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Preface

Computational Fluid Dynamics: An Introduction grew out of a von Karman Institute
(VKI) Lecture Series by the same title first presented in 1985 and repeated with
modifications every year since that time.

The objective, then and now, was to present the subject of computational fluid
dynamics (CFD) to an audience unfamiliar with all but the most basic numerical
techniques and to do so in such a way that the practical application of CFD would
become clear to everyone.

A second edition appeared in 1995 with updates to all the chapters and when that
printing came to an end, the publisher requested that the editor and authors consider
the preparation of a third edition. Happily, the authors received the request with
enthusiasm.

The third edition has the goal of presenting additional updates and clarifications
while preserving the introductory nature of the material.

The book is divided into three parts. John Anderson lays out the subject in Part I
by first describing the governing equations of fluid dynamics, concentrating on their
mathematical properties which contain the keys to the choice of the numerical
approach. Methods of discretizing the equations are discussed and transformation
techniques and grids are presented. Two examples of numerical methods close out
this part of the book: source and vortex panel methods and the explicit method.

Part II is devoted to four self-contained chapters on more advanced material.
Roger Grundmann treats the boundary layer equations and methods of solution.
Gerard Degrez treats implicit time-marching methods for inviscid and viscous com-
pressible flows; relative to the second edition, figures in the section on stability
properties have been added and the section on numerical dissipation has been ex-
panded with examples. Eric Dick, in two separate articles, treats both finite volume
and finite element methods; the sections on current developments have been updated
and references to a number of essential recent publications have been added.

Part III brings a new contribution by Jan Vierendeels and Joris Degroote which
provides insight into the steps that are needed to obtain a CFD solution of a flow
field using commercial CFD software packages. The wide availability of such codes
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vi Preface

provides advantages for the non-specialist in numerical techniques, but requires an
appreciation of their limitations and knowledge of an application methodology.

The editor and authors will consider this book to have been successful if the
readers conclude they have been well prepared to examine the literature in the field
and to begin the application of CFD methods to the resolution of problems in their
area of interest.

The editor takes this opportunity to thank the authors for their contributions to
this book and for their enthusiasm to continue the tradition of continually improving
the VKI Lecture Series on which it is based.

Eagle River, WI, USA John F. Wendt
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Chapter 1
Basic Philosophy of CFD

J.D. Anderson, Jr.

1.1 Motivation: An Example

Imagine that you are an aeronautical engineer in the later 1950s. You have been
given the task of designing an atmospheric entry vehicle—in those days it would
have been an intercontinental ballistic missile. (Later, in the early 1960s, interest
also focused on manned atmospheric entry vehicles for orbital and lunar return mis-
sions.) You are well aware of the fact that such vehicles will enter the earth’s atmo-
sphere at very high velocities, about 7.9 km/s for entry from earth orbit and about
11.2 km/s for entry after returning from a lunar mission. At these extreme hyper-
sonic speeds, aerodynamic heating of the entry vehicle becomes very severe, and is
the dominant concern in the design of such vehicles. Moreover, you are cognizant of
the recent work performed at the NACA Ames Aeronautical Laboratory by H. Julian
Allen and colleagues wherein a blunt-nosed hypersonic body was shown to experi-
ence considerably less aerodynamic heating than a sharp, slender body—contrary to
some popular intuition at that time. (This work was finally unclassified and released
to the general public in 1958 in NACA Report 1381 entitled A Study of the Motion
and Aerodynamic Heating of Ballistic Missiles Entering the Earth’s Atmosphere at
High Supersonic Speeds.) Therefore, you know that your task involves the design
of a blunt body for hypersonic speed. Moreover, you know from supersonic wind
tunnel experiments that the flowfield over the blunt body is qualitatively like that
sketched in Fig. 1.1. You know that a strong curved bow shock wave sits in front of
the blunt nose, detached from the nose by the distance δ, called the shock detatch-
ment distance. You know that the gas temperatures between the shock and the body
can be as high as 7000 K for an ICBM, and 11000 K for entry from a lunar mission.
And you know that you must understand some of the details of this flowfield in or-
der to intelligently design the entry vehicle. So, your first logical step is to perform
an analysis of the aerodynamic flow over a blunt body in order to provide detailed
information on the pressure and heat transfer distributions over the body surface,
and to examine the properties of the high-temperature shock layer between the bow

J.D. Anderson, Jr.
National Air and Space Museum, Smithsonian Institution, Washington, DC
e-mail: AndersonJA@si.edu

J.F. Wendt (ed.), Computational Fluid Dynamics, 3rd ed., 3
c© Springer-Verlag Berlin Heidelberg 2009



4 J.D. Anderson, Jr.

Fig. 1.1 Qualitative aspects
of flow over a supersonic
blunt body

shock wave and the body. You ask such questions as: what is the shape of the bow
shock wave; what is the detachment distance δ; what are the velocity, temperature
and pressure distributions throughout the shock layer, etc.? However, much to your
dismay, you find that no reliable, accurate aerodynamic theory exists to answer your
questions. You quickly discover that an accurate and practical analysis of supersonic
blunt body flows is beyond your current state-of-the-art. As a result, you ultimately
resort to empirical information along with some simplified but approximate theories
(such as Newtonian theory) in order to carry out your designated task of designing
the entry vehicle.

The above paragraph illustrates one of the most important, yet perplexing, aero-
dynamic problems of the 1950s and early 1960s. The application of blunt bodies
had become extremely important due to the advent of ICBMs, and later the manned
space programme. Yet, no aerodynamic theory existed to properly calculate the flow
over such bodies. Indeed, entire sessions of technical meetings (such as meetings of
the Institute for Aeronautical Sciences in the USA, later to become the American
Institute for Aeronautics and Astronautics) were devoted exclusively to research on
the supersonic blunt body problem. Moreover, some of the best aerodynamicists of
that day spent their time on this problem, funded and strongly encouraged by the
NACA (later NASA), the US Air Force and others.

What was causing the difficulty? Why was the flowfield over a body moving at
supersonic and hypersonic speeds so hard to calculate? The answer rests basically
in the sketch shown in Fig. 1.1, which illustrates the steady flow over a supersonic
blunt body. The region of steady flow near the nose region behind the shock is lo-
cally subsonic, and hence is governed by elliptic partial differential equations. In
contrast, the flow further downstream of the nose becomes supersonic, and this lo-
cally steady supersonic flow is governed by hyperbolic partial differential equations.
(What is meant by ‘elliptic’ and ‘hyperbolic’ equations, and the mathematical dis-
tinction between them, will be discussed in Chap. 4.) The dividing line between
the subsonic and supersonic regions is called the sonic line, as sketched in Fig. 1.1.
The change in the mathematical behaviour of the governing equations from ellip-
tic in the subsonic region to hyperbolic in the supersonic region made a consis-
tent mathematical analysis, which included both regions, virtually impossible to
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obtain. Techniques were developed for just the subsonic portion, and other tech-
niques (such as the standard ‘method of characteristics’) were developed for the
supersonic region. Unfortunately, the proper patching of these different techniques
through the transonic region around the sonic line was extremely difficult. Hence, as
late as the mid-1960s, no uniformly valid aerodynamic technique existed to treat the
entire flowfield over the blunt body. This situation was clearly noted in the classic
textbook by Liepmann and Roshko [1] published in 1957, where in a discussion of
blunt body flows on page 105, they state:

The shock shape and detachment distance cannot, at present, be theoretically predicted.

The purpose of this lengthy discussion on the status of the blunt body prob-
lem in the late 1950s is to set the background for the following important point.
In 1966, a breakthrough occurred in the blunt body problem. Using the develop-
ing power of computational fluid dynamics at that time, and employing the concept
of a ‘time-dependent’ approach to the steady state, Moretti and Abbett [2] devel-
oped a numerical, finite-difference solution to the supersonic blunt body problem
which constituted the first practical, straightforward engineering solution for this
flow. (This solution will be discussed in Chap. 7.) After 1966, the blunt body prob-
lem was no longer a real ‘problem’. Industry and government laboratories quickly
adopted this computational technique for their blunt body analyses. Perhaps the
most striking aspect of this comparison is that the supersonic blunt body problem,
which was one of the most serious, most difficult, and most researched theoretical
aerodynamic problems of the 1950s and 1960s, is today assigned as a homework
problem in a computational fluid dynamics graduate course at the University of
Maryland.

Therein lies an example of the power of computational fluid dynamics. The pur-
pose of these notes is to provide an introduction to computational fluid dynamics.
The above example concerning blunt body flows serves to illustrate the importance
of computational fluid dynamics to modern aerodynamic applications. Here is an
important problem which was impossible to solve in a practical fashion before the
advent of computational fluid dynamics (CFD), but which is now tractable and
straightforward using the modern techniques of CFD. Indeed, this is but one ex-
ample out of many where CFD is revolutionizing the world of aerodynamics. The
purpose of the present author writing these notes, and your reading these notes and
attending the VKI short course, is to introduce you to this revolution.

(As an aside, for those of you interested in more historical details concerning the
blunt body problem, see Sect. 1.1 of Ref. [3]).

1.2 Computational Fluid Dynamics: What is it?

The physical aspects of any fluid flow are governed by the following three funda-
mental principles: (1) mass is conserved; (2) F = ma (Newton’s second law); and
(3) energy is conserved. These fundamental principles can be expressed in terms
of mathematical equations, which in their most general form are usually partial
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differential equations. Computational fluid dynamics is, in part, the art of replacing
the governing partial differential equations of fluid flow with numbers, and advanc-
ing these numbers in space and/or time to obtain a final numerical description of the
complete flow field of interest. This is not an all-inclusive definition of CFD; there
are some problems which allow the immediate solution of the flow field without
advancing in time or space, and there are some applications which involve integral
equations rather than partial differential equations. In any event, all such problems
involve the manipulation of, and the solution for, numbers. The end product of CFD
is indeed a collection of numbers, in contrast to a closed-form analytical solution.
However, in the long run the objective of most engineering analyses, closed form
or otherwise, is a quantitative description of the problem, i.e. numbers. (See, for
example, Ref. [4]).

Of course, the instrument which has allowed the practical growth of CFD is the
high-speed digital computer. CFD solutions generally require the repetitive manip-
ulation of thousands, or even millions, of numbers—a task that is humanly impossi-
ble without the aid of a computer. Therefore, advances in CFD, and its application
to problems of more and more detail and sophistication, are intimately related to
advances in computer hardware, particularly in regard to storage and execution
speed. This is why the strongest force driving the development of new supercom-
puters is coming from the CFD community (see, for example, the survey article by
Graves [5]).

1.3 The Role of Computational Fluid Dynamics
in Modern Fluid Dynamics

First, let us make a few historical comments. Perhaps the first major example of
computational fluid dynamics was the work of Kopal [6], who in 1947 compiled
massive tables of the supersonic flow over sharp cones by numerically solving the
governing differential equations (the Taylor–Maccoll equation [7]). These solutions
were carried out on a primitive digital computer at the Massachusetts Institute of
Technology. However, the first generation of computational fluid-dynamic solutions
appeared during the 1950s and early 1960s, spurred by the simultaneous advent
of efficient, high-speed computers and the need to solve the high velocity, high-
temperature re-entry body problem. High temperatures necessitated the inclusion of
vibrational energies and chemical reactions in flow problems, sometimes equilib-
rium and other times non-equilibrium. Such physical phenomena generally cannot
be solved analytically, even for the simplest flow geometry. Therefore, numerical
solutions of the governing equations on a high-speed digital computer were an ab-
solute necessity. Examples of these first generation computations are the pioneer-
ing work of Fay and Riddell [8] and Blottner [9, 10] for boundary layers, and Hall
et al. [11] for inviscid flows. Even though it was not fashionable at the time to
describe such high temperature gas-dynamic calculations as ‘computational fluid
dynamics,’ they nevertheless represented the first generation of the discipline.
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The second generation of computational fluid-dynamic solutions, those which
today are generally descriptive of the discipline, involve the application of the gov-
erning equations to applied fluid-dynamic problems which are in themselves so
complicated (without the presence of chemical reactions, etc.) that a computer must
be utilized. Examples of such inherently difficult problems are mixed subsonic–
supersonic flows (such as the supersonic blunt body problem discussed in Sect. 1.1),
and viscous flows which are not amenable to the boundary layer approximation,
such as separated and recirculating flows. For the latter case, the full Navier–Stokes
equations are required for an exact solution. In these cases, the time-dependent tech-
nique, introduced in a practical fashion in the mid-1960s, has created a revolution
in flowfield calculations. This technique will be discussed in Chap. 7.

The role of CFD in engineering predictions has become so strong that today it
can be viewed as a new ‘third dimension’ in fluid dynamics, the other two dimen-
sions being the classical cases of pure experiment and pure theory. This relation-
ship is sketched in Fig. 1.2. From 1687, with the publication of Isaac Newton’s
Principia, to the mid-1960s, advancements in fluid mechanics were made with the
synergistic combination of pioneering experiments and basic theoretical analyses—
analyses which almost always required the use of simplified models of the flow to
obtain closed-form solutions of the governing equations. These closed-form solu-
tions have the distinct advantage of immediately identifying some of the fundamen-
tal parameters of a given problem, and explicitly demonstrating how the answers to
the problems are influenced by variations in the parameters. They frequently have
the disadvantage of not including all the requisite physics of the flow. Into this pic-
ture stepped CFD in the mid-1960s. With its ability to handle the governing equa-
tions in ‘exact’ form, along with the inclusion of detailed physical phenomena such
as finite-rate chemical reactions, CFD rapidly became a popular tool in engineering
analyses. Today, CFD supports and complements both pure experiment and pure
theory, and it is this author’s opinion that, from now on, it always will. CFD is not
a passing fad; rather, with the advent of the high-speed digital computer, CFD will
remain a third dimension in fluid dynamics, of equal stature and importance to ex-
periment and theory. It has taken a permanent place in all aspects of fluid dynamics,
from basic research to engineering design.

One of the most important aspects of modern CFD is the impact it is having on
wind tunnel testing. This is related to the rapid decrease in the cost of computations
compared to the rapid increase in the cost of wind tunnel tests. In his pioneering
survey of CFD in 1979, Chapman [12] shows a plot of relative computation cost

Fig. 1.2 Relationship
between pure experiment
and pure theory
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Fig. 1.3 Relative computation cost as a function of years

as a function of years since 1953. This is reproduced as Fig. 1.3, where it will be
noted that the relative costs of computations has decreased by an order of magni-
tude every eight years since 1953—and it is still dropping today. This is due to the
continued development of new computers with faster run times, leading to a class
of computers that are called ‘super-computers’ (such as the CRAY machines, and
the CYBER 205). As a result, the calculation of the aerodynamic characteristics of
new aeroplane designs via application of CFD is becoming economically cheaper
than measuring the same characteristics in the wind tunnel. Indeed, in much of the
aircraft industry, the testing of preliminary designs for new aircraft, which used to
be carried out via numerous wind tunnel tests, is today performed almost entirely on
the computer; the wind tunnel is used to ‘fine-tune’ the final design. This is partic-
ularly true in the design of new airfoil shapes [13]. In addition to economics, CFD
offers the opportunity to obtain detailed flow-field information, some of which is
either difficult to measure in a wind tunnel, or is compromised by wall effects.

Of course, inherent in the above discussion is the assumption that CFD results are
accurate as well as cost effective; otherwise, any assumption of part of the role of
wind tunnels by CFD would be foolish. The results of CFD are only as valid as the
physical models incorporated in the governing equations and boundary conditions,
and therefore are subject to error, especially for turbulent flows. Truncation errors
associated with the particular algorithm used to obtain a numerical solution, as well
as round-off errors, both combine to compromise the accuracy of CFD results. (Such
matters will be discussed in later sections.) In spite of these inherent drawbacks, the
results of CFD are amazingly accurate for a very large number of applications. One
such example is given in Ref. [12], and is reproduced in Fig. 1.4. Here we see the
calculation of the lift coefficient for a space shuttle orbiter/Boeing 747 combination
obtained from an elaborate implementation of the subsonic panel method (panel
methods are discussed in Chap. 3). Comparison with wind tunnel data shown in
the lower left of Fig. 1.4 clearly illustrates the high degree of accuracy obtained.
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Fig. 1.4 A complex application of computational aerodynamics (from Ref. [12])

Faced with this type of comparison, and keeping in mind that the computations are
frequently cheaper than the wind tunnel measurements, aeronautical engineers are
more and more transferring the role of preliminary design testing from the wind
tunnel to the computer.

The role of CFD in preliminary design has a corollary in basic research. As-
suming that a given CFD solution to a basic flow (say, for example, the separated
flow over a rearward-facing step) contains all the important physics, then this CFD
solution (the computer program itself) is a numerical tool. In turn, this numerical
tool can be used to carry out numerical experiments to help study the fundamental
characteristics of the flow. These numerical experiments are directly analagous to
actual laboratory experiments.
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Fig. 1.5 Calculated shock
wave shape around a
shuttle-like vehicle at Mach 6
and an angle of attack of 26.6
degrees. (From Weilmuenser,
K.J., ‘High angle of attack
inviscid flow calculations
over shuttle-like vehicles with
comparisons to flight data,’
AIAA Paper No. 83–1798,
1983.) Note: Fluted
appearance of the shock wave
is due to the finite-difference
grid used for the calculations

What types of flowfields can now be adequately handled by CFD? The complete
answer to this question would take weeks of discussion and volumes of notes. How-
ever, just a few examples will be mentioned here.

(1) Flow fields over the space shuttle. Figure 1.5 illustrates a calculation of the
shock wave around a shuttle-like vehicle. Figure 1.6 illustrates the pressure
distribution along the windward centerline and Fig. 1.7 illustrates the pressure
distribution along the spanwise direction.

(2) Flows over arrow wing bodies, as shown in Fig. 1.8. Here, the vortex flow from
the wing leading edge is illustrated.

Fig. 1.6 Calculated pressure
distribution along the
windward centreline of the
space shuttle, and comparison
with flight test data (from
Weilmuenser, as referenced in
Fig. 1.5)
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Fig. 1.7 Calculated spanwise
pressure distribution on the
windward surface of the
space shuttle (from Maus,
J.R. et al. ‘Hypersonic Mach
number and real gas effects
on space shuttle orbiter
aerodynamics,’ Journal of
Spacecraft and Rockets, Vol.
21, No. 2, March–April 1984,
pp. 136–141)

(3) Unsteady, oscillating flows through supersonic engine inlets, as shown in
Fig. 1.9. Here, the contours of constant Mach number are shown for four dif-
ferent times.

(4) Flow field over an automobile towing a trailer, as shown by the streamlines
given in Fig. 1.10.

(5) Flows through supersonic combustion ramjet engines, as shown in Fig. 1.11.

Fig. 1.8 The calculation of the leading edge vortex from a delta wing (from AIAA Short Course
entitled ‘Using Euler Solvers’, July 1984, with material presented by Wolfgang Schmidt)
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Fig. 1.9 Calculations of unsteady flow in an inlet. (From Newsome, R. W., ‘Numerical simulation
of near-critical and unsteady subcritical inlet flow fields,’ AIAA Paper No. 83-0175, 1983)

The list goes on and on. These are but a very few examples of how the methods
of CFD are being used today.

What can CFD not do? The fundamental answer to this question is that it cannot
reproduce physics that are not properly included in the formulation of the problem.
The most important example is turbulence. Most CFD solutions of turbulent flows
now contain turbulence models which are just approximations of the real physics,
and which depend on empirical data for various constants that go into the turbulence
models. Therefore, all CFD solutions of turbulent flows are subject to inaccuracy,

Fig. 1.10 Calculated flow over an automobile-trailer configuration (from the same reference
given in Fig. 1.8)
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Fig. 1.11 Calculations of the flow field in a scramjet engine (from Drummond, J.P., and Weidner,
E.H., ‘Numerical study of a scramjet engine flowfield,” AIAA Journal, Vol. 20, No. 9, Sept. 1982,
pp. 1182–1187)

even though some calculations for some situations are reasonable. It is interesting
to note that the CFD community is directly attacking this problem in the most basic
sense. There is work today on the direct computation of turbulence (Ref. [12]). This
is based on the assumption that, on a fine enough scale, all turbulent flows obey the
Navier–Stokes equations (to be derived in Chap. 2); and if a fine enough grid can
be used, with a requisite large number of grid points, maybe both the fine scale and
large scale aspects of turbulence can be calculated. This is currently a wide-open
area of CFD research.

Again, emphasis is made that CFD solutions are slaves to the degree of physics
that goes into their formulation. Another example is the computation of chemically
reacting flows. Here, the chemical kinetic rate mechanisms as well as the magni-
tudes of the rate constants are frequently very uncertain, and any CFD solution will
be compromised by these uncertainties.

1.4 The Role of This Course

The objective of this course is somewhat different from the conventional short
course in computational fluid dynamics. Our purpose here is to provide a very ba-
sic, elementary and tutorial presentation of CFD, emphasizing the fundamentals,
and surveying a number of solution techniques ranging from low-speed incom-
pressible flow to hypersonic flow. This course is aimed at the completely unititiated
student—a student who has little or no experience in computational fluid dynamics.
The purpose of this course is to provide such students with (a) some insight into the
philosophy and power of CFD; (b) an understanding of the governing equations; (c)
a familiarity with various popular solution techniques; and (d) a working vocabu-
lary in the discipline. It is hoped that at the conclusion of this course, you will be
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well prepared to understand the literature in this field, to follow more sophisticated
state-of-the-art lecture series and to begin the application of CFD to your special
areas of concern.
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Chapter 2
Governing Equations of Fluid Dynamics

J.D. Anderson, Jr.

2.1 Introduction

The cornerstone of computational fluid dynamics is the fundamental governing
equations of fluid dynamics—the continuity, momentum and energy equations.
These equations speak physics. They are the mathematical statements of three fun-
damental physical principles upon which all of fluid dynamics is based:

(1) mass is conserved;
(2) F = ma (Newton’s second law);
(3) energy is conserved.

The purpose of this chapter is to derive and discuss these equations.
The purpose of taking the time and space to derive the governing equations of

fluid dynamics in this course are three-fold:

(1) Because all of CFD is based on these equations, it is important for each student
to feel very comfortable with these equations before continuing further with his
or her studies, and certainly before embarking on any application of CFD to a
particular problem.

(2) This author assumes that the attendees of the present VKI short course come
from varied background and experience. Some of you may not be totally fa-
miliar with these equations, whereas others may use them every day. For the
former, this chapter will hopefully be some enlightenment; for the latter, hope-
fully this chapter will be an interesting review.

(3) The governing equations can be obtained in various different forms. For most
aerodynamic theory, the particular form of the equations makes little difference.
However, for CFD, the use of the equations in one form may lead to success,
whereas the use of an alternate form may result in oscillations (wiggles) in
the numerical results, or even instability. Therefore, in the world of CFD, the
various forms of the equations are of vital interest. In turn, it is important to
derive these equations in order to point out their differences and similarities,
and to reflect on possible implications in their application to CFD.

J.D. Anderson, Jr.
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2.2 Modelling of the Flow

In obtaining the basic equations of fluid motion, the following philosophy is always
followed:

(1) Choose the appropriate fundamental physical principles from the laws of
physics, such as

(a) Mass is conserved.
(b) F = ma (Newton’s 2nd Law).
(c) Energy is conserved.

(2) Apply these physical principles to a suitable model of the flow.
(3) From this application, extract the mathematical equations which embody such

physical principles.

This section deals with item (2) above, namely the definition of a suitable model of
the flow. This is not a trivial consideration. A solid body is rather easy to see and
define; on the other hand, a fluid is a ‘squishy’ substance that is hard to grab hold
of. If a solid body is in translational motion, the velocity of each part of the body is
the same; on the other hand, if a fluid is in motion the velocity may be different at
each location in the fluid. How then do we visualize a moving fluid so as to apply to
it the fundamental physical principles?

For a continuum fluid, the answer is to construct one of the two following models.

2.2.1 Finite Control Volume

Consider a general flow field as represented by the streamlines in Fig. 2.1(a). Let
us imagine a closed volume drawn within a finite region of the flow. This volume
defines a control volume, V, and a control surface, S, is defined as the closed surface
which bounds the volume. The control volume may be fixed in space with the fluid
moving through it, as shown at the left of Fig. 2.1(a). Alternatively, the control
volume may be moving with the fluid such that the same fluid particles are always
inside it, as shown at the right of Fig. 2.1(a). In either case, the control volume is a
reasonably large, finite region of the flow. The fundamental physical principles are
applied to the fluid inside the control volume, and to the fluid crossing the control
surface (if the control volume is fixed in space). Therefore, instead of looking at
the whole flow field at once, with the control volume model we limit our attention
to just the fluid in the finite region of the volume itself. The fluid flow equations
that we directly obtain by applying the fundamental physical principles to a finite
control volume are in integral form. These integral forms of the governing equations
can be manipulated to indirectly obtain partial differential equations. The equations
so obtained from the finite control volume fixed in space (left side of Fig. 2.1a), in
either integral or partial differential form, are called the conservation form of the
governing equations. The equations obtained from the finite control volume moving
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Fig. 2.1 (a) Finite control volume approach. (b) Infinitesimal fluid element approach

with the fluid (right side of Fig. 2.1a), in either integral or partial differential form,
are called the non-conservation form of the governing equations.

2.2.2 Infinitesimal Fluid Element

Consider a general flow field as represented by the streamlines in Fig. 2.1b. Let us
imagine an infinitesimally small fluid element in the flow, with a differential vol-
ume, dV . The fluid element is infinitesimal in the same sense as differential calcu-
lus; however, it is large enough to contain a huge number of molecules so that it
can be viewed as a continuous medium. The fluid element may be fixed in space
with the fluid moving through it, as shown at the left of Fig. 2.1(b). Alternatively,
it may be moving along a streamline with a vector velocity V equal to the flow ve-
locity at each point. Again, instead of looking at the whole flow field at once, the
fundamental physical principles are applied to just the fluid element itself. This ap-
plication leads directly to the fundamental equations in partial differential equation
form. Moreover, the particular partial differential equations obtained directly from
the fluid element fixed in space (left side of Fig. 2.1b) are again the conservation
form of the equations. The partial differential equations obtained directly from the
moving fluid element (right side of Fig. 2.1b) are again called the non-conservation
form of the equations.
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In general aerodynamic theory, whether we deal with the conservation or noncon-
servation forms of the equations is irrelevant. Indeed, through simple manipulation,
one form can be obtained from the other. However, there are cases in CFD where it
is important which form we use. In fact, the nomenclature which is used to distin-
guish these two forms (conservation versus nonconservation) has arisen primarily
in the CFD literature.

The comments made in this section become more clear after we have actually
derived the governing equations. Therefore, when you finish this chapter, it would
be worthwhile to re-read this section.

As a final comment, in actuality, the motion of a fluid is a ramification of the mean
motion of its atoms and molecules. Therefore, a third model of the flow can be a
microscopic approach wherein the fundamental laws of nature are applied directly to
the atoms and molecules, using suitable statistical averaging to define the resulting
fluid properties. This approach is in the purview of kinetic theory, which is a very
elegant method with many advantages in the long run. However, it is beyond the
scope of the present notes.

2.3 The Substantial Derivative

Before deriving the governing equations, we need to establish a notation which is
common in aerodynamics—that of the substantial derivative. In addition, the sub-
stantial derivative has an important physical meaning which is sometimes not fully
appreciated by students of aerodynamics. A major purpose of this section is to em-
phasize this physical meaning.

As the model of the flow, we will adopt the picture shown at the right of
Fig. 2.1(b), namely that of an infinitesimally small fluid element moving with the
flow. The motion of this fluid element is shown in more detail in Fig. 2.2. Here, the
fluid element is moving through cartesian space. The unit vectors along the x, y, and
z axes are�i,�j, and �k respectively. The vector velocity field in this cartesian space is
given by

�V = u�i + v�j + w�k

where the x, y, and z components of velocity are given respectively by

u = u(x, y, z, t)

v = v(x, y, z, t)

w = w(x, y, z, t)

Note that we are considering in general an unsteady flow, where u, v, and w are
functions of both space and time, t. In addition, the scalar density field is given by

ρ = ρ(x, y, z, t)
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Fig. 2.2 Fluid element
moving in the flow
field—illustration for the
substantial derivative

At time t1, the fluid element is located at point 1 in Fig. 2.2. At this point and
time, the density of the fluid element is

ρ1 = ρ(x1, y1, z1, t1)

At a later time, t2, the same fluid element has moved to point 2 in Fig. 2.2. Hence,
at time t2, the density of this same fluid element is

ρ2 = ρ(x2, y2, z2, t2)

Since ρ = ρ(x,y,z, t), we can expand this function in a Taylor’s series about point
1 as follows:

ρ2 = ρ1 +

(
∂ρ

∂x

)
1

(x2− x1) +

(
∂ρ

∂y

)
1

(y2− y1) +

(
∂ρ

∂z

)
1

(z2− z1)

+

(
∂ρ

∂t

)
1

(t2− t1) + (higher order terms)

Dividing by (t2− t1), and ignoring higher order terms, we obtain

ρ2−ρ1

t2− t1
=

(
∂ρ

∂x

)
1

(
x2− x1

t2− t1

)
+

(
∂ρ

∂y

)
1

(
y2− y1

t2− t1

)

+

(
∂ρ

∂z

)
1

(
z2− z1

t2− t1

)
+

(
∂ρ

∂t

)
1

(2.1)

Examine the left side of Eq. (2.1). This is physically the average time-rate-of-
change in density of the fluid element as it moves from point 1 to point 2. In the
limit, as t2 approaches t1, this term becomes

lim
t2→t1

(
ρ2−ρ1

t2− t1

)
≡ Dρ

Dt
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Here, Dρ/Dt is a symbol for the instantaneous time rate of change of density of
the fluid element as it moves through point 1. By definition, this symbol is called the
substantial derivative, D/Dt. Note that Dρ/Dt is the time rate of change of density
of the given fluid element as it moves through space. Here, our eyes are locked on the
fluid element as it is moving, and we are watching the density of the element change
as it moves through point 1. This is different from (∂ρ/∂t)1, which is physically the
time rate of change of density at the fixed point 1. For (∂ρ/∂t)1, we fix our eyes
on the stationary point 1, and watch the density change due to transient fluctuations
in the flow field. Thus, Dρ/Dt and ∂ρ/ρt are physically and numerically different
quantities.

Returning to Eq. (2.1), note that

lim
t2→t1

(
x2− x1

t2− t1

)
≡ u

lim
t2→t1

(
y2− y1

t2− t1

)
≡ v

lim
t2→t1

(
z2− z1

t2− t1

)
≡ w

Thus, taking the limit of Eq. (2.1) as t2→ t1, we obtain

Dρ
Dt

= u
∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+
∂ρ

∂t
(2.2)

Examine Eq. (2.2) closely. From it, we can obtain an expression for the substan-
tial derivative in cartesian coordinates:

D
Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(2.3)

Furthermore, in cartesian coordinates, the vector operator

Δ

is defined as

Δ

≡�i ∂
∂x

+�j
∂

∂y
+�k

∂

∂z
(2.4)

Hence, Eq. (2.3) can be written as

D
Dt
≡ ∂

∂t
+
(
�V ·

Δ)
(2.5)

Equation (2.5) represents a definition of the substantial derivative operator in
vector notation; thus, it is valid for any coordinate system.

Focusing on Eq. (2.5), we once again emphasize that D/Dt is the substantial
derivative, which is physically the time rate of change following a moving fluid
element; ∂/∂t is called the local derivative, which is physically the time rate of
change at a fixed point; �V ·

Δ

is called the convective derivative, which is physi-
cally the time rate of change due to the movement of the fluid element from one
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location to another in the flow field where the flow properties are spatially dif-
ferent. The substantial derivative applies to any flow-field variable, for example,
Dp/Dt, DT/Dt, Du/Dt, etc., where p and T are the static pressure and temperature
respectively. For example:

DT
Dt
≡ ∂T

∂t︷�����︸︸�����︷
local

derivative

+ (�V ·

Δ

)︷������︸︸������︷
convective
derivative

T ≡ ∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

(2.6)

Again, Eq. (2.6) states physically that the temperature of the fluid element is
changing as the element sweeps past a point in the flow because at that point the
flow field temperature itself may be fluctuating with time (the local derivative) and
because the fluid element is simply on its way to another point in the flow field
where the temperature is different (the convective derivative).

Consider an example which will help to reinforce the physical meaning of the
substantial derivative. Imagine that you are hiking in the mountains, and you are
about to enter a cave. The temperature inside the cave is cooler than outside. Thus,
as you walk through the mouth of the cave, you feel a temperature decrease—this
is analagous to the convective derivative in Eq. (2.6). However, imagine that, at
the same time, a friend throws a snowball at you such that the snowball hits you
just at the same instant you pass through the mouth of the cave. You will feel an
additional, but momentary, temperature drop when the snowball hits you—this is
analagous to the local derivative in Eq. (2.6). The net temperature drop you feel as
you walk through the mouth of the cave is therefore a combination of both the act
of moving into the cave, where it is cooler, and being struck by the snowball at the
same instant—this net temperature drop is analagous to the substantial derivative in
Eq. (2.6).

The above derivation of the substantial derivative is essentially taken from this
author’s basic aerodynamics text book given as Ref. [1]. It is used there to introduce
new aerodynamics students to the full physical meaning of the substantial derivative.
The description is repeated here for the same reason—to give you a physical feel for
the substantial derivative. We could have circumvented most of the above discussion
by recognizing that the substantial derivative is essentially the same as the total
differential from calculus. That is, if

ρ = ρ(x,y,z, t)

then the chain rule from differential calculus gives

dρ =
∂ρ

∂x
dx +

∂ρ

∂y
dy +

∂ρ

∂z
dz +

∂ρ

∂t
dt (2.7)

From Eq. (2.7), we have

dρ
dt

=
∂ρ

∂t
+
∂ρ

∂x
dx
dt

+
∂ρ

∂y
dy
dt

+
∂ρ

∂z
dz
dt

(2.8)
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Since
dx
dt

= u,
dy
dt

= v, and
dz
dt

= w, Eq. (2.8) becomes

dρ
dt

=
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
(2.9)

Comparing Eqs. (2.2) and (2.9), we see that dρ/dt and Dρ/Dt are one-in-the-
same.

Therefore, the substantial derivative is nothing more than a total derivative with
respect to time. However, the derivation of Eq. (2.2) highlights more of the physical
significance of the substantial derivative, whereas the derivation of Eq. (2.9) is more
formal mathematically.

2.4 Physical Meaning of

ΔΔΔ· �V

As one last item before deriving the governing equations, let us consider the diver-
gence of the velocity,

Δ

· �V . This term appears frequently in the equations of fluid
dynamics, and it is well to consider its physical meaning.

Consider a control volume moving with the fluid as sketched on the right of
Fig. 2.1(a). This control volume is always made up of the same fluid particles as it
moves with the flow; hence, its mass is fixed, invariant with time. However, its vol-
ume V and control surface S are changing with time as it moves to different regions
of the flow where different values of ρ exist. That is, this moving control volume
of fixed mass is constantly increasing or decreasing its volume and is changing its
shape, depending on the characteristics of the flow. This control volume is shown
in Fig. 2.3 at some instant in time. Consider an infinitesimal element of the surface
dS moving at the local velocity �V , as shown in Fig. 2.3. The change in the volume
of the control volume ΔV , due to just the movement of dS over a time increment
Δt, is, from Fig. 2.3, equal to the volume of the long, thin cylinder with base area
dS and altitude (�VΔt) ·�n, where �n is a unit vector perpendicular to the surface at dS .
That is,

ΔV =
[
(�VΔt) ·�n

]
dS = (�VΔt) ·�dS (2.10)

where the vector d�S is defined simply as d�S ≡ �n dS . Over the time increment Δt,
the total change in volume of the whole control volume is equal to the summation
of Eq. (2.10) over the total control surface. In the limit as dS → 0, the sum becomes
the surface integral

Fig. 2.3 Moving control
volume used for the physical
interpretation of the
divergence of velocity
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�

S
(�VΔt) ·dS

If this integral is divided by Δt, the result is physically the time rate of change of
the control volume, denoted by DV/Dt, i.e.

DV

Dt
=

1
Δt

�

S
(�V ·Δt) ·d�S =

�

S

�V ·d�S (2.11)

Note that we have written the left side of Eq. (2.11) as the substantial derivative
of V , because we are dealing with the time rate of change of the control volume
as the volume moves with the flow (we are using the picture shown at the right of
Fig. 2.1a), and this is physically what is meant by the substantial derivative. Ap-
plying the divergence theorem from vector calculus to the right side of Eq. (2.11),
we obtain

DV

Dt
=

�

V
(

Δ

· �V)dV (2.12)

Now, let us image that the moving control volume in Fig. 2.3 is shrunk to a very
small volume, δV , essentially becoming an infinitesimal moving fluid element as
sketched on the right of Fig. 2.1(a). Then Eq. (2.12) can be written as

D(δV )
Dt

=

�

δV
(

Δ

· �V)dV (2.13)

Assume that δV is small enough such that
Δ

· �V is essentially the same value
throughout δV . Then the integral in Eq. (2.13) can be approximated as (

Δ

· �V)δV .
From Eq. (2.13), we have

D(δV )
Dt

= (

Δ

· �V)δV

or

Δ

· �V =
1
δV

D(δV )
Dt

(2.14)

Examine Eq. (2.14) closely. On the left side we have the divergence of the veloc-
ity; on the right side we have its physical meaning. That is,

Δ

· �V is physically the time rate of change of the volume of a moving fluid element, per unit
volume.

2.5 The Continuity Equation

Let us now apply the philosophy discussed in Sect. 2.2; that is, (a) write down a
fundamental physical principle, (b) apply it to a suitable model of the flow, and
(c) obtain an equation which represents the fundamental physical principle. In this
section we will treat the following case:
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2.5.1 Physical Principle: Mass is Conserved

We will carry out the application of this principle to both the finite control volume
and infinitesimal fluid element models of the flow. This is done here specifically to
illustrate the physical nature of both models. Moreover, we will choose the finite
control volume to be fixed in space (left side of Fig. 2.1a), whereas the infinites-
imal fluid element will be moving with the flow (right side of Fig. 2.1b). In this
way we will be able to contrast the differences between the conservation and non-
conservation forms of the equations, as described in Sect. 2.2.

First, consider the model of a moving fluid element. The mass of this element
is fixed, and is given by δm. Denote the volume of this element by δV , as in
Sect. 2.4. Then

δm = ρδV (2.15)

Since mass is conserved, we can state that the time-rate-of-change of the mass
of the fluid element is zero as the element moves along with the flow. Invoking the
physical meaning of the substantial derivative discussed in Sect. 2.3, we have

D(δm)
Dt

= 0 (2.16)

Combining Eqs. (2.15) and (2.16), we have

D(ρδV )
Dt

= δV
Dρ
Dt

+ρ
D(δV )

Dt
= 0

or,

Dρ
Dt

+ρ

[
1
δV

D(δV )
Dt

]
= 0 (2.17)

We recognize the term in brackets in Eq. (2.17) as the physical meaning of

Δ

· �V ,
discussed in Sect. 2.4. Hence, combining Eqs. (2.14) and (2.17), we obtain

Dρ
Dt

+ρ

Δ

.�V = 0 (2.18)

Equation (2.18) is the continuity equation in non-conservation form. In light of our
philosophical discussion in Sect. 2.2, note that:

(1) By applying the model of an infinitesimal fluid element, we have obtained
Eq. (2.18) directly in partial differential form.

(2) By choosing the model to be moving with the flow, we have obtained the non-
conservation form of the continuity equation, namely Eq. (2.18).

Now, consider the model of a finite control volume fixed in space, as sketched
in Fig. 2.4. At a point on the control surface, the flow velocity is �V and the vector
elemental surface area (as defined in Sect. 2.4) is d�S . Also let dV be an elemental
volume inside the finite control volume. Applied to this control volume, our funda-
mental physical principle that mass is conserved means
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Fig. 2.4 Finite control
volume fixed in space

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Net mass flow out

of control volume

through surface S

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
time rate of decrease

of mass inside control

volume

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.19a)

or,
B = C (2.19b)

where B and C are just convenient symbols for the left and right sides, respectively,
of Eq. (2.19a). First, let us obtain an expression for B in terms of the quantities
shown in Fig. 2.4. The mass flow of a moving fluid across any fixed surface (say, in
kg/s, or slug/s) is equal to the product of (density) × (area of surface) × (component
of velocity perpendicular to the surface). Hence the elemental mass flow across the
area dS is

ρVndS = ρ�V ·�dS (2.20)

Examining Fig. 2.4, note that by convention, �dS always points in a direction out
of the control volume. Hence, when �V also points out of the control volume (as
shown in Fig. 2.4), the product ρ�V ·d�S is positive. Moreover, when �V points out of
the control volume, the mass flow is physically leaving the control volume, i.e. it is
an outflow. Hence, a positive ρ�V ·�dS denotes an outflow. In turn, when �V points into
the control volume, ρ�V ·�dS is negative. Moreover, when �V points inward, the mass
flow is physically entering the control volume, i.e. it is an inflow. Hence, a negative
ρ�V ·�dS denotes an inflow. The net mass flow out of the entire control volume through
the control surface S is the summation over S of the elemental mass flows shown in
Eq. (2.20). In the limit, this becomes a surface integral, which is physically the left
side of Eqs. (2.19a and b), i.e.

B =

�

S
ρ�V ·�dS (2.21)

Now consider the right side of Eqs. (2.19a and b). The mass contained within the
elemental volume dV is ρ dV . The total mass inside the control volume is therefore

�

V
ρ dV
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The time rate of increase of mass inside V is then

− ∂
∂t

�

V
ρ dV

In turn, the time rate of decrease of mass inside V is the negative of the
above, i.e.

− ∂
∂t

�

V
ρ dV = C (2.22)

Thus, substituting Eqs. (2.21) and (2.22) into (2.19b), we have
�

S
ρ�V ·�dS = − ∂

∂t

�

V
ρ dV

or,

∂

∂t

�

V
ρ dV +

�

S
ρ�V ·�dS = 0 (2.23)

Equation (2.23) is the integral form of the continuity equation; it is also in con-
servation form.

Let us cast Eq. (2.23) in the form of a differential equation. Since the control
volume in Fig. 2.4 is fixed in space, the limits of integration for the integrals in
Eq. (2.23) are constant, and hence the time derivative ∂/∂t can be placed inside the
integral.

�

V

∂ρ

∂t
dV +

�

S
ρ�V ·�dS = 0 (2.24)

Applying the divergence theorem from vector calculus, the surface integral in
Eq. (2.24) can be expressed as a volume integral

�

S
(ρ�V) ·�dS =

�

V

Δ

· (ρ�V)dV (2.25)

Substituting Eq. (2.25) into Eq. (2.24), we have
�

V

∂ρ

∂t
dV +

�

V

Δ

· (ρ�V)dV = 0

or

�

V

[
∂ρ

∂t
+

Δ

· (ρ�V)

]
dV = 0 (2.26)

Since the finite control volume is arbitrarily drawn in space, the only way for
the integral in Eq. (2.26) to equal zero is for the integrand to be zero at every point
within the control volume. Hence, from Eq. (2.26)

∂ρ

∂t
+

Δ

· (ρ�V) = 0 (2.27)
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Equation (2.27) is the continuity equation in conservation form.
Examining the above derivation in light of our discussion in Sect. 2.2, we

note that:

(1) By applying the model of a finite control volume, we have obtained Eq. (2.23)
directly in integral form.

(2) Only after some manipulation of the integral form did we indirectly obtain a
partial differential equation, Eq. (2.27).

(3) By choosing the model to be fixed in space, we have obtained the conservation
form of the continuity equation, Eqs. (2.23) and (2.27).

Emphasis is made that Eqs. (2.18) and (2.27) are both statements of the conser-
vation of mass expressed in the form of partial differential equations. Eq. (2.18) is
in non-conservation form, and Eq. (2.27) is in conservation form; both forms are
equally valid. Indeed, one can easily be obtained from the other, as follows. Con-
sider the vector identity involving the divergence of the product of a scalar times a
vector, such as

Δ

· (ρ�V) ≡ ρ

Δ

· �V + �V ·

Δ

ρ (2.28)

Substitute Eq. (2.28) in the conservation form, Eq. (2.27):

∂ρ

∂t
+ �V ·

Δ

ρ+ρ

Δ

· �V = 0 (2.29)

The first two terms on the left side of Eq. (2.29) are simply the substantial deriva-
tive of density. Hence, Eq. (2.29) becomes

Dρ
Dt

+ρ

Δ

· �V = 0

which is the non-conservation form given by Eq. (2.18).
Once again we note that the use of conservation or non-conservation forms of

the governing equations makes little difference in most of theoretical aerodynamics.
In contrast, which form is used can make a difference in some CFD applications,
and this is why we are making a distinction between these two different forms in the
present notes.

2.6 The Momentum Equation

In this section, we apply another fundamental physical principle to a model of the
flow, namely:

Physical Principle : �F = m�a (Newton’s 2nd law)

We choose for our flow model the moving fluid element as shown at the right of
Fig. 2.1(b). This model is sketched in more detail in Fig. 2.5.

Newton’s 2nd law, expressed above, when applied to the moving fluid element
in Fig. 2.5, says that the net force on the fluid element equals its mass times the
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Fig. 2.5 Infinitesimally small, moving fluid element. Only the forces in the x direction are shown

acceleration of the element. This is a vector relation, and hence can be split into three
scalar relations along the x, y, and z-axes. Let us consider only the x-component of
Newton’s 2nd law,

Fx = max (2.30)

where Fx and ax are the scalar x-components of the force and acceleration
respectively.

First, consider the left side of Eq. (2.30). We say that the moving fluid element
experiences a force in the x-direction. What is the source of this force? There are
two sources:

(1) Body forces, which act directly on the volumetric mass of the fluid element.
These forces ‘act at a distance’; examples are gravitational, electric and mag-
netic forces.

(2) Surface forces, which act directly on the surface of the fluid element. They are
due to only two sources: (a) the pressure distribution acting on the surface, im-
posed by the outside fluid surrounding the fluid element, and (b) the shear and
normal stress distributions acting on the surface, also imposed by the outside
fluid ‘tugging’ or ‘pushing’ on the surface by means of friction.

Let us denote the body force per unit mass acting on the fluid element by �f , with
fx as its x-component. The volume of the fluid element is (dx dy dz); hence,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Body force on the

fluid element acting

in the x-direction

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = ρ fx(dx dy dz) (2.31)
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Fig. 2.6 Illustration of shear and normal stresses

The shear and normal stresses in a fluid are related to the time-rate-of-change of
the deformation of the fluid element, as sketched in Fig. 2.6 for just the xy plane.
The shear stress, denoted by τxy in this figure, is related to the time rate-of-change of
the shearing deformation of the fluid element, whereas the normal stress, denoted by
τxx in Fig. 2.6, is related to the time-rate-of-change of volume of the fluid element.
As a result, both shear and normal stresses depend on velocity gradients in the flow,
to be designated later. In most viscous flows, normal stresses (such as τxx) are much
smaller than shear stresses, and many times are neglected. Normal stresses (say
τxx in the x-direction) become important when the normal velocity gradients (say
∂u/∂x) are very large, such as inside a shock wave.

The surface forces in the x-direction exerted on the fluid element are sketched
in Fig. 2.5. The convention will be used here that τij denotes a stress in the
j-direction exerted on a plane perpendicular to the i-axis. On face abcd, the only
force in the x-direction is that due to shear stress, τyx dx dz. Face efgh is a dis-
tance dy above face abcd; hence the shear force in the x-direction on face efgh is
[τyx + (∂τyx/∂y) dy] dx dz. Note the directions of the shear force on faces abcd
and efgh; on the bottom face, τyx is to the left (the negative x-direction), whereas
on the top face, [τyx + (∂τyx/∂y) dy] is to the right (the positive x-direction).
These directions are consistent with the convention that positive increases in all
three components of velocity. u, v and w, occur in the positive directions of the
axes. For example, in Fig. 2.5, u increases in the positive y-direction. There-
fore, concentrating on face efgh, u is higher just above the face than on the
face; this causes a ‘tugging’ action which tries to pull the fluid element in the
positive x-direction (to the right) as shown in Fig. 2.5. In turn, concentrating
on face abcd, u is lower just beneath the face than on the face; this causes a
retarding or dragging action on the fluid element, which acts in the negative
x-direction (to the left) as shown in Fig. 2.5. The directions of all the other vis-
cous stresses shown in Fig. 2.5, including τxx, can be justified in a like fashion.
Specifically on face dcgh, τzx acts in the negative x-direction, whereas on face abfe,
[τzx + (∂τzx/∂z) dz] acts in the positive x-direction. On face adhe, which is per-
pendicular to the x-axis, the only forces in the x-direction are the pressure force
p dx dz, which always acts in the direction into the fluid element, and τxx dy dz,
which is in the negative x-direction. In Fig. 2.5, the reason why τxx on face adhe is
to the left hinges on the convention mentioned earlier for the direction of increasing
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velocity. Here, by convention, a positive increase in u takes place in the positive
x-direction. Hence, the value of u just to the left of face adhe is smaller than the
value of u on the face itself. As a result, the viscous action of the normal stress
acts as a ‘suction’ on face adhe, i.e. there is a dragging action toward the left that
wants to retard the motion of the fluid element. In contrast, on face bcgf, the pres-
sure force [p+ (∂p/∂x) dx] dy dz presses inward on the fluid element (in the negative
x-direction), and because the value of u just to the right of face bcgf is larger than
the value of u on the face, there is a ‘suction’ due to the viscous normal stress which
tries to pull the element to the right (in the positive x-direction) with a force equal
to [τxx + (∂τxx/∂x)] dy dz.

With the above in mind, for the moving fluid element we can write

⎧⎪⎨⎪⎩ Net surface force

in the x-direction

⎫⎪⎬⎪⎭ =

[
p−

(
p +

∂p
∂x

dx

)]
dy dz

+

[(
τxx +

∂τxx

∂x
dx

)
−τxx

]
dy dz

+

[(
τyx +

∂τyx

∂y
dy

)
−τyx

]
dx dz

+

[(
τzx +

∂τzx

∂z
dz

)
−τzx

]
dx dy (2.32)

The total force in the x-direction, Fx, is given by the sum of Eqs. (2.31)
and (2.32). Adding, and cancelling terms, we obtain

Fx =

(
−∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z

)
dx dy dz +ρ fx dx dy dz (2.33)

Equation (2.33) represents the left-hand side of Eq. (2.30).
Considering the right-hand side of Eq. (2.30), recall that the mass of the fluid

element is fixed and is equal to

m = ρ dx dy dz (2.34)

Also, recall that the acceleration of the fluid element is the time-rate-of-change
of its velocity. Hence, the component of acceleration in the x-direction, denoted by
ax, is simply the time-rate-of-change of u; since we are following a moving fluid
element, this time-rate-of-change is given by the substantial derivative. Thus,

ax =
Du
Dt

(2.35)

Combining Eqs. (2.30), (2.33), (2.34) and (2.35), we obtain

ρ
Du
Dt

= −∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ρ fx (2.36a)
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which is the x-component of the momentum equation for a viscous flow. In a similar
fashion, the y and z components can be obtained as

ρ
Dv
Dt

= −∂p
∂y

+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ρ fy (2.36b)

and

ρ
Dw
Dt

= −∂p
∂z

+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ρ fz (2.36c)

Equations (2.36a, b and c) are the x-, y- and z-components respectively of the mo-
mentum equation. Note that they are partial differential equations obtained directly
from an application of the fundamental physical principle to an infinitesimal fluid
element. Moreover, since this fluid element is moving with the flow, Eqs. (2.36a, b
and c) are in non-conservation form. They are scalar equations, and are called the
Navier–Stokes equations in honour of two men—the Frenchman M. Navier and the
Englishmen G. Stokes—who independently obtained the equations in the first half
of the nineteenth century.

The Navier–Stokes equations can be obtained in conservation form as follows.
Writing the left-hand side of Eq. (2.36a) in terms of the definition of the substantial
derivative,

ρ
Du
Dt

= ρ
∂u
∂t

+ρ�V ·

Δ

u (2.37)

Also, expanding the following derivative,

∂(ρu)
∂t

= ρ
∂u
∂t

+ u
∂ρ

∂t

or,

ρ
∂u
∂t

=
∂(ρu)
∂t
−u

∂ρ

∂t
(2.38)

Recalling the vector identity for the divergence of the product of a scalar times a
vector, we have

Δ

· (ρu�V) = u

Δ

· (ρ�V) + (ρ�V) ·

Δ

u

or
ρ�V ·

Δ

u =

Δ

· (ρu�V)−u

Δ

· (ρ�V) (2.39)

Substitute Eqs. (2.38) and (2.39) into Eq. (2.37).

ρ
Du
Dt

=
∂(ρu)
∂t
−u

∂ρ

∂t
−u

Δ

· (ρ�V) +

Δ

· (ρu�V)

ρ
Du
Dt

=
∂(ρu)
∂t
−u

[
∂ρ

∂t
+

Δ

· (ρ�V)

]
+

Δ

· (ρu�V)
(2.40)

The term in brackets in Eq. (2.40) is simply the left-hand side of the continuity
equation given as Eq. (2.27); hence the term in brackets is zero. Thus Eq. (2.40)
reduces to
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ρ
Du
Dt

=
∂(ρu)
∂t

+

Δ

· (ρu�V) (2.41)

Substitute Eq. (2.41) into Eq. (2.36a).

∂(ρu)
∂t

+

Δ

· (ρu�V) = −∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ρ fx (2.42a)

Similarly, Eqs. (2.36b and c) can be expressed as

∂(ρv)
∂t

+

Δ

· (ρv�V) = −∂p
∂y

+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ρ fy (2.42b)

and
∂(ρw)
∂t

+

Δ

· (ρw�V) = −∂p
∂z

+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ρ fz (2.42c)

Equations (2.42a–c) are the Navier-Stokes equations in conservation form.
In the late seventeenth century Isaac Newton stated that shear stress in a fluid is

proportional to the time-rate-of-strain, i.e. velocity gradients. Such fluids are called
Newtonian fluids. (Fluids in which τ is not proportional to the velocity gradients are
non-Newtonian fluids; blood flow is one example.) In virtually all practical aerody-
namic problems, the fluid can be assumed to be Newtonian. For such fluids, Stokes,
in 1845, obtained:

τxx = λ

Δ

· �V + 2μ
∂u
∂x

(2.43a)

τyy = λ

Δ

· �V + 2μ
∂v
∂y

(2.43b)

τzz = λ

Δ

· �V + 2μ
∂w
∂z

(2.43c)

τxy = τyx = μ

(
∂v
∂x

+
∂u
∂y

)
(2.43d)

τxz = τzx = μ

(
∂u
∂z

+
∂w
∂x

)
(2.43e)

τyz = τzy = μ

(
∂w
∂y

+
∂v
∂z

)
(2.43f)

where μ is the molecular viscosity coefficient and λ is the bulk viscosity coefficient.
Stokes made the hypothesis that

λ = −2
3
μ

which is frequently used but which has still not been definitely confirmed to the
present day.
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Substituting Eq. (2.43) into Eq. (2.42), we obtain the complete Navier–Stokes
equations in conservation form:

(2.44a)

(2.44b)

(2.44c)

∂(ρu)
∂t

+
∂(ρu2)
∂x

+
∂(ρuv)
∂y

+
∂(ρuw)
∂z

=− ∂p
∂x

+
∂

∂x

(
λ

Δ

· �V + 2μ
∂u
∂x

)
+
∂

∂y

[
μ

(
∂v
∂x

+
∂u
∂y

)]

+
∂

∂z

[
μ

(
∂u
∂z

+
∂w
∂x

)]
+ρ fx

∂(ρv)
∂t

+
∂(ρuv)
∂x

+
∂(ρv2)
∂y

+
∂(ρvw)
∂z

=− ∂p
∂y

+
∂

∂x

[
μ

(
∂v
∂x

+
∂u
∂y

)]
+
∂

∂y

(
λ

Δ

· �V + 2μ
∂v
∂y

)

+
∂

∂z

[
μ

(
∂w
∂y

+
∂v
∂z

)]
+ρ fy

∂(ρw)
∂t

+
∂(ρuw)
∂x

+
∂(ρvw)
∂y

+
∂(ρw2)
∂z

=− ∂p
∂z

+
∂

∂x

[
μ

(
∂u
∂z

+
∂w
∂x

)]
+
∂

∂y

[
μ

(
∂w
∂y

+
∂v
∂z

)]

+
∂

∂z

(
λ

Δ

· �V + 2μ
∂w
∂z

)
+ρ fz

2.7 The Energy Equation

In the present section, we derive the energy equation using as our model an in-
finitesimal moving fluid element. This will be in keeping with our derivation of the
Navier–Stokes equations in Sect. 2.6, where the infinitesimal element was shown in
Fig. 2.5.

We now invoke the following fundamental physical principle:

2.7.1 Physical Principle: Energy is Conserved

A statement of this principle is the first law of thermodynamics, which, when applied
to the moving fluid element in Fig. 2.5, becomes
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Rate of change of

energy inside the

fluid element

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Net flux of

heat into

the element

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Rate of working done on

the element due to body

and surface forces

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
or,

A = B + C (2.45)

where A, B and C denote the respective terms above.
Let us first evaluate C, i.e. obtain an expression for the rate of work done on the

moving fluid element due to body and surface forces. It can be shown that the rate
of doing work by a force exerted on a moving body is equal to the product of the
force and the component of velocity in the direction of the force (see References 3
and 14 for such a derivation). Hence the rate of work done by the body force acting
on the fluid element moving at a velocity �V is

ρ �f · �V(dx dy dz)

With regard to the surface forces (pressure plus shear and normal stresses), con-
sider just the forces in the x-direction, shown in Fig. 2.5. The rate of work done on
the moving fluid element by the pressure and shear forces in the x-direction shown
in Fig. 2.5 is simply the x-component of velocity, u, multiplied by the forces, e.g. on
face abcd the rate of work done by τyxdx dz is uτyxdx dz, with similar expressions
for the other faces. To emphasize these energy considerations, the moving fluid el-
ement is redrawn in Fig. 2.7, where the rate of work done on each face by surface
forces in the x-direction is shown explicitly. To obtain the net rate of work done on
the fluid element by the surface forces, note that forces in the positive x-direction do
positive work and that forces in the negative x-direction do negative work. Hence,

Fig. 2.7 Energy fluxes associated with an infinitesimally small, moving fluid element. For
simplicity, only the fluxes in the x direction are shown
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comparing the pressure forces on face adhe and bcgf in Fig. 2.7, the net rate of work
done by pressure in the x-direction is

[
up−

(
up +

∂(up)
∂x

dx

)]
dy dz = −∂(up)

∂x
dx dy dz

Similarly, the net rate of work done by the shear stresses in the x-direction on
faces abcd and efgh is

[(
uτyx +

∂(uτyx)

∂y
dy

)
−uτyx

]
dx dz =

∂(uτyx)

∂y
dx dy dz

Considering all the surface forces shown in Fig. 2.7, the net rate of work done on
the moving fluid element due to these forces is simply

[
−∂(up)

∂x
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y
+
∂(uτzx)
∂z

]
dx dy dz

The above expression considers only surface forces in the x-direction. When the
surface forces in the y- and z-directions are also included, similar expressions are
obtained. In total, the net rate of work done on the moving fluid element is the sum
of the surface force contributions in the x-, y- and z-directions, as well as the body
force contribution. This is denoted by C in Eq. (2.45), and is given by

C =

[
−
(
∂(up)
∂x

+
∂(vp)
∂y

+
∂(wp)
∂z

)
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y

+
∂(uτzx)
∂z

+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z
+
∂(wτxz)
∂x

+
∂(wτyz)

∂y
+
∂(wτzz)
∂z

]
dx dy dz +ρ �f · �V dx dy dz (2.46)

Note in Eq. (2.46) that the first three terms on the right-hand side are simply

Δ

· (p�V).
Let us turn our attention to B in Eq. (2.45), i.e. the net flux of heat into the ele-

ment. This heat flux is due to: (1) volumetric heating such as absorption or emission
of radiation, and (2) heat transfer across the surface due to temperature gradients,
i.e. thermal conduction. Define q̇ as the rate of volumetric heat addition per unit
mass. Noting that the mass of the moving fluid element in Fig. 2.7 is ρ dx dy dz, we
obtain ⎧⎪⎨⎪⎩ Volumetric heating

of the element

⎫⎪⎬⎪⎭ = ρq̇ dx dy dz (2.47)

In Fig. 2.7, the heat transferred by thermal conduction into the moving fluid ele-
ment across face adhe is q̇x dy dz where q̇x is the heat transferred in the x-direction
per unit time per unit area by thermal conduction. The heat transferred out of the
element across face bcgf is [q̇x + (∂q̇x/∂x) dx] dy dz. Thus, the net heat transferred
in the x-direction into the fluid element by thermal conduction is
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[
q̇x −

(
q̇x +

∂q̇x

∂x
dx

)]
dy dz = −∂q̇x

∂x
dx dy dz

Taking into account heat transfer in the y- and z-directions across the other faces
in Fig. 2.7, we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Heating of the

fluid element by

thermal conduction

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = −
(
∂q̇x

∂x
+
∂q̇y

∂y
+
∂q̇z

∂z

)
dx dy dz (2.48)

The term B in Eq. (2.45) is the sum of Eqs. (2.47) and (2.48).

B =

[
ρq̇−

(
∂q̇x

∂x
+
∂q̇y

∂y
+
∂q̇z

∂z

)]
dx dy dz (2.49)

Heat transfer by thermal conduction is proportional to the local temperature gra-
dient:

q̇x = −k
∂T
∂x

; q̇y = −k
∂T
∂y

; q̇z = −k
∂T
∂z

where k is the thermal conductivity. Hence, Eq. (2.49) can be written

B =

[
ρq̇ +

∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)]
dx dy dz (2.50)

Finally, the term A in Eq. (2.45) denotes the time-rate-of-change of energy of
the fluid element. The total energy of a moving fluid per unit mass is the sum of its
internal energy per unit mass, e, and its kinetic energy per unit mass, V2/2. Hence,
the total energy is (e + V2/2). Since we are following a moving fluid element, the
time-rate-of-change of energy per unit mass is given by the substantial derivative.
Since the mass of the fluid element is ρ dx dy dz, we have

A = ρ
D
Dt

(
e +

V2

2

)
dx dy dz (2.51)

The final form of the energy equation is obtained by substituting Eqs. (2.46),
(2.50) and (2.51) into Eq. (2.45), obtaining:

ρ
D
Dt

(
e +

V2

2

)
= ρq̇ +

∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)

− ∂(up)
∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y

+
∂(uτzx)
∂z

+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z

+
∂(wτxz)
∂x

+
∂(wτyz)

∂y
+
∂(wτzz)
∂z

+ρ �f · �V
(2.52)
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This is the non-conservation form of the energy equation; also note that it is in
terms of the total energy, (e + V2/2). Once again, the non-conservation form results
from the application of the fundamental physical principle to a moving fluid element.

The left-hand side of Eq. (2.52) involves the total energy, (e + V2/2). Frequently,
the energy equation is written in a form that involves just the internal energy, e. The
derivation is as follows. Multiply Eqs. (2.36a, b, and c) by u, v, and w respectively.

ρ

D

(
u2

2

)

Dt
= −u

∂p
∂x

+ u
∂τxx

∂x
+ u

∂τyx

∂y
+ u

∂τzx

∂z
+ρu fx (2.53a)

ρ

D

(
v2

2

)

Dt
= −v

∂p
∂y

+ v
∂τxy

∂x
+ v

∂τyy

∂y
+ v

∂τzy

∂z
+∂v fy (2.53b)

ρ

D

(
w2

2

)

Dt
= −w

∂p
∂z

+ w
∂τxz

∂x
+ w

∂τyz

∂y
+ w

∂τzz

∂z
+ρw fz (2.53c)

Add Eqs. (2.53a, b and c), and note that u2 + v2 + w2 = V2. We obtain

ρ
DV2/2

Dt
=−u

∂p
∂x
− v

∂p
∂y
−w

∂p
∂z

+ u

(
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z

)

+ v

(
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z

)
+ w

(
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z

)

+ρ(u fx + v fy + w fz) (2.54)

Subtracting Eq. (2.54) from Eq. (2.52), noting that ρ �f · �V = ρ(u fx + v fy + w fz),
we have

ρ
De
Dt

= ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)

− p

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
+τxx

∂u
∂x

+τyx
∂u
∂y

+τzx
∂u
∂z

+τxy
∂v
∂x

+τyy
∂v
∂y

+τzy
∂v
∂z

+τxz
∂w
∂x

+τyz
∂w
∂y

+τzz
∂w
∂z

(2.55)

Equation (2.55) is the energy equation in terms of internal energy, e. Note
that the body force terms have cancelled; the energy equation when written in
terms of e does not explicitly contain the body force. Eq. (2.55) is still in non-
conservation form.

Equations (2.52) and (2.55) can be expressed totally in terms of flow field vari-
ables by replacing the viscous stress terms τxy, τxz, etc. with their equivalent ex-
pressions from Eqs (2.43a, b, c, d, e and f ). For example, from Eq. (2.55), noting
that τxy = τyx, τxz = τzx, τyz = τzy,
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ρ
De
Dt

= ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)

− p

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
+τxx

∂u
∂x

+τyy
∂v
∂y

+τzz
∂w
∂z

+τyx

(
∂u
∂y

+
∂v
∂x

)
+τzx

(
∂u
∂z

+
∂w
∂x

)
+τzy

(
∂v
∂z

+
∂w
∂y

)

Substituting Eqs. (2.43a, b, c, d, e and f ) into the above equation, we have

ρ
De
Dt

= ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)

− p

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
+λ

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)2

+μ

⎡⎢⎢⎢⎢⎢⎣2
(
∂u
∂x

)2

+ 2

(
∂v
∂y

)2

+ 2

(
∂w
∂z

)2

+

(
∂u
∂y

+
∂v
∂x

)2

+

(
∂u
∂z

+
∂w
∂x

)2

+

(
∂v
∂z

+
∂w
∂y

)2⎤⎥⎥⎥⎥⎥⎦ (2.56)

Equation (2.56) is a form of the energy equation completely in terms of the flow-
field variables. A similar substitution of Eqs. (2.43a, b, c, d, e and f ) can be made
into Eq. (2.52); the resulting form of the energy equation in terms of the flow-field
variables is lengthy, and to save time and space it will not be given here.

The energy equation in conservation form can be obtained as follows. Consider
the left-hand side of Eq. (2.56). From the definition of the substantial derivative:

ρ
De
Dt

= ρ
∂e
∂t

+ρ�V ·

Δ

e (2.57)

However,
∂(ρe)
∂t

= ρ
∂e
∂t

+ e
∂ρ

∂t
or,

ρ
∂e
∂t

=
∂(ρe)
∂t
− e

∂ρ

∂t
(2.58)

From the vector identity concerning the divergence of the product of a scalar
times a vector,

Δ

· (ρe�V) = e

Δ

· (ρ�V) +ρ�V ·

Δ

e

or
ρ�V ·

Δ

e =

Δ

· (ρe�V)− e

Δ

· (ρ�V) (2.59)

Substitute Eqs. (2.58) and (2.59) into Eq. (2.57)

ρ
De
Dt

=
∂(ρe)
∂t
− e

[
∂ρ

∂t
+

Δ

· (ρ�V)

]
+

Δ

· (ρe�V) (2.60)
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The term in square brackets in Eq. (2.60) is zero, from the continuity equation,
Eq. (2.27). Thus, Eq. (2.60) becomes

ρ
De
Dt

=
∂(ρe)
∂t

+

Δ

· (ρe�V) (2.61)

Substitute Eq. (2.61) into Eq. (2.56):

∂(ρe)
∂t

+

Δ

· (ρe�V) = ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)

+
∂

∂z

(
k
∂T
∂z

)
− p

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)

+λ

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)2

+μ

⎡⎢⎢⎢⎢⎢⎣2
(
∂u
∂x

)2

+ 2

(
∂v
∂y

)2

+ 2

(
∂w
∂z

)2

+

(
∂u
∂y

+
∂v
∂x

)2

+

(
∂u
∂z

+
∂w
∂x

)2

+

(
∂v
∂z

+
∂w
∂y

)2⎤⎥⎥⎥⎥⎥⎦ (2.62)

Equation (2.62) is the conservation form of the energy equation, written in terms
of the internal energy.

Repeating the steps from Eq. (2.57) to Eq. (2.61), except operating on the total
energy, (e + V2/2), instead of just the internal energy, e, we obtain

ρ
D

(
e + V2

2

)
Dt

=
∂

∂t

[
ρ

(
e +

V2

2

)]
+

Δ

[
ρ

(
e +

V2

2

)
�V

]
(2.63)

Substituting Eq. (2.63) into the left-hand side of Eq. (2.52), we obtain

∂

∂t

[
ρ

(
e +

V2

2

)]
+

Δ

·
[
ρ

(
e +

V2

2
�V

)]

= ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)

+
∂

∂z

(
k
∂T
∂z

)
− ∂(up)

∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y
+
∂(uτzx)
∂z

+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z

+
∂(wτxz)
∂x

+
∂(wτyz)

∂y
+
∂(wτzz)
∂z

+ρ �f · �V (2.64)

Equation (2.64) is the conservation form of the energy equation, written in terms of
the total energy, (e + V2/2).
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As a final note in this section, there are many other possible forms of the energy
equation; for example, the equation can be written in terms of enthalpy, h, or to-
tal enthalpy, (h + V2/2). We will not take the time to derive these forms here; see
Refs. [1–3] for more details.

2.8 Summary of the Governing Equations for Fluid Dynamics:
With Comments

By this point in our discussions, you have seen a large number of equations, and they
may seem to you at this stage to be ‘all looking alike’. Equations by themselves can
be tiring, and this chapter would seem to be ‘wall-to-wall’ equations. However, all
of theoretical and computational fluid dynamics is based on these equations, and
therefore it is absolutely essential that you are familiar with them, and that you
understand their physical significance. That is why we have spent so much time and
effort in deriving the governing equations.

Considering this time and effort, it is important to now summarize the important
forms of these equations, and to sit back and digest them.

2.8.1 Equations for Viscous Flow

The equations that have been derived in the preceding sections apply to a viscous
flow, i.e. a flow which includes the dissipative, transport phenomena of viscosity and
thermal conduction. The additional transport phenomenon of mass diffusion has not
been included because we are limiting our considerations to a homogenous, non-
chemically reacting gas. If diffusion were to be included, there would be additional
continuity equations—the species continuity equations involving mass transport of
chemical species i due to a concentration gradient in the species. Moreover, the
energy equation would have an additional term to account for energy transport due to
the diffusion of species. See, for example, Ref. [4] for a discussion of such matters.

With the above restrictions in mind, the governing equations for an unsteady,
three-dimensional, compressible, viscous flow are:

Continuity equations
(Non-conservation form—Eq. (2.18))

Dρ
Dt

+ρ

Δ

· �V = 0

(Conservation form—Eq. (2.27))

∂ρ

∂t
+

Δ

· (ρ�V) = 0
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Momentum equations
(Non-conservation form—Eqs. (2.36a–c))

x-component : ρ
Du
Dt

= −∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ρ fx

y-component : ρ
Dv
Dt

= −∂p
∂y

+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ρ fy

z-component : ρ
Dw
Dt

= −∂p
∂z

+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ρ fz

(Conservation form—Eqs. (2.42a–c))

x-component :
∂(ρu)
∂t

+

Δ

· (ρu�V) = −∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ρ fx

y-component :
∂(ρv)
∂t

+

Δ

· (ρv�V) = −∂p
∂y

+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ρ fy

z-component :
∂(ρw)
∂t

+

Δ

· (ρw�V) = −∂p
∂z

+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ρ fz

Energy equation
(Non-conservation form—Eq. (2.52))

ρ
D
Dt

(
e +

V2

2

)
= ρq̇ +

∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+
∂

∂z

(
k
∂T
∂z

)

− ∂(up)
∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y
+
∂(uτzx)
∂z

+
∂(vτxy)

∂x
+
∂(vτyy)

∂y

+
∂(vτzy)

∂z
+
∂(wτxz)
∂x

+
∂(wτyz)

∂y
+
∂(wτzz)
∂z

+ρ �f · �V

(Conservation form—Eq. (2.64))

∂

∂t

[
ρ

(
e +

V2

2

)]
+

Δ

·
[
ρ

(
e +

V2

2
�V

)]

= ρq̇ +
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)

+
∂

∂z

(
k
∂T
∂z

)
− ∂(up)

∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+
∂(uτxx)
∂x

+
∂(uτyx)

∂y
+
∂(uτzx)
∂z

+
∂(vτxy)

∂x
+
∂(vτyy)

∂y

+
∂(vτzy)

∂z
+
∂(wτxz)
∂x

+
∂(wτyz)

∂y
+
∂(wτzz)
∂z

+ρ �f · �V
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2.8.2 Equations for Inviscid Flow

Inviscid flow is, by definition, a flow where the dissipative, transport phenomena
of viscosity, mass diffusion and thermal conductivity are neglected. The governing
equations for an unsteady, three-dimensional, compressible inviscid flow are ob-
tained by dropping the viscous terms in the above equations.

Continuity equation
(Non-conservation form)

Dρ
Dt

+ρ

Δ

· �V = 0

(Conservation form)
∂ρ

∂t
+

Δ

· (ρ�V) = 0

Momentum equations
(Non-conservation form)

x-component : ρ
Du
Dt

= −∂p
∂x

+ρ fx

y-component : ρ
Dv
Dt

= −∂p
∂y

+ρ fy

z-component : ρ
Dw
Dt

= −∂p
∂z

+ρ fz

(Conservation form)

x-component :
∂(ρu)
∂t

+

Δ

· (ρu�V) = −∂p
∂x

+ρ fx

y-component :
∂(ρv)
∂t

+

Δ

· (ρv�V) = −∂p
∂y

+ρ fy

z-component :
∂(ρw)
∂t

+

Δ

· (ρw�V) = −∂p
∂z

+ρ fz

Energy equation
(Non-conservation form)

ρ
D
Dt

(
e +

V2

2

)
= pq̇− ∂(up)

∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+ρ �f · �V

(Conservation form)

∂

∂t

[
ρ

(
e +

V2

2

)]
+

Δ

·
[
ρ

(
e +

V2

2

)
�V

]
= ρq̇− ∂(up)

∂x
− ∂(vp)

∂y

− ∂(wp)
∂z

+ρ �f · �V
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2.8.3 Comments on the Governing Equations

Surveying the above governing equations, several comments and observations can
be made.

(1) They are a coupled system of non-linear partial differential equations, and hence
are very difficult to solve analytically. To date, there is no general closed-form
solution to these equations.

(2) For the momentum and energy equations, the difference between the non-
conservation and conservation forms of the equations is just the left-hand side.
The right-hand side of the equations in the two different forms is the same.

(3) Note that the conservation form of the equations contain terms on the left-hand
side which include the divergence of some quantity, such as

Δ

· (ρ�V),

Δ

· (ρu�V),
etc. For this reason, the conservation form of the governing equations is some-
times called the divergence form.

(4) The normal and shear stress terms in these equations are functions of the veloc-
ity gradients, as given by Eqs. (2.43a, b, c, d, e and f ).

(5) The system contains five equations in terms of six unknown flow-field variables,
ρ, p, u, v, w, e. In aerodynamics, it is generally reasonable to assume the gas
is a perfect gas (which assumes that intermolecular forces are negligible—see
Refs. [1, 3]. For a perfect gas, the equation of state is

p = ρRT

where R is the specific gas constant. This provides a sixth equation, but it also
introduces a seventh unknown, namely temperature, T . A seventh equation to
close the entire system must be a thermodynamic relation between state vari-
ables. For example,

e = e(T, p)

For a calorically perfect gas (constant specific heats), this relation would be

e = cvT

where cv is the specific heat at constant volume.
(6) In Sect. 2.6, the momentum equations for a viscous flow were identified as the

Navier–Stokes equations, which is historically accurate. However, in the mod-
ern CFD literature, this terminology has been expanded to include the entire
system of flow equations for the solution of a viscous flow—continuity and en-
ergy as well as momentum. Therefore, when the computational fluid dynamic
literature discusses a numerical solution to the ‘complete Navier–Stokes equa-
tions’, it is usually referring to a numerical solution of the complete system of
equations, say for example Eqs. (2.27), (2.42a, b, c, d, e and c) and (2.64). In
this sense, in the CFD literature, a ‘Navier–Stokes solution’ simply means a
solution of a viscous flow problem using the full governing equations.
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2.8.4 Boundary Conditions

The equations given above govern the flow of a fluid. They are the same equations
whether the flow is, for example, over a Boeing 747, through a subsonic wind tun-
nel or past a windmill. However, the flow fields are quite different for these cases,
although the governing equations are the same. Why? Where does the difference
enter? The answer is through the boundary conditions, which are quite different for
each of the above examples. The boundary conditions, and sometimes the initial
conditions, dictate the particular solutions to be obtained from the governing equa-
tions. For a viscous fluid, the boundary condition on a surface assumes no relative
velocity between the surface and the gas immediately at the surface. This is called
the no-slip condition. If the surface is stationary, with the flow moving past it, then

u = v = w = 0 at the surface (for a viscous flow)

For an inviscid fluid, the flow slips over the surface (there is no friction to promote
its ‘sticking’ to the surface); hence, at the surface, the flow must be tangent to the
surface.

�V ·�n = 0 at the surface (for an inviscid flow)

where �n is a unit vector perpendicular to the surface. The boundary conditions else-
where in the flow depend on the type of problem being considered, and usually
pertain to inflow and outflow boundaries at a finite distance from the surfaces, or an
‘infinity’ boundary condition infinitely far from the surfaces.

The boundary conditions discussed above are physical boundary conditions im-
posed by nature. In computational fluid dynamics we have an additional concern,
namely, the proper numerical implementation of the boundary conditions. In the
same sense as the real flow field is dictated by the physical boundary conditions, the
computed flow field is driven by the numerical boundary conditions. The subject
of proper and accurate boundary conditions in CFD is very important, and is the
subject of much current CFD research. We will return to this matter at appropriate
stages in these chapters.

2.9 Forms of the Governing Equations Particularly Suited
for CFD: Comments on the Conservation Form

We have already noted that all the previous equations in conservation form have a
divergence term on the left-hand side. These terms involve the divergence of the flux
of some physical quantity, such as:

(From Eq. (2.27)): ρ�V — mass flux
(From Eq. (2.42b)): ρu�V —flux of x-component of momentum
(From Eq. (2.42b)): ρv�V —flux of y-component of momentum
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(From Eq. (2.42c)): ρw�V —flux of z-component of momentum
(From Eq. (2.62)): ρe�V — flux of internal energy
(From Eq. (2.64)): ρ

(
e + V2/2

)
�V — flux of total energy

Recall that the conservation form of the equations was obtained directly from a
control volume that was fixed in space, rather than moving with the fluid. When the
volume is fixed in space, we are concerned with the flux of mass, momentum and
energy into and out of the volume. In this case, the fluxes themselves become im-
portant dependent variables in the equations, rather than just the primitive variables
such as p, ρ, �V , etc.

Let us pursue this idea further. Examine the conservation form of all the govern-
ing equations—continuity, momentum and energy. Note that they all have the same
generic form, given by

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= J (2.65)

Equation (2.65) can represent the entire system of governing equations in conser-
vation form if U, F, G, H and J are interpreted as column vectors, given by

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

ρu

ρv

ρw

ρ(e + V2/2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρu

ρu2 + p−τxx

ρvu−τxy

ρwu−τxz

ρ(e + V2/2)u + pu− k
∂T
∂x
−uτxx− vτxy−wτxz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρv

ρuv−τyx

ρv2 + p−τyy

ρwv−τyz

ρ(e + V2/2)v + pv− k
∂T
∂y
−uτyx− vτyy−wτyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρw

ρuw−τzx

ρvw−τzy

ρw2 + p−τzz

ρ(e + V2/2)w + pw− k
∂T
∂z
−uτzx− vτzy−wτzz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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J =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

ρ fx
ρ fy
ρ fz
ρ(u fx + v fy + w fz) +ρq̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In Eq. (2.65), the column vectors F, G, and H are called the flux terms (or flux

vectors), and J represents a ‘source term’ (which is zero if body forces are negligi-
ble). For an unsteady problem, U is called the solution vector because the elements
in U (ρ, ρu, ρv, etc.) are the dependent variables which are usually solved numeri-
cally in steps of time. Please note that, in this formalism, it is the elements of U that
are obtained computationally, i.e. numbers are obtained for the products ρu, ρv, ρw
and ρ(e + V2/2) rather than for the primitive variables u, v, w and e by themselves.
Hence, in a computational solution of an unsteady flow problem using Eq. (2.65),
the dependent variables are treated as ρ, ρu, ρv, ρw and ρ(e + V2/2). Of course,
once numbers are known for these dependent variables (which includes ρ by itself ),
obtaining the primitive variables is simple:

ρ = ρ

u =
ρu
ρ

v =
ρv
ρ

w =
ρw
ρ

e =
ρ(e + V2/2)

ρ
− u2 + v2 + w2

2

For an inviscid flow, Eq. (2.65) remains the same, except that the elements of
the column vectors are simplified. Examining the conservation form of the inviscid
equations summarized in Sect. 2.8.2, we find that

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

ρu

ρv

ρw

ρ(e + V2/2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
; F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρu

ρu2 + p

ρuv

ρuw

ρu(e + V2/2) + pu

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρv

ρuv

ρv2 + p

ρwv

ρv(e + V2/2) + pv

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
; H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρw

ρuw

ρvw

ρw2 + p

ρw(e + V2/2) + pw

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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J =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

ρ fx
ρ fy
ρ fz
ρ(u fx + v fy + w fz) +ρq̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

For the numerical solution of an unsteady inviscid flow, once again the solution
vector is U, and the dependent variables for which numbers are directly obtained are
ρ, ρu, ρv, ρw, and ρ(e + V2/2). For a steady inviscid flow, ∂U/∂t = 0. Frequently,
the numerical solution to such problems takes the form of ‘marching’ techniques;
for example, if the solution is being obtained by marching in the x-direction, then
Eq. (2.65) can be written as

∂F
∂x

= J− ∂G
∂y

+
∂H
∂z

(2.66)

Here, F becomes the ‘solutions’ vector, and the dependent variables for which
numbers are obtained are ρu, (ρu2 + p), ρuv, ρuw and [ρu(e + V2/2) + pu]. From
these dependent variables, it is still possible to obtain the primitive variables, al-
though the algebra is more complex than in our previously discussed case (see
Ref. [5] for more details).

Notice that the governing equations, when written in the form of Eq. (2.65), have
no flow variables outside the single x, y, z and t derivatives. Indeed, the terms in
Eq. (2.65) have everything buried inside these derivatives. The flow equations in the
form of Eq. (2.65) are said to be in strong conservation form. In contrast, examine
the form of Eqs. (2.42a, b and c) and (2.64). These equations have a number of x, y
and z derivatives explicitly appearing on the right-hand side. These are the weak
conservation form of the equations.

The form of the governing equations given by Eq. (2.65) is popular in CFD; let
us explain why. In flow fields involving shock waves, there are sharp, discontinu-
ous changes in the primitive flow-field variables p, ρ, u, T , etc., across the shocks.
Many computations of flows with shocks are designed to have the shock waves ap-
pear naturally within the computational space as a direct result of the overall flow-
field solution, i.e. as a direct result of the general algorithm, without any special
treatment to take care of the shocks themselves. Such approaches are called shock-
capturing methods. This is in contrast to the alternate approach, where shock waves
are explicitly introduced into the flow-field solution, the exact Rankine–Hugoniot
relations for changes across a shock are used to relate the flow immediately ahead
of and behind the shock, and the governing flow equations are used to calculate the
remainder of the flow field. This approach is called the shock-fitting method. These
two different approaches are illustrated in Figs. 2.8 and 2.9. In Fig. 2.8, the com-
putational domain for calculating the supersonic flow over the body extends both
upstream and downstream of the nose. The shock wave is allowed to form within
the computational domain as a consequence of the general flow-field algorithm,
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Fig. 2.8 Mesh for the
shock-capturing approach

without any special shock relations being introduced. In this manner, the shock
wave is ‘captured’ within the domain by means of the computational solution of
the governing partial differential equations. Therefore, Fig. 2.8 is an example of the
shock-capturing method. In contrast, Fig. 2.9 illustrates the same flow problem, ex-
cept that now the computational domain is the flow between the shock and the body.
The shock wave is introduced directly into the solution as an explicit discontinuity,
and the standard oblique shock relations (the Rankine–Hugoniot relations) are used
to fit the freestream supersonic flow ahead of the shock to the flow computed by the
partial differential equations downstream of the shock. Therefore, Fig. 2.9 is an ex-
ample of the shock-fitting method. There are advantages and disadvantages of both
methods. For example, the shock-capturing method is ideal for complex flow prob-
lems involving shock waves for which we do not know either the location or number
of shocks. Here, the shocks simply form within the computational domain as nature
would have it. Moreover, this takes place without requiring any special treatment
of the shock within the algorithm, and hence simplifies the computer programming.
However, a disadvantage of this approach is that the shocks are generally smeared
over a number of grid points in the computational mesh, and hence the numeri-
cally obtained shock thickness bears no relation what-so-ever to the actual physical
shock thickness, and the precise location of the shock discontinuity is uncertain
within a few mesh sizes. In contrast, the advantage of the shock-fitting method is

Fig. 2.9 Mesh for the
shock-fitting approach



2 Governing Equations of Fluid Dynamics 49

that the shock is always treated as a discontinuity, and its location is well-defined
numerically. However, for a given problem you have to know in advance approxi-
mately where to put the shock waves, and how many there are. For complex flows,
this can be a distinct disadvantage. Therefore, there are pros and cons associated
with both shock-capturing and shock-fitting methods, and both have been employed
extensively in CFD. In fact, a combination of these two methods is possible, wherein
a shock-capturing approach during the course of the solution is used to predict the
formation and approximate location of shocks, and then these shocks are fit with
explicit discontinuities midway through the solution. Another combination is to fit
shocks explicitly in those parts of a flow field where you know in advance they oc-
cur, and to employ a shock-capturing method for the remainder of the flow field in
order to generate shocks that you cannot predict in advance.

Again, what does all of this discussion have to do with the conservation form of
the governing equations as given by Eq. (2.65)? Simply this. For the shock-capturing
method, experience has shown that the conservation form of the governing equations
should be used. When the conservation form is used, the computed flow-field results
are generally smooth and stable. However, when the non-conservation form is used
for a shock-capturing solution, the computed flow-field results usually exhibit unsat-
isfactory spatial oscillations (wiggles) upstream and downstream of the shock wave,
the shocks may appear in the wrong location and the solution may even become
unstable. In contrast, for the shock-fitting method, satisfactory results are usually
obtained for either form of the equations—conservation or non-conservation.

Why is the use of the conservation form of the equations so important for the
shock-capturing method? The answer can be seen by considering the flow across
a normal shock wave, as illustrated in Fig. 2.10. Consider the density distribution
across the shock, as sketched in Fig. 2.10(a). Clearly, there is a discontinuous in-
crease in ρ across the shock. If the non-conservation form of the governing equa-
tions were used to calculate this flow, where the primary dependent variables are
the primitive variables such as ρ and p, then the equations would see a large dis-
continuity in the dependent variable ρ. This in turn would compound the numerical
errors associated with the calculation of ρ. On the other hand, recall the continuity
equation for a normal shock wave (see Refs. [1, 3]):

ρ1u1 = ρ2u2 (2.67)

From Eq. (2.67), the mass flux, ρu, is constant across the shock wave, as illustrated
in Fig. 2.10(b). The conservation form of the governing equations uses the product
ρu as a dependent variable, and hence the conservation form of the equations see no
discontinuity in this dependent variable across the shock wave. In turn, the numer-
ical accuracy and stability of the solution should be greatly enhanced. To reinforce
this discussion, consider the momentum equation across a normal shock wave [1,3]:

p1 +ρ1u2
1 = p2 +ρ2u2

2 (2.68)

As shown in Fig. 2.10(c), the pressure itself is discontinuous across the shock;
however, from Eq. (2.68) the flux variable (p + ρu2) is constant across the shock.
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Fig. 2.10 Variation of flow
properties through a normal
shock wave

This is illustrated in Fig. 2.10(d). Examining the inviscid flow equations in the con-
servation form given by Eq. (2.65), we clearly see that the quantity (p +ρu2) is one
of the dependent variables. Therefore, the conservation form of the equations would
see no discontinuity in this dependent variable across the shock. Although this ex-
ample of the flow across a normal shock wave is somewhat simplistic, it serves to
explain why the use of the conservation form of the governing equations are so
important for calculations using the shock-capturing method. Because the conser-
vation form uses flux variables as the dependent variables, and because the changes
in these flux variables are either zero or small across a shock wave, the numerical
quality of a shock-capturing method will be enhanced by the use of the conservation
form in contrast to the non-conservation form, which uses the primitive variables as
dependent variables.

In summary, the previous discussion is one of the primary reasons why CFD
makes a distinction between the two forms of the governing equations—conservation
and non-conservation. And this is why we have gone to great lengths in this chap-
ter to derive these different forms, to explain what basic physical models lead to
the different forms, and why we should be aware of the differences between the
two forms.
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Chapter 3
Incompressible Inviscid Flows: Source
and Vortex Panel Methods

J.D. Anderson, Jr.

3.1 Introduction

In the present chapter we will consider the numerical analysis of incompressible in-
viscid flows. In principle, the finite–difference approach discussed later can be used
to solve such flows, but there are other approaches which are usually more appro-
priate solutions for inviscid, incompressible flow. This chapter discusses one such
approach, namely, the use of source and vortex panels. Panel methods, since the late
1960s, have become standard aerodynamic tools in the aerospace industry. Panel
methods are numerical methods which require a high-speed digital computer for
their implementation; therefore we include panel methods as part of the overall
structure of computational fluid dynamics. For this reason, it is appropriate to spend
some time discussing panel methods in our introduction to CFD. Frequently in the
literature panel methods will be classified under the title of computational aerody-
namics which has a slightly more specialized connotation than the more general
meaning of CFD. In this author’s opinion, computational aerodynamics is simply a
sub-speciality under the more general heading of computational fluid dynamics.

3.2 Some Basic Aspects of Incompressible, Inviscid Flow

In this section we briefly review some fundamental aspects of incompressible, in-
viscid flow. For those readers who are familiar with such flows, this section should
serve as a short refresher; for those who have not studied such flows, hopefully this
section will give enough background to understand the following sections on the
source and vortex panel methods.

Incompressible flow is constant density flow, i.e. ρ = constant. Visualize a fluid
element of fixed mass moving along a streamline in an incompressible flow. Be-
cause its density is constant, then the volume of the fluid element is also constant. In
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Sect. 2.4, we related ∇�V to the time rate of change of the volume of a fluid element,
per unit volume; see Eq. (2.14). Since the volume is constant for a fluid element in
incompressible flow, we have from Eq. (2.14) that

∇ · �V = 0 (3.1)

Furthermore, if the fluid element does not rotate as it moves along the streamline,
i.e. if its motion is translational only, then the flow is called irrotational flow. For
such flow, the velocity can be expressed as the gradient of a scalar function called
the velocity potential, denoted by φ. (For details, see Ref. [1]).

�V = ∇φ (3.2)

Combining Eqs. (3.1) and (3.2), we have

∇ ·∇φ = 0

or,

∇2φ = 0 (3.3)

Equation (3.3) is Laplace’s equation—one of the most famous and extensively
studied equations in mathematical physics. From Eq. (3.3), we see that inviscid,
irrotational, incompressible flow (sometimes called ‘potential flow’) is governed by
Laplace’s equation.

Laplace’s equation is linear, and hence any number of particular solutions to
Eq. (3.3) can be added together to obtain another solution. This establishes a basic
philosophy of the solution of incompressible flows, namely, that a complicated flow
pattern for an irrotational, incompressible flow can be synthesized by adding to-
gether a number of elementary flows which are also irrotational and incompressible.

Let us examine a few of the important elementary flows which satisfy Laplace’s
equation.

3.2.1 Uniform Flow

Consider a uniform flow with velocity V∞ moving in the x-direction, as sketched in
Fig. 3.1. This flow is irrotational, and a solution of Laplace’s equation for uniform
flow yields:

φ = V∞x (3.4)

Fig. 3.1 Uniform flow
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In polar coordinates, (r, θ), Eq. (3.4) can be expressed as

φ = V∞r cosθ (3.5)

3.2.2 Source Flow

Consider a flow with straight streamlines emanating from a point, where the velocity
along each streamline varies inversely with distance from the point, as shown in
Fig. 3.2. Such flow is called source flow. This flow is also irrotational, and a solution
of Laplace’s equation yields (see Ref. [1])

φ =
Λ

2π
ln r (3.6)

where Λ is defined as the source strength; Λ is physically the rate of volume flow
from the source, per unit depth perpendicular to the page in Fig. 3.2. If Λ is negative,
we have sink flow, which is the opposite of source flow. In Fig. 3.2, point 0 is the
origin of the radial streamlines. We can visualize that point 0 is a point source or
sink that induces the radial flow about it; in this interpretation, the point source or
sink is a singularity in the flow field (because V becomes infinite there). We can also
visualize that point 0 in Fig. 3.2 is simply one point formed by the intersection of
the plane of the paper and a line perpendicular to the paper. The line perpendicular
to the paper is a line source, with strength Λ per unit length.

Fig. 3.2 Source flow

3.2.3 Vortex Flow

Consider a flow where all the streamlines are concentric circles about a given point,
where the velocity along each streamline is inversely proportional to the distance
from the centre, as sketched in Fig. 3.3. Such flow is called vortex flow. This flow is
irrotational, and a solution of Laplace’s equation yields (see Ref. [1])

φ = − Γ
2π
θ (3.7)
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Fig. 3.3 Vortex flow

where Γ is the strength of the vortex. In Fig. 3.3, point 0 can be visualized as a
point vortex that induces the circular flow about it; in this interpretation, the point
vortex is a singularity in the flow field (because V becomes infinite there). We can
also visualize that point 0 in Fig. 3.3 is simply one point formed by the intersection
of the plane of the paper and a line perpendicular to the paper. This line is called a
vortex filament, of strength Γ. The strength Γ is the circulation around the vortex
filament, where circulation is defined as

Γ = −
∮

�V ·�ds

In the above, the line integral of the velocity component tangent to a curve of
elemental length ds is taken around a closed curve. This is the general definition
of circulation. For a vortex filament, the above expression for Γ (where the closed
curves encloses and contains the point vortex) is defined as the vortex strength.

3.3 Non-lifting Flows Over Arbitrary Two-Dimensional Bodies:
The Source Panel Method

Consider a single line source, as discussed Sect. 3.2.2. Now imagine that we have
an infinite number of such line sources side-by-side, where the strength of each
line source is infinitesimally small. These side-by-side line sources form a source
sheet, as shown in perspective in the upper left of Fig. 3.4. If we look along the

Fig. 3.4 Source sheet
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series of line sources (looking along the z-axis in Fig. 3.4), the source sheet will
appear as sketched at the lower right of Fig. 3.4. Here, we are looking at an edge
view of the sheet; the line sources are all perpendicular to the page. Let s be the
distance measured along the source sheet in the edge view. Define λ = λ(s) to be
the source strength per unit length along s. [To keep things in perspective, recall
from Sect. 3.22 that the strength of a single line source Λ was defined as the volume
flow rate per unit depth, i.e. per unit length in the z-direction. Typical units for Λ
are square meters per second or square feet per second. In turn, the strength of a
source sheet λ(s) is the volume flow rate per unit depth (in the z-direction) and per
unit length (in the s direction). Typical units for λ are meters per second or feet
per second.] Therefore, the strength of an infinitesimal portion ds of the sheet, as
shown in Fig. 3.4, is λ ds. This small section of the source sheet can be treated as a
distinct source of strength λ ds. Now consider point P in the flow, located a distance
r from ds; the cartesian coordinates of P are (x, y). The small section of the source
sheet of strength λ ds induces an infinitesimally small potential, dφ, at point P. From
Eq. (3.6), dφ is given by

dφ =
λds
2π

ln r (3.8)

The complete velocity potential at point P, induced by the entire source sheet
from a to b, is obtained by integrating Eq. (3.8):

φ(x,y) =

∫ b

a

λds
2π

ln r (3.9)

Note that, in general, λ(s) can change from positive to negative along the sheet, i.e.
the ‘source’ sheet is really a combination of line sources and line sinks.

Next, consider a given body of arbitrary shape in a flow with free-stream velocity
V∞, as shown in Fig. 3.5. Let us cover the surface of the prescribed body with
a source sheet, where the strength λ(s) varies in such a fashion that the combined
action of the uniform flow and the source sheet makes the airfoil surface a streamline
of the flow. Our problem now becomes one of finding the appropriate λ(s). The
solution of this problem is carried out numerically, as follows.

Let us approximate the source sheet by a series of straight panels, as shown in
Fig. 3.6. Moreover, let the source strength λ per unit length be constant over a given
panel, but allow it to vary from one panel to the next. That is, if there is a total of n
panels, the source panel strengths per unit length are λ1, λ2, . . . , λj, . . . , λn. These

Fig. 3.5 Superposition of a uniform flow and a source sheet on a body of given shape, to produce
the flow over the body
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Fig. 3.6 Source panel distribution over the surface of a body of arbitrary shape

panel strengths are unknown; the main thrust of the panel technique is to solve for
λj, j = 1 to n, such that the body surface becomes a streamline of the flow. This
boundary condition is imposed numerically by defining the midpoint of each panel
to be a control point and by determining the λj’s such that the normal component of
the flow velocity is zero at each control point. Let us now quantify this strategy.

Let P be a point located at (x, y) in the flow, and let rpj be the distance from any
point on the jth panel to P, as shown in Fig. 3.6. The velocity potential induced at
P due to the jth panel Δφj is, from Eq. (3.9),

Δφj =
λj

2π

∫
j
ln rpj dsj (3.10)

In Eq. (3.10), λj is constant over the jth panel, and the integral is taken over the
jth panel only. In turn, the potential at P due to all the panels is Eq. (3.10) summed
over all the panels.

φ(P) =

n∑
j=1

Δφj =

n∑
j=1

λj

2π

∫
j
ln rpj dsj (3.11)

In Eq. (3.11), the distance rpj is given by

rpj =

√
(x− xj)2 + (y− yj)2 (3.12)

where (xj, yj) are coordinates along the surface of the jth panel. Since point P is just
an arbitrary point in the flow, let us put P at the control point of the ith panel. Let
the coordinates of this control point be given by (xi, yi) as shown in Fig. 3.6. Then
Eqs. (3.11) and (3.12) become

φ(xi,yi) =

n∑
j=1

λj

2π

∫
j
ln rij dsj (3.13)
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and

rij =

√
(xi− xj)2 + (yi− yj)2 (3.14)

Equation (3.13) is physically the contribution of all the panels to the potential at
the control point of the ith panel.

Recall that the boundary condition is applied at the control points, i.e. the nor-
mal component of the flow velocity is zero at the control points. To evaluate this
component, first consider the component of free-stream velocity perpendicular to
the panel. Let �ni be the unit vector normal to the ith panel, directed out of the body
as shown in Fig. 3.6. Also, note that the slope of the ith panel is (dy/dx)i. In gen-
eral, the free-stream velocity will be at some incidence angle α to the x axis, as
shown in Fig. 3.6. Therefore, inspection of the geometry of Fig. 3.6 reveals that the
component of V∞ normal to the ith panel is

V∞,n = �V∞ ·�ni = V∞ cosβi (3.15)

where βi is the angle between �V∞ and �ni. Note that V∞, n is positive when directed
away from the body, and negative when directed toward the body.

The normal component of velocity induced at (xi, yi) by the source panels is,
from Eq. (3.13),

Vn =
∂

∂ni
[φ(xi,yi)] (3.16)

where the derivative is taken in the direction of the outward unit normal vector, and
hence again, Vn is positive when directed away from the body. When the derivative
in Eq. (3.16) is carried out, rij appears in the denominator. Consequently, a singular
point arises on the ith panel because when j = i, at the control point itself rij = 0.
It can be shown that when j = i, the contribution to the derivative is simply λi/2.
Hence, Eq. (3.16) combined with Eq. (3.13) becomes

Vn =
λi

2
+

n∑
j=1
( j�i)

λj

2π

∫
j

∂

∂ni
(ln rij) dsj (3.17)

In Eq. (3.17), the first term λi/2 is the normal velocity induced at the ith control
point by the ith panel itself, and the summation is the normal velocity induced at the
ith control point by all the other panels.

The normal component of the flow velocity at the ith control point is the sum of
that due to the freestream (Eq. (3.15)) and that due to the source panels (Eq. (3.17)).
The boundary condition states that this sum must be zero.

V∞,n + Vn = 0 (3.18)

Substituting Eqs. (3.15) and (3.17) into Eq. (3.18), we obtain

λi

2
+

n∑
j=1
( j�i)

λj

2π

∫
j

∂

∂ni
(ln rij) dsj + V∞ cosβi = 0 (3.19)
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Equation (3.19) is the crux of the source panel method. The values of the integrals
in Eq. (3.19) depend simply on the panel geometry; they are not properties of the
flow. Let Iij be the value of this integral when the control point is on the ith panel
and the integral is over the jth panel. Then, Eq. (3.19) can be written as

λi

2
+

n∑
j=1
( j�i)

λj

2π
Ii,j + V∞ cosβi = 0 (3.20)

Equation (3.20) is a linear algebraic equation with n unknowns λ1, λ2, . . . , λn.
It represents the flow boundary condition evaluated at the control points of the ith
panel. Now apply the boundary condition to the control points of all the panels, i.e.
in Eq. (3.20), let i = 1, 2, . . . , n. The results will be a system of n linear algebraic
equations with n unknowns (λ1, λ2, . . . , λn), which can be solved simultaneously
by conventional numerical methods.

Look what has happened! After solving the system of equations represented by
Eq. (3.20) with i = 1, 2, . . . , n, we now have the distribution of source panel strengths
which, in an approximate fashion, cause the body surface in Fig. 3.6 to be a stream-
line of the flow. This approximation can be made more accurate by increasing the
number of panels, hence more closely representing the source sheet of continuously
varying strength λ(s) shown in Fig. 3.5. Indeed, the accuracy of the source panel
method is amazingly good; a circular cylinder can be accurately represented by as
few as 8 panels, and most airfoil shapes by 50–100 panels. (For an airfoil, it is de-
sirable to cover the leading-edge region with a number small panels to accurately
represent the rapid surface curvature and to use larger panels over the relatively flat
portions of the body. Note that in general, all the panels in Fig. 3.6 can be different
lengths.)

Once the λi’s (i = 1, 2, . . . , n) are obtained, the velocity tangent to the surface at
each control point can be calculated as follows. Let s be the distance along the body
surface, measured positive from front to rear, as shown in Fig. 3.6. The component
of freestream velocity tangent to the surface is

V∞,s = V∞ sinβi (3.21)

The tangential velocity Vs at the control point of the ith panel induced by all the
panels is obtained by differentiating Eq. (3.13) with respect to s.

Vs =
∂φ

∂s
=

n∑
j=1

λj

2π

∫
j

∂

∂s
(ln rij) dsj (3.22)

[The tangential velocity on a flat source panel induced by the panel itself is zero;
hence, in Eq. (3.22), the term corresponding to j = i is zero. This is easily seen by
intuition, because the panel can only emit volume flow from its surface in a direction
perpendicular to the panel itself.] The total surface velocity at the ith control point Vi

is the sum of the contribution from the freestream [Eq. (3.21)] and from the source
panels [Eq. (3.22)].
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Vi = V∞,s + Vs = V∞ sinβi +

n∑
j=1

λj

2π

∫
j

∂

∂s
(ln rij) dsj (3.23)

In turn, the pressure coefficient at the ith control point is obtained from Bernoulli’s
equation as (see Ref. [1])

Cp,i = l−
(

Vi

V∞

)2

In this fashion, the source panel method gives the pressure distribution over the
surface of a non-lifting body of arbitrary shape.

When you carry out a source panel solution as described above, the accuracy of
your results can be tested as follows. Let S j be the length of the jth panel. Recall
that λj is the strength of the jth panel per unit length. Hence, the strength of the jth
panel itself is λiS j. For a closed body, such as in Fig. 3.6, the sum of all the source
and sink strengths must be zero, or else the body itself would be adding or absorbing
mass from the flow—an impossible situation for the case we are considering here.
Hence, the values of the λj’s obtained above should obey the relation

n∑
j=1

λjS j = 0 (3.24)

Equation (3.24) provides an independent check on the accuracy of the numerical
results.

Let us now demonstrate the above technique with an example; we will calculate
the pressure distribution around a circular cylinder using the source panel technique.
We choose to cover the body with eight panels of equal length, as shown in Fig. 3.7.
This choice is arbitrary; however, experience has shown that, for the case of a cir-
cular cylinder, the arrangement shown in Fig. 3.7 provides sufficient accuracy. The
panels are numered from 1 to 8, and the control points are shown by the dots in the
centre of each panel.

Let us evaluate the integrals Ii,j which appear in Eq. (3.20). Consider Fig. 3.8,
which illustrates two arbitrarily chosen panels. In Fig. 3.8, (xi, yi) are the coordinates

Fig. 3.7 Source panel
distribution around a circular
cylinder
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Fig. 3.8 Geometry required for the evaluation of Iij

of the control point of the ith panel, and (xj, yj) are the running coordinates over the
entire jth panel. The coordinates of the boundary points for the ith panel are (Xi, Yi)
and (Xi+1, Yi+1); similarly, the coordinates of the boundary points for the jth panel
are (Xj, Yj) and (Xj+1, Yj+1). In this problem, �V∞ is in the x-direction; hence, the an-
gles between the x-axis and the unit vectors ni and nj are βi and βj, respectively. Note
that in general both βi and βj vary from 0 to 2π. Recall that the integral Ii,j is evalu-
ated at the ith control point and the integral is taken over the complete jth panel.

Ii,j =

∫
j

∂

∂ni
(ln rij) dsj (3.25)

Since

rij =

√
(xi− xj)2 + (yi− yj)2

then

∂

∂ni
(ln rij) =

1
rij

∂rij

∂ni

=
1
rij

1
2

[(xi− xj)
2 + (yi− yj)

2]−1/2·
[
2(xi− xj)

dxi

dni
+ 2(yi− yj)

dyi

dni

]

or

∂

∂ni
(ln rij) =

(xi− xj) cosβi + (yi− yj) sinβi

(xi− xj)2 + (yi− yj)2
(3.26)

Note in Fig. 3.8 that Φi and Φj are angles measured in the counter-clockwise
direction from the x-axis to the bottom of each panel. From this geometry,
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βi =Φi +
π

2

hence,
sinβi = cosΦi (3.27)

cosβi = −sinΦi (3.28)

Also from the geometry of Fig. 3.8, we have

xj = Xj + sj cosΦj (3.29)

and
yj = Yj + sj sinΦj (3.30)

Substituting Eqs. (3.26), (3.27), (3.28), (3.29) and (3.30) into Eq. (3.25), we
obtain

Ii,j =

∫ sj

0

Csj + D

s2
j + 2Asj + B

dsj (3.31)

where

A = −(xi−Xj) cosΦj− (yi−Yj) sinΦj

B = (xi−Xj)
2 + (yi−Yj)

2

C = sin(Φi−Φj)

D = (yi−Yj) cosΦi− (xi−Xj) sinΦi

S j =

√
(Xj+1−Xj)2 + (Yj+1−Yj)2

Letting

E =
√

B−A2 = (xi−Xj) sinφj− (yi−Yj) cosφj

we obtain an expression for Eq. (3.31) from any standard table of integrals,

Ii,j =
C
2

ln

⎛⎜⎜⎜⎜⎜⎜⎝
S 2

j + 2AS j + B

B

⎞⎟⎟⎟⎟⎟⎟⎠+
D−AC

E

(
tan−1 S j + A

E
− tan−1 A

E

)
(3.32)

Equation (3.32) is a general expression for two arbitrarily oriented panels; it is
not restricted to the case of a circular cylinder.

We now apply Eq. (3.32) to the circular cylinder shown in Fig. 3.7. For purposes
of illustration, let us choose panel 4 as the ith panel and panel 2 as the jth panel,
i.e. let us calculate I4, 2. From the geometry of Fig. 3.7, assuming a unit radius for
the cylinder, we see that

Xj = −0.9239 Xj+1 = −0.3827 Yj = 0.3827

Yj+1 = 0.9239 Φi = 315◦ Φj = 45◦

xi = 0.6533 yi = 0.6533
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Hence, substituting these numbers into the above formulas, we obtain

A = −1.3065
S j = 0.7654

B = 2.5607
E = 0.9239

C = −1 D = 1.3065

Inserting the above values into Eq. (3.32), we obtain

I4,2 = 0.4018

Return to Figs. 3.7 and 3.8. If we now choose panel 1 as the jth panel, keep-
ing panel 4 as the ith panel, we obtain, by means of a similar calculation, I4,1 =

0.4074. Similarly, I4,3 = 0.3528, I4,5 = 0.3528, I4,6 = 0.4018, I4,7 = 0.4074, and
I4,8 = 0.4084.

Return to Eq. (3.20), which is evaluated for the ith panel. Written for panel 4,
Eq. (3.20) becomes (after multiplying each term by 2 and noting that βi = 45◦ for
panel 4)

0.4074λ1 + 0.4018λ2 + 0.3528λ3 +πλ4 + 0.3528λ5 + 0.4018λ6

+ 0.4074λ7 + 0.4084λ8 = −0.7071 2πV∞ (3.33)

Equation (3.33) is a linear algebraic equation in terms of the eight unknowns,
λ1, λ2, . . . , λ8. If we now evaluate Eq. (3.20) for each of the seven other panels, we
obtain a total of eight equations, including Eq. (3.33), which can be solved simulta-
neously for the eight unknown λ’s. The results are

λ1/2πV∞ = 0.3765 λ2/2πV∞ = 0.2662 λ3/2πV∞ = 0

λ4/2πV∞ = −0.2662 λ5/2πV∞ = −0.3765 λ6/2πV∞ = −0.2662

λ7/2πV∞ = 0 λ8/2πV∞ = 0.2662

Note the symmetrical distribution of the λ’s, which is to be expected for the non-
lifting circular cylinder. Also, as a check on the above solution, return to Eq. (3.24).
Since each panel in Fig. 3.7 has the same length, Eq. (3.24) can be written simply as

n∑
j=1

λj = 0

Substituting the values for the λ’s obtained above into Eq. (3.24), we see that the
equation is identically satisfied.

The velocity at the control point of the ith panel can be obtained from Eq. (3.23).
In that equation, the integral over the jth panel is a geometric quantity which is
evaluated in a similar manner as before. The result is

∫
j

∂

∂s
(lnrij) dsj =

D−AC
E

ln
S 2

j + 2AS j + B

B

− C

(
tan−1 S j + A

E
− tan−1 A

E

)
(3.34)
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Fig. 3.9 Pressure distribution
over a circular cylinder;
comparison of the source
panel results and theory

With the integrals in Eq. (3.23) evaluated by Eq. (3.34), and with the values for
λ1, λ2, . . . , λ8 obtained above inserted into Eq. (3.23), we obtain the velocities
V1, V2, . . . , V8. In turn, the pressure coefficients Cp, 1, Cp, 2, . . . , Cp, 8 are obtained
directly from

Cp,i = 1−
(

Vi

V∞

)2

Results for the pressure coefficients obtained from this calculation are compared
with the exact analytical result in Fig. 3.9. Amazingly enough, in spite of the rela-
tively crude panelling shown in Fig. 3.7, the numerical pressure coefficient results
are excellent.

3.4 Lifting Flows Over Arbitrary Two-Dimensional Bodies:
The Vortex Panel Method

In Sect. 3.3 the concept of a source sheet was introduced. In the present section,
we introduce the analogous concept of a vortex sheet. Consider the straight vortex
filament discussed in Sect. 3.2.2. Now imagine an infinite number of straight vortex
filaments side by side, where the strength of each filament is infinitesimally small.
These side-by-side vortex filaments form a vortex sheet, as shown in perspective in
the upper left of Fig. 3.10. If we look along the series of vortex filaments (looking
along the y-axis in Fig. 3.10), the vortex sheet will appear as sketched at the lower
right of Fig. 3.10. Here, we are looking at an edge view of the sheet; the vortex
filaments are all perpendicular to the page. Let s be the distance measured along the
vortex sheet in the edge view. Define γ = γ(s) as the strength of the vortex sheet,
per unit length along s. Thus, the strength of an infinitesimal portion ds of the sheet
is γ ds. This small section of the vortex sheet can be treated as a distinct vortex of
strength γ ds. Now consider point P in the flow, located a distance r from ds. The
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Fig. 3.10 Vortex sheet

small section of the vortex sheet of strength γ ds induces a velocity potential at P,
obtained from Eq. (3.7) as

dΦ = −γds
2π

θ (3.35)

The velocity potential at P due to the entire vortex sheet from a to b is

Φ = − 1
2π

∫ b

a
θγ ds (3.36)

In addition, the circulation around the vortex sheet in Fig. 3.10 is the sum of the
strengths of the elemental vortices, i.e.

Γ =

∫ b

a
γ ds (3.37)

Another property of a vortex sheet is that the component of flow velocity tangen-
tial to the sheet experiences a discontinuous change across the sheet, given by

γ = u1−u2 (3.38)

where u1 and u2 are the tangential velocities just above and below the sheet re-
spectively. (See Ref. [1] for a derivation of this result). Equation (3.38) is used to
demonstrate that, for flow over an airfoil, the value of γ is zero at the trailing edge
of the airfoil. This condition, namely

γTE = 0 (3.39)

is one form of the Kutta condition which fixes the precise value of the circulation
around an airfoil with a sharp trailing edge. Finally we note that the circulation
around the sheet is related to the lift force on the sheet through the Kutta–Joukowski
theorem:

L = ρ∞V∞Γ (3.40)
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Fig. 3.11 Simulation of an
arbitrary airfoil by distributing
a vortex sheet over the airfoil
surface

Clearly, a finite value of circulation is required for the existence of lift. In the
present section, we will see that the ultimate goal of the vortex panel method applied
to a given body is to calculate the amount of circulation, and hence obtain the lift on
the body from Eq. (3.40).

With the above in mind, consider an arbitrary two-dimensional body, such as
sketched in Fig. 3.11. Let us wrap a vortex sheet over the complete surface of the
body, as shown in Fig. 3.11. We wish to find γ(s) such that the body surface becomes
a streamline of the flow. There exists no closed-form analytical solution for γ(s);
rather, the solution must be obtained numerically. This is the purpose of the vortex
panel method.

Let us approximate the vortex sheet shown in Fig. 3.11 by a series of straight
panels, as shown earlier in Fig. 3.6. (In Sect. 3.3, Fig. 3.6 was used to discuss source
panels; here, we use the same sketch for our discussion of vortex panels.) Let the
vortex strength γ(s) per unit length be constant over a given panel, but allow it to
vary from one panel to the next. That is, for the n panels shown in Fig. 3.6, the vortex
panel strengths per unit length are γ1, γ2, . . . , γj, . . . , γn. These panel strengths are
unknowns; the main thrust of the panel technique is to solve for γj, j = 1 to n,
such that the body surface becomes a streamline of the flow and such that the Kutta
condition is satisfied. As explained in Sect. 3.3, the midpoint of each panel is a
control point at which the boundary condition is applied, i.e. at each control point,
the normal component of the flow velocity is zero.

Let P be a point located at (x, y) in the flow, and let rpj be the distance from any
point on the jth panel to P, as shown in Fig. 3.6. The radius rpj makes the angle θpj

with respect to the x-axis. The velocity potential induced at P due to the jth panel,
Δφj, is, from Eq. (3.35),

Δφj = − 1
2π

∫
j
θpjγj dsj (3.40a)

In Eq. (3.40a), γj is constant over the jth panel, and the integral is taken over the
jth panel only. The angle θpj is given by

θpj = tan−1 y− yj

x− xj
(3.41)

In turn, the potential at P due to all the panels is Eq. (3.40a) summed over all the
panels:

φ(P) =

n∑
j=1

φj = −
n∑

j=1

γj

2π

∫
j
θpj dsj (3.42)
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Since point P is just an arbitrary point in the flow, let us put P at the control point
of the ith panel shown in Fig. 3.6. The coordinates of this control point are (xi, yi).
Then Eqs. (3.41) and (3.42) become

θi,j = tan−1 yi− yj

xi− xj

and

φ(xi,yi) = −
n∑

j=1

γj

2π

∫
j
θij dsj (3.43)

Equation (3.43) is physically the contribution of all the panels to the potential at
the control point of the ith panel.

At the control points, the normal component of the velocity is zero; this velocity
is the superposition of the uniform flow velocity and the velocity induced by all the
vortex panels. The component of V∞ normal to the ith panel is given by Eq. (3.15):

V∞,n = V∞ cosβi (3.44)

The normal component of velocity induced at (xi, yi) by the vortex panels is

Vn =
∂

∂ni
[φ(xi,yi)] (3.45)

Combining Eqs. (3.43) and (3.45), we have

Vn = −
n∑

j=1

γj

2π

∫
j

∂θij

∂ni
dsj (3.46)

where the summation is over all the panels. The normal component of the flow
velocity at ith control point is the sum of that due to the freestream [Eq. (3.44)] and
that due to the vortex panels [Eq. (3.46)]. The boundary condition states that this
sum must be zero:

V∞,n + Vn = 0 (3.47)

Substituting Eqs. (3.44) and (3.46) into Eq. (3.47), we obtain

V∞ cosβi−
n∑

j=1

γj

2π

∫
j

∂θij

∂ni
dsj = 0 (3.48)

Equation (3.48) is the crux of the vortex panel method. The values of the integrals
in Eq. (3.48) depend simply on the panel geometry; they are not properties of the
flow. Let Ji,j be the value of this integral when the control point is on the ith panel.
Then Eq. (3.48) can be written as

V∞ cosβi−
n∑

j=1

γj

2π
Ji,j = 0 (3.49)
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Fig. 3.12 Vortex panels at the
trailing edge

Equation (3.49) is a linear algebraic equation with n unknowns, γ1, γ2, . . . , γn.
It represents the flow boundary condition evaluated at the control point of the ith
panel. If Eq. (3.49) is applied to the control points of all the panels, we obtain a
system of n linear equations with n unknowns.

To this point, we have been deliberately paralleling the discussion of the source
panel method given in Sect. 3.3; however, the similarity stops here. For the source
panel method, the n equations for the n unknown source strengths are routinely
solved, giving the flow over a non-lifting body. In contrast, for the lifting case with
vortex panels, in addition to the n equations given by Eq. (3.49) applied at all the
panels, we must also satisfy the Kutta condition, Eq. (3.39). This can be done in
several ways. For example, consider Fig. 3.12, which illustrates a detail of the vortex
panel distribution at the trailing edge. Note that the length of each panel can be
different; their length and distribution over the body is up to your discretion. Let the
two panels at the trailing edge (panels i and i− 1 in Fig. 3.12) be very small. The
Kutta condition is applied precisely at the trailing edge and is given by γ(TE) = 0.
To approximate this numerically, if points i and i−1 are close enough to the trailing
edge, we can write

γi = −γi=1 (3.50)

such that the strengths of the two vortex panels i and i− 1 exactly cancel at the
point where they touch at the trailing edge. Thus, in order to impose the Kutta con-
dition on the solution of the flow, Eq. (3.50) (or an equivalent expression) must be
included. Note that Eq. (3.49) evaluated at all the panels and Eq. (3.50) constitute
an over-determined system of n unknowns with n + 1 equations. Therefore, to ob-
tain a determined system, Eq. (3.49) is not evaluated at one of the control points on
the body. That is, we choose to ignore one of the control points, and we evaluate
Eq. (3.49) at the other n− 1 control points. This, in combination with Eq. (3.50),
now gives a system of n linear algebraic equations with n unknowns, which can be
solved by standard techniques.

At this stage, we have conceptually obtained the values of γ1,γ2, . . . ,γn which
make the body surface a streamline of the flow and which also satisfy the Kutta
condition. In turn, the flow velocity tangent to the surface can be obtained directly
from γ. To see this more clearly, consider the airfoil shown in Fig. 3.13. We are
concerned only with the flow outside the airfoil and on its surface. Therefore, let the
velocity be zero at every point inside the body, as shown in Fig. 3.13. In particular,
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Fig. 3.13 Airfoil as a solid
body, with zero velocity inside
the profile

the velocity just inside the vortex sheet on the surface is zero. This corresponds
to u2 = 0 in Eq. (3.38). Hence the velocity just outside the vortex sheet is, from
Eq. (3.38).

γ = u1−u2 = u1−0 = u1

In Eq. (3.38), u denotes the velocity tangential to the vortex sheet. In terms of
the picture shown in Fig. 3.13, we obtain Va = γa at point a, Vb = γb at point b, etc.
Therefore, the local velocities tangential to the airfoil surface are equal to the local
values of γ. In turn, the local pressure distribution can be obtained from Bernoulli’s
equation.

The total circulation and the resulting lift are obtained as follows. Let sj be the
length of the jth panel. Then the circulation due to the jth panel is γjsj. In turn, the
total circulation due to all the panels is

Γ =

n∑
j=1

γjsj (3.51)

Hence, the lift per unit span is obtained from

L′ = ρ∞V∞
n∑

n=1

γjsj (3.52)

The presentation in this section is intended to give only the general flavor of the
vortex panel method. There are many variations of the method is use today, and you
are encouraged to read the moden literature, especially as it appears in the AIAA
Journal and the Journal of Aircraft since 1970. The vortex panel method as de-
scribed in this section is termed a ‘first-order’ method because it assumes a constant
value of γ over a given panel. Although the method may appear to be straightfor-
ward, its numerical implementation can sometimes be frustrating. For example, the
results for a given body are sensitive to the number of panels used, their various
sizes and the way they are distributed over the body surface (i.e. it is usually ad-
vantageous to place a large number of small panels near the leading and trailing
edges of an airfoil and a smaller number of larger panels in the middle). The need
to ignore one of the control points in order to have a determined system in n equa-
tions for n unknowns also introduces some arbitrariness in the numerical solution.
Which control point do you ignore? Different choices sometimes yield different nu-
merical answers for the distribution of γ over the surface. Moreover, the resulting
numerical distributions for γ are not always smooth, but rather they have oscillations
from one panel to the next as a result of numerical inaccuracies. The problems men-
tioned above are usually overcome in different ways by different groups who have
developed relatively sophisticated panel programs for practical use. Again, you are
encouraged to consult the literature for more information.
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Fig. 3.14 Linear distribution of vortex strength over each panel—a second-order panel method

Such accuracy problems have encouraged the development of higher-order panel
techniques. For example, a ‘second-order’ panel method assumes a linear varia-
tion of γ over a given panel, as sketched in Fig. 3.14. Here, the value of γ at the
edges of each panel is matched to its neighbours, and the values γ1, γ2, γ3, etc., at
the boundary points become the unknowns to be solved. The flow-tangency bound-
ary condition is still applied at the control point of each panel, as before. Some
results using a second-order vortex panel technique are given in Fig. 3.15, which
shows the distribution of pressure coefficients over the upper and lower surfaces of
a NACA 0012 airfoil at a 9◦ angle of attack. The circles and squares are numerical
results from a second-order vortex panel technique developed at the University of
Maryland, and the solid lines are from NACA results given in Ref. [2]. Excellent
agreement is obtained.

Finally, many groups developing and using panel techniques use a combination
of source panels and vortex panels for lifting bodies—source panels to accurately

Fig. 3.15 Pressure coefficient distribution over an NACA 0012 airfoil; comparison between second
order vortex panel method and theoretical results. The numerical panel results were obtained by
one of the author’s graduate students, Mr Tae-Hwan Cho
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represent the thickness of the body and vortex panels to provide circulation. Again,
you are encouraged to consult the literature. For example, Ref. [3] is a classic paper
on panel methods, and Ref. [4] highlights many of the basic concepts of panel meth-
ods along with actual computer program statement listings for simple applications.

3.5 An Application—The Aerodynamics of Drooped
Leading-Edge Wings Below and Above Stall

In this section, in order to illustrate some of the above ideas, we briefly describe an
application of a panel method to an applied aerodynamic problem of some interest.
Since the late 1970s, low-speed wind tunnel experiments and flight tests (conducted
mainly by NASA) have conclusively demonstrated that wings with a discontinu-
ous leading-edge extension and increase in camber (leading-edge droop) exhibit a
smoothing of the normally abrupt drop in lift coefficient CL at stall, and the genera-
tion of a relatively large value of CL at very high post-stall angles of attack. This be-
haviour is illustrated in Fig. 3.16. As a result, an aeroplane with a properly designed
drooped leading edge has increased resistance towards stall/spins—behaviour of
great interest to the general aviation community. In response to this interest, an ex-
tensive experimental investigation of the fundamental aerodynamic characteristics
of drooped leading edge wings is being conducted, an example of which is given in
Ref. [5].

Some preliminary theoretical support for such experimental results is given in
Ref. [6], which is an application of numerical lifting line theory to drooped leading
edge wings below and above the stall. However, lifting line theory has several defi-
ciencies when applied to this problem, not the least of which is summarized by the
following statement quoted from Ref. [6]: ‘It is wise not to stretch the applicability
of lifting-line theory too far. For the high angle-of-attack cases presented here, the
flow is highly three-dimensional, and only an appropriate three-dimensional flow-
field calculation can hope to predict the detailed aerodynamic properties of such
flows.’ The purpose of the present section is to describe an extension of the work of

Fig. 3.16 Sketch showing the effect of a drooped leading edge wing on lift coefficient
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Fig. 3.17 Schematic of the second-order vortex panel

Ref. [6], namely, to present the results of an ‘appropriate three-dimensional flowfield
calculation’ for drooped leading edge wings. The work in this section is patterned
after Ref. [7].

In particular, this section presents numerical results obtained with a three-
dimensional vortex panel computer program for the calculation of inviscid, incom-
pressible (potential) flow. This program is specially constructed for application to
wings with drooped leading-edge discontinuities. The program is essentially a nu-
merical representation of lifting surface theory, involving both spanwise and chord-
wise distributions of vorticity. Across each panel, the vorticity is assumed to vary
linearly in both the spanwise and chordwise directions; hence, this is a second-
order panel method. Figure 3.17 illustrates the type of panel used in the present
calculations.

The present results also include two approximations of an ‘engineering’ nature.
First, the effect of the leading-edge discontinuities is modelled by assuming that the
vortices eminating from these discontinuities aerodynamically divide the wing into
three wings of lower aspect ratio, as sketched in Fig. 3.18. Some direct experimen-
tal evidence of this effect is discussed in Ref. [8]. Hence, the present calculations
were made with three low aspect ratio wings butted against each other (wings A, B
and C in Fig. 3.18). In this fashion, the vortex panel analysis is made to ‘see’ the
leading edge discontinuities without explicitly inserting separate vortex filaments

Fig. 3.18 Simulation of the
effects of the leading edge
discontinuities. Division of
the drooped leading edge
wing into three wings of
lower aspect ratio, butted
against each other
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Fig. 3.19 Panel distribution to simulate the effects of flow separation

originating at the discontinuities, and hence without requiring a knowledge of the
detailed strength and trajectory of such leading-edge vortices. Secondly, the effect
of the separated flow at high angle-of-attack is modelled by applying rectangular
vortex panels with a varying vortex strength over only those portions of the wing
with attached flow, i.e. a wing planform with a scalloped trailing edge as sketched in
Fig. 3.19. The separated region of the wing is covered with constant strength vortex
panels associated with a value of the pressure coefficient, Cp = −0.6. This is a rea-
sonable value of Cp in separated regions on wings, in low-speed flow, as shown by
numerous experiments. These constant strength panels in the separated region are
represented by the shaded region in Fig. 3.19. Obviously, this modelling requires a
knowledge of the separation lines on the finite wing. For the present results, these
separation lines are obtained from surface oil flow visualization experiments, such
as described in Ref. [5].

This modelling of the drooped leading edge discontinuities, and of the separated
flow, is a simple engineering approach, and is not meant to be the final theoretical
answer to the analysis of such flows. However, this modelling taken in conjunc-
tion with the second-order vortex panel program described above yields amazingly
good results, as shown in Fig. 3.20. Here, CL versus angle-of-attack is given for the

Fig. 3.20 Lift coefficient versus angle of attack (Ref. [7])
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drooped leading edge wing sketched in the figure. The solid line represents a curve
through the experimental data of Ref. [5]; the open circles give numerical results ob-
tained with the present analysis. The agreement is excellent at all angles-of-attack,
both below and above the stall. By taking into account the three-dimensional flow
effects, the present results represent a substantial improvement over the CL versus
α results obtained from lifting line theory in Ref. [6].

This example is a good illustration of the usefulness and power of panel pro-
grams. A three-dimensional flow has been calculated over a rather complex configu-
ration which could not have been calculated 25 years ago. However, today, with the
massive computer power available along with some sophisticated numerical tech-
niques, the calculations of such flows is not only possible, but can be done with
great efficiency.
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Chapter 4
Mathematical Properties of the Fluid
Dynamic Equations

J.D. Anderson, Jr.

4.1 Introduction

The governing equations of fluid dynamics derived in Chap. 2 are either integral
forms (such as Eq. (2.23) obtained directly from a finite control volume) or partial
differential equations (such as Eqs (2.36a–c) obtained directly from an infinitesimal
fluid element). The governing equations in the form of partial differential equations
are by far the most prevalent form used in computational fluid dynamics. Therefore,
before taking up a study of numerical methods for the solution of these equations,
it is useful to examine some mathematical properties of partial differential equa-
tions themselves. Any valid numerical solution of the equations should exhibit the
property of obeying the general mathematical properties of the governing equations.

Examine the governing equations of fluid dynamics as derived in Chap. 2. Note
that in all cases the highest order derivatives occur linearly, i.e. there are no products
or exponentials of the highest order derivatives—they appear by themselves, mul-
tiplied by coefficients which are functions of the dependent variables themselves.
Such a system of equations is called a quasilinear system. For example, for inviscid
flows, examining the equations in Sect. 2.8.2 we find that the highest order deriva-
tives are first order, and all of them appear linearly. For viscous flows, examining the
equations in Sect. 2.8.1 we find the highest order derivatives are second order, and
they always occur linearly. For this reason, in the next section, let us examine some
properties of a system of quasilinear partial differential equations. In the process,
we will establish a classification of three types of partial differential equations—all
three of which are encountered in fluid dynamics.

4.2 Classification of Partial Differential Equations

For simplicity, let us consider a fairly simple system of quasilinear equations. They
will not be the flow equations, but they are similar in some respects. Therefore, this
section serves as a simplified example.
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Consider the system of quasilinear equations given below.

a1
∂u
∂x

+ b1
∂u
∂y

+ c1
∂v
∂x

+ d1
∂v
∂y

= f1 (4.1a)

a2
∂u
∂x

+ b2
∂u
∂y

+ c2
∂v
∂x

+ d2
∂v
∂y

= f2 (4.1b)

where u and v are the dependent variables, functions of x and y, and the coefficients
a1,a2,b1,b2,c1,c2,d1,d2, f1 and f2 can be functions of x,y,u and v.

Consider any point in the xy-plane. Let us seek the lines (or directions) through
this point (if any exist) along which the derivatives of u and v are indeterminant,
and across which may be discontinuous. Such lines are called characteristic lines.
To find such lines, we assume that u and v are continuous, and hence

since u = u(x, y) : du =
∂u
∂x

dx +
∂u
∂y

dy (4.2a)

since v = v(x, y) : dv =
∂v
∂x

dx +
∂v
∂y

dy (4.2b)

Equations (4.1a and b) and (4.2a and b) constitute a system of four linear equa-
tions with four unknowns (∂u/∂x,∂u/∂y,∂v/∂x, and ∂v/∂y). These equations can be
written in matrix form as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1 b1 c1 d1

a2 b2 c2 d2

dx dy 0 0
0 0 dx dy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂u/∂x
∂u/∂y
∂v/∂x
∂v/∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f1
f2
du
dv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.3)

Let [A] denote the coefficient matrix.

[A] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1 b1 c1 d1

a2 b2 c2 d2

dx dy 0 0
0 0 dx dy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Moreover, let ;|A| be the determinant of [A]. From Cramer’s rule, if |A| � 0,

then unique solutions can be obtained for ∂u/∂x, ∂u/∂y, ∂v/∂x, and ∂v/∂y. On
the other hand, if |A| = 0, then ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y are, at best, indeter-
minant. We are seeking the particular directions in the xy-plane along which these
derivatives of u and v are indeterminant. Therefore, let us set |A| = 0, and see what
happens.

∣∣∣∣∣∣∣∣∣∣∣

a1 b1 c1 d1

a2 b2 c2 d2

dx dy 0 0
0 0 dx dy

∣∣∣∣∣∣∣∣∣∣∣
= 0
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Hence:

(a1c2−a2c1)(dy)2− (a1d2−a2d1 + b1c2−b2c1)(dx)(dy) + (b1d2−b2d1)(dx)2 = 0
(4.4)

Divide Eq. (4.4) by (dx)2.

(a1c2−a2c1)

(
dy
dx

)2

− (a1d2−a2d1 + b1c2−b2c1)
dy
dx

+ (b1d2−b2d1) = 0 (4.5)

Equation (4.5) is a quadratic equation in dy/dx. For any point in the xy-plane,
the solution of Eq. (4.5) will give the slopes of the lines along which the deriva-
tives of u and v are indeterminant. Why? Because Eq. (4.5) was obtained by setting
|A| = 0, which from the matrix Eq. (4.3) insures that the solutions for the deriva-
tives ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y are, at best, indeterminant. These lines in the
xy space along which the derivatives of u and v are indeterminant are called the
characteristic lines for the system of equations given by Eq. (4.1a and b).

In Eq. (4.5), let

a = (a1c2−a2c1)

b = −(a1d2−a2d1 + b1c2−b2c1)

c = (b1d2−b2d1)

Then Eq. (4.5) can be written as

a

(
dy
dx

)2

+ b

(
dy
dx

)
+ c = 0 (4.6)

Hence, from the quadratic formula:

dy
dx

=
−b±

√
b2−4ac

2a
(4.7)

Equation (4.7) gives the direction of the characteristic lines through a given xy
point. These lines have a different nature, depending on the value of the discriminant
in Eq. (4.7). Denote the discriminant by D.

D = b2−4ac (4.8)

The characteristic lines may be real and distinct, real and equal, or imaginary,
depending on the value of D. Specifically:

If D > 0: Two real and distinct characteristics exist through each point in the
xy-plane. When this is the case, the system of equations given by
Eqs. (4.1a and b) is called hyperbolic.

If D = 0: One real characteristic exists. Here, the system of Eqs. (4.1a and
b) is called parabolic.

If D < 0: The characteristic lines are imaginary. Here, the system of
Eqs. (4.1a and b) is called elliptic.
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The classification of quasilinear partial differential equations as either elliptic,
parabolic or hyperbolic is common in the analysis of such equations. These three
classes of equations have totally different behavior, as will be discussed shortly. The
origin of the words elliptic, parabolic or hyperbolic used to label these equations is
simply a direct analogy with the case for conic sections. The general equation for a
conic section from analytic geometry is

ax2 + bxy + cy2 + dx + ey + f = 0

where, if

b2−4ac > 0, the conic is a hyperbola
b2−4ac = 0, the conic is a parabola
b2−4ac < 0, the conic is an ellipse

We note that, for hyperbolic partial differential equations, the fact that two real
and distinct characteristics exist allows the development of a method for the ready
solution of these equations. If we return to Eq. (4.3), and actually attempt to solve
for, say ∂u/∂y, using Cramer’s rule, we have

∂u/∂y =
|N|
|A| =

0
0

where the numerator determinant is

|N| =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 f1 c1 d1

a2 f2 c2 d2

dx du 0 0

0 dv dx dy

∣∣∣∣∣∣∣∣∣∣∣∣
(4.9)

The reason why |N| must be zero is that ∂u/∂y is indeterminant, of the form
0/0. Since |A| has already been made equal to zero, then |N| must be zero to al-
low ∂u/∂y to be indeterminant. The expansion of Eq. (4.9) will lead to equa-
tions involving the flowfield variables which are ordinary differential equations,
and in some cases are algebraic equations; these equations obtained from Eq. (4.9)
are called the compatibility equations. They hold only along the characteristic
lines. This is the essence of solving the original hyperbolic partial differential
equation: simply integrate simpler, ordinary differential equations (the compati-
bility equations) along the characteristic lines in the xy-plane. This is called the
method of characteristics. This method is highly developed for the solution of in-
viscid supersonic flows, for which the system of governing flow equations is hy-
perbolic. The practical implementation of the method of characteristics requires
the use of a high-speed digital computer, and therefore may legitamately be con-
sidered a part of CFD. However, the method of characteristics is a well-known
classical technique for the solution of inviscid supersonic flows, and therefore
we will not consider it in any detail in these notes. For more information, see
Ref. [1].
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4.3 General Behaviour of the Different Classes of Partial
Differential Equations and Their Relation
to Fluid Dynamics

In this section we simply discuss, without proof, some of the behaviour of hyper-
bolic, parabolic and elliptic partial differential equations, and relate this behaviour
to the solution of problems in fluid dynamics. For more details on the characteristics
of partial differential equations, see any good text on advanced mathematics, such
as Ref. [2].

4.3.1 Hyperbolic Equations

For hyperbolic equations, information at a given point P influences only those re-
gions between the advancing characteristics. For example, examine Fig. 4.1, which
is sketched for a two-dimensional problem with two independent space variables.
Point P is located at a given (x,y). Consider the left- and right-running character-
istics through point P, as shown in Fig. 4.1. Information at point P influences only
the shaded region—the region labelled I between the two advancing characteristics
through P in Fig. 4.1. This has a collorary effect on boundary conditions for hy-
perbolic equations. Assume that the x-axis is a given boundary condition for the
problem, i.e. the dependent variables u and v are known along the x-axis. Then the
solution can be obtained by ‘marching forward’ in the distance y, starting from the
given boundary. However, the solution for u and v at point P will depend only on
that part of the boundary between a and b, as shown in Fig. 4.1. Information at point
c, which is outside the interval ab, is propagated along characteristics through c, and
influences only region II in Fig. 4.1. Point P is outside region II, and hence does not
feel the information from point c. For this reason, point P depends on only that part

Fig. 4.1 Domain and
boundaries for the solution of
hyperbolic equations.
Two-dimensional steady flow



82 J.D. Anderson, Jr.

of the boundary which is intercepted by and included between the two retreating
characteristic lines through point P, i.e. interval ab.

In fluid dynamics, the following types of flows are governed by hyperbolic partial
differential equations, and hence exhibit the behavior described above:

(1) Steady, inviscid supersonic flow. If the flow is two-dimensional, the behaviour is
like that already discussed in Fig. 4.1. If the flow is three-dimensional, there are
characteristic surfaces in xyz space, as sketched in Fig. 4.2. Consider point P at a
given (x, y, z) location. Information at P influences the shaded volume within the
advancing characteristic surface. In addition, if the x−y plane is a boundary sur-
face, then only that portion of the boundary shown as the cross-hatched area in
the x−y plane, intercepted by the retreating characteristic surface, has any effect
on P. In Fig. 4.2, the dependent variables are solved by starting with data given
in the xy-plane, and ‘marching’ in the z-direction. For an inviscid supersonic
flow problem, the general flow direction would also be in the z-direction.

(2) Unsteady inviscid compressible flow. For unsteady one- and two-dimensional in-
viscid flows, the governing equations are hyperbolic, no matter whether the flow
is locally subsonic or supersonic. Here, time is the marching direction. For one-
dimensional unsteady flow, consider a point P in the (x, t) plane shown in Fig. 4.3.

Fig. 4.2 Domain and
boundaries for the solution
of hyperbolic equations.
Three-dimensional
steady flow

Fig. 4.3 Domain and
boundaries for the solution
of hyperbolic equations:
one-dimensional
unsteady flow
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Fig. 4.4 Domain and
boundaries for the solution
of hyperbolic equations:
two-dimensional
unsteady flow

Once again, the region influenced by P is the shaded area between the two advanc-
ingcharacteristics through P, and the intervalab is theonlyportionof theboundary
along the x-axis upon which the solution at P depends. For two-dimensional un-
steady flow, consider a point P in the (x, y, t) space as shown in Fig. 4.4. The region
influenced by P, and the portion of the boundary in the xy-plane upon which the
solution at P depends, are shown in this figure. Starting with known initial data in
the xy-plane, the solution ‘marches’ forward in time.

4.3.2 Parabolic Equations

For parabolic equations, information at point P in the xy-plane influences the entire
region of the plane to one side of P. This is sketched in Fig. 4.5, where the single
characteristic line through point P is drawn. Assume the x- and y-axes are bound-
aries; the solution at P depends on the boundary conditions along the entire y axis,
as well as on that portion of the x-axis from a to b. Solutions to parabolic equa-
tions are also ‘marching’ solutions; starting with boundary conditions along both
the x- and y-axes, the flow-field solution is obtained by ‘marching’ in the general
x-direction.

Fig. 4.5 Domain and
boundaries for the solution of
parabolic equations in two
dimensions
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In fluid dynamics, there are reduced forms of the Navier–Stokes equations which
exhibit parabolic-type behaviour. If the viscous stress terms involving derivatives
with respect to x are ignored in these equations, we obtain the ‘parabolized’ Navier–
Stokes equations, which allows a solution to march downstream in the x-direction,
starting with some prescribed data along the x- and y-axes. A further reduction of
the Navier–Stokes equations for the case of high Reynolds number leads to the
well-known boundary layer equations. These boundary layer equations exhibit the
parabolic behavior shown in Fig. 4.5.

4.3.3 Elliptic Equations

For elliptic equations, information at point P in the xy-plane influences all other re-
gions of the domain. This is sketched in Fig. 4.6, which shows a rectangular domain.
Here, the domain is fully closed, surrounded by the closed boundary abcd. This is in
contrast to the open domains for parabolic and hyperbolic equations discussed ear-
lier, and shown in the previous figures, namely, Figs. 4.1, 4.2, 4.3, 4.4 and 4.5. For
elliptic equations, because point P influences all points in the domain, then in turn
the solution at point P is influenced by the entire closed boundary abcd. Therefore,
the solution at point P must be carried out simultaneously with the solution at all
other points in the domain. This is in stark contrast to the ‘marching’ solutions ger-
maine to parabolic and hyperbolic equations. For this reason, problems involving
elliptic equations are frequently called ‘equilibrium’, or ‘jury’ problems, because
the solution within the domain depends on the total boundary around the domain.
(See Ref. [3] for more details.)

In fluid dynamics steady, subsonic, inviscid flow is governed by elliptic equa-
tions. As a sub-case, this also includes incompressible flow (which theoretically
implies that the Mach number is zero). Hence, for such flows, physical boundary
conditions must be applied over a closed boundary that totally surrounds the flow,
and the flow-field solution at all points in the flow must be obtained simultaneously
because the solution at one point influences the solution at all other points. In terms
of Fig. 4.6, boundary conditions must be applied over the entire boundary abcd.
These boundary conditions can take the following forms:

Fig. 4.6 Domain and
boundaries for the solution of
elliptic equations in two
dimensions



4 Mathematical Properties of the Fluid Dynamic Equations 85

(1) A specification of the dependent variables u and v along the boundary. This
type of boundary conditions is called the Dirichlet condition.

(2) A specification of derivatives of the dependent variables, such as ∂u/∂x, etc.,
along the boundary. This type of boundary condition is called the Neumann
condition.

4.3.4 Some Comments

At this stage it is instructive to return to our discussion of the inviscid flow over a
supersonic blunt body in Chap. 1, and in particular to Fig. 1.1. There we pointed
out that the locally subsonic steady flow is governed by elliptic partial differen-
tial equations, and that the locally supersonic steady flow is governed by hyper-
bolic partial differential equations. Now we have a better understanding of what
this means mathematically; and because of the totally different mathematical be-
havior of elliptic and hyperbolic equations, we have a new appreciation for the
difficulties that were encountered by early researchers in trying to solve the blunt
body problem. The sudden change in the nature of the governing equations across
the sonic line virtually precluded any practical solution of the steady flow blunt
body problem involving a uniform treatment of both the subsonic and supersonic
regions. However, recall from Fig. 4.4 that unsteady inviscid flow is governed
by hyperbolic equations no matter whether the flow is locally subsonic or super-
sonic. This provides the following opportunity. Starting with rather arbitrary ini-
tial conditions for the flow field in the xy-plane in Fig. 1.1, solve the unsteady,
two-dimensional inviscid flow equations, marching forward in time as sketched
in Fig. 4.4. At large times, the solution approaches a steady state, where the time
derivatives of the flow variables approach zero. This steady state is the desired
result, and what you have when you approach this steady state is a solution for
the entire flow field including both the subsonic and supersonic regions. More-
over, this solution is obtained with the same, uniform method throughout the entire
flow. The above discussion gives the elementary philosophy of the time-dependent
technique for the solution of flow problems. Its practical numerical implemen-
tation by Moretti and Abbett [4] in 1966 constituted the major scientific break-
through for the solution of the supersonic blunt body problem as discussed in
Chap. 1.

At this stage, it would be worthwhile for the student to examine the actual,
closed-form solution to some linear partial differential equations of the elliptic,
parabolic and hyperbolic types. Numerous classical solutions can be found; Refs. [2,
3] are good sources. However, we will not carry out such an examination in these
notes; rather, we will use our remaining time and space here to move on to numerical
solutions that are germane to fluid flows. Again, the student is referred to Refs. [2,3]
for more details.
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4.3.5 Well-Posed Problems

In the solution of partial differential equations it is sometimes easy to attempt a
solution using incorrect or insufficient boundary and initial conditions. Whether the
solution is being attempted analytically or numerically, such an ‘ill-posed’ problem
will usually lead to spurious results.

Therefore, we define a well-posed problem as follows: If the solution to a partial
differential equation exists and is unique, and if the solution depends continuously
upon the initial and boundary conditions, then the problem is well-posed. In CFD, it
is important that you establish that your problem is well-posed before you attempt
to carry out a numerical solution.
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Chapter 5
Discretization of Partial Differential Equations

J.D. Anderson, Jr.

5.1 Introduction

Analytical solutions of partial differential equations involve closed-form expres-
sions which give the variation of the dependent variables continuously throughout
the domain. In contrast, numerical solutions can give answers at only discrete points
in the domain, called grid points. For example, consider Fig. 5.1, which shows a
section of a discrete grid in the xy-plane. For convenience, let us assume that the
spacing of the grid points in the x-direction is uniform, and given by Δx, and that
the spacing of the points in the y-direction is also uniform, and given by Δy, as
shown in Fig. 5.1. In general, Δx and Δy are different. Indeed, it is not absolutely
necessary that Δx or Δy be uniform; we could deal with totally unequal spacing in
both directions, where Δx is a different value between each successive pairs of grid
points, and similarly for Δy. However, the vast majority of CFD applications involve
numerical solutions on a grid which involves uniform spacing in each direction, be-
cause this greatly simplifies the programming of the solution, saves storage space
and usually results in greater accuracy. This uniform spacing does not have to occur
in the physical xy space; as is frequently done in CFD, the numerical calculations
are carried out in a transformed computational space which has uniform spacing in
the transformed independent variables, but which corresponds to non-uniform spac-
ing in the physical plane. These matters will be discussed in detail in Chap. 6. In any
event, in this chapter we will asume uniform spacing in each coordinate direction,
but not necessarily equal spacing for both directions, i.e. we will assume Δx and Δy
to be constants, but that Δx does not have to equal Δy.

Returning to Fig. 5.1, the grid points are identified by an index i which runs in the
x-direction, and an index j which runs in the y-direction. Hence, if (i, j) is the index
for point P in Fig. 5.1, then the point immediately to the right of P is labeled as
(i+1, j), the immediately to the left is (i−1, j), the point directly above is (i, j+1),
and the point directly below is (i, j−1).

J.D. Anderson, Jr.
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Fig. 5.1 Discrete grid points

The method of finite-differences is widely used in CFD, and therefore most of
this chapter will be devoted to matters concerning finite differences. The philosophy
of finite difference methods is to replace the partial derivatives appearing in the
governing equations of fluid dynamics (as derived in Chap. 2) with algebraic dif-
ference quotients, yielding a system of algebraic equations which can be solved for
the flow-field variables at the specific, discrete grid points in the flow (as shown in
Fig. 5.1). Let us now proceed to derive some of the more common algebraic differ-
ence quotients used to discretize the partial differential equations.

5.2 Derivation of Elementary Finite Difference Quotients

Finite difference representations of derivatives are based on Taylor’s series expan-
sions. For example, if ui, j denotes the x-component of velocity at point (i, j), then
the velocity ui+1, j at point (i + 1, j) can be expressed in terms of a Taylor’s series
expanded about point (i, j), as follows:

ui+1,j = ui,j +

(
∂u
∂x

)
i,j
Δx +

(
∂2u

∂x2

)
i,j

(Δx)2

2
+

(
∂3u

∂x3

)
i,j

(Δx)3

6
+ · · · (5.1)

Equation (5.1) is mathematically an exact expression for ui+1,j if:

(a) the number of terms is infinite and the series converges,
(b) and/or Δx→ 0.

For numerical computations, it is impractical to carry an infinite number of terms
in Eq. (5.1). Therefore, Eq. (5.1) is truncated. For example, if terms of magnitude
(Δx)3 and higher order are neglected, Eq. (5.1) reduces to

ui+1,j ≈ ui,j +

(
∂u
∂x

)
i,j
Δx +

(
∂2u

∂x2

)
i,j

(Δx)2

2
(5.2)

We say that Eq. (5.2) is of second-order accuracy, because terms of order (Δx)3

and higher have been neglected. If terms of order (Δx)2 and higher are neglected,
we obtain from Eq. (5.1),
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ui+1,j ≈ ui,j +

(
∂u
∂x

)
i,j
Δx (5.3)

where Eq. (5.3) is of first-order accuracy. In Eqs. (5.2) and (5.3), the neglected
higher-order terms represent the truncation error in the finite series representation.
For example, the truncation error for Eq. (5.2) is

∞∑
n=3

(
∂nu
∂xn

)
i,j

(Δx)n

n!

and the truncation error for Eq. (5.3) is

∞∑
n=2

(
∂nu
∂xn

)
i,j

(Δx)n

n!

The truncation error can be reduced by:

(a) Carrying more terms in the Taylor’s series, Eq. (5.1). This leads to higher-order
accuracy in the representation of ui+1,j.

(b) Reducing the magnitude of Δx.

Let us return to Eq. (5.1), and solve for ( ∂u
∂x )i,j

(
∂u
∂x

)
i,j

=
ui+1,j−ui,j

Δx
−
(
∂2u

∂x2

)
i,j

Δx
2
−
(
∂3u

∂x3

)
i,j

Δx2

6
− · · ·

︸�������������������������������������︷︷�������������������������������������︸
Truncation error

or, (
∂u
∂x

)
i,j

=
ui+1,j−ui,j

Δx
+ O(Δx) (5.4)

In Eq. (5.4), the symbol O(Δx) is a formal mathematical notation which repre-
sents ‘terms of-order-of Δx’. Eq. (5.4) is more precise notation than Eq. (5.3), which
involves the ‘approximately equal’ notation; in Eq. (5.4) the order of magnitude of
the truncation error is shown explicitly by the O notation. We now identify the first-
order-accurate difference representation for the derivative (∂u/∂x)i,j expressed by
Eq. (5.4) as a first-order forward difference, repeated below

(
∂u
∂x

)
i,j

=
ui+1,j−ui,j

Δx
+ O(Δx) (5.4 repeated)

Let us now write a Taylor’s series expansion for ui−1,j, expanded about ui,j.

ui−1,j = ui,j +

(
∂u
∂x

)
i,j

(−Δx) +

(
∂2u

∂x2

)
i,j

(−Δx)2

2

+

(
∂3u

∂x3

)
i,j

(−Δx)3

6
+ · · ·
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or,

ui−1,j = ui,j−
(
∂u
∂x

)
i,j
Δx +

(
∂2u

∂x2

)
i,j

(Δx)2

2

−
(
∂3u

∂x3

)
i,j

(Δx)3

6
+ · · · (5.5)

Solving for (∂u/∂x)i,j, we obtain

(
∂u
∂x

)
i,j

=
ui,j−ui−1,j

Δx
+ O(Δx) (5.6)

Equation (5.6) is a first order rearward difference expression for the derivative
(∂u/∂x) at grid point (i, j).

Let us now subtract Eq. (5.5) from (5.1).

ui+1,j−ui−1,j = 2

(
∂u
∂x

)
i,j
Δx +

(
∂3u

∂x3

)
i,j

(Δx)3

3
+ · · · (5.7)

Solving Eq. (5.7) for (∂u/∂x)i,j, we obtain

(
∂u
∂x

)
i,j

=
ui+1,j−ui−1,j

2Δx
+ O(Δx)2 (5.8)

Equation (5.8) is a second order central difference for the derivative (∂u/∂x) at
grid point (i, j).

To obtain a finite-difference expression for the second partial derivative (∂2u/
∂x2)i,j, first recall that the order-of-magnitude term in Eq. (5.8) comes from Eq. (5.7),
and that Eq. (5.8) can be written

(
∂u
∂x

)
i,j

=
ui+1,j−ui−1,j

2Δx
−
(
∂3u

∂x3

)
i,j

(Δx)2

6
+ · · · (5.9)

Substituting Eq. (5.9) into (5.1), we obtain

ui+1,j = ui,j +

⎡⎢⎢⎢⎢⎢⎣ui+1,j−ui−1,j

2Δx
−
(
∂3u

∂x3

)
i,j

(Δx)2

6
+ · · ·

⎤⎥⎥⎥⎥⎥⎦Δx

+

(
∂2u

∂x2

)
i,j

(Δx)2

2
+

(
∂3u

∂x3

)
i,j

(Δx)3

6

+

(
∂4u

∂x4

)
i,j

(Δx)4

24
+ · · · (5.10)
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Solving Eq. (5.10) for (∂2u/∂x2)i,j, we obtain

(
∂2u

∂x2

)
i,j

=
ui+1,j−2ui,j + ui−1,j

(Δx)2
+ O(Δx)2 (5.11)

Equation (5.11) is a second-order central second difference for the derivative
(∂2u/∂x2) at grid point (i, j).

Difference expressions for the y-derivatives are obtained in exactly the same
fashion. The results are directly analogous to the previous equations for the x-
derivatives. They are:

(
∂u
∂y

)
i,j

=
ui,j+1−ui,j

Δy
+ O(Δy) Forward difference

(
∂u
∂y

)
i,j

=
ui,j−ui,j−1

Δy
+ O(Δy) Rearward difference

(
∂u
∂y

)
i,j

=
ui,j+1−ui,j−1

2Δy
+ O(Δy)2 Central difference

(
∂2u

∂y2

)
i,j

=
ui,j+1−2ui,j + ui,j−1

(Δy)2
+ O(Δy)2 Central second difference

It is interesting to note that the central second difference given for example by
Eq. (5.11) can be intepreted as a forward difference of the first derivatives, with
rearward differences used for the first derivatives. Dropping the O notation for con-
venience, we have

(
∂2u

∂x2

)
i,j

=

[
∂

∂x

(
∂u
∂x

)]
i,j
≈

(
∂u
∂x

)
i+1,j
−
(
∂u
∂x

)
i,j

Δx(
∂2u

∂x2

)
i,j
≈

[(ui+1,j−ui,j

Δx

)
−
(ui,j−ui−1,j

Δx

)] 1
Δx(

∂2u

∂x2

)
i,j
≈

ui+1,j−2ui,j + ui−1,j

(Δx)2
(5.12)

Equation (5.12) is the same difference quotient as Eq. (5.11).
The same philosophy can be used to quickly generate a finite difference quotient

for the mixed derivative (∂2u/∂x∂y) at grid point (i, j). For example,

∂2u
∂x∂y

=
∂

∂x

(
∂u
∂y

)
(5.13)

In Eq. (5.13), write the x-derivative as a central difference of the y-derivatives, and
then cast the y-derivatives also in terms of central differences.



92 J.D. Anderson, Jr.

∂2u
∂x∂y

=
∂

∂x

(
∂u
∂y

)
=

(
∂u
∂y

)
i+1,j
−
(
∂u
∂y

)
i−1,j

2Δx

∂2u
∂x∂y

≈
[(

ui+1,j+1−ui+1,j−1

2Δy

)
−
(

ui−1,j+1−ui−1,j−1

2Δy

)]
1

2Δx

∂2u
∂x∂y

≈ 1
4ΔxΔy

(ui+1,j+1 + ui−1,j−1−ui+1,j−1−ui−1,j+1)

or

(
∂2u
∂x∂y

)
i,j

=
1

4ΔxΔy
(ui+1,j+1 + ui−1,j−1−ui+1,j−1−ui−1,j+1)

+ O[(Δx)2, (Δy)2]

(5.14)

Many other difference approximations can be obtained for the above derivatives,
as well as for derivatives of even higher order. The philosophy is the same. For a
detailed tabulation of many forms of difference quotients, see pages 44 and 45 of
Ref. [1].

What happens at a boundary? What type of differencing is possible when we
have only one direction to go, namely, the direction away from the boundary? For
example, consider Fig. 5.2, which illustrates a portion of the boundary, with the y-
axis perpendicular to the boundary. Let grid point 1 be on the boundary, with points
2 and 3 a distance Δy and 2Δy above the boundary respectively. We wish to construct
a finite difference approximation for ∂u/∂y at the boundary. It is easy to construct a
forward difference as (

∂u
∂y

)
1

=
u2−u1

Δy
+ O(Δy) (5.15)

which is of first-order accuracy. However, how do we obtain a result which is of
second-order accuracy? Our central difference in Eq. (5.8) fails us because it re-
quires another point beneath the boundary, such as illustrated as point 2′ in Fig. 5.2.
Point 2′ is outside the domain of computation, and we generally have no information
about u at this point. In the early days of CFD, many solutions attempted to side-
step this problem by assuming that u2′ = u2. This is called the reflection boundary
condition. In most cases it does not make physical sense, and is just as inaccurate,
if not more so, than the forward difference given by Eq. (5.15).

So we ask the question again, how do we find a second-order accurate finite-
difference at the boundary? The answer is simple, and it illustrates another method
of deriving finite-difference quotients. Assume that at the boundary u can be ex-
pressed by the polynomial

u = a + by + cy2 (5.16)

Applied to the grid points in Fig. 5.2, Eq. (5.16) yields

u1 = a
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u2 = a + bΔy + c(Δy)2

u3 = a + b(2Δy) + c(2Δy)2

Solving this system for b:

b =
−3u1 + 4u2−u3

2Δy
(5.17)

Returning to Eq. (5.16), and differentiating:

∂u
∂y

= b + 2cy (5.18)

Equation (5.18), evaluated at the boundary where y = 0, yields
(
∂u
∂y

)
1

= b (5.19)

Combining Eqs. (5.18) and (5.19), we obtain
(
∂u
∂y

)
1

=
−3u1 + 4u2−u3

2Δy
(5.20)

It remains to show the order-of-accuracy of Eq. (5.20). Consider a Taylor’s series
expansion about the point 1.

u(y) = u1 +

(
∂u
∂y

)
1

y +

(
∂2u

∂y2

)
1

y2

2
+

(
∂3u

∂y3

)
1

y3

6
+ · · · (5.21)

Compare Eqs. (5.21) and (5.16). Our assumed polynomial expression in
Eq. (5.16) is the same as using the first three terms in the Taylor’s series. Hence,
Eq. (5.16) is of O(Δy)3. In forming the derivative in Eq. (5.20), we divided by Δy,
which then makes Eq. (5.20) of O(Δy)2. Thus, we can write from Eq. (5.20)

(
∂u
∂y

)
1

=
−3u1 + 4u2−u3

2Δy
+ O(Δy)2 (5.22)

Fig. 5.2 Grid points at a
boundary
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This is our desired second-order-accurate difference quotient at the boundary.
Both Eqs. (5.15) and (5.22) are called one-sided differences, because they express

a derivative at a point in terms of dependent variables on only one side of the point.
Many other one-sided differences can be formed, with higher degrees of accuracy,
using additional grid points to one side of the given point. It is not unusual to see
four- and five-point one-sided differences applied at a boundary.

5.3 Basic Aspects of Finite-Difference Equations

The essence of finite-difference solutions in CFD is to use the difference quotients
derived in Sect. 5.2 (or others that are similar) to replace the partial derivatives in
the governing flow equations, resulting in a system of algebraic difference equations
for the dependent variables at each grid point. In the present section, we examine
some of the basic aspects of a difference equation.

Consider the following model equation, in which we assume that the dependent
variable u is a function of x and t.

∂u
∂t

=
∂2u

∂x2
(5.23)

We choose this simple equation for convenience; at this stage in our discussions
there is no advantage to be obtained by dealing with the much more complex flow
equations. The basic aspects of finite-difference equations to be examined in this
section can just as well be developed using Eq. (5.23). It should be noted that
Eq. (5.23) is parabolic.

If we replace the time derivative in Eq. (5.23) with a forward difference, and the
spatial derivative with a central difference, the result is:

un+1
i −un

i

Δt
=

un
i+1−2un

i + un
i−1

(Δx)2
(5.24)

In Eq. (5.24), some common notation is used for the difference of the time deriva-
tive. The index for time usually appears as a superscript in CFD, where n denotes
conditions at time t, (n+1) denotes conditions at time (t+Δt), and so forth. The sub-
script still denotes the grid point location; for the one spatial dimension considered
here, clearly we need only one index, i.

Question: What is the truncation error for the complete finite-difference equa-
tion? Obviously, there must be a truncation error because each one of the finite-
difference quotients has its own truncation error. Let us address this question. Com-
bining Eqs. (5.23) and (5.24), and explicitly writing the truncation errors associated
with the difference quotients (from Eqs. (5.4) and (5.10)), we have

∂u
∂t
− ∂

2u

∂x2
=

un+1
i −un

i

Δt
−

(un
i+1−2un

i + un
i−1)

(Δx)2
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+

[
−
(
∂2u

∂t2

)n

i

Δt
2

+

(
∂4u

∂x4

)n

i

(Δx)2

12
+ · · ·

]
(5.25)

Examining Eq. (5.25), on the left-hand side is the original partial differential
equation, the first two terms on the right-hand side are the finite difference represen-
tation of this equation and the terms in the square brackets are the truncation error
for the complete equation. Note that the truncation error for this representation is
O[Δt, (Δx)2].

Does the finite-difference equation reduce to the original differential equation as
the number of grid points goes to infinity, i.e. as Δx→ 0 and Δt→ 0? Examining
Eq. (5.25), we note that the truncation error approaches zero, and hence the differ-
ence equation does indeed approach the original differential equation. When this
is the case, the finite-difference representation of the partial differential equation is
said to be consistent.

The solution of Eq. (5.24) takes the form of a ‘marching’ solution in steps of
time. (Recall from Sect. 4.3.2 that such marching solutions are a characteristic of
parabolic equations.) Assume that we know the dependent variable at all x at some
instant in time, say from given initial conditions. Examining Eq. (5.24), we see that
it contains only one unknown, namely un+1

j . In this fashion, the dependent variable

at time (t +Δt) can be obtained explicitly from the known results at time t, i.e. un+1
j

is obtained directly from the known values un
j+1, un

j , and un
j−1. This is an example of

an explicit finite-difference solution.
As a counter example, let us be daring and return to the original partial differen-

tial equation given by Eq. (5.23). This time, we write the spatial differences on the
right-hand side in terms of average properties between n and (n + 1), that is

un+1
i −un

i

Δt
=

1
2

⎡⎢⎢⎢⎢⎢⎣un+1
i+1 + un

i+1−2un+1
i −2un

i + un+1
i−1 + un

i−1

(Δx)2

⎤⎥⎥⎥⎥⎥⎦ (5.26)

The differencing shown in Eq. (5.26) is called the Crank-Nicolson form. Examine
Eq. (5.26) closely. The unknown un+1

i is not only expressed in terms of the known
quantities at time index n, namely un

i+1,u
n
i , and un

i−1, but also in terms of unknown
quantities at time index n + 1, namely un+1

i+1 and un+1
i−1 . Hence, Eq. (5.26) applied at a

given grid point i cannot by itself result in the solution for un+1
i . Rather, Eq. (5.26)

must be written at all grid points, resulting in a system of algebraic equations from
which the unknown un+1

i for all i can be solved simultaneously. This is an example
of an implicit finite-difference solution. Because they deal with the solution of large
systems of simultaneous linear algebraic equations, implicit methods are usually
involved with the manipulation of large matrices.

The relative major advantages and disadvantages of these two approaches are
summarized as follows.

1. Explicit approach.

(a) Advantage. Relatively simple to set up and program.
(b) Disadvantage. In terms of our above example, for a given Δx, Δt must be less

than some limit imposed by stability constraints. In many cases, Δt must be
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very small to maintain stability; this can result in long computer running times
to make calculations over a given interval of t.

2. Implicit approach.

(a) Advantage. Stability can be maintained over much larger values of Δt, hence
using considerably fewer time steps to make calculations over a given inter-
val of t. This results in less computer time.

(b) Disadvantage. More complicated to set up and program.
(c) Disadvantage. Since massive matrix manipulations are usually required at

each time step, the computer time per time step is much larger than in the
explicit approach.

(d) Disadvantage. Since large Δt can be taken, the truncation error is larger, and
the use of implicit methods to follow the exact transients (time variations
of the independent variable) may not be as accurate as an explicit approach.
However, for a time-dependent solution in which the steady state is the de-
sired result, this relative time-wise inaccuracy is not important.

During the period 1969 to about 1979, the vast majority of practical CFD so-
lutions involving ‘marching’ solutions (such as in the above example) employed
explicit methods. Today, they are still the most straightforward methods for flow
field solutions. However, many of the more sophisticated CFD applications—those
requiring very closely-spaced grid points in some regions of the flow—would de-
mand inordinately large computer running times due to the small marching steps
required. This has made the advantage listed above for implicit methods very attrac-
tive, namely the ability to use large marching steps even for a very fine grid. For this
reason, implicit methods are today the major focus of CFD applications.

5.3.1 A General Comment

It is clear that finite-difference solutions appear to be philosophically straight-
forward; just replace the partial derivatives in the governing equations with alge-
braic difference quotients, and grind away to obtain solutions of these algebraic
equations at each grid point. However, this impression is misleading. For any given
application, there is no guarantee that such calculations will be accurate, or even
stable, under all conditions. Moreover, the boundary conditions for a given prob-
lem dictate the solution, and therefore the proper treatment of boundary conditions
within the framework of a particular finite-difference technique is vitally important.
For these reasons, finite-difference solutions of various aerodynamic flow fields are
by no means routine. Indeed, much of computational fluid dynamics today is still
more of an art than a science; each different problem usually requires thought and
originality in its solution. However, a great deal of research in applied mathematics
is now being devoted to CFD, and the next decade should see a major expansion in
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our understandingof the discipline, as well as the development of more improved,
efficient algorithms.1

5.4 Errors and an Analysis of Stability

At the end of the last section, we stated that no guarantee exists for the accuracy and
stability of a system of finite-difference equations under all conditions. However,
for linear equations there is a formal way of examining the accuracy and stability,
and these ideas at least provide guidance for the understanding of the behaviour of
the more complex non-linear system that is our governing flow equations. In this
section we introduce some of these ideas, applied to simple linear equations. The
material in this section is patterned somewhat after section 3–6 of the excellent new
book on CFD by Dale Anderson, John Tannehill and Richard Pletcher (Ref. [1]),
which should be consulted for more details.

Consider a partial differential equation, such as for example Eq. (5.23). The nu-
merical solution of this equation is influenced by two sources of error:

1. Discretization error. The difference between the exact analytical solution of the
partial differential equation (for example, Eq. (5.23)) and the exact (round-off

free) solution of the corresponding difference equation (for example, Eq. (5.24)).
From our previous discussion, the discretization error is simply the truncation
error for the difference equation plus any errors introduced by the numerical
treatment of the boundary conditions.

2. Round-off error. The numerical error introduced after a repetitive number of
calculations in which the computer is constantly rounding the numbers to some
significant figure.

If we let

A = analytical solution of the partial differential equation
D = exact solution of the difference equation
N = numerical solution from a real computer with finite accuracy

then,
Discretization error = A−D

Round-off = ε = N −D
(5.27)

From Eq. (5.27), we can write
N = D +ε (5.28)

1 The author wishes to note in proof that the present text was written in 1985 for use in the first
presentation of the VKI short course on Introduction to CFD. Hence, some statements made here
are slightly dated. For example, the years since 1985 have seen substantial progress made on so-
phisticated and advanced algorithm development; please consult the modern CFD literature for
such details.
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where again ε is the round-off error, which for the remainder of our discussion in
this section, we will simply call “error” for brevity. The numerical solution N must
satisfy the difference equation. Hence from Eq. (5.24),

Dn+1
i +εn+1

i −Dn
i −ε

n
i

Δt
=

Dn
i+1 +εn

i+1−2Dn
i −2εn

i + Dn
i−1ε

n
i−1

(Δx)2
(5.29)

By definition, D is the exact solution of the difference equation, hence it exactly
satisfies:

Dn+1
i −Dn

i

Δt
=

Dn
i+1−2Dn

i + Dn
i−1

(Δx)2
(5.30)

Subtracting Eq. (5.30) from (5.29),

εn+1
i −εn

i

Δt
=
εn

i+1−2εn
i +εn

i−1

(Δx)2
(5.31)

From Eq. (5.31), we see that the error ε also satisfies the difference equation.
We now consider aspects of the stability of the difference equation, Eq. (5.24). If

errors εi are already present at some stage of the solution of this equation (as they
always are in any real computer solution), then the solution will be stable if the εi’s
shrink, or at best stay the same, as the solution progresses from step n to n + 1; on
the other hand, if the εi’s grow larger during the progression of the solution from
steps n to n + 1, then the solution is unstable. That is, for a solution to be stable,

|εn+1
i /εn

i ≤ 1 (5.32)

For Eq. (5.24), let us examine under what conditions Eq. (5.32) holds.
Assume that the distribution of errors along the x-axis is given by a Fourier series

in x, and that the time-wise variation is exponential in t, i.e.

ε(x, t) = eat
∑

m

eikm x (5.33)

where km is the wave number and where the exponential factor a is a complex
number. Since the difference equation is linear, when Eq. (5.33) is substituted into
Eq. (5.31) the behaviour of each term of the series is the same as the series itself.
Hence, let us deal with just one term of the series, and write

εm(x, t) = eateikm x (5.34)

Substitute Eq. (5.34) into Eq. (5.31),

ea(t+Δt)eikm x − eateikm x

Δt
=

eateikm(x+Δx)−2eateikm x + eateikm(x−Δx)

(Δx)2
(5.35)

Divide Eq. (5.35) by eateikm x.
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eaΔt−1
Δt

=
eikmΔx −2 + e−ikmΔx

(Δx)2

or,

eaΔt = 1 +
Δt

(Δx)2
(eikmΔx + e−ikmΔx −2) (5.36)

Recalling the identity that

cos(kmΔx) =
eikmΔx + e−ikmΔx

2

Equation (5.36) can be written as

eaΔt = 1 +
2Δt

(Δx)2
[cos(kmΔx)−1] (5.37)

Recalling another trigonometric identity that

sin2[(kmΔx)/2] =
1− cos(kmΔx)

2

Equation (5.37) finally becomes

eaΔt = 1− 4Δt

(Δx)2
sin2[(kmΔx)/2] (5.38)

From Eq. (5.34),
εn+1

i

εn
i

=
ea(t+Δt)eikm x

eateikm x
= eaΔt (5.39)

Combining Eqs. (5.39), (5.38) and (5.32), we have
∣∣∣∣∣∣∣
εn+1

i

εn
i

∣∣∣∣∣∣∣ = |eaΔt| =
∣∣∣∣∣1− 4Δt

(Δx)2
sin2[(kmΔx)/2]

∣∣∣∣∣ ≤ 1 (5.40)

Equation (5.40) must be satisfied to have a stable solution, as dictated by
Eq. (5.32). In Eq. (5.40) the factor

∣∣∣∣∣1− 4Δt

(Δx)2
sin2[(kmΔx)/2]

∣∣∣∣∣ ≡G

is called the amplification factor, and is denoted by G. Evaluating the inequality in
Eq. (5.40), namely G ≤ 1, we have two possible situations which must hold simul-
taneously:

(1) 1− 4Δt

(Δx)2
sin2[(kmΔx)/2] ≤ 1

Thus
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4Δt
(Δx)

sin2[(kmΔx)/2] ≥ 0

Since Δt/(Δx)2 is always positive, this condition always holds.

(2) 1− 4Δt

(Δx)2
sin2[(kmΔx)/2] ≥ −1

Thus
4Δt

(Δx)2
sin2[(kmΔx)/2]−1 ≤ 1

For the above condition to hold,

Δt

(Δx)2
≤ 1

2
(5.41)

Equation (5.41) gives the stability requirement for the solution of the difference
equation, Eq. (5.24), to be stable. Clearly, for a given Δx, the allowed value of Δt
must be small enough to satisfy Eq. (5.41). Here is a stunning example of the limi-
tation placed on the marching variable by stability considerations for explicit finite
difference models. As long as Δt/(Δx)2 ≤ 1

2 , the error will not grow for subsequent
marching steps in t, and the numerical solution will proceed in a stable manner. On
the other hand, if Δt/(Δx)2 > 1

2 , then the error will progressively become larger, and
will eventually cause the numerical marching solution to ‘blow up’ on the computer.

The above analysis is an example of a general method called the von Neuman
stability method, which is used frequently to study the stability properties of linear
difference equations.

Let us quickly examine the stability characteristics of another simple equation,
this time a hyperbolic equation. Consider the first order wave equation:

∂u
∂t

+ c
∂u
∂x

= 0 (5.42)

Let us replace the spatial derivative with a central difference (see Eq. (5.8)).

∂u
∂x

=
un

i+1−un
i−1

2Δx
(5.43)

Let us replace the time derivative with a first order difference, where u(t) is rep-
resented by an average value between grid points (i + 1) and (i−1), i.e.

u(t) =
1
2

(un
i+1 + un

i−1)

Then
∂u
∂t

=
un+1

i − 1
2 (un

i+1 + un
i+1)

Δt
(5.44)

Substituting Eqs. (5.43) and (5.44) into (5.42), we have
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un+1
i =

un
i+1 + un

i−1

2
− c

Δt
Δx

(
un

i+1−un
i−1

2

)
(5.45)

The differencing used in the above equation, where Eq. (5.44) is used to represent
the time derivative, is called the Lax method, after the mathematician Peter Lax who
first proposed it. If we now assume an error of the form εm(x, t) = eateikmt as done
previously, and substitute this form into Eq. (5.45), the amplification factor becomes

G = cos(kmΔx)− iC sin(kmΔx) (5.46)

where C = c
Δt
Δx

. The stability requirement is |eat| ≤ 1, which when applied to

Eq. (5.46) yields

C = c
Δt
Δx
≤ 1 (5.47)

In Eq. (5.47), C is called the Courant number. This equation says that Δt ≤ Δx/c
for the numerical solution of Eq. (5.45) to be stable. Moreover, Eq. (5.47) is called
the Courant–Friedrichs–Lewy condition, generally written as the CFL condition. It
is an important stability criterion for hyperbolic equations.

Let us examine the physical significance of the CFL condition. Consider the sec-
ond order wave equation

∂2u

∂t2
= c

∂2u

∂x2
(5.48)

The characteristic lines for this equation (see Sect. 4.2) are given by

x = ct (right running)

and
x = −ct (left running)

and are sketched in Fig. 5.3(a) and (b). In both parts (a) and (b) of Fig. 5.3, let point
b be the intersection of the right-running characteristic through grid point (i− 1)
and the left-running characteristic through grid point (i+1). For Eq. (5.48), the CFL
condition as given in Eq. (5.47) holds as the stability criterion. Let ΔtC=1 denote the
value of Δt given by Eq. (5.47) when C = 1. Then ΔtC=1 = Δx/c, and the intersection
point b is therefore a distance ΔtC=1 above the x-axis, as sketched in Figs. 5.3(a) and
(b). Now assume that C < 1, which is the case sketched in Fig. 5.3(a). Then from
Eq. (5.47), ΔtC<1 < ΔtC=1, as shown in Fig. 5.3(a). Let point d correspond to the grid
point at point i, existing at time (t +ΔtC<1). Since properties at point d are calculated
numerically from the difference equation using grid points (i−1) and (i+1), the nu-
merical domain for point d is the triangle adc shown in Fig. 5.3(a). The analytical
domain for point d is the shaded triangle in Fig. 5.3(a), defined by the characteristics
through point d. Note that in Fig. 5.3(a) the numerical domain of point d includes
the analytical domain. In contrast, consider the case shown in Fig. 5.3(b). Here,
C > 1. Then, from Eq. (5.47), ΔtC>1 > ΔtC=1, as shown in Fig. 5.3(b). Let point d
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Fig. 5.3 Illustration of the
physical significance of the
CFL condition

in Fig. 5.3(b) correspond to the grid point i, existing at time (t +ΔtC>1). Since prop-
erties at point d are calculated numerically from the difference equation using grid
points (i−1) and (i + 1), the numerical domain for point d is the triangle adc shown
in Fig. 5.3(b). The analytical domain for point d is the shaded triangle in Fig. 5.3(b),
defined by the characteristics through point d. Note that in Fig. 5.3(b), the numerical
domain does not include all of the analytical domain, and it is this condition which
leads to unstable behaviour. Therefore, we can give the following physical interpre-
tation of the CFL condition:

For stability, the computational domain must include all of the analytical domain.
The above considerations dealt with stability. The question of accuracy, which is

sometimes quite different, can also be examined from the point of view of Fig. 5.3.
Consider a stable case, as shown in Fig. 5.3(a). Note that the analytic domain of
dependence for point d is the shaded triangle in Fig. 5.3(a). From our discussion in
Chap. 4, the properties at point d theoretically depend only on those points within
the shaded triangle. However, note that the numerical grid points (i− 1) and (i + 1)
are outside the domain of dependence, and hence theoretically should not influence
the properties at point d. On the other hand, the numerical calculation of properties
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at point d takes information from grid points (i− 1) and (i + 1). This situation is
exacerbated when ΔtC<1 is chosen to be very small, ΔtC<1  ΔtC=1. In this case,
even though the calculations are stable, the results may be quite inaccurate due to
the large mismatch between the domain of dependence of point d, and the location
of the actual numerical data used to calculate properties at d.

In light of the above discussion, we conclude that the Courant number must be
equal to or less than unity for stability, C ≤ 1, but at the same time it is desirable to
have C as close to unity as possible for accuracy.

Reference

1. Anderson, D.A., Tannehill, John C. and Pletcher, Richard H., Computational Fluid Mechanics
and Heat Transfer, McGraw-Hill, New York, 1984.



Chapter 6
Transformations and Grids

J.D. Anderson, Jr.

6.1 Introduction

If all CFD applications dealt with physical problems where a uniform, rectangu-
lar grid could be used in the physical plane, there would be no reason to alter the
governing equations derived in Chap. 2. We would simply apply these equations in
rectangular (x, y, z, t) space, finite-difference these equations according to the dif-
ference quotients derived in Chap. 5, and calculate away, using uniform values of
Δx, Δy, Δz and Δt. However, few real problems are ever so accommodating. For ex-
ample, assume we wish to calculate the flow over an airfoil, as sketched in Fig. 6.1,
where we have placed the airfoil in a rectangular grid. Note the problems with this
rectangular grid:

(1) Some grid points fall inside the airfoil, where they are completely out of the
flow. What values of the flow properties do we ascribe to these points?

(2) There are few, if any, grid points that fall on the surface of the airfoil. This
is not good, because the airfoil surface is a vital boundary condition for the
determination of the flow, and hence the airfoil surface must be clearly and
strongly seen by the numerical solution.

As a result, we can conclude that the rectangular grid in Fig. 6.1 is not appropriate
for the solution of the flow field. In contrast, a grid that is appropriate is sketched in
Fig. 6.2(a). Here we see a non-uniform, curvilinear grid which is literally wrapped
around the airfoil. New coordinate lines, ξ and η, are defined such that the airfoil
surface becomes a coordinate line, η = constant. This is called a boundary-fitted co-
ordinate system, and will be discussed in detail later in this chapter. The important
point is that grid points naturally fall on the airfoil surface, as shown in Fig. 6.2(a).
What is equally important is that, in the physical space shown in Fig. 6.2(a), the
grid is not rectangular, and is not uniformly spaced. As a consequence, the con-
ventional difference quotients are difficult to use. What must be done is to trans-
form the curvilinear grid mesh in physical space to a rectangularmesh in terms of

J.D. Anderson, Jr.
National Air and Space Museum, Smithsonian Institution, Washington, DC
e-mail: AndersonJA@si.edu

J.F. Wendt (ed.), Computational Fluid Dynamics, 3rd ed., 105
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Fig. 6.1 Airfoil on a
rectangular grid

Fig. 6.2 (a) Physical plane. (b) Computational plane

ξ and η. This is shown in Fig. 6.2(b), which illustrates a rectangular grid in terms
of ξ and η. The rectangular mesh shown in Fig. 6.2(b) is called the computational
plane. There is a one-to-one correspondence between this mesh, and the curvilinear
mesh in Fig. 6.2(a), called the physical plane. For example, points a, b and c in
the physical plane (Fig. 6.2a) correspond to points a, b and c in the computational
plane, which involves uniform Δξ and uniform Δη. The computed information is
then transferred back to the physical plane. Moreover, when the governing equa-
tions are solved in the computational space, they must be expressed in terms of the
variables ξ and η rather than x and y; i.e., the governing equations must be trans-
formed from (x, y) to (ξ, η) as the new independent variables.

The purpose of this chapter is to first describe the general transformation of the
governing flow equations between the physical plane and the computational plane.
Following this, various specific grids will be discussed. This material is an example
of a very active area of CFD research called grid generation.

6.2 General Transformation of the Equations

For simplicity, we will consider a two-dimensional unsteady flow, with independent
variables x, y and t; the results for a three-dimensional unsteady flow, with indepen-
dent variables x, y, z and t, are analogous, and simply involve more terms.
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We will transform the variables in physical space (x, y, t) to a transformed space
(ξ, η, τ), where

ξ = ξ(x,y, t) (6.1a)

η = η(x,y, t) (6.1b)

τ = τ(t) (6.1c)

In the above transformation, τ is considered a function of t only, and is frequently
given by τ= t. This seems rather trivial; however, Eq. (6.1c) must be carried through
the transformation in a formal manner, or else certain necessary terms will not be
generated. From the chain rule of differential calculus, we have

(
∂

∂x

)
y,t

=

(
∂

∂ξ

)
η,τ

(
∂ξ

∂x

)
y,t

+

(
∂

∂η

)
ξ,τ

(
∂η

∂x

)
y,t

The subscripts in the above expression are added to emphasize what variables
are being held constant in the partial differentiation. In our subsequent expressions,
subscripts will be dropped; however, it is always useful to keep them in your mind.
Thus, we will write the above expression as

∂

∂x
=

(
∂

∂ξ

)(
∂ξ

∂x

)
+

(
∂

∂η

)(
∂η

∂x

)
(6.2)

Similarly,

∂

∂y
=

(
∂

∂ξ

)(
∂ξ

∂y

)
+

(
∂

∂η

)(
∂η

∂y

)
(6.3)

Also,
(
∂

∂t

)
x,y

=

(
∂

∂ξ

)
η,τ

(
∂ξ

∂t

)
x,y

+

(
∂

∂η

)
ξ,η

(
∂η

∂t

)
x,y

+

(
∂

∂τ

)
ξ,η

(
∂τ

∂t

)
x,y

(6.4)

or,
∂

∂t
=

(
∂

∂ξ

)(
∂ξ

∂t

)
+

(
∂

∂η

)(
∂η

∂t

)
+

(
∂

∂τ

)
dτ
dt

(6.5)

Equations (6.2), (6.3) and (6.5) allow the derivatives with respect to x, y and t to
be transformed into derivatives with respect to ξ, η and τ. The coefficients of the
derivatives with respect to ξ, η and τ are called metrics, e.g. ∂ξ/∂x,∂ξ/∂y,∂η/∂x
and ∂η/∂y are metric terms which can be obtained from the general transforma-
tion given by Eqs. (6.1a, b and c). If Eqs. (6.1a, b and c) are given as closed form
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analytic expressions, then the metrics can also be obtained in closed form. How-
ever, the transformation given by Eqs. (6.1a, b and c) is frequently a purely nu-
merical relationship, in which case the metrics can be evaluated by finite-difference
quotients—typically central differences.

Examining the governing equations derived in Chap. 2, we note that the equations
for viscous flow involve second derivatives. Therefore, we need a transformation for
these derivatives; they can be obtained as follows. From Eq. (6.2), let

A =
∂

∂x
=

(
∂

∂ξ

)(
∂ξ

∂x

)
+

(
∂

∂η

)(
∂η

∂x

)

Then,

∂2

∂x2
=
∂A
∂x

=
∂

∂x

[(
∂

∂ξ

)(
∂ξ

∂x

)
+

(
∂

∂η

)(
∂η

∂x

)]

=

(
∂

∂ξ

)(
∂2ξ

∂x2

)
+

(
∂ξ

∂x

)(
∂2

∂x∂ξ

)

| |
B

+

(
∂

∂η

)(
∂2η

∂x2

)
+

(
∂η

∂x

)(
∂2

∂η∂x

)

| |
C

(6.6)

The mixed derivatives denoted by B and C in Eq. (6.6) can be obtained from the
chain rule as follows.

B =
∂2

∂x∂ξ
=
∂

∂x

(
∂

∂ξ

)

Recalling the chain rule given by Eq. (6.2), we have

B =

(
∂2

∂ξ2

)(
∂ξ

∂x

)
+

(
∂2

∂η∂ξ

)(
∂η

∂x

)
(6.7)

Similarly:

C =
∂2

∂x∂η
=
∂

∂x

(
∂

∂η

)
=

(
∂2

∂ξ∂η

)(
∂ξ

∂x

)
+

(
∂2

∂η2

)(
∂η

∂x

)
(6.8)

Substituting B and C from Eqs. (6.7) and (6.8) into Eq. (6.6), and rearranging the
sequence of terms, we have

∂2

∂x2
=

(
∂

∂ξ

)(
∂2ξ

∂x2

)
+

(
∂

∂η

)(
∂2η

∂x2

)
+

(
∂2

∂ξ2

)(
∂ξ

∂x

)2

+

(
∂2

∂η

)(
∂η

∂x

)2

+ 2

(
∂2

∂η∂ξ

)(
∂η

∂x

)(
∂ξ

∂x

) (6.9)

Equation (6.9) gives the second partial derivative with respect to x in terms of
first, second and mixed derivatives with respect to ξ and η, multiplied by various
metric terms. Let us now continue to obtain the second partial with respect to y.
From Eq. (6.3), let
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D ≡ ∂

∂y
=

(
∂

∂ξ

)(
∂ξ

∂y

)
+

(
∂

∂η

)(
∂η

∂y

)

Then,

∂2

∂y2
=
∂D
∂y

=
∂

∂y

[(
∂

∂ξ

)(
∂ξ

∂y

)
+

(
∂

∂η

)(
∂η

∂y

)]

=

(
∂

∂ξ

)(
∂2ξ

∂y2

)
+

(
∂ξ

∂y

)(
∂2

∂ξ∂y

)

| |
E

+

(
∂

∂η

)(
∂2η

∂y2

)
+

(
∂η

∂y

)(
∂2

∂η∂y

)

| |
F

(6.10)

Using Eq. (6.3),

E =
∂

∂y

(
∂

∂ξ

)
=

(
∂2

∂ξ2

)(
∂ξ

∂y

)
+

(
∂2

∂η∂ξ

)(
∂η

∂y

)
(6.11)

and

F =
∂

∂y

(
∂

∂η

)
=

(
∂2

∂η∂ξ

)(
∂ξ

∂y

)
+

(
∂2

∂η2

)(
∂η

∂y

)
(6.12)

Substituting Eqs. (6.11) and (6.12) into (6.10), we have, after rearranging the se-
quence of terms:

∂2

∂y2
=

(
∂

∂ξ

)(
∂2ξ

∂y2

)
+

(
∂

∂η

)(
∂2η

∂y2

)
+

(
∂2

∂ξ2

)(
∂ξ

∂y

)2

+

(
∂2

∂η2

)(
∂η

∂y

)2

+ 2

(
∂2

∂η∂ξ

)(
∂η

∂y

)(
∂ξ

∂y

) (6.13)

Equation (6.13) gives the second partial derivative with respect to y in terms of
first, second and mixed derivatives with respect to ξ and η, multiplied by various
metric terms. We now continue to obtain the second partial with respect to x and y.

∂2

∂x∂y
=
∂

∂x

(
∂

∂y

)
=
∂D
∂x

=
∂

∂x

[(
∂

∂ξ

)(
∂ξ

∂y

)
+

(
∂

∂η

)(
∂η

∂y

)]

=

(
∂

∂ξ

)(
∂2ξ

∂x∂y

)
+

(
∂ξ

∂y

)(
∂2

∂ξ∂x

)

| |
B

+

(
∂

∂η

)(
∂2η

∂x∂y

)
+

(
∂η

∂y

)(
∂2

∂η∂x

)

| |
C

(6.14)

Substituting Eqs. (6.7) and (6.8) for B and C respectively into Eq. (6.14), and
rearranging the sequence of terms, we have

∂2

∂x∂y
=

(
∂

∂ξ

)(
∂2ξ

∂x∂y

)
+

(
∂

∂η

)(
∂2η

∂x∂y

)
+

(
∂2

∂ξ2

)(
∂ξ

∂x

)(
∂ξ

∂y

)

+

(
∂2

∂η2

)(
∂η

∂x

)(
∂η

∂y

)
+

(
∂2

∂η∂ξ

)[(
∂η

∂x

)(
∂ξ

∂y

)
+

(
∂ξ

∂x

)(
∂η

∂y

)] (6.15)
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Equation (6.15) gives the second partial derivative with respect to x and y in terms
of first, second and mixed derivatives with respect to ξ and η, multiplied by various
metric terms.

Examine all the equations given in the boxes above. They represent all that is
necessary to transform the governing flow equations obtained in Chap. 2 with x, y
and t as the independent variables to ξ, η and τ as the new independent variables.
Clearly, when this transformation is made, the governing equations in terms of ξ, η
and τ become rather lengthy. Let us consider a simple example, namely that for
inviscid, irrotational, steady, incompressible flow, for which Laplace’s Equation is
the governing equation.

Laplace’s Equation :
∂2φ

∂x2
+
∂2φ

∂y2
= 0 (6.16)

Transforming Eq. (6.16) from (x, y) to (ξ, η), where ξ = ξ(x, y) and η = η(x, y),
we have from Eqs. (6.9) and (6.13):

(
∂2φ

∂ξ2

)(
∂ξ

∂x

)2

+ 2

(
∂2φ

∂ξ∂η

)(
∂η

∂x

)(
∂ξ

∂x

)
+

(
∂2φ

∂η2

)(
∂η

∂x

)2

+

(
∂φ

∂ξ

)(
∂2ξ

∂x2

)
+

(
∂φ

∂η

)(
∂2η

∂x2

)
+

(
∂2φ

∂ξ2

)(
∂ξ

∂y

)2

+ 2

(
∂2φ

∂η∂ξ

)(
∂η

∂y

)(
∂ξ

∂y

)
+

(
∂2φ

∂η2

)(
∂η

∂y

)2

+

(
∂φ

∂ξ

)(
∂2ξ

∂y2

)
+

(
∂φ

∂η

)(
∂2η

∂y2

)
= 0

Rearranging terms, we obtain

∂2φ

∂ξ2

⎡⎢⎢⎢⎢⎢⎣
(
∂ξ

∂x

)2

+

(
∂ξ

∂y

)2⎤⎥⎥⎥⎥⎥⎦+
∂2φ

∂η2

⎡⎢⎢⎢⎢⎢⎣
(
∂η

∂x

)2

+

(
∂η

∂y

)2⎤⎥⎥⎥⎥⎥⎦
+ 2

∂2φ

∂ξ∂η

[(
∂η

∂x

)(
∂ξ

∂x

)
+

(
∂η

∂y

)(
∂ξ

∂y

)]

+
∂φ

∂ξ

[
∂2ξ

∂x2
+
∂2ξ

∂y2

]
+
∂φ

∂η

[
∂2η

∂x2
+
∂2η

∂y2

]
= 0 (6.17)

Examine Eqs. (6.16) and (6.17); the former is Laplace’s equation in the physical
(x, y) space, and the latter is the transformed Laplace’s equation in the computa-
tional (ξ, η) space. The transformed equation clearly contains many more terms.

Once again we emphasize that Eqs. (6.1), (6.2), (6.3), (6.5), (6.9), (6.13) and (6.15)
are used to transform the governing flow equations from the physical plane (x, y
space) to the computational plane (ξ, η space), and that the purpose of the trans-
formation in most CFD applications is to transform a non-uniform grid in physical
space (such as shown in Fig. 6.2a) to a uniform grid in the computational space (such
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as shown in Fig. 6.2b). The transformed governing partial differential equations are
then finite-differenced in the computational plane, where there exists a uniform Δξ
and a uniform Δη, as shown in Fig. 6.2(b). The flow-field variables are calculated at
all grid points in the computational plane, such as points a, b and c in Fig. 6.2(b).
These are the same flow-field variables which exist in the physical plane at the cor-
responding points a, b and c in Fig. 6.2(a). The transformation that accomplishes
all this is given in general form by Eqs. (6.1a, b and c). Of course, to carry out a
solution for a given problem, the transformation given generically by Eqs. (6.1a, b
and c) must be explicitly specified. Examples of some specific transformations will
be given in subsequent sections.

6.3 Metrics and Jacobians

In Eqs. (6.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), (6.9), (6.10), (6.11), (6.12), (6.13),
(6.14), (6.15), the terms involving the geometry of the grids, such as ∂ξ/∂x, ∂ξ/∂y,
∂η/∂x, ∂η/∂y, etc., are called metrics. If the transformation, Eq. (6.1a, b and c), is
given analytically, then it is possible to obtain analytic values for the metric terms.
However, in many CFD applications, the transformation, Eq. (6.1a, b and c), is given
numerically, and hence the metric terms are calculated as finite differences.

Also, in many applications, the transformation may be more conveniently ex-
pressed as the inverse of Eqs. (6.1a, b), that is, we may have available the inverse
transformation.

x = x(ξ,η,τ) (6.18a)

y = y(ξ,η,τ) (6.18b)

t = t(τ) (6.18c)

In Eqs. (6.18a, b and c), ξ, η and τ are the independent variables. However,
in the derivative transformations given by Eqs. (6.2), (6.3), (6.4), (6.5), (6.6),
(6.7), (6.8), (6.9), (6.10), (6.11), (6.12), (6.13), (6.14), and (6.15), the metric terms
∂ξ/∂x, ∂η/∂y, etc. are partial derivatives in terms of x, y and t as the independent
variables. Therefore, in order to calculate the metric terms in these equations from
the inverse transformation in Eqs. (6.18a, b and c), we need to relate ∂ξ/∂x, ∂η/∂y,
etc. to the inverse forms ∂x/∂ξ, ∂y/∂η, etc. These inverse forms of the metrics are the
values which can be directly obtained from the inverse transformation, Eqs. (6.18a,
b and c). Let us proceed to find such relations.

Consider a dependent variable in the governing flow equations, such as the x-
component of velocity, u. Let u = u(x, y), where from Eqs. (6.18a and b), x = x(ξ, η)
and y = y(ξ, η). The total differential of u is given by

du =
∂u
∂x

dx +
∂u
∂y

dy (6.19)
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It follows from Eq. (6.19) that

∂u
∂ξ

=
∂u
∂x

∂x
∂ξ

+
∂u
∂y

∂y
∂ξ

(6.20)

and
∂u
∂η

=
∂u
∂x

∂x
∂η

+
∂u
∂y

∂y
∂η

(6.21)

Equations (6.20) and (6.21) can be viewed as two equations for the two unknowns
∂u/∂x and ∂u/∂y. Solving the system of equations (6.20) and (6.21) for ∂u/∂x using
Cramer’s rule, we have

∂u
∂x

=

∣∣∣∣∣∣∣∣∣∣∣

∂u
∂ξ

∂y
∂ξ

∂u
∂η

∂y
∂η

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣∣∣∣∣∣∣

(6.22)

In Eq. (6.22), the denominator determinant is identified as the Jacobian determi-
nant, denoted by

J ≡ ∂(x,y)
∂(ξ,n)

≡

∣∣∣∣∣∣∣∣∣∣∣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣∣∣∣∣∣∣
Hence, Eq. (6.22) can be written as

∂u
∂x

=
1
J

[(
∂u
∂ξ

)(
∂y
∂η

)
−
(
∂u
∂η

)(
∂y
∂ξ

)]
(6.23)

Now let us return to Eqs. (6.20) and (6.21), and solve for ∂u/∂y.

∂u
∂y

=

∣∣∣∣∣∣∣∣∣∣∣

∂x
∂ξ

∂u
∂ξ

∂x
∂η

∂u
∂η

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣∣∣∣∣∣∣
or,

∂u
∂y

=
1
J

[(
∂u
∂η

)(
∂x
∂ξ

)
−
(
∂u
∂ξ

)(
∂x
∂η

)]
(6.24)
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Examine Eqs. (6.23) and (6.24). They express the derivatives of the flow field
variables in physical space in terms of the derivatives of the flowfield variables in
computational space. Equations (6.23) and (6.24) accomplish the same derivative
transformations as given by Eqs. (6.2) and (6.3). However, unlike Eqs. (6.2) and
(6.3) where the metric terms are ∂ξ/∂x, ∂η/∂y, etc., the new Eqs. (6.23) and (6.24)
involve the inverse metrics, ∂x/∂ξ, ∂y/∂η, etc. Also notice that Eqs. (6.23) and
(6.24) include the Jacobian of the transformation. Therefore, whenever you have the
transformation given in the form of Eqs. (6.18a, b and c), from which you can read-
ily obtain the metrics in the form ∂x/∂ξ, ∂x/∂η, etc., the transformed governing flow
equations can be expressed in terms of these inverse metrics and the Jacobian, J.

A similar but more lengthy set of results can be obtained for a three-dimensional
transformation from (x, y, z) to (ξ, η, ζ). Consult Ref. [1] for more details. Our dis-
cussion above has been intentionally limited to two dimensions in order to demon-
strate the basic principles without cluttering the consideration with details.

6.4 Coordinate Stretching

In the remaining three sections of this chapter, we examine three types of grid trans-
formations. The simplest is discussed here. It consists of stretching the grid in one
or more coordinate directions.

For example, consider the physical and computational planes shown in Fig. 6.3(a,
b). Assume that we are dealing with the viscous flow over a flat surface, where the
velocity varies rapidly near the surface as shown in the velocity profile sketched at
the right of the physical plane (Fig. 6.3a). To calculate the details of this flow near
the surface, a finely spaced grid in the y-direction should be used, as sketched in the
physical plane. However, far away from the surface, the grid can be more coarse.
Therefore, a proper grid should be one in which the coordinate lines become pro-
gressively more closely spaced as the surface is approached. On the other hand, we
wish to deal with a uniform grid in the computational plane, as shown in Fig. 6.3(b).
On examination, we see that the grid in the physical space is ‘stretched’, as if a uni-
form grid were drawn on a piece of rubber, and then the upper portion of the rubber
were stretched upward in the y-direction. A simple analytical transformation which
can accomplish this grid stretching is:

Fig. 6.3 Example of grid stretching. (a) Physical plane. (b) Computational plane
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ξ = x (6.25a)

η = ln(y + 1) (6.25b)

The inverse transformation is

x = ξ (6.26a)

y = eη−1 (6.26b)

from which the inverse metrics are obtained as:

∂x
∂ξ

= 1;
∂x
∂η

= 0;
∂y
∂ξ

= 0;
∂y
∂η

= eη (6.27)

Let us consider the continuity equation, given by Eq. (2.27). For steady, two-
dimensional flow, this is

∂(ρu)
∂x

+
∂(ρv)
∂y

= 0 (6.28)

Equation (6.27) is the continuity equation written in terms of the physical plane.
This equation can be formally transformed by means of the general results given by
Eqs. (6.23) and (6.24), obtaining

1
J

[
∂(ρu)
∂ξ

(
∂y
∂η

)
− ∂(ρu)

∂η

(
∂y
∂ξ

)]
+

1
J

[
∂(ρv)
∂η

(
∂x
∂ξ

)
− ∂(ρv)

∂ξ

(
∂x
∂η

)]
= 0 (6.29)

Substituting into Eq. (6.29) the inverse metrics from Eq. (6.27), we have

eη ∂(ρu)
∂ξ

+
∂(ρv)
∂η

= 0 (6.30)

Equation (6.30) is the continuity equation in the computational plane.
Equation (6.30) can also be obtained from the direct transformation given by

Eqs. (6.25a and b). Here, the metrics are:

∂ξ

∂x
= 1;

∂ξ

∂y
= 0;

∂η

∂x
= 0;

∂η

∂y
=

1
y + 1

(6.31)

Using the transformations given by Eqs. (6.2) and (6.3), Eq. (6.28) becomes

∂(ρu)
∂ξ

(
∂ξ

∂x

)
+
∂(ρu)
∂η

(
∂η

∂x

)
+
∂(ρv)
∂ξ

(
∂ξ

∂y

)
+
∂(ρv)
∂η

(
∂η

∂y

)
= 0 (6.32)

Substituting into Eq. (6.32) the metrics from Eq. (6.31), we have

∂(ρu)
∂ξ

+
1

(y + 1)
∂(ρv)
∂η

= 0 (6.33)
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However, from Eq. (6.26b), y + 1 = eη. Therefore, Eq. (6.33) becomes

∂(ρu)
∂ξ

+
1
eη
∂(ρv)
∂η

= 0

or

eη ∂(ρu)
∂ξ

+
∂(ρv)
∂η

= 0 (6.34)

Equation (6.34) is identical to Eq. (6.30). All that we have done here is to demon-
strate how the transformed equation can be obtained from either the direct transfor-
mation or the inverse transformation; the results are the same.

An example of more complex grid stretching, in both the x- and y-directions, is
given in Refs. [2, 3]. Here, the supersonic viscous flow over a blunt base is studied.
The physical and computational planes are illustrated in Fig. 6.4. The streamwise
stretching is accomplished through a transformation originally used by Holst [4]

x =
ξ0

A
[sinh((ξ− x0)βx) + A]

where
A = sinh(βxx0)

and

x0 =
1

2βx
ln

[
1 + (eβx −1)ξ0

1 + (e−βx −1)ξ0

]

where ξ0 is the location in the computational plane where the maximum clustering
is to occur, and βx is a constant which controls the degree of clustering at ξ0, with
larger values of Bx providing a finer grid in the clustered region. The transverse
stretching is accomplished by dividing the physical plane into two sections: (1) the

Fig. 6.4 Comparison of uniform and compressed grid
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space directly behind the step, and (2) the space above (both in front of and behind)
the step. The transformation is based on that used by Roberts [5], and is given by

y =
(βy + 1)− (βy−1)e−c(η−1−α)/(1−α)

(2α + 1)(1 + e−c(η−1−α)/(1−α))

where

c = log

(
βy + 1

βy−1

)

and βy and α are appropriate constants, and are different for the two sections iden-
tified above. The algebraic transformations given above result in the grid stretching
shown in Fig. 6.4.

6.5 Boundary-Fitted Coordinate Systems

Consider the flow through the divergent duct shown in Fig. 6.5(a). Curve de is the
upper wall of the duct, and line fg is the centreline. For this flow, a simple rect-
angular grid in the physical plane is not appropriate, for the reasons discussed in
Sect. 6.1. Instead, we draw the curvilinear grid in Fig. 6.5(a) which allows both the
upper boundary de and the centreline fg to be coordinate lines, exactly fitting these
boundaries. In turn, the curvilinear grid in Fig. 6.5(a) must be transformed to a rect-
angular grid in the computational plane, Fig. 6.5(b). This can be accomplished as
follows. Let ys = f (x) be the ordinate of the upper surface de in Fig. 6.5(a). Then the
following transformation will result in a rectangular grid in (ξ, η) space:

ξ = x

η = y/ys where ys = f (x)

The above is a simple example of a boundary-fitted coordinate system. A more
sophisticated example is shown in Fig. 6.6, which is an elaboration of the case
illustrated in Fig. 6.2. Consider the airfoil shape given in Figure 6.6(a). A curvi-
linear system is wrapped around the airfoil, where one coordinate line η = η1 =

Fig. 6.5 A simple boundary-fitted coordinate system. (a) Physical plane. (b) Computational plane
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Fig. 6.6 (a) Physical plane.
(b) Computational plane

constant is on the airfoil surface. This is the inner boundary of the grid, designated
by Γ1. The outer boundary of the grid is labelled Γ2 in Figure 6.6(a), and is given
by η = η2 = constant. Examining this grid, we see that it clearly fits the boundary,
and hence it is a boundary-fitted coordinate system. The lines which fan out from
the inner boundary Γ1 and which intersect the outer boundary Γ2 are lines of con-
stant ξ, such as line ef for which ξ = ξ1 = constant. (Note that in Fig. 6.6(a) the lines
of constant η totally enclose the airfoil, much like elongated circles; such a grid is
called an ‘0’ type grid for airfoils. Another related curvilinear grid can have the η =

constant lines trailing downstream to the right, not totally enclosing the airfoil (ex-
cept on the inner boundary Γ1). Such a grid is called a ‘C’ type grid. We will see an
example of a ‘C’ type grid shortly.)

Question: What transformation will cast the curvilinear grid in Fig. 6.6(a) into
a uniform grid in the computational plane as sketched in Fig. 6.6(b)? To answer
this question, note from Fig. 6.6(a) that along the inner boundary Γ1, the physical
coordinates of the body are known:

(x,y) known along Γ1

Similarly, the physical coordinates of the outer boundary Γ2 are also known,
because Γ2 is simply a rather arbitrarily drawn loop around the airfoil. Once this
loop Γ2 is specified, then the physical coordinates along it are known:

(x,y) known along Γ2
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This hints of a boundary value problem where the boundary conditions (namely
the values of x and y) are known everywhere along the boundary. Recall from
Sect. 4.3.3 that the solution of elliptic partial differential equations requires the
specification of the boundary conditions everywhere along a boundary enclosing
the domain. Therefore, let us consider the transformation in Fig. 6.6 to be defined
by an elliptic partial differential equation (in contrast to an algebraic relation as
illustrated in Sect. 6.4). One of the simplest elliptic equations is Laplace’s equation:

∂2ξ

∂x2
+
∂2ξ

∂y2
= 0 (6.35a)

∂2η

∂x2
+
∂2η

∂y2
= 0 (6.35b)

where we have Dirichlet boundary conditions

η = η1 = constant on Γ1

η = η2 = constant on Γ2

and
ξ = ξ(x,y) is specified on both Γ1 and Γ2

It is important to keep in mind what we are doing here. The equations (6.35a
and b) have nothing to do with the physics of the flow field. They are simply ellip-
tic partial differential equations which we have chosen to relate ξ and η to x and y,
and hence constitute a transformation (a one-to-one correspondence of grid points)
from the physical plane to the computational plane. Because this transformation is
governed by elliptic equations, it is an example of a general class of grid generation
called elliptic grid generation. Such elliptic grid generation was first used on a prac-
tical basis by Joe Thompson at Missippi State University, and is described in detail
in the pioneering paper given in Ref. [6].

Let us look more closely at the physical and computational planes shown in
Fig. 6.6. In order to construct a rectangular grid in the computational plane plane
(Fig. 6.6b), a cut must be made in the physical plane (Fig. 6.6a) at the trailing edge
of the airfoil. This cut can be visualized as two lines superimposed on each other:
the line pq denoted by Γ3 represents a boundary line for the physical space above
pq, and and the line rs denoted by Γ4 represents a boundary line for the physical
space below rs. In the physical plane, the points p and r are the same point, and
the points q and s are the same point; in Fig. 6.6(a) they are slightly displaced for
clarity. However, in the computational plane, these points are all different. Indeed,
the grid in the computational plane is obtained by slicing the physical grid at the
cut, and then ‘unwrapping’ the grid from the airfoil. For example, the airfoil surface
in the physical plane, curve pgecar, becomes the lower straight line denoted by Γ1

in the computational plane. Similarly, the outer boundary ghfdbs becomes the upper
straight line denoted by Γ2 in the computational plane. The left and right sides of
the rectangle in the computational plane are formed from the cut in the physical
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Fig. 6.7 Computational
plane, illustrating the bound-
ary conditions and an internal
point

plane; the left side is line rs denoted by Γ4 in Fig. 6.6(b), and the right side is line
pq denoted by Γ3 in Fig. 6.6(b).

The computational plane is sketched again in Fig. 6.7. Here we emphasize that
values of (x, y) are known along all four boundaries, Γ1, Γ2, Γ3 and Γ4. The key
aspect of the elliptic grid generation approach is that, with the given boundary con-
ditions, Eqs. (6.35a and b) are solved for the (x, y) values which apply to all the
internal points. An example of such an internal point is given by point A in Fig. 6.7,
which corresponds to the same point A in Figs. 6.6(a) and (b). In reality, the equa-
tions to be solved are the inverse of Eqs. (6.35a and b), that is, equations obtained
from Eqs. (6.35a and b) by interchanging the dependent and independent variables.
The result is:

α
∂2x

∂ξ2
−2β

∂2x
∂ξ∂η

+γ
∂2x

∂η2
= 0 (6.36a)

α
∂2y

∂ξ2
−2β

∂2y
∂ξ∂η

+ α
∂2y

∂η2
= 0 (6.36b)

where

α =

(
∂x
∂η

)2

+

(
∂y
∂η

)2

β =

(
∂x
∂ξ

)(
∂x
∂η

)
+

(
∂y
∂ξ

)(
∂y
∂η

)

γ =

(
∂x
∂ξ

)2

+

(
∂y
∂ξ

)2

Note in Eqs. (6.36a and b) that x and y are now expressed as the dependent vari-
ables. Returning again to Fig. 6.7, Eqs. (6.36a and b) are solved, along with the given
boundary conditions for (x, y) on Γ1, Γ2, Γ3 and Γ4, to obtain the values of (x, y)
which correspond to the uniformly spaced grid points in the computational (ξ, η)
plane. Thus, a given grid point (ξi,ηj) in the computational plane corresponds to the
calculated grid point (xi, yj) in physical space. The solution of Eqs. (6.36a and b)
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is carried out by an appropriate finite-difference solution for elliptic equations; for
example, relaxation techniques are popular for such equations.

Note that the above transformation, using an elliptic partial differential equation
to generate the grid, does not involve closed-form analytic expressions; rather, it
produces a set of numbers which locate a grid point (xi, yj) in physical space which
correspond to a given grid point (ξi, ηj) in computational space. In turn, the metrics
in the governing flow equations (which are solved in the computational plane), such
as ∂ξ/∂x, ∂η/∂y, etc. are obtained from finite differences; central differences are
frequently used for this purpose.

The curvilinear, boundary-fitted coordinate system shown in Fig. 6.6(a) is simply
illustrated in a qualitative sense in that figure, for purposes of instruction. An actual
grid generated about an airfoil using the above elliptic grid generation approach is
shown in Fig. 6.8, taken from Ref. [7]. Using Thompson’s grid generation scheme
(Ref. [6]), Wright ( [7]) has generated a boundary-fitted coordinate system around
a Miley airfoil. (The Miley airfoil is an airfoil specially designed for low Reynolds
number applications by Stan Miley at Mississippi State University.) In Fig. 6.6 the
white speck in the middle of the figure is the airfoil, and the grid spreads far away
from the airfoil in all directions.

In Ref. [7] low Reynolds number flows over airfoils were calculated by means
of a time-dependent finite-difference solution of the compressible Navier-Stokes
equations (such time-dependent solutions are discussed in Chap. 7). The free stream
is subsonic, hence the outer boundary must be placed far away from the airfoil
because of the far-reaching propagation of disturbances in a subsonic flow. A detail
of the grid in the near vicinity of the airfoil is shown in Fig. 6.9. Note from both
Figs. 6.8 and 6.9 that the grid is a ‘C’ type grid, in contrast to the ‘0’ type grid
sketched in Fig. 6.6.

We end this section by emphasizing again that the elliptic grid generation, with its
solution of elliptic partial differential equations to obtain the internal grid points, is
completely separate from the finite-difference solution of the governing equations.

Fig. 6.8 Boundary fitted grid (from Ref. [7])
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Fig. 6.9 A detail of the boundary fitted grid (from Ref. [7])

The grid is generated first, before any solution of the governing equations is
attempted. The use of Laplace’s equation (Eq. (6.35a and b)) to obtain this grid has
nothing to do whatsoever with the physical aspects of the actual flow field. Here,
Laplace’s equation is simply used to generate the grid only.

6.6 Adaptive Grids

An adaptive grid is a grid network that automatically clusters grid points in regions
of high flow field gradients; it uses the solution of the flow field properties to locate
the grid points in the physical plane. The adaptive grid evolves in steps of time in
conjunction with a time-dependent solution of the governing flow field equations,
which computes the flow field variables in steps of time. During the course of the
solution, the grid points in the physical plane move in such a fashion to ‘adapt’ to re-
gions of large flow field gradients. Hence, the actual grid points in the physical plane
are constantly in motion during the solution of the flow field, and become stationary
only when the flow solution approaches a steady state. Therefore, unlike the elliptic
grid generation discussed in Sect. 6.5 where the generation of the grid is completely
separate from the flow field solution, an adaptive grid is intimately linked to the flow
field solution, and changes as the flow field changes. The hoped-for advantages of
an adaptive grid are expected because the grid points are clustered in regions where
the ‘action’ is occurring. These advantages are: (1) increased accuracy for a fixed
number of grid points, or (2), for a given accuracy, fewer grid points are needed.
Adaptive grids are still very new in CFD, and whether or not these advantages are
always acheived is not well established.

An example of a simple adaptive grid is that used by Corda [8] for the solution
of viscous supersonic flow over a rearward-facing step. Here, the transformation is
expressed in the form:
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Δx =
BΔξ

1 + b
∂g
∂x

(6.37)

Δy =
CΔη

1 + c
∂g
∂y

(6.38)

where g is a primitive flow field variable, such as p, ρ or T . If g = p, then Eqs. (6.37)
and (6.38) cluster the grid points in regions of large pressure gradients; if g = T ,
the grid points cluster in regions of large temperature gradients, and so forth. In
Eqs. (6.37) and (6.38), Δξ and Δη are fixed, uniform grid spacings in the computa-
tional (ξ, η) plane, b and c are constants chosen to increase or decrease the effect of
the gradient in changing the grid spacing in the physical plane, B and C are scale
factors and Δx and Δy are the new grid spacings in the physical plane. Because
∂g/∂x and ∂g/∂y are changing with time during a time-dependent solution of the
flow field, then clearly Δx and Δy change with time, i.e. the grid points move in the
physical space. Clearly, in regions of the flow where ∂g/∂x and ∂g/∂y are large,
Eqs. (6.37) and (6.38) yield small values of Δx and Δy for a given Δξ and Δη; this is
the mechanism which clusters the grid points.

In dealing with an adaptive grid, the computational plane consists of fixed points
in the (ξ, η) space; these points are fixed in time, i.e. they do not move in the com-
putational space. Moreover, Δξ is uniform, and Δη is uniform. Hence, the computa-
tional plane is the same as we have discussed in previous sections. The governing
flow equations are solved in the computational plane, where the x, y and t derivatives
are transformed according to Eqs. (6.2), (6.3) and (6.5). In particular, examine the
transformation given by Eq. (6.5) for the time derivative. In the case of stretched
or boundary-fitted grids as discussed in Sects. 6.4 and 6.5 respectively, the met-
rics ∂ξ/∂t and ∂η/∂t were zero, and Eq. (6.5) yields ∂/∂t = ∂/∂τ. However, for an
adaptive grid,

∂ξ

∂t
≡

(
∂ξ

∂t

)
x,y

and
∂η

∂t
≡

(
∂η

∂t

)
x,y

are finite. Why? Because, although the grid points are fixed in the computational
plane, the grid points in the physical plane are moving with time. The physical
meaning of (∂ξ/∂t)x,y is the time rate of change of ξ at a fixed (x, y) location in
the physical plane. Similarly, the physical meaning of (∂η/∂t)x,y is the time rate of
change of η at a fixed (x, y) location in the physical plane. Imagine that you have your
eyes locked to a fixed (x, y) point in the physical plane. As a function of time, the
values of ξ and η associated with this fixed (x, y) point will change. This is why ∂ξ/∂t
and ∂η/∂t are finite. In turn, when dealing with the transformed flow equations in
the computational plane, all three terms on the right-hand side of Eq. (6.5) are finite,
and must be included in the transformed equations. In this fashion, the time metrics
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∂ξ/∂t and ∂η/∂t automatically take into account the movement of the adaptive grid
during the solution of the governing flow equations.

The values of the time metrics in the form shown in Eq. (6.5) are a bit cumber-
some to evaluate; on the other hand, the related time metrics

(
∂x
∂t

)
ξ,η

and

(
∂y
∂t

)
ξ,η

are much easier to evaluate, because they come from
(
∂x
∂t

)
ξ,η
≈ Δx
Δt

(6.39)

and (
∂y
∂t

)
ξ,η
≈ Δy
Δt

(6.40)

where Δx and Δy are obtained directly from the transformation given in Eqs. (6.37)
and (6.38) respectively. Let us find the relationship between these two sets of time
metrics. Consider

x = x(ξ,η,τ)

Hence

dx =

(
∂x
∂ξ

)
η,τ

dξ+

(
∂x
∂η

)
ξ,τ

dη+

(
∂x
∂τ

)
ξ,η

dτ

From this result, we write

or
−
(
∂x
∂τ

)
ξ,η

=

(
∂x
∂ξ

)
η,τ

(
∂ξ

∂t

)
x,y

+

(
∂x
∂η

)
ξ,τ

(
∂η

∂t

)
x,y

(6.41)

Note that we are carrying the subscripts on the partial derivatives to avoid any
confusion over what variables are held constant. Now consider

y = y(ξ,η,τ)

Hence:

dy =

(
∂y
∂ξ

)
η,τ

dξ+

(
∂y
∂η

)
ξ,τ

dη+

(
∂y
∂τ

)
ξ,η

dτ

Thus, from this result we write
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or

−
(
∂y
∂τ

)
ξ,η

=

(
∂y
∂ξ

)
η,τ

(
∂ξ

∂t

)
x,y

+

(
∂y
∂η

)
ξ,τ

(
∂η

∂t

)
x,y

(6.42)

Solve Eqs. (6.41) and (6.42) for
(
∂ξ
∂t

)
x,y

(
∂ξ

∂t

)
x,y

=

∣∣∣∣∣∣∣∣∣∣∣∣

−
(
∂x
∂τ

)
ξ,η

(
∂x
∂η

)
ξ,τ

−
(
∂y
∂τ

)
ξ,η

(
∂y
∂η

)
ξ,τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
∂x
∂ξ

)
η,τ

(
∂x
∂η

)
ξ,τ(

∂y
∂ξ

)
η,τ

(
∂y
∂η

)
ξ,τ

∣∣∣∣∣∣∣∣∣∣∣∣
Recognizing that τ = t, and that the denominator is the Jacobian J, the above

equation becomes (dropping subscripts)

∂ξ

∂t
=

1
J

[
−
(
∂x
∂t

)(
∂y
∂η

)
+

(
∂y
∂t

)(
∂x
∂η

)]
(6.43)

Solving Eqs. (6.41) and (6.42) for
(
∂η
∂t

)
x,y

, we find a likewise fashion that

∂η

∂t
=

1
J

[(
∂x
∂t

)(
∂y
∂ξ

)
−
(
∂y
∂t

)(
∂x
∂ξ

)]
(6.44)

Let us recapitulate. For an adaptive grid, the governing flow equations, when
transformed for solution in the computational (ξ, η) plane, must contain all the
terms in the time transformation given by Eq. (6.5). The time metrics, ∂ξ/∂t and
∂η/∂t, in Eq. (6.5) can in turn be expressed in terms of ∂x/∂t and ∂y/∂t through
Eqs. (6.43) and (6.44). These new time metrics can in turn be readily calculated
from Eqs. (6.39) and (6.40), where Δx and Δy are given by the basic transformation
in Eqs. (6.37) and (6.38).

An example of an adapted grid for the supersonic viscous flow over a rearward
facing step is given in Fig. 6.10, taken from the work of Corda [8]. Flow is from left
to right. Note that the grid points cluster around the expansion wave from the top
corner of the step, and around the reattachment shock wave downstream of the step.
It is interesting to note that the adapted grid itself is a type of ‘flow field visualization
method’ that helps to identify the location of waves and other gradients in the flow.

Fig. 6.10 Adapted grid for the rearward-facing step problem (from Corda, Ref. [8])
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As a final note, there are many different approaches for the generation of adaptive
grids. The above discussion is just one; it is based on ideas presented by Dwyer
et al. in Ref. [9]. For a more complete discussion on adaptive grids, as well as grid
generation in general, see Ref. [1].
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Chapter 7
Explicit Finite Difference Methods: Some
Selected Applications to Inviscid
and Viscous Flows

J.D. Anderson, Jr.

7.1 Introduction

In this chapter we round-out our introductory treatment of computational fluid dy-
namics by discussing some applications of explicit finite difference methods to se-
lected examples for inviscid and viscous flows. These examples have one thing in
common—they are results obtained by either the present author and/or some of his
graduate students over the past few years. This is not meant to be chauvinistic; rather
this choice is intentionally made to illustrate what can be done by uninitiated stu-
dents who are new to the ideas of CFD. These examples demonstrate the power and
beauty of CFD in the hands of students much like yourselves who may have little or
no experience in the field. Moreover, in all cases the applications are carried out with
computer programs designed and written completely by each student. This is follow-
ing the author’s educational philosophy that each student should have the experience
of starting with paper and pencil, writing down the governing equations, develop-
ing the appropriate numerical solution of these equations, writing the FORTRAN
program, punching the program into the computer, and then going through all the
trials and tribulations of making the program work properly. This is an important
aspect of CFD education. No established computer programs (‘canned’ programs)
are used; everything is ‘home-grown’, with the exception of standard graphics pack-
ages which are used to plot the results. Therefore, by examining these examples, you
should obtain a reasonable feeling for what you can expect to accomplish when you
first jump into the world of CFD applications.

Before we discuss some examples, it is important to describe the mechanism
of explicit finite-difference calculations. The distinction between explicit and im-
plicit approaches was made in Sect. 5.3, which should be reviewed before progress-
ing further in this chapter. In the next few sections, we will describe two rather
straightforward and popular explicit methods. The treatment and application of im-
plicit methods is given by other lectures in this course, and hence will not be dis-
cussed here.

J.D. Anderson, Jr.
National Air and Space Museum, Smithsonian Institution, Washington, DC
e-mail: AndersonJA@si.edu

J.F. Wendt (ed.), Computational Fluid Dynamics, 3rd ed., 127
c© Springer-Verlag Berlin Heidelberg 2009
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Finally, the examples discussed in this chapter all incorporate the time-dependent
method, i.e. forward marching in steps of time. The historic break-through made
by this method in the 1960s is discussed in Chap. 1. The vast majority of time-
dependent solutions have as their objective the solution of a steady-state flow field
which is approached by the solution at large times; here, the time-dependent mech-
anism is simply a means towards achieving that end. In other applications, the time-
dependent method is used to calculate the actual transients in an unsteady flow of
interest. Examples of both are given here. We note, however, that although the fol-
lowing sections deal with marching forward in time, the same techniques are easily
applied to a steady flow calculation where spatial marching is done along some co-
ordinate axis. We have seen in Chap. 4 that such forward marching (in time or space)
is appropriate when the governing equations are hyperbolic or parabolic.

7.2 The Lax–Wendroff Method

Let us describe this method by considering a simple gas-dynamic problem, namely
the subsonic–supersonic isentropic flow through a convergent–divergent nozzle, as
sketched in Fig. 7.1. Here, a nozzle of specified area distribution, A = A(x), is given,
and the reservoir conditions are known. Let us consider a quasi-one-dimensional
solution where the flow field variables are functions of x (in the steady state). For
a calorically perfect gas, the solution of this flow is classical, and can be found in
any compressible flow text book (see for example Refs. [1,2]). We use this example
here only because it is an excellent vehicle for introducing and describing the time-
dependent finite-difference philosophy.

The nozzle is divided into a number of grid points in the x-direction as shown
in Fig. 7.1; the spacing between adjacent grid points is Δx. Now assume values of
the flow field variables at all grid points, and consider this rather arbitrarily assumed
flow as an initial condition at time t = 0. In general, these assumed values will not
be the exact steady-state results; indeed, the exact steady-state results are what we
are trying to calculate. Consider a grid point, say point i. Let gi denote a flow field
variable at this point (gi might be pressure, density, velocity, etc.). This variable gi

will be a function of time; however, we know gi at time t = 0, i.e. we know gi(0)
because we have assumed values for all the flow field variables at all the grid points
at the initial time t = 0.

Fig. 7.1 Flow through a
convergent-divergent nozzle
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We now calculate a new value of gi at time t +Δt; starting from the initial condi-
tions, the first new time is t +Δt = 0 +Δt. Here, Δt is a small increment in time to be
discussed later. The new value of gi, i.e. gi(t +Δt), is obtained from a Taylor’s series
expansion in time as

gi(t + Δt) = gi(t) +

(
∂g
∂t

)
i
Δt +

(
∂2g

∂t2

)
i

(Δt)2

2
+ · · ·

or, using the standard notation of time as a superscript,

gt+Δt
i = gt

i +

(
∂g
∂t

t

i

)
Δt +

(
∂2g

∂t2

)t

i

(Δt)
2

+ · · · (7.1)

Here gt+Δt
i is the value of g at grid point i and at time t +Δt; (∂g/∂t)t

i is the first
partial of g evaluated at grid point i at time t, etc. In Eq. (7.1), gt

i is known and Δt
is specified. Therefore, we can use Eq. (7.1) to calculate gt+Δt

i if we have numbers
for the derivatives (∂g/∂t)t+Δt

i and (∂2g/∂t2)t+Δt
i . The numbers for the derivatives are

obtained from the physics of the flow as embodied in the governing flow equations.
(Note that Eq. (7.1) is simply mathematics, and by itself is certainly not sufficient
to solve the problem.) The governing flow equations for the quasi-one-dimensional
flow through a nozzle are (14):

Continuity :
∂ρ

∂t
= − 1

A
∂(ρuA)
∂x

(7.2)

Momentum :
∂u
∂t

= −1
ρ

(
∂p
∂x

+ρu
∂u
∂x

)
(7.3)

Energy :
∂e
∂t

= −1
ρ

[
p
∂u
∂x

+ pu
∂(1nA)
∂x

+ρu
∂e
∂x

]
(7.4)

Note that Eqs. (7.2), (7.3) and (7.4) are written with the time derivatives on the
left-hand side, and spatial derivatives on the right-hand side. For the moment, let us
calculate density, i.e. g≡ ρ, and let us consider just the continuity equation, Eq. (7.2).

Expanding the right-hand side of Eq. (7.2), we obtain

∂ρ

∂t
= − 1

A
ρu
∂A
∂x
−u

∂ρ

∂x
−ρ∂u

∂x
(7.5)

At time t = 0, the flow field variables are assumed; hence we can replace the
spatial derivatives with central differences:

(
∂ρ

∂t

)t

i
=− 1

A
ρt

iu
t
i

(Ai+1−Ai−1

2Δx

)
−ut

i

⎛⎜⎜⎜⎜⎝ρ
t
i+1−ρ

t
i−1

2Δx

⎞⎟⎟⎟⎟⎠−ρt
i

⎛⎜⎜⎜⎜⎝ut
i+1−ut

i−1

2Δx

⎞⎟⎟⎟⎟⎠ (7.6)

Equation (7.6) gives us a number for (∂ρ/∂t)t
i, which is inserted into Eq. (7.1).

However, to complete Eq. (7.1), we need a number for the second partial also,
namely (∂2ρ/∂t2)t

i. To obtain this, differentiate the continuity equation, Eq. (7.5),
with respect to time:
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∂2ρ

∂t2
=− 1

A

[
∂A
∂x

(
ρ
∂u
∂t

+ u
∂ρ

∂t

)]
−u

∂2ρ

∂x∂t
−
(
∂ρ

∂x

)(
∂u
∂t

)
−ρ ∂

2u
∂x∂t

−
(
∂u
∂x

)(
∂ρ

∂t

)
(7.7)

Also, differentiate the continuity equation, Eq. (7.5), with respect to x:

∂2ρ

∂t∂x
=− 1

A

[
ρu
∂2A

∂x2
+

(
∂A
∂x

)(
ρ
∂u
∂x

+ u
∂ρ

∂x

)]
−u

∂2ρ

∂x2
−
(
∂ρ

∂x

)(
∂u
∂x

)
−ρ∂

2u

∂x2
−
(
∂u
∂x

)(
∂ρ

∂x

)

(7.8)

The procedure now works as follows:

(1) In Eq. (7.8), replace all derivatives on the right-hand side with central differ-
ences, such as

∂u
∂x

=
ut

i+1−ut
i−1

2Δx
∂2u

∂x2
=

ut
i+1−2ut

i + ut
i−1

(Δx)2

etc.

This now provides a number for (∂2ρ/∂t∂x)t
i from Eq. (7.8).

(2) Insert this number for (∂2ρ/∂t∂x)t
i into Eq. (7.7). Also in Eq. (7.7), numbers for

∂u/∂t and ∂2u/∂x∂t are obtained from a treatment of the momentum equation,
Eq. (7.3), in a manner exactly the same as the continuity equation was treated
above. The details will not be given here. In Eq. (7.7), a number for (∂ρ/∂t) is
already available, namely from Eq. (7.6). The net result is that we now have a
number for (∂2ρ/∂t2)t

i, obtained from Eq. (7.7).
(3) Insert this number for (∂2ρ/∂t2)t

i into Eq. (7.1), remembering that g ≡ ρ for
this case.

(4) Insert the number for (∂ρ/∂t)t
i, obtained from Eq. (7.6), into Eq. (7.1).

(5) Every quantity on the right-hand side of Eq. (7.1) is now known. This allows
the density ρt+Δt

i to be calculated from Eq. (7.1). This is indeed what we wanted.
We now have the density at grid point i at the next step in time, t +Δt.

(6) Perform the above procedure at every grid point to obtain ρ(t +Δt) everywhere
throughout the nozzle.

(7) Perform the above procedure on the momentum and energy equations to ob-
tain u(t + Δt) and e(t + Δt) everywhere throughout the nozzle. We now have
the complete flowfield at time (t + Δt), obtained from the known flowfield at
time t. (Recall that the process is started at t = 0 with the assumed initial
conditions.)

(8) Repeat the above process for a large number of time steps. At each time step,
the flow properties at all grid points will change from one time to the next.
However, at large times, these changes become very small, and a steady-state
is approached. This steady-state is the desired result, and the time-dependent
technique is simply a means to that end.
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Fig. 7.2 Transient and final
steady-state temperature
distributions for a calorically
perfect gas obtained from the
present time-dependent
analysis, γ = 1.4

The behaviour of this type of solution is illustrated in Figs. 7.2 and 7.3. In
Fig. 7.2, the temperature distribution through a given nozzle is shown. The dashed
line labelled t = 0 is the initially assumed values for T throughout the nozzle. The
curve above it labelled 8Δt is the temperature distribution after eight time steps fol-
lowing the above procedure. The curves labeled 16Δt and 32Δt are similar results
after 16 and 32 time steps respectively. Note that the temperature distribution has
rapidly changed from the assumed initial distribution at t = 0. At later times, the
changes become smaller; note that the curve labelled 120Δt is not too different from
that for 32Δt. Finally, after 744 time steps, the changes are so small that the tem-
perature distribution is essentially at a steady state. This steady state is the desired
solution. Note that the numerically-obtained steady state agrees virtually perfectly
with the classical results, as can be obtained from Refs. [1, 3], and from Ref. [4].
Fig. 7.3 illustrates the variation of mass flow, ṁ, through the nozzle. The dashed
line is the ṁ consistent with the assumed initial conditions at t = 0. The curves la-
belled 16Δt and 32Δt graphically demonstrate the wild variations in ṁ at early times.

Fig. 7.3 Transient and final steady-state mass-flow distributions for a calorically perfect gas
obtained from the present time-dependent analysis, γ = 1.4
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However, after 120 time steps ṁ has become more stable, and after 744 time steps
has reached a steady state. This steady state distribution for ṁ is a straight, hori-
zontal line, as it should be for steady flow, where ṁ = constant through the nozzle.
Moreover, it is the correct value of mass flow, as compared to results from Ref. [4].

The method described above, utilizing Eq. (7.1), which is the first three terms of
a Taylor’s series expansion and where both the first and second partial derivatives in
Eq. (7.1) are found by finite-differencing the spatial derivatives in the governing flow
equations with central differences, is called the Lax-Wendroff method. Note that the
method is of second-order accuracy, from Eq. (7.1). This method was employed
with much success in the late 1960s until a more straight-forward version of the
same idea was introduced by MacCormack in 1969. This is the subject of the next
section.

For more details about the Lax-Wendroff method as applied to the nozzle prob-
lem, see Refs. [5, 6].

7.3 MacCormack’s Method

MacCormack’s method, first introduced in 1969 (see Ref. [7]), has been the most
popular explicit finite-difference method for solving fluid flows. It is closely related
to the Lax-Wendroff method, but is easier to apply. Let us use the same nozzle prob-
lem discussed in Sect. 7.2 to illustrate MacCormack’s method in the present section.
MacCormack’s method, like the Lax-Wendroff method, is based on a Taylor’s series
expansion in time. Once again, as in Sect. 7.2, let us consider the density at grid
point i.

ρt+Δt
i = ρt

i +

(
∂ρ

∂t

)
ave

Δt (7.9)

Equation (7.9) is a truncated Taylor’s series that looks first-order accurate; how-
ever, (∂ρ/∂t)ave is an average time derivative taken between time t and t +Δt. This
derivative is evaluated in such a fashion that the calculation of ρt+Δt

i from Eq. (7.9)
becomes second-order accurate. The average time derivative in Eq. (7.9) is evaluated
from a predictor-corrector philosophy as follows.

Predictor step.
We repeat the continuity equation, Eq. (7.5), below:

∂ρ

∂t
= − 1

A
ρu
∂A
∂x
−u

∂ρ

∂x
−ρ∂u

∂x
(7.5 repeated)

In Eq. (7.5), calculate the spatial derivatives from the known flow field values at
time t using forward differences. That is, from Eq. (7.5),

(
∂ρ

∂t

)t

i
=− 1

A

[
ρt

iu
t
i

(Ai+1−Ai

Δx

)]
−ut

i

⎛⎜⎜⎜⎜⎝ρ
t
i+1−ρ

t
i

Δx

⎞⎟⎟⎟⎟⎠−ρt
i

⎛⎜⎜⎜⎜⎝ut
i+1−ut

i

Δx

⎞⎟⎟⎟⎟⎠ (7.10)
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Obtain a predicted value of density, ρ̄t+Δt
i , from the first two terms of a Taylor’s

series, as follows

ρ̄t+Δt
i = ρt

i +

(
∂ρ

∂t

)t

i
Δt (7.11)

In Eq. (7.11), ρt
i is known, and (∂ρ/∂t)t

i is a known number from Eq. (7.10);
hence, ρ̄t+Δt

i is readily obtained. In a similar fashion, from the momentum and energy
equations, predicted values of the other flow variables such as ūt+Δt

i , ēt+Δt
i , etc. are

obtained.

Corrector step

Here, we first obtain a predicted value of the time derivative, ( ∂ρ∂t )t+Δt
i , by substituting

the predicted values of ūt+Δt
i , ρ̄t+Δt

i , etc. into Eq. 7.5, using rearward differences.

(
∂ρ

∂t

) t+Δt

i
= − 1

A
ρ̄t+Δt

i ūt+Δt
i

(Ai−Ai−1

Δx

)
− ūt+Δt

i

⎛⎜⎜⎜⎜⎜⎝ ρ̄
t+Δt
i − ρ̄t+Δt

i−1

Δx

⎞⎟⎟⎟⎟⎟⎠− ρ̄t+Δt
i

⎛⎜⎜⎜⎜⎜⎝ ūt+Δt
i − ūt+Δt

i−1

Δx

⎞⎟⎟⎟⎟⎟⎠
(7.12)

Now calculate the average time derivative as the arithmetic mean between
Eqs. (7.10) and (7.12), i.e.

(
∂ρ

∂t

)
ave

=
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(
∂ρ

∂t

)t

i
+

(
∂ρ

∂t

) t+Δt

i

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (7.13)

where numbers for the two terms on the right-hand side of Eq. (7.13) come from
Eqs (7.10) and (7.12) respectively. Finally, we obtain the corrected value of ρt+Δt

i
from Eq. (7.9), repeated below:

ρt+Δt
i = ρt

i +

(
∂ρ

∂t

)
ave

Δt (7.9 repeated)

The above predictor–corrector approach is carried out for all grid points through-
out the nozzle, and is applied simultaneously to the momentum and energy equations
in order to generate ut+Δt

i and et+Δt
i . In this fashion, the flow field through the entire

nozzle at time t +Δt is calculated. This is repeated for a large number of time steps
until the steady state is achieved, just as in the case of the Lax-Wendroff method
described in Sect. 7.2.

MacCormack’s technique as described above, because a two-step predictor–
corrector sequence is used with forward differences on the predictor and rearward
differences on the corrector, is a second-order accurate method. Therefore, it has
the same accuracy as the Lax-Wendroff method described in Sect. 7.2. However, the
MacCormack method is much easier to apply, because there is no need to evaluate
the second time derivatives as was the case for the Lax-Wendroff method. To see this
more clearly, recall Eqs. (7.7) and (7.8), which are required for the Lax-Wendroff
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method. These equations represent a large number of additional calculations. More-
over, for a more complex fluid dynamic problem, the differentiation of the conti-
nuity, momentum and energy equations to obtain the second derivatives, first with
respect to time, and then the mixed derivatives with respect to time and space, can be
very tedious, and provides an extra source for human error. MacCormack’s method
does not require such second derivatives, and hence does not deal with equations
such as Eqs. (7.7) and (7.8).

A few comments are made with regard to the specific application to the quasi-
one-dimensional nozzle flow shown in Fig. 7.1. At the inflow boundary (the first
grid point at the left), the values of p, T and ρ are fixed, independent of time, and are
assumed to be reservoir values. The inflow velocity, which is a very small subsonic
value, is calculated from linear extrapolation using the adjacent internal points, or it
can be evaluated from the momentum equation applied at the first grid point using
one-sided differences. At the outflow boundary (the last grid point at the right in
Fig. 7.1), all the dependent variables are obtained from linear extrapolation from the
adjacent internal points, or by applying the governing equations at this point, using
one-sided differences.

Finally, we note that results obtained from the Lax–Wendroff method and from
the MacCormack method are virtually identical. For example, these two methods
are compared for a vibrationally relaxing, high temperature, non-equilibrium nozzle
flow in Ref. [8]; there is no difference between the two sets of results.

7.4 Stability Criterion

Examine Eq. (7.1), which is vital to the Lax–Wendroff method. Note that it requires
the specification of a time increment, Δt. Examine Eqs. (7.9) and (7.11), which are
vital to the MacCormack method. They too require the specification of a time in-
crement, Δt. For explicit methods, the value of Δt cannot be arbitrary, rather it must
be less than some maximum value allowable for stability. The time-dependent ap-
plications described in Sects. 7.2 and 7.3 are dealing with governing flow equations
which are hyperbolic with respect to time. Recall our discussion in Sect. 5.4 dealing
with the stability criteria for such equations. There, it was stated that Δt must obey
the Courant–Friedrichs–Lewy criterion—the so-called CFL criterion. This is em-
bodied in Eq. (5.47), which was derived from the simple model equation given by
Eq. (5.42). This is the linear wave equation, where c is the wave propagation speed.
If the wave were propagating through a gas which already has a velocity u, then the
wave will travel at the velocity (u + c) relative to the stationary surroundings. For
such a case, Eq. (5.47) becomes

Δt = C

(
Δx

u + c

)
; C ≤ 1 (7.14)

where C is the Courant number, and c is the speed of sound, c = (∂p/∂ρ)s. Eq. (7.14)
is the appropriate CFL criterion for the one-dimensional, explicit solutions of nozzle
flows discussed in Sects. 7.2 and 7.3. The CFL criterion given by Eq. (7.14) says
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physically that the explicit time step must be no greater than the time required for a
sound wave to propagate from one grid point to the next. This author’s experience
has been that C should be as close to unity as possible, but depending upon the actual
application, the maximum allowable value ofC for stability in explicit time-dependent
finite difference calculations can vary from approximately 0.5–1.0. Keep in mind that
the stability criteria exemplified by Eqs. (5.47) and (7.14) are based on analysis of
linear equations. On the other hand, the governing equations for a general fluid flow
are highly non-linear. Therefore, we would not expect the CFL criteria to apply exactly
to such cases; instead, it provides a reasonable estimate of Δt for a given non-linear
problem, and as a result the value of the Courant number in Eq. (7.14) can be viewed
as an adjustable parameter to compensate for such non-linearities.

Return for a moment to the nozzle flow application discussed in Sects. 7.2
and 7.3. Here, at any given time t, Eq. (7.14) is evaluated at each grid point through-
out the flow. Because u and c vary with x, then the local value of Δt associated with
each grid point will be different from one point to the next. The value of Δt actually
employed in Eqs. (7.1) and (7.9) to advance the flow field through the next step in
time should be the minimum Δt calculated over all the grid points.

[Some CFD applications have employed the ‘local time step method’, where-
in the local values of Δt are used at each grid point in Eqs. (7.1) and (7.9). In this
case, the transient variations calculated over many time steps do not hold physically;
a type of ‘time-warped’ flow field is developed, where all the new flow variables
calculated for a subsequent time step actually pertain to different total values of
time. This ‘local time step method’ frequently results in a faster convergence to the
steady state, that is, fewer total time steps are required to obtain the steady state. On
the other hand, the calculated transients have no physical meaning, and some CFD
experts wonder openly about the overall accuracy of such a method, even for the
final steady state results.]

Finally, we note that for a two or three-dimensional flow, an extension of
Eq. (7.14) is:

Δt = Min(Δtx, Δty) (7.15a)

where

Δtx = C
Δx

u + c
(7.15b)

and

Δty = C
Δy

v + c
(7.15c)

7.5 Selected Applications of the Explicit Time-Dependent
Technique

The purpose of this section is to illustrate various applications of the explicit, time-
dependent technique described in the previous sections of this chapter. These ap-
plications contain many of the CFD features that have been discussed throughout
these notes.
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7.5.1 Non-equilibrium Nozzle Flows

References [5,6,8] represent the first application of the time-dependent technique to
vibrational and chemical non-equilibrium nozzle flows. A purely steady flow anal-
ysis of such flows, which involves forward marching from the reservoir to the exit
of the nozzle, encounters a saddle-point singularity at the nozzle throat. This singu-
larity greatly complicates steady-state numerical solutions of the flow. On the other
hand, as first demonstrated in Refs. [5,6], the time-dependent numerical solution cir-
cumvents such problems in the throat region, and therefore constitutes a relatively
straightforward numerical solution of such flows.

The analysis of vibrational non-equilibrium nozzle flows requires the inclusion
of a vibrational rate equation, such as

∂evib

∂t
=

1
τ

[(evib)eq− evib]−u
∂evib

∂x
(7.16)

where evib is the local non-equilibrium value of molecular vibrational energy per
unit mass of gas, (evib)eq is the local equilibrium value, and τ is the vibrational
relaxation time which is a function of local p and T . The analysis of chemical non-
equilibrium nozzle flows requires the inclusion of species continuity equations—
one for each chemical species present in the gas—which are of the form

∂ηi

∂t
= ẇi−u

∂ηi

∂x
(7.17)

where ηi is the mole–mass ratio (moles of species i per unit mass of mixture), and ẇi

is the rate of formation (or extinction of species i) due to finite-rate chemical reac-
tions. The form of ẇi involves chemical rate constants and the local concentrations
of the chemical species. For an introductory development of Eqs. (7.16) and (7.17),
see Chaps. 13 and 14 of Ref. [3]. Note that, in the same vein as Eqs. (7.2), (7.3)
and (7.4), Eqs. (7.16) and (7.17) are written in the form of a time derivative on
the left-hand side, and spatial derivatives on the right-hand side. In turn, the non-
equilibrium variables evib and ηi are calculated in steps of time in the same fashion
as ρ, u and e from Eqs. (7.2), (7.3) and (7.4). Indeed, for the time-dependent so-
lution of non-equilibrium nozzle flows, Eqs (7.2), (7.3) (7.4), (7.16) and (7.17) are
coupled, and are solved in the same coupled fashion at each time step as described
in Sects. 7.2 and 7.3. However, there is one additional stability restriction brought
about by the non-equilibrium phenomena. For explicit solutions of non-equilibrium
flows, in addition to the CFL criterion discussed in Sect. 7.4, the value of Δt must
also be less than the characteristic time for the fastest finite rate taking place in the
system. That is

Δt < BΓ

where Γ = τ for vibrational non-equilibrium, and Γ = (∂ẇi/∂ηi)
−1 which is an effec-

tive chemical relaxation time. (See Refs. [5, 6] for more details.)
For this problem, no grid transformation is necessary; the physical and computa-

tional planes are one-in-the-same.
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Fig. 7.4 Transient and final steady-state evib distributions for the non-equilibrium expansion of N2
obtained from the present time-dependent analysis

Typical results obtained with the Lax–Wendroff time-dependent technique are
shown in Figs. 7.4 and 7.5, from Ref. [5]. The case of the vibrational non-equilibrium
expansion of pure N2 is illustrated in Fig. 7.4. Here, the time-dependent nature of
the non-equilibrium value of evib as a function of distance through the nozzle is
shown. The dashed line represents the assumed initial distribution at t = 0. Several
intermediate distributions, after 100 and 250 time steps, are shown, along with the
final steady state after 800 time steps. A different case, namely that of the non-
equilibrium chemically reacting expansion of dissociated oxygen, is illustrated in
Fig. 7.5. Here, the dashed line represents the initially assumed variation of the mass
fraction of atomic oxygen through the nozzle at t = 0. Several intermediate curves
after 100 and 400 time steps are shown, along with the final, converged steady state
after 2800 time steps. This final steady state distribution agrees well with an earlier

Fig. 7.5 Transient and final steady-state atom mass fraction distributions for the non-equilibrium
expansion of dissociating oxygen obtained from the present time-dependent method; the steady-
state distribution is compared with the steady-flow analysis of Ref. [9]
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steady flow solution carried out by Hall and Russo [9], which is shown as the solid
circles in Fig. 7.5.

7.5.2 Flow Field Over a Supersonic Blunt Body

Here we return to the supersonic blunt body problem discussed in Sect. 1.1. We as-
sume inviscid flow, hence the governing flow equations are represented by Eq. (2.65)
with U, F, G, and H given by the inviscid expressions in Sect. 2.9. For the present
case, body forces are negligible and hence J = 0.

The physical plane is shown at the top of Fig. 7.6; the curve BC is the body and
curve AD is the shock wave. The x-coordinates of the shock and body are given by s
and b respectively. The local shock detachment distance is given by δ= s−b. During
the time-dependent solution, the body is stationary, hence b = b(y). However, the
shock wave will change shape and location with time, hence s = s(y, t). Therefore,

δ(y, t) = s(y, t)−b(y) (7.18)

The computational plane (ξ, η) is shown in Fig. 7.6b, and is obtained from the
transformation

ξ =
x−b
δ

; η = y; τ = t (7.19)

where δ is obtained from Eq. (7.18). Note that this transformation is an example of
a boundary-fitted coordinate system as discussed in Sect. 5.5.

Typical results, obtained from Ref. [10], are shown in Figs. 7.7, 7.8 and 7.9.
These results were obtained using the Lax–Wendroff method. In Fig. 7.7, the time-
dependent wave motion is illustrated, starting from its initially assumed value of
t = 0, and progressing to its steady state shape and location after 500 time steps. The
time variations of the centreline wave velocity and the stagnation point pressure are
shown in Figs. 7.8 and 7.9 respectively. Note in all three Figs. 7.7, 7.8 and 7.9, that

Fig. 7.6 Coordinate system for the blunt body problem
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Fig. 7.7 Time-dependent
shock wave motion, parabolic
cylinder, M∞ = 4

Fig. 7.8 Time variation of
wave velocity; parabolic
cylinder, M∞ = 4

Fig. 7.9 Time variation of
stagnation point pressure;
parabolic cylinder, M∞ = 4

the most rapid changes occur at early times, and the steady state is approached rather
asymptotically at large times.

7.5.3 Internal Combustion Engine Flows

Consider the flow inside an internal combustion engine as modelled by the piston-
cylinder geometry shown in Fig. 7.10. The piston moves up and down inside the
cylinder, and the flow enters through the intake valve and exits through the ex-
haust valve. The flow field in this problem is truly unsteady, and the objective is
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Fig. 7.10 Geometry of two-dimensional cylinder-piston I.C. engine model showing grid arrange-
ment. (a) Piston positioned at TDC, 10× 17 uniformly spaced grid points; (b) Piston positioned
at TDC, 10× 17 variably spaced grid points (only in y-direction); (c) Piston positioned at BDC,
10×17 uniformly spaced grid points

to calculate this unsteady flow by means of the time-dependent technique. Here,
no asymptotic steady state is ever obtained; rather, a repeatable cyclic flow field is
calculated over the complete four-stroke cycle of intake, compression, power and
exhaust.

We will consider inviscid flow, and hence the governing equations are Eq. (2.65)
and the U, F, G, and H column vectors from Sect. 2.9 for an inviscid flow.

A boundary-fitted coordinate system is used, where the transformation is

ξ = x/H(t); η− y, τ = t

and where H(t) is the time-varying distance between the top of the cylinder and the
top of the piston. Note in Fig. 7.10 that the x-coordinate is along the vertical axis of
the cylinder, and the y-coordinate is in the radial direction across the cylinder.

Results for this flow are shown in Figs. 7.11, 7.12, 7.13 and 7.14, taken from
Ref. [11]. The solution is carried out using MacCormack’s technique as described
in Sect. 7.3. Figures 7.11, 7.12, 7.13 and 7.14 show the flow field associated with
bottom dead centre of the intake stroke, three locations of the piston during the com-
pression stroke, near bottom dead centre of the power stroke, and an intermediate
location of the exhaust stroke, respectively. Note that a circulatory flow is created
during the intake stroke, and that this circulatory flow persists throughout the four-
stroke cycle.

7.5.4 Supersonic Viscous Flow Over a Rearward-Facing Step
With Hydrogen Injection

Consider the two-dimensional supersonic viscous flow over a rearward facing step,
where H2 is injected into the flow downstream of the step as sketched in Fig. 7.15.
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Fig. 7.11 Velocity pattern on
the intake stroke. X∗p = 8.78,
CA = 161◦,
t = 8.95msec = 3080 Δt,
22×30mesh

Fig. 7.12 Velocity
distributions on compression
stroke for the
manifold-valve-engine
model, 12×12mesh.
(a) X∗p = 5.63, CA = 261◦,
t = 14.5msec = 3970 Δt;
(b) X∗p = 3.56, CA = 291◦,
t = 16.2msec = 4250 Δt;
(c) X∗p = 1.0, CA = 359◦,
t = 19.9msec = 6300 Δt
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Fig. 7.13 Velocity pattern
near end of power stroke;
X∗p = 8.99, CA = 539◦,
t = 29.9msec = 9950 Δt

Unlike the examples mentioned above, this case deals with the solution of the com-
plete Navier–Stokes Equations, given by Eq. (2.65) with the U, F and G column
vectors given in essence in Sect. 2.9 for viscous flow. This system is slightly mod-
ified for the presence of mass diffusion, which adds a diffusion term in the energy

Fig. 7.14 Velocity
distribution on exhaust stroke;
X∗p = 6.99, CA = 600◦,
t = 33.3msec = 11560 Δt,
30×22mesh



7 Explicit Finite Difference Methods 143

Fig. 7.15 Rearward facing
step geometry

equation, and adds another equation, namely, the species continuity equation with
diffusion terms. (See Refs. [12,13] for more details.) The numerical technique used
here is MacCormack’s method discussed in Sect. 7.3. The present calculations were
made on a uniform grid throughout the physical space. In combination with the
rectangular geometry already existing in the physical plane (as can be seen by ex-
amining Fig. 7.15), this means that no grid transformation is needed.

Typical results obtained from Refs. [12, 13] are given in Figs. 7.16, 7.17, 7.18
and 7.19. In Fig. 7.16, a velocity vector diagram is shown for the case with no H2

injection. The external Mach number is 2.19, and the Reynolds number based on
step height is 70,000. These calculations also include a turbulence model patterned
after that of Baldwin and Lomax [14]. Note the recirculating separated flow just
downstream of the step. Figure 7.17 is a velocity vector diagram with H2 injection.

Fig. 7.16 Velocity vectors with no H2 injection

Fig. 7.17 Velocity vectors with H2 injection



144 J.D. Anderson, Jr.

Fig. 7.18 Lines of constant Mach number with H2 injection

Fig. 7.19 Lines of constant H2 mass fraction

Recirculating separated flows are now seen between the step and the H2 jet, as well
as downstream of the jet. Figure 7.18 shows a Mach number contour plot of the flow
(lines of constant Mach number). Figure 7.19 illustrates the contours of constant H2

mass fraction; this figure serves to define the extent and shape of the jet flow.

7.5.5 Supersonic Viscous Flow Over a Base

In a somewhat related fashion, consider the supersonic viscous flow over a base, as
illustrated in Fig. 7.20. Here, the same viscous flow equations are used as discussed
in Sect. 7.5.4 above. However, for this calculation a stretched grid is used, as given
in detail in Sect. 6.4, and as shown in Fig. 6.4. Again, MacCormack’s technique is
used. Some sample results from Refs. [15,16] are given in Figs. 7.21 and 7.22, which
deal with no secondary mass injection at the base. Figure 7.21 shows the velocity

Fig. 7.20 Base flow with
mass injection
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Fig. 7.21 Velocity vectors
with no base injection

Fig. 7.22 Lines of constant pressure with no base injection

vector diagram for the case with an external Mach number of 2.25 and a Reynolds
number of 477 000 based on the height of the base. Note the recirculating sepa-
rated flow downstream of the base. Figure 7.22 illustrates the contours of constant
pressure in the flow; the expansion wave around the corner and the recompression
shock downstream of the base are clearly seen. Figures 7.23 and 7.24 show the same
type of results, except now for the case of air injection from the centre of the base.
Note that injection greatly changes the flow field, as can be seen in comparison with
Figs. 7.21 and 7.22.

Fig. 7.23 Velocity vectors
with injection from the center
of the base

7.5.6 Compressible Viscous Flow Over an Airfoil

Consider the subsonic compressible, viscous two-dimensional flow over an airfoil.
The governing equations are the Navier–Stokes equations discussed in Chap. 2. For
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Fig. 7.24 Lines of constant pressure with injection from the center of the base

this application, the choice is made to use the non-conservation form of the equa-
tions, namely, Eqs. 2.36(a, b and c), because no shock waves will be present in the
flow. MacCormack’s method is used. Consider the airfoil and the elliptically gen-
erated boundary-fitted grid shown in Figs. 6.8 and 6.9, as discussed in Sect. 6.5,
and as taken from Refs. [17, 18]. Calculated results for a free stream Mach num-
ber of 0.5 and a Reynolds number based on chord length of 100 000 (this is a low
Reynolds number flow, which was the objective of the study in Ref. [18]) are shown
in Figs. 7.25, 7.26 and 7.27. The angle-of-attack in these figures is zero. These fig-
ures illustrate the instantaneous flow over a Wortmann airfoil at different times. In
Figs. 7.25 and 7.26, the flow is laminar, and it separates over the top surface of the
airfoil at about the maximum thickness point. The flow is clearly unsteady, as can be
seen by comparing Fig. 7.25(a, b and c); there is a rather periodic flow fluctuation
over the rearward portion of the airfoil, as well as downstream of the trailing edge.
The calculation of such unsteady flows, especially in situations where they may be
unexpected, is one of the major advantages of the time-dependent method in com-
parison to steady-state analyses. In Fig. 7.27, the flow is treated as turbulent; note
that in this case the flow is attached.

7.6 Final Comment

This author has many more examples of CFD applications from the work of his
graduate students; those listed in Sect. 7.5 are but a small fraction. They are picked
for discussion in these notes on a rather arbitrary basis. Time and space do not allow
further listing and discussion.

Also, this brings to an end our introduction to CFD. It is the author’s hope that
these notes have been a reasonable beginning for the unitiated reader, and that he
or she can now greatly expand his or her horizons by reading the more advanced
literature on CFD. If such advanced reading is indeed more easy after studying the
present notes, then this author has accomplished his goal.

In recent years, some modern texts on CFD have been published
(Refs. [19–23]); these texts are recommended for advanced studies of the subject. In
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Fig. 7.25 Velocity vector diagrams at three different non-dimensional times for purely laminar flow
(Re = 1000 000, M = 0.5, Alpha = 0.0 deg.). (a) Non-dimensional time Tn = 6.27. (b) Tn = 7.04.
(c) Tn = 7.73

particular, Fletcher’s two volumes (Refs. [19, 20]) contain a nice theoretical discus-
sion of the subject. Of special note are the two volumes by Hirsch (Refs. [21, 22]);
these volumes represent an authoritative presentation of the mathematical and nu-
merical fundamentals of CFD, the modern techniques used in CFD, and how these

Fig. 7.26 Instantaneous streamlines over Wortmann airfoil (FX63-137)—laminar flow (unsteady
results) (Re = 100000, M = 0.5, Alpha = 0.0 deg.) Non-dimensional time Tn = 7.04
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Fig. 7.27 Streamlines over Wortmann airfoil (FX63-137)—turbulent flow (Re = 100 000,
M = 0.5, Alpha = 0.0 deg.)

techniques are used in various practical applications. Reference [23], by Hoffmann,
is a crisp presentation of CFD for use by engineers. All of these books are rec-
ommended for more advanced study of computational fluid dynamics. Also, for an
extended presentation of the elementary, introductory ideas contained in the present
book, as well as a lengthy discussion of the overall philosophy of CFD and its role
in modern engineering, see the book by the present author (Ref. [24]); this is writ-
ten for a senior-level undergraduate course in CFD, and assumes absolutely no prior
knowledge of the subject. This author wishes you happy reading, and happy com-
puting in your further expeditions into the world of computational fluid dynamics!
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Chapter 8
Boundary Layer Equations and Methods
of Solution

R. Grundmann

8.1 Introduction

The objective of computational fluid dynamics is to calculate an entire flow field
either around an arbitrary obstacle or through a channel of any shape. The flow may
be unsteady, three dimensional, compressible and turbulent. At hypersonic speeds,
regions of reacting flow (dissociation, ionization, etc.) might also be considered.
The equations to describe this task, as derived in Chap. 2, are the Navier–Stokes
equation, the energy equation, the global and partial continuity equations and other
closure model equations describing turbulence and reacting gas effects. It can eas-
ily be shown that, at present, no computer could provide either the capacity or the
necessary calculation speed to fulfil this task.

Thereby, coming back to the reality of today, the governing equations have to be
simplified such that the properties of the remaining set of equations still describe the
flow to be considered. For instance, when the viscous terms in the Navier–Stokes
equations are neglected, one arrives at the Euler equations. They can be used to de-
termine far-field flows where the interaction with the viscous layer is not dominant.
However, a separation bubble on the surface of a wing cannot be detected without
providing viscous flow calculations near the body surface; separation is a matter of
viscous effects.

As indicated already, different types of flows can be treated by examining their
physical characteristics in detail and in this way establishing the appropriate gov-
erning equations by the correct reduction of the general set of fluid mechanical
equations. This is what Prandtl [1] did in 1904 concerning a thin layer near walls
where the influence of viscosity normal to the wall is dominant. He called this layer
a ‘boundary layer’. The important detail of the physical meaning of this kind of flow
is that the main flow velocity tends to zero approaching the wall. The gradient of
this velocity component in the direction normal to the surface is large compared to
the gradient of this component in the downstream direction.

This observation leads to an important change in the character of the govern-
ing equations from the elliptic to the parabolic type which makes a numerical
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downstream marching procedure applicable. Reverse flow therefore cannot be cal-
culated with a simple boundary layer method, but the flow field very near to the
separation point, where the reverse flow starts, can be detected very well. Reference
to the parabolic nature of differential equation is already given in Sect. 4.3.

The boundary layer theory will be the subject of this chapter. Prandtl’s idea will
be described in detail as an introduction. The hierarchy of the boundary layer equa-
tions will be discussed; that is, the relationship of the different types of boundary
layer equations to the Navier–Stokes equations will be demonstrated. Furthermore,
it will be pointed out that there are transformation techniques to reduce the problems
of solution. A generalized discretization scheme will be applied to a set of laminar
compressible boundary layer equations and a numerical solution scheme for calcu-
lating the remaining tridiagonal linear difference equations will be shown. A sample
calculation of a laminar boundary layer along the symmetry line of a highly inclined
ellipsoid will conclude the discussion.

This chapter deals only with laminar boundary layer theory. The description of
turbulence needs additional effort, especially in seeking suitable turbulence models
for specific purposes, but it does not affect the principal solution procedure. As these
notes are meant to give an introduction to the boundary layer theory and its meth-
ods of solution, turbulent boundary layers will not be considered, but overviews on
recent turbulence models are given in Refs. [2–5].

8.2 Description of Prandtl’s Boundary Layer Equations

In 1904 Prandtl [1] made an important contribution to the calculation of a specific
type of flow for which the Reynolds number is very large. The Reynolds number
has the form of a non-dimensional parameter

Re =
LV
ν

=
ρLV
μ

(8.1)

where L is a characteristic length, usually the length of the considered body, V is
the velocity of the flow where it is well-defined and undisturbed. The kinematic and
dynamic viscosity are denoted by v and μ, respectively. The density of the fluid is ρ.
The Reynolds number is the ratio of inertia to friction forces following the ‘principle
of similarity’:

Re =
ρu∂u/∂x

μ∂2u/∂x2
≡ inertia force

friction force
(8.2)

The velocity u at some point in the velocity field is proportional to the free stream
velocity V . The velocity gradient ∂u/∂x is proportional to V/L and similarly ∂2u/∂x2

is proportional to V/L2. Hence the ratio, Eq. (8.2) yields

Re =
ρV2/L

μV/d2
=
ρLV
μ

(8.3)
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Fig. 8.1 Boundary layer flow
along a wall

Two flows are similar from the point of view of the relative importance of iner-
tial and viscous effects if the Reynolds number is constant. Now the physical phe-
nomenon of a flow with high Reynolds number is considered for the example of a
cylindrical body shown in Fig. 8.1.

With the exception of the immediate neighbourhood of the surface the flow ve-
locity is comparable to the free stream velocity V . This flow region is nearly free
of friction; it is a potential flow. Considering the region near the surface there is
friction in the flow which means that the fluid is retarded until it adheres at the sur-
face. The transition from zero velocity at the surface to the full magnitude at some
distance from it takes place in a very thin layer, the so-called ‘boundary layer’. Its
thickness is δ, which is a function of the downstream coordinate x and is assumed to
be very small compared to the length of the body L. In the normal direction y inside
the thin layer it is clear that the gradient ∂u/∂y is very large compared to gradients
in the streamwise direction ∂u/∂x. Although the viscosity was meant to be very
small in this flow the shear stress τ = μ(∂u/∂y) may assume large values. Outside
the boundary layer the velocity gradients are negligibly small and the influence of
the viscosity is unimportant. The flow is frictionless and potential.

The above assumptions are now used to simplify the Navier–Stokes equations
for steady two-dimensional, laminar and incompressible flows, resulting from the
non-conservation form in Sect. 2.8, by a formal procedure. Including the continuity
equation they have the following dimensional form in cartesian coordinates:

ū
∂ū
∂x̄

+ v̄
∂ū
∂ȳ

= −1
ρ̄

∂ p̄
∂x̄

+
μ̄

ρ̄

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
(8.4)

ū
∂v̄
∂x̄

+ v̄
∂v̄
∂ȳ

= −1
ρ̄

∂ p̄
∂ȳ

+
μ̄

ρ̄

(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2

)
(8.5)

∂ū
∂x̄

+
∂v̄
∂ȳ

= 0 (8.6)

Here the velocity components ū and v̄ are directed towards the downstream x̄ and
the normal ȳ-direction, respectively. The static pressure is denoted by p̄, ρ̄ is the
density and μ̄ is the dynamic viscosity of the fluid.

For convenience, this set of second order differential equations is non-dimensio-
nalized which involves the Reynolds number necessary for the following reduction
of the equations. The prescriptions for non dimensionalization are:
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u =
ū
V

= 0(1)

v =
v̄
V

= 0(ε)

p =
p̄

ρ̄V2
= 0(1) Re =

ρ̄LV
μ̄

= 0

(
1

ε2

)

x =
x̄
L

= 0(1)

y =
ȳ
L

= 0(ε)

(8.7)

V is the dimensional free stream velocity and the pressure is non-dimensionalized
by twice the dynamic pressure, q̄ = 1

2 ρ̄V2.
Using these definitions, Eqs. (8.4), (8.4) and (8.6) become:

u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+
1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)

(1)
(1)
(1)

(ε)
(1)
(ε)

(1) (ε2)

(
(1)
(1)

(1)

(ε2)

) (8.8)

u
∂v
∂x

+ v
∂v
∂y

= −∂p
∂y

+
1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)

(1)
(ε)
(1)

(ε)
(ε)
(ε)

(ε2)

(
(ε)
(1)

(ε)

(ε2)

) (8.9)

∂u
∂x

+
∂v
∂y

= 0

(1)
(1)

(ε)
(ε)

(8.10)

Now the question is, what order of magnitude do the dimensionless substitutions
Eqs. (8.7) have? As stated above, the boundary layer thickness δ is very small, so is
the distance y compared to the length of the body L. Consequently y is of the order
ε which describes a value much smaller than 1. The u-velocity component can reach
the maximum value of V , therefore it is of the order 1. But the v-velocity component
also has to be of the order ε as can be seen from the continuity equation, Eq. (8.10).
If the derivative ∂u/∂x is of the order 1 because x becomes, at its maximum, the
length L, then the second term in the continuity equation ∂v/∂y has also to be of
the order 1. Consequently, v is not greater than ε. Now, with these assumptions the
order of magnitude analysis can be done. It follows from the first equation of motion,
Eq. (8.8), that the viscous forces in the boundary layer can become of the same order
of magnitude as the inertia forces only if the Reynolds number is of the order of 1/ε2.

The equation of continuity remains unaltered for very large Reynolds numbers.
The downstream momentum equations can be reduced by the second derivative of
the u-velocity component ∂2u/∂x2 and multiplied by 1/Re because it has the smallest
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order of magnitude in this equation. It only holds that the forcing function term
(−dp/dx) will not exceed the order of 1 to be in balance with the other remain-
ing terms.

All terms of the normal momentum equation, Eq. (8.9), are of a smaller magni-
tude than those of Eq. (8.8). This equation can only be in balance if the pressure term
is of the same order of magnitude. Therefore, this equation delivers the information
of negligible pressure gradient in the normal direction, i.e.

∂p
∂y

= 0(ε) (8.11)

The meaning of this result is that the pressure is practically constant; it is ‘im-
pressed’ on the boundary layer by the outer flow. Therefore, the pressure p is only a
function of x.

The derivation of Eq. (8.8) at the outer edge of the boundary layer gives, if the
inviscid velocity distribution U(x) = ū(x)/V is known:

U
dU
dx

= −1
ρ

dρ
dx

(8.12)

The other terms involving ∂u/∂y are zero since there remains no large velocity
gradient. After integration of Eq. (8.12) the well known Bernoulli equation is found:

p +
1
2
ρU2 = const. (8.13)

Summing up, by the order of magnitude analysis the Navier–Stokes equations,
Eqs. (8.8) and (8.9), and the continuity Eq. (8.10), have been simplified. They are
known as ‘Prandtl’s boundary layer equations’:

u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+
1

Re
∂2u

∂y2
(8.14)

∂p
∂y

= 0 (8.15)

∂u
∂x

+
∂v
∂y

= 0 (8.16)

The boundary conditions are:
On the surface:

y = 0 u = 0, v = 0 (8.17)

On the outer edge of the boundary layer:

y = δ =
δ̄

L
u = U(x) (8.18)

This set of equations is reduced by the unknown pressure p, which is, because
of Bernoulli’s equation, Eq. (8.13), a known value now, if only the inviscid velocity
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distribution at the surface U(x) is provided. It is still a coupled, non-linear, second-
order set of differential equations.

The order of magnitude analysis also described by Schlichting [6] is well suited
to analyse the more complicated surface-oriented Navier–Stokes equations with ad-
ditional surface curvature created Coriolis and centrifugal forces. At least the or-
der of magnitude analysis gives an impression where the boundary layer equations
and their more complicated extensions are situated in their level of approxima-
tion to the full Navier–Stokes equations. This overview will be given in the next
section.

8.3 Hierarchy of the Boundary Layer Equations

To develop a hierarchy of the fluid mechanical equations, the steady, compress-
ible, laminar, two-dimensional Navier–Stokes equations should be written for the
Euclidian space in a layer close to the surface. This will say that a coordinate sys-
tem, which may be surface oriented for a better adaption to the flow problem consid-
ered, is related to the cartesian coordinate system. Both systems must be transferable
from one to the other. The cartesian and the polar coordinate system, for example,
are matched together following this demand of Euclidian space. In other words, the
Jacobian matrix must exist.

If the Navier–Stokes equations can be formulated for such a surface-oriented co-
ordinate system, they will contain many additional terms due to the surface curva-
ture. These terms can be understood as Coriolis and centrifugal force terms caused
by the change of the streamlines in downstream as well as in the cross flow direction
depending on the curvature of the surface. Curvature-induced terms will have differ-
ent orders of magnitude. Some are important and others can be neglected depending
on the specific flow problems.

Now the question is to set the boundary layer equations including curvature terms
in relation to Prandtl’s boundary layer equations developed in the foregoing chapter.

A simple two-dimensional surface-oriented coordinate system is fixed on an
airfoil-like contour sketched in Fig. 8.2. The relations between the new coordinate
system and the cartesian one are:

x =

∫ s

0
cosθ(x) ds−nsinθ(x) (8.19)

y =

∫ s

0
sinθ(x) ds + ncosθ(x) (8.20)

The resultant set of differential equations due to the coordinate transformation
consists of two equations of motion in the downstream direction s and the perpen-
dicular direction n, the energy and the continuity equations. (For convenience this
lengthy dimensional set of equations is not barred for reasons of clarity.)

Momentum equation in tangential direction:
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Fig. 8.2 Surface oriented
coordinate system

ρ

[
u
∂u
∂s

+ Hv
∂u
∂n

+ κuv

]
=− ∂p

∂s
+
∂

∂s

[
4
3
μ

H
∂u
∂s

+
4
3
κμv
H
− 2

3
μ
∂v
∂n

]

+ H
∂

∂n

[
μ

H
∂v
∂s

+μ
∂u
∂n
− μκu

H

]
(8.21)

Momentum equation in normal direction:

ρ

[
u
∂v
∂s

+ Hv
∂v
∂n
− κu2

]
=−H

∂p
∂n

+ H
∂

∂n

[
4
3
μ
∂v
∂n
− 2

3
μ

H
∂u
∂s
− 2

3
μκv
H

]

+
∂

∂s
μ

H
∂v
∂s

+μ
∂u
∂n
− μκu

H

+ 2κ

[
μ
∂v
∂n
− μ

H
∂u
∂s
− μκv

H

]
(8.22)

Energy equation:

cpρ

[
u
∂T
∂s

+ Hv
∂T
∂n

]
=u

∂p
∂s

+ Hv
∂p
∂n

+
∂

∂s

[
λ
∂T
∂s

]
+ H

∂

∂n

[
λ
∂T
∂n

]

+ H
μ

2

⎧⎪⎪⎨⎪⎪⎩
[

2
H
∂u
∂s

+ 2
κv
H

]2

+

[
2
∂v
∂n

]2

+ 2

[
1
H
∂v
∂s

+
∂u
∂n
− κu

H

]2
⎫⎪⎪⎬⎪⎪⎭

− 2
3

Hμ

[
1
H
∂u
∂s

+
κv
H

+
∂v
∂n

]2

(8.23)

Continuity equation:
∂ (ρu)
∂s

+
∂(Hρv)
∂n

= 0 (8.24)

with

H = 1 + κn =
R + n

R
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Here u and v are the velocity components in the tangential direction of the flow
s and the normal direction n, respectively. The pressure is denoted by p, ρ is the
density, μ and λ are the dynamic viscosity and the thermal heat conductivity, re-
spectively. The curvature of the surface is involved in the geometrical coefficient
H. This dimensional set of differential equations describe the laminar, compressible
flow along arbitrary, two-dimensional curved surfaces.

Now these governing equations are analysed by predicting the order of magnitude
of each term. As is usually done, the equations will be non-dimensionalized, the
geometrical quantities by a characteristic length L and the flow properties by their
free stream conditions denoted by subscript ∞. The order of magnitude of these
quantities is defined as has been done in the case of a simple boundary layer without
curvature in the preceding chapters.

s =
s̄
L

= 0(1),

H = 1 + κ̄η̄ = 0(1),

T =
T̄

T∞
= 0(1)

μ =
μ̄

μ∞
= 0(1)

n =
n̄
L

= 0(ε) ,

u =
ū

u∞
= 0(1),

p =
p̄

ρ∞u2
∞

= 0(1)

λ =
λ̄

λ∞
= 0(1)

κ = κ̄L = 0(1)

v =
v̄

u∞
= 0(ε)

ρ =
ρ̄

ρ∞
= 0(1)

cp =
c̄p

cp∞
= 0(1)

Re =
ρ∞u∞L
μ∞

= 0

(
1

ε2

)
Reynolds number

Pr =
cp∞μ∞

λ∞
= 0(1) Prandtl number

Ec =
u2
∞

cp∞T∞
= 0(1) Eckert number

(8.25)

It is to be mentioned that the radius of curvature R is not allowed to be much
larger than the characteristic length L, otherwise κ would belong to another order of
magnitude. The radius of curvature R is related to the curvature as follows

κ = κ̄L =
L
R

(8.26)

When the radius R becomes very small compared to the length, H can exceed the
order demanded above.

The combination of Eq. (8.25) with the governing equations, Eqs. (8.21), (8.22),
(8.23) and (8.24), provides the order of magnitude of each term. A detailed devel-
opment of the order of magnitude analysis applied to this set of equations seems
not to be necessary here because in the preceding chapter an example was already
presented. But in order to give an insight into the origin of the hierarchy of the
boundary layer equations, the equations will be shown that retain terms only of the
order 0(1) and 0(ε). The chosen equation is the tangential and normal momentum
equation in dimensional unbarred form.
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Order 0(1):

ρ

(
u
∂u
∂s

+ Hv
∂u
∂n

)
= −∂p

∂s
+ H

∂

∂n

(
μ
∂u
∂n

)
(8.27)

∂p
∂n

= 0 (8.28)

These equations, including the continuity equation, are called the ‘first order
boundary layer equations’. Curvature effects are included in the quantity H defined
in Eq. (8.24). These equations become identical to Prandtl’s boundary layer equa-
tions when the curvature goes to zero. Hence, Prandtl’s equations are the lowest
level of the hierarchy and therefore they should be called ‘zeroth order boundary
layer equations’.

Now terms of the order 0(1) and 0(ε) are retained.
Order of magnitude 0(ε):

ρ

(
u
∂u
∂s

+ Hv
∂u
∂n

+ κuv

)
= −∂p

∂s
+ H

∂

∂n

(
μ
∂u
∂n

)
− κ∂u

∂n
u + κμ

∂u
∂n

(8.29)

∂p
∂n

=
κρu2

H
(8.30)

These equations show a significant extension of the foregoing ones. In Eq. (8.29)
an additional centrifugal term κuv appears as well as dissipative terms due to curva-
ture on the right-hand side; but the most important extension appears in the normal
momentum equation, Eq. (8.30). The pressure gradient normal to the flow is no longer
zero. Eq. (8.30) is an integral equation for the pressure which is no longer impressed on
the boundary layer from the inviscid flow. These equations are the so-called ‘second
order boundary layer equations’ and take into account that, even in the outer invis-
cid flow normal to the surface, there exist velocity gradients due to the streamline
curvature. The outer edge of the boundary layer is matched to this gradient which
is no longer equal to zero as the first order of boundary layer theory prescribes.

Consequently terms of higher order than 0(ε) will be retained now. The result is
summarized in Table 8.1.

A decisive development takes place proceeding from the second to the third-order
set. The mathematical character of the equation changes from parabolic to elliptic.
Elliptic differential equations are pure boundary value problems while parabolic
equations are initial-boundary value problems. The latter can be solved by the so-
called ‘marching procedure’, but the former require the calculation of the entire flow
field surrounded by the boundaries which implies a greater numerical effort.

The conclusion of this discussion is that a boundary layer theory of order higher
than second order immediately leads to elliptic equations. This complicates the
method of solution because the parabolic approach of the original idea of bound-
ary layer theory no longer holds.

The subject of the following chapter will be to give an impression as to how
transformations of the governing first-order boundary layer equations influence the
solution techniques positively.
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Table 8.1 Hierarchy of the boundary layer equations

Theory Equation of motion Energy
equation

Navier–Stokes 5th order Elliptic Elliptic Elliptic
Theory 4th order Elliptic N–S Parabolic Elliptic
Theory 3rd order Elliptic Parabolic Elliptic
Boundary layer theory

2nd order
Parabolic Integral

equation
Parabolic

Boundary layer theory
1st order

Parabolic Constant Parabolic

Boundary layer theory
0th order

Parabolic Constant Parabolic

Prandtl boundary layer
equation

8.4 Transformation of the Boundary Layer Equations

In this section the boundary equations for the flow around a body of revolution
without inclination are considered. This flow is two dimensional because it does not
vary in the circumferential direction. The coordinate system indicated in Fig. 8.2
was applied to derive the first order laminar compressible boundary layer equations
in dimensional form.

Continuity equation:
∂

∂s
(rjρu) +

∂

∂n
(rjHρv) = 0 (8.31)

Downstream momentum equation:

ρu
H
∂u
∂s

+ρv
∂u
∂n

= − 1
H
∂p
∂s

+
∂

∂n

(
μ
∂u
∂n

)
(8.32)

Energy equation:

cpρu

H
∂T
∂s

+ cpρv
∂T
∂n

=
u
H
∂p
∂s

+μ

(
∂u
∂n

)2

+
∂

∂n

(
λ
∂T
∂n

)
(8.33)

with H = 1 + κn.
The meaning of the symbols was already explained in the preceding chapter. For

j = 0 the flow is purely two dimensional and for j = 1 it is axisymmetric.
These equations present a system of coupled partial differential equations de-

pending on the spatial directions s and n. Their character is parabolic and there-
fore one has an initial-boundary value problem that can be solved by a marching
procedure.

Often transformations help to simplify the governing equations concerning the
solution technique. If the equations are handled as those for incompressible flow,
the density ρ would not cause additional effort. Also, when the curvature of the



8 Boundary Layer Equations and Methods of Solution 163

surface in the downstream direction is not too extreme, the shape of the velocity
profiles u and v does not change too much, except in their growth following the
hierarchy of the boundary layer. These kinds of profiles are called ‘quasi-similar’.
By a transformation the boundary layer in the transformed plane can be kept at a
nearly uniform thickness for many flow situations. Such a transformation, which
is called a ‘compressibility and similarity transformation’, was first proposed by
Levy–Lees and is often cited in the literature (Ref. [7]). It reads for axisymmetric
bodies:

ξ(s) =

∫ S

0
ρeμeueR2j ds (8.34)

η(s,n) =
ρeμe√

2ξ

∫ N

0

ρ

ρe
rjdn (8.35)

The index e denotes the values at the outer edge of the boundary layer flow and
R denotes the local radius of a body of revolution. Introducing the transformation
rules, Eqs. (8.31), (8.32) and (8.33) become:

Continuity equation:

2ξ
∂F
∂ξ

+
∂V
∂η

+ F = 0 (8.36)

Downsteam momentum equation:

2ξ
H

F
∂F
∂ξ

+
V
H
∂F
∂η

= −2ξF2

Hue

due

dξ
+
∂

∂n

[( r
R

)2j ρμ

ρ∞μ∞

∂F
∂η

]
(8.37)

Energy equation:

2ξ
H

F
∂S
∂ξ

+
V
H
∂S
∂η

=
2ξF
HTe

dTe

dξ
S +

( r
R

)2j ρμ

ρ∞μ∞

u2
e

cpTe

(
∂F
∂η

)2

+
∂

∂n

[( r
R

)2j ρμ

ρ∞μ∞

1
Pr

∂S
∂η

]
(8.38)

with F = u/ue, S = T/Te, V represents the transformed velocity component

V =
2ξ

ρeueμeR2j

⎡⎢⎢⎢⎢⎢⎣F
⎛⎜⎜⎜⎜⎜⎝∂η∂s

+ρv
rj√
2ξ

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ (8.39)

For the case of vanishing ξ near the sharp tip of the body a singularity arises
in Eq. (8.35) but this makes the initial conditions for the transformed equations
easy to calculate because the ξ-derivatives drop out of the set of equations. Once an
initial rough guess of F and S is done, the transformed normal velocity V can easily
be integrated from the continuity equation. Iterating steps will correct the initial
guesses of F and S .

The purpose of this section is to become acquainted with the transformed bound-
ary layer equations. Their merits have already been mentioned. The disadvantage is
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that, apart from their complicated form, the total number of grid points in the normal
direction n has to be calculated starting right away from the initial profile although
here the boundary layer is very thin.

On the contrary, the calculation in the physical plane using Eqs. (8.31), (8.32) and
(8.33) needs very few grid points at the beginning. The numbers must be continu-
ously increased due to the growth of the boundary layers. The disadvantage of this
method is to correctly overcome the singularity at the sharp tip where S equals zero.

More details concerning transformations of boundary layer equations can be
found in Refs. [8–12].

8.5 Numerical Solution Method

8.5.1 Choice of Discretization Model

To come to a numerical solution of a set of partial differential equations it is usual
to replace the differential quotients by finite difference quotients taking into account
that a truncation error of a certain order of magnitude will now be induced to the
set of equations. By rearranging the finite difference equations a system of algebraic
equations is obtained which can be solved by means of the known methods. The
techniques of the discretization are detailed in Chap. 5. It is stated there that the
choice of the computational discretization grid is important as it affects the trunca-
tion error, the stability and the consistency. The form of these grids and the solution
methods to which they lead will be summarized briefly.

Parabolic equations as observed here have a first order differential in the march-
ing direction. As the flow is not allowed to reverse, the values of each quantity at
the last upstream grid line normal to the surface are known. If we consider a grid as
shown in Fig. 8.3, where Δx and Δy are the step sizes in the tangential and normal
direction to the surface, the known points are on the left-hand side and the unknown
on the right. Also the boundary conditions at the wall are given. Therefore, it is easy
to calculate the flow quantities at the point with the open circle using discretiza-
tion models as already given in Chap. 5. Because of the direct calculation of only
one point on the grid line, this is called an ‘explicit method’. The explicit method
causes strong restrictions in the choice of the downstream step size as will briefly
be repeated later, so the scheme is slow.

Fig. 8.3 Grid for an explicit
method
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Fig. 8.4 Grid for a fully
implicit method

Figure 8.4 shows another extreme choice of a computational grid; the so-called
‘fully implicit method’.

Only one known grid point from the preceding step is used, while on the actual
one all points are unknown except the boundary values. That leads to an implicit
form of the set of algebraic equations as will be shown later. This method is, con-
cerning the choice of the step size, unconditionally stable but may lead to a poor
accuracy. If there is no restriction on the step size in the downstream direction it
becomes a fast calculation method which is desirable.

Now it is obviously possible to formulate something in between these extremes
which will result in both a fast and accurate solution method. Figure 8.5 gives the
computational mesh proposed by Crank–Nicholson [13] but in a more general form,
so that the discretization methods described before are contained within it as spe-
cial cases. Here, all points of the known and unknown grid lines are involved, but
now the centre of discretization is located at the point i + λ. λ = 1/2 was origi-
nally proposed by Crank–Nicholson. Although the pure Crank–Nicholson scheme
was described in detail in Part I, an example of a linear model equation is utilized
to show its discrimination by the more generalized Crank–Nicholson scheme. In a
following section the application to the two dimensional, rotational compressible
boundary layer equations will be given.

Fig. 8.5 Grid for a
generalized implicit method

8.5.2 Generalized Crank–Nicholson Scheme

This section is taken directly from Arina & Benocci [5]. In order to analyse the
stability and accuracy of a generalization of the Crank–Nicholson scheme, it is
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convenient to utilize the linear model Eq. (8.40), which is rewritten here follow-
ing Ref. 13.

∂φ

∂x
= a

∂2φ

∂y2
(8.40)

Equation (8.40) is discretized around the mesh point (i + λ, j), with λ ranging
between 0 and 1. For λ = 0 an explicit scheme is recovered, while λ = 1 corresponds
to the fully implicit case. If the grid is uniform, the x-derivative is approximated by
the finite difference relation developed in Sect. 5.2.1.

(
∂φ

∂x

)
1+λ,j

=
φi+1,j−φi,j

Δx
+

(
λ− 1

2

)
0(Δx) + 0(Δx2) (8.41)

and the y-derivative is replaced by the weighted mean

(
∂2φ

∂y2

)
i+λ,j

= λ

(
∂2φ

∂y2

)
i+1,j

+ (1−λ)

(
∂2φ

∂y2

)
i,j

(8.42)

Each second-order derivative is then replaced by the usual three-point centred
finite difference relation:

(
∂2φ

∂y2

)
i,j

=
φi,j+1−2φi,j +φi,j−1

Δy2
+
(
Δy2

)
(8.43)

Substituting Eqs. (8.41, 8.42, 8.43) into equation (8.40), a linear difference equa-
tion is obtained

φi+1,j−φi,j

Δx
=

a

Δy2

[
λ(φi+1,j+1−2φi+1,j +φi+1,j−1)

+ (1−λ)
(
φi,j+1−2φi,j +φi,j−1

)] (8.44)

which can be recast in the usual tridiagonal form
(
−λaΔx

Δy2

)
φi+1,j−1 +

(
1−2λ

aΔx

Δy2

)
φi+1,j +

(
λ

aΔx

Δy2

)
φi+1,j+1 = Dj (8.45)

with Dj a function of φ computed at station i.
To perform the von Neumann stability analysis it is useful to express the numeri-

cal solution as a Fourier series, and then verify that none of the harmonics is ampli-
fied with respect to the evolution coordinate x. This stability analysis is described in
detail in Sect. 4.4; Part I, and is repeated here as a reminder. Hence putting

φi,j = ρieIω(jΔy) (8.46)

where I in the exponent is the unit complex number, and ρi is the amplification
factor at level i, and then substituting inside Eq. (8.45), actualizing the indices in
Eq. (8.46), we have
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G =
ρi+1

ρi
=

1 + 2a(1−λ) Δx
Δy2 [cos(ωΔy)−1]

1 + 2aλ Δx
Δy2 [cos(ωΔy)−1]

(8.47)

To have stability, |G| ≤ 1 for all harmonics ωΔy; this inequality together with
Eq. (8.47), leads to the following stability condition for 0 ≤ λ < 1/2

C ≤ 1
2(1−2λ)

where C = aΔx/Δy2. For 1/2 ≤ λ ≤ 1 no stability restriction is imposed on C. Hence
the scheme presented is unconditionally stable for values of λ equal or larger than
1/2. In the case of the explicit scheme (λ = 0), there is a strong limitation to Δx if Δy
is chosen rather small for accuracy requirements.

The consistency of the scheme can easily be verified expanding in Taylor series
all other terms of Eq. (8.45) about the point (i +λ, j). The discretization error can
be proved to be of 0(Δx, Δy2) if λ � 1 (Ref. [14]). The scheme is therefore second-
order accurate with respect to y and first-order with respect to x. To obtain second-
order accuracy with respect to x, λ should be taken equal to 1/2 (Crank–Nicholson
scheme), or slightly different to 1/2 (e.g. = 1/2 + 0(Δx)). However, for practical,
non-linear problems it is often necessary to increase λ in order to avoid non-linear
instabilities. For instance, the full implicit scheme is often very stable, but leads to
a worse accuracy.

Equation (8.40) is a linear partial differential equation employed as a model to
demonstrate the widely used generalized implicit Crank–Nicholson solution code.
Now this will be applied to the boundary layer Eqs. (8.31), (8.32) and (8.33) of
Sect. 8.4.

8.5.3 Discretization of the Boundary Layer Equations

The boundary layer equations (8.31), (8.32) and (8.33) now will be non-dimensio
nalized by applying the prescriptions of equations (8.25):

Continuity equation:
∂

∂s
(rjρu) +

∂

∂n
(rjHρv) = 0 (8.48)

with H = 1 + κn.
Downstream momentum equation:

ρu
H
∂u
∂s

+ρv
∂u
∂n

= − 1
H
∂p
∂s

+
1

Re
∂

∂n

(
μ
∂u
∂n

)
(8.49)

Energy equation:

cpρu

H
∂T
∂s

+ cpρv
∂T
∂n

= Ec
u
H
∂p
∂s

+
Ec
Pr
μ

(
∂u
∂n

)2

+
1

RePr
∂

∂n

(
λ
∂T
∂n

)
(8.50)
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For convenience the geometrical and physical quantities are not barred to show
that they have no dimension.

The boundary conditions at the outer edge of the boundary are the same as de-
scribed in Chap. 2. Since the velocity ue is given from measurements or inviscid
flow calculations Eq. (8.49) can be developed at the point n = δ:

ρeue
∂ue

∂s
= −∂p

∂s
(8.51)

The demand of constant total enthalpy in the outer flow yields the boundary
conditions for the temperature Te:

Te = 1 + Ec(1−u2
e) (8.52)

The conditions for the velocity at the wall are the no-slip assumption

uw = 0 (8.53)

and the zero normal velocity statement

vw = 0. (8.54)

For the wall temperature Tw, according to the demands, a distribution can be
prescribed or the wall may be adiabatic.

Tw = Tw(s) (prescribed) or (8.55)

∂T
∂n

∣∣∣∣∣
w

= 0 (adiabatic wall) (8.56)

Since the set of three equations (8.48), (8.49) and (8.50) contains four unknowns,
an additional equation is prescribed to close this system; it is the equation for per-
fect gases

p = ρRT (8.57)

where R is the ideal gas constant. The solution of these equations could be effected
as follows:

1. solving the downstream momentum equation for the velocity component u si-
multaneously by solving the energy equation for the temperature T ;

2. hence, the pressure p is constant in the normal direction of the boundary layer,
the gas equation delivers a simple connection between the known temperature T
and the density ρ;

3. knowing the density and obviously the surface curvature, the continuity equation
can be solved for the normal velocity component v.

Since this system of non-linear, partial differential equations is coupled, meaning
that each fluid mechanical property is directly or indirectly involved in each of these
equations, care has to be taken by solving one equation after the other. The normal
velocity, v, following the procedure mentioned above is found only in the last step
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but takes an important part in the solution of the downstream momentum equation
for the velocity component, u, which was calculated first. It is clear that iterations
of the total solution process have to take place. Inner iteration loops are followed
by outer ones, but finally the correct application of a loop system is a question of
experience. One example will be given later.

Now the discretization of the downstream momentum equation will be given
as an example using the finite difference relations presented in Eqs. (8.41), (8.42)
and (8.43), noting that these were evaluated from the generalized Crank–Nicholson
scheme shown in Fig. 8.5.

First-order derivative in downstream direction:(
∂u
∂s

)
i+λ,j

=
ui+1,j−ui,j

ΔS
(8.58)

First-order derivative in normal direction:(
∂u
∂n

)
i+λ,j

= λ

(
∂u
∂n

)
i+1,j

+ (1−λ)

(
∂u
∂n

)
i,j

(8.59)

where for example the normal derivative at i+1, j is a second-order accurate centred
difference solution (

∂u
∂n

)
i+1,j

=
ui+1,j+1−ui+1,j−1

2Δn
(8.60)

The second term on the right-hand side of Eq. (8.49) at first has to be differenti-
ated in detail before the discretization.

∂

∂n

(
μ
∂u
∂n

)
= μ

∂2u

∂n2
+
∂μ

∂n
∂u
∂n

(8.61)

Because the dynamic viscosity is an analytical function of T and for high pres-
sures also of p, and not essentially on the spatial location, Eq. (8.61) can be
rewritten:

∂

∂n

(
μ
∂u
∂n

)
= μ

∂2u

∂n2
+
∂μ

∂T
∂T
∂n

∂u
∂n

(8.62)

Now the second derivative becomes, in finite difference form following
Eqs. (8.42) and (8.43)

(
∂2u

∂n2

)
i+λ,j

=
1

Δn2

[
λ(ui+1,j+1−2ui+1,j + ui+1,j−1)

+ (1−λ)
(
ui,j+1−2ui,j + ui,j−1

)]
(8.63)

The non-linear coefficient of ∂u/∂s for instance is discretized as:
(
ρu
H

)
i+λ,j

=
ρi,jui,j

(λHi+1,j + (1−λ)Hi,j)
= A (8.64)
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The geometry is known in advance but the density ρ and the downstream velocity
u are not known until the set of equations is solved, so the opportunity is offered to
take these results from the previous step which involves errors. One can overcome
this by replacing these results after each iteration step by taking again the weighted
mean value of the properties right after the first iteration since now the value at i+1
is known in a first approximation. But this causes additional effort to be done which
is not presented here. The other coefficients are

(ρv)i+λ,j = ρi,jvi,j = B (8.65)

(μ)i+λ,j = μi,j = C (8.66)(
∂μ

∂T
∂T
∂n

)
i+λ,j

=

(
∂u
∂T

)
i,j

(
Ti,j+1−Ti,j−1

2Δn

)
= D (8.67)

Finally, the pressure gradient terms ∂p/∂s has to be discussed. First-order bound-
ary layer theory indicates no pressure variation normal to the surface; that means
pressure is only a function of the downstream coordinate s and it is known from the
inviscid flow calculation

− 1
H
∂p
∂s

= −
⎡⎢⎢⎢⎢⎢⎣λ

(
1
H
∂p
∂s

)
i+1,j

+ (1−λ)

(
1
H
∂p
∂s

)
i,j

⎤⎥⎥⎥⎥⎥⎦ = E (8.68)

The momentum Eq. (8.49) now can be rewritten in abbreviated form:

A
∂u
∂s

+ B
∂u
∂n
−C

∂2u

∂n2
−D

∂u
∂n

+ E = 0 (8.69)

Substituting Eqs. (8.58), (8.59), (8.60), (8.61), (8.62), (8.63), (8.64), (8.65),
(8.65), (8.66), (8.67) and (8.68) into Eq. (8.69) and sorting in order of ui+1,j+1, ui+1,j

and ui+1,j−1 yields

λ

2Δn

[
B− 2C

ReΔn
−D

]
ui+1,j+1 +

[
A
ΔS

+
2λC

ReΔn2

]
ui+1,j

+
λ

2Δn

[
−B− 2C

ReΔn
+ D

]
ui+1,j−1 = F (8.70)

On the left-hand side of Eq. (8.70) the unknown values of u are arranged while
the known ones from the previous calculation step are on the right-hand side, hidden
in F, which is:

F =− (1−λ)
2Δn

(
B− 2C

ReΔn
−D

)
ui,j+1−

[
A
ΔS

+
2(1−λ)C

ReΔn2

]
ui,j

− (1−λ)
2Δn

[
−B− 2C

ReΔn
+ D

]
ui,j−1−E (8.71)

Eq. (8.70) is now written in abbreviated form:
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ajui+1,j+1 + bjui+1,j + cjui+1,j−1 = dj 2 ≤ j ≤ M−1 (8.72)

Following the same lengthy method of discretization, the energy Eq. (8.50) takes
the corresponding form:

ejTi+1,j+1 + fjTi+1,j + gjTi+1,j−1 = hj 2 ≤ j ≤ M−1 (8.73)

The coefficients aj to hj are known from previous spatial or iteration steps.
Eqs. (8.72) and (8.73) are tridiagonal matrices that can be solved by common re-
currence formulas, for example with the ‘Thomas algorithm’ (Ref. [13]). It will be
briefly described in the following section.

Now the continuity Eq. (8.48) will be rewritten and discretized.

∂v
∂n

+

(
1
ρ

∂ρ

∂n
+

1
H
∂H
∂n

+
1

rj

∂rj

∂n

)
v = − 1

rjHρ

∂

∂s
(rjρu) (8.74)

If the coefficient of the second left-hand term and the right-hand term were con-
sidered to be known from the previous spatial or iteration step, Eq. (8.74) becomes:

∂v
∂n

+Gv = H (8.75)

The discretization of the reduced continuity Eq. (8.75) yields, with the help of
Eq. (8.41), and by using the relation

vi+λ,j = λvi+1,j + (1−λ)vi,j, (8.76)[
λ

2Δn

]
vi+1,j+1 + [λG]vi+1,j +

[
− λ

2Δn

]
vi+1,j−1 = I (8.77)

with

I = −
[
(1−λ)

2Δn

]
vi,j+1− [(1−λ)G]vi,j−

[
− (1−λ)

2Δn

]
vi,j−1 + H (8.78)

Equation (8.78) corresponds to Eq. (8.71). All known values are collected in this
equation, while again Eq. (8.77) keeps all unknown values. One easily can see that
this equation has the same form as Eq. (8.70):

pjvi+1,j+1 + qjvi+1,j + rjvi+1,j−1 = S j (8.79)

The same tridiagonal algorithm as applied for the solution of the downstream
momentum Eq. (8.72) and the energy Eq. (8.73) can be used for the continuity
Eq. (8.79) to result in the values of the normal velocity component in the bound-
ary layer.

The only unknown which is not yet treated is the density, ρ. As mentioned above,
the equation for a perfect gas (8.57) fills this gap. First order boundary layer theory
does not know a pressure variation across the boundary layer. The dynamic pressure
is constant. Thus, Eq. (8.57) becomes:

ρT = const. (8.80)
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In the discretized form it yields:

ρi+1,j+1 = ρi+1,j
Ti+1,j

Ti+1,j+1
(8.81)

Since the temperature T and the density ρ at the previous step and the temperature
T at the actual step are already calculated the density at the new step will be the
result of Eq. (8.81).

As mentioned previously, the governing Eqs. (8.48), (8.49) and (8.50) form a
set of coupled, nonlinear differential equations. Firstly, the result of each equation
is needed to calculate the other equations and vice-versa, and secondly, since the
equations are non-linear, the solution becomes iterative. Therefore the solution of
this set of equations will include, so to say, two iterative steps: one for the solution
of each single equation and the other for the coupling of the total set of equations.
The procedure may be described as follows:

1. Solution of the momentum and the energy equation until convergence is achieved.
2. Solution of the continuity equation.
3. Calculation of the density.
4. Repeat of the previous steps until convergence of the equations is achieved.
5. Start the calculations at the next downstream position.

The above procedure is only one of the many possibilities to effect a solution of
these equations.

The following section shortly describes a widely applied solution scheme to solve
the discretized fluid mechanical Eqs. (8.72), (8.73) and (8.79) which form a lin-
ear system with tridiagonal matrices. This scheme is called the Thomas algorithm
(Ref. [13]).

8.5.4 Solution of a Tridiagonal System of Linear
Algebraic Equations

An efficient technique, sometimes called the Thomas algorithm (Ref. [13]) is de-
scribed, that can be used to solve a linear system with a tridiagonal matrix defined by
the following equations, where the xi are the unknowns and ai, bi, ci, di are known:

b1x1 + c1x2 = d1

aixi−1 + bixi + cixi+1 = di

aIxI−1 + bIxI = dI

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭2 ≤ i ≤ −1 (8.82)

It is possible to calculate the unknowns xi using the following recurrence formula

xi = αixi+1 +βi i = (I−1), (I−2), · · · ,1 (8.83)
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The expression of αi and βi can be derived by substituting Eq. (8.83) into (8.82).
We obtain: (

aiαi−1 + bi +
ci

αi

)
xi +

(
αiβi−1− ci

βi

αi
−di

)
= 0 (8.84)

This equation can be satisfied for any value of xi if αi and βi are chosen as
follows:

αi = − ci

bi + αi−1ai

βi =
di−aiβi−1

bi + αi−1ai

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
i = 2, . . . , I (8.85)

Writing Eq. (8.83) for i = 1, we obtain:

x1 = α1x2 +β1

This expression reduces to the first Eq. (8.82) if α1 and β1 are chosen as follows:

α1 = − c1

b1
and β1 =

d1

b1

Recurrence formulas (8.85) can then be used to compute all α’s and β’s. Eq. (8.83)
written for i = I−1 yields:

xI−1 = αI−1xI +βI−1 (8.86)

Eliminating xI−1 between this relation and the third Eq. (8.82), we obtain:

xI =
dI−aIβI−1

bI + aIαI−1
(8.87)

Recurrence formula (8.83) is then used to compute all xi successively for i =

I−1, . . . ,1.
It is possible to prove (Ref. [13]) that the different recurrencies will not lead to

any stability problem or to an unacceptable accumulation of round-off errors, if the
tridiagonal matrix is diagonally dominant, i.e. if:

|b1| ≥ |c1|
|bi| ≥ |ci|+ |ai|
|b1| ≥ |a1|

for all i = 2, . . . , I−1 (8.88)

These sufficient conditions which are, however, far from being necessary in prac-
tice, should be satisfied in boundary layer calculations.

This short description of the Thomas algorithm is taken from Arina and
Essers [14] and can be found described in more detail including a Fortran program
in Roache [15].
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8.6 Sample Calculations

8.6.1 Three Dimensional Boundary Layer Calculation Along Lines
of Symmetry

Boundary layer calculations on bodies along lines of symmetry (Ref. [16]) have
to be performed in three dimensions (Fig. 8.6). The flow around bodies at high
incidence moves from the windward to the leeward side. This obviously causes a
thickening of the leeward boundary layer for continuity reasons. If the influence of
the cross flow is neglected the three dimensionality of the flow cannot be taken into
account.

The numerical calculation of such boundary layer flows is eased if the outer
boundary conditions, i.e. the inviscid flow, are known analytically. The ellipsoid is
one of the very few bodies for which this is the case concerning all angles of attack
and ratios of the half-axes (Lamb [17]; Maruhn [18]).

The first results ever to be presented for three-dimensional laminar and incom-
pressible boundary layer flow over an ellipsoid were performed by Eichelbrenner
and Oudart [19] using integral methods. They used a streamline coordinate system
that needs a lot of precalculations to be done as an additional numerical effort. Later
on, results were presented by Geissler [20] and Schönauer et al. [21] who also used
the streamline coordinate system but the calculation was carried out by using finite
difference methods.

Other authors such as Wang [22] and Hirsch and Cebeci [23] introduced a
surface-oriented elliptical, orthogonal coordinate system, which has the disadvan-
tage of creating geometrical singularities at the poles of the ellipsoid. By this means
it becomes difficult to calculate boundary layer flows at high incidence without us-

Fig. 8.6 Sample of a leeside
boundary layer along the line
of symmetry of an inclined
body
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ing additional transformations. Blottner & Ellis [24] as well as Stock [25] developed
coordinate systems which are similar to the streamline coordinate system but easier
to apply.

Now it will be shown that a surface oriented curved and non-orthogonal sys-
tem eliminates the singularities at the poles, no transformations are needed and the
numerical effort can be kept small.

8.6.2 Geometrical Conditions

At first the ellipsoid has to be split into a nose region where the stagnation point is
situated and into an afterbody region (Fig. 8.7). In the front portion the new coor-
dinate system will be applied while in the rear part the elliptical coordinate system
may be used.

The coordinate system in the nose region is a modified spherical system for which
the radius depends on the geometry of the ellipsoid. Using the definitions of Fig. 8.8
the geometrical conditions between the new and the cartesian coordinate system are:

x = r cosθcosϕ,

y = r cosθ sinϕ,

z = r sinθ.

(8.89)

The radius r is a function of the new independent variables θ and ϕ and of the
half-axes, a and b, of the ellipsoid:

Fig. 8.7 Coordinate system in
the nose region of an ellipsoid
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Fig. 8.8 Specific coordinate
system on an ellipsoid

r = ab[b2 cos2 θcos2ϕ+ a2(cos2 θ sin2ϕ+ sin2 θ)]−1/2 (8.90)

8.6.3 Fluid Mechanical Equations

The system of differential equations describing the quasi three-dimensional, lam-
inar, compressible flow along the symmetry line of an inclined ellipsoid with the
coordinate system demonstrated in Fig. 8.8 was developed following the method of
Robert [26]. In the case of incompressible flow and considering the different coordi-
nate systems and their geometrical conditions it corresponds to those of Wang [22]
as well as Cebeci, Khattab and Stewartson [27].

Continuity equations:

1
k1

∂

∂θ
(k1ρu) +ρA +

∂ρ

∂n
w +ρ

∂w
∂n

= 0

k1 =
√

a11a22

(8.91)

Downstream momentum equation:

ρu
∂u
∂θ

+

(
ρw− ∂μ

∂n

)
∂u
∂n

+ k2ρu2 = k3
∂p
∂θ

+μ
∂2u

∂n2

k2 =
1

2a11

∂a11

∂θ
, k3 = −a22

k2
1

(8.92)

Cross-flow gradient momentum equation:

ρu
∂A
∂θ

+

(
ρw− ∂μ

∂n

)
∂A
∂n

+ρA2 + k4ρuA+

∂K4

∂ϕ
ρu2 + K4

∂ρ

∂ϕ
u2 = k5∂

2 p/∂ϕ2 +μ∂2A/∂n2,

k4 = (1/a22)∂a22/∂θ, k5 = −a11/k
2
1

(8.93)

with
A = ∂v/∂ϕ.
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Energy equation:

cpρu
∂T
∂θ

+

(
cpρw− 1

Pr
∂k
∂n

)
∂T
∂n

= Ec u
∂p
∂θ

+
k
Pr
∂2T

∂n2
+ Ec μa11

(
∂u
∂n

)2

(8.94)

Herein, u, v and w are the non-dimensional velocity components in the non-
dimensional coordinate directions, θ, ϕ and n, respectively. T, ρ and p are the tem-
perature, the density and the pressure. The quantities μ, k and cp are the dynamic
viscosity, the heat conductivity and the specific heat coefficient at constant pressure.
Pr and Ec denote the Prandtl and the Eckert number.

Equation (8.93) describes the derivative of the momentum equation in the cross
flow direction with the velocity component v with respect to the ϕ-direction. Since
along the line of symmetry the cross flow component v vanishes, but not its gradient,
the three-dimensional status of the flow still can be considered by the use of this
cross-flow gradient equation.

The geometrical coefficients ki appearing in the set of equations combine them-
selves from the elements of the metric tensor of the surface aij and their derivatives.
Along the line of symmetry and for the chosen coordinate system, there exist only
two elements of the metric tensor:

a11 = r2 + (∂r/∂θ)2 , a12 =
∂r
∂θ

∂r
∂ϕ
, a22 = r2 cos2 θ (8.95)

Besides the stretching of the normal coordinate no transformation will be applied.
The choice of this coordinate system excludes geometrical singularities at the poles
of the ellipsoid.

8.6.4 Boundary Conditions

The ellipsoid is one of the very few bodies for which the three-dimensional, inviscid,
incompressible velocity distribution is given analytically. The potential φ for the
surface can be written as follows (Refs. [17]– [22]):

φ = Bx +Cz

B = (1 + ka)cosα,
C = (1 + kc) sinα,

ka =
(1/2e)ln[(1 + e)/(1− e)]−1

[1/(1− e2)]− (1/2e)1n[(1 + e)/(1− e)]

kc = 1/(1 + 2ka)

e = (1−b2/a2)1/2

(8.96)

with the half-axes a and b
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where α is the angle of attack. Further details formulating the potential are described
in Ref. [22]. This potential is given in cartesian coordinates and can be transformed
through Eq. (8.89) into the new surface-oriented coordinate system

φ = Br cos θ cos ϕ+ Cr sin θ. (8.97)

The derivatives of the potential with respect to the coordinate axes give the invis-
cid velocity component ue in downstream direction and the crossflow gradient Ae

along the line of symmetry

ue = (1/a11)∂φ/∂θ, (8.98)

Ae =
∂v
∂ϕ

∣∣∣∣∣
e

= (1/a22)

(
∂2φ

∂ϕ2
− ∂a12

∂ϕ
ue

)
(8.99)

Equations (8.98) and (8.99) characterize the boundary conditions for the outer
edge of the boundary layer. At the wall, the no-slip condition is

uw = 0 (8.100)

Aw =
∂v
∂ϕ

∣∣∣∣∣
w

= 0. (8.101)

Since the system of Eqs. (8.91), (8.92), (8.93) and (8.94) describes compressible
flow, boundary conditions for the temperature have to be established. Requiring that
the total enthalpy should stay constant, the relation for the temperature Te at the
outer edge of the boundary layer becomes:

Te = 1 +
(
u2
∞/2cp T∞

)
(1−u2

e). (8.102)

At the wall, the temperature distribution or the establishment of the adiabatic
wall temperature can be prescribed.

Tw = Tw(θ)
∂T
∂n

∣∣∣∣∣
w

= 0. (8.103)

8.6.5 Solution Scheme

The differential equations are discretized in the sense of an implicit finite difference
method. The difference molecule is chosen in the way to calculate three unknown
values with three known values coming from the last computational step. The centre
of discretization is placed in the middle of the molecule, so that the truncation error
is not greater than the square of the step sizes.

The solution scheme follows the Richtmyer algorithm (Ref. [13]). The solution
vector contains three components, which are the downstream velocity component,
the cross-flow gradient and the temperature. The normal velocity component is
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calculated by the use of the Thomas algorithm, separately. This solution scheme
is described in detail in Refs. [14] and [15].

8.6.6 Numerical Results

Measurements on an ellipsoid with the ratio of the half-axes b/a = 1/6 were per-
formed by Meier & Kreplin [28]. An example is given in Fig. 8.9 showing results
along the windward side at an inclination angle of α = 10◦. The dimensional wall
shear stress τw along the non dimensional x-axis is compared with other theoretical
results given by Geissler [20] and Stock [25]. The agreement of all these results is
very good.

In Fig. 8.10 the result of a symmetry line boundary layer calculation on an ellip-
soid with the ratio of its half-axis b/a = 1/4 at zero angle of attack is shown. The
non-dimensional skin friction cfRe1/2 is plotted against the non-dimensional x-axis,
where the Reynolds number Re = u∞a/v is formed with the free stream velocity u∞,
the half-axis a and the kinematic viscosity v. The comparison with other theoretical
results by Wang [22] and Hirsch & Cebeci [23] gives a good agreement with the
present results.

Figure 8.11 presents comparable results performed with the above described
method for an ellipsoid with b/a = 1/6 at high angles of attack. The non-dimensional
skin friction cfRe1/2 is plotted here against the angle θ, starting at the stagnation
point and following along the leeward side up to a prescribed point. These results
are qualitatively the same as those given by Cebeci, Khattab and Stewartson [27].
In general it can be stated if the angle of attack exceeds α = 41◦ separation occurs
immediately downstream of the nose of the ellipsoid.

Fig. 8.9 Dimensional wall
shear stress along the
windward symmetry line
of an ellipsoid at angle of
attack α = 10◦, b/a = 1/6
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Fig. 8.10 Dimensionless wall shear stress along the symmetry line of an ellipsoid for zero angle
of attack, b/a = 1/4

Fig. 8.11 Dimensionless wall shear stress along the leeside symmetry line of an ellipsoid at differ-
ent angles of attack, b/a = 1/6
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Application à un corps fuselé incliné sur le vent. ONERA Publ. 76, 1955.
20. Geissler, W., Berechnung der laminaren, dreidimensionalen Grenzschicht an unsymmetrisch

umströmten Rotationskörpern mittels Differenzenverfahren, Institut für Strömungsmechanik
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Chapter 9
Implicit Time-Dependent Methods for Inviscid
and Viscous Compressible Flows,
with a Discussion of the Concept
of Numerical Dissipation

G. Degrez

9.1 Introduction

The compressible Euler and Navier-Stokes equations represent the most sophisti-
cated models of single-phase flows of single-component Newtonian fluids. As such,
they allow the analysis of complex inviscid and viscous flow phenomena including
rotational flows caused by curved shock waves or viscous/inviscid interactions lead-
ing to flow separation. As a counterpart, the numerical techniques required to solve
these equations are also the most sophisticated and the numerical effort needed to
obtain them is also the greatest. This is schematically represented in Fig. 9.1 taken
from Green’s [18] review of the state- of-the-art in numerical methods in aeronauti-
cal fluid dynamics.

The difficulties of solving complex steady compressible flows were already
pointed out in the first part of this volume, in which the blunt body problem was
taken as an illustrative example. It was shown that the crux of the difficulty lies in
the mixed character of the flow, involving regions governed by “elliptic” equations
and others governed by “hyperbolic” equations. Finally, the solution to the problem
was found by solving the time dependent equations using a time marching method,
taking advantage of the uniform nature of the unsteady equations with respect to
time, independently of the subsonic or supersonic character of the flow.1

Following that breakthrough, many methods were developed to integrate the un-
steady Euler or Navier-Stokes equations. These methods can be classified in two
main categories: explicit and implicit methods (Part I, Sect. 5.3).

Historically, explicit methods were developed earlier, because of their greater
simplicity. Several examples were given in Part I, Chap. 7. The major limitation of
these methods is their stability characteristics which impose an upper bound on the
usable integration time step. In recent years, implicit methods have been developed
to overcome this limitation and have proved more efficient than the former explicit
methods, which justifies their study.

G. Degrez
Université Libre de Bruxelles, Brussels, Belgium, e-mail: gdegrez@ulb.ac.be

1 Alternatively, it is possible to address the problem from a completely different standpoint, i.e. to
look for more sophisticated iterative methods for solving the (non-linear) algebraic system of
equations resulting from the space discretization, as briefly discussed below.
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Fig. 9.1 Hierarchy of computational fluid dynamics after [18]

In Sect. 9.2, we shall examine solution techniques for simpler flows and ex-
plain why these techniques fail for the solution of the steady compressible Euler/
Navier-Stokes equations. In Sect. 9.3, stability properties of numerical integration
techniques will be studied in detail first for ordinary differential equations, then for
partial differential equations. In Sect. 9.4, it will be shown how an implicit method
can be constructed to solve partial differential equations such as the Euler or Navier-
Stokes equations. It will be seen that this can be subdivided into three steps, the
choice of an explicit discretization scheme, the choice of an implicit operator and
finally the choice of a solution strategy, which will be discussed in turn. For the first
step, the issue of numerical dissipation will turn out to be crucial, and this concept
will be discussed in detail. As in Part I, only the finite difference method is consid-
ered as the space discretization technique, but, as will be mentioned in the lecture,
most of the concepts discussed and of the basic methods described apply equally
to finite volume discretizations (especially on structured meshes) and some to finite
element discretizations.

The content of these notes will remain rather basic except in a few instances, in
accordance with the objectives of this book. In particular, no individual scheme will
be examined in great detail. For additional information, the reader is referred to the
very comprehensive survey of CFD methods by C. Hirsch [22, 23] and, finally, to
the original literature.

9.2 Solution Techniques for Simpler Flows and Reason
of Their Failure for Euler/Navier-Stokes Equations

9.2.1 Solution Strategies for Simple Flow problems

In Part I, Sect. 1.1, the blunt body problem was considered and it was stated that,
because of the non-uniform nature of the governing equations, there existed up to
the mid sixties no technique to solve the (steady flow) problem, in particular to
determine the shock shape, and that finally a numerical solution was made possi-
ble by employing the time-dependent approach. Let us now return to this question



9 Implicit Time-Dependent Methods for Inviscid and Viscous Compressible Flows 185

and wonder why the classical solution techniques used for solving simpler flow
problems do not work for solving the Euler or Navier-Stokes equations. For this
purpose, let us consider a small disturbance problem. The subsonic/supersonic small
disturbance equation in 2D is

(1−M2
∞)
∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (9.1)

According to the classification of partial differential equations (Part I, Sect. 4.2),
this equation is elliptic for M∞ < 1 and hyperbolic for M∞ > 1. Now, suppose that
this equation is to be solved on a uniform cartesian mesh and that central differences
are used to discretize it, as central differences were shown to be more accurate for
a given stencil span (Part I, Sect. 5.2). For simplicity, let us consider a very coarse
mesh of 4×4 points with Δx = Δy.

9.2.1.1 Subsonic Flow (M∞∞∞=== 0)

In subsonic flow (elliptic problem), one boundary condition is required at each
boundary. For simplicity, let us assume ϕ is given on the boundaries (Dirichlet
boundary conditions). Then, the set of finite difference equations can be written
in matrix form as

AΦ = b

a

·
b

x

y

·

d

c 7

4 8

9

3

1 11

2 5 12

6 10

with

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
−1 −1 4 −1 −1
−1 −1 4 −1 −1

1
1

−1 −1 4 −1 −1
−1 −1 4 −1 −1

1
1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Notice that A is a non trivial matrix (it is not lower or upper triangular). For the
present model problem, it is easy to find the solution using a direct method such
as the Gaussian elimination method but, when the problem becomes large (106 un-
knowns are often encountered nowadays), direct methods become prohibitively ex-
pensive both in storage and CPU time, and one uses rather an iterative (also called
relaxation) technique. The principle of such techniques is to replace the original
system by a simplified one and thus construct a sequence of approximations of the
solution

BΦ(k+1) = b + (B−A)Φ(k) (9.2)

Simple (and yet efficient) choices for the (preconditioning) matrix B are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B = D Jacobi method
B = L + D or U + D Gauss-Seidel method

B = L +
D
ω

or U +
D
ω

Successive overrelaxation (SOR) method

B = (L + D)D−1(U + D) Symmetric Gauss-Seidel method

B = −ω
2

( I
ω
−Ax

)( I
ω
−Ay

)
Alternating direction implicit (ADI) method

where D, L and U denote the diagonal, lower and upper parts of A respectively.
Now, it can be shown that these iterative methods converge if the original system
is diagonally dominant. It turns out that, for central discretizations of the small
disturbance potential equation considered here, this remains the case as long as the
original equation is elliptic, i.e. as long as the incoming flow is subsonic. This in
fact remains true for central discretizations of the full potential equation provided
the flow is subsonic at all points of the domain. For central space discretizations, the
previous discussion can thus be summarized as follows:

SUBSONIC
FLOW

→ ELLIPTIC
EQUATION → DIAGONALLY DOMINANT

ALGEBRAIC SYSTEM
→ ITERATIVE METH-

ODS WORK

9.2.1.2 Supersonic Flow (M∞∞∞===
√

2)

In supersonic flow, two boundary conditions are to be specified at the inlet bound-
ary, i.e. ϕ (which allows the calculation of ∂ϕ/∂y, the vertical perturbation veloc-
ity) and ∂ϕ/∂x (the horizontal perturbation velocity) as discussed previously Part I,
Sect. 4.3. Using this latter boundary condition, it is possible to discretize the flow
equation (9.1) at points 1 and 2 of the boundary as well. Indeed, introducing a fic-
titious point a outside of the domain, the centrally discretized equation at point
1 reads

− ϕ4 +ϕa−2ϕ1

Δx2︸�����������︷︷�����������︸
∂2ϕ/∂x2

+
ϕ2 +ϕc−2ϕ1

Δy2︸�����������︷︷�����������︸
∂2ϕ/∂y2

= 0

Now, ϕc is given since c is on the boundary and ϕa may be evaluated by the
boundary condition ∂ϕ/∂x = u1, whose central space discretization reads
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ϕ4−ϕa

2Δx
= u1

It is then possible to eliminate the fictitious ϕa yielding the following discretized
flow equation at point 1.

−2ϕ4−2ϕ1

Δx2
+
ϕ2−2ϕ1

Δy2
= −2u1

Δx
+
ϕc

Δy2

or, with Δx = Δy = h,
−2ϕ4 +ϕ2 = ϕc−2hu1 (9.3)

Likewise, the discretized flow equation at point 2 reads

−2ϕ5 +ϕ1 = ϕd −2hu2 (9.4)

where u2 = ∂ϕ/∂x)2 is specified.
Using a central discretization at interior points as well and gathering all finite

difference expressions in matrix format, the system matrix A is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1 −2

1 −2
1

1
−1 1 1 −1
−1 1 1 −1

1
−1 1 1 −1
−1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and it appears that the matrix is lower-triangular. This implies that the solution can
be obtained directly by forward substitution. It is quite interesting to observe that
the physical nature of the problem (finite region of influence, allowing the solution
to be computed by forward space marching) is mimicked by the structure of the
discretized algebraic system (lower triangular system, allowing the solution to be
computed by forward substitution). Now, for such triangular systems, the only con-
cern is the possible amplification of round-off errors, which can be evaluated by a
von Neumann stability analysis (Part I, Sect. 5.4). Let us consider the general finite
difference discretization of the flow equation

−
ϕi+1 j−2ϕi j +ϕi−1 j

Δx2
+
ϕi j+1−2ϕi j +ϕi j−1

Δy2
= 0

and suppose that the solution is computed by forward substitution, i.e. the previous
equation is solved for ϕi+1 j with all other quantities known. Then, assuming as in
Part I, Sect. 5.4 (Eq. 5.34)
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ε(x,y) = eaxeikmy

and posing g = eaΔx and η = kmΔy, we find that the amplification factor g satisfies

−g2−2g + 1

Δx2
− 4gsin2 η/2

Δy2
= 0

or

g2−2g

(
1−2

Δx2

Δy2
sin2 η/2

)
+ 1 = 0

Now, because the product of roots equals 1, stability is achieved only if the equa-
tion has complex conjugate roots, i.e.

(
1−2

Δx2

Δy2
sin2 η/2

)2

≤ 1

and thus
Δx2

Δy2
≤ 1 (9.5)

which is just satisfied in the present case Δx = Δy = 1. Again, the conclusion ap-
plies equally to the more general problem governed by the full potential equation in
supersonic flow (except that the stability condition depends on the local flow Mach
number rather than on the incoming flow Mach number in the present example).

In conclusion, for supersonic flow, we can summarize the results as follows

SUPERSONIC
FLOW

→ HYPERBOLIC
EQUATION → INITIAL VALUE PROB-

LEM WELL POSED
→ SPACE MARCH-

ING WORKS

provided stability of the marching is ensured.

9.2.1.3 Ill-posed Problems

Suppose now that we would like to solve the following (ill-posed) problems: a su-
personic flow treated as a boundary value problem and a subsonic flow treated as an
initial-value problem.

In the first case, because of the prescription of boundary conditions everywhere
on the boundary, the matrix of the resulting discretized problem will be non-
triangular. But on the other hand, because of the hyperbolic nature of the equation,
the linear system to be solved will not be diagonally dominant, so that iterative
(relaxation) methods will not work.

Conversely, if a subsonic flow is treated as an initial value problem, the resulting
matrix of the discretized flow problem will be lower triangular, but the marching
(forward substitution) solution procedure will be unstable as shown below. Indeed,
for Laplace’s equation, the amplification factor g of the marching scheme must
satisfy
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g2−2g + 1

Δx2
− 4gsin2 η/2

Δy2
= 0

or

g2−2g(1 + 2
Δx2

Δy2
sin2 η/2) + 1 = 0

Since the discriminant is positive, this equation has real roots, and since the prod-
uct of roots equals one, one of them must have a modulus larger than one and hence
the marching scheme is unstable.

In conclusion, if one attempts to solve an ill-posed problem, the classical solution
techniques (relaxation methods, marching schemes) will protest by becoming unsta-
ble. This is in one sense fortunate since it issues a warning when trying to address a
wrong problem, but it is also a source of difficulty for more complex problems.

9.2.2 More Complex Problems

Now that we have understood why relaxation and marching methods work respec-
tively for wholly subsonic or supersonic potential flows, we can explain why they
break down in more complicated flow situations.

As a first example of a more complicated flow field, let us consider a potential
flow in which there exist both regions of subsonic and supersonic flow. Such a sit-
uation occurs for flows over aerofoils at supercritical Mach numbers for which the
maximum flow Mach number remains moderate (≈1.3) (see Fig. 9.2 below). Since
the maximum Mach number remains moderate, shock waves are weak so that the
potential flow assumption remains valid but, similar to the blunt body problem, there
exists one region where the flow equation is elliptic and another where it is hyper-
bolic. Therefore, for a central space discretization, we are faced with the following
problem. If we select a relaxation method, the solution will be unstable in the su-
personic region. We could think of switching methods in the supersonic region, but
this is impossible as we don’t know a priori the location of the subsonic/supersonic
boundary.

As a second example, we shall consider a wholly subsonic (even incompressible)
flow but which is no longer irrotational. In two dimensions, the flow equations are

Fig. 9.2 Mach number contours in potential flow over NACA 0012 (M∞ = 0.8)
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∂u
∂x

+
∂v
∂y

= 0

u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

u
∂v
∂x

+ v
∂v
∂y

= −1
ρ

∂p
∂y

(9.6)

or

A
∂U
∂x

+ B
∂U
∂y

= 0

with

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
u 0 1

ρ

0 u 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0
v 0 0
0 v 1

ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
u
v
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Multiplying by A−1, we have

∂U
∂x

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0
0 v

u
1
ρu

ρv −ρu 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸����������︷︷����������︸

C

∂U
∂y

= 0 (9.7)

The characteristic slopes are the eigenvalues of C, given by the characteristic
equation

( v
u
−λ

)
(λ2 + 1) = 0 (9.8)

and we see that one eigenvalue is real λ = v
u and the remaining two are imaginary.

The first one is associated with the “hyperbolicity” of the convection of vorticity
and the latter two with the “elliptic” character of the pressure field. Consequently,
the overall flow equations are neither hyperbolic nor elliptic; they are of hybrid type
and neither relaxation nor marching methods are suitable to solve this flow problem.
As a matter of fact, although this may appear paradoxical, incompressible inviscid
rotational flows are among the most difficult to compute, more so than compressible
rotational flows.

Finally, one might object that all these difficulties are present because we re-
stricted our attention to inviscid flow problems and that, for viscous flows, the situa-
tion may be simpler in the sense that viscous terms make the flow equation elliptic,
irrespective of the subsonic or supersonic nature of the flow. In principle, the objec-
tion is correct but in practice, for high Reynolds number flows with which most of
us are concerned, the viscous terms responsible for the elliptic nature of the equa-
tion are so small that, for reasonable grid systems, relaxation methods break down.
This has long been known by the people interested in solving the incompressible
Navier-Stokes equations.
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9.2.3 A Solution: The Time-Dependent Approach

From the previous discussion, it appears that no method exists that is suitable to
solve steady flow problems in the more complicated flow situations considered (at
least for central space discretizations). To overcome this problem, one may think of
various strategies.

First, for boundary value problems, one may think of investigating more sophis-
ticated solution techniques than the classical relaxation techniques described above.
When the problem is not too large, direct methods, in particular adapted to the sparse
nature of the linear systems resulting from the discretization of PDEs may be con-
sidered. Otherwise, more sophisticated iterative techniques may be considered. Two
examples are the multigrid method and Newton conjugate gradient-like methods.
Both approaches have been used successfully in CFD (e.g. [20,28,31] for the multi-
grid method and [24, 27, 47] for Newton conjugate gradient-like methods). These
methods are more involved and fall clearly beyond the scope of an introductory text
such as this one. In addition, as will be discussed later, this approach does not ad-
dress a second problem of equal importance, namely that of the accuracy of the final
solution.

A second strategy relates to the space discretization. Indeed, as was empha-
sized several times, only central discretizations were considered up to now. One
could then wonder whether the problems described earlier are associated with the
choice of the discretization technique and whether the use of biased difference for-
mulas could help solving the problem. This avenue was investigated very early
for the transonic potential flow problem and led to the important breakthrough
of Murman and Cole [32] in which a solution-adaptive discretization technique
was used. The application of this idea to the Euler and Navier-Stokes equations
proved more difficult. Research in this area has been motivated mainly by accu-
racy rather than by solvability (stability) considerations, but when solution-adaptive
biased discretizations started appearing in the early eighties [34, 45], their ben-
eficial effect on the solvability of the resulting discretized equations was soon
realized.

Finally, the third, and certainly the most well known approach is the time-
dependent approach, already introduced in Part I, Chap. 7. In this approach, the
steady solution is found as the asymptotic result of the unsteady process governed
by the time-dependent equations. As mentioned already in the introduction, the
advantage of using the time dependent equations lies in the fact that they pro-
vide well-posed initial value problems, irrespective of the particular type of flow
considered, be it supersonic or subsonic, inviscid or viscous. Indeed, the invis-
cid equations are always hyperbolic in time and the viscous equations are hy-
perbolic/parabolic in time. As a consequence, marching methods can be used to
integrate the flow equations in time. Actually, this approach may be considered
as asking nature to provide a converging iterative technique for the mixed/hybrid
problems under consideration. In itself, it does not address the accuracy question
either.
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Starting from the partial differential equations governing the flow, let us first
discretize them in space by some suitable method as for instance central space dif-
ferencing. The partial differential equation, together with the boundary conditions is
then transformed into a set of first-order non-linear ordinary differential equations
which can be written

dU
dt

= −R(U) (9.9)

where U is the vector of unknowns and R is some (residual) vector which depends
on the vector U. The system can be very large as the number of unknowns equals the
number of grid points times the number of unknowns per point (5 for 3-D compress-
ible Euler or Navier-Stokes equations). Now, this system can be integrated by any
method suited for the integration of Ordinary Differential Equations (ODE) [Runge-
Kutta, Euler, Adams]. These methods can be divided into two large classes: explicit
and implicit methods. Let us illustrate this by considering the most simple one-step
time discretization.

Un+1−Un

Δt
= −

[
θ R(Un+1) + (1− θ)R(Un)

]
(9.10)

where the superscript denotes the time level. When θ = 0, the value of Un+1 can
be calculated directly from the value of Un by simple mathematical operations like
function evaluations, multiplications and additions. The method is said to be explicit.
On the other hand, when θ � 0, a system of equations (in general non linear) must
be solved in order to determine the value of Un+1. The method is called implicit.
Implicit methods clearly appear more complicated to use because of this need to
solve a system of equations at each time step. On the other hand, it was shown pre-
viously in Part I, Sect. 5.4 that marching methods exhibit a stability limit, i.e. there
exists a limiting value of the time step Δt above which the error will grow without
bound. It turns out that, in general, implicit methods have significantly larger sta-
bility bounds than explicit methods. This is particularly advantageous when one is
looking for a steady solution. Using a bigger Δt will mean reaching faster the limit-
ing state (t→∞). In conclusion, implicit methods will be advantageous with respect
to explicit methods in those cases when the increase in usable time step will more
than overbalance the increase in computational effort per time step.

To end this section, it is important to mention that the three strategies identi-
fied to overcome the problems associated with complex mixed/hybrid problems are
not exclusive but rather complementary. As a matter of fact, many recent Euler/
Navier-Stokes solvers combine solution-adaptive differencing with a sophisticated
(accelerated) iterative strategy whose preconditioner is derived from an implicit
time-stepping scheme. The objective of the present lecture is to discuss the way
in which efficient implicit schemes can be constructed. The issue of accuracy will
introduce itself naturally and will lead to the description of solution-adaptive biased
discretizations (upwind schemes).



9 Implicit Time-Dependent Methods for Inviscid and Viscous Compressible Flows 193

9.3 Stability Properties of Explicit and Implicit Methods

Since the outcome of the competition between explicit and implicit methods is gov-
erned by their respective stability properties, a closer look must be given to this
issue. First, we observe that the space-discretization of a time-dependent partial dif-
ferential equation produces a system of ordinary differential equations. Consider for
example the diffusion equation

∂u
∂t

=
∂2u

∂x2
(9.11)

After discretization in space using central finite differences, we obtain the fol-
lowing system of ordinary differential equations

dui

dt
=

1

Δx2
(ui−1−2ui + ui+1) or

dU
dt

= AU + F(t) (9.12)

with

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2
...

un−1

un

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
A =

1

Δx2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B.C.
1 −2 1

. . .
. . .

. . .

1 −2 1
B.C.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9.13)

Therefore, the analysis of the stability of a time stepping scheme for solving the
PDE reduces to the analysis of the stability of a time stepping scheme for solving a
system of ODEs.

Furthermore, when we consider a periodic solution in space, i.e. u = u(t)eikm x,
the system of ODEs reduces to a single ODE. Indeed, inserting the periodic solution
hypothesis in (9.12) and realizing that

ui+1 = u(t)eikm xi+1 = u(t)eikm(xi+Δx) = u(t)eikm xieikmΔx = uie
ikmΔx

and similarly
ui−1 = uie

−ikmΔx

we obtain

dui

dt
=

eikmΔx −2 + e−ikmΔx

Δx2
ui = − 4

Δx2
sin2

(
kmΔx

2

)
︸�����������������︷︷�����������������︸

q

ui

i.e. an ODE whose coefficient q depends on the reduced wavenumber kmΔx, the
locus of q (in the complex plane) being called the Fourier footprint of the discretized
equation. The stability analysis can then be reduced to the stability analysis for a
single ordinary differential equations du/dt = qu, where q is a complex coefficient.2

2 We obtain such a simple linear ODE because the original PDE and the discretization scheme are
both linear. Despite these restrictions, this linear equation remains of great practical significance.



194 G. Degrez

9.3.1 Definition–Examples

Stability of the numerical integration of an ordinary differential equation is usually
defined by the following statement. A method is said to be stable (weakly-stable) if
the numerical solution remains bounded when the number of steps n goes to infinity
and the time step size Δt goes to zero with the product nΔt remaining constant.

Mathematically, the sequence un is to be bounded

with Δt→ 0

n→∞
nΔt = constant

When the method is stable, according to that definition, we have the impor-
tant consequence that, provided the discretization of the equation is consistent, the
method is convergent, which means that the numerical solution tends towards the
analytical solution for Δt going to zero. This important theorem stating that stability
+ consistency imply convergence is due to P. Lax [23].

Stability properties of methods for integrating ODEs are generally studied by
considering the linear test equation

du
dt

= qu u(0) = 1 (9.14)

The analytical solution is u = eqt. When a numerical method is applied to that
problem, the solution can always be written

un+1 = g(q,Δt)un

where g is called an amplification factor
Consequently,

un+1 = [g(q,Δt)]n u1

The stability condition then requires that the numbers [g(q,Δt)]n must be uni-
formly bounded for 0 < Δt < t, 0 ≤ nΔt < T . A necessary condition for this is that
|g(q,Δt)| ≤ 1 + 0(Δt), in particular |g(q, 0)| ≤ 1

Let us consider a couple of examples. The 4th-order Runge-Kutta method reads
for the test equation.

k1 = Δtqun = qΔt(1)un

k2 = Δtq
(
un + 1

2 k1

)
= qΔt

(
1 + q Δt

2

)
un

k3 = Δtq
(
un + 1

2 k2

)
= qΔt

(
1 + q Δt

2 + q2 Δt2
4

)
un

k4 = Δtq
(
un + 1

2 k3

)
= qΔt

(
1 + q Δt

4 + q2 Δt2
4 + q3 Δt3

4

)
un
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un+1 = un +
1
6

(k1 + 2k2 + 2k3 + k4)

=

(
1 + qΔt +

(qΔt)2

2
+

(qΔt)3

6
+

(qΔt)4

24

)
un

→ g = 1 + qΔt +
(qΔt)2

2
+

(qΔt)3

6
+

(qΔt)4

24

Thus |g| ≤ 1 + 0(Δt), |g(q, 0)| = 1 ≤ 1 and the 4th-order Runge-Kutta method is
stable.

Another example is the two-step explicit mid-point method which reads for the
test equation

un+1 = un−1 + 2qΔt un (9.15)

Let us look for g such that

un+1 = g un = g2 un−1

Then,

g2un−1 = un−1 + 2qΔtg un−1 or (g2−2qΔtg−1)un−1 = 0

Consequently, g must be a root of

g2−2qΔtg−1 = 0 → g = qΔt±
√

1 + (qΔt)2

This expression is such that |g(q,Δt)| ≤ 1+0(Δt) and the two-step explicit mid-point
method is stable.

9.3.2 Weak Instability

Since it is consistent and stable, let us apply the 2-step explicit mid-point method
to the test equation defined above with q = −1 and Δt = 0.1. Since the method is
a 2-step method, two initial values are required. One is given by the initial condi-
tion of the problem : u0 = 1 but a value of u1 is also required. The calculation has
been performed with two approximations of the exact solution e−0.1 = 0.90484, i.e.
u1 = 0.85 and u1 = 0.9.

The results of the calculation are displayed in Fig. 9.3. One notices that the per-
turbation on u1 gives rise to amplifying oscillations. In fact, as small as the initial
perturbation may be - and there will always be one because of round off errors - it
will eventually lead to an explosion of the numerical solution. This phenomenon is
clearly inacceptable. It is named weak instability.

Before advancing further, let us look for the cause of this phenomenon. It was
seen in the previous section that the 2-step explicit mid-point method allowed solu-
tions of the form un+1 = gun = gnu1 with two possible values for g, say g1 and g2.
An expression of the form
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Fig. 9.3 Numerical solution
of du

dt = −u; u(o) = 1 with
the 2-step explicit mid point
method

un = c1gn
1 + c2gn

2

also satisfies the difference equation

un+1 = un−1 + 2qΔtun (q = −1)

and the constants c1 and c2 an determined by the initial values

uo = c1 + c2 u1 = c1g1 + c2g2

But
g1 = qΔt +

√
1 + (qΔt)2 = −Δt +

√
1 + Δt2

g2 = qΔt−
√

1 + (qΔt)2 = −Δt−
√

1 + Δt2
(q = −1)

so that |g1| < 1 and |g2| > 1 with g2 < 0 Proceeding with the analysis, one obtains

g1 = 1−Δt +
Δt2

2
+ O(Δt3) = eΔt + O(Δt3) = e−Δt+O(Δt3)

g2 = −1−Δt− Δt2

2
+ O(Δt3) = (−1)(eΔt + O(Δt3)) = (−1)eΔt+O(Δt3)

gn
1 = e−nΔteO(nΔt3) = e−teo(Δt2)

gn
2 = (−1)nenΔteO(nΔt3) = (−1)neteO(Δt2) since nΔt = t

The oscillations observed are therefore explained by the gn
2 term which oscillates

because of the (−1)n factor and is amplified like et. This term has no relation with
the exact solution and is a purely numerical artefact. The closer u1 gets to g1 uo, the
smaller the c2 coefficient will be, which delays the observation of the amplifying
oscillations, but it will always be impossible to have c2 = 0, which would avoid the
instability.
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The previous example shows that the definition of stability stated in Sect. 9.2.1 is
insufficient as it does not warn us of the possibility of the unacceptable weak insta-
bility phenomenon. The reason for this is that the definition of stability in Sect. 9.2.1
gives only information in the (rather useless) limiting case Δt→ 0, not for actual
computations with finite Δt. This result leads to the introduction of a new concept,
called region of (absolute) stability.

9.3.3 Region of (absolute) stability

The concept of region of (absolute) stability was introduced by Dahlquist [10]. The
region of (absolute) stability of a numerical algorithm for integrating an O.D.E. is
the set of values of z = qΔt (q = complex parameter of the test equation du

dt = qu)
such that the sequence un of numerical values remains bounded as n→∞. As the
previous definition of stability (Sect. 9.3.1) required that the sequence un remain
bounded for n→∞, Δt→ 0, this is equivalent to stating that the origin lies in the
region of (absolute) stability [Δt→ 0 implies z = qΔt→ 0].

Let us illustrate this concept by considering a couple of examples. First, let us
consider the forward time difference (forward Euler) method.

un+1−un

Δt
= qun

The amplification factor is readily computed

g−1
Δt

= q → g = 1 + qΔt = 1 + z

Hence, we deduce that the region of stability is the region of the complex plane
|1 + z| ≤ 1, which is represented in Fig. 9.4. With q = −1 (test problem), this means

Fig. 9.4 Region of stability of the forward Euler method
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that we need Δt ≤ 2 to obtain a bounded numerical solution. This is not a severe
restriction since, to follow the exact solution u = e−t, one would rather choose values
of Δt of the order of 0.1 to obtain a satisfactory accuracy. In other words, for this
test problem, Δt is limited by accuracy rather than by stability considerations.

Let us consider next the central finite time difference (explicit mid-point) method.

un+1−un−1

2Δt
= qun

The amplification factor was already computed to be

g2−2qΔtg−1 = 0 → g = qΔt±
√

1 + (qΔt)2

The two roots g1 and g2 are such that g1g2 = 1. The only possibility for having
|g1,2| ≤ 1 is therefore that |g1| = |g2| = 1→ g = eiα, which corresponds to

z = qΔt =
g−1/g

2
=

eiα− e−iα

2
= 2isinα

from which we deduce that the region of stability is the segment of the imaginary
axis between −i and +i, as shown in Fig. 9.5. It is therefore not surprising that the
calculation performed with q = −1, Δt = 0.1→ z = −0.1 led to an explosion of the
calculation, since z = −0.1 lies outside of the region of (absolute) stability for that
scheme.

Fig. 9.5 Region of stability of
the mid-point method

9.3.4 Stiff Problems

In some instances, however, stability considerations can become very restrictive.
This will be illustrated by the following example. Consider the equation

du
dt

= 100( sin t︸︷︷︸
Forcing term

− u︸︷︷︸
Homogeneous term

) u(0) = 0 (9.16)
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The exact solution is

u(t) =
sin t−0.01cos t + 0.01e−100t

1.0001
(9.17)

The exponential term (natural response) dies out very quickly and the solution
becomes a periodic function of period 2π (forced reponse). If one is interested in that
periodic behaviour and not in the exponential transient, one would like to choose a
time step of the order of, say, a twentieth of the period, or Δt = 2π

20 ≈ 0.3. However,
using the 4th-order Runge-Kutta method, the following results are obtained:

Δt 0.015 0.020 0.025 0.030
Number of steps 200 150 120 100
u(3) 0.151004 0.150996 0.150943 6.7 1011

i.e. with Δt as small as 0.03, the calculation blows up. The explanation is provided
by the presence of the homogeneous term. If one ignores the forcing term, the equa-
tion is of the same type as the test equation du

dt = qu with q = −100. Now, the region
of stability of the Runge-Kutta method is shown in the following figure. The sta-
bility bound for the Runge-Kutta method is seen to be qΔt ≤ −2.8 or, in this case,
Δt ≤ 0.028. It thus appears that it is the presence of the homogeneous term which
is responsible for the severe time step limitation, although it produces a fast decay-
ing (very stable) natural response. The fundamental cause of the difficulty lies in
the coexistence of two phenomena with very different time scales (the periodic be-
haviour and the exponential transient) and in the fact that it is the shortest time scale
which determines the maximum allowable time step [even though the corresponding
phenomenon is disappearing very fast].

Problems where there is such a coexistence of phenomena with very disparate
time scales are called stiff problems. Unfortunately they are not uncommon in many
fields of engineering and in particular in fluid mechanics. For those problems, it
would be desirable to have at our disposal schemes such that a physically stable
problem would lead to a bounded solution irrespective of the value of the time step
Δt. That property is called absolute stability or A - Stability and will be discussed in
the next section.

9.3.5 Absolute Stability

Absolute stability was defined in the previous section as a property by which the
numerical solution of a physically stable problem would be bounded, irrespective of
the time step. Let us translate this in mathematical terms. Test problems of the type
du
dt = qu are stable if Re(q) ≤ 0. Therefore, the set of values of qΔt, corresponding
to stable problems is the left half plane. Absolute stability is thus equivalent to
requiring that the region of stability include the left-half plane.
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Fig. 9.6 Region of stability of
the Runge-Kutta method

Absolute stability ≡ the region of stability includes the left-half plane.

Now that we have a working definition of absolute stability, we may look for
Absolutely stable (or A-stable) schemes. We first observe that the 4th-order Runge-
Kutta method is not A-stable (Fig. 9.6). Let us next examine the backward Euler
method. Applied to the test equation, the backward Euler method reads

un−un−1

Δt
= qun

Therefore,

un(1−qΔt) = un−1 or un =
1

1−qΔt
un−1 (9.18)

The sequence un will be bounded if | 1
1−qΔt | < 1 or |1− qΔt| > 1, which in the

z(= qΔt) plane is the region outside of a circle of radius one centred at 1, as shown
in Fig. 9.7. That region includes the whole left-half plane and the method is thus A-
stable. Now, one may observe that the backward Euler method is an implicit method
and requires the solution of an equation to obtain un. In the test example, of course,
the equation is a linear scalar equation which is solved immediately, but in the case
of systems of non-linear equations, the problem is not so simple.

Fig. 9.7 Region of stability of
the backward Euler method
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Since explicit methods are easier to set up than implicit methods, one might
wonder whether there exist A-stable explicit methods. Unfortunately, the answer
to this is no, after a theorem by Dahlquist [9] stating that

• An A-stable method must be IMPLICIT
• An A-stable method has an accuracy of order p ≤ 2.

Consequently for stiff problems, one will frequently choose among the simplest
2nd order A-stable methods, in particular the trapezoidal method, which for the test
equation reads

un+1−un

Δt
=

q
2

(un + un+1) (9.19)

It can easily be shown that the stability region of the trapezoidal method is the
left-half plane, so that the method is indeed A-stable.

To summarize, implicit methods are more costly per time step than explicit meth-
ods but, because they may be A-stable, the allowed increase in integration step size
Δt more than compensates the extra cost per time step. That is particularly true for
problems in which one is only interested in the steady-state solution but it is also
true for unsteady problems in which the period of interest is much larger than the
limit imposed by stability properties. This is the reason why implicit methods have
gained in popularity and are worth studying.

9.4 Construction of Implicit Methods for Time-Dependent
Problems

Having established under which circumstances implicit methods are competitive, it
remains to discuss how they can be constructed in such a way as to be efficient. This
will be the subject of the present chapter.

9.4.1 An Essential Ingredient: Linearization

Let us consider the system of ODEs obtained by the space discretization of a PDE

dU
dt

= −R(U)

As mentioned above, this system is in general nonlinear. Suppose that, know-
ing that the system is stiff, one wishes to integrate it with an implicit one-step
method such as the trapezoidal (θ = 1

2 ) or backward Euler (θ = 1) methods. The
time-discretization of the system of ODE’s thus reads

Un+1 = Un−Δt
[
θR(Un+1) + (1− θ)R(Un)

]
(9.20)
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Now, if the original system is nonlinear, this equation represents a nonlinear sys-
tem of equations, which is as difficult to solve as the steady problem R(U) = 0. In
this case, the increase in computational work per time step of implicit methods with
respect to explicit methods would be so big that they would be of no interest. To
simplify the system produced by the implicit method, the following linearization is
performed

R(Un+1) is replaced by R(Un) +
∂Rn

∂U
(Un+1−Un)

where ∂Rn

∂U is the Jacobian matrix evaluated at time level n. Then, the scheme
becomes

Un+1 = Un−ΔtR(Un)− θΔt
∂Rn

∂U
(Un+1−Un) (9.21)

Introducing δU = Un+1−Un, this equation can be written
[
I + θΔt

∂R
∂U

]
δU = −ΔtR(Un) (9.22)

which is a linear system for the vector of unknowns δU. The (linear) stability prop-
erties of this scheme are of course the same as those of the original scheme since
both schemes are identical for linear problems. The linearization process outlined
above is not limited to one-step methods. The extension to general multistep meth-
ods is presented in [4, 9]. In particular, 2-step methods are of interest. For the one
step method, the linearized implicit scheme (9.22) is in fact equivalent to performing
one step of a Newton iteration on the non-linear system (9.20). Indeed, posing

F(Un+1) = θR(Un+1) + (1− θ)R(Un) +
Un+1−Un

Δt

Newton’s method reads

Jk
F δ̃U = −F(Un+1,k)

Un+1,k+1 = Un+1,k + δ̃U

where JF is the Jacobian of F with respect to Un+1, i.e.

Jk
F = θ

∂R
∂U

(Un+1,k) +
I

Δt

Taking Un+1,0 = Un as the first guess for Newton’s iteration, the first step reads
[

I
Δt

+ θ
∂R
∂U

(Un)

]
δ̃U = −R(Un)

Un+1,1 = Un + δ̃U

which is exactly the linearized implicit scheme (9.22).
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At this stage, it is important to observe that the steady solution is entirely con-
trolled by the right hand side. The scheme is in the so-called δ-form, so that, upon
convergence (δU → 0), the solution is independent of the transient process, in par-
ticular of the time step. One can take advantage of this property to modify (simplify)
the matrix of the linear system, as the modifications will only affect the convergence
behaviour and not the solution accuracy. The simplifications may be conceptually
divided up in two steps:

1. The residual Jacobian ∂R/∂U is substituted by some approximation L(U) called
the implicit operator.

I
Δt

+ θ
∂R
∂U

→ I
Δt

+ θL(U)

2. The simplified matrix (I/Δt) + θL(U) is approximately factorized.

I
Δt

+ θL(U) → B(U)

so that the general form of an implicit time-stepping scheme is

B(Un)δU = −R(Un) (9.23)

In summary, the construction of an implicit time-stepping scheme appears as a
three-stage process:

Choice of R(U) For a given PDE, R(U) may differ by the choice of the space dis-
cretization formula. As this choice has to be made also for explicit time-stepping
schemes, this is called the choice of the explicit operator. It controls the accuracy
of the steady state solution.
Choice of L(U) Upon the selection of the explicit operator, one must select
the implicit operator L(U). As it should be in some sense as close as possible
to the residual Jacobian ∂R/∂U, the choice of L(U) is not independent of the
choice of R(U). The choice of the implicit operator influences the scheme con-
vergence [speed of residual drop as a function of the number of iterations] and
efficiency [computational work per iteration].
Choice of the factorization scheme Finally, the simplified linear system is ap-
proximately factorized to minimize the computational work per time step.3 The
choice of a factorization scheme influences primarily the scheme efficiency but
also the convergence because of the factorization error.

All three stages will now be examined in turn. As it appears clearly from the discus-
sion, the first stage (choice of the explicit operator) applies equally to explicit and
implicit methods. It really is a (somewhat more advanced) sequel to Part I, Chap. 7.

3 Alternatively, one can solve the unfactored linear system by some linear iterative technique de-
scribed in Sect. 9.2.1.1. In this case, a preconditioner is needed, which in most cases is precisely
some approximate factorization of the system matrix. The factorized implicit scheme is in fact
equivalent to performing a single linear iteration on the system corresponding to the unfactored
scheme (see Sect. 9.4.4).
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9.4.2 Choice of the Explicit Operator: Central Versus Upwind

For a given difference stencil span, central discretizations have the highest formal
accuracy, as determined by truncation error analysis (Part I, Sect. 5.2 and also [23]).
However, for advection dominated problems as encountered in fluid dynamics, cen-
tral space discretizations lead to severe problems of spurious oscillations due to a
lack of numerical dissipation. First, the origin of the problems will be determined
by introducing the concept of numerical dissipation and explaining why some nu-
merical dissipation is required for advection dominated problems. Then, the various
ways by which numerical dissipation can be generated will be reviewed and, finally
it will be shown how conservative upwind discretizations of hyperbolic systems
such as the Euler equations can be constructed.

9.4.2.1 Numerical Dissipation, What it is and Why it is Needed

Definition of Numerical Dissipation

As mentioned above, the question of numerical dissipation arises for advection dom-
inated problems. Numerical dissipation is therefore defined in reference to the ad-
vection (wave) equation:

∂u
∂t

+ c
∂u
∂x

= 0 (9.24)

This equation describes the transport of the quantity u with speed c. Its general
solution is u = f (x− ct). A particular solution is the periodical solution

u = eik(x−ct) = eikxe−iωt with ω = kc (9.25)

which represents the unattenuated propagation of a wave of length 2π
k with speed c.

Let us compute the amplification factor u(x, t + Δt)/u(x, t) for the exact solution.
We find

u(x, t + Δt)
u(x, t)

= e−iωΔt = e−ikcΔt = e−iην (9.26)

with

ν =
cΔt
Δx

CFL number

η = kΔx dimensionless wave number

A numerical solution will yield

un+1
i

un
i

= g(η,ν) (9.27)

When one wishes to accurately follow a true unsteady phenomenon, one obvi-
ously desires to have g(η,ν) as close as possible to e−iην. For stability, one must
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have |g(η,ν)| ≤ 1 for all η. The difference between |g(η,ν)| and 1 is called dissipation
or else dissipative error, and the difference between arg(g(η,ν)) and −ην is called
dispersion or dispersive error.

Physical interpretation Let us attempt now to give an interpretation of numeri-
cal dissipation, to understand what it relates to. For this purpose, let us consider the
advection-diffusion equation.

∂u
∂t

+ c
∂u
∂x

= ε
∂2u

∂x2

A particular solution of the same type as above, i.e. a periodic solution is

u = eik(x−ct)e−εk
2t

The amplification factor is now

u(x, t + Δt)
u(x, t)

= eikcΔte−εk
2Δt = e−iηνe−εk

2Δt = e−iηνe
−ε
cΔx νη

2
(9.28)

i.e. the same expression as before multiplied by the damping factor e−εk
2Δt. In this

case, a pure wave propagates with speed c but is attenuated with time, as illustrated
in Fig. 9.8. When, in a numerical solution, |g(η,ν)| < 1 for a particular dimensionless
wave number η, this produces an attenuation of the wave with time analogous to that
observed in the case of the advection - diffusion equation. That is the reason why
dissipation, defined by the difference between |g(η,ν)| and 1, is associated with the
phenomenon of viscous diffusion.

Fig. 9.8 Advection-diffusion
of a wave packet of wavenum-
ber k = 4π with ε = 2.510−3.
Solution at t = 1.6

Not only diffusion terms of second order such as considered above can produce
attenuation. Fourth order terms and, in general, all even derivatives in the space
variable produce attenuation. The dissipation of a numerical scheme is generally
a blend of dampings produced by some or all of those terms. The nature of the
blending depends of the particular scheme considered and can be determined by the
so - called modified equation technique [For a thorough treatment of that technique,
see the textbook by Anderson et al. [1]].
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Example 1. Let us illustrate the effects of numerical dissipation by considering a
couple of examples. Let us suppose we are looking for a numerical solution of the
advection equation (9.24). Let us first select the space discretization scheme. We
consider two possibilities: the central finite difference and the backward (upwind)
finite difference formulas.

BACKWARD (UPWIND)

dui

dt
+ c

ui−ui−1

Δx
= 0

CENTRAL

dui

dt
+ c

ui+1−ui−1

2Δx
= 0

In order to select the time-integration scheme, let us first calculate the Fourier
footprints of the discretized equations. Introducing the periodic solution hypothesis
(u = U(t)eIkx→ un

i±1 = un
i e±Iη), we get

dui

dt
= −c

1− e−Iη

Δx︸�������︷︷�������︸
q

ui
dui

dt
= −c

eIη− e−Iη

2Δx
ui

= −I
csinη

Δx︸����︷︷����︸
q

ui

i.e. both discretized equations reduce to the model equation (9.14) where the q co-
efficient depends on the reduced wave number η. The locus of q is the Fourier foot-
print of the discretized equation. They are shown below for the two discretization
schemes

Now, the time-integration scheme should be selected so that qΔt can lie within the
region of stability. By comparing the respective loci of q with the region of stabilities
of some of the schemes examined previously (see Figs. 9.4 and 9.5), it appears
quite clearly that the forward Euler scheme cannot be used together with the central
space discretization, but the mid-point method, on the contrary, can, and the opposite
conclusion applies to the backward finite difference discretization. Applying the
mid-point method and the forward Euler method to the central and backward space
discretizations respectively, the fully discrete schemes and their truncation errors
are respectively
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first-order upwind-forward Euler

un+1
i −un

i

Δt
+ c

ui−ui−1

Δx
= 0

TE = O(Δx,Δt)

leapfrog (central space-mid point)

un+1
i −un−1

i

2Δt
+ c

ui+1−ui−1

2Δx
= 0

TE = O(Δx2,Δt2)

and, being central in both space and time, the leapfrog method is seen to be of
superior accuracy. Let us now compute the amplification factors of both schemes.

g = 1 + qΔt →

g = 1− cΔt
Δx

(1− e−Iη)

= 1− ν(1− e−Iη)

= 1− ν(1− cosη)− Iνsinη

|g|2 = 1−2ν(1− cosη)+

ν2[(1− cosη)2 + sin2 η]

= 1−2ν(1− cosη) + 2ν2(1− cosη)

= 1−2ν(1− ν)(1− cosη) < 1 for 0 < ν < 1

g = qΔt±
√

1 + (qΔt)2 →

g = −I
cΔt
Δx

sinη±
√

1− (
cΔt
Δx

sinη)2

= −Iνsinη±
√

1− ν2 sin2 η

= Ie±I( π2 +α) withsinα = νsinη

|g|2 = 1

and we observe that the first order upwind-forward Euler method is dissipative
whereas the leapfrog method is not. It thus seems that the leapfrog method is in
all ways (truncation error, dissipative properties) superior to the first order upwind-
forward Euler method. Let us check this conclusion by looking at numerical exam-
ples. We first consider the advection of a wave packet of period 0.5 (k = 4π) on a
mesh of size Δx = 1/40 (hence η = kΔx = π/10), using a time step such that the
CFL number ν = 0.8. The numerical results obtained by both methods shown below
confirm the conclusions of the analysis: the dissipative properties of the first order
upwind-forward Euler method result in a serious reduction of the wave amplitude,
whereas in contrast, the leapfrog solution almost perfectly agrees with the exact so-
lution. We can however observe some trailing oscillations in the leapfrog solution.

Forward time upwind scheme Leapfrog scheme
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Let us now consider a second example, namely the advection of a front. The
mesh size and the time step are the same as in the previous calculation.

Forward time upwind scheme Leapfrog scheme

In this case, the leapfrog solution exhibits large spurious oscillations whereas
the first order upwind-forward Euler method solution is smooth and monotone. For
this particular example, the first order upwind-forward Euler method is thus clearly
preferable. It remains to analyse why this is the case, and whether it is possible to
construct numerical methods that are simultaneously accurate for smooth problems
and provide smooth solutions for rough problems such as the advection of a front.

The Need for Dissipation

The inherent limitation of numerical methods. Let us consider a linear problem
governed by a PDE on a 1-D infinite domain. A way of solving the problem (since it
is linear) is to go to Fourier space, assuming that conditions to do this are fulfilled.
Then the solution may be expressed as a sum of space periodic functions. Actually,
the domain being infinite, the sum is an infinitesimal one, i.e. an integral. In general,
the solution will involve all wave numbers 0 ≤ k ≤ ∞. The limitation of any numer-
ical solution of the same problem is that it cannot resolve wave numbers k greater
than π

Δx .
This is closely related to a well-known result of signal theory by which, from a

sampled signal of frequency fs, we may only reconstruct a signal with a frequency
content up to fs/2.4 When we are looking for a numerical solution of a problem,

4 This has the practical implication that, when sampling a signal for digital processing, we must
make sure that the sampling frequency is at least twice the frequency above which Fourier com-
ponents become of negligible amplitude (cutting frequency). For example, for audio signals the
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we are actually trying to calculate space samples of the exact solution. The sam-
pling length is Δx. Therefore, the sampling wavenumber is 2π

Δx and we can only
resolve wavenumbers up to 1

2
2π
Δx = π

Δx . The wave with wavenumber π
Δx is generally

called the extreme numerical mode and exhibits an oscillating pattern of the form
+1, −1, +1 . . . at mesh points.

Instances in which dissipation is needed: inherent inadequacy of the mesh.
Now, as in signal sampling, the mesh is generally chosen such that the wavenumber
content of the solution does not extend up to the extreme numerical mode, i.e. the
wavenumbers of interest are such that kΔx is small compared to 1. But there are
instances in which high wavenumbers are inherently present. One of those instances
is when the solution exhibits discontinuities like fronts, shock waves or contact dis-
continuities. Starting from an initially smooth solution, discontinuities are produced
by the non-linear interaction of waves. Numerically, the higher wavenumbers gen-
erated by non-linear wave interactions eventually reach the resolution limit of the
mesh. Then, two possibilities exist:

1. the high wavenumbers bounce back into low wavenumbers and alter the accuracy
of the numerical solution.

2. they pile up at the high frequency end.

In addition, both effects may possibly result in numerical instability. Let us illus-
trate this problem by an example. Suppose we want to compute the solution of the
non-linear advection equation ∂u

∂t + u ∂u
∂x = 0 or ∂u

∂t + ∂
∂x

u2

2 = 0 in conservation form,
using the explicit mid-point method and central differencing (leapfrog method). As
shown in the previous section, this method is non-dissipative. Applying the leapfrog
method to non-linear advection of a discontinuity (shock wave), the result shown
in Fig. 9.9 is obtained after 80 time steps (the parameters of the calculation were
Δx = .025, Δt = .0125), where the piling up of waves at the high frequency end of
the spectrum is clearly visible. Obviously, such a result is unsatisfactory.

Fig. 9.9 Numerical solution
of non-linear advection of
a discontinuity using the
leapfrog method. Solution at
t = 1

cutting frequency is 20 kHz since we can’t hear above that frequency. This explains why CD sys-
tems generally operate with a sampling frequency of 44 kHz.
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There is another important source of high wavenumbers, which is illustrated by
the following steady 1D advection-diffusion problem.

c
du
dx

= ε
d2x

dx2
u(0) = 0;u(1) = 1 (9.29)

The analytical solution of this equation is

u =
e

c
ε x −1

e
c
ε −1

(9.30)

When ε→ 0, this solution is of boundary-layer type where most of the variation
of the solution takes place in a narrow region of size proportional to ε

c [with ε
c  1,

the problem is said of singular perturbation nature]. Consequently, as ε tends to
zero [which is analogous to the Reynolds number Re tending to infinity in fluid
mechanics], the wavenumber content of the solution shifts towards the higher end
of the wavenumber spectrum. When this problem is solved numerically using central
differences (as would be obtained in the limit n→∞ applying any time integration
scheme to the central space discretization of the unsteady equation ∂u

∂t +c ∂u
∂x = ε ∂

2u
∂x2 ),

undesirable oscillations are produced when cΔx
ε = R the so-called mesh Reynolds

number is greater than 25 as seen in Fig. 9.10.

Fig. 9.10 Solution of the
steady 1D advection diffusion
equation with R = 5

5 This is shown easily by looking for the solution of the linear difference equation

c
ui+1 −ui−1

2Δx
= ε

ui+1 −2ui + ui−1

Δx2
→ ui+1

(
1− R

2

)
−2ui + ui−1

(
1 +

R
2

)
= 0

General solutions of this equation are u = gn. Inserting in the difference equation, one finds

g2
(
1− R

2

)
−2g +

(
1 +

R
2

)
= 0 → g = 1 or g =

1 + R/2
1−R/2

so that g becomes negative when R > 2 and the solution is oscillatory.
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Now, one may object that in the latter case, oscillations develop because the mesh
is not appropriately chosen, that is, if the length scale ε

c of the boundary layer near
x = 1 gets small, then the mesh must be refined in order to capture that boundary
layer. For the present advection diffusion problem, the objection is valid since, after
all, if we retain the term ε ∂

2u
∂x2 in the equation, that means that we are interested in

the structure of the boundary layer at x = 1. But in fluid dynamics calculations, even
though we may want to retain the viscous terms, we may not be interested in all
viscous effects. Let us illustrate this point.

The direct analogy in fluid dynamics of the advection/diffusion model problem
discussed above is the problem of the structure of a shock wave. It is well known
from Gas Dynamics that the shock wave relative thickness t

L = 0
(

1
Re

)
= 0

(
ε

u∞L

)
or

t = 0
(
ε

u∞

)
which is an expression very similar to that found for the model problem.

In order to appropriately capture the shock wave structure, one would therefore need
to use a Δx that would be a fraction of ε

u∞ . Practically this is impossible since ε
u∞

is of the order of a few mean free paths.6 In addition, in most instances, we are not
interested in the detailed shock wave structure.

On the contrary, the development of boundary layers along bodies in 2D or 3D

flows yields viscous layers of relative thickness t
L = 0

(
1√
Re

)
[for laminar flows].

Those boundary layers are generally of interest and need to be captured by the mesh.
In high Reynolds number viscous flows, we have a coexistence of viscous phenom-
ena, some of which are of interest (wall boundary layers, shear layers: transverse
diffusion phenomena) and some of which are of no interest (shock wave structure:
streamwise diffusion phenomena) in most instances. If an algorithm without dis-
sipation is used, since the mesh will be inappropriate to resolve streamwise diffu-
sion phenomena, this will result in unacceptable oscillations but on the other hand,
if a dissipative scheme is used, the artificial dissipation may, especially for high
Reynolds number flows, completely overshadow the physical dissipation, resulting
in unrealistic results. This suggests that for high Reynolds number viscous flows
much care will be needed to produce a suitable dissipation and that the suitable
dissipation will necessarily be anisotropic, i.e. stronger in the streamwise direction
than in the transverse direction where it should ideally vanish.

9.4.2.2 Dissipation for Steady State Problems — Control of Steady
Oscillations

Dissipation was defined above in reference to unsteady problems and it was shown
that the essential effect of a lack of dissipation was the generation of spurious os-
cillations near discontinuities or quasi-discontinuities. It was also shown that such
oscillations may also appear in steady state solutions. Now, the unsteady definition
of dissipation is clearly inadequate to study the question of steady state oscillations.

6 Since the mean free path is of order M/Reu where Reu is the unit Reynolds number, it is clear
that for high Reynolds numbers, the mean free path is very small.
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Indeed, when space and time differencing are performed independently (as in the
class of implicit time -stepping methods discussed in this text — see Sect. 9.4.1),
the steady state solution is independent of the time-stepping scheme and thus of
its dissipative properties. One has therefore to develop some alternative concept to
characterize the (non)oscillatory properties of space discretization formulas.

For this purpose, let us consider the semi-discretization of the linear advection
equation — actually, the theory can easily be extended to non-linear conservation
laws and to several dimensions, see e.g [25]. A general semi-discretization is

dui

dt
=

∑
k

cikuk (9.31)

where the only non-zero coefficients cik correspond to the points of the computa-
tional stencil. For example, for central space discretization, one has

ci i+1 = − c
2Δx

ci i−1 =
c

2Δx
(9.32)

For consistency, one must have
∑

k cik = 0. Therefore, the semi-discretization
(9.31) can be rewritten

dui

dt
=

∑
k

cikuk −
⎛⎜⎜⎜⎜⎜⎜⎝
∑

k

cik

⎞⎟⎟⎟⎟⎟⎟⎠ui =
∑

k

cik(uk −ui)

Now, scalar conservation laws (and the linear advection equation in particular)
have the following properties [29]:

• No new local extremum can appear in the solution as time increases;
• The value of a local maximum cannot increase and the value of a local minimum

cannot decrease.

To avoid the appearance of spurious oscillations, a numerical approximation
should have both properties as well. Now, if ui is a local maximum, then all (uk−ui)
are negative and consequently dui/dt will be negative provided all coefficients
cik(k � i) are positive. The same condition ensures that dui/dt > 0 if ui is a local
minimum. By the condition

∑
k cik = 0, it results that cii = −∑

k�i cik < 0. Conse-
quently, at steady state,

ui = −
∑

k�i cikuk

cii

i.e. ui is a convex average of the nodal values at the other points of the stencil.
Hence, no local maximum can exist, which guarantees the absence of spurious os-
cillations. The use of the positivity constraint was proposed by Spekreijse [39] as
a natural extension to several dimensions of the TVD concept by Harten [19]. A
similar approach has been followed by Jameson [25] to develop the concept of local
extremum diminishing schemes. The central space discretization (9.32) is not pos-
itive, which explains its oscillatory behaviour for the advection-diffusion problem.



9 Implicit Time-Dependent Methods for Inviscid and Viscous Compressible Flows 213

In contrast, the (first-order) backward discretization

dui

dt
+ c

ui−ui−1

Δx
= 0

is positive since ci i−1 = c/Δx (assuming c > 0). It should be mentioned at this point
that the use of a backward discretization has a sound justification in this case. In-
deed, as was mentioned earlier, the advection equation represents the transport of
quantity u with speed c, i.e. from left to right. Mathematically, this corresponds to
the fact that the characteristics of the advection equation have a positive slope in
the x− t plane. It is thus quite logical to bias the discretization in the upwind di-
rection (i.e. backward for c > 0) to account for the propagation of information in a
preferential direction.

The control of oscillations can also be analyzed from a different viewpoint. The
idea here is to append to the baseline central difference discretization some artificial
diffusion terms. For a scalar conservation law,

∂u
∂t

+
∂ f (u)
∂x

= 0

[note that the linear advection equation corresponds to f = cu], a conservative
(finite-volume like) semi-discretization is

dui

dt
+

hi+1/2−hi−1/2

Δx
= 0 (9.33)

where hi+1/2 is a so-called numerical flux function. Taking

hi+1/2 =
fi + fi+1

2

results in the classical central difference discretization. The introduction of artificial
diffusion results in modifying the flux formula as follows:

hi+1/2 =
fi + fi+1

2
− di+1/2(ui+1−ui)︸�������������︷︷�������������︸

artificialdiffusion term

(9.34)

That the additional term is diffusive is easily realized by observing that di+1/2

(ui+1−ui) ≈ di+1/2Δx∂u/∂x, di+1/2 being the artificial viscosity coefficient. One can
then wonder what is the minimum diffusion needed to produce a positive discretiza-
tion. For the linear advection equation, it can easily be shown that (di+1/2)min = |c|/2,
so that the resulting flux formula becomes (for c > 0)

hi+1/2 = c
ui + ui+1

2
− c

2
(ui+1−ui) = cui (9.35)

i.e. nothing else than the (first-order) upwind discretization, which leads Jameson to
state that [25] “in this sense, upwinding is a natural approach to the construction of
non-oscillatory schemes”.
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Fig. 9.11 Advection of a
front, first order upwind
scheme, ν = .8, solution after
50 time steps (from [21])

Now, the big drawback of the (first order) upwind scheme is precisely that it
is only first order accurate. As a consequence, there results an important smear-
ing of discontinuities and a mediocre accuracy in smooth regions. The former
is illustrated in Fig. 9.11 which displays the numerical solution of a front ad-
vection problem, obtained using the first order upwind scheme and the explicit
1-step (forward Euler) time integration scheme. One can wonder whether higher
order accuracy could be obtained by enlarging the stencil — i.e. by considering
higher order upwind discretizations or higher order artificial diffusion terms. It turns
out that for linear schemes,7 a theorem by Godunov states that

(a) a positive scheme can only be first order accurate,
(b) among first order schemes, the first order upwind scheme is the least diffusive.

It is however possible to evade Godunov’s theorem by considering non-linear
schemes. The basic idea of such schemes is to append to the first order upwind
scheme anti-diffusive terms controlled by some non-linear limiter function in order
to ensure positivity. It was first proposed by Boris and Book [5] and in a different
context by van Leer [44]. The discussion of such schemes falls beyond the scope
of the present lecture. For more information, the reader is referred to [22] and the
recent tutorial presentations by Deconinck [11] and Jameson [25].

Before closing this section, a word should be said about the Lax-Wendroff family
of schemes which was discussed in detail in Part I, Sects. 7.2 and 7.3. The first
thing to observe is that in the Lax-Wendroff scheme and its variants, space and time
differencing are not performed independently. It results that the steady state solution
depends on the time step used in the time-stepping process. This is clearly shown
by considering the linear advection equation. For this equation, the Lax-Wendroff

scheme reads

7 A scheme is linear if, for a linear equation such as the linear advection equation, the coefficients
cik in the discretization (9.31) do not depend on the numerical solution.
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un+1
i = un

i −
cΔt
2Δx

(un
i+1−un

i−1) +
c2Δt2

2Δx2
(un

i+1−2un
i + un

i−1)

so that, at steady state, the solution satisfies

0 = − c
2Δx

(ui+1−ui−1) +
c2Δt

2Δx2
(ui+1−2ui + ui−1)

which corresponds to the numerical flux

hi+1/2 = c
ui + ui+1

2
− c2Δt

2Δx
(ui+1−ui−1) = c

ui + ui+1

2
− cν

2
(ui+1−ui−1)

It results that the Lax-Wendroff scheme involves some artificial diffusion with
di+1/2 = cν

2 (where ν is the CFL number as usual). This explains why the numerical
solution of the front advection problem considered above obtained with the Lax-
Wendroff scheme is much less oscillatory than that obtained with the non-dissipative
leapfrog method (see Fig. 9.12). Now, the amount of diffusion is seen to be a func-
tion of the time step (CFL number) used in the time-stepping process. In addition,
since the stability limit of the Lax-Wendroff method is |ν| ≤ 1 as can easily be shown

Fig. 9.12 Advection of a front, leapfrog and Lax-Wendroff schemes, v = .8, solution after 50 time
steps (from [21])
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by Fourier analysis,8 it results that the Lax-Wendroff method is not positive except
in the limiting case ν = 1. It is however possible to construct positive variants of the
Lax-Wendroff scheme by the introduction of non-linear limiting functions just as
for upwind or artificial viscosity methods (see e.g. [35, 41]).

9.4.2.3 Dissipation for Scalar Problems—Summary

Up to now, the discussion has dealt only with scalar problems, with emphasis on the
linear advection equation. Before examining the extension to systems, let us briefly
summarize the results obtained so far:

Independent Space and Time Differencing (Method of Lines)

The use of independent space and time differencing is particularly suited for steady
problems, insofar as the steady state solution is then entirely controlled by the space
differencing operator, independently of the time-stepping scheme. To prevent (or
limit) oscillations in the steady solution, some diffusion must be introduced in the
space discretization operator by either

• upwind differencing, or
• the introduction of artificial diffusion terms.

Actually, both approaches were found to be essentially equivalent. For unsteady
applications, it is necessary to consider in addition the dissipative contribution of
the time-stepping scheme.

Simultaneous Space & Time Differencing (Lax-Wendroff-Like Methods)

For the Lax-Wendroff scheme, it was seen that the simultaneous space and time
differencing results in the natural introduction of some dissipation (diffusion). The

8 The amplification factor of the Lax-Wendroff scheme is

g = 1− ν
2

(2isinη) +
ν2

2
(2cosη−2)

= 1−2ν2 sin2 η

2
−2iνsin

η

2
cos

η

2

Therefore,

|g|2 = 1−4ν2 sin2 η

2
+ 4ν4 sin4 η

2
+ 4ν2 sin2 η

2
cos2 η

2

= 1−4ν2 sin4 η

2
+ 4ν4 sin4 η

2
= 1−4ν2(1− ν2) sin4 η

2

The stability condition is thus

1− ν2 ≥ 0 → |ν| ≤ 1
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amount of dissipation depends on the time step though, so that steady solutions
depend on the time step used in the time-stepping process. It is for unsteady prob-
lems that schemes of the Lax-Wendroff family (including the finite element Taylor-
Galerkin schemes [14]) prove particularly useful, especially when some oscillation
control mechanism is included.

As mentioned previously, since our primary interest concerns steady problems,
only schemes of the first family are considered in this lecture.

9.4.2.4 Extension to Systems of Conservation Laws

When systems of conservation laws like the Euler equations are considered, the
extension of upwind schemes poses a problem, in the sense that wave speeds of both
signs can be simultaneously present. Indeed, the characteristic speeds associated
with the unsteady 1D Euler equations

∂U
∂t

+
∂F
∂x

=
∂U
∂t

+ A
∂U
∂x

= 0 (9.36)

are u, u + a and u−a, so that speeds of both signs exist when the flow is subsonic.
It is then impossible to use a biased discretization of the whole flux vector F since
this would lead to a downwind discretization for one of the waves. If one considers
the quasi-linear form of the equations, then one can decompose the original system
in characteristic equations and upwind each equation according to the correspond-
ing wave speed sign (Courant-Isaacson-Rees scheme [8]) but this approach does
not satisfy the conservation property which is crucial for the correct treatment of
discontinuities (Part I, Sect. 2.9). This is the main reason why schemes based on a
central space discretization such as the Lax-Wendroff scheme and schemes involv-
ing artificial diffusion have been so popular in the sixties and seventies. Indeed, these
schemes are indifferent to wave speed sign and therefore extend readily to systems:

artificial diffusion hi+1/2 =
Fi + Fi+1

2
−d(Ui+1−Ui) (9.37)

Lax-Wendroff hi+1/2 =
Fi + Fi+1

2
−

Ai+1/2Δt

2Δx
(Fi+1−Fi) (9.38)

The early eighties have seen the development of conservative upwind schemes,
which have since become extremely popular, because of their crisp resolution of
discontinuities and their superior ability in following moving shock waves. The re-
mainder of this section will therefore be devoted to a brief presentation of the two
major families of conservative upwind schemes.

Flux Difference Splitting (FDS) Schemes — Approximate Riemann Solvers

The starting point of Flux Difference Splitting schemes is the scheme developed
in the late fifties by the Russian mathematician Godunov [17] for the unsteady 1D
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Euler equations. This scheme is based on the integral form of the equations.9 The
integral form of the unsteady 1D Euler equations (9.36) is

d
dt

∫ b

a
Udx + F(Ub)−F(Ua) = 0 (9.39)

For the numerical solution of the problem, the domain of interest is divided up
into intervals (cells in the finite volume terminology) and the unknowns of the nu-
merical solution Ui are the average flow quantities over the corresponding interval
(see Fig. 9.13) rather than point values as in the finite difference method. The bound-
aries of interval i are noted i±1/2. As illustrated in the figure, the intervals need not
be of constant length (hi−1 � hi � hi+1). The first step in Godunov’s method consists
in reconstructing a piecewise continuous distribution of the flow variables from the
cell averages. The simplest choice is a piecewise constant reconstruction as illus-
trated in the figure.10 At the interval interfaces, the flow variable distributions are
thus discontinuous. Now, there exists an exact solution of the 1D Euler equations
for initial data consisting of two constant states separated by a discontinuity—this
problem is known in the literature as the Riemann problem, and applies in particular
to the flow in a shock tube. The solution consists of elementary waves (shock wave,
contact discontinuity, expansion wave) originating from the interface, as illustrated
in Fig. 9.14 for the shock tube problem. An interesting property of the solution is
that flow variables are constant along straight lines in x− t space (which implies that
the solution is self-similar). In particular, it is constant in time at the location of the
interface. As long as the two solutions at each interface of an interval do not interact
(which imposes an upper bound on the time step), it is thus possible to compute the
exact solution at the new time level from the initial piecewise constant data. This
constitutes the second step in Godunov’s method, called the evolution step. From

Fig. 9.13 Finite volume representation

9 The integral form of the equations is the basis of the finite volume method — see Chap. 11.
The introduction of the finite volume method as such is however posterior to the development of
Godunov’s scheme.
10 Within this framework, higher accuracy is then achieved by using piecewise higher order poly-
nomial reconstructions. This approach, called the variable extrapolation approach [22], is widely
used with piecewise linear reconstructions and known in the literature as the MUSCL (Monotonic
Upstream centred Scheme for Conservation Laws) approach.
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Fig. 9.14 Schematic representation of the solution of the Riemann problem

the exact solution at the new time level, it is then possible to compute the new cell
averages in order to restart the process. This constitutes the third step of the method,
called projection step.

Actually, it is possible to compute directly the cell averages at the new time level
without computing the details of the solution. Indeed, integrating in time between tn

and tn+1 = tn + Δt the integral form of the equations applied to interval i, one finds

∫ i+1/2

i−1/2
Un+1dx−

∫ i+1/2

i−1/2
Undx +

∫ tn+1

tn
Fi+1/2dt−

∫ tn+1

tn
Fi−1/2dt = 0 (9.40)

This expression simplifies greatly since Un = Un
i = const over the interval and

Fi±1/2 are constant over the time step. In addition, Un+1
i being the average over the

interval of the solution at the new time level,
∫ i+1/2

i−1/2 Un+1dx = Un+1
i hi. The final result

is thus
(Un+1

i −Un
i )hi + (Fi+1/2−Fi−1/2)Δt = 0

or dividing through by hiΔt,

Un+1
i −Un

i

Δt
+

Fi+1/2−Fi−1/2

hi
= 0 (9.41)

from which we deduce that Godunov’s scheme is a conservative discretization of
the 1D Euler equations with the numerical flux function

hi+1/2 = F(Uexact(xi+1/2, t)) (9.42)

combined with forward Euler time stepping. That this is an upwind discretization
clearly shows up by applying it to the linear advection equation. Since the exact
solution of the linear advection equation is the initial solution moving with speed c,
it results that (for c > 0)

hi+1/2 = cui and hi−1/2 = cui−1

and one recovers the first-order upwind discretization.
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The essential drawback of Godunov’s scheme is that the computation of Uexact

(xi+1/2, t) requires the solution of a non-linear algebraic problem, i.e. it is computa-
tionally expensive. Now, as most of the information contained in the exact solution
is lost by the averaging process, Roe [34] suggested to replace the exact Riemann
problem by a linearized problem

∂U
∂t

+ Ãi+1/2
∂U
∂x

= 0

where Ãi+1/2 is a function of Ui and Ui+1, chosen to satisfy certain properties:

1. Ã(U, U) = A(U);
2. Ãi+1/2 has a complete set of real eigenvalues for any pair of Ui, Ui+1;
3. Ãi+1/2(Ui+1−Ui) = Fi+1−Fi.

The first condition is required for consistency, the second ensures that the lin-
earized problem has a solution, and the third condition is a sufficient condition for
the scheme to be conservative. It also has the nice additional property that the solu-
tion of the linearized problem is identical to the solution of the exact problem when
a single wave is present.

Now, the solution of the linearized problem is found quite easily by the theory of
characteristics. Multiplying the linearized equation by the matrix L of left eigenvec-
tors of Ãi+1/2, one obtains

L
∂U
∂t

+ LÃi+1/2
∂U
∂x

= L
∂U
∂t

+ ΛL
∂U
∂x

= 0

where Λ is the (diagonal) matrix of eigenvalues of Ãi+1/2. These are decoupled
linear advection equations for the characteristic variables, components of the vector
LU. For the 1D Euler equations, there are three components. Noting

LUi = (α1,α2,α3)t; LUi+1 = (β1,β2,β3)t

and arranging the eigenvalues in increasing order, the solution of the linear problem
is schematically shown in Fig. 9.15 (in terms of characteristic variables) and for the
case of the figure (λ1 < 0, λ2, λ3 > 0),

Fig. 9.15 Solution of the linearized Riemann problem
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LUi+1/2 = (β1,α2,α3)t → Ui+1/2 = R(β1,α2,α3)t

where R is the matrix of right eigenvectors of Ãi+1/2 (inverse of L). The correspond-
ing flux is thus (the flux being linear)

Fi+1/2 = Fi + Ãi+1/2(Ui+1/2−Ui) = Fi + Ãi+1/2R(β1−α1,0,0)t

= Fi + RΛ(β1−α1,0,0)t = Fi + RΛ−L(Ui+1−Ui)

= Fi + Ã−i+1/2(Ui+1−Ui)

or

Fi+1/2 = Fi+1− Ãi+1/2(Ui+1−Ui+1/2) = Fi+1− Ãi+1/2R(0,β2−α2,β3−α3)t

= Fi+1−RΛ(0,β2−α2,β3−α3)t = Fi+1−RΛ+L(Ui+1−Ui)

= Fi+1− Ã+
i+1/2(Ui+1−Ui)

relations from which it appears that the flux difference Fi+1 −Fi has been split into
a positive and a negative part to calculate Fi+1/2, whence the name Flux Difference
Splitting. By this splitting of the flux difference, the scheme automatically adapts
the difference scheme to the local flow quantities. It is thus a solution-adaptive dif-
ferencing scheme as alluded to in the introduction.

Averaging the two previous expressions, the following (third) form of Roe’s
scheme is obtained:

Fi+1/2 =
Fi + Fi+1

2
− 1

2
|Ãi+1/2|(Ui+1−Ui) (9.43)

where |Ãi+1/2| = Ã+
i+1/2− Ã−i+1/2. Now, this has exactly the same form as the artificial

diffusion flux formula (9.37) except that the diffusion coefficient is replaced here by
a diffusion matrix.

The Flux Difference Splitting approach pioneered by Roe has met with a con-
siderable success. Several schemes of this type, also called Approximate Riemann
solvers, were developed since the beginning of the eighties [13, 15, 33, 38], among
which the most popular is certainly Osher’s scheme [33].

Flux Vector Splitting (FVS) Schemes

The idea of flux vector splitting was introduced in computational fluid dynamics by
Steger and Warming [40]. The idea had been previously proposed in astrophysics
by Sanders and Prendergast [36] but was rediscovered independently by Steger and
Warming. The starting point of Steger and Warming’s scheme is the observation
that the compressible inviscid fluxes are homogeneous functions of degree 1 in the
conservative variables. Consequently, by a theorem due to Euler,

F(U) =
∂F(U)
∂U

U = A(U)U (9.44)
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Now, the flux Jacobian matrix A is fully diagonalizable and it is possible to split
it between its positive and negative parts (see previous paragraph)

A = RΛL = R(Λ+ + Λ−)L = RΛ+L︸︷︷︸
A+

+RΛ−L︸︷︷︸
A−

(9.45)

to which correspond the split fluxes

F+ = A+U F− = A−U (9.46)

Now, the split fluxes F± being associated with positive (respectively negative)
eigenvalues only, it is possible to use upwind difference formulas to discretize the
corresponding flux derivatives.

The Steger and Warming flux vector splitting suffers from a lack of continuity
at those points where an eigenvalue of A vanishes (stagnation and sonic points).
To remedy this problem, van Leer developed an alternative, continuous, flux vector
splitting [45], which is no longer based on the homogeneity property of the inviscid
flux vectors. The basic requirements are

• the split fluxes sum up to the whole flux: F+ + F− = F;
• the split fluxes Jacobians have positive (respectively negative) eigenvalues only;
• F− = 0 for supersonic flow (respectively F+ = 0 for supersonic flow with negative

velocity).

Van Leer imposed a few additional requirements in particular to ensure the crisp
resolution of discontinuities.

The flux vector splitting approach and van Leer’s scheme in particular have be-
come extremely popular in the CFD community [37, 43], but it was soon realized
that flux vector splitting schemes are excessively dissipative at contact discontinu-
ities (boundary and shear layers) [46]. To avoid this while keeping the robustness of
flux vector splitting schemes, an improved flux vector splitting scheme was recently
developed by Liou and Steffen [30](AUSM scheme). Jameson’s CUSP scheme [25],
although formulated in the artificial diffusion formalism, appears essentially equiva-
lent to this latter scheme. Finally, Coquel and Liou [6] have proposed a procedure to
construct hybrid flux vector/flux difference splitting schemes to combine the robust-
ness of the flux vector splitting schemes with respect to strong shock and expansion
waves and the accuracy of flux difference splitting schemes with respect to con-
tact discontinuities. They examine in particular the van Leer/Osher hybrid, which
provides results of comparable accuracy as Osher’s scheme for viscous flow calcu-
lations at a cost only slighly superior to van Leer’s FVS scheme.

9.4.2.5 Concluding Remarks

For systems of conservation laws such as the Euler equations (and for advection
dominated advection diffusion problems), it has been shown that some dissipa-
tion must be introduced in the explicit discretization operator to control (and even
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prevent) the appearance of spurious oscillations. This can be achieved in basically
two ways, i.e. by the introduction of artificial diffusion or by the use of FDS/FVS
upwind schemes. Actually, it was shown (see also [6, 46]) that the FDS/FVS up-
wind schemes are in fact equivalent to an artificial diffusion scheme with a diffusion
matrix.

The only pending question at this stage is to select between the two approaches.
Some general guidelines, which probably reflect the author’s own bias and can thus
be argued, are now presented.

• For transonic steady flows, for which the shock waves are not too strong, scalar
artificial diffusion is probably the best approach. It is computationally inexpen-
sive, simple to program and, according to Jameson [25], “combined with a high
resolution switching scheme, [it] captures shock waves in about three interior
points”.

• On the contrary, for high Mach number flows associated with strong shock waves
and for unsteady flows with moving shock waves, matrix diffusion, i.e. upwind
FDS/FVS schemes are required. They are more costly but they provide the best
possible resolution of shock waves and, more important for viscous applications,
of contact discontinuities.

9.4.3 Choice of the Implicit Operator

The basic linearized implicit scheme (9.22) can be rewritten as
[

I
Δt

+ θ
∂R
∂U

]
δU = −R(Un)

In this section, we examine briefly how this can be effectively simplified. For
simplicity, let us consider the 2D Euler equations discretized on a cartesian mesh.
Then the most general expression for Ri, j is

Ri, j =
Fi+1/2, j−Fi−1/2, j

Δx
+

Gi, j+1/2−Gi, j−1/2

Δy
(9.47)

where Fi±1/2, j and Gi, j±1/2 are artificial diffusion based or upwind FDS/FVS nu-
merical flux functions. Now, as mentioned in Sect. 9.4.2.2, flux functions involving
only the neighbouring points (i, j and i+1, j for the flux Fi+1/2, j) are only first order
accurate, and for higher accuracy, one needs to enlarge the computational stencil.
As a result, the Jacobian matrix ∂R

∂U has more entries (and thus a larger bandwidth)
than for a first order discretization. The first simplification generally made is to use
the Jacobian matrix of the first-order flux formula even when a high order scheme
is used in the explicit operator:



224 G. Degrez

First simplification

I
Δt

+ θ
∂R
∂U

→ I
Δt

+ θ
∂R1st

∂U

This simplification reduces the linear system bandwidth and (because the first order
flux formula is more dissipative) improves its diagonal dominance as will be shown
shortly. The net result is that the solution of the linear system is greatly simplified,
reducing the computational cost per iteration. On the other hand, this simplifica-
tion has an (adverse) effect on the iterative scheme convergence rate. This effect
can be studied by a linear fixed point Fourier or full matrix analysis. Several studies
[2, 16, 26] of 1D inviscid problems have shown that as a result of the simplifica-
tion, there appears an optimum time step, corresponding to a CFL number between
10 and 100, at which convergence is fastest, whereas in contrast convergence con-
tinuously improves as Δt increases if no simplification is made, corresponding to
the fact that the linearized time-stepping scheme tends towards Newton’s method in
the limit Δt→∞. Nevertheless, for a time step chosen around the optimum (in a
rather wide range), the decrease in CPU time/iteration outweighs the convergence
deterioration, especially for 2D and 3D problems.

At this stage, let us write down the full expression of the simplified scheme for
the 2D Euler equations. Since

Ri, j =
Fi+1/2, j−Fi−1/2, j

Δx
+

Gi, j+1/2−Gi, j−1/2

Δy

the simplified implicit operator reads

(
∂R1st

∂U
δU

)
i, j

=
1

Δx

∂Fi+1/2, j

∂Ui+1, j︸���������︷︷���������︸
Ci

δUi+1, j +
−1
Δx

∂Fi−1/2, j

∂Ui−1, j︸���������︷︷���������︸
Bi

δUi−1, j

+
1

Δy

∂Gi, j+1/2

∂Ui, j+1︸���������︷︷���������︸
C j

δUi, j+1 +
−1
Δy

∂Gi, j−1/2

∂Ui, j−1︸����������︷︷����������︸
Bj

δUi, j−1

+

[
1

Δx

(
∂Fi+1/2, j

∂Ui, j
−
∂Fi−1/2, j

∂Ui, j

)
+

1
Δy

(
∂Gi, j+1/2

∂Ui, j
−
∂Gi, j−1/2

∂Ui, j

)]
︸�����������������������������������������������������������������������︷︷�����������������������������������������������������������������������︸

A

δUi, j (9.48)

where the flux formulas are to be taken at first order. Now, for some schemes, es-
pecially the flux difference schemes in general and Roe’s FDS scheme in particular,
the exact expression of the numerical flux Jacobians is prohibitively complex. The
second simplification then consists of substituting the exact numerical flux Jacobian
by some approximation thereof.
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Second simplification Substitute the exact numerical flux Jacobians by some suit-
able approximation.

Now, this second simplification may also have adverse effects on the convergence of
the iterative process and in particular certain approximations may be more effective
than others, depending on the numerical flux formula used in the explicit operator.
This problem has also been studied using fixed point analysis in [2, 16, 26], from
which guidelines can be obtained for the choice of a suitable flux Jacobian approxi-
mation. The main results are summarized below:

For scalar artificial diffusion The first order numerical flux function is then

Fi+1/2, j =
Fi, j + Fi+1, j

2
−di+1/2, j(Ui+1, j−Ui, j)

Good approximations of the flux Jacobians are

∂Fi+1/2, j

∂Ui+1, j
≈

Ai+1, j

2
−di+1/2, jI ≈

Ai+1, j−γAi+1, j I

2

∂Fi+1/2, j

∂Ui, j
≈

Ai, j

2
+ di+1/2, jI ≈

Ai, j +γAi, j I

2

(9.49)

where γA is a real larger than the spectral radius of A. This approximation was
proposed by Yoon and Jameson [48]. It ensures that the linear system to be
solved is (block) diagonally dominant. If the artificial diffusion contribution
is omitted, which corresponds to pure central differencing, the diagonal dom-
inance is lost for large time steps, which makes the linear system harder to
solve. Indeed, for pure central differencing, the diagonal term vanishes alto-
gether in the expression of the implicit operator (9.48).

For FVS schemes For FVS schemes, the first order numerical flux function is

Fi+1/2, j = F+
i, j + F−i+1, j

In general, and for van Leer’s FVS scheme in particular, the exact numerical
flux Jacobian is relatively simple to evaluate and no simplification is needed.

For Roe’s FDS scheme In this case, the numerical flux function is

Fi+1/2, j =
Fi, j + Fi+1, j

2
− 1

2
|Ãi+1/2, j|(Ui+1, j−Ui, j)

Good approximations of the flux Jacobians are

∂Fi+1/2, j

∂Ui+1, j
≈

Ai+1, j

2
− 1

2
|Ãi+1/2, j| ≈ Ã−i+1/2, j or A−i+1, j

∂Fi+1/2, j

∂Ui, j
≈

Ai, j

2
+

1
2
|Ãi+1/2, j| ≈ Ã+

i+1/2, j or A+
i, j

(9.50)
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The approximation proposed by Yoon and Jameson (9.49) was also found
to be effective when used in combination with Roe’s scheme.

For the two latter cases, diagonal dominance of the linear system is a direct con-
sequence of the use of first-order upwind differencing.

In summary, all simplifications made, the linear equation corresponding to point
i, j is
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
Δt

+ θA︸���︷︷���︸
Ã

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
δUi, j + θBiδUi−1, j + θCiδUi+1, j + θBjδUi, j−1 + θC jδUi, j+1 = −Ri, j (9.51)

Introducing the shift operators ε±1
i , ε±1

j in the i and j indices respectively, this
can be rewritten in compact form (for θ = 1 or including the factor θ in the B and C
matrices) [

Ã+ Biε
−1
i +Ciε

+1
i + Bjε

−1
j +C jε

+1
j

]
δUi, j = −Ri, j (9.52)

9.4.4 Choice of the Linear System Solution Strategy

9.4.4.1 1D Problems

Let us first consider a 1D problem. In that case, the linear system to solve reduces to
[
Ã+ Biε

−1
i +Ciε

+1
i

]
δUi = −Ri

This would be the case for the analysis of a quasi one-dimensional flow in a noz-
zle (problem considered in Part I, Sects. 7.2 and 7.3) for example. Now, this system
is a block-tridiagonal system which can be solved very efficiently by direct elimina-
tion (LU decomposition or Thomas algorithm, see Sect. 8.5.4). Therefore, the addi-
tional computational workload per time step required by the implicit method with
respect to an explicit method is relatively small and the implicit method is compu-
tationally much more efficient. Actually, when no approximation is introduced in
the implicit operator, the best (asymptotic) convergence and thus the best efficiency
is obtained in the limit Δt→∞ in which the implicit time-stepping method in fact
becomes Newton’s method known for its quadratic convergence property.

9.4.4.2 2D Problems

For 2D problems, the linear system of four equations associated to point i, j (9.52)
couples the following five flow variables updates: δUi, j, δUi+1, j, δUi−1, j, δUi, j+1

and δUi, j−1. This coupling can be schematically represented by the following cross.
In order to determine the nature of the linear system to solve, the unknowns have
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to be ordered. Let us assume they are ordered by rows (lexicographic ordering):
δU11, . . . , δUm1, δU12, . . . , δUm2, . . ., if there are m points per row. Then, the equation
for point i, j is the (i + ( j− 1)m)th equation and couples the unknowns having the
numbers i + ( j− 2)m, i− 1 + ( j− 1)m, i + ( j− 1)m, i + 1 + ( j− 1)m, i + jm. i.e. the
system has the structure shown below. Actually, since there are four unknowns per
point, the structure shown is the block structure of the linear system, each of the

entries being a 4 × 4 block. One observes that the system is still sparse but no
longer block-tridiagonal. Under these circumstances, direct elimination becomes
prohibitively expensive both in terms of CPU time and storage, and this becomes
even worse for 3D problems. Alternatively, the iterative techniques mentioned in
Sect. 9.2.1.1 may be used. At this stage, two comments must be made:

• For upwind biased (or diffusive) implicit operators such as those mentioned in
the previous section, the linear system (9.52) is block-diagonally dominant. This
ensures the convergence of the classical iterative techniques and constitutes a
side benefit of using upwind-biased schemes.

• Because of the various approximations made in the second stage (choice of the
implicit operator), it is not generally worthwhile to solve the linear system (9.52)
with great accuracy, so that an approximate but fast solver is generally prefer-
able. This is why only a few, and in most cases only one, linear iterations are
performed.11

11 As mentioned in the previous section, when no approximation is introduced in the implicit
operator, the best convergence is obtained for Δt→∞ (Newton method), in which case it becomes
worthwhile to solve the linear system accurately. This is the approach followed in Newton iterative
methods. One key issue in these methods is to find an economical way of using the unapproximated
implicit operator. More information about these methods which fall out of the scope of this lecture
can be found in [12].
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Let us now describe in some detail how this iterative strategy is set up. First, let
us recall the linear equation corresponding to point i, j (for simplicity, let us consider
θ = 1, fully implicit scheme).

[
Ã+ Biε

−1
i +Ciε

+1
i + Bjε

−1
j +C jε

+1
j

]
︸������������������������������������������︷︷������������������������������������������︸

Ai, j

δUi, j = −Ri, j

where Ã = (I/Δt) +A. The general form of an iterative method for solving the
corresponding linear system is (Sect. 9.2.1.1)

BδU(k+1) = −R + (B−A)δU(k)

The various iterative methods correspond to different choices for B. Let us now
list a few popular methods for implicit time-stepping schemes.

Point Jacobi Bi, j = Ã. The iterative formula is then

ÃδU(k+1)
i, j = −Ri, j−

[
Biε
−1
i +Ciε

+1
i + Bjε

−1
j +C jε

+1
j

]
δU(k)

i, j (9.53)

Point Gauss-Seidel Bi, j = Ã+ Biε
−1
i + Bjε

−1
j (lower sweep) or Bi, j = Ã+Ciε

+1
i +

C jε
+1
j (upper sweep). For the lower sweep, the iterative formula is thus

[
Ã+ Biε

−1
i + Bjε

−1
j

]
δU(k+1)

i, j = −Ri, j−
[
Ciε

+1
i +C jε

+1
j

]
δU(k)

i, j (9.54)

Symmetric point Gauss-Seidel Bi, j =
[
Ã+Biε

−1
i +Bjε

−1
j

]
Ã−1

[
Ã+Ciε

+1
i +C jε

+1
j

]
.

This method is equivalent to a lower Gauss-Seidel sweep followed by an upper
Gauss-Seidel sweep. This shows up nicely when considering the first iteration
starting from the initial guess δU(0)

i, j = 0,

[
Ã+ Biε

−1
i + Bjε

−1
j

]
Ã−1

[
Ã+Ciε

+1
i +C jε

+1
j

]
δU(1)

i, j︸����������������������������������︷︷����������������������������������︸
δU∗

= −Ri, j (9.55)

which can be decomposed into two steps, i.e.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
Ã+ Biε

−1
i + Bjε

−1
j

]
δU∗ = −Ri, j

Ã−1
[
Ã+Ciε

+1
i +C jε

+1
j

]
δU(1)

i, j = δU∗

Now, the first step is clearly a lower Gauss-Seidel sweep. As far as the second
step is concerned, multiplying it through with Ã, it comes

[
Ã+Ciε

+1
i +C jε

+1
j

]
δU(1)

i, j = ÃδU∗ = −Ri, j−
[
Biε
−1
i + Bjε

−1
j

]
δU∗

which is indeed an upper Gauss-Seidel sweep. In practise, the most efficient imple-
mentation is the following two step procedure
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
Ã+ Biε

−1
i + Bjε

−1
j

]
δU∗ = −Ri, j[

Ã+Ciε
+1
i +C jε

+1
j

]
δU(1)

i, j = ÃδU∗
(9.56)

Notice that for this method, the iteration (preconditioning) matrix B appears as
a product of terms which represent an approximate factorization of the system ma-
trix A. The nature of this approximate factorization is schematically illustrated in

the above figure. The symmetric point Gauss-Seidel method is particularly effective
when used in combination with Yoon & Jameson’s implicit operator as outlined in
their original paper [48].

Approximate LU factorization The approximate LU factorization (ALU) method
is similar to the symmetric point Gauss-Seidel factorization in the sense that it
involves a lower and an upper sweep, but the factorization involves a decom-
position of Ã. Let us first recall the expression ofA (see definition in (9.48)).

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

Δx

∂Fi+1/2, j

∂Ui, j︸���������︷︷���������︸
AE

+
−1
Δx

∂Fi−1/2, j

∂Ui, j︸���������︷︷���������︸
AW

+
1

Δy

∂Gi, j+1/2

∂Ui, j︸���������︷︷���������︸
AN

+
−1
Δy

∂Gi, j−1/2

∂Ui, j︸����������︷︷����������︸
AS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The ALU factorization method is defined by Bi, j = [((I/Δt) +AE +AN)+

Biε
−1
i + Bjε

−1
j

]
Δt

[
((I/Δt) +AW +AS ) +Ciε

+1
i +C jε

+1
j

]
, which, for FVS dis-

cretizations, corresponds to grouping all positive subflux (F+,G+) contribu-
tions in the lower sweep and all negative subflux contributions in the upper
sweep. Just as the symmetric Gauss-Seidel method, it is implemented in two
steps, which read for the first iteration

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[( I
Δt

+AE +AN

)
+ Biε

−1
i + Bjε

−1
j

]
δU∗ = −Ri, j[( I

Δt
+AW +AS

)
+Ciε

+1
i +C jε

+1
j

]
δU(1)

i, j =
1
Δt
δU∗

(9.57)

and the nature of the factorization (schematic representation) is the same as for
the symmetric Gauss-Seidel method.
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Approximate directional factorization This method, which is closely related to
the ADI method was introduced by Beam and Warming [3]. The approximate
directional factorization (ADF) method corresponds to grouping all terms as-
sociated with the i-coordinate line in a first term and all terms associated with
the j-coordinate line in a second term, i.e. Bi, j =

[
((I/Δt) +AE +AW ) + Biε

−1
i +

Ciε
+1
i

]
Δt

[
((I/Δt) +AN +AS ) + Bjε

−1
j +C jε

+1
j

]
. It is implemented in two steps,

which read for the first iteration
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[( I
Δt

+AE +AW

)
+ Biε

−1
i +Ciε

+1
i

]
δU∗ = −Ri, j

[( I
Δt

+AN +AS

)
+ Bjε

−1
j +C jε

+1
j

]
δU(1)

i, j =
1
Δt
δU∗

(9.58)

Because of the splitting of implicit terms along gridline directions, and since
each point is only coupled with its neighbours, it results that the linear systems
corresponding to each step of the ADF method are block tridiagonal systems
which can be solved very efficiently as mentioned previously. The schematic
illustration of the Approximate Directional Factorization is shown in the fol-
lowing figure.

j-line (vertical line) Jacobi Bi, j = Ã+ Bjε
−1
j +C jε

+1
j . The corresponding iterative

formula is
[
Ã+ Bjε

−1
j +C jε

+1
j

]
δU(k+1)

i, j = −Ri, j−
[
Biε
−1
i +Ciε

+1
i

]
δU(k)

i, j (9.59)

Similar to the ADF method, the line Jacobi method requires the solution of
block tridiagonal systems.

j-line (vertical line) Gauss-Seidel Bi, j = Ã+ Bjε
−1
j +C jε

+1
j + Biε

−1
i (lower sweep)

or Bi, j = Ã+ Bjε
−1
j + C jε

+1
j + Ciε

+1
i (upper sweep). The iterative formula for

the lower sweep is then
[
Ã+ Bjε

−1
j +C jε

+1
j + Biε

−1
i

]
δU(k+1)

i, j = −Ri, j−Ciε
+1
i δU(k)

i, j (9.60)

Symmetric j-line (vertical line) Gauss-Seidel Just as for the point scheme, com-
bining a lower and an upper line Gauss-Seidel sweeps yields the following al-

gorithm: Bi, j =
[
Ã+ Bjε

−1
j +C jε

+1
j + Biε

−1
i

] [
Ã+ Bjε

−1
j +C jε

+1
j

]−1 [
Ã+ Bjε

−1
j
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+C jε
+1
j +Ciε

+1
i

]
, which is most efficiently implemented in two steps as follows

(1 iteration)
⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
Ã+ Bjε

−1
j +C jε

+1
j + Biε

−1
i

]
δU∗ = −Ri, j[

Ã+ Bjε
−1
j +C jε

+1
j +Ciε

+1
i

]
δU(1)

i, j = −Ri, j−Biε
−1
i δU∗

(9.61)

In practise, in most cases, only one iteration of the linear iterative method is per-
formed. This is in fact equivalent to solving exactly a simplified linear system as was
presented in Sect. 9.4.1. Notice that the simplification is in many cases (symmetric
point and line Gauss-Seidel, ALU and ADF methods) an approximate factorization
of the original matrix. Because of the simplification of the linear system (factor-
ization error), there generally appears an optimum time step at which convergence
is fastest (even when the implicit operator suffers no simplification as for a central
space discretization [3] or for first-order FVS computations), as shown in particu-
lar by the analysis of Thomas et al. [42]. When the implicit operator is simplified
as for second order computations using upwind schemes, the effect of this simpli-
fication is generally dominant and the optimum time step is little affected by the
factorization error.

A rather extensive investigation of the efficiencies of the various implicit schemes
and solution strategies for upwind biased discretizations of the 2D Euler equations
was performed by P. Corbett [7]. The ADF, ALU and line Gauss-Seidel schemes
were considered, as well as the point symmetric Gauss-Seidel scheme together with
the Yoon and Jameson implicit operator. In all cases, only one iteration of the linear
iterative method was performed. The most effective schemes were found to be the
ADF and line Gauss-Seidel schemes. When Roe’s scheme is used in the explicit op-
erator, Yoon & Jameson’s scheme [48] (Yoon & Jameson’s implicit operator + point
symmetric Gauss-Seidel iterative method) constitutes a competitive alternative, es-
pecially for second order computations.

9.5 Conclusions

For complex fluid dynamics problems such as those governed by the compressible
Euler and Navier-Stokes equations, the classical methods used for simpler problems
were shown to fail because of the mixed/hybrid type of the steady equations. One
strategy to circumvent this difficulty is to use time-dependent techniques, thanks to
the fact that the time-dependent equations provide a well-posed initial value problem
for all flow situations.

Now, the systems of ordinary differential equations resulting from the space dis-
cretization of the time-dependent equations are often very stiff, in particular for
viscous flow problems, and for those types of problems, it was shown that it is gen-
erally more efficient to use implicit time-stepping schemes.

To construct efficient implicit time-stepping schemes, it is essential to perform a
linearization. The resulting linear implicit time-stepping scheme then appears to be
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made of three buiding blocks, i.e. an explicit discretization scheme which controls
the accuracy of the final steady solution, an implicit operator defining the linear sys-
tem to be solved and a strategy to solve the linear system, the latter two controlling
the scheme convergence and efficiency.

As far as the explicit discretization scheme is concerned, it was shown that for ad-
vection dominated problems such as those governed by the Euler and Navier-Stokes
equations, which involve regions with large gradients like shocks and shear layers,
it is necessary to introduce some amount of dissipation in order to control (prevent)
the appearance of spurious oscillations. For scalar problems, it was shown that this
could be achieved equivalently by using upwind biased discretization schemes or
by appending artificial diffusion terms to a baseline central difference scheme. For
systems of equations like the Euler equations, the extension of upwind biased dis-
cretization schemes was made possible by the development of conservative upwind
schemes. These schemes, which are more complex and thus more costly than arti-
ficial diffusion based schemes, allow a better capture of discontinuities and a better
resolution of moving discontinuities.

For implicit operators, first-order schemes are generally preferred, first because
they keep the linear system narrow-banded, which reduces the solution cost, and
also because they ensure its diagonal dominance. As a result, many efficient iterative
solution strategies are available, including classical relaxation (Jacobi,Gauss-Seidel
and their symmetric and line versions) and factorization schemes. In some cases, it
is even possible to let the time step tend to infinity and the time-stepping scheme
in fact becomes a Newton or quasi-Newton iterative scheme for solving directly
the steady equations. That time-stepping schemes which were introduced in the first
place to circumvent the difficulty of solving directly the steady state problem eventu-
ally led to an iterative process for solving this problem constitutes a rather amusing
conclusion.
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Chapter 10
Introduction to Finite Element Methods
in Computational Fluid Dynamics

E. Dick

10.1 Introduction

The finite element method (FEM) is a numerical technique for solving partial differ-
ential equations (PDE’s). Its first essential characteristic is that the continuum field,
or domain, is subdivided into cells, called elements, which form a grid. The elements
(in 2D) have a triangular or a quadrilateral form and can be rectilinear or curved. The
grid itself need not be structured. With unstructured grids and curved cells, complex
geometries can be handled with ease. This important advantage of the method is not
shared by the finite difference method (FDM) which needs a structured grid, which,
however, can be curved. The finite volume method (FVM), on the other hand, has
the same geometric flexibility as the FEM.

The second essential characteristic of the FEM is that the solution of the discrete
problem is assumed a priori to have a prescribed form. The solution has to belong
to a function space, which is built by varying function values in a given way, for
instance linearly or quadratically, between values in nodal points. The nodal points,
or nodes, are typical points of the elements such as vertices, mid-side points, mid-
element points, etc. Due to this choice, the representation of the solution is strongly
linked to the geometric representation of the domain. This link is, for instance, not
as strong in the FVM.

The third essential characteristic is that a FEM does not look for the solution of
the PDE itself, but looks for a solution of an integral form of the PDE. The most
general integral form is obtained from a weighted residual formulation. By this for-
mulation the method acquires the ability to naturally incorporate differential type
boundary conditions and allows easily the construction of higher order accurate
methods. The ease in obtaining higher order accuracy and the ease of implementa-
tion of boundary conditions form a second important advantage of the FEM. With
respect to accuracy, the FEM is superior to the FVM, where higher order accurate
formulations are quite complicated.
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The combination of the representation of the solution in a given function space,
with the integral formulation treating rigorously the boundary conditions, gives to
the method an extremely strong and rigorous mathematical foundation.

A final essential characteristic of the FEM is the modular way in which the dis-
cretization is obtained. The discrete equations are constructed from contributions on
the element level which afterwards are assembled.

Historically, the finite element method originates from the field of structural me-
chanics. This has some remnants in the terminology. In structural mechanics, the
partial differential formulation of a problem can be replaced by an equivalent vari-
ational formulation, i.e. the minimization of an energy integral over the domain.
The variational formulation is a natural integral formulation for the FEM. In fluid
dynamics, in general, a variational formulation is not possible. This makes it less
obvious how to formulate a finite element method. The history of computational
fluid dynamics (CFD) shows that every essential break-through has first been made
in the context of the finite difference method or the finite volume method and that
it always has taken considerable time, often much more than a decade, to incorpo-
rate the same idea into the finite element method. The history of CFD, on the other
hand, also shows that, once a suitable FEM-formulation has been found, the FEM is
almost exclusively used. This is due to the advantages with respect to the treatment
of complex geometries and obtaining higher order accuracy.

The development of the finite element method in fluid dynamics is at present still
far from ended. For the simplest problems such as potential flows, both compress-
ible and incompressible, and incompressible Navier-Stokes flows at low Reynolds
numbers, the finite element method is more or less full-grown, although new evo-
lutions, certainly for Navier-Stokes problems, are still continuing. More complex
problems like compressible flows governed by Euler- or Navier-Stokes equations or
incompressible viscous flows at high Reynolds numbers still form an area of active
research.

In this introductory text, the option is taken to explain the basic ingredients of
the finite element method on a very simple, purely mathematical, problem and to
give fluid dynamics illustrations in detail only for simple problems. For more com-
plex problems, only a basic description is given with reference to further literature.
Also in the explanation of the method, all mathematical aspects are systematically
avoided. For the mathematical aspects, reference is made to further literature. This
makes the text accessible for a reader with almost no knowledge of functional anal-
ysis and numerical analysis. For the fluid dynamics illustrations, the option has been
taken to use only simple techniques, so that the detailed examples can be reproduced
by the reader not really familiar with general computational fluid dynamics or even
general fluid dynamics. This text therefore is to be seen as the absolute minimum
introduction to the subject. The text is in no way complete and the author deliber-
ately has taken the risk to be seen as naive by a more informed reader. A reference
list is given for a deeper introduction. A reader beginning with computational fluid
dynamics should be aware that a complete study of the finite element method may
take considerable time and may necessitate, depending on background, a consider-
able effort. The method is much less intuitive than the finite difference method and
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the finite volume method and requires a more fundamental attitude for mathematical
formulations. This introductory text therefore is also meant to create some enthusi-
asm for the method by showing its power with simple examples and to justify in this
way the need for further study. It is the conviction of the author that a practitioner of
CFD, even if it is not his or her intention to use the FEM, should have at least a basic
knowledge of the method. This is in particular useful with respect to the treatment
of boundary conditions. Also one should consider that the impact of the FEM in
CFD is already extremely important and that it probably will grow in the future.

10.2 Strong and Weak Formulations of a Boundary
Value Problem

10.2.1 Strong Formulation

Consider as an example, the following simple one-dimensional boundary value
problem, consisting of the differential equation

d
dx

(
λ

du
dx

)
= f on 0 ≤ x ≤ X (10.1)

and the boundary conditions

u(0) = u0 (10.2)

and

λ
du
dx

(X) = q (10.3)

More generally, the differential equation is denoted by

a(u) = f (10.4)

The domain to which it applies is denoted by Ω. The boundary condition of type
(10.2) is called a Dirichlet boundary condition. More generally, it is denoted by

b0(u) = g0 (10.5)

The boundary condition of type (10.3), which is formulated on the flux of the
variable, is called a Neumann boundary condition. More generally, it is denoted by

b1(u) = g1 (10.6)

The boundary of the domain Ω is denoted by Γ. The part to which the Dirich-
let boundary condition applies is Γ0 and the part to which the Neumann boundary
condition applies is Γ1.
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The boundary value problem (10.1, 10.2 and 10.3) is said to be in its strong form,
requiring the satisfaction of the differential equation (10.1) in all points of the do-
main Ω, the satisfaction of the Dirichlet boundary condition (10.2) in all points (here
one) of the part of the boundary Γ0 and the satisfaction of the Neumann boundary
condition (10.3) in all points (here one) of the part of the boundary Γ1.

One way of relaxing the requirements of the boundary value problem, notably
the finite difference way, consists in requiring the approximate satisfaction of the
differential equation and the boundary conditions in a finite number of points in the
domain and at the boundary. These points usually are chosen to belong to a mesh
with some form of regularity. For the one-dimensional domain, a typical mesh or
grid is obtained by choosing equally spaced grid points, as shown on Fig. 10.1.

The grid spacing is denoted by Δx. Following standard finite difference method-
ology, du/dx is approximated in the mid-point of the interval (xi, xi+1) by

(
du
dx

)
i+1/2

≈ ui+1−ui

Δx
(10.7)

Similarly, in the mid-point of the interval (xi−1, xi), the approximation is
(

du
dx

)
i−1/2

≈ ui−ui−1

Δx
(10.8)

Using (10.7) and (10.8), (10.1) can be approximated by

λi+1/2
(ui+1−ui)−λi−1/2

(ui−ui−1)

Δx2
= fi (10.9)

For constant λ, this simplifies to

λ
ui+1−2ui + ui−1

Δx2
= fi (10.10)

The Dirichlet boundary condition (10.2) is simply

u0 = u0 (10.11)

The Neumann boundary condition can be introduced by the image point method.
In this method, a point outside the domain (N + 1) is defined which afterwards is
eliminated. The discretization of the differential equation (1) in the end point of the
domain is given by (10.9) for i = N.

Fig. 10.1 Construction of a finite difference grid over the interval 0 ≤ × ≤ X
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The discretization of the Neumann boundary condition (10.3) is

1/2
λN+1/2

(uN+1−uN)

Δx
+ 1/2

λN−1/2
(uN−uN−1)

Δx
= q

Combination with the discretized differential equation gives

q−λN−1/2

(uN−uN−1)
Δx

= 1/2fNΔx (10.12)

The resulting discretization is of second order. By taking the Taylor expansion
of (10.10), this is obvious (for constant λ) for points inside the domain. At the
Neumann boundary, the Taylor expansion up to second order (for constant λ) gives

uN−1 ≈ uN−Δx

(
du
dx

)
N

+ 1/2Δx2
(

d2u

dx2

)
N

Using the Neumann boundary condition

λ
(

du
dx

)
N

= q

and the differential equation in node N

λ
(

d2u

dx2

)
N

= fN

this becomes

uN−1 ≈ uN−
Δx
λ

q + 1/2
Δx2

λ
fN

For constant λ, this equation is identical to (10.12).
The originally continuous boundary value problem is now replaced by a discrete

problem, consisting of the solution of the set of algebraic equations

K U = F (10.13)

where U is the vector consisting of the elements (u1, u2, . . . , uN), K is a matrix given
by (in the case λ is a constant)

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1

−1 2 −1

. . .

−1 2 −1

−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and F is the right hand side, given by

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0−
Δx2

λ
f1

−Δx2

λ
f2

...

−Δx2

λ
fN−1

Δx
λ

q− Δx2

2λ
fN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The most typical feature of the finite difference method is that it only gives in-

formation about the function values at the grid points, but no information on the
function values between these points.

10.2.2 Weighted Residual Formulation

The first basic ingredient of the finite element method is that an approximate solu-
tion is sought which belongs to some finite dimension function space. This function
space is to be specified more in detail later. For the time being, we look for an ap-
proximate solution of the boundary value problem (10.1, 10.2 and 10.3) which has
the form

û = ψ +

N∑
k=1

φk uk (10.14)

where ψ is a function which satisfies the boundary conditions (10.2) and (10.3).
For the given problem, the construction of ψ is obvious. The functions φk are
called basis functions or shape functions. Since the dimension of the function space
Φ = {φk; k = 1, 2, . . . , N} is finite, in general, an expression of type (10.14) can-
not satisfy the differential equation (10.1) in each point of the domain. This means
that the approximate solution û cannot be identical with the exact solution u. Of
course, the shape functions should be chosen so that by enriching the function space
Φ, i.e. letting N grow, the approximation obtained by (10.14) becomes better. This
means that the approximate solution converges to the exact solution. This is called
the completeness requirement of the function space.

Since a function û given by (10.14) cannot satisfy the differential equation (10.1),
upon substitution of (10.14) into (10.1), a residual is left:

rΩ = a(û)− f in Ω (10.15)

An approximate solution of the boundary value problem now is obtained by find-
ing a way to make this residual small in some sense. In the finite element method
this is done by requiring that an appropriate number of weighted integrals of the
residual over Ω be zero:
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Ω

wirΩdΩ = 0; i = 1,2, . . . ,N (10.16)

where W = {wi; i = 1, 2, . . . , N} is a set of weighting functions.
Obviously, the convergence requirement now also implies a requirement of com-

pleteness of the space of weighting functions, i.e. (10.16) should imply rΩ→ 0 for
N→∞.

Clearly, with satisfaction of the completeness, for N→∞, the weighted residual
formulation (10.16) for a function of form (10.14) is completely equivalent to the
strong formulation of the problem (10.1, 10.2 and 10.3). An approximate solution
then is obtained for N being finite.

10.2.3 Galerkin Formulation

Among the possible choices for the set of weighting functions, the following ones
are the most obvious.

The weighting functions can be chosen to be Dirac-delta functions in N points.
This choice means making the residual equal to zero in a number of chosen points.
The method is called the point collocation method. Obviously, it has much in com-
mon with the finite difference methodology.

A second possible choice of weighting functions is given by

wi = 1 for xi ≤ x ≤ xi+1

= 0 for x < xi or x > xi+1

The weighted residual statements (10.16) now require the integral of the resid-
ual to be zero on N subdomains. This method is called the subdomain collocation
method. The finite volume method, in which not the differential form of the equation
but the integral form of the equation is discretized, is a special form of this method.

The most popular choice for the weighting functions in the finite element method
is the shape functions themselves:

wi = φi

This method is called the Galerkin method. Its meaning is that the residual is
made to be orthogonal to the space of the shape functions.

To illustrate the Galerkin method, consider the boundary value problem
(10.1–10.3) with constant λ. Then:

ψ = u0 +
q
λ

x

Consider further as an example of (10.14) a Fourier-sine expansion of u:

û = ψ +

N∑
k=1

uk sin
πk′x

X
, with k′ = k− 1/2
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Then:

rΩ = −λ
N∑

k=1

uk

(
πk′

X

)2

sin
πk′x

X
− f

The Galerkin method then gives

λ
N∑

k=1

uk

(
πk′

X

)2 X∫
0

sin
πk′x

X
sin

πi′x
X

dx = −
X∫

0

sin
πi′x
X

f dx

Then noting that

X∫
0

sin
πk′x

X
sin

πi′x
X

dx =
X
2

for k′ = i′

= 0 for k′ � i′

we find

ui = − 2X

λπ2i′2

X∫
0

f sin
πi′x
X

dx

The foregoing method used to determine an approximate solution of the bound-
ary value problem (10.1, 10.2 and 10.3) is not a finite element method, but a spectral
method. The finite element method however has the same starting point.

Before going on with the study of the building blocks of the finite element
method, we should remark that a fourth weighted residual statement exists on which
finite element methods can be based. The least squares formulation is based on the
minimization of the integral

∫
Ω

r2
ΩdΩ

10.2.4 Weak Formulation

In many problems, it is not practical to construct a function which satisfies the
boundary conditions in order to arrive at an expression for the approximate solution,
as is done in (14). More generally, an approximate solution can be expressed as

û =

N∑
k=1

φkuk (10.17)

Now the approximate solution not only has a residual with respect to the field
equation (10.4), but also with respect to the boundary equations (10.5) and (10.6):
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r0 = b0(û)−g0 (10.18)

and
r1 = b1(û)−g1 (10.19)

A weighted residual statement is now to be of the form
∫
Ω

wirdΩ+

∫
Γ0

w0
i r0dΓ+

∫
Γ1

w1
i r1dΓ = 0 (10.20)

This complicates the formulation since now additional weighting functions on
the boundaries are to be chosen. Since the number of degrees of freedom of the
approximate solution (10.17) is N, an equal number of independent weighting func-
tions wi can be chosen, while w0

i and w1
i are to depend on wi. There is however a

natural way to choose the dependent weighting functions on the boundary.
For the problem (10.1, 10.2 and 10.3), (10.20) becomes

X∫
0

wi

[
d

dx

(
λ

dû
dx

)
− f

]
dx + w0

i [û(0)−u0] + w1
i

[
λ

dû
dx

(X)−q

]
= 0 (10.21)

where the weighting functions at the boundary reduce to weighting factors w0
i

and w1
i .

By one integration by parts on the first term, (10.21) becomes

wiλ
dû
dx

∣∣∣∣∣∣X0 −
X∫

0

λ
dwi

dx
dû
dx

dx−
X∫

0

wif dx + w0
i [û(0)−u0] + w1

i

[
λ

dû
dx

(X)−q

]
= 0

This weighted residual statement is simplified by choosing the weighting factors
on the Neumann boundary by

w1
i = −wi(X)

The weighted residual statement then becomes

−
X∫

0

λ
dwi

dx
dû
dx

dx−wi(0)λ
dû
dx

(0)−
X∫

0

wif dx + w0
i [û(0)−u0] + wi(X)q = 0

Furthermore, if the Dirichlet boundary condition can be imposed on the approx-
imate solution, the weighting functions and the weighting factors can be chosen to
be zero at the Dirichlet boundary, so that the weighted residual statement further
simplifies to

−
X∫

0

λ
dwi

dx
dû
dx

dx−
X∫

0

wif dx + wi(X)q = 0 (10.22)
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subject to the Dirichlet boundary conditions

û(0) = u0 wi(0) = 0 (10.23)

The weighted residual statement in form (10.22) is called the weak formulation.
The weak formulation (10.22 and 10.23) is not completely equivalent to the

strong formulation (10.1, 10.2, 10.3), even not for N → ∞. By the construction
of the weak formulation, any solution of the strong formulation satisfies the weak
formulation. The reverse, however, is not true. The weak formulation allows solu-
tions which have a lower degree of regularity than required for the strong solution.
This is the origin of the term weak and strong. For instance for the problem (10.1,
10.2, 10.3), the solution must have continuous first derivatives. We express this by
saying that the degree of regularity is to be C1. The corresponding weak formulation
(10.22 and 10.23) only requires continuity of the function value itself. The necessary
degree of regularity is here C0. This means that functions with discontinuous first
derivatives are allowed by (10.22). We remark that this is precisely, certainly in fluid
mechanics, what we want! Indeed, in fluid mechanics, the governing equations are
obtained from integral statements, i.e. conservation laws, requiring a lower degree
of regularity than the partial differential equations which are obtained from these
statements.

To conclude, we remark that the weak formulation (10.22), in case of sufficient
regularity, through reverse integration by parts leads to a simplification of (10.21):

X∫
0

wi

[
d

dx

(
λ

dû
dx

)
− f

]
dx−wi(X)

[
λ

dû
dx

(X)−q

]
= 0 (10.24)

For an infinite number of degrees of freedom (N→∞), this implies exact satis-
faction of the differential equation and the Neumann boundary condition.

In the weak formulation (10.22 and 10.23), the Neumann boundary condition
need not be imposed in an explicit way to the solution. Boundary conditions of this
type enter through the integration by parts in a natural way into the formulation.
Therefore these boundary conditions are called natural boundary conditions. The
boundary conditions which have to be imposed explicitly in the weak formulation
are called essential boundary conditions.

10.2.5 Variational formulation

For elliptic self-adjoint boundary value problems, the weak formulation is equiva-
lent to the minimization of the functional associated to the boundary value problem.
Historically, this minimization formulation, or variational formulation, has played a
big role in the development of the finite element method. Variational methods still
have an important role in, for instance, structural mechanics. Also the variational
formulation plays an important role in the mathematical theory of finite element
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methods, for instance, with respect to questions on solvability and uniqueness. In
this introductory text we do not enter these aspects of the finite element method and
refer the reader to Refs. [5, 6].

10.2.6 Conclusion

The first basic ingredient of a finite element method generally is the weak formu-
lation of the boundary value problem. Although, as discussed, other formulations
are possible (more general weighted residual formulations and least squares for-
mulations), a standard finite element method is based on a weak formulation. In
this introductory text, we shall restrict ourselves to this formulation. If possible, the
Galerkin approach is chosen with weighting functions equal to shape functions. We
shall however see that sometimes modifications of this standard choice are neces-
sary. The standard choice is denoted by the term Bubnov-Galerkin method. When
modified weighting functions are used, the method is denoted by the term Petrov-
Galerkin method (see later).

10.3 Piecewise Defined Shape Functions

10.3.1 The Finite Element Interpolation

A second basic ingredient of the finite element method is the piecewise manner in
which the shape and weighting functions are constructed. The domain Ω is subdi-
vided into non-overlapping subdomains, Ωe, called elements, of simple geometrical
form. For example, for the one dimensional domain shown in Fig. 10.1, an obvious
choice for an element Ωe is the interval xe−1 ≤ x ≤ xe.

The integrals in the weak formulation (10.22) can be split into a sum of integrals
over elements: ∫

Ω

( )dΩ =
∑

e

∫
Ωe

( )dΩ

Then, obviously, in the piecewise contributions to the integrals, it is computation-
ally advantageous to have as many zero contributions as possible. This is achieved
when the shape functions and weighting functions associated to some subscript are
only non-zero in as few as possible elements associated to this subscript. Shape and
weighting functions which are only non-zero in a small set of elements are said to
have compact support.

In the finite element method, shape and weighting functions with compact sup-
port are constructed from an interpolation problem over the domain. For instance,
a function û which is obtained through linear interpolation between function values
uk defined in the grid points of the grid of Fig. 10.1 can be written as
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1 1 1

0X 1X 2X …
k−1X kX k+1X N−1X NX X

Fig. 10.2 Piecewise linear shape functions for a one-dimensional domain

û =

N∑
k=0

φkuk (10.25)

The shape functions φk in this expression have the hat-like form, shown in
Fig. 10.2.

For a function representation based on an interpolation, the values uk in the ex-
pression (10.25) have the meaning of function values in grid points. Obviously, other
interpolation schemes are possible. For instance, the function u could be obtained
by piecewise constant interpolation, as shown in Fig. 10.3. The values uk are now to
be seen as function values in mid-points of the elements.

Similarly, the interpolation could be piecewise quadratic as shown in Fig. 10.4.
In all these cases, the values uk represent function values in some points associ-

ated to the elements. In the finite element technique, these points are called nodes.
Interpolation formulas can be built in which the values uk do not necessarily rep-
resent function values (or values of derivatives) in nodes. These are then called
nodeless variables. For simplicity, in this introductory text, we shall only consider
interpolation formulas with nodal variables.

Fig. 10.3 Piecewise constant shape functions for a one-dimensional domain

Fig. 10.4 Piecewise quadratic interpolation in one dimension
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As a simple example, we first consider the problem (10.1, 10.2 and 10.3) with
piecewise linear shape functions and a standard Galerkin weak formulation. The
approximate solution is then represented by

û =

N∑
k=0

φk uk =
∑

e

2∑
j=1

φe
j uj. (10.26)

In (10.26) the sum over the nodes is rearranged as a double sum, first over the
elements and then over the nodes belonging to the element. The shape functions φk,
associated with the nodes are called global shape functions. On the element level,
the shape functions φe

j are called local shape functions or element shape functions.
Figure 10.5 shows the shape functions on an element basis. The basis functions

can be written as
φe

1 =
xe−x
Δxe

, φe
2 =

x−xe−1

Δxe

Hence:
dφe

1

dx
= − 1

Δxe
,

dφe
2

dx
=

1
Δxe

The Galerkin weak formulation (10.22) is

X∫
0

λ
dwi

dx
dû
dx

dx = −
X∫

0

wif dx + wi(X)q (10.27)

For i = e � N, the integral in the left hand side is (for constant λ)

Ie
1 = λ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫
Ωe

dφe
2

dx

[
dφe

1

dx
ue−1 +

dφe
2

dx
ue

]
dx +

∫
Ωe+1

dφe+1
1

dx

⎡⎢⎢⎢⎢⎢⎣dφe+1
1

dx
ue +

dφe+1
2

dx
ue+1

⎤⎥⎥⎥⎥⎥⎦dx

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= λ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫
Ωe

1
Δxe

[
− 1

Δxe
ue−1 +

1
Δxe

ue

]
dx +

∫
Ωe+1

1
Δxe+1

[
− 1

Δxe+1
ue +

1
Δxe+1

ue+1

]
dx

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Fig. 10.5 Piecewise linear element shape functions
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= λ
{
− 1

Δxe
ue−1 +

1
Δxe

ue +
1

Δxe+1
ue−

1
Δxe+1

ue+1

}

For i = N, this integral is

IN
1 = λ

[
− 1

ΔxN
uN−1 +

1
ΔxN

uN

]

We remark that due to the essential boundary condition in node 0, w0 = 0. Hence
I0
1 = 0.

Interpolating f in the same way as û, the integral on the right hand side becomes,
for i = e � N:

Ie
2 =

∫
Ωe

φe
2[φe

1fe−1 + φe
2fe]dx +

∫
Ωe+1

φe+1
1 [φe+1

1 fe + φe+1
2 fe+1]dx

=

[
Δxe

6
fe−1 +

Δxe

3
fe

]
+

[
Δxe+1

3
fe +

Δxe+1

6
fe+1

]

For i = N, this integral is

IN
2 =

ΔxN

6
fN−1 +

ΔxN

3
fN

For i = 1, . . . , N−1, the weak formulation (10.27) becomes, in the case of con-
stant interval length

λ
Δx

[−ui−1 + 2ui−ui+1] = −Δx[1/6fi−1 + 2/3fi + 1/6fi+1] (10.28)

The equation associated to the last node is

λ
Δx

[−uN−1 + uN] = −Δx[1/6fN−1 + 1/3fN] + q (10.29)

These equations are not very different from the equations obtained by the finite
difference method (10.10) and (10.12). This is typical for the simplest finite element
methods.

This simple example allows us to make three remarks, which have a more general
validity.

First, although by the piecewise linear representation the approximate solution
cannot satisfy the strong form of the boundary value problem in any point of the
domain, the solution obtained from the weak formulation represents a valid approx-
imation of the problem. Indeed for this example, the second derivative of the ap-
proximate solution either is zero (inside the elements) or is infinite (at grid points).
So there is no way to satisfy the differential equation by such a function.
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Fig. 10.6 Piecewise constant
interpolation of the
non-derivative term in an
interweaving finite element
grid, leading to lumping

Second, by comparison of the finite element expressions (10.28, 10.29) with the
corresponding finite difference expressions (10.10, 10.12) we see that the accuracy
is not penalized by adding the contributions for undifferenced terms, such as f, from
non-central nodes to the central node. This process is called lumping. It is often used
to simplify finite element expressions. The result of this lumping, for this example
replacing 1/6fi−1 + 2/3fi +

1/6fi+1 by fi and replacing 1/6fN−1 + 1/3fN by 1/2fN, could
automatically have been obtained if f would have been presented by a piecewise
constant function in an interweaving finite element grid, as shown in Fig. 10.6.

This remark is also essential in the sense that it shows that variables appearing
with different order of derivatives can be approximated in different ways, i.e. with
different interpolation structures or even in different grids. This means that the finite
element method is not a rigid method but allows many variants.

Finally, we can remark that the finite element method can be interpreted as a sys-
tematic way to generate difference approximations. For the simple example treated
here, for constant mesh spacing, constant field parameter λ, and using lumping, the
finite element method with piecewise linear shape functions reproduces the second
order finite difference approximation. Therefore it is clear that in a more general
application (non-constant mesh spacing, non-constant field parameter), the finite el-
ement method with piecewise linear shape functions still generates a second order
difference approximation. This systematic result of the finite element method is fur-
ther illustrated in the following sections.

10.3.2 Finite Elements with C0 Continuity in Two-Dimensions

10.3.2.1 Triangular Elements

Figure 10.7 shows a domain subdivided into non-overlapping elements of rectilinear
triangular form. In each element a local interpolation is defined. We consider now
interpolation formulas which guarantee the continuity of the interpolated functions.

Figure 10.8 shows a triangular element with nodes at the corners of the triangle.
A function can be interpolated in the triangle in a linear way based on the nodal
values of the function. In the local coordinate system (ξ,η), an interpolated function
can be written as

u =

3∑
j=1

φe
j (ξ,η)uj (10.30)
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Fig. 10.7 Triangulation of a
two-dimensional domain

Γ

where φe
j are local interpolation functions.

In this case, the φe
j have to satisfy

φe
j = a + b1ξ + b2η

i.e. φe
j is a linear function of ξ and η, with

φe
j (ξi,ηi) = 1 for j = i

= 0 for j � i

It is easy to verify that for the element in Fig. 10.8, the local interpolation func-
tions are

φe
1(ξ,η) = 1−ξ−η

φe
2(ξ,η) = ξ

φe
3(ξ,η) = η

These are shown in Fig. 10.9.

Fig. 10.8 The linear triangle
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Fig. 10.9 Linear element shape functions for the triangle

The local interpolation functions also can be expressed as a function of the global
coordinates by a coordinate transformation between the systems (ξ,η) and (x,y):

x =

3∑
j=1

φe
j (ξ,η)xj , y =

3∑
j=1

φe
j (ξ,η)yj (10.31)

In the coordinate transformation formulas (10.31), the same local interpolation
functions are used as in the interpolation of a function value (10.30).

It is clear that with the above interpolation structure, if applied in each element,
C0 continuity (i.e. continuity of the function value) is reached in the whole domain.
The interpolation itself is piecewise linear.

By summing the interpolation over all elements, we obtain

u =
∑

e

∑
j,e

φe
j (ξ,η)uj (10.32)

where
∑
e

denotes the sum over all elements Ωe of the domain Ω and where
∑
j,e

denotes

the sum over all nodes of the element Ωe.
In (10.32), the summations can be reversed to write

u =
∑

k

∑
e,k

φe
kuk =

∑
k

φk uk (10.33)

where
∑
k

denotes the sum over all nodes of the domain Ω and where
∑
e,k

denotes the

sum over all elements adjacent to node k. In (10.33) the φk denote global interpola-
tion functions or shape functions. Figure 10.10 shows some examples.

The order of interpolation within each triangle can be increased by adding nodes.
In order to represent quadratic functions, six nodes are needed. For cubic functions
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Fig. 10.10 Linear global
shape functions for triangular
elements

Fig. 10.11 The quadratic
triangle

ten nodes are needed, etc. Figure 10.11 shows a quadratic element with six nodes:
three nodes at the corners and three nodes at the mid-sides.

The local interpolation functions have to satisfy

φe
j = a + b1ξ + b2η + c11ξ2

+ c12ξη + c22η2

φe
j (ξi,ηi) = 1 for j = i

= 0 for j � i

For example:
φe

1 = (1−ξ−η)(1−2ξ−2η)

Obviously, although a higher order interpolation is used within the elements,
the interelement continuity remains C0, as in the linear case. Also, the coordinate
transformation still can be given with the first order basis functions (10.31). How-
ever, also the quadratic basis functions can be used, as discussed in the section on
isoparametric elements.

Figure 10.12 shows the Pascal triangle and the associated C0 triangular elements.
These elements form the so-called Lagrange family of triangular elements. The
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Fig. 10.12 The Lagrange
family of triangular elements

restriction of these elements to one dimension and the extension to three dimensions
(on tetrahedra) is clear.

The advantage of using higher order elements lies in their ability to represent
more accurately arbitrarily varying functions, for a given element size. Of course, a
better representation of a function can also be reached by low order elements with
a smaller element size. In practice, element size and order of the elements are to be
chosen to optimize accuracy with respect to computational work. Usually it is found
that quadratic elements are to be preferred.

10.3.2.2 Quadrilateral Lagrange Elements

Figure 10.13 shows a rectilinear quadrilateral element with a local affine coordinate
system, using four nodes. Local interpolation functions can be defined which are
bilinear:

φe
j = a + b1ξ + b2η + c12ξη

φe
1 = (1−ξ)(1−η), φe

2 = ξ(1−η), φe
3 = ξη, φe

4 = (1−ξ)η

By adding nodes, biquadratic, bicubic, etc., elements can be constructed. For
example, a biquadratic element contains nine nodes. Figure 10.14 shows the Pascal

Fig. 10.13 The bilinear
quadrilateral element
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Fig. 10.14 The Lagrange
family of quadrilateral
elements

triangle and the associated quadrilateral elements. These quadrilaterals also form a
so-called Lagrange family.

10.3.2.3 Quadrilateral Serendipity Elements

Inspection of the Pascal triangle for quadrilateral Lagrange elements reveals that,
for instance, the quadratic element has third and fourth order terms in the expres-
sion of the local shape functions. These higher order terms do not form a complete
polynomial and as a consequence do not contribute to an enlargement of the order
of interpolation.

On the other hand, the high order terms in the local basis functions can generate
undesirable oscillations in interpolated data. Therefore, it is generally preferred to
eliminate the highest order terms by leaving out the internal nodes in the elements.
This generates the so-called serendipity family for which the Pascal triangle and
some examples are shown on Fig. 10.15. In particular, the quadratic serendipity
element is an attractive element and is widely used.

Fig. 10.15 The serendipity
family of quadrilateral
elements
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10.3.2.4 Isoparametric Elements

It is, of course, more accurate to represent bodies with curved boundaries using ele-
ments with curved sides. Curved elements can be generated by applying a mapping
between the rectilinear affine coordinate system used in the previous sections and
a curvilinear coordinate system. In order not to complicate this mapping too much,
usually the coordinate transformation formulas, in analogy with equations (10.31),
are chosen based on the local shape functions:

x =
∑

j

φe
j (ξ,η)xj , y =

∑
j

φe
j (ξ,η)yj (10.34)

Figure 10.16 shows how a coordinate transformation of type (10.34) can deform
a quadratic serendipity element, in comparison with a linear element.

It is clear that with quadratic elements complicated boundaries can be repre-
sented.

Elements in which the coordinate transformation formulas are identical to the
interpolation formulas are called isoparametric elements. As shown in Fig. 10.16,
these elements can be considered as being mapped from a square element in a rect-
angular ξ,η coordinate system. The basic element in undistorted local coordinates
is called the parent element.

Fig. 10.16 Isoparametric
mapping of an element
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10.3.3 Finite Elements with C1 Continuity

When the weighted residual statements contain second order derivatives, strictly,
continuity up to first order derivatives is necessary. In one dimension, this can be
reached by including the nodal values of the slopes of the function.

For an element with two corner nodes, the interpolation is written as

u = ψ1(ξ)u1 + ψ2(ξ)u2 + ψ3(ξ)u′1 + ψ4(ξ)u′2

with

u1 = u(ξ = 0) u2 = u(ξ = 1)

u′1 = u′(ξ = 0) u′2 = u′(ξ = 1)

Using a cubic polynomial, one finds

ψ1 = (1 + 2ξ)(1−ξ)2, ψ2 = (3−2ξ)ξ2

ψ3 = ξ(1−ξ)2, ψ4 = (ξ−1)ξ2

An element of this type is called a Hermite element.
In more dimensions, continuity up to first order derivatives cannot be reached

in such a simple way. For instance, it is impossible to reach C1 continuity for an
element with only corner nodes, by specifying only function values and first order
derivatives at these nodes. For a triangular element, the simplest element is reached
if mid-side nodes are added in which the normal derivative is prescribed. For this
element, however, the number of degrees of freedom of mid-side nodes and cor-
ner nodes is different. This is computationally a disadvantage and therefore more
complicated elements, with an equal number of degrees of freedom in all nodes, are
preferred. It is to be remarked that in practice, for problems containing second order
derivatives, elements can be used which do not reach C1 continuity. Such elements
are called non-conforming elements. For a detailed discussion on conforming and
non-conforming C1 elements, the reader is referred to Ref. [5]. This topic is not
really relevant in fluid mechanics since the governing partial differential equations
are at most of second order, such that weighted residual statements contain at most
first order derivatives. Only in rare occasions, through the introduction of stream
functions, partial differential equations of higher order are formed.

10.4 Implementation of the Finite Element Method

10.4.1 The Assembly

The third and final basic ingredient of the finite element method is the way in which
the nodal equations are constructed.
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As seen in the example of the previous section, the integration involved in the
weak formulation leads to a sum of contributions on elements adjacent to the node
which is treated. Instead of performing the integration on the set of elements ad-
jacent to a node, as done in the previous section, we could of course first perform
the integration on all elements separately and then afterwards construct the nodal
equations by adding contributions from adjacent elements. This process is called
assembly. It has the advantage that the integration on all elements can be done in the
same way and, as a consequence, with the same routine.

For example, for (10.27), the integral in the left hand side, on an element Ωe is
(dropping the subscript i)

λ
∫
Ωe

dw
dx

dû
dx

dx = λ
∫
Ωe

[
dφe

1

dx
we

1 +
dφe

2

dx
we

2

] [
dφe

1

dx
ue

1 +
dφe

2

dx
ue

2

]
dx

An element matrix Ke can be defined by

Ke
ij = λ

∫
Ωe

dφe
i

dx

dφe
j

dx
dx (10.35)

Obviously, this matrix is

Ke =
λ

Δxe

[
1 −1
−1 1

]

The components of the system matrix in the global discrete system

K U = F (10.36)

can now be found by adding components from the element matrices.
For example:

Ki,i−1 = Ki
21

Ki,i = Ki
22 + Ki+1

11

Ki,i+1 = Ki+1
12

The system matrix K in (10.36) generally is called the stiffness matrix. This term
has its origin in structural mechanics.

Figure 10.17 shows a schematic representation of the assembly process. A similar
assembly can be defined for the element vectors corresponding to the right hand side
in (10.36).
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Fig. 10.17 Schematic
representation of the
assembly of the stiffness
matrix for a one-dimensional
problem

i-1K

iK

i+1K

10.4.2 Numerical Integration

In general problems, the computation of the element stiffness matrix and the ele-
ment right hand side cannot be performed analytically due to the complexity of the
integrand and due to the complexity of the element.

Using curved elements, in two dimensions, the coordinate transformation leads to
[
∂/∂ξ
∂/∂η

]
=

[
∂x/∂ξ ∂y/∂ξ
∂x/∂η ∂y/∂η

] [
∂/∂x
∂/∂y

]
= J

[
∂/∂x
∂/∂y

]

or [
∂/∂x
∂/∂y

]
= J−1

[
∂/∂ξ
∂/∂η

]
(10.37)

where J is the Jacobian.
Using isoparametric mapping (10.34), this Jacobian is easily evaluated as a func-

tion of ξ and η.
An infinitesimal area dΩe is then given by

dΩe = Det(J)dξ dη (10.38)

By (10.37) and (10.38) all element integrals are reduced to integrals on the parent
element.

When the local shape functions are of order p, i.e. when they include as the high-
est complete polynomial a polynomial of order p, function values are represented
up to order p. The integrand in (10.35), for example, is then represented up to order
2(p-1). In general for m-th order derivatives, this would be an integrand of order
2(p-m). It can be shown [5] that the order of convergence (i.e. the accuracy of the
solution reached when the element size goes to zero) is hp-m+1 for an exact inte-
gration of the terms in the weighted residual principle and that there is no loss of
convergence, even if curved elements are used, if the numerical quadrature shows
an error of 0(h2(p-m)+1) or less, where h denotes a typical dimension of the element.
Therefore for C0 problems, the integration formulas should be:
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linear elements : 0(h)
quadratic elements : 0(h3)
cubic elements : 0(h5).

This means that, respectively, Gauss formulas with 1 point, 2×2 points and 3×3
points are sufficient in two dimensions.

10.4.3 Solution Procedure

The procedure outlined here, implicitly assumes that the discrete set of equa-
tions (10.36) actually is constructed and is solved with a direct solver. This is the
usual procedure for linear problems. In fluid mechanics, due to the non-linearity of
the equations, this is generally inefficient, since it at least implies a global iteration
with, in each iteration step, the solution of a linearized system of form (10.36). It is
then usually much more efficient to use directly an iterative technique on the non-
linear form of (10.36). In a relaxation technique, for instance, the nodal equation in
some node is only constructed when it is needed in the relaxation procedure and the
global set of equations (10.36) is never formed.

10.5 Practical Construction of a Weak Formulation

For many applications, the weak formulation can be constructed in a shorter way
than discussed up to now. To illustrate the short formulation, we consider again the
example equation (10.1). We multiply with a weighting function w defined in the
whole field and integrate over the whole field:

X∫
0

w

[
d

dx

(
λ

du
dx

)
− f

]
dx = 0 (10.39)

We perform the integration by parts:

−
X∫

0

λ
dw
dx

du
dx

dx + w(X)λ
du
dx

(X)−w(0)λ
du
dx

(0)−
X∫

0

wf dx = 0 (10.40)

By the integration by parts, the admissible boundary conditions show up. A
Dirichlet boundary condition (10.2) at the left boundary is admissible. It is imple-
mented by imposing it on the function value u(0) and by setting the value of the
weighting function w(0) at the boundary equal to zero. A Neumann boundary con-
dition (10.3) at the right boundary is admissible. It is implemented by filling in the
value of the flux. The resulting formulation becomes
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−
X∫

0

λ
dw
dx

du
dx

dx + w(X)q−
X∫

0

w f dx = 0 (10.41)

The formula (10.41) is identical to the formula (10.22), but where the functions
u and w are still general functions in the field. As a next step, we restrict these func-
tions to piecewise interpolated functions. In a Bubnov-Galerkin formulation, the
interpolation structure is the same for the weighting function as for the approximate
solution. The nodal values of the interpolated weighting functions are arbitrary. This
gives N equations of form (10.22):

−
X∫

0

λ
dwi

dx
dû
dx

dx−
X∫

0

wif dx + wi(X)q = 0

where û is the interpolated approximate solution and wi is the local weighting func-
tion (shape function) associated to node i.

10.6 Examples

In this section some aspects of the application of the finite element method in fluid
mechanics are discussed. The aim of the section is to provide some insight into
the way a finite element method can be constructed. This section also demonstrates
that a universal finite element methodology which can be applied as a recipe to all
problems does not exist. Like the finite difference method, the finite element method
is a framework in which, for each problem, an adapted formulation is necessary.

10.6.1 Steady Incompressible Potential Flow

For steady irrotational flow of an incompressible fluid, the equations of motion are

∇.�V = 0 (10.42)

∇× �V = 0 (10.43)

where �V is the velocity.
Equation (10.43) allows the introduction of a velocity potential

�V = ∇φ (10.44)

Inserting (10.44) into (10.42) gives

∇2φ = 0 (10.45)
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Fig. 10.18 Internal flow
problem

Possible Dirichlet and Neumann boundary conditions are

φ = g0,
∂φ
∂n

= g1 (10.46)

For a problem of internal flow, as shown in Fig. 10.18, the boundary conditions
can be, where u and v denote the Cartesian velocity components:

- at the inflow boundary AB: parallelism of the flow:

v = 0→ ∂φ
∂y

= 0→ φ = constant = φi

- at the outflow boundary CD: parallelism of the flow: v = 0→ φ = φo

- at solid boundaries AC and BD: impermeability: �V.�n = 0→ ∂φ
∂n = 0

For these boundary conditions, the potential difference φi −φo drives the flow. If
desired, either at inlet or at outlet, a possible boundary condition is also the prescrip-
tion of u = ∂φ/∂x.

The weighted residual statement is
∫
Ω

w∇2φdΩ = −
∫
Ω

∇w.∇φdΩ+

∫
Γ0

w
∂φ
∂n

dΓ+

∫
Γ1

w
∂φ
∂n

dΓ = 0

By introduction of the boundary conditions, all integrals over the boundary be-
come zero for the chosen boundary conditions: essential boundary conditions and
zero natural boundary conditions.

Next, the piecewise polynomial interpolation is introduced, resulting in

φ =
∑

φ̂kφk and w = φ̂k

where φ̂k denotes the shape function associated to node k.
In order to gain insight into the coefficient structure of the stiffness matrix,

we calculate the element stiffness matrix for bilinear elements on a square grid
(Fig. 10.19):

Ke
ij =

∫
Ωe

∇φ̂i∇φ̂jdxdy
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Fig. 10.19 Element and
assembly pattern for bilinear
square elements

The result is

Ke =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2/3 −1/6 −1/3 −1/6
−1/6 2/3 −1/6 −1/3
−1/3 −1/6 2/3 −1/6
−1/6 −1/3 −1/6 2/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
According to the assembly pattern, some coefficients are

Kk,k = KI
1,1 + KII

2,2 + KIII
3,3 + KIV

4,4 = 8/3

Kk,n = KI
1,4 + KII

2,3 = −1/3

Kk,ne = KI
1,3 = −1/3

where n and ne denote the nodes north and north-east of k.
The coefficient-molecule is

(−1/3) · · · (−1/3) · · · (−1/3)
...

...
...

(−1/3) · · · (8/3) · · · (−1/3)
...

...
...

(−1/3) · · · (−1/3) · · · (−1/3)

(10.47)

The stiffness matrix is of positive type, i.e. the diagonal coefficient is positive,
the non-diagonal coefficients are negative and there is a weak diagonal dominance.
As a consequence, the resulting system can be solved by a direct solver, but also
by an iterative method. When deformed elements are used, the coefficient molecule
deforms, but the system remains of positive type.

Further, it is instructive to note that the coefficient molecule by linear finite ele-
ments (10.47) represents an order h2 approximation to the Laplace equation and not
an order h4 approximation, which is possible on a 9-point molecule on a square grid.
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10.6.2 Incompressible Navier-Stokes Equations
in ω-ψ Formulation

The equations of motion, in two dimensions, are

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+
∂p
∂x

= ν
(
∂2u

∂x2
+
∂2u

∂y2

)
(10.48)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+
∂p
∂y

= ν
(
∂2v

∂x2
+
∂2v

∂y2

)
(10.49)

∂u
∂x

+
∂v
∂y

= 0 (10.50)

where p is the so-called kinematic pressure (pressure divided by density). The con-
tinuity equation (10.50) can be satisfied by the introduction of a stream function
ψ by

u =
∂ψ
∂y

, v = −∂ψ
∂x

(10.51)

By introduction of the vorticity ω by

ω =
∂v
∂x
− ∂u
∂y

(10.52)

and by taking the y-derivative of equation (10.48) and subtracting the x-derivative
of equation (10.49), pressure can be eliminated to give

∂ω
∂t

+ u
∂

∂x
ω + v

∂

∂y
ω = ν

(
∂2ω
∂x2

+
∂2ω
∂y2

)
(10.53)

Combination of (10.51) and (10.52) further gives

∂2ψ
∂x2

+
∂2ψ
∂y2

= −ω (10.54)

For the problem shown in Fig. 10.20, possible boundary conditions are:

- at inflow (Γa): u can be prescribed (parabolic profile) and derivatives of velocity
components in the x-direction can be assumed to be zero (fully developed flow).
This allows the calculation of ψ by (10.51) and ω by (10.52):

ψ = ψa(y) , ω = ωa(y)

- at outflow (Γb): v can be assumed to be zero and derivatives of velocity com-
ponents in the x-direction can be assumed to be zero (fully developed flow).
This gives

∂ψ
∂n

= 0 ,
∂ω
∂n

= 0
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Fig. 10.20 A backward-facing step problem

- at solid boundaries (Γc and Γd):

ψ = ψc or ψ = ψd and
∂ψ
∂n

= 0

We remark that the boundary conditions for the Poisson problem (10.54) are
over-specified, at solid boundaries, while in the problem (10.53) at these boundaries,
conditions in ω are lacking.

The problem (10.54) can be treated with Γa as essential boundary and Γb+c+d as
natural boundary. The weak formulation for (10.54) is then

∫
Ω

−∇w.∇ψdΩ = −
∫
Ω

wωdΩ (10.55)

There is no contribution from the natural boundary since ∂ψ/∂n = 0 there.
Using bilinear elements, on the grid shown in Fig. 10.21, for given ω, ψ can be

determined in the interior of the domain and on Γb. We remark that by lumping in
the right hand side of (10.55), knowledge of ω on Γc and Γd is not necessary to de-
termine ψ. The formulation comes then very close to a finite difference formulation.
Moreover, using the given value of ψ on Γc and Γd, the nodal equations obtained
from (10.55) determine ω on these boundaries. With lumping, the expression for ω
is even explicit.

After having determined ω on Γc+d, the problem (10.53) becomes well-posed.
The weak formulation of (10.53) then becomes

∫
Ω

w
∂ω
∂t

dΩ+

∫
Ω

w�V.∇ωdΩ =

∫
Ω

νw∇2ωdΩ

Fig. 10.21 Discretization
of the backward-facing step
problem
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After integration by parts for the viscous term, this becomes
∫
Ω

w
∂ω
∂t

dΩ+

∫
Ω

w�V.∇ωdΩ+ ν
∫
Ω

∇w.∇ωdΩ = 0 (10.56)

There is no contribution from the natural boundary since ∂ω/∂n = 0 there.
The structure of the nodal equations obtained from (10.56) is very similar to

the structure of a central finite difference method, if lumping is used on the time
derivative term.

The discrete equation corresponding to (10.56), using lumping, has the form:

Mi
∂ωi

∂t
+
∑

j

Aijωj = 0 (10.57)

where the subscript j describes nodes in the vicinity of the node i. The equa-
tion (10.57) can for instance, like a finite-difference equation, be integrated with
a two-stage time stepping scheme (for second order accuracy in time):

Mi[ωi(t + 1/2Δt)−ωi(t)] = −Δt
2

∑
j

Aij(t)ωj(t)

Mi[ωi(t + Δt)−ωi(t)] = −Δt
∑

j

Aij(t + 1/2Δt)ωj(t + 1/2Δt)

After each time step, ψ is to be evaluated from (10.55), new values of ω on the
solid boundary are to be determined and a new velocity field is to be calculated
from (10.51).

This can be done in a finite element way by
∫
Ω

wudΩ =

∫
Ω

w
∂ψ
∂y

dΩ ,

∫
Ω

wvdΩ = −
∫
Ω

w
∂ψ
∂x

dΩ

Of course lumping is necessary on the left hand side to make the expressions
explicit.

The foregoing procedure can be continued until a steady state is reached.
The procedure followed for this example is deliberately kept as close as possible

to a finite difference method in order to show that a lot of known techniques from
the finite difference method can be adapted to the finite element method.

By this it is also clear that for small values of ν, i.e. for convection dominated
flow, equation (10.56) allows oscillating solutions, so-called “wiggles”.

This easily can be seen on the one-dimensional analogue of (10.56), for steady
state:

u
dω
dx

= ν
d2ω
dx2

(10.58)
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Discretization of (10.58) with central differences, with constant mesh spacing
Δx, leads to

u
2Δx

(ωi+1−ωi−1) =
ν

Δx2
(ωi+1−2ωi + ωi−1)

or
(1−Rec/2)ωi+1−2ωi + (1 + Rec/2)ωi−1 = 0 (10.59)

where the cell-Reynolds number is

Rec = uΔx/ν

It is obvious that for |Rec| > 2, (10.59) allows oscillating solutions.
It is known from finite-difference techniques (see previous chapters) that oscillation-

free solutions can be obtained by a partial upwind discretization of (10.58), which
is for u > 0:

(1−α)
u

2Δx
(ωi+1−ωi−1) + α

u
Δx

(ωi−ωi−1) =
ν

Δx2
(ωi+1−2ωi + ωi−1) (10.60)

By the choice
α = coth(Rec/2)−2/Rec

the scheme (10.60) produces the exact nodal values and the solution is oscillation-
free for

α ≥ 1−2/Rec for Rec ≥ 2 (10.61)

It was shown by Christie et al. [7] that this difference scheme can be reproduced
by a Petrov-Galerkin formulation with weighting functions that have a quadratic
modification with respect to the basis functions, as shown in Fig. 10.22:

w1 = φ1−αF(ξ), w2 = φ2 + αF(ξ), F(ξ) = 3ξ(1−ξ) (10.62)

Fig. 10.22 Weighting
functions and shape functions
in the Petrov-Galerkin
formulation
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Fig. 10.23 Streamline pattern
obtained with the
Petrov-Galerkin finite
element method for ω-ψ
formulation (Red = 250)

In two-dimensions, this Petrov-Galerkin formulation can be used on quadrilateral
elements with weighting functions that are products of the one-dimensional weight-
ing functions (10.62).

Figure 10.23 shows the solution obtained using these weighting functions, with
the upwind factors equal to their minimum value according to (10.61), on the grid
of Fig. 10.21, for Red = Ud/ν = 250, where U is the mean velocity upstream of the
step and d is the channel height at the inlet. As can be seen, even for such a coarse
grid, a reasonable solution can be obtained [8].

The foregoing example is considered by the author as an excellent example to
start with the FEM. A few remarks have to be added to this example. Nowadays,
it has become common practice for convection-diffusion problems like (10.53) to
introduce the upwinding in the streamline direction and not to treat both velocity
directions independently as in the foregoing example. The method is then called
a streamline-upwind/Petrov-Galerkin method (SUPG). With the upwinding in the
streamline direction, numerically caused artificial diffusion in the crosswise direc-
tion is avoided. Also nowadays, streamline upwinding is in most methods not in-
troduced anymore through the explicit modification of the weighting functions. A
more efficient approach is to use a convected form of the Galerkin weighting func-
tion, i.e.

w + τ�V.∇w

instead of w, where τ is a time-wise parameter. With respect to the convective
part in (53), this weighting function can be seen as a combination of a Galerkin
weighting function and a least-squares weighting function. Therefore, also the name
Galerkin/Least squares method (GLS) is used. For a basic discussion on SUPG and
GLS, the reader is referred to Ref. [4]. The author considers such methods as already
too advanced for an introductory level and therefore recommends to first implement
upwinding in the more primitive form as described above.

An example of a finite element method for the incompressible Navier-Stokes
equations in ω-ψ formulation using a SUPG-method is given in Ref. [9]. The time
integration is a mixed implicit-explicit scheme. The necessary amount of upwinding
depends on the time integration scheme. An example of a Bubnov-Galerkin method
stable to very high Reynolds numbers with a fully implicit time integration scheme
is given in Ref. [10].
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10.6.3 Incompressible Steady Navier-Stokes Equations
in u, v, p Formulation

Steady Navier-Stokes equations in primitive variables can be written as

�V.∇�V +∇p = ν∇2�V (10.63)

∇.�V = 0 (10.64)

By the introduction of a weighting function �W associated to (10.63) and a weight-
ing function q associated to (10.64), the weighted residual formulation is

∫
Ω

�W.(�V.∇�V)dΩ+

∫
Ω

�W.∇pdΩ−
∫
Ω

q∇. �VdΩ =

∫
Ω

ν �W.∇2 �VdΩ

With integration by parts, this becomes
∫
Ω

�W.(�V.∇ �V)dΩ+ ν
∫
Ω

∇ �W : ∇ �VdΩ−
∫
Ω

(p∇. �W + q∇.�V)dΩ

=
∫
Γ

ν �W.(∇�V.�n)dΓ−
∫
Γ

p �W. �ndΓ (10.65)

The formulation (10.65) involves a bilinear form

a(�V, �W) =

∫
Ω

∇ �W : ∇ �VdΩ =
∑
i,j

∫
Ω

∂Wi

∂xj

∂Vi

∂xj
dΩ

and a trilinear form

b(�U, �V, �W) =

∫
Ω

�W.(�U.∇�V)dΩ =
∑
i,j

∫
Ω

WjUi
∂Vj

∂xi
dΩ

Equation (10.65) can be written as

νa(�V, �W) + b(�V, �V, �W)−
∫
Ω

(p∇. �W + q∇.�V)dΩ = c (10.66)

The right hand side in (10.66) is (in two dimensions)

c =

∫
Γ

[νwx(∇u.�n) + νwy(∇v.�n)−p(wxnx + wyny)]dΓ

For a fluid domain as shown on Fig. 10.20, possible boundary conditions are

- at the solid boundaries: no-slip condition: u = 0, v = 0
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This set of boundary conditions is a set of essential boundary conditions.
- at the inflow boundary: prescribed velocity profile: u = u0, v = 0

This set is also a set of essential boundary conditions.
- at the outflow boundary (nx = 1, ny = 0) the right hand side of (10.66) becomes:

c =

∫
Γ

[−pwx + ν(wx
∂u
∂x

+ wy
∂v
∂x

)]dΓ

Thus, natural boundary conditions can be prescribed values of

fn = −p + ν
∂u
∂x
, ft = ν

∂v
∂x

(10.67)

Since pressure is only to be determined up to an additive constant, possible
boundary conditions at the outflow boundary are the natural boundary conditions
fn = 0 and ft = 0. With this choice, for the problem of Fig. 10.20, the right hand
side in (10.66) vanishes since the boundary conditions on the weighting functions,
associated to essential boundary conditions in u and v are: wx = wy = 0.

Clearly, both in the field equations (10.66) and in the boundary conditions
(10.67), pressure enters in non-derivative form while velocity components enter in
first-derivative form. This justifies the choice of different basis functions for velocity
components and pressure:

u =
∑

ukφk

v =
∑

vkφk

p =
∑

pNφ̃N

(10.68)

Inserting the interpolation formulas (10.68) into the weak formulation results in
the discrete set of equations

K(U) U + C P = f

CT U = g
(10.69)

where U is the global vector of nodal velocities (u and v) and P is the global vector
of nodal pressures. The vectors f and g contain the boundary conditions. K(U) is
a positive definite symmetric matrix. C is an asymmetric and indefinite rectangular
matrix.

It is obvious that due to this indefinite matrix, (10.69) can allow irregular so-
lutions. For instance for u = 0, v = 0, f = 0, g = 0, C P = 0 can allow non-trivial
solutions for P.

For instance, if bilinear interpolation is used both for velocity components and
pressure, the integrals on the element level, contributing to the system C P = 0 are:

∫
Ωe

p∇.WdΩ =

+1∫
−1

+1∫
−1

p[C1(α + βη) + C2(γ + δξ)]dξdη



270 E. Dick

where α, β, γ and δ are coefficients associated to the mapping of the element to the
parent element (−1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1). Hence for p ∼ ξη these contributions can
be zero for non-zero p. These solutions are called spurious pressure modes.

In order to avoid these spurious modes, it is necessary to use a mixed interpo-
lation, i.e. the interpolation structure of the velocity components is to be different
from the interpolation structure of the pressure. Since the regularity conditions on
pressure are lower than on velocity, pressure is to be approximated by interpolation
polynomials with a lower degree than the polynomials for the velocity components.
Additional requirements come from the observation that in (10.69), the continuity
equation should not completely specify the velocity field.

For this introductory text it would be too long to enter into a discussion on the
choice of the elements. The elements have to satisfy a so-called LBB-condition
(after O.A. Ladyshenskaya, F. Brezzi and I. Babuska). The reader is referred to
Refs. [3–5, 11, 12] for a discussion on this topic.

Two elements usually are preferred. The first one is the triangle with 7 degrees of
freedom for velocity components: the values at the vertices and the mid-sides, defin-
ing a quadratic polynomial, enriched with a function of degree 3 which is zero at the
boundary of the element (the so-called bubble function), and three degrees of free-
dom for pressure: the value at the centre and two derivatives, defining a piecewise
linear discontinuous polynomial. The second one is the quadrilateral with 9 degrees
of freedom for velocity components, obtained from a biquadratic interpolation, and
three degrees of freedom for pressure: the value at the centre and two derivatives,
defining a piecewise linear discontinuous polynomial.

It is also to be remarked that the solution of the system (10.69) is not easy
since it contains zeros on the diagonal. For solution techniques, we again refer to
Refs. [3–5].

Another remark concerns the form of the momentum equation (10.63). Many
practitioners of the FEM prefer not to write this equation in its simplified form
(10.63), but use the more primitive form

�V.∇�V +∇p = ∇.↔τ

where
↔
τ stands for the stress tensor (divided by ρ).

With this formulation, the natural boundary conditions become the normal com-
ponents of the stress, i.e. the tractions. For problems with a free outlet, often the
tractions can be set to zero (traction-free boundary conditions). For the outlet of a
channel (Fig. 10.23), the tangential traction is not zero and cannot be prescribed. In-
stead, the boundary conditions (10.67) can be used. These terms usually are called
pseudo-tractions.

10.6.4 Compressible Euler and Navier-Stokes Equations

Euler equations are a system of form

∂U
∂t

+
∂f
∂x

+
∂g
∂y

= 0 (10.70)
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where

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ

ρu
ρv
ρE

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρu

ρuu + p
ρuv
ρHu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρv

ρuv
ρvv + p

ρHv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where E is total energy and H is total enthalpy.

The system (10.70) is hyperbolic in time with Jacobians

A =
∂f
∂U

, B =
∂g
∂U

Using Taylor expansion, we have, up to second order

U(t + Δt) ≈ U(t) + Δt
∂U
∂t

+
Δt2

2
∂2U

∂t2

With

∂2U

∂t2
=
∂

∂t

(
∂U
∂t

)
= − ∂

∂t

(
∂f
∂x

+
∂g
∂y

)
=− ∂

∂x

(
A
∂U
∂t

)
− ∂

∂y

(
B
∂U
∂t

)

=
∂

∂x

[
A

(
∂f
∂x

+
∂g
∂y

)]
+
∂

∂y

[(
B

(
∂f
∂x

+
∂g
∂y

))]

this becomes

U(t + Δt) ≈ U(t)−Δt

(
∂f
∂x

+
∂g
∂y

)
+

Δt2

2

{
∂

∂x

[
A

(
∂f
∂x

+
∂g
∂y

)]
+
∂

∂y

[(
B

(
∂f
∂x

+
∂g
∂y

))]}

(10.71)
A central type finite difference discretization on (10.71) is called a one step Lax-

Wendroff method. The analogue in the finite element technique is a Galerkin formu-
lation on (10.71):

∫
Ω

WT[U(t + Δt)−U(t)]dΩ = −Δt
∫
Ω

WT
(
∂f
∂x

+
∂g
∂y

)
dΩ

−Δt2

2

∫
Ω

(
∂WT

∂x
A +

∂WT

∂x
B

)(
∂f
∂x

+
∂g
∂y

)
dΩ

+
Δt2

2

∫
Γ

WT
(
∂f
∂x

+
∂g
∂y

) (
A�1x + B�1y

)
. �ndΓ

(10.72)

where W is a vector of weighting functions.
In (10.72), the left hand side can be lumped. The vectors f and g can be repre-

sented by piecewise linear functions and the matrices A and B by piecewise constant
functions.
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A finite element method based on this procedure usually is called a Taylor-
Galerkin method.

Although, in principle, there is nothing special in using a Lax-Wendroff time-
stepping method as time-integration for a semi-discrete set of equations obtained
by the FEM, these formulations mostly are indicated explicitly by the term Lax-
Wendroff/Taylor-Galerkin methods. Obviously, other time-stepping methods like for
instance Runge-Kutta methods also can be used. An example with two-stage Runge-
Kutta stepping is given in Ref. [13].

Furthermore, by the example given in this section, it is demonstrated that many
methods that have been developed in the FDM or in the FVM, with central dis-
cretizations can be adapted to the FEM. Also, the problems remain the same. For
instance, Lax-Wendroff time-stepping to a Bubnov-Galerkin formulation on (10.70)
as described above is linearly stable but necessitates the introduction of artificial
viscosity to stabilize shocks. As for the FDM and FVM, Runge-Kutta stepping
methods already need artificial viscosity for linear stability. Obviously, by adding
artificial viscosity, certainly when it is done for linear stability, as in Ref. [13], much
of the rigour of the FEM is lost and the formulations come very close to FVM-
formulations.

10.7 Current Evolutions

As in other branches of computational fluid dynamics, there is almost no work done
nowadays on potential flow. There is still some activity in the field of Euler equa-
tions, but the major part of the work is on Navier-Stokes equations. Algorithms
typically are first tested on laminar flows and structured grids. Real life applications
however are mostly in turbulent flow and in geometries that necessitate unstructured
grids. In this introductory text we cannot discuss the coupling of the Navier-Stokes
equations and the turbulence equations. The aspects of turbulence modelling and
the coupling with the flow equations are similar to those in the FDM and FVM.
Further, the formulation of a finite element method on unstructured grids is more or
less straightforward. Of course, techniques for generating these grids are necessary
but, again, the grid generation aspects are not particular for the FEM.

On the algorithmic side there are two current tendencies. The first is that upwind
techniques gain popularity. This tendency is similar to what is observed in the FDM
and the FVM. As already discussed for the scalar advection-diffusion equation in
Sect. 10.6.2, upwinding can be introduced by SUPG and GLS. These techniques are
equivalent for a scalar equation, but their extension to systems like incompressible
Navier-Stokes equations or compressible Euler and Navier-Stokes equations is dif-
ferent. For a fundamental discussion of the SUPG and GLS methods, the reader is
referred to Refs. [14, 15]. The main advantage of Galerkin/Least Squares or Least
Squares methods for incompressible flows is that equal order interpolation of all
variables is possible. These methods do not suffer from the instability encountered
with Galerkin methods (LBB stability condition). Therefore they are indicated with
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the name stabilized finite element methods. For compressible flows, the advantage
is, like in the FDM and FVM, the good representation of shocks thanks to the
upwinding. A recent review of stabilized finite element methods is Ref. [16]. For
a discussion of the use of least squares principles in compressible and incompress-
ible flows, the reader is referred to Refs. [17, 18]. As is shown in these papers, the
Galerkin part in the formulation is even not always necessary.

A second way to introduce upwinding is by a Galerkin formulation with discon-
tinuous weighting functions. The discontinuous Galerkin method comes very close
to finite volume upwind methods of flux-difference splitting type. For examples,
the reader is referred to Refs. [19–21]. The discontinuous Galerkin method can be
applied to compressible flow Euler and Navier-Stokes equations and to convection-
diffusion equations like the vorticity equation in the ω-ψ formulation of incompress-
ible flow Navier-Stokes equations.

A second tendency observed in algorithms for incompressible flows is the wish
to avoid mixed interpolation. One way to make equal order interpolation possible
is, as just discussed, the use of Galerkin/Least Squares methods. Another way, only
applicable to incompressible Navier-Stokes equations, is the so-called projection
method. The technique is the FEM variant of what usually is called a pressure cor-
rection method or a fractional step method in the FDM. The momentum equations
are advanced in time with a stepping technique for advection-diffusion equations,
under frozen pressure. The newly obtained velocity field is in general not divergence
free. It is then projected to a divergence free space resulting in a velocity correction
and an associated pressure correction. There are different techniques to calculate the
correction. Also, many stepping techniques can be used. An example, using a two
stage Runge-Kutta Taylor/Galerkin stepping is given in Ref. [22]. A very simple
example, but restricted to low Reynolds numbers is given in Ref. [23].
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Chapter 11
Introduction to Finite Volume Methods
in Computational Fluid Dynamics

E. Dick

11.1 Introduction

The basic laws of fluid dynamics are conservation laws. They are statements that
express the conservation of mass, momentum and energy in a volume closed by
a surface. Only with the supplementary requirement of sufficient regularity of the
solution can these laws be converted into partial differential equations. Sufficient
regularity cannot always be guaranteed. Shocks form the most typical example of
a discontinuous flow field. In case discontinuities occur, the solution of the partial
differential equations is to be interpreted in a weak form, i.e. as a solution of the
integral form of the equations. For example, the laws governing the flow through a
shock, i.e. the Hugoniot-Rankine laws, are combinations of the conservation laws
in integral form. For a correct representation of shocks, also in a numerical method,
these laws have to be respected.

There are additional situations where an accurate representation of the conser-
vation laws is important in a numerical method. A second example is the slip line
which occurs behind an airfoil or a blade if the entropy production is different on
streamlines on both sides of the profile. In this case, a tangential discontinuity oc-
curs. Another example is incompressible flow where the imposition of incompress-
ibility, as a conservation law for mass, determines the pressure field.

In the cases cited above, it is important that the conservation laws in their integral
form are represented accurately. The most natural method to accomplish this is to
discretize the integral form of the equations and not the differential form. This is
the basis of a finite volume method. Further, in cases where strong conservation in
integral form is not absolutely necessary, it is still physically appealing to use the
basic laws in their most primitive form.

The flow field or domain is subdivided, as in the finite element method, into
a set of non-overlapping cells that cover the whole domain. In the finite volume
method (FVM) the term cell is used instead of the term element used in the finite
element method (FEM). The conservation laws are applied to determine the flow
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Fig. 11.1 Typical choice of
grids in the FVM; (a): struc-
tured quadrilateral grid; (b):
structured triangular grid; (c):
unstructured triangular grid

variables in some discrete points of the cells, called nodes. As in the FEM, these
nodes are at typical locations of the cells, such as cell-centres, cell-vertices or mid-
sides. Obviously, there is considerable freedom in the choice of the cells and the
nodes. Cells can be triangular, quadrilateral, etc. They can form a structured grid
or an unstructured grid. The whole geometrical freedom of the FEM can be used in
the FVM. Figure 11.1 shows some typical grids.

The choice of the nodes can be governed by the wish to represent the solution
by an interpolation structure, as in the FEM. A typical choice is then cell-centres
for representation as piecewise constant functions or cell-vertices for representation
as piecewise linear (or bilinear) functions. However, in the FVM, a function space
for the solution need not be defined and nodes can be chosen in a way that does
not imply an interpolation structure. Figure 11.2 shows some typical examples of
choices of nodes with the associated definition of variables.

The first two choices imply an interpolation structure, the last two do not. In
the last example, function values are not defined in all nodes. The grid of nodes
on which pressure and density are defined is different from the grid of nodes on
which velocity-x components and velocity-y components are defined. This approach
commonly is called the staggered grid approach.

The third basic ingredient of the method is the choice of the volumes on which
the conservation laws are applied. In Fig. 11.2 some possible choices of control

Fig. 11.2 Typical choice
of nodes in the FVM. The
marked nodes are used in the
flux balance of the control vol-
ume. (a): piecewise constant
interpolation structure; (b):
piecewise linear interpolation
structure; (c): no interpolation
structure with all variables
defined in each node; (d): no
interpolation structure with
not all variables defined in
each node; (Cartesian grid), o:
ρ and p,: u, Δ: v
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volumes are shown (shaded). In the first two examples, control volumes coincide
with cells. The third example in Fig. 11.2 shows that the volumes on which the
conservation laws are applied need not coincide with the cells of the grid. Volumes
even can be overlapping. Figure 11.3 shows some typical examples of volumes not
coinciding with cells, for overlapping and non-overlapping cases. The term volume
denotes the control volume to which the conservation laws are applied (i.e. con-
nected to function value determination), while the term cell denotes a mesh of
the grid (i.e. connected to geometry discretization). A consistency requirement for
the cells is that they are non-overlapping and that they span the whole domain. The
consistency requirement for the volumes is weaker. They can be overlapping so
that families of volumes are formed. Each family should consist of non-overlapping
volumes which span the whole domain. The consistency requirement is that a flux
leaving a volume should enter another one.

Obviously, by the decoupling of volumes and cells, the freedom in the determi-
nation of the function representation of the flow field in the finite volume method
becomes much larger than in both the finite element and finite difference method.
It is in particular the combination of the formulation of a flow problem on con-
trol volumes which is the most physical way to obtain a discretization, with the
geometric flexibility in the choice of the grid and the flexibility in defining the

Fig. 11.3 Choice of volumes not coinciding with cells, overlapping and non-overlapping cases.
(a): volumes staggered with respect to cells, non-overlapping case; (b): volumes non-staggered
with respect to cells, overlapping case; (c): volumes non-staggered with respect to cells, overlap-
ping case; (d): volumes staggered with respect to cells, overlapping case
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discrete flow variables which makes the finite volume method attractive for engi-
neering applications.

The finite volume method (FVM) tries to combine the best from the finite ele-
ment method (FEM), i.e. the geometric flexibility, with the best of the finite differ-
ence method (FDM), i.e. the flexibility in defining the discrete flow field (discrete
values of dependent variables and their associated fluxes). Some formulations are
near to finite element formulations and can be interpreted as subdomain collocation
finite element methods (e.g. Fig. 11.2a). Other formulations are near to finite differ-
ence formulations and can be interpreted as conservative finite difference methods
(e.g. Fig. 11.3a). Other formulations are in between these limits.

The mixture of FEM-like and FDM-like approaches sometimes leads to confu-
sion in terminology. Some authors with an FEM-background use the term element
for cell and then often use the term (control) cell for (control) volume. Strictly speak-
ing, the notion element is different from the notion cell. A grid is subdivided into
meshes. A mesh has the significance of a cell if it only implies a subdivision of the
geometry. If it also implies, in the FEM-sense, a definition of a function space, it is
an element.

From the foregoing, it could be concluded that the FVM only has advantages
over the FEM and the FDM and thus one could ask why all of computational fluid
dynamics (CFD) is not based on the FVM. From the foregoing, it is already clear
that the FVM has a difficulty in the accurate definition of derivatives. Since the com-
putational grid is not necessarily orthogonal and equally spaced, as in the FDM, a
definition of a derivative based on a Taylor-expansion is impossible. Also, there
is no mechanism like a weak formulation, as in the FEM, to convert higher order
derivatives into lower ones. Therefore, the FVM is best suited for flow problems in
primitive variables, where the viscous terms are absent (Euler equations) or are not
dominant (high Reynolds number Navier-Stokes equations). Further, a FVM has
difficulties in obtaining higher order accuracy. Curved cell boundaries, as used in
the FEM, or curved grid lines, as used in the FDM, are difficult to implement. In
most methods, boundaries of cells are straight and grid lines are piecewise straight.
Representation of function values or fluxes better than piecewise constant or piece-
wise linear is possible but rather complicated. Most FVM methods are only second-
order accurate. For many engineering applications, this accuracy is sufficient. The
development of finite volume methods with better accuracy is nowadays an area of
very active research and there is still no clear insight in how to reach higher accuracy
in an efficient way.

Therefore, in the following, we focus on the Euler equations. So, for explanation
of the basic algorithms, we avoid the discussion of the determination of derivatives.
We treat methods for construction of derivatives at the end. Further, we only dis-
cuss classic algorithms with second-order spatial accuracy. For simplicity we do not
discuss implicit time stepping schemes, since the choice between implicit schemes
and explicit schemes is not linked to the choice of the space discretization. This
introductory text also does not aim to give a complete overview of the FVM. It
only aims to illustrate some of the basic properties on examples of methods that are
widely used.
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11.2 Fem-Like Finite Volume Methods

FEM-like finite volume methods use cells to which an interpolation structure
is associated. So, the cells form elements in the FEM-sense. Two interpolation
structures can be used: piecewise constant interpolation and piecewise linear (or
bilinear) interpolation. Figure 11.4 shows some possibilities on (structured) quadri-
lateral and triangular grids. The piecewise constant interpolation is denoted by the
cell-centred method, while the piecewise linear interpolation is denoted by the cell-
vertex method. In both methods, the cells and a group of cells around a node are
used as volumes. In the first method, data are at cell centres. In the second method,
data are al cell vertices.

We illustrate here some formulations for the Euler equations. The set of Euler
equations can be written in two dimensions as

∂U
∂t

+
∂f
∂x

+
∂g
∂y

= 0 (11.1)

with

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ

ρu
ρv
ρE

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρu

ρuu + p
ρuv
ρHu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρv
ρuv

ρvv + p
ρHv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where ρ is density, u and v are Cartesian components of velocity, p is pressure, E is
total energy and H is total enthalpy (γ is the adiabatic constant).

E =
1

γ−1
p
ρ

+ 1/2u2 + 1/2v2

H = E +
p
ρ

Fig. 11.4 FEM-like finite volume methods. (a): cell-centred; (b): cell-vertex with non-overlapping
and overlapping volumes on quadrilateral cells; (c): cell-vertex on triangular cells
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11.2.1 Cell-Centred Formulation

For a cell as shown in Fig. 11.5, the values of the dependent variables are stored in
the centre of the cell. These values do not necessarily have to be seen as nodal val-
ues, but can also be seen as mean values over the cell. Therefore, in the cell-centred
method, for visualization purposes, often, after completion of the calculations, val-
ues are attributed to the vertices of the grid by taking a weighted mean of the values
in adjacent cells. Further, the interpretation as mean values allows higher order for-
mulation, as we discuss in Sect. 11.6. First, we discuss the typical second-order
accurate formulations.

Using the control volume of Fig. 11.5, a semi-discretization of (11.1) is ob-
tained by

Ωi,j
∂U
∂t

+

∫
abcd

−→
F .−→n dS = 0 (11.2)

where Ωi,j denotes the volume (area) of the control volume.
−→
F is the flux vector:

−→
F = f

−→
1 x + g

−→
1 y, dS is a surface element and −→n is the outward normal. By taking

the positive sense as indicated in the figure, we have

−→n dS = dy
−→
1 x−dx

−→
1 y (11.3)

Inserting (11.3) into (11.2) gives

Ωi,j
∂U
∂t

+

∫
abcd

(f dy−g dx) = 0 (11.4)

Further, f and g have to be defined on the boundary of the volume. A mean value
between adjacent nodes looks to be the simplest choice, for example:

fab = 1/2(fi,j + fi,j−1), gab = 1/2(gi,j + gi,j−1) (11.5)

Fig. 11.5 Cell-centred
formulation
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Since the flux functions are non-linear functions of the dependent variables, an
alternative for (11.5) is

fab = f[1/2(Ui,j + Ui,j−1)], gab = g[1/2(Ui,j + Ui,j−1)] (11.6)

With (11.6) is meant that the dependent variables are first averaged and that af-
terwards flux vectors are calculated. This is not a popular choice, since it implies
about twice as many flux evaluations as (11.5). Indeed, when in a structured quadri-
lateral grid, there are nx subdivisions in longitudinal direction and ny subdivisions
in transversal direction, then there are nxny cells, but nx(ny + 1) + ny(nx + 1) cell
faces. This does not imply that the work involved in (11.6) is twice as much as the
work involved in (11.5). A lot of computational effort can be gained by remarking
that a momentum flux is a mass flux multiplied by an average velocity, etc. Nev-
ertheless, the definition (11.5) is the cheapest. Therefore, (11.5) is the only central
flux definition used in the following (one-sided flux definitions are also possible, as
discussed later).

With the definition of the discrete fluxes f and g, the semi-discretization (11.4) is
completed. It is now to be integrated in time.

11.2.1.1 Lax-Wendroff Time Stepping

Since Lax-Wendroff time-stepping is a very classic explicit time integration method
in the finite difference method, explained in previous chapters, we begin by dis-
cussing how this time-stepping can be applied to a finite volume formulation.
We first recall the principles of a Lax-Wendroff method with the use of the one-
dimensional scalar model equation

∂u
∂t

+
∂f(u)
∂x

= 0 (11.7)

A Taylor series expansion to second order gives

un+1 ≈ un + Δt

(
∂u
∂t

)n

+
Δt2

2

(
∂2u

∂t2

)n

(11.8)

and
∂2u

∂t2
=
∂

∂t

(
∂u
∂t

)
= − ∂

∂t

(
∂f
∂x

)
= − ∂

∂x

(
∂f
∂t

)

or
∂2u

∂t2
= − ∂

∂x

(
∂f
∂u

∂u
∂t

)
=
∂

∂x

(
a
∂f
∂x

)
(11.9)

with

a =
∂f
∂u

Combination of (11.8) and (11.9) gives
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un+1 ≈ un + Δt

(
−∂fn

∂x

)
+

Δt2

2
∂

∂x

(
a
∂fn

∂x

)
(11.10)

The two-dimensional analogue of (11.10) on the Euler equations (11.1) is

Un+1 ≈ Un + Δt

(
−∂fn

∂x
− ∂gn

∂y

)
+

Δt2

2

{
∂

∂x

[
An

(
∂fn

∂x
+
∂gn

∂y

)]
+
∂

∂y

[
Bn

(
∂fn

∂x
+
∂gn

∂y

)]}

(11.11)
where A and B are the Jacobian matrices of the flux vectors:

A =
∂f
∂U

, B =
∂g
∂U

In the finite-difference method, a discretization of (11.10) or (11.11) is called a
one-step Lax-Wendroff method. As explained in previous chapters, a possible pro-
cedure is to expand the second-order derivatives in space in (11.10) or (11.11) and
to replace these derivatives by central difference approximations. In principle, a fi-
nite volume formulation on (11.10) or (11.11) is possible since these equations take
the form of a flux-balance. The fluxes contain however derivatives. Since the defini-
tion of derivatives is not simple in the finite volume method, one-step methods are
never used. The most popular two-step formulations, such as the Richtmyer variant
and the MacCormack variant, can however be used without problems in the FVM.
Further, in the one-step method the primitive flux balances are lost while these are
visible in the two-step formulations. Since the MacCormack variant was explained
in previous chapters, we illustrate here how this variant can be formulated in finite
volume form.

In the MacCormack variant of the Lax-Wendroff method, (11.8) is written as

un+1 = 1/2un + 1/2Δt

(
∂u
∂t

)n

+ 1/2un + 1/2Δt

[
∂

∂t

(
u + Δt

∂u
∂t

)]n

(11.12)

With (predictor)

un+1 = un + Δt

(
∂u
∂t

)n

(11.13)

(11.12) can be written as (corrector)

un+1 = 1/2

[
un + un+1 + Δt

∂

∂t
un+1

]
(11.14)

The discretization by MacCormack of (11.13) and (11.14) is

ui
n+1 = ui

n−Δt

(
fn
i+1− fn

i

Δx

)
(11.15)

ui
n+1 = 1/2

⎡⎢⎢⎢⎢⎢⎢⎣ui
n + ui

n+1−Δt

⎛⎜⎜⎜⎜⎜⎜⎝ fn+1
i − fn+1

i−1

Δx

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (11.16)



11 Introduction to Finite Volume Methods in Computational Fluid Dynamics 283

Equations (11.15) and (11.16) form the forward-backward variant. Obviously
the forward and backward discretizations can be interchanged. In the terminology
of ordinary differential equations, the MacCormack method is a predictor-corrector
method.

The implementation of the MacCormack variant of the Lax-Wendroff method is
rather straightforward. In the forward-backward formulation, in the predictor step
on Fig. 11.5, the fluxes at the sides ab, bc, cd and da are evaluated with function
values in the nodes (i,j), (i+1, j), (i, j+1) and (i,j), respectively. In the corrector step
this is (i, j−1), (i,j), (i,j) and (i−1, j).

At inflow and outflow boundaries, the FVM can be used as the FDM. This means
that, in general, extrapolation formulas are used to define values in nodes outside
the domain. For instance, for a subsonic inflow, it is common practice to extrapo-
late the Mach number from the flow field and to impose stagnation properties and
flow direction. At a subsonic outflow, the reverse can be done, i.e. extrapolation of
stagnation properties and flow direction and fixing of a Mach number. Very often,
pressure is imposed at outflow.

At solid boundaries, the convective flux can be set to zero. This means that in the
flux through a cell surface on a solid boundary, only the pressure comes in:

f dy−g dx = p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

dy
−dx

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The pressure at the boundary can be taken to be the pressure in the cell. Sometimes,
as in the FDM, an extrapolation of pressure is used. It is however not always easy
to define extrapolation formulas on distorted or unstructured grids.

Obviously, four geometrical variants in the choice of the biasing of the fluxes are
possible. Figure 11.6 shows schematically the possibilities for the predictor step. In

Fig. 11.6 Possible variants of
the biasing for flux functions
in the predictor step of a
MacCormack method
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Fig. 11.7 GAMM-channel
test problem

the corrector step, the biasing is inverted. In practice, the four possibilities are used
alternatively.

We illustrate now the cell-centred MacCormack scheme on the well-known
GAMM-channel test problem for transonic flows [1]. This problem is shown in
Fig. 11.7, discretized with a 49×17 grid. The result shown in Fig. 11.8 is however
obtained on a once refined grid, i.e. a 97×33 grid. The channel of Fig. 11.7 is almost
straight except for a small circular perturbation on the lower boundary with height
4.2% of the chord. The result of Fig. 11.8 is obtained with the MacCormack method
described above. Pressure is imposed at the outlet, corresponding to an isentropic
Mach number of 0.85.

As in the finite-difference method, to obtain this result, some artificial viscosity is
needed to stabilize the solution in the shock region (see discussion in previous chap-
ters). This is done here in a rather primitive way by adding to each step a smoothing
of form

μ
[
Un

i+1,j + Un
i−1,j + Un

i,j+1 + Un
i,j−1−4Un

i,j

]
,

where μ is a very small coefficient. For the result in Fig. 11.8: μ = 0.001. This is
enough to stabilize the shock. Of course, by increasing μ, the observed wiggles can
be eliminated completely, but this increases the smearing of the shock. Therefore it
is preferred to keep some of the wiggles in the solution.

The CFL-restriction for the time step in the MacCormack scheme is given by
(with c the velocity of sound):

Δt ≤ 1
|u|
Δx +

|v|
Δy + c

√
1

(Δx)2 + 1
(Δy)2

Fig. 11.8 IsoMachlines
obtained by cell-centred
MacCormack scheme
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where
Δx =

xi+1,j−xi−1,j

2
, Δy =

yi,j+1−yi,j−1

2

11.2.1.2 Runge-Kutta Time Stepping – Multi-Stage Time Stepping

Runge-Kutta time stepping schemes for ordinary differential equations are unstable
when applied to the semi-discretization (11.4) with the central flux (11.5):

Ωi,j
∂U
∂t

+1/2(Δyab fi,j−1−Δxab gi,j−1)

+1/2(Δybc fi+1,j−Δxbc gi+1,j)

+1/2(Δycd fi,j+1−Δxcd gi,j+1)

+1/2(Δyda fi−1,j−Δxda gi−1,j) = 0

(11.17)

There is no contribution of the central node in the flux balance in (11.17), since
the flux balance for a constant flux on a closed surface is zero. As a consequence,
(11.17) is an exact analogue of a central type finite difference discretization.

The instability of Runge-Kutta time stepping can be seen by considering a
Fourier analysis on a central space discretization of the model equation (11.7) for
the case of constant a = ∂f/∂u:

∂ui

∂t
= −a

ui+1−ui−1

2Δx
(11.18)

Inserting
u = Z ejωx

where ω is the wave-number and j now stands for
√
−1, gives

Z′ = −Z a
ejθ− e−jθ

2Δx
= −Z ja

sinθ
Δx

(11.19)

where θ = ωΔx.
Equation (11.19) has the form

Z′ = λZ

with

λ = −j a
sinθ
Δx

(11.20)

Figure 11.9 shows the stability domain for λΔt for the Runge-Kutta second, third
and fourth-order, time-integration methods, according to [2].

Since λ according to (11.20) is on the imaginary axis, the second-order Runge-
Kutta method is unstable. Higher order Runge-Kutta methods are marginally stable.
Higher order Runge-Kutta methods can be stabilized by introducing a small amount
of artificial viscosity. For example, equation (11.18) can be modified to
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Fig. 11.9 Stability regions in
the complex plane for classic
explicit Runge-Kutta methods

∂u
∂t

= −a
ui+1−ui−1

2Δx
+ ε

ui+1−2ui + ui−1

Δx2

The value of λ according to the previous analysis now becomes

λ = −j a
sinθ
Δx
− 2ε

Δx2
(1− cosθ)

Since there is now a small negative real part in λ, higher order Runge-Kutta
time stepping now becomes stable, according to Fig. 11.9, when subject to a CFL-
condition which restricts the time step. Note that a modification of equation (11.18)
by adding a fourth-order derivative term instead of a second-order derivative term
leads to a similar stabilization effect.

Runge-Kutta time stepping was introduced in the finite volume method by
Jameson et al. in 1981 [3] and is nowadays a very popular method.

The fourth-order method, with simplifications, is mostly used since it gives the
best ratio of allowable time step to computational work per time step. A simplified
fourth-order scheme can be written as

U0
i,j = Un

i,j

U1
i,j = U0

i,j−α1
Δt
Ωi,j

R0

U2
i,j = U0

i,j−α2
Δt
Ωi,j

R1

U3
i,j = U0

i,j−α3
Δt
Ωi,j

R2

U4
i,j = U0

i,j−α4
Δt
Ωi,j

R3

Un+1
i,j = U4

i,j (11.21)

with α1 = 1/4, α2 = 1/3, α3 = 1/2, α4 = 1
and where the residual R is given by
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R =

∫
(f dy−g dx)

and where the superscript denotes the (intermediate) time level.
Obviously (11.21) is not a classic fourth-order Runge-Kutta scheme. In a Runge-

Kutta scheme, the fourth step is

U4
i,j = U0

i,j−α4
Δt
Ωi,j

(
R0 + 2R1 + 2R2 + R3

6

)

with the choice of coefficients

α1 = 1/2, α2 = 1/2, α3 = 1, αa = 1

The accuracy of the fourth-order Runge-Kutta scheme is fourth order in time.
This is unnecessarily high since the space accuracy of the discretization is only
second order. The simplification (11.21) has second-order accuracy in time for a
non-linear equation, which is sufficient. The simplified multi-stage time-stepping
(11.21) requires less storage than a classic Runge-Kutta time-stepping. Originally,
Jameson used the classic Runge-Kutta method. The low storage modification, later
introduced by Jameson, is nowadays universally used. For a discussion of it the
reader is referred to [4].

The scheme (11.21) can be constructed by considering a Taylor expansion up to
fourth order

Un+1 ≈ Un + Δt
∂U
∂t

+ 1/2Δt2
∂2U

∂t2
+ 1/6Δt2

∂3U

∂t3
+ 1/24Δt4

∂4U

∂t4

The following grouping defines (11.21):

Un+1 ≈ Un + Δt
∂

∂t

[
Un + 1/2Δt

∂

∂t

{
Un + 1/3Δt

∂

∂t

(
Un + 1/4Δt

∂U
∂t

)}]

The stability domain of the multi-stage time stepping is the same as that of the
fourth-order Runge-Kutta scheme shown in Fig. 11.9.

The artificial viscosity introduced by Jameson is a blend of a second-order and a
fourth-order term. It is used in all steps of (11.21).

In order to keep the calculation conservative, the added dissipative term is, for a
structured quadrilateral grid:

di+1/2,j
−di−1/2,j

+ di,j+1/2
−di,j−1/2

(11.22)

where

di+1/2,j
= ε(2)

i+1/2,j
(Ui+1,j−Ui,j)− ε(4)

i+1/2,j
(Ui+2,j−3Ui+1,j + 3Ui,j−Ui−1,j) (11.23)

with similar definitions of the other terms in (11.22).
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The coefficients of the second-order term ε(2) and the fourth-order term ε(4) are
chosen in a self-adaptive way.

As a detector of the smoothness of the flow field, for the definition of the coeffi-
cients in (11.23), Jameson uses

νi
i,j =

∣∣∣pi+1,j−2pi,j + pi−1,j

∣∣∣
pi+1,j + 2pi,j + pi−1,j

and then defines

ε(2)

i+1/2,j
= κ(2) max(νi

i+1,j,ν
i
i,j)

ε(4)

i+1/2,j
= max(0,κ(4)− ε(2)

i+1/2,j
)

with κ(2) = 1/4, κ(4) = 1/256.
By this definition, the second-order term is only significant in shock regions. In

smooth regions of the flow, the second-order term has a very small coefficient and
the fourth-order term dominates. The fourth-order term constitutes the so-called
background dissipation. For equal stabilization effect, it diffuses the solution less
than a second-order term. Therefore it is used in smooth regions of the flow. In shock
regions, the fourth-order dissipation has to be switched off since it causes wiggles
and the second-order dissipation is to be used to eliminate wiggles. Therefore the
second-order dissipation is called the shock dissipation.

At solid boundaries, the dissipative terms in (11.22) in the direction normal to the
boundary are to be set equal to zero. In the foregoing definition of the dissipative
terms (11.22, 11.23) the so-called second-order and fourth-order terms only cor-
respond to second-order derivatives and fourth-order derivatives on a smooth grid.
However, the expressions (11.22, 11.23) do not have to be changed on an irregular
grid. First, they are not meant to simulate a physical viscosity. Second, they are also
meant to eliminate spurious modes, i.e. the non-physical solutions of the discretiza-
tion. Figure 11.10 shows the perturbation patterns in fluxes, and as a consequence
also in dependent variables, not detected by the central type flux balance for quadri-
lateral and triangular grids.

Authors using Jameson’s Runge-Kutta scheme often have their own variant of the
dissipative term. Also very often, the dissipative correction in the second to fourth
step is taken to be the same as in the first step.

A formulation of the artificial viscosity applicable to unstructured grids, which is
a slight extension of the formulation given by Jameson and Mavriplis [5], is given
hereafter.

The time-step limit is calculated from (for CFL = 1)

Δt =
Ωi∑

e
(|Vn|+ c)Δs

(11.24)
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Fig. 11.10 Spurious modes
for cell-centred central dis-
cretization

where the subscript i denotes the node, Vn is the normal velocity on an edge, ob-
tained by averaging, c is the velocity of sound obtained in a similar way, and Δs is
the length of the edge. Ωi is the volume and the summation is taken over all edges.

The second-order smoothing operator is then, similar to (11.23), obtained by a
sum of terms:

ε(2)
i,j σi,j(Uj−Ui) (11.25)

where the subscript j denotes the surrounding nodes. The weight function εi,j is
obtained from

ε(2)
i,j = κ(2) max(νi,νj)

where νi and νj are pressure switches. The pressure switch νi is defined by

νi =

abs{∑
j

(pj−pi)}
∑
j

(pj + pi)

σi,j is a scaling factor given by

σi,j = max

(
Ωi

Δt
,
Ωj

Δt

)

with Δt the time step obtained from (11.24) for CFL = 1.
To define the fourth-order smoothing, first un-weighted pseudo-Laplacians are

constructed by
ΔUi =

∑
j

(Uj−Ui)

The fourth-order term is then given by a sum of terms:

ε(4)
i,j σi,j(ΔUj−ΔUi)
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where
ε(4)

i,j = max(0,κ(4)− ε(2)
i,j )

The scaling factors σi,j allow the writing of the effective flux through a cell-
face as

Fi,j−Di,j (11.26)

where Fi,j is the physical flux and Di,j is the dissipation term, given by

Di,j = σi,j[ε(2)
i,j (Uj−Ui)− ε(4)

i,j (ΔUj−ΔUi)] (11.27)

The resulting flux (11.26) usually is called a numerical flux.

11.2.1.3 Accuracy

The stencils obtained by the finite volume cell-centred formulation are very simi-
lar to the stencils obtained by the analogous finite difference methods. This means
that if the grid is sufficiently smooth, such that the cell-centres are themselves on
a grid which is sufficiently smooth, i.e. a grid which can be obtained by a continu-
ous mapping from a square grid, the methods discussed in the previous sections are
second-order accurate in space in a finite difference sense. This can easily be seen
by comparison of the result in Fig. 11.8 with the result obtained by second-order
finite difference methods [1]. Since, however, the representation of the solution is
done in a piecewise constant way, on an irregular grid the accuracy is formally of
first order. In practice, the order is between one and two.

11.2.2 Cell-Vertex Formulation

In the cell-vertex formulation, the variables are stored at the vertices of the grid.
The control volumes either coincide with cells (non-overlapping case) or consist
of a group of cells around a node (overlapping case). Figure 11.11 shows some of
the possibilities. In all cases, a linear interpolation of the fluxes is now possible.
Therefore, cell-vertex formulations have the possibility to be second-order accurate
in space, irrespective of the irregularity of the grid.

11.2.2.1 Multi-Stage Time Stepping – Overlapping Control Volumes

For the overlapping cases, the methods discussed in the previous sections can be
adapted directly. Very popular nowadays is the formulation of the multi-stage time
stepping scheme. For the overlapping control volumes of Fig. 11.11, the semi-
discretization is very similar to (11.17), now involving, however, six or eight sur-
rounding nodes. At solid boundaries, half volumes are formed. The impermeability
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Fig. 11.11 Cell-vertex formulation. (a): quadrilateral cells, non-overlapping volumes (with inter-
weaving grid); (b): quadrilateral cells, overlapping volumes; (c): triangular cells, overlapping and
non-overlapping volumes

can be expressed by setting the convective fluxes to zero. Another approach is to
treat the control volume as permeable and to impose tangency. This means that,
between steps, the normal component of velocity is set equal to zero.

Again, in order to stabilize the scheme, some form of artificial viscosity is neces-
sary. The artificial viscosity is also necessary to eliminate the spurious modes in the
solution. Figure 11.12 shows the spurious modes that are possible for the quadrilat-
eral and triangular grids.

As in the basic method of Jameson, a blend of a second-order smoothing and
a fourth-order smoothing can be used. Often, the dissipative operator of the cell-
centred method is used. This operator is then a sum of terms of form (11.23) for a
quadrilateral grid. The method loses then its pure cell-vertex character. The resulting
flux balance of inviscid and dissipative terms is then a balance over a control volume
centred around a vertex as shown on Fig. 11.13. Such a control volume is called a

Fig. 11.12 Spurious modes
for cell-vertex central
discretization
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Fig. 11.13 Vertex-based
FVM

dual control volume. The inviscid flux balance over the dual control volume can
be defined as one fourth of the flux balance over the volume formed by the four
surrounding cells. Strictly, the method then becomes a vertex-centred or vertex-
based method according to the terminology introduced in Sect. 11.3.

A pure cell-vertex method can be obtained by changing the construction of the
dissipator. The same methodology as for the cell-centred method is used, but sum-
mations now run over cells surrounding a node rather than over surrounding nodes.
This means that differences of values used in the expression (11.27) have to be mod-
ified.

For instance Uj−Ui is to be replaced by

1/2(Uj1 + Uj2)−Ui

or
1/3(Uj1 + Uj2 + Uj3)−Ui or 1/2(Uj1 + Uj3)−Ui

for triangular and quadrilateral cells respectively, where j1, j2 and j3 denote the
nodes not coinciding with node i of the surrounding cells. Also the scaling factors
σi,j and the weight factors ε(2)

i,j , ε(4)
i,j now involve maxima over all nodes of a cell.

The foregoing smoothing procedure is conservative in the sense that the content
of a cell is not changed by the dissipator. The formula for the update of a node is the
sum of contributions of the surrounding cells. The update coming from the inviscid
flux balance over a cell is modified by the dissipator. The modification is such that
the flux balance over a cell can be seen as distributed to its vertices in an unequal
way but with a sum of distribution factors equal to one. So, the dissipator acts as a
redistributor of the flux balances of the cells.

The pure cell-vertex method is not very often used. Most researchers employ the
first described vertex-based like approach, but call it a cell-vertex method. The pure
cell-vertex method has an obvious difficulty on a triangular grid. Since there are
about twice as many cells than nodes, it is not possible to satisfy the flux balances
of individual cells and reach steady state. Even on a structured grid, it is rather
delicate to satisfy flux balances over individual cells. For a discussion on this topic
the reader is referred to [6].
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11.2.2.2 Lax-Wendroff Time-Stepping Non-Overlapping Control Volumes

For the non-overlapping case, a Lax-Wendroff variant exists due to Ni, developed
in 1981 [7]. It requires the use of a second set of control volumes centred around
the nodes, obtained in the way as shown in Fig. 11.11a. Ni’s variant starts from the
Lax-Wendroff formulation (11.8), (11.9). Without loss of accuracy in (11.9), ∂f/∂t
can be replaced by a first-order accurate difference Δf/Δt. The result is

un+1 ≈ un−Δt
∂fn

∂x
− Δt

2
∂

∂x
(Δf)

In two dimensions, on the Euler equations, this is

Ωi,j(U
n+1−Un) = −Δt

[∫
(fn dy−gn dx) + 1/2

∫
(Δf dy−Δg dx)

]
(11.28)

On the quadrilateral grid of Fig. 11a, the method is then as follows.
Based on the cell 1-2-3-4, using an Euler step, i.e. a step forward in time, a first-

order approximation of the increment of the flux vectors is obtained from

ΩaΔUa = −Δt
∫

1234

(f dy−g dx)n (11.29)

and
Δfa = A ΔUa, Δga = B ΔUa

where A and B are the Jacobians of the flux vectors f and g with respect to U. A
and B are taken to be the mean values of the Jacobians evaluated at the nodes 1, 2,
3 and 4.

The area-weighted mean value of the first-order increments given by (11.29) over
the four cells surrounding the node 1, gives a first-order increment for the dependent
variables:

ΔU1
1

The discretization of (11.28) on the cell abcd is then:

Ω1(Un+1
1 −Un

1) = Ω1 ΔU1
1− 1/2 Δt

∫
abcd

(Δf dy−Δg dx) (11.30)

The spatial integration is again taken to be piecewise linear.
The CFL-restriction for the time step, given by Ni is

Δt ≤min

(
Δx
|u|+ c

,
Δy
|u|+ c

)

with
Δx =

xi+1,j−xi−1,j

2
, Δy =

yi,j+1−yi,j−1

2
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The boundary conditions at solid boundaries for the first step (11.29) can be im-
plemented by setting convective fluxes equal to zero, as in the previous methods. In
the second step (11.30), a half-volume is needed around a boundary node. This half-
volume can be seen to be half the complete volume shown in Fig. 11.11a. Step (11.30)
can be done by setting the first-order changes in the fictitious cells c′ and d′ equal to
zero. So the boundary node only receives both first-order and second-order contribu-
tions from the inward cells a′ and b′. As a consequence, for a boundary node, there is
no implicit imposition of impermeability in step (11.30). Tangency is then imposed
afterwards by setting the normal component of the velocity equal to zero.

It is to be remarked that, although an intermediate grid is used, the Ni-method
is a true cell-vertex method. Indeed, if the flux balance of a cell is satisfied, there
is no contribution to both first- and second-order terms and flow parameters are not
changed. Therefore step (11.30) often is called the distribution step since its function
can be seen to be the distribution of changes in the control volumes to the nodes.

As already mentioned, in a triangular grid, there are about twice as many cells as
nodes. This means that in a cell-vertex formulation, flux-balances cannot be satisfied
for all cells. The steady state result of a cell-vertex time stepping scheme then cor-
responds to some combinations of flux balances being zero. In a quadrilateral grid,
all flux-balances can be satisfied at steady state. We also note that the distribution
of the changes in the control volumes for triangular cells can be done with upwind
methods. For a discussion on these much more complex methods we refer to [8].

11.3 FDM-Like Finite Volume Methods

In the finite difference method, the nodes are at the vertices of the grid. This is partic-
ularly attractive with respect to data on boundaries. For instance, pressure extrapo-
lation at solid boundaries is then not necessary. A cell-centred FVM is therefore less
attractive. A cell-vertex FVM does not have this drawback, but on the other hand
the flux through a volume surface is continuous. This does not allow an upwind
definition of a flux.

More freedom in the definition of a flux, combined with nodes at the vertices of
the grid, can be obtained by using an interweaving grid, as shown in Fig. 11.13. The
interweaving grid can be constructed by connecting the cell-centres. The cells of
this interweaving grid can now be considered as control volumes for the nodes in-
side them. Fluxes at volume faces can, for instance, be defined as averages of fluxes
calculated with function values in adjacent nodes. The semi-discretization is then
very close to a finite difference semi-discretization and can be called a conservative
finite difference method. We prefer here to call a finite volume method of this type
a vertex-based FVM or a vertex-centred FVM. The method has gained much pop-
ularity in recent years. The central type discretization obtained with it is the same
as the discretization by a Galerkin-FEM. So it is very easy to bring concepts from
FEM into this type of FVM. Moreover, it is very easy to use upwinding in this type
of FVM.
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11.3.1 Central Type Discretizations

The adaptation of a Lax-Wendroff time-stepping or a multi-stage time-stepping,
as discussed for the cell-centred FVM, to the vertex-based FVM is straightfor-
ward. The formulations obtained with both methods are very similar, except at solid
boundaries.

11.3.2 Upwind Type Discretizations

As an example of an upwind discretization we treat here the flux-difference splitting
technique introduced by Roe [9].

The flux through a surface (i + 1/2) of the control volume on Fig. 11.13 can be
written as

Fi+1/2
= Δyi+1/2

fi+1/2
−Δxi+1/2

gi+1/2
(11.31)

where fi+1/2
and gi+1/2

have to be defined using the values of the flux vectors in the
nodes (i,j) and (i+1, j). We switch here to the classic finite difference notation using
halves in the subscripts to denote intermediate points. Also, non-varying subscripts
are not written.

We denote by Fi the value of Fi+1/2
using the function values in (i,j) and by Fi+1,

the value using the function values in (i + 1, j). The flux (11.31) can be written as

Fi+1/2
= Δsi+1/2

(nxfi+1/2
+ nygi+1/2

) (11.32)

with

nx = Δyi+1/2
/Δsi+1/2

, ny = −Δxi+1/2
/Δsi+1/2

, Δs2
i+1/2

= Δx2
i+1/2

+ Δy2
i+1/2

In order to define an upwind flux, we consider the flux-difference

ΔFi,i+1 = Δsi+1/2
(nxΔfi,i+1 + nyΔgi,i+1) (11.33)

where
Δfi,i+1 = fi+1,j− fi,j, Δgi,i+1 = gi+1,j−gi,j

For construction of the flux, it is essential that the linear combination of Δf and
Δg in (11.33) can be written as

Δφ = nxΔf + nyΔg = AΔU (11.34)

where A is a discrete Jacobian matrix with similar properties as the analytical
Jacobians of the flux vectors. This means that the eigenvalues of A are real and that
the matrix has a complete set of eigenvectors. Of course, for consistency, the eigen-
values and eigenvectors should be approximations of the eigenvalues and eigenvec-
tors of the linear combination of the analytical Jacobians. The construction of the
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discrete Jacobian is not unique and many formulations have been proposed after
the first formulation by Roe [9]. For the numerical illustration later in this section,
we use the formulation by the author [10]. The algebraic manipulations in the con-
struction of the discrete Jacobian are not relevant for a principal discussion of the
methodology and we do not describe these here.

The matrix A can be split into positive and negative parts by

A+ = RΛ+L, A− = RΛ−L (11.35)

where R and L denote the right and left eigenvector matrices in orthonormal form
and where

Λ+ = diag(λ+
1 ,λ

+
2 ,λ

+
3 ,λ

+
4 ), Λ− = diag(λ−1 ,λ

−
2 ,λ

−
3 ,λ

−
4 )

with λ+
i = max(λi,0), λ−i = min(λi,0).

Positive and negative matrices denote matrices with, respectively, non-negative
and non-positive eigenvalues.

This allows a splitting of the flux-difference (11.34) by

Δφ = A+ΔU + A−ΔU

As a consequence (11.33) can be written as

ΔFi,i+1 = Fi+1−Fi = Δsi+1/2
Ai,i+1ΔUi,i+1

where the matrix Ai,i+1 can be split into positive and negative parts.
The absolute value of the flux-difference is defined by

∣∣∣ΔFi,i+1

∣∣∣ = Δsi+1/2
(A+

i,i+1−A−i,i+1)ΔUi,i+1 (11.36)

Based on (11.36) an upwind definition of the flux is

Fi+1/2
= 1/2

[
Fi + Fi+1−

∣∣∣ΔFi,i+1

∣∣∣] (11.37)

That this represents an upwind flux can be verified by writing (11.37) in either of
the two following ways, which are completely equivalent:

Fi+1/2
= Fi + 1/2ΔFi,i+1− 1/2

∣∣∣ΔFi,i+1

∣∣∣ = Fi + Δsi+1/2
A−i,i+1ΔUi,i+1 (11.38)

Fi+1/2
= Fi+1− 1/2ΔFi,i+1− 1/2

∣∣∣ΔFi,i+1

∣∣∣ = Fi+1−Δsi+1/2
A+

i,i+1ΔUi,i+1 (11.39)

Indeed, when Ai,i+1 has only positive eigenvalues, the flux Fi+1/2
is taken to be

Fi and when Ai,i+1 has only negative eigenvalues, the flux Fi+1/2
is taken to be Fi+1.

The fluxes on the other surfaces of the control volume Si−1/2
,Sj+1/2

,Sj−1/2
can

be treated in a similar way as the flux on the surface Si+1/2
. With (11.38) and

(11.39), the flux balance on the control volume of Fig. 11.13 can be brought into
the form



11 Introduction to Finite Volume Methods in Computational Fluid Dynamics 297

Δsi+1/2
A−i,i+1[Ui+1−Ui]+Δsi−1/2

A+
i,i−1[Ui−Ui−1]

+Δsj+1/2
A−j,j+1[Uj+1−Uj] + Δsj−1/2

A+
j,j−1[Uj−Uj−1] = 0

(11.40)

or

CUi,j = Δsi−1/2
A+

i,i−1Ui−1,j+Δsi+1/2
(−A−i,i+1)Ui+1,j

+Δsj−1/2
A+

j,j−1Ui,j−1 + Δsj+1/2
(−A−j,j+1)Ui,j+1

(11.41)

where C is the sum of the matrix-coefficients on the right-hand side.
The matrix coefficients in (11.41) have non-negative eigenvalues. The positivity

of the coefficients on the right hand side of (11.41) and the (weak) dominance of the
central coefficient guarantee that the solution can be obtained by a collective variant
of any scalar relaxation method. By a collective variant is meant that in each node
all components of the vector of dependent variables U are relaxed simultaneously.

In order to illustrate the boundary treatment, we consider now the half-volume
on a solid boundary as shown in Fig. 11.13. This half-volume can be seen as the
limit of a complete volume in which one of the sides tends to the boundary.

The flux on the side Sj of the control volume at the solid boundary can be ex-
pressed by

Fj−ΔsjA
+
i,j(Uj−Uj−1) (11.42)

where the matrix Ai,j is calculated with the function values in the node (i,j).
With the definition (11.42), the flux balance on the control volume takes the form

(11.40) in which a node outside the domain comes in. This node, however, can be
eliminated.

It is easily seen that on a solid boundary, three combinations of (11.42) exist,
eliminating the outside node [10]. The combinations are the left eigenvectors corre-
sponding to the zero eigenvalues in A+

i,j. These equations are to be supplemented by
the boundary condition of tangency.

As an illustration, Fig. 11.14 shows the solution obtained by the previous method
for the test-case of Fig. 11.7 under the same conditions as for Fig. 11.8. Comparison
of the upwind result with the central result shows the superiority of the upwind
calculation with respect to sharpness of the shock.

Fig. 11.14 IsoMachlines
obtained by a vertex-based
upwind FVM
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In the above, the upwind discretization is used in first-order form. For more com-
plex flows, of course, at least second-order accuracy is needed. In this introductory
text we prefer not to enter the discussion of higher order upwinding. For second-
order formulations on unstructured grids, the reader is referred to [11].

Examples of vertex-centred methods for Euler and Navier-Stokes equations can
be found in [12]. Flux-difference splitting is used to define inviscid fluxes. The pa-
per is in particular interesting for its discussion on treatment of viscous fluxes. An
example of a vertex-centred method with central discretization of the inviscid fluxes
and stabilization by artificial viscosity can be found in [13]. In this paper, viscous
fluxes are treated by FEM. This becomes nowadays a widely accepted procedure
and can be recommended. The vertex-centred FVM can be combined easily with
a Galerkin-type FEM. References [11] and [13] use multigrid methods in order to
obtain a steady solution in a fast way. The multigrid method is nowadays a standard
method to accelerate the convergence to steady state.

For a general discussion on the choice between central and upwind finite volume
methods, the reader is referred to [14]. In [15] a general discussion on the choice be-
tween cell-centred and vertex-centred methods and the choice between central and
upwind methods is given. An interesting example of a cell-centred method using
upwinding is given in [16]. Reference [17] discusses different time stepping algo-
rithms for upwind methods both for vertex-centred and cell-centred formulations.
Finally, the reader is referred to [18] for an overview of current finite volume meth-
ods. This reference dates from more than a decade ago, but there have not been
major developments on basic algorithms in recent times.

11.4 Other Formulations

Finite volume methods that cannot be classified as FEM-like or FDM-like are meth-
ods which use nodes neither at cell-centres nor at cell-vertices. An example is given
in Fig. 11.2c. Note that the volume also could be horizontal. For a control volume
of this type, some fluxes are expressed with function values in nodes at the surfaces.
Other fluxes require an averaging. Methods of this type are principally first-order
accurate on an irregular grid. Since the volume contains two cells, the accuracy is
lower than in cell-centred or vertex-based formulations. For this reason, overlapping
finite volumes of the type shown in Fig. 11.2c are not used anymore.

Another example is the formulation corresponding to Fig. 11.2d. The shaded
volume is the volume on which the mass- and energy equations are written with
density and pressure defined in the centre of this volume. The x-momentum equa-
tion is written in a volume biased in the x-direction, the y-momentum equation on
a volume biased in the y-direction. It is a very well-known method, described in
classical texts on computational fluid mechanics, such as the book by Roache [19].
Sometimes this method is classified as a finite volume method because it uses
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control volumes. Since, however, the u- and v-components of velocity are not stored
in the same points, principally, it only can be applied on a Cartesian grid. Using
contra-variant velocity components, it can be extended to more general orthogonal
grids. The method is popular in incompressible flow computations and convection-
diffusion computations. This is mainly due to the work of Patankar [20]. The method
allows the formulation of an incompressibility constraint. It also allows the introduc-
tion of upwinding.

11.5 Construction of Derivatives

When derivatives are needed for the definition of viscous terms, these commonly are
calculated by the use of Gauss’ theorem. For instance for the cell-centred formula-
tion shown in Fig. 11.15, in order to define a derivative in the vertex a, an integration
over the shaded volume gives

(
∂φ
∂x

)
a
≈ 1

Ωa

∫
Ωa

∂φ
∂x

dxdy =
1

Ωa

∫
Sa

φ dy

Thus (
∂φ
∂x

)
a
≈ 1

Ωa

[
φi+1,j+1

yi,j+1−yi+1,j

2
+ φi,j+1

yi,j−yi+1,j+1

2

+φi,j
yi+1,j−yi,j+1

2
+ φi+1,j

yi+1,j+1−yi,j

2

]

with
Ωa ≈

yi+1,j+1−yi,j

2
(xi+1,j−xi,j+1) +

yi,j+1−yi+1,j

2
(xi+1,j+1−xi,j)

A similar procedure can be used for the other vertices of the cell abcd. This
allows a definition of the viscous terms on the boundary of the cell.

Fig. 11.15 Definition of a
derivative
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11.6 Higher Order Formulations

In the past decade, a lot of research has been done towards the formulation of fi-
nite volume methods of higher order accuracy in space and in time. In particular,
higher order accuracy in space is difficult to obtain with a finite volume method.
Work has been done, more or less through three kinds of approaches. A first class
requires a regular Cartesian grid. Fluxes on the faces are obtained by higher order
interpolation in co-ordinate directions. These methods aim at obtaining better accu-
racy for the node values. In principle, they are conservative formulations of finite
difference methods and cannot easily be extended to irregular grids. A relevant ex-
ample is found in [21]. A particular method, where higher accuracy is obtained by
Richardson extrapolation, is presented in [22]. In a second class of methods, which
is the most common, the function values in the nodes are seen as averages over the
control volumes. Data necessary to calculate the fluxes are obtained by reconstruc-
tion. This means that higher order surfaces are constructed that satisfy the volume
averages. In these methods, it is crucial that oscillations in the higher order surfaces
are avoided. They are typically called ENO methods (essentially non oscillatory) or
WENO methods (weighted essentially non oscillatory). A relevant example is [23].
A rather new class of methods are the spectral volume methods [24]. In such a
method, as in a finite element method, the state is represented by higher order poly-
nomials within the cell. The cell is subdivided into as many subcells as there are
degrees of freedom in the polynomials. Averaged states are calculated in the sub-
cells with the conservation laws. The polynomial is obtained by a reconstruction
algorithm, such that the averaged states are satisfied. At cell boundaries, discontinu-
ities are allowed as in the discontinuous Galerkin FEM.
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Chapter 12
Aspects of CFD Computations
with Commercial Packages

J. Vierendeels and J. Degroote

12.1 Introduction

The purpose of this chapter is to give some insight into the steps that are needed to
obtain a CFD solution of the flow field inside or around an object with the use of
a commercial CFD software package. Note that it is not the intention to compare
different commercial CFD software packages. The applications that are shown can
be computed with most of the available software packages.

A CFD solution involves the following basic steps:

- Creation of the geometry (or import of the geometry from a CAD package)
- Grid generation
- Choice of the models
- Application of the boundary conditions
- Flow field computation
- Postprocessing

The first step is the creation of the geometry. Usually this is done with a separate
CAD package. However, since the grid generator has some specific demands on the
imported geometry, the imported geometry often has to be ‘cleaned up’. Most CFD
packages provide a CAD tool together with their grid generator. The geometry cre-
ated with this embedded CAD tool is directly suitable for the grid generator. How-
ever, design engineers are using specific CAD packages for their needs and therefore
the most common way to obtain the geometry in the grid generation package is the
import from a CAD package. The ‘cleaning up’ phase is treated in Sect. 12.2.

The next phase is the grid generation process. A choice has to be made as to
which kind of grid will be used: structured, block structured, unstructured, hybrid.
For viscous calculations, a boundary layer mesh also has to be constructed. For tur-
bulent flow calculations, the distance to the wall of the first cell in the boundary layer
mesh depends on the near-wall treatment of the turbulence model. In cases where
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the grid is not optimal for an accurate solution of the flow field, grid adaptation can
be used in order to adapt the grid to the computed flow field features, such as shocks,
slip lines, etc. . .These aspects will be discussed in Sect. 12.3.

The choice of the models depends on the kind of flow to be computed, and
will have an impact on the grid generation process. The flow can be two- or three-
dimensional, steady or unsteady, incompressible or compressible, laminar, turbulent
or both and heat transfer can be important. These are the models used in the exam-
ples in this lesson. Other models that are often used, but which could not be dealt
with in this introductory CFD course are mass transfer, chemical reactions, com-
bustion, multiphase flows, discrete particle flows, flow in moving geometries, etc.,
and combinations of the above. Some modelling aspects on turbulent flows will be
discussed in Sect. 12.4.

The next step is the application of the boundary conditions. Since the flow field
is only computed in the region of interest, adequate boundary conditions have to
be provided at the boundaries of the computed region. Frequently used boundary
conditions are inlet, outlet and wall boundary conditions. Different implementations
of these boundary conditions are considered in Sect. 12.5. More complex boundary
conditions can be defined through user-written routines (Sect. 12.6).

The computation of the flow field with the solver becomes of less and less con-
cern to standard users of a commercial CFD software package. So, the user can focus
on the fluid dynamics without caring too much of the numerics behind it. However,
the more experienced user who intends to write user routines that can be coupled
with the software package needs to have a basic understanding of the underlying
algorithms of the discretization and solution techniques, which is the subject of the
other chapters in this text. Some solver aspects are discussed in Sect. 12.7.

Once the flow field is computed, it can be analyzed in the postprocessing phase.
Many postprocessing means are available today. It is not the intention here to go
into much detail on postprocessing features, but a short overview of possibilities is
given in Sect. 12.8. If the user is not satisfied with the solution, a grid adaptation
step can be performed as mentioned before.

More complex flow calculations e.g. with moving meshes and fluid-structure in-
teractions can also be performed these days and will have an influence on the differ-
ent steps outlined above, but are beyond the scope of this chapter.

12.2 Import of the Geometry from a CAD Package

There exist several CAD data exchange formats which are used to exchange data
between different CAD packages. Most of these formats are also supported in a grid
generator package. A non-exhaustive list is given below:

- IGES
- ACIS
- STEP
- Parasolid
- STL
- . . ...
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Fig. 12.1 Edges with end
points that are not coincident

gap 

Sometimes direct input from a specific CAD package into the grid generator
package is also supported, e.g. CATIA, Pro/Engineer, Euclid, EDS/Unigraphics,
CADDS, I-DEAS, . . .

When a CAD geometry is imported into a grid generator package an inconsistent
geometry can be the result. This can be due to e.g. tolerance differences between the
CAD package and the grid generator package. This imported geometry can then not
be meshed or not be meshed adequately. A geometry can be inconsistent because of
several reasons:

- a face can consist of edges with end points that are not coincident (Fig. 12.1)
- a volume can consist of faces with ‘common’ edges that are not coincident

(Fig. 12.2)
- a geometry can consist of volumes with ‘common’ faces that are not coincident

Due to the inconsistencies, the geometry contains gaps between some of the en-
tities that make it unsuitable for creating a CFD mesh.

Very short edges (Fig. 12.3) and very small and/or sharp pointed faces (Figs. 12.4
and 12.5) may also be imported into the grid generator packages. This can lead to
very distorted face meshes on the related faces which can make it impossible to
generate a volume mesh starting from these distorted face meshes. And even if a
volume mesh could be created, its quality will be poor, i.e. distorted volume cells
will be present in the volume mesh. This can lead to less accurate solutions and even
to divergence in the solution process.

Fig. 12.2 Faces with edges
that are not coincident
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Fig. 12.3 Square with a short
edge at the right top corner

Because of the above mentioned reasons, an imported CAD geometry needs to
be checked for ‘clean up’. The most frequently encountered problems will be dis-
cussed.

Short edges can be eliminated by connecting its vertices or by merging them
together with an adjacent edge. Faces with a sharp angle between its edges can also
be merged together with an adjacent face (Fig. 12.6). Most of the gaps can be fixed
either automatically during mesh import or subsequently manually by connecting
coincident or almost coincident (dependent on a tolerance parameter) vertices, edges
and faces (Figs. 12.7 and 12.8).

Coincident edges/faces that form an interface between two adjacent faces/volumes
can either be connected or left unconnected. The first option will lead to a ‘conformal’

Fig. 12.4 The square consists
of two faces. The rightmost
face is a triangle with a short
edge at the right top corner
and a very sharp angle at the
right bottom corner
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Fig. 12.5 The square consists
of two faces. The right face
is a triangle with two sharp
angles: one at the right top
corner and one at the right
bottom corner

Fig. 12.6 Square consisting of one face. Edges and/or faces are merged together

mesh (Fig. 12.9), i.e. a unique mesh on this edge/face used by both adjacent
faces/volumes. The second option will lead to a ‘non-conformal’ mesh (Fig. 12.9).
Each interface edge/face of the adjacent faces/volumes can then be meshed indepen-
dently. These edge/face meshes have then to be added to an interface list in order
to allow the solver to know that flow is going through these interfaces. An adequate

Collapse vertices

gap

Fig. 12.7 Gap is removed by collapsing the vertices
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gap

Fig. 12.8 Gap is removed by collapsing the edge

Fig. 12.9 Left: non-conformal grid. Right: conformal grid

transfer of the flow variables between the interfaces is necessary during the flow
computation. This is handled by the solver.

When the imported CAD geometry only consists of faces, volumes have to be
constructed from these faces before the grid can be generated.

12.3 Grid Generation

Once a valid geometry is obtained, the grid generation process can start. Normally
the grid is constructed from lower topologies to higher topologies, i.e. first the edges
are meshed, then the faces and finally the volumes.

The most common choices to mesh an edge are to prescribe the number of nodes
or the interval size for an equidistant mesh or to prescribe a distribution through a
stretching function (see Sect. 6.4).

Faces can be meshed with a structured grid (not always possible), an unstructured
grid (triangles or quadrilaterals) or a hybrid grid (typically a boundary layer mesh
near the boundary and an unstructured grid elsewhere). The term structured denotes
that positions of the nodes of a face can be stored in two-dimensional arrays X(i,j),
Y(i,j) and Z(i,j) so that the neighbours of node (i,j) are (i + 1, j), (i− 1, j), (i, j− 1)
and (i, j + 1). In an unstructured mesh, the positions of the nodes are stored in a
one-dimensional array and there exists no relationship between the indices of a node
and the indices of its neighbouring nodes. A separate list has then to be stored with
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Fig. 12.10 Left: front square consisting of two faces. Right: faces are merged

edge information that describes the connectivity of the nodes. Most commercial
CFD software packages use only the unstructured storage type, also for structured
meshes. The face mesh is constructed starting from the edge meshes. Often it is in-
teresting to merge some faces together to allow the use of different meshing schemes
(Figs. 12.10 and 12.11). The density of the face mesh is computed from the density
of the edge meshes. However the proximity of other faces can cause the need for a
change in mesh density of the face mesh. This can be accounted for by introduction
of sources. Point, line, face and volume sources can be used (Fig. 12.12). The mesh
density can also be based on properties of the elements to be meshed, e.g. curvature
(Fig. 12.13) or on the proximity of other objects (Figs. 12.14 and 12.15).

An important issue in grid generation is alignment of the grid edges to the flow
direction. This leads to less numerical diffusion in the direction across the stream-
lines. In boundary layers and shear layers the behaviour of the flow is dominated
by diffusion mechanisms (laminar or turbulent diffusion). The diffusion layer can be

Fig. 12.11 Grid on bump not merged and merged with the surrounding planes
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Fig. 12.12 Mesh of a cone with a source vertex, a source edge and a source plane

Fig. 12.13 Mesh density is
function of curvature

Fig. 12.14 Proximity of the hole is taken into account when meshing the left edge. Proximity was
not taken into account when meshing the right edge
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Fig. 12.15 Surface mesh taking into account the proximity of other surfaces

very thin for high Reynolds number flows. If numerical diffusion in the cross-wise
direction is not suppressed, the boundary layer or shear layer diffuses too fast and a
non-physical flow pattern is obtained. One way to suppress this numerical diffusion
is the use of a huge amount of cells in these regions, another way is to use aligned
cell layers, with moderate- to high-aspect-ratio cells, suppressing the numerical dif-
fusion by the alignment and keeping the number of cells acceptable due to the larger
aspect ratio. Nevertheless an adequate number of cells must be present across the
diffusion layer. So, an indication of the thickness of the layer must be known in
advance. For boundary layers, an estimation can often be obtained as a function
of the Reynolds number. For shear layers this is more difficult for the main reason
that the exact position of the shear layer is not known in advance. Therefore grid
adaptation is used for shear layers and also for shocks. However, for flows where
the boundary layers have to be resolved, a boundary layer grid is constructed in
advance (Figs. 12.16, 12.17 and 12.18).

The error of a 2D first order upwind advection equation (u,v ≥ 0) is given by the
right hand side of:

∂φ

∂t
+ u

φi, j−φi−1, j

Δx
+ v

φi, j−φi, j−1

Δy
= (uΔx)

φi−1, j−2φi, j +φi+i, j

Δx2

+ (vΔy)
φi, j−1−2φi, j +φi, j+i

Δy2
+ H.O.T.
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Fig. 12.16 Boundary layer mesh, structured grid

Consider a Cartesian grid. If the flow is aligned with the grid, either u or v is equal
to zero and the dissipation across the streamlines disappears. In that case a contact
discontinuity will be preserved. Otherwise the contact discontinuity is smeared out.
A second order scheme will perform better in this case than a first order scheme
(Figs. 12.19, 12.20, 12.21 and 12.22).

A volume grid is constructed starting from the face grids. Also here, sources
can be used to influence the local mesh density. Volume grids with prismatic cells
are often used in boundary layers and in geometries where one dimension is much
larger than the other ones. Prismatic cells can be obtained by extruding a surface

Fig. 12.17 Boundary layer mesh: hybrid grid
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Fig. 12.18 Unstructured grid, stretched towards the boundary

grid in the direction away from the surface. For prismatic volumes, the surface grid
of the top or the bottom of the prism can be projected along the side walls towards
the opposite face (Fig. 12.23). For non-prismatic volumes, prismatic cells can be
obtained near the walls, but in the inner part of the volume, tetrahedral cells will
be used. If hexahedral cells are used in the boundary layer, then pyramidal cells or
trimmed cells are necessary in the transition layer between the hexahedral cells and
the tetrahedral cells (Figs. 12.24 and 12.25). When connecting cell centers and/or
edge centers around the vertices of the grid, then polyhedral meshes are obtained
(Fig. 12.26).

Fig. 12.19 Structured grid, aligned with the flow. The contact discontinuity is preserved

u = 2 

u = 1 
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Fig. 12.20 Structured grid, not aligned with the flow, the contact discontinuity is smeared out.
Left: first order discretization. Right: second order discretization

Fig. 12.21 Unstructured grid, the contact discontinuity is smeared out. Left: first order discretiza-
tion. Right: second order discretization

u = 2 

u = 1 

u = 2 

u = 1 
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Fig. 12.22 Structured grid, aligned to the flow, the contact discontinuity is preserved

Fig. 12.23 Prismatic volume
meshed with prismatic cells.
The unstructured
quadrilateral grid on the left
face is projected onto the
opposite face. This face mesh
is repeated inside the volume
leading to the formation of
the prismatic cells

12.4 Choice of the Models

The next step in the process to obtain a flow field solution is the setting of the models
in the solvers. Of course, the user should have already decided which models are to
be used before the grid is generated, because some models will have their impact on
the choice of the grid. It is obvious that the choice of a two- or three-dimensional,
inviscid or viscous flow computation will have a direct impact on the grid generation
process. In the majority of flow calculations, the flow will be turbulent. If the turbu-
lent fluctuations are small, the mean flow can often be considered as steady. In order
to take into account the turbulent interactions, a turbulence model is used. For large
fluctuations in the flow field, the choice of a LES (Large Eddy Simulation) model
can be more appropriate. This, however, implies a 3D unsteady computation. As
already mentioned in the introduction, more complicated models can not be treated
in this chapter. In the remaining part of this section, various turbulence models will

u = 2 

u = 1 
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Fig. 12.24 Top: Cartesian
mesh, trimmed to the bound-
ary, with extrusion layer.
Middle: Unstructured mesh
with extrusion layer. Bottom:
Hybrid mesh with extrusion
layer

be discussed as well as the implications the models have on the construction of the
boundary layer in the grid generation process.

When the flow is turbulent, the velocity in one point can vary as a function of time
as in Fig. 12.27. Three cases are shown: steady mean flow with turbulence fluctua-
tions superposed, unsteady mean flow with turbulence fluctuations, and transitional
flow. For industrial applications, the details of the fluctuations are not important.
Only the mean flow and the impact of the turbulence fluctuations on the mean flow
are of importance.
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Fig. 12.25 Top: regular cells
used in unstructured mesh.
Bottom: Trimmed
hexahedral cells

Mean values of the velocity are defined as follows:

vi(t0) =
1
T

t0+T/2∫
t0−T/2

vidt

The time scale T has not to be defined precisely. It is chosen to be small with
respect to the mean flow fluctuations and large with respect to the time scale of the
turbulent fluctuations. The fluctuating part of the velocity is denoted by v′i = vi −
v̄i with v′i = 0. For incompressible flow, the Navier-Stokes equations (summation
convention is used) are

∂vi

∂xi
= 0

∂vi

∂t
+

∂

∂xj
vjvi +

1
ρ
∂p
∂xi

= ν
∂2

∂x2
j

vi

The non-linear terms in the Navier-Stokes equations after averaging, result in

vjvi = (vj + v′j)(vi + v′i) = vjvi + v′jv′i
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Fig. 12.26 Polyhedral mesh
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Fig. 12.27 Top: steady
turbulent flow. Middle:
Unsteady turbulent flow.
Bottom: Transitional flow

So, extra terms are present in the averaged equations.

∂vi

∂xi
= 0

∂vi

∂t
+

∂

∂xj
vjvi +

1
ρ
∂p
∂xi

= ν
∂2

∂x2
j

vi−
∂

∂xj
v′jv′i

These averaged equations are called the RANS (Reynolds-Averaged Navier-
Stokes) equations. They are identical to the original Navier-Stokes equations except
for the turbulent stress tensor:

τ′ij = −ρ v′jv′i

The stress components are called the Reynolds stresses.
Equations for the Reynolds stresses can be derived from the Navier-Stokes equa-

tions. The tensor product of the momentum equation with the velocity vector results
after averaging in an equation for the Reynolds stresses:

∂vi

∂t
+ vk

∂

∂xk
vi +

1
ρ
∂p
∂xi

= ν
∂2

∂x2
k

vi

∂vi

∂t
vj + vk

∂vi

∂xk
vj +

1
ρ
∂p
∂xi

vj = ν
∂2vi

∂x2
k

vj

After exchanging index i and j and summation of both equations, it follows that:

∂
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The convective term can also be written as:

∂

∂xk
vivjvk

Averaging results in:
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From multiplication of the momentum equation in v̄i with v̄j and vice versa, we
see that the full underlined terms and a part of the partially underlined terms cancel,
so the result becomes:

∂

∂t
v′iv′j + vk

∂

∂xk
v′iv′j = −v′iv′j

∂vj

∂xk
−v′jv′k
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∂xk
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∂xk

The left hand side denotes the material derivative of the stress components. The
first two terms in the right hand side are the interaction of the stress component
with the mean velocity gradient. This represents the production of the Reynolds
stresses. The next two terms represent the redistribution of turbulent fluctuations,
which represents turbulent diffusion. The last term represents dissipation.

The equation can therefore be written as

D
Dt

v′iv′j = Pij + dij− εij (12.1)

Diffusion and dissipation terms need further modelling. In Reynolds stress mod-
els (RSM), the dissipation terms are modelled through one convection-diffusion
equation with source term, so seven scalar equations are to be solved in addition
to the Reynolds-averaged Navier-Stokes equations.

The second kind of models used in RANS computations employ the Boussinesq
hypothesis to relate the stresses to the mean velocity gradients:

−ρv′iv′j = 2μtS i j−ρ
2k
3
δij

where the turbulent kinetic energy k is defined as 1/
2v′kv′k and
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S i j =
1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
− 1

3
∂vk

∂xk
δij.

This concept of a turbulent viscosity or eddy viscosity is based on the analogy
between Brownian movement of molecules resulting in a viscosity term when the
fluid is treated as a continuum and the chaotic movement of eddies in a turbulent
flow. The eddy viscosity μt can be modelled algebraically or with a one-equation
model such as Spalart-Allmaras or with two-equation models, such as the k-ε model
and its variants and the k-ω model and its variants. For a one-equation model, the
transport equation for k is derived from Eq. (12.1). For the two-equation models,
the second equation describes the transport of the dissipation ε as in RSM or of the
frequency ω, derived from k and ε. For the one-equation models μt is computed as
a function of k and a length scale, modelled with an algebraic correlation. For the
two-equation models, μt is computed as a function of the two transported quantities.

The use of a RANS turbulence model implies a constraint on the grid in the
vicinity of a wall. Either the turbulent boundary layer is completely computed or
the turbulent boundary layer is modelled. In the near-wall region, three layers can be
observed. In the innermost layer, the viscous sublayer, the flow is almost laminar and
momentum, heat and mass transfer are dominated by the (molecular) viscosity. In
the outer layer, the fully-turbulent layer, turbulence plays a major role. In the region
in between, both the effects of viscosity and turbulence are important. Figure 12.28
shows the different layers in the near-wall region. Here y+ and u+ are given by yuτ

/
ν

and u/
uτ respectively, where uτ =

√
τw

/
ρ.

There are two ways to model the near-wall flow. In the first approach, the flow
in the viscous sublayer and buffer layer is not resolved, but ‘wall functions’ are
used to correlate the viscous stress at the wall with flow data in the fully turbulent
region (log-layer). This approach is called ‘high-Reynolds’ turbulence modelling. In
a second approach, ‘low-Reynolds’ turbulence modelling, the flow through the inner

2
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viscou
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viscosity affected region

buffer layer

fully turbulent
layer
or log-layer

Fig. 12.28 Different layers in the near-wall region
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Fig. 12.29 Left: grid for high-Reynolds turbulence modelling. Right: grid for low-Reynolds
turbulence modelling.

layer is resolved. The turbulence models have to be modified with near-wall models
in order to account for the presence of the wall, since near the wall the flow is almost
laminar. Damping functions have to be introduced in the turbulence equations to
damp the turbulence adequately near the wall. Figure 12.29 shows different grids to
be used for both approaches. The first approach results in lower cost computations
and is often used for industrial applications, but is only valid for flows where the
assumptions for the use of wall functions are valid. If not, the second approach can
be used if the near-wall models are appropriate for the type of flow being considered.
With the introduction of blending functions between the low-Reynolds approach and
the high-Reynolds approach, the right choice for the distance from the wall for the
first cell becomes more obsolete.

The above-mentioned Reynolds-averaged Navier-Stokes (RANS) equations rep-
resent transport equations for the mean flow quantities only, with all the scales of
the turbulence being modelled. The approach of permitting a solution for the mean
flow variables greatly reduces the computational effort. If the mean flow is steady,
the governing equations will not contain time derivatives and a steady-state solution
can be obtained economically. A computational advantage is seen even in transient
situations, since the time step will be determined by the global unsteadiness in the
mean flow rather than by the turbulence. The Reynolds-averaged approach is gener-
ally adopted for practical engineering calculations.

LES (Large Eddy Simulation) provides an alternative approach in which the large
eddies are computed in a time-dependent simulation that uses a set of ‘filtered’ equa-
tions. Filtering is essentially a manipulation of the exact Navier-Stokes equations to
remove only those eddies that are smaller than the size of the filter, which is usu-
ally taken as the mesh size. Like Reynolds averaging, the filtering process creates
additional unknown terms that must be modelled in order to achieve closure. Statis-
tics of the mean flow quantities, which are generally of most engineering interest,
are gathered during the time-dependent simulation. The attraction of LES is that,
by modelling less of the turbulence (and solving more), the error induced by the
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turbulence model will be reduced. One might also argue that it ought to be easier to
find a ‘universal’ model for the small scales, which tend to be more isotropic and
less affected by the macroscopic flow features than the large eddies. For LES com-
putations, large computer resources are required since the mesh size and time step
to be used are very small. This kind of computation can only be performed in 3D,
due to the 3D nature of turbulent flow.

12.5 Boundary Conditions

Once the geometry is defined and the appropriate model is chosen, the boundary
conditions have to be specified. Boundaries are typical inlets, outlet, walls, symme-
try planes, periodic planes or an axis for axisymmetrical computations. For subsonic
flow, n− 1 conditions have to be specified at the inlet (n is the number of degrees
of freedom for each cell). For turbulent compressible flow, the velocity components
or the total pressure and flow direction, together with the temperature and the tur-
bulence variables are prescribed. For supersonic flow, all degrees of freedom need
to be specified at the inlet. At a subsonic outlet, one condition has to be specified.
The pressure or a combination of flow and pressure is then prescribed. If the outlet
is supersonic, no boundary conditions have to be prescribed. If there is backflow
at an outlet, convected quantities, such as temperature (or entropy) and turbulence
variables have to be correctly prescribed. Sometimes it happens that backflow is
detected only during the convergence process,. If the backflow conditions are not
correctly prescribed, this can lead to divergence of the calculation.

More complex in- and outlet conditions such as fans or vents are often available.
Then only the characteristic (pressure loss or gain as a function of the flow) has to be
specified. If such boundary conditions are not available, these can be programmed in
user subroutines that can be linked with the commercial package (see next section).

For incompressible flow with heat transfer or compressible flow, the temperature
or heat flux is to be specified at the wall. For conjugate heat transfer problems no
boundary conditions for the interface wall are to be specified. When a turbulence
model is used, the turbulent quantities at the inlet need to be specified. This can
e.g. be done in terms of turbulent intensity and hydraulic diameter, from which the
variables of a two-equation model can be derived. The values at the inlet are gener-
ally not critical since the turbulence is strongly damped in uniform flow. Turbulence
is mostly created in the vicinity of walls in boundary layers or in shear layers inside
the computational domain.

12.6 User Written Routines

As mentioned before, user subroutines can be written to specify complex bound-
ary conditions, such as space and time varying boundary conditions. These user
routines can also be used to specify fluid properties or source terms in the equations.
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Nowadays, user-developed turbulence models can be coupled with a commercial
software package through user-written routines, since convection-diffusion equa-
tions with source terms for user-defined scalars can be linked to the package. If
these scalars are chosen to be the variables of a turbulence model, then the model
can be added on through user-defined diffusion and source terms and a user-defined
turbulent viscosity as a function of these user-defined scalars.

12.7 Computation of the Flow Field

Knowledge of the solver becomes unnecessary and the user can increasingly focus
on the fluid dynamics. However in case of non convergence, some parameters have
to be tuned adequately. For explicit solvers the ‘cfl’ number, and for implicit solvers
the underrelaxation factors can be changed. Since the flow equations are nonlinear,
a good initial guess for the flow field is important. For turbulent flow calculations, it
can be helpful to start with a low order scheme and without the turbulence models
in the initial phase of the iterations. Afterwards the turbulence equations can be
switched on and finally the order of the discretization method can be increased. If
the solution is not satisfactory, grid adaptation can be used (Fig. 12.30).

Fig. 12.30 Very sharp shock
pattern obtained after several
grid adaptations
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12.8 Post-Processing

Once the flow field is computed, a discrete solution for the flow variables is avail-
able for the domain at each mesh element. This solution can be processed to obtain
values of the flow variables at any location within the flow domain by standard inter-
polation techniques. It is common for CFD packages to provide powerful graphics
capabilities for visually analyzing the solution, as well as to report values of various
flow quantities. If the user is not satisfied with the solution the grid can be refined
or modifications to the numerical or physical models can be made.

The most commonly employed postprocessing features are contour and vector
plots, path lines and particle tracks (Figs. 12.31 and 12.32) and reports of fluxes,
surface and volume integrals, or XY plots of extracted data. Animation sequences
can be used for time dependent computations or for the analysis of 3D computations
by a moving 2D cutting plane.

Fig. 12.31 Contour plot of
velocity magnitude, cutting
plane through a centrifugal
compressor

12.9 Final Remarks

CFD has matured during the last two decades into a powerful tool to analyze fluid
problems. However, one must never forget that the solution obtained can still be far
from reality if the grid or the models used (e.g. turbulence models) are not adequate
for the type of flow being studied.

A CFD result should always be verified with the flow results a fluid dynamicist
can expect. Hand calculations are necessary to verify the computed results (e.g. in-
and output fluxes). If the flow patterns are unexpected, an explanation should be
sought. Often the explanation is an error somewhere in the input data.
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Fig. 12.32 Path lines in a
centrifugal pump

In conclusion, it may be stated that CFD has become an indispensable tool for the
fluid dynamicist, but as with all valuable objects or tools, it should be handled with
care. Keep in mind that also from incorrect solutions very impressive 3D animations
can be shown.



Index

Adaptive grids, see Grid generation
Airfoil flows, 145–146
Amplification factor, 99, 166, 194,

204–205, 207
Analytical domain, 101–102
Approximative factorization technique, 203,

229–231
Artificial viscosity terms, 213, 216, 272,
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transformation, 162–164

Boundary points (for panel method), 62
Bow shock wave, 3–4
Bubble function, see Spurious pressure modes
Bubnov-Galerkin method, 245

CAD, 306
Calorically perfect gas, 43
Cell, 275–276
Cell-centered formulation, 315–316
Cell-vertex formulation, 290–292
CFL condition, 101–136, 286, 288–289

Characteristic lines, 78–80, 82, 101
Compatibility equations, 80
Completeness requirement, 240
Computational aerodynamics, 53
Computational fluid dynamics
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Crank-Nicolson finite difference, 95–169

generalized limit difference, 165–167
Curvilinear grid, 105, 116–117
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Divergence form, 43
Divergence of velocity, 22–23
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coordinate stretching, 113–116
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basic aspects of, 53–54
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268–270
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Iterative methods, 183, 227–228
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Neumann condition, 85
Stability analysis, 166–167, 187, 193
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Non-conforming elements, 256
Non-conservation form of equations, 17
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Numerical dissipation, 183–232

definition, 204–208
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steady-state dissipation, 211–216
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vortex panels, 53, 67–69, 71–72, 74
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87–103
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Post-processing, 327
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normal gradient, 153

Quadrilateral elements, 254, 267
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vertex-based, 294–295
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Shape functions

global shape function, 247, 252
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Shock fitting, 47–49
Source flow, 55
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Source term, 46
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pressure distribution, 10, 11
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Spectral method, 242
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223, 232
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Stability analysis, 166, 187, 193–194
Stability criterion, 101, 134–135
Stability of numerical schemes for
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194–195
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definition, 192
region of stability, 197–198
weak instability, 195–197

Stability of numerical schemes for the
integration of PDEs, 193

Fourier (von Neumann) analysis, 193
Stiffness matrix, 257, 258, 261, 262
Stiff problems, 198–199
Stokes hypothesis, 32
Streamline-upwind/Petrov-Galerkinmethod

(SUPG), 267
Strong conservation form of equations, 47
Strong formulation of a boundary value

problem, 237–240
Strong and weak formulation of a boundary

value problem, 237–245
Subdomain collocation method, 241, 278
Substantial derivative, 18–22
Supercomputers, 6
Surface forces, 28–29, 34–35

Taylor-Galerkin method, see Lax-Wendroff

method
Thermal conductivity, 36, 42
Thomas algorithm, 171–173, 179
Time-dependent method

general mention, 128, 137, 146
Lax-Wendroff method, 128–132
MacCormack’s method, 132–134

Transformation techniques, 106–111
compressibility and similarity transforma-

tion, 163
general transformation, 106–111

Triangular elements, 249–253
Truncation errors, 8, 94, 206
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Turbulence, 12–13, 272, 305, 317–318,
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Uniform flow, 54–55, 57, 68, 325
Upwind formulation, 192–223

Variational formulation, 244–245
Vertex-based formulation, 292–295,
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Vibrational rate equation, 136
Von Neumann stability method, 166, 187

Vortex flow, 55–56
Vortex panel method, see Panel methods
Vortex sheet, 65–67, 70

Weak conservation form of equations, 47
Weak formulation, 242–244
Weighted residual formulation, 240–241
Weighting functions, 241, 243, 245, 260,
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Well-posed problem, 86
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