 1419–1421

electron concentration and, 1420–1421
Fermi-Dirac distribution, 1419, 1492
Fermions, 1492, 1494, 1501
Ferromagnetism, 943t, 944–946
Feynman, Richard, 1483
Field lines. See Electric field lines; Magnetic field 

lines
Field point, 700, 924
Field-effect transistors, 1429
Fields, 406
Filters

high-pass, 1028
low-pass, 1027
polarizing, 1093, 1094–1097, 1098

Fine structure, 1387
Finite wells, 1343
Firecrackers, entropy and, 669f
First condition for equilibrium, 345
First law of thermodynamics, 624–643

cyclic processes and, 631–634
definition of, 630

internal energy and, 629–634
isolated systems and, 631–634

Fish
bulk stress on, 355f
fluorescent, 1300f

Fission, nuclear, 785, 1247, 1464–1468
Fixed-axis rotation, 278–279, 283
Flash unit, of camera, 797
Flow line, 382–383. See also Fluid flow
Flow tubes, 383
Fluid(s)

compressibility of, 356, 382
ideal, 382
motion of, 382–384
speed of sound in, 514–515
viscous, 389–390

Fluid density, 373–375
buoyancy and, 380–382
compression and, 476
measurement of, 381
rarefaction and, 476

Fluid dynamics, 373
viscosity and, 389–390

Fluid flow, 382–384. See also Flow
Bernoulli’s equation and, 385–389
continuity equation and, 383–384
laminar, 383, 390
measurement of, 388
pressure and, 385–389
rate of, 383–384
speed of, 385–389
steady, 382–383
turbulent, 383, 390–391

Fluid mechanics, 373–392
Bernoulli’s equation and, 385–389
buoyancy and, 380–382
density and, 373–375, 380–381
fluid flow and, 382–384
pressure and, 375–380
surface tension and, 382

Fluid pressure, 355, 375–380
depth and, 376–377
measurement of, 378–380
Pascal’s law and, 376–377

Fluid resistance, 151–154
Fluid statics, 373
Fluorescence, 1300
Fluorescent fish, 1300f
Fluorescent lights, 996–997, 1081, 1300
Fluorine, 1390
Flux. See Electric flux; Magnetic flux
f-number, 1140–1141
Focal length

of camera lens, 1140
of microscope lens, 1148–1149
of mirror, 1119–1120
of telescope lens, 1149–1150
of thin lens, 1131, 1133–1135

Focal point
of microscope lens, 1149
of mirror, 1119–1120
of thin lens, 1131
virtual, 1123

Fog, 567
Food, energy value of, 568
Foot-pound, 177, 194
Force(s)

acting at a distance, 406
action-reaction, 120–123
buoyant, 380
central, 416
centrifugal, 155
components of, 226–227
conservative, 221–224, 228–229
constant, 177–178
contact, 105, 146
definition of, 105
direction of, 10, 13. See also Vector(s)
dissipative, 222
driving, 459–460
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Force(s) (Continued)
electric. See Electric force
electromotive, 828–831
electrostatic, 856
external, 247
fluid resistance, 151–154
free-body diagrams for, 124–125
friction, 105, 146–154. See also Friction
fundamental, 159–160, 1490–1492
gravitational. See Gravitation
interaction, 931–932
intermolecular, 597–598
internal, 247, 312
line of action of, 309
long-range, 105
magnetic, 159–160, 886–887
magnitudes of, 105
mass and, 113–114
measurement of, 106
motion and, 112–116. See also Newton’s second law

of motion
net. See Net force
nonconservative, 222–224
normal, 105, 146
nuclear, 1446–1449, 1484, 1491
particle interactions and, 159–160
periodic driving, 459–460
potential energy and, 225–228
power and, 194
properties of, 105
restoring, 438
strong interactions, 160, 1446, 1490–1491
strong nuclear, 160, 689
superposition of, 106–108, 404, 405–406
tension, 105, 123. See also Tension
tidal, 425
torque of, 308–312
units of, 5–6, 105, 117
vs. pressure, 355, 376
weak interactions, 160, 1491
weight as, 105

Force constant, 188
Force diagrams, 106–107
Force fields, 406
Force mediators, 1484–1485
Force per unit area, 353
Force vectors, 105

components of, 106–107
Forced oscillations, 459–460, 527
Forensics, X-rays in, 1395
Forward bias, 1426, 1427–1428
Fosbury flop, 293f
Fossil fuels, climate change and, 577
Fossils, 1508
Fourier analysis, 513
Fourier series, 497
Fractional error (uncertainty), 8
Fracture, 358
Frame of reference, 89

event in, 1227
inertial, 110–112, 115–116, 1223–1227
simultaneity and, 1227–1228

Franck, James, 1300
Franck-Hertz experiment, 1300
Franklin, Benjamin, 688
Franklin, Rosalind, 1207f
Fraunhofer diffraction, 1192, 1193
Free charges, 806
Free expansion, 629
Free fall

acceleration due to gravity and, 52–55, 118–119
definition of, 52
fluid resistance and, 152–154

Free particle, 1330
Free-body diagrams, 124–125, 140, 144
Free-electron energy, average, 1421
Free-electron model, 1415, 1418–1422
Free-particle state, 1346
Frequency, 438

angular, 438–439

beat, 531–532
fundamental, 496
normal-mode, 496
period and, 438–439
of standing waves, 496
vs. angular frequency, 442

Fresnel diffraction, 1193
Friction, 146–154

coefficients of, 147, 151
definition of, 108, 147
fluid resistance and, 151–152
kinetic, 147, 149, 150–151, 222
magnitude of, 147
rolling, 151–154, 320
static, 147–149
stick-slip phenomenon and, 148, 149

Friction force, 105, 147
Full-wave rectifier current, 1023
Fundamental electric constants, 695–696
Fundamental forces, 159–160, 1490–1492
Fundamental frequency, 496
Fundamental particles, 1480–1501. See also

Particle(s)
historical perspective on, 1480–1485

Fur, as insulator, 572
Fuses, 870
Fusion. See Nuclear fusion

G
Galaxies, recession speed of, 1502–1503
Galilean coordinate transformation, 1225–1226
Galilean telescope, 1161
Galilean velocity transformation, 91, 1226
Galileo Galilei, 2, 52, 1080
Gallium, melting temperature of, 566
Galvanometer, d’Arsonval, 860, 863, 904, 1022
Gamma camera, 1461
Gamma decay, 1454
Gamma rays, 1454, 1462

pair production and, 1271–1272
Gas

bulk modulus of, 355
heat capacities of, 605–607
ideal. See Ideal gas
intermolecular forces in, 597
isotherms and, 596
kinetic energy of, 605–606
mass of, 591–592
molecules in, 597
noble, 1390
p-V diagrams for, 596
sound waves in, 517–518
volume of, 593

Gas constant, 517, 592
Gas pressure

molecular collisions and, 597–600
molecular kinetic energy and, 600–602
temperature and, 555

Gas thermometers, 554–556, 593, 669
Gaseous phase, 566
Gasoline engines, 546–548
Gauge pressure, 377–378
Gauges, pressure, 378–380
Gauss, 887
Gauss, Carl Friedrich, 732
Gaussian surface, 734

vs. equipotential surface, 773
Gauss’s law, 732–746

applications of, 736–741
charge and electric flux and, 725–732
conductors with cavities and, 741–742, 773
dielectrics and, 807–808
for electric fields, 732–746, 935, 1052, 1056. See

also Maxwell’s equations
experimental testing of, 742–744
general form of, 734–736
for gravitation, 752, 935
for magnetic fields, 891, 935, 1052, 1056. See also

Maxwell’s equations
overview of, 732–736

point charge inside nonspherical surface and,
733–734

point charge inside spherical surface and, 732–733
qualitative statement of, 728
solid conductors and, 736–741

Geiger counters, 783
Geiger, Hans, 1294
Gell-Mann, Murray, 1496, 1498
Gemstones, 1090, 1092
General theory of relativity, 1249–1251, 1504. See also

Relativity
Generation currents, 1427
Generators

alternating-current, 1021
direct-current, 964–965
energy conversion in, 966–967
homopolar, 971
slidewire, 965–966, 967, 970

Geometric optics, 1082, 1114–1153
cameras and, 1139–1142
eye and, 1142–1146
magnifiers and, 1146–1147
microscopes and, 1147–1149
reflection at plane surface and, 1115–1118
reflection at spherical surface and, 1118–1126
refraction at plane surface and, 1115–1118
refraction at spherical surface and, 1126–1130
sign rules for, 1116
telescopes and, 1149–1151
thin lenses and, 1131–1139

Gerlach, Walter, 1383
Germanium semiconductors, 1422–1425
Germer, Lester, 1287–1288
Glashow, Sheldon, 1500
Glass, as amorphous solid, 1412
Global positioning systems, 1078, 1187, 1250–1251
Global warming, 576–577
Gluons, 1490, 1491, 1498–1499, 1500
GPS systems, 1078, 1187, 1250–1251
Gradient

definition of, 774
potential, 774–776
potential energy, 227

Grams, 5, 5t
Grand unified theories (GUTs), 160, 1500–1501, 

1509, 1516
Graphical method, for image location, 1124–1126
Graphs

curvature of, 46, 47
parabolic, 48
ax-t, 46–49, 55–57
of sound waves, 511

x-t, 44–46, 47
of wave function, 478–480
x-t, 37–38, 40–41. See also x-t graphs

Grating spectrographs, 1203–1204
Gravitation, 105, 159–160, 402–427

acceleration due to, 52–55, 700
action-reaction pairs and, 403
black holes and, 423–426
as conservative force, 409, 410
on cosmic scale, 406
escape speed and, 410–411, 413, 1505–1506
expanding universe and, 1501–1502, 1505–1507
as fundamental force, 159–160
Gauss’s law for, 752, 934
general theory of relativity and, 1250
importance of, 406
measurement of, 404–405
Newton’s law of, 402–406
satellite orbits and, 411–413
specific gravity and, 374
spherical mass distributions and, 418–421
spherically symmetric bodies and, 403–404
superposition of forces and, 405–406
weight and, 406–409
work done by, 409–410

Gravitational constant, 403
calculation of, 404–405

Gravitational field, 700

v
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Gravitational force(s), 105, 159–160
as action-reaction pairs, 403
per unit mass, 700
vs. electric force, 695
vs. gravitational potential energy, 410

Gravitational interaction, 159–160, 1490
Gravitational potential energy, 208–216, 409–411

definition of, 208, 409–410
elastic potential energy and, 218
for extended bodies, 293, 317
motion along curves and, 212–216
as negative value, 410
nongravitational forces and, 211
vs. gravitational force, 410

Gravitational red shift, 425, 1250
Gravitational torque, 346–347
Gravitons, 1490, 1500
Gravity. See Gravitation
Gray, 1459
Greenhouse effect, 576–577
Ground level, 1297
Ground state

atomic, 1388–1390, 1391t
nuclear, 1454

Ground-fault interrupters, 870
Grounding wires, 869, 870
Gyroscopes, 328–330

H
h vs. h-bar, 1276
Hadrons, 1492, 1493–1494, 1496, 1497
Hahn, Otto, 1464
Hale Telescope, 1219
Half-life, 1456–1457
Hall effect, 909–910
Halley’s comet, 417
Halogens, 1390
Harmonic analysis, 497
Harmonic content, 497, 513
Harmonic motion, damped, 1009
Harmonic oscillators

anisotropic, 1401
Hermite functions for, 1350–1354
isotropic, 1401–1402
Newtonian, 439–440, 1352–1354
quantum, 1350–1354

Harmonic series, 496
Harmonics, 496
Hearing loss, sound intensity and, 513, 522
Heat

added in thermodynamic process, 628–629
of combustion, 568
definition of, 562, 563
as energy in transit, 605
energy transfer and, 562–565. See also Heat

transfer
of fusion, 566
global warming and, 576–577
mechanical energy and, 562
melting and, 565–566
phase changes and, 565–570
quantity of, 562–565
sign rules for, 625
specific, 562–563
steam, 567–568
of sublimation, 567
units of measure for, 562
of vaporization, 566, 568
vs. temperature, 562

Heat calculations, 568–570
Heat capacity, 605–608

of gases, 605–607
of ideal gas, 637–639
molar, 564–565, 605–607
point-molecule model of, 605
ratio of, 639
of solids, 607–608
temperature variation of, 608
vibration and, 606–608

Heat current, 571

Heat engines, 654–656
Carnot, 663–666
energy-flow diagrams and, 655
hot and cold reservoirs and, 654–655
internal combustion, 642, 657–659
thermal efficiency of, 655

Heat flow, 562
Heat pumps, 661
Heat transfer, 562–565

by conduction, 570–574
by convection, 574
mechanisms of, 570–577
by radiation, 574–577

Heavy hydrogen, 1305–1306
Heisenberg uncertainty principle, 1276–1277,

1314–1317
Bohr model and, 1317
energy-time, 1278, 1315–1316
harmonic oscillator and, 1353–1354
for matter, 1315–1316
momentum-position, 1274–1275, 1278, 1315–1316

Helium, 1390
Helium atom, Bohr model of, 1306
Helium fusion, 1514
Hemholtz coils, 954
Henry, 993
Henry, Joseph, 885
Hermite functions, 1350–1354
Hertz, 438, 1053
Hertz, Gustav, 1300
Hertz, Heinrich, 1053, 1081
High-pass filters, 1028
Hole conduction, 909, 1423–1424
Holes, 820, 1423–1424
Holography, 1211–1213
Homopolar generators, 971
Hooke’s law, 188–189, 352, 356

elastic deformations and, 352, 357–358
limits of, 357–358
simple harmonic motion and, 439

Horse, acceleration around curve, 74
Horsepower, 194
Hot reservoirs, 654–655
Hot side of line, 869, 870
House wiring systems, 868–872, 1040–1041
Hubble constant, 1503
Hubble, Edwin, 1502
Hubble law, 1503
Hubble Space Telescope, 1119, 1218, 1375f, 

1503
Human body

angular momentum of, 324
fat measurement for, 1032
magnetic fields of, 887
radiation from, 575–576
as thermodynamic system, 630

Humason, Milton, 1502
Huygen’s principle, 1102–1104

diffraction and, 1191–1192
Hybrid wave function, 1407
Hydrogen

in fusion reactions, 1469–1471
ground state of, 1390
heavy, 1305–1306

Hydrogen atom, 1372–1379
Bohr’s model of, 1300–1305
electron probability distributions for, 1376–1378
energy levels in, 1302–1305, 1379–1382
hydrogen-like atoms and, 1378–1379
ionization energy of, 1304–1305
in magnetic field, 1379–1382
nuclear motion in, 1305–1306
orbital angular momentum of, 1373–1374
quantum states of, 1373–1374, 1375t
reduced mass of, 1305–1306
Schrödinger equation for, 1372–1373

Hydrogen bonds, 1407–1408
Hydrogenlike atoms

Bohr model of, 1306
Schrödinger analysis of, 1378–1379

Hydrometers, 381
Hyperfine structure, 1387, 1444
Hyperons, 1494–1495
Hyperopia, 1143–1146
Hysteresis, 945–946
Hysteresis loops, 945–946

I
I SEE acronym, 3
Ice, melting of, 565–566
Ideal fluid, 382
Ideal gas, 592

adiabatic process for, 640–642
Carnot cycle for, 664–665
heat capacities of, 637–639
internal energy of, 636
isothermal expansion of, 627
kinetic-molecular model of, 599–605
volume of, 593

Ideal single crystals, 1413
Ideal-gas constant, 517, 592
Ideal-gas equation, 591–595
Idealized models, 3–4, 3f
Image

erect, 1117
inverted, 1117, 1141
in optics, 1115
real, 1115
virtual, 1115, 1137

Image distance, 1116
Image formation

by cameras, 1139–1142
by diffraction, 1209–1210
by lenses, 1131–1133
by reflection, 1115–1126. See also Mirrors
by refraction, 1126–1130

Image point, 1114, 1115
Imaging studies. See Medical imaging
Impedance, 1031–1033
Impulse, 243
Impulse-momentum theorem, 242–244, 483–484
Incident waves, 492–493
Incubators, 576
Index of refraction, 1063, 1083–1088

birefringence and, 1100
definition of, 1083
dispersion and, 1091–1093
of eye, 1143
of gemstones, 1090
laws of reflection and refraction and, 1085
of lens, 1133–1134
of reflective/nonreflective coatings, 1178–1179
total internal reflection and, 1088–1090
transparency and, 1085
wave aspects of light and, 1086–1088

Induced charges, 692
molecular model of, 805–807
polarization and, 693, 801–803

Induced current, 958
direction of, 967–968, 970
magnitude of, 968

Induced electric fields, 971–974
Induced emf, 908, 958–959. See also Electromagnetic

induction
applications of, 959, 961
direction of, 961
magnetic flux and, 959, 962

Inductance, 991–1012
definition of, 995
magnetic-field energy and, 998–1001
mutual, 991–994
R-L circuits and, 1001–1005
self-inductance, 994–998

Inductive reactance, 1026–1027
Inductors, 994–998

in ac circuits, 1025–1027, 1029, 1029t, 1035
energy stored in, 998–1000
inductive reactance of, 1026
vs. resistors, 999

Inelastic collisions, 251–255



I-10 Index

Inertia, 109
definition of, 109
mass and, 118
moment of. See Moment of inertia
rotational, 289

Inertial confinement, 1470
Inertial frame of reference, 110–112, 1223–1227

Newton’s first law and, 110–112
Newton’s second law and, 115–116
simultaneity and, 1227–1228
theory of relativity and, 1223

Inertial mass, 113. See also Mass
Inertial navigation systems, 56f
Infrasonic sound, 510
Inkjet printers, 722
Instantaneous acceleration, 43–44. See also

Acceleration
angular, 282
definition of, 43
on x-t graph, 44–46
x-component of, 43

Instantaneous acceleration vectors, 73–75. See also
Acceleration vectors

Instantaneous angular acceleration, 282
Instantaneous angular speed, 286
Instantaneous angular velocity, 280
Instantaneous power, 193, 194

in waves, 487–488
Instantaneous speed, 39. See also Speed

angular, 286
Instantaneous velocity, 38–42, 39f–41f. See also

Velocity
definition of, 38, 70
straight-line motion and, 38–41
vs. instantaneous speed, 39–40
x-component of, 39
on x-t graph, 40–41

Instantaneous velocity vectors, 70–72
Insulators, 552, 691

energy bands in, 1416–1417
Integral(s)

line, 192, 755
moment of inertia, 295
surface, 730

Integral principles, 244
Integrated circuits, 1429–1430
Integration, velocity and position by, 55–57
Intensity

of electromagnetic radiation, 1066
inverse-square law for, 488–489, 520
pressure amplitude and, 519–521
in single-slit diffraction, 1195–1199
sound, 518–522
vs. spectral emittance, 1310–1311
wave, 488–489

Intensity maxima, 1197
Interactions. See Particle interactions
Interference, 489–492, 529–531, 1163–1183

amplitude in, 1170–1171
butterfly wings and, 1179
coherent sources and, 1164–1166
complementarity principle and, 1273–1274
constructive, 492, 530, 1164–1166, 1168–1170,

1206–1207
definition of, 489, 1164
destructive, 492, 529, 1164–1166, 1168–1170
in holography, 1211–1213
Michelson interferometer and, 1179–1181
Michelson-Morley experiment and, 1180–1181
Newton’s rings and, 1178
nodal/antinodal curves and, 1166
in noise control, 531
path difference and, 1171–1173
phase difference and, 1171–1173
phase shifts and, 1174–1175
photons and, 1273–1274
during reflection, 1174–1175
reflective/nonreflective coatings and, 1178–1179
sinusoidal waves and, 1164
in sound waves, 529–531

v

sound waves and, 529–531
standing waves and, 492, 1164, 1166
superposition and, 1164
in thick films, 1176
in thin films, 1173–1179
in three dimensions, 1164
in two dimensions, 1164
two-source/slit, 1166–1173, 1315–1316
vs. diffraction, 1192, 1200
in water waves, 1166–1167
water waves and, 1166–1167
Young’s experiment for, 1167–1169, 1179

Interference fringes, 1168, 1174, 1178
Newton’s, 1178

Interference maxima, 1199
Interference patterns, 1166

intensity in, 1170–1173
Interferometer, 1179–1181
Intermolecular forces, 597–598
Internal combustion engines, 657–659
Internal energy, 224, 624, 670

change in, 630–631, 639
of cyclic processes, 631–634
definition of, 629, 631
entropy and, 670
first law of thermodynamics and, 629–634
of ideal gas, 636
of isolated systems, 631–634
notation for, 629
temperature and, 636

Internal forces, 247
torque and, 312

Internal resistance, 830, 833
International System, 4, 5t
Interplanetary travel, biological hazards of, 416f
Interstellar gas clouds, 1293
Intrinsic semiconductors, 1423, 1424
Inverse-square law, for intensity, 488–489, 520
Inverted image, 1117

in camera lens, 1141
Iodine-127, 1461
Ionic bonds, 1406, 1407
Ionic crystals, 1414–1415
Ionization, 690

corona discharge and, 768–771
Ionization energy, 1406

of hydrogen atom, 1304–1305
Ions, 690
Irreversible process, 652–653
Isobaric process, 635
Isochoric process, 635
Isolated systems, 247

internal energy of, 631–634
Isospin, 1495
Isothermal expansion, of ideal gas, 627
Isothermal process, 635–636

Carnot cycle and, 663
Isotherms, 596
Isotopes, 897, 1441

J
Jet propulsion, in squids, 262
Josephson junctions, 1349
Joule, 177, 183, 562
Joule per coulomb, 761
Junctions, in circuits, 855

K
K mesons, 1493
Kaons, 1259, 1493
Keck telescopes, 1151
Kelvin, 555
Kelvin scale, 555–556, 665, 668–669
Kelvin-Planck statement, 661
Kepler, Johannes, 414–415
Kepler’s first law, 414–415
Kepler’s second law, 415–416
Kepler’s third law, 416–417, 426
Killowat-hour, 194
Kilocalorie (kcal), 562

Kilograms, 5, 113
Kilohm, 826
Kilowatt, 193
Kilowatt-hour, 871
Kinematics. See also Motion

definition of, 35
linear vs. angular, 285–288

Kinetic energy
in collisions, 252
in composite systems, 186–187
conservative forces and, 221–222
with constant forces, 177–178
definition of, 182
equipartition of, 606
gas pressure and, 600–602
heat capacities and, 605–608
molecular, 597, 600–602, 605–606, 636
moment of inertia and, 288–291
of photons, 1263–1264
potential energy and, 207, 208, 221–222
relativistic, 1246–1247
rotational, 288–293, 315–316
as scalar quantity, 182
in simple harmonic motion, 446–449
stopping potential and, 1262–1263
torque and, 321
units of, 183
with varying forces, 187–191
vs. momentum, 242–246, 2420
work-energy theorem and, 181–187

Kinetic friction, 147, 149, 150–151
coefficient of, 147
as nonconservative force, 222

Kinetic-molecular model, of ideal gas, 599–605
Kirchoff’s rules, 855–860, 976–977
Kramers, Hendrik, 1361
Kundt’s tube, 523

L
Ladder, stability of, 350
Lagging current, 1036
Laminar flow, 383, 390
Land, Edwin H., 1094
Large Hadron Collider, 1257, 1487, 1489, 1501
Laser(s), 1307–1309

continuous, 1309
definition of, 1307
metastable states and, 1308
population inversions and, 1308–1309
production of, 1308–1309
pulsed, 1309
semiconductor, 1309
spontaneous emission and, 1307
stimulated emission and, 1307–1309

Laser eye surgery, 1076, 1309
Laser light, 1055, 1081, 1164, 1166
Laser printers, 689, 769, 1309
Latent heat of fusion, 566
Lateral magnification, 1117, 1120–1121

of camera, 1140
of microscope, 1148–1149
vs. angular magnification, 1147

Laue pattern, 1205f
Law of Biot and Savart, 927
Law of conservation of energy, 176, 209, 224
Law of reflection, 1084–1086
Law of refraction, 1084–1086
Lawrence, E.O., 1486
Laws, physical, 2
L-C circuits, 1005–1009
Leaning Tower of Pisa, 2, 53, 118
Length

Planck, 1509
proper, 1235
relativity of, 1233–1237
units of, 4–5, 6f

Length contraction, 1235, 1236
Lens(es)

of camera, 1139–1142
corrective, 1143–1146
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definition of, 1131
of eye, 1142–1143
magnifying, 1146–1147
of microscopes, 1147–1149
nonreflective coatings for, 1178
parabolic, 1151
properties of, 1131
reflective coatings for, 1178, 1179
of telescopes, 1149–1151
thin, 1131–1139. See also Thin lenses

Lensmaker’s equation, 1133–1135
Lenz’s law, 967–969
Leptons, 1492–1493, 1496, 1499, 1500
Lever arm, 309
Light, 1080–1105

absorption of, 1261–1266
beams of, 1083
coherent, 1165
diffraction of, 1190–1214
dispersion of, 1085, 1091–1093
Doppler effect for, 537–538, 1241–1243
early studies of, 1080–1081
fluorescent, 996, 1081
Huygen’s principle and, 1102–1104
intensities of, 1085
interference and, 1166–1170. See also Interference
laser, 1055, 1081, 1164, 1166
monochromatic, 1054–1055, 1164
natural, 1094
photoelectric effect and, 1261–1266
as photons, 1261–1280. See also Photons
polarized, 1093–1100
rays of, 1082
reflection of, 1082–1091
refraction of, 1082–1088
scattering of, 1100–1101, 1269–1273
speed of, 4–5, 1054, 1063f, 1081, 1224–1226
total internal reflection of, 1088–1091
unpolarized, 1094
visible, 1054
as wave and particle. See Wave-particle duality
wave fronts of, 1081–1082
wavelengths of, 1054–1055

Light pipes, 1090
Light-emitting diodes, 1428
Lightning rods, 769
Lightning strikes, inductors and, 995
Light-years, 1503
Limit of resolution, 1209
Linacs, 1485–1486
Line integral, 192, 755

of electric fields, 937
of electrostatic force, 755, 937
of magnetic fields, 937

Line of action, 309
Line spectra, 1292, 1297–1300, 1304

continuous, 1310
molecular, 1300
Zeeman effect and, 1379

Linear acceleration, 282
constant, 284t
in rigid-body rotation, 286–288
vs. angular acceleration, 284t

Linear accelerators, 1485–1486
Linear charge density, 704
Linear conductors, 823
Linear expansion, 557–558, 558t, 559
Linear mass density, 482
Linear momentum, 242, 322
Linear polarization, 1058, 1093, 1095

of electromagnetic wave, 1058
Linear speed, in rigid-body rotation, 285–286
Linear superposition, 491
Linear velocity, 282

vs. angular velocity, 280
Linear vs. angular kinematics, 285–288
Liquid(s)

compressibility of, 356
as condensed matter, 1412
molecular speed in, 610

molecules in, 597
phases of, 610–613
properties of, 1412

Liquid crystals, 1412
Liquid phase, 566
Liquid-drop model

of nuclear fission, 1465–1466
of nucleus, 1447–1448

Lithium, 1390
Bohr model of, 1306

Livingston, M. Stanley, 1486
Longitudinal waves, 473. See also Mechanical waves;

Wave(s)
periodic, 475–476
sound, 476
wave function for, 482

Long-range forces, 105
Loops, in circuits, 855
Lorentz transformations, 1237–1241

coordinate, 1237–1238
velocity, 1238–1239

Loudness, 513
Loudspeakers, 1029

magnetic forces in, 899–900
Low-pass filters, 1027
L-R-C parallel circuits, resonance in, 1039, 1048
L-R-C series circuits, 1009–1011

with ac source, 1030–1034
impedance in, 1031–1032, 1038
phase angle and, 1031–1032
power in, 1034–1037
resonance in, 1037–1039

Luminous matter, 1507
Lyman series, 1304

M
Mach number, 539
Macroscopic properties

theories of matter and, 599
vs. microscopic properties, 590

Macroscopic state, 675
Magic numbers, 1449
Magnet(s)

attracting unmagnetized objects, 906–907
bar, 883, 905–907
magnetic dipoles of, 906–907
magnetic moment of, 906
permanent, 883, 941

Magnetic ballast, 997
Magnetic bottles, 893
Magnetic confinement, 1470
Magnetic declination, 884
Magnetic dipole moment. See Magnetic moment
Magnetic dipoles, 903–904, 906–907

definition of, 903
force and torque on, 901–903
of magnets, 905–907
in nonuniform magnetic fields, 905–907
potential energy for, 903–904

Magnetic domains, 944–945
Magnetic energy density, 999–1000
Magnetic field(s), 884, 885–889

on axis of coil, 933–934
calculation of, 927
of circular current loops, 932–935
critical, 979
of current element, 926–927
definition of, 885
direction of, 887–888
of Earth, 884, 887
of electromagnetic waves, 1055–1057, 1061–1062,

1069–1070
Gauss’s law for, 891, 935, 1052, 1056
Hall effect and, 909
of human body, 887
hydrogen atom in, 1379–1382
line integral of, 937
of long cylindrical conductor, 939, 948t
of long straight conductor, 935–937, 938, 

948t

magnitude of, 887–888, 892
measurement of, 887–889
motion in, 892–898
of motors, 898
of moving charge, 886, 923–926
nodal/antinodal planes of, 1070
notation for, 886
of solenoid, 939–941, 948t
sources of, 923–946, 975–979, 1444
of straight current-carrying conductor, 

928–931
superposition of, 926, 931
test charges for, 887–889
vector, 886, 924
Zeeman effect and, 1379–1382

Magnetic field lines, 884–885, 889–890
for current element, 927
direction of, 924
end points of, 891
magnetic flux and, 890–891
for moving charge, 924–925
vs. magnetic lines of force, 889

Magnetic flux, 890–892
calculation of, 959–960
definition of, 890–891
Faraday’s law and, 959–967
Gauss’s law of magnetism and, 891
induced electric fields and, 972–974
induced emf and, 958–959
Lenz’s law and, 967–969
Meissner effect and, 980
as scalar quantity, 891
superconductivity and, 980
in transformers, 1040
units for, 891

Magnetic flux density, 892
Magnetic force(s)

on current loops, 901–907
on current-carrying conductors, 898–901
direction of, 886–887
in electric motors, 898
as fundamental force, 159–160
Hall effect and, 909
in loudspeakers, 899–900
magnitude of, 887
between parallel conductors, 931–932
units for, 887

Magnetic inclination, 884
Magnetic lines of force, 889–892
Magnetic materials, 907, 941–946

Bohr magneton, 941–942
diamagnetic, 943t, 944
ferromagnetic, 943t, 944–946
paramagnetic, 943–944, 943t
relative permeability of, 943

Magnetic moment, 903, 906, 1379
alignment of, 941–945
anomalous, 1443
of current loop, 903, 934
definition of, 903
direction of, 903
magnitude of, 942–945
of neutron, 1442–1443, 1497
nuclear, 1442–1443
of orbiting electron, 1379–1382
of proton, 1442–1443
spin, 1443
vector, 903
Zeeman effect and, 1379–1382

Magnetic monopoles, 885, 1500
Magnetic nanoparticles, for cancer, 946
Magnetic poles, 884

vs. electric charge, 885
Magnetic quantum number, 1374
Magnetic resonance imaging (MRI), 904–905, 934,

1444
Magnetic susceptibility, 943–944
Magnetic torque, 901–905
Magnetic variation, 884
Magnetic-field energy, 998–1001
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Magnetism, 883–885
electron motion and, 885
Gauss’s law for, 891, 935

Magnetization, 906–907, 927, 941–946
saturation, 945

Magnetization curve, 945
Magnetons

Bohr, 941–942, 1380
nuclear, 1443

Magnetrons, 893
Magnification

angular, 1147–1148
lateral, 1117, 1120–1121, 1147, 1148–1149

Magnifiers, 1146–1147
Magnitude, of vector, 11, 12, 16
Malus’ law, 1096
Manometers, 378–380
Maple seed, motion of, 316
Mars, gravitation on, 408–409
Marsden, Ernest, 1294
Mass

acceleration and, 113, 114, 118–120
of atom, 598, 690, 897, 1305–1306, 1441
center of, 258–262
definition of, 113
density and, 373–374
of electron, 689, 896–897, 1440
force and, 113–114
of gas, 591–592
inertia and, 118
measurement of, 114, 119
molar, 517, 564, 591, 598
of molecule, 598, 897
of neutrino, 1500–1501
of neutron, 689, 1440
of nucleus, 1440
of proton, 689, 1440
rest, 1243–1246
of star, 1259
terminal speed and, 153–154
units of, 5, 113–114, 117, 119
weight and, 114, 117–120

Mass number, 1440
Mass per unit length, 482
Mass spectrograph, 918
Mass spectrometers, 897
Mass-energy conservation law, 1247–1248
Mass:volume ratio, density and, 373–374
Matter

antimatter and, 1516
condensed, 1412. See also Liquid(s); Solids
luminous, 1507
molecular properties of, 596–598
phases of, 610–613

Maxwell, James Clerk, 976, 1052f, 1081
Maxwell-Boltzmann distribution, 608–609, 1307,

1419–1420
Maxwell’s equations, 885, 957, 977–979

electromagnetic waves and, 1052–1057
Huygen’s principle and, 1102–1104
in optics, 1085

Maxwell’s wave theory, 1052–1057, 1262–1263, 1267
Mean free path, 604
Mean free time, 838
Measurement

accuracy of, 8
errors in, 8
significant figures in, 8–9
uncertainty in, 8
units of, 4–6. See also Units of measure

Mechanical energy
conservation of, 209, 446–448, 755
conservative vs. nonconservative forces and,

221–223
heat and, 562
in simple harmonic motion, 446–449
total, 209

Mechanical waves, 472–499. See also under Wave
boundary conditions for, 489–490
definition of, 473

direction of, 479, 481–482
energy of, 486–489
energy transport by, 474
equilibrium state for, 473
incident, 492–493
intensity of, 488–489
interference in, 489
longitudinal. See Longitudinal waves
mathematical description of, 477–482
normal-mode patterns of, 496
periodic, 474–477. See also Periodic waves
power of, 487–488
propagation of, 474
sinusoidal, 475–482. See also Sinusoidal waves
sound, 476
speed of. See Wave speed
standing, 491–498
superposition of, 490–491, 497
transverse. See Transverse waves
traveling, 492, 494
types of, 473–474
wave equation for, 481, 485
wavelength of, 475

Mechanics
classical (Newtonian), 104
definition of, 35

Medical imaging
radioactive isotopes in, 1391, 1461, 1466
X rays in, 1268–1269

Medicine
nuclear, 1391, 1461, 1466
pair annihilation in, 1484

Medium, 473
Megohm, 826
Meissner effect, 979–980
Meitner, Lise, 1464
Melting, 565–566
Melting points, of solids, 1412
Membrane, dielectric, 805
Membrane potential, 774
Mercury barometers, 378–380
Mesons, 1484–1485, 1492, 1493–1495, 1499

colors of, 1489
quarks in, 1496

Metallic bonds, 1408
Metallic conduction, 838–840
Metallic crystals, 1415
Metals

alkali, 1306, 1390
alkaline earth, 1390
average free-electron energy of, 1421
as conductors, 571
electron configurations of, 1390–1391
electron-gas model of, 1415
free-electron model of, 1415, 1418–1422
rare earth, 1390

Metastable states, 1308
Meters, 4–5, 438
Methane, structure of, 1407
Michelson, Albert, 1180–1181
Michelson interferometer, 1179–1181
Michelson-Morley experiment, 1180–1181, 1224
Microcoulomb, 696
Microfarad, 790–791
Micrographs, 1149
Microphones, condensor, 790
Microscopes, 1147–1149

electron, 1290–1292
resolving power of, 1210
scanning tunneling, 1349

Microscopic state, 675–677
Microscopic vs. macroscopic properties, 590
Microwave ovens, 1071f
Milliampere, 820
Millibar, 375
Millikan, Robert, 897, 1264, 1293
Millikan’s oil-drop experiment, 786
Mirages, 1103
Mirrors. See also Reflection

concave, 1118–1122

converging, 1119
convex, 1122–1124
graphical methods for, 1124–1126
image formation by, 1115–1126
parabolic, 1120
plane, 1115–1118
spherical, 1118–1126

Mitchell, John, 423
Models

definition of, 3
idealized, 3–4

Molar heat capacity, 564–565, 605–607, 637–639
Molar mass, 517, 564, 591, 598
Molar specific heat, 564–565
Molecular bonds. See Bonds
Molecular clouds, 1435–1436
Molecular collisions, 603–605

gas pressure and, 597–600
Molecular kinetic energy, 597, 605–606

gas pressure and, 600–602
temperature and, 636

Molecular mass, 598
measurement of, 897

Molecular rotation, vibration and, 1410–1412
Molecular spectra, 1300, 1408–1412
Molecular speed, 602–603, 608–610

Maxwell-Boltzmann distribution and, 608–609
Molecular vibration, 451–453, 597, 606–608

rotation and, 1410–1412
Molecular weight, 564, 591
Molecular zippers, 1408
Molecules, 1405–1431

gas, 597, 599
intermolecular forces and, 597–598
liquid, 597
polar, 805–806, 1407
polyatomic, 605–606
solid, 597

Moles, 564, 598
Moment arm, 309
Moment of inertia, 288–291

of bird’s wing, 290f
calculation of, 290, 294–296, 456
of cylinder, 295–296
definition of, 289
parallel-axis theorem and, 293–294
in simple harmonic motion, 451
of sphere, 296
torque and, 312

Moment, vs. torque, 309
Momentum, 241–266

angular. See Angular momentum
collisions and, 251–258
components of, 242
conservation of, 247, 255, 1243
definition of, 242
electromagnetic, 1068–1069
impulse and, 241–246
impulse-momentum theorem and, 242–244, 483–484
linear, 242, 322
magnitude of, 242
net force and, 242
Newton’s second law and, 242
Newton’s third law and, 247
of photons, 1277
rate of change of, 242
relativistic, 1243–1246
rocket propulsion and, 262–265
in simple harmonic motion, 449
total, 247, 260
transverse, 484–485
units of, 242
as vector, 242, 248
vs. kinetic energy, 240, 242–246
wave speed and, 484–485

Momentum-position uncertainty principle, 1274–1275,
1278, 1315–1316

Monochromatic light, 1054–1055, 1164
Monopoles, magnetic, 885, 1500
Moon walking, 407f
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Morley, Edward, 1180–1181
Moseley’s law, 1394–1396
Motion

along curve. See Curves
of center of mass, 259–262
circular, 85–88, 154–159, 440–442. See also Circular

motion
forces and, 112–116
Kepler’s laws of, 414–416
Newton’s laws of, 104–133. See also Newton’s laws

of motion
orbital, 411–413
period of, 87
periodic, 437–462. See also Oscillation
planetary, 414–418
projectile, 77–85
rotational. See Rotation/rotational motion
of satellites, 411–413
simple harmonic, 439–453
straight-line, 35–68. See also Straight-line motion
translational, 308, 314–320, 606
in two/three dimensions, 69–103

Motion diagrams, 41, 41f, 46f
Motional electromotive force, 969–971
Motors, electric, 898, 907–908
Moving-axis rotation, 314–320
MRI (magnetic resonance imaging), 904–905, 934,

1444
Muller, Karl, 824
Multimeters, digital, 863
Multiplets, 1383
Multiplication

of displacement, 13
significant figures in, 8f, 9
of vectors, 13, 16, 20–22, 70

Muon-catalyzed fusion, 1471
Muonic atoms, 1379
Muons, 1254, 1485, 1491
Muscle fibers, work done by, 177
Music, sound waves in, 513–514
Musical instruments

pipe organs, 524–527
standing waves and, 497–498
string, 497–498
wind organs, 524–527

Mutual inductance, 991–994
Myopia, 1143–1146

N
Natural angular frequency, 459–460
Natural light, 1094
Near point, of eye, 1143
Nearsightedness, 1143–1146
Neddermeyer, Seth, 1485
Ne’eman, Yu’val, 1498
Negative ions, 690
Negative work, 179–180, 183
Neon, 1390
Nerve cells, electric charge in, 741
Nerve conduction, resistivity in, 824
Net force, 107, 247–248

acceleration and, 112–118
center-of-mass motion and, 261–262
definition of, 107
equilibrium and, 135
momentum and, 242–244
Newton’s first law and, 109
Newton’s second law and, 112–118
torque and, 311–312, 323, 324

Net torque, 321
Neurons, 716

electric charge in, 741
Neutral side of line, 868–869, 870
Neutrino detectors, 1489–1490
Neutrino oscillations, 1500–1501
Neutrinos, 1452, 1492

mass of, 1500–1501
Neutron(s)

absorption of, 1464
discovery of, 1481–1482

magnetic moment of, 1442–1443, 1497
mass of, 689, 1440
spin angular momentum of, 1442

Neutron number, 1441
Neutron-proton pair binding, 1446–1447
Newton, 6, 105, 113–114, 119
Newton, Isaac, 1080
Newtonian mechanics, 104
Newtonian synthesis, 418
Newton-meter, 177, 309
Newton’s first law of motion, 108–112

application of, 124–125, 134–139
equilibrium and, 109
inertia and, 109
inertial frame of reference and, 110–112
net force and, 109
particles in equilibrium and, 134–139
statement of, 108–109

Newton’s law of gravitation, 402–406
Newton’s laws of motion, 104–133

application of, 124–125
first law, 108–112. See also Newton’s first law of

motion
free-body diagrams and, 124–125
Kepler’s laws and, 414–416, 418
overview of, 104–108
particle model and, 1274
relativity and, 1244–1245, 1249–1251
second law, 112–117. See also Newton’s second law

of motion
statement of, 104
third law, 120–125. See also Newton’s third law of

motion
uncertainty and, 1274–1275

Newton’s rings, 1178
Newton’s second law of motion, 112–117

application of, 115, 124–125, 140–146
component equations for, 115
constant mass and, 115
entropy and, 674, 677
external forces and, 115
fluid resistance and, 152–154
inertial frame of reference and, 115–116, 118
momentum and, 242
relativity and, 1244–1245, 1249–1251
rotational analog of, 312, 318–320
statement of, 114–115

Newton’s third law of motion, 120–125
action-reaction pairs and, 120–123
application of, 124–125
fluid resistance and, 151–154
momentum and, 247
statement of, 120
tension and, 123

Noble gases, 1390
Nodal curves, 1166
Nodal planes, 1070
Nodes, 492

displacement, 523
pressure, 523
of Ranvier, 882

Noise, 514
Noise control

beat synchronization in, 532
wave interference in, 531

Nonconservative forces, 222–224
Nonelectrostatic fields, 959, 972–973
Nonlinear conductors, 823
Nonreflective coatings, 1178–1179
Nonuniform circular motion, 159
Normal force, 105, 146
Normal mode, 496
Normalization condition, 1342, 1365
North (N) pole, 884
Notation

for angles, 71
scientific (powers-of-ten), 9
spectroscopic, 1375
for units of measure, 5
for vectors, 11, 19

n-type semiconductors, 1424
Nuclear accidents, 1468
Nuclear angular momentum, 1442
Nuclear binding, 1444–1449
Nuclear fission, 785, 1247, 1464–1468

chain reactions in, 1466
liquid-drop model of, 1465–1466
reaction dynamics in, 1465
in reactors, 1466–1468

Nuclear force, 1446–1447
mesons and, 1484–1485
potential-energy function for, 1448–1449, 1491

Nuclear fusion, 785, 1284, 1469–1471
heat of, 566
helium, 1514
solar, 1501
tunneling in, 1349–1350

Nuclear magnetic moment, 1442–1443
Nuclear magnetic resonance, 1444
Nuclear magneton, 1443
Nuclear medicine, 1391, 1461, 1466
Nuclear physics, 1439–1471
Nuclear power plants, 1247, 1466–1468
Nuclear reactions, 1462–1471

chain, 1466
endoergic, 1463
endothermic, 1463
exoergic, 1463
exothermic, 1463
fission, 785, 1247, 1464–1468
fusion, 1469–1471
neutron absorption in, 1464
reaction energy for, 1462–1464
thermonuclear, 1469–1471, 1470
threshold energy for, 1463

Nuclear reactors, 1247, 1466–1468
Nuclear spin, 1442–1443
Nuclear stability, 1449–1456
Nucleon number, 1440
Nucleons, 1439–1440
Nucleosynthesis, 1511–1515
Nucleus, 1439–1471

atomic, 689, 1295
daughter, 1454
density of, 1440
in excited states, 1454
formation of, 1511–1514
in ground state, 1454
half-life of, 1456–1457
lifetime of, 1457
liquid-drop model of, 1447–1448
mass of, 1440
parent, 1454
properties of, 1439–1444
radius of, 1440
shell model of, 1448–1449
structure of, 1444

Nuclides, 1441
decay of, 1450–1458. See also Radioactive decay
odd-odd, 1449
radioactive, 1450–1454. See also Radioactivity
stable, 1449–1450
synthesis of, 1511–1515

O
Object distance, 1116
Object, in optics, 1114
Object point, 1115
Objective, microscope, 1147–1148
Occhialini, Guiseppe, 1271
Oculars, 1148
Odd-odd nuclides, 1449
Oersted, Hans Christian, 885
Ohm, 826
Ohmic conductors, 823
Ohmmeters, 863
Ohm’s law, 822, 825–826
1 newton per coulomb, 699
Onnes, Heike Kamerlingh, 824
Open circuits, 870
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Open orbits, 412
Operational definition, 4
Optic axis, of mirror, 1118
Optical fibers, 1090
Optics, 1080. See also Light

geometric. See Geometric optics
image in, 1115
object in, 1114
physical, 1082, 1163

Orbit(s)
center of mass and, 417–418
circular, 412–413, 416–417
closed, 412
of Comet Halley, 417
elliptical, 415–416
open, 412
satellite, 411–413
sector velocity and, 415
semi-major axis of, 415, 416

Orbital angular momentum
quantization of, 1373–1374, 1384
spin angular momentum and, 1387

Orbital eccentricity, 415
Orbital magnetic quantum number, 1374
Orbital period, 416–417
Orbital quantum number, 1373
Orbital speed, 416–417
Order-of-magnitude estimates, 10
Organ pipes, 524–527
Oscillation, 437–462

amplitude of, 438
damped, 457–460
definition of, 437
displacement in, 438
driven, 459–460
electrical, 1005–1009
forced, 459–460, 527
frequency of, 438
in harmonic oscillators, 439–440
molecular vibration and, 451–453
neutrino, 1500–1501
overview of, 437–438
of pendulum, 453–457
of periodic waves, 474–476
resonance and, 460, 527
simple harmonic motion and, 439–453. See also

Simple harmonic motion
in spring, 437–438

Oscillation cycle, 438
Oscillation period, 438
Otto cycle, 657–658
Overdamped circuits, 1010
Overdamping, 458
Overloaded circuits, 869–870
Overtones, 496

P
Pacemakers, 866
Painting, electrostatic, 683
Pair annihilation, 1483, 1484
Pair production, 1482–1483

photons in, 1271–1272
positrons in, 1271–1272, 1482–1483

Parabolic graphs, 48
Parabolic lenses, 1151
Parabolic mirrors, 1120
Parabolic trajectories, 79, 79f
Parallel connection, 794–796
Parallel, resistors in, 851, 852–855
Parallel vectors, 11, 12
Parallel-axis theorem, 293–294
Parallel-plate capacitors, 790, 791

dielectrics in, 800–805
Paramagnetism, 942–944, 943t
Paraxial approximation, 1119
Paraxial rays, 1119
Parent nucleus, 1454
Parity, 1495
Parsec, 1503
Partial derivatives, 226–227, 481

Particle(s), 36
alpha, 1294–1295, 1349–1350
antiparticles and, 1483
in bound state, 1343–1344
definition of, 3
distinguishable, 1419
as force mediators, 1484
free, 1330
fundamental, 1480–1501
light waves as, 1261–1280
in Newtonian mechanics, 1274
photons as, 1263. See also Photons; Wave-particle

duality
in standard model, 1499–1500
strange, 1494–1495
wave function for, 1328–1335

Particle accelerators, 1485–1488
cyclotrons, 893, 918, 1486–1487
linear, 1485–1486
synchrotrons, 1487

Particle collisions
in accelerators, 1485–1488
available energy and, 1487–1488
in colliding-beam experiments, 1489

Particle detectors, 1489
neutrino, 1489–1490

Particle in a box
in one dimension, 1338–1343, 1371
in three dimensions, 1366–1371

Particle interactions, 1490–1495
conservation laws for, 1495
electromagnetic, 159–160, 1490
fundamental types of, 159–160, 1490–1492
gravitational, 159–160, 1490
isospin and, 1495
parity in, 1495
strangeness in, 1494–1495
strong, 160, 1490–1491
symmetry-breaking, 1495
weak, 160, 1491

Particle motion, vs. wave motion, 475
Particle physics, historical perspective on, 1480–1485
Particle speed, vs. wave speed, 519
Particle velocity, vs. wave velocity, 519
Particle waves

angular frequency of, 1331
one-dimensional, 1329–1333
vs. mechanical waves, 1329
wave equation for, 1330–1333
wave number for, 1331

Pascal, 353, 375
Pascal, Blaise, 353, 354, 377
Pascal’s law, 376–377
Paths, in thermodynamic system, 628–629
Pauli, Wolfgang, 1389
Pendulum

ballistic, 253
periodic motion of, 453–457
physical, 455–457
simple, 453–455, 456

Pendulum bob, 454
Penzias, Arno, 1515
Percent error (uncertainty), 8
Perfect crystals, 1413–1415
Perihelion, 415

precession of, 1250
Period, 87

frequency and, 438–439
orbital, 416–417
oscillation, 438
in simple harmonic motion, 443

Periodic driving force, damped oscillation and,
459–460

Periodic motion, 437–462. See also Oscillation
amplitude of, 438
definition of, 437
displacement in, 438
frequency of, 438
in harmonic oscillators, 439–440
molecular vibration and, 451–453

overview of, 437–438
of pendulum, 453–457
resonance and, 460
simple harmonic motion and, 439–453. See also

Simple harmonic motion
of spring, 437–438
of waves, 474–476

Periodic table, 1389, 1390–1391
Periodic waves, 474–477. See also Mechanical waves

longitudinal, 475–476. See also Longitudinal waves
mathematical description of, 477–482
sinusoidal, 475, 477–482. See also Sinusoidal waves
transverse, 474–475. See also Transverse waves

Permanent magnets, 883, 941
Permanent set, 358
Permeability, 943
Permittivity, of dielectric, 802
PET (positron emission tomography), 1484
Pfund series, 1304
Phase, 565

wave, 479
Phase angle, 444, 1026, 1031–1032
Phase change, 565–570
Phase diagrams, 611
Phase equilibrium, 566, 611
Phase shifts, interference and, 1174–1175
Phase transitions, 611–612
Phase velocity, 479
Phased-array radar, 1220
Phases of matter, 610–613

critical point and, 611
molecular interactions and, 610
sublimation and, 611
triple point and, 611

Phases of state
p-V diagrams and, 596
pVT-surfaces and, 612–613

Phasor diagrams, 1022
Phasors, 441, 1022
Photinos, 1501
Photocells, 1425
Photocopying machines, 769
Photoelasticity, 1100
Photoelectric effect, 1081, 1261
Photoelectrons, 1262
Photography. See Cameras
Photomicrographs, 1149
Photomultipliers, 1273
Photons, 1081, 1248, 1261–1280

absorption of, 1261–1266, 1484
in Bohr’s atomic model, 1297–1306
in charged-particle interactions, 1484
Compton scattering and, 1269–1271
definition of, 1261
diffraction and, 1273–1274
discovery of, 1481
Einstein’s explanation for, 1263–1264
electroweak interactions and, 1500
emission of, 1266–1269, 1484
as force mediators, 1484
gamma ray, 1454
interference and, 1273–1274
light emitted as, 1266–1269, 1484
momentum of, 1264–1265, 1274–1275, 1277
pair production and, 1271–1272
as particles, 1263
photoelectric effect and, 1261–1266
position of, 1274–1275, 1277
probability and, 1274–1275
spontaneous emission of, 1307
in standard model, 1500
stimulated emission of, 1307–1309
stopping potential and, 1262–1263
threshold frequency and, 1263
uncertainty and, 1274–1278
virtual, 1484
wave-particle duality and, 1273–1279. See also

Wave-particle duality
X-ray, 1266–1269

Photovoltaic effect, 1428
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Physical laws (principles), 2
Physical optics, 1082, 1163
Physical pendulum, 455–457

vs. simple pendulum, 456
Physical quantities

definition of, 4
units of, 4–6. See also Units of measure

Physical theories, 2
Physics

as experimental science, 2
nuclear, 1439–1471
overview of, 2
particle, 1480–1485
as process, 2
quantum, 1328–1356

Pi, value of, 8, 8f
Pianos, string vibration in, 528
Picoampere, 820
Picofarad, 791
Pileated woodpecker impulse, 243
Pions, 1485, 1489, 1491, 1493–1494
Pipe organs, 524–527
Pitch, 513
Planck length, 1509
Planck, Max, 1311–1312
Planck radiation law, 1311–1314
Planck time, 1509
Planck’s constant, 942, 1263
Plane mirrors

graphical methods for, 1124–1126
image formation by, 1115–1118

Plane of incidence, 1084
Plane surface

reflection at, 1115–1118
refraction at, 1129

Plane waves, electromagnetic, 1055–1057, 1060
Planet Imager, 1221
Planetary motion, 414–418. See also Orbit(s)

center of mass and, 417–418
Kepler’s laws of, 414–417

Plant growth, deuterium and, 1445
Plastic deformation, 358
Plastic flow, 358
Plasticity, 357–358
p-n junctions, 1425–1428
Point charges, 693–694

electric dipole and, 709–713
electric fields of, 725–726. See also Electric charge
electric potential energy of, 757–760
electric potential of, 765
electromagnetic waves from, 1053
force between, 697
inside closed surface, 725–726
inside nonspherical surface, 732
inside spherical surface, 732
magnetic field lines for, 924–925
superposition of, 696

Point objects
definition of, 1115
image formation for, 1118–1119, 1127–1130,

1209–1210
resolution of, 1209–1210

Point-molecule model, of gas heat capacity, 605
Polar molecules, 805–806, 1407
Polarization, 693, 805–806, 1093–1100

bee vision and, 1101
charged bodies and, 693, 807
circular, 1099–1100
definition of, 788, 1093
of dielectrics, 801–803, 805–807
electric field lines and, 709
of electromagnetic waves, 1058, 1093–1100
elliptical, 1099–1100
induced charges and, 693, 807
of light waves, 1093–1100
linear, 1058, 1093, 1095
partial, 1097
photoelasticity and, 1100
by reflection, 1097–1098

Polarizers, 1093

Polarizing angle, 1097
Polarizing axis, 1094–1095
Polarizing filters, 1093, 1094–1097, 1098
Polaroid filters, 1094–1095
Pollen, fluid resistance and, 152
Polyatomic molecules, 605–606
Population inversions, 1308–1309
Porro prism, 1089–1090
Position

by integration, 55–57, 55f, 56f
potential energy and, 208
x-t graphs and, 37–38, 38f, 40–42

Position vectors, 70–72, 70f
Position-momentum uncertainty principle, 1274–1275,

1278, 1315–1316
Positive ions, 690
Positive work, 179, 183
Positron emission tomography (PET), 1484
Positroniums, 1379
Positrons, 1453, 1482–1483

motion in magnetic fields, 894
in pair annihilation, 1483
in pair production, 1271–1272, 1482–1483

Potential. See Electric potential
Potential barriers, 1347–1350
Potential difference, 763–764. See also Voltage

capacitance and, 789
measurement of, 861–862
notation for, 865
resistance and, 852
time-varying, 865

Potential energy, 207–231, 755
around circuits, 833–834
of capacitor, 796–800
conservative forces and, 221–229
definition of, 208
elastic, 216–221, 225
electric, 754–761. See also Electric potential energy
of electric dipole, 711
electric forces and, 226–227
energy diagrams and, 228–229
equilibrium and, 228–229
force and, 225–228
gradient of, 227
gravitational, 208–216, 293, 317, 409–411
intermolecular forces and, 597
kinetic energy and, 207, 208, 221–222
for magnetic dipoles, 903–904
of molecules, 597
of particle in a box, 1339
position and, 208
potential barriers and, 1347–1350
potential wells and, 597, 1343–1347
in simple harmonic motion, 446–449
work and, 755

Potential gradient, 774–776
Potential wells, 597, 1343–1347
Potential-energy function

for harmonic oscillator, 1350, 1352, 1353–1354
for nuclear force, 1448–1449, 1491
for particle in a box, 1339

Potentiometers, 863–864
Pound, 117
Pounds per square inch, 353
Pounds per square inch absolute (psia), 378
Pounds per square inch gauge (psig), 378
Power, 193–195

in ac circuits, 1034–1037
average, 193, 487
of corrective lens, 1144
definition of, 193
in electric circuits, 834–838
for electric motors, 907
electrical, 194
energy and, 871
force and, 194
instantaneous, 193, 194
measurement of, 862–863
rotational motion and, 321–322
of sound waves, 519

velocity and, 194
of waves, 487–488
work and, 487

Power distribution systems, 868–872
Power factor, 1036
Power plants, nuclear, 1247, 1466–1468
Power transmission systems, lightning strikes

on, 995
Powers-of-10 notation, 9
Poynting vector, 1065–1067
Precession, 328–330

of perihelion, 1250
Precession angular speed, 329
Precipitators, electrostatic, 784
Precision, vs. accuracy, 9
Prefixes, for units of measure, 5
Presbyopia, 1143
Pressure

absolute, 377–378
atmospheric, 355, 375–376
bulk stress/strain and, 355–356
definition of, 355, 375
fluid flow and, 385–389
in fluids, 355, 375–380
gauge, 377–378
measurement of, 378–380
radiation, 1068–1069
reciprocal, 356
residential water, 387
as scalar quantity, 355
speed and, 385–389
units of, 353, 375
vs. density, 592
vs. force, 355, 376

Pressure amplitude, 511–512
sound intensity and, 519–521

Pressure gauges, 378–380
Pressure nodes/antinodes, 523
Primary windings, 1040, 1042f 
Principal maxima, 1201
Principal quantum number, 1301, 1373
Principal rays

for lenses, 1135–1136
for mirrors, 1124–1125

Principles
differential, 245
integral, 244
physical, 2

Printers
inkjet, 722
laser, 689, 769, 1309

Prism
dispersion by, 1091
Porro, 1089–1090

Prism binoculars, 1150
Probability density, 1333
Probability distribution, 1376
Probability distribution function, 1333

for harmonic oscillator, 1353
one-dimensional, 1333
radial, 1376
three-dimensional, 1365–1366

Probability, wave-particle duality and, 1274–1278
Problem-solving strategies, 2–3
Product

scalar, 20–22
vector, 23–25

Projectile, 77
Projectile motion, 77–85

acceleration and, 77–80, 87
air resistance and, 77, 79–80
components of, 77–78
trajectory and, 77
velocity and, 77–80
vs. circular motion, 87

Projectors, 1141
Propagation speed, 474, 475
Propeller design, 288
Proper length, 1235
Proper time, 1230–1231, 1232
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Proton(s)
charge of, 695
electron screening of, 1391–1392
lifetime of, 1500
magnetic moment of, 1442–1443
mass of, 689, 1440
spin angular momentum of, 1442

Proton decay, 1500
Proton-antiproton pairs, 1491–1492
Proton-neutron pair binding, 1446–1447
Proton-proton chains, 1469
Psia (pounds per square inch absolute), 378
Psig (pounds per square inch gauge), 378
p-type semiconductors, 1425
Pulsed lasers, 1309
Purcell, Edward, 1416f
Pure semiconductors, 1423, 1424
p-V diagrams, 596
p-V isotherms, 596
pVT-surfaces, 612–613

Q
Quality factor, 1459
Quanta, 1081. See also Photons
Quantitized energy, 1261
Quantity of heat, 562–565
Quantum dots, 1363
Quantum electrodynamics, 1081
Quantum hypothesis, 1310–1314
Quantum mechanics, 1328–1356

atomic structure and, 1364–1398
bound states and, 1343–1345
definition of, 1329
harmonic oscillator in, 1350–1354
one-dimensional waves in, 1329–1333
particle in a box and, 1338–1343, 1366–1371
potential barriers and, 1347–1350
potential wells and, 1343–1347
probability distribution function and, 1333, 1353,

1365–1366
Schrödinger equation and, 1332–1333, 1336–1337,

1365–1366
stationary states and, 1337–1338, 1366
tunneling and, 1347–1350
wave functions and, 1328–1335
wave packets and, 1335–1336

Quantum number
notation for, 1374–1375
orbital magnetic, 1374
principal, 1373
spin, 1385
spin magnetic, 1385

Quarks, 689, 920, 1443, 1496–1499
antiquarks and, 1496, 1499
colors of, 1498–1499
down, 1496
eightfold way and, 1497–1498
flavors of, 1496
in standard model, 1500
strange, 1496
types of, 1496
up, 1496

Quarter-wave plates, 1100
Quasars, 1220

R
Rad, 1459
Radar

Doppler, 537
phased-array, 1220

Radar guns, 1242f
Radial probability distribution function, 1376, 1392
Radians, 279, 287
Radiation, 570, 574–577

absorption of, 575
applications of, 576
background, 1515
beneficial uses of, 1461–1462
biological effects of, 1459–1462
blackbody, 576, 1310–1314

cancer and, 1269
C̆erenkov, 1257
definition of, 574
electromagnetic, 574–577, 1053–1054. See also

Electromagnetic wave(s)
global warming and, 576–577
from human body, 575–576
quality factor for, 1459
solar, 576, 1262
Stefan-Boltzmann law/constant and, 575
synchrotron, 1487
thermal, 1081
X. See X-ray(s)

Radiation doses, 1459–1460
Radiation exposure

hazards of, 1460–1461, 1476
limits on, 1459–1460
sources of, 1458–1459, 1461

Radiation pressure, 1068–1069
Radiator, ideal, 576
Radioactive dating, 1458
Radioactive decay, 1450–1458

activity in, 1456–1457
alpha, 1450–1452
beta, 1452–1453
gamma, 1454
half-life and, 1456–1457
natural radioactivity and, 1454–1455
rate of, 1456–1457

Radioactive decay series, 1454–1455
Radioactive fallout, 1476–1477
Radioactive isotopes, in medicine, 1391, 1461, 1466
Radioactive nuclides, decay of, 1450–1454
Radioactive tracers, 1461–1462
Radioactivity

definition of, 1449
natural, 1454–1455
units for, 1457

Radioisotope imaging, 1391
Radiology, 1268–1269
Radios

transmitters and receivers for, 1054
tuning, 1038, 1039

Radium, alpha decay of, 1451–1452
Radius

of nucleus, 1440
Schwarzschild, 424

Radius of curvature
for lens, 1133–1134
for spherical surface, 1116, 1128–1129

Radon, 1458–1459
Rainbows, 1092–1093
Randomness, in thermodynamic processes, 653
Range of validity, 2
Rare earth metals, 1390
Rarefaction, 476
Ratio of heat capacities, 517, 639
Rayleigh, Lord, 1209, 1311
Rayleigh’s criterion, 1209, 1210
Rays, 1082, 1135

paraxial, 1119
principal, 1124–1125, 1135–1136

R-C circuits, 864–868
Reaction(s)

activation energy for, 610
chain, 1466
chemical, 610
nuclear, 1462–1471. See also Nuclear reactions

Reaction energy, 1462–1464
Real image, 1115
Recession speed, 1502–1503, 1504, 1505
Reciprocal pressure, 356
Recombination currents, 1427
Rectified alternating current, 1022–1023
Rectified average current, 1023
Redshifts, 1502, 1507

cosmological, 1505
Reduced mass, 1305–1306, 1408–1409
Reference circle, 440–441
Reference point, 440–441

Reference standards, 4
Reflected waves, 489–490

sinusoidal, 491–495
Reflecting telescopes, 1150–1151
Reflection, 1082–1091

Bragg, 1207
definition of, 1082
diffuse, 1083, 1115
of electromagnetic waves, 1071
Huygen’s principle and, 1102
image formation and, 1115–1118
interference during, 1174–1175
law of, 1084–1086
of light waves, 1082–1088
phase shifts during, 1174–1175
at plane surface, 1115–1118
polarization by, 1097–1098
specular, 1083, 1115
at spherical surface, 1118–1126
total internal, 1088–1091
in X-ray diffraction, 1206

Reflective coatings, 1178, 1179
interference and, 1178–1179

Reflector, ideal, 576
Refracting telescopes, 1149
Refraction, 1082–1088

definition of, 1082
in eye, 1143
Huygen’s principle and, 1102–1104
index of. See Index of refraction
law of, 1084–1086
at plane surface, 1115–1118
at spherical surface, 1126–1130

Refractive index. See Index of refraction
Refractors, 1154
Refrigerator(s), 659–661

Carnot, 666–667
practical, 660–661
workless, 661

Refrigerator statement, of second law of
thermodynamics, 662

Reines, Frederick, 145
Relative biological effectiveness, 1459–1460
Relative permeability, 943
Relative velocity, 88–93. See also Velocity

definition of, 88
elastic collisions and, 256–258
frame of reference and, 89
Galilean velocity transformation and, 91
in one dimension, 88–90, 89f
in two or three dimensions, 90–93

Relativistic momentum, 1243–1246
Relativistic work and energy, 1246–1249
Relativity, 1223–1252

aging and, 1233
Doppler effect and, 537–538, 1241–1243
Einstein’s postulates for, 1224–1225
Galilean coordinate transformation and, 1225–1226
general theory of, 1249–1251, 1504
inertial frame of reference and, 1223, 1224, 1226
invariance of physical laws and, 1223–1226
of length, 1233–1237
Lorentz transformations and, 1237–1241
Newtonian mechanics and, 1244–1245, 1249
principle of, 1224
of simultaneity, 1226, 1227–1228
special theory of, 1223–1249
speed of light and, 1224–1225
of time intervals, 1228–1233
twin paradox and, 1232–1233

Relativity principle, 1224
Relaxation time, 866–867
Rem, 1460
Resistance, 825–828

equivalent, 851, 852
internal, 830, 833
measurement of, 860–861, 862–864

Resistance thermometer, 553–554
Resistivity, 822–825

of metal, 838–839
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in nerve conduction, 824
temperature and, 824–825

Resistors, 826–827
in ac circuits, 1025, 1029, 1034–1035
in dc circuits, 850–855
energy dissipation in, 835
equivalent resistance and, 851–855
in parallel, 851, 852–855
power in, 1034–1035
power input to, 834–835
power rating of, 835
in series, 851–852, 853–855
shunt, 861
vs. inductors, 999

Resolving power (resolution), 1209–1211
chromatic, 1203–1204, 1210
in diffraction, 1209–1210
of grating spectrograph, 1203–1205
limit of, 1209
of microscope, 1290–1291
Rayleigh’s criterion and, 1209, 1210

Resonance, 460, 527–529
in ac circuits, 1037–1039
definition of, 460, 1038
in mechanical systems, 460

Resonance angular frequency, 1038
Resonance curves, 1038–1039
Resonance frequency, 1038
Resonance width, 1049
Response curves, 1038–1039
Rest energy, 1247–1249
Rest mass, 1243–1246
Restoring force, 438

in pendulum, 454
in simple harmonic motion, 439–440

Resultant, of displacements, 12
Reverse bias, 1426
Reversed, 1117
Reversed image, 1117
Reversible processes, 653
Right-hand rule, 23
Right-handed system, 24
Rigid body, 278
Rigid-body equilibrium, 345, 348–352
Rigid-body rotation, 278–297. See also

Rotation/rotational motion
about moving axis, 314–320
angular acceleration in, 282–285
angular velocity in, 279–282
around fixed axis, 278–279
dynamics of, 308–331
kinetic energy in, 288–293
linear acceleration in, 286–288
linear speed in, 285–286
moment of inertia and, 288–291
with translational motion, 314–320

R-L circuits, 1001–1005
current decay in, 1004–1005

Rms speed, 602
Rocket propulsion, 262–265
Roller coasters, 74, 88
Rolling friction, 151–154, 320
Rolling without slipping, 316–318
Röntgen, Wilhelm, 1205, 1267, 1454
Root-mean-square current, 1023–1024
Root-mean-square speed, 602
Root-mean-square values, 602, 1023–1024
Root-mean-square voltage, 869
Rotational energy levels, 1408–1412
Rotational inertia, 289
Rotational kinetic energy, 288–293, 315–316
Rotation/rotational motion

about axis of symmetry, 323–324
angular acceleration and, 282–285, 311–314
angular momentum and, 322–328
angular velocity in, 279–282
around fixed axis, 278–279
in bacteria, 283f
with constant angular acceleration, 283–285
coordinates for, 279

direction of, 279, 309
dynamics of, 308–331
of Earth, 421–423
energy in, 288–293
equilibrium and, 345
fixed-axis, 278–279, 283
of gyroscope, 328–330
kinetic energy and, 288–293
linear acceleration in, 286–288
linear speed in, 285–286
molecular, 1410–1412
moving-axis, 314–320
Newton’s second law of motion and, 312, 318–320
power and, 321–322
precession and, 328–330
rigid-body, 278–297. See also Rigid-body rotation
in rolling without slipping, 316–318
torque and, 308–314
with translational motion, 314–320
units of, 279
work and, 320–322

Rotors, 907–908
Rubbia, Carlo, 1491
Rule of Dulong and Petit, 565, 608
Running on moon, 407f
Rutherford, Ernest, 1294–1296, 1297, 1349–1350,

1439–1440, 1454, 1462, 1481
Rutherford’s atomic model, 1294–1296
Rutherford’s scattering experiments, 1294–1296
Rydberg atom, 1306, 1402
Rydberg constant, 1303

S
Satellite orbits, 411–413
Saturation, 1447
Saturation current, 1426
Saturation magnetization, 945
Scalar (dot) product, 20–22
Scalar quantities, 11

in vector multiplication, 13
Scale factor, 1504, 1505
Scanning electron microscope, 1291–1292
Scanning tunneling microscope, 1349
Scattering of light, 1100–1101
Schrieffer, Robert, 1430
Schrödinger equation, 1332–1333

for hydrogen atom, 1372–1373
for hydrogenlike atoms, 1378–1379
one-dimensional, 1332–1333, 1336–1337
with potential energy, 1336–1337
three-dimensional, 1365–1371
time-independent, 1338, 1366
X-ray spectra and, 1393–1396

Schrödinger, Erwin, 1332
Schwarzschild radius, 424
Scientific notation, 9
Scintigram, 1461
Scintillation, 1294
Screening, 1391–1392
Scuba tank, air mass in, 594
Search coils, 983
Second condition for equilibrium, 345
Second law of thermodynamics, 652, 661–677

Carnot cycle and, 667–668
Clausius statement of, 662–663
engine statement of, 661
Kevin-Planck statement of, 661
refrigerator statement of, 662–663

Secondary windings, 1040, 1042f
Seconds, 4, 5t, 438
Seconds per cycle, 438
Sector velocity, 415
Segré chart, 1449–1450, 1454
Segré Emilio, 1449
Selection rules, 1382
Selectrons, 1501
Self-induced emf, inductive reactance and, 1026–1027
Self-inductance, 991, 994–998. See also Inductance
Semiconductor(s), 909, 1422–1425

bias conditions and, 1426, 1427–1428

compensated, 1425
conduction in, 819–820
diodes of, 827
doping and, 1424–1425
energy bands in, 1417
holes in, 909, 1423–1424
impurities in, 1415, 1424–1425
intrinsic, 1423, 1424
moving charges in, 819–820
n-type, 1424
p-type, 1425
resistivity of, 823
silicon, 1422–1425

Semiconductor devices, 1425–1430
integrated circuits, 1429–1430
light-emitting diodes, 1428
photocells, 1425
p-n junctions in, 1425–1428
solar cells, 1428
transistors, 1429

Semiconductor lasers, 1309
Semiempirical mass formula, 1448
Semi-major axis, 415, 416
Separation of variables, 1367
Series connection, 793–794, 795–796
Series motors, 908
Series, resistors in, 851–852, 853–855
Sharks

electric field detection by, 699f
flux through mouth of, 729f

Shear modulus, 357
Shear strain, 356–357
Shear stress, 352f, 356–357
Shell model, 1448–1449
Shells, electron, 1375, 1389, 1390–1391, 1394–1395
Shock waves, 538
Short circuits, 869–870, 870
Shunt motors, 908
Shunt resistors, 861
SI units, 4, 5t. See also Units of measure
Sievert, 1460
Significant figures, 8–9
Silicon semiconductors, 1422–1425
Simple harmonic motion, 439–453. See also

Oscillation
acceleration in, 444, 448
amplitude in, 442–443
angular, 451
applications of, 450–453
circular motion and, 440–442
definition of, 440
displacement in, 443–444
energy in, 446–449
equations of, 440–442
as model of periodic motion, 440
momentum in, 449
period in, 442–443
velocity in, 444, 448
vertical, 450–451
vs. electric oscillation, 1008

Simple pendulum, 453–455
vs. physical pendulum, 456

Simultaneity, relativity of, 1226, 1227–1228
Sinusoidal alternating emf, 1021
Sinusoidal current, 1022–1024. See also Alternating

current
Sinusoidal electromagnetic waves, 1060–1063
Sinusoidal waves, 475, 477–482. See also Mechanical

waves; Wave(s)
electromagnetic, 1022–1024
energy of, 486–489
interference and, 1164
particle velocity/acceleration in, 480
reflected, 491–495
standing, 491–498. See also Standing waves
traveling, 492, 494
wave function for, 477–479

Sledding, Newton’s first law and, 109
Slidewire generators, 965–966, 967, 970
Slipher, Vesto, 1502
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Slug, 117
Snakes, wave motion of, 473f
Snell’s law, 1084
Sodium doublet, 1204
Solar cells, 1428
Solar neutrinos, 1501
Solar radiation, 576, 1264
Solenoids, 904, 906, 939–941, 948t
Solids

amorphous, 1412
bonds in, 1414–1415
as condensed matter, 1412
crystalline, 1412–1415
energy bands in, 1416–1417
heat capacities of, 607–608
melting points of, 1412
molecules in, 597
phases of, 610–613
sound waves in, 515–517
structure of, 1412–1415

Sonar waves, 516–517
Sound

definition of, 509
infrasonic, 510
loudness of, 513
pitch of, 513
resonance and, 527–529
timbre of, 513–514
ultrasonic, 510

Sound intensity, 518–522
decibel scale for, 521
hearing loss and, 513, 522
representative values for, 521t

Sound intensity level, 521
Sound waves, 476, 509–542. See also Mechanical

waves; Wave(s)
audible range of, 509
beats and, 531–532
diffraction of, 1198
direction of, 510
displacement amplitude of, 510, 518–519
Doppler effect and, 533–538, 1242
in fluid, 514–515
frequency of, 513, 520
in gas, 517–518
graphing of, 511
harmonic content of, 497
interference and, 529–531
musical, 513–514
perception of, 513–514
pipe organs and, 524–527
power of, 519
pressure amplitude of, 511–512, 519–521
as pressure fluctuations, 510–513
shock, 538
in solid, 515–517
speed of, 476, 485, 514–518
standing, 522–527
superposition of, 491
wind instruments and, 527

Source of emf, 828
internal resistance of, 830–831
power input to, 835–836
power output of, 835–836

Source point, 700, 924
South (S) pole, 884
Space. See also Universe

curvature of, 1250f
dimensions of, 1504–1505
expansion of, 1503–1508

Space travel, aging and, 1233
Spacecraft, in interplanetary travel, 416f
Spacetime, 1238
Spacetime coordinates, 1238
Spark plugs, 1000
Special theory of relativity, 91, 1223–1249. See also

Relativity
Specific gravity, 374
Specific heat, 562–563

molar, 564–565

Spectra, 1091
absorption line, 1293
atomic, 1292, 1297–1300
band, 1411
continuous, 1310–1314
emission line, 1292–1293
molecular, 1300, 1408–1412
X-ray, 1393–1396

Spectral emittance, 1310–1314
definition of, 1310
quantum hypothesis and, 1311–1313
vs. intensity, 1310–1311

Spectral lines, 1292, 1297
Zeeman effect and, 1379–1382

Spectrographs, grating, 1203–1204
Spectroscopic notation, 1375
Specular reflection, 1083, 1115
Speed, 39

air drag and, 152–154
angular, 280, 286, 329
average, 39
of efflux, 387
of electromagnetic waves, 1058, 1071
escape, 410–411, 413, 423, 1505–1506
instantaneous, 39
molecular, 602–603, 608–610
orbital, 416–417
recession, 1502–1503, 1504, 1505
of rocket, 265
root-mean-square (rms), 602
of sound waves, 514–518
supersonic, 539
terminal, 152–154
units of, 6f
vs. velocity, 39–40, 286
wave, 474, 475, 479, 483–486
work and, 181–183
of yo-yo, 317

Speed of light, 1054, 1063f, 1081, 1224–1226
measurement of, 4–5
relativity and, 1224

Spheres
electric field of, 737–738, 740–741
electric flux through, 731–732
gravitation and, 403–404
mass distributions and, 418–421
moment of inertia of, 296
point charge inside, 732–733
rolling, acceleration of, 319–320

Spherical aberration, 1119, 1134
Spherical coordinates, 1366
Spherical mirrors

concave, 1118–1122
convex, 1122–1124
extended objects in, 1120–1122
focal point/length of, 1119–1120
graphical methods for, 1124–1126
image formation by, 1118–1126

Spherical surface
radius of curvature for, 1116, 1128–1129
reflection at, 1118–1126
refraction at, 1126–1130

Spherical symmetry, 1366, 1372, 1388
gravitation and, 403–404

Spin
electron, 942
nuclear, 1442–1443

Spin angular momentum, 1384–1385, 
1442

orbital angular momentum and, 1387
Spin magnetic moment, 1443
Spin magnetic quantum number, 1385
Spin quantum number, 1385
Spin-2 graviton, 1490
Spin-orbit coupling, 1386
Spiny lobsters, magnetic compasses in, 886
Spring(s)

elastic potential energy of, 216–221
ideal, 439
oscillation in, 437–438. See also Oscillation

simple harmonic motion in, 439–453. See also
Simple harmonic motion

tendons ad, 190
work done on/by, 188–189

Spring balance, 106
Spring constant, 188
Square wells, finite vs. infinite, 1345–1347
Square-well potential, 1343–1347

bound states of, 1343–1345
Squids, jet propulsion in, 262f
Stable equilibrium, 228
Stable isotope ratio analysis (SIRA), 919
Stable nuclides, 1449–1450
Standard deviation, 1275
Standard model, 1499–1500, 1510–1511
Standards, reference, 4
Standing waves, 491–498

complex, 497
electromagnetic, 1053, 1069–1072
on fixed string, 495–498
frequencies of, 496
harmonics and, 496
interference and, 492, 1164, 1166
nodes and antinodes and, 492
sound, 522–527
string instruments and, 497–498

Stars
binary, 425–426, 1259
helium fusion in, 1514
mass of, 1259
second-generation, 1514
supernova, 160, 1230f, 1514
systems of, 405–406
white dwarf, 1437

State(s)
bound, 1343–1344
degenerate, 1370–1371, 1374–1375
density of, 1418–1419
free-particle, 1346
of matter, 565
metastable, 1308
stationary, 1337–1338, 1366–1369
vs. energy levels, 1307–1308

State variables, 591
Static charge distribution, 759–760
Static equilibrium, 345
Static friction, 147–149
Stationary state

one-dimensional, 1337–1338
three-dimensional, 1366–1369

Steady flow, 382–383
Steam heat, 567–568
Stefan-Boltzmann constant, 575, 1310
Stefan-Boltzmann law, 575, 1310, 1313
Stern-Gerlach experiment, 1383–1384
Stick-slip phenomenon, 148, 149
Stimulated emission, 1307–1309
Stopping potential, 1262–1263
Straight-line motion, 35–68

with average acceleration, 42–46
average velocity and, 36–38
with constant acceleration, 46–52
with constant force, 141
displacement and, 36–38
of freely falling bodies, 52–55
with friction, 141
with instantaneous acceleration, 42–46
instantaneous velocity and, 38–42
relative velocity and, 88–90
time and, 37–38
work-energy theorem for, 187–191

Strain
bulk, 354–356
compressive, 354
definition of, 352
deformation and, 352–357
elastic modulus and, 352
elasticity and, 357–358
shear, 356–357
stress, 356–357
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tensile, 352–354
volume, 355–356

Strange (quark), 1496
Strange particles, 1494–1495
Strangeness, 1495, 1499t
Strassman, Fritz, 1464
Streamline, 383, 708
Strength

tensile, 358
ultimate, 358

Stress
breaking, 358
bulk, 352f, 354–356
compressive, 354
definition of, 352
deformation and, 352–357
elastic modulus and, 352
elasticity and, 357–358
shear, 352f, 356–357
tensile, 352–354, 560–561
thermal, 560–561
units of, 353
volume, 355–356

Stress-strain diagram, 358
String instruments, standing waves and, 497–498
String, standing waves on. See Standing waves
Strong bonds, 1407
Strong interactions, 160, 1446, 1490–1491
Strong nuclear force, 160, 689
Stud finders, 802–803
Sublimation, 567, 611
Substitutional impurities, 1415, 1424–1425
Subtraction

significant figures in, 8f, 9
of vectors, 13

Sudbury Neutrino Observatory, 1501
Sum, vector, 12
Sun. See also under Solar

magnetic eruption on, 1000
Sunglasses, polarized, 1094, 1096f, 1098
Sunlight, radiation pressure of, 1068–1069
Sunsets, 1100–1101
Suntans, 1262
Superconductivity, 1430
Superconductors, 824, 968, 979–980
Supercooling, 567
Superheating, 567
Super-Kamiokande detector, 1489, 1501, 1501f
Supermassive black holes, 426
Supernovas, 160, 1230f, 1514
Superposition

of electric fields, 703–704
of forces, 106–108, 404, 405–406, 696
of magnetic fields, 926, 931
principle of, 490–491, 696, 1164
of waves, 490–491, 497

Supersonic speed, 539
Supersymmetric theories, 1501
Surface charge density, 704
Surface integral, 730
Surface tension, 382
Sweat chloride test, 695
Symmetry

conservation laws and, 1495
in particle theory, 1497–1498
spherical, 1366, 1372
supersymmetry, 1501

Symmetry properties, of systems, 725
Symmetry-breaking interactions, 1495
Synchrocyclotrons, 1487
Synchrotrons, 1487
Systems

isolated, 247
symmetry properties of, 725

T
Tangential component of acceleration, 286
Target variables, 3
Taus, 1492
Technetium-99, 1461

Telephoto lens, 1140
Telescopes, 1119, 1149–1151, 1161

Hubble Space Telescope, 1119, 1218, 1375f, 1503
infrared, 1221
resolving power of, 1210

Temperature, 552–553
absolute, 517
boiling, 566
critical, 596, 979
of early universe, 1508
gas pressure and, 555
internal energy and, 636
macroscopic definition of, 552
melting, 566
molecular kinetic energy and, 636
resistivity and, 824–825
units of measure for, 553, 555
vs. heat, 562
vs. temperature interval, 554

Temperature coefficient, of resistivity, 824–825
Temperature gradient, 571
Temperature interval, 554
Temperature scale(s), 552

absolute, 556, 668–669
Celsius, 553
conversion between, 554
Fahrenheit, 554
Kelvin, 555–556, 665, 668–669

Temporal artery thermometer, 554
Tendons

as nonideal springs, 190
Young’s modulus of, 353f

Tensile strain, 352–354
elasticity and, 357–358
plasticity and, 357–358

Tensile strength, 358
Tensile stress, 352–354

elasticity and, 357–358
plasticity and, 357–358
thermal stress and, 560–561

Tension, 105, 123, 353, 354
definition of, 105
Newton’s first law and, 136–139
Newton’s second law and, 142
static friction and, 148
surface, 382

Terminal speed, 152–154
Terminal voltage, 830–831
Tesla, 887
Tesla coils, 993–994
Test charge, 699, 700

for magnetic fields, 887–889
Test mass, 700
Theory, definition of, 2
Theory of Everything (TOE), 160, 1501
Theory of relativity. See Relativity
Thermal conductivity, 571, 823
Thermal conductors, 552–553
Thermal efficiency, of heat engine, 655–656, 658
Thermal equilibrium, 552
Thermal expansion, 557–561

linear, 557–558, 559
in object with hole, 558
volume, 558–560
of water, 560

Thermal properties of matter, 590–614
Thermal radiation, 1081
Thermal resistance, 571
Thermal stress, 560–561
Thermionic emission, 1267
Thermistors, 824
Thermodynamic processes, 624, 625

adiabatic, 634–635, 640–642, 663
direction of, 652–653
disorder in, 653–654
equilibrium in, 653
heat added in, 628–629
in heat engines, 654–656
infinitesimal changes of state in, 634
intermediate states (paths) in, 628–629

isobaric, 635
isochoric, 635
isothermal, 635, 663
reversibility of, 652–653, 663
types of, 634–636
work done in, 628

Thermodynamic systems
human body as, 630
internal energy of. See Internal energy
paths in, 628–629
work done in, 625–626, 628

Thermodynamics
applications of, 625
definition of, 551
first law of, 624–643. See also First law of

thermodynamics
second law of, 652–679. See also Second law of

thermodynamics
sign rules for, 625
third law of, 669
zeroth law of, 552–553

Thermometers, 552
bimetallic strip, 553
gas, 554–556, 593, 669
resistance, 553–554
temporal artery, 554

Thermonuclear reactions, 1470
Thermos bottles, 576
Thick-film interference, 1176
Thin lenses, 1131–1139

converging, 1131–1133
diverging, 1133
focal length of, 1131, 1133–1135
focal point of, 1131
graphical methods for, 1135–1137
image formation by, 1135–1139
index of refraction of, 1133–1134
positive, 1131
properties of, 1131
radius of curvature for, 1133–1134

Thin-film interference, 1173–1179
Third law of thermodynamics, 669
Thomson, G.P., 1288–1289
Thomson, J.J., 751, 896, 1289, 1293
Thomson’s atomic model, 751–752, 1293, 1294–1295
Thomson’s e/m experiment, 896–897
Thought experiments, 1227
Three Mile Island accident, 1468
Threshold energy, 1463
Threshold frequency, 1263
Throwing, discus, 287
Tidal forces, 425
Timbre, 513–514
Time

history of, 1508–1516
mean free, 838
Planck, 1509
power and, 193
proper, 1230–1231, 1232
spacetime and, 1238
straight-line motion and, 36–38
units of, 4, 5t
x-t graphs and, 37–38, 40–42

Time constant, for circuit, 866–867, 1003
Time dilation, 425, 1229–1230, 1231–1232
Time intervals

measurement of, 1230
relativity of, 1228–1233

Time-energy uncertainty principle, 1274–1275, 1278,
1315–1316

Time-independent Schrödinger equation, 1338, 1366
Tolman-Stewart experiment, 849
Topnes, 1499
Topography, potential energy gradient and, 227
Toroidal solenoid, magnetic field of, 940–941, 948t
Torque, 308–314

angular acceleration and, 311–314
angular displacement and, 320–322
angular momentum and, 323, 324
application of, 310–311
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Torque (Continued)
calculation of, 309–310, 349
center of mass and, 312
constant, 321
on current loops, 901–905
definition of, 309
direction of, 309
on electric dipole, 904
equilibrium and, 345
friction and, 320
gravitational, 346–347
of internal vs. external forces, 312
kinetic energy and, 321
magnetic, 901–905
magnitude of, 310
measurement of, 309
moment of inertia and, 312
net, 321
net force and, 311–312, 323
positive vs. negative, 309
unit of, 309
as vector, 310–311
vs. moment, 309
weight and, 312
work done by, 320–322

Torr, 379
Torsion balance, 404
Torsion constant, 451
Total angular momentum, 1387, 1442
Total energy, 176, 1247
Total internal reflection, 1088–1091
Total mechanical energy, 209
Total momentum, 247, 260
Total work, 180, 244
Touch screens, 794
Tracers, radioactive, 1461–1462
Tractive resistance, 151
Traffic light sensors, 997
Trajectory, 77–79
Trampolines, 218–219
Transcranial magnetic stimulation, 961
Transformers, 1040–1042
Transients, 1032
Transistors, 1429
Translational motion

definition of, 308
molecular kinetic energy and, 606
with rotational motion, 314–320
vibrational, 606

Transmission electron microscope, 1291
Transmission grating, 1201
Transparency, index of refraction and, 1085
Transverse waves, 473. See also Mechanical waves;

Wave(s)
electromagnetic, 1056, 1060
periodic, 474–475
speed of, 482–486
wave function for, 480–482

Traveling waves, 492, 494, 529
Trilobite fossils, 1508
Triple point, 611
Triple-alpha process, 1514
Tritium, 1462
Tritons, 1471
True weight, 421
Tsunamis, 1216
Tuning forks, 442–443
Tunnel diodes, 1349
Tunneling, 1347–1350
Tunneling probability, 1348
Turbulent flow, 383, 390–391
Tweeters, 2039
Twin paradox, 1232–1233
Tyrannosaurus rex, physical pendulum and, 456–457

U
Ultimate strength, 358
Ultrasonic sound, 510
Ultrasound, 516–517
Ultraviolet catastrophe, 1311

Ultraviolet vision, 1055
Uncertainty, 1274–1279

fractional (percent), 8
in measurement, 8
wave-particle duality and, 1274–1278, 1314–1317

Uncertainty principle, 1275–1277, 1314–1317
Bohr model and, 1317
energy-time, 1278, 1315–1316
harmonic oscillator and, 1353–1354
for matter, 1315–1316
momentum-position, 1274–1275, 1278, 1315–1316

Underdamped circuits, 1010–1011
Underdamping, 458
Uniform circular motion, 85–87, 88, 154–159

definition of, 85
dynamics of, 154–159
in vertical circle, 158–159
vs. nonuniform circular motion, 88
vs. projectile motion, 87

Unit multipliers, 7
Unit vectors, 19–20
Units of measure, 4–6. See also Measurement

for acceleration, 42
for amplitude, 438
for angular frequency, 438
for astronomical distances, 1503
in British system, 5–6, 117
in calculations, 6
for capacitance, 789
in cgs metric system, 117
consistency for, 6
conversion of, 6–7
for electric current, 695, 820
for electric field, 699, 764
for electric force, 695
for electric potential, 761, 764
for electromagnetic waves, 1053
in equations, 6
for force, 5–6, 105, 117
for frequency, 438
for heat, 562
for kinetic energy, 183
for length, 4–5
for magnetic flux, 891
for magnetic force, 887
for mass, 5, 119
for momentum, 242
for mutual inductance, 993
for period, 438
prefixes for, 5
for pressure, 353, 375
for radiation dose, 1460
for radioactivity, 1457
for resistance, 826
for rotation, 279
in SI system, 4, 5
significant figures and, 8–9
for speed, 6f
for temperature, 553, 555
for time, 4, 5t, 7
for torque, 309
uncertainty and, 8
for velocity, 38
for volume, 7
for weight, 119
for work, 177–178

Universal conservation law, 690
Universe. See also Space

critical density of, 1505–1507
expansion of, 1501–1508. See also Expanding

universe
history of, 1508–1516
scale factor for, 1504, 1505
size of, 1504–1505
standard model of, 1510–1511
temperature of, 1508
timeline for, 1512–1513
uncoupling of interactions and, 1509–1510

Unpolarized light, 1094
Unstable equilibrium, 228

Up (quark), 1496
Upsilon, 1499
Uranium

decay series for, 1454–1455
in nuclear fission, 1464–1468

V
Vacancies, 820
Vacuum

capacitors in, 789–791, 798
electric fields in, 798
electric-field energy in, 798
permittivity of, 802

Vacuum bottles, 576
Valence bands, 1416–1417
Valence electrons, 1390, 1416
Validity, range of, 2
Van Allen radiation belts, 893
Van de Graaff electrostatic generator, 743–744, 768
Van der Meer, Simon, 1491
Van der Waals bonds, 1407
Van der Waals equation, 595–596
Van der Waals interactions, 452–453, 595
Vaporization, 566

heat of, 566, 568
Variables

separation of, 1367
state, 591
target, 3

Vector(s), 10–25
acceleration, 35, 72–77, 283. See also Acceleration

vectors
addition of, 12–18
angular momentum, 324, 328
angular velocity, 281–282
antiparallel, 11, 12
component, 14, 106
components of, 14–19, 21–22, 106–107
direction of, 11, 16
displacement and, 11, 12, 36–38
division of, 70
drawing diagrams with, 11–12
force, 105–107
heads (tips) of, 12
magnitude of, 11, 16
momentum, 242, 248
multiplication of, 13, 16, 20–22, 70
negative of, 11
notation for, 11, 19
parallel, 11, 12
position, 70–72
Poynting, 1065–1067
products of, 20–25
right-hand rule for, 23
subtraction of, 13
tails of, 12
torque, 310–311
unit, 19–20
velocity, 35, 70–72, 281–282

Vector current density, 821
Vector field, 701
Vector magnetic field

for current element, 926
for moving charge, 924

Vector magnetic moment, 903
Vector (cross) product, 23–25
Vector quantities, 11
Vector sum, of displacements, 12
Velocity, 10

angular, 279–282, 286
average, 36–40. See also Average velocity
circular motion and, 85–87
constant, 51
definition of, 39
drift, 819, 820
instantaneous, 38–42. See also Instantaneous

velocity
by integration, 55–57
linear, 280, 282
Lorentz transformation for, 1238–1239
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magnitude of, 38t
motion diagram for, 41
Newton’s first law of motion and, 108–112
of particle in wave, 480–482
phase, 479
power and, 194
projectile motion and, 77–80
relative, 88–93. See also Relative velocity
sector, 415
signs for, 37
in simple harmonic motion, 444, 448
units of, 38
vs. acceleration, 42
vs. speed, 39–40, 286
on x-t graph, 37–38, 40–41

Velocity selectors, 896
Velocity vectors, 35, 70–72, 281–282
Venturi meter, 388
Verne, Jules, 410
Vertex, of mirror, 1118
Vertical circle, uniform circular motion in, 158–159
Vibration, 438

heat capacities and, 606–608
molecular, 451–453, 597, 606, 1410–1412

Vibrational energy levels, 1410
Virtual focal point, 1123
Virtual image, 1115, 1137
Virtual object, 1137
Virtual photons, 1484
Viscosity, 382, 389–390
Visible light, 1054
Vision

in animals, 1144
defects in, 1143–1145
laser surgery for, 1076, 1309
normal, 1143
ultraviolet, 1055

Volcanoes, on Io, 975
Volt, 761

electron, 764
Volt per meter, 764
Voltage. See also Potential difference

capacitor, 1027–1028, 1029–1030
current and, 826–828
definition of, 762
Hall, 909–910
household, 869
inductor, 1025–1026
measurement of, 861–862
resistor, 1025, 1029
root-mean-square, 869
sinusoidal, 1022
terminal, 830–831
transformers and, 1040–1042

Voltage amplitude, 1022, 1025
Voltmeters, 762, 831, 861–863

ammeters and, 862–863, 1024
digital, 863

Volume
density and, 373–374
equipotential, 773
of gas, 593
units of, 7

Volume change, work done during, 596
Volume charge density, 704
Volume expansion, 558–560
Volume strain, 355–356
Volume stress, 355–356
vx-t graphs, 44–46, 45f, 46f

acceleration on, 44–46, 47

W
Wa+, 1491, 1500
Wa-, 1491, 1500
Walking on moon, 407f
Water

supercooled, 567
thermal expansion of, 560

Water pressure, in home, 387
Water waves, interference and, 1166–1167

Watt, 193–194
Wave(s)

coherent, 1165
de Broglie, 1290
electromagnetic, 1051–1073
electron, 1286–1296, 1300
light as. See Wave-particle duality
mechanical, 472–499. See also Mechanical waves
medium for, 473
particle, 1328–1338. See also Particle waves
polarization of. See Polarization
reflected, 489–490
shock, 538
in snake movement, 473
sonar, 516–517
sound, 476, 509–542
transverse, 1056, 1060
uncertainty and, 1276–1277

Wave equation, 481, 485
for electromagnetic waves, 1058–1060
for mechanical waves, 481–482, 485, 

1329–1330
for particle waves, 1330–1333
potential wells and, 1343–1347
statement of, 1329

Wave fronts, 1081–1082
Wave function

additive property of, 491
definition of, 477
for electromagnetic waves, 1061
graphing of, 478–480
for harmonic oscillator, 1350–1354
Hermite, 1352
hybrid, 1407
for longitudinal waves, 482
for mechanical waves, 477–479
normalized, 1342, 1365
notation for, 1329
one-dimensional Schrödinger equation and,

1332–1333, 1336–1337
for particle in a box, 1339–1343
for particle waves, 1328–1335
probability interpretation of, 1333–1334
for sinusoidal waves, 477–479
stationary-state, 1337–1338, 1366–1369
superposition principle and, 491
three-dimensional Schrödinger equation and,

1365–1371
time dependence of, 1337–1338, 1343
for transverse waves, 480–482
wave packets and, 1335–1336

Wave intensity, 488–489
Wave interference. See Interference
Wave motion, vs. particle motion, 475
Wave number, 478, 1061, 1330
Wave packets, 1335–1336
Wave phase, 479
Wave pulse, 474
Wave speed, 474, 475, 479

calculation of, 483–486
impulse-momentum theory and, 483–484
on a string, 482–485
for transverse waves, 482–486
vs. particle speed, 519

Wave velocity, vs. particle velocity, 519
Wavelengths, 475

in Balmer series, 1304
in Brackett series, 1304
de Broglie, 1287, 1290
frequency and, 1060
of light, 1054–1055
in Lyman series, 1304
measurement of, 1179–1181
in Pfund series, 1304

Wave-particle duality, 1073, 1081, 1261, 1286
atomic spectra and, 1292–1296
complementarity principle and, 1273–1274
electron waves and, 1286–1292
index of refraction and, 1086–1088
light and, 1261–1263, 1273. See also Photons

Maxwell’s wave theory and, 1052–1057, 1262–1263,
1267

probability and uncertainty and, 1274–1278,
1314–1317

Weak bonds, 1407
Weak interactions, 160, 1491
Weber, 891
Weight

acceleration and, 118–119
apparent, 142–143, 421–423
definition of, 105, 117
equilibrium and, 345–347
as force, 118
gravitation and, 406–409
mass and, 114, 117–120
measurement of, 119
molecular, 564, 591
Newton’s second law and, 142–143
torque and, 312
true, 421
units of, 119

Weight lifting, equilibrium and, 351
Weightlessness

apparent, 142, 413
true, 413

Weinberg, Steven, 1500
Wentzel, Gregor, 1361
Westinghouse, George, 1021
Wheatstone Bridge, 880–881
White dwarf stars, 1437
Wide-angle lens, 1140
Wien displacement law, 1311
Wilson, Robert, 1515
Wind instruments, 527
Windings, 1040, 1042f
Windshield wipers, 148
Wings. See Airplanes; Bird wings; 

Butterfly wings
Wire(s)

Ampere’s law for, 935–937, 938
interaction force between, 931–932
magnetic field of, 928–931, 935–937, 938

Wire chambers, 1489
Wiring systems

automobile, 868, 870–871
household, 868–872, 1040–1041

WKB approximation, 1361–1362
Woodpecker impulse, 243
Woofers, 1029
Work, 177–193

change in speed and, 181–183
in composite systems, 186–187
definition of, 177
displacement and, 177–178, 181–183
done by conservative force, 755
done by constant forces, 177–178
done by electric fields, 755–761. See also Electric

potential energy
done by electric force, 757–758, 761
done by electric potential, 762
done by electromotive force, 829
done by fluid flow, 385–389
done by gravitation, 409–410
done by muscle fibers, 177
done by torque, 320–322
done by varying forces, 187–191
done by waves, 487–488
done by working substance, 655
done during volume change, 596, 652
done in thermodynamic system, 625–626, 

628
done on/by springs, 188–189
done to charge capacitor, 796–797
kinetic energy and, 181–187
negative, 179–180, 183
positive, 179, 183
potential energy and, 755
power and, 193–195, 487
rate of, 193–195
relativistic kinetic energy and, 1246–1247



I-22 Index

Work (Continued)
as scalar quantity, 178
sign rules for, 625
total, 180, 244
units of, 177–178
zero, 179

Work-energy theorem, 181–187, 
755

for composite systems, 186–187
for constant forces, 177–178
for motion along curve, 191–193
for straight-line motion, 187–191
for varying forces, 187–191

Working substance, 654, 655
Workless refrigerators, 661

X
X-ray(s), 1266–1269. See also Radiation

applications of, 1268–1269, 1395
X-ray diffraction, 1205–1208
X-ray spectra, 1393–1396

absorption, 1396
x-t graphs, 37–38, 40–41

definition of, 37
velocity on, 37–38, 40–41

Y
Yeager, Chuck, 539
Young’s interference experiment, 1167–1169, 

1179
Young’s modulus, 353–354

Yo-yo
acceleration of, 319
speed of, 317

Yukawa, Hideki, 1484

Z
Z machine, 797–798
Z0, 1491, 1500
Zeeman effect, 1379–1382
Zener breakdown, 1428
Zener diodes, 1428
Zero, absolute, 556, 669
Zero work, 179
Zeroth law of thermodynamics, 552–553
Zipper, molecular, 1408
Zoom lenses, 1141



NUMERICAL CONSTANTS

Fundamental Physical Constants*

Name Symbol Value

Speed of light in vacuum c
Magnitude of charge of electron e
Gravitational constant G
Planck’s constant h
Boltzmann constant k
Avogadro’s number
Gas constant R
Mass of electron
Mass of proton
Mass of neutron
Permeability of free space
Permittivity of free space

8.987551787 Á * 109 N # m2>C21>4pP0

8.854187817 Á * 10-12 C2>N # m2P0 = 1>m0c2
4p * 10-7 Wb>A # mm0

1.6749272111842 * 10-27 kgmn

1.6726216371832 * 10-27 kgmp

9.109382151452 * 10-31 kgm e

8.3144721152 J>mol # K
6.022141791302 * 1023 molecules>molNA

1.38065041242 * 10-23 J>K
6.626068961332 * 10-34 J # s
6.674281672 * 10-11 N # m2>kg2
1.6021764871402 * 10-19 C
2.99792458 * 108 m>s

Other Useful Constants*

Mechanical equivalent of heat
Standard atmospheric pressure 1 atm
Absolute zero 0 K
Electron volt 1 eV
Atomic mass unit 1 u
Electron rest energy 0.510998910(13) MeV
Volume of ideal gas 22.413996(39) liter mol
Acceleration due to gravity (standard) g

*Source: National Institute of Standards and Technology (http://physics.nist.gov cuu). Numbers in parentheses show
the uncertainty in the final digits of the main number; for example, the number 1.6454(21) means 
Values shown without uncertainties are exact.

1.6454 � 0.0021.
>

9.80665 m>s2
>10°C and 1 atm2

mec
2

1.6605387821832 * 10-27 kg
1.6021764871402 * 10-19 J
-273.15°C
1.01325 * 105 Pa
4.186 J>cal 115° calorie2

Astronomical Data†

Body Mass (kg) Radius (m) Orbit radius (m) Orbit period

Sun — —
Moon 27.3 d
Mercury 88.0 d
Venus 224.7 d
Earth 365.3 d
Mars 687.0 d
Jupiter 11.86 y
Saturn 29.45 y
Uranus 84.02 y
Neptune 164.8 y
Pluto‡ 247.9 y
†Source: NASA Jet Propulsion Laboratory Solar System Dynamics Group (http://ssd.jpl.nasa.gov), and P. Kenneth
Seidelmann, ed., Explanatory Supplement to the Astronomical Almanac (University Science Books, Mill Valley, CA,
1992), pp. 704–706. For each body, “radius” is its radius at its equator and “orbit radius” is its average distance from
the sun or (for the moon) from the earth.
‡In August 2006, the International Astronomical Union reclassified Pluto and other small objects that orbit the sun as
“dwarf planets.”

5.91 * 10121.15 * 1061.31 * 1022
4.50 * 10122.48 * 1071.02 * 1026
2.87 * 10122.56 * 1078.68 * 1025
1.43 * 10126.03 * 1075.68 * 1026
7.78 * 10116.91 * 1071.90 * 1027
2.28 * 10113.40 * 1066.42 * 1023
1.50 * 10116.38 * 1065.97 * 1024
1.08 * 10116.05 * 1064.87 * 1024
5.79 * 10102.44 * 1063.30 * 1023
3.84 * 1081.74 * 1067.35 * 1022

6.96 * 1081.99 * 1030

http://physics.nist.gov/cuu
http://ssd.jpl.nasa.gov


Area

Volume

Time

Angle

Speed

1 furlong>fortnight = 1.662 * 10-4 m>s
1 mi>h = 1.466 ft>s = 0.4470 m>s = 1.609 km>h
1 km>h = 0.2778 m>s = 0.6214 mi>h
1 mi>min = 60 mi>h = 88 ft>s
1 ft>s = 0.3048 m>s
1 m>s = 3.281 ft>s

1 rev>min 1rpm2 = 0.1047 rad>s
1 revolution = 360° = 2p rad
1° = 0.01745 rad = p>180 rad
1 rad = 57.30° = 180°>p

1 y = 365.24 d = 3.156 * 107 s
1 d = 86,400 s
1 h = 3600 s
1 min = 60 s

1 gallon = 3.788 liters
1 ft3 = 0.02832 m3 = 28.32 liters = 7.477 gallons
1 liter = 1000 cm3 = 10-3 m3 = 0.03531 ft3 = 61.02 in.3

1 ft2 = 144 in.2 = 0.0929 m2
1 in.2 = 6.452 cm2
1 m2 = 104 cm2 = 10.76 ft2
1 cm2 = 0.155 in.2

1 light year = 9.461 * 1015 m
1 nautical mile = 6080 ft
1 Å = 10-10 m = 10-8 cm = 10-1 nm
1 mi = 5280 ft = 1.609 km
1 yd = 91.44 cm
1 ft = 30.48 cm
1 in. =  2.540 cm
1 cm = 0.3937 in.
1 m = 3.281 ft = 39.37 in.

Acceleration

Mass

Force

Pressure

Energy

Mass–Energy Equivalence

Power

1 Btu>h = 0.293 W
1 hp = 746 W = 550 ft # lb>s
1 W = 1 J>s

1 eV4 1.074 * 10-9 u
1 u4 931.5 MeV
1 kg4 8.988 * 1016 J

1 kWh = 3.600 * 106 J
1 eV = 1.602 * 10-19 J
1 Btu = 1055 J = 252 cal = 778 ft # lb
1 ft # lb = 1.356 J
1 cal = 4.186 J 1based on 15° calorie2
1 J = 107 ergs = 0.239 cal

1 mm Hg = 1 torr = 133.3 Pa
= 14.7 lb>in.2 = 2117 lb>ft2

1 atm = 1.013 * 105 Pa = 1.013 bar
1 lb>ft2 = 47.88 Pa
1 lb>in.2 = 6895 Pa
1 bar = 105 Pa
1 Pa = 1 N>m2 = 1.450 * 10-4 lb>in.2 = 0.209 lb>ft2

1 lb = 4.448 N = 4.448 * 105 dyn
1 N = 105 dyn = 0.2248 lb

1 kg has a weight of 2.205 lb when g = 9.80 m>s2
1 u = 1.661 * 10-27 kg
1 slug = 14.59 kg
1 g = 6.85 * 10-5 slug
1 kg = 103 g = 0.0685 slug

1 mi>h # s = 1.467 ft>s2
1 ft>s2 = 0.3048 m>s2 = 30.48 cm>s2
1 cm>s2 = 0.01 m>s2 = 0.03281 ft>s2
1 m>s2 = 100 cm>s2 = 3.281 ft>s2

UNIT CONVERSION FACTORS

Length

1 km = 1000 m = 0.6214 mi
1 m = 100 cm = 1000 mm = 106mm = 109 nm
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