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Preface

Spatial statistics has an unusual history as a field within the discipline of statistics. The
stochastic process theory that underlies much of the field was developed within the math-
ematical sciences by probabilists, whereas, early on, much of the statistical methodology
was developed quite independently. In fact, this methodology grew primarily from the
different areas of application, including mining engineering, which led to the develop-
ment of geostatistics by Matheron and colleagues; agriculture with spatial considerations
informed by the thinking of Fisher on randomization and blocking; and forestry, which
was the setting for the seminal PhD thesis of Matérn. As a result, for many years spatial
statistics labored on the fringe of mainstream statistics. However, the past 20 years has
seen an explosion of interest in space and space–time problems. This has been largely fu-
eled by the increased availability of inexpensive, high-speed computing (as has been the
case for many other areas). Such availability has enabled the collection of large spatial and
spatio-temporal datasets across many fields, has facilitated the widespread usage of sophis-
ticated geographic information systems (GIS) software to create attractive displays, and has
endowed the ability to investigate (fit and infer under) challenging, evermore appropriate
and realistic models.

In the process, spatial statistics has been brought into the mainstream of statistical research
with a proliferation of books (including this one), conferences and workshops, as well as
courses and short courses. Moreover, while there has been a body of strong theoretical
work developed since the 1950s (Whittle, Bartlett, Besag, etc.), it is safe to say that, broadly,
spatial statistics has been changed from a somewhat ad hoc field to a more model-driven
one. Though the entire field continues to be in flux, we, as editors taking on this project,
feel that it is now mature enough to warrant a handbook. In this regard, we hope that this
volume will serve as a worthy successor to Noel Cressie’s (1993) encyclopedic effort, which
has served as the “handbook” since its publication. However, this observation further argues
the need for a new handbook. In addition to a dramatic increase in size since Cressie’s book
appeared, the literature has become exceptionally diverse, in part due to the diversity of
applications. Collecting a review of the major portion of this work in one place, with an
extensive bibliography, should certainly assist future research in the field.

Spatial statistics is generally viewed as being comprised of three major branches: (1) con-
tinuous spatial variation, i.e., point referenced data; (2) discrete spatial variation, including
lattice and areal unit data; and (3) spatial point patterns. However, this handbook consists
of 31 chapters spread over six sections. Our rationale is as follows. The three main areas
form the subject matter of Parts II, III and IV, respectively, and span the majority of the book.
However, we felt that a historical introduction detailing the aforementioned evolution of
the field would be valuable. In addition, with so much space–time work being available,
it was clear that a section on this material was needed. Finally, as anticipated with such
a project, we needed an “Additional Topics” section to collect some important topics that
build upon material presented in the earlier sections, but, in some sense, seemed beyond
those earlier ones. We acknowledge that some readers will feel that certain topics are under-
represented or inadequately discussed. We cannot disagree, noting only that no selection
would make all readers happy.

ix
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x Preface

The list of contributors to this volume is outstanding, a collection of very prominent
researchers in the field. Moreover, we have attempted to give the handbook a more unified,
integrated feel. We specifically precluded the notion of stand-alone contributions. Rather, for
each chapter, the editors provided the contributor(s) with a core set of material to be covered
as well as chapter reviews, which reinforced this. In addition, though there is inherent vari-
ability in technical levels across the chapters, we have targeted a background/preparation
at the level of a master’s in statistics. We hope that this will make the book accessible to re-
searchers in many other fields, researchers seeking an easy entry to particular topics. In this
regard, we have tried to balance theory and application while targeting a strong emphasis
on modeling and introducing as many real data analysis examples as feasible.

We have focused a bit less on computation (though there are some exceptions) and not at
all on GIS displays and software (arguing that this is primarily descriptive). In this spirit,
we have also avoided discussion of what is often referred to as spatial analysis because
this work resides primarily in the geography literature and does not tend to be stochastic.
However, with regard to computing issues, typically, there is some discussion in most
of the nontheoretical chapters. We also decided not to say much about available software
packages. In our view, the material we have included is perceived as durable, while software
for spatial and spatio-temporal analysis is evolving rapidly and is perhaps best pursued
through appropriate references cited in the volume.

In summary, we have enjoyed assembling this handbook, finding collegial ease and
consistent agreement across the editorial team. We greatly appreciate the efforts of our
contributors who provided their chapters and their revisions in a timely manner to enable
this book to come together with minimal delay. And, we appreciate the encouragement of
Rob Calver from Taylor & Francis to undertake this project and Sarah Morris and Marsha
Pronin, also from T&F, who helped put the entire package together.

Alan E. Gelfand

Peter J. Diggle

Montserrat Fuentes

Peter Guttorp
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1
Historical Introduction

Peter J. Diggle
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References.......................................................................................................................................12

In this chapter, I aim to set the scene for what follows by summarizing the historical de-
velopment of spatial statistics as a recognizable sub-branch of the statistics discipline. As
with many other areas of statistical methodology, the important developments came not
from the study of mathematics for its own sake, but from the needs of substantive applica-
tions, including in this case areas as diverse as astronomy, agriculture, ecology and mineral
exploration.

1.1 Antecedents

The fundamental feature of spatial statistics is its concern with phenomena whose spa-
tial location is either of intrinsic interest or contributes directly to a stochastic model for
the phenomenon in question. Perhaps the earliest examples are problems in geometrical
probability.

Buffon’s needle, named after the Comte de Buffon (1707–1788), is perhaps the most
famous problem of this kind. The question is easily posed. Suppose that a needle of length
x is thrown at random onto a table marked by parallel lines, a distance d > x apart. What
is the probability that the needle crosses one of the parallel lines? To solve the problem,
we need to say what we mean by “at random.” A natural definition is that the distance of
the needle’s center from the closest parallel line should be uniform on (0, d/2) and that the
acute angle that the needle makes relative to the parallel lines should be uniform on (0, π/2).
However, the first part of this definition begs the slightly subtle question of what happens
near the edges of the table or, if the table is deemed to be of infinite size so as to avoid the
question, what physical meaning can we attach to throwing the needle at random onto the
table? The mathematical resolution of this difficulty lies in the theory of point processes.
Spatial point processes (meaning point processes in Euclidean space of dimension two

3
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4 Handbook of Spatial Statistics

or three) first occurred (in the form of Poisson processes, though without that name) in
physics and astronomy. To my knowledge, the first introduction of a Poisson process was
in 1858 when Rudolf Clausius needed to calculate the mean free path of a molecule in a
volume of gas in order to defend from criticism the then new molecular theory of heat
(Peter Guttorp, personal communication). Properties of the Poisson process were derived
and used as benchmarks relative to which the empirical properties of astronomical data
could be judged, a mode of inquiry that we might now call significance testing with the
Poisson process acting as a dividing hypothesis, using this term in the same sense as used by
Cox (1977). In the current context, the Poisson process serves as a demarcation line between
spatial point processes whose realizations can be described as being more regular, or less
regular, than those of the Poisson process.

As an early example, Hertz (1909) derived the probability distribution of the distance
from an arbitrary point of a three-dimensional Poisson process to the nearest other point.
Comparison of this theoretical distribution with the observed distribution of these so-
called nearest neighbor distances could be used to test whether an observed pattern is
compatible with the Poisson process model, an idea that resurfaced many years later in
ecology (Skellam, 1952; Clark and Evans, 1954).

Other early work considered the properties of geometrical figures made up of specified
numbers of points. Between 1859 and 1860, Professor Simon Newcomb wrote a series of
papers in the then newly established Mathematical Monthly that included, for example,
a calculation of the probability that six stars would lie in a given degree square, on the
assumption that stars were scattered at random over the sky, i.e., formed a homogeneous
Poisson process (Newcomb, 1859–1860). The study of geometrical probability problems of
this kind eventually developed into the field of stochastic geometry (Harding and Kendall,
1974; Stoyan, Kendall and Mecke, 1987).

Unsurprisingly, the homogeneous Poisson process was soon found wanting as a model
for naturally occurring patterns of points in space. Two widely occurring phenomena that
the Poisson model fails to capture were on the one hand, spatial clustering of points into
local aggregations and, on the other, spatial regularity typically arising from the fact that
“points” are usually abstractions of nonoverlapping objects of finite size; e.g., cells in a
biological tissue section or trees in a forest.

The earliest attempt to build a class of models for spatial clustering was by Neyman (1939),
who wanted a model to describe the positions of insect larvae after they had hatched in a
field of view from a Poisson process of egg clusters. Although Neyman set up his model
to include the spatial dispersal of individual larvae from their point of hatching, this was
lost in the subsequent approximations that he made in deriving the probablity distribu-
tion of the number of larvae located within a field of view. Hence, Neyman’s Type A
distribution is simply that of the sum of a Poisson number of Poisson counts, which is
strictly appropriate only if larvae from the same egg cluster remain co-located. Neyman
and Scott (1958) revisited this construction in three spatial dimensions, again motivated
by astronomy, to give what we should probably recognize as the first genuine model
for spatially dispersed clusters of points emanating from randomly distributed parent
locations.

The natural starting point for building models that recognize points as reference locations
for finite-sized objects is to ask what would be meant by a random spatial distribution of
nonintersecting circles. The generally accepted definition is a homogeneous Poisson process
conditioned by the requirement that, within a designated finite region D, no two points of
the process are separated by a distance less than a prespecified value δ > 0. Ripley and
Kelly (1977) embedded this construction within their definition of Markov point processes,
which remain the most widely used family of models to describe point patterns whose
realizations exhibit some degree of spatial regularity.

© 2010 by Taylor and Francis Group, LLC
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1.2 Agricultural Field Trials

Spatial considerations were implicit in R. A. Fisher’s (1966) seminal work on the devel-
opment of design-based inference for data from agricultural field trials of the kind that
he encountered at the Rothamsted Experimental Station in Hertforshire, England. Fisher
was employed at Rothamsted between 1919 and 1933, devoting much of his time to the
development of a coherent methodology for the analysis of data from agricutural field
trials.

Figure 1.1 is a representation of data from a uniformity trial conducted at Rothamsted
and reported in Mercer and Hall (1911). Each small rectangle in the diagram corresponds to
a rectangular plot of dimension 3.30 by 2.59 meters, and the plots are color-coded to show
the yield of wheat grain from each. Because only a single cultivar was sown, the variation
in yield among the 500 plots presumably arises substantially from spatial variation in the
microenvironment (e.g., soil fertility, slope, aspect, etc.). It may be reasonable to think of
this variation as being stochastic in nature, in which case, a first, albeit naive, model for the
data might be

Yi j = μ + Zi j : i = 1, ..., 20; j = 1, ..., 25 (1.1)

where μ is the (hypothetical) population mean yield per plot, i and j denote rows and
columns respectively, and the Zi j are mutually independent, zero-mean random perturba-
tions. A modern approach to inference from Equation (1.1) might be to add the assumption
that the Zi j are normally distributed and use the likelihood of the resulting stochastic
model as the basis for inference. This model is naive because it is obvious from Figure 1.1
that near-neighboring plots tend to give similar yields, thus violating the asumption of
mutually independent Zi j . Fisher recognized this difficulty, commenting, for example,
on “the widely verified fact that patches in close proximity are commonly more alike,
as judged by the yield of crops, than those which are farther apart” (Fisher, 1966, p. 66).
Rather than adopt a model-based solution, Fisher advocated the use of blocking as a fun-
damental design principle to combat the malevolent influence of extraneous, in this case
spatial, variation on the precision of the experiment. To illustrate, suppose that we consider
the individual columns of Figure 1.2 as blocks. A less naive model than Equation (1.1)

80604020

10

20

30

40

50

FIGURE 1.1
Data from a wheat uniformity trial reported in Mercer and Hall (1911). Each square represents a plot of dimension
3.30 × 2.59 meters (10.82 × 8.50 feet). Squares are coded to show the yield of wheat grain, in pounds, from each
plot, from 2.73 (black) to 5.16 (white).
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FIGURE 1.2
Correlation between spatial averages over two contiguous squares of side-length d (solid line) and correlation
function ρ(d) = exp(−d) of the underlying spatially continuous process (dashed line).

would now be
Yi j = μ + β j + Zi j : i = 1, ..., 20; j = 1, ..., 25 (1.2)

where now the β j , constrained to sum to zero, represent the amounts by which the expected
yield within each block differs from the overall expectation, μ. In effect, Equation (1.2) is
a primitive spatial model in which any systematic spatial variation is assumed to operate
only in the horizontal direction, but is otherwise arbitrary. The beneficial effects of blocking
are well known. In this case, the estimated variance of the Zi j is 0.210 under model (1.1),
but reduces to 0.150 under Equation (1.2) and to 0.135 if, perhaps more naturally in the
absence of additional information, we define blocks as contiguous 5 by 5 arrays of plots.
Fisher himself expressed the view that “it is therefore a safe rule to make the blocks as
compact as possible” (Fisher, 1966, p. 66).

Blocking can be thought of as a form of covariate adjustment under the implicit assump-
tion that systematic spatial variation, if it exists at all, is piecewise constant within blocks.
An alternative strategy is to adjust plot yields to take account of the average yield in neigh-
boring plots. This form of covariate adjustment was suggested by Papadakis (1937) and
turns out to be closely connected with Markov random field models for discrete spatial
variation (see Section 1.4.1 below, and Part II of this book). A modern interpretation of the
Papadakis adjustment is as a conditional model for the distribution of each plot yield, Yi j ,
given the average yield, Ȳi j say, over plots deemed to be neighbors of i j , namely,

Yi j |{Ykl : (k, l) �= (i, j)} ∼ N(μ + β(Ȳi j − μ), τ 2). (1.3)

The model (1.3) reduces to Equation (1.1) when β = 0, whereas the general case is an exam-
ple of what would now be called a Gaussian Markov random field (Rue and Held, 2005).
The connection between Papadakis adjustment and Markov random fields was pointed out
by Sir David Cox in the discussion of Besag (1974), and made explicit in Bartlett (1978).

W. F. Gosset (Student) also thought carefully about spatial correlation in this context,
but sought what we would now call a model-based solution. In a letter to Karl Pearson in
December 1910, he wrote: “Now in general the correlation weakens as the unit of time or
space grows larger and I can’t help thinking that it would be a great thing to work out the
law according to which the correlation is likely to weaken with increase of unit” (Pearson,
1990).
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One way to formalize this request for a “law” of spatial correlation is to consider a station-
ary, spatially continuous stochastic process S(x) with covariance function Cov{S(x), S(y)} =
σ 2ρ(u) where u is the distance between the locations x and y. The covariance between spatial
averages of S(·) over two regions A and B is

γ ( A, B) = (|A| × |B|)−1σ 2
∫

A

∫
B

ρ(||x − y||)dxdy,

where | · | denotes area and || · || distance. Figure 1.2 shows the resulting correlation when A
and B are contiguous squares each of side-length d, and ρ(u) = exp(−u), showing how the
correlation decays more slowly than does the underlying exponential correlation function
of the process S(·).

Gosset’s use of “law” in the singular here is interesting, implying as it does a belief
that there is a natural law of spatial variation, akin to a physical law, that could account
quite generally for the phenomenon in question. In a similar spirit, Fairfield Smith (1938)
proposed that the correlation should diminish according to a power law, a proposition
explored further by Whittle (1956, 1962), and more recently by McCullagh and Clifford
(2006). The McCullagh and Clifford paper also reviews recent literature on spatial stochastic
models for the analysis of agricultural field trials, amongst which important contributions
include Wilkinson et al. (1983), Besag and Kempton (1986), and Besag and Higdon (1999).

1.3 Modeling Continuous Spatial Variation

A less ambitious and, in the author’s view, more realistic goal than a search for a universal
law is to develop a parsimonious class of models that can succeed collectively in capturing
the empirical behavior of extraneous spatial variation in a range of scientific settings. From
this point of view, a convenient working assumption is that the spatial phenomenon under
investigation can be modeled as a Gaussian spatial process, S(x) say, whose mean can be
described by a suitable linear model. To complete the specification of the model, we then
need only to specify the covariance between S(x) and S(x′) for any two locations, x and
x′. This task is considerably simplified if we are prepared to assume spatial stationarity, in
which case the covariance specification reduces to a scalar parameter σ 2 = Var{S(x)} and a
correlation function ρ(u) = Corr{S(x), S(x′)} where u is the distance between x and x′.

It took a while for this idea to bear fruit, and when it did, it did so independently in at
least two very different fields: forestry (Matérn, 1960) and mining engineering (Krige, 1951).

Bertil Matérn spent the majority of his career in the Swedish Royal College of Forestry,
now part of the Swedish University of Agricultural Sciences. His 1960 Stockholm University
doctoral dissertation (Matérn, 1960, reprinted as Matérn, 1978) set out the class of models
for the correlation structure of real-valued, spatially continuous stationary processes that
now bear his name. The Matérn correlation function takes the form

ρ(u) = {2κ−1Γ (κ)}−1(u/φ)κ Kκ (u/φ), (1.4)

where φ is a scale parameter and Kκ (·) denotes a modified Bessel function of order κ . One
of the attractions of this class of models is that the integer part of κ determines the mean
square differentiability of the underlying process. This matters because the differentiabil-
ity affects the behavior of predictions made using the model, but κ is poorly identified in
typically sized datasets. For this reason, the fact that the numerical value of κ has a tan-
gible interpretation in terms of the smoothness of the underlying spatial process is very
helpful in informing its choice or, in a Bayesian context, in choosing a suitably informative
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prior. Guttorp and Gneiting (2006) give a scholarly account of the multiple origins of the
parametric family (1.4) and its many areas of application.

D. G. Krige was for many years a professor at the University of the Witwatersrand,
South Africa. He promoted the use of statistical methods in mineral exploration and, in
Krige (1951), set the seeds for the later development, by Georges Mathéron and colleagues
at L’École des Mines in Fontainbleau, France, of the branch of spatial statistics known as
geostatistics (see Section 1.3.1 below and Part II). The spatial prediction method known
as kriging is named in his honor. In a different scientific setting, the objective analysis of
Gandin (1960), essentially the same thing as kriging, was for a long time the standard tool
for constructing spatially continuous weather maps from spatially discrete observations on
the ground and in the air.

1.3.1 Geostatistics

As noted above, geostatistics has its origins in the South African mining industry, but
was developed into a self-contained methodology for spatial prediction at L’École des
Mines, Fontainebleau, France (Mathéron, 1955, 1963, 1965). The original practical problem
for which geostatistical methods were developed is to predict the likely yield of a mining
operation over a spatial region D, given the results of samples of ore extracted from a finite
set of locations. Put more formally, suppose that S(x) is a spatially continuous random
process and that data Yi : i = 1, ..., n are obtained as, possibly noise-corrupted versions
of, the realized values of S(x) at sampling locations xi : i = 1, ..., n, hence Yi = S(xi ) + Zi

where the Zi are independent with mean zero and variance τ 2. Let T = ∫
D S(x)dx. Then,

the canonical geostatistical problem is to use the data Yi : i = 1, ..., n to make predic-
tive inference about T . In its simplest manifestation (called, not unreasonably, simple krig-
ing), the process S(·) is assumed to have constant mean, estimated by the sample mean of
the data, and known covariance structure. The point predictor of T is then the integral of
the best (in mean square error sense) linear predictor of S(x). A somewhat better method,
known as the ordinary kriging, replaces the sample mean by the generalized least squares
estimate of μ, thereby taking account of the estimated covariance structure of S(·). A fur-
ther extension, called universal kriging, replaces the constant mean μ by a regression model,
μ(x) = d(x)′β, where d(x) is a vector of spatially referenced explanatory variables.

For some time, the work of the Fontainebleau School remained relatively unconnected
to the mainstream of spatial statistical methodology, and vice versa. Watson (1972) drew
attention to the close connections between Fontainebleau-style geostatistical methods and
more theoretically oriented work on stochastic process prediction (see, for example, Whittle,
1963). Ripley (1981, Sec. 4.4) made this connection explicit by giving an elegantly concise
but essentially complete rederivation of kriging methods using the language of stochastic
process prediction.

1.3.2 Forestry

Bertil Matérn’s doctoral dissertation is a remarkable work that remains highly relevant
almost 50 years after its first appearance. As a young research student, I remember being
puzzled as to how a doctoral dissertation came to be so widely cited. I recently learned from
Sir David Cox that Matérn had visited London in the late 1960s to give what turned out to be
a very influential series of lectures, after which copies of the dissertation began to circulate
within the fledgling community of spatial statistics researchers in the United Kingdom.

Matérn’s parametric family of correlation functions has become the family of choice for
many geostatistical applications, although some may feel this choice to be slightly less
straightforward than is expressed by Stein (1999). His summary of practical suggestions
when interpolating spatial data begins with the blunt statement: “Use the Matérn model.”
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Matérn’s dissertation also makes important contributions to spatial point processes, ran-
dom sets and spatial sampling theory. In the first of these areas, he considers models for
spatial point processes that impose a minimum distance between any two points of the
process; an obvious case in point being when the points represent the locations of mature
trees in a dense forest is clear. In so doing, he lays down the elements of what would now
be called Markov point processes. Matérn also gives early examples of models for random
sets. One such, consisting of the union of copies of a circular disk translated by the points of
a Poisson process, would later be rediscovered as an example of a Boolean scheme (Serra,
1982), in which the circular disk is replaced by a more or less arbitrary geometrical shape.
Finally, the dissertation gives an extensive discussion of the efficiency of spatial sampling
schemes showing, in particular, the advantages of systematic over random sampling for
estimating spatial averages. The key theoretical idea here was to recognize, and formu-
late precisely, the distinction between estimating a mean and predicting a spatial average.
This distinction is crucial to an understanding of spatial asyptotic theory, and in particular
to the choice between in-fill and expanding domain asymptotics (Stein, 1999). With in-fill
asymptotics, the values of a spatial process S(x) in a fixed spatial region D are sampled
at the points of a regular lattice with progressively finer spacing. This leads to consistent
prediction of the spatial average, T = |D|−1

∫
D S(x)dx where | · | denotes area, but not to

consistent estimation of the (assumed constant) expectation, μ = E[S(x)]. Conversely, with
expanding domain asymptotics, the process is sampled at the points of a lattice with fixed
spacing, but covering an increasing sequence of spatial regions. This leads to consistent
estimation of μ (and of other model parameters), but not to consistent prediction of T be-
cause the number of sample points relevant to predicting the values of S(x) for x ∈ D do
not increase with the total sample size.

1.4 Two Methodological Breakthroughs

The overall structure of this handbook recognizes three major branches of spatial statistics:
(1) continuous spatial variation, (2) discrete spatial variation, and (3) spatial point processes.
We have seen how the first of these grew out of a series of initially unconnected strands of
work that were separated both by geography and by the area of scientific motivation. In the
author’s opinion, the seminal contributions to the systematic development of the second
and third branches of spatial statistics are to be found in two papers read at meetings of the
Royal Statistical Society during the 1970s. Besag (1974) proposed models and associated
methods of inference for analyzing spatially discrete, or “lattice,” data, while Ripley (1977)
set out a systematic approach for analyzing spatial point process data. At the time of writing,
Google Scholar lists 2690 and 783 citations for these two papers, respectively.

Interestingly, both papers exemplify the connections between statistical modeling of spa-
tial data and ideas in statistical physics. As pointed out by M. S. Bartlett in the discussion of
Besag (1974), the autologistic model for binary lattice data is related to the Ising model of
ferromagnetism, while the pairwise interaction point process models described in Ripley
(1977) are related to idealized models of liquids (Bernal, 1960).

1.4.1 Spatial Interaction and the Statistical Analysis of Lattice Systems

The title of Besag (1974), with its reference to “lattice systems” (my italics) reveals its genesis
in seeking to analyze data such as those shown in Figure 1.1. Julian Besag began his academic
career (immediately after completing his undergraduate education) as a research assistant
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to Maurice Bartlett, whose work in spatial statistics was, as already noted, motivated in
part by early work on the analysis of agricultural field trials. Besag’s automodels were
constructed as regression models with spatially lagged values of the response variable
treated as explanatory variables. Crucially, regression here refers to the specification of a
set of conditional distributions for each of a set of spatially referenced random variables
Yi : i = 1, ..., n given all other members of the set, with no necessary resriction to linearity.
Hence, for example, Besag’s autologistic model for binary Yi (Besag, 1972) specified the
logit of the conditional probability of Yi = 1 given all other Yj : j �= i to be α + βNi where
Ni is the number of values Yj = 1 amongst lattice points j deemed to be neighbors of i (for
example, horiziontal and vertical nearest neighbors in a square lattice arrangement).

Even in the linear Gaussian setting, the choice between so-called conditional and simulta-
neous spatially autoregressive models is important in a rather surprising way. In time series
analysis, it is easy to show that the conventional simultaneous specification of a first-order
autoregressive process as Yt = αYt−1 + Zt, where the Zt are mutually independent, N(0, σ 2)
is equivalent to the conditional specification Yt|{Ys : s < t} ∼ N(αYt−1, σ 2). However, the
analogous specifications in one spatial dimension,

Yi = α(Yi−1 + Yi+1) + Zi : Zi ∼ N(0, σ 2) (1.5)

and
Yi |{Yj : j �= i} ∼ N(α(Yi−1 + Yi+1), σ 2) (1.6)

are not equivalent. In the conditional version of (1.5), the conditional expectation of Yi given
all other Yi depends not only on Yi−1 and Yi+1, but also on Yi−2 and Yi+2.

In general, any mutually compatible set of conditional distributions P(Yi |{Yj : j �= i})
(the so-called full conditionals) exactly determines the joint distribution of (Y1, ..., Yn). The
ramifications of this extend far beyond spatial statistics. In the discussion of Besag (1974),
A. J. Hawkes commented that he was “extremely grateful to Mr. Besag for presenting this
paper with his elegant general treatment of distributions on lattices—or, indeed, for any
multivariate distribution at all” (my italics). This prescient remark predated by six years the
first explicit reference to graphical modeling of multivariate data (Darroch, Lauritzen and
Speed, 1980).

1.4.2 Modeling Spatial Patterns

Brian Ripley’s paper “Modeling spatial patterns” (Ripley, 1977) brought together what had
previously been apparently unrelated strands of work on modeling and analyzing spatial
point pattern data including point process models specified through local interactions, func-
tional summary statistics as model-building tools, and Monte Carlo methods for assessing
goodness-of-fit.

As previously noted, Matérn (1960) had described models for patterns that are, in some
sense, completely random apart from the constraint that no two points can be separated by
less than some distance, δ say. Strauss (1975) proposed a more general class of models in
which the joint density for a configuration of n points in D is proportional to θ t, where t is the
number of pairs of points separated by less than δ. Matérn’s construction is the special case
θ = 0, while θ = 1 gives the homogeneous Poisson process. Strauss envisaged the case θ > 1
as a model for clustering. However, Kelly and Ripley (1976) subsequently showed that this
cannot correspond to any well-defined process in the plane, essentially because as D and n
increase in proportion, the limiting density cannot be normalized when θ > 1 because
the term θ t can grow too quickly. The case 0 < θ < 1 provides a useful class of models
for patterns that are spatially more regular than realizations of a homogeneous Poisson
process, but without a strict minimum distance constraint. Ripley further generalized the
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Strauss process to the class of pairwise interaction processes, in which the density of a
configuration of points xi : i = 1, ..., n in a spatial region d is proportional to the product
of terms h(||xi − xj ||) over all distinct pairs of points. A sufficient condition for this to be
well-defined is that 0 ≤ h(u) ≤ 1 for all u. For further discussion, see Chapters 16 and 17.

The essence of Ripley’s approach to model fitting was to compare functional summary
statistics of the data with those of simulated realisations of a proposed model. Perhaps the
simplest example to illustrate is the Strauss process with θ = 0. At least in principle, this
could be simulated by rejection sampling, i.e., drawing random samples of size n from the
uniform distibution on D and rejecting all such samples that violate the constraint that no
two points can be separated by less than a distance δ. In practice, this is hopelessly ineffi-
cient for realistically large numbers of points. Instead, Ripley used a sequential algorithm
that exploits the equivalence between a pairwise interaction point process and the equi-
librium distribution of a spatial birth-and-death process (Preston, 1977). This algorithm,
subsequently published as Ripley (1979), is to the best of my knowledge the first explicit
example within the statistical literature of a Markov chain Monte Carlo algorithm being
used as a tool for inference (albeit non-Bayesian).

The data analytic tool most strongly associated with Ripley (1977), although it first ap-
peared in Ripley (1976), is a nonparametric estimate of the reduced second moment mea-
sure, or K -function. This is one of several mathematically equivalent descriptions of the sec-
ond moment properties of a stationary spatial point process, others including the spectrum
(Bartlett, 1964), and the curiously named pair correlation function (“curiously” because it
is not a correlation, but rather a scaled second-order intensity, see Chapter 16). From a data
analytic perspective, the key feature of the K -function is that it is cumulative in nature and
can be defined as a scaled conditional expectation: If λ denotes the intensity, or mean num-
ber of points per unit area, of the process, then λK (s) is the expected number of additional
points of the process within distance s of the origin, conditional on there being a point of
the process at the origin. This immediately suggests how K (s) can be estimated from the
empirical distribution of pairwise interpoint distances without the need for any arbitrary
smoothing or histogram-like binning, an important consideration for the sparse datasets
that, typically, were all that were available at the time.

The sampling distributions of functional summary statistics, such as the estimated
K -function, are intractable, even for the simplest of models. Ripley’s 1976 and 1977 papers
were the first to make use of the now ubiquitous device of using envelopes from functional
summaries of simulated realizations of a proposed model to assess goodness-of-fit.

1.5 Maturity: Spatial Statistics as Generic Statistical Modeling

Arguably the most important post-1960s development in statistical methodology for inde-
pendently replicated data is Nelder and Wedderburn’s embedding of previously separate
regression-like methods within the encompassing framework of generalized linear mod-
eling (Nelder and Wedderburn, 1972). By the same token, statistical methodology for de-
pendent data has been transformed by the development of hierarchically specified random
effects models, sometimes called latent graphical models, coupled with the ability to make
inferences for such models using Monte Carlo methods.

The core idea in graphical modeling is to build complex patterns of interdependence in
a high-dimensional random vector by the combination of relatively simple local depen-
dence. In hierarchical, or latent graphical modeling, the stochastic process of interest is not
observed directly, but only indirectly through extant random variables whose distributions
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are specified conditionally on the underlying, latent process. An early, nonspatial example
is the Kalman filter (Kalman, 1960; Kalman and Bucy, 1961). Modern spatial statistics uses
models of this kind in areas of application as diverse as disease mapping (Clayton and
Kaldor, 1987) and image restoration (Besag, York and Mollié, 1991).

The basic geostatistical model was described in Section 1.3.1 in the form Yi = S(xi ) + Zi :
i = 1, ..., n, where S(·) is a stationary Gaussian process with mean μ, variance σ 2 and
correlation function ρ(·), and the Zi are mutually independent N(0, τ 2) random variables.
However, this model can equally be represented in a hierarchical form as

S(·) ∼ SGP(μ, σ 2, ρ(·))
Yi |S(·) ∼ N(0, τ 2). (1.7)

Diggle, Moyeed and Tawn (1998) later used the hierarchical form (1.7) to model discrete
responses Yi , using a generalized linear model in place of the normal conditional for Yi

given S(·).
The challenges posed by the need to analyze spatially referenced data have led to their

playing a prominent role in the development of modern statistical methodology. As I hope
this short historical introduction has illustrated, many statistical models and methods pro-
posed originally in a spatial setting now sit firmly within the statistical mainstream of
models and methods for dependent data, whether that dependence arises in space, time or,
in the guise of graphical modeling, as independently replicated multivariate data.
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Part II

Continuous Spatial Variation
The objective of Part II is to provide a coherent and complete coverage of the traditional,
modern, and state-of-art models, methods, theory and approaches for continuous spa-
tial processes. The focus is just on spatial processes (rather than spatial-temporal processes;
there is Part V for that). In Part II, we start with some theoretical background for continuous-
parameter stochastic processes. Then, we introduce geostatistical modeling and inference,
likelihood-based approaches for spatial data, spectral methods, asymptotic results relevant
for the modeling and inference of spatial data, hierarchical modeling (with a case study),
and spatial design (with a case study). Last, we review the methods, models and approaches
for nonstationarity, and also present nonparametric methods for spatial data. Some of the
chapters within this part introduce the topic in the context of a very well-developed appli-
cation.
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2.1 Spatial Stochastic Processes

In this chapter, we consider probability models for a spatial variable that varies over a
continuous domain of interest, D ⊆ R

d , where the spatial dimension is typically d = 2 or
d = 3. Our approach relies on the notion of a spatial stochastic process {Y(s) : s ∈ D ⊆ R

d},
in the sense that

Y(s) = Y(s, ω) (2.1)

spatial location chance
s ∈ D ⊆ R

d ω ∈ Ω

is a collection of random variables with a well-defined joint distribution. At any single
spatial location s ∈ D, we think of Y(s) as a random variable that can more fully be written
as Y(s; ω), where the elementary event ω lies in some abstract sample space, Ω . If we restrict
attention to any fixed, finite set of spatial locations {s1, . . . , sn} ⊂ D, then

(Y(s1), . . . , Y(sn))T (2.2)

is a random vector, whose multivariate distribution reflects the spatial dependencies in the
variable of interest. Each component corresponds to a spatial site. Conversely, if we fix any
elementary event ω ∈ Ω , then

{Y(s, ω) : s ∈ D ⊆ R
d} and (y1, . . . , yn)T = (Y(s1, ω), . . . , Y(sn, ω))T

are realizations of the spatial stochastic process (2.1) and the induced random vector (2.2),
respectively. The observed data are considered but one such realization. A generalization

17
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18 Handbook of Spatial Statistics

to be discussed in Chapter 28 is that of a multivariate spatial stochastic process, for which
Y(s) is a random vector rather than just a random variable.

In applications, the sample space remains abstract, and the dependency on elementary
events is suppressed in the notation. However, it is important to ensure a valid mathemati-
cal specification of the spatial stochastic process. Specifically, the distribution of the process
{Y(s) : s ∈ D ⊆ R

d} is given by the associated collection of the finite-dimensional joint
distributions

F (y1, . . . , yn; s1, . . . , sn) = P(Y(s1) ≤ y1, . . . , Y(sn) ≤ yn) (2.3)

of the random vector (2.2) for every n and every collection s1, . . . , sn of sites in D. The cele-
brated Kolmogorov existence theorem states that the stochastic process model is valid if the
family of the finite-dimensional joint distributions is consistent under reordering of the sites
and marginalization. Intuitively, this is unsurprising; however, the details are cumbersome
and we refer to Billingsley (1986) for a technical exposition.

An important special case is that of a Gaussian process where the finite-dimensional dis-
tributions (2.3) are multivariate normal and, therefore, characterized by their mean vectors
and covariance matrices. In this particular case, the consistency conditions of the Kol-
mogorov existence theorem reduce to the usual requirement that covariance matrices are
nonnegative definite. The case of non-Gaussian spatial stochastic processes is considerably
more complex, and we refer the reader to Chapter 11.

2.2 Stationary and Intrinsically Stationary Processes

A spatial stochastic process is called strictly stationary if the finite dimensional joint distri-
butions are invariant under spatial shifts. Essentially, this means that for all vectors h ∈ R

d

we have
F (y1, . . . , yn; s1 + h, . . . , sn + h) = F (y1, . . . , yn; s1, . . . , sn).

In the case of a Gaussian process {Y(s) : s ∈ R
d}, where the finite dimensional distributions

are determined by their second-order properties, we get, in particular, that

E(Y(s)) = E(Y(s + h)) = μ

and
Cov(Y(s), Y(s + h)) = Cov(Y(0), Y(h)) = C(h),

where the function C(h), h ∈ R
d , is called the covariance function. A process, be it Gaussian or

not, which satisfies these two conditions is called weakly stationary or second-order stationary.
It follows that a Gaussian process, which is second-order stationary, is also strictly stationary.
This is a very special property that depends critically on the Gaussian assumption.

Matheron (1971) proposed the use of the semivariogram or variogram, γ , which he de-
fined as

γ (h) = 1
2

var(Y(s + h) − Y(s)),

as an alternative to the covariance function. Elementary calculations show that if Y is a
second-order stationary spatial stochastic process with covariance function C(h), then

γ (h) = C(0) − C(h).
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The variogram can be used in some cases where a covariance function does not exist.
More generally, Matheron (1973) introduced the class of the intrinsically stationary pro-
cesses, which are such that certain spatial increments are second-order stationary, so that
a generalized covariance function can be defined. For details, we refer to Chapter 11, Cressie
(1993, Sec. 5.4), and Chilès and Delfiner (1999, Chap. 4).

Classical Brownian motion in one dimension provides an example of a Gaussian process
that is intrinsically stationary, but not stationary. This process has variogram γ (h) = |h|, sta-
tionary and independent increments, and continuous sample paths. Interesting generaliza-
tions include Brownian motion and the Brownian sheet on spatial domains (Khoshnevisan,
2002). The Brownian motion process in one dimension allows for a series expansion in terms
of a certain orthonormal system, which is often referred to as the reproducing kernel Hilbert
space for the nonstationary Brownian motion covariance, Cov(Y(s), Y(t)) = min(s, t) for
s, t > 0. The coefficients in the expansion are independent, identically distributed, Gaus-
sian random variables. This representation is commonly called a Karhunen–Loève expansion
and relates closely to the Fourier representation discussed in Chapter 5. It can be general-
ized to much broader classes of spatial processes, under regularity conditions that generally
correspond to the continuity of sample paths. See Breiman (1968, Chap. 12.7) and Wahba
(1990) for details.

2.3 Nugget Effect

The classical geostatistical model of Chapter 3 decomposes a spatial stochastic process as

Y(s) = μ(s) + η(s) + ε(s)

where μ(s) = E(Y(s)), the mean function, is deterministic and smooth, the process η(s)
has mean zero and continuous realizations, ε(s) is a field of spatially uncorrelated mean
zero errors, and the processes η and ε are independent. The error process ε has covariance
function

Cov(ε(s), ε(s + h)) =
{

σ 2 ≥ 0, h = 0,
0, h �= 0, (2.4)

and is often referred to as a nugget effect. The nugget effect describes the observational error in
(potentially) repeated measurements at any single site, or to microscale variability, occurring
at such small scales that is cannot be distinguished from the effect of measurement error.
The terminology stems from mining applications, where the occurrence of gold nuggets
shows substantial microscale variability. Figure 2.1 shows a realization from a second-order
stationary spatial stochastic process in the Euclidean plane with and without a nugget
component. Without the nugget effect, the sample path is smooth; with the nugget effect,
it is irregular and nondifferentiable.

In the following, we restrict our attention to the continuous part, η(s), and to second-order
stationary processes. Hence, from now on we consider spatial stochastic processes, which
admit a continuous covariance function. The nugget effect (2.4) is the only discontinuous
covariance function of practical interest (Gneiting, Sasvári and Schlather, 2001).
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FIGURE 2.1
Realizations of a planar Gaussian process with isotropic Matérn covariance function (2.13) with smoothness
parameter ν = 3

2 and scale parameter θ = 1, without (left) and with a (very small) nugget effect (right). The
sample paths were generated using the R package RANDOMFIELDS (Schlather, 2001).

2.4 Bochner’s Theorem

Suppose that {Y(s) : s ∈ R
d} is a second-order stationary spatial stochastic process with

covariance function C . Given any finite set of spatial locations s1, . . . , sn ∈ R
d , the covariance

matrix of the finite dimensional joint distribution (2.3) is⎛
⎜⎜⎜⎜⎝

C(0) C(s1 − s2) · · · C(s1 − sn)
C(s2 − s1) C(0) · · · C(s2 − sn)

...
...

. . .
...

C(sn − s1) C(sn − s2) · · · C(0)

⎞
⎟⎟⎟⎟⎠, (2.5)

which needs to be a valid (that is, a nonnegative definite) covariance matrix. Another way
of expressing this fact is to state that the covariance function is positive definite.∗ Conversely,
given any positive definite function C that generates valid covariance matrices via (2.5)
there exists a spatial Gaussian process with covariance function C .

By a classical theorem of Bochner (1933, 1955), a real-valued continuous function C is
positive definite if and only if it is the Fourier transform of a symmetric, nonnegative
measure F on R

d , that is, if and only if

C(h) =
∫

R
d

exp(i hTx) dF (x) =
∫

R
d

cos(hTx) dF (x). (2.6)

We refer to (2.6) as the spectral representation of the covariance function. In particular, any
real-valued characteristic function can serve as a valid correlation function. In most cases
of practical interest, the spectral measure, F , has a Lebesgue density, f , called the spectral
density, so that

C(h) =
∫

R
d

exp(i hTx) f (x) dx =
∫

R
d

cos(hTx) f (x) dx. (2.7)

∗ A function C on R
d is positive definite if the matrix (2.5) is nonnegative definite for all finite collections of sites

s1, . . . , sn ∈ R
d . It is strictly positive definite if the matrix (2.5) is positive definite for all collections of distinct sites

s1, . . . , sn ∈ R
d . The terminology used here, which differs for matrices and functions, stems from an unfortunate,

yet well established, tradition in the literature.
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If the covariance function, C , is integrable over R
d , the spectral density and the covariance

are related via the standard Fourier inversion formula,

f (x) = 1
(2π )d

∫
R

d
cos(hTx) C(h) dh.

Chapter 5 provides a much more detailed discussion of spectral representations for stochas-
tic processes and spectral methods in spatial statistics. Spectral densities also play a critical
role in asymptotic theory for inference in spatial Gaussian processes (see Chapter 6 and
Stein (1999)).

2.5 Isotropic Covariance Functions

A particular case of second-order stationary processes is when the covariance function,
C(h), depends on the spatial separation vector, h, only through its Euclidean length, ‖h‖. We
then call both the process and the covariance function isotropic. Note that the isocovariance
curves for an isotropic process are circles or spheres around the point with which we are
computing the covariance. A slight extension is that to geometrically anisotropic processes for
which the isocovariance curves are ellipsoids rather than circles or spheres. See Chapter 3 for
details. In applications, the isotropy assumption is frequently violated; however, isotropic
processes remain fundamental, in that they form the basic building blocks of more complex,
anisotropic and nonstationary spatial stochastic process models. Guan, Sherman and Calvin
(2004) and Fuentes (2005), among others, propose tests for stationarity and isotropy in
spatial data.

Without loss of generality, we may assume a standardized process, so that the covariance
function satisfies C(0) = 1. For an isotropic covariance, we can then write

C(h) = ϕ(‖h‖), h ∈ R
d , (2.8)

for some continuous function ϕ : [0, ∞) → R with ϕ(0) = 1. Let Φd denote the class of
the continuous functions ϕ that generate a valid isotropic covariance function in R

d via the
relationship (2.8). It is then obvious that

Φ1 ⊇ Φ2 ⊇ · · · and Φd ↓ Φ∞ = ⋂
d≥1 Φd ,

because we can restrict an isotropic process in R
d to any lower-dimensional subspace.

However, an element of the class Φd need not belong to Φd ′ if d ′ > d. Armstrong and Jabin
(1981) give a simple, striking example, in that an isotropic, triangular-shaped correlation
function is valid in one dimension, but not in higher dimensions. The members of the class
Φ∞ are valid in all dimensions.

Schoenberg (1938) studied Bochner’s representation in the special case of an isotropic or
spherically symmetric function. He showed that a function ϕ : [0, ∞) → R belongs to the
class Φd if and only if it is of the form

ϕ(t) =
∫

[0,∞)
Ωd (rt) dF0(r ), (2.9)

where F0 is a probability measure on the positive half-axis, often referred to as the radial
spectral measure, and

Ωd (t) = Γ (d/2)
(

2
t

)(d−2)/2

J (d−2)/2(t), (2.10)
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TABLE 2.1

Generator Ωd of the Class Φd
Dimension d 1 2 3 · · · ∞
Ωd (t) cos t J0(t) t−1 sin t · · · exp(−t2)

Lower bound for Ωd (t) −1 −0.403 −0.218 · · · 0

where Γ is Euler’s gamma function and J is a Bessel function. In other words, the members
of the class Φd are scale mixtures of a generator, Ωd , and as such they have lower bound
inft≥0 Ωd (t). Table 2.1 and Figure 2.2 provide closed-form expressions, numerical values for
the bound, and a graphical illustration. For example, in dimension d = 2, the generator is
Ω2(t) = J0(t) and the lower bound is inft≥0 J0(t) = −0.403.

In most cases of practical interest, the radial spectral measure, F0, is absolutely contin-
uous with radial spectral density, f0, which relates to the spectral density, f , in Bochner’s
representation (2.7) through the relationship

f0(‖x‖) = 2
πd/2

Γ (d/2)
‖x‖d−1 f (x), x ∈ R

d .

Matheron (1965, 1973) and Gneiting (2002) describe operators, such as the turning bands
operator, the descente and the montée, that build on spectral representations to map elements
of the class Φd to some other class Φd ′ .

Schoenberg (1938) furthermore showed that a function ϕ : [0, ∞) → R belongs to the
class Φ∞ if and only if it is of the form

ϕ(t) =
∫

[0,∞)
exp(−r2t2) dF (r ), (2.11)

where F is a probability measure on [0, ∞). One way of seeing this is by noting that
limd→∞ Ωd ((2d)1/2 t) = exp(−t2) uniformly in t ≥ 0. The members of the class Φ∞ therefore
are scale mixtures of a squared exponential generator, Ω∞(t) = exp(−t2). In particular, they
are strictly positive and strictly decreasing functions, and have infinitely many derivatives
away from the origin.
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FIGURE 2.2
Generator Ωd of the class Φd .
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In general, it can be difficult to check whether or not a function ϕ belongs to the class
Φd and generates a valid isotropic covariance function. Hence, it is advisable to work
with a parametric family that is known to be valid. From these known examples, many
others can be constructed because sums, convex mixtures, products, and convolutions of
valid covariance functions remain valid, whether or not the components are isotropic. In
dimension d = 1, Pólya’s criterion gives a simple sufficient condition: If ϕ is continuous
and convex with ϕ(0) = 1 and limt→∞ ϕ(t) = 0, then ϕ ∈ Φ1. For example, the criterion
applies if ϕ(t) = exp(−t) or ϕ(t) = (1 + t)−1. Gneiting (2001) describes similar criteria in
dimension d ≥ 2.

2.6 Smoothness Properties

A spatial stochastic process {Y(s) : s ∈ D ⊆ R
d} is called mean square continuous if E(Y(s) −

Y(s + h))2 → 0 as ‖h‖ → 0. For a second-order stationary process,

E(Y(s) − Y(s + h))2 = 2(C(0) − C(h)),

and, thus, mean square continuity is equivalent to the covariance function being continuous
at the origin (and therefore everywhere). However, a process that is mean square continuous
need not have continuous sample paths and vice versa (Banerjee and Gelfand, 2003). Adler
(1981, Sec. 3.4) gives a covariance condition that guarantees the existence of a version with
continuous sample paths for a stationary Gaussian process, and Kent (1989) has similar
criteria that apply to any, Gaussian or non-Gaussian, stationary random field.

Turning now to isotropic processes, the properties of the memberϕ of the classΦd translate
into properties of the associated Gaussian spatial process on R

d (Cramér and Leadbetter,
1967; Adler, 1981; Banerjee and Gelfand, 2003). In particular, the behavior of ϕ(t) at the
origin determines the smoothness of the sample paths, which is of great importance in
spatial prediction problems (Stein, 1999). Specifically, suppose that there exists an α ∈ (0, 2]
such that

1 − ϕ(t) ∼ tα as t ↓ 0, (2.12)

then the realizations of the associated Gaussian spatial process have fractal or Hausdorff
dimension D = d + 1 − α

2 . The larger α, the smaller the dimension D, and the smoother the
realizations. If α = 2, then the symmetrically continued function c(u) = ϕ(|u|), u ∈ R, is at
least twice differentiable and the following holds for all positive integers m: The function
c(u) is 2m times differentiable at the origin if and only if the sample, paths of the associated
Gaussian spatial process admit m derivatives. For instance, Figure 2.3 shows sample paths
of Gaussian stochastic processes where ϕ(t) = exp(−t) and ϕ(t) = (1 + t) exp(−t), that is,
with the Matérn covariance (2.13) with smoothness parameter ν = 1

2 and ν = 3
2 . In the

former case, α = 1, so the realization is not differentiable; in the latter α = 2 and the sample
path admits m = 1 derivative. Note that these are properties of the stochastic process model;
when plotting sample paths, visual appearance depends on the resolution, which needs to
be chosen judiciously.

2.7 Examples of Isotropic Covariance Functions

We now give examples of parametric families within the class Φd that generate valid
isotropic covariance functions via the relationship (2.8).
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FIGURE 2.3
Sample paths of the one-dimensional Gaussian process with Matérn correlation function (2.13) where θ = 1. The
smoothness parameter is ν = 1

2 (left) and ν = 3
2 (right). For both panels, the resolution on the horizontal axis is in

increments of 0.004.

The most popular and most often used family is the Matérn class (Matérn, 1960; Handcock
and Stein, 1993; Guttorp and Gneiting, 2006), for which

ϕ(t) = 21−ν

Γ (ν)

(
t
θ

)ν

Kν

(
t
θ

)
(ν > 0, θ > 0), (2.13)

where Kν is a modified Bessel function, and ν > 0 and θ > 0 are smoothness and scale pa-
rameters, respectively. The Matérn correlation function (2.13) admits the relationship (2.12)
where α = 2 min(ν, 1). The associated Gaussian sample paths are m times differentiable if
and only if m < ν, as illustrated in Figure 2.3.

The members of the Matérn family belong to the class Φ∞, so they are valid in all dimen-
sions d ≥ 1, with a spectral density function that is proportional to (θ2‖x‖2 + 1)−ν− d

2 . Some
special cases are noted in Table 2.2 and illustrated in Figure 2.4. If ν = 1

2 , we obtain the
exponential correlation function, ϕ(t) = exp(−t). The nugget effect (2.4) arises in the limit
as ν → 0. The squared exponential correlation function, ϕ(t) = exp(−t2), is also a limiting
member, arising in the limit as ν → ∞ with the scale parameter set at θ = 1/(2

√
ν).

Whittle (1954, 1963) studied the stochastic fractional differential equation

(
∂2

∂s2
1

+ · · · + ∂2

∂s2
d

− 1
θ2

)(2ν+d)/4

Y(s) = ε(s),

TABLE 2.2

Special Cases of the Matérn Correlation
Function (2.13) with Scale Parameter θ = 1
Parameter Correlation Function

ν = 1
2 ϕ(t) = exp(−t)

ν = 1 ϕ(t) = t K1(t)

ν = 3
2 ϕ(t) = (1 + t) exp(−t)

ν = 5
2 ϕ(t) = (1 + t + t2

3 ) exp(−t)
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FIGURE 2.4
Special cases of the Matérn correlation function (2.13) with scale parameter θ = 1.

where s = (s1, . . . , sd )′ and ε is a spatial white noise process. Essentially, the latter is a
Gaussian process such that integrals of it become a spatial Brownian motion. Whittle (1963)
showed that the solution to the stochastic differential equation is a Gaussian process with
isotropic Matérn correlation function of the form (2.13). This construction can be thought
of as an analog of the autoregressive moving average (ARMA) approach to time series
modeling (Box and Jenkins, 1970) in continuous space. For a similar approach to lattice
processes, see Chapter 13.

Another important class of correlation functions is the powered exponential family, which
was employed by Diggle, Tawn and Moyeed (1998), among others. Its members are of the
form

ϕ(t) = exp
(

−
(

t
θ

)α )
(0 < α ≤ 2, θ > 0), (2.14)

belong to the class Φ∞, and admit the relationship (2.12).† Hence, the smoothness parameter
α ∈ (0, 2] determines the fractal dimension of the Gaussian sample paths, while θ > 0 is a
scale parameter. However, the sample paths are either infinitely differentiable (when α = 2)
or not differentiable at all (when α < 2), so the powered exponential family provides a less
flexible parametrization than the Matérn class. The exponential correlation function arises
when α = 1.

Gneiting and Schlather (2004) introduced the Cauchy family, whose members are of the
form

ϕ(t) =
(

1 +
(

t
θ

)α )−β/α

(0 < α ≤ 2, β > 0, θ > 0) (2.15)

and belong to the class Φ∞. The smoothness parameter α ∈ (0, 2] and the scale parameter
θ > 0 are interpreted in the same way as for the exponential power family. However, there
is an additional long-memory parameter, β > 0, that determines the asymptotic power law,
ϕ(t) ∼ t−β , with which the correlation decays as t → ∞. The smaller the β, the stronger the
long-range dependence (Beran, 1994). Long-memory dependence is unlikely to be relevant
in spatial interpolation, but can be of critical importance in problems of estimation and
inference for spatial data (Whittle, 1962; Haslett and Raftery, 1989).

† If α > 2, the powered exponential model (2.14) does not belong to any of the classes Φd . Similarly, if α > 2 the
Cauchy model (2.15) does not belong to any of the classes Φd .
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The Matérn, powered exponential and Cauchy families belong to the class Φ∞, that is,
they generate valid isotropic covariance functions in all spatial dimensions. Consequently,
they admit the representation (2.11) and so they are strictly positive and strictly decreasing.

In applications, these assumptions might be too restrictive. For example, moderate neg-
ative correlations are occasionally observed and referred to as a hole effect. Figure 2.2 shows
that the generator Ωd of the class Φd exhibits this type of behavior. Another option is to fit
an exponentially damped cosine function,

ϕ(t) = exp
(
− τ

t
θ

)
cos

(
t
θ

) (
τ ≥ 1

tan π
2d

, θ > 0
)

, (2.16)

where the restriction on the decay parameter, τ , is necessary and sufficient for membership
in the class Φd (Zastavnyi, 1993).

Covariance functions with compact support allow for computationally efficient estima-
tion, prediction, and simulation (Gneiting, 2002; Furrer, Genton and Nychka, 2006). The
most popular, compactly supported model is the spherical correlation function with scale
parameter θ > 0, for which

ϕ(t) = 1 − 3
2

t
θ

+ 1
2

(
t
θ

)3

(2.17)

if t < θ and ϕ(t) = 0 otherwise. This function belongs to the class Φd if d ≤ 3, but is not valid
in higher dimensions. Many other models with compact support are available (Gneiting,
2002). For example, the compactly supported function

ϕ(t) =
(

1 + 80
47

t
θ

+ 2500
2209

t2

θ2 + 32000
103823

t3

θ3

) (
1 − 10

47
t
θ

)8

(2.18)

if t < 47
10 θ and ϕ(t) = 0 otherwise, where θ > 0 is a scale parameter, is valid in dimension

d ≤ 3, is smooth, and approximates the squared exponential correlation function, in that
supt≥0 |ϕ(t) − exp(−t2/(2θ2))| = 0.0056.

2.8 Prediction Theory for Second-Order Stationary Processes

The most common problem in spatial statistics is to predict, or interpolate, the value of
the process at a location s ∈ R

d where no observation has been made. If we want to do
least squares prediction, that is, if we wish to minimize the expected squared prediction
error, it is well known (Ferguson, 1967) that the optimal predictor Ŷ(s) is the conditional
expectation given the observations, that is,

Ŷ(s) = E (Y(s) |Y(s1) = y1, . . . , Y(sn) = yn). (2.19)

Generally speaking, this predictor is difficult to evaluate in closed form. However, the
Gaussian case is an exception, for if

(
U
V

)
∼ N

((
μU

μV

)
,

(
ΣUU ΣUV

ΣVU ΣVV

))
,

then the conditional distribution of V given U is normal,

(V|U) ∼ N
(
μV + ΣVUΣ−1

UU(U − μU), ΣVV − ΣVUΣ−1
UUΣUV

)
. (2.20)
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Let V = Y(s), and let U = (Y(s1), . . . , Y(sn))T denote the observed data. Assuming that
we have a second-order stationary process with mean μ and covariance function C , so that
μU = μ1T ∈ R

n, μV = μ, ΣUU = [C(si − s j )]n
i, j=1 ∈ R

n×n, ΣUV = [C(s − si )]n
i=1 ∈ R

n and
ΣVV = C(0), Equation (2.19) and Equation (2.20) give

Ŷ(s) = μ + (C(s − s1), . . . , C(s − sn))[C(si − s j )]−1

⎛
⎜⎝

Y(s1) − μ
...

Y(sn) − μ

⎞
⎟⎠. (2.21)

We see that for a Gaussian process with a known mean and a known covariance function
the conditional expectation is linear in the observed data. Moreover, the ordinary kriging
predictor defined by (2.21) is the best linear predictor in the least squares sense even when
the process is not necessarily Gaussian (Whittle, 1963, Chap. 5; Ripley, 1981, Sec. 4.4). If
one estimates the covariance, the predictor is no longer linear and, thus, not optimal. For
additional discussion, see Chapter 3.

By elementary matrix manipulations, the ordinary kriging predictor (2.21) can be rewrit-
ten in dual kriging form, that is,

Ŷ(s) = μ + (Y(s1) − μ, . . . , Y(sn) − μ)
[
C(si − s j )

]−1

⎛
⎜⎝

C(s − s1)
...

C(s − sn)

⎞
⎟⎠. (2.22)

From this we see that, when viewed as a function of s ∈ R
d , the ordinary kriging predictor

is a linear combination of a constant and terms of the form wi C(s − si ), where the coeffi-
cients, wi , depend on the observed data and the (known) second-order structure, akin to
interpolation with radial basis functions (Wendland, 2005; Fasshauer, 2007). In other words,
the predicted surface interpolates the observations (unless there is a nugget effect) and in-
herits its appearance from the covariance function, in that locally, in the neighborhood of
an observation site, si , it behaves like the covariance function at the origin.

It is important to note that the kriging predictor may no longer be optimal if we aban-
don the quadratic loss function that underlies least squares prediction. Under other loss
functions, such as linear or piecewise linear loss, other predictors might be optimal. For
example, the conditional median is optimal if we wish to minimize the expected absolute
error, rather than the expected squared error (Ferguson, 1967), a distinction that can become
important in non-Gaussian settings.

References

Adler, R.J. (1981). The Geometry of Random Fields, Chichester, U.K.: John Wiley & Sons.
Armstrong, M. and Jabin, R. (1981). Variogram models must be positive definite. Mathematical Geology

13, 455–459.
Banerjee, S. and Gelfand, A.E. (2003). On smoothness properties of spatial processes. Journal of Mul-

tivariate Analysis 84, 85–100.
Beran, J. (1994). Statistics for Long-Memory Processes, London: Chapman & Hall.
Billingsley, P. (1986). Probability and Measure, 2nd ed., Hoboken, NJ: John Wiley & Sons.
Bochner, S. (1933). Monotone Funktionen, Stieltjessche Integrale und Harmonische Analyse. Mathe-

matische Annalen 108, 378–410.
Bochner, S. (1955). Harmonic Analysis and the Theory of Probability, Berkeley, CA: University of California

Press.

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 11:23 C7287 C7287˙C002

28 Handbook of Spatial Statistics

Box, G.E.P. and Jenkins, G.M. (1970). Time Series Analysis: Forecasting and Control, San Francisco:
Holden-Day.

Breiman, L. (1968). Probability, Reading, MA: Addison-Wesley.
Chilès, J.P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty, New York: John Wiley &

Sons.
Cramér, H. and Leadbetter, M.R. (1967). Stationary and Related Random Processes, New York: John Wiley

& Sons.
Cressie, N.A.C. (1993). Statistics for Spatial Data, revised ed., New York: John Wiley & Sons.
Diggle, P.J., Tawn, J.A. and Moyeed, R.A. (1998). Model-based geostatistics (with discussion), Applied

Statistics 47, 299–350.
Fasshauer, G.E. (2007). Meshfree Approximation Methods with MATLAB, Singapore: World Scientific.
Ferguson, T.S. (1967). Mathematical Statistics: A Decision Theoretic Approach, New York: Academic Press.
Fuentes, M. (2005). A formal test for nonstationarity of spatial stochastic processes, Journal of Multi-

variate Analysis 96, 30–54.
Furrer, R., Genton, M.G. and Nychka, D. (2006). Covariance tapering for interpolation of large spatial

datasets, Journal of Computational and Graphical Statistics 15, 502–523.
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3.1 Overview

Suppose that a spatially distributed variable is of interest, which in theory is defined at every
point over a bounded study region of interest, D ⊂ Rd , where d = 2 or 3. We suppose further
that this variable has been observed (possibly with error) at each of n distinct points in D, and
that from these observations we wish to make inferences about the process that governs
how this variable is distributed spatially and about values of the variable at locations
where it was not observed. The geostatistical approach for achieving these objectives is to
assume that the observed data are a sample (at the n data locations) of one realization of
a continuously indexed spatial stochastic process (random field) Y(·) ≡ {Y(s) : s ∈ D}.
Chapter 2 reviewed some probabilistic theory for such processes. In this chapter, we are
concerned with how to use the sampled realization to make statistical inferences about the
process. In particular, we discuss a body of spatial statistical methodology that has come to
be known as “classical geostatistics.” Classical geostatistical methods focus on estimating
the first-order (large-scale or global trend) structure and especially the second-order (small-
scale or local) structure of Y(·), and on predicting or interpolating (kriging) values of Y(·)
at unsampled locations using linear combinations of the observations and evaluating the
performance of these predictions by their (unconditional) mean squared errors. However,
if the process Y is sufficiently non-Gaussian, methods based on considering just the first
two moments of Y may be misleading. Furthermore, some common practices in classical
geostatistics are problematic even for Gaussian processes, as we shall note herein.

Because good prediction of Y(·) at unsampled locations requires that we have at our dis-
posal estimates of the structure of the process, the estimation components of a geostatistical
analysis necessarily precede the prediction component. It is not clear, however, which struc-
ture, first-order or second-order, should be estimated first. In fact, an inherent circularity
exists—to properly estimate either structure, it appears we must know the other. We note
that likelihood-based methods (see Chapter 4) quite neatly avoid this circularity problem,
although they generally require a fully specified joint distribution and a parametric model

29

© 2010 by Taylor and Francis Group, LLC



P1: Naresh Chandra
January 19, 2010 12:6 C7287 C7287˙C003

30 Handbook of Spatial Statistics

for the covariance structure (however, see Im, Stein, and Zhu, 2007). The classical solution
to this problem is to provisionally estimate the first-order structure by a method that ig-
nores the second-order structure. Next, use the residuals from the provisional first-order fit
to estimate the second-order structure, and then finally reestimate the first-order structure
by a method that accounts for the second-order structure. This chapter considers each of
these stages of a classical geostatistical analysis in turn, plus the kriging stage. We begin,
however, with a description of the geostatistical model upon which all of these analyses
are based.

3.2 Geostatistical Model

Because only one realization of Y(·) is available, and the observed data are merely an
incomplete sample from that single realization, considerable structure must be imposed
upon the process for inference to be possible. The classical geostatistical model imposes
structure by specifying that

Y(s) = μ(s) + e(s), (3.1)

where μ(s) ≡ E[Y(s)], the mean function, is assumed to be deterministic and continuous,
and e(·) ≡ {e(s) : s ∈ D} is a zero-mean random “error” process satisfying a stationarity as-
sumption. One common stationarity assumption is that of second-order stationarity, which
specifies that

Cov[e(s), e(t)] = C(s − t), for all s, t ∈ D. (3.2)

In other words, this asserts that the covariance between values of Y(·) at any two locations
depends on only their relative locations or, equivalently, on their spatial lag vector. The func-
tion C(·) defined in (3.2) is called the covariance function. Observe that nothing is assumed
about higher-order moments of e(·) or about its joint distribution. Intrinsic stationarity,
another popular stationary assumption, specifies that

1
2

var[e(s) − e(t)] = γ (s − t), for all s, t ∈ D. (3.3)

The function γ (·) defined by (3.3) is called the semivariogram (and the quantity 2γ (·)
is known as the variogram). A second-order stationary random process with covariance
function C(·) is intrinsically stationary, with semivariogram given by

γ (h) = C(0) − C(h), (3.4)

but the converse is not true in general. In fact, intrinsically stationary processes exist for
which var[Y(s)] is not even finite at any s ∈ D. An even weaker stationarity assumption
is that satisfied by an intrinsic random field of order k (IRF-k), which postulates that cer-
tain linear combinations of the observations known as kth-order generalized increments
have mean zero and a (generalized) covariance function that depends only on the spatial
lag vector. IRF-ks were introduced in Chapter 2, to which we refer the reader for more
details.

Model (3.1) purports to account for large-scale spatial variation (trend) through the mean
function μ(·), and for small-scale spatial variation (spatial dependence) through the process
e(·). In practice, however, it is usually not possible to unambiguously identify and separate
these two components using the available data. Quoting from Cressie (1991, p. 114), “One
person’s deterministic mean structure may be another person’s correlated error structure.”
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Consequently, the analyst will have to settle for a plausible, but admittedly nonunique,
decomposition of spatial variation into large-scale and small-scale components.

In addition to capturing the small-scale spatial variation, the error process e(·) in (3.1)
accounts for measurement error that may occur in the data collection process. This mea-
surement error component typically has no spatial structure; hence, for some purposes it
may be desirable to explicitly separate it from the spatially dependent component. That is,
we may write

e(s) = η(s) + ε(s), (3.5)

where η(·) is the spatially dependent component and ε(·) is the measurement error. Such a
decomposition is discussed in more detail in Section 3.5.

The stationarity assumptions introduced above specify that the covariance or semivar-
iogram depends on locations s and t only through their lag vector h = s − t. A stronger
property, not needed for making inference from a single sampled realization but important
nonetheless, is that of isotropy. Here we describe just intrinsic isotropy (and anisotropy);
second-order isotropy differs only by imposing an analogous condition on the covariance
function rather than the semivariogram. An intrinsically stationary random process with
semivariogram γ (·) is said to be (intrinsically) isotropic if γ (h) = γ (h), where h = (h′h)1/2;
that is, the semivariogram is a function of the locations only through the (Euclidean) dis-
tance between them. If the process is not isotropic, it is said to be anisotropic. Perhaps the
most tractable form of anisotropy is geometric anisotropy, for which γ (h) = γ ((h′Ah)1/2)
where A is a positive definite matrix. Isotropy can be regarded as a special case of geomet-
ric anisotropy in which A is an identity matrix. Contours along which the semivariogram
is constant (so-called isocorrelation contours when Y(·) is second-order stationary) are d-
dimensional spheres in the case of isotropy and d-dimensional ellipsoids in the more general
case of geometric anisotropy.

The objectives of a geostatistical analysis, which were noted in general terms in Section 3.1,
can now be expressed more specifically in terms of model (3.1). Characterization of the
spatial structure is tantamount to the estimation ofμ(·) and either C(·) or γ (·). The prediction
objective can be reexpressed as seeking to predict the value of Y(s0) = μ(s0) + e(s0) at an
arbitrary site s0.

3.3 Provisional Estimation of the Mean Function

The first stage of a classical geostatistical analysis is to specify a parametric model, μ(s;β),
for the mean function of the spatial process, and then provisionally estimate this model by
a method that requires no knowledge of the second-order dependence structure of Y(·).
The most commonly used parametric mean model is a linear function, given by

μ(s;β) = X(s)Tβ, (3.6)

where X(s) is a vector of covariates (explanatory variables) observed at s, and β is an
unrestricted parameter vector. Alternative choices include nonlinear mean functions, such
as sines/cosines (with unknown phase, amplitude, and period) or even semiparametric or
nonparametric (locally smooth) mean functions, but these appear to be used very rarely.

One possible approach to spatial interpolation is to place all of the continuous variation
of the process into the mean function, i.e., assume that the observations equal a true but
unknown continuous mean function plus independent and identically distributed errors,
and use nonparametric regression methods, such as kernel smoothers, local polynomials, or
splines. Although nonparametric regression methods provide a viable approach to spatial

© 2010 by Taylor and Francis Group, LLC



P1: Naresh Chandra
January 19, 2010 12:6 C7287 C7287˙C003

32 Handbook of Spatial Statistics

interpolation, we prefer for the following reasons the geostatistical approach when s refers
to a location in physical space. First, the geostatistical approach allows us to take advantage
of properties, such as stationarity and isotropy, that do not usually arise in nonparametric
regression. Second, the geostatistical approach naturally generates uncertainty estimates
for interpolated values even when the underlying process is continuous and is observed
with little or no measurement error. Uncertainty estimation is problematic with nonpara-
metric regression methods, especially if the standard deviation of the error term is not large
compared to the changes in the underlying function between neighboring observations. It
should be pointed out that smoothing splines, which can be used for nonparametric regres-
sion, yield spatial interpolants that can be interpreted as kriging predictors (Wahba, 1990).
The main difference, then, between smoothing splines and kriging is in how one goes about
estimating the degree of smoothing and in how one provides uncertainty estimates for the
interpolants.

The covariates associated with a point s invariably include an overall intercept term, equal
to one for all data locations. Note that if this is the only covariate and the error process
e(·) in (3.1) is second-order (or intrinsically) stationary, then Y(·) itself is second-order
(or intrinsically) stationary. The covariates may also include the geographic coordinates
(e.g., latitude and longitude) of s, mathematical functions (such as polynomials) of those
coordinates, and attribute variables. For example, in modeling the mean structure of April
1 snow water equivalent (a measure of how much water is contained in the snowpack)
over the western United States in a given year, one might consider, in addition to an overall
intercept, latitude and longitude, such covariates as elevation, slope, aspect, average wind
speed, etc., to the extent that data on these attribute variables are available. If data on
potentially useful attribute variables are not readily available, the mean function often
is taken to be a polynomial function of the geographic coordinates only. Such models are
called trend surface models. For example, the first-order (planar) and second-order (quadratic)
polynomial trend surface models for the mean of a two-dimensional process are respectively
as follows, where s = (s1, s2):

μ(s;β) = β0 + β1s1 + β2s2,

μ(s;β) = β0 + β1s1 + β2s2 + β11s2
1 + β12s1s2 + β22s2

2 .

Using a “full” q th-order polynomial, i.e., a polynomial that includes all pure and mixed
monomials of degree ≤ q , is recommended because this will ensure that the fitted surface
is invariant to the choice of origin and orientation of the (Euclidean) coordinate system.

It is worth noting that realizations of a process with constant mean, but strong spatial
correlation, frequently appear to have trends; therefore, it is generally recommended that
one refrain from using trend surfaces that cannot be justified apart from examining the
data.

The standard method for fitting a provisional linear mean function to geostatistical data
is ordinary least squares (OLS). This method yields the OLS estimator β̂OL S of β, given by

β̂OL S = argmin
n∑

i=1

[Y(si ) − X(si )Tβ]2.

Equivalently, β̂OL S = (XT X)−1XT Y where X = [X(s1), X(s2), . . . , X(sn)]T and Y = [Y(s1),
Y(s2), . . . , Y(sn)]T , it being assumed without loss of generality that X has full column
rank. Fitted values and fitted residuals at data locations are given by Ŷ = XT β̂OL S and
ê = Y − Ŷ, respectively. The latter are passed to the second stage of the geostatisti-
cal analysis, to be described in the next section. While still at this first stage, however,
the results of the OLS fit should be evaluated and used to suggest possible alternative
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mean functions. For this purpose, the standard arsenal of multiple regression methodol-
ogy, such as transformations of the response, model selection, and outlier identification,
may be used, but in an exploratory rather than confirmatory fashion since the indepen-
dent errors assumption upon which this OLS methodology is based is likely not satisfied
by the data.

As a result of the wide availability of software for fitting linear regression models, OLS
fitting of a linear mean function to geostatistical data is straightforward. However, there
are some practical limitations worth noting, as well as some techniques/guidelines for
overcoming these limitations. First, and in particular for polynomial trend surface models,
the covariates can be highly multicollinear, which causes the OLS estimators to have large
variances. This is mainly a numerical problem, not a statistical one, unless the actual value
of the regression coefficients is of interest and it can be solved by centering the covariates
(i.e., subtracting their mean values) or, if needed, by orthogonalizing the terms in some
manner prior to fitting. Second, the fitted surface in portions of the spatial domain of
interest where no observations are taken may be distorted so as to better fit the observed
data. This problem is avoided, however, if the sampling design has good spatial coverage.
Finally, as with least squares estimation in any context, the OLS estimators are sensitive
to outliers and thus one may instead wish to fit the mean function using one of many
available general procedures for robust and resistant regression. If the data locations form
a (possibly partially incomplete) rectangular grid, one robust alternative to OLS estimation
is median polish (Cressie, 1986), which iteratively sweeps out row and column medians
from the observed data (and thus is implicitly based on an assumed row–column effects
model for the first-order structure). However, the notion of what constitutes an outlier can
be tricky with spatially dependent data, so robust methods should be used with care.

3.4 Nonparametric Estimation of the Semivariogram

The second stage of a geostatistical analysis is to estimate the second-order dependence
structure of the random process Y(·) from the residuals of the fitted provisional mean
function. To describe this in more detail, we assume that e(·) is intrinsically stationary, in
which case the semivariogram is the appropriate mode of description of the second-order
dependence. We also assume that d = 2, though extensions to d = 3 are straightforward.

Consider first a situation in which the data locations form a regular rectangular grid.

Let h1 =
(

h11
h12

)
, . . . , hk =

(
hk1
hk2

)
represent the distinct lags between data locations (in

units of the grid spacings), with displacement angles φu = tan−1(hu2/hu1) ∈ [0, π ) (u =
1, . . . , k). Attention may be restricted to only those lags with displacement angles in [0, π )
without any loss of information because γ (h) is an even function. For u = 1, . . . , k, let
N(hu) represent the number of times that lag hu occurs among the data locations. Then the
empirical semivariogram is defined as follows:

γ̂ (hu) = 1
2N(hu)

∑
si −s j =hu

{ê(si ) − ê(s j )}2 (u = 1, . . . , k),

where ê(si ) is the residual from the fitted provisional mean function at the ith data location
and is thus the ith element of the vector ê defined in the previous section. We call γ̂ (hu) the
uth ordinate of the empirical semivariogram. Observe that γ̂ (hu) is a method-of-moments
type of estimator of γ (hu). Under model (3.1) with constant mean, this estimator is unbiased;
if the mean is not constant in model (3.1), the estimator is biased as a consequence of
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FIGURE 3.1
A polar partition of the lag space.

estimating the mean structure, but the bias is not large in practice (provided that the mean
structure that is estimated is correctly specified).

When data locations are irregularly spaced, there is generally little to no replication of
lags among the data locations. To obtain quasireplication of lags, we first partition the lag
space H = {s − t: s, t ∈ D} into lag classes or “bins” H1, . . . , Hk , say, and assign each lag
with displacement angle in [0, π ) that occurs among the data locations to one of the bins.
Then, we use a similar estimator:

γ̂ (hu) = 1
2N(Hu)

∑
si −s j ∈Hu

{ê(si ) − ê(s j )}2 (u = 1, . . . , k). (3.7)

Here hu is a representative lag for the entire bin Hu, and N(Hu) is the number of lags that fall
into Hu. The bin representative, hu, is sometimes taken to be the centroid of Hu, but a much
better choice is the average of all the lags that fall into Hu. The most common partition of
the lag space is a “polar” partition, i.e., a partitioning into angle and distance classes, as
depicted in Figure 3.1. A polar partition naturally allows for the construction and plotting
of a directional empirical semivariogram, i.e., a set of empirical semivariogram ordinates
corresponding to the same angle class, but different distance classes, in each of several
directions. It also allows for lags to be combined over all angle classes to yield the ordinates
of an omnidirectional empirical semivariogram. The polar partition of the lag space is not
the only possible partition; however, some popular software for estimating semivariograms
use a rectangular partition instead.

Each empirical semivariogram ordinate in the case of irregularly spaced data locations is
approximately unbiased for its corresponding true semivariogram ordinate, as it is when
the data locations form a regular grid, but there is an additional level of approximation or
blurring in the irregularly spaced case due to the grouping of unequal lags into bins.

How many bins should be used to obtain the empirical semivariogram, and how large
should they be? Clearly, there is a trade-off involved: The more bins that are used, the smaller
they are and the better the lags in Hu are approximated by hu, but the fewer the number
of observed lags belonging to Hu (with the consequence that the sampling variation of the
empirical semivariogram ordinate corresponding to that lag is larger). One popular rule of
thumb is to require N(hu) to be at least 30 and to require the length of hu to be less than
half the maximum lag length among data locations. But, there may be many partitions that
meet these criteria, and so the empirical semivariogram is not actually uniquely defined
when data locations are irregularly spaced. Furthermore, as we shall see in the simulation
below, at lags that are a substantial fraction of the dimensions of the observation domain,
γ̂ (hu) may be highly variable even when N(hu) is much larger than 30. The problem is that
the various terms making up the sum in (3.7) are not independent and the dependence can
be particularly strong at larger lags.
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FIGURE 3.2
Empirical semivariograms of simulated data obtained via three R programs.

One undesirable feature of the empirical semivariogram is its sensitivity to outliers, a
consequence of each of its ordinates being a scaled sum of squares. An alternative and
more robust estimator, due to Cressie and Hawkins (1980), is

γ̄ (hu) =
{ 1

N(Hu)

∑
si −s j ∈Hu

|ê(si ) − ê(s j )|1/2}4

.914 + [.988/N(Hu)]
(u = 1, . . . , k).

As an example, let us consider empirical semivariograms obtained from three programs
available in R with all arguments left at their default values. Specifically, we simulate an
isotropic Gaussian process Y with constant mean and exponential semivariogram with
sill and range parameters equal to 1 on a 10 × 10 square grid with distance 1 between
neighboring observations. (See Section 3.5 for definitions of the exponential semivariogram
and its sill and range parameters.) Figure 3.2 shows the resulting empirical semivariograms
using the command variog from geoR, the command est.variogram from sgeostat,
and the command variogram from gstat. The first two programs do not automatically
impose an upper bound on the distance lags and we can see that the estimates of γ at the
longer lags are very poor in this instance, even though, for example, for est.variogram
from sgeostat, the estimate for the second longest lag (around 10.8) is based on 80 pairs of
observations and the estimate for the third longest lag (aound 9.5) is based on 326 pairs.
For variogram in gstat, the default gives a largest lag of around 4.08. Another important
difference between the gstat program and the other two is that gstat, as we recommend,
uses the mean distance within the bin rather than the center of the bin as the ordinate
on the horizontal axis. For haphazardly sited data, the differences between the two may
often be small, but here we find that for regular data, the differences can be dramatic. In
particular, gstat and sgeostat give the same value for γ̂ at the shortest lag (0.6361), but
gstat gives the corresponding distance as 1, whereas sgeostat gives this distance as 0.6364.
In fact, with either program, every pair of points used in the estimator is exactly distance
1 apart, so the sgeostat result is quite misleading. It would appear that, in this particular
setting, the default empirical variogram in gstat is superior to those in geoR and sgeostat.
However, even with the best of programs, one should be very careful about using default
parameter values for empirical semivariograms. Furthermore, even with well-chosen bins,
it is important to recognize that empirical semivariograms do not necessarily contain all
of the information in the data about the true semivariogram, especially, as noted by Stein
(1999, Sec. 6.2), for differentiable processes.
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3.5 Modeling the Semivariogram

Next, it is standard practice to smooth the empirical semivariogram by fitting a parametric
model to it. Why smooth the empirical semivariogram? There are several reasons. First, it
is often quite bumpy; a smoothed version may be more reliable (have smaller variance) and
therefore may increase our understanding of the nature of the spatial dependence. Second,
the empirical semivariogram will often fail to be conditionally nonpositive definite, a prop-
erty which must be satisfied to ensure that at the prediction stage to come, the prediction
error variance is nonnegative at every point in D. Finally, prediction at arbitrary locations
requires estimates of the semivariogram at lags not included among the bin representatives
h1, . . . , hk nor existing among the lags between data locations, and smoothing can provide
these needed estimates.

To smooth the empirical semivariogram, a valid parametric model for the semivariogram
and a method for fitting that model must be chosen. The choice of model among the col-
lection of valid semivariogram models is informed by an examination of the empirical
semivariogram, of course, but other considerations (prior knowledge, computational sim-
plicity, sufficient flexibility) may be involved as well. The following three conditions are
necessary and sufficient for a semivariogram model to be valid (provided that they hold
for all θ ∈ Θ , where Θ is the parameter space for θ):

1. Vanishing at 0, i.e., γ (0;θ) = 0
2. Evenness, i.e., γ (−h;θ) = γ (h;θ) for all h

3. Conditional negative definiteness, i.e.,
∑n

i=1
∑n

j=1 ai a jγ (si − s j ;θ) ≤ 0 for all n, all
s1, . . . , sn, and all a1, . . . , an such that

∑n
i=1 ai = 0

Often, the empirical semivariogram tends to increase roughly with distance in any given
direction, up to some point at least, indicating that the spatial dependence decays with
distance. In other words, values of Y(·) at distant locations tend to be less alike than values
at locations in close proximity. This leads us to consider primarily those semivariogram
models that are monotone increasing functions of the intersite distance (in any given di-
rection). Note that this is not a requirement for validity, however. Moreover, the modeling
of the semivariogram is made easier if isotropy can be assumed. The degree to which this
assumption is tenable has sometimes been assessed informally via “rose diagrams” (Isaaks
and Srivastava, 1989) or by comparing directional empirical semivariograms. It is necessary
to make comparisons in at least three, and preferably more, directions so that geometric
anisotropy can be distinguished from isotropy. Moreover, without some effort to attach un-
certainty estimates to semivariogram ordinates, we consider it dangerous to assess isotropy
based on visual comparisons of directional empirical semivariograms. Specifically, direc-
tional empirical semivariograms for data simulated from an isotropic model can appear to
show clear anisotropies (e.g., the semivariogram in one direction being consistently higher
than in another direction) that are due merely to random variation and the strong correla-
tions that occur between estimated semivariogram ordinates at different lags. More formal
tests for isotropy have recently been developed; see Guan, Sherman, and Calvin (2004).

A large variety of models satisfy the three aforementioned validity requirements (in R2

and R3), plus monotonicity and isotropy, but the following five appear to be the most
commonly used:

• Spherical

γ (h;θ) =
{

θ1

(
3h
2θ2

− h3

2θ3
2

)
for 0 ≤ h ≤ θ2

θ1 for h > θ2
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• Exponential
γ (h;θ) = θ1{1 − exp(−h/θ2)}

• Gaussian
γ (h;θ) = θ1

{
1 − exp

(−h2/θ2
2

)}

• Matérn

γ (h;θ) = θ1

(
1 − (h/θ2)νKν(h/θ2)

2ν−1Γ (ν)

)

where Kν(·) is the modified Bessel function of the second kind of order ν

• Power
γ (h;θ) = θ1hθ2

These models are displayed in Figure 3.3. For each model, θ1 is positive; similarly, θ2 is
positive in each model except the power model, for which it must satisfy 0 ≤ θ2 < 2. In the
Matérn model, ν > 0. It can be shown that the Matérn models with ν = 0.5 and ν → ∞
coincide with the exponential and Gaussian models, respectively.

Several attributes of an isotropic semivariogram model are sufficiently important to single
out. The sill of γ (h;θ) is defined as limh→∞ γ (h;θ) provided that the limit exists. If this limit
exists, then the process is not only intrinsically stationary, but also second-order stationary,
and C(0;θ) coincides with the sill. Note that the spherical, exponential, Gaussian, and
Matérn models have sills (equal to θ1 in each of the parameterizations given above), but the
power model does not. Furthermore, if the sill exists, then the range of γ (h;θ) is the smallest
value of h for which γ (h;θ) equals its sill, if such a value exists. If the range does not exist,
there is a related notion of an effective range, defined as the smallest value of h for which
γ (h;θ) is equal to 95% of its sill; in this case, the effective range is often a function of a single
parameter called the range parameter. Of those models listed above that have a sill, only the
spherical has a range (equal to θ2); however, the exponential and Gaussian models have
effective ranges of approximately 3θ2 and

√
3θ2, respectively, with θ2 then being the range

parameter. Range parameters can be difficult to estimate even with quite large datasets, in
particular when, as is often the case, the range is not much smaller than the dimensions of
the observation region (see Chapter 6). This difficulty is perhaps an argument for using the
power class of variograms, which is essentially the Matérn class for ν < 1 with the range
set to infinity, thus, avoiding the need to estimate a range.

The Matérn model has an additional parameter ν known as the smoothness parameter, as
the process Y(·) is m times mean square differentiable if and only if ν > m. The smoothness
of the semivariogram near the origin (i.e., at small lags) is a key attribute for efficient spatial
prediction (Stein, 1988; Stein and Handcock, 1989). Finally, the nugget effect of γ (h;θ) is
defined as limh→0 γ (h;θ). The nugget effect is zero for all the models listed above, but a
nonzero nugget effect can be added to any of them. For example, the exponential model
with nugget effect θ3 is given by

γ (h;θ) =
{

0 if h = 0
θ3 + θ1{1 − exp(−h/θ2)} if h > 0.

(3.8)

One rationale for the nugget effect can be given in terms of the measurement error model
(3.5). If η(·) in that model is intrinsically stationary and mean square continuous with a
nuggetless exponential semivariogram, if ε(·) is an iid (white noise) measurement error
process with variance θ3, and if η(·) and ε(·) are independent, then the semivariogram of
e(·) will coincide with (3.8).
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FIGURE 3.3
Semivariogram models.

Gaussian semivariograms correspond to processes that are extremely smooth—too much
so to generally serve as good models for natural processes. For differentiable spatial pro-
cesses, a Matérn model with ν > 1, but not very large, is generally preferable. How-
ever, if one has an underlying smooth process with a sufficiently large nugget effect, it
may sometimes not matter much whether one uses a Gaussian or Matérn model. Spher-
ical semivariograms are very popular in the geostatistical community, but less so among
statisticians, in part because the semivariogram is only once differentiable in θ2 at θ2 = h,

© 2010 by Taylor and Francis Group, LLC



P1: Naresh Chandra
January 19, 2010 12:6 C7287 C7287˙C003

Classical Geostatistical Methods 39

which leads to rather odd looking likelihood functions for the unknown parameters. There
can be computational advantages to using semivariograms with a finite range if this
range is substantially smaller than the dimensions of the observation domain, but even
if one wants to use a semivariogram with finite range for computational reasons, there
may be better alternatives than the spherical semivariogram (Furrer, Genton, and Ny-
chka, 2006).

Any valid isotropic semivariogram model can be generalized to make it geometrically
anisotropic, simply by replacing the argument h with (h′Ah)1/2, where A is a d × d pos-
itive definite matrix of parameters. For example, a geometrically anisotropic exponential
semivariogram in R2 is given by

γ (h;θ) = θ1

{
1 − exp

[
− (

h2
1 + 2θ3h1h2 + θ4h2

2

)1/2
/θ2

2

]}
.

Thus, for example, if θ3 = 0 and θ4 = 4, the effective range of the spatial correlation is
twice as large in the E–W direction as in the N–S direction, and the effective range in all
other directions is intermediate between these two. The isotropic exponential semivari-
ogram corresponds to the special case in which θ3 = 0, θ4 = 1. Anisotropic models that
are not geometrically anisotropic—so-called zonally anisotropic models—have sometimes
been used, but they are problematic, both theoretically and practically (see Zimmerman
(1993)).

Two main procedures for estimating the parameters of a chosen semivariogram model
have emerged: weighted least squares (WLS) and maximum likelihood (ML) or its variant,
restricted (or residual) maximum likelihood (REML). The WLS approach is very popular
among practitioners due to its relative simplicity, but, because it is not based on an un-
derlying probabilistic model for the spatial process, it is suboptimal and does not rest on
as firm a theoretical footing as the likelihood-based approaches (though it is known to
yield consistent and asymptotically normal estimators under certain regularity conditions
and certain asymptotic frameworks) (see Lahiri, Lee, and Cressie (2002)). Nevertheless, at
least for nondifferentiable processes, its performance is not greatly inferior to those that are
likelihood-based (Zimmerman and Zimmerman, 1991; Lark, 2000). The remainder of this
section describes the WLS approach only; likelihood-based approaches are the topic of the
next chapter.

The WLS estimator of θ in the parametric model γ (h;θ) is given by

θ̂ = argmin
∑
u∈U

N(hu)
[γ (hu;θ)]2 [γ̂ (hu) − γ (hu;θ)]2 (3.9)

where all quantities are defined as in the previous section. Observe that the weights,
N(hu)/[γ (hu;θ)]2, are small if either N(hu) is small or γ (hu;θ) is large. This has the ef-
fect, for the most commonly used semivariogram models (which are monotone increasing)
and for typical spatial configurations of observations, of assigning relatively less weight to
ordinates of the empirical semivariogram corresponding to large lags. For further details
on the rationale for these weights, see Cressie (1985), although the argument is based on
an assumption of independence between the terms in the sum (3.9), so it may tend to give
too much weight to larger lags. Since the weights depend on θ, the WLS estimator must be
obtained iteratively, updating the weights on each iteration until convergence is deemed
to have occurred.

Comparisons of two or more fitted semivariogram models are usually made rather in-
formally. If the models are non-nested and have the same number of parameters (e.g.,
the spherical and exponential models, with nuggets), the minimized weighted residual
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sum of squares (the quantity minimized in (3.9)) might be used to choose from among the
competing models. However, we are unaware of any good statistical arguments for such
a procedure and, indeed, Stein (1999) argues that an overly strong emphasis on making
parametric estimates of semivariograms match the empirical semivariogram represents a
serious flaw in classical geostatistics.

3.6 Reestimation of the Mean Function

Having estimated the second-order dependence structure of the random process, there
are two tacks the geostatistical analysis may take next. If the analyst has no particular
interest in estimating the effects of covariates on Y(·), then he/she may proceed directly to
kriging, as described in the next section. If the analyst has such an interest, however, the
next stage is to estimate the mean function again, but this time accounting for the second-
order dependence structure. The estimation approach of choice in classical geostatistics is
estimated generalized least squares (EGLS), which is essentially the same as generalized
least squares (GLS) except that the variances and covariances of the elements of Y, which
are assumed known for GLS, are replaced by estimates. Note that second-order stationarity,
not merely intrinsic stationarity, of e(·) must be assumed here to ensure that these variances
and covariances exist and are functions of lag only.

A sensible method for estimating the variances and covariances, and one which yields
a positive definite estimated covariance matrix, is as follows. First, estimate the common
variance of the Y(si )s by the sill of the fitted semivariogram model, γ (h; θ̂), obtained at the
previous stage; denote this estimated variance by Ĉ(0). Then, motivated by (3.4), estimate
the covariance between Y(si ) and Y(s j ) for i 
= j as Ĉ(si − s j ) = Ĉ(0) − γ (si − s j ; θ̂).
These estimated variances and covariances may then be arranged appropriately to form an
estimated variance–covariance matrix

Σ̂ = (Ĉ(si − s j )).

The EGLS estimator of β, β̂EGL S is then given by

β̂EGL S = (XTΣ̂−1X)−1XTΣ̂−1Y.

The sampling distribution of β̂EGL S is much more complicated than that of the OLS or
GLS estimator. It is known, however, that β̂EGL S is unbiased under very mild conditions,
and that, if the process is Gaussian, the variance of β̂EGL S is larger than that of the GLS
estimator were θ to be known, i.e., larger than (XTΣ−1X)−1 (Harville, 1985). (Here, by
“larger,” we mean that the difference, var(β̂EGL S) − (XTΣ−1X)−1, is nonnegative definite.)
Nevertheless, for lack of a simple satisfactory alternative, the variance of β̂EGL S is usually
estimated by the plug-in estimator, (XTΣ̂−1X)−1.

If desired, the EGLS residuals, Y − Xβ̂EGL S, may be computed and the semivariogram
reestimated from them. One may even iterate between mean estimation and semivariogram
estimation several times, but, in practice, this procedure usually stops with the first EGLS
fit. REML, described in Chapter 4, avoids this problem by estimating θ using only linear
combinations of the observations whose distributions do not depend on β.
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3.7 Kriging

The final stage of a classical geostatistical analysis is to predict the values of Y(·) at desired
locations, perhaps even at all points, in D. Methods dedicated to this purpose are called
kriging, after the South African mining engineer D. G. Krige, who was the first to develop
and apply them. Krige’s original method, now called ordinary kriging, was based on the
special case of model (3.1) in which the mean is assumed to be constant. Here, we describe
the more general method of universal kriging, which is identical to best linear unbiased
prediction under model (3.1) with mean function assumed to be of the linear form (3.6).

Let s0 denote an arbitrary location in D; usually this will be an unsampled location, but
it need not be. Consider the prediction of Y(s0) by a predictor, Ŷ(s0), that minimizes the
prediction error variance, var[Ŷ(s0) − Y(s0)], among all predictors satisfying the following
two properties:

1. Linearity, i.e., Ŷ(s0) = λT Y, where λ is a vector of fixed constants
2. Unbiasedness, i.e., E[Ŷ(s0)] = E[Y(s0)], or equivalently λT X = X(s0)

Suppose for the moment that the semivariogram of Y(·) is known. Then the solution to this
constrained minimization problem, known as the universal kriging predictor of Y(s0), is
given by

Ŷ(s0) = [γ + X(XTΓ−1X)−1(x0 − XTΓ−1γ)]TΓ−1Y, (3.10)

where γ = [γ (s1 − s0), . . . , γ (sn − s0)]T , Γ is the n × n symmetric matrix with ijth element
γ (si − s j ) and x0 = X(s0). This result may be obtained using differential calculus and
the method of Lagrange multipliers. However, a geometric proof is more instructive and
following is an example.

Let us assume that the first component of x(s) is identically 1, which guarantees that
the error of any linear predictor of Y(s0) that satisfies the unbiasedness constraint is a
contrast, so that its variance can be obtained from the semivariogram of Y(·). Let us also
assume that there exists a linear predictor satisfying the unbiasedness constraint. Suppose
λT Y is such a predictor. Consider any other such predictor νT Y and set μ = ν − λ. Since
E(λT Y) = E(νT Y) for all β, we must have XTμ = 0. And,

var{νT Y − Y(s0)} = var[μT Y + {λT Y − Y(s0)}]
= var(μT Y) + var{λT Y − Y(s0)} + 2 Cov{μT Y, λT Y − Y(s0)}
≥ var{λT Y − Y(s0)} + 2 Cov{μT Y, λT Y − Y(s0)}
= var{λT Y − Y(s0)} + 2μT (−Γλ + γ).

If we can choose λ such that μT (−Γλ + γ) = 0 for all μ satisfying XTμ = 0, then λ is
the solution we seek, since we then have var{νT Y − Y(s0)} ≥ var{λT Y − Y(s0)} for any
predictor νT Y satisfying the unbiasedness constraint. But, since the column space of X is
the orthogonal complement of its left null space, this condition holds if and only if −Γλ+γ
is in the column space of X, which is equivalent to the existence of a vector α satisfying
−Γλ + Xα = −γ. Putting this condition together with the unbiasedness constraint yields
the system of linear equations for λ and α

(−Γ X
XT O

) (
λ
α

)
=

(−γ
0

)
,
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where 0 and O indicate a vector and a matrix of zeroes, respectively. If Γ is invertible and
X is of full rank, then simple row reductions yields λ as in (3.10).

The minimized value of the prediction error variance is called the (universal) kriging
variance and is given by

σ 2(s0) = γTΓ−1γ − (XTΓ−1γ − x0)T (XTΓ−1X)−1(XTΓ−1γ − x0). (3.11)

The universal kriging predictor is an example of the best linear unbiased predictor, or
BLUP, as it is generally abbreviated. If Y(·) is Gaussian, the kriging variance can be used to
construct a nominal 100(1 − α)% prediction interval for Y(s0), which is given by

Ŷ(s0) ± zα/2σ (s0),

where 0 < α < 1 and zα/2 is the upper α/2 percentage point of a standard normal distribu-
tion. If Y(·) is Gaussian and γ (·) is known, then Ŷ(s0) − Y(s0) is normally distributed and
the coverage probability of this interval is exactly 1 − α.

If the covariance function for Y exists and σ = [C(s1 − s0), . . . , C(sn − s0)]T , then the
formula for the universal kriging predictor (3.10) holds with γ replaced by σ and Γ by
Σ . It is worthwhile to compare this formula to that for the best (minimum mean squared
error) linear predictor when β is known: xT

0 β + σTΣ−1(Y − Xβ). A straightforward calcu-
lation shows that the universal kriging predictor is of this form with β replaced by β̂GL S.
Furthermore, the expression (3.11) for the kriging variance is replaced by

C(0) − σTΣ−1σ + (x0 − XTΣ−1σ)T (XTΣ−1X)−1(x0 − XTΣ−1σ).

The first two terms, C(0)−σTΣ−1σ, correspond to the mean squared error of the best linear
predictor, so that the last term, which is always nonnegative, is the penalty for having to
estimate β.

In practice, two modifications are usually made to the universal kriging procedure just
described. First, to reduce the amount of computation required, the prediction of Y(s0)
may be based not on the entire data vector Y, but on only those observations that lie in
a specified neighborhood around s0. The range, the nugget-to-sill ratio, and the spatial
configuration of data locations are important factors in choosing this neighborhood (for
further details, see Cressie (1991, Sec. 3.2.1)). Generally speaking, larger nuggets require
larger neighborhoods to obtain nearly optimal predictors. However, there is no simple
relationship between the range and the neighborhood size. For example, Brownian motion
is a process with no finite range for which the kriging predictor is based on just the two
nearest neighbors. Conversely, there are processes with finite ranges for which observations
beyond the range play a nontrivial role in the kriging predictor (Stein, 1999, p. 67). When
a spatial neighborhood is used, the formulas for the universal kriging predictor and its
associated kriging variance are of the same form as (3.10) and (3.11), but with γ and Y
replaced by the subvectors, and Γ and X replaced by the submatrices, corresponding to the
neighborhood.

The second modification reckons with the fact that the semivariogram that appears in
(3.10) and (3.11) is in reality unknown. It is common practice to substitute γ̂ = γ(θ̂) and
Γ̂ = Γ (θ̂) for γ and Γ in (3.10) and (3.11), where θ̂ is an estimate of θ obtained by, say, WLS.
The resulting empirical universal kriging predictor is no longer a linear function of the data,
but remarkably it remains unbiased under quite mild conditions (Kackar and Harville,
1981). The empirical kriging variance tends to underestimate the actual prediction error
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variance of the empirical universal kriging predictor because it does not account for the
additional error incurred by estimating θ. Zimmerman and Cressie (1992) give a modified
estimator of the prediction error variance of the empirical universal kriging predictor, which
performs well when the spatial dependence is not too strong. However, Bayesian methods
are arguably a more satisfactory approach for dealing with the uncertainty of spatial de-
pendence parameters in prediction (see Handcock and Stein (1993)). Another possibility is
to estimate the prediction error variance via a parametric bootstrap (Sjöstedt-de Luna and
Young, 2003).

Universal kriging yields a predictor that is a “location estimator” of the conditional
distribution of Y(s0) given Y; indeed, if the error process e(·) is Gaussian, the universal
kriging predictor coincides with the conditional mean, E(Y(s0)|Y) (assuming γ (·) is known
and putting a flat improper prior on any mean parameters). If the error process is non-
Gaussian, then generally the optimal predictor, the conditional mean, is a nonlinear function
of the observed data. Variants, such as disjunctive kriging and indicator kriging, have been
developed for spatial prediction of conditional means or conditional probabilities for non-
Gaussian processes (see Cressie, 1991, pp. 278–283), but we are not keen about them, as
the first is based upon strong, difficult to verify assumptions and the second tends to yield
unstable estimates of conditional probabilities. In our view, if the process appears to be
badly non-Gaussian and a transformation doesn’t make it sufficiently Gaussian, then the
analyst should “bite the bullet” and develop a decent non-Gaussian model for the data.

The foregoing has considered point kriging, i.e., prediction at a single point. Sometimes
a block kriging predictor, i.e., a predictor of the average value Y(B) ≡ ∫

B Y(s)ds/|B| over
a region (block) B ⊂ D of positive d-dimensional volume |B| is desired, rather than pre-
dictors of Y(·) at individual points. Historically, for example, mining engineers were in-
terested in this because the economics of mining required the extraction of material in
relatively large blocks. Expressions for the universal block kriging predictor of Y(B) and
its associated kriging variance are identical to (3.10) and (3.11), respectively, but with γ =
[γ (B, s1), . . . , γ (B, sn)]T , x0 = [X1(B), . . . , Xp(B)]T (where p is the number of covariates in
the linear mean function), γ (B, si ) = |B|−1

∫
B γ (u − si ) du and Xj (B) = |B|−1

∫
B Xj (u) du.

Throughout this chapter, it was assumed that a single spatially distributed variable,
namely Y(·), was of interest. In some situations, however, there may be two or more vari-
ables of interest, and the analyst may wish to study how these variables co-vary across the
spatial domain and/or predict their values at unsampled locations. These problems can
be handled by a multivariate generalization of the univariate geostatistical approach we
have described. In this multivariate approach, {Y(s) ≡ [Y1(s), . . . , Ym(s)]T : s ∈ D} represents
the m-variate spatial process of interest and a model Y(s) = μ(s) +e(s) analogous to (3.1) is
adopted in which the second-order variation is characterized by either a set of m semivari-
ograms and m(m−1)/2 cross-semivariogramsγi j (h) = 1

2 var[Yi (s)−Yj (s+h)], or a set of m co-
variance functions and m(m−1)/2 cross-covariance functions Ci j (h) = Cov[Yi (s), Yj (s+h)],
depending on whether intrinsic or second-order stationarity is assumed. These functions
can be estimated and fitted in a manner analogous to what we described for univariate
geostatistics; likewise, the best (in a certain sense) linear unbiased predictor of Y(s0) at an
arbitrary location s0 ∈ D, based on observed values Y(s1), . . . , Y(sn), can be obtained by an
extension of kriging known as cokriging. Good sources for further details are Ver Hoef and
Cressie (1993) and Chapter 27 in this book.

While we are strong supporters of the general geostatistical framework to analyzing spa-
tial data, we have, as we have indicated, a number of concerns about common geostatistical
practices. For a presentation of geostatistics from the perspective of “geostatisticians” (that
is, researchers who can trace their lineage to Georges Matheron and the French School of
Geostatistics), we recommend the book by Chilès and Delfiner (1999).
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Sjöstedt-de Luna, S. and Young, A. (2003). The bootstrap and kriging prediction intervals. Scandinavian
Journal of Statistics, 30, 175–192.

Stein, M.L. (1988). Asymptotically efficient prediction of a random field with a misspecified covariance
function. Annals of Statistics, 16, 55–63.

Stein, M.L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. New York: Springer.
Stein, M.L. and Handcock, M.S. (1989). Some asymptotic properties of kriging when the covariance

function is misspecified. Mathematical Geology, 21, 171–190.
Ver Hoef, J.M. and Cressie, N. (1993). Multivariable spatial prediction. Mathematical Geology, 25,

219–240.
Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: SIAM.
Zimmerman, D.L. (1993). Another look at anisotropy in geostatistics. Mathematical Geology, 25,

453–470.
Zimmerman, D.L. and Cressie, N. (1992). Mean squared prediction error in the spatial linear model

with estimated covariance parameters. Annals of the Institute of Statistical Mathematics, 44, 27–43.
Zimmerman, D.L. and Zimmerman, M.B. (1991). A comparison of spatial semivariogram estimators

and corresponding ordinary kriging predictors. Technometrics, 33, 77–91.

© 2010 by Taylor and Francis Group, LLC



P1: Naresh Chandra

February 10, 2010 12:0 C7287 C7287˙C004

4
Likelihood-Based Methods

Dale L. Zimmerman

CONTENTS

4.1 Overview...............................................................................................................................45
4.2 Maximum Likelihood Estimation .....................................................................................46
4.3 REML Estimation.................................................................................................................48
4.4 Asymptotic Results..............................................................................................................49
4.5 Hypothesis Testing and Model Comparisons .................................................................50
4.6 Computational Issues..........................................................................................................51
4.7 Approximate and Composite Likelihood ........................................................................52
4.8 Methods for Non-Gaussian Data ......................................................................................54
References.......................................................................................................................................55

4.1 Overview

The previous chapter considered estimation of the parameters of a geostatistical model
by a combination of method-of-moments and least squares methods. Those methods, col-
lectively known as “classical geostatistics,” are relatively simple and do not explicitly re-
quire any distributional assumptions, but they are not optimal in any known sense. In this
chapter, we present the estimation of parametric geostatistical models by likelihood-based
approaches, which adhere to the likelihood principle (of course!) and, under appropriate
regularity conditions, may be expected to have certain optimality properties.

As in Chapter 3, we consider here a single spatial variable, Y, defined (in principle) at
every point over a bounded study region of interest, D ⊂ Rd , where d = 2 or 3, and
modeled as a random process Y(·) ≡ {Y(s) : s ∈ D}. We suppose that Y(·) has been
observed (possibly with error) at each of n distinct points in D, and that from these ob-
servations we wish to make inferences about the process. Likelihood-based approaches to
making these inferences are most fully developed for Gaussian random fields, which are
random processes whose finite-dimensional distributions are all multivariate normal. Ac-
cordingly, most of this chapter considers inference for only such processes. In Section 4.8,
we briefly consider likelihood-based inference for some non-Gaussian processes. Through-
out, we emphasize frequentist methods, though we do mention a few Bayesian proce-
dures. For a more thorough treatment of the subject from a Bayesian perspective, see
Chapter 7.

45
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4.2 Maximum Likelihood Estimation

Consider the geostatistical model (3.1), and suppose that the mean function is linear and
the error process is Gaussian. That is, suppose that

Y(s) = X(s)Tβ + e(s)

where X(s) is a p-vector of observable covariates at s,β is a p-vector of unknown unrestricted
parameters, and e(·) ≡ {e(s) : s ∈ D} is a zero-mean Gaussian process. Suppose further that
e(·) has covariance function

Cov[e(s), e(t)] ≡ C(s, t;θ),

where θ is an m-vector of unknown parameters belonging to a given parameter space,
Θ ⊂ Rm, within which the covariance function is positive definite. The joint parameter
space for β and θ is taken to be simply the Cartesian product of Rp and Θ . Observe that in
this formulation we do not require that e(·) be stationary in any sense. This is in contrast to
the classical geostatistics of Chapter 3, for which some form of stationarity (either second-
order or intrinsic) was required.

Denote the n-vector of values of Y(·) and the n× p matrix of values of X(·) observed at the
data locations s1, . . . , sn as Y = [Y(s1), Y(s2), . . . , Y(sn)]T , and X = [X(s1), X(s2), . . . , X(sn)]T ,
respectively, and assume that n > p and rank(X) = p. Finally, let Σ = Σ (θ) denote the
n × n covariance matrix, var(Y), whose (i, j)th element is C(si , s j ;θ).

Because Y(·) is Gaussian, the joint distribution of Y is multivariate normal, with mean
vector Xβ and covariance matrix Σ (θ). Therefore, the likelihood function is given by

l(β, θ; Y) = (2π )−n/2|Σ (θ)|−1/2 exp{−(Y − Xβ)TΣ−1(θ)(Y − Xβ)/2}.

Maximum likelihood (ML) estimates of β and θ are defined as any values of these param-
eters (in Rp and Θ , respectively) that maximize l(β, θ; Y). Note that any such values also
maximize the log likelihood function,

log l(β, θ; Y) = −n
2

log(2π ) − 1
2

log |Σ (θ)| − 1
2

(Y − Xβ)TΣ−1(θ)(Y − Xβ).

Furthermore, for any fixedθ ∈ Θ , sayθ0, the unique value ofβ that maximizes log l(β, θ0; Y)
is given by

β̂ = (XTΣ−1(θ0)X)−1XTΣ−1(θ0)Y,

which would be the generalized least squares estimator of β if var(Y) was equal to Σ (θ0).
Thus, ML estimates of θ and β are θ̂ and β̂, where θ̂ is any value of θ ∈ Θ that maximizes

L(θ; Y) = −1
2

log |Σ (θ)| − 1
2

YT P(θ)Y (4.1)

and β̂ = (XTΣ−1(θ̂)X)−1XTΣ−1(θ̂)Y. Here,

P(θ) = Σ−1(θ) − Σ−1(θ)X(XTΣ−1(θ)X)−1XTΣ−1(θ). (4.2)
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Eliminating β in this manner from the log likelihood function is called profiling and the
function L(θ; Y) is called the profile log likelihood function of θ.

The problem of maximizing L(θ; Y) for θ ∈ Θ is a constrained (over the subset Θ of
Rm) nonlinear optimization problem for which a closed-form solution exists only in very
special cases. In general, therefore, ML estimates must be obtained numerically. One pos-
sible numerical approach is a brute force grid search, which is often reasonably effective
when the parameter space for θ is low-dimensional. Alternatively, iterative algorithms can
be used. One important class of iterative algorithms is gradient algorithms. In a gradient
algorithm, the (k + 1)st iterate θ(k+1) is computed by updating the kth iterate θ(k) according
to the equation

θ(k+1) = θ(k) + ρ(k)M(k)g(k) ,

where ρ(k) is a scalar, M(k) is an m × m matrix, and g(k) is the gradient of L evaluated at
θ = θ(k) , i.e., g(k) = ∂L(θ; Y)/∂θ|θ=θ(k) . The matrix product of M(k) and g(k) can be thought of
as defining the search direction (relative to the kth iterate θ(k)), while ρ(k) defines the size
of the step to be taken in that direction.

Two gradient algorithms commonly used in conjunction with maximizing a log likeli-
hood function are the Newton–Raphson and Fisher scoring procedures. In the Newton–
Raphson procedure, M(k) is the inverse of the m × m matrix whose (i , j)th element is
−∂2L(θ; Y)/∂θi ∂θ j |θ=θ(k) . In the Fisher scoring algorithm, M(k) = (B(k))−1 where B(k) is the
Fisher information matrix associated with L(θ; Y) evaluated at θ(k) , i.e., B(k) is the m × m
matrix whose (i, j)th element is E{−∂2L(θ; Y)/∂θi ∂θ j |θ=θ(k) }. For both algorithms, ρ(k) = 1.
Thus, Fisher scoring is identical to Newton–Raphson except that the second-order partial
derivatives are replaced by their expectations. Expressions for both the second-order partial
derivatives and their expectations may be found in Mardia and Marshall (1984).

Not all potentially useful iterative algorithms are gradient algorithms. The Nelder–Mead
simplex algorithm (Nelder and Mead, 1965), for example, may also be effective.

Several practical decisions must be made to implement any of these iterative algorithms.
These include choices of starting value for θ, convergence criterion, parameterization of the
covariance function, and methods for accommodating the constraints on θ, which typically
are linear inequality constraints. Some guidance on these and other implementation issues
is provided by Harville (1977). It should be noted that one possible choice of starting value
is an estimate of θ obtained via classical geostatistical methods.

In many standard statistical problems, a unique ML estimate exists. In the present context,
however, there is no guarantee of existence or uniqueness, nor is there even a guarantee that
all local maxima of the likelihood function are global maxima. Indeed, Warnes and Ripley
(1987) and Handcock (1989) show that the likelihood function corresponding to gridded
observations of a stationary Gaussian process with spherical covariance function often has
multiple modes, and that these modes may be well separated. Rasmussen and Williams
(2006) display a bimodal likelihood surface for a case of a stationary Gaussian process with
a Gaussian covariance function, which is observed at seven irregularly spaced locations
on a line. However, the results of Handcock (1989) and Mardia and Watkins (1989), plus
the experience of this author, suggest that multiple modes are extremely rare in practice
for covariance functions within the Matérn class, such as the exponential function, and
for datasets of the size typical of most applications. (See Chapter 2 for a definition of the
Matérn class.) In any case, a reasonable practical strategy for determining whether a local
maximum obtained by an iterative algorithm is likely to be the unique global maximum is
to repeat the algorithm from several widely dispersed starting values.
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4.3 REML Estimation

Although ML estimators of the spatial covariance parameters making up θ have several
desirable properties, they have a well-known shortcoming — they are biased as a conse-
quence of the “loss in degrees of freedom” from estimatingβ (Harville, 1977). This bias may
be substantial even for moderately sized samples if either the spatial correlation is strong
or p (the dimensionality of β) is large. However, the bias can be reduced substantially and,
in some special cases, eliminated completely by employing a variant of maximum likeli-
hood estimation known as restricted (or residual) maximum likelihood (REML) estimation.
REML was originally proposed for use in components-of-variance models by Patterson and
Thompson (1971, 1974); the first to propose it for use in spatial models was Kitanidis (1983).
For both types of models, it is now as popular as maximum likelihood estimation, if not
more so. In REML estimation, the likelihood (or equivalently the log likelihood) function
associated with n − p linearly independent linear combinations of the observations known
as error contrasts, rather than the likelihood function associated with the observations, is
maximized. An error contrast is a linear combination of the observations, i.e., aT Y, that has
expectation zero for all β and all θ ∈ Θ ; furthermore, two error contrasts aT Y and bT Y
are said to be linearly independent if a and b are linearly independent vectors. Any set
of n − p linearly independent elements of [I − X(XT X)−1XT ]Y may serve as the required
error contrasts for the restricted likelihood, but it actually makes no difference what set of
error contrasts is used as long as they number n − p and are independent, because the log
likelihood function associated with any such set differs by at most an additive constant
(which does not depend on β or θ) from the function

L R(θ; Y) = −1
2

log |Σ (θ)| − 1
2

log |XTΣ−1(θ)X| − 1
2

YT P(θ)Y,

where P(θ) was defined by (4.2). Observe that L R(θ; Y) differs from the profile log likeli-
hood function L(θ; Y) (given by (4.1)) only additively, by an extra term, − 1

2 log |XTΣ−1(θ)X|.
A REML estimate of θ is any value θ̃ ∈ Θ at which L R attains its maximum. This es-
timate generally must be obtained via the same kinds of numerical procedures used to
obtain a ML estimate. Once a REML estimate of θ is obtained, the corresponding esti-
mate of β is obtained as its generalized least squares estimator evaluated at θ = θ̃, i.e.,
β̃ = (XTΣ−1(θ̃)X)−1XTΣ−1(θ̃)Y.

Does REML effectively reduce the bias incurred by maximum likelihood estimation? Two
published simulation studies have compared the performance of REML and ML estimators
in spatial models. An early study by Zimmerman and Zimmerman (1991) for stationary
Gaussian random fields with constant mean and exponential covariance function without
nugget indicated that in this case the REML estimators of the sill and range parameters
were indeed less biased than their ML counterparts, but that the upper tail of the dis-
tribution of the sill’s REML estimator could be quite heavy. In a recent, more thorough
study, Irvine, Gitelman, and Hoeting (2007) compared estimator performance for station-
ary Gaussian random fields with constant mean and exponential-plus-nugget covariance
functions, the latter having several different effective ranges and nugget-to-sill ratios. They
obtained results broadly similar to those of Zimmerman and Zimmerman (1991), but even
more unfavorable to REML; for example, the upper tail of the empirical distribution of the
REML estimator of the effective range was, in many cases, so heavy that this estimator’s
mean squared error was much larger than that of the ML estimator. The heavy upper tail
problem became worse as either the effective range or the nugget-to-sill ratio increased.
Thus, while REML does appear to effectively reduce bias, it may also increase estimation
variance unless the persistence of spatial dependence (as measured by the effective range)
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is weak. Whether this would cause one to prefer ML to REML estimation depends on which
problem one considers to be more serious: badly underestimating or badly overestimating
the effective range and sill, leading respectively to overly optimistic or overly conservative
inferences on mean parameters and predictions. On the other hand, it is worth noting that
both of the studies mentioned here considered only processes with constant means, i.e.,
p = 1. Zimmerman (1986) demonstrated that the relative performance of REML to ML es-
timation for the nuggetless exponential covariance function improves considerably as the
dimensionality ofβ increases, which should come as no surprise given REML’s raison d’etre.
Still, it seems to this author that further research is needed before comprehensive guidelines
can be provided as to which estimator, REML or ML, is best in which situation(s).

REML estimation does have one distinct advantage, however. It may be used to esti-
mate parameters of certain nonstationary processes known as Gaussian intrinsic random
fields of order k (IRF-ks), which were introduced in Chapter 2. Such processes are char-
acterized by the probabilistic structure of certain linear combinations known as gener-
alized increments; more specifically, the kth-order generalized increments of a Gaussian
IRF-k are jointly Gaussian with mean zero and a generalized covariance function. The
generalized covariance function does not specify a covariance structure for the observa-
tions themselves, but only for the generalized increments. An intrinsically stationary ran-
dom field and an IRF-0 are merely different names for the same process; furthermore, the
generalized increments and the generalized covariance function of an IRF-0 are merely
{Y(s) − Y(t) : s, t ∈ D} and the semivariogram, respectively. It turns out that generalized
increments for any Gaussian IRF-k coincide with error contrasts for a Gaussian random
field with kth-order polynomial mean structure, so that REML estimation may proceed for
such processes. Owing to the lack of a fully specified covariance structure for the observa-
tions, however, ML cannot. For example, REML, but not ML, may be used to estimate the
power semivariogram (described in Chapter 3) of an IRF-0. The REML log likelihood in this
case is

L R(θ; Y) = −1
2

log |AT K(θ)A| − 1
2

YT A(AT K(θ)A)−1AT Y

where A is an (n − 1) × n matrix whose ith row has ith element 1, (i + 1)st element −1, and
zeros elsewhere, and K(θ) is the n×n matrix with (i , j)th element γ (si −s j ;θ) = θ1‖si −s j‖θ2 .

4.4 Asymptotic Results

For purposes of making inferences about the parameters of a Gaussian random field, e.g.,
estimating standard errors and constructing confidence intervals, knowledge of the asymp-
totic properties of the likelihood-based estimators is useful. In contrast to most other areas
of statistics, however, for statistics of continuous spatial processes there are two (at least)
quite different asymptotic frameworks to which one could reasonably appeal: (1) increasing
domain asymptotics, in which the minimum distance between data locations is bounded
away from zero and, thus, the spatial domain of observation is unbounded, and (2) infill
(also called fixed-domain) asymptotics, in which observations are taken ever more densely
in a fixed and bounded domain. In Chapter 6, Michael Stein gives, in considerable detail
and within both frameworks, some known asymptotic results relevant to spatial prediction
and estimation. Below, we briefly summarize some of the results pertaining to estimation.

In the increasing-domain asymptotic framework, it is known that, under certain reg-
ularity conditions, the ML and REML estimators of the parameters of Gaussian random
fields are consistent and asymptotically normal (Mardia and Marshall, 1984; Cressie and
Lahiri, 1996). The available results under infill asymptotics, however, are considerably more
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limited. Moreover, the few known results indicate that the asymptotic behavior of ML es-
timators can be quite different in this framework. For example, for a one-dimensional,
zero-mean, Gaussian random field model with nuggetless exponential covariance func-
tion, the ML estimators of the sill and the range parameter are not consistent under infill
asymptotics (although their product is consistent for the product of these two parameters)
(Ying, 1991). For the same process and for one with a nugget but otherwise identical, Zhang
and Zimmerman (2005) found that for those parameters for which the ML estimator is
consistent under both asymptotic frameworks, the approximations to the ML estimator’s
finite-sample distribution provided by the two frameworks perform about equally well,
but for those parameters that cannot be estimated consistently under infill asymptotics, the
finite-sample approximation provided by the infill asymptotic framework performs better.
My recommendation, therefore, is to base inferences on infill asymptotic results if and when
they are available.

4.5 Hypothesis Testing and Model Comparisons

Performing a hypothesis test on the parameters β and θ of the model may be viewed as
a comparison of two models — the “full” and “reduced” models, corresponding to the
alternative and null hypotheses — and may be carried out via a likelihood ratio test. This
amounts to comparing twice the difference in the log likelihood functions evaluated at the
ML estimators for the two models to percentiles of the chi-square distribution with q degrees
of freedom, where q is the difference in the dimensionality of the parameter space for the
two models. The success of this procedure is predicated, of course, on the assumption that
twice the negative log of the likelihood ratio statistic is asymptotically distributed, under
the null hypothesis, as a chi-squared random variable with q degrees of freedom. This
assumption is justified under increasing domain asymptotics and appropriate regularity
conditions.

Non-nested models may be compared informally within the likelihood framework using
penalized likelihood criteria, such as Akaike’s information criterion,

AI C = −2 log l(β̂, θ̂) + 2( p + m),

or Schwarz’s Bayesian information criterion,

B I C = −2 log l(β̂, θ̂) + ( p + m) log n.

In comparing two models, the model with the smaller value of one of these criteria is judged
to be the better of the two models according to that criterion. Both criteria trade model fit
and model parsimony off against one another, but in slightly different ways, with the
result that BIC tends to favor smaller models than AIC. Observe that models with different
mean functions or different covariance functions, or both, may be compared, though it is
not clear that penalizing mean and covariance parameters equally (as these criteria do) is
appropriate.

Within the REML framework, hypotheses about θ may be tested analogously via a com-
parison of restricted log likelihoods evaluated at REML estimates. To compare non-nested
models, penalized restricted likelihood criteria may again be used; in this context

AI C = −2L R(θ̃) + 2m

and
B I C = −2L R(θ̃) + m log n.
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It is extremely important, however, that such comparisons be made between models that
differ only with respect to their covariance structure. Valid comparisons of models with
different mean structure cannot be made within the REML framework, as the error contrasts
are different for two such models.

A popular criterion for model comparisons within a Bayesian framework is the deviance
information criterion (DIC),

DI C = D + pD

(Spiegelhalter, Best, Carlin, and van der Linde, 2002). Here, D = E[D(β, θ)|Y], where
D(β, θ) = −2 log l(β, θ; Y) + c and c is a constant that can be ignored because it is identical
across models, and pD = D − D(β, θ) where (β, θ) = E[(β, θ)|Y]. D is a measure of
model fit, while pD, known as the effective number of parameters, is a measure of model
complexity, and DIC balances these two against each other. DIC may be calculated easily
from the samples generated by a Markov chain Monte Carlo (MCMC) simulation, simply
by averaging D(β, θ) and (β, θ) over the samples to obtain D and (β, θ), respectively, and
evaluating D at the latter quantity.

4.6 Computational Issues

The likelihood-based estimation procedures we have described here generally require ex-
tensive computations. This is due primarily to the necessity of repeatedly forming and in-
verting the covariance matrix and evaluating its determinant, either as parameter estimates
are updated within an iterative algorithm or as a grid search proceeds. This computational
burden can be a serious obstacle to the implementation of likelihood-based approaches
in practice. Fortunately, however, in some cases it is possible to substantially reduce the
amount of computation required for exact likelihood-based inference.

One situation in which the computational burden can be reduced occurs when one of the
covariance function’s parameters is a scale parameter, in which case it is possible to express
the covariance matrix as a scalar multiple of another matrix that is free of this parameter,
i.e., as Σ (θ) = θ1W(θ−1) for some matrix W, where θ−1 = (θ2, θ3, . . . , θm)T ∈ Θ−1. Here, Θ−1
is defined such that Θ = {θ1 > 0, θ−1 ∈ Θ−1}. One case of this occurs, for example, when
Y(·) is stationary, for then the elements of Y are homoscedastic and Σ (θ) can be expressed
in the aforementioned way, with θ1 being the common variance (or semivariogram sill) of
the observations and W(θ−1) being a correlation matrix. In any such case, it is easily shown
that L(θ; Y) assumes its maximum value at (θ̂1, θ̂T

−1)T , where

θ̂1 = YT Q(θ̂−1)Y/n

and θ̂−1 is any value of θ−1 ∈ Θ−1 that maximizes

L−1(θ−1; Y) = −1
2

log |W(θ−1)| − n
2

log(YT Q(θ−1)Y).

Here,

Q(θ−1) = W−1(θ−1) − W−1(θ−1)X(XT W−1(θ−1)X)−1XT W−1(θ−1).
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This is another instance of profiling, applied in this case to the scale parameter θ1 (rather
than to the mean parameters β). The advantage of maximizing L−1(θ−1; Y) rather than
L(θ; Y) is that the dimensionality of the maximization problem is reduced from m to m − 1.
This can yield substantial savings in computation. The same approach works equally well
with the REML log likelihood function.

Another situation in which the computations associated with likelihood-based inference
may be reduced occurs when Σ (θ) (or W(θ−1)) has a patterned structure that can be ex-
ploited to speed up the computation of its determinant and the quadratic form(s) involving
its inverse. When Σ (θ) is n × n, the required computations are O(n3) in general; however,
for certain models and spatial configurations of data locations, the structure within Σ (θ)
is sufficiently specialized that the amount of computation can be reduced significantly. For
example, if the covariance function has a range that is small relative to the spatial domain
of observation, then the covariance matrix will be “sparse” (i.e., it will have many elements
equal to zero), and methods for sparse matrices may be used to good effect (Barry and Pace,
1997). Finally, another situation in which major reductions in computation are possible oc-
curs when the covariance function (or generalized covariance function) is either isotropic
or separable and the data locations form a regular rectangular grid (Zimmerman, 1989a,
1989b).

4.7 Approximate and Composite Likelihood

The previous section described some methods for reducing the computational burden of
exact likelihood-based estimation. A completely different strategy for reducing computa-
tions is to approximate the likelihood function by a function that is more easily maximized.
This strategy is described below.

Vecchia (1988) proposed an approximation to the likelihood for geostatistical data, which
is based on a partitioning of the observation vector Y into subvectors Y1, . . . , Yb . Let-
ting Y( j) = (YT

1 , . . . , YT
j )T, letting p(Y;β, θ) denote the joint density of Y, and letting

p(Y j |Y( j−1);β, θ) denote the conditional density of Y j given Y( j−1), the (exact) likelihood
may be written as

p(Y;β, θ) = p(Y1;β, θ)
b∏

j=2

p(Y j |Y( j−1);β, θ). (4.3)

Vecchia’s (1988) proposal was to approximate (4.3) by replacing each complete conditioning
vector Y( j−1) with a subvector S( j−1) of Y( j−1) so that the matrices whose inverses and
determinants must be evaluated to compute the conditional densities are much smaller,
thereby reducing the computations required to maximize (4.3). Since there is no unique
way to partition Y in this scheme, a natural question is: How should Y j and S( j−1) be
chosen? Vecchia only considered vectors Y j of length one, ordered by the values of either of
the two coordinate axes of data locations, and he recommended choosing S( j−1) to consist
of the q most proximate observations to Y j , where q is much smaller than n. The smaller the
value of q , of course, the more efficient the computation, but the cruder the approximation
to the true likelihood. For datasets of size n = 100 simulated from several Gaussian random
fields, Vecchia showed that taking q = 10 resulted in good approximations; in practice, of
course, an appropriate choice of q will depend on the range of spatial dependence relative
to the distance between observations.

Stein, Chi, and Welty (2004) extended Vecchia’s original proposal by allowing the Y j s
to be of nonuniform (and nonunity) lengths and by applying it to the restricted likelihood
function rather than the ordinary likelihood function. For simulated Gaussian data of size
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n = 1000, they found that taking q = 16 was sufficient for the (statistical) efficiencies of the
approximate REML estimators, relative to the exact REML estimators, to be in the range 80
to 95%. In contrast to Vecchia, however, they found that it was sometimes advantageous to
include some observations in S( j−1) that were rather distant from Y j . This was particularly
true when the spatial dependence was strong relative to the spatial domain of observation,
a situation that was not represented in any of Vecchia’s examples.

A similar but slightly different approximate likelihood estimation strategy is that of
pseudolikelihood or composite likelihood (Besag, 1975; Lindsay, 1988). Such a likelihood
is formed by multiplying individual component likelihood functions, each of which is a
valid conditional or marginal likelihood, as if these component likelihoods correspond to
independent subvectors of the data. In this way, one avoids having to evaluate the determi-
nant and inverse of the n × n covariance matrix, replacing these evaluations with ones for
much smaller matrices. The cost of this computational simplicity, as with the Vecchia/Stein
et al. strategy, is a loss of statistical efficiency as a result of ignoring information about the
components’ covariance structure.

Curriero and Lele (1999) consider a particular composite likelihood estimation scheme.
For an intrinsically stationary Gaussian random field, they form a composite log likelihood
function from the marginal densities of all pairwise differences among the observations.
Ignoring constant terms, this function is

C L(θ; Y) = −1
2

n−1∑
i=1

∑
j>i

{
log(γ (si − s j ;θ) + (Y(si ) − Y(s j ))2

2γ (si − s j ;θ)

}
.

Maximization of C L(θ; Y) with respect to θ yields a composite maximum likelihood esti-
mator (MLE). Note that by considering only pairwise differences, the unknown constant
mean parameter is eliminated from this composite log likelihood, in keeping with the spirit
of REML. The composite MLE is consistent and asymptotically normal under certain regu-
larity conditions within an increasing domain asymptotic framework, and it turns out that
this consistency holds even if the random field is not Gaussian. Moreover, it can be shown
(Gotway and Schabenberger, 2005, pp. 171–172) that this particular composite likelihood
estimator is equivalent to the estimator obtained by applying (nonlinear) weighted least
squares in the model

[Y(si ) − Y(s j )]2 = 2γ (si − s j ;θ) + εi j , E(εi j ) = 0, var(εi j ) = 8[γ (si − s j ;θ)]2.

A third strategy for approximating the likelihood is that of covariance tapering (Kaufman,
Schervish, and Nychka, 2009). In this approach, elements of the covariance matrix corre-
sponding to spatially distant pairs of observations are set to zero, so that the algorithms
for sparse matrix inversion and determinant evaluation mentioned in the previous section
may be used. Suppose that Y(·) is an isotropic Gaussian random field with linear mean
function and covariance function C0(h;θ), and let CT (h; γ ), where γ is known, be a “ta-
pering function,” i.e., an isotropic, continuous correlation function that is identically zero
whenever h ≥ γ . Then, let

C1(h;θ, γ ) = C0(h;θ)CT (h; γ ), h ≥ 0.

Note that C1(h;θ, γ ) is a valid (positive definite) covariance function that differs from C0
for distant locations, but retains the same variance as C0. Furthermore, Kaufman et al. show
that if C0 belongs to the Matérn family of covariance functions, then a tapering function CT

may be found for which the resulting covariance function C1 has the same behavior near
the origin as C0 and corresponds, in fact, to a mean-zero Gaussian measure equivalent to
that corresponding to C0. Now, if C1 rather than C0 was actually the covariance function of
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Y(·), then the log likelihood function corresponding to the vector of observations Y would
be

LT (θ, β; Y) = −1
2

log |Σ (θ) ◦ T(γ )| − 1
2

(Y − Xβ)T [Σ (θ) ◦ T(γ )]−1(Y − Xβ)

where T(γ ) is the matrix with (i, j)th element CT (‖si − s j‖; γ ) and “◦” refers to the el-
ementwise, or Schur, product of two matrices. Kaufman et al. consider the “one-taper
estimator” obtained by maximizing this approximation to the log likelihood, and another,
the “two-taper estimator,” which is based on the theory of unbiased estimating equations
and, therefore, is less biased. They show via simulation that both estimators, but especially
the two-taper estimator, perform quite well, even when the degree of tapering is severe.

A final strategy is to use spectral methods to approximate the likelihood. For a stationary
Gaussian random field observed on a regular grid of points, Whittle (1954) developed the
following approximation:

L(θ; Y) .= LW(θ; Y) = − n
(2π )2

∑
ω∈F

{
log f (ω, θ) + In(ω; Y)[ f (ω, θ)]−1}

where F is the set of Fourier frequencies, f is the spectral density of the random field, and
In is the periodogram. Using the fast Fourier transform, LW(θ; Y) can be calculated very
efficiently, with only O(n log2 n) operations. Fuentes (2007) extended this methodology for
use with irregularly spaced data by integrating the random field Y(·) over grid cells. Using
simulation, she found that this approach was as efficient statistically as the approach of
Stein et al. (2004) except for capturing the behavior of Y(·) at very short distances, and that
it was considerably more efficient computationally.

4.8 Methods for Non-Gaussian Data

To this point in the chapter we have assumed that the observations are Gaussian. What
can be done to estimate parameters of continuous spatial processes that yield non-normal
observations? For observations that are continuous but skewed or have bounded support
(such as proportions), one possibility is to transform the data to a scale on which the
data are more nearly normal (see de Oliveira, Kedem, and Short (1997) for a Bayesian
implementation of this idea). For discrete observations, such as counts or presence/absence
data, one may base an analysis upon a class of models called spatial generalized linear
mixed models (GLMMs). We conclude this chapter with a brief discussion of GLMMs and
of likelihood-based estimation of their parameters. Some other models and methods for
non-Gaussian data are presented in Chapter 11.

In a classical generalized linear model (GLM) for a vector of independent observations
with mean μ, some function of the mean, g(μ), called the link function, is assumed to be
a linear combination of fixed effects, i.e., g(μ) = Xβ. These effects and any dispersion pa-
rameters of the model may be estimated by either maximum likelihood or quasilikelihood
(Wedderburn, 1974), depending on whether one assumes a distribution (from the expo-
nential family) for the data or only its first and second moments. Liang and Zeger (1986)
and Zeger and Liang (1986) extended the quasilikelihood methodology to GLMs with se-
rially correlated observations from longitudinal studies, and Albert and McShane (1995)
and Gotway and Stroup (1997) adapted this extension to spatial data. However, a spatial
GLM does not, by itself, provide a way to model and estimate spatial correlation. Spatial
GLMMs, introduced by Diggle, Tawn, and Moyeed (1998), offer such an opportunity by
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adding spatially correlated random effects to the model. In a spatial GLMM, a latent zero-
mean, stationary Gaussian random field {b(s) : s ∈ D}, with covariance function C(h;θ),
is assumed to exist. Conditionally on b(·), Y(·) is taken to be an independent process with
distribution specified by the conditional mean E{Y(s)|b(s)}, and for some link function g,

g[E{Y(s)|b(s)}] = xT
j (s)β + b(s).

The likelihood function for the parameters of a spatial GLMM is given by

L(β, θ; Y) =
∫

Rn

{
n∏

i=1

fi (Y(si )|b, β)

}
fb(b|θ) db

where b = (b(s1, . . . , b(sn))T , fi is the conditional density of Y(si ) given b, and fb is the
multivariate Gaussian density of b. Owing to the high dimensionality of this integral,
obtaining the MLE by direct maximization of L is not feasible, so a number of alternatives
have been put forward. Zhang (2002) presented an expectation-maximization (EM) gradient
algorithm for maximizing L . Varin, Host, and Skare (2005) and Apanasovich, Ruppert,
Lupton, Popovic (2007) developed composite (pairwise) likelihood estimation approaches.
Diggle et al. (1998) and Christensen and Waagepetersen (2002) obtained parameter estimates
using Bayesian MCMC methods.
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Spectral methods are a powerful tool for studying the spatial structure of spatial continu-
ous processes and sometimes offer significant computational benefits. Using the spectral
representation of a spatial process we can easily construct valid (positive definite) covariance
functions and introduce new models for spatial fields. Likelihood approaches for large spa-
tial datasets are often very difficult, if not infeasible, to implement due to computational
limitations. Even when we can assume normality, exact calculations of the likelihood for
a Gaussian spatial process observed at n locations requires O(n3) operations. The spectral
version of the Gaussian log likelihood for gridded data requires O(nlog2n) operations and
does not involve calculating determinants.

In Section 5.1 of this chapter we offer a review of the Fourier transform and introduce
the spectral representation of a stationary spatial process, we also present Bochner’s the-
orem to obtain the spectral representation of a covariance function and, in particular, of a
d-dimensional isotropic covariance function (for any value of d). In Section 5.2 we describe
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some commonly used classes of spectral densities. In Section 5.3, we introduce the peri-
odogram, a nonparametric estimate of the spectrum, and we study its properties. In Sec-
tion 5.4, we present an approximation to the Gaussian likelihood using spectral methods.
In Section 5.5 we apply all of these methods in a case study to illustrate the potential of
the spectral methods presented in this chapter for modeling, estimation, and prediction of
spatial processes.

5.1 Spectral Representation

In this section, we start with some background material, and we present a review of the
Fourier transform and its properties; we also discuss the aliasing phenomenon in the spec-
tral domain. This aliasing effect is a result of the loss of information when we take a discrete
set of observations on a continuous process.

5.1.1 Continuous Fourier Transform

A Fourier analysis of a spatial process, also called a harmonic analysis, is a decomposition
of the process into sinusoidal components (sines and cosines waves). The coefficients of
these sinusoidal components are the Fourier transform of the process.

Suppose that g is a real or complex-valued function that is integrable over Rd. Define

G(ω) =
∫
Rd

g(s)exp(iωts)ds (5.1)

for ω ∈ Rd . The function G in Equation (5.1) is said to be the Fourier transform of g. Then,
if G is integrable over Rd , g has the representation

g(s) = 1
(2π )d

∫
Rd

G(ω)exp(−iωts)dω, (5.2)

so that G(ω) represents the amplitude associated with the complex exponential with fre-
quency ω. When d = 2, we call ω a spatial frequency. A spatial frequency is also called a
wavenumber, as the measurement of the number of repeating units of a propagating wave
(the number of times a wave has the same phase) per unit of space. The norm of G is called
the Fourier spectrum of g. The right-hand side of Equation (5.2) is called the Fourier integral
representation of g. The functions g and G are said to be a Fourier transform pair. If both g
and G are integrable, there is no difficulty in defining (5.1) and (5.2). However, the integrals
in (5.1) and (5.2) are also defined in other more general settings (see, e.g., Sogge, 1993).

It is often useful to think of functions and their transforms as occupying two domains.
These domains are referred to as the upper and the lower domains in older texts, “as if
functions circulated at ground level and their transforms in the underworld” (Bracewell,
2000). They are also referred to as the function and transform domains, but in most physics
applications they are called the time (or space) and frequency domains, respectively. Oper-
ations performed in one domain have corresponding operations in the other. For example,
the convolution operation in the time (space) domain becomes a multiplication opera-
tion in the frequency domain. The reverse is also true. Such results allow one to move
between domains so that operations can be performed where they are easiest or most
advantageous.
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5.1.2 Aliasing

If we decompose a continuous process Z(s) with s ∈ Rd , into a discrete superposition of
harmonic oscillations, it is easy to see that such a decomposition cannot be uniquely restored
from observations of Z in ΔZd = δ1Z × · · · × δdZ , where the vector Δ = (δ1, . . . , δd ) is the
distance between neighboring observations, and Zd the integer d-dimensional lattice. The
equal spacing in the space domain of the observations introduces an aliasing effect for the
frequencies. Indeed, for any z1 = (z11, . . . , z1d ) and z2 = (z21, . . . , z2d ) in Zd , we have

exp
(
iωtz1Δ

) = exp
{

i (ω + z22π/Δ)t z1Δ)
} = exp

(
iωtz1Δ

)
exp

(
i2πzt

2z1
)

,

where z1Δ = (z11δ1, . . . , z1dδd ) and z1/Δ = (z11/δ1, . . . , z1d/δd ). We simply cannot distin-
guish an oscillation with a spatial frequency ω from all the oscillations with frequencies
ω+ 2πz2/Δ. The frequencies ω and ω′ = ω+ 2πz2/Δ are indistinguishable and, hence, are
aliases of each other. The impossibility of distinguishing the harmonic components with
frequencies differing by an integer multiple of 2π/Δ by observations in the d-dimensional
integer lattice with spacing Δ is called the aliasing effect.

Then, if observation of a continuous process Z is carried out only at uniformly spaced
spatial locations Δ units apart, the spectrum of observations of the sample sequence Z(Δzi ),
for zi ∈ Zd , is concentrated within the finite frequency d-dimensional interval −π/Δ ≤
ω < π/Δ, where π is a d-dimensional vector with all components equal to π, and z1 < z2
for zi ∈ Zd denotes z1i < z2i for all i = 1, . . . , d. Every frequency not in that d-dimensional
interval has an alias in the interval, which is termed its principal alias. The whole frequency
spectrum is partitioned into intervals of length 2π/Δ by fold points (2zi + 1)π/Δ, where
zi ∈ Zd and 1 is a d-dimensional vector with all components equal to 1. Then, the power
distribution within each of the intervals distinct from the principal interval −π/Δ ≤ ω <

π/Δ, is superimposed on the power distribution within the principal interval. Thus, if we
wish that the spectral characteristics of the process Z to be determined accurately enough
from the observed sample, then the Nyquist frequency π/Δ must necessarily be so high that
still higher frequencies ω make only a negligible contribution to the total power of the
process. This means that we observe a dense sample of Z (small Δ). The Nyquist frequency
is also called the folding frequency, since higher frequencies are effectively folded down into
the d-dimensional interval −π/Δ ≤ ω < π/Δ.

It should be noted that aliasing is a relatively simple phenomenon. In general, when one
takes a discrete set of observations on a continuous function, information is lost. It is an
advantage of the trigonometric functions that this loss of information is manifest in the
easily understood form of aliasing.

5.1.3 Spectral Representation of a Continuous Spatial Process

In this section, we first define the concept of mean square continuity of a spatial process,
then we introduce the spectral representation of a stationary mean square continuous spatial
process using sine and cosine waves. We also present Bochner’s theorem to obtain a spectral
representation for the covariance function.

5.1.3.1 Mean Square Continuity

A spatial process Z(s) is mean square continuous at s if limy→s E{Z(y) − Z(s)}2 = 0. If
Z is a weakly stationary process with covariance function C , then Z(s) is mean square
continuous at s, if and only if C is continuous at the origin. Because a weakly stationary
process is either mean square continuous everywhere or nowhere, we can say that Z is
mean square continuous if and only if C is continuous at the origin. However, the mean
square continuity of Z does not imply that its realizations are continuous.
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5.1.3.2 The Spectral Representation Theorem

Suppose Y1, . . . , Ym are mean zero complex random variables with E(Yi Yj ) = 0 for i �= j,
and E |Yj |2 = f j for each j, and ω1, . . . , ωm ∈ Rd . Consider

Z(s) =
m∑

j=1

exp(iω j
ts)Yj , (5.3)

then Z is a weakly stationary process in Rd with covariance C(s) = ∑m
j=1 exp

(
iω j

ts
)

f j .

Equation (5.3) provides an example of a spectral representation of a complex spatial process
Z. In Figure 5.1a, following the representation in Equation 5.3, we present the real part of a
realization of a stationary process Z in one dimension as a sum of 100 sinusoidal functions
with random amplitudes; in Figure 5.1b, we show the 100 values of fi , the variance of the
random amplitude functions. The values of fi correspond to what we will later call a squared
exponential spectral density function. In Figure 5.1c, we present another realization of a
stationary process Z, but in this case the spectrum (shown in 5.1d) has higher values (more
power) at higher frequencies, so this makes the process Z less smooth. The values of fi in
5.1(d) correspond to what we will later call the spectral density function of an exponential
covariance function. By taking L2 limits of the sums in Equation (5.3), we obtain spectral
representations of all mean square continuous weakly stationary processes. That is, to every
mean square continuous weakly stationary process Z(s), with mean 0 and covariance C ,
there can be assigned a process Y(ω) with orthogonal increments, such that we have for
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FIGURE 5.1
Realization of two stationary processes in one dimension using a sum of 100 sinusoidal functions with different
random amplitudes.
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each fixed s the following stochastic integral that gives the spectral representation (e.g.,
Yaglom, 1987):

Z(s) =
∫
Rd

exp(iωts)dY(ω). (5.4)

This integral can be interpreted as a limit in L2 of a Fourier series. Y(ω) is defined up to
an additive random variable. The Y process is called the spectral process associated with a
stationary process Z. The random spectral process Y has the following properties:

E(Y(ω)) = 0,

because the mean of Z is 0. The process Y has orthogonal increments:

E[(Y(ω3) − Y(ω2))(Y(ω1) − Y(ω0))] = 0,

when ω3 < ω2 < ω1 < ω0.

If we define F as
E[|dY(ω)|2] = F (dω),

where |F (dω)| < ∞ for all ω. F is a positive finite measure.
The spectral representation theorem may be proved by various methods: using Hilbert

space theory or by means of trigonometric integrals. A good reference is Cramér and
Leadbetter (1967).

5.1.3.3 Bochner’s Theorem

We introduce the spectral representation of the autocovariance function C :

C(s) =
∫
Rd

exp(istω)F (dω).

Bochner’s theorem states that a continuous function C is nonnegative definite if and only if
it can be represented in the form above where F is a positive finite measure. Thus, the spatial
structure of Z could be analyzed with a spectral approach or equivalently by estimating
the autocovariance function (Cramér and Leadbetter, 1967).

If we compare the spectral representation of C(s) and Z(s) (e.g., Loéve, 1955),

C(s) =
∫
Rd

exp(iωts)F (dω),

Z(s) =
∫
Rd

exp(iωts)dY(ω),

it will be seen that the elementary harmonic oscillations are respectively exp(iωts)F (dω),
exp(iωts)dY(ω).

If we think of Y(ω) as representing the spatial development of some concrete physical
systems, the spectral representation gives the decomposition of the total fluctuation in
its elementary harmonic components. The spectral d.f. F ({ω′ : ω′ < ω}) determines the
distribution of the total average power in the Z(s) fluctuation over the range of spatial
frequency ω. The average power assigned to the frequency d-dimensional interval A =
[ω1, ω2] is F ( A), which for the whole infinite ω range becomes

E |Z(s)|2 = C(0) = F (Rd ).

Thus, F determines the power spectrum of the Z process. We may think of this as a distribu-
tion of a spectral mass of total amount C(0) over theω axis. F only differs by a multiplicative
constant from an ordinary d.f.
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If F has a density with respect to Lebesgue measure, this density is the spectral density,
f . When the spectral density exists, if the covariance function C is a continuous function,
we have the Fourier inversion formula

f (ω) = 1
(2π )d

∫
Rd

exp(−iωtx)C(x)dx. (5.5)

Throughout this chapter, we will assume that the spectral density exists. To get the most
general result, we have seen that one needs to replace f (ω)dωwith F (dω), but this extension
is not of much practical value in spatial settings for which one rarely gets positive mass at
individual frequencies.

If Z is observed only at N uniformly spaced spatial locations Δ units apart, the spectrum
of observations of the sample sequence Z(Δx), for x ∈ Z2, is concentrated within the finite
frequency interval −π/Δ ≤ ω < π/Δ (aliasing phenomenon). The spectral density fΔ of
the process on the lattice can be written in terms of the spectral density f of the continuous
process Z as

fΔ(ω) =
∑

Q∈Z2

f
(
ω + 2π Q

Δ

)
(5.6)

for ω ∈ Π 2
Δ = [−π/Δ, π/Δ]2.

5.1.4 Spectral Representation of Isotropic Covariance Functions

If the d-dimensional process Z is isotropic with continuous covariance C and spectral
density f , then for h = (h1, . . . , hd ), we have C(h) = C0(‖h‖), where ‖h‖ = [h2

1+. . .+h2
d ]1/2,

for some function C0 of a univariate argument. We denote ‖h‖ as h. For d = 1, the class
of all (one-dimensional) isotropic covariance functions coincides with the class of all real
covariance functions of stationary processes. If, however, d > 1, then not every real positive
definite function can be an isotropic covariance function.

Let K represent all nonnegative real numbers. Since any d-dimensional isotropic co-
variance function C is necessarily a covariance function of a stationary process, by using
Bochner’s theorem, C can be written in spherical coordinates as

C(h) =
∫
Rd

exp(ihtω) f (ω)dω =
∫
Kd

exp(ihtω cos(ψht
ω

)) f (ω)dω

where ψht
ω

is the angle between vectors h and ω. This representation of C simplifies to
C0(h),

C0(h) =
∫
Kd

Yd (ωh) f (ω)dω =
∫

(0,∞)
Yd (ωh)Φ(dω), (5.7)

where

Φ(ω) =
∫

. . .

∫
‖ω‖<ω

f (ω)dω

is nondecreasing on [0, ∞) with
∫

Φ(dω) < ∞ (this implies C0 falls off rapidly enough at
infinity), and

Yd (h) =
(

2
h

)(d−2)/2

Γ
(

d
2

)
J (d−2)/2(h),

where Jν(·) denotes the Bessel function of the first kind of order ν, which can be defined as

Jν(x) = (x/2)ν

Γ (ν + 1/2)Γ (1/2)

∫ π

0
exp(±i x cos(θ )) sin2ν θdθ ,
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when ν + 1/2 > 0. The Bessel function of the first kind can be more generally defined by a
contour integral,

Jν(x) = 1
2π i

∮
e [x/2][t−1/t]t−ν−1dt,

where the contour encloses the origin and is traversed in a counterclockwise direction
(Arfken and Weber, 1995, p. 416).

The representation of the covariance in the form (5.7) is called the spectral representation
of a d-dimensional isotropic covariance function.

This illustrates the most general strategy for constructing an isotropic stationary covari-
ance function, we use Equation (5.7) with an arbitrary nondecreasing Φ. Conversely, any
conjectured covariance that cannot be written in this form cannot be positive definite and,
hence, is not the covariance of a valid stationary process.

If the random field Z has a spectral density f (ω), then f can be determined from the
known covariance function C using Bochner’s theorem. If we have isotropy,

f (ω) = 1
(2π )d/2

∫ ∞

0

J (d−2)/2(ωh)
(ωh)(d−2)/2 hd−1C0(h)dh (5.8)

where ω = ‖ω‖. In the particular cases where d = 2 or d = 3, Equation (5.8) is of the form

f (ω) = 1
2π

∫ ∞

0
J0(ωh)hC0(h)dh,

for d = 2, and

f (ω) = 1
2π2

∫ ∞

0

sin (ωh)
ωh

h2C0(h)dh,

for d = 3. The function f is usually called the d-dimensional spectral density of the isotropic
random field Z in Rd .

A d-dimensional isotropic covariance function with d > 1 is also a covariance function of
some real stationary random process. Therefore, in looking for examples of isotropic covari-
ance functions, we can examine only the real functions C(s) that are stationary covariance
functions. To check whether or not the given function C (which falls off rapidly enough at
infinity) is a d-dimensional isotropic covariance function, one only needs to obtain, using
Equation (5.8), the corresponding spectral density f (ω) and examine whether or not this
function f (ω) is everywhere nonnegative. This is under the assumption f does exist, if not,
one would obtain F and examine whether or not F is a positive finite measure function.

5.1.5 Principal Irregular Term

Before introducing different classes of isotropic spectral densities, let us study the behavior
of an isotropic covariance functions C in a neighborhood of 0, since that is related to the high
frequency behavior. This high frequency behavior is the most critical factor for the kriging
prediction (see Chapter 6). The concept of principal irregular term (PIT) is a characterization
of the covariance function at the origin. It is natural to describe this behavior at short
distances using a series expansion in ‖h‖ = h about 0. For an isotropic covariance function
C , let us informally define its PIT as the first term in the series expansion about 0 for C as a
function of h that is not proportional to h raised to an even power (Matheron, 1971, p. 58).
If g(h) = αhβ is a PIT of C, we call β the power and α the coefficient of the PIT.

If C(h) = C0(h) is an exponential function, then

C0(h) = πφα−1exp(−αh) = πφα−1 − πφh + O(h2),
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as h ↓ 0, and the nonzero coefficient multiplying h in the series expansion indicates that C
is not differentiable at 0. For C0(h) = πφα−1exp(−αh), the PIT is −πφh, so the coefficient of
the PIT does not depend on α. This suggests that the local behavior of the corresponding
process is not much affected by α. This observation is more clear in the spectral domain.
The spectral density corresponding to C0 is f0(ω) = φ(α2 + ω2)−1, which is approximately
φω−2 for high frequencies (as |ω| ↑ ∞), so the high-frequency behavior of the spectral
densities also does not depend on α. For the squared exponential covariance model in the
series expansion, the coefficient multiplying h raised to an odd number is always zero
indicating that that process has mean square derivatives of all orders. It is not easy to give a
formal definition of the PIT, because it need not be of the form αhβ . Stein (1999) generalizes
Matheron’s definition of the PIT, and suggests that for most of the common covariance
models, the PIT is of the form αhβ , α ∈ R, β > 0 and not an even integer, or α log(h)hβ ,
α ∈ R, β an even integer.

Chapter 6 explores this connection between the high-frequency behavior of the spectral
density and the coefficient of the PIT, as well as its impact on the kriging prediction.

5.2 Some Spectral Densities

We describe in this section some commonly used classes of spectral densities. We consider a
real process, thus the spectral density is an even function. We also assume that the covariance
is isotropic, so that the spectral density is a function of a single frequency.

5.2.1 Triangular Model

For a spatial process with a triangular isotropic covariance:

C(h) = C0(h) = σ (a − h)+,

for σ and a positive, where (a )+ = a if a > 0, otherwise (a )+ = 0, and h denotes the
Euclidean norm of the d-dimensional vector h. This model is only valid for d = 1. The
corresponding spectral density (for d = 1) is

f (ω) = f0(ω) = σπ−1{1 − cos(αω)}/ω2,

for ‖ω‖ = ω, ω > 0, and f (0) = σπ−1α2/2. The oscillating behavior of the spectral density
probably would be quite unrealistic for many physical processes. There is usually no reason
to assume the spectrum has much more mass near the frequency (2n+1)π than near 2nπ for
n large, which is the case for the spectral density {1 − cos(αω)}/ω2. Some kriging predictors
under this model have strange properties as a consequence of the oscillations of the spectral
density at high frequencies.

5.2.2 Spherical Model

One of the most commonly used models for isotropic covariance functions in geological
and hydrological applications is the spherical

C0(h) =
{

σ
(

1 − 3
2ρ

h + 1
2ρ3 h3

)
h ≤ ρ

0 h > ρ
(5.9)

for positive constants σ and ρ. This function is not a valid covariance in higher dimensions
than 3. The parameter ρ is called the range and is the distance at which correlations become
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exactly 0. This function is only once differentiable at h = ρ and this can lead to problems
when using likelihood methods for estimating the parameters of this model. In three di-
mensions, the corresponding isotropic spectral density has oscillations at high frequencies
similar to the triangular covariance function in one dimension. This could cause some ab-
normal behavior in the spatial predicted fields when using this spherical model in three
dimensions (Stein and Handcock, 1989).

5.2.3 Squared Exponential Model

The density of a spatial process with an isotropic squared exponential covariance:

C0(h) = σ e−αh2

is

f0(ω) = 1
2
σ (πα)−1/2e−ω2/(4α).

Note that C0 and f0 both are the same type of exponential functions when γ = 2. The
parameter σ is the variance of the process and α−1 is a parameter that explains how fast the
correlation decays.

5.2.4 Matérn Class

A class of practical variograms and autocovariance functions for a process Z can be obtained
from the Matérn (1960) class of spectral densities

f (ω) = f0(ω) = φ(α2 + ω2)(−ν− d
2 ) (5.10)

with parameters ν > 0, α > 0, and φ > 0 (the value d is the dimension of the spatial
process Z). Here, the vector of covariance parameters is θ = (φ , ν, α). The parameter α−1

can be interpreted as the autocorrelation range. The parameter ν measures the degree of
smoothness of the process Z, the higher the value of ν the smoother Z would be, in the sense
that the degree of differentiability of Z would increase. The parameter φ is proportional to
the ratio of the variance σ and the range (α−1) to the 2νth power, φ ∝ σα2ν .

The corresponding covariance for the Matérn class is

C(h) = C0(h) = πd/2φ

2ν−1Γ (ν + d/2)α2ν
(αh)νKν(αh), (5.11)

where Kν is a modified Bessel function of the third kind,

Kν(h) = π

2

(
I−ν(h) − Iν(h)

sin(πν)

)
,

with Iν the modified Bessel function of the first kind, which can be defined by a contour
integral,

Iν(x) =
∮

e [x/2][t+1/t]t−ν−1dt,

where the contour encloses the origin and is traversed in a counterclockwise direction
(Arfken and Weber, 1995, p. 416). In the Matérn class, when ν = 1

2 , we get the exponential
covariance function

C0(h) = πφα−1exp(−αh).

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 22, 2010 10:44 C7287 C7287˙C005

66 Handbook of Spatial Statistics

When ν is of the form m + 1
2 with m a nonnegative integer, the Matérn covariance function

is of the form e−αh times a polynomial in h of degree m, (Abramowitz and Stegun, 1965;
Stein, 1999, p. 31).

Handcock and Wallis (1994) suggested the following parametrization of the Matérn co-
variance that does not depend on d :

C0(h) = σ

2ν−1Γ (ν)
(2ν1/2h/ρ)νKν(2ν1/2h/ρ), (5.12)

but the corresponding spectral density then depends on d:

f0(ω) = σg(ν, ρ)
(4ν/ρ2 + ω2)ν+d/2 ,

where

g(ν, ρ) = Γ (ν + d/2)(4ν)ν

πd/2ρ2νΓ (ν)

with σ = var(Z(s)), the parameter ρ measures how the correlation decays with distance,
and generally this parameter is called the range. The parameter α−1 has a very similar
interpretation to ρ, but ρ is approximately independent of ν, while α−1 is not. ρ and α−1

have also different asymptotic properties under an infill asymptotic model described in
Chapter 6. If we consider the limit as ν → ∞, we get the squared exponential covariance

C0(h) = σ e−h2/ρ2
.

The smoothness of a random field, the parameter ν in the Matérn class, plays a critical
role in interpolation problems. This parameter is difficult to estimate accurately from data.
A number of the commonly used models for the covariance structure, including exponen-
tial and squared exponential structures assume that the smoothness parameter is known a
priori.

As an alternative to the Matérn covariance, sometimes the powered exponential model
could be used:

C0(h) = σ e−αhγ
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FIGURE 5.2
Covariance models: Exponential (solid line) and squared exponential also called Gaussian covariance (dotted
line).
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FIGURE 5.3
Matérn covariance functions. The solid line represents a Matérn covariance with ν = 1/2 (exponential covariance)
and the dashed line a Matérn with ν = 3/2.

with α > 0 and γ ∈ (0, 2]. The parameter γ (when γ < 2) plays the same role as 2ν in the
Matérn, and for γ = 2 it corresponds to ν = ∞. However, for values of 1 ≤ ν < ∞, the
powered exponential has no elements providing similar local behavior as the Matérn.

Figure 5.2 shows two Matérn covariances: a squared exponential covariance (also known
as Gaussian) and an exponential covariance. The squared exponential is more flat at the
origin, this indicates that the spatial process is very smooth. On the other hand, the expo-
nential is almost linear at the origin, indicating that the corresponding spatial process is
not very smooth; in fact, this process is not even once mean square differentiable.

Figure 5.3 shows another two Matérn covariances with ν = 1/2 (exponential) and with
ν = 3/2, which corresponds to a process that is once differentiable. Figure 5.4 shows the
corresponding spectral densities.
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FIGURE 5.4
Spectral densities. The solid line represents a Matérn spectral density with ν = 1/2 (the corresponding covariance
function is exponential), and the dashed line a Matérn spectral density with ν = 3/2.
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5.3 Estimating the Spectral Density

The periodogram, a nonparametric estimate of the spectral density, is a powerful tool for
studying the properties of stationary processes observed on a d-dimensional lattice. Use
and properties of spatial periodograms for stationary processes have been investigated by
and Whittle (1954), Ripley (1981), Guyon (1982, 1992), Rosenblatt (1985), Stein (1995, 1999),
and Fuentes (2001, 2002, 2005), among others.

This section is organized as follows. First, we introduce the periodogram, then, by using
least squares, we present a parametric fitting algorithm for the spectral density. In this sec-
tion, to simplify the notation, we assume we observe the process in a two-dimensional space.

5.3.1 Periodogram

Consider a spatial stationary process Z with a covariance function C. We observe the process
at N equally spaced locations in a two-dimensional regular grid D (n1×n2), where N = n1n2.
The vector distance between neighboring observations is Δ = (δ2, δ2). The periodogram
is a nonparametric estimate of the spectral density, which is the Fourier transform of the
covariance function. We define IN(ω0) to be the periodogram at a frequency ω0,

IN(ω0) = δ1δ2(2π )−2(n1n2)−1

∣∣∣∣∣
n1∑

s1=1

n2∑
s2=1

Z(Δs)exp(−iΔstω)

∣∣∣∣∣
2

. (5.13)

If the spectral representation of Z is

Z(s) =
∫
R2

exp(iωts)dY(ω),

we define J (ω), a discrete version of the spectral process Y(ω), which is the Fourier trans-
form of Z (see, e.g., Priestley, 1981),

J (ω) = (δ1δ2)−1/2(2π )−1(n1n2)−1/2
n1∑

s1=1

n2∑
s2=1

Z(Δs)exp(−iΔstω).

Using the spectral representation of Z and proceeding formally,

C(x) =
∫
R2

exp(iωtx)F (dω) (5.14)

where the function F is called the spectral measure or spectrum for Z. F is a positive finite
measure, defined by

E{d|Y(ω)|2} = F (dω). (5.15)

Thus, we get
IN(ω) = |J (ω)|2 ; (5.16)

this expression for IN is consistent with the definition of the spectral measure F in
Equation (5.15), as a function of the spectral processes Y. The periodogram (5.13) is simply
the discrete Fourier transform of the sample covariance, defined as cN(Δh) = N−1 ∑n1

s1=1∑n2
s2=1 Z(Δs)Z(Δ(s+h)). Since, the periodogram can be rewritten in terms of cN as follows,

IN(ω0) = δ1δ2(2π )−2
n1∑

h1=1

n2∑
h2=1

cN(Δh)exp(−iΔhtω), (5.17)

where h = (h1, h2).
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In practice, the periodogram estimate forω is computed over the set of Fourier frequencies

2π( j/
nΔ ) where j/n =

(
j1
n1

, j2
n2

)
, and j ∈ J N, for

J N = {�−(n1 − 1)/2, . . . , n1 − �n1/2} × {�−(n2 − 1)/2, . . . , n2 − �n2/2} (5.18)

where �u denotes the largest integer less than or equal to u.

5.3.1.1 Theoretical Properties of the Periodogram

The expected value of the periodogram at ω0 is given by (see, e.g., Fuentes, 2002)

E( IN(ω0)) = (2π )−2(n1n2)−1
∫

Π 2
Δ

fΔ(ω)W(ω − ω0)dω,

where Π 2
Δ = (−π/δ1, π/δ1) × (−π/δ2, π/δ2) , and

WN(ω) =
2∏

j=1

sin2 ( nj ω j

2

)
sin2 (ω j

2

)

for ω = (ω1, ω2) = 2π( j/
nΔ ) and j ∈ J N\{0}, and fΔ(ω) is the spectral density of the process

Z on the lattice with spacing Δ. The side lobes (subsidiary peaks) of the function WN can
lead to substantial bias in IN(ω0) as an estimator of fΔ(ω0) because they allow the value of
fΔ at frequencies far from ω0 to contribute to the expected value. Figure 5.5 shows a graph
of WN along the vertical axis (n2 = 500). As n1 → ∞ and n2 → ∞, then WN(ω) becomes the
Dirac delta function, which has mass 1 at zero or zero otherwise.

For a fixed N, if the side lobes of WN were substantially smaller, we could reduce this
source of bias for the periodogram considerably. Tapering is a technique that effectively
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FIGURE 5.5
Spectral window along the vertical axis. The x-axis (horizontal line) in the graph is the spectral frequencies
projected on the 1-dimensional interval (0, π/δ2) with δ2 = 1, while the y-axis shows the spectral window along
the vertical axis for the periodogram (without tapering), for n2 = 500.
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reduces the side lobes associated with the spectral window W. We form the product h(s)Z(s)
for each value of s, where {h(s)}s is a suitable sequence of real-valued constants called a
data taper, and then we compute the periodogram for the tapered data.

The periodogram values are approximately independent, and this facilitates the use of
techniques, such as nonlinear least squares (NLS) to fit a theoretical spectral model to the
periodogram values.

5.3.1.1.1 Asymptotic Properties of the Periodogram

Theorem 1 (Brillinger, 1981): Consider a Gaussian stationary process Z with spectral density
f (ω) on a lattice D. We assume Z is observed at N equally spaced locations in D (n1 × n2),
where N = n1n2, and the spacing between observations is Δ. We define the periodogram
function, IN(ω), as in (5.13).

Assume n1 → ∞, n2 → ∞, n1/n2 → λ, for a constant λ > 0.

Then, we get:

(i) The expected value of the periodogram, IN(ω), is asymptotically fΔ(ω).
(ii) The asymptotic variance of IN(ω) is f 2

Δ(ω).
(iii) The periodogram values IN(ω), and IN(ω′) for ω �= ω′, are asymptotically inde-

pendent.

By Theorem 1(i) the periodogram IN is asymptotically an unbiased estimate of the spectral
density, fΔ on the lattice. Note, that if f is the continuous process Z and fΔ the spectral
density on the lattice, then using increasing-domain asymptotics, IN is not asymptotically an
unbiased estimate of f , but of fΔ, the spectral density of the sampled sequence Z(Δx).

By Theorem 1(ii) the variance of the periodogram at ω is asymptotically f 2
Δ(ω). The

traditional approach to this inconsistency problem is to smooth the periodogram across
frequencies.

By Theorem 1(iii), the periodogram values at any two fixed Fourier frequencies are ap-
proximately independent. However, in the space domain, the empirical covariance or var-
iogram values are correlated, which thwarts the use of least squares to fit a parametric
covariance model to the sample covariance/variogram function.

Dahlhaus and Künsch (1987) show that the periodogram of tapered data is efficient in
only one dimension. However, the periodogram of tapered data is an efficient estimate of
the spectral density in two and three dimensions.

5.3.1.1.2 Asymptotic Distribution of the Periodogram

If the process Z is stationary, such that the absolute value of the joint cumulants of order k
are integrable (for all k), then the periodogram has asymptotically a distribution that is a
multiple of a χ2

2 . More specifically, the periodogram IN(ω j ), whereω j is a Fourier frequency,
has asymptotically a f (ω j )χ2

2 /2 distribution (Brillinger, 1981).

5.3.2 Lattice Data with Missing Values

In this section, we introduce a version of the periodogram by Fuentes (2007) for lattices
with missing values. Consider Z a lattice process with spectral density f . We assume Z is a
weakly stationary real-valued Gaussian process having mean zero and finite moments. The
process Z is defined on a rectangle PN = {1, . . . , n1} × {1, . . . , n2} of sample size N = n1n2.
The covariance C of the process Z satisfies the following condition: Σs[1 + ‖s‖]|C(s)| < ∞,
where C(s) = Cov{Z(s + y), Z(y)}. This condition implies that the spectral density of Z
exits and has uniformly bounded first derivatives (Brillinger, 1981, Sec. 2.6).
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The process Z is not directly observed. Rather, we observe Y, an amplitude modulated
version of Z for the observations on the grid, given by

Y(s) = g(s/n)Z(s), (5.19)

where s/n = (s1/n1, s2/n2). The weight function g in practice could take zero values at
the locations at which we do not have observations and one everywhere else. We call this
function a zero-filling taper.

We then introduce a version of the periodogram for the incomplete lattice:

ĨN(ω) = 1
H2(0)

∣∣∣∣∣
N∑

k=1

(Y(sk) − g(sk/n) Z̃)exp{−iωtsk}
∣∣∣∣∣
2

(5.20)

where Hj (λ) = (2π )2 ∑N
k=1 g j (sk/n)exp{iλtsk}, then H2(0) = (2π )2 ∑N

k=1 g(sk/n)2, and

Z̃ =
(

N∑
k=1

Y(sk)

)/(
N∑

k=1

g(sk/n)

)
.

If g(sk/n) = 1 for all sk in PN, then Y ≡ Z on the lattice, and ĨN reduces to the standard
definition of the periodogram. When g takes some zero values (due to missing data), the
difference between the traditional periodogram for Z, IN, and the new definition given
here, ĨN, is a multiplicative factor, (n1n2)/H2(0). This is the bias adjustment that needs to
be made to the periodogram function due to the missing values.

Fuentes (2007) studied the asymptotic properties of this estimate of f , under some weak
assumptions for g (g is bounded and of bounded variation), as N → ∞. The expected value
of ĨN is

E[ ĨN(ω)] =
∫ π

−π

∫ π

−π

f (ω − φ)|H1(φ)|2dφ. (5.21)

Thus, E[ ĨN(ω)] is a weighted integral of f (ω). Asymptotically,

E[ ĨN(ω)] = f (ω) + O(N−1). (5.22)

Sharp changes in g make its Fourier transform and the squared modulus of its Fourier
transform exhibit side lobes. The scatter associated with a large number of missing values
creates very large side lobes in Equation (5.21). Even if asymptotically the bias is negligible
by Equation (5.22), it could have some impact for small samples. Fuentes (2007) obtains the
asymptotic variance for ĨZ,

var{ ĨN(ω)} = |H2(0)|−2 {
H2(0)2 + H2(2ω)2} f (ω)2 + O(N−1). (5.23)

The quantity multiplying f in the expression (5.23) for the asymptotic variance is greater
than 1 when we have missing values, and it is 1 when there are no missing values. Thus, a
large number of missing values would increase the variance of the estimated spectrum.

Expression 5.20 provides then a version of the periodogram for lattices with missing
values; that it is an asymptotically unbiased estimate of the spectral density of the process.
A strategy here is to fill with zeros the values of the process at the locations with missing
values. It has also been extended to model data not observed on a grid (Fuentes, 2007).

5.3.3 Least Squares Estimation in the Spectral Domain

Consider modeling the spatial structure of Z by fitting a spectral density f to the peri-
odogram values. We could use a weighted nonlinear least squares (WNLS) procedure that
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gives more weight to frequencies with smaller variance for the periodogram (this generally
corresponds to higher frequency values).

Thus, we propose using a parametric model for f with weights f (ω)−1 (based on the
asymptotic results for the periodogram variance). For large N, the approximate standard
deviation of the periodogram IN is f (ω). Thus, the proposed weights f (ω)−1 stabilize the
variance of the periodogram values. This is similar to the weighted least squares method
used in the space domain to fit a variogram model (Cressie, 1985). We recommend using
weighted least squares in the spectral domain rather than in the space domain because
periodogram values are approximately independent while sample variogram values are
not. Therefore, in the spectral domain, we do not need a generalized least squares approach
to be able to make proper inference about the estimated parameters and their variances,
while in the special domain we would.

For spatial prediction, the behavior of the process at high frequencies is more relevant
(Stein, 1999). We can obtain asymptotically (as N → ∞) optimal prediction when the
spectral density at short frequencies is misspecified. An approximate expression for the
spectral density of the Matérn class for high frequency values is obtained from Equation
(5.10) by letting ‖ω‖ go to ∞:

f (ω) = φ‖ω‖(−2ν−d) (5.24)

Thus, the degree of smoothness, ν, and φ are the critical parameters (and not the range
α−1). This is consistent with the description of the principal irregular term given in
Section 5.1.5. Then, an alternative approach to the WNLS for the high-frequencies model in
Equation (5.24) is to fit in the log scale a linear model using OLS (ordinary least squares):

log( f (ω)) = β0 + β1 X (5.25)

where X = log(ω), β0 = log(φ), and β1 = 2
(−ν − d

2

)
.

5.4 Likelihood Estimation in the Spectral Domain

For large datasets, calculating the determinants that we have in the likelihood function can
be often infeasible. Spectral methods could be used to approximate the likelihood and obtain
the maximum likelihood estimates (MLEs) of the covariance parameters: θ = (θ1, . . . , θr ).

Spectral methods to approximate the spatial likelihood have been used by Whittle (1954),
Guyon (1982), Dahlhaus and Künsch, (1987), Stein (1995, 1999), and Fuentes (2007), among
others. These spectral methods are based on Whittle’s approximation to the Gaussian neg-
ative log likelihood:

N
(2π )2

∫
R2

{
log f (ω) + IN(ω) f (ω)−1} dω (5.26)

where the integral is approximated with a sum evaluated at the discrete Fourier frequencies,
IN is the periodogram, and f is the spectral density of the lattice process. The approximated
likelihood can be calculated very efficiently by using the fast Fourier transform. This approx-
imation requires only O(N log2 N) operations, assuming n1 and n2 are highly composite.
Simulation studies conducted by the authors seem to indicate that N needs to be at least
100 to get good, estimated MLE parameters using Whittle’s approximation.

The asymptotic covariance matrix of the MLE estimates of θ1, . . . , θr is

2
N

[{
1

4π2

∫
[−π,π ]

∫
[−π,π ]

∂log f (ω1)
∂θ j

∂log f (ω2)
∂θk

dω1dω2

}
jk

]−1

; (5.27)
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the exponent −1 in Equation (5.27) denotes the inverse of a matrix. The expression in
Equation (5.27) is much easier to compute than the inverse of the Fisher information
matrix.

Guyon (1982) proved that when the periodogram is used to approximate the spectral den-
sity in the Whittle likelihood function, the periodogram bias contributes a non-negligible
component to the mean squared error (mse) of the parameter estimates for two-dimensional
processes, and for three dimensions, this bias dominates the mse. Thus, the MLE param-
eters of the covariance function based on the Whittle likelihood are only efficient in one
dimension, but not in two- and higher-dimensional problems, although they are consistent.
Guyon demonstrated that this problem can be solved by using a different version of the
periodogram, an “unbiased periodogram,” which is the discrete Fourier transform of an
unbiased version of the sample covariance. Dahlhaus and Künsch (1987) demonstrated that
tapering also solves this problem.

The Whittle approximation to the likelihood assumes complete lattices. Fuentes (2007)
introduces an extension of the Whittle approximated likelihood that can be applied to lattice
data with missing values to obtain MLEs and the variance of the MLEs, by using the version
of the periodogram in Equation (5.20). Fuentes also introduces a more general version of
the periodogram for irregularly spaced datasets that can be used to obtain an approximated
likelihood for irregularly spaced spatial data.

5.5 Case Study: Analysis of Sea Surface Temperature

In this section, we apply spectral methods to estimate the spatial structure of sea surface
temperature fields using the Tropical Rainfall Measuring Mission (TRMM) microwave im-
ager (TMI) satellite data for the Pacific Ocean. Global sea surface temperature (SST) fields
are very useful for monitoring climate change, as an oceanic boundary condition for numer-
ical atmospheric models, and as a diagnostic tool for comparison with the SSTs produced
by ocean numerical models. SSTs can be estimated from satellites, for example, using the
TRMM TMI. The spatial scales and structure of SST fields are the main factor to identify
phenomena, such as El Niño and La Niña, that occur in the equatorial Pacific and influence
weather in the Western Hemisphere. Spatial patterns of SST in the Pacific are also being
used as one of the main climate factors to identify tropical cyclones (hurricanes) that form in
the south of Mexico and strike Central America and Mexico from June to October. Studying
the spatial structure of SST in the Pacific is also important to understanding the exchange of
water between the north and south equatorial currents. A good understanding of the SST’s
spatial variability is crucial for guiding future research on the variability and predictability
of the world ocean SST and the climate that it influences.

We analyze TMI data to estimate the spatial structure of SST over the northeast Pacific
Ocean. Currently, most of the operational approaches to estimate the covariance parameters
of the TMI SST fields, in particular the mesoscale and zone scale parameters (ranges of
correlation) (Reynolds and Smith, 1994), are empirical methods and there is not a reliable
measure of the uncertainty associated to the estimated parameters. Likelihood methods are
difficult to implement because the satellite datasets are very large.

The satellite observations in this application are obtained from a radiometer onboard the
TRMM satellite. This radiometer, the TRMM TMI, is well calibrated and contains lower-
frequency channels required for SST retrievals. The measurement of SST through clouds
by satellite microwave radiometers has been an elusive goal for many years. The TMI
data have roughly 25 km × 25 km spatial resolution and are available on the Internet
(www.remss.com/tmi/tmi_browse.html). Results gathered for March 1998.
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FIGURE 5.6
Sea surface temperature data (degrees Celsius) and residuals after removing a second-order polynomial trend.

5.5.1 Exploratory Analysis

The data in Figure 5.6a exhibit a strong north/south gradient. Therefore, we remove the
second-order polynomial trend

β0 + β1 ∗ L ONG + β2 ∗ L AT + β3 ∗ L ONG2 + β4 ∗ L AT2 + β5 ∗ L ONG ∗ L AT,

where the regression parameters are estimated using ordinary least squares. The residuals
in Figure 5.6b show no large-scale spatial trend.

Figure 5.7a plots the sample semivariogram for the residuals with bin width 2 km. In the
semivariogram, we use the actual latitude and longitude for each location, which do not
precisely lie on a grid due to satellite projections. The semivariogram is fairly constant after
500 km, indicating there is little spatial correlation in the residuals past this distance. Because
north/south (different distance from the equator) and east/west (different distance from
the coast) neighbors share different geographic features, we may question the isotropy
assumption. We inspect the isotropy assumption using the sample semivariogram and
periodogram in Figure 5.7c along different directions. The semivariogram shows slightly
more variation in the north/south direction (0◦) than in the east/west direction (90◦). The
periodogram shows a similar pattern. In this plot, ω1 = 0 corresponds to north/south
variation (0◦ in the semivariogram), ω2 = 0 corresponds to east/west variation (90◦). As
with the semivariogram, the periodogram shows the most variation in the north/south
direction. Although these plots suggest there may be moderate anisotropy, we proceed
with the isotropic model for ease of presentation. For a discussion of anisotropic model
fitting, see Chapter 3.

5.5.2 Parameter Estimation

The data are on a 75 × 75 rectangular grid defined by latitude and longitude for a total
of 5,625 observations. Due to the large amount of data, a full maximum likelihood analy-
sis for a continuous Gaussian process is infeasible. Therefore, we consider two computa-
tionally efficient methods (both run in a few seconds on an ordinary PC) for estimating
the spatial covariance parameters: maximum likelihood using the Whittle approxima-
tion and weighted least squares using the semivariogram. For variogram analyses, we
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FIGURE 5.7
Sample (points) and fitted semivariograms and periodograms (lines) for the sea surface temperature data.

use geodesic distance between points. For spectral analyses, we approximate distance be-
tween points using a rectangular grid. This flat-Earth approximation is reasonable in this
small subregrion of the Pacific Ocean; variogram analyses are similar with and without this
approximation.

The semivariogram and periodogram in Figure 5.7a suggest that the Matérn covariance is
appropriate for these data. Since these satellite data are smoothed during preprocessing, we
do not include a nugget effect. Table 5.1 gives the Matérn covariance parameter estimates
and their standard errors for both approaches using the Handcock–Wallis parameterization,
the MLE estandard errors are obtained using Equation (5.27). The estimates are fairly similar,
but there are some important differences. Since most of the information for the smoothness
parameter ν comes from short-range differences and the semivariogram bins all short-range
differences into only a few observations, the standard error for ν is larger for the weighted
least squares (WLS) estimate (0.050) than for the MLE (0.007). Also, since the standard
errors for the WLS regression of the semivariogram do not account for correlation between
bins, the standard errors for the sill σ and the range ρ are smaller than the MLE standard
errors (5.27) and may be too optimistic. Smith (2001, pp. 54–61) proposes a method for
calculating the standard errors for the WLS regression of the semivariogram that account
for correlation between bins; however, we do no implement this method here.
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TABLE 5.1

SST Covariance Parameter Estimates (Standard Errors)
Method Sill (σ) Range (ρ) Smoothness (ν)
MLE – Whittle (Matérn) 0.0033 (0.00012) 264.6 (13.5) 0.425 (0.007)
MLE – Whittle (Matérn) using fΔ 0.0032 (0.00012) 252.5 (11.5) 0.486 (0.006)
WLS – Semivariogram (Matérn) 0.0038 (0.00003) 331.9 (12.6) 0.588 (0.050)
MLE – Whittle (Exponential) 0.0031 (0.00010) 206.1 (6.9) 0.5
MLE – Whittle (Exponential) using fΔ 0.0032 (0.00012) 238.4 (8.9) 0.5
WLS – Semivariogram (Exponential) 0.0039 (0.00004) 352.8 (15.4) 0.5

The fitted Matérn semivariograms are plotted in Figure 5.7a. The spectral estimate’s semi-
variogram increases more rapidly near the origin than the WLS estimate’s semivariogram
because the spectral estimate of the smoothness parameter is smaller than the WLS estimate.
Because the spectral estimate of the range is smaller than the WLS estimate, the spectral
estimate’s semivariogram plateaus sooner than the WLS estimate’s semivariogram. The
spectral densities in Figure 5.7b show similar relationships between the two estimates. The
MLE estimate is smaller than the WLS estimate for small frequencies that measure large-
scale effects, and the MLE estimate is larger than the WLS estimate for large frequencies
that measure small-scale effects.

Both estimates of the smoothness parameter ν are close to 0.5, indicating that an expo-
nential covariance may also fit the data well. Table 5.1 presents the covariance parameter
estimates for the exponential model. Setting ν to 0.5 illustrates that despite the asymptotic
independence under the Handcock–Wallis parameterization, for finite sample, there may
still be a negative relationship between the smoothness parameter and the range. For the
MLE, increasing the smoothness from 0.425 to 0.5 causes the range to decrease from 264.6
to 206.1. For the WLS method, decreasing the smoothness from 0.588 to 0.5 causes the range
to increase from 331.9 to 352.8. Figures 5.7a,b show that the Matérn and exponential models
give similar semivariograms and spectral densities.

In the above spectral analysis, we have used the spectral density f0 in Equation (5.5)
evaluated at the Fourier frequencies. However, to be more precise, the spectral density for
these gridded data is the infinite sum fΔ in Equation (5.6). The parameter estimates using
fΔ (“MLE – Whittle (Matérn) using fΔ”) are given in Table 5.1. To calculate fΔ, we use only
the first 100 terms of the infinite sum. The estimates are slightly different using fΔ rather
than f0. However, the fitted spectral density for the Matérn covariance in Figure 5.7b is
virtually identical using either fΔ or f , so it appears that using f as the spectral density is
an adequate approximation.

This section demonstrates that spectral methods are useful tools for exploratory analysis
and covariance estimation, especially for large datasets. Compared with variogram ap-
proaches, spectral methods produce similar exploratory analysis and parameter estimates.
However, because spectral methods approximate the true likelihood, the standard errors
used for inference are more reliable.
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6.1 Asymptotics

Yakowitz and Szidarovszky (1985) posed what appeared to be a fundamental challenge to
the use of kriging for spatial interpolation. Specifically, they noted that it is not generally
possible to estimate consistently the variogram of a spatial process based on observations
in a bounded domain and, hence, it was not clear that one could obtain good kriging
predictors and good assessments of kriging variance based on estimated variograms even
if one had a very large number of observations in some bounded domain of interest. It is
still not possible to give a definitive response to this challenge, but there is now at least
some good reason to believe that the objection raised by Yakowitz and Szidarovszky does
not expose a fundamental flaw in the use of kriging for spatial interpolation. However, it
is still very much the case that what might be considered very basic results in the large
sample properties of kriging are unproven and, furthermore, the prospects of rigorous
proofs appearing in the foreseeable future are not great.

Before proceeding to review the present state of knowledge in the area, it is worth asking
if Yakowitz and Szidarovszky had somehow “rigged” the game. Specifically, their approach
to asymptotics is to consider what happens as observations are allowed to get increasingly
dense in a bounded domain, what we will call fixed-domain asymptotics, but which is
sometimes also called infill asymptotics (Cressie, 1993). Because the point of their paper
was to compare kriging to nonparametric regression approaches (such as kernel estimates)
as methods of spatial interpolation, their choice of fixed-domain asymptotics was natural,
since asymptotic results for nonparametric regression are inevitably based on allowing
observations to get dense in some bounded region of covariate space. One could instead let
the area of the observation domain grow proportionally with the number of observations,
which occurs if, for example, observations are taken at all s = (s1, s2) with s1 and s2 integers
between 1 and n and then letting n → ∞. In this case, one might expect to be able to
estimate the variogram consistently under some appropriate stationarity and ergodicity
assumptions on the underlying spatial process, although one still has to be careful as even
this result is not universally true (e.g., if a process is observed on a regular lattice, it will
not be possible without a parametric model to estimate the variogram consistently at all
distance lags). Some works have considered asymptotics in which the observations become
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dense throughout R
d as their number increases (Hall and Patil, 1994; Lahiri, et al., 1999),

although the idea has been used in the time series context at least as far back as Härdle and
Tuan (1986). Taking limits in this manner makes it possible, for example, to obtain consistent
estimates of the spectral density of a stationary Gaussian process at all frequencies (Hall
and Patil, 1994). However, existing asymptotic results that allow the observation domain
to increase with the number of observations generally assume that, at sufficiently large
distances, the process will be very nearly independent, so they would appear not to be
helpful when, as is fairly common, the effective range of a variogram is comparable or even
larger than the dimensions of the observation region. Still, this “mixed-domain” approach
to asymptotics may turn out to provide the most fruitful way to obtain rigorous theoretical
results in spatial statistics that are of relevance in practice.

Although there are some good arguments for taking a fixed-domain perspective, it is not
possible to say that one asymptotic approach is right and another is wrong. Asymptotic
methods have two important functions in statistics. One is to provide useful approximations
in settings where exact methods are unavailable. To the extent that a Bayesian approach
to kriging provides an adequate practical solution to the problem of carrying out spatial
interpolation with appropriate assessments of uncertainty, the need for asymptotics as a
source of approximations is arguably less than it was in the past. The other important
function of asymptotics is to provide insight into the properties of statistical methods, and
this need is as great as ever for understanding kriging. In particular, results on the behavior
of kriging predictors under fixed-domain asymptotics provide at least a partial response to
the challenge of Yakowitz and Szidarovszky (1985).

To understand these results, it is necessary to say something about a somewhat advanced
topic in probability theory: equivalence and orthogonality of probability measures. Suppose
we get to observe some random object X (e.g., a random vector or a stochastic process) and
that one of two probability measures (a fancy word for probability laws), P0 or P1, is the
correct one for X. Roughly speaking, P0 and P1 are equivalent if, no matter what value of
X is observed, it is impossible to know for sure which of the two measures is correct. The
measures are orthogonal if, no matter what value of X is observed, it is always possible to
determine which of the two measures is correct. For X a finite-dimensional random vector,
it is quite easy to determine if two possible probability measures are equivalent, orthogonal,
or neither. Figure 6.1 considers X a scalar random variable and gives examples of pairs of
probability densities for each of these three cases. The equivalent pair is on top; note that
equivalent densities are not identical and there is some information in an observation X = x
about which density is correct, there is just not enough information to say for sure. In the
middle plot, the supports of the two densities are disjoint, so if we observe an x in (0, 1),
we know for sure that P0 is correct and if we observe an x in (2, 3), we know for sure P1 is
correct. The bottom plot displays a case in which the two laws are neither equivalent nor
orthogonal: if x is in (0, 1), we know P0 is correct, if x is in (2, 3), we know P1 is correct,
and if x is in (1, 2), we do not know which measure is correct. A general theorem (Kuo,
1975) says that Gaussian probability measures are, in great generality in finite or infinite
dimensions, either equivalent or orthogonal; that is, cases like the bottom plot in Figure 6.1
cannot happen for Gaussian processes.

Let us give an example of a class of infinite-dimensional Gaussian measures in which
these issues arise. Suppose Y(t) is a zero mean Gaussian process on the interval [0, 1] with
autocovariance function K (t) = θe−φ|t|. Let us assume θ and φ are both positive, in which
case, K is a positive definite function. For j = 0, 1, let Pj be the Gaussian process law with
(θ , φ) = (θ j , φ j ). It is possible to show that if θ0φ0 = θ1φ1, then P0 and P1 are equivalent
Gaussian measures and if θ0φ0 �= θ1φ1, they are orthogonal. Thus, for example, writing K j

for the autocovariance function under Pj , if K0(t) = e−|t| and K1(t) = 2e−|t|/2, then P0 and
P1 are equivalent. That is, if we know that either P0 or P1 is true, then, despite the fact
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FIGURE 6.1
Plots showing equivalent probability measures (top), orthogonal probability measures (middle), and measures
that are neither equivalent nor orthogonal (bottom).

that we observe Y(t) for all t in [0, 1], we cannot say for sure which of the two measures is
correct. On the other hand, if K0(t) = e−|t| and K1(t) = e−|t|/2, then P0 and P1 are orthogonal
and we can say for sure (that is, with probability 1) which measure is correct. For example,
consider the sequence of statistics

Sn =
2n∑

j=1

{Y( j2−n) − Y(( j − 1)2−n)}2

for n = 1, 2, . . . . Under P0, it is possible to show that Sn → 2 (with probability 1) as n → ∞
and under P1, Sn → 1 (with probability 1) as n → ∞. Thus, in this case, looking at the
infinite sequence of Sns provides us with a way of saying for sure which of P0 or P1 is
correct.

We can gain some insight into equivalence and orthogonality by looking at the behavior of
the autocovariance functions near the origin. For K (t) = θe−φ|t|, we have K (t) = θ −θφ|t|+
O(t2) for t in a neighborhood of the origin. Thus, −θφ|t| is the principal irregular term for the
model (defined in Chapter 2) and we see that, in this case, at least, P0 and P1 are equivalent if
and only if their corresponding autocovariance functions have the same principal irregular
term. Alternatively, we can look in the spectral domain. The spectral density corresponding
to K (t) = θe−φ|t| is f (ω) = π−1φθ/(θ2 + ω2), which satisfies f (ω) = π−1φθω−2 + O(ω−4) as
ω → ∞. We see that P0 and P1 are equivalent if and only if their spectral densities have the
same asymptotic behavior at high frequencies.

In fact, it turns out that the high frequency behavior of the spectral densities is a better
guide for determining equivalence and orthogonality of Gaussian measures than the
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autocovariance functions, since behavior of autocovariance functions away from the origin
can affect equivalence (Stein, 1999), whereas, under mild conditions, the behavior of the
spectral density in any bounded set cannot. Suppose Y is a stationary Gaussian process on
R

d and the spectral density f0 satisfies

f0(ω)|ω|α is bounded away from 0 and ∞ as |ω| → ∞. (6.1)

This condition is stronger than necessary for the result below, but it is satisfied by a wide
range of covariance functions, including all Matérn covariance functions. Recall that spec-
ifying the first two moments of a Gaussian process defines its probability law. Define
G D(m, K ) to be the probability measure of a Gaussian process on a domain D with mean
function m and covariance function K . If f0 satisfies (6.1) and

∫
|ω|>C

{
f1(ω) − f0(ω)

f0(ω)

}2

dω < ∞ (6.2)

for some C < ∞, then GD(0, K0) and GD(0, K1) are equivalent on all bounded domains
D. In one dimension, if (6.1) holds, then (6.2) is close to being necessary for equivalence
of the corresponding Gaussian measures. For example, Ibragimov and Rozanov (1978,
p. 107) show that, under (6.1), ω1/2{ f1(ω) − f0(ω)}/ f0(ω) → ∞ as ω → ∞ implies GD(0, K0)
and GD(0, K1) are orthogonal on any interval D. Conditions for orthogonality of Gaussian
measures in more than one dimension are not so simple; some are given in Skorokhod and
Yadrenko (1973).

So what does this have to do with the challenge of Yakowitz and Szidarovszky (1985)
to kriging? Suppose P0 was the correct model for some Gaussian process on a bounded
domain D, but we instead used the equivalent Gaussian measure P1 to compute both
kriging predictors and to evaluate the mean squared errors of these predictors. If either
the resulting predictors or their presumed mean squared errors were not very good when
one had a large number of observations in D, then that would indicate a problem for
kriging because we would not be able to distinguish reliably between the correct P0 and the
incorrect P1, no matter how many observations we had in D. Fortunately, it turns out this is
not the case. Specifically, Stein (1988) showed that as a sequence of observations gets dense
in D, it makes no asymptotic difference whether we use the correct P0 or the incorrect (but
equivalent) P1 to carry out the kriging.

To explain this result, we need some new notation. Suppose we wish to predict Y(s0)
for some s0 and s1, s2, . . . is a sequence of observation locations. Suppose EY(s) = β′m(s),
where m is a known vector-valued function and β a vector of unknown coefficients. The
correct covariance structure for Y is given by K0(s, s′) = Cov{Y(s), Y(s′)} and the presumed
covariance structure by K1(s, s′). Let e j (s0, n) be the error of the BLUP (best linear unbiased
predictor, or the universal kriging predictor) of Y(s0) based on Y(s1), . . . , Y(sn) under K j .
Note that we are assuming the BLUP exists, which it will under very mild conditions on m.
To avoid confusion, let us call the BLUP of Y(s0) under K1 the pseudo-BLUP. Furthermore,
let E j indicate expected values under K j . Because errors of BLUPs are contrasts (linear com-
binations of Y with mean 0 for all β), specifying K j is sufficient to determine quantities like
E j ek(s0, n)2 for j, k = 0, 1, which is all we need here. Then E0e0(s0, n)2 is the mean squared
error of the BLUP of Y(s0) based on Y(s1), . . . , Y(sn). Furthermore, E0e1(s0, n)2 is the actual
mean squared error of the pseudo-BLUP. We necessarily have E0e1(s0, n)2/E0e0(s0, n)2 ≥ 1
and a value near 1 indicates that the pseudo-BLUP is nearly optimal relative to the BLUP.
When we presume K1 is true, we evaluate the mean squared prediction error for the pseudo-
BLUP by E1e1(s0, n)2, whereas its actual mean squared error is E0e1(s0, n)2. Thus, a value of
E0e1(s0, n)2/E1e1(s0, n)2 near 1 indicates that the presumed mean squared prediction error
for the pseudo-BLUP is close to its actual mean squared prediction error.
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Note that the preceding paragraph says nothing about Y being Gaussian and in fact the
theorem below does not require Y to be Gaussian. However, it does include a condition
about the equivalence of the Gaussian measures GD(0, K0) and GD(0, K1) and, thus, its
practical relevance for non-Gaussian processes is unclear.

Theorem 1: Consider a process Y defined on a domain D with finite second moments
and EY(s) = β′m(s). Suppose s0, s1, . . . are in D, GD(0, K0) and GD(0, K1) are equivalent
probability measures, and e j (s0, n) is the error of the BLUP of Y(s0) under K j based on
Y(s1), . . . , Y(sn). If E0e0(s0, n)2 → 0 as n → ∞, but E0e0(s0, n)2 > 0 for all n, then

lim
n→∞

E0e1(s0, n)2

E0e0(s0, n)2 = 1, (6.3)

lim
n→∞

E0e1(s0, n)2

E1e1(s0, n)2 = 1. (6.4)

See Stein (1988) for a proof. It is not necessary to assume separately that E1e1(s0, n)2 >

0, since E0e0(s0, n)2 > 0 and the equivalence of the two measures in fact implies that
E1e1(s0, n)2 > 0. Indeed, Theorem 1 holds without the restriction E0e0(s0, n)2 > 0 for all
n as long as one defines 0/0 = 1. However, E0e0(s0, n)2 → 0 as n → ∞ is required and
is satisfied if, for example, Y is mean square continuous on D and s0 is a limit point of
s1, s2, . . . . Equation (6.3) says that the relative impact of using the incorrect K1 rather than
the correct K0 on mean squared prediction errors is asymptotically negligible; i.e., predic-
tions under K1 are asymptotically optimal. Equation (6.4) says that the presumed mean
squared prediction error under the incorrect K1, given by E1e1(s0, n)2, is, on a relative basis,
close to the actual mean squared error of this prediction, E0e1(s0, n)2. Thus, for purposes of
both point prediction and evaluating mean squared prediction error, asymptotically, there
is no harm in using K1 rather than K0.

If s1, s2, . . . is dense in D, Stein (1990) shows that the convergence in these limits is uniform
over all possible predictands obtainable by taking linear combinations of Y(s) for s in D and
their mean squared limits (i.e., including predictands such as weighted integrals over D).
Theorem 1 also holds if the observations include uncorrelated, equal variance measurement
errors, as long as the variance of these errors is taken to be the same under both P0 and
P1. In the case when the mean of Y is known, then these results follow from a much more
general result due to Blackwell and Dubins (1962) that shows that the predictions of two
Bayesians must, in great generality, be asymptotically identical if their priors are equivalent
probability measures.

For stationary processes with spectral densities, it is possible to give a substantially
weaker and simpler condition than the equivalence of corresponding Gaussian measures.
Specifically, if f j is the spectral density associated with the autocovariance function K j and
f0 satisfies Equation (6.1), then f1(ω)/ f0(ω) → 1 as |ω| → ∞ is sufficient for Theorem
1 to hold. This condition is, in practice, substantially weaker than Equation (6.2) and is,
in fact, not sufficient to imply that GD(0, K0) and GD(0, K1) are equivalent. Stein (1998,
1999) gives many more detailed results along these lines, including rates of convergence
in Equation (6.3) and Equation (6.4) in a number of circumstances, although mainly for
processes in R

1.
Let us consider a numerical illustration. Suppose we observe a stationary process Y at

25 randomly located points in the unit square D = [0, 1]2 (Figure 6.2) and wish to predict
Y at (0, 0) and (0.5, 0.5), a corner and the middle of the observation domain, respectively.
Assume the mean of Y is an unknown constant, so that we will be using ordinary kriging.
The true autocovariance function of Y is K0(s) = e−|s| and the presumed autocovariance
function is K1(s) = 2e−|s|/2. Using Equation (6.2), it is possible to show that GD(0, K0)
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FIGURE 6.2
Shown is a plot of observation locations (◦) and prediction locations (×) for numerical illustration.

and GD(0, K1) are equivalent and, hence, Theorem 1 applies. Thus, for a sufficiently large
number of randomly located observations in D and any s0 in D, we should expect both
E0e1(s0, n)2/E0e0(s0, n)2 and E0e1(s0, n)2/E1e1(s0, n)2 to be near 1. Table 6.1 gives the values
for these ratios and, indeed, all of them are somewhat close to 1, but some are much closer
than others. In particular, for both prediction locations, the first ratio is much closer to 1
than the second, indicating that the effect of using K1 instead of the correct K0 is much
greater on the assessment of mean squared error than on the actual mean squared error
of the pseudo-BLUP. The phenomenon that getting the covariance function wrong tends
to have a greater impact on the evaluation of mean squared error than on the efficiency of
the point predictions has long been observed in the geostatistical community. Stein (1999)
provides further numerical results and some theoretical support for this observation.

The other important pattern displayed in Table 6.1 is that both ratios are much closer to 1
when predicting at the center of the square rather than at the corner of the square. We might
reasonably call predicting at the center of the square an interpolation and predicting at the
corner an extrapolation. Stein (1999) gives extensive numerical and theoretical evidence that
this distinction between interpolation and extrapolation holds quite generally. That is, using
an incorrect covariance structure K1 instead of the correct K0 generally matters more when
extrapolating than interpolating. It is perhaps not surprising that model misspecifications
should matter more when extrapolating than interpolating; one only has to think about
regression problems to realize that statistical statements about what happens outside of the
range of available data are more sensitive to the choice of model than statements within
that range. In the present context, we obtain the conclusion that there is very little need
to distinguish between K0 and K1 with GD(0, K0) and GD(0, K1) equivalent if we wish to

TABLE 6.1

Properties of Pseudo-BLUPs
Error Variance = 0 Error Variance = 0.4

Corner Center Corner Center

E0e2
0 0.2452 0.1689 0.3920 0.2340

E0e2
1/E0e2

0 1.0046 1.0001 1.0083 1.0003
E0e2

1/E1e2
1 0.9623 0.9931 0.9383 0.9861
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interpolate and a somewhat greater need if we wish to make predictions near a boundary
of the observation domain.

The frequency domain provides a helpful perspective for understanding these results.
Specifically, when interpolating, it turns out that the low-frequency behavior of the pro-
cess has very little impact. Thus, models with similar high-frequency behavior produce
highly similar interpolations. As the prediction becomes more of an extrapolation, the low-
frequency behavior affects predictions more. Thus, if we considered predicting at a location
even farther from the observations than the corner, we would tend to find the ratios in Table
6.1 even further from 1. Table 6.1 also gives results when there is a measurement error with
variance 0.4 under either model. Of course, E0e2

0 goes up when there is measurement error,
but more interestingly, all of the ratios in Table 6.1 are now further from 1. When there is
measurement error, BLUPs make greater use of more distant observations, so that the low
frequency behavior matters more.

In spatial statistics, one is usually interested in interpolation rather than extrapola-
tion, whereas in time series, extrapolation is usually of much greater interest. This dif-
ference provides one possible argument for using fixed-domain asymptotics in spatial
statistics, but increasing-domain asymptotics in time series. Specifically, the insight that
fixed-domain asymptotics brings to prediction problems on the near irrelevance of low-
frequency behavior is much more pertinent when interpolating than extrapolating. It is
interesting to note, though, that in recent years, a great deal of fixed-domain asymp-
totics has been done in the finance literature, spurred by the interest in the fluctuations
of various financial instruments on very short time scales (see, e.g., Zhang, Mykland and
Aı̈t-Sahalia, 2005).

Although Theorem 1 and its various extensions are theoretically interesting, they do not
come close to proving that if one plugs an estimated covariance function into the standard
kriging formulas (plug-in prediction), then the resulting predictors are asymptotically op-
timal or the presumed mean squared prediction errors are asymptotically correct. I would
guess that such a result is true under fixed-domain asymptotics in broad generality for
Gaussian processes with homogeneous covariance functions, but, except for a rather lim-
ited result due to Putter and Young (2001) to be discussed below, no substantial progress
has been made on this problem.

6.2 Estimation

The availability of asymptotic results for estimation of spatial covariance structures depends
greatly on the question one asks. Generally speaking, there are many more results under
increasing-domain asymptotics than under fixed-domain asymptotics, more for observa-
tions on a regular grid than irregularly sited observations, and more for explicitly defined
estimators, such as those based on empirical variograms, than for implicitly defined esti-
mators, such as restricted maximum likelihood (REML). For example, Guyon (1995) gives
many asymptotic results for estimators of spatial covariance based on gridded data and
increasing-domain asymptotics for both parametric and nonparametric cases, Gaussian and
non-Gaussian, and even some for maximum likelihood (ML) estimators under certain spe-
cial models. However, if one’s goal is to estimate the spatial covariance structure of a process
on R

2, which is what is needed for kriging, it may not be a good idea to place all observations
on a lattice (Pettitt and McBratney, 1993). In contrast, it is difficult to point to a single mean-
ingful result for irregularly sited observations under fixed-domain asymptotics. Indeed,
even for gridded data under fixed-domain asymptotics, results for ML or REML estimates
only exist in some very simple cases, largely for processes in one dimension or for separable
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processes in more than one dimension for which one can obtain explicit expressions for the
likelihood function (Ying, 1991, 1993; Chen, Simpson and Ying, 2000; Loh, 2005).

Under increasing-domain asymptotics, one might generally expect that under parametric
models for the covariance structure, all parameters can be consistently estimated and that
ML and REML estimators should obey the “usual” asymptotics. Specifically, we might
expect that these estimators are asymptotically normal with asymptotic mean given by the
true value of the parameters and asymptotic covariance matrix given by the inverse of the
Fisher information matrix. Mardia and Marshall (1984) give a general result to this effect
about ML estimators, but despite a strong effort by the authors to give results that can
be verified in practice, it is not an easy matter to verify the conditions of their results for
observations that are not on a regular lattice. Cressie and Lahiri (1993, 1996) give similar
results for REML estimators. It does not appear that any of these results apply to intrinsic
random functions that are not stationary.

One of the difficulties in obtaining fixed-domain asymptotic results even for Gaussian
processes observed on a grid is that, under any model including something like a range
parameter, there will generally be at least one function of the parameters that cannot be con-
sistently estimated as the number of observations increases. For example, if D is a bounded
infinite subset of R

d for d ≤ 3 and K0 and K1 are two Matérn covariance functions, then the
ratio of the corresponding spectral densities tending to 1 as the frequency tends to infinity
is necessary and sufficient for the corresponding Gaussian measures to be equivalent (see
Zhang, 2004, Theorem 2). As a special case of this result, consider K (s; θ , φ) = θ exp(−φ|s|),
with θ and φ unknown positive parameters. Then the corresponding Gaussian measures
are equivalent on any bounded infinite subset D in 3 or fewer dimensions if and only if
θ0φ0 = θ1φ1. It immediately follows that it is not possible to estimate either θ or φ consis-
tently based on observations in D, but it may be possible to estimate their product, θφ,
consistently. Ying (1991) shows this is, in fact, the case for the ML estimator for (θ , φ) when
d = 1. Because so much of the asymptotic theory of estimation is based on the existence of
consistent estimators of the unknown parameter vector, much of the mathematical machin-
ery that has been built so carefully over the years must be abandoned. Even with models
for which all parameters can be consistently estimated based on observations in a bounded
domain (e.g., a nugget effect plus a linear variogram), one generally does not get the usual
n−1/2 convergence rate (Stein, 1987), which also leads to considerable mathematical diffi-
culties.

Zhang and Zimmerman (2005) make an intriguing effort to compare the approximations
given by fixed and increasing domain asymptotics. Part of the difficulty is to find a set-
ting in which fixed-domain asymptotics provides a useful explicit approximation for all
components of a parameter vector. They provide some evidence in the limited setting of a
Gaussian process on the line with exponential variogram observed with or without Gaus-
sian errors, the fixed-domain approach provides greater qualitative insight and sometimes
better approximations than the increasing domain approach. However, without some fur-
ther advances in deriving and computing the limiting distribution of parameter estimates
under fixed-domain asymptotics, it is not clear how to extend these results to more realistic
settings.

One of the difficulties of studying the asymptotic properties of ML and REML estimates
in spatial settings is that one rarely has explicit expressions for the estimates, which causes
particular difficulties with fixed-domain asymptotics for which standard asymptotic re-
sults do not generally hold. For spatial data on a regular grid, there are some more general
fixed-domain asymptotic results for statistical methods that are not based on the likelihood
function. These results go back to Lévy (1940), who showed that the sum of squared in-
crements for Brownian motion observed at n evenly spaced locations on the unit interval
converges to the variance parameter of the Brownian motion as n → ∞. In the ensuing
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years, there have been many extensions to this basic result that the parameters controlling
the local behavior of a Gaussian process can be estimated consistently under fixed-domain
asymptotics using increment-based estimators. Davies and Hall (1999) provide a good en-
try into this literature, with a focus on estimating the “fractal index” of stationary Gaussian
processes, which, for isotropic processes, is directly related to the power in the principal
irregular term of the variogram when that power is less than 2 (see Chapter 2) Chan and
Wood (2004) extend some of these results to processes that are a pointwise transformation of
a stationary Gaussian random process. Anderes and Chatterjee (2008) show how increment-
based estimators can be used to estimate the local anisotropy of nonstationary Gaussian
processes. Stein (1995) and Lim and Stein (2008) consider the spatial periodogram of a
Gaussian random field and show that results similar to those that hold for the periodogram
under increasing-domain asymptotics sometimes hold in the fixed-domain setting as long
as one first applies an appropriate prewhitening filter to the data.

6.2.1 Prediction and Estimation

Putter and Young (2001) are essentially the only ones whose work provides some theory
about kriging with estimated covariance functions that applies in the fixed-domain setting.
They give a general-looking result based on contiguity of sequences of measures (a topic re-
lated to equivalence of two measures, see Roussas, 1972) that indicates a version of Theorem
1 holds when P1 is replaced by an estimated model. However, they only explicitly verify
their conditions for some very simple models in one dimension. Furthermore, their proof
actually requires a slightly stronger condition than they give in their paper (the contiguity
condition has to apply not just to the measures generated by the observations, but also to
the measures generated by the observations together with the predictand).

Despite this lack of direct theoretical evidence, for Gaussian processes with correctly
specified parametric models for the covariance function, I would guess that Theorem 1 does
generally hold when P1 is replaced by an estimated model, as long as a “good” method
of parameter estimation, such as REML, is used. This result can be expected to hold to a
greater degree of accuracy when predicting at locations not near a boundary of D. Even if it
is proven some day, given its dependence on such strong model assumptions, practitioners
would still need to use great care in selecting and fitting spatial covariance functions when
the goal is spatial prediction.
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7.1 Introduction

In spatial statistics, one often must develop statistical models in the presence of complicated
processes, multiple sources of data, uncertainty in parameterizations, and various degrees
of scientific knowledge. One can approach such complex problems from either a joint or
conditional viewpoint. Although it may be intuitive to consider processes from a joint
perspective, such an approach can present serious challenges to statistical modeling. For
example, it can be very difficult to specify joint multivariate dependence structures for
related spatial datasets. It may be much easier to factor such joint distributions into a series
of conditional models. For example, it is simpler (and a reasonable scientific assumption)
to consider a near-surface ozone process conditional upon the near-surface ambient air
temperature (especially in the summer), rather than consider the ozone and temperature
processes jointly. Indeed, it is often possible to simplify modeling specifications, account
for uncertainties, and use scientific knowledge in a series of conditional models, coherently
linked together by simple probability rules. This is the essence of hierarchical modeling.

In principle, hierarchical models can be considered from either a classical or Bayesian
perspective. However, as the level of complexity increases, the Bayesian paradigm becomes
a necessity. Indeed, the increased use of such approaches has coincided with the revolution
in Bayesian computation exemplified by the adoption and further development of Markov

89
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chain Monte Carlo (MCMC) simulation approaches (Gelfand and Smith, 1990). The fact that
such simulation approaches are used requires that, in some cases, modeling choices have
to be made to facilitate computation. Of course, this is true of more traditional modeling/
estimation approaches as well, but the hierarchical modeler must explicitly account for
these challenges when building models, and such choices are often problem (if not dataset)
specific.

The remainder of this chapter will consider hierarchical models for spatial data. The
discussion is not intended to be a comprehensive review of the entire literature on hier-
archical models in spatial statistics. Rather, it is intended to provide an introduction and
glimpse of how hierarchical models have been and can be used to facilitate modeling of
spatial processes. The basic principles of hierarchical modeling are well established and
the cited references can provide additional perspective as well as increased technical detail.
Section 7.2 will describe the hierarchical approach from a simple schematic perspective. This
will then be followed in Sections 7.3 and 7.4 with specific discussion of hierarchical models
as they pertain to Gaussian and non-Gaussian geostatistical spatial processes, respectively.
Given that this part of the handbook is concerned with continuous spatial variation, we will
limit the discussion of hierarchical models to such models, although the ideas generalize to
other types of spatial support and processes. Finally, Section 7.5 contains a brief overview
and discussion.

7.2 An Overview of Hierarchical Modeling

The basic ideas of hierarchical modeling arise from simple probability rules. Although the
concept is not inherently Bayesian, over time most of the literature has been developed in
that context, and the best pedagogical descriptions are most often found in the Bayesian
literature (e.g., Gelman, Carlin, Stern, and Rubin, 2004). Our purpose here is not to reproduce
such general descriptions, but rather to describe hierarchical models in the context of a
framework that is relevant to spatial modeling. These ideas follow those in Berliner (1996)
and Wikle (2003).

Hierarchical modeling is based on the basic fact from probability theory that the joint
distribution of a collection of random variables can be decomposed into a series of condi-
tional distributions and a marginal distribution. That is, if A, B, C are random variables,
then we can write the joint distribution in terms of factorizations, such as [A, B, C] =
[A|B, C][B|C][C], where the bracket notation [C] refers to a probability distribution for C ,
and [B|C] refers to the conditional probability distribution of B given C , etc. For a spatial
process, the joint distribution describes the stochastic behavior of the spatially referenced
data, true (latent) spatial process, and parameters. This can be difficult (if not impossible) to
specify for many problems. It is often much easier to specify the distribution of the relevant
conditional models (e.g., conditioning the observed data on the true process and parame-
ters, etc.). In this case, the product of a series of relatively simple conditional models leads
to a joint distribution that can be quite complex.

For complicated processes in the presence of data, it is useful to approach the problem
by (conceptually, if not actually) breaking it into three primary stages (e.g., Berliner, 1996):

Stage 1. Data Model: [data|process, parameters]
Stage 2. Process Model: [process|parameters]
Stage 3. Parameter Model: [parameters]

The first stage is concerned with the observational process or “data model,” which speci-
fies the distribution of the data given the process of interest as well as the parameters that
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describe the data model. The second stage then describes a distribution (i.e., model) for
the process, conditional on other parameters. The last stage accounts for the uncertainty in
the parameters by endowing them with distributions. In general, each of these stages may
have multiple substages. For example, if the process is multivariate and spatial, it might be
modeled as a product of physically motivated distributions for one process given the oth-
ers, as suggested by some scientific relationship (e.g., ozone conditioned on temperature).
Similar decompositions are possible in the data and parameter stages.

Ultimately, we are interested in the distribution of the process and parameters updated
by the data, also known as the “posterior” distribution. This is obtained by Bayes’ rule in
which the posterior distribution is proportional to the product of the data, process, and
parameter distributions:

[process, parameters|data] ∝ [data|process, parameters]
× [process|parameters][parameters],

where the normalizing constant represents the integral of the right-hand side with respect
to the process and parameters. This formula serves as the basis for hierarchical Bayesian
analysis. Before we apply this directly to spatial data, we discuss in more detail the three
primary components of the general hierarchical model.

7.2.1 Data Models

The primary advantage of modeling the conditional distribution of the data given the true
process is that substantial simplifications in model form are possible. For example, let Y
be data observed for some (spatial) process η (which cannot be observed without error),
and let θy represent parameters. The data model distribution is written: [Y|η, θy]. Usually,
this conditional distribution is much simpler than the unconditional distribution of [Y]
due to the fact that most of the complicated dependence structure comes from the process
η. Often, the error structure of this model simply represents measurement error (and/or
small-scale spatial variability in the case of spatial processes). In this general framework,
the error need not be additive. Furthermore, this framework can also accommodate data
that is at a different support and/or alignment than the process, η (e.g., see Gelfand, Zhu,
and Carlin, 2001; Wikle, Milliff, Nychka, and Berliner, 2001; Wikle and Berliner, 2005).

The hierarchical data model also provides a natural way to combine datasets. For exam-
ple, assume that Ya and Yb represent data from two different sources. Again, let η be the
process of interest and θya , θyb parameters. In this case, the data model is often written

[Ya , Yb |η, θya , θyb ] = [Ya |η, θya ][Yb |η, θyb ]. (7.1)

That is, conditioned on the true process, the data are assumed to be independent. This
does not suggest that the two datasets are unconditionally independent, but rather, the
dependence among the datasets is largely due to the process, η. Such an assumption of
independence must be assessed and/or justified for each problem.

The conditional independence assumption can also be applied to multivariate models.
That is, if the processes of interest are denoted ηa and ηb , with associated observations Ya

and Yb , respectively, then one might assume:

[Ya , Yb |ηa , ηb , θya , θyc ] = [Ya |ηa , θya ][Yb |ηb , θyb ]. (7.2)

Again, this assumption must be evaluated for validity in specific problems. When appro-
priate, this can lead to dramatic simplifications in estimation.
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7.2.2 Process Models

It is often the case that developing the process model distribution is the most critical step in
constructing the hierarchical model. As mentioned previously, this distribution can some-
times be further factored hierarchically into a series of submodels. For example, assume
the process of interest is composed of two subprocesses, ηa and ηb (e.g., ηa might represent
lower tropospheric ozone and ηb might represent surface temperature over the same region,
as in Royle and Berliner (1999)). In addition, let the parameters θη = {θηa , θηb } be associated
with these two processes. Then, one might consider the decomposition,

[ηa , ηb |θη] = [ηa |ηb , θη][ηb |θη]. (7.3)

Further assumptions on the parameters lead to simplifications so that the right-hand side
of Equation (7.3) can often be written as [ηa |ηb , θηa ][ηb |θηb ]. The modeling challenge is the
specification of these component distributions. The utility and implementation of such a
model is facilitated by scientific understanding of the processes of interest, but the validity
of the hierarchical decomposition is not dependent upon such understanding.

7.2.3 Parameter Models

As is the case with the data and process model distributions, the parameter distribution is
often partitioned into a series of distributions. For example, given the data model (7.2) and
process model (7.3), one would need to specify the parameter distribution [θya , θyb , θηa , θηb ].
Often, one can make reasonable independence assumptions regarding these distributions,
such as [θya , θyb , θηa , θηb ] = [θya ][θyb ][θηa ][θηb ]. Of course, such assumptions are problem
specific.

There are often appropriate submodels for parameters as well, leading to additional
levels of the model hierarchy. For complicated processes, there may be scientific insight
available that can go into developing the parameter models similar to the development
of the process models (e.g., Wikle et al., 2001). In other cases, one may not know much
about the parameter distributions, suggesting “noninformative priors” or the use of data-
based estimates for hyperparameters. In many cases, the parameter distributions are chosen
mainly (or partly) to facilitate computation.

Historically, the specification of parameter distributions has sometimes been the focus
of objections due to its inherent “subjectiveness.” The formulation of the data and process
models is quite subjective as well, but those choices have not generated as much concern.
Indeed, subjectivity at these stages is a part of classical inference as well. A strength of the
hierarchical (Bayesian) approach is the quantification of such subjective judgment. Hierar-
chical models provide a coherent framework in which to incorporate explicitly in the model
the uncertainty related to judgment, scientific reasoning, pragmatism, and experience. Yet,
if one chooses to eliminate as much subjectivity as possible, there are various “objective”
choices for prior distributions that may be considered. One must be careful in the hierar-
chical modeling framework that such choices lead to a proper posterior distribution. For
a more philosophical discussion of the issues surrounding subjective and objective prior
development in Bayesian statistics, see Berger (2006) and Goldstein (2006) as well as the
accompanying discussion.

7.2.4 Hierarchical Spatial Models

The hierarchical framework can be applied to most of the standard spatial statistical model-
ing approaches described in this volume. Rather than develop a single general framework
to encompass all of these, we illustrate hierarchical spatial models for Gaussian and non-
Gaussian geostatistical problems in the following sections. The common theme throughout
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is the general three-stage hierarchical structure described above, the reliance on a latent
Gaussian spatial process within this framework, and the associated Bayesian implemen-
tation. These examples are not intended to be exhaustive. More detailed and complete
descriptions can be found in texts, such as Banerjee, Carlin, and Gelfand (2004), Diggle and
Ribeiro (2007), and the references therein.

7.3 Hierarchical Gaussian Geostatistical Model

Assume there are m observations of a spatial process, denoted by Y = (Y(s̃1), . . . , Y(s̃m))′

and we define a latent spatial vector, η = (η(s1), . . . , η(sn))′, where η(si ) is from a Gaus-
sian spatial process where si is a spatial location (assumed here to be in some subset of
two-dimensional real space, although generalization to higher dimensions is not difficult in
principle). In general, the locations {s1, . . . , sn} corresponding to the latent vector η may not
coincide with the observation locations {s̃1, . . . , s̃m}. Furthermore, most generally, the sup-
ports of the observation and prediction locations need not be the same (e.g., see Chapter 29
of this volume), although here we will assume both the observations and the latent spatial
process have point-level support.

In terms of our general hierarchical framework, we must specify a data model, process
model, and parameter models. For example, a hierarchical spatial model might be given by

Data Model: Y| β, η, σ 2
ε ∼ Gau(Xβ + Hη, σ 2

ε I) (7.4)

Process Model: η| θ ∼ Gau(0, Σ (θ)) (7.5)

Parameter Model: [β, σ 2
ε , θ] (7.6)

where X is an m × p matrix of covariates, often associated with the large-scale spatial mean
(or “trend” as discussed in Chapter 3 in this volume), β is the associated p × 1 vector
of parameters, H is an m × n matrix that associates the observations Y with the latent
process η, σ 2

ε corresponds to an independent, small-scale (nugget) spatial effect and/or
measurement error process ε, and θ is a vector of parameters used for the spatial covariance
function associated with the spatial latent process (e.g., a variance, spatial range parameter,
smoothness parameter, etc.). Note, the choice of the specific parameter distribution(s) is
often dependent on the estimation approach and/or the specific process being considered.
It is worth noting that the “mapping matrix” H is quite flexible. For example, in its simplest
form, H is simply the identity matrix if the observation and latent process locations coincide.
Alternatively, H might be an incidence matrix of ones and zeros if some (but not all) of
the observation locations correspond directly to latent process locations. Or, H might be
a weighting or averaging matrix in certain circumstances (e.g., see Wikle, Berliner, and
Cressie, 1998; Wikle et al., 2001; Wikle and Berliner, 2005).

One might consider an alternative hierarchical parameterization in which the spatial
mean (trend) is moved down a level of the hierarchy. In this case, the data model is Y|η, σ 2

ε ∼
Gau(Hη, σ 2

ε I), the process model is given by η|β, θ ∼ Gau(Xβ, Σ (θ)), and the parameter
distribution is unchanged as in Equation (7.6). In principle, such a “hierarchical centering”
can improve Bayesian estimation (Gelfand, Sahu, and Carlin, 1995).

Yet another representation arises if one integrates out the latent spatial process, essentially
combining the data and process stages into one. Specifically,

[Y|β, σ 2
ε , θ] =

∫
[Y|η, β, σ 2

ε ][η|θ]dη (7.7)
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for the models in Equation (7.4) and Equation (7.5), with the integration over the support
of η, gives

Data Model: Y|β, σ 2
ε , θ ∼ Gau(Xβ, Σ (θ) + σ 2

ε I). (7.8)
Parameter Model: [β, σ 2

ε , θ]. (7.9)

The connection between the fully hierarchical formulation suggested by Equations (7.4),
(7.5), and (7.6) and this marginal formulation in Equations (7.8) and (7.9) is exactly the
same as for traditional linear mixed model analysis (e.g., longitudinal analysis, Verbeke
and Molenberghs (2000)). In such cases, when inference is concerned with the parameters
β (such as with a “spatial regression analysis”), it is often convenient to proceed in terms of
the marginal model, without the need for specific prediction of the random effects (i.e., the
spatial latent process in the spatial case). For most traditional geostatistical applications,
one is interested in predictions of the spatial process, and the hierarchical formulation
would seem to be more appropriate. However, as discussed below, given the posterior
distribution of the parameters [β, σ 2

ε , θ|Y], one can easily obtain the posterior distribution
[η|Y]. In addition, there are cases in both classical and Bayesian estimation, regardless of the
ultimate prediction goal, where one uses the marginal formulation to facilitate estimation
of parameters.

7.3.1 Posterior Analysis

Given suitable choices for the prior distributions of the parameters (7.6), we seek the pos-
terior distribution, which is proportional to the product of Equations (7.4), (7.5), and (7.6):

[η, β, θ, σ 2
ε |Y] ∝ [Y|η, β, σ 2

ε ][η|θ][β, σ 2
ε , θ]. (7.10)

One cannot obtain the analytical representation of the normalizing constant in this case
and, thus, Monte Carlo approaches are utilized for estimation, inference, and prediction
(see Robert and Casella (2004) for an overview).

Alternatively, one can use the marginal model (7.8) directly to obtain the posterior dis-
tribution for the parameters:

[β, σ 2
ε , θ|Y] ∝ [Y|β, σ 2

ε , θ][β, σ 2
ε , θ]. (7.11)

Again, the normalizing constant for (7.11) is not available analytically and Monte Carlo
methods must be used to obtain samples from the posterior distribution. In addition, note
that since

[η|Y] =
∫

[η|θ][θ|Y]dθ, (7.12)

if we have samples from the marginal posterior distribution [θ|Y], we can obtain samples
from [η|Y] by direct Monte Carlo sampling as long as we know [η|θ] in closed form (as
we do in this case). Thus, in the hierarchical Gaussian geostatistical model, there really is
no need to consider the full joint posterior (7.10) directly. In fact, as discussed in Banerjee
et al. (2004), the covariance structure in the marginal model (7.8) is more computationally
stable (due to the additive constant on the diagonal of the marginal covariance matrix) and,
in the case of MCMC implementations, estimation is more efficient the more that one can
marginalize the hierarchical model analytically.

It is typical in geostatistical analyses to make a distinction between the elements of the
latent spatial process vector η that correspond to the observed data, say ηd (an m×1 vector),
and those nonobservation locations for which prediction is desired, say η0 (an (n − m) × 1
vector). In this case, η = (η′

d , η′
0)′ and the process model (7.5) can be factored as

[η0, ηd |θ] = [η0|ηd , θ][ηd |θ]. (7.13)
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One can then obtain the posterior predictive distribution [η0|Y, θ] from

[η0|Y, θ] =
∫

[η0|ηd , θ][ηd |Y]dηd , (7.14)

where [ηd |Y] is the posterior distribution for those latent process locations corresponding
to the observation locations and, in this case, [η0|ηd , θ] is a multivariate Gaussian distribu-
tion easily obtained (analytically) from basic properties of conditional multivariate normal
distributions. Note, however, that this posterior predictive distribution is equivalent to the
posterior distribution of Hη, where H = [Im×m 0m×(n−m)]. That is, one can predict the full
spatial vector η and then simply “pick off” the elements corresponding to prediction lo-
cations. The advantage of considering the decomposition in Equations (7.13) and (7.14) is
computational. Specifically, for inference associated with the basic process model (7.5), one
will have to consider the inverse of the full n × n covariance matrix Σ (θ). However, by
decomposing the latent process, one only needs to compute the inverse of an m × m covari-
ance matrix. This is true for both classical and Bayesian estimation. It should be noted that
there can be a computational advantage when predicting the full η as well, particularly in
very high dimensional problems where η can be defined on a grid and/or a reduced rank
representation is considered for η (e.g., see Chapter 8 in this volume).

7.3.2 Parameter Model Considerations

As is generally the case with hierarchical models, specific choices for parameter distribu-
tions and alternative parameterizations for variance and covariance parameters are often
chosen to facilitate computation. It is usually the case that the parameters are considered to
be independent, [β, σ 2

ε , θ] = [β][σ 2
ε ][θ]. Clearly, other choices are available and one should

verify that the posterior inference is not overly sensitive to the choice of the parameter
distributions. Such sensitivity analyses are critical when conducting Bayesian hierarchical
analyses.

The spatial covariance function that comprises Σ (θ) can be chosen from any of the
valid spatial covariance functions that have been developed for geostatistical modeling.
However, for hierarchical models, the spatial process is often considered to be stationary,
homogeneous, and isotropic, typically following one of the well-known classes of spatial
covariance functions, such as the Matérn or power exponential class. Thus, we might write
Σ (θ) = σ 2

η R(φ , κ), where R(φ , κ) is the spatial correlation matrix, σ 2
η is the variance, and φ

and κ are spatial range and smoothness parameters, respectively. The choice of priors for
these parameters is again up to the modeler. In some cases, the smoothness parameter is
assumed to be known (e.g., the exponential correlation model). Inverse gamma or uniform
priors for the variance and informative gamma priors for the spatial correlation parameters
are sometimes used. In addition, for computational simplicity, discrete (uniform) priors are
often specified for the spatial correlation parameters. This simplicity arises since it is always
possible to generate random samples from the associated discrete distribution in MCMC
analyses (e.g., see Robert and Casella, 2004, Chap. 2). In practice, one may have to adjust the
discretization interval in the prior to a fine enough resolution to allow the Markov chain
to move. For more detail, see the aforementioned references as well as the examples in
Sections 7.3.4 and 7.4.2 and the discussion in Section 7.5. In addition, note that the choice of
noninformative priors for variance components can be difficult in some cases, as discussed
in Browne and Draper (2006) and Gelman (2006).

Computationally, it is often helpful to reparameterize the marginal model variances. For
example, Diggle and Ribeiro (2007) suggest the marginal model parameterization:

Y|β, φ , κ, σ 2
η , τ 2 ∼ Gau(Xβ, σ 2

η [R(φ , κ) + τ 2I]), (7.15)
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where τ 2 ≡ σ 2
ε /σ 2

η is the ratio of the nugget variation to the process variation and has the
advantage of being scale free. Alternatively, Yan, Cowles, Wang, and Armstrong (2007)
propose a different marginal reparameterization:

Y|β, φ , κ, σ 2, ξ ∼ Gau(Xβ, σ 2[(1 − ξ )R(φ , κ) + ξI]), (7.16)

where σ 2 = σ 2
η +σ 2

ε and ξ = σ 2
ε /σ 2. In this case, ξ has a nice interpretation as the fraction of

the total variation in Y contributed by the nugget effect. The parameter ξ has bounded sup-
port, (0, 1), which facilitates some types of MCMC implementations (e.g., slice sampling).

7.3.3 Bayesian Computation

Bayesian estimation, prediction, and inference for hierarchical spatial models must proceed
via Monte Carlo methods. The specific choice of Monte Carlo algorithm depends on the
choice of parameter models. In general, MCMC algorithms can be used as described in
Banerjee et al. (2004). In certain cases, direct Monte Carlo simulation can be used as described
in Diggle and Ribeiro (2007). In problems with large numbers of data and/or prediction
locations, careful attention must be given to computational considerations. It is often more
efficient in such cases to consider various dimension reduction or decorrelation approaches
for modeling the spatial process. Chapter 8 in this volume presents some such approaches.

Increasingly, specialized computational software is being made available to accommo-
date ever more complex hierarchical spatial models. The interested reader is referred to the
aforementioned texts as a place to start.

7.3.4 Gaussian Geostatistical Example: Midwest U.S. Temperatures

For illustration, consider the monthly average maximum temperature observations shown
in Figure 7.1 for an area of the U.S. central plains, centered on Iowa. These data are from 131
stations in the U.S. Historical Climate Network (USHCN) for the month of November, 1941.
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FIGURE 7.1
Monthly average maximum temperatures (in ◦F) for stations in the U.S. Historical Climate Network for November,
1941. Note that the size (bigger is warmer) and color (dark is warm, light is cool) of the circles are proportional to
the temperature at each station with a maximum of 58.6◦F and a minimum of 41.5◦F.
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In this example, say we are interested in predicting (interpolating) the true (without noise)
monthly average maximum temperature at a grid of points over the region. Gridded
datasets facilitate climatological analysis and are necessary when using observational data
as input in numerical weather and climate models. In both cases, the uncertainty associated
with the gridding is as important as the gridded field itself.

We assume the marginal form of the model shown in (7.15) with X having three columns
corresponding to an intercept, trend in longitude, and trend in latitude, respectively. Thus,
it is reasonable over such a relatively homogeneous and small geographical region to
assume the spatial correlation model is stationary and isotropic. In particular, we as-
sume an exponential correlation function here, with spatial dependence parameter, φ (i.e.,
r (d, φ) = exp(−d/φ) where d is the distance between two spatial locations). We select a rel-
atively noninformative prior for β, β ∼ N(0, Σβ), where Σβ is diagonal, with each variance
equal to 1000. We also considered a noninformative (uniform) prior on the β parameters
and the posteriors were not sensitive to this choice. We chose a scaled-inverse chi-square
prior for σ 2

η with prior mean 2.7 and degrees of freedom = 2, corresponding to a fairly vague
prior. The choice of the prior mean was based on a preliminary regression analysis in which
the spatial trend, with no spatially correlated error term, accounted for about 83% of the
variation in the temperatures. Because the overall variance in the temperature data is about
16 deg2, we assumed there was about 2.7 deg2 available to be explained by the spatial error
process. It should be noted that we did consider several other values for the prior mean, as
well as the nonimformative prior p(σ 2

η ) ∝ 1/σ 2
η , and the posteriors were not very sensitive

to these choices. The prior for φ is assumed to be discrete uniform from 0.1 to 4.0 with
increments of 0.1. This choice was based on the fact that the practical range (the smallest
distance between points that gives negligible spatial correlation) for the exponential model
is defined to be 3φ (see Schabenberger and Pierce, 2002, p. 583). Based on a practical range
varying between 0.3 (deg) and 12 (deg), which covers the extent of our prediction domain,
this corresponds to choices of φ between 0.1 and 4.0. Similarly, the prior for τ 2 is given by
a discrete uniform distribution from 0.05 to 2.0 with increments of 0.05. This allows the
spatial variation to be between 20 times larger to 2 times smaller than the nugget. With
temperature data on this spatial scale, it would be scientifically implausible that the nugget
variance would be much bigger than the spatial variation. The posterior distribution is not
sensitive to this upper bound. Although for large geographical areas, one needs to factor
in the curvature of the Earth when calculating distances and choosing valid covariance
functions, the domain considered here is small enough that such considerations are not
needed. Estimation is carried out using Bayesian direct simulation with the geoR package,
as described in Diggle and Ribeiro (2007).

Samples from the posterior distributions for the model parameters are summarized by
the histograms in Figure 7.2. In addition, the prior distributions over this portion of the pa-
rameter space are shown for comparison. The first thing we notice from these histograms is
that there is definitely Bayesian learning in these marginal posterior distributions relative to
their respective priors. Not surprisingly, given that temperatures over this region generally
decrease with increasing latitude in November, the lattitude effect (β2) in the large scale
spatial mean is much more “significant” than the longitude effect (β1). The latent spatial
process is fairly important given a strong spatial dependence (the posterior median (mean)
of φ is 2.0 (2.2)) and the posterior median (mean) of the process variance, σ 2

η is 3.0 (3.2). Note,
there is evidence of small-scale variability in τ 2 given it has a posterior median (mean) of
0.25 (0.31), suggesting median (mean) nugget variance of 0.75 (1.0). Although the USHCN
stations are often supported by volunteer observers, which might lead to measurement
errors, it is typically thought that such errors are pretty minimal when considered over
a monthly average, further supporting the interpretation that σ 2

ε is reflecting small-scale
spatial variability.
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FIGURE 7.2
Posterior histograms of parameters for the USHCN temperature example. Upper left: β0 (intercept), upper right:
β1 (Longitude), middle left: β2 (latitude), middle right: φ (spatial dependence), lower left: σ 2

η (process variance),
lower right: τ 2 (ratio of nugget to process variance). In each figure, the dashed line represents the prior distribution
over the shown portion of the parameter space.

Finally, a plot of the posterior means and variance of the predicted process on a grid of
points is shown in Figure 7.3. Note that the prediction location corresponds to the center
of each grid box, with the image plot provided to help with visualization only; we are not
predicting on a different support than our data. The north-to-south spatial trend is clearly
evident in the predictions, yet there is also evidence of spatial dependence in addition to
the trend. The posterior predictive variances show the expected pattern of much smaller
predictive variance near observation locations and much larger variances in areas outside
the data locations (the edges of the map).
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FIGURE 7.3
Posterior prediction means and variances for the USHCN temperature example. The left plot shows the mean
from the posterior predictive distribution of temperature on a grid, with the circles showing the data locations.
The right plot shows the posterior predictive variance for the prediction grid locations.

7.4 Hierarchical Generalized Linear Geostatistical Models

The advantage of the hierarchical approach in the context of the basic Gaussian geosta-
tistical model presented in Section 7.3 is primarily that it accounts for the uncertainty in
parameter estimation, unlike the classical geostatistical approach. For a nice illustration of
this with conventional and Bayesian kriging, see the example in Diggle and Ribeiro (2007,
Chap. 7.4). This example clearly shows that the Bayesian prediction variance is typically
(but not always) larger than the corresponding plug-in predictive variance. Although this is
important, the real strength and power of the hierarchical approach becomes evident when
one considers non-Gaussian data models. There are many real-world processes in which
the data are clearly something other than Gaussian, yet exhibit spatial dependence. For
example, count data are common in many biological, ecological, and environmental prob-
lems. In such datasets, there are usually discernible mean-variance relationships, and the
data are clearly discrete and positive valued. It is natural to consider Poisson and binomial
models in these situations, and ignoring this structure and blindly applying the Gaussian
geostatistical model will lead to some inefficiency in both estimation and prediction. Just as
the Gaussian geostatistical model presented above can be thought of as a special case of a
linear mixed model, it is natural that non-Gaussian spatial data problems may be formally
analyzed within the context of generalized linear mixed models (GLMMs, e.g., see McCul-
loch and Searle (2001) for an overview) as proposed by Diggle, Tawn, and Moyeed (1998).
This approach is described below from the hierarchical perspective. For more details, see
Diggle and Ribeiro (2007), Banerjee et al. (2004), and the references therein.

Formulation of a GLMM requires specification of the likelihood of the random variable
Y(s) associated with the spatial data. One assumes that this has a data model that is a
member of the exponential family. As in classical generalized linear models, there is a
canonical parameter corresponding to this distribution that is nominally a function g( )
(the link function) of the location parameter for the distribution. To incorporate a spatial
process, η (as above), we assume [Y(si )|η, β], i = 1, . . . , m, is conditionally independent
for any location si in the domain of interest, with conditional mean E(Y(si )|η, β) = μ(si ),
where this mean μ(si ) is a linear function of spatial covariates and a latent spatial random
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process. Specifically, the spatially correlated latent process is incorporated into the linear
predictor through the link function:

g(μ) = Xβ + Hη + ε (7.17)

where, μ = (μ(s1), . . . , μ(sm))′, and, as with the Gaussian geostatistical model, Xβ ac-
counts for the spatial covariate effects, Hη accounts for the latent spatial process effects,
and the additional noise term ε, accounting for site-specific random variation, may or may
not be included, depending on the application. For example, this term may be needed to
account for the over-dispersion due to small-scale spatial effects. The addition of such a
term is somewhat controversial, with advocates and opponents. Although not directly in-
terpretable as a measurement error, the small-scale spatial process interpretation is valid in
many circumstances. However, such an effect may not be identifiable without appropriate
replication in the observations and/or prior knowledge. As before, the process stage of the
hierarchical model requires specifications, such as η ∼ Gau(0, Σ (θ)) and ε ∼ Gau(0, σ 2

ε I),
with spatial covariance matrix parameterized by θ. To complete the hierarchy, distributions
must be specified for the parameters, [β, σ 2

ε , θ]. Note, we may also need to specify distribu-
tions for a dispersion parameter, say γ , associated with the exponential family data model.
Specific choices for parameter distributions will depend on the context and computational
considerations, as was the case for the Gaussian data model. Thus, the primary difference
between this class of GLMM spatial models and the hierarchical Gaussian geostatistical
model presented in Section 7.3 is the data stage. It is critical in this case that the data obser-
vations are conditionally independent, given the Gaussian latent spatial process and the
covariates.

7.4.1 Computational Considerations

Based on the hierarchical model described above, we are interested in the posterior distri-
bution:

[η, β, σ 2
ε , θ, γ |Y] ∝ [Y|η, β, σ 2

ε , γ ][η|θ][β, σ 2
ε , θ, γ ]. (7.18)

As with the hierarchical Gaussian data geostatistical model, one cannot find the normalizing
constant for Equation (7.18) analytically and MCMC methods must be used. However,
unlike the Gaussian data case, we are unable to marginalize out the the spatial latent
process analytically to facilitate computation. Thus, MCMC sampling procedures must
include updates of η (or its components) directly.

Careful attention must be focused on specific computational approaches for MCMC
sampling of hierarchical generalized linear spatial models. One major concern is the efficient
update of the spatial latent process η, which usually is accomplished by a Metropolis–
Hastings update within the Gibbs sampler. The primary concern in this case is the efficiency
of the algorithm when sampling dependent processes. A potentially useful approach in
this case is the Langevin update scheme as discussed in the spatial context by Diggle and
Ribeiro, (2007). Alternatively, when one keeps the small-scale process term ε in the model,
updates of theη process can be accomplished through conjugate multivariate normal Gibbs
updates (e.g., see Wikle, 2002; Royle and Wikle, 2005), which can be substantially more
efficient than Metropolis updates. Of course, in this case, one must estimate the parameters
associated with the ε error process. This can be problematic without the benefit of repeat
observations, and/or substantial prior knowledge. In some cases, it is reasonable to treat
these parameters as “nuisance parameters” (e.g., assume they are known or have very tight
prior distributions) simply to facilitate computation and prediction of η.

A second concern is the update of the latent spatial process covariance parameters, θ.
Reparameterizations are often necessary as described, for example, by Christensen, Roberts
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and Sköld (2006), Palacios and Steel (2006), and Zhang (2004). This is an active area of current
research and the state of the art is evolving rapidly. Experience suggests that successful
implementation of these models can be difficult and is certainly model and dataset specific.

7.4.2 Non-Gaussian Data Example: Mapping Bird Counts

As an illustrative example, consider data collected from the annual North American Breed-
ing Bird Survey (BBS, see Robbins, Bystrak, and Geissler 1986). In this survey, conducted
in May and June of each year, volunteer observers traverse roadside sampling routes that
are 39.2 km in length, each containing 50 stops. At each stop, the observer records the num-
ber of birds (by species) seen and heard over a three-minute time span. There are several
thousand BBS routes in North America. We focus on mourning dove (Zenaida macroura)
counts from 45 routes in the state of Missouri as observed in 2007 and shown in Figure 7.4.
Given the total count (aggregated over the 50 stops) of doves on the BBS route assigned
to a spatial location at the route centroid, our goal is to produce a map of dove relative
abundance within the state, as well as characterize the uncertainty associated with these
predictions of relative abundance. Such maps are used to study bird/habitat relationships
as well as species range.

Following the hierarchical generalized linear spatial modeling framework described pre-
viously, we first specify a Poisson data model for dove relative abundance (count) at centroid
location si , Y(si ), conditional on the Poisson mean λ(si ):

Y(si )|λ(si ) ∼ ind. Poisson(λ(si )), i = 1, . . . , m. (7.19)

Note, we assume that conditional upon the spatially dependent mean process (λ), the
BBS counts are independent. Although it is technically possible that this independence
assumption could be violated if the same bird was counted at multiple routes, it is not
likely given the nature of the BBS sampling protocol (e.g., Robbins et al., 1986). Given that
we expect dependence in the counts due to the spatially dependent nature of the underlying
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FIGURE 7.4
BBS total mourning dove counts at the centroid of sampling routes in Missouri from 2007. The color and size of
the circle are proportional to the observed counts at each station.
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habitat preferences of the birds, we employ a Gaussian spatial process model to describe
spatial variation in λ(si ) and use the canonical log-link function:

log(λ(si )) = β + η(si ), (7.20)

where β is the mean, assumed to be constant over space, which may be generalized to
accommodate interesting covariates, and η(si ) is the latent spatial process. Specifically,
η(si ) is Gaussian with mean 0, variance σ 2

η , and correlation function r (si , s j ; φ). As usual,
one may consider many different correlation models. Given we have a relatively small
geographical area of concern, we specify rη(si , s j ; φ) to be the single parameter isotropic
exponential model: rη(si , s j ; φ) = exp(−||si − s j ||/φ) where φ controls the rate of decay in
correlation as distance between sites increases. Note, in this case, we do not include the
additional small-scale variability process, ε. For an example of a model for BBS counts
that does include such a term, see Wikle (2002) and Royle and Wikle (2005). The primary
reason why they included the term was that they were predicting on a grid for which there
were multiple BBS counts associated with specific grid locations, thus providing enough
replication on small scales to estimate the parameters associated with ε. In addition, they
required a very efficient estimation and prediction algorithm as they were considering
prediction over the continental United States and could exploit the benefits of having the
extra error term in the model as described previously.

Estimation of the parameters β, σ 2
η , and φ, prediction of η(s) at a grid of locations, and pre-

diction of Y(s) at those locations is carried out within a Bayesian framework using MCMC
techniques (e.g., see Diggle et al., 1998; Wikle, 2002; Banerjee et al., 2004). In particular,
we used the geoRglm package, as described in Diggle and Ribeiro (2007). In this case, we
assumed the program’s default flat prior for β and default uniform prior for σ 2

η . For the
spatial dependence parameter, we considered a discrete uniform prior between 0 and 1.7,
with increments of 0.005. The upper bound of 1.7 was motivated by the practical range,
which for the exponential model is 3φ, and we assumed that over our limited domain, a
reasonable upper bound for this range would be around 5 deg, implying an upper bound
for φ near 1.7. Histograms of samples from the posterior distribution and the associated pri-
ors for the model parameters are shown in Figure 7.5. Note that in each case there appears
to be Bayesian learning.

A map showing the predicted median BBS relative abundance (number of birds) over a
grid of points is shown in the left panel of Figure 7.6). In this case, the prediction location is
actually a point specified by the center of the grid box. The grid box is filled in, in this case, for
illustration purposes only, as we are not predicting on a different support than is (assumed
to be) given by our data. Note the relatively large-scale spatial dependence that is evident
in these predictions. In addition, we note that the lower predicted relative abundance in the
southeast portion of the state corresponds to the higher elevations of the Missouri Ozark
Mountains. Uncertainty is quantified by a robust method based on one fourth of the length
of the 95% prediction interval. This is shown in the right panel of Figure 7.6. The dominant
feature apparent in these maps is the strong relationship between the predicted relative
abundance (bird count), and its uncertainty—a consequence of modeling within the Poisson
framework. In addition, note that there are quite a few prediction locations outside of
Missouri, and these are clearly extrapolation locations. Were we actually interested in these
areas for the current analysis, we would use BBS counts from routes in the states bordering
Missouri. Clearly, without such observations, we expect a great deal of uncertainty for the
predictions at these locations, and this is verified by the predictive uncertainty map.
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FIGURE 7.5
Posterior histograms of parameters for the Breeding Bird Survey mourning dove example. Top: β (intercept),
middle: σ 2

η (variance of random effect), and bottom: φ (spatial dependence). In each figure, the dashed line
represents the prior distribution over the shown portion of the parameter space.
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FIGURE 7.6
Posterior prediction medians and uncertainty for the BBS mourning dove example. The left plot shows the median
from the posterior predictive distribution of relative abundance on a grid, with the circles showing the data
locations. The right plot shows the associated prediction uncertainty at the prediction grid locations. “Uncertainty”
is defined as the length of the 95% prediction interval divided by 4.

7.5 Discussion

This chapter outlines a general hierarchical framework that can facilitate modeling of com-
plicated spatial processes. The key advantage of this framework is that it allows the de-
composition of a complicated dataset into three primary components that are all linked by
simple rules of probability. That is, one has a model for the data conditioned on the true
processes and associated parameters, a model for the processes conditioned on different
parameters, and finally, models for the parameters. This hierarchical partitioning can lead
to relatively simpler models at each stage, yet when combined, describes a very complex
joint data, process, and parameter distribution. In addition to accounting for uncertainty
in each stage, this approach also facilitates the accommodation of multiple datasets, and
multiple processes and complicated parameter structure as well as the inclusion of scien-
tific information. Hierarchical models are typically framed in the Bayesian paradigm and
estimation and prediction is typically based on Monte Carlo approaches.

In the context of spatial models, the hierarchical approach was demonstrated in a tra-
ditional Gaussian data, geostatistical setting, as well as a non-Gaussian data, generalized
linear mixed spatial model framework. The primary differences in these hierarchical models
is the data stage, as they both rely on the conditioning on a spatial random process to induce
spatial dependence in the observations. In addition, there are differences corresponding to
computational concerns. For example, estimation and prediction for the Gaussian data
model can be facilitated by analytical marginalization, but the non-Gaussian data model
does not allow such marginalization. For both types of models, computational concerns
can suggest specific parameterizations of variance components and spatial dependence
parameters.

Although several approaches for parameterization and prior selection were discussed
briefly in Sections 7.3 and 7.4, these choices are not always so easy to make for hierarchical
spatial models. For example, even in simple (nonspatial) hierarchical linear mixed models,
the choice of prior distributions for variance parameters can be quite tricky (e.g., see Browne
and Draper, 2006, and the discussion by Gelman, 2006, and others). Experience shows that
this issue is compounded by the addition of a spatially correlated process. The bottom line
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is that one must be very careful when making these choices, whether one is using relatively
common statistical software, or whether writing problem specific programs. Although there
has been some work done searching for “objective” priors for spatial processes (e.g., Berger,
De Oliveira, and Sanso, 2001), these are not always appropriate for subcomponents in a
larger hierarchical framework.

Another school of thought suggests that one typically has some notion about whether
there is spatial dependence or not (at least for processes for which there are observations),
and thus it is reasonable in those cases to use more informative priors. Of course, one
has to be careful that the priors selected (whether they are “informative” or not) have
meaning relative to the process and data of interest. For example, simple simulation of the
hierarchical model used for the mourning dove counts suggests that the simulated counts
quickly become unrealistic when β (corresponding to the log of the mean) is much outside
of the range of about 3 to 4. Similarly, the simulated counts are quite unrealistic when the
process variance σ 2

η is much outside the range of about 0.05 to 2. By contrast, the simulated
counts are not nearly as sensitive to the spatial dependence parameter, φ. A natural question
then is whether the so-called “vague” priors chosen for these parameters (recall, we chose
the prior β ∼ N(0, 100)) are reasonable when they assign mass to portions of the parameter
space that could never give a meaningful model? The use of such a predictive outcome-
driven, science-based approach to prior elicitation is not generally accepted by all Bayesian
statisticians as optimal Bayesian procedure, yet it provides a good “reality check.” For more
interesting discussion about priors in Bayesian models (see Berger (2006) and Goldstein
(2006) and the associated discussion).

Finally, the true power of hierarchical modeling is more apparent (and the prior elicitation
often more critical) when one is considering very complicated processes. In such cases,
the hierarchical spatial models discussed here might be relatively minor components of
some larger hierarchical structure. For example, in a multivariate spatial-temporal modeling
problem, it could be the case that the evolution parameters for a spatial process could be
represented by a set of spatially correlated parameters, and these parameters might be
related to spatial parameters for some other process, etc. The possibilities are endless, and
the algorithmic development and prior selection issues are numerous. The ability to answer
scientific questions, and to make predictions while accounting for uncertainty in such cases,
is increasing the utility of advanced statistical modeling across a wide range of disciplines.
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As with many disciplines, spatial statistical applications have transitioned from a “data
poor” setting to a “data rich” setting in recent years. For example, when the primary in-
terest is in predicting ore reserves, one might only have a limited number of observations
available, due to the expense of ore extraction. In such cases, the standard geostatisti-
cal prediction formulas are easy to implement with basic computer programs, requiring
little more than a few low-dimensional matrix (i.e., multiplication and inverse) manipu-
lations. As more data have become available through increases in the number and extent
of automated observation platforms (e.g., global weather station networks, remote sens-
ing satellites, ground penetrating radar, lidar, medical imagery, etc.), the issues related to
practical implementation of spatial prediction algorithms become significant. These issues
are present regardless of whether one takes a Bayesian or frequentist perspective when
performing inference and prediction.

In order to proceed with spatial statistical prediction in the presence of “very large” or
“massive” spatial datasets, one must reduce the dimensionality. A key to this, in the context
of spatial prediction, is to represent the process in terms of a lower-dimensional latent
Gaussian process, or to carefully choose the structure/representation (e.g., spectral forms)
so as to gain efficiency in computation. This chapter is focused on the reduced-dimensional
latent process approach, but as will be discussed, this approach is not unrelated to the
restructuring/spectral representation approach as well. In this chapter we will show how
many of the methodologies commonly used in practice (e.g., discrete kernel convolutions,
orthogonal polynomials, empirical orthogonal functions, splines, wavelets) all fit into this
general construct.
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The first section briefly reviews the traditional geostatistical prediction equations. This is
followed by a presentation of an alternative parameterization in which the spatial process
is modeled hierarchically by a low-dimensional latent random process. The computational
advantages of this so-called “reduced rank” representation are then described for both
Markov chain Monte Carlo (MCMC) implementations as well as traditional kriging. The
choice of the expansion matrix that maps this latent process to the spatial process of interest
is then discussed. This is followed by a brief discussion of extensions to this low rank
representation to non-Gaussian data models and spatiotemporal processes.

8.1 Full-Rank Geostatistical Setup

Assume we are interested in a Gaussian spatial process {η(s)} for any spatial location s in
some specified spatial domain. In this case, E[η(s)] = μ(s) and the process is assumed to be
dependent across space, with covariance function cη(s, r) = Cov[η(s), η(r)]. Assume also
that we have observations of this process at n spatial locations. Thus, we can write a simple
data model:

Y = η + ε, ε ∼ Gau(0, Σε), (8.1)

where Y = (Y(s1), . . . , Y(sn))′ represents a data vector, η = (η(s1), . . . , η(sn))′ corresponds
to the true (latent) spatial process vector of interest, and ε = (ε(s1), . . . , ε(sn))′ is a Gaussian
error vector, assumed to have zero mean and covariance matrix, Σε . This error vector
corresponds to measurement error and/or representativeness error associated with the
true process η(s), such as occurs when the observations include information at smaller
spatial scales than accommodated by the process η(s) (i.e., a nugget effect). We also note
that the distribution of the underlying latent spatial process at these measurement locations
is given by

η ∼ Gau(μ, Ση), (8.2)

where μ = (μ(s1), . . . , μ(sn))′ represents the spatial mean vector and there is inherent
residual spatial dependence as represented by nontrivial structure in Ση. That is, the (i , j)th
element of Ση is given by cη(si , s j ). The spatial mean could be parameterized in terms of
known covariates, such as μ = Xβ. However, we will assume μ(s) = 0 for all s in the
remainder of this chapter, just to simplify notation; analogous expressions that involve
implicitly estimating β can be similarly derived without this assumption. As discussed
above, we assume that underlying Equation (8.2) is a Gaussian process with a given co-
variance structure. Thus, we can predict the true process at any locations in our domain
of interest, say {r1, . . . , rm}. We will denote the process at these prediction locations by
η0 = (η(r1), . . . , η(rm))′.

Ultimately, we are interested in the predictive distribution, [η0|Y], given by

[η0|Y] =
∫

[η0|η][η|Y]dη, (8.3)

where the bracket notation “[ ]” refers generically to a distribution, either joint, conditional,
or marginal. Fortunately, given the observations y, and the Gaussian data and the process
models (8.1) and (8.2), respectively, (8.3) can be found analytically:

η0|y ∼ Gau(μη0|y, Ση0|y), (8.4)

where
μη0|y = Ση0,η(Ση + Σε)−1y, (8.5)
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and
Ση0|y = Ση0 − Ση0,η(Ση + Σε)−1Σ ′

η0,η, (8.6)

with Ση0,η ≡ Cov(η0, η) and Ση0 ≡ Cov(η0, η0).
The key challenge in implementing these equations when n is large lies in the evaluation

of the inverses in Equation (8.5) and Equation (8.6). Typically,Σε is assumed to have a simple
homogeneous error structure (e.g., Σε = σ 2

ε I). However, without strong assumptions about
the form of Ση, the matrix inversion entails on the order of n3 operations. Not only is the
inverse prohibitively expensive to calculate, but one may have difficulty even storing the
matrix Ση itself for very large n.

Note that this discussion assumes the covariance matrices are “known.” Of course, this
is not the case in reality, but the critical computational issues can be illuminated even by
the case when they are known. In various places in the following exposition, estimation
issues are discussed when relevant.

8.2 Reduced-Rank Random Effects Parameterizations

Consider an alternative hierarchical representation of the spatial model:

Y = η + ε, ε ∼ Gau(0, Σε), (8.7)

η = Hα + ξ, ξ ∼ Gau(0, Σξ ), (8.8)

and
α ∼ Gau(0, Σα), (8.9)

whereη, Y, ε,Σε are defined as given above. Furthermore, defineα ≡ (α1, . . . , αp)′ to be a p-
dimensional random (effects) vector, such that p � n and H is then an n×p expansion matrix
that maps the low-dimensional latent process, α, to the true spatial process of interest, η.
The residual error term, ξ, is assumed to be Gaussian and accounts for differences between
η and its low-dimensional representation, Hα. This process, ξ, is also assumed to have zero
mean and covariance matrix, Σξ .

It is important to note that we can also express a model for the latent spatial process at
unobserved locations given α:

η0 = H0α + ξ0, (8.10)

where H0 is an m × p expansion matrix with elements hi ( j), i = 1, . . . , m; j = 1, . . . , p,
such that

η0(ri ) =
p∑

j=1

hi ( j)α j + ξ0(ri ), (8.11)

and the residual vector is defined by ξ0 ≡ (ξ0(r1), . . . , ξ0(rm))′.
As before, we are interested in [η0|Y]. This predictive distribution can be obtained

by first integrating out α to get the marginal distribution of the spatial vector, η: η ∼
Gau(0, HΣαH′ + Σξ ). Then, [η0|Y] = ∫

[η0|η][η|Y]dη, which, given the above model as-
sumptions, is

η0|Y ∼ Gau(μ̃, Σ̃ ), (8.12)

where
μ̃ = (H0ΣαH′ + Σξ0,ξ )(HΣαH′ + Σξ + Σε)−1y, (8.13)

and

Σ̃ = (H0ΣαH′
0 + Σξ0 ) − (H0ΣαH′ + Σξ0,ξ )(HΣαH′ + Σξ + Σε)−1(HΣαH′

0 + Σξ ,ξ0 ), (8.14)
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with Σξ ,ξ0 ≡ Cov(ξ, ξ0), and Σξ0 ≡ Cov(ξ0, ξ0). A typical assumption is that Σξ and Σξ0

are diagonal with Σξ ,ξ0 = 0 (i.e., the ξ are independent), and Σε = σ 2
ε I. Under these

assumptions, and letting V ≡ Σξ + σ 2
ε I, we get

μ̃ = (H0ΣαH′)(HΣαH′ + V)−1y, (8.15)

and
Σ̃ = (H0ΣαH′

0 + Σξ0 ) − (H0ΣαH′)(HΣαH′ + V)−1(HΣαH′
0). (8.16)

At this point, it is not evident that the hierarchical, reduced-dimension, random effects
representation has gained much for us, as we seem to require the inverse of a potentially
high dimensional (n × n) matrix to calculate the predictive mean vector and covariance
matrix. However, as described in the next section, the hierarchical framework does actually
give us a significant computational advantage from two different perspectives.

8.3 Computational Advantages of the Reduced-Rank Approach

There are two ways that one can take advantage of the hierarchical, reduced-rank, random
effects parameterization. The first of these is based on a Monte Carlo implementation and
the second takes advantage of a well-known matrix identity.

8.3.1 MCMC Approach

Since the reparameterized model is hierarchical, it is natural to consider an MCMC inferen-
tial approach. For purposes of this illustration, we will assume the parameters that make up
the various covariance matrices are known. Of course, this would not be the case in practice,
but estimation and inference associated with unknown parameters are straightforward, as
shown for example, in Chapter 7.

Consider the hierarchical model:

Y|η, σ 2
ε ∼ Gau(η, σ 2

ε I), (8.17)

η|α, Σξ ∼ Gau(Hα, Σξ ), (8.18)

α ∼ Gau(0, Σα). (8.19)

We are interested in the posterior distribution of η, α, and η0 given the observed data y. A
Gibbs sampler will easily give samples from this posterior distribution. To implement this
sampler, one requires the following full conditional distributions for η and α:

η|· ∼ Gau

((
1
σ 2

ε

I + Σ−1
ξ

)−1 (
y/σ 2

ε + Σ−1
ξ Hα

)
,
(

1
σ 2

ε

I + Σ−1
ξ

)−1
)

(8.20)

α|· ∼ Gau((H′Σ−1
ξ H + Σ−1

α )−1H′Σ−1
ξ η, (H′Σ−1

ξ H + Σ−1
α )−1). (8.21)

Using this Gibbs sampler to obtain samples α(i) from [α|y], we then can get the desired
posterior predictive distribution for η0:

[η0|y] =
∫

[η0|α][α|y]dα, (8.22)

by direct Monte Carlo integration, given that η0|α ∼ Gau(H0α, Σξ0 ).
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If Σξ is assumed to be diagonal, the matrix inverse operations in Equation (8.20) are triv-
ial. Critically, the matrix inverses necessary to obtain the sample in Equation (8.21) are all of
dimension p× p. Since p � n, and the matrix inverse is an O( p3) operation, we have signifi-
cantly reduced the computational demand by utilizing the hierarchical framework. Critical
to this implementation is the presence of the component ξ and the additional assumption
that its covariance structure, Σξ , is “simple” (e.g., diagonal) and facilitates computation of
the inverse. This assumption may, or may not, be realistic for a given application.

8.3.2 Fixed-Rank Kriging Approach

The key difficulty in using kriging Equation (8.15) and Equation (8.16) when there are
many observation locations stems from the matrix inverse (HΣαH′ + V)−1. Consider the
well-known matrix inverse result (see, p. 29 in Rao, 1965) for nonsingular matrices A and
D of size a × a and d × d , respectively, and for an a × d matrix B:

(A + BDB′)−1 = A−1 − A−1B(B′A−1B + D−1)−1B′A−1. (8.23)

Thus, for the reduced dimensional random effects Equation (8.15) and Equation (8.16), this
matrix identity gives

(HΣαH′ + V)−1 = V−1 − V−1H(H′V−1H + Σ−1
α )−1H′V−1, (8.24)

which only requires the inverses of the simply structured (e.g., diagonal) matrix, V , and
low (p � n)-dimensional matrices Σα and (H′V−1H + Σ−1

α ). The use of Equation (8.23) to
facilitate computation is, of course, not new. For example, it is used in the development
of the Kalman filter equations in time series and spatiotemporal statistics (see p. 317 in
Shumway and Stoffer, 2000.) In geostatistical analysis of very large datasets, this approach
has recently been labeled “fixed rank kriging” (see Cressie and Johannesson, 2008; Shi and
Cressie, 2007).

Some discussion of the implications of this “fixed-rank” approach is in order. First, the
terminology arises since the rank of the matrix HΣαH′ is p, which we have assumed is
much smaller than n. Of course, the addition of the matrix V , accounting for the discrepancy
between η and Hα as well as the “measurement error,” gives a full (n) rank matrix. Thus,
the two error processes, ξ and ε, are very important. Clearly, the assumption that Σξ is not
zero and is simply structured (e.g., diagonal) is also critically important here, as otherwise
V−1 would not be a simple (linear in n) matrix operation. One must be clear that this is, in
fact, an assumption, and thus, the “fixed rank” kriging approach is not strictly equivalent to
traditional kriging under this assumption. In some cases, one can assume ξ and ε represent
very small-scale spatial dependence and measurement error processes, respectively. In that
case, there is an equivalency between the reduced rank representation and the “nugget”
effect in traditional kriging (see Cressie and Johannesson, 2008).

8.4 Choice of Expansion Matrix, H

In Section 8.3, it was shown that the hierarchical representation of a spatial process in terms
of a relatively low dimensional random effects vector multiplied by an expansion matrix,
plus a residual vector, can greatly facilitate spatial prediction for very large datasets. We did
not specify the form of the expansion matrix, H. Many choices for this matrix have appeared
in the literature, often under the guise of being a “different” methodology. The choice is
somewhat subjective, but there can be advantages and disadvantages to each, depending
on the problem at hand. Some of the most common choices are discussed below.
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8.4.1 Orthogonal Basis Functions

There is a long tradition in the mathematical sciences of using orthogonal basis functions in
expansions. Thus, it is reasonable to use orthogonal basis functions in the expansion matrix
H. We can write

H =

⎛
⎜⎜⎜⎝

h′
1

h′
2
...

h′
n

⎞
⎟⎟⎟⎠ (8.25)

where h′
i ≡ (hi (1), . . . , hi ( p)) corresponds to the ith spatial location, and we have the

orthogonality constraint,

h′
i h j =

{
δ, i = j,
0, i �= j, (8.26)

the vectors being called “orthonormal” if δ = 1. One choice for H in this case can come
from the class of known orthogonal basis functions (e.g., Fourier, orthogonal polynomials,
such as Hermite polynomials, certain wavelets, eigenvectors from a specified covariance
matrix, etc.). One advantage of such a choice is that hi is defined for any spatial location si

in the domain of interest. Perhaps more importantly, in the case where Σξ = σ 2
ξ I, we can

write V = (σ 2
ξ + σ 2

ε )I = σ 2
v I, so that H′V−1H = σ 2

v H′H = σ 2
ν I. This can greatly simplify

the computations in both the MCMC and the “fixed-rank kriging” implementation. Also,
for suitable choices of the basis function (e.g., Fourier or wavelet), fast computational al-
gorithms exist (e.g., the fast fourier transform or discrete wavelet transform, respectively)
such that operations H′x (the transform) and Ha (the inverse transform) are very efficient;
they can be performed without actually forming (or storing) the matrix H. For these basis
functions, we note that when Σξ = σ 2

ξ I, there really isn’t a great advantage computationally
to having p � n if Σα has relatively simple structure (e.g., if it is diagonal). Typically, as p
increases, the residual structure η−Hα will tend to have smaller scale spatial dependence,
so that the assumption Σξ = σ 2

ξ I is often reasonable.
Note that the choice of Σα in this case is important, particularly if p is relatively large. Ide-

ally, one would like this matrix to be unstructured and estimate all of its parameters without
restriction. However, dimensionality issues can quickly make estimation (and computation)
somewhat difficult in this case. Thus, some fairly simple structure is typically imposed. Of-
ten, this is well justified. For example, if the basis vectors that make up H are from Fourier
functions, then given that the spatial process is second-order stationary, one can choose
Σα to correspond to the analytical variance structure associated with the Fourier modes.
That is, α is approximately independent and, thus, Σα is reasonably modeled as a diagonal
matrix. Furthermore, if a known class of stationary covariance models is chosen, one knows
these diagonal elements up to the parameters that control the spatial dependence. This can
facilitate computation and estimation, as shown in Paciorek, 2007; Royle and Wikle, 2005;
and Wikle, 2002.

8.4.1.1 Karhunen–Loéve Expansion

Consider the spatial process, η(s) for s ∈ D (some spatial domain) where E[η(s)] = 0
and the covariance function is given by cη(s, r) = E[η(s)η(r)]. The Karhunen–Loéve (K–L)
expansion of this covariance function is

cη(s, r) =
∞∑

k=1

λkφk(s)φk(r), (8.27)
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where {φk(·) : k = 1, . . . , ∞} are the eigenfunctions and {λk : k = 1, . . . , ∞} are the associ-
ated eigenvalues of the Fredholm integral equation

∫
D

cη(s, r)φk(s)ds = λkφk(r), (8.28)

where the eigenfunctions are orthonormal. One can then expand the spatial process in
terms of these basis functions, η(s) = ∑∞

k=1 akφk(s). If one truncates this expansion, say
ηp(s) = ∑p

k=1 akφk(s), then it can be shown that among all basis sets of order p, this trun-
cated decomposition minimizes the variance of the truncation error and thus is optimal.
In practice, one must often solve numerically the Fredholm integral equation to obtain the
basis functions. For example, numerical quadrature or Monte Carlo approaches can be used
and give estimates for the eigenvalues and eigenfunctions that are weighted according to
the spatial distribution of the data locations (see Cohen and Jones 1969; Buell, 1972). Such
approaches are limited in that they obtain the eigenfunctions at spatial locations for which
there is an observation. One can consider other spline-based approaches for discretizing
the K–L integral equation that effectively interpolate the eigenfunctions to locations where
data are not available (see Obled and Creutin, 1986).

The continuous K–L representation is typically not used in applications due to the discrete
nature of the data and the difficulty of solving the K–L integral equation. In cases where
there are repeat obserations (i.e., over time) or some other information (i.e., deterministic
model output, historical observations) that allows one to calculate an empirical covariance
matrix for the spatial process, then one can simply perform a principal component analysis
(PCA). That is, one estimates Ση and then solves the eigensystem ΣηΦ = ΦΛ, where Φ
is the matrix of eigenvectors and Λ is a diagonal matrix with the eigenvalues on the main
diagonal; these are just the eigenvectors and eigenvalues of the symmetric decomposition of
the covariance matrixΣη. In spatial statistics, the eigenvectors from this PCA decomposition
are called “empirical orthogonal functions” or EOFs. If a discretization of the K–L integral
equation assumes equal areas of influence for each spatial observation, such a discretization
is equivalent to the PCA-derived EOFs. Conversely, an EOF decomposition of irregularly
spaced data without consideration of the relative area of influence for each observation can
lead to inappropriate weighting of the importance of each element of the covariance matrix
Ση (for further discussion, see Buell, 1972, 1975, and Jolliffe, 2002, p. 297).

The use of EOFs as basis vectors in H can lead to dramatic dimension reduction for
spatial fields. Specifically, we let H correspond to the first p eigenvectors (columns) of Φ. A
significant advantage of the EOF basis set is that there is no assumption of spatial stationarity
used to obtain the estimated EOFs. The use of EOFs has the additional advantage that the
associated random effects covariance matrix, Σα , is diagonal (given the orthogonality of
the EOFs). Note that it is generally the case that the EOFs associated with the largest
eigenvalues represent larger-scale spatial variation, and conversely, the EOFs associated
with the smallest eigenvalues correspond to smaller-scale spatial variation. Thus, if p is
sufficiently large so that the truncated eigenvectors account for the large-scale variability,
it might be reasonable to assume the residual spatial structure is uncorrelated and possibly
homogeneous, that is, Σξ = σ 2

ξ I. As discussed above, such an assumption is critical when
working with high-dimensional datasets. Note, it is certainly possible that the residual
spatial structure after truncation is not sufficiently uncorrelated. In that case, one can model
Σξ as an expansion in terms of the next p + 1 to p + neo f EOF basis functions. This can be
done in a computationally efficient way as described in Berliner, Wikle, and Cressie (2000).

The obvious disadvantages of using EOFs as basis functions are seen in Equation (8.1)
predicting at offsite locations, and Equation (8.2) obtaining high-quality estimates of the
covariance matrix used to obtain the EOF decomposition. To deal with the first issue, one
can “interpolate” the eigenvectors in some reasonable manner. A sensible approach to this
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is to go back to the K–L integral equation and use canonical spline basis functions that give
eigenfunctions for any spatial location, as described in Obled and Creutin (1986). Alterna-
tively, one could “shrink” the empirical covariance estimate (at observation locations) to
some (typically) stationary covariance matrix derived from a valid covariance model and
available for any pair of locations, observed or not, effectively smoothing or regularizing the
covariance estimate (see Nott and Dunsmuir, 2002). Alternatively, one might “presmooth”
the data (instead of the estimated covariance matrix) using a standard (typically nonpara-
metric) smoothing procedure (see Wikle and Cressie, 1999). As for the second disadvantage,
one can imagine that it is problematic to obtain a direct estimate of the covariance matrix
for the process η because we can’t observe it without error. If there is sufficient replication,
one can obtain the covariance estimate of the data Σ̂y, and the measurement variance, σ̂ 2

ε ,
and base the EOF decomposition on Σ̂η = Σ̂y − σ̂ 2

ε I, taking care that Σ̂η is positive definite.
Such an approach is typically reasonable since we are just using the estimate to obtain a
relatively small set of basis functions for use in the hierarchical formulation.

8.4.2 Nonorthogonal Basis Functions

Although there are some computational advantages to choosing orthogonal basis functions
when constructing H, there is no requirement to do so. There are a myriad choices for
nonorthogonal basis functions, including wavelets, radial basis functions, spline functions,
and kernel functions. Typically, with nonorthogonal basis functions, it can be difficult to
specify (a priori) a simple structure for the random effects covariance matrix Σα and, thus,
it is sometimes allowed to be unstructured in this case (see Cressie and Johannesson, 2008).
In other cases, restrictions are imposed on this matrix (see Nychka, Wikle, and Royle, 2002).

Rather than consider all of the different choices for nonorthogonal basis functions, we
focus on the use of discrete kernel basis functions in this section.

8.4.2.1 Kernel Basis Functions

It has long been known (e.g., see discussion in Matérn, 1986) that correlated stochastic
processes can be written in terms of a convolution (or, moving average) of a Brownian
motion process. This idea experienced a renaissance in spatial statistics when it became
clear that this idea could also be used to build nonstationary spatial models in practice
(see Berry and Ver Hoef, 1996; Fuentes, 2002; Higdon, 1998; Higdon, Swall, and Kern,
1999; Paciorek and Schervish, 2006). Although such convolutions are expressed in terms of
continuous space, they can also be used to motivate the selection of the basis functions H
relative to certain “support points” that make up α.

Consider the spatial process represented in terms of a discrete kernel expansion:

η(s) =
p∑

j=1

h(s, r j ; θs)α j + ξ(s), (8.29)

where h(s, r j ; θs) corresponds to some kernel function and its value (weight) for a given
spatial location s depends on the location and value of j = 1, . . . , p support points, α. The
kernel parameters, θs , may vary in space. In the convolution analog, the kernel is defined
as a function of the difference in locations between the spatial location s and the support
locations and the kernel parameters are not assumed to change with space, h(s − r j ; θ). In
this case, if we define hi (θ) ≡ (h(si − r1; θ), . . . , h(si − rp; θ))′, then

H(θ) =

⎛
⎜⎝

h′
1(θ)
...

h′
n(θ)

⎞
⎟⎠ . (8.30)
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Thus, subject to the estimation of the kernel parameters, θ, the basis function matrix H is
defined and spatial prediction is computationally efficient as long as p � n. As described
previously, the process model random effects parameterization is η = Hα+ξ and var (η) =
HΣαH′ + Σξ . In the discrete kernel approach described above, one may simply specify
α ∼ Gau(0, σ 2

α I), so that one is effectively building spatial dependence by smoothing a
white noise process defined at the p support locations. As mentioned previously, such
simple structure for Σα allows for quite efficient computation. It isn’t always clear in this
case what should be the structure for the residual covariance, Σξ , but it is assumed to
have simple structure to facilitate computation. Assuming that p is sufficiently large, this is
usually a reasonable assumption. We also note that one might allow Σα to be unstructured
and estimate the associated parameters (see Cressie and Johannesson, 2008). Or, since the
support points can be thought of as a spatial process as well, it is reasonable to allow
Σα to have spatial dependence (e.g., in terms of a well-known valid spatial covariance
function).

The primary advantage of the kernel-based decomposition, other than computational
simplicity for large datasets, is the ease in which fairly complicated nonstationary processes
can be modeled. For example, the kernel parameters θ may vary with space (Higdon et al.,
1999), in which case the ith row of H depends on parameters θi . Clearly, the number
of parameters needed to estimate H is much larger since we must estimate {θ1, . . . , θn}.
However, if one takes a Bayesian hierarchical modeling perspective, it is likely that these
parameters, indexed in space, can be modeled in terms of (relatively low-dimensional)
spatial random fields as well. An alternative approach allows the spatial support points to
be defined as a mixture of spatial random processes, so that the neighborhood around each
support point corresponds to a stationary spatial process with its own set of governing
parameters, implying a more complicated structure on Σα , as seen in Fuentes (2002).

8.5 Extensions

The reduced-dimension random effects approach described above for traditional Gaussian
data spatial prediction can also be used in other spatial contexts. For example, this approach
can facilitate computation in non-Gaussian spatial data analyses, spatiotemporal modeling,
multivariate spatial modeling, or as part of a complex multilevel hierarchical model. The
non-Gaussian and spatiotemporal cases are discussed briefly below.

8.5.1 Non-Gaussian Data Models

The traditional non-Gaussian spatial model can be written (e.g., see Paciorek, 2007):

Y(si ) ∼ indep. F(μ(si ), κ), (8.31)

g(μ(si )) = x′
iβ + η(si ), (8.32)

where the observations are assumed to be conditionally independent from a distribution
F chosen from the exponential family. This distribution has spatially indexed mean μ(si ),
dispersion parameter κ , and link function g(·). Specifically, the link function is the trans-
formation of the mean response that accommodates a linear function of some covariates
plus a spatial random process, η(si ). As before, it is reasonable to add an extra hierarchical
decomposition of the spatial process, η(si ) = h′

iα + ξ(si ), where α ∼ Gau(0, Σα) and ξ(si )
has zero mean, potentially (but not practically) with spatial dependence. Thus, we can write
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the model:

Y(si ) ∼ indep. F(μ(si ), κ), (8.33)

g(μ(si )) = x′
iβ + h′

iα + ξ(si ), ξ ∼ Gau(0, Σξ ), (8.34)

α ∼ Gau(0, Σα). (8.35)

The same benefits of having α of dimension p � n apply in this case as with the Gaussian
data model described previously. Estimation and prediction are, however, typically more
difficult in the non-Gaussian data case. But, in an MCMC estimation context, one gains an
added advantage in the case of non-Gaussian data models by including the residual error
process, ξ(si ), as long as the structure on the covariance associated with this process is
simple. The chief benefit is that the spatial process (and “trend” parameters, β) can now be
updated jointly by an efficient conjugate Gibbs step within the overall MCMC. Although
there is somewhat of a tradeoff between this efficient update versus the fact that the spatial
parameters are “farther away from the data” (leading to slow mixing in the Markov chain),
in very high–dimensional problems, it can sometimes be helpful to reparameterize the
spatial process in this fashion (see Paciorek, 2007 and Royle and Wikle, 2005).

8.5.2 Spatiotemporal Processes

The hierarchical random effects representation of a spatial process is ideal for modeling spa-
tiotemporal processes. Consider the spatiotemporal data vector Yt = (Yt(s1), . . . , Yt(sn))′.
Complicated spatiotemporal dependence often can be adequately modeled by a spatial
process that evolves dynamically. That is, we have the state–space model for t = 1, . . . , T :

Yt = ηt + εt , εt ∼ Gau(0, R) (8.36)
ηt = Mηηt−1 + γt , γt ∼ Gau(0, Q), (8.37)

where, for simplicity of presentation, all vectors are n × 1, corresponding to spatial loca-
tions, with Mη the n×n state transition matrix and R, Q the measurement and state process
covariance matrices, respectively. One either has to specify a distribution for ηt, t = 0, or
assume it is known, to form a complete model. Note that this model can be made more
general by allowing for missing data, nonzero means, and time-varying transition and co-
variance matrices. Clearly, if n is very large, predicting the state process will be challenging.
Typically, state prediction is accomplished by means of Kalman filter/smoother algorithms,
which rely on inverses of n × n covariance matrices (e.g., see Shumway and Stoffer, 2000).
Thus, it is natural to think about a dimension reduced version of the Kalman filter.

As before, we consider the decomposition:

ηt = Hαt + ξt , ξt ∼ Gau(0, Σξ ), (8.38)

where αt = (αt(1), . . . , αt( p))′ is a spatiotemporal random effects process and the residual
process ξt is assumed to be independent across time, but possibly dependent across space. It
is assumed that the αt process evolves dynamically as well. Thus, rewriting the state–space
model gives:

Yt = Hαt + ξt + εt , (8.39)
αt = Mααt−1 + νt , νt ∼ Gau(0, Qν), (8.40)

for t = 1, . . . , T . If ξt is assumed to exhibit spatial dependence, then one can develop
prediction equations that take this into account (e.g., see Wikle and Cressie, 1999). If ξt and
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εt are assumed to have simple dependence structures, then the Kalman update equations,
or the analogous MCMC updates, can be shown to depend only on p × p matrix inverses.

As with purely spatial modeling, one can choose from a variety of basis vectors to form
H. Often there is professed novelty in the choice of a “new” expansion (i.e., choice of H)
on which to base a spatiotemporal dynamical process, but the general procedure does not
change. Again, state prediction can be based on classical or Bayesian approaches. Examples
in the literature include Berliner, Wikle, and Cressie, 2000; Calder, 2007; Stroud, Mueller,
and Sanso, 2001; Wikle and Cressie, 1999; Wikle, Milliff, Nychka, and Berliner, 2001; and
Xu and Wikle, 2007.

8.6 Discussion

This exposition of low-rank representations of spatial processes did not include much dis-
cussion concerning parameter estimation. Certain modeling assumptions (say, for Σα) can
make a substantial difference to the number of such parameters that must be estimated.
Similarly, one may fix H (as in the case of orthogonal functions) or parameterize it (as
with the kernel matrices). One might be tempted to allow both H and Σα to be unstruc-
tured and estimate all of the parameters. As might be expected, without prior information
or restrictions on at least one of these matrices, this can lead to model nonidentifiability.
The same issue applies to traditional factor analysis and the estimation of H and Mα in
the spatiotemporal case. In general, the more complicated the parameterizations, the more
prior information needs to be provided to obtain good estimates. The literature includes
cases where parameter estimation is through method of moments, maximum likelihood,
expectation-maximization (EM) algorithm, and various degrees of Bayesian analysis. Ex-
amination of these methods are beyond the scope of this chapter, but the references include
such details.

Given the general nature of the low-rank framework, one might question how to make
the various modeling choices. For example, one must choose the reduced rank, p, the basis
functions that make up the expansion matrix H, the truncation covariance Σξ , and the
random effects covariance Σα . Unfortunately, with few exceptions (see Shi and Cressie,
2007), little is known about coherent model selection strategies to elucidate these choices.
This is especially the case with regard to H, where there seems to be quite a lot of subjectivity
rather than objective decision making. There are also largely unsubstantiated claims that
orthogonal basis functions are better/worse than nonorthogonal, or implications that the
ability to model nonstationary processes is inherently better/worse than stationary process
modeling, etc. In general, as is well-known for random effects modeling of dependent
processes, it is almost always true that any model that includes dependence is going to be
helpful, and that the specific form of that dependence is much less critical. Nevertheless,
there needs to be substantially more research into the selection of appropriate low-rank
models for spatial processes.
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9.1 Overview

Modeling of the spatial dependence structure of environmental processes is fundamental to
almost all statistical analyses of data that are sampled spatially. The classical geostatistical
model for a spatial process {Y(s) : s ∈ D} defined over the spatial domain D ⊂ R

d , specifies
a decomposition into mean (or trend) and residual fields, Y(s) = μ(s) + e(s). The process
is commonly assumed to be second order stationary, meaning that the spatial covariance
function can be written C(s, s+h) = Cov(Y(s), Y(s+h)) = Cov(e(s), e(s+h)) = C(h), so that
the covariance between any two locations depends only on the spatial lag vector connecting
them. There is a long history of modeling the spatial covariance under an assumption of
“intrinsic stationarity” in terms of the semivariogram, γ (h) = 1

2 var(Y(s+h)−Y(s)). However,
it is now widely recognized that most, if not all, environmental processes manifest spatially
nonstationary or heterogeneous covariance structure when considered over sufficiently
large spatial scales.

A fundamental notion underlying most of the current modeling approaches is that the
spatial correlation structure of environmental processes can be considered to be approx-
imately stationary over relatively small or “local” spatial regions. This local structure is
typically anisotropic. The methods can then be considered to describe spatially varying,
locally stationary, anisotropic covariance structure. The models should reflect the effects of
known explanatory environmental processes (wind/transport, topography, point sources,
etc.). Ideally we would like to model these effects directly, but there have been only a few
recent approaches aiming at such explicit modeling (see Calder, 2008).

We distinguish our focus on nonstationarity in spatial covariance from nonstationarity in
the mean or trend, as commonly addressed by variants of universal kriging, and from non-
stationary processes modeled by intrinsic functions of order k (IRF-F) and characterized by
generalized covariance functions, including the one-dimensional special cases of fractional
and integrated Brownian motions. Filtered versions of these processes, or “spatial incre-
ments of order k,” are stationary. In some cases, appropriately identified universal kriging

119
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and intrinsic random function kriging are essentially equivalent (Christensen, 1990). See
also Stein (2001) and Buttafuoco and Castrignanò (2005).

The “early” literature (reaching back only to the 1980s) on modeling of nonstationary
spatial covariance structure was primarily in the context of models for space–time random
fields. Prior to 1990, the only apparent approach to this feature of environmental monitor-
ing data (outside of local analyses in subregions where the process might be more nearly
stationary) derived from an empirical orthogonal function decomposition of the space–
time data matrix, a technique common in the atmospheric science literature. Reference to
this approach in the statistical literature dates at least back to Cohen and Jones (1969) and
Buell (1972, 1978), although perhaps the most useful elaboration of the method for spatial
analysis appears in Obled and Creutin (1986). A number of new computational approaches
were introduced in the late 1980s and early 1990s, beginning with Guttorp and Sampson’s
spatial deformation approach, first mentioned in print in a 1989 comment in a paper by
Haslett and Raftery (1989). Shortly following was Haas’ “moving window” spatial esti-
mation (Haas, 1990a, 1990b, 1995), although this approach estimates covariance structure
locally without providing a (global) model; Sampson and Guttorp’s elaboration of their
first approach to the spatial deformation model based on multidimensional scaling (1992);
an empirical Bayes shrinkage approach of Loader and Switzer (1992); and Oehlert’s kernel
smoothing approach (1993). Guttorp and Sampson (1994) reviewed this literature on meth-
ods for estimating heterogeneous spatial covariance functions with comments on further
extensions of the spatial deformation method. In this chapter we focus on the developments
from the late 1990s to the present, updating the review of methods provided by Sampson
(2001). There has been considerable development and application of kernel and process
convolution models, beginning with the work of Higdon (1998) and Fuentes (2001). But
despite a substantial growth in the literature of methods on nonstationary modeling, there
is almost no conveniently available software at this point in time for the various methods
reviewed here. This chapter presents no illustrative case studies and we refer the reader to
the original sources for applications.

We review the current literature under the headings of: smoothing and kernel meth-
ods, basis function models, process convolution models, and spatial deformation models,
concluding with brief mention of parametric models and further discussion.

9.2 Smoothing and Kernel-Based Methods

Perhaps the simplest approaches to dealing with nonstationary spatial covariance struc-
ture begin either from the perspective of locally stationary models, which are empirically
smoothed over space, or from the perspective of the smoothing and/or interpolation of em-
pirical covariances estimated among a finite number of monitoring sites. Neither of these
perspectives incorporate any other explicit modeling of the spatial heterogeneity in the spa-
tial covariance structure. Haas’ approach to spatial estimation for nonstationary processes
(Haas 1990a, 1990b, 1995) simply computes local estimates of the spatial covariance struc-
ture, but does not integrate these into a global model. Oehlert’s (1993) kernel smoothing
approach and Loader and Switzer’s (1992) empirical Bayesian shrinkage and interpolation
both aim to smoothly interpolate empirical covariances.

Papers by Fuentes (2001, 2002a, 2002b) and by Nott and Dunsmuir (2002) propose con-
ceptually related approaches for representing nonstationary spatial covariance structure
in terms of spatially weighted combinations of stationary spatial covariance functions
assumed to represent the local covariance structure in different regions. First, consider
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dividing the spatial domain D into k subregions Si , each with a sufficient number of points
to estimate a (stationary) variogram or spatial covariance function locally. Fuentes (2001)
represents the spatial process Y(s), as a weighted average of “orthogonal local stationary
processes”:

Y(s) =
k∑

i=1

wi (s)Yi (s) (9.1)

where wi (s) is a chosen weight function, such as inverse squared distance between s and
the center of subregion Si . The nonstationary spatial covariance structure is given by

Cov(Y(s), Y(u)) =
∑k

i=1
wi (s)wi (u)Cov(Yi (s), Yi (u))

=
∑k

i=1
wi (s)wi (u)Cθi (s − u) (9.2)

where Cθi (s − u) represents a stationary spatial covariance function. Fuentes chooses the
number of subgrids, k, using a Bayesian information criterion (BIC). The stationary pro-
cesses Yi (s) are actually “local” only in the sense that their corresponding covariance func-
tions, Cθi (s − u), are estimated locally, and they are “orthogonal” by assumption in order
to represent the overall nonstationary covariance simply as a weighted sum of covari-
ances. Fuentes estimates the parameters with a Bayesian approach providing predictive
distributions accounting for uncertainty in the parameter estimates without resorting to
computationally intensive MCMC methods.

Fuentes and Smith (2001) proposed to extend the finite decomposition of Y(x) of Fuentes
(2001) to a continuous convolution of local stationary processes:

Y(x) =
∫

D
w(x − s)Yθ (s)(x)ds. (9.3)

Estimation would require that the spatial field of parameter vectors θ (s), indexing the sta-
tionary Gaussian processes, be constrained to vary smoothly. In practice, the integrals of
(9.3) and spectral representations of the spatial covariance (Fuentes, 2002a) are approxi-
mated with discrete sums involving k independent spatial locations si and corresponding
processes Yθi (s), as in Equation (9.2) above. (See also Fuentes, 2002b.)

Nott and Dunsmuir’s (2002) approach, proposed as a more computationally feasible
alternative to something like the spatial deformation model of Sampson and Guttorp (1992),
has the stated aim of reproducing an empirical covariance matrix at a set of monitoring sites
and then describing the conditional behavior given monitoring site values with a collection
of stationary processes. We will use the same notation as that above, although for Nott and
Dunsmuir, i will index the monitoring sites rather than a smaller number of subregions,
and the Cθi (x − y) represent local residual covariance structure after conditioning on values
at the monitoring sites. These are derived from locally fitted stationary models. In their
general case, Nott and Dunsmuir’s representation of the spatial covariance structure can
be written

Cov(Y(x), Y(y)) = Σ0(x, y) +
∑k

i=1
wi (x)wi (y)Cθi (x − y)

where Σ0(x, y) is a function of the empirical covariance matrix at the monitoring sites,
C = [ci j ], and the local stationary models computed so that Cov(Y(xi ), Y(x j )) = ci j . They
further propose to replace the empirical covariance matrix C by the Loader and Switzer
(1992) empirical Bayes shrinkage estimator Ĉ = γ C + (1 − γ )Cθ , where Cθ is a covariance
matrix obtained by fitting some parametric covariance function model. In this case, it can
be shown that the Nott and Dunsmuir estimate for covariances between monitored and
unmonitored sites is the same as that of the proposed extrapolation procedure of Loader

© 2010 by Taylor and Francis Group, LLC



P1: RAJESH SHARMA

February 10, 2010 12:11 C7287 C7287˙C009

122 Handbook of Spatial Statistics

and Switzer, but the estimate for covariances among unmonitored sites is different, and in
particular, not dependent on the order with which these unmonitored sites are considered,
as was the case for Loader and Switzer’s proposal.

Guillot et al. (2001) proposed a kernel estimator similar to the one introduced by Oehlert
(1993), although they do not reference this earlier work. Let D denote the spatial domain
so that the covariance function C(x, y) is defined on D × D, and suppose an empirical
covariance matrix C = [ci j ] computed for sites {xi , i = 1, . . . , n}. Define a nonnegative kernel
K integrating to one on D × D and let Kε(u, v) = ε−4 K (u/ε, v/ε) for any real positive ε.
Then define a partition {D1, . . . , Dn} of D (such as the Voronoi partition). The nonparametric,
nonstationary estimator of C obtained by regularization of C is

Ĉε(x, y) =
∑
i, j

ci j

∫
Di ×Dj

Kε(x − u, y − v)dudv. (9.4)

The authors prove positive definiteness of the estimator for positive definite kernels, discuss
selection of the bandwidth parameter ε, and demonstrate an application where, surpris-
ingly, kriging with the nonstationary covariance model is outperformed by kriging with a
fitted stationary model.

Finally, we note the nonsmooth, piecewise Gaussian model approach of Kim, Mallick
and Holmes (2005), which automatically partitions the spatial domain into disjoint regions
using Voronoi tessellations. This model structure, specifying stationary processes within
regions (tiles of the tessellation) and independence across regions, is fitted within a Bayesian
framework. It is applied to a soil permeability problem where this discrete nonstationary
structure seems justified.

9.3 Basis Function Models

The earliest modeling strategy in the literature for nonstationary spatial covariance structure
in the context of spatial-temporal applications was based on decompositions of spatial
processes in terms of empirical orthogonal functions (EOFs). The original methodology in
this field has received renewed attention recently in the work of Nychka and colleagues
(Nychka and Saltzman, 1998; Holland et al., 1998; Nychka et al., 2002). Briefly, considering
the same spatial-temporal notation as above, the n × n empirical covariance matrix C may
be written with a spectral decomposition as

S = FTΛF =
nT∑

k=1

λkFkFT
k (9.5)

where nT = min(n, T). The extension of this finite decomposition to the continuous spatial
case represents the spatial covariance function as

C(x, y) =
∞∑

k=1

λk Fk(x)Fk(y) (9.6)

where the eigenfunctions Fk(x) represent solutions to the Fredholm integral equation and
correspond to the Karhunen–Loève decomposition of the (mean-centered) field as

Y(x, t) =
∞∑

k=1

Ak(t)Fk(x). (9.7)
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The modeling and computational task here is in computing a numerical approximation
to the Fredholm integral equation, or equivalently, choosing a set of generating functions
e1(x), . . . , e p(x) that are the basis for an extension of the finite eigenvectors Fk to eigenfunc-
tions Fk(x). (See Guttorp and Sampson (1994), Creutin and Obled (1982), Obled and Creutin
(1986), and Preisendorfer (1988, Sec. 2d) for further details.)

In Holland et al. (1998), the spatial covariance function is represented as the sum of a
conventional stationary isotropic spatial covariance model and a finite decomposition in
terms of empirical orthogonal functions. This corresponds to a decomposition of the spatial
process as a sum of a stationary isotropic process and a linear combination of M additional
basis functions with random coefficients, the latter sum representing the deviation of the
spatial structure from stationarity.

Nychka et al. (2002) introduced a multiresolution wavelet basis function decomposition
with a computational focus on large problems with observations discretized to the nodes
of a (large) N × M grid. The example application in this chapter is to air quality model
output on a modest 48 × 48 grid. In the current notation, suppressing the temporal index,
they write

Y(x) =
NM∑
k=1

Ak Fk(x). (9.8)

In the discrete case, they write F = [Fki ], where Fki = Fk(xi ), xi being the ith grid point,
so that one can write Z = FA and C = FΣ AFT . For the basis functions Fk , they use a “W”
wavelet basis with parent forms that are piecewise quadratic splines that are not orthogonal
or compactly supported. These were chosen because they can approximate the shape of
common covariance models, such as the exponential, Gaussian and Matérn, depending
on the specification (and off-diagonal sparcity) of the matrix ΣA. Recent work (Matsuo,
Nychka, and Paul, 2008) has extended the methodology to accommodate irregularly spaced
monitoring data and a Monte Carlo expectation-maximization (EM) estimation procedure
practical for large datasets. They analyze an ozone monitoring network dataset with 397
sites discretized (again) to a 48 × 48 grid.

Pintore, Holmes, and colleagues (Pintore and Holmes, 2004; Stephenson et al., 2005)
work with both Karhunen–Loève and Fourier expansions. Nonstationarity is introduced
by evolving the stationary spectrum over space in terms of a latent spatial power process.
The resulting models are valid in terms of the original covariance function, but with local
parameters. A Bayesian framework is used with MCMC estimation.

9.4 Process Convolution Models

Higdon (1998) introduced a process convolution approach for accommodating nonsta-
tionary spatial covariance structure. (See also Higdon, Swall, and Kern (1999).) The basic
idea is to consider the fact that any stationary Gaussian process Z(s) with correlogram
ρ(d) = ∫

R2 k(s)k(s − d)ds can be expressed as the convolution of a Gaussian white noise
process ζ (s) with kernel k(s)

Y(s) =
∫

R2
k(s − u)ζ (u)du. (9.9)

A particular case of interest is the choice of bivariate Gaussian density functions with 2 × 2
covariance matrix Σ for the kernel, which results in processes with stationary anisotropic
Gaussian correlation functions with the principal axes of Σ determining the directions of
the anisotropic structure.
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To account for nonstationarity, Higdon (1998) and Higdon et al. (1999) let the kernel vary
smoothly with spatial location. Letting ks(·) denote a kernel centered at the point s, with a
shape depending on s, the correlation between two points s and s′ is

ρ(s, s′) =
∫

R2
ks(u)ks′ (u)du. (9.10)

Higdon et al. (1999) demonstrate the particular case where the ks(·) are bivariate Gaussian
densities characterized by the shape of ellipses underlying the 2×2 covariance matrices. The
kernels are constrained to evolve smoothly in space by estimating the local ellipses under
a Bayesian paradigm that specifies a prior distribution on the parameters of the ellipse (the
relative location of the foci) as a Gaussian random field with a smooth (in fact, Gaussian)
spatial covariance function. It should be noted that the form of the kernel determines the
shape of the local spatial correlation function, with a Gaussian kernel corresponding to a
Gaussian covariance function. Other choices of kernels can lead to approximations of other
common spatial correlation functions.

Paciorek and Schervish (2006) extend this approach and create a class of closed-form
nonstationary covariance functions, including a nonstationary Matérn covariance param-
eterized by spatially varying covariance parameters in terms of an eigen-decomposition of
the kernel covariance matrix ks(·).

Calder and Cressie (2007) discuss a number of topics associated with convolution-based
modeling including the computational challenges of large datasets. Calder (2007, 2008)
extends the approach to dynamic process convolutions for multivariate space–time moni-
toring data.

D’Hondt et al. (2007) apply the process convolution model with Gaussian kernels (which
they call a nonstationary anisotropic Gaussian kernel (AGK) model) to the nonstationary
anisotropic texture in synthetic aperture radar (SAR) images. The Gaussian kernels are
estimated locally, in contrast to the Bayesian smoothing methods of Higdon and Paciorek
and Schervish.

9.5 Spatial Deformation Models

The spatial deformation approach to modeling nonstationary or nonhomogeneous spatial
covariance structures has been considered by a number of authors since the early work
represented in Sampson and Guttorp (1992) and Guttorp and Sampson (1994). We first
review the modeling approach, as presented by Meiring et al. (1997). We will then review
some of the other work on this methodology, focusing on recently introduced Bayesian
methods.

Suppose that temporally independent samples Yit = Y (xi , t) are available at N sites
{xi , i = 1, . . . , N, typically in R2} and at T points in time {t = 1, . . . , T}. X = [

X1 X2
]

represents the matrix of geographic locations. We now write the underlying spatial-temporal
process as

Y (x, t) = μ (x, t) + ν (x)
1/2 Et (x) + Eε (x, t) , (9.11)

where μ (x, t) is the mean field, and Et (x) is a zero mean, variance one, continuous second-
order spatial Gaussian process, i.e., Cov(Et(x), Et(y)) → [x ≥ y]1.
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The correlation structure of the spatial process is expressed as a function of Euclidean
distances between site locations in a bijective transformation of the geographic coordinate
system

cor(Et(x), Et(y)) = ρθ (‖ f (x) − f (y)‖), (9.12)

where f (·) is a transformation that expresses the spatial nonstationarity and anisotropy,
ρθ belongs to a parametric family with unknown parameters θ , ν(x) is a smooth function
representing spatial variance, and Eε (x, t) represents measurement error and/or very short
scale spatial structure, assumed Gaussian and independent of Et. For mappings from R2 to
R2, the geographic coordinate system has been called the “G-plane” and the space repre-
senting the images of these coordinates under the mapping is called the “D-plane,” Perrin
and Meiring (1999) prove that this spatial deformation model is identifiable for mappings
from Rk to Rk assuming only differentiability of the isotropic correlation function ρθ ().
Perrin and Senoussi (2000) derive analytic forms for the mappings f (·) under differentia-
bility assumptions on the correlation structure for both the model considered here, where
ρθ () is considered to be a stationary and isotropic correlation function (“stationary and
isotropic reducibility”), and for the case where this correlation function is stationary, but
not necessarily isotropic (“stationary reducibility”).

Mardia and Goodall (1992) were the first to propose likelihood estimation and an exten-
sion to modeling of multivariate spatial fields (multiple air quality parameters) assuming
a Kronecker structure for the space × species covariance structure. Likelihood estimation
and an alternative radial basis function approach to representation of spatial deformations
was proposed by Richard Smith in an unpublished report in 1996.

Meiring et al. (1997) fit the spatial deformation model to the empirically observed cor-
relations among a set of monitoring sites by numerical optimization of a weighted least
squares criterion constrained by a smoothness penalty on the deformation computed as
a thin-plate spline. The problem is formulated so that the optimization is with respect
to the parameters, θ , of the isotropic correlation model and the coordinates of the moni-
toring sites, ξi = f (xi ), in the deformation of the coordinate system. This is a large and
often difficult optimization problem. It becomes excessively taxing when uncertainty in
the estimated model is assessed by resampling methods or cross-validation. However,
it is the approach that is implemented in the most conveniently available software for
fitting the deformation model. These are the EnviRo.stat R programs that accompany
the text by Le and Zidek (2006) on the analysis of environmental space–time processes
(http://enviro.stat.ubc.ca/).

Iovleff and Perrin (2004) implemented a simulated annealing algorithm for fitting the spa-
tial deformation model by optimization, with respect to correlation function parameters θ

and D-plane coordinates of the monitoring sites, ξi = f (xi ), of a least squares criterion of
goodness-of-fit to an empirical sample covariance matrix. Rather than impose an analytic
smoothness constraint on the mapping (such as the thin-plate, spline-based, bending en-
ergy penalty of Meiring et al. (1997)), they use a Delaunay triangulation of the monitoring
sites to impose constraints on the random perturbations of the D-plane coordinates ξi that
guarantee that the resulting mapping f (xi ) is indeed bijective, i.e., it does not “fold.” Using
any of the other methods discussed here, the achievement of bijective mappings has relied
on appropriate tuning of a smoothness penalty or prior probability model for the family of
deformations.

Damian et al. (2001, 2003) and Schmidt and O’Hagan (2003) independently proposed
similar Bayesian modeling approaches for inference concerning this type of spatial de-
formation model and for subsequent spatial estimation accounting for uncertainty in the
estimation of the spatial deformation model underlying the spatial covariance structure.
We present here details of the model of Damian et al. (2001, 2003).
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For a Gaussian process with constant mean, μ (x, t) ≡ μ, and assuming a flat prior for μ,
the marginal likelihood for the covariance matrix Σ has the Wishart form

f ({yit|Σ }) = |2πΣ |−(T−1)/2 exp
{

−T
2

trΣ−1C
}

(9.13)

where C is the sample covariance with elements,

ci j = 1
T

T∑
t=1

(yit − ȳi )
(

yjt − ȳj
)

, (9.14)

and the true covariance matrix is parameterized as Σ = Σ (θ , νi , ξi ), with Σi j = (νiν j )1/2

ρθ (‖ξi − ξ j‖), and ξi = f (xi ). The parameters to be estimated are {θ , νi , ξi ; i = 1, . . . , N}.
The Bayesian approach requires a prior on all of these parameters. The novel and challeng-

ing aspect of the problem concerns the prior for the spatial configuration of the ξi . Writing
the matrix Ξ = [ξ1, . . . , ξN]T = [Ξ1 Ξ2 ], Damian et al. (2001, 2003) use a prior of the form

π (Ξ ) ∝ exp
{

− 1
2τ 2

[
Ξ T

1 KΞ1 + Ξ T
2 KΞ2

]}
(9.15)

where K is a function of the geographic coordinates only—the “bending energy matrix”
of a thin-plate spline (see Bookstein, 1989)—and τ is a scale parameter penalizing “non-
smoothness” of the transformation f . Mardia, Kent, and Walder (1991) first used a prior
of this form in the context of a deformable template problem in image analysis. It should
be noted that the bending energy matrix K is of rank n − 3 and the quadratic forms in the
exponent of this prior are zero for all affine transformations, so that the prior is flat over
the space of all affine deformations and thus is improper.

The parameter space is highly multidimensional and the posterior distributions are not of
closed form, therefore, a Metropolis–Hastings algorithm was implemented to sample from
the posterior. (See Damian et al. (2001) for details of the MCMC estimation scheme.) Once
estimates for the new locations have been obtained, the transformation is extrapolated to
the whole area of interest using a pair of thin-plate splines.

Schmidt and O’Hagan (2003) work with the same Gaussian likelihood, but utilize a
general Gaussian process prior for the deformation. When considered in terms of the coor-
dinates ξi , the effect of this on the form of the prior π(Ξ ) is to center the coordinate vectors
Ξ j , j = 1, 2, at their geographic locations and to replace K with a full rank covariance matrix
of a form to be specified. Utilizing the known interpretation of thin-plate splines as kriging
for an intrinsic random function with a particular form of (generalized) covariance matrix,
we see that the Damian et al. (2001) approach may be considered similarly to correspond
to a prior for the deformation considered as an intrinsic random function. Schmidt and
O’Hagan (2003) also differ from Damian et al. (2001) in their choice of parametric isotropic
correlation models and in many of the details of the MCMC estimation scheme, but they
are otherwise similarly designed methods.

The atmospheric science literature includes a number of papers with deformation models
motivated or determined explicitly by physical processes. (See, for example, Riishojgaard
(1998) and Fu et al. (2004).) Xiong et al. (2007) implement a nonlinear mapping model
for nonstationary covariance-based kriging in a high-dimensional (p = 19) metamodeling
problem using computer simulation data.

Anderes and Stein (2008) are the first authors to address the application of the deformation
model to the case of a single realization of a spatial process obtained as the deformation
of an isotropic Gaussian random field. They present a complete mathematical analysis
and methodology for observations from a dense network with approximate likelihood
computations derived from partitioning the observations into neighborhoods and assuming
independence of the process across partitions.
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9.6 Discussion

There is clearly much active work on the development and application of models for nonsta-
tionary spatial processes in an expanding range of fields beyond the atmospheric science
and environmental applications that motivated most of the early work in this field. We
have seen novel applications in image analysis (D’Hondt et al., 2007) and “metamodel-
ing in engineering design” (Xiong et al., 2007). It appears unlikely that there will prove to
be one “best” approach for all applications from among the major classes reviewed here:
kernel smoothing, process convolution models, spectral and basis functions models, and
deformation models.

Although this chapter covers substantial literature, the recent methodologies are still not
mature in a number of respects. First, most of the approaches reviewed here are not easily
applied as the developers of these methods have, for the most part, not made software avail-
able for use by other investigators. A number of questions of practical importance remain
to be addressed adequately through analysis and application. Most of the literature re-
viewed above addresses the application of the fitted spatial covariance models to problems
of spatial estimation, as in kriging. The Bayesian methods, all propose to account for the un-
certainty in the estimation of the spatial covariance structure, but the practical effects of this
uncertainty have not yet been demonstrated. There remains a need for further development
of diagnostic methods and experience in diagnosing the fit of these alternative models. In
particular, the nature of the nonstationarity, or equivalently, the specification or estimation
of the appropriate degree of spatial smoothness in these models expressed in prior distri-
butions or regularization parameters, needs further work. For the Bayesian methods, this
translates into a need for further understanding and/or calibration of prior distributions.

This chapter has focused on nonparametric approaches to the modeling of nonstationary
spatial covariance structure for univariate spatial processes. In some cases one may wish
to formally test the hypothesis of nonstationarity (Fuentes, 2005; Corstanje et al., 2008).
Mardia and Goodall (1992), Gelfand et al. (2004), and Calder (2007, 2008) address multi-
variate problems that are addressed in further detail in Chapter 28. Some parametric models
have also been introduced. These include parametric approaches to the spatial deformation
model, including Perrin and Monestiez’ (1998) parametric radial basis function approach
to the representation of two-dimensional deformations. Parametric models appropriate for
the characterization of certain point source effects have been introduced by Hughes-Oliver
et al. (1998, 1999, 2009).
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10.1 Monitoring Environmental Processes

Important environmental processes have been monitored for a variety of purposes for a
very long time. Concerns about climate change have led to the measurement of sea lev-
els and the extent to which polar ice caps have receded. Concern for human health and
welfare and the need to regulate airborne pollutants by the U.S. Environmental Protection
Agency has led to the development of urban airshed monitoring networks; cities out of
compliance with air quality standards suffer serious financial penalties. The degradation
of landscapes, lakes, and monuments led to the establishment of networks for monitoring
acidic precipitation as well as to surveys of water quality. Exploratory drilling to find oil
reserves on the northern slopes of Alaska generated concern for the health of benthic organ-
isms that feed the fish that feed human populations. The result was the National Oceanic
and Atmospheric Agency’s (NOAA) decision to monitor the concentrations of trace metals
in the seabed before and after the startup of drilling (Schumacher and Zidek, 1993). Pre-
dicting the height of tsunamis following earthquakes in the Indian Ocean has led NOAA
to install monitoring buoys (“tsunameters”) that can help assess the type of earthquake
that has occurred. Hazardous waste sites also must be monitored. Mercury, a cumulative
poison, must be monitored and that poses a challenge for designing a monitoring network
because mercury can be transported in a variety of ways. Concerns about flooding, along
with the need for adequate supplies of water for irrigation, has resulted in the monitoring of
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precipitation as well as snow-melt; not surprisingly, hydrologists were among the earliest
to develop rational approaches to design. Ensuring water quality leads to programs that
collect water samples at specific locations along seafronts popular with swimmers, with
red flags appearing on bad days.

These examples illustrate the importance of monitoring networks, the oldest one being
perhaps that constructed in ancient times along the Nile River to measure its height for the
purpose of forecasting the extent of the annual flood. It consisted of a series of instruments
called “nilometers,” each essentially a staircase in a pit next to the river to measure the height
of the river at a specific location. In contrast, modern technology has produced networks of
cheap-to-deploy sensors that automatically upload their measurements to central electronic
data recorders. Air pollution concentrations can be recorded in this way as well as soil
moisture content and snow water equivalent.

Networks have societally important purposes. Moreover, the data they provide are im-
portant to modelers, such as forecasters of future climate. However, in practice, they are
seldom designed to maximize the “bang for the buck” from their product. Instead, their
construction will often be influenced by administrative, political, and other pragmatic con-
siderations. Moreover, they and their purpose may evolve and change over time (Zidek,
Sun, and Le, 2000).

However, establishing these sites and maintaining them can be expensive. For tsuname-
ters in NOAA’s Pacific Ocean National Tsunami Hazard Mitigation Program, for example,
Gonzalez, Bernard, Meinig, Eble et al. (2005) estimate a cost of $250,000 to install a new
system and a cost of $30,000 per year to maintain it. Designers, therefore, must find a defen-
sible basis for a design recommendation even if pragmatic considerations ultimately lead
to modifications of the “ideal” design for the intended purpose.

In this chapter, we explore a variety of approaches designers have developed, along with
their rationales. The choice of an approach depends on such things as context, the objective,
“discipline bias,” and designer background.

Before we begin, a note on vocabulary: monitored sites are sometimes called “gauged”
sites, especially in hydrology. The devices placed at such sites may be called “monitors” or
“gauges.” Monitoring sites are sometimes called “stations.” Optimizing a design requires
a “design objective.”

10.2 Design Objectives

As the examples in Section 10.1 show, networks can be used for a variety of purposes,
such as

1. Determining the environmental impact of an event, such as a policy-induced in-
tervention or the closure of an emissions source

2. Assessing trends over space or over time
3. Determining the association between an environmental hazard and adverse health

outcomes
4. Detecting noncompliance with regulatory limits on emissions
5. Issuing warnings of impending disaster
6. Monitoring a process or medium, such as drinking water, to ensure quality or safety
7. Monitoring an easy-to-measure surrogate for a process or substance of real concern
8. Monitoring the extremes of a process
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However, a network’s purpose may change over time, as in an example of Zidek et al.
(2000) where a network now monitoring air pollution was formed by combining three
networks originally set up to monitor acidic precipitation. Thus, the sites were originally
placed in rural rather than urban areas where air pollution is of greatest concern. Hence,
additional sites had to be added.

Moreover, the network’s objectives may conflict. For example, noncompliance detection
suggests siting the monitors at the places where violations are seen as most likely to occur.
But, an environmental epidemiologist would want to divide the sites equally between areas
of high risk and areas of low risk to maximize the power of their health effects analyses.
Even when the objective seems well-defined, such as monitoring to detect extreme values
of a process, it may lead to a number of objectives on examination for implementation
(Chang, Fu, Le, and Zidek, 2007).

Often many different variables of varying importance are to be concurrently measured at
each monitoring site. The challenges now compound, hence, different importance weights
may need to be attached. To minimize cost, the designer could elect to measure different
variables at different sites. Further savings may accrue from making the measurements
less frequently, forcing the designer to consider the intermeasurement times. In combi-
nation, these many choices lead to a bewildering set of objective functions to optimize
simultaneously. That has led to the idea of designs based on multi-attribute theory, ones
that optimize an objective function that embraces all the purposes (Zhu and Stein, 2006;
Sampson, Guttorp, and Holland, 2001; Müller and Stehlik, 2008).

However, that approach will not be satisfactory for long-term monitoring programs when
the network’s future uses cannot be foreseen, as in the example of Zidek et al. (2000).
Moreover in some situations the “client” may not be able to even specify the network’s
purposes precisely (Ainslie, Reuten, Steyn, Le et al., 2009). Yet, as noted above, the high
cost of network construction and maintenance will require the designer to select a defensible
justification for the design she or he eventually proposes. This chapter presents a catalog
of approaches that may provide such a justification.

10.3 Design Paradigms

In practice, the domains in which the monitors are to be sited are “discretized,” meaning
the possible choices lie in a set D of finite size N. Practical considerations may make this set
quite small. For example, the expensive equipment involved will have to be put in a secure,
easily accessible location, one that is away from contaminating sources, such as heavy
traffic flows. The sites may be located on a geographical grid that follows the contours of a
catchment area, for example.

Most approaches to design fall into one of the following categories (Müller, 2005; Le and
Zidek, 2006; Dobbie, Henderson, and Stevens, 2007):

1. Geometry-based: The approach goes back a long way (Dalenius, Hajek, Zubrzycki,
1960). It involves heuristic arguments and includes such things as regular lattices,
triangular networks, or space-filling designs (Cox, Cox, and Ensor, 1997; Royle
and Nychka, 1998; Nychka and Saltzman, 1998). The heuristics may reflect prior
knowledge about the process. These designs can be especially useful when the
design’s purpose is exploratory (Müller, 2005). In their survey of spatial sampling,
Cox et al. (1997) provide support for their use when certain aggregate criteria are
used, for example when the objective function is the average of kriging variances.
In fact, Olea (1984) finds in a geological setting, when universal kriging is used
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to produce a spatial predictor, that a regular hexagonal pattern optimally reduces
the average standard error among a slew of geometrical patterns for laying out
a regular spatial design. Cox et al. (1997) conjecture that geometric designs may
be good enough for many problems and treat this matter as a “research issue.”
However, since the approaches in this category tend to be somewhat specialized,
our need for brevity precludes a detailed discussion.

2. Probability-based (see Section 10.4): This approach to design has been used for well
over half a century by a variety of organizations, such as opinion-polling companies
and government statistical agencies. It has the obvious appeal that sample selection
is based on the seemingly “objective” technique of sampling at random from a list
of the population elements (the sampling frame). Thus, in principle (though not
in practice) the designers need not have any knowledge of the population or the
distribution of its characteristics. Moreover, they may see competing methods as
biased because they rely on prior knowledge of the population, usually expressed
through models. Those models involve assumptions about the nature of the process
under investigation, none of which can be exactly correct, thus skewing selection
and biasing inference about the process being monitored. Nevertheless, for reasons
given below, this approach has not been popular in constructing spatial (network)
designs.

3. Model-based (see Section 10.5): The majority of designs for environmental mon-
itoring networks rely on the model-based approach. For although the models do
indeed skew the selection process, they do so in accord with prior knowledge and
can make the design maximally efficient in extracting relevant information for in-
ferences about the process. In contrast, the probability-based approach may be seen
as gambling on the outcome of the randomization procedure and, hence, risking the
possibility of getting designs that ignore aspects of the process that are important
for inference.

Since each paradigm has merits and deficiencies, the eventual choice will depend on
such things as context and the designer’s scientific background. However, once selected
the paradigms do provide a rational basis for selecting the monitoring sites. In the rest
of this chapter, we will see how they can be implemented along with their strengths and
weaknesses.

10.4 Probability-Based Designs

This paradigm has been widely used for such things as public opinion polling and the
collection of official statistics in national surveys. Hence, a large literature exists for it,
largely outside the domain of network design. Thus, we restrict our review to a few of these
designs in order to bring out some of the issues that arise, referring the reader interested in
details to a more comprehensive recent review (Dobbie et al., 2007).

10.4.1 Simple Random Sampling (SRS)

In the simplest of these designs, sites are sampled at random from a list of sites called
the “sampling frame” with equal probability and without replacement. Responses at each
site would then be measured and could even be vector valued, to include a sequence of
values collected over time. They would be (approximately) independent in this paradigm
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where the responses at each site, both in the sample and out, are regarded as fixed and the
probabilities derive entirely from the randomization process. This is an important point. It
means that responses from two sites quite close to one another would be (approximately)
unrelated, not something that would seem reasonable to a model-based designer.

Randomization in this paradigm yields a basis for an inferential theory including testing,
confidence intervals, and so on. Moreover, these products of inference are reasonably easy
to derive and can be quite similar to those from the other theories of spatial design.

10.4.2 Stratified Random Sampling

However, in practice, SRS designs are almost never used and often stratified random sam-
pling is used instead. For one thing, budgetary constraints often limit the number of sites
that can be included in the network and with SRS these could, by chance, end up in the
very same geographic neighborhood, an outcome that would generally be considered un-
desirable. Moreover, practical considerations can rule out SRS designs. For example, main-
tenance and measurement can entail regular visits to the site and long travel times. Thus,
spreading the selected sites out over subregions can help divide the sampling workload
equitably. Sites monitoring hazardous substances may have to be placed in all of a num-
ber of administrative jurisdictions, such as counties, in response to societal concerns and
resulting political pressures. Legislation may also force such a division of sites.

Finally, statistical issues may lead to a subdivision of sites into separate strata. For ex-
ample, gains in statistical efficiency can be achieved when a region consists of a collection
of homogeneous subregions (called strata). Then only a small number of sites need to be
selected from each stratum. Although this is a form of model-based sampling in disguise,
the appeal of stratified sampling designs has led to their use in important monitoring pro-
grams, e.g., a survey of U.S. lakes (Eilers, Kanciruk, McCord, Overton et al., 1987) and in
EMAP (http://www.epa.gov/emap).

However, even though stratification forces the sites to be spread out geographically,
it does not rule out adjacent pairs of sites being close together across stratum boundaries.
Moreover, like all designs that rely on a model of some kind, stratified ones may produce no
statistical benefits if that model fails to describe the population well. Practical considerations
also can rule out their use, leading to other more complex designs.

10.4.3 Variable Probability Designs

Complex designs with multiple stages can sample sites with varying probabilities. Consider
for example, a hypothetical survey of rivers (including streams). Stage 1 begins with the
construction of a list (a sampling frame), perhaps with the help of aerial photos, of catchment
areas called the “primary sampling units” or PSUs. With the help of that sampling frame, a
sample of PSUs is selected using SRS, a process that guarantees equally likely selection of
all items on the list, large and small. Then at Stage 2, for each PSU selected during Stage 1 a
list (subsampling frame) is constructed of rivers in that PSU. Items on these lists are called
“secondary sampling units” or SSUs. From these subsampling frames, a random sample of
SSUs is selected with an SRS design.

Naive estimates of population characteristics, using such a design could well be biased.
To illustrate, suppose an equal number of elements, say 10, are sampled from each of the se-
lected PSUs selected in Stage 1. Further imagine that one of those PSUs, call it A, contained
1,000,000 rivers, while another, B, had just 1,000. Then every single member of A’s sample
would represent 100,000 of A’s streams, while each member of B’s would represent just 100
streams. The result: Responses measured on each of B’s elements would (without adjust-
ment) grossly over-contribute to estimates of overall population characteristics compared
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to A’s. In short, naive estimates computed from the combined sample would be biased in
favor of the characteristics of the over-represented small PSUs. How can this flaw be fixed?

The ingenious answer to that question is embraced in an inferential procedure called
the Horvitz–Thompson (HT) estimator, named after its inventors. In fact, the procedure
contends with the potential estimator bias in a very large class of practical designs.

To describe an HT estimator, suppose a fixed number, say n, of sites are to be sampled.
Any design can be specified in terms of its sample selection probabilities, P(S), for all
S = {s1, . . . , sn} ⊆ D. Bias can now be assessed in terms of the chances that any given
population element s, such as a river in our hypothetical example, is included in our random
sample S, is πs = P(s ∈ S). Now denote the response of interest at location s by Y(s),
a quantity regarded as nonrandom in this context, even though it is, in fact, unknown.
Suppose the quantity of inferential interest to be the population mean Ȳ = ∑

s∈D Y(s)/N.
Then a “design-unbiased” estimator (meaning one that is unbiased over all possible samples
S that might be selected under the specified design) is given by the HT estimator:

ˆ̄Y =
n∑

i=1

Y(si )/(Nπsi )

=
∑
s∈S

Y(s)/(Nπs) (10.1)

=
∑
s∈D

IS(s)Y(s)/(Nπs)

where IS(s) is 1 or 0 according as s ∈ S or not. It follows that πs = E{IS(s)} and, therefore,
that ˆ̄Y is unbiased.

One can estimate other quantities, such as strata means, when spatial trends are of interest
in a similar way to compensate for the selection bias. As a more complicated example, when
both Y(s) and X(s) are measured at each of the sample sites, one could compensate for
selection bias in estimating the population level regression line’s slope using

∑n
i=1[Y(si ) − ˆ̄Y][X(si ) − ˆ̄X]/(πsi )∑n

i=1[X(si ) − ˆ̄X]2/(πsi )
.

In short, the HT estimator addresses the problem of selection bias for a very large class
designs.

We now turn to the competing paradigm for which a very rich collection of approaches
to design have been developed.

10.5 Model-Based Designs

Broadly speaking, model-based designs optimize some form of inference about the process
or its model parameters. We now describe a number of these approaches that get at one or
another of these objectives.

10.5.1 Estimation of Covariance Parameters

Designs may need to provide estimates about the random field’s model parameters, like
those associated with its spatial covariance structure or variogram, for example, which
play a central role in the analysis of geostatistical data. There a valid variogram model is
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selected and the parameters of that model are estimated before kriging (spatial prediction)
is performed. These inference procedures are generally based upon examination of the
empirical variogram, which consists of average squared differences of data taken at sites
lagged the same distance apart in the same direction. The ability of the analyst to estimate
variogram parameters efficiently is affected significantly by the design, particularly by the
spatial configuration of sites where measurements are taken.

This leads to design criteria that emphasize the accurate estimation of the variogram.
Müller and Zimmerman (1999) consider, for this purpose, modifications of design criteria
that are popular in the context of (nonlinear) regression models, such as the determinant
of the covariance matrix of the weighted or generalized least squares estimators of vari-
ogram parameters. Two important differences in the present context are that the addition
of a single site to the design produces as many new lags as there are existing sites and,
hence, also produces that many new squared differences from which the variogram is esti-
mated. Second, those squared differences are generally correlated, which precludes the use
of many standard design methods that rest upon the assumption of uncorrelated errors.
Nevertheless, several approaches to design construction that account for these features can
be devised. Müller and Zimmerman (1999) show that the resulting designs are much dif-
ferent from random designs on the one hand and regular designs on the other, as they tend
to include several groups of tightly clustered sites. The designs depend on the unknown
parameter vector θ , however, so an initial estimate or a sequential design and sampling ap-
proach is needed in practice. Müller and Zimmerman (1999) also compare the efficiency of
their designs to those obtained by simple random sampling and to regular and space-filling
designs, among others, and find considerable improvements.

Zhu and Stein (2005) and Zimmerman (2006) consider designs optimal for maximum
likelihood estimation of the variogram under an assumption of a Gaussian random field.
Since the inverse of the Fisher information matrix approximates the covariance of the vari-
ogram’s maximum likelihood estimators, they use the determinant of that inverse as their
criterion function. This function, like the criterion function of Müller and Zimmerman
(1999), depends not only on the set of selected design points S that is to be optimized, but
also on the unknown variogram parameter vector θ . Zhu and Stein (2005) offer various
proposals to address this difficulty:

• Locally optimal design: Plug a preliminary estimate of θ into the criterion
function.

• Minimax design: A variation of assuming nature makes the worst possible choice
of θ and the designer then chooses the best possible S under the circumstances.

• Bayesian design: Put a distribution on θ .

Zhu and Stein (2005) propose a simulated annealing algorithm for optimization of their
design criterion. They assess these proposals with simulation studies based on use of the
Matérn spatial covariance model and make the following conclusions:

1. Although the inverse information approximation to the covariance matrix of max-
imum likelihood estimators is accurate only if samples are moderately large, the
approximation yields a very similar ordering of designs, even for relatively small
samples, as when the covariance matrix itself is used; hence, the approximation
can serve generally as a useful design criterion.

2. The locally optimal approach (which is applicable only when a preliminary estimate
of θ is available) yields designs that provide for much more precise estimation of
covariance parameters than a random or regular design does.
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3. The more widely applicable Bayesian and minimax designs are superior to a regular
design, especially when the so-called “range parameter” (which measures the rate
at which the spatial correlation between sites declines with distance) is known or
a preliminary estimate of it is available.

Zimmerman (2006) makes similar proposals and obtains similar results. In addition,
he focuses attention on the finding that for purposes of good estimation of covariance
parameters, a design should have a much greater number of small lags than will occur in
either a regular or random arrangement of sites. The design should have many large lags
as well. Such a distribution of lags is achieved by a design consisting of regularly spaced
clusters.

10.5.2 Estimation of Mean Parameters: The Regression Model Approach

The regression modeling approach to network design focuses on optimizing the estimators
of coefficients of a regression model. Development of that approach has taken place outside
the context of network design (Smith, 1918; Elfving, 1952; Kiefer, 1959) and an elegant
mathematical theory for this problem has emerged (Silvey, 1980; Fedorov and Hackl, 1997;
Müller, 2007) along with numerical optimization algorithms.

The approach as originally formulated concerns continuous sampling domains, X , and
optimal designs, ξ , with finite supports x1, . . . , xm ∈ X (

∑m
i=1 ξ(xi ) = 1). In all, nξ(xi )

(suitably rounded) responses would then be measured at xi for all i = 1, . . . , m to obtain
y1, . . . , yn. Key elements include a regression model, y(x) = η(x, β) + ε(x) relating y to the
selected (and fixed) xs; the assumption of independence of the εs from one sample point
x to another. Optimality means maximally efficient estimation of β, that is, designs ξ that
optimize Φ(M(ξ )), M(ξ ) denoting the Fisher information matrix, and Φ, a positive-valued
function depending on the criterion adopted.

As an example, in simple linear regression, y(x) = α + βx + ε(x), x ∈ [a, b], and
M(ξ ) = σ 2[X′X]−1. There the optimal design that minimizes the variance of the least squares
estimator of β, has the intuitively appealing form, x1 = a, x2 = b while ξ(x1) = ξ(x2) = 1/2.

However, the approach does not apply immediately to network design. For one thing,
possible site locations are usually quite restricted. Moreover, once sited, the monitors must
measure the process of interest for an indefinite period. Finally, to measure n responses of
a random field at a single time point would require n monitors, so that ξ ≡ 1/n would be
completely determined once its support was specified, rendering the theory irrelevant.

Nevertheless, an attempt has been made to adapt the approach for network design
(Gibrik, Kortanek, and Sweigart, 1976; Fedorov and Müller, 1988; 1989) on the grounds
(Fedorov and Müller, 1989) that, unlike other approaches, which possess only algorithms
for finding suboptimal designs, truly optimal designs could be found with this one. That
attempt (Fedorov and Müller, 1987) assumes regression models for times t = 1, . . . , T
that capture both temporal and spatial covariance: yt(xi ) = η(xi , βt) + εt(xi ) where the
εs are independent and the βts are both random as well as autocorrelated. Moreover,
η(xi , βt) = gT (xi )βt for a known vector-valued g.

The celebrated Karhunen–Loève (K–L) expansion makes their model more general than
it may appear at first glance (Federov and Müller, 2008). K–L tells us that η has an infinite
series expansion in terms of the orthogonal eigenvectors of its spatial covariance function.
These eigenvectors become the gs in the expansion of η once the series has been truncated
(although in practice they may involve covariance parameters whose estimates need to be
plugged in.)

However, using an eigenfunction expansion of the spatial covariance to validate the re-
gression model presents technical difficulties when the proposed network is large (Fedorov,
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1996). Moreoever, Spöck and Pilz (2009) point to the difficulty of finding “numerically reli-
able” algorithms for solving K–L’s eigenvalue problems as a serious practical limitation to
the approach.

Spöck and Pilz go on to propose a different way of bringing the regression approach
into spatial design. Their method is based on the polar spectral representation of isotropic
random fields due to Yaglom (1987). That representation equates the spatial covariance
(assumed known) as an integral of a Bessel function of the first with respect to a spectral
distribution function. That equation, in turn, yields a representation of the ε process for the
regression model postulated above in terms of sines and cosines of arbitrary high precision
depending how many terms are kept. That adds a second parametric regression term to
the regression model above and, like the K–L approach, puts the spatial design problem
into a form susceptible to analysis by methods in the broader domain of Bayesian design
(Pilz, 1991). This approach also faces practical challenges since commonly environmental
processes are not isotropic and, moreover, their covariance matrices are not known. The
authors circumvent the latter by finding designs that are minimax against the unknown
covariance, where spatial prediction provides the objective function on which the minimax
calculation can be based.

Overall, the attempt to move the regression modeling theory into spatial design faces a
number of challenges in applications:

1. As noted above, the feasible design region will usually be a discrete set, not a
continuum and use of the so-called “continuous approximation” that has been
proposed to address that difficulty leads to further difficulties. For one thing, the
result will not usually be a feasible solution to the original problem. For another,
the solution may be hard to interpret (Fedorov and Müller, 1988, 1989). Although
(Müller, 2001) has helped clarify the nature of that approximation, the value of sub-
stituting it for the hard-to-solve exact discrete design problem remains somewhat
unclear.

2. The design objective inherited from the classical approach to regression-based de-
sign, the one based on inference about the regression parameters (the βs) will not
always seem appropriate especially when they are mere artifacts of the orthogonal
expansion described above.

3. Even when the regression model is genuine (as opposed to one from an eigen-
function expansion) and the objective function is meaningful, the range of spatial
covariance kernels will be restricted unless the εs are allowed to be spatially corre-
lated. That need is met in the extensions of the model (Fedorov, 1996; Müller, 2001).
However, the resulting design objective function does not have much in common
with the original besides notation (Fedorov, 1996, p. 524).

4. The assumed independence of the εs also proves a limitation in this context,
although a heuristic way around this difficulty offers some promise (Müller,
2005).

5. The complexity of random environmental space–time processes renders their ran-
dom response fields only crudely related to spatial site coordinates. Moreover,
its shape can vary dramatically over time and season. In other words, finding
a meaningful, known vector-valued function g would generally be difficult or
impossible.

To summarize, although the regression modeling approach to network design comes
with an evolved theory and a substantial toolbox of algorithms, using that approach in
network design will prove challenging in practice.
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10.5.3 Spatial Prediction

Instead of estimating model parameters as in the two approaches discussed above, the pre-
diction of the random field at unmonitored sites based on measurements at the monitored
sites may be taken as the design objective. In some cases the spatial covariance has been
taken as known (McBratney, Webster, and Burgess, 1981; Yfantis, Flatman, and Behar, 1987;
Benhenni and Cambanis, 1992; Su and Cambanis, 1993; Ritter, 1996). In others it was not
and in one such case, a Bayesian approach was used to estimate the unknown parameters
(Currin, Mitchell, Morris, and Ylvisaker, 1991).

That is the spirit underlying the approach taken in geostatistical theory that has some
natural links with the regression modeling approach described above. That theory has
traditionally been concerned with spatial random fields, not space–time fields until very
recently (Myers, 2002) and has a large literature devoted to it (see, for example, Wackernagel,
2003). So, we will not describe this approach in detail here.

Two methods are commonly employed, cokriging and universal kriging. The first con-
cerns the prediction of an unmeasured coordinate of the response vector, say y1(x0), using
an optimal linear predictor based on the observed response vectors at all the sampling sites.
The coefficients of that optimal predictor are found by requiring it to be unbiased and to
minimize the mean square prediction error. They will depend on the covariances between
responses and the covariances between the prediction and the responses, covariances that
are unrealistically assumed to be known and later estimated from the data usually without
adequately accounting for the additional uncertainty thereby introduced. In contrast to the
first method, the second relies on a regression model precisely of the form given in the pre-
vious subsection, i.e., y(x) = gT (x)β + ε(x) where the εs are assumed to have a covariance
structure of known form. However, unlike the regression modeling approach above, the
goal is prediction of the random response (possibly a vector) at a point where it has not
been measured. Moreover, g (which can be a matrix in the multivariate case) can represent
an observable covariate process. Optimization again relies on selecting coefficients by min-
imizing mean squared prediction error subject to the requirement of unbiasedness. Designs
are commonly found, iteratively, one future site at a time, by choosing the site x0 where the
mean squared prediction error of the optimum predictor proves to be greatest. The designs
tend to be very regular in nature, strongly resembling space-filling designs.

10.5.4 Prediction and Process Model Inference

Why not combine the goals of predicting the random field at unmeasured sites and the
estimation of the field’s model parameters in a single design objective criterion? Zhu and
Stein (2006) and Zimmerman (2006) make that seemingly natural merger.

They focus on the case of an (isotropic) Gaussian field so if θ , the vector of covariance
model parameters, were known the best linear predictor Ŷ(s; S, θ ) of the unmeasured re-
sponse at location s, Y(s), could be explicitly computed as a function of the responses at
points in S, Y = {Y(s), s ∈ S}, and θ . So could its mean squared prediction error (MSPE)
M(s; S, θ ). That quantity could then be maximized over s to get the worst case and a cri-
terion M(S, θ ) to maximize in finding an optimum S. (Alternatively, it could be averaged.)
This criterion coincides with that described in the previous subsection.

Since θ is unknown, it must be estimated by, say, the restricted maximum likelihood
(REML) or maximum likelihood (ML) estimator, θ̂ . The optimal predictor could then be
replaced by Ŷ(s; S, θ̂ ) in the manner conventional in geostatistics. But then M(s; S, θ ) would
not correctly reflect the added uncertainty in the predictor. Moreover, the designer may wish
to optimize the performance of the plug-in predictor as well as the performance of θ̂ , where
each depends on the unknown θ . If only the former were of concern the empirical kriging
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(EK)-optimality criterion of Zimmerman (2006) could be used. This criterion is given by

E K (θ ) = max
s∈S

{M(s; S, θ ) + tr[A(θ )B(θ )]},

where A(θ ) is the covariance matrix of the vector of first-order partial derivatives of Ŷ(s; S, θ )
with respect to θ , and B(θ ) is the inverse of the Fisher information matrix associated with θ̂ . If
one is also interested in accurately estimating the MSPE of Ŷ(s; S, θ̂ ), the EA (for “estimated
adjusted”) criterion of Zhu and Stein (2006) is more appropriate. The EA criterion is an
integrated (over the study region) weighted linear combination of E K (θ ) and the variance
of the plug-in kriging variance estimator.

Zimmerman (2006) makes the important observation that the two objectives of optimal
covariance parameter estimation and optimal prediction with known covariance parame-
ters are actually antithetical; they lead to very different designs in the cases he considers
(although in some special cases, they may agree). It seems that, in general, compromise is
necessary. Indeed, Zimmerman’s examples and simulations indicate that the EK-optimal
design resembles a regular or space-filling design with respect to overall spatial coverage,
but that it has a few small clusters and is in this sense “intermediate” to the antithetical
extremes. Furthermore, the EK-optimal design most resembles a design optimal for covari-
ance parameter estimation when the spatial dependence is weak, whereas it most resembles
a design optimal for prediction with known parameters when the spatial dependence is
strong. The upshot of this for the designer is that placing a few sites very close together,
while of no benefit for prediction with known covariance parameters, may substantially
improve prediction with unknown covariance parameters.

Overall, the EA and EK approaches seem to work quite well and are well worth using
when their objectives seem appropriate, albeit with the caveat that their complexity may
make them difficult to explain to nonexperts and, hence, to “sell” to them.

10.5.5 Entropy-Based Design

Previous subsections covered design approaches that can be viewed as optimally reduc-
ing uncertainty about model parameters or about predictions of unmeasured responses.
To these we now add another, optimally reducing the uncertainty about responses by mea-
suring them. The question is: Which are the ones to measure? Surprisingly, these three
can be combined in a single framework. Not only that, achieving the third objective,
simultaneously achieves a combination of the other two. The use of entropy to represent
these uncertainties is what makes this possible and ties these objectives together.

As noted earlier, specifying exact design objectives can be difficult or impossible while
the high cost of monitoring demands a defensible design strategy. Design objectives have
one thing in common, the reduction of uncertainty about some aspect of the random pro-
cess of interest. Bayesian theory equates uncertainty with a probability distribution while
entropy says the uncertainty represented by such a distribution may be quantified as en-
tropy. Thus, selecting a design to minimize uncertainty translates into the maximization of
entropy reduction.

That observation leads to the entropy-based theory of network design and provides
objective functions for it (Caselton and Husain, 1980; Caselton and Zidek, 1984; Shewry
and Wynn, 1987; Le and Zidek, 1994; Sebastiani and Wynn, 2000; Bueso, Angulo, and
Alonso, 1998; Bueso, Angulo, Curz-Sanjuliàn, and Garcı́a-Aróstegui, 1999b; Angulo et al.,
2000; Angulo and Bueso, 2001; Fuentes, Chaudhuri, and Holland 2007). The idea of using
entropy in experimental design goes back even farther (Lindley, 1956).
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The approach can be used to reduce existing networks in size (Caselton, Kan, and Zidek,
1992; Wu and Zidek, 1992; Bueso et al., 1998) or extend them (Guttorp, Le, Sampson, and
Zidek, 1993). The responses can be vector-valued as when each site is equipped with
gauges to measure several responses (Brown, Le, and Zidek, 1994a). Costs can be in-
cluded with the possibility that gauges can be added or removed from individual sites
before hitherto unmonitored sites are gauged (Zidek et al., 2000). Data can be missing in
systematic ways as, for example, when some monitoring sites are not equipped to mea-
sure certain responses (Le, Sun, and Zidek, 1997) or when monitoring sites commence
operation at different times (giving the data a monotone or staircase pattern) or both (Le,
Sun, and Zidek, 2001; Kibria, Sun, Zidek, and Le, 2002). Software for implementing an
entopy-based design approach can be found at http://enviro.stat.ubc.ca, while a tutorial
on its use is given by Le and Zidek (2006) who describe one implementation of the theory
in detail.

Although the general theory concerns processes with a fixed number k = 1, 2, . . . , of
responses at each site, we assume k = 1 for simplicity. Moreover, we concentrate on the
problem of extending the network; the route to reduction will then be clear. Suppose g of
the sites are currently gauged (monitored) and u are not. The spatial field thus lies over
u + g discrete sites.

Relabel the site locations as {s1, . . . , su, su+1, . . . , su+g} and let

Y(1)
t = (Y(t, s1), . . . , Y(t, su))′

Y(2)
t = (Y(t, su+1), . . . , Y(t, su+g))′

Yt = (
Y(1)′

t , Y(2)′
t

)′
.

Assuming no missing values, the dataset D is comprised of the measured values of Y(2)
t , t =

1, . . . , T .
Although in some applications (e.g., environmental epidemiology) predicted values of

the unobserved responses (past exposure) { Y(1)
t , t = 1, . . . , T} may be needed, here we

suppose interest focuses on the u × 1 vector, Y(1)
T+1 = (Y(T + 1, s1), . . . , Y(T + 1, su))′, of

unmeasured future values at the currently “ungauged” sites at time T + 1.
Our objective of extending the network can be interpreted as that of optimal partition-

ing of Y(1)
T+1, which for simplicity and with little risk of confusion, we now denote by

Y(1) . After reordering its coordinates, the proposed design would lead to the partition
Y(1) = (Y(rem)′

, Y(add)′
), Y(rem)′

being a u1-dimensional vector representing the future un-
gauged site responses and Y(add)′

is a u2-dimensional vector representing the new future
gauged sites to be added to those already being monitored. If that proposed design were
adopted, then at time T + 1, the set of gauged sites would yield measured values of the
coordinates in the vector (Y(add)′

, Y(2)′
) = (Y(add)′

T+1 , Y(2)′
T+1) ≡ G of dimension u2 +g. But, which

of these designs is optimal?
Suppose Yt has the joint probability density function, ft, for all t. Then the total un-

certainty about Yt may be expressed by the entropy of its distribution, i.e., Ht( Yt) =
E[− log ft( Yt)/h( Yt)], where h(·) is a so-called reference density (Jaynes, 1963). It need not
be integrable, but its inclusion makes the entropy invariant under one-to-one transforma-
tions of the scale of Yt. Note that the distributions involved in Ht may be conditional on
certain covariate vectors, { xt}, that are regarded as fixed.

Usually in a hierarchical Bayesian model, YT+1’s probability density function, f(T+1)(·) =
f(T+1)(· | θ) will depend on a vector of unspecified model parameters θ in the first stage
of modeling. Examples in previous subsections have included parameters in the spatial
covariance model. Therefore, using that density to compute HT+1( YT+1) would make it an
unknown and unable to play the role in a design objective function. To turn it into a usable
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objective function we could use instead YT+1’s marginal distribution obtained by averag-
ing f(T+1)(· | θ ) with respect to θ ’s prior distribution. However, as we have seen in previous
subsections, inferences about θ may well be a second design objective (Caselton et al., 1992).
Thus, we turn from HT+1( YT+1) to HT+1( YT+1, θ ) = HT+1(Y, θ ) in our simplified notation
for YT+1.

Conditional on D, the total a priori uncertainty may now be decomposed as

H(Y, θ ) = H(Y | θ ) + H(θ ).

Assuming for simplicity that we take the reference density to be identically 1 (in appropriate
units of measurement), we have

H(Y | θ ) = E[− log( f (Y | θ , D)) | D]

and

H(θ ) = E[− log( f (θ | D)) | D].

However, for purposes of optimizing design, we need a different decomposition that reflects
the partitioning of future observations into ungauged and gauged sites, Y′ = (U, G), where
U ≡ Y(rem)′

and G is defined above. Now represent H(Y, θ ) = T OT as

T OT = P RE D + MODE L + ME AS

where with our unit reference density:

P RE D = E[− log( f (U | G, θ , D)) | D];
MODE L = E[− log( f (θ | G, D)/) | D];

ME AS = E[− log( f (G | D)) | D].

Coming back to an earlier observation above, measuring G will eliminate all uncertainty
about it, driving ME AS to 0. (This would not be strictly true in practice because of mea-
surement error, which could be incorporated in this framework at the expense of greater
complexity. However, we ignore that issue here for expository simplicity.) Thus, it is op-
timal to choose Y(add)′

to maximize ME AS and thereby gain the most from measuring G
at time T + 1. However, since T OT is fixed, that optimum will simultaneously minimize
P RE D + MODE L representing the combined objective of prediction and inference about
model parameters. Incidentally, had we started with H(Y) instead of H(Y, θ ), and made
a decomposition analogous to that given above, we would have arrived at the same opti-
mization criterion: the maximization of ME AS.

In the above, we have presented a very general theory of design. But, how can it be im-
plemented in practice? One solution, presented in detail in Le and Zidek (2006), assumes
that the responses can, through transformation, be turned into a Gaussian random field
approximately, when conditioned on θ = (β, Σ ), β representing covariate model coeffi-
cients and Σ the spatial covariance matrix. In turn, θ has a so-called generalized inverted
Wishart distribution (Brown, Le, and Zidek, 1994b), which has a hypercovariance matrix
Ψ and a vector of degrees of freedom as hyperparameters. These assumptions lead to a
multivariate-t posterior predictive distribution for Y, among other things. However, the
hyperparameters, such as those in Ψ in the model, are estimated from the data, giving
this approach an empirical Bayesian character. Finally ME AS can be explicitly evaluated
in terms of those estimated hyperparameters and turns out to have a surprisingly simple
form.
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In fact, for any proposed design, the objective function (to be minimized) becomes (Le
and Zidek, 2006), after multiplication by a minus sign among other things, the seemingly
natural:

det(Ψ̂U|G), (10.2)

the determinant of the estimated residual hypercovariance for U given G (at time T+1, since
G is not yet known at time T), where det denotes the determinant. The seeming simplicity
of this criterion function is deceptive; in fact, it combines the posterior variances of the pro-
posed unmeasured sites and the posterior correlations between sites in a complicated way
and the optimum design, Gopt, often selects surprising sites for inclusion (Ainslie et al., 2009).

However, finding the optimum design is a very challenging computational problem.
In fact, the exact optimal design in Equation 10.2 cannot generally be found in reasonable
time, it being an NP-hard problem. This makes suboptimal designs an attractive alternative
(Ko, Lee, and Queyranne, 1995). Among the alternatives are the “exchange algorithms,”
in particular the (DETMAX) procedure of Mitchell (1974a; 1974b) cited by Ko et al. (1995).
Guttorp et al. (1993) propose a “greedy algorithm,” which at each step, adds (or subtracts if
the network is being reduced in size) the station that maximally improves the design objec-
tive criterion. Ko, Lee, and Queyranne, (1995) introduce a greedy plus exchange algorithm.
Finally, Wu and Zidek (1992) cluster prospective sites into suitably small subgroups before
applying an exact or inexact algorithm so as to obtain suboptimal designs that are good at
least within clusters.

Exact algorithms for problems moderate in size are available (Guttorp et al., 1993; Ko
et al., 1995). These results have been extended to include measurement error (Bueso et al.,
1998) where now the true responses at both gauged and ungauged sites need to be pre-
dicted. Linear constraints to limit costs have also been incorporated (Lee, 1998), although
alternatives are available in that context (Zidek et al., 2000).

While the entropy approach offers a unified approach to network design especially when
unique design objectives are hard to specify, like all approaches it has shortcomings. We
list some of these below:

1. When a unique objective can be specified, the entropy optimal design will not be
optimal. Other approaches like those covered above would be preferred.

2. Except in the case of Gaussian fields with conjugate priors, computing the entropy
poses a challenging problem that is the subject of current research, but is not yet
solved. However, progress has recently been made there as well (Fuentes et al.,
2007).

3. Although the field can often be transformed to make it more nearly Gaussian,
that transformation may also lead to new model parameters that are difficult to
interpret, making the specification of realistic priors difficult. (The entropy itself,
however, would be invariant under such transformations.)

4. Computing the exact entropy optimum design in problems of realistic size is chal-
lenging. That could make simpler designs, such as those based on geometry and
other methods described above, more appealing especially when the goals for the
network are short term.

A general problem with approaches to design is their failure to take cost into consider-
ation. That will always be a limiting factor in practice. However, some progress has been
made for the entropy theory designs (Zidek et al., 2000). Moreover, Fuentes et al. (2007)
provide a very general theory for entropy based spatial design that allows for constrained
optimization that is able to incorporate the cost of monitoring in addition to other things.
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10.6 Concluding Remarks

This chapter has comprehensively reviewed principled statistical approaches to the design
of monitoring networks. However, the challenges involved transcend the mere application
of these approaches as described here. Some of these challenges are mentioned in our in-
troduction and more detailed reviews consider others (Le and Zidek, 2006). For example,
although statistical scientists would well recognize the importance of measurement and
data quality, they may not accept or even see their vital role in communicating that to those
who will build and maintain the network. And while the normative approaches do pro-
vide defensible proposals for design or redesign, these cannot be used before thoroughly
reviewing things like the objectives and available data. The latter will suggest important
considerations not captured in more formal design approaches. For example, the case study
presented in Ainslie et al. (2009) benefited greatly from learning this network’s evolutionary
history and analyzing the network’s spatial correlation structure. They helped to under-
stand the results of the entropy-based analysis and strengthened the eventual recommen-
dations based partly on it.

Our review has not covered quite a number of special topics, such as mobile monitors
(required, for example, in the event of the failure of a nuclear power generator and the
spread downwind of its radioactive cloud) and microsensor monitoring networks. The
latter, reflecting changing technology, involve a multitude of small monitors that may cost
as little as a few cents that can transmit to each other as well as to their base station, which
uploads its data to a global monitoring site where users can access the data. Although
these networks pose new design challenges, the principles set out in this chapter can still
be brought to bear. Furthermore, the reader will have recognized that the “future” in our
formulation of the entropy-based design is defined as time T +1. Thus the optimum design
there, in principle, will depend on T , although it should remain stable for a period of time.
However, this observation points to the important general point: that at least all long-term
monitoring networks, however designed, must be revisited periodically and redesigned if
necessary, something that is seldom done in practice.
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Statistical modeling of continuous spatial data is often based on Gaussian processes. This
typically facilitates prediction, but normality is not necessarily an adequate modeling as-
sumption for the data at hand. This has led some authors to propose data transformations
before using a Gaussian model: in particular, De Oliveira, Kedem, and Short (1997) propose
to use the Box–Cox family of power transformations. An approach based on generalized
linear models for spatial data is presented in Diggle, Tawn, and Moyeed (1998). In this
chapter, we present some flexible ways of modeling that allow the data to inform us on
an appropriate distributional assumption. There are two broad classes of approaches we
consider: first, we present a purely parametric modeling framework, which is wider than
the Gaussian family, with the latter being a limiting case. This is achieved by scale mixing a
Gaussian process with another process, and is particularly aimed at accommodating heavy
tails. In fact, this approach allows us to identify spatial heteroscedasticity, and leads to rel-
atively simple inference and prediction procedures. A second class of models is based on
Bayesian nonparametric procedures. Most of the approaches discussed fall within the fam-
ily of stick-breaking priors, which we will discuss briefly. These models are very flexible,
in that they do not assume a single parametric family, but allow for highly non-Gaussian
behavior. A perhaps even more important property of the models discussed in this chapter
is that they accommodate nonstationary behavior.

We will adopt a Bayesian framework throughout this chapter. In order to focus on the
non-Gaussian properties in space, we shall only consider spatial processes. Extensions
to spatial-temporal settings are, in principle, straightforward. Throughout, we denote a
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k-variate normal distribution on a random vector y with mean μ and variance–covariance
matrix Σ , as y ∼ Nk(μ, Σ ) with density function f k

N(y|μ, Σ ).

11.1 Non-Gaussian Parametric Modeling

There are a number of parametric approaches leading to non-Gaussian models for con-
tinuous data that will not be discussed in detail in this section. In particular, we shall not
deal with models that use a transformation of the data (as in De Oliveira et al., 1997) to
induce Gaussian behavior. Another approach that is not discussed here is the use of Gaus-
sian processes as a component within a nonlinear model for the observations, such as a
generalized linear model (see Diggle et al., 1998 and further discussed in Chapter 4) or a
frailty model for survival data, such as used in Banerjee, Wall, and Carlin (2003) and Li
and Ryan (2002). In addition, we shall omit discussion of some application-specific ways
of modeling non-Gaussian data, such as the approach of Brown, Diggle, and Henderson
(2003) to model the opacity of flocculated paper.

Let Y(s) be a random process defined for locations s in some spatial region D ⊂ �d . We
assume the model

Y(s) = x(s)Tβ + η(s) + ε(s), (11.1)

where the mean surface is assumed to be a linear function of x(s)T = (x1(s), . . . , xk(s)), a
vector of k variables, which typically include known functions of the spatial coordinates,
with unknown coefficient vector β ∈ �k . Further, η(s) is a second-order stationary error
process with zero mean and variance σ 2 and with an isotropic correlation function (de-
pending only on the distance between points) corr [η(si ), η(s j )] = Cθ(‖si − s j‖), where
Cθ(d) is a valid correlation function of distance d, parameterized by a vector θ. Finally, ε(s)
denotes an uncorrelated Gaussian process with mean zero and variance τ 2, modeling the
so-called “nugget effect” (or “pure error,” allowing for measurement error and small-scale
variation). The ratio ω2 = τ 2/σ 2 indicates the relative importance of the nugget effect.

We assume that we have observed a single realization from this random process at n
different locations s1, . . . , sn and we denote the vector observation by y = (y1, . . . , yn)T ,
where we use the notation yi = Y(si ). As mentioned above, the most commonly made
distributional assumption is that η(s) is a Gaussian process, which implies that y follows
an n-variate Normal distribution with E[y] = XTβ, where X = (x(s1), . . . , x(sn)), and
var[y] = σ 2Cθ + τ 2In, where Cθ is the n × n correlation matrix with Cθ(‖si − s j‖) as its
(i, j)th element. Note that even though we only have one observation per location, we are
still able to criticize the normality assumption; in particular, the n elements of B(y − XTβ)
where B−1(B−1)T = σ 2Cθ + τ 2In are assumed to be independent draws from a standard
Normal, given all model parameters.

11.1.1 The Gaussian-Log-Gaussian Mixture Model

In Palacias and Steel (2006), an alternative stochastic specification based on scale mixing
the Gaussian process η(s) is proposed. In particular, a mixing variable λi ∈ �+ is assigned
to each observation i = 1, . . . , n, and the sampling model for the ith location, i = 1, . . . , n,
is now changed to

yi = x(si )Tβ + ηi√
λi

+ εi , (11.2)

where we have used the notation ηi = η(si ) and εi = ε(si ), and εi ∼ N1(0, τ 2), iid and
independent of η = (η1, . . . , ηn)′ ∼ Nn(0, σ 2Cθ). The mixing variables λi are independent
of εi and η. In order to verify that the sampling model described above is consistent with a
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well-defined stochastic process, we can check that the Kolmogorov consistency conditions
are satisfied. In Palacios and Steel (2006), it is shown that Equation (11.2) does support a
stochastic process provided that the distribution of the mixing variables satisfies a very
weak symmetry condition under permutation.

In this spatial model, scale mixing introduces a potential problem with the continuity
of the resulting random field Y. Let us, therefore, consider a stationary process λ(s) for
the mixing variables, so that λi = λ(si ). The representation in Equation (11.2) makes clear
that we are now replacing the Gaussian stochastic process η(s) by a ratio of independent
stochastic processes η(s)/

√
λ(s). Mean square continuity of the spatial process η(s)/

√
λ(s)

is defined by E[{η(si )/
√

λ(si ) − η(s j )/
√

λ(s j )}2] tending to zero as si → s j . Assuming that
E[λ−1

i ] exists, we obtain

E

⎡
⎣
{

ηi√
λi

− η j√
λ j

}2
⎤
⎦ = 2σ 2

{
E[λ−1

i ] − Cθ(‖si − s j‖)E[λ−1/2
i λ

−1/2
j ]

}
,

which in the limit as ‖si − s j‖ → 0 tends to 2σ 2
{

E[λ−1
i ] − lim‖si −s j ‖→0 E[λ−1/2

i λ
−1/2
j ]

}
. If

λi and λ j are independent, then lim‖si −s j ‖→0 E[λ−1/2
i λ

−1/2
j ] = {E[λ−1/2

i ]}2 ≤ E[λ−1] from
Jensen’s inequality and, thus, η(s)/

√
λ(s) is not mean square continuous. This also can be

seen immediately by considering the logarithm of the process log{η(s)/
√

λ(s)} = log{η(s)}−
(1/2) log{λ(s)}. This discontinuity essentially arises from the fact that two separate locations,
no matter how close, are assigned independent mixing variables. Thus, in order to induce
mean square continuity of the process (in the version without the nugget effect), we need
to correlate the mixing variables in λ, so that locations that are close will have very similar
values of λi . In particular, if λ−1/2(s) is itself mean square continuous, then η(s)/

√
λ(s) is a

mean square continuous process.
Therefore, Palacios and Steel (2006) consider the following mixing distribution:

ln(λ) = (ln(λ1), . . . , ln(λn))T ∼ Nn

(
−ν

2
1, νCθ

)
, (11.3)

where 1 is a vector of ones, and we correlate the elements of ln(λ) through the same corre-
lation matrix as η. Equivalently, we assume a Gaussian process for ln(λ(s)) with constant
mean surface at −ν/2 and covariance function νCθ(‖si − s j‖). One scalar parameter ν ∈ �+
is introduced in Equation (11.3), which implies a lognormal distribution for λi with E[λi ] = 1
and var[λi ] = exp(ν) −1. Thus, the marginal distribution of λi is tight around unity for very
small ν (of the order ν = 0.01) and as ν increases, the distribution becomes more spread
out and more right skewed, while the mode shifts toward zero. For example, for ν = 3, the
variance is 19.1 and there is a lot of mass close to zero. It is exactly values of λi close to zero
that will lead to an inflation of the scale in Equation (11.2) and will allow us to accommodate
heavy tails. On the other hand, as ν → 0, we retrieve the Gaussian model as a limiting case.
Figure 11.1 illustrates this behavior.

In Palacios and Steel (2006) the mixture model defined by Equations (11.2) and (11.3) is
called the Gaussian-log-Gaussian (GLG) model. This approach is similar to that of Damian,
Sampson, and Guttorp (2001, 2003), where an additional space deformation, as in Sampson
and Guttorp (1992), is used to introduce nonstationarity. Note that the latter complication
requires repeated observations for reliable inference.

11.1.2 Properties and Interpretation

The correlation structure induced by the GLG model is given by

corr [yi , yj ] = Cθ(‖si − s j‖)
exp

(
ν
{

1 + 1
4 [Cθ(‖si − s j‖) − 1]

})
exp(ν) + ω2 . (11.4)
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FIGURE 11.1
Marginal probability density function of mixing variables λi for various values of ν. Solid line ν = 0.01, short
dashes: ν = 0.1, long dashes: ν = 1.

Thus, in the case without nugget effect (ω2 = 0), we see that if the distance between si and
s j tends to zero, the correlation between yi and yj tends to one, so that the mixing does
not induce a discontinuity at zero. It can also be shown (see Palacios and Steel, 2006) that
the smoothness of the process is not affected by the mixing, in the sense that without the
nugget effect the process Y(s) has exactly the same smoothness properties as η(s).

The tail behavior of the finite-dimensional distributions induced by the GLG process is
determined by the extra parameter ν. In particular, Palacios and Steel (2006) derive that the
kurtosis of the marginal distributions is given by kurt[yi ] = 3 exp(ν), again indicating that
large ν corresponds to heavy tails, and Gaussian tails are the limiting case as ν → 0.

Our chosen specification for mixing the spatially dependent process as in Equation (11.2)
requires a smooth λ(s) process, which means that observations with particularly small
values of λi will tend to cluster together. Thus, what we are identifying through small
values of λi are regions of the space where the observations tend to be relatively far away
from the estimated mean surface. Therefore, we can interpret the presence of relatively
small values of λi in terms of spatial heteroscedasticity, rather than the usual concept of
outlying observations. However, for convenience we will continue to call observations with
small λi “outliers.”

It may be useful to have an indication of which areas of the space require an inflated
variance. Indicating regions of the space where the Gaussian model fails to fit the data well
might suggest extensions to the underlying trend surface (such as missing covariates) that
could make a Gaussian model a better option. The distribution of λi is informative about
the outlying nature of observation i . Thus, Palacios and Steel (2006) propose to compute the
ratio between the posterior and the prior density functions for λi evaluated at λi = 1, i.e.,

Ri = p(λi |y)
p(λi )

|λi =1 . (11.5)

In fact, this ratio Ri is the so-called Savage–Dickey density ratio, which would be the Bayes
factor in favor of the model with λi = 1 (and all other elements of λ free) versus the model
with free λi (i.e., the full mixture model proposed here) if Cθ(‖si − s j‖) = 0 for all j �= i .
In this case, the Savage–Dickey density ratio is not the exact Bayes factor, but has to be
adjusted as in Verdinelli and Wasserman (1995). The precise adjustment in this case is ex-
plained in Palacios and Steel (2006). Bayes factors convey the relative support of the data
for one model versus another and immediately translate into posterior probabilities of rival
models since the posterior odds (the ratio of two posterior model probabilities) equals the
Bayes factor times the prior odds (the ratio of the prior model probabilities).
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11.1.3 Prediction

An important reason for geostatistical modeling is prediction at unsampled sites. We wish
to fully incorporate all uncertainty in the problem, including the covariance function.

Let y = (yT
o , yT

p )T where yo correspond to the n − f observed locations and yp is a vector
of values to predict at f given sites. We are interested in the posterior predictive distribution
of yp, i.e.,

p(yp|yo) =
∫

p(yp|yo , λ, ζ) p(λp|λo , ζ, yo) p(λo , ζ|yo)dλdζ, (11.6)

where we have partitioned λ = (λT
o , λT

p )T conformably with y and ζ = (β, σ, τ, θ, ν).
The integral in Equation (11.6) will be approximated by Monte Carlo simulation, where
the draws for (λo , ζ) are obtained directly from the Markov chain Monte Carlo (MCMC)
inference algorithm (which is described in some detail in Palacios and Steel, 2006) and,
because p(λp|λo , ζ, yo) = p(λp|λo , ν) we can evaluate Equation (11.6) by using drawings
for λp from

p(lnλp|λo , ν) = f f
N

(
lnλp | ν

2
[CpoC−1

oo 1n − 1 f ] + CpoC−1
oo lnλo , ν[Cpp − CpoC−1

oo Cop]
)

,

(11.7)
where we have partitioned

Cθ =
(

Coo Cop

Cpo Cpp

)

conformably with y. Thus, for each posterior drawing of (λo , ζ), we will generate a drawing
from Equation (11.7) and evaluate

p(yp|yo , λ, ζ) = f f
N

(
yp|(Xp − AXo)β + Ayo , σ 2

(
Λ

− 1
2

p CppΛ
− 1

2
p + ω2I f − AΛ

− 1
2

o CopΛ
− 1

2
p

))
,

(11.8)

where I f is the f -dimensional identity matrix, A = Λ
− 1

2
p CpoΛ

− 1
2

o

[
Λ

− 1
2

o CooΛ
− 1

2
o + ω2In

]−1

and X and Λ = Diag(λ1, . . . , λn) are partitioned conformably to y. Averaging the densities
in Equation (11.8) will give us the required posterior predictive density function.

11.1.4 Correlation Function and Prior Distribution

For the correlation function Cθ(d), where d is the Euclidean distance, we use the flexible
Matérn class:

Cθ(d) = 1
2θ2−1Γ (θ2)

(
d
θ1

)θ2

Kθ2

(
d
θ1

)
, (11.9)

where θ = (θ1, θ2)T with θ1 > 0 the range parameter and θ2 > 0 the smoothness param-
eter and where Kθ2 (·) is the modified Bessel function of the third kind of order θ2. As a
consequence, η(s) and thus Y(s) are q times mean square differentiable if and only if θ2 > q .

In order to complete the Bayesian model, we now need to specify a prior distribution for
the parameters (β, σ−2, ω2, ν, θ). The prior distribution used in Palacios and Steel (2006)
is a carefully elicited proper prior. They argue against the use of reference priors as used
in Berger, De Oliveira, and Sansó (2001) for a simpler Gaussian model with fixed smooth-
ness parameter θ2 and without the nugget effect. In addition, such a reference prior would
be extremely hard to derive for the more general GLG model discussed here. The prior
used has a product structure with a normal prior for β, a gamma prior for σ−2, and a
generalized inverse Gaussian (GIG) prior for both ω2 and ν. The prior on θ either im-
poses prior independence between θ1 and θ2 or between the alternative range parameter
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TABLE 11.1

Temperature Data: Posterior Means (Standard Deviation) of the Trend Parameters
Model β1 β2 β3 β4 β5 β6 β7

Gaussian 3.19(0.22) −0.20(0.23) 0.19(0.31) −0.20(0.23) 0.37(0.45) −0.24(0.28) −0.40(0.18)
GLG 3.23(0.06) −0.08(0.11) 0.12(0.13) −0.19(0.09) 0.09(0.24) −0.17(0.14) −0.42(0.07)

ρ = 2θ1
√

θ2 (see Stein, 1999, p. 51) and θ2. In both cases, the prior on the Matérn parameters
consists of the product of two judiciously chosen exponential distributions.

An extensive sensitivity analysis in Palacios and Steel (2006) suggests that a dataset of
small (but typical) size is not that informative on certain parameters. In particular, the
parameters (ν, θ, ω2) are not that easily determined by the data and thus require very
careful prior elicitation. In general, spatial models do suffer from weak identification issues
and, thus, prior specification is critical. Chapter 4 (Section 4.4) discusses the fact that some
parameters are not consistently estimated by classical maximum likelihood methods under
infill asymptotics.

11.1.5 An Application to Spanish Temperature Data

We analyze the maximum temperatures recorded in an unusually hot week in May 2001 in
63 locations within the Spanish Basque country. So, D ⊂ �2 and, for the trend function x(s),
we use a quadratic form in the coordinates (with linear terms and the cross-product). As
this region is quite mountainous (with the altitude of the monitoring stations in between
16 and 1,188 meters (52 and 3,897 feet)), altitude is added as an extra explanatory variable
(corresponding to regression coefficient β7). Table 11.1 presents some posterior results forβ,
using both the Gaussian and the GLG model. The Gaussian model tends to higher absolute
values for β2 and β5 and the inference on β is generally a lot less concentrated for this
model. In both models, higher altitude tends to reduce the mean temperature, as expected.
Posterior inference on the other parameters in the models is presented in Table 11.2. Clearly,
the Gaussian model assigns a larger importance to the nugget effect (see the difference in
τ/[σ exp(ν/2)], which is the ratio of standard deviations between the process inducing the
nugget effect and the spatial process), while making the surface a lot smoother than the GLG
model. In order to accommodate the outlying observations (discussed later), the Gaussian
model needs to dramatically increase the values of both σ and τ . Since most of the posterior
mass for ν is well away from zero, it is not surprising that the evidence in favor of the GLG
model is very strong indeed. In particular, the Bayes factor in favor of the GLG model is
3.4 · 1020, a lot of which is attributable to three very extreme observations: observations 20,
36, and 40, which are all close together. Table 11.3 presents the Bayes factors in favor of

TABLE 11.2

Temperature Data: Posterior Means (Standard
Deviation) for Some Nontrend Parameters

Gaussian GLG

σ 0.32 (0.11) 0.09 (0.03)
ω2 1.22 (0.79) 1.27 (1.12)
τ 0.31 (0.06) 0.08 (0.02)
θ1 5.71 (10.33) 4.02 (12.70)
θ2 1.87 (2.03) 0.61 (0.98)
ρ 8.64 (8.20) 2.35 (2.97)
ν 0 (0) 2.51 (0.76)
σ 2 exp(ν) 0.11 (0.09) 0.12 (0.15)
τ/[σ exp(ν/2)] 1.05 (0.35) 0.30 (0.12)
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TABLE 11.3

Temperature Data: Bayes Factors in Favor of λi = 1
for Selected Observations; the Entries 0.000
Indicate Values Less than 0.0005
obs.# E[λi|z] S.Dev.[λi|z] (11.5) corr BF for λi = 1

20 0.020 0.024 0.000 0.74 0.000
36 0.015 0.020 0.000 0.79 0.000
40 0.016 0.020 0.000 0.62 0.000
41 0.059 0.085 0.006 0.57 0.004

λi = 1 for the four observations with smallest mean λi . The column labeled “corr” is the
multiplicative correction factor to the Savage–Dickey density ratio mentioned in Section
11.1.2. Clearly, all observations listed in Table 11.3 are outliers, indicating two regions with
inflated variance.

Figure 11.2 displays the predictive densities, computed as in Section 11.1.3 for five unob-
served locations, ranging in altitude from 53 to 556 meters (174 to 1,824 feet). The GLG model
leads to heavier extreme tails than the Gaussian model as a consequence of the scale mixing.
Nevertheless, in the (relevant) central mass of the distribution, the GLG predictives clearly
are more concentrated than the Gaussian ones, illustrating that the added uncertainty due
to the scale mixing is more than offset by changes in the inference on other aspects of the
model. In particular, the nugget effect is much less important for the non-Gaussian model.
From Equation (11.8) it is clear that the predictive standard deviation is bounded from be-
low by τ (in order to interpret the numbers in Table 11.2 in terms of observables measured
in degrees centigrade, we need to multiply τ by a factor 10, due to scaling of the data).
Clearly, a lot of the predictive uncertainty in the Gaussian case is due to the nugget effect.

11.2 Bayesian Nonparametric Approaches

In this section we will use nonparametric models for the spatial components, which can ac-
commodate much more flexible forms and can also easily deal with skewness, multimodal-
ity etc. In addition, even though the prior predictive distributions induced by these models
are stationary, the posterior predictives can accommodate very nonstationary behavior. As
the Bayesian nonparametric methods presented are all based on the broad class of stick-
breaking priors, we will first briefly explain this class of priors. See Müller and Quintana
(2004) for an excellent overview of nonparametric Bayesian inference procedures, while
Dunson (forthcoming) provides an insightful and very up-to-date discussion of nonpara-
metric Bayesian methods, specifically aimed at applications in biostatistics. One approach
that we will not discuss here is that of transforming the space corresponding to a Gaussian
parametric model, as introduced in Sampson and Guttorp (1992) and developed in Schmidt
and O’Hagan (2003) in a Bayesian framework.

11.2.1 Stick-Breaking Priors

Bayesian nonparametric methods avoid dependence on parametric assumptions by work-
ing with probability models on function spaces; in other words, by using (in principle)
infinitely many parameters. A useful and broad class of such random probability measures
is the class of stick-breaking priors. This class was discussed in some detail by Ishwaran
and James (2001) and is at the basis of many recent studies.
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FIGURE 11.2
Temperature data: Predictive densities at five unobserved locations. The observables are measured in degrees
centigrade, and the elevations at the predicted sites range from 53 (point 2) to 556 (point 3) meters. Dashed line:
Gaussian, solid line: GLG. The lower right panel indicates the locations of the observed sites by dots and the five
unobserved sites by their respective numbers.

A random probability distribution, F , has a stick-breaking prior if

F d=
N∑

i=1

piδθi , (11.10)

where δz denotes a Dirac measure at z, pi = Vi
∏

j<i (1 − Vj ) where V1, . . . , VN−1 are inde-
pendent with Vi ∼ Beta(ai , bi ) and θ1, . . . , θN are independent draws from a centering (or
base) distribution H.

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 9:42 C7287 C7287˙C011

Non-Gaussian and Nonparametric Models for Continuous Spatial Data 157

The definition in Equation (11.10) allows for either finite or infinite N (with the latter
corresponding to the conventional definition of nonparametrics). For N = ∞, several in-
teresting and well-known processes fall into this class:

1. The Dirichlet process prior (see Ferguson, 1973) characterized by MH, where M is a
positive scalar (often called the mass parameter) arises when Vi follows a Beta(1, M)
for all i . This representation was first given by Sethuraman (1994).

2. The Pitman–Yor (or two-parameter Poisson–Dirichlet) process occurs if Vi follows
a Beta(1 − a, b + ai) with 0 ≤ a < 1 and b > −a . As special cases, we can identify
the Dirichlet process for a = 0 and the stable law when b = 0.

Stick-breaking priors, such as the Dirichlet process, almost surely lead to discrete prob-
ability distributions. This is often not desirable for directly modeling observables that are
considered realizations of some continuous process. To avoid this problem, the mixture of
Dirichlet process model (introduced in Antoniak, 1974) is now the most commonly used
specification in practice. Such models assume a continuous model for the observables, given
some unknown parameters, and then use a stick-breaking prior as in Equation (11.10) to
model these parameters nonparametrically.

An important aspect of these models is that they tend to cluster the observations by
assigning several observations to the same parameter values (or atoms of the nonparametric
distribution).

Conducting inference with such models relies on MCMC computational methods. One
approach corresponds to marginalizing out F and using a Pólya urn representation to
conduct a Gibbs sampling scheme. See MacEachern (1998) for a detailed description of such
methods. Another approach (see Ishwaran and James, 2001) directly uses the stick-breaking
representation in Equation (11.10) and either truncates the sum or avoids truncation through
slice sampling or the retrospective sampler proposed in Papaspiliopoulos and Roberts
(2008). An accessible and more detailed discussion of computational issues can be found
in, e.g., Dunson (forthcoming).

In order to make this wide class of nonparametric priors useful for our spatial context, we
need to somehow index it by space. More generally, we can attempt to introduce dependen-
cies on time or other covariates (leading to nonparametric regression models). Most of the
(rather recent) literature in this area follows the ideas in MacEachern (1999), who consid-
ered allowing the masses, V = (V1, V2, . . .), or the locations, θ = (θ1, θ2, . . .), of the atoms
to follow a stochastic process defined over the domain. This leads to so-called dependent
Dirichlet processes (DDPs) and a lot of this work concentrates on the “single-p” DDP model
where only the locations, θ, follow stochastic processes. An application to spatial modeling
is developed in Gelfand, Kottas, and MacEachern (2005) by allowing the locations θ to be
drawn from a random field (a Gaussian process). A generalization of this idea is briefly
explained in Section 11.2.2.

11.2.2 Generalized Spatial Dirichlet Process

The idea in Gelfand et al. (2005) is to introduce a spatial dependence through the locations,
by indexing θ with the location s and making θ(s) a realization of a random field, with H
being a stationary Gaussian process. Continuity properties of these realizations will then
follow from the choice of covariance function. In the simple model Y(s) = η(s) +ε(s) where
η(s) has this spatial Dirichlet prior and ε(s) ∼ N(0, τ 2) is a nugget effect, the joint density
of the observables y = [Y(s1), . . . , Y(sn)]T is almost surely a location mixture of Normals
with density function of the form

∑N
i=1 pi f n

N(y|ηi , τ 2In), using Equation (11.10). This allows
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for a large amount of flexibility and is used in Gelfand et al. (2005) to analyze a dataset of
precipitation data consisting of 75 replications at 39 observed sites in the south of France.

However, the joint distribution over any set of locations uses the same set of weights
{pi }, so the choice between the random surfaces in the location mixture is not dependent on
location. In Duan, Guindani, and Gelfand (2007) and Gelfand, Guindani, and Petrone (2007),
this framework is extended to allow for the surface selection to vary with the location, while
still preserving the property that the marginal distribution at each location is generated from
the usual Dirichlet process. This extension, called the generalized spatial Dirichlet process
model, assumes that the random probability measure on the space of distribution functions
for η(s1), . . . , η(sn) is

F (n) d=
∞∑

i1=1

. . .

∞∑
in=1

pi1,...,inδθi1
. . . δθin

, (11.11)

where i j = i(s j ), j = 1, . . . , n, the locations θi j are drawn from the centering random field H
and the weights pi1,...,in are distributed independently from the locations on the infinite unit
simplex. These weights allow for the site-specific selection of surfaces and are constrained
to be consistent (to define a proper random process) and continuous (in the sense that they
assign similar weights for sites that are close together). This will induce a smooth (mean
square continuous) random probability measure.

From Equation (11.11) it is clear that we can think of this generalization in terms of a mul-
tivariate stick-breaking representation. In Duan et al. (2007), a particular specification for
pi1,...,in is proposed, based on thresholding of auxiliary Gaussian random fields. This leads
to processes that are non-Gaussian and nonstationary, with nonhomogeneous variance.

As the locations associated with the sampled sites effectively constitute one single obser-
vation from the random field, we need replications in order to conduct inference using this
approach. However, replications over time do not need to be independent and a dynamic
model can be used.

11.2.3 Hybrid Dirichlet Mixture Models

The idea of the previous section is further developed in Petrone, Guindani, and Gelfand
(2009) in the context of functional data analysis. Here, we have observations of curves (e.g.,
in space or in time) and often it is important to represent the n observed curves by a smaller
set of canonical curves. The curves yi = [Yi (x1), . . . , Yi (xm)]T , i = 1, . . . , n are assumed to
be observed at a common set of coordinates x1, . . . , xm.

Petrone et al. (2009) start from a more general class than stick-breaking priors, namely
the species sampling prior, which can be represented as Equation (11.10) with a general
specification on the weights. This leads them to a different way of selecting the multi-
variate weights in Equation (11.11). In Petrone et al. (2009), these weights are interpreted
as the distribution of a random vector of labels, assigning curves to locations. They use
mixture modeling where the observations are normally distributed with a nonparametric
distribution on the locations, i.e.,

yi | θi
ind∼ Nm(θi , σ 2Im), (11.12)

θi | Fx1,...,xm

iid∼ Fx1,...,xm ,

where

Fx1,...,xm

d=
k∑

j1=1

· · ·
k∑

jm=1

p( j1, . . . , jm) δθ j1 ,1,...,θ jm,m , (11.13)

where p( j1, . . . , jm) represents the proportion of (hybrid) species (θ j1,1, . . . , θ jm,m) in the pop-
ulation, p( j1, . . . , jm) ≥ 0,

∑k
j1=1 · · ·∑k

jm=1 p( j1, . . . , jm) = 1, and θ j = (θ j,1, . . . , θ j,m)
i id∼ H
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(again typically chosen to be an m-dimensional distribution of a Gaussian process), inde-
pendently of the p( j1, . . . , jm)s.

This generates a location mixture of normals with local random effects. Hybrid Dirichlet
process mixtures are obtained as limits of the finite mixture framework above for k →
∞. Functional dependence in the (hidden) label process is modeled through an auxiliary
Gaussian copula, which contributes to the simplicity and the flexibility of the approach.

An application to magnetic resonance imaging (MRI) brain images in Petrone et al. (2009)
illustrates the modeling of the species recombination (hybridization) through the labeling
prior and the improvement over simple mixtures of Dirichlet processes.

11.2.4 Order-Based Dependent Dirichlet Process

An alternative approach to extending the framework in Equation (11.10) is followed by
Griffin and Steel (2006), who define the ranking of the elements in the vectors V and
θ through an ordering π(s), which changes with the spatial index (or other covariates).
Since weights associated with atoms that appear earlier in the stick-breaking representation
tend to be larger (i.e., E[pi (s)] < E[pi−1(s)]), this induces similarities between distributions
corresponding to similar orderings. The similarity between π(s1) and π(s2) will control the
correlation between Fs1 and Fs2 , the random distributions at these spatial locations. The
induced class of models is called order-based dependent Dirichlet processes (πDDPs).

This specification also preserves the usual Dirichlet process for the marginal distribution
at each location, but, in contrast with the single-p approaches, leads to local updating,
where the influence of observations decreases as they are farther away.

The main challenge is to define stochastic processes π(s), and Griffin and Steel (2006) use
a point process Φ and a sequence of sets U(s), which define the region in which points are
relevant for determining the ordering at s. The ordering, π(s), then satisfies the condition

‖s − zπ1(s)‖ < ‖s − zπ2(s)‖ < ‖s − zπ3(s)‖ < . . . ,

where ‖ · ‖ is a distance measure and zπi (s) ∈ Φ ∩U(s). We assume there are no ties, which is
almost surely the case for, e.g., Poisson point processes. Associating each atom (Vi , θi ) with
the element of the point process zi defines a marked point process from which we can define
the distribution Fs for any s ∈ D. Using a stationary Poisson process for Φ, the autocorrela-
tion function between random probability measures at different locations can be expressed
in the form of deterministic integrals, as explained in Griffin and Steel (2006). More specific
constructions can even lead to analytical expressions for the autocorrelation structure.

In particular, Griffin and Steel (2006) define a practical proposal for spatial models
through the so-called permutation construction. This is obtained through defining D ⊂ �d

and U(s) = D for all values of s. In one dimension (d = 1), we can derive an analytic form
for the autocorrelation function. Let Φ be Poisson with intensity λ, D ⊂ � and U(s) = D
for all s. Then we obtain

corr(Fs1 , Fs2 ) =
(

1 + 2λh
M + 2

)
exp

{ −2λh
M + 1

}
,

where h = |s1 − s2| is the distance between s1 and s2, and M is the mass parameter of the
marginal Dirichlet process.

Note the unusual form of the correlation structure above. It is the weighted sum of a
Matérn correlation function with smoothness parameter 3/2 (with weight (M+1)/(M+2))
and an exponential correlation function (with weight 1/(M + 2)), which is a less smooth
member of the Matérn class, with smoothness parameter 1/2. So, for M → 0, the correlation
function will tend to the arithmetic average of both and for large M the correlation structure
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FIGURE 11.3
Temperature data: The posterior predictive distribution at five unobserved locations. The latter are indicated by
numbers in the lower right-hand panel, where the observed locations are denoted by dots.

will behave like a Matérn with smoothness parameter 3/2. In higher dimensions, for d ≥ 2,
the autocorrelation function can be expressed as a two-dimensional integral, as detailed in
Ishwaran and James (2001).

Griffin and Steel (2006) suggest prior distributions for (M, λ) and use the order-based
dependent Dirichlet process with the permutation construction to analyze the Spanish
temperature data as described in Section 11.1.5. In particular, the model used is (11.1) with
the sum of η(s) and the intercept (β1) modeled through a πDDP process, using as centering
distribution H a N( ȳ, τ 2/κ), where ȳ is the observation mean and an inverted gamma prior
is adopted for κ . In Figure 11.3 we display the posterior predictive distributions at the same
unsampled locations as in Figure 11.2. The lower right panel indicates the location of these
unobserved locations (with numbers), as well as the observed ones (with dots). While some
of the predictives are similar to those obtained with the parametric GLG model, there is
now clearly a much larger variety of predictive shapes, with multimodality and skewness
illustrating the large flexibility of such nonparametric approaches. Of course, the πDDP
part of the model does not only allow for departures from Gaussianity, but also serves to
introduce the spatial correlation.

Finally, note that we do not require replication of observations at each site for inference
with πDDP models. In principle, extensions to spatial-temporal models can be formulated
easily by treating time as a third dimension in defining the ordering, but it is not obvi-
ous that this would be the most promising approach. Implementation of these ideas to
nonparametric modelling in time is the subject of current research.

11.2.5 Spatial Kernel Stick-Breaking Prior

An extension of the stick-breaking prior of Sethuraman (1994) to the multivariate spatial
setting is proposed in Reich and Fuentes (2007). The stick-breaking prior can be extended to
the univariate spatial setting by incorporating spatial information into either the model for
the locations θi or the model for the weights pi . As explained in Section 11.2.2, Gelfand et al.
(2005) model the locations as vectors drawn from a spatial distribution. This approach is

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 9:42 C7287 C7287˙C011

Non-Gaussian and Nonparametric Models for Continuous Spatial Data 161

generalized by Duan et al. (2007) to allow both the weights and locations to vary spatially.
However, we have seen that these models require replication of the spatial process. As
discussed in the previous section, Griffin and Steel (2006) propose a spatial Dirichlet model
that does not require replication. The latter model permutes the Vi based on spatial location,
allowing the occurrence of θi to be more or less likely in different regions of the spatial
domain. The nonparametric multivariate spatial model introduced by Reich and Fuentes
(2007) has multivariate normal priors for the locations θi . We call this prior process a
spatial kernel stick-breaking (SSB) prior. Similar to Griffin and Steel (2006), the weights pi

vary spatially. However, rather than random permutation of Vi , Reich and Fuentes (2007)
introduce a series of kernel functions to allow the masses to change with space. This results in
a flexible spatial model, as different kernel functions lead to different relationships between
the distributions at nearby locations. This model is similar to that of Dunson and Park
(2008), who use kernels to smooth the weights in the nonspatial setting. This model is
also computationally convenient because it avoids reversible jump MCMC steps and the
inversion of large matrices.

In this section, first, we introduce the SSB prior in the univariate setting, and then we
extend it to the multivariate case. Let Y(s), the observable value at site s = (s1, s2), be
modeled as

Y(s) = η(s) + x(s)Tβ + ε(s), (11.14)

where η(s) is a spatial random effect, x(s) is a vector of covariates for site s, β are the
regression parameters, and ε(s)

i id∼ N(0, τ 2).
The spatial effects are assigned a random prior distribution, i.e., η(s) ∼ Fs(η). This

SSB modeling framework introduces models marginally, i.e., Fs(η) and Fs′ (η), rather than
jointly, i.e., Fs,s′ (η), as in the referenced work of Gelfand and colleagues (2005). The distri-
butions Fs(η) are smoothed spatially. Extending (11.10) to depend on s, the prior for Fs(η)
is the potentially infinite mixture

Fs(η) d=
N∑

i=1

pi (s)δθi , (11.15)

where pi (s) = Vi (s)
∏i−1

j=1(1−Vj (s)), and Vi (s) = wi (s)Vi . The distributions Fs(η) are related
through their dependence on the Vi and θi , which are given the priors Vi ∼ Beta(a, b) and
θi ∼ H, each independent across i . However, the distributions vary spatially according to
the functions wi (s), which are restricted to the interval [0, 1]. wi (s) is modeled using a kernel
function, but alternatively log(wi (s)/(1 − wi (s))) could be modeled as a spatial Gaussian

TABLE 11.4

Examples of Kernel Functions and the Induced Functions γ (s, s′), Where s = (s1, s2), h1 =
|s1−s ′

1|+|s2−s ′
2|, h2 =

√
(s1 − s ′

1)2 + (s2 − s ′
2)2, I (·) is the Indicator Function, and x+ = max(x, 0)

Name wi(s) Model for κ1i and κ2i γ(s, s′)

Uniform
∏2

j=1 I
(
|s j − ψ j i | <

κ j i
2

)
κ1i , κ2i ≡ λ

∏2
j=1

(
1 − |s j −s′

j |
λ

)+

Uniform
∏2

j=1 I
(
|s j − ψ j i | <κ j i

2

)
κ1i , κ2i ∼Exp(λ) exp(−h1/λ)

Exponential
∏2

j=1 exp
(

− |s j −ψ j i |
κ j i

)
κ1i , κ2i ≡ λ 0.25

[∏2
j=1

(
1 + |s j −s′

j |
λ

)]
exp

(
− h1

λ

)

Squared exp.
∏2

j=1 exp

(
− (s j −ψ j i )2

κ2
j i

)
κ1i , κ2i ≡ λ2/2 0.5 exp

(
− h2

2
λ2

)

Squared exp.
∏2

j=1 exp

(
− (s j −ψ j i )2

κ2
j i

)
κ1i , κ2i ∼InvGa

(
3
2 , λ2

2

)
0.5/

(
1 + ( h2

λ
)2
)
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process. Other transformations could be considered, but we use kernels for simplicity.
There are many possible kernel functions and Table 11.4 gives three examples. In each case,
the function wi (s) is centered at knot ψi = (ψ1i , ψ2i ) and the spread is controlled by the
bandwidth parameter κi = (κ1i , κ2i ). Both the knots and the bandwidths are modeled as
unknown parameters. The knots ψi are given independent uniform priors over the spatial
domain. The bandwidths can be modeled as equal for each kernel function or varying
independently following distributions given in the third column of Table 11.4.

To ensure that the stick-breaking prior is proper, we must choose priors for κi and Vi so
that

∑N
i=i pi (s) = 1 almost surely for all s. Reich and Fuentes (2007) show that the SSB prior

with infinite N is proper if E(Vi ) = a/(a + b) and E [wi (s)] (where the expectation is taken
over (ψi , κi )) are both positive. For finite N, we can ensure that

∑N
i=i pi (s) = 1 for all s by

setting VN(s) ≡ 1 for all s. This is equivalent to truncating the infinite mixture by attributing
all of the mass from the terms with i ≥ N to pN(s).

In practice, allowing N to be infinite is often unnecessary and computationally infeasi-
ble. Choosing the number of components in a mixture model is notoriously problematic.
Fortunately, in this setting the truncation error can easily be assessed by inspecting the
distribution of pN(s), the mass of the final component of the mixture. The number of com-
ponents N can be chosen by generating samples from the prior distribution of pN(s). We
increase N until pN(s) is satisfactorily small for each site s. Also, the truncation error is
monitored by inspecting the posterior distribution of pN(s), which is readily available from
the MCMC samples.

Assuming a finite mixture, the spatial stick-breaking model can be written as a finite
mixture model where g(s) ∈ {1, ..., N} indicates the particular location allocated to site
s, i.e.,

Y(s) = θg(s) + x(s)Tβ + ε(s), where ε(s)
i id∼ N(0, τ 2) (11.16)

θ j
i id∼ N(0, σ 2), j = 1, ..., N

g(s) ∼ Categorical( p1(s), ..., pN(s))

p j (s) = w j (s)Vj

∏
k< j

[1 − wk(s)Vk] , where Vj
iid∼ Beta(a, b),

where η(s) = θg(s) . The regression parameters β are given vague normal priors. This model
can also easily be fitted if we have an infinite mixture model with N = ∞, using retrospective
sampling ideas from Papaspiliopoulos and Roberts (2008).

Understanding the spatial correlation function is crucial for analyzing spatial data. Al-
though the SSB prior foregoes the Gaussian assumption for the spatial random effects, we
can still compute and investigate the covariance function. Conditional on the probabilities
p j (s) (but not the locations θ j ), the covariance between two observations is

Cov(Y(s), Y(s′)) = σ 2 P(η(s) = η(s′)) = σ 2
N∑

j=1

p j (s) p j (s′). (11.17)

For a one-dimensional spatial domain, integrating over (Vi , ψi , κi ) and letting N → ∞ gives

var (Y(s)) = σ 2 + τ 2 (11.18)

Cov(Y(s), Y(s ′)) = σ 2γ (s, s ′)
[

2
a + b + 1

a + 1
− γ (s, s ′)

]−1

, (11.19)

where

γ (s, s ′) =
∫ ∫

wi (s)wi (s ′) p(ψi , κi )dψi dκi∫ ∫
wi (s) p(ψi , κi )dψi dκi

∈ [0, 1]. (11.20)
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Since (Vi , ψi , κi ) have independent priors that are uniform over the spatial domain, inte-
grating over these parameters gives a stationary prior covariance. However, the conditional
covariance can be nonstationary. More importantly, the posterior predictive distribution can
accommodate nonstationarity. Therefore, we conjecture the SSB model is more robust to
nonstationarity than traditional stationary kriging methods.

If b/(a +1) is large, i.e., the Vi are generally small and there are many terms in the mixture
with significant mass, the correlation between Y(s) and Y(s′) is approximately proportional
to γ (s, s′). Table 11.4 from Reich and Fuentes (2007) gives the function γ (s, s′) for several
examples of kernel functions and shows that different kernels can produce very different
correlation functions.

To introduce a multivariate extension of the SBB prior, let η(s) = (η1(s), . . . , ηp(s))T be a
p-dimensional spatial process. The prior for η(s) is

η(s) ∼ Fs(η), where Fs(η) d=
N∑

i=1

pi (s)δθi . (11.21)

The weights pi (s) are shared across components, the p-dimensional locations θi
i id∼ N(0, Σ ),

and Σ is a p × p covariance matrix that controls the association between the p spatial
processes. The covariance Σ could have an inverse Wishart prior.

11.2.6 A Case Study: Hurricane Ivan

In Reich and Fuentes (2007), the multivariate SSB prior is used to model the complex spatial
patterns of hurricane wind vectors, with data from Hurricane Ivan as it passes through the
Gulf of Mexico at 12 p.m. on September 15, 2004. Three sources of information are used in
the analysis and are plotted in Figure 11.4. The first source is gridded satellite data (Figure
11.4a) available from NASA’s SeaWinds database (http://podaac.jpl.nasa.gov/products/
product109.html). These data are available twice daily on a 0.25 × 0.25 degree, global grid.
Due to the satellite data’s potential bias, measurement error, and coarse temporal reso-
lution, the wind fields analysis is supplemented with data from the National Data Buoy
Center of the National Oceanic and Atmospheric Administration (NOAA). Buoy data are
collected every 10 minutes at a relatively small number of marine locations (Figure 11.4b).
These measurements are adjusted to a common height of 10 meters above sea level using
the algorithm of Large and Pond (1981).

In addition to satellite and buoy data, the deterministic Holland model (Holland, 1980)
is incorporated in the analysis. NOAA currently uses this model alone to produce wind
fields for their numerical ocean models. The Holland model predicts that the wind velocity
at location s is

H(s) =
(

B
ρ

(
Rmax

r

)B

( Pn − Pc) exp

[
−

(
Rmax

r

)B
])1/2

, (11.22)

where r is the radius from the storm center to site s, Pn is the ambient pressure, Pc is the
hurricane central pressure, ρ is the air density, Rmax is the radius of maximum sustained
winds, and B controls the shape of the pressure profile.

We decompose the wind vectors into their orthogonal west/east (u) and north/south (v)
vectors. The Holland model for the u and v components is

Hu(s) = H(s) sin(φ) and Hv(s) = H(s) cos(φ), (11.23)

where φ is the inflow angle at site s, across circular isobars toward the storm center, rotated
to adjust for the storm’s direction. We fix the parameters Pn = 1010 mb, Pc = 939 mb,
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FIGURE 11.4
Plot of various types of wind field data/output for Hurricane Ivan on September 15, 2004.

ρ = 1.2 kg m−3, and Rmax = 49, and B = 1.9 using the meteorological data from the
national hurricane center (http://www.nhc.noaa.gov) and recommendations of Hsu and
Yan (1998). The output from this model for Hurricane Ivan is plotted in Figure 11.4c. By
construction, Holland model output is symmetric with respect to the storm’s center, which
does not agree with the satellite observations in Figure 11.4a.

Let u(s) and v(s) be the underlying wind speed in the west/east and north/south direc-
tions, respectively, for spatial location s. We distinguish the different sources of wind data:
uT (s) and vT (s) are satellite measurements and uB(s) and vB(s) are buoy measurements.
The model used by Reich and Fuentes (2007) for these data is

uT (s) = au + u(s) + euT (s) vT (s) = av + v(s) + evT (s) (11.24)
uB(s) = u(s) + euB(s) vB(s) = v(s) + evB(s),

where {euT , evT , euB, evB} are independent (from each other and from the underlying winds),
zero mean, Gaussian errors, each with its own variance, and {au, av} account for additive
bias in the satellite and aircraft data. Of course, the buoy data may also have bias, but it
is impossible to identify bias from both sources, so all the bias is attributed to the satellite
measurements.

The underlying orthogonal wind components u(s) and v(s) are modeled as a mixture of
a deterministic wind model and a semiparametric multivariate spatial process

u(s) = Hu(s) + Ru(s) (11.25)
v(s) = Hv(s) + Rv(s), (11.26)
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where Hu(s) and Hv(s) are the orthogonal components of the deterministic Holland model
in Equation (11.23) and R(s) = (Ru(s), Rv(s))′ follows a multivariate extension of the SSB
prior as in Equation (11.21). The prior for R(s) is

R(s) ∼ Fs(η), where Fs(η) d=
N∑

i=1

pi (s)δθi . (11.27)

The masses pi (s) are shared across components, the two-dimensional locations θi
i id∼

N(0, Σ ), and Σ is a 2 × 2 covariance matrix that controls the association between the two
wind components. The inverse covariance Σ−1 has a Wishart prior with 3.1 degrees of
freedom and inverse scale matrix 0.1 I2. After transforming the spatial grid to be contained
in the unit square, the spatial knots ψ1i and ψ2i have independent Beta(1.5,1.5) priors to
encourage knots to lie near the center of the hurricane where the wind is most volatile.

In Reich and Fuentes (2007), this multivariate SSB model is fitted to 182 satellite ob-
servations and 7 buoy observations for Hurricane Ivan. To illustrate the effect of relaxing
the normality assumption, Reich and Fuentes (2007) also fits a fully Gaussian model that
replaces the stick-breaking prior for R(s) in Equation (11.27) with a zero-mean Gaussian
prior

var(R(s)) = Σ and Cov(R(s), R(s′)) = Σ × exp(−||s − s′||/λ), (11.28)

where Σ controls the dependency between the wind components at a given location and λ

is a spatial range parameter. The covariance parameters Σ and λ have the same priors as
the covariance parameters in the SSB model.

Because the primary objective is to predict wind vectors at unmeasured locations to use
as inputs for numerical ocean models, statistical models are compared in terms of expected
mean squared prediction error (EMSPE) (Laud and Ibrahim, 1995) see e.g., Gelfand and
Ghosh (1998). The EMSPE is smaller for the semiparametric EMSPE; see e.g., model with
uniform kernels (EMSPE = 3.46) than for the semiparametric model using squared expo-
nential kernels (EMSPE = 4.19) and the fully Gaussian model (EMSPE = 5.17).

Figure 11.5 summarizes the posterior from the SSB prior with uniform kernel functions.
The fitted values in Figure 11.5a and Figure 11.5b vary rapidly near the center of the storm
and are fairly smooth in the periphery. After accounting for the Holland model, the cor-
relation between the residual u and v components Ru(s) and Rv(s) (Σ12/

√
Σ11Σ22, where
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(a) Posterior Mean of u(s) (b) Posterior Mean of v(s)

FIGURE 11.5
Summary of the posterior of the spatial stick-breaking model with uniform kernels. Panels (a) and (b) give the
posterior mean surface for the u and v components.
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Σkl is the (k, l) element of Σ ) is generally negative, confirming the need for a multivariate
analysis.

To show that the multivariate SSB model with uniform kernel functions fits the data well,
10% of the observations are randomly set aside (across u and v components and buoy and
satellite data) throughout the model fitting and the 95% predictive intervals for the missing
observations are obtained. The prediction intervals contain 94.7% (18/19) of the deleted u
components and 95.2% (20/21) of the deleted v components. These statistics suggest that
the model is well calibrated.
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The objective of Part III is to present a thorough discussion of the literature up to the present
on the analysis of what can be called discrete spatial variation. By this we mean analysis
that only envisions a finite collection of spatial random variables and only seeks to model
this finite collection. Examples include lattice data, pixel (and voxel) data, and areal unit
data (where we allow for irregular areal units both in size and shape). Applications include
image analysis, agricultural field trials, disease mapping, environmental processes, spatial
econometrics, and approximation for finite-dimensional distributions associated with large
datasets arising through a spatial stochastic process specification.

Inference for discrete spatial variation is strikingly different from that for continuous
spatial variation. The goals are explanation and smoothing rather than interpolation and
prediction. The spatial modeling works with the notion of neighbors rather than with the
notion of a covariance function. Inverse covariance matrices are specified rather than covari-
ance matrices themselves. And, computation with large datasets, at least in the Gaussian
case, is much faster than with the continuous case.

The most widely used tool for building models for discrete spatial variation is the Markov
random field. In Chapter 12, working with graphical models, Rue and Held develop the
general theory for such fields in both the Gaussian and non-Gaussian cases. They also focus
on modern computing strategies for fitting models employing such fields. In Chapter 13,
Held and Rue take on the development of conditionally autoregressive (CAR) and intrin-
sically autoregressive (IAR) models, illuminating their use within hierarchical modeling
with discussion of applications. In Chapter 14, Waller and Carlin focus on the most promi-
nent application of CAR modeling: the context of disease mapping. Here, there is a rich
literature, evidencing the importance of spatial modeling in this setting. Static and dynamic
models are discussed and a novel example is presented. Finally, in Chapter 14, Pace and
Lesage take us to the world of spatial econometrics, developing simultaneous autoregres-
sive (SAR) models as spatial versions of customary autoregressive time series models. Here,
likelihood analysis is computationally more convenient than Bayesian methods and sparse
matrix methods enable rapid analysis even with datasets involving as many as 105 units.
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12.1 Markov Random Fields

Statistical modeling of a finite collection of spatial random variables is often done through a
Markov random field (MRF). An MRF is specified through the set of conditional distributions
of one component given all the others. This enables one to focus on a single random variable
at a time and leads to simple computational procedures for simulating MRFs, in particular
for Bayesian inference via Markov chain Monte Carlo (MCMC). The main purpose of this
chapter is to give a thorough introduction to the Gaussian case, so-called Gaussian MRFs
(GMRFs), with a focus toward general properties and efficient computations. Examples
and applications appear in Chapters 13 and 14. At the end, we will discuss the general case
where the joint distribution is not Gaussian, and, in particular, the famous Hammersley–
Clifford theorem. A modern and general reference to GMRFs is the monograph by Rue and
Held (2005), while for MRFs in general, one can consult Guyon (1995) and Lauritzen (1996)
for the methodology background and Li (2001) for spatial applications in image analysis.
The seminal papers by J. Besag (1974, 1975) are still worth reading.

12.1.1 Notation

We denote by x = (x1, . . . , xn)T the n-dimensional vector, xi the ith element, xA =
{xi : i ∈ A}, x−A = {xi : i �∈ A}, and xi : j = (xi , . . . , x j )T for j ≥ i . We use generically
π(·) and π(·|·), as the (probability) density for its arguments, like π(x) and π(xi |x−i ). The
Gaussian distribution is denoted byN (μ, Σ ) and its density value at x isN (x;μ, Σ ); hereμ
is the expected value and Σ the covariance matrix. We use the abbreviation SPD to indicate
a symmetric and positive definite matrix. The bandwidth of a matrix A is max |i − j | over
all i , j with Ai, j �= 0.

12.1.2 Gaussian Markov Random Fields

12.1.2.1 Definition

We will first discuss GMRFs in general and then return to the conditional specification
later on. A GMRF is simply a Gaussian distributed random vector x, which obeys some
conditional independence properties. That is, for some i �= j , then

xi ⊥ xj | x−{i, j}, (12.1)

meaning that conditioned on x−{i, j}, xi and xj are independent. This conditional indepen-
dence is represented using an (undirected) labeled graph G = (V , E), where V = {1, . . . , n}
is the set of vertices, and E = {{i, j} : i, j ∈ V} is the set of edges in the graph. For all i, j ∈ V ,
the edge {i, j} is not included in E if (12.1) holds, and included otherwise. Figure 12.1 dis-
plays such a graph, where n = 4 and E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}. From this graph we
deduce that x2 ⊥ x4|x{1,3} and x1 ⊥ x3|x{2,3}. A central goal is now to specify a GMRF x

1

2 3

4

FIGURE 12.1
A conditional independence graph.
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with conditional independence properties in agreement with some given graph G. Using
the precision matrix Q = Σ−1 of x, this turns out to be particularly simple.

Theorem 12.1
Let x be Gaussian distributed with a symmetric and positive definite (SPD) precision matrix Q,
then for i �= j

xi ⊥ xj | x−{i, j} ⇐⇒ Qi, j = 0.

So any SPD precision matrix Q with Q2,4 = Q4,2 = Q1,3 = Q3,1 = 0 has conditional
independence properties as displayed in Figure 12.1. We then say that x is a GMRF with
respect to G. A formal definition follows.

Definition 12.1 (GMRF)
A random vector x = (x1, . . . , xn)T ∈ R

n is called a GMRF wrt (with regard to) the labeled graph
G = (V , E) with mean μ and SPD precision matrix Q, iff its density has the form

π(x) = (2π )−n/2|Q|1/2 exp
(

−1
2

(x − μ)T Q(x − μ)
)

(12.2)

and
Qi, j �= 0 ⇐⇒ {i, j} ∈ E for all i �= j.

The case where Q is singular still provides a GMRF with an explicit form for its joint
density, but the joint density is improper. Such specifications cannot be used as data models,
but can be used as priors as long as they yield proper posteriors. Examples include intrinsic
autoregression, which is discussed in Chapters 13 and 14. Here is a simple example of a
(proper) GMRF.

Example 12.1
Let {xt} be a stationary autoregressive process of order one, i.e., xt|xt−1 = φxt−1 + εt, for t =
2, . . . , n, where |φ| < 1 and εt are independent normally distributed zero mean innovations
with unit variance. Further assume that x1 is normal with mean zero and variance 1/(1−φ2),
which is simply the stationary distribution of this process. Then x is a GMRF wrt to G where
E = {{1, 2}, {2, 3}, . . . , {n − 1, n}}. The precision matrix has nonzero elements Qi, j = −φ for
|i − j | = 1, Q1,1 = Qn,n = 1 and Qi,i = 1 + φ2 for i = 2, . . . , n − 1.

This example nicely illustrates why GMRFs are so useful. First note that the lag-k auto-
correlation is φ|k|, so the covariance matrix of x is dense, i.e., is nonzero everywhere. This
is in contrast to the sparse precision matrix; only n + 2(n − 1) = 3n − 2 of the n2 terms in Q
are nonzero. The sparse precision matrix makes fast O(n) algorithms for the simulation of
autoregressive processes possible.

12.1.3 Basic Properties

12.1.3.1 Conditional Properties

Although a GMRF can be seen as a general multivariate Gaussian random variable, some
properties simplify and some characteristics are easier to compute. For example, conditional
distributions are easier to compute due to the sparse precision matrix. To see this, we split
V into the nonempty sets A and B = −A. Partition x, μ and Q accordingly, i.e.,

x =
(

xA

xB

)
, μ =

(
μA
μB

)
and Q =

(
QAA QAB
QB A QB B

)
.
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We also need the notion of a subgraph GA, which is the graph restricted to A: the graph we
obtain after removing all nodes not belonging to A and all edges where at least one node
does not belong to A. Then the following theorem holds.

Theorem 12.2
Let x be a GMRF wrt G with mean μ and SPD precision matrix Q. Let A ⊂ V and B = V \ A
where A, B �= ∅. The conditional distribution of xA|xB is then a GMRF wrt the subgraph GA with
mean μA|B and SPD precision matrix QA|B, where

μA|B = μA − Q−1
AAQAB(xB − μB) and QA|B = QAA.

Remark 12.1
Note that this result is just an alternative view of conditional distributions for Gaussians,
which is commonly expressed using the partitioned covariance matrix

Σ =
(

ΣAA ΣAB

ΣB A ΣB B

)
.

We have that Cov(xA|xB) = ΣAA − ΣABΣ
−1
B BΣB A, which is identical to Q−1

AA and similarly
for the conditional mean.

The first “striking” feature is that the conditional precision matrix QA|B is a submatrix of
Q and, therefore, explicitly available, just remove the rows and columns in Q that belong
to B. Sparseness of Q will be inherited to QA|B . The expression for the conditional mean
μA|B involves the inverse Q−1

AA, but only in a way such that we can write μA|B = μA − b,
where b is the solution of a sparse linear system QAAb = QAB(xB −μB). Note that the term
QAB is nonzero only for those vertices in A that have an edge to a vertex in B, so usually
only a few terms will enter in this matrix–vector product. In the special case A = {i}, the
expressions simplify to

μi |−i = μi −
∑
j : j∼i

Qi, j

Qi,i
(xj − μ j ) and Qi |−i = Qi,i . (12.3)

Here we used the notation j : j ∼ i to indicate a sum over all vertices j that are neighbors
to vertex i , i.e., {i, j} ∈ E . So Qi,i is the conditional precision of xi and the conditional
expectation of xi is a weighted mean of neighboring xj s with weights −Qi, j/Qi,i .

Example 12.2
We continue with Example 12.1. From (12.3) we obtain the conditional mean and precision
of xi |x−i ,

μi |−i = φ

1 + φ2 (xi−1 + xi+1) and Qi |−i = 1 + φ2, 1 < i < n.

12.1.3.2 Markov Properties

The graph G of a GMRF is defined through looking at which xi and xj are condition-
ally independent, the so-called pairwise Markov property. However, more general Markov
properties can be derived from G.

A path from vertex i1 to vertex im is a sequence of distinct nodes in V , i1, i2, . . . , im, for
which (i j , i j+1) ∈ E for j = 1, . . . , m − 1. A subset C ⊂ V separates two nodes i �∈ C and
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j �∈ C , if every path from i to j contains at least one node from C . Two disjoint sets A ⊂ V \C
and B ⊂ V \C are separated by C , if all i ∈ Aand j ∈ B are separated by C . In other words,
we cannot walk on the graph starting somewhere in A ending somewhere in B without
passing through C . The global Markov property, is that

xA ⊥ xB | xC (12.4)

for all mutually disjoint sets A, B and C where C separates A and B, and A and B are
nonempty.

Theorem 12.3
Let x be a GMRF wrt G, then x obeys the global Markov property.

Note that A ∪ B ∪ C can be a subset of V ; hence, this result gives information about
conditional independence properties for the marginal xA∪B∪C as well.

Example 12.3
We continue Example 12.1. Using conditional independence, we know that x1 ⊥ xn|x−{1,n},
but from the global Markov property, we also know that x1 ⊥ xn|xj , for all 1 < j < n.

12.1.4 Conditional Specification

Following the seminal work of J. Besag (1974, 1975), it is common to specify a GMRF
implicitly through the so-called full conditionals {π(xi |x−i )}. If required, we can derive
from the full conditionals the mean and the precision matrix of the corresponding joint
distribution. However, the full conditionals cannot be specified completely arbitrarily, as
we must ensure that they correspond to a proper joint density. We will return to this issue
in Section 12.1.8.

A conditional specification defines the full conditionals {π(xi |x−i )} as normal with mo-
ments

E(xi |x−i ) = μi +
∑
j �=i

βi, j (xj − μ j ) and Precision(xi |x−i ) = κi > 0. (12.5)

The rationale for such an approach, is that it is easier to specify the full conditionals than
the joint distribution. Comparing (12.5) with (12.2), we can choose μ as the mean, Qi,i = κi ,
βi, j = −Qi, j/Qi,i to obtain the same full conditionals; see below for a formal proof. However,
since Q is symmetric, we must require that

κiβi, j = κ jβ j,i (12.6)

for all i �= j . In particular, if βi, j is nonzero, then β j,i cannot be zero. The edges in the graph
G are defined as {{i, j} : βi, j �= 0}. In addition to the symmetry constraint (12.6), there is
a joint requirement that Q is SPD. Unfortunately, this is a joint property, which is hard to
validate locally. One convenient approach that avoids this problem is to choose a diagonally
dominant parametrization that ensures Q to be SPD: Qi,i >

∑
j |Qi, j | for all i . This implies

that ∑
j

|βi, j | < 1, ∀i.

However, this assumption can be restrictive (Rue and Held, 2005, Sec. 2.7 and Sec. 5.1).
Although we were able to identify a Gaussian with the same full conditionals, we need to

know that the joint density is unique. This question is answered by Brook’s lemma (Brook,
1964).
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FIGURE 12.2
Panel (a) shows the raw x-ray image, (b) shows the square-root transformed image, and (c) shows the restored
image (the posterior mean).

Lemma 12.1 (Brook’s lemma)
Let π(x) be the density for x ∈ R

n and define Ω = {x ∈ R
n : π(x) > 0}. Let x, x′ ∈ Ω , then

π(x)
π(x′)

=
n∏

i=1

π(xi |x1, . . . , xi−1, x′
i+1, . . . , x′

n)
π(x′

i |x1, . . . , xi−1, x′
i+1, . . . , x′

n)
(12.7)

=
n∏

i=1

π(xi |x′
1, . . . , x′

i−1, xi+1, . . . , xn)
π(x′

i |x′
1, . . . , x′

i−1, xi+1, . . . , xn)
. (12.8)

The uniqueness argument follows by keeping x′ fixed, and then π(x) is proportional to the
full conditionals at the right-hand side of Equation (12.7). The constant of proportionality is
found by using that π(x) integrates to one. The consequence is that we can derive the joint
density from the full conditionals, which we will illustrate in the following. For simplicity,
fix μ = 0 and x′ = 0. Using the full conditionals in Equation (12.5), then Equation (12.7)
simplifies to

log
π(x)
π(0)

= −1
2

n∑
i=1

κi x2
i −

n∑
i=2

i−1∑
j=1

κiβi j xi x j . (12.9)

and (12.8) simplifies to

log
π(x)
π(0)

= −1
2

n∑
i=1

κi x2
i −

n−1∑
i=1

n∑
j=i+1

κiβi j xi x j . (12.10)

Since (12.9) and (12.6) must be identical, then κiβi j = κ jβ j i for i �= j . The density of x can
then be expressed as

log π(x) = const − 1
2

n∑
i=1

κi x2
i − 1

2

∑
i �= j

κiβi j xi x j ;

hence, x is zero mean GMRF provided Q is SPD.
We will now illustrate practical use of the conditional specification in a simple example.

Example 12.4
The image in Figure 12.2(a) is a 256 × 256 gamma camera image of a phantom designed to
reflect structure expected from cancerous bones. Each pixel in the circular part of the image,
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I, represent the gamma radiation count, where a black pixel represents (essentially) zero
counts and a white pixel the maximum count. The image is quite noisy and the task in this
example is to (try to) remove the noise. The noise process is quite accurately described by a
Poisson distribution, so that for each pixel i , the recorded count yi relates to the true signal
ηi , as yi ∼ Poisson(ηi ). For simplicity, we will use the approximation that

√
yi | ηi ∼ N

(√
ηi ,

1
4

)
, i ∈ I

and the square-root transformed image is displayed in Figure 12.2(b). Taking a Bayesian
approach, we need to specify a prior distribution for the (square-root-transformed) image
x = (x1, . . . , xn)T , where xi = √

ηi . (We need ηi to be (somewhat) larger than zero for this
approximation to be adequate.) Although this is a daunting problem in general, for such
noise-removal tasks it is usually sufficient to specify the prior to be informative for how
the true image behaves locally. Since the image itself is locally smooth, we might specify
the prior through the full conditionals (12.5). Using the full conditionals we only need to
answer questions like: What if we do not know the true signal in pixel i , but all others; what is then
our belief in xi ? One choice is to set βi, j to zero unless j is one of the four nearest neighbors
of i ; N4(i), say. As we have no particular preference for direction, we might take for each i ,

βi, j = δ

4
, j ∈ N4(i)

where δ is considered as fixed. Further, we take κi to be common (and unknown) for all
i , and restrict δ to |δ| < 1 so that the (prior) precision matrix is diagonally dominant. (We
ignore here some corrections at the boundary where a boundary pixels may have less than
four neighbors.) We take further μ = 0 and a (conjugate) Γ (a, b) prior for κ (with density
∝ κa−1 exp(−bκ)), and then the posterior for (x, κ) reads

π(x, κ | y) ∝ π(x | κ) π(κ)
∏
i∈I

π(yi | xi )

∝ κa−1 exp(−bκ) |Qprior(κ)|1/2 exp
(

−1
2

xT Qpost(κ)x + bT x
)

. (12.11)

Here, bi = 4
√

yi for i ∈ I and zero otherwise, Qpost(κ) = Qprior(κ) +D where D is a diagonal
matrix where Di,i = 4 if i ∈ I and zero otherwise, and

Qprior(κ)
i, j

= κ

⎧⎨
⎩

1, i = j
δ/4, j ∈ N4(i)
0, otherwise.

Conditioned on κ and the observations, then x is a GMRF with precision matrix Qpost and
where the mean μpost is given by the solution of

Qpostμpost = b. (12.12)

12.1.5 MCMC Algorithms for GMRFs

One of the attractive properties of GMRFs is that it integrates so nicely into the MCMC
approach for doing Bayesian inference (see Gilks, Richardson, and Spiegelhalter, 1996;
Robert and Casella, 1999 for a general background on MCMC). The nice correspondence
between the conditional specification using the full conditionals and the MCMC algorithms
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for doing inference is one of the main reasons why GMRFs are so widely used. It turns out
that GMRFs have a nice connection with numerical methods for sparse matrices, which
leads to exact algorithms for GMRFs; we will return to this issue in Section 12.1.7. To set the
scene, let π(θ) be the posterior of interest, where the task is to compute posterior marginals,

π(θ1), . . . , π(θn)

or from these compute summaries like E(θ1) and var(θ1), and so on. Relating back to Ex-
ample 12.4, then θ = (x, κ) and the task is to compute E(xi |y) for all i ∈ I, and use that as
an estimate of

√
ηi . We can quantify the uncertainty in our estimate from var(xi |y) or from

quantiles in the posterior marginal π(xi |y) itself.

12.1.5.1 Basic Ideas behind MCMC

The basic ideas of MCMC are simple. We will briefly present the two basic ideas, Markov
chain and Monte Carlo, which together makes Markov chain Monte Carlo. The Monte Carlo
approach for (also Bayesian) inference is mostly about Monte Carlo integration, which
substitutes integrals with empirical means; for some suitable function f (·), we have

E( f (θ)) =
∫

f (θ)π(θ) dθ ≈ 1
N

N∑
i=1

f (θ(i)) (12.13)

where
θ(1) , θ(2) , . . . , θ(N)

are N samples from π(θ). By interpreting the integral as an expected value, we can approx-
imate it as the empirical mean over N samples from π(θ). If the samples are independent,
then we also control the error, as

1√
N

N∑
i=1

f (θ(i)) ≈ N (E( f (θ)), var( f (θ)))

under quite general assumptions. Our estimate can be made as precise as we like, choosing
N large enough. Note that the error behaves like O(1/

√
N), so one extra digit in accuracy

requires 100 × N samples.
Generating samples from a distribution π(θ) can be difficult even for low dimensions,

but less so in the one-dimensional case. The main obstacle apart from the dimensionality
is the often missing normalizing constant in π(θ); we often only know an unnormalized
version of the density and to normalize it is as hard as computing E( f (θ)).

The second main idea is to circumvent the problem of generation samples from π(θ)
directly, but do generate samples from π(θ) implicitly. This is done by constructing a Markov
chain with π(θ) as the equilibrium distribution, and we can simulate this Markov chain
to obtain a sample. It turns out that this can be done without knowing the normalizing
constant of π(θ). In principle, we can then generate a sample from π(θ) by simulating the
Markov chain for a long time, until it has converged and then the state of the Markov chain
is one sample.

We will now present the Gibbs sampler, which is one of the two most popular MCMC
algorithms. We will postpone our discussion of the second one, the Metropolis–Hastings
algorithm, until Section 12.1.9. The Gibbs sampler was introduced into the mainstream
IEEE literature by Geman and Geman (1984) and into statistics by Gelfand and Smith (1990).
Later on, it became clear that the general ideas (and their implications) were already around
Hastings (1970); see (Robert and Casella, 1999, Chap. 7) for a historical account.
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12.1.5.2 The Gibbs Sampler

The most intuitive MCMC algorithm is called the Gibbs sampler. The Gibbs sampler
simulates a Markov chain by repeatedly sampling from the full conditionals. The state
vector in the Markov chain, θ, is in the following Gibbs sampler algorithm overwritten at
each instance.

Initialize the state vector θ = θ0.
While TRUE; do

For i = 1, . . . , n,
Sample θi ∼ π(θi | θ−i )

Output new state θ

This algorithm defines a Markov chain with equilibrium distribution π(θ); intuitively, if θ
is a sample from π(θ) and we update its ith component θi by a sample from π(θi |θ−i ), then
θ is still distributed according to π(θ). Further, the algorithm will output a new state, θ at
time t = 1, 2, . . ., say. Denote these samples θ(1) , θ(2) , . . . .

Under quite general conditions, the distribution for θ(k) will converge, as k → ∞ to the
equilibrium distribution π(θ). For some large k, k0 say, we can consider θ(k0) to be a sample
from π(θ). However, if θ(k0) has the correct distribution, then so will the next state θ(k0+1);
however, they will be dependent. The Monte Carlo estimate in (12.13) will be modified into

E( f (θ)) = 1
N − k0 + 1

N∑
i=k0

f (θ(i)). (12.14)

Note that {θ(i)} for i = k0, . . . are now, in general, dependent. The variance estimate of (12.14)
must take this dependence into account. We have discharged the first k0 − 1 states from the
Markov chain, which is named the burn-in. To (try to) determine the value for k0, the main
idea is to look at the trace of θi , say; plot {θ (k)

i } against k = 1, 2, . . ., and try to determine a k0
for which the fluctuations around the mean value seem reasonably stable (in a distributional
sense), (see Robert, 1998; Robert and Casella, 1999, for details). Choosing k0 too large does
not bias the estimate, but choosing k0 too small will.

Example 12.5
We will now illustrate the use of a Gibbs sampler to generate a sample from a GMRF. If
we specify the GMRF through the full conditionals (12.5), we immediately have the Gibbs
sampler. The algorithm goes as follows:

Initialize x = μ (or some other value)
While TRUE; do

For i = 1, . . . , n
Compute μi |−i = E(xi |x−i ) = μi + ∑

j �=i βi, j (xj − μ j )
Sample z ∼ N (0, 1)
Set xi = μi |−i + z/

√
κi

Output x

The attractiveness of the Gibbs sampler for GMRFs is both the simplicity and the speed. It
is simple, as we do not need to work out the joint distribution for x in order to generate
samples from π(x). As long as the full conditionals define a valid joint distribution, then the
Gibbs sampler will converge to the correct distribution. It is customary that the number of
neighbors to each site i does not depend on n. In this case the computational cost of running
the Gibbs sampler for one iteration (updating all the n elements of x) is O(n) operations,
and this is optimal in an order sense.
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Example 12.6
Let us return to Example 12.4, which is somewhat more involved than Example 12.5 for
two reasons. First, we need to deal with the unknown precision κ . Second, for fixed κ , the
GMRF is known only implicitly as the mean is given as the solution of (12.12). It turns out
that we do not need to solve (12.12) in order to construct a Gibbs sampler.

In this example, θ = (κ, x), and we need to compute from the posterior (12.11) all full
conditionals. Using Qpost(κ) = κQprior(1) + D, the full conditional for κ is

κ | x, y ∼ Γ
(

n/2 + a, b + 1
2

xT Qprior(1)x
)

.

The full conditionals for xi are derived using

π(xi | x−i , κ, y) ∝ π(x, κ | y)

∝ exp

⎛
⎝−1

2
x2

i Qpost,i,i (κ) − xi

∑
j∈N4(i)

Qprior,i, j (κ)xj + bi xi

⎞
⎠

= exp
(

−1
2

ci x2
i + di xi

)
,

where ci depends on κ , and di depends on both κ and {xj } for j ∈ N4(i). The full conditional
for xi is then N (di/ci , 1/ci ). The Gibbs sampler algorithm then becomes:

Initialize x = 0 and κ = 1 (or some other values)
While TRUE; do

Sample κ ∼ Γ
(

n/2 + a, b + 1
2 xT Qprior(1)x

)
For i = 1, . . . , n

Compute ci and di

Sample xi ∼ N (di/ci , 1/ci )
Output new state (κ, x)

The posterior mean for x is displayed in Figure 12.2(c), using a = 1, b = 0.01 and β = 1/4.
It is rather amazing that we can generate samples from the posterior for (κ, x) using this
simple algorithm. Also note that conditioning on the observations y does not alter the
neighborhood for xi , it is still N4(i). The consequence is that the Gibbs sampler has the
same computational cost as without data, which is O(n) for each iteration. This includes
the cost for updating κ , which is dominated by the cost of computing xT Qprior(1)x (which
also is O(n)).

12.1.6 Multivariate GMRFs

To fix ideas, we will consider a generalization of Example 12.4 where the observations
are now sequences of images. The sequence can either be a movie where each frame in the
sequence is indexed by time, or the height where recorded a three-dimensional object as a set
of two-dimensional images. Other examples include a temporal version of spatial models of
disease counts in each administrative region of a country. Figure 12.3 shows five consecutive
frames of three-dimensional cells taken by confocal microscopy. The first frame has a lot
of noise, but the signal gets stronger farther up in the image stack. We consider the same
problem as for Example 12.4; we want to estimate the true signal in the presence of the
noise. The five frames represent the same three-dimensional object, but at different heights.
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(a) (b) (c) (d) (e)

FIGURE 12.3
Panels (a) to (e) show five consecutive frames of a three-dimensional confocal microscopy image.

We can use this information when we specify the full conditionals. It is then both easier
and more natural to specify a multivariate version of the full conditionals (12.5), which we
now will describe. Let xi represent all the p = 5 observations at pixel i

xi = (xi,1, xi,2, xi,3, xi,4, xi,5)T .

Here, xi,2 is the pixel at location i in frame 2 and so on. The conditional specification (12.5)
extends naturally to

E(xi | x−i ) = μi −
∑
j : j∼i

βi, j (x j − μ j ), and Precision(xi | x−i ) = κi > 0, (12.15)

for some p × p matrices {βi,j} and {κi } (see also Mardia, 1988). In this formulation, we can
now specify that our knowledge of xi,3 might benefit of knowing xi,2 and xi,4. These pixels
are in the same xi vector, although they represent the ith pixel at the previous and next
frame. Additionally, we can have dependency from neighbors within the same frame, such
as {xj,3, j ∈ N4(i)}. In short, we can specify how xi depends on {x j }, j �= i , and thinking
about neighbors that are (small p-) vectors.

The conditional specification in this example motivates the introduction of a multivariate
GMRF, which we denote as MGMRFp. Its definition is a direct extension of (12.1). Let
x = (xT

1 , . . . , xT
n )T be Gaussian distributed, where each xi is a p-vector. Similarly, let μ =

(μT
1 , . . . , μT )T denote the mean and Q̃ = (Q̃i, j ) the precision matrix with p × p elements

Q̃i, j .

Definition 12.2 (MGMRFp)
A random vector x = (xT

1 , . . . , xT
n )T where dim(xi ) = p, is called a MGMRFp wrt G = (V =

{1, . . . , n}, E) with mean μ and a SPD precision matrix Q̃, iff its density has the form

π(x) =
(

1
2π

)np/2

|Q̃|1/2 exp
(

−1
2

(x − μ)T Q̃(x − μ)
)

=
(

1
2π

)np/2

|Q̃|1/2 exp

⎛
⎝−1

2

∑
i j

(xi − μi )
T Q̃i, j (x j − μ j )

⎞
⎠

and
Q̃i, j �= 0 ⇐⇒ {i, j} ∈ E for all i �= j.
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It is important to note that a size n MGMRFp is just another GMRF of dimension np; so all
our previous results and forthcoming sparse matrix algorithms for GMRFs also apply for a
MGMRFp. However, some results have easier interpretation using the block formulation,
such as

xi ⊥ x j | x−{i, j} ⇐⇒ Q̃i, j = 0

and

E(xi | x−i ) = μi − Q̃
−1
i,i

∑
j : j∼i

Q̃i, j (x j − μ j ) and Precision(xi | x−i ) = Q̃i,i . (12.16)

From Equation (12.16), we can obtain the consistency requirements for the conditional
specification Equation (12.15) by choosing

Q̃i, j =
{
κiβi, j i �= j

κi i = j.

Since Q̃i, j = Q̃
T
j,i , then we have the requirement that κiβi, j = βT

j,iκ j for i �= j , additionally
to κi > 0 for all i . Finally, there is also the “global” requirement that Q̃ must be SPD, which
is equivalent to (I + ( βi, j ) ) being SPD.

12.1.7 Exact Algorithms for GMRFs

Similarly to the nice connection between GMRFs and the Gibbs sampler (and also more gen-
eral MCMC algorithms), GMRFs also have a nice connection with very efficient numerical
algorithms for sparse matrices. This connection allows for exact algorithms for GMRFs. We
will now discuss this connection, starting with various exact algorithms to efficiently sam-
ple from GMRFs. This includes solving tasks like unconditional and conditional sampling,
sampling under linear hard and soft constraints, evaluating the log-density of a (possibly
constrained) GMRF at a particular value, and computing marginal variances for (possibly
constrained) GMRFs. Although all these tasks are formally “just matrix algebra,” we need
to ensure that we take advantage of the sparse precision matrix Q in all steps so computa-
tions can make use of the efficient numerical algorithms for sparse matrices developed in
the computational sciences literature. Further, we can derive all the algorithms for sparse
matrices by considering conditional independence properties of GMRFs. The core of all
algorithms is the Cholesky factorization Q = LLT of the precision matrix Q, where L is a
lower-triangular matrix. We postpone details on how to compute L for the moment and
simply assume that this factorization is available. We assume throughout that x is a GMRF
wrt G with mean μ and an SPD precision matrix Q. Before we start to discuss the details,
we will examine for why this is important.

12.1.7.1 Why Are Exact Algorithms Important?

Exact efficient algorithms are generally preferable when they exist, even though they appar-
ently require algorithms that are more involved than simple iterative ones. Computational
feasibility is important even for statistical modeling, as a statistical model is not of much
use if we cannot do inference efficiently enough to satisfy the end-user.

Sampling from a GMRF can be done exactly using the Cholesky factorization of the pre-
cision matrix, which algorithmically is much more involved than the simple Gibbs sampler
in Example 12.5. However, an exact algorithm is exact and automatic, whereas the Gibbs
sampler algorithm is approximate and requires, in most cases, human intervention to verify
(if at all possible) that the output is indeed a sample from the correct distribution. In the
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spatial case, it turns out that we can (typically) sample a GMRF exactly at the cost of O(n3/2)
operations, which correspond to O(

√
n) iterations with the single-site Gibbs sampler. The

exact algorithm can further produce independent samples at the cost of O(n log n) each.
Let us return again to Example 12.4. We will now slightly modify this example to demon-

strate that Gibbs sampling algorithms are not always that simple. Earlier, the parameter δ

was considered to be fixed. What if we want to do inference for δ as well? In this case, we
will get another update in the Gibbs sampler algorithm for which δ has to be sampled from

π(δ | x, κ, y) ∝ π(δ) |Qprior(κ, δ)|1/2 exp
(

−1
2

xT Qprior(κ, δ)x
)

, (12.17)

where π(δ) is the prior distribution. The main point is that the prior precision matrix de-
pends on both κ and δ, and we need to compute the determinant of Qprior(κ, δ). This quantity
is not analytically tractable (except for special cases). In general, we have to compute the
determinant of Qprior(κ, δ), and if we do this within the Gibbs sampler algorithm, we have
to do this many times. Similar comments can be made when the task is to infer unknown
parameters of the GMRF.

Exact algorithms can also be used to improve the (single-site) Gibbs sampler algorithm.
The idea is to update a subset of θ, θa say, from π(θa |θ−a ), instead of one component at
a time. Here, θa can be, for example, the GMRF part of the model. Returning again to
Example 12.4, we can improve the Gibbs sampler algorithm to an algorithm that updates
(κ, x) in two blocks

κ ∼ π(κ|x, y) and x ∼ π(x|κ, y),

which is possible because π(x|κ, y) is a GMRF.
In many cases, involving GMRFs, it is possible to avoid using MCMC as an exact (up to

numerical integration) or approximate solution exists; see Rue, Martino, and Chopin (2009)
for details, applications and extensions. The benefit of such an approach is the absence of
Monte Carlo error and improved computational speed. Returning again to Example 12.4,
then

π(κ | y) ∝ π(x, κ|y)
π(x|κ, y)

for any x. To compute the right-hand side (for a given κ), we need to solve (12.12) using exact
algorithms. After computing the posterior density of κ , we can use this result to compute
the posterior density of any xi , using

π(xi | y) =
∫

π(κ | y) π(xi | κ, y) dκ,

which we approximate with a finite sum. In this example, xi |κ, y is Gaussian, so π(xi |y) can
be approximated with a finite mixture of Gaussians. The additional task here is to compute
the marginal variance for xi . Extending this example to unknown δ, we get

π(κ, δ | y) ∝ π(x, κ, δ|y)
π(x|κ, δ, y)

(12.18)

and

π(xi | y) =
∫ ∫

π(κ, δ | y) π(xi | κ, δ, y) dκ dδ,

where we also need to compute the determinant of Qprior(κ, δ). Again, π(xi |y) can be ap-
proximated by a finite mixture of Gaussians, whereas π(κ|y) and π(δ, y) must be computed
from (12.18) using numerical integration.
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12.1.7.2 Some Basic Linear Algebra

Let A be SPD, then there exists a unique (Cholesky) factorization A = LLT , where L is
lower triangular and called the Cholesky triangle. This factorization is the starting point
for solving Ay = b by first solving Lv = b and then LT y = v. The first linear system Lv = b
is solved directly using forward substitution

vi = 1
Li,i

⎛
⎝bi −

i−1∑
j=1

Li, j v j

⎞
⎠ , i = 1, . . . , n,

whereas LT y = v is solved using backward substitution

yi = 1
Li,i

⎛
⎝vi −

n∑
j=i+1

L j,i yj

⎞
⎠ , i = n, . . . , 1.

Computing A−1Y, where Y is a n × k matrix, is done by computing A−1Y j for each of the
k columns Y j using the algorithm above. Note that A needs to be factorized only once.
Note that in the case Y = I (and k = n), the inverse of A is computed, which explains the
command solve(A) in R (R Development Core Team, 2007) to invert a matrix.

12.1.7.3 Sampling from a GMRF

Sampling from a GMRF can be done using the following steps: sample z ∼ N (0, I), i.e., n
standard normal variables, solve LT v = z, and compute x = μ + v. The sample x has the
correct distribution as E(v) = 0 and Cov(v) = L−T IL−1 = (LLT )−1 = Q−1. The log-density
of x,

log π(x) = −n
2

log 2π + 1
2

log |Q| − 1
2

(x − μ)T Q(x − μ)︸ ︷︷ ︸
q

is evaluated as follows. If x is sampled using the algorithm above, then q = zT z, otherwise,
we compute w = x − μ, u = Qw and then q = wT u. Note that u = Qw is a sparse-matrix
vector product, which can be computed efficiently:

ui = Qi,i wi +
∑
j : j∼i

Qi, j w j ,

where the diagonal term is added explicitly since i is not a neighbor of i . The determinant
of Q can be found from the Cholesky factorization: |Q| = |LLT | = |L|2. Since L is lower
triangular, we obtain

1
2

log |Q| =
∑

i

log Li,i .

Conditional sampling of xA conditioned on xB , as described in Theorem 12.2, is similar:
factorize QAA and solve

QAA(μA|B − μA) = −QAB(xB − μB)

for μA|B , using forward and backward substitution. The (sparse) matrix vector product on
the right-hand side is computed using only the nonzero terms in QAB . The remaining steps
are the same.
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12.1.7.4 Sampling from a GMRF Conditioned on Linear Constraints

In practical applications, we often want to sample from a GMRF under a linear constraint,

Ax = e,

for a k × n matrix A of rank k. The common case is that k � n. A brute-force approach
is to directly compute the conditional (Gaussian) density π(x|Ax = e), but this will reveal
that the corresponding precision matrix is (usually) not sparse anymore. For example, if
xi ⊥ xj |x−{i, j} without the constraint, then a sum-to-zero constraint

∑
xi = 0 makes xi and

xj negatively correlated. In order not to lose computational efficiency, we must approach
this problem in a more subtle way by correcting an unconstrained sample x to obtain a
constrained sample xc :

xc = x − Q−1AT (AQ−1AT )−1(Ax − e). (12.19)

A direct calculation shows that xc has the correct mean and covariance. A closer look
at (12.19) makes it clear that all the matrix terms are easy to compute: Q−1AT just solves k
linear systems of type Qv j = (AT ) j , for j = 1, . . . , k, whereas AQ−1AT is a k × k matrix and
its Cholesky factorization is fast to compute since k is small in typical applications. Note
that the extra cost of having k constraints is O(nk2), hence, negligible when k is small.

Evaluating the constrained log density perhaps needs more attention, since x|Ax is sin-
gular with rank n − k. However, the following identity can be used:

π(x|Ax) = π(Ax|x) π(x)
π(Ax)

. (12.20)

Note now that all terms on the right-hand side are easy to compute: π(x) is a GMRF with
mean μ and precision matrix Q, π(Ax) is (k-dimensional) Gaussian with mean Aμ and
covariance AQ−1AT , while π(Ax|x) is either 0 (when the configuration x is inconsistent
with the value of Ax) or equal to |AAT |−1/2.

Example 12.7
Let x be n independent, zero-mean, normal random variables with variance {σ 2

i }. A sum-
to-zero constrained sample x∗ can be generated from a sample of the unconstrained x using

x∗
i = xi − cσ 2

i , where c =
∑

xj/
∑

σ 2
j , i = 1, . . . , n.

The above construction can be generalized to condition on so-called soft constraints, which
we condition on the k observations y = (y1, . . . , yk)T , where

y | x ∼ N (Ax, Υ ).

Here, A is a k×n matrix with rank k and Υ > 0. The conditional density for x|y has precision
matrix Q + ATΥ−1A, which is often a dense matrix. We can use the same approach as in
Equation (12.19), which now generalizes to

xc = x − Q−1AT (AQ−1AT + Υ )−1(Ax − ε), (12.21)

where ε ∼ N (y, Υ ). Similarly, if x is a sample from π(x) and then xc computed from
Equation (12.21) is distributed as π(x|y). To evaluate the conditional density, we use the
same approach as in Equation (12.20), which now reads

π(x|y) = π(y|x) π(x)
π(y)

.

Here, π(x) is the density for a GMRF, π(y|x) is the density for a k-dimensional Gaussian
with mean Ax and covariance matrix Υ , whereas π(y) is the density for a k-dimensional
Gaussian with mean Aμ and covariance matrix AQ−1AT + Υ .
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12.1.7.5 The Cholesky Factorization of Q

All the exact simulation algorithms are based on the Cholesky triangle L, which is found
by factorizing Q into LLT . We will now discuss this factorization in more detail, show why
sparse matrices allow for faster factorization, and how reordering the indices can speed up
the computations.

12.1.7.6 Interpretation of the Cholesky Triangle

The Cholesky factorization of Q is explicitly available; it is just a matter of doing the com-
putations in the correct order. By definition, we have

Qi, j =
j∑

k=1

Li,k L j,k , i ≥ j,

where we have used that L is lower triangular meaning that Li,k = 0 for all k > i . To fix
ideas, assume n = 2, so that Q1,1 = L2

1,1, Q2,1 = L2,1L1,1 and Q2,2 = L2,1L2,1 + L2
2,2. Then

we see immediately that we can compute L1,1, L2,1 and L2,2 in this particular order. This
generalizes for n > 2; we can compute Li,1 for i = 1, . . . , n (in this order), then Li,2 for
i = 2, . . . , n, and so on. Due to this simple explicit structure, the Cholesky factorization
can be computed quickly and efficient implementations are available in standard linear
algebra libraries (Anderson, Bai, Bischof, Demmel et al., 1995). However, the complexity of
the computations is of order O(n3).

The natural way to speed up the Cholesky factorization is to make use of a particular
structure in the precision matrix or the Cholesky triangle. For GMRFs, the issue is that
sparsity in Q implies (a related) sparsity in L. The implication is that if we know that L j,i = 0,
then we do not need to compute it. And if the main bulk of L is zero, then we can achieve
great computational savings. In order to understand these issues, we need to understand
what L really means in terms of statistical interpretation. The simulation algorithm for a
zero mean GMRFs, which solves LT x = z, where z ∼ N (0, I) gives the following result
immediately.

Theorem 12.4
Let x be a GMRF wrt the labeled graph G, mean μ, and an SPD precision matrix Q. Let L be the
Cholesky triangle of Q. Then for i ∈ V ,

E (xi | x(i+1):n) = μi − 1
Li,i

n∑
j=i+1

L j,i (xj − μ j ) and

Precision (xi | x(i+1):n) = L2
i,i .

Hence, the elements of L have an interpretation as the contribution to the conditional
mean and precision for xi , given all those xj s where j > i . This is in contrast to the elements
of Q, which have a similar interpretation, but where we condition on all other xj s. A simple
consequence of this interpretation is that Qi,i ≥ L2

i,i for all i .
If we merge Equation (12.2) with Theorem 12.4, we obtain the following result.

Theorem 12.5
Let x be a GMRF wrt to the labeled graph G, with mean μ and SPD precision matrix Q. Let L be
the Cholesky triangle of Q and define for 1 ≤ i < j ≤ n the future of i except j as

F (i, j) = {i + 1, . . . , j − 1, j + 1, . . . , n}.
Then

xi ⊥ xj | xF (i, j) ⇐⇒ L j,i = 0.
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So, if we consider the marginal distribution of xi :n, then L j,i = 0 is equivalent to xi and
xj being conditionally independent. This is a useful result, as it indicates that if we can
determine zeros in L using conditional independence in the sequence of marginals {xi :n},
the marginals {xi :n} are easier to compute through the Cholesky triangle. However, we can
use a weaker criterion, which implies that xi ⊥ xj | xF (i, j) , the global Markov property in
Theorem 12.3.

COROLLARY 12.1
If F (i, j) separates i < j in G, then L j,i = 0.

This is the main result. If we can verify that i < j are separated by F (i, j), an operation
that depends only on the graph and not the numerical values in Q, then we know that
L j,i = 0 no matter what the numerical values in Q are. If i < j are not separated by F (i, j),
then L j,i can be zero, but is in general nonzero. Since two neighbors i ∼ j are not separated
by any set, then L j,i is in general nonzero for neighbors.

Example 12.8
Consider a GMRF with graph as in Figure 12.1. We then know that L1,1, L2,2, L3,3, L4,4 is
nonzero, and L2,1, L3,2, L4,3, and L4,1 is in general nonzero. The two elements remaining
are L3,1 and L4,2, which we check using Corollary 12.1; nodes 1 and 3 are separated by
F (1, 3) = {2, 4}, so L3,1 must be zero, whereas F (4, 2) = {3} does not separate 2 and 4 due
to node 1, hence L4,2 is in general nonzero.

12.1.7.7 Cholesky Factorization of Band Matrices

Although only one element of the Cholesky triangle in Example 12.8 was necessarily zero,
we obtain a larger amount of zeros for autoregressive models. Let x be a pth order autore-
gressive process, AR( p),

xt | xt−1, . . . , x1 ∼ N (φ1xt−1 + · · · + φpxt−p, σ 2), t = 1, . . . , n.

where we set x0 = x−1 = · · · = x−p+1 = 0 for simplicity. The precision matrix for an AR( p)
process will then be a band matrix with bandwidth bw = p. Using Corollary 12.1, it follows
immediately that L j,i = 0, j > i , for all j − i > p, hence L is a band matrix with the same
bandwidth.

Theorem 12.6
If Q is a SPD band matrix with bandwidth bw, then its Cholesky triangle L is a lower triangular
band matrix with the same bandwidth.

In this example, only O(n(bw + 1)) of the O(n2) terms in L are nonzero, which is a
significant reduction. A direct consequence is that the algorithm for computing the Cholesky
factorization can be simplified; two of the three loops only need to go within the bandwidth,
so the complexity is reduced from O(n3) to O(nb2

w). For fixed bw , this gives a computational
cost, which is linear in n.

12.1.7.8 Reordering Techniques: Band Matrices

The great computational savings we obtained for band matrices naturally raise the question
of who then we can use this approach also for “nonband,” but sparse, matrices. A rationale
for such an approach is that the indices in the graph are arbitrary, hence, we can permute
the indices to obtain a small bandwidth, do the computations and perform the inverse

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 10, 2010 12:20 C7287 C7287˙C012

188 Handbook of Spatial Statistics

(a) (b) (c)

FIGURE 12.4
Panel (a) displays the nonzeros of the 380×380 precision matrix, panel (b) displays the reordered precision matrix
with bandwidth 38, and panel (c) displays the Cholesky triangle of the band matrix (b).

permutation on the answer. Formally, let P by one of the n!, n × n permutation matrices;
each row and column of P has one and only one nonzero entry, which is 1. The transpose
of a permutation matrix is the inverse permutation, PT P = I. For example, Qμ = b can be
solved as follows; multiply both sides with P

(PQPT )︸ ︷︷ ︸
Q̃

Pμ︸︷︷︸
μ̃

= Pb︸︷︷︸
b̃

,

solve Q̃μ̃ = b̃, and then apply the inverse permutation to obtain the solution μ = PT μ̃.
The next issue is how to permute the sparse matrix in order to obtain a (possible) small

bandwidth. This issue is somewhat more technical, but there is a huge literature in com-
puter science (Duff, Erisman, and Reid, 1989; George and Liu, 1981), and good working
algorithms. So any algorithm that runs quick and gives reasonable results is fine. Figure 12.4
displays an example, where in panel (a) we display the precision matrix found from a spa-
tial application (Rue and Held, 2005, Sec. 4.2.2), in (b) the reordered precision matrix using
the Gibbs–Poole–Stockmeyer reordering algorithm (Lewis, 1982), and in (c), the Cholesky
triangle of the reordered precision matrix. The bandwidth after reordering is 38.

12.1.7.9 Reordering Techniques: General Sparse Matrices

Although the band matrix approach gives very efficient algorithms for certain graphs, we
often encounter situations where a more general approach is required. One such example
is where the graph has some “global nodes”; nodes which are neighbors to (near) all other
nodes. In statistical applications, such situations occur quite frequently, as shown in the
following example.

Example 12.9
Let μ ∼ N (0, 1) and {zt} be a AR(1) process of length T with mean μ; then x = (zT , μ)T is
a GMRF wrt G where node μ is neighbor of all other nodes. The bandwidth is n − 1 where
n = T + 1, for all n! reorderings.

The band matrix approach is not successful in this example, but we can derive efficient
factorizations by making use of a general (and complex) factorization scheme. The general
scheme computes only the nonzero terms in L, which requires a substantial increase of
complexity. The issue then is to reorder to minimize the number of terms in L not known
to be zero. Define M(G) as the number of nonzero terms in L found using Corollary 12.1.
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Then the efficiency of any reordering is usually compared using the number of fill-ins

fill-ins(G) = M(G) − (|V| + |E |/2) .

Since Li,i > 0 for all i , and L j,i is in general nonzero for i ∼ j and j > i , then fill-ins (G) ≥ 0.
Autoregressive processes of order p are optimal in the sense that the precision matrix is a

band matrix with bandwidth p (and dense within the band), and with identity ordering, the
number of fill-ins is zero (see Theorem 12.6). For other GMRFs, the number of fill-ins is (in
most cases) nonzero and different reordering schemes can be compared to find a reasonable
reordering. Note that there is no need to find the optimal reordering, but any reasonable one
will suffice.

Let us reconsider Example 12.9 where we compare two reorderings where the global
node μ is ordered first and last, respectively; x = (zT , μ)T and x′ = (μ, zT )T . The precision
matrices are

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × ×
× × × ×

× × × ×
× × × ×

× × × ×
× × ×

× × × × × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and Q′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × × × ×
× × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively. Here, × indicates a nonzero value. Using Corollary 12.1, we obtain the (general)
nonzero structure for the Cholesky triangles

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

×
× ×

× ×
× ×

× ×
× ×

× × × × × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and L′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

×
× ×
× × ×
× √ × ×
× √ √ × ×
× √ √ √ × ×
× √ √ √ √ × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where a
√

indicates the fill-ins. Placing the global node μ last does not give any fill-ins,
whereas placing it first gives a maximum number of fill-ins. This insight can be used to
derive the reordering scheme called nested dissection, which goes as follows.

• Select a (small) set of nodes whose removal divides the graph into two disconnected
subgraphs of almost equal size

• Order the nodes chosen after ordering all the nodes in both subgraphs
• Apply this procedure recursively to the nodes in each subgraph

Formally, this can be described as follows:

Lemma 12.2
Let x be a GMRF wrt to G and SPD precision matrix Q, and partition x as (xT

A, xT
B, xT

C )T . Partition
the Cholesky triangle of Q as

L =

⎛
⎜⎝

LAA

LB A LB B

LC A LC B LCC

⎞
⎟⎠ .

If C separates A and B in G, then LB A = 0.
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(a) (b)

FIGURE 12.5
Panel (a) displays the “optimal” reordering with 2,182 number of fill-ins, of the 380 × 380 precision matrix in
Figure 12.4a. Panel (b) displays the corresponding Cholesky triangle.

The recursive approach, proceeds by partitioning A and B similarly, and so on. It turns
out that the nested dissection reordering gives optimal reorderings (in the order sense) for
GMRFs found from discretizing the lattice or the cube: Consider a regular square lattice
with n sites where each vertex is neighbor to the nearest four vertices. The nested dissection
reordering will use C as the middle column, and Aand B as the left and right part. Then this
process is repeated recursively. It turns out that the cost of factorization of the reordered
precision matrix will be O(n3/2), which is

√
n times faster than using the band approach.

The number of fill-ins will (only) be O(n log n). It can be shown that factorization of the
precision matrix applying any reordering is larger or equal to O(n3/2); hence optimal in
the order sense. For a 3D box-lattice with n vertices, the computational cost is O(n2) and
the number of fill-ins is O(n4/3).

In between the band reordering for long and thin graphs and the nested dissection re-
ordering for lattice-like graphs, there are several other reordering schemes than can pro-
vide, by a case-to-case basis, better reordering. Which one to try depends on which im-
plementation one has available; however, any reasonable choice for the reordering will
suffice. Note that the number of fill-ins for a specific graph can be computed (by sparse
matrix libraries) without having to do the actual factorization, as it only depends on the
graph; hence, if several factorizations should be performed on the same graph, it can be
of benefit to compare (a few) reorderings and choose the one with the fewest number of
fill-ins.

We close this discussion by revisiting the 380 × 380 precision matrix displayed in
Figure 12.4a. The band reordering gives 11,112 fill-ins, the nested dissection gives 2,460,
while the “optimal” one produced 2,182 fill-ins. The optimal reordered precision matrix
and the corresponding Cholesky triangle are displayed in Figure 12.5.

12.1.7.10 Exact Calculations of Marginal Variances

We will now turn to a more “statistical” issue; how to compute all (or nearly all) marginal
variances of a GMRF. This is a different task than computing only one variance, say of
xi , which can simply be done by solving Qv = 1i , where 1i is one at position i and zero
otherwise, and then var(xi ) = vi . Although the computation of variances is central in
statistics, it is not necessarily so within computer science: we are not familiar with any
sparse matrix library that provides such a feature although the general solution is known
(Erisman and Tinney, 1975; Takahashi, Fagan, and Chen, 1973). We will derive the recursions
from a statistical point of view, starting with the case that Q is SPD with no additional linear
constraints. The case with constraints will be discussed afterwards.
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12.1.7.11 General Recursions

The starting point is again that the solution of LT x = z provides a sample x with precision
matrix Q, which implies that

xi = zi/Li,i − 1
Li,i

n∑
k=i+1

Lk,i xk , i = n, . . . , 1.

Multiply both sides with xj for j ≥ i . Then the expected value reads

Σi, j = δi, j/L2
i,i − 1

Li,i

n∑
k=i+1

Lk,iΣk, j , j ≥ i, i = n, . . . , 1, (12.22)

where δi, j is one if i = j and zero otherwise. The sum in (12.22) only needs to be over all
nonzero L j,i s, or at least, all those ks so that i and k > i are not separated by F (i, k); see
Corollary 12.1. To simplify notation, define this index set as

I(i) = {
k > i : i and k are not separated by F (i, k)

}

and their “union,”

I = {{i, k} : k > i, i and k are not separated by F (i, k)
}

for k, i = 1, . . . , n. Note that the elements of I are sets; hence if {i, j} ∈ I, then so does { j, i}.
I represent all those indices in L that are not known upfront to be zero; hence, must be
computed doing the Cholesky factorization. With this notation Equation (12.22) reads

Σi, j = δi, j/L2
i,i − 1

Li,i

∑
k∈I(i)

Lk,iΣk, j , j ≥ i, i = n, . . . , 1. (12.23)

Looking more closely into these equations, it turns out that we compute all the Σi, j s explic-
itly if we apply Equation (12.23) in the correct order:

for i = n, . . . , 1
for j = n, . . . , i

Compute Σi, j from Equation (12.23) (recalling that Σk, j = Σ j,k).

Although this direct procedure computes all the marginal variances Σn,n, . . . , Σ1,1, it is
natural to ask if it is necessary to compute all the Σi, j s in order to obtain the marginal
variances. Let J be a set of pairs of indices {i, j}, and assume we can compute Σi, j from
Equation (12.23) only for all {i, j} ∈ J , and still obtain all the marginal variances. Then the
set J must satisfy two requirements:

Requirement 1 J must contain {1, 1}, . . . , {n, n}
Requirement 2 While computing Σi, j from Equation (12.23), we need to have already com-

puted all those Σk, j s that we need, i.e.,

{i, j} ∈ J and k ∈ I(i) �⇒ {k, j} ∈ J . (12.24)

The rather surprising result is that J = I satisfy these requirements; a result that depends
only on G and not the numerical values in Q. This result implies that we can compute all
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the marginal variances as follows:

for i = n, . . . , 1
for decreasing j in I(i)

Compute Σi, j from Equation (12.23),

where the j-loop visits all entries inI(i) in decreasing order. The proof is direct. Requirement
1 is trivially true, and Requirement 2 is verified by verifying Equation (12.24): {i, j} ∈ J ,
j ≥ i , says that there must a path from i to j where all the vertices are less than i , while
k ∈ I(i) says there must be a path from i to k where all the vertices are less than i . If k ≤ j ,
then there must be a path from k to i to j where all indices are less than k since k > i ,
otherwise, if k > j , then there must be a path from k to i to j where all indices are less than
j since j ≥ i .

The computational cost for solving these recursions is smaller than factorizing the preci-
sion matrix. Consider for a 2D square lattice reordered using nested dissection reordering,
then |I| = O(n log n), and each Σi, j will involve about O(log n) terms, giving the total cost
of O(n(log n)2). Similarly, the cost will be O(n5/3) for a 3D box-lattice with nested dissection
reordering.

12.1.7.12 Recursions for Band Matrices

The simplification is perhaps most transparent when Q is a band matrix with bandwidth bw ,
where we have previously shown that I(i) = {i + 1, . . . , min(n, i + bw)}; see Theorem 12.6.
In this case, Requirement 2 reads (for an interior vertex and j ≥ i),

0 ≤ j − i ≤ bw and 0 < k − i ≤ bw �⇒ −bw ≤ k − j ≤ bw,

which is trivially true. The algorithm then becomes

for i = n, . . . , 1
for j = min(i + bw, n), . . . , i

Compute Σi, j from Equation (12.23).

Note that this algorithm is formally equivalent to Kalman recursions for smoothing. The
computational cost for autoregressive models is O(n).

12.1.7.13 Correcting for Linear Constraints

With additional linear constraints, the constrained precision matrix will be less sparse, so
we need an approach to correct marginal variances for additional linear constraints. This
is similar to Equation (12.19). Let Σ̃ be the covariance matrix with the additional k linear
constraints Ax = e, and Σ the covariance matrix without constraints. The two covariance
matrices then relate as follows:

Σ̃ = Σ − Q−1AT (
AQ−1AT)−1

AQ−1. (12.25)

Let W be the n×k matrix solving QW = AT , V the k ×k Cholesky triangle of AW, and Y the
k × n matrix solving VY = WT , then the i, j th element of Equation (12.25) can be written as

Σ̃i, j = Σi, j −
k∑

t=1

Yt,i Yt, j . (12.26)

All terms of Σ that we compute solving Equation (12.23) can now be corrected using
Equation (12.26). The computational cost of this correction is dominated by computing Y,
which costs O(nk2). Again, with not too many constraints, this correction will not require
any additional computational burden.
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12.1.7.14 Some Practical Issues

Although computations with GMRFs can be done using numerical methods for sparse
matrices, it is not without some practical hassle. First, quite a few libraries have free binary
versions but closed source code, which (in this case) can create complications. Since only a
few libraries have routines for solving LT x = z and none (to our knowledge) have support
for computing marginal variances, we need access to the internal storage format in order to
implement such facilities. However, the internal storage format is not always documented
unless using an open-source code. At the current time of writing, we recommend to use
one of the open-source libraries: TAUCS (Toledo, Chen, and Rotkin, 2002) or CHOLMOD
(Chen, Davis, Hager, and Rajamanickam, 2006), which is written in C; see Gould, Scott,
and Hu (2007) for a comparison and overview. Due to the open-source, it is relatively easy
to provide routines for solving LT x = z. However, care must be taken if the computed L
is used in the recursions (12.23); for example, the TAUCS library removes terms L j,i s that
turn out to be numerically zero, but we need all those that are not known to be zero. The
easy way out is to disable this feature in the library, alternatively, using the fix in Rue and
Martino (2007), Sec. 2.3. The GMRFLib-library (Rue and Held, 2005, App. B) does provide
implementation of all the algorithms discussed in this chapter based on the TAUCS library.

12.1.8 Markov Random Fields

We will now leave the Gaussian case and discuss Markov random fields (MRFs) more gen-
erally. We will first study the case where each xi is one of K different “colors” or states; i.e.,
xi ∈ Si = {0, 1, . . . , K − 1}, and x ∈ S = S1 × S2 × · · · × Sn. The case K = 2 is particularly
important and corresponds to a binary MRF. The main result, Theorem 12.7, can then be
generalized to nonfinite S. The presentation in this section is inspired by some unpublished
lecture notes by J. Besag; see Besag 1974; Geman and Geman, 1984; Guyon, 1995; Lauritzen,
1996; Li, 2001; Winkler, 1995 for more theory and applications, and Hurn, Husby, and Rue
(2003) for a tutorial towards image analysis.

12.1.8.1 Background

Recall the notion of the full conditionals for a joint distribution π(x) that is the n conditional
distributions π(xi |x−i ). From the full conditionals, we can define the notion of a neighbor.

Definition 12.3 (Neighbor)
Site j �= i is called a neighbor of site i if xj contributes to the full conditional for xi .

Denote by ∂i , set all neighbors to site i , then

π(xi | x−i ) = π(xi | x∂i )

for all i . In a spatial context, it is easy to visualize this by, for example, considering ∂i as
those sites that are (spatially) close to site i in some sense.

The problems start when we want to specify the joint density of x through the n full
conditionals and set of neighbors ∂i , using a bottom-up approach. If we know the joint
distribution, then the full conditionals are found as

π(xi | x−i ) ∝ π(x).

But how do we derive the joint distribution if we only know the full conditionals? Let x∗

denote any reference state where π(x∗) > 0, then Brook’s lemma (Lemma 12.1) gives for
n = 2 (for simplicity only)

π(x1, x2) = π(x∗
1 , x∗

2 )
π(x1|x2)
π(x∗

1 |x2)
π(x2|x∗

1 )
π(x∗

2 |x∗
1 )

(12.27)
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provided there are no zeros in the denominator, meaning that (in general)

π(x) > 0, ∀x ∈ S.

We will refer to this condition as the positivity condition, and it turns out to be essential in
the following. If we evaluate Equation (12.27) for all x ∈ S keeping x∗ fixed to 0, say, then
we know h(x) where π(x) ∝ h(x). The missing constant is found from

∑
x∈S π(x) = 1. The

conclusion is that the full conditionals determine the joint distribution.
There is a small problem with this argument, which is the implicit assumption that the full

conditionals are (or can be) derived from a joint distribution. If, however, we specify candi-
dates for full conditionals, then we must ensure that we obtain the same joint distribution
no matter the choice of ordering leading to Equation (12.27), for example,

π(x1, x2) = π(x∗
1 , x∗

2 )
π(x2|x1)
π(x1|x∗

2 )
π(x∗

2 |x1)
π(x∗

1 |x∗
2 )

.

Of course, these two specifications must agree. For n > 2, there are quite a few such
orderings, and they all have to agree. This implies that we cannot choose the full condi-
tionals arbitrarily, but they have to satisfy some constraints to ensure that they define a
valid joint distribution. Before we state the main result that defines what form the joint
distribution must take under the neighbor specifications of the full conditionals, we need
some new definitions.

12.1.8.2 The Hammersley–Clifford Theorem

Let G = (V , E) denote the graph as defined through our specification of the neighbors to
each site;V = {1, . . . , n} and draw a directed edge from j to i if j ∈ ∂i and i �∈ ∂ j . If i and j are
mutually neighbors, draw an undirected edge. (In fact, it will turn out that if i is a neighbor
of j , then also j must be a neighbor of i , although this is not known at the current stage.)

Definition 12.4 (Markov random field)
If the full conditionals of π(x), x ∈ S, honor a given graph G, the distribution is called a Markov
random field with respect to G.

For the main result, we also need the notion of a clique.

Definition 12.5 (Clique)
Any single site or any set of sites, all distinct pairs of which are mutual neighbors, is called a clique.

Example 12.10
The cliques in the graph in Figure 12.6 are {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3},
{3, 4}.

The main result is the Hammersley–Clifford theorem (see Clifford, 1990, for a historical
account), which states what form the joint distribution must take to honor a given graph G.

Theorem 12.7 (Hammersley–Clifford)
Let π(x) > 0, x ∈ S denote a Markov random field with respect to a graph G with cliques C, then

π(x) ∝
∏
C∈C

ΨC (xC ), (12.28)

where the functions ΨC can be chosen arbitrarily, subject to 0 < ΨC (xC ) < ∞.
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1

2

3 4 5

FIGURE 12.6
An example of a graph.

(This result has an interesting history; see Besag (1974) (including the discussion) and the
book chapter by Clifford, 1990.) One important consequence of this result, is that for a given
graph, the full conditionals should either be specified implicitly through the Ψ functions
or verified that the chosen full conditionals can be derived from Equation (12.28) for some
Ψ functions.

Example 12.11
The general form of the distribution, which honors the graph in Figure 12.6, is

π(x1, x2, x3, x4, x5) ∝ Ψ1,2,3(x1, x2, x3) Ψ3,4(x3, x4) Ψ5(x5).

We will now state some corollaries to the Hammersley–Clifford theorem:

COROLLARY 12.2
The graph G must be undirected, so if i ∈ ∂ j , then necessarily j ∈ ∂i .

COROLLARY 12.3
The MRF (12.28) also satisfies the global Markov property (12.4).

COROLLARY 12.4
Define Q(x) = log(π(x)/π(0)), then there exists a unique representation,

Q(x) =
∑

i

xi Gi (xi ) +
∑
i< j

xi x j Gi, j (xi , xj ) +
∑

i< j<k

xi xj xk Gi, j,k(xi , xj , xk) + · · ·

+ x1x2 · · · xnG1,2,...,n(x1, x2, . . . , xn), (12.29)

where Gi, j,...,s(xi , xj , . . . , xs) ≡ 0 unless the sites i, j, . . . , s form a clique, and where the G functions
are arbitrary but finite.

COROLLARY 12.5
The Hammersley–Clifford theorem extends to multivariate MRFs where each xi is p-dimensional,
and to nonfinite S subject to integrability of π(x).

The joint distribution (12.28) can also be written as

π(x) = 1
Z

exp

(
−

∑
C∈C

VC (xC )

)
,

where VC (·) = − log ΨC (·) and Z is the normalizing constant. This form is called the Gibbs
distribution in statistical physics, and the VC (·)-functions are called the potential functions;
see, for example, Geman and Geman (1984).
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12.1.8.3 Binary MRFs

We will now discuss more in detail the case where K = 2, where we have a binary MRF. Let
∂i be the nearest four sites to site i on a regular square lattice. Then from Equation (12.29),
we have that

Q(x) =
∑

i

αi xi +
∑
i< j

αi, j xi x j

for some αi s and αi, j s. This is the general form the distribution can take for the given graph.
For βi, j = β j,i = αi, j , i < j we can write the distribution of x as

π(x) = 1
Z

exp

⎛
⎝∑

i

αi xi +
∑
i∼ j

βi j xi x j

⎞
⎠ . (12.30)

The parameters {αi } control the level whereas the parameters {βi, j } control the interaction.
The interpretation is perhaps more transparent when we look at the full conditionals

π(xi | x−i ) =
exp

(
xi (αi + ∑

j∈∂i βi, j x j )
)

1 + exp
(
αi + ∑

j∈∂i βi, j x j

) . (12.31)

The full conditional for xi is like a logistic regression with its neighbors, and is referred to
as the auto logistic model (Besag, 1974).

A interesting special case of Equation (12.31) is

π(x | β) = 1
Zβ

exp

⎛
⎝β

∑
i∼ j

1[xi = xj ]

⎞
⎠ , (12.32)

where 1[·] is the indicator function and β is a common interaction parameter. This model
is the famous Ising model for ferromagnestism, dating back to Ernst Ising in 1925. For later
use, we write |β and note that the normalizing constant also depends on β. More intuition
from Equation (12.32) is obtained by rewriting it as

π(x | β) = 1
Zβ

exp (β × number of equal neighbors),

hence, realizations will favor neighbors to be equal, but is invariant for which state, 0 or 1,
the neighbors should be in. This can also be seen studying the full conditionals,

π(xi = 1 | β, x∂i ) = exp(βn1)
exp(βn0) + exp(βn1)

,

where n0 is the number of neighbors to xi that is zero, and similar with n1. It is clear that
this model favors xi to be equal to the dominant state among its neighbors. In two or more
dimensions, it can shown to exhibit phase transition; there is a critical value β∗ (equal
to log(1 + √

2) = 0.88 . . . in dimension two), for which β > β∗. Then the distribution is
severely bi-modal even as the size of the lattice tends to infinity. Further, xi and xj , even
when arbitrarily far apart, will be positively correlated.

12.1.9 MCMC for MRFs

12.1.9.1 MCMC for Fixed β

We will now discuss how we can generate a sample from π(x) for fixed β, focusing on the
binary case and the Ising model (12.30). The Gibbs sampler in Section 12.1.5.2 is valid also
for discrete MRFs.
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Initialize x = 0 (or some other configuration)
While TRUE; do

For i = 1, . . . , n
Sample new value for xi from π(xi |x∂i )

Output new state x

Again, to update xi , we only need to take into account the neighbors x∂i , which in this case
are the four nearest ones.

Intuitively, in the case where β is high and one color dominates, then the Gibbs sampler
will tend to propose the same color as it already has. Note that the Ising model is symmetric,
so the configurations x and 1−x have the same probability. It is then intuitive that we could
improve the Markov chain’s ability to move around in the state-space, like going from a
configuration with essentially all black to all white, if we propose to always change the color
at site i (Frigessi, Hwang, Sheu, and di Stefano, 1993). If we do so, then we need to correct
this proposal to maintain the equilibrium distribution. The resulting MCMC algorithm is
called the Metropolis–Hastings algorithm.

Initialize x = 0 (or some other configuration)
While TRUE; do

For i = 1, . . . , n
Propose a new value x′

i = 1 − xi .
Compute Ri = π(x′

i |x∂i )/π(xi |x∂i )
With probability pi = min{1, Ri } set xi = x′

i .
Output new state x

The probability that we should accept the proposed new state, pi , also only depends on the
neighbors x∂i . Note that the new proposed state is always accepted if Ri ≥ 1.

Figure 12.7 displays samples from a 64 × 64 toroidal grid with β = 0.6, 0.88 . . . and
1.0 using the Metropolis–Hastings algorithm. Below β∗ the samples are more scattered,
whereas above β∗ they are more concentrated on one color.

12.1.9.2 MCMC for Random β

We experienced complications in our MCMC algorithm in Example 12.4 when the in-
teraction parameter δ was random due to a normalizing constant depending on δ; see
Equation (12.17). In the discrete MRF case, inference for β becomes troublesome by the
same reason. In fact, it is even worse, as we cannot compute the normalizing constant exact
except for small lattices.

(a) (b) (c)

FIGURE 12.7
Samples from the Ising model on a toroidal 64 × 64 lattice, with (a) β = 0.6, (b) β = 0.88 . . ., and (c) β = 1.0.
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Recall that Z(β) is defined by

Z(β) =
∑
x

exp(βS(x)) , (12.33)

where S(x) is the sufficient statistic
∑

i∼ j 1[xi = xj ]. One possibility is to see whether the
derivative of Z(β) with respect to β is easier to estimate than Z(β) itself.

d Z(β)
dβ

=
∑
x

S(x) exp(βS(x))

= Z(β)
∑
x

(S(x)) exp(βS(x)) /Z(β)

= Z(β) Ex|β S(x).

By solving this differential equation, we obtain

log
(

Z(β ′)/Z(β)
) =

∫ β ′

β

Ex|β̃ S(x) dβ̃. (12.34)

As we see, this trick has reduced the difficulty of the problem to one we can tackle using
the following procedure (see Hurn, Husby, and Rue, 2003, for an application).

1. Estimate Ex|β S(x) for a range of various β values using posterior mean estimates
based on the output from a sequence of MCMC algorithms. These values will
depend on the image size and so will need to be recalculated for each new problem.

2. Construct a smoothing spline f (β) to smooth the estimated values of Ex|β S(x).
3. Use numerical or analytical integration of f (β) to compute an estimate of Equa-

tion (12.34),

̂log (Z(β ′)/Z(β)) =
∫ β ′

β

f (β̃) dβ̃

for each pair (β, β ′) required.

The idea behind Equation (12.34) is often called thermodynamic integration in the physics
literature, see Gelman and Meng (1998) for a good introduction from a statistical perspective.
A similar idea also occurs in Geyer and Thompson (1992). The pseudo-likelihood method
(Besag, J.E., 1974) is an early, yet still popular approach, toward inference for discrete
valued MRFs (Frank and Strauss, 1986; Strauss and Ikeda, 1990), see Robins, Snijders,
Wang, Handcock et al. (2007) for an update overview.
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13.1 Introduction

The purpose of this chapter is to give an overview of conditional and intrinsic autoregres-
sions. These models date back at least to Besag (1974), and have been heavily used since to
model discrete spatial variation.

Traditionally, conditional autoregressions have been used to directly model spatial de-
pendence in data that have been observed on a predefined graph or lattice structure. In-
ference is then typically based on likelihood or pseudo-likelihood techniques (Besag, 1974;
Künsch, 1987). More recently, conditional autoregressions are applied in a modular fashion
in (typically Bayesian) complex hierarchical models. Inference in this class is nearly always
carried out using Markov chain Monte Carlo (MCMC), although some alternatives do exist
(Breslow and Clayton, 1993; Rue, Martino, and Chopin, 2009).

In this chapter, we will describe the most commonly used conditional and intrinsic au-
toregressions. The focus will be on spatial models, but we will also discuss the relationship
to autoregressive time series models. Indeed, autoregressive time series models are a spe-
cial case of conditional autoregressions and exploring this relationship is helpful in order
to develop intuition and understanding for the general class.

This chapter will not describe in detail how to build hierarchical models based on con-
ditional autoregressive prior distributions and how to analyze them using MCMC. For a

201
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thorough discussion, see Banerjee, Carlin, and Gelfand, 2004; Higdon, 2007; Rue and Held,
2005 as well as Chapter 14.

To begin, consider a random vector X = (X1, . . . , Xn) where each component is univari-
ate. It is convenient to imagine that each component is located at a fixed site i ∈ {1, . . . , n}.
These sites may refer to a particular time point or a particular point in two- or higher-
dimensional space, or particular areas in a geographical region, for example.

We now wish to specify a joint distribution with density p(x) for X. A decomposition of
the form

p(x) = p(x1) · p(x2|x1) · p(x3|x1, x2) · . . . · p(xn|x1, x2, . . . , xn−1) (13.1)

is, of course, always possible. In a temporal context, this factorization is extremely useful,
and—under an additional Markov assumption—further simplifies to

p(x) = p(x1) · p(x2|x1) · p(x3|x2) · . . . · p(xn|xn−1).

Indeed, this factorization forms the basis of so-called first-order autoregressive models and
can be conveniently generalized to higher orders. However, in a spatial context, where the
indices 1, . . . , n are arbitrary and could, in principle, easily be permuted, Equation (13.1)
is not really helpful, as it is very difficult to envision most of the terms entering the above
product.

It is much more natural to specify the full conditional distribution p(xi |x−i ), the con-
ditional distribution of Xi at a particular site i , given the values Xj = xj at all other sites
j �= i . In a spatial context, the Markov assumption refers to the property that the conditional
distribution p(xi |x−i ) depends only on a few components of x−i , called the neighbors of
site i . However, it is not obvious at all under which conditions the set of full conditionals
p(xi |x−i ), i = 1, . . . , n, defines a valid joint distribution. Conditions under which such a
joint distribution exists are discussed in Besag (1974) using the Brook expansion (Brook,
1964), see Chapter 12 for details.

By far the most heavily studied model is the Gaussian conditional autoregression, where
p(xi |x−i ) is univariate normal and p(x) is multivariate normal. Gaussian conditional au-
toregressions with a Markov property are also known as Gaussian Markov random fields
(Künsch, 1979; Rue and Held, 2005). Various Gaussian conditional autoregressions will be
discussed in Section 13.2. However, there are also nonnormal conditional autoregressions,
for example, the so-called autologistic model for binary variables Xi , as discussed in Section
13.3. In Section 13.4, we turn to intrinsic Gaussian conditional autoregressions, a limiting
(improper) form of Gaussian conditional autoregressions of practical relevance in hierar-
chical models. Finally, Section 13.5 gives a brief sketch of multivariate Gaussian conditional
autoregressions.

13.2 Gaussian Conditional Autoregressions

Suppose that, for i = 1, . . . , n, Xi |x−i is normal with conditional mean and variance

E(Xi |x−i ) = μi +
∑
j �=i

βi j (xj − μ j ), (13.2)

var(Xi |x−i ) = κ−1
i . (13.3)

Here, μi will typically take a regression form, say, wT
i α for covariates wi associated with

site i . Without loss of generality we assume that μ1 = · · · = μn = 0 in the following. Under
the additional assumption that

κiβi j = κ jβ j i
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for all i �= j , these conditional distributions correspond to a multivariate joint Gaussian
distribution with mean 0 and precision matrix Q with elements Qii = κi and Qi j = −κiβi j ,
i �= j , provided that Q is symmetric and positive definite.

Such a system of conditional distributions is known as an autonormal system (Besag,
1974). Usually it is assumed that the precision matrix Q is regular; however, Gaussian
conditional autoregressions with singular Q are also of interest and known as intrinsic
autoregressions, as discussed in Section 13.4.

In many applications the coefficients βi j will be nonzero for only a few so-called
“neighbors” of Xi . Let ∂i denote the set of “neighbors” for each site i . We can then write
Equation (13.2) (using μ1 = · · · = μn = 0) as

E(Xi |x−i ) =
∑
j∈∂i

βi j x j

to emphasize that the conditional mean of Xi only depends on the neighbors ∂i . The random
vector X = (X1, . . . , Xn)T will then follow a Gaussian Markov random field, as discussed
in Chapter 13.

13.2.1 Example

Suppose that the Xi s follow a zero-mean Gaussian conditional autoregression with

E(Xi |x−i ) = φ

⎧⎪⎨
⎪⎩

1
2 (x2 + xn) for i = 1

1
2 (xi−1 + xi+1) for 1 < i < n

1
2 (x1 + xn−1) for i = n

(13.4)

where φ ∈ [0, 1) and var(Xi |x−i ) = κ−1, say. At first sight, this looks like a first-order
autoregressive time series model, but by linking the first “time point” x1 with the last
“time point” xn, the model is defined on a circle. The model is called a circular first-order
autoregressive model and is useful for analyzing circular data.

The precision matrix of X = (X1, . . . , Xn)T is

Q = κ

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −φ −φ

−φ 2 −φ

−φ 2 −φ

. . .
. . .

. . .

−φ 2 −φ

−φ 2 −φ

−φ −φ 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13.5)

with all other elements equal to zero. Thus, the precision matrix Q is a circulant matrix
with base d = κ · (1, −φ/2, 0, . . . , 0, −φ/2)T (the first row of Q) (see Rue and Held, 2005,
Sec. 2.6.1) for an introduction to circular matrices). The covariance matrix Σ = Q−1 of x is
again circular. Its base e, which equals the autocovariance function of X, can be calculated
using the discrete Fourier transform DFT(d) of d,

e = 1
n

IDFT(DFT(d)−1),

here IDFT denotes the inverse discrete Fourier transform and the power function is to be
understood elementwise. See Rue and Held (2005) for a derivation.
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The following R-code illustrates, how e is computed for the circulant precision matrix
(13.5) with n = 10, φ = 0.9, and κ = 1. Note that the (inverse) discrete Fourier transform is
computed with the function fft() and that the imaginary parts of the function values are
equal to zero.

> # function make.d computes the base d
> make.d <- function(n, phi){
+ d <- rep(0.0, n)
+ d[1] <- 1
+ d[2] <- -phi/2
+ d[n] <- -phi/2
+ return(d)
+ }
> # function e computes the base e, i.e. the autocovariance function
> # if corr=T you obtain the autocorrelation function
> e <- function(n, phi, corr=F){
+ d <- make.d(n, phi)
+ e <- Re(fft(1/Re(fft(d)), inverse=TRUE))/n
+ if(corr==F)
+ return(e)
+ else return(e/e[1])
+ }
> n <- 10
> phi <- 0.9
> result <- e(n, phi)
> print(result)

[1] 2.3375035 1.4861150 0.9649742 0.6582722 0.4978530 0.4480677 0.4978530
[8] 0.6582722 0.9649742 1.4861150

From the autocovariances e we can easily read off the autocorrelations of X. The left panel
in Figure 13.1 displays the autocorrelation function for n = 100 and φ = 0.9, 0.99, 0.999,
0.9999. Of course, the autocorrelation function must be symmetric, the correlation between
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FIGURE 13.1
Autocorrelation function of the circular (left) and ordinary (right) first-order autoregressive model (13.4) and
(13.6), respectively, for n = 100 and φ = 0.9 (solid line), φ = 0.99 (dashed line), φ = 0.999 (dotted line), and
φ = 0.9999 (dot-dashed line). The corresponding coefficients of the ordinary first-order autoregressive model are
α = 0.63, α = 0.87, α = 0.96, and α = 0.99; compare Equation (13.7).
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x1 and x3 must be the same as the correlation between x1 and x99, for example. For the two
smaller values of φ, the autocorrelation is essentially zero for lags around n/2 = 50. For the
larger values of φ very close to unity, there is substantial autocorrelation between any two
components of x.

It is interesting to compare the autocorrelations obtained with those from the ordinary
first-order autoregressive process defined through the directed definition

Xi |xi−1 ∼ N(αxi−1, κ−1), (13.6)

where |α| < 1 to ensure stationarity. This model has identical neighborhood structure as
the circular first-order autoregressive model, except for the missing link between X1 and
Xn. The autocorrelation function is ρk = αk for lag k.

It is easy to show that this directed definition induces the full conditional distribution

Xi |x−i ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N
(
αx2, κ−1

)
i = 1

N
(

α

1 + α2 (xi−1 + xi+1) ,
(
κ(1 + α2)

)−1
)

i = 2, . . . , n − 1

N
(
αxn−1, κ−1

)
i = n.

If we want to compare the circular autoregressive model (13.4) with the ordinary autoregres-
sive model (13.6), we need to equate the autoregressive coefficients of the full conditional
distributions. From φ/2 = α/(1 + α2) it follows that for a given autoregressive coefficient φ

of the circular autoregressive model, the corresponding coefficient α = α(φ) of the ordinary
first-order autoregressive process is

α(φ) = 1 −
√

1 − φ2

φ
. (13.7)

For example, φ = 0.99 corresponds to α ≈ 0.87, φ = 0.999 corresponds to α ≈ 0.96. This
illustrates that coefficients from undirected Gaussian conditional autoregressions have a
quite different meaning compared to coefficients from directed Gaussian autoregressions.

Figure 13.1 compares the autocorrelation function of the circular autoregressive model
with coefficient φ with the corresponding autocorrelation function of the ordinary autore-
gressive model with coefficient α(φ). A close correspondence of autocorrelations up to lag
50 can be seen for φ = 0.9 and φ = 0.99. The autocorrelations up to lag n/2 of the circular
model differ from the corresponding ones from the ordinary model not more than 4.5e −11
and 0.00072, respectively. For φ = 0.999 and φ = 0.9999, the decay of the autocorrelations
with increasing lag is not as pronounced as the geometric decay of the ordinary autoregres-
sive model. This is due to the increasing impact of the link between xn and x1 in the circular
model.

13.2.2 Gaussian Conditional Autoregressions on Regular Arrays

Suppose now that a conditional autoregressive model is defined on a lattice with n = n1n2
nodes and let (i, j) denote the node in the ith row and j th column. In the interior of the
lattice, we can now define the nearest four sites of (i, j) as its neighbors, i.e., the nodes

(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1).

A proper conditional Gaussian model with this neighborhood structure, often called first-
order autoregression, is based on the conditional mean

E(Xi j |x−i j ) = α(xi−1, j + xi+1, j ) + β(xi, j−1 + xi, j+1) (13.8)
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FIGURE 13.2
Illustration of a torus obtained on a two-dimensional lattice with n1 = n2 = 29 and toroidal boundary conditions.

with |α| + |β| < 0.5 and var(Xi j |x−i j ) = κ−1, say. In most practical applications, both α and
β will be positive. Assuming that the lattice is wrapped on a torus, so that every pixel has
four neighbors, this process is stationary. A torus is a regular lattice with toroidal boundary
conditions, which can be obtained in two steps. First, the lattice is wrapped to a “sausage.”
In a second step, the two ends of the sausage are joined such that the sausage becomes a
ring. This two-stage process ensures that every pixel of the lattice has four neighbors. For
example, pixel (1, 1) will have the four neighbors (1, 2), (2, 1), (1, n2) and (n1, 1). For further
illustration of toroidal boundary conditions, see Figure 13.2 and the R-code in the following
example. Note that an alternative way to study conditional autoregressions is on an infinite
regular array, in which case the process will be stationary and the spectral density is useful.
(For details, see Besag and Kooperberg, 1995; Künsch, 1987.)

13.2.3 Example

Suppose we set α = β = 0.2496 in model (13.8), defined on a torus of size n1 = n2 = 29. The
following R-code illustrates the computation of the autocovariance matrix of X by simply
inverting the precision matrix of X using the function solve(). An alternative way would
be to exploit the fact that the precision matrix of X is block-circulant. The two-dimensional
Fourier transform can then be used to calculate the base of the autocovariance matrix (see
Rue and Held, 2005, Section 2.6.2 for details).

> # make.prec computes the precision matrix of a toroidal first-order
> # autoregression on a two-dimensional lattice of size n1 x n2
> # with coefficient coeff
> make.prec <- function(n1, n2, coeff){
+ prec <- diag(n1*n2)
+ for(i in 1:(n1*n2)){
+ j <- ((i-1)%%n1)+1 # column index
+ k <- (n1*(n2-1)) # if i>k we are in the last row
+
+ if(j!=1) (prec[i,i-1] <- -coeff) # left neighbor
+ else (prec[i,i+(n1-1)] <- -coeff) # left toroidal neighbor
+
+ if(j!=n1) (prec[i,i+1] <- -coeff) # right neighbor
+ else (prec[i,i-(n1-1)] <- -coeff) # right toroidal neighbor
+
+ if(i>n1) (prec[i,i-n1] <- -coeff) # top neighbor
+ else (prec[i,(j+k)] <- -coeff) # top toroidal neighbor
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FIGURE 13.3
Plot of the correlation of a pixel xi j with the pixel x15,15 in model (13.8), defined on a torus of size n1 = n2 = 29
with coefficients α = β = 0.2496. Shown is 10 times the autocorrelation, truncated to an integer.

+
+ if(i<=k) (prec[i,i+n1] <- -coeff) # bottom neighbor
+ else (prec[i,j] <- -coeff) # bottom toroidal neighbor
+ }
+ return(prec)
+ }
> prec <- make.prec(n1=29, n2=29, coeff=0.2496)
> # inversion gives the covariance matrix
> cova <- solve(prec)

From the autocovariance matrix, we can easily calculate autocorrelations between any
pair of sites. Figure 13.3 displays the correlation of pixel xi j , 1 ≤ i, j ≤ 29, with pixel
x15,15 in the center of the plot. Although the coefficients α and β are close to the border
of the parameter space, the correlation between adjacent pixels is only 0.669. The smallest
correlation observed, for example, between x1,1 and x15,15 is 0.186.

13.3 Non-Gaussian Conditional Autoregressions

For binary or count data, direct usage of Gaussian conditional autoregressions is often not
possible. Instead, conditional autoregressive models in the form of a logistic or log-linear
Poisson model have been proposed. Here, we discuss the autologistic and the auto-Poisson
model, which basically adopt the form (13.2) for the conditional mean of Xi |x−i using a
link function, as known from generalized linear modeling (McCullagh and Nelder, 1990).
However, consistency requirements imply that for binary data only the logistic link, and
for Poisson counts only the log link can be used (see Besag, 1972, 1974 for details). Only
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the autologistic model has gained some popularity in applications, the auto-Poisson has
undesirable properties, which make it not suitable for most applications in spatial statistics.

13.3.1 Autologistic Models

Assume Xi , i = 1, . . . , n, are binary random variables with conditional success probability
πi (x−i ) = E(Xi |x−i ). The autologistic model specifies the (logit-transformed) conditional
mean

logit πi (x−i ) = μi +
∑
j∈∂i

βi j x j ,

where βi j = β j i , for consistency reasons. The normalizing constant of the joint distribu-
tion, which depends on the βi j s, is very difficult to compute, thus a traditional likelihood
approach to estimate the coefficients is typically infeasible. Instead, a pseudo-likelihood
approach has been proposed by Besag (1975), in which the product of the conditional bino-
mial probabilities is maximized. The model can be generalized to a binomial setting with
additional “sample sizes” Ni , say. Also, the model can be extended to include covariates
(see Huffer and Wu, 1998, for example).

13.3.2 Auto-Poisson Models

Suppose Xi , i = 1, . . . , n, are Poisson random variables with conditional mean λi (x−i ) =
E(Xi |x−i ). Similar to the autologistic model, the auto-Poisson model specifies the (log-
transformed) conditional mean

log λi (x−i ) = μi +
∑
j∈∂i

βi j x j .

It turns out that a necessary (and sufficient) condition for the existence of a joint distribution
with the specified conditional distributions is that βi j ≤ 0 for all i �= j . However, a negative
coefficient βi j implies negative interaction between i and j because the conditional mean
of Xi decreases with an increase in xj . This is quite opposite to the intent of most spatial
modeling; however, there are applications in purely inhibitory Markov point processes
(see Besag, 1976).

13.4 Intrinsic Autoregressions

Intrinsic Gaussian autoregressions arise if the precision matrix Q of the Gaussian condi-
tional autoregression (13.2) and (13.3) is only positive semidefinite with rank(Q) < n. For
example, if βi j = wi j/wi+ and κi = κwi+ where κ > 0 is a precision parameter, wi j ≥ 0
are predefined weights and wi+ = ∑

j �=i wi j , Q will be rank deficient. Such weights are
quite common in spatial models for areal data. For example, adjacency-based weights are
wi j = 1 if regions i and j are adjacent (usually denoted by i ∼ j) and zero otherwise. Other
choices are weights based on the inverse distance between area centroids or the length of
the common boundary, for example.

For adjacency-based weights, the conditional mean and variance simplify to

E(Xi |x−i ) =
∑
j∈∂i

x j/mi

var(Xi |x−i ) = (κ · mi )−1,

here mi denotes the number of neighbors of region i , i.e., the cardinality of the set ∂i .

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 22, 2010 11:37 C7287 C7287˙C013

Conditional and Intrinsic Autoregressions 209

The resulting joint distribution is improper, its density can be written (up to a propor-
tionality constant) as

p(x|κ) ∝ exp

⎛
⎝−κ

2

∑
i∼ j

(xi − xj )2

⎞
⎠ , (13.9)

where the sum goes over all pairs of adjacent regions i ∼ j . This is a special case of a
pairwise difference prior, as described in Besag, Green, Higdon, and Mengersen (1995). With
x = (x1, . . . , xn)T , the density (13.9) can be written in the form

p(x|κ) ∝ exp
(
−κ

2
xT Rx

)
, (13.10)

where the structure matrix R has elements

Ri j =
⎧⎨
⎩

mi if i = j,
−1 if i ∼ j
0 otherwise.

We immediately see that the precision matrix Q = κR cannot be of full rank because all
rows and columns of R sum up to zero.

In the special case where the index i = 1, . . . , n represents time and each time-point has
the two (respectively one) nearest time-points as its neighbors, Equation (13.9) simplifies to

p(x|κ) ∝ exp

(
−κ

2

n∑
i=2

(xi − xi−1)2

)
.

This is a so-called first-order random walk model, as it corresponds to the directed formulation

Xi |xi−1 ∼ N(xi−1, κ−1),

with improper uniform prior on x1. Obviously this is a limiting case of model (13.6) with
α = 1. The structure matrix of this model has a particularly simple form,

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13.11)

and forms the basis of some spatial models on regular arrays, as we will see later.
Intrinsic autoregressions are more difficult to study than ordinary (proper) conditional

autoregressions. The rank deficiency of the precision matrix does not allow the computa-
tion of autocorrelation functions, for example. Similarly, it is not possible to sample from an
intrinsic autoregression without imposing additional constraints, so they cannot be mod-
els for data. On infinite regular arrays, intrinsic autoregressions can be studied using the
generalized spectral density (see Besag and Kooperberg, 1995; Künsch, 1987 for details).

13.4.1 Normalizing Intrinsic Autoregressions

An interesting question that arises is the appropriate “normalizing constant” of intrinsic
Gaussian autoregressions. The constant will depend on unknown parameters in the pre-
cision matrix Q and is necessary if those need to be estimated from the data. Of course,
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intrinsic Gaussian autoregressions are improper, so there is no constant to normalize the
density

p(x|κ) ∝ exp
(

−1
2

xT Qx
)

(13.12)

if Q is not positive definite. The term “normalizing constant” has to be understood in a
more general sense as the normalizing constant of an equivalent lower-dimensional proper
Gaussian distribution.

It is now commonly accepted (Hodges, Carlin, and Fan, 2003; Knorr-Held, 2003; Rue and
Held, 2005) that for the general model Equation (13.12) with n × n precision matrix Q of
rank n − k, the correct “normalizing constant” is

(2π )−(n−k)/2(|Q|∗)1/2,

where |Q|∗ denotes the generalized determinant of Q, the product of the n − k nonzero eigen-
values of Q.

In the special case Q = κR of model (13.10) with known structure matrix R, the “normal-
izing constant” simplifies to ( κ

2π

) n−k
2

(13.13)

due to the rank deficiency of R with rank n − k. If the neighborhood structure is non-
separable, i.e., every pixel is connected to every other by some chain of neighbors, then
k = 1.

13.4.2 Example

Suppose data yi , i = 1, . . . , n, are observed and we assume that

yi |xi , σ 2 ∼ N(xi , σ 2) (13.14)

are conditionally independent with known variance σ 2. Assume further that, conditional
on κ , the unknown mean surface x = (x1, . . . , xn)T follows a pairwise difference prior
(Equation 13.9) with a nonseparable neighborhood structure. The goal is to infer x from y in
order to denoise the observed “image” y and to obtain a smoother version. A fully Bayesian
analysis would place a hyperprior on κ , usually a conjugate gamma prior κ ∼ G(α, β), i.e.,

f (κ) ∝ κα−1exp(−βκ).

To implement a two-stage Gibbs sampler (see, for example, Gelfand and Smith, 1990), one
would sample from x|κ, y and from κ|x, y = κ|x. Note that R is of rank n−1 since the graph
is assumed to be nonseparable, so based on (13.9) and (13.13), it follows that

κ|x ∼ G

⎛
⎝α + n − 1

2
, β + 1

2

∑
i∼ j

(xi − xj )2

⎞
⎠ .

The other full conditional distribution is

x|κ, y ∼ N(Aa, A),

where A = (κR + σ 2I)−1 and a = σ 2y.
Note that there is no need to include an intercept in (13.14), as the intrinsic autoregression

x has an undefined overall level. An equivalent formulation is to include an additional
intercept with a flat prior and to use an additional sum-to-zero constraint on x. Note also
that omission of the data error, i.e., setting σ 2 = 0, is not useful, as xi will then equal yi and
no smoothing will be done.
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13.4.3 Intrinsic Autoregressions on Regular Arrays

We now return to conditional autoregressions defined on regular arrays. When fitting model
(13.8) to data, the estimated coefficients are often close to singularity (i.e., α+β will be close
to 0.5) in order to obtain nonnegligible spatial autocorrelations. A limiting case of model
(13.8) is obtained if α + β = 0.5. For example, if α = β = 0.25, the conditional mean of xi j is

E(xi j |x−i j ) = 1
4

(xi−1, j + xi+1, j + xi, j−1 + xi, j+1).

This is an intrinsic autoregression and a special case of the pairwise difference prior (Equa-
tion 13.9) with conditional variance equal to 1/(4κ).

However, on regular arrays it is possible to define an anisotropic intrinsic model, which
is able to weight horizontal and vertical neighbors differently. The conditional mean in this
extended model is still given by Equation (13.8), but the coefficients α > 0 and β > 0 are
now allowed to vary subject to α +β = 0.5. The conditional variance is still equal to 1/(4κ).
This specification defines a valid intrinsic autoregression. In applications, α (or β) can be
treated as an unknown parameter, so the degree of anisotropy can be estimated from the
data.

To estimate α it is necessary to compute the generalized determinant of the associated
precision matrix Q, which can be written as a sum of two Kronecker products:

Q = αRn1 ⊗ In2 + βIn1 ⊗ Rn2 .

Here Rn is the structure matrix (13.11) of an n-dimensional random-walk model and In is
the n × n identity matrix. An explicit form for the generalized determinant can be found in
Rue and Held, 2005, p. 107.

13.4.4 Higher-Order Intrinsic Autoregressions

All intrinsic autoregressions up to now are of order one, in the sense that the precision matrix
Q has a rank deficiency of 1. This is due to an undefined overall level of the distribution of
x. An equivalent representation is obtained if x is replaced by μ + x, where x has a density
as described above, but under an additional sum-to-zero constraint, and the scalar μ has
an improper locally uniform prior. In more complex hierarchical models with more than
one intrinsic autoregression, such sum-to-zero constraints are necessary to ensure a proper
posterior. Computational routines for sampling from GMRFs under linear constraints are
particularly useful in this context for MCMC simulation (see Chapter 12 for details).

Intrinsic autoregressions of higher order may also be considered. On regular lattices,
such autoregressions can be defined using the closest eight or twelve nearest neighbors, for
example. However, appropriate weights have to be chosen with care. It is useful to start
with an (improper) joint Gaussian distribution based on squared increments, similar to the
squared difference prior (Equation 13.9), and to derive the full conditional from the joint
distribution. For example, one might consider the increments

◦ •
• ◦ − • ◦

◦ • , (13.15)

where the •s enter the difference, but not the ◦s, which only serve to fix the spatial location.
Summing over all pixels with well-defined increments, Equation (13.15) thus leads to the
joint improper distribution

p(x|κ) ∝ exp

⎛
⎝−κ

2

n1−1∑
i=1

n2−1∑
j=1

(xi+1, j+1 − xi+1, j − xi, j+1 + xi, j )2

⎞
⎠ . (13.16)
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This is a special case of model (13.10) with structure matrix R defined as the Kronecker
product of two structure matrices R1 and R2 of random-walk type (13.11) with dimension n1
and n2, respectively: R = κ · (R1 ⊗R2). The rank of R is (n1 −1)(n2 −1), so R has a deficiency
in rank of order n1 + n2 − 1.

The conditional mean of xi j in the interior of the lattice (2 ≤ i ≤ n1 − 1, 2 ≤ j ≤ n2 − 1)
now depends on its eight nearest sites and is

E(xi j |x−i j ) = 1
2

(xi−1, j + xi+1, j + xi, j−1 + xi, j+1) (13.17)

− 1
4

(xi−1, j−1 + xi−1, j+1 + xi+1, j−1 + xi+1, j+1),

while the conditional precision is 4κ . In a more compact notation, the conditional mean is

E(xi j |x−i j ) = 1
2

◦ • ◦
• ◦ •
◦ • ◦

− 1
4

• ◦ •
◦ ◦ ◦
• ◦ •

.

Anisotropic versions of this intrinsic autoregression with eight neighbors are discussed
in Künsch (1987).

For illustration, we now describe how to derive the conditional mean (13.17) from (13.16).
Clearly, p(xi j |x−i j , κ) ∝ p(x|κ), so in the interior of the lattice four terms in the double sum
in Equation (13.16) depend on xi j , hence,

p(xi j |x−i j , κ) ∝ exp
(
−κ

2
( (xi+1, j+1 − xi+1, j − xi, j+1 + xi, j )2

+ (xi+1, j − xi+1, j−1 − xi, j + xi, j−1)2

+ (xi, j+1 − xi, j − xi−1, j+1 + xi−1, j )2

+ (xi, j − xi, j−1 − xi−1, j + xi−1, j−1)2 )
)

,

which can be rearranged to

p(xi j |x−i j , κ) ∝ exp
(
−κ

2
( (xi, j − (xi+1, j + xi, j+1 − xi+1, j+1))2

+ (xi, j − (xi+1, j + xi, j−1 − xi+1, j−1))2

+ (xi, j − (xi−1, j + xi, j+1 − xi−1, j+1))2

+ (xi, j − (xi, j−1 + xi−1, j − xi−1, j−1))2 )
)

.

A useful identity for combining quadratic forms∗ eventually gives

p(xi j |x−i j , κ) ∝ exp
(

−4κ

2

(
xi, j −

(
1
2

(xi−1, j + xi+1, j + xi, j−1 + xi, j+1)

−1
4

(xi−1, j−1 + xi−1, j+1 + xi+1, j−1 + xi+1, j+1)
))2

)
, (13.18)

from which the conditional mean (13.17) and the conditional 4κ precision can be read off.

∗ A(x − a )2 + B(x − b)2 = C(x − c)2 + AB
C (a − b)2 where C = A+ B and c = ( Aa + Bb)/C .
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It is easy to see that the distribution (13.16) is invariant to the addition of arbitrary
constants to any rows or columns. This feature makes this distribution unsuitable as a prior
for a smoothly varying surface, a defect that can be remedied by expanding the system of
neighbors. Indeed, consider now the joint distribution

p(x|κ) ∝ exp

⎛
⎝−κ

2

n1−1∑
i=2

n2−1∑
j=2

(xi−1, j + xi+1, j + xi, j−1 + xi, j+1 − 4xi, j )2

⎞
⎠ , (13.19)

which is based on the increments
◦ • ◦
• ◦ •
◦ • ◦

− 4
◦ ◦ ◦
◦ • ◦
◦ ◦ ◦

.

The conditional mean

E(xi j |x−i j ) = 8
20

(xi−1, j + xi+1, j + xi, j−1 + xi, j+1)

− 1
10

(xi−1, j−1 + xi−1, j+1 + xi+1, j−1 + xi+1, j+1)

− 1
20

(xi−2, j + xi+2, j + xi, j−2 + xi, j+2)

can be derived for pixels in the interior of the lattice (3 ≤ i ≤ n1 − 2, 3 ≤ j ≤ n2 − 2). In our
compact notation, the conditional mean is, hence,

E(xi j | x−i j ) = 1
20

⎛
⎜⎜⎝8

◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

− 2

◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

− 1

◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

⎞
⎟⎟⎠ .

The conditional variance is 1/(20κ), while appropriate modifications for both mean and
variance are necessary on the boundary of the lattice (see Rue and Held, 2005, for a detailed
discussion). Anisotropic versions have also been considered (Künsch, 1987).

This conditional autoregression is based on the 12 nearest neighbors of each pixel. The
distribution (13.19) is invariant to the linear transformation

xi j → xi j + pi j ,

where
pi j = γ0 + γ1i + γ2 j

for arbitrary coefficients γ0, γ1, and γ2. This is a useful property, as the prior is often used
in applications for smoothing deviations from a two-dimensional linear trend pi j .

This model has some drawbacks, however. First, the four corners—x1,1, x1,n2 , xn1,1, xn1,n2 —
do not appear in Equation (13.19). Second, viewed as a difference approximation to a dif-
ferential operator, model (13.19) induces a so-called anisotropic discretization error, i.e., the
approximation error is larger along the diagonals than in the horizontal or vertical direction
(for details on this issue, see page 117 in Rue and Held, 2005).

A more elaborate model is given by

p(x|κ) ∝ exp

⎛
⎝−κ

2

n1−1∑
i=2

n2−1∑
j=2

(
2
3

(xi−1, j + xi+1, j + xi, j−1 + xi, j+1)

+ 1
6

(xi−1, j−1 + xi−1, j+1 + xi+1, j−1 + xi+1, j+1) − 10
3

xi, j

)2
)

, (13.20)
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based on the increments
2
3

◦ • ◦
• ◦ •
◦ • ◦

+ 1
6

• ◦ •
◦ ◦ ◦
• ◦ •

− 10
3

◦ ◦ ◦
◦ • ◦
◦ ◦ ◦

.

Note that the four corners—x1,1, x1,n2 , xn1,1, xn1,n2 —now enter the joint distribution. The
full conditional of xi j depends on 24 neighbors, its conditional expectation is

E(xi j | x−i j ) = 1
468

⎛
⎜⎜⎝ 144

◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

− 18

◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

+ 8

◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

− 8

◦ • ◦ • ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ • ◦ • ◦

− 1

• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •

⎞
⎟⎟⎠

and the conditional variance is 1/(13κ) (see Rue and Held, 2005, for further details).

13.5 Multivariate Gaussian Conditional Autoregressions

Multivariate Gaussian conditional autoregressions are a straightforward generalization of
Equation (13.2) and Equation (13.3). Suppose Xi , i = 1, . . . , n is a p-dimensional random
vector and let the conditional distribution of Xi given x−i be multivariate Gaussian with
conditional mean and covariance matrix

E(Xi |x−i ) = μi +
∑
j �=i

Bi j (x j − μ j ) (13.21)

Cov(Xi |x−i ) = Φ−1
i . (13.22)

The matrices Bi j andΦi > 0 are all of dimension p× p. Without loss of generality, we assume
in the following that μ1 = · · · = μn = 0. As in the univariate case, the joint distribution of
X = (X1, . . . , Xn) is multivariate normal with mean 0 and precision matrix Q = D(I − B),
provided that Q is regular and symmetric (Mardia, 1988). Here, D is block-diagonal with
entries Φi , i = 1, . . . , n, I is the identity matrix and B is np × np with block-elements Bi j for
i �= j and block-diagonal entries equal to zero. More details on this model can be found in
Banerjee et al. (2004, Sec. 7.4.2).

In practice, we often encounter the situation that we have multivariate observations
in each pixel with a fixed neighborhood structure between the pixels. A straightforward
generalization of the adjacency-based intrinsic pairwise-difference prior (Equation 13.9) is

p(x|Φ) ∝ exp

⎛
⎝−1

2

∑
i∼ j

(xi − x j )TΦ(xi − x j )

⎞
⎠ (13.23)

with conditional mean and covariance matrix equal to

E(Xi |x−i ) =
∑
j∼i

x j/mi

Cov(Xi |x−i ) = (mi · Φ)−1.
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Multivariate conditional autoregressive models are discussed in more detail in Gelfand and
Vounatsov (2003) (see also Sec. 7.4 in Banergee et al., 2004).
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14.1 Background

The mapping of disease incidence and prevalence has long been a part of public health,
epidemiology, and the study of disease in human populations (Koch, 2005). In this chapter,
we focus on the challenge of obtaining reliable statistical estimates of local disease risk
based on counts of observed cases within small administrative districts or regions coupled
with potentially relevant background information (e.g., the number of individuals at risk
and, possibly, covariate information, such as the regional age distribution, measures of
socioeconomic status, or ambient levels of pollution). Our goals are twofold: we want
statistically precise (i.e., low variance) local estimates of disease risk for each region, and
we also want the regions to be “small” in order to maintain geographic resolution (i.e.,
we want the map to show local detail as well as broad trends). The fundamental problem
in meeting both goals is that they are directly at odds with one another; the areas are not
only “small” in geographic area (relative to the area of the full spatial domain of interest)
resulting in a detailed map, but also “small” in terms of local sample size, resulting in
deteriorated local statistical precision.

217

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 10, 2010 12:39 C7287 C7287˙C014

218 Handbook of Spatial Statistics

Classical design-based solutions to this problem are often infeasible since the local sample
sizes within each region required for desired levels of statistical precision are often unavail-
able or unattainable. For example, large national or state health surveys in the United
States, such as the National Health Interview Survey, the National Health and Nutrition
Examination Survey, or the Behavioral Risk Factor Surveillance System provide design-
based estimates of aggregate or average values at the national or possibly the state level.
But, even as large as they are, such surveys often do not include sufficient sample sizes
at smaller geographic levels to allow accurate, local, design-based estimation everywhere
(Schlaible, 1996).

In contrast, model-based approaches offer a mechanism to “borrow strength” across
small areas to improve local estimates, resulting in the smoothing of extreme rates based
on small local sample sizes. Such approaches often are expressed as mixed effects models
and trace back to the work of Fay and Herriot (1979), who proposed the use of random
intercepts to pool information and provide subgroup-level estimated rates. Their model
forms the basis of a considerable literature in small area estimation (Ghosh and Rao, 1994;
Ghosh, Natarajan, Stroud, and Carlin, 1998; Rao, 2003), which sees wide application in the
analysis of statistical surveys, including the aforementioned health surveys (Raghunathan,
Xie, Schenker, Parsons et al. 2007).

While addressing the fundamental problem of analyzing data from subsets with small
sample sizes, most traditional approaches to small area estimation are nonspatial; the meth-
ods essentially borrow information equally across all small areas without regard to their
relative spatial locations and smoothing estimates toward a global mean. In the statisti-
cal literature, “disease mapping” refers to a collection of methods extending small area
estimation to directly utilize the spatial setting and assumed positive spatial correlation be-
tween observations, essentially borrowing more information from neighboring areas than
from areas far away and smoothing local rates toward local, neighboring values. The term
“disease mapping” itself derives from Clayton and Kaldor (1987), who defined empirical
Bayesian methods building from Poisson regression with random intercepts defined with
spatial correlation. This hierarchical approach provides a convenient conceptual framework
wherein one induces (positive) spatial correlation across the estimated local disease rates
via a conditionally autoregressive (CAR) (Besag, 1974, and Chapter 13, this volume) random
effects distribution assigned to the area-specific intercepts. The models were extended to a
fully Bayesian setting by Besag, York, and Mollié (1991) and are readily implemented via
Markov chain Monte Carlo (MCMC) algorithms (Chapter 13, this volume). The framework
is inherently hierarchical and almost custom-made for MCMC, allowing straightforward
extensions to allow for model-based estimation of covariate effects (in spatially correlated
outcomes), prediction of missing data (e.g., if a county neglects to report the number of
new cases for a particular month when reports are available for neighboring counties), and
spatial-temporal covariance structures.

In both the nonspatial and spatial settings, the amount of smoothing is determined by
the data and the formulation of the model. This smoothing permits easy visualization of
the underlying geographic pattern of disease. We remark, however, that such smoothing
may not be appropriate if the goal is instead to identify boundaries or regions of rapid
change in the response surface, since smoothing is antithetic to this purpose. For more on
this area, called boundary analysis or wombling, see Banerjee and Gelfand (2006), Ma, Carlin,
and Banerjee (2009), and Banerjee (Chapter 31, this volume).

In the sections below, we describe in detail the basic model structure of the CAR models
typically used in disease mapping, their implementation via MCMC, and various extensions
to handle more complex data structures (e.g., spatial-temporal data, multiple diseases, etc.).
We also illustrate the methods using real-data examples, and comment on related issues in
software availability and usage.

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 10, 2010 12:39 C7287 C7287˙C014

Disease Mapping 219

14.2 Hierarchical Models for Disease Mapping

In this section, we outline the essential elements and structure of the CAR-based family of
hierarchical disease mapping models. Additional detailed development and further illus-
trations of the models appear in several texts and book chapters, including Mollié (1996),
Best, Waller, Thomas, Conlon et al. (1999), Lawson (2001), Wakefield, Best, and Waller (2000),
Banerjee, Carlin, and Gelfand (2004, Sec. 5.4), Waller and Gotway (2004, Sec. 9.5), Waller
(2005), Carlin and Louis (2009, Sec. 7.7.2).

14.2.1 The Generalized Linear Model

To begin, suppose we observe counts of disease cases Yi for a set of regions i = 1, . . . , I par-
titioning our study domain D. We model the counts as either Poisson or binomial random
variables in generalized linear models, using a log or logit link function, respectively. In
some cases, we may also have observed values of region-specific covariates xi with associ-
ated parameters β. Other data often include either the local number of individuals at risk
ni or a local number of cases “expected” under some null model of disease transmission
(e.g., constant risk for all individuals), denoted Ei . We assume the ni (alternatively, the Ei )
values are fixed and known.

We typically justify the use of a Poisson model as an approximation to a binomial model
when the disease is rare (i.e., the binomial probability is small). We focus on Poisson mod-
els here, based on the relative rarity of the diseases in our examples, and refer readers to
Wakefield (2001, 2003, 2004, Chapter 30, this volume) for a full discussion of the binomial
approach, as well as related concerns about the ecological fallacy, i.e., the tendency of cor-
relations obtained from fitting at an aggregate (say, regional) level to overstate those that
would be obtained if the data allowed fitting of models based on individual levels of risk.

Our Poisson model in its most basic, fixed effects-only form is

Yi |ζi
ind∼ Poisson(Ei exp(x′

iβ)), for i = 1, . . . , I.

Here we define the expected number of events in the absence of covariate effects as Ei . This
expected number is often expressed as the number of cases defined by an epidemiologic
“null model” of incidence, i.e., the product of ni , the number of individuals at risk in region i ,
and r , a constant “baseline” risk per individual. This individual-level risk is often estimated
from the aggregate population data via r̂ = ∑n

i=1 Yi/
∑n

i=1 ni , the global observed disease
rate. The resulting Poisson generalized linear model (GLM) models the natural logarithm
of the mean count as

log[E(Yi )] = log(Ei ) + x′
iβ,

with an offset Ei and multiplicative impacts on the model-based expected observation
counts for each covariate, resulting in a region-specific relative risk of ζi , exp(x′

iβ).
Some discussion of the expected counts Ei , i = 1, . . . , I , is in order. The estimated baseline

risk defined above, known as internal standardization, is a bit of a “cheat” since we continue
to think of the Ei as known, even though they now depend on our estimate of r . But, since
the impact of this choice fades within increasing numbers of regions I , and noting that
our definition of r serves only to set the relatively uninteresting grand intercept β0, this
seems a minor concern. In addition, one may wish to further standardize the risks and
expectations to account for spatial variation in the distribution of known risk factors (such
as age), rather than adjust for such risk factors in the region-specific covariates. Waller and
Gotway (2004, Chap. 2) provide an overview of the mechanisms of and arguments for and
against standardization in spatial epidemiology.
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14.2.2 Exchangeable Random Effects

In order to borrow information across regions, we next define the random effects version of
the model, but for the moment we describe the model without covariates for simplicity. In
other words, consider an intercept-only GLM with offset Ei , but allow a random intercept
vi associated with each region, i.e.,

Yi |vi
ind∼ Poisson(Ei exp[β0 + vi ]),

where vi
ind∼ N

(
0, σ 2

v

)
, for i = 1, . . . , I.

The hierarchical structure allows us to build the overall (marginal) distribution of the Yi in
two stages. At the first stage, observations Yi are conditionally independent given the values
of the random effects, vi . The second stage (the distribution of the random effects) allows
a mechanism for inducing extra-Poisson variability in the marginal distribution of the Yi s.
Other options exist for introducing different types of excess variability or overdispersion
into generalized linear models of counts (e.g., McCullagh and Nelder, 1989; Gelfand and
Dalal, 1990). Here, we focus on the exchangeable random intercept approach due to its
similarity to the approach proposed for spatial random effects in the sections below.

From a Bayesian perspective, the first stage of the model defines the likelihood and the
second stage a set of exchangeable prior distributions for the random effects, which are
estimable provided σ 2

v is known or is assigned a proper hyperprior. To complete the model
specification, we assign a vague (perhaps even improper uniform, or “flat”) prior to the
“fixed” effect β0, which is well identified by the likelihood.

The hierarchical structure allows a wide variety of options for shaping the random effects
and resulting marginal correlations among the Yi s. This feature of maintaining a condition-
ally independent framework for observations given the random effects and defining a
second-stage distribution for the random effects represents one of the primary advantages
of hierarchical models, and has led to their widespread use in statistical analyses with com-
plex correlation patterns (e.g., spatial, temporal, longitudinal, repeated measures, and so
on), particularly for non-Gaussian data, such as our small area counts.

The addition of the random effects addresses the small area estimation problem by in-
ducing a connection among the local relative risks (the ζi s) through the random effects
distribution, and transforming the estimation of I local relative risks to the estimation of
only two parameters: the overall mean effect β0, and the random effects variance σ 2

v . The
approach provides a local estimate defined by a weighted average of the observed data
in location i and the global overall mean. Clayton and Kaldor (1987), Marshall (1991), and
Waller and Gotway (2004, Sec. 4.4.3) provide details of an empirical Bayes approach using
data-based estimates of β0 and σ 2

v . In a fully Bayesian approach, we assign a hyperprior
distribution to σ 2

v (e.g., a conjugate inverse gamma distribution) and summarize the full
posterior distribution for statistical inference.

Extending the model to include region-specific, fixed-effect covariates simply involves
replacing β0 above by x′

iβ (including the fixed intercept β0 within β) and assigning vague
priors to the elements of β. As with β0 above, the fixed-effect parameters are well identified
by the likelihood and provide baseline (presmoothing) estimates of each local relative risk ζi .

14.2.3 Spatial Random Effects

To this point, the model induces some correlation, but does not specifically induce spatial
correlation among the observations. All local estimates are compromises between the local
data and a global weighted average based on all of the data, with weights based on the
relative variances observed in the local and global estimates. Clayton and Kaldor (1987)
introduced the idea of replacing the set of exchangeable priors at the second stage with a
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spatially structured prior distribution, leading to empirical Bayes estimates wherein local
estimates are a weighted average of the regional data value and an average of observations in
nearby or neighboring regions. This approach borrows strength locally, rather than globally.
Besag et al. (1991) extended the approach to a fully Bayesian formulation, clarified some
technical points regarding the spatial prior distribution, and proposed the use of MCMC
algorithms for fitting such models.

In this vein, suppose we modify the model to

Yi |ui
ind∼ Poisson(Ei exp[β0 + ui ]),

where u ∼ MVN(0, Σu).

Here, Σu denotes a spatial covariance matrix and we distinguish between the exchange-
able random effects vi above and a vector u = (u1, . . . , uI ) of spatially correlated random
effects. Fixed effect covariates may be added in the same manner as before. In practice,
the spatial covariance matrix typically consists of parametric functions defining covariance
as a function of the relative locations of any pair of observations (e.g., geostatistical co-
variance functions and variograms). Cressie (1993, Secs. 2.3–2.6) and Waller and Gotway
(2004, Sec. 8.2) provide introductions to such covariance functions, and Diggle, Tawn, and
Moyeed (1998), Banerjee et al. (2004, Sec. 2.1), and Diggle and Ribeiro (2007) illustrate their
use within hierarchical models, such as that above.

The model based on a multivariate Gaussian random effects distribution represents a rel-
atively minor conceptual change from the small area estimation literature, and ties the field
to parametric covariance models from geostatistics (Matheron, 1963; Cressie, 1993, Chap. 3;
Waller and Gotway, Chap. 8). However, the goals of disease mapping (statistically stable
local estimation) and geostatistics (statistical prediction at locations with no observations)
differ and such models currently represent a relatively small fraction of the disease mapping
literature. An alternative formulation built from Clayton and Kaldor’s (1987) CAR formula-
tion sees much broader application in the spatial analysis of regional disease rates, largely
thanks to the computational advantages it offers over the multivariate Gaussian model.
But, since the spatial structure induced by the CAR model is less immediately apparent,
we now consider it in some detail.

Specifically, the CAR formulation replaces the multivariate Gaussian second stage above
with a collection of conditional Gaussian priors for each ui wherein the prior mean is a
weighted average of the other u j , j �= i ,

ui |u j �=i ∼ N

(∑
j �=i ci j u j∑

j �=i ci j
,

1
τCAR

∑
j �=i ci j

)
, i = 1, . . . , I. (14.1)

Here, the ci j s are user-defined spatial dependence parameters defining which regions j are
“neighbors” to region i , or more generally weights defining the influence of region u j on the
prior mean of ui . The parameter τCAR denotes a hyperparameter related to the conditional
variance of ui given the values of the other elements of u. By convention, one sets cii = 0 for
all i , so no region is its own neighbor. Many applications consider adjacency-based weights,
where ci j = 1 if region j is adjacent to region i , and ci j = 0 otherwise. Other weighting
options also are available (e.g., Best, Waller, Thomas, Conlon et al., 1999), but are much less
widely applied. Weights are typically assumed to be fixed, but see Lu, Reilly, Banerjee, and
Carlin (2007b) for a spatial boundary analysis application where the weights are estimated
from the data.

To define the connection between the autoregressive spatial dependence parameters {ci j }
and the joint spatial covariance matrix Σu, Besag and Kooperberg (1995) note that, if u
follows a multivariate Gaussian distribution with covariance Σu, then the density, f (u),
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takes the form

f (u) ∝ exp
(

−1
2

u′Σ−1
u u

)
. (14.2)

Standard multivariate Gaussian theory defines the associated conditional distributions as

ui |u j �=i ∼ N

⎛
⎝∑

j �=i

(
−Σ−1

u,i j

Σ−1
u,ii

)
u j ,

1(
Σ−1

u,ii

)
⎞
⎠ , (14.3)

where Σ−1
u,i j denotes the (i, j)th element of the precision matrix Σ−1

u . Note the conditional
mean for ui is a weighted sum of u j , j �= i , and the conditional variance is inversely
proportional to the diagonal of the inverse of Σu, just as it is in the CAR specification above.

Reversing direction and going from a set of conditional Gaussian distributions to the
associated joint distribution is more involved, requiring constraints on the {ci j } to ensure,
first, a Gaussian joint distribution and, second, a symmetric and valid covariance matrix Σu

(c.f. Besag, 1974; Besag and Kooperberg, 1995; Arnold, Castillo, and Sarabia 1999). Results
in Besag (1974) indicate the set of CAR priors defined in Equation (14.1) uniquely defines
a corresponding multivariate normal joint distribution with mean zero, Σ−1

u,ii = Σ j ci j , and
Σ−1

u,i j = −ci j . However, for symmetric ci j s, the sum of any row of the matrix Σ−1
u is zero,

indicating Σ−1
u is singular, and the corresponding covariance matrix Σu is not well de-

fined. This holds for any symmetric set of spatial dependence parameters ci j (including
the adjacency-based ci j s appearing in many applications). Remarkably, the singular covari-
ance does not preclude application of the model with such weight matrices, since pairwise
contrasts ui − u j are well identified even though the individual ui s are not (Besag, Green,
Higdon, and Mengersen, 1995). These distributions are improper priors since they define
contrasts between pairs of values ui − u j , j �= i , but they do not identify an overall mean
value for the elements of u (because such distributions define the value of each ui relative
to the values of the others). In this case, any likelihood function based on data allowing
estimation of an overall mean also allows the class of improper pairwise difference priors
to generate proper posterior distributions. In practice, one often assures this by the ad hoc
addition of the constraint

I∑
i=1

ui = 0. (14.4)

While the addition of the constraint slightly complicates formal implementation of Equa-
tion (14.1), Gelfand and Sahu (1999) note that the constraint can be imposed “on the fly”
within an MCMC algorithm simply by replacing ui by ui − ū for all i following each MCMC
iteration. These authors also provide additional theoretical justification, and note that the
constraint maintains attractive, full conditional distributions for most CAR models in the lit-
erature while avoiding awkward reduction to ( I − 1)-dimensional space. In contrast, Rue
and Held (2005, Sec. 2.3.3) avoid the constraint altogether through block updates of the
entire set of random effects. See also Richardson, Thomson, Best, and Elliott (2004), Knorr-
Held and Rue (2002), and Chapter 13 (this volume) for important algorithmic advances
related to this model.

As a computational aside, note that both the conditional mean and the conditional vari-
ance in Equation (14.3) depend on elements of the inverse of the covariance matrixΣu. As a re-
sult, MCMC algorithms applied to the joint specification based on straightforward updates
from full conditional distributions will involve some sort of matrix inversion at each update
of the covariance parameters. This reveals a computational advantage of the CAR prior for-
mulation; it effectively limits modeling to the elements of Σ−1

u , avoiding inversion and we
focus attention on CAR models in the remainder of this chapter. We note, however, that com-
putational convenience carries considerable conceptual cost (parameterizing Σ−1

u rather
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than Σu). Recent algorithmic developments seek to ease this computational/conceptual
trade-off by using structured covariance matrices to reduce the computational burden of
directly modeling the joint distribution, an issue discussed in more detail in Chapter 13.

In addition to its (indirectly) defining the covariance structure of our model, the choice
of ci j s also has direct impact on the posterior variances. In the usual case where τCAR is
unknown, it is conventionally assigned a conjugate gamma hyperprior distribution (see,
e.g., Carlin and Louis, 2009, p. 424), since this leads to a closed form for the τCAR full
conditional distribution needed by the MCMC algorithm. However, even here there is
some controversy, since the impropriety of the standard CAR means that, despite our use
of the proportionality sign in Equation (14.2), the joint distribution of the ui s really has no
normalizing constant. Knorr-Held (2002) advocated k = (n − 1)/2 for Gaussian Markov
random fields (a set containing the CAR-specified model above) based on the rank of the
resulting precision matrix. Hodges, Carlin, and Fan (2003) argue that the most sensible joint
density to use in this case is

f (u) ∝ τ
( I−k)/2
CAR exp

(
−τCAR

2
u′ Qu

)
, (14.5)

where Q is I × I with nondiagonal entries qi j = −1 if i ∼ j and 0 otherwise, and diagonal
entries qii equal to the number of region i ’s neighbors, and k is the number of disconnected
“islands” in the spatial structure. Thus, in the usual case where every county is connected
to every other by some chain of neighbors, the exponent on τCAR is ( I − 1)/2, as advocated
earlier by Knorr-Held (2002), and not I/2, as originally suggested by Besag et al. (1991).
In the case of multiple islands in the spatial map, this exponent drops further (reflecting
the greater rank deficiency in Q), and the sum-to-zero constraint (Equation 14.4) must be
applied to each island separately. See Lu, Hodges, and Carlin (2007a) for extensions of these
ideas that enable “counting” degrees of freedom in spatial models that are distinct from
but related to those given by Spiegelhalter, Best, Carlin, and van der Linde (2002).

14.2.4 Convolution Priors

Further extending disease mapping models, Besag et al. (1991) point out that we could
include both global and local borrowing of information within the same model via a convo-
lution prior including both exchangeable and CAR random effects for each region, as follows:

Yi |ui
ind∼ Poisson(Ei exp[β0 + ui + vi ]),

where ui |u j �=i ∼ N

(∑
j �=i ci j u j∑

j �=i ci j
,

1
τCAR

∑
j �=i ci j

)

and vi
ind∼ N

(
0, σ 2

v

)
, for i = 1, . . . , I.

To complete the model, we assign hyperpriors to the hyperparameters τCAR and τv ≡ σ 2
v .

Again, fixed-effect covariates may be added if desired. As mentioned above, typical ap-
plications define conjugate gamma hyperpriors, and Ghosh, Natarajan, Waller, and Kim
(1999) and Sun, Tsutakawa, and Speckman (1999) define conditions on these distributions
necessary to ensure proper posterior distributions. When we include both u and v in the
model, some care is required to avoid assigning “unfair” excess prior weight to either global
or local smoothing because τCAR is related to the conditional variance of ui |u j �=i , but τv is
related to the marginal variance of each vi . This issue is explored by Bernardinelli, Clayton,
and Montomoli (1995a), who, based on their empirical example, suggest taking the prior
marginal standard deviation of vi to be roughly equal to the conditional standard deviation
of ui |u j �=i divided by 0.7. We stress that this is only a “rule of thumb” and merits closer
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scrutiny (Eberly and Carlin, 2000; Banerjee et al., 2004, p. 164). In any given application,
a simple yet “fair” approach might be to first run the MCMC algorithm without including
the data (e.g., by commenting the Poisson likelihood terms out of the WinBUGS code), and
then choose hyperpriors that produce no-data “posteriors” for τCAR and τv that are roughly
equal. Another approach based on marginal variances induced by the CAR prior appears
in Rue and Held (2005, pp. 103–105). In any case, note that we cannot take both of these
hyperpriors to be noninformative because then only the sum of the random effects (ui +vi ),
and not their individual values, will be identified.

14.2.5 Alternative Formulations

It is important to note that, while arguably the most popular, the formulation proposed
by Besag et al. (1991) is not the only mechanism for including both spatial and nonspatial
variance components within a single hierarchical disease mapping model. For example,
Leroux, Lei, and Breslow (1999) and MacNab and Dean (2000) define spatially structured
and unstructured variation built on additive components of the precision matrix of a single
random intercept rather than via the sum of two additive random intercepts. To contrast
the approaches briefly, the Besag et al. (1991) formulation above defines a random intercept
consisting of the sum of two parameters (ui and vi ) for each region, resulting in a variance–
covariance matrix for the multivariate normal sum u + v defined by

Σu+v = σ 2
u Q−1 + σ 2

v I,

where I denotes the I -dimensional identity matrix and Q contains the number of neighbors
for each region along the diagonal, qi j = −1 if i ∼ j , and 0 otherwise, as in Equation (14.5)
above. The Leroux et al. (1999) formulation defines a single, random intercept wi for each
region where

Yi |wi
ind∼ Poisson(Ei exp[β0 + wi ]),

w ∼ MVN(0, Σw), and
Σw = σ 2 D−1.

Here, σ 2 defines an overall dispersion parameter, and

D = λQ + (1 − λ)I,

with 0 ≤ λ ≤ 1 denoting a spatial dependence parameter where λ = 0 defines a nonspatial
model and the level of spatial dependence increases with λ. By defining the spatial and
nonspatial components for the inverse (or generalized inverse) of Σw , Leroux et al. (1999)
allow ready definition of the conditional mean and variance for the random effects in terms
of parameters λ and σ 2, i.e.,

E(wi |w j �=i ) = λ

1 − λ + λqii
and

var(wi |w j �=i ) = σ 2

1 − λ + λqii
,

recalling qii denotes the number of neighbors for region i, i = 1, . . . , I . Leroux et al.’s (1999)
formulation also allows parameter estimation via penalized quasi-likelihood in the manner
of Breslow and Clayton (1993).

Another set of alternative approaches seeks to identify potential discontinuities in the
risk surface by loosening the rather strong amount of spatial smoothing often induced by
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the Besag et al. (1991) general CAR formulation above. Besag et al. propose replacing the
squared pairwise differences, (ui −u j )2, inherent in the Gaussian CAR formulation, with the
L1-norm-based pairwise differences, |ui −u j |, resulting in shrinkage toward neighborhood
median rather than mean values; hence, yielding relatively weaker amounts of smoothing
between neighboring values as illustrated in simulation studies by Best et al. (1999).

Green and Richardson (2002) take a different approach based on a hidden Markov field,
thereby deferring spatial correlation to an additional, latent layer in the hierarchical model.
Their formulation draws from a spatial type of cluster analysis where each region be-
longs to one of several classes and class assignments are allowed to be spatially correlated
(Knorr-Held and Rasser, 2000; Denison and Holmes, 2001). The number of classes and
the regional class assignments are unobserved, requiring careful MCMC implementation
within the variable-dimensional parameter space. The approach allows for discontinuities
between latent class assignments and for spatially varying amounts of spatial correlation
(i.e., stronger correlation for some classes, weaker for others). The approach is not a di-
rect extension of the CAR models above, but rather utilizes a Potts model from statistical
image analysis and statistical physics to model spatial association in the regional labels.
This increased flexibility (at an increased computational cost) provides inference for both
group membership as well as very general types of spatial correlation. However, the ad-
vantages of the added flexibility increase with the number of regions and the complexity of
subgrouping within the data. As a result, applications of the Green and Richardson (2002)
approach appear more often in the analysis of high-dimensional biomedical imaging and
genetic expression data than in disease mapping.

Simulation studies in Leroux et al. (1999), MacNab and Dean (2000), and Green and
Richardson (2002) identify the types of situations where these alternative model formu-
lations gain advantage over the CAR formulation. For example, the Leroux et al. (1999)
model shows gains in performance over the CAR model as spatial correlation decreases to
zero, and the Green and Richardson (2002) approach improves several measures of model
fit from those observed in CAR formulations, particularly in cases with strong underlying
discontinuities in risk. However, the near custom-fit between the Besag et al. (1991) for-
mulation and fairly standard MCMC implementation continues to fuel its popularity in
general disease mapping applications. As such, we focus on this model and its extensions
below.

14.2.6 Additional Considerations

The WinBUGS software package (www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml)
permits ready fitting of the disease mapping models defined above with exchangeable,
CAR, or convolution prior distributions on the random intercepts. WinBUGS also allows
mapping of the fitted spatial residuals E(ui |y) or the fitted region-specific relative risks,
E(eβ0+ui +vi |y), local estimates of the relative risk of being in region i compared to what was
expected.

While hierarchical models with CAR and/or convolution priors see broad application for
parameter estimation and associated small area estimation for regional data, they certainly
are not the only models for such data, nor necessarily optimal in any particular way. In
addition, CAR-based hierarchical models are defined only for the given set of regions and
do not aggregate or disaggregate sensibly into CAR models on larger or smaller regions,
respectively. Furthermore, regions on the edges of the study domain often have fewer
neighbors and, hence, less information to draw from for borrowing strength locally than
interior regions resulting in “edge effects” of reduced performance. The dependence on the
given set of regions also implies that adjacency-based neighborhoods can correspond to
very different ranges of spatial similarity around geographically large regions than around
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geographically small regions. For these reasons, the CAR prior cannot be viewed as a simple
“discretized” version of some latent, smooth random process; see, e.g., Banerjee et al. (2004,
Sec. 5.6). However, Besag and Mondal (2005) provide some connections between CAR-
based models and latent de Wijs processes on smaller scales that may allow rescaling of
distance-based correlation structures across zonal systems.

Finally, it is important to keep in mind that the CAR structure is applied to the random
effects at the second stage of the hierarchy, not directly to the observed data themselves.
Generally speaking, this ensures a proper posterior distribution for the random effects for
a broad variety of likelihood structures. In applications where one assumes a Gaussian
first stage, CAR random effects are especially attractive with closed form, full conditional
distributions. In a generalized linear model setting (as in most disease mapping appli-
cations), the hierarchical structure allows us to maintain use of Gaussian CAR random
variables within the link function, rather than attempting to work with Poisson (or bino-
mial) CAR distributions for the counts themselves. For Poisson outcomes, the Gaussian-
CAR-within-the-link-function structure avoids extreme and unfortunate restrictions (e.g.,
negative spatial correlation and normalizing constants defined by awkward functions of
model parameters) imposed by CAR-based “autoPoisson” models (Besag, 1974). The hier-
archical modeling approaches based on the CAR and convolution priors described above
allow us to incorporate spatial correlation into generalized linear models of local disease
rates as well as conveniently defer such correlation to the second level of the model. That
is, the formulation avoids analytical complications inherent in modeling spatial correlation
within non-Gaussian distributions with interrelated mean and variance structures.

14.3 Example: Sasquatch Reports in Oregon and Washington

To illustrate the disease mapping models above, we consider an admittedly unconven-
tional (and a bit whimsical) dataset, namely the number of reported encounters with the
legendary North American creature Sasquatch (Bigfoot) for each county in the U.S. states
of Washington and Oregon. These data were obtained in May 2008 from the Web site of the
Bigfoot Field Research Organization, www.bfro.net. For those unfamiliar with the story,
Sasquatch is said to be a large, bipedal hominoid primarily purported to reside in remote
areas in the Pacific Northwest. While reported encounters do not reflect a “disease” per
se and we do not necessarily expect all individuals residing in a given county to experience
the same “risk” of reporting an encounter, cryptozoologists and Sasquatch enthusiasts alike
may be interested in identifying areas with higher than expected local per-person rates of
reported encounters. For our purposes, the data serve as a general example of the type
we have described; namely, regional counts of a (thankfully) rare event standardized by
the local population size and with associated regional covariates. The models above allow
us to explore region-specific relative risks of reporting in order to explore any underlying
geographic patterns and identify where reports are higher or lower than expected if every
individual were equally likely to file a report. While the null model of equal per-person
risk of reporting is unlikely to be true, it nevertheless forms a point of reference for our
region-to-region comparisons. As we shall see, the data also offer an opportunity to explore
in some detail the behavior of the methods in the presence of a single, large, outlying ob-
servation. While the data provide a template for illustrating the models, readers in search
of more traditional applications of CAR-based disease mapping models may find detailed
examples in Mollié (1996), Best et al. (1999), Wakefield et al. (2000), Banerjee et al. (2004),
and Waller and Gotway (2004, Chap. 9).
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FIGURE 14.1
Maps of the number of reported encounters with Sasquatch (Bigfoot) by county (upper left), the “rate” of reports
by county (upper right), and the population density per county reported as the number of residents per square
mile (2000 U.S. Census).

Figure 14.1, created by linking our data to maps of U.S. county boundaries using ArcGIS
(ESRI, Redlands, CA), displays the data. The map in the upper left shows the number of
reports per county ranging from zero (light gray) to a high of 51 in Skamania County in
Washington, on the border with Oregon. The map in the upper right displays the local
“rate” of reporting defined as the number of reports divided by the county population
as reported by the 2000 U.S. Census, displayed in intervals defined by Jenks’ “natural
breaks” method (Jenks, 1977; MacEachren, 1995, Chap. 4). The population adjustment is
somewhat contrived as some reports in the dataset can date back to the 1970s and a few
back to the 1950s, but the 2000 population counts offer a crude form of standardization.
The adjustment from counts to rates is most dramatic in the counties surrounding Puget
Sound, revealing that the numbers of reports in this area are quite small when computed on
a roughly per-person basis. The shift is particularly striking in King County, home to much
of the Seattle metropolitan area. In contrast, Skamania County is extreme for both counts
and rates and clearly of interest as our analysis continues. Finally, the lower left map shows
the geographic distribution of a potential covariate, the population density based on the
number of residents per square mile (again, from the 2000 Census and classified by Jenks’
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FIGURE 14.2
Observed number of Sasquatch reports per county compared to the number expected under a constant per-person
probability of filing a report.

natural breaks method). We note that rural Skamania County, while high in both number
and rate of reporting, is in the lowest category of (log) population density.

Our model begins with the simple Poisson regression,

Yi |β ind∼ Poisson(Ei exp(β0 + β1xi )), for i = 1, . . . , I,

with xi denoting the natural logarithm of population density and Ei the internally standard-
ized expected count ni (

∑
i Yi/

∑
i ni ), i.e., the number of reports expected if each resident is

equally likely to file a report. Figure 14.2 shows a scatterplot of the observed and expected
counts, revealing (not surprisingly) a great deal of heterogeneity about the line of equality,
with Skamania and King Counties again standing out for reporting considerably more and
less than expected, respectively.

Figure 14.3 motivates our choice of covariate by illustrating how the county-specific rate
of reporting decreases with increasing population density, with Skamania county remaining
a obvious outlier. The extreme variation displayed suggests potential local instability in
rates and suggests the use of random effects to adjust for the excess heterogeneity present
in the data. However, we note that in most disease-mapping applications unstable high
local rates are often due to very low expected numbers of cases (e.g., Ei << 1) and a single
observed case, while here the high rate in Skamania is apparently due to an extremely high
number of local reports (51).

We fit four models to the data, first a simple fixed effect model, then models with ran-
dom intercepts following exchangeable (nonspatial), CAR (spatial), and convolution (both)
priors. We used the program maps2WinBUGS (sourceforge.net/projects/maps2
winbugs) to transfer the map data from ArcGIS format to WinBUGS format, then used
GeoBUGS (the spatial analysis and mapping tool within WinBUGS) define our adjacency
matrix. We note that the adjacency matrix defines ci j = 1 for any regions i and j sharing a
common boundary, but also includes some counties falling very close to one another; for
example, Wasco County is included among the neighbors of Skamania County. Each model
was fit using MCMC within WinBUGS using 100,000 iterations. To reduce correlation be-
tween parameters β0 and β1, we centered our covariate by subtracting the overall mean (log)
population density from each value. Our MCMC samples provide posterior inference for
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FIGURE 14.3
Scatterplots of the county-specific reporting rates versus the natural logarithm of population density with (left)
and without (right) Skamania County.

model parameters and for county-specific relative risks (e.g., RRi = exp(β0 +β1xi +ui +vi )
for the convolution model).

In all four models, the estimated effect of population density (β1) was negative and sig-
nificantly different from 0; in the convolution model, we obtained a 95% equal-tail credible
interval of (–0.68, –0.35). Thus, Bigfoot sightings are significantly more likely to arise in more
thinly populated counties. One might speculate that this is due to Bigfoot’s preference for
habitats with fewer humans per unit area, or simply a tendency of Bigfoot afficionados to
live and work in such regions. Effective model size (pD) and deviance in formation criterion
(DIC) scores (Spiegelhalter, Best, Carlin, and van der Linde 2002) do not differ appreciably
across the three random effects models. This is confirmed by Figure 14.4, which shows the
local relative risk (RRi ) for each county based on the maps. Counties are shaded by the
same intervals to ease comparisons between maps. We note that the model with no random
effects (top left) does a very poor job of predicting the local high rate in Skamania County,
and that relative risks are exaggerated in the low population density counties along Ore-
gon’s southern border. The maps of relative risks based on the three random effects models
are similar in general, with some subtle differences. All three are able to capture the excess
variability observed in the data, especially the extreme value in Skamania County. We note
that the interval containing the largest estimated relative risks covers a very large range of
values, with the darkest counties in the fixed effect model representing local relative risks
less than 20, but the other three maps all assigning Skamania County a relative risk near 70.
The convolution prior appears to offer something of a compromise between the nonspatial
exchangeable model and the spatial CAR model, particularly along the eastern border of
our study area. This is sensible because with both types of random effects in our model, we
would expect the fitted values to exhibit both spatial and nonspatial heterogeneity.

This compromise is seen more clearly in Figure 14.5, which shows the posterior median
and 95% credible sets for the log relative risks associated with Skamania County and its
neighbors for each of the four models. As noted above, for Skamania County, the neighbor-
hood includes seven adjacent counties and one nearby county, namely Wasco County to the
southeast (labeled in Figure 14.1). Figure 14.5 reveals that the model with no random effects

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 10, 2010 12:39 C7287 C7287˙C014

230 Handbook of Spatial Statistics

No Random Effect RRs Exchangeable RRs

CAR RRs Convolution RRs

Legend 0.00 – 1.00

1.01 – 2.00

2.01 – 3.00

3.01 – 4.00

4.01 – 15.00

Approximately 70.00

FIGURE 14.4
Maps of county-specific relative risk of reporting sitings. Each map has counties shaded by the intervals reported
in the legend.

generates deceptively tight credible sets (ignoring the substantial extra-Poisson variation in
the dataset) and clearly misses the increased risk of reporting observed in Skamania County
(indicated by a filled circle), well above that expected based on the offset (population size)
and the covariate (population density). The three random effect models are quite similar
for our data, and all three capture the increased risk of reporting in Skamania County.

A closer look at the posterior distribution for Wasco County (indicated by a filled square)
in Figure 14.5 highlights the subtle differences between models in our data. Note that Wasco
County has a wide credible set, suggesting a locally imprecise estimate in need of input
from other regions. In the CAR model, the posterior distribution of the relative risk of re-
porting in Wasco County is pulled (slightly) upward toward that of its neighbor Skamania
when compared to the posterior distribution for Wasco County in the exchangeable model.
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FIGURE 14.5
Posterior median and 95% credible sets for local relative risks associated with Skamania County (filled circles)
and its neighboring counties. Wasco County is of interest and is labeled by a filled square.

As suggested by the maps, the convolution model represents a compromise between the
posterior distributions of relative risks from the spatial CAR model and the nonspatial
exchangeable model. We remark that the WinBUGS code for the full model (given in the
Appendix) uses a relatively vague Gamma(0.1, 0.1) hyperprior for τCAR; a hyperprior cen-
tered more tightly on smaller values (or even a fixed, larger value of τCAR) would further
smooth Wasco toward Skamania.

Our example illustrates several features of disease mapping models. First, there is often a
concern that disease mapping models may oversmooth extreme rates, particularly observa-
tions that are very unlike their neighbors. Our data provide an extreme example of this with
a single outlier, well identified by the model that does not overly influence its neighboring
estimates. As noted in Figure 14.5, there is some impact on the most variable neighboring
estimates (e.g., that from Wasco County), but this is very slight and unlikely to strongly
influence conclusions. In addition, the example reveals that all three random effects models
fit the data approximately equally well, suggesting a clear need for borrowing strength from
other regions, but does not suggest a clear preference for global versus local assistance. Fur-
ther analyses might check the robustness of the Bayesian model choice decision (via DIC or
some other method) to deleting Skamania from the dataset and recomputing the posterior.

14.4 Extending the Basic Model

14.4.1 Zero-Inflated Poisson Models

Many spatial datasets feature a large number of zeros (areas with no reported disease
cases) that may stretch the credibility of our Poisson likelihood. As such, a zero-inflated
Poisson (ZIP) model may offer a sensible alternative. Lambert (1992) implemented such a
model in a manufacturing-related regression context using the expectation-maximization
(EM) algorithm; Agarwal, Gelfand, and Citron-Pousty (2002) offer a fully Bayes–MCMC
version for spatial count data.

In our context, suppose we model the disease count in region i as a mixture of a Poisson(λi )
distribution and a point mass at 0. That is, when there are no cases observed in region i ,
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we assume that such zero counts arise as Poisson variates with probability (1 − ωi ), and as
“structural zeros” with probability ωi . More formally, we can write the regression model as

Pr (Yi = y|ωi , λi ) =
{

ωi + (1 − ωi ) exp(−λi ) for y = 0,
(1 − ωi ) exp(−λi )λ

y
i /y! for y > 0,

where log(λi ) = log(Ei ) + x′
iβ + ui and logit(ωi ) = z′

iγ + wi ,

and xi and zi are covariate vectors, which may or may not coincide. More parsimonious
models are often used to preserve parameter identifiability, or to allow the λi and ωi to
be related in some way. Agarwal et al. (2002) set xi = zi and eliminate the wi random
effects; a follow-up paper by Agarwal (2006) retains both the ui and wi , but assigns them
independent proper CAR priors. Another possibility is to replace z′

iγ + wi with ν(x′
iβ+ ui )

in the expression for logit(ωi ) (Lambert, 1992); note that ν < 0 will often be necessary to
reverse the directionality of xi ’s relationship when switching responses from λi to ωi .

To complete the Bayesian model, we assign vague normal priors to β and γ, and CAR
or exchangeable priors to the ui and wi . Disease mapping can now proceed as usual, with
the advantage of now being able to use the posterior means of the ωi as the probability that
region i is a structural zero in the spatial domain.

We remark that this model may be sensible for the data in the previous section, since 10
of the 75 counties had no reported Sasquatch sightings. In the interest of brevity, however,
we leave this investigation (in WinBUGS or some other language) to the interested reader.

14.4.2 Spatiotemporal Models

Many spatially referenced disease count datasets are collected over time, necessitating an
extension of our Section 14.2 models to the spatial-temporal case. This is straightforward
if time and space are both discretely indexed, say, with space indexed by county and time
indexed by year. In fact, the data may have still more discrete indexes, as when disease
counts are additionally broken out by race, gender, or other sociodemographic categories.

To explicate the spatial-temporal extension as concretely as possible, we develop spatial-
temporal extensions in the context of a particular dataset originally analyzed by Devine
(1992, Chap. 4). Here, Yi jkt is the number of lung cancer deaths in county i during year t for
gender j and race k in the U.S. state of Ohio, and ni jkt is the corresponding exposed popula-
tion count. These data were originally taken from a public use data tape (Centers for Disease
Control, 1988), and are now available online at www.biostat.umn.edu/~brad/data2.
html. The subset of lung cancer data we consider here are recorded for J = 2 genders (male
and female) and K = 2 races (white and nonwhite) for each of the I = 88 Ohio counties
over an observation period of T = 21 years, namely 1968 to 1988 inclusive, yielding a total
of 7,392 observations.

We begin our modeling by extending our Section 14.2 Poisson likelihood to

Yi jkt
ind∼ Poisson(Ei jkt exp(μi jkt)).

We obtain internally standardized expected death counts as Ei jkt = ni jktr̂ , where r̂ = ȳ =∑
i jkt yi jkt/

∑
i jkt ni jkt, the average statewide death rate over the entire observation period.

The temporal component is of interest to explore changes in rates over a relatively long
period of time. Demographic issues are of interest because of possible variation in residential
exposures for various population subgroups. In addition, the demographic profile of the
counties most likely evolved over the time period of interest.

Devine (1992) and Devine, Louis, and Halloran (1994) applied Gaussian spatial models
employing a distance matrix to the average lung cancer rates for white males over the
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21-year period. Waller, Zhu, Gotway, Gorman et al. (1997) explored a full spatial-temporal
CAR-based model, adopting the mean structure

μi jkt = s jα + rkβ + s jrkξ + u(t)
i + v(t)

i , (14.6)

where s j and rk are the gender and race scores

s j =
{

0 if male
1 if female and rk =

{
0 if white
1 if nonwhite.

Letting u(t) = (u(t)
1 , . . . , u(t)

I )′, v(t) = (v(t)
1 , . . . , v(t)

I )′, and denoting the I -dimensional identity
matrix by I, we adopt the prior structure

u(t) | λt
ind∼ C AR(λt) and v(t) | τt

ind∼ N
(

0,
1
τt

I
)

, t = 1, . . . , T, (14.7)

so that heterogeneity and clustering may vary over time. Note that the socio-demographic
covariates (gender and race) do not interact with time or location.

To complete the model specification, we require prior distributions for α, β, ξ , the τt and
the λt. Since α, β, and ξ will be identified by the likelihood, we may employ a flat prior
on these three parameters. Next, for the priors on the τt and λt we employed conjugate,
conditionally iid Gamma(a, b) and Gamma(c, d) priors, respectively. As mentioned earlier,
some precision is required to facilitate implementation of an MCMC algorithm in this
setting. On the other hand, too much precision risks likelihood-prior disagreement. To help
settle this matter, we fit a spatial-only (reduced) version of model (14.6) to the data from the
middle year in our set (1978, t = 11), using vague priors for λ and τ having both mean and
standard deviation equal to 100 (a = c = 1, b = d = 100). The resulting posterior 0.025,
0.50, and 0.975 quantiles for λ and τ were (4.0, 7.4, 13.9) and (46.8, 107.4, 313.8), respectively.
As such, in fitting our full spatial-temporal model (14.6), we retain a = 1, b = 100 for the
prior on τ , but reset c = 1, d = 7 (i.e., prior mean and standard deviation equal to 7). While
these priors are still quite vague, the fact that we have used a small portion of our data
to help determine them does give our approach a slight empirical Bayes flavor. Still, our
specification is consistent with the aforementioned advice of Bernardinelli et al. (1995a).
Specifically, recasting their advice in terms of prior precisions and the adjacency structure
or our CAR prior for the u(t)

i , we have λ ≈ τ/(2m̄), where m̄ is the average number of
counties adjacent to a randomly selected county (about five to six for Ohio).

Model fitting is readily accomplished in WinBUGS using an assortment of univariate
Gibbs and Metropolis steps. Convergence was diagnosed by graphical monitoring of the
chains for a representative subset of the parameters, along with sample autocorrelations
and Gelman and Rubin (1992) diagnostics. The 95% posterior credible sets (−1.10, −1.06),
(0.00, 0.05), and (−0.27, −0.17) were obtained for α, β, and ξ , respectively. The correspond-
ing point estimates are translated into the fitted relative risks for the four subgroups in
Table 14.1. It is interesting that the fitted sex–race interaction ξ reverses the slight advantage
white men hold over nonwhite men, making nonwhite females the healthiest subgroup,
with a relative risk nearly four times smaller than either of the male groups. Many Ohio
counties have very small nonwhite populations, so this result could be partly the result of
our failure to model covariate-region interactions. Replacing the raw death counts Yi jkt by
age-standardized counts also serves to eliminate the nonwhite females’ apparent advantage,
since nonwhites die from lung cancer at slightly younger ages in our dataset; see Xia and
Carlin (1998).

Turning to the spatial-temporal parameters, histograms of the sampled values (not shown)
showed v(t)

i distributions centered near 0 in most cases, but u(t)
i distributions typically re-

moved from 0. This suggests some degree of clustering in the data, but no significant
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TABLE 14.1

Fitted Relative Risks for the Four Sociodemographic
Subgroups in the Ohio Lung Cancer Data
Demographic Contribution Fitted Log- Fitted
Subgroup to εjk Relative Risk Relative Risk

White males 0 0 1
White females α –1.08 0.34
Nonwhite males β 0.02 1.02
Nonwhite females α + β + ξ –1.28 0.28

additional heterogeneity beyond that explained by the CAR prior. Use of the DIC statistic
(Spiegelhalter et al., 2002) or some other Bayesian model choice statistic confirms that the
nonspatial v(t)

i terms may be sensibly deleted from the model.
Since under our model the expected number of deaths for a given subgroup in county i

during year t is Ei jkt exp(μi jkt), we have that the (internally standardized) expected death
rate per thousand is 1000ȳ exp(μi jkt). The first row of Figure 14.6 maps point estimates of
these fitted rates for nonwhite females during the first (1968), middle (1978), and last (1988)
years in our dataset. These estimates are obtained by plugging in the estimated posterior
medians for the μi jkt parameters calculated from the output of the Gibbs sampler. The rates
are greyscale-coded from lowest (white) to highest (black) into seven intervals: less than
0.08, 0.08 to 0.13, 0.13 to 0.18, 0.18 to 0.23, 0.23 to 0.28, 0.28 to 0.33, and greater than 0.33.
The second row of the figure shows estimates of the variability in these rates (as measured
by the interquartile range) for the same subgroup during these three years. These rates are
also grayscale-coded into seven intervals: less than 0.01, 0.01 to 0.02, 0.02 to 0.03, 0.03 to
0.04, 0.04 to 0.05, 0.05 to 0.06, and greater than 0.06.

Figure 14.6 reveals several interesting trends. Lung cancer death rates are increasing
over time, as indicated by the gradual darkening of the counties in the figure’s first row.

1968 1978 1988

IQ
R

M
ed

ia
n

FIGURE 14.6
Posterior median and interquartile range (IQR) by county and year, nonwhite female lung cancer death rate per
1000 population (see text for grayscale key).
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But their variability is also increasing somewhat, as we would expect given our Poisson
likelihood. This variability is smallest for high-population counties, such as those containing
the cities of Cleveland (northern border, third from the right), Toledo (northern border, third
from the left), and Cincinnati (southwestern corner). Lung cancer rates are high in these
industrialized areas, but there is also a pattern of generally increasing rates as we move
from west to east across the state for a given year. One possible explanation for this is a
lower level of smoking among persons living in the predominantly agricultural west, as
compared to those in the more mining- and manufacturing-oriented east. Finally, we see
increasing evidence of clustering among the high-rate counties, but with the higher rates
increasing and the lower rates remaining low (i.e., increasing heterogeneity statewide). The
higher rates tend to emerge in the poorer, more mountainous eastern counties, suggesting
we might try adding a socioeconomic status fixed effect to the model.

Interested readers can find other variants of CAR-based spatial-temporal disease map-
ping models in the literature including those proposed by Bernardinelli, Clayton, Pascutto,
Montomoli et al. (1995b), Knorr-Held and Besag (1998), and Knorr-Held (2000). Further
extensions include spatial age–period–cohort models (Lagazio, Biggeri, and Dreassi 2003;
Schmid and Held, 2004; Congdon, 2006), which incorporate temporal effects through time-
varying risk and through birth-cohort–specific risks. In addition, MacNab and Dean (2001)
extend the alternate formulation for convolution priors proposed by Leroux et al. (1999)
(and described in Section 14.2.4) to the spatial-temporal setting through the addition of
smoothing splines to model temporal and spatial-temporal trends in mortality rates.

14.4.3 Multivariate CAR (MCAR) Models

The methods illustrated so far apply to the modeling of regional counts of a single disease.
However, it will often be the case that we have counts of multiple diseases over the same
regional grid. This type of analysis has been examined in different ways (Held, Natario,
Fenton, Rue et al. 2005; Knorr-Held and Best, 2001), but can be considered within a multi-
variate extension of the CAR models above. To adapt our notation to this case, suppose we
let Yi j be the observed number of cases of disease j in region i , i = 1, . . . , I , j = 1, . . . , p,
and let Ei j be the expected number of cases for the same disease in this same region. As
in Section 14.2, the Yi j are thought of as random variables, while the Ei j are thought of as
fixed and known. For the first level of the hierarchical model, conditional on the random
effects ui j , we assume the Yi j are independent of each other such that

Yi j
ind∼ Poisson(Ei j exp(x′

i jβ j + ui j )), i = 1, . . . , I, j = 1, . . . , p, (14.8)

where the xi j are explanatory, region-level spatial covariates for disease j having (possibly
region-specific) parameter coefficients β j .

Carlin and Banerjee (2003) and Gelfand and Vounatsou (2003) generalized the univariate
CAR (14.2) to a joint model for the random effects ui j under a separability assumption,
which permits modeling of correlation among the p diseases while maintaining spatial
dependence. Separability assumes that the association structure separates into a nonspatial
and spatial component. More precisely, the joint distribution of u is assumed to be

u ∼ Nnp(0, [Λ ⊗ (D − αW)]−1), (14.9)

where u = (u′
1, . . . , u′

p)′, u j = (u1 j , . . . , uI j )′, Λ is a p × p positive definite matrix that is
interpreted as the nonspatial precision (inverse dispersion) matrix between diseases, and
⊗ denotes the Kronecker product. Also, α ∈ [0, 1] is a spatial autocorrelation parameter
that ensures the propriety of the joint distribution; α = 1 returns us to the improper CAR
case, while α = 0 delivers an independence model. We denote the distribution in (14.9) by
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MCAR(α, Λ). The improper MCAR(1, Λ) model is sometimes referred to as a multivariate
intrinsic autoregression, or MIAR model.

The MCAR(α, Λ) can be further generalized by allowing different smoothing parameters
for each disease, i.e.,

u ∼ Nnp
(
0, [Diag(R1, . . . , Rp)(Λ ⊗ In×n)Diag(R1, . . . , Rp)′]−1), (14.10)

where Rj R′
j = D − α j W, j = 1, . . . , p. The distribution in Equation (14.10) is sometimes

denoted by MCAR(α1, . . . , αp, Λ). Note that the off-diagonal block matrices (the Ri s) in
the precision matrix in Equation (14.10) are completely determined by the diagonal blocks.
Thus, the spatial precision matrices for each disease induce the cross-covariance structure
in (14.10).

Jin, Carlin, and Banerjee (2005) developed a more flexible generalized multivariate CAR
(GMCAR) model for the random effects u. For example, in the bivariate case (p = 2), they
specify the conditional distribution u1|u2 as N((η0 I + η1W)u2, [τ1(D − α1W)]−1), and the
marginal distribution of u2 as N(0, [τ2(D − α2W)]−1), both of which are univariate CAR.
This formulation yields the models of Kim, Sun, and Tsutakawa (2001) as a special case and
recognizes explicit smoothing parameters (η0 and η1) for the cross-covariances, unlike the
MCAR models in Equation (14.10) where the cross-covariances are not smoothed explicitly.
However, it also requires the user to specify the order in which the variables (for us, diseases)
are modeled, since different conditioning orders will result in different marginal distribu-
tions for u1 and u2 and, hence, different joint distributions for u. This may be natural when
one disease is a precursor to another, but in general may be an awkward limitation of the
GMCAR. To overcome this, Jin, Banerjee, and Carlin (2007) developed an order-free MCAR
that uses a linear model of coregionalization (Wackernagel, 2003; Gelfand et al., 2004) to
develop richer spatial association models using linear transformations of much simpler
spatial distributions. While computationally and conceptually more challenging, Jin et al.
(2007) do illustrate the strengths of this approach over previous methods via simulation,
and also offer a real-data application involving annual lung, larynx, and esophageal cancer
death rates in Minnesota counties between 1990 and 2000. For more on MCAR models and
underlying theory, the reader is referred to the textbooks by Banerjee et al. (2004, Sec. 7.4)
and Rue and Held (2005).

Regarding computer package implementations of MCAR, WinBUGS offers an imple-
mentation of the MIAR case in a function called mv.car. While this is the only MCAR
model that is built into the software itself, other more general MCAR models can be added
fairly easily. For example, WinBUGS code to implement the GMCAR is available online at
www.biostat.umn.edu/~brad/software/GMCAR.txt.

14.4.4 Recent Developments

The field of disease mapping and areal data modeling more generally continues to generate
research interest, building on the basic models outlined and illustrated in the sections above.
As elsewhere in statistics, many of these new developments have been motivated by special
features of particular spatially referenced datasets. For instance, Reich, Hodges, and Carlin
(2007) develop a 2NRCAR model that can accommodate two different classes of neighbor
relations, as would be needed if spatial similarity among regions that neighbor in an east–
west direction is known to be different from that between north–south neighbors. The
authors actually illustrate in a periodontal data setting, where many observations are taken
on each tooth, and the first neighbor relation corresponds to measurements that neighbor
as we go around the jaw, while the second corresponds to neighbors across each tooth (i.e.,
from the cheek to the tongue side).
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Another important area of recent application is spatially varying coefficient models. Here
the basic idea is to place a CAR (or other areal) prior on a collection of regional regression
coefficients in a model, rather than simply on regional intercepts, thereby allowing the asso-
ciations between outcomes and covariates to vary by location. So, for example, assuming
a univariate covariate xi j in (14.8), a CAR model would go directly onto the collection of
region-specific coefficients β j = (β1 j , . . . , βI j )′ for each disease j . The spatial residuals ui j

might revert to an exchangeable formulation, or be deleted entirely. Such models require
some care in implementation due to an increased potential for multicollinearity among the
varying coefficients. However, the hierarchical approach provides a sounder, model-based
inferential basis for statistical inference than more algorithmic competitors (Waller, Carlin,
Xia, and Gelfand 2007; Wheeler and Calder, 2007).

14.5 Summary

The disease mapping models described and illustrated above provide a rich framework
for the definition and application of hierarchical spatial models for areal data that simul-
taneously address our twin (but competing) goals of accurate small-area estimation and
fine-scale geographic resolution. As noted, the models retain some rough edges in terms
of scalability and generalization of underlying continuous phenomenon. Nevertheless, the
CAR-based structure within a hierarchical generalized linear model offers a robust, flexi-
ble, and enormously popular class of models for the exploration and analysis of small area
rates. Basic and even relatively advanced variations of such models are readily fit using
commonly available GIS (e.g., ArcGIS) and Bayesian (e.g., WinBUGS) software tools. The
coming years will no doubt bring further expansion of the hierarchial spatial modeling and
software toolkits.

Appendix

WinBUGS code for fitting the convolution model to the Sasquatch report data.

model
{

for (i in 1 : N) {
O[i] ~ dpois(mu[i])
log(mu[i]) <- log(E[i]) + alpha0 + alpha1 * (X[i]-mean(X[])) +

c[i] + h[i]
SMR[i] <- exp(alpha0 + alpha1 * (X[i]-mean(X[])) + c[i] + h[i])
h[i] ~ dnorm(0,tau.h)

}
c[1:N] ~ car.normal(adj[], weights[], num[], tau.h)
for(k in 1:sumNumNeigh) {

weights[k] <- 1
}

alpha0 ~ d at()
alpha1 ~ dnorm(0.0, 1.0E-5)
tau.c ~ dgamma(0.1, 0.1)
tau.h ~ dgamma(0.01, 0.01)
sigma.h <- sqrt(1/tau.h)
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sigma.c <- sqrt(1/tau.c)
sd.c <- sd(c[])
sd.h <- sd(h[])
psi <- sd.c / (sd.c + sd.h) # proportion excess variation that is spatial

}

DATA:

list(N = 75,
O = c(12, 13, 6, 1, 3, 5, 6, 8, 16, 0, 14, 9, 6, 10, 2,

11, 16, 24, 1, 2, 7, 2, 6, 1, 1, 8, 18, 7, 23, 4,
20, 6, 0, 18, 0, 14, 1, 2, 6, 3, 51, 8, 6, 0, 0,
11, 13, 31, 2, 13, 33, 12, 42, 3, 1, 0, 0, 2, 14,
0, 1, 16, 6, 10, 5, 6, 0, 2, 7, 1, 0, 2, 1, 12, 2),

E=c(21.66807,6.736003,4.18522,2.9842,5.243467,
4.21199,12.16176,1.418131,5.080634,0.9444588,
13.91193,6.236098,1.627794,4.329133,1.741247,
15.56334,3.314697,4.508202,1.407866,0.2565611,
2.3905,2.922542,29.87904,5.702312,0.4870904,
2.688122,2.654441,0.7871273,4.602534,1.596194,
22.70344,5.011663,2.733342,14.93348,3.310806,
4.73323,0.7376802,1.645775,44.31355,9.55898,
0.6623355,23.16282,1.285556,0.1284818,0.1297566,
1.369422,4.469423,40.65957,4.800993,2.187411,
116.5417,2.238335,47.01965,28.04050,0.6832684,
1.102193,0.1608203,0.2726633,3.702155,1.378815,
0.4848092,11.19194,6.909102,19.11018,6.91514,
0.5323777,2.121124,0.5105056,4.278814,0.4979593,
0.1037918,1.275358,1.286965,7.740242,1.123193),

X=c(4.247066,2.985682,4.428433,3.811097,4.745801,
3.663562,4.169761,2.557227,3.830813,4.403054,
5.640843,4.37827,3.091042,3.600048,2.660260,
6.352978,3.927896,3.549617,3.109061,2.624669,
3.777348,4.146304,6.419832,4.772378,1.163151,
2.76001,2.00148,2.104134,3.339322,2.292535,
5.193512,3.288402,2.928524,3.943522,3.663562,
3.08191,1.686399,2.484907,7.257919,4.393214,
1.774952,6.265301,2.312535,0.4700036,0.8329091,
3.642836,3.104587,5.661223,5.82482,2.867899,
6.676201,2.660260,6.025866,5.458308,1.481605,
2.140066,1.193922,1.547563,3.749504,3.468856,
0.8329091,4.345103,4.07244,5.47395,3.797734,
0.5877867,1.163151,-0.3566749,2.341806,-0.1053605,
-0.1053605,2.360854,1.856298,3.632309,1.686399),

num = c(6, 6, 6, 5, 5, 3, 3, 3, 4, 0,
4, 5, 6, 1, 5, 6, 5, 5, 4, 5,
5, 7, 8, 6, 3, 4, 7, 2, 8, 9,
7, 9, 8, 8, 6, 7, 6, 4, 6, 8,
8, 5, 8, 6, 4, 5, 8, 5, 4, 5,
6, 6, 7, 4, 8, 5, 4, 6, 6, 3,
7, 3, 5, 8, 6, 9, 3, 5, 5, 4,
7, 7, 6, 7, 4),

adj = c(74, 69, 65, 5, 4, 2,
69, 9, 8, 7, 6, 1,
65, 64, 24, 13, 5, 4,
24, 13, 5, 3, 1,
65, 64, 4, 3, 1,
9, 8, 2,
69, 9, 2,
9, 6, 2,
8, 7, 6, 2,
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53, 29, 18, 17,
42, 41, 29, 22, 20,
24, 23, 22, 21, 4, 3,
15,
49, 18, 17, 16, 14,
53, 51, 49, 48, 17, 15,
53, 18, 16, 15, 11,
29, 19, 17, 15, 11,
29, 21, 20, 18,
29, 22, 21, 19, 12,
23, 22, 20, 19, 13,
42, 39, 23, 21, 20, 13, 12,
64, 42, 39, 31, 24, 22, 21, 13,
64, 31, 23, 13, 4, 3,
55, 27, 26,
55, 54, 28, 25,
63, 62, 55, 50, 47, 32, 25,
54, 26,
53, 41, 34, 20, 19, 18, 12, 11,
72, 71, 64, 46, 45, 44, 43, 41, 31,
72, 64, 46, 39, 30, 24, 23,
56, 55, 52, 50, 47, 40, 35, 34, 27,
60, 59, 58, 57, 56, 55, 54, 35,
53, 52, 51, 43, 41, 40, 32, 29,
59, 58, 56, 40, 33, 32,
66, 61, 59, 58, 40, 38, 37,
71, 66, 44, 43, 40, 36,
75, 66, 61, 36,
46, 42, 41, 31, 23, 22,
59, 56, 43, 37, 36, 35, 34, 32,
46, 43, 42, 39, 34, 30, 29, 12,
41, 39, 23, 22, 12,
46, 45, 44, 41, 40, 37, 34, 30,
71, 66, 45, 43, 37, 30,
71, 44, 43, 30,
43, 41, 39, 31, 30,
63, 62, 52, 51, 50, 48, 32, 27,
63, 51, 49, 47, 16,
63, 48, 16, 15,
55, 52, 47, 32, 27,
53, 52, 48, 47, 34, 16,
53, 51, 50, 47, 34, 32,
52, 51, 34, 29, 17, 16, 11,
55, 33, 28, 26,
56, 54, 50, 33, 32, 27, 26, 25,
55, 40, 35, 33, 32,
61, 60, 58, 33,
61, 59, 57, 36, 35, 33,
61, 58, 40, 36, 35, 33,
61, 57, 33,
75, 60, 59, 58, 57, 38, 36,
63, 47, 27,
62, 49, 48, 47, 27,
72, 65, 31, 30, 24, 23, 5, 3,
74, 72, 64, 5, 3, 1,
75, 73, 71, 68, 67, 44, 38, 37, 36,
75, 68, 66,
74, 73, 70, 67, 66,
74, 70, 7, 2, 1,
74, 73, 69, 68,
73, 72, 66, 45, 44, 37, 30,
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74, 73, 71, 65, 64, 31, 30,
74, 72, 71, 70, 68, 66,
73, 72, 70, 69, 68, 65, 1,
67, 66, 61, 38),

sumNumNeigh = 414)

INITIAL VALUES:

list(tau.c = 1, tau.h=1, alpha0 = 0, alpha1 = 0,
c=c(0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0),

h=c(0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0))
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15.1 Introduction

A long-running theme in economics is how individuals or organizations following their
own interests result in benefits or costs to others (Brueckner, 2003, López-Bazo, Vayá, and
Arts 2004, Ertur and Koch, 2007). These benefits or costs are labeled externalities and often
termed spillovers in a spatial setting. A technological innovation provides an example
of a positive externality or spillover while pollution provides an example of a negative
externality or spillover. Although both innovation and pollution have global impacts, these
often result in more geographically concentrated impacts (e.g., the computer industry in
Silicon Valley, the Exxon Valdez oil spill in Alaska).

Spatial econometric models can quantify how changes in explanatory variables of the
model directly impact individuals, regions, local governments, etc., as well as the asso-
ciated spillover impacts. Quantifying these effects provides useful information for policy
purposes. For example, decisions of local government officials focus on direct or own-
region benefits associated with increased spending on infrastructure, whereas national
government officials focus on the total benefits that include direct and indirect or spillover
benefits to neighboring regions. Specifically, if state universities provide small, direct ben-
efits, but large spillovers that accrue to other states, this could lead legislatures to under
invest in higher education.

Also, other economic forces can lead to spatial interdependence among observations. For
example, competitive forces compel individuals and organizations to react to others, and
again these interactions are often local. Changes in relative prices or wages lead individuals

245
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or organizations to change behavior, and part of the price includes transportation costs,
which depend on distance and spatial connectivity. In summary, economic forces lead to
interdependence among entities, data from these entities is generated at a particular time
and place and, therefore, it seems reasonable to examine these data using tools that can
account for spatial and spatial-temporal dependence.

15.2 Common Models

Although a wide variety of models have been introduced in spatial econometrics, most
have roots in a small number of basic models. For static models, the basic models are
the conditional autoregression (CAR), the simultaneous autoregression (SAR), the spatial
autoregressive model (SAM), and the spatial Durbin model (SDM). Many dynamic models
stem from some form of spatial temporal autoregession (STAR).

15.2.1 Static Models

Given a set of data collected over space at a given time (or over a period of time), a static
regression model relates the n observations on the dependent variable y to the n observations
on the k explanatory variables X whose importance is governed by the k by 1 parameter
vector β with error captured by the n disturbances ε, as shown by the data generating
process (DGP) in Equation (15.1). In addition, let X = [ιn Z] where ιn is an n by 1 constant
vector and Z contains p nonconstant explanatory variables. We assume that ε is multivariate
normal with a zero mean and covariance matrix Ω (N(0, σ 2Ω )).

y = Xβ + ε (15.1)

E(y) = Xβ (15.2)

Since the observations occur over space, in many cases it seems implausible that the
disturbances are independent. For example, assessments for property taxes often come from
a regression model. Even a model containing numerous property characteristics may still
yield spatial clusters of underassessed houses (positive residuals) and overassessed houses
(negative residuals). Individual house values may depend on unmeasured or difficult-to-
collect variables, such as the landscaping in neighboring yards, the quality of views, access
to employment and shopping (since all houses on the same block share the same access),
patterns of crime, and nearby greenspace. If the omitted variables have a spatial nature,
but are not correlated with the explanatory variables, this suggests using Equation (15.1)
with some means of specifying the spatial dependence across the disturbances arising from
omitted variables.

One way of specifying interdependence among observations is to use a spatial weight
matrix. The spatial weight matrix W is an n × n exogenous nonnegative matrix where
Wi j > 0 indicates that observation i depends upon neighboring observations j . For example,
Wi j > 0 if region i is contiguous to region j . Also, Wii = 0, so observations cannot be
neighbors to themselves. Measures of proximity, such as cardinal distance (e.g., kilometers),
ordinal distance (e.g., the m nearest neighbors), and contiguity (Wi j > 0, if region i shares
a border with region j), have been used to specify W.

Two models for error covariance have been commonly employed. The conditional au-
toregression (CAR) specifies Ω = ( In−φW)−1 while the simultaneous autoregression (SAR)
specifies Ω = [( In −ρW)′( In −ρW)]−1 where φ and θ are scalar parameters and W is an n×n
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spatial weight matrix. For CAR, the spatial weight matrix W is symmetric, but SAR can
employ nonsymmetric W.∗

The simultaneous approach to modeling was first devised by Whittle (1954), and Brook
(1964) made the distinction between conditional and simultaneous approaches, while
Besag (1974) derived elegant conditional models. Ord (1975) provided a means for esti-
mating simultaneous autoregressions. In addition Ripley (1981), Cressie (1993), Banerjee,
Carlin, and Gelfand (2004) derive and discuss the similarities and differences between the
simultaneous and conditional approaches. In particular, Banerjee et al. (2004, pp. 79–87)
set forth a coherent approach to derive CAR and SAR in a multivariate normal regression
context. The conditional approach implies a distribution of y that after a spatial transforma-
tion yields the CAR covariance specification. However, the simultaneous approach begins
with iid disturbances that after a spatial transformation leads to the SAR covariance speci-
fication. Empirically, the SAR approach has been used more often than the CAR approach
in spatial econometrics (Anselin, 2003). See Chapter 13 for a full development of CAR
modeling.

For simplicity, we restrict our discussion to cases where the matrix W has real eigenvalues.
The spatial weight matrix may be symmetric or nonsymmetric and is often scaled to have
a maximum eigenvalue of 1.† This can be achieved by making W row stochastic or doubly
stochastic (for symmetric W). Alternatively, scaling some valid candidate weight matrix by
its principal eigenvalue produces a W with a principal eigenvalue of 1. In this case, the CAR
or SAR variance-covariance matrices will be symmetric positive definite if the parameter
lies in the open interval defined by the reciprocal of the minimum eigenvalue of W and 1.

Contiguity and ordinal distance can be used to specify sparse matrices W where the
number of nonzero elements increases linearly with n, but the number of elements in W
increases with the square of n. This has computational implications that we will discuss
in Section 15.7. Moreover, the number of nonzero entries in each row of W constructed
from contiguity or ordinal distance does not depend upon n, which can potentially simplify
asymptotic analysis. Finally, sparse W leads to sparse precision matrices. In the case of CAR,
the precision matrix Ψ = In−φW while the SAR precision matrix is Ψ = ( In−ρW)′( In−ρW).
Zeros in the ij element ( j �= i) of a precision matrix indicate conditional independence
between observations i and j . This has interpretive advantages (especially for CAR).

In the restrictive context just set forth, CAR and SAR are alternative covariance specifi-
cations. When consistently estimated, both specifications should yield identical estimates
of the regression parameter vector β for large samples under misspecification of the distur-
bances (but correct specification of X and orthogonality between X and the disturbances).
For example, with a sufficiently large sample and a CAR DGP, use of a consistent SAR
estimation method will yield the same estimates for β as doing the converse, that is, using a
consistent CAR estimation method with sample data generated by a SAR process. However,
the standard errors will not be consistently estimated under misspecification of the distur-
bances. In fact, ordinary least square (OLS) will also consistently estimate the regression
parameters β under these conditions, but will inconsistently estimate the associated stan-
dard errors under misspecification of the disturbances. Pace and LeSage (2008) used this
to devise a Hausman test for misspecification of spatial models. In the literature, there are
many examples of spatial error model estimates that seem similar to the corresponding OLS
estimates and other examples where OLS and the spatial error model estimates materially

∗ More general versions of these specifications involve an n × n diagonal matrix in specifying the covariance. For
simplicity, we assume this equals In. This presentation of CAR and SAR minimizes the differences between the
two approaches, and this is easier to do in a regression context with multinormal disturbances than in many
other situations.

† Nonsymmetric matrices that are similar to symmetric matrices have real eigenvalues. See Ord (1975, p. 125) for
a discussion.
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differ. Such differences point to some form of misspecification, such as the incorrect model
or omitted variables correlated with the explanatory variables. Since adding some form of
spatial information led to the divergence between the estimates, this suggests examining a
broader range of spatial specifications.

Another standard alternative to the error models is SAM in Equation (15.3) where ε is
N(0, σ 2 In). The associated DGP appears in (15.4) and the expectation appears in Equa-
tion (15.5) (Ord, 1975; Anselin, 1988).

y = ρWy + Xβ + ε (15.3)
y = ( In − ρW)−1 Xβ + ( In − ρW)−1ε (15.4)

E(y) = ( In − ρW)−1 Xβ (15.5)

Note, the expansion of ( In−ρW)−1 has an interesting interpretation in terms of the powers
of W as shown in Equation (15.6).

( In − ρW)−1 = In + ρW + ρ2W2 + ρ3W3 + · · · (15.6)
E(y) = Xβ + WX(ρβ) + W2 X(ρ2β) + · · · (15.7)

Just as W specifies the neighbors to each observation, W2 specifies the neighbors of the
neighbors to each observation, and this is true for any power of W. Even though W may be
sparse (containing mostly zeros), W raised to a sufficiently large power will be dense if W is
fully connected (a path exists between any region i and all other regions). In practice, regions
that are far apart will likely have small effects on one another and nearby regions will have
larger effects on one another. However, effects do not monotonically decline with distance
as feedback loops exist among observations. If observations i and j are both neighbors
to each other, then observation i, j are second-order neighbors to themselves, and similar
loops exist for higher-order neighboring relations. The complex nature of network relations
is either a feature or a disadvantage depending upon one’s perspective (Bavaud, 1998, Wall,
2004, Martellosio, 2007).

To make this clearer, examine Figure 15.1. This figure gives four plots of different order
neighboring relations contained in W, W2, W3, and W10. In other words, this figure de-
picts first-order neighbors, second-order neighbors, third-order neighbors, and tenth-order
neighbors. In each plot the points represent nodes or observations and the line segments
represent edges or dependence relations between observations. The plots show the various-
order neighboring relations for 20 observations. The vertical axis represents north–south
and the horizontal axis represents east–west.

The upper left plot shows the connections when using three nearest neighbors for each
observation (W). The upper right plot shows the connections for the neighbors of the neigh-
bors, the bottom left plot shows the connections for the neighbors of the neighbors of the
neighbors, and finally the lower right plot shows the tenth-order neighboring relations.
Naturally, as the relations become higher order, the number of possible connections among
observations increase so that the plots (just as the associated matrices) become denser and
the average connection becomes weaker.

Returning to Equation (15.7), E(y) for SAM does not just involve the own explanatory
variables X as with CAR, SAR, and OLS, but also involves neighboring values of the
explanatory variables WX, W2 X, and so on as shown in (15.7). In the SAM, decisions
made at a single location may affect all other locations. This provides an integrated way
of modeling externalities in contrast to the error specifications where externalities must be
modeled in X.∗

∗ Nothing precludes using terms, such as X = [ιn( In − θW)−1 Z], in an error model. This would lead to two spatial
parameters, which could improve model performance. See Chapter 7 of LeSage and Pace (2009) for a further
discussion of models with separate specification of simultaneous spillovers and simultaneous disturbances.

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

January 20, 2010 12:47 C7287 C7287˙C015

Spatial Econometrics 249

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

o
rt

h
−

S
o

u
th

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

East−West

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

East−West

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

East−West

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

East−West

N
o

rt
h

−
S

o
u

th

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rt
h

−
S

o
u

th

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rt
h

−
S

o
u

th

FIGURE 15.1
Graphs of various order neighbors.

The spatial Durbin model (SDM) is shown in Equation (15.8) where ε is N(0, σ 2 In),
and the associated DGP and expectation appear in Equation (15.9) and Equation (15.10),
respectively.∗ The SDM provides another general alternative (Ord, 1975; Anselin, 1988) that
nests the SAR error model, the SAM, and OLS. LeSage and Pace (2009) motivate the SDM
through omitted variable arguments. Just as spatial error models arise in the presence of
omitted variables that are independent of the explanatory variables, the SDM arises in the
presence of omitted variables that follow a spatial process and are not independent of the ex-
planatory variables. In addition, LeSage and Pace (2009) show that the SDM emerges when
averaging across SAR, SAM, and OLS, so model uncertainty provides another motivation
for the SDM.

y = ρWy + Zβ1 + WZβ2 + ιnκ + ε (15.8)
y = ( In − ρW)−1(Zβ1 + WZβ2 + ιnκ) + ( In − ρW)−1ε (15.9)

E(y) = ( In − ρW)−1(Zβ1 + WZβ2 + ιnκ) (15.10)

The SDM introduces an even richer means to specify externalities relative to the spatial
autoregressive model. The SDM provides a convenient way of examining many of the
previously introduced models since it nests SAR, SAM, and OLS. Specifically, it nests SAR
when β2 = −ρβ1, SAM when β2 = 0, and OLS when ρ = 0 and β2 = 0.

∗ Since Wιn = ιn, we do not include both X and WX in the model to maintain full rank.
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15.2.2 Dynamic Models

Often data have both spatial and temporal identification as well as enough variation in
both space and time to call for a spatial-temporal approach. The different nature of the
nondirectional, two dimensions of space versus the directional, single dimension of time
increases the difficulty of the task. However, various implementations of the STAR have
appeared that provide a straightforward way of approaching the problem (Pfeifer and
Deutsch, 1980; Cressie, 1993; Pace, Barry, Gilley, and Sirmans 2000; Elhorst, 2001).

Both spatial and temporal models often use some form of quasi-differencing or filtering,
such as yt − ρWyt in the spatial autoregressive model where y is now an nT by 1 vector
composed of vectors of length n from each of T periods on the same n locations and t is the
time period (T ≥ t > 1). Therefore, yt, yt−1, . . . are n by 1 vectors. Similarly, the temporal
autoregressive model employs quasi-differences, such as yt − τyt−1, where τ is a scalar
temporal parameter. In terms of transforming y, it is not clear whether to filter y for time
first and then space or space first and then time.

Before making a decision on the order of operations, consider Equation (15.11), which
takes the temporal quasi-difference of the spatial quasi-difference and contrast this with
Equation (15.12), which takes the spatial quasi-difference of the temporal quasi-difference.

[yt − ρWyt] − τ [yt−1 − ρWyt−1] = yt − ρWyt − τyt−1 + τρWyt−1 (15.11)

[yt − τyt−1] − ρW[yt − τyt−1] = yt − ρWyt − τyt−1 + ρτWyt−1 (15.12)

For this case where locations stay fixed over time and are observed at discrete intervals,
the order of quasi-differencing does not matter. However, for data that are irregularly
distributed over time and space, the temporal lag of a spatial lag typically differs from the
spatial lag of a temporal lag, and both terms would enter the model (Pace et al., 2000).

Given the filtering of y, a similar transformation for the nonconstant explanatory variables
in Z defines a spatial-temporal autoregression in Equation (15.13) that includes all lag terms
associated with both the dependent variable and explanatory variables, where β1 to β4 are
p by 1 parameter vectors, λ is a scalar parameter, and ε is N(0, σ 2 In).

yt = ρWyt + τyt−1 + λWyt−1 + ιnκ + Ztβ1 + WZtβ2 + Zt−1β3 + WZt−1β4 + ε (15.13)

To make the STAR model more concrete, consider influences on housing prices. Given the
mantra of “location, location, location,” the prices of houses in the neighborhood around
each house are important (Wyt). In addition, recent market conditions (yt−1) for that location
and competing locations (Wyt−1) have a great influence on the price today (yt). Of course,
prices in the absence of characteristics are not too informative. Therefore, controlling for
the characteristics of the house, its neighbors, and their recent values greatly aids in house
price valuation.

Returning to Figure 15.1, moving to the past also increases the order of the neighboring
relations. The previous period may only involve three nearest neighbors as in the upper left
plot (Wyt−1). However, two periods ago may involve neighbors of the neighbors as shown
in the upper right plot (W2 yt−2), and almost all the observations may have an effect when
going back many periods, as depicted by the bottom right plot (W10 yt−10).

One can envision these plots stacked with the highest-order neighboring relations on
the bottom and the first-order neighboring relations on the top. This set of stacked plots
helps visualize the diffusion of past influences since time allows higher-order connections to
arise with an extended reach. However, we note that on average the magnitude of influence
associated with a typical relation is reduced for higher-order connections.
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15.3 Relations between Spatial and Spatiotemporal Models

In this section, we begin with a variant of the STAR model that uses only past data and the
restrictive assumption that explanatory variables do not change over time to: (1) motivate
how simultaneous spatial dependence arises in cross-sectional data, (2) provide a way to
interpret simultaneous spatial models, and (3) to show the relation between spatial and
spatial-temporal models.

We show how the expectation of the dependent variable vector from a simple spatial-
temporal specification that conditions on past data can be viewed as a steady-state equi-
librium that displays simultaneous spatial dependence (spillovers). Note, we only use pre-
vious data in each period for the various lags because we wish to explain cross-sectional
simultaneous dependence as arising over time. Using contemporaneous Wyt would be
effectively assuming what we are trying to prove. Specifically, we wish to show that the
expected value of the last n observations of the dependent variable from the associated
DGP converges over time to a steady-state equilibrium, which provides a motivation for
simultaneous spatial dependence among cross-sectional elements of E(y) (spillovers).

We begin with the model in (15.14), where yt is an n×1 dependent variable vector at time
t (t = 1, . . . , T), and X represents n observations on k explanatory variables that remain
fixed over time. This is a form of STAR that relies on past data and contains no simultaneous
spatial interaction where the locations of the data remain the same in each time period and
observations occur with a constant frequency.

yt = Gyt−1 + Xβ + εt (15.14)
G = τ In + ρW (15.15)

The scalar parameter τ governs dependence between each region i at time t and t − 1,
while the scalar parameter ρ reflects spatial dependence between region i at time t and
neighboring regions j �= i at time t −1. The disturbance vector εt is distributed N(0n, σ 2 In).
We assume t is sufficiently large so that Gt ≈ 0n. This convergence condition indirectly
restricts the parameters ρ and τ (given W) to ensure stationarity. To make this more direct,
assume τ ≥ 0, ρ ≥ 0, and W has a principal eigenvalue of 1. In this case, stationarity requires
that τ + ρ < 1.

As with Elhorst (2001), we use the recursive relation yt−1 = Gyt−2 + Xβ + εt−1 implied
by the model in Equation (15.14) to consider the state of the dynamic system after passage
of t time periods, as shown in Equation (15.16).

yt = Gt y0 + (
In + G + G2 + · · · + Gt−1)Xβ + u

u = Gt−1ε1 + · · · + Gεt−1 + εt (15.16)

The steady-state equilibrium for the dynamic process in (15.16) can be found by exam-
ining large t and taking the expectation. Using the stationarity assumption Gt ≈ 0n and
( I − G)−1 = ( I + G + G2 + . . .) in conjunction with a zero expectation for the disturbance
terms in each period leads to Equation (15.17).

E(yt) ≈ ( In − G)−1 Xβ (15.17)
E(yt) ≈ ( In(1 − τ ) − ρW)−1 Xβ (15.18)

E(yt) ≈
(

In − ρ

1 − τ
W

)−1

X
β

1 − τ
(15.19)

There is a relation between the expression in Equation (15.19) and a cross-sectional spatial
regression based on a set of time t cross-sectional observations shown in Equation (15.20),
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with the associated expectation shown in Equation (15.21) (a reparameterization of the SAM
model shown in Equation (15.5)).

yt = ρ∗Wyt + Xβ∗ + εt (15.20)
E(yt) = ( I − ρ∗W)−1 Xβ∗ (15.21)

The underlying parameters in Equation (15.19) and Equation (15.21) are related as shown
in Equation (15.22) and Equation (15.23).

ρ∗ = ρ

1 − τ
(15.22)

β∗ = β

1 − τ
(15.23)

The term (1 − τ )−1 from Equation (15.22) is the long-run multiplier from the time series
literature. This relation between ρ∗, ρ, and τ shows that positive time dependence (τ >

0) will result in a larger estimate of spatial dependence when the simultaneous cross-
sectional specification is used instead of the spatial-temporal specification. Weak spatial
dependence in conjunction with strong temporal dependence leads to a long-run, steady-
state equilibrium where variables can show strong spatial dependence. Intuitively, high
temporal dependence allows a small degree of spatial dependence per period to evolve into
a final equilibrium that exhibits high levels of spatial dependence. This has implications for
STAR model applications since a large temporal dependence estimate implies a small spatial
parameter estimate (given stationarity). Such a small spatial parameter estimate might
suggest ignoring the spatial term in the model, but this would have major implications for
the steady-state equilibrium.

This same situation arises for the parameters of the explanatory variables β∗ from the
single cross section, which are also inflated by the long-run multiplier when τ > 0 relative
to β from the spatial-temporal model. This is a well-known result from time series analysis
of long-run multiplier impacts arising from autoregressive models.

The relations in Equation (15.20) to Equation (15.23) facilitate interpretation of cross-
sectional spatial autoregressive models. Since these models have no explicit role for time,
they should be interpreted in terms of an equilibrium or steady-state outcome. This also
has implications for calculating the impact of changes in the explanatory variables of these
models. The model in Equation (15.20) and Equation (15.21) states that yi and yj for i �= j
simultaneously affect each other. However, viewing changes in Xi as setting in motion a
series of changes in yi and yj that will lead to a new steady-state equilibrium involving
spillovers at some unknown future time has more intuitive appeal.

In this analysis, we do not examine the equilibrium distribution of the disturbances.
However, LeSage and Pace (2009) examined this in more detail. If the disturbances are
location specific and time persistent, this can lead to simultaneous dependence among the
disturbances. In contrast, independent disturbances over time in conjunction with large
equilibrium amounts of spatial dependence can lead to CAR disturbances.

Also, we did not analyze the full STAR model with both simultaneous and temporal
dependence, which is frequently used in applied practice (Cressie, 1993, pp. 449–450). For
example, variants of this model have been examined in the panel data model literature
(Elhorst, 2001). We briefly turn attention to this model. As before, we assume periodic data
from spatial locations that are fixed over time. We introduce the scalar parameterλ to capture
the simultaneous spatial component and this leads to the STAR model in Equation (15.24)
with a simplified version in Equation (15.25).

yt = λWyt + ρWyt−1 + τyt−1 + Xβ + εt (15.24)
yt = λWyt + Gyt−1 + Xβ + εt (15.25)
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We rewrite the model in Equation (15.25) in terms of the matrix A as specified in Equa-
tion (15.27). Using the recursive technique that conditions on the past data (but treats A
simultaneously) yields Equation (15.28) and Equation (15.29).

yt = AGyt−1 + AXβ + Aεt (15.26)
A = ( In − λW)−1 (15.27)
yt = ( AG)t y0 + ( In + AG + ( AG)2 + · · · + ( AG)t−1) AXβ + u (15.28)
u = ( AG)t−1ε1 + · · · + AGεt−1 + εt (15.29)

Taking expectations and rearranging Equation (15.28) gives Equation (15.30). Separating
out A in Equation (15.31) shows that this term partially drops out in Equation (15.32).
Finally, Equation (15.33) shows that the long-run equilibrium of the STAR model with
simultaneous spatial dependence looks very similar to the STAR model that relied only on
past period data.

E(yt) ≈ ( In − AG)−1 AXβ (15.30)
E(yt) ≈ [A( A−1 − G)]−1 AXβ (15.31)
E(yt) ≈ [( A−1 − G)]−1 Xβ (15.32)
E(yt) ≈ [In(1 − τ ) − (λ + ρ)W]−1 Xβ (15.33)

This is a simplification afforded by constant X. For constant X with fixed locations occur-
ring at constant frequency over time, terms such as temporal lag of the spatial lag of X or the
spatial lag of the temporal lag of X both equal WX. Therefore, the resulting equilibrium still
has the form ( In − δW)−1 Xβ where δ now involves a different parameterization. However,
we note that in a situation with X changing each period, the STAR model that conditions
solely on past data will likely differ from a STAR model that uses both past and current
data.

15.4 Interpretation

Many spatial statistical applications use error models as in Equation (15.1) with expec-
tation Equation (15.2), and we note that all error models (including OLS) have the same
expectation. For sufficiently large sample sizes and the correct specification for X with
no correlation between disturbances and X, applying consistent estimators to the various
models should yield identical estimates for the parameters β. For small samples, estimates
could vary, and use of models that differ from the true DGP could lead to inconsistent
estimates of dispersion for the model parameters. Interpretation of this type of error model
is straightforward because:

∂yi

∂x(v)
i

= β(v) (15.34)

where i and j represent indices of the n observations and v represents an index to one of
the k explanatory variables (i, j = 1, . . . , n and v = 1, . . . , k).

In fact, error models may produce an overly simple interpretation for spatial econometric
applications since spatial spillover effects are absent in these models by construction (unless
spatial terms appear in X). Spillover effects could be introduced with a spatially complex
specification for the variables X, but there are other alternatives. For example, the SDM
model subsumes error models as a special case. We can express the DGP for the SDM
using Equation (15.36), which allows us to examine the impact of changing elements of x(v)
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on y where β
(v)
1 and β

(v)
2 are the scalar parameters associated with the variable v and its

spatial lag.

y =
k∑

v=1

S(v)x(v) + ε (15.35)

S(v) = ( In − ρW)−1(Inβ
(v)
1 + Wβ

(v)
2

)
(15.36)

The partial derivatives from the SDM are shown in (15.37) and exhibit more complexity
than in Equation (15.34). A change in a single observation j of variable v could possibly
affect all observations i in y.

∂yi

∂x(v)
j

= S(v)
i j (15.37)

To analyze the large amount of information pertaining to the partial derivatives from
these models, one could summarize these. For example, the average own or direct effect
can be summarized using the scalar n−1tr (S(v)), and the average of all effects (direct plus
indirect) is represented by the scalar n−1ι′nS(v)ιn. The indirect effect would be the total effect
less the direct effect. If spillovers or externalities exist, the indirect effects will not equal
zero. LeSage and Pace (2009) discuss computationally feasible methods for summarizing
the impacts for large samples.

15.5 Spatial Varying Parameters, Dependence, and Impacts

Another strand of spatial literature focuses on using varying parameters to model space.
Although spatial dependence models typically estimate a parameter for each variable,
spatial variable parameter models may estimate up to an n×n matrix of parameters for each
variable. Some examples include Casetti’s expansion method (Casetti, 1997), geographically
weighted regression in Fotheringham, Brunsdon, and Charlton (2002), and the spatially
varying coefficient approach in Banerjee et al. (2004).

As Cressie (1993, p. 25) points out, modeling the mean can substitute for modeling de-
pendence and vice versa. We explore the connection between modeling dependence using
spatial lags of the dependent variable versus a spatially varying parameter model. To begin
this development, consider the usual linear model Equation (15.38) with the parameters
written in matrix form in Equation (15.39) to Equation (15.40) where β(v) is a scalar.

E(y) = x(1)β (1) + x(2)β (2) + · · · + x(k)β (k) (15.38)
B(v) = Inβ

(v) v = 1, . . . , k (15.39)
E(y) = B(1)x(1) + B(2)x(2) + · · · + B(k)x(k) (15.40)

In the usual linear model, the impact of changing the explanatory variable is the same
across observations and a change in the explanatory variable for one observation does not
lead to changes in the value of the dependent variable for other observations.

As an alternative, consider a model that gives geometrically declining weights to the val-
ues of the parameters at neighboring locations, including parameters at neighbors to the
neighbors, and so forth for higher-order neighboring relations as shown in Equation (15.41).
Given the infinite series expansion from Equation (15.6), this yields (15.42). Note, the matrix
of parameters implied by this process equals the matrix of impacts (S(v)) discussed previ-
ously in (15.36) for the SAM (where β

(v)
2 equals 0 in Equation (15.36)). The expected value
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of the dependent variable is the sum of the impacts from all the explanatory variables, as
in Equation (15.43).

S(v) = In B(v) + ρWB(v) + ρ2W2 B(v) + · · · (15.41)
S(v) = ( In − ρW)−1 B(v) (15.42)

E(y) = S(1)x(1) + S(2)x(2) + · · · + S(k)x(k) (15.43)

To summarize, spatial dependence involving a spatial lag of the dependent variable is
equivalent in the systematic part of the model to a form of a spatial varying parameter
model. This provides another way of interpreting spatial models containing a spatial lag
of the dependent variable.

15.6 Estimation

We briefly discuss maximum likelihood (or Bayesian) estimation of the SAM, which in-
cludes the more general SDM model when X in the following development includes both
the explanatory variables as well as spatial lags of these.

Given the SAM model in Equation (15.44),

y = ρWy + Xβ + ε (15.44)

we can form the profile log likelihood in (15.45) as a function of a single model parameter ρ,

L(ρ) = K + ln |In − ρW| − 1
2

ln(e(ρ)′e(ρ)) (15.45)

where K is a constant and e(ρ) are the residuals expressed as a function of ρ. Moreover,

e(ρ)′e(ρ) = y′My − 2ρy′MWy + ρ2 y′W′MWy (15.46)

where M = In − X(X′ X)−1 X′. Note, y′My, y′MWy, and y′W′MWy are scalars that do not
depend on ρ, so these only need be computed once. Given this likelihood, one could estimate
the parameters using either maximum likelihood or Bayesian techniques. We discuss ways
to minimize the computational resources required to evaluate this likelihood in the next
section.

15.7 Computation

A number of features of spatial econometric models coupled with special techniques can
make estimation of problems involving large samples possible. For example, specifying the
matrix W as a sparse matrix based on some number m of contiguous or nearest neighbors
facilitates computation. We briefly discuss two alternative specifications for W. The first
relies on a set of m nearest neighbors, which leads to a matrix where each observation
(row) i contains m positive entries for the observations that are the m nearest neighbors
to observation i . By construction, W would have nm positive entries and the proportion
of positive elements equals m/n, which decreases with n. Use of a dense matrix with n2

positive elements to model the sample of 300, 000 Census block groups would require over
670 gigabytes of storage for the 9 · 1010 elements of W. In contrast, a weight matrix based
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on 10 nearest neighbors takes less than 23 megabytes of storage. A second sparse weight
matrix specification relies on contiguity. For random points on a plane, on average each
region (observation) has six contiguous regions (neighbors).

Finding m nearest neighbors or contiguous regions requires O(n ln(n)) computations. Ge-
ographic information system (GIS) software can be used to identify contiguous regions, or
a Delaunay triangle routine can be applied to centroid points for the regions. A convenient
way of finding m nearest neighbors relies on identifying the contiguous neighbors and the
neighbors to the contiguous neighbors as candidate nearest neighbors. Given a relatively
short list of candidate neighbors, ordinary or partial sorting routines can be used to find the
m nearest neighbors. There are also a number of specialized computational geometry rou-
tines that directly address the m nearest neighbor problem (Goodman and O’Rourke, 1997).

Given W, the main challenge in evaluating the log likelihood is to compute ln |In − ρW|,
which requires O(n3) operations using dense matrix routines. Sparse matrix routines can
be used to find the sparse LU decomposition, LU = In − ρW, and the log-determinant
calculated as the sum of the logs of the pivots (elements of the main diagonal) of U (Pace
and Barry, 1997). Calculating the log-determinant in this fashion for a grid of points over the
interval for ρ allows interpolation of log-determinant values for finer grids. Interpolation
can be carried out any number of times to achieve the desired degree of accuracy because
this operation requires almost no additional computing time. In practice, one could also
rely on O(n) approximations to the log-determinant term, such as those proposed by Barry
and Pace (1999) and LeSage and Pace (2009) that produce quick approximations since the
optimal value of ρ is not sensitive to small errors that arise from approximating the log-
determinant.

15.8 Example

In this section, we illustrate interpretation of parameter estimates using the SDM model
and a sample of census tract level information involving 62, 226 U.S. Census tracts over the
continental United States aligned to have common boundaries in both 1990 and 2000. The
model involved regressing median census tract house prices in 2000 (dependent variable)
on explanatory variables from 1990, which included: the quantity of rental and owner-
occupied housing units (Quantity), median household income (Income), and median years
of education (Education). The use of 1990 data as explanatory variables avoids simultaneity
among variables (as opposed to simultaneity among observations that arises from spatial
dependence). Simultaneous relations between dependent and independent variables in
economics has generated a vast literature in econometrics and would greatly complicate
this model relationship. An equation where price and quantity appear as dependent and
independent variables is a classic example of simultaneously determined variables in eco-
nomics. Our use of temporally lagged values avoids this issue.

All variables were logged, so partial derivatives showing the direct and indirect effects of
changes in the explanatory variables represent elasticities. We use a constant term as well as
spatial lags of the dependent and explanatory variables for the SDM model specification.
A doubly stochastic, contiguity-based, weight matrix specification was used for W. The
estimated model is shown in Equation (15.47).

ln(P2000) = β1 ln + ln(Income1990)β2 + ln(Education1990)β3 +
+W ln(Income1990)β4 + W ln(Education1990)β5

+ ln(Quantity)β6 + W ln(Quantity)β7 + ρW ln( P2000) + ε (15.47)

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

January 20, 2010 12:47 C7287 C7287˙C015

Spatial Econometrics 257

TABLE 15.1

Parameter Estimates
Variables β t

Intercept −0.435 −13.489
ln(Quantity 90) −0.016 −18.573
ln(Income 90) 0.385 105.585
ln(Median Years Education 90) 0.530 46.197
W ln(Quantity 90) 0.010 7.400
W ln(Income 90) −0.196 −39.107
W ln(Median Years Education 90) −0.330 −20.453
ρ 0.833 399.384
Residual Variance 0.051

As commonly occurs with large samples, estimates for the coefficients of all explanatory
variables shown in Table 15.1 are significant. The tract-level year 2000 housing prices show
strong spatial dependence with a value of ρ = 0.833 and the associated t-statistic is the
largest of any variable.

As previously discussed, the parameter estimates from this model do not represent partial
derivatives, and thus are difficult to interpret. To address this issue, Table 15.2 shows the
average own partial derivative (β direct) along with associated t-statistics and the average
of the cross-partials (β indirect) and their t-statistics.

As shown in Table 15.2, a higher quantity of housing units in 1990 leads to lower future
housing prices in the direct census tract, and also has a negative influence on the future
housing prices in neighboring tracts. This is the usual supply relation where a negative
relation exists between price and quantity. Since housing in one area competes with housing
in neighboring areas, an increase in the stock in one tract has spillovers to nearby tracts.
Similarly, income and education have strong positive impacts on future housing prices in
own and other tracts (positive spillovers).

From the table, we see that indirect impacts (spillovers) are larger in magnitude than the
direct impacts in the case of income and education, and approximately equal for the quantity
of housing variable. The indirect impacts reported in the table represent a cumulation of
these impacts over all other sample tracts (observations). This means that the indirect effect
falling on any single neighboring tract is of much lower magnitude than the cumulative
impact shown in the table. In addition, from a steady-state equilibrium perspective, the
cumulative indirect impact reflects changes that will arise in future time periods in the
move to the new steady-state equilibrium. Again, the impact for any single time period is
smaller than the reported scalar summary measure from the table. One can partition these
impacts in a number of ways to address specific issues, as discussed in LeSage and Pace
(2009).

Practitioners have often incorrectly interpreted the parameter estimates on the spatial
lags of the explanatory variables presented in Table 15.1 as partial derivatives that reflect
spillover effects. This incorrect interpretation would lead to an inference that the positive

TABLE 15.2

Direct and Indirect Estimates of Variables Affecting House Price
Appreciation
Variables b Direct t Direct b Indirect t Indirect
ln(Quantity 90) −0.016 −16.794 −0.014 −1.906
ln(Income 90) 0.428 115.622 0.700 43.536
ln(Median Years Education 90) 0.568 47.844 0.624 9.562
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spillovers were negative, and negative spillovers were positive for the variables in this
model.

In terms of computation, we used MATLAB� routines from www.spatial-statistics.com
to find the contiguous neighbors using a Delaunay triangle routine and place them in an
n × n sparse matrix, which took 2.7 seconds, convert the contiguity weight matrix into a
doubly stochastic weight matrix (2.3 seconds), estimate the traces from the first 100 powers
of W used to compute the log-determinant via the Barry and Pace (1999) approach (11
seconds), and estimate the model (1.06 seconds). This was done using a machine with an
Athlon 3.2 GHz dual processor. Most of these calculations scale linearly or at an n ln(n) rate,
and so with current technology estimation of large spatial systems is quite feasible.

15.9 Extensions

Spatial regression models can also be estimated using analytical or Bayesian MCMC esti-
mation. LeSage (1997) discusses the latter approach along with extensions involving het-
eroscedastic variances, and MCMC methods can take advantage of the computationally
efficient approaches discussed for maximum likelihood estimation. Estimating models,
such as the SDM, allows us to rely on slightly extended results from standard Bayesian
regression where a normal-gamma prior distribution is assigned for the parameters β and σ .
The conditional distributions for the parameters β and σ 2 take standard forms, which can
be easily sampled.

The conditional distribution for the parameter ρ requires special treatment as it does
not take the form of a known distribution. A uniform prior is typically assigned for this
parameter, and sampling can rely on a Metropolis–Hastings method (LeSage, 1997) or a
griddy Gibbs sampler (Smith and LeSage, 2004). It is noteworthy that the log-determinant
term from the log likelihood function appears in the conditional distribution for ρ, and
the computationally efficient methods for calculating this term over a grid of values for ρ

can be used to speed MCMC estimation. Bayesian model comparison procedures that are
based on posterior model probabilities constructed from the log-marginal likelihood also
benefit from these efficient methods for calculating the log-determinant. The log-marginal
likelihood can be derived by analytically integrating out the parameters β and σ followed
by univariate numerical integration over the parameter ρ, with details provided in LeSage
and Parent (2007).

Variants of the standard SAM/SDM models that deal with cases involving missing values
(?) and truncated or limited dependent variables (LeSage and Pace, 2009) can proceed by
adding an additional conditional distribution to the standard MCMC sampler. For the case
of missing or truncated dependent variables, we can treat these as latent values and add a
sampling step that samples the missing (or truncated) values conditional on the nonmissing
(or truncated) values. Replacing the missing or truncated zero values of the dependent
variables with the continuous sampled latent values allows sampling the remaining model
parameters based on the same distributions as in the case of continuous dependent variable
values.

If we partition the vector y into vectors of nonmissing y1 and missing (or truncated)
values y2 = 0, MCMC estimation requires that we sample from the conditional distribution
of (y2|y1), which takes the form of a truncated multivariate normal distribution. That is,
zero-valued observations are sampled conditional on the nonzero values in y1, and other
parameters of the model. In essence, the zero-valued observations are being treated as ad-
ditional parameters in the model that require estimation. This can pose computational chal-
lenges discussed in LeSage and Pace (2009). They provide details regarding computational
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savings that can be obtained by avoiding inversion of the n × n sparse matrix ( In − ρW),
since this would produce “fill-in” of zero values with nonzero values, increasing memory
requirements as well as the time required for matrix calculations.

15.10 Conclusion

Spatial econometric models that include lags of the dependent variable provide a useful tool
that can be used to quantify the magnitude of direct and indirect or spillover effects. The
level of direct and indirect impacts that arise from changes in the model explanatory vari-
ables are often the focus of economic models when interest centers on individual incentives
or benefits versus those of society at large. Use of spatial models that contain a spatial lag
of the dependent variable appears to be the most distinctive feature that separates spatial
econometrics from spatial statistical models.

Estimation and interpretation of these models pose additional challenges that are not
encountered in many spatial statistical settings. An applied illustration demonstrated par-
titioning of impacts that arise from changes in the explanatory variables associated with the
own- and cross-partial derivatives reflecting direct and indirect or spatial spillover effects.
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Part IV

Spatial Point Patterns
A spatial point process is a stochastic process each of whose realizations consists of a finite
or countably infinite set of points in the plane. The overall goal of this part of the handbook
is to review the theory and practice of statistical methods for analyzing data that can be
treated as a realization of a spatial point process.

Chapter 16, by Marie-Colette van Lieshout, sets out the underpinning mathematical
theory of spatial point processes. After some motivation, several ways to characterize the
distribution of a point process are described, including the important notions of Campbell
and moment measures and interior and exterior conditioning by means of Palm theory.

Chapter 17, by Valerie Isham, describes various useful classes of parametric point pro-
cess models. In any particular application, there will generally be an underlying physical
mechanism that generates the points that are observed, and which should ideally be taken
into account when formulating a model. For example, if the point events are the locations
of seedling trees, a model might take into account the positions of parent trees, the clus-
tering of the seedlings around these, and perhaps also the prevailing wind direction. Such
a model is often termed “mechanistic.” In contrast, “descriptive” models aim to represent
the statistical properties of the data and their dependence on explanatory variables without
necessarily worrying about the physical mechanisms involved.

Chapter 18, by Peter Diggle, describes statistical methods for analyzing spatial point
patterns without imposing parametric assumptions about the underlying spatial point
process. Topics covered include: Monte Carlo tests, nearest-neighbor and related methods,
nonparametric smoothing methods, and moment-based functional summary statistics. This
chapter also includes a discussion of methods of analyzing replicated patterns where, in the
absence of a parametric model, inference relies on simple ideas of exchangeability between
replicates.

Chapter 19, by Jesper Møller, considers inference for parametric models. The central
message here is that, for many classes of model, principled methods of inference based
on the likelihood function are now accessible through the use of modern Monte Carlo
methods, and are often preferable to the widespread use of sensible but ad hoc methods
based on functional summary statistics of the kind described in Chapter 18. Nevertheless,
the chapter also discusses parametric model-fitting using estimation methods based on
composite likelihoods or pseudo-likelihoods that do not require Monte Carlo methods, and
acknowledges that these may continue to be of importance because they allow many dierent
candidate models to be investigated quickly. Chapter 20, by Adrian Baddeley, explores the
proposition that, as in other areas of applied statistics, the statistical analysis of spatial point
pattern data should involve a succession of stages, including exploratory analysis, model-
fitting and model selection, and diagnostic checking. This chapter describes strategies for
each stage of that process, with examples of their application.

Chapter 21, also by Adrian Baddeley, extends the framework of the earlier chapters to
include multitype point processes, in which points are of several qualitatively different
types, or more generally marked point processes in which each point of the process carries
extra information, called a mark, which may be a random variable, several random vari-
ables, a geometric shape, or some other information. Many of the statistical methods for
spatial point patterns described in earlier chapters extend reasonably easily and naturally
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to marked point patterns, although marked point patterns also raise new and interesting
questions concerning the appropriate way to formulate models and pursue analyses for
particular applications. For example, should points precede marks, or vice versa, or must
they be considered jointly?

Finally, in Chapter 22, Lance Waller describes how the models, properties, and meth-
ods discussed in earlier chapters can address specific questions encountered in the field
of spatial epidemiology, i.e., the study of spatial patterns of disease morbidity and mor-
tality within their natural setting. This particular area of application has been singled out
in part because of its importance, but also because it shows how methods developed in
one context can be adapted to meet the needs of new areas of application. One very good
reason why spatial point process methods were not widely used in epidemiology until
recently was that the models and methods available were unable to cope with the degree
of complexity that typifies the spatial distribution of human settlement patterns. However,
during the last two decades, these limitations have been overcome, at least in part, by im-
porting ideas from design-based inference for case-control studies and by the development
of new, often computationally intensive, methods for analyzing spatially heterogeneous
point process data.
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Spatial Point Process Theory
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16.1 Spatial Point Process Theory

16.1.1 Introduction

A spatial point process is a stochastic process each of whose realizations consists of a finite or
countably infinite set of points in the plane. This chapter sets out the mathematical theory
of such processes. After some motivation, several ways to characterize the distribution of
a point process are described in Section 16.1.2. The important notions of Campbell and
moment measures are introduced in Section 16.1.3, and generalized to higher orders in
Section 16.1.4. Interior and exterior conditioning by means of Palm theory form the topic
of Section 16.1.5. The section closes with a discussion of finite point processes and local
specifications (Sections 16.1.6 to 16.1.7).

Tracing the roots of modern point process theory is not an easy task. One may refer
to Poisson (1837), or to the pioneering works by Erlang (1909) and Neyman (1939) in the
respective contexts of telephone networks and spatial cluster processes. Influential classic
textbooks include Janossy (1948), Khinchin (1960), Matheron (1975), Matthes, Kerstan, and
Mecke (1978), and Srinivasan (1974). A rich scholarly reference book is the second edition
of Daley and Vere-Jones (1988) published in two volumes (2003, 2008). A more accessible,
yet rigorous, course on finite point processes is van Lieshout (2000). See also Cox and Isham
(1980) or Reiss (1993).

As a motivating example, consider the pattern of 270 tree locations in a 75 × 75 meter
plot in the Kaluzhskie Zaseki Forest in central Russia depicted in the left-hand panel of
Figure 16.1. The data were kindly provided by Dr. P. Grabarnik and previously analyzed
in Smirnova (1994) and Grabarnik and Chiu (2002).

In a forestry context such as this, competition for nutrients and space may result in
patterns in which large trees do not occur close to each other and smaller trees fill up the
remaining gaps. On the other hand, seedlings tend to grow up close to mature trees, which

263
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FIGURE 16.1
Trees in a broad-leaved, multispecies old-growth forest in the Kaluzhskie Zaseki Forest in central Russia (Smirnova,
1994; Grabarnik and Chiu, 2002) in a square plot of side length 75 m. (Left) Locations of the 270 trees, (right)
graphical representation in which each tree is located at the center of a disk of radius equal to 0.103 times the tree
diameter.

would result in a cluster of nearby trees. Such apparent clustering can also result from
variations in soil fertility, as trees are more likely to flourish in regions of high fertility.

For these data, additional measurements in the form of tree diameters are available,
graphically represented by the disk radii in the right-hand side panel of Figure 16.1. Such a
pattern with extra information attached to each point (location) is referred to as a “marked
point pattern.” Clusters of small trees in the gaps left by larger trees are apparent. This
clustering effect can be seen even more clearly if we plot the subpatterns of small and large
trees separately (Figure 16.2). The large (old) trees seem, apart from some gaps, to have a
preferred distance of about 4 meters from each other, possibly due to a planting design.

Mapped data such as those depicted in Figure 16.1 and Figure 16.2 can be described
mathematically as a finite, integer-valued measure

I∑
i=1

ki ∂xi
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FIGURE 16.2
Locations of trees in a broad-leaved, multispecies old-growth forest (Smirnova, 1994; Grabarnik and Chiu, 2002)
in a square plot of side length 75 m. (Left) Trees with diameter less than 15 cm, (right) those with diameter larger
than 25 cm.
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where I ∈ N0, the xi are distinct (marked) points in some topological space D, and each
weight ki is a strictly positive integer, the multiplicity of xi . An equivalent description is in
terms of a finite, unordered set of not necessarily distinct (marked) points

X = {x1, . . . , xn} ∈ Dn/ ≡, n = 0, 1, . . . .

The xi lie in a topological space D, and two or more (x1, . . . , xn) ∈ Dn that are identical up
to permutation are indistinguishable. We shall refer to X as a configuration.

For example, for the unmarked pattern depicted in the left-hand panel of Figure 16.1, D =
[0, 75]2 equipped with the Euclidean distance topology, while marked points represented
graphically in the right-hand panel of Figure 16.1 lie in the product space [0, 75]2 × [0, ∞)
generated by the Euclidean topologies on [0, 75]2 and [0, ∞). More precisely, if U and V
are open neighborhoods of x ∈ [0, 75]2 and m ∈ [0, ∞), respectively, then we may define an
open neighborhood of (x, m) by U × V. The class of such product sets defines a topology,
the product topology. Equivalently, the product topology can be defined by the supremum
metric. In order to obtain Figure 16.2, trees were marked by a type label in the set {large,
small} equipped with the discrete metric.

If D is not bounded, the requirement that I or n be finite is relaxed to allow configurations
that contain a countable number of points, each with finite multiplicity. Such a configuration
X ⊆ D is said to be locally finite if it places at most a finite number of points in any bounded
Borel set A ⊆ D, that is, if

NX ( A) =
∞∑

i=1

ki ∂xi ( A) < ∞.

The family of all locally finite configurations will be denoted by Nlf.

Definition 16.1
Let (D, d) be a complete, separable metric space equipped with its Borel σ -algebra B. A point
process on D is a mapping X from a probability space (Ω , A, P) into Nlf such that for all bounded
Borel sets A ⊆ D, the number N( A) = NX( A) of points falling in A is a (finite) random variable.

From a practical point of view, it is convenient to work with metric spaces. Theoretically,
the topological structure is needed to ensure the existence of regular versions of Palm
distributions and related characteristics that will be discussed later.

Definition 16.1 may be rephrased as follows. A point process X is a random variable with
values in the measurable space (Nlf, N lf), where N lf is the smallest σ -algebra such that
for all bounded Borel sets A ⊆ D, the mapping X �→ NX ( A) is measurable. The induced
probability measure P on N lf is called the distribution of the point process.

When the xi ∈ X have a location component, i.e., when D is of the form R
d × L for some

mark space L , assumed to be a complete, separable metric space, and the marginal point
process of locations is well-defined, X is said to be a marked point process. If P is translation
invariant in the sense that it does not change if all marked points xi = (ai , mi ) ∈ X are
translated over some vector y ∈ R

d into (ai + y, mi ), X is stationary. If, additionally, P is not
affected by rotations of the location component, X is isotropic.

Example 16.1
Let D be a compact subset of the plane of strictly positive area |D|. A binomial point process is
defined as the union X = {X1, . . . , Xn} of a fixed number n ∈ N of independent, uniformly
distributed points X1, · · · , Xn in D. In other words, P(Xi ∈ A) = |A|/|D| for all Borel subsets
A ⊆ D. Now,

N( A) =
n∑

i=1

1{Xi ∈ A}
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is a sum of random variables; hence, a random variable itself, and, as N( A) ≤ N(D) = n, X
takes values in Nlf.

Example 16.2
Further to the previous example, by replacing the fixed number n ∈ N by an integer-valued,
random variable following a Poisson distribution with parameter λ|D| proportional to the
area |D| of D, we obtain a homogeneous Poisson process on D. Now,

P(N( A) = k) =
∞∑

n=k

e−λ|D| (λ|D|)n

n!

(
n
k

) ( |A|
|D|

)k (
1 − |A|

|D|
)n−k

= e−λ|A| (λ|A|)k

k!
,

for all k ∈ N0, so that N( A) is Poisson distributed with parameter λ|A|, and, by similar
arguments, for disjoint Borel sets A, B ⊆ D, and k, l ∈ N0,

P(N( A) = k; N(B) = l) = P(N( A) = k) P(N(B) = l).

Hence, the random variables N( A) and N(B) are independent. It should be noted that the
definition of a Poisson process may be extended to the plane by tiling R

2 and defining
independent Poisson processes on each tile as before.

16.1.2 Characterization of Point Process Distributions

The distribution of a real-valued random variable may be characterized by its distribution
function, characteristic function, moment generating function, or Laplace transform. Recall
that the distribution P of a point process is that induced by the integer-valued random
variables N( A) counting the number of objects placed in bounded Borel sets A. Thus, it is
natural to characterize P by properties of the distributions of the random variables N( A).

Definition 16.2
The family of finite-dimensional distributions (fidis) of a point process X on a complete, sepa-
rable metric space (D, d) is the collection of the joint distributions of (N( A1), . . . , N( Am)), where
( A1, . . . , Am) ranges over the bounded Borel sets Ai ⊆ D, i = 1, . . . , m, and m ∈ N.

The following uniqueness theorem holds.

Theorem 16.1
The distribution of a point process X on a complete, separable metric space (D, d) is completely
specified by its finite-dimensional distributions.

In other words, if two point processes have identical fidis, they also share the same
distribution. The result follows from the observation that the family of sets

{ω ∈ Ω : NX(ω)( Ai ) ∈ Bi , i = 1, . . . , m},

where Ai ⊆ D are bounded Borel sets and Bi ⊆ R are Borel, is a semiring generating N lf.
A point processes on (D, d) is called simple if its realizations contain no points with

multiplicity ki ≥ 2, so that N({x}) ∈ {0, 1} almost surely for all x ∈ D. Surprisingly, as
shown by Rényi (1967) for the Poisson process and by Mőnch (1971) more generally, if two
simple point processes X and Y assign the same void probabilities, v( A) = P(N( A) = 0), to
all bounded Borel sets A, their distributions coincide.
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Theorem 16.2
The distribution of a simple point process X on a complete, separable metric space (D, d) is uniquely
determined by the void probabilities of bounded Borel sets A ⊆ D.

In the above theorem, the collection of bounded Borel sets may be replaced by a smaller
class, such as the compact sets. For details, we refer to Berg, Christensen, and Ressel
(1984), Choquet (1953), Daley and Vere-Jones (1988), Matheron (1975), McMillan (1953),
and Norberg (1989).

Example 16.3
The binomial point process introduced in Example 16.1 is simple and has void probabilities
v( A) = (1 − |A|/|D|)n, A ∈ B(D). For the homogeneous Poisson process considered in
Example 16.2, v( A) = exp [−λ|A|] .

For any point process X, one may define a simple point process Xs by ignoring the
multiplicity. It follows from Theorem 16.2 that if point processes X and Y have identical
void probabilities, the distributions of Xs and Ys must be the same. Thus, X and Y exhibit
the same interaction structure except for the multiplicity of their points.

Trivial cases apart, it is not possible to plot the void probabilities as a function of A ⊆ D.
Nevertheless, a graphical representation may often be achieved. Indeed, suppose that the
distributionP that produced a Euclidean point pattern, such as that depicted in Figure 16.1,
is invariant under translations. Then v( A) = v(Tx A) for all Tx A = {a + x : a ∈ A}, x ∈ R

d .
In particular, if A = b̄(x, r ) = {y ∈ R

d : ||y − x|| ≤ r} is a closed ball, the stationarity of
P implies that v(b̄(x, r )) is a function of r only. Based on this observation, the empty space
function is defined as

F (r ) = P(d(x, X) ≤ r ) = 1 − v(b̄(x, r )), r ≥ 0, (16.1)

that is, F is the distribution function of the distance from an arbitrary point x ∈ R
d to the

nearest point of X. Although P is not uniquely specified by the void probability it assigns
to balls, plots of the estimated empty space function do provide valuable information on
the interaction structure.

Example 16.4
Estimated empty space functions related to the Kaluzhskie Zaseki Forest data of Figure 16.2
are given in Figure 16.3. On biological grounds, it may be expected that the patterns
formed by young and established trees are qualitatively different, and this is confirmed by
Figure 16.3. Using the observed size mark as a substitute for the nonrecorded age of trees,
estimated F-functions for both types of trees are shown and compared to the empty space
function of a Poisson process with the same expected number of points (cf. Example 16.3).
For small trees, large empty spaces occur with a higher probability than under the Pois-
son model. Such a behavior is typical for clustered patterns with groups of nearby points
separated by gaps. The graph for larger trees is closer to that of its Poisson counterpart.

16.1.3 Campbell and Moment Measures

In the previous section, we saw that the distribution of a simple point process is described
fully by its void probabilities and that a graphical representation is available in the empty
space function. For point processes that may contain multiple points, the finite-dimensional
distributions of Definition 16.2 can be used to specify the distribution, and their moments
provide a useful complementary collection of summary statistics (see, e.g., Matthes et al.,
1978).
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FIGURE 16.3
Estimated empty space functions of Kaluzhskie Zaseki data (solid lines). (Left) Locations of trees with diameter
less than 15 cm, (right) those with diameter larger than 25 cm. The dashed lines are the empty space functions for
homogeneous Poisson processes with, on average, the same number of points per unit area as the data.

Definition 16.3
Let X be a point process on a complete, separable metric space (D, d). Define a set function M by
M( A) = EN( A) for all bounded Borel sets A ⊆ D.

Example 16.5
Consider the binomial point process of Example 16.1. Then,

M( A) = n P(X1 ∈ A) = n |A|/|D|

for any Borel set A ⊆ D. In particular, M(D) = n < ∞. For the homogeneous Poisson
process of Example 16.2, M( A) = λ |A|.

By standard measure theoretic arguments (see, e.g., Daley and Vere-Jones (1988) or van
Lieshout (2000)), the set function M can be extended to a Borel measure.

Theorem 16.3
If the function M introduced in Definition 16.3 is finite for all bounded Borel sets, it can be extended
uniquely to a σ -finite measure on the Borel sets of D, the (first-order) moment measure.

Let us consider a stationary point process X on the Euclidean space R
d , and denote by

Tx A = {a + x : a ∈ A} the translation of A over the vector x ∈ R
d . Then, for any Borel

set A,
M( A) = EN( A) = EN(Tx A) = M(Tx A).

Consequently, provided M is finite for bounded A, a constant 0 ≤ λ < ∞ can be found such
that M( A) = λ |A|. The scalar constant λ is called the intensity of X. An example of a sta-
tionary point process is the homogeneous Poisson process on the plane, (cf. Example 16.2).

More generally, if M is absolutely continuous with respect to Lebesgue measure, then

M( A) =
∫

A
λ(x) dx

for Borel sets A, and λ(·) is referred to as an intensity function of the point process X.
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In integral terms, Theorem 16.3 asserts that
∫

A
d M(a) = E

[∑
x∈X

1{x ∈ A}
]

for all A ∈ B(D). Linearity and monotonicity arguments imply that

E

[∑
x∈X

g(x)

]
=

∫
D

g(x) d M(x) (16.2)

for any measurable function g : D → R that is either nonnegative or integrable with
respect to M, provided the moment measure M exists, i.e., is finite on bounded Borel sets.
Identities of the form Equation (16.2) are usually referred to as Campbell theorems in honor
of Campbell’s (1909) paper. Intuitively, suppose one takes a measurement g(x) at each x
in some data configuration X . Then the grand total of these measurements is equal in
expectation to the spatial integral of g with respect to the moment measure of the stochastic
process that generated the data.

Example 16.6
Let us revisit the forestry data discussed in Section 16.1.1, and assume it can be seen as
a realization of a stationary marked point process on D = R

2 × R
+, observed within the

window W = [0, 75]2. Then, for bounded Borel sets A ⊆ R
2, B ⊆ R

+, and x ∈ R
2,

M(Tx A× B) = M( A× B).

If we additionally assume that the first-order moment measure of the marginal point process
of locations exists, the translation invariance implies that M can be factorized as λ � × νM

where λ ≥ 0 is the intensity of the marked point process, � Lebesgue measure on R
2, and

νM a probability measure on R
+, the mark distribution. By the Campbell theorem

E

⎡
⎣ ∑

(a,m)∈X

m 1{a ∈ W}
⎤
⎦ = 752 λ

∫ ∞

0
m dνM(m).

In other words, a ratio-unbiased estimator of the mean tree diameter with respect to νM is
the average observed diameter. The smoothed empirical mark distribution function νM is
depicted in Figure 16.4. Note that νM has two clear modes.
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FIGURE 16.4
Estimated mark probability density function of Kaluzhskie Zaseki Forest data.
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Moment measures may be refined by restricting attention to configurations with specified
properties.

Definition 16.4
Let X be a point process on a complete, separable metric space (D, d). Define

C( A× F ) = E [N( A) 1{X ∈ F }]
for all bounded Borel sets A ⊆ D and all F ∈ N lf.

Moment measures may not exist, but C always defines a proper measure, the Campbell
measure of Kummer and Matthes (1970).

Theorem 16.4
The function C of Definition 16.4 can be extended uniquely to a σ -finite measure on the product
σ -algebra of B(D) and N lf, the (first-order) Campbell measure.

Since C( A × Nlf) = EN( A) = M( A) for any Borel set A, it follows that C is finite if and
only if M is also finite.

Rephrased in integral terms, Theorem 16.4 states that

E

[∑
x∈X

g(x, X)

]
=

∫
D

∫
Nlf

g(x, X ) dC(x, X ) (16.3)

for any measurable function g : D × Nlf → R, which is either nonnegative or integrable
with respect to the Campbell measure.

16.1.4 Reduced and Higher-Order Campbell Measures

Second- and higher-order moment measures are defined by considering N( A1), N( A2), . . .

jointly.

Definition 16.5
Let X be a point process on a complete, separable metric space (D, d). Define, for n ∈ N, and bounded
Borel subsets A1, . . . , An of D,

Mn( A1 × · · · × An) = E [N( A1) · · · N( An)] .

If all Ai ≡ A are equal, Mn( A × · · · × A) = M( A)n. Since the Borel rectangles form a
semiring generating the Borel product σ -algebra, provided Mn is finite, it can be extended
uniquely to a σ -finite measure on the product σ -algebra, the nth order moment measure of X.
Its integral representation states that

E

[ ∑
x1,...,xn∈X

g(x1, . . . , xn)

]
=

∫
D

· · ·
∫

D
g(x1, . . . , xn) d Mn(x1, . . . , xn)

for any measurable function g : Dn → R that is either nonnegative or integrable with respect
to Mn, provided that Mn exists as a σ -finite measure.

Example 16.7
Let A and B be bounded Borel sets. The covariance of the random variables counting
the number of points in A and B can be written in terms of the second-order moment

© 2010 by Taylor and Francis Group, LLC



P1: Rajesh Sharma

February 23, 2010 12:22 C7287 C7287˙C016

Spatial Point Process Theory 271

measure as
Cov(N( A), N(B)) = M2( A× B) − M( A) M(B).

In particular,
var(N( A)) = M2( A× A) − M( A)2.

Example 16.8
For the binomial point process of Example 16.1, as N( A1) N( A2) = ∑n

i=1 1{Xi ∈ A1 ∩ A2} +∑n
i=1

∑
j �=i 1{Xi ∈ A1; Xj ∈ A2},

M2( A1 × A2) = n
|A1 ∩ A2|

|D| + n(n − 1)
|A1| |A2|

|D|2 .

Next, consider the homogeneous Poisson process of Example 16.2. As the total number of
points is Poisson distributed with mean λ |D|,

M2( A1 × A2) = E [E [N( A1) × N( A2)] | N(D)] = λ |A1 ∩ A2| + λ2 |A1| |A2|.

In the above example, M2 was computed by distinguishing between pairs of identical
and pairs of distinct points. If only the latter type are taken into consideration, we obtain
the nth order factorial moment measure μn defined by the integral representation

E

[ �=∑
x1,...,xn∈X

g(x1, . . . , xn)

]
=

∫
D

· · ·
∫

D
g(x1, . . . , xn) dμn(x1, . . . , xn) (16.4)

for all measurable functions g : Dn → R
+ (see, e.g., Mecke (1976)). Standard measure-

theoretic arguments imply Equation (16.4) holds true for any g that is integrable with
respect to μn. The sum is over all n-tuples of distinct points. For n = 1, μ1 = M1 = M,
the first-order moment measure. We shall say that the nth order factorial moment measure
exists if μn( A) is finite for all bounded Borel sets A ⊆ D.

Example 16.9
Let A1, A2 be Borel subsets of some compact set D ⊆ R

2. Further to Example 16.8, the
homogeneous Poisson process with intensity λ has second-order factorial moment measure

μ2( A1 × A2) = λ2 |A1| |A2|.
For the binomial point process with n points,

μ2( A1 × A2) = n(n − 1) |A1| |A2|/|D|2.

If μn is absolutely continuous with respect to some n-fold product measure νn on Dn,
then Equation (16.4) can be written as

E

[ �=∑
x1,...,xn∈X

g(x1, . . . , xn)

]
=

∫
D

· · ·
∫

D
g(x1, . . . , xn) ρn(x1, . . . , xn) dν(x1) . . . dν(xn).

The Radon–Nikodym derivativeρn ofμn is referred to as its product density, andρn(x1, . . . , xn)
dν(x1) . . . dν(xn) may be interpreted as the joint probability of a point falling in each of the
infinitesimal regions centered at x1, . . . , xn.

Example 16.10
Further to Example 16.9, the homogeneous Poisson process with intensity λ has constant
second-order product density ρ2(x1, x2) = λ2, while for the binomial point process with
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FIGURE 16.5
Estimated pair correlation functions of Kaluzhskie Zaseki Forest data (solid lines). (Left) Trees with diameter less
than 15 cm, (right) those with diameter larger than 25 cm. The dashed lines are the pair correlation functions of a
homogeneous Poisson process.

n points,
ρ2(x1, x2) ≡ n(n − 1)/|D|2.

Example 16.11
We return to the setup of Example 16.4, and make the further assumptions that the
(unmarked) point patterns Xs and Xl of small and large trees, respectively, are isotropic
and that first- and second-order product densities exist. Then ρ1 ≡ λ, the intensity, and
ρ2(x1, x2) = ρ2(||x1 − x2||) is a function only of the distance r = ||x1 − x2|| between the
points. Scaled by intensity, the estimated pair correlation functions

g(r ) = ρ2(r )/λ2

of both patterns are plotted in Figure 16.5. As g(r ) greater than 1 indicates a higher proba-
bility of finding a pair of r -close points than for a homogeneous Poisson process with the
same intensity, the left-hand panel of Figure 16.5 indicates clustering of small (young) trees.
The trees having larger diameters avoid each other up to about 2 cm. The mode around
4 cm reflects the typical interpoint distance, which also explains the cyclic behavior of the
graph. Note that this interpretation differs somewhat from our earlier interpretation of the
empty space function for these data (right-hand panel of Figure 16.3). Later chapters will
discuss in more detail the way in which different summary descriptions of point processes
can yield different insights when used as tools for data analysis.

Higher-order Campbell measures can be defined similarly (Kallenberg, 1975), for instance

C2( A1 × A2 × F ) = E [N( A1) N( A2) 1{X ∈ F }]
for bounded Borel sets Ai , i = 1, 2, and F ∈ N lf.

To conclude this survey of Campbell-type measures, let us consider the concept of re-
duction. The basic idea is to single out each point in a configuration and consider the
remaining pattern from this point’s perspective. Therefore, reduced Campbell measures
are useful tools to describe in a rigorous way the conditional distribution of a point process
given that it places mass on a certain (marked) point and, dually, its behavior at a given
location conditioned on the pattern elsewhere. A more detailed development of this idea
will be given in the next section.
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Definition 16.6
Let X be a simple point process on the complete, separable metric space (D, d). Define

C !( A× F ) =
∫

Nlf

∑
x∈X

1{x ∈ A} 1{X \{x} ∈ F } dP(X ) = E

[ ∑
x∈X∩A

1{X\{x} ∈ F }
]

for all bounded Borel sets A ⊆ D and all F ∈ N lf.

As the Campbell measure of Theorem 16.4, C ! can be extended uniquely to a σ -finite
measure on the product σ -algebra of B(D) and N lf, the first-order reduced Campbell measure.
Moreover, the integral representation

E

[∑
x∈X

g(x, X \ {x})
]

=
∫

D

∫
Nlf

g(x, X ) dC !(x, X ) (16.5)

holds for any measurable function g : D × Nlf → R that is either nonnegative or C !-
integrable. As for higher orders, Mecke (1979) (see also Hanisch (1982)) defined the nth-
order reduced Campbell measure of a simple point process X by

C !
n( A1 × · · · An × F ) = E

[ �=∑
x1,...,xn∈X

1A1 (x1) · · · 1An (xn) 1{X\{x1, . . . , xn} ∈ F }
]

,

or in integral terms

E

[ �=∑
x1,...,xn∈X

g(x1, . . . , xn, X\{x1, . . . , xn})
]

=
∫

D
· · ·

∫
D

∫
Nlf

g(x1, . . . , xn, X ) dC !
n(x1, . . . , xn, X )

for any measurable function g : Dn × Nlf → R
+, cf. (16.4).

16.1.5 Palm Theory and Conditioning

Henceforth, assume the first-order moment measure M exists and is σ -finite. Fix F ∈ N lf

and note that if C( A × Nlf) = M( A) = 0, so is C( A × F ). In other words, the marginal
Campbell measure with second argument fixed at F is absolutely continuous with respect
to M, so that for all A ∈ B(D),

C( A× F ) =
∫

A
Px(F ) d M(x)

for some nonnegative Borel measurable function x �→ Px(F ) on D defined uniquely up to
an M-null set. As the exceptional null set may depend on F , it is not immediately clear that
the Px(·) are countably additive. However, the topological structure imposed on D implies
that a version of the Radon–Nikodym derivatives Px(F ) can be found such that

• For fixed x ∈ D, Px(F ) is a probability distribution on (Nlf, N lf).
• For fixed F , Px(F ) is a Borel measurable function on D.

The probability distributions Px(·) thus defined are Palm distributions of X at x ∈ D, named
in honor of Palm (1943). The Radon–Nikodym approach discussed above is due to Ryll-
Nardzewski (1961).
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Palm distributions are especially useful in simplifying Campbell-type formulas. Indeed,
if Ex denotes expectation with respect to Px, (16.3) can be rewritten as

E

[∑
x∈X

g(x, X)

]
=

∫
D

∫
Nlf

g(x, X ) dPx(X ) d M(x) =
∫

D
Ex [g(x, X)] d M(x)

for any measurable function g : D × Nlf → R that is either nonnegative or C-integrable.
Heuristically speaking, recall that the distribution of a simple point process is fully de-

termined by its void probabilities. Pick some small ε > 0 and consider

P(N( A) = 0 | N(b(x, ε)) > 0) ≈ C(b(x, ε) × {N( A) = 0})
P(N(b(x, ε)) > 0)

=
∫

b(x,ε) Py(N( A) = 0) d M(y)

P(N(b(x, ε)) > 0)
.

For small ε, the numerator is approximately equal to Px(N( A) = 0) M(b(x, ε)), the denom-
inator to M(b(x, ε)). Hence, Px(N( A) = 0) may be seen as the conditional void probability
of A given that X places mass on x.

Example 16.12
The lack of dependence between the points of a Poisson process (cf. Example 16.2) implies a
particularly simple form for its Palm distribution. Indeed, let X be a homogeneous Poisson
process with intensity λ > 0 on R

2 and writeP for its distribution. Then, a Palm distribution
of X at x ∈ R

2 is given by P ∗ δx, the convolution of P with an atom at x.
To see this, note that since both Px and P ∗δx are simple, by Theorem 16.2 it is sufficient to

prove that their void probabilities coincide. To do so, let B be a bounded Borel set and write
vx(B) for the probability under P ∗ δx that there are no points in B, v(B) for P(N(B) = 0).
For any bounded Borel set A ⊆ R

2, by definition

C( A× {N(B) = 0}) = λ

∫
A
Px(N(B) = 0) dx.

On the other hand,

C( A× {N(B) = 0}) = C( A\B × {N(B) = 0}) = λ |A\B| v(B) = λ

∫
A\B

v(B) dx

= λ

∫
A

vx(B) dx,

using the fact that for a Poisson process the random variables N( A\ B) and N(B) are
independent. Since A was chosen arbitrarily, Px(N(B) = 0) = vx(B) for almost all x.

Example 16.13
For a simple, stationary marked point process on D = R

2 × R
+, as considered in Exam-

ple 16.6, for all Borel subsets B of R
+ and y ∈ R

2, let F y
B = {X : (y, m) ∈ X for some m ∈ B}

be the event of finding a point at y with mark in B. Because of the stationarity, a version
of Palm distributions can be found that are translates of a single probability distribution,
P(y,m)({TyX : X ∈ F }) = P(0,m)(F ) (almost everywhere). An application of the Campbell
theorem for g((y, m), X ) = 1{y ∈ A; X ∈ F y

B} yields

λ

∫
A

∫ ∞

0
P(y,m)

(
F y

B

)
dνM(m) dy = λ

∫
A

∫ ∞

0
P(0,m)

(
F 0

B

)
dνM(m) dy = λ νM(B) |A|

for all bounded Borel sets A. Thus, the mark distribution νM may be interpreted as the
probability distribution of the mark at an arbitrarily chosen point.
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Higher-order and reduced Palm distributions can be defined in a straightforward fashion.
For example, suppose that the second-order moment measure M2 exists. Then, Jagers (1973)
defined second-order Palm distributions Px1,x2 (F ) that satisfy

C2( A1 × A2 × F ) =
∫

A1

∫
A2

Px1,x2 (F ) d M2(x1, x2)

for all Borel sets Ai , i = 1, 2, and F ∈ N lf. To obtain a reduced Palm distribution, replace Mn

by μn and Cn by C !
n (Mecke, 1979; Hanisch, 1982). The equivalent integral representations

hold as well. In particular, Equation (16.5) can be rephrased as

E

[∑
x∈X

g(x, X \ {x})
]

=
∫

D

∫
Nlf

g(x, X ) dP !
x(X ) d M(x) =

∫
D

E!
x [g(x, X)] d M(x),

where P !
x is a reduced Palm distribution at x ∈ D.

Example 16.14
From Example 16.12, it follows immediately that a reduced Palm distribution of a homoge-
neous planar Poisson process with intensity λ is its distribution P . This fundamental prop-
erty is a consequence of the Slivnyak–Mecke theorem stating that the homogeneous Poisson
process is characterized by reduced Palm distributions that are translates of a single prob-
ability distribution P !

x({TxX : X ∈ F }) = P !
0(F ) for almost all x and P !

0 = P (Jagers, 1973;
Kerstan and Matthes, 1964; Mecke, 1967; Slivnyak, 1962). Hence, the reduced Campbell
measure

C !( A× F ) = λ

∫
A
P !

x(F ) dx = λP(F ) |A|,

where A ⊆ R
2 is a bounded Borel set and F ∈ N lf is a product measure.

The analog of the empty space function (16.1) in a Palm context is the nearest-neighbor
distance distribution function G. Let X be a simple, stationary point process with locations in
R

d . Then, for any r ≥ 0,
G(r ) = P !

x(d(x, X) ≤ r )

is the probability that X places at least one point within distance r of some arbitrarily chosen
x ∈ R

d . As translation invariance is inherited by Palm distributions, G(r ) is well defined
and does not depend on the choice of x.

Example 16.15
Estimated nearest-neighbor distance distribution functions for young and established trees
in the Kaluzhskie Zaseki Forest data are given in Figure 16.6 and are compared to the G-
function of a Poisson process with the same expected number of points (cf. Example 16.12).
For small (young) trees, small distances to the nearest neighbor occur with a higher proba-
bility than under the Poisson model. Such a behavior is typical for clustered patterns with
groups of nearby points separated by gaps. In contrast to the empty space distribution, the
G-graph for larger trees differs from its Poisson counterpart in that up until about r = 4 cm,
G(r ) is smaller than under the Poisson model, indicating repulsion at such range; beyond
this range, the nearest-neighbor distance distribution is larger than what would be expected
if there were no spatial interaction with the steep increase beyond r = 4 cm reflecting the
preferred interpoint separation.

The ratio

J (r ) = 1 − G(r )
1 − F (r )

,
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FIGURE 16.6
Estimated nearest-neighbor distance distribution functions of Kaluzhskie Zaseki Forest data (solid lines). (Left)
Locations of trees with diameter less than 15 cm, (right) those with diameter larger than 25 cm. The dashed lines
are the nearest-neighbor distance distribution functions for homogeneous Poisson processes with, on average, the
same number of points-per-unit area as the data.

defined for all r ≥ 0 such that F (r ) < 1, compares the void probabilities of closed balls
b̄(x, r ) under P !

x and P . The advantage of considering the ratio is that no reference to the
intensity of some Poisson process needs to be made. Indeed, values less than 1 indicate that
the size of empty spaces tends to be larger than the distance between nearest-neighbor pairs
(clustering), whereas values exceeding 1 suggest a more regular pattern (van Lieshout and
Baddeley, 1996). The left and center panels of Figure 16.7 confirm the interaction structure
implied by the nearest-neighbor distance distribution function. By way of illustration, the
J-function of all locations regardless of the mark is shown as well. It indicates clustering at
the smallest scales, has a repulsion peak around 2 to 3 cm, then decreases.

Functions, such as F, g, G, or J, provide valuable information and their empirical coun-
terparts are useful tools for data analysis, as discussed in later chapters. Nevertheless, no
such low-dimensional function fully characterizes the distribution of the process and it is
wise to plot several to grasp different aspects of the underlying distribution.

As we have seen, Palm distributions can be interpreted as conditional distributions given
that there is mass at some fixed point. We now turn to describing the dual notion of the
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FIGURE 16.7
Estimated J-functions of Kaluzhskie Zaseki Forest data (solid lines). (Left) Locations of trees with diameter less
than 15 cm, (center) those with diameter larger than 25 cm, and (right) all tree locations. The dashed lines are the
J-functions of a homogeneous Poisson process.
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probability mass of some fixed point, conditional on knowing the full realization of the
point process elsewhere.

Let X be a simple point process on a complete, separable metric space for which the
first-order moment measure M(·) exists as a σ -finite measure. Furthermore, assume that
for any fixed bounded Borel set A, the marginal reduced Campbell measure C !( A × ·) is
absolutely continuous with respect to the distribution P of X. Then

C !( A× F ) =
∫

A
P !

x(F ) d M(x) =
∫

F
Λ( A; X ) dP(X ) (16.6)

for some N lf-measurable function Λ( A; ·), specified uniquely up to a P-null set. If Λ(·; X )
admits a Radon–Nikodym derivative λ(·; X ) with respect to some Borel measure ν on D,

C !( A× F ) =
∫

F

∫
A
λ(x; X ) dν(x) dP(X ) =

∫
A

E [1F (X) λ(x; X)] dν(x).

Replacing the indicator function 1A(x) 1F (X ) by arbitrary nonnegative functions, we obtain
the following definition.

Definition 16.7
Let X be a simple point process on a complete, separable metric space (D, d) equipped with Borel
measure ν. If for any measurable function g : D × Nlf → R

+,

E

[∑
x∈X

g(x, X \ {x})
]

=
∫

D
E [g(x, X) λ(x; X)] dν(x)

for some measurable function λ : D × Nlf → R
+, then X is said to have Papangelou conditional

intensity λ (Papangelou, 1974).

From a heuristic point of view, by Equation (16.6), d P !
x(X ) d M(x) = λ(x; X ) dP(X ) dν(x);

hence, λ(x; X ) dν(x) can be interpreted as the infinitesimal probability of finding a point of
X at the infinitesimal region centered at x conditional on the event that X and X agree on
the complement of this region. As we shall see in the next section, conditional intensities
are especially useful for finite point processes.

Example 16.16
Further to Example 16.14, note that for a homogeneous planar Poisson process with inten-
sity λ,

C !( A× F ) = λP(F ) |A| =
∫

F
[λ |A|] dP(X )

so that Λ( A; X ) ≡ λ |A| is a Papangelou kernel. This kernel has density λ with respect
to Lebesgue measure and does not depend on either x or X , as indeed one would have
anticipated because of the strong independence properties of the Poisson process.

Example 16.17
Let X be a stationary, simple point process on R

d with intensity λ > 0. Suppose X admits a
conditional intensity and let g: Nlf → R

+ be a measurable function. Then,

λ

∫
A

E !
x g(X) dx =

∫
A

E [g(X) λ(x; X)] dx

for all Borel sets A. In fact the Georgii–Nguyen–Zessin formula (Georgii, 1976; Nguyen and
Zessin, 1979) states that

λ E !
x g(X) = E [g(X) λ(x; X)] (16.7)

© 2010 by Taylor and Francis Group, LLC



P1: Rajesh Sharma

February 23, 2010 12:22 C7287 C7287˙C016

278 Handbook of Spatial Statistics

for almost all x ∈ R
d . Thus, expectations with respect to P may be translated into reduced

Palm expectations and vice versa.

16.1.6 Finite Point Processes

Most point patterns encountered in practice are observed in a bounded region. Sometimes
this region is dictated by the application; more often, the spatial process of interest extends
over a space that is too large to be mapped exhaustively and data are recorded in a smaller
“window” chosen for convenience. In any case, the resulting map contains a finite number
of points.

The distribution of point processes whose realizations are almost surely finite can be
described as follows (Daley and Vere-Jones, 1988; Reiss, 1993). For convenience, suppose
that (D, d) is equipped with a Borel measure ν and assume 0 < ν(D) < ∞. Then, it suffices
to specify

• A discrete probability distribution ( pn)n∈N0 for the number of points
• A family of symmetric probability densities πn(x1, . . . , xn)n∈N with respect to the

n-fold product of ν for the points themselves (i.e., for point locations, and marks if
applicable)

The symmetry requirement for the πn is needed to make sure that the patterns generated
by the πn are permutation invariant, in other words, do not depend on the order in which
their points are listed.

It should be noted that for many point processes, pn cannot be expressed in closed form.
If it can, the model specification is algorithmic, so that realizations are easily obtained. Note
that if ν is diffuse, the point process is simple.

Janossy densities (Janossy, 1950) are defined in terms of ( pn, πn)n∈N0 , as

jn(x1, . . . , xn) = n! pn πn(x1, . . . , xn), n ∈ N0. (16.8)

In an infinitesimal sense, jn(x1, . . . , xn) dν(x1) . . . dν(xn) is the probability of finding exactly
n points, one at each of infinitesimal regions centered at x1, . . . , xn. For n = 0, Equation (16.8)
is conventionally read as j0(∅) = p0. As

∫
D · · · ∫D jn(x1, . . . , xn) dν(x1) . . . dν(xn) = n! pn, one

may retrieve pn and, hence, πn from jn.

Example 16.18
For the binomial point process introduced in Example 16.1, pm = 1{m = n} for some fixed
n ∈ N. As the points are uniformly and independently scattered over some compact set D,
πn ≡ |D|−n with respect to Lebesgue measure. For m �= n, πn may be defined arbitrarily.

The homogeneous Poisson process of Example 16.2 is described by pn = exp [−λ |D|]
(λ |D|)n/n! and, for each n ∈ N0, πn ≡ |D|−n with respect to the n-fold product of Lebesgue
measures. Consequently, jn = λn exp [−λ |D|] .

Although in most applications it is not realistic to assume that points are scattered ran-
domly, Poisson processes are supremely useful as benchmarks. Indeed, one may construct
a wide range of point process models by specifying their probability density (Radon–
Nikodym derivative) with respect to a Poisson process with finite, diffuse intensity mea-
sure ν. However, not all finite point processes are absolutely continuous with respect to a
given Poisson model; counterexamples on the plane equipped with Lebesgue measure are
those that place points deterministically or in equidistant pairs.
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Let X be a point process defined by its probability density f . The probability of the event
{N(D) = n} is

pn = e−ν(D)

n!

∫
D

· · ·
∫

D
f (x1, . . . , xn) dν(x1) . . . dν(xn)

for each n ∈ N, with p0 = e−ν(D) f (∅) equal to the probability of the empty configuration ∅.
If pn > 0, conditionally on X containing exactly n points, their joint probability distribution
is proportional to f (x1, . . . , xn). It follows that jn(x1, . . . , xn) = e−ν(D) f (x1, . . . , xn) is also
proportional to f .

Example 16.19
Return to the setup of Example 16.2, and let ν be Lebesgue measure restricted to a compact
set D ⊆ R

2. A comparison of the Janossy densities of the homogeneous Poisson process X
with intensity λ to those of a unit intensity Poisson process yields that X must have density

f (x1, . . . , xn) = exp [(1 − λ)|D|] λn, n ∈ N0,

with respect to the distribution of the unit intensity Poisson process (see also Example 16.18).
It is not hard to verify that f indeed defines the distribution of X.

The binomial point process has density

f (x1, . . . , xn) = n! e |D| |D|−n

for configurations consisting of n points, and f ≡ 0 on {N(D) �= n} with respect to the
distribution of a unit intensity Poisson process on D.

For finite point processes that are defined in terms of a density with respect to some
Poisson process, conditional intensities exist and are easy to compute (Ripley and Kelly,
1977).

Theorem 16.5
Let X be a finite point process on a complete, separable metric space (D, d) with probability density
f with respect to the distribution of a Poisson process on D with finite, diffuse intensity measure ν

and assume that f (X ) > 0 implies f (X ′) > 0 for all X ′ ⊆ X . Then, X has Papangelou conditional
intensity

λ(x; X ) = f (X ∪ {x})
f (X )

(16.9)

for x ∈ D\X and configurations X such that f (X ) > 0.

For processes that are absolutely continuous, the conditional intensity provides a fourth
way of defining the distribution. Indeed, by Equation (16.9),

f ({x1, . . . , xn}) ∝
n∏

i=1

λ(xi ; {x1, . . . , xi−1})

regardless of the order in which the points are labeled.
In summary, finite point processes are usually easier to deal with than most infinite ones.

Their distribution is known once we have specified either ( pn, πn)n∈N0 or jn, n ∈ N0. If
the point process is absolutely continuous with respect to a Poisson process, alternative
modeling strategies are to specify f or λ(·; ·).
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16.1.7 Gibbs Measures by Local Specification

Infinite point processes are not easily specified by a density with respect to a (homoge-
neous) Poisson process. Indeed, even homogeneous Poisson processes on R

d with different
intensities are not absolutely continuous with respect to each other (see, e.g., van Lieshout
(2000)). Nevertheless, one may try to define a point process X by specification of a family
of conditional densities for the finite restrictions of X to bounded Borel sets.

Again, assume that (D, d) is a complete, separable metric space equipped with a diffuse,
locally finite Borel measure ν. Define a family of probability densities fB(X ∩ B | X ∩ Bc),
B a bounded Borel set, with respect to the law of a Poisson process with intensity measure
ν restricted to B. Here X ranges through Nlf. Then, for F ∈ N lf,

∞∑
n=0

e−ν(B)

n!

∫
B

· · ·
∫

B
1F ({x1, . . . , xn} ∪ (X ∩ Bc)) fB(x1, . . . , xn | X ∩ Bc) dν(x1) · · · dν(xn)

can be interpreted as the probability that X falls in F conditional on the event {X ∩ Bc =
X ∩ Bc}.

It is not at all obvious that the family fB(· | ·) defines a point process distribution P . A
necessary condition is that the Dobrushin–Landford–Ruelle equations

P(F ) =
∫ ∞∑

n=0

e−ν(B)

n!

∫
B

· · ·
∫

B
1F ({x1, . . . , xn} ∪ (X ∩ Bc))

fB(x1, . . . , xn | X ∩ Bc) dν(x1) · · · dν(xn) dP(X ) (16.10)

are satisfied for all F ∈ N lf and all bounded Borel sets B ⊆ R
d , in which case P is said to

be a Gibbs point process with local specification fB(· | ·).
An extensive overview of conditions for the existence of a solution to Equation (16.10)

was given in Preston (1976), typically phrased in terms of bounds on the log conditional
densities or intensities, and restrictions on the points in Bc that may affect fB . For later
developments, see, for example, Georgii and Häggström (1996) or Glőtzl (1980). Note that
even if there is a solution, it may not be unique, a phenomenon known as “phase transition”
(see Preston (1976)).

Example 16.20
Let ν be Lebesgue measure on R

2 and consider the area interaction process defined by

fB(X ∩ B | ∅) = αB(∅) βn(X ) exp [−β |Ur (X )|]
for bounded Borel sets B in the plane. Here, the parameter β is assumed to be strictly
positive, Ur (X ) = ∪xi ∈X b̄(xi , r ) is the union of closed balls around each of the points in X ,
and αB(∅) is the normalizing constant that makes fB(· | ∅) a probability density.

Note that a ball of radius r intersects B only if its center is at most r away from the
boundary of B or, in other words, falls in B⊕r = {b + c : b ∈ B; c ∈ b̄(0, r )}. Hence, we may
define, for any configuration X and bounded Borel set B ⊆ R

2,

fB(X ∩ B | X ∩ Bc) = αB(X ∩ Bc) βn(X ) exp [−β |Ur (X ) ∩ B⊕r |] ,

where again αB(X ∩ Bc) is the normalizing constant. It can be shown that there exists a sta-
tionary solution to the Dobrushin–Landford–Ruelle equations (Baddeley and van Lieshout,
1995). Moreover, it is known that multiple solutions exist when β is large, whereas the so-
lution is unique for β small (Ruelle, 1971; see also Chayes, Chayes, and Kotecky 1995;
Dereudre, 2008; and Georgii and Häggström, 1996). It is plausible that the occurrence of a
phase transition is monotone in β, but to the best of our knowledge no rigorous proof exists
to date.
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carum Hungarica, 6:81–90, 1971.
J. Neyman. On a new class of “contagious” distributions applicable in entomology and bacteriology.

Annals of Mathematical Statistics, 10:35–57, 1939.
X.X. Nguyen and H. Zessin. Integral and differential characterization of the Gibbs process. Mathema-

tische Nachrichten, 88:105–115, 1979.
T. Norberg. Existence theorems for measures on continuous posets, with applications to random set

theory. Mathematica Scandinavica, 64:15–51, 1989.
C. Palm. Intensita̋tsschwankungen im Ferngesprechverkehr (in German). Ericsson Techniks, 44:1–189,

1943.

© 2010 by Taylor and Francis Group, LLC



P1: Rajesh Sharma

February 23, 2010 12:22 C7287 C7287˙C016

282 Handbook of Spatial Statistics

F. Papangelou. The conditional intensity of general point processes and an application to line pro-
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17.1 Model Construction

This chapter describes various classes of parametric point process models that are useful
for scientific work. In any particular application, there will generally be an underlying
physical mechanism that generates the point events that are observed, and which may
be fully or partially understood. In building a model for these events, the modeler often
seeks to represent or reflect that physical process, albeit in a highly simplified way. Thus,
for example, if the point events are the locations of seedling trees, it will be natural to
build a model that takes into account the positions of parent trees, the clustering of the
seedlings around these, and perhaps also the prevailing wind direction, even if the exact
process of seed generation and dispersal is not represented. Such a model is often termed
“mechanistic,” and has interpretable parameters that relate to physical phenomena. In
contrast, “descriptive” models aim to represent the statistical properties of the data and
their dependence on explanatory variables without necessarily worrying about the physical
mechanisms involved. For example, a model that involves inhibition between nearby events
can be used to model the positions of ants’ nests (Harkness and Isham, 1983; see also Chapter
19, Section 19.4.2 of this volume for further discussion). The inhibition reflects competition
for resources, but is not modeled directly.

It will often be simplest to construct mechanistic models of complex phenomena in terms
of simpler point process models whose properties are well understood, and which are used
as “building blocks.” The definitions of these simple models may reflect either particular
generic mechanisms for generating events (as in the hypothetical seedling example above),
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or particular statistical properties (for example, that there is inhibition between events, or
that numbers of events in disjoint sets are independent). Thus, in this chapter, we consider
some simple point process models that can be used either individually, or in combination,
to represent spatial point events. Extensive further discussion and examples of the use of
these models in applications can be found in many published overviews on spatial and
point processes, some of which are mentioned here. Cox and Isham (1980) is a relatively
informal account concentrating mostly on point processes in a single dimension, but much
of the material extends easily to the multidimensional case and is at a level comparable
to this chapter. Other early books include Daley and Vere-Jones (1988), which has recently
been revised and expanded to two volumes (Daley and Vere-Jones, 2003, 2007, with spatial
processes included in volume II) on rigorous mathematical theory; Karr (1991) and Cressie
(1993), both of which focus on statistical inference (the latter for spatial data); and Stoyan,
Kendall, and Mecke (1995) on modeling of spatial processes. More recent volumes have a
strong emphasis on spatial processes and address mathematical theory (van Lieshout, 2000),
the methodology of statistical inference (Møller and Waagepetersen, 2004, 2007), and data
analysis in a range of applied fields (Baddeley, Møller, and Waagepetersen 2006; Diggle,
2003; Illian, Penttinen, Stoyan, and Stoyan 2008; Ripley, 2004), although the distinction
between these three areas is far from absolute and there are substantial overlaps in coverage
between the cited references.

In this chapter, we will consider only processes where events occur singly, noting that
processes with multiple events are usually most easily modeled in two stages, by first
modeling the process of distinct event locations and then adding a mark to each event to
specify its multiplicity. Processes with more general marks, representing the characteristics
of each event, are also of interest and are discussed in Chapter 21.

While the specific models of spatial point processes to be described below will often be
specified via a density or a method of construction, for theoretical purposes point processes
in spaces of more than one dimension are normally specified in terms of their joint (finite
dimensional, or fidi) distributions of counts. Mathematically, we consider a point process,
N, as a random counting measure on a space S ⊆ IRd , where for spatial applications d
is most usually 2 or 3. Thus, N takes non-negative integer values, is finite on bounded
sets, and is countably additive, i.e., if A = ∪∞

i=1 Ai , then N( A) = ∑∞
i=1 N( Ai ). In order

that the process is well-defined, the definition is restricted to Borel subsets (A) of S. The
fidi distributions P(N( Ai ) = ni , i = 1, . . . , k) must then be specified consistently (for all
ni = 0, 1, . . . ; i = 1, . . . , k; k = 1, 2, . . .) for arbitrary Borel sets Ai . For more details, see
Section 16.2 above or, for example, Daley and Vere-Jones (2003).

Example 17.1
The homogeneous Poisson process: The most fundamental point process is the homoge-
neous Poisson process. For this, if A, Ai (i = 1, . . . , k) are bounded Borel subsets of S, and
are disjoint, then

(i) N( A) has a Poisson distribution with mean μ( A) = λ|A|; where |A| is the volume
(Lebesgue measure) of A.

(ii) N( A1), . . . , N( Ak) are independent random variables, for all k, and all Ai (i =
1, . . . , k).

If we consider the number of events in a ball centered at x and having volume ε, in the limit
as ε → 0, then it follows from (i) above that the probability that there is exactly one event
in the ball is λε + o(ε) and, hence, λ is the intensity (rate) of the process (i.e., the limiting
probability of an event per unit volume; see also Section 17.3). Since this limit does not
depend on the location x, the Poisson process is said to be homogeneous. Similarly, it follows
from (ii) above that the conditional intensity function, h(x), (i.e., the limiting probability of an
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FIGURE 17.1
Realisation of a two-dimensional Poisson process.

event in a ball centered at x conditionally upon there being an event at 0; see Section 16.3)
is a constant, so that h(x) = λ for all x.

The lack of dependence between events in disjoint sets, specified in (ii) above and some-
times known as the property of complete spatial randomness (CSR), is an important one for
applications and provides a baseline against which to measure clustering or inhibition of
events. For example, the pair correlation function g(x, u) (defined as the ratio of the joint
product density, ρ(2)(x, u) to the product of the intensities at x and u; see Section 16.4) is
identically one for Poisson processes, with values greater than one indicating clustering
of events and values less than one indicating inhibition. An equivalent way to view this
property is that, given the number of events in A, these events are independently and uni-
formly distributed over the set. Because, the joint probability of the event N( A) = n and
the density of the locations x1, . . . , xn is λne−λ|A|, and thus the conditional density of the
locations is n!/|A|n, which is the joint density of an ordered set of n independent variables,
each uniformly distributed on A. This result provides a simple mechanism for simulating
realizations of a spatial Poisson process in a set S. It is only necessary first to generate an
observation n, say, from a Poisson distribution with the known mean μ(S) = λ|S|, and then
to distribute the n events independently and uniformly over S. When N(S) = n is fixed,
the process obtained by locating events independently and at random over S is known as
a binomial process. In this case, if Ai (i = 1, . . . , k) are disjoint subsets of S, then the joint
distribution N( A1), . . . , N( Ak) is a multinomial distribution with index n and probabilities
|A1|/|S|, . . . , |Ak |/|S| (see also Section 16.1).

It is worth noting that this conditional uniform distribution does not mean that the
events will appear evenly distributed over A; see Figure 17.1 from which it can be seen
that a typical realization of a homogeneous Poisson process has apparent clusters as well
as large holes. Poisson processes, including the nonhomogeneous and doubly stochastic
variants introduced in the following two examples, will be discussed further in Section 17.2.

Example 17.2
Nonhomogeneous Poisson process: The Poisson process defined in Example 17.1 above
has a constant rate function and, if S = IRd , is stationary. A nonhomogeneous Poisson
process is defined similarly, but has a spatially varying intensity λ(x), so that property (i)
is replaced by

(i′) N(A) has a Poisson distribution with mean μ( A) = ∫
A λ(x) dx,
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where it is assumed that the function λ is such that μ( A) is finite for all bounded Borel sets
A ⊆ S, while property (ii) specifying independence of counts in disjoint sets is retained.
One possibility is that λ(x) might depend on some observed explanatory variable, e.g.,
λ(x) = cz(x) for a known spatial function z(x). For example, the rate of cases of an infection
would likely depend on the density of the underlying population.

Example 17.3
Doubly stochastic Poisson (Cox) process: Now suppose that the rate function of the non-
homogeneous Poisson process is allowed to be random. In particular, let Λ be a real, nonneg-
ative valued stochastic process on S. Typically {Λ(x)} is not observed. Then a Cox process
(Cox, 1955) driven by Λ is such that, given Λ, the process is a Poisson process with intensity
function Λ (and is nonhomogeneous unless Λ is a single random variable—i.e., is spatially
constant—in which case it is a mixed Poisson process; see Section 17.2). In this case,

μ( A) = E(N( A)) = EΛ

(∫
A
Λ(x) dx

)

Some further examples of spatial processes can be found in Sections 6.2 and 6.3 of Cox
and Isham (1980). The discussions of these are mainly confined to d = 2 and based on rather
specific constructions.

Many of the standard models for spatial point processes that will be described in the rest
of this chapter, and are used in applications, are based on one of the three variants of the
Poisson process described above. To obtain further models, it is often useful to start with
a standard model, and to operate on it in some way to create a new one. For example, one
could start with a process that is completely deterministic and has events in a regular lattice,
and then introduce randomness and remove some of the regularity by a combination of
randomly removing events (thinning), moving them (translation), or adding extra events
(superposition). In the following sections, each of these three operations will be discussed
in turn. First though, we consider the probability generating functional, which provides a
convenient way of representing the finite-dimensional distributions and, thus, specifying
the process.

17.1.1 The Probability Generating Functional

If Y is a nonnegative, integer-valued, random variable, the probability generating function
(pgf) GY(z) = E(zY), defined for |z| ≤ 1, is a useful tool that characterizes the distribution
of the random variable. For a point process, N, the pgf is generalized to the probability
generating functional (pgfl) defined by

G N(ξ ) = E
[

exp
{∫

S
ln ξ(x)d N(x)

}]
= E

[∏
ξ(xn)

]
(17.1)

where the xn are the locations of the events, and the function ξ belongs to a suitable family—
we require 0 ≤ ξ(x) ≤ 1 for all x ∈ S, and ξ to be identically 1 outside some bounded Borel
set (so that there are only a finite number of nonunit terms in the product above, which,
thus, converges). Use of the probability generating functional in point processes goes back
at least to Bartlett (1955, for the Cox process); see also Westcott (1972).

For a homogeneous Poisson process, the pgfl is given by

G N(ξ ) = exp
[
−λ

∫
S
{1 − ξ(x)} dx

]
,
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which reduces to the familiar pgf, exp{−λ|A|(1 − z)}, of a Poisson variable with mean λ|A|
when ξ(x) = z for x ∈ A and ξ(x) = 1 otherwise, and A ⊆ S is bounded. The form of the
pgfl can be seen as follows. Suppose that ξ is identically 1 outside the bounded set A, and
condition on the number of events in A, N( A) = n, and their locations x1, . . . , xn. Then

E
[

exp
{∫

S
ln ξ(x)d N(x)

}]

=
∞∑

n=0

e−λ|A|{λ|A|}n

n!

∫
A

dx1 . . .

∫
A

dxn
ξ(x1) . . . ξ(xn)

|A|n

= e−λ|A|
∞∑

n=0

{∫
A

dxλξ(x)
}n

/n!

= exp
[
−λ

∫
A
{1 − ξ(x)} dx

]
. (17.2)

Finally, the range of the integral can be extended from A to S as ξ ≡ 1 outside A.
The pgfl provides a complete description of a point process via its fidi distributions.

For example, if A1, . . . , Ak are disjoint, bounded subsets of S, then setting ξ(x) = zi when
x ∈ Ai (i = 1, . . . , k) in G N(ξ ), gives the joint pgf of N( A1), . . . , N( Ak). It plays a particularly
important role in proving theoretical results for point processes, for example, in deriving
the limiting results on thinning, translation, and superposition to be described below.

If we consider two independent random variables Y1 and Y2, then properties of their
sum Y = Y1 + Y2 can be easily obtained from its pgf, and it follows immediately from the
definition of a pgf, that the pgf of Y is simply the product of the pgfs of Y1 and Y2. In the
same way, if N is the superposition N = N1 + N2 of two independent point processes N1
and N2, (i.e., for all Borel sets A, N( A) = N1( A) + N2( A)), then it follows immediately that
G N(ξ ) = G N1 (ξ ) G N2 (ξ ), allowing the properties of N to be directly related to those of N1
and N2.

17.1.2 Thinning

Suppose that some of the events of a point process N are deleted to produce a thinned
process, the simplest scheme being to delete each event independently with probability
1 − p. Denote the process of retained events by Np. Then, with probability p an event at x
contributes a factor ξ(x) to the product on the right-hand side of Equation (17.1), while with
probability 1− p the factor is 1. Thus, the thinned process has pgfl G Np (ξ ) = G N(1− p (1−ξ )),
where G N is the pgfl of N.

It follows immediately that a homogeneous Poisson process of rate λ thinned in this
way is another homogeneous Poisson process with rate p λ. More interestingly, the process
of retained events is independent of the (Poisson) process of deleted events. To see this,
let N1(= Np) and N2 denote the processes of retained and deleted events, define the joint
probability generating functional of N1 and N2 by

G N1, N2 (ξ1, ξ2) = E
[

exp
{∫

S
[ln ξ1(x)d N1(x) + ln ξ2(x)d N2(x)]

}]
(17.3)

and use a conditioning argument similar to that used for Equation (17.2), and where N1( A)
given N( A) has a binomial distribution.

If N is stationary (assume here that S = IRd ) with intensity λ and conditional intensity
function h (see Example 1 above and Section 16.3), then Np is also stationary, with intensity
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λp = pλ and conditional intensity h p(x) = ph(x). For bounded Borel sets A and B, it is
straightforward to show that

Cov(N( A), N(B)) =
∫

A

∫
B

c(u − v) du dv

= λ|A∩ B| + λ

∫
A

∫
B

h(u − v) du dv − λ2|A| |B| (17.4)

where c(x) = λ{δ(x)+h(x)−λ} is the covariance density of N and δ is the Dirac delta function;
see Cox and Isham (1980, Section 2.5) for the case d = 1, and Daley and Vere-Jones (2003)
for a more general exposition. It follows that

Cov(Np( A), Np(B)) = p2Cov(N( A), N(B)) + p(1 − p)λ|A∩ B|.

Suppose now that N is not only thinned, but also rescaled so that the intensity, λ, of the
process is unchanged. Then, since we want the volume element to scale with p, the thinned-
rescaled process must have an event at p1/d x if N has an event at x that is retained. It follows
that the thinned-rescaled process Ñp, say, has conditional intensity h̃ p(x) = h(x/p1/d ) and
probability generating functional

G Ñp
(ξ ) = exp

{∫
S

p ln[1 − p (1 − ξ( p1/d x))] d N(x)
}

.

An important property of the thinned-rescaled process is that, under rather general con-
ditions (see Daley and Vere-Jones, 2007, Section 11.3, and references therein), as p → 0,
Ñp tends to a Poisson process with rate λ. This result can be obtained from the pgfl via
expansions of the integrand. Intuitively, when the events are deleted independently and
p is close to zero, retained events will tend to be far apart in the original process so that,
unless there are long-range dependencies in N, there will be little dependence left in Ñp.

17.1.3 Translation

The Poisson process also can be obtained as a limit if the events of a fairly arbitrary point
process on S = IRd are translated independently, and the displacements of distinct events
are identically distributed with a nonlattice distribution, as long as the distribution of the
displacements is sufficiently dispersed that the events of N are thoroughly mixed and the
dependencies between them lost. The same result can be obtained by repeatedly translating
each event a large number of times. Proofs, again based on the use of pgfls, and further
references can be found in Daley and Vere-Jones (2007, Section 11.4).

The translated process, Nd say, can be viewed as a rather trivial kind of cluster process
(see Section 17.3) in which there is just one event per cluster. The pgfl is given by G Nd (ξ ) =
G N(E{ξ(· + X)}) where X is a random displacement.

If N is stationary with intensity λ and conditional intensity h, then the translated process
Nd is also stationary with rate λ, and has conditional intensity

hd (x) =
∫

S
h(x − u) fD(u) du,

where fD is the density of the difference D = X1 − X2 between two independent displace-
ments. Second-order properties follow. If N is a homogeneous Poisson process, then the
translated process is another Poisson process.
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17.1.4 Superposition

The third operation that gives rise in the limit to a Poisson process is that of superposition.
Taken together, these limiting results on thinning, translation, and superposition explain
the central role of the Poisson process in point process theory and as a simple approximating
model in applications.

The limiting results on superpositions (see Daley and Vere-Jones, 2007, Section 11.2, for
careful discussion and further references) are direct analogs for point processes of the central
limit theorem for sums of random variables. Suppose, first, that n independent copies of a
stationary point process, N, on S = IRd and having intensity λ, are superposed, and that
the superposed process is rescaled to keep the intensity of the superposition constant as n
increases (the scale must be dilated by n1/d ). Then, as n → ∞, the rescaled superposition
tends to a homogeneous Poisson process with intensity λ.

As with the central limit theorem for random variables, this limiting Poisson result holds
not only if the component processes are independent and identically distributed, but more
generally. In broad terms, the processes do not have to be identically distributed, but must
be such that they are suitably sparse (in the rescaled superposition, it must be sufficiently
unlikely that there will be more than one point from any component process in any bounded
set) with no one process dominating the rest. The processes do not have to be independent
as long as the dependencies between them are relatively weak. If, however, the component
processes are independent, then, in the rescaled superposition outlined above, the number
of events in A is, approximately, a sum of independent indicator variables and, thus, has,
approximately, a Poisson distribution.

Suppose that N1, . . . , Nk are independent, stationary processes with intensities λi , con-
ditional intensity functions hi (x), and corresponding covariance densities ci (x) = λ{δ(x) +
h(x) − λ} for i = 1, . . . , k (see Section 17.1.2). Then their superposition N = N1 + · · · + Nk

has rate λ = ∑k
i=1 λi and covariance density

c(x) =
k∑

i=1

ci (x) =
k∑

i=1

ρi {δ(x) + hi (x) − λi }.

It follows that

h(x) = λ + λ−1
k∑

i=1

λi {hi (x) − λi },

from which second-order properties can be deduced. It can be seen that if N1, . . . , Nk are
Poisson processes, then their superposition is also a Poisson process.

17.2 Poisson Processes

In Example 17.1, the homogeneous Poisson process was introduced. This is the most fun-
damental point process, in part because it has the property of complete spatial randomness
in that there are no interactions between the events. It can therefore be used as the base
against which clustering and inhibition of events are measured. In addition, its “central
limit”-like role as the limiting process under wide classes of thinning, translation, and su-
perposition operations, means that it plays an important part in point process theory. The
lack of dependence between events means that the properties of the Poisson process are
generally well understood and simple to derive, and, therefore, it is used as a starting point
in the construction of many more complex models.
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For a Poisson process, the summary statistics often estimated in applications are particu-
larly simple. For a general stationary process, satisfying appropriate regularity conditions
and with intensity λ, the K function (Ripley, 1976, 1977; and see also Section 18.6) is such that
λK (r ) is the mean number of events within a distance r of an arbitrary event. Alternatively,
K can be defined in terms of an integral of the pair correlation function g(x, u) = ρ(2)x, u)/λ2.
Thus, suppose that N is a stationary Poisson process with S = IRd , and intensity λ, so that
N( A) has a Poisson distribution with mean λ|A|. Let bd = πd/2/Γ (1 + d/2) denote the
volume of a ball of unit radius in IRd , so that for d = 1, 2, and 3, bd = 2, π and 4π/3,
respectively. Then, the K function is given by K (r ) = bdrd , and defining the L function by
L(r ) = d

√
K (r )/bd , it follows that L(r ) = r , for all r > 0. As a basis for comparison, there-

fore, an L function that increases more slowly than linearly, at least for small values of r ,
indicates inhibition between neighboring events, while faster than linear increases indicate
clustering.

The conditional independence property of the Poisson process means that the distribu-
tion of the distance R1 to the nearest event is the same from either an arbitrary point or an
arbitrary event and, therefore, that the empty space function F , and nearest neighbor dis-
tribution function G, coincide and are given by F (r ) = G(r ) = 1 − exp{−λbdrd}. It follows
that the J function, defined by J (r ) = (1 − G(r ))/(1 − F (r )), is identically one for all values
of its argument (see Sections 16.2 and 16.5 for further discussion).

More generally, let Rk be the distance to the kth nearest event (k = 1, 2, . . .) from some
arbitrary origin, and let Ak = bd Rd

k be the corresponding volume. It follows from the
definition of the Poisson process that the volumes A1, and Ak+1 − Ak, (k = 1, 2, . . .) are
independent and exponentially distributed with parameter λ, and therefore, that Ak and
Rd

k have gamma distributions with the same shape parameter k, and scale parameters λ

and λbd respectively, from which the distribution of Rk can be easily deduced. This result
provides an alternative way of constructing realizations of a spatial Poisson process: first
generate a sequence of independent exponential variates that can be used to determine the
distances of the events from some arbitrary origin, and then locate these events indepen-
dently and uniformly over spheres of radius Rk , k = 1, 2, . . . . For example, when d = 2,
the events are uniformly distributed on a sequence of concentric circles, where the areas of
the annuli between the circles are exponentially distributed. This construction is the spatial
analog of that for a one-dimensional Poisson process in terms of a sequence of independent
exponentially distributed intervals; see Cox and Isham (1980, Section 6.2) and Quine and
Watson (1984).

17.2.1 Nonhomogeneous Poisson Process

The nonhomogeneous Poisson process (see Example 17.2) shares many of the nice properties
of the homogeneous Poisson process. In particular, there are still no interactions between
events, but it has the great advantage that the intensity can vary over the underlying space
S. It is straightforward to extend the derivations given in Section 17.1 to show that

• given N( A) = n, the n points are independently distributed over A with density
λ(x)/μ( A) for x ∈ A;

• the pgfl is given by

G N(ξ ) = exp
[
−

∫
S
{1 − ξ(x)} λ(x) dx

]
.

As in the homogeneous case, the former result provides a convenient mechanism for sim-
ulating realizations of a nonhomogeneous Poisson process in a set A, by first generating
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the number of events (from a Poisson distribution with mean μ( A)) and then distributing
these events independently over A with density λ(·)/μ( A).

The definition of Ripley’s K function has been extended to nonstationary processes
by Baddeley, Møller, and Waagepetersen (2000). In particular, they define the concept of
second-order intensity reweighted stationarity, together with a corresponding intensity
reweighted K function, effectively obtained by replacing the product density ρ(2)(x, u) by
the pair correlation g(x, u) = ρ(2)(x, u)/(λ(x)λ(u)) (see also Section 18.6.2). For a nonhomo-
geneous Poisson process, the intensity reweighted K function, K I say, has the same form
as the K function for the homogeneous Poisson process, i.e., K I (r ) = bdrd .

17.2.2 The Cox Process

For this process, defined in Example 17.3, properties are obtained by first conditioning on
the random rate process Λ. Thus, for example,

E(N( A)|{Λ(x) = λ(x)}) = var(N( A)|{Λ(x) = λ(x)}) =
∫

A
λ(x) dx,

so that
E(N( A)) =

∫
A

EΛ(Λ(x)) dx.

Also,

var(N( A)) =
∫

A
EΛ(Λ(x)) dx + varΛ

(∫
A
Λ(x) dx

)

from which it follows that the counts in a Cox process are always overdispersed unless∫
A Λ(x) dx is a constant for all A. The probability generating functional is given by

G N(ξ ) = EΛ

(
exp

[
−

∫
S
{1 − ξ(x)}Λ(x) dx

])
.

There are many special cases, and some examples follow.

1. Λ(x) does not depend on x. In this case, the Cox process is a mixed Poisson process.
Each realization is then indistinguishable from a homogeneous Poisson process,
but with an intensity that varies between realizations. More generally, if {Ai , i =
1, 2, . . .} is a fixed and known partition of S, let Λ(x) = Λi for x ∈ Ai and i = 1, 2, . . .,
where the Λi are independent random variables.

2. Λ(x) = exp Z(x) where Z is a Gaussian random field on S = IRd . In this case, N
is a log Gaussian Cox process (Møller, Syversveen, and Waagepetersen, 1998); its
properties are completely determined by the first- and second-order properties of
Z (which must be such that E(N( A)) = ∫

A EZ(e Z(x)) dx < ∞ for all A ⊆ S).
3. Λ is a stationary process with mean μΛ and autocovariance function γΛ. Then

E(N( A)) = μΛ|A| and var(N( A)) = μΛ|A| +
∫

A

∫
A
γΛ(u − v)du dv,

and thus the Cox process has intensity μΛ and, by comparison with Equation (17.4)
(or directly from the definition), conditional intensity function

h(u) = [
γΛ(u) + μ2

Λ

]
/μΛ.

Thus we see that, when Λ is stationary, its autocovariance function can be deter-
mined from the conditional intensity of the point process. This result may be of
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interest in applications where scientific interest focuses on properties of the unob-
served driving process Λ. Note, however, that if only one realization of the process
is observed, then the Cox process cannot be distinguished from the nonhomo-
geneous Poisson process, so that the choice between these models in a partic-
ular application will depend on subject matter considerations (see Møller and
Waagepetersen, 2004, Section 5.1 for a brief discussion).

4. Λ is a shot noise process driven by an unobserved Poisson process N0, with

Λ(x) = γ + α

∫
S

e−κ||x−u||d N0(u),

where || · || denotes Euclidean distance in IRd , and α, γ , and κ are nonnegative
parameters.

For a more general shot noise process, the exponentially decaying function at-
tached to each event in the underlying Poisson process can be replaced by an al-
ternative kernel function. For example, for the Matérn process (Matérn, 1960, 1986),
γ = 0 and the kernel is a nonzero constant if ||x − u|| ≤ r0 and is zero otherwise.
For a yet more general version, the overall weights attached to each of these un-
derlying events can be random (see Møller and Waagepetersen (2004, Section 5.4)
and Møller and Torrisi (2005)).

17.3 Poisson Cluster Processes

In their most general formulation, cluster processes are constructed as a superposition of
simpler processes. We start with an unobserved point process Nc of cluster centers, attached
to each of which is a subsidiary process or cluster of events, where Nx denotes the cluster
generated by a center at x. The observed process, N, is the superposition of all the clustres
(which can, if required, include events at the cluster centers). We assume for simplicity that
all the processes are in S = IRd . It follows, for example, that

E(N( A)) =
∫

S
E{Nx( A)}E{d Nc(x)}.

The processes resulting from the thinning and translation operations discussed in Sections
17.1.2 and 17.1.3 above can both be considered as simple cluster processes. With thinning,
each cluster either consists of a single event at the cluster center (with probability p) or
is empty. For translation, all clusters are of size one with independent and identically
distributed displacements of the events from their cluster centers.

To make useful progress, we will assume that the clusters, relative to their cluster cen-
ters, are independent and identically distributed, and are independent of Nc . In this case,
conditional upon the process of cluster centers, {xi }, the superposition has pgfl

∏
i

E
[

exp
{∫

S
ln ξ(x)d Nxi (t)

}]
=

∏
i

Gs(ξ ; xi )

where Gs(ξ ; xi ) is the pgfl for a cluster centered at xi and, thus, unconditionally,

G N(ξ ) = Gc(Gs(ξ ; ·)).
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In some applications (for example, relating to the locations of bacteria or larval stages
of insects), the focus of interest may be the distribution of the total number of events in
a particular region or quadrant, rather than the individual positions of those events. This
focus led to the formulation of the so-called “contagious distributions” (see, for example,
Neyman, 1939; Thomas, 1949).

17.3.1 The Compound Poisson Process

A very simple way to construct a process with multiple occurrences is to now take the
cluster of events, Nx, to consist of a random number Mx of events all located at x. Given the
assumption that the numbers of events at distinct locations are mutually independent and
identically distributed, Gs(ξ , ; x) = G M(ξ(x)), where G M is the probability generating func-
tion of the event multiplicity M. When, in addition, Nc is a Poisson process of rate λc , then

G N(ξ ) = exp
{

−λc

∫
S
[1 − G M(ξ(x))]dx

}
,

from which it follows that the number of events in an arbitrary bounded Borel set A has a
compound Poisson distribution (given Nc( A), N( A) has the form M1 + M2 + · · · + MNc ( A))
with probability generating function

E(zN( A)) = exp{−λc |A|(1 − G M(z))}.

17.3.2 The Neyman–Scott Poisson Cluster Process

The compound Poisson process above is a simple example of a Poisson cluster process, for
which the cluster centers are a homogeneous Poisson process with rate λc . In this case, the
cluster process is stationary and has PGFL

G N(ξ ) = exp
[
−λc

∫
S
{1 − Gs(ξ ; x)} dx

]
.

The Neyman–Scott process (Neyman and Scott, 1958) is a tractable extension of the compound
Poisson process in which it is assumed that the clusters are independent and identically
distributed relative to their cluster centers, with a random number M of events per cluster,
and that these events are independently and identically displaced from the cluster center
with density f . Without loss of generality, we can assume M ≥ 1 with probability 1. This
follows from the results on thinning Poisson processes (see Section 17.1.2): A process with
cluster centers occurring at rate λ′

c and G M(0) = P(M = 0) > 0 is equivalent to one having
a Poisson process of centers with rate λc = (1 − G M(0))λ′

c and all clusters nonempty. For
the Neyman–Scott process, by first conditioning on M, the pgfl of a cluster with center at x
can easily be shown to be

Gs(ξ , x) = G M

{∫
S
ξ(x + u) f (u) du

}
.

The rate of the process is λcE(M), and its second-order properties can be determined from
the corresponding conditional intensity function. In particular, the second-order product
density function ρ(2)(x1, x2) satisfies

ρ(2)(x1, x2) = (λcE(M))2 + λcE(M(M − 1))
∫

S
f (x1 − v) f (x2 − v) dv
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where the first term on the right-hand side comes from events in distinct clusters, while the
second term comes from pairs of events in the same cluster, centered at v, of which there are
M(M − 1) ordered pairs if the cluster is of size M. Thus, the conditional intensity function
is given by

h(u) = λcE(M) + E(M(M − 1))
E(M)

∫
S

f (x) f (x + u) dx.

Note that the second-order properties of the Neyman–Scott process involve only the second-
order properties of M, and not its complete distribution.

It is immediately clear that the Neyman–Scott process is overdispersed, unless M = 1
with probability 1, i.e., unless the process is a Poisson process. This result is likely to hold,
at least asymptotically, for a wide range of cluster processes. For, intuitively, if A is large
and the chance that cluster events are far from their centers is sufficiently small that edge
effects can be ignored, then N( A) is the sum of all the cluster sizes for clusters with centers
in A, i.e., N( A)  M1 + · · · + MNc ( A) , and

var(M1 + · · · + MNc ( A)) = var(Nc( A)E(M)) + E(Nc( A)var(M))
= λc |A|{(E(M))2 + var(M)}
= λc |A| E(M2),

while E(M1 + · · · + MNc ( A)) = λc |A|E(M).
It is important to note that the same point process can have more than one apparently

different representation. A good example of this is a correspondence between some Poisson
cluster processes and Cox processes. Suppose that the cluster associated with a cluster
center at xi is a Poisson process with rate λs(x − xi ), where

∫
S λs(x) dx < ∞. Then, because

the superposition of Poisson processes is again a Poisson process, the cluster process can
also be regarded as a Cox process driven by the process Λ(x) = ∫

S λs(x − u)d Nc(u), which
is a shot noise process driven by Nc . Conversely, if a shot noise process has γ = 0, the
contribution from each event in the unobserved driving process can be regarded as the
cluster corresponding to that event, where the clusters, relative to their centers, will be
independent and identically distributed Poisson processes. Thus, for example, the Matérn
process can be thought of as a Poisson cluster process, in which the number of events per
cluster has a Poisson distribution, and the events are independently and uniformly located
within a ball of radius r0.

17.4 Markov Point Processes

Models, such as the Cox and Poisson cluster processes discussed above, that are constructed
from a Poisson process by adding additional variability will inevitably be overdispersed.
Overdispersion is a characteristic property of empirical data in many applications and
these models are applied widely. However, in this section we focus on some processes
where interactions between neighboring events are modeled explicitly. Both attraction and
inhibition of events are possible and, therefore, the models can capture underdispersion.
These processes are specified in terms of their densities relative to that for a homogeneous
Poisson process. We will restrict our discussion to point processes on a bounded set S ⊂ IRd .
For the unbounded case see, for example, the discussion in Stoyan et al. (1995, Section 5.5.3),
Møller and Waagepetersen (2004, Section 6.4), or Daley and Vere-Jones (2007, Section 10.4).

For a homogeneous Poisson process of rate λ in a bounded region S (S ⊂ IRd ), the
probability of no events in S is ω(∅) = e−λ|S|, and the joint probability density that there
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are exactly n events (n = 1, 2, . . .) at locations x1, . . . , xn is ω(x1, . . . , xn) = λne−λ|S|. This
density is defined over all distinct sets of locations {x1, . . . , xn}, and there is no significance
in the order the events are listed. In some instances, it may be more convenient to suppose
that the points have some arbitrary numbering so that the density is λne−λ|S|/n! for and is
defined over the set S × · · · × S, for n = 1, 2, . . . .

Now consider a point process with density

ω(x1, . . . , xn) = gn(x1, . . . , xn)λne−λ|S| for n = 1, 2, . . . ,

ω(∅) = g0 e−λ|S| for n = 0, (17.5)

where the functions gn, n = 0, 1, . . . are invariant under permutation of their arguments
and are such that the distribution of N(S) is normalized to 1. Then gn(x1, . . . , xn) gives the
likelihood of a particular configuration of points relative to a Poisson process and, up to a
constant of proportionality, is the conditional density of the n events given N(S) = n. If we
write

gn(x1, . . . , xn) = exp{−ψn(x1, . . . , xn)} (17.6)

(allowing formally infinite functions ψn if gn = 0), then ψn is a potential function for the
process, which is often called a Gibbs process.

Special families of point processes are obtained by choosing particular forms for the
functions ψn. In many contexts it is natural to look for models where the functions ψn have
the same structure as n varies, and to assume that, for n ≥ 1,

ψn(x1, . . . , xn) =
∑

i

α1(xi ) +
∑
i1<i2

α2(xi1 , xi2 ) +
∑

i1<i2<i3

α3(xi1 , xi2 , xi3 ) + · · ·

+
∑

i1<i2<...<in

αn(xi1 , . . . , xin ). (17.7)

A further simplification is to assume that the model is translation invariant so that the
functionα1 takes a constant value and the functionsαk depend only on the vector separations
xi j − xik or, further, that they depend only on the distances ||xi j − xik || between the events.
In these cases, given that the density of the point process depends only on the parameter λ

through the combination λe−α1 , we may take λ = 1 without loss of generality.
The special case where αk = 0 for k ≥ 3 is a pairwise interaction process. Some particular

examples assume that the points interact only when they are within some critical distance,
r0, say, so that α2(xi1 , xi2 ) = 0 if ||xi1 − xi2 || > r0. The Strauss process (Strauss, 1975) is a
simple special case where α2(xi1 , xi2 ) takes a constant value α2, say, for all ||xi1 − xi2 || ≤ r0
and, thus, the density of the process depends only on the number of events in a particular
realization and the number of neighboring pairs. In this case, it is necessary that α2 > 0, i.e.,
there is inhibition between neighboring events, as otherwise the density cannot be properly
normalized. As an extreme case, the hard core Gibbs process takes α2(xi1 , xi2 ) to be infinite
when ||xi1 − xi2 || ≤ r0, so that realizations of the process are those of a Poisson process
conditioned so that all pairs of points are separated by at least r0.

Suppose more generally that there is a neighbor structure on S, i.e., a reflexive and
symmetric relation, ∼, specifying whether or not two elements of S are neighbors (each
element is defined to be its own neighbor). For example, we could have v ∼ u if ||v−u|| ≤ r0.
The boundary ∂Δ of a set Δ ⊂ S is then defined to consist of those elements of S \ Δ that are
neighbors of elements in Δ. In addition, a set C = {u1, . . . , uk} of elements of S is said to be
a clique if ui ∼ u j for all ui , u j ∈ C.

Then, it is natural to consider potential functions of the form (17.7), but in which only
contributions from cliques are nonzero. In this case, the conditional probability density of
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the realization {x1, . . . , x} on a subset Δ of S given the configurations {u1, . . . , um} on ∂Δ
and {v1, . . . , vn} on S \ (Δ ∪ ∂Δ), is proportional to

exp{−ψ+m+n(x1, . . . , x, u1, . . . , um, v1, . . . , vn)}∑
p

∫
. . .

∫
exp{−ψp+m+n(x1, . . . , xp, u1, . . . , um, v1, . . . , vn)} dx1, . . . , dxp

where the integral in the denominator is over distinct p-tuples of points in Δ and the
summation in the denominator is over all nonnegative integer values of p. This conditional
density does not depend on the realization {v1, . . . , vn} on S\(Δ∪∂Δ) because the events on
Δ only interact with those on Δ∪ ∂Δ, and all other interactions are between events on S\Δ
and their contributions cancel out in the numerator and denominator of the fraction above.
A point process with this property, that the conditional density of the events on a subset Δ
of S given the configuration on S \ Δ is the same as the conditional density given only the
configuration on the boundary ∂Δ, is a Markov random field, and is often termed a Markov
point process (see, for example, Isham (1981) and Clifford (1990) for historical accounts, and
van Lieshout (2000) for a recent exposition).

The converse of this result can also be shown to hold for point processes that satisfy a
positivity condition requiring that the distribution ω(x1, . . . , xn) > 0 is hereditary, that is,
for all n, if ω(x1, . . . , xn) > 0, then all subsets of {x1, . . . , xn} also have positive density. If
a point process has a density ω(x1, . . . , xn) of the form given in Equation (17.5), then the
point process is a Markov point process if and only if the functions gn can be written in the
form

gn(x1, . . . , xn) =
∏

φ(xi1 , . . . , xik )

where the product is over all subsets i1, . . . , ik of 1, . . . , n for k = 1, . . . , n (Ripley and Kelly,
1977). The function φ is nonnegative and takes the value 1 unless {xi1 , . . . , xik } is a clique.
In this case, the corresponding potential functions ψn defined in Equation (17.6) satisfy

ψn(x1, . . . , xn) = −
∑

ln φ(xi1 , . . . , xik ) (17.8)

where the sum is over all subsets of {x1, . . . , xn} that are cliques. Thus, Equation (17.7) has the
form (17.7) if αk(xi1 , . . . , xik ) is nonzero only when {x1, . . . , xk} form a clique. This result is the
point process analog of the celebrated Hammersley–Clifford theorem for Markov random
fields on discrete spaces (see Besag (1974), and Part III for discussion and references).

The conditional spatial independence property satisfied by Markov point processes is in-
tuitively natural for many spatial point process applications and the Hammersley–Clifford
representation provides a nice way to construct increasingly complex models by starting
perhaps with pairwise interaction processes and gradually incorporating higher-order in-
teractions. However, of itself, the product form for the distribution of the process does not
provide an obvious means of simulating realizations. For this, it is necessary to add in a
temporal aspect, and to consider a spatial point process that evolves in time by the deletion
of events and the addition of new ones, and where this evolution has a temporally homoge-
neous Markov property such that, given the history of the process, the birth and death rates
at time t depend only on that history and on t through the locations of the events at time t.

Suppose that, given the configuration of events {x1, . . . , xn} at time t, the space–time
birth rate at x is β(x; x1, . . . , xn). That is, the probability that a new event is created in a ball
centered at x and having volume ε, during (t, t + τ ), is given by β(x; x1, . . . , xn)ετ + o(ετ )
in the limit, as ε and τ tend to zero. Similarly, let δ(x; x1, . . . , xn) denote the temporal rate at
which the event at x is deleted, given that at time t the process has events at {x, x1, . . . , xn}.
Further, suppose that this birth and death process is stationary and reversible in time so
that the detailed balance equations

ω(x1, . . . , xn)β(x; x1, . . . , xn) = ω(x, x1, . . . , xn)δ(x; x1, . . . , xn), (17.9)
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are satisfied, where ω(x1, . . . , xn) is the spatial equilibrium distribution of the space–time
point process, and is hereditary. These detailed balance equations can be written, for n ≥ 0,
in the form

γ (x; x1, . . . , xn) := β(x; x1, . . . , xn)
δ(x; x1, . . . , xn)

= ω(x, x1, . . . , xn)
ω(x1, . . . , xn)

(17.10)

where the ratio on the right-hand side is defined to be zero if the denominator (and, hence,
also numerator) is zero. The ratio of densities on the right-hand side of Equation (17.10)
is the Papangelou conditional intensity of the point process see, for example, Møller and
Waagepetersen (2004). If ω(x1, . . . , xn) is expressed in terms of a potential ψn as defined by
Equation (17.5) and Equation (17.6), then these detailed balance equations can be written
in the form

γ (x; x1, . . . , xn) = exp{−ψn+1(x, x1, . . . , xn) + ψn(x1, . . . , xn)}. (17.11)

It follows that, for n ≥ 1, the density ω(x1, . . . , xn) can be constructed iteratively, in terms of
ω(∅) and the functions γ (x; x1, . . . , xn) so that, after suitable normalization, the equilibrium
distribution ω is determined.

Suppose now that S is equipped with a neighbor relation ∼ and that, given the complete
configuration of events in S, the birth and death rates at x depend only on the events in the
rest of the configuration that are neighbors of x, i.e., on events that lie in ∂x. Then the same
will be true of γ (x; x1, . . . , xn) and, hence, the form of ln ω(x1, . . . , xn) will be a summation
over the subsets of {x1, . . . , xn} that are cliques. It follows that the equilibrium distribution
ω is a Markov point process. Thus, realizations of a particular Markov point process can
be simulated by using Equation (17.10) to determine the functions γ (x; x1, . . . , xn), and
then simulating a spatial-temporal point process that evolves with suitable birth and death
rates (see Illian et al. (2008, Section 3.6) for further discussion). These rates are not uniquely
determined, but must be such that the rates at x given the remaining configuration of events
depends only on events in ∂x, and have the required ratio.
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18.1 Introduction

Nonparametric methods play two distinct, but related, roles in the exploratory analysis
of spatial point process data. First, they are used to test benchmark hypotheses about
the underlying process. For example, most analyses of univariate spatial point process
data begin with one or more tests of the hypothesis of complete spatial randomness (CSR),
by which we mean that the data form a partial realization of a homogeneous Poisson
process. Although this is rarely tenable as a scientific hypothesis, formally testing it serves
to establish whether the data contain sufficient information to justify any more elaborate
form of analysis. The second role for nonparametric methods is to estimate properties of
the underlying process with a view to suggesting suitable classes of parametric model.

The two roles are linked by using test statistics derived from summaries of the data
that indicate what kind of general alternative to complete spatial randomness might be
operating. A first, simple goal is to describe an observed point pattern as regular or ag-
gregated relative to the completely random benchmark. The former would be exemplified
by inhibitory interactions among the points of the process, as is typically the case for the
Markov point process models described in Chapter 17, Section 17.4, the latter by cluster
point processes as described in Section 17.3. More subtle descriptions of an observed point
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pattern might include combinations of regularity and aggregation at different spatial scales
or an assessment of possible nonstationarity.

Many of the statistics that are used for nonparametric testing and estimation can also be
adapted to provide methods for fitting, and conducting diagnostic checks on, a proposed
parametric model. These aspects are considered in Chapters 19 and 20, respectively.

The primary focus throughout this book is on mapped spatial data. In the point process
setting, this means that the data consist of the actual locations of the points of the process
within a designated study region. Historically, several examples of what we would now
call nonparametric methods for spatial point patterns were first developed as methods for
sampling point processes in situ, typically in plant ecology, or forestry where each event
refers to the location of an individual plant or tree. These sparse sampling methods include
counts of the numbers of points in small subregions, known as quadrats, or measurements
of the distances between pairs of near-neighboring points of the process. We give a short
review of sparse sampling methods in Section 18.2. Section 18.3 discusses the pervasive
idea of Monte Carlo significance testing. Sections 18.4 to 18.8 consider different aspects of
nonparametric methods for mapped point patterns.

Throughout this chapter, we use the term event to denote a point of the process, to
distinguish this from an arbitrary point in IR2.

18.2 Methods for Sparsely Sampled Point Patterns

All of the methods described in this section are concerned with estimating the intensity, λ,
of a homogeneous spatial Poisson process, or with testing for departures from this process
(henceforth, CSR), in either case using data obtained by sparse sampling. We consider two
forms of sparse sampling: quadrat sampling and distance sampling.

18.2.1 Quadrat Sampling

Quadrat sampling consists of counting the number of events in each of a set of small
subareas, called quadrats, laid out over the study region of interest. This sampling method
has a long history in plant ecology. Originally, a quadrat was a 1 meter square, hence its
name, but we use the term to refer to any convenient shape, a circle being the obvious
alternative to a square.

The relevant properties of the homogeneous Poisson process are that the number of
events in any prescribed region D follows a Poisson distribution with mean λ|D|, where
| · | denotes area, and numbers of events in disjoint areas are mutually independent. Let Yi

denote the number of events in the ith of n quadrats, and consider two sampling designs
for locating the quadrats: spatially random sampling over D, or sampling at the points of a
regular grid to span D. The essence of sparse sampling is that the total area sampled should
be a very small proportion of the area of D, otherwise complete enumeration would be
feasible. Hence, in either case we can assume that the quadrats are not only disjoint, but
spatially well separated and therefore, give rise to independent counts Yi .

To estimate λ, the maximum likelihood estimator under CSR is the observed mean count
per unit area,

λ̂ =
(

n∑
i=1

Yi

)
/(n|D|). (18.1)
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The associated standard error is SE(λ̂) = √{λ/(n|D|)}, showing that what matters is the
total area sampled. More importantly, Equation (18.1) is unbiased for the mean number of
events per unit area whatever the underlying point process. Also, its standard error can be
estimated robustly from the sample variance of the observed counts yi .

To test for departure from an underlying homogeneous Poisson process, the classic test
statistic is the index of dispersion, I = s2/ȳ, where ȳ and s2 are the sample mean and variance
of the counts. Under CSR, (n − 1) I ∼ χ2

n−1 approximately, the approximation improving
with increasing E[Yi ] (Fisher, Thornton, and Mackenzie, 1922). Significantly small or large
values of I indicate spatial regularity or aggregation, respectively.

With regard to the study design for quadrat sampling, the only conceivable disadvantages
of grid sampling are that it may induce unconscious bias in the location of the grid origin,
or fall foul of a cyclic pattern in the underlying process at a frequency that matches the
grid spacing. Otherwise, a grid layout is usually easier to implement in the field and opens
up the possibility of more interesting secondary analyses of the resulting lattice data (for
extensive discussion of stochastic models and associated statistical methods for spatially
discrete data, see Part III). A possible compromise between completely random and grid-
based sampling would be to locate one quadrat at random within each of a set of grid
cells.

18.2.2 Distance Sampling

So-called distance sampling consists of measuring the distances from aribtrary points to
near neighboring events, or between pairs of near neighboring events, for various defini-
tions of “near neighboring.” During the 1950s and 1960s, an extensive literature of such
methods developed, mostly in botany, ecology, or forestry journals, in which context the
methods are still sometimes used (see, for example, Pruetz and Isbel, 2000; Stratton, Gold-
stein, and Meinzer, 2000). When complete mapping of a spatial point pattern is feasible,
sparse sampling methods are at best inefficient and may also be invalid because violation of
the sparseness requirement leads to nonindependence among the different measurements.

The distribution theory associated with almost all of the distance sampling methods
that have been proposed can be subsumed under the following result, coupled with the
independence between partial realizations of a homogeneous Poisson process in disjoint
regions. Let Yk,t denote the distance from either an arbitrary point or an arbitrary event to the
kth nearest event within an arc of included angle t centered on the origin of measurement.
Then, under CSR,

tλY2
k,t ∼ χ2

2k . (18.2)

Suppose that our data consists of the observed values y1, . . . , yn of Yk,t measured from n
origins of measurement selected either at random or, in the case of an arbitrary sampling
origin, in a regular grid. Then, under CSR, the maximum likelihood estimator for λ is

λ̂ = (2nk)/
(

t
∑

y2
i

)
. (18.3)

Like its quadrat-based counterpart Equation (18.1) the estimator Equation (18.3) has the
intuitive interpretation that it equates the theoretical and observed numbers of events per
unit area searched. However, unlike Equation (18.1) the distance-based estimator Equa-
tion (18.3) does not remain unbiased when CSR does not hold. The resulting bias can be
reduced by noting that estimates using arbitrary points and arbitrary events as origins of
measurement tend to be biased in opposite directions, and an average of the two is typi-
cally less biased than either one alone. Note, however, that selecting an arbitrary event in
practice requires enumeration of all of the points in the study region, which rather defeats
the purpose of the exercise. We return to this point below.
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The simplicity of Equation (18.2), coupled with the independence of measurements made
from different, well-separated points or events, lends itself to the construction of a variety
of test statistics whose null sampling distributions have standard forms. For example, and
with the caveat already noted, if we set k = 1 and t = 2π in Equation (18.2), and measure
distances x1, . . . , xn from n arbitrary points and distances y1, . . . , yn from n arbitrary events,
in each case to their nearest neighboring event, then the statistic h = (

∑
x2

i )/(
∑

y2
i ) is

distributed as F on 2n and 2n degrees of freedom under CSR and, importantly, does not
require knowledge of λ.

The statistic h was proposed by Hopkins (1954) and by Moore (1954). However, and as
already noted, the test is infeasible in practice because the selection of n arbitrary events
requires enumeration of all of the events in the study region, in which case we would
do much better also to record their locations and to analyze the data as a mapped point
pattern. The solution to this problem proposed by Besag and Gleaves (1973) was to use the
distances xi as defined above, i.e., the distance from an arbitrary point, O, to the nearest
event, P , but to redefine yi as the distance from P to its nearest neighboring event within
the half plane defined by the perpendicular to OP through P and excluding O. This gives
the required independence between xi and yi under CSR and leads to the test statistic
t = 2(

∑
x2

i )/(
∑

y2
i ), whose null sampling distribution is again F on 2n and 2n degrees of

freedom. With regard to the design question of how to choose the n points O in practice,
the comments at the end of Section 18.2.1 on the relative merits of random or systematic
spatial sampling apply here also.

The T-square sampling method has recently reemerged as a method for estimating the
size of a refugee camp in the aftermath of a natural or manmade disaster (Brown, Jacquier,
Coulombier, Balandine et al., 2001; Bostoen, Chalabi, and Grais, 2007).

For more detailed reviews of distance sampling methods, see Diggle (2003, Chap. 3) or
Illian, Penttinen, Stoyan, and Stoyan (2008, Chap. 2).

18.3 Monte Carlo Tests

A characteristic feature of mapped spatial point process data is that the distribution theory
for almost any interesting statistic associated with the data is analytically intractable. As
a result, Monte Carlo methods of inference are very widely used, and will feature heavily
in the remainder of Part IV. Here, we consider the simplest of Monte Carlo methods of
inference, namely, a Monte Carlo test of a simple null hypothesis.

Monte Carlo tests were proposed by Barnard (1963). Let T be any test statistic, large values
of which cast doubt on the null hypothesis, H0. Let t1 be the value of T calculated from a
dataset. Assume, for convenience, that the null sampling distribution of T is continuous
so that ties cannot occur; if this is not the case, then, as noted by Besag and Clifford (1991),
tied ranks can legitimately be broken by random unrounding. Let t2, . . . , ts be the values of
T calculated from s − 1 independent simulations of H0. Then, if H0 is true, the t1, t2, . . . , ts
are exchangeable and all orderings are equally likely. Hence, if R denotes the number of
ti > t1, then P(R ≤ r ) = (r + 1)/s, i.e., the Monte Carlo p-value is (r + 1)/s or, for a
test at prescribed significance level α = (k + 1)/s, the test rejects H0 if and only if r ≤ k.
Note that the test statistic is not T itself, but the rank of t1 among the ti . One initially
surprising consequence of this is that the loss of power relative to a classical test based
on T is surprisingly small; Marriott (1979) suggests as a rule of thumb that s need be no
bigger than the value required so that the rejection region is r ≤ 4, e.g., s = 99 for a
test at the 5% level, and pro rata for more extreme prescribed significance levels. Much
larger values of s would be needed for estimating accurately the percentiles of the null
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distribution of T (arguably a more useful exercise), for which the usual binomial sampling
theory applies.

Besag and Clifford (1989, 1991) propose two extensions of the Monte Carlo test to deal
with situations in which it is difficult to draw independent random samples from the null
distribution of T . In the 1989 paper, they note that the key requirement for a valid test of
H0 is exchangeability, rather than independence, of the simulated values, and propose a
generalization in which a Markov chain simulation is used to generate t2, . . . , ts to satisfy
the exchangeability requirement. In the 1991 paper, they propose a sequential variant of the
test in which values of two integers r and s are prescribed, and a sequence of simulations
is conducted until either at least r of the simulated ti are larger than t1 or s − 1 simulations
have been performed. Then, in the first case the attained significance level is r/s∗ where
s∗ ≤ s − 1 is the number of simulations performed, while in the second case the attained
significance level is (r + 1)/s, as for the nonsequential test. The sequential procedure is
valuable when the procedure is computationally expensive, for example, when a Markov
chain Monte Carlo (MCMC) algorithm is needed to simulate each ti , and it is clear from
the first few simulations that the data show no significant departure from H0. Incidentally,
Besag and Clifford’s rule of thumb to use r = 10 is not wildly out of line with Marriott’s
r ≥ 4, although the arguments leading to them are different.

18.4 Nearest Neighbor Methods for Mapped Point Patterns

The basic measurements described in Section 18.2.2, specifically the distances from arbitrary
points or arbitrary events to their nearest neighboring events, can also be used for mapped
point patterns. However, the simple distribution theory described in Section 18.2.2 no longer
holds because of the inherent, and complicated, pattern of stochastic dependence among
the measured distances.

Under CSR, the distribution function of the distance from either an arbitrary point or an
arbitrary event to the nearest neighoring event, say X and Y respectively, is

F0(u) = 1 − exp(−πλu2), (18.4)

where λ is the intensity of the process. Echoing earlier remarks, when CSR does not hold,
the distribution functions of X and Y tend to deviate from Equation (18.4) in opposite
directions, and together they give a useful impression of whether, and if so in what way,
CSR is untenable as a model.

For an observed pattern of n points in a study region D, let xi : i = 1, . . . , m denote the
distances from each of m arbitrary points to the nearest of the n events, and yi : i = 1, . . . , n
the distances from each of the n events to its nearest neighbor. Now denote by F̂ (·) and Ĝ(·)
the empirical distribution functions of the xi and yi , respectively. Neither F̂ (u) nor Ĝ(u)
is unbiased for F0(u) under CSR because of finite-sample effects including edge effects.
Various ways to correct for the latter have been proposed, but are unnecessary if we seek
only to compare the observed data with realizations of a homogeneous planar Poisson
process. Also, the uncorrected versions are approximately unbiased when m and n are both
large; for example, Figure 18.1 illustrates the bias for data consisting of n = 100 events in
D the unit square. In Figure 18.1 the sampling origins for computation of the xi formed a
20×20 square lattice to span D, i.e., m = 400. There is no good theoretical reason to limit the
value of m, but equally the information content in the data is limited by n rather than m and
little is to be gained by setting m >> n. For remarks on this from a time when computing
was a scarce resource, see, for example, Ripley (1981, p. 154), or Diggle and Matérn (1980)
who give theoretical arguments to support the use of a regular grid of sampling origins.
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FIGURE 18.1
Bias in the empirical distribution functions of nearest neighbor distances for an underlying Poisson process
conditioned to have 100 events in the unit square, estimated from 10,000 simulated realizations. The solid line
denotes the bias in F̂ (u), using a 20 × 20 square grid of sampling origins; dashed line denotes the bias in Ĝ(u).

To provide a test of CSR using either F̂ (·) or Ĝ(·), or indeed any other empirical function,
Ĥ(·) say, a general Monte Carlo procedure is the following. Let Ĥ1(·) denote the empirical
function of the data and Ĥi (·) : i = 2, . . . , s the empirical functions of s − 1 independent
simulations of CSR conditonal on n, i.e., each simulation consists of n events independently
and uniformly distributed on D. For any value of u, define H̄i (u) = s−1 ∑

j �=i Ĥj (u). Then,
the deviations Ĥi (u) − H̄i (u) are exchangeable under CSR and any statistic derived from
these deviations, for example,

t =
∫ ∞

0
{Ĥi (u) − H̄i (u)}2du, (18.5)

provides the basis for a valid Monte Carlo test of CSR.
In practice, tests using either F̂ (·) or Ĝ(·) in Equation (18.5) tend to be powerful against

different kinds of alternative to CSR. This leads Diggle (2003, Chap. 2) to recommend using
both routinely, and to interpret their combined significance either conservatively (quoting
the attained signficance level as twice the smaller of the two individual p-values), or more
informally by inspection of plots of the two empirical functions together with simulation
envelopes. Figure 18.2 shows an example for a dataset giving the locations of 106 pyramidal
neurons in area 24, layer 2 of the cingulate cortex; these data are one of 31 such datasets an-
alyzed in Diggle, Lange, and Benes (1991). Visual inspection of the data suggests a pattern
not dissimilar to CSR. The deviations of F̂ (·) from the mean of 99 simulations are small and,
as judged by the simulation envelope, are compatible with CSR. A formal Monte Carlo test
using the statistic (18.5) gave a p-value of 0.50. The deviations of Ĝ(·) from the mean of the
simulations are somewhat larger, both absolute and relative to the simulation envelope,
and the plot suggests significant small-scale spatial regularity (Ĝ(u) < Ḡ1(u) for u < 0.05
or thereabouts). The Monte Carlo test gave p = 0.02. In this context, small-scale regularity
is to be expected because the notional locations are reference points within cell bodies, each
of which occupies a finite amount of space.

If a single summary function is required, a possible choice is the J-function proposed
by van Lieshout and Baddeley (1996, see also Section 16.5) and defined as Ĵ (u) = {1 −
Ĝ(u)}/{1 − F̂ (u)}. For CSR, the corresponding theoretical function is J (u) = 1 for all u and,
unlike F̂ (·) and Ĝ(·), Ĵ (·) is insensitive to edge effects. Figure 18.3 shows Ĵ (·) and its simu-
lation envelope for the pyramdial neuron data. The left-hand panel suggests an inability to
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FIGURE 18.2
Example of nearest neighbor analysis. The left-hand panel shows the locations of 106 pyramidal neurons. The
center and right-hand panels show the pointwise differences between empirical and theoretical (under CSR)
distribution functions of point-to-event and event-to-event nearest neighbor distances, respectively, together with
pointwise envelopes from 99 simulations of CSR.

discriminate between the data and CSR, but this is a by-product of the inevitable instability
in the empirical function Ĵ (·) as F̂ (u) and Ĝ(u) approach 1 and Ĵ (u) becomes either zero,
infinite, or indeterminate. The right-hand panel of Figure 18.3 shows that, at small values
of u, the J-function tells much the same story for these data as does the G-function.

18.5 Estimating a Spatially Varying Intensity

We now turn to nonparametric estimation of the low-order moments of a spatial point
process, beginning with the first-order moment, or intensity.

For a stationary process, the intensity is a constant, λ, and for an observed pattern of n
points in a study region D, the natural estimator is the observed number of events per unit

0

5

10

15

20

0.00 0.05 0.10 0.15

u
0.00 0.01 0.02 0.040.03 0.05

u

J(u
)

0.0

0.5

1.0

1.5

2.0

J(u
)

FIGURE 18.3
Empirical J-function for the pyramidal neuron data, with pointwise envelopes from 99 simulations of CSR. Right-
hand panel is a magnification for distance u ≤ 0.05.
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area, λ̂ = n/|D|. This estimator is always unbiased. If the underlying process is a stationary
Poisson process, λ̂ is also the maximum likelihood estimator and has variance λ/|D|.

For nonstationary processes with spatially varying λ(x), estimating λ(x) from a single
realization is problematic without additional assumptions. For example, and as discussed
also in Chapter 17, Section 17.2, no empirical distinction can be made between a realization
of a nonstationary Poisson process with deterministic intensity λ(x) and a stationary Cox
process the realization of whose stochastic intensity coincides with λ(x).

In Section 18.8, we shall describe nonparametric methods for replicated spatial point
patterns where, at least in principle, the replication gives a way of distinguishing between
first-moment and second-moment effects. Here, we resolve the ambiguity by making the
additional asssumption that the underlying point process is a stationary Cox process and
consider initially estimators of the form

λ̃h(x) =
n∑

i=1

I (||x − xi || < h)/(πh2), (18.6)

where I (·) is the indicator function and || · || denotes Euclidean distance. In other words,
the estimate of λ(x) is the observed number of events per unit area within a disk of radius
h centered on x. We define the mean square error of Equation (18.6) to be MSE(h) =
E[{λ̃(x) − Λ(x)}2], where Λ(·) is the stochastic intensity of the underyling Cox process.
Then,

MSE(h) = λ2(0) + λ{1 − 2λK (h)}/(πh2) + (πh2)−2
∫ ∫

λ2(||x − y||)dydx, (18.7)

where λ, λ2(·) and K (·) are the intensity, second-order intensity, and reduced second-
moment measure of the underlying Cox process, and each integration is over the disk
of radius h centered at the origin (Diggle, 1985). Choosing h to minimize MSE(h) then
gives a practical strategy for implementing the estimator λ̃(·).

Berman and Diggle (1989) showed that by transforming to polar coordinates, the problem
of evaluating the integral in (18.7) can be reduced to evaluation of the expression

I = K (2h)φ(2h) −
∫ 2h

0
K (s)φ′(s)ds, (18.8)

where φ(s) = 2π [2h2 cos−1{s/(2h)} − s
√

(h2 − s2/4)] is the area of intersection of two disks,
each of radius h and centers a distance s apart. The integral I therefore can be estimated by
substituting the standard estimator (Equation 18.12, below) for K (·) into Equation (18.12)
and using a one-dimensional quadrature for the integral term.

Two modifications to Equation (18.6) improve its performance. First, the indicator func-
tion can be replaced by a smoothly varying kernel function. Second, to deal with edge
effects, the kernel can be scaled so that it integrates to one over the study region D. Hence,

λ̂(x) =
n∑

i=1

kh(x − xi )/
∫

D
kh(x − xi )dx, (18.9)

where the kernel function kh(x) = h−2k(x/h), with k(·) a radially symmetric bivariate prob-
ability density function; for the estimator λ̃(·), k(·) corresponds to a uniform distribution
on the disk of unit radius.

The first of the above modifications is largely cosmetic, but the second is important when
the chosen value of h is relatively large. A more serious practical limitation is that the
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FIGURE 18.4
Kernel estimation of λ(x) for data on the locations of 514 maple trees: Mean square error as a function of bandwidth
h (left-hand panel); kernel estimate for h = 0.07 (right-hand panel).

working assumption of a stationary Cox process may be untenable. We therefore recom-
mend inspecting a plot of the estimated MSE(h) as a guide to the choice of h, rather than
taking the minimizer of MSE(h) as the automatic choice. Diggle (2003, Sec. 8.2) used a
different edge correction, essentially one that scales the estimate rather than each separate
kernel contribution, but results in Jones (1993) suggest that the edge correction given here
as Equation (18.9) is preferable.

Figure 18.4 shows the estimated MSE(h) and the edge-corrected estimate of λ(x) for a
dataset giving the locations of 514 maple trees in a 19.6-square acre plot, here rescaled to
the unit square (Gerrard, 1969; Diggle, 2003, Sec. 2.6.1). The MSE-plot takes its minimum
value at h = 0.07. The estimate λ̂(x) using h = 0.07 shows strong spatial heterogeneity, with
a global maximum near the center around four times the average intensity, and generally
elevated intensity in the lower half of the square. Recall, however, that if the underlying
process is not a stationary Cox process, this method for choosing h could be misleading.
For related comments, see Section 18.6.2.

Zimmerman (2008) has proposed an interesting extension to Equation (18.9) to deal with
a problem that arises in some areas of application, notably spatial epidemiology as dis-
cussed in Chapter 22, whereby some of the event locations are known only to a relatively
coarse spatial resolution. An example would be an epidemiological dataset in which each
subject is identifed by their residential location, but for some subjects all that is known is the
administrative subregion in which they reside. In this setting, suppose that within the kth
subregion there are nk events of which mk are at known locations, then Zimmerman’s mod-
ification of Equation (18.9) upweights the kernel contribution from each known location in
the kth subregion by the factor nk/mk .

18.6 Second-Moment Methods for Mapped Point Patterns

18.6.1 Stationary Processes

As described in Chapters 16 and 17, the second-moment properties of a stationary spatial
point process can be summarized either by the second-order intensity function λ2(·) or by
the reduced second-moment measure K (·). Under appropriate regularity conditions, the
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relationship between the two is that

K (u) = 2πλ−2
∫ u

0
λ2(v)vdv,

where λ is the intensity. From the point of view of nonparametric estimation, a more useful
result is that

K (u) = λ−1 E(u), (18.10)

where E(u) denotes the expected number of additional events within distance u of the
origin, conditional on there being an event at the origin. Expressing λK (u) as an expectation
invites the possibility of nonparametric estimation by the method of moments, substituting
the expectation in Equation (18.10) by the average observed number of additional events
within distance u of each event in turn. For data xi : i = 1, . . . , n in a region D, and using
the natural estimator λ̂ = n/|D| for λ, this suggests the estimator

K̃ (u) = n−2|D|
n∑

i=1

∑
j �=i

I (||xi − xj || ≤ u). (18.11)

The estimator (18.11) is biased by the exclusion of events that lie outside D. To counter this,
Ripley (1976, 1977) proposed an edge-corrected estimator,

K̂ (u) = n−2|D|
n∑

i=1

∑
j �=i

w−1
i j I (||xi − xj || ≤ u), (18.12)

where wi j is the proportion of the circle with center xi and radius ||xi − xj || that is contained
in D. Other edge corrections have also been proposed; see, for example, Stein (1991) or
Baddeley (1999).

From a mathematical perspective, either the second-order intensity or its scale-free coun-
terpart the pair correlation function, g(u) = λ2(u)/λ2, could be regarded as a more funda-
mental quantity, and can also be estimated using the array of interevent distances ui j =
||xi − xj ||. However, estimation is complicated by the need to smooth the empirical dis-
tribution of the ui j ; the analogy here is with the distinction between the straightforward
estimation of a distribution function nonparametrically by its empirical counterpart and the
much more complicated problem of nonparametric density estimation. For small datasets,
the avoidance of the smoothing issue is a strong argument in favor of estimating K (·) rather
than λ2(·) or g(·). For large datasets, choosing a sensible, albeit nonoptimal, smoother is
more straightforward and, as discussed in Chapter 19, may confer other advantages in a
parametric setting.

A class of kernel estimators for g(·) takes the form

ĝ(u) = (2πu)−1n−2|D|
∑
i=1

n∑
j �=i

w−1
i j kh(u − ||xi − xj ||), (18.13)

where now kh(u) = h−1k(u/h) for some univariate probability density function k(·), the wi j

are edge-correction weights as in Equation (18.12) and h is a smoothing constant; see, for
example, Møller and Waagepetersen (2004, Sec. 4.3.5). Note that ĝ(0) is undefined and that,
in practice, estimates ĝ(u) are unstable at very small values of u.

Figure 18.5 shows the results of applying the estimators K̂ (·) and ĝ(·) to the pyramidal
neuron data previously analyzed in Section 18.4. The left-hand panel of Figure 18.5 shows
K̂ (·) together with its envelope from 99 simulations of CSR. As with our earlier analysis
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FIGURE 18.5
Estimates of the reduced second-moment measure (left-hand panel) and of the pair correlaton function (right-hand
panel) for the pyramidal neuron data, in each case with pointwise envelopes from 99 simulations of CSR.

using nearest neighbor distributions, the diagram indicates small-scale spatial regular-
ity because the estimate for the data lies below the envelope of the simulations. Notice
also that subtracting πu2 from K̂(u) magnifies the interesting part of the diagram and that
the sampling variation in K̂(u) increases sharply with u. For ĝ, the right-hand panel of
Figure 18.5 shows three estimates corresponding to different values of the smoothing con-
stant, h = 0.01, 0.025, 0.05. Notice the radically different behaviour of the three estimates
at small values of u. Oversmoothing by increasing the value of h hides the small-scale
spatial regularity because the numerator in the expression (18.13) for ĝ(u) remains posi-
tive as u approaches zero and the term u in the denominator then dominates the behavior
of ĝ(u).

18.6.2 Nonstationary Processes

Dealing with nonstationarity is difficult in the absence of independent replication. Spa-
tial heterogeneity and spatial clustering, although phenomenologically different, can be
difficult, or even impossible, to distinguish empirically. In Section 18.5, we exploited this
ambiguity in describing how stationary point process theory can be used to suggest a
method for estimating a spatially varying intensity. To attempt to estimate first and second
moment properties from a single realization, we use the more general theoretical frame-
work of intensity-reweighted stationarity processes, as developed in Baddeley, Møller, and
Waagepetersen (2000). An intensity-reweighted stationarity process is one for which λ(x) is
strictly positive and the pair correlation function, ρ(u) = λ2(x, y)/λ(x)λ(y), depends only
on u = ||x − y||. The corresponding intensity-reweighted K-function is

K I (u) = 2π

∫ u

0
g(u)udu.

If λ(x) were a known function, estimates of K I (u) and of g(u) would be defined by the
following natural extensions of Equation (18.12) and Equation (18.13), respectively, hence,

K̂(u) = |D|−1
n∑

i=1

∑
j �=i

w−1
i j I (||xi − xj || ≤ u/{λ(xi )λ(xj )} (18.14)
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and

ĝ(u) = (2πu)−1|D|−1
∑
i=1

n∑
j �=i

w−1
i j kh(u − ||xi − xj ||)/{λ(xi )λ(xj )}. (18.15)

In practice, λ(x) must itself be estimated. A pragmatic strategy is to estimate λ(x) by a kernel
smoother, as in Section 3.5, but using a relatively large bandwidth, chosen subjectively; in
effect, this amounts to treating large-scale spatial variation as a first-moment effect, smaller-
scale variation as a second-moment effect and making a pragmatic decison as to what
constitutes “large scale.” The implied partition of the spatial variation into two components
is critically dependent on the choice of the kernel smoothing bandwidth h. Baddeley et al.
(2000) show that the resulting estimator K̂ I (u) is biased, potentially severely so, but that
the bias can be reduced to some extent by leaving out the datum xi when estimating λ(xi ).
Another strategy is to use a parametric estimate of λ(·). A third is to estimate λ(x) from a
second dataset that can be assumed to be a realization of a Poisson process with the same
first-moment properties as the process of interest; one setting, perhaps the only one, in
which this is a viable strategy is in an epidemiological case-control study where the control
data consist of the locations of an independent random sample from the population of
interest. See Chapter 22 for a description of the use of point process methods in spatial
epidemiology.

18.7 Marked Point Patterns

A marked point process is one in which each event is accompanied by the realized values of
one or more random variables in addition to its location. Here, we consider only stationary
processes with a single mark attached to each event, and consider separately the cases of
qualitative and quantitative marks.

18.7.1 Qualitative Marks: Multivariate Point Patterns

When the mark random variable is qualitative, an equally apt name for the process is that
it is a multivariate process whose events are of m distinguishable types, k = 1, . . . , m. In this
setting, we refer to the set of all observed events, irrespective of type, as the superposition, and
the corresponding underlying process as the superposition process. For exploratory analysis,
it is useful to consider the observed pattern in relation to two benchmark hypotheses:
independence and random labeling. For each, we consider how the nearest neighbor or
second-moment methods described in Sections 18.4 and 18.6 can be adapted to provide
diagnostic summaries.

The hypothesis of independence specifies that the m component patterns are realizations
of independent univariate spatial point processes. Under this hypothesis, let Fk(u) denote
the distribution function of the distance from an arbitrary point to the nearest event of type
k, and F(u) the distribution of the distance from an arbitrary point to the nearest event in
the superposition process. Under independence, we have the result that

F(u) = 1 −
m∏

k=1

{1 − Fk(u)}. (18.16)

Now, denote by Gk(u) the distribution function of the distance from an arbitrary type k event
to the nearest other type k event, and G(u) the distribution function of the distance from
an arbitrary event to the nearest other event, without reference to type. If λk is the intensity
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of type k events, λ = ∑m
k=1 λk the intensity of the superposition process and pk = λk/λ the

proportion of type k events in the superposition process, then under independence,

G(u) = 1 −
m∑

j=1

p j {1 − G j (u)}
∏
k �= j

{1 − Fk(u)}. (18.17)

Finally, consider the multivariate K-functions,

K jk(u) = λ−1
k E jk(u), (18.18)

where for all j �= k, E jk(u) is the expected number of type k events within distance u of an
arbitrary type j event. Then, under independence we have the strikingly simple result that

K jk(u) = πu2. (18.19)

Any of Equation (18.16), Equation (18.17) or Equation (18.19) can be used as the basis of
a statistic to measure departure from independence. Also, if the data are observed on a
rectangular region D, a Monte Carlo test can be implemented by the following device,
suggested in Lotwick and Silverman (1982). First, wrap the data onto a torus by identifying
opposite edges of D. Then, under independence, the distribution of any statistic calculated
from the data is invariant under independent random toroidal shifts of the component
patterns.

We now consider our second benchmark hypothesis, random labeling. A multivariate
process is a random labeling if the component processes are derived from the superposition
process by a series of independent multinomial outcomes on the integers k = 1, . . . , m with
constant cell probabilities pk : k = 1, . . . , m.

Under random labeling, there is, in general, no simple relationship that links F (u) with
the component-wise functions Fk(u), or G(u) with the Gk(u). In contrast, the multivariate
K-functions obey the very simple relationship that, for all j = 1, . . . , m and k = 1, . . . , m

K jk(u) = K(u), (18.20)

where K (·) denotes the K-function of the superposition process.
To test for departure from random labeling, a Monte Carlo test procedure consists of cal-

culating any suitable statistic from the data and recalculating after independent simulated
random labelings of the superposition. Note also that a test of this kind remains valid even
if the superposition process is nonstationary.

Independence and random labeling are equivalent if the underlying component pro-
cesses are Poisson processes but, in general, can be very different in character. For example,
in a multivariate Cox process with random intensities Λk(x), independence corresponds to
independence of the Λk(·), whereas random labeling corresponds to a deterministic rela-
tionship, Λk(x) = pkΛ(x), where Λ(x) is the random intensity of the superposition process.

The properties of summary functions for multivariate point patterns will be explored
further in Chapter 21.

18.7.1.1 Example: Displaced Amacrine Cells in the Retina of a Rabbit

These data originate from Wienawa-Narkiewicz (1983) and were made available to us by
Prof. Abbie Hughes. The data were first analyzed in Diggle (1986). The presentation here
closely follows Diggle (2003, Sec. 4.7). The data in Figure 18.6 consist of the locations of 294
displaced amacrine cells in a rectangular section of the retina of a rabbit, of approximate
dimension 1060 by 662 μm, here rescaled to approximately 1.6 by 1.0. The cells are of two

© 2010 by Taylor and Francis Group, LLC



P1: Rajesh Sharma

February 23, 2010 12:34 C7287 C7287˙C018

312 Handbook of Spatial Statistics

FIGURE 18.6
The displaced amacrine cell data: 152 on cells and 142 off cells are shown as closed and open circles, respectively.

types, according to whether they respond to light going on (152 cells) or off (142 cells). Two
competing developmental hypotheses are the following:

Ha : The two types of cell form initially in separate layers that subsequently fuse in the
mature retina;

Hb : Cells are initially undifferentiated in a single layer, with the separation into on
and off cells occurring at a later developmental stage.

Independence and random labeling are natural benchmark hypotheses corresponding to
Ha and Hb , respectively. As we have shown, the second-moment properties can be used to es-
tablish whether the data are compatible with either or both of these benchmarks. Figure 18.7
shows estimates of the second-moment properties of the data. Recall that under indepen-
dence, K12(u) = πu2, whereas under random labeling K11(u) = K22(u) = K12(u) = K (u).
Figure 18.7 suggests, first, that the second-moment properties of the two component pro-
cesses are very similar. Because the two component patterns also have approximately the
same intensity, they can be considered informally as if they were replicates, and the dif-
ference between K̂11(u) and K̂22(u) gives a rough indication of the sampling variation in
either one. It then follows that K̂12(u) differs from either of K̂11(u) or K̂22(u) by far more than

0.00 0.05 0.10 0.15 0.20 0.25

−0.015

−0.010

−0.005

0.000

0.005

u

D(
u)

FIGURE 18.7
Second-order analysis of the displaced amacrine cell data. Estimates of K(u) −πu2 are shown for the on cells (solid
line), and the off cells (dashed line). The dotted line shows the estimate of K12(u) − πu2.
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can be explained by sampling fluctuations; hence, the data are incompatible with random
labeling. However, the estimate K̂12(u) is fairly close to πu2, at least for small u where the
estimate is most precise. These observations together suggest a preliminary conclusion in
favor of the separate layer hypothesis Ha . Note also that both K̂11(u) and K̂22(u) are zero
at small values of u, suggesting a strict inhibitory effect within each component process,
whereas no such effect is apparent in K̂12(u). This adds to the evidence in favor of Ha .

Diggle (2003, Sec. 4.7 and Sec. 7.2.2 to 7.2.5) gives a more extensive discussion of this
example. See also Hughes (1985) and Eglen et al. (2006) for an explanation of the biological
background to this and related investigations.

18.7.2 Quantitative Marks

For a process with a quantitative mark attached to each event, the natural counterpart of
the random labeling hypothesis is that the marks are determined by independent random
sampling from an arbitrary probability distribution. A natural counterpart of the indepen-
dence hypothesis is that the unmarked point process and the mark process are independent
stochastic processes. With these definitions, and in contrast to the discussion in Section 18.7.1
above, random labeling becomes a special case of independence.

Another consideration for a quantitatively marked point process is whether the mark
process exists throughout the study region, or only at the event locations. Geostatistical
data, as discussed in Part I, can be considered as an example of the first kind; a process
in which the events are birds’ nests and the mark is the number of hatchlings successfully
reared is an example of the second kind. This distinction has implications for how we should
approach exploratory analysis. For processes of the first kind, random labeling is physically
implausible, independence is the more natural benchmark hypothesis, and a suitable class
of alternatives is that the intensity of events at a point x is related to the value, Z(x) say, of
the underlying spatially continuous mark process at x. For processes of the second kind,
random labeling is a natural benchmark hypothesis, with departures from it suggesting
some form of stochastic interaction between neighboring events.

Schlather, Riberiro, and Diggle (2004) proposed several summary statistics aimed at in-
vestigating departures from the independence hypothesis. They were motivated primarily
by the fact that conventional geostatistical methods rely on this assumption, and their pro-
posed statistics therefore focused on investigating how departure from independence could
affect estimation of the second-moment properties of an underlying spatially continuous
mark process.

In the author’s opinion, the exploratory analysis of marked point process data remains
a relatively underdeveloped topic of research.

18.8 Replicated Point Patterns

A replicated point pattern dataset is one consisting of the locations {xi j : j = 1, . . . , ni ; i =
1, . . . , r} in each of r study regions Ai . An important distinction is between independent
replication, and pseudo-replication. By independent replication, we mean that the r point
patterns are derived from a sample of r experimental units drawn as an independent
random sample from a population of experimental units. By pseudo-replication, we mean
any other form of replication that we choose to treat as if it were an independent replication.
For example, if only a single point pattern is available on a region D, we could create pseudo-
replicates by partitioning D into congruent subregions Di . Under stationarity, the resulting
point patterns are replicates in the sense that they are realizations of the same process,
but they are not necessarily independent. In the analysis of the amacrines data, reported
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in Section 18.7.1, we exploited another form of pseudo-replication to assess the sampling
variation in estimates of the second-moment properties of the data.

Independent replication is common in microanatomical studies where the study units
i are animals or plants, and each Di is objectively determined to correspond to a specific
anatomical region; for example, we can easily imagine that the displaced amacrine cell data
could have been but one of a number of independent replicates obtained from different
rabbits.

Independent replication may also be a tenable assumption if the Di are spatially separated
subregions of a larger region D. For example, in forestry, we might choose to collect data
on tree locations from several different parts of a forest. However, and in contrast to the
microanatomical setting where the experimental units are well-defined, discrete entities,
the assumption that the same process has generated the patterns in all of the subregions of
Di would then require separate justification.

In the remainder of this section, we assume that we have independent replication by
design. This does not rule out applying the methods described to pseudo-replicated data,
but to do so involves stronger assumptions, namely that data obtained as multiple samples
from a single realization of an underlying point process have the same statistical properties
as data obtained as a single sample from multiple realizations.

As in other branches of statistics, independent replication open up the possibility of a
design-based approach to inference. In what follows, we assume that the Di are congruent,
meaning that they are identical in size and shape, and that they have the same position
within the separate sampling units in relation to some objectively defined origin of mea-
surement.

Now, suppose that we compute the value of a summary description, F say, from each of
r observed patterns; typically, F will be an empirical function rather than a single number,
for example, K̂ (·) as discussed in Section 18.6. The simplest possible inferential task might
then be to estimate the expectation of F under random sampling from the population of
interest. For observed summaries Fi : i = 1, . . . , r , an unbiased estimator is the sample
mean,

F̄ = r−1
r∑

i=1

Fi , (18.21)

with estimated standard error SE(F̄) = sF/
√

r , where

s2
F = (r − 1)−1

r∑
i=1

{Fi − F̄}2 (18.22)

is the sample variance of the Fi . Note that means and variances are here to be interpreted
pointwise if F is an empirical function.

In the above discussion, there is no requirement that the underlying process be stationary.
However, the choice of the summary descriptor F should depend on whether stationarity
is a reasonable working assumption. More importantly, the implicit estimand in Equation
(18.21) is the expectation ofF under repeated sampling, and this therefore, should be chosen
to have a useful scientific interpretation in any specific application.

Diggle et al. (1991) and Baddeley, Moyeed, Howard, and Boyde (1993) both use the
estimated K-function as summary descriptor, with replicates corresponding to different
subjects (human brains and macaque monkey skulls, respectively). In Diggle et al., 31
subjects were divided into three treatment groups with 12, 10, and 9 replicates. In Baddeley
et al., the point pattern of interest was three-dimensional, and four subjects were each
sampled in 10 spatially separate cuboidal subregions. Baddeley et al. discussed different
weighted averages of the individual estimates K̂ (·) and associated standard errors, and
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developed an analysis of variance to divide the variablity in the K̂ (·) into between-subject
and within-subject components. Diggle et al., proposed a bootstrap testing procedure to
compare the expectations of K̂ (·) in the three treatment groups as follows. Let K̂i j (u) be the
estimate of K(u), and ni j the number of events, for the j th subject in the ith treatment group.
Also, let K̄i (u) denote a suitable weighted average of the K̂i j (u) within the ith treatment
group and K̄ (u) a weighted average over all subjects. Then, the residual functions,

ri j (u) = n1/2
i j {K̂i j (u) − K̄i (u)},

are approximately exchangeable. To test the hypothesis that E[K̄i (u)] is the same for all
three treatment groups i , we therefore reconstruct bootstrapped K -functions, K ∗

i j (·) as

K ∗
i j (u) = K̄ + n−1/2

i j r∗
i j (u), (18.23)

where the r∗
i j (·) are a random permutation of the ri j (·). For a Monte Carlo test, we then com-

pare the value of any test statistic computed from the actual K̂i j (·) with the values computed
from bootstrapped K ∗

i j (·), for a large number of independent bootstrap resamples.
In the nonstationary case, independent replication provides an objective way of sepa-

rating first-order and second-order properties. This requires that the Di are congruent, or
can be made so by a combination of shift, rotation, and scale transformations. For exam-
ple, Webster, Diggle, Clough, Green et al. (2005) analyze the pattern of TSE (transmissible
spongiform encephalopathy) lesions in mouse brain tissue sections taken from three func-
tionally distinct regions of the brain, namely the paraterminal body, the thalamus, and
the tectum of mid-brain. Each of these regions has an easily recognizable orientation and
registration point on its boundary. The sizes of the regions vary between animals, but
can easily be scaled to a common area. Webster et al. (2005) estimate a spatially varying
first-order intensity λ(x) as a weighted average of kernel smoothers applied to the shifted,
rotated, and scaled point patterns from each animal, with the bandwidth h chosen using
a cross-validated log likelihood. They then use the estimate (18.14) of the inhomogeneous
K -function, pooled over animals, to estimate the second-order properties.
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19.1 Introduction

This chapter considers inference procedures for parametric spatial point process models. The
widespread use of sensible but ad hoc methods based on functional summary statistics
has through the past two decades been complemented by likelihood-based methods for para-
metric spatial point process models. The increasing development of such likelihood-based
methods, whether frequentist or Bayesian, has led to more objective and efficient statisti-
cal procedures for parametric inference. When checking a fitted parametric point process
model, summary statistics and residual analysis play an important role in combination with
simulation procedures, as discussed in Chapter 5.

Simulation-free estimation methods based on composite likelihoods or pseudo-likelihoods are
discussed in Section 19.3. Markov chain Monte Carlo (MCMC) methods have had an increasing
impact on the development of simulation-based likelihood inference, in which context we
describe maximum likelihood inference in Section 19.4, and Bayesian inference in Section 19.5.
On one hand, as the development in computer technology and computational statistics
continues, computationally intensive, simulation-based methods for likelihood inference
probably will play an increasing role for statistical analysis of spatial point patterns. On
the other hand, since larger and larger point pattern datasets are expected to be collected

317
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in the future, and the simulation-free methods are much faster, they may continue to be of
importance, at least at a preliminary stage of a parametric spatial point process analysis,
where many different parametric models may quickly be investigated.

Much of this review draws on the monograph of Møller and Waagepetersen (2004) and
the discussion paper of Møller and Waagepetersen (2007). Other recent textbooks related to
the topic of this chapter include Baddeley, Gregori, Matev, Stoica et al. (2006), Diggle (2003),
Illian, Penttinen, Stoyan, and Stoyan (2008), and van Lieshout (2000). Readers interested
in background material on MCMC algorithms for spatial point processes are referred to
Geyer and Møller (1994), Geyer (1999), Møller and Waagepetersen (2004), and the references
therein. Note that the comments and corrections to Møller and Waagepetersen (2004) can
be found at www.math.aau.dk/∼ jm.

19.2 Setting and Notation

The methods in this chapter will be applied to parametric models of Poisson, Cox, Poisson
cluster, and Gibbs (or Markov) point processes. These models were described in Chapter 17,
but the reader will be reminded about the definitions and some of the basic concepts of
these models. Often spatio-temporal point process models specified in terms of a conditional
intensity (of another kind than the Papangelou conditional density, which is of fundamental
importance in the present chapter), while other kinds of spatio-temporal point process
models, which are closely related to the Cox point process models considered in this chapter,
can be found in, e.g., Brix and Diggle (2001) and Brix and Møller (2001).

We mostly confine attention to planar point processes, but many concepts, methods,
and results easily extend to R

d or a more general metric space, including multivariate and
marked point process models. Chapter 27 treats statistics for multivariate and marked point
process models.

We illustrate the statistical methodology with various examples, most of which concern
inhomogeneous point patterns. Often theRpackagespatstathas been used (see Baddeley
and Turner (2005, 2006) and www.spatstat.org). Software in R and C, developed by Rasmus
Waagepetersen in connection with our paper Møller and Waagepetersen (2007), is available
at www.math.aau.dk/∼rw/sppcode.

We consider a planar spatial point process X, excluding the case of multiple points,
meaning that X can be viewed as a random subset of R

2. We assume also that X is locally
finite, i.e., X ∩ B is finite whenever B ⊂ R

2 is finite.
We let W ⊂ R

2 denote a bounded observation window of area |W| > 0. In most exam-
ples given in this chapter, W is a rectangular region. Usually we assume that just a single
realization X ∩ W = x is observed, i.e., the data

x = {s1, . . . , sn}
is a spatial point pattern. Here the number of points, denoted n(x) = n, is finite and
considered to be a realization of a nonnegative discrete random variable (if n = 0, then x
is the empty point configuration). Sometimes, as is the case in two of our examples, two or
more spatial point patterns are observed, and sometimes a hierarchical point process model
may then be appropriate as illustrated in Sections 19.4.2 and 19.5.1; see also Chapter 18
where nonparametric methods for multivariate point patterns are discussed.

In order to account for edge-effects, we may assume that X ∩ W = x ∪ y is observed
so that “x conditional on y” is conditionally independent of X outside W. The details are
given in Sections 19.3.4 and 19.4.1.

Finally, I[·] is an indicator function, and ‖ · ‖ denotes the usual distance in R
2.
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19.3 Simulation-Free Estimation Methods

This section reviews simple and quick estimation procedures based on various estimating
equations for parametric models of spatial point processes. The methods are simulation-free
and the estimating equations are derived from a composite likelihood (Sections 19.3.1 to
19.3.2), or by a minimum contrast estimation procedure (Section 19.3.2), or by considering
a pseudo-likelihood function (Section 19.3.4).

19.3.1 Methods Based on First-Order Moment Properties

Consider a spatial point process X with a parametric intensity function ρβ(s), where s ∈ R
2

and β is an unknown real d-dimensional parameter, which we want to estimate. We assume
that ρβ(s) is expressible in closed form. This is the case for many parametric Poisson, Cox
and Poisson cluster point process models, while it is intractable for Gibbs (or Markov) point
processes (Chapter 17), see, e.g., Møller and Waagepetersen (2004). Below we consider a
composite likelihood function (Lindsay, 1988) based on the intensity function.

Recall that we may interpret ρβ(s) ds as the probability that precisely one point falls in
an infinitesimally small region containing the location s and of area ds. Let Ci , i ∈ I , be
a finite partitioning of the observation window W into disjoint cells Ci of small areas |Ci |.
Define Ni = I[X ∩ Ci �= ∅] and

pi (β) = Pβ(Ni = 1) ≈ ρβ(ui )|Ci |,
where ui denotes a representative point in Ci . Consider the product of marginal likelihoods
for the Bernoulli trials Ni ,∏

i∈I

pi (β)Ni (1 − pi (β))1−Ni ≈
∏
i∈I

(ρβ(ui )|Ci |)Ni (1 − ρβ(ui )|Ci |)1−Ni . (19.1)

In the right-hand side of Equation (19.1), we may neglect the factors |Ci | in the first part
of the product, since they cancel when we form likelihood ratios. Then, as the cell sizes
|Ci | tend to zero, under suitable regularity conditions the limit of the product of marginal
likelihoods becomes, omitted the constant factor exp(|W|),

Lc(β; x) = exp
(

−
∫

W
ρβ(s) ds

) n∏
i=1

ρβ(si ). (19.2)

We call Lc(β; x) the composite likelihood function based on the intensity function. If X
is a Poisson point process with intensity function ρβ(s), then Lc(β; x) coincides with the
likelihood function.

If there is a unique β that maximizes Lc(β; x), we call it the maximum composite likelihood
estimate (based on the intensity function). The corresponding estimating function sc(β; x)
is given by the derivative of log Lc(β; x) with respect to β,

sc(β; x) =
n∑

i=1

d log ρβ(si )/dβ −
∫

W
(d log ρβ(s)/dβ)ρβ(s) ds. (19.3)

The estimating equation sc(β; x) = 0 is unbiased (assuming in Equation (19.3) that (d/dβ)∫
W · · · = ∫

W(d/dβ) · · ·). Asymptotic properties of maximum composite likelihood estima-
tors are investigated in Waagepetersen (2007) and Waagepetersen and Guan (2009). For
a discussion of asymptotic results for maximum likelihood estimates of Poisson process
models, see Rathbun and Cressie (1994) and Waagepetersen (2007).
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By exploiting the fact that Equation (19.2) coincides with the likelihood for a Poisson pro-
cess, the maximum composite likelihood estimate can easily be determined using spat-
stat, provided the intensity function is of the log-linear form

log ρβ(s) = a (s) + βT z(s), (19.4)

where a (s) and z(s) are known real functions with z(s) of the same dimension as β. In
practice, z(s) is often a covariate. See also Berman and Turner (1992). This covariate may
only be partially observed on a grid of points and, hence, some interpolation technique
may be needed (Rathbun, 1996; Rathbun, Shiffman, and Gwaltney, 2007; Waagepetersen,
2008). An example is considered in Section 19.3.3.

We refer to a log-linear Poisson process when X is a Poisson process with intensity function
of the form (19.4). For many Cox process models, the intensity function is also of the log-
linear form (19.4). Specifically, let Y = {Y(s) : s ∈ R

2} be a spatial process where each Y(s) is
a real random variable with mean one, and let X conditional on Y(s) be a Poisson process
with intensity function

Λ(s) = exp(βT z(s))Y(s). (19.5)

Then Equation (19.4) is satisfied. Usually Y is not observed, and the distribution of Y may
depend on another parameter ψ , which may be estimated by another method, as discussed
in Section 19.3.2.

19.3.2 Methods Based on Second-Order Moment Properties

Let the situation be as in the first paragraph of Section 19.3.1 and, in addition, suppose that
the spatial point process X has a parametrically specified pair correlation function gψ or other
second-order characteristic, such as the (inhomogeneous) K-function Kψ (Baddeley, Møller,
and Waagepetersen, 2000; see also Chapter 18). We assume that gψ or Kψ is expressible
in closed form, which is the case for many parametric Poisson, Cox and Poisson cluster
point process models. We assume also that β and ψ are variation independent, that is,
(β, ψ) ∈ B × Ψ , where B ⊆ R

p and Ψ ⊆ R
q .

Recall that ρ
(2)
β,ψ (s, t) = ρβ(s)ρβ(t)gψ (s, t) is the second-order product density, and we may

interpret ρ
(2)
β,ψ (s, t) ds dt as the probability of observing a point in each of two infinitesimally

small regions containing s and t and of areas ds and dt, respectively. Using the same
principle as in Section 19.3.1, but considering now pairs of cells Ci and C j , i �= j , we can
derive a composite likelihood Lc(β, ψ) based on the second-order product density. Plugging
in an estimate β̂, e.g., the maximum composite likelihood estimate based on the intensity
function, we obtain a function Lc(β̂, ψ), which may be maximized to obtain an estimate of
ψ . See Møller and Waagepetersen (2007).

Minimum contrast estimation is a more common estimation procedure, where the idea is
to minimize a “contrast” (or “distance”) between, e.g., Kψ and its nonparametric empirical
counterpart K̂ (r ), as defined in Section 18.6, thereby obtaining a minimum contrast estimate.
For instance, ψ may be estimated by minimizing the contrast

∫ b

a

(
K̂ (r )α − Kψ (r )α

)2
dr, (19.6)

where 0 ≤ a < b < ∞ and α > 0 are chosen on an ad hoc basis (see, e.g., Diggle (2003) or
Møller and Waagepetersen (2004)). Theoretical properties of minimum contrast estimators
are studied in Heinrich (1992).

These simulation-free estimation procedures are fast and computationally easy, but a
disadvantage is that we have to specify tuning parameters, such as a, b, α in (19.6).
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FIGURE 19.1
Locations of 3605 Beilschmiedia pendula Lauraceae trees observed within a 500 × 1000 m region at Barro Colorado
Island (Panama Canal).

19.3.3 Example: Tropical Rain Forest Trees

Figure 19.1 provides an example of an inhomogeneous point pattern where the methods de-
scribed in Sections 19.3.1 and 19.3.2 can be applied. The figure shows the locations of rain
forest trees in a rectangular observation window W of size 500×1000 m. This point pattern,
together with a second point pattern of another species of trees, has previously been ana-
lyzed in Waagepetersen (2007) and Møller and Waagepetersen (2007). The data are just a
small part of a much larger dataset comprising hundreds of thousands of trees belonging to
hundreds of species (Hubbell and Foster, 1983; Condit et al., 1996; Condit, 1998). Figure 19.2
shows two kinds of covariates z1 (altitude) and z2 (norm of altitude gradient), which are
measured on a 100 × 200-square grid, meaning that we approximate the altitude and the
norm of altitude gradient to be constant on each of 100 × 200 squares of size 5 × 5 m.

A plot of a nonparametric estimate of the inhomogeneous K-function (omitted here)
confirms that the point pattern in Figure 19.1 is clustered. This clustering may be explained
by the covariates in Figure 19.2, by other unobserved covariates, and by tree reproduction by
seed dispersal. We, therefore, assume an inhomogeneous Cox process model as specified
by (19.5) with β = (β0, β1, β2)T and z = (z0, z1, z2)T , where z0 ≡ 1 so that β0 is interpreted
as an intercept. Moreover, Y in (19.5) is modeled by a stationary shot noise process with
mean one, that is,

Y(s) = 1
ωσ 2

∑
t∈Φ

k((s − t)/σ ), (19.7)

where Φ is a stationary Poisson process with intensity ω > 0, k(·) is a density function with
respect to Lebesgue measure, and σ > 0 is a scaling parameter. We call X an inhomogeneous
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FIGURE 19.2
Rain forest trees: The covariates z1 (altitude, left panel) and z2 (norm of altitude gradient, right panel) are recorded
on a 5 × 5 m grid (the units on the axes are in meters).
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shot noise Cox process (Møller, 2003; Waagepetersen, 2007; Møller and Waagepetersen, 2007).
Finally, as in a modified Thomas process (Thomas, 1949; Neyman and Scott, 1958), we
assume that k(x) = exp(−‖x‖2/2)/(2π ) is a bivariate Gaussian kernel. For short, we then
refer to X as an inhomogeneous Thomas process.

For β, we obtain the maximum composite likelihood estimate (β̂0, β̂1, β̂2) = (−4.989,
0.021, 5.842) (under the Poisson model, this is the maximum likelihood estimate). Assum-
ing asymptotic normality (Waagepetersen, 2007), 95% confidence intervals for β1 and β2
under the fitted inhomogeneous Thomas process are [−0.018, 0.061] and [0.885, 10.797],
respectively. Much narrower 95% confidence intervals for β1 and β2 are obtained under the
fitted Poisson process, namely [0.017, 0.026] and [5.340, 6.342], respectively. This difference
arises because in the Cox process there is an extra variability due to the process Y appearing
in Equation (19.5).

An unbiased estimate of the inhomogeneous K -function at distance r > 0 is given by

∑
i, j=1,...,n: i �= j

I[‖si − s j‖ ≤ r ]
ρ(si )ρ(s j )|W ∩ (W + si − s j )| ,

where W + s denotes W translated by s, and |W ∩ (W + si − s j )| is an edge-correction factor,
which is needed since we sum over all pairs of points observed within W. In practice, we
need to plug in an estimate of ρ(si )ρ(s j ). We use the parametric estimate ρβ̂(si )ρβ̂(s j ) with
β̂ the estimate obtained above. Let K̂ (r ) denote the resulting estimate of K (r ). Using the
minimum contrast estimation procedure based on (19.6) with a = 0, b = 100, and α = 1/4,
we obtain (ω̂, σ̂ ) = (8 × 10−5, 20).

Estimation of this inhomogeneous Thomas process and an inhomogeneous log-Gaussian
Cox process, i.e., when log Y in (19.5) is a Gaussian process (see Møller, Syversveen, and
Waagepetersen, 1998, and Chapter 17), and their corresponding estimated K-functions are
further considered in Møller and Waagepetersen (2007).

19.3.4 Pseudo-Likelihood

The maximum pseudo-likelihood estimate is a simple and computationally fast but less efficient
alternative to the maximum likelihood estimate. In the special case of a parametric Poisson
point process model, the two kinds of estimates coincide. Since the pseudo-likelihood func-
tion is expressed in terms of the Papangelou conditional intensity, pseudo-likelihood esti-
mation is particularly useful for Gibbs (or Markov) point processes, but generally not so for
Cox and Poisson cluster processes.

We recall first from Section 17.4 the definition of the Papangelou conditional intensity in
the case where X restricted to W has a parametric density fθ (x) with respect to the Poisson
process on W with unit intensity. Let x = {s1, . . . , sn} ⊂ W denote an arbitrary finite point
configuration in W, and s an arbitrary location in W\x. Assume that fθ (x) is hereditary,
meaning that fθ (x ∪ {s}) > 0 implies that fθ (x) > 0. For fθ (x) > 0, define the Papangelou
conditional intensity by

λθ (s, x) = fθ (x ∪ {s})/ fθ (x). (19.8)

We may interpret λθ (s, x) ds as the conditional probability that there is a point of the process
in an infinitesimally small region containing s and of area ds given that the rest of the point
process coincides with x. How we define λθ (s, x) if fθ (x) = 0 turns out not to be that
important, but for completeness let us set λθ (s, x) = 0 if fθ (x) = 0. In the special case of a
Poisson process with intensity function ρθ (s), we simply have λθ (s, x) = ρθ (s). In the case
of a Gibbs (or Markov) point process, λθ (s, x) depends on x only through the neighbors to s
(see Section 17.4), and the intractable normalizing constant of the density cancels in (19.8).

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 18:3 C7287 C7287˙C019

Parametric Methods 323

The pseudo-likelihood function was first introduced in Besag (1977). It can be derived by
a limiting argument similar to that used for deriving the composite likelihood in (19.2), the
only difference being that we replace pi (β) in Equation (19.1) by the conditional probability

pi (θ ) := Pθ (Ni = 1|X\Ci = x\Ci ) ≈ λθ (ui , x\Ci )|Ci |.

Under mild conditions (Besag, Milne, and Zachary, 1982; Jensen and Møller, 1991) the limit
becomes the pseudo-likelihood function

L p(θ ; x) = exp
(

−
∫

W
λθ (s, x) ds

) n∏
i=1

λθ (si , x), (19.9)

where we have again omitted the constant factor exp(|W|). Clearly, for a Poisson process
with a parametric intensity function, the pseudo-likelihood is the same as the likelihood.
The pseudo-score is the derivative of log L p(θ ; x) with respect to θ , that is,

s(θ ; x) =
n∑

i=1

d log λθ (si , x)/dθ −
∫

W
(d log λθ (s, x)/dθ )λθ (s, x) ds. (19.10)

This provides an unbiased estimating equation s(θ ; x) = 0 (assuming in (19.10) that (d/dθ )∫
W · · · = ∫

W(d/dθ ) · · ·). When finding the maximum pseudo-likelihood estimate, it is useful
to notice that Equation (19.9) can be viewed as the likelihood for a Poisson process with “in-
tensity function” λθ (·; x). The maximum pseudo-likelihood estimate can then be evaluated
using spatstat if λθ is of a log-linear form similar to that in Equation (19.4), that is,

log λθ (s, x) = a (s, x) + βT t(s, x), (19.11)

where a (s, x) and t(s, x) are known functions (Baddeley and Turner, 2000).
Suppose that X may have points outside W, and that we do not know its marginal

density fθ (x) on W. To account for edge effects, assume a spatial Markov property is satisfied.
Specifically, suppose there is a region W�R ⊂ W such that conditional on X∩ (W\W�R) = y,
we have that X∩ W�R is independent of X\W, and we know the conditional density fθ (x|y)
of X∩W�R given X∩(W\W�R) = y, where fθ (·|y) is hereditary. Here the notation W�R refers
to the common case where X is a Gibbs (or Markov) point process with a finite interaction
radius R (see Chapter 17), in which case W�R is naturally given by the W eroded by a disc
of radius R, that is,

W�R = {s ∈ W : ‖s − t‖ ≤ R for all t ∈ W}. (19.12)

For s ∈ W�R, exploiting the spatial Markov property, the Papangelou conditional intensity
is seen not to depend on points from X\W, and is given by replacing fθ (x) by fθ (x|y) in the
definition (19.8). We denote this Papangelou conditional intensity by λθ (s, x ∪ y). Note that
λθ (s, x ∪ y) depends only on x ∪ y through its neighbors to s, and all normalizing constants
cancel. Consequently, we need only specify fθ (·|y) up to proportionality, and the pseudo-
likelihood L p(θ ; x ∪ y) is given by Equation (19.9) when λθ (s, x) is replaced by λθ (s, x ∪ y).
The pseudo-score s(θ ; x ∪ y) is obtained as the derivative of log L p(θ ; x ∪ y) with respect to
θ , and provides an unbiased estimating equation s(θ ; x ∪ y) = 0.

We give an application of maximum pseudo-likelihood in Section 19.4.2. Asymptotic
results for maximum pseudo-likelihood estimates are established in Jensen and Møller
(1991), Jensen and Künsch (1994), and Mase (1995, 1999). Alternatively, a parametric bootstrap
can be used, see, e.g., Baddeley and Turner (2000).

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 18:3 C7287 C7287˙C019

324 Handbook of Spatial Statistics

19.4 Simulation-Based Maximum Likelihood Inference

For Poisson process models, computation of the likelihood function is usually easy (cf.
Section 19.3.1). For Gibbs (or Markov) point process models, the likelihood contains an
unknown normalizing constant, while for Cox process models, the likelihood is given in
terms of a complicated integral. Using MCMC methods, it is now becoming quite feasible
to compute accurate approximations of the likelihood function for Gibbs and Cox pro-
cess models as discussed in Sections 19.4.1 and 19.4.3. However, the computations may be
time-consuming and standard software is yet not available.

19.4.1 Gibbs Point Processes

Consider a parametric model for a spatial point process X, where X restricted to W has a
parametric density fθ (x) with respect to the Poisson process on W with unit intensity. For
simplicity and specificity, assume that fθ (x) is of exponential family form

fθ (x) = exp(t(x)Tθ )/cθ , (19.13)

where t(x) is a real function of the same dimension as the real parameter θ , and cθ is a
normalizing constant. In general, apart from the special case of a Poisson process, cθ has
no closed form expression. Equation (19.13) holds if the Papangeleou conditional intensity
λθ (s, x) is of the log-linear form (19.11). This is the case for many Gibbs (or Markov) point
processes when the interaction radius R < ∞ is known. Examples include most pairwise
interaction point processes, such as the Strauss process, and more complicated interaction
point processes, such as the area-interaction point process see Chapter 17.

From Equation (19.13), we obtain the score function u(θ ; x) and the observed information
j (θ ),

u(θ ; x) = t(x) − Eθ t(X), j (θ ) = varθ t(X),

where Eθ and varθ denote expectation and variance with respect to X ∼ fθ . Let θ0 denote
a fixed reference parameter value. The score function and observed information may be
evaluated using the importance sampling formula

Eθk(X) = Eθ0

[
k(X) exp

(
t(X)T (θ − θ0)

)]
/(cθ /cθ0 ) (19.14)

with k(X) given by t(X) or t(X)t(X)T . For k ≡ 1, we obtain

cθ /cθ0 = Eθ0

[
exp

(
t(X)T (θ − θ0)

)]
. (19.15)

Approximations of the likelihood ratio fθ (x)/ fθ0 (x), score, and observed information can be
obtained by Monte Carlo approximation of the expectations Eθ0 [· · ·] using MCMC samples
from fθ0 . Here, to obtain an approximate maximum likelihood estimate, Monte Carlo ap-
proximations may be combined with Newton–Raphson updates. Furthermore, if we want
to test a submodel, approximate p-values based on the likelihood ratio statistic or the Wald
statistic can be derived by MCMC methods (see Geyer and Møller (1994), Geyer (1999), and
Møller and Waagepetersen (2004)).

The path sampling identity (Gelman and Meng, 1998),

log(cθ /cθ0 ) =
∫ 1

0
Eθ (s)t(X)(dθ (s)/ds)T ds, (19.16)

provides an alternative and often numerically more stable way of computing a ratio of
normalizing constants. Here θ (s) is a differentiable curve, e.g., a straight line segment, con-
necting θ0 = θ (0) and θ = θ (1). The log ratio of normalizing constants is approximated by

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 18:3 C7287 C7287˙C019

Parametric Methods 325

evaluating the outer integral in Equation (19.16) using, e.g., the trapezoidal rule and the ex-
pectation using MCMC methods (Berthelsen and Møller, 2003; Møller and Waagepetersen,
2004).

For a Gibbs point process with unknown interaction radius R, the likelihood function is
usually not differentiable as a function of R. Therefore, maximum likelihood estimates of R
are often found using a profile likelihood approach, where for each fixed value of R we max-
imize the likelihood as discussed above. Examples are given in Møller and Waagepetersen
(2004).

If X may have points outside W, and we do not know its marginal density fθ (x) on W,
we may account for edge effects by exploiting the spatial Markov property (Section 19.3.4),
using the smaller observation window W�R given by Equation (19.12). If fθ (x|y) denotes
the conditional density of X ∩ W�R = x given X ∩ (W\W�R) = y, the likelihood function,

L(θ ; x) = Eθ fθ (x|X ∩ (W\W�R)),

may be computed using a missing data approach, see Geyer (1999) and Møller and Waa-
gepetersen (2004). A simpler but less efficient alternative is the border method, considering
the conditional likelihood function

L(θ ; x|y) = fθ (x|y),

where the score, observed information, and likelihood ratios may be computed by analogy
with the case above based on Equation (19.14). (See Møller and Waagepetersen (2004) for a
discussion of these and other approaches for handling edge effects.)

Asymptotic results for maximum likelihood estimates of Gibbs point process models are
reviewed in Møller and Waagepetersen (2004), but these results are derived under restric-
tive assumptions of stationarity and weak interaction. According to standard asymptotic
results, the inverse observed information provides an approximate covariance matrix of
the maximum likelihood estimate, and log likelihood ratio and Wald statistics are asymp-
totically χ2-distributed. If one is suspicious about the validity of the asymptotic approach,
an alternative is to use a parametric bootstrap. (See Møller and Waagepetersen, 2004.)

19.4.2 Example: Ants’ Nests

Figure 19.3 shows a bivariate point pattern of ants’ nests of two types, Messor wasmanni and
Cataglyphis bicolor (see Harkness and Isham, 1983). The interaction between the two types
of ants’ nests is of main interest for this dataset. Note the irregular polygonal shape of the
observation window W given in Figure 19.3.

The Cataglyphis ants feed on dead Messors and, hence, the positions of Messor nests might
affect the choice of sites for Cataglyphis nests, while the Messor ants are believed not to be
influenced by presence or absence of Cataglyphis ants when choosing sites for their nests.
Högmander and Särkkä (1999) therefore specified a hierarchical model based on first a point
process model for the Messor nests, and, second, a point process model for the Cataglyphis
nests conditional on the Messor nests. Both types of models are pairwise interaction point
process models, with the log Papangelou conditional intensity of the form

log λ(s, x) = U(s) +
n∑

i=1

V(‖s − si‖)

for x = {s1, . . . , sn} ⊂ W and s �∈ x, where U(s) and V(‖s − si‖) are real functions called the
first respective, second-order potential. In other words, if X is such a pairwise interaction
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FIGURE 19.3
Locations of nests for Messor (triangles) and Cataglyphis (circles) ants. The observation window W is polygonal
(solid line), and the enclosing rectangle for W (dashed line) is 414.5 × 383 ft.

point process, then X has density

f (x) ∝ exp

⎛
⎝ n∑

i=1

U(si ) +
∑

1≤i< j≤n

V(‖si − s j‖)

⎞
⎠

with respect to the Poisson process on W with intensity one. Furthermore, the pairwise
interaction process models are so-called Strauss processes with hard cores specified as follows.
For distances t > 0, define

V(t; r ) =
⎧⎨
⎩

−∞ if t ≤ r
1 if r < t ≤ R

0 otherwise,

where R ≥ 0 is the interaction range, r ∈ [0, R) denotes a hard-core distance (or no hard
core if r = 0), and exp(−∞) = 0. First, for the Messor nests, the Strauss process with hard
core rM is given by first- and second-order potentials

UM1({s}) = βM, UM2({si , s j }) = ψMV(‖si − s j‖; rM).

Thus, the conditional intensity for a putative Messor nest at a location s is zero if an existing
Messor nests occur within distance rM from s, and otherwise the log conditional density
is given by the sum of βM and ψM times the number of neighboring Messor nests within
distance R. Second, conditional on the pattern xM of Messor nests, the Cataglyphis nests are
modeled as an inhomogeneous Strauss process with one hard core rCM to the Messor nests
and another hard core rC between the Cataglyphis nests, i.e., using potentials

UC1({s}) = βC + ψCM

n∑
i=1

V(‖s − si‖; rCM), UC2({si , s j }) = ψC V(‖si − s j‖; rC ).

We use the maximum likelihood estimates rM = 9.35 and rC = 2.45 (distances are measured
in feet), which are given by the observed minimum interpoint distances in the two types of

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 18:3 C7287 C7287˙C019

Parametric Methods 327

point patterns. Using positive hard cores rM and rC may be viewed as an ad hoc approach
to obtain a model, which is well defined for all real values of the parameters βM, βC , ψM,
ψCM, and ψC , whereby both repulsive and attractive interaction within and between the
two types of ants can be modeled. However, as noted by Møller (1994) and Geyer and
Thompson (1995), the Strauss hard-core process is a poor model for clustering due to the
following “phase transition property”: For positive values of the interaction parameter,
except for a narrow range of values, the distribution will either be concentrated on point
patterns with one dense cluster of points or in “Poisson-like” point patterns.

In contrast to Högmander and Särkkä (1999), we find it natural to let rCM = 0, meaning
there is no hard core between the two types of ants’ nests. Further, for comparison, we fix
R at the value 45 used in Högmander and Särkkä, though pseudo-likelihood computations
indicate that a more appropriate interaction range would be 15. In fact, Högmander and
Särkkä considered a subset of the data in Figure 19.3 within a rectangular region. They
also conditioned on the observed number of points for the two species when computing
maximum likelihood and maximum pseudo-likelihood estimates, whereby the parameters
βM and βC vanish. Instead, we fit the hierarchical model to the full dataset, and we do not
condition on the observed number of points.

We first correct for edge-effects by conditioning on the data in W\W�45, where W�45
denotes the points within W with distance less than 45 to the boundary of W. Using spat-
stat, the maximum pseudo-likelihood estimate (MPLE) of (βM, ψM) is (−8.21, −0.09),
indicating (weak) repulsion between the Messor ants’ nests. Without edge-correction, we
obtain a rather similar MPLE (−8.22, −0.12). The edge-corrected MPLE of (βC , ψCM, ψC ) is
(−9.51, 0.13, −0.66), indicating a positive association between the two species and repul-
sion within the Cataglyphis nests. If no edge-correction is used, the MPLE for (βC , ψCM, ψC )
is (−9.39, 0.04, −0.30). Högmander and Särkkä (1999) also found a repulsion within the
Cataglyphis nests, but in contrast to our result a weak repulsive interaction between the two
types of nests. This may be explained by the different modeling approach in Högmander
and Särkkä where the smaller observation window excludes a pair of very close Cataglyphis
nests, and where also the conditioning on the observed number of points in the two point
patterns may make a difference.

No edge-correction is used for our maximum likelihood estimates (MLEs). The MLEs
β̂M = −8.39 and ψ̂M = −0.06 again indicate a weak repulsion within the Messor nests, and
the MLEs β̂C = −9.24, ψ̂CM = 0.04, and ψ̂C = −0.39 also indicate positive association be-
tween Messor and Cataglyphis nests, and repulsion within the Cataglyphis nests. Confidence
intervals for ψCM, when the asymptotic variance estimate is based on observed informa-
tion or a parametric bootstrap, are [−0.20, 0.28] (observed information) and [−0.16, 0.30]
(parametric bootstrap).

The differences between the MLE and the MPLE (without edge-correction) seem rather
minor. This is also the experience for MLEs and corresponding MPLEs in Møller and
Waagepetersen (2004), though differences may appear in cases with a strong inter-
action.

19.4.3 Cluster and Cox Processes

This section considers maximum likelihood inference for cluster and Cox process models.
This is, in general, both more complicated and computionally more demanding than for
Gibbs (or Markov) point processes.

For example, consider the case of an inhomogeneous shot noise Cox process X as defined by
(19.5) and (19.7). We can interpret this as a Poisson cluster process as follows. The points in
the stationary Poisson process Φ in (19.7) specify the centers of the clusters. Conditional
on Φ, the clusters are independent Poisson processes, where the cluster associated to t ∈ Φ
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has intensity function

λθ (s|t) = exp(βT z(s))
1

ωσ 2 k((s − t)/σ ), s ∈ R
2,

where θ = (β, ω, σ ). Finally, X consists of the union of all cluster points.
With probability one, X and Φ are disjoint. Moreover, in applications Φ is usually unob-

served. In order to deal with edge effects, consider a bounded region Wext ⊇ W such that it
is very unlikely that clusters associated with centers outside Wext have points falling in W
(see Brix and Kendall, 2002, and Møller, 2003). We approximate then X ∩ W by the union of
clusters with centers in Ψ := Φ ∩ Wext. Let f (x|ψ) denote the conditional density of X ∩ W
given Ψ = ψ , where the density is with respect to the Poisson process on W with intensity
one. For x = {s1, . . . , sn},

fθ (x|ψ) = exp

⎛
⎝|W| −

∫
W

∑
t∈ψ

λθ (s|t) ds

⎞
⎠ n∏

i=1

λθ (si |t) (19.17)

and the likelihood based on observing X ∩ W = x is

L(θ ; x) = Eω fθ (x|Ψ ), (19.18)

where the expectation is with respect to the Poisson process Ψ on Wext with intensity ω. As
this likelihood has no closed form expression, we may consider Ψ as missing data and use
MCMC methods for finding an approximate maximum likelihood estimate (see Møller and
Waagepetersen, 2004). Here one important ingredient is an MCMC simulation algorithm
for the conditional distribution of Ψ given X ∩ W = x. This conditional distribution has
density

fθ (ψ |x) ∝ fθ (x|ψ) fω(ψ), (19.19)

where
fω(ψ) = exp (|Wext|(1 − ω)) ωn(ψ) (19.20)

is the density of Ψ . For conditional simulation from (19.19), we use a birth–death type
Metropolis–Hastings algorithm studied in Møller (2003).

For a log-Gaussian Cox process model, the simulation-based maximum likelihood approach
is as above except for the following. To specify the density of the Poisson process (X∩W)|Y,
since log Y in (19.5) is a Gaussian process, we need only consider Y(s) for s ∈ W. Hence,
in contrast to above, edge effects do not present a problem, and the conditional density of
X ∩ W given Y is

f (x|Y(s), s ∈ W) = exp

(
|W| −

∫
W

exp(Y(s)) ds +
n∑

i=1

Y(si )

)
. (19.21)

However, when evaluating the integral in (19.21) and when simulating from the conditional
distribution of Y on W given X ∩ W = x, we need to approximate Y on W by a finite-
dimensional log-Gaussian random vector YI = (Y(ui ), i ∈ I ) corresponding to a finite
partition {Ci , i ∈ I } of W, where ui is a representative point of the cell Ci and we use the
approximation Y(s) ≈ Y(ui ) if s ∈ Ci . For simulation from the conditional distribution of
YI given X ∩ W = x, we use a Langevin–Hastings algorithm (also called a Metropolis-adjusted
Langevin algorithm) (see Møller et al. (1998) and Møller and Waagepetersen (2004)).

For the shot noise Cox process model considered above, the likelihood (19.18) and its
MCMC approximation are complicated functions of θ , possibly with many local modes.
The same holds for a log-Gaussian Cox process model. Careful maximization procedures,
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therefore, are needed when finding the (approximate) maximum likelihood estimate. Fur-
ther details, including examples and specific algorithms of the MCMC missing data approach
for shot noise and log-Gaussian Cox processes, are given in Møller and Waagepetersen
(2004, 2007).

19.5 Simulation-Based Bayesian Inference

A Bayesian approach often provides a flexible framework for incorporating prior information
and analyzing spatial point process process models. Section 19.5.1 considers an application
example of a Poisson process, where a Bayesian approach is obviously more suited than a
maximum likelihood approach. Bayesian analysis for cluster and Cox processes is discussed
in Section 19.5.2, while Section 19.5.3 considers Gibbs (or Markov) point processes. In the
latter case, a Bayesian analysis is more complicated because of the unknown normalizing
constant appearing in the likelihood term of the posterior density.

19.5.1 Example: Reseeding Plants

Armstrong (1991) considered the locations of 6378 plants from 67 species on a 22 × 22 m
observation window W in the southwestern area of Western Australia. The plants have
adapted to regular natural fires, where resprouting species survive the fire, while reseeding
species die in the fire, but the fire triggers the shedding of seeds, which have been stored
since the previous fire. See also Illian, Møller, and Waagepetersen (2009), where further
background material is provided and various examples of the point patterns of resprouting
and reseeding plants are shown. Figure 19.4 shows the locations of one of the reseeding
plants Leucopogon conostephioides (called seeder 4 in Illian et al., 2009). This and five other
species of reseeding plants together with the 19 most dominant (influential) species of re-
sprouters are analyzed in Illian et al. (2009). Since it is natural to model the locations of the
reseeding plants conditionally on the locations of the resprouting plants, we consider below
a model for the point pattern x in Figure 19.4 conditional on the point patterns y1, . . . , y19

Seeder 4

FIGURE 19.4
Locations of 657 Leucopogon conostephioides plants observed within a 22 × 22 m window.

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 18:3 C7287 C7287˙C019

330 Handbook of Spatial Statistics

corresponding to the 19 most dominant species of resprouters, as given in Figure 1 in Illian
et al. (2009). For a discussion of possible interaction with other reseeder species, and the bi-
ological justification of the the covariates defined below, we refer again to Illian et al. (2009).

Let κt,i ≥ 0 denote a parameter that specifies the radius of interaction of the ith resprouter
at location t ∈ yi , and let κ denote the collection of all κt,i for t ∈ yi and i = 1, . . . , 19. For
i = 1, . . . , 19, define covariates zi (s) = zi (s; κt,i , t ∈ yi ) by

zi (s; κt,i , t ∈ yi ) =
∑

t∈yi : ‖s−t‖≤κt,i

(
1 − (‖s − t‖/κt,i

)2
)2

.

Conditional on y1, . . . , y19, we assume that x = {s1, . . . , sn} is a realization of a Poisson process
with log-linear intensity function

log ρθ , y1,..., yn (s) = β0 +
19∑

i=1

βi zi (s; κt,i , t ∈ yi ),

where θ = (β, κ) and β = (β0, . . . , β19) is a regression parameter, where β0 is an intercept
and βi for i > 0 controls the influence of the ith resprouter. The likelihood depends on κ in
a complicated way, and the dimension of κ is much larger than the size of the data x. This
makes it impossible to find maximum likelihood estimates.

Using a Bayesian setting, we treat θ = (β, κ) as a random variable. Based on Table 1
in Illian et al. (2009) and other considerations in that paper, we make the following prior
assumptions. We let κt,i follow the restriction of a Gaussian distribution N(μi , σ 2

i ) to [0, ∞),
where (μi , σ 2

i ) is chosen so that under the unrestricted Gaussian distribution the range of
the zone of influence is a central 95% interval. Furthermore, we let all the κt,i and the βi

be independent, and each βi be N(0, σ 2)-distributed, where σ = 8. Combining these prior
assumptions with the likelihood term, we obtain the posterior density

π(β, κ|x) ∝ exp

(
−β0/(2σ 2) −

19∑
i=1

{
β2

i /(2σ 2) +
∑
t∈yi

(κt,i − μi )2/
(
2σ 2

i

)})

× exp
(

−
∫

W
ρθ , y1,..., yn (s) ds

) n∏
i=1

ρθ , y1,..., yn (si ), βi ∈ R, κt,i ≥ 0 (19.22)

(suppressing in the notation π(β, κ|x) that we have conditioned on y1, . . . , y19 in the poste-
rior distribution).

Simulations from (19.22) are obtained by a Metropolis-within-Gibbs algorithm (also
called a hybrid MCMC algorithm, see, e.g., Robert and Casella, 1999), where we alternate
between updating β and κ using random walk Metropolis updates (for details, see Illian
et al., 2009). Thereby various posterior probabilities of interest can be estimated. For exam-
ple, a large (small) value of P(βi > 0|x) indicates a positive/attractive (negative/repulsive)
association to the ith resprouter, see Figure 2 in Illian et al. (2009).

The model can be checked following the idea of posterior predictive model assessment
(Gelman, Meng, and Stern, 1996), comparing various summary statistics with their pos-
terior predictive distributions. The posterior predictive distribution of statistics depending
on X (and possibly also on (β, κ)) is obtained from simulations: We generate a posterior
sample (β( j) , κ ( j)), j = 1, . . . , m, and for each j “new data” x( j) from the conditional dis-
tribution of X given (β ( j) , κ ( j)). For instance, the grayscale plot in Figure 19.5 is a residual
plot based on quadrat counts. We divide the observation window into 100 equally sized
quadrats and count the number of plants within each quadrat. The grayscales reflect the
probabilities that counts drawn from the posterior predictive distribution are less than
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FIGURE 19.5
Residual plot based on quadrat counts. Quadrats with a “*” are where the observed counts fall below the 2.5%
quantile (white “*”) or above the 97.5% quantile (black “*”) of the posterior predictive distribution. The grayscales
reflect the probabilities that counts drawn from the posterior predictive distribution are less or equal to the
observed quadrat counts (dark means small probability).

or equal to the observed quadrat counts where dark means small probability. The stars
mark quadrats where the observed counts are “extreme” in the sense of being either be-
low the 2.5% quantile or above the 97.5% quantile of the posterior predictive distribution.
Figure 19.5 does not provide evidence against our model. A plot based on the L-function
(Section 17.2) and the posterior predictive distribution is also given in Illian et al. (2009).
This plot also shows no evidence against our model.

19.5.2 Cluster and Cox Processes

The simulation-based Bayesian approach exemplified above extends to cluster and Cox
processes, where we include the “missing data” η, say, in the posterior and use a Metropolis-
within-Gibbs (or other MCMC) algorithm, where we alter between updating θ and η.
Examples are given below.

In the case of the Poisson cluster process model for X considered in Section 19.4.3, η = Ψ
is the point process of center points. Incorporating this into the posterior, we obtain the
posterior density

π(θ , ψ |x) ∝ fθ (x|ψ) fω(ψ)π(θ ),

where fθ (x|ψ) and fω(ψ) are specified in Equation (19.17) and Equation (19.20), and π(θ )
is the prior density. The Metropolis-within-Gibbs algorithm alters between updating from
“full conditionals” given by

π(θ |ψ, x) ∝ fθ (x|ψ) fω(ψ)π(θ ) (19.23)

and
π(ψ |θ , x) ∝ fθ (x|ψ) fω(ψ). (19.24)

Yet another Metropolis-within-Gibbs algorithm may be used when updating from
Equation (19.23), cf. Section 19.4.3. When updating from Equation (19.24) we use the birth–
death-type Metropolis–Hastings algorithm mentioned in connection to (19.19).
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FIGURE 19.6
Posterior mean of β0 + β1z1(s) + β2z2(s) (left panel) and Y(s) (right panel), s ∈ W, under the log-Gaussian Cox
process model for the tropical rain forest trees.

The same holds for a log-Gaussian Cox process model for X. Then we may approximate the
log-Gaussian process Y on W by the finite-dimensional log-Gaussian random variable η =
YI specified in Section 19.4.3, and use a Langevin–Hastings algorithm for simulating from
the conditional distribution of η given (θ , x). Rue, Martino, and Chopin (2007) demonstrate
that it may be possible to compute accurate Laplace approximations of marginal posterior
distributions without MCMC simulations.

For instance, Møller and Waagepetersen (2007) considered a log-Gaussian Cox process
model for the rain forest trees considered in Section 19.3.3. They used a 200 × 100 grid to
index η, and imposed certain flat priors on the unknown parameters. Figure 19.6 shows the
posterior means of the systematic part β0 + β1z1(s) + β2z2(s) (left panel) and the random
part Y(s) (right panel) of the log random intensity function log Λ(s) given by (19.5). The
systematic part seems to depend more on z2 (norm of altitude gradient) than z1 (altitude) (cf.
Figure 19.2). The fluctuations of the random part may be caused by small-scale clustering
due to seed dispersal and covariates concerning soil properties. The fluctuation may also
be due to between-species competition.

Møller and Waagepetersen (2004, 2007), Beneš, Bodlak, Møller, and Waagepetersen (2005),
and Waagepetersen and Schweder (2006) exemplified the simulation-based Bayesian ap-
proach for both Poisson cluster (or shot noise Cox) process and log-Gaussian Cox process
models. Other Cox models and examples are considered in Heikkinen and Arjas (1998),
Wolpert and Ickstadt (1998), Best, Ickstadt, and Wolpert (2000), and Cressie and Lawson
(2000).

19.5.3 Gibbs Point Processes

For a Gibbs (or Markov) point process, the likelihood function depends on the unknown nor-
malizing constant cθ (cf. (19.13)). Hence, in a Bayesian approach to inference, the posterior
distribution for θ also depends on the unknown cθ , and in an “ordinary” Metropolis–
Hastings algorithm, the Hastings ratio depends on a ratio of unknown normalizing con-
stants. This ratio may be estimated using another method (see Section 19.4.1), but it is then
unclear from which equilibrium distribution (if any) we are simulating and whether it is
a good approximation of the posterior. Recently, the problem with unknown normaliz-
ing constants has been solved using an MCMC auxiliary variable method (Møller, Pettit,
Berthelsen, and Reeves, 2006), which involves perfect simulations (Kendall, 1998; Kendall
and Møller, 2000). The technique is applied for Bayesian inference of Markov point pro-
cesses in Berthelsen and Møller (2004, 2006, 2008), where also the many technical details
are discussed. Below we briefly demonstrate the potential of this technique when applied
to non/semiparametric Bayesian inference of a pairwise interaction point process.
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FIGURE 19.7
Left panel: Locations of 617 cells in a 2D section of the mucus membrane of the stomach of a healthy rat. Center
panel: Nonparametric estimate of the pair correlation function for the cell data (full line) and 95% envelopes
calculated from 200 simulations of a fitted inhomogeneous Poisson process. Right panel: Nonparametric estimate
of the pair correlation function for the cell data (full line) and 95% envelopes calculated from 200 simulations of
the model fitted by Nielsen (2000).

19.5.4 Example: Cell Data

The left panel of Figure 19.7 shows the location of 617 cells in a section of the mucous
membrane of the stomach of a healthy rat, where (after some rescaling) W = [0, 1] ×
[0, 0.893] is the observation window. The left-hand side of the observation window corre-
sponds to where the stomach cavity begins and the right-hand side to where the muscle
tissue begins. The center panel of Figure 19.7 shows a nonparametric estimate ĝ(r ), r > 0,
of the pair correlation function for the data and simulated 95% envelopes under an in-
homogeneous Poisson process with a nonparametric estimate for its intensity function
(Section 18.5). Under a Poisson process model, the theoretical pair correlation function is
constant and equal to unity. The low values of ĝ(r ) for distances r < 0.01 indicate repulsion
between the points. The point pattern looks inhomogeneous in the horizontal direction, and
the data were originally analyzed by Nielsen (2000) using a Strauss point process model
after transforming the first coordinates of the points. The right panel of Figure 19.7 shows a
nonparametric estimate of the pair correlation function for the data with simulated 95% en-
velopes under the fitted transformed Strauss point process. The estimated pair correlation
is almost within the 95% envelopes for small values of the distance r , suggesting that the
transformed Strauss model captures the small-scale inhibition in the data. Overall, the esti-
mated pair correlation function follows the trend of the 95% envelopes, but it falls outside
the envelopes for some values. As the comparison with the envelopes can be considered as
a multiple test problem, this is not necessarily reason to reject the model.

We consider an inhomogeneous pairwise interaction point process model for the point
pattern x = {s1, . . . , sn} in Figure 19.7 (left panel). The density is

fβ,ϕ(x) = 1
c(β,ϕ)

n∏
i=1

β(si )
∏

1≤i< j<≤n

ϕ(‖si − s j‖) (19.25)

with respect to the Poisson process on W with intensity one. Here the first-order term β

is a nonnegative function that models the inhomogeneity, the second-order term ϕ is a
nonnegative function that models the interaction, and c(β,ϕ) is a normalizing constant. A
priori it is expected that the cell intensity only changes in the direction from the stomach
cavity to the surrounding muscles tissue. Therefore, it is assumed that β(s) depends only
on s = (t, u) through its first coordinate t. Further, partly in order to obtain a well-defined
density and partly in order to model a repulsive interaction between the cells, we assume that
0 ≤ ϕ(‖si − s j‖) ≤ 1 is a nondecreasing function of the distance r = ‖si − s j‖. Furthermore,
we specify a flexible prior for β(s) = β(t) by a shot noise process and a flexible prior for
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FIGURE 19.8
Posterior mean (solid line) and pointwise 95% central posterior intervals (dotted lines) for β (left panel) and ϕ

(right panel). The left panel also shows the first-order term (dashed line) estimated by Nielsen (2000) and an
estimate of the cell intensity (dot-dashed line).

ϕ(r ) by a piecewise linear function modeled by a marked Poisson process. For details of
these priors and how the auxiliary variable method from Møller et al. (2006) is implemented
to obtain simulations from the posterior distribution of (β, ϕ) given x, see Berthelsen and
Møller (2008).

The left panel of Figure 19.8 shows the posterior mean of β, E(β|x), together with point-
wise 95% central posterior intervals. Also shown is the smooth estimate of the first-order
term obtained by Nielsen (2000), where the main difference compared with E(β|x) is the
abrupt change of E(β|x) in the interval [0.2, 0.4]. For locations near the edges of W, E(β|x)
is “pulled” toward its prior mean as a consequence of the smoothing prior.

The intensity ρβ,ϕ(s) of the point process is given by the mean of the Papangelou condi-
tional intensity, that is,

ρβ,ϕ(s) = E[λβ,ϕ(s, Y) fβ,ϕ(Y)], (19.26)

where the expectation is with respect to the Poisson process Y on W with intensity one (see,
e.g., Møller and Waagepetersen (2004)). Define

ρβ,ϕ(t) = 1
b

∫ b

0
ρβ,ϕ(t, u) du,

where W = [0, a ] × [0, b] = [0, 1] × [0, 0.893]. Apart from boundary effects, since β(s) only
depends on the first coordinate of s = (t, u), we may expect that the intensity (19.26) only
slightly depends on the second coordinate u, i.e., ρβ,ϕ(s) ≈ ρβ,ϕ(t). We, therefore, refer to
ρβ,ϕ(t) as the cell intensity, though it is more precisely the average cell intensity in W at
u ∈ [0, a ]. The left panel of Figure 19.8 also shows a nonparametric estimate ρ̂(t) of the cell
intensity (the dot dashed line). The posterior mean of β(t) is not unlike ρ̂(t) except that
E(β(t)|x) is higher, as would be expected due to the repulsion in the pairwise interaction
point process model.

The posterior mean of ϕ is shown in the right panel of Figure 19.8 together with pointwise
95% central posterior intervals. The figure shows a distinct hard core on the interval from
zero to the observed minimum interpoint distance d = mini �= j ‖si −s j‖, which is a little less
than 0.006, and an effective interaction range, which is no more than 0.015 (the posterior
distribution of ϕ(r ) is concentrated close to one for r > 0.015). The corner at r = d of the
curve showing the posterior mean of ϕ(r ) arises because ϕ(r ) is often zero for r < d (since
the hard core is concentrated close to d), while ϕ(r ) > 0 for r > d.
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20.1 Fundamental Issues

Before embarking on a statistical analysis of spatial point pattern data, it is important to
ask two questions. First, are point process methods appropriate to the scientific context?
Second, are the standard assumptions for point process methods appropriate in the context?

20.1.1 Appropriateness of Point Process Methods

Treating a spatial point pattern as a realization of a spatial point process effectively assumes
that the pattern is random (in the general sense, i.e., the locations and number of points are
not fixed) and that the point pattern is the response or observation of interest. The statistician
should consider whether this is appropriate in the scientific context. Consider the following
illustrative scenarios.

Scenario 1 A silicon wafer is inspected for defects in the crystal surface and the locations of all
defects are recorded.

This point pattern could be analyzed as a point process in two dimensions, assuming the
defects are point-like at the scale of interest. Questions for study would include frequency
of defects, spatial trends in intensity, and spacing between defects.

Scenario 2 Earthquake aftershocks in Japan are detected and the epicenter latitude and longitude
and the time of occurrence are recorded.

These data could be analyzed as a point process in space–time (where space is the two-
dimensional plane or the Earth’s surface) or as a marked point process in two-dimensional
space. If the occurrence times are ignored, it may be analyzed as a spatial point process.
Spatiotemporal point processes are discussed in Chapter 25.

Scenario 3 The locations of petty crimes that occurred in the past week are plotted on a street map
of Chicago.

This could be analyzed as a two-dimensional spatial point process. Questions for study
include the frequency of crimes, spatial variation in intensity, and evidence for clusters
of crimes. One issue is whether the recorded crime locations can lie anywhere in two-
dimensional space, or whether they are actually restricted to locations on the streets. In the
latter case, it would be more appropriate to treat the data as a point process on a network
of one-dimensional lines.

Scenario 4 A tiger shark is captured, tagged with a satellite transmitter, and released. Over the
next month its location is reported daily. These points are plotted on a map.

It is probably not appropriate to analyze these data as a spatial point process. A realization
of a spatial point process is an unordered set of points, so the serial order in which the data
were recorded is ignored by spatial point process methods.

At the very least, the date of each observation of the shark should be included in the
analysis. The data could be treated as a space–time point process, except that this would
be a strange process, consisting of exactly one point at each instant of time.

These data should properly be treated as a sparse sample of a continuous trajectory, and
analyzed using other methods; see Chapter 26.
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Scenario 5 A herd of deer is photographed from the air at noon each day for 10 days. Each photograph
is processed to produce a point pattern of individual deer locations on a map.

Each day produces a point pattern that could be analyzed as a realization of a point
process. However, the observations on successive days are dependent (e.g., having constant
herd size and systematic foraging behavior). Assuming individual deer cannot be identified
from day to day, this is effectively a “repeated measures” dataset where each response is a
point pattern. Methods for this problem are in their infancy. A pragmatic alternative may
be to treat the data as a space–time point process.

Scenario 6 In a designed controlled experiment, silicon wafers are produced under various condi-
tions. Each wafer is inspected for defects in the crystal surface, and the locations of all defects are
recorded as a point pattern.

This is a designed experiment in which the response is a point pattern. Methods for this
problem are in their infancy. There are some methods for replicated spatial point patterns
that apply when each experimental group contains several point patterns. See Section 18.8.

20.1.2 The Sampling Design

Data cannot be analyzed properly without knowledge of the context and the sampling de-
sign. The vast majority of statistical techniques for analyzing spatial point patterns assume
what we may call the “standard model”:

1. The points are observed inside a region W, the “sampling window” or “study
region,” that is fixed and known.

2. Point locations are measured exactly.
3. No two points lie at exactly the same location.
4. The survey is exhaustive within W, i.e., there are no errors in detecting the presence

of points of the random process within W.

Assumption 1 implies that the sampling region does not depend on the data. This excludes
some types of experiments in which we continue recording spatial points until a stopping
criterion is satisfied. For example, a natural stand of trees surrounded by open grassland,
or a cluster of fossil discoveries, would typically be mapped in its entirety. This does not fit
the standard model; it requires different techniques, analogous to sequential analysis.

For many statistical analyses, it is important to know the sampling window W. This is
a fundamental methodological issue that is unique to spatial point patterns. The data do
not consist solely of the locations of the observed points. As well as knowing where points
were observed, we also need to know where points were not observed.

Difficulties arise when the sampling region W is not well defined, but we wish neverthe-
less to use a statistical technique that assumes the standard model and requires knowledge
of W. It is a common error to take W to be the smallest rectangle containing the data points,
or the convex hull of the data points. These are “underestimates” of the true region W and
typically yield overestimates of the intensity λ and the K-function. Some more defensible
methods exist for estimating W if it is unknown (Baillo, Cuevas, and Justel 2008; Mammen
and Tsybakov, 1995; Moore, 1984; Ripley and Rosson, 1977).

An alternative to the standard model is to assume that the entire spatial point process has
a finite total number of points, all of which are observed. This process cannot be spatially
homogeneous, which precludes or complicates the use of many classical techniques: for
example the usual interpretation of the K-function assumes homogeneity. If covariates are
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available, we may be able to use them to construct a reference intensity λ0(u) that represents
the “sampling design” or the “null hypothesis.” For example, in spatial epidemiology, the
covariates may include (a surrogate for) the spatially varying population density, which
serves as the natural reference intensity for models of disease risk.

Most current methods require Assumption 3. Duplicate points do commonly occur,
through data entry errors, discretization of the spatial coordinate system, reduction of
resolution due to confidentiality or secrecy requirements, and other factors. Care should be
taken in interpreting the output of statistical software if any duplicate points are present.
A high prevalence of duplicate points precludes the use of many current techniques for
spatial point processes.

Assumption 4 is usually implicit in our analysis. However, this does not preclude ex-
periments where there is unreliable detection of the objects of interest. Examples include
studies of the abundance of wild animal species, and galaxy surveys in radioastronomy.
A galaxy catalog is obtained by classifying each faint spot in an image as either a galaxy
or noise. In such studies, the analysis is consciously performed on the point process of
detected points. Certain types of inference are then possible about the underlying process
of true points, for example, estimation of the galaxy K-function, which is invariant under
independent random thinning.

The points in a spatial point pattern dataset often represent the locations of physical
objects. If the physical sizes of the objects cannot be neglected at the scale of interest, we
may encounter methodological problems. Point process methods may still be applied to
the locations, but may lead to artifacts. If the points are the centers of regions, such as cells
observed in a microscope image, then a finding that the centers are regular or inhibited
could simply be an artifact caused by the nonzero size of the cells. An extreme case occurs
when the points are the centers of tiles in a space-filling tessellation. The strong geometric
dependence in a tessellation causes striking artifacts in point process statistics; it is more
appropriate to use methods specifically developed for tessellations.

20.2 Goals of Analysis

The choice of strategy for modeling and analyzing a spatial point pattern depends on the
research goals. Our attention may be focused primarily on the intensity of the point pattern,
or primarily on the interaction between points, or equally on the intensity and interaction.
There is a choice concerning the scope of statistical inference, that is, the “population” to
which we wish to generalize.

20.2.1 Intensity

The intensity is the (localized) expected density of points per unit area. It is typically inter-
preted as the rate of occurrence, abundance, or incidence of the events recorded in the point
pattern. When the prevention of these events is the primary concern (e.g., defects in crystal,
petty crimes, cases of infectious disease), the intensity is usually the feature of primary
interest. The main task for analysis may be to quantify the intensity, to decide whether
intensity is constant or spatially varying, or to map the spatial variation in intensity. If co-
variates are present, then the main task may be to investigate whether the intensity depends
on the covariate, for example, whether the abundance of trees depends on the acidity of
soil.
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The intensity is a first moment quantity (related to expectations of counts of points).
Hence, it is possible to study the intensity by formulating a model for the intensity only,
for example, a parametric or semiparametric model for the intensity as a function of the
Cartesian coordinates. In such analyses, stochastic dependence between points is a nuisance
feature that complicates the methodology and inference. Statistical inference is supported
by the method of moments and by properties of composite likelihood (Section 19.3.1).

Alternatively, we may formulate a complete stochastic model for the observed point
pattern (i.e., a spatial point process model) in which the main focus is the description of
the intensity. The model should exhibit the right type of stochastic dependence, and the
intensity should be a tractable function of the model parameters. If there is positive asso-
ciation between points, useful models include log-Gaussian Cox processes (Section 19.5.2)
and inhomogeneous cluster models (Section 19.3.3). If there is negative association, Gibbs
processes (Section 17.2.4; Section 19.5.3) are appropriate, although the intensity is not a
simple function of the model parameters. Statistical inference is supported by properties
of the likelihood (Sections 19.4.1 and 19.4.3) or pseudo-likelihood (Section 19.3.4).

20.2.2 Interaction

“Interpoint interaction” is the conventional term for stochastic dependence between points.
This covers a wide range of behavior since the only point processes that do not exhibit
stochastic dependence are the Poisson processes. The term “interaction” can be rather
prejudicial. One possible cause of stochastic dependence is a direct physical interaction
between the objects recorded in the point pattern. For example, if the spatial pattern of pine
seedlings in a natural forest is found to exhibit negative association at short distances, this
might be interpreted as reflecting biological interaction between the seedlings, perhaps due
to competition for space, light or water.

The main task for analysis may be to decide whether there is stochastic dependence, to
determine the type of dependence (e.g., positive or negative association), or to quantify its
strength and spatial range.

Interpoint interaction is measured by second-order moment quantities, such as the K-
function (Section 16.6), or by higher-order quantities, such as the distance functions G, F
and J (Section 16.4). Just as we must guard against spurious correlations in numerical data
by carefully adjusting for changes in the mean, a rigorous analysis of interpoint interaction
requires that we take into account any spatial variation in intensity.

A popular classical approach to spatial point pattern analysis was to assume that the
point pattern is stationary. This implies that the intensity is constant. Analysis could then
concentrate on investigating interpoint interaction. It was argued (e.g., Ripley, 1976) that this
approach was pragmatically justified when dealing with quite small datasets (containing
only 30 to 100 points), or when the data were obtained by selecting a small subregion where
the pattern appeared stationary, or when the assumption of stationarity is scientifically
plausible.

Figure 20.1 shows the Swedish pines dataset of Strand (1972), presented by Ripley, (1987),
as an example where the abovementioned conditions for assuming stationarity were sat-
isfied. There is nevertheless some suggestion of inhomogeneity. Contour lines represent
the fitted intensity under a parametric model in which the logarithm of the intensity is a
quadratic function of the cartesian coordinates. Figure 20.2 shows the estimated K-function
of the Swedish pines assuming stationarity, and the inhomogeneous K-function using the
fitted log-quadratic intensity. The two K-functions convey quite a similar message, namely
that there is inhibition between the saplings at distances less than one meter. The two
K-functions agree because gentle spatial variation in intensity over large spatial scales is
irrelevant at shorter scales.
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FIGURE 20.1
Swedish pines data with fitted log-quadratic intensity.

20.2.3 Intensity and Interaction

In some applications, intensity and interaction are both of interest. For example, a cluster
of new cases of a disease may be explicable either by a localized increase in intensity due to
etiology (such as a localized pathogen), sampling effects (a localized increase in vigilance,
etc.), or by stochastic dependence between cases (due to person-to-person transmission,
familial association, genetics, social dependence, etc.). The spatial arrangement of galaxies
in a galaxy cluster invites complex space–time models, in which the history of the early uni-
verse is reflected in the overall intensity of galaxies, while the observed local arrangement
of galaxies involves gravitational interactions in recent history.

When a point pattern exhibits both spatial inhomogeneity and interpoint interaction,
several strategies are possible. An incremental or marginal modeling strategy seeks to esti-
mate spatial trend, then “subtract” or “adjust” for spatial trend, possibly in several stages,
before looking for evidence of interpoint interaction. A joint modeling strategy tries to fit
one stochastic model that captures all relevant features of the point process, and in partic-
ular, allows the statistician to “account” for spatial inhomogeneity during the analysis of
interpoint interaction.

These choices are familiar from time series analysis. Incremental modeling is analogous
to seasonal adjustment of time series, while joint modeling is analogous to fitting a time
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FIGURE 20.2
Left: Estimated K-function of Swedish pines assuming stationarity. Right: Estimated inhomogeneous K-function
of Swedish pines using fitted log-quadratic intensity.
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series model that embraces both seasonal trend and autocorrelation. Incremental modeling
is less prone to the effects of model misspecification, while joint modeling is less susceptible
to analogs of Simpson’s paradox. Joint modeling would normally be employed in the final
and more formal stages of analysis, while incremental modeling would usually be preferred
in the initial and more exploratory stages.

For example, in the analysis of the Swedish pines data above, we first fitted a parametric
intensity model, then computed the inhomogeneous K-function which “adjusts” for this
fitted intensity. This is an incremental modeling approach. A corresponding joint modeling
approach is to fit a Gibbs point process with nonstationary spatial trend. Again we assume
a log-quadratic trend. Figure 20.2 suggests fitting a Strauss process model (Section 17.4)
with interaction radius r between 4 and 15 units. The model selected by maximum profile
pseudolikelihood has r = 9.5 and a fitted interaction parameter of γ = 0.27, suggesting
substantial inhibition between points.

20.2.4 Confounding between Intensity and Interaction

In analyzing a point pattern, it may be impossible to distinguish between clustering and spa-
tial inhomogeneity. Bartlett (1964) showed that a single realization of a point process model
that is stationary and clustered (i.e., exhibits positive dependence between points) may be
identical to a single realization of a point process model that has spatially inhomogeneous
intensity but is not clustered. Based on a single realization, the two point process models are
distributionally equivalent and, hence, unidentifiable. This represents a fundamental limi-
tation on the scope of statistical inference from a spatial point pattern, assuming we do not
have access to replicate observations. The inability to separate trend and autocorrelation,
within a single dataset, is also familiar in time series.

This may be categorized as a form of confounding. A linear model Y = Xβ + ε is con-
founded if the columns of the design matrix X are not linearly independent, so that the
parameter vector β is not identifiable. Bartlett’s examples show that a point process model
involving both spatial inhomogeneity and interpoint interaction may be confounded, that
is, unidentifiable, given only a single realization of the spatial point process.

The potential for confounding spatial inhomogeneity and interpoint interaction is im-
portant in the interpretation of summary statistics such as the K-function. In Figure 20.3, the
left panel shows a realization of a spatially inhomogeneous Poisson process, its intensity a
linear function of the Cartesian coordinates. The right panel is a plot of L̂(r ) − r against r ,
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FIGURE 20.3
Illusory clustering. Left: Realization of a nonstationary Poisson process. Right: Plot of L̂(r ) − r against r for the
same point pattern, inviting the interpretation that the pattern is clustered.
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where L̂ is the estimate of L(r ) = √
K (r )/π assuming the point process is stationary. The

right-hand plot invites the incorrect interpretation that the points are clustered.
The χ2 test of complete spatial randomness (CSR) using quadrat counts is afflicted by a

similar weakness. In the classical analysis of contingency tables, the χ2 test of uniformity is
usually justified by assuming that the cell counts Ni in the contingency table are independent
with unknown mean. Then the Pearson χ2 test statistic X2 = ∑

i (Ni −N)2/N (with N = n/m,
where there are m cells and a total count of n points) is a reasonable index of departure
from uniformity, as well as a valid test statistic with null distribution that is asymptotically
χ2

m−1. Applying this test to the quadrat counts for a spatial point pattern effectively assumes
that the quadrat counts are independent. Suppose, alternatively, that we assume the point
process is stationary, and we wish to test whether it exhibits interpoint interaction. Then
the mean counts E[Ni ] are assumed equal, and we wish to test whether they are Poisson-
distributed. A common index of over- or under-dispersion is the sample variance-to-mean
ratio I = (1/(m − 1))

∑
i (Ni − N)2/N. However, I is a constant multiple of X2. Thus, large

values of the statistic X2 may be interpreted as suggesting either spatial inhomogeneity or
spatial clustering, depending on our underlying assumptions.

20.2.5 Scope of Inference

There is a choice concerning the scope of statistical inference, that is, the “population” to
which we wish to generalize from the data.

At the lowest level of generalization, we are interested only in the region that was actually
surveyed. In applying precision agriculture to a particular farm, we might use the observed
spatial point pattern of tree seedlings, which germinated in a field sown with a uniform
density of seed, as a means of estimating the unobservable spatially varying fertility of the
soil in the same field. Statistical inference here is a form of interpolation or prediction. The
modeling approach is influenced by the prediction goals: To predict soil fertility it may be
sufficient to model the point process intensity only, and ignore interpoint interaction.

At the next level, the observed point pattern is treated as a “typical” sample from a
homogeneous pattern, which is the target of inference. To draw conclusions about an entire
forest from observations in a small study region, we treat the forest as a spatial point
process X, effectively extending throughout the infinite two-dimensional plane. In order
to draw inferences based only on a sample of X in a fixed bounded window W, we might
assume that X is stationary and/or isotropic, meaning that statistical properties of the point
process are unaffected by vector translations (shifts) and/or rotations, respectively. This
implies that our dataset is a typical sample of the process, and supports nonparametric
inference about stochastic properties of X, such as its intensity and K-function (stationarity
guaranteeing that the method of moments produces unbiased estimators). It also supports
parametric inference, for example, about the interaction parameter γ of a Strauss process
model for the spatial dependence between trees. If the sample domain is sufficiently large,
then under additional mixing assumptions, the parameter estimates are consistent and
asymptotically normal. Parametric modeling also enables finite-sample inference, although
its implementation usually requires Monte Carlo methods.

At a higher level, we seek to extract general “laws” or “relationships” from the data.
This involves generalizing from the observed point pattern, to a hypothetical population
of point patterns, which are governed by the same “laws,” but which may be very different
from the observed point pattern. One important example is modeling the dependence of the
point pattern on a spatial covariate (such as terrain slope). This is a form of regression. The
conditional distribution of the spatial point process given the spatial covariate is modeled
by a regression specification. For example, it may be assumed that the intensity λ(u) of the
point process at a location u is a function λ(u) = ρ(Z(u)) of the spatial covariate Z(u). The
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regression function ρ is the target of inference. The scope of inference is a population of
experiments where the same variables are observed and the same regression relationship
is assumed to hold. A model for ρ (parametric, non- or semiparametric) is formulated
and fitted. Estimation of ρ may be based solely on the method of moments. More detailed
inference requires either replication of the experiment, or an assumption, such as joint
stationarity of the covariates and the response, under which a large sample can be treated
as containing sufficient replication.

At the highest level, we seek to capture all sources of variability that influence the spatial
point pattern. Sources of variability may include “fixed effects,” such as regression on an
observable spatial covariate, and also “random effects,” such as regression on an unob-
served, random spatial covariate. For example, a Cox process (Example 17.1.3) is defined
by starting with a random intensity function Λ(u) and, conditional on the realization of
Λ, letting the point process be Poisson with intensity Λ. In forestry applications, Λ could
represent the unobserved, spatially inhomogeneous fertility of soil, modeled as a random
process. Thus, Λ is a “random effect.” Whether soil fertility should be modeled as a fixed
effect or random effect depends on whether the main interest is in inferring the value of soil
fertility in the study region (fixed effect) or in characterizing the variability of soil fertility
in general (random effect).

20.3 Exploratory Data Analysis

Many writers on spatial statistics use the term exploratory methods to refer to the classical
summary statistics for analyzing spatial point patterns, such as the K-function. This may be
slightly misleading. Exploratory data analysis (Hoaglin, Mosteller, and Tukey 1983; Tukey,
1977; Velleman and Hoaglin, 1981) refers to a methodology that allows the statistician
to investigate features of the data (trend, variability, dependence on a covariate, autoco-
variance) without losing sight of the peculiarities of individual observations. Tools such
as the K-function involve a substantial reduction of information, analogous to the sample
moments of a numerical dataset, and are more properly described as (nonparametric) “sum-
mary statistics” or “indices.” These tools can be used as part of a full-fledged exploratory
analysis of spatial point pattern data.

While there are no hard rules for exploratory methods, the most natural order of anal-
ysis is to investigate the intensity of the point pattern first, before investigating interpoint
interaction. A proper analysis of interpoint interaction requires that we take into account
any spatial variation in intensity.

20.3.1 Exploratory Analysis of Intensity

For a stationary point process, the intensity λ is the expected number of points per unit
area. The natural estimate of λ is the observed number of points divided by the area of the
study region.

For a nonstationary point process, we would often assume that the intensity is a function
λ(u) of location u, defined so that the expected number of points falling in a domain B is
equal to the integral of λ(u) over B. It is then natural to compute nonparametric estimates of
the intensity function. A popular choice is the fixed-bandwidth kernel smoothed estimate
discussed in Section 18.5, Equation (18.6).

The choice of smoothing bandwidth h (e.g., the standard deviation of the Gaussian ker-
nel) involves a tradeoff between bias and variability. Bias is inherent in smoothing because
we effectively replace the true intensity λ(u) by its smoothed version λ∗(u), suppressing
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FIGURE 20.4
Shapley galaxy concentration survey. Sky position (right ascension and declination coordinates) for 4,215
galaxies.

any spatial variation at scales smaller than the bandwidth. Increasing the bandwidth h will
increase the bias but decrease the variability of λ̂(u), since more data points contribute to the
intensity estimate. An “optimal” bandwidth might be selected by an automatic procedure,
such as minimization of the predicted mean square error (MSE) (Section 18.5), but for ex-
ploratory purposes it would usually be prudent to display several kernel estimates obtained
with different bandwidths. Each choice of h focuses attention on a different spatial scale.

Kernel smoothing with a fixed kernel k and fixed bandwidth h at all spatial locations
may be inappropriate, if the point pattern exhibits very different spatial scales at different
locations. For example, Figure 20.4 shows the sky positions of 4,215 galaxies cataloged in a
radioastronomical survey of the Shapley supercluster (Drinkwater, Parker, Proust, Slezak
et al., 2004). This pattern contains two very high concentrations of points. A fixed-bandwidth
kernel estimate of intensity (Figure 20.5) is inadequate, since it suppresses the small-scale
variations in intensity, which are of greatest interest.

One solution is to replace the fixed kernel k by a spatially-varying or adaptive smooth-
ing operator. Many solutions can be found in the seismology literature, because earth-
quake epicenters typically concentrate around a line or curve. Ogata (2003, 2004) used the
Dirichlet/Voronoi tessellation determined by the data points to control the local scale of
smoothing.
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FIGURE 20.5
Fixed bandwidth kernel estimate of intensity for the Shapley galaxy pattern.
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FIGURE 20.6
Adaptive estimation of intensity in the Shapley galaxy pattern. Left: Dirichlet tessellation of one half of data
superimposed on other half of data. Right: Intensity estimate constant in each Dirichlet tile.

One simple version of this strategy is shown in Figure 20.6. In a large rectangular sub-
window of the Shapley data, we divided the points randomly into two groups, the training
data xT and modeling data xM. This is a standard trick to avoid overfitting; in the spa-
tial context, it is appropriate because random thinning preserves relevant properties of
the pattern (such as intensity and the inhomogeneous K-function) up to a scale factor. We
computed the Dirichlet tessellation of xT , and extracted the tile areas w j for each xj ∈ xT .
Superimposing this tessellation on xM (Figure 20.6, left panel), we formed an intensity esti-
mate for xM, which is constant on each Dirichlet tile: κ(u) = 1/wJ (u) where xJ (u) is the point
of xT closest to u. A reasonable estimate of the intensity function of the modeling data is
λ̂(u) = (n(xM)/n(xT ))κ(u), displayed in the right panel of Figure 20.6.

In extreme cases, there may be a “singular” concentration of intensity that cannot be
described by an intensity function, for example, earthquake epicenters that are always
located on a tectonic plate boundary, or galaxies that are located on a plane in space. In
singular cases the point process must be described by an intensity measure. Quadrat counting
(Section 18.2.1) has a useful role in such cases.

Closely related to kernel smoothing is the spatial scan statistic (Alm, 1988; Anderson and
Titterington, 1997; Kulldorff, 1999; Kulldorff and Nagarwalla, 1995) designed to identify
“hot spots” or localized areas of increased intensity. See Chapter 22.

20.3.2 Exploratory Analysis of Dependence on Covariates

A spatial covariate, in the most general sense, is any kind of spatial data that plays the role
of an explanatory variable. It might be a spatial function Z(u) defined at every location
u, such as soil pH, terrain altitude, terrain gradient, or gravitational strength. Alternatively,
it may be another form of spatial data, such as a spatial tessellation (e.g., dividing the study
region into different land cover types), a spatial point pattern, a spatial pattern of lines,
etc. The spatial coordinates themselves (e.g., geographical coordinates) may be treated as
covariate functions Z(u).

A common question is whether the intensity of a spatial point process depends on a spatial
covariate. For example, we may wish to know whether trees in a rainforest prefer particular
soil conditions (Section 19.3.3), or whether the risk of a rare disease is higher in the vicinity
of a pollution source (e.g., Diggle, Morris, Elliott, and Shaddick, 1997; Elliott, Wakefield,
Best, and Briggs, 1999, 2000). To assess this question, we could convert the covariate into a
spatial function Z(u), then investigate whether the intensity λ(u) depends on Z(u).

Figure 20.7 shows data from a geological survey of a 158 × 35 km region in Queensland,
Australia. The point pattern records the locations of deposits of copper that were detected
by intensive geological survey. Line segments represent the observed spatial pattern of
‘lineaments,’ which are geological faults or similar linear features observable in remotely
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FIGURE 20.7
Queensland copper data. Pointlike deposits of copper (circles) and geological lineaments (straight lines) in a study
region. (Data from Berman, M. Applied Statistics, 35:54–62, 1986.)

sensed imagery. It is of interest to determine whether the lineament pattern (which can be
observed cheaply from satellite data) has predictive value for the point pattern of copper
deposits, e.g., whether the intensity of copper deposits is relatively high in the vicinity of
the lineaments (Berman, 1986).

The first step in an exploratory analysis of the copper data is to construct a spatial covariate
function Z(u). A natural choice is the distance transform (Borcefors, 1986; Rosenfeld and
Pfalz, 1968) of the lineament pattern. That is, Z(u) is the distance from the location u to the
nearest lineament.

Berman (1986) proposed a diagnostic technique for assessing whether the intensity func-
tion λ(u) of a point pattern depends on a spatial covariate function Z(u). The empirical
cumulative distribution function (cdf) of the covariate values at the points of the spatial
point pattern x,

Cx(z) = 1
n

∑
i

1{Z(xi ) ≤ z}

and the cumulative distribution function of Z at all points of the study region W,

CW(z) = 1
|W|

∫
W

1{Z(u) ≤ z} du

(where |W| denotes the area of W) are both plotted against r . If the true intensity does not
depend on Z and is constant, λ(u) ≡ λ, then E[n(X)CX(z)] = λ|W|CW(z) and E[n(X)] =
λ|W| so that E[Cx(z)] ≈ CW(z). If additionally the point process is Poisson (i.e., under
CSR), then the values Z(xi ) are independent and identically distributed with cdf CW, so
that E[Cx(z)] = CW(z). Conversely, discrepancies between Cx and CW suggest that the point
process intensity does depend on Z(u). The maximum discrepancy between the two curves

D = sup
z

|Cx(z) − CW(z)|

is the test statistic for the Kolmogorov–Smirnov test of equality of the two distributions
(assuming CW is continuous).

Figure 20.8 shows Berman’s diagnostic plot for the Queensland copper data against
distance from the nearest lineament. The solid line represents Cx and the dashed line is CW.
The dotted envelopes are the two-standard-error limits for Cx assuming CSR. The plot
shows no evidence for dependence of intensity on the covariate.

20.3.3 Exploratory Analysis of Interpoint Interaction

The most common techniques for investigating interpoint interaction are distance methods
(see Sections 18.2 and 18.4). Distances between points of the pattern, or from arbitrary
locations to the nearest point of the pattern, are measured, summarized and displayed in
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FIGURE 20.8
Berman’s diagnostic plot for the Queensland copper data against distance from the nearest lineament.

some fashion. For example, the K-function is a summary of the observed distances between
all pairs of points.

20.3.3.1 Analysis Assuming Stationarity

One traditional approach has been to analyze point pattern data under the assumption that
the pattern is stationary (implying that the intensity is constant). Under this assumption, the
interpretation of tools, such as the K-function, is fairly unambiguous. Among stationary
processes, only the homogeneous Poisson point process (complete spatial randomness,
CSR) does not exhibit interaction. If the K-function estimated from the data is found to
deviate from the K-function of CSR, this is evidence of interpoint interaction (assuming
stationarity). The nature of the deviation suggests the type and range of interaction. For
example, the left panel of Figure 20.2 shows the K-function estimated from the Swedish
pines data (Figure 20.1), together with the K-function for CSR. Since the empirical value of
K (r ) dips below the theoretical value K (r ) = πr2 for values of r in the range from 0 to 12,
we conclude that an inhibition (negative association) is present at this scale.

The K-function is a second-order moment quantity and does not fully characterize the
stochastic dependence between points. There exist point processes that have the same
K-function as CSR, but which are manifestly clustered (Baddeley and Silverman, 1984). It
is good practice to inspect several different summary functions for a point pattern dataset
in addition to K , such as the nearest neighbor distance function G and the empty space
function F . Figure 20.9 shows the estimates of G and F for Swedish pines, which reinforce
the conclusion obtained from the K-function.

Different plots and transformations of F , G and K may be useful for interpretive and
modeling purposes. The transformation L(r ) = √

K (r )/π proposed by Besag (1977) stabi-
lizes the variance of the empirical K-function and transforms the Poisson case to L(r ) = r .
The pair correlation function g(r ) = K ′(r )/(2πr ) where K ′(r ) = dK (r )/dr is more easily
interpretable in terms of models. For the cumulative distribution functions F and G, it may
be more useful to plot in P–P style (plotting the empirical F (r ) against the Poisson F (r ) for
each r ) and to apply Fisher’s variance stabilizing transformation φ(F (r )) = sin−1 √

F (r ).
The K-function has been generalized by replacing the circle of radius r by an annulus,

ellipse or sector of a circle; for example, counting only pairs of points that are separated
by distances between r and r + s. These generalized K-functions are, in turn, generalized
by the reduced second-moment measure κ . This can be visualized as the intensity measure of
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FIGURE 20.9
Estimated empty space function F (left) and nearest neighbor function G (right) for the Swedish pines data.

the process of all vectors xj − xi between pairs of points in the pattern. For the Swedish
pines data, this process is displayed in the left panel of Figure 20.10 with the origin at
the center of the picture. This is a “Fry plot” (Fry, 1979; Hanna and Fry, 1979; Patterson,
1934, 1935). The right panel of Figure 20.10 shows an edge-corrected kernel estimate of the
second-moment density (the density of the reduced second-moment measure κ , essentially
a smoothed version of the left panel) with lighter shades representing higher density values.
The marked drop in density close to the origin suggests inhibition between points at short
distances. The hole has no obvious asymmetries, suggesting that an isotropic interaction
model would be adequate.

20.3.3.2 Full Exploratory Analysis

When it cannot be assumed that the point pattern is stationary, the use of the K-function and
other summary functions is open to critique. Various alternative tools have been suggested.

The inhomogeneous K-function is a simple modification of the original K-function that al-
lows us to deal with spatial variation in the intensity (Baddeley, Møller, and Waagepetersen,
2000). It allows the intensity to have any form, but assumes that the correlation structure is
stationary. To estimate the inhomogeneous K-function, we modify the standard estimators
of K (r ) by weighting the contribution from each pair of points xi , xj by 1/(λ(xi )λ(xj )) where
λ(u) is the estimated intensity function. The estimated intensity at each data point must be
nonzero. The inhomogeneous K-function takes the value K (r ) = πr2 for an inhomogeneous

FIGURE 20.10
Fry plot (left) and kernel estimate of the density of the reduced second-moment measure (right) for the Swedish
pines data.

© 2010 by Taylor and Francis Group, LLC



P1: Rajesh Sharma

February 23, 2010 12:46 C7287 C7287˙C020

Modeling Strategies 353

FIGURE 20.11
Exploratory analysis of distances in the Swedish pines data. Left: Stienen diagram; right: distance map.

Poisson point process, so that its interpretation is very similar to that of the original
K-function.

If it is possible that there may be spatial variation in the scale of pattern (for example,
in the spacing between points), the simple tools shown in Figure 20.11 may be useful.
The left panel shows the Stienen diagram (Steinen, 1980; Stoyan and Stoyan, 1995) for the
Swedish pines data, constructed by computing for each point xi the distance si to its nearest
neighbor, and drawing a circle around xi of radius si/2. The resulting circles never overlap,
by construction. Pairs of osculating circles represent pairs of points that are mutual nearest
neighbors. In our diagram, the filled circles represent observations that are not biased by
edge effects (si is less than the distance from xi to the boundary of the study region). The
right panel of Figure 20.11 shows the distance map or distance transform. For each location
u, the value d(u) is the distance from u to the nearest point of the data pattern. Distance
values are displayed only when they are not biased by edge effects. The Stienen diagram and
distance map are useful for detecting inhomogeneity in the scale of pattern. Inhomogeneity
is visually apparent as a trend in the distance values or in the size of Stienen circles.

For more detailed exploratory analysis, we may decompose the estimator of the K-
function into a sum of contributions from each data point xi . After normalization, these
functions Ki (r ) represent the “local” pattern around each point xi . Exploratory analysis of
the Ki (r ), for example principal component analysis or hierarchical cluster analysis, can
identify regions or groups of points with similar patterns of local behavior. This approach of
second-order neighborhood analysis (Getis and Franklin, 1987) or local indicators of spatial asso-
ciation (LISA) (Anselin, 1995) has been used, for example, to distinguish between explosive
mines and random clutter in a minefield (Cressie and Collins, 2001b). Spatial smoothing of
the individual K-functions can identify spatial trends (Getis and Franklin, 1987).

20.4 Modeling Tools

Modeling is a cyclic process in which tentative models are developed and fitted to data,
compared with competing models, subjected to diagnostic checks, and refined. Introducing
a new term or component into a model allows us either to capture a feature of interest in
the data or to account for the effect of a covariate that is not of primary interest (Cox and
Snell, 1981).

For historical reasons, this process is not yet fully developed in spatial statistics and is
not widely reflected in the literature. Practical general software for model fitting emerged
only in the late 1990s.
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20.4.1 Parametric Models of Intensity

It may be desirable to model only the intensity of the point process. For an inhomogeneous
Poisson point process with intensity function λθ (u) depending on a parameter θ ∈ Θ , the
log likelihood is (up to a constant)

log L(θ ) =
n∑

i=1

log λθ (xi ) −
∫

W
λθ (u) du (20.1)

where x = {x1, . . . , xn} is the point pattern dataset observed in a study region W. If the model
is a non-Poisson point process with intensity function λθ (u), this becomes the composite
log likelihood.

Maximization of L(θ ) typically requires numerical methods. It was pointed out by
Brillinger (Brillinger, 1978, 1994; Brillinger and Preisler, 1986) and Berman and Turner (1992)
that a discretized version of the Poisson point process likelihood is formally equivalent to
the likelihood of a (nonspatial) Poisson generalized linear model. This makes it possible to
adapt existing software for fitting generalized linear models to the task of fitting Poisson
spatial point process models.

The rationale for building models is broadly similar to reliability or survival analysis.
Because the canonical parameter of the Poisson distribution is the logarithm of the Poisson
mean, it is natural to formulate models for log λ(u). Many operations on a point process have
a multiplicative effect on λ(u) and, hence, an additive effect on log λ(u). For example, if a
Poisson process with intensity function κ(u) is subjected to independent random thinning
with retention probability p(u) at location u, then the resulting process is Poisson with
intensity λ(u) = p(u)κ(u). A log-Gaussian Cox process is one in which log λ(u) is a Gaussian
random process. Many models for plant growth and animal abundance lend themselves to
this log-additive structure.

However, some operations on a point process have an additive effect on the intensity.
The superposition of two point patterns has intensity equal to the sum of the intensities
of the components (regardless of the dependence between the two components). This is
a consideration in some kinds of analysis of a marked point pattern where the marks are
ignored, effectively superimposing the points of different types.

The functional form of the additive terms in log λ(u) or λ(u) may be arbitrary (except that
λ(u) must be nonnegative, finite and integrable). If the goal is simply to capture spatial inho-
mogeneity, it may be appropriate to model log λ(u) as a polynomial function of the Cartesian
coordinates. To reduce the number of parameters one may take a smaller basis of functions,
such as smoothing splines or harmonic polynomials (suggested by P. McCullagh, 2002).
Figure 20.12 shows the maple trees from the Lansing Woods dataset (see Section 21.1.1)
with a kernel estimate of intensity, the fitted intensity assuming a general log-cubic model
(the log intensity was a general third-degree polynomial in the Cartesian coordinates), and
the fitted intensity assuming the log intensity was a third-degree harmonic polynomial of
x and y.

If the aim is to model the dependence of intensity on a spatial covariate Z in the form
λ(u) = ρ(Z(u)), then we may choose any functional form for ρ that yields nonnegative and
finite values. Figure 20.13 shows two fitted intensity models for the Queensland copper
data (Figure 20.7), which assume that log ρ(z) is a polynomial in z of degree 7 (left panel)
and a piecewise constant function with jumps at 2, 4 and 6 km (right panel). The apparent
drop in ρ(z) at values beyond z = 6 km is probably an artifact because fewer than 0.7%
of pixels lie more than 6 km from a lineament. Refitting the models to the subset of data
where Z(u) < 6 suggests that ρ is roughly constant.

In “singular” cases where the intensity function does not exist, such as point patterns of
earthquake epicenters that are concentrated along a line, it is usually appropriate to take the
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FIGURE 20.12
Intensity models for the maple trees in Lansing Woods. Left: Data with kernel estimate of intensity; middle: fitted
log-cubic intensity; right: fitted log-harmonic-cubic intensity.

line of concentration as fixed and given, and to assume the process has a one-dimensional
intensity along this line of concentration, which is then modeled in a similar fashion.

20.4.2 Multilevel Models for Clustering

Stochastic dependence between points can be modeled by multilevel processes derived
from the Poisson process, such as Poisson cluster processes and Cox processes. Typically
these models are effective for describing positive association (“attraction” or “clustering”)
between points.

Cox models are always “clustered” since a Cox process is conditionally Poisson given
the random intensity function Λ, and, therefore, is overdispersed relative to the Poisson
process with the same expected intensity λ(u) = E[Λ(u)]. Poisson cluster models allow
more freedom in the type of dependence between points because points within a cluster
may be dependent in any fashion we choose. However, the most popular Poisson cluster
models are Neyman–Scott models in which the points within a cluster are conditionally
independent, yielding again a clustered point process.

The class of Cox models is extremely large; the random intensity function Λ(u) may be
taken to be any random spatial process. No general technique for fitting all Cox models has
been established, although the E–M algorithm (treating the unobserved Λ as the missing
data) would be useful in many cases.
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FIGURE 20.13
Fitted models for intensity of the Queensland copper point pattern as a function of distance from the nearest
lineament. Left: log-polynomial of degree 7; right: piecewise constant with jumps at 2, 4 and 6 km.
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In a log-Gaussian Cox process, (Section 19.4.3) we assume that log Λ(u) is a Gaussian ran-
dom field Ξ (u). The log likelihood can be evaluated using conditional simulation and
maximized numerically. Spatial inhomogeneity in the intensity can be accommodated by
introducing additive model terms in the mean function of Ξ (u), which give rise to corre-
sponding additive effects in the log intensity.

Neyman–Scott cluster models (Section 17.3) can also be used to describe clustering, and
can be simulated directly. However, their likelihoods are relatively intractable, as they are
effectively mixture models with a Poisson random number of components. Instead, cluster
models would often be fitted using the method of minimum contrast (Section 19.3.2), using
the fact that the second-moment characteristics of the process depend only on the second-
moment properties of the cluster mechanism (Section 17.2.3). For example, the modified
Thomas process (Stoyan, Kendall, and Mecke, 1987, p. 144), is a Poisson cluster process
in which each parent has a Poisson (μ) random number of offspring, displaced from the
parent location by independent random vectors with an isotropic Gaussian distribution.
The modified Thomas process has K-function

K (r ) = πr2 + 1
κ

(
1 − exp

(−r2

4σ 2

))
(20.2)

and intensity λ = μκ , where κ is the parent intensity and σ the standard deviation of the
offspring displacements. The parameters κ and σ can be estimated by fitting this parametric
form to the empirical K-function using minimum contrast, and the remaining parameter μ

follows.
Figure 20.14 shows a subset of the redwood seedlings data of Strauss (1975) extracted

by Ripley (1976) and the result of fitting the modified Thomas process K-function to the
empirical K-function of this pattern. The fitted parameters were κ̂ = 23.5, μ̂ = 2.6 and
σ̂ = 0.05.

Inhomogeneous cluster models can be used to model both spatial inhomogeneity and cluster-
ing. Consider a Poisson cluster process in which the parent points are Poisson with constant
intensity κ , and for a parent point at location yi , the associated cluster is a finite Poisson
process with intensity λi (u) = g(u − yi )ρ(u) where κ(u) is a spatially varying “fertility”
or “base intensity” and g is a nonnegative integrable function. This can be interpreted as
another multiplicative model in which the rate of production of offspring depends on the
intensity κ of parents, the cluster dispersal g(u − v) from parent v to offspring u, and the
intrinsic fertility ρ(u) at location u. If g is the isotropic Gaussian density and ρ is constant,
the model reduces to the stationary modified Thomas process.
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FIGURE 20.14
Redwood seedlings data rescaled to the unit square (left) and result of fitting a modified Thomas process model
to the K-function (right).
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The form of λi (u) is judiciously chosen so that the intensity of the process of offspring
is proportional to ρ(u), and the pair correlation function is stationary and determined
by g. Thus, the intensity and clustering parameters are “separable,” making it easy to
formulate and fit models that combine spatial inhomogeneity and clustering. The intensity
may be modeled and fitted using any of the techniques described in the previous section.
The fitted intensity is then used to compute the inhomogeneous K-function. A cluster
dispersal function g is chosen and the corresponding functional form of the inhomogeneous
K-function is derived. The parameters of g are then estimated by minimum contrast.

20.4.3 Finite Gibbs Models

In order to describe negative association (“regularity” or “inhibition”) between points, the
most useful models are finite Gibbs point processes (Section 17.4, Section 19.4.1) particularly
Markov point processes. They also may be used to model weak positive association between
points.

Recalling Section 17.4, suppose that data are observed in a study region W. A finite Gibbs
process in W has a probability density f (x) of the form

f (x) = exp(−Ψ (x)), (20.3)

with respect to the Poisson process of unit intensity on W, where the potential Ψ is of the
form

Ψ (x1, . . . , xn) = α0 +
∑

i

α1(xi ) +
∑
i< j

α2(xi , xj ) + . . . + αn(x1, . . . , xn). (20.4)

The constant α0 is the normalizing constant for the density, and the interaction potentials
α1, α2, . . . are functions determining the contribution to the potential from each d-tuple of
points.

The Gibbs representation (20.3)–(20.4) of the probability density f as a product of terms of
increasing order, is a natural way to understand and model stochastic dependence between
points. If the potential functions αd are identically zero for d ≥ 2, then the point process is
Poisson with intensity λ(u) = exp(−α1(u)). Thus, the first-order potential α1 can be regarded
as controlling spatial trend and the higher-order potentials αd for d ≥ 2 control interpoint
interaction.

In principle, we may formulate models with any desired form of spatial trend and stochas-
tic dependence structure simply by writing down the interaction potentials α1, α2, . . . . One
constraint is that the resulting probability density f must be integrable. This is guaranteed
if, for example, all the higher-order potentials αd for d ≥ 2 are nonnegative (implying that
the process exhibits inhibition or negative association between points).

The most common models are pairwise interaction processes (Section 17.4) where the pair
potential depends only on interpoint distance, α2(u, v) = ϕ(||u − v||). An example is the
Strauss process with pairwise interaction ϕ(t) = θ if t ≤ r and zero otherwise, where r > 0 is
an “interaction distance” and θ is an “interaction strength” parameter. The Strauss process
density is integrable when θ ≥ 0, implying that it exhibits inhibition or negative association
between points. The parameter θ controls the “strength” of negative association. If θ = 0,
the model reduces to a Poisson process, while, if θ = ∞, the model is a hard core process,
which assigns zero probability to any outcome where there is a pair of points lying closer
than the critical distance r . Figure 20.15 shows simulated realizations of the Strauss process
with the same first-order potential and two different values of θ .

Models with higher-order interaction can easily be constructed. For example, there is an
obvious extension of pairwise interaction to an interaction between triples of points. Several
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FIGURE 20.15
Simulated realizations of the Strauss process with pairwise interaction parameter θ = 1 (left) and θ = 3 (right).
Unit square window, interaction radius r = 0.07, first order potential α1 = log 200.

models with infinite order of interaction (that is, with nontrivial interaction potentials of
every order d) are available, including the Widom–Rowlinson penetrable spheres model
or “area-interaction” process (Baddeley and van Lieshout, 1995; Widom and Rowlinson,
1970) and the saturation model of Geyer (1999).

A useful tool for modeling and analysis of Gibbs processes is the Papangelou conditional
intensity (Definition 7 of Section 16.5). The conditional intensity at a location u given the
point pattern x is (for u �∈ x)

λ(u | x) = f (x ∪ {u})
f (x)

by Theorem 5 of Section 16.6. The negative log of the conditional intensity can be interpreted
as the energy required to add a new point, at location u, to the existing configuration x. This
energy can be decomposed according to the Gibbs representation into

− log λ(u | x) = α1(u) + T2(u | x) + T3(u | x) + · · · , (20.5)

where

T2(u | x) =
n∑

i=1

α2(u, xi )

is the sum of the pair potentials between a new point at location u and each existing point
xi , and similarly for higher-order potentials. Thus, α1(u) is the energy required to “create” a
point at the location u, while T2(u | x) is the energy required to overcome pairwise interaction
forces between the new point u and the existing points of x, and so on. This can be a useful
metaphor for modeling point patterns in applications such as forestry.

In Equation (20.5), the first term α1(u) may be interpreted as controlling spatial trend,
while the subsequent terms control interpoint interaction. Thus, we may construct point
process models by choosing appropriate functional forms for α1 to control spatial trend and
T2, T3, . . . to control interpoint interaction. This can be regarded as a generalization of the
modeling approach espoused in Section 20.4.1. The log intensity has been generalized to the
log conditional intensity. Additive terms in the log conditional intensity that depend only
on the location u are interpreted as multiplicative effects on spatial trend. Additive terms
in the log conditional intensity that depend on the configuration x modify the interpoint
interaction.

© 2010 by Taylor and Francis Group, LLC



P1: Rajesh Sharma

February 23, 2010 12:46 C7287 C7287˙C020

Modeling Strategies 359

1 

1 

2 

2 

2 

3 

3 

3
 

4 

4 

5 

5 

6 

6 
7 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.2

0.4

0.6

0.8

1.0

Distance

P
ai

rw
is

e 
In

te
ra

ct
io

n

FIGURE 20.16
Japanese pines data (left), fitted log-cubic spatial trend (middle) and fitted, soft core, pairwise interaction exp ϕ(t)
(right).

Gibbs models may be fitted to data by maximizing the point process pseudolikelihood
(Section 19.3.4). Suppose the conditional intensity is λθ (u | x), where θ is a parameter. Define

log PL(θ ) =
n∑

i=1

log λθ (xi | x) −
∫

W
λθ (u | x) du (20.6)

and define the maximum pseudolikelihood estimate (MPLE) θ̂ as the value maximizing
log PL(θ ). Under regularity conditions, the pseudoscore (derivative of log PL) is an un-
biased estimating function. The MPLE is typically a consistent estimator although it is
inefficient compared to the maximum likelihood estimate (MLE). Numerical methods for
maximizing the pseudolikelihood are very similar to those used for maximizing the Poisson
likelihood (20.1): a discretized version of the log pseudolikelihood is formally equivalent to
the log likelihood of a (nonspatial) Poisson generalized linear model (Baddeley and Turner,
2000).

Figure 20.16 shows the Japanese pine saplings data of Numata (1961, 1964) and the result
of fitting a pairwise interaction model with log-cubic spatial trend (α1 was a polynomial
of degree 3 in the Cartesian coordinates) and soft core interaction ϕ(t) = θ t1/4 where θ is a
parameter.

One point of confusion is the difference between the first-order potential α1 (called the
spatial trend) and the intensity of the point process. In the special case of a Poisson process,
the first-order potential α1 determines the intensity directly, through λ(u) = exp(−α1(u)).
However, for non-Poisson processes, this is not true; the intensity depends on the poten-
tials of all orders. There is typically no simple expression for the intensity in terms of the
potentials. For simplicity, assume that the higher-order potentials αd for d ≥ 2 are invariant
under translation. Then, any spatial inhomogeneity in the point process must arise from
the first-order potential α1, so it is appropriate to call this the “spatial trend.” One useful
result is

λ(u) = E[λ(u | X)], (20.7)

a special case of the Georgii–Nguyen–Zessin formula (Example 17 of Section 16.5). The ex-
pectation on the right-hand side of Equation (20.7) is with respect to the distribution of the
Gibbs process. Thus, Equation (20.7) expresses an equivalence between two properties of
the same Gibbs process. For example, for a pairwise interaction process, (20.7) gives

λ(u) = E[exp(−α1(u) − T2(u | X))]. (20.8)

Typically, T2 is nonnegative, which implies λ(u) ≤ exp(−α1(u)). The intensity is a decreasing
function of the pair potential. For example, Figure 20.15 showed realizations of two Strauss

© 2010 by Taylor and Francis Group, LLC



P1: Rajesh Sharma

February 23, 2010 12:46 C7287 C7287˙C020

360 Handbook of Spatial Statistics

processes with the same first-order potential, but with different interaction parameters
θ = 1 and θ = 3. These patterns clearly do not have equal intensity.

A quick approximation to the intensity is obtained by replacing the right-hand side of
Equation (20.7) by the expectation of λ(u | x) under a Poisson process with the same (un-
known) intensity function λ(u), and then solving for the intensity. For pairwise interaction
processes with α1 constant and α2(u, v) = ϕ(|u − v||), this produces an analytic equation

λ = exp(−α1(u) − Gλ) (20.9)

to be solved for the constant intensity λ, where

G =
∫

R
2
[1 − exp(−ϕ(||u||))] du.

For example, the Strauss process has G = πr2(1 − exp θ ). With the parameters used in
Figure 20.15, we obtain approximate intensities λ1 ≈ 95.7 and λ3 ≈ 73.9 for the Strauss
processes with θ = 1 and θ = 3, respectively. These are slight overestimates; unbiased
estimates obtained using perfect simulation are λ1 ≈ 92.7 (standard error 0.2) and λ3 ≈ 65.7
(standard error 0.5).

Similarly, the second moment properties of a Gibbs process are not easily accessible
functions of the interaction potentials. The K-function can be estimated by simulation or
using analytic approximation to a sparse Poisson process.

In principle, as we have seen, any point process that has a probability density can be
expressed as a Gibbs model. In practice, Gibbs models are only convenient to apply to
data when the potentials αd are easy to compute, or at least, when the right-hand side of
Equation (20.5) is easy to compute. This includes most pairwise interaction models, and
some infinite order interaction models such as the Widom–Rowlinson model.

Finally, we note that there is a natural connection between Gibbs models and the classical
summary statistics, such as the K-function. Suppose the probability density f (x) depends
on the parameter vector θ in the linear exponential form f (x) = exp(θ B(x)+ A(θ )). Then the
“canonical sufficient statistic” of the model is the statistic B(x). The maximum likelihood
estimate of θ is a function of B(x). It turns out that, ignoring edge corrections, the empirical
K-function is the canonical sufficient statistic for the Strauss process (when the interaction
distance r is treated as a nuisance parameter). Similarly, the empirical empty space function
F is the canonical sufficient statistic for the Widom–Rowlinson penetrable spheres model,
and the empirical nearest neighbor distance function G is the canonical sufficient statistic
for the Geyer saturation model with saturation parameter s = 1.

20.5 Formal Inference

Formal statistical inference about a spatial point pattern includes parameter estimation,
hypothesis tests about the value of a parameter in a point process model, formal model
selection (frequentist or Bayesian), goodness-of-fit tests for a model that has been fitted to
data, and tests of goodness-of-fit to the homogeneous Poisson process (complete spatial
randomness). Inference typically requires the use of simulation methods, because there are
very few theoretical results available about the null distribution of test statistics, except in
the case of Poisson processes.
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20.5.1 Generic Goodness-of-Fit Tests

Following the influential paper of Ripley (1977), the exploratory analysis of a point pattern
is often accompanied by a Monte Carlo test of goodness-of-fit to the homogeneous Poisson
process. The test is usually performed by plotting the estimate of the K-function (or another
summary function) together with the envelopes of the K-function estimated from simulated
realizations of a Poisson process of the same estimated intensity. See Section 18.3.

A general weakness of goodness-of-fit tests is that the alternative hypothesis is very broad
(embracing all point processes other than the model specified in the null hypothesis), so
that rejection of the null hypothesis is rather uninformative, and acceptance of the null
hypothesis is unconvincing because of weak power against specific alternatives.

Another criticism of this approach is that the homogeneous Poisson process may not
be appropriate (even as a null model) in the scientific context. For example, in spatial
epidemiology (Chapter 22), a point pattern of cases of infectious disease should be studied
relative to the spatially varying density of the susceptible population. It would be natural
to test the goodness-of-fit of the inhomogeneous Poisson process with intensity proportional
to the population density. The Monte Carlo testing technique can easily be adapted to this
model.

The Japanese pines data (Figure 20.16) show clear evidence of spatial inhomogeneity. A
goodness-of-fit test for CSR would not be very informative. Instead we may fit an inho-
mogeneous Poisson process to the data and subject this to goodness-of-fit testing. The left
panel of Figure 20.17 shows a Monte Carlo test of goodness-of-fit of an inhomogeneous
Poisson process with log-cubic intensity using the inhomogeneous K-function based on the
fitted intensity. There is a suggestion of inhibition between points at short distances.

Another use of goodness-of-fit testing is in the final stages of modeling. After a suitable
model has been developed and fitted to the data, the adequacy of the model can be confirmed
by a goodness-of-fit test (assuming that the null hypothesis is accepted). The right panel
of Figure 20.17 shows a Monte Carlo test of goodness-of-fit for the Gibbs model with log-
cubic trend and soft core pairwise interaction, fitted to the Japanese pines data using the
inhomogeneous K function.

20.5.2 Formal Inference about Model Parameters

For Poisson point process models (either homogeneous or inhomogeneous) the full tech-
nology of likelihood inference is available. In the common case of a log-linear model
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FIGURE 20.17
Monte Carlo test of goodness-of-fit for models fitted to the Japanese pines data. Left: Poisson process with log-
cubic intensity. Right: Gibbs process with log-cubic spatial trend and soft core pairwise interaction. Pointwise
envelopes of 19 simulations.
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λθ (u) = exp(θ T S(u)) where S(u) is a real- or vector-valued covariate, the maximum like-
lihood estimator θ̂ is asymptotically normal with mean θ and variance–covariance matrix
I −1(θ ), where

I (θ ) =
∫

S(u)T S(u)λθ (u) du

is the Fisher information matrix. Likelihood ratio tests and confidence intervals for param-
eters, based on the normal distribution, are asymptotically valid. Model selection may be
conducted using the standard analysis of deviance, the Akaike information criterion, or
Bayesian methods.

For point process models other than the Poisson process, very little exact statistical theory
is available. In Gibbs models fitted by maximum likelihood (typically using simulation
to evaluate the score function), typically the MLE is still asymptotically normal, and the
Fisher information can be estimated by simulation. This enables the likelihood ratio test
and confidence intervals to be applied.

For large datasets or rapid modeling applications, maximum likelihood is computation-
ally prohibitive. Instead, inference may be based on maximum pseudolikelihood. The null
distribution of the log pseudolikelihood ratio would often be estimated by Monte Carlo simu-
lation. However, the tails of the null distribution are poorly estimated by direct simulation.
Baddeley and Turner (2000) proposed approximating the tails of the null distribution of
the log pseudolikelihood ratio by the tails of a gamma distribution fitted to a modest number
of simulations. General theory of composite likelihood suggests that the asymptotic null
distribution of the log pseudolikelihood ratio is that of a weighted sum of χ2 variables,
which can then be approximated by a single gamma variable.

20.6 Model Validation

In model validation, we investigate the correctness of each component (or “assumption”)
of the fitted model.

Unlike “formal” model checking (such as goodness-of-fit testing), which rests on math-
ematical assumptions and has a well-defined mathematical interpretation, validation is an
“informal” process, in which the mathematical assumptions are checked. The goal of val-
idation is to assess whether any component of the fitted model seems to be inappropriate
and, if so, to suggest the form of a more appropriate model.

A typical validation tool in classical statistics is a plot of the residuals from linear re-
gression, plotted against the explanatory variable x. Any visual impression of a pattern,
suggesting that the residuals depend on x in a systematic way, suggests that the form of the
regression curve should be reconsidered. Various plots and transformations of the residuals
may be useful for different purposes. The assumption that errors are normally distributed
can be assessed using a normal Q–Q plot of the residuals. Model validation for spatial point
processes involves analogs of these classical residual plots (Baddeley, Turner, Møller, and
Hazelton, 2005). Outliers in spatial point patterns may also be studied, by adapting classical
outlier techniques (Wartenberg, 1990) or by localized spatial analysis (Cressie and Collins,
2001a).

20.6.1 Intensity Residuals

A fitted model for the point process intensity λ(u) may be checked by comparing observed
and expected numbers of points using analogs of the classical residuals.
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This is familiar in the context of quadrat counting. We divide the study region W into
disjoint subsets or “quadrats” Bi and count the number ni = n(x ∩ B) of data points falling
in each Bi . If λ̂(u) is the fitted intensity, then the expected value of ni is

ei =
∫

Bi

λ̂(u) du

and the “raw residual” is
ri = ni − ei .

The residuals have mean zero if the fitted intensity is exactly correct. If the fitted model is
Poisson, we may also consider the “Pearson residual”

r P
i = ni − ei√

ei
.

The residuals may be plotted spatially as a grayscale image and inspected for any suggestion
of spatial trend.

This is a special case of the residual intensity R, a signed measure defined for all regions
B by

R(B) = n(x ∩ B) −
∫

B
λ̂(u) du.

This is a signed measure with atoms of mass 1 at the data points and a diffuse component
with negative density −λ̂(u) at other locations. Again R(B) has mean zero if the fitted
intensity is exactly correct.

In order to visualize the residual intensity, it is useful to apply kernel smoothing. This
yields a smoothed residual intensity

s(u) = e(u)
∫

k(u − v) dR(u)

= e(u)
∑

k(u − xi ) − e(u)
∫

k(u − v)λ̂(v) dv

= λ̃(u) − λ(u) (20.10)

equal to the difference between a standard, nonparametric, kernel-smoothed intensity es-
timate λ̃(u) and a correspondingly kernel-smoothed version of the fitted model intensity
λ(u). A contour plot or image plot of s(u) may be inspected for any suggestion of spatial
trend.

The left panel of Figure 20.18 shows a contour plot of the smoothed residual intensity s(u)
for a model with log-linear intensity (the log intensity was a linear function of the Cartesian
coordinates) fitted to the Japanese pines data. The saddle shape of the surface suggests that
this model is inappropriate.

Various other plots and transformations of the residual intensity may be useful. For inten-
sity models that depend (or should have depended) on a spatial covariate Z(u), an alternative
is to plot the cumulative residual C(z) = R(B(z)) against z, where

B(z) = {u ∈ W : Z(u) ≤ z} (20.11)

is the subset of the study region where the covariate takes a value less than or equal to
z. Systematic departure from the horizontal suggests that the form of dependence on Z
should be modified. The right panel of Figure 20.18 plots the cumulative residual for the
log-linear intensity model of Japanese pines, as a function of the x coordinate. Dotted lines
show the two-standard-error limits assuming a Poisson process. The obvious pattern of
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FIGURE 20.18
Residual plots for an intensity model fitted to the Japanese pines data. Left: Contour plot of smoothed residual
intensity. Right: Cumulative residual as a function of the x coordinate.

deviation from zero shows that a linear log intensity model is not appropriate, and suggests
a polynomial of higher order.

In the special case of homogeneous intensity, the cumulative residual plot is the difference
between the two curves plotted in Berman’s diagnostic plot (Section 20.3.2).

20.6.2 Validation of Poisson Models

Validation of a fitted Poisson point process model involves checking the assumption of
stochastic independence between points as well as the fitted intensity. The assumption of
stochastic independence also opens up more techniques for checking the fitted intensity
function.

If the fitted intensity model has been judged adequate (perhaps using residual plots),
then a useful diagnostic for the Poisson assumption is the inhomogeneous K-function.

An alternative technique for assessing both the intensity model and the independence
assumption is to transform the process to uniformity. Suppose X is a Poisson process with
intensity function λ(u), and Z(u) is a real-valued covariate function. Then the values zi =
Z(xi ) of the covariate observed at the data points constitute a Poisson point process on the
real line. The expected number of values zi satisfying zi ≤ z is

τ (z) =
∫

B(z)
λ(u) du,

where again B(u) is the level set region where Z(u) takes values less than or equal to z.
Assume τ is a continuous function. Then the values ti = τ (zi ) = τ (Z(xi )) constitute a
Poisson process with unit intensity on an interval of the real line.

To exploit this in practice, we choose a covariate function Z(u) judiciously, compute the
function τ numerically by discretizing the study region, evaluate zi = Z(xi ), transform to
ti = τ (zi ), and apply standard goodness-of-fit tests for the uniform Poisson process to the
values ti . A good choice of Z is one that has a strong influence on the intensity, under
the types of departure from the fitted model that are of interest. Thus, Z might be one of
the covariates already included in the fitted model (where the form of the model is under
suspicion), or a covariate that should have been included in the model, or a surrogate for
a lurking variable.
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FIGURE 20.19
Q–Q plot of smoothed residuals for a Poisson model with log-cubic intensity fitted to the Japanese pines data.

This is closely related to the Kolmogorov–Smirnov test of goodness-of-fit to a probability
distribution. In this context, the Kolmogorov–Smirnov test is a goodness-of-fit test for the
fitted intensity function. Transformation of the point process to uniformity allows a wider
range of tests to be applied, including tests of stochastic dependence.

The independence property of the Poisson process is a distributional assumption, anal-
ogous to the assumption of normally distributed errors in linear regression. To validate a
fitted linear regression, we would often check the assumption of normally distributed errors
using a normal Q–Q plot of the residuals. This plots the empirical quantiles of the residuals
against the corresponding theoretical quantiles of the normal distribution. Baddeley et al.
(2005) proposed checking the independence assumption of the Poisson process using a
Q–Q plot of the smoothed residual field. Quantiles of (discretized values of) the smoothed
residual field for the data are plotted against the corresponding expected quantiles esti-
mated by simulation from the fitted Poisson model. Figure 20.19 shows the residual Q–Q
plot for an inhomogeneous Poisson model fitted to the Japanese pines data, suggesting
the Poisson assumption is adequate. In special cases, the residual Q–Q plot is related to
summary statistics, such as the empty space function F .

20.6.3 Validation of Multilevel Models

Multilevel models, such as log-Gaussian Cox processes and inhomogeneous cluster mod-
els (Section 20.4.2), are typically fitted by the method of moments or the closely related
method of minimum contrast, at least with regard to the parameters controlling interpoint
interaction. The fitted model can be validated in two ways.

First, the sample moments can be compared with the fitted moments, to assess whether
the choice of functional form for the model is appropriate. For example, Figure 20.14 in
Section 20.4.2 showed a graphical comparison between the empirical and fitted inhomo-
geneous K -functions of the redwood data, suggesting that a modified Thomas model is
appropriate.

Second, a summary statistic that is unrelated to the model-fitting technique can be eval-
uated for the data and compared with its predicted mean under the model, typically com-
puted by simulation. This can be used to assess whether the type of stochastic dependence
in the model is appropriate to the data. Figure 20.20 shows the nearest neighbor distance
function G(r ) estimated from the redwood seedlings data, and the (simultaneous) enve-
lope of 19 simulations from the fitted modified Thomas process. The sample size appears
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FIGURE 20.20
Monte Carlo test of goodness-of-fit for the modified Thomas process model fitted to the redwood seedlings data,
based on the nearest neighbor distance function G(r ): variance stabilized, simultaneous envelopes, 19 simulations.

to be too small for definitive conclusions, but there is a slight suggestion that the cluster
model may be inappropriate.

20.6.4 Validating Gibbs Models

Baddeley et al. (2005) proposed a generalization of residuals to the case of Gibbs models.
The residual measure is defined by

R(B) = n(x ∩ B) −
∫

B
λ̂(u | x) du (20.12)

for any region B, where λ̂(u | x) is the fitted Papangelou conditional intensity. Thanks to
the Georgii–Nguyen–Zessin formula, these generalized residuals also have mean zero if
the fitted conditional intensity is exactly correct. The residuals are often easy to compute
because the conditional intensity is typically very easy to compute, at least for Gibbs models
in common use.

Useful diagnostic plots of the residuals include a contour plot of the smoothed residual
field, which has the same form as (20.10), but which is now the difference between non-
parametric and parametric estimates of the conditional intensity. To assess dependence on
a covariate Z(u) we may again plot the cumulative conditional residuals C(z) = R(B(z))
against the covariate value z, where B(z) was defined in Equation (20.11). The stochastic
dependence in the fitted model may be assessed using a Q–Q plot of the smoothed residuals.

20.7 Software

20.7.1 Packages for Spatial Statistics in R

R is a popular, open source, software environment for statistical computing and graphics
(R Development Core Team, 2004). “Packages” or add-on modules for R are available from
the CRAN Web site network cran.r-project.org. Packages for spatial statistics are reviewed
on the Spatial task view Web page www.cran.r-project.org/web/views/Spatial.html.

All the computations for this chapter were performed using the package spatstat. It is
designed to support a complete statistical analysis of spatial point pattern data, including
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graphics, exploratory analysis, model-fitting, simulation and diagnostics (Baddeley and
Turner, 2005). Detailed notes on analysing spatial point patterns using spatstat are avail-
able on the Web (Baddeley, 2008).

The package splancs supports exploratory analysis of spatial and space-time point pat-
terns (Bivand and Gephardt, 2000; Rowlingson and Diggle, 1993). The package spatclus
extends spatstat by adding methods for spatial cluster detection (Demattei, Molinari,
and Davrès, 2007). The package MarkedPointProcess provides methods for the analy-
sis of multidimensional marks attached to points in a spatial pattern using techniques of
Schlather, Ribeiro, and Diggle (2004).

20.7.2 Other Packages

Several software packages for analyzing spatial point patterns are freely available but not
open-source. Important among these is (SaTScanTM), available at www.satscan.org, which
implements methods based on spatial scan statistics (Alm, 1988; Anderson and Titterington,
1997; Kulldorff, 1999; Kulldorff and Nagarwalla, 1995) that are not commonly implemented
in other packages.
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21.1 Motivation and Examples

A multivariate or multitype spatial point pattern is one that consists of several qualitatively
different types of points. Examples include a map of the locations of trees labeled with
the species classification of each tree, a spatial case/control study in spatial epidemiology
where each point represents either a case or a control, and a map of locations of telephone
calls to the emergency services, labeled by the nature of each emergency.

More generally, a marked point pattern is one in which each point of the process carries
extra information called a mark, which may be a random variable, several random variables,
a geometrical shape, or some other information. A multitype point pattern is the special
case where the mark is a categorical variable.

21.1.1 Multivariate Point Patterns

The amacrine cells data were presented in Figure 18.6 of Chapter 18. The retina is a flat sheet
containing several layers of cells. Amacrine cells occupy two adjacent layers, the “on” and
“off” layers. In a microscope field of view, the locations of all amacrine cells were recorded,
together with the type of each cell. The main question of interest is whether the “on” and
“off” layers grew independently.

Such data can be approached in several ways. One way is to separate the points according
to their type, yielding M distinct point patterns, where M is the number of possible types.
We then have a multivariate observation (X1, X2, . . . , XM) where Xm is the pattern of points
of type m. Alternatively, the data may be treated as a single pattern of n points, in which each
point location xi is labeled by its type zi for i = 1, 2, . . . , n. This is a multitype point pattern.
These two concepts are mathematically equivalent, but suggest slightly different statistical
approaches. For example, Figure 18.6 displays the amacrine data as a “multitype” plot
using different symbols to distinguish the two cell types. Alternatively we could display
the two different cell types as separate point patterns in a “multivariate” plot.

Figure 21.1 shows the results of a survey of a forest plot in Lansing Woods, Michigan
(Gerrard, 1969). The data give the locations of 2,251 trees and their botanical classification
(into hickories, maples, red oaks, white oaks, black oaks and miscellaneous trees). This is a
“multivariate” plot showing each species of tree as a separate point pattern. One question
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Black Oak Hickory Maple

Misc. Red Oak White Oak

FIGURE 21.1
Lansing Woods data, separated by species.

of interest is whether the species are evenly mixed across the forest plot or are segregated
into different subregions where one species is predominant over the others.

Figure 21.2 shows domicile addresses of new cases of cancer of the larynx (58 cases) and
cancer of the lung (978 cases), recorded in the Chorley and South Ribble Health Authority
(Lancashire, England) between 1974 and 1983. The location of a now-unused industrial
incinerator is also shown. The data were first presented and analyzed by Diggle (1990).
They have subsequently been analyzed by Diggle and Rowlingson (1994) and Baddeley,
Turner, Møller, and Hazelton (2005). The aim is to assess evidence for an increase in the
incidence of cancer of the larynx in the vicinity of the incinerator. The lung cancer cases
serve as a surrogate for the spatially varying density of the susceptible population.

21.1.2 Marked Point Patterns

The left panel of Figure 21.3 is from a survey of 584 Longleaf pine (Pinus palustris) trees
in a square plot region in southern state of Georgia, by Platt, Evans, and Rathbun (1988).
The location of each tree was recorded together with its diameter at breast height (dbh), a
convenient measure of size that is also a surrogate for age. “Adult” trees are conventionally
defined as those with dbh greater than or equal to 30 cm. This is a marked point pattern
with nonnegative real-valued marks. In the figure, each tree is represented by a circle
with its center at the tree location and its radius proportional to the mark value. One of
the many questions about this dataset is to account for spatial inhomogeneity in the ages
of trees.

In a more detailed forest survey, we might record several variables for each tree: its
species, its diameter, insect counts, the results of chemical assay of its leaves, and so on.
These data can be regarded as a multivariate mark attached to the tree. At a still more
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FIGURE 21.2
Chorley–Ribble data. Spatial locations of cases of cancer of the larynx (•) and cancer of the lung (+), and the
location of a disused industrial incinerator (⊕).

complicated level, the mark attached to each point may be a function (such as the spectral
signature of light from a galaxy, attached to the galaxy’s location), a shape (such as the
shape of the galaxy), and so on.

A spatial pattern of geometrical objects, such as disks or polygons of different sizes
and shapes, can be treated as a marked point process where the points are the centers of
the objects, and the marks are parameters determining the size and shape of the objects.
The right panel of Figure 21.3 shows the spatial locations and diameters of sea anemones
(beadlet anemone Actinia equina) in a sample plot on the north face of a boulder on the
shore at Bretagne, France, collected by Kooijman (1979). Geometrical objects of arbitrary
shape can be accommodated by allowing the mark to be a copy of the object translated so
that its centroid is at the origin. Ripley and Sutherland (1990) used this germ-grain model to
represent the location and shape of spiral galaxies. Stoyan (1993) used a germ-grain model
to analyze a collage by the artist Hans Arp in which torn pieces of paper were arranged on
a canvas “at random,” according to the artist.

FIGURE 21.3
Marked point patterns with real-valued marks. Left: Longleaf pines data with mark values represented as radii
of circles (not to scale). Right: Beadlet anemones data with diameters plotted to scale.
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21.2 Methodological Issues

21.2.1 Appropriateness of Point Process Methods

Suppose we have data consisting of spatial locations (x1, . . . , xn) and values attached to
them (z1, . . . , zn). Without background information, it is unclear how such data should be
analyzed.

Scenario 1 Today’s maximum temperatures at 25 Australian cities are displayed on a map. This
is not a point process in any useful sense. Point process methods are only useful if the
locations xi can be regarded as random. Here the cities are fixed locations. The temperatures
are observations of a spatial variable at a fixed set of locations. Geostatistical methods are
more appropriate (Armstrong, 1997; Diggle et al., 1998; Journel and Huijbregts, 1978).

Scenario 2 A mineral exploration dataset records the map coordinates where 15 core samples were
drilled, and, for each core sample, the assayed concentration of iron in the sample. Typically this
would not be treated as a point process. The core sample locations were chosen by a geologist
and are part of the experimental design. They cannot be regarded as a response, and point
process models are not appropriate. The main interest is in the iron concentration at these
locations. Again this should probably be analyzed using geostatistical methods. We would
assume that the locations xi were effectively arbitrary sample points, at which we measured
the values zi = Z(xi ) of iron concentration. Here Z(u) is the iron concentration at a location
u. Our goal is to draw conclusions about the function Z.

21.2.2 Responses and Covariates

As in any statistical analysis, it is vital to decide which quantities to treat as response variables,
and which as explanatory variables (e.g., Cox and Snell, 1981).

Point process methods are appropriate if the spatial locations xi are “response” vari-
ables. Marked point process methods are appropriate if both the spatial locations xi and the
associated values zi are part of the “response.”

Scenario 3 Trees in an orchard are examined and their disease status (infected/not infected) is
recorded. We are interested in the spatial characteristics of the disease, such as contagion between
neighboring trees. These data probably should not be treated as a point process. The response
is “disease status.” We can think of disease status as a label applied to the trees after
their locations have been determined. Since we are interested in the spatial correlation of
disease status, the tree locations are effectively fixed covariate values. It would probably
be best to treat these data as a discrete random field (of disease status values) observed at
a finite known set of sites (the trees). However, a different approach might be required for
a naturally regenerated stand of trees with endemic disease.

Scenario 4 In an intensive geological survey of a desert region, the locations xi of all natural deposits
of a rare mineral are recorded. Deposits are effectively points at the scale of the survey. For each deposit
location xi , the estimated total yield yi (kg) of the deposit is recorded. This could be analyzed as a
marked point pattern, in which each deposit location xi is marked by the deposit yield yi .
We assume that the locations xi and yields yi , taken together, are the outcome of a random
process. The pattern of points xi carries substantial information, and our goal is to draw
conclusions about the locations, the marks, and the dependence between them.

Scenario 5 In the same geological survey, for each deposit xi , we record whether the surrounding
rock was volcanic (vi = 1) or nonvolcanic (vi = 0). We wish to determine whether deposits are
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more likely to occur in volcanic rock. The deposits xi are the “response” of interest, and should
be interpreted as a point process. However, the rock type values vi are clearly intended
to serve as a covariate (explanatory variable) because we wish to determine whether the
abundance of deposits depends on rock type v.

A major difficulty in Scenario 5 is that these data are inadequate. It is not sufficient to
record the covariate values at the points of the point pattern. The covariate must also be
observed at some other locations in the study region. The relative frequencies of the rock
types v = 0, 1, observed at the deposit locations only, are not sufficient to estimate the
relative frequencies of deposits in the two rock types. In schematic terms, P(v | deposit)
does not determine P(deposit | v). Bayes’ formula indicates that we would need additional
information about the relative frequencies P(v) of the two rock types in the study area, (see
Chapter 20, Section 20.3.2).

Thus, marks and covariates play different statistical roles. Marks are attributes of the
individual points in the pattern and are part of the “response” in the experiment, while co-
variates are “explanatory” variables. A covariate must be observable at any spatial location,
while a mark may be observable only at the points in the point pattern.

It may be difficult to decide whether a variable should be treated as a response or as
a covariate (Cox and Snell, 1981). This issue also arises in spatial statistics. For example,
the longleaf pines data (left panel of Figure 21.3) give the location and diameter at breast
height (dbh) of each tree in a forest. It is surely appropriate to treat dbh as a mark; the
diameter of a tree is an attribute of that tree (a surrogate for its age) not a quantity that can
be observed at arbitrary spatial locations. However, Figure 21.3 and Figure 21.4 show that
the age distribution is not spatially homogeneous. The forest contains some areas where
most trees have relatively small dbh, and, hence, are relatively young. It is known that
some forest stands were cleared decades ago, and such areas would now contain relatively
young trees. A more sophisticated analysis of the longleaf pines data might use a spatially
smoothed trend surface of the dbh values as a covariate — effectively a surrogate for the
history of the forest.

21.2.3 Modeling Approaches

Marked point patterns raise new and interesting questions concerning the appropriate way
to formulate models and pursue analyses for particular applications.

In a statistical analysis of two response variables X and Y, we have the choice of mod-
eling the joint distribution [X, Y], or one of the conditional distributions [Y|X] or [X|Y].

FIGURE 21.4
Longleaf pines classified into “juvenile” (dbh < 30, filled circles) and “adult” (dbh ≥ 30, open circles).
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Conditioning is appropriate (and usually simpler and more efficient) if the conditioning
variable does not contain information about the parameters of interest.

Similarly, in the analysis of a marked point pattern, an important choice is whether to
analyze the marks and locations jointly or conditionally. Schematically, if we write X for the
points and M for the marks, then we could specify a model for the marked point process
[X, M]. Alternatively we may condition on the locations of the points, treating only the marks
as random variables [M|X].

For example, the Chorley–Ribble data (Figure 21.2) consist of domicile locations xi of can-
cer cases, with marks mi indicating the cancer type. The locations and types were analyzed
jointly by Diggle (1990). A joint analysis requires estimation of the unknown, spatially vary-
ing density of the susceptible population. The same data were reanalyzed conditionally on
the locations by Diggle and Rowlingson (1994). Conditioning on the locations removes the
need to estimate the population density, greatly simplifying the analysis, and eliminating
error due to estimation of population density.

In some cases, we may condition on the marks, treating the locations as a random point
process [X|M]. This is meaningful if the mark variable is a continuous real-valued quantity,
such as time, age or distance. For example, in an astronomical survey giving the sky position
xi and redshift zi of distant galaxies, one of the issues is sampling bias. The probability of
detecting a galaxy depends on its apparent brightness, hence, on its distance from Earth.
Rather than estimating or guessing the detection probability as a function of redshift, it
may be appropriate to condition on the redshift values.

In a multitype point process, there is a further option of conditioning on some types of
points. For example, Chapter 19, Section 19.4.2 describes an analysis by Högmander and
Särkkä (1999) of the ants’ nests data in which the locations of Cataglyphis nests are modeled
conditionally on the locations of Messor nests. This is appropriate for investigating whether
Cataglyphis nests are preferentially placed near Messor nests. Such analysis is natural from
the “multivariate” viewpoint.

One important situation is where the marks are provided by a (random) field. A random
field is a quantity Z(u) observable at any spatial location u. Our data consist of a spatial
point pattern X = {x1, . . . , xn} and the values zi = Z(xi ) of a random field Z observed at
these random points. A typical question is to determine whether X and Z are independent.
Techniques for this purpose are discussed in Section 21.7. If X and Z are independent,
then we may condition on the locations and use geostatistical techniques to investigate
properties of Z. However, in general, geostatistical techniques, such as the variogram, have
a different interpretation when applied to marked point patterns (Wälder and Stoyan, 1996;
Schlather, Rubiero, and Diggle, 2004.)

21.2.4 Kinds of Marks

The choice of statistical technique also depends on the type of mark variable, and particu-
larly on whether the marks are continuous or discrete.

The distinction between categorical marks and continuous numerical marks is complex.
At one extreme, there are multitype point patterns with only two or three types of points,
such as the examples presented here, for which plotting and analysis are easily manageable.
Then there are multitype point patterns involving a larger number of distinct types, where
separate visualization and analysis of each type (and comparison of each pair of types)
become unwieldy. Multivariate techniques, such as principal components, may be useful
(Illian, Benson, Crawford, and Staines, 2006). Some types of points may occur with low
frequency, so that separate analysis of each type is unreliable, and it is appropriate to pool
some of the types (as occurred with the Lansing Woods data, where one category consists
of “other” trees). Some multitype datasets involve an a priori unlimited number of types,
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for example, a forestry survey of a rainforest with high biodiversity. Such datasets often
empirically satisfy “Zipf’s Law”: The frequency of the kth most frequent type is approxi-
mately proportional to 1/k. Practical strategies include pooling the lowest-ranking types,
or mapping the types to continuous numerical values.

21.3 Basic Theory

Here we give a sketch of the general theory of marked point processes in R
d , expanding on

the theory presented in Chapter 16.

21.3.1 Product Space Representation

For mathematical purposes, a mark is effectively treated as an extra spatial coordinate. A
marked point at location x in R

d , with mark m from some set M, is treated as a point (x, m)
in the space R

d × M.
If the marks are real numbers, we take M = R so that R

d × M is R
d+1. A marked point

pattern in R
d with real-valued marks is equivalent to a point pattern in R

d+1 where the first
d coordinates are interpreted as spatial coordinates of the point location, and the (d + 1)th
coordinate is interpreted as the mark value.

If the marks are categorical values, then M is a finite set containing M elements (say),
and R

d ×M is effectively a stack of M separate copies of R
d . A marked point pattern in R

d

with categorical marks in M is equivalent to M point patterns X1, . . . , XM in R
d , where Xm

is the pattern of points of type m.
A common technical device is to count the number of marked points that fall in the set

A× B, where A is a specified region of R
d , and B is a specified subset of M. This count is

simply the number of marked points (xi , mi ) whose location xi falls in A and whose mark
mi belongs to B.

21.3.2 Marked Point Processes

A marked point process is simply defined as a point process in the product space R
d ×M,

that is, a point process of pairs (xi , mi ). The only stipulation is that, if the marks are ignored,
then the point process of locations xi must be locally finite.

Definition 21.1
Let M be any locally compact separable metric space. A marked point process in R

d (d ≥ 1) with
marks in M is defined as a point process Ψ in R

d ×M such that, for any bounded set A ⊂ R
d , the

number Ψ ( A× M) of marked points in A× M is finite, with probability 1.

Notice that Ψ (K × M) is just the number of marked points (xi , mi ) whose location xi falls
in K .

Example 21.1 (Binomial marked point process)
Let x1, . . . , xn be independent, uniformly distributed random points in some region W
in two-dimensional space. Let m1, . . . , mn be independent, uniformly distributed random
elements of M. Then the pairs (x1, m1), . . . , (xn, mn) can be interpreted as a marked point
process in R

2 with marks in M.
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21.3.3 Poisson Marked Point Processes

A Poisson marked point process is simply a Poisson process in R
d ×M that can be interpreted

as a marked point process.

Lemma 21.1
Let Ψ be a Poisson point process on R

d × M with intensity measure Λ. Suppose Λ( A× M) < ∞
for any bounded set A ⊂ R

d . Then Ψ is a marked point process, called the Poisson marked point
process with intensity measure Λ.

The condition on Λ( A× M) stipulates that the expected number of points falling in any
bounded region of R

d must be finite.
Notice that this condition excludes the homogeneous Poisson process in R

3 with constant
intensity λ. This cannot be interpreted as a marked point process in R

2 with marks in R.
The expected number of points in any bounded region of R

2 is infinite. To put it another
way, the projection of a uniform Poisson process in R

3 onto R
2 is infinitely dense, so it is

not a point process.
Figure 21.5 shows simulated realizations of Poisson marked point processes. Poisson

marked point processes are discussed further in Section 21.5.

21.3.4 Intensity

With a few exceptions, it is not necessary to introduce new mathematical definitions for
fundamental properties of a marked point process, such as the intensity measure, moment
measures, Campbell measure, Palm distribution and conditional intensity. Since a marked
point process is a special case of a point process, the existing definitions (see Chapter 16)
are sufficient.

Two exceptions are the definition of a stationary marked point process, explained in
Section 21.3.5, and the choice of reference measure for intensities, explained below.

Suppose Φ is a marked point process on R
d with marks in M, a general mark space. The

intensity measure of Φ is simply the intensity measure of Φ viewed as a point process on
R

d ×M. Formally, it is a measure Λ on R
d ×M defined by Λ(S) = E[Φ(S)] for all bounded

sets S ⊂ R
d × M, provided that this expectation is always finite.

FIGURE 21.5
Simulated realizations of stationary Poisson marked point processes. Left: Multitype process with two types
(plotted as symbols + and •) of intensity 70 and 30, respectively. Right: Positive real marks, uniformly distributed
in [0, 1], plotted as radii of circles.
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The intensity measure Λ is determined by the values

Λ( A× B) = E[Φ( A× B)],

that is, the expected number of marked points with locations xi falling in the set A ⊂ R
d

and marks mi belonging to the set B ⊆ M, for a sufficiently large class of sets A and B. For
example, for a multitype point process, the intensity measure is equivalent to specifying
the intensity measure of the process Xm of points of mark m, for each possible type m.

A marked point process may have an intensity function. For a point process on R
d , the

intensity function is a function λ(u) such that

E[Φ( A)] =
∫

A
λ(u) du

for all bounded sets A ⊂ R
d . For a marked point process on R

d with marks in M, the
intensity function is a function λ(u, m) such that

E[Φ( A× B)] =
∫

A

∫
B

λ(x, m) dμ(m) dx (21.1)

for a sufficiently large class of sets A ⊂ R
d and B ⊆ M. Here, μ is an additional reference

measure μ on M that we are obliged to choose. The intensity function of a marked point
process is not unambiguously defined until we specify the reference measure μ on M. If
marks are real numbers, the conventional choice of reference measure is Lebesgue measure.
Then Equation (21.1) becomes

E[Φ( A× B)] =
∫

A

∫
B

λ(x, m) dm dx.

If marks are categorical values or integers, the reference measure is usually counting
measure. Then (21.1) becomes

E[Φ( A× B)] =
∫

A

∑
m∈B

λ(x, m) dx.

Similarly, the (Papangelou) conditional intensity of Φ, if it exists, is defined by the equation
in Definition 7 of Chapter 16. This definition depends on the choice of reference measure ν

on R
d × M, and we would normally take dν(u, m) = du dμ(m).

21.3.5 Stationary Marked Point Processes

A marked point process is defined to be stationary when its distribution is unaffected by
shifting the locations xi .

Definition 21.2
A marked point process in R

d with marks in M is stationary if its distribution is invariant under
translations of R

d , that is, under transformations (x, m) �→ (x + v, m) where v is any vector in R
d .

Under the transformation (x, m) �→ (x + v, m), a marked point pattern is simply shifted
by the vector v with the marks unchanged.

In a multitype point process with points of types 1, . . . , M (say), stationarity implies that
the subprocesses X1, . . . , XM of points of type 1, 2, . . . , M are stationary point processes,
but additionally it implies that they are jointly stationary, in the sense that (v + X1, v +
X2, . . . , v + XM) has the same joint distribution as (X1, . . . , XM) for any translation vector v.

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 18:8 C7287 C7287˙C021

Multivariate and Marked Point Processes 381

Lemma 21.2
If Ψ is a stationary marked point process, its intensity measure Λ must satisfy

Λ( A× B) = λ |A|Q(B)

for all bounded A ⊂ R
d and B ⊂ M, where λ > 0 is a constant, |A| denotes the Lebesgue volume

of A, and Q is a probability measure on M. We call λ the point intensity and Q the mark
distribution.

This important result implies that the “marginal distribution of marks” is a well-defined
concept for any stationary marked point process. It can also be used to construct estimators
of the mark distribution Q.

21.3.6 Operations on Marked Point Processes

21.3.6.1 Marginal Process of Locations

If Ψ is a marked point process, discarding the marks and replacing each pair (xi , mi ) by
its location xi yields a point process Ξ = π(Ψ ) in R

d , known as the “projected process,”
the “superposition,” the “marginal process of locations” or the “process of points without
marks.”

In Example 21.1, the projected process Ξ is the binomial process consisting of n indepen-
dent uniform random points in W.

If Ψ is a stationary marked point process in R
d with marks in M, then clearly Ξ = π(Ψ )

is a stationary point process in R
d .

Note that if we were to replace each marked point (xi , mi ) in a marked point process by
its mark mi , the result would usually not be a point process on M.

21.3.6.2 Conditioning on Locations

It is often appropriate to analyze a marked point pattern by conditioning on the locations.
Under reasonable assumptions (Last, 1990) there is a well-defined conditional distribution
P(Ψ | Ξ ) of the marked points given the locations. Conditional on the locations Ξ = x, the
marks effectively constitute a random field, with values in M, at the discrete sites in x.

In Example 21.1, given the locations Ξ = x, the marks are conditionally independent
random variables.

21.3.6.3 Restriction

Sometimes we restrict the point process Ψ to a domain C ⊂ R
d ×M (by deleting all points

of Ψ that fall outside). The result is still a marked point process.
In particular, “slicing” or restricting the marks is useful. Taking C = R

d × B where
B ⊂ M is a subset of the mark space, the restricted point process consists of all marked
points (xi , mi ) whose marks mi lie in the set B.

21.4 Exploratory Analysis of Intensity

The first step in exploratory analysis of a marked point pattern dataset is usually to study
its intensity. The intensity function of a point process is the occurrence rate of events. De-
pending on the application, the intensity function may be interpreted as measuring abun-
dance, fertility, productivity, accident rate, disease risk, etc. The intensity function of a
marked point process (if it exists) is a function λ(u, m) of location u and mark m. It conveys
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information about the abundance and density of the locations xi , but also about the dis-
tribution of the marks mi , and about the dependence between marks and locations. Only
minimal statistical assumptions are needed to estimate some properties of the intensity
using nonparametric techniques, such as kernel smoothing.

21.4.1 Intensity for Multitype Point Patterns

For a multitype point process, the interpretation of the intensity function λ(u, m) is straight-
forward. For each type m, the function λm(u) = λ(u, m) is the intensity of the process of
points of type m. This can be estimated from the observed pattern of points of type m
only. Figure 21.6 shows kernel estimates of intensity for each species of tree in the Lans-
ing Woods data. The kernel bandwidth can be selected using a cross-validated likelihood
method (Diggle, Zheng, and Durr, 2005).

The process of points without marks has intensity

ν(u) =
∑

m∈M
λm(u) =

∑
m∈M

λ(u, m). (21.2)

The conditional probability that a point at location u has mark m, given that there is a point
at location u, is

p(m | u) = λm(u)
ν(u)

= λm(u)∑
m′∈M λm′ (u)

(21.3)

and is undefined where ν(u) = 0.
Given estimates of the intensity functions λm(·) of points of each type m, plugging these

into Equation (21.2) and Equation (21.3) yields estimates of the total intensity ν(u) and the
conditional mark distribution p(m | u). A plot of the estimated conditional mark proba-
bilities p(m | u) for each species in Lansing Woods is not shown; it looks very similar to
Figure 21.6 because the total intensity ν(u) is almost constant.

Misc. Red Oak White Oak

Black Oak Hickory Maple

FIGURE 21.6
Kernel estimates of intensity for each species of tree in Lansing Woods.
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A marked point process with intensity function λ(u, m) is called first order stationary if
the intensity does not depend on location u, so that λ(u, m) = β(m) for some function β(m).
Thus, the intensity of the points of type m is constant, that is, the process of points of type m
is first-order stationary. The total intensity of points is ν(u) = ∑

m λ(u, m) = ∑
m β(m) = B,

say, so that the unmarked point process is also first-order stationary. The conditional mark
distribution is

p(m | u) = λ(u, m)
ν(u)

= β(m)∑
m′∈M β(m′)

,

which does not depend on u, say p(u | m) = q (m). Thus, the marks can be considered
to have marginal distribution q (m). Inspection of Figure 21.6 suggests strongly that the
Lansing Woods data are not first-order stationary.

More generally, we can ask if the intensity is separable in the sense that λ(u, m) = κ(u)β(m),
where β and κ are functions. Then the intensity functions of each type of point are pro-
portional to κ(u), and hence proportional to one another; the points of different types
share the same “form” of spatial inhomogeneity. The total intensity of unmarked points
is ν(u) = Bκ(u) where B = ∑

m∈M β(m). The conditional mark distribution is p(m | u) =
λ(u, m)/ν(u) = β(m)/B, which does not depend on u. Thus, the locations of the points are
spatially inhomogeneous, but the distribution of marks is spatially homogeneous.

If the separability equation λ(u, m) = β(u)κ(m) does not hold, then we say that the types
are segregated. This is clearly the appropriate description of the Lansing Woods data, since
(for example) the hickories and maples are strongly segregated from each other.

It is useful, especially in epidemiological applications, to study the relative risk or relative
intensity

ρ(m, m′ | u) = λ(u, m)
λ(u, m′)

= p(m | u)
p(m′ | u)

(21.4)

of two specified types m, m′ as a function of location u. We say there is spatial variation in
relative risk if ρ(m, m′ | u) is not constant as a function of u. The types are segregated if and
only if there is spatial variation in the relative risk of at least one pair of types m, m′.

Diggle et al. (2005) studied outbreaks of bovine tuberculosis classified by the genotype
of the tuberculosis bacterium. The relative risk of two genotypes of the disease gives clues
about the mechanism of disease transmission (i.e., strong segregation of types would sug-
gest that contagion is localized) and clues to appropriate management of new cases (i.e., if
there is strong segregation and a new case does not belong to the locally predominant type,
the infection is more likely to be the result of importation of infected animals).

The Chorley–Ribble data (Figure 21.2) are an example of a spatial case-control study. We
have points of two types, cases and controls, in which the cases are the disease events under
investigation, while the controls are a surrogate for the reference population of susceptible
individuals. In this context, the ratio (21.4) of the intensity of cases to the intensity of controls
is simply the risk ρ(u) of the disease under investigation. Spatial variation in disease risk
ρ(u) is an important topic.

Kelsall and Diggle (1998) proposed a Monte Carlo test of spatial variation in disease risk,
and Diggle et al. (2005) generalized this to a Monte Carlo test of segregation in multitype
point patterns. The null hypothesis is that p(m | u) is constant as a function of u for each m.
The test statistic is

T =
∑

i

∑
m

( p̂(m | xi ) − p̂(m))2 ,
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where p̂(m | u) is the kernel estimate of p(m | u) based on the marked point pattern dataset,
and p̂(m) is the relative frequency of mark m in the data ignoring locations. Randomization
for the Monte Carlo test is performed by holding the locations xi fixed while the marks are
randomly permuted.

Parametric and semiparametric estimates of intensity can be obtained by model-fitting
techniques, which are discussed below.

21.4.2 Intensity for Marked Point Patterns with Real-Valued Marks

For a marked point process in the plane, with real-valued marks, the intensity λ(u, m), if it
exists, is a function of three coordinates. Integrating out the mark variable yields

λ2(u) =
∫ ∞

−∞
λ(u, m) dm,

the intensity of the point process of locations. The ratio

p(m | u) = λ(u, m)
λ2(u)

is the conditional probability density of the mark m at a point at location u.
Given a marked point pattern {(xi , mi )} the intensity function λ(u, m) could be estimated

by kernel smoothing in the product space:

λ̂(u, m) =
∑

i

κ((xi , mi ) − (u, m)),

where κ is a probability density on R
3. The intensity of locations λ2(u) would then be

estimated by kernel smoothing the locations xi using the corresponding two-dimensional
marginal kernel

κ2((x, y)) =
∫ ∞

−∞
κ((x, y, z)) dz.

This ensures that λ̂2 is the marginal integral of λ̂ and that the ratio p̂(m | u) = λ̂(u, m)/λ̂2(u)
is a probability density.

To investigate whether there is a spatial trend in the mark values, it is useful to study the
expected mark of a point at location u,

e(u) =
∫ ∞

−∞
mp(m | u) dm =

∫ ∞
−∞ m λ(u, m) dm∫ ∞

−∞ λ(u, m) dm
. (21.5)

The estimator ê(u) obtained by plugging into Equation (21.5) a kernel estimator of λ(u, m) is
identical to the usual Nadaraya–Watson estimator of a smooth function. The local variance

v(u) =
∫ ∞

−∞
(m − e(u))2 p(m | u) dm (21.6)

is also useful. Figure 21.7 shows kernel estimates of mean tree diameter e(u) and variance of
tree diameter v(u) for the Longleaf pines data (left panel of Figure 21.3), strongly suggesting
an area of predominantly young trees in the upper right of the field.

Simple exploratory methods, such as discretizing the marks, can also be effective, as
exemplified in Figure 21.4.
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FIGURE 21.7
Kernel-weighted estimates of (left) mean tree diameter e(u) and (right) variance of tree diameter v(u) for the
Longleaf pines.

21.5 Poisson Marked Point Processes

Poisson models are very important in the analysis of marked point pattern data. They
are the most basic and most important stochastic models for marked point patterns. After
exploratory analysis of the intensity, the next step in data analysis would usually be to fit
a Poisson marked point process model, or to test whether a Poisson model is appropriate.
It is often pragmatic to assume a Poisson process when conducting hypothesis tests, for
example, testing for a covariate effect.

The stationary Poisson marked point process is the reference model of a completely ran-
dom pattern because it is the only model in which the locations of the points are independent
of each other, the marks are independent of each other, and the marks are independent of
the locations (although many other models satisfy one of these statements).

A nonstationary, or spatially inhomogeneous, Poisson marked point process model
describes a random pattern in which marked points are independent of each other, al-
though the locations may have a spatially varying intensity, and the marks may have a
spatially varying probability distribution. A Poisson marked point process model is com-
pletely determined by its intensity; fitting the model is equivalent to estimating its intensity.
Thus, the exploratory techniques of Section 21.4 for estimating the intensity of a marked
point process also provide nonparametric techniques for fitting Poisson models.

Parametric models for the intensity function can be fitted by maximum likelihood. This
allows us to model the effect of covariates, and to perform likelihood-based inference, such
as confidence intervals, hypothesis tests for a covariate effect, and goodness-of-fit tests. The
numerical techniques are closely related to generalized linear models.

21.5.1 Properties of Poisson Marked Point Processes

Poisson marked point processes were introduced in Section 21.3.3. Here we discuss some
of their important properties.

21.5.1.1 Random Marking

Lemma 21.3 (Random marking)
A marked point process Ψ on R

d with marks in M is Poisson if and only if

1. The corresponding point process of locations is a Poisson process on R
d .

2. Conditional on the locations xi , the marks mi are independent.

3. The conditional distribution of the mark at a location xi depends only on xi .

Properties 2 and 3 above are sometimes called the random marking property.
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Example 21.2
Consider the Poisson marked point process in R

2 with marks in [0, ∞) with intensity
function λ(u, m), u ∈ R

2, m ≥ 0 (with respect to Lebesgue measure). The marginal process
of locations is the Poisson process with intensity function

β(u) =
∫ ∞

0
λ(u, m) dm

on R
2. Conditional on the locations, the marks are independent, and a mark at location u

has probability density f (m | u) = λ(u, m)/β(u).

Example 21.3
Let the marks be discrete categories 1, 2, . . . , M. Let Ψ be the Poisson marked point process
in R

2 with marks in M = {1, 2, . . . , M} with intensity function λ(u, m), u ∈ R
2, m ∈ M

(with respect to counting measure on M). The marginal process of locations is the Poisson
process with intensity function

β(u) =
M∑

m=1

λ(u, m)

on R
2. Conditional on the locations, the marks are independent, and a mark m at location

u has probability distribution p(m | u) = λ(u, m)/β(u).

21.5.1.2 Slicing and Thinning

For any subset B ⊂ M of the mark space, let ΨB be the process consisting of marked points
(xi , mi ) with marks mi that belong to B. We saw above that this is also a marked point
process.

Lemma 21.4 (Independence of Components)
A marked point process Ψ on R

d with marks in M is Poisson if and only if, for any subset B ⊂ M,

1. The processes ΨB and Ψ(Bc ) are independent

2. The point process of locations of points in ΨB is a Poisson point process on R
d

Property 1 above is sometimes called the independence of components property. If a Poisson
marked point process is divided into two subprocesses by dividing the marks into two
categories, then the corresponding subprocesses must be independent.

It also follows that, if Ψ is Poisson, then the thinned process ΨB is also Poisson. This is
the thinning property of the Poisson marked point process.

In Example 21.3, the subprocesses X1, . . . , XM of points of each type m = 1, . . . , M are
independent Poisson point processes in R

2.

21.5.2 Stationary Poisson Marked Point Process

A stationary Poisson marked point process has a simple and elegant structure. By
Lemma 21.2, its intensity measure must be of the form Λ( A × B) = λ |A|Q(B) where Q
is a probability distribution on M. The marginal process of locations is a stationary Poisson
point process in R

d with intensity λ. Conditional on the locations, the marks are independent
and identically distributed with common distribution Q.
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The random marking property becomes even more elegant in the stationary case:

Lemma 21.5 (Random marking, stationary case)
A marked point process Ψ on R

d with marks in M is a stationary Poisson marked point process if
and only if

1. The corresponding point process of locations is a homogeneous Poisson process on R
d .

2. Conditional on the locations xi , the marks mi are independent and identically distributed.

Since the established term CSR (complete spatial randomness) is used to refer to the
uniform Poisson point process, it would seem appropriate that the uniform marked Poisson
point process be called complete spatial randomness and independence (CSRI).

In Example 21.2, the Poisson marked point process is stationary if and only if λ(u, m)
does not depend on u, so that β(u) is constant and f (m | u) = f (m) does not depend on
u. In Example 21.3, the Poisson multitype point process is stationary iff λ(u, m) does not
depend on u, so that β(u) is constant and p(m | u) = p(m) does not depend on u.

We see that the stationary Poisson multitype point process has three equivalent descrip-
tions:

1. The points constitute a uniform Poisson process with intensity λ, and the marks
are iid with distribution ( pm).

2. The component point processes Y1, . . . , YM consisting of points of type 1, . . . , M
respectively, are independent point processes, and Ym is Poisson with intensity
λpm.

3. The (point, mark) pairs constitute a Poisson process in Rd × M with intensity λpm

for points of type m.

(See Kingman, 1993.) Thus, the stationary Poisson multitype point process exhibits both
the random labeling and independence of components properties. These properties are
not equivalent.

21.5.3 Fitting Poisson Models

Poisson marked point process models may be fitted to point pattern data by maximum
likelihood, using methods similar to those in Section 20.4.1, provided the model has an
intensity function. Penalized likelihood and Bayesian methods can also be used.

Suppose we are given a marked point pattern dataset

y = {(x1, m1), . . . , (xn, mn)}, xi ∈ W, mi ∈ M, n ≥ 0

of pairs (xi , mi ) of locations xi with marks mi . The likelihood for a Poisson marked point
process with intensity function λ(u, m) is

L = exp
(∫

M

∫
W

(1 − λ(u, m)) du dμ(m)
) n(y)∏

i=1

λ(xi , mi ), (21.7)

where μ is the reference measure onM that was used to define the intensity function (Equa-
tion (21.1) in Section 21.3.4). For example, for a multitype point process the conventional
choice of μ is counting measure, and the likelihood is

L = exp

( ∑
m∈M

∫
W

(1 − λ(u, m)) du

) n(y)∏
i=1

λ(xi , mi ). (21.8)
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FIGURE 21.8
Maximum likelihood estimates of intensity for each species of tree in Lansing Woods assuming a separate log-cubic
intensity function for each species. Compare with Figure 21.6.

Apart from the choice of reference measure μ, likelihood-based methods for marked point
processes are a straightforward adaptation of likelihood methods for unmarked point
processes (Section 20.4.1). The log likelihood is formally equivalent to the log likelihood
of a Poisson loglinear regression, so the Berman–Turner algorithm can again be used to
perform maximum likelihood estimation.

Figure 21.8 shows an application of this technique to the Lansing Woods data. Each species
of tree was assumed to have an intensity of log-cubic form in the Cartesian coordinates,
i.e., log λ((x, y), m) was assumed to be a cubic function of x, y with coefficients depending
on m. This model has 60 parameters. The corresponding estimated probabilities p(m | u)
are not shown since their appearance is very similar to Figure 21.8. Confidence intervals
for the coefficients and images of the estimated standard errors for λ̂(u, m) and p̂(m | u)
can also be obtained from the asymptotic normal distribution of the maximum likelihood
estimator.

A parametric test for segregation in multitype patterns can be performed by fitting Pois-
son models and testing whether certain terms in the model are nonzero. The model is
separable (nonsegregated) if the log intensity is a sum log λ(u, m) = A(u) + B(m) of terms
A(u) depending only on location, and terms B(m) depending only on the type of point. The
presence of any terms that depend on both u and m would imply segregation.

For example, in Figure 21.8, the Lansing Woods data were modeled by a log-cubic
intensity function with coefficients depending on species. This model is segregated. The null
hypothesis of no segregation corresponds to a log-cubic intensity function in which only the
intercept term depends on species, while other coefficients are common to all species. The
likelihood ratio test yielded a test statistic of 613 on 45 df, which is extremely significant.

21.6 Exploring Interaction in Multivariate Point Patterns

Any marked point process that is not Poisson is said to exhibit stochastic dependence or
interpoint interaction.
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Techniques for exploratory analysis of interaction in marked point patterns depend
greatly on whether the marks are categorical, continuous or otherwise. This section deals
with multitype point patterns.

21.6.1 Multitype Summary Functions

The summary functions F , G, J and K (and other functions derived from K , such as L
and the pair correlation function) have been extended to multitype point patterns. Like the
original summary functions, these multitype summary functions rest on the assumption
that the multitype point process is stationary (Definition 21.2 of Section 21.3.5).

21.6.1.1 A Pair of Types

Assume the multitype point process X is stationary. Let X j denote the subpattern of points
of type j , with intensity λ j . Then, for any pair of types i and j , we define the following
generalizations of the summary functions K , G and J . These are based on measuring
distances from points of type i to points of type j . The bivariate G-function Gi j (r ) is the
cumulative distribution function of the distance from a typical point of type i to the nearest
point of type j . The bivariate K -function Ki j (r ) is 1/λ j times the expected number of points
of type j within a distance r of a typical point of type i . From the bivariate K -function, we
derive the corresponding L-function

Li j (r ) =
√

Ki j (r )
π

and the bivariate analog of the pair correlation function

gi j (r ) = 1
2πr

d
dr

Ki j (r ).

The bivariate or cross-type J-function (van Lieshout and Baddeley, 1999) is

J i j (r ) = 1 − Gi j (r )
1 − F j (r )

,

where F j is the empty space function for the process X j of points of type j . Thus, J i j (r ) is
the probability that there is no point of type j within a distance r of a typical point of type i ,
divided by the probability that there is no point of type j within a distance r of a fixed point.
The functions Gi j , Ki j , Li j , gi j , J i j are called “bivariate,” “cross-type” or “i-to- j” summary
functions when i �= j . Needless to say, when i = j these definitions reduce to the classical
summaries G(r ), K (r ), L(r ), g(r ) and J (r ), respectively, applied to the process of points of
type i only.

The interpretation of the cross-type summary functions is different from that of the orig-
inal functions F , G, K . If the component processes Xi and X j are independent of each other,
then we obtain Ki j (r ) = πr2 and consequently Li j (r ) = r and gi j (r ) = 1, while J i j (r ) = 1.
There is no requirement that Xj be Poisson (except that if this is also true, it justifies the
square root transformation in Li j (r ) as a variance-stabilizing transformation).

The cross-type G-function is anomalous here. If Xi and X j are independent, then Gi j (r ) =
F j (r ). The benchmark value Gi j (r ) = 1−exp(−λ jπr2) is true under the additional assump-
tion that X j is a uniform Poisson process (CSR).

Alternatively, suppose that the marked point process has the random labeling property
(i.e., types are assigned to locations by independent identically distributed random marks;
see Chapter 18, Section 21.5.1.1). Then we obtain Ki j (r ) = K (r ) (and consequently Li j (r ) =
L(r ) and gi j (r ) = g(r )) where K (r ), L(r ), g(r ) are the classical summary statistics for the
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FIGURE 21.9
Assessing independence between types in the amacrine data. Left: Cross-type nearest neighbor distance distribu-
tion Gi j (r ) for the amacrine cells data (for i = “off” and j = “on”). Interpretation is inconclusive. Right: Estimated
discrepancy function J i•(r ) − J ii (r ) for the amacrine cells data for type i = “on.” Consistent with independence
between the two types of cells.

point pattern regardless of marks. The functions Gi j (r ) and J i j (r ) do not have a simple form
in this case (van Lieshout and Baddeley, 1999).

The cross-type summary functions can be estimated by straightforward modifications
of the techniques used for the classical summary functions. Figure 18.7 of Chapter 18,
Section 18.7.1 shows the estimated bivariate K-functions Ki j (r ) for each pair of types in the
amacrine cells data. This is consistent with regularity of the points of a given type, and
independence between the two types of points.

The pair correlation function g(r ) of an (unmarked) stationary point process has the
following very useful interpretation. Consider two fixed locations u and v. Let U and V
be small regions containing these points, with areas du and dv, respectively. Then the
probability that there will be a random point inside U and a random point inside V is

P
(
point in U, point in V

) ∼ λ2g(||u − v||) du dv, (21.9)

where λ is the intensity of the process.
For a multitype point process the corresponding interpretation of the bivariate pair

correlation gi j (r ) is

P
(
point of type i in U, point of type j in V

) ∼ λiλ j gi j (||u − v||) du dv, (21.10)

where λi , λ j are the intensities of the points of type i and j , respectively.

21.6.1.2 One Type to Any Type

One may also generalize the classical summary functions in a different way, based on
measuring distances from points of type i to points of any type.

The counterpart of the nearest neighbor distribution function G is Gi•(r ), the distribution
function of the distance from a point of type i to the nearest other point of any type. Define
Ki•(r ) as 1/λ times the expected number of points of any type within a distance r of a typical
point of type i . Here λ = ∑

j λ j is the intensity of the entire process X. The corresponding
L-function is

Li•(r ) =
√

Ki•(r )
π

and the corresponding pair correlation function

gi•(r ) = 1
2πr

d
dr

Ki•(r ).
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Finally define J i• by

J i•(r ) = 1 − Gi•(r )
1 − F (r )

,

where F is the empty space function of the process of points regardless of type.
Suppose the marked point process has the random labeling property. Then a typical point

of type i is just a typical point of the point pattern, so Gi• = G(r ), Ki• = K (r ), Li• = L(r ),
gi• = g(r ) and J i• = J (r ), where the functions on the right are the classical summary
functions for the point process regardless of marks.

Alternatively, if the process Xi of points of type i is independent of X−i , the process of
points of all other types, then

Gi• = 1 − (1 − Gii (r ))(1 − F−i (r ))
Ki• = pi Kii (r ) + (1 − pi )πr2

Li• = ( pi Kii (r )/π + (1 − pi )r2)1/2

gi• = 1 + pi (gii (r ) − 1)
J i• = J ii (r ),

where Gii , Kii , gii and J ii are the classical functions G, K , g, J for the points of type i only,
pi = λi/λ is the probability of type i , and F−i (r ) is the empty space function for the points
of all types not equal to i .

21.6.2 Mark Connection Function

A simple characterization of the bivariate pair correlation gi j was given in Equation (21.10)
above. If we divide this by the corresponding expression for the pair correlation g in
Equation (21.9), we obtain

P
(
point of type i in U, point of type j in V

)
P

(
point in U, point in V

) ∼ pi p j
gi j (r )
g(r )

,

where r = ||u − v|| and pi = λi/λ is the probability of type i . The left-hand side can be
interpreted as the conditional probability, given that there are points of the process at the
locations u and v, that the marks attached to these points are i and j , respectively. This is
sometimes called the mark connection function

pi j (r ) = P
u,v{m(u) = i, m(v) = j}, (21.11)

where P
u,v is the (second order Palm) conditional probability given that there are points of

the process at the locations u and v.
Figure 21.10 shows the estimated mark connection functions pi j (r ) for the amacrine cells

data, for each pair of types i and j . The horizontal dashed lines show the values pi p j that
would be expected under random labeling. This shows that two points lying close together
are more likely to be of different types than we would expect under random labeling.
Although this could be termed a positive association between the cells of different types, it
does not necessarily indicate dependence between the cell types; it could also be explained
as an artifact of the negative association between cells of the same type.

21.6.3 Nonstationary Patterns

The exploratory summary functions defined above rest on the assumption that the point
process is stationary. If this is not true, there is a risk of misinterpretation of the summary
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FIGURE 21.10
Array of estimated mark connection functions pi, j (r ) of the amacrine cells data, for each pair of types i, j .

functions. This is the problem of confounding between inhomogeneity and clustering,
explained in Chapter 20, Section 20.2.4.

The inhomogeneous K -function (see Baddeley, Møller, and Waagepetersen (2000) and
Chapter 20, Section 20.3.2) can be generalized to inhomogeneous multitype point processes.
Inhomogeneous analogs of the functions Ki j (r ) and Ki•(r ) are obtained by weighting each
point by the reciprocal of the appropriate intensity function, and weighting the contribution
from each pair of points by the product of these weights.

21.7 Exploring Dependence of Numerical Marks

Figure 21.11 shows the locations of Norwegian spruce trees in a natural forest stand in
Saxony, Germany. Each tree is marked with its diameter at breast height. The data were
first analyzed by Fiksel (1984). This pattern appears to be approximately stationary. A basic
question about this pattern is whether the sizes of neighboring trees are strongly dependent.
Various exploratory statistics can be used.

21.7.1 Mark Correlation Function

Generalizing Equation (21.11), we may choose any “test function” f (m1, m2) and define

c f (r ) = E
u,v [ f (m(u), m(v))] , (21.12)

the expected value of the test function applied to the marks at two points of the process that
are separated by a distance r . We would usually normalize this by dividing by the expected
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FIGURE 21.11
Spruce trees in a 56 × 38 meter sampling region. Tree diameters inflated by a factor of 4.

value under the assumption of random labeling:

k f (r ) = E
u,v [ f (m(u), m(v))]

E[ f (M1, M2)]
, (21.13)

where M1, M2 are independent, identically distributed random marks, which have the same
distribution as the marks in the process. The function k f is called the mark correlation function
based on the test function f .

The test function f is any function f (m1, m2) that can be applied to two marks m1, m2 ∈ M,
and which returns a nonnegative real value. Common choices of f are, for nonnegative
real-valued marks, f (m1, m2) = m1m2; for categorical marks (multitype point patterns),
f (m1, m2) = 1{m1 = m2}; and for marks representing angles or directions, f (m1, m2) =
sin(m1 − m2).

In the first case f (m1, m2) = m1m2, the mark correlation is

kmm(r ) = E
u,v [m(u) m(v)]

E[M1]2 . (21.14)

Note that k f (r ) is not a “correlation” in the usual statistical sense. It can take any nonnegative
real value. The value 1 suggests “lack of correlation,” under random labeling, k f (r ) ≡ 1.
The interpretation of values larger or smaller than 1 depends on the choice of function f .

The mark correlation function k f (r ) can be estimated nonparametrically. The numerator
c f (r ) is estimated by a kernel smoother of the form

ĉ f (r ) =
∑

i< j f (mi , m j )κ(||xi − xj || − r )w(xi , xj )∑
i< j κ(||xi − xj || − r )w(xi , xj )

,

where κ is a smoothing kernel on the real line and w(u, v) is an edge correction factor. The
numerator E[ f (M1, M2)] is estimated by the sample average of f (mi , m j ) taken over all
pairs i and j .

Figure 21.12 shows the estimated mark correlation function for the spruce trees based
on f (m1, m2) = m1m2. This suggests there is no dependence between the diameters of
neighboring trees, except for some negative association at short distances (closer than 1
meter apart).

21.7.2 Mark Variogram

For a marked point process with real-valued marks, the mark variogram is

γ (r ) = 1
2

E
u,v [

(m(u) − m(v))2] . (21.15)
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FIGURE 21.12
Estimated mark correlation function for the spruce trees.

That is, 2γ (r ) is the expected squared difference between the mark values at two points
separated by a distance r .

This definition is analogous to the variogram of a random field. However, the mark
variogram is not a variogram in the usual sense of geostatistics (Wälder and Stoyan, 1996;
Stoyan and Wälder, 2000). It may exhibit properties that are impossible or implausible
for a geostatistical variogram. This occurs because the mark variogram is a conditional
expectation — the expected squared difference given that there exist two points separated
by a distance r — and the conditioning event is different for each value of r .

The mark variogram is of the general form (21.12) with f (m1, m2) = 1
2 (m1 − m2)2. It,

therefore, can be estimated using the same nonparametric smoothing methods.

21.7.3 Dependence between Marks and Locations

Another question about the spruce trees is whether the diameter of a tree depends on the
spatial pattern of neighboring tree locations.

Schlather et al. (2004) defined the functions E(r ) and V(r ) to be the conditional mean
and conditional variance of the mark attached to a typical random point, given that there
exists another random point at a distance r away from it:

E(r ) = E
u,v[m(0)] (21.16)

V(r ) = E
u,v[(m(0) − E(r ))2]. (21.17)

These functions may serve as diagnostics for dependence between the points and the marks.
If the points and marks are independent, then E(r ) and V(r ) should be constant (Schlather
et al., 2004).

The mean mark function E(r ) is again of the same general form (21.12) with f (m1, m2) =
m1, and can be estimated nonparametrically using smoothing methods. Similarly V(r ) can
be estimated by smoothing.

Figure 21.13 shows estimates of E(r ) and V(r ) for the spruces data. These graphs suggest
that the diameter of a tree does not depend on the spatial pattern of surrounding trees,
except possibly for a negative association at very close distances.
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FIGURE 21.13
The functions E(r ) and V(r ) estimated for the spruce trees.

21.8 Classical Randomization Tests

When marks are present, the concept of a completely random marked point process is still
well defined and unambiguous, but there are now several different types of departure from
complete randomness and, consequently, several different “tests of randomness.”

• Random labeling: Given the locations X, the marks are conditionally independent
and identically distributed.

• Independence of components: The subprocesses Xm of points of each mark m are in-
dependent point processes.

• Complete spatial randomness and independence (CSRI): The locations X are a uniform
Poisson point process, and the marks are independent and identically distributed.

These null hypotheses are not equivalent. CSRI implies both the random labeling property
and the independence of components property. However, the properties of random labeling
and independence of components are not equivalent, and they typically have different
implications in any scientific application.

21.8.1 Poisson Null Hypothesis

The null hypothesis of a homogeneous Poisson marked point process can be tested by direct
simulation. The left panel of Figure 21.14 shows simulation envelopes of the cross-type L
function for the amacrine data. Each simulated pattern is generated by the homogeneous
Poisson point process with intensities estimated from the amacrine data. The envelopes
serve as the critical limits for a Monte Carlo test of the null hypothesis of CSRI.

21.8.1.1 Independence of Components

Now suppose the null hypothesis is independence of components; the subprocesses Xm of
points of each mark m are independent point processes. Under the null hypothesis, we
have Ki j (r ) = πr2, Gi j (r ) = F j (r ) and J i j (r ) ≡ 1, while the “i-to-any” functions have
complicated values. Thus, we would normally use Ki j or J i j to construct a test statistic for
independence of components.

In a randomization test of the independence-of-components hypothesis, the simulated
patterns X are generated from the dataset by splitting the data into subpatterns of points of
one type, and randomly shifting these subpatterns independently of each other.
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FIGURE 21.14
Monte Carlo tests for the amacrine data using the bivariate L function Li j (r ) with i = “off” and j = ”on.” Left:
Empirical value and envelope of Li j (r ) from 39 simulations of a homogeneous Poisson process. Right: Empirical
value and envelope of Li j (r ) from 39 random shifts of the amacrine data.

The right panel of Figure 21.14 shows a randomization test based on envelopes of Li j for
the amacrine data with the simulations generated by randomly shifting the “off” cells. The
outcome suggests that the independence-of-components hypothesis should be marginally
rejected. Further investigation is required.

21.8.1.2 Random Labeling

In a randomization test of the random labeling null hypothesis, the simulated patterns X are
generated from the dataset by holding the point locations fixed, and randomly resampling
the marks, either with replacement (independent random sampling) or without replace-
ment (randomly permuting the marks).

Under random labeling,

J i•(r ) = J (r )
Ki•(r ) = K (r )
Gi•(r ) = G(r )

(where G, K, J are the summary functions for the point process without marks) while
the other, cross-type functions have complicated values. Thus, we would normally use
something like Ki•(r ) − K (r ) to construct a test statistic for random labeling.

Figure 21.15 shows envelopes of the function J i•(r ) − J (r ) obtained from 39 random
relabelings of the amacrine data. The random labeling hypothesis seems to be accepted.
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FIGURE 21.15
Envelope of J i•(r ) − J (r ) from 39 random relabelings of the amacrine data (i = “on”).
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21.9 Non-Poisson Models

Marked point processes models that are not Poisson can be constructed by familiar devices
(Cox processes, cluster processes, thinned processes) and also by some interesting new
tricks (random field model, hierarchical models).

21.9.1 Cox and Cluster Processes

A marked Cox process in R
d with marks in M is simply a Cox process in R

d ×M that satisfies
the finiteness condition so that it can be interpreted as a marked point process. Similarly a
marked cluster process is a cluster process in R

d × M that satisfies the finiteness condition.
In the multitype case, with marks in M = {1, 2, . . . , M} say, a multitype Cox process is

equivalent to M Cox processes in R
d whose random intensity functions Λ1(u), . . . , ΛM(u)

have some arbitrary dependence structure. In a multitype cluster process, each cluster is a
finite set of multitype points following some arbitrary stochastic mechanism.

Figure 21.16 shows a simulated realization of a multitype Neyman–Scott process. Each
cluster contains 5 points uniformly distributed in a disk of radius r = 0.1, and points
are independently marked as type 1 or 2 with equal probability. The marginal process
of locations is a Matérn cluster process. In this particular case, the marks are conditionally
independent given the locations. In other words, this is an example of a non-Poisson process
that has the random marking property.

Correlated bivariate Cox models have also been studied (Diggle and Milne, 1983).

21.9.2 Mark-Dependent Thinning

Another way to generate non-Poisson marked point processes is to apply dependent thin-
ning to a Poisson marked point process. Interesting examples occur when the thinning rule
depends on both the location and the mark of each point. The left panel in Figure 21.17
shows a multitype version of Matérn’s Model I obtained by generating a stationary multi-
type Poisson process, then deleting any point that lay closer than a critical distance r to a
point of different type.

A slight modification to this model is a hierarchical version in which we first generate
points of type 1 according to a Poisson process, and then generate points of type 2 according
to a Poisson process conditional on the requirement that no point of type 2 lies within a
distance r of a point of type 1. An example is shown in the right panel of Figure 21.17.

FIGURE 21.16
Simulated realization of multitype Neyman–Scott process.
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FIGURE 21.17
Multitype versions of Matérn model I. Left: Simultaneous (annihilation of each type by the other). Right: Hierar-
chical (annihilation of type 2 by type 1). Open circles: type 1; filled circles: type 2.

21.9.3 Random Field Marking

In a random field model, we start with a point process Φ in R
d and a random function G(u)

on R
d . We assume only that X and G are independent. Then, to each point xi in Φ we attach

the mark mi = G(xi ) given by the value of the random field at that location. The result is
a marked point process Ψ . The dependence structure of Ψ is complicated, even if G is a
deterministic function. This model would be appropriate if the marks are values of a spatial
function observed at random locations.

21.9.4 Gibbs Models

Gibbs point process models (Chapter 20, Section 20.4.3) are also available for marked point
processes, and can be fitted to data using maximum pseudolikelihood. For simplicity, we
restrict the discussion to multitype point processes.

21.9.4.1 Conditional Intensity

The conditional intensity λ(u, X) of an (unmarked) point process X at a location u was de-
fined in Definition 16.7 of Chapter 16. Roughly speaking λ(u, x) du is the conditional prob-
ability of finding a point near u, given that the rest of the point process X coincides with x.

For a marked point process Y, the conditional intensity is a function λ((u, m), Y) giving a
value at a location u for each possible mark m. For a finite set of marks M, we can interpret
λ((u, m), y) du as the conditional probability finding a point with mark m near u, given the
rest of the marked point process.

The conditional intensity is related to the probability density f (y) by

λ((u, m), y) = f (y ∪ {u})
f (y)

for (u, m) �∈ y.
For Poisson processes, the conditional intensity λ((u, m), y) coincides with the intensity

function λ(u, m) and does not depend on the configuration y. For example, the
homogeneous Poisson multitype point process or “CSRI” has conditional intensity

λ((u, m), y) = βm, (21.18)

where βm ≥ 0 are constants that can be interpreted in several equivalent ways. The subpro-
cess consisting of points of type m only is Poisson with intensity βm. The process obtained
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by ignoring the types, and combining all the points, is Poisson with intensity β = ∑
m βm.

The marks attached to the points are iid with distribution pm = βm/β.

21.9.4.2 Pairwise Interactions

A multitype pairwise interaction process is a Gibbs process with probability density of the
form

f (y) = α

⎡
⎣

n(y)∏
i=1

bmi (xi )

⎤
⎦

⎡
⎣∏

i< j

cmi ,m j (xi , xj )

⎤
⎦ , (21.19)

where bm(u), m ∈ M are functions determining the “first-order trend” for points of each
type, and cm,m′ (u, v), m, m′′ ∈ M are functions determining the interaction between a pair of
points of given types m and m′. The interaction functions must be symmetric, cm,m′ (u, v) =
cm,m′ (v, u) and cm,m′ ≡ cm′,m. The conditional intensity is

λ((u, m); y) = bm(u)
n(y)∏
i=1

cm,mi (u, xi ). (21.20)

21.9.4.3 Pairwise Interactions Not Depending on Marks

The simplest examples of multitype pairwise interaction processes are those in which the
interaction term cm,m′ (u, v) does not depend on the marks m, m′. Such processes can be
constructed equivalently as follows (Baddeley and Møller, 1989):

• An unmarked Gibbs process is generated with first-order term b(u) = ∑
m∈M bm(u)

and pairwise interaction c(u, v).
• Each point xi of this unmarked process is labeled with a mark mi with probability

distribution P{mi = m} = bi (xi )/b(xi ) independent of other points.

If additionally the intensity functions are constant, bm(u) ≡ βm, then such a point process
has the random labeling property.

21.9.4.4 Mark-Dependent Pairwise Interactions

Various complex kinds of behavior can be created by postulating a pairwise interaction
that does depend on the marks. A simple example is the multitype hard-core process in which
βm(u) ≡ β and

cm,m′ (u, v) =
{

1 if ||u − v|| > rm,m′

0 if ||u − v|| ≤ rm,m′ , (21.21)

where rm,m′ = rm′,m > 0 is the hard-core distance for type m with type m′. In this process,
two points of type m and m′, respectively, can never come closer than the distance rm,m′ .

By setting rm,m′ = 0 for a particular pair of marks m, m′, we effectively remove the
interaction term between points of these types. If there are only two types, say M = {1, 2},
then setting r1,2 = 0 implies that the subprocesses X1 and X2, consisting of points of types
1 and 2, respectively, are independent point processes. In other words, the process satisfies
the independence-of-components property.

The multitype Strauss process has pairwise interaction term

cm,m′ (u, v) =
{

1 if ||u − v|| > rm,m′

γm,m′ if ||u − v|| ≤ rm,m′ , (21.22)

where rm,m′ > 0 are interaction radii as above, and γm,m′ ≥ 0 are interaction parameters.
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In contrast to the unmarked Strauss process, which is well defined only when its inter-
action parameter γ is between 0 and 1, the multitype Strauss process allows some of the
interaction parameters γm,m′ to exceed 1 for m �= m′, provided one of the relevant types has
a hard core (γm,m = 0 or γm′,m′ = 0).

If there are only two types, say M = {1, 2}, then setting γ1,2 = 1 implies that the subpro-
cesses X1 and X2, consisting of points of types 1 and 2, respectively, are independent Strauss
processes.

The multitype Strauss hard-core process has pairwise interaction term

cm,m′ (u, v) =
⎧⎨
⎩

0 if ||u − v|| < hm,m′

γm,m′ if hm,m′ ≤ ||u − v|| ≤ rm,m′ ,
1 if ||u − v|| > rm,m′

(21.23)

where rm,m′ > 0 are interaction distances and γm,m′ ≥ 0 are interaction parameters as above,
and hm,m′ are hard core distances satisfying hm,m′ = hm′,m and 0 < hm,m′ < rm,m′ .

Care should be taken with the interpretation of the interaction parameters in multitype
point process models. In a multitype Strauss or Strauss hard-core model, even if all interac-
tion parameters γi j are less than 1, the marginal behavior of the component point processes
can be spatially aggregated (Diggle, Eglen, and Troy, 2006, e.g.).

21.9.4.5 Pseudolikelihood for Multitype Gibbs Processes

Models can be fitted by maximum pseudolikelihood. For a multitype Gibbs point process
with conditional intensity λ((u, m); y), the log pseudolikelihood is

log PL =
n(y)∑
i=1

log λ((xi , mi ); y) −
∑

m∈M

∫
W

λ((u, m); y) du. (21.24)

The pseudolikelihood can be maximized using an extension of the Berman–Turner device
(Baddeley and Turner, 2000).

In the multitype Strauss process (21.22), for each pair of types i and j there is an interaction
radius ri j and interaction parameter γi j . In simple terms, each pair of points, with marks
i and j say, contributes an interaction term γi, j if the distance between them is less than
the interaction distance ri, j . These parameters must satisfy ri j = r ji and γi j = γ j i . The
conditional intensity is

λ((u, i), y) = βi

∏
j

γ
ti, j (u,y)
i, j , (21.25)

where ti, j (u, y) is the number of points in y, with mark equal to j , lying within a distance ri, j

of the location u.
For illustration, a multitype Strauss process was fitted to the amacrine cells data, using

the Huang–Ogatá approximate maximum likelihood method (Huang and Ogatá, 1999).
All interaction radii were set to 60 microns. The fitted coefficients and their standard errors
were as follows (writing 0 and 1 for the marks “off” and “on,” respectively).

Parameter logβ0 log(β1/β0) logγ00 logγ01 logγ11

estimate −6.045 0.247 −1.346 −0.100 −1.335
se 0.325 0.323 0.160 0.085 0.170

The corresponding estimates of the standard parameters are β̂0 = 0.0024, β̂1 = 0.0030,
γ̂00 = 0.26, γ̂11 = 0.26 and γ̂01 = 0.905. This process has strong inhibition between points
of the same type, but virtually no interaction between points of different type. If γ01
were exactly equal to 1, the two types of points would be independent Strauss processes.
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The usual t-test (of the null hypothesis that a coefficient is zero) accepts the null hypothesis
H0 : γ01 = 1. We conclude that the two types of points are independent.

For more detailed explanation and examples of modeling and the interpretation of model
formulas for point processes, see Baddeley and Turner (2006) and Baddeley (2008).
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H. Högmander and A. Särkkä. Multitype spatial point patterns with hierarchical interactions.
Biometrics, 55:1051–1058, 1999.
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22.1 Spatial Patterns in Epidemiology

In preceding chapters, authors reviewed the rich theory of spatial point process models
and associated inference, including their basic probabilistic structure, first- and second-
order properties, and likelihood structure. In this chapter, we explore how these models,
properties, and methods can address specific questions encountered in the field of spatial
epidemiology, the study of spatial patterns of disease morbidity and mortality.

22.1.1 Inferential Goals: What Are We Looking for?

The notion that the observed spatial pattern of incident (newly occurring) or prevalent
(presently existing) cases could inform on underlying mechanisms driving disease is not
new. Early medical geographers mapped incident cases of yellow fever near cities and docks
in an effort to determine factors driving the observed patterns (Walter, 2000; Koch, 2005),
but perhaps the most famous example involves the groundbreaking work of Dr. John Snow
regarding cholera outbreaks in London during the middle of the nineteenth century (Snow,
1855). Dr. Snow’s case maps and related calculations remain iconic examples presented in
most (if not all) introductory epidemiology courses and textbooks.

As in any area of applied statistics, the definition and application of appropriate in-
ferential techniques require a balanced understanding of the questions of interest, the

403
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data available or attainable, and probabilistic models defining or approximating the data-
generating process. The central question of interest in most studies in epidemiology is the
identification of factors increasing or decreasing the individual risk of disease as observed
in at-risk populations or samples from the at-risk population. In spatial studies, we refine
this central question to explore spatial variations in the risk of disease in order to identify
locations (and more importantly, individuals) associated with higher risk of the disease.

Most epidemiologic studies are observational rather than experimental, that is, inference is
based on associations and patterns observed within collections of individuals experiencing
different sets of risk factors rather than between groups of individuals randomly assigned to
different levels of the factors of primary interest, as in a randomized clinical trial (Rothman
and Greenland, 1998). The observational nature of the data introduces complications in
analysis and interpretation (e.g., confounding) and we explore spatial aspects of these in
the sections below.

22.1.2 Available Data: Cases and Controls

In spatial studies of disease patterns, data typically present either as point locations within
a given study area or as counts of cases from administrative districts partitioning the study
area. Point location data often represent residence or occupation locations for cases, while
district counts often arise from data collected as part of ongoing disease surveillance, disease
registries, or official collections of events (Teutsch and Churchill, 1994; Brookmeyer and
Stroup, 2004). We will refer to such data as case data. In the sections below, we focus on
point-referenced data. Methods for modeling regional count data appear in Chapter 14,
(this volume) and Waller and Gotway (2004, Chaps. 7 and 9).

In most epidemiologic studies, the observed pattern of case locations alone may not
inform directly on the central question of the spatial pattern of individual risk since the
population at risk is rarely homogeneously distributed across the study area, implying
that a local concentration of the number of cases in a particular area does not necessarily
represent a local increase in risk. As a result, studies in spatial epidemiology require data
regarding the at-risk population. In standard terms, these data either represent “controls”
(nondiseased individuals) or the entire population at risk. In our discussions below, we refer
to both noncase and population-at-risk data as control data. As with case data, control data
may present as either point or count data, but population-at-risk data most often derive
from census data in the form of counts from small administrative districts.

With the central question of spatial risk and the types of available data in place, we next
consider particular classes of inference for comparing the observed patterns of case and
control events, with particular interest in determining whether cases cluster together in un-
expected ways and, if so, where the most unusual clusters of cases occur. A very common
paradigm follows a hypothesis-testing approach with spatially constant risk defining the
null hypothesis and control data defining spatial heterogeneity in the population at risk.
For point-level case and control event locations, Monte Carlo permutations of the observed
number of cases across the entire set of case and control locations provides a computation-
ally convenient manner to operationalize the constant risk hypothesis and generate null
distributions for any summary statistic of interest. While popular, it is important to note
this approach provides inference conditional on the observed case and control locations,
i.e., it provides an assessment of the spatial pattern of cases over a discrete set of locations.

A less common and more computationally demanding framework for inference involves
estimating or modeling the risk surface itself across spatially continuous space, allowing
assessment of local peaks and valleys in order to address questions of clustering and/or
clusters as well as adjustment for spatially varying risk factors. Such problems are best
addressed within a spatial modeling framework, but have traditionally been hampered
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by likelihood functions with unwieldy normalizing constants. Recent advances in Markov
chain Monte Carlo (MCMC), approaches (Møller and Waagepetersen, 2004; Diggle, Eglen,
and Troy, 2006; Møller, Chapter 19; this volume) enable the required computation, and such
methods see increased application in spatial epidemiology (Lawson, 2006).

The distinction between Monte Carlo-based inference of pattern across a fixed set of loca-
tions and likelihood or Bayesian model-based inference across continuous spatial support
is not merely a matter of convenience and should be thoughtfully evaluated for concor-
dance with both the assumptions of the analytic methods and the questions under study.
If, as in the example below, our set of locations contain all possible locations for events, the
use of a discrete support seems consistent with the spatial questions at hand. If, instead,
data locations are based on a sample of potential locations (either a random sample from
a larger discrete set of potential locations or a sample from a continuous spatial field), one
should carefully consider whether the computational implementation effectively accounts
for events that could occur at unobserved locations.

In the sections below we focus attention on statistical approaches for detecting clusters
and clustering based on the data and questions outlined above.

22.1.3 Clusters and Clustering

Preceding chapters define models and indicators of clustered spatial point processes. As
noted above, our underlying goals require us to seek out relative or comparative clustering.
That is, we are interested in determining whether our case data appear to be more clustered
than expected under spatially constant risk, i.e., do case data appear more clustered than our
control data?

Besag and Newell (1991) provide thoughtful discussion and necessary distinctions re-
lating to these questions. Specifically, they distinguish between methods to detect clusters
(anomalous collections of cases) and methods to detect clustering (an overall tendency
of cases to occur near other cases rather than to occur homogeneously among the pop-
ulation at risk). In addition, Besag and Newell distinguish between a search for global
clusters/clustering occurring anywhere within the study area or focused clustering around
predefined foci of putatively increased risk (e.g., locations or sources of suspected environ-
mental hazards).

In the hypothesis testing paradigm, we must first define a null hypothesis of the absence
of clusters and/or clustering. Such an approach builds on ideas of testing for complete
spatial randomness (CSR) or other null models of spatial pattern. As noted above, in spatial
epidemiology, the null model of interest is not CSR, but rather one of spatially constant risk,
i.e., an individual is equally likely to experience the disease at any location. In this setting,
the control data play an important role, essentially defining the local expected number of
cases to which we compare our case data.

For point locations of chronic (noninfectious) disease, a heterogeneous Poisson process
defines a natural probabilistic model for both case and control event locations. In this
case, the null hypothesis of constant risk is equivalent to a null hypothesis equating the
spatial probability density functions associated with each process. For data defined by
regional counts of events rather than observed point locations, the general properties of
an underlying heterogeneous Poisson process suggest a model of Poisson counts for each
region with the expected number of events within a region defined by the integral of the
underlying intensity surface over the region. Another option would be to model small area
counts via a binomial distribution based on the local number at risk and the (null) constant
risk of disease. For rare diseases, the approaches are often indistinguishable and the use
of Poisson counts sees broad application in disease mapping (Chapter 14, Section 14.3
this volume) in order to maintain the link between the observed regional data and the
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Peru

Guadalupe

FIGURE 22.1
Google Earth image of the community of Guadalupe, Peru.

(often unobserved) underlying latent Poisson process. In many cases, the underlying point
process data are unobserved and the defined set of regions represents the lowest level of
geographical precision in the data with no spatial detail available within each region. Such
studies are termed ecological in the epidemiology literature (Wakefield, 2001, 2003, 2004) and
are subject to the ecological fallacy of inferring individual-level associations from aggregated
observations (Robinson, 1950; King, 1997).

There is a large literature on various approaches for spatial epidemiology. We do not
provide a comprehensive review here, but compare, contrast, and illustrate representative
approaches for detecting clusters and clustering. More complete reviews of methods and
applications appear in Alexander and Boyle (1996), Diggle (2000), Diggle (2003, Chap. 9),
Waller and Gotway (2004, Chaps. 6–7), and Lawson (2006).

22.1.4 Dataset

To illustrate our methods, we consider a dataset originally presented in Levy, Bowman,
Kawai, Waller et al. (2006). The data involve locations of households in the small com-
munity of Guadalupe, Peru. The community is perched upon a small, rocky hill between
agricultural fields, as seen in Figure 22.1. Our research interest involves a study of the
disease ecology of Chagas disease, a vector-borne infection caused by infection with Try-
panosoma cruzi (T. cruzi) affecting 16 to 18 million people, most in Latin America (Orga-
nizacion Panamericana de la Salud, 2006; Remme, Feenstra, Lever, Médici et al., 2006). In
Guadalupe, the vector for Chagas disease is Triatoma infestans (T. infestans), a member of
the insect order Hemiptera (“true bugs,” where one pair of wings forms a hard shell) that
obtains blood meals from people and animals within the community. The adult vectors
have been documented as able to fly distances of up to 450 m (or even farther on a windy
day), but typically only fly under specific conditions. Locomotion by walking distances of
40 to 50 m therefore seems more probable (Vazquez-Prokopec, Ceballos, Kitron, and Gurtles
2004). The data involve global positioning system (GPS) location data for each household
in the community and a label noting whether each household was infested with the vector
T. infestans and, if so, whether any captured vectors tested positive for T. cruzi.
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FIGURE 22.2
Locations of households in Guadalupe, Peru. Filled circles denote households infested by the Chagas disease
vector T. infestans, and circled locations indicate households with infected vectors.

Figure 22.2 illustrates the locations of the households (all circles), the location of infested
households (filled circles), and the location of households with infected vectors (circled
locations). The general pattern of households roughly follows contours of the hill and
illustrates the need adequately to identify controls and to define our study space in order to
limit inference to the area containing houses (there are no homes in the adjacent agricultural
fields).

Data collection occurred concurrently with an insecticide spraying program and two
spatial questions are of primary interest:

• Are infested households randomly distributed among households in the community?
• Are households with infected vectors randomly distributed among infested houses?

These questions explore infestation patterns, and subsequent infection patterns in vectors
in order to plan human surveillance, especially among children (Levy, Kawai, Bowman,
Waller et al., 2007). Questions relating to clustering (Do infestation and infection tend to
cluster?) and clusters (Where are unusual aggregations of infestation and/or infection of
vectors?) are both of interest. In addition, the data illustrate the importance of the definition
of the appropriate control group for addressing a particular question. For the first question,
the locations of infested houses represent the case data and the locations of noninfested
households represent the control data. For the second question, the locations of households
with infected vectors represent the case data and the locations of infested households with
no detected infected vectors represent the control data because we wish to test whether
infection tends to cluster among households already infested with the vector. Finally, the
data illustrate a setting where events clearly do relate to one another and are observed in a
heterogeneous setting, generating a bit of friction between the data and our mathematical
ideals of independent events in a heterogeneous setting and/or dependent events in a
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homogeneous setting. We will use methods from both settings in order to describe the
patterns observed in the data and contrast results and conclusions.

22.2 Detecting Clusters

When testing for clusters, our goal is to identify the most unusual collections of cases, i.e.,
the collections of cases least consistent with the null hypothesis. Often, the identification
of the particular cases (and controls) defining the suspected cluster(s) is a key point of
interest for analysts. However, by definition, some collection of observations will be the
most unusual in any dataset, so analysts also seek some measure of “unusualness” or
statistical significance assigned to each suspected cluster.

22.2.1 Spatial Scan Statistics

We begin by considering the spatial scan statistic of Kulldorff (1997). This is one of the most
widely used tests to detect clusters, primarily due to its availability in the software pack-
age SaTScan (Kulldorff and Information Management Services, Inc., 2006). The approach
builds on the following conceptual steps:

1. Define a set of a large number of overlapping potential clusters
2. Find the most unusual of these potential clusters
3. Define a significance value associated with the most unusual clusters (i.e., deter-

mine if they are too unusual to be consistent with the null hypothesis)

An early, geographical version of the approach appears in the “geographic analysis ma-
chine” of Openshaw, Craft, Charlton, and Birch (1988). This approach used geographic
information systems (GIS) to define circular potential clusters centered at each point of a
fine grid covering the study area and plotted all circles containing a statistically significant
excess of observed cases compared to the number of individuals at risk. In this case, the
unusualness of each potential cluster was defined by a Poisson probability of observing
more than the actually observed number of cases given the number expected based on a
constant overall risk of disease and the number of at-risk individuals residing in the circle.
The approach often resulted in maps showing suspected clusters as overlapping collections
of circles (often containing many of the same cases). Statistical critiques of the approach
concentrated on the large number of tests, the nonindependent nature of tests based on
overlapping potential clusters, and the nonconstant variance associated with circles con-
taining different numbers of individuals at risk. Both Turnbull, Iwano, Burnett, Howe et al.
(1990) and Besag and Newell (1991) modified the general approach to address some of
the statistical concerns by either observing the number of cases within spatially proximate
collections of a fixed number of at-risk individuals, or observing the number of at-risk
individuals associated with collections of a fixed number of observed cases, respectively.
Kulldorff (1997) generalized these approaches to develop a statistical formulation of the
geographical analysis machine that considered circular potential clusters of varying radii
and population sizes based on the structure of scan statistics.

More specifically, the spatial scan statistic defines a set of potential clusters, each consist-
ing of a collection of cases. The original version proposed by Kulldorff (1997) mirrors that
of Openshaw et al. (1988) and the most common set of potential clusters consists of all col-
lections of cases found within circles of radii varying from the minimum distance between
two events and some maximum defined by the analysts, typically containing one-half of
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the study area. Recent developments extend the set of potential clusters to include elliptical
sets or build collections of contiguous regions reporting unusual numbers of cases defined
by spanning trees or other optimization techniques (Patil, Modarres, Myers, and Patankar,
2006; Duczmal, Cancads, and Takahashi, 2008). However, computational complexity in-
creases as we expand to a more general set of potential clusters.

Once we define our set of potential clusters, we identify the most unusual (least consistent
with the null hypothesis) cluster within the set by ranking potential clusters on some quan-
tifiable measure of unusualness. Kulldorff (1997), building on previous work by Loader
(1991) and Nagarwalla (1996), defines a likelihood ratio test statistic for each potential clus-
ter based on an alternative hypothesis where the disease risk within the potential cluster
is greater than that outside of the cluster. It is important to note that we are not defining a
separate likelihood ratio test for each potential cluster, rather we are using the likelihood
ratio statistics as a measure of how well the data within a given potential cluster either match
or do not match the null hypothesis when compared to the hypothesis of increased risk
within the potential cluster. For each potential cluster i , define ni,cases,in to be the number of
cases inside the potential cluster and ni,cases,out to be the number outside, and Ni,all,in and
Ni,all,out the numbers at risk (cases and controls) inside and outside, respectively. Under a
binomial model, for potential cluster i , the likelihood ratio is proportional to

LRi =
(

ni,cases,in

Ni,all,in

)ni,cases,in
(

ni,cases,out

Ni,all,out

)ni,cases,out

I
(

ni,cases,in

Ni,all,in
>

ni,cases,out

Ni,all,out

)
,

where I (·) denotes the indicator function (i.e., we only consider potential clusters where
the empirical risk observed inside is greater than that observed outside of the potential
cluster). The most likely cluster is then defined as the potential cluster maximizing L Ri

over the set of all potential clusters i .
In order to assign a statistical significance level to the most likely cluster, Kulldorff (1997)

avoids the multiple comparisons problem resulting from testing each potential cluster by
constructing an overall permutation test of significance based on random assignment of
the total number of cases among the fixed case and control locations. Such assignment is
termed random labeling and provides an operational approach to simulating the constant
risk hypothesis when conditioning on the overall set of event locations and the overall
number of cases and controls. Waller and Gotway (2004, pp. 159–161) discuss some subtle
differences between the null hypothesis of constant risk and that of random labeling, but
note that the two are effectively equivalent after taking the conditioning into account.

Kulldorff’s permutation test proceeds as follows. Let L R∗
s denote the maximum of the

likelihood ratio statistics observed for each random permutation s of the cases among the
full set of event locations, regardless of the location of the most likely cluster in each permu-
tation. Using a large number of such permutations, we define the histogram of maximum
likelihood ratio statistics as an approximation to the distribution of maximum likelihood
ratio statistics under the random labeling hypothesis. Ranking the observed maximum
likelihood ratio statistic associated with the most likely cluster provides a Monte Carlo
p-value defining the statistical significance of the unusualness of the observed most likely
cluster among the unusualness of the most likely cluster expected under random labeling.
Again, note that the test is based on the unusualness of the most likely cluster, regardless
of location, thereby avoiding the multiple comparisons problem resulting from conducting
statistical tests on each potential cluster. As a result, we obtain a collection of cases repre-
senting the most unusual collection of cases, and a measure of the statistical significance of
this collection, when compared to the distribution of the most unusual collection of cases
arising from randomly labeled case-control data.

In some instances, a dataset contains several collections of cases that each rank above the
Monte Carlo critical value for the most unusual cluster. It is common practice to report such
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SaTScan, Most Likely Cluster, Infested, p-value = 0.002

FIGURE 22.3
Most likely cluster of infested households compared to the set of noninfested households, based on a circular scan
statistic.

clusters as “significant” as well, but their precise interpretation is a bit more convoluted
with multiple comparisons again entering the picture.

22.2.1.1 Application to the Chagas Disease Vector Data

To illustrate the approach, we apply the spatial scan statistic to the Chagas disease vector
data described above. We consider the set of potential clusters based on circular collections
of households with radii ranging from the minimum between-household distance to circles
containing up to one-half of the households in the study area. While conceptually simple
to define in terms of distances, we note that the irregular spacing in our data implies
that the radius of the largest “circular” potential cluster differs for each household, and
that some “circles” will span gaps representing areas with no households, as illustrated in
Figure 22.3. In concept, one could construct collections of potential clusters more closely
based on particular hypothesized mechanisms of clustering (e.g., likely vector dispersal
ranges or anisotropic spread adjusting for elevation); however, for simplicity of exposition,
we utilize circular clusters in the example below.

Treating the set of infested households as cases (filled circles) and the set of noninfested
households as controls (open circles), the most likely cluster appears in the south-central
portion of the study area as indicated in Figure 22.3. The Monte Carlo p-value associated
with the cluster is 0.002, based on 999 simulations under the random labeling null hypothe-
sis. That is, this collection of households defines the highest likelihood ratio statistic of any
(circular) collection of households observed in the data, and a higher statistic value than the
maximum likelihood ratio statistic observed in all but two of the simulated permutations
of cases among the set of all households.

Turning to the question of the pattern of infected vectors among infested households, we
now compare the locations of households containing infected vectors to the locations of
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SaTScan, Most Likely Cluster, Infected, p-value = 0.181
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FIGURE 22.4
Most likely cluster of infected households compared to the set of infested, but not infected households, again,
based on a circular scan statistic.

infested but not infected households. The most likely cluster, shown in Figure 22.4, occurs
in an area adjacent to the most likely cluster of infested households. However, it is not
significant at the 0.05 level, again based on 999 random permutations.

To summarize, we observe statistically significant clustering of infested households
among the set of households, but not significant clustering of infected households among
the set of infested households. In both cases, the spatial scan statistic identifies the most
likely clusters out of our set of potential clusters. We note that in Figure 22.3 the most likely
cluster contains areas with no households (near the peak of the hill). As mentioned above,
there are extensions to spatial scan statistics that consider more general shapes of clusters
by expanding the set of potential clusters considered, but that these come at a computa-
tional cost. We next define an alternative approach designed to identify clusters without a
predefined set of potential clusters.

22.2.2 Comparing First-Order Properties

Another approach for comparing spatial point patterns of cases to that of controls involves
a spatial comparison of first-order properties or intensity functions of the associated spatial
point processes. Bithell (1990) and Lawson and Williams (1993) both suggest the use of
estimates of case and control intensity (or density) functions to describe spatial variations in
risk. Kelsall and Diggle (1995) extend the idea to focus on the local relative risk of observing
a case versus observing a control at any particular location. Under the null hypothesis of
spatially constant risk of disease, the spatial intensities of the case and the control should
be equal up to a proportionality constant defined by the relative total number of cases and
controls.

More specifically, suppose we observe n0 control and n1 case locations. Let λ0(x) and
λ1(x) denote the intensity functions of controls and cases, respectively, and f0(x) and f1(x)
the corresponding spatial density functions for an event at location x given that the event
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occurs within the study area of interest. We detail such an approach provided by Kelsall
and Diggle (1995) who define the spatial log relative risk function based on the natural
logarithm of the spatial densities of cases to that of controls, i.e.,

r (x) = log
(

f1(x)
f0(x)

)
,

so that

r (x) = log{λ1(x)/λ2(x)} − log
{∫

D
λ1(u)du

/∫
D

λ0(u)du
}

,

where integration is over our study area D. Note that the second term reflects the overall
relative frequency of cases to that of controls, thus, all of the spatial information in r (x)
is contained in the log ratio of intensity functions. The peaks (valleys) of the r (x) surface
correspond to areas where cases are more (less) likely than controls.

Typically, estimation of r (x) involves the logarithm of the ratio of estimated density or
intensity surfaces based on the observed case and control data. Most applications to date
utilize nonparametric kernel estimation, although one may extend the methods to include
other covariates via generalized additive models (GAMs) (Hastie and Tibshirani, 1990).
Note that the GAM approach can be implemented with the R package mgcv, as described
in Wood (2006).

For illustration, we focus on kernel estimates here, obtaining an estimate

r̃ (x) = n0

n1

∑n1
i=1 K [(x − x1,i )/b]∑n0
j=1 K [(x − x0, j )/b]

,

where K (·) denotes a (two-dimensional) kernel function, x1,i the ith case location, x0, j the
j th control location, and b the bandwidth. We use the same bandwidth for both cases and
controls in order to avoid variations in the spatial log relative risk surface due solely to
different levels of smoothness induced by different bandwidths.

For inference, we compare our estimated surface r̃ (x) to its expected value under the
null hypothesis, r (x) = 0 for all x ∈ D. For addressing a global test of clustering anywhere
within the study region, consider the statistic

∫
D

{r̃ (u)}2 du,

which summarizes all deviations between the estimated case and control intensities across
the study area. Significance is based on comparing the observed statistic value to that
obtained from random labeling permutations of the n1 cases among the n0 + n1 locations.

For local inferences identifying areas where cases are more (or less) likely to occur than
controls, we may use the data to calculate r̃ (xgrid ) for a fine grid of locations xgrid ∈ D.
At each point in xgrid , we construct a 95% tolerance interval based on the 2.5th and 97.5th
percentiles of r̃ (x)grid obtained at that location under a large number of random labeling
permutations of cases among the case and control locations. Again, we maintain a fixed
bandwidth each time to avoid confounding by differing levels of smoothing.

22.2.2.1 Application to the Chagas Disease Vector Data

To illustrate the approach, Figure 22.5 shows the case and control kernel estimates for
comparing infested to noninfested locations in the Guadalupe data based on a Gaussian
kernel with a bandwidth of b = 0.0005 degrees of latitude or longitude. The proximity of
Guadalupe to the equator and the small geographic size of the study area allows us to use
decimal degrees as distance units without too much distortion. A quick visual comparison
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FIGURE 22.5
Kernel estimates of the intensity functions associated with households infested (left) and not infested (right) with
the Chagas disease vector T. infestans.

indicates a mode of infested households in the southeastern portion of the study area, and
a mode of noninfested households in the northeast.

Figure 22.6 shows the log relative risk surface based on the ratio of the two density
estimates in Figure 22.5. The right-hand figure highlights areas falling outside the random-
labeling based 95% pointwise tolerance intervals where vertical hatching indicates areas of
significantly increased risk of cases and horizontal hatching indicates areas of significantly
decreased risk of cases. Comparing results to the spatial scan statistic results in Figure 22.3,
we find both approaches identify a cluster in the southern portion of the study area, but
that the log relative risk surface is not limited to circular clusters and can identify areas of
significantly increased or decreased risk with irregular boundaries, the smoothness of which
depends on the user-defined bandwidth. In particular, the northeastern area of significantly
decreased risk of infestation with the Chagas vector does not fit neatly into a circular
boundary and remains undetected by a circle-based spatial scan statistic.

We next examine whether locations of households with T. cruzi positive vectors are clus-
tered among the set of infested households. Figure 22.7 provides the kernel estimates of
the spatial densities of sites with infected vectors and those with vectors, but not infection.
The densities visually suggest increased spatial concentration of households with infected
vectors compared to those with noninfected vectors. Figure 22.8 reveals areas of significant
increased risk of infection (among vectors) in small, localized areas: one in the northwest,
and two in the central-eastern concentration of infested households. We also observe an
area of significantly reduced infection among households in the northeastern portion of the
study area.

Taken together, the relative risk surfaces add more geographical precision to the patterns
initially revealed through the spatial scan statistic results. Of particular interest is the in-
creased risk of infestation in a large area in the south and, within that area, some pockets
of increased risk of infection among these vectors. The cluster of infection in the northwest
may suggest a separate focus of introduction from neighboring areas. This result invites
further, more detailed comparisons and closer examination of laboratory data from the
northern and southern pockets of increased risk of infection in order to determine if these
areas reflect localized outbreaks (among vectors) or are simply local manifestations of the
same spread of infection among vectors in the community. Also of interest is the area in
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Log Relative Risk Surface: Infested
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FIGURE 22.6
Log relative risk surface comparing locations of households infested with T. infestans to noninfested households.
Solid/dashed contours indicate log relative risk values above/below the null value of zero, respectively. Vertical
stripes indicate locations with log relative risk values exceeding the upper 97.5th percentile and horizontal stripes
indicate locations with log relative risk values below the 2.5th percentile of log relative risk values based on
random labeling.

the northeast that experiences lower than expected levels of infestation, and within those
households that are infested, a lower than expected level of infection, a pattern missed by
the spatial scan statistic due to its irregular geographical shape. Follow-up studies could
build on the detected spatial patterns, but likely require additional data (e.g., genetic strains
of the vector and/or the pathogen) in order to determine whether this area simply is the
last to be infested as the vectors move into the community, or whether other factors impact
the observed reduction in both infestation and infection.

22.3 Detecting Clustering

We now turn to approaches to detect clustering, the general tendency of cases to occur near
other cases. Tests of clustering often summarize patterns across the study area and provide
some sort of global measure of clustering averaged across the observed event locations.
As noted above, the key point of interest in spatial epidemiology is whether the summary
of clustering for cases differs from that for controls and, if so, whether this difference is
consistent with differences we might expect by chance allocation of cases among the set of
case and control locations (random labeling).

While a variety of approaches for summarizing clustering exists (Diggle, 2003; Waller and
Gotway, 2004), one of the most popular is a comparison of second-order properties of the
observed point processes as a function of distance, typically through the use of Ripley’s K
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FIGURE 22.7
Kernel estimates of the intensity functions associated with infested households containing Chagas disease vectors
T. infestans infected (left) and not infected (right) with T. cruzi.

function (Ripley, 1976, 1977), the scaled number of additional events expected with distance
h of a randomly selected event, i.e.,

K (h) = E[number of additional events within h of a randomly chosen event]
λ

, (22.1)

for distance h > 0 (Diggle, Chap. 18, this volume). Since the K-function is scaled by the
assumed constant overall intensity λ, under complete spatial randomness (CSR), K (h) =
πh2, the area of a disk with radius h. Besag (1977) defines a rescaled and diagnostically
convenient transformation, often termed the L function (Besag, 1977), L(h) = (K (h)/π )1/2.
Under CSR, L(h) = h, for all distances h > 0 so a plot of h versus L(h) − h provides a
convenient reference line at zero; values above 0 represent more clustering than expected
under CSR and values below zero less clustering than expected under CSR. However, the
interpretability of K-function as a scaled expectation of additional observed events is lost.
Note that a single process can include both greater-than-expected and less-than-expected
clustering at different distances. For example, one could observe regularly spaced clusters
or clusters of regular patterns (Waller and Gotway, 2004, Chap. 5).

In general, spatial point pattern second-order analyses typically begin by comparing ob-
served patterns to CSR. However, recall that our goal in spatial epidemiology is to compare
the estimated K (or L) functions for the set of case locations to that of the control loca-
tions, often using random labeling permutations to define the expected variability of our
estimates under a null hypothesis that the two sets of observed event locations arise from
underlying stochastic processes with the same second-order structure.

Second-order analysis often uses Ripley’s edge-corrected estimate of the K-function for
n observed event locations, namely,

K̂ (h) = λ̂−1
n∑

i=1

n∑
j=1
j �=i

w−1
i j δ(d(i, j) < h), (22.2)

where wi j denotes a weight defined as the proportion of the circumference of the disk cen-
tered at event i with radius d(i, j), which lies within the study area, and δ(d(i, j) < h) = 1
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Log Relative Risk Surface: Infected
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FIGURE 22.8
Log relative risk surface comparing locations of households infested with T. cruzi-infected T. infestans to in-
fested households with no observed positive vectors. Solid/dashed contours indicate log relative risk values
above/below the null value of zero, respectively. Vertical stripes indicate locations with log relative risk values
exceeding the upper 97.5th percentile and horizontal stripes indicate locations with log relative risk values below
the 2.5th percentile of log relative risk values based on random labeling.

when d(i, j) < h and zero otherwise. The weight wi j denotes the conditional probability of
an event occurring at distance d(i, j) from event i falling within the study area, given the
location of event i and assuming a homogeneous process with fixed intensity λ = λ̂ = n/|A|,
the number of events divided by the geographic area of the study region. Note that wi j = 1
if the distance between events i and j is less than the distance between event i and the
boundary of the study area. Also, note that wi j need not equal w ji and that Equation (22.2)
is applicable even if the study area contains “holes.” The corresponding estimate of the L
function becomes L̂(h) = ( K̂ (h)/π )1/2.

In the spatial epidemiology setting, we often begin by displaying the estimated L func-
tions for cases, controls, and all locations combined to see similarities and differences be-
tween the summarized patterns at different distances. For inference, we again rely on
random labeling, conditioning on the total set of observed event locations, then randomly
selecting n1 locations to represent cases and the remaining n0 locations to represent con-
trols. If we estimate L̂rl,1(h) for each of these sets of assigned “cases,” such Monte Carlo
permutations of n1 cases among the n0 + n1 locations allow us to define the expected value
of L1(h) at each distance h and to construct pointwise tolerance envelopes around this ex-
pected value. In an exploratory setting, comparing L̂1(h) estimated from the observed data
to the random-labeling median and tolerance envelopes illustrates distances for which the
observed case pattern differs significantly from the patterns expected under random case
assignment. For more formal inference, any particular distance (or range of distances) of a
priori interest may be tested via random labeling permutations (Stoyan, Kendall, and Mecke
1995, p. 51; Waller and Gotway, 2004, pp. 139–140).
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Diggle and Chetwynd (1991) propose a more direct comparison of the case and control
K functions by exploring the difference of their respective estimates

K D(h) = K̂1(h) − K̂0(h),

itself a function of distance. By taking differences, the expected value under the null hy-
pothesis is zero for all distances h > 0, obviating the need for the transformation to the L
function. Inference again follows random labeling permutations of cases among all event
locations and the construction of pointwise tolerance envelopes around the null value.

22.3.1 Application to the Chagas Disease Vector Data

To illustrate the approaches, we again apply the methods to the Guadalupe Chagas dis-
ease vector data. Figure 22.9 presents L̂1(h) − h based on observed case locations (infested
households) as a thick line. Unlike standard introductory applications of the L-function, in
our application we are not interested in comparing L(h) to a null value of zero (indicating
complete spatial randomness), rather we wish to compare the level of clustering observed
in the infested households to range of clustering resulting from random allocation of in-
festation among the full set of households. To this end, the top graph in Figure 22.9 also
displays the pointwise median and 95% tolerance envelopes of the estimated L-function
associated with random labeling permutations of the infested households among the n0+n1
households in the community. After an initial dip at small distances corresponding to the
average between-household spacing, the L-function for cases closely follows the upper
95% tolerance band, suggesting an observed amount of clustering on the upper end of
what we might expect from random infestation of households by the disease vector, with
two brief excursions outside of the upper tolerance bound for distances of approximately
0.0005 and 0.0010 decimal degrees. While suggestive, the top graph in Figure 22.9 does
not provide overwhelming evidence that vectors tend to infest households closer together
than we might suspect under random allocation. We note in particular that, while the L
function suggests increased clustering of cases and of controls over that observed in the
set of all locations, the amount of additional clustering with the set of cases appears to be
fairly similar to that observed within the set of controls.

In comparison, the bottom graph in Figure 22.9 shows the difference in estimated K-
functions between infested and noninfested households along with pointwise median and
95% tolerance limits based on 999 random labeling permutations. The difference between
K-functions falls well within the 95% tolerance bands suggesting no evidence for significant
increased clustering of infested households above and beyond that observed in the control
households.

At first glance, the results shown in the two plots in Figure 22.9 seem contradictory
with the L-function suggesting borderline clustering and the difference of K-functions plot
suggesting very little evidence of clustering at all. This difference in inference primarily
results from whether or not one uses case information alone or coupled case and control
information in each random permutation of cases in order to define the null distribution
of interest. In the top (L-function) plot, we compare patterns of clustering observed in the
cases alone to the patterns of cases randomly sampled from the set of all households. While
we draw cases from the set of all households, the measure of clustering (the L-function)
does not directly include information on control locations. In the bottom (KD) plot, we
summarize a contrast between clustering in cases to that in controls for the observed and
each randomly labeled dataset.

More specifically, the results illustrate the importance of a clear understanding of how
a particular test summarizes clustering and clear identification of the null or reference
distribution used for inference (Waller and Jacquez, 1995). In the top plot, we compare the
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FIGURE 22.9
The top plot shows the L-function plot for households infested with T. infestans, compared to the range of L-
function estimates for 999 random assignments of infestation status among households. The bottom plot shows
the difference in K-functions for households infested and households not infested with T. infestans, compared to
the range of K-function differences arising from 999 random assignments of infestation status among households.
Distances for both plots are reported in decimal degrees of latitude and longitude.

estimated L-function summary of the observed case pattern to those based on randomly
selected case locations from the set of all locations. It appears that the observed L-function
is more clustered than that based on most random selections of the same number of cases
from the set of all household locations. In contrast, the bottom plot compares the difference
in K-functions between the observed set of cases to that of the observed set of controls, then
compares KD(h) to its randomly labeled counterparts by comparing each random selection
of cases to its corresponding set of controls. That is, the difference of K-functions compares
the observed set of case locations relative to its corresponding set of control locations, and
uses random labeling permutations to generate inference directly comparing the pattern
of cases to that of controls within each permutation. Importantly, the difference between
the top and bottom plots is not due to the use of the L function or the K function (e.g., we
could recreate the bottom figure based on differences in the two L functions), rather the
difference is between using a summary of case information alone to a measure contrasting
cases and controls. Finally, we also note much greater stability in the estimated median and
quantiles of the KD(h) than L(h), and a more interpretable null value, KD(h) = 0 for all h,
even when both cases and controls are clustered. In conclusion, we observe a set of case
locations exhibiting a certain level of clustering, but not more clustering than is observed
in the set of locations of controls complementing each set of cases.

Turning to the patterns of T. cruzi infection among vectors within the set of infested
households, the estimated L functions in the top plot in Figure 22.10 more strongly sug-
gest increased clustering of case locations (households with infected vectors) among all
households and in case locations directly compared to control locations (households with
no infected vectors). This is reflected in Figure 22.10 where the estimated L-function for
the observed case locations and the difference between case and control K-functions clearly
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FIGURE 22.10
The top plot shows the L-function plot for infested households with infected vectors, compared to L function
estimates for 999 random assignments of infection status among infested households. The bottom plot shows the
difference in K functions for households with infected and households with noninfected vectors, compared to the
range of K function differences arising from 999 random assignments of infestation status among households.
Distances are reported in decimal degrees of latitude and longitude.

exceed their respective upper 95% tolerance bounds for the same extended range of dis-
tances. In this case, not only do case locations exhibit clustering, but the observed case
locations exhibit significant clustering relative to that observed in the complementary set
of controls.

22.4 Discussion

Point process methods provide valuable statistical tools for the spatial analysis of point-
referenced epidemiology data. However, as noted above, the questions of primary interest
diverge from many of the standard results and assumptions of point process methods in
general, e.g., CSR does not represent our primary null hypothesis nor even a particularly
useful comparison scenario, and most goals involve the comparison of first- or second-order
properties between two separate observed processes: the pattern of cases and the pattern
of controls.

The methods described above illustrate how most analytic techniques focus on one aspect
of the observed processes, i.e., they search for the most likely cluster(s), or they examine
summary measures of clustering. Most methods also focus on either first- or second-order
properties by comparing intensity estimates assuming independent event locations, or
comparing interevent interactions assuming a constant intensity. In reality, most epidemio-
logical applications are likely to violate both assumptions. Violations of interevent indepen-
dence occur due either to an inherently infectious nature of the disease or to the presence of
unmeasured local environmental heterogeneity impacting disease risk, while violations of
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constant intensity arise due to inhomogeneous distributions of the at-risk populations. In
addition, neither first- nor second-order properties uniquely summarize a spatial pattern
(Baddeley and Silverman, 1984), and accurate interpretation of results requires thought and
care.

Turning to inference, we find Monte Carlo random assignment of cases among the ob-
served set of case and control locations provides a valuable approach for inference, but also
carries some implicit conditioning on observed locations. Recalling the issue of discrete
versus continuous spatial support raised at the beginning of the chapter, we illustrated the
use of summaries originally developed for continuous spatial support (intensity functions
and K functions) applied to summarize spatial patterns on a discrete set of locations. The
use of permutations over a discrete sample space to provide inference need not preclude
the use of summaries based on continuous support and, as with the bootstrap and other
general nonparametric techniques, may allow for more accurate inference for small sam-
ple sizes than the use of continuous approximations, provided an appropriate method of
sampling locations is available.

Methodological research continues to add to the analytic toolbox for spatial epidemiology.
Recent developments in likelihood and Bayesian modeling for spatial point processes based
on Markov chain Monte Carlo algorithms (Geyer, 1999; Møller and Waagepetersen, 2004;
Diggle et al., 2006; and Møller, Chap. 19, this volume) offer opportunities for increased use
of model-based inference, but also require care in the development of models directly suited
for the comparison of two (or more) processes on the appropriate spatial support in order to
address epidemiological questions. In addition, there is a growing literature addressing the
critical need to incorporate covariate information within spatial epidemiological studies.
The hypotheses of interest revolve around the respective patterns of cases and controls and
this relationship is often modified by additional risk factors at the individual (e.g., age) and
communitity level (e.g., neighborhood socio-economic status). One previously mentioned
approach is the use of GAMs to describe associations between covariates and point process
intensities via smooth nonparametric functions (Wood, 2006). Other approaches include
those proposed by Diggle, Gomez-Rubio, Brown, Chetwynd et al. (2007), and Henrys and
Brown (2008) for inhomogeneous point processes, parametric models for point processes
(Møller, Chap. 19, this volume), and Guan, Waagepetersen, and Beale (2008) creative use
of covariate information to provide asymptotic results for intensity estimation.

The applications to the spatial distribution of the Chagas disease vector T. infestans illus-
trate many of the issues involved. The results suggest a single significant cluster of infested
households among circular collections of households using the spatial scan statistic, but no
significant clusters among circular collections of households with vectors testing positive
for T. cruzi. The ratio of kernel intensity estimates provides log relative risk surfaces that
suggest geographically refined, locally significant increases in relative risk. These areas oc-
cur in areas roughly similar to those identified by the scan statistic when comparing infested
to noninfested households, but the estimated log-relative risk surfaces also suggest a non-
circular area of reduced relative risk in the northeast, which is missed by the scan statistic.
The areas with suggestive increases in relative risk of infected versus noninfected vectors
are small and compact and in slightly different locations than the (statistically nonsignifi-
cant) most likely circular cluster highlighted by the spatial scan statistic. The discrepancy
here reveals how scan statistics may miss clusters that fall outside of the class of potential
clusters under consideration. Nonparametric methods, such as the kernel-based, relative
risk surfaces, allow more general shapes, but the class of potential clusters remains limited
by the user-selected level of smoothness allowed in the surfaces, e.g., the bandwidth in our
kernel approach. Next, our analysis of clustering suggests clustering among observed case
locations compared to randomly selected cases among household locations, but no increase
in clustering in the pattern of infested houses compared to the corresponding pattern of
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noninfested houses. Finally, we observe significant clustering of households with infected
vectors versus those with no infected vectors.

The different results each partially reveal different aspects of the underlying processes.
While at first glance a finding of a significant cluster without significant clustering or dif-
fering results for different methods of assessing clustering appear worrisome, further con-
sideration reveals that the presence of a single cluster may not trigger a high summary
value of clustering and that comparing the pattern of observed to randomly selected cases
may differ from comparing the case and control pattern for each random selection of cases.
More specifically, for the infestation data our scan statistic and log-relative risk surface
results identify pockets of higher incidence of cases compared to that of controls, but our
second-order analysis finds that, while both cases and controls appear clustered for a range
of distances, they do not appear to be clustered with respect to interevent distance in man-
ners different from one another. In contrast, the pattern of households with infected vectors
appear to be more clustered at smaller interevent distances than those with noninfected
vectors, yet the clusters resulting from this tendency are smaller and more localized.

The spatial scale of clusters and clustering helps explain some of this difference. The
range of significant clustering in infection suggested by the difference of K functions in
Figure 22.10 covers distances from approximately 0.0003 to 0.0012 decimal degrees, where
each tick mark in Figure 22.2 represents a distance of 0.0010 decimal degrees. This range of
significant clustering suggests differences in spatial clustering at a range of values reflecting
aggregation at distances somewhat larger than the radius of the cluster shown in Figure 22.4.

Placed in the context of the Chagas disease vector, the results reveal increased concentra-
tions of vector infestation broadly spread across the southern portion of Guadalupe, with
small pockets of T. cruzi infection among vectors in these areas. The area of increased in-
fection in the northeast suggested in Figure 22.8 merits further investigation to determine
whether the cluster is stable across bandwidth values, and whether any external foci of
infection exists in the region bordering this edge. In addition, the observed scale of clus-
tering for infection is somewhat larger than the typical geographic range of individual
vectors, and may suggest infection processes operating at ranges beyond that of simple
vector migration.

In summary, point process summaries and measures offer insight into observed patterns
in spatially referenced data in epidemiology. No single measure summarizes all aspects of
the patterns of disease, but thoughtful application of a variety of measures and linkage to
current knowledge of the disease of interest can reveal aspects of the process behind the
patterns.
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Part V

Spatio-Temporal Processes
A probabilistic view of space–time processes, in principle, can just regard time as one more
coordinate and, hence, a special case of a higher-dimensional spatial approach. Of course,
this is not appropriate for dynamic spatially referenced processes, which are the topic of
this section, as time has a different character than space. There has been a lot of recent work
on space–time models, and a variety of ad hoc approaches have been suggested. This is
perhaps one of the areas of this book where there is real scope for a unifying approach to
methodology.

We begin the section with a theory Chapter 23 by Gneiting and Guttorp. This chapter
contains a short description of some probabilistic models of the type of processes we have in
mind, and focuses thereafter on modeling space–time covariance structures. Chapter 24, by
Gamerman, focuses on dynamic models, typically state–space versions, describing tempo-
ral evolution using spatially varying hidden states. The following two chapters deal with
models appropriate for some different types of data. Chapter 25 by Diggle and Gabriel
extends the material in Part IV to deal with temporal evolution of spatial patterns, while
Chapter 26 by Brillinger looks at trajectories in space, where potential functions and stochas-
tic differential equations are useful tools. The final chapter in Part V Chapter 27, by Nychka
and Anderson, deals with assimilating data into numerical models. Generalizing engineer-
ing approaches, such as the Kalman filter and ensemble methods using Bayesian techniques,
are found productive in this context.
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23.1 Introduction

In Chapter 2, we discussed spatial stochastic processes {Y(s) : s ∈ D ⊆ R
d} where the

domain of interest was Euclidean. Turning now to a spatio-temporal domain, we consider
processes

{Y(s, t) : (s, t) ∈ D ⊆ R
d × R}

that vary both as a function of the spatial location, s ∈ R
d , and time, t ∈ R. It is tempting to

assume that the theory of such processes is not much different from that of spatial processes,
and from a purely mathematical perspective this is indeed the case. Time can be considered
an additional coordinate and, thus, from a probabilistic point of view, any spatio-temporal
process can be considered a process on R

d+1 = R
d × R. In particular, all technical results on

spatial covariance functions (Chapter 2) and least-squares prediction or kriging (Chapters 2
and 3) in Euclidean spaces apply to space–time problems, by applying the respective result
on the domain R

d+1.
From a physical perspective, this view is insufficient. Time differs intrinsically from space,

in that time moves only forward, while there may not be a preferred direction in space.
Furthermore, spatial lags are difficult, if not impossible, to compare with temporal lags,
which come in distinct units. Any realistic statistical model will make an attempt to take into
account these issues. In what follows, we first describe some physically oriented approaches
toward constructing space–time processes. Thereafter, we turn to covariance structures for
Gaussian processes that provide geostatistical models in the spirit of Chapter 2. The section
closes with a data example on wind speeds in Ireland.

While our focus is on spatio-temporal processes in R
d×R, other spatio-temporal domains

are of interest as well. Monitoring data are frequently observed at fixed temporal lags, so
it may suffice to consider discrete time. In atmospheric, environmental and geophysical

427
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applications, the spatial domain of interest is frequently expansive or global, and then the
curvature of the Earth needs to be taken into account. In this type of situation, it becomes
critical to consider processes that are defined on the sphere, and on the sphere cross time.
A simple way of constructing such a process is by defining a random function on R

3 × R

and restricting it to the desired domain. Jones (1963), Stein (2005), and Jun and Stein (2007)
use these and other approaches to construct covariance models on global spatial or spatio-
temporal domains.

23.2 Physically Inspired Probability Models for Space–Time Processes

A basic, physically motivated, spatio-temporal construction derives directly from a purely
spatial formulation. Consider a second-order stationary spatial stochastic process with co-
variance function CS on R

d , and suppose that its realizations move time-forward with ran-
dom velocity vector V ∈ R

d . The resulting stochastic process is stationary with covariance
function C(h, u) = E CS(h − Vu) on the space–time domain R

d × R, where the expectation
is taken with respect to the random vector V . In the case of a fixed velocity vector v ∈ R

d ,
we talk of the frozen field model, and the expectation reduces to

C(h, u) = CS(h − vu). (23.1)

This general idea dates back at least to Briggs (1968) and was applied to precipitation fields
by Cox and Isham (1988), as reviewed by Brillinger (1997). The frozen field model often
proves useful when spatio-temporal processes are under the influence of prevailing winds
or ocean currents. For a recent application see Huang and Hsu (2004).

In Chapter 2, we noted that the solution to Whittle’s (1954, 1963) stochastic partial dif-
ferential equation is a stationary and isotropic Gaussian spatial process with the Matérn
correlation function (2.13). This approach can be extended to spatio-temporal domains. For
example, Jones and Zhang (1997) generalize Whittle’s equation to⎡

⎣
(

∂2

∂s2
1

+ · · · + ∂2

∂s2
d

− 1
θ2

)(2ν+d)/4

− c
∂
∂t

⎤
⎦ Y(s, t) = δ(s, t), (23.2)

where s = (s1, . . . , sd )′ ∈ R
d is the spatial coordinate, t ∈ R is the temporal coordinate, and

δ is a spatio-temporal Gaussian white noise process. The solution {Y(s, t) : (s, t) ∈ R
d × R}

is a stationary Gaussian process whose spatial margins have a Matérn covariance function.
The space–time covariance function on R

d × R is of a more complex form and allows for
an integral representation not unlike Equation (23.3) below. Kelbert, Leonenko, and Ruiz-
Medina (2005) and Prévôt and Röckner (2007) develop and review probabilistic theory for
these and similar types of processes, and stochastic partial differential equations in general.

Brown, Kåresen, Roberts, and Tonellato (2000) construct spatio-temporal processes from
physical dispersion models, which might apply to atmospheric phenomena, such as the
spread of an air pollutant. The resulting space–time covariance functions on R

d × R allow
for integral representations, with

C(h, u) =
∫ ∞

0
e−λ(2v+|u|) g(h; uμ, (2v + |u|)Σ1 + Σ2) dv, (23.3)

being one such example. Here, λ ≥ 0, μ ∈ R
d , and the positive definite matrices Σ1, Σ2 ∈

R
d×d are parameters, and g(· ; m, S) denotes a multivariate normal density with mean vector

m and covariance matrix S. Again, the respective processes are generated by stochastic
differential equations.
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If one aims to model dynamically evolving spatial fields, an interesting notion is that of a
stochastic flow (Kunita, 1990). It can be thought of as a stochastic process that describes, say,
the flow of the atmosphere over a continuous domain. Technically, a homeomorphism is a
bicontinuous mapping. A stochastic flow of homeomorphisms then is a dynamic stochastic
process φt,u(s, ω), where t, u ∈ [0, T] represents time and s ∈ R

2 represents space, with the
properties that φt,u(ω) = φt,u(·, ω) is an onto homeomorphism from R

2 to R
2, φt,t(ω) is the

identity map, and
φt,v(ω) = φt,u(ω) ◦ φu,v(ω)

for all times t, u, v ∈ [0, T]. A technical discussion requires a rather extensive set of proba-
bilistic tools, for which we refer to Billingsley (1986) and Breiman (1968). Phelan (1996) used
birth and death processes and stochastic flows to describe the atmospheric transport, for-
mation and dissolution of rainfall cells in synoptic precipitation, and developed statistical
tools for fitting these models.

While the physical background of the above stochastic process models is appealing, there
have been relatively few applications to data, to our knowledge.

23.3 Gaussian Spatio-Temporal Processes

As noted in Chapter 2, Gaussian processes are characterized by their first two moments.
The essential modeling issue then is to specify the mean structure and covariance structure.
Similarly to spatial processes, one often employs the decomposition

Y(s, t) = μ(s, t) + η(s, t) + ε(s, t),

where s ∈ R
d and t ∈ R. Here, μ(s, t) is a deterministic space–time trend function, the

process η(s, t) is stationary with mean zero and continuous sample paths, and ε(s, t) is an
error field with mean zero and discontinuous realizations, which is independent of η. The
error field is often referred to as a nugget effect, and assumed to have second-order structure

Cov{ε(s + h, t + u), ε(s, t)} = a I{(h, u) = (0, 0)} + b I{h = 0} + c I{u = 0}, (23.4)

where a , b and c are nonnegative constants, and I denotes an indicator function. The second
and the third term can be referred to as a purely spatial and a purely temporal nugget,
respectively.

In the simplest case, the space–time trend function, μ(s, t), decomposes as the sum of a
purely spatial and a purely temporal trend component. The purely spatial component then
can be modeled in the ways discussed in Chapter 14. Temporal trends are often periodic,
reflecting diurnal or seasonal effects, and can be modeled with trigonometric functions or
nonparametric alternatives. In addition to the spatial and temporal coordinates, the trend
component might depend on environmental temporal and/or spatial covariates, such as
temperature or population density, as in the air pollution study of Carroll, Chen, George,
Li et al. (1997). Finally, the trend component can be modeled stochastically. Rather than
pursuing this approach, we refer to Kyriakidis and Journel (1999).

A stochastic process on the space–time domain R
d × R is second-order stationary if it is

a second-order stationary process on the Euclidean domain R
d+1, in the sense defined in

Chapter 2. Thus, a second-order stationary spatio-temporal process {η(s, t) : (s, t) ∈ R
d×R}

has a constant first moment, and there exists a function C defined on R
d × R such that

Cov{η(s + h, t + u), η(s, t)} = C(h, u)
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for s, h ∈ R
d and t, u ∈ R, with (23.1), (23.3) and (23.4) being such examples. The function

C is called the space–time covariance function of the process, and its margins, C( · , 0) and
C(0, ·), are purely spatial and purely temporal covariance functions, respectively. Strict
stationarity can be defined as in the spatial case, by translation invariance of the finite-
dimensional marginal distributions. Just as in the spatial case, a Gaussian process is second-
order stationary if and only if it is strictly stationary.

Evidently, the assumption of stationarity is restrictive and may not be satisfied in practice.
See Chapter 9 and Sampson and Guttorp (1992) for transformations of a spatial process
towards stationarity. In the spatio-temporal context, stationary covariance models often are
inadequate in environmental studies of diurnal variability (Guttorp et al., 1994), but might
be well suited at a coarser, say daily, temporal aggregation (Haslett and Raftery, 1989).
Bruno, Guttorp, Sampson, and Cocchi (2009) introduce a method of handling temporal
non-stationarity.

23.4 Bochner’s Theorem and Cressie–Huang Criterion

Just as in the spatial case, the space–time covariance function C(h, u) of a stationary process
is positive definite, in the sense that all matrices of the form

⎛
⎜⎜⎜⎜⎜⎝

C(0, 0) C(s1 − s2, t1 − t2) · · · C(s1 − sn, t1 − tn)

C(s2 − s1, t2 − t1) C(0, 0) · · · C(s2 − sn, t2 − tn)

...
...

. . .
...

C(sn − s1, tn − t1) C(sn − s2, tn − t2) · · · C(0, 0)

⎞
⎟⎟⎟⎟⎟⎠

(23.5)

are valid (nonnegative definite) covariance matrices. By Bochner’s theorem, every contin-
uous space–time covariance function admits a representation of the form

C(h, u) =
∫ ∫

e i (hT
ω+uτ ) dF (ω, τ ), (23.6)

where F is a finite, nonnegative and symmetric measure on R
d × R, which is referred to as

the spectral measure. If C is integrable, the spectral measure is absolutely continuous with
Lebesgue density

f (ω, τ ) = (2π )−(d+1)
∫ ∫

e−i (hT
ω+uτ ) C(h, u) dh du, (23.7)

and f is called the spectral density. If the spectral density exists, the representation (23.6) in
Bochner’s theorem reduces to

C(h, u) =
∫ ∫

e i (hT
ω+uτ ) f (ω, τ ) dω dτ, (23.8)

and C and f can be obtained from each other via the Fourier transform. As noted, these
results are immediate from the respective facts for purely spatial processes in Chapters 2
and 5, by identifying the spatio-temporal domain R

d × R with the Euclidean space R
d+1.

Cressie and Huang (1999) characterized the class of the stationary space–time covari-
ance functions under the additional assumption of integrability. Specifically, they showed
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that a continuous, bounded, integrable and symmetric function on R
d × R is a space–time

covariance function if and only if the function

ρ(u|ω) =
∫

e−i hT
ω C(h, u) dh (23.9)

is positive definite for almost allω ∈ R
d . In Equation (23.9) the right-hand side is considered

a function of u ∈ R only, and thus Bochner’s criterion for positive definiteness in the space–
time domain R

d × R is reduced to a criterion in R.

23.5 Properties of Space–Time Covariance Functions

The estimation of space–time covariance structures can prove highly complicated unless
simplifying assumptions are employed. We focus here on second-order stationary processes
with space–time covariance function C(h, u). For extensions to nonstationary settings, see
Gneiting, Genton, and Guttorp (2007).

A space–time covariance function is separable if there exist purely spatial and purely
temporal covariance functions CS and C T such that

C(h, u) = C S(h) · C T(u)

for all (h, u) ∈ R
d×R. Thus, the space–time covariance function decomposes as the product

of a purely spatial and a purely temporal covariance function. The covariance matrix (23.5)
then admits a representation as the Kronecker product of a purely spatial and a purely
temporal covariance matrix (Genton, 2007). The assumption of separability simplifies the
construction of valid space–time covariance models, reduces the number of parameters,
and facilitates computational procedures for large space–time datasets. However, separable
models do not allow for space–time interaction (Kyriakidis and Journel, 1999; Cressie and
Huang, 1999) and correspond to simplistic processes that will frequently fail to model a
physical process adequately.

A space–time covariance function is fully symmetric (Gneiting, 2002; Stein, 2005) if

C(h, u) = C(h, −u) = C(−h, u) = C(−h, −u)

for all (h, u) ∈ R
d × R. Thus, given two spatial locations, a fully symmetric model is unable

to distinguish possibly differing effects as time moves forward or backward. Atmospheric,
environmental, and geophysical processes are often under the influence of prevailing air or
water flows, resulting in a lack of full symmetry. For instance, if winds are predominantly
westerly, then high pollutant concentrations at a westerly site today will likely result in
high concentrations at an easterly site tomorrow, but not vice versa. Transport effects of
this type are well known in the geophysical literature, and we refer to Gneiting et al. (2007)
for an extensive list of references. Note that separable covariance functions are necessarily
fully symmetric, but not vice versa.

Finally, a space–time covariance function satisfies Taylor’s hypothesis if there exists a veloc-
ity vector v ∈ R

d such that C(0, u) = C(vu, 0) for all u ∈ R. Originally formulated by Taylor
(1938), the hypothesis postulates a particularly simple relationship between the spatial
margin and the temporal margin, respectively. To give an example, the covariance function
(23.1) for the frozen-field model satisfies Taylor’s hypothesis. See Gneiting et al. (2007) for
additional examples, and Li et al. (2009) for a recent application to precipitation fields.

These and other properties of space–time covariance functions can be tested for using
methods developed by Fuentes (2005), Mitchell, Genton, and Gumpertz (2005) and Li,
Genton, and Sherman (2007), among others.
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23.6 Nonseparable Stationary Covariance Functions

As noted, separable covariance models have frequently been chosen for mathematical and
computational convenience rather than their ability to fit physical phenomena and obser-
vational data. In this light, flexible, nonseparable covariance models have been sought,
following the pioneering work of Cressie and Huang (1999). We restrict our discussion
to fully symmetric functions, notwithstanding the fact that they can be combined with
covariance functions of the form (23.1), to allow for general, fully symmetric or not fully
symmetric formulations.

One basic approach is the product–sum model of De Iaco, Myers, and Posa (2001), which
specifies a space–time covariance function as

C(h, u) = a0 C 0
S (h)C 0

T (u) + a1 C 1
S (h) + a2 C 2

T (u), (23.10)

where a0, a1 and a2 are nonnegative coefficients and C 0
S , C 1

S and C 0
T , C 2

T are purely spatial
and purely temporal covariance functions. Another straightforward construction employs
a space–time covariance function of the form

C(h, u) = ϕ
((

a1‖h‖2 + a2u2)1/2
)

, (23.11)

where a1 and a2 are anisotropy factors for the space and time dimensions, ‖ · ‖ denotes
the Euclidean norm, and the function ϕ is a member of the class Φd+1, as introduced in
Chapter 2. This corresponds to geometric anisotropy in a purely spatial framework and
assumes a joint space–time metric in R

d × R (Christakos, Hristopulos, and Bogaert 2000).
The spatial and temporal margins are constrained to be of the same functional form, and
Taylor’s hypothesis is satisfied.

Cressie and Huang (1999) used the test (23.9) to construct nonseparable space–time co-
variance functions through closed form Fourier inversion in R

d . Gneiting (2002) gave a
criterion that is based on this construction, but does not depend on Fourier inversion. Re-
call that a continuous function η(r ) defined for r > 0 is completely monotone if it possesses
derivatives η(n) of all orders and (−1)n η(n)(r ) ≥ 0 for n = 0, 1, 2, . . . and r > 0. Suppose
now that η(r ), r ≥ 0, is completely monotone, and ψ(r ), r ≥ 0, is a positive function with a
completely monotone derivative. Then

C(h, u) = 1
ψ(u2)d/2 η

( ‖h‖2

ψ(u2)

)
(23.12)

is a covariance function on the space–time domain R
d × R. For instance, if a function ϕ

belongs to the class Φ∞, as introduced in Chapter 2, then η(r ) = ϕ(r1/2) is completely
monotone. Examples of positive functions with a completely monotone derivative include
ψ(r ) = (arα +1)β and ψ(r ) = ln(arα +1), where α ∈ (0, 1], β ∈ (0, 1] and a > 0. The choices
η(r ) = σ 2 exp(−crγ ), which derives from Equation (2.14) in Chapter 2, and ψ(r ) = (arα+1)β

yield the parametric family

C(h, u) = σ 2

(1 + a |u|2α)βd/2 exp
(
− c‖h‖2γ

(1 + a |u|2α)βγ

)
(23.13)

of space–time covariance functions. Here, a and c are nonnegative scale parameters of time
and space, the smoothness parameters α and γ and the space–time interaction parameter
β take values in (0, 1], and σ 2 is the process variance. The spatial margin is of the powered
exponential form, and the temporal margin belongs to the Cauchy class.
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Quite generally, constructions of space–time covariance functions start from basic build-
ing blocks, taking advantage of the fact that the class of covariance functions is closed un-
der products, sums, convex mixtures and limits (Ma, 2002, 2008). The product-sum model
(23.10) provides one such example. In some special cases, linear combinations with negative
coefficients remain valid covariance functions, which may allow for negative correlations
(Ma, 2005; Gregori, Porcu, Mateu, and Sasvári, 2008). The convex mixture approach is
particularly powerful; for example, it provides an alternative route to the construction in
Equation (23.12), as described by Ma (2003).

23.7 Nonseparable Stationary Covariance Functions via Spectral Densities

In principle, it is easier to specify a nonseparable second-order structure in the frequency
domain, since nonnegativity and integrability are the only requirements on the spectral
density (23.7) of a space–time covariance function. Furthermore, a covariance function is
separable if and only if the spectral density is such. Nonnegativity and integrability are
often much easier to check than the notorious requirement of positive definiteness for the
covariance function. However, Fourier inversion is needed to find the covariance function,
and often this can only be done via numerical evaluation of the inversion formula (23.8).

Stein (2005) proposed the parametric class

f (ω, τ ) = (
c1

(
a2

1 + |ω|2)α1 + c2
(
a2

2 + τ 2)α2
)−ν

(23.14)

of spectral densities in R
d × R, with positive parameters satisfying α1

α2
(2α2ν − 1) > d. When

d = 2 and α2 = ν = 1, this can be shown to correspond to the solutions of the stochastic
differential equation in (23.2). The covariance functions associated with the spectral den-
sity (23.14) are infinitely differentiable away from the origin, as opposed to the covariance
functions in (23.12), and allow for essentially arbitrary, and potentially distinct, degrees of
smoothness in space and time. A related class of nonseparable spectral densities and asso-
ciated covariance functions was recently introduced by Fuentes, Chen, and Davis (2008).

23.8 Case Study: Irish Wind Data

Gneiting, Genton, and Guttorp (2007) fit a stationary space–time correlation function to the
Irish wind data of Haslett and Raftery (1989). The dataset consists of time series of daily
average wind speed at 11 synoptic meteorological stations in Ireland during the period
1961 to 1978. These are transformed toward stationarity via a square root transform, and the
removal of a diurnal temporal trend component and a spatially varying mean. The resulting
residuals are called velocity measures, for which a Gaussian assumption is plausible.

Winds in Ireland are predominantly westerly and, thus, the velocity measures propagate
from west to east. Hence, we expect correlations between a westerly station today and
an easterly station tomorrow to be higher than vice versa, which is clearly visible in the
empirical correlations, as illustrated in Figure 23.1. In this light, Gneiting et al. (2007) fit the
nonseparable and not fully symmetric correlation function

C(h, u) = (1 − ν) (1 − λ)
1 + a |u|2α

(
exp

(
− c‖h‖

(1 + a |u|2α)β/2

)
+ ν

1 − ν
I{h = 0}

)
+ λ

(
1 − 1

2v
|h1 − vu|

)
+
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FIGURE 23.1
Difference between the empirical west-to-east and east-to-west correlations in velocity measures for the Irish wind
data at a temporal lag of one day, in dependence on the longitudinal (east–west) component of the spatial lag
vector.

with weighted least squares estimates ν̂ = 0.0415, λ̂ = 0.0573, â = 0.972, α̂ = 0.834,
ĉ = 0.00128, β̂ = 0.681, and v̂ = 234, where spatio-temporal lags are measured in kilome-
ters and days, respectively. Here, the spatial separation vector h = (h1, h2)′ has longitudinal
(east–west) component h1 and latitudinal (north–south) component h2, v ∈ R is a longi-
tudinal velocity, and we write p+ = max( p, 0). The estimates use data from 1961 to 1970
and are computed from Equation (3.9) in Chapter 3, using temporal lags of three days or
less only. Given the size of the dataset, the weighted least squares estimates are unlikely to
differ much from the maximum likelihood estimates, which are not computationally fea-
sible here. Note that the fitted space–time covariance function originates from more basic
building blocks, namely the nonseparable model (23.13) with powered exponential spatial
margin and a temporal margin of Cauchy type, the nugget effect (23.4), and the frozen-field
covariance (23.1).

Gneiting et al. (2007) reported on experiments with time-forward (out-of-sample) kriging
predictors based on the fitted covariance function and simpler, separable and/or fully
symmetric submodels, and find that the use of the more complex and more realistic models
results in improved predictive performance.

References

Billingsley, P. (1986), Probability and Measure, 2nd ed., New York, John Wiley & Sons.
Breiman, L. (1968), Probability, Reading, MA, Addison-Wesley.
Briggs, B.H. (1968), On the analysis of moving patterns in geophysics — I. Correlation analysis, Journal

of Atmospheric and Terrestrial Geophysics, 30, 1777–1788.
Brillinger, D.R. (1997), An application of statistics to meteorology: Estimation of motion, in Pollard,

O., Jorgessen, E. and Yang, G.L. (Eds.), Festschrift for Lucien Le Cam, Springer, New York,
pp. 93–105.
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24.1 Dynamic Linear Models

This book has already presented many situations where the observation process under
study contains the temporal dimension as well as the spatial dimension. This chapter is
devoted to detailing a popular and fairly general framework for handling these situations.
It is based on firmly established models, called dynamic or state-space models, with a
nonparametric flavor. They have proved a flexible tool to handle temporal correlation (West
and Harrison, 1997) in a variety of different contexts. This chapter will also provide a number
of situations where these models can be applied in the context of spatial analysis.

Dynamic models are described via a p-dimensional latent process β(·) defined over time
according to a temporal difference equation

β(t′) = G(t′, t)β(t) + w(t′, t), with w(t′, t) ∼ N(0, W(t′, t)), (t′ > t), (24.1)

where the transition matrix G conveys the deterministic part of the evolution and the
system disturbance w is simply a stochastic component accounting for increased uncertainty
(controlled by the disturbance variance W) over the temporal evolution. The model is
completed with an initial specification for β at, say, t = 0. For temporally equidistant
points, Equation (24.1) can be simplified to

βt = Gtβt−1 + wt, with wt ∼ N(0, Wt). (24.2)

This will be assumed to be the case hereafter without loss of generality; treatment of
nonequidistant times involves trivial changes that only clutter the notation. Note also that
this gives rise to vector autoregressive (VAR) forms of order 1 when Gt is constant over
time.

Example 24.1 (First-order models)
When G = Ip, the identity matrix of order p, the model is the random walk βt = βt−1 + wt

and, therefore, model (24.2) can also be referred to as generalized random walk. This is
also referred to as first-order models because they can be seen as the first order (Taylor

437
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expansion) approximation of an arbitrary underlying smooth function βt. Note that, unlike
Gaussian processes, this model is nonstationary with var(βt) increasing with t.

Stationary processes also may be obtained after replacing the random walk evolution
matrix Ip by suitably chosen matrices P . This gives rise to VAR forms of order 1. Special
cases of interest are given by P = ρ Ip, with |ρ| < 1, and P = diag(ρ1, . . . , ρp), with |ρi | < 1,
for i = 1, . . . , p. These models are attractive for their simplicity and low dimensionality,
but may be too restrictive.

Example 24.2 (Second-order models or dynamic linear trend (LT))

Assume β =
(

β1
β2

)
is a bivariate process and let Gt = GLT =

(
1 1
0 1

)
, for all t. Then clearly

β2 is undergoing a univariate random walk and β1 is being incremented each time by β2.
Thus, β1 plays the role of an underlying level and β2 plays the role of its increment. Typically
only β1 is present in the data description. Both components are varying locally around their
prescribed evolutions and can accommodate local changes.

The disturbance variance matrix for this model is hereafter denoted by WLT . It may take

any positive definite form, but there are good reasons to assume it as WLT =
(

W1 + W2 W2
W2 W2

)
,

for all t. In any case, it is recommended to assume the disturbance at the mean level to be
larger than the disturbance of its increment. Thus, the first diagonal element of WLT would
be larger than its second diagonal element.

Example 24.3 (Seasonal models)
Assume a seasonal pattern of length p is to be described. Let β = (β1, . . . , βp)T and Gt =(

0 Ip−1
1 0

)
, for all t. Clearly, Gt is a permutation matrix and the evolution over time only

rearranges β components by replacing its first component by its second component in
the preceding time. Thus, allowing only the first β component to be present in the data
description gives a form-free pattern for the seasonality. This pattern is stochastic due to
the presence of the disturbance term wt.

Structured seasonal patterns may also be constructed. A single sine waveform is obtained

by letting β =
(

β1
β2

)
and Gt = GS =

(
c s

−s c

)
, where c = cos(2π/p) and s = sin(2π/p), for

all t. This evolution matrix makes β1 take the appropriate value in the sine wave for every
next time.

Once again, allowing only the first β component to be present in the data description
gives a sine waveform for the seasonality. The pattern is stochastic and can accommodate
variations around the sine wave due to the disturbance term wt. This is usually associated
with an additional intercept in the model for the observations since the sine wave fluctuates
around 0. A combination of harmonics is obtained by allowing extra pairs of β components
with different lengths and completely general forms are obtained by incorporating [p/2]
harmonics. See West and Harrison (1997) for details and Harvey (1989) for an alternative
model for seasonal components.

The nonparametric nature of these models is easier to understand with the usual choice
of a random walk. In this case, the process β is simply undergoing local changes without
imposing any specific form for the temporal variation and as such is capable of (locally)
tracking any smooth trajectory over time. The degree of smoothness is governed by the
variances W. Models that depart from the random walk impose some structure in the mean
of the process, as described in the examples above. Even for these models, the presence
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of the disturbance terms allows departures from this structure and accommodates data
fluctuations around it.

These models can also be obtained by discretization of an underlying stochastic dif-
ferential equation (Revuz and Yor, 1999), as those used above in this book for handling
spatio-temporal processes in continuous time.

The typical setup for the use of dynamic models is the context of temporally correlated
data Yt = (Yt(s1), . . . , Yt(sn)), for t = 1, . . . , T , where it will be assumed that all temporal
correlation present in the data is captured by an underlying process β. Therefore, the ob-
servations are conditionally independent (given β) leading to the likelihood for β given by
l(β) = ∏T

t=1 p(yt|βt), where T is the last observed time.
The simple, but important, case of a normal linear models gives p(yt|βt) as

Yt = μt + vt, with μt = Xtβt and et ∼ N(0, Vt), (24.3)

for t = 1, . . . , T . The variance matrix Vt of the observation error et may be specified using
any of the models previously described in this book to handle spatial correlation. The main
forms are Gaussian processes, typically used in continuous space.

Also, the error et can be further decomposed into et = ηt + εt, as before. This decompo-
sition eases the generalization toward nonnormal observations. Assume the observational
distribution is governed by parameter ξt. The spatially structured error term ηt is incorpo-
rated to the predictor Xtβt + ηt via g(μt) = Xtβt + ηt, for some differentiable function g
(Diggle, Tawn, and Moyeed, 1998). An important example is the exponential family with
mean μt. The pure noise εt retains the description of unstructured observational variation.

The n × m matrix Xt plays the role of a design matrix containing values of the explana-
tory variables at time t. It is typically given by known functions of location with rows
X(s1)T , . . . , X(sn)T , not depending on time and is thus denoted hereafter simply by X.
Therefore, for any given location s, the observational predictor (mean, in the normal case)
is given by

μt(s) = X(s)Tβt. (24.4)

Thus, models are being decomposed into a deterministic part given by X(s)Tβt and an
unexplained stochastic component et that may incorporate the spatial dependence. Note
that, in this dynamic setting, the deterministic part of the model is only handling temporal
correlation. One natural choice in the spatio-temporal setting is to let matrix X be a function
of the spatial coordinates.

This approach was proposed by Stroud, Muller, and Sansó (2001). They chose to define
X(s) as a linear combination of basis functions of the location s. This idea is applied in
related contexts by many authors. Wikle and Cressie (1999) use the same decomposition
in their dimension reduction approach. They obtained it from a more general underlying
process, to be described later in this section. Sansó, Schmidt, and Nobre (2008) also use this
decomposition, but without the error term.∗

These approaches have the common feature of considering X as a fixed function of space.
This may be too restrictive to accommodate general spatial variation. Lopes, Salazar, and
Gamerman (2008) allow the columns f1, . . . , fm of X to vary stochastically according to
independent Gaussian processes. The m-dimensional, time-varying component βt plays
the role of m latent factor time series capturing the temporal variation of the data. Each
of its m elements βt j is associated to the observations through the space-varying vector f j

containing their loadings, for j = 1, . . . , m.

∗ They also consider the possibility that X models time (in which case it will recover its subscript t) and βt models
space (in which case it drops its subscript t).
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All models above decompose models into two groups of components: one handling
space and one handling time. Even though these structures may combine into nonsepa-
rable models, richer dependence between space and time is not allowed. A description of
processes that combine spatial and temporal dependence into a single structure that cannot
be separated is provided below.

The key aspect in the extension is to allow state parameters βt to vary across space. This
will obviously imply a substantial increase in the parameter dimensionality and may lead
to identifiability problems. The solution to keep the problem manageable and the model
identifiable is to impose restrictions over the parameter space. This can be achieved through
likelihood penalization from a classical perspective or through prior specifications from a
Bayesian perspective.

24.2 Space Varying State Parameters

From now on, it will be assumed that the state parameter βt(·) varies also over space. In
this setting, βt(·) = {βt(s) : s ∈ D}. Considering n locations si (i = 1, . . . , n) for spatially
continuous observation processes, the vector βt = (βt1, . . . , βtn) can be formed with βti =
βt(si ) denoting the state parameter at time t and location si .

A simple form to account for spatial and temporal variation of the state parameter is to
assume that βt(·) can be decomposed as

βt(s) = γ̄t + γt(s) (24.5)

with a trend γ̄t common to all locations and a spatio-temporal disturbance γt(s) associated
with its location. Paez, Gamerman, Landim, and Salazar (2008) assumed that the common
trend γ̄t carries the temporal evolution according to (24.2). The spatio-temporal disturbance
process γt(·) accounts for the spatial correlation through a multivariate Gaussian process,
which they assume to be independent and identically distributed over time. They applied
this process to the intercept and the regression coefficients of a dynamic model for pollutant
measurements.

Their approach allows more generality in the description of state parameters. Despite the
substantial increase in the nominal number of parameters, it achieves identifiability through
the decomposition (24.5) and prior assumptions about γ̄t and γt. Note that the temporal
independence between the γts prevents any temporal correlation between them. So, their
model still separates the spatial components γ̄t from the temporal components γt. Thus,
their model can be useful if no temporal dependence of the spatial variation is expected.

The simplest model that does not allow for explicit separation of space and time is the
spatial random walk

βt(s) = βt−1(s) + wt(s), for all s, (24.6)

where βt(·) is a univariate process. In model (24.6), state parameters βt evolve in forms that
are seemingly independent in space. But spatial correlation is introduced via their respective
disturbance processes wt(·) through their joint distribution. It does it by assuming some
form of a Gaussian process. It will typically have a geostatistical model form given in
Chapter 3 for spatially continuous data. The prior is completed with a Gaussian process
prior for β1(·).

Obviously, the spatial random walk can be defined for multivariate state parameters
βt(·). All it requires is an adequate multivariate representation of Gaussian processes. Some
possibilities for doing it are analyzed in the areal data context by Gamerman, Moreira, and
Rue (2003) and described in the spatially continuous context by Gamerman, Salazar, and
Reis (2007).
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The decomposition (24.5) can also be applied to (24.6). In this case, the disturbances
wt(s) must also be decomposed into a purely temporal disturbance w̄t and residual spatio-
temporal disturbances as

βt(s) = γ̄t + γt(s), for all s
γ̄t = γ̄t−1 + w̄t,

γt(s) = γt−1(s) + wt(s), for all s.
(24.7)

This decomposition was used by Gelfand, Banerjee, and Gamerman (2005). They ana-
lyzed environmental data with a normal linear regression model. Identification is ensured
by setting the mean of γt(s) to be 0. The first component γ̄t accounts for purely temporal
variation. The second component γt(s) accounts for the remaining temporal variation that
was associated with space. Both components are assumed in (24.7) to evolve according to a
random walk. Huerta, Sansó, and Stroud (2004) also used it to model the effect of seasonal
components in an environmental application.

More general forms can now be constructed by combining Equation (24.7) with Equa-
tion (24.2) leading to a general evolution

βt(s) = γ̄t + γt(s), for all s
γ̄t = Ḡtγ̄t−1 + w̄t

γt(s) = Gtγt−1(s) + wt(s), for all s
(24.8)

with transition matrices Ḡt and Gt and evolution disturbances w̄t and wt(·). When all
transition matrices equal the identity matrix, the spatio-temporal random walk (24.7) is
recovered.

These structures and their decomposition allow for many types of components. Thus,
they give substantial flexibility to the modeler. This can be more easily appreciated with
the illustrative example below.

Example 24.4
Assume that a simple linear regression model

Yt(s) = αt(s) + βt(s)zt(s) + et(s), for t = 1, . . . , T and s = s1, . . . , sn (24.9)

is considered with a single covariate zt(s) varying in space and time. Note that both the
intercept α and the (scalar) regression coefficient β are allowed to vary in space and time.

Assume also that the intercept can be completely described by a stochastic seasonal
pattern that is common throughout the region of interest and can be locally described
by a single wavelength of length p and has no additional spatio-temporal heterogeneity.
This would imply that αt(s) = αt, for all (s, t). According to Example 24.3, its evolution is
described with the help of additional time-varying parameter ξt as(

αt

ξt

)
= GS

(
αt−1

ξt−1

)
+

(
wα

t

wξ
t

)
, where

(
wα

t

wξ
t

)
∼ N

[(
0
0

)
, Wα

]
,

where GS was defined in Example 2 and Wα is a 2 × 2 covariance matrix.
Assume further that the regression coefficient has its common trend in the form of a

random walk, but the spatial variations around this common mean are thought to undergo
a location-specific, linearly local trend. The conditions stated above imply that βt(s) =
γ̄t + γt(s), for all (s, t). The evolutions for γ̄t and γt are given, respectively, by a univariate
random walk γ̄t = γ̄t−1 + w̄t, and by(

γt(s)
δt(s)

)
= GLT

(
γt−1(s)
δt−1(s)

)
+ wt(s),
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where GLT was defined in Example 24.1 and additional processes had to be introduced: δt(·)
is a univariate increment (over γt) process and wt(·) = (wγ

t (·), wδ
t (·)) is a bivariate process.

There are many possibilities for the latter. Paez et al. (2008) assumed the same spatial
correlation function for both disturbance processes. If this is assumed, then a Kronecker
product representation is obtained for the covariance matrix for the components of wt(·)
at any given set of locations. Independence between the processes can also be assumed
leading to a block diagonal representation for the covariance matrix for the components of
wt(·) at any given set of locations. Other forms of Gaussian processes are also possible (see
Gamerman et al., 2007).

The spatial relation between the regression coefficients in Equation (24.8) enables infer-
ence about their values at unobserved locations. Consider a set of g unobserved locations
su

1 , . . . , su
g where the superscript u denotes unobserved. Define the collection of state param-

eters βu
t at these locations as βu

t = (βu
t (s1), . . . , βu

t (sg)). Then clearly the evolution equations
defined for βt can be readily extended to (βt , βu

t ). The conditional distribution for (βu
t |βt)

can be obtained from this joint specification. If all disturbances and prior distributions are
normally distributed, then simple calculations show that this conditional distribution is
also normal. These calculations are made conditionally on the hyperparameters. Their in-
tegration cannot typically be performed analytically. In this case, approximating methods,
such as Markov chain Monte Carlo (MCMC) algorithms, must be applied.

Figure 24.1 shows an example of this interpolation for the spatio-temporal variation
experienced by the regression component γt. This result comes from a study of the effect
of precipitation on temperature (Gelfand et al., 2005) with monthly data over a single
year. Relevance of spatial and temporal components in this regression setting is clear. For
example, a more extreme spatial variation of the effect of temperature is observed in the
months of more extreme weather.

In many situations, main interest rests in predicting unobserved data values. Data may
not be observed because they are located at unobserved sites or at unobserved times. In
either case, the predictive distribution for them, conditional on all observed data, must be
obtained. The operation in space is referred to as interpolation or kriging. The operation in
time is referred to as forecasting when interest lies in prediction into the future, hindcasting
when interest lies in assessment of the performance of the model at previous times, and
nowcasting when interest lies in the immediate future.

In any case, prediction is conceptually easy to perform. The structural form of the model
means that all spatial and temporal correlations are contained in the state parameters. Let yu

denote the unobserved data one wants to predict and βu denote the regression coefficient
present in the observation equation for yu. Depending on the case of interest, βu may
contain values of the state at unobserved locations and/or times. In either case, predictive
distributions conditional on hyperparameters θ are obtained through

p(yu|θ , D) =
∫

p(yu|βu, θ , D) p(βu|θ , D)dβu, (24.10)

where D denotes the observed data.
The first density in the integrand is the observation equation and the second is the poste-

rior distribution of βu. The integration in Equation (24.10) can be performed analytically in
the case of normal evolution disturbances and normal observation errors. Elimination of hy-
perparameters is required to obtain the unconditional predictive distributions actually used
for prediction. This operation is performed in very much the same way as Equation (24.10)
with βu replaced by the hyperparameters. Namely, the predictive density p(yu|D) can be
obtained via

p(yu|D) =
∫

p(yu|θ , D) p(θ |D)dθ.
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FIGURE 24.1
Posterior mean of the spatio-temporal variation γt of the regression coefficient of precipitation over temperature
for a region of the State of Colorado. (From Gelfand, A.E., Banerjee, S. and Gamerman, D. (2005). Environmetrics,
16, 465–479. With permission.)

The integrand above contains the posterior density p(θ |D) of the hyperparameters and
this is rarely available analytically. Thus, integration can only be performed approximately
and approximating methods must be applied. In practice, MCMC/sampling methods are
applied and integration with respect to βu and θ is performed simultaneously. Figure 24.2
provides a visual summary of these prediction operations in the context of the application of
Figure 24.1. Note that spatial extrapolation is more dispersed than temporal extrapolation
for this application.

Models described in Equation (24.8) retain the seemingly unrelated nature because their
mean structure is location-specific and correlation across space is only provided through
their unstructured error terms. Correlation across space can be imposed directly through
the mean structure by forms, such as

βt(s) =
∫

k(u, s)βt−1(u)du + wt(s), (24.11)

where k(u, s) is a kernel that provides the weights with which location u influences outcomes
in location s for the next time. This evolution is considered by a number of authors in a
number of different contexts (see, e.g., Wikle and Cressie (1998)). When the integral can be
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FIGURE 24.2
Predictive credible intervals for temperature values at a few unobserved locations (top panel), at a future time for
a few observed locations (middle panel), and at a future time for a few unobserved locations (bottom panel) for
a region of the State of Colorado. (From Gelfand, A.E., Banerjee, S. and Gamerman, D. (2005). Environmetrics, 16,
465–479. With permission.)

well approximated by a discrete convolution over observed locations, then Equation (24.11)
falls into the general form (24.2) with the (i, j)th entry of the transition matrix given by
the values of k(s j , si ), for i, j = 1, . . . , n. Evolution (24.11) has been used only for the
intercept, but nothing prevents its use for more general state parameters, such as regression
coefficients or seasonal components.

The presentation of this chapter is based on the Bayesian paradigm. Thus, prior distribu-
tions for the hyperparameters were also specified and inference was based on the posterior
distribution. The classical paradigm may also be applied (Harvey, 1989). Its use can be
illustrated in the context of prediction.

The classical approach is based on integrating out the state parameters in the operation
described in Equation (24.10). This gives rise to the integrated likelihood of the hyperpa-
rameters l(θ ) = p(yu|θ , D). Maximum likelihood estimates can be approximately obtained
by numerical operations. Confidence intervals and hypotheses testing can be performed,
but they require further information concerning the likelihood or about the sampling dis-
tribution of the maximum likelihood estimator. Once again, approximating methods based
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on asymptotic theory or on sampling techniques (such as bootstrap) must be applied to
extract such information.

24.3 Applications

The class of models described above can be used in a number of contexts where space and
time interact. The simplest and most obvious one is the context of a univariate component
playing the role of mean of a spatio-temporal observation process, i.e., the observation
process is given by yt(s) = μt(s) + et(s), where the mean response μt(s) is described by a
dynamic Gaussian process (24.8). One generalization of this idea is achieved by considering
the regression context with spatio-temporal heterogeneity that was described above. This
way, not only the intercept but also the regression coefficients may vary in space–time
stochastically.

In general terms, the ideas above can be used to incorporate temporal extensions to
parameters of spatial models and also into spatial extensions to parameters of dynamic
models. The former accommodates temporal dependence and the latter accommodates
spatial dependence.

Spatial dependence was stochastically incorporated into dynamic factor models by Lopes,
Salazar, and Gamerman (2006). They used the loading matrix to achieve that. Lopes and
Carvalho (2007) showed the relevance of including dynamics into the factor loadings. Thus,
combination of these ideas may lead to fruitful possibilities and can be proposed with the
class of models described in this chapter. Salazar (2008) implemented these ideas. Figure
24.3 shows some promising results obtained with simulations.

Another natural application area for these ideas is point process modeling. This is the
observation process where events occur in a given region and their location is registered.
The usual approach in this setting is to define an intensity rate, which governs the occur-
rence of events. Under conditional independence assumption, Poisson processes become
appropriate and the intensity rate suffices to completely characterize the process. A further
stochastic layer can be introduced by allowing the intensity rate to be random (Cox, 1955). A
popular choice for the intensity distribution is a log Gaussian process (Møller, Syversveen,
and Waagepetersen, 1998). From a Bayesian perspective, this is equivalent to a Gaussian
process prior for the logarithm of the intensity rate.

Point processes also can be observed over time. In this case, the intensity rate process is
a time-continuous sequence of functions over space. This is a natural framework for appli-
cation of the ideas above and for the use dynamic Gaussian processes as prior distributions
for the intensity rate process. Reis (2008) explores this path in a number of examples and
applications.

A similar representation for the intensity rate is entertained by Brix and Diggle (2001).
They considered the time-continuous differential equation specification and performed
classical estimation using moment-based estimators. Calculations were performed approx-
imately by discretizations over space and time. Details are provided in Diggle (2009).

Another area for further exploration of dynamic Gaussian processes is spatial nonstation-
arity. Many of the models suggested to handle nonstationarity are built over generalizations
of stationary Gaussian processes. The spatial deformations of Sampson and Guttorp (1992)
and the convolutions of Higdon, Swall, and Kern (1999) and Fuentes (2001) are among the
most cited references in this area. Schmidt and O’Hagan (2003) and Damian, Sampson,
and Guttorp (2000) have independently casted the deformation problem into the Bayesian
paradigm. See also Chapter 9 for more details.
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FIGURE 24.3
Results of simulation with a dynamic model with two factors and observation window of 30 locations and 80
equally spaced times. Loadings of the first factor: simulated values (left) and posterior means (right). The first,
second and third rows refer to t = 5, 40 and 80, respectively. Posterior means for loadings at unobserved locations
were obtained by Bayesian interpolation. (From Gamerman, D., Salazar, E., and Reis, E. (2007). Bayesian Statistics
8, pp. 149–174. Oxford University Press, Oxford, U.K. With permission.)

The approaches above make use of Gaussian processes for handling nonstationarity. The
convolutions of Fuentes (2001) are based on kernel mixtures of Gaussian processes. The
hyperparameters governing these processes may be related over space. Gaussian process
prior distribution is one of the choices in this setting and this was entertained by Fuentes.
The deformations approach requires the specification of a prior distribution in a Bayesian
context or a penalization in a classical setting for the deformed space. In either case, a
natural choice would be a Gaussian process.

There are cases when the observation process may span over a period of time. The spatial
correlation structure may remain constant over the period. But the spatial nonstationarity
may also vary over time. This is at the very least plausible and in many cases highly likely
to occur. In this case, the time constancy is no longer valid. Alternatives must be sought
to appropriately account for this variation. This is a natural setting for the consideration
of dynamic Gaussian process. They can provide a starting exploration step. Due to their
local behavior, they are able to describe the variation with a nonparametric flavor without
imposing any specific form for the changes over time that these hyperparameter may ex-
perience. Once a specific time pattern is observed for the parameters, specific assumptions
about this change can be incorporated into the model.

Consider, for example, the convolution of Gaussian processes to account for spatial non-
stationarity of the data generating processes. Among the parameters defining the Gaussian
processes is their sill parameters. They can be allowed to change not only over space but
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also over time. This would allow for many purposes: to borrow information across nearby
locations and consecutive time periods and to smooth variations of this parameter over
space and over time.

24.4 Further Remarks

The material of the last section is of more speculative nature. The ideas described here are
just beginning to be used. They involve use of elaborate model specifications that are far
from easy to be estimated from the data. This poses yet another challenge in the use of
this methodology. The most common approach these days from a Bayesian perspective is
MCMC (see Gamerman and Lopes, 2006). Alternatives based on noniterative approxima-
tions are also being proposed (Rue, Martino, and Chopin, 2008).

This chapter was mostly based on the so-called latent approach where spatial and tempo-
ral dependences are incorporated in the model through the use of latent structures. Other
possibilities are also available. Spatial autoregression (SAR) provides a natural framework
to contemplate spatial dependence directly at the observational level (Anselin, 1988). Ad-
dition of temporal components can be made separately in a different model block or jointly.
Gamerman and Moreira (2004) have simply added a temporal autoregressive component
to a multivariate SAR model. Kakamu and Polasek (2007) considered a SAR structure over
(temporally) lagged variables thus inducing spatial and temporal dependence simultane-
ously. These are just a couple of the many possibilities available through this approach.

The purpose of this chapter is to draw attention to a tool that is flexible and can accom-
modate many patterns of spatio-temporal data variation. There are other areas that can
become potential applications for this technology. It is hoped in this chapter that readers
have their attention drawn to these modeling tools, find them useful, and eventually try
them in their own problems at hand.
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25.1 Introduction

In their most basic form, spatio-temporal point process data consist of a time-ordered
sequence of events {(si , ti ) : i = 1, . . . , n} where s denotes location, t denotes time and n
is the number of events that fall within a spatial region D and a time-interval [0, T]. The
term “point process” is usually reserved for a process that generates events in a spatial and
temporal continuum, but in the current setting, we will allow either, but not both, of the
spatial and temporal supports to be discrete.

Processes that are both spatially and temporally discrete are more naturally considered
as binary-valued random fields, as discussed in Chapter 12. Processes that are temporally
discrete with only a small number of distinct event-times can be considered initially as
multivariate point processes, as discussed in Chapter 21, but with the qualification that the
temporal structure of the type-label may help the interpretation of any interrelationships
among the component patterns. Conversely, spatially discrete processes with only a small
number of distinct event-locations can be considered as multivariate temporal point pro-
cesses, but with a spatial interpretation to the component processes. In the remainder of
this chapter, we consider processes that are temporally continuous and either spatially con-
tinuous or spatially discrete on a sufficiently large support to justify formulating explicitly
spatio-temporal models for the data.

Our discussion will be from the perspective of methods and applications, rather than a rig-
orous theoretical treatment; for the latter, see, for example, Daley and Vere-Jones (2002, 2007)

449
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FIGURE 25.1
Data from the 2001 United Kingdom foot-and-mouth epidemic. Left: Small dots show the locations of all animal-
holding farms in the county of Cumbria, larger circles show the locations of those farms that experienced foot-
and-mouth during the epidemic. Right: Cumulative distribution of the times.

25.2 Exploratory Tools for Spatio-Temporal Point Processes

25.2.1 Plotting the Data

The most effective form of display for a spatio-temporal point process data is an animation,
repeated viewing of which may yield insights that are not evident in static displays. As an
example, we consider data from the 2001 United Kingdom foot-and-mouth epidemic.

Figure 25.1 shows two static displays of the data from the county of Cumbria. The left-
hand panel shows the locations of all animal-holding farms at the start of the epidemic,
with those that experienced foot-and-mouth highlighted. The right-hand panel shows the
cumulative distribution of the times, in days since January 1, 2001, on which newly infected
farms were reported. The spatial distribution is consistent with pronounced spatial varia-
tion in risk over the study region, while the temporal distribution shows the characteristic
S-shape of an epidemic process.

An animation of the spatio-temporal pattern of incidence over the whole epidemic reveals
a much richer structure than is apparent from Figure 25.1 (http://www.maths.lancs.ac.uk/
∼rowlings/Chicas/FMD/slider2.html). Features that become clear on repeated viewing of
the animation include: a predominant pattern of spatio-temporal spread characteristic of
direct transmission of infection between neighboring farms; occasional and apparently
spontaneous infections occurring remotely from previously infected farms; and a progres-
sive movement of the focus of the epidemic from its origin in the north of the county,
initially to the west and later to the southeast.

As a contrasting example, the two panels of Figure 25.2 show the cumulative spatial
distribution of 969 reported cases of gastrointestinal infections in the district of Preston
over the years 2000 to 2002, and the cumulative distribution of the times, in days since
January 1, 2000, on which cases were reported. The spatial distribution of cases largely
reflects the population at risk, consistent with the endemic character of gastrointestinal
infections, while the temporal distribution shows an approximately constant rate of incident
cases. For these data, an animation (http://pagesperso-orange.fr/edith.gabriel/preston),
adds relatively little to this description, although a detailed analysis does reveal additional
structure, including seasonal effects and small-scale spatio-temporal clustering of cases, as
we show in Section 25.2.2.
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FIGURE 25.2
Gastrointestinal infections in the district of Preston, 2000 to 2002. Left: Locations of cases. Right: Cumulative
distribution of the times.

25.2.2 Moment-Based Summaries

The moment-based summaries described in Chapter 18 for spatial point processes are easily
extended to the spatio-temporal setting. First-moment properties are specified through the
spatio-temporal intensity function, λ(s, t), defined as the expected number of events per unit
area per unit time, centered on location s and time t. Nonparametric estimation of λ(s, t),
for example by kernel smoothing, is straightforward in principle but difficult to visualize
except, again, through animation. Note, however, that smoothing will in itself tend to
introduce spatio-temporal dependence into the data, and as such can give a misleading
impression of spatio-temporal structure. For data on a spatio-temporal region A = D ×
[0, T], estimation of the marginal spatial and temporal intensities, λA(s) = ∫ T

0 λ(s, t)dt
and μA(t) = ∫

D λ(s, t)ds, respectively, can be used to assess whether the spatio-temporal
intensity is first-order separable, meaning that for any A, λ(s, t) ∝ λA(s)μA(t). Separability, if
justified, provides a useful simplification for any subsequent modeling exercise.

Second-moment summaries extend similarly. In particular, for a stationary, orderly pro-
cess with λ(s, t) = λ, the spatio-temporal K -function is

K (u, v) = λ−1E[No(u, v)], (25.1)

where No(u, v) is the number of additional events whose locations lie in the disk of radius
u centered on the origin and whose times lie in the interval (0, v), conditional on there
being an event at the spatio-temporal origin; see Diggle, Chetwynd, Haggkvist, and Morris
(1995), but note that their definition includes in No(u, v) events that follow or precede the
conditioning event at time t = 0. With our definition, the benchmark for a homogeneous
spatio-temporal Poisson process is K (u, v) = πu2v. More generally, for a process whose
spatial and temporal components are stochastically independent, K (u, v) = Ks(u)Kt(v),
where Ks(·) and Kt(·) are proportional to the spatial and temporal K -functions of the
component processes. Note that this interpretation of Ks(·) and Kt(·) requires us to restrict
the process to a finite time-interval and a finite spatial region, respectively, otherwise the
component spatial and temporal processes are undefined.

As in the spatial case considered in Section 18.6, the K -function can be defined directly
in terms of a conditional expectation, as in (25.1), or as the integral of the second-order
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intensity function, λ2(u, v), such that

K (u, v) = 2πλ−2
∫ v

0

∫ u

0
λ2(u′, v′)u′du′dv′

= πu2v + 2πλ−2
∫ v

0

∫ u

0
γ (u′, v′)u′du′dv′, (25.2)

where γ (u, v) = λ2(u, v) −λ2 is called the covariance density. A process for which γ (u, v) =
γs(u)γt(v) is called second-order separable. As with its first-order counterpart, separabil-
ity (when justified) leads to useful simplifications in modeling. Note that second-order
separability is implied by, but does not imply, independence of the spatial and temporal
components.

Suppose now that we have data in the form xi = (si , ti ) : i = 1, . . . , n consisting of all
events xi in a space–time region D × [0, T] and ordered so that ti > ti−1. Assume for the
time being that the underlying process is intensity-reweighted stationary (Baddeley, Møller,
and Waagpetersen, 2000) with known intensity λ(s, t). Then, an approximately unbiased
estimator for K (u, v) is

K̂ (u, v) = {n/(|D|T)}E(u, v), (25.3)

where

E(u, v) = n−1
v

nv∑
i=1

∑
j>i

w−1
i j I (||si − s j || ≤ u) I (tj − ti ≤ v)/{λ(si , ti )λ(s j , tj )},

the wi j are spatial edge-correction weights as defined in Section 18.6 and nv is the number
of ti ≤ T − v (Gabriel and Diggle, 2008).

25.2.3 Campylobacteriosis in Lancashire, U.K.

Campylobacter jejuni is the most commonly identified cause of bacterial gastroenteritis in the
developed world. Temporal incidence of campylobacteriosis shows strong seasonal varia-
tion, rising sharply between spring and summer. Here, we analyze a dataset consisting of
the locations and dates of notification of all known cases of campylobacteriosis within the
Preston postcode district (Lancashire, England) between January 1, 2000 and December 31,
2002. These data can be considered as a single realization of a spatio-temporal point pro-
cess displaying a highly aggregated spatial distribution. As is common in epidemiological
studies, the observed point pattern is spatially and temporally inhomogeneous because the
pattern of incidence of the disease reflects both the spatial distribution of the population at
risk and systematic temporal variation in risk. When analyzing such spatio-temporal point
patterns, a natural starting point is to investigate the nature of any stochastic interactions
among the points of the process after adjusting for spatial and temporal inhomogeneity.

The three panels of Figure 25.3 show the study region, corresponding to the Preston
postcode sector of the county of Lancashire, U.K.; a grayscale representation of the spa-
tial variation in the population density, derived from the 2001 census; and the residential
locations of the 619 recorded cases over the three years 2000 to 2002 in the most densely
populated part of the study region.

We first estimate the marginal spatial and temporal intensities of the data. To estimate
the spatial density, m(s), we use a Gaussian kernel estimator with bandwidth chosen to
minimize the estimated mean square error of m̂(s), as suggested in Berman and Diggle
(1989). To estimate the temporal intensity, μ(t), we use a Poisson log-linear regression
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FIGURE 25.3
Campylobacteriosis data from Lancashire, U.K. (a) The study area. (b) Population density in 2001 (number of
people per hectare). (c) Locations of the 619 cases of Campylobacter jejuni infections within the urban area.

model incorporating a time-trend, seasonal variation and day-of-the-week effects, hence,

log μ(t) = δd(t) +
3∑

k=1

{αk cos(kωt) + βt sin(kωt)} + γ t,

where ω = 2π/365 and d(t) identifies the day of the week for day t = 1, . . . , 1096. The
sine–cosine terms corresponding to six-month and four-month frequencies are justified by
likelihood ratio criteria under the assumed Poisson model, but this would overstate their
significance if, as it turns out to be the case, the data show significant spatio-temporal
clustering. Figure 25.4 shows the resulting estimates of m(s) and μ(t).

A comparison between Figures 25.4a and Figure 25.3b shows, unsurprisingly, that cases
tend to be concentrated in areas of high population density, while Figure 25.4b shows a
decreasing time-trend and a sharp peak in intensity each spring. The smaller, secondary
peaks in intensity are a by-product of fitting three pairs of sine–cosine terms and their
substantive interpretation is open to question; here, we are using the log-linear model only
to give a reasonably parsimonious estimate of the temporal intensity as a necessary prelude
to investigating residual spatio-temporal structure in the data.

To investigate spatio-temporal structure, we consider the data in relation to two bench-
mark hypotheses. The hypothesis of no spatio-temporal clustering, Hc

0 , states that the data are
a realization of an inhomogeneous Poisson process with intensity λ(s, t) = m(s)μ(t). The
hypothesis of no spatio-temporal interaction, Hi

0, states that the data are a realization of a pair
of independent spatial and temporal, reweighted second-order stationary point processes
with respective intensities m(s) and μ(t). Note that in formulating our hypotheses in this
way, we are making a pragmatic decision to interpret separable effects as first-order, and
nonseparable effects as second-order. Also, as here defined, absence of spatio-temporal
clustering is a special case of absence of spatio-temporal interaction.

To test Hc
0 , we compare the inhomogeneous spatio-temporal K -function of the data

with tolerance envelopes constructed from simulations of a Poisson process with inten-
sity m̂(s)μ̂(t). To test Hi

0, we proceed similarly, but with tolerance envelopes constructed by
randomly relabeling the locations of the cases holding their notification dates fixed, thus
preserving the marginal spatial and temporal structure of the data without assuming that
either is necessarily a Poisson process.

Figure 25.5a shows K̂st(u, v) − πu2v for the C. jejuni data. The diagonal black hatch-
ing on Figure 25.5b identifies those values of (u, v) for which the data-based estimate of
K̂st(u, v)−πu2v lies above the 95th percentile of estimates calculated from 1,000 simulations
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FIGURE 25.4
(a) Kernel estimate of the spatial intensity; (b) weekly numbers (dots) of notified cases compared with fitted
regression curve.

of an inhomogeneous Poisson process with intensity m̂(s)μ̂(t). Similarly, the gray shading
identifies those values of (u, v) for which K̂st(u, v) − K̂s(u) K̂t(v) lies above the 95th per-
centile envelopes calculated from 1,000 random permutations of the si holding the ti fixed.
The results suggest spatio-temporal clustering up to a distance of 300 meters and time-lags
up to 10 days, and spatio-temporal interaction at distances up to 400 meters and time-lags
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FIGURE 25.5
(a) K̂st(u, v)−πu2v (×106). (b) Identification of subsets of (u, v)-space in which spatio-temporal clustering (diagonal
black hatching) and/or spatio-temporal interaction (gray shading) is detected at the 5% level of significance (see
text for detailed explanation).
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up to 3 days. These findings are consistent with the infectious nature of the disease, which
leads to multiple cases from a common source occurring relatively closely both in space
and in time. The analysis also suggests the existence of stochastic structure that cannot
be explained by the first-order intensity m̂(s)μ̂(t). Note that the relatively large negative
values of K̂st(u, v) −πu2v at large values of u and v are not significantly different from zero
because the sampling variance of K̂st(u, v) increases with u and v.

25.3 Models

A useful distinction in statistical modeling is between models whose primary purpose is to
give a concise, quantitative description of the data and those whose parameters are intended
to relate directly to a known or hypothesized process that generates the data. We refer to
these as empirical and mechanistic models, respectively. For example, in most applications
of linear regression, the model is empirical, whereas nonlinear regression models typically
are more mechanistic in nature.

All of the models for spatial point processes that were discussed in Chapter 17 can be ex-
tended directly to the spatio-temporal setting. Additionally, new models can be formulated
to take explicit account of time’s directional nature. From a strict modeling perspective, it
is sometimes argued that as spatial point patterns in nature often arise as snapshots from
an underlying spatio-temporal process, purely spatial models should ideally be derived
directly from underlying spatio-temporal models (for further comments, see Section 25.5).

25.3.1 Poisson and Cox Processes

A spatio-temporal Poisson process is defined by its intensity, λ(s, t). A spatio-temporal Cox
process is a spatio-temporal Poisson process whose intensity is a realization of a spatio-
temporal stochastic process Λ(s, t). A Cox process inherits the second-order properties of
its stochastic intensity function. Hence, if Λ(s, t) is stationary with mean λ and covariance
function γ (u, v) = Cov{Λ(s, t), Λ(s−u, t−v)}, then the K -function of the corresponding Cox
process is given by Equation (25.2). A convenient and relatively tractable class of Cox process
models is the log-Gaussian class (Møller, Syversveen, and Waagepetersen, 1998), for which
Λ(s, t) = exp{Z(s, t)}, where Z(s, t) is a Gaussian process. Constructions for Z(s, t) are
discussed in Chapter 23. As in the purely spatial case, Cox processes provide natural models
when the point process in question arises as a consequence of environmental variation in
intensity that cannot be described completely by available explanatory variables, rather
than through direct, stochastic interactions among the points themselves.

25.3.2 Cluster Processes

We now describe two ways of modifying a Neyman–Scott cluster process to the spatio-
temporal setting. Recall that in the spatial setting, the three ingredients of the Neyman–Scott
process are: (1) a homogeneous Poisson process of parent locations; (2) a discrete distribution
for the number of offspring per parent, realized independently for each parent; and (3) a
continuous distribution for the spatial displacement of an offspring relative to its parent,
realized independently for each offspring.

For our first spatio-temporal modification, parents are generated by a homogeneous
spatio-temporal Poisson process with intensity ρ. Each parent gives birth to a series of
offspring in a time-inhomogenous Poisson process with intensity α(t − t0), where t0 is the
temporal location of the parent; hence, the number of offspring per parent follows a Poisson
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FIGURE 25.6
Top row: Cumulative spatial locations at times t = 10, 20, 30 for a simulated realization of the first spatio-temporal
extension to the Neyman–Scott spatial cluster process. Bottom row: Cumulative spatial locations over three gen-
erations for a simulated realization of the second spatio-temporal extension to the Neyman–Scott spatial cluster
process (see text for detailed explanation of the simulation models).

distribution with mean
∫ ∞

0 α(u)du, which we assume to be finite. The spatial locations of the
offspring of a parent at location s0 are an independent random sample from a distribution
with density f (s − s0).

A possibly more natural way to extend the Neyman–Scott process to the spatio-temporal
setting is to consider a multigeneration process in which parents produce first-generation
offspring as before, but now the offspring act as parents for a second generation, and so on.

These two processes have very different properties. In the first process, the pattern of
events in a fixed time-window has essentially the same marginal spatial structure as a
spatial Neyman–Scott process, whereas in the second the nature of the clustering becomes
more diffuse with each succeeding generation.

Figure 25.6 compares realizations of the two processes, in each case with f (s) describing
an isotropic Gaussian density. In the first case, the mean number of parents per unit area
per unit time is ρ, the rate at which each parent generates offspring is α(t) = 1 for 0 ≤ t ≤ τ ,
otherwise zero, and the distribution of the displacements of offspring from their parents
has standard deviation σ = 0.025 in each coordinate direction. In Figure 25.6 (top row), we
set ρ = 1 and τ = 10, and show the cumulative locations at times t = 10, 20 and 30, by
which time the process has generated 255 events in the unit square. The three panels show
clearly one feature of this process, namely, that new clusters appear continuously over time.

In the second case, ρ denotes the number of initial parents and τ denotes the mean
number of offspring per event in the previous generation. In the bottom row of Figure 25.6
we set σ = 0.05 and ρ = 10 and show the cumulative locations of events over the first three
generations, by which time the process has generated 264 events in the unit square. Note
how, in contrast to the behavior illustrated in the top row of Figure 25.6, a feature of this
process is that the clusters of events maintain their spatial locations, but become larger and
more diffuse over successive generations.

Cluster processses of the kind described in this section provide natural models for re-
producing populations in a homogeneous environment. Their empirical spatial behavior
tends to be similar to, or even indistinguishable from, that of Cox processes (Bartlett, 1964).
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However, as the two examples in Figure 25.6 illustrate, this ambiguity in interpretation can
be resolved by their contrasting spatio-temporal properties; the top row, but not the bottom
row, of these two cluster processes is also an example of a spatio-temporal Cox process.

25.3.3 Conditional Intensity Function

Let Ht denote the history of a spatio-temporal process up to but excluding time t, hence, in
the absence of any explanatory variables, Ht = {(xi , ti ) : ti < t}. The conditional intensity of
the process is then defined as

λc(s, t|Ht) = limit|ds|→0,dt→0
P(event in ds × dt)

|ds|dt
, (25.4)

where ds denotes an infinitesimal spatial region containing s and dt an infinitesimal time
interval with lower end-point t. Under the usual regularity conditions, the conditional
intensity determines all properties of the underlying point process. This openes up a very
rich set of models defined directly by specifying a parametric form for λc(s, t|Ht). The
requirement for a valid specification is that λc(s, t|Ht) must be nonnegative valued with∫

D λ(s, t|Ht)ds < ∞ for all t, all Ht and any D ⊂ R
2 with finite area. Below, we consider

two such constructions.

25.3.3.1 Pairwise Interaction Processes

Pairwise interaction processes are the spatio-temporal counterparts of the spatial pairwise
interaction processes discussed in Chapter 17. An interaction function h(s, s ′) is a nonnega-
tive valued function of two spatial locations s and s ′. A spatial-temporal pairwise interaction
point process has a conditional intensity of the form

λc(s, t|Ht) = α(t)
nt∏

i=1

h(s, si ), (25.5)

where nt is the number of events in Ht. As in the spatial case, if h(s, s ′) = 1 for all s and
s ′, the process reduces to a Poisson process. However, in contrast to the spatial case, the
only restriction on h(·) is that it should be nonnegative valued with

∫
D h(s)ds < ∞ for

any D ⊂ R
2 with finite area. Also, the product form in Equation (25.5) is but one of many

possibilities. Jensen et al. (2007) take a more empirical approach to models of this kind; they
define a class of spatial-temporal Markov point processes, of which pairwise interaction
processes are a special case, by their likelihood ratio with respect to a homogeneous Poisson
process of unit intensity.

Figure 25.7 shows a sequence of stages in the development of a pairwise interaction
process, constrained to a finite spatial region, with λ(t) = 1 and interaction function
h(s, s ′) = h(||s − s ′||), where

h(u) =
{

0 : u ≤ δ

1 + α exp[−{(u − δ)/φ}2] : u > δ
(25.6)

with δ = 0.05, α = 0.5 and φ = 0.1. Notice how the spatial character of the process changes
over time. Initially, the dominant impression is of clustering induced by the attractive inter-
actions (h(u) > 1) at distances greater than δ. As time progresses, the inhibitory interactions
(h(u) = 0 for u ≤ δ) become more apparent as the available space fills up.

25.3.3.2 Spatial Epidemic Processes

The classic epidemic model for a closed population is the SIR model introduced by Kermack
and Kendrick (1927), in which an initial population of susceptibles is at risk of becoming
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FIGURE 25.7
Cumulative spatial locations of the first 50, 100 and 200 events in a simulated realization of a spatiotemporial
interaction process combining inhibitory and clustering effects (see text for detailed explanation of the simulation
model).

infected by the disease in question, and later removed either by dying or by recovering and
becoming immune to reinfection. In its simplest form, the model assumes a closed popula-
tion. Extensions to open populations allow immigration and/or emigration by susceptible
and/or infected individuals.

To turn the SIR model into a spatio-temporal point process, we introduce a point process
(purely spatial in the closed case, spatio-temporal in the open case) for the susceptible pop-
ulation and a spatial transmission kernel, f (s, s ′), to describe the rate at which an infectious
individual at location s infects a susceptible individual at location s ′. Keeling, Woolhouse,
Shaw, Matthews et al. (2001) use a model of this kind to describe the 2001 United Kingdom
foot-and-mouth epidemic. As is typical of real applications, they needed to extend the basic
formulation of the model to take account of the particular features of the phenomenon under
investigation. Firstly, the infectivity and susceptibility of individual farms depend on farm
characteristics codified as explanatory variables, for example, their total stock holding. Sec-
ond, the disease process includes a latent period whereby an infected farm’s stock would be
infectious, but asymptomatic for a variable and unknown period, thought to be of the order
of several days. Finally, the model needs to take account of the main control policy during the
epidemic, namely preemptive culling of the stock on farms located close to a farm known to
be infected. Keeling et al. (2001) use sensible ad hoc methods of estimation to fit their model
and, in particular, to identify the shape and scale of the spatial transmission kernel f (s, s ′).

25.4 The Likelihood Function

In addition to providing the basis for model formulation, the conditional intensity function
is the key to likelihood-based inference for spatio-temporal point processes. Under the
usual regularity conditions, the log likelihood for data xi = (si , ti ) : i = 1, . . . , n with si ∈ D
and 0 ≤ t1 < t2 < · · · < tn ≤ T is

L(θ ) =
n∑

i=1

λc(si , ti |Hti ) −
∫ T

0

∫
D

λc(s, t)dsdt. (25.7)

Using Equation (25.7) as the basis for inference has the obvious attraction that the usual
optimality properties of likelihood-based inference hold. However, the conditional intensity
may not be tractable, and even when it is, evaluation of the integral term in Equation (25.7) is
often difficult. One way around this is to use Monte Carlo likelihood methods, as described
for the purely spatial case in Chapter 19. Case studies using Monte Carlo likelihood methods
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to fit spatio-temporal Cox process models in a forestry setting are described in Benes, Bodlak,
Miller, and Waagepetersen (2005) and in Møller and Diaz-Avalos (2008).

An alternative strategy, variously proposed and advocated by Møller and Sorensen
(1994), Lawson and Leimich (2000) and Diggle (2006), is to construct a partial likelihood
(Cox, 1975) analogous to the method of inference widely used in the analysis of proportional
hazards survival models (Cox, 1972).

The partial likelihood for time-ordered spatial point process data (si , ti ) : i = 1, . . . , n is the
likelihood of the data conditional on the ordered times, ti , hence,

P L(θ ) =
n∑

i=1

log pi , (25.8)

where

pi = λc(si , ti )/
∫
Rti

λc(s, ti )ds, (25.9)

where Rt is the risk set at time t, i.e., the set of locations at which future events may occur.
When, as is the case for some epidemic modeling problems, the spatial support of the
process is discrete, the integral in (25.9) reduces to a summation over the discrete set of
potential event-locations.

Diggle, Kaimi, and Abelana (2008) compare the performance of maximum partial and
full likelihood estimation using a class of inhomogeneous Poisson processes for which both
methods are tractable. Their results illustrate that the loss of efficiency in using the partial
likelihood by comparison with full likelihood varies according to the kind of model being
fitted. Against this, the advantage of the partial likelihood method is the ease with which
it can be implemented for quite complex models. In practice, the ability routinely to fit and
compare realistically complex models without having to tune an iterative Markov chain
Monte Carlo (MCMC) algorithm for each model is very useful.

25.5 Discussion and Further Reading

Although the structure of spatio-temporal data is superficially more complex than that of
purely spatial data, the same does not necessarily apply to methods of statistical analy-
sis. Specifically, conditioning on the past is a very powerful tool in the development of
stochastic models and associated statistical methods for spatio-temporal phenomena that
is not available in the purely spatial case. Another liberating feature of many applications of
spatio-temporal methods is that there need be no assumption that the phenomenon under
investigation is in, or even possesses, an equilibrium state. This applies, for example, to
spatio-temporal epidemic phenomena, such as the foot-and-mouth epidemic illustrated in
Figure 25.1. From this perspective, it is mildly ironic that some of the early work on spatial
point process models placed some emphasis on deriving a spatial point process model as the
equilibrium distribution of an underlying spatio-temporal process. For example, Preston
(1977) derived the class of pairwise interaction spatial point processes as the equilibrium
states of spatio-temporal birth-and-death processes. Ripley (1977, 1979) exploited this con-
nection to develop a method of simulating realizations of a pairwise interaction spatial
point processes that, without being named as such, was an early example of MCMC. As
a second example, Kingman (1977) questioned the status of Poisson models for spatial
point processes by arguing that they do not arise naturally as equilibrium distibutions of
spatio-temporal processes.
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Spatio-temporal point processes are widely used as models in seismology, for data con-
sisting of the locations and times of earthquakes. See, for example, Ogata (1998), Ogata and
Zhuang (2006), and Zhuang (2006).

Statistical methods for spatio-temporal point processes are experiencing a period of rapid
development. This appears to have resulted from the conjunction of an explosion in the
availability of rich, spatio-temporal datasets and the practical feasibility of computationally
intensive methods for fitting realistically complex spatio-temporal models.
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Jensen, E.B., Jónsdóttir, K., Schmiegel, J. and Barndorff-Nielsen, O. (2007). Spatio-temporal
modeling—with a view to biological growth. In Semstat2004: Statistics of Spatio-Temporal Systems,
Eds. B. Finkenstadt, L. Held, V. Isham, 47–75. Boca Raton, FL: CRC Press.

Keeling, M.J., Woolhouse, M.E.J., Shaw, D.J., Matthews, L., Chase-Topping, M., Haydon, D.T., Cornell,
S.J., Kappey, J., Wilesmith, J. and Grenfell, B.T. (2001). Dynamics of the 2001 UK foot and mouth
epidemic: Stochastic dispersal in a heterogeneous landscape. Science, 294, 813–817.

Kermack, W.O. and Kendrick, A.G. (1927). A contribution to the mathematical theory of epidemics.
Proceedings of the Royal Society, A115, 700–721.

Kingman, J.F.C. (1977). Remarks on the spatial distribution of a reproducing population. Journal of
Applied Probability, 14, 577–583.

Lawson, A. and Leimich, P. (2000). Approaches to the space–time modeling of infectious disease
behaviour. IMA Journal of Mathematics Applied in Medicine and Biology, 17, 1–13.

Møller, J. and Sorensen, M. (1994). Parametric models of spatial birth-and-death processes with a
view to modeling linear dune fields. Scandinavian Journal of Statistics, 21, 1–19.

© 2010 by Taylor and Francis Group, LLC



P1: Rajesh Sharma

February 23, 2010 14:19 C7287 C7287˙C025

Spatio-Temporal Point Processes 461

Møller, J., Syversveen, A. and Waagepetersen, R. (1998). Log Gaussian Cox processes. Scandinavian
Journal of Statistics, 25, 451–482.

Møller, J. and Diaz-Avalos, C. (2008). Structured spatio-temporal shot-noise Cox point process models,
with a view to modeling forest fires. Research Report R-2008-07, Department of Mathematical
Sciences, Aalborg University, Denmark.

Ogata, Y. (1998). Space–time point process model for earthquake occurrences. Annals of the Institute
of Statistical Mathematics, 50(2), 379–402.

Ogata, Y. and Zhuang, J. (2006). Space–time ETAS models and an improved extension. Technophysics,
413(1-2), 13–23.

Preston, C.J. (1977). Spatial birth-and-death processes. Bulletin of the International Statistical Institute,
46 (2), 371–391.

Ripley, B.D. (1977). Modeling spatial patterns (with discussion). Journal of the Royal Statistical Society
B 39, 172–212.

Ripley, B.D. (1979). AS137 Simulating spatial patterns. Applied Statistics, 28, 109–112.
Zhuang, J. (2006). Second-order residual analysis of spatio-temporal point processes and applications

in model evaluations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(4),
635–653.

© 2010 by Taylor and Francis Group, LLC





P1: BINAYA KUMAR DASH

February 23, 2010 14:31 C7287 C7287˙C026

26
Modeling Spatial Trajectories

David R. Brillinger

CONTENTS

26.1 Introduction ......................................................................................................................463
26.2 History and Examples .....................................................................................................464

26.2.1 Planetary Motion................................................................................................464
26.2.2 Brownian Motion ...............................................................................................464
26.2.3 Monk Seal Movements......................................................................................465

26.3 Statistical Concepts and Models ....................................................................................466
26.3.1 Displays ...............................................................................................................466
26.3.2 Autoregressive Models .....................................................................................467
26.3.3 Stochastic Differential Equations .....................................................................467
26.3.4 Potential Function Approach ...........................................................................468
26.3.5 Markov Chain Approach ..................................................................................470

26.4 Inference Methods ...........................................................................................................470
26.5 Difficulties That Can Arise .............................................................................................471
26.6 Results for the Empirical Examples...............................................................................472
26.7 Other Models ....................................................................................................................472
26.8 Summary ...........................................................................................................................473
Acknowledgments ......................................................................................................................474
References.....................................................................................................................................474

26.1 Introduction

The study of trajectories has been basic to engineering science for many centuries. One can
mention the motion of the planets, the meanderings of animals and the routes of ships.
More recently there has been considerable modeling and statistical analysis of biological
and ecological processes of moving particles. The models may be motivated formally by
difference and differential equations and by potential functions. Initially, following Lieb-
nitz and Newton, such models were described by deterministic differential equations, but
variability around observed paths has led to the introduction of random variables and to
the development of stochastic calculi. The results obtained from the fitting of such models
are highly useful. They may be employed for: simple description, summary, comparison,
simulation, prediction, model appraisal, bootstrapping, and also employed for the estima-
tion of derived quantities of interest. The potential function approach, to be presented in
Section 26.3.4, will be found to have the advantage that an equation of motion is set down
quite directly and that explanatories, including attractors, repellers, and time-varying fields
may be included conveniently.

463
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Movement process data are being considered in novel situations: assessing Web sites,
computer-assisted surveys, soccer player movements, iceberg motion, image scanning, bird
navigation, health hazard exposure, ocean drifters, wildlife movement. References showing
the variety and including data analyses include Brillinger, D.R. (2007a); Brillinger, Stewart,
and Littnan (2006a); Eigethun, Fenske, Yost, and Paicisko (2003); Haw (2002); Ionides,
Fang, Isseroff, and Oster (2004); Kendall (1974); Lumpkin and Pazos (2007); Preisler, Ager,
Johnson, and Kie (2004); Preisler, Ager, and Wisdom (2006); Preisler, Brillinger, Ager, and
Kie (1999); Stark, Privitera, Yang, Azzariti et al. (2001); Stewart, Antonelis, Yochem, and
Baker (2006). In the chapter, consideration is given to location data {r(ti ), i = 1, . . . , n}
and models leading to such data. As the notation implies and practice shows, observation
times, {ti }, may be unequally spaced. The chapter also contains discussion of inclusion of
explanatory variables. It starts with the presentation and discussion of two empirical ex-
amples of trajectory data. The first refers to the motion of a small particle moving about in a
fluid and the second to the satellite-determined locations of a Hawaiian monk seal foraging
off the island of Molokai. The following material concerns pertinent stochastic models for
trajectories and some of their properties. It will be seen that stochastic differential equations
(SDEs) are useful for motivating models and that corresponding inference procedures have
been developed. In particular, discrete approximations to SDEs lead to likelihood functions
and, hence, classic confidence and testing procedures become available.

The basic motivation for the chapter is to present a unified approach to the modeling and
analysis of trajectory data.

26.2 History and Examples

26.2.1 Planetary Motion

Newton derived formal laws for the motion of the planets and further showed that Kepler’s
laws could be derived from these. Lagrange set down a potential function and Newton’s
equations of motion could be derived from it in turn. The work of Kepler, Newton and
Lagrange has motivated many models in physics and engineering. For example, in a study
describing the motion of a star in a stellar system, Chandrasekhar (1943) sets down equations
of the form

du(t)
dt

= −βu(t) + A(t) + K(r(t), t) (26.1)

with u, velocity; A, a Brownian-like process; β, a coefficient of friction; and K, the accelera-
tion produced by an external force field. Chandrasekhar (1943) refers to this equation as a
generalized Langevin equation. It is an example of an SDE.

Next, two examples of empirical trajectory data are presented.

26.2.2 Brownian Motion

In general science, Brownian motion refers to the movement of tiny particles suspended in a
liquid. The phenomenon is named after Robert Brown, an Englishman, who in 1827 carried
out detailed observations of the motion of pollen grains suspended in water (Haw, 2002).
The phenomenon was modeled by Einstein. He considered the possibility that formalizing
Brownian motion could support the idea that molecules existed. Langevin (1908) set down
the following expression for the motion of such a particle,

m
d2x
dt2 = −6πμa

dx
dt

+ X,
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FIGURE 26.1
Perrin’s measurements of the location of a mastic grain at 48 successive times. (Adapted from Guttorp, P. (1995).
Stochastic Modeling of Scientific Data. Chapman & Hall, London.)

where m is the particle’s mass, a is its radius, μ is the viscosity of the liquid, and X is the
“complementary force”—a Brownian process-like term. One can view this as an example
of an SDE.

A number of “Brownian” trajectories were collected by Perrin (1913). One is provided
in Figure 26.1 and the results of an analysis will be presented in Section 26.6. The particles
involved were tiny mastic grains with a radius of .53 microns. Supposing (x, y) refers to
position in the plane, the trajectory may be written (x(t), y(t)), t = 1, . . . , 48. The time
interval between the measurements in this case was 30 sec.

In Figure 26.1, one sees the particle start in the lower right corner of the figure and then
meander around a diagonal line running from the lower left to the upper right.

26.2.3 Monk Seal Movements

The Hawaiian monk seal is an endangered species. It numbers only about 1,400 today. They
are now closely monitored, have a life span of about 30 years, weigh between 230 and 270
kilos and have lengths of 2.2 to 2.5 meters.

Figure 26.2 shows part of the path of a juvenile female monk seal swimming off the
southwest coast of the island of Molokai, Hawaii. Locations of the seal as it moved and
foraged were estimated from satellite detections, the animal having a radio tag glued to its
dorsal fin. The tag’s transmissions could be received by satellites passing overhead when
the animal was on the surface. The animal’s position could then be estimated.

The data cover a period of about 15 days. The seal starts on a beach on the southwest tip
of Molokai and then heads to the far boundary of a reserve called Penguin Bank Reserve,
forages there for a while, and then heads back to Molokai, perhaps to rest in safety. Penguin
Bank Reserve is indicated by the dashed line in the figure.

An important goal of the data collection in this case was the documentation of the animals’
geographic and vertical movements as proxies of foraging behavior and then to use this
information to assist in the survival of the species. More detail may be found in Brillinger,
Stewart, and Littnan (2006a) and Stewart, Antonelis, Yochem et al. (2006).

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 14:31 C7287 C7287˙C026

466 Handbook of Spatial Statistics

290 300 310 320 330 340 350 360

40

60

80

100

120

East (km)

N
o

rt
h

 (
k

m
)

+

FIGURE 26.2
Estimated locations of a Hawaiian monk seal off the coast of Molokai. The dashed line is the 200 fathom line,
approximately constraining an area called the Penguin Bank Reserve.

26.3 Statistical Concepts and Models

26.3.1 Displays

It is hard to improve on visual displays in studies of trajectory data. In a simple case, one
shows the positions (x(ti ), y(ti )), i = 1, 2, . . . , as a sequence of connected straight lines, as in
Figure 26.1 and Figure 26.2. One can superpose other spatial information as a background.
An example is Figure 26.2, which shows the outlines of Molokai, the hatched region, and
Penguin Bank Reserve, the dashed line.

A related type of display results if one estimates a bivariate density function from the
observed locations (x(ti ), y(ti )), i = 1, 2, . . . , and shows the estimate in contour or image
form. Such figures are used in home range estimation; however, this display loses the
information on where the animal was at successive times.

A bagplot (Rousseuw, Ruts, and Tukey, 1999) is useful in processing trajectory data if
estimated locations can be in serious error. It highlights the “middle 50%” of a bivariate
dataset and is an extension of the univariate boxplot. An example is provided in Brillinger,
Stewart, and Littnan (2006b). Before preparing the bagplot presented there, this author did
not know of the existence of the Penguin Bank Reserve. Computing the bagplot of all the
available locations found the reserve.

Another useful display is a plot of the estimated speed of the particle versus time. One
graphs the approximate speeds,

√
(x(ti+1) − x(ti ))2 + (y(ti+1) − y(ti ))2/(ti+1 − ti )

versus the average of the times, ti and ti+1, say. It is to be remembered that this “speed”
provides only the apparent speed, not the instantaneous. The particle may follow a long
route getting from r(ti ) to r(ti+1).

Figures are presented in this chapter, but videos can assist the analyses.
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26.3.2 Autoregressive Models

A bivariate time series model that is coordinate free provides a representation for processes
whose realizations are spatial trajectories. One case is the simple random walk,

rt+1 = rt + εt+1, t = 0, 1, 2, . . .

with r0 the starting point and {εt} a bivariate time series of independent and identically
distributed variates.

In the same vein one can consider the bivariate order 1, autoregressive, VAR(1), given by

rt+1 = art + εt+1, t = 0, 1, 2, . . . (26.2)

for an a leading to stationarity.
The second difference of the motion of an iceberg has been modeled as an autoregressive

in Moore (1985).

26.3.3 Stochastic Differential Equations

The notion of a continuous time random walk may be formalized as a formal Brownian
motion. This is a continuous time process with the property that disjoint increments, dB(t),
are independent Gaussians with covariance matrix Idt. Here B(t) takes values in R2. The
random walk character becomes clear if one writes

B(t + dt) = B(t) + dB(t), −∞ < t < ∞.

The vector autoregressive of order 1 series may be seen as an approximation to a stochastic
differential equation by writing

r(t + dt) − r(t) = μr(t)dt + σdB(t)

and comparing it to Equation (26.2).
Given a Brownian process B, consider a trajectory r in R2 that at time t has reached the

position r(t) having started at r(0). Consider the “integral equation”

r(t) = r(0) +
∫ t

0
μ(r(s), s)ds +

∫ t

0
σ (r(s), s)dB(s) (26.3)

with r, μ, dB each 2 vectors and σ 2 by 2. Here, μ is called the drift and σ the diffusion
coefficient. Equation (26.3) is known as Ito’s integral equation.

This equation requires the formal definition of the Ito integral

∫ b

a
G(r(t), t)dB(t)

for conformal G and B. Under regularity conditions, the Ito integral can be defined as the
limit in mean squared, as � ↓ 0, of

N−1∑
j=1

G(r(tj ), tj )[B(tj+1) − B(tj )],

where
a = t�

1 < t�
2 < · · · < t�

N = b, � = max(tj+1 − tj ).
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Expressing Equation (26.3) as an “Ito integral” is a symbolic gesture, but the definition is
mathematically consistent.

Equation (26.3) is often written

dr(t) = μ(r(t), t)dt + σ (r(t), t)dB(t) (26.4)

using differentials, but Equation (26.3) is the required formal expression. For details on Ito
integrals, see Durrett (1996) or Grimmet and Stirzaker (2001).

26.3.4 Potential Function Approach

A potential function is an entity from Newtonian mechanics. It leads directly to equations of
motion in the deterministic case (see Taylor, 2005). An important property is that a potential
function is real-valued and thereby leads to a simpler representations for a drift function,
μ, than those based on the vector-valued velocities.

To make this apparent, define a gradient system as a system of differential equations of
the form

dr(t)/dt = −∇V(r(t)), (26.5)

where V : R2 → R is a differentiable function and ∇V = (∂V/∂x, ∂V/∂y)T denotes its
gradient. (“T” here denotes transpose.) The negative sign in this system is traditional. The
structure dr(t)/dt is called a vector field, while the function V is called a potential function.

The classic example of a potential function is the gravitational potential in R3, V(r) =
−G/|r − r0| with G the constant of gravitation (see Chandrasekhar, 1943). This function
leads to the attraction of an object at position r toward the position r0. The potential value
at r = r0 is −∞ and the pull of attraction is infinite there. Other specific formulas will be
indicated shortly.

In this chapter the deterministic Equation (26.5) will be replaced by a stochastic differen-
tial equation

dr(t) = −∇V(r(t))dt + σ (r(t))dB(t) (26.6)

with B(t) a two-dimensional standard Brownian process, V a potential function, and σ a
diffusion parameter. Under regularity conditions, a unique solution of such an equation
exists and the solution process {r(t)} is Markov. Repeating a bit, a practical advantage of
being able to write μ = −∇V is that V is real-valued and thereby simpler to model, to
estimate, and to display.

For motion in R2, the potential function is conveniently displayed in contour, image, or
perspective form. Figure 26.3 and Figure 26.4 provide examples of image plots. If desired,
the gradient may be displayed as a vector field. (Examples may be found in Brillinger,
Preisler, Ager, Kie et al., 2001.)

An estimated potential function may be used for: simple description, summary, compar-
ison, simulation, prediction, model appraisal, bootstrapping, and employed for the estima-
tion of related quantities of interest. The potential function approach can handle attraction
and repulsion from points and regions directly. While the figures of estimated potential
functions usually look like what you expect a density function to be, given the tracks but
there is much more to the potential surface; for example, the slopes are direction and speed
of motion.

Some specific potential function forms that have proven useful are listed below. A re-
search issue is how to choose among them and others. Subject matter knowledge can prove
essential in doing this. To begin, consider the function

V(r) = α log d + βd (26.7)
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FIGURE 26.3
The estimated potential function for the Perrin data using the form (26.8) with C = 0. The circle represents the
initial location estimate. Darker shade denotes deeper value.

with r = (x, y)T the location of a particle, and d = d(r) the distance of the particle from a
specific attractor. This function is motivated by equations in Kendall (1974). The attractor
may move in space in time, and then the potential function is time-dependent. Another
useful functional form is

V(r) = γ1x + γ2 y + γ11x2 + γ12xy + γ22 y2 + C/dM, (26.8)

where dM = dM(x, y) is the distance from location (x, y) to the nearest point of a region, M,
of concern. Here, with C > 0, the final term keeps the trajectory out of the region. On the
other hand,

V(r) = α log d + βd + γ1x + γ2 y + γ11x2 + γ12xy + γ22 y2, (26.9)

where d = d(r) = d(x, y) is the shortest distance to a point, leads to attraction to the point
as well as providing some general structure. It is useful to note for computations that the
expressions (26.7) to (26.9) are linear in the parameters.
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FIGURE 26.4
A potential function estimate computed to describe a Hawaiian monk seal’s outbound, then inbound, foraging
journeys from the southwest corner of Molokai. The circle in the southwest corner represents an assumed point
of attraction.
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In summary, the potential function approach advocated here is distinguished from tra-
ditional SDE-based work by the fact that μ has the special form (26.5).

26.3.5 Markov Chain Approach

Taking note of the work of Kurtz (1978) and Kushner (1974, 1977), it is possible to approx-
imate the motion implied by an SDE, of a particle moving in R2, by a Markov chain in
discrete time and space. This can be useful for both simulations of the basic process and for
intuitive understanding.

In the approach of Kushner (1974, 1977), one sets up a grid forming pixels, and then
makes a Markov chain assumption. Specifically define

a(r, t) = 1
2
σ (r, t)σ (r, t)T

and, for convenience of exposition here, suppose that ai j (r, t) = 0, i �= j , i.e., the error
components of the Gaussian vector are assumed statistically independent for fixed r. Sup-
pose further that time is discretized with tk+1 − tk = Δ. Write rk = r(tk), and suppose that
the lattice points of the grid have separation h. Let ei denote the unit vector in ith coordinate
direction, i = 1, 2. Now consider the Markov chain with transition probabilities,

P(rk = r0 ± ei h|rk−1 = r0)

= Δ
h2 (aii (r0, tk−1) + h|μi (r0, tk − 1)|±)

P(rk = r0|rk−1 = r0) = 1 −
∑

preceding.

Here it is supposed the probabilities are ≥ 0, which may be arranged by choice of Δ and h.
In the above expressions the following notation has been employed:

|u|+ = u if u > 0 and = 0 otherwise

and
|u|− = −u if u < 0 and = 0 otherwise.

A discrete random walk is the simplest case of this construction.
(For results on the weak convergence of such approximations to SDEs, see Durrett (1996),

Kurtz (1978), and Kushner (1974).)
With that introduction attention can turn to a different, yet related type of model. Suppose

that a particle is moving along the points of a lattice in R2 with the possibility of moving
one step to the left or one to the right or one step up or one step down. View the lattice as
the state space of a Markov chain in discrete time with all transition probabilities 0 except
for the listed one step ones. This is the structure of the just provided approximation. The
difference is that one will start by seeking a reasonable model for the transition probabilities
directly, rather than coefficients for SDE.

26.4 Inference Methods

There is substantial literature devoted to the topic of inference for stochastic differential
equations (references include Prakasa Rao, 1999 and Sorensen, 1997). Many interesting
scientific questions can be posed and addressed involving them and their applications.
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Elementary ones include: Is a motion Brownian? Is it Brownian with drift? These can be
formulated in terms of the functions μ and σ of Equation (26.3) and Equation (26.4).

Consider an object at position r(t) in R2 at time t. In terms of approximate velocity,
Equation (26.6) leads to

(r(ti+1) − r(ti ))/(ti+1 − ti ) = −∇V(r(ti )) + σZi+1/
√

ti+1 − ti (26.10)

with the Zi independent and identically distributed bivariate, standard normals. The reason
for the

√
ti+1 − ti is that for real-valued Brownian var(dB(t)) = σdt. In Equation (26.10), one

now has a parametric or nonparametric regression problem for learning about V, depending
on the parametrization chosen. If the ti are equispaced, this is a parametric or nonparametric
autoregression model of order 1.

If desired, the estimation may be carried out by ordinary least squares or maximum like-
lihood depending on the model and the distribution chosen for the Zi . The naive approx-
imation (26.10) is helpful for suggesting methods. It should be effective if the time points,
ti , are close enough together. In a sense (26.10), not (26.3), has become the model of record.

To be more specific, suppose that μ has the form

μ(r) = g(r)Tβ

for an L by 1 parameter β and a p by L known function g. This assumption, from Equa-
tion (26.10) leads to the linear regression model

Yn = Xnβ + εn

having stacked the n − 1 values (r(ti+1) − r(ti ))/
√

ti+1 − ti to form the (n − 1) p vector Yn,
stacked the n − 1 matrices μ(r(ti ), ti )

√
(ti+1 − ti ) to form the (n − 1) p by L matrix Xn and

stacked the n − 1 values σZi+1 to form εn. One is thereby led to consider the estimate

β̂ = (
XT

n Xn
)−1XT

n Yn

assuming the indicated inverse exists. Continuing, one is led to estimate g(r)Tβ by g(r)T β̂.
Letting yj denote the j th entry of Yn and xT

j denote the j th row of Xn, one can compute

s2
n = ((n − 1) p−1

∑ (
yj − xT

j β̂
)T(

yj − xT
j β̂

)
,

as estimate of σ 2 and, if desired, proceed to form approximate confidence intervals for the
value g(r)Tβ using the results of Lai and Wei (1982). In particular, the distribution of

(g(r)T(
XT

n Xn
)−1g(r))−1/2g(r)T (β̂ − β)/sn

may be approximated by a standard normal for large n. (Further details may be found in
Brillinger, 2007b.)

Another concern is deciding on the functional form for the drift terms μ and the diffusion
coefficient σ of the motivating model (26.3). In Preisler et al. (1999) and Brillinger et al. (2001),
the estimates are nonparametric.

26.5 Difficulties That Can Arise

One serious problem that can arise in work with trajectory data relates to the uncertainty of
the location estimates. The commonly used Loran and satellite-based estimated locations
can be in serious error. The measurement errors have the appearance of including outliers
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rather than coming from some smooth long-tailed distribution. In the monk seal example,
the bagplot proved an effective manner to separate out outlying points. It led to the empirical
discovery of the Penguin Bank Reserve in the work. Improved estimates of tracks may be
obtained by employing a state space model and robust methods (see Anderson-Sprecher,
1994 and Jonsen, Flemming, and Myers, 2005).

A difficulty created by introducing the model via an SDE is that some successive pairs
of time points, ti − ti−1, may be far apart. The concern arises because the model employed
in the fitting is (26.10). One can handle this by viewing Equation (26.10) as the model of
record, forgetting where it came from, and assessing assumptions, such as the normality of
the errors, by traditional methods.

It has already been noted above that the speed estimate is better called the apparent speed
estimate because one does not have information on the particle’s movement between times
ti−1 and ti . Correction terms have been developed for some cases Ionides (2001).

26.6 Results for the Empirical Examples

Figure 26.3 provides the estimated potential function, V̂, for Perrin’s data assuming the
functional form (26.8) with C = 0. The particle’s trajectory has been superposed in the
figure. One sees the particle being pulled toward central elliptical regions and remaining
in or nearby. This nonrandom behavior could have been anticipated from the presence of
viscosity in the real world (Haw, 2002). Were the process “pure” Brownian, the particle
would have meandered about totally randomly and the SDE would have been

dr(t) = σdB(t).

The Smolukowski approximation (see Chandrasekhar, 1943; Nelson, 1967) takes (26.1) into

dr(t) = K(r(t), t)dt/β + σdB(t)

instead. The background in Figure 26.3 is evidence against the pure Brownian model for
Perrin’s data.

Figure 26.4 concerns the outbound foraging journeys of a Hawaiian monk seal whose
outbound and inbound parts of one journey were graphed in Figure 26.2. Figure 26.4 is
based on a trajectory including five journeys. The animal goes out apparently to forage
and then returns to rest and be safer. The potential function employed is Equation (26.9)
containing a term, α log(d) + βd , that models attraction of the animal out to the far part
of Penguin Bank Reserve. More detail on this analysis may be found in Brillinger, Stewart,
and Littnan (2006a, 2006b). Outbound journeys may be simulated using the fitted model
and hypotheses may be addressed formally.

26.7 Other Models

Figure 26.4 shows the western coast of the island of Molokai. Coasts provide natural bound-
aries to the movements of the seals. In an analysis of the trajectory of a different animal,
that seal is kept off Molokai in the modeling by taking C > 0 in the final term in (26.8), see
Brillinger and Stewart, 1998.

A boundary is an example of an explanatory variable and it may be noted that there is
now substantial literature on SDEs with boundaries (Brillinger, 2003). There are explanatory
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variables to be included. A particle may be moving in a changing field G(r(t), t) and one is
led to write

dr = μdt + γ∇Gdt + σdB.

A case is provided by sea surface height (SSH) with the surface currents given by the
gradient of the SSH field. It could be that μ = −∇V as previously noted in this chapter.

A different type of explanatory, model and analysis is provided in Brillinge, Preisler,
Ager, and Wisdom (2004). The moving object is an elk and the explanatory is the changing
location, x(t) of an all terrain vehicle (ATV). The noise of an ATV is surely a repellor when
it is heard by an elk, but one wonders at what distance does the repulsion begin? The
following model was employed to study that question. Let r(t) denote the location of an
elk, and x(t) the location of the ATV, both at time t. Let τ be a time lag to be studied. Consider

dr(t) = μ(r(t))dt + ν(|r(t) − x(t − τ )|)dt + σdB(t).

The times of observation differ for the elk and the ATV. They are every five min for the elk
when the ATV is present and every one sec for the ATV itself. In the approach, adopted
location values, x(t), of the ATV are estimated for the elk observation times via interpolation.
One sees an apparent increase in the speed of the elk, particularly when an elk and the ATV
are close to one another.

The processes described so far have been Markov. However, non-Markov processes are
sometimes needed in modeling animal movement. A case is provided by the random walk
with correlated increments in McCulloch and Cain (1989). One can proceed generally by
making the sequence {Zi } of Equation (26.10) an autocorrelated time series.

A more complex SDE model is described by a functional stochastic differential equation

dr(t) = −∇V(r(t)|Ht)dt + σ (r(t)|Ht)dB(t)

with Ht = {(ti , r(ti )), ti ≤ t} as the history up to time t. A corresponding discrete approxi-
mation is provided by

r(ti+1) − r(ti ) = −∇V(r(ti )|Hti )(ti+1 − ti ) + σ
√

ti+1 − ti Zi+1

with the Zi again independent standard Gaussians. With this approximation, a likelihood
function may be set down directly and, thereby, inference questions addressed.

It may be that the animals are moving such great distances that the spherical shape of the
Earth needs to be taken into account. One model is described in Brillinger (1997). There may
be several interacting particles. In this case, one would make the SDEs of the individual
particles interdependent. (References include Dyson (1963) and Spohn (1987).)

26.8 Summary

Trajectories exist in space and time. One notices them in many places and their data have
become common. In this chapter, two specific approaches have been presented for analyzing
such data, both involving SDE motivation. In the first approach, a potential function is
assumed to exist with its negative gradient giving the SDE’s drift function. The second
approach involves setting up a grid and approximating the SDE by a discrete Markov
chain moving from pixel to pixel. Advantages of the potential function approach are that the
function itself is scalar-valued, that there are many choices for its form, and that knowledge
of the physical situation can lead directly to a functional form.

Empirical examples are presented and show that the potential function method can be
realized quite directly.
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27.1 Introduction

Data assimilation refers to the statistical techniques used to combine numerical and sta-
tistical models with observations to give an improved estimate of the state of a system
or process. Typically a data assimilation problem has a sequential aspect where data as it
becomes available over time is used to update the state or parameters of a dynamical sys-
tem. Data assimilation is usually distinguished from more traditional statistical time series
applications because the system can have complicated nonlinear dynamical behavior and
the state vector and the number of observations may be large. One of its primary roles is in

477
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estimating the state of a physical process when applied to geophysical models and physical
measurements. Data assimilation has its roots in Bayesian inference and the restriction to
linear dynamics and Gaussian distributions fits within the methods associated with the
Kalman filter. Because data assimilation also involves estimating an unknown state based
on possibly irregular, noisy, or indirect observations, it also has an interpretation as solving
an inverse problem (e.g., Tarantola, 1987). One goal of this chapter is to tie these concepts
back to a general Bayesian framework.

One of the most successful applications of data assimilation is in numerical weather
prediction where a large and heterogeneous set of observations are combined with a
sophisticated physical model for the evolution of the atmosphere to produce detailed and
high resolution forecasts of weather (see, e.g., Kalnay, 2002, for an introduction). The ap-
plication to weather forecasting and in general to assimilation of atmospheric and oceano-
graphic observations has a distinctly spatial aspect as the processes of interest are typi-
cally three-dimensional fields. For this reason, it is important to include this topic in this
handbook. Although there are other applications of assimilation, such as target tracking
or process control, and a more general class of Bayesian filtering methods (see Wikle and
Berliner, 2006; Doucet and De Freitas, 2001), such as particle filters, these topics tend not
to emphasize spatial processes and so are not as relevant to this handbook. The reader is
referred to more statistical treatments of state–space models in West and Harrison (1997)
and Harvey, Koopman, and Shepard (2004), but again these general texts do not focus on
the large spatial fields typical in geophysical data assimilation.

Spatial methods in data assimilation typically involve non-Gaussian fields and infer the
spatial structure dynamically from a physical model. In this way, the dynamical model
and a statistical model are connected more closely than in a standard application of spatial
statistics. In addition, the sheer size of data assimilation problems requires approximate
solutions that are not typical for smaller spatial datasets. In this chapter, these differences
will be highlighted by reviewing the principles behind current methods. We also point
out some new areas where more standard space–time statistical models might be helpful
in handling model error. A large-scale example for the global atmosphere is included at
the end of this chapter to illustrate some of the details of practical data assimilation for
atmospheric prediction.

27.2 Bayesian Formulation of Data Assimilation

The basic ingredients of a data assimilation problem are the state vector giving a complete
description of the system or process and a vector of observations made on the system. In
addition, one requires conditional distributions for propagating the system forward in time
and for relating the observations to the system state. This overall organization is similar
in concept to a Bayesian hierarchical model (BHM) (Wikle, 2009) and is known as a state–
space formulation in the context of Kalman filtering. In either interpretation, we have an
observation level that relates the observed data to the (unobserved) state of the system and
a supporting, process level describing the evolution of the state over time. Throughout this
discussion, we also point out some parallel terminology from the geosciences. In particular,
the data assimilation process is separated into an update or analysis step and a forecast step.
This distinction is helpful because most of the spatial statistical content is in the update step.
In geoscience applications, the state vector is usually a multivariate spatial field on a regular
grid with observations being irregular and noisy measurements of some components, or
functions of the components. Typically, the forecast step is completed by a deterministic,
physically based model.
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27.2.1 Bayes Theorem

To introduce the Bayesian statistical model, we will use a bracket notation for distributions
where square braces denote a probability density function (pdf). Accordingly, [Y] is the
pdf for the random variable Y and [Y|X] the conditional pdf for the random variable Y
given the random variable X. Let xt denote the state vector at time t and yt be a vector
of observations available at time t. To streamline the exposition, assume that the times are
indexed by integers, t = 1, 2, . . ., although handling unequally spaced times does not add
any fundamental difficulty. We will assume the likelihood: [yt|xt] and a reference or prior
distribution for the state [xt]. In the geosciences, [xt] is also know as the forecast distribution
because it has been derived from forecasting the state based on data at prior times. The joint
distribution of observations and the state is the product [yt|xt][xt] and by Bayes theorem:

[xt|yt] = [yt|xt][xt]
[yt]

. (27.1)

27.2.2 The Update Step

The first part of the assimilation process is to apply Bayes theorem (27.1) to obtain the pos-
terior, [xt|yt]. In other words, this is the conditional distribution of the system state given the
observations at time t. The prior distribution for the state is updated in light of information
provided by new observations. This result is the analysis pdf in a geoscience context. Here
the term analysis originates from the analyzed fields used to assess the current state of the
atmosphere for weather forecasting. Although (27.1) is strictly a Bayesian formulation, it
should be noted that if the prior, [xt], has a frequency interpretation, then the analysis will
also have frequentist content. Typically, practitioners are concerned about the skill of the
assimilation and so make a direct comparison between the center and spread of the analysis
density and the observed state of the system. We will illustrate this point of view in the
atmospheric example at the end of this chapter.

27.2.3 Forecast Step

The second part of the assimilation process is to make a forecast at a future time, e.g., t+1. In
general, we assume that the dynamics of the state process are known and can be abstracted
as [xt+1|xt]. This Markov property implies that future states of the system only depend on
the current state and is appropriate for many physical processes. The forecast distribution
is then

[xt+1|yt] =
∫

[xt+1|xt][xt|yt]dxt. (27.2)

The mean of this distribution could be used as a point forecast of the state and the pdf
quantifies the uncertainty in the forecast.

27.2.4 Assimilation Cycle

At this point we have come full circle in the assimilation cycle. Confronted with new
observations at time t + 1, say yt+1, one just identifies [xt+1] with the forecast pdf and ap-
plies Bayes theorem. Update and forecast steps are repeated as time advances and new
observations arrive. An important concept to draw from this process is that spatial infor-
mation about the distribution of xt can be generated in (27.2) from the dynamics of the
process. This inheritance is explicit in considering the special case of the Kalman filter
linear equations. Although one needs to prescribe a spatial prior explicitly for x1 in the first

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 14:33 C7287 C7287˙C027

480 Handbook of Spatial Statistics

update, often this initial information is discounted by subsequent update/forecast cycles
with more observations.

One subtlety in this process is the assumption that the prior contains all information about
past observations before time t. Equivalently, we are assuming that if the observations at
time t are conditioned on the state at time t, then they are independent. In bracket notation,

[yt , ys |xt , xs] = [yt|xt][ys |xs]. (27.3)

Given this conditional independence and updates found by Bayes theorem, the sequen-
tial assimilation process outlined above will result in a posterior that is the conditional
distribution of the current state based on all past observations.

The reader familiar with complex Bayesian models containing hierarchies and many pa-
rameters may find this sketch incomplete because it leaves out the issues of parameters
in the likelihood and hyperparameters in the priors. The parameters for ensemble infla-
tion, however, are an example of an important set that are estimated by some methods
(see Section 27.6). In data assimilation applied to geophysical problems, especially ones
in forecasting, there is less emphasis on formal parameter estimation. This is due to the
difficulty in applying Bayesian methods to large problems, but also due to the opportunity
to tune a method to a particular problem. For example, in numerical weather prediction
one is working with a particular numerical model and a predictable stream of future obser-
vations. Forecasts can be made and compared to the observations at that time and so the
effects of tuning parameters can be evaluated on an ongoing basis. The forecasting skill can
be quantified directly by comparison of forecasts to observations. Once the data assimila-
tion has been tuned one would expect similar forecast skill in the future if the model and
observation stream stay constant. In this context, the choice of parameters becomes more
informal with forecast skill used as a guide and the experience of numerous cycles of the
forecast and update steps.

Throughout this discussion, we take the perspective of numerical weather forecasting
where one is interested in future predictions of the state and does not have observations at
later times to update xt. However, in a retrospective analysis, one would use past, present
and future observations with respect to time t for updating the state xt. This process is
termed smoothing as opposed to forecasting, which is termed filtering. Given the Markov
assumptions for propagating the state and conditional independence for the observations,
the Bayesian computation for smoothing simplifies to a forward pass through the ob-
servation sequence followed by a backward pass through the sequence updating [xt|yt]
with yt+1. For large geophysical problems, exact smoothing is not feasible due to the dif-
ficulties of running the model backwards in time, and approximations are needed. We
suggest one possible approximate smoother as an extension of the ensemble Kalman filter in
Section 27.4.

27.2.5 Sequential Updating

Up to now we have assumed the full vector of observations is assimilated in a single
application of Bayes theorem. An important feature of this problem is that the update
can be performed sequentially on the components of yt provided that the components are
conditionally independent given xt and that the posterior is computed exactly. To make this
explicit, generically split the observation vector into two parts yt = (Y(1) , Y(2)) and assume
the conditional independence among observations:

[yt|xt] = [Y(1) , Y(2)|xt] = [Y(1)|xt][Y(2)|xt].

The full posterior for the update can be rewritten as

[xt|yt] ∝ [yt|xt][xt] ∝ [Y(2)|xt][Y(1)|xt][xt] ∝ [Y(2)|xt]
(
[Y(1)|xt][xt]

) ∝ [Y(2)|xt][xt|Y(1)].
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In words, this string of proportions indicates the full posterior can be obtained by first
finding the posterior by updating with respect to Y(1) and then using this intermediate result
as a subsequent prior to update with respect to Y(2) . Since Y(1) and Y(2) are an arbitrary split
of yt, by induction, one can show rigorously that the full posterior can be found by updating
with each component of yt sequentially. Each update can involve a scalar observation
and the posterior computation can simplify greatly when this is done. It is important to
emphasize that a sequential update is only valid under conditional independence among
the components of the observation vector, but, if this holds the order of the sequential,
updating does not matter. An intriguing connection with spatial statistics is that this same
sequential result can be used for Bayesian spatial prediction and there is the potential to
transfer the efficient parallel algorithms for this approach to find approximate solutions for
large spatial problems.

27.3 The Kalman Filter and Assimilation

The Kalman filter (KF) was first developed by Kalman (1960) and Kalman and Bucy (1961)
in an engineering context and as a linear filter. Although the KF can be interpreted as an
optimal linear estimator, to streamline this discussion, we will add the assumption of a joint
Gaussian distribution to fit into the Bayesian paradigm given above. (See Jazwinski, 1970,
for more background.)

27.3.1 The KF Update Step

Assume that [yt|xt] is multivariate normal with mean vector Hxt and covariance Σo . H is
a known matrix that maps the state into the expected value of the observations and Σo is
the observation error covariance matrix. (Both H and Σo can depend on t, although we will
not add this additional index.) This conditional distribution can also be represented as

yt = Hxt + et , (27.4)

where now et ∼ N(0, Σo). As mentioned above, a subtle point assumed here is that et are
uncorrelated over time and independent of the state. Without loss of generality Σo can be
assumed to be diagonal by redefining y and H through a linear transformation. We will
further assume that [xt] ∼ N(μ f , Σ f ) where “f” indicates this is the forecast distribution.
The update step yields a distribution that is again multivariate normal [xt|yt] ∼ N(μa , Σa ).
Here the “a” indicates the analysis distribution and the mean and covariance are

μa = μ f + [
Σ f HT (HΣ f HT + Σo)−1] (yt − Hμ f ) (27.5)

and
Σa = Σ f − Σ f HT (HΣ f HT + Σo)−1 HΣ f . (27.6)

The matrix expression in square brackets in (27.5) is the Kalman gain and transforms a
difference between the observation vector and its expectation with respect to the forecast
distribution into an adjustment to the state. To derive these expressions, note that xt and
yt are jointly distributed multivariate normal and (27.5) and (27.6) can be derived from the
properties of the conditional multivariate normal.

Equation (27.5) and Equation (27.6) are the same as the equations for a spatial conditional
inference. Interpreting the state vector as being values of a spatial field on a regular grid,
μa is the conditional mean for x given the observations and Σa the conditional covariance
matrix. Here one interprets the “prior” N(μ f , Σ f ) as a Gaussian process model with Σ f
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being constructed from a spatial covariance function. The important distinction for data
assimilation is that Σ f is generated by the process, not from an external spatial model. This
becomes clear in examining the forecast step for the linear KF.

27.3.2 The KF Forecast Step

For the forecast step for the KF, assume that the process evolves in a linear way from t to
t + 1, possibly with an additive Gaussian random component

xt+1 = Lxt + ut. (27.7)

Here ut ∼ N(0, Σm) independent of xt and L is a matrix. Both L and Σm can depend on
t. Based on all these assumptions, it is straightforward to conclude that the forecast pdf is
N(Lμa , LΣa LT +Σm). Scrutinizing the forecast covariance matrix, one sees that LΣa LT will
be based on the previous forecast covariance matrix appearing in (27.6) and will also inherit
the dynamical relationship from the previous time. Thus, in the situation of assimilation for
a space–time process the spatial covariance for inference is built up sequentially based on
past updates with observations and propagating the posterior forward in time as a forecast
distribution. It is important to realize that this spatial information is the difference or error
between the conditional mean and the true field and is not the covariance of the process
itself. For example, if the observations are both dense and accurate and Σm is small, the fore-
cast covariance can be much smaller and have less structure than the covariance for xt itself.

27.3.3 Sequential Updates

In the previous section, it was stated that the update can be done sequentially under con-
ditional independence of the observations. It is helpful to describe how the KF update sim-
plifies when the components of yt are considered sequentially. Conditional independence
holds among the components of yt given our choice of Σo being diagonal and Gaussian
distributions. Let i index the components of yt and {σ 2

i } be the diagonal elements of Σo .
To notate the sequential aspect of the update set μ0

a = μ f and Σ 0
a = Σ f and let μi−1

a and
Σ i−1

a be the prior mean and covariance used in the update with the ith component of the
observation vector.

With this notation, the sequential update for the ith observation with respect to Equa-
tion (27.5) simplifies to

μi
a = μi−1

a + Σ i−1
a hi

[
yt,i − hT

i μ
i−1
a

hT
i Σ i−1

a hi + σ 2
i

]
,

where hi is the ith row of H and the expression in brackets is a scalar. The update for the
covariance matrix is also simple and is a rank one correction to Σ i−1

a . This form is important
for the ensemble adjustment Kalman filter used in the example.

27.3.4 Problems in Implementation of the KF

There are two major difficulties in implementing the standard KF in geophysical data
assimilation problems: handling large matrices and accounting for nonlinear dynamics.
Typically, global or high resolution problems have large state vectors. For example, just
considering an atmospheric model at medium resolution (grid cells of about 150 × 150 km
at the equator and 26 vertical levels) the atmosphere is divided into a three-dimensional
grid of 128 × 256 × 26 each having at least four variables (temperature, horizontal wind
components and water vapor) and a field of surface pressure. Thus, x has more than 3
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million elements. In addition, the observation vector typically has on the order of 105

elements with operational weather forecasting systems accommodating on the order of
107 elements. Dimensions of this size prohibit computing or storing the elements of the
covariance matrices from the update and forecast steps and so it is not possible to implement
the KF exactly for large problems. One alternative is to fix Σ f with a convenient form and
this is known as three-dimensional variational data assimilation and is described below.

Besides direct problems with linear algebra, the KF poses difficulties with nonlinear
models for the dynamics. For atmospheric models, evolution over time is represented as a
complicated nonlinear transformation [xt+1|xt] = Γ (xt , t) based on the nonlinear equations
of fluid dynamics and thermodynamics. Γ is implicitly defined by a computer code that
implements a discretized model and usually has no closed form. Thus, even if Γ is a
deterministic function, calculating a closed form for the forecast distribution, essentially
[Γ (xt)|xt], is not possible. This problem is compounded by the fact that x may have high
dimension as well. Finally, because of the nonlinear action of Γ , one may expect that the
resulting forecast distribution will not be normal and so the assumptions of multivariate
normality within the update step will not hold.

In summary, although providing closed forms for the posterior and forecast distribu-
tions in a linear situation, the KF is not practical for the kinds of assimilation problems
encountered in some geophysical settings. Some strategy for an approximate solution is
needed. Ensemble Kalman filters approximate the posterior distribution with a discrete
sample. Another approach is to avoid large covariance matrices by not updating the fore-
cast covariance and this leads to variational methods of assimilation. We present both of
these practical alternatives in the next two sections.

27.4 The Ensemble Kalman Filter

The term ensemble is used in the geosciences to refer to a sample either randomly drawn
from a population or deliberately constructed. In data assimilation, an ensemble of system
states is used as a discrete approximation to the continuous, and often high-dimensional
distribution for x. The basic idea of an ensemble Kalman filter is to use a sample of states to
approximate the mean vectors and covariance matrices. Each ensemble member is updated
by an approximation to Bayes theorem and is propagated forward in time using Γ giving
a new ensemble for approximating the forecast distribution. This idea was proposed by
Evensen (1994), but has been developed by many subsequent researchers. It is a form of
particle filter (Doucet and De Freitas, 2001) with the ensemble members being “particles.”
One departure from standard particle filtering is that the ensemble members are modified
at every update step rather than just being reweighted. It should be noted at the outset that
this is a rich area of research and application within the geosciences and the overview in this
section cannot review many of the innovations and developments for specific problems.
The details of implementing the update step with ensembles are important, especially when
the ensemble size is small and one is concerned about the stability of the filter over longer
periods of time. The example at the end of this chapter gives some idea of practical issues
and performance.

27.4.1 Ensemble Update

The ensemble update step holds the main statistical details of the ensemble KF. By contrast,
the forecast step for ensembles is both simple and explicit. To simplify notation, we will
drop the time subscript because the computations are all at time t. Let {x j

f } for 1 ≤ j ≤ M
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be an M member ensemble providing a discrete representation of the forecast pdf and {x j
a }

the corresponding ensemble for the analysis pdf (or posterior). The ensemble KF provides
an algorithm using the observations and the update equations to transform the forecast
ensemble into the analysis ensemble and so finesses the problem of working directly with
high-dimensional and continuous pdfs. If the dimension of the state vector is N, then the
storage for an ensemble is on order of M × N and can be much smaller than storing dense
N × N covariance matrices. Examining the Kalman filter equations, the update Equation
(27.5) and Equation (27.6) depend on the forecast mean μ f and the forecast covariance Σ f .
Given an ensemble, one replaces μ f by the sample mean and Σ f by an estimate based on the
sample covariance. Solving Equation (27.5) results in an approximate posterior mean that
we will denote μ̂a and this will be taken as the sample mean of the updated ensemble. To
understand how this is different from the exact KF computations, we give some details of
this solution. Let x̄ f be the ensemble mean forecast vector and

Uf = (x1
f − x̄ f , x2

f − x̄ f , . . . xM
f − x̄ f ) (27.8)

be a matrix of the centered ensemble members. The sample forecast covariance has the
form Σ̂ f = 1

M−1Uf UT
f . Note that this estimate has effective rank M − 1 and, when used in

the update equations, the linear algebra can exploit this reduced rank. Specifically, the full
forecast covariance matrix need never be explicitly computed. Moreover, in using iterative
methods to solve the linear system in Equation (27.5) the multiplication of (HΣ̂ f HT + Σo)
by an arbitrary vector can be done efficiently because of the reduced rank.

The other half of the update step involves the analysis covariance. The concept is to
examine the form in Equation (27.6) and modify the ensemble members to have a sam-
ple covariance close to this expression. There are two main strategies for doing this: a
Monte Carlo approach, known as perturbed observations and a deterministic approach,
known as a square root filter. For perturbed observations, one generates M random vectors,
ε j ∼ N(0, Σo) that are further constrained so that the mean across j is zero. Now, form M
versions of “perturbed” observation vectors by adding these random deviates to the actual
observation: y j

t = yt + ε j . To update each ensemble member, apply the right side of Equa-
tion (27.5) with the substitutions x j

f for μ f , Σ̂ f for Σ f and y j
t for yt obtaining an analysis

ensemble. Because the perturbed observations have zero sample mean, the ensemble mean
from this method will reproduce the posterior mean μ̂a . Moreover, as M goes to infinity,
the mean and covariance of the ensemble will match that of the posterior (see Furrer and
Bengtsson, 2006).

Deterministic updates of the ensemble fall under the general ideas of square root Kalman
filters (Tippett, Anderson, Bishop, Hamill et al., 2003). Given a matrix, A, the updated
ensemble is generated through a linear transformation: [x1

a | . . . |xM
a ] = Uf A+ μ̂a . Note that

this ensemble will have mean vector μ̂a and the key idea is to choose A so that the sample
covariance approximates the expression in Equation (27.6). In other terms, U AATUT = Σ̂a .
A is only determined up to an orthogonal transformation, but the choice is important in
preserving physical structure of the state vectors as realizable states of the system. Besides
a postmultiplication of U there is also the option to premultiply this matrix and this is
the form of the ensemble adjustment Kalman filter (Anderson, 2001) and that of Whitaker
and Hamill (2002). See Livings, Dance, and Nichols (2008) for some discussion of choices
of A that have an unbiasedness property. For large observation vectors the computations
for an ensemble square root filter may still be extensive. One approximation is to update
the components of the state vector in a moving window of observations and is termed
the local ensemble transform Kalman filter (LETKF) (Szunyogh, Kostelich, and Gyarmati,
2008).
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27.4.2 Ensemble Forecast Step

Given an ensemble approximating the analysis distribution, we now describe the forecast
step. An elegant property of ensemble methods is that the forecast step is exact to the extent
that the discrete ensemble approximates the continuous distribution of the analysis pdf.
Suppose that {x j

a ,t} are a random sample from [xt|yt]. Let x j
f,t+1 = Γ (x j

t , t) be the states
obtained by propagating each member forward to t + 1. By elementary probability, this
forecast ensemble will be a random sample from [xt+1|yt] without requiring any additional
assumptions on the distribution of the posterior.

27.4.3 Practical Issues for Small Ensemble Sizes

It is well known that for small ensemble sizes the sampling variability in Σ̂ f over the course
of several update/forecast cycles can induce substantial error (Mitchell and Houtekamer,
2000). A common effect is the collapse of the ensemble to the mean value. This occurs
because errors in the covariance tend to produce biases that favor less spread among the
ensemble members. An artificially small forecast covariance results in the Kalman gain
matrix decreasing the contribution of the observations to the update. The net result is a
filter that ignores information from the observations and just propagates the ensemble
forward in time. This behavior is known as filter divergence.

There are two important principles to counter this behavior in practice:

• Localization of the ensemble covariance estimate to improve the accuracy by reducing
the effects of sampling

• Inflation to increase the spread of the ensemble

Like other aspects of ensemble methods, these two principles are implemented in many
ways and we will just review some approaches that have a statistical or spatial thread.

27.4.4 Localization of the Ensemble Covariance

The simplest form of localization is to taper the sample covariance matrix based on physical
distances between an observation and state. The rationale is that beyond a certain distance
scale the assimilation errors for a spatial field should not be dependent and thus the corre-
sponding elements of the forecast error covariance matrix should be set to zero and values
at intermediate distances should be attenuated. (See Houtekamer and Mitchell (2001) and
Hamill, Whitaker, and Snyder (2001) for some background on localization.) Assume that
each component of the state vector xk is associated with a location uk and dk,k ′ is the distance
between uk and uk ′ . A tapered estimate is the direct (or Schur) matrix product of Σ̂ f with a
correlation matrix

[Σ̃ f ]k,k ′ = [Σ̂ f ]k,k ′ φ(dk,k ′ ), (27.9)

where φ is a correlation function giving a positive definite correlation matrix. Based on
the properties of the direct product, Σ̃ f will remain nonnegative definite and to improve
the computational efficiency the tapering is usually done with a compactly supported
kernel (Gaspari and Cohn, 1999). That is, φ(d) is identically zero for d sufficiently large,
to introduce sparsity in the product covariance matrix. The result of this tapering is a
covariance estimate that is biased, but has less variance. Also introducing sparsity facilitates
the matrix computations.
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27.4.5 Inflation of the Ensemble Spread

Inflation is the operation of adjusting the ensemble spread beyond what is prescribed by
the KF update formula to give a more appropriate measure of the uncertainty in the state.
This adjustment can compensate not only for sampling variation of the ensemble, but also
in some cases for model error when the stochastic component, ut from Equation (27.7) has
not been explicitly included. A useful assumption is that the forecast ensemble correlation
structure is correct, but that estimates of the variance of individual state vector components
may be too small. After the model advance, but before the update step, the prior ensemble
members are inflated so that

x j, inflated
f = √

λ j (x
j
f − μ

j
f ) + μ

j
f . (27.10)

There are fewer strategies for this than localization and while being effective these are often
global adjustments (Hamill et al., 2001; Houtekamer and Mitchell, 2001). For example, a
standard approach is to multiply Σ̃ f by a scalar that is greater than one, i.e., λ j ≡ λ > 1. In
the example at the end of this chapter, however, we describe a method of inflation that is
based on sequentially inflating the state vector by a comparison of the forecast mean and
variance to new observations (Anderson and Collins, 2007). In general, there is a need for
more work on statistical models and algorithms for handling inflation. Closely related to
this issue is the need for statistical models to represent model error.

27.5 Variational Methods of Assimilation

Variational methods are more established than ensemble variants of the Kalman filter or
a Bayesian framework and have been successful in operational settings for making rapid
and reliable weather forecasts using large numerical models and massive data streams
(for example, see Rabier, Jarvinen, Klinker, Mahfouf et al., 2000). Essentially, variational
methods estimate the state of the system by minimizing a cost function. As a starting
point, we identify the cost function problem that is equivalent to the update step in the KF
and in terms of spatial statistics this will be equivalent to kriging. However, despite this
connection, variational approaches often focus on crafting a cost function without relying
on a Bayesian interpretation for motivation.

27.5.1 Three-Dimensional Variational Assimilation

Under the assumptions of linearity and multivariate normality, the posterior of [xt|yt] is also
multivariate normal. Moreover, the mean of a Gaussian density is also the mode and so the
posterior mode will also be the posterior mean in this case. Finally, note that maximizing
[xt|yt] is the same as minimizing minus the log of the joint distribution, −(log([yt|xt]) +
log([xt])), and where terms that do not depend on xt or yt can be omitted. Putting these
remarks together we have motivated the variational problem:

min
x

(1/2)(yt − Hx)TΣo
−1(yt − Hx) + (1/2)(x − μ f )TΣ f

−1(x − μ f ). (27.11)

The minimizer of this cost function is the variational estimate of the state. It is a standard
exercise to show that the minimum is

x̂t = (HTΣo
−1 H + Σ f

−1)−1 HT (yt − Hx) + μ f . (27.12)

Based on the Sherwood–Morrison–Woodbury formula (Golub and Van Loan, 1996), this
can be shown to be the same as the KF update in (27.5). Thus, we have an alternative way
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of characterizing the mode of the analysis distribution. Since the kriging equations are the
same as (27.5), we have also outlined how kriging can be interpreted as the solution to a
variational problem.

This kind of cost function appears in many different areas and in general is characterized
as a regularized solution to an inverse problem. xt is estimated from data yt by “inverting”
H. A regularization term involving Σ f is added to make this a well-conditioned problem
and ensures a unique minimum to the cost function. Inverse problems cover a large range
of applications in many different areas of science and engineering, such as tomography
and remote sensing, and variational methods of assimilation are just one special case. (See
Tarantola, 1987 for some background.) From the perspective of this article, we can trace
the regularization to the prior distribution for the state vector. Alternatively, this term can
be motivated by building in prior information about the state vector as an extra penalty in
the cost function. For example, if Σ f is a covariance function for a smooth spatial field, then
as a regularization it will constrain the solution to also be smooth.

In the atmospheric sciences when x includes three-dimensional fields this is known as
3DVAR. The important difference between 3DVAR and the update from the KF is that typ-
ically Σ f is fixed and termed a background error covariance. Thus, covariance information
is not propagated based on the dynamics and the forecast step only involves Γ (x̂t). In the
simplest form of 3DVAR, there are no companion measures of uncertainty. This method
has the advantage that it can be easily tuned by modifying or estimating parameters in
the background covariance (e.g., Dee and de Silva, 1999) and by incorporating physical
constraints with additional cost terms.

An extension of 3DVAR is to add different time periods to the cost function. This is known
as 4DVAR in the atmospheric sciences (Le Dimet and Talagrand, 1968; Lewis and Derber,
1985) and seeks to find a single trajectory of the model that is consistent with observations
at multiple times. An example of the cost function starting at t = 1 and going through
t = T is

min
x1

(
1
2

) T∑
t=1

[
(yt − Htxt)TΣo

−1(yt − Htxt)]
] +

(
1
2

)
(x1 − μb)TΣb

−1(x1 − μb). (27.13)

Here μb and Σb refer to a background mean and covariance at the start of the period and
provide some form of prior information on the initial state of the system. Implicit in this cost
is that subsequent state vectors are found using a dynamical model, e.g., xt+1 = Γ (xt , t),
that is deterministic. Despite the possible limitations from a high-dimensional state vector
and a complex dynamical model, this solution has an appealing interpretation. Based on
initial conditions, x1, the solution is a single trajectory through time that best fits the obser-
vations. The only regularization is done on the initial conditions and the remaining times
are constrained by the dynamical model. In general form, a statistician would recognize
4DVAR as a large nonlinear ridge regression problem (where the parameters are x1). Note
that, as in 3DVAR, only a point estimate is produced and measures of uncertainty need to be
generated by other methods. For problems with the complexity of an atmospheric model,
4DVAR analysis is a difficult computational problem partly because finding the minimum
is a nonlinear problem and also the gradient of Γ may be hard to formulate or compute.
Despite these hurdles, 4DVAR systems have been implemented as the primary assimila-
tion algorithm in large operational models for weather forecasting (e.g., Rabier et al., 2000).
Current extensions of 4DVAR include adding a model error process to the variational cost
function. This feature, termed a weak constraint, allows the estimated states at each time to
deviate from a single trajectory based on the initial condition (see, for example, Zupanski,
1996). However, this potential benefit comes with the difficulty of specifying a space–time
statistical model for the numerical model error process.
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27.6 Ensemble Filter for an Atmospheric Model

This section describes a specific ensemble-based method and its application to a large
numerical model. The sketch of this method, known as the ensemble adjustment Kalman
filter (EAKF), includes both localization and inflation and will illustrate some of the
principles common to many other practical approaches (Harlim and Hunt, 2007). The at-
mospheric model and observations used in this example are at the scale of an operational
system used to create global and complete fields of the troposphere. The size of this problem
is several orders of magnitude larger than typical applications of spatial statistics. The Data
Assimilation Research Testbed (DART) (http://www.image.ucar.edu/DAReS/DART) is
an open software environment that can be used to reproduce this analysis.

27.6.1 Ensemble Adjustment Kalman Filter

The EAKF is based on a sequential update algorithm where an observation vector is as-
similated as a sequence of scalar problems (Anderson, 2001). It may be surprising that this
is efficient. In many geophysical applications, one can take advantage of the observations
errors being uncorrelated and a (great circle) distance-based tapering to induce sparsity in
the elements of Σ f . Also, sequential updating and an ensemble approximation to the pos-
terior are amenable to parallel computation, a necessary requirement for large problems
(Anderson and Collins, 2007). The EAKF is a variant of the square root filter and thus the
modifications to the ensemble are deterministic. In the case of scalar updates, the adjust-
ment to each ensemble member is done to minimize the difference between its prior and
updated values. This is in contrast to an approach such as perturbed observations where
independent random components are added to each ensemble member and can produce
more random shuffling among the ensemble members. Other square root filters may also
induce significant differences between the forecast and analysis ensemble members.

27.6.2 Covariance Localization and Inflation

The main technique for localization will be recognized by a statistician as a shrinkage and
decimation of the sample correlations found from the ensemble. The elements of Σ̂ f are
tapered based on distance and further attenuated based on an approximate resampling
strategy where the ensemble is divided up in a small number of subsets and a shrinkage
parameter is estimated by cross-validation (Anderson, 2007). In large problems with dense
observations, one anticipates that the data will provide substantial information of the at-
mospheric state over time. Moreover, this state information can be reinforced by a physical
model. From this perspective, it is more important that localization be conservative in not
updating components of the state vector due to spurious correlations in Σ̂ f . Over multiple
assimilation cycles these errors accumulate to cause filter divergence.

Inflation of the ensemble follows by estimating a vector of inflation values λ that scale
each component as in Equation (27.10). The spatial adaptation is implemented in a manner
to be computationally feasible and parallel in the state vector components and is a good
illustration of an algorithm that is effective, but does not necessarily follow directly from first
statistical principles. For a new observation yt,i , let σ̂ 2 = hT

i Σ̂ f hi be the forecast ensemble
variance and ŷ = hT

i x̂ f its ensemble forecast mean. With this notation, we have the forecast
error (yt,i − ŷ) with an expected variance of σ 2+σ 2

o without inflation. For the j th component
of the state vector, a pseudo-likelihood is taken as

[yt,i |λ j ] ∼ N( ŷ, θ2) (27.14)
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with

θ2 =
[
1 + γ j (

√
λ j − 1)

]2
σ 2 + σ 2

o (27.15)

and γ j is the correlation between x j and yt,i based on the ensemble forecast covariance. A
normal prior is used for λ j and the posterior is approximated by a normal. The intuition
behind the choice of Equation (27.15) is a pseudo-likelihood criterion that only links the
inflation and the forecast error if the correlation between the actual state and the observation
is large. Although this expression can be motivated in the case of a single-state component,
it is an approximation when x has more than one element. When γ = 1 and λ ≡ λ is a
constant, the variance of the forecast error is parameterized as λ2σ 2 +σ 2

o . Thus, in this limit
(27.15) will reduce to a more conventional likelihood and give an approximate Bayesian
inference for a scalar inflation of the forecast variance.

27.6.3 Assimilation with the Community Atmospheric Model

The Community Atmospheric Model (CAM) 3.1 (Collins, Rasch et al., 2004) is a mature
global atmospheric model that forms the atmospheric component of the Community Cli-
mate System Model, a state-of-the-art climate model. For this example, CAM is configured
at a resolution of approximately 256 × 128 on a longitude/latitude grid and has 26 verti-
cal layers. Observations consist of soundings from weather balloons, measurements made
from commercial aircraft, and satellite-derived wind fields, and the initial ensemble was
initialized from a climatological distribution from this season. An 80-member ensemble
was used for the EAKF. Available observations were assimilated every 6 hours over the
period January 1, 2007 through January 31, 2007. Overall the quality of the forecast fields
are comparable to reanalysis data products produced by the U.S. National Center for Envi-
ronmental Prediction and the National Center for Atmospheric Research (Kistler, Kalnay,
Collins et al., 2001) and so are close to the best analyses available for the atmosphere.

DART T85 CAM GPH at 500 hPa

20 to 80 Members for 18Z Jan 14 2007

Contours from 5400 to 5880 by 80

FIGURE 27.1
An illustration of the ensemble spread from an ensemble adjustment Kalman filter, CAM 3.1 and available sur-
face and aircraft observations of the atmosphere. Plotted are the 500 hPa height contours for 20 members of an
80-member ensemble. For this day, the height levels increase from north to south. The spread in the contours at a
particular height is due to variation among the ensemble members.
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FIGURE 27.2
Root mean squared errors (RMSE) for the 500 hPa heights from data assimilation derived using CAM 3.1 over the
period 1/1/2007 through 1/31/2007. RMSE for the ensemble means based on assimilation with spatial inflation
of the ensemble (light solid) and without adaptive inflation (dark solid). Dashed curves are the mean spread in
the ensemble members.

The following figures summarize some of the statistical results. Figure 27.1 is an example
of one of the fields that describe the state of the atmosphere, the 500 hPa geopotential
height field and describes the mid-level structure in the troposphere. The trough across the
Rocky Mountain region of the United States and Canada indicates a large low pressure
depression and was associated with a notable ice storm in the area including Texas. Based
on geostrophic balance, the large-scale flow at this level is along the contours of equal height
(i.e., constant pressure) and in a counterclockwise motion about the depression. The spread
among the contours of the ensemble members suggests the variability in the estimated
field and the variability of the ensemble members at the second lowest height contours
suggest the uncertainty in the extent of the low pressure region. The tightening of contours
over the eastern United States as compared to the spread over Mexico or the Pacific Ocean
is related to a denser observation network in the United States. It is still an active area of
research to relate the ensemble spread to frequency-based measures of confidence; however,
this amount of variation is consistent with a stable assimilation method that avoids filter
divergence and adjusts to different data densities. Figure 27.2 illustrates the effect of adding
inflation in terms of the global root mean squared error for the height of the atmosphere at
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FIGURE 27.3
The field of spatial inflation values, λ, at the end of the assimilation period.
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a pressure of 500 hPa. Here, adaptive inflation increases the accuracy in the ensemble mean
and at the same time produces ensemble members with larger spread. It is interesting that
better filter performance can be obtained with a larger range in the ensemble and suggests
that the inflation may also contribute to better characterizations of the forecast uncertainty.
Figure 27.3 is a snapshot of the inflation field (λ) estimated at the end of the assimilation
period indicating how the inflation factor varies over space. One surprise is that a large
inflation is required over North America where there is a high data density. At first it seems
contradictory that a data-rich area, partly due to intensive aircraft observations, should
require inflating the spread, and hence the uncertainty in the state. However, this effect can
be explained by the presence of model error. Without inflation, model errors are ignored
and, given a dense data region, the forecast variance will be small, especially as sampling
errors accumulate through the sequential updating of the EAKF. A large amount of data
in this region also allows the method to identify the discrepancy between the forecast
variances and the actual forecast errors and so makes it possible to estimate an inflation
field much different than unity.

It was noticed that adaptive inflation could be improved by building in some tempo-
ral correlation and the Bayesian estimation could be more formally integrated within the
ensemble KF. Both of these are topics of future research. However, these results indicate
that spatially varying parameters that control the assimilation process, even obtained by ap-
proximate or heuristic principles, are important and highlight an additional role for spatial
statistics in data assimilation.
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Part VI

Additional Topics
The objective of Part VI is to collect several important topics that build upon the material
presented in the previous chapters, but in some sense seemed to us to be beyond these earlier
ones. It is increasingly the case that multivariate data are being collected at locations, raising
the issue of dependence between measurements at a location as well as dependence across
measurements in space; hence, the investigation of multivariate spatial processes. Also,
in many, arguably most, practical situations, we work with spatial data layers at different
scales, e.g., at county level, post- or zipcode level, census units, and points (possibly different
sets of point for different layers). The question of interpolation across scales within a layer
and linking these layers to develop a regression model provides the need for approaches to
handle misalignment and the modifiable areal unit problem. Somewhat connected to this is
the issue of sensitivity of inference to spatial scale; dependence at one spatial scale can look
and be modeled very differently from that at another scale. Furthermore, spatial scaling of
inference must be undertaken with considerable care. Therefore, we consider the matter of
spatial aggregation and disaggregation and its impact, usually referred to as ecological bias.
Finally, in many situations there also may be interest in gradients associated with spatial
surfaces, raising interesting analytical challenges when such surfaces are realizations of a
stochastic process rather than explicit functions. A related problem arises from interest in
taking a spatial data layer and imposing boundaries on it. Such boundaries are not viewed
as administrative boundaries, but rather boundaries that reflect sharp changes or steep
gradients in the spatial surface. This topic is known as wombling or boundary analysis and
it is addressed in the last chapter of this handbook.

Chapter 28 takes up the general topic of multivariate spatial process models. Gelfand
and Banerjee review the theoretical issues associated with this problem, particularly the
development of valid cross-covariance functions. They discuss both theoretically moti-
vated specifications as well as constructive approaches for these functions. In addition to
multivariate response spatial regression models, an attractive application is to the setting
of spatially varying coefficient models. Multivariate processes over time are also discussed
and a challenging example is presented. In Chapter 29, Gelfand takes up the modifiable
areal unit problem, reviewing the history in this area but focusing on model-based solu-
tions along with the computational challenges. Chapter 30 addresses the ecological fallacy.
This is a somewhat subtle matter and Wakefield and Lyons point out the variety of biases
and potential misinterpretations that can be introduced if modeling is not carefully con-
ceived. Finally, in Chapter 31, Banerjee deals with gradients and wombling, building the
development of gradients to spatial surfaces from the idea of finite differences, formalizing
gradient processes with associated covariance structure induced by the process model for
the surface itself. Then, boundary analysis is discussed—for point referenced data through
the use of polygonal curves to be employed as boundaries, for areal unit data through
random entries in the proximity matrix.
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28.1 Introduction

Increasingly in spatial data settings there is need for analyzing multivariate measurements
obtained at spatial locations. Such data settings arise when several spatially dependent
response variables are recorded at each spatial location. A primary example is data taken
at environmental monitoring stations where measurements on levels of several pollutants
(e.g., ozone, PM2.5, nitric oxide, carbon monoxide, etc.) would typically be measured. In
atmospheric modeling, at a given site we may observe surface temperature, precipitation,
and wind speed. In a study of ground level effects of nuclear explosives, soil and vegeta-
tion contamination in the form of plutonium and americium concentrations at sites have
been collected. In examining commercial real estate markets, for an individual property
at a given location, data include both selling price and total rental income. In forestry, in-
vestigators seek to produce spatially explicit predictions of multiple forest attributes using
a multisource forest inventory approach. In each of these illustrations, we anticipate both
dependence between measurements at a particular location, and association between mea-
surements across locations.

495
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In this chapter we focus on point-referenced spatial data.∗ To develop multivariate spatial
process models for inference about parameters or for interpolation requires specification of
either a valid cross-variogram or a valid cross-covariance function. Such specification with
associated modeling detail and spatial interpolation is the primary focus for the sequel.

Cross-covariance functions are not routine to specify since they demand that for any
number of locations and any choice of these locations the resulting covariance matrix for
the associated data be positive definite. Various constructions are possible. As we shall see,
separable forms are the easiest way to begin.

Another possibility is the moving average approach of Ver Hoef and Barry (1998). The
technique is also called kernel convolution and is a well-known approach for creating
rich classes of stationary and nonstationary spatial processes, as discussed in Higdon, Lee,
and Holloman (2003) and Higdon, Swall, and Kern (1999). Yet another possibility would
attempt a multivariate version of local stationarity, extending ideas in Fuentes and Smith
(2001). Building upon ideas in Gaspari and Cohn (1999) and Majumdar and Gelfand (2007)
use convolution of covariance functions to produce valid multivariate cross-covariance
functions. An attractive, easily interpreted, flexible approach develops versions of the linear
model of coregionalization (LMC) as in, e.g., Banerjee, Carlin, and Gelfand (2004); Gelfand,
Schmidt, Banerjee, and Sirmans (2004); Grzebyk and Wackernagel (1994); Schmidt and
Gelfand (2003); Wackernagel (2003).

Inference typically proceeds along one of three paths: somewhat informally, using, e.g.,
empirical covariogram/covariance estimates and least squares (with plug-in estimates for
unknown parameters), using likelihood methods (with concerns regarding suitability of
infill or increasing domain asymptotics), and within a fully Bayesian framework (requiring
demanding computation).

In Section 28.2 we will review classical multivariate geostatistics. In Section 28.3 we de-
velop some theory for cross-covariance functions. Section 28.4 focuses on separable cross-
covariance functions while Section 28.5 takes up co-regionalization with an example. Sec-
tion 28.9 elaborates alternative strategies for building valid cross-covariance functions. We
conclude with a brief Section 28.10 discussing multivariate space–time data models.

28.2 Classical Multivariate Geostatistics

Classical multivariate geostatistics begins, as with much of geostatistics, with early work of
Matheron (1973, 1979). The basic ideas here include cross-variograms and cross-covariance
functions, intrinsic co-regionalization, and cokriging. The emphasis is on prediction. A
thorough discussion of the work in this area is provided in Wackernagel (2003). See also
Chiles and Delfiner (1999).

Consider Y(s), a p ×1 vector where s ∈ D. We seek to capture the association both within
components of Y(s) and across s. The joint second-order (weak) stationarity hypothesis
defines the cross-variogram as

γi j (h) = 1
2

E(Yi (s + h) − Yi (s))(Yj (s + h) − Yj (s)). (28.1)

∗ With, say, regular lattice data or with areal unit data, we might instead consider multivariate random field
models. For the latter, there exists recent literature on multivariate conditionally autoregressive models building
on the work of Mardia (1988). See, e.g., Gelfand and Vounatsou (2003) and Jin, Banerjee, and Carlin (2007) for
more current discussion. See also, Chapter 14.
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Implicitly, we assume E(Y(s + h) − Y(s)) = 0 for all s and s + h ∈ D. γi j (h) is obviously an
even function and, using the Cauchy–Schwarz inequality, satisfies |γi j (h)|2 ≤ γi i (h)γ j j (h).

The cross-covariance function is defined as

Ci j (h) = E[(Yi (s + h) − μi )(Yj (s) − μ j )], (28.2)

where we remark that, here, a constant mean μi is assumed for component Yi (s). Note
that the cross-covariance function satisfies |Ci j (h)|2 ≤ Cii (0)C j j (0), but |Ci j (h)| need not
be ≤ Ci j (0). In fact, |Ci j (h)| need not be ≤ |Ci j (0)| because the maximum value of Ci j (h)
need not occur at 0.∗ Similarly, |Ci j (h)|2 need not be ≤ Cii (h)C j j (h). The corresponding
matrix C(h) of direct and cross-covariances (with Ci j (h) as its (i, j)th element) need not be
positive definite at any h though as h → 0, it converges to a positive definite matrix, the
(local) covariance matrix associated with Y(s).

We can make the familiar connection between the cross-covariance and the cross-
variogram. The former determines the latter and we can show that

γi j (h) = Ci j (0) − 1
2

(Ci j (h) + Ci j (−h)). (28.3)

Indeed, decomposing Ci j (h) as 1
2 (Ci j (h) + Ci j (−h)) + 1

2 (Ci j (h) − Ci j (−h)), we see that the
cross-variogram only captures the even term of the cross-covariance function, suggesting
that it may be inadequate in certain modeling situations. Such concerns led to the proposal of
the pseudo cross-variogram (Clark, Basinger, and Harper, 1989; Cressie, 1993; Myers, 1991).
In particular, Clark et al. (1989) suggested π c

i j (h) = E(Yi (s + h) − Yj (h))2 and Myers (1991)
suggested a mean-corrected version, πm

i j (h) = var(Yi (s + h) − Yj (h)). It is easy to show that
π c

i j (h) = πm
i j (h) + (μi − μ j )2. The pseudo cross-variogram is not constrained to be an even

function. However, the assumption of stationary cross-increments is unrealistic, certainly
with variables measured on different scales and even with rescaling of the variables. A
further limitation is the restriction of the pseudo cross-variogram to be positive. Despite
the unattractiveness of “apples and oranges” comparison across components, Cressie and
Wikle (1998) report successful cokriging using πm

i j (h).

28.2.1 Cokriging

Cokriging is spatial prediction at a new location that uses not only information from direct
measurement of the spatial component process being considered, but also information
from the measurements of the other component processes. Journel and Huijbregts (1978)
and Matheron (1973) present early discussion, while Myers (1982) presents a general matrix
development. Corsten (1989) and Stein and Corsten (1991) frame the development in the
context of linear regression. Detailed reviews are presented in Chilès and Delfiner (1999)
and Wackernagel (2003).

Myers (1982) points out the distinction between prediction of a single variable as above
and joint prediction of several variables at a new location. In fact, suppose we start with
the joint second order stationarity model in (28.1) above and we seek to predict, say, Y1(s0),
i.e., the first component of Y(s) at a new location s0. An unbiased estimator based upon
Y = (Y(s1), Y(s2), . . . , Y(sn))T would take the form Ŷ1(s0) = ∑n

i=1
∑p

l=1 λilYl(si ) where we
have the constraints that

∑n
i=1 λil = 0, l �= 1,

∑n
i=1 λi1 = 1. On the other hand, if we sought

∗ We can illustrate this simply through the so-called delay effect (Wackernagel, 2003). Suppose, for instance,
p = 2 and Y2(s) = aY1(s + h0) + ε(s) where Y1(s) is a spatial process with stationary covariance function
C(h), and ε(s) is a pure error process with variance τ 2. Then, the associated cross covariance function has
C11(h) = C(h), C22(h) = a2C(h) and C12 = C(h + h0). We note that delay effect process models find application
in atmospheric science settings, such as the prevailing direction of weather fronts.
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to predict Y(s0), we would now write Ŷ(s0) = ∑n
i=1 Λi Y(si ). The unbiasedness condition

becomes
∑n

i=1 Λi = I . Moreover, now, what should we take as the “optimality” condition?
One choice is to choose the set {Λ0i , 1 = 1, 2, . . . , n} with associated estimator Ŷ0(s0) such
that for any other unbiased estimator, Ỹ(s0), E(Ỹ(s0) − Y(s0))(Ỹ(s0) − Y(s0))T − E(Ŷ0(s0) −
Y(s0))(Ŷ0(s0) − Y(s0))T is nonnegative definite (Ver Hoef and Cressie, 1993). Myers (1982)
suggests minimizing trE(Ŷ(s0) −Y(s0))(Ŷ(s0) −Y(s0))T = E(Ŷ(s0) −Y(s0))T (Ŷ(s0) −Y(s0)).

Returning to the individual prediction case, minimization of predictive mean square er-
ror, E(Y1(s0)−Ŷ1(s0))2 amounts to a quadratic optimization subject to linear constraints and
the solution can be obtained using Lagrange multipliers. As in the case of univariate kriging
(see Chapter 3), the solution can be written as a function of a cross-variogram specification.
In fact, Ver Hoef and Cress (1993) show that πi j (h) above emerges in computing predic-
tive mean square error, suggesting that it is a natural cross-variogram for cokriging. But,
altogether, given the concerns noted regarding γi j (h) and πi j (h), it seems preferable (and
most writers seem to agree) to assume the existence of second moments for the multivariate
process, captured through a valid cross-covariance function, and to use it with regard to
prediction. The next section discusses validity of cross-covariance functions in some detail.
In this regard, the definition of a valid cross-variogram seems a bit murky. In Wackernagel
(2003), it is induced by a valid cross-covariance function (as above). In Myers (1982) and Ver
Hoef and Cressie (1993) the second-order stationarity above is assumed, but also a finite
cross-covariance is assumed in order to bring γi j (h) into the optimal cokriging equations.
Rehman and Shapiro (1996) introduce the definition of a permissible cross-variogram re-
quiring (i) the γ (h) are continuous except possibly at the origin, (ii) γi j (h) ≥ 0, ∀ h ∈ D,
(iii) γi j (h) = γ (−h), ∀ h ∈ D, and (iv) the functions, −γi j (h), are conditionally nonnegative
definite, the usual condition for individual variograms.

In fact, we can directly obtain the explicit solution to the individual cokriging problem
if we assume a multivariate Gaussian spatial process. As we clarify below, such a process
specification only requires supplying mean surfaces for each component of Y(s) and a
valid cross-covariance function. For simplicity, assume Y(s) is centered to have mean 0.
The cross-covariance function provides ΣY, the np × np covariance matrix for the data
Y = (Y(s1)T , Y(s2)T , . . . , Y(sn)T )T . In addition, it provides the np × 1 vector, c0, which is
blocked as vectors c0 j , j = 1, 2, .., n with lth element c0 j,l = Cov(Y1(s0), Yl(s j )). Then, from
the multivariate normal distribution of Y, Y1(s0), we obtain the cokriging estimate,

E(Y1(s0)|Y) = cT
0 Σ−1

Y Y. (28.4)

The associated variance, var(Y1(s0)|Y) is also immediately available, i.e., var(Y1(s0)|Y) =
C11(0) − cT

0 Σ−1
Y c0.

In particular, consider the special case of the p× p cross-covariance matrix, C(h) = ρ(h)T,
where ρ(·) is a valid correlation function and T is the local positive definite covariance ma-
trix. Then, ΣY = R⊗T, where R is the n×n matrix with (i, j)th entry ρ(si −s j ) and ⊗ denotes
the Kronecker product. This specification also yields c0 = r0 ⊗ t∗1, where r0 is n × 1 with
entries ρ(s0 − s j ) and t∗1 is the first column of T. Then, Equation (28.4) becomes t11rT

0 R−1Ỹ1
where t11 is the (1, 1)th element of T and Ỹ1 is the vector of observations associated with
the first component of the Y(s j )s. This specification is known as the intrinsic multivariate
correlation and is discussed in greater generality in Section 28.2.2. In other words, under
an intrinsic specification, only observations on the first component are used to predict the
first component at a new location. See Helterbrand and Cressie (1994), Wackernagel (1994),
and Wackernagel, 2003, in this regard.

In all of the foregoing work, inference assumes the cross-covariance or the cross-variogram
to be known. In practice, a parametric model is adopted and data-based estimates of the
parameters are plugged in. A related issue here is whether the data are available for each
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variable at all sampling points (so-called isotopy—not to be confused with “isotropy”), some
variables share some sample locations (partial heterotopy), or the variables have no sample
locations in common (entirely heterotopic). (See Chapter 29 in this regard.) Similarly, in the
context of prediction, if any of the Yl(s0) are available to help predict Y1(s0), we refer to
this as “collocated cokriging.” The challenge with heterotopy in classical work is that the
empirical cross-variograms cannot be computed and empirical cross-covariances, though
they can be computed, do not align with the sampling points used to compute the em-
pirical direct covariances. Furthermore, the value of the cross-covariances at 0 cannot be
computed.∗

28.2.2 Intrinsic Multivariate Correlation and Nested Models

Recall that one way to develop a spatial model is through structural analysis. Such analysis
usually suggests more than one variogram model, i.e., proposes a nested variogram model
(Grzebyk and Wackernagel, 1994; Wackernagel, 2003), which we might write as γ (h) =∑m

r=1 trγr (h). For instance, with three spatial scales, corresponding to a nugget, fine-scale
dependence, and long-range dependence, respectively, we might write γ (h) = t1γ1(h) +
t2γ2(h) + t3γ3(h), where γ1(h) = 0 if |h| = 0, = 1 if |h| > 0, while γ2(·) reaches a sill equal to
1 very rapidly and γ3(·) reaches a sill equal to 1 much more slowly.

Note that the nested variogram model corresponds to the spatial process
√

t1w1(s) +√
t2w2(s) + √

t3w3(s)—a linear combination of independent processes. Can this same idea
be used to build a multivariate version of a nested variogram model? Journel and Huijbregts
(1978) propose to do this using the specification wl(s) = ∑m

r=1
∑p

j=1 a (l)
r j wr j (s) for l =

1, . . . , p. Here, the wr j (s) are such that they are independent process replicates across j
and, for each r , the process has correlation function ρr (h) and variogram γr (h) (with sill
1). In the case of isotropic ρs, this implies that we have a different range for each r , but a
common range for all components given r .

The representation in terms of independent processes can now be given in terms of the
p × 1 vector process w(s) = [wl(s)]p

l=1, formed by collecting the wl(s)s into a column for
l = 1, . . . , p. We write the above linear specification as w(s) = ∑m

r=1 Ar wr (s), where each Ar

is a p× p matrix with (l, j)th element a (l)
r j and wr (s) = (wr1(s), . . . , wr p(s))T are p×1 vectors

that are independent replicates from a spatial process with correlation function ρr (h) and
variogram γr (h) for r = 1, 2, . . . , p.

Letting Cr (h) be the p × p cross-covariance matrix and Γr (h) denote the p × p matrix of
direct and cross-variograms associated with w(s), we have Cr (h) = ρr (h)Tr and Γr (h) =
γr (h)Tr . Here, Tr is positive definite with Tr = Ar AT

r = ∑p
j=1 ar j aT

r j , where ar j is the
j th column vector of Ar . Finally, the cross-covariance and cross-variogram nested model
representations take the form C(h) = ∑m

r=1 ρr (h)Tr and Γ (h) = ∑m
r=1 γr (h)Tr .

The case m = 1 is called the intrinsic correlation model, the case m > 1 is called the
intrinsic multivariate correlation model. Work (Vargas-Guzmán, Warrick, and Myers, 2002)
allows the wr j (s) to be dependent.

Again, such modeling is natural when scaling is the issue, i.e., we want to introduce spatial
effects to capture dependence at different scales (and, thus, m has nothing to do with p). If
we have knowledge about these scales a priori, such modeling will be successful. However,
to find datasets that inform about such scaling may be less successful. In different words,
usually m will be small since, given m, mp process realizations are introduced.

∗ The empirical cross-variogram imitates the usual variogram (Chapter 3), creating bins and computing averages
of cross products of differences within the bins. Similar words apply to the empirical cross-covariance.
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28.3 Some Theory for Cross-Covariance Functions

In light of the critical role of cross-covariance functions, we provide some formal theory
regarding the validity and properties of these functions. Let D ⊂ �d be a connected subset
of the d-dimensional Euclidean space and let s ∈ D denote a generic point in D. Consider a
vector-valued spatial process {w(s) ∈ �m : s ∈ D}, where w(s) = [w j (s)]p

j=1 is a p×1 vector.
For convenience, assume that E[w(s)] = 0. The cross-covariance function is a matrix-valued
function, say C(s, s′), defined for any pair of locations (s, s′) ∈ D×D and yielding the p × p
matrix whose ( j, j ′)th element is Cov(w j (s), w j ′ (s′)):

C(s, s′) = Cov(w(s), w(s′)) = [Cov(w j (s), w j ′ (s′))]p
j, j ′=1 = E[w(s)wT (s′)]. (28.5)

The cross-covariance function completely determines the joint dispersion structure
implied by the spatial process. To be precise, for any n and any arbitrary collection of sites
S = {s1, . . . , sn}, the np × 1 vector of realizations w = [w(s j )]n

j=1 will have the variance–
covariance matrix given by Σw = [C(si , s j )]n

i, j=1, where Σw is an nm × nm block matrix
whose (i, j)th block is precisely the p × p cross-covariance function C(si , s j ). Since Σw

must be symmetric and positive definite, it is immediate that the cross-covariance function
must satisfy the following two conditions:

C(s, s′) = CT (s′, s) (28.6)
n∑

i=1

n∑
j=1

xT
i C(si , s j ) x j > 0 ∀ xi , x j ∈ �p \{0}. (28.7)

The first condition ensures that, while the cross-covariance function need not itself be
symmetric, Σw is. The second condition ensures the positive definiteness of Σw and is, in
fact, quite stringent; it must hold for all integers n and any arbitrary collection of sites
S = {s1, . . . , sn}. Note that conditions (28.6) and (28.7) imply that C(s, s) is a symmetric
and positive definite function. In fact, it is precisely the variance–covariance matrix for the
elements of w(s) within site s.

We say that w(s) is stationary if C(s, s′) = C(s′ − s), i.e., the cross-covariance function
depends only upon the separation of the sites, while we say that w(s) is isotropic if C(s, s′) =
C(‖s′ − s‖), i.e., the cross-covariance function depends only upon the distance between the
sites. Note that for stationary processes we write the cross-covariance function as C(h) =
C(s, s + h). From Equation (28.6) it immediately follows that

C(−h) = C(s + h, s) = CT (s, s + h) = CT (h).

Thus, for a stationary process, a symmetric cross-covariance function is equivalent to having
C(−h) = C(h) (i.e., even function). For isotropic processes,

C(h) = C(‖h‖) = C(‖ − h‖) = C(−h) = CT (h),

hence, the cross-covariance function is even and the matrix is necessarily symmetric.
The primary characterization theorem for cross-covariance functions (Cramér, 1940;

Yaglom, 1987) says that real-valued functions, say Ci j (h), will form the elements of a valid
cross-covariance matrix C(h) = [Ci j (h)]p

i, j=1 if and only if each Ci j (h) has the cross-spectral
representation

Ci j (h) =
∫

exp(2π itT h)d(Fi j (t)), (28.8)

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 14:36 C7287 C7287˙C028

Multivariate Spatial Process Models 501

with respect to a positive definite measure F (·), i.e., where the cross-spectral matrix M(B) =
[Fi j (B)]p

i, j=1 is positive definite for any Borel subset B ⊆ �d . The representation in Equa-
tion (28.8) can be considered the most general representation theorem for cross-covariance
functions. It is the analog of Bochner’s theorem for covariance functions and has been
employed by several authors to construct classes of cross-covariance functions. Essentially,
one requires a choice of the Fi j (t)s. Matters simplify when Fi j (h) is assumed to be square in-
tegrable ensuring that a spectral density function fi j (t) exists such that d(Fi j (t)) = fi j (t)dt.
Now one simply needs to ensure that [ fi j (t)]

p
i, j=1 are positive definite for all t ∈ �d . Corol-

laries of the above representation lead to the approaches proposed in Gaspari and Cohn
(1999) and Majumdar and Gelfand (2007) for constructing valid cross-covariance functions
as convolutions of covariance functions of stationary random fields (see Section 28.9.3). For
isotropic settings, we use the notation ||s′ − s|| for the distance between sites s and s′. The
representation in Equation (28.8) can be viewed more broadly in the sense that, working in
the complex plane, if the matrix valued measure M(·) is Hermitian nonnegative definite,
then we obtain a valid cross-covariance matrix in the complex plane. Rehman and Shapiro
(1996) use this broader definition to obtain permissible cross variograms. Grzebyk and
Wackernagel (1994) employ the induced complex covariance function to create a bilinear
model of co-regionalization.

From a modeling perspective, it is often simpler to rewrite the cross-covariance matrix
as C(s, s′) = A(s)Θ(s, s′)AT (s′). Θ(s, s′) is called the cross-correlation function, which must
not only satisfy Equation (28.6) and Equation (28.7), but in addition satisfies Θ(s, s) = Ip.
Therefore, C(s, s) = A(s)AT (s) and A(s) identifies with the square root of the within-site
dispersion matrix C(s, s). Note that whenever Θ(s, s′) is symmetric so is C(s, s′) and also,
if Θ(s, s′) is positive, so is C(s, s′).

For modeling A(s), without loss of generality, one can assume that A(s) = C1/2(s, s) is a
lower-triangular square root; the one-to-one correspondence between the elements of A(s)
and C(s, s) is well known (see, e.g., Harville, 1997, p. 229).∗ Thus, A(s) determines the
association between the elements of w(s) at location s. If this association is assumed to
not vary with s, we have A(s) = A, which results in a weakly stationary cross-covariance
matrix with AAT = C(0). In practice, the matrix A(s) will be unknown. Classical likelihood-
based methods for estimating A(s) are usually difficult, although under stationarity an EM
algorithm can be devised (see Zhang, 2006). For greater modeling flexibility, a Bayesian
framework is often adopted. Here A(s) is assigned a prior specification and sampling-based
methods are employed to obtain posterior samples for these parameters (see, e.g., Banerjee,
Carlin, and Gelfand, 2004). A very general approach for such estimation has been laid out in
Gelfand, Schmidt, Banerjee, and Sirmans (2004), where an inverse spatial-Wishart process
for A(s)AT (s) is defined. Other approaches include using parametric association structures
suggested by the design under consideration (e.g., in Banerjee and Johnson, 2006) or some
simplifying assumptions.

Alternatively, we could adopt a spectral square root specification for A(s), setting A(s) =
P(s)Λ1/2(s), where C(s, s) = P(s)ΛPT (s) is the spectral decomposition for C(s, s). We can
further parameterize the p × p orthogonal matrix function P(s) in terms of the p( p − 1)/2
Givens angles θi j (s) for i = 1, . . . , p − 1 and j = i + 1, . . . , p (following Cressie and Wikle,
1998). Specifically, P(s) = ∏p−1

i=1
∏p

j=i+1 Gi j (θi j (s)) where i and j are distinct and Gi j (θi j (s))
is the p × p identity matrix with the ith and j th diagonal elements replaced by cos(θi j (s)),
and the (i, j)th and ( j, i)th elements replaced by ± sin(θi j (s)), respectively. Given P(s) for
any s, the θi j (s)s are unique within range (−π/2, π/2). These may be further modeled by
means of Gaussian processes on a suitably transformed function, say, θ̃i j (s) = log( π/2+θi j (s)

π/2−θi j (s) ).

∗ Indeed, to ensure the one-to-one correspondence, we must insist that the diagonal elements of A(s) are greater
than 0. This has obvious implications for prior specification in a Bayesian hierarchical modeling setting.
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28.4 Separable Models

A widely used specification is the separable model

C(s, s′) = ρ(s, s′)T, (28.9)

where ρ(·) is a valid (univariate) correlation function and T is a p×p positive definite matrix.
Here, T is the nonspatial or “local” covariance matrix while ρ controls spatial association
based upon proximity. In fact, under weak stationarity, C(s, s′) = ρ(s − s′; θ)C(0). It is
easy to verify that, for Y = (Y(s1), . . . , Y(sn)T , ΣY = R ⊗ T, where Ri j = ρ(si , s j ) and ⊗
is the Kronecker product. Clearly, ΣY is positive definite since R and T are. In fact, ΣY is
computationally convenient to work with since |ΣY| = |R|p |T|n and Σ−1

Y = R−1 ⊗ T−1.
We note that Mardia and Goodall (1993) use separability for modeling multivariate spatio-
temporal data so T arises from an autoregression (AR) model. We immediately see that
this specification is the same as the intrinsic specification we discussed in Section 28.2.2. In
the literature, the form (28.9) is called “separable” as it separates the component for spatial
correlation, ρ(s, s′; θ), from that for association within a location, C(0). A limitation of (28.9)
is that it is symmetric and, more critically, each component of w(s) shares the same spatial
correlation structure.

The intrinsic or separable specification is the most basic co-regionalization model. Again,
it arises as, say Y(s) = Aw(s), where, for our purposes, A is p × p full rank and the
components of w(s) are iid spatial processes. If the w j (s) have mean 0 and are stationary
with variance 1 and correlation function ρ(h), then E(Y(s)) is 0 and the cross-covariance
matrix, ΣY(s),Y(s′) ≡ C(s − s′) = ρ(s − s′)AAT , clarifying that AAT = T.

Inference based upon maximum likelihood is discussed in Mardia and Goodall (1993).
Brown, Le, and Zidek (1994), working in the Bayesian framework, assign an inverse Wishart
prior to ΣY centered around a separable specification. Hence, ΣY is immediately positive
definite. It is also nonstationary since its entries are not even a function of the locations; we
sacrifice connection with spatial separation vectors or distance. In fact, ΣY is not associated
with a spatial process, but rather with a multivariate distribution.

The term “intrinsic” is usually taken to mean that the specification only requires the
first and second moments of differences in measurement vectors and that the first moment
difference is 0 and the second moments depend on the locations only through the separation
vector s − s′. In fact, here E[Y(s) − Y(s′)] = 0 and 1

2ΣY(s)−Y(s′) = Γ (s − s′), where Γ (h) =
C(0) − C(h) = T −ρ(s − s′)T = γ (s − s′)T with γ being a valid variogram. A possibly more
insightful interpretation of “intrinsic” is that

cov(Yi (s), Yj (s + h))√
Cov(Yi (s), Yi (s + h))Cov(Yj (s), Yj (s + h))

= Ti j√
Tii Tj j

regardless of h, where T = [Ti j ]
p
i, j=1.

In the spirit of Stein and Corsten (1991), a bivariate spatial process model using sepa-
rability becomes appropriate for regression with a single covariate X(s) and a univariate
response Y(s). In fact, we treat this as a bivariate process to allow for missing Xs for some
observed Ys and for inverse problems, inferring about X(s0) for a given Y(s0). We as-
sume Z(s) = (X(s), Y(s))T is a bivariate Gaussian process with mean function μ(s) =
(μ1(s), μ2(s))T and a separable, or intrinsic, 2×2 cross-covariance function given by C(h) =
ρ(h)T, where T = [Ti j ]2

i, j=1 is the 2 × 2 local dispersion matrix. The regression model arises
by considering Y(s)|X(s) ∼ N(β0 + β1 X(s), σ 2), where β0 = μ2 − T12

T11
μ1, β1 = T12

T11
and

σ 2 = T22 − T2
12

T11
. Banerjee and Gelfand (2002) (see also Banerjee et al., 2004) employ such
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models to analyze relationship between shrub density and dew duration for a dataset
consisting of 1,129 locations in a west-facing watershed in the Negev Desert in Israel.

28.5 Co-Regionalization

In Section 28.2.2, we saw how linear combinations of independent processes can lead to
richer modeling of cross-covariograms and cross-covariances. Such models, in general, are
known as the linear models of co-regionalization (LMC) and can be employed to produce
valid dispersion structures that are richer and more flexible than the separable or intrinsic
specifications. A more general LMC arises if again Y(s) = Aw(s), where now the w j (s)
are independent, but no longer identically distributed. In fact, let the w j (s) process have
mean 0, variance 1, and stationary correlation function ρ j (h). Then E(Y(s)) = 0, but the
cross-covariance matrix associated with Y(s) is now

ΣY(s),Y(s′) ≡ C(s − s′) =
p∑

j=1

ρ j (s − s′)T j , (28.10)

where T j = a j aT
j with a j the j th column of A. Note that the T j have rank 1 and

∑
j T j = T.

Also, the cross-covariance function can be written as C(s − s′) = AΘ(s − s′)AT , where
AAT = T and Θ(s−s′) is a p × p diagonal matrix with ρ j (s−s′) as its j th diagonal element.
To connect with Section 28.3, we see that cross-covariance functions of LMCs arise as linear
transformations of diagonal cross-correlation matrices.

More importantly, we note that such linear transformation maintains stationarity for
the joint spatial process. With monotonic isotropic correlation functions, there will be a
range associated with each component of the process, Yj (s), j = 1, 2, . . . , p. This con-
trasts with the intrinsic case where, with only one correlation function, the Yj (s) processes
share a common range. Again we can work with a covariogram representation, i.e., with
ΣY(s)−Y(s′) ≡ Γ (s−s′), where Γ (s−s′) = ∑

j γ j (s−s′)T j where γ j (s−s′) = ρ j (0) −ρ j (s−s′)
(Geltner and Miller, 2001).

In applications, we would introduce Equation (28.10) as a component of a general mul-
tivariate spatial model for the data. That is, we assume

Y(s) = μ(s) + v(s) + ε(s), (28.11)

where ε(s) is a white noise vector, i.e., ε(s) ∼ N(0, D) where D is a p × p diagonal matrix
with (D) j j = τ 2

j . In Equation (28.11), v(s) = Aw(s) following Equation (28.10) as above.
In practice, we typically assume μ(s) arises linearly in the covariates, i.e., from μ j (s) =
XT

j (s)β j . Each component can have its own set of covariates with its own coefficient vector.
Note that Equation (28.11) can be viewed as a hierarchical model. At the first stage,

given {β j , j = 1, · · · , p} and {v(si )}, the Y(si ), i = 1, · · · , n are conditionally independent
with Y(si ) ∼ N(μ(si ) + v(si ), D). At the second stage, the joint distribution of v (where
v = (v(s1), · · · , v(sn))) is N(0,

∑p
j=1 R j ⊗ T j ), where R j is n × n with (Rj )i i ′ = ρ j (si − si ′ ).

Concatenating the Y(si ) into an np × 1 vector Y, similarly μ(si ) into μ, we can marginalize
over v to obtain

f (Y|{β j }, D, {ρ j }, T) = N

⎛
⎝μ,

p∑
j=1

(R j ⊗ T j ) + In×n ⊗ D

⎞
⎠ . (28.12)

Priors on {β j }, {τ 2
j }, T and the parameters of the ρ j complete a Bayesian hierarchical model

specification.
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28.5.1 Further Co-Regionalization Thoughts

Briefly, we return to the the nested modeling of Section 28.2.2. There, we obtained c(h) =∑m
r=1 ρr (h)Tr with Tr = Ar AT

r , positive definite. Here, with co-regionalization, c(h) =∑p
j=1 ρ j (h)T j , where T j = a j aT

j and rank T j = 1. Again, nesting is about multiple spatial
scales with a common scale for each vector; co-regionalization is about multiple spatial
scales with a different scale for each component of the vector.

We could imagine combining nesting and co-regionalization, asking in Section 28.2.2 that
the components of wr (s) are not replicates, but that each has its own correlation function.
Then c(h) = ∑m

r=1
∑p

j=1 Ar j AT
r jρr j (h). Though very flexible, such a model introduces mp

correlation functions and it is likely that the data will not be able to inform about all of these
functions. We are unaware of any work that has attempted to fit such models.

Also, co-regionalization may be considered in terms of dimension reduction, i.e., suppose
that A is p × r , r < p. That is, we are representing p processes through only r independent
processes. Therefore T = AAT has rank r and Y(s) lives in an r -dimensional subspace of
Rp with probability 1. (This, of course, has nothing to do with whether w(s) is intrinsic.)
Evidently, such a dimension reduction specification cannot be for a data model. However,
it may prove adequate as a spatial random effects model.

28.6 Conditional Development of the LMC

For the process v(s) = Aw(s) as above, the LMC can be developed through a conditional
approach rather than a joint modeling approach. This idea has been elaborated in, e.g.,
Matheron (1973) and in Berliner (2000) who refer to it as a hierarchical modeling approach
for multivariate spatial modeling and prediction. It is proposed for cokriging and kriging
with external drift.

We illuminate the equivalence of conditional and unconditional specifications in the
special case where v(s) = Aw(s) with the w j (s) independent mean 0, variance 1 Gaussian
processes. By taking A to be lower triangular, the equivalence and associated reparametriza-
tion will be easy to see. Upon permutation of the components of v(s) we can, without loss
of generality, write f (v(s)) = f (v1(s)) f (v2(s)|v1(s)) · · · f (vp(s)|v1(s), · · · , vp−1(s)). In the
case of p = 2, f (v1(s)) is clearly N(0, T11), i.e., v1(s) = √

T11w1(s) = a11w1(s), a11 > 0.
But f (v2(s)|v1(s)) ∼ N

(
(T12/T11)v1(s), T22 − T2

12/T11
)
, i.e., N

(
(a21/a11)v1(s), a2

22

)
. In fact,

from the previous section we have Σv = ∑p
j=1 R j ⊗ T j . If we permute the rows of v to

ṽ = (v(1)T , v(2)T )T , where v(l)T = (vl(s1), · · · , vl(sn)), l = 1, 2, then Σṽ = ∑p
j=1 T j ⊗ R j .

Again with p = 2, we can calculate E(v(2)|v(1)) = a21
a11

v(1) and Σv(2) |v(1) = a2
22R2. But this is

exactly the mean and covariance structure associated with variables {v2(si )} given {v1(si )},
i.e., with v2(si ) = (a21/a11)v1(si ) + a22w2(si ). Note that there is no notion of a conditional
process here, i.e., a process v2(s)|v1(s) is not well defined (What would be the joint distri-
bution of realizations from such a process?). There is only a joint distribution for v(1) , v(2)

given any n and any s1, · · · , sn, thus, a conditional distribution for v(2) given v(1) .
Suppose we write v1(s) = σ1w1(s) where σ1 > 0 and w1(s) is a mean 0 spatial process with

variance 1 and correlation function ρ1 and we write v2(s)|v1(s) = αv1(s) + σ2w2(s) where
σ2 > 0 and w2(s) is a mean 0 spatial process with variance 1 and correlation function ρ2. The
parameterization (α, σ1, σ2) is obviously equivalent to (a11, a12, a22), i.e., a11 = σ1, a21 = ασ1,
a22 = σ2 and, hence, to T, i.e., T11 = σ 2

1 , T12 = ασ 2
1 , T22 = α2σ 2

1 + σ 2
2 . For general p, we

introduce the following notation. Let v1(s) = σ1w1(s) and given v1(s), . . . , vl−1(s), vl(s) =∑l−1
j=1 α

(l)
j v j (s) +σlwl(s), l = 2, . . . , p. Unconditionally, T introduces p( p +1)/2 parameters.

Conditionally, we introduce p( p − 1)/2 αs and p σ s. Straightforward recursion shows the
equivalence of the T parameterization and, in obvious notation, the (σ, α) parametrization.

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 14:36 C7287 C7287˙C028

Multivariate Spatial Process Models 505

Gelfand et al. (2004) point out that if we want to introduce distinct, independent nugget
processes for the components of Y(s) or if we want to use different covariates to explain
the different components of Y(s), the equivalence between the conditional and uncondi-
tional approaches breaks down. Also, Schmidt and Gelfand (2003) present an example of
a co-regionalization analysis for daily carbon monoxide, nitric oxide, and nitrogen dioxide
monitoring station data for 68 monitoring sites in California. They illustrate both conditional
and unconditional model-fitting and the benefits of the multivariate process modeling in
interpolating exposures to new locations.

28.7 A Spatially Varying LMC

Replacing A by A(s), we can define

v(s) = A(s)w(s) (28.13)

for insertion into Equation (28.11). We refer to the model in Equation (28.13) as a spa-
tially varying LMC (SVLMC). Let T(s) = A(s)A(s)T . Again A(s) can be taken to be lower
triangular for convenience. Now,

C(s, s′) =
∑

j

ρ j (s − s′)a j (s)aT
j (s′) (28.14)

with a j (s) the j th column of A(s). Letting T j (s) = a j (s)aT
j (s), again,

∑
j T j (s) = T(s). From

Equation (28.14), v(s) is no longer a stationary process. Letting s − s′ → 0, the covariance
matrix for v(s) = T(s), which is a multivariate version of a spatial process with a spatially
varying variance.

This suggests modeling A(s) through its one-to-one correspondence with T(s). In the
univariate case, choices for σ 2(s) include σ 2(s, θ ), i.e., a parametric function or trend surface
in location; σ 2(x(s)) = g(x(s))σ 2 where x(s) is some covariate used to explain Y(s) and
g(.) > 0 (then g(x(s)) is typically x(s) or x2(s)); or σ 2(s) is itself a spatial process (e.g.,
log σ 2(s) might be a Gaussian process). Extending the second possibility, we would take
T(s) = g(x(s))T. In fact, in the example below we take g(x(s)) = (x(s))ψ with ψ ≥ 0, but
unknown. This allows homogeneity of variance as a special case.

Extending the third possibility, we generalize to define T(s) to be a matric-variate spatial
process. An elementary way to induce a spatial process for T(s) is to work with A(s),
specifying independent mean 0 Gaussian processes for b j j ′ (s), i ≤ j ′ ≤ j ≤ p and setting
a j j ′ (s) = b j j ′ (s), j �= j ′, a j j (s) = |b j j (s)|. However, such specification yields a nonstandard
and computationally intractable distribution for T(s).

Instead, Gelfand et al. (2004) propose a matric-variate inverse Wishart spatial process for
T(s) equivalently, a matric-variate Wishart spatial process for T−1(s), where, marginally,
T(s) has an inverse Wishart distribution. More detail on this process model is provided in
Gelfand et al. (2004). However, if T(s) is random, v(s) = A(s)w(s) is not only nonstationary,
but non-Gaussian.

28.8 Bayesian Multivariate Spatial Regression Models

The multivariate spatial Gaussian process can be utilized in spatial regression models. Mul-
tivariate spatial regression envisions that each location s yields observations on q dependent
variables given by a q × 1 vector Y(s) = [Yl(s)]q

l=1. For each Yl(s), we also observe a pl × 1
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vector of regressors xl(s). Thus, for each location we have q univariate spatial regression
equations, which we combine into a multivariate spatial regression model written as

Y(s) = XT (s)β + ZT (s)w(s) + ε(s), (28.15)

where XT (s) is a q × p matrix (p = ∑q
l=1 pl) having a block diagonal structure with its

lth diagonal being the 1 × pl vector xT
l (s). Here β = (β1, . . . , βp)T is a p × 1 vector of

regression coefficients with βl being the pl × 1 vector of regression coefficients for xT
l (s),

w(s) ∼ G P(0, Cw(·, ·)) is an m × 1 multivariate Gaussian process with cross-covariance
function Cw(s, s′) and acts as a coefficient vector for the q × m design matrix ZT (s) and
ε(s) ∼ MVN(0, Ψ ) is a q × 1 vector modeling the residual error with dispersion matrix Ψ .

Model (28.15) acts as a general framework admitting several spatial models. For example,
it accommodates the spatially varying coefficient models discussed in Gelfand et al. (2004).
Letting m = q and ZT (s) = Im leads to a multivariate spatial regression model with w(s)
acting as a spatially varying intercept. On the other hand, we could envision all coefficients
to be spatially varying and set m = p with ZT (s) = XT (s). With multivariate spatial models
involving a large number of locations, such computations can become burdensome. In
such cases, the w(s) can be replaced by a lower-dimensional predictive process (Banerjee,
Gelfand, Finley, and Sang, 2008) to alleviate the computational burden. Bayesian estimation
of several spatial models that can be cast within Equation (28.15), as well as their reduced-
rank predictive process counterparts, can now be accomplished using thespBayespackage
in R (see Banerjee et al., 2008 and Finley, Banerjee, and Carlin, 2007 for details).

28.8.1 An Illustration

The selling price of commercial real estate, e.g., an apartment property, is theoretically
the expected income capitalized at some (risk-adjusted) discount rate. Since an individual
property is fixed in location, upon transaction, both selling price and income (rent) are
jointly determined at that location. The real estate economics literature has examined the
(mean) variation in both selling price and rent. (See Benjamin and Sirmans, 1991; Geltner
and Miller, 2001.)

We consider a dataset consisting of apartment buildings in three very distinct markets,
Chicago, Dallas, and San Diego. Chicago is an older, traditional city where development
expanded outward from a well-defined central business district. Dallas is a newer city
where development tends to be polycentric with the central business district playing less of
a role in spatial pattern. San Diego is a more physically constrained city with development
more linear as opposed to the traditional “circular” pattern. We have 252 buildings in
Chicago, 177 in Dallas, and 224 in San Diego. In each market, 20 additional transactions are
held out for prediction of the selling price. The locations of the buildings in each market
are shown in Figure 28.1. Note that the locations are very irregularly spaced across the
respective markets. All of the models noted below were fitted using reprojected distance
between locations in kilometers.

Our objective is to fit a joint model for selling price and net income and to obtain a spatial
surface associated with the risk, which, for any building, is given by the ratio of net income
and price. For each location s, we observe log net income (Y1(s)) and log selling price of the
transaction (Y2(s)). In addition, we have the following three regressors: average square feet
of a unit within the building (sqft), the age of the building (age) and number of units within
the building (unit). We fit a multivariate spatial regression model as in Equation (28.15)
with q = 2, XT (s) = (I2 ⊗ xT (s)), where xT (s) is the 1 × 3 vector of regressors, Z(s) = I2,
w(s) is a bivariate Gaussian process and Ψ = Diag (τ 2

1 , τ 2
2 ).

Within this framework, we investigate four model specifications that vary only in terms
of the cross-covariance matrix. Model 1 is an intrinsic or separable specification, i.e., it
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FIGURE 28.1
Sampling locations for the three markets in Chicago, Dallas, and San Diego.

assumes Cw(s, s′) = ρ(s, s′; φ)I2. Model 2 assumes a stationary cross-covariance specifica-
tion Cw(s, s′) = ADiag [ρk(s, s; φk)]2

k=1AT . Model 3 employs a spatially adaptive Cw(s, s) =
(x(s))ψAAT , where x(s) is unit(s). The supposition is that variability in Y1(s) and Y2(s)
increases in building size. For Models 2 and 3, we modeled AAT as an inverse-Wishart
distribution with A as the lower-triangular square root. The spectral square root approach
mentioned at the end of Section 28.3 constitutes another feasible option here. Finally, Model 4
uses a matric-variate spatial Wishart process for Cw(s, s) = A(s)AT (s) (see Gelfand et al.,
2004, for details).

These models are fitted within the Bayesian framework where, for each, we use
ρk(s, s′; φk) = e−φk‖s−s′‖ and the decay parameters φk , k = 1, 2 have a gamma prior dis-
tribution arising from a mean range of one half the maximum interlocation distance, with
infinite variance. Finally, τ 2

1 and τ 2
2 have inverse gamma priors with infinite variance. They

are centered, respectively, at the ordinary least squares variance estimates obtained by fit-
ting independent, nonspatial regression models to Y1(s) and Y2(s). Table 28.1 provides the
model choice results for each of the markets using, for convenience, the posterior predic-
tive criterion of Gelfand and Ghosh (1998) (see also Banerjee et al., 2004) with both the full
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TABLE 28.1

Model Comparison Results for (a) the Full Dataset and (b) for the Holdout
Sample; see Text for Details

(a) Chicago Dallas San Diego
Model G P D G P D G P D
Model 1 0.1793 0.7299 0.9092 0.1126 0.5138 0.6264 0.0886 0.4842 0.5728
Model 2 0.1772 0.6416 0.8188 0.0709 0.4767 0.5476 0.0839 0.4478 0.5317
Model 3 0.1794 0.6368 0.8162 0.0715 0.4798 0.5513 0.0802 0.4513 0.5315
Model 4 0.1574 0.6923 0.8497 0.0436 0.4985 0.5421 0.0713 0.4588 0.5301

(b) Chicago Dallas San Diego

Model G P D G P D G P D
Model 1 0.0219 0.0763 0.0982 0.0141 0.0631 0.0772 0.0091 0.0498 0.0589
Model 2 0.0221 0.0755 0.0976 0.0091 0.0598 0.0689 0.0095 0.0449 0.0544
Model 3 0.0191 0.0758 0.0949 0.0091 0.0610 0.0701 0.0087 0.0459 0.0546
Model 4 0.0178 0.0761 0.0939 0.0059 0.0631 0.0690 0.0074 0.0469 0.0543

dataset and also with holdout data.∗ In the table, G is the goodness of fit contribution, P is
the penalty term, D is the sum, and small values of D are preferred. Evidently, the intrinsic
model is the weakest. Models 2, 3, and 4 are quite close, but, since Model 4 is best in terms
of G, we provide the results of the analysis for this model in Table 28.2.

In particular, Table 28.2 presents the posterior summaries of the parameters of the model
for each market. Age receives a significant negative coefficient in Dallas and San Diego,
but not in Chicago, perhaps because Chicago is an older city; a linear relationship for net
income and selling price in age may not be adequate. Number of units receives a positive
coefficient for both net income and price in all three markets. Square feet per unit is only
significant in Chicago. The pure error variances (the τ 2s) are largest in Chicago, suggesting
a bit more uncertainty in this market. The φs are very close in Dallas and San Diego, a bit less
so in Chicago. The benefit of Model 4 lies more in the spatially varying A(s), equivalently
C(s, s), than in differing ranges for w1(s) and w2(s). Turning to Figure 28.2, we see the spatial
surfaces associated with C11(s), C22(s), and Ccorr (s) = C12(s)/

√
C11(s)C22(s). Note that the

C11 and C22 surfaces show considerable spatial variation and are quite different for all three
markets. The correlations between w1(s) and w2(s) also show considerable spatial variation,
ranging from .55 to .7 in Chicago, .3 to .85 in Dallas, .3 to .75 in San Diego. In Figure 28.3,
we show the estimated residual spatial surfaces on the log scale (adjusted for the above
regressors) for Y1(s), Y2(s) and R(s). Most striking is the similarity between the Y1(s) and
Y2(s) surfaces for each of the three markets. Also noteworthy is the spatial variation in each
of the risk surfaces, suggesting that an aggregated market risk for each city is insufficient
to make effective investment decisions.

28.9 Other Constructive Approaches

We review three other constructive approaches for building valid cross-covariance func-
tions. The first is through moving average or kernel convolution of a process, the second
extends local stationarity ideas in Fuentes and Smith (2001), the third describes a convolu-
tion of covariance functions as in Majumdar and Gelfand (2007).

∗ Twenty buildings were held out in each of the markets for cross-validatory purposes. In this regard, we can also
consider validation of prediction using the holdout samples. For P, in Chicago 18 of 20 of the 95% predictive
intervals contained the observed value, 20/20 in Dallas, and 20/20 in San Diego. For I, we have 19/20 in each
market. It appears that Model 4 is providing claimed predictive performance.
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TABLE 28.2

Posterior Median and Respective 2.5% and 97.5% Quantiles of the Parameters Involved in the Model for Net Income and Selling Price

Chicago Dallas San Diego

Sales Price

Parameter 50% 2.5% 97.5% 50% 2.5% 97.5% 50% 2.5% 97.5%

Intercept 2.63E+00 2.60E+00 2.65E+00 2.87E+00 2.84E+00 2.91E+00 2.61E+00 2.58E+00 2.65E+00
Age 8.64E−05 −1.07E−04 4.10E−04 −9.55E−04 −1.49E−03 −5.18E−04 −3.85E−04 −7.21E−04 −5.40E−05
No. Units 1.28E−03 1.01E−03 1.51E−03 4.64E−04 4.09E−04 5.36E−04 1.42E−03 1.22E−03 1.58E−03
Sqft/Unit −2.83E−05 −5.93E−05 −1.10E−06 1.01E−04 −2.40E−06 2.21E−04 1.49E−05 −4.13E−05 7.82E−05
τ 2

1 7.08E−04 5.52E−04 8.86E−04 6.76E−04 5.05E−04 1.03E−03 5.45E−04 4.01E−04 7.25E−04
φ1 1.34E−01 7.59E−02 4.42E−01 1.84E−01 7.28E−02 4.75E−01 1.18E−01 5.37E−02 4.66E−01

Net Income

Parameter 50% 2.5% 97.5% 50% 2.5% 97.5% 50% 2.5% 97.5%

Intercept 2.53E+00 2.51E+00 2.54E+00 2.45E+00 2.42E+00 2.49E+00 2.35E+00 2.32E+00 2.39E+00
Age 1.10E−04 −2.30E−04 3.69E−04 −1.15E−03 −1.67E−03 −5.98E−04 −4.55E−04 −8.57E−04 −1.29E−04
No. Units 1.56E−03 1.37E−03 1.79E−03 5.34E−04 4.60E−04 6.18E−04 1.69E−03 1.41E−03 1.87E−03
Sqft/Unit −1.68E−05 −6.40E−05 1.19E−05 1.31E−04 −3.69E−05 3.26E−04 1.91E−05 −5.34E−05 8.22E−05
τ 2

2 9.93E−04 7.45E−04 1.25E−03 9.53E−04 7.17E−04 1.30E−03 6.71E−04 4.68E−04 9.69E−04
φ2 1.79E−01 7.78E−02 4.79E−01 1.75E−01 8.56E−02 4.25E−01 1.22E−01 5.59E−02 4.54E−01
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FIGURE 28.2
Spatial surfaces associated with the spatially varying C(s) for the three cities, Chicago (top row), Dallas (middle
row), and San Diego (bottom row), with the columns corresponding to C11(s), C22(s), and Ccorr (s).

28.9.1 Kernel Convolution Methods

Ver Hoef and Barry (1998) describe what they refer to as a moving average approach for
creating valid stationary cross-covariograms. The technique is also called kernel convo-
lution and is a well-known approach for creating general classes of stationary processes.
The one-dimensional case is discussed in Higdon et al. (1999, 2003). For the multivariate
case, suppose kl(·), l = 1, . . . , p is a set of p square integrable kernel functions on IR2 and,
without loss of generality, assume kl(0) = 1.

Let w(s) be a mean 0, variance 1 Gaussian process with correlation function ρ. Define the
p-variate spatial process Y(s) by

Yl(s) = σl

∫
kl(s − t)w(t)dt, l = 1, · · · , p. (28.16)

Y(s) is obviously a mean 0 Gaussian process with associated cross-covariance function
C(s, s′) having (l, l ′) entry

(C(s, s′))ll ′ = σlσl ′

∫ ∫
kl(s − t)kl ′ (s′ − t′)ρ(t − t′)dtdt′. (28.17)

By construction, C(s, s′) is valid. By transformation in Equation (28.17), we can see that
(C(s, s′))ll ′ depends only on s − s′, i.e., Y(s) is a stationary process. Note that (C(s − s′))ll ′
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FIGURE 28.3
Residual spatial surfaces associated with the three processes, net income, sales price and risk, for the three cities,
Chicago (top row), Dallas (middle row) and San Diego (bottom row), with the columns corresponding to net
income (Y1), sales price (Y2) and risk (R).

need not equal (C(s−s′))l ′l . If the kl depend on s−s′ only through ||s−s′|| and ρ is isotropic,
then C(s − s′) is isotropic.

An objective in Ver Hoef and Barry (1998) is to be able to compute C(s − s′) in Equa-
tion (28.17) explicitly. For instance, with kernels that are functions taking the form of a
constant height over a bounded rectangle, zero outside, this is the case and an anisotropic
form results. More recent work of Ver Hoef and colleagues (2004) no longer worries about
this.

An alternative, as in Higdon et al. (1999), employs discrete approximation. Choosing a
finite set of locations t1, . . . , tr , we define

Yl(s) = σl

r∑
j=1

kl(s − t j )w(t j ). (28.18)

Now, (C(s, s′))ll ′ is such that

(C(s, s′))ll ′ = σlσl ′

r∑
j=1

r∑
j ′=1

kl(s − t j )kl ′ (s′ − t j ′ )ρ(t j − t j ′ ). (28.19)

The form in Equation (28.19) is easy to work with, but note that the resulting process is no
longer stationary.
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Higdon et al. (1999) consider the univariate version of Equation (28.16), but with k now
a spatially varying kernel, in particular, one that varies slowly in s. This would replace
k(s − t) with k(s − t; s). The multivariate analog would choose p square integrable (in the
first argument) spatially varying kernel functions, kl(s − t; s) and define Y(s) through

Yl(s) = σl

∫
kl(s − t; s)w(t)dt (28.20)

extending Equation (28.16). The cross-covariance matrix associated with Equation (28.20)
has entries

(C(s, s′))ll ′ = σlσl ′

∫
kl(s − t; s)kl ′ (s′ − t; s′)dt. (28.21)

Higdon et al. (1999) employ only Gaussian kernels, arguably, imparting too much smooth-
ness to the Y(s) process. In recent work, Paciorek and Schervish (2004) suggest alternative
kernels using, e.g., Matèrn forms to ameliorate this concern.

28.9.2 Locally Stationary Models

Fuentes and Smith (2001) introduce a class of univariate locally stationary models by defin-
ing Y(s) = ∫

b(s, t)wθ (t)(s)dt where wθ is a stationary spatial process having parameters θ

with wθ1 and wθ2 independent if θ1 �= θ2, and b(s, t) is a choice of inverse distance function.
Analogous to [28], the parameter θ (t) varies slowly in t. In practice, the integral is discretized
to a sum, i.e., Y(s) = ∑r

j=1 b(s, t j )w j (s). This approach defines essentially locally stationary
models in the sense that if s is close to t, Y(s) ≈ wθ (t)(s). The multivariate extension would
introduce p inverse distance functions, bl(s, t j ), l = 1, . . . , p and define

Yl(s) =
∫

bl(s, t)wθ (t)(s)dt (28.22)

Straightforward calculation reveals that

(C(s, s′))ll ′ =
∫

bl(s, t)bl ′ (s′, t)c(s − s′; θ (t))dt. (28.23)

28.9.3 Convolution of Covariance Functions Approaches

Motivated by Gaspari and Cohn (1999), Majumdar and Gelfand (2007) discuss convolv-
ing p stationary one-dimensional covariance functions with each other to generate cross-
covariance functions. Two remarks are appropriate. First, this approach convolves covari-
ance functions as opposed to kernel convolution of processes as in the previous section.
Second, the LMC also begins with p stationary one-dimensional covariance functions, but
creates the cross-covariance function associated with an arbitrary linear transformation of
p independent processes having these respective covariance functions.

Suppose that C1, . . . , C p are valid stationary covariance functions on Rd . Define Ci j (s) =∫
Ci (s − t)C j (t)dt, i �= j and Cii (s) = ∫

Ci (s − t)Ci (t)dt i, j = 1, · · · , k. Majumdar
and Gelfand (2007) show that, under fairly weak assumptions, the Ci j and Cii s provide
a valid cross-covariance structure for a p dimensional multivariate spatial process, i.e.,
Cov(Yi (s), Yj (s′)) = Ci j (s − s′). Gaspari and Cohn (1999, p. 739) show that if Ci and C j are
isotropic functions, then so is Ci j .

If ρi are correlation functions, i.e., ρi (0) = 1, then ρi i (0) = ∫
ρi (t)2dt need not equal 1. In

fact, if ρi is a parametric function, then var(Yi (s)) depends on these parameters. However,
if one defines ρi j by the following relation

ρi j (s) = Ci j (s)

(Cii (0)C j j (0))
1
2

, (28.24)

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 14:36 C7287 C7287˙C028

Multivariate Spatial Process Models 513

then ρi i (0) = 1. Let

DC =

⎛
⎜⎜⎝

C11(0) . . . 0
...

. . .
...

0 . . . Ckk(0)

⎞
⎟⎟⎠ (28.25)

and set R(s) = DC
−1/2C(s)DC

−1/2, where C(s) = [Ci j (s)]. Then R(s) is a valid cross-
correlation function and, in fact, if Dσ

1/2 = diag (σ1, . . . , σk), we can take as a valid cross-
covariance function Cσ = Dσ

1/2R(s)Dσ
1/2. Then var(Yi (s)) = σi

2, but Cov(Yi (s), Yj (s)) =
σiσ j

Ci j (0)√
Cii (0)C j j (0)

and will still depend on the parameters in Ci and C j . However, Majumdar

and Gelfand (2007) show that ρi i (s) may be looked upon as a “correlation function” and
ρi j (s) as a “cross-correlation function” since, under mild conditions, if the Ci s are sta-
tionary, then |ρi j (s)| ≤ 1 with equality if i = j and s = 0. Finally, in practice, ρl, j (s) =∫

ρl(s − t)ρ j (t)d(t) will have no closed form. Mujamdar and Gelfand (2007) suggest Monte
Carlo integration after transformation to polar coordinates.

28.10 Final Comments and Connections

We can introduce nonstationarity into the LMC by making the the w j (s) nonstationary.
Arguably, this is more straightforward than utilizing spatially varying A(s) though the
latter enables natural interpretation. Moreover, the kernel convolution model above used
a common process w(s) for each kernel. Instead, we could introduce a p × p kernel matrix
and a p × 1 w(s) = Av(s). If the kernels decay rapidly, this model will behave like an
LMC. Similar extension is possible for the model (Fuentes and Smith, 2001) with similar
remarks. Details are given in the rejoinder in Gelfand et al. (2004). We can also introduce
multivariate space–time processes through the LMC by setting w(s, t) = Av(s, t) where
now the v(s, t) are independent space–time processes (Chapter 23). Of course, we can also
imagine spatially varying and/or temporally varying As. In this regard, Sansó, Schmidt,
and Noble (2008) write the LMC indexed by time, i.e., Yt = Awt and explore a range of
modeling specifications.
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29.1 Introduction

Handling spatial misalignment and the notion that statistical inference could change with
spatial scale is a long-standing issue. By spatial misalignment we mean the summary or
analysis of spatial data at a scale different from that at which it was originally collected.
More generally, with the increased collection of spatial data layers, synthesis of such lay-
ers has moved to the forefront of spatial data analysis. In some cases the issue is merely
interpolation—given data at one scale, inferring about data at a different scale, different
locations, or different areal units. In other cases, the data layers are examining the same
variable and the synthesis can be viewed as a fusion to better understand the behavior of
the variable across space. In yet other settings, the data layers record different variables.
Now the objective is regression, utilizing some data layers to explain others. In each of these
settings, we can envision procedures that range from ad hoc, offering computational sim-
plicity and convenience but limited in inference to fully model-based that require detailed
stochastic specification and more demanding computation but allowing richer inference.
In practice, valid inference requires assumptions that may not be possible to check from
the available data.

As an example, we might wish to obtain the spatial distribution of some variable at the
county level, even though it was originally collected at the census tract level. Or, we might
have a very low-resolution global climate model for weather prediction, and seek to predict
more locally (i.e., at higher resolution). For areal unit data, our purpose might be simply
to understand the distribution of the variable at a new level of spatial aggregation (the
so-called modifiable areal unit problem, or MAUP), or perhaps so we can relate it to another
variable that is already available at this level (say, a demographic census variable collected
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over the tracts). For data modeled through a spatial process, we would envision averaging
the process to capture it at different spatial scales, (the so-called change of support problem,
or COSP), again possibly for connection with another variable observed at a particular
scale.

A canonical illustration, which includes regression, arises in an environmental justice
context. Ambient exposure to an environmental pollutant may be recorded at a network
of monitoring stations. Adverse health outcomes that may be affected by exposure are
provided at, say, zip or postcode level to ensure privacy. Finally, population at risk and
demographic information may be available at census level units, e.g., at tract or block level.
How can we use these layers to identify areas of elevated exposure? How can we assess
whether a particular demographic group has disproportionately high exposure? How can
we determine whether risk of an adverse outcome is increased by increased exposure and
how much it is increased, adjusting for population at risk?

The format of this chapter is, first, to provide a historical perspective of the work on
these problems. In particular, the origins of this work are not in the statistics community,
but rather in the geography and social sciences worlds. Then, we will describe in some
detail approaches for treating the foregoing problems. In this regard, we will build from
naivé efforts to sophisticated hierarchical modeling efforts. In the process, we will make
connections with aggregation/disaggregation issues and the ecological fallacy, which pro-
vide the subject matter for Chapter 30. The fallacy refers to the fact that relationships
observed between variables measured at the ecological (aggregate) level may not accu-
rately reflect (and may possibly overstate) the relationship between these same variables
measured at the individual level. Reflecting the foregoing development on process mod-
eling (Section 29.2) and discrete spatial variation (Section 29.3), we present our discussion
according to whether the data are suitably modeled using a spatial process as opposed
to a conditionally auto regressive (CAR) or simultaneous auto regressive (SAR) model.
Here, the former assumption leads to more general modeling, since point-level data may
be naturally aggregated to so-called block level, but the reverse procedure may or may not
be possible; e.g., if the areal data are counts or proportions, what would the point-level
variables be? However, since block-level summary data arise quite frequently in practice
(often due to confidentiality restrictions), methods associated with such data are also of im-
portance. We thus consider misalignment in the context of both point-level and block-level
modeling.

To supplement the presentation here, we encourage the reader to look at the excellent
review paper by Gotway and Young (2002). These authors give nice discussions of (as well
as both traditional and Bayesian approaches for) the MAUP and COSP, spatial regression,
and the ecological fallacy. Consideration of this last problem dates at least to Robinson (1950)
(see Wakefield, 2003, 2004, 2008, for more modern treatments of this difficult subject).

We conclude this introduction with a more formal formulation of the problems. First,
consider a single variable, a univariate setting and the COSP, areal interpolation, MAUP
problems. We can envision four cases:

1. We observe point-referenced data Y(si ) at locations si , i = 1, 2, . . . , n and we seek
to infer about the process at new locations s∗

j , j = 1, 2, . . . m. This problem is, in
fact, spatial kriging as discussed in detail in Chapters 3, 4, and 7.

2. We observe point-referenced data Y(si ) at locations {si , i = 1, 2, . . . , n} and we seek
to infer about the process at a collection of areal units, i.e., Y(B j ) associated with
B j , j = 1, 2, . . . , m. Here we are envisioning a suitable average for the process to
assign to each of the B j .

3. We have observations associated with areal units, i.e., Y(Bi ) at areal unit Bi , i =
1, 2, . . . , n and we seek to infer about the process at a collection of locations, say,
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s∗
j , j = 1, 2, . . . , m. Here the caveat above applies; we may not be able to sensibly

conceptualize the random variables Y(s∗
j ).

4. We have observations associated with areal units, e.g., Y(Bi ) associated with Bi , i =
1, 2, . . . , n and we seek to infer about observations Y(B∗

j ) at B∗
j , j = 1, 2, . . . , m. An

issue here is whether or not the B∗
j s are nested within (a refinement of) the Bi s or

merely a different partition. In the latter case, it may be that ∪i Bi �= ∪ j B∗
j .

Second, we turn to the regression setting. We simplify to one explanatory variable and
one response variable. Then, letting X denote the explanatory variable and Y denote the
response variable, we seek to regress Y on X. Again, there are four cases:

1. We observe Y in the form Y(Bi ) at areal units Bi , i = 1, 2, . . . , n with X in the form
X(C j ) at j = 1, 2, . . . , m.

2. We observe Y in the form Y(Bi ) at areal units Bi , i = 1, 2, . . . , n with X in the form
X(s∗

j ) at locations s∗
j , j = 1, 2, . . . , m.

3. We observe Y in the form Y(si ) at locations si , i = 1, 2, . . . , n with X in the form
X(s∗

j ) at locations s∗
j , j = 1, 2, . . . , m.

4. We observe Y in the form Y(si ) at locations si , i = 1, 2, . . . , n with X in the form
X(B j ) at areal units B j , j = 1, 2, . . . , m.

In general, we would seek to model at the highest resolution possible, at point-level if we
can. Of course, such modeling will be the most computationally demanding. At the least,
we would like to model the regression at the scale of the response variable but, for instance,
case (4) might preclude that and we would instead have to average up the response variable.
Also, in case (4), we note the potential for the atomistic fallacy (see Chapter 30), where invalid
inference may arise if appropriate block-level contextual variables are not included in the
model.

We shall see below that misaligned spatial regression is implemented as a COSP for X
followed by a regression of Y on X (except perhaps, in case (4)). We shall also find that
we implement the COSP itself through the use of covariate information. Here, we seek to
improve upon naivé areally weighted interpolation. For instance, with Yi observed at Bi ,
we infer about Yi j at Bi j ⊂ Bi using Xi j via a latent regression of Yi j on Xi j .

Finally, we offer some discussion on a currently active misalignment issue, data fusion
or assimilation, where, for a given variable, we have data layers at different scales that we
seek to fuse in order to learn about the behavior of the variable at point-level everywhere
in the region of interest.

29.2 Historical Perspective

It has long been recognized that the scale for study of spatial processes affects the interpre-
tation of the process dynamics. Mechanisms operating at fine spatial scale may be irrelevant
at large spatial scales and, conversely, mechanisms operating at large spatial scales may not
even be seen at small scales. Such scaling issues are well appreciated in studying human,
animal, and plant populations and have led to investigations by researchers in agriculture,
geography, sociology, ecology, earth and environmental sciences, and, of course, statistics
(see, e.g., Fairfield Smith, 1938; Jelinski and Wu, 1996; King, 1997; Levin, 1992; Richardson,
1992; Robinson, 1950). Indeed, with increasing research emphasis on process modeling and
understanding, scaling concerns have become a much discussed problem, encompassing a
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broader range of problems than we consider in this chapter. Some aspects of this discussion
will be taken up in Chapter 30. Here, our focus is on methodology for treating misaligned
data situations.

Gotway and Young (2002) are careful to point out the COSP includes the MAUP, which in
turn includes the ecological fallacy. That is, the ecological bias that is introduced when doing
analysis based upon grouped individuals rather than on the individuals themselves is re-
ferred to as “ecological bias” (Greenland and Robins, 1994; Richardson, 1992). It is comprised
of aggregation bias due to grouping of individuals and specification bias due to the fact that the
distribution of confounding variables varies with grouping. In the MAUP literature, these
two effects are referred to as the scale effect and the zoning effect (Openshaw, 1984; Openshaw
and Taylor, 1979, 1981; Wong, 1996). The former acknowledges differences that emerge when
the same dataset is grouped into increasingly larger areal units. The latter recognizes that,
even at the same scale, different definitions/formations of areal units can lead to consequen-
tially different levels of attributes that are associated with the units. Within the notion of the
COSP, “support” can be viewed as the size or volume associated with a given data value so
that this allows for geometrical size, shape, and orientation to be associated with measure-
ments. Changing the support implies that a new random variable is created whose distribu-
tion may be developed from the original one but, in any event, has different statistical and
spatial properties. Arbia (1989) uses the terminology spatial data transformations to refer to
situations where the process of interest is inherently in one spatial form, but the data regard-
ing the process are observed in another spatial form. Hence, a “transformation” is required
from the observed form to the form of interest. In the sequel, we confine ourselves to points
and to areal units (the latter stored as a shape file in the form of polygonal line segments).

Areal interpolation, which is the objective of the MAUP, is well discussed in the geography
literature (Goodchild and Lam, 1980; Mrozinski and Cromley, 1999). Regions for which the
data are available are referred to as source zones, regions for which we seek to interpolate
are referred to as target zones. Effects of the MAUP have typically been studied by focusing
on the variation in the correlation coefficient across choices of zones. Openshaw and Taylor
(1979) studied this in the context of proportion of elderly voters by county in the state
of Iowa. By using various groupings, they achieved spatial correlations between percent
elderly and percent registered Republican ranging from −.81 to +.98. Similar results were
found in earlier studies, e.g., Gehlke and Biehl (1934); Robinson (1950); Yule and Kendall
(1950). With a single variable, these correlations are typically measured using Moran’s I (see
Chapter 14). One emergent suggestion from this work, as well as from follow-on papers, is
the need to analyze areal unit data at multiple scales with multiple choices of zones. With
widely available geographic information system (GIS) software, the diversity of outcomes
associated with zone design can be implemented efficiently through repeated scaling and
aggregation experiments (Longley, Goodchild, Maguire, and Rhind, 2001; Openshaw and
Alvanides, 1999). The use of well-chosen grouping variables to adjust the area-level results
can help to clarify individual-level relationships and, thus, assist in combating the ecological
fallacy (see, e.g., Holt, Steel, and Tranmer, 1996). Sections 29.3 and 29.4 below formalize this
approach in a fully model-based way.

Interesting debate in the geography literature has focused on whether the MAUP should
be addressed solely with techniques independent of areal units. Tobler (1979) argued that
all methods whose results depend upon areal units should be discarded a priori. Thus,
improved spatial statistics tools are what is needed. (See also King, 1997, p. 250). In contrast,
Openshaw and Taylor (1981) argued that “a context-free approach is contrary to geographic
common sense, irrespective of what other virtues it might have.” Thus, the right approach
to the MAUP should be geographical rather than purely statistical or mathematical.

In the geography literature, there are a variety of algorithmic approaches to implement a
solution to the MAUP, i.e., to implement an interpolation from a set of source zones to a set
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of target zones. We illustrate one such strategy here, due to Mrozinski and Cromley (1999),
which relies heavily on GIS tools. In particular, overlays of polygonally defined data layers
are used. Suppose one layer provides a set of areal units with their areas and populations
(an aggregated variable), the source zones. We seek to assign population values to a new
set of units, the target zones, knowing only their areas. Suppose we rasterize (i.e., partition)
the entire region to small grid cells and assign to each grid cell a source zone and a target
zone. Typically, edge effects are ignored, especially if the raster cells are small. (In any
event, a majority rule with regard to area provides a unique assignment of cells to zones.)
Next, suppose we areally allocate population to each of the raster cells using the source
zone populations. That is, if there are, say, m j cells in source zone B j , we assign 1/m j of
the population to each. Next, we implement a smoothing or filtering function, assigning to
each cell a new value that is the average of the current cell value and its four neighbors.
This is done for all cells. Of course, now the sum of the cell populations does not agree with
the total population for each of the source zones. So, a rescaling of the cell values is done
to preserve volume relative to the source zones. This completes one iteration. This process
is iterated until convergence is reached where convergence is measured using a suitable
but arbitrarily selected criterion. Then, the cell values are summed appropriately to obtain
values for the target cells.

The major weakness of this approach is the presumption that population is uniformly
distributed over areas (we return to this point in Section 29.3). This concern encourages
the use of additional covariate information that is connected to the variable being allocated
and is not uniformly distributed (again, we will return to this). Working with GIS tools,
rasterization to grid cells can be replaced with resels, resolution elements. These are the
polygonal units that are created by overlaying the source and target areal units and can be
used directly in the above iterative scheme. This avoids concern with edge issues. A variant
of this problem, which has received little attention (again see Mrozinski and Cromley, 1999),
is the case of two layers of source zones for the same attribute, where interest lies in assigning
values to associated rasterized grid cells or resels.

Though spiritually similar to kriging (which is well discussed in the statistical literature),
the areal interpolation problem has received little attention in the statistical literature. The
first notable effort is by Tobler (1979). He offered a so-called pycnophylactic approach (volume
preserving, as above). For what he referred to as intensive variables, i.e., variables that can be
viewed as averaged to the areal units, such as rainfall, temperature, and environmental ex-
posure, Tobler envisioned an intensity surface, λ(s) over the study area. Then, for areal unit
B, E(Y(B)) = ∫

B λ(s)ds/|B| where |B| denotes the area of B. In other words, the expected
value for Y(B) is the average of the intensity surface over B. Next, if λ̂(s) is an estimate of
the intensity, Ŷ(B) = ∫

B λ̂(s)ds/|B|. In particular, with observed Y(Bi ), i = 1, 2, . . . , n, asso-
ciated with exclusive and exhaustive sets Bi , he suggests method of moments estimation,
equating Y(Bi ) to E(Y(Bi )), the pycnophylactic (“volume-preserving”) property. Evidently,
this fitting does not uniquely determine λ(s); one choice is λ(s) = Y(Bi ) if s ∈ Bi . Tobler
(1979) proposed smoothing λ by minimizing an integrated total squared differential form. A
discretized implementation leads to a spline form solution. Kernel-based, locally weighted
smoothing was suggested in Brillinger (1990). In the absence of smoothing, if B = ⋃

Ai ,
where the Ai are disjoint, it is easy to see that Ŷ(B) = ∑

i wi Ŷ( Ai ) where wi = |Ai |/|B|, i.e.,
an areal weighted average.

Flowerdew and Green (1989) introduced a more formal modeling approach. Working
with so-called extensive variables, i.e., variables that cumulate over a region, such as counts,
they introduced better covariates than area to implement the interpolation (in the spirit
of Holt et al., 1996). Depending on the context, such areal unit variables could be land-
use classifications, number of structures (perhaps of different types), topography informa-
tion, such as elevation and aspect, etc. For counts at areal units, consider a classification
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covariate, with classes indexed by �, � = 1, 2, . . . , L , let λ� denote the constant intensity
associated with classification �. That is, if classification � operates exclusively over unit
B, then Y(B), the count associated with this unit, has a Poisson distribution, Po(λ�|B|).
If the target zone, |B|, is a mix of classifications with areal proportions |A�|/|B| = p�, then
Y(B) ∼ Po(

∑
p�λ�|B| = ∑

λ�|A�|). Finally, the λ� would be estimated from the source zone
data using a Poisson regression.

Flowerdew and Green (1989) extended this idea using the expectation-maximization
(EM) algorithm (Dempster, Laird, and Rubin, 1977; Tanner, 1996). Given a set of source zones
{B j } and a set of target zones {Ck}, let Ajk = B j

⋂
Ck . (Of course, many of the Ajk are empty.)

The approach is to use the Y(B j ) to impute Y( Ajk) and then obtain Y(Ck) by summing over
j . Again, with counts, it is assumed that Y( Ajk) ∼ Po(λ( Ajk)) conditionally independent
given the λs. The E step is implemented by computing E(Y( Ajk)|λ( Ajk), Y(B j )), under
a conditional multinomial distribution. The M step is implemented by estimating λ( Ajk)
again using a Poisson regression given the {Y( Ajk)}. Apart from using |Ajk |, covariates
specific to the target zone X(Ck) can be employed.

Taking these ideas a bit further, Flowerdew and Green (1992, 1994) examined the intensive
case. Viewing the continuous variables as, say, house prices, for B j , Y(B j ) is the average of,
say, nj observations in B j . (The prices could be covariate adjusted or could be associated with
a collection of similar houses.) Now, we seek to say something about average house prices
associated with Ck using associated covariate information, X(Ck). Though nj is known, njk is
not but a “cheap” interpolation, njk = nj

|Ajk |
|Bk | is proposed. Then, a standard linear regression

for Y( Ajk) is adopted, again assuming conditional independence. Since the conditional
distribution of Y( Ajk) given Y(B j ) is normal, the conditional mean provides the E step;
estimating the regression model given {Y( Ajk)} provides the M step.

29.3 Misalignment through Point-Level Modeling

29.3.1 The Block Average

Consider a univariate variable that is modeled through a spatial process. It may be observed
either at points in space, or over areal units (e.g., counties or zip codes), which we will refer
to as block data. The change of support problem is concerned with inference about the values
of the variable at points or blocks different from those at which it has been observed.

Let Y(s) denote the spatial process (e.g., ozone level) measured at location s, for s in some
region of interest D. In our applications D ⊂ �2, but our development works in arbitrary
dimensions. A realization of the process is a surface over D. For point-referenced data the
realization is observed at a finite set of sites, say, si , i = 1, 2, . . . , I . For block data we assume
the observations arise as block averages. That is, for a block B ⊂ D,

Y(B) = |B|−1
∫

B
Y(s)ds , (29.1)

where |B| denotes the area of B (see, e.g., Cressie, 1993). The integration in Equation (29.1)
is an average of random variables, hence, a random or stochastic integral. (Though Y(s) is
a function over D, it has no analytical form that we can use.) Thus, the assumption of an
underlying spatial process is only appropriate for block data that can be sensibly viewed
as an averaging over point data; examples of this would include rainfall, pollutant level,
temperature, and elevation. It would be inappropriate for, say, population, since there is no
“population” at a particular point. It would also be inappropriate for most proportions. For
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instance, if Y(B) is the proportion of college-educated persons in B, then Y(B) is continuous,
but even were we to conceptualize an individual at every point, Y(s) would be binary.

Block averaging is distinct from a mean or density surface over D. That is, we could
certainly envision a rainfall density over D, μ(s), such that the expected average rainfall in
block B, E(Y(B)), is μ(B) = |B|−1 ∫

B μ(s)ds. We could also envision a population density
over D such that the expected population in B cumulates via

∫
B μ(s)ds. The latter provides

an evident generalization of areal weighting (where μ(s) would be constant).
Inference about blocks through averages as in Equation (29.1) is not only formally attrac-

tive, but demonstrably preferable to ad hoc approaches. One such approach would be to
average over the observed Y(si ) in B. But this presumes there is at least one observation
in any B and ignores the information about the spatial process in the observations outside
of B. Another ad hoc approach would be to simply predict the value at some central point
of B. But this value has larger variability than (and may be biased for) the block average.
So, instead, we confine ourselves to block averages and take up a brief review of their
properties.

Evidently, we cannot compute Y(B) exactly. However, if we know the mean surface and
covariance function associated with Y(s), we can compute the mean and variance of Y(B).
In particular, if E(Y(s)) = μ(s; β) and Cov(Y(s), Y(s

′
)) = C(s − s

′
; φ),

E(Y(B)|β) ≡ μ(B; β) = |B|−1
∫

B
μ(s; β)ds (29.2)

and
var(Y(B)|φ) ≡ v(B; φ) = |B|−2

∫
B

∫
B

C(s − s
′
; φ)dsds

′
. (29.3)

Moreover, if the process is Gaussian, then Y(B) ∼ N(μ(B; β), v(B; φ)). In fact, for two sets
B1 and B2, not necessarily disjoint, we have

Cov(Y(B1), Y(B2)|φ) ≡ C(B1, B2; φ) = |B1|−1|B2|−1
∫

B1

∫
B2

C(s − s
′
; φ)dsds

′
(29.4)

and
Cov(Y(B); Y(s)|φ) ≡ C(B, s; φ) = |B|−1

∫
B

C(s
′
, s; φ)ds

′
. (29.5)

Hence, in this situation, we can work with block averages without ever having to attempt
to compute stochastic integrals.

In this regard, we summarize the ideas in Gelfand, Zhu, and Carlin (2001). If the Bs are
regular in shape, the integrals in Equation (29.2) to Equation (29.5) can be well computed
using Riemann approximation. However, such integration over irregularly shaped Bs may
be awkward. Instead, noting that each such integration is an expectation with respect
to a uniform distribution, we propose Monte Carlo integration. In particular, for each B
we propose to draw a set of locations s�, � = 1, 2, . . . , L , distributed independently and
uniformly over B. Here, L can vary with B to allow for very unequal |B|s.

Thus, we replaceμ(B; β), v(B; φ), Cov(Y(B1), Y(B2)), and Cov(Y(B); Y(s)) with μ̂(B; β) =
L−1 ∑

� μ(s�; β), v̂(B; φ) = L−2 ∑
�

∑
�′ C(s� − s�′ ; φ), Ĉ(B1, B2; φ) = L−1

1 L−1
2

∑
�

∑
�′ C(s1� −

s2�′ ; φ), and Ĉ(B, s; φ) = L−1 ∑
� C(s − s�; φ). In our notation, the “hat” denotes a Monte

Carlo integration that can be made arbitrarily accurate and has nothing to do with the
amount of data collected on the Y(s) process. It is useful to note that if we define Ŷ(B) =
L−1 ∑

� Y(s�), then Ŷ(B) is a Monte Carlo integration for Y(B).

As a technical point, we might ask when Ŷ(B)
P→ Y(B). An obvious sufficient condition

is that realizations of the Y(s) process are almost surely continuous. In the stationary case,
Kent (1989) provides sufficient conditions on C(s − s

′
; φ) to ensure this. Alternatively, Stein
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(1999) defines Y(s) to be mean square continuous if limh→0 E(Y(s + h) − Y(s))2 = 0 for all

s. But, then Y(s + h)
P→ Y(s) as h → 0, which is sufficient to guarantee that Ŷ(B)

P→ Y(B).
Stein (1999) notes that if Y(s) is stationary, we only require C(· ; φ) continuous at 0 for mean
square continuity.

Beginning with point data observed at sites s1, . . . , sI , let YT
s = (Y(s1), . . . , Y(sI )). Then,

under a Gaussian process with mean and covariance function as above, with evident
notation,

Ys | β, φ ∼ N(μs(β), Cs(φ)). (29.6)

Moreover, with YT
B = (Y(B1), . . . , Y(BK )), we have

f
((

Ys

YB

)∣∣∣∣ β, φ

)
= N

((
μs(β)
μB(β)

)
,

(
Cs(φ) Cs, B(φ)

CT
s, B(φ) CB(φ)

))
. (29.7)

From Equation (29.7), it is clear that we have the conditional distribution for any set of
blocks given any set of points and vice versa. Hence, in terms of spatial prediction, we
can implement any of the customary kriging approaches (as discussed in Part II). And,
implicitly, we can do so for any set of points given another set of points and for any set
of blocks given another set of blocks. So, with point referenced data, the misalignment
problem for a single variable can be handled by available kriging methods.

For instance, following Journel and Huijbrects (1978) or Chiles and Delfiner (1999), we
can implement universal block kriging to obtain Ŷ(B) = ∑n

i=1 λi Y(si ) where the optimal
weights, λi , are, in general, obtained via Lagrange multipliers, minimizing predictive mean
square error subject to unbiasedness constraints as in usual kriging. Under normality, they
arise from the conditional mean of Y(B)|{Y(si ), i = 1, 2, . . . , }.

Within the Bayesian framework, with a prior on β and φ, to implement block kriging
given point referenced data Ys , we would seek

f (YB | Ys) =
∫

f (YB | Ys ; β, φ) f (β, φ | Ys)dβdφ. (29.8)

A Markov chain Monte Carlo (MCMC) algorithm would sample this distribution by com-
position, drawing (β, φ) from f (β, φ | Ys) and then the Y(B)s from f (YB | Ys ; β, φ). The
Monte Carlo approximations above would replace f

(
(Ys , YB)T | β, φ

)
with

f̂ ((Ys , YB)T | β, φ) = f ((Ys , ŶB)T | β, φ), (29.9)

where Equation (29.9) is interpreted to mean that the approximate joint distribution of
(Ys , YB) is the exact joint distribution of Ys , ŶB . In practice, we would work with f̂ , con-
verting to f̂ (YB | Ys , β, φ) to sample YB rather than using Monte Carlo integrations to
sample the Ŷ(Bk)s. But, evidently, we are sampling ŶB rather than YB .

For the modifiable areal unit problem (i.e., prediction at new blocks using data for a given
set of blocks), suppose we take as our point estimate for a generic new set B0 the posterior
mean,

E(Y(B0) | YB) = E{μ(B0; β) + CT
B, B0

(φ)C−1
B (φ)(YB − μB(β)) | YB} ,

where CB, B0 (φ) is I × 1 with ith entry equal to Cov(Y(Bi ), Y(B0) | φ). If μ(s; β) = μi for
s ∈ Bi , then μ(B0; β) = |B0|−1 ∑

i |Bi ∩ B0| μi . But E(μi | YB) ≈ Y(Bi ) to a first-order ap-
proximation. So in this case, E(Y(B0) | YB) ≈ |B0|−1 ∑

i |Bi ∩ B0| Y(Bi ), the areally weighted
estimate.

A noteworthy remark here is that, often, we are modeling a process, say Z(s), which is nec-
essarily positive, for instance, an intensity surface as in a Cox process (see Chapters 16 and
17). An obvious strategy is to model Z(s) as a log Gaussian process, i.e., Z(s) = exp(Y(s))
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where Y(s) is a Gaussian process. But now, block averaging as in Equation (29.1) becomes
awkward; we require Z(B) = |B|−1

∫
B exp(Y(s))ds. Evidently, Z(B) does not follow a

lognormal distribution and its dependence structure is difficult to calculate. A frequent
“cheat” is to use Z̃(B) = exp(|B|−1

∫
B Y(s)ds), which is lognormal. However, Z̃(B) ≤ Z(B)

by Jensen’s inequality. Moreover, the impact of such approximation is unclear, but can
potentially create an ecologically fallacy in a regression setting (see Chapter 30). Simi-
lar concerns would arise using an alternative transformation from R1 → R+. To avoid
these problems, we will have to work with Monte Carlo or Riemann integrations for Z(B),
e.g., Ẑ(B) = L−1 ∑

l exp(Y(sl). This basic issue arises with other nonlinear kriging sit-
uations. Consider, for example, indicator kriging where we look at the binary variable
I (Y(s) ≤ y) = 1 if Y(s) ≤ y, 0 otherwise. If we are interested in indicator block kriging,
I (Y(B) ≤ y), we again find that I (Y(B) ≤ y) �= |B|−1

∫
B I (Y(s) ≤ y)ds. Again, we would

employ numerical integration. Simulation methods have been used to handle such approxi-
mation strategies. Goovaerts (1997) proposes forward simulation conditional on estimation
of the model parameters. The fully Bayesian approach would implement an anchored sim-
ulation, i.e., an MCMC algorithm, conditioned on the data to obtain posterior predictive
samples (see, e.g., De Oliveira, Kedem, and Short, 1997, in this regard). The fully Bayesian
approach is substantially more computationally demanding.

The foregoing development can easily be extended to space–time data settings. We briefly
present the details. Suppose we envision a spatio-temporal Gaussian process with station-
ary covariance function Cov(Y(s, t), Y(s

′
, t

′
)) = C(s− s

′
, t − t

′
; φ). We block average only in

space, at particular points in time. The distribution theory is similar to that in Equation (29.2)
to Equation (29.5) (with mean surface μ(s, t; β)), that is,

E(Y(B, t)|β) ≡ μ(B, t; β) = |B|−1
∫

B
μ(s, t; β)ds (29.10)

and
var(Y(B, t)|φ) ≡ v(B, t; φ) = |B|−2

∫
B

∫
B

C(s − s
′
, 0; φ)dsds′. (29.11)

Under stationarity in time, the variance is free of t. Moreover, if the process is Gaussian,
then Y(B) ∼ N(μ(B, t; β), v(B, t; φ)). In fact, for two sets B1 and B2, not necessarily disjoint,
at times t1 and t2, we have

Cov(Y(B1, t1), Y(B2, t2)|φ) ≡ C(B1, B2; φ) = |B1|−1|B2|−1
∫

B1

∫
B2

C(s − s
′
, t1 − t2; φ)dsds

′

(29.12)
and

Cov(Y(B, t
′
); Y(s, t)|φ) ≡ C(B, s; φ) = |B|−1

∫
B

C(s
′
, s, t

′ − t; φ)ds
′
. (29.13)

Again, we use Riemann or Monte Carlo integration to approximate these integrals.
We confine ourselves to the case of predicting block averages given point data. Sup-

pose we sample data Y(si , tj ) at n locations across T time points and we seek to predict
Y(B0, t0). The joint distributions are substantially simplified assuming a covariance func-
tion that is separable in space and time, i.e., Cov(Y(s, t), Y(s

′
, t

′
)) = σ 2ρ1(s − s

′
; φ1)ρ2(t −

t
′
; φ2). Then, the distribution of Y, the vector that concatenates the Y(si , tj ) by location and

then time within location, is an nT-dimensional multivariate normal, Y ∼ N(μ(β), ΣY =
σ 2 R1(φ1)

⊗
R2(φ2)) where R1 is the n × n matrix with entries ρ1(si − s j ; φ1), R2 is the T × T

matrix with entries ρ2(ti − tj ; φ2), and “
⊗

” denotes the Kronecker product. Furthermore,
the joint distribution of Y, Y(B0, t0) is an nT + 1–dimensional multivariate normal, which
yields the conditional distribution

Y(B0, t0)|y; β, σ 2, φ1, φ2 ∼ N
(
μ(B0, t0); β + Σ T

0,YΣ−1
Y (Y − μ(β)), v(B0, t0) − Σ T

0,YΣ−1
Y Σ0,Y

)
,
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where Σ0,Y is an nT × 1 vector with entries Cov(Y(si , tj ), Y(B0, t0)). This is the requisite
kriging distribution. Again, within the Bayesian framework, we would make predictive
draws of Y(B0, s0) by composition.

29.4 Nested Block-Level Modeling

We now turn to the case of variables available only as block-level summaries. For example,
it might be that data are known at the county level, but hypotheses of interest pertain to
postcodes or census tracts. As above, we refer to regions on which data are available as
source zones and regions for which data are needed as target zones.

In fact, we confine ourselves to variables that are aggregative, i.e., they can be viewed
as sums over subblocks. We first focus on the nested misalignment setting where the target
zonation of the spatial domain D is a refinement of the source zonation, following the work
of Mugglin and Carlin (1998). In the setting below, the source zones are U.S. census tracts,
while the target zones (and the zones on which covariate data are available) are U.S. census
block groups.

Consider the diagram in Figure 29.1. Assume that a particular rectangular tract of land
is divided into two regions (I and II), and spatial variables (say, disease counts) Y1 and Y2
are known for these regions (the source zones). But, suppose that the quantity of interest is
Y3, the unknown corresponding count in Region III (the target zone), which is comprised
of subsections (IIIa and IIIb) of Regions I and II.

As already mentioned, a crude way to approach the problem is to assume that disease
counts are distributed evenly throughout Regions I and II, and so the number of affected
individuals in Region III is just

y1

[
area(IIIa)
area( I )

]
+ y2

[
area(IIIb)
area(II)

]
. (29.14)

This simple areal interpolation approach is available within many GIS packages, but seems
unattractive due to the uniformity assumption. Moreover, it offers no associated estimate
of uncertainty.

Suppose that each unit can be partitioned into smaller subunits, where on each subunit we
can measure some other variable that is correlated with y. For instance, if we are looking at a

Region I Region II

Region III

IIIa IIIb

FIGURE 29.1
Regional map for motivating example.
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particular tract of land, in each subunit we might record whether the land is predominantly
rural or urban in character. Continuous covariates could also be used (say, the median
household income in the unit). Suppose further, that the subunits arise as a refinement of the
original scale of aggregation (e.g., if disease counts were available only by census tract, but
covariate information arose at the census block group level), or as the result of overlaying a
completely new set of boundaries (say, a zip code map) onto the original map. The statistical
model is easier to formulate in the former case, but the latter case is, of course, more general.

To formalize this nested approach we model at the subunit level. Assuming counts are
recorded for the units, we have Yi j ∼ Po(ni j pi j = Ei jri j ) where ni j ; is the population at risk
in unit i, j ; pi j is the incidence rate in unit i, j ; Ei j is the expected count in unit i, j ; and ri j is
the relative risk for unit i, j . If Xi j is covariate information for subunit i, j that is anticipated
to help “explain” Yi j , we can write, say, logri j = XT

i jβ. If the Yi j s are assumed conditionally
independent, then Yi ∼ Po(

∑
j Ei j ri j ).∗ Imposing the constraint that

∑
j Yi j = Yi , we have

that Yi j |Yi follows a binomial distribution with mean Ei j ri j∑
j

Ei j ri j
Yi . We can now more clearly see

the relationship between this approach and areal interpolation above. Areal interpolation
sets Yi j = |Bi j |

|Bi | Yi . So, |Bi j | plays the role of Ei jri j and we ignore the uncertainty in Yi j , just
using its mean as a point estimate.

Our illustration envisions the Ys as disease counts. To be concrete, we suppose that they
are observed at census tracts, i.e., Yi s, but we seek to impute them to census block groups
contained within the census tracts, Yi j s. Suppose the data record the block group-level
population counts ni j and, for example, covariate values ui j and vi j where ui j = 1 if block
group j within census tract i is classified as urban, 0 otherwise and vi j = 1 if the block
group centroid is within 2 km of a waste site, 0 if not. Hence, we recast the misalignment
problem as a misaligned spatial regression problem. We can use a hierarchical model to
incorporate the covariate information as well as to obtain variance estimates to accompany
the block group-level point estimates. In this example, the unequal population totals in
the block groups will play the weighting role that unequal areas would have played in
Equation (29.14). Recalling the disease mapping discussion in Chapter 14, we introduce a
first-stage Poisson model for the disease counts where we might specify the relative risk
through logri j = β0 + ui jβ1 + vi jβ2.

In Mugglin and Carlin (1998), extending earlier work of Waller, Carlin, and Xia (1997), a
Bayesian analysis using the above modeling is implemented for a leukemia dataset from
upstate New York. Priors are added to complete a Bayesian hierarchical model and posterior
inference is obtained for the ri j .

29.5 Nonnested Block-Level Modeling

We next consider a framework for hierarchical Bayesian interpolation, estimation, and
spatial smoothing over nonnested misaligned data grids. We confine our model development
to the case of two misaligned spatial grids. Given this development, the extension to more
than two grids will be conceptually apparent. The additional computational complexity
and bookkeeping detail will also be evident.

Let the first grid have regions indexed by i = 1, . . . , I , denoted by Bi , and let SB = ∪i Bi .
Similarly, for the second grid we have regions C j , j = 1, . . . , J with SC = ∪ j C j . In some

∗ Note the potential here for an ecological fallacy as we discussed in the previous section. If Xi j is a cumulative
variable, logri is not linear in Xi .
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B11

C12 =

B12

B21

C13

= B23

C21

= B22

C22C11

C1

B2

C2

B1

FIGURE 29.2
Illustrative representation of areal data misalignment.

applications SB = SC , i.e., the B cells and the C cells offer different partitions of a common
region. Nested misalignment (e.g., where each C j is contained entirely in one and only one
Bi ) is, evidently, a special case. Another possibility is that one data grid contains the other;
say, SB ⊂ SC . In this case, there will exist some C cells for which a portion lies outside of SB . In
the most general case, illustrated by Figure 29.2, there is no containment and there will exist
B cells for which a portion lies outside of SC and C cells for which a portion lies outside of SB .

Atoms are created by intersecting the two grids. For a given Bi , each C cell that intersects
Bi creates an atom (which possibly could be a union of disjoint regions). There may also
be a portion of Bi that does not intersect with any C j . We refer to this portion as the edge
atom associated with Bi , i.e., a B-edge atom. In Figure 29.2, atoms B11 and B21 are B-edge
atoms. Similarly, for a given C j , each B cell that intersects with C j creates an atom, and
we analogously determine C-edge atoms (atoms C11 and C22 in Figure 29.2). It is crucial to
note that each nonedge atom can be referenced relative to an appropriate B cell, say Bi , and
denoted as Bik . It also can be referenced relative to an appropriate C cell, say C j , and denoted
by C j�. Hence, there is a one-to-one mapping within SB ∩ SC between the set of iks and the
set of j�s, as shown in Figure 29.2. Formally, we can define the function g on nonedge B
atoms such that g(Bik) = C j�, and the inverse function b on C atoms such that b(C j�) = Bik .
For computational purposes, we would create a “look-up” table to specify these functions.

Again, we refer to the first grid as the source grid, that is, at each Bi we observe a response
Yi . We seek to explain Yi using covariates, some of which may be observed on the response
grid; we denote the value of this vector for Bi by Wi . But also, some covariates are observed
on the second or target grid. We denote the value of this vector for C j by X j . We seek to impute
Ys to the C cells given Ys observed for the B cells. We can use covariates on the B areal
partition (Wi s) and also covariates on the C areal partition (Xj s). We model at the atom level.

Again, we assume that the Ys are aggregated measurements so that Yi can be envisioned
as

∑
k Yik , where the Yik are unobserved or latent and the summation is over all atoms

(including perhaps an edge atom) associated with Bi . To simplify, suppose that the Xs
are also scalar aggregated measurements, i.e., Xj = ∑

� Xj� where the summation is over
all atoms associated with C j . For the Ws, we assume that each component is either an
aggregated measurement or an inheritable measurement. For component r , in the former
case W(r )

i = ∑
k W(r )

ik as with Yi ; in the latter case W(r )
ik = W(r )

i .
In addition to (or perhaps in place of) the Wi s, we can introduce B cell random effects μi ,

i = 1, . . . , I . These effects are employed to capture spatial association among the Yi s. The
μi can be given a spatial prior specification, e.g., a CAR model (Barliner, 2000; Bernardinelli
and Montomoli, 1992; Besag, 1974; Chapters 12 and 13), as described below, is convenient.
Similarly, we will introduce C cell random effects ω j , j = 1, . . . , J to capture spatial associ-
ation among the Xj s. It is assumed that the latent Yik inherit the effect μi and that the latent
Xj� inherit the effect ω j .
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With count data, we assume the latent variables are conditionally independent Poissons,
as in the previous section. As a result, the observed measurements are Poissons and the
conditional distribution of the latent variables given the observed is a product multinomial.∗

If we implement allocation proportional to area to the Xj� in a stochastic fashion, we would
obtain Xj� | ω j ∼ Po(eω j |C j�|) assumed independent for � = 1, 2, . . . , L j . Then Xj |
ω j ∼ Po(eω j |C j |) and (Xj1, Xj2, . . . , Xj, L j | Xj , ω j ) ∼ Mult(Xj ; q j1, . . . , q j, L j ) where q j� =
|C j�|/|C j |.

Such strictly area-based modeling cannot be applied to the Yiks because it fails to connect
the Ys with the Xs (as well as for the Ws). To do so, we again begin at the atom level. For
nonedge atoms, we use the previously mentioned look-up table to find the Xj� to associate
with a given Yik . It is convenient to denote this Xj� as X′

ik . Ignoring the Wi for the moment,
we assume

Yik | μi , θik ∼ Po
(
eμi |Bik | h(X′

ik/|Bik | ; θik)
)

, (29.15)

independent for k = 1, . . . , Ki . Here, h is a preselected parametric function that adjusts an
expected proportional-to-area allocation according to X′

ik . See Mugglin, Carlin, and Gelfand
(2000) for further discussion regarding choice of h.

If Bi has no associated edge atom, then

Yi | μi , θ , {Xj�} ∼ Po

(
eμi

∑
k

|Bik | h(X′
ik/|Bik | ; θik)

)
. (29.16)

If Bi has an edge atom, say Bi E , since there is no corresponding C j�, there is no correspond-
ing X′

i E . Hence, we introduce a latent X′
i E whose distribution is determined by the nonedge

atoms that are neighbors of Bi E , i.e., X′
i E | ω∗

i ∼ Po(eω∗
i |Bi E |), thus adding a new set of ran-

dom effects {ω∗
i } to the existing set {ω j }. These two sets together are assumed to have a sin-

gle CAR specification. An alternative is to model X′
i E ∼ Po(|Bi E |(∑N(Bi E ) X′

t/
∑

N(Bi E ) |Bt|)),
where N(Bi E ) is the set of neighbors of Bi E and t indexes this set.

Now, with an X′
ik for all ik, Equation (29.15) is extended to all B atoms and the conditional

distribution of Yi is determined for all i as in Equation (29.16). But, also Yi1, . . . , Yiki |Yi , μi , θik

is distributed multinomial (Yi ; qi1, . . . , qiki ), where

qik = |Bik |h(X′
ik/|Bik |; θik)/

∑
k

|Bik |h(X′
ik/|Bik |; θik).

The entire specification can be given a representation as a graphical model, as in
Figure 29.3. In this model, the arrow from {Xj�} → {X′

ik} indicates the inversion of the
{Xjl} to {X′

ik}, augmented by any required edge atom values X′
i E . The {ω∗

i } would be gen-
erated if the X′

i E are modeled using the Poisson specification above. Since the {Yik} are not
observed, but are distributed as multinomial given the fixed block group totals {Yi }, this is a
predictive step in our model, as indicated by the arrow from {Yi } to {Yik} in the figure. In fact,
as mentioned above, the further predictive step to impute Y′

j , the Y total associated with Xj

in the j th target zone is of key interest. If there are edge atoms C j E , this will require a model
for the associated Y′

j E . Because there is no corresponding B atom for C j E , a specification
such as Equation (29.15) is not appropriate. Rather, we can imitate the above modeling for
X′

i E by introducing {μ∗
j }. The {μ∗

j } and {Y′
j E } would add two consecutive nodes to the right

side of Figure 29.3, connecting from λμ to {Y′
j }.

∗ It is not required that the Ys be count data. For instance, with aggregated measurements that are continuous, a
convenient distributional assumption is conditionally independent gammas, in which case the latent variables
would be rescaled to product Dirichlet. An alternative choice is the normal, whereupon the latent variables
would have a distribution that is a product of conditional multivariate normals.

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 14:38 C7287 C7287˙C029

530 Handbook of Spatial Statistics

{Xj}

λω

{Yi}

λμ

{ωj}

{Xjl} {Xík}

{ωi*} {μi}

{Yik}

β

{Yj́ }

FIGURE 29.3
Graphical version of the model, with variables as described in the text. Boxes indicate data nodes, while circles
indicate unknowns.

The distributional specification overlaid on this graphical model has been supplied in
the foregoing discussion and (in the absence of C j E edge atoms, as in Figure 29.3) takes the
form ∏

i

f (Yi1, . . . , Yiki | Yi , β)
∏

i

f (Yi | μi , β, {X′
ik}) f ({X′

ik} | ω∗
i , {Xj�})

×
∏

j

f (Xj1, . . . , Xj L j | Xj )
∏

j

f (Xj | ω j )

× f ({μi } | λμ) f (λμ) f ({ω j }, {ω∗
i } | λω) f (λω) f (β) . (29.17)

Bringing in the Wi merely revises the exponential term in Equation (29.15) from exp(μi ) to
exp(μi + WT

ikβ).

29.6 Misaligned Regression Modeling

We first formalize the modeling details for each of the four potential regression misalign-
ment settings. Again, we confine ourselves to a single explanatory variable. Consider first
response data Y(si ), i = 1, 2, . . . , n with covariate data X(s∗

j ), j = 1, 2, . . . , m. Here, the set
of si s may overlap with the set of s∗

j s, but need not. (So, we might call this a missing data
problem rather than a misalignment problem.) The naı́ve solution might be to regress Y(si )
on the nearest X(s∗

j ) or perhaps on an average of neighboring X(s j )s. (See Royle, Berliner,
Wikle, and Mitliff, 1997, in this regard.) A fully model-based version, which interpolates to
X(si ), will require a process model for X(s). In fact, it will require a bivariate process model
for (X(s), Y(s)) (see Chapter 28). If θ denotes the parameters of this bivariate process, then
the misaligned regression model takes the form

f ({Y(si ), i = 1, 2, . . . , n}|{X(si ), 1 = 1, 2, . . . , n}, θ )
× f ({X(si ), i = 1, 2, . . . , n}|{X(s∗

j ), j = 1, 2, . . . , m}, θ ) f ({X(s∗
j ), j = 1, 2, . . . , m}, θ ). (29.18)

With a prior on θ , we obtain a fully specified Bayesian model and we can implement poste-
rior inference for θ . In the Bayesian framework, using MCMC model fitting, prediction of
Y(s0) at a new X(s0) follows by sampling the predictive distribution, f (Y(s0)|X(s0), {Y(si ),
i = 1, 2, . . . , n}, {X(s∗

j ), j = 1, 2, . . . , m}). This would be done by composition; under a
Gaussian process, we would take a posterior draw of θ and insert this posterior draw in the
univariate normal conditional distribution, f (Y(s0)|X(s0), {Y(si ), i = 1, 2, . . . , n}, {X(s∗

j ),
j = 1, 2, . . . , m}, θ ), to draw Y(s0). (For an illustrative example, see Banerjee and Gelfand
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2002.) Note that the version that kriges the X(s∗
j )s to the X(si )s and then just plugs the kriged

values into a regular regression model converts the COSP into a spatial errors-in-variables
problem. However, if we ignore the uncertainty in the kriged values, we underestimate
the uncertainty in the regression model. We also remind the reader that such prediction
as above is generally referred to as cokriging (see Chapter 28 and the fuller discussion in
Chiles and Delfiner, 1999).

The remaining three cases proceed similarly. Suppose we have Y(Bi ), i = 1, 2, . . . , n with
explanatory X(s j ), j = 1, 2, . . . , m. Now the misaligned regression model takes the form

f ({Y(Bi ), i = 1, 2, . . . , n}|{X(Bi ), 1 = 1, 2, . . . , n}, θ )
× f ({X(Bi ), i = 1, 2, . . . , n}|{X(s j ), j = 1, 2, . . . , m}, θ ) f ({X(s j ), j = 1, 2, . . . , m}, θ ).

(29.19)

Again, under a bivariate process model, we can imitate block average calculations as in
Equation (29.2) to Equation (29.5) with corresponding Monte Carlo integrations to approx-
imate the multivariate normal distributions in Equation (29.19). Posterior inference follows
as in the point–point case. If instead, we have Y(si ), i = 1, 2, .., n with X(B j ), j = 1, 2, . . . , m,
as noted earlier, we must decide whether it is sensible to imagine X(s)s. If so, we can fol-
low Equation (29.19), switching points and blocks for the Xs. If not, we can adopt a naı́ve
version, assigning the value X(si ) = X(B j ) if si ∈ B j . The preferred way, in order to fully
capture the uncertainty in the regression, is to regress Y(B j ) on X(B j ), averaging up the
Y(s) process. In this regard, we condition on the X(B j )s, viewing them as fixed. Last, in the
case where we have Y(Bi ), i = 1, 2, . . . , n with X(C j ), j = 1, 2, . . . , m, we have the MAUP
for the X(B)s as in the previous section. We obtain the MAUP regression model as

f ({Y(Bi ), i = 1, 2, . . . , n}|{X(Bi ), 1 = 1, 2, . . . , n}, θ )
× f ({X(Bi ), i = 1, 2, . . . , n}|{X(C j), j = 1, 2, . . . , m}, θ ) f ({X(C j ), j = 1, 2, . . . , m}, θ ).

(29.20)

Occasionally the Cs will be nested within the Bs, but, more typically, we will have to deal
with the nonnested case. We next describe a version of the MAUP regression.

29.6.1 A Misaligned Regression Modeling Example

In Agarwal, Gelfand, and Silander (2002), the authors apply the ideas above in a rasterized
datasetting. Such data are common in remote sensing, where satellites can collect data
(say, land use) over a pixelized surface, which is often fine enough so that town or other
geopolitical boundaries can be (approximately) taken as the union of a collection of pixels.

The focal area for the study in Agarwal et al. (2002) is the tropical rainforest biome
within Toamasina (or Tamatave) Province of Madagascar. This province is located along
the east coast of Madagascar, and includes the greatest extent of tropical rainforest in the
island nation. The aerial extent of Toamasina Province is roughly 75,000 square km. Four
geo-referenced GIS coverages were constructed for the province: town boundaries with
associated 1993 population census data, elevation, slope, and land cover. Ultimately, the
total number of towns was 159, and the total number of pixels was 74,607. Below, the above
1 km raster layers are aggregated into 4 km pixels.

Figure 29.4 shows the town-level map for the 159 towns in the Madagascar study region.
In fact, there is an escarpment in the western portion where the climate differs from the rest
of the region. It is a seasonally dry grassland/savanna mosaic. Also, the northern part is
expected to differ from the southern part, because the north has fewer population areas with
large forest patches, while the south has more villages with many smaller forest patches
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NORTH

SOUTH

Excluded towns

Town population for the study area

2858–8180

8181–12698

12699–18852

18853–26480

FIGURE 29.4
Northern and southern regions within the Madagascar study region, with population overlaid.

and more extensive road development, including commercial routes to the national capital
west of the study region. The north and south regions with a transition zone were created,
as shown in Figure 29.4.

The joint distribution of land use and population count is modeled at the pixel level.
Let Li j denote the land use value for the j th pixel in the ith town and let Pi j denote the
population count for the j th pixel in the ith town. Again, the Li j are observed, but only
Pi. = ∑

j Pi j are observed at the town level. Collect the Li j and Pi j into town-level vectors
Li and Pi , and overall vectors L and P.

Covariates observed at each pixel include an assigned elevation, Ei j , and an assigned
slope, Si j . To capture spatial association between the Li j , pixel-level spatial effects ϕi j are
introduced; to capture spatial association between the Pi., town-level spatial effects δi are in-
troduced. That is, the spatial process governing land use may differ from that for population.

The joint distribution, p(L, P|Ei j , Si j , ϕi j , δi ) is specified by factoring it as

p(P | Ei j , Si j , δi ) p(L | P, Ei j , Si j , ϕi j ). (29.21)

Conditioning is done in this fashion in order to explain the effect of population on land use.
Causality is not asserted; the conditioning could be reversed. (Also, implicit in (29.21) is a
marginal specification for L and a conditional specification for P|L.)
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Pij

Sij

Pixel Level Town Level

Imputing
Population

Lij

Eij

Pi

βα

δ

τ2
δτ2

FIGURE 29.5
Graphical representation of the land use population model.

Turning to the first term in (29.21), the Pi j are assumed conditionally independent given
the Es, Ss, and δs. In fact, we assume Pi j ∼ Poisson(λi j ), where

log λi j = β0 + β1 Ei j + β2Si j + δi . (29.22)

Thus, Pi. ∼ Poisson(λi.), where log λi. = log
∑

j λi j = log
∑

j exp(β0 + β1 Ei j + β2Si j +
δi ). In other words, the Pi j inherit the spatial effect associated with Pi.. Also,

{
Pi j

} |Pi. ∼
Multinomial( Pi.;

{
γi j

}
), where γi j = λi j/λi .

In the second term in (29.21), conditional independence of the Li j given the Ps, Es, Ss,
and ϕs is assumed. To facilitate computation, we aggregate to 4 km × 4 km resolution. Since
Li j lies between 0 and 16, it is assumed that Li j ∼ Binomial (16, qi j ), i.e., that the 16 1 km
× 1 km pixels that comprise a given 4 km × 4 km pixel are iid Bernoulli random variables
with qi j , such that

log
(

qi j

1 − qi j

)
= α0 + α1 Ei j + α2Si j + α3 Pi j + ϕi j . (29.23)

For the town-level spatial effects, a CAR prior is assumed (see Chapters 12 and 13),
using only the adjacent towns for the mean structure, with variance τ 2

δ , and similarly for
the pixel effects using only adjacent pixels, with variance τ 2

ϕ . To complete the hierarchical
model specification, priors for α, β, τ 2

δ , and τ 2
ϕ (when the ϕi j are included) are required.

Under a binomial, with proper priors for τ 2
δ and τ 2

ϕ , a flat prior for α and β will yield a
proper posterior. For τ 2

δ and τ 2
ϕ , inverse gamma priors may be adopted. Figure 29.5 offers

a graphical representation of the full model.
At the 4 km × 4 km pixel scale, two versions of the model in Equation (29.23) were

fit, one with the ϕi j (Model 2) and one without them (Model 1). Models 1 and 2 were
fitted separately for the northern and southern regions. The results are summarized in
Table 29.1, point (posterior median) and interval (95% equal tail) estimate. The population-
count model results are little affected by the inclusion of the ϕi j . For the land-use model,
this is not the case. Interval estimates for the fixed effects coefficients are much wider when
the ϕi j are included. This is not surprising from the form in Equation (29.23). Though the
Pi j are modeled and are constrained by summation over j and though the φi j are modeled
dependently through the CAR specification, since neither is observed, strong collinearity
between the Pi j and φi j is expected, inflating the variability of the αs.

Specifically, for the population count model in Equation (29.22), in all cases, the elevation
coefficient is significantly negative; higher elevation yields smaller expected population.
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TABLE 29.1

Parameter Estimation (Point and Interval Estimates) for
Models 1 and 2 for the Northern and Southern Regions

M1 M2Model:
Region: North South North South

Population model parameters:
β1 –.577 –.245 –.592 –.176

(elev) (–.663, –.498) (–.419, –.061) (–.679, –.500) (–.341, .019)

β2 .125 –.061 .127 –.096
(slope) (.027, .209) (–.212, .095) (.014, .220) (–.270, .050)

τδ2 1.32 1.67 1.33 1.71
(.910, 2.04) (1.23, 2.36) (.906, 1.94) (1.22, 2.41)

Land use model parameters:
α1 .406 –.081 .490 .130

(elev) (.373, .440) (–.109, –.053) (.160, .857) (–.327, .610)

α2 .015 .157 .040 –.011
(slope) (–.013, .047) (.129, .187) (–.085, .178) (–.152, .117)

α3 –5.10 –3.60 –4.12 –8.11
(×10−4) (–5.76, –4.43) (–4.27, –2.80) (–7.90, –.329) (–14.2, –3.69)

τϕ2 — — 6.84 5.85
(6.15, 7.65) (5.23, 6.54)

Interestingly, the elevation coefficient is more negative in the north. The slope variable is
intended to provide a measure of the differential in elevation between a pixel and its neigh-
bors. However, a crude algorithm is used within the ARC/INFO software for its calculation,
diminishing its value as a covariate. Indeed, higher slope would typically encourage lower
expected population. While this is roughly true for the south under either model, the oppo-
site emerges for the north. The inference for the town-level spatial variance component τ 2

δ

is consistent across all models. Homogeneity of spatial variance for the population model
is acceptable.

Turning to Equation (29.23), in all cases the coefficient for population is significantly
negative. There is a strong relationship between land use and population size; increased
population increases the chance of deforestation, in support of the primary hypothesis for
this analysis. The elevation coefficients are mixed with regard to significance. However,
for both Models 1 and 2, the coefficient is always at least .46 larger in the north. Elevation
more strongly encourages forest cover in the north than in the south. This is consistent
with the discussion of the preceding paragraph but, apparently, the effect is weaker in the
presence of the population effect. Again, the slope covariate provides inconsistent results,
but is insignificant in the presence of spatial effects. Inference for the pixel-level spatial
variance component does not criticize homogeneity across regions. Note that τ 2

ϕ is sig-
nificantly larger than τ 2

δ . Again, this is expected. With a model having four population
parameters to explain 3186 q ′

i j s as opposed to a model having three population parameters
to explain 115 λ′

i s, we would expect much more variability in the ϕ′
i j s than in the δ′

i s. Finally,
Figure 29.6 shows the imputed population (on the square root scale) at the 4 km × 4 km
pixel level.
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North

(6.606, 11.368)

(11.368, 19.111)

(19.111, 26.853)

(26.853, 34.596)

(34.596, 42.338)

(42.338, 74.614)

No Data

South

FIGURE 29.6
Imputed population (on the square root scale) at the pixel level for north and south regions.

The fully nonnested approach will be difficult to implement with more than two mu-
tually misaligned areal data layers, due mostly to the multiple labeling of atoms and the
needed higher-way look-up table. However, the approach of this section suggests a sim-
pler strategy for handling this situation. First, rasterize all data layers to a common scale
of resolution. Then, build a suitable latent regression model at that scale, with conditional
distributions for the response and explanatory variables constrained by the observed ag-
gregated measurements for the respective layers.

We conclude by noting that Zhu, Carlin, and Gelfand (2003) consider regression in the
point-block misalignment setting, illustrating with the Atlanta ozone data pictured in
Figure 29.7. In this setting, the problem is to relate several air quality indicators (ozone,
particulate matter, nitrogen oxides, etc.) and a range of sociodemographic variables (age,
gender, race, and a socioeconomic status surrogate) to the response, pediatric emergency
room (ER) visit counts for asthma in Atlanta, Georgia. Here, the air quality data is collected
at fixed monitoring stations (point locations) while the sociodemographic covariates and
response variable are collected by zip code (areal summaries).∗ In fact, the air quality data
is available as daily averages at each monitoring station, and the response is available as
daily counts of visits in each zip code. In Zhu et al. (2003), they use the foregoing methods
to realign the data and then fit a Poisson regression model at the zip code scale. In fact, they
do this dynamically, across days.

∗ Again, the possibility of ecological arises here. (See Wakefield and Shaddick, 2006, in this regard.)
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Zip code boundary

City of Atlanta boundary0.092

0.133

0.120
0.125

0.109

0.112

0.0910.083 0.098

0.068

FIGURE 29.7
Atlanta, Georgia, ozone data.

29.7 Fusion of Spatial Data

From Section 29.1, recall the misalignment problem in the context of data assimilation or
data fusion (see, Chapter 27 and, e.g., Kalnay, 2002, in the context of atmospheric modeling).
Here the objective is to combine data on a particular variable that is available at different
scales. For instance, in considering environmental exposure to acid deposition, Cowles and
Zimmerman (2003) fuse two misaligned sets of station data. Here, we consider particu-
late matter, where we can obtain monitoring station level data (which is obviously point
referenced and is relatively sparse) along with modeled output data (such as CMAQ—
Community Multiscale Air Quality data), which is available at grid cell resolutions, such as
36, 12, or even 4 km2 squares, and satellite data (e.g., MODIS—Moderate Resolution Imag-
ing Spectroradiometer) obtained in swaths of 5 km or less. The overall objective would be
improved prediction of exposure at arbitrary locations in a study region.

To illustrate how such fusion might be implemented in the static case, we present two
model-based strategies, one due to Fuentes and Raftery (2005), the other from McMillan,
Holland, Morara, and Feng (2008). In fact, McMillan et al. (2008) also consider the dynamic
case. Earlier references in this regard include Best, Ickstadt, and Wolpert (2000); Davis,
Nychka, and Bailey (2000); and Gelfand et al. (2001). Suppose we consider just two data
layers, Y(si ), i = 1, 2, . . . , n and Ỹ(B j ), j = 1, 2, . . . , m where the B j are exclusive and
exhaustive for a region D and the si are all in D.

The approach of Fuentes and Raftery (2005) assumes that both data layers inform about
the “true” values. In other words, a latent true process Ytrue(s) is imagined. The station
data and modeled output data are viewed as observations of the true process subject to
measurement error and calibration error, respectively. More precisely, the latent Ytrue(s) is
modeled as a Gaussian process using a spatial regression. Then, Y(si ) = Ytrue(si ) + ε(si )
while Ỹ(B j ) = |B j |−1

∫
B j

(a (s)+b(s)Ytrue(s)+η(s))ds. Here, ε(s) is a pure error process, while
a (s) and b(s) provide spatially varying calibration for the areal unit data. The η(s) are again
a pure error process yielding independent η(B j ) with variance inversely proportional to
|B j |. Fuentes and Raftery (2005) note that it is difficult to identify both a (·) and b(·) and, thus,
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they introduce a trend surface for a (s) and set b(·) to a constant. The resultant integration
over B j above produces a block average of the true process. The hierarchical model is fitted
using MCMC, but fitting will be very slow if the number of areal units is large (e.g., with a
high-resolution computer output model) due to the large number of block integrations.

The approach of McMillan, Holland, Morara, and Feng (2008) avoids block averaging
by modeling the process at the areal unit level. With sparse monitoring data and model
output data available at all grid cells, such modeling is easier and faster. Again, a latent
true level for the variable is presumed, but associated with B j , say, Ytrue(B j ). Now, Ỹ(B j ) =
g(Ytrue(B j )) + ε(B j ) where the εs are iid. Since |B j | is constant, g(·) takes the form of Ytrue

plus a B-spline deviation. And, if Y(si ) ∈ B j , Y(si ) has a measurement error model, i.e.,
Y(si ) = Ytrue(B j ) + δ(si ) where the δ’s are iid. Obviously, any B j can contain 0, 1, or more
monitoring sites. Finally, the Ytrue(B j ) are modeled with a spatial regression, using spatial
random effects with a CAR specification to capture spatial dependence. In fact, McMillan
et al. (2008) present their model dynamically with AR(1) temporal updating of the CAR’s.

In summary, we have attempted to illuminate the range of issues that arise in attempting
to combine spatially incompatible data. As Gotway and Young (2002) note, the increas-
ing use of GIS software makes the change of support problem increasingly relevant and
emphasizes the need for suitable statistical methodology to address it.
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30.1 Introduction

In general, ecological studies are characterized by being based on grouped data, with the
groups often corresponding to geographical areas, so that spatial aggregation has been
carried out. Such studies have a long history in many disciplines including political science
(King, 1997), geography (Openshaw, 1984), sociology (Robinson, 1950), and epidemiology
and public health (Morgenstern, 1998). Our terminology will reflect the latter application;
however, the ideas generalize across disciplines. Ecological studies are prone to unique
drawbacks, in particular the potential for ecological bias, which describes the difference
between estimated associations based on ecological- and individual-level data. Ecological
data are a special case of spatially misaligned data, a discussion of which is the subject of
Chapter 29.

Ecological data may be used for a variety of purposes including mapping (the geo-
graphical summarization of an outcome, see Chapter 14), and cluster detection (in which
anomalous areas are flagged); here, we focus on spatial regression in which the aim is to
investigate associations between an outcome and covariates, which we will refer to as ex-
posures. In mapping, ecological bias is not a problem as prediction of area-level outcome
summaries is the objective rather than the estimation of associations. Although ecological
covariates may be used within a regression model to improve predictions, the coefficients
are not of direct interest. Interesting, within-area, features may be masked by the process
of aggregation; however, Wakefield (2007) provides more discussion. Cluster detection is
also not concerned with regression analysis and, again, though small area anomalies may

541

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 14:40 C7287 C7287˙C030

542 Handbook of Spatial Statistics

be “washed away” when data are aggregated, ecological bias as defined above is not an
issue.

There are a number of reasons for the popularity of ecological studies, the obvious one
being the wide and increasing availability of aggregated data. Improved ease of analysis also
contributes to the widespread use of ecological data. For example, a geographic information
system (GIS) allows the effective storage and combination of datasets from different sources
and with differing geographies, and recent advances in statistical methodology allow a more
refined analysis of ecological data Elliott, Wakefield, Best, and Briggs (2000) and Waller and
Gotway (2004) contain reviews in a spatial epidemiological setting).

The fundamental problem of ecological analyses is the loss of information due to
aggregation — the mean function, upon which regression is often based, is usually not
identifiable from ecological data alone. This lack of identifiability can lead to the ecological
fallacy in which individual and ecological associations between the outcome and an ex-
planatory variable differ, and may even reverse direction. There are two key issues that
we wish to emphasize throughout this chapter. First, hierarchical models cannot account
for the loss of information, and the use of spatial models in particular will not resolve the
ecological fallacy. Second, the only solution to the ecological fallacy, and thereby to provide
reliable inference, is to supplement the ecological-level data with individual-level data.

30.2 Motivating Example

To motivate the discussion that follows, we introduce an example. Of interest is an inves-
tigation of the association between asthma hospitalization and air pollution, specifically
PM2.5 (particulate matter less than 2.5 microns in diameter) in California. This example
is typical of many studies performed in environmental epidemiology. Ideally we would
have access to individual-level outcomes, along with individual-level predictors and some
measure of exposure. Such data are costly and logistically difficult to collect, however, and
often unavailable for reasons of patient confidentiality. Instead, we consider the analysis
of county-level asthma hospitalization data collected in 58 counties in California over the
period 1998 to 2000. We wish to combine these data with point level pollution monitor data,
so strictly speaking the exposure data are not aggregate in nature. We have data from 86
monitor sites.

We let Yi represent the total disease counts in county i over the 3-year period, and xik

the average log exposure in the last year of that period (PM2.5 measured at monitor k in
county i , i = 1, . . . , m, k = 1, . . . , mi ). The mi s range between 0 and 9, with

∑58
i=1 mi = 86.

We also have population counts Nic in area i and for confounder stratum c, c = 1, . . . , C .
In our case, we have two age categories (≤14/>15) and four race categories (non-Hispanic
white/black/Asian or Pacific Islander/Hispanic), so that C = 8. We also have the elevation
of the centroid of block groups (elevation has been shown to have an association with
asthma incidence) within the area, which may be population-averaged to create a single
number per county, zi . There are 22,133 block groups in California. A common descriptive
measure for data of this type is the standardized morbidity ratio (SMR) that is given by
Yi/Ei where the expected numbers Ei = ∑C

c=1 Nicq̂c control for differences in outcome by
stratum. The SMR is a summary (across confounder stratum) of the area level relative risk.
Here q̂ j are reference risks; one must be wary in the manner by which these are calculated in
a regression setting, so as to not bias the regression estimates (Wakefield, 2007). Here we use
reference rates calculated from data for California from a previous period. Figure 30.1 maps
the county-level SMRs and we see a relatively large range of variability across California
with minimum of 0.07 and maximum of 2.22. The variability associated with the SMR in
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FIGURE 30.1
SMRs for asthma hospitalization in California counties.

area i is proportional to E−1
i , however, so it is unclear as to the extent the map is displaying

true differences, as compared to sampling variability.
Figure 30.2 plots logs of the SMRs versus the mean of the monitors in the 42 counties

containing monitors. There is no clear pattern, though a slight suggestion of increased
county-level relative risks in those counties with higher average log PM2.5.

A simple model is provided by the county-level regression:

E[Yi |xi , zi ] = μi = Ei exp(β0 + β1xi + β2zi ), (30.1)

where xi is the (log) exposure within county i , i = 1, . . . , m. These exposures were ob-
tained as kriged values at the county centroid (Section 30.7 contains details on this pro-
cedure). In this model, exp(β1) is the ecological county-level relative risk associated with
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FIGURE 30.2
Log SMR versus mean log PM2.5 for counties with monitors, with a local smoother imposed.
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TABLE 30.1

Association between Asthma Hospitalization and Log PM2.5 (β̂1) and Elevation (β̂2)

Mean Model Estimation Model β̂1 Std. Err. β̂2 Std. Err.

Log-linear model Poisson 0.306 0.013 −0.017 0.007
Log-linear model Quasi-likelihood 0.306 0.128 −0.017 0.064
Log-linear model Negative binomial 0.227 0.171 −0.143 0.045
Aggregate Exposure Model Quasi-likelihood 0.261 0.092 0.011 0.058
Log-linear model Hierarchical nonspatial 0.240 0.177 −0.146 0.047
Log-linear model Hierarchical convolution 0.230 0.217 −0.146 0.048

Note: The four models are fitted using maximum and quasi-maximum likelihood estimation and the bottom two
are Bayesian hierarchical models (and assume a Poisson likelihood). The log-linear model refers to model (30.1)
while the aggregate exposure model refers to model (30.15) using modeled exposures. Convolution refers to the
model with nonspatial and spatial random effects modeled via an ICAR model.

a unit increase in log PM2.5; similarly, exp(β2) is the ecological county-level relative risk
associated with a unit increase in elevation, in each case with the other variable held con-
stant. Model (30.1) may be fitted via likelihood-based methods under the assumption that
Yi ∼ Poisson(μi ). However, for data such as these there is usually excess-Poisson variability
due to unmeasured variables, measurement error in the exposures, problems with the
population/confounder data, or other sources of model misspecification (Wakefield and
Elliott, 1999). A simple fix is to utilize quasi-likelihood (McCullagh and Nelder, 1989) to
allow for overdispersion in a semiparametric way via the second moment assumption
var(Yi ) = κ × E[Yi ]. Alternatively, we may assume a negative binomial model so that
overdispersion is incorporated via a parametric specification.

The first three rows of Table 30.1 give the maximum likelihood estimates (MLEs) along
with their asymptotic standard errors for the Poisson, quasi-likelihood and negative bi-
nomial models. Under a Wald test, the Poisson model gives significant (at the 5% level)
associations for both exposure and elevation, with PM2.5 harmful. When moving from the
Poisson to the quasi-likelihood model, we see a very large increase in the standard error, re-
flecting the huge excess-Poisson variability in these data. The standard errors are multiplied
by κ̂1/2 = 9.8. We see a further increase in the standard error with the negative binomial
model, and a substantial decrease in the point estimate. On examination of residuals versus
fitted values (not shown), we are led to prefer the negative binomial model (under this
model, we have a quadratic mean variance model, as compared to a linear relationship
under the quasi-Poisson model). Neither the quasi-Poisson or negative binomial models
suggest a significant association.

These results are all subject to ecological bias because we have used aggregate risk and
exposure measures averaged over monitors within counties. We now discuss sources of
ecological bias.

30.3 Ecological Bias: Introduction

There is a vast literature describing sources of ecological bias (Greenland, 1992; Greenland
and Morgenstern, 1989; Greenland and Robins, 1994; Künzli and Tager, 1997; Morgenstern,
1998; Piantadosi, Byar, and Green, 1988; Plummer and Clayton, 1996; Richardson and
Montfort, 2000; Richardson, Stucker, and Hémon, 1987; Steel and Holt, 1996; Wakefield,
2008; Wakefield, 2003; Wakefield, 2004; Wakefield, 2007). The fundamental problem with
ecological inference is that the process of aggregation reduces information, and this
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information loss usually prevents identification of parameters of interest in the underlying
individual-level model. When trying to understand ecological bias, it is often beneficial to
specify an individual-level model, and aggregate to determine the consequences (Sheppard,
2003; Wakefield, 2004; Wakefield and Salway, 2001). The majority of the literature on eco-
logical bias is less specific about the model, however. For example, in Robinson’s famous
1950 paper, the correlation between literacy and race was calculated at various levels of geo-
graphic aggregation, and compared with the individual-level correlation, without reference
to an explicit model.

If there is no within-area variability in exposures and confounders, then there will be no
ecological bias; hence, ecological bias occurs due to within-area variability in exposures and
confounders. There are a number of distinct consequences of this variability. Throughout,
unless stated otherwise, we assume that at the individual level the outcome, y, is a 0/1
disease indicator, though ecological bias can occur for any type of outcome.

30.4 Ecological Bias: Pure Specification Bias

So-called pure specification bias (Greenland, 2002) (also referred to as model specifica-
tion bias (Sheppard, 2003)) arises because a nonlinear risk model changes its form under
aggregation. We initially assume a single exposure x and the linear individual-level model

E[Yi j |xi j ] = β0 + β1xi j , (30.2)

where Yi j and xi j are the outcome and exposure for individual j within area i , i = 1, . . . , m,
j = 1, . . . , ni . The aggregate data are assumed to correspond to the average risk yi =
1

mi

∑mi
j=1 yi j and average exposure xi = 1

mi

∑mi
j=1 xi j . On aggregation of Equation (30.2), we

obtain
E[Yi |xi ] = β0 + β1xi , (30.3)

so that in this very specific scenario of a linear model we have not lost anything by aggre-
gation (and this is clearly true regardless of whether Y is discrete or continuous).

Unfortunately, a linear model is often inappropriate for the modeling of risk and for rare
diseases the individual-level model:

E[Yi j |xi j ] = eβ0+β1xi j (30.4)

is often more appropriate. In this model, eβ0 is the risk associated with x = 0 (baseline risk)
and eβ1 is the relative risk corresponding to an increase in x of one unit. The logistic model,
which is often used for nonrare outcomes, is unfortunately not amenable to analytical
study and so the effects of aggregation are difficult to discern (Salaway and Wakefield,
2005). Aggregation of Equation (30.4) yields:

E[Yi |xi j , j = 1, . . . , ni ] = 1
ni

ni∑
j=1

eβ0+β1xi j , (30.5)

so that the ecological risk is the average of the risks of the constituent individuals. A naivé
ecological model would assume

E[Yi |xi ] = eβe
0+βe

1 xi , (30.6)

where the ecological parameters, βe
0 , βe

1 , have been superscripted with “e” to distinguish
them from the individual-level parameters in Equation (30.4). Model (30.6) is actually a
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so-called contextual effects model since risk depends on the average exposure in the area
(contextual variables are summaries of a shared environment). Interpreting eβe

1 as an indi-
vidual association would correspond to a belief that it is average exposure that is causative,
and that individual exposure is irrelevant. As an aside, we mention the atomistic fallacy
that occurs when inference is required at the level of the group, but is incorrectly estimated
using individual-level data (Diez-Roux, 1998).

The difference between (30.5) and (30.6) is clear; while the former averages the risks
across all exposures, the latter is the risk corresponding to the average exposure. Without
further assumptions on the moments of the within-area exposure distributions, we can
guarantee no ecological bias, i.e., eβ1 = eβe

1 , only when there is no within-area variability
in exposure so that xi j = xi for all j = 1, . . . , ni individuals in area i and for all areas,
i = 1, . . . , m. Therefore, pure specification bias is reduced in size as homogeneity of expo-
sures within areas increases — small areas are advantageous in this respect. Unfortunately
data aggregation is usually carried out according to administration groupings and not in
order to obtain areas with constant exposure. As we will shortly describe, there are other
specific circumstances when pure specification is likely to be small and these depend on
the moments of the exposure distributions.

Binary exposures are the simplest to study analytically. Such exposures may correspond
to, for example, an individual being below or above a pollutant threshold. For a binary
exposure, Equation (30.4) can be written

eβ0+β1xi j = (1 − xi j )eβ0 + xi j eβ0+β1 ,

which is linear in xi j . This form yields the aggregate form:

E[Yi |xi ] = (1 − xi )eβ0 + xi eβ0+β1 , (30.7)

where xi is the proportion exposed in area i . Hence, with a linear risk model, there is no
pure specification bias so long as model (30.7) is fitted using the binary proportion, xi , and
not model (30.6). If model (30.6) is fitted, there will be no correspondence between eβ1 and
eβe

1 because they are associated with completely different comparisons.
The extension to general categorical exposures is straightforward, and the parameters of

the disease model are identifiable so long as we have observed the aggregate proportions
in each category. We now demonstrate that for a continuous exposure pure specification
bias is dominated by the within-area mean-variance relationship. In an ecological regres-
sion context, a normal within-area exposure distribution N(x|xi , s2

i ), and the log-linear
model (30.4), has been considered by a number of authors (Plummer and Clayton, 1996;
Richardson, Stucker, and Hémon, 1987; Wakefield and Salway, 2001). We assume that ni is
large so that the summation in (30.5) can be approximated by an integral. For a normally
distributed exposure, this integral is available as

E[Yi |xi ] = exp
(
β0 + β1xi + β2

1 s2
i /2

)
, (30.8)

which may be compared with the naivé ecological model eβe
0+βe

1 xi . To gain intuition as to the
extent of the bias, we observe that in Equation (30.8) the within-area variance s2

i is acting
like a confounder and, consequently, there is no pure specification bias if the exposure is
constant within each area or if the variance is independent of the mean exposure in the
area. The expression (30.8) also allows us to characterize the direction of bias. For example,
suppose that s2

i = a + bxi with b > 0 so that the variance increases with the mean (as is
often observed with environmental exposures, for example). In this case, the parameter we
are estimating from the ecological data is

βe
1 = β1 + β2

1 b/2.
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If β1 > 0, then overestimation will occur using the ecological model, and, if β1 < 0, the
ecological association, βe

1 , may reverse sign when compared to β1.
In general, there is no pure specification bias if the disease model is linear in x, or if all

the moments of the within-area distribution of exposure are independent of the mean. If
β1 is close to zero, pure specification bias is also likely to be small (since then the expo-
nential model will be approximately linear for which there is no bias), though in this case
confounding is likely to be a serious worry (Section 30.5). Unfortunately the mean-variance
relationship is impossible to assess without individual-level data on the exposure. If the
exposure is heterogeneous within areas, we need information on the variability within each
area in order to control the bias. Such information may come from a sample of individuals
within each area; how to use this individual-level data (beyond assessing the within-area
exposure mean-variance relationship) is the subject of Section 30.6.

30.5 Ecological Bias: Confounding

We assume a single exposure xi j , a single confounder zi j , and the individual-level model

E[Yi j |xi j , zi j ] = eβ0+β1xi j +β2zi j . (30.9)

As with pure specification bias, the key to understanding sources of, and correction for,
ecological bias is to aggregate the individual-level model to give

E[Yi |xi j , zi j , j = 1, . . . , ni ] = 1
ni

ni∑
j=1

eβ0+β1xi j +β2zi j . (30.10)

To understand why controlling for confounding is in general impossible with ecologi-
cal data, we consider the simplest case of a binary exposure (unexposed/exposed) and a
binary confounder, which for ease of explanation we assume is gender. Table 30.2 shows
the distribution of the exposure and confounder within area i . The complete within-area
distribution of exposure and confounder can be described by three frequencies, but the
ecologic data usually consist of two quantities only, the proportion exposed, xi , and the
proportion male, zi . From Equation (30.10), the aggregate form is

E[Yi |pi00, pi01, pi10, pi11] = (1 − xi − zi + pi11)eβ0

+ (xi − pi11)eβ0+β1 + (zi − pi11)eβ0+β2 + pi11eβ0+β1+β2

showing that the marginal prevalences, xi , zi , alone, are not sufficient to characterize the
joint distribution unless x and z are independent, in which case, z is not a within-area

TABLE 30.2

Exposure and Gender Distribution in Area i , xi
Is the Proportion Exposed and zi Is the
Proportion Male; pi00, pi01, pi10, pi11 Are the
Within-Area Cross-Classification Frequencies

Female Male

Unexposed pi00 pi01 1 − xi
Exposed pi10 pi11 xi

1 − zi zi 1.0
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confounder. This scenario has been considered in detail elsewhere (Lasserre, Guihenneuc-
Jouyaux, and Richardson, 2000), where it was argued that if the proportion of exposed
males (pi11) is missing, it should be estimated by the marginal prevalences (xi × zi ). It is
not possible to determine the accuracy of this approximation without individual-level data,
however. This is a recurring theme in the analysis of ecological data, bias can be reduced
under model assumptions, but estimation is crucially dependent on the appropriateness of
these assumptions, which are uncheckable without individual-level data.

We now examine the situation in which we have a binary exposure and a continuous
confounder. Let the confounders in the unexposed be denoted, zi j , j = 1, . . . , ni0, and the
confounders in the exposed, zi j , j = ni0 + 1, . . . , ni0 + ni1, with ni0 + ni1 = ni . In this case,
the ecological form corresponding to Equation (30.9) is

E[Yi |qi0, qi1] = qi0 × ri0 + qi1 × ri1,

where qi0 = ni0/ni and qi1 = ni1/ni are the probabilities of being unexposed and exposed,
and

ri0 = eβ0

ni0

ni0∑
j=1

eβ2zi j , ri1 = eβ0+β1

ni1

ni0+ni1∑
j=ni0+1

eβ2zi j

are the (aggregated) risks in the unexposed and exposed. The important message here is
that we need the confounder distribution within each exposure category, unless z is not a
within-area confounder. Again it is clear that if we fit the model:

E[Yi |xi , zi ] = eβe
0+βe

1 xi +βe
2 zi ,

where zi = 1
ni

∑ni
j=1 zi j , then it is not possible to equate the ecological coefficient βe

1 with the
individual-level parameter of interest β1.

We now extend our discussion to multiple strata and show the link with the use of
expected numbers (as defined in Section 30.2). Consider the continuous exposure xic j for the
j th individual in stratum c and area i , and suppose the individual level model is given by

E[Yic j |xic j , strata c] = eβ0+β1xic j +β2c ,

for c = 1, . . . , C stratum levels with relative risks eβ2c (with eβ21 = 1 for identifiability),
and with j = 1, . . . , nic . For ease of exposition, suppose c indexes age categories. Let
Yic = 1

nic

∑nc
j=1 Yic j be the proportion with the disease in area i , stratum c. Then

E[Yic |xic j , j = 1, . . . , nic] = eβ0+β2c

nic

nic∑
j=1

eβ1xic j .

Summing over stratum and letting Yi be the proportion with disease in area i :

E[Yi |xic j , j = 1, . . . , nic , c = 1, . . . , C] = 1
ni

C∑
c=1

nic

⎧⎨
⎩

eβ0+β2c

nic

nic∑
j=1

eβ1xic j

⎫⎬
⎭ . (30.11)

If we assume a common exposure distribution across stratum and let xi j , j = 1, . . . , mi be
a representative exposure sample, then we could fit the model

E[Yi |xi j , j = 1, . . . , mi ] =
C∑

c=1

niceβ2c × eβ0

mi

mi∑
j=1

eβ1xi j

= Ei × eβ0

mi

mi∑
j=1

eβ1xi j , (30.12)
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where Ei = ∑C
c=1 niceβ2c are the expected numbers. Model (30.12) attempts to correct for

pure specification bias, but assumes common exposure variability across areas. There-
fore, we see that in this model (which has been previously used (Guthrie, Sheppard, and
Wakefield, 2002)), we have standardized for age (via indirect standardization), but for this
to be valid we need to assume that the exposure is constant across age groups (so that age
is not a within-area confounder). This can be compared with the model that is frequently
fitted:

E[Yi |xi ] = Ei × eβ0+β1xi .

Validity of this model goes beyond a constant exposure distribution across stratum within
each area. We also require no within-area variability in exposure (or, recalling our earlier
discussion, the exposure variance being independent of the mean, in addition to constant
distributions across stratum).

This discussion is closely related to the idea of mutual standardization in which, if the
response is standardized by age, say, the exposure variable must also be standardized for
this variable (Rosenbaum and Rubin, 1984). The correct model is given by Equation (30.11),
and requires the exposure distribution by age group, or at least a representative sample of
exposures from each age group. The above discussion makes it clear that we need individual-
level data to characterize the within-area distribution of confounders and exposures.

The extension to general exposure and confounder scenarios is obvious from the above. If
we have true confounders that are constant within areas (for example, access to healthcare),
then they are analogous to conventional confounders because the area is the unit of analysis,
and so the implications are relatively easy to understand and adjustment is straightforward.

Without an interaction between exposure and confounder, the parameters of a linear
model are estimable from marginal information only, though, if an interaction is present,
within-area information is required (Wakefield, 2003).

30.6 Combining Ecological and Individual Data

As we saw in Section 30.3, the only solution to the ecologic inference problem that does
not require uncheckable assumptions is to add individual-level data to the ecological data.
Here, we briefly review some of the proposals for such an endeavor. Another perspective is
that ecological data can supplement already-available individual data in order to increase
power.

Table 30.3 summarizes four distinct scenarios in terms of data availability (Künzli and
Tager, 1997; Sheppard, 2003). All entries but the individual–individual cell concern change
of support situations (Chapter 29). The obvious approach to adding individual-level data
is to collect a random sample of individuals within areas. For a continuous outcome,
Raghunathan, Diehr, and Cheadle (2003) show that moment and maximum likelihood

TABLE 30.3

Study Designs by Level of Outcome and
Exposure Data

Exposure

Individual Ecological

Outcome Individual Individual Semiecological
Ecological Aggregate Ecological
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estimates of a common within-group correlation coefficient will improve when aggregate
data are combined with individual data within groups, and Glynn, Wakefield, Handcock,
and Richardson (2008) derive optimal design strategies for the collection of individual-level
data when the model is linear. With a binary nonrare outcome, the benefits have also been
illustrated (Steele, Beh, and Chambers, 2004; Wakefield, 2004).

For a rare disease, few cases will be present in the individuals within the sample, and
so only information on the distribution of exposures and confounders will be obtained via
a random sampling strategy (which is, therefore, equivalent to using a survey sample of
covariates only). This prompted the derivation of the so-called aggregate data method of
(Prentice and Sheppard 1995; Sheppard, Prentice, and Rossing, 1996; Sheppard and Prentice,
1995), which is the bottom left entry in Table 30.3. Inference proceeds by constructing an
estimating function based on the sample of mi ≤ ni individuals in each area. For example,
with samples for two variables, {xi j , zi j , j = 1, . . . , mi } we have the mean function:

E
[
Yi |xi j , zi j , j = 1, . . . , mi

] = 1
ni

ni

mi

mi∑
j=1

eβ0+β1xi j +β2zi j .

There is bias involved in the resultant estimator since the complete set of exposures are
not available, but Prentice and Sheppard give a finite sample correction to the estimating
function based on survey sampling methods. This is an extremely powerful design since
estimation is not based on any assumptions with respect to the within-area distribution
of exposures and confounders (though this distribution may not be well characterized
for small samples, Salway and Wakefield, 2008). An alternative approach is to assume a
particular distribution for the within-area variability in exposure, and fit the implied model
(Best, Cockings, Bennett, Wakefield, and Elliott, 2001; Jackson, Best, and Richardson, 2008;
Jackson, Best, and Richardson, 2006; Richardson, Stucker, and Hémon, 1987; Wakefield and
Salway, 2001). The normal model is usually assumed, in which case (for a single exposure)
the mean model is (30.8). This method implicitly assumes that a sample of within-area
exposures is available since the within-area moments need to be available. More recently
an approach has been suggested that takes the mean as a combination of the Prentice and
Sheppard and the parametric approaches, with the latter dominating for small samples
(when the aggregate data method can provide unstable inference) (Salway and Wakefield,
2008).

In the same spirit as Prentice and Sheppard, Wakefield and Shaddick (2006) described
a likelihood-based method for alleviating ecological bias. We describe the method in the
situation in which a single exposure is available. If data on all individual exposures were
available, then we would fit the model

E[Yi |xi j , j = 1, . . . , ni ] = eβ0

ni

ni∑
j=1

eβ1xi j , (30.13)

which will remove ecological bias, but will result in a loss of power relative to an individual-
level study because we have not used the linked individual disease-exposure data. Usually
we will not have access to all of the individual exposures, but instead we may have access to
data in subareas at a lower level of aggregation, e.g., block groups within counties. Suppose
that we have mi sub-groups within area i with an exposure measure xi j for j = 1, . . . , mi .
Suppose also that Ni j is the number of individuals in subarea j so that ni = ∑mi

j=1 Ni j . For
example, xi j may represent a measure of exposure at the centroids of subarea j within area
i . We then alter model (30.13) slightly, and act as if there were Ni j individuals each with
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exposure xi j (so that we are effectively ignoring within subarea variability in exposure):

E[Yi |xi j , j = 1, . . . , mi ] = eβ0

ni

mi∑
j=1

Ni j eβ1xi j , (30.14)

where j again indexes the number of subareas within area i . If we have population infor-
mation at the subarea level, e.g., age and gender, then we may calculate expected numbers,
Ei j = ∑c

c=1 Nicj eβ2c , and these will then replace the Ni j within Equation (30.14). We can also
add in an area-level covariate zi to give

E[Yi |xi j , j = 1, . . . , mi , zi ] = eβ0

mi∑
j=1

Ei j eβ1xi j . (30.15)

We call this latter form the aggregate exposure model. Valid estimates from this model require
that population subgroups have the same exposure within each subarea (and these are
constant across the stratum over which the expected numbers were calculated), but if
the heterogeneity in exposure is small within these subareas, little bias will result. Often the
collection xi1, . . . , ximi will be obtained via exposure modeling and the validity of estimation
requires that these exposure measures are accurate, which may be difficult to achieve unless
the monitoring network is dense (relative to the variability of the exposure).

A different approach to adding individual data in the context of a rare response is
outcome-dependent sampling, which avoids the problems of zero cases encountered in
random sampling. For the situation in which ecologic data are supplemented with individ-
ual case-control information gathered within the constituent areas, inferential approaches
have been developed (Haneuse and Wakefield, 2007, 2008a, 2008b). The case-control data
remove ecological bias, while the ecological data provide increased power and constraints
on the sampling distribution of the case-control data, which improves the precision of
estimates.

Two-phase methods have a long history in statistics and epidemiology (Breslow and
Cain, 1988; Breslow and Chatterjee, 1999; Walker, 1982; White, 1982) and are based on an
initial cross-classification by outcome and confounders and exposures; this classification
providing a sampling frame within which additional covariates may be gathered via the
sampling of individuals. Such a design may be used in an ecological setting, where the
initial classification is based on one or more of area, confounder stratum, and possibly
error-prone measures of exposure (Wakefield and haneuse, 2008).

In all of these approaches, it is clearly vital to avoid response bias in the survey samples
or selection bias in outcome-dependent sampling, and establishing a relevant sampling
frame is essential.

30.7 Example Revisited

For the California data we have information on census block groups within counties. Recall
there are 58 counties and 22,133 census block groups. We assume that the logged PM2.5
monitor data are a realization from a Gaussian random field, and we fit this model to the
monitor data using restricted maximum likelihood (REML) and a mean linear in popula-
tion density. Given the fitted model we impute exposures at each block group centroid.
Figure 30.3 displays exposure maps at both the county and the block group level. We now
treat these exposures as known and examine the association between asthma hospitalization
and exposure to PM2.5. We note that because we have not jointly modeled the health and
exposure variables, the uncertainty in the exposure predictions is not propagated through

© 2010 by Taylor and Francis Group, LLC



P1: BINAYA KUMAR DASH

February 23, 2010 14:40 C7287 C7287˙C030

552 Handbook of Spatial Statistics

(1.5, 1.9)
(1.9, 2.3)
(2.3, 2.7)
(2.7, 3.1)
(3.1, 3.5)
(3.5)

(1.5, 1.9)
(1.9, 2.3)
(2.3, 2.7)
(2.7, 3.1)
(3.1, 3.5)
(3.5)

(a) (b)

FIGURE 30.3
Predicted exposures (log PM2.5) for (a) counties and (b) census block groups in California.

the estimation, and there is no feedback in the model. This can be advantageous, however,
since misspecification of either the health or the exposure component can cause problems
for the other component. Probably the biggest problem with this approach, though, is that
we need sufficient monitor data to impute accurate exposures for unmonitored locations.

To utilize the census block group information, we used a quasi-likelihood model with
E[Yi ] = μi , var(Yi ) = κ × E[Yi ] and where μi is given by (30.15), and obtained the estimates,
via quasi-likelihood, in Table 30.1, line 4. We see that the association is attenuated when
compared with the previous quasi-likelihood estimate, as we might expect if the within-area
variability in exposure increases with the mean, all other things being equal (Section 30.4).
The standard error is increased also.

The biggest advantage of the above approach is that ecological bias can be overcome.
An alternative approach that was followed by Zhu, Carlin, and Gelfand (2003) is to obtain
county average exposures via kriging (Chapter 3) and then use model (30.6). However, this
will produce ecologically biased estimates since within-area variability in exposure has not
been acknowledged. We reiterate that it is the average of the risk functions that is required
for individual-level inference, and not the risk function evaluated at the average exposure.

30.8 Spatial Dependence and Hierarchical Modeling

When data are available as counts from a set of contiguous areas, we might expect resid-
ual dependence in the counts, particularly for small-area studies, due to the presence of
unmeasured variables with spatial structure. The use of the word “residual” here acknowl-
edges that variables known to influence the outcome have already been adjusted for in
the mean model. Analysis methods that ignore the dependence are strictly not applicable,
with inappropriate standard errors being the most obvious manifestation. A great deal of
work has focused on models for spatial dependence (Besag, York, and Mollié, 1991; Best,
Ickstadt, and Wolpert, 2000; Christensen and Waagepetersen, 2002; Clayton, Bernardinelli,
and Montomoli, 1993; Cressie and Chan, 1989; Diggle, Tawn, and Moyeed, 1998; Kelsall and
Wakefield, 2002; Leroux, Lei, and Breslow, 1999). Richardson (2003) provides an excellent
review of this literature (see also Chapter 14). With respect to ecological bias, however, the
most important message is that unless the mean model is correct, adjustment for spatial
dependence is a pointless exercise (Wakefield, 2007).
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Spatial smoothing models have also been proposed to control for “confounding by loca-
tion” (Clayton et al., 1993). A subtle but extremely important point is that such an endeavor
is fraught with pitfalls since the exposure of interest usually has spatial structure and so one
must choose an appropriate spatial scale for smoothing. If the scale is chosen to be too small,
the exposure effect may be attenuated, while if too large a scale is chosen, the signal that is
due to confounding may be absorbed into the exposure association estimate. Practically, one
can obtain estimates from models with and without spatial smoothing, and with a variety
of spatial models, to address the sensitivity of inference concerning parameters of interest.
(See Reich, Hodges, and Zadnik, 2006, for further discussion.) Similar issues arise in time
series analysis when one must control trends by selecting an appropriate level of temporal
smoothing (Dominici, Sheppard, and Clyde, 2003). Such analyses are more straightforward
since time is one-dimensional, the data are generally collected at regular intervals (often
daily), and the data are also abundant, perhaps being collected over many years.

In a much-cited book (King, 1997), a hierarchical model was proposed for the analysis of
ecologic data in a political science context, as “a solution to the ecological inference prob-
lem.” Identifiability in this model is imposed through the random effects prior, however,
and it is not possible to check the appropriateness of this prior from the ecological data
alone Freedman, Klein, Ostland, and Roberts, 1998; Wakefield, 2004).

We have concentrated on Bayesian hierarchical spatial models, but a number of frequen-
tist approaches are possible, though currently they have not been investigated in detail.
Thurston, Wand, and Wiencke (2000) describe a negative binomial additive model that
could provide a useful alternative to the models described here. The negative binomial
aspect allows for overdispersion, while a generalized additive model would allow flexi-
ble modeling of latitude and longitude to model nonsmall scale spatial variability. More
generally, recent work on generalized linear models with splines may be applicable in the
setting described here (see, for example, Lin and zhang, 1999; Gu and Ma, 2005). Allow-
ing for small-scale residual spatial dependence in these models would also be desirable,
however. It would also be desirable to perform sandwich estimation in a spatial regression
setting, but unfortunately the nonlattice nature of the data does not easily allow any con-
cept of replication across space (as has been used for lattice data, (Heagerty and Lumley,
2000)).

30.9 Example Revisited

The first hierarchical model we fit adds a single nonspatial random effect, Vi ∼i id N(0, σ 2
v )

to the linear predictor; this gives the same (quadratic) marginal mean-variance structure as
the negative binomial model, and we would expect to see similar inference under the two
models. This is confirmed in Table 30.1 for the naivé models.

To acknowledge spatial dependence, we now fit the log-linear model Yi |xi ∼
Poisson(Ei eβ1xi +Ui +Vi ) where Vi ∼i id N(0, σ 2

v ) are independent random effects and the
Ui have spatial structure, in particular, we choose an intrinsic conditional autoregressive
(ICAR) model, as suggested elsewhere (Besag et al., 1991). For inference we utilized, in ad-
dition to Markov chain Monte Carlo (MCMC), the integrated nested Laplace approximation
scheme described in Rue, Martino, and Chopin (2009). MCMC displayed very poor con-
vergence for the spatial log-linear model for these data. We attempted to fit the aggregate
data model using MCMC, but the chain was extremely poorly behaved.

We place a prior on the total residual variance and upon the proportion of the variance
that is spatial, approximately scaling the conditional variance in the ICAR model so that
it is comparable with σ 2

v (Wakefield, 2007). From Table 30.1, we see that when the ICAR
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component is included in the model we see a very similar estimate of the association with
PM2.5 as with the nonspatial hierarchical model, but with an increased standard error.

For these ecological data we would conclude that there is no evidence of an association.
The reliability of the aggregate exposure model here is questionable, however, since valida-
tion of the exposure model has not been carried out. Unmeasured confounding is a serious
worry here, and in particular ecological bias due to within-area confounding.

30.10 Semiecological Studies

In a semiecological study, sometimes more optimistically referred to as a “semiindividual
study” (Künzli and Tager, 1997), individual-level data are collected on outcome and con-
founders, with exposure information arising from another source. The Harvard six-cities
study (Dockery, Pope, Xiping, Spengler et al., 1993) provides an example in which the ex-
posure was city-specific and was an average exposure from pollution monitors over the
follow-up of the study.

We consider the risk for individual j in confounder stratum c and area i , c = 1, . . . , C ,
j = 1, . . . , nic , i = 1, . . . , m. Let xic j be the exposures of the individuals within stratum c
and area i , and β2c the baseline risk in stratum c. Under exposure aggregation, we have

E[Yic j |xic1, . . . , xicnc ] = Ex|xic1,...,xicnc

{
E[Yic j |x]

}

= eβ0+β2c

nic

nc∑
j=1

eβ1xic j

since the distribution of x|xic1, . . . , xicnc is discrete over the nic exposures, xic1, . . . , xicnic . A
naivé semiecologic model is

E[Yic j |xi ] = eβe
0+βe

2c+βe
1 xi , (30.16)

where xi is an exposure summary in area i . Künzli and Tager (1997) argue that semiecolog-
ical studies are free of ecological bias, but this is incorrect because there are two possible
sources of bias in model (30.16); the first is that we have pure specification bias because
we have not acknowledged within-area variability in exposure, and the second is that we
have not allowed the exposure to vary by confounder stratum, so we have not controlled
for within-area confounding. In an air pollution study in multiple cities, x may correspond
to a monitor average or an average over several monitors. In this case, Equation (30.16) will
provide an approximately unbiased estimate of β1 if there is small exposure variability in
cities and if this variability is similar across confounder stratum.

Semiecological studies frequently have survival as an endpoint, but there has been
less focus on the implications of aggregation in the context of survival models, with few
exceptions (Abrahamowicz, du Berger, Krewski, Burnett et al., 2004; Haneuse, Wakefield,
and Sheppard, 2007).

30.11 Concluding Remarks

The use of ecological data is ubiquitous, and so is the potential for ecological bias. A skep-
tic might conclude from the litany of potential biases described in Section 30.3 that eco-
logical inference should never be attempted, but this would be too pessimistic a view.
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A useful starting point for all ecological analyses is to write down an individual-level
model for the outcome-exposure association of interest, including known confounders.
Ecological bias will be small when within-area variability in exposures and confounders
is small. A serious source of bias is that due to confounding, since ecological data on
exposure are rarely stratified by confounder strata within areas. For a well-conducted eco-
logical study, estimate associations may add to the totality of evidence for a hypothesis.
When comparing ecological and semiecological estimates with individual-level estimates,
it is clearly crucial to have a common effect measure (e.g., a relative risk or a hazard ra-
tio). So, for example, it will be difficult to compare an ecological correlation coefficient,
which is a measure that is often reported, with an effect estimate from an individual-level
study.

Less well-designed ecological studies can be suggestive of hypotheses to investigate
if strong ecological associations are observed. An alternative to the pessimistic outlook
expressed above is that when a strong ecological association is observed an attempt should
be made to explain how such a relationship could have arisen.

There are a number of issues that we have not discussed. Care should be taken in de-
termining the effects of measurement error in an ecological study since the directions of
bias may not be predictable. For example, in the absence of pure specification and con-
founder bias for linear and log-linear models, if there is nondifferential measurement error
in a binary exposure, there will be overestimation of the effect parameter, in contrast to
individual-level studies (Brenner, Savitz, Jockel, and Greenland, 1992). We refer interested
readers to alternative sources, (Elliott and Wakefield, 1999, Wakefield and Elliott, 1999), for
other issues, such as consideration of migration, latency periods, and the likely impacts of
inaccuracies in population and health data.

Studies that investigate the acute effects of air pollution are another common situation in
which ecological exposures are used. For example, daily disease counts in a city are often
regressed against daily and/or lagged concentration measurements taken from a monitor,
or the average of a collection of monitors to estimate the acute effects of air pollution.
If day-to-day exposure variability is greater than within-city variability, then we would
expect ecological bias to be relatively small. We have not considered ecological bias in a
space–time context, little work has been done in this area (see Wakefield, 2004) for a brief
development).

With respect to data availability, exposure information is generally not aggregate in
nature (unless the “exposure” is a demographic or socio-economic variable), and in an
environmental epidemiological setting the modeling of pollutant concentration surfaces
will undoubtedly grow in popularity. However, an important insight is that in a health-
exposure modeling context it may be better to use measurements from the nearest monitor
rather than model the concentration surface because the latter approach may be suscep-
tible to large biases, particularly when, as is usually the case, the monitoring network
is sparse (Wakefield and Shaddick, 2006). A remaining challenge is to diagnose when
the available data are of sufficient abundance and quality to support the use of complex
models.

In Section 30.6 we described a number of proposals for the combination of ecological
and individual data. Such endeavors will no doubt increase and will hopefully allow the
reliable exploitation of ecological information.
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31.1 Introduction

Spatial data are widely modeled using spatial processes that assume, for a study region D,
a collection of random variables {Y (s) : s ∈ D} where s indexes the points in D. This set is
viewed as a randomly realized surface over D, which, in practice, is only observed at a finite
set of locations in S = {s1, s2, . . . , sn}. Once such an interpolated surface has been obtained,
investigation of rapid change on the surface may be of interest. Here, interest often lies in the
rate of change of the surface at a given location in a given direction. Examples include tem-
perature or rainfall gradients in meteorology, pollution gradients for environmental data,
and surface roughness assessment for digital elevation models. Since the spatial surface is
viewed as a random realization, all such rates of change are random as well.

Such local assessments of spatial surfaces are not restricted to points, but are often desired
for curves and boundaries. For instance, environmental scientists are interested in ascer-
taining whether natural boundaries (e.g., mountains, forest edges, etc.) represent a zone of
rapid change in weather, ecologists are interested in determining curves that delineate dif-
fering zones of species abundance, while public health officials want to identify change in
healthcare delivery across municipal boundaries, counties, or states. The above objectives
require the notion of gradients and, in particular, assigning gradients to curves (curvilinear
gradients) in order to identify curves that track a path through the region where the surface
is rapidly changing. Such boundaries are commonly referred to as difference boundaries
or wombling boundaries, named after Womble (1951), who discussed their importance in
understanding scientific phenomena (also see Fagan, Fortin, and Soykan, 2003).
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Visual assessment of the surface over D often proceeds using contour and image plots
of the surface fitted from the data using surface interpolators. Surface representation and
contouring methods range from tensor-product interpolators for gridded data (e.g., Cohen,
Riesenfeld, and Elber, 2001) to more elaborate adaptive control-lattice or tessellation-based
interpolators for scattered data (e.g., Akima, 1996; Lee, Wolberg, and Shin, 1997). Mitas
and Mitasova, (1999), provide a review of several such methods available in geographic
information system (GIS) software (e.g., GRASS: http://grass.itc.it/). These methods are
often fast and simple to implement and produce contour maps that reveal topographic
features. However, they do not account for association and uncertainty in the data. Contrary
to being competitive with statistical methods, they play a complementary role, creating
descriptive plots from the raw data in the premodeling stage and providing visual displays
of estimated response or residual surfaces in the postmodeling stage. It is worth pointing
out that while contours often provide an idea about the local topography, they are not the
same as wombling boundaries. Contour lines connect points with the same spatial elevation
and may or may not track large gradients, so they may or may not correspond to wombling
boundaries.

As a concept, wombling is useful because it attempts to quantify spatial information
in objects, such as curves and paths, that are not easy to model as regressors. Existing
wombling methods for point referenced data concentrate upon finding points having large
gradients and attempt to connect them in an algorithmic fashion, which then defines a
“boundary.” These have been employed widely in computational ecology, anthropology,
and geography. For example, Barbujani, Jacquez, and Ligi, (1990) and Barbujani, Oden, and
Sokal, (1989) used wombling on red blood cell markers to identify genetic boundaries in
Eurasian human populations by different processes restricting gene flow; Bocquet-Appel,
and Bacro (1994) investigated genetic, morphometric, and physiologic boundaries; Fortin
(1994, 1997) delineated boundaries related to specific vegetation zones, and Fortin, and
Drapeau, (1995) applied wombling on real environmental data.

Building upon an inferential theory for spatial gradients in Banerjee, Gelfand, and Sirmans
(2003), Banerjee and Gelfand (2006) formulated a Bayesian framework for point-referenced
curvilinear gradients or boundary analysis, a conceptually harder problem due to the lack
of definitive candidate boundaries. Spatial process models help in estimating not only
response surfaces, but residual surfaces after covariate and systematic trends have been
accounted. Depending on the scientific application, boundary analysis may be desirable on
either. Algorithmic methods treat statistical estimates of the surface as “data” and apply
interpolation-based wombling to obtain boundaries. Although such methods produce use-
ful descriptive surface plots, they preclude formal statistical inference. Indeed, boundary
assessment using such reconstructed surfaces suffers from inaccurate estimation of uncer-
tainty. Evidently, gradients are central to wombling and the concerned spatial surfaces must
be sufficiently smooth. This precludes methods, such as wavelet analysis, that have been
employed in detecting image discontinuities (e.g., Csillag, and Kabos, 2002), but do not
admit gradients.

While this chapter will primarily focus upon gradient-based wombling, it is worth point-
ing out that spatial data do not always arise from fixed locations. They are often observed
only as summaries over geographical regions (say, counties or zip codes). Such data, known
as areal data, are more commonly encountered in public health research to protect patient
confidentiality. Boundary analysis, or “areal wombling,” is concerned with identifying
edges across which areal units are significantly different. In public health, this is useful
for detecting regions of significantly different disease mortality or incidence, thus improv-
ing decision making regarding disease prevention and control, allocation of resources, and
so on. Models for such data (see, e.g., Chapters 13 and 14; Banerjee, Carlin, and Gelfand,
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2004; Cressie, 1993) do not yield smooth spatial surfaces, thereby precluding gradient-based
wombling. We will briefly discuss wombling in these contexts.

31.2 Directional Finite Difference and Derivative Processes

Derivatives (more generally, linear functionals) of random fields have been discussed in
Adler (1981), Banerjee et al. (2003) and Mardia, Kent, Goodall, and Little (1996). Let Y (s) be a
real-valued stationary spatial process with covariance function Cov(Y(s), Y(s′)) = K (s−s′)
where K is a positive definite function on �d . Stationarity is not strictly required, but
simplifies forms for the induced covariance function. The process {Y(s) : s ∈ �d} is L2 (or
mean square) continuous at s0 if lim

s→s0
E(|Y(s) − Y(s0)|)2 = 0. Under stationarity, we have

E(|Y (s) − Y (s0)|)2 = 2(K (0) − K (s−s0)), thus, the process Y(s) is mean square continuous
at all sites s if K is continuous at 0.

The notion of a mean square differentiable process can be formalized using the analogous
definition of total differentiability of a function in �d in a nonstochastic setting. To be precise,
we say that Y (s) is mean square differentiable at s0 if it admits a first-order linear expansion
for any scalar h and any unit vector (direction) u ∈ �d ,∗

Y (s0 + hu) = Y (s0) + h〈∇Y (s0) , u〉 + o (h) (31.1a)

in the L2 sense as h → 0, where ∇Y (s0) is a d × 1 vector called the gradient vector and 〈·, ·〉
is the usual Euclidean inner-product on �d .∗ That is, for any unit vector u, we require

lim
h→0

E
(

Y (s0 + hu) − Y (s0)
h

− 〈∇Y (s0) , u〉
)2

= 0. (31.1b)

This linearity ensures that mean square differentiable processes are mean square
continuous.

Spatial gradients can be developed from finite difference processes. For any parent process
Y(s) and given direction u and any scale h, we have

Yu,h (s) = Y (s + hu) − Y (s)
h

. (31.2)

Clearly, for a fixed u and h, Yu,h (s) is a well-defined process on �d — in fact, with δ = s′ −s,
its covariance function is given by

C (h)
u (s, s′) = (2K (δ) − K (δ + hu) − K (δ − hu))

h2 , (31.3)

where var
(
Yu,h (s)

) = 2 (K (0) − K (hu))/h2. The directional derivative process or directional
gradient process is defined as DuY(s) = limh→0 Yu,h(s) when this mean square limit exists.
Indeed when the parent process is mean square differentiable, i.e., Equation (31.1b) holds
for every s0, then it immediately follows that, for each u, DuY (s) = 〈∇Y (s) , u〉 exists with
equality again in the L2 sense. In fact, under stationarity of the parent process, whenever the
second-order partial and mixed derivatives of K exist and are continuous, DuY(s) is a well-
defined process whose covariance function is obtained from the limit of Equation (31.3)

∗ Note that, unlike the nonstochastic setting, Y (s0) is a random realization at s0. As well, ∇Y (s0) is not a function,
but a random d-dimensional vector.
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as h → 0, yielding Cu(s, s′) = −uT HK (δ)u, where HK (δ) = ((∂2 K (δ)/∂δi ∂δ j )) is the d × d
Hessian matrix of K (δ).

More generally, collecting a set of p directions in �d into the d× p matrix, U = [u1, . . . , up],
we can write DUY(s) as the p × 1 vector, DUY(s) = (Du1 Y(s), . . . , Dup Y(s))T , so that
DUY(s) = UT∇Y(s). In particular, setting p = d and taking U as the d × d identity matrix
(i.e., taking the canonical basis, {e1, . . . , ed}, as our directions), we have DI Y(s) = ∇Y(s),
which gives a representation of ∇Y(s) in terms of the partial derivatives of the components of
Y(s). Explicitly, ∇Y(s) = (∂Y(s)

∂s1
, . . . , ∂Y(s)

∂sd

)T , where s = ∑d
i=1 si ei , so si s are the coordinates

of s with respect to the canonical basis, and DUY(s) = UT DI Y(s). Thus, the derivative
process in a set of arbitrary directions is a linear transformation of the partial derivatives
in the canonical directions and all inference about the directional derivatives can be built
from this relationship.

Formally, finite difference processes require less assumption for their existence. To com-
pute differences, we need not worry about a numerical degree of smoothness for the realized
spatial surface. However, issues of numerical stability can arise if h is too small. Also, with
directional derivatives in, say, two-dimensional space, from the previous paragraph, we
only need work with north and east directional derivatives processes in order to study
directional derivatives in arbitrary directions. The nature of the data collection and the
scientific questions of interest would often determine the choice of directional finite dif-
ference processes versus directional derivative processes. Differences, viewed as discrete
approximations to gradients, may initially seem less attractive. However, in applications
involving spatial data, scale is usually a critical question (e.g., in environmental, ecological,
or demographic settings). Infinitesimal local rates of change may be of less interest than
finite differences at the scale of a map of interpoint distances. On the other hand, gradients
are of fundamental importance in geometry and physics and researchers in the physical sci-
ences (e.g., geophysics, meteorology, oceanography) often formulate relationships in terms
of gradients. Data arising from such phenomena may require inference through derivative
processes.

31.3 Inference for Finite Differences and Gradients

Let Y(s) ∼ G P(μ(s), K (·)) be a second-order stationary Gaussian process with mean μ(s)
and covariance function K (δ). Both μ(s) and K (δ) typically depend upon unknown model
parameters that we suppress for now. Consider a collection of p fixed direction vectors
U = [u1, . . . , up] and a fixed scale h and let YU,h(s) = (Yu1,h(s), . . . , Yup ,h(s))T . The ( p+1)×1
process ZU,h(s) = (Y(s), YT

U,h(s))T is a well-defined multivariate Gaussian process (see, e.g.,
Banerjee et al., 2003) enabling inference for finite differences in a predictive fashion making
use of the distribution theory arising from the multivariate process ZU,h(s).

Let S = {s1, . . . , sn} be a set of n points at which the outcome Y(s) has been observed. The
realizations of ZU,h(s) overS is the n( p+1)×1 vector ZU,h = (ZT

U,h(s1), . . . , ZT
U,h(sn))T , which

follows a multivariate normal distribution. The mean vector and dispersion matrix (more
specifically, the cross-covariance matrices that specify the dispersion) are easily obtained
from the linearity of the finite difference operation (see Banerjee et al., 2003 for details).

We seek the predictive distribution p(YU,h(s) | Y) = ∫
p(YU,h(s) |θ, Y) p(θ | Y)dθ, where

Y = (Y(s1), . . . , Y(sn))T and θ is the collection of model parameters. Drawing samples from
this distribution is routine using Bayesian composition sampling; given L posterior samples
{θ(l)}L

l=1 from p(θ | Y), we draw, one-for-one, Y(l)
U,h from p(YU,h(s) |θ(l) , Y) — itself a normal

distribution (see Banerjee et al., 2003 for details).
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For spatial gradients, the process Z(s) = (Y(s), ∇Y(s)) is a multivariate Gaussian process
with a stationary cross-covariance function

(
Cov(Y(s), Y(s + δ)) Cov(Y(s), ∇Y(s + δ))

Cov(∇Y(s), Y(s + δ)) Cov(∇Y(s), ∇Y(s + δ))

)
=

(
K (δ) −(∇K (δ))T

∇K (δ) −HK (δ)

)
.

This can be derived from the cross-covariance expressions for the finite differences ZU,h(s) by
setting U to be the d×d identity matrix and letting h → 0. Indeed, Z(s) = limh→0 ZI,h(s). The
cross-covariance matrix enables the joint distribution p (Y, ∇Y(s) |θ), allowing predictive
inference for not only the gradient at arbitrary points, say s0, but also for functions thereof,
including the direction of the maximal gradient (∇Y(s0)/||∇Y(s0)||) and the size of the
maximal gradient (||∇Y(s0)||). Simplifications arise when the mean surface, μ (s), admits a
gradient ∇μ (s). Let μ = (μ (s1) , . . . , μ (sn)), let ΣY denote the n × n dispersion matrix for
the data Y, and let γT = (∇K (δ01) , . . . , ∇K (δ0n)) be the d × n matrix with δ0 j = s0 − s j .
Then, p (Y, ∇Y (s0) |θ) is distributed as the d + n dimensional normal distribution

Nd+n

((
μ

∇μ(s0)

)
,

(
ΣY γ

γT −HK (0)

))
. (31.4)

and the conditional predictive distribution for the gradient, p(∇Y(s0)|Y, θ), is the d di-
mensional normal distribution Nd

(∇μ(s0) − γTΣ−1
Y (Y − μ), −HK (0) − γTΣ−1

Y γ
)
. Simula-

tion from the posterior predictive distribution p (∇Y (s0) |Y) is again routine; for each θ(l)
obtained from p (θ|Y), we draw ∇Y(l) (s0) from the p

(∇Y(s0)|Y, θ(l)
)
. As long as ∇μ(s0) is

computable, obtaining samples from the above distribution is routine. In practice, we could
have μ (s, β) = μ, a constant, in which case ∇μ (s) = 0. More generally, we would have
μ (s, β) = f (s)T β, where f(s) may represent some spatial regressors. If f(s)Tβ describes a
trend surface, then explicit calculation of ∇μ(s) will be possible. For a continuous regressor,
such as elevation, we can interpolate a surface and approximate ∇μ (s) at any location s.

Note that it might suffice to consider gradients of a residual (or intercept) spatial process,
say, w(s), where Y(s) = μ(s; β) + w(s) + ε(s), where w(s) ∼ G P(0, K (·; φ)) is a zero-mean
Gaussian process, and ε(s) ∼ N(0, τ 2) is a nugget or white-noise process. Inference will
then proceed from the posterior distribution of p(∇w(s)|Y). Based on the above distribution
theory, formal statistical inference on gradients can be performed. For instance, given any
direction u and any location s0, a statistically “significant” directional gradient would mean
that a 95% posterior credible interval for Duw(s0) would not include 0. Since D−uw(s0) =
−Duw(s0), inference for u is the same as for −u. Also, assessing significance of the spatial
residual process, w(s) is more general than for the parent process Y(s). Indeed, when ∇μ(s0)
exists and there is no nugget (τ 2 = 0), then the former is equivalent to testing the significance
of DuY(s0) as a departure from the trend surface gradient Duμ(s0) (the null value). But even
when ∇μ(s0) is inaccessible, or there is a nugget τ 2 > 0, assessment of spatial gradients for
w(s0) is still legitimate.

31.4 Illustration: Inference for Differences and Gradients

A simulation example (also see Banerjee et al., 2003) is provided to illustrate inference on
finite differences and directional gradients. We generate data from a Gaussian random field
with constant mean μ and a covariance structure specified through the Matèrn (ν = 3/2)
covariance function, σ 2(1+φd) exp(−φd). The field is observed on a randomly sampled set
of points within a 10 × 10 square. We set μ = 0, σ 2 = 1.0, and φ = 1.05. In the subsequent
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FIGURE 31.1
Left: Location of the 100 sites where the random field has been observed. Right: A grayscale plot with contour
lines showing the topography of the random field in the simulation example.

illustration, our data consists of n = 100 observations at the randomly selected sites shown
in the left panel of Figure 31.1. The maximum observed distance in our generated field is ap-
proximately 13.25 units. The value of φ = 1.05 provides an effective isotropic range of about
4.5 units. We also perform a Bayesian kriging on the data to develop a predicted field. The
right panel of Figure 31.1 shows a grayscale plot with contour lines displaying the topog-
raphy of the “kriged” field. We will see below that our predictions of the spatial gradients
at selected points are consistent with the topography around those points, as depicted in
the right panel of Figure 31.1. Adopting a flat prior for μ, an IG(2, 0.1) (mean = 10, infinite
variance) prior for σ 2, a G(2, 0.1) prior (mean = 20, variance = 200) for φ, and a uniform
on (1, 2) for ν, we obtain the posterior estimates for our parameters shown in Table 31.1.

We next predict the directional derivatives and directional finite differences for the unit
vectors corresponding to angles of 0, 45, 90, 135, 180, 225, 270 and 315 degrees with the
horizontal axis in a counterclockwise direction at the point. For the finite differences we
consider h = 1.0, 0.1 and 0.01. Recall that D−uY (s) = −DuY (s). Table 31.2 presents the
resulting posterior predictive inference for the point (3.5, 3.5) in Figure 31.1. We see that
(3.5, 3.5) seems to be in a rather interesting portion of the surface, with many contour
lines nearby. It is clear from the contour lines that there is a negative northern gradient
(downhill) and a positive southern gradient (uphill) around this point. On the other hand,
there does not seem to be any significant east–west gradient around that point as seen from
the contour lines through that point running east–west. This is brought out very clearly in
column 1 of Table 31.2. The angles of 0 and 180 degrees that correspond to the east–west
gradients are not at all significant. The north–south gradients are indeed pronounced as
seen by the 90 and 270 degree gradients. The directional derivatives along the diagonals also
indicate presence of a gradient. There is a significant downhill gradient toward the northeast
and (therefore) a significant uphill gradient toward the southwest. Hence, the directional
derivative process provides inference consistent with features captured descriptively and
visually in Figure 31.1.

TABLE 31.1

Posterior Estimates for Model Parameters
Parameter 50% (2.5%, 97.5%)

μ −0.39 (−0.91, 0.10)
σ 2 0.74 (0.50, 1.46)
φ 1.12 (0.85, 1.41)
ν 1.50 (1.24, 1.77)
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TABLE 31.2

Posterior Medians and (2.5%, 97.5%) Predictive Intervals for Directional
Derivatives and Finite Differences at Point (3.5,3.5)

(1) (2) (3) (4)

Angle DuY (s)
(

h = 0
)

h = 1.0 h = 0.1 h = 0.01

0 −0.06 (−1.12, 1.09) 0.51 (−0.82, 1.81) −0.08 (−1.23, 1.20) −0.07 (−1.11, 1.10)
45 −1.49 (−2.81, −0.34) −0.01 (−1.29, 1.32) −1.55 (−2.93, −0.56) −1.53 (−2.89, −0.49)
90 −2.07 (−3.44, −0.66) −0.46 (−1.71, 0.84) −2.13 (−3.40, −0.70) −2.11 (−3.41, −0.69)
135 −1.42 (−2.68, −0.23) −0.43 (−1.69, 0.82) −1.44 (−2.64, −0.23) −1.43 (−2.70, −0.23)
180 0.06 (−1.09, 1.12) −0.48 (−1.74, 0.80) 0.08 (−1.19, 1.23) 0.06 (−1.10, 1.12)
225 1.49 (0.34, 2.81) 0.16 (−1.05, 1.41) 1.61 (0.52, 3.03) 1.52 (0.48, 2.90)
270 2.07 (0.66, 3.44) 0.48 (−0.91, 1.73) 2.12 (0.68, 3.43) 2.10 (0.68, 3.42)
315 1.42 (0.23, 2.68) 1.12 (−0.09, 2.41) 1.44 (0.24, 2.68) 1.42 (0.23, 2.70)

For the directional finite differences in columns 2, 3, and 4 of Table 31.2, note, for in-
stance, the difference between column 2 and columns 3 and 4. In the former, none of the
directional finite differences are significant. The low resolution (large h) fails to capture
local topographic properties. On the other hand, the latter very much resemble column 1.
As expected, at high resolution, the directional finite difference process results match those
of the directional derivative process. Computational simplicity and stability (difficulties
may arise with very small h in the denominator of (2)) encourage the use of the latter (see
Banerjee et al., 2003 for details).

31.5 Curvilinear Gradients and Wombling

31.5.1 Gradients along Parametric Curves

Banerjee and Gelfand (2006), extend the concept of wombling with gradients from points to
curves. The conceptual challenge here is to formulate a measure to associate with a curve,
in order to assess whether it can be declared a wombling boundary. In applications, such
curves might be proposed, for instance, as topographic or legislated boundaries or perhaps
as level curves arising from a contouring routines.

Let C be an open curve in �2 and we want to ascertain whether C is a wombling boundary
with regard to Y(s). To do so, we seek to associate an average gradient with C . In particular,
for each point s lying on C , we let Dn(s)Y (s) be the directional derivative in the direction
of the unit normal n (s). The rationale behind the direction normal to the curve is that, for
a curve tracking rapid change in the spatial surface, lines orthogonal to the curve should
reveal sharp gradients. We can define the wombling measure of the curve either as the total
gradient along C , ∫

C
Dn(s)Y (s) dν =

∫
C
〈∇Y (s) , n (s)〉dν, (31.5a)

or perhaps as the average gradient along C ,

1
ν (C)

∫
C

Dn(s)Y (s) dν = 1
ν (C)

∫
C
〈∇Y (s) , n (s)〉dν, (31.5b)

where ν(·) is an appropriate measure. For Equation (31.5a) and Equation (31.5b), ambi-
guity arises with respect to the choice of measure. For example, ν(C) = 0 if we take ν as
two-dimensional Lebesgue measure and, indeed, this is true for any ν that is mutually
absolutely continuous with respect to Lebesgue measure. Upon reflection, an appropriate
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choice for ν turns out to be arc-length. This can be made clear by a parametric treatment of
the curve C .

In particular, a curve C in �2 is a set parametrized by a single parameter t ∈ �1 where
C = {s(t) : t ∈ T }, with T ⊂ �1. We call s(t) = (s(1)(t), s(2)(t)) ∈ �2 the position vector
of the curve – s(t) traces out C as t spans its domain. Then, assuming a differentiable
curve with nonvanishing derivative s′(t) �= 0 (such a curve is often called regular), we
obtain the (component-wise) derivative s′(t) as the “velocity” vector, with unit velocity
(or tangent) vector s′(t)/||s′(t)||. Letting n(s(t)) be the parametric unit normal vector to C ,
again if C is sufficiently smooth, then 〈s′(t), n(s(t))〉 = 0, a .e.T . In �2, we see that n(s(t)) =
(s ′

(2) (t),−s ′
(1) (t))

||s′(t)|| .
Now the arc-length measure ν can be defined as ν(T ) = ∫

T
∣∣∣∣s′ (t)

∣∣∣∣ dt. In fact,
∣∣∣∣s′ (t)

∣∣∣∣
is analogous to the “speed” (the norm of the velocity) at “time” t, so the above integral
is interpretable as the distance traversed or, equivalently, the arc-length ν(C) or ν(T ). In
particular, if T is an interval, say [t0, t1], we can write ν (T ) = νt0 (t1) = ∫ t1

t0

∣∣∣∣s′ (t)
∣∣∣∣ dt.

Thus, we have dνt0 (t) = ∣∣∣∣s′ (t)
∣∣∣∣ dt and, taking ν as the arc-length measure for C , we have

the wombling measures in Equation (31.5a) (total gradient) and Equation (31.5b) (average
gradient) respectively as

ΓY(s)(T ) =
∫
T
〈∇Y (s (t)) , n (s (t))〉 ∣∣∣∣s′ (t)

∣∣∣∣ dt and Γ̄Y(s)(T ) = 1
ν(T )

ΓY(s)(T ). (31.6)

This result is important because we want to take ν as the arc-length measure, but it will be
easier to use the parametric representation and work in t space. Also, it is a consequence
of the implicit mapping theorem in mathematical analysis (see, e.g., Rudin, 1976) that
any other parametrization s∗(t) of the curve C is related to s(t) through a differentiable
mapping g such that s∗(t) = s(g(t)). This immediately implies (using Equation (31.6)) that
our proposed wombling measure is invariant to the parametrization of C and, as desired,
a feature of the curve itself.

For some simple curves, the wombling measure can be evaluated quite easily. For in-
stance, when C is a segment of length 1 of the straight line through the point s0 in the di-
rection u = (u(1) , u(2)), then we have C = {s0 + tu : t ∈ [0, 1]}. Under this parametrization,
s′(t)T = (u(1) , u(2)),

∣∣∣∣s′ (t)
∣∣∣∣ = 1, and νt0 (t) = t. Clearly, n (s (t)) = (

u(2) , −u(1)
)
, (independent

of t), which we write as u⊥ – the normal direction to u. Therefore ΓY(s)(T ) in Equation (31.6)
becomes ∫ 1

0
〈∇Y (s (t)) , n (s (t))〉dt =

∫ 1

0
Du⊥Y (s (t)) dt.

Banerjee and Gelfand (2006), also consider the “flux” of a region bounded by a closed
curve C (e.g., C might be the boundary of a county, census unit, or school district). The
integral over a closed curve is denoted by

∮
C and the average gradient in the normal

direction to the curve C is written as

1
ν (C)

∮
C
〈∇Y (s) , n (s)〉ds = 1

ν (C)

∮
C
〈∇Y (s (t)) , n (s (t))〉 ∣∣∣∣s′ (t)

∣∣∣∣ dt.

For a twice mean square differentiable surface Y (s), the closed line integral can be writ-
ten down as a double integral over the domain of s and no explicit parametrization by t
is required. This offers computational advantages because the righthand integral can be
computed by sampling within the region, which, in general, is simpler than along a curve.
Working exclusively with line segments as described below, we confine ourselves to (4.5′).

Using the above formulation, we can give a formal definition of a curvilinear wombling
boundary:
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Definition: A curvilinear wombling boundary is a curve C that reveals a large wombling
measure, ΓY(s)(T ) or Γ̄Y(s)(T ) (as given in Equation (31.6)) in the direction normal
to the curve.

Were the surface fixed, we would have to set a threshold to determine what “large,” say, in
absolute value, means. Since the surface is a random realization, ΓY(s)(T ) and Γ̄Y(s)(T ) are
random. Therefore, we declare a curve to be a wombling boundary if, say, a 95% credible set
for Γ̄Y(s)(T ) does not contain 0. It is worth pointing out that while one normal direction is
used in Equation (31.6),−n(s(t)) would also have been a valid choice. Since D−n(s(t))Y(s(t)) =
−Dn(s(t))Y(s(t)), we note that the wombling measure with respect to one is simply the
negative of the other. Thus, in the above definition, large positive as well as large negative
values of the integral in Equation (31.6) would signify a wombling boundary. Being a local
concept, an uphill gradient is equivalent to a downhill gradient across a curve, as are the
fluxes radiating outward or inward for a closed region.

We also point out that, being a continuous average (or sum) of the directional gradients
along a curve, the wombling measure may “cancel” the overall gradient effect. For instance,
imagine a curve C that exhibits a large positive gradient in the n(s) direction for the first
half of its length and a large negative gradient for the second half, thereby canceling the
total or average gradient effect. A remedy is to redefine the wombling measure using ab-
solute gradients, |Dn(s)Y(s)|, in Equation (31.5a) and Equation (31.5b). The corresponding
development does not entail any substantially new ideas, but would sacrifice the attractive
distribution theory below. It will also make calibrating the resulting measure with regard
to significance much more difficult. Moreover, in practice, a descriptive contour represen-
tation is usually available where sharp gradients will usually reflect themselves and one
could instead compute the wombling measure for appropriate subcurves of C (such sub-
curves are usually unambiguous). More fundamentally, in certain applications, a signed
measure may actually be desirable; one might want to classify a curve as a wombling
boundary if it reflects either an overall “large positive” or a “large negative” gradient effect
across it.

As for directional gradients at points, inference for curvilinear gradients will also proceed
in posterior predictive fashion. Let us suppose that T is an interval, [0, T], which generates
the curve C = {s(t) : t ∈ [0, T]}. For any t∗ ∈ [0, T] let ν(t∗) denote the arc-length of the
associated curve Ct∗ . The line integrals for total gradient and average gradient along Ct∗

are given by ΓY(s) (t∗) and Γ̄Y(s) (t∗), respectively, as

ΓY(s)(t∗) =
∫ t∗

0
Dn(s(t))Y(s(t))‖s′(t)‖dt and Γ̄Y(s)

(
t∗) = 1

ν(t∗)
ΓY(s)(t∗). (31.7)

We seek to infer about ΓY(s)(t∗) based on data Y = (Y(s1), . . . , Y(sn)). Although Dn(s)Y(s)
is a process on �2, our parametrization of the coordinates by t ∈ T ⊆ �1 induces a
valid process on T . In fact, it is shown in Banerjee and Gelfand (2006) that ΓY(s)(t∗) is
a mean square continuous, but nonstationary (even if Y(s) is stationary), Gaussian pro-
cess. This enables us to carry out predictive inference as detailed in Banerjee and Gelfand
(2006).

Returning to the model Y(s) = xT (s)β + w(s) + ε(s) with x(s) a general covariate vector,
w(s) ∼ G P(0, σ 2ρ(·, φ)) and ε(s) a zero-centered, white-noise process with variance τ 2,
consider boundary analysis for the residual surface w(s). In fact, boundary analysis on the
spatial residual surface is feasible in generalized linear modeling contexts with exponential
families, where w(s) may be looked upon as a nonparametric latent structure in the mean
of the parent process as originally proposed in Diggle, Tawn, and Moyeed (1998). (See
Section 31.6 for an example.)
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Denoting by Γw(s)(t) and Γ̄w(s)(t) as the total and average gradient processes (as defined in
(31.6)) for w(s), we seek the posterior distributions p(Γw(s)(t∗)|Y) and p(Γ̄w(s)(t∗)|Y). Thus,

p(Γw(s)(t∗)|Y) =
∫

p(Γw(s)(t∗)|w, θ) p(w|θ, Y) p(θ|Y)dθdw, (31.8)

where w = (w(s1), . . . , w(sn)) and θ = (β, σ 2, φ , τ 2). Posterior predictive sampling pro-
ceeds using posterior samples of θ, and is expedited in a Gaussian setting since p(w|θ, Y)
and p(Γw(s)(t∗)|w, θ) are both Gaussian distributions.

Formal inference for a wombling boundary is done more naturally on the residual surface
w(s), i.e., for Γw(s)(t∗) and Γ̄w(s)(t∗), because w(s) is the surface containing any nonsystematic
spatial information on the parent process Y(s). Since w(s) is a zero-mean process, one needs
to check for the inclusion of this null value in the resulting 95% credible intervals for Γw(s)(t∗)
or, equivalently, for Γ̄w(s)(t∗). Again, this clarifies the issue of the normal direction mentioned
earlier; significance using n(s(t)) is equivalent to significance using −n(s(t)). One only needs
to select and maintain a particular orthogonal direction relative to the curve.

31.6 Illustration: Spatial Boundaries for Invasive Plant Species

We present, briefly, an analysis considered in Banerjee and Gelfand (2006). The data were
collected from 603 locations in Connecticut with presence/absence and abundance scores
for some individual invasive plant species, along with some environmental predictors.
The outcome variable Y(s) is a presence–absence binary indicator (0 for absence) for one
species Celastrus orbiculatus (Oriental bittersweet) at location s. There are three categorical
predictors: (1) habitat class (representing the current state of the habitat) of four different
types; (2) land use and land cover (LULC) types (land use/cover history of the location, e.g.,
always forest, formerly pasture now forest, etc.) at five levels; and (3) a 1970 category number
(LULC at one point in the past: 1970, e.g., forest, pasture, residential, etc.) with six levels. In
addition, we have an ordinal covariate, canopy closure percentage (percent of the sky that is
blocked by “canopy” of leaves of trees), a binary predictor for heavily managed points (0 if
“no”; “heavy management” implies active landscaping or lawn mowing) and a continuous
variable measuring the distance from the forest edge in the logarithm scale. A location
under mature forest would have close to 100% canopy closure while a forest edge would
have closer to 25% with four levels in increasing order. Figure 31.2 is a digital terrain image
of the study domain, with the labeled curves indicating forest edges extracted using the GIS
software ArcView (http://www.esri.com/). Ecologists are interested in evaluating spatial
gradients along these 10 natural curves and identifying them as wombling boundaries.

We fit a logistic regression model with spatial random effects,

log
(

P(Y(s) = 1)
P(Y(s) = 0)

)
= xT (s)β + w(s),

where x(s) is the vector of covariates observed at location s and w(s) ∼ G P(0, σ 2ρ(·; φ , ν))
is a Gaussian process with ρ(·; φ , ν) as a Matérn correlation function. While Y(s) is a binary
surface that does not admit gradients, conducting boundary analysis on w(s) may be of
interest. The residual spatial surface reflects unmeasured or unobservable environmental
features in the mean surface. Detecting significant curvilinear gradients to the residual
surface tracks rapid change in the departure from the mean surface.
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FIGURE 31.2
A digital image of the study domain in Connecticut indicating the forest edges as marked curves. These are
assessed for significant gradients. Note: Eastings range from 699148 to 708961; Northings range from 4604089 to
4615875 for the image.

It was reported in Banerjee and Gelfand (2006) that the inference was fairly robust to
the choice of priors. The results presented here result from a completely noninformative
flat prior for β, an inverted-gamma I G(2, 0.001) prior for σ 2 and the Matérn correlation
function with a gamma prior for the correlation decay parameter, φ, specified so that the
prior spatial range has a mean of about half of the observed maximum intersite distance
(the maximum distance is 11,887 meters based on a UTM projection), and a U(1, 2) prior
for the smoothness parameter ν. (Further details may be found in Banerjee and Gelfand,
2006.)

Table 31.3 presents the posterior estimates of the model parameters. Most of the categor-
ical variables reveal significance: Types 2 and 4 for habitat class have significantly different
effects from Type 1; all the four types of LULC show significant departure from the baseline
Type 1; for the 1970 category number, category 2 shows a significant negative effect, while
categories 4 and 6 show significant positive effects compared to category 1. Canopy closure
is significantly positive, implying higher presence probabilities of Celastrus orbiculatus with
higher canopy blockage, while points that are more heavily managed appear to have a
significantly lower probability of species presence as does the distance from the nearest
forest edge.

Finally, Table 31.4 presents the formal curvilinear gradient analysis for the 10 forest
edges in Figure 31.2. Six out of the 10 edge curves (with the exception of CD, EF, KL,
and MN) are formally found to be wombling boundaries. The methodology proves useful
here because some of these edge curves meander along the terrain for substantially long
distances. Indeed, it is difficult to make visual assessments on the size (and significance)
of average gradients for longer curves. Furthermore, with nongridded data as here, the
surface interpolators (in this case, Akima, 1996) often find it difficult to extrapolate be-
yond a convex hull of the site locations. Consequently, parts of the curve (e.g., endpoints
C, G, and (almost) T) lie outside the fitted surface, making local visual assessment quite
impossible.
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TABLE 31.3

Parameter Estimates for the Logistic Spatial Regression Example
Parameters 50% (2.5%, 97.5%)

Intercept 0.983 (−2.619, 4.482)
Habitat Class (Baseline: Type 1)

Type 2 −0.660 (−1.044,−0.409)
Type 3 −0.553 (−1.254, 0.751)
Type 4 −0.400 (−0.804,−0.145)

Land Use, Land Cover Types (Baseline: Level 1)
Type 2 0.591 (0.094, 1.305)
Type 3 1.434 (0.946, 2.269)
Type 4 1.425 (0.982, 1.974)
Type 5 1.692 (0.934, 2.384)

1970 Category Types (Baseline: Category 1)
Category 2 −4.394 (−6.169,−3.090)
Category 3 −0.104 (−0.504, 0.226)
Category 4 1.217 (0.864, 1.588)
Category 5 −0.039 (−0.316, 0.154)
Category 6 0.613 (0.123, 1.006)

Canopy Closure 0.337 (0.174, 0.459)
Heavily Managed Points (Baseline: No)

Yes −1.545 (−2.027,−0.975)
Log Edge Distance −1.501 (−1.891,−1.194)
σ 2 8.629 (7.005, 18.401)
φ 1.75E-3 (1.14E-3, 3.03E-3)
ν 1.496 (1.102, 1.839)
Range (in meters) 1109.3 (632.8, 1741.7)

Quickly and reliably identifying forest edges could be useful in determining boundaries
between areas of substantial anthropogenic activity and minimally managed forest habitats.
Such boundaries are important because locations at which forest blocks have not been
invaded by exotic plant species may be subject to significant seed rain from these species.
It is worth pointing out that the spatial residual surface can greatly assist scientists in
finding important missing predictors. Identifying significant wombling boundaries on such
surfaces can throw light upon unobserved or “lurking” predictors that may be causing local
disparities on this residual surface.

TABLE 31.4

Curvilinear Gradient Assessment for the 10 Forest
Edges Labeled in Figure 31.2 for the Logistic
Regression Example
Curve Average Gradient Curve Average Gradient

AB 1.021 ( 0.912, 1.116) KL 0.036 (–0.154, 0.202)
CD 0.131 (-0.031, 0.273) MN 0.005 (–0.021, 0.028)
EF 0.037 (-0.157, 0.207) OP 0.227 ( 0.087, 0.349)
GH 1.538 ( 1.343, 1.707) QR 0.282 ( 0.118, 0.424)
IJ 0.586 ( 0.136, 0.978) ST 0.070 ( 0.017, 0.117)
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31.7 A Stochastic Algorithm for Constructing Boundaries

The foregoing strategy can be used to test whether a given boundary is a difference bound-
ary. However, in practice it will often be of interest to develop a stochastic algorithm to
construct boundaries. It is both natural and easiest to construct boundaries using polygonal
curves, hence, to consider piecewise linear boundaries. One option is a posterior predic-
tive construction that only requires a starting point, say s(1)

0 , and then travels an unknown
distance t∗

(1) in the direction u(1) that is perpendicular to the direction of maximal spatial
gradient at s(1)

0 (i.e., ∇Y(s(1)
0 )/‖∇Y(s(1)

0 )‖). (We call this direction the optimal direction.) The
starting point s(1)

0 will be a point showing a significant maximal spatial gradient, perhaps
suggested by a contour plot of the surface, but formally tested as discussed in Section 31.2.
Of course, if the surface is smooth and there is at least one location with a significant
maximal gradient, there will be an uncountable collection of such points, revealing that
curvilinear wombling boundaries offer a simplified representation for a zone of transition.
Moreover, typically, the contour plot will suggest starting points in several different parts
of the region. Thus, we may use the algorithm below to construct boundaries in a local fash-
ion. Posterior sampling, obtained as described below, will enable us to estimate the distance
t∗
(1) . Evidently, this distance along with the direction and s(1)

0 determine a candidate, s(2)
0 ,

to enable the algorithm to proceed. Note, that the direction vector u(1) is determined only
up to sign. The level curves of the contour plot will be needed to enable us to resolve any
ambiguities in direction as the algorithm proceeds.

With regard to choosing T , without loss of generality (see below), the s(t) can always be
linear segments of at most unit length, so we simply write Γ̄ (t) for Γ̄Y(s)(t). Let Γ̄[0,1] = {Γ̄ (t) :
t ∈ [0, 1]} be a complete evaluation of the average gradient process over its domain. Clearly,
for a given starting point s(1)

0 and the corresponding optimal direction u(1) (as described
above), we want to move a distance t̃ so that the average gradient is maximized. We, there-
fore, define t̃ as arg sup Γ̄[0,1] and seek the posterior predictive distribution P(t̃|Y). While
intractable in closed form, our sampling-based framework enables routine computation of
P(t̃|Y) as follows. We consider a set of points t0 = 0 < t1 < · · · < tM−1 < 1 = tM and obtain
samples from the predictive distribution p(Γ̄ (t)|Y) for each of the points tk , k = 0, . . . , M,
say, {Γ̄ l(tk)}. This immediately renders samples from P(t̃|Y) by computing, for each l,
{t̃l} = arg maxk Γ̄ l(tk).

Having obtained the full posterior distribution for t̃, we compute t̃(1) as a summary
measure (posterior mean or median) and set s(2)

0 = s(1)
0 + t̃(1)u(1) . We then check whether s(2)

0

has a significant spatial gradient∇Y(s(2)
0 ). If not, then we stop and the boundary ends there. If

the gradient is significant, we repeat the above steps moving in a direction u(2) perpendicular
to ∇Y(s(2)

0 )/‖∇Y(s(2)
0 )‖ and evaluating a t̃(2) . The procedure is continued, stopping when we

arrive at a point with insignificant gradient. Note that wombling boundaries constructed
in this manner will be closed with probability zero. In fact, it is possible that the algorithm
never stops, for instance, if we are moving around under, say, a roughly conical portion of
the surface. Of course, in such a case, essentially every point under the cone is a boundary
element and the notion of an associated boundary is not well defined. To avoid endless
circling, ad hoc intervention can be imposed, e.g., stopping at the first segment J such that∑J

j=1
� j ≥ 2π , where � j is the angle between u( j) and u( j+1).

Finally, note that there is no loss of generality in restricting attention to t in [0, 1]. Should
the ( j −1)st line segment want to be greater than 1, we will expect the estimated t̃ to be close
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to 1, but the u( j) that we compute for the next segment will still “point” us in essentially the
same direction (as u( j−1)). Also, the boundary drawn is the “mean” or “median” boundary
in the sense that it uses the posterior mean or median of t̃. Uncertainty in these drawn
boundaries can be displayed by choosing, at each segment, a random t̃ from p(t̃|Y) (rather
than the mean or median) to create a random posterior boundary associated with the
particular starting point. Overlaying a sample of, say, 100 such boundaries on the region
would reveal posterior variation.

31.8 Other Forms of Wombling

31.8.1 Areal Wombling: A Brief Overview

As noted in the Introduction, “areal wombling” refers to the exercise of ascertaining bound-
aries on areally referenced data. In the absence of smooth realizations of spatial surfaces,
areal wombling, therefore, cannot employ spatial gradients. The gradient is not explicitly
modeled; boundary effects are looked upon as edge effects and modeled using Markov ran-
dom field specifications. Boundaries in areal wombling are just a collection of segments (or
arcs, in GIS parlance) dually indexed by i j , corresponding to the two adjacent regions i and j
the segment separates. In the fields of image analysis and pattern recognition, there has been
much research in using statistical models for capturing “edge” and “line” effects (see, e.g.,
Besag, 1986; Geman and Geman, 1984; Geman and McClure, 1985; Geman and McClure,
1987; Helterbrand, Cressie, and Davidson, 1994). See also Cressie (1993) (Section 7.4) and
references therein. Such models are based on probability distributions, such as Gibbs distri-
butions or Markov random fields (MRFs) (see Chapters 12 and 13 and Rue and Held, 2006)
that model pixel intensities as conditional dependencies using the neighborhood structure
(see, e.g., Chellappa and Jain, 1993). Modeling objectives include identification of edges
based on distinctly different image intensities in adjacent pixels.

In these models, local spatial dependence between the observed image characteristics
is captured by a neighborhood structure, where a pixel is independent of the rest given the
values of its neighbors. Various neighborhood structures are possible (see, e.g., Banerjee
et al., 2004, pp. 70–71), but all propose stronger statistical dependence between data values
from areas that are spatially closer, thus inducing local smoothing. However, this leads to
a new problem: When real discontinuities (boundaries) exist between neighboring pixels,
MRF models often lead to oversmoothing, blurring these edges.

Although the boundary analysis problem for public health data resemble the edge-
detection problem in image processing, significant differences exist. Unlike image pixels,
geographical maps that form the domain of most public health data are not regularly spaced,
but still have a well-defined neighborhood structure (a topological graph). Furthermore,
there are usually far fewer of these areas than the number of pixels that would arise in a typ-
ical image restoration problem, so we have far less data. Finally, the areal units (polygons)
are often quite different in size, shape, and number of neighbors, leading, for example,
to different degrees of smoothing in urban and rural regions as well as near the external
boundary of the study region.

Deterministic methods for areal wombling do exist, and include the polygonal wombling
algorithm implemented in the BoundarySeer software (http://www.terraseer.com). For
instance, Jacquez and Greiling (2003) employed polygonal wombling to estimate bound-
aries for breast, lung, and colorectal cancer rates in males and females in Nassau, Suffolk,
and Queens counties in New York. Lu and Carlin (2005) proposed a fully model-based
hierarchical Bayesian wombling model and showed its advantages over the algorithmic
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version implemented in BoundarySeer. This approach uses MRF methods to account for
spatial structure, but suffers from the oversmoothing problems mentioned above. It also
generally fails to produce the long series of connected boundary segments often desired
by practitioners. This work was extended further by Lu, Reilly, Banerjee, and Carlin (2007),
who developed a hierarchical framework that models the adjacency matrix underlying
these maps, while Ma and Carlin (2007) have extended this work to multiple disease maps.
More recently, Ma, Carlin, and Banerjee (2008) proposed a compound Gaussian–Markov
random field model using the Ising distribution as priors on edges.

31.8.2 Wombling with Point Process Data

In disease mapping and public health, a spatial layer for which boundary analysis would be
of considerable interest is the pattern of disease incidence. In particular, we would seek to
identify transition from areas with low incidence to areas with elevated incidence. For cases
aggregated to counts for areal units, e.g., census blocks or zip codes (in order to protect
confidentiality), this would require obtaining standardized incidence rates for the units.
Wombling for such data is discussed in Jacquez and Greiling (2003).

Note that the data format here is similar to that of areal wombling. However, a funda-
mental conceptual difference is that here we model an assumed point-level process that is
being aggregated to produce the areal summary. Whether we analyze the random locations
or the aggregated counts, we assume that the point pattern is driven by an intensity sur-
face, λ(s). (See Part IV of this book.) Wombling for the observed point pattern would be
achieved by wombling the estimated λ(s). A bit more generally, Liang, Banerjee, and Carlin
(2008) and Liang, Carlin, and Gelfand (2007) propose viewing the data, including locations
and nuisance covariates, as a random realization from some nonhomogeneous Poisson
process with intensity function λ(s, v) defined over the product space D × V , where V is
the nuisance covariate space. These authors further let λ(s, v, k) = r (s)π(s, v, k), where
r (s) is the population density surface at location s, where r (s) serves as an offset and
π(s, v, k) is interpreted as a population-adjusted (or relative) intensity surface. We then set
π(s, v, k) = exp{β0k +z(s)Tβk +vTαk +wk(s)}, where wk(s) is a zero-centered stochastic pro-
cess, and β0k ,βk , andαk are unknown regression coefficients. With wk(s) a Gaussian process
and no nonspatial covariates, the original point process becomes a log Gaussian–Cox process.
Wombling (point and curves) can now proceed by applying the gradient-based wombling
methods to w(s). Details, including an extension to marked point processes is discussed in
Liang et al. (2008).

31.9 Concluding Remarks

In this chapter, we have discussed recently proposed theories concerning the use of spatial
gradients to detect points and curves that represent rapid change. Here we have confined
ourselves to curves that track zones of rapid change. However, as we have alluded to above,
zones of rapid change are areal notions; description by a curve may be an unsatisfying
simplification. As the simplest illustration, consider an entirely flat landscape apart from a
cone somewhere in the interior. Should the wombling boundary be a contour of the cone?
Which one, since all the contours of the cone have the same average wombling measure?
Is the entire footprint of the cone the more appropriate boundary? Thus, describing zones
as areal quantities, i.e., as sets of nonzero Lebesgue measure in �2 is an alternative. We
need to build suitable models for random sets. To proceed, the crucial issue is to formalize
shape-oriented definitions of a wombling boundary. While much work has been done on
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statistical shape analysis, its use in the point-referenced spatial data context we have set out
is unexplored. There are many possibilities, using formal differential geometry and calculus
of variations, providing directions for future research. In summary, current approaches are
built entirely upon the specification of a point-referenced spatial process model. One might
examine the boundary analysis problem from an alternative modeling perspective, where
curves or zones arise as random processes. Possibilities include line processes, random
tessellations, and random areal units.
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conditional intensity, 398 
confounding, 346 
detecting clustering, 415 
distance sampling, 301 
homogeneous Poisson process, 285 
multitype summary functions, 389 
nearest neighbor methods, 303-305 
nonparametric methods, 299 
null hypothesis, 419 
Poisson null hypothesis, 395 
quadrat sampling. 300-301 
random marking, stationary case, 387 
spatial epidemiology, 419 
stationary processes, 308-309 

Component independence, 395-396 
Composite likelihood strategy 

first-order moment properties, 319 
likelihood-based methods, 52-54 
parametric methods, 317 
second-order moment properties, 320 

Compound Poisson process, 293 
Computation, spatial econometrics, 

255-256 
Computational considerations and issues 

generalized linear geostatistical models, 
100-101 

likelihood-based methods, 51-52 
Conditional autoregressions (CAR) 

alternative formulations, 225 
autologistic models, 208 
auto-Poisson models, 208 

change of support problem, 519 
considerations, 225-226 
convolution priors, 223 
disease mapping, 218 
examples, 203-207 
fundamentals, 10,170, 201-202 
fusion, spatial data, 537 
Gaussian type, 202-207 
misaligned regression modeling, 532 
multivariate Gaussian type, 214-215 
non-Gaussian type, 207-208 
nonnested block-level modeling, 529 
regular arrays, 205-206 
spatial econometrics, 246-249 
spatial random effects, 221-222 
spatio-temporal models, 234 
zero-inflated Poisson models, 232 

Conditional development, LMC, 504-505 
Conditional intensity and function 

Gibbs models, 366,398-399 
homogeneous Poisson process, 284 
models, 457-458 
pairwise interaction processes, 457 
spatial epidemic processes, 457-458 
validation, 366 

Conditionally independent Poisson, 529 
Conditional properties and specification, 

173-177 
Conditioned linear constraints, 185 
Conditioning 

locations, marked point processes, 381 
on the marks, modeling approaches, 377 

Configuration, spatial point process theory, 
265 

Confounding 
analysis goals, modeling strategies, 

' 345-346 
dependence and hierarchical modeling. 

554 
ecological bias, 547-549 

Constructive approaches 
covariance functions, convolution, 

512-513 
kernel convolution methods, 510-512 
locally stationary models, 512 

Contagious distributions, 293 
Context-free approach, 520 
Contextual effects, 546 
Continuous exposure, 548-549 
Continuous Fourier transform, 58 
Continuous parameter spatio-temporal 

processes 
Bochner's theorem, 430-431 
case study, 433-434 
Cressie-Uuang criterion, 430-431 
fundamentals, 426,427-428 
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Gaussian spatio-temporal processes, 
429-130 

Irish wind data case study, 433-434 
nonseparable stationary covariance 

functions, 432-433 
physically inspired probability models, 

428-429 
space-time covariance functions, 431 
space-time processes, 428-429 
spectral densities, 433 

Continuous parameter stochastic process 
theory 

Bochner's theorem, 20-21 
examples, 23-26 
intrinsically stationary processes, 18-19 
isotropic covariance functions, 21-23 
nugget effect, 19 
prediction theory, 26-27 
second-order stationary processes, 26-27 
smoothness properties, 23 
spatial stochatic processes, 17-18 
stationary processes, 18-19 

Continuous spatial process 
Bochner's theorem, 61-62 
isotropic covariance functions, 62-63 
mean square continuity, 59 
principal irregular term, 63-64 
spectral representation theorem, 60-61 

Continuous spatial variation 
asymptotics, spatial processes, 79-87 
classical geostatistical methods, 29-43 
continuous parameter stochastic process 

theory, 17-27 
continuous spatial data, 149-166 
forestry, 8-9 
fundamentals, 7-8,16 
geostatistics, 8 
hierarchical modeling, spatial data, 89-105 
likelihood-based methods, 45-55 
low-rank representations, spatial 

processes, 107-117 
modeling, 7-9 
monitoring network design, 131-145 
non-Gaussian models, 149-155 
nonparametric models, 149-166 
non stationary spatial processes, 

constructions, 119-127 
spectral domain, 57-76 

Continuous weather maps, 8 
Control data, 404 
Convolution priors, 223-224 
Copper data, 350 
Co-regionalization, 503-504 
Correlation function, 153-154 
Correlations and correlation functions 

intrinsic multivariate, 499 

isotropic covariance functions, 25-26 
law of spatial, 7 
Matern correlation function, 7 
moderate negative correlations, 26 
non-Gaussian models, continuous spatial 

data, 153-154 
numerical marks, 392-393 
powered exponential family, 25 
spherical, 26 

Correlation structure, 352 
COSP, see Change of support problem (COSP) 
Covariance and covariance functions, see (llso 

Generalized covariance functions 
approximate and composite likelihood, 53 
Bochner's theorem, 20-21 
compact support, 26 
convolution, constructive approaches, 

512-513 
geostatistical model, 30 
isotropic, 21-23 
kriging, 42 
localization and inflation, 485. 488-489 
non-Gaussian data methods, 55 
nonseparable stationary, 432-433 
parameters estimation, 136-138 
smoothing and kernel-based methods, 121 
smoothness properties, 23 
space-time, 431 
spectral domain, 57 
strictly stationary processes, 18 
thinning, 288 

Covariance density, 452 
Covariates 

dependence on, 349-350 
first-order moment properties, 320 
methodological issues, 375-376 
misaligned regression modeling, 532 
provisional estimation, mean function, 32 

Cox, David, 6, 8 
Cox models and processes 

Bayesian inference, 331-332 
block averaging, 524 
first-order moment properties, 319-320 
likelihood function, 459 
Markov point processes, 294 
maximum likelihood inference, 324 
models, 455 
multivariate clustering models, 355 
Neyman-Scott Poisson cluster process, 294 
non-Poisson models, 397 
Poisson processes, 291-292 
probability generating functional, 286 
qualitative marks, 311 
scope of inference, 347 
setting and notation, 318 
simulation-based, 324, 327-329. 331-332 



5S2 Index 

spatially varying intensity estimation, 306 
tropical rain forest trees example, 321 

Cressie-1 luang criterion, 430-431 
Crime scenario, 340 
Cross-correlation function, 501 
Cross-covariance functions 

cokriging, 498 
multivariate geostatistics, 497 
multivariate spatial process models, 496 
theory, 500-501 

Cross-covariance matrix, 563 
Cross-covariograms, 510 
Cross-variograms 

cokriging, 498 
intrinsic multivariate correlation and 

nested models, 499 
multivariate geostatistics, 497 

CSR, sec Complete spatial randomness (CSR) 
Cumulative residual, 363 
Curvilinear gradients, 559, 565-568 

D 

Data 
locations, nonparametric estimation, 

33-34 
Data and data assimilation 

assimilation cycle, 479-480 
atmospheric model, 488-491 
Bayesian formulation, 478-481 
Bayes theorem, 479 
community atmospheric model, 489-491 
covariance localization and inflation, 485, 

488-4S9 
ecological bias, 549-551 
ensemble adjustment Kalman filter, 488 
ensemble Kalman filter, 483-486 
epidemiology, spatial patterns, 404-408 
forecast step, 479, 482,485 
fundamentals, 426,477-478 
hierarchical modeling, spatial data, 91 
implementation Issues, 482-483 
Kalman filter and assimilation, 481—483 
sequential updates, 480-482 
small size issues, 485 
spread, inflation, 486 
taper, periodogram, 70 
three-dimensional, 486-487 
update step, 479,481-484 
variational methods, 486-487 

D-dimensional isotropic covariance function, 
62-63 

DDP, str Dependent Dirichlet processes 
(DDPs) 

Decomposition, 441 
Deer scenario, 341 

Delaunay triangle routine, 258 
Dependence 

Cibbs sampler, 179 
homogeneous Poisson process, 285 
variables, spatial econometrics, 254-255 

Dependent Dirichlet processes (DDPs) 
order-based dependent Dirichlet process, 

159 
stick-breaking priors, 157 

Derivative processes, 561-562 
Descente, 22 
Desert region scenario, 375-376 
Design objectives, 132-133 
Design paradigms, 133-134 
Detected points, 342 
Deviance information criterion (DIC) 

hypothesis testing and model 
comparisons, 51 

spatio-temporal models, 234 
DIC, Sti. Deviance information criterion (DIC) 
Differential equations, stochastic, 467-468 
Difficulties, modeling spatial trajectories, 

471-472 
Diggle, Peter J. 

historical developments, 3-14 
nonparametric methods, 299-316 
spatio-temporal point processes, 449-461 

Dirac delta function, 288 
Dirac measure, 156 
Directional finite difference, 561-562 
Directional finite difference and derivative 

processes, 561 
Dirichlet processes 

generalized spatial Dirichlet process, 
157-158 

hybrid Dirichlet mixture models, 158-159 
order-based dependent Dirichlet process, 

159-160 
stick-breaking priors, 157 

Dirichlet/Voronoi tessellation, 348-349 
Discrete Fourier transform, secaho Fourier 

transforms and characteristics 
likelihood estimation, spectral domain, 73 
periodogram, 69 

Discrete spatial variation 
conditional autoregressions, 201-209 
disease mapping, 217-240 
fundamentals, 170,171-198 
intrinsic autoregressions, 201-202,208-215 
Markov random fields, 171-198 
spatial econometrics, 245-259 

Discussions 
hierarchical modeling, spatial data, 

104-105 
low-rank representations, spatial 

processes,117 
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nonstationary spatial processes, 
constructions, 127 

point process models, 419-421 
spatio-temporal point processes, 459-460 

Disease mapping, see also Point process 
models 

additional considerations, 225-226 
alternative formulations, 224-225 
convolution priors, 223-224 
example, 226-231 
exchangeable random effects, 220 
fundamentals, 170, 217-219, 237 
generalized linear model, 219 
hierarchical models, 219-226 
maturity, generic statistical modeling, 12 
model extension, 231-237 
multivariate CAR models, 235-236 
recent developments, 236-237 
Sasquatch reports, 226-231 
spatial random effects, 220-223 
spatio-temporal models, 232-235 
wombling, 573 
Zero-inflated Poisson models, 231-132 

Displaced amacrine cells, rabbit retina, 
311-313,372 

Displays, 466 
Distance map, 353 
Distance methods, 350 
Distance sampling, 301-302 
Distinct sets, locations, 295 
Distribution, 265 
Dividing hypothesis, 4 
Dobrushin-Landford-Ruelle equations, 280 
Doubly stochastic Poisson (Cox) process, 286 
Dual kriging, 27 
3DVR, see Three-dimensional variational 

methods (3DVAR) 
Dynamic linear trend, 438 
Dynamic models, 250, see also Models and 

modeling 
Dynamic spatial models 

applications, 445-447 
dynamic linear trend, 438 
example, 441-444 
first-order models, 437-438 
fundamentals, 426,447 
linear models, 437-440 
seasonal models, 438-440 
second-order models, 438 
space varying state parameters, 440 444 

E 

EA, see Estimated adjusted (EA) criterion 
EAKF, see Ensemble adjustment Raiman filter 

(EAKF) 

Earthquake aftershocks scenario, 340 
Ecological bias, 541, 552 
Ecological fallacy 

change of support problem, 519 
clusters and clustering, 406 
confounding, 547-549 
ecological bias, 544-551 
examples, 551-554 
fundamentals, 494,541-542, 554-555 
generalized linear models, 219 
hierarchical modeling, 552-553 
individual data, 549-551 
motivating example, 542-544 
pure specification bias, 545-547 
semiecological studies, 554 
spatial dependence, 552-553 

Edge correction, 327 
Edge effects 

Gibbs point processes, 325 
hard core, ants' nets example, 327 
pseudo-likelihood, 323 

Effective range, 37 
EGLS, see Estimated generalized least 

squares (EGLS) 
Einstein, Albert, 464 
EK, see Empirical kriging (EK)-optimality 

criterion 
Elk observation, 473 
Empirical example results, 472 
Empirical kriging (EK)-optimality criterion, 

140-141 
Empirical models, 455 
Empirical orthogonal functions (EOFs) 

basis function models, 122 
Karhunen-Loeve expansion, 113-114 

Empirical semivariograms 
modeling, 36-40 
nonparametric estimation, 33-35 

Empirical universal kriging, 42-43 
EMSPE, see Expected mean squared 

prediction error (EMSPE) 
Encephalopathy, see Transmissible 

spongiform encephalopathy (TSE) 
Endangered species, see Monk seal 

movements 
Ensemble adjustment Kalman filter (EAKF) 

assimilation cvcle, 480 
atmospheric model, 488 
Community Atmospheric Model, 489 
ensemble filter, atmospheric model, 488 
sequential updates, 482 

Ensemble filter, atmospheric model 
covariance localization and inflation, 

488-489 
ensemble adjustment Kalman filter, 488 
fundamentals, 488-491 
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Entropy-based design, 141-144 
Environmental processes, 131-132 
EOF, see Empirical orthogonal functions 

(EOFs) 
Epidemiology, spatial, see also Disease 

mapping; Point process models 
available data, 404^105 
clusters and clustering, 403-406 
dataset, 406-408 
fundamentals, 403 
inferential goals, 403-404 

Equivalence, probability measures, 
S0-S1 

Estimated adjusted (EA) criterion, 141 
Estimated generalized least squares 

(EGL5), 40 
Estimation 

asymptotics, spatial processes, 85-87 
equations, 319 
localization, ensemble covariance, 485 
posterior analysis, 95 
spatial econometrics, 255 
spatial variable intensity, 305-307 

Estimation, simulation-free methods 
examples, 321-322 
first-Older moment properties, 319-320 
fundamentals, 319 
pseudo-likelihood, 322-323 
second-order moment properties, 320 
tropical rain forest trees, 321-322 

Estimation, spectral densities 
asymptotic distribution, 70 
asymptotic properties, 70 
lattice data, missing values, 70-71 
least squares, 71-72 
periodogram, 68-70 
theoretical properties, 69-70 

Euclidean properties 
Cox process, 292 
directional finite difference and derivative 

processes, 561 
non-Gaussian parametric modeling, 153 
triangular model, 64 

Euler's gamma function, 22 
Exact algorithms CMKFs, 182-193 
Examples, see also Case studies; Illustrations 

Bayesian inference, 329-331 
Campbell measures, 269-272 
Cholesky triangle, 187 
conditional properties, 174 
conditional specification, 176-177 
conditioned on linear constraints, 185 
disease mapping, 226-231 
displaced amacrine cells, rabbit retina, 

311-313 
finite point processes, 278-279 

Gaussian conditional autoregressions, 
203-205 

Gaussian geostatistical model, 96-98 
general sparse matrices, 188-189 
Gibbs measures, local specification, 280 
Hammersley-Clifford theorem, 194 
isotropic covariance functions, 23-26 
marked point processes, 378 
maximum likelihood inference, 325-327 
misaligned regression modeling, 

531-535 
modeling spatial trajectories, 464-465,472 
moment measures, 268 
multivariate and marked point processes, 

372-374 
non-Gaussian data example. 101-102 
normalizing intrinsic autoregressions, 210 
palm theory and conditioning, 274-278 
point process distribution 

characterization, 267 
random marking, 386 
regular arrays, 206-207 
reordering techniques. 187-190 
simulation-based, 325-327, 329-331 
simulation-free estimation methods, 

321-322 
space varying state parameters, 

441-444 
spatial aggregation, ecological fallacy, 

542-544, 551-552 
spatial econometrics, 256-258 
spatial point process theory, 265 
tropical rain forest trees, 321-322 

Exchangeable random effects, 220 
Exotic plant species, see Invasive plant 

species illustration 
Expansion matrix 

fundamentals, 111 
Karhunen-LoeYe expansion, 112-114 
kernel basis functions, 114-115 
nonorthogonal basis functions, 114-115 
orthogonal basis functions, 112-114 

Expectation-maximization (EM) gradient 
algorithm. 55 

Expected mean squared prediction error 
(EM5PE), 163 

Explanatory variables, 375 
Exploratory analysis 

covariates, dependence on, 349-350 
full exploratory analysis, 352-353 
fundamentals, 347, 381-382 
intensity, 347-349 
interpoint interaction, 350-353 
marked point patterns, 384 
multitype point patterns, 382-384 
real-valued marks, 384 
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sea surface temperature analysis, 74 
stationarity, 351-352 

Exploratory tools 
Campylobacteriosis, 452^155 
moment-based summaries, 451-452 
plotting data, 450 
spatio-temporal point processes, 450-455 

Exponential covariance, 67 
Exponential family form, 324 
Exponentially damped cosine function, 26 
Exponential semivariogram model, 37 
Extensions, low-rank representations 

fundamentals, 115 
non-Gaussian data models, 115-116 
spatio-temporal processes, 116-117 

Extensions, spatial econometrics, 258 
Extensive variables, 521 

r 
Factorial moment measure, 271 
Fast Fourier transform, 54, see also Fourier 

transforms and characteristics 
Ferromagnetism, 9, see also Lattices and 

lattice systems 
Filtering, assimilation cycle, 480 
Finite difference processes, 561 
Finite differences, 561-563 
Finite dimensional (fidi) distributions, 284 
Finite Gibbs models, 357-360 
Finite point processes, 278-279 
First-order properties, 411-414 

autoregression, 205 
Campbell measure, 273 
models, 437-438 
moment properties, 319-320 
random walk model, 209 
separability, moment-based summaries, 

451 
stationarity, multitype point patterns, 383 
trend, pairwise interactions, 399 

Fisher, R.A., 5-6 
Fisher information matrix 

model parameters, formal inference, 362 
spectral domain, 73 

Fisher scoring algorithm, 47 
Fitting 

fusion, spatial data, 537 
Poisson models, 387-388 
spatio-temporal models, 233 

Fixed locations, 560 
Fixed-rank knging approach, HI 
Folding frequency, 59 
Fold points, 59 
Forecast distribution, 479 
Forecast step 

Bayesian formulation, 479 
ensemble Kalman filter, 485 
Kalman filter and assimilation, 482 

Forestry, see also Spatial point process theory 
continuous spatial variation, modeling. 

8-9 
marked point patterns, 373-374 

Formal inference 
fundamentals, 360 
goodness-of-fit tests, 361 
model parameters, 361-362 

Fourier transforms and characteristics 
approximate and composite 

likelihood, 54 
Bochner's theorem, 20,62,430 
continuous, spectral domain 

representation, 58 
expansion, 123 
Gaussian conditional autoregressions, 

203-204 
intrinsically stationary processes, 19 
lattice systems, 71 
nonseparable stationary covariance 

functions, 432 
periodogram, 68-69 
spectral domain, 57 

Fractal dimension, 23 
Fractal index, 87 
Fredholm integral equation 

basis function models, 122 
Karhunen-Loeve expansion, 113 

Frozen field model, 428 
Fry plot, 352 
Fuentes, Montserrat 

continuous spatial data models, 
149-167 

spectral domain, 57-76 
Full conditionals, 10 
Full exploratory analysis, 352-353 
"Full" fjth-order polynomial, 32 
Full-rank geostatistical setup, 108-109 
Full symmetry, 431 
Further reading, 459-460 
Fusion, 536-537 

G 

Gabriel, Edith, 449-461 
GAM, see Generalized additive models 

(GAMs) 
Gamerman, Dan, 437-448 
Gaussian conditional autoregressions 

composite likelihood, 53 
examples, 203-207 
fundamentals, 202-203 
regular arrays, 205-206 
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Gaussian geostatistical model 
Bayesian computation, 96 
example, 96-98 
fundamentals, 93-94 
midwest U.S. temperatures example, 

96-98 
parameter model considerations, 95-96 
posterior analysis, 94-95 

Gaussian-log-Gaussian (GLG) mixture model 
correlation function, 153-154 
fundamentals, 150-151 
interpretation, 151-152 
non-Gaussian parametric modeling, 

150-151 
prediction, 153 
prior distribution, 153-154 
properties, 151-152 
temperature data application, 154-155 

Gaussian Markov random field (GMRFs) 
agricultural field trials, 6 
band matrices, 187-188,192 
Cholesky factorization and triangle, 

186-187 
conditional properties, 173-174 
conditional specification, 175-177 
exact algorithms, 182-183 
fundamentals, 172-173,193-196 
Gaussian conditional autoregressions, 203 
general recursions, 191-192 
general sparse matrices, 188-190 
Gibbs sampler, 179-180 
higher-order intrinsic autoregressions, 211 
linear restraint corrections, 192 
marginal variances, 190 
Markov chain Monte Carlo approach, 

177-180 
Markov properties, 174-175 
Markov random fields, 172 
multivariate, 180-182 
practical issues, 193 
recursions, 191-192 
reordering techniques, 187-190 
sampling, 184-185 

Gaussian negative log likelihood, 72 
Gaussian processes 

asymptotics, 80-83 
classical geostatistical methods, 29 
estimation, 87 
full-rank geostatistical setup, 108 
kriging. 43 
misaligned regression modeling, 530 
prediction, second-order stationary 

processes, 26-27 
smoothness properties, 23 
spatial kernel stick-breaking prior, 161 
spatial stochatic processes, 18 

Gaussian random fields 
approximate and composite likelihood, 54 
asthma hospitalization example, 551 
asymptotic results, 49-50 
inference, difference and gradients, 563 
non-Gaussian data methods, 55 
process convolution models, 124 
REML estimation, 48-49 

Gaussian sample paths, 24-25 
Gaussian semivariogram model, 37,386 
Gaussian spatio-temporal processes, 429-430 
Gelfand, Alan E. 

misaligned spatial data, 517-539 
multivariate spatial process models, 

495-515 
General categorical exposures, 546-547 
Generalized additive models (GAMs) 

first-order properties, 412 
spatial epidemiology, 420 

Generalized covariance functions, 19, sec also 
Covariance and covariance 
functions 

Generalized determinants, 210 
Generalized inverse Gaussian (GIG) 

prior, 154 
Generalized Langevm equation, 464 
Generalized least squares (GLS), 40 
Generalized linear geostatistical models 

computational considerations, 100-101 
fundamentals, 99-100 
mapping bird counts, 101-102 
non-Gaussian data example, 101-102 

Generalized linear mixed models (GLMMs) 
hierarchical generalized linear 

geostatistical models, 99-100 
non-Gaussian data methods, 54-55 

Generalized linear models (GLMs) 
disease mapping, hierarchical models, 219 
hierarchical models, 219 
non-Gaussian data methods, 54-55 
parametric models of intensity, 354 

Generalized spatial Dirichlet process, 
157-158 

Generalized spectral density, 209 
General recursions, 191-192 
General sparse matrices, 188-189 
Generator, isotropic covariance functions, 22 
Generic statistical modeling, 11-12 
Geographic information systems (GIS) 

computation, 156 
ecological fallacy, 542 
fusion, spatial data, 537 
historical backgnmnd, 520-521 
spatial gradients and wombling, 560 

Geological applications, 64 
Geological survey scenario, 375-376 
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Geometrically anisotropic processes, 21 
Geometry-based designs, 133—134 
Georgii-Nguyen-Zessin formula 

finite Gibbs models, 359 
Gibbs model validation, 366 
Palm distributions, 277 

geoRglm software package, 102 
geoR software package, 97 
Geostatistics and geostatistical model 

classical geostatistical methods, 30-31 
continuous spatial variation, modeling, 8 

Germany, 392-394 
Germ-grain model, 374 
Geyer saturation model, 360 
Gibbs distribution, 195 
Gibbs measures, local specification, 280 
Gibbs models 

conditional intensity, 398-399 
finite Gibbs models, 357-360 
fundamentals, 398 
goodness-of-fit, 361 
mark-dependent pairwise interactions, 399-400 
pairvvise interactions, 399 
pseudo-likelihood, multitvp? processes, 

400-101 
validation, modeling strategies, 366 

Gibbs point processes 
Bayesian inference, 329 
intensitv and interaction, 345 
maximum likelih<x>d inference, 324-325 
pseudo-likelihood, 322 
setting and notation, 318 
simulation-based, 324-325,329, 332 

Gibbs-Poole-Stockmeyer reordering 
algorithm, 188 

Gibbs processes 
Markov point processes, 295 
pairvvise interactions, 399 
simulation-based maximum likelihood 

inference, 324 
Gibbs sampler algorithm 

exact algorithms, GMRFs, 182-183 
extensions, 25\8 
Markov chain Monte Carlo approach, 110, 

178,197 
normalizing intrinsic autoregressions, 210 
stick-breaking priors, 157 

Gibbs steps, 233 
GIS, set Geographic information systems 

(CIS) 
GLG, see Gaussian-log-Gaussian (GLG) 

mixture model 
GLM, See Generalized linear models (GLMs) 
GLMM, see Generalized linear mixed models 

(GLMMs) 
Global weighted average, 220 
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GLS, see Generalized least squares (GLS) 
GMRP, see Gaussian Markov random field 

(GMRFs) 
Gneiting, Tilmann 

continuous parameter spatio-temporal 
processes, 427-436 

continuous parameter stochastic process 
theory, 17-28 

G<xxiness-of-fit 
formal inference, 360-361 
modeling spatial patterns, 10-11 
Poisson model validation, 365 

Gosset, W.F., 6 
Gradients, seealsv Spatial gradients and 

wombling 
parametric curves, 565-568 
spatial gradients and wombling, 562-563 

Greedy algorithm, 144 
Guttorp, Peter 

continuous parameter spatio-temporal 
processes, 427-436 

continuous parameter stochastic process 
theory, 17-28 

11 

1 lammerslev-Clifford theorem 
Markov point processes, 296 
Markov random fields, 194-195 

Handcock-Wallis parameterization, 75-76 
Hard core Gibbs process, 295 
I lausdorff dimension, 23 
1 lawaiian monk seal movements, 465 
I lawkes, A.J., 10 
Meld, Leonhard 

conditional and intrinsic autoregressions, 
201-216 

discrete spatial variation, 171-200 
Hereditary distribution, -see aha Inheritable 

properties 
Markov point processes, 296 
pseudo-likelihood, 322 

Hierarchical centering, 93-94 
I lierarchical generalized linear geostatistical 

models, 99-102 
Hierarchical models 

additional considerations, 225-226 
alternative formulations, 224-225 
conditional autoregressions, 219 
convolution priors, 223-224 
exchangeable random effects, 220 
fundamentals, 219 
generalized linear model, 219 
geostatistical model, 12 
spatial aggregation, ecological fallacy, 

552-553 
spatial random effects, 220-223 
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Hierarchical models, disease mapping, see 
also Point process models 

additional considerations, 225-226 
alternative formulations. 224-225 
convolution priors, 223-224 
example, 226-231 
exchangeable random effects, 220 
fundamentals, 170, 217-219,237 
generalized linear model, 219 
hierarchical models, 219-226 
maturity, generic statistical modeling, 12 
model extension, 231-237 
multivariate CAR models, 235-236 
recent developments, 236-237 
Sasquatch reports, 226-231 
spatial random effects, 220-223 
spatio-temporal models, 232-235 
wombling, 573 
zero-inflated Poisson models, 231-232 

Hierarchical models, spatial data 
Bayesian computation, 96 
computational considerations, 100-101 
data models, 91 
discussion, 104-105 
example, 96-98 
fundamentals, 89-90 
Gaussian geostatistical model, 93-98 
generalized linear geostatistical models, 

99-102 
hierarchical spatial models, 92-93 
mapping bird counts, 101-102 
midwest L.5. temperatures example, 

96-98 
non-Gaussian data example, 101-102 
overview, 90-93 
parameter models, 92, 95-96 
posterior analysis, 94-95 
process models, 92 
spatial models, 92-93 

Hierarchical representation, 109 
Higher-order intrinsic autoregressions, 

211-214 
Hilbert space 

intrinsically stationary processes, 19 
spectral representation theorem, 61 

Historical developments 
agricultural field trials, 5-7 
antecedents, 3-4 
continuous spatial variation, modeling, 

7-9 
forestry, 8-9 
fundamentals, 3 
generic statistical modeling, 11-12 
geostatistics, 8 
lattice svstems, 9-10 
maturity, 11-12 

methodology breakthroughs, 9-11 
misaligned spatial data, 519-522 
modeling spatial trajectories, 464-465 
spatial patterns, modeling, 10-11 

Hole effect, 26 
Holland model, 163-165 
Homogeneous Poisson process 

cluster processes, 455-456 
construction of models, 284-285 
Gibbs measures, local specification, 2S0 
Markov point processes, 294 
pairwise interaction processes, 457 
Poisson marked point process, 379 
probability generating functional, 

286^287 
quadrat sampling, 300 
spatial point process theory, 266 
thinning, 287 

Horvitz-Thompson (HI) estimator, 136 
Huang-Ogata" approximate maximum 

likelihood method, 400 
Human brains, 314 
Hurricane Ivan, 163-166 
Hybrid Dirichlet mixture models, 158-159 
Hydrological applications, 64 
Hypotheses 

dividing hypothesis, 4 
testing, likelihood-based methods, 50-51 

1 

1CAK model, 553 
Identifiability, lack of. 542 
iid Bernoulli random variables, 532 
Illustrations, see also Case studies; Examples 

invasive plant species, 568-570 
real estate, 506-508 

Image restoration, 12 
Implementation issues, 482-483 
Implicitly, 178 
Importance sampling formula, 324 
Increasing-domain asymptotics, 70 
Incremental modeling strategy, 344 
Independence 

classical randomization tests, 395 
component, 395-396 
conditional intensity, 398 
displaced amacrine cells, 312 
qualitative marks, 310-311 
random marking, stationary case, 387 
replicated point patterns, 313 
slicing and thinning, 386 

Inference 
analysis goals, modeling strategies, 

346-347 
modeling spatial trajectories, 470-471 
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parametric methods, 317 
spatial gradients and wambling, 

562-563 
Inferential goals, 403-404 
Infinite regular array, 206 
Inflation. 485-486 
Inheritable properties, 528, see (tl$Q 

Hereditary distribution 
Inhomogeneous cluster models, 356 
Inhomogeneous K functions, 352 
Inhomogeneous point pattern example, 321 
Inhomogeneous Poisson process 

Campylobacteriosis, 454 
confounding, 345 
goodness-of-fit, 361 

Inhomogeneous shot noise Cox process 
cluster and Cox processes, 327 
tropical rain forest trees example, 

321-322 
Inhomogeneous Thomas process, 322 
Integral equations, 113-114 
Intensity 

analysis goals, modeling strategies, 
342-346 

exploratory data analysis, 347-349 
finite Gibbs models, 359 
homogeneous Poisson process, 284 
multivariate and marked point processes, 

379-380 
parametric models, 354 
residuals, validation, 362-364 

Intensity, exploratory analysis 
fundamentals, 381-382 
marked point patterns, 384 
multitype point patterns, 382-384 
real-valued marks, 384 

Intensity estimation, spatial variation, 
' 305-307 

Intensity functions 
Campbell and moment measures, 

268-269 
first-order moment properties, 319 
spatial epidemiology, 420 

Intensity-reweighted stationarity process, 309 
Intensive variables, 521 
Interaction, 343-346 
Internal standardization, 219 
Interpoint interaction 

finite Cibbs models, 357 
full exploratory analysis, 352-353 
fundamentals, 352-353 
stationarity, 351-352 

Interpolation 
Mat£m class, 66 
provisional estimation, mean function, 

31-32 

Interpretation 
non-Gaussian parametric modeling, 

151-152 
spatial econometrics, 253-254 

Intrinsic anisotropy, 31 
Intrinsic autoregressions 

example, 210 
fundamentals, 170, 201-202, 208-209 
Gaussian conditional autoregressions, 

203 
higher-order, 211-214 
normalizing, 209-210 
regular arrays, 211 

Intrinsic isotropy, 31 
Intrinsic multivariate correlation, 498-499 
Intrinsic stationarity and processes 

approximate likelihood, 53 
continuous parameter stochastic process 

theory, 18-19 
geostatistical model, 30 
nonparametric estimation, 

semivariogram, 33 
reestimation, mean function, 40 

Invasive plant species illustration, 568-570 
Inverse discrete Fourier transform, 203-204. 

See flfsO Fourier transforms and 
characteristics 

Irish wind data case study, 433-434 
Isham, Valerie, 283-298 
Ising model, ferromagnetism. 9 
Isotopy, 499 
Isotropic covariance functions 

continuous parameter stochastic process 
theory, 21-23 

continuous spatial process, 62-63 
examples, 23-26 
spherical model, 64 

Isotropic processes and properties 
cross-covariance functions, 500 
empirical semivariograms, 36-37, 39 
provisional estimation, mean function, 32 
scope of inference, 346 
smoothness properties, 23 
spatial point process theory, 265 

Ito integral, 467-168 

I 

Janossy densities, 278 
Japanese pine data 

goodness-of-fit, 361 
intensity residuals, 363 
Poisson model validation, 365 

Joint modeling strategy, 344 
|oint probability density, 294-295 
Joint stationarity, 380 
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K 

Kalman filter and assimilation 
forecast step, 482 
fundamentals, 4S1 
implementation issues, 4S2-483 
maturity, generic statistical modeling, 12 
recursions, band matrices, 192 
sequential updates, 482 
spatio-temporal processes, 116-117 
update step, 481-182 

Kaluzhskie Zaseki Forest. 263, 275, see also 
Spatial point process theory 

Karhunen-Loeve decomposition, 122 
Karhunen-Loeve expansion 

basis function models, 123 
expansion matrix, H, 112-114 
intrinsically stationary processes, 19 
mean parameters estimation, 138 

Kernel-based methods, 120-122 
Kernel basis functions, 114-115 
Kernel convolution methods 

constructive approaches, 510-512 
multivariate spatial process 

models, 496 
Kernel covariance matrix, 124 
Kernel smoothing, 34S 
K functions 

analysis assuming stationarity, 351 
Campylobacteriosis, 453 
detecting clustering, 417-418 
exploratory data analysis, 347 
finite Cibbs models, 360 
full exploratory analysis, 352-353 
intensity and interaction, 345 
interaction, 343 
modeling spatial patterns, 11 
multitype summary functions, 389 
multivariate clustering models, 357 
nonhomogeneous Foisson process, 291 
nonstationary patterns, 392 
nonstationary processes, 309 
qualitative marks, 311 
replicated point patterns, 314-315 
second-order moment properties, 320 
spatial epidemiology, 420 
tropical rain forest trees example, 

321-322 
Kim, Mallick, and Holmes approach, 122 
King County, see Sasquatch reports 
Kolmogorov consistency conditions, 150 
Kolmogorov existence theorem, 18 
Kolmogorov-Smirnov tests 

exploratory data analysis, 350 
Foisson model validation, 365 

Krige, D.G., 8 

Kriging 
asymptotics, 79-80, 82 
classical geostatistical methods, 41-43 
fixed-rank approach, 111 
geostatistics, 8 
misaligned regression modeling. 531 
modeling continuous spatial variation, 8 
motivating example, 543 
provisional estimation, mean function, 32 
spatial kernel stick-breaking prior, 163 

Kriging predictors 
Irish wind data case study, 434 
principal irregular term, 63 
triangular model, 64 

Kronecker product 
block averaging, 525 
higher-order intrinsic autoregressions, 

212 
multivariate CAR models, 235 
separable models, 502 
space-time covariance functions, 431 

Kulldorff 's permutation test, 409 

Labeling, random 
classical randomization tests, 395 
displaced amacrine cells, 312 
Foisson null hypothesis, 396 
qualitative marks, 311 
random marking, stationary case, 387 
spatial scan statistics, 409 

Lagrange multipliers 
cokriging, 498 
kriging, 41 

Langevin equation, 464 
Langevin-Hastings algorithm, 328 
Lansing Woods dataset 

fitting Foisson models, 388 
multitype point patterns, intensity, 

3S2-383 
multivariate point patterns, 372 
parametric models of intensity, 354 

Laplace approximation scheme, 553 
Large-scale spatial variation (trend), 30-31 
Lattices and lattice systems 

data, missing values, 70-71 
higher-order intrinsic autoregressions, 211 
methodology breakthroughs, 9-10 

Least squares, 71-72 
Lebesgue measure 

Bochner's theorem, 62,430 
finite point processes, 279 
Cibbs measures, local specification, 280 
gradients, parametric curves, 565 
Falm distributions. 277 
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Poisson marked point process, 386 
tropical rain forest trees example, 321 

Lemmas 
conditional specification, 166 
Poisson marked point process, 379 
random marking, 385-386 
reordering techniques, 189-190 
slicing, 386 
stationary, point, 387 
stationary marked point processes, 381 
thinning, 386 

LeSage, James, 245-260 
LETKF, see Local ensemble transform Kalman 

filter (LETKF) 
Leucopogon eoiwslephioides, see Reseeding 

plants example 
Leukemia dataset, 527 
Likelihood-based methods 

approximate likelih<x>d, 52-54 
asymptotic results, 49-50 
classical geostatistical methods, 29 
composite likelihood, 52-54 
computational Issues, 51-52 
estimation, spectral domain, 72-73 
function, spatio-temporal point processes, 

458-459 
fundamentals, 45 
hypothesis testing. 50-51 
maximum likelihood estimation, 46—47 
model comparisons, 50-51 
non-Gaussian data methods, 54-55 
parametric methods, 317 
REML estimation, 48-49 

Linear algebra, 184 
Linear constraints, constrained, 185 
Linear constraints correction, 192 
Linearity, knging, 41 
Linear models 

dynamic linear trend, 438 
first-order models, 437-438 
seasonal models, 438-440 
second-order models, 438 

Linear models of co-regionalization (LMC), 
503-505,512 

Liquids, idealized models, 9 
LISA, see Local indicators of spatial 

association (LISA) 
LMC, see Linear models of co-regionalization 

(LMC) 
Loader and Switzer procedure, 121-122 
Local ensemble transform Kalman filter 

(LETKF), 484 
Local indicators of spatial association (LISA), 

353 
Localization, 485 
Locally finite configuration, 265 

Locally optimal design, 137 
Locally stationary models, 512 
Locations 

distinct sets, Markov point processes, 
295 

estimator, kriging, 43 
operations, marked point processes, 381 
spatial gradients and wombling, 560 

Log Gaussian Cox process 
cluster and Cox processes, 328,332 
Cox process, 291 
multilevel model validation, 365 
multivariate clustering models, 356 
tropical rain forest trees example, 322 
wombling. 573 

Log-linear form, 320 
Log-linear Poisson processes, 320 
Longleaf pine trees, 373, 384 
Long-memory dependence, 25 
Low-rank representations, spatial processes 

discussions, 117 
expansion matrix, II, 111-115 
extensions, 115-117 
fixed-rank kriging approach, 111 
full-rank geostatistical setup, 108-109 
fundamentals, 107-108 
Karhunen-Loeve expansion, 112-114 
kernel basis functions, 114-115 
Markov chain Monte Carlo approach, 

110-111 
non-Gaussian data models, 115-116 
nonorthogonal basis functions, 

114-115 
orthogonal basis functions, 112-114 
reduced-rank random effects, 109-111 
spatio-temporal processes, 116-117 

Lung cancer deaths, 232-235 
Lyons, Hilary, 541-558 

M 

Macaque monkey skulls, 314 
Madagascar, 531 
Magnetic resonance imaging (MRI), 159 
Mapped point patterns, 303-305, 307-310 
Mapping bird counts, 101-102 
maps2WinBUGS software program, 228 
Marginal modeling strategy, 344 
Marginal process, locations, 381 
Marginal variances, 190 
Mark connection function, 391 
Mark correlation function, 392-393 
Mark-dependent pairwise interactions, 

399-400 
Mark-dependent thinning, 397 
Mark distribution, 269 
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Marked point patterns 
displaced amacrine cells, rabbit retina, 

311-313 
example, 311-313 
exploratory analysis of intensity, 384 
fundamentals, 310 
motivation, 373-374 
multivariate point patterns, 310-313 
qualitative marks, 310-313 
quantitative marks, 313 
wombling, 573 

Marked point processes 
binomial marked point process, 378 
example, 378 
multivariate and marked point processes, 

378-379 
Markov chain Monte Carlo (MCMC) 

approach 
available data, cases and controls, 405 
basis function models, 123 
Bayesian computation, 96 
Bayesian inference, 330 
block averaging. 524-525 
cluster and Cox processes, 328-329,331 
computational considerations, 100 
conditional and intrinsic autoregressions, 

201,218 
convolution priors, 224 
dependence and hierarchical modeling, 

553 
extensions, 258 
fusion, spatial data, 537 
Cibbs point processes, 324-325, 332 
hierarchical modeling, 90 
higher-order intrinsic autoregressions, 211 
Markov random fields, 172,196-198 
maximum likelih<x>d inference, 324 
misaligned regression modeling, 530 
non-Gaussian data models, 116 
non-Gaussian parametric modeling, 153 
parameter model considerations, 95-96 
parametric methods, 317 
posterior analysis, 94 
reduced-rank approach, 110-111 
Sasquatch reports, 228 
simulation-based, 324, 330 
smoothing and kernel-based methods, 121 
space varying state parameters, 442-443 
spatial deformation models, 126 
spatial epidemiology, 420 
spatial kernel stick-breaking prior, 

161-162 
spatial random effects, 221-223 
spatio-temporal point processes, 459 
spatio-temporal processes, 117 
stick-breaking priors, 157 

Markov point processes 
historical developments, 4 
Matern's dissertation, 9 
pairwise interaction processes, 457 
pseudo-likelihood, 322 
setting and notation, 318 
simulation-based Bavesian inference, 329 
spatial point process models, 294-297 

Markov random fields (MRF) 
agricultural field trials, 6 
areal wombling, 572 
background, 193-194 
band matrices, 187-188, 192 
basic properties, 173-175 
binary, 196 
Brook's lemma, 176 
Choleskv factorization and triangle, 

186-187 
conditional properties, 173-174 
conditional specification, 175-177 
conditioned on linear constraints, 185 
discrete spatial variation, 172, 193 
exact algorithms GMRFs, 182-193 
examples, 173-180,185-190,194-195 
Gaussian Markov random fields, 172-173 
general recursions, 191-192 
Gibbs sampler, 179-180 
Hammersley-Clifford theorem, 194-195 
lemmas, 166, 189-190 
linear algebra, 184 
linear constraints correction, 192 
marginal variances, 190 
Markov chain Monte Carlo approach, 

177-180,196-198 
Markov point pn>cesses, 296 
Markov properties, 174-175 
multivariate GMRFs, 180-182 
notation, 172 
practical issues, 193 
reordering techniques, 187-190 
sampling, 184-185 
theorems, 173-175, 186-187 

Marks 
kinds of, 377-378 
locations dependence, 394 

Matern, Bertil, 7, 8-9 
Matern class 

isotropic covariance functions, 24-26 
non-Gaussian parametric modeling, 

153-154 
order-based dependent Dirichlet process, 

159-160 
parameter model considerations, 95 
spectral densities, 65-67 

Matern cluster process, 397 
Matern correlation function 
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continuous spatial variation, 7 
invasive plant species illustration, 569 
isotropic covariance functions, 24-26 

Matdrn covariance and covariance function 
asymptotics, 82 
inference, difference and gradients, 563 
parameter estimation, 75-76 
process convolution models, 124 
smoothness properties, 23 

Mattfrn forms, 510 
Mateln processes 

Cox process, 292 
Neyman-Scott Poisson cluster process, 294 

Mattfrn semivariogram model, 37 
Matdrn spatial covariance model, 137-138 
Mathtfron, Georges, 8 
MAT LAB*. 258 
Matric-variate spatial process, 505 
Maturity, 11-12 
MAUP, see Modifiable areal unit problem 

(MALT) 
Maximum composite likelihood estimate, 

319-320 
Maximum likelihood estimation (MLE) 

approximate and composite likelihood, 53 
combining data, 549-550 
hard core, ants' nets example, 326 
Irish wind data case study, 434 
likelihood-based methods, 46-47 
motivating example, 544 
parameter estimation, 75-76 
space varying state parameters, 444 

Maximum likelihood (ML) method 
ants' nets example, 325-327 
asymptotic results, 49-50 
cluster processes, 327-329 
Cox process, 327-329 
estimation, 85-86, 255 
example, 325-327 
fundamentals, 324 
Gibbs point processes, 324-325 
non-Gaussian data methods, 54-55 
parameter estimation, semivariograms, 39 
parametric methods, 317 
process model inference, prediction, 140 
quadrat sampling, 300 
separable models, 502 

Maximum pseudo-likelihood estimation 
(MPLE) 

finite Gibbs models, 358 
pseudo-likelihood, 322-323 

MCAK, see Multivariate CAR (MCAR) 
models 

MCMC, see Markov chain Monte Carlo 
(MCMC) approach 

Mean estimation, 9 

Mean function 
geostatistical model, 30 
provisional estimation, 31-33 
reestimation, 40 

Mean parameters estimation, 138-139 
Mean square continuity, 59 
Mean square continuous process, 23 
Mean squared error (M5E) 

exploratory data analysis, 348 
kriging, 42 

Mean squared prediction error (M5PE), 140 
Mechanistic models, 455 
Messor masmatmi, see Ants' nets example 
Methodology breakthroughs 

fundamentals, 9 
lattice systems, 9-10 
spatial patterns, modeling, 10-11 

Metropolis-adjusted Langevin algorithm, 328 
Metropolis-Hastings algorithm 

cluster and Cox processes, 328, 331 
extensions, 258 
Markov chain Monte Carlo approach, 

178, 197 
spatial deformation models, 126 

Metropolis steps, 233 
Metropolis-within-Cibbs algorithm 

cluster and Cox processes, 331 
simulation-based Bayesian inference, 330 

MIAR, see Multivariate intrinsic 
autoregression (MIAR) model 

Midwest U.S. temperatures example, 96-98 
Mineral exploration scenario, 375 
Minimax design, 137-138 
Minimum contrast estimation, 320 
Mining industry, 8 
Misaligned spatial data 

block average, 522-526 
example, 531-535 
fundamentals, 494, 517-519 
fusion, 536-537 
historical background, 519-522 
misaligned regression modeling, 530-535 
nested block-level modeling, 526-527 
nonnested block-level modeling. 527-530 
point-level modeling, 522-526 

Missing data approach, 329 
Mixed Poisson process, 291, seealso Poisson 

processes 
MLE, see Maximum likelihood estimation 

(MLE) 
Model-based designs, 134 
Modeling spatial trajectories 

autoregressive models, 467 
Brownian motion, 464-465 
difficulties, 471-472 
displays, 466 



empirical example results, 472 
examples, 464-465 
fundamentals, 426,463-464,473 
historical developments, 464-465 
inference methods, 470-471 
models, 472-473 
monk seal movements, 465 
planetary motion, 464 
potential function approach, 468-470 
statistical concepts and models, 466-470 
stochastic differential equations, 

467-468 
Modeling strategies 

analysis goals, 342-347 
clustering, multilevel models, 355-357 
confounding, 345-346 
covariates, dependence on, 349-350 
exploratory data analysis, 347-353 
finite Gibbs models, 357-360 
formal inference, 360-362 
full exploratory analysis, 352-353 
fundamentals, 262, 340-342 
Gibbs models, 366 
goodness-of-fit tests, 361 
inference scope, 346-347 
intensity and intensity residuals, 342-349, 

362-364 
interaction, 343-346 
interpoint interaction, 350-353 
modeling t<x>ls, 353-360 
model parameters, 361-362 
multilevel models, 365 
parametric models of intensity, 354 
point process method appropriateness, 

340-341 
Poisson models, 364-365 
sampling design, 341-342 
software, 366-367 
spatial statistics in R, 366-367 
stationarity, 351-352 
validation, 362-366 

Modeling tools 
clustering, multilevel models, 355-357 
finite Gibbs models, 357-360 
fundamentals, 353 
parametric models of intensity, 354 

Models and modeling 
basis function models, 122-123 
cluster processes, 455-457 
conditional intensity function, 457-458 
continuous spatial variation, 7-9 
Cox processes, 455 
disease mapping, 219, 231-235 
dynamic spatial models, 437^147 
extension, disease mapping, 231-237 
Gaussian geostatistical model, 93-98 

generalized linear geostatistical models, 
99-102 

generalized linear model, 219 
generic statistical modeling, 11-12 
geostatistical, 30-31 
hierarchical, spatial data, 89-105 
likelihood-based method comparisons, 

50-51 
linear models, 437-440 
methodological issues, 376-377 
multivariate spatial process models, 494 
nonparametric, 299-315 
pairwise interaction processes, 457 
parameters, formal inference, 361-362 
parametric models, 92, 317-334 
physically inspired probability models, 

428^429 
point process models, 403-421 
PoisSOn processes, 455 
process convolution models, 123-124 
process models, 92 
semivariograms, 36-40 
spatial deformation models, 124-126 
spatial econometrics, 246-250 
spatial epidemic processes, 457-458 
spatial models, 92-93 
spatial patterns, 10-11 
spatial point patterns, 339-367 
spatial point process models, 283-297 
spatial trajectories, 463-473 
spatio-temporal models and processes, 

232-235.463-473 
spherical, spectral densities, 64-65 
squared exponential, spectral 

densities, 65 
triangular, spectral densities, 64 
zero-inflated Poisson models, 231-232 

Moderate negative correlations, 26 
Modifiable areal unit problem (MAUP) 

block averaging, 524 
fundamentals, 517-518 
historical background, 520 

Modified Bessel function 
empirical semivariograms, 37 
isotropic covariance functions, 24 
Matern class, 65 
modeling continuous spatial variation, 7 

Modified Thomas process 
multilevel model validation, 365 
multivariate clustering models, 356 

Moller, Jesper, 317-337 
Moment-based summaries, 451-452 
Moment measures 

examples, 268 
spatial point process theory, 267-270 
theorem, 268-270 
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Monitoring network design 
covariance parameters estimation, 

136-138 
design objectives, 132-133 
design paradigms, 133-134 
entropy-based design, 141-144 
environmental processes, 131-132 
fundamentals, 145 
mean parameters estimation, 138-139 
model-based designs, 136-144 
prediction, 140-141 
probability-based designs, 134-136 
process model inference, 140-141 
regression model approach, 138-139 
simple random sampling, 134-135 
spatial prediction, 140 
stratified random sampling, 135 
variable probability designs, 135-136 

Monk seal movements, 465 
Monotonicity 

empirical semivariograms, 36, 38 
nonseparable stationary covariance 

functions, 432 
Monte Carlo approaches 

Bayesian computation, 96 
block averaging. 523,525 
cross-covariance functions, 512 
detecting clustering, 416 
ensemble adjustment Kalman filter, 484 
goodness-of-fit, 10-11,361 
likelihood function, 458-459 
maturity, generic statistical modeling, 11 
multitype point patterns, intensity, 

383-384 
nearest neighbor methods, 304 
non-Gaussian parametric modeling, 153 
nonparametric models, 302-303 
Poisson null hypothesis, 395 
posterior analysis, 94 
replicated point patterns, 315 
scope of inference, 346 
spatial epidemiology, 420 
spatial scan statistics, 409 

Montee, 22 
Motivating example, 542-544 
Mouse brain tissue, 315 
MPLE, tee Maximum pseudo-likelihood 

estimation (MPLE) 
MRP, see Markov random fields (MRF) 
MRI, See Magnetic resonance imaging (MRI) 
MSE, See Mean squared error (MSE) 
MSPE, ><Y Mean squared prediction error 

(MSPE) 
Multilevel clustering models, 355-357 
Multilevel models, 365 
Multiplicity, 265 

Multitype hard-core processes, 399 
Multitype point patterns, 382-384 
Multitype Strauss process, 399-400 
Multitype summary functions, 389-391 
Multivariate and marked point processes 

basic theorv, 378-381 
binomial marked point process, 378 
classical randomization tests, 395-396 
cluster processes, 397 
component independence, 395-396 
conditional intensity. 398-399 
conditioning, locations, 381 
covariates, 375-376 
Cox processes, 397 
dependence, locations, 394 
examples, 372-374, 378,386 
exploratory analysis of intensity, 381-384 
fitting Poisson models, 387-388 
fundamentals, 262 
Gibbs models, 398-401 
intensity, 379-380 
lemmas', 379,381, 385-387 
locations, 381, 394 
marginal process, locations, 381 
mark connection function, 391 
mark correlation function, 392-393 
mark-dependent pairwise interactions. 

399-400 
mark-dependent thinning, 397 
marked point patterns, 373-374, 384 
marked point processes, 378-379 
marks, 377-378, 393-394 
methodological issues, 375-378 
modeling approaches, 376-377 
motivation, 372-374 
multitype point patterns, 382-384 
multitype summary functions, 389-391 
multivariate point patterns, 372-373, 

388-392 
non-Poisson models, 397-401 
nonstationary patterns, 391-392 
numerical marks, 392-394 
operations, marked point processes, 381 
pairwise interactions, 399-400 
point process method appropriateness, 

375 
Poisson marked point process, 379 
Poisson marked processes, 385-388 
Poisson null hypothesis, 395-3% 
product space representation, 378 
pseudo-likelihood, multitype processes, 

400-401 
random field marking, 398 
random labeling, 396 
random marking, 385-386 
real-valued marks, 384 
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responses, 375-376 
restriction, locations, 381 
slicing, 386 
stationarity, 386-387 
stationary marked point processes, 

38()-381 
thinning, 386,397 
variogram, 393-394 

Multivariate CAR (MCAR) models, 135-236 
Multivariate Cox processes, 311 
Multivariate Gaussian conditional 

auto regressions, 214-215 
Multivariate Gaussian random effects, 221 
Multivariate geostatistics, 496-499 
Multivariate intrinsic autoregression (MIAR) 

model, 236 
Multivariate point patterns 

displaced amacrine cells, rabbit retina, 
311-313,372 

example, 311-313 
marked point patterns, 310-313 
motivation, 372-373 

Multivariate spatial process models 
Bayesian multivariate spatial regression 

models, 505-508 
classical multivariate geostatistics, 

496-499 
cokrigmg, 497-499 
conditional development, LMC, 504-505 
constructive approaches, 508,510-513 
co-regionali/.ation, 503-504 
covariance functions, convolution, 

512-513 
cross-variance functions, 500-501 
fundamentals, 494,495-496, 513 
illustration, 506-508 
intrinsic multivariate correlation, 499 
kernel con volution methods, 510-512 
locallv stationarv models, 512 
nested models, 499 
separable models, 502 
spatially varying, LMC, 505 

N 

Nadaraya-Watson estimator, 384 
NASA Sea Winds database, 163 
National Oceanic and Atmospheric Agency 

(NOAA), see also Monitoring 
network design 

1 lurricane Ivan, 163 
network design, 131-132 

Nearest neighbor methods, see also 
Neighborhood structure 

distance distribution function, 275 
distance sampling, 301 

historical developments, 4 
krigmg, 42 
nonparametnc models, 303-305 
Palm distribution, 275 
stationary processes, 309 

Negative association, 357 
Negev Desert (Israel), 502 
Neighborhood structure, 572, see also Nearest 

neighbor methods 
Nested block-level modeling, 526-527 
Nested dissection, 189 
Nested models, 499 
Network design, monitoring 

covariance parameters estimation, 
136-138 

design objectives, 132-133 
design paradigms, 133-134 
entropy-based design, 141-144 
environmental processes, 131-132 
fundamentals, 145 
mean parameters estimation, 138-139 
model-based designs, 136-144 
prediction, 140-141 
probability-based designs, 134-136 
process model inference, 140-141 
regression model approach, 138-139 
simple random sampling, 134-135 
spatial prediction, 140 
stratified random sampling, 135 
variable probability designs, 135-136 

Newcomb, Simon, 4 
Nevvton-Raphson procedure, 47 
Newton's equations, 464 
Neyman model, 4 
Neyman-Scott PoLsson cluster process 

Cox and cluster processes, 397 
fundamentals, 293-294 
multivariate clustering models, 

355-356 
Neyman-Scott processes, 455-456 
Non-Gaussian conditional autoregressions, 

207-208 
Non-Gaussian data example, 101-102 
Non-Gaussian data methods, 54-55 
Non-Gaussian data models, 115-116 
Non-Gaussian models, continuous spatial 

data 
correlation functions, 153-154 
fundamentals, 149-150 
Gaussian-log-Gaussian mixture model, 

150-151 
interpretation, 151-152 
prediction, 153 
prior distribution, 153-154 
properties, 151-152 
Spanish temperature data, 154-155 
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Non-Gaussian parametric modeling 
correlation function, 153-154 
fundamentals, 150 
Gaussian-log-Gaussian mixture model, 

150-151 
interpretation, 151-152 
prediction, 153 
prior distribution, 153-154 
properties, 151-152 
Spanish temperature data application, 

153-154 
Nonhomogeneous Poisson processes 

construction of models, 285-286 
fundamentals, 290-291 

Nonnested block-level modeling, 527-530 
Non-nested models, 50 
Nonorthogonal basis functions, 114-115 
Nonparametric estimation, 33-35 
Nonparametric methods 

displaced amacrine cells, rabbit retina, 
311-313 

distance sampling, 301-302 
estimation, spatial variable intensity, 

305-307 
examples, 311-313 
fundamentals, 262, 299-300 
intensity estimation, spatial variation, 

305-307 
mapped point patterns, 303-305, 

307-310 
marked point patterns, 310-313 
Monte Carlo tests, 302-303 
multivariate point patterns, 310-313 
nearest neighbor methods, 303-305 
nonstationary processes, 309-310 
quadrat sampling. 300-301 
qualitative marks, 310-313 
quantitative marks, 313 
replicated point patterns, 313-315 
second-moment methods, 307-310 
sparsely sampled point patterns, 

300-302 
spatial variable intensity estimation, 

305-307 
stationary processes, 307-309 

Non-semiparametric Bayesian inference, 332 
Nonseparable stationary covariance 

functions, 432-433 
Nonstationarity 

anistropic Gaussian kernel (AGK) model, 
124 

multivariate point patterns, interaction, 
391-392 

Poisson marked point process, 385 
prOCCSS convolution models, 124 
second-moment methods, 309-310 

Nonstationarity, spatial process construction 
basis function models, 122-123 
discussion, 127 
fundamentals, 119-120 
kernel-based methods, 120-122 
process convolution models, 123-124 
sm<x>thing, 120-122 
spatial deformation models, 124-126 

Normal-gamma prior distribution, 258 
Normalizing intrinsic autoregressions, 

209-210 
North American Breeding Bird Survey (BBS), 

101-102 
Norwegian spruce trees, 392-394 
Notation 

Markov random fields, 172 
parametric methods, 318 

Nott and Dunsmuir approach, 121 
2NRCAR model, 236 
Kth order reduced Campbell measure, 

273 
Nugget effect 

asymptotic results, 50 
continuous parameter stochastic process 

theory, 19 
empirical semivariograms, 37 
fixed-rank kriging approach, 111 
full-rank geostatistical setup, 108 
Gaussian spatio-temporal processes, 429 
non-Gaussian parametric modeling. 150, 

154 
parameter model considerations, 96 
Spanish temperature data application, 

155 
Nugget-to-sill ratio, 42 
Null hypothesis 

Poisson null hypothesis, 395 
sampling design, 342 

Null value, 563 
Nychka, Douglas W., 477-492 
Nyquist frequency, 59 

Observations, inferential goals, 404 
OLS, See Ordinary least squares (OLS) 

method 
One taper estimator, 54 
Open-source libraries, 193 
Operations, marked point processes 

conditioning, locations, 381 
locations, 381 
marginal process, locations, 381 
multivariate and marked point processes, 

381 
restriction, locations, 381 
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Orchard scenario, 375 
Order-based dependent Dirichlet process, 

159-160 
Ordinary kriging 

fundamentals, 41 
geostatistics, 8 
predictor, 27 

Ordinary least squares (OLS) method 
interpretation, 253 
least squares estimation, 72 
provisional estimation, mean function, 

32-33 
static models, 247-248 

Oriental bittersweet, 90S Invasive plant 
species illustration 

Orthogonal basis functions, 112-114 
Orthogonality, probability measures, 

80-81 
Orthogonal local stationary processes, 121 
Outliers, empirical semivariograms, 35 

T 

Face, K. Kelley, 245-260 
Pair correlation functions 

analysis assuming stationarity, 351 
reduced and higher-order Campbell 

measures, 272 
second-order moment properties, 320 

Pairwise difference prior, 209 
Pairwise interaction point processes 

ants' nets example, 325 
Gibbs point processes, 324, 332 

Pairwise interaction processes 
finite Gibbs models, 357 
Markov point processes, 295 

Pairwise interactions 
conditional intensity function, 457 
Gibbs models, 399 
models, 457 

Pairwise Markov property, 174 
Palm theory and conditioning, 

273-278 
Papadakis adjustment, 6 
Papangelou conditional intensity 

ants' nets example, 325 
finite Gibbs models, 358 
finite point processes, 279 
intensity, 380 
Markov point processes, 296 
pseudo-likelihood, 322-323 

Papangelou kernel, 277 
Parameter estimation, 74-76 
Parameter models, 92,95-96 
Parameter variables, 254-255 
Parametric bootstrap, 323 

Parametric curves 
gradients, 565-568 
spatial gradients and wombling, 565-568 

Parametric density 
Gibbs point processes, 324 
pseudo-likelihood, 322 

Parametric methods 
ants' nets example, 325-327 
Bayesian inference, 329-334 
cell data example, 333-334 
cluster processes, 327-329, 331-332 
Cox process, 327-329, 331-332 
examples, 321-322, 325-334 
first-order moment properties, 319-320 
fundamentals, 262, 317-318 
Gibbs point processes, 324-325, 332 
maximum likelihood inference, 324-329 
notation, 318 
pseudo-likelihood, 322-323 
reseeding plants example, 329-331 
second-order moment properties, 320 
setting, 318 
simulation-based inference, 324-334 
simulation-free estimation methods, 

319-323 
tropical rain forest trees, 321-322 

Parametric models of intensity, 354 
Parametric spatial point process methods, 317 
Parents 

cluster processes, 455-456 
directional finite difference and derivative 

processes, 561 
Partial likelihood, 459 
Path sampling identity. 324 
Pearson, Karl, 6 
Pearson residual, 363 
Pearson test statistic, 346 
Penguin Bank Reserve, 472, see also Monk 

seal movements 
Periodogram 

approximate and composite likelihood, 54 
asymptotic distribution, 70 
asymptotic properties, 70 
estimation, spectral densities, 68-70 
lattice systems, 71 
likelihood estimation, spectral domain, 73 
parameter estimation, 75 

Petty crimes scenario, 340 
Phase transition, 280 
Phase transition property, 327 
Physically inspired probability models, 

428-429 
Pitms yalustris, see Longleaf pine trees 
PIT, see Principal irregular term (PIT) 
Pitman-Yor process, 157 
Planetary motion, 464 
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Plotting data, 450 
Point kriging. 43 
Point-level modeling, 522-526 
Point-level processes, 573 
Point process data, 573 
Point process distribution characterization 

examples, 267 
spatial point process theory, 266-267 
theorems, 266-267 

Point processes, antecedents, 3-4 
Point process method, appropriateness, 

340-341, 375 
Point process models, sec also Disease 

mapping 
available data, 404-405 
Chagas disease vector data, 410-414, 

417-119 
clustering. 405-106, 414-119 
clusters, 405-406,408-414 
dataset, 406-408 
discussion, 419-421 
epidemiology, spatial patterns, 

403-108 
first-order properties, 411-414 
fundamentals, 262 
inferential goals, 403-404 
spatial scan statistics, 408-411 

Poisson cluster processes 
cluster and Cox processes, 327, 331 
compound Poisson process, 293 
first-order moment properties, 319 
fundamentals, 292-293 
Markov point processes, 294 
multivariate clustering models, 355 
Neyman-Scott Poisson cluster process, 

293-294 
setting and notation, 318 
spatial point process models, 292-294 

Poisson log-linear regression model, 
452-453 

Poisson marked point process 
lemma, 379 
multivariate and marked point processes, 

379 
random marking, stationary case, 387 

Poisson marked processes, 386-387 
Poisson models 

generalized linear models, 219 
non-Gaussian data example, 101 
validation, 364-365 

Poisson null hypothesis, 395-396 
Poisson point process 

analysis assuming stationarity, 351 
exploratory data analysis, 350 
parametric models of intensity, 354 
scope of inference, 347 

Poisson processes 
ants' nets example, 326 
Campylobacteriosis, 453 
cell data example, 333-334 
cluster processes, 332 
Cox processes, 291 -292, 332 
finite Gibbs models, 357 
finite point processes, 278-279 
first-order moment properties, 319 
formal inference, 360 
fundamentals, 289-290 
Gibbs measures, local specification, 280 
historical developments, 4 
mark-dependent thinning, 397 
Matern's dissertation, 9 
models, 455 
moment-based summaries, 451 
nonhomogeneous type, 290-291 
nonstationary processes, 310 
pseudo-likelihood, 322 
qualitative marks, 311 
setting and notation, 318 
spatial point process models, 289-292 
superposition, 289 
translation, 288 
tropical rain forest trees example, 322 

Poisson variability. 544 
Positivity condition, 194 
Posterior analysis, 94-95 
Posterior predictive model assessment, 330 
Potential function approach, 46S-470 
Powered exponential family, 25 
Power semivariogram model, 37 
Practical issues, 193 
Prediction 

asymptotics, spatial processes estimation, 
87 

monitoring network design, 140-141 
non-Gaussian parametric modeling, 153 
second-order stationary processes, 26-27 

Principal irregular term (PIT), 63-64 
Prior distribution, 153-154 
Probability-based designs 

fundamentals, 134 
simple random sampling, 134-135 
stratified random sampling. 135 
variable probability designs, 135-136 

Probability generating functional, 286-287 
Process convolution models, 123-124 
Process model inference, 140-141 
Process models, 92 
Product density, 271 
Product space representation, 378 
Product-sum model, 432 
Product topology, 265 
Profile log likelihood function, 47 
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Profiling 
computational Issues, 52 
maximum likelih<x>d estimation, 47 

Provisional estimation, 31-33 
Pseudo-likelihood 

atmospheric model, ensemble filter, 488 
Gibbs models, 400-101 
model parameters, formal inference, 362 
parametric methods, 317 
simulation-free estimation, 322-323 

Pseudo-replication, 313 
Pseudo-score, 323 
Puget Sound, sec Sasquatch reports 
Pure specification bias, 545-547 
Pycnophylactic approach, 521 

Q 

Q-Q plot 
general model validation, 362 
Gibbs model validation, 366 
Poisson model validation, 365 

Quadrats 
confounding, 346 
intensitv residuals, 363 
nonparametric methods, 300 
sampling, 300-301 
simulation-based Bavesian inference, 

331 
Qualitative marks, 310-313 
Quantitative marks, 313 
Quasilikelihood method, 54 
Queensland copper data, 350 

R 

Rabbit retina, displaced amaenne cells, 
311-313 

Radial spectral density, 22 
Radial spectral measure, 21-22 
Radon-Nikodym derivative, 277, 278 
Rainforest biome, 531 
Random field marking 

modeling approaches, 377 
non-Poisson models, 398 

Randomization tests, classical 
component independence, 395-396 
fundamentals, 395 
Poisson null hypothesis, 395-396 
random labeling, 396 

Random labeling 
classical randomization tests, 395 
displaced amacrine cells, 312 
Poisson null hypothesis, 396 
qualitative marks, 311 
random marking, stationary case, 387 
spatial scan statistics, 409 

Random marking, 385-386 
Random probability distribution, 156 
Range, 37, 66 
Raw residual, 363 
Real estate illustration, 506-508 
Real-valued marks, 384 
Recent developments, disease mapping. 

236-237 
Reduced and higher-order Campbell 

measures, 270-273 
Reduced-rank random effects, 109-111 
Reduced second-moment measure, 351 
Redwood seedlings dataset, 356 
Reestimation, 40 
Regional regression coefficients, 237 
Regression 

defined, 10 
mean parameters estimation, 139 

Regression model approach, 138-139 
Regular arrays 

Gaussian conditional autoregressions, 
205-206 

intrinsic autoregressions, 211 
Reich, Brian, 57-76 
Relative risk, 383 
REML, S6e Restricted/residual maximum 

likelihood (REML) method 
Reordering techniques, 187-190 
Reparameterizations, 100-101 
Replicated point patterns, 313-315 
Representation, spectral domain 

aliasing, 59 
Bochner's theorem, 61-62 
continuous Fourier transform, 58 
continuous spatial process, 59-62 
fundamentals, 58 
isotropic covariance functions, 62-63 
mean square continuity, 59 
principal irregular term, 63-64 
spectral representation theorem, 60-61 

Reproducing kernel Hilbert space, 19 
Repulsive interaction, 333 
Reseeding plants example, 329-331 
Resels (resolution elements), 521 
Residuals 

covariance, 121 
dependence and hierarchical modeling. 

552 
plot, 330 

Resolution elements (resels), 521 
Responses, methodological Issues, 375-376 
Resprouting species, 329 
Restricted/residual maximum likelih<x>d 

(REML) meth(xi 
approximate likelihood, 53 
asthma hospitalization example, 551 
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asymptotic results, 49 
computational Issues, 52 
estimation, 48-49, 85-S6 
hypothesis testing and model 

comparisons, 50 
prediction and estimation, 87 
process model inference, prediction, 140 

Restriction, locations, 381 
Retina, displaced amacrine cells, 311-313 
Riemann integration, 525 
Ripley's approach, 10-11 
Ripley's AC function, 291 
Risk, 404 
R (software), 35,366-367 
Rue, I lavard 

conditional and intrinsic autoregressions, 
201-216 

discrete spatial variation, 171-200 

S 

SAM, see Spatial autoregressive model (SAM) 
Sampling 

design, modeling strategies, 341-342 
exact algorithms GMRPs, 184-185 
frame, probability-based designs, 134 

Sampson, Paul D., 119-130 
SAR, see Simultaneous autoregressive (SAR) 

models; Synthetic aperture radar 
(SAR) images 

Sasquatch reports 
disease mapping, 226-231 
WinBUGS code, 237-240 
zero-inflated Poisson models, 232 

SaTScan software package, 367 
Savage-Dickey density ratio 

non-Gaussian parametric modeling, 152 
Spanish temperature data application, 155 

Saxony, Germany, 392-394 
Scale effect, 520 
Scan statistics, 349 
Schur matrix product, 485 
Schwar/'s Bavesian information criterion, 50 
SDE, see Stochastic differential equations 

(SDLs) 
SDM, see Spatial Durbin model (SDM) 
Sea anemones, 374 
Seasonal models, 438-440 
Sea surface temperature (SST) 

exploratory analysis, 74 
fundamentals, 73 
parameter estimation, 74-76 

Seattle metropolitan area, see Sasquatch 
reports 

SeaWinds database, 163 
Second-moment methods 

nonparametric models, 307-310 
nonstationary processes, 309-310 
stationary processes, 307-309 

Second-order properties 
dependence, nonparametric estimation, 33 
linear models, 438 
moment properties, 320 
neighborhood analysis, 353 
product density, 320 
separability, moment-based summaries, 

452 ' 
structure, geostatistical methods, 30 
superposition, 289 
translation, 288 

Second-order stationaritv 
Gaussian spatio-temporal processes, 429 
geostatistical model, 30 
reestimation, mean function, 40 

Second-order stationary processes 
Bochner's theorem, 20 
nugget effect, 19 
prediction theory, 26-27 
Smoothness properties, 23 
strictly stationary processes, 18 

Semiecological studies, 554 
Semiparametnc Bavesian inference, 332 
Semivariograms, see also Variograms 

exploratory analysis, 74 
geostatistical model, 30-31 
krigmg,41 
modeling, 36-40 
nonparametric estimation, 33-35 
nonstationary spatial processes, 

constructions, 119 
parameter estimation, 74-76 
strictly stationary processes, 18 

Separability assumption, 235 
Separable models, 502 
Separate layers, 312 
Sequential updates 

Bavesian formulation, 480-481 
Kalman filter and assimilation, 482 

Setting, parametric methods, 318 
Shapley data, 348-349 
Shark scenario, 340 
Sherwtxxi-Morrison-VVoodburv formula, 486 
Shot noise process 

cluster and Cox processes, 329,332 
Cox process, 292 
tropical rain forest trees example, 321 

Silicon wafers scenario, 340, 341 
Sill 

empirical semivariograms, 37 
kriging, 42 

Simple kriging, 8, see also Kriging 
Simple random sampling, 134-135 
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Simplicity, Gibbs sampler, 179 
Simpson's paradox, 345 
Simulation-based Bavesian inference 

J 

cell data example, 333-334 
cluster process 331-332 
Cox process, 331-332 
examples, 32*-331,333-334 
fundamentals, 329 
Gibbs point process, 332 
reseeding plants example, 329-331 

Simulation-based maximum likelihood 
inference 

ants' nets example, 325-327 
cluster processes, 327-329 
Cox process, 327-329 
example, 325-327 
fundamentals, 324 
Gibbs point processes, 324-325 

Simulation-free estimation methods 
examples, 321-322 
first-order moment properties, 319-320 
fundamentals, 319 
parametric methods, 317 
pseudo-likelihood, 322-323 
second-order moment properties, 320 

Simultaneous autoregressive (SAR) models 
change of support problem, 519 
spatial econometrics, 246-249 

Simultaneous spatial autoregressive 
models, 10 

Single layers, 312 
Size Issues, 485 
Skamania County, sec Sasquatch reports 
Slicing 

Poisson marked processes, 386 
restriction, 381 

Slivnyak-Mecke theorem, 275 
Small area estimation, 218 
Small ensemble sizes, 485 
Small-scale spatial variation (spatial 

dependence), 30-31 
Small size issues, 485 
Smolukowski approximations, 472 
Smoothed residual intensitv, 363 
Smoothing and smoothness 

assimilation cycle, 480 
continuous parameter stochastic process 

theory, 23 
empirical semivariogTams, 36-38 
exploratory data analysis, 348 
least squares estimation, 72 
Matern model, 37-38 
nonstationary spatial processes, 

constructions, 120-122 
order-based dependent Dirichlet process, 

159-160 

parameter estimation, 76 
provisional estimation, mean function, 32 

Snow, Dr. John, 403 
Soft constraints, 185 
Software 

ARC/INPO,534 
BoundarySeer, 572-573 
empirical semivariograms, 35 
geoRglm package, 102 
geoR package, 97 
modeling strategies, 366-367 
R package, 318, 366-367 
spatclus package, 367 
spatstat package, 318, 366-367 
splancs package, 367 

Space-time covariance functions, 430-431 
Space varying state parameters, 440-444 
Spanish temperature data application, 

153-154 
Sparesly sampled point patterns 

distance sampling, 301-302 
fundamentals, 300 
quadrat sampling, 300-301 

Sparse sampling methods, 300 
spatclus package, 367 
Spatial aggregation, ecological fallacy 

confounding, 547-549 
ecological bias, 544-551 
examples, 551-554 
fundamentals, 494, 541-542, 554-555 
hierarchical modeling, 552-553 
individual data, 549-551 
motivating example, 542-544 
pure specification bias, 545-547 
semiecological studies, 554 
spatial dependence, 552-553 

Spatial and spatio-temporal model relations, 
251-253 

Spatial autocorrelation parameter, 235 
Spatial autoregressive model (SAM) 

dependence, 254-255 
estimation, 255 
example, 256-258 
extensions, 258 
spatial econometrics, 246-249 

Spatial average, predicting, 9 
Spatial data transformations, 520 
Spatial deformation models, 124-126 
Spatial dependence, 552-553 
Spatial Durbin model (SDM) 

extensions, 258 
interpretation, 253-254 
spatial econometrics, 246-249 

Spatial econometrics 
common models, 246-250 
computation, 255-256 
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dependent variables, 254-255 
dynamic models, 250 
estimation, 255 
example, 256-258 
extensions, 258 
fundamentals, 170, 245-246, 259 
interpretation, 253-254 
parameter variables, 254-255 
spatial and spatio-temporal model 

relations, 251-253 
spatial variables, 254-255 
static models, 246-249 

Spatial epidemic processes, 457-458 
Spatial epidemiology, stv also Disease 

mapping; Point process models 
available data, 404-405 
clusters and clustering, 405-406 
dataset, 406-408 
fundamentals, 403 
inferential goals, 403-404 

Spatial frequency, 58 
Spatial Gaussian processes, 161 
Spatial gradients and wombling 

areal type, 572-573 
constructing, 571-572 
curvilinear gradients, 565-568 
derivative processes, 561-562 
directional finite difference, 561-562 
finite differences, 561-563 
fundamentals, 494, 559-561, 573-574 
gradients, 562-563, 565-568 
illustration, 568-570 
inference, 562-563 
invasive plant species, 568-570 
parametric curves, 565-568 
point process data, 573 
stochastic algorithm, 571-572 
wombling, 565-568 

Spatial interpolation, 31-32 
Spatial kernel stick-breaking (SSB) prior 

Bavesian non-parametric approaches, 
160-163 

Hurricane Ivan, 165-166 
Spatially varying intercept, 506 
Spatially varying linear model of 

co-regionalization (SVLMC), 
505 

Spatial Markov property, 323 
Spatial patterns, epidemiology, str aho 

Disease mapping; Point process 
models 

available data, 404-405 
clusters and clustering, 405-406 
dataset, 406-408 
fundamentals, 403 
inferential goals, 403-404 

Spatial patterns, modeling, 10-11 
Spatial point patterns 

fundamentals, 262-261 
modeling strategies, 339-367 
multivariate and marked point processes, 

371-401 
nonparametric models, 299-315 
parametric models, 317-334 
point process models, 403-421 
spatial epidemiology, methods, 403-421 
spatial point process models, 283-297 
spatial point process theory, 263-280 

Spatial point process models 
compound Poisson process, 293 
construction of models, 283-289 
Cox process, 291-292 
doublv stochastic Poisson (Cox) process, 

286 
fundamentals, 262 
homogeneous Poisson process, 284-285 
Markov point processes, 294-297 
Neyman-Scott Poisson cluster process, 

293-294 
nonhomogeneous Poisson process, 

285-286 
nonhomogeneous type, 290-291 
Poisson cluster processes, 292-294 
Poisson processes, 289-292 
probability generation functional, 286-287 
superposition, 289 
thinning, 287-288 
translation, 288 

Spatial point process theory 
Campbell measures, 267-273 
examples, 265-272, 274-280 
finite point processes, 278-279 
fundamentals, 262, 263-266 
Gibbs measures, local specification, 280 
moment measures, 267-270 
palm theory and conditioning, 273-278 
point process distribution 

characterization, 266-267 
reduced and higher-order, 270-273 
theorems, 266-270, 279-280 

Spatial prediction, 140 
Spatial random effects, 220-223 
Spatial random walk, 440 
Spatial scan statistics, 408-411 
Spatial statistics in R, 366-367 
Spatial stochatic processes, 17-18 
Spatial temporal autoregression (STAR) 

spatial and spatio-temporal model 
relations, 251-253 

spatial econometrics, 246, 250 
Spatial time series, >w Dynamic spatial 

models 
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Spatial trajectories, modeling 
autoregressive models, 467 
Brownian motion, 464—465 
difficulties, 471-472 
displays, 466 
empirical example results, 472 
examples, 464-465 
fundamentals, 426, 463—464,473 
historical developments, 464—465 
inference methods, 470-471 
models, 472-473 
monk seal movements, 465 
planetary motion, 464 
potential function approach, 46S-470 
statistical concepts and models, 466-470 
stochastic differential equations, 467—46S 

Spatial transmission kernel, 458 
Spatial trend, 357, 359 
Spatial variable intensity estimation, 305-307 
Spatial variables, 254-255 
Spatial white noise process, 25 
Spatio-temporal and spatial model relations, 

251-253 
Spatio-temporal intensity function, 451 
Spatio-temporal models, 232-235 
Spatio-temporal point processes 

Campylobacteriosis, 452-455 
cluster processes, 455-457 
conditional intensity function, 457-458 
Cox processes, 455 
discussion, 459^160 
exploratory tools, 450-455 
fundamentals, 426, 449. 459-460 
further reading, 459—460 
likelihood function, 458-459 
models, 455-458 
moment-based summaries, 451—452 
pairwise interaction processes, 457 
plotting data, 450 
Foisson processes, 455 
spatial epidemic processes, 457—458 

Spatio-temporal processes 
continuous parameters, 427—434 
data assimilation, 477—491 
dynamic spatial models, 437^447 
extensions, 116-117 
fundamentals, 426 
modeling spatial trajectories, 463—473 
spatial time series, 437—447 
spatio-temporal point processes, 449—460 

spatstat package, 318,366-367 
Specification bias, 520 
Spectral densities 

asymptotic distribution, 70 
asymptotic properties, 70 
Bochner's theorem, 20, 430 

estimation, 68-72 
fundamentals, 64 
Gaussian conditional autoregressions, 206 
lattice data, missing values, 70-71 
least squares, 71-72 
Matern class, 65-67 
nonseparable stationary covariance 

functions, 433 
periodogram, 68-70 
spherical model, 64-65 
squared exponential model, 65 
theoretical properties, 69-70 
triangular model, 64 

Spectral domain 
aliasing, 59 
asymptotic distribution, 70 
asymptotic properties, 70 
Bochner's theorem, 61-62 
case study, 73-76 
continuous Fourier transform, 58 
continuous spatial process, 59-62 
estimation, 68-72 
exploratory analysis, 74 
fundamentals, 57-58 
isotropic covariance functions, 62-63 
lattice data, missing values, 70-71 
least squares, 71-72 
likelihood estimation, 72-73 
Matern class, 65-67 
mean square continuity, 59 
parameter estimation, 74-76 
periodogram, 68-70 
principal irregular term, 63-64 
representation, 58-64 
sea surface temperature analysis, 73-76 
spectral densities, 64-67 
spectral representation theorem, 60-61 
spherical model, 64-65 
squared exponential model, 65 
theoretical properties, 69-70 
triangular model, 64 

Spectral measure, 20, 430 
Spectral representation and theorem, 20, 

60-61 
Spherical correlation function, 26 
Spherical model, 64-65 
Spherical semivariogram model, 36, 38-39 
splancs package, 367 
Spread, inflation, 486 
Squared exponential model, 65-67 
5SB, See Spatial kernel stick-breaking (SSB) 

prior 
5ST, sec Sea surface temperature (SST) 
Standardized morbidity ratio (SMK), 542-543 
STAR, see Spatial temporal autoregression 

(STAR) 
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Static models, 246-249 
Stationarity 

cross-covariance functions, 500 
geostatistical model, 30-31 
intensity, 379 
interpoint interaction, 351-352 
lemma, 387 
Poisson marked point process, 385 
Poisson marked processes, 386-387 
provisional estimation, mean function, 32 
scope of inference, 346 
spatial point process theory, 265 

Stationary covariance functions, 432-433 
Stationary Gaussian processes, 87 
Stationary Gaussian random fields 

approximate and composite likelihood, 54 
non-Gaussian data methods, 55 
R1£ML estimation, 4S-19 

Stationary kriging methods, 163 
Stationary marked point processes, 380-381 
Stationary processes 

continuous parameter stochastic process 
theory, 18-19 

second-moment methods, 307-309 
Statistical concepts and models 

autoregressive models, 467 
displays, 466 
potential function approach, 468-470 
stochastic differential equations, 467-468 

Steel, Mark F.J., 149-167 
Stein, Michael 

asymptotics, spatial processes, 79-88 
classical geostatistical methods, 29-44 

Stick-breaking priors, Bayesian 
nonparametric approaches 

fundamentals, 155-157 
spatial kernel stick-breaking prior, 

160-163 
Stienen diagram, 353 
Stochastic algorithm, 571-572 
Stochastic differential equations (SDHs) 

Brownian motion, 465 
drift function, 473 
empirical examples, 472 
fundamentals, 464 
issues, 472 
Markov chain approach, 470 
motivation, 473 
statistical concepts and models, 467-468 

Stochastic flow, 429 
Stochastic fractional differential equation, 

24-26 
Stochastic geometry, 4 
Stratified random sampling, 135 
Strauss point processes, 333 
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