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This book is the result of close cooperation between industry and academia, notably Eric-
sson and two universities in Sweden: Chalmers University of Technology (CTH) in Göte-
borg and The Royal Institute of Technology (KTH) in Stockholm. In 1987, a student at
CTH presented her PhD thesis on the topic of conformal antennas. It was then considered
an interesting but difficult technology with no immediate application. About 10 years lat-
er, many conformal array applications were seriously considered or in development. At
that time, we became involved in several conformal R&D programs that also included ex-
perimental hardware for model verification. Our intention was to compile results from
these efforts into one, thick internal report. However, with the support and encouragement
from many colleagues, we set out on the much more demanding route to write a book on
the subject. 

Many standard textbooks on antennas include short sections on conformal array anten-
nas, but usually only simple reference cases are treated. The mutual coupling (which is an
important parameter) is often just briefly mentioned. Examples of array characteristics
with the mutual coupling included are rare. Thus, we believe this book fills a gap in the
existing literature.

Our purpose is to present the fundamental principles behind conformal antennas, as
well as hands-on information necessary for the analysis and design of conformal antenna
arrays. Graphical illustrations are used extensively, both for calculated and measured re-
sults, including results not published before. We describe theoretical methods for analysis
and design, and include explicit formulas where applicable. From a practical point of
view, mechanical aspects, beam-forming techniques, and packaging of conformal array
antennas are included. Furthermore, scattering properties are discussed, which are of in-
terest in stealth applications, for example. Lists of references are provided at the end of
each chapter for further studies. Thus, we hope that the book will become a useful tool for
the practicing antenna and systems engineer in understanding and working with these in-
teresting antennas. 

Each chapter starts with some introductory material, that is, the basic concepts that are
essential to get an understanding of the more advanced aspects. The first three chapters
present an overview of conformal array principles and applications, including the theory
for circular arrays and phase mode concepts, and discussions of various shapes of confor-
mal arrays. 

In Chapters 4 and 5, theoretical methods for analysis and design are described, in-
cluding explicit formulas; for example, for geodesics on more general surfaces than the
canonical circular cylinder and sphere. Doubly curved surfaces and dielectric covered
surfaces using high-frequency methods are also included. Two canonical examples are
also discussed in detail, thus assisting the reader in his/her own conformal antenna
analysis.

PREFACE
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Chapters 6 and 7 deal with radiating elements on singly curved and doubly curved sur-
faces. The focus is on mutual coupling characteristics and element radiation properties.
Element types include waveguide-fed apertures and microstrip patches. For both types,
measured data supports the calculated results.

Chapters 8 and 9 treat conformal array antenna characteristics—radiation, impedance
and polarization—as well as mechanical and packaging aspects. Feeding systems and
beam-scanning principles are also included. 

Chapter 10 discusses various synthesis methods, with some examples. Also, aspects
such as optimizing the shape, distribution of elements, polarization, and bandwidth are in-
cluded.

The final chapter deals with methods for the analysis of scattering (radar cross section)
from conformal array antennas; in particular, waveguide-fed aperture elements with and
without a dielectric coating. We include also a discussion on the problem of reducing the
radar cross section without decreasing the antenna performance.

While written with engineering applications in mind, this book can also serve as a text
for graduate courses in advanced antennas and antenna systems.
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1.1 THE DEFINITION OF A CONFORMAL ANTENNA

A conformal antenna is an antenna that conforms to something; in our case, it conforms to
a prescribed shape. The shape can be some part of an airplane, high-speed train, or other
vehicle. The purpose is to build the antenna so that it becomes integrated with the struc-
ture and does not cause extra drag. The purpose can also be that the antenna integration
makes the antenna less disturbing, less visible to the human eye; for instance, in an urban
environment. A typical additional requirement in modern defense systems is that the an-
tenna not backscatter microwave radiation when illuminated by, for example, an enemy
radar transmitter (i.e., it has stealth properties).

The IEEE Standard Definition of Terms for Antennas (IEEE Std 145-1993) gives the
following definition:

2.74 conformal antenna [conformal array]. An antenna [an array] that conforms to a sur-
face whose shape is determined by considerations other than electromagnetic; for example,
aerodynamic or hydrodynamic.

2.75 conformal array. See: conformal antenna.

Strictly speaking, the definition includes also planar arrays if the planar “shape is deter-
mined by considerations other than electromagnetic.” This is, however, not common
practice. Usually, a conformal antenna is cylindrical, spherical, or some other shape, with
the radiating elements mounted on or integrated into the smoothly curved surface. Many

Conformal Array Antenna Theory and Design. By Lars Josefsson and Patrik Persson 1
© 2006 Institute of Electrical and Electronics Engineers, Inc.

1
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variations exist, though, like approximating the smooth surface by several planar facets.
This may be a practical solution in order to simplify the packaging of radiators together
with active and passive feeding arrangements.

1.2 WHY CONFORMAL ANTENNAS?

A modern aircraft has many antennas protruding from its structure, for navigation, vari-
ous communication systems, instrument landing systems, radar altimeter, and so on.
There can be as many as 20 different antennas or more (up to 70 antennas on a typical
military aircraft has been quoted [Schneider et al. 2001]), causing considerable drag and
increased fuel consumption. Integrating these antennas into the aircraft skin is highly de-
sirable [Wingert & Howard 1996]. Preferably, some of the antenna functions should be
combined in the same unit if the design can be made broadband enough. The need for
conformal antennas is even more pronounced for the large-sized apertures that are neces-
sary for functions like satellite communication and military airborne surveillance radars. 

A typical conformal experimental array for leading-wing-edge integration is shown in
Figure 1.2. The X-band array is conformal with the approximately elliptical cross section
shape of the leading edge of an aircraft wing [Kanno et al. 1996]. Figure 1.3 shows an
even more realistically wing-shaped C-band array (cf. [Steyskal 2002]).

Array antennas with radiating elements on the surface of a cylinder, sphere, or cone,
and so on, without the shape being dictated by, for example, aerodynamic or similar rea-
sons, are usually also called conformal arrays. The antennas may have their shape deter-
mined by a particular electromagnetic requirement such as antenna beam shape and/or an-
gular coverage. To call them conformal array antennas is not strictly according to the
IEEE definition cited above, but we follow what is common practice today. 

A cylindrical or circular array of elements has a potential of 360° coverage, either with
an omnidirectional beam, multiple beams, or a narrow beam that can be steered over

2 INTRODUCTION

Figure 1.1. At least 20–30 antennas protrude from the skin of a modern aircraft.
(From [Hopkins et al. 1997], reprinted by permission of the American Institute of
Aeronautics and Astronautics, Inc.)
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3

Figure 1.2. Conformal array antenna for aircraft wing integration [Kanno et al. 1996].

Figure 1.3. A microstrip array conformal to a wing profile in the test chamber. See
also color insert, Figure 1. (Courtesy of Air Force Research Lab./Antenna Technology
Branch, Hanscom AFB, USA.)
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360°. A typical application could be as a base station antenna in a mobile communication
system. Today, the common solution is three separate antennas, each covering a 120° sec-
tor. Instead, one cylindrical array could be used, resulting in a much more compact instal-
lation and less cost.

Another example of shape being dictated by coverage is shown in Figure 1.4. This is a
satellite-borne conical array (and, hence, the drag problem is certainly not an issue here).

The arguments for and against conformal arrays can be discussed at length. The appli-
cations and requirements are quite variable, leading to different conclusions. In spite of
this, and to encourage further discussion, we present a summary based on reflections by
Guy [1999], Guy et al. [1999], Watkins [2001], and others in Table 1.1. 

1.3 HISTORY 

The field of phased array antennas was a very active area of research in the years from
WW II up to about 1975. During this period, much pioneering work was done also for
conformal arrays. However, electronically scanned, phased array antennas did not find
widespread use until the necessary means for feeding and steering the array became avail-
able. Integrated circuit (IC) technology, including monolithic microwave integrated cir-
cuits (MMIC), filled this gap, providing reliable technical solutions with a potential for

4 INTRODUCTION

Figure 1.4. A conical conformal array for data communication from a satellite
[Vourch et al. 1998, Caille et al. 2002]. See also color insert, Figure 5.
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low cost, even for very complex array antennas. An important factor was also the devel-
opment of digital processors that can handle the enormously increased rate of information
provided by phased array systems. Digital processing techniques made phased array an-
tenna systems cost effective, that is, they provided the customers value for the money
spent.

This being true for phased arrays in general, it also holds for conformal array antennas.
However, in the area of conformal arrays, electromagnetic models and design know-how
needed extra development. During the last 10 to 20 years, numerical techniques, electro-
magnetic analysis methods, and the understanding of antennas on curved surfaces have
improved. Important progress has been made in high-frequency techniques, including
analysis of surface wave diffraction and modeling of radiating sources on curved sur-
faces.

The origin of conformal arrays can be traced at least back to the 1930s when a system
of dipole elements arranged on a circle, thus forming a circular array, was analyzed by
Chireix [1936]. Later, in the 1950s, several publications on the subject were presented;
see, for example, [Knudsen 1953a,b]. The circular array was attractive because of its rota-
tional symmetry. Proper phasing can create a directional beam, which can be scanned
360° in azimuth. The applications were in broadcasting, communication, and later also
navigation and direction finding. An advanced, more recent application using a large cir-
cular array is the French RIAS experimental radar system [Dorey et al. 1989, Colin 1996].

During the Second World War, HF circular arrays were developed for radio signal in-
telligence gathering and direction finding in Germany. These so-called Wullenweber1 ar-
rays (code word for the development project) were quite large with a diameter of about
100 meters. After the war, an experimental Wullenweber array was developed at the Uni-
versity of Illinois (see Figure 1.5). This array had 120 radiating elements in front of a re-
flecting screen. The diameter was about 300 m; note the size of the buildings in the center
[Gething 1966]. Many similar systems were built in other countries during the Cold War.

1.3 HISTORY 5

Table 1.1. Planar versus conformal array antennas

Parameter Planar array Conformal array

Technology Mature Not fully established
Analysis tools Available In development
Beam control Phase only usually sufficient, Amplitude and phase, more 

fixed amplitude complicated
Polarization Single can be used (dual often Polarization control required, 

desired) especially if doubly curved
Gain Drops with increased scan Controlled, depends on shape
Frequency bandwidth Typically 20% Wider than planar is possible
Angular coverage Limited to roughly ±60° Very wide, half sphere
RCS Large specular RCS Lower than planar
Installation on platform Planar shape limits due to Structurally integrated, leaves 

swept volume extra space. No drag
Radome Aberration effects No conventional radome, no 

boresight error
Packaging of electronics Known multilayer solutions Size restriction if large curvature, 

facets possible

1Named for J. Wullenweber, 1488–1537, Lord Mayor of Lübeck
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Some of these huge antennas may still be operating. See also [IRE PGAP Newsletter Vol.
3, December 1960].

During this period, new, efficient pattern synthesis methods and practical feeding and
beam control schemes were investigated by several workers. For an overview see [Davies
1981, 1983]. A very useful approach in this work was based on the concept of phase modes.
For the circular array, the excitation can be viewed as a periodic function in azimuth, with
period 2�. The excitation can therefore be expressed as a Fourier series. Each term in this
series is a phase mode, which can be generated in the practical situation by convenient net-
works, specifically the Butler matrix. A phase mode has constant amplitude but a linear
phase progression from one radiating element to the next, totaling a multiple of 2� over the
circumference. The phase mode concept proved to be an efficient tool in pattern synthesis,
and will be described in more detail in Chapters 2 and 10. By measuring the phase modes
on reception, the signal direction of arrival (DOA) can be determined [Rehnmark 1980].
Figure 1.6 shows a direction-finding application using this technique.

With omnidirectional elements, the full circle can be used. However, constructive ad-
dition of signals from both the front and the rear part of the circular array is not easily
achieved, in particular not over an extended bandwidth. Most circular arrays therefore use
directive radiating elements, pointing outward from the center. The Wullenweber anten-
nas have usually a reflective element or screen behind each radiator, making them direc-
tive. Element directivity has been analyzed in relation to the phase mode concept and sig-
nificant improvements compared to omnidirectional elements were demonstrated [Rahim
et al. 1981].

In order to increase the directivity and narrow the beam in elevation, several circular
arrays placed on top of each other can be used. A good example is the electronically
scanned TACAN (tactical navigation) antenna [Christopher 1974, Shestag 1974]. The
TACAN antenna can be placed on the ground, radiating a rotating phase-coded signal that
helps aircraft to find their position in relation to, for example, an airfield. 

Jim Wait did fundamental work on radiation from apertures in metallic circular cylin-
ders; see [Wait 1959]. His work has been continued by many others employing either

6 INTRODUCTION

Figure. 1.5. The experimental 300 m diameter Wullenweber antenna at the Univer-
sity of Illinois. (Courtesy P. J. D. Gething, “High-Frequency Direction Finding,” Pro-
ceedings of IEE, January 1966, p. 54.)
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modal expansion techniques or high-frequency diffraction techniques [Hessel 1970,
Pathak et al. 1980]. In particular, mutual coupling is included in the solutions. The meth-
ods will be described in Chapter 4.

Nose-mounted antennas in missiles or aircraft are protected by a pointed radome. Al-
ternatively, the antenna elements could be put on the radome itself. This possibility has
created an interest in conformal arrays on cones [Munger et al. 1974]. The progress in this
field has been slow, however. Also, conformal spherical antennas have attracted interest.
A well-known example is the dome radar antenna [Bearse 1975, Liebman et al. 1975].
This antenna has a passive-transmission-type lens of hemispherical shape. It is fed from
its diameter plane by a planar-phase-steered array (Figure 1.7). The lens causes an extra

1.3 HISTORY 7

Figure 1.6. Broadband circular array for signal-bearing measurements. See also col-
or insert, Figure 7. (Courtesy of Anaren Inc., Syracuse, NY, USA.)

Figure 1.7. The dome array concept using a single planar array and a passive lens
for hemispherical coverage.
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deflection of the beam so that a scan of more than 90° is achieved. Such a wide coverage
would normally require four planar arrays. However, there is a need for polarization con-
trol and the lens structure has some bandwidth limitations. It is an advantage that only one
steered array is needed for hemispherical coverage, but detailed analysis [Kinsey 2000]
indicates that the dome antenna does not offer any cost benefits over traditional solutions
using planar arrays. According to Fowler [1998], the invention seems not to have been
used in real applications.

Another array with more than hemispherical coverage, in this case for satellite com-
munication from mobile units, is shown in Figure 1.8. This is an active faceted array with
integrated transmit and receive electronics.

A great deal of important conformal work was done at the U.S. Naval Electronics Lab-
oratory Center (NELC) in San Diego. The work included development of both cylindrical
and conical arrays as well as feeding systems. Most of the activities in this field were
closed around 1974. However, many technical results from this active period may be
found in the IEEE Transactions on Antennas and Propagation, Special issue on confor-
mal antennas (January 1974). Several workshops on conformal antennas were held in the
United States, for example, in 1970 and 1975, but the proceedings may be hard to find.
Most of the material was later published in scientific journals. At the 1996 Phased Array
Symposium in Boston, several interesting conformal designs were presented in a Japan-
ese session [Rai et al. 1996, Kanno et al. 1996]; see Figure 1.2.

An indication of a recent resurgence in the interest in conformal antennas is the se-
ries of Conformal Antenna Workshops, held in Europe every second year, starting from
1999. The first was held in Karlsruhe (Germany), the second in The Hague (The

8 INTRODUCTION

Figure 1.8. A faceted active array antenna with six dual polarized dipole elements in
each facet. See also Figure 8.4 and color insert, Figure 6. (Courtesy of Roke Manor
Research Ltd., Roke Manor, Romsey, Hampshire, UK.)
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Netherlands), the third in Bonn (Germany), and the fourth in Stockholm (Sweden) in
2005.

A paper in Space/Aeronautics magazine in 1967 [Thomas 1967] presented a very opti-
mistic view of the development of conformal arrays for nose radar systems in aircraft; see
Figure 1.9. Obviously, the development did not proceed quickly, mainly because of the
limitations discussed previously. However, the conformal nose-mounted array has many
advantages, especially an increased field of view compared to the traditional ±60° cover-
age of planar antennas. 

A vision of a future “smart skin” conformal antenna is shown in Figure 1.10. This an-
tenna constitutes a complete RF system, including not only the radiating elements but also
feed networks, amplifiers, control electronics, power distribution, cooling, filters, and so
on, all in a multilayer design that can be tailored to various structural shapes [Josefsson
1999, Baratault et al. 1993].

1.4 METAL RADOMES

What do radomes have to do with conformal array antennas? Radomes are usually
thought of as dielectric shell structures protecting an antenna installation. If made of met-
al, a dense array of openings (slots) can provide the necessary transmission properties
within a restricted range of frequencies. The result is a conformal frequency-selective
structure (FSS). It is not an antenna, of course, but viewed from the outside it exhibits all
the radiating characteristics of a curved antenna array of radiating elements, just like a
conformal antenna. Hence, the (exterior) analysis problem of the structure has much in
common with the analysis of conformal arrays. Pelton and Munk [1974] describe a coni-
cal metal radome that could be used in a high-speed aircraft or missile application.

A doubly curved FSS acting as a frequency and polarization filter is shown in Figure
1.11. Here we have a spherical array with two layers of rectangular slots in a copper sheet
on a dielectric carrier [Stanek and Johansson 1995].

1.5 SONAR ARRAYS

The activities related to sonar arrays are often overlooked by the antenna community.
These acoustic arrays used for underwater sensors are analogous to radar or communica-

1.5 SONAR ARRAYS 9

Figure 1.9. Predicted nose radar development as of 1967 [Thomas 1967].

1963 1965 1966 1967 1968 1970 1971

VIETNAM 
PHOENIX MARK 1 MARK 2 RARF
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mechanical protection

EM protection/filter

radiating elements

active circuits

control signal distribution

supply, cooling etc

structure

Figure 1.10. Vision of a smart-skin antenna.

Figure 1.11. A spherical frequency-selective structure of resonant slots. See also col-
or insert, Figure 8. (Courtesy of Ericsson Microwave Systems AB, Göteborg, Sweden.)
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tion arrays. The techniques for signal processing and beam forming are similar [Ziehm
1964, Stergiopoulos and Dhanantwari 1998, Gaulladet and de Moustier 2000]. The wave
propagation is radically different, however, with sonic waves propagating almost six or-
ders of magnitude more slowly than electromagnetic waves. The time scale is therefore
radically different. The wavelengths used are about the same, and acoustic sensor arrays
have an almost “electrical” appearance (Figure 1.12). 

REFERENCES

Proceedings of First European Workshop on Conformal Antennas, Karlsruhe, Germany, 29 Octo-
ber 1999.

Proceedings of Second European Workshop on Conformal Antennas, The Hague, The Netherlands,
24–25 April 2001.

Proceedings of Third European Workshop on Conformal Antennas, Bonn, Germany, 22–23 Octo-
ber 2003.

Proceedings of Fourth European Workshop on Conformal Antennas, Stockholm, Sweden, 23–24
May 2005.

“Special Issue on Conformal Arrays,” IEEE Transactions on Antennas and Propagation, Vol. AP-
22, No. 1, January 1974.

Baratault P., Gautier F., and Albarel G. (1993), “Évolution des Antennes pour Radars Aéroportés.
De la Parabole aus Peaux Actives,” Rev. Techn., Thomson-CSF, pp. 749–793, September.

Bearse S. V. (1975), “Planar Array Looks Through Lens to Provide Hemispherical Coverage,” Mi-
crowaves, July, pp. 9–10.

Caille G., Vourch E., Martin M. J., Mosig J. R., and Martin Polegre A. (2002), “Conformal Array
Antenna for Observation Platforms in Low Earth Orbit,” IEEE Antennas and Propagation Mag-
azine, Vol. 44, No. 3, pp. 103–104, June.

Chireix H. (1936), “Antennes à Rayonnement Zénithal Réduit,” L’Onde Electrique, Vol. 15, pp.
440–456.

REFERENCES 11

Figure 1.12. A cylindrical passive hydrophone array. See also color insert, Figure 10.
(Courtesy of Atlas Elektronik GmbH, Submarine Systems, Bremen, Germany.)

c01.qxd  12/1/2005  3:06 PM  Page 11



Christopher E. J. (1974), “Electronically Scanned TACAN Antenna,” IEEE Transactions on Anten-
nas and Propagation, Vol. AP-22, No. 1, pp. 12–16, January.

Colin J.-M. (1996), “Phased Array Radars in France: Present and Future,” IEEE International Sym-
posium on Phased Array Systems and Technology, 15–18 October, pp. 458–462.

Davies D. E. N. (1981), “Circular Arrays: Their Properties and Potential Applications,” in IEE Pro-
ceedings of 2nd International Conference on Antennas and Propagation, April, pp. 1–10.

Davies D. E. N. (1983), “Circular Arrays,” in Rudge et al. (eds.): The Handbook of Antenna Design,
Vol. 2, Peter Peregrinus Ltd., London.

Dorey J., Garnier G., and Auvray G. (1989), “RIAS, Synthetic Impulse and Antenna Radar,” Proc.
International Conference on Radar, Paris, 24–28 April, pp. 556–562.

Fowler C. A. (1998), “Old Radar Types Never Die; They Just Phased Array or . . . 55 Years of Try-
ing to Avoid Mechanical Scan,” IEEE AES Systems Magazine, pp. 24A–24L, September.

Gallaudet, T. C. and de Moustier C. P. (2000), “On Optimal Shading for Arrays of Irregularly-
Spaced or Noncoplanar Elements,” IEEE Journal of Oceanic Engineering, Vol. 25, No. 4, pp.
553–567, October.

Gething P. J. D. (1966), “High-Frequency Direction Finding,” Proceedings of IEE, Vol. 113, No. 1,
pp. 49–61, January.

Guy R. F. (1999), “Spherical Coverage from Planar, Conformal and Volumetric Arrays,” IEE Con-
ference on Antennas and Propagation, pp. 287–290, 30 March–1 April.

Guy R. F. E., Lewis R. A., and Tittensor P. J. (1999), “Conformal Phased Arrays,” in First Euro-
pean Workshop on Conformal Antennas, Karlsruhe, Germany, 29 October.

Hessel A. (1970), “Mutual Coupling Effects in Circular Arrays on Cylindrical Surfaces—Aperture
Design Implications and Analysis,” in Proceedings of Phased Array Symposium, Polytechnic
Institute of Brooklyn.

Hopkins M. A., Tuss J. M., Lockyer A. J., Alt K., Kinslow R., and Kudva J. N. (1997), “Smart Skin
Conformal Load-bearing Antenna and Other Smart Structures Developments,” in Proceedings
of American Institute of Aeronautics and Astronautics (AIAA), Structures, Structural Dynamics
and Materials Conf., Vol. 1, pp. 521–530.

Josefsson L. (1999), “Smart Skins for the Future,” in RVK 99, Karlskrona, Sweden, June, pp.
682–685.

Kanno M., Hashimura, T., Katada, T., Sato, M., Fukutani, K., and Suzuki, A., (1996), “Digital
Beam Forming for Conformal Active Array Antenna,” in IEEE International Symposium on
Phased Array Systems and Technology, 15–18 October, pp. 37–40.

Kinsey R. R. (2000), “An Objective Comparison of the Dome Antenna and a Conventional Four-
Face Planar Array,” in Proceedings of 2000 Antenna Applications Symposium, Allerton Park,
Illinois, USA, 20-22 September, pp. 360–372.

Knudsen H. L. (1953a), Bidrag till teorien for Antennsystemer med hel eller delvis Rotationssym-
metri, Ph.D. Thesis, Teknisk Forlag, Copenhagen (in Danish).

Knudsen H. L. (1953b), “The Field Radiated by a Ring Quasi-Array of an Infinite Number of Tan-
gential or Radial Dipoles,” Proceedings of IRE, Vol. 41, No. 6, pp. 781–789, June.

Liebman P. M., Schwartzman L., and Hylas A. E. (1975), “Dome Radar—A New Phased Array
System,” in Proceedings of IEEE International Radar Conference, Washington, D.C., pp.
349–353.

Munger A. D., Vaughn G., Provencher J. H., and Gladman B. R. (1974), “Conical Array Studies,”
IEEE Transactions on Antennas and Propagation, Vol. AP-22, No. 1, pp. 35–43, January.

Pathak P. H., Burnside, W. D., and Marhefka, R. J. (1980), “A Uniform GTD Analysis of the Dif-
fraction of Electromagnetic Waves by a Smooth Convex Surface,” IEEE Transactions on Anten-
nas and Propagation, Vol. AP-28, No. 5, pp. 631–642, September.

Pelton E. L. and Munk B. A. (1974), “A Streamlined Metallic Radome,” IEEE Transactions on An-
tennas and Propagation, Vol. AP-22, No. 6, pp. 799–803, November.

12 INTRODUCTION

c01.qxd  12/1/2005  3:06 PM  Page 12



Rahim T., Guy J. R. F., and Davies D. E. N. (1981), “A Wideband UHF Circular Array,” in IEE
Proceedings of 2nd International Conference on Antennas and Propagation, pp. 447–450, part
1, April.

Rai E., Nishimoto, S., Katada, T., and Watanabe, H. (1996), “Historical Overview of Phased Array
Antenna for Defense Application in Japan,” in IEEE International Symposium on Phased Array
Systems and Technology, 15–18 October, pp. 217–221.

Rehnmark S. (1980), “Instantaneous Bearing Discriminator with Omnidirectional Coverage and
High Accuracy,” in IEEE MTT-S International Symposium Digest, May, pp. 120–122.

Schneider S. W., Bozada C., Dettmer R., and Tenbarge J. (2001), “Enabling Technologies for Fu-
ture Structurally Integrated Conformal Apertures,” in IEEE AP-S International Symposium Di-
gest, Boston, 8–13 July, pp. 330–333.

Shestag L. N. (1974), “A Cylindrical Array for the TACAN System,” IEEE Transactions on Anten-
nas and Propagation, Vol. AP-22, No. 1, pp. 17–25, January.

Stanek T. and Johansson F. S. (1995), “Analysis and Design of a Hemispherical Metallic Radome,”
in Proceedings of Workshop on EM Structures, Nottingham, UK, September.

Stergiopoulos S. and Dhanantwari A. C. (1998), “Implementation of Adaptive Processing in Inte-
grated Active-Passive Sonars with Multi-Dimensional Arrays,” in IEEE Symposium on Ad-
vances in Digital Filtering and Signal Processing. Victoria, Canada, 5–6 June, pp. 62–66.

Steyskal H. (2002), “Pattern Synthesis for a Conformal Wing Array,” in IEEE Aerospace Confer-
ence Proceedings 2002, Vol. 2, pp. 2-819–2-824.

Thomas P. G. (1967), “Multifunction Airborne Radar,” Space/Aeronautics, February, pp. 74–85.

Wait J. R. (1959), Electromagnetic Radiation from Cylindrical Structures, Pergamon Press, Lon-
don.

Watkins C. D. (2001), “WEAO Collaborative Research on Conformal Antennas and Military Radar
Applications,” in Proceedings of Second European Workshop on Conformal Antennas, The
Hague, The Netherlands, 24–25 April.

Wingert D. A. and Howard B. M. (1996), “Potential Impact of Smart Electromagnetic Antennas on
Aircraft Performance and Design,” in NATO Workshop on Smart Electromagnetic Antenna
Structures, Brussels, November, pp. 1.1–1.10.

Vourch E., Caille C., Martin M. J., Mosig J. R., Martin A., and Iversen P. O. (1998), “Conformal
Array Antenna for LEO Observation Platforms,” in IEEE AP-S International Symposium Di-
gest, pp. 20–23.

Ziehm, G. (1964), “Optimum Directional Pattern Synthesis of Circular Arrays,” The Radio and
Electronic Engineer, pp. 341–355, November.

REFERENCES 13

c01.qxd  12/1/2005  3:06 PM  Page 13



c01.qxd  12/1/2005  3:06 PM  Page 14



In this chapter, we present an overview of the basics of circular array theory. This will
serve as a background to the chapters on conformal array characteristics, design, and syn-
thesis. We will also discuss the concept of phase modes, which is a useful tool for the un-
derstanding of the performance of circular arrays. It is also used in pattern synthesis. Om-
nidirectional patterns will be studied in some detail, especially the problem of reducing
the amplitude ripple. The effect of directional elements on pattern bandwidth and the sup-
pression of undesired spectral harmonics will also be investigated. Mutual coupling ef-
fects will not be introduced until later chapters, however. 

2.1 INTRODUCTION

The circular array antenna can be seen as an elementary building block of conformal array
antennas with rotational symmetry, just as the linear array is a building block of planar ar-
ray antennas. Fundamental characteristics of planar arrays can be learned from studies of
linear array antennas. Similarly, by studying circular arrays we can understand some basic
aspects of conformal array antennas, especially cylindrical and conical arrays and other
shapes with rotational symmetry. Furthermore, the radiation from an elliptical array can
be derived from an equivalent circular array [Lo and Hsuan 1965].

The term “ring array” is sometimes used instead of “circular array” to distinguish it
from a circular area filled with radiating elements, which is a circular planar array anten-
na [Figure 2.1 (a)]. We use the term circular array here, however, to mean an array of ra-
diators distributed with equal spacing along the periphery of a circle, as in Figure 2.1 (b). 
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Circular array antennas with uniformly spaced radiating elements and with equal am-
plitude and phase excitation have long been used for the purpose of obtaining good omni-
directional patterns in the plane of the array (usually the horizontal plane). Later applica-
tions include phase-steered directional beams and arrays with several simultaneous
beams, including broadband circular arrays. A linear variation of phase along the array
circumference was analyzed in the 1930s by Chireix in France [Chireix 1936]. He demon-
strated that a reduction in the elevation beamwidth and, consequently, a concentration of
the radiation in the horizontal plane could be achieved with this phasing arrangement,
while still preserving an omnidirectional amplitude pattern in the azimuth. This was ex-
pected to reduce fading in communication systems, since the interference between a
ground wave and signals reflected from the ionosphere was reduced, resulting in an “an-
tifading antenna.” In fact, Chireix had introduced a phase mode. Phase mode theory was
later used as an efficient tool for the understanding of the behavior of circular arrays and
for pattern synthesis [Taylor 1952, Longstaff et al. 1967]. H. L. Knudsen made important
contributions to circular array theory [Knudsen 1953, 1956], and several authors have
studied the quality of the omnidirectional patterns in terms of amplitude ripple. The de-
pendence on the number of radiators, spacing, and element directivity was analyzed by
Chu [1959]. The use of directional elements has been shown to considerably improve the
circular array pattern bandwidth compared to using isotropic elements [Rahim and Davies
1982]. Many more references dealing with the development of circular arrays could be
mentioned; the reader is referred to several overview papers, in particular [Davies 1981,
1983, Mailloux 1994, Hansen 1998].

2.2 FUNDAMENTALS

2.2.1 Linear Arrays

Although our purpose is to study circular arrays, we will start with a short introduction to
linear arrays [Rudge et al. 1983, Kummer 1992, Mailloux 1994]. Several aspects of circu-
lar array theory build on the previously developed theory for linear arrays. It is also infor-
mative to point out similarities and differences between the linear and circular cases.
Much of linear array theory can be applied to planar arrays, just as the circular array case
can be applied to cylindrical arrays. 

16 CIRCULAR ARRAY THEORY

Figure 2.1. A circular planar array (a), and a circular (ring) array (b).

(a) (b)
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The basic linear array has a number of discrete radiating elements, equally oriented
and equally spaced along a straight line. Each element is viewed as an electric or magnet-
ic current source, which gives rise to a radiated field, the solution to Maxwell’s equations
[Harrington 1961, Chapter 3]. We assume that the normalized radiation function for one
such element, n, is E�L�n(r�), where r� is the direction and distance from a reference point in
the element to the field point. The reference point has the global coordinates R�n, and the
complex excitation of the element is Vn. Thus, the radiated field from this element, in-
cluding polarization, is given by Vn E�L�n(r�). Summing over all elements, we obtain the ra-
diated field at the field point P given by the coordinates r� (see Figure 2.2):

E�(r�) = �
n

Vn E�L�n(r� – R�n)e–jk | r�–R�n| (2.1)

Here k is the propagation constant, k = 2�/�.
In the far field (r large), the dependence of the amplitude on the distance will be ap-

proximately the same for all radiators (typically e–jkr/r). Since the elements were as-
sumed to be identical and identically oriented, we can bring the element radiating func-
tion, except the relative phases, outside the summation in Eq. (2.1) and write for the far
field:

E�(r�) = E�L�(r�)�
n

Vn e–jk | r�–R�n| (2.2)

The expression outside the summation is the element factor. It determines the polarization
of the field, whereas the rest is the scalar array factor. For the latter, the spacing between
elements is important as well as the element excitations.

We can simplify even further for the case with the field point at a large distance (see
Figure 2.3.) The common phase e–jkr is usually of no importance. Since we are mainly
concerned with the angular dependence, we may also discard the amplitude dependence
1/r and write the radiation function in the following form:

E�(�, �) = E�L�(�, �)�
n

Vn e jk�·R�n = E�L�(�, �)AF(�, �) (2.3)

where (�, �) are the angular coordinates and AF is the array factor. In linear and planar ar-
rays, most of the interest is often focused on the array factor, since the element factor can
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Figure 2.2. The geometry related to one radiator with excitation Vn.
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be considered a slowly varying function that does not impact very much on the shape of
the radiation pattern, sidelobes, and so on.1

Let us now look specifically at the characteristics of the linear array in Figure 2.4. The ar-
ray is assumed to have N elements (of which four are shown in Figure 2.4). We assume that
the elements are omnidirectional. Thus, we have only a � dependence with the array factor:

AF(�) = �
N–1

0

Vne jknd sin � (2.4)

By putting � = kd sin � in Eq. (2.4), we can write

AF(�) = � Vne jn� (2.5)

or, with w = e j�, an even simpler form is obtained:

AF(w) = � Vnwn (2.6)

This last expression is identified as a polynomial [Schelkunoff 1943] that can be charac-
terized by its zeroes (a fact that has been found useful in pattern synthesis, see, e.g., [Or-
chard et al. 1985]).

An important special case is uniform excitation, in which all Vn = 1 (a uniform linear
array or ULA). Equation (2.6) becomes a simple geometric series expression with the sum

AF(w) = w (2.7)

where N is the total number of radiators. By putting the reference phase in the center of
the array we obtain

AF(�) = (2.8)

sin��
N

2
kd
� sin ��

��
sin��

k
2
d
� sin ��

wN – 1
�
w – 1
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Figure 2.3. Geometry for the array and far field point P.

1This may be true according to the simplified theory above. However, mutual coupling can sometimes have a
profound effect on the (embedded) element pattern and the resulting total array pattern.
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Equation (2.8) is close to the form sin x/x, especially when the number of elements is
large. The main beam maximum occurs at broadside, that is, at � = 0. The 3 dB
beamwidth is approximately �3 = 0.88 �/Nd radians or �3 = 50 �/Nd degrees. The level of
the first sidelobe is about 13.5 dB below the main beam maximum, or slightly higher if
the number of array elements is small.

We mentioned the main beam maximum at � = 0. More correctly, the array factor has
maxima at kd sin � = 2m�, that is, at sin � = m(�/d), where m = 0, ±1, ±2, . . . . The sec-
ondary maxima, or grating lobes, appear in real space (|sin �| < 1) if d/� > 1. The grating
lobes are replicas of the main beam in sine space. For no part of the grating lobe (consid-
ering the width of the grating lobe) within � = ±90°, the requirement becomes d/� � 1 –
1/N. In many practical cases, the element pattern will suppress the level of grating lobes at
large angles from the broadside direction.

The angular spacing between the main beam and the first grating lobe, as measured in
sine space, is �/d. In order to keep the grating lobe maximum outside real space, often
called “visible space,” when the beam is phase steered, the element spacing requirement
is

d/� � 1/(1 + |sin �s|) (2.9)

where �s is the maximum scan angle. For typical scan angles of ±70°, the requirement be-
comes almost d/� � 0.5.

2.2.2 Circular Arrays

We will now turn to circular arrays, and in particular look at the uniform circular array
(UCA). This generic array has elements equally spaced along the periphery of a circle
(Figure 2.5), and the elements are excited with equal phase and amplitude.

We will start by an analysis of the radiation in the plane that contains the array, which
we refer to as the azimuth (or horizontal) plane. Local coordinates on the circle are (R, �),
the radius and angle, respectively [see Figure 2.5 (a)]. Far-field coordinates are indicated
by (r, �, �) [Figure 2.5 (b)]. As in the linear array case, we will neglect mutual coupling
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effects, that is, we consider element excitations (voltages or currents) as given or speci-
fied including the effects of mutual coupling. The mutual coupling problem in conformal
arrays is treated extensively in Chapters 6 and 7. Limiting the analysis to the azimuth
plane only makes the circular array problem a two-dimensional problem, that is, it has
bearing on other two-dimensional problems like cylindrical array structures. However,
variations with the elevation angle �, away from the azimuthal plane, will also be dis-
cussed.

Let us first make some elementary observations of the differences between linear and
circular arrays. For the linear array in Figure 2.6 (a), the radiating elements are identical,
with equal spacing d, and they all point in the same direction. The far-field radiation func-
tion in the azimuth plane is, as we already know from Equations (2.3, 2.4),

E(�) = EL(�) �
n

Vne jknd sin � (2.10)

where, as before, Vn is the excitation amplitude of element n and k is the propagation con-
stant, k = 2�/�. The element factor EL(�) is common to all elements and was therefore
brought outside the summation sign in this equation. The radiation function is the product
of the element factor and the array factor.2

The corresponding far-field expression for the circular array (Figure 2.6 (b)), in the az-
imuth plane is

E(�) = �
n

VnEL(� – n	�)e jkR cos(�–n	�) (2.11)

where the phase has been referenced to the center of the circle. The identical elements
are spaced R	� along the circle, each element pointing in the radial direction. The ele-
ment function can, therefore, in general not be brought outside the summation, since it
is a function of the element position; there is no common element factor. Consequently,
we can, in general, not define an array factor as in linear and planar arrays, unless the
elements are isotropic, that is, have isotropic (omnidirectional) radiation at least in the
horizontal plane. A typical example of the latter is an array of vertical dipoles with their
axes perpendicular to the array plane. A further difference compared to linear and pla-
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Figure 2.5. Local (a) and far-field (b) coordinates for the circular array.
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2We have dropped vector signs (overbar) to simplify notation.
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nar arrays is found in the slightly more complicated phase expression because of the ar-
ray curvature. 

Equation (2.10) for the linear case is essentially a Fourier relationship between excita-
tion and pattern functions. Much of the experience from Fourier analysis can be directly
applied to linear (and planar) arrays, and there are several analogies with well-known
time/frequency spectral relationships. Unfortunately, this knowledge is not so easily ap-
plied to the analysis of circular and conformal arrays. However, Fourier theory is still a
valuable tool for analysis and synthesis of circular arrays, as we shall see later in the next
section.

With the linear array, we can point a focused beam in a direction �0 by applying a lin-
ear phase shift �(n) to the elements along the array:

�(n) = –knd sin �0 (2.12)
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With the circular array, we can similarly impose phase values to each element so that they
add up coherently in the direction �0. We get the proper phase excitation (beam cophasal
excitation) for each element n by choosing

�(n) = –kR cos(�0 – n	�) (2.13)

Thus, the radiation function for the focused, circular case becomes

E(�) = �
n

|Vn|EL(� – n	�)e jkR[cos(�–n	�)–cos(�0–n	�)] (2.14)

Sometimes, it is required to generate a beam with equal radiation in all directions in the
azimuthal plane (an omnidirectional beam). Circular arrays are particularly suitable for
this by virtue of their circular symmetry. A calculated result using Equation (2.11) for an
eight-element array with isotropic elements and equal amplitude and phase, Vn = 1, is
shown in Figure 2.7. The element spacing along the circle was selected to be 0.65 wave-
lengths. The parameter kR = Nd/� is 5.2. We notice a pattern ripple amounting to about 8
dB.

Another typical case is cophasal excitation in order to scan a focused beam to a specif-
ic direction. We take the same array as before, but apply a phase taper according to Equa-
tion (2.13) to steer the beam to 45°. The result is shown in Figure 2.8. 

None of these two examples is particularly satisfying. The last example gave high
sidelobes and the omnidirectional example had a rather large pattern ripple. We will in the
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Figure 2.7. Radiation pattern with eight isotropic elements spaced at 0.65 wave-
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next sections look more closely at circular array behavior and investigate how perfor-
mance can be optimized. Indeed, much better results can be obtained by proper choice of
parameters.

2.3 PHASE MODE THEORY

2.3.1 Introduction

Let the excitation be given by V(�), representing a continuous excitation function. We
will take a closer look at the discrete excitation later. The radiated far field in the azimuth
plane can be written as

E(�) = ��

–�
V(�)EL(� – �)e jkR cos(�–�)d� (2.15)

The excitation function V(�) is obviously periodic (over 2�) so it can be expanded in a
Fourier series. We use the complex Fourier series with the definition [Ersoy 1994]

f (t) = �



m=–


X(m/T)e2�jmt/T (2.16)

X(m/T) = Xm = �T/2

–T/2
f (t)e–2�jmt/Tdt (2.17)

1
�
T

1
�
2�
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Figure 2.8. A cophasal beam scanned to +45°.
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Applying this to the circular array with excitation V(�) and period T = 2�, we obtain

V(�) = �



–


Cme jm� (2.18)

Cm = ��

–�
V(�)e–jm�d� (2.19)

Each coefficient Cm represents a phase mode, that is, m = 0 is the first mode with no phase
variation along the circumference, the mth mode has m times 2� variation, and so on. The
mode number m can take both positive and negative values. 

Assuming isotropic elements (directional elements are treated in Section 2.3.3), we ob-
tain the “array factor”:

E(�) = ��

–�
V(�)e jkR cos(�–�)d� (2.20)

Inserting Equation (2.18) and reversing the order of integration and summation yields

E(�) = �



–


Cm��

–�
e jm�e jkR cos(�–�)d� (2.21)

Now, the far-field must also be a periodic function over 2�, so we can also expand the far
field in a Fourier series:

E(�) = �



–


Ame jm� (2.22)

Comparing Equations (2.21) and (2.22) we find that the far-field phase mode amplitude
Am is related to the excitation phase mode amplitude Cm according to the following ex-
pression:

Am = Cm ��

–�
e jm(�–�)e jkR cos(�–�)d� (2.23)

Now, we have the integral form of the Bessel function of the first kind:

Jn(z) = ��

–�
e jn�e jz cos�d� (2.24)

and find the important result

Am = jmCmJm(kR) (2.25)

The pattern function resulting from the mth excitation mode is written in Equation (2.26).
Summation over all excitation modes gives the total pattern.

Em(�) = jmCmJm(kR)e jm� (2.26)

1
�
2� j n

1
�
2�

1
�
2�

1
�
2�

1
�
2�

24 CIRCULAR ARRAY THEORY

c02.qxd  12/1/2005  3:10 PM  Page 24



In Equation (2.26) the Bessel function Jm(kR) of order m and argument kR can be seen as
a scaling factor between the two domains (near field excitation and far field radiation).
The Bessel function is continuous but exhibits large oscillations and has several zeroes
(Figure 2.9). With array sizes and frequencies kR, such that the Bessel function Jm is close
to zero, it will not be possible to excite the corresponding far field component Em. This
has important implications for pattern synthesis and pattern stability versus frequency;
more about this later.

For a given argument kR, the higher-order Bessel functions decay rapidly with increas-
ing order and, hence, higher excitation phase modes radiate poorly. How many higher-
order modes need to be included before their contributions become negligible? An indica-
tion is given by Figure 2.10, showing the error when excluding a particular order as a
function of the argument. The three lines correspond to 0.1%, 1%, and 10% error normal-
ized to the value of J0(0). The rule of thumb is that Bessel orders up to the value of the ar-
gument shall be included [Davies 1981], that is, m should be chosen at least equal to kR.
This value corresponds to a phase shift of 2� per wavelength along the periphery; com-
pare this to endfire excitation in linear arrays. However, from Figure 2.10 we conclude
that two to five additional modes (depending on the requirements) could be desirable
[Ziehm 1964]. Similar arguments apply to array shapes other than circular; for instance,
the spherical array discussed by MacPhie [1968].

Since according to Equation (2.26) the mode amplitudes are multiplied by Jm(kR), the
impact of a particular Bessel order depends very much on the excitation mode amplitude
Cm (and vice versa). In fact, the magnitude of the Bessel function for a fixed argument
changes quite a lot between orders, as illustrated in Figure 2.11. This graph was computed
for two selected values of kR, representing element spacings of 0.4 � and 0.8 �, respec-
tively, when the number of elements is 8. 
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A graph calculated for several combinations of orders from –10 to +10 and arguments
ranging from 3 to 10 is shown in Figure 2.12. The graph shows the magnitude of the
Bessel function plotted against the order normalized to the argument. We can understand
the envelope of all the curves in the figure to represent a “window function” between the
excitation and radiation domains. Modes inside this window are “visible,” hence, radiat-
ing, whereas modes outside this window are not radiating. This is analogous to the con-
cept of visible/invisible space in linear array theory, although the division between the
two regions in the circular case is less distinct.

2.3.2 Discrete Elements

The discrete array excitation is a sampled version of the continuous case. Feeding the ele-
ments with a linearly increasing phase gives rise to a corresponding phase mode excita-
tion. However, in the discrete case we also obtain harmonics to the fundamental phase
mode. Depending on the value of Jm(kR), these harmonics may result in additional radiat-
ed modes besides the fundamental mode, causing distortions in the radiation pattern. For
this reason, the harmonics are sometimes called “distortion modes” [Davies 1981].

We will start by discussing the effects of discretizing the array by assuming isotropic
elements. The effect of directional, discrete elements is treated in Section 2.3.3.

A constant, continuous function has a Fourier expansion with just a single spectral
component C0 (the “DC component”). Sampling the function at N equispaced points
(which would correspond to N discrete elements) results in a line spectrum (for this and
other cases, see Table 2.1). The lines are separated by N/T, where T is the (periodic) ex-
tent of the source (in our case 2�). Mathematically, this result is obtained from Equation
(2.17) by writing

X(q/T) = Xq = �T/2

–T/2
�
N

n=1

�(t – tn)e–j2�qt/Tdt (2.27)
1
�
T
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where tn is the location of the source element number n and �(t) is the Dirac delta func-
tion:

�(t) = 0 t � 0� (2.28)�


–

�(t)dt = 1, 
 > 0

We use q to represent the spectral line number, whereas m is reserved for the phase mode
order. We obtain

±1/T when q = 0, ±N, ±2N . . .
Xq = e j�q(1+ )�

N

n=1

e–j2�qn/N = � (2.29)
0 otherwise

The exponent outside the summation sign dictates the phase, resulting in alternating signs
for the (real) spectral lines. 

It is easy to show that a linear phase progression in the source domain transforms into
a shift of the spectrum; compare this to distortion-less filters [Collin 1996]. With a phase
slope of m times 2� over the source period T, the spectrum shifts m/T. Finally, a general
excitation generates a full line spectrum, repeated with a period of N/T. The cases just dis-
cussed are summarized in Table 2.1.

The first two cases in Table 2.1 are continuous sources that may be represented by just
one phase mode. The corresponding radiation patterns [cf. Eq. (2.26)], are perfectly omni-
directional with no ripple. In the third case, the source is discrete and we have infinitely
many modes in the spectrum. However, as seen from the behavior of the Bessel function
(Figure 2.12), only orders slightly beyond ±kR need to be included. The Bessel function
acts as a spatial filter, determining which modes will radiate (belong to the “visible
space”). Now, at best only the central part of the spectrum should be passed through this
spatial filter, that is, modes up to ±N/2. Since the Bessel argument kR equals Nd/�, we
will have this case if d/� is less than roughly 0.3–0.4. With larger spacings, the higher
spectral orders, if excited, will also radiate. Since in many practical applications d/� ex-
ceeds 0.4, we often need to include the first two ambiguous spectral components at ±N/T.
The interference between the fundamental and the two ambiguous components is the
source of pattern ripple. It is also easy to understand that the spectrum shift, resulting
from an excitation phase slope, changes the Bessel weighting with possible significant
modification of the pattern shape. With higher modes, the ambiguous spectrum comes
closer to and eventually moves into the “visible space,” causing pattern distortion.

In the omnidirectional example (Figure 2.7), the pattern was computed from a direct
summation of the N element contributions [Eq. (2.11)]. Using phase mode theory, we get
an identical result from a summation of the three relevant phase modes, modes 0 and ±N,
as demonstrated in Figure 2.13.

It may be worth pointing out in summary that the rightmost column of Table 2.1 repre-
sents the actual phase mode spectra, extending to ± infinity. When a discrete array is fed
with one phase mode only, the resulting excitation spectrum will, in general, contain also
harmonics or distortion modes, as we have illustrated here. To minimize the impact of
these distortion modes, small kR values are required; that is, for a given diameter array,
small element separations. However, it is sometimes still possible to find array solutions
that are acceptable even when distortion modes are present.

Matrix-feeding systems can be used to excite a number of phase modes simultane-

1�
N

1
�
T
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ously, each phase mode corresponding to one beam port of the matrix. Ideally, the cor-
responding patterns would all be (amplitude) omnidirectional, but with different phase
progressions in the azimuth. This means that the angular bearing of a received signal
can be determined by comparing the phases of the different mode excitations. Typical
feeding arrangements to accomplish this and other arrangements are described in more
detail in Chapter 9. Another aspect of using several phase modes is found in pattern
synthesis applications. A discussion of conformal antenna pattern synthesis is given in
Chapter 10.

2.3.3 Directional Elements

When the radiating elements are directive, the array performance in terms of bandwidth
and pattern stability is usually improved compared to arrays with isotropic elements
[Rahim and Davies 1982]. Also, with directive elements the phase mode concept helps in
understanding the mechanisms.

The general expression for the radiation from a circular array [Eq. (2.15)] is repeated
here:

E(�) = ��

–�
V(�)EL(� – �)e jkR cos(�–�)d� (2.30)

1
�
2�

2.3 PHASE MODE THEORY 29

Table 2.1. Mode spectra for various array excitations.

Case Source domain Spectrum

Continuous

Continuous, with 

phase slope

Constant Single line

--T/2 T/2

--T/2 T/2

Constant + phase slope

--T/2 T/2

0

0

Single line, shifted

m/T

mπ

mπ

-- mπ

--mπ

Discrete, constant

Discrete, constant

with phase slope

N point sources Line spectrum

--T/2 T/2

N point sources + phase slope

N point sources, sampled

excitation

--N/T N/T

0π π

0

Shifted line spectrum

--N/T N/T

0

General spectrum

--N/T N/T
--T/2 T/2

General case
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Figure 2.13. Omnidirectional patterns with N = 8 and d/� = 0.65. (a) Computed from a
summation over all elements; (b) directly from a summation of three phase modes
(cf. Figure 2.7).
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The element radiation function is periodic over 2� and can, hence, also be expanded in a
Fourier series:

EL(�) = �



p=–


Dpe jp� (2.31)

Inserting this in Equation (2.30) yields

E(�) = ��

–�
V(�) �




p=–


Dpe jp(�–�)e jkR cos(�–�)d� (2.32)

Now, since we can expand the excitation in phase modes, V(�) = �Cmejm�, we can ob-
tain the result for each phase mode m after changing the order of integration and sum-
mation:

Em(�) = Cme jm� �



p=–


Dp ��

–�
e j(m–p)(�–�)e jkR cos(�–�)d� (2.33)

or

Em(�) = �Cm �



p=–


Dp jm–pJm–p(kR)�e jm� = Ame jm� (2.34)

This is essentially the product of (the spectral forms of) the excitation function and the el-
ement radiation function, respectively, a result that could be anticipated from Equation
(2.30), which is a convolution between excitation and radiation. Summation over all
modes m gives the total radiation. For each phase mode, we have to sum the contributions
from all components Dp of the radiating element expansion. [cf. isotropic elements, Eq.
(2.26)].

It is of interest to investigate the impact of various realistic element patterns. A partic-
ular element has its characteristic Fourier expansion (Dp coefficients) that influence the
array mode amplitudes Am, including their frequency dependence and so on. An isotropic
element has, of course, only a DC term in the expansion of Equation (2.33). Other pattern
shapes of interest include a (cos �) function or (1 + cos �) or something similar. In most
practical cases, the element pattern is a slowly varying function dominated by low spec-
tral orders. 

The problem with nulls of the Bessel function mapping improves radically with direc-
tional elements. Consider, for example, the element pattern (1 + cos �) [Rahim and
Davies 1982], which has only three spectral components, p = 0 and p = ±1. Thus, in Equa-
tion (2.34) we will sum terms like Jm + 0.5j(Jm+1 – Jm–1) = Jm – jJ�m, where J�m is the first
derivative of the Bessel function. This summation has no nulls within a wide region of in-
terest, substantially eliminating the Bessel null problem. Therefore, the mapping from ex-
citation to radiation function remains stable over a quite large kR range, enabling broad-
band array performance.

Figure 2.14 shows typical element pattern spectral representations for the following
cases: isotropic pattern, (1 + cos �) pattern, (cos �) pattern, and the E-plane pattern com-
puted for an axial slot in a conducting cylinder. The spectral magnitudes are shown (ab-
solute value). The slot pattern is quite similar to the (1 + cos �) pattern apart from some

1
�
2�

1
�
2�
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Figure 2.14. Typical element patterns in the Fourier domain: (a) isotropic, and (b)
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low-amplitude, higher-order components, and can therefore be expected to perform well
in circular arrays over large bandwidths. The similarity between the two in the nontrans-
formed domain (that is, as a function of the azimuth angle) is demonstrated in Figure
2.15. The derivation of the slot pattern is presented in Chapter 6. The (cos �) case is sim-
ilar to a microstrip patch H-plane pattern.

The transfer function from excitation mode to radiation mode, mode stability [Davies
1983], is demonstrated in Figure 2.16 for several element types and mode orders. The
spectra in Figure 2.14, including the first ±10 components were used. For isotropic ele-
ments, the mode stability is given directly by the Bessel function (Equation 2.25), where-
as the general case is given by Equation (2.34). We see that all directional elements show
promise for broadband performance. The case with m = 5 illustrates also that effective ra-
diation requires the array to be big enough in order to avoid superdirectivity (kR = Nd/� <
4; one could, e.g., use 10 elements and d/� < 0.4).

2.4 THE RIPPLE PROBLEM IN OMNIDIRECTIONAL PATTERNS

A common application of circular arrays is to generate an omnidirectional radiation pat-
tern in the azimuthal plane. An example of this using isotropic radiators was presented in
Figure 2.7, where a ripple amplitude of about 8 dB was obtained. We will here present
several additional design cases, and study how the ripple depends on the choice of design
parameters.
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Figure 2.15. Slot pattern (solid line) and 1 + cos � pattern (dashed) compared in the
angular domain.
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Figure 2.16. Mode stability for modes m = 0, 1, 2, and 5 in (a) to (d), respectively. El-
ement types: isotropic (solid line), slot (dashed), cos � (dash-dotted), and 1 + cos �
(solid line with crosses).
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2.4.1 Isotropic Radiators

The radiated phase mode m = 0 represents an ideal omnidirectional pattern without ampli-
tude ripple. In a practical case, we have discrete radiating elements, however, and, there-
fore, higher-order modes will be excited in addition to the fundamental mode. The inter-
ference between the modes causes a ripple in the resulting far-field pattern. Thus, it is
desirable to have just one mode, the fundamental m = 0 mode, to dominate. For this mode,
the J0(kR) Bessel function obviously plays an important role. Its first three zeroes and the
corresponding element spacings for N = 4, 8, and 16 elements are presented in Table 2.2.
Note that kR = Nd/�.

As an example, d/� = 0.5406 with N = 16 is a combination that cannot produce a m = 0
mode in the far field. This combination is therefore not suitable for the generation of an
omnidirectional pattern. The pattern would be determined by the distortion modes.

Figure 2.17 shows the ripple amplitude in decibels (lowest dip compared to maximum
value) plotted versus element spacing for 4, 8, and 16 elements in the array. Isotropic ra-
diators were assumed. From this figure, we find that a spacing less than 0.5 wavelengths
is required with four elements in order to obtain a ripple less than 5 dB. About 8 dB ripple
is obtained with eight elements and 0.65 wavelengths spacing, as demonstrated in Figure
2.7, whereas 16 elements with the same spacing results in very low ripple. A large spac-
ing greater than one wavelength is more or less useless. 

Figure 2.18 shows a detailed examination of the ripple behavior for element spacings
in the region from 0.5 to 0.6 wavelengths. The sharp dips in the curves correspond to the
third null in the J0 function; compare Table 2.2. 

Further examples are shown in Figure 2.19, where contour lines for 1, 3, and 10 dB
ripple amplitudes are plotted in a graph with the number of elements and the element
spacing on the two axes. As seen, the dependence on these parameters is neither simple
nor easy to predict. In the figure, the locations of the first nulls of the Bessel function J0

are indicated with dash-dotted lines. The highest ripple typically occurs along these lines,
as expected. 

It has been observed [Chu 1959, Knudsen 1956] that odd numbers of elements some-
times produce less ripple than even numbers. Figure 2.20, which is extracted from Figure
2.19 for d/� = 0.8, verifies that this often is the case. 

In order to minimize the ripple, the harmonics of the fundamental mode must not be al-
lowed to radiate. Figure 2.10 gave an indication of which modes are important—mode
numbers up to kR + 5 will radiate. Since for the fundamental mode excitation the first har-
monics appear at modes ±N, we find an approximate criterion for no radiation of distor-
tion modes:

N > 5/(1 – d/�) (2.35)

2.4 THE RIPPLE PROBLEM IN OMNIDIRECTIONAL PATTERNS 37

Table 2.2. Zeroes of J0(kR) for various combinations of N and d/�.

d/�

Zero Number J0 argument N = 4 N = 8 N = 16

1 2.405 0.601 0.3 0.15
2 5.520 1.38 0.69 0.345
3 8.654 2.16 1.08 0.5406
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Figure 2.17. The ripple amplitude for circular arrays with isotropic elements; four el-
ements (solid line), eight elements (dashed line), and 16 elements (dash–dotted line). 
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Figure 2.18. Ripple resonance effect with 15 (dashed line) and 16 elements (solid
line). Isotropic radiators.
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Figure 2.19. Ripple amplitude contour lines (1 dB solid, 3 dB dashed, and 10 dB dot-
ted) for circular ring arrays with isotropic elements and m = 0 mode excitation.
Along the dash–dotted lines, J0(kR) = 0.
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Figure 2.20. Omnidirectional pattern ripple as a function of the number of elements
when d/� = 0.8.
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This explains why more elements are required as the element spacing increases. As Fig-
ure 2.12 indicates, there is a gradual cutoff of higher modes, so the number of elements
required depends on how large a ripple one can tolerate.

2.4.2 Higher-Order Phase Modes

Each individual excitation mode, not just the zero mode, has an omnidirectional (ampli-
tude) far field pattern (but with an azimuthal phase variation). However, with higher exci-
tation modes the radiation from distortion modes tends to increase, causing increased pat-
tern ripple. We can see from Figure 2.20 that particularly good performance (about 1.5 dB
of ripple) is obtained with five isotropic elements, d/� = 0.8, and m = 0. The same array
but with m = 1 gives 5 dB of ripple, and m = 2 gives 25 dB of ripple. In general, low phase
modes are to be preferred. Figure 2.21 is similar to Figure 2.19, but for m = 1 excitation.
The dash–dotted lines represent J1 = 0 in this case.

Thus, even if a feeding network is designed to generate a particular phase mode in a
circular array antenna, other modes will also be generated. These harmonics can be sup-
pressed if the element spacing is small: kR < N/2. Higher modes can also be caused by
mutual coupling among the radiating elements [Jones and Griffiths 1988]. The phase
mode amplitude is furthermore dependent on the matching of the phase mode impedance;
more about this in Chapter 8.

2.4.3 Directional Radiators

In our discussion of circular arrays with isotropic elements, we have seen that the array
parameters (radius and number of elements) must be chosen carefully in order to avoid
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Figure 2.21. Ripple amplitude contour lines (1 dB solid, 3 dB dashed, and 10 dB dot-
ted) for ring arrays with isotropic elements and m = 1 mode excitation. Along the
dash-dotted lines, J1(kR) = 0.
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excessive ripple and/or canceling of the radiation from certain modes. This implies also
that the array is narrowband. Physical insight into the problem can be gained by consider-
ing the interference between the contributions from the different parts of the array. Figure
2.22 shows the calculated near field amplitude and a cut along a diameter of an array with
16 isotropic radiators. The array acts as a resonator with significant standing wave ampli-
tude inside the array. This effect can be minimized by using directional elements that
have beams pointing away from the center of the array.

A simulation with cosine-shaped element patterns using the omnidirectional mode m =
0 is shown in Figure 2.23. The element pattern is

cos � |�| < �/2
EL(�) = � (2.36)

0 |�| > �/2

Similarly, Figure 2.24 shows the case with (1 + cos �) element patterns.
These examples show that a considerable improvement in ripple performance is ob-

tained if elements with a directive beam pointing radially away from the center of the ar-
ray are used. The case presented in Figure 2.17 for isotropic elements is repeated in Fig-
ure 2.25, but now with cos � element patterns.

2.5 ELEVATION PATTERN 

Leaving the azimuth plane, we can write the radiation function for arbitrary directions (�,
�) and isotropic elements:

E(�, �) = ��

–�
V(�)e jkR�(�)·r̂(�,�)d� = ��

–�
V(�)e jkR sin � cos(�–�)d� (2.37)

Thus, R is replaced by R sin � in the previous azimuth plane expressions. Comparing with
Equation (2.26), we obtain the pattern from the mth phase mode excitation and isotropic
elements:

Em(�, �) = jmCmJm(kR sin �)e jm� (2.38)

The fundamental m = 0 mode with all elements radiating in phase has its maximum radia-
tion for � = 0 (zenith direction). With higher-order modes, more power is concentrated in
the horizontal plane, as was discovered by Chireix [1936]. Since kR is replaced by kR sin
�, the critical dependence on the Bessel function and the pattern stability with frequency
becomes an issue also with regard to the elevation angle. The variation with azimuth an-
gle � will depend on the elevation angle and there can be nulls at certain elevations; the
amplitude of each phase mode depends on the elevation angle. However, the use of direc-
tional elements improves performance also in the elevation plane [Rahim and Davies
1982]. The elevation beamwidth for a particular phase mode is obtained directly from the
corresponding Bessel function, as seen from Equation (2.38).

2.6 FOCUSED BEAM PATTERN

The pattern function for a circular array with cophasal excitation given by Equation (2.14)
is repeated here:

1
�
2�

1
�
2�
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Figure 2.22. (a) The near field of a circular array. (b) Shows a cut through the array
center. 16 isotropic elements spaced at 0.6 wavelengths. The array diameter 2R is
3.06 �.
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Figure 2.23. Ripple amplitude contour lines (1 dB solid, 3 dB dashed, and 10 dB dot-
ted) for ring arrays with m = 0 mode excitation and cos � element patterns.
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Figure 2.24. Ripple amplitude contour lines (1 dB solid, 3 dB dashed, and 10 dB dot-
ted) for ring arrays with m = 0 mode excitation and 1 + cos � element patterns.
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E(�) = �
n

|Vn| EL(� – n	�)e jkR[cos(�–n	�)–cos(�0–n	�)] (2.39)

The radiating elements are phased to produce a beam in the direction � = �0 in the az-
imuth plane. Simplifying to the continuous case with isotropic radiators, |Vn| = 1, and let-
ting �0 = 0 we obtain the pattern function 

E(�) = �2�

0
e jkR[cos(�–�)–cos�]d� (2.40)

which after some manipulations may be written

E(�) = J0�2 kR sin � (2.41)

We compare this ideal Bessel pattern with that of a discrete cophasal array of the same
size (in this example, kR = 9.6) in Figure 2.26. The two patterns are almost identical in the
main beam and the near sidelobe regions. The first sidelobe level is about –8 dB, com-
pared with about –13.5 dB for a uniform line source array. A continuous line source an-
tenna would have a sin x/x pattern instead of the Bessel function obtained for the circular
ring source.

�
�
2

1
�
2�
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Figure 2.25. The ripple amplitude for circular arrays with cos � element patterns.
Compare Figure 2.17. Four elements = solid line, eight elements = dashed line, and
16 elements = dash–dotted line.
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The 3 dB beam width is approximately 

�3dB = 82.2 �/Diameter, ring source (2.42)

�3dB = 50.6 �/Length, line source (2.43)

measured in degrees in both cases.
Returning to our example in Figure 2.8 for an eight-element array with 0.65 � spacing,

we plot in Figure 2.27 the same pattern in Cartesian coordinates and compare it with the
“ideal” Bessel function pattern. A third curve (shown dashed) is a case with the same di-
ameter but with 13 radiators at a denser spacing of 0.4 �. As seen here, the dashed curve is
very close to the ideal Bessel pattern (dash-dotted).

Consider again the Bessel window in Figure 2.12, from which we see that only compo-
nents with roughly m/kR � 1.5 are radiated. In order to exclude undesired spectral har-
monics, the window should only pass the unambiguous range up to at most N/2, and thus
N/2 should be greater than approximately 1.5 kR, or N > 15. The example in Figure 2.27
with N = 13 almost gives the limiting Bessel function pattern shape. 

Is there equivalence between circular and linear arrays? In this chapter we have point-
ed to several differences between the two cases. Still, there is one striking equivalence
that we may note. For the linear array with 2N + 1 isotropic radiators we have the pattern

Elin(�) = �
N

–N

Vne jknd sin � (2.44)
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Figure 2.26. Radiation patterns for a continuous circular ring source pattern (dashed
line) and a corresponding discrete array with 16 isotropic elements spaced at 0.6 �
(solid line). 
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For the circular array with 2M + 1 phase modes, we have the pattern

Ecirc(�) = �
M

–M

Ame jm� (2.45)

Thus, by making each phase mode Am equal to the corresponding element amplitude Vn,
identical patterns result [Davies 1965]. In the linear array case, the pattern would be given
as a function of kd sin �, and in the circular array case as a function of the angle �, but
otherwise the pattern shapes, sidelobe levels, and so on would be identical. This equiva-
lence will be further discussed in Chapter 10 on synthesis methods.

However, there is also one major difference worth pointing out. In the linear array
case, the element excitations Vn directly enter the pattern function. In the circular case, it
is the radiating phase modes Am instead, and we know that they are under the influence of
the Bessel function Jm(kR) and not directly controlled by the element excitations.
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In this chapter, we will investigate how antenna performance, in particular the gain and
coverage, depends on the shape of the conformal antenna. We consider situations in
which a wide angular region of space is covered by the antenna system, typically wider
than can be realized with one planar array antenna. Solutions with several planar arrays,
each pointing in a different direction, can also be used, and we will compare these with
curved conformal solutions. Finally, the use of multifaceted arrays, which approximate a
curved surface, will be discussed.

3.1 INTRODUCTION

A typical conformal array antenna has radiating elements evenly distributed on a
smoothly curved surface. This is the ideal case in which even the radiator shape match-
es the curvature of the surface. Alternatively, the surface can be built up of many small,
planar patches or facets, with one or a few radiators per facet. In this way, the surface
approximates a curved surface and the radiator shapes match the plane facets. A third
possibility is to use rather few large planar surfaces with several radiators per surface—
a multisurface array. In the typical multisurface case, one surface is used at a time. The
beam from one planar array is phase steered to a maximum value (edge of scan) at
which the adjacent plane surface takes over. Thus, a continuous wide angular coverage
can be obtained.

Conformal Array Antenna Theory and Design. By Lars Josefsson and Patrik Persson 49
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A number of possible generic surfaces are shown in Figure 3.1. The cylinder in Figure
3.1 (a) and the six-sided prism (b) are suitable for two-dimensional coverage in one plane
(360°). The half sphere (c) and the pyramid (d) with its four planar surfaces can both be
candidates in the (three-dimensional) case when a full hemisphere is covered. Obviously,
many more shapes can be considered.

The shape of a conformal antenna is often determined by mechanical or aerodynamic
considerations. However, if we have the freedom to choose the shape to maximize anten-
na performance, how shall we optimize it? Moreover, how would a curved array compare
with solutions with a few planar antennas? In the next two sections, we will analyze the
performance of solutions for two-dimensional and three-dimensional cases that use a
number of planar surfaces as well as curved surfaces. The performance comparison will
be made based on simple geometrical criteria.

In a planar phased array antenna, the beam can usually not be steered more than
about 60°–70° from the normal of the array [Mailloux 1994]. The limitation is due to
beam broadening (reducing directivity) and element impedance variations due to mutu-
al coupling, resulting in increased mismatch at large scan angles. The combined effect
can be expressed as a reduction in the antenna gain (or equivalently, the effective an-
tenna area, Aeff). The variation is approximately given by (cos �s)�, where �s is the scan
angle from the normal to the surface and � is a parameter close to one. Thus the reduc-
tion varies roughly as the projection of the antenna surface in the scan direction (see
Figure 3.2).

The parameter �, introduced to account for scan loss, has a value typically in the range
1.0 to 1.3. � = 1 corresponds to the ideal case (no mismatch), whereas a value greater than
1.0 can be introduced to account for increasing mismatch loss as the beam is scanned
away from the normal. A simple physical model can be obtained by representing the array
antenna by a current sheet, equivalent to densely spaced elementary dipole elements
[Wheeler 1965]. From this, we can derive a scan-dependent reflection coefficient. The
current sheet has an active resistance varying as cos �s in the E-plane, and as 1/cos �s in
the H-plane. For both planes the resulting mismatch loss becomes 

1 – |�(�s)|2 = 1 – tan4(�s/2) (3.1)

This can be compared with the assumed (cos �s)� variation that includes both the projec-
tion effect and, with � > 1, also mismatch. For up to about a 60° scan angle, the two mod-
els give roughly the same result if � is chosen to be 1.2. The total scan loss (projection
and mismatch) for the two models is illustrated in Figure 3.3, where the range of � values
is 1.0 to 1.3.
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Figure 3.1. Curved surfaces (a, c) and multisurface (faceted) arrangements (b, d). 
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The effective area (excluding mismatch losses) of a curved, conformal array is the pro-
jection of the active part of the array in the beam direction, see Figure 3.4, where a half
cylinder or a half sphere is assumed. The extent of the active area in the curved case (ac-
tive sector) is one parameter that has to be selected in the design of the array system. 

In principle, a curved array can be phase scanned just like planar arrays (cf. the multi-
surface alternative). This would imply keeping a fixed active sector and phase scanning
the beam until the adjacent sector is made active. While this is certainly possible and is

3.1 INTRODUCTION 51

Figure 3.2. Effective (projected) area of a planar array antenna. 

Figure 3.3. Total scan loss. Current sheet model (with diamonds) compared to the
(cos �s)� model, with � = 1.0, 1.1, 1.2, and 1.3 (dashed curves, top to bottom). 
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sometimes the preferred beam steering method, we have here assumed that the curved ar-
ray is step scanned by shifting the active region in small increments of one element divi-
sion at a time. This method of commutating is advantageous since it minimizes the gain
variations. However, a complex switching network may be required. The technology is
discussed in more detail in Chapter 9. 

To obtain a cophasal distribution over the active region, the elements must be phase
controlled. In particular, the edge elements are scanned (locally) to a large angle. Due to
the shifting of the active region, all elements must usually be designed for this same large
scan angle. The value of this element maximum look angle defines the extent of the active
sector.

We use the following assumptions in comparing the different antenna shapes:

� The curved and faceted solutions will fit within the same given base area or volume.

� The radiating elements are assumed to be evenly distributed over the surface.

� To ensure a reasonable match of the radiating elements, they are used within a cer-
tain scan angle interval only (thus defining the active region of the array). 

� For antennas consisting of several planar surfaces, only one planar array is active at
a time. When an antenna element is not active, it is turned off.

� The gain (effective antenna area) is assumed to vary as (cos �s)�, where � > 1 is
used to account for additional mismatch scan loss. 

� The number of elements required to cover the total antenna surface Atot is used as a
measure of cost. 

� The different antenna shapes are compared based on their minimum effective anten-
na area Aeff within the coverage region. Dividing by the total number of elements
gives a normalized performance/cost index.

3.2 360° COVERAGE

3.2.1 360° Coverage Using Planar Surfaces

We consider a two-dimensional case in which the requirement is to cover 360° in one
plane. The antenna height (h) is kept constant and the antenna fits within a cylinder with
radius R. The minimum number (n) of planar surfaces is obviously three, like a three-
sided prism. In that case, each planar surface has to be steered ±60°. With more surfaces,
the scan requirement is reduced, as shown in Table 3.1.
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Figure 3.4. Effective (projected) area of a curved half-sphere or half-cylinder array
antenna.

Aeff
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As the maximum scan angle is reduced, the gain reduction with scanning becomes
smaller. On the other hand, each plane surface becomes smaller when more surfaces are
used. It is easily shown that four surfaces is approximately optimum in the sense that the
minimum effective antenna area is maximized. Let the n-sided prism with height h be in-
scribed in a cylinder with radius R. Each planar surface area has an area

Area = 2hR sin (3.2)

Since the required maximum scan angle is �/n, we get the minimum effective antenna
area (at edge of scan, with � = 1)

Aeff, min = hR sin (3.3)

This expression is maximized by n = 4.
Let the cost be represented by the total number of elements in the antenna system. We

can then introduce a performance index by dividing the minimum effective area by the
number of elements required. Now, the element spacing d/� depends on the maximum
scan angle �max according to

2�
�
n

�
�
n
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Table 3.1. Comparison of two-dimensional prism alternatives

Number of surfaces            Maximum scan angle               Shape

3 60o

4 45o

5 36o

6 30o

8 22.5o
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= (3.4)

The element spacing along the prism axis (dh) is not relevant for the two-dimensional
case. Thus, the normalized “performance divided by cost” index qp can be written

qp = = (3.5)

A plot of this function on a decibel scale is shown in Figure 3.5. It is seen that four or five
surfaces perform about the same. If the array elements are well matched over the scan re-
gion (� = 1) four surfaces may be preferred. With less well-matched elements, it pays to
use more surfaces, thus reducing the maximum scan angle from each.

3.2.2 360° Coverage Using a Curved Surface

We will now see how a circular cylinder performs. The total antenna area for a circular
cylinder with radius R and height h is simply

Atot = 2�Rh (3.6)

�cos �
�

n
��

�

��
n�1 + sin �

�

n
��

Aeff, min/�dh
��

N

1
��
1 + sin �max

d
�
�
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Figure 3.5. Normalized performance (effective area/cost) versus number of antenna
faces for omnidirectional coverage (360°). 
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The effective area, that is, the projected area, will depend on the size of the angular sector
�� of the cylindrical shape that is used (the active area). We obtain (cf. Figure 3.6)

Aeff = 2Rh sin (��/2) (3.7)

Equation (3.7) is valid if no degradation due to scan dependent mismatch loss is included
(i.e., � = 1). To include losses, we use � > 1. The effective area for this more general case
becomes

= 2 ���/2

0
(cos �)�d� (3.8)

��/2 is the maximum element look angle (maximum scan angle). In Figure 3.7, the effec-
tive area is shown as a function of the active sector angle �� for different values of �.

The maximum projected area that can be used is, of course, 2Rh, but this would require
the edge elements to be steered up to 90° from the local normal. This is probably not pos-
sible or at least not very effective. An active sector of about 120° is more reasonable, cor-
responding to a maximum element look angle of 60°. 

The larger the sector, the smaller the element spacings that must be used [Eq. (3.4)],
and that increases the cost. Our performance/cost index for the circular cylinder case il-
lustrates this:

qc = = (3.9)

The performance index in decibels is shown in Figure 3.8 for the cylindrical case as a
function of the angular size of the active sector and for different values of �. The perfor-

���/2

0
(cos �)�d�

��
��1 + sin �

�
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�
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Figure 3.6. Active sector of a cylindrical array.
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Figure 3.7. Relative effective area versus sector angle for different values of �.
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Figure 3.8. Normalized performance (effective area/cost) versus sector angle for
omnidirectional coverage (360°). 
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mance for the solution using a number of planar surfaces was shown in Figure 3.5. From a
study of these results, we draw the following conclusions:

� For planar surfaces, four or five surfaces are optimum.

� For cylinders, the larger the sector, the better, but going much beyond 120° is of
limited value.

� The cylinder case is better than the planar alternative by about 1.5 dB, and almost 2
dB better if a large scan angle can be used effectively (� close to unity).

3.3 HEMISPHERICAL COVERAGE

3.3.1 Introduction

Now we consider the three-dimensional case in which the beam is steered over a full
hemispherical volume, 2� steradians. For our discussion, we think of this as the upper
hemisphere with scan angles �s from zenith to the horizon and 0°–360° in the azimuth.
(For some applications, the coverage might be oriented differently, as in a nose-mounted
radar in an aircraft, where the region would be the forward hemisphere instead.) The pos-
sible solutions include an arrangement of planar surfaces (pyramids), as discussed in Sec-
tion 3.1, and several types of curved surfaces. The planar surfaces need not to be connect-
ed, since only one surface is used at a time. For installations on ships, for instance, two
surfaces can be mounted separately to cover the forward region, and two surfaces posi-
tioned to cover the aft region.

The curved surface that first comes to mind is probably a half sphere, matching the
shape of the required coverage. Many more surfaces can be considered, however, like
conical, ellipsoidal, and paraboloidal surfaces. Furthermore, the shape within one class of
surface depends on one or more parameters, such as eccentricity or focal distance.

As before, we base our comparison on the effective antenna area. To our previous list
of assumptions for the analysis, we add the following:

� The antenna arrangements will fit within a base diameter of 2R.

� The active surface for a curved solution is defined by a maximum local scan angle
of 60°.

� All curved alternatives are rotationally symmetric.

� The total antenna area is taken as a measure of cost.

It turns out that the optimum multisurface solution (for pyramidal shapes) has a maximum
scan angle near 60°. We, therefore, impose a 60° scan limit also for the curved cases for
simplicity. With this fixed, we do not need to introduce the � parameter (we let � = 1)
when comparing the different shapes.

In order to illustrate the concepts of active region and active elements, we take an an-
tenna array with radiating elements on a surface with a paraboloidal shape as an example
(see Figure 3.9). In this example, the antenna has a height-to-diameter ratio of h/D = 0.5.
The radiating element positions are indicated by circles, suggesting circular waveguide
apertures as radiators. The antenna has 177 elements, of which a certain number can be
used (are active), depending on the scan direction. 
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Each element is pointing in the direction of the normal to the surface. The angle be-
tween the normal and the desired scan directions (element look direction) determines
weather the element will be active (belongs to the active region) or not. As already dis-
cussed, we define the maximum useful look direction to be 60°. Figure 3.10 presents a
view of the antenna as seen on an axis (looking down from the zenith) with a contour plot
of cosines of the look directions over the surface. All values greater than or equal to cos
60° = 0.5 belong to the active region in this example, where a beam direction of 30° from
zenith was assumed. The active elements (98 out of 177) for this case are shown in Figure
3.11 in the same view.

3.3.2 Hemispherical Coverage Using Planar Surfaces

This problem was discussed by Knittel [1965]. There must be at least three planar sur-
faces, which can be combined into a three-sided pyramid. The largest scan angle for
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Figure 3.9. Conformal array antenna with the shape of a paraboloid. 

Figure 3.10. Contour plot showing cosine of the element look directions for 30° scan
from the zenith. 
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hemispherical coverage is then 63°. A four-sided pyramid requires a largest scan angle of
55°.

We obtain the ratio between the minimum effective area and the total area (perfor-
mance-to-cost index) for pyramids:

= = 0.151 (three-sided) (3.10)

= = 0.143 (four-sided) (3.11)

Thus, the two cases perform about the same. The three-sided pyramid shows the largest
antenna area in the most favorable direction (normal to the surface) but in the worst direc-
tions, the results differ very little. In fact, as pointed out by Knittel [1965], the four-sided
pyramid requires fewer elements than the three-sided pyramid for equal minimum gain.
This is not apparent from Equations (3.10)–(3.11), but closer investigation reveals that the
three-sided pyramid performs slightly worse than assumed here because the maximum
scan angle is larger by 8°, causing some extra mismatch loss not accounted for in our for-
mulas. This makes the three-sided and four-sided pyramids more equal in performance.
Additionally, the three-sided pyramid requires slightly denser element spacings, thus

cos 55°
�

4

Aeff
�
Atot

cos 63°
�

3

Aeff
�
Atot
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Figure 3.11. Active elements for 30° scan direction. 

Figure 3.12. Three- and four-sided pyramids.
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more elements. The result is that the four-sided pyramid turns out to be the most cost-ef-
fective of the two. However, both alternatives are inferior to the curved cases, as we shall
see.

3.3.3 Half Sphere

The hemispherical surface provides an active area subtended by a conical angle of 120°
based on our assumed maximum scan angle 60°. The effective area is Aeff = 3–

4 �R2 and could
be expected to be independent of the scan direction since we are dealing with a spherical
surface. However, for scan angles larger than a certain value, in our case 30° from the
zenith, the effective area decreases and is halved at the 90° scan limit (cf. Figure 3.4).

For scan angles �s between 30 and 90° from the zenith, the effective area variation is
given by 

Aeff = (� – 	)R2 sin2 �max + 0.5 R2 sin 2�max cot �s sin 	 + R2 cos �s(
 – 0.5 sin 2
) (3.12)

where

cos 	 = cos �s cot �max

sin 
 = sin �max sin 	

In these expressions, �max is the maximum local scan angle. Dividing by the total area
2�R2, we get the performance-to-cost index shown in Figure 3.13 as a solid line.

The gradual reduction in performance from the 30° scan angle and onward is due to the
cutoff of the lower part of the hemisphere (see Figure 3.4). One alternative is to extend
the sphere downward to make the effective area constant with scan. However, this signif-
icantly increases the total area and, hence, the cost. The performance index (effective
area/total area) reduces to 0.20 (the dashed line in Figure 3.13).

3.3.4 Cone

A conical shape can be used for hemispherical coverage provided it is not too pointed or
too blunt. Since we imposed a maximum element look angle of 60°, the total cone angle �t

[see Figure 3.14 (a)] must be in the interval from 60° to 120°.
The total cone surface is

Atot = (3.13)

The active area has an azimuthal width of 2�0 [see Figure 3.14 (b)]. It depends on the
scan angle �s from the zenith and the maximum element look angle �max:

cos �0 = (3.14)

The effective area is obtained by projection of the active area on to the beam direction �s

from the zenith. Omitting the detailed derivation, we present the resulting expression:

cos �max – �s sin (�t/2)
���

sin �s cos (�t/2)

�R2

�

sin �
�

2
t

�
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Aeff = R2� + �0 cos �s� (3.15)

and the performance index becomes

= [sin �s sin �0 cos (�t/2) + �0 cos �s sin (�t/2)] (3.16)

where �0 is obtained from Equation (3.14).

1
�
�

Aeff
�
Atot

sin �s sin �0
��

tan (�t/2)
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Figure 3.13. Hemisphere. Normalized performance (effective area/cost) versus scan
angle from the zenith. The dashed line is for an extended sphere with constant effec-
tive area.
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Figure 3.14. Cone parameters. (a) cone angle �t and (b) active sector 2�0.
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The effective area changes rapidly with the scan angle. We show in Figure 3.15 how
the performance index varies with the scan angle for five cones with different cone angles
from 60° to 120°. In most cases, best performance is obtained near the zenith direction.

The average of Aeff/Atot taken over the hemispherical scan region is maximum for the
largest cone angle (120°) and about 20% less for the smallest cone angle (60°). If we in-
stead allow a 70° maximum local scan angle, we can use a 140° cone with about 20%
larger Aeff/Atot.

It is of interest to note that truncated cones have a normalized performance just like or-
dinary cones. This is so because cutting off the tip reduces the effective area and the total
area in the same proportions. 

3.3.5 Ellipsoid

The equation for an ellipsoid can be written as

+ + = 1 (3.17)

The hyperboloid equation is similar:

– – = 1 (3.18)
y2

�
b2
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�
a2

z2

�
c2

z2

�
c2

y2

�
b2

x2

�
a2

62 THE SHAPES OF CONFORMAL ANTENNAS

Figure 3.15. Cones with different cone angles. Normalized performance (effective
area/cost) versus scan angle from zenith.
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The asymptotes of hyperboloids are cones and, hence, pointed hyperboloids and cones
produce similar results.

We consider rotationally symmetric bodies here with a = b and z as the axis of rota-
tion. For the special case of a half sphere that we previously discussed, we have a = b = c
= R, R being the radius. By stretching the semisphere so that the height is larger than the
radius, the coverage at large scan angles from the zenith can be improved at the expense
of reduced performance toward the zenith. More radiating elements are needed, however,
increasing the cost. If, instead, the sphere is made flatter, performance toward the zenith
region is improved at the expense of reduced performance at large scan angles. Thus, by
modifying the antenna shape the coverage can be tailored according to special require-
ments.

The normalized (effective area/cost) performance for ellipsoidal cases with different
height-to-radius ratios is shown in Figure 3.16.

3.3.6 Paraboloid

The equation for a paraboloid of revolution can be written as

4f(z – h) = –(x2 + y2) (3.19)

where f is the focal distance. In polar coordinates, with origin in the focal point (F), we
have (cf. Figure 3.17)

r = (3.20)

The polar angle to the rim of the antenna is given by

tan = = (3.21)

The normal direction at the element location points an angle �/2 away from the z direction.

D
�
4f

4h
�
D

�max
�

2

2f
��
1 + cos �
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Figure 3.16. Normalized effective area for ellipsoidal shapes with different heights.
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In Cartesian coordinates, the paraboloidal surface can be written as

z = –h�� �
2

+ � �
2

�
�

(3.22)

where we have introduced the shaping parameter � [Czarnecki 2001]. This parameter al-
lows modifications to the paraboloidal shape, where � = 1 gives the normal paraboloid
and � = 0.5 gives the equation for a cone. Examples of possible cross sections (generating
curves) are shown in Figure 3.18. Thus, the same equation can be used to characterize
many typical shapes, from pointed to flat-topped surfaces. Similar variations can be ap-
plied to hyperboloids and ellipsoids.

The results for the paraboloid are included in the discussion in the next section, where
different shapes are compared. The electromagnetic aspects, including mutual coupling
and radiating patterns for paraboloidal array antennas, are discussed in detail in Chapters
7 and 8.

3.3.7 Comparing Shapes

The studied shapes differ in curvature and in the slope of the sides. This is important in
the trade-off of performance versus scan angle. We have looked mainly at the minimum
effective area within the scan region but, in reality, the requirements are often more de-
tailed and different weights can be given to different regions of the coverage.

A summary of how different shapes make use of the available size (2R base diameter)
is shown in Figure 3.19, where we have also included a hyperbolic shape and the planar
case for reference. All cases shown in this figure (except the pyramid and the plane) have
h/R = 1. The hyperboloid has an eccentricity e = 1.1. We see that performance very much
depends on the antenna shape. The pyramid makes poor use of the available base area (in-
scribed in the 2R diameter circle). The single plane surface performs well up to the scan
limit of 60°, but covers only 50% of the required volume.

The same cases are shown again in Figure 3.20 with the effective area normalized with
respect to the total area (= cost).

y
�
R

x
�
R
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Figure 3.17. Polar coordinates with a radiating element indicated at position (r, �).
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Figure 3.18. Paraboloidal shapes with � = 0.5 (cone), 1.0 (paraboloid), 1.5, and 2 (pa-
raboloid-type). The cone and the paraboloid are indicated by circles. 
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Figure 3.19. The effective area for several types of surfaces; h/R = 1.
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Finally, we summarize effective area versus total area for several shapes in Figure 3.21.
The maximum and minimum effective areas within the scan region are given. It is desirable
to obtain a large effective area with a shape that has a small total area. The closed cylinder
is an extreme case with a very large total area (both the top planar area and the curved sides
are used here), resulting in high cost. It performs marginally better than the hyperboloid but
has twice the total area. The half sphere is also relatively expensive. The variations with
scan angle were illustrated in Figure 3.13. These examples are all for h = R. By changing
the height, the results are modified; examples were given in Figures 3.15 and 3.16. Conical
shapes perform favorably in this comparison. A further advantage of cones is the constant
slope of the surface, possibly simplifying a physical realization. 

It should be remembered that the presented results are based on a geometrical analysis.
We have not introduced electromagnetic aspects, impedance variations, pattern perfor-
mance, polarization effects, and so on. These aspects will be addressed in Chapter 8 and
other places. It is clear that specific application requirements may lead to other shapes op-
timized not for maximum effective antenna area, as was assumed here, but for some other
criterion. For instance, it has been found that a pyramidal arrangement with five to six
surfaces (one pointing upward) can be optimal depending on what system requirements
are most important [Knittel 1965]. It has also been shown that six surfaces can be the best
alternative when the impact on system noise temperature is of main concern [Wu 1996]. 

However, based on our chosen criteria, we have found that curved solutions, in gener-
al, exhibit much better performance than solutions based on planar surfaces. This is true
for both the two-dimensional and three-dimensional cases.
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Figure 3.20. The normalized effective area versus scan angle from the zenith;
h/R = 1.
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3.4 MULTIFACETED SURFACES

We conclude this chapter with some remarks on multisurface arrays. As long as a multi-
faceted surface is a good approximation to its curved counterpart, the results presented for
the curved shapes apply also to the faceted ones [Marcus et al. 2003]. An example of an
effort to build a spherical surface from many planar, triangular subsurfaces is shown in
Figure 3.22.

The sphere has the smallest surface compared to its volume of all canonical shapes.
The largest surface compared to its volume is found in the tetrahedron (three-sided pyra-
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Figure 3.21. Maximum and minimum values of the effective antenna area versus the
total antenna area for several conformal antenna shapes.

Figure 3.22. A spherical surface built from triangular planar facets [Bondyopadhyay
2002].
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mid) [Miranda 2000]. Are there regular arrays of identical facets that closely approximate
the sphere? Only few such shapes (Platonic solids) exist, among them the octahedron and
icosahedron, with 8 and 20 equilateral triangles, respectively. The dodecahedron has 12
pentagons. It is, therefore, not possible to find a regular element layout on a spherical sur-
face with a large number of facets or elements. However, the icosahedron presents a good
starting point. See also page 309.

Horiguchi et al. [1985] describe a projection method starting from the regular triangles
of an icosahedron. The triangle is subdivided into smaller triangles that are projected onto
the sphere surrounding the icosahedron. These small triangles can then be further divided
into even smaller triangles and projected again, and so on. The result is a periodic lattice
with some variation in element distances. Alternatively, one could randomly disperse the
positions (within certain limits) as described by Vallecchi and Gentili [2003]. 

A particular appeal of the (almost) spherical array, apart from the wide scanning capa-
bility, is the uniformity of the element surroundings; all elements see the same environ-
ment, which simplifies the design. Figure 3.23 shows a proposed multisurface array [Löf-
fler et al. 2001] with many small planar surfaces, each with several radiators. It is an
intermediate case between one element per facet and the pyramid in Figure 3.1. See also
the faceted array in Figure 1.8.

The multisurface array in Figure 3.24 is a crude approximation of a half sphere array
with 27 microstrip patch elements on a number of plane facets. Sufficient gain for a satel-
lite communication and navigation ground segment system is obtained by switching be-
tween the various elements. This results in a relatively low-cost solution [Löffler et al.
1997, Wiesbeck et al. 2002]. Each radiating element has been designed for maximum
gain, up to 10 dB, which is achieved using superstrate layers. An important observation is
that high-gain elements must be separated enough so that the effective apertures do not
overlap, which would cause reduced efficiency. 

A proposed multifaceted solution for mobile base stations using dual ±45° polariza-
tions is shown in Figure 3.25. The performance for this faceted design in terms of ripple
and beam forming was calculated to be about the same as a curved design [Raffaelli and
Johansson 2003, 2005].

The multifaceted surfaces are advantageous because they simplify the packaging of ra-
diators, active electronics, and so on into integrated planar multitile modules [Tomasic et
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Figure 3.23. A multisurface array approximating a spherical shape [Löffler et al.
2001].
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al. 2003]. It has been shown that a few large inclined planar arrays can be combined to
generate similar pattern performance as a corresponding curved array with uniform exci-
tation, that is, about –13 dB sidelobe ratio [Hsiao and Cha 1974]. The nonsmooth shape,
however, makes it difficult to meet more stringent radiation pattern requirements (unless
a quite large number of elements and facets are used). A particular concern is the diffrac-
tion from the edges and/or gaps between facets. The mutual coupling and element pat-
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Figure 3.25. Faceted cylindrical microstrip patch array (CAD model). [Raffaelli and
Johansson 2003]. See also color plate 11. (Courtesy of Ericsson AB, Göteborg,
Sweden.)

Figure 3.24. A multisurface solution approximating a half sphere [Wiesbeck et al.
2002].
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terns on faceted and curved cylinders have been compared using UTD by Marcus et al.
[2003]. The size of the facets was in this study at least a couple of wavelengths across.
The results showed only small differences, but with an increased ripple for the faceted
cases.
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In this chapter, we will describe some methods suitable for the analysis of conformal an-
tennas. In general, analyzing conformal antennas is a difficult problem and solutions are
often found only for specific geometries. Thus, there are many different methods avail-
able. We will discuss some of the most commonly used methods and their advantages and
disadvantages. The methods will be described with an application point of view in mind.
References will be given to a number of papers in which the methods have been used and
where more details can be found. At the end, some final remarks are added, together with
guidelines for selecting suitable methods. 

4.1 INTRODUCTION

Conformal array antennas can have many shapes. The surface is often electrically large
(in terms of wavelength) and it may be convex or concave or both. Furthermore, the sur-
face can have edges or other discontinuities and a dielectric layer can cover the surface.
Altogether, the surface can be very complex. Important steps in array analysis are to find
the mutual coupling among the radiating elements and the (isolated and/or embedded) ra-
diation patterns of the individual elements. A major part of the analysis is, therefore, to
find the electromagnetic fields on the surface and the far field in the presence of this com-
plex and, in general, arbitrarily shaped body. 

The available methods (for any EM problem, in fact) are often divided into two cate-
gories: frequency domain methods and time domain methods. Frequency domain meth-
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ods are probably the most commonly used methods for analysis of antennas, including
conformal arrays. This class is often subdivided into low-frequency methods and high-
frequency methods. “High frequency” implies that the properties and size parameters of
the geometry vary slowly with the frequency. 

In this chapter, we will use a somewhat different classification of the methods: electri-
cally small surfaces and electrically large surfaces. Both frequency and time domain
methods are included in a logical way, making it easier to find a suitable method for a
practical application. The distinction between electrically small and electrically large sur-
faces is not always clear—the two categories overlap to some extent. The assumption of
an electrically large surface is often valid for large bodies when the frequency is in the
microwave frequency band or higher. However, it is necessary to know several methods
and find out when they are applicable. A hybrid approach (a combination of different
methods) is often used in practice.

We will focus on the most commonly used methods but not describe the methods
in great detail. Instead, we will try to point out what to take into account and describe
the features of the methods, both good and bad. With this information, we hope the
reader will be able to find a suitable method when facing a conformal antenna problem.
However, the practical application of a certain method is not discussed; this is up to
the user to find in the relevant references. Some help is provided by the many refer-
ences that are listed, and also by two canonical examples that will be described in
Section 4.5. 

Before entering into the discussion of the various methods we present in Section 4.2
the typical electromagnetic problem that we have to solve, and we introduce also some
parameters that will be used in the next several chapters. 

Section 4.3 on electrically small surfaces deals with frequency domain methods such
as modal solutions, integral equations (IE)/method of moments (MoM), and the finite
element method (FEM). Time domain methods are also included here, including the
most commonly used, the finite-difference time-domain method (FDTD). These meth-
ods become intractable for structures that are large in terms of the wavelength, since
the associated matrices become very large. Thus, an upper frequency limit exists for
these methods. The time domain methods are often used for analyzing antennas for
large frequency bands, which, however, requires much computer memory (and time).
The classical FDTD has a disadvantage when applied to conformal antennas: the stair-
case approximation of curved surfaces. Some attempts to improve the method will be
discussed.

Section 4.4 discusses methods for electrically large surfaces. The methods considered
here have a lower frequency limit. Examples of methods suitable for this class of surfaces
are geometrical optics (GO), geometrical theory of diffraction (GTD), uniform theory of
diffraction (UTD), physical optics (PO), and physical theory of diffraction (PTD). 

In Section 4.5, we present some more details for two canonical problems. The two
cases are a waveguide-fed aperture antenna and a microstrip-patch antenna located at an
arbitrarily shaped surface. The approach is an integral equation formulation, solved with
the method of moments. The reason for choosing this approach is that we can point out
several interesting aspects, and at the same time retain a physical insight into the solution.
With a full numerical approach, this insight is more difficult to illustrate.

Section 4.6 concludes this chapter with a short discussion and comparison of the vari-
ous methods. We have included a table with guidelines and some additional comments.
Hopefully, this will help the reader in choosing a proper method. 

74 METHODS OF ANALYSIS

c04.qxd  12/1/2005  3:53 PM  Page 74



4.2 THE PROBLEM

In the previous chapters of this book, we have presented a background and general char-
acteristics of conformal antennas. We will now proceed and analyze conformal antennas
in more detail, that is, solve the associated electromagnetic problems. This includes find-
ing the fields in space due to radiating sources (elements) on a curved surface. When this
is done, the antenna array can be analyzed with respect to radiation pattern characteristics
and mutual coupling among the elements, impedance, and so on. The generic problem is
illustrated in Figure 4.1. 

This is a boundary value problem in which we have to match a field representation out-
side S with the supposedly known field or current distribution at the antenna elements.
When the solution has been found, we have obtained the Green’s function (

––G) for the an-
tenna problem. Thus, the field outside S is related to the radiating element current (J�)
simply by the following general formula:

E� = �
N

n=1

�
Sn

––G · J�dS (4.1)

where the sum is taken over the number of elements considered. Unfortunately, the num-
ber of geometries where an explicit field representation outside S can be found is very
limited. In many cases, asymptotic expressions are needed, and in some cases a numerical
representation is the only possible solution.

When we have found a solution to the electromagnetic problem, we can start analyzing
the conformal (array) antenna. For the radiation problem some approximations can be ob-
tained when considering the far zone region. A brief overview of circular array antenna
theory was presented in Section 2.2. The electromagnetic solution to the problem also
gives us the tool to study the surface field or the near field, in order to find the mutual
coupling among the radiating elements. This analysis is often difficult since no far field
approximations are possible. However, the mutual coupling is very important and is need-
ed for a full analysis of the antenna array characteristics. Calculating the mutual coupling
between two radiators implies finding the surface field at the receiving element n due to
the source element m, and then match the boundary conditions at the receiving element.
For aperture antennas, this can typically be expressed as

Ynm = �
Sn

E�n × H�n(m)dS� (4.2)
1

�
VmVn
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Figure 4.1. The problem: find the field outside the curved surface S due to one or
more radiating elements on the surface S.
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where H�n(m) is the surface magnetic field at aperture n due to the electric field E�m in aper-
ture m. Hence, E�n denotes the electric field at the receiving aperture and Vm and Vn are the
modal amplitudes (which equals 1 if normalized).

If we take two radiators like this from a large array with the other radiators short-
circuited in case of apertures (or open-circuited for dipole type elements), we get essen-
tially an element in the mutual admittance (impedance) matrix. From this matrix, we can
derive the scattering matrix for the full array:

S = (I – Y)(I + Y)–1 or S = 2(I + Y)–1 – I (4.3)

The radiation properties and the mutual coupling among the elements are studied in great
detail in Chapters 6–8. Another type of analysis is to study the scattering properties. In
this case, the excitation is given by an incident wave. This problem will be considered in
Chapter 11.

So far, we have not defined the type of radiating element used. The conformal array
antenna characteristics depend to a great extent on the curvature of the surface, element
lattice, and other array parameters, but also on the antenna element type. The choice of ra-
diating element will to some extent determine how to solve the analysis problem. We will
give two explicit examples in Section 4.5, where waveguide fed aperture antennas and
microstrip patch antennas are considered. These two types of antenna elements are used
in many conformal antenna applications. 

4.3 ELECTRICALLY SMALL SURFACES

4.3.1 Introduction

In this section, methods for the analysis of electrically small surfaces are discussed. We
will start by discussing the modal solution and also give some explicit results that are easy
to apply for certain canonical surfaces. If more advanced shapes are of interest, other
methods, often numerical methods, are more suitable, but they require more effort of the
user.

A difficulty with many of the methods presented in this section is that they become nu-
merically intractable as the dimensions increase. As already indicated, there is no exact
boundary between electrically large and small surfaces. A radius of curvature of up to five
wavelengths can often be analyzed by, for example, a modal solution method, but this de-
pends on the available time for computations and available memory. One interesting ap-
proach is to use a hybrid method by which the attractive features of different methods are
combined.

4.3.2 Modal Solutions

4.3.2.1 Introduction. The classical way of analyzing conformal antennas is to
use separation of variables and express the solution in a modal representation, that is, in a
vector harmonic series representation. This is possible only for special shapes, such as a
perfectly conducting circular cylinder, elliptic cylinder, cone, or sphere. Many researchers
studied the circular cylinder during the 1940s and 1950s; see, for example [Carter 1943,
Pistolkors 1947, Silver and Saunders 1950, Levin 1951, Harrington and Lepage 1952,
Knudsen 1959]. J. R. Wait [Wait 1959] summarized most of the early work on cylinders
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in his book Electromagnetic Radiation from Cylindrical Structures. The cone solution is
found in, for example, [Bailin and Silver 1956, 1957, Pridemore-Brown and Stewart
1972, Hansen 1981a], and the sphere solution is found in, for example, [Karr 1951, Wait
1956b, Mushiake and Webster 1957, Belkina and Wainstein 1957]. See also [Zakharyev
et al. 1970], in which the radiation patterns of spherical antennas are calculated with a
modal solution. A simplification of the modal solution for structures with a rotational
symmetry axis is to reduce the three-dimensional problem to a spectrum of two-dimen-
sional problems by applying a Fourier transformation with respect to the symmetry axis,
as described by R. F. Harrington [Harrington 1961]. 

However, if the geometry is more complex, a modal analysis is very difficult if not im-
possible to obtain. The modal solution is complicated, and it has poor convergence if the
size of the geometry is increased (in terms of wavelength). Hence, the process of extract-
ing numerical results can be difficult and time-consuming. Nevertheless, the modal solu-
tion is the basic building block for obtaining analytical expressions of the field in the
presence of a curved surface. We will, therefore, derive explicit expressions for the fields
in the presence of a circular cylinder, which will be used later in this book. This is done
following the approach presented by Harrington [Harrington 1961].

4.3.2.2 The Circular Cylinder. The circular cylinder is assumed to be infinite-
ly long and perfectly conducting. In our example, the antenna element is an aperture an-
tenna. We assume that the tangential electric field distribution (Etan) on the surface is
known, as indicated in Figure 4.2. 

Since the electric field E� and the magnetic field H� outside the cylinder have zero diver-
gence, they can be expressed in terms of the magnetic vector potential A� and the electric
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vector potential F�. The components of the potentials satisfy the scalar wave equation. The
solution is found by using the method of separation of variables. However, we will first
reduce the problem to a two-dimensional problem by applying a Fourier transform with
respect to the symmetry axis (here the cylinder or z axis). Thus, define ~Etan as a Fourier
transform of the tangential components of E� as

~Etan(n, kz) = �2�

0
��

–�
Etan(r, �, z)e–j(n�+kzz)dzd� (4.4)

with the inverse given by

Etan(r, �, z) = �
�

n=–�

��

–�

~Etan(n, kz)ej(n�+kzz)dkz (4.5)

The wave functions Az and Fz are now constructed in a fashion similar to that of Equation
(4.4), but expressed in terms of the second-order Hankel function Hn

(2)(krr) representing
outward-traveling waves. Using the boundary conditions, we can find field expressions
that are valid outside the cylinder (R � r < �) in terms of the known Fourier transform of
the tangential electric field at the apertures. The electric field and the corresponding mag-
netic field are given in Equations (4.6)–(4.9):

E�(r, �, z) = �
�

n=–�

��

–��gn(kz)krH�n
(2)(krr) + fn(kz)Hn

(2)(krr)�e–jkzz+jn�dkz (4.6)

Ez(r, �, z) = �
�

n=–�

��

–�
fn(kz)Hn

(2)(krr)e–jkzz+jn�dkz (4.7)

H�(r, �, z) = �
�

n=–�

��

–��–fn(kz)krH�n
(2)(krr) + gn(kz)Hn

(2)(krr)�e–jkzz+jn�dkz (4.8)

Hz(r, �, z) = �
�

n=–�

��

–�
gn(kz)Hn

(2)(krr)e–jkzz+jn� dkz (4.9)

where

fn(kz) = (4.10)

gn(kz) = �~E�(n, kz) – ~Es(n, kz)� (4.11)

and kr
2 = k2 – kz

2.
The above solution has poor convergence if the radius of the cylinder is electrically

large (kR � 1). This can be understood by recognizing the harmonic series as a series of
standing waves around the cylinder. Therefore, the required number of terms in the sum-
mation over n is directly related to the size of the cylinder; many terms are necessary for
an electrically large cylinder. According to Wait [1959], at least 2kR terms are needed in
the summation for 2% accuracy. This problem can be reduced by deriving alternative for-
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mulations. In Wait’s book, two different approaches are used. One option is to rewrite the
solution as a residue series; see also [Stewart and Golden 1971] for the circular cylinder
and [Golden et al. 1974] for the cone. However, there may be additional numerical prob-
lems in evaluating special functions such as the Bessel and Hankel functions for large or-
ders and large arguments. 

To overcome the difficulties for large surfaces, it is possible to use asymptotic expres-
sions, both for special functions and integrals. This will be discussed in more detail in
Section 4.4, where such techniques are considered. 

We also have to solve the integral (in kz) that represents the inversion to obtain the
three-dimensional solution from the spectrum of two-dimensional solutions. In general,
this must be done numerically, except for the far zone (r � �), where the radiating field
can be found by using an asymptotic formula for the kz integral [Harrington 1961]. Thus,
the quite simple far field expressions obtained from Equations (4.6)–(4.7) (when rewritten
in spherical coordinates) are:

� � = � � sin � �
�

n=–�

e jn�jn+1� � (4.12)

A similar asymptotic expression for the mutual admittance cannot be found, since we
are then dealing with the near field. Instead, different techniques have been used to facili-
tate the kz integration, for example, by separating the solution into its real and imaginary
parts and changing the integration contour [Safavi-Naini and Lee 1976, Sohtell 1987].
See also [Wait 1959, Hansen 1981a] for more references on this topic.

If the above (aperture) antenna is coated with one or more dielectric layers, the proce-
dure can be extended to include these layers, although the complexity of the solution in-
creases as well as the numerical burden. Explicit formulas for a single layer can be found
in, for example [Persson and Rojas 2003, Thors and Rojas 2003], and multiple layers are
treated in, for example [Sipus et al. 1998]. A related problem is when the radiating ele-
ment is a microstrip patch antenna. This type of antenna can also be analyzed with a
modal solution, at least when studying the radiating properties. For rectangular patches, a
transmission-line model can be used, in which the patch is modeled as two radiating slots
with an approximately half-wavelength transmission line in between. The theory (for the
planar case) can be found in many papers or textbooks; some examples are [Derneryd
1976, Sengupta 1984, Balanis 1997]. In [Munson 1974] and [Calander and Josefsson
2001], this approach was applied to conformal antennas. A better approximation, valid for
any kind of patch geometry, is to view the area under the metallic radiator as a cavity
bounded by metallic walls. Impedance boundary conditions at the wall can be used to take
the losses in the cavity into account. The general theory can be found in, for example, [Lo
et al. 1979, Richards et al. 1981, Carver and Mink 1981]. In [Wu and Kauffman 1983,
Jakobsen 1984, Sohtell 1986, 1987, Krowne 1983, Luk et al. 1987] the cavity model was
used for conformal microstrip patch antennas. These approximations are fast and give a
fairly good alternative to the full-wave analysis needed for a more complete model of the
microstrip patch antenna.

4.3.2.3 A Unit Cell Approach. For arrays on circular cylinders (coated or not)
an attractive formulation is obtained by the theory of periodic structures (Floquet’s theo-
rem). This approach is well proven for the planar case, in which a unit cell is defined in
the (infinite) antenna array and the field is described using Floquet modes [Borgiotti
1968, Amitay et al. 1972]. The same procedure can in some special cases be employed for

fn(–k cos �)

gn(–k cos �)
e–jkr

�
�r

j�


–jk

E�

E�
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arrays of equally spaced elements on curved symmetrical surfaces. One example is the
circular cylinder (Figure 4.3), which can include dielectric layers; the sphere is another
example.

When using the unit cell approach, the fields in all cells must be identical, except for a
constant phase shift from cell to cell. For the cylindrical array, this is straightforward for
the axial direction of the cylinder. However, special care must be taken in the circumfer-
ential direction. Along each ring of the array, the phase shift between the cells must be
such that the complete ring produces a total phase change that is a multiple of 2�, that is,
the phase shift between two adjacent cells is 2�n/N, where N is the number of unit cells in
one ring. This makes the array infinitely periodic in both dimensions, and the analysis is
reduced to a study of one unit cell. 

A few examples from the literature follow. An array of infinitely long longitudinal
slots equispaced on a conducting cylinder was analyzed by Borgiotti and Balzano [1970].
A three-dimensional infinite periodic cylindrical array of waveguide elements located on
a PEC cylinder was considered by Munger et al. [1971] and Borgiotti and Balzano
[1972]. Balzano then extended the theory to a coated PEC cylinder in 1974 [Balzano
1974]. An axial dipole array was studied by Herper et al. [1985]. A more recent example
is [Gerini and Zappelli 2004], in which a circular cylinder was analyzed using a multi-
mode equivalent network approach. 

4.3.3 Integral Equations and the Method of Moments 

For arbitrarily shaped bodies, no exact analytical solution exists, as discussed in Section
4.3.2. Instead, numerical methods have to be used. One frequently used method is the
method of moments (MoM) or moment method. Strictly speaking, the MoM is not an
analysis method by itself. However, there is an underlying integral equation (IE) which
has to be solved numerically, and the MoM is a powerful method to do this. The IE can, in
general, be written as

LIE(w, w�)x(w�) = f (w) (4.13)

where LIE(w, w�) is the integral operator, x(w�) is the unknown fields or sources, and f(w�)
is the forcing function. The principle behind the MoM is to convert the integral equation
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into a matrix equation. This is done by expanding the unknown quantity in appropriate
basis (or expansion) functions with unknown coefficients. Projection on a set of testing
(or weighting) functions gives a system of equations. As a result, the IE in Equation
(4.13) is transformed into a matrix form as

Ax = f (4.14)

with the solution formally given by x = A–1f. More details about the procedure can be
found in any of the numerous references in this area; see, for example [Kantorovich and
Krylov 1964, Vorovbyev 1965, Harrington 1968, Adams 1974, Poggio and Miller 1973,
Miller and Burke 1992, Wang 1991].

The MoM procedure is general and applicable to conformal antennas located at arbi-
trarily shaped surfaces. Unfortunately, both calculating the elements in A and solving the
matrix equation can be cumbersome if the number of unknowns is large. This is a general
problem when using the MoM, but it can be much more pronounced for conformal anten-
nas. If the appropriate Green’s function cannot be found, as is the case in many conformal
antenna applications, the free space Green’s function must be used, resulting in an in-
creased number of unknowns. At higher frequencies and/or for electrically large surfaces,
the MoM becomes impractical in many cases. 

Despite these complications, the MoM has found widespread use in the analysis of
conformal antennas. It is often used in combination with other techniques such as spectral
domain and asymptotic techniques in order to simplify the analysis. In the references cit-
ed below, several examples are found in which the MoM has been used, sometimes com-
bined with other methods. Slots in (coated) PEC surfaces are considered in Peterson and
Mittra [1989] and Sipus et al. [2001a–b]. Microstrip patch antennas have been studied ex-
tensively; see for example, [Habashy et al. 1990; Silva et al. 1991; Wong et al. 1993;
Gottwald and Wiesbeck 1994; da Silva and Lacava 1995; Vecchi et al. 1997a–b; Bertuch
et al. 1999; Raffaelli et al. 2001, 2005; Sipus et al. 1998; Sipus 2003; Svezhentsev and
Vandenbosch 2001; Svezhentsev 2003; Jakobus and van Tonder 2003]. A perturbed mi-
crostrip antenna is considered in Thiel and Dreher [1999]; see also [Thiel and Dreher
2001a–c, 2002; Thiel 2002]. A conformal spiral antenna is studied in Nakayama et al.
[1999].

Boulder Microwave Technologies was offering a commercial software for analysis of
conformal microstrip-patch antennas, called Clementine [Hall and Wu 1996] in the late
1990s. This software is based on a mixed-potential integral equation (MPIE) model.
However, to our knowledge, this software is no longer available.

4.3.4 Finite Difference Time Domain Methods (FDTD)

4.3.4.1 Introduction. Time domain methods have to date not been used exten-
sively for the analysis of conformal antennas. One main reason is the difficulty in dis-
cretizing (meshing) curved surfaces. Discrete models require a lot of memory and compu-
tation time and there is a disadvantage in using the standard staircase approximation of a
curved surface. However, progress in conformal antennas for broadband applications
could motivate an increased interest in time domain methods compared to frequency do-
main methods. 

This section concentrates on FDTD and techniques to avoid staircase approximation
errors. There are other time domain methods such as TD integral methods [Bennet and
Mieras 1981, Rao and Wilton 1991, Rynne 1991, Sun and Rusch 1994b], time domain
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uniform theory of diffraction (TD-UTD) [e.g., Rousseau and Pathak 1995a,b, 1996,
Veruttipong 1990], and time domain physical optics (TD-PO) [Sun and Rusch 1994a].
However, most of these methods are used for transient and scattering studies. This is of
interest regarding, for example, the effects of electromagnetic pulses (EMPs) on complex
systems such as aircraft and spacecraft, but it will not be discussed here. The interested
reader is referred to the references. 

The standard FDTD algorithm [Yee 1966, Taflove 1995, 1998] is based on an orthog-
onal, regular Cartesian lattice. For nonplanar boundaries, a staircase approximation is
usually adopted, since this is the only way to model curved surfaces in standard FDTD.
To reduce the staircase approximation error, one solution may be to use a finer mesh to
better resolve the boundaries. Unfortunately, as shown in [Cangellaris and Wright 1991],
this does not necessarily mean that the solution will converge to the correct answer. As a
consequence, a number of studies during the last 10–15 years have focused on developing
FDTD-based algorithms using various types of conformal grids (see Figure 4.4). Below is
a short summary of the most relevant conformal grid FDTD techniques that can be found
in the literature.

4.3.4.2 Conformal or Contour-Path (CP) FDTD. One possible solution to
the staircase approximation problem is to use a locally distorted grid combined with a
globally orthogonal grid [Jurgens et al. 1992, 1993; Railton 1993; Yu et al. 2000; Yu and
Mittra 2000, 2001; Yu et al. 2001]. Thus, the space cells away from the boundary are the
same unit cells as used in the Cartesian grid arrangement, whereas the cells adjacent to the
boundary are deformed to conform to the surface. This method is known as conformal (C)
or contour-path (CP) FDTD. 

In the locally deformed cells at the boundaries, Maxwell’s curl equations cannot be
discretized using standard central differences. For these cells, the CP algorithm is used,
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Figure 4.4. (a) Sparse and dense nonorthogonal grids for a cylindrical cavity. (b)
Sparse and dense staircase grids for a cylindrical cavity. [Harms et al. 1992.] 
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which is based on Maxwell’s equations in integral form. The details can be found in
[Taflove 1995]. Figure 4.5 shows the deformed cells for a PEC surface.

In a modified version of the CP algorithm, see, for example [Yu and Mittra 2000], both
the electric and magnetic fields inside the distorted cell are located at the same positions
as those in the conventional FDTD scheme (see Figure 4.6). Now, the entire FDTD cell is
used and not only the distorted part. Those parts of the contour that are located inside the
PEC region are discarded. This increases the stability of the solution.

The advantage of CP FDTD is that it does not require extensive modifications of the
standard (Cartesian) FDTD algorithm. The CP method need only be applied to cells near
a material interface, whereas the traditional FDTD method is applied to the remaining
cells. However, electrically large surfaces still require the same number of cells as the tra-
ditional FDTD; only the staircase approximation has been avoided. For non-PEC bound-
aries, the method must be slightly modified; the reader is refereed to for example,
[Taflove 1995, Yu et al. 2000, 2001; Yu and Mittra, 2000, 2001]. See also [Byun et al.
1999], in which microstrip antennas have been analyzed using CFDTD. A three-dimen-
sional CFDTD algorithm is presented in [Dey and Mittra 1994].

4.3.4.3 FDTD in Global Curvilinear Coordinates. Another, more gener-
al, attempt to get rid of staircase approximations is to use the FDTD algorithm in general-
ized curvilinear coordinates. To handle generalized (nonorthogonal) coordinates,
Maxwell’s equations are formulated in tensor notation. It was Holland [Holland 1983; see
also Mei et al. 1984] who first proposed the generalized FDTD method in curvilinear co-
ordinates. A refined approach was described by Fusco [Fusco 1990] and applied to a two-
dimensional case. An attempt to study a three-dimensional problem was also proposed by
Fusco [Fusco et al. 1991]. Since the number of coordinate systems that can be represented
analytically is small, Fusco and coworkers used a numerically defined mesh wherein the
mesh point coordinates were given in an underlying Cartesian system. They applied the
algorithm to a body of revolution and determined both the near and far fields. However,

4.3 ELECTRICALLY SMALL SURFACES 83

Figure 4.5. The CP FDTD methodology for a perfectly conducting surface [Jurgens et
al. 1992].
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special treatments where needed in the vicinity of the rotation axis, since this axis repre-
sent a coordinate singularity. Later, a more efficient method was proposed [Lee et al.
1992]. This method has been used for analyzing curved microstrip patch antennas (see
Figure 4.7).

As can be imagined, this method is very demanding if large, generally shaped surfaces
are considered. It requires a large memory because of the large amount of geometrical in-
formation that must be stored. Because of the increased algorithmic complexity, it is also
time-consuming. In [Kashiwa et al. 1993], the curved antenna shown in Figure 4.7 needed
20 MB of memory compared to 3 MB for the flat antenna case. The computation time for
the curved antenna was 8.5 hours and 3.5 hours for the flat case. To the authors’ knowl-
edge, no major improvements have been made since then and the curvilinear FDTD algo-
rithm in its present form may not be suitable for analyzing conformal antennas. However,
an advantage of curvilinear FDTD could be that it interfaces more easily with the mesh
generators in mechanical CAD systems.

4.3.4.4 FDTD in Cylindrical Coordinates. FDTD in cylindrical coordi-
nates is a special case of the curvilinear FDTD algorithm discussed above. In this area,
several recent studies have been applied to conformal antennas. The discretization of
Maxwell’s equations in cylindrical coordinates can be found in, for example [Kunz and
Luebbers 1993, Taflove 1998]. Figure 4.8 shows an FDTD unit cell in cylindrical coordi-
nates. Since the z-axis represents a coordinate singularity, special care must be taken
when updating the Ez component if the z-axis is included in the computational domain;
for example, if a cylinder of finite length is considered. In this case, the Ez component can
be calculated by integration of the H� component around the z-axis (Stokes’s theorem).

Also, infinitely long PEC cylinders can be analyzed by this method if the tangential
electric field is set to zero at a radius R0, defining the lower boundary of the computation-
al volume in the �-direction as shown in Figure 4.9. The upper and lower boundaries in
the z-direction and the outer boundary in the �-direction must be terminated using a uni-
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Figure 4.6. The contour path of the conformal FDTD in a deformed cell [Yu and
Mittra 2000].
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Figure 4.7. Typical grid when using FDTD in curvilinear coordinates [Kashiwa et al.
1994]. (a) Rectangular microstrip antenna on curved substrate. (b) Mesh configura-
tion on yz cross section. 
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Figure 4.8. Field components placement in the FDTD unit cell in cylindrical coordi-
nates, after [Marcano et al. 1998].
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axial perfectly matched layer (UPML) boundary condition [Teixeira and Chew 1997,
Taflove 1998]. 

An important feature when using cylindrical coordinates is that a Fourier decomposi-
tion in the azimuthal direction can be used, regardless of whether a solution in the time
domain or the frequency domain is considered. Hence, the solution can be written in the
form

F(�, �, z) = �
n

Fn(�, z)ejn� (4.15)

where F is any of the six field components. Thus, Maxwell’s equations can either be
solved for each orthogonal mode n for a body of revolution (BOR method) or for a group
of modes that can exist in a sector of the cylinder. The latter method is useful when the
circular array antenna has elements equally spaced around the cylinder.

If the antenna (or scattering object) is N-periodic around the cylinder it is sufficient to
divide the cylinder into N sectors and use a computational volume occupying one of these
sectors with an angle 2�/N of the total cylindrical volume. Thus, the results for the entire
cylindrical volume are obtained by running the FDTD program N times using phase shift
boundary conditions at the vertical walls at � = �0 and � = �0 + 2�/N (see Figure 4.9).
The phase shift boundary conditions in the azimuth direction can be written as

Et��0 + � = Et(�0)ej�

(4.16)

Ht(�0) = Ht��0 + �e–j�
2�
�
N

2�
�
N
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Figure 4.9. Schematic three-dimensional view of a sector computational volume
when using cylindrical FDTD [Martin et al. 2003a].
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where Et and Ht represent any components of the electric and magnetic fields, although in
our case only the tangential components are used. The phase shift � in Equation (4.16) is
given by

� = 2�n/N, n = 0, 1, 2, . . . , N – 1 (4.17)

Since the fields are complex-valued (even though the simulation is performed in the time
domain), they contain information of both positive and negative phase shifts. Consequent-
ly, it can be shown that it is sufficient with N/2 + 1 simulations, corresponding to phase
shifts with n = 0, 1, 2, . . . , N/2 in Equation (4.17).

This method has been used to study radiation properties and mutual coupling for ele-
ments on a circular cylinder with and without a dielectric layer [Martin et al. 2003a,b]. An
interesting extension of the cylindrical FDTD is the hybrid cylindrical–Cartesian FDTD
method approach [Craddock et al. 2001, Paul and Craddock 2001, Paul et al. 2003]. This
method is shown to be well suited to the analysis of faceted conformal antennas. With this
model, all surfaces in the array are modeled without staircase approximations. Further-
more, the cylindrical–Cartesian FDTD hybrid method requires the same amount of mem-
ory and computation times as an equivalent planar array.

4.3.5 Finite Element Method (FEM)

4.3.5.1 Introduction. FEM or the finite element method is a general method for
solving boundary-value problems. This method has been applied to many different prob-
lems, not only electromagnetic (EM) problems. Thus, a large number of papers and books
have been published on this topic; see, for example [Courant 1943, Desai and Abel 1972,
Martin and Carey 1973, Norrie and de Vries 1973, Zienkiewicz and Taylor 1989, Jin
1993, Volakis et al. 1998]. 

The boundary problem to be solved is defined by a differential equation and the rele-
vant boundary conditions. A typical problem is the scalar or vector wave equation with
proper boundary conditions. For such problems, the differential equation (DE) can be
written in general form as

LDE� = f (4.18)

defined in a domain �. Here, LDE is the differential operator, � is the unknown quantity,
and f is the excitation or forcing function. For a complete definition, the boundary condi-
tions on the boundary � enclosing � must also be defined. 

When solving this problem with FEM, there are four basic steps involved (see the ref-
erences for a more detailed description). First, the domain must be subdivided or dis-
cretized into a finite number of subregions (or elements). With a sufficiently fine subdivi-
sion, very complex geometries (and materials) can be analyzed. The discretization will
affect the computer storage requirements, the computation time, and the accuracy of the
solution. Second, the solution within each element is approximated by a suitable function;
often a first-order polynomial is used. In the third step, all elemental equations are
brought together and the boundary conditions are imposed to get the final system of equa-
tions. If a proper discretization was made, the FEM formulation results in a banded matrix
formulation. Finally, this system of equations can be solved in different ways, preferably
by using a method that takes advantage of the banded matrix. 

4.3 ELECTRICALLY SMALL SURFACES 87

c04.qxd  12/1/2005  3:53 PM  Page 87



One disadvantage of FEM is that the Sommerfeld radiation condition is not incorporat-
ed automatically. Thus, the computational domain must be extended far from the structure
so that the radiation condition can be imposed, resulting in an increased number of un-
knowns. Incorporating absorbing boundary conditions in order to reduce the region outside
the antenna (see e.g. [Mittra and Ramahi 1990]), can solve the open boundary problem.
However, conformal antenna related problems often include complex and electrically large
geometries, which increases the number of elements (unknowns). As a consequence, the
conventional FEM itself has seldom been used to study conformal antennas. One exception
is [Özdemir and Volakis 1997], in which absorbing boundary conditions are used.
However, FEM in combination with integral equations results in a much more useful
method (FE-BI), to be discussed next. Another promising possibility is to combine FEM
with FDTD as presented in [Rylander and Bondesson 2002, Rylander and Jin 2003].

It should also be mentioned that there are powerful commercial FEM codes that can be
used to study conformal antennas. One example is given in [Vogel 2001] where the com-
mercial finite element software, Ansoft HFSS, is used. 

4.3.5.2 Hybrid FE-BI Method. Since FEM does not incorporate the Sommer-
feld radiation condition, the domain of discretization must be extended far from the scat-
terer/antenna, resulting in a large number of unknowns and long computation time. One
possibility to get around this is to use an integral equation in combination with FEM,
since the integral equation automatically incorporates the radiation condition. This hybrid
method is called the finite element boundary integral (FE-BI) method.

The basic idea of this approach was introduced in the beginning of the 1970s [Silvester
and Hsieh 1971, McDonald and Wexler 1972]. The method has then been further devel-
oped and solutions to general three-dimensional problems can be found in [Jin and
Volakis 1991a–c, Jin et al. 1991, Jin 1993, Volakis et al. 1998]. 

To use the FE-BI method a fictitious surface S enclosing the geometry is defined (see
Figure 4.10). Within this surface, the finite element method is used to find the fields by
discretizing the volume in small (volume) elements suitable for the geometry. The electric

88 METHODS OF ANALYSIS

n

V

S

J     M
int

extext

int

,

,

J M

^

Figure 4.10. Geometry of the scattering/radiation problem. 
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and magnetic fields within S are then expanded using edge-based, vector basis functions.*
In the exterior region, the fields are given by external sources (if this is a scattering prob-
lem) and the equivalent sources on S. On S, an IE is used with the free space Green’s
function. The fields in the interior and exterior regions are finally coupled by enforcing
continuity of the tangential fields on S.

Using this approach, a system of equations is obtained for the fields. The FE-BI equa-
tion for the electric field can be written in matrix form as

[A]� � + � �� � = � � (4.19)

In Equation (4.19), the matrix [A] is due to the finite element formulation and {G} is the
boundary integral submatrix; Eap and Eint denote the unknowns. Eap is associated with the
aperture field and Eint is the interior (volume) electric field used, for example, when a cav-
ity-backed antenna is considered. The right-hand side contains the sources: f int is the in-
ternal sources and f ext is due to external sources (� 0 only if scattering is considered).

This system must be solved numerically and there are various techniques to do this.
However, according to the reference literature (see, for example, [Jin et al. 1991]), a com-
bination of the biconjugate gradient method (BiCG) and the fast Fourier transform (FFT)
is preferred. This gives a numerical scheme that takes advantage of the fact that the FE
matrix is sparse whereas the boundary integral submatrix is fully populated, thus mini-
mizing the computational requirements. 

When applying this method to curved surfaces, some differences appear compared to
planar cases. First, the surface S is assumed to perfectly fit the curved surface. This re-
quires that the external free space Green’s function must be replaced with the proper
Green’s function. With this Green’s function, the boundary conditions become implicitly
included and the numerical computation is tractable. Unfortunately, the proper Green’s
function based on the modal solution discussed in Section 4.3.2 is not suitable for electri-
cally large surfaces. In this case, an asymptotic Green’s function is preferred, to be dis-
cussed next in Section 4.4. Furthermore, the shape of the elements used to discretize the
interior region must fit the geometry. When applied to a circular cylinder, shell-shaped el-
ements have been used, as reported in [Kempel et al. 1993, 1994a,b, 1995]. This was later
extended to handle elliptic cylinders using elliptic shell elements [Wu et al. 2002]. The
FE-BI method has also been applied to a doubly curved surface with cavity-backed patch
antennas on a prolate spheroid [Macon et al. 2001, 2002]. In this case, tetrahedral ele-
ments could be used to model the doubly curved surface. A patch antenna mounted on a
cylinder with a wing has been studied in [Liu and Jin 2003a,b].

4.4 ELECTRICALLY LARGE SURFACES

4.4.1 Introduction 

As mentioned in the previous section, many of the discussed methods become intractable
for electrically large surfaces due to numerical problems. One way of avoiding these
problems is to use a high-frequency approach. This means that asymptotic techniques are
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{0}

{Eap}

{Eint}
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*Traditional node-based finite elements have been proven unsatisfactory for three-dimensional electromagnetics
applications; instead, edge-based elements are used [Kempel and Volakis 1994a].
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used to find an approximate solution. The most important limitation of high-frequency so-
lutions is that the surface must be smoothly curved and electrically large. This is not a se-
rious limitation in many cases, however, since the minimum radius of curvature of the
surface can be quite small. A commonly used requirement is kR � 2 – 5 (k is the wave
number and R is the radius of the cylinder) for accurate results [McNamara et al. 1990].
Furthermore, edge diffraction can be included to account for discontinuities along the sur-
face edges [Kouyoumjian and Pathak 1974]. 

There are a number of different asymptotic techniques and solutions available; some of
them were listed in Section 4.1. The reason for the numerous asymptotic formulations is
that an asymptotic technique is often specialized for a certain problem and cannot be gen-
eralized easily. Furthermore, an (uniform) asymptotic solution is not unique, but the dif-
ference between two solutions is usually small.* However, a general formulation is very
desirable for efficient analyses of various realistic conformal antennas. The work by
Robert Kouyoumjian and his group at the ElectroScience Laboratory at Ohio State Uni-
versity has been successful and their solution is valid for different types of convex sur-
faces. The solution is known as the uniform theory of diffraction (UTD), which is a ray-
based theory. We have chosen to concentrate the discussion about high-frequency
methods on this UTD formulation since we think it is a very powerful concept used
worldwide. Furthermore, this concept (in addition to, e.g., the solution by [Lee 1978]) is
well suited to study arbitrary surfaces since UTD is explicit in its way of describing the
different effects that govern the behavior of wave propagation along curved surfaces.

Even though the UTD concept is a general approach, there are minor differences; for
example, when a coated or noncoated surface is considered as well as if the far field radi-
ation problem or the surface field problem is considered. There are also differences if the
surface is convex or concave. Due to space limitations, this book will only consider
smooth convex surfaces. For concave surfaces, the interested reader is referred to the
available literature. Conformal antennas have been convex in most of their applications
and will probably be so in the future as well. However, concave surfaces can find use on
spacecraft and some RF lenses (see Chapter 9). An asymptotic (ray-based) theory can be
used also for concave structures, but there are some additional features to consider such as
caustics and whispering gallery modes [Inami et al. 1982; Felsen and Green 1976; Ishi-
hara and Felsen 1978, 1988; Tomasic et al. 1989a,b, 1993a,b].

In Section 4.4.2, high-frequency methods for perfectly electric conducting (PEC) sur-
faces are discussed. This section presents the basic principles behind the ray-based theory,
and some important features are discussed. In Section 4.4.3, the theory is applied to coat-
ed PEC surfaces. It is noted that the theory is not complete in the latter case.

Appendices 4A.1-5 are included at the end of the chapter for those who want to get a
deeper understanding of the physics behind the ray theory and its connection to surface
waves and the underlying modal solution. 

4.4.2 High-Frequency Methods for PEC Surfaces

The literature contains numerous papers and reports describing asymptotic solutions for
PEC surfaces, many of them specialized to a certain problem or geometry. One of the ear-
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*For example, two different asymptotic expansions can be used to solve an integral with a stationary point near
a pole. This is the case of a wedge, in which the uniform theory of diffraction (UTD) of Kouyoumjian and
Pathak [Kouyoumjian and Pathak 1974] is one possible solution and the uniform asymptotic theory (UAT) of
Lee and Deschamps [Lee and Deschamps 1976] is another possibility.
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liest references is about the diffraction of radio waves around the earth, studied by V. A.
Fock and presented in 1945 [Fock 1945, 1965]. Other references are [Bird 1984, 1985,
1988; Boersma and Lee 1978; Borovikov and Kinber 1994; Bouche et al. 1993, 1997;
Chang et al. 1976; Golden et al. 1974; Lee and Mittra 1976; Lee and Safavi-Naini 1978;
Lee 1978; Pridemore-Brown, 1972, 1973; Shapira et al. 1974; Stewart and Golden 1971].
See also [Hansen 1981a,b, Hansen 1998, Kouyoumjian 1965] for a more extensive list of
references.

Here, we will concentrate on the uniform theory of diffraction (UTD), not mentioned
in the list above. The history of UTD begins with Luneburg, Kline, and Keller who in-
cluded concepts such as phase, polarization, and diffraction in the optic ray theory used
by the ancient Greeks [Kouyoumjian 1965, Josefsson 1981, Keller 1985, McNamara et
al. 1990]. The concept of ray theory means that the field is assumed to propagate along
rays: along straight lines in free space and along so-called geodesics (see Chapter 5) on
surfaces. The space is divided into regions, with different ray field descriptions. Figure
4.11 shows the different regions often used when discussing geometrical optics (GO),
the geometrical theory of diffraction (GTD), and UTD. The difference between the three
versions is basically that they are valid in different regions. The GO solution [Luneburg
1944, Kline 1951] does not include diffraction and is, therefore, only valid in the deep
lit region. The diffraction was included in the GTD formulation presented by Joseph
Keller in the mid 1950s. This formulation, also valid in the deep shadow region, was
published in 1962 [Keller 1962]. Unfortunately, GTD fails in the shadow boundary re-
gion (or penumbra region). To overcome this, a uniform theory of diffraction was de-
veloped, namely UTD. UTD retains all the advantages of GTD and overcomes the fail-
ure of GTD in the shadow boundary transition regions. This generalization was mainly
done by Kouyoumjian’s group at Ohio State University [Kouyoumjian and Pathak 1974;
Pathak and Wang 1978, 1981; Pathak et al. 1980, 1981; Pathak 1992]. The reader is re-
ferred to these papers for explicit equations of the surface and radiated fields due to
sources on smoothly shaped convex PEC surfaces. However, we will discuss some of
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Figure 4.11. Definition of the different regions in space when a source is illuminating
a smooth cylindrical surface. If the source is moving toward the surface (dotted ar-
row) the lit region will be concentrated to the “left” since the shadow boundary will
move as well (dotted arrows). After [McNamara et al. 1990.]
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the properties behind the ray-based theory. A more detailed discussion is found in
Appendices 4A.1–4A.4.

The UTD formulation is a powerful tool for the analysis of smooth PEC surfaces. The
ray-based theory also gives an attractive physical description of wave propagation along
curved surfaces. To describe the underlying physics, we will consider diffraction by a
smooth convex conducting surface shown in Figure 4.12. The ray connecting the source
point (PS) and the observation point (P) satisfies the generalized Fermat principle. This
means that the surface diffracted ray path is such that the path PSQ�QP is an extremum,
although not necessarily a minimum. Thus, PSQ� and QP are straight lines in free space
and they will be tangent to the surface at Q� and Q, respectively. The ray path along the
surface between at Q� and Q follows a geodesic of the surface. Thus, geodesics turn out to
be key parameters in the analysis and will be discussed in Chapter 5.

Due to the surface diffraction, the polarization of the incoming ray field may be altered
when the ray is attached to the surface at Q�. This is determined by the torsion factor and
rays propagating along an arbitrary surface have, in general, nonzero torsion. When the
ray leaves the surface at Q, the polarization will, once again, be constant, that is, it is a ray
with zero torsion. 

The amplitude and phase variations of the field along the straight lines in free space
follows from the GO representation, whereas the field variation along the surface is more
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complicated. First of all, a ray propagating on the surface will lose energy continuously
due to rays diffracted from the surface. The radius of curvature along the geodesic primar-
ily determines the amount of energy that is lost. In addition, the strength of the surface ray
field depends on the width of the surface ray strip, which changes along the path [see Fig-
ure 4.12 (b)]. This effect is described by the divergence factor, which can be obtained
from differential geometry.

To obtain a (UTD) formulation valid for arbitrarily shaped surfaces, two canonical
problems, the PEC circular cylinder and the PEC sphere, were studied. The two solutions
have then been combined (heuristically) to be valid for arbitrarily shaped convex sur-
faces. This is justified by diffraction, as well as reflection and transmission, being a local
phenomenon at wavelengths that are small in comparison to the size of the radiating ob-
ject. Thus, the solutions are heuristically generalized with the aid of the local properties of
high-frequency wave propagation. In other words, the total solution for an arbitrarily
shaped convex surface may be viewed as a summation of a number of “circular cylinder
and sphere solutions” (see also Appendix 4A.5). 

The general solution presented above is very useful. However, some complications ex-
ist in the UTD formulation, especially in the paraxial region of the cylinder (along the ax-
ial direction). For this particular area, minor modifications are needed for UTD to be
valid. There is also an alternative, more accurate, solution available for the paraxial re-
gion obtained by including higher-order terms in the asymptotic evaluation of the inte-
grals [Boersma and Lee 1978]. Another disadvantage with UTD is that small details can-
not be included. For example, due to the approximations used in the derivation, the
distance between the source and field points (Q� and Q above) must be larger than 0.5 �.
To overcome this, UTD is often combined with the method of moments (MoM). Some re-
cent references in which this hybrid method is used are [Abou-Jaoude and Walton 1998;
Burnside and Pathak 1980; Coffey 1985; Ertürk 2000; Ertürk et al. 2004; Greenwood and
Jin 1998; Persson 2001; Persson and Josefsson 1998, 1999a,b, 2000a,b, 2001a,b; Persson
and Rojas 2001; Persson et al. 2001; Theron et al. 2000; Thors 2003; Thors and Josefsson
2000, 2003; Thors and Rojas 2003; Thors et al. 2003a–b].

4.4.3 High-Frequency Methods for Dielectric Coated Surfaces

The reason for discussing coated surfaces separately is that some of the approximations
used for noncoated surfaces turn out to give nonsatisfactory results when the coating is
applied. Furthermore, the problem is more complicated, resulting in more advanced math-
ematical functions and integrals, and new physical phenomena appear, such as surface
and leaky waves that are excited on curved coated surfaces (as they are on planar sur-
faces). This is discussed in more detail in Appendix 4A.4. As a consequence, there is no
complete high-frequency solution for dielectric coated surfaces yet available. Sometimes,
impedance boundary surfaces valid for thin coatings are used as an approximation to
overcome these difficulties. 

The major difference between a noncoated and a coated cylinder is that it is not possi-
ble to obtain a single high-frequency solution valid in both the paraxial and nonparaxial
regions. For the nonparaxial region, the same approach as used for noncoated surfaces can
be used. The first attempt without considering impedance boundary surfaces was present-
ed by Munk [Munk 1996]. In this work, a heuristically UTD-based Green’s function was
derived with the microstrip patch antenna application in mind. The approach consists of a
two-step procedure in which the leading term of the potentials Az and Fz are first devel-
oped. The fields are then obtained by taking the second derivative of Az and Fz and drop-
ping higher-order terms. This solution was later implemented by Demirdag and Rojas
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[Demirdag and Rojas 1997, Rojas and Demirdag 1997], who studied the radiation pattern
and the surface field (nonparaxial region) due to a source on the dielectric layer. The re-
sults were only reasonable when the separation between source and field points was large. 

To obtain more satisfactory results, another approach has been considered. In this ap-
proach, the exact fields are first obtained directly from the dyadic Green’s function. These
expressions are then evaluated asymptotically, resulting in a formulation valid in the non-
paraxial region only. This approach avoids the need for taking derivatives of the asymp-
totic potentials. Furthermore, higher-order terms are included in the asymptotic evalua-
tion of the integrals. Thus, better results were obtained, including small separations
between source and field points (distances � 0.3 �). Unfortunately, the efficiency and ac-
curacy of the method is strongly dependent on the numerical evaluation of some integrals.
The solution to the microstrip patch antenna problem is presented in [Ertürk and Rojas
2000, Ertürk et al. 2004], and the coated aperture antenna is solved in [Persson and Rojas
2003, Thors and Rojas 2003]. Improvements have later been made to maximize the effi-
ciency of the numerical evaluation of the integrals [Persson et al. 2003b]. This asymptotic
solution is combined with the MoM for an accurate analysis. Due to the complexity, only
single-layer problems have been investigated so far. If multilayered structures are consid-
ered, very few possibilities exist. In [Sipus et al. 1998], an approach is discussed in which
a modal solution based on the superposition of one-dimensional spectral solutions and the
moment method are combined together with asymptotic evaluations of special functions.
With this approach, multilayered circular cylinders and spheres with a maximum radius
of at least 20 �–25 � can be analyzed.

With the asymptotic approach, only dielectric layers with moderate thickness can be
treated. This is due to some of the approximations used for the Bessel/Hankel ratios in the
Green’s function. The limiting thickness of the dielectric layer is approximately 0.15 �d

(�d is the wavelength in the dielectric layer). This is probably not a serious limitation from
a practical point of view and can probably be solved if better approximations are used.

The paraxial region of the circular cylinder requires special treatment; in fact, coated
cylinders are more problematic than noncoated. The reason is that the approximations
used are no longer valid when the field point moves toward the axial direction of the
cylinder (the paraxial region). To overcome this, a completely different method has been
used. The essence of this formulation is based on the fact that the circumferentially prop-
agating series representation of the Green’s function is periodic in one of its variables,
and can be approximated by a Fourier series representation. This part is still under devel-
opment and so far only the microstrip antenna case has been solved completely for the
circular cylinder [Ertürk and Rojas 2002]. Lately, a modified version of the paraxial re-
gion solution has been presented [Erdöl and Ertürk 2005]. It is a closed-form asymptotic
representation, making the analysis more attractive.

Generalizing the model to other singly or doubly curved surfaces is still under de-
velopment. So far, no numerically verified asymptotic method has been presented for
more general cases. Munk extended his formulas for a circular cylinder and a sphere in
the same fashion as was done for PEC surfaces to handle general convex surfaces
[Munk 1996], but these expressions have not been verified numerically. This also ap-
plies to the work presented by Hussar et al. [Hussar and Smith-Rowland 2002,
Campbell et al. 2002, Hussar and Smith-Rowland 2003]. The work by Hussar is similar
to the work by Munk. 

Thus, despite the efforts presented above, there is still no satisfactory asymptotic solu-
tion for coated (convex) surfaces. Maybe a modified or completely different approach is
needed!
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Alternative approaches based on impedance boundary conditions (IBC) have been
studied in the past, especially in connection with the theory of radio wave propagation
around the earth; see, for example, [Wait 1956a, 1962, 1974; Spies and Wait 1967]. Later
researchers [Ersoy and Pathak 1988, Wait et al. 1990] considered the radiation pattern due
to a magnetic line source, or a magnetic line dipole source, located on a uniform imped-
ance surface patch that partly covered an electrically large PEC convex cylinder. More re-
cently, a general approach has been discussed in [Tokgöz 2002, Tokgöz et al. 2005].
However, using formulations based on impedance boundary conditions (IBC) also in-
volve limitations such as the thickness of the layer.

4.5 TWO EXAMPLES

4.5.1 Introduction

In this section, we will discuss two examples in order to provide some more information
about how to proceed when analyzing conformal antennas. The approach is based on the
integral equation formulation, solved by the method of moments (MoM). As will become
clear, the general analysis is not any different from the planar case. However, it is much
more difficult to find the field representation outside a curved surface. In some cases, a
high-frequency solution must be used to find the field, that is, a hybrid UTD-MoM ap-
proach is used. We will discuss this briefly in Section 4.5.2.

The two cases are the waveguide-fed aperture antenna array and the microstrip-patch
antenna array. These two canonical examples will also be discussed extensively in the fol-
lowing chapters, where several numerical examples illustrate the characteristics of con-
formal antennas.

4.5.2 The Aperture Antenna

An aperture antenna can, generally speaking, be any of the following types: slits, slots,
waveguide openings, horns, reflectors, and lenses. However, in this context we consider
an aperture antenna in the form of a waveguide aperture flush mounted on or integrated
into a curved surface (see Figure 4.13). The cross section can be of any kind, but from a
practical point of view rectangular and circular cross sections are common. 

Aperture antennas can be flush mounted on a surface and are therefore very suitable
for conformal antenna applications. Furthermore, the opening can be covered with a di-
electric material for protection without disturbing the overall shape of the surface. This is
very important when considering, for example, aircraft, in which the aerodynamic profile
is important. 

Figure 4.13 shows the waveguide-fed aperture problem (for aperture m out of M aper-
tures) with the computational domain divided into two regions: the exterior and interior
regions. Here, a noncoated PEC surface is assumed, but the formulation is equivalent if a
coating is present. The main idea of the solution presented here is to start with an exact
formulation in terms of an integral equation for the boundary between the exterior and the
interior regions. By using the field equivalence theorem [Harrington 1961, page 106] an
equivalent (exterior) problem is obtained by covering the apertures with a perfectly con-
ducting surface and introducing unknown equivalent magnetic current moments on the
surface. These infinitesimal magnetic current moments then radiate in the presence of a
perfectly conducting surface.
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The IE is obtained by applying the boundary condition for the total tangential magnet-
ic field, that is, by equating the tangential magnetic fields in the exterior and interior re-
gions at the boundary. We get

�H� inc
tan + H� ref

tan + H� tan
rad/sc��r��S+

ap

= H� int
tan|r��S –

ap
(4.20)

H� ext
tan

where Sap is the set of all apertures, H� inc
tan is the incident plane wave in the presence of the

surface without apertures, and H� ref
tan is the reflected plane wave in the absence of the aper-

tures (both � 0 only if the scattering problem is considered). Furthermore, H� ref
tan equals

zero if scattering from an infinitely long cylinder is considered. H� tan
rad/sc is the radiated/scat-

tered field caused by the equivalent magnetic current moments. Finally, H� int
tan is the mag-

netic field in the interior region given by 

H� int
tan|r��S –

ap
	 �

M

m=1
�
N

n=1

[Yn
gE+

mn(ẑm × e�n
m) – Yn

gE–
mn(ẑm × e�n

m)] (4.21)

Here, we use the waveguide modes in the waveguide as basis functions with unknown
amplitudes E+

mn and E–
mn. Yn

g is the modal admittance and e�n
m is the modal function of the

nth waveguide mode defined in waveguide m. The plus sign indicates a wave propagating
toward the aperture and the minus sign a wave propagating away from the aperture. For
the scattering problem, E+

mn = 0 � m, n if the waveguides are matched. It should be noted
that (throughout this book) the transmitting apertures are fed by the dominant waveguide
mode only. However, at the different waveguide openings (see Figure 4.13) a reflection
occurs, causing infinitely many reflected evanescent modes to be generated. Also, at the
receiving apertures infinitely many modes are generated from the external field. A sin-
gle/dominant mode approximation is often used, but in some examples a finite number of
higher-order modes will be included for a more accurate analysis. The approximate equal
sign in Equation (4.21) indicates this. 
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Figure. 4.13. The exterior and interior regions at aperture m for a noncoated PEC
surface with the nth waveguide mode. 
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An important observation is that the IE is referred to the curved aperture plane. How-
ever, the basis functions (e�n

m) (waveguide modes) are valid for a planar surface in a cross
section of the waveguide. See Figure 4.14, where the planar surface in the waveguide is
shaded. Despite this fact, the fields at the convex surface are often assumed to be the same
as in the waveguide and the gap seen in Figure 4.14 is disregarded. 

In many applications, this approximation may be tolerable, especially if the radius of
curvature is large in the “wide” plane of the aperture. But if the radius of curvature be-
comes smaller, as illustrated in Figure 4.14, this approximation may lead to larger errors.
One way of reducing the error is to add a phase to the aperture field at the planar surface
to include the small distance to the curved surface. This is done in the simulations pre-
sented in the following chapters.

To proceed with the solution to the problem, the discretized integral equation (4.20) is
transferred to a matrix equation by using the MoM procedure. Thus, using Galerkin’s
method the equation is multiplied with test or weighting functions w�q

p (=  ẑp × e�q
p, i.e., same

as the basis functions) and integrated by using the inner product defined as � f�, g�� =


( f� · g�)dS. We get 

�H� inc
tan + H� ref

tan, ẑp × e�q
p �|r��S +

ap

+ �
M

m=1
�
N

n=1�E+
mn�H� tan

rad/sc(e�n
m), ẑp × e�q

p � + E –
mn�H� tan

rad/sc(e�n
m), ẑp × e�q

p ���r��S+
ap

= (4.22)

Yqn
pm Yqn

pm

�
M

m=1
�
N

n=1�Yn
g E+

mn�ẑm × e�n
m, ẑp × e�q

p � – Yn
g E–

mn�ẑm × e�n
m, ẑp × e�q

p �� �pq

�qn
pm �qn

pm

where Yqn
pm is the mutual admittance between the modes n � q in the apertures m � p [see

Equation (4.2)]. The unknown modal amplitudes (E+
mn, E–

mn) can now be found if
H� tan

rad/sc(e�n
m) can be found. To obtain the radiated/scattered field, a suitable method has to be

chosen from the methods presented earlier in this chapter. For a canonical surface like a
circular cylinder, a modal representation can be used. If this is not possible, we can use an
asymptotic technique such as UTD to calculate if H� tan

rad/sc(e�n
m). If so, this method is de-

scribed as a hybrid UTD–MoM method.
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Figure 4.14. The geometry at the aperture.


 



 


c04.qxd  12/1/2005  3:53 PM  Page 97



When the modal amplitudes are found, the far-field radiation pattern can be obtained.
Furthermore, other interesting parameters such as the scattering matrix are also found eas-
ily according Equation (4.3) since the mutual admittances are directly identified in Equa-
tion (4.22).

4.5.3 The Microstrip-Patch Antenna

When conformal and low-profile antennas are required, the microstrip-patch antenna is a
very attractive solution. This type of antenna has the advantages of low cost and weight,
design flexibility, and ease of installation. An interesting observation is that it seems that
the conformal application was one of the main reasons for developing microstrip anten-
nas. Gupta and Benalla [1988] state in the preface to their book: “The fact that printed
‘microstrip’ structures radiate has been known since the mid-1950s, but the application of
this phenomenon to design useful antennas started only in the early 1970s when confor-
mal antennas were required for missiles.” 

The common microstrip-patch antenna has a narrow bandwidth of only a few percent.
The bandwidth can, however, be increased considerably by increasing the height of the
substrate, by adding a parasitic element (“stacked patches”), and by introducing a bal-
anced probe feed. A complication is that microstrip antennas require a full wave analysis
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Figure 4.15. (a) The original problem of a probe-fed rectangular-patch antenna on a
coated multilayer surface. (b) The equivalent problem.
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for accurate results. This is not a major problem in the planar case, but becomes more dif-
ficult for curved surfaces, as will be discussed below. 

As for aperture antennas, a microstrip patch can take different shapes. We will here
only consider rectangular patches, but the principles are the same for other shapes.

The typical case is shown in Figure 4.15 (a), where a probe-fed microstrip-patch anten-
na m is seen on a multilayer substrate. Solving this problem is similar to the approach pre-
sented for the aperture antenna. Thus, using the field equivalence theorem [Harrington
1961, page 106] an equivalent (exterior) problem is obtained by replacing the infinitely
thin microstrip patch with unknown equivalent electric surface current densities J�S on the
surface. The equivalent problem is seen in Figure 4.15 (b). 

For a microstrip-patch antenna array, the IE is given by the boundary condition at the
curved metallic microstrip patches, that is, the total tangential electric field must vanish.
We get

�E� inc
tan + E� tan

ref + E� tan
rad/sc��r��S+

ap

= –E� int
tan|r��S –

ap
(4.23)

E�ext
tan

where Sap is the set of all microstrip patches, E� inc
tan is the incident plane wave in the pres-

ence of the surface without patches, and E�tan
ref is the reflected plane wave in the absence of

the patch antennas (both are � 0 only if the scattering problem is considered). Further-
more, E�tan

ref equals zero if scattering from an infinitely long cylinder is considered. E� tan
rad/sc

is the radiated/scattered field caused by the unknown equivalent surface current distribu-
tion J� m

S. The field is given by

E� tan
rad/sc|r��S+

ap
= �

M

m=1

�
Sm

(
––Gtan · J� m

S )dS (4.24)

where
––Gtan represents the tangential components of the dyadic Green’s function. Finally,

E� int
tan is the electric field generated by the known probe current density J� m

int, according to

E� tan
int |r��S –

ap
= �

M

m=1

�
Ssourcem

(
––Gtan · J� m

int)dS (4.25)

Note that the probe-fed model is an idealized model, but reasonably valid for thin sub-
strates [Pozar 1987]. J� m

int is often approximated by a unit current source on the probe, thus
not including the feeding network in the model.

By using the MoM procedure, the unknown surface current densities are expanded in a
set of N basis functions (J� m

S = �N
n=1amn J�n

m), where J�n
m is the nth basis function at patch m

and amn is the unknown amplitude. The basis functions J�n
m may represent currents in ei-

ther of the two orthogonal tangential directions on the patch surface. In general, there are
two types of basis functions: entire basis, and subsectional basis (see, for example [Pozar
1982]). Both types have been used for studies of conformal microstrip-patch antennas;
see, for example, [Ertürk 2000] for subsectional basis functions and [Rafaelli et al. 2005]
for entire domain basis functions. 

The discretized integral equation (4.23) is finally transferred to a matrix equation by
first multiplying the equation with test or weighting functions J�q

p (same as the basis func-
tions, i.e. Galerkin’s method) and integrating by using an inner product (defined as in the
previous section). We get
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�
M

m=1
�
N

n=1

amn��Sm

(
––Gtan · J� n

m)dS, J�q
p� = �

M

m=1�– �
Ssourcem

(
––Gtan · J� m

int)dS, J�q
p�

Zqn
pm Vq

p (4.26)

+ �–E� inc
tan – E� tan

ref , Jq
p�|r��S +

ap
�pq

This formulation is exact if the Green’s function (
––Gtan) can be found. Since we now have

to consider a coated surface, this is quite difficult. The possible solutions are mainly lim-
ited to circular and spherical surfaces as discussed earlier. 

Finally, the characteristics of the microstrip-patch antenna arrays, such as input imped-
ance, mutual coupling between patches, and radiation patterns, can be obtained in a simi-
lar fashion as we described before for the aperture case, once the unknown patch currents
are found from Equation (4.26).

4.6 A COMPARISON OF ANALYSIS METHODS

Of all the methods discussed, which one is the best and should, therefore, be used? The
answer to this question is somewhat subjective since the answer is (probably strongly) re-
lated to the experience of the analyst as well as the computer code(s) that he/she has ac-
cess to. Nevertheless, in this section we will try to give some guidelines for the analysis of
conformal antennas. We will initially disregard individual experience and code availabili-
ty. Instead, the discussion will concentrate on the methods themselves and their ability to
solve certain problems. At the end, experience will have to be included as a factor as well.

The discussions in the previous sections have led to one major conclusion: For the analy-
sis of conformal antennas there are two alternatives to choose between. On one hand we have
methods based on asymptotic techniques (UTD/MoM and FE-BI-UTD*), and on the other
we have purely numerical methods (FE-BI* and FDTD). Keeping this in mind, we turn to
the problem at hand. A number of typical examples are listed in Table 4.1 with comments re-
garding what to consider before choosing a method. The geometries that are listed represent
typical canonical problems. However, in the real world, modifications of a canonical prob-
lem may be needed, or maybe a combination of two canonical problems will give the solu-
tion. Note that in all examples edges are not included. Adding edges complicates the solu-
tion, but can be handled both with asymptotic techniques and with numerical methods. 

Finally, the experience and the availability of computer codes are of vital importance
when choosing a method. As an example, if an asymptotic technique solves the problem,
the experience in MoM and FEM will decide whether an UTD/MoM or FE-BI-UTD ap-
proach is chosen. This is, of course, a very subjective area. Table 4.2 is included to give
some additional guidelines that may help in the decision.

APPENDIX 4A—INTERPRETATION OF THE RAY THEORY

In the presentation of the high-frequency methods in Section 4.4, the field propagating
along a curved surface is interpreted as rays propagating along geodesics. This appendix
is included to give the interested reader a deeper understanding of the principles behind
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*The term FE-BI-UTD is introduced here to indicate that an asymptotic Green’s function is used. The term FE-
BI indicates a purely numerical version in which the free space Green’s function is used.
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Table 4.1. Guidelines for which method to use when taking the properties of the
methods into account

Geometry Comments

Singly curved convex 
PEC surfaces:
Circular cross section If the surface is electrically small, almost any kind of method can be

used. The main difference between the methods presented in this chap-
ter is the time required. UTD has a limitation, but radii as small as 1 �
have been analyzed with satisfying results (see Section 6.3.2).

If the surface is electrically large, an asymptotic-based method is
preferable. Another possibility is FDTD in cylindrical coordinates, es-
pecially if there is symmetry in the antenna array.

Analytically specified An extension to general cross sections can almost only be analyzed 
cross section with an asymptotic method. For electrically small surfaces, numerical 

codes such as FEM or MoM may be useful. However, when increasing
the frequency, an asymptotic Green’s function is needed. Thus, a hy-
brid UTD-MoM or FE-BI-UTD method can/must be used.

Numerically specified The key in using an asymptotic solution is to find the geodesics and 
cross section the related ray-based parameters. This may be difficult and time-con-

suming for this type of surface. Thus, a purely numerical method such
as FE-BI is probably more suitable. And, as always, if the surface is
electrically large, numerical problems will appear.

Cone An asymptotic solution is possible, which is probably the preferred
method. For some special cases, a modal solution or a numerical solu-
tion may be used.

Singly curved coated 
convex PEC surfaces:
Circular cross section For electrically small surfaces, the modal solution is possible, as well

as MoM, FEM, or FDTD. Unfortunately, the problem becomes more
difficult if the surface is electrically large. If the surface is too large for
a numerical approach, the key is to see if the Green’s function can be
computed easily. There is an asymptotic version that can be used quite
efficiently for a single layer. If a multilayer coating is present, there
are a very limited number of possible solutions; one example is the
G1DMULT software [Sipus et al. 1998].

Analytically specified Difficult. Numerical methods are (probably) the only choice.
cross section

Numerically specified Very difficult problem. A purely numerical method is the only choice, 
cross section but may require a large memory and long computing time.

Cone Difficult. Numerical methods are probably the only choice.

Doubly curved convex 
PEC surfaces:
Sphere Canonical problem, solvable with almost any method if electrically

small. Otherwise, an asymptotic-based method is preferable. If there is
symmetry, some simplifications can be used in the solution.

Surface of revolution There are two major choices: an asymptotic-based technique or a nu-
merical approach. The key when using an asymptotic method is to find
the geodesics. However, they can be found quite easily for surfaces of
revolution. (continued)
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the ray theory and its connection to the modal solution and to different types of waves. At
the end, the generalization of the canonical solutions for the cylinder and sphere are dis-
cussed in more detail. 

A full derivation of an asymptotic method is, of course, beyond the scope of this book.
The details of the mathematical operations presented here can be found in different text-
books such as [Collin and Zucker 1969, Felsen and Marcuvitz 1973, Ishimaru 1991,
Pathak 2001, Wait 1959]. Furthermore, a general summary of the surface field problem
can be found in [Persson 2001] and the radiation problem is discussed in [Thors 2003].

The idea with asymptotic techniques is to approximate functions and integrals in such
a way that they become increasingly accurate as some parameter approaches a limiting
value. An asymptotic solution to an electromagnetic problem becomes increasingly accu-
rate as the free space wave number k (or angular frequency �) approaches infinity. An as-
ymptotic representation is typically semiconvergent, that is, it tends to converge with the
first few terms but then it diverges with the addition of further terms.

102 METHODS OF ANALYSIS

Table 4.1. Continued

Geometry Comments

Doubly curved convex 
PEC surfaces: (cont.)
Numerically specified The only possibility is a numerical method, preferably FE-BI or

FEM/FDTD.

Doubly curved coated 
convex PEC surfaces:
Any geometry Very difficult. The only possibility is a numerical method, preferably

FE-BI or FEM/FDTD.

Table 4.2. Guidelines for which method to use when taking experience and
available code(s) into account

Category Comments

No experience, no Assuming that a UTD formulation exists for the problem at hand, 
code(s) available the UTD/MoM method is probably the best choice for a beginner.

If no UTD formulation is available, the best choice is an open
question and is determined by the knowledge of the different 
methods (see Table 4.1) and EM and programming skills.

No experience, Use, and if necessary extend the existing code(s) with respect to 
code(s) available the problem at hand. If not realistic, see previous comment.

Experience on a medium The choice will probably depend on EM and programming skills in 
level, no code(s) available combination with Table 4.1. 

Experience on a medium Use, and if necessary extend the existing code(s) with respect to 
level, code(s) available the problem at hand. If not possible, see previous comment. 

Experience on a high level, Almost anything will work! Use the knowledge about the different 
no code(s) available methods (see Table 4.1) and decide which method to use.

Experience on a high level, Modify the code(s) to fit the problem at hand. If not realistic, see 
code(s) available previous comment.
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The modal field solution for a noncoated PEC circular cylinder (presented in Section
4.3.2) is given by a combined azimuthal Fourier series and an axial Fourier integral repre-
sentation. This solution represents a formulation in terms of outward radially propagating
waves. A similar expression can be found for a coated PEC circular cylinder as well. Un-
der certain restrictions, such a representation can be evaluated asymptotically, resulting in
a more useful formulation with faster convergence. To discuss the relations between the
modal solution and the ray theory, a general expression of a modal solution will be used,
written in the following form [S is any of the field components; see also Equation (4.5)]

S = ��

–�� �
�

n=–�

T(n, kz)e–jn��e–jkzzdkz (A.1)

This expression, as well as the general theory below, is valid both for a coated and non-
coated circular cylinder. If there are any differences, they will be pointed out clearly. 

4A.1 Watson Transformation

By applying the Watson transformation [Watson 1918] Equation (A.1) can also be written
in terms of circumferentially propagating waves:

S = ��

–�� ��
�–j	

–�–j	
dv + ��+j	

–�+j	
dv��e–jkzzdkz (A.2)

where 	 is a small distance. Depending on how the integral in the v plane is evaluated, a so-
lution valid in different regions (see Figure 4.11) will be obtained. If the field point is in the
illuminated (lit) region, the integrand can be evaluated by using the method of stationary
phase. In that case, the solution is often referred to as the geometrical optics (GO) solution.
If a uniform solution valid in the boundary region (and the shadow and illuminated regions as
well) is to be obtained, the integral must be evaluated along the original contour. This is an ap-
proach originally used by V. A. Fock [Fock 1945, 1965]. Using Fock’s approach, S can be ex-
pressed in terms of the so-called Fock functions, known from the UTD solution for a non-
coated surface. With the aid of some mathematical operations Equation (A.2) is rewritten as

S = ��

–���
�–j	

–�–j	��
�

m=0

[T(v, kz)e–jv(�+2�m) + T(–v, kz)e–jv((2�–�)+2�m)]�dv�e–jkzzdkz (A.3)

Here, the ray interpretation of the solution is evident. In Equation (A.3), each exponential
term, for a given m, can be identified as a wave that has crept around the cylinder m times
along geodesics in the +�̂ and –�̂ direction, respectively. However, this expression is of-
ten simplified since in most problems the term m = 0 is assumed to be enough when kR is
large (R is the radius of the cylinder and k is the wave number). Furthermore, only waves
in one direction, +�̂ in general, are often considered.

4A.2 Fock Substitution

Following the approach made by Fock, a substitution is introduced which transforms the v
plane to a � plane by v = krrs + (krrs/2)1/3�, called the Fock substitution.* An interesting

T(v, kz)e–jv(�–�)

��
sin v�

T(v, kz)e–jv(�–�)

��
sin v�

1
�
2j
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*Originally, this substitution was used by Fock to be able to approximate the Hankel functions in the noncoated
solution by the so-called third-order approximation, that is, they are approximated as proportional to the Airy
functions. As a consequence, the integral in the � plane is called the Fock function. Note that there are different
Fock functions for different problems (radiation, surface field, etc.) [McNamara et al. 1990].
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effect of the Fock substitution is that the surface field can be interpreted as propagating at
a fixed radius rs. Thus, for each of these various substitutions, the ray paths lie on a cylin-
drical surface whose radius of curvature is the chosen “suitable” radius rs.

For a noncoated PEC circular cylinder, the suitable choice is the radius of the PEC cir-
cular cylinder; see Figure 4A.1 (a). However, for coated surfaces the number of choices is
infinite in general and any choice between the radius R of the PEC surface and the outer
radius R1 is possible; see Figure 4A.1 (b). Depending on the choice, a different ray inter-
pretation follows. In practice, the choice is often determined by the problem. If mi-
crostrip-patch antennas are considered, the most reasonable choice for rs is the outer ra-
dius R1. On the other hand, if the source is located on the PEC surface, as in the case of
dielectric-coated-aperture antennas, the preferred choice is the inner radius R.

4A.3 SDP Integration

The above steps have made it easier to analyze electrically large cylinders. Additionally,
the computation of the field can be performed more efficiently if the original contour in
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Figure 4A.1. The interpretation of rs for (a) the noncated PEC circular cylinder, (b) the
coated PEC circular cylinder.
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the kz plane is deformed into its steepest descent path (SDP) on which the integrand de-
cays most rapidly. To obtain the UTD solution, valid for a noncoated cylinder, only the
saddle point contribution is included and the kz integral can be solved in closed form:

��

–�
f(�, kz)dkz � �

CSDP

f(�)eksq(�)d� ~ ��f(�S)eksq(�), k � � (A.4)

where f(�, kz) is given in Equation (A.3) after using the Fock substitution and s is the geo-
desic length, that is, the length of the ray path along the surface connecting the source and
field points. 

For the coated cylinder (nonparaxial region only!) the saddle point contribution shown
in Equation (A.4) is, in general, not enough. The result in Equation (A.4) must, therefore,
be modified with higher-order terms by including the contributions from points away
from the saddle point. For mutual coupling calculations, when the surface field is consid-
ered, a three-point approach is often satisfactory. However, the number of points required
may depend on the geometrical parameters [Ertürk and Rojas 2000, Persson and Rojas
2003]. The radiation problem still seems to give accurate results if the saddle point only is
used [Thors and Rojas 2003].

4A.4 Surface Waves

In the previous sections, the wave propagation along the surface was interpreted as rays
propagating along geodesics. Another way of interpreting the wave propagation is to use
the concept of surface waves related to the poles of the Green’s function. In this section,
we will give a short overview of the surface wave interpretation for curved surfaces. Note
that it is not possible to mix the interpretations, that is, by saying that the rays consist of
different types of waves or vice versa. The two interpretations are solutions to the same
problem, but interpreted differently.

To be able to interpret the wave propagation in terms of waves, we will go back to the
circular cylinder solution and, in particular, the v plane integration in Equation (A.2).
(This equation is valid both for coated and noncoated surfaces if the appropriate Green’s
function is used.) As discussed in Appendix 4A.1, there are two ways of solving the v
plane integrals, resulting in solutions valid in different regions. There is also a third op-
tion in which a contour deformation is made in the v plane by closing the line integrals
with semicircles in the upper and lower half planes. The integrals are then evaluated with
residue series expansions, that is, the poles of T(v, kz) (containing the Green’s function)
must be found. This will give a solution valid mainly in the (deep) shadow region. The
number of terms/poles needed is difficult to know a priori since it depends on the geome-
try, thickness of the dielectric layer, and so on. Furthermore, if the field point is moving
toward the boundary region between the lit and shadow regions, more terms must be in-
cluded in the residue expansion. Therefore, this is not a tractable solution, in general.

However, the interesting part of this solution is that the poles can be identified as
waves propagating in opposite azimuthal directions along the surface. From now on, the
coated cylinder will be considered first and the noncoated cylinder will be seen as a spe-
cial case. Investigations of the Green’s function pole locations for a coated cylinder have
been performed before. The two-dimensional problem has been investigated by, for ex-
ample, Paknys and Wang [Paknys and Wang 1986, 1987; Wang 1982, 1985]. The full
three-dimensional problem has been treated by [Pearson 1987, Felsen and Naishadham
1991, Naishadham and Felsen 1993]; see also [Richard et al. 1997, 1999]. 
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The classification of the different waves is related to the locations of the poles. Thus, it
is necessary to solve for the complex pole locations vp(kz), p = 1, 2, . . . (the azimuthal
propagation constants). As an example, Figure 4A.2 shows the positions of some poles
for a coated cylinder when kz is real. 

To study the characteristics of the poles, the complex roots are broken down into their
real and imaginary parts: vp = v�p + jv��p . The following criteria are then used for a physical
classification of the different waves that are supported by the geometry [Felsen and
Naishadham 1991, Naishadham and Felsen 1993]:

If v�p < krR1, then they correspond to (essentially) leaky waves

If v�p 	 krR1, then they correspond to (essentially) creeping waves

If v�p > krR1, then they correspond to (essentially) trapped waves

Here, kr is the transverse wave number defined in Section 4.3.2 and R1 is the outer radius of
the cylinder; see Figure 4A.1 (b). As indicated, it is difficult to give a 100% clear distinc-
tion between waves of different types and their properties for curved surfaces. This is in
contrast to the corresponding planar case in which a complete description of possible wave
types and their properties can be defined; see, for example [Collin and Zucker 1969]. 
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Figure 4A.2. The real part of one component of the Green’s function for a coated
PEC cylinder with some pole locations shown in the complex v plane. Here, kz is real.
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The term “creeping wave” may be familiar since it is often used for a wave on con-
ducting surfaces where an extra attenuation due to the curvature is present. A creeping
wave is characterized by a rapidly increased attenuation when the radius is decreased. It is
a fast wave traveling almost at the speed of light, and this wave is the only wave possible
for a noncoated surface. By a complete study of the properties of the poles, it can be
shown that a thin coating will mainly support creeping waves. Sometimes, a creeping
wave is also referred to as a Watson-type creeping wave [Paknys and Wang 1986]. This
type of wave is unique for the curved surface and cannot be found in the planar case.

If the layer becomes thicker, a transition region takes place at a thickness of about d/�0

	 0.23. At this thickness, the waves begin to become trapped. Trapped waves are slow
waves whose phase velocity is less than the speed of light and they possess low attenua-
tion. These waves are often referred to as Elliott-type creeping waves and can only exist
at coated surfaces [Elliott 1955]. 

If the radius is decreased (keeping the frequency constant) and the layer is thicker than
the transition thickness (d/�0 	 0.23), the initially (well) trapped wave becomes transi-
tional and then leaky. A leaky wave is a wave with high velocity and the attenuation in-
creases with decreasing outer radius. The leaky waves are analogous to those in the planar
case, but with additional leakage due to curvature.

Thus, the resemblance between the waves in the planar and cylindrical cases becomes
clear. When R1 � � in the cylindrical case, the effect of the curvature will decrease, that
is, the different pole locations in the cylindrical case will recover the pole locations in the
planar case. As a consequence, the pole locations in the planar case can be used as a start-
ing point to find the poles in the cylindrical case, which are more difficult to find. 

4A.5 Generalization

A general formulation for arbitrarily shaped convex surfaces cannot be based only on
the circular cylinder solution described above. One reason for this is that the principal
radii of curvature are different and finite for a general surface. Furthermore, the torsion
is generally not a constant as it is for the cylinder. These arguments lead to the solution
of another canonical problem, namely, the sphere. The sphere has a constant radius of
curvature since both principal radii of curvature are equal and finite, that is, the rays
possess no torsion. Hence, the circular cylinder and the sphere do not possess all of the
general properties associated with an arbitrary convex surface. Nevertheless, they pro-
vide useful information and an asymptotic solution for an arbitrarily convex and smooth
surface can be developed on the basis of these two solutions with some additional as-
sumptions (some of them are completely heuristic in nature). These two canonical solu-
tions are then combined with the aid of the local properties of high-frequency wave
propagation. This is possible because diffraction, as well as reflection and transmission,
is a local phenomenon at wavelengths that are small in comparison to the size of the ra-
diating object.

To perform this generalization both the canonical circular cylinder and sphere solu-
tions are expressed in terms of the surface ray coordinates: the binormal (b̂), tangential (t̂),
and normal (n̂) unit vectors at the surface, defined in Figure 4.12 (b). Thereby, a straight-
forward comparison between the two solutions can be obtained. It turns out that the major
differences between the circular cylinder and sphere solutions are the torsion associated
with the surface rays and the different Fock functions, which appear in the two solutions.
This means that the sphere solution can be obtained from the cylindrical solution if the
torsion is set to zero and the cylinder Fock function is replaced with the sphere Fock func-
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tion [Pathak and Wang 1978]. Therefore, the idea is to use the circular cylinder solution
as the basic building block for the general solution.

To finally accomplish the generalization, different circular cylinders approximate the
neighborhood of each point along the geodesic. Each radius is set equal to the local radius
of curvature at each point. This means that the general solution can be viewed as a sum-
mation of “circular cylinder solutions,” with some additional features included due to the
geometrical properties of the surface, c.f. Figure 7.4, page 272. Thus, by using a combina-
tion of differential geometry, reciprocity, local properties of wave propagation at high fre-
quencies, and heuristically defined functions, an asymptotic solution valid for a general
convex and smooth surface is obtained, see Figure 4A.3.

The procedure described above has been used for a perfectly electrical conducting
(PEC), smooth, convex surface. It is based on the fact that the canonical asymptotic solu-
tions can be expressed in surface ray coordinates. This requires that only the saddle point
contribution be taken into account in the SDP integration [Equation (A.4)]. However, if
more points are needed along the SDP path, it seems impossible to rewrite the asymptotic
solution in a ray parameter form. Thus, a generalization will be much more difficult in
that case. This is the typical situation for a dielectric coated surface since, in general,
more points beside the saddle point are needed in the SDP integration, as discussed in Ap-
pendix 4A.3.
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In this chapter we will discuss geodesics on curved surfaces. This area is important for
the analysis of conformal antennas using asymptotic techniques, as discussed in Chapter
4. Finding the proper rays connecting points on a curved surface has been studied for a
long time within the area of differential geometry. For singly curved surfaces, the pro-
cedure can be reduced significantly since the singly curved surface is developable. Thus,
the proper ray is a straight line on the developed surface. For arbitrarily curved surfaces,
the full geodesic equation must be solved (numerically). However, for certain types of
doubly curved surfaces the geodesic equation can be reduced, making the ray tracing
manageable for many practically useful shapes of conformal antennas. This will be dis-
cussed thoroughly in this chapter, starting with the governing equations. Then we will
give explicit equations for the geodesics on different curved surfaces and provide fig-
ures showing the properties of geodesics on curved surfaces, including ray splitting
among other features.

5.1 INTRODUCTION

In Section 4.4, asymptotic ray-based techniques where described. They turned out to be
very efficient tools when combined with the MoM or FE-BI methods for the analysis of
conformal antennas. However, there is a fundamental question to be answered before
these techniques can be applied: How does one find the proper ray(s) that connect(s) arbi-
trarily located points on a smooth surface? For a correct solution, the rays must obey cer-
tain conditions in order to be valid geodesics on the surface. 
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The geodesics are not only useful for the study of fields on the surface on the structure,
for example, when the mutual coupling between elements in an array is considered, but
also for the analysis of radiation and scattering properties. Finding the geodesics is only
one part of the problem, however; the other part is to find how an incoming wave or the
radiated field is reflected/diffracted at the object/surface. The solution to this can be found
by applying, for example, a shoot and bounce ray (SBR) method using the laws of reflec-
tion and diffraction. 

The SBR method and other similar procedures have been treated in several antenna-
related references; some examples are [Lee et al. 1988, Ling et al. 1989, Pérez et al. 1999,
González et al. 2003, Zhou and Ling 2003]. But the ray tracing technique is also widely
used within three-dimensional game programming and computer graphics. Here, ray trac-
ing is a technique for obtaining three-dimensional graphics with advanced light interac-
tions for creating pictures with mirrors, shadows, and so on. Obviously, there are a lot of
ray tracing techniques developed in this area that can be used within the antenna commu-
nity as well. Some examples of literature with an introduction to ray tracing for image
synthesis are [Glassner 1989, Rademacher 1997]; a more solid mathematical background
is given by Lengyel [Lengyel 2001]. 

In this chapter, we will not discuss the SBR method or any similar procedures. Instead,
let us return to the problem of finding the geodesics between two points along a curved sur-
face. This problem is also often referred to as a “ray tracing” problem. We will use this term
frequently in the following text, but interpret it as finding the geodesic between two points
on a surface. A complete treatment of this problem is beyond the scope of this book; the in-
terested reader is referred to textbooks on differential geometry, but the basics will be de-
scribed here. The history with geodesics begins with John Bernoulli’s solution of the prob-
lem of the shortest distance between two points on a convex surface (1697–1698). Euler
was the first to formulate the geodesic equation for rays on a surface in his article in 1732.
However, it was the French mathematician J. Liouville who first used the term “geodesic
line” in its present meaning [Struik 1988]. The geodesic concept has subsequently been
used extensively in other disciplines, for example, the study of gravitation and light propa-
gation in the universe [Rosquist 2001]. Ray theory and the geodesic concept were intro-
duced for the analysis of antennas in the 1950s when GTD was introduced by Keller (see
Section 4.4.2 for more details). In the beginning, only singly curved surfaces, for which ray
tracing is simple, were treated. Geodesics on doubly curved surfaces were first used in the
beginning of 1970s. One example is the study of radiation patterns due to sources on a pro-
late spheroid [Burnside 1972]. In this work, an approximate numerical ray tracing proce-
dure was used. For surfaces of revolution, it is possible to do an accurate ray tracing based
on analytical expressions, as we will demonstrate here.

The geodesic lines are given by a second-order differential equation, the geodesic
equation, based on differential geometry satisfying the generalized Fermat’s principle, as
will be discussed below. Unfortunately, the solution to the differential equation is often
difficult to find explicitly and, instead, some kind of numerical (ray tracing) procedure
has to be used. However, the ray tracing procedure can be simplified for certain geome-
tries for which the geodesic equation can be written and solved in closed form. This con-
siderably reduces the numerical computations. The class of surfaces that can be analyzed
in this way belongs to the geodesic coordinate system, that is, the parameter lines of the
surface are orthogonal to each other. A particular advantage of analytically described ge-
odesics is that all the ray parameters required in the GTD/UTD formalism can be written
in closed form. This helps a lot in the analysis of conformal antennas using high-frequen-
cy approximations. 
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In this chapter, the discussion of geodesics is limited to convex surfaces, which are
those mainly used for conformal antennas. This is not a severe limitation, however, since
geodesics along concave or mixed convex–concave surfaces follow the same principles.
First, some background in differential geometry necessary for the understanding of geo-
desics will be presented. The theory will then be applied to different convex surfaces, and
closed-form expressions for the geodesics on both singly and rotational symmetric doubly
curved surfaces will be given. In principle, these equations are ready to use in the
GTD/UTD formulation when studying antennas on these surfaces. However, in some
cases numerical computations of certain functions will be required. Special features of ge-
odesics will also be discussed and figures showing these features will be provided. Final-
ly, arbitrary surfaces will be discussed briefly.

5.1.1 Definition of a Surface and Related Parameters

Let us first define a general surface. For the analysis presented in this chapter, it is prefer-
able if the surface can be expressed in an explicit form, that is, the coordinates of a point
on the surface are given by two parameters u and v within a certain closed interval. Thus,
we assume that the parametric equations of the surface are of the form:

xi = Xi(u, v), � � u � �, � � v � �, i = 1 . . . 3 (5.1)

where u and v take real values. The functions Xi are single, real valued functions and they
are continuous. When keeping v constant in Equation (5.1), x� depends on only one para-
meter u and thus determines a curve on the surface—a parametric curve, v = constant. An-
other parametric curve is represented by u = constant. When the constants vary, the sur-
face is covered with a grid of parametric curves. The derivatives x�u and x�v are the tangents
to the curve v = constant and u = constant, respectively. u and v are often called the curvi-
linear coordinates of a particular point (see Figure 5.1). For example, on a sphere latitude
and longitude may be selected as the curvilinear coordinates of the spherical surface.

In Figure 5.2, an arc C is passing through a point P on a surface. Assume that the arc
has endpoints A and B, and is given by equations of the form u = u(t) and v = v(t). Is this
arc a geodesic or not? 
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Figure 5.1. The u and v parameter lines with the tangent plane and the surface unit
normal vector N̂.

c05.qxd  12/1/2005  3:55 PM  Page 125



Before this question can be answered, some additional parameters must be defined.
The first fundamental form in differential geometry gives the length of the arc:

s(C) = �1

0
�E�u��2� +� 2�F�u��v���+� G�v��2�dt (5.2)

where t = 0 at A and t = 1 at B, and E, F, and G are the first fundamental coefficients giv-
en by

E = x�u · x�u, F = x�u · x�v, G = x�v · x�v (5.3)

and the derivatives are taken with respect to the parameter t. Observe that a prime will de-
note differentiation with respect to t, unless otherwise stated.

The curvature vector at a point P, through which an arc C is passing, has to be defined
as well. Decomposed into normal and tangential components to the surface, the curvature
vector is given as

dt̂/ds = k� = k�n + k�g = kn̂ (5.4)

where n̂ is the unit normal vector at P of the arc C. k�n, the normal curvature vector, can be
expressed in terms of the unit surface normal vector N̂ as

k�n = �nN̂ (5.5)

where �n is the normal curvature and will not be given explicitly here. Similarly, k�g is the
tangential curvature vector or geodesic curvature vector. By introducing the tangential or
geodesic curvature �g, the vector can be written as

k�g = �g b̂ (5.6)
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It can be shown (see, e.g. [Struik 1988]) that the geodesic curvature, contrary to the nor-
mal curvature above, depends only on E, F, G, and their derivatives together with the
equation �(u, v) = 0 defining the ray. This relation for �g is given as

�g = [	2
11(u�)3 + (2	2

12 – 	1
11)(u�)2v� + (	2

22 – 2	1
12)u�(v�)2 – 	1

22(v�)3

(5.7)
+ u�v�� – u��v�] �E�G� –� F�2�

where the root is taken to be positive and the gamma functions are the Christoffel sym-
bols [Struik 1988, pp. 107–108], depending only on the coefficients of the first fundamen-
tal form and their first derivatives.

5.1.2 The Geodesic Equation

As mentioned earlier, the details of the derivation of the geodesic equation are beyond the
scope of this book. But, by using the defined parameters above, a schematic derivation of
the geodesic equation will be shown, which will end with a definition of a geodesic. 

Geodesics are often referred to or defined as lines of the shortest distance between points on
a surface. This is also the oldest way of describing geodesics, as was mentioned in the begin-
ning of this section. Therefore, the geodesic equation has often been found from a study of a
variational problem. Another way is to consider the geodesic curvature in Equation (5.6) and
define geodesics as curves of zero geodesic curvature. Both ways give the same answer and it
turns out that they are connected to each other, as will be described below. First, the variation
problem will be considered since it may give a more intuitive way of describing geodesics.

Let us once again consider the arc C shown in Figure 5.2, given by the equations u =
u(t) and v = v(t). Assume now that an arc C� is obtained by deforming C slightly, but
keeping its end points fixed at A and B. Thus, C� is given as

u = u(t) + 
�(t), v = v(t) + 
�(t) (5.8)

where 
 is small and � and � are arbitrary functions in 0 � t � 1 that satisfy � = � = 0 at t
= 0 and t = 1. Now, s(C) is said to be stationary if the variation in s(C), that is, s(C) – s(C�)
= �s, is at most of order 
2 for small variations in C [Willmore 1984]. If this is the case, C
is a geodesic. Geometrically, this can be explained by stretching an elastic band between
two points and making sure that the band remains on the surface. 

It can be shown by a more complete analysis that arcs that solve the variation problem
are solutions to the Euler–Lagrange equations. Thus, we have

– � � = 0 (5.9)

– � � = 0 (5.10)

where f = �E�u��2� +� 2�F�u��v���+� G�v��2�. However, it follows also that the two equations are not
independent; they can be reduced to one equation with a solution of the form v = v(u).
Thus, the new equation is a second-order differential equation: 

= 	1
22� �

3
+ (2	1

12 – 	2
22)� �

2
+ (	1

11 – 2	2
12)� � – 	2

11 (5.11)
dv
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This is the geodesic equation in its most general form. The solution to Equation (5.11)
with given A and B positions, v = v(u), is the geodesic connecting A and B on the given
surface. In fact, every solution v = v(u) that fulfills the requirements above is called a ge-
odesic, whether it is an arc of shortest distance or not. Thus, geodesics may be regarded as
curves of stationary rather than strictly shortest distances on the surface. As an example,
two points on the surface of a circular cylinder can be connected with infinitely many
curves, and all of them are geodesics but only one of them is the shortest one. If the points
are located at different positions along the axial direction, every geodesic is a helix. But
there are many helices with different inclinations, so there are a lot of geodesics connect-
ing the two points. In addition, there are curves encircling the cylinder in both the
counter-clockwise and clockwise directions.

When the expression for the variation in s(C), that is, �s above, is studied in more de-
tail, it is found to be related to the geodesic curvature �g. Furthermore, the condition that
gives the Euler–Lagrange equations turns out to be fulfilled if the geodesic curvature �g

vanishes along the arc C between A and B. Thus, the same equation as given in Equation
(5.11) can be obtained from the condition �g = 0!

To summarize, a definition of a geodesic that is only based on the length is not a useful
one. A more general definition of a geodesic given in [Struik 1988] is “a curve of zero ge-
odesic curvature.” This definition can also be expressed as the osculating plane of a geo-
desic contains the surface normal, or along the geodesic the principal normal (n̂) coin-
cides with the surface normal ( N̂). Figure 5.3 illustrates a situation when a curve along the
surface is not a geodesic.

Note that the normal property strictly fails in the case of a straight line on a (plane) sur-
face, since the principle normal n̂ is indeterminate. But, still, the straight line is a geodesic!
This fact, according to some authors writing about geodesics, has been taken as a reason for
not using the above general definition of a geodesic. However, here we will adopt this def-
inition since it is useful and gives an intuitive way of defining geodesics on curved surfaces.

5.1.3 Solving the Geodesic Equation and the 
Existence of Geodesics

As can be understood from the above, it is not trivial, neither from an analytical nor nu-
merical point of view, to solve the second-order geodesic differential equation for an arbi-
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trary surface. In addition, the question arises as to whether a solution exists or not, as well
as whether the solution is unique. 

Starting with the existence of geodesics, it is known from Equation (5.11) that when a
direction dv/du is given at a point P(u, v), d2v/du2 is determined. This tells us the way in
which the ray of a given direction is continued. And from the existence theorem* for the
solutions of ordinary differential equations of the second order, the following properties
are known: Through every point of the surface passes a geodesic in every direction. A ge-
odesic is uniquely determined by an initial point and tangent at that point.

Thus, it is to be expected that it is possible to find a direction at P such that the geodes-
ic through P also passes through another point Q. However, from a mathematical point of
view, there is another theorem that says that Q can be joined to P if it is sufficiently near
P; that is, it might be possible to find two points on a surface that cannot be connected
with a geodesic. However, we also have to define the surface. If the surface is complete it
will appear that any two points can be connected by at least one geodesic [Willmore
1984], that is, it is possible to find at least one (unique) solution to the geodesic equation.

With this in mind, the remaining part of this section will be about solving the geodesic
equation in general for different geometries. For an arbitrary surface, described either nu-
merically or analytically, the geodesic equation must be solved using numerical methods.
However, the procedure can be simplified for certain geometries. In these cases, the geo-
desic equation can be written as a first-order differential equation and, thus, the geodesics
can be found more easily. Actually, the class of geometries that can be solved with the
first-order equation is quite large. Thus, a faster analysis can be performed for many
geometries of interest within the conformal antenna area. Here, we will not treat the pure-
ly numerical solution. The emphasis will be on surfaces that can be analyzed with first-or-
der differential equations, for example, cylinders and paraboloids. These surfaces are very
useful shapes for many types of conformal antennas since they can model, for example,
base station antennas or the nose or fuselage of an aircraft. The geodesics in these cases
can be found by quadratures. 

If E, F, and G are functions of one parameter only, say u, the geodesic equation in
(5.11) is reduced to

= – ± ⇒ v(u) = � �– ± �du + � (5.12)

where E, F, and G are the first fundamental coefficients given in Equation (5.3), and � is
a constant of integration, known as the first geodesic constant. The ± sign in front of � de-
pends on whether v is monotonically increasing or decreasing with u. The solution to
Equation (5.12), which relates the geodesic coordinates u and v along the geodesic, can,
in general, be written as

v(u) = �(u, �) + � (5.13)

where �(u, �) is a real-valued function of u and �, and � is the second geodesic constant.
The physical significance of � and � is that they uniquely characterize a geodesic. With

��E�G� –� F�2�
��
G�G� –� ��2�

F
�
G

��E�G� –� F�2�
��
G�G� –� ��2�

F
�
G

dv
�
du
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*The existence theorem states that a differential equation d2v/du2 = g(u, v, dv/du), where g is a single-valued and
continuous function of its independent variables inside a certain given interval (with a Lipschitz condition satis-
fied in this case), has inside this interval a unique continuous solution for which dv/du takes a given value
(dv/du)0 at a point P(u0, v0) [Struik 1988].
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this equation known, and for many cases the solution is also known, the ray tracing proce-
dure becomes much faster. 

Equation (5.12) can be simplified even further if the surface can be expressed in the
so-called geodesic coordinate system [Struik 1988]. A coordinate surface belongs to the
geodesic coordinate system if it can be expressed in such a way that the parameter lines
are orthogonal, that is, F = 0, see Equation (5.3). Examples of surfaces that belong to the
geodesic coordinate system are any of the eleven surfaces defined by the Eisenhart coor-
dinate system [Spiegel 1994]. For these surfaces, the first-order geodesic differential
equation given in Equation (5.12) is simplified to

= ⇒ v(u) = � du + � (5.14)

As will be shown in Sections 5.2 and 5.3, the integral in Equation (5.14) can be solved in
closed form for the surfaces defined by the Eisenhart coordinate system. Actually, this ap-
proach can be extended to other surfaces as well; for example the ogive was considered in
[Jha et al. 1989a]. In fact, any rotational symmetric surface with an analytically described
cross section can be solved with Equation (5.14) [Rosquist 2001]. This will be discussed
in Section 5.4.

The solution to Equation (5.14) provides the general solution for the specific geome-
try. To find the particular solution that connects A and B on a surface, the geodesic con-
stants � and � have also to be found. For many of the applications related to conformal
antennas, the points between which the geodesics traverse are known a priori, since the
positions of the different antenna elements are known, as well as the field points or dif-
fraction points. Thus, � and � can be found by solving the following system of equations:

(5.15)

When the geodesics are known, various well-known properties and standard results from
differential geometry follow directly. We are thus ready to apply our ray-based theory for
the analysis of conformal antennas. It turns out that both the ray parameters of the differ-
ential type as well as the integral type can be found very easily for the geometries where
�(u, �) has been found. In fact, the only unknown in these expressions is the first geodes-
ic constant �. Hence, the accuracy of the results obtained with a ray-based theory depends
critically on the accuracy of the first geodesic constant � found from Equation (5.15). As
a consequence, some authors have called this method the geodesic constant method
(GCM) [Jha and Wiesbeck 1995]. 

This is as far as a general analytical approach is possible. In practice, numerical tech-
niques are often necessary in order to determine the first and second geodesic constants.
Note that from the theory above, we know that there can be more than one geodesic line
connecting two given points on a surface, and each one of these possible geodesics is re-
lated to a unique set of geodesic constants � and �. However, the maximum number of
geodesics between two points is different depending on the shape of surface. This will be
discussed and shown in the following sections. 

5.2 SINGLY CURVED SURFACES

In this section, the emphasis will be on solving the geodesic equation for singly curved
surfaces. Singly curved surfaces may also be called developable surfaces since they can

vstart = �(ustart, �) + �

vstop = �(ustop, �) + �

±��E�
��
�G��G� –� ��2�

±��E�
��
�G��G� –� ��2�

dv
�
du

130 GEODESICS ON CURVED SURFACES

c05.qxd  12/1/2005  3:55 PM  Page 130



be unfolded and analyzed as a flat surface and the key parameters are obtained from a
two-dimensional analysis (see Figure 5.4). As a consequence, the geodesics on any singly
curved surface can always be found, at least numerically. Thus, the singly curved surfaces
can be studied without solving Equation (5.15).

However, there is an advantage in actually solving the geodesic equation directly with-
out unfolding the surface. The reason is that the first and second geodesic constants will
be then known and with them also some very useful general ray parameter results from
differential geometry. With this, a more general computer code can be developed for ana-
lyzing both singly and doubly curved surfaces.

The general expression for a singly curved surface in the geodesic coordinate system is

x = f (u), y = g(u), z = v (5.16)

and the geodesic equation for this singly curved surface becomes

= (5.17)

with the solution

v(u) = � �( f��(�u�))�2�+� (�g��(�u�))�2� du + � = �(u, �) + � (5.18)

This equation defines all geodesics. The geodesic constants � and � for a particular geo-
desic are found from Equation (5.15). Table 5.1 shows a list of the explicit equations for

±�
���
�1� –� ��2�

±��(f��(�u�))�2�+� (�g��(�u�))�2�
���

�1� –� ��2�
dv
�
du
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Geodesic surface ray

Figure 5.4. A developed cylindrical surface.
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geodesics on common singly curved surfaces in the Eisenhart coordinate system. Observe
that u and v are chosen in such away that E, F, and G become functions of only one vari-
able. In Table 5.1 F(r, k) and E(r, k) are the incomplete elliptic integrals of first and sec-
ond kind [Bulirsch 1969, Erdelyi et al. 1953, Spiegel 1994].

In Figures 5.5 and 5.6 some examples of geodesics on singly curved surfaces are
shown. Figure 5.5 shows the only possible geodesic connecting A and B on a (infinitely
long) parabolic cylinder. Figure 5.6 shows the first- and second-order geodesics connect-
ing A and B on an elliptic cylinder. 

As mentioned earlier, there is at least one geodesic between two points A and B. For
closed surfaces, for example, an elliptic cylinder, the geodesics between A and B can be
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Table 5.1. Explicit equations for geodesics on different singly curved surfaces. See
also [Jha et al. 1989b]

Parametric Geodesic 
Geometry equation coordinates Solution to geodesic equation

Circular x = a cos � u = �
v = [au] + �

cylinder y = a sin � v = z
z = z
0 � � � 2�
a > 0

Elliptic x = a cos � u = �
v = [bE(u, k)] + �

cylinder y = b sin � v = z
z = z
0 � � � 2� k = �

�b�2

b

�–� a�2�
�

a, b > 0

Parabolic x = au u = u
v = � +

cylinder y = u2 v = z
z = z
–� � u � � ln(2u + �a�2�+� 4�u�2�)� + �
a > 0

Rectangular x = a cosh � u = y
v = �

�1�
�

–�
a

��2�
�� [F(r, k) – 2E(r, k)]

hyperbolic y = a sinh � v = z
cylinder z = z

–� � y � � + �
�

si

c

n

o�
h

sh�
(2

2�
u

(

)

u�)�
�	 + �

a > 0

r = sin–1� �
k =

General x = a cosh � u = y
v = {b[F(r, k) – E(r, k)] +

hyperbolic y = b sinh � v = z
cylinder z = z

[tanh (u)] �a�2�si�n�h�2�(u�)�+� b�2�co�sh�2�(u�)�} + �
–� � y � �
a, b > 0 r = sin–1[tanh (u)]

k = 
a
�
b

�
�
�1� –� ��2�

1
�
�2�

cosh (2u) – 1
��

cosh (2u)

1
�
�2�

a2

�
4

u�a�2�+� 4�u�2�
��

2

�
�
�1� –� ��2�

�
�
�1� –� ��2�

�
�
�1� –� ��2�
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A
B

Figure 5.6. The first- and second-order geodesics connecting A and B on an elliptic
cylinder with the following parameters: a = 0.3, b = 0.8, �1 = 0.14, �1 = 0, �2 = 0.0396,
and �2 = 0.
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Figure 5.5. The geodesic connecting A and B on a parabolic cylinder. Here, a = 0.5, �
= –0.414, and � = 0.13. 
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drawn in the clockwise as well as the counterclockwise directions. Besides, in each direction
there may be higher-order geodesics (multiple encircling surface ray paths) in addition to the
primary geodesics. To obtain the geodesic constants for higher-order geodesics, the obser-
vation point coordinates for the mth-order geodesic in the counterclockwise direction are:

Bm(uP, vP) = (uP + 2(m – 1)�, vP) m � 1 (5.19)

Higher-order geodesics on a circular or elliptic cylinder are easily identified by a two-
dimensional analysis. If the cylinder is developed into a plane, we find infinitely many
images Bm of B. This is illustrated in Figure 5.7, in which a closed and the corresponding
developed circular cylinder are shown.
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B 1B 2B 3B

mB

Figure 5.7. Illustration of different higher-order geodesics in one direction connect-
ing A and B. (a) The closed circular cylinder. (b) The developed circular cylinder.
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Our examples of Eisenhart surfaces above can be extended to other, more general sur-
faces. For many functions defining the surface, that is, f(u) and g(u), the integral in Equa-
tion (5.18) can be solved in closed form. If this is not possible, the integral can be com-
puted numerically, or the ray tracing can be solved by developing the surface and solving
it as a two-dimensional problem.

5.3 DOUBLY CURVED SURFACES

5.3.1 Introduction

In this section, doubly curved surfaces will be considered, in particular, rotationally sym-
metric surfaces. More general surfaces will be discussed in Section 5.4. Solving the geo-
desic equation for doubly curved surfaces is, of course, more difficult than for singly
curved surfaces. Often, the equation has to be solved numerically, resulting in a time-con-
suming analysis. However, as will be shown in this section, the geodesic equation for ro-
tationally symmetric doubly curved surfaces can in many cases be solved in closed form.
This simplifies the analysis of doubly curved surfaces and makes it possible to use a ray-
based theory for the study of complex, doubly curved conformal array antennas.

Once again, we start by describing the surface with a parametric equation in the geo-
desic coordinate system. For rotationally symmetric surfaces we get

x = f (u) cos v, y = f (u) sin v, z = g(u) (5.20)

and the solution to the geodesic equation for rotational symmetric doubly curved surfaces
becomes

v(u) = � du + � = �(u, �) + � (5.21)

As in the singly curved case, � and � are unique for a specific geodesic between the given
points A and B. They can be obtained in the same way as before, that is, by solving 

(5.22)

The geodesics on any doubly curved rotationally symmetric surface can now be found by
quadrature. However, analyzing doubly curved surfaces gets even more interesting when
it turns out that the integral in Equation (5.21) can be solved in closed form for many ro-
tationally symmetric, doubly curved surfaces, in particular, those belonging to the Eisen-
hart coordinate system. 

5.3.2 The Cone

The cone can be viewed as a transition form between singly and doubly curved surfaces
since it is a developable surface, but at the same time has properties related to doubly
curved surfaces. For the closed, singly curved surfaces presented earlier in Section 5.2 the
number of geodesics connecting two points are infinite. The cone, on the other hand, is an
example of a developable surface in which the number of geodesics connecting two

vA = �(uA, �) + �

vB = �(uB, �) + �

±��(f��(�u�))�2�+� (�g��(�u�))�2�
���

f(u)�(f�(u�))�2�–� ��2�
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points can be more than one but is bounded. The same feature applies to doubly curved
surfaces, as will be shown later.

In Table 5.2, the equations related to the circular cone are given, as well as the solution
to the geodesic equation. Figure 5.8 shows a typical case of a geodesic on a cone.

Since the cone is a developable surface, a simple but illustrative way of viewing the
geodesics is to unfold the surface. In the two-dimensional plane, the cone is unrolled into
a set of plane sectors. In Figure 5.9, a cone is unrolled with A as the starting point and B
(with its images) as the end point.

In Figure 5.9 (a) an example is shown in which it is possible to find two geodesics in
the positive � direction (A–B, A–B1) and two in the negative � direction (A–B–1, A–B–2).
These are the only possible geodesics for this particular cone, since the lines A–Bi must all
be on the right side of Q (which is not the case with A–B2), and all lines A–B–i must be on
the left side of Q. Figure 5.9 (b) shows a case in which there is only one single geodesic
connecting A and B. Clearly, the smaller half-cone angle of the cone, the greater the num-
ber of geodesics; but there cannot be infinitely many geodesics connecting the two given

136 GEODESICS ON CURVED SURFACES

A

B

Figure 5.8. A solution to the geodesic equation for a cone with �0 = 30°. Here � =
–0.0869 and � = –221°.

Table 5.2. Explicit equation for geodesics on a circular cone. See also [Jha et al.
1989b]

Parametric Geodesic 
Geometry equation coordinates Solution to geodesic equation

Circular cone x = r sin �0 cos � u = r
v = sec–1� � + �

y = r sin �0 sin � v = �
z = –r cos �0

0 � � � 2�
r � 0

�0 is the half-cone angle

u sin �0
�

�

1
�
sin �0
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points. Thus, the number of geodesics is limited for the cone, as is the case for general
doubly curved surfaces, see Section 5.3.4.

5.3.3 Rotationally Symmetric Doubly Curved Surfaces

By extending the analysis to general rotationally symmetric doubly curved surfaces, we
can study more surfaces of great practical interest. Table 5.3 shows the explicit equations
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Figure 5.9. The unrolled cone for two different values of the half-cone angle �0. (a) �0

< 45°. (b) �0 > 45°.
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for geodesics on several rotationally symmetric doubly curved surfaces in the Eisenhart
coordinate system. Observe that u and v are chosen in such away that E, F, and G are
functions of only one variable.

Some of the equations presented above appear as functions of the incomplete elliptic
integrals of the first [F(r, k)] and third kind [�(n, r, k)] which require numerical computa-
tions; see, for example, [Bulirsch 1969, Erdelyi et al. 1953, Spiegel 1994].

The analysis presented in this section can also be extended to non-Eisenhart surfaces.
The only requirement is that the surface can be defined in the geodesic coordinate system,
that is, the parameterization is such that the parameter lines are orthogonal. One example
of a non-Eisenhart surface is the ogive (Figure 5.10), which is of great interest in aero-
space engineering since it can describe many of the shapes encountered in the area. The
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Table 5.3. Explicit equations for geodesics on rotationally symmetric doubly curved
surfaces. See also [Jha et al. 1987, Jha et al. 1989c, Jha et al. 1991, Choudhury and
Jha 1995]

Parametric Geodesic 
Geometry equation coordinates Solution to geodesic equation

Sphere x = a sin � cos � u = �
v = –tan–1� � + �

y = a sin � sin � v = �
z = a cos �
0 � � � 2�
0 � � � �
a > 0

Ellipsoid of x = a sin � cos � u = �
v = ��(n, r, k) + F(r, k)� + �

revolution y = a sin � sin � v = �
z = b cos �
0 � � � 2� n = �

a2

a

–
2

�2

�
0 � � � �
a, b > 0 r = 

k =

General x = au cos � u = u
v = ln +

paraboloid of y = au sin � v = �
revolution z = –u2

(GPOR) 0 � u � � sin–1� � + �
0 � � � 2�
a > 0

General x = a sinh � cos � u = �
v = ��[n, r, k] – F[r, k]	 + �

hyperboloid y = a sinh � sin � v = �
of revolution z = b cosh �
(GHOR) 0 � � � � n = –

0 � � � 2�

a, b > 0 r = 

k =
�a�2�+� b�2� �a�2�+� ��2�
���

ab

a cosh u
�
�a�2�+� ��2�

a2 + �2

�
a2

a2 + c2

�
a2

�
�
b

a�a�2u�2�–� ��2�
��
u�a�4�+� 4���2�

a�a�2�+� 4�u�2� + 2�a�2u�2�–� ��2�
���
a�a�2�+� 4�u�2� – 2�a�2u�2�–� ��2�

�
�
a2

�b�2�–� a�2� �a�2�–� ��2�
���

ab

a cos u
�
�a�2�–� ��2�

b2 – a2

�
a2

–�
�
b

a cos u
��
�a�2�si�n�2�u� –� ��2�
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ogive is not a coordinate surface of an Eisenhart coordinate system and cannot be parame-
terized as such. However, the ogive can be identified as the coordinate surface of the bi-
spherical coordinate system [Jha et al. 1989a]. In Table 5.4, the parameterization of the
ogive is presented. This parameterization can be shown to be an example of a geodesic
coordinate system. In Figure 5.10, an example of an ogive is shown, with R = 0.5 and a =
3�/4; a geodesic connecting A and B is also shown.

5.3.4 Properties of Geodesics on Doubly Curved Surfaces

Since the properties of geodesics on doubly curved surfaces are less trivial than those on
singly curved surfaces, a number of special cases will be discussed. To do this, the exam-
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A

B

Figure 5.10. A solution to the geodesic equation for an ogive with R = 0.5 and a =
3�/4. Here � = 0.1329 and � = –6.7907°.

Table 5.4. The parameterization of the ogive; R and a are the shaping parameters of
the ogive. See also [Jha et al. 1989a]

Parametric Geodesic 
Geometry equation coordinates Solution to geodesic equation

Ogive u = �
x = �

cosh

R

�

si

–

n

c

a

os a
� cos �

v = �
v(u) = � du + �

y = �
cosh

R

�

si

–

n

c

a

os a
� sin � where

f (u) = �
cosh

R

u

si

–

n

c

a

os a
�

z = �
cos

R

h

s

�

in

–

h

c

�

os a
�

0 � � � 2� f�(u) = 
–� � � � �
a > �/2

g�(u) = �
R

(

(

c

1

o

–

sh

co

u

s

–

h
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u

o
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s

o
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s
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�

(–1)R sinh u sin a
��
(cosh u – cos a)2

±� �(f��(�u�))�2�+� (�g��(�u�))�2�
���

f(u)�(f�(u�))�2� –� ��2
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ple of a general paraboloid of revolution (GPOR) is taken since it can also model parts of
a sphere or an ellipsoid. Thus, the results obtained here can to some extent also be gener-
alized to other doubly curved surfaces such as those shown in Table 5.3. 

Geodesics between A and B on the GPOR can be drawn both in the clockwise (nega-
tive � direction) and the counterclockwise (positive � direction) directions. Besides, in
each direction there can be higher-order geodesics (multiple encircling surface ray paths)
in addition to the primary geodesics. The analysis presented here is valid for all geodesics
on the surface, but we focus on different orders of geodesics in the positive � direction.
The general expression for geodesics on a GPOR was given in Table 5.3 and the equa-
tions to be solved for a specific geodesic between A and B are given by

(5.23)

More generally, the observation point coordinates for the mth-order geodesic (in the posi-
tive � direction) are:

Pm(uP, �P) = (uP, �P + 2(m – 1)�) m � 1 (5.24)

In the first example, the source point A is located at uA = 4, �A = 20°, the observation
point is located at uB = 6.5, �B = 140°, and the shaping parameter is a = 0.4 (a determines
the sharpness of the surface). Figure 5.11 (a)–(d) shows the first-, second-, third-, and
fourth-order geodesics respectively. Except for these four geodesics, no higher-order geo-
desics in the positive � direction exist for this particular value of a. Note that all these ge-
odesics are monotonically increasing (or decreasing) functions of u.

Let us now consider the same example as above but with the shaping parameter a in-
creased from 0.4 to 0.6. In this case, a third- and fourth-order geodesic no longer exists. If
a is increased even further, the second-order geodesic vanishes as well. All of the geodes-
ics discussed above are monotonically decreasing/increasing with u. However, in general,
one could have A and B connected with a combination of both decreasing and increasing
geodesics (as a function of the parameter u). In such cases, the geodesics may be treated
in two parts: A to C as the decreasing/increasing geodesic, and C to B as the increasing/
decreasing geodesic. For the case when a = 1.6, a monotonically decreasing or increasing
second-order geodesic does not exist, but a second-order geodesic in the positive � direc-
tion with an increasing and decreasing part is possible to find. Such a second-order geo-
desic is shown in Figure 5.12 (b). A similar analysis can be done for geodesics in the neg-
ative � direction.

In the examples above, the number of higher-order geodesics for the GPOR depends
on the shaping parameter a. This is explained by the shape of the surface; compare this to
the cone considered earlier. When a is small, the surface looks like a circular cylinder, ex-
cept for the upper part of the GPOR. Then it is possible to find several higher-order geo-
desics. When a is increased, the surface gradually becomes more sphere-shaped and the
higher order (monotonically increasing or decreasing) geodesics vanish. In Section 5.3.5,
a parameter study is done illustrating this for the case when uA = uB. The same result is
obtained for a hyperboloid of revolution and for an ellipsoid. However, for the ellipsoid
there can exist additional higher-order geodesics since the surface is closed. Thus, a geo-
desic starting at the upper part of the ellipsoid can turn back at the lower pole before it
reaches the end point. In fact, along the principal planes of the ellipsoid there exist infi-

�S = �(uS, �) + �

�P = �(uP, �) + �
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nitely many geodesics since the surface is reduce to elliptic cylinders at these positions.
The sphere is also a special case since infinitely many geodesics exist for any combina-
tion of given points on the surface.

5.3.5 Geodesic Splitting

There is one special combination of source and observation points that has not been dis-
cussed yet—the case when both A and B are at the same u value. For this case, a phenom-
enon called geodesic splitting has been observed. Before this phenomenon is described, it
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A

B

Figure 5.11. Geodesics in the positive � direction of a GPOR with a = 0.4. (a) The
first-order geodesic; � = 0.33981 and � = –529.5008°. (b) The second-order geodesic;
� = 1.1303 and � = –696.0058°. (continued)

(b)

(a)

A

B
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is worth pointing out that the geodesics that result when uA = uB for a general paraboloid
of revolution cannot be along the � parameter line according to the definition of a geodes-
ic. Thus, the geodesic between A and B in this case must be an increasing and decreasing
geodesic. Such a case is illustrated in Figure 5.13 for the source point A at uA = 2, �A = 0°,
the observation point B at uB = 2, �B = 100°, and a = 1.6. 

Now, what about this geodesic splitting phenomenon? It appears for certain combina-
tions of source and observation coordinates (A and B) for a particular shaping parameter
a. In such a case, the geodesic equation results in two distinct values for �, thereby result-
ing in two distinct geodesics for a given direction and order. This phenomenon is called
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A

B

Figure 5.11. (cont.) Geodesics in the positive � direction of a GPOR with a = 0.4. (c)
The third-order geodesic; � = 1.4983 and � = –373.6902°. (d) The fourth-order geo-
desic; � = 1.5997 and � = –3.563°.

(d)

(c)

A

B
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geodesic splitting, reported within the antenna community by Jha et al. in 1989 [Jha et al.
1989d, Jha et al. 1992]. This was unexpected, since it has been known that between any
two arbitrarily located points on a cone or a cylinder there exist primary and higher-order
(of multiple encirclements) geodesics in both the counterclockwise and clockwise direc-
tions, but the number of geodesics of a given order and direction never exceeds one. In
contrast, for general paraboloids of revolution, the geodesic of a given order and direction
can be split into two!
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A

B

C

Figure 5.12. A GPOR in which a = 1.6 (uA = 4, �A = 20°; uB = 6.5, �B = 140°). (a) The
first-order geodesic in the positive � direction; � = 4.4851 and � = –165.218°. (b) The
nontrivial second-order geodesic in the positive � direction; � = 3.4 and � =
–217.4338°.
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Let us now increase the angular distance (�B) between A and B in the example shown
in Figure 5.13. When the angular distance goes toward 180°, only one solution exists, but
when the angular distance equals and exceeds 180° two solutions exist for the first order
geodesic in the positive � direction. Thus, a geodesic splitting has occurred. Figure 5.14
(a)–(d) shows all possible first-order geodesics in the positive � direction for �B distances
(170°, 180°, 200°, 220°). In the final subfigure, Figure 5.14 (e), �B = 225.6°. For larger �B

values, no solutions exist to the geodesic equation except geodesics in the negative � di-
rection. In this case, no higher-order geodesics in the positive � direction can be found. 

This phenomenon gives rise to some questions: when do we have to worry about this
and, when it occurs, which one should we choose when doing the analysis? Let us start
with the first question. Figure 5.15 shows a parameter study of possible solutions to the
geodesic equation when only geodesics in the positive � direction are considered. The
most interesting parameters to vary are the coordinates for the source and field points, and
this is done for two different shaping parameters.

In the first example, a = 0.5, a pointed surface is considered. The second case is a less
pointed surface with a = 1.6. In these examples, the source point is always located at �A =
0°, that is, �� in the figures can be viewed as �B. From this analysis, we can see that the
geodesic splitting occurs when �� � 180° if u is large enough. If u is too small, no solu-
tion exists to the geodesic equation. These pictures also show the fact that higher-order
encircling geodesics are possible if both �� and u are large enough, but the number of en-
circling geodesics will depend on the shaping parameter. This was also discussed and
shown in Section 5.3.4 when uA � uB. However, no parameter study was presented since
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Figure 5.13. An example of a geodesic when uA = uB but no geodesic splitting oc-
curs. Furthermore, for the � parameter lines the normal direction and the surface
normal direction are indicated. This shows that the � parameter lines are not geo-
desics.
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it is difficult to show a clear picture of all possible solutions versus coordinates and shap-
ing parameter when uA � uB.

Since higher-order geodesics in the positive � direction are possible it is also possible,
to get geodesic splitting for higher-order geodesics. An example of this is shown in Figure
5.16. Obviously, the number of geodesics and the area for which splitting occurs depend
on the shaping parameter of the surface. It is possible to derive a relation for this but the
main principles are the same independent of the shaping parameter. This is expected since
a pointed or more flat GPOR surface are in principle the same.
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The second question referred to above (which is the most important geodesic?) is not
easily answered. The reason is that there is no a priori method of identifying which geo-
desic(s) are the dominant contributors to the total surface ray field. Thus, the splitting
phenomenon leads to an unavoidable doubling of the computations. However, in most
cases, the arc length gives a hint about which geodesic is the dominant one since the sur-
face ray field is decaying as a function of the arc length. But when A and B are moving
apart in the angular direction, the geodesics are moving toward each other [see Figure
5.14 (d)–(e)], and their lengths become almost equal. From a practical point of view, this
situation is not critical since the geodesics traveling in the opposite direction around the
surface are much shorter. But for a more general surface, there can be situations in which
two geodesics have about equal lengths. In such cases, the arc length is no longer a useful
parameter for finding the dominant surface ray path. Instead, the radius of curvature can
be used since the loss of energy is also due to diffraction from the surface ray. If the sur-
face radius of curvature is small, more energy will be lost than for a surface ray with a
large radius of curvature.

It has been stated that the first geodesic constant � must be computed accurately up to
eight decimal places for a given arbitrary set of source and observation points [Jha et al.
1989d]. In the EM analysis of a surface using ray theory, the expressions are in a one-pa-
rameter-dependent form and their accuracy depends on the accuracy to which the first ge-
odesic constant � has been determined; see, for example [Jha and Wiesbeck 1995]. To
give some examples of the effect of the accuracy of �, some of the previous cases will be
considered again. Let us start with the case when uA = uB. In the first example, a = 0.5, uB

= 0.5, and |�A – �B| = 120°. By changing the value of � from the correct result, the angu-
lar distance will change, resulting in a shorter or longer geodesic. In the analysis of con-
formal antennas, some surface-ray parameters will then change and in the worst case give
unsatisfactory results. To keep the angular distance within one-tenth of a degree, � has to
be computed accurately up to four decimal places for this example. If eight decimals are
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correct, the angular difference will change no more than about 0.000005° in this case.
Changing the angular distance while keeping the other parameters and using � with eight
correct decimals leads to the following conclusion: If the angular distance is decreased,
the error increases, and if the angular distance is increased, the error decreases. However,
no matter what the angular distance, the change in the angular distance due to the inaccu-
racy of � is still less than 10–3 degrees. We get about the same result if a is changed in-
stead of the angular distance. If the geodesic is a monotonically increasing/decreasing
function of u, almost similar results are obtained. Thus, there should not be any problem
in the practical analysis of conformal antennas. 

The conclusion is that for the practical analysis of conformal antennas, the required ac-
curacy in the geodesic constant � is not a big problem. An accuracy of about one thou-
sandth of a percentage in � will keep the angular distance within one tenth of a degree of
the correct value. However, if the error in � is as much as 1%, the angular distance can be
extended or shortened by several degrees. One example is given in Figure 5.17, where a =
1.0, uA = 0.5, uB = 2.5, and |�B – �A| = 130°. In this example, the correct geodesic is
shown together with two geodesics when the correct value of � is increased and de-
creased, respectively, by 1%. The result is an angular difference of about 3°.

5.4 ARBITRARILY SHAPED SURFACES

In this section, we will present some viewpoints on arbitrarily shaped surfaces. These sur-
faces include hybrid surfaces, analytically specified surfaces, and numerically specified
surfaces. These surfaces can simulate a real vehicle or aircraft better than the generic sur-
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Figure 5.16. An example of geodesic splitting for second-order geodesics encircling
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faces considered earlier in this chapter. However, they are in general much more difficult
to analyze and it may be good enough to approximate the real surface with one of the sim-
pler surfaces considered previously. Examples of arbitrarily shaped surfaces that we will
consider in this section are a paraboloid with an elliptic cross section and a hybrid surface,
which consists of a circular cylinder with a paraboloid or a cone at the top. Numerically
specified surfaces are left for the reader to investigate.

5.4.1 Hybrid Surfaces

Let us first consider the hybrid surface consisting of a circular cylinder and a cone [Figure
5.18 (a)]. Assume that the source point A is on the cylinder, the observation point B is on
the cone, and T is the junction between the two surfaces. In order to find the ray connect-
ing A and B, we apply the extended Fermat’s principle [Keller 1962]. This means that the
geodesic should be continuous across the junction and the geodesic from A to T is the ge-
odesic on the cylinder, whereas the geodesic from T to B is the geodesic on the cone. This
becomes clear if the surfaces are developed; the geodesics over the developed surfaces
map onto straight lines. As a consequence, the coordinates for the junction point T can be
obtained in closed form. 

For nondevelopable surfaces, it is more difficult to find the junction point T. In these
cases, the junction point is defined as the point at which the geodesic crossing the junction
line preserves the angle with respect to the junction line. Since this property is local, it can
be used for nondevelopable surfaces. The property follows from Hertz’s principle of par-
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ticle dynamics [Lyusternik 1964]. To find the junction point T between two adjacent
matched surfaces, the following relation must be fulfilled [see also Figure 5.18 (b)].

t̂B · �̂T = t̂A · �̂T (5.27)

As can be seen, the ray tracing for combinations of known surfaces follows the analysis
presented earlier. Thus, it should not be very difficult to include this kind of surface in a
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code developed for nonhybrid surfaces. Note that if UTD is used, some functions must be
redefined for consistency of the solution [Jha et al. 1994].

5.4.2 Analytically Described Surfaces

By relaxing the limitations on the types of surface shapes to be studied, the analysis be-
comes much more difficult. It is fascinating how easy it is to create a much more diffi-
cult problem just by changing one single parameter. One example is changing the cir-
cular cross section of the paraboloid studied in Section 5.3 to an elliptic cross section.
By doing this, the analysis becomes much more difficult and it is no longer possible to
find a closed expression for the geodesics. Such simple surfaces with a nonrotational
symmetric cross section are of great interest since they can model, for example, the nose
of some aircraft more accurately than a corresponding surface with a circular cross sec-
tion.

We will consider the paraboloid with an elliptic cross section here (see Table 5.5) to il-
lustrate how to extend the ray tracing described above. Many other interesting surfaces
could be approached in the same fashion. 

The first fundamental coefficients E, F, and G are found to be

E = a2 cos2 � + b2 sin2 � + 4u2

F = u sin � cos �(b2 – a2) (5.28)

G = a2u2 sin2 � + b2u2 cos2 �

From this it is clear that this surface with the given parameterization does not belong to
the geodesic coordinate system since F � 0 when a � b. Furthermore, neither E, F, or G
are functions of only one parameter and this means that the geodesic equation cannot be
reduced to a first-order differential equation as has been described earlier. Thus, we leave
this case (and many similar ones) at this point, hoping that future investigations some day
will produce useful solutions. 
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Singly curved surfaces, especially circular cylindrical surfaces, are common in conformal
antenna applications. In this chapter, basic antenna characteristics of antenna elements on
singly curved surfaces are treated. Both waveguide-fed apertures and microstrip-patch an-
tennas are discussed. The aim is to give a basic overview of the mutual coupling among
the elements versus surface geometry and size, and the effect of the mutual coupling on
the radiation characteristics. Note, however, that conformal array characteristics are not
discussed in this chapter. 

6.1 INTRODUCTION

Antennas mounted on singly curved surfaces are an important class of conformal arrays for
applications in which a large (azimuthal) angular coverage is required. These types of an-
tennas have been used in many experimental radar and communication systems. An
overview of different types of antennas is found in [Provencher 1972, Mailloux 1994,
Hansen 1981, 1998]. Other examples are [Rai et al. 1996, Kanno et al. 1996, Gniss 1998,
Löffler et al. 1999, Visser and Gerini 1999, Martín Polegre et al. 2001]. Other reference
sources include the IEEE Transactions on Antennas and Propagation, Special issue on
conformal antennas (January 1974), Proceedings of the Array Antenna Conferences held in
1970 and 1972 at the Naval Electronics Laboratory Center, San Diego, USA, and
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Proceedings from the European Workshops on Conformal Antennas (www.ewca-
home.org). The singly curved surface can also be used as an approximation of the shape of
an aircraft wing or fuselage.

In this chapter, we will give an overview of the performance of radiating elements lo-
cated on singly curved surfaces. Radiating elements on doubly curved surfaces are dis-
cussed in Chapter 7. The focus is on the mutual coupling and its influence on the radiating
characteristics. We will also point out the differences between antennas on singly curved
surfaces and antennas on planar surfaces. The emphasis is on antenna element character-
istics when a single element is fed, both isolated and in the array environment. Note that
the characteristics of conformal array antennas will be discussed in Chapter 8 

Arrays on singly curved surfaces (in most cases on circular cylinders) have been the
subject of research for many years, especially the radiating element characteristics. Both
dipoles and apertures have been used as elements; some references are [Carter 1943;
Gladman 1970; Hessel and Sureau 1970; Borgiotti and Balzano 1970, 1972; Sureau and
Hessel 1969, 1971, 1972; Hessel 1972; Steyskal 1977; Herper et al. 1985a,b; Persson and
Josefsson 2001; Persson and Rojas 2003; Thors and Rojas 2003; Thors et al. 2003; Holter
2005; Persson and Josefsson 2005; Zmak and Sipus 2005]. In some of these examples
“infinite” cylindrical arrays are discussed and analyzed with a unit cell approach, and in
other cases an element-by-element approach is used; compare Chapter 4. Studies of the
microstrip patch antenna on a circular cylinder include [Munson 1974; Ashkenazy et al.
1985; Nakatini et al. 1986; Jayakumar et al. 1986; Ashkenazy et al. 1988; Sohtell 1989;
Habashy et al. 1990; Da Silva et al. 1991; Tam et al. 1995; Wu 1995; Huang and Chang
1997; Jin et al. 1997; Herscovici et al. 1997; Wong 1999; Löffler et al. 1999; Ertürk et al.
2003, 2004; Raffaelli et al. 2005].

The main part of this chapter deals with the canonical case of waveguide-fed aperture
antennas mounted on various singly curved, perfectly electric conducting (PEC) surfaces.
The aperture antenna is a simple element and can be analyzed easily with the methods de-
scribed in Chapter 4. Thus, the complexity of the antenna itself is minimized and the fo-
cus is directed to the influence of the curved surface on the antenna characteristics. A di-
electric coating will also be added, demonstrating the influence of a radome covering the
antenna. In most of the examples, a circular cylinder is used (as when a radome is includ-
ed), but we will also extend the discussion to other types of singly curved PEC surfaces
such as elliptic and hyperbolic cylinders. Finally, microstrip-patch antennas are treated.
These antennas are also relatively simple elements, but can have a complex feeding struc-
ture. They require that a dielectric layer (the dielectric substrate supporting the patch ele-
ment) be included in the analysis. As mentioned in Chapter 4, this is, in general, a diffi-
cult problem. Hence, only circular cylinders are considered. 

The mutual coupling results are presented in terms of the amplitude and phase of scat-
tering matrix, or in terms of the self and mutual impedances. Two cases are distinguished.
The first is the mutual coupling between two elements only, referred to as isolated cou-
pling since no other elements are involved. The other elements of the array are assumed to
be absent (short-circuited in case of apertures). If all elements are present, we use the term
“array mutual coupling.” The influence of the mutual coupling is also demonstrated by
comparing radiation patterns of isolated and embedded elements.

We will first discuss aperture antennas flush mounted on singly curved, noncoated
PEC surfaces (Sections 6.2–6.3). A special case of such surfaces is discussed in Section
6.4, in which faceted cylinders are considered. Coated surfaces are discussed in Section
6.5. Microstrip-patch elements on cylinders are discussed in Section 6.6. We conclude
with a discussion of antennas on conical surfaces in Section 6.7.
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6.2 APERTURE ANTENNAS ON CIRCULAR CYLINDERS

6.2.1 Introduction

Aperture antennas flush mounted on a conducting circular cylinder represent an important
class of conformal antennas. The analysis of this canonical problem provides insight into
many of the characteristics of singly curved conformal antennas. In the examples to fol-
low, the circular cylinder is assumed to be infinitely long. The apertures have a rectangu-
lar shape with either axial or circumferential orientation. The aperture field is given by a
combination of rectangular waveguide modes. In general, several waveguide modes
should be included, but in many cases a single mode approximation is enough. We will
also demonstrate the influence of the higher-order modes, and show when they are impor-
tant if accurate results are required.

The geometry and all relevant parameters are defined in Figure 6.1. The radius of the
cylinder is denoted by R and equals 5 � in most of the cases to be presented. The apertures
are described by the width and height, w and h. s is the geodesic length between the cen-
ters of the apertures. The angle � is also defined in Figure 6.1.

The apertures are linearly polarized (excited by the fundamental TE10 mode). Figure 6.1
shows a typical case with w > h and axial (vertical) polarization. Axially oriented apertures,
in which w < h, represent a case with circumferential (horizontal) polarization. We will also
consider cross polarized cases, that is, coupling with one aperture of each kind.

6.2.2 Theory

The results in this chapter concerning aperture antennas are found by using an
UTD–MoM method, except when otherwise stated. This method is based on solving the
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integral equation (IE) for the aperture electric field E�ap. The integral to be solved is
schematically given as

H�ext
tan(E�ap) = H� int

tan(E�ap) (6.1)

The internal field is represented by waveguide modes and the external field is found by
determining the fields on the surface using UTD, as described in Chapter 4; see Equation
(4.20). The unknown aperture field is then found by using a standard MoM approach.
Once found, the mutual admittance between elements 1 and 2 can typically be expressed
as

Y21 = �
S2

E�2
ap × H�2(E�1

ap)dS� (6.2)

Note that a geodesic distance of approximately 0.5 � or larger is needed for the UTD so-
lution to be valid. For smaller distances, a planar approximation is used. If we take out
two radiators from a large array with the other radiators short-circuited in case of aper-
tures, Equation (6.2) gives an element in the mutual admittance (impedance) matrix.
From this matrix, we can derive the scattering matrix:

S = (I – Y)(I + Y)–1 or S = 2(I + Y)–1 – I (6.3)

If isolated coupling is considered, Y is a 2 × 2 element matrix calculated as a function of
the spacing or any other parameter of interest. The array mutual coupling is obtained by
considering all elements in the array; thus, Y is an N × N element matrix, where N is the
number of elements in the array. If higher-order waveguide modes are used in the analy-
sis, the matrix is generally of the size MN × MN, where M is the number of modes used;
see also Equation (4.22). 

The far-field radiation pattern can be obtained directly once the aperture field is found
with or without the effect of mutual coupling.

An important observation is that the IE is referred to the curved aperture plane, as dis-
cussed in Section 4.5.2. However, the waveguide modes used in the IE formulation are
valid for a planar surface in a cross section of the waveguide; see Figure 4.14. This gap is
often disregarded; however, we have taken it into account by adding a phase correction to
the aperture field at the planar surface.

6.2.3 Mutual Coupling

6.2.3.1 Isolated Mutual Coupling. We start by analyzing the isolated cou-
pling, that is, the mutual coupling between two elements only. The radius of the cylinder
is 5 �, and the aperture dimensions are 0.27 � × 0.65 �. When changing from the E-plane
case to the H-plane case, both apertures are rotated 90°.

The first results in Figures 6.2 and 6.3 show the E- and H-plane couplings, respective-
ly, in the azimuth direction (� = 0°), and as a function of the geodesic length s. The total
distance covered in the figures corresponds to an angular sector of approximately 180° of
the circular cylinder. A comparison with the corresponding planar case is also included. 

We observe that the H-plane coupling is weaker than the E-plane coupling (as it is in
the corresponding planar case). The ripple is caused by the interference of two waves
traveling in opposite directions around the cylinder. The amplitude of the coupling in the

1
�
V1V2
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Figure 6.2. The isolated mutual coupling along the circumferential direction of a
cylinder while using circumferentially polarized elements, that is, the isolated cou-
pling in the E plane (solid line). The result is compared with the corresponding pla-
nar case (dashed line). Note that the distance in wavelengths corresponds to an an-
gular interval of approximately 180° at the cylinder. (a) Amplitude. The result is also
compared with an asymptotic formula in Table 6.1 (dash–dotted line). (b) Phase.
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Figure 6.3. The isolated mutual coupling along the circumferential direction of a
cylinder while using axially polarized elements, that is, the isolated coupling in the H
plane (solid line). The result is compared with the corresponding planar case
(dashed line). Note that the distance in wavelengths corresponds to an angular inter-
val of approximately 180° at the cylinder. (a) Amplitude. The result is also compared
with an asymptotic formula in Table 6.1 (dash–dotted line). (b) Phase.
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planar case decays as 1/sn (n is given in Table 6.1 and depends on the polarization). Obvi-
ously, the surface field along the circumferential direction of the cylinder experiences a
faster decay due to continuous leaking (cf. Section 4.4.2), resulting in an exponential de-
cay due to the curvature. Table 6.1 shows how the amplitude of the field (the mutual cou-
pling) decays asymptotically for the different cases. 

Figures 6.2 (a) and 6.3 (a) show the results using the cylindrical surface asymptotic
formulas in Table 6.1 (with appropriate constants) for the E- and H-plane couplings. The
dominant term is shown. Higher-order terms are needed for a highly accurate evaluation
of the mutual coupling, in particular for the cylindrical H-plane. In general, the asymptot-
ic behavior (for both polarizations) of the cylindrical case is given as

U � e–jks �
�

n=1

(Dn)2 e–�ns (6.4)

where U is the field component, and Dn and �n are appropriate constants [Keller 1956,
McNamara et al. 1990]. Thus, the asymptotic behavior of the cylindrical case is the same
for both the E-plane and H-plane couplings, which is in contrast to the planar case. Using
the dominant term only [cf. Table 6.1 and Figures 6.2 (a) and 6.3 (a)] we find that the as-
ymptotic expressions for the circular cylinder case predict the correct decay for moderate
to large distances s, whereas the asymptotic expressions for the planar case are accurate
for small distances as well (not shown). 

The phase data in Figures 6.2 and 6.3 are shown with the phase delay corresponding to
the geometrical separation subtracted. For the planar case, the phase follows almost a hor-
izontal line, indicating that the wave is propagating as a TEM wave in free space. For the
circular cylinder, there is an additional phase delay. One interpretation of this is that the
wave is propagating at another radius. Analyzing the phase data gives an equivalent geo-
desic length ~s corresponding to a radius of ~R � R + 0.2 �; thus, the surface field can be in-
terpreted as traveling approximately 0.2� above the curved surface. This is an interesting
result when discussing the physics of the ray-based model. In this model, the surface field
is assumed to travel tightly along the surface; but a different radius could have been used,
as indicated in Appendix 4A.2. In fact, from Keller’s surface diffraction analysis [Eq.
(6.4)], the approximate solution for the Hz component (circumferential polarization) gives

Hz � e–(jk+�n)s (6.5)

where

�n = � �
1/3

ej�/6 (6.6)
�R
�
�

�	1
�
R
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Table 6.1. Asymptotic decay of the amplitude of the isolated coupling in the E and
H planes

Planar surface Cylindrical surface

E plane Amplitude � CE Amplitude � C1
Ee–CE

2 s

H plane Amplitude � CH Amplitude � C1
He–CH

2 s
1
�
s2

1
�
s
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and �	1 is a zero of the Airy function, � 1.02. We see already from this solution that there
will be an extra phase delay since �n is complex. Inserting the appropriate numbers gives
the same 0.2 � extra as derived above. 

Next, we will study the dependence of the mutual coupling on the cylinder radius. The
following radii are tested: R = 2 �, 5 �, 10 �, 20 �, and 50 �. The apertures have the same
size as in the previous examples. Figure 6.4 shows the E-plane couplings (for � = 0°) and
Figure 6.5 shows the H-plane couplings (also for � = 0°). In both cases, the results are
shown versus the geodesic length between the apertures. The corresponding planar result
(R � �) is included for comparison. Analysis shows that the phase data closely follow
Equations (6.5) and (6.6).

As indicated in the figures, the circular cylinder solution approaches the planar solu-
tion when the radius is increased to infinity, as expected. Another interesting result is that
the planar solution seems to be surprisingly accurate for small distances, for both polar-
izations. This is a feature often used when analyzing arrays on curved surfaces. By using
the planar solution, approximate values of the mutual coupling can be found easily for
neighboring elements as well as between elements along the axis; see also Section
6.5.3.2. However, the effect of the curvature of the surface is quite strong for larger dis-
tances. For a 50 � radius, the planar solution and the cylinder solution deviate consider-
ably after a distance of approximately 6–8 � (both in the E and H planes). Similar exam-
ples can be found in the literature; see, for example, [Borgiotti and Balzano 1970, Hessel
1972, Hansen 1981].

So far, only the circumferential direction (� = 0°) of the cylinder has been considered.
For a complete picture of the behavior of the mutual coupling, other directions must also
be analyzed. Therefore, a range of � values, namely � = 0°, � = 20°, � = 40°, � = 60°,
� = 80° and � = 90°, were investigated, with the results shown in Figures 6.6 and 6.7. The
aperture dimensions are the same as before and the aperture orientations are kept fixed for
each figure. Hence, in Figure 6.6 the aperture polarization for � = 0° corresponds to E-
plane coupling, but as � increases, the coupling becomes mixed. When � reaches 90°, we
have, instead, H-plane coupling along the axis of the cylinder. Figure 6.7 shows the oppo-
site scenario, starting with the H-plane coupling with � = 0°, and reaching E-plane cou-
pling along the axis of the cylinder when � = 90°. The maximum geodesic length s is kept
constant, corresponding to half the perimeter of a cylinder with a 5 � radius (5��). The
planar case is included, to be compared with the cylinder results for � = 90°.

These results show that the transition from E-plane coupling in the azimuth to H-plane
coupling along the axial direction is different from the opposite transition—going from
H-plane coupling to E-plane coupling. The general behavior is governed by two factors:
the changing radius of curvature along the geodesic (which goes toward infinity when �
reaches 90°), and the changing orientation of the surface magnetic field of the source at
different � angles; see Figure 6.8. 

The different decay rates shown in Figure 6.6 are due to the above-mentioned two fac-
tors. When � is increased the radius of curvature along the geodesic increases, resulting in
a successive slower decay of the surface field. At the same time, the amplitude of the sur-
face field from the aperture remains quite stable for most � values, expect when reaching
the axial direction; see Figure 6.8 (a), where the field decays quickly. The effect of the
curvature dominates in the circumferential direction, whereas the decay of the surface
field dominates in the axial direction.

Figure 6.7 shows an opposite trend compared to Figure 6.6; the mutual coupling in-
creases continuously when going from the H plane to the E plane. In this situation, the ef-
fects of the radius of curvature and the surface field work in the same direction when the
angle � is changing; see also Figure 6.8 (b).
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Figure 6.4. The isolated E-plane mutual coupling along the circumferential direction
of cylinders with different radii. (a) The amplitude. (b) The phase, with the free space
wave contribution subtracted.
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Figure 6.5. The isolated H-plane mutual coupling along the circumferential direction
of cylinders with different radii. (a) The amplitude. (b) The phase, with the free space
wave contribution subtracted.
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Figure 6.6. The isolated mutual coupling as function of 
 for a given radius (5�) and
geodesic length. Here, � = 0° corresponds to E-plane coupling and � = 90° corre-
sponds to H-plane coupling since the apertures do not rotate when changing �. (a)
Amplitude. (b) Phase. 
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Figure 6.7. The isolated mutual coupling as function of � for a given radius (5�) and
geodesic length. Here, � = 0° corresponds to H-plane coupling and � = 90° corre-
sponds to E-plane coupling since the apertures do not rotate when changing �.
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Figures 6.6 and 6.7 show that the planar solution agrees quite well with the cylinder
solution along the axial direction. An interesting question arises as to whether the cylin-
der-axial solution recovers the planar solution or not, that is, does the finite radius of cur-
vature along the binormal direction influence the result or not? This can be investigated
by studying the cylinder solution along the axial direction according to UTD, and com-
pare it with the planar solution. In [Pathak and Wang 1981] the surface field due to an in-
finitesimal magnetic current moment d p�m is given by 

dH�m(Q|Q	) � d p�m · [b̂	b̂Hb + t̂	t̂Ht + ( b̂	t̂ + t̂	b̂)Hbt] (6.7)

where Hb is the transverse component and Ht is the longitudinal component with respect
to the geodesic [see Figure 4.12 (b)]. Hbt represents higher-order terms. Evaluating this
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Magnetic field

Figure 6.8. A two-dimensional sketch of the planar magnetic field of the source ele-
ment and its interaction with another aperture. (a) E-plane type coupling along the
horizontal line. (b) H-plane type coupling along the horizontal line.
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expression when � � 90° for a fixed radius R and a large distance s gives the result that
Ht and Hbt do recover the planar solution, whereas Hb is obtained as 

Hb
cylinderA + B (6.8)

Hb
planar � 0 when R � �

Obviously, the finite radius of curvature in the binormal direction influences the trans-
verse component in such a way that it becomes stronger than the planar solution. Thus,
the axial solution does not exactly recover the planar solution. The reason is that the
cylinder acts more as a waveguide, whereas at a planar surface the energy is diffracted
over a plane, resulting in reduced amplitude. See also the discussion in Section 6.6.3.2.

6.2.3.2 Cross-Polarization Coupling. In the previous examples, only the
co-polar coupling was considered. It is also of interest to investigate the cross-polar cou-
pling since this can be a source of cross-polarized radiation in dual-polarized apertures.
More details on controlling the polarization are found in Chapters 7 and 8. The first ex-
ample in Figure 6.9 is equivalent to Figures 6.6 and 6.7 except for the cross-polarized
case. Since there is no cross-polar coupling for � = 0° and � = 90°, these cases have
been left out. The parameters are the same as before. In the example shown, the source
is circumferentially polarized with the receiving aperture axially polarized. The varia-
tion in decay rates can be explained by the same reasoning as was used for the results
in Figures 6.6 and 6.7.

The next example in Figure 6.10 shows the E-plane, H-plane, and cross-polar mutual
couplings as a function of the axial distance z with a fixed angular separation in the az-
imuth, here 30°. The aperture dimensions and the size of the cylinder are the same as in
the previous examples. In the cross-polar case, the source is circumferentially polarized
and the receiving aperture is axially polarized. The results follow our expectations based
on the earlier discussion.

6.2.3.3 Array Mutual Coupling. The next step is to study the array mutual
coupling, that is, the coupling among the elements in the array environment with all ele-
ments present and terminated in matched loads. We choose the same geometry as in the
previous examples, that is, the radius of the cylinder is 5 � and the dimensions of the aper-
tures are 0.27 � × 0.65 �. In the first example, we have a single-row array covering an arc
of approximately 120°. Along this arc, 18 elements are placed equidistantly with circum-
ferential polarization. Figure 6.11 shows a comparison between the isolated and array mu-
tual couplings for this case. The effect of the elements in between is clearly visible in both
amplitude and phase, although the phase is more sensitive to the presence of other ele-
ments than the amplitude. The corresponding planar case (isolated and array mutual cou-
plings) is also included for comparison.

It was found earlier (see Table 6.1), that the amplitude of the isolated coupling in the
cylinder case decays as C1e–C2s (E plane) for moderate to large distances. The analysis
here shows that the amplitude of the array coupling has the same type of decay, but with
different constants C1 and C2. Thus, both the isolated and the array mutual couplings have
an exponential decay in the single-row cylinder case. See also Section 7.2.2.2, where a
similar result is found for the doubly curved surface. An example for a 3 × 18 element ar-
ray is given next, where we also compare theoretical results with measured results.

e–jks
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�ks�

1
�
kR

e–jks

�
ks

168 ANTENNAS ON SINGLY CURVED SURFACES

{ {

c06.qxd  12/1/2005  4:18 PM  Page 168



6.2 APERTURE ANTENNAS ON CIRCULAR CYLINDERS 169

0 5 10 15
-400

-350

-300

-250

-200

-150

-100

-50

0

Geodesic length s   [λ]

ar
g

(S
12

)  
 [D

eg
.]

α=20o

α=40o

α=60o

α=80o

Figure 6.9. The cross-polarization coupling versus s and �. The source is a circum-
ferentially polarized aperture and the receiver is axially polarized. (a) The amplitude.
(b) The phase.
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Figure 6.10. The isolated mutual coupling versus the axial distance z for a fixed an-
gular separation �
 = 30°. Both the E-plane, H-plane, and cross-polar couplings are
shown. (a) The amplitude. (b) The phase.
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Figure 6.11. A comparison between the array and isolated mutual coupling for a sin-
gle-row array on a cylinder for the E plane (lines with circles). The corresponding
planar case is also shown for a single row of 18 elements. Single-mode results.
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Including higher-order modes in the calculations increases the accuracy of the aperture
field solution and, hence, also other results such as the mutual coupling. We will compare
the calculated results with measured data [Lindgren and Josefsson 1998] obtained from an
experimental antenna built by Ericsson Microwave Systems AB in Mölndal, Sweden, as a
test bed for singly curved conformal antennas. The surface is a circular cylinder with
three rows of rectangular apertures; see Figure 6.12. The main dimensions are:

Element apertures 39 mm × 16 mm

Element grid Rectangular, 3 × 18 elements extending over about 120°

Element spacings 37.1 mm in the azimuth

41 mm in the axial direction

Polarization Circumferential

Cylinder radius 300 mm

Frequency interval 4.3 � 6.8 GHz

Cut-off frequency of fc,20 � 7.6 GHz
second-order mode

Frequency used here f = 5.65 GHz

In the calculations, no surface rays encircling the cylinder were taken into account since
the cylinder is truncated at the rear for practical reasons. Absorbers were placed on all
edges to minimize edge effects. We used the following numbering of the apertures: the
aperture in the lower-left corner of Figure 6.12 is aperture number 1; aperture number 54
is located in the upper-right corner.

172 ANTENNAS ON SINGLY CURVED SURFACES

Figure. 6.12. The experimental antenna. Courtesy of Ericsson Microwave Systems
AB, Göteborg, Sweden. See also color insert, Figure 2.
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The first example comparing theoretical and measured data in Figure 6.13 shows the
isolated mutual coupling (E plane) between two elements in one row as a function of the
angular distance, for f = 5.65 GHz. During the measurements, all apertures, except the
two being measured, were covered with conducting tape. As can be seen in Figure 6.13,
the agreement is very good (cf. Figure 6.2 where a similar case was considered). Only a
single-mode approximation was used in the simulations; if higher-order modes are used,
the results do not change.

In the following examples (Figures 6.14 to 6.17), the array mutual coupling is presented
for f = 5.65 GHz. Additional results for other frequencies can be found in [Persson and
Josefsson 2001]. The first result, Figure 6.14, shows the result for the array mutual coupling
in the E plane for the first row of elements (1 � 18) and for the second row of elements (19
� 36) using a single-mode approximation. We observe some differences between the first
and second row depending on the different element surroundings. Furthermore, even with
a single-mode approximation, the mutual coupling diagrams show good agreement be-
tween the measured and the calculated results, at least down to about –60 dB. For elements
far away, the agreement is not so good but the coupling levels are very low.

In order to improve the accuracy even further, higher-order waveguide modes were in-
cluded in the analysis. With the four lowest TE modes (in increasing cutoff order—TE10,
TE20, TE01, and TE11) only small differences were observed, but when taking also the
TM11 mode into account, a significant improvement was obtained (see Figure 6.15). Now
the simulated results show good agreement with measurements down to coupling levels
as low as –80 dB. The agreement of the phase is also improved. Using even more modes
(up to 20 modes were tried) improved the results very little [Persson and Josefsson 2001].

The importance of the TM11 mode is probably explained by the fact that this mode is
the first mode with a field component parallel to the direction of propagation. Obviously,
this component is important for a precise modeling of the aperture field, and also for the
planar case [Bonnedal 1996]. See also Section 11.4.2, where scattering versus higher-or-
der modes is discussed. 

For the H plane (along the axis of the cylinder) only limited data are available since
only two data points can be taken for the three rows. Figure 6.16 shows the H-plane cou-
pling (single mode) for two different columns in the array—an edge column and the cen-
ter column. The agreement is slightly worse compared to the E-plane results, but by using
higher-order modes, the results improve. However, five modes are not enough in this
case; at least 10 modes are needed for good agreement with measured data (see Figure
6.17). The need for additional higher order modes in the H plane is due to the size of the
aperture in this plane; see also Section 11.4.2.

6.2.4 Radiation Characteristics

In this section, the focus is on element patterns, both isolated and embedded. The isolated-
element pattern shows the radiation properties of a single element, including the effect of
the curved surface. The embedded-element pattern carries more information, including the
effect of the surrounding elements and a particular element grid. The array pattern, when all
elements are fed according to a particular excitation function, represents an even more spe-
cific case, to be discussed in Chapter 8. 

For the embedded-element patterns, only a single element is fed. The other elements in
the array are present but terminated in matched loads. They are being excited by the mu-
tual coupling only. Thus, mutual coupling is an important parameter for the embedded ra-
diation patterns. 
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Figure 6.13. The E-plane isolated mutual coupling (solid line) along one row in the
experimental antenna compared to measurements (dashed line). Here, only a single-
mode approximation is used and f = 5.65 GHz. (a) Amplitude. (b) Phase.
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The radiation characteristics, in particular the embedded-element patterns in cylindri-
cal arrays, have been the subject of careful research in past. One reason for that is that the
embedded-element patterns can be significantly different from those in a planar array.
Some of the references are [Sureau and Hessel 1969, Borgiotti and Balzano 1970, Munger
et al. 1971, Sureau and Hessel 1971, Herper et al. 1985a,b, Hansen 1981, Mailloux 1982].
A summary of the results obtained is found in [Hessel 1972, Mailloux 1994, Hansen
1998].

Most of the results presented here are obtained using the UTD–MoM method present-
ed earlier, and some results are taken from references and from measurements. In the cal-
culated results, we will use the same radiating elements as before, that is, waveguide-fed
rectangular apertures of size 0.27 � × 0.65 � with the waveguides terminated in matched
loads, except when otherwise stated. The size of the cylinder will be varied as well as the
spacing between the elements. In most cases, a rectangular grid arrangement will be used,
although a triangular grid is considered as well. Note that the phase variation shown here
is always referenced to the element center.

6.2.4.1 Isolated-Element Patterns. Figures 6.18 and 6.19 show the ampli-
tude and phase patterns in the azimuth of a single rectangular aperture excited in the fun-
damental TE10 mode with phase compensation for the curved aperture (see Section 6.2.2).
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Figure 6.14. The array mutual coupling in the E plane for the first row (elements 1 �
18) and the second row (elements 19 � 36). Single-mode approximation, f = 5.65
GHz. Solid line: calculated, dashed line: measured. (a) Amplitude, first row. (b)
Phase, first row. (c) Amplitude, second row. (d) Phase, second row [Persson and
Josefsson 2001].
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For Figure 6.18, the aperture is circumferentially polarized and the patterns are E-plane
patterns. For 6.19, the aperture is axially polarized and the patterns are H-plane patterns.
The results are calculated for different cylinder radii, including one case for an infinite
planar ground plane.

The main difference between the patterns for different radii is found in the shadow and
transition regions, as expected. In the lit region, only minor changes are observed and
most of the energy (for both polarizations) is radiated into the upper hemisphere. The ra-
diated field appears to be not as sensitive as the mutual coupling to changes in the radius
of the cylinder (cf. Figures 6.4 and 6.5).

6.2.4.2 Embedded-Element Patterns. As shown earlier, the magnitude of
the mutual coupling among the elements on a curved surface is less than for the corre-
sponding planar case. However, the effects of the mutual coupling on the embedded-
element patterns can still be considerable for the curved case. The embedded-element pat-
tern gives an indication of the performance of the fully excited array and serves, therefore,
as a valuable tool in the array design process. We will here study the embedded-element
patterns of circular arrays with the elements uniformly spaced and covering the complete
(or almost complete) circumference of a cylinder. Thus, no edge effects are present in the
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Figure 6.15. The array mutual coupling in the E plane for the first row (elements 1 �
18) and the second row (elements 19 � 36). Five-mode approximation, f = 5.65 GHz.
Solid line: calculated, dashed line: measured. (a) Amplitude, first row. (b) Phase, first
row. (c) Amplitude, second row. (d) Phase, second row [Persson and Josefsson
2001].

c06.qxd  12/1/2005  4:18 PM  Page 176



azimuth and all azimuth element patterns are identical. This resembles the infinite planar
array case, and we will compare patterns for the two cases. 

If the array does not cover the full circumference, the symmetry is lost and each ele-
ment will have its own embedded pattern. Such a truncated array can be a suitable model
for some realistic applications and will be discussed in Section 6.3.3 in connection with
arrays on other types of singly curved surfaces. 

In the main part of this section, all embedded-element patterns are calculated in the az-
imuth plane for circumferentially polarized elements (E-plane patterns). If a similar study
is done for axially polarized elements, the difference between the isolated-element pattern
shown in Section 6.2.4.1 and the embedded-element pattern in the broadside region in the
azimuth is almost negligible due to the weak H-plane coupling. 

Finally, dipole elements are compared with aperture elements. At the same time, ele-
vation patterns are discussed, both for rectangular and triangular grids.

In the first result, shown in Figure 6.20, the gain of the E-plane embedded-element pat-
tern for a single ring of circumferentially polarized rectangular apertures is shown for dif-
ferent cylinder radii. The element spacing is kept constant, equal to 0.6 �. The patterns are
also compared with those of the corresponding planar case. As may be seen, there are no
major differences between the pattern for the planar case and the pattern for a cylinder
with a large radius in the lit region. Both patterns exhibit a clearly visible drop-off near

6.2 APERTURE ANTENNAS ON CIRCULAR CYLINDERS 177

1 19 37
-60

-40

-20

0
|S

j1
|  

 [d
B

]

9 27 45
 -60

 -40

 -20

0

|S
j9

|  
 [d

B
]

1 19 37
 -400

 -300

 -200

 -100

0

Element number j

ar
g

(S
j1

)  
 [D

eg
.]

9 27 45
 -400

 -300

 -200

 -100

0

Element number j

ar
g

(S
j9

)  
 [D

eg
.]

Calculated
Measured

(a) (c)

(b) (d)

Figure 6.16. The array mutual coupling in the H plane for an edge column and for
the center column. Single-mode approximation, f = 5.65 GHz. Solid line: calculated,
dashed line: measured. (a) Amplitude, edge column. (b) Phase, edge column. (c) Am-
plitude, center column. (d) Phase, center column.
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� = 42°. This drop-off in the planar case is due to an endfire grating lobe at � = 41.8°. Its
counterpart in the cylindrical array is a “cylindrical endfire grating lobe” [Mailloux
1994]. It should be noted that the cylindrical grating lobe is not as distinct as in the planar
case due to the curved surface. However, the phenomenon is caused by the same mecha-
nisms in both cases. 

Since the grating lobe is more diffuse in the cylindrical case, the pattern dips are not as
deep as in the (infinite) planar case. We have in the cylinder case a finite number of ele-
ments participating, the number decreasing with the radius of the cylinder. The mutual
coupling amplitude is also less for the curved case. 

The decay of the element pattern in the shadow region (|�| > 90°) is linear on a decibel
scale, indicating that the angular pattern is primarily due to a single creeping wave contri-
bution [Sureau and Hessel 1971, Harper et al. 1985a]. However, the rate of decay for the
embedded-element pattern is greater due to the additional loss mechanism introduced by
the terminated elements. The ripple in the region � > |150°| is due to the interference be-
tween two creeping waves traveling in opposite directions, as in the isolated case. 

Another interesting observation is the ripple in the broadside (lit) region for the circu-
lar cylinder, which is not observed in the (infinite) planar case. This ripple is caused by
the finiteness of the curved array, and is also observed in finite planar arrays [Amitay et
al. 1972] but is not as pronounced as in the cylinder case.
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Figure 6.17. The array mutual coupling in the H plane for an edge column and for
the center column. Ten-mode approximation, f = 5.65 GHz. Solid line: calculated,
dashed line: measured. (a) Amplitude, edge column. (b) Phase, edge column. (c) Am-
plitude, center column. (d) Phase, center column.
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Figure 6.18. The E-plane isolated-element pattern in the azimuth versus the radius of
the cylinder. (a) Amplitude. The planar case is also included (circles). (b) Phase.
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Figure 6.19. The H-plane isolated-element pattern in the azimuth versus the radius
of the cylinder. (a) Amplitude. The planar case is also included (circles). (b) Phase.
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Figure 6.20. The gain of the E-plane embedded-element pattern for a single-ring ar-
ray in the azimuth versus the radius of the cylinder for a fixed-element spacing (d =
0.6 �). (a) Overview for R = 2�, 10�, and 50�. (b) The corresponding planar case is
also shown (dots) in a close-up view.
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The ripple in the broadside region will be discussed next by examining the embedded-
element pattern dependence on the element spacing for a fixed radius. To do this, embed-
ded-element patterns are calculated for four values of element spacing, namely d = 0.4 �,
0.5 �, 0.6 �, and 0.7 �. The radius is fixed and equals 5 �. The gain of the E-plane embed-
ded-element patterns is shown in Figure 6.21 (a) together with the single element gain for
comparison. The corresponding phase variation (referenced to the element) is shown in
Figure 6.21 (b).

Studying the amplitude pattern, a progressive narrowing of the embedded-element pat-
terns is found when increasing the element spacing, similar to the planar case. This is due
to the endfire grating lobe (EGL), which occurs (in the planar case) at �EGL = not visible
(d = 0.4 �), 90° (d = 0.5 �), 41.8° (d = 0.6 �), and 25.4° (d = 0.7 �). As seen here, no deep
nulls appear at the “EGL” angles; instead, shallow dips are found. The reason for this is
that the curvature reduces the influence of the mutual coupling, and the number of ele-
ments is not very large. Furthermore, there is a ripple in the broadside region, which is not
visible in the planar case. This ripple is reduced when decreasing the element spacing and
becomes negligible for d = 0.4 �. Thus, the gain of the antenna embedded element is
(sometimes strongly) dependent on the spacing. The phase data in Figure 6.21 (b) show
the phase variation in the fed-element pattern with respect to the observation angle. One
observes that the phase varies only by a few degrees up to the “EGL” drop-off. 

The ripple discussed above is not caused by an edge effect since there is no discontinu-
ity in the angular direction; instead, it is due to the mutual coupling among the elements
on this nonplanar geometry. The embedded-element pattern is given by a superposition of
the isolated-element patterns of all elements when excited through mutual coupling.
When added together, the interference between the different contributions will result in an
oscillating behavior. As we see in Figure 6.21 (a), the interference may add out of phase
(d = 0.6 �) or add in phase (d = 0.7 �). The ripple is reduced by reducing the element
spacing.

To provide another way of looking at the sometimes very fast changes of the element
pattern when changing the geometry slightly, two additional examples are considered.
Figure 6.22 shows the gain (E plane) for two cases with very different results obtained by
only changing the element spacing for a fixed radius of 6 �. In Figure 6.22 (a), the ele-
ment spacing is 0.6 � and in Figure 6.22 (b) it is increased by one-tenth of a wavelength to
0.7 �. Figure 6.22 shows the gain and element excitations (amplitude and phase). The ex-
citation (obtained from the mutual coupling analysis) is shown for the elements located
within ±90° with respect to the actively fed element denoted as element number “0.” The
phase of the elements is shown with respect to the fed element. Together with the original
excitation, a projected excitation is obtained. This projected excitation is the excitation of
the elements on the curved surface when projected on a planar surface in front of the
cylinder. Hence, this equivalent planar array becomes an array with nonuniform element
spacing. The new excitations are found by adding a phase corresponding to the distance
between the element position on the curved surface and the new position on the planar
surface.

Studying the excitation data, now from a planar array point of view, we can more easi-
ly explain why the embedded-element patterns look like they do. For the smaller element
spacing [Figure 6.22 (a)], there is a large change in phase among the elements closest to
the excited element. For these elements, the element spacings are almost equal on the pro-
jected plane. If a planar analysis is applied, we get a pattern similar to the embedded-ele-
ment pattern shown in Figure 6.22 (a). The contributions from the elements closest to the
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Figure 6.21. The gain of the E-plane embedded-element pattern for a single-ring ar-
ray versus the element spacing for a fixed radius (R = 5�). The isolated element pat-
tern (IEP) is also shown for comparison (circles). (a) Gain. (b) Phase.
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fed element add out of phase. For the second case, with increased element spacing, the
change in phase among the elements is smaller. Thus, we get a single peak in broadside
since the contributions from the elements add in phase. With this analysis, we get more
insight into the wide variety of embedded-element patterns found for circular arrays.
However, at the end it is still an effect of the curved surface, thus unique for a nonplanar
array.
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Figure 6.22. A study of the dependence of the element spacing for a single-row ar-
ray located at a circular cylinder with a 6� radius. (a) E-plane gain and element exci-
tation for a 0.6� element-to-element distance. (continued)
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In all discussions above, a single ring of apertures was assumed. Shown next are calcu-
lated results for a 13-ring array. In this example, the element distance in the azimuth is 0.6
�, the axial distance between the rows is 0.68 �, and the radius is 5 �. In total, this equals
an array of 13 × 52 elements. Figure 6.23 shows the embedded-element pattern of an ele-
ment in the edge row and the embedded-element pattern of an element in the middle row.
Also included is the embedded-element pattern of the single-row array studied earlier.
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Figure 6.22. (cont.) (b) E-plane gain and element excitation for a 0.7� element-to-ele-
ment distance. The projected excitation (solid line) in both cases is the excitation of
the elements when projected on a planar screen in front of the array.
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Adding rows will only change the results slightly, as seen here. The results are shown as
normalized power patterns.

The behavior of the embedded-element patterns for cylindrical arrays has been dis-
cussed in the past. Several papers, for example [Munger et al. 1971, Hessel 1972, Herper
et al. 1985a,b], show embedded-element patterns with rather peculiar patterns, similar to
those shown here. 

As an example, Figure 6.24 shows embedded-element patterns for a 60° sector cylin-
drical array developed at the Naval Electronics Laboratory Center [Hessel 1972]. The ar-
ray is a stacked-ring array of open-ended rectangular waveguides in a conducting cylinder
with 32 elements in each column. The total number of elements is 1344, forming a trian-
gular grid. The array radius is 26.3 �, the waveguide aperture is 0.13 � by 0.68 �, and the
vertical spacing is 0.72 �. The results in Figure 6.24 (a) and (b) are for 0.73 � azimuth
spacing and 0.79 � azimuth spacing, respectively. Measured and calculated results are
shown when an element near the center was excited with all other elements terminated.
The asymmetry of the measured patterns reflects errors in the experimental array and end
effects. These results are very similar to the results presented earlier in this section. The
pattern becomes narrower as the grating lobes move into visible space, and the ripple in
the main lobe is due to the mutual coupling among the elements. In the paper by Hessel,
as well as in many of the references mentioned earlier, the ripple is described in terms of
the interference between a (direct) space wave and creeping waves. This is another way of
describing the ripple in the broadside region based on the asymptotic solution in which
different wave types can be identified.
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Figure 6.23. The embedded-element pattern for different elements in a 13 × 52 ele-
ments array (solid line: edge-row element, dashed line: middle-row element). The ra-
dius equals R = 5� and the element spacing in the azimuth and axial directions is 0.6�
and 0.68�, respectively. The single-row result is also shown for comparison (circles).
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Figure 6.24. Measured and computed embedded-element patterns at broadside. (a)
Azimuth spacing 0.73�. (b) Azimuth spacing 0.79� [Munger et al. 1971].
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Measured results from a smaller array are shown in Figure 6.25. The results are ob-
tained from the experimental antenna built at Ericsson Microwave Systems AB discussed
earlier [Lindgren and Josefsson 1998]; see Section 6.2.3.3 and Figure 6.12. Figure 6.25
shows the E-plane embedded-element pattern for the center element in the middle row
(out of three rows with 18 elements in each row). Results for two frequencies are shown:
4.9 GHz and 5.65 GHz.

The calculated pattern is due to a closed, infinitely long, circular cylinder. The mea-
sured patterns are for a truncated cylinder in both azimuth and axial directions (cf. Figure
6.12). Furthermore, some disturbances due to the measuring range were also detected.
Thus, some ripple is seen in the measured results, which is not visible in the calculated re-
sults. These results illustrate once again the special features of the embedded-element pat-
terns of a cylindrical antenna.

It has been mentioned in some references, for example [Hessel 1972, p. 284; Mailloux
1994, p. 219] that element patterns with angle- and frequency-dependent ripple make it
difficult to synthesize low-sidelobe patterns. However, if the ripple is caused by the mutu-
al coupling among the elements, it can be accounted for in the synthesis, provided the
synthesis procedure includes the mutual coupling. This is discussed in more detail in
Chapter 10. The frequency dependence, grating lobe effects, and manufacturing toler-
ances may still cause problems in the practical situation.

Finally, element patterns of a periodic array of axial dipole radiators (L = �/2) placed
coaxially on a conducting circular cylinder are considered briefly. We will use this type of
element to discuss the characteristics of the elevation pattern, but also to investigate the
differences between a rectangular and triangular grid. First, a comparison of the dipole el-
ement and the aperture element is made.

The dipole array model consists of an infinite number of equispaced stacked rings of
axial dipoles in a rectangular grid; see Figure 6.26 (a). The dipoles are placed at a dis-
tance s (s = 0.25 �) above the circular ground plane and the results are obtained by a
modal solution applied to a radial unit cell with phase-shift walls [Herper et al. 1985a].
Figure 6.26 (b) shows the voltage element gain pattern of the dipole array for ka = 105, b
= 0.6 �, and d = 0.8 �. The results for two elevation angles are shown: � = 90° and � =
60°. Also included are the results for a cylindrical array of apertures [Sureau and Hessel
1972]. The size of the aperture is 0.32 � × 0.75 � with circumferential polarization. Thus,
the circumferential plane corresponds for both types to the direction of the strongest mu-
tual coupling.

As seen, there is a larger peak-to-peak amplitude in the ripple for the aperture array.
Also, the grating lobe effect of the aperture array appears as a more pronounced dip in-
stead of a pattern drop-off as in the dipole array. This is explained by the fact that the mu-
tual coupling effects in the axial dipole array are weaker than in the corresponding cir-
cumferentially polarized aperture array. With these differences and similarities in mind,
we will discuss the effect of different grid arrangements for the dipole array. The results
are taken from [Herper et al. 1985a]. 

The first result is for a rectangular lattice. Figure 6.27 (a) shows the voltage element
gain pattern (element pattern normalized to the unit cell gain) as a function of the eleva-
tion angle. Here, ka = 120, b = 0.6 �, and d = 0.7 �. For the rectangular lattice, the grating
lobe drop-off broadens and shifts toward larger values of � when � decreases. Further-
more, as we approach the axial direction (decreasing �), the E-plane gain is reduced and
the ripple is reduced due to weaker coupling

The grating lobe effect can be explained in quasiplanar terms when the m and n lobes
with u2

mn + v2
mn < 1 are visible. Note, however, that for planar arrays there is a very clear
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Figure 6.25. Computed (solid line) and measured (dashed line) embedded-element
patterns (E plane) for a three-row array with 18 elements in each row. The result is
for the center element in the middle row. (a) f = 4.9 GHz. (b) f = 5.65 GHz.
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Figure 6.26. (a) Geometry of the circular cylindrical array of dipoles in a rectangular
lattice. (b) Voltage element gain patterns between dipole and rectangular aperture
radiators. ka = 105, b = 0.6�, and d = 0.8� [Herper et al. 1985a].

(b)

(a)
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Figure 6.27. Voltage element gain pattern and corresponding local grating lobe
diagram for ka = 120, b = 0.6�, and d = 0.7�. Parameters: elevation angle � = 30°, 40°,
. . . , 90°. (a) Rectangular grid. (b) Triangular grid [Herper et al. 1985a].

(b)

(a)
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distinction between visible and invisible space. With curved arrays, there is no such clear
distinction, as discussed in Section 8.3.2. Nevertheless, a local planar grating lobe dia-
gram is used here and it is shown for the cylindrical (rectangular grid) array in Figure 6.27
(a). This diagram leads to the relation

sin �GL = � 	1
 –
 �
co
 s
�
 +
 n


�
2
 – m �

(6.9)

m = 0, ±1, ±2, . . . , and n = 0, ±1, ±2, . . .

From Equation (6.9), we see that the H-plane grating lobe (m = –1, n = 0) enters real
space at �GL = 42° for � = 90°, and �GL shifts toward larger values when � decreases.
This is also seen in Figure 6.27 (a).

Figure 6.27 (b) shows the result for a triangular grid, derived from the rectangular grid
studied previously by displacing every second ring by half the circumferential spacing. A
grating lobe diagram for this lattice is also shown in the figure. From this we get

sin �GL = � 	1
 –
 �
co
s
�
 +
 n


�
2
 – m �

(6.10)

m = 0, ±1, ±2, . . . , and n = 0, ±1, ±2, . . . , where m + n is even

Here, the H-plane grating lobe (–1, –1) causes narrowing of the element pattern with de-
creasing �, in contrast to the rectangular grid reference array. Furthermore, an increased
sharpness of the grating lobe drop-off and an increased level of the associated off-broad-
side ripple with decreasing � is found. This is due to the effect of the grating lobe entering
real space with decreasing �, interfering with the main lobe.

The E-plane gain performance is found to be similar in both cases, since in both cases
the axial grating lobe is located at –�/d.

So, the lattice design of large, cylindrical, uniformly spaced arrays can be based on the
local planar grating lobe diagram. See also Chapter 8.

6.3 APERTURE ANTENNAS ON GENERAL CONVEX CYLINDERS

6.3.1 Introduction

Arrays on circular cylinders have been used quite a lot in conformal antenna applications.
However, other types of singly curved surfaces are better suited for some applications, for
example, the aircraft wing shapes shown in Figures 1.2 and 1.3. For these more general
cylinder surfaces, there are very few results available in the literature. The main differ-
ence from the previous examples in Section 6.2 is that the radius of curvature is varying
along the geodesic, resulting in a varying decay rate of the surface field. This will influ-
ence the characteristics of the antenna, as we will demonstrate. 

Structures with a varying radius of curvature can be analyzed with a generalized ver-
sion of the UTD–MoM approach used previously. This method is very useful and can be
applied easily; the only limitation is the restriction on the radius of curvature in the UTD
formulation. As mentioned in Section 4.4.2, the surface must be smoothly curved and
large in terms of wavelength. From a practical (engineering) point of view, this limitation

�
�
b

�
�
2d

m
�
|m|

1
�
sin �

�
�
b

�
�
d

m
�
|m|

1
�
sin �
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is seldom a problem since most surfaces are large and smooth enough. However, as will
be mentioned later (see also [Persson 1999]), quite sharp surfaces can be analyzed with
the UTD–MoM approach.

In this section, we will present results for three types of surfaces: the elliptic, parabol-
ic, and hyperbolic cylinders. The antenna elements are the same as used in the previous
sections, that is, rectangular apertures with dimensions 0.27 � × 0.65 �. The angle � is de-
fined as before (see Figure 6.1). 

6.3.2 Mutual Coupling

We focus on the effect of the curvature on the mutual coupling, especially the effect of a
varying curvature. Only the isolated coupling is discussed since the curvature effects are
most easily seen in this parameter. The analysis is also limited to the E-plane single-mode
case.

6.3.2.1 The Elliptic Cylinder. The first geometry to be discussed is the ellip-
tic cylinder. This generalization of the circular cylinder solution is very interesting.
Changing the ellipticity makes it possible to study a wide variety of shapes. Note that
the ellipticity is denoted by the term a/b, where a is the major axis and b is the minor
axis. Different elliptic cylinders are shown in Figure 6.28 where a cross denotes the po-
sition of the transmitting aperture. The isolated mutual coupling is calculated from that
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Figure 6.28. The elliptic geometry and the position of the first aperture (cross) and
the final position of the second aperture (circle). 
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aperture to an aperture located at different positions along the surface, in the counter-
clockwise direction. A ring denotes the final position of the second aperture. The circu-
lar cylinder considered earlier (R = 5 �) is included as a reference. The results for � =
0° are shown in Figure 6.29.

As expected, the decay of the isolated mutual coupling is reduced when the surface is
flat but increases again when passing through the sharpest part of the surface. The UTD
solution is pushed to its limit for some of the surfaces with very sharp edges. In the results
shown here, the local radii of curvature at the sharpest point are (starting with the circular
cylinder) r = 5 �, 3.47 �, 1.25 �, and 0.14 �. A radius of curvature as small as � 1 � is
very close to the commonly accepted limit for the UTD formulation. The result for the
even smaller radius shown here has a reasonable behavior, but the accuracy cannot be as-
certained. For a circular cylinder we have verified results for apertures (with the same di-
mension as here) when the radius of the cylinder equals 1 � [Persson and Josefsson 1999].
At 5 GHz, this equals a cylinder with a radius of 0.06 m. However, since no reference re-
sults have been found, it is difficult to verify the result for the most pointed surface pre-
sented in Figure 6.29. The important conclusion is that the UTD solution gives satisfacto-
ry results for many surfaces that are interesting from a practical engineering point of
view.

The ripple at large separations is caused by the interference of the two waves traveling
in opposite directions around the elliptic cylinder. The extent of the interference region is
larger when the elliptic cylinder gets sharper. This is explained by the smaller curvature
(more flat surface) on the rear side causing the amplitudes to decay more slowly

We have also considered the H-plane coupling. A similar behavior is found, although
the amplitudes are reduced in general. Furthermore, if the mutual coupling is studied with
respect to the angle �, the same type of behavior is found as was found for the circular
cylinder.

6.3.2.2 The Parabolic Cylinder. We assume that the surface of the parabolic
cylinder is extended to infinity in all directions, that is, no edge effects are included in the
calculations. The three shapes shown in Figure 6.30 have been studied. The start and end
positions of the apertures are chosen so that the geodesic length to the vertex always
equals 5 �. Thus the total distance traveled is 10 �. As before, the starting point is denoted
with a cross, and the final position is shown as a circle. The results for the isolated E-
plane coupling are shown in Figure 6.31. In the examples shown here, the local radius of
curvature at the vertex ranges between 1.15 � and 11.3 �. There is no ripple since no en-
circling rays are possible. Otherwise, the results are similar to the results for the elliptic
cylinder.

6.3.2.3 The Hyperbolic Cylinder. The hyperbolic surface gives results similar
to those for the parabolic cylinder. Here, the local radius of curvature at the sharpest edge
ranges between 1.5 � and 10 �. The geometry for different hyperbolic surfaces is shown
in Figure 6.32 and the results follow in Figure 6.33, where the isolated coupling in the E-
plane is shown. 

6.3.3 Radiation Characteristics

The varying radius of curvature on general cylinders implies that the radiation patterns of
the elements on the cylinder depend on the element locations. We will illustrate this for
elements on different cylinders. We will first investigate cases with elements all around
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Figure 6.29. The isolated mutual coupling in the circumferential direction (E plane)
for apertures at elliptic cylinders. The curves are coded according to Figure 6.28, and
the circular cylinder is also included for comparison. (a) The amplitude. (b) The
phase.
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the structure and no end effects, that is, an elliptic cylinder is used in these examples.
Then, end effects will be studied for several geometries. 

6.3.3.1 The Elliptic Cylinder. For each of the surfaces in Figure 6.28, except
the ellipse with a/b = 6, aperture elements are placed in one row covering the circumfer-
ence of the elliptic cylinder. In these examples, the element distance is 0.5 �. Figure 6.34
shows the element locations when a/b = 1.2. 

Figure 6.35 (a) shows the E-plane embedded-element patterns for the different elliptic
geometries when the excited element is located in the flat part, and Figure 6.35 (b) shows
the results for the elements in the most strongly curved part. Figure 6.36 shows the corre-
sponding results when the element distance is increased to 0.6 �.

As for the circular case, the ripple in the broadside region gets stronger when the ele-
ment spacing is increased. Furthermore, the patterns are relatively insensitive to a moder-
ate change of the radius of curvature, and the most strongly curved part has to be quite
sharp before any large differences appear. 

6.3.3.2 End Effects. In this part, we will discuss the end effects for a sector array,
in particular the embedded-element patterns for different element locations in the array.
We have chosen four typical surfaces for our investigation: planar, circular cylinder, ellip-
tic cylinder, and hyperbolic cylinder. The planar surface is included as a reference. Addi-
tional results are found in Section 6.6.4, where microstrip-patch elements are used. In the
examples shown here, the following parameters apply:
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Figure 6.30. The parabolic geometry and the position of the first aperture (cross) and
the final position of the second aperture (circle). The circular cylinder (R = 5�) is also
shown for geometrical reference.
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Figure 6.31. The isolated mutual coupling in the circumferential direction (E plane)
for apertures at parabolic cylinders. (a) The amplitude. (b) The phase.
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Element-to-element distance 0.5 �

Number of elements 31

Embedded-element patterns shown Element numbers 1, 6, 11, and 16

Polarization E-plane patterns

Aperture size 0.27 � × 0.65 �

Figure 6.37 shows the planar case to be used as a reference for the following results. As
may be seen, most element patterns look the same and it is only near the end of the ar-
ray that some differences appear. This has been discussed in [Holter and Steyskal
2002a,b] where the size requirement for finite phased-array models is investigated. The
general conclusion is that at any frequency, a finite array should be about 5 � × 5 � in
size. The central elements then approximately simulate an infinite-array environment,
and the edge elements approximate the edge elements of a large finite array. This rep-
resents a generalization of the customary 10 × 10 element model, which is often used as
an engineering “rule of thumb” in the normal narrow-band case with 0.5 � element
spacing.

The first nonplanar antenna array to be considered is an arc array on a circular cylin-
der. The embedded-element patterns for elements 1, 6, 11, and 16 (out of 31 elements)
are shown in Figure 6.38 together with the geometry. In this example, the radius is 5 �.
Except for the edge element, the patterns have almost the same shape, compare with the
planar case.
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Figure 6.32. The hyperbolic geometry and the position of the first aperture (cross)
and the final position of the second aperture (circle). The circular cylinder (R = 5�) is
also shown for geometrical reference.
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Figure 6.33. The isolated mutual coupling in the circumferential direction (E plane)
for apertures at hyperbolic cylinders. (a) The amplitude. (b) The phase.
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The last two examples show a larger impact of the curved surface. In these examples,
the elliptic cylinder (Figure 6.39) and the hyperbolic cylinder (Figure 6.40) are consid-
ered. Here, the embedded-element patterns are not as equal to each other as in previous
examples. This is to be expected since the radius of curvature is varying, which affects the
mutual coupling among the elements, thus changing the embedded-element patterns. Note
that the � coordinate is referenced to the ellipse and hyperbolic cylinder, respectively; it
is not relative to the element angular locations. Hence, the patterns do not overlap as in
the previous examples.

6.4 APERTURE ANTENNAS ON FACETED CYLINDERS

6.4.1 Introduction

Faceted conformal antenna arrays are an interesting extension of nonplanar antennas in
which a curved surface is approximated by planar facets. Each facet can be viewed as a
subarray and can be obtained from standardized building blocks, thus reducing the cost in
building conformal antennas. Such antennas have already been proposed for use in use in
satellites [Polegre Martín et al. 2001]. In [Jamnejad et al. 2002], options are discussed for
future phased arrays for the JPL/NASA Deep Space Network, and multifaceted arrays are
one option. Some results for faceted antennas are found in, for example [Agrawal and
Powel 1986], where an antenna consisting of 16 facets of 2 × 4 dipole arrays is discussed.
General ray-tracing tools for planar and curved facets are found in, for example [Saez de
Adana et al. 1998, Hussar et al. 2000]. 
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Figure 6.35. The embedded-element pattern versus the shape of elliptic surfaces
with an element-to-element distance of 0.5�. � is a relative angle and equals zero at
the element position. (a) The element on the flattest part is excited. (b) The element
on the most strongly curved part is excited.
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Figure 6.36. The embedded-element pattern versus the shape of elliptic surfaces
with an element-to-element distance of 0.6�. � is a relative angle and equals zero at
the element position. (a) The element on the flattest part is excited. (b) The element
on the most strongly curved part is excited.
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In this section, we will consider a faceted circular cylinder and a faceted elliptic cylin-
der. Both the isolated mutual coupling and isolated element patterns are analyzed with
waveguide-fed apertures as radiators. The results are compared with results obtained for a
corresponding smooth surface. The facets are supposed to be subarrays and must always
be large enough to support the radiating elements. Thus, there is no sense in making the
facets smaller until a limiting smooth case is obtained.

The results for the faceted surfaces are calculated using a wedge UTD–MoM ap-
proach. The general approach is similar to the one used in the previous examples. Edge
diffraction at grazing incidence is included but not multiple reflections [Marcus 2004].
We will find that the results for the faceted surfaces considered here agree closely with
the results for the corresponding smooth surfaces.

The faceted cylindrical antennas considered here consist of rectangular facets with
waveguide-fed rectangular apertures (0.33 � × 0.73 �). The longest side of each aperture
is parallel to the axis of the cylinder and the aperture is centered on the facet, resulting in
horizontal or E-plane polarization. The faceted cylinders have been chosen so that their
circumference is identical to that of a corresponding smoothly curved cylinder. The radius
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Figure 6.37. Embedded-element patterns in the E plane due to apertures in a sector
array containing 31 elements, infinite ground-plane. The element-to-element dis-
tance equals 0.5�. (a) The geometry. (b) The results. 
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Figure 6.38. Embedded-element patterns in the E plane due to apertures in a sector
array containing 31 elements, circular cylinder (R = 5 �). The element-to-element dis-
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of the circular cylinder is 10 � and the number of facets is 20, which means that the small-
est facet is at least 3 � across. This is large enough to retain the properties of the faceted
antenna but small enough to make a meaningful comparison with the results from the
smooth cylinder. The faceted circular cylinder is seen in Figure 6.41 (a). Figure 6.41 (b)
shows the faceted elliptic cylinder (a/b � 2) where 16 segments have been used. See also
[Marcus et al. 2003].
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Figure 6.39. Embedded-element patterns in the E plane due to apertures in a sector
array containing 31 elements, elliptic cylinder (a/b = 2, a = 5 �). The element-to-ele-
ment distance equals 0.5 �. (a) The geometry. (b) The results.
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Figure 6.40. Embedded-element patterns in the E plane due to apertures in a sector
array containing 31 elements, hyperbolic cylinder (b/a = 0.3, a = 16.67�). The ele-
ment-to-element distance equals 0.5�. (a) The geometry. (b) The results.
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6.4.2 Mutual Coupling

The isolated mutual coupling is calculated for two configurations for both the circular
cylinder and the elliptic cylinder. The first case is for � = 0° (see Figure 6.1), that is, the
apertures are located at the same height on the cylinder. In the second case � = 40°, which
means that the centers of the apertures are located on a spiral with the inclination 40°. For
the elliptic surface, the transmitting aperture is located at the facet of the most strongly
curved part of the surface; see Figure 6.41 (b). The isolated mutual coupling is calculated
from that aperture to an aperture located at the center of the facets. 

Figure 6.42 shows the isolated mutual coupling for the faceted circular cylinder. The
isolated mutual coupling is expressed in terms of the mutual admittance; see Equation
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(6.2). To get the S-matrix, Equation (6.3) can be used together with the self-admittance of
the waveguide aperture on an infinite ground plane, Y11 = (1.13 – j1.53) · 10–3 �–1, and
the characteristic admittance for the TE10 mode of the waveguide, Yc = 1.94 · 10–3 �–1.
The phase in Figure 6.42 (b) is the phase when the free-space contribution is subtracted.
The faceted elliptic cylinder is considered in Figure 6.43. As may be seen, the faceted and
smoothly curved results agree quite well in both cases.

6.4.3 Radiation Characteristics

Here, the isolated element pattern is discussed for an aperture located on one of the facets
[see Figure 6.41 (b) for exact location on the elliptic surface]. The results are shown as
relative amplitude and relative phase with the phase center located at the center of the
aperture.

Figure 6.44 shows the result for the circular cylinder. The ripple in the amplitude is ex-
pected since the pattern of the faceted cylinder is composed of diffracted fields from each
of the cylinder’s edges, whereas the smooth cylinder diffracts from all points along the
surface. The phase has essentially the same behavior for both cases, and the ripple in the
phase corresponds to that of the amplitude.

Finally, the results for the elliptic cylinder are considered. Figure 6.45 shows the rela-
tive amplitude and relative phase in the E plane. The ripple in amplitude is higher than for
the circular cylinder since the wedge angles close to the source facet are smaller com-
pared to the circular case. This gives higher diffracted field amplitudes. The phase has
corresponding oscillations.

We noted before that the mutual coupling results were almost the same for the smooth-
ly curved and the faceted cylinders. We see here also that the radiation patterns agree well
for the two cases. Hence, the edges of the facets do not affect the results very much in the
typical cylinder cases studied here.

6.5 APERTURE ANTENNAS ON DIELECTRIC 
COATED CIRCULAR CYLINDERS

6.5.1 Introduction

For mechanical protection, the array antenna is often covered by a dielectric radome. The
introduction of this external dielectric layer changes the characteristics of the antenna.
Now, more energy will be trapped and propagate along the surface and interact with the
antenna elements. In this section, we will analyze the effects of this coating on aperture
antennas on PEC circular cylinders. As discussed in Chapter 4, this is sometimes a diffi-
cult problem if the surface is electrically large, in particular when surfaces other than the
circular cylinder are considered. 

In this section, we will concentrate on the main differences compared to a noncoated
surface. Most of the results are for a single layer only. In practice, it may be difficult to
avoid an air gap between the PEC surface and the coating, and we will discuss this also. 

The circular cylinder geometry used before will be used again (see Figure 6.1) but now
a dielectric coating with thickness t is added. The same type of aperture elements as con-
sidered in Section 6.2 will be used and the radius of the cylinder will also be the same. To
repeat, this means rectangular apertures with dimensions 0.27 � × 0.65 � and the radius of
the PEC cylinder is 5 �.
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Figure 6.43. The isolated mutual coupling (admittance) (�–1) for a faceted elliptic
cylinder (lines with circles), � = 0° and 40°. Results for a smooth elliptic surface is
also included for comparison. The transmitting aperture is located at the most
strongly curved part of the surface [Marcus et al. 2003]. (a) Amplitude. (b) Phase.
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Figure 6.44. The isolated-element pattern for a faceted circular cylinder (solid line).
The radius of the cylinder is 10� and the number of facets is 20. Results for a smooth
circular cylinder are also included for comparison (dash–dotted line) [Marcus et al.
2003]. (a) Amplitude. (b) Phase.
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Figure 6.45. The isolated-element pattern for a faceted elliptic cylinder (solid line).
The ellipticity is a/b � 2 and the number of facets is 16. Results for a smooth elliptic
cylinder are also included for comparison (dash–dotted line) [Marcus et al. 2003]. (a)
Amplitude. (b) Phase.
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We will also use measured data from the experimental antenna described in Section
6.2 as a reference solution [Lanne and Josefsson 1999a,b]. The antenna consists of 3 × 18
rectangular waveguides mounted on the surface of a circular sector (see Figure 6.12), but
now with a dielectric radome added as shown in Figure 6.46. The dielectric layer has rel-
ative permittivity 
r = 2.32, thickness t = 3.99 mm, and tan � = 2.47 · 10–4. The apertures
are numbered as before (see Section 6.2.3.3), that is, row by row, from left to right, start-
ing with aperture 1 in the lower-left corner of the array. As may be seen in Figure 6.46,
the cylinder is truncated at the rear for practical reasons. Thus, absorbers were placed on
the edges to minimize edge effects during the measurements.

6.5.2 Mutual Coupling

The calculated results presented here are obtained with the G1DMULT code [Sipus et al.
1998] instead of using the asymptotic solution [Persson and Rojas 2003]. The reason for
using G1DMULT is that we would like to include an air gap between the PEC surface and
the single-layer coating. This can be handled by G1DMULT for moderate cylinder radii.
The asymptotic solution,* on the other hand, can handle larger radii, but the method is
limited to just one single dielectric layer. We will first study single-layer cases and intro-
duce the effect of an air gap later.

6.5.2.1 Isolated Mutual Coupling. The first examples illustrate how the coat-
ing affects the isolated mutual coupling in the E plane along one row, that is, � = 0°. Fig-
ure 6.47 shows the amplitude and phase of the isolated mutual coupling along the surface
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Figure 6.46. Experimental antenna with dielectric coating. Courtesy of Ericsson
Microwave Systems AB, Göteborg, Sweden.

*For a single layer, the two methods have been compared (see [Persson and Rojas 2003]) and the difference be-
tween them is measured in tenths of a dB.
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Figure 6.47. Isolated E-plane coupling along the cylindrical surface in the azimuth (�
= 0°). Here, the coupling is studied with respect to the relative permittivity of the
lossless coating; a single-waveguide mode is used. (a) The amplitude. (b) The phase
with the free-space contribution subtracted. 
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while changing the relative permittivity (
r = 2, 3, and 4) of the coating. The coating is as-
sumed to be lossless with a thickness of 4 mm and the frequency is 5 GHz. The next ex-
ample (see Figure 6.48) shows the dependency of the thickness (t = 1 mm, 3 mm, and 5
mm) while keeping the relative permittivity constant (
r = 2) and assuming a lossless
coating. The frequency is again 5 GHz, which means that the thickness becomes 0.02 �d,
0.0707 �d, and 0.1178 �d (�d is the wavelength in the dielectric). The noncoated cylinder
result is also included for comparison. Note that the results are all single-mode results and
no air gap is included. 

From the results, it is clearly visible that the mutual coupling between the two elements
is stronger when the coating is present. This is to be expected since the coating will reduce
the scattered field and the field along the surface becomes trapped along the surface due to
the coating. If the coating gets thicker or if the permittivity is increased, the field becomes
more and more trapped, as seen here. As a consequence, the interaction between the encir-
cling waves is much more pronounced. The phase data are shown with the free space con-
tribution subtracted, but the phase is still decaying as function of the distance. This was also
observed for the noncoated cylinder (see Figure 6.2) and it was shown that this could be in-
terpreted as if the wave propagates slightly above the surface. Here, a similar analysis
shows that the wave propagation cannot be explained only by considering a wave propa-
gating in free space above the surface. If so, the wave would propagate roughly half a wave-
length above the surface, which is not likely. Instead, the surface wave along a nonplanar
coated PEC surface is made up of two components interacting with each other: one free-
space wave (where most of the energy is propagating) and one wave propagating in the
coating [Anderson and Hass 1970, Lanne and Josefsson 1999a]. This can be examined fur-
ther by a detailed analysis of the pole locations for the geometry; see Appendix 1, Section
4A.4.

The calculated isolated coupling (no air gap) along one row has also been compared
against measured data. The agreement is good, as seen in Figure 6.49. Using higher-order
modes does not produce any significant improvement of the result (up to 12 modes were
tried). Another factor to consider is the air gap between the PEC cylinder and the dielec-
tric layer. It was not possible to avoid this air gap due to practical reasons. The average
distance of the air gap equals 0.85 mm and we will discuss the effect of the air gap next.

To do this we use a lossless coating with thickness t = 4 mm and 
r = 2. Figure 6.50
shows the isolated coupling versus the thickness of the air gap, and two cases have been
considered. The following thicknesses of the air gap are used: 1 mm, and 1.5 mm. In free-
space wavelengths (f = 5 GHz), these thicknesses equal 0.0167 �0 and 0.025 �0. For com-
parison, the result without an air gap and the measured result (with an air gap) are also
shown. The effect of the air gap is visible, although it is quite small when considering the
isolated coupling. Higher-order modes in the calculations do not change the results.

6.5.2.2 Array Mutual Coupling. We noted in Section 6.2 for the noncoated
case that the array mutual coupling is more sensitive to higher-order modes than the iso-
lated coupling. We can expect the same thing here for the coated case. The air gap should
also be more critical. The calculated results shown here will be compared with measured
data [Lanne and Josefsson 1999a] obtained from the experimental antenna built by Erics-
son Microwave Systems AB in Mölndal, Sweden, and presented earlier in this chapter.
The main dimensions are the following:

Element apertures 39 mm × 16 mm

Element grid Rectangular, 3 × 18 elements, extending over about 120°
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Figure 6.48. Isolated E-plane coupling along the cylindrical surface in the azimuth (�
= 0°). Here, the coupling is studied with respect to the thickness of the lossless coat-
ing; a single-waveguide mode is used. (a) The amplitude. (b) The phase with the
free-space contribution subtracted. 
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Figure 6.49. Isolated E-plane coupling along the cylindrical surface in the azimuth (�
= 0°). Here, the coupling is studied with respect to the number of modes used when

r = 2.32 and t = 3.99 mm. Measured data are also included (line with circles). (a) The
amplitude. (b) The phase with the free-space contribution subtracted.
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Figure 6.50. Isolated E-plane coupling along the cylindrical surface in the azimuth (�
= 0°). Here, the coupling is studied with respect to the thickness of the air gap (ag)
between the PEC surface and the coating. Measured data are also included (line with
circles). (a) The amplitude. (b) The phase with the free-space contribution subtract-
ed. (continued)
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Element spacings 37.1 mm in the azimuth

41 mm in the axial direction

Polarization Circumferential

Cylinder radius 300 mm

Frequency f = 5.65 GHz

Coating Relative permittivity 
r = 2.32

Thickness t = 3.99 mm

tan � = 2.47 · 10–4

The first example in Figure 6.51 shows the array mutual coupling (amplitude and
phase) for the first row of the array calculated using 1, 5, and 12 waveguide modes. The
coating is assumed to be lossy and there is no air gap included. The similar example for
the noncoated surface was shown in Figure 6.15, where 5 modes were used. 

Comparing the coated (Figure 6.51) and the noncoated (Figure 6.15) cases, we notice
that the coating has a large effect on the array mutual coupling. For example, the local am-
plitude minimum at element number 11 is not seen in the noncoated case. Another obser-
vation is that the result (both amplitude and phase) for the coated surface is oscillating. This
behavior is not noted in any of the earlier examples, not even for the isolated coupling with
a coating (cf. Section 6.5.2.1). As mentioned earlier, the wave propagation along the coat-
ed surface can be divided into two parts; the oscillations may be due to the interference be-
tween these two parts. Furthermore, the apertures probably also take part in this phenome-
non since the oscillations are visible only when studying the mutual coupling among
terminated elements coated with dielectric material [Anderson and Hass 1970, Lanne and
Josefsson 1999a].
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Figure 6.51. The mutual coupling (E plane) for an array of apertures with a lossy di-
electric coating. The calculated results are obtained using 1, 5, and 12 modes; the air
gap between the PEC cylinder and the coating is not included. The results are com-
pared with measured results (line with circles). (a) Amplitude. (b) Phase. 
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In Section 6.2, it was also shown that five waveguide modes were needed for good/ex-
cellent accuracy (without coating). Using the same number of modes for the coated sur-
face does not, however, give the same close agreement with the measurements. Using up
to 12 modes does not give much improvement. 

To improve the calculated results, it is necessary to include the air gap in the analysis.
Doing this, the results shown in Figure 6.52 are obtained. The agreement with the mea-
sured data improves considerably when higher-order waveguide modes are included. It
seems that five modes give satisfactory results, 12 modes improve the results even more
[Sipus et al. 2001]. However, it is still not possible to obtain an agreement as good as ob-
tained in the noncoated case. An explanation can be that the dielectric coating and the
spacing could not be controlled very tightly in the measurement setup. However, we con-
clude that if a coated conformal array antenna has a similar air gap, it must be included in
the analysis if good accuracy is required.

6.5.3 Radiation Characteristics

In this section, we will give some examples of how the dielectric coating affects the radi-
ation characteristics of the antenna. The results shown here have been obtained with an
asymptotic method [Thors and Rojas 2003]. This asymptotic method can be used
for the analysis of thin dielectrics up to a maximum thickness of approximately 0.15 �d

(�d is the wavelength in the dielectric). This is not a serious limitation from a practical
point of view. However, an air gap cannot be included using this model. We will show
typical examples of how the coating affects the radiation characteristics, but the treatment
is not as detailed as in Section 6.2.4, since the main features have already been discussed.

6.5.3.1 Isolated-Element Patterns. The isolated-element pattern is presented
for two polarizations to illustrate the effect of the coating. The geometry is the same as
before, but with some differences in the parameter setup. To simplify the problem, the
aperture is approximated with a magnetic current moment located in the center of the
aperture. Although this is a simplification of the real case, we will get a good impression
of what to expect when adding the coating. Both a ẑ- and a 
̂-oriented dipole are consid-
ered; see Figure 6.53 and Figure 6.54, respectively. Furthermore, the frequency (f0) is 6.8
GHz and the radius of the PEC cylinder is 6.8 �0. The coating is assumed to be lossless,
its thickness is 0.0357 �0, and the permittivity 
r is chosen in the interval 1.1 � 2.94.
Note that no air gap is included. The isolated element pattern is calculated as a function of
the azimuth angle 
 for an elevation angle � = 50°. The noncoated result is included for
comparison, obtained with the UTD solution in [Pathak et al. 1981]. 

From these results, it is evident that the largest effect of an increasing dielectric constant
is that more energy is guided along the dielectric layer, causing higher radiation levels in
the shadow region. Also, thicker layers increase the radiation levels in the shadow region. 

It is well known that the cross-polarized far field from a ẑ-directed magnetic dipole sit-
uated on a PEC cylinder is zero. However, if a dielectric cladding is introduced, rather
high cross-polarization levels are obtained as a consequence of coupling within the di-
electric material; see Figure 6.53 (b). To check that zero cross-polarization is obtained as

r � 1, calculations were made for a dielectric constant of 
r = 1 + �
, where �
 is a
small number. In the limit when 
r � 1, the radiation patterns should approach the well-
defined radiation patterns from a magnetic dipole situated on a PEC cylinder without di-
electric. As expected, when the relative permittivity is lowered, the results approach the
UTD solution [Pathak et al. 1981].
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Figure 6.52. The array mutual coupling (E plane) for an array of apertures with a
lossy dielectric coating. The calculations were made using 1, 5, and 12 modes, in-
cluding a small air gap (0.85 mm) between the PEC cylinder and the coating. The re-
sult is compared with the measured results (line with circles). (a) Amplitude. (b)
Phase.
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6.5.3.2 Embedded-Element Patterns. The embedded-element patterns pre-
sented are taken from [Thors et al. 2003], providing an overview of the effect of the dielec-
tric coating. All results are obtained with the asymptotic method. The mutual coupling
among the elements is found from the asymptotic method presented in [Persson and Rojas
2003]. However, we lack an asymptotic solution for the mutual coupling within the parax-
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Figure 6.53. Radiation patterns from a ẑ-directed magnetic dipole (� = 50°) versus the
relative permittivity of the lossless coating. The noncoated result is also included for
comparison (line with diamonds). (a) |E
|. (b) |E�| (�
 = 10–6) [Thors and Rojas 2003].
Copyright 2003 American Geophysical Union. Reproduced/modified by permission of
American Geophysical Union.
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ial region. To overcome this, a planar solution is assumed for this region, as indicated in
Figure 6.55. This solution is accurate enough if the radius of the cylinder is relatively large,
and if the apertures are oriented in such a way that the weak H-plane coupling is along the
cylinder axis (see Figure 6.55). For this case, the E-plane coupling is much stronger and
will contribute more to the coupling in the paraxial region than the direct H-plane coupling. 
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Figure 6.54. Radiation patterns from a 
̂-directed magnetic dipole (� = 50°) versus
the relative permittivity of the lossless coating. The noncoated result is also included
for comparison (line with diamonds). (a) |E
|. (b) |E�|. Copyright 2003 American Geo-
physical Union. Reproduced/modified by permission of American Geophysical
Union.
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In this section, the theoretical results are presented for a rectangular grid array consist-
ing of 4 × 32 elements with element spacings �z = 41 mm and R�
 = 20 mm (� 0.38 � at
f = 5.65 GHz). This gives an array covering an arc of about 120° on the cylinder. The rec-
tangular waveguide apertures have h = 39 mm and w = 16 mm, that is, azimuthal polar-
ization. The radiation properties are studied in the frequency band 4.0–7.3 GHz where
only the fundamental mode propagates; the cutoff frequency for the second-order mode is
fc,20 � 7.6 GHz. Five waveguide modes are used in the analysis and the cylinder radius is
taken to be R = 0.3 m. The thickness of the coating is 2.4 mm and its relative permittivity

r = 2.0.

In Figure 6.56, normalized E-plane embedded-element patterns are shown at two dif-
ferent frequencies both with and without a dielectric coating for the element in the mid-
dle of the array. Since the element-to-element distance is small, the embedded-element
patterns are smooth, but when a dielectric coating is applied, the mutual coupling in-
creases and the neighboring elements have a larger effect on the radiated pattern. This
effect is more pronounced at higher frequencies where the coating becomes electrically
thicker.

Figure 6.57 shows the corresponding H-plane embedded-element patterns. The effect
of the dielectric layer is clearly visible in the oscillations. The magnitude of these oscilla-
tions increases when the frequency increases since the dielectric layer becomes electrical-
ly thicker and the energy is guided more efficiently along the cylinder surface. 

Since the array is finite, different elements will have different environments, which
will affect the embedded-element pattern. This is illustrated in Figure 6.58 where the E-
plane element patterns are shown for the first element (no. 33) of the second row, both
with and without a dielectric coating. As shown in Section 6.3.3.2, elements further away
from the array center have more unsymmetrical patterns. The center of the 33rd element
is located at 
 � –52.9° but due to mutual coupling effects the lobe direction is shifted
further away from the array center, especially at lower frequencies. 

Finally, embedded-element patterns have also been calculated and compared to mea-
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Figure 6.55. The admittance values are calculated with the source aperture in the
lower-left corner of the array. For computational purposes, the rectangular grid array
is divided into three regions: source region, paraxial region, and nonparaxial region
[Thors et al. 2003].
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Figure 6.56. Normalized E-plane embedded-element pattern for the element in the
middle of a 4 × 32 elements array (solid line). The noncoated result is also included
for comparison (dashed line). (a) f = 5.65 GHz. (b) f = 6.8 GHz [Thors et al. 2003].
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Figure 6.57. Normalized H-plane embedded-element pattern for the element in the
middle of a 4 × 32 elements array (solid line). The noncoated result is also included
for comparison (dashed line). (a) f = 5.65 GHz. (b) f = 6.8 GHz [Thors et al. 2003].
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Figure 6.58. Normalized E-plane embedded-element patterns for the first element of
the second row of the 4 × 32 elements array. The results are shown versus the fre-
quency. (a) Without dielectric coating. (b) With dielectric coating (
r = 2.0, d = 2.4
mm) [Thors et al. 2003].
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Figure 6.59. Normalized embedded-element patterns for the center element of the
experimental antenna shown in Figure 6.46. The patterns are calculated at f = 5.4
GHz (solid line) and the results are compared with measured results (dashed line).
The relative permittivity of the coating is 
r = 2.32 and its thickness is 3.99 mm. (a) E
plane. (b) H plane. [Thors et al. 2003].
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surements. In Figure 6.59, the normalized E- and H-plane patterns are shown for the ex-
perimental antenna shown in Figure 6.46. The result is for the element located in the cen-
ter of the array calculated at f = 5.4 GHz. 

As shown, the agreement between theory and measurements is quite good both in the
E and the H planes. The small differences that can be observed in the E plane around 
 =
±20° is due to the air gap in the measurements, as has been verified in [Sipus and Kildal
2003]. In [Thors et al. 2003], it was shown that the corresponding E-plane radiation pat-
tern for an isolated element in this array is very broad. However, when the element is
placed in an array environment, the radiation pattern is changed considerably due to the
mutual coupling. The oscillations in the theoretical H-plane results are a consequence of
interference between rays creeping around the cylinder. These oscillations are not ob-
served in the measurement since the experimental antenna was truncated in the azimuthal
direction, as shown in Figure 6.46.

As shown in Figure 6.59 (a), the E-plane embedded-element pattern is very oscillato-
ry. The origin of the ripples can be attributed to the mutual coupling and the rather large
azimuthal element spacing in the experimental antenna (R�
 � 0.67 � at f = 5.4 GHz).
This was discussed in Section 6.2.4. The most practical way to avoid the problem is to re-
duce the element spacing. Similar oscillations are not observed in Figure 6.59 (b). This
can be understood by realizing that the H-plane coupling is much weaker than the E-plane
coupling.

6.6 MICROSTRIP-PATCH ANTENNAS ON COATED 
CIRCULAR CYLINDERS

6.6.1 Introduction

Microstrip antennas are widely applied in mobile communication systems, radar systems,
and aerospace applications [James and Hall 1989] because of their low weight, low pro-
file, and ease of manufacturing. Because of their ability to conform to nonplanar struc-
tures, they are often used in conformal arrays. The surface on which the elements are
mounted influences the radiation properties and it is important to be able to predict this
effect; however, the complex geometries can lead to difficult analytical problems. In this
case, it is the curved coated surface that must be solved and, as indicated (see Chapter 4),
this is in general a difficult problem. 

Research on microstrip patches has been focused on the development of suitable
analysis methods. Some references are [Nakatini et al. 1986; Tam et al. 1995; Ertürk et al.
2000, 2002, 2003; Raffaelli et al. 2005]; others can be found in Sections 4.3.3 and 4.4.3.
In addition, there are several microstrip-patch antennas built to verify the calculated re-
sults, or to study them just by measurements. Some examples are [Sohtell 1987, Ashke-
nazy et al. 1988, Gniss 1998, Löffler et al. 1999].

The analysis of conformal microstrip antennas reveals no dramatic differences com-
pared to the results discussed in Section 6.5 (apertures with coated surfaces). Therefore,
the results shown in this section have been limited to a few typical cases. 

The microstrip antennas considered here are probe-fed rectangular antennas. They are
mounted on the outer surface of a cylindrically shaped dielectric substrate with an inner
radius R, thickness t, and relative permittivity 
r > 1. A perfectly conducting, cylindrical-
ly shaped ground plane backs the substrate and the cylinder is assumed to be infinite in
the z direction. A typical geometry is shown in Figure 6.60.
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6.6.2 Theory

Most of the calculated results shown here are obtained by solving an integral equation.
The integral equation is set up with a spectral-domain Green’s function that incorporates
the effect of the size of the cylinder as well as the parameters of the dielectric substrate.
The Green’s function can be calculated in several ways. For small cylinders with a single
layer, a closed-form expression can be used [Habashy et al. 1990, Tam et al. 1995]. For
large single-layered cylinders, an asymptotic solution is possible [Ertürk and Rojas 2003].
For multilayer cylindrical structures, a general numerical algorithm such as G1DMULT
[Sipus et al. 1998] is needed. 

The electric field integral equation (EFIE) is found by enforcing the boundary condi-
tions on the curved surface of the patch. We get

n̂x[E�i(r�) + E�s(r�)] = 0 (6.11)

where E�i(r�) is the incident field on the patch produced by the probe, and E�s(r�) is the field
due to the currents of the patch. The equation is solved for the unknown currents of the
patch by applying the method of moments. The matrix equation is shown in Equation
(4.26), where the moment method impedance matrix is derived. Once found, the scatter-
ing matrix is calculated by

S = (Z – Z0)(Z + Z0)–1 (6.12)

where Z0 is the characteristic impedance of the feeding transmission line. 
The radiation from a rectangular microstrip-patch antenna can be computed from the

current distribution on the patch. An alternative approach is to view the two opposing
patch ends as slot apertures and compute the radiation from an assumed dual-slot field dis-
tribution, see, for example, [Dahele et al. 1987]. We will use this method as well for com-
parison.
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Figure 6.60. Geometry of two probe-fed rectangular microstrip antennas located on
a circular cylinder.
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6.6.3 Mutual Coupling

Before discussing the mutual coupling among patch elements in an array, we will first
look at the resonant frequencies and the input impedance of a single element. Both calcu-
lated and measured data are included. 

6.6.3.1 Single-Element Characteristics. By using a planar solution, an ap-
proximate value of the resonance frequency can be found. The cavity model of a probe-
fed patch antenna can be used if the coating thickness is much smaller than one wave-
length and the radius is electrically large. Thus, the resonant frequency of the mnth TM
mode is given by [Dahele et al. 1987]

fmn = �� �
2

+ � �
2

�
1/2

(6.13)

where W = 2R�0 + t/�
�r� is the effective circumferential length of the patch and L = zm +
t/�
�r� is the effective axial length. The actual dimensions of the patch are 2R�0 and zm.
An approximate formula for the input impedance can also be found using the cavity mod-
el [Luk et al. 1989]. 

Although the cavity model can be used to get an approximate estimation of the reso-
nance frequency and input impedance, it does not incorporate the effect of the curvature
and will not give an exact answer. To include the curvature, a more rigorous model must
be used. In the next example, we will show how the resonant frequency and the input im-
pedance depend on the curvature. The results are obtained using the G1DMULT code [Si-
pus et al. 1998]. The following parameters apply for the substrate coating: t = 2.3 mm, 
r

= 2.85, and tan � = 0.0073. The dimensions of the patch are L = 44.4 mm and W = 66.6
mm, yielding resonance at 2.1 GHz. The position of the probe has been adjusted to
achieve 50 � input impedance for the isolated patch (the distance of the probe from the
patch center is 13.5 mm for vertical polarization and 9.5 mm for horizontal polarization).
Furthermore, an air gap (approximately 0.4 mm) between the PEC cylinder and the coat-
ing is included; see also Section 6.6.3.2. Figure 6.61 shows the input impedance for this
patch when mounted on a circular cylinder with different radii (RPEC = 2 �, RPEC = 5 �,
and RPEC = 10 �). Both axially and circumferentially polarized patches are considered.

Figure 6.61 shows that the curvature does not affect the resonant frequency very much.
The axially polarized patch is more or less unaffected, whereas a slight change in resonant
frequency is found for the circumferentially polarized patch. The amplitude of the input
impedance is also more or less unaffected by the change in curvature. It should be pointed
out, however, that the resonance resistance is sensitive to the air gap between the dielec-
tric substrate and the metallic cylinder, in particular for cylinders with small radii. Tam
and coworkers [1995] reported a large difference between the calculated (rigorous formu-
lation but no air gap) and measured (with air gap) resonance resistance for a cylinder with
R � 0.26 � amounting to around 50%. For the resonant frequency, however, only a small
disagreement (less than 1%) was observed.

Note that for doubly curved surfaces there is a larger effect of the radius, as discussed
in Section 7.3.2.1.

6.6.3.2 Isolated and Array Mutual Coupling. The first results in this sec-
tion give an overall view of the isolated mutual coupling between two patches on a cylin-
der. To simplify the problem, the patches are represented by (electric) current modes and
the results are given in terms of mutual impedances. A current mode is defined by a piece-
wise sinusoid along the direction of the current and by a constant value along the direc-

n
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�
W

c
�
2�
�r�
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Figure 6.61. The input impedance of a single-patch antenna mounted on a circular
cylinder versus the radius. (a) Axial polarization. (b) Circumferential polarization. 
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tion perpendicular to the current. Results for coupling between two patch elements (in
terms of S-parameters) are also given and compared with measured results. The mutual
coupling in an array environment is discussed briefly at the end.

In the current-mode representation, each current element has the dimensions of 0.05 �0

(along the direction of the current) by 0.02 �0. The results are obtained using an asymp-
totic Green’s function [Ertürk and Rojas 2000, 2002] and the eigenfunction solution is in-
cluded as well. The cylinder is defined by the following parameters: R = 3 �0, t = 0.06 �0,
and 
r = 3.25. 

Figure 6.62 shows the mutual impedance between two identical z-directed current
modes for different distances s and angles � (cf. Figures 6.1 and 6.60). As expected, the
coupling is stronger for � = 90° and weaker for � = 0°. The corresponding case with 
-di-
rected current modes is shown in Figure 6.63. These results follow the same trends as the
examples shown earlier in this chapter (cf. Figures 6.6 and 6.7).

The mutual impedance between 
- and z-directed current modes (cross-polarization) is
shown in Figure 6.64. This coupling is weak at � = 0° and 90°, since the cross-polar com-
ponent of the surface field exhibits a sin2� type pattern, similar to the planar case as
shown in [Marin and Pathak 1992].

The coupling in terms of the S-parameter, S12 = S21, versus the edge-to-edge spacing
between two identical patches, for two polarization cases, is shown next. The results are
compared with measured results [Raffaelli et al. 2005]. The radius of the cylinder is 60
mm, and the dimensions for the patches and substrate are as for Figure 6.61. The parame-
ters are repeated for convenience: 
r = 2.85, tan � = 0.0073, t = 2.3 mm, L = 44.4 mm, and
W = 66.6 mm. Unfortunately, an air gap (approximately 0.4 mm) between the PEC cylin-
der and the coating could not be avoided. This air gap is included in the calculated results,
and it was important in order to obtain accurate results (see also Section 6.5.2).
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Figure 6.62. Mutual coupling, Z12, between two identical z-directed current modes
for a coated cylinder with R = 3�0, t = 0.06�0, and 
r = 3.25 [Ertürk 2000]. a = R and d =
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Figure 6.63. The mutual impedance Z12 between two 
-directed current modes for a
coated cylinder with R = 3�0, t = 0.06�0, and 
r = 3.25 [Ertürk 2000]. a = R and d = R + t.
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Figure 6.65 (a) shows the isolated mutual coupling between two patches mounted next
to each other in the azimuthal direction. Thus, vertical polarization represents in this case H-
plane coupling, which is weaker and decays faster than the E-plane coupling (as expected).
At large spacings, some effect of the interference of creeping waves traveling in both direc-
tions around the cylinder is seen. The results for two patches mounted next to each other in
the axial direction are shown in Figure 6.65 (b). As expected, the coupling decreases much
faster for the horizontally polarized patches (that is, in the H plane) than for the vertically
polarized ones. Note that the magnitude of S12 decays slowly for the vertical polarization.
This is due to the small cylinder diameter (0.84 �0), making the cylinder act as an open
waveguide; compare the Gobau line [Gobau 1964]. On the other hand, if the radius is in-
creased, the results will move toward the planar case [Tam et al. 1995] for both polariza-
tions.

The agreement between calculations and measurements in Figure 6.65 is good. The
discrepancy between the measured and calculated results can be explained by the simple
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Figure 6.65. Calculated (solid line) and measured (+) isolated mutual couplings be-
tween two patches, for vertical and horizontal polarizations, versus edge spacing in
wavelengths. (a) Separated in the horizontal direction. (b) Separated in the vertical
direction [Raffaelli et al. 2005].
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model of the probe and by a nonprecise value of the air gap between the metal and the di-
electric layer in the experimental antenna. Note that six current modes were used in the
calculations.

The mutual coupling in an array environment is seen in Figure 6.66. The array is a 5 ×
10 patch array (five elements in the 
 and 10 in the z direction). The distance between the
elements is 78.76 mm both in the horizontal and vertical directions. They are mounted on
the same cylinder as previously described. The mutual coupling between two patches sep-
arated in the z direction, both isolated and in the array environment, is shown. Both verti-
cal and horizontal polarizations are considered. 

6.6.4 Radiation Characteristics

6.6.4.1 Isolated-Element Patterns. The radiation patterns of a microstrip-
patch antenna depend on the radius of the cylinder as well as the parameters of the coating.
The general behavior can be expected to follow the previous results for covered aperture el-
ements in Section 6.5. This also applies to the embedded-element patterns. However, for a
specific design simulations are needed to predict the exact features of the antenna and make
sure that no unexpected phenomena (resonances, etc.) appear. Single-element patterns ver-
sus the radius, as well as embedded-element patterns, can be found in [Sohtell 1987,
Ashkenazy et al. 1988, Luk et al. 1989, Löffler et al. 1999, Railton et al. 2003, Raffaelli et al.
2005].

We present here the radiation pattern in the azimuthal plane of one single patch for
horizontal and vertical polarizations. The patch antenna is the same as used earlier, that is,
R = 60 mm, 
r = 2.85, tan � = 0.0073, and t = 2.3 mm. The dimensions of the patch are L
= 44.4 mm and W = 66.6 mm, yielding a resonance at 2.1 GHz. The calculated results are
compared with measurements and the agreement is very good; see Figure 6.67 (a) and
(b). Note that an air gap between the PEC cylinder and the coating was unavoidable and is
included in the calculations [Raffaelli et al. 2005]. In addition to the results of the full-
wave analysis shown here, we will also use the cavity model for comparison [Dahele et
al. 1987]. The results obtained with the cavity model are shown in Figure 6.67 (c) and (d).
This shows that the cavity model gives accurate results for this example. Thus, it can be
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Figure 6.66. Mutual coupling in the z direction for horizontally and vertically polar-
ized patches in a 5 × 10 elements array (dashed line) compared to the mutual cou-
pling between two isolated patches (solid line) [Raffaelli et al. 2005].
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used for simple examinations of what to expect when the thickness of the coating is much
smaller than one wavelength.

6.6.4.2 Embedded-Element Patterns. Embedded-element patterns of patches
are expected to behave as they do for aperture antennas coated with a dielectric. In the lit-
erature, only a few examples are found; see, for example, [Knott 2002, Railton et al. 2003].
Shown here are examples taken from [Knott 2002]; extracts are found in [Knott and von
Winterfeld 1999, 2001]. The examples show embedded-element patterns of both a circular
and an elliptic sector array. Both measured and calculated results are shown. Figure 6.68
shows the geometry of these microstrip-patch antenna arrays. The radius of the circular
cylinder is 3.3 � and the element-to-element distance is 0.5 �, with the elements distributed
within a 270° sector (that is, 32 elements). The dielectric substrate is RT Duroid 5880 with

r = 2.2 and the thickness is 1.57 mm. The elliptic cylinder is defined by a/b = 2 and the
same type and number of elements is used (with an element-to-element distance of 0.5 �
within a 180° sector). The calculated results have been obtained by an approximation
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Figure 6.67. Calculated (solid line) and measured (dashed line) radiation patterns of
one patch on a cylinder at 2.1 GHz. (a) Horizontal polarization, measured and calcu-
lated results [Raffaelli et al. 2005]. (b) Vertical polarization, measured and calculated
results [Raffaelli et al. 2005]. (continued)
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Figure 6.67. (cont.) (c) Horizontal polarization, calculated results using the cavity
model. (d) Vertical polarization, calculated results using the cavity model.
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method using a combination of electric and magnetic short dipole radiators (Huygens
sources) to allow for the calculation of mutual coupling effects [Knott 2002]. It should be
pointed out that the model is an approximation and a perfect agreement is not expected.

The results shown here are for the embedded-element pattern of a centrally located el-
ement (element no. 16) as well as for an edge element. Both horizontal and vertical polar-
ization are considered. The isolated element pattern (calculated) is also shown for com-
parison. Figure 6.69 shows the results for the circular cylinder, and Figure 6.70 shows the
results for the elliptic cylinder [element no. 16 is shown in Figure 6.68 (b)].

The results for the horizontal polarization agree well with measured data in all cases.
However, the vertical polarization results do not. The reason for this is that the S matrix
was only calculated for the horizontal polarization case but was used in the calculation of
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Element no. 1

Element no. 16

Figure 6.68. Experimental patch antenna arrays. (Courtesy of FGAN Research Estab-
lishment for Applied Science, Wachtberg-Werthhoven, Germany). (a) Circular cylin-
der sector array. (b) Elliptic cylinder sector array. See also color insert, Figure 9.
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Figure 6.69. Embedded-element patterns of the circular cylinder (solid line). Mea-
sured results (dashed line) as well as isolated element patterns (dotted line) are
shown [Knott 2002]. (a) Centrally located element (element no. 16), vertical polariza-
tion. (b) Centrally located element (element no. 16), horizontal polarization. (contin-
ued)
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Figure 6.69. (cont.) (c) Edge element, vertical polarization. (d) Edge element, hori-
zontal polarization. 
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Figure 6.70. Embedded-element patterns of the elliptic cylinder (solid line). Mea-
sured results (dashed line) as well as isolated element patterns (dotted line) are
shown [Knott 2002]. (a) Centrally located element (element no. 16), vertical polariza-
tion. (b) Centrally located element (element no. 16), horizontal polarization. (contin-
ued)
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Figure 6.70. (cont.) (c) Edge element, vertical polarization. (d) Edge element, hori-
zontal polarization.
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the vertical polarization case as well. If the proper S matrix were calculated the results for
the vertical polarization would have been more accurate. 

Comparing these results with the aperture case considered in Section 6.3.3.2, the same
type of behavior is found. The patterns exhibit the expected effects of the mutual cou-
pling, such as the ripple in the main beam, filling of pattern nulls, and, for the edge ele-
ments, the main lobe shift toward the array center. However, the effect is not as visible as
in Section 6.3.3.2 due to a weaker coupling among the patch elements. 

6.7 THE CONE

6.7.1 Introduction

Like the cylinder, the cone is characterized by a singly curved surface. The conical sur-
face can be of particular interest for applications in the noses of streamlined airborne ve-
hicles, rockets, and missiles. The conical surface offers wide-angle coverage and good
aerodynamic performance. A small conical angle, however, poses problems with the in-
stallation of electronics in the tip region and the radiation performance in the forward di-
rection is poor. The conical array has been studied in several reports, as discussed in Sec-
tion 8.6.4. Here, the emphasis is on antenna element characteristics when a single element
is fed, both isolated and in the array environment.

Figure 6.71 shows a slotted cone geometry with an equivalent cylinder. The impor-
tance of the tip was considered in an early study [Held and Hasserjian 1958]. In that work,
circumferential and radial slots were considered. The conclusion of the study was that the
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Figure 6.71. Slotted cone and equivalent cylinder [Golden et al. 1974].
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scattering from the tip could be disregarded for slots further than 3 � from the tip. From
that position, calculations based on an equivalent cylinder could be utilized to simplify
the calculations, especially for slender cones. The cylinder radius was chosen to R	 = (c1 +
c2) sin �0/2, where c1 and c2 are the radial distances from the apex to the apertures. How-
ever, later studies have shown that the tip can have a significant effect on the characteris-
tics of cone arrays and antennas, even for large distances from the array.

In this section, we will show some results characterizing antennas on cones. Mostly,
aperture antennas on PEC cones are considered and the results are taken from the litera-
ture. The cone is assumed to be infinitely long. A lot of work was done in the 1970s in
this field. However, from recent literature we can see that there has been a renewed inter-
est in conical arrays. Slot arrays have been considered in [Holter 2005, Zmak and Sipus
2005], and microstrip antennas are discussed in [Descardeci and Giarola 1992, Meeks and
Wahid 1996, Shavit 1997, Smith et al. 2001]. 

6.7.2 Mutual Coupling

6.7.2.1 Aperture Antennas. The Green’s function for an infinite PEC cone can
be derived and expressed exactly in terms of a doubly infinite series, with the aid of
spherical Bessel functions and associated Legendre functions [Chan et al. 1977]. Howev-
er, the numerical evaluation of such a series is quite tedious. An alternative method is to
use approximation techniques, that is, high-frequency methods. With this approach the
mutual admittance (Y12) has two dominant components: the direct ray contribution (Yd

12)
going from aperture 1 to aperture 2, and the other (Yt

12) from the rays diffracted at the tip
of the cone (cf. Figure 6.71). The scattering from the tip can be found using diffraction
coefficients [Pridemore-Brown 1972]. This high-frequency approach has been used in
[Golden et al. 1974, Lee 1978, Hansen 1981] to study the mutual admittance of apertures
in cones and the results shown here are taken from [Lee 1978].

In the first example, calculated and measured data (S12) are shown versus frequency
for a fixed position of two circumferential apertures. The size of the waveguide is 22.86
mm × 10.16 mm, the angular separation �0 = 60.8°, the half cone angle �0 = 12.2°, and
the local radius at the aperture position is 45.53 cm. Shown in Figure 6.72 are three sets of
data: (i) Experimental data taken from [Golden et al. 1974], (ii) Calculated results in
which Yd

12 (the direct ray contribution) is obtained using the cone solution [Lee 1978], and
(iii) calculated results in which Yd

12 is obtained using the exact modal solution of an equiv-
alent cylinder [Golden et al. 1974]. Yt

12 is included [both in sets (ii) and (iii)] by using the
asymptotic expressions for the diffracted field given in [Pridemore-Brown 1972].

The result shows a couple of interesting features. The peaks and valleys are caused
by the interference between Yd

12 and Yt
12; thus, both components are of comparable am-

plitude at this angular distance. At smaller distances, the direct signal would be expect-
ed to be dominant, whereas the tip diffraction can be the dominant one at larger separa-
tions (cf. Figures 6.73–6.75). The equivalent cylinder solution seems to give accurate
results, even though the cone solution is slightly better compared with measured results.
The use of an equivalent cylinder approximation has been discussed in [Lee and Mittra
1977]. It was shown that the equivalent cylinder seems to be good enough for a small-
angled cone, �0 � 15°. However, with �0 = 30° an error in Yd

12 of 2.5 dB was noted.
The next three figures show the mutual admittance for two circumferential slots (0.2 �

× 0.5 �) versus the angular separation �0 and the radial separation (c1 – c2) for a cone with
�0 = 15°. Both Y12 and Yd

12 are shown; thus, the difference between the two, the tip dif-
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fraction, is clearly visible. In the first example (Figure 6.73), the circumferential slots are
at the same altitude. In this case, the direct coupling is weak (H-plane coupling); hence,
tip diffraction is affecting the results even at small angular separations. 

Figure 6.74 shows the mutual admittance versus the angular separation when the aper-
tures are separated by a small radial distance (2 �). In this situation, the tip contribution is
almost negligible for �0 < 65°. However, when the two apertures are widely separated in
the radial direction (6 �), with one aperture near the tip, the tip contribution gets stronger.
This is seen in Figure 6.75.

The last example shows the mutual admittance as a function of the orientation of the
apertures. The two apertures are separated by 1 � along the radial direction and the aper-
tures are rotated by angles �1 and �2, as seen in Figure 6.76. The largest coupling is
found, as expected, when both apertures are circumferential, that is, �1 = �2 = 90°. If they
are radially oriented (�1 = �2 = 0°), the amplitude is reduced. The minimum value is, of
course, found when the two apertures are orthogonal. 

The results shown here are mainly for circumferential apertures (radial electric fields)
in which the tip is directly illuminated. Thus, the effect of the apex is clearly visible. For
radial apertures, there is no radial field component and therefore no tip contribution to the
mutual admittance. This has been verified by calculated results and comparisons with
measurements [Golden et al. 1974].

6.7.2.2 Microstrip-Patch Antennas. Microstrip-patch elements on a conical
surface is a configuration of great potential interest. However, no mutual coupling data
for this case have been found in the published literature. This may be due to the complex-
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Figure 6.72. Coupling coefficient S12 between two circumferential slots on a cone as
a function of frequency [Lee 1978]. Reference [11] is [Golden et al. 1974].
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ity of analyzing the near fields on a coated cone. However, input impedance results are
discussed in, for example [Meeks and Wahid 1996] for the special case of a wraparound
microstrip antenna. A rectangular patch is discussed in, among others, [Descardeci and
Giarola 1992, Shavit 1997]. In these references, a cavity model is used, and tip diffraction
is not included. Figure 6.77 shows the input impedance for a wraparound microstrip an-
tenna on a conical surface. The input impedance is calculated as a function of the feed po-
sition and the cone half-angle �s. The following parameters apply: 
r = 2.32, t = 0.15 cm,
ra = 0.10 m, and rb = 0.129 m.

6.7.3 Radiation Characteristics

6.7.3.1 Aperture Antennas. Many authors have studied the radiation patterns
from apertures on conical surfaces; some references are [Bailin and Silver 1956, Felsen
1957, Wait 1969, Pridemore-Brown 1972, Pridemore-Brown and Stewart 1972,
Pridemore-Brown 1973, Balzano and Dowling 1974]. The solutions are obtained using
an integral representation or a high-frequency approach. Shown here are some results
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Figure 6.73. Mutual admittance between two circumferential slots on a cone at the
same altitude versus the angular separation [Lee 1978].
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taken from these references to illustrate the characteristics of single-element patterns
and embedded-element patterns when the elements are located at the conical surface. 

Single-Element Pattern. Figure 6.78 shows the geometry used in [Pridemore-Brown
and Stewart 1972], in which a single circumferential slot is located at a distance a from
the apex. The slot has a small height and goes all around the cone; thus, the radial electric
field across the slot is assumed to be constant. Figure 6.79 shows the radiation pattern
(axial cuts of |E�|2) for k0a = 10 and k0a = 30, respectively. The cone half-angle is �c =
10°. The resulting lobe patterns have a regular, periodic structure. This can be explained
by the interference between the power radiated directly from the slot and that scattered
from the tip.

The final graph (Figure 6.80) shows the single-element pattern as a function of �c for
k0a = 20. The major difference is that the peaks and minima of the radiation patterns are
shifted forward, as expected. 

Embedded-Element Patterns. The embedded-element patterns of a conical array,
shown in Figure 6.81, are discussed next. The array considered here has 11 rings, each
with 37 equispaced rectangular apertures. A triangular grid is obtained by adjusting
every second ring, as seen in Figure 6.81. The rings are numbered, and the first ring
(No. 1) is located closest to the tip at a distance of 79 � from the apex. The spacing be-
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Figure 6.74. Mutual admittance between two circumferential slots on a cone versus
the angular separation when separated by a small radial distance [Lee 1978].
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Figure 6.75. Mutual admittance between two circumferential slots on a cone versus
the angular separation when separated by a large radial distance [Lee 1978].
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Figure 6.76. The mutual admittance between two arbitrarily oriented slots on a cone
[Lee 1978].
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Figure 6.77. Wraparound microstrip antenna on a cone. (a) Geometry and coordi-
nate system. (b) Input impedance with TM01 excitation [Meeks and Wahid 1996].
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tween the rings is h = 0.4 �, and the circumferential spacing in ring 1 is d = 1.17 � and
in ring 11 it is d = 1.229 �. The apertures are filled with a dielectric material (
r = 2.54)
and their dimensions are 2b = 0.5 � and 2w = 0.2 �. The cone is sharply pointed with a
cone half-angle of 2.5°.

The first result (Figure 6.82) shows the axial element patterns (E plane) for elements in
three different rings: ring no. 1, the center ring, and ring no. 11. The results are obtained
by matching the fields at the single-mode apertures, where the external field is expanded
in eigenfunctions, or phase modes, based on the periodicity of the structure. The results
are shown for the forward hemisphere toward the tip of the cone. Included also are pat-
terns for the equivalent planar array in an infinite ground plane. The spacing between the
planar rows equals the ring spacing in the conical array, and the spacing between the aper-
tures in each row equals the spacing of the radiators in the ring being considered. The re-
sults of the planar array are very similar to the conical array pattern, except in the region
close to the apex. Near the tip of the cone, fast oscillations are seen, in particular in Figure
6.82 (a) for –5° � � � 20°. These oscillations are reduced when moving away from the
apex. The pattern of the element in ring 11 is more affected by the presence of the array
than by the tip. 

Figure 6.83 shows the circumferential pattern (� = 90°), that is, the H plane for an ele-
ment in the center ring. The pattern obtained using an infinite cylindrical array model is
also shown. The results are found using the same approach as for the cone. The ring spac-
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Figure 6.78. The cone geometry [Pridemore-Brown and Stewart 1972].
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Figure 6.79. Calculated single element pattern due to a circumferential slot for the
half-cone angle �c = 10° [Pridemore-Brown and Stewart 1972]. (a) k0a = 10. (b) k0a =

(b)
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Figure 6.80. Calculated single element patterns due to a circumferential slot for k0a =
20 [Pridemore-Brown and Stewart 1972]. (a) Cone angle �c = 10°. (b) Half-cone angle
�c = 15°.
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Figure 6.81. The conical array geometry [Balzano and Dowling 1974].

Figure 6.82. Embedded-element patterns (axial cut and E plane) for elements in dif-
ferent rings [Balzano and Dowling 1974]. (a) Element in ring No. 1. (continued)
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Figure 6.82. (cont.) (b) Element in the center ring. (c) Element in ring No. 11. Dashed
curve is corresponding planar case. 

(c)

(b)

0

c06.qxd  12/1/2005  4:20 PM  Page 256



ing of the cylindrical array is the same as in the conical array and the circumferential
spacing is taken from ring 6. For � > 60°, the cylindrical array pattern agrees well with
the conical array pattern, whereas at smaller angles the presence of the nonuniformily
spaced elements in the other rings of the conical array is seen as oscillations, which is not
obtained with the cylindrical solution. 

6.7.3.2 Microstrip-Patch Antennas. There are very few references in the
literature in which the radiation characteristics of microstrip-patch antennas on cones
have been analyzed. The results found were obtained using a cavity model of the patch,
as in [Descardeci and Giarola 1992, Shavit 1997]. Some measured results are also avail-
able [Smith et al. 2001]. Unfortunately, there are very few results in which the radiation
characteristics are studied versus relevant parameters. One single example is found,
however, in [Descardeci and Giarola 1992], in which the radiation pattern of a mi-
crostrip patch antenna is shown versus 
r of the substrate. This example is shown here.

Figure 6.84 (a) shows the geometry of the microstrip-patch antenna located on a cone
with the cone half-angle �0 = 33.88°. The thickness of the coating is defined by �� =
0.57°, the circumferential extension of the patch is given by �0 = 9.17°, and the radial dis-
tances to the patch edges are ra = 0.10 m and rb = 0.129 m, respectively. Two values of
the relative permittivity were chosen, namely, 
r = 2.32 and 10.68. The results are found
using a cavity model (note that tip diffraction is not included).

The E-plane radiation patterns are shown in Figure 6.84 (b). We can see that the pat-
terns are wide and that more energy is guided along the dielectric layer when the dielec-
tric constant is increased, causing higher radiation levels in the shadow region. The direc-
tivity is 8.0 dB when 
r = 2.32 and becomes 7.12 dB with a larger permittivity (
r =
10.68).
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Figure 6.83. Circumferential element pattern (H plane) compared with the pattern of
an equivalent cylinder array [Balzano and Dowling 1974].
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With the extension to doubly curved surfaces, a number of new features are introduced.
Among others, the polarization becomes an important parameter in the analysis. However,
the analysis of doubly curved surfaces is still in its cradle and more results will come in the
future as the research is progressing. The aim of this chapter is to go through a number of
cases in order to present the state-of-the-art knowledge about mutual coupling between el-
ements on doubly curved surfaces and also what we can expect from a radiation point of
view. Both waveguide-fed apertures and microstrip patches are considered. For both types,
measured data will be presented to verify the calculated results. As in Chapter 6, we will
only consider single-element characteristics; array performance is discussed in Chapter 8.

7.1 INTRODUCTION

This chapter continues the investigation of antennas on curved surfaces (see Chapter 6)
by considering doubly curved surfaces. Thus, some of the background material needed,
such as the nomenclature used, can be found in Chapter 6 and will not be repeated here.
The aim of this chapter is to provide an overview of the present knowledge in terms of
mutual coupling and radiation for antenna elements mounted on doubly curved surfaces.
This is done by considering the key features of a number of examples. In many of the ex-
amples, measured results verify the calculated results. However, many questions remain
to be answered by future research. 
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The extension to doubly curved surfaces is challenging and interesting. One goal is to
provide the tools for designing antennas with full hemispherical coverage. A doubly
curved surface can more accurately model, for example, realistic airborne or space-borne
antennas than a singly curved surface can. However, in many applications a singly curved
approach gives results accurate enough to be useful in the first stage of the design of a
doubly curved antenna. Nevertheless, new features are introduced with doubly curved
conformal antennas or, at least, these features become important in a new way and must
be accounted for. One such feature is the co-polar and cross-polar aspects of the radiation
pattern, since all elements on a doubly curved surface point in different directions. We
will illustrate this with some examples. However, the array properties and the need to
control the polarization in each element are left for Chapter 8.

Unfortunately, the literature references in this area are not many and much remains to
be investigated. The analysis tools needed for doubly curved PEC surfaces are well devel-
oped, but there is no general tool for electrically large, coated surfaces. Furthermore, even
though some doubly curved surfaces can be analyzed it is difficult to find information
about the performance of elements mounted on these structures. 

In several references, the radiation patterns for arrays on doubly curved surfaces are
discussed and analyzed using simplified models. For example, the radiation pattern is of-
ten calculated by using the element pattern from a planar geometry and using a number of
coordinate transformations and a summation to obtain the full array pattern. Some refer-
ences are [Harris and Shanks 1962, Hoffman 1963, Sengupta et al. 1968, Hsiao and Rao
1976, Debionne 1986, Saito and Heichele 1987, Douchin and Lemorton 1997, Guy 1999,
Girvan et al. 2001]. This approach will sometimes give satisfactory results for radiation
analysis, but it is not accurate enough to include mutual coupling effects. However, a full
analysis of aperture elements (radiation patterns and/or mutual coupling) is found in, for
example, [Wills 1987; Jha et al. 1987, 1991, 1993, 1995; Macon et al. 2001, 2002; Josefs-
son and Persson 2001; Persson et al. 2001, 2003; Persson and Josefsson 2003a,b]. Mi-
crostrip patches are likewise discussed in, for example, [Ke and Kishk 1991; Lima et al.
1992; Chen and Wong 1993, 1994; Chen et al. 1995; Luk and Tam 1991; Tam and Luk
1991a,b, 1995; Burum and Sipus 2002a,b; Sipus et al. 2003a–c; Burum et al. 2004; Sipus
and Burum 2005]. In addition, experimental antennas on doubly curved surfaces have
been investigated. Some examples are found in [Haruyama et al. 1989, Rai et al. 1996,
Lanne and Josefsson 2000, 2002]. However, few of these references treat in detail the an-
tenna characteristics (dependence on design parameters, geometry, polarization perfor-
mance, etc.). Furthermore, the results are seldom verified with reference solutions. 

Most of the analysis presented in this chapter is based on PEC general paraboloids of
revolution (GPOR). There are three reasons for choosing this type of surface. First, by
changing the shape of the surface, that is, changing the shaping parameter a (see Table
5.3), doubly curved surfaces differing in character can be studied, as discussed in Chapter
5. If a is chosen to be large, we get the surface near the vertex region that it is similar to a
sphere, and if a is chosen to be small a more pointed surface is obtained. Thus, many
types of interesting surfaces can be studied with this basic geometry. Second, the ray trac-
ing procedure becomes easier since standard mathematical functions can be used. Finally,
the results can be verified against measured results obtained from an experimental parab-
oloid antenna built at Ericsson Microwave Systems AB, Mölndal, Sweden. In the analy-
sis, we will continue to use waveguide-fed apertures. However, the rectangular apertures
used in Chapter 6 are now replaced with circular waveguide-fed apertures, which are bet-
ter suited for two-dimensional, wide angle scanning and allow polarization control. Both
mutual coupling and radiation properties are discussed in Section 7.2. 
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It is today still very demanding, if at all possible, to make the necessary calculations
for an electrically large, dielectric coated, general, doubly curved surface. This is an area
in which there is a need for new research. However, for certain special geometries there
are solutions available, in particular for the sphere. This geometry will be used for a dis-
cussion about the mutual coupling and radiation properties of microstrip-patch antennas
on doubly curved surfaces presented in Section 7.3. A comparison against measurements
will also be given here.

7.2 APERTURE ANTENNAS

7.2.1 Introduction

In this section, we will study aperture antennas located on a PEC doubly curved surface:
the paraboloid of revolution. Waveguide-fed aperture antenna elements were discussed in
Chapter 6, where a rectangular cross section was considered. Here, circular waveguide-
fed apertures are used in order to study polarization effects. Most of the calculated results
have been obtained with the hybrid UTD–MoM method described earlier; see Sections
4.5.2 and 6.2.2. Note, however, that a single-mode approximation is used, that is, only the
dominant TE11 mode is accounted for in the simulations.

In addition to calculations, many of the results have been verified with measured data
[Lanne and Josefsson 2000, 2002]. To our knowledge, this is one of very few cases in
which UTD-based calculations for doubly curved surfaces have been experimentally ver-
ified.

The doubly curved experimental antenna shown in Figure 7.1 was built at Ericsson
Microwave Systems AB in Mölndal, Sweden, in 2000. The experimental antenna is
shaped as a paraboloid of revolution with f /d � 0.22, and the diameter of the surface is
approximately 600 mm with a depth of approximately 175 mm; see Figure 7.1 (a). The
surface is extended with a conical sheet of metal to gain extra space for the absorbers at
the edge. The same principle was used with the cylindrical antenna (cf. Figure 6.12), with
excellent results. For practical reasons the circular waveguide-fed apertures with diameter
14.40 mm are filled with Rexolite (�r = 2.53). The cut-off frequency for the dominant
TE11 mode is 7.65 GHz. The nearest mode in cut-off order is TM01 with 9.99 GHz cut-off
frequency. A single isolated element has a return loss (S11) of about –8 dB.

The surface has 48 circular apertures; the layout is shown in Figure 7.1. Figure 7.1 (b)
shows a two-dimensional plot together with an identification of each element, which will
be used for reference later in this section. As seen, the elements do not cover the surface
completely; instead, they are located at selected positions. The positions have been chosen
to cover most element positions of interest in a doubly curved array. Thus, the information
obtained is expected to provide sufficient knowledge that can be extrapolated to the fully
populated surface. In order to study polarization effects, one of two orthogonal polarization
can be selected. This is achieved by rotating the waveguides by 90°. The two possibilities
are denoted as R and � polarizations, respectively. For the vertex element with coordinates
±0, R polarization is defined as y polarization and � polarization as x polarization.

7.2.2 Mutual Coupling

Most of the results presented here are for isolated mutual coupling, defined in Section 6.1.
However, some examples of array mutual coupling are also included in Section 7.2.2.2.
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7.2.2.1 Isolated Mutual Coupling. Based on calculations and measurements
for the experimental antenna, we will here discuss the salient features of the mutual cou-
pling among elements on a doubly curved surface. Although the number of available ele-
ments in the antenna is limited, there are a lot of combinations to study, covering the main
configurations of interest. 

Polarization is an interesting parameter and for each case there are four different com-
binations of polarization, denoted as follows: 

1. [R, R] means that both the source and observation elements are R polarized.

2. [�, �] means that both the source and observation elements are � polarized.

3. [R, �] means that the source element is � polarized and the observation element is
R polarized.

4. [�, R] means that the source element is R polarized and the observation element is
� polarized.

For the results presented here, the frequency is 8.975 GHz. A single-mode approxima-
tion was used in the theoretical analysis. Observe that both the [R, �] and [�, R] cases are
considered since they, in general, do not give the same results on doubly curved surfaces.
In several of the figures presented here, the location of the source and observation ele-
ments are shown to the right of the graphs. In addition to the calculated result, measured
data is included when available. It should be noted that not all observation elements were
measured. Furthermore, in the simulations additional element positions were (in some
cases) included in order to obtain a smoother curve. The phase delay corresponding to the
geometrical separation is subtracted from all phase results. Note that in some graphs the
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Figure 7.1. (cont.) (c) A picture of the antenna on location for mutual coupling mea-
surements. See also color insert, Figure 3 for another view of the antenna. Courtesy
of Ericsson Microwave Systems AB, Göteborg, Sweden.

(c)
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results are plotted against the geodesic and a negative value of the geodesic length is used
to indicate positions on the negative y axis [see Figure 7.1 (b)].

In the first example, we will look at the isolated coupling along the principal plane, the
y axis in Figure 7.1 (b). This situation corresponds to the parabolic cylinder studied in
Section 6.3.2.2. The first two figures (Figures 7.2 and 7.3) show the E-plane ([R, R] polar-
ization) and H-plane ([�, �] polarization) couplings, respectively. As seen, the results do
not exhibit any strange or surprising behaviors. There is a weaker coupling in the H plane,
which decays faster than the E-plane coupling, as expected. If the surface had been more
pointed, a slope change could have been observed when passing the vertex point (s = 0).
Measured results are also included here and the agreement is good. Some of the differ-
ences between theoretical and measured results can be due to errors in the experimental
setup, as will be discussed later. However, the differences at the very low levels are not
unexpected; see, for example, Figure 7.3 where the level is below –90 dB.

It is interesting to study these results further. Figure 7.4 shows the calculated E-plane
coupling ([R, R] polarization) from Figure 7.2 again, but compared with an approximate
model. The comparison is made with results obtained from calculating the coupling with
the same type of elements, but located on a parabolic cylinder with the same dimensions
as the cross section of the paraboloid [the geometry is seen in Figure 7.4 (b)].

The results agree well and it seems to be possible to use a singly curved approximation
for this case with some success. However, there is a deviation in amplitude that acceler-
ates as the distance between the apertures increases. At large distances, the coupling am-
plitude of the parabolic cylinder solution is less than that of the paraboloid. An explana-
tion can be that the parabolic cylinder, infinite in extent along the axial direction, behaves
more as a “planar surface” in this region [cf. Figure 7.4 (b)]. Along this “planar surface,”
the energy is diffracted over a larger surface, resulting in the reduced amplitude (cf. the
discussion at the end of Section 6.2.3.1). 
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Figure 7.2. Isolated coupling along the y axis, E plane, or [R, R] polarization. The
source point is element –y13. Solid line: calculated; dashed line: measured.
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The final combinations of interest along the principal plane are the cross polarization
cases, that is, [R, �] and [�, R] couplings. Ideally, the coupling levels should be very low
(cf. Section 6.2.3.2) and the calculated results are indeed small (about –100 dB). Howev-
er, the measured results gave cross-polar levels of about –60 dB. This is higher than ex-
pected, and much above the leakage/noise floor of the measurements. A possible explana-
tion for the high cross-polar levels in the measured results is the sensitivity to proper
rotations of the radiating elements. To study this, additional simulations were made in
which the elements were slightly rotated. Figure 7.5 shows the [R, �] case with both the
source and observation elements rotated 1°. This increased the calculated values by ap-
proximately 30 dB, resulting in a much better agreement. A similar result was obtained
for the [�, R] case. Thus, small rotation errors can explain the unexpected high measured
cross-polarization levels. In the experimental set-up, dowel pins controlled the rotation of
the elements; however, an accuracy of ±1° could not be guaranteed.

The next series of figures show the isolated mutual coupling along the circular arc
shown in Figure 7.1 (b). For these examples, there is no z dependence since the positions
of the apertures are varied with respect to the angle � only. Figures 7.6–7.9 show the am-
plitude and phase for all four combinations of polarization. The amplitude decay is as ex-
pected since the geodesic length increases proportionally to the increase in �. Further-
more, in this situation it is not possible to define E- and H-plane couplings since the
polarization in the elements varies locally for each position. So, these four cases can be
referred to as different co- and cross-polar type combinations for which the total ampli-
tude and phase characteristics are very similar. 

Once again, we can make a comparison with a singly curved solution for the circular
arc case. This is done by using a circular cylinder with the same radius as the local radius
of the circular arc in the xy plane. The results are presented in Figures 7.10 and 7.11 for
two polarization cases, [R, R] polarization and [�, �] polarization. These two cases corre-
spond to H-plane and E-plane coupling, respectively, for the circular cylinder. For each
polarization, four different locations of the circle arc are considered, with the first arc
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Figure 7.3. Isolated coupling along the y axis, H plane, or [�, �] polarization. The
source point is element –y13. Solid line: calculated; dashed line: measured.
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starting at element +x6. The next arc starts with element +x13 and, finally, two fictitious
arcs are used. These two fictitious arcs start with elements +xM and +xN located further
away from vertex. The local radii in the xy plane for these four arcs are rx6 = 4.3 �, rx13 =
8.3 �, rxM

= 17.1 �, and rxN
= 42.7 �. The results show that the circular-cylinder approxi-

mation is in general much better for the [�, �] polarization case than for the [R, R] polar-
ization case, as expected. Furthermore, the approximation becomes better and better (for
both polarizations) when moving away from the vertex. Thus, using a singly curved sur-
face (circular cylinder) as an approximation to the paraboloid solution is not as useful as it
was when the elements along the principal plane were studied earlier. However, if a coni-
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Figure 7.1).
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cal surface had been used we would most likely have obtained better agreement between
the three-dimensional paraboloid solution and the approximate two-dimensional solution.
Compare this to the conical array approximated by a cylinder solution in Section 6.7.

The results in the previous examples can be explained mainly by the surface field de-
pendence on the geodesic length and the radius of curvature along the geodesic. In the
next examples to be presented, the results are much more dependent on the polarization of
the elements. Figures 7.12–7.15 show the isolated mutual coupling between an element
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(b)

(a)

 -10  -9  -8  -7  -6  -5
 -120

 -100

 -80

 -60

 -40

 -20

Geodesic length s   [λ]

|S
21

|  
[d

B
]

Calculated
Measured

 -10  -9  -8  -7  -6  -5
 -200

 -100

0

100

200

Geodesic length s   [λ]

ar
g(

S
21

) 
 [D

eg
.]

c07.qxd  12/1/2005  4:26 PM  Page 273



on the circular arc and elements along the positive y axis. Here, the results are explained
mainly as polarization effects. To illustrate this, the geodesic length is included in Figure
7.12, where the [R, R] polarization case is considered. The [�, �] polarization case is
shown in Figure 7.13, and the cross-polar results are shown in Figures 7.14 and 7.15.
Note that these results are plotted against the parameter u; see Table 5.3, page 138.

To explain the polarization effects, the corresponding planar case is used as a model;
see Figure 7.16. This figure shows a sketch of the magnetic field from the radiating ele-
ment at the positions of the other elements. For the [R, R] polarization case (Figure 7.12)
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Figure 7.6. Isolated coupling along the circle arc, [R, R] polarization. The source
point is element +x6. Solid line: calculated; dashed line: measured.
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Figure 7.7. Isolated coupling along the circle arc, [�, �] polarization. The source point
is element +x6. Solid line: calculated; dashed line: measured.
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the corresponding planar case is shown in Figure 7.16 (a). Here, the magnetic and electric
fields are parallel to each other at two positions where, consequently, the mutual coupling
is zero. This is the explanation for the double-hump behavior in Figure 7.12. Similarly,
Figure 7.16 (b) shows the planar case for the [�, �] polarization. For this case, shown in
Figure 7.13, the polarization effect is not as dramatic along the positive y axis as it was for
the [R, R] case. However, continuing along the y axis in the negative direction it is possi-
ble to find a position with a local minimum. The same discussion can be used to explain
the results in Figures 7.14 and 7.15. 
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Figure 7.8. Isolated coupling along the circle arc, [R, �] polarization. The source
point is element +x6. Solid line: calculated; dashed line: measured.
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Figure 7.9. Isolated coupling along the circle arc, [�, R] polarization. The source
point is element +x6. Solid line: calculated; dashed line: measured.
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Figure 7.10. The circular cylinder (dashed lines) is used as an approximation for the
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(solid lines). The polarization is [R, R] and the different rows are starting with ele-
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(b)

(a)

10 20 30 40 50 60 70 80 90
 -160

 -140

 -120

 -100

 -80

 -60

 -40

 -20

φ   [Deg.]

|S
21

|  
[d

B
]

Paraboloid
Circular cyl.

c07.qxd  12/1/2005  4:26 PM  Page 276



7.2 APERTURE ANTENNAS 277

10 20 30 40 50 60 70 80 90
 -300

 -250

 -200

 -150

 -100

 -50

φ   [Deg.]

ar
g(

S
21

) 
 [D

eg
.]

Paraboloid
Circular cyl.

Figure 7.11. The circular cylinder (dashed lines) is used as an approximation for the
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In addition to the full three-dimensional solution used here (or two-dimensional solu-
tion in special cases) it is possible to get a qualitative view of what to expect in terms of
mutual coupling without performing a full analysis. Assuming the surface to be (locally)
planar, the radiated field in the aperture plane varies as sin � [Balanis 1997, p. 608]; see
the dashed lines in Figure 7.16. For most element locations, the two apertures are in the
far fields from each other, so the coupling has a sin �1 sin �2 variation, to which we can
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Figure 7.12. Isolated coupling, [R, R] polarization. The source point is element c5.
Solid line: calculated; dashed line: measured, dashed-dotted line: geodesic length.
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Figure 7.13. Isolated coupling, [�, �] polarization. The source point is element c5.
Solid line: calculated; dashed line: measured.
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add the 1/s dependence. The result in Figure 7.12 is shown in Figure 7.17 for such an
analysis. This approach gives satisfactory results on a qualitative basis and can be used
for a first analysis of the problem. 

As shown in this section, the agreement between measured and calculated results is
generally very good. The minor disagreements (apart from some cross-polarization cases)
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Figure 7.14. Isolated coupling, [R, �] polarization. The source point is element c5.
Solid line: calculated; dashed line: measured.
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Figure 7.15. Isolated coupling, [�, R] polarization. The source point is element c5.
Solid line: calculated; dashed line: measured.
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are probably due to one or more of the following factors: the lack of higher-order modes
in the calculations and differences between the theoretical shape and the actual shape of
the experimental antenna. Figure 7.18 shows the aperture locations and the surface shape
of the theoretical model (the generating curve) compared with the experimental case. A
third factor can be the geodesic constant used in the ray tracing procedure. This constant
is critical, as discussed in Chapter 5, since all parameters in the UTD solution depend on
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the geodesic constant. However, according to the discussion in Section 5.3.5, this is not a
likely source of error. Higher-order modes were studied in Chapter 6 for the circular
cylinder and it was found that they had a significant effect of the results, in particular for
the array mutual coupling. For isolated coupling, however, they did not affect the results
very much. So, for the examples shown in this section the main source of error is proba-
bly minor differences between the theoretical model and the experimental antenna and
measurement errors.

7.2.2.2 Array Mutual Coupling. Unfortunately, doubly curved arrays are not
as symmetrical as singly curved surfaces. Thus, the analysis of doubly curved arrays is
more time-consuming than singly curved arrays. Often, an element-by-element approach
is needed and all combinations of element locations must be calculated. For example,
about 500 apertures are required to fully cover the experimental antenna with elements
(14 rings and 0.75 � element spacings in a triangular lattice); see Section 8.5.3.1 and Fig-
ure 8.33. 

Here, we will limit ourselves to the array mutual coupling along the principal y axis of
the experimental antenna (Figure 7.1). All results presented are measured at the frequency
f = 8.975 GHz. Several cases are included with different positions of the source along the
y axis. During the measurements, the elements along the principal axis were terminated in
matched loads (Figure 7.19), except the two between which the coupling was measured.
The elements away from the y axis were all covered with metallic tape [Lanne and Josef-
sson 2002]. Both E- and H-plane array couplings are considered. For each polarization,
three sets of measurements were made. The first set is when element –y11 is fed and the
array coupling is measured to the elements away from this element in the positive y axis
direction. This set is named “Case A” for E-plane coupling and “Case B” for H-plane
coupling. In the next set, element –y6 is fed instead and this set is called “Case C” for E-
plane coupling and “Case D” for H-plane coupling. Finally, the element at the vertex is
fed and the array coupling is measured along the positive y axis. This set is called “Case
E” for E-plane coupling and “Case F” for H-plane coupling. The results are shown versus
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Figure 7.19. The inside of the experimental antenna when measuring the array mu-
tual coupling along the y axis (cf. Figure 7.1). The probes, as well as the terminated
elements in between are clearly visible. Courtesy of Ericsson Microwave Systems
AB, Göteborg, Sweden.
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the distance from the fed element. Thus, each result starts at the same position, as seen in
Figures 7.20–7.23. Note that the phase delay corresponding to the geometrical separation
is subtracted in all cases.

Figure 7.20 shows the array mutual coupling in the E plane and Figure 7.21 shows the
results for the H plane; the behavior is similar for both polarizations. If element –y11 is
fed, the coupling does not decay as much as for the other cases since this part of the sur-
face is fairly flat. The other results decay faster due to the greater curvature.

Finally, a comparison of the isolated and array mutual coupling along the y axis is
shown for both polarizations. Note that different elements were used as the source: –y11

was fed when studying the array mutual coupling but –y13 was used when measuring the
isolated coupling. However, these two elements are located close to each other where the
surface has a similar shape. Thus, there should not be any substantial difference whether
–y13 or –y11 is fed, and a comparison between these two cases is justified. 

Figure 7.22 shows the results for the E-plane case. The results do not differ much from
each other; in fact, the amplitudes of S21 are almost identical. This is not to be expected
since similar results are not obtained in the planar and singly curved cases. We found
(Section 6.2.3.3) that the array and isolated couplings experience the same type of decay
for the singly curved surface, but the amplitude of the array coupling was less than the
isolated coupling. The different type of behavior found here is probably explained as a
combination of electrically small elements located on an electrically large surface with a
curvature perpendicular to the geodesic path. Thus, the surface field is diffracted away
along the path and the expected interaction among the elements is very small. Figure 7.23
shows the H-plane case with similar results.

7.2.3 Radiation Characteristics

In this section, we will investigate the typical radiation characteristics of aperture antenna
elements on doubly curved surfaces. The results are obtained using the hybrid
UTD–MoM approach. Thus, we include the effect of diffraction, calculate the radiated
field in the shadow region of the source, and compare with measured data. In Section
8.6.6, we will compare array patterns using two element models: one based on the full
UTD–MoM method and a reference model based on an idealized dipole.

We will here only discuss isolated-element patterns, leaving embedded-element pat-
terns for future studies. A full analysis of a doubly curved array still needs some additional
progress in order to be manageable. A significant complication is that the element positions
are not in a regular grid; in addition, the polarization of the fields must be incorporated 

The same PEC doubly curved surface is analyzed in this section as was studied previ-
ously in this chapter (see Figure 7.1). The first examples presented show the isolated-
element patterns (normalized) for two element positions on the paraboloid. The patterns
are measured and calculated in the yz plane (see Figure 7.1). All results are presented as a
function of the � angle; positive values correspond to the part of the yz plane where y is
positive and negative values correspond to the part of the yz plane where y is negative.
Furthermore, the theoretical results are calculated for the interval |�| � 120°, correspond-
ing to the “front side” of the antenna. Outside this region, the inside of the antenna will be
exposed toward the transmitting antenna during the measurements, giving undesired re-
flections and diffractions. 

Since the elements can be rotated, both the E-plane and the H-plane patterns can be
measured (and calculated) in the yz plane. Figure 7.24 shows the E-plane and the H-plane
power patterns, respectively, for the element at the vertex. In this case, the shadow region
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Figure 7.20. The array mutual coupling (E plane) along the y axis of the experimen-
tal antenna (f = 8.975 GHz). Three sets of data are shown. “Case A” shows the case
when element –y11 is fed, “Case C” shows the case when element –y6 is fed, and
“Case E” shows the case when the element at vertex is fed [Lanne and Josefsson
2002]. (a) Amplitude. (b) Phase.
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Figure 7.21. The array mutual coupling (H plane) along the y axis of the experimen-
tal antenna (f = 8.975 GHz). Three sets of data are shown. “Case B” shows the case
when element –y11 is fed, “Case D” shows the case when element –y6 is fed, and
“Case F” shows the case when the element at vertex is fed [Lanne and Josefsson
2002]. (a) Amplitude. (b) Phase. 
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Figure 7.22. Comparison between the array and isolated E-plane mutual coupling
along the y axis of the experimental antenna (f = 8.975 GHz). Note that the array mu-
tual coupling shown is measured from element –y11, whereas the isolated coupling
is measured from element –y13 [Lanne and Josefsson 2002]. (a) Amplitude. (b)
Phase.
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Figure 7.23. Comparison between the array and isolated H-plane mutual coupling
along the y axis of the experimental antenna (f = 8.975 GHz). Note that the array mu-
tual coupling shown is measured from element –y11, whereas the isolated coupling
is measured from element –y13 [Lanne and Josefsson 2002]. (a) Amplitude. (b)
Phase.
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Figure 7.24. Calculated (solid line) and measured (dashed line) power patterns in the
yz plane from a circular waveguide-fed aperture at vertex. (a) E plane. (b) H plane.

(b)

(a)

 -150  -100  -50 0 50 100 150
 -70

 -60

 -50

 -40

 -30

 -20

 -10

0

P
ow

er
 p

at
te

rn
  [

dB
]

θ  [Deg.]

Calculated
Measured

c07.qxd  12/1/2005  4:27 PM  Page 288



starts at |�| > 90°. The calculated results were obtained using a single-mode approxima-
tion; however, the agreement is very good. 

As can be seen, the E-plane pattern is very wide. The 3 dB beamwidth is approximate-
ly 140° compared to approximately 130° for the same element mounted on a planar sur-
face [Josefsson and Lanne 2003]. This is to be expected since the element is located at the
vertex and the ground plane is swept backward, causing the lobe to widen. The H-plane
diagram is not as wide as the E-plane diagram and the 3 dB beamwidth is approximately
80° for the doubly curved surface. According to Josefsson and Lanne [2003], the corre-
sponding planar 3 dB beamwidth is approximately 60–80°. In the planar case, the H-plane
pattern is wider than the E-plane pattern [Balanis 1997] for large element radii. Here, it is
the opposite since the element radius is small compared to the wavelength.

The next example, Figure 7.25, shows the power pattern for the element at +y6. The
pattern is calculated in the yz plane with the element R-polarized [Figure 7.25 (a)] and �-
polarized [Figure 7.25 (b)]. Here, the shadow region starts at � � –62°. Once again, the E-
plane pattern is much wider than the H-plane pattern and it is difficult to see that the main
lobe has shifted in the E-plane pattern. The shift of the main lobe is easier to see in the H-
plane pattern. Element +y6 is located at � = 29.5° and the peak of the main lobe in the H
plane has moved almost the same amount. 

7.3 MICROSTRIP PATCH ANTENNAS

7.3.1 Introduction

The analysis of a dielectric-coated, doubly curved surface is a difficult problem and there
are few references available for this case, as mentioned in the Section 7.1. In this section
we will present some results in an attempt to discuss the characteristics of microstrip-
patch antennas on doubly curved surfaces, in this case the sphere. The geometry consid-
ered is shown in Figure 7.26. The radius of the grounded sphere is a and b is the radius of
the coated sphere; thus, the coating thickness is t = b – a. The patches can be of different
shapes; a wraparound patch is discussed in [Luk and Tam 1991], a circular disk is found
in [Tam and Luk 1991a,b; Luk and Tam 1991; Ke and Kishk 1991; Tam et al. 1995], an
annular ring is studied in [Luk and Tam 1991, Tam et al. 1995], and a (quasi-)rectangular
patch is discussed by [Burum and Sipus 2002a,b; Burum et al. 2004; Sipus et al. 2003a–c,
2004; Sipus and Burum 2005].

The results shown here are obtained with a full-wave analysis in which the electric
field integral equation is numerically solved by applying the method of moments. The
coating can be multilayered and the problem is solved using a spectral-domain algorithm
for calculating the Green’s functions [Sipus et al. 1998]. Here, however, only a single lay-
er is used. To facilitate the analysis, quasirectangular patches are placed on the coated
spherical surface. Their dimensions are W� = 2�pb and W� = 2�pb, and each patch is probe
fed from a coaxial transmission line. Note that the shape of the quasi-rectangular patch
follows the constant � and � lines as shown in Figure 7.26 (b). The two polarizations used
here are � polarization and � polarization, corresponding to E-plane or H-plane coupling,
depending on the orientations of the patches with respect to each other. 

7.3.2 Mutual Coupling

Before discussing the mutual coupling among patch elements in an array, we will first
look at the resonant frequency and the input impedance of a single element. 
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Figure 7.25. Calculated (solid line) and measured (dashed line) power patterns in the
yz plane from a circular waveguide-fed aperture at position +y6. (a) E plane. (b) H
plane.
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7.3.2.1 Single-Element Characteristics. We will start by discussing the in-
fluence of the sphere radius on the input impedance of the quasirectangular patch. For
comparison, the measured input impedance of a planar patch antenna with the same di-
mensions is also given. The size of the quasirectangular patch is 2.5 cm × 4.0 cm; it is
printed on a single-layer dielectric substrate with dielectric constant �r = 2.52 and thick-
ness t = 1.58 mm. Both �- and �-polarized patches are considered. The patch is assumed
to be probe fed.

Figure 7.27 shows the normalized input impedance of a �-polarized, quasirectangular
patch; the �-polarization case is shown in Figure 7.28. It can be seen that the radius of
the sphere mainly influences the resonant frequency, and the change of resonant fre-
quency is stronger for the �-polarized patch. The resonant resistance is almost constant

7.3 MICROSTRIP PATCH ANTENNAS 291

Figure 7.26. Geometry of the problem. (a) Rectangular patch on a spherical struc-
ture. (b) Azimuthal equatorial projection [Sipus et al. 2003a]. Copyright (2003) Wiley
Periodicals, Inc. Reprinted by permission of John Wiley & Sons, Inc.

(b)
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Figure 7.27. Normalized input impedance of a � polarized quasirectangular patch
printed on a spherical structure for different sphere radii. The planar case is also in-
cluded. (a) Real part. (b) Imaginary part [Sipus et al. 2003a]. Copyright (2003) Wiley
Periodicals, Inc. Reprinted by permission of John Wiley & Sons, Inc.
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(a)

c07.qxd  12/1/2005  4:27 PM  Page 292



7.3 MICROSTRIP PATCH ANTENNAS 293

Figure 7.28. Normalized input impedance of a � polarized quasirectangular patch
printed on a spherical structure for different sphere radii. The planar case is also in-
cluded. (a) Real part. (b) Imaginary part [Sipus et al. 2003a]. Copyright (2003) Wiley
Periodicals, Inc. Reprinted by permission of John Wiley & Sons, Inc.

(b)

(a)
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for the �-polarized patch and it is slowly changing for the �-polarized patch.
Furthermore, the results move toward the planar case when the radius increases, as ex-
pected.

An option is to use a circular microstrip patch printed on a coated sphere. The reso-
nant frequency for this type of patch has been discussed in [Tam et al. 1995] and the
same type of behavior with regard to the radius was found. Thus, when comparing the
results shown here for patches on doubly curved surfaces with those of the singly
curved surface (Figure 6.61), it is found that the radius of the doubly curved surface has
a much larger impact on the resonant frequency than does the singly curved surface.
The main reason is probably that the resonance phenomenon for the sphere is more
complicated due to the doubly curved structure. In the case of rectangular patches, the
resonant mechanism is more complex than merely the interference of a forward- and a
backward-propagating wave.

7.3.2.2 Isolated Mutual Coupling. The results presented here are isolated
coupling results, that is, there are only two elements present at the same time. 

The first example shows the dependence on the sphere radius. Two quasirectangular
patches of dimensions 10.57 cm × 6.55 cm are printed on a single-layer dielectric sub-
strate with dielectric constant �r = 2.5 and thickness t = 1.575 mm. The position of the
probe is 1.5 cm from the center of the patch. The working frequency of the equivalent pla-
nar patch is 1.41 GHz. However, for a spherical patch the working frequency is slightly
changed in order to obtain a good match (the needed shift of resonant frequency depends
on the sphere radius, as discussed in Section 7.3.2.1). The magnitude of the S21 parameter,
both in the E and H planes, is shown in Figure 7.29 as a function of the spacing between
the patch edges for different radii (R = 0.5 �, 1 �, and 2 �). For comparison, the measured
mutual coupling of a planar patch antenna with the same dimensions is also given [Jedlic-
ka et al. 1981]. It can be seen that the coupling is weaker for the spherical case in compar-
ison with the planar case, especially in the H plane. For smaller radii, the mutual coupling
starts to be oscillatory due to the interaction with surface waves encircling the sphere. 

Next, a comparison between patches on a sphere and on a circular cylinder is dis-
cussed. In this example, quasisquare patches of dimensions 4.8 cm × 4.8 cm have been
printed on a single-layer dielectric substrate with dielectric constant �r = 2.38 and thick-
ness t = 1.58 mm. The working frequency is 2 GHz and the radius of the sphere and of the
cylinder is 1 �. The magnitude of the isolated mutual coupling is shown as a function of
the spacing between patch centers. The coupling between spherical patches in the E plane
is seen in Figure 7.30 (a) and the results for the H plane are shown in Figure 7.30 (b).
These results are compared with the cylindrical counterpart. For the cylinder, both cou-
pling in the axial direction (y = 0 in the figure legend) and in the � direction (z = 0 in the
figure legend) are considered. It can be seen that there is close agreement between the
spherical and cylindrical cases only for coupling in the � direction, as expected. Further-
more, the circular cylinder gives less coupling at large distances than the sphere. This fea-
ture was also discussed in Section 7.2, where a PEC paraboloid was compared with a PEC
parabolic cylinder (cf. Figure 7.4). 

In addition to the calculated results, measured data have been obtained from a labora-
tory model built from a copper half-sphere of radius a = 18.7 cm on which patches were
mounted at different positions [Sipus et al. 2003c, Burum et al. 2004]. The antenna is
shown in Figure 7.31. The dimensions of the patches are 5.1 cm × 5.1 cm, and small sty-
rofoam cubes are used as distances between the patches and the grounded shell. There-
fore, �r = 1 and the height of the styrofoam cubes define the thickness, t = 5.2 mm. 
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Figure 7.29. Magnitude of the isolated coupling of a two-patch array as a function of
spacing between patch edges for different radii [Sipus et al. 2003b]. The planar case
is also included by measured data (stars). (a) E plane. (b) H plane.

(b)

(a)
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Figure 7.30. Magnitude of the S21 parameter shown as a function of spacing be-
tween patch centers [Burum and Sipus 2002b]. The spherical case (solid line) is com-
pared with the cylindrical counterpart (dashed and dotted lines). (a) E plane. (b) H
plane.

(b)

(a)
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The mutual coupling of two patches in the E plane is studied as a function of the fre-
quency and the spacing between the elements and shown in Figure 7.32. Considering the
differences and approximations in the experimental antenna and the simulations, the cal-
culated and measured mutual couplings are in a good agreement. 

7.3.3 Radiation Characteristics

In this section, we will give some examples of isolated-element patterns for quasirectan-
gular patches (Figure 7.26). Element patterns for circular microstrip patches can be found
in, for example, [Luk and Tam 1991, Tam and Luk 1991b].

The rectangular patch considered here is defined by the following parameters: a quasi-
square patch of dimensions 4.8 cm × 4.8 cm is printed on a single-layer dielectric sub-
strate with dielectric constant �r = 2.38 and thickness t = 1.58 mm. The working frequen-
cy is 2 GHz. 

The first example shows the effect of the radius of the ground plane (grounded shell);
see Figure 7.33. The following radii have been studied: a = 0.25 �, 0.5 �, and 1 �. For
comparison, the radiation pattern of a planar patch antenna of the same dimensions is also
given. It can be seen that with increasing radius the main lobe of the spherical patch an-
tenna approaches the main lobe of the planar counterpart. As expected, the back radiation
is smaller for spheres with larger radius.

It is also interesting to make a comparison of the radiation characteristics of a spherical
patch and a circular–cylindrical patch. The radius of the sphere and cylinder is 0.5 �; all
other parameter values are the same as before. In Figure 7.34, the cylindrical patch is axi-
ally polarized, and in Figure 7.35 the cylindrical patch is � polarized. It can be seen that
the cylindrical patch can be used as an approximation of the doubly curved patch only in
the azimuthal plane for both polarizations. In the elevation plane, the radiation pattern is
significantly different, especially around the axis of the cylinder and in the back direction.
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Figure 7.31. The experimental microstrip patch antenna [Burum et al. 2004]. Copy-
right (2003) Wiley Periodicals, Inc. Reprinted by permission of John Wiley & Sons,
Inc.

c07.qxd  12/1/2005  4:27 PM  Page 297



298 ANTENNAS ON DOUBLY CURVED SURFACES

Figure 7.32. The comparison of calculated (solid line) and measured (dashed line)
isolated mutual coupling coefficient of two patches in the E plane as a function of
frequency and spacing between elements. (a) Spacing equals 100 mm. (b) Spacing
equals 200 mm [Burum et al. 2004]. Copyright (2003) Wiley Periodicals, Inc. Reprint-
ed by permission of John Wiley & Sons, Inc.
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Figure 7.33. Radiation pattern of a spherical rectangular patch antenna for different
sphere radii [Burum and Sipus 2002b]. The planar case is also included for compari-
son. (a) H plane. (b) E plane.

(b)
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Figure 7.34. Comparison between radiation patterns of spherical patch antenna
(dotted line) and �-polarized cylindrical patch antenna (solid line) [Burum and Sipus
2002b]. (a) H plane. (b) E plane.

(b)

(a)
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Figure 7.35. Comparison between radiation patterns of spherical patch antenna
(dotted line) and axially-polarized cylindrical patch antenna (solid line) [Burum and
Sipus 2002b]. (a) H plane. (b) E plane.

(b)

(a)
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This chapter deals with the characteristics of conformal array antennas in terms of radia-
tion patterns, impedance, and polarization characteristics. We will make use of simple
models, but also build upon the theories and analyses that were presented in the previous
chapters. Furthermore, design issues, including mechanical aspects that can be critical for
the practical realization of a conformal antenna system, will be considered. Several typi-
cal array configurations will be discussed, including circular, cylindrical, spherical, and
conical arrays. 

8.1 INTRODUCTION

In previous chapters, we have presented the theories and analysis methods that are appli-
cable to conformal antennas. We have focused on the electromagnetic aspects of radiation
and coupling from elementary sources on curved surfaces. Now we turn to the perfor-
mance of conformal array antennas. Thus, we have to be more specific than before since
the array shape, element lattice, and array excitation are among the factors that must be
known in order to determine the characteristics of the array. The conformal shapes can be
classified as slightly curved (almost planar); singly curved, including ring arrays and
cylindrical arrays; and doubly curved. The slightly curved antennas behave more or less
like planar antennas and exhibit the same limitations; the design principles are roughly
the same. For the other types, it is hard to make general statements, since dimensions,
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shapes, element types, requirements, and so on can be so different. However, we will se-
lect and analyze typical examples, including case studies from the literature. In this way,
we hope to provide a picture of the performance and characteristics of conformal antennas
together with an understanding of important factors that govern their performance. Addi-
tional information is provided in the Chapters 9 and 10 on beam forming methods and
pattern synthesis, respectively.

In order to illustrate the cylindrical case, we will several times use data derived from a
comprehensive theoretical and experimental study of a cylindrical C-band array [Persson
and Josefsson 2001]. This 600 mm diameter array has 54 azimuthally polarized wave-
guide aperture elements with 0.53 � (at 4.3 GHz) spacings in the E plane. There are three
rows with 18 elements each, extending over about 120° in the azimuth. Mutual coupling
and other data for this array were presented in Chapter 6. Similarly, for the doubly curved
case, we will use results from a study of an X-band test antenna with a paraboloidal
shape, base diameter 600 mm, and circular waveguide aperture elements [Persson et al.
2003]. More details about this antenna are found in Chapter 7. Figure 8.1 shows the two
experimental arrays. 

The shape of a conformal antenna is, by definition, related to the mechanical structure
with which it will be integrated. Hence, mechanical aspects of the design are very impor-
tant, especially in the case of structures such as airplanes that are exposed to significant
stress. The mechanical design also depends very much on the available technology for
packaging and miniaturization of the electronic components, the methods for cooling, sig-
nal distribution, and so on. This is an extensive subject that is not possible to treat here in
detail. However, we will in the next section present some viewpoints on the problems and
possible solutions. In Section 8.3 radiation patterns will be discussed, followed by imped-
ance and polarization properties in Sections 8.4 and 8.5. To conclude the chapter, a num-
ber of typical conformal arrays and their characteristics will be discussed, mainly based
on literature information. Additional examples are found in Chapters 1, 3, 9, and 10.

8.2 MECHANICAL CONSIDERATIONS

8.2.1 Array Shapes

The strict definition of “conformal antennas” states that a conformal antenna must con-
form to a shape dictated by, among others, aerodynamical considerations. Thus, the shape
is given and there is no room for optimizing the shape any further. However, compromis-
es may, of course, be necessary in the practical case. Take, for example, a nose-mounted
array for a fighter aircraft, the shape of which should ideally follow the rather pointed
nose/radome shape of the aircraft. As a compromise, considering the limited room close
to the pointed tip of the radome, rounded elliptical shapes have been proposed, with a
pointed “radome cap” added to give the combination the desired streamlined form [De-
bionne 1986].

We include in the conformal antenna category also those designs whose shape is based
on pattern and/or coverage considerations. The most common shape for wide-angular
coverage requirements is the cylindrical shape, and we have included a lot of material on
this type in various chapters throughout the book. A closely related shape is the cone,
which, just like the cylinder, can be seen as a combination of several ring arrays placed
above each other. In fact, the circular ring array is a basic element in all rotationally sym-
metric arrays. One could consider a building technique in which ring arrays of, in princi-
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ple, identical designs are joined together; compare [Sindoris and Hayes 1981, Voskresen-
sky and Ovchinnikova 2001].

In Chapter 3, comparisons of several rotationally symmetric antenna shapes for hemi-
spherical coverage were presented. We analyzed performance in terms of gain in relation
to cost. As a basis for cost we used the required total number of radiators. Conical shapes
came out quite favorably in this comparison. It is interesting to note that chopping off the
tip of the cone does not change its cost-effectiveness according to our criterion. Thereby,
the problem with installing feed networks, radiating elements, and so on in the narrow tip
region can be eliminated. However, a hole in the resulting projected aperture will in most
cases lead to unacceptable high sidelobes, so this approach is best suited to, for example,
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Figure 8.1. The C band cylindrical array (a), and the X-band paraboloidal array (b).
(Courtesy of Ericsson Microwave Systems AB, Göteborg, Sweden.) See also color in-
sert, Figures 2 and 3.

(b)
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ground-based surveillance and communication systems with 360° coverage (thus exclud-
ing the zenith direction).

8.2.2 Element Distribution on a Curved Surface

For grating-lobe suppression the element density should be sufficiently high (roughly
half-wavelength spacings) and the elements distributed evenly over the surface. As in pla-
nar arrays, a triangular grid is usually preferred over a rectangular grid. However, regular
periodic-element grids can only be defined for a few canonical shapes, such as the cylin-
der. Quasiperiodic grids, however, are possible. Near-uniform spacing of the elements on
a sphere can be achieved to within ± 9% [Schrank 1970]. The quasi-periodic lattice can be
further randomized, providing some reduction in sidelobe levels [Vallecchi and Gentili
2003].

Elements on a pointed cone (with a small cone half-angle, < 10–15°) can be distributed
in a quasirectangular fashion, that is, in rings with an equal number of elements in each
ring. This requires that the elements be near the base of the cone. A layout of elements on
a blunt cone near the tip region is shown in Figure 8.2. Here, the four arcs of elements
have from 7 to 13 elements each; still, the appearance is that of a uniform distribution.
See also Figure 8.50.

8.2.3 Multifacet Solutions

Multiple facets can approximate a smoothly curved array quite well. As long as the facets
are small, it can be expected that the electrical performance will be close to that of the
continuous equivalent array; compare Section 6.4 [Marcus et al. 2003]. The piecewise
planarity goes well with multilayer and MMIC technologies for RF front-end designs, and
may require less costly tooling compared to curved structures. However, multifaceted an-
tennas do not always meet the desired conformity requirements. A complication with a
faceted antenna is the design of the joints between the facets, considering both the electro-
magnetic analysis and the mechanical design.
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Figure 8.2. Dual-polarized patch elements on a cone. See also color insert, Figure 4.
(Courtesy of FGAN Research Establishment for Applied Science, Wachtberg-Werth-
hoven, Germany.)
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Multiple facets approximating the sphere (based on the regular icosahedron) were dis-
cussed in Chapter 3. In fact, there are many more possible polyhedra that approximate a
sphere if nonregular ones are included. One example is the truncated icosahedron, an
Archimedean solid [Weisstein 2004] that has 12 pentagonal and 20 hexagonal surfaces
(Figure 8.3). The surfaces can be further subdivided into triangles, resulting in 180 trian-
gular facets [Bondyopadhyay 2000]. These triangles can then again be further subdivided.
See also [Fekete 1990].

A small faceted array with a general spherical shape was shown in Figure 1.8. It is
based on the dodecahedron and contains 40 triangular facets. Figure 8.4 shows the elec-
tronics on the rear side of one of these facets. Each facet holds six dual-polarized radiat-
ing elements with transmit and receive functions.

8.2.4 Tile Architecture

In order to realize flush-mounted arrays, there is a need to design the RF front end (trans-
mit/receive functions, control electronics, feeds, etc.) integrated together with the radia-
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Figure 8.3. The truncated icosahedron (a) and its unfolded surface (b) [Bondyopad-
hyay 2000, 2001].

(b)
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tors in a thin package, usually referred to as tile packaging; see, for example [Sanzgiri et
al. 1995]. This technology is well under way (Figure 8.5) and most easily realized at low-
er frequencies where the need (because of the larger dimensions) is also more pro-
nounced. To make enough room for the electrical functions within an approximately 0.5 �
× 0.5 � cross section, a multilayer design with built-in interconnections between layers is
required [Liu et al. 2000]. Tile modules have been designed for high frequencies, includ-
ing the X- and Ku-bands [Midford et al. 1995, Schreiner et al. 2003]. A significant effort
in this direction was the U.S. High Density Microwave Packaging Program [Cohen
1995]. Among the advantages of the tile technology are reduced cost and improved relia-
bility, thanks to the highly integrated design and automated fabrication. Conformal broad-
band designs with dual polarizations and tile-type modules have been described [Mancu-
so 2002, Perpère and Hérault 2001, Barbier et al. 2001].

Improvements in optical components for conversion of RF signals to signals on optical
fibers and vice versa can in the future result in even more compact and robust antenna
modules. This will make remote beamforming possible, and provide increased immunity
to electromagnetic interference. For receive-only functions, it could even be possible to
use a 100% optical module interface, including an optical power supply fiber [Schaller
and Beaulieu 1996].

The tile technology lends itself most easily to small, planar modules with one or rather
few radiating elements and associated electronics on each tile; compare Figures 8.4 and
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Figure 8.4. One of the triangular facets of the array in Figure 1.8 (rear side shown).
Each facet has GaAs MMIC circuits for transmission and receiving functions. (Cour-
tesy of Roke Manor Research Ltd., Roke Manor, Romsey, Hampshire, UK.)
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8.5. The planar tiles are then put together to form a faceted array that approximates the re-
quired shape. However, it is also possible to build truly curved arrays using appropriate
materials and processing techniques; compare Figure 1.11. This is still a very advanced
technology but some progress has been reported. Radiating elements and circuits pro-
duced directly on flexible substrates would allow shaping to the desired structure [Schnei-
der et al. 2001]. Another approach is to first form the substrate layers to the desired shape.
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Figure 8.5. Four-element tiles. (a) X-band transmit/teceive module [Kemerley and
Kiss 2000], (b) S- band receive module. (Courtesy of Ericsson Microwave Systems
AB, Göteborg, Sweden.)
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Vacuum forming over a wooden mold to produce a spherical array was reported by [Chu-
jo et al. 1990]. Photoetching the required circuits and radiators on a curved surface using
a robot-controlled three-dimensional laser for activating photoresist patterns has been re-
ported [Charrier et al. 2003].

8.2.5 Static and Dynamic Stress 

Conformal arrays in the strict sense, that is, arrays integrated flush with, for example, the
skin of an aircraft or other vehicle, entail a number of mechanical design challenges. The
antenna will in this case replace a part of the original structure, so a fundamental question
is whether the antenna is able to take the same mechanical loads as that structure in addi-
tion to fulfilling the electrical requirements [Lockyer et al. 1999]. Alternatively, a rein-
forced frame in the fuselage could take the original loads, leaving more freedom for the
design of the antenna, which would then only need to withstand its own induced stresses.
A general observation is that an opening in the skin of an advanced vehicle is much more
expensive than the structural part taken away.

A load-bearing antenna integrated in the fuselage would have to withstand all kinds of
mechanical stress, including rain erosion, bird impact, lightning strikes, and so on. A pos-
sible design has multiple dielectric layers, each providing the required stiffness, erosion
protection, and so on, as well as the electrical functions [Sekora et al. 2003]. 

Aircraft and other vehicles suffer in operation both static and dynamic deformations
that to some extent will be transferred to the structurally integrated conformal array anten-
na. The static change of the antenna shape is the easiest to analyze [Smallwood et al.
2003]. The effects of dynamic changes (vibrations) are more difficult to evaluate. They
typically have implications for the signal characteristics, including antenna-related signal
processing functions (adaptive nulling, direction finding, etc.). MTI and SAR are sensi-
tive systems that depend on the spectral purity of the transmitted and received signals
[Knott et al. 2003]. Thus, it may be required that the antenna be mounted with means for
vibration isolation. Some compensation is possible with electronic phase corrections
[Schippers et al. 2003].

8.2.6 Other Electromagnetic Considerations

Apart from analyzing radiation, mutual coupling between the radiating elements, match-
ing the array under scanning conditions, and so on, there are other electromagnetic effects
that deserve attention. Electromagnetic compatibility with other near or colocated RF sys-
tems is one such issue. As an example, leakage from the feeding systems and other com-
ponents could propagate and interfere with sensitive parts of the electronics subsystem
(analog and digital). One should, therefore, check what electrical modes can be excited in
the antenna structure internally and externally. Resonances can affect the antenna func-
tion in unexpected ways if not accounted for in the design, as the following case illus-
trates.

The cylindrical array with aperture coupled patch elements shown in Figure 8.6 was
found to support several mode resonances. The cylindrical structure is in fact a multilayer
coaxial cavity composed of the metallic cylinder, dielectric layers, and the ground plane
for the apertures that feed the patches. The most complex situations arise with dual-polar-
ized patches. Some of the resonances that were examined are attributable to coaxial wave-
guide modes supported by the coaxial structure [Löffler et al. 2000, Löffler and Wiesbeck
2000]. There are also circumferential resonances in the substrate layers due to surface
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waves. The effects on the measured input reflection coefficient and the mutual coupling
data can be quite severe. The conclusion is that the critical dimensions must be selected
carefully so that undesired resonances do not appear, at least not inside the operational
frequency band. 

A different mechanical approach, also with aperture-coupled patches on a cylinder, is
shown in Figure 8.7. Here, the part between the metal cylinder and the slot ground plane
is divided into narrow channels, hence reducing most of the moding problem; compare
Figure 3.25.

8.3 RADIATION PATTERNS

8.3.1 Introduction

In a broad sense, the radiation pattern characteristics of conformal arrays are not much
different from the radiation characteristics of planar arrays. The same kinds of patterns—
shaped beams, monopulse, low sidelobes, and so on—with similar performances can be
realized with both types of arrays. However, there are many additional design issues to
consider in the conformal case. We also need special methods for analyzing conformal ar-
rays and predicting their performance. Advanced methods for doing this were discussed
in detail in Chapters 4–7. In addition, there is a need for simple ways of estimating the
performance that can be expected from different conformal antenna configurations. This
can be relatively easy for planar arrays, for which there also exists a large knowledge
base. Conformal arrays are more difficult to analyze; one complication is the lack of a
scalar array factor. 

In many early papers on conformal array analysis, rather crude simplifications were
necessary. Sometimes cosine (dipole type) element patterns or isotropic patterns were as-
sumed. This can be sufficient for an initial analysis of the general behavior of the radia-
tion patterns. A better approximation is sometimes to compute the element pattern in a
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Figure 8.6. Aperture-coupled microstrip patch on a cylindrical structure [Löffler et al.
1999].
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planar environment and then use this for all element positions in the conformal array. The
best approach is, of course, to calculate the element patterns in the true curved environ-
ment and include the effects of mutual coupling. 

However, simple models can provide helpful and easy to understand results in many
cases. Some of the calculated results in the following are based on simple models. They
serve well our purpose of illustrating fundamental characteristics of conformal array an-
tennas. We will also discuss results from the literature that are typical for various confor-
mal antenna types. 
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Figure 8.7. Cross section (a) of a cylindrical array demonstrator (b) with aperture-
coupled patches [Raffaelli and Johansson 2003]. See also color insert, Figure 11.
(Courtesy of Ericsson AB, Göteborg, Sweden.)
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8.3.2 Grating Lobes

The periodicity of planar array aperture excitations means that their Fourier transforms
(radiation patterns) also exhibit a corresponding periodicity (with grating lobes, etc.).
This is different from conformal arrays. It is true that, for example, a cylindrical array can
be periodic in its two dimensions, the axial and the circumferential directions, but there is
no simple Fourier relation between excitation and radiation as with planar arrays. See also
Section 2.2.

Another difference is the distinction between visible and invisible space. This distinc-
tion is very clear for planar arrays. Consider the planar array in Figure 8.8 (a) with the
propagation vector k� = (kx, ky, kz). As long as we have

kz
2 = k2 – kx

2 – ky
2 > 0 (8.1)

that is, kx, ky inside the circle in Figure 8.8 (b) (visible space), we have radiation of power
away from the antenna. The region outside the circle represents imaginary kz values, and,
hence, no radiation, but stored (reactive) energy.

With curved arrays, there is no such clear distinction between visible and invisible
space. In Chapter 2, we demonstrated for ring arrays the successive attenuation of phase
modes with increasing mode order, which could be interpreted as a transition from visible
to invisible space (Figure 2.12). A further difference relates to grating lobes. The period-
ic, planar array focused to generate a narrow beam produces narrow grating lobes that
may radiate or remain in the invisible space. Also, a focused, curved array generates grat-
ing lobes. However, since the focusing is for the main beam, the grating lobes, radiating
in other directions, are not as well focused and are, therefore, more dispersed and, hence,
of less magnitude. 

Let us take as a simple numerical example a circular (cylindrical) array with N ele-
ments evenly placed on the 360° circumference. Thus, the angular spacing is �� = 360/N
degrees. The elements are assumed to radiate only in the outward direction with an ele-
ment pattern

(8.2)

We have from Chapter 2 the radiation pattern of the array:

E(�) = �
n

Vn EL(� – n��)ejkR cos(�–n��) (8.3) = (2.11)

where Vn is the element excitation.
In order to scan the main beam in the direction � = �0, the phase to compensate for the

curved shape of the array, cophasal excitation, is

Vn = |Vn|e–jkR cos(�0–n��) (8.4)

Thus,

E(�) = �
n

|Vn|EL(� – n��)ejkR[cos(�–n��)–cos(�0–n��)] (8.5) = (2.14)

|�| < �/2

|�| > �/2

EL(�) = cos �

EL(�) = 0
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If we include all elements in the summation, that is, also those on the “rear side,” the rear
elements will contribute only to the sidelobe region. It seems, therefore, logical to switch
off those elements. Another approach is to use them just for shaping of the sidelobe region. 

Figure 8.9 shows the pattern according to Equation (8.5) for N = 16, with equal ampli-
tudes and the array phased for a 30° scan angle. The element spacing is half a wavelength.
The small circles indicate the locations of the active elements.

If the elements on the rear side are turned off, we get the pattern in Figure 8.10. The
two distinct sidelobes at about 120° off the main beam are parts of two grating lobes.
They appear, in spite of the half-wavelength spacing, because the edge regions of the
180° active arc are scanned almost to endfire.

A denser element spacing eliminates the grating lobe problem, as shown in Figure
8.11, where we have taken twice as many elements; thus, d/� = 0.25 . We have now again
16 active elements, but on half the circumference.

Another way to reduce the grating lobes is to scan less, that is, to reduce the active sec-
tor. Figure 8.12 shows the result with only a 120° active sector. The element spacing is
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Figure 8.10. As for Figure 8.9, but with rear-side elements not excited.
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Figure 8.9. Computed pattern with 16 elements and 30° scan angle. All 16 elements
are used; the element spacing is 0.5 � (10 dB between circles).
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Figure 8.12. Radiation pattern with a 120° sector active.
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Figure 8.11. As for Figure 8.10, but with the element spacings reduced to 0.25 �.
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back to 0.5 �. This array has now only six active elements, but the beam width is still
about the same as in the previous cases and the “grating lobes” have been reduced by
about 5 dB compared to Figure 8.10. 

Better sidelobe control is obtained with an amplitude-tapered excitation. The common
weightings such as Dolph–Chebyshev [Dolph 1946] and Taylor [Taylor 1955] were de-
veloped for linear and planar antennas. Other, more general methods for low-sidelobe pat-
tern synthesis are available for conformal arrays and will be discussed in Chapter 10.
However, directly applying an amplitude taper according to, for example, Taylor to a
cylindrical array can give useful results, as the following examples will demonstrate.

We show in Figure 8.13 three diagrams for a 16 element array with half-wavelength
spacing on a 120° arc. The radius is 3.82 � and the elements have cosine-shaped patterns.
The three cases are an untapered case (a), tapered according to a sampled (–20dB, n� = 3)
Taylor distribution (b), and a (–30dB, n� = 5) Taylor distribution (c). The patterns for cor-
responding linear arrays are also shown by dotted lines for comparison.

When we compare the circular arc array and the linear array with the same amplitude
tapering, we find that the circular arc array has higher first sidelobes. The beamwidth is
also slightly wider. Otherwise, the amplitude taper also successfully reduces the sidelobes
in the circular case.

8.3.3 Scan-Invariant Pattern

With planar phased arrays, the radiation pattern changes with the direction of scan. Con-
formal arrays with rotational symmetry, however, can have scan-invariant patterns in at
least one dimension. This is accomplished by moving the excitation around the array, for
example, rotation in the azimuth for a cylindrical array. Doing this in steps of one element
division each time (commutating) makes the radiation pattern move in corresponding an-
gular increments. For a cophasal circular or cylindrical array, the increments are of about
the same size as the azimuthal beam width (see Chapter 2). If better resolution is required,
phase scanning can be used between the steps. Scanning by commutating can also be ap-
plied to spherical and conical shapes; in principle to all kinds of conformal antennas.
However, it is only for rotationally symmetric arrays that we can get scan-invariant pat-
terns. Commutating requires phase control of the radiating elements in order to compen-
sate for the array curvature—the required compensation changes with the beam direction.
In addition, elements have to be switched in and out when the active area is moved.
Means for doing this will be discussed in Chapter 9.

8.3.4 Phase-Scanned Pattern

The beam can be moved by phase control of the element excitations if the active region is
fixed, just like in planar arrays. However, with increasing scan angle the radiating ele-
ments on the far side of the active region point more and more away from the desired ra-
diation direction. We can, therefore, expect the pattern shape to vary considerably with
the beam direction. (In planar arrays the array factor shape does not (in principle) change
with scanning when viewed in the sine space.)

Even with proper phase compensation, the radiating elements on the far side (near B in
Figure 8.14) of the active region contribute mostly to sidelobes. The gain will, therefore,
decrease and the sidelobe level increase as the scan angle increases. An example is shown
in Figure 8.15, where the array geometry and mutual coupling data for the analysis were
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Figure 8.13. 16 elements with 0.5 � spacings on a 120° arc. No tapering (a), –20 dB
Taylor (b), and –30 dB Taylor (c). (continued)
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taken from the cylindrical array in Figure 8.1 (a). Phase steering with uniform amplitude
excitation has been assumed. This example demonstrates an ability to scan to very large
angles (± 90°) but we also see beam broadening and increased sidelobes [Josefsson and
Persson 1999b]. 

It would seem natural to turn off the elements that contribute so poorly, or at least to
reduce their amplitudes in order to improve efficiency. This was tried; see Figure 8.16,
where the element amplitudes were determined by an optimization procedure [Bucci et al.
1990]. This method and other pattern synthesis techniques for conformal arrays will be
discussed in Chapter 10.
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Figure 8.15. Phase scanning (fixed active region, uniform amplitude). The element
locations are marked with small circles. (a) 30°, (b) 60°, and (c) 90° scan angles. (con-
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We notice that it was possible to restrict the sidelobes to about the –20 dB level; and
the main beam is distinct, except at the extreme 90° scan angle, where the beam peak ap-
pears at about 80°. The calculated directivity with optimized amplitudes was found to be
about 2 dB higher at large scan angles compared with the first case with equal amplitudes.
The amplitude optimization results in a gradual shift of the most excited elements from
the center of the active sector toward the edge (Figure 8.17). This example demonstrates
that reasonably good pattern performance can be obtained with phase-steered conformal
antennas. However, the price for this is a complex element control including both phase
and amplitude (and sometimes polarization). 

Similar observations have been made by [Humphrey et al. 1995] for a 19 element mi-
crostrip array on a near-spherical surface. In a study of a conical array [Morton and Pasala
2004], –30 dB sidelobes could be maintained when phase scanning to ±74° in the az-
imuth.

An analysis for a 148° circular arc array with assumed cos� patterns for 31 elements
with 0.5 � spacing along the arc illustrates a similar shift in the amplitude weightings. The
three patterns in Figure 8.18 were optimized for –35 dB sidelobes and 0°, 30°, and 60°
scan angles respectively [Boeringer and Werner 2004].

8.3.5 A Simple Aperture Model for Microstrip Arrays

Following [Wait 1959, p. 42] and [Harrington 1961, p. 248] we can write the far field ra-
diation from an aperture with a known field distribution in a perfectly conducting cylinder
(see Section 4.3.2.2): 
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Figure 8.16. Phase scanning with optimized element amplitudes. Same array as in
Figure 8.15 [Josefsson and Persson 1999a]. (a) 30°, (b) 60°, and (c) 90° scan angles.
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Figure 8.17. The variation of optimized amplitudes for a cylindrical array when the
scan angle is changed.
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� � = �
�

–�

j n+1e jn�� � (8.6)

where

Fn(w) = (8.7)

Gn(w) = + (8.8)

and ~Ez and ~E� are the Fourier transforms of the aperture field. R is the cylinder radius and

(8.9)
w = –k cos �

v = k sin �

nw ~Ez
��
Rv2H	n

(2)(Rv)

~E�
�
H	n

(2)(Rv)

k ~Ez
��
jvHn

(2)(Rv)
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Figure 8.18. Patterns with amplitude weightings (see inserts) for a circular arc array
when scanned at 0°, 30°, and 60° scan angles, respectively (top to bottom). After
[Boeringer and Werner 2004].
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Hn
(2) is the Hankel function of second kind and order n, and H	n

(2) is its derivative with re-
spect to the argument.

This model can be used for an approximate analysis of microstrip-patch antennas. Mi-
crostrip-patch antennas can be seen as two narrow-slot antennas carrying magnetic cur-
rent elements [Derneryd 1976, Calander and Josefsson 2001]; see Figure 8.19.

The slot model for patch arrays was tried on a cylindrical array with 8 × 2 patches on a
1.6 � radius cylinder; see Figure 8.20 (c). The patches are etched on a very thin substrate
mounted on a 4 mm foam spacer. The center frequency is 5.2 GHz. The computed pat-
tern, Figure 8.20 (a) agrees very well with the measured pattern (b). The excitation in this
case was optimized for a beam pointing 22.5° in azimuth. The mutual coupling effects
were neglected, but for this particular case, the simple model appears to work fine. More
elaborate methods for microstrip patch calculations are discussed in Section 6.6.

8.4 ARRAY IMPEDANCE

8.4.1 Introduction

The active element impedance as seen on the feeding line of a radiating element in an ac-
tive array depends not only on the element itself but also on the coupling from the other
elements. Mutual couplings in various types of conformal arrays were discussed thor-
oughly in Chapters 6 and 7.

The reflected wave amplitude on the feed line of element number i can be written as

V i
– = V i

+ · Sii + �
j
i

V j
+ · Sij (8.10)

where V j
+ is the excitation of element j (as given by the feeding arrangement such as feed

network, modules, phase shifters, etc). Hence, the active reflection coefficient for element
i is

�i(�s) = V i
–/V i

+ = Sii + �
j
i

Sij (8.11)
V j

+

�
V i

+
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Figure 8.19. Equivalent slot model for a patch antenna.
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Here, we indicate a dependence on the scan angle �s, since the element excitations, at
least the phase values of V j

+, depend on the chosen scan direction. More generally, the
active reflection coefficient depends on the complex element excitations (both amplitude
and phase). So far, there is no difference between linear/planar and conformal arrays. 

Let us compare the curved array and the linear/planar array when they are excited
with (a) equal amplitude and phase, and (b) proper phase for a focused main beam; see

328 CONFORMAL ARRAY CHARACTERISTICS

Figure 8.20. Computed pattern using the slot model (a). Measured (co- and cross
polar) results at 5.0–5.4 GHz (b), and cylindrical array (c) [Löffler et al. 1999]. (continued)
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Table 8.1. We recognize that the situations (a) and (b) are in principle identical for
the linear/planar array. However, for the curved array there is an important difference:
the case with a focused beam results in an active reflection coefficient � that varies con-
siderably from element to element, whereas for the linear/planar array the reflection
coefficient is roughly the same for all elements (except for edge elements). Thus, for
the curved case, it can be desirable to apply different matching circuits to different ele-
ments in the array, since the active impedances are not as uniform as in the linear/pla-
nar case.

We illustrate the above qualitative reasoning in Figures 8.21 and 8.22. The first exam-
ple is the cophasal pattern in Figure 8.15 for 30° scan angle, which results in the comput-
ed active reflection coefficient variations of Figure 8.21. This graph is a polar representa-
tion of the complex reflection coefficient (i.e., a Smith chart) showing the values for each
of the 18 elements along the 120° curved array. As seen, there are large impedance varia-
tions within the array. 

Equal amplitude and phase excitation of the same array, on the other hand, gives a
broad beam, Figure 8.22 (a), and the impedances in Figure 8.22 (b). All elements have
about the same (rather low) reflection coefficient.
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Figure 8.20. (cont.)

(c)

Table 8.1. Two typical excitations for curved and linear arrays

Excitation Curved array Linear/planar array

(a) Equal phase and amplitude Broad beam Narrow beam
� � equal � � equal

(b) Focused beam (cophasal) Narrow beam = above
� varies
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8.4.2 Phase-Mode Impedance

The element phase-mode impedance is the active element impedance in the array when
the elements are excited with a particular phase mode. This impedance depends on the or-
der of the phase mode. We can write the phase mode impedance Zm for an N-element cir-
cular array excited with the mth phase mode [Longstaff et al. 1967]:

Zm = �
N

k=1

Zike2�j(k–1)m/N (8.12)

where Zik is the mutual impedance between elements i and k. The value of Zm is the same
for all elements, since we assume here that the array is circularly symmetric, hence it is
independent of i.

We know from Chapter 2 that phase modes larger than about kR radiate poorly, even if
they are excited by the feeding system of the array. What happens is that a nonradiating
(reactive) near field is created, and the radiators become severely mismatched to the feed-
ing lines. A simple numerical exercise illustrates this. 

Let us consider a circular array of parallel dipole elements. The mutual impedances are
easily computed using formulas in several textbooks, for example [Elliott 1981, p. 332;
Kraus 1988, p. 424], and we can then evaluate the phase mode impedances from Equation
(8.12). The results are shown in Figure 8.23 for an array with 16 elements and kR = Nd/�
� 3. The element spacings were in this case �/6 and the dipole lengths �/2. Modes up to
about the third order can be expected to radiate from this array.

We find that the resistive part of the impedance goes to zero for m > 3, whereas the re-
flection coefficient approaches unity. Also shown in this graph is the Bessel function
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Figure 8.21. Reflection coefficient plot for the array with the beam steered 30° in
Figure 8.15.
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Figure 8.22. Curved array characteristics with equal amplitude and equal phase. Pat-
tern (a) and reflection coefficient (b).
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Jm(kR), which governs the transformation from excitation-phase modes to radiation-phase
modes when the elements are isotropic; compare Eq. (2.25). As expected, Jm also ap-
proaches zero for m > 3. For the reflection coefficient, a feed-line impedance of 73 ohms
was assumed.

Jones and Griffiths describe an analysis of a four-element circular array using quarter-
wavelength monopoles on a ground plane. The element spacing was �/6, corresponding
to a kR value of 0.66. Thus, phase-mode orders beyond the m = 0 and m = 1 would be
strongly attenuated. The active phase-mode resistance for the array was calculated to be
about 90 ohms, 12 ohms, and about 2 ohms when the array was excited with the zeroth,
first, and second phase mode, respectively [Jones and Griffiths 1988, 1989]. We got for
the same case (assuming monopoles) 120 ohms, 12 ohms, and 0.6 ohms respectively.
For linear and planar arrays, the active impedance is sometimes presented as a function of
scan angle, typically assuming a large or infinite array with uniform amplitude excitation.
In this way, the useful scan range for a maximum acceptable reflection coefficient can be
illustrated. The corresponding reference case for a circular array is the phase mode im-
pedance, demonstrating the range of useful phase-mode orders. It should be remembered,
however, that in practice a combination of phase-mode orders are used in order to synthe-
size a particular beam pattern [Josefsson and Persson 2005]; compare Section 10.4.

Each single phase mode produces an omnidirectional pattern in the azimuth, but with
reduced radiation at high elevation angles when m > 0. This has found use in antifading
antennas for long- and medium-wave broadcasting systems, where it is desired to sup-
press the reflected signal from the ionosphere (Section 2.4). Since these designs typically
use a small-diameter array (in wavelengths), the radiation resistance can become quite
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small, as found from Equation (8.12). A low-order phase mode must, therefore, be chosen
in order to avoid problems with matching and efficiency [Page 1948, Royer 1966].

For a cylindrical source, the field solution is conveniently written using a cylindrical-
wave expansion. The mathematical formulation was given in Chapter 4, and we used a
far-field expression in this chapter [Equations (8.6)–(8.9)]. Going back to the general ex-
pressions, we can easily obtain the near field in the two-dimensional case, that is, for an
infinitely long PEC circular cylinder with a uniform source (along the cylinder, the z axis)
[Sensiper 1957]. The source is assumed to be circumferentially polarized, that is, it is
characterized by a z-directed magnetic current distribution defined by its Fourier coeffi-
cients Cm, the excitation phase-mode amplitudes. Thus, we obtain

E�(r) = �
�

–�

Cm ejm� (8.13)

Hz(r) = �
�

–�

Cm ejm� (8.14)

Since the cylinder is considered to be infinitely long, these expressions represent the field
magnitudes per unit length of the source. If we put r equal to the cylinder radius R, we get
the near-field (source) expressions. For the radiated far field, we can use the asymptotic
expressions for the Hankel functions as r � �:

Hm
(2)(kr) � �� jme–jkr (8.15)

H	m
(2)(kr) � –�� jm+1e–jkr (8.16)

Thus, the far-field radiation function expansion [cf. Eq. (2.22)] 

E�(�) = �
�

–�

Am ejm� (2.22) = (8.17)

becomes in this case

E�(�) = �
�

–�
��e–jkr Cm ejm� (8.18)

where the amplitude and phase decays of the cylindrical wave are explicitly shown. This
gives us a relation between the Fourier coefficients Cm and Am (for the excitation and the far-
field mode amplitudes, respectively; see Section 2.3). Note that this relation is not as simple
as the one in Equation (2.26), which was for a case with omnidirectional source elements.

An expression for the radiated complex power density is obtained from the Poynting
vector S� = 1–

2 E� × H�*. Using Equations (8.13), (8.14) we obtain at the source (r = R) for
each excitation phase mode m

(S)m = (E�H*z)m = Cm
2 (8.19)

Hm
(2)(kR)

�
H	m

(2)(kR)

j
�
2Z0

1
�
2

–jm+1

�
H	m

(2)(kR)

2j
�
�kr

2j
�
�kr

2j
�
�kr

Hm
(2)(kr)

�
H	m
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1
�
jZ0

H	m
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Here Z0 � 377 ohms is the free-space impedance. The real and imaginary parts are shown
in Figure 8.24 as a function of the mode number. The complex power density also repre-
sents the wave admittance, with a suitable normalization.1 Hence, the conductance corre-
sponds to the real part (radiated energy) of S, and the susceptance corresponds to the
imaginary part (stored energy) of S [Rhodes 1964, Hill 1967].

A calculation for the same case (kR = 10) but for a slightly larger distance is shown in
Figure 8.25 (a). Here the power density is computed at kr = 11.5, which is about �/4
above the source, and we see how the reactive power has decreased significantly. At one
wavelength from the source, the reactive power density is less than one-tenth of the value
at the source.

In Figure 8.25 (b) we have kr = kR =100, thus representing the complex power of the
source field and the modal admittance for a much larger cylinder.

Note that in these cases the admittance is the modal admittance for the radial wave
propagating away from the source. The characteristics of the radiating elements with their
feeding lines must also be included [Sureau and Hessel 1971] in order to obtain the total
active admittance of a particular cylindrical array (as we did for the dipole array exam-
ple). However, the modal admittance gives significant information for the problem of
matching the array, just like the “impedance crater” of infinite planar arrays [Wheeler
1966, Rhodes 1964]. High mode orders correspond to high Q values [Collin and Roth-
schild 1964]. For the example in Figure 8.24, the Q for m > 13 exceeds 100.
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1The admittance is proportional to the total complex power radiated. For each phase mode, the complex power
density is uniform in � and z, and, hence, proportional to the complex power. The power density in Figures 8.24
and 8.25 is normalized to make the maximum of |Sm| = 1.
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Figure 8.24. Real (solid line) and imaginary (dashed line) parts of the complex power
(normalized); also representing the modal conductance and susceptance. Cylinder
size kR = 10.
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Figure 8.25. Real (solid line) and imaginary (dashed line) part of the complex power
(normalized), also representing the modal conductance and susceptance. (a) Values
at kr = 11.5 for a cylinder size kR = 10. (b) Cylinder size kR = 100.
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The concept of phase modes finds use also in the analysis of spherical arrays [Witte et
al. 2003].

8.5 POLARIZATION

For ordinary planar arrays, the radiation function can be divided into a (vector) element
factor and a (scalar) array factor. The radiating elements carry the polarization informa-
tion. Since the element part can generally not be factored out for conformal arrays, the
analysis of the polarization becomes a complicated issue. It is also a complicated prac-
tical design issue, since polarization control at the element level often becomes neces-
sary.

The fundamental problem is well illustrated in Figure 8.26 for a slot array on a conical
structure. The slots in the figure are oriented for linear polarization in the axial direction,
but they will clearly generate a depolarized pattern in other directions.

Even if the radiating elements themselves are free of cross polarization, the curvature
of the antenna structure can give rise to cross polarization. If the curvature varies across
the array, then the cross polarization contributions from different elements will also
change. However, with independent control of two orthogonal radiating components at
the element level it is possible to synthesize the radiation pattern for low cross polariza-
tion [Douchin and Lemorton 1997].

It has been shown [Gobert and Yang 1974] that the radiation function for an arc or ring
array can be written in terms of � and � components whose amplitudes depend on scalar
expressions involving a normalized array factor and its derivatives. The patterns of cylin-
drical, conical, and spherical arrays can, therefore, be constructed from a superposition of
arc patterns. However, the method leads to complicated expressions and is furthermore
limited to certain canonical-element types like Hertzian dipoles. Today, it appears more
practical to employ direct numerical methods in the analysis.

8.5.1 Polarization Definitions

Polarization is defined by the direction of the radiated electric-field vector [IEEE 1993].
Usually, polarization characteristics are referenced to a particular coordinate system. The
classical Ludwig definitions [Ludwig 1973] are shown in Figure 8.27. 

Definition 2 (Figure 8.27) can be applied throughout all space, with the exception of
the two singular directions along the Y axis. The Definition 2 is the most common
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Figure 8.26. A conical array with slot elements oriented for correct linear polariza-
tion in the axial direction [Kummer 1974].
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choice, and will be adopted here. The co- and cross-polar field lines correspond to the
orthogonal � and � directions with Y (as in the Figure 8.27) as the polar axis. The cor-
responding field components can often be measured directly with a suitable antenna
measurement setup. 

For cylindrical antennas, the preferred orientation of the coordinate system is to make
the vertical axis (polar or polarization reference axis) coincide with the cylinder axis (Y in
Figure 8.27). Note, however, that in this book we name this (vertical/cylinder axis) the z
axis. For more generally shaped conformal antennas, the choice of coordinates is not so
self-evident.

8.5.2 Cylindrical Arrays

8.5.2.1 Dipole Elements. Let us take a cylindrical or circular array with dipoles
as radiating elements. If the dipoles are oriented vertically, that is, parallel to the cylinder
axis, then they are all aligned in the same direction and the element factor can be brought
outside the summation. The radiated electric field will be �-directed and there will be no
cross polarization (using Definition 2, polar axis = cylinder axis). If, on the other hand,
the dipoles are horizontal they will point in different directions and the situation becomes
much more complex. 

In the coordinate system of Figure 8.28, a single horizontal dipole will have consider-
able E� radiation, that is, cross polarization off the symmetry planes even if the main (hor-
izontal) polarization is �-directed. The cross polarization (E� component) for this case is
shown in Figure 8.29.

Take a ring array of 12 horizontal dipoles, of which seven dipoles are excited and fo-
cused in the azimuth plane. The resulting co- and cross-polarization patterns are shown in
Figure 8.30. As we see, there is a considerable cross polarization outside the symmetry
planes.

8.5.2.2 Aperture Elements. Just as the cylindrical or ring array of vertical elec-
tric dipoles has no cross polarization, a cylindrical array of thin, horizontally polarized
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Figure 8.27. Polarization definitions according to [Ludwig 1973].
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vertical slots has no cross polarization. This case can be seen as an array of vertical mag-
netic dipoles, analogous to the case with vertical electric dipoles.

It is often of interest to use dual polarizations, that is, polarization diversity in com-
munication systems. Orthogonal components in the radiating elements, such as a com-
bination of vertical and horizontal dipoles (or slots), do not, however, in general pro-
duce two orthogonal far-field components. This is apparent from the previous discussion
about dipole arrays. We will take as an example a cylindrical array with square wave-
guide openings as radiating elements. The apertures can be excited with both vertical
polarization and horizontal polarization simultaneously and independently. The aperture
field distributions are assumed to be TE10 and TE01 respectively. The array is illustrated
in Figure 8.31.
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Figure 8.28. Horizontal dipole.
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Figure 8.29. Cross polarization levels for the horizontal dipole when the polarization
reference axis is vertical. Contour lines at –5, –10, and –20 dB levels.
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This array was analyzed using the aperture model [Equations (8.6–8.8)]. The polariza-
tion for a beam steered 30° in elevation and 30° in the azimuth from the fixed 120° active
sector is shown in Figure 8.32. The beam position is indicated by –3dB and –10 dB con-
tour lines. Two contours are drawn, for vertical and horizontal element excitations, re-
spectively, since the beam shape is slightly dependent on polarization. The element exci-
tations (vertical and horizontal) could be expected to produce orthogonal linear
polarizations in the far field. The source distribution for the horizontal polarization can be
seen as a distribution of vertical magnetic (dipole) currents, and, hence, no cross polariza-
tion results. This corresponds to the horizontal lines in Figure 8.32. Vertical polarization,
however, has a source of horizontal magnetic currents, resulting in considerable cross po-
larization, as indicated by the small ellipses. Only along the symmetry line where � = 90°
do we have pure vertical polarization and high isolation between the two components. In
the center of the main beam, the isolation between the components in the far field was
computed to be about 13 dB [Calander and Josefsson 2001].
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Figure 8.30. Co- and cross-polarization patterns for a focused dipole ring array.
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8.5.3 Polarization in Doubly Curved Arrays

The polarization issue is even more complicated for doubly curved arrays, compared to
cylindrical arrays [Josefsson et al. 2002]. Since in general the radiating elements point in
different directions, they must be individually polarized in order to generate a desired po-
larization in the main beam direction. Thus, for linear polarization the elements have to be
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Figure 8.31. Dual polarized circular cylinder array with square waveguide aperture
radiators, spacings 0.5 �. Six of the 18 columns are active, tapered to –20 dB side-
lobes, and phase steered.

Figure 8.32. Polarization chart for a beam scanned 30° both in elevation and az-
imuth. The –3 dB and –10 dB contours of the main beam are shown. The solid and
dashed contours represent horizontal and vertical polarization, respectively.
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properly oriented in order to produce the desired (linear) polarization. Mechanical rota-
tion can in practice be replaced by electronic means; see Section 8.5.4. With circular po-
larization, however, rotation is not necessary since the rotation does not change the polar-
ization. If not correctly oriented, there will instead be a phase error, but this can be
compensated for by the phase control that must be applied to each element in any case.

8.5.3.1 A Paraboloidal Array. We take as an example an array of elements on
a general paraboloid of revolution (GPOR). The radiating elements are assumed to have
element patterns corresponding to those of short dipoles in free space (cosine patterns)
and their polarization characteristics are also assumed to be those of short dipoles. Mutual
coupling is neglected.

Since it is not possible to create a regular lattice of elements on a doubly curved sur-
face, an approximation according to the following rule is used. A minimum spacing d
along the surface is defined from grating-lobe considerations (typically d � 0.5�). One el-
ement is placed at the vertex position. The first ring of elements is spaced d from the first
element. Within such a ring, as many elements as possible are placed at regular angle (�)
intervals. However, the spacing along the ring is not less than d. The procedure is then
continued with the next ring, and so on. The “first” elements of each ring are initially po-
sitioned along the same generating curve (at the same angle, thus on a parabolic arc).
However, every second ring is then rotated one-half interelement spacing in order to
spread the elements more evenly. An example of an element layout for a 14-ring array on
a paraboloid as seen from the symmetry axis is shown in Figure 8.33.

In order to spread the “first elements” evenly along the parabolic arc (at constant �) we
need to know the total parabolic length from the vertex. This length normalized to the fo-
cal distance is

= v�1� +� v�2� + ln(v + �1� +� v�2�) (8.20)

where f is the focal distance and v = r/f is the (normalized) radial distance from the axis of
the paraboloid. The element locations can be found iteratively from this equation. An ex-
ample is shown in Figure 8.34.

L
�
f
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Figure 8.33. Element layout with about 500 radiators.
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The active region is defined from the desired nominal beam direction r̂ and the normal
direction to the surface n̂. The active region is obtained as the area encompassing all ele-
ments for which

r̂ · n̂ 
 cos �s max (8.21)

where �s maxis a chosen maximum useful local scan angle, typically 45–60°. An example
of an active region is shown in Figure 8.35.

In our model, the radiating elements are of the short-dipole type, that is, the element
pattern is E0 sin � with � the angle from the dipole axis. The elements do not radiate
“through” the parabolic surface, however. The dipoles are tangential to the curved surface
and initially oriented in a vertical plane; see Figure 8.36.
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Figure 8.34. Elements evenly spaced along a parabola.

Figure 8.35. Active region for 60° scan angle (from zenith) and max 45° element scan
angle.
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In order to align the far-field contributions properly, each dipole is rotated until the
far-field contribution in the main beam direction has the correct polarization.
Additionally, the phase of each dipole is adjusted so that they add coherently to a plane
phase front. However, it is generally not possible to obtain the same polarization
throughout the pattern; thus, there will be some cross polarization. Figure 8.37(a) illus-
trates how the radiating elements are all aligned for the same (vertical) polarization in
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Figure 8.36. Dipole element at coordinates (�, �). F is the focal point of the parabolic
surface.

Figure 8.37. Radiation elements are rotated for polarization alignment in the main
beam. The array is shown at 0° and 90° azimuth angles.

(b)

(a)
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the main beam direction. When viewed from another angle (b), it is clear that a certain
degree of cross polarization will radiate in the sidelobe region; compare Figure 8.26.

A first example in Figure 8.38 shows co- and cross polarization patterns for an array
on a parabolic surface with h/D (height/base diameter) ratio of 0.1, thus relatively flat.
The elements are dipoles arranged in six rings with 0.67 � element spacing. The refer-
ence polarization definition is that of Ludwig Definition 2 (Figure 8.27) with horizontal
polarization axis. The beam is scanned 45° in the H plane. The co-polar E� and cross-
polar E� patterns in a cut perpendicular to the scan plane through the main beam are
shown in Figure 8.38. (In the diagonal planes, the cross-polar level is about 10 dB larg-
er.)

The next example is a larger array with 514 elements (Figure 8.33) scanned 30° from
the zenith. The active region has 382 elements. The element spacing is 0.75 wavelengths
and h/D = 0.293. This array corresponds to the experimental antenna in Figure 8.1(b), if
fully populated. There is no amplitude taper. A three-dimensional pattern plot in (u, v)
space of the co-polar field (theta component) is presented in Figure 8.39. The (u, v) coor-
dinates are the normalized directional cosines (cf. Figure 8.8), hence

The co- and cross-polar components are shown in Figure 8.40 for a cut through the main
beam. Note that essentially pure polarization is obtained in the main beam since the di-
pole elements were rotated to achieve this. However, the grating lobe, although in princi-
ple a replica of the main lobe, does not perform in the same way and demonstrates a sig-
nificant cross-polarized component.

u = kx/k0 = sin � cos �

v = ky/k0 = sin � sin �
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Figure 8.38. Radiation patterns (decibels vs. sine space) for a six ring paraboloidal
array, h/D = 0.1. The solid line is the co-polar pattern and the dashed line the cross-
polar pattern.
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In the next example, we take an array with just five rings of elements. The beam is di-
rected towards the zenith and we have dipole elements as before; the Ludwig Definition 2
reference polar axis is horizontal. Figure 8.41 shows patterns with h/D = 0.5 and Figure
8.42 shows results with a reduced height, h/D = 0.05, thus there is less curvature.

By comparing the two cases, we see that the cross-polarized field dropped from around
–20 dB to around –30 to –35 dB when we made the surface flatter. If it were perfectly flat,
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Figure 8.39. The E� component of the radiated field in (u, v) space.
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Figure 8.40. The E� (a) and E� (b) components in a cut through the pattern for u = 0 in
Figure 8.39.

(a)                                                     (b)
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there would be no cross polarization at all. (h/D = 0.05 corresponds to a total height of 3
cm on a diameter of 60 cm.)

Next, we show a case with the beam scanned 30° from the zenith. Other data are: six
rings with crossed dipoles, the active region comprises 41 out of total 74 elements, and
h/D = 0.5. The element spacing is d/� = 0.5.

The cross polarization isolation illustrated in Figure 8.43 is calculated in the following
way. Assume that the two fields are represented by their respective polarization unit vec-
tors, ê1 and ê2. The isolation is obtained by the scalar product of the two polarization vec-
tors; see IEEE Standard Definition of Terms for Antennas [IEEE 1993].
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Figure 8.41. Patterns in the (u, v) plane for h/D = 0.5. (a): the E� component (co-po-
lar), (b): the E� component (cross-polar).

(b)

(a)
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The case in Figure 8.43 demonstrates a rather poor isolation in the far field between
the two field components. This occurs in spite of the dipoles in each element being per-
fectly orthogonal to each other. It is a direct consequence of the characteristics of the di-
pole far-field radiation. In the limit for a flat surface, the isolation would be the same as
for a single element with crossed dipoles; see Figure 8.44. Many elements have dipole
characteristics. The polarization results shown here indicate that other element types with
better polarization performance (better symmetry) would be desired. 

An ideal element is the so-called Huygens source, which is a combination of electric
and magnetic dipoles. With this element, cross-polarization free patterns can be synthe-
sized in theory [Schmid 2001]. In practice, with real elements, we have also to consider
the effects of mutual coupling and mismatch.
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Figure 8.42. Same as Figure 8.41, but for h/D = 0.05.

(b)

(a)
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8.5.4 Polarization Control

In the previous examples, we assumed that the element polarization could be rotated in ar-
bitrarily small steps. In practice, discrete steps with digital control are used. Changing be-
tween vertical and horizontal linear polarizations is here termed single-bit control; if the
±45° planes are also included, we get two-bit control and so on (see Figure 8.45). 

Figure 8.46 shows the cross-polarized component E� for a paraboloidal array, calculat-
ed with 1 and 3 bit polarization resolution in a cut through the main beam scanned at 30°.
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Figure 8.43. (a) The array configuration (first set of dipoles). (b) Shows the cross po-
larization expressed as isolation (in decibels) between the two fields that result from,
respectively, the first set of dipoles and a second set of dipoles. The second set con-
sists of dipoles that are orthogonal to the respective dipoles of the first set at each el-
ement location.

(b)

(a)
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Three-bit resolution is not far from the ideal in this example and the cross polarization for
this case is mainly due to the curvature alone. Other data are 5 rings and h/D = 0.5.

With two-port elements, the radiated polarization can be set by feeding the two ports
with proper amplitudes and phases. There are many possible element designs: crossed
dipoles, crossed slots, and crossed notch elements. Orthogonal feeds can be used in
many radiators such as patches, square and circular waveguides, and so on. Let us as-
sume that the two ports of a suitable element give vertical and horizontal polarizations,
respectively. Feeding the two with equal amplitudes results in 45° slant polarization;
any orientation can be obtained by a proper amplitude ratio. A variable power divider
(VPD) is a suitable circuit for realizing this. A VPD can take the form shown in Figure
8.47—an equal power divider followed by two phase shifters and a 90° hybrid. The V
and H polarizations (Figure 8.47) are obtained by setting the phase shifter difference to
�1 – �2 = +90° and –90°, respectively. Thus, each phase shifter needs only to be set
from –45° to +45°. A larger range can be useful if the phase shifters also control the el-
ement phase settings.

In order to control all possible types of polarization, including circular and elliptical, a
phase shifter in one of the output arms with a range of ±90° is needed. To preserve sym-
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Figure 8.45. Illustrating single-bit and two-bit polarization control.

Figure 8.44. Cross polarization isolation for a dipole pair.
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metry, one in each arm can be used. Thus, the polarization control function requires a lot
of hardware. For receiving (RX), this can be implemented in an MMIC front end at mar-
ginal cost. However, for minimum loss in order to preserve noise performance, dual am-
plifier chains may be required. For transmitting (TX), dual transmit modules may also be
desirable in order to minimize losses. With a suitable architecture, the VPDs can improve
the isolation between the TX and RX functions.
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Figure 8.46. Co-polarization (a) and cross polarization (b) with different polarization
control resolutions.
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Figure 8.47. Variable power divider (VPD).
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8.6 CHARACTERISTICS OF SELECTED CONFORMAL ARRAYS

8.6.1 Nearly Planar Arrays

Arrays with only a slight curvature perform in general like their planar counterparts.
However, except for very small arrays, the nonplanarity requires at least some phase com-
pensation. The curvature precludes the use of a common element factor in the analysis/de-
sign if low sidelobes are of interest. An example is given by the slightly curved circular
arc array with 16 dipoles that was studied by Jiao and coworkers [1993]. This array ex-
tended over about 36° of the full circle. Mutual coupling was included by using a model
by Herper and coworkers [1985] for the embedded-element patterns. Figure 8.48 shows
results from a synthesis for –40 dB and –60 dB sidelobes with the main beam scanned 20°
off the symmetric direction.

8.6.2 Circular Arrays

The circular array antenna is the basic building block of many conformal antenna arrays; we
have discussed its characteristics previously. Some additional examples will be given in
Chapters 9 and 10. Circular arrays have found use in, for example, omnidirectional commu-
nication systems, signal direction of arrival (DOA) measurement systems (see color plate 7),
and navigation systems. Classical examples include the despun arrays in the Telstar and
Meteosat satellites. Another classical example is the Wullenweber antenna [Gething 1966]. 

8.6.3 Cylindrical Arrays

Cylindrical arrays are among the most common of the conformal antenna species. Beam
steering in elevation by phase control can be combined with azimuth steering by commu-
tating; the latter causing no pattern degradation. Other beam steering principles are dis-
cussed in Chapter 9. Cylindrical arrays have found use in all fields including radar, com-
munication, and sonar (see color plates 10 and 11).

Radiation pattern synthesis based on phase modes (cf. Chapter 10) is suitable for circu-
lar geometries like the cylindrical array. –40 dB sidelobes in the azimuth have been syn-
thesized for a 3 × 60 waveguide aperture array on a 10 � diameter cylinder [Martin and
Pettersson 2003]. In this case, the array extended all around the cylinder.

8.6.4 Conical Arrays

Conical arrays can often use the same beam steering methods as cylindrical arrays. An ex-
ample in which the conical shape matches the communication needs in a satellite applica-
tion is shown in color plate 5.

Conical arrays can be of particular interest for applications in the nose of streamlined
airborne vehicles, rockets, and missiles. A pointed conical shape offers wide-angle cover-
age, low radar cross section (RCS), and good aerodynamic performance. A small conical
angle, however, poses problems with the installation of electronics in the tip region and
the radiation performance in the forward direction is poor.

Arrays on less pointed cones or where the tip region is not used have a potential for
hemispherical coverage (cf. Chapter 3), for instance, on ships, where the array could be
mounted around a mast carrying other equipment. With the normal of the cone surface
pointing about 30° above the horizon, there will also be some RCS advantages. 
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A small conical array (0.5 � length) with a total cone angle of only 11.5° was described
by Thiele and Donn [1974]. With this small size it was possible to cover the forward ±60°
region over a 2:1 bandwidth. The radiating elements were four small loop antennas
mounted around the base of the cone and progressively phased in steps of �/2 around the
base (phase mode m = 1; cf. Chapter 2). The small dimensions imply that the cone itself
can be seen as the antenna, excited by the array elements.
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Figure 8.48. Theoretical patterns synthesized for –40 dB (a) and –60 dB (b) sidelobes.
A 36° circular arc dipole array scanned 20° [Jiao et al. 1993].

(b)

(a)
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A linear array of 65 slots along one generator of a metallic cone with (full) cone angle
30° has been described by Goodrich and coworkers [1959]. Phase steering of the beam
was demonstrated for angles from 10° to 70° measured from the cone peak direction. The
measured patterns agreed well with calculations; contributions from the slots included a
geometric optical and a creeping wave term. Mutual coupling was not accounted for. It
was shown that the tip diffraction could be neglected in this case; however, the nearest
slot was as far as 16 wavelengths from the tip. 

A similar scanning capability was demonstrated experimentally for an eight-element
slot array along a generator on a 20° (full angle) cone [Villeneuve et al. 1974] (Figure
8.49). The problem with cross polarization was addressed in a related study [Villeneuve
and Kummer 1981], in which 37 individually fed crossed slots on a 20.5° (full angle)
cone were investigated. Linear slot arrays on elliptic cones have also been studied by
Kaifas and coworkers [2003b].

A sector of a large conical array with dipole radiators was studied in the early 1970s
[Boyns 1972, Munger et al. 1974]; see Figure 8.50. This array had 14 elements in each of
the 50 columns; hence, 700 elements in total. The vertically polarized dipoles had a hori-
zontal spacing that varied with the vertical position, from 0.42 to 0.53 �. In order to excite
the array, a space feed arrangement with horns illuminating the rear side of the array was
used. Pick-up dipoles on the rear side connected via delay lines to the front face dipoles;
compare the dome antenna (Figure 1.7). As expected, the peak measured gain was ob-
tained at an elevation angle equal to the cone half angle, 25°. A cross polar component at
the relative level of –22 dB in the radiation pattern was noted, caused by the dipole ele-
ments not being parallel to each other.

A much later study on a similar topic was presented in 2004 by Morton and Pasala
[2004]. In their theoretical investigation, slot elements on a cone with a half-cone angle of
11° were considered. The slot elements were arranged for vertical polarization in nine
100° arcs with 13 slots in each, thus totaling 117 radiators. The theoretical excitation was
optimized using a least mean squares method with sidelobe constraints. Since the slots are
not parallel, due to the array curvature, some cross polarization is inevitable. At boresight
scan, that is, normal to the array surface, the cross polarization was calculated to be 30 dB
below the co-polarized main beam, but increasing with increased elevation scan. 
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Figure 8.49. Linear slot array on a metallic cone [Villeneuve et al. 1974].
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8.6.5 Spherical Arrays

Spherical arrays represent another canonical case of great interest. One objective may be
the realization of hemispherical coverage, although other shapes can also be used to ob-
tain this; see Chapter 3. A near-uniform element distribution is possible. An attractive
feature of spherical arrays is that all radiating elements see essentially the same environ-
ment, thus reducing the design effort. Pattern characteristics remain unchanged as the ac-
tive region is moved over the spherical surface.

In an early study by Sengupta and coworkers [1968], radiation patterns from a spheri-
cal array were analyzed. To simplify the analysis, the elements had circular polarization
with a cosine amplitude pattern. Uniform element excitation was assumed and mutual
coupling was neglected. The element distribution was made as uniform as possible, start-
ing from the 20 triangles of an icosahedron. On each triangle, the elements were evenly
distributed and then projected onto the surface of a circumscribed sphere. On a complete
sphere, there were 162 elements in total.

An active area was determined from the maximum-element look angle. For each beam
direction, the element phase was adjusted to produce a plane wavefront and, hence, maxi-
mum directivity. As the beam direction was varied it was noticed that the sidelobe levels
changed a few decibels as the active region moved over the discrete array surface. Figure
8.51 shows two typical patterns in two orthogonal cuts for a case in which the active re-
gion spanned 90° with 31 active elements on a sphere with a radius of 1.5 �. The first
sidelobe level was typically in the range of 17–20 dB below the main beam peak.

The patterns resemble the patterns from a uniformly illuminated plane circular aper-
ture, with about an 18 dB first sidelobe ratio. With large element spacings, there are, of
course, grating lobes, somewhat smeared out and not as high as the main beam. If the ac-
tive region is enlarged, the directivity increases, unless the element spacing becomes too
large, leading to increased losses in the grating lobes.

In [Saito et al. 1987], the grating lobe levels for spherical arrays were investigated. The
problem was simplified to a scalar one, neglecting polarization and mutual coupling, and
assuming cosine element patterns with uniform amplitude. As expected, a triangular ele-
ment arrangement proved to be better than a rectangular one. For a hemisphere with a ra-
dius of 5 wavelengths and 316 elements in a “triangular” lattice (element spacing d/� =

354 CONFORMAL ARRAY CHARACTERISTICS

Figure 8.50. A sector of a conical array with 700 dipole elements [Munger et al.
1974].
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0.66), the typical grating lobe level was found to be –24 dB relative to the main beam; see
Figure 8.52.

In a recent study, arrays of microstrip patches on a sphere were analyzed [Sipus et al.
2003]. The element impedance and radiation patterns were rigorously calculated using the
method of moments for the multilayer spherical structure, but mutual coupling was not in-
cluded. The element layout followed the icosahedron principle; an example is given in
Figure 8.53. Resulting array patterns using 6, 16, and 31 elements with the array active
area on the sphere corresponding to subtended angles 15, 30, and 45°, respectively, are
shown in Figure 8.54.

A spherical array application for a satellite data link (see Figure 8.55), has been de-
scribed by Stockton and Hockensmith [1977, 1979]. A hemispherical coverage with a
steered moderate gain beam (7–15 dB) was required. In the design, a cluster of 12 circu-
larly polarized patch elements out of a total 120 on a 2.7 � radius sphere were activated at
a time. This subarray was excited with equal phase and amplitude. Beam steering was ac-
complished simply by shifting the active part in small steps across the spherical array.

It might be of theoretical interest to note that the radiation pattern from a uniformly ex-
cited thin spherical shell with radius R and phased for maximum radiation in the direction
� = 0 is simply a sinc function [Voles 1995]:

E(�) � 4�R2 (8.22)

where

� = sin (�/2) (8.23)
4�
�
�

sin(�R)
�

�R
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Figure 8.51. Radiation pattern in two orthogonal cuts (solid line and crosses) for an
array with 31 uniformly excited elements on a spherical surface with a 90° active re-
gion [Sengupta et al. 1968].
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8.6.6 Paraboloidal Arrays

Paraboloidal arrays with a large length-to-base diameter ratio are similar to conical ar-
rays, excepting the tip region. With a smaller ratio, on the other hand, the shape approach-
es that of a spherical surface. Thus, analysis models based on paraboloids can approxi-
mate many typical shapes of interest. However, not many investigations of paraboloidal
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Figure 8.53. 16 patch elements on a sphere [Sipus et al. 2003]. Copyright 2003 Wiley
Periodicals, Inc. Reproduced by permission of John Wiley & Sons, Inc.

Figure 8.52. Pattern for a spherical array with 316 elements spaced 0.66 � in a trian-
gular lattice; from [Saito et al. 1987].

c08.qxd  12/1/2005  4:26 PM  Page 356



8.6 CHARACTERISTICS OF SELECTED CONFORMAL ARRAYS 357

Figure 8.54 (b). E-plane patterns for microstrip patch arrays [Sipus et al. 2003].
Copyright 2003 Wiley Periodicals, Inc. Reproduced by permission of John Wiley &
Sons, Inc.

(b)

Figure 8.54 (a). H-plane patterns for microstrip patch arrays [Sipus et al. 2003].
Copyright 2003 Wiley Periodicals, Inc. Reproduced by permission of John Wiley &
Sons, Inc.

(a)
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arrays are reported in the literature. Some results for paraboloidal arrays, mainly regard-
ing polarization characteristics, were discussed in Section 8.5.3.

A linear array of 21 narrow slots along the generator of a paraboloid was studied by
Kaifas and coworkers [2003a]. The slots were considered as single-mode elements and mu-
tual coupling was neglected. A Chebysjev pattern with –25 dB sidelobes was synthesized. 

Persson and Josefsson [2003] analyzed radiation patterns for arrays of radiators on pa-
raboloidal surfaces, also neglecting mutual coupling. Two radiating element models were
compared. The first was a short dipole in free space with a cosine pattern, acting as a ref-
erence case. The other element model was more realistic; it assumed a radiating element
in the form of a circular waveguide opening in the curved conducting surface. The aper-
ture field in the opening was assumed to be the TE11 mode. The curvature of the parabol-
ic surface was accounted for using UTD (see Chapter 7, Section 7.2). The effects of high-
er-order waveguide modes were not included in this analysis. However, computed
isolated-element patterns agreed very well with measured patterns. 

The patterns shown in Figure 8.56 were calculated for a 91-element array arranged in six
rings near the vertex of a paraboloidal surface with h/D = 0.293. The beam is scanned 60°
from the zenith, with 45 elements belonging to the active area. The assumed radiating ele-
ment characteristics influence the array radiation pattern to a considerable degree, in par-
ticular the cross-polarized pattern (E� in this case). This component is generally very low
in the symmetry plane, but outside this plane much higher values can be expected; compare
Section 8.5.3.

8.6.7 Ellipsoidal Arrays

Ellipsoidal array antennas are similar to paraboloidal and spherical antennas, depending
on the choice of parameters.

Wills [1987] presented a theoretical and experimental study of an array of waveguide
elements on an ellipsoidal surface. The surface had a rather high and varying curvature
over the array, comprising 29 elements. The nose radius was approximately 120 mm or
about four wavelengths at 9.5 GHz. Patterns for five-element subarrays showed expected
performance, but with high grating lobes due to large element spacings.

A numerical analysis of radiation patterns for ellipsoidal arrays was presented by
Douchin and Lemorton [1997]; they considered large arrays with more than 1000 ele-
ments. By projecting the active area onto a plane perpendicular to the main beam direc-
tion, traditional taper functions (Taylor type) were applied. In their analysis, various ele-
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Figure 8.55. The ESSA hemispherical array with patch elements (electronically
switched spherical array) [Stockton and Hockensmith 1977, 1979; Mailloux et al. 1981].
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ment pattern shapes could be selected, but mutual coupling was not included. It was
shown that with dual polarization control in each element, the radiated cross polarization
could be suppressed to very low levels around the direction of the main beam.

Similar results were reported by Schmid [2001] in a study of an ellipsoidal antenna de-
signed for half-sphere scan coverage with 485 dual-port Huygens source elements. The
use of idealized elements and neglect of mutual coupling and mismatch effects resulted in
very low computed cross-polarization levels.

8.6.8 Other Shapes

A cylinder with a wing-shaped cross section with an embedded linear array of 116 patch
elements has been used for a synthesis of low sidelobe patterns [Steyskal 2002]; see color
plate 1. Representative array element patterns including mutual coupling and the local ra-
dius of curvature were used in the synthesis. Other studies relating to wing profiles have
been based on cylinders with elliptical cross sections [Kanno et al. 1996, Bertuch 2003].

A lightweight aluminum cooking wok, approximately spherical in shape but with a
flattened top, was used in an empirical investigation of an array of 19 microstrip patches
at 3.2 GHz [Humphrey et al. 1995]. Conformal antennas need not be expensive!

REFERENCES

Barbier T., Mancuso Y., Favier I., Deborgies F., Reig B., and Monfraix P. (2001), “3D Microwave
Modules for Conformal Phased Array Antennas,” in Proceedings of 2nd European Workshop on
Conformal Antennas, The Hague, The Netherlands, 24–25 April.

REFERENCES 359

 -90  -45 0 45 90
 -40

 -30

 -20

 -10

0

θ   [Deg.]

E
θ   

[d
B

]

 -90  -45 0 45 90

 -100

 -80

 -60

 -40

 -20

0

θ   [Deg.]

E
φ   

[d
B

]

Circular wg. array
Ref. solution

Figure 8.56. The E� and E� components in the symmetry plane with the beam scanned
60° from the zenith direction. Dashed line: idealized dipole element patterns. Solid
line: TE11 mode circular aperture elements [Persson and Josefsson 2003].

c08.qxd  12/1/2005  4:26 PM  Page 359



Bertuch T. (2003), “A Facetted Cylindrically Curved Array for a Conformal Radar Demonstrator,”
in Proceedings of 3rd European Workshop On Conformal Antennas, Bonn, Germany, 22–23
October.

Boeringer D. W. and Werner D. H. (2004), “Particle Swarm Optimization of a Modified Bernstein
Polynomial for Conformal Array Excitation Synthesis,” IEEE AP-S International Symposium
Digest, pp. 2293–2296.

Bondyopadhyay P. K. (2000), “Geodesic Sphere Phased Arrays for LEO Satellite Communica-
tions,” IEEE AP-S International Symposium Digest, pp. 206–209, July.

Bondyopadhyay P. K. (2001), “Geodesic Sphere Phased Array Antenna System,” US Pat.
6,292,134 B1, 18 September.

Boyns J. E. (1972), “Cylindrical and Conical Array Investigations,” in Proceedings of Array Anten-
na Conference, Naval Electronics Laboratory Center (NELC), San Diego, CA, USA, pp. 4-1–4-
27, 22–24 February.

Bucci O., Franceschetti, G., Mazzarella G., and Panareillo G. (1990), “Intersection Approach to Ar-
ray Pattern Synthesis,” IEE Proceedings Part H, Vol. 137, pp. 349–357.

Calander N. and Josefsson L. (2001), “A Look at Polarization Properties of Cylindrical Array An-
tennas,” in Proceedings of 2nd European Workshop on Conformal Antennas, The Hague, The
Netherlands, 24–25 April.

Charrier M., Everett D., Fieret J., Karrer T., Rau S., and Valard J. (2003), “Manufacture of a Con-
formal, Multi-Layer RF Antenna Substrate Using Excimer Mask Imaging Technology and a 6-
Axis Robot,” http://www.exitech.co.uk, October 14.

Chujo W., Konishi Y., Ohtaki Y., and Yasukawa K. (1990), “Performance of a Spherical Array An-
tenna Fabricated by Vacuum Forming Technique,” in Proceedings of 20th European Microwave
Conference, Budapest, Hungary, 10–13 September, pp. 1511–1516.

Cohen E. D. (1995), “High Density Microwave Packaging Program,” IEEE MTT-S International
Symposium Digest, pp. 169–172.

Collin R. E. and Rothschild S. (1964), “Evaluation of Antenna Q,” IEEE Transactions on Antennas
and Propagation, Vol. AP-12, No. 1, pp. 23–27.

Debionne G. (1986), “Radiating Properties of Conformal Arrays,” IEEE AP-S International Sympo-
sium Digest, pp. 937–940, June.

Derneryd A. (1976), “Linearly polarized microstrip antennas,” IEEE Transactions on Antennas and
Propagation, Vol. AP-24, No. 6, pp. 846–850.

Dolph C. L. (1946), “A Current Distribution for Broadside Arrays which Optimizes the Relation-
ship between Beam Width and Side Lobe Level,” Proceedings of IRE, Vol. 34, pp. 335–348,
June.

Douchin N. and Lemorton J. (1997), “Numerical Analysis of Active Conformal Arrays Including
Crosspolarization Effects,” in IEE Proceedings of 10th International Conference on Antennas
and Propagation, 14–17 April, pp. 1.200–1.205.

Elliott R. S. (1981), Antenna Theory and Design, Prentice-Hall Inc.

Fekete G. (1990), “Rendering and Managing Spherical Data with Sphere Quadtrees,” in Proceed-
ings of First IEEE Conference on Visualization, 23–26 October, pp. 176–186.

Gething P. J. D. (1966), “High-Frequency Direction Finding,” Proceedings of IEE, Vol. 113, No. 1,
pp. 49–61.

Gobert J. F. and Yang R. F. H. (1974), “A Theory of Antenna Array Conformal to Surfaces of Rev-
olution,” IEEE Transactions on Antennas and Propagation, Vol. AP-22, No. 1, pp. 87–91.

Goodrich R. F., Kleinman R. E., Maffett A. L., Schensted C. E., Siegel K. M., Chernin M. G.,
Shanks H. E., and Plummer R. E. (1959), “Radiation from Slots on Cones,” IRE Transactions on
Antennas and Propagation,Vol. 7, pp. 213–222, July.

Harrington R. F. (1961), “Time Harmonic Electromagnetic Fields,” Prentice-Hall.

360 CONFORMAL ARRAY CHARACTERISTICS

c08.qxd  12/1/2005  4:26 PM  Page 360



Herper J. C., Hessel A., and Tomasic B. (1985), “Element Pattern of an Axial Dipole in a Cylindri-
cal Array, Part I: Theory,” IEEE Transactions on Antennas and Propagation, Vol. AP-33, No.
3, pp. 259–272.

Hill P. C. J. (1967), “Analytic Determination of Dipole Reactance by Radiation-Pattern Integra-
tion,” Proceedings of IEE, Vol. 114, No. 7, pp. 853–858.

Humphrey P. J., Orton R. S., and Griffin J. M. (1995), “Planar and Conformal Patch Arrays,” Pro-
ceedings of IEE Workshop on Printed Antennas, Lille, France, 25–26 September, pp. 113–120.

IEEE Standard 145-1993 (1993), IEEE Standard Definition of Terms for Antennas, IEEE.

Jiao Y-C., Wei W-Y., Huang L-W., and Wu H-S. (1993), “A New Low Side-Lobe Pattern Synthe-
sis Technique for Conformal Arrays,” IEEE Transactions on Antennas and Propagation, Vol.
AP-41, No. 6, pp. 824–831.

Jones M. R. and Griffiths H. D. (1988), “Prediction of Circular Array Phase Mode Characteristics,”
Electronics Letters, Vol. 24, No. 13, pp. 811–812.

Jones M. R. and Griffiths H. D. (1989), “Broadband Pattern Synthesis from a Circular Array,” Pro-
ceedings of ICAP 1989, pp. 55–59.

Josefsson L. and Persson P. (1999a),”Impedance and Radiation Characteristics of a Conformal
Waveguide Array Antenna,” in Proceedings of 1st European Workshop on Conformal Anten-
nas, Karlsruhe, Germany, 1999.

Josefsson L. and Persson P. (1999b), “Scanning Characteristics of a Conformal Array Antenna,” in
Proceedings of RVK 99, Karlskrona, Sweden, June.

Josefsson L., Persson P., and Lanne M. (2002), “The Polarization Problem in Singly and Doubly
Curved Conformal Array Antennas,” in Proceedings of IEEE International Symposium AP-
S/URSI, San Antonio, TX, 17–21 June.

Josefsson L. and Persson P. (2005),”Cylindrical Arrays: Pattern Synthesis, Impedance, and Band-
width,” in Proceedings of Fourth European Workshop on Conformal Antennas, Stockholm,
Sweden, 23–24 May.

Kanno M., Hashimura T., Katada T., Sato M., Fukutani K., and Suzuki A. (1996), “Digital Beam
Forming for Conformal Active Array Antenna,” in Proceedings of IEEE International Sympo-
sium Phased Array Systems and Technology, 15–18 October, pp. 37–40.

Kaifas T. N., Samaras T., Vafiadis E., and Sahalos J. N. (2003a), “A UTD-OM Technique to De-
sign Slot Arrays on a Perfectly Conducting Paraboloid,” in Proceedings of 3rd European Work-
shop on Conformal Antennas, Bonn, Germany, 22–23 October.

Kaifas T. N., Samaras T., Vafiadis E., and Sahalos J. N. (2003b), “On the Design of Conformal Slot
Arrays on Perfectly Conducting Elliptic Cones,” in Proceedings of 3rd European Workshop on
Conformal Antennas, Bonn, Germany, 22–23 October.

Kemerley R. T. and Kiss S. (2000), “Advanced Technology for Future Space-Based Antennas,” in
Proceedings of IEEE International Symposium MTT-S.

Knott P., Schippers H., Medynski D., Deloues T., van Lil E., and Gautier F. (2003), “Performances
of Conformal and Planar Arrays,” in Proceedings of NATO Symposium on Smart and Adaptive
Antennas in Military Communications, RTO-MP-119, Chester, UK, 7–9 April.

Kraus J. D. (1988), Antennas, 2nd ed., McGraw-Hill.

Kummer W. H. (1974), “Preface, Special Issue on Conformal Arrays,” IEEE Transactions on An-
tennas and Propagation, Vol. AP-22, pp. 1–3, January.

Liu B., Wang Y. A., Kang G., Ferendeci A. M., and Mah M. (2000), “Vertically Interconnected 3D
Module for Conformal Phased Array Antennas,” Proceedings of Phased Array Systems and
Technology, PAST’00.

Lockyer A.J., Alt K. H., Coughlin D. P., Durham M. D., and Kudva J. N. (1999), “Design and De-
velopment of a Conformal Load-Bearing Smart-Skin Antenna: Overview of the AFRL Smart
Skin Structures Technology Demonstration,” Proceedings of SPIE Conference, Vol. 3674,
Newport Beach, CA, USA., pp. 410–424, March.

REFERENCES 361

c08.qxd  12/1/2005  4:26 PM  Page 361



Löffler D. and Wiesbeck W. (2000), “Dual Polarized Elements and Mutual Coupling in Conformal
Arrays on Cylindrical Surfaces,” Proceedings of Antenn 2000, Davos, Switzerland, 9–14 April.

Löffler D., von Hagen J., and Wiesbeck W. (2000), “Coupling Phenomena in Horizintal and Verti-
cal Polarized Aperture Coupled Patch Antennas on Cylindrical Surfaces,” in Proceedings of
ACES 2000, 16th Annual Review of Progress in Applied Computational Electromagnetics, Mon-
terey, CA, USA.

Löffler D., Wiesbeck W., and Johannisson B. (1999), “Conformal Aperture Coupled Microstrip
Phased Array on a Cylindrical Surface,” in Proceedings of IEEE AP-S International Symposium,
Orlando FL, USA, pp. 882–885, July.

Longstaff I. D., Chow P. E. K., and Davies D. E. N. (1967), “Directional Properties of Circular Ar-
rays,” Proceedings of IEE, Vol. 114, No. 6, pp. 713–718.

Ludwig A. C. (1973), “The Definition of Cross Polarization,” IEEE Transactions on Antennas and
Propagation, Vol. AP-21, pp. 116–119. (See also Comments, Vol AP-21, pp. 907–908.)

Mailloux R. J., McIlvenna J. F., and Kernweis N. P. (1981), “Microstrip Antenna Technology,”
IEEE Transactions on Antennas and Propagation, Vol. AP-29, No. 1, pp. 25–37.

Mancuso Y. (2002), “T/R Modules Technological Trends for Conformal Phased Array Antennas,”
in Proceedings of 12th International Symposium on Antennas, JINA 2002, Nice, France, 12–14
November.

Marcus C., Persson P., and Pettersson L. (2003), “Investigation of the Mutual Coupling and Radia-
tion Pattern Due to Sources on Faceted Cylinders,” in Proceedings of Antenn 03, Kalmar, Swe-
den, 13–15 May, pp. 213–218.

Martin T. and Pettersson L. (2003), “Cylindrical FDTD with Phase Shift Boundaries for Simulation
of Cylindrical Antenna Arrays,” in Proceedings of 3rd European Workshop on Conformal An-
tennas, Bonn, 22–23 October.

Midford T. A., Wooldridge J. J., and Sturdivant R. L. (1995), “The Evolution of Packages for
Monolithic Microwave and Millimeter-Wave Circuits,” IEEE Transactions on Antennas and
Propagation, Vol. AP-43, No. 9, pp. 983–991.

Morton T. E. and Pasala K. M. (2004), “Pattern Synthesis and Performance of Conformal Arrays,”
Proceedings of 36th Southeastern Symposium on System Theory, Atlanta GA, USA, 16 March,
pp. 145–149.

Munger A. D., Vaughn G., Provencher J. H., and Gladman B. R. (1974), “Conical Array Studies,”
IEEE Transactions on Antennas and Propagation, Vol. AP-22, No. 1, pp. 35–43.

Page H. (1948), “Radiation Resistance of Ring Aerials,” Wireless Engineer, pp. 102–109, April.

Perpère B. and Hérault J. (2001), “Conformal Broadband Phased Array Antenna,” in Proceedings
of 2nd European Workshop on Conformal Antennas, The Hague, The Netherlands, 24–25 April.

Persson P. and Josefsson L. (2001), “Calculating the Mutual Coupling between Apertures on a Con-
vex Circular Cylinder Using a Hybrid UTD-MoM Method,” IEEE Transactions on Antennas
and Propagation, Vol. 49, No. 4, pp. 672–677.

Persson P. and Josefsson L. (2003), “Radiation Characteristics of Doubly Curved Array Antennas,”
in Proceedings of 3rd European Workshop on Conformal Antennas, Bonn, Germany, 22–23 Oc-
tober.

Persson P., Josefsson L., and Lanne M. (2003), “Investigation of the Mutual Coupling between
Apertures on Doubly Curved Convex Surfaces: Theory and Measurements,” IEEE Transactions
on Antennas and Propagation, Vol. 51, No. 4, pp 682–692.

Raffaelli S. and Johansson M. (2003), “Conformal Array Antenna Demonstrator for WCDMA Ap-
plications,” in Proceedings of Antenn 03, Kalmar, Sweden, 13–15 May, pp. 207–212.

Rhodes D. R. (1964), “On a Fundamental Principle in the Theory of Planar Antennas,” Proceedings
of IEEE, Vol. 52, pp. 1013–1021, September.

Royer G. M. (1966), “Directive Gain and Impedance of a Ring Array of Antennas,” IEEE Transac-
tions on Antennas and Propagation, Vol. AP-14, No. 5, pp. 566–573.

362 CONFORMAL ARRAY CHARACTERISTICS

c08.qxd  12/1/2005  4:26 PM  Page 362



Saito J., Heichele L., Numasaki T., Orime N., and Katagi T. (1987), “Comparison of Element
Arrangements of a Spherical Conformal Array,” IEEE AP-S International Symposium Digest,
pp. 125–128.

Sanzgiri S., Bostrom D., Pottenger W., and Lee R. Q. (1995), “A Hybrid Tile Approach for Ka
Band Subarray Modules,” IEEE Transactions on Antennas and Propagation, Vol. AP-43, No. 9,
pp. 953–959.

Schaller M. and Beaulieu L. (1996), “Optoelectronics and Smart Skins: The Logical Symbiosis,”
Proceedings of NATO Workshop on Smart EM Antenna Structures, Bruxelles, 25–26 November,
pp. 22.1–22.13.

Schippers H., Schaap W., Visser J. M. P. C. M., and Vos G. (2003), “Conformal Phased Array An-
tennas on Vibrating Structures,” in Proceedings of 3rd European Workshop on Conformal An-
tennas, Bonn, Germany, 22–23 October.

Schmid O. (2001), “Pattern Properties of Singly and Doubly Curved Arrays,” in Proceedings of 2nd
European Workshop on Conformal Antennas, The Hague, The Netherlands, 24–25 April.

Schneider S. W., Bozada C., Dettmer R., and Tenbarge J. (2001), “Enabling Technologies for Fu-
ture Structurally Integrated Conformal Apertures,” IEEE AP-S International Symposium Digest,
Boston.

Schreiner M., Leier H., Menzel W., and Feldle H.-P. (2003), “Architecture and Interconnect Tech-
nologies for a Novel Conformal Active Phased Array Radar Module,” IEEE MTT-S Internation-
al Symposium Digest, pp. 567–570.

Sekora R., Brand C., Nagy O., and von Storp W. (2003), “Conformal Antenna Array for X-Band
Data Link Applications,” in Proceedings of 3rd European Workshop on Conformal Antennas,
Bonn, Germany, 22–23 October.

Sengupta D., Smith T., and Larson R. (1968), “Radiation Characteristics of a Spherical Array of
Circularly Polarized Elements,” IEEE Transactions on Antennas and Propagation, Vol. AP-16,
No. 1, pp. 2–7.

Sensiper S. (1957), “Cylindrical Radio Waves,” IRE Transactions on Antennas and Propagation,
Vol. AP-5, No. 1, pp. 56–70.

Shrank H. E. (1970), “Basic Theoretical Aspects of Spherical Phased Arrays,” in Proceedings of
Phased Array Symposium, pp. 323–327.

Sindoris A. R. and Hayes S. T. (1981), “A Conical Array of Dielectric Filled Edge Slot Antennas,”
IEEE AP-S International Symposium Digest, pp. 467–470.

Sipus Z., Burum N., and Bartolic J., (2003), “Analysis of Rectangular Microstrip Patch Antennas
on Spherical Structures,” Microwave and Optical Technology Letters, Vol. 36, No. 4, pp.
276–280.

Smallwood B. P., Terzuoli A. J., and Canfield R. A. (2003), “Structurally Integrated Antennas for
Remote Sensing,” Proceedings of IGARSS’03, Vol. 7, 21–25 July, pp. 4252–4254.

Steyskal H. (2002), “Pattern Synthesis for a Conformal Wing Array,” in Proceedings of IEEE Aero-
space Conference 2002, Vol. 2, pp. 2-819–2-824.

Stockton R. J. and Hockensmith R. P. (1977), “Application of Spherical Arrays—A Simple Ap-
proach,” IEEE AP-S International Symposium Digest, pp. 202–205.

Stockton R. J. and Hockensmith R. P. (1979), “Microprocessor Provides Multi-Mode Versatility for
the ESSA Antenna System,” IEEE AP-S International Symposium Digest, pp. 469–472.

Sureau J-C. and Hessel A. (1971), “Element Pattern for Circular Arrays of Waveguide-Fed Axial
Slits on Large Conducting Cylinders,” IEEE Transactions on Antennas and Propagation, Vol.
AP-19, No. 1, pp. 64–74.

Taylor T. T. (1955), “Design of Line-Source Antennas for Narrow Beamwidth and Low Side
Lobes,” IRE Transactions on Antennas and Propagation, Vol. AP-3, pp. 16–28.

Thiele G. A. and Donn C. (1974), “Design of a Small Conformal Array,” IEEE Transactions on An-
tennas and Propagation, Vol. AP-22, No. 1, pp 64–70.

REFERENCES 363

c08.qxd  12/1/2005  4:26 PM  Page 363



Vallechi A. and Gentili G. B. (2003), “Broad Band Full Scan Coverage Polarization Agile Spherical
Conformal Array Antennas: Pseudo-Uniform vs. Pseudo-Random Element Arrangements,” in
Proceedings of IEEE International Symposium on Phased Array Systems and Technology 2003,
Boston, USA, 14–17 October, pp. 529–534.

Wheeler H. A. (1966), “The Grating-Lobe Series for the Impedance Variation in a Planar Phased-
Array Antenna,” IEEE Transactions on Antennas and Propagation, Vol. AP-14, No. 6, pp.
707–714.

Villeneuve A. T. and Kummer W. H. (1981), “Conical Phased Array Antenna Investigation,” IEEE
AP-S International Symposium Digest, pp.475–478.

Villeneuve A. T., Behnke M. C., and Kummer W. H. (1974), “Wide-Angle Scanning of Linear Ar-
rays Located on Cones,” IEEE Transactions on Antennas and Propagation, Vol. AP-22, No. 1,
pp. 97–103.

Voles R. (1995), “Spherical Shell and Volume Arrays,” IEE Proceedings of Microwave Antennas
and Propagation., Vol. 142, No. 6, December, pp. 498–500.

Voskresensky D. I. and Ovchinnikova E. V. (2001), “Wideband Conformal Phased Array with
Spreaded Sector Scanning,” in Proceedings of 2nd European Workshop on Conformal Anten-
nas, The Hague, The Netherlands, 24–25 April.

Wait J. R. (1959), Electromagnetic Radiation from Cylindrical Structures, Pergamon Press.

Weisstein E. W. (2004), “Archimedean Solid,” from Mathworld—A Wolfram Web Resource,
http://mathworld.wolfram.com/ArchimedeanSolid.html.

Wills R. W. (1987), “Mutual Coupling and Far Field Radiation from Waveguide Antenna Elements
on Conformal Surfaces,” in Proceedings of the International Conference on RADAR-87, Lon-
don, October 19–21, pp. 515–519.

Witte E. D., Griffiths H. D., and Brennan P. V. (2003), “Phase Mode Processing for Spherical An-
tenna Arrays,” Electronics Letters, Vol. 39, No. 20, pp. 1430–1431.

364 CONFORMAL ARRAY CHARACTERISTICS

c08.qxd  12/1/2005  4:26 PM  Page 364



In this chapter, we will treat the feeding and scanning principles that apply to conformal
array antennas, in particular cylindrical arrays. We will discuss solutions for commutating
the active sector as well as beam steering and multiple beam generation for circular and
cylindrical arrays. An additional problem in conformal antennas is the need for polariza-
tion control, a consequence of the lack of a common element factor in the radiation func-
tion. A universal approach to all these critical issues is provided in receiving arrays by
digitizing the element signals and performing all corrections and control in computer soft-
ware. This approach using digital beam forming may in the future also be applied to trans-
mitting arrays.

9.1 INTRODUCTION

The feeding system for a conformal array must provide phase (or time delay) compensa-
tion for the array curvature. In many cases, the amplitude must also be steered and some-
times the polarization as well. Usually, only one part of the complete array is activated at
a time, and this active sector must be moved according to the desired direction of obser-
vation. This last function is referred to as commutating. All these functions may lead to
very complex networks with large losses. Several innovative arrangements have been
proposed, however, aiming at reducing cost and complexity, and we will examine some
of them. Most of the solutions apply mainly to circular and cylindrical arrays. Doubly
curved arrays are even more difficult to feed. For large arrays, solutions may be found us-
ing optical and/or digital signal formats. 
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9.2 A NOTE ON ORTHOGONAL BEAMS

Generating two or more beams from the same array antenna is often advantageous com-
pared to scanning a single beam. The data rate is increased when there are several spatial
channels, doppler performance in MTI surveillance radar systems is improved through
longer dwell time on target, and more accurate bearing measurements are possible. Typi-
cally, each beam is associated with a physical beam port in the feeding system. For the
ports to carry independent signals, they must be isolated from each other, or else a signal
fed to one port will be radiated in more than one beam. On reception, poor isolation leads
to signal losses. 

It has been demonstrated [Allen 1961, White 1962, Stein 1962] that a necessary con-
dition for the beam ports of a multibeam antenna to be isolated from each other is that
the corresponding radiation patterns must be mutually orthogonal. The orthogonality re-
quirement for two beams with radiation patterns E�1 and E�2 can be written quite general-
ly as

�2�

0
d� ��

0
E�1(�, �) · E�*

2(�, �) sin �d� = 0 (9.1)

The orthogonality can be realized in several ways: (1) by using separate apertures, (2) by
using orthogonal polarizations in the same aperture, and (3) by having angularly spaced
beams from the same aperture.

A simple example of the last method is given by two patterns of the type (sin x)/x.
They will be orthogonal if they are separated in angle by a multiple of x = � radians. The
closest possible orthogonal spacing in this case results in –3.92 dB crossover depth be-
tween the main beams. This is the result obtained with a Butler-matrix-fed linear array an-
tenna [Butler and Lowe 1961, Shelton 1961]. However, the fundamental requirement that
the patterns be orthogonal and associated with a lossless feed system is given by the radi-
ation characteristics, irrespective of the antenna physical shape as expressed by Equation
(9.1). It is equally valid for curved arrays. Note, however, that in the case of digital beam
forming, it is possible to obtain closely spaced receiving beams without the losses in-
curred in analog beam forming networks.

9.3 ANALOG FEED SYSTEMS

A feed system is a network connecting the antenna input to its radiators. The purpose is to
transmit power to the elements (transmit mode) or to collect signals from the elements
(receive mode). This must be done while maintaining the necessary phase and amplitude
excitations for the required radiation performance. The feed network may also contain
switches or other devices for scanning the beam, selecting between different antenna
beam shapes, and switching between active sectors (commutating). Sometimes, active de-
vices such as amplifiers are integrated into the feed.

We will briefly discuss some of the types of analog feed systems that have been pro-
posed and studied. A substantial part of this development took place several years ago, as
can seen from the references cited, for example, the overviews [Provencher 1970, Hall
and Vetterlein 1990], but there are also several recent developments. The main principles
used, following [Uhlmann 1975a], are:
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� Vector transfer matrix systems

� Switch matrix systems

� Butler matrix feed systems

� RF lens feed systems

There are also several combinations and variations of these principles. Digital feed sys-
tems (digital beam forming) will be discussed in Sections 9.3 and 9.4.

9.3.1 Vector Transfer Matrix Systems

A very general feeding arrangement would have all radiators fed via attenuators, phase
shifters, and a power divider. By sufficiently attenuating those channels that do not be-
long to the intended active sector, the feed provides all functions: commutating, ampli-
tude taper, and phase steering. This feed with amplitude and phase control is called a vec-
tor transfer feed. It is seldom used in this form, however, because of the complexity and
large transmission-line losses, especially the losses in the attenuators.

9.3.2 Switch Matrix Systems

Basically, the number of attenuators and switches should not exceed the number of elements
in the active sector. Thus, a “partial vector transfer feed” can be constructed, using output
switches to choose between sectors. Giannini [1969] demonstrated one such system with 32
dipole elements of which eight where used at a time. Boyns and coworkers [1970] used a
system for feeding and commutating an active 90° sector of a 128 element ring array. Their
complete antenna hardware with feed and control elements is shown in Figure 9.1.

Gregorwich [1974] presented a cylindrical array for an electronically despun antenna
for use on a spin-stabilized satellite in a geostationary orbit. For earth coverage, about an
18° beamwidth is required, which could be provided by a four-by-four array of crossed
dipoles. In total, there were four rows of 64 elements each around the 190 cm diameter
satellite operating over a 40% bandwidth at the S band. Since the satellite rotates, the an-
tenna beam must rotate electronically in the opposite direction to keep the beam directed
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Figure 9.1. A 128 element vector transfer-matrix-fed S-band array [Boyns et al.
1970].

c09.qxd  12/1/2005  4:29 PM  Page 367



on earth. For commutating the active sector of the array, a feed network with one power
divider and several PIN diode switches was used. A simplified version (a smaller array
with 18 elements) illustrating the principle is shown in Figure 9.2. Note that the combina-
tion of SPDT and SP3T switches is equivalent to one SP6T switch.

The feed network has equal amplitude outputs and there is no need for phase compen-
sation since only four elements at a time are active (out of 64). Thus, this basic principle
allows the beam to be scanned in steps corresponding to the element division along the
circumference.

Reindel [1974] presented a simple beam scanning/commutating solution suitable for
small cylindrical arrays. A matrix of interconnected 90° hybrids and fixed phase shifters
around the array feeds the radiating elements. A second layer of hybrids connects to sum
and difference beam ports. In this case, four elements are fed from each beam port with
phases 0°, 90°, 90°, and 0°, respectively, thus approximately correcting for the array cur-
vature. Multiple beams from a 22 dipole element circular array were successfully demon-
strated over 2.4 to 3.4 GHz. The sidelobe levels were about –12 dB and monopulse differ-
ence pattern null depths were –15 dB or better.

A more complicated commutating scheme is used in the METEOSAT despun antenna
array [Polegre et al. 2001]. This array has 32 element ports of which five are active at a
time. By means of switches and variable power dividers, the power to the outer ports on
each side of the active sector is gradually changed so that the power distribution is moved
smoothly around the cylindrical array.

By adding phase shifters for fine steering to a switch-matrix feed such as the one in
Figure 9.2, we get the system shown in Figure 9.3. SPNT stands for single-pole-N-throw
switches. Each active sector is 360/N degrees wide. (In the example in Figure 9.2, we had
N = 6 and each sector was 60°.)

In the simplest case, equal amplitudes are fed to the array elements, that is, no tapering
is applied. Many times, however, it is desired to use a tapered amplitude distribution for
sidelobe control. If the amplitude taper is built into the power divider, then the proper di-
vider outputs must be connected to the corresponding element positions in the active sec-
tor. The solution is to insert a special matrix that reorders the signals appropriately as the
active sector moves, a so-called transfer-switch matrix (Figure 9.4). With this arrange-
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Figure 9.2. A switch matrix feed for activating 3 elements out of 18, after [Gregor-
wich 1974].
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ment, difference patterns for monopulse operation can also be generated, as was demon-
strated by Giannini [1969] for a cylindrical array at about 1000 MHz. He had 32 dipole el-
ements, of which eight where used at a time. Keeping and coworkers [1981] used the
same principle for a 96 element cylindrical array at the C band.

The transfer-switch matrix consists of transfer switches with two inputs and two out-
puts; the two states are shown in Figure 9.4 (b). The complete matrix is quite complex,
but the size can be reduced if the output amplitude is quantized to just a few amplitude
values [Uhlmann 1975a]. 

The feeding and switching systems require careful phase trimming (and/or cable
length adjustments). Another problem is the losses of the large network. For instance, a 9
dB loss was reported by Keeping and coworkers [1981] for a 96 element C-band cylindri-
cal array (the active sector had 32 elements). To compensate for the losses, amplifiers can
be inserted in the signal paths.

Lee and coworkers [2002] presented such a solution intended for an AWACS type
nonrotating antenna at UHF. The active sector has 16 endfire radiators, in total 48 for the
full array. A power divider with 16 outputs connects to a 16 × 16 transfer-switch matrix
that maps the amplitude and phase distribution on to the active sector. The output SP3T
switches connect to the 16 elements in the 120° active sector; see Figure 9.5.

Note in Figure 9.5 the transmit amplifiers inserted between the sector selection switch-
es and the transfer switches. The receive signals are tapped directly at this point, and it is
suggested that beam forming on receive be done digitally.

9.3.3 Butler Matrix Feed Systems

Several authors [Sheleg 1968, Brown 1971, Nelson and Britt 1972] discuss commutating
by means of a Butler matrix [Butler and Lowe 1961]. A schematic of this approach is
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Figure 9.5. Beam forming network according to [Lee et al. 2002] with amplifiers in
the transmit paths.
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shown in Figure 9.6. The power divider and the fixed phase shifters control the desired
excitation of a subset of the output ports (B), that is, the active sector. By appropriately
setting the variable phase shifters to add a linear phase slope at the mode input ports (A)
of the Butler matrix, the excitation is moved to a new subset of the output ports (B). See
also [Holley et al. 1974], who used a Butler matrix for fine steering in combination with
switches and a geodesic lens; compare Figure 9.15

The two sets of phase shifters in Figure 9.6 (fixed and variable) can in a realization of
this principle be replaced by just one set of variable phase shifters. The same applies to
the design in Figure 9.8.

A commutating and beam steering solution for space telemetry has been developed by
the European Space Agency [Vourch et al. 1998, Polegre et al. 2001, Caille et al. 2002].
The conical array (see Figure 1.4 in Chapter 1) has 24 subarrays fed by 3 × 3 “Butler-like”
matrices preceded by amplifiers and phase shifters. A simplified schematic is shown in
Figure 9.7. A similar design using 4 × 4 matrices has also been developed [Polegre et al.
2003]. The appropriate active area is energized by proper phase inputs to the 3 × 3 (or 4 ×
4) Butler matrices. The concept has the advantage that all the 24 power amplifiers are ac-
tive simultaneously and operate at equal power. The scanning can be done in small steps,
with minimum amplitude and phase jumps on the scanned beam. This design is called
“semiactive” since the power amplifiers are located at an intermediate level of the beam-
forming matrix.

A Butler matrix directly feeding a circular array creates linear phase variations among
the radiating elements, that is, it creates phase-mode excitations (see Chapter 2). An M ×
M port Butler matrix can be used to excite M independent phase modes, each radiating an
omnidirectional amplitude pattern, but with different phase variations with angle. These
M patterns are mutually orthogonal and can be used in, for example, communication sys-
tems with several frequency channels, each channel using one of the omni mode patterns.
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Figure 9.6. Commutating by means of a Butler matrix. The active output is shifted by
means of the variable phase shifters.
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The isolation between the modes helps in maintaining a high isolation between channels,
thus relaxing the requirements on frequency filters [Guy and Davies 1983].

Connecting the phase mode ports of the Butler matrix to a second network, as shown in
Figure 9.8 [Sheleg 1968], makes it possible to create any (physical) beam pattern using
phase-mode synthesis. The variable phase shifters can be used for scanning the beam since
adding a phase shift with increments �� from one mode to the next will shift the excitation
and also the radiation pattern by the same amount in angle. This fact, noted by Davies
[1965], follows directly from the phase mode discussion in Chapter 2. Let us revisit Equation
(2.22) describing the far field radiation expressed in phase modes with amplitudes Am:

E(�) = �
�

–�

Amejm� (9.2) = (2.22)
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Figure 9.7. A “semiactive” phase-commutating feed system, after [Martín Polegre et
al. 2001].
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Figure 9.8. A Butler-matrix-fed array with variable phase shifters for scanning the
beam [Sheleg 1968].
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Now, the radiating phase mode amplitudes are proportional to their respective excitation
phase mode amplitudes Cm. If we add phase increments that increase linearly with the
phase-mode number, as could be obtained from the Butler matrix feed, we get Am

new = Am
old

· em��. Insertion into Equation (9.2) gives the radiation:

Enew(�) = �
�

–�

Am
olde jm(�+��) = E(� + ��) (9.3)

Continuous rotation of the pattern can be achieved by frequency scanning if the array
ports are fed in series from a tapped delay line. At higher scan rates, some pattern degra-
dation occurs, although less than in a comparable frequency scanned linear array [Arora
and Patel 1983]. A simple microstrip cylindrical array with a series feed was described by
Hall and Vetterlein [1992]. Scanning by amplitude control in a small dipole ring array has
been demonstrated by Neff and Tillman [1960]. The TACAN air-navigational aid
[Christopher 1974, Shestag 1974] also makes use of modulated element signals to provide
a multilobed rotating pattern.

With a second Butler matrix replacing the fixed phase shifters and the power divider
in Figure 9.8, multiple linear phase shifts along the phase-mode ports are added. In this
way, multiple beams in the azimuth are created; a recent example is described in
[Raffaelli and Johansson 2005]. The zero-order phase mode is not provided by the com-
mon Butler matrix with 90° hybrids, but this mode can be included by adding appropri-
ate phase shifts on the output ports. With a matrix using 180° hybrids instead [Hering
1970], the zero-order mode is directly available. Rahim and coworkers [1981] have de-
scribed a 16 × 16 Butler matrix that is split into an odd and an even phase-mode part,
with the zero mode included.

Since the illuminated elements are confined to an active sector of about 90° to 120°, a
reduced size Butler matrix can be used with output switches connecting to the appropriate
sector [Skahill and White 1975]. Another way to save on matrix size according to [Sheleg
1973] makes use of the fact that the highest-order phase modes are seldomly needed, or
will give distorted patterns (because of too large element spacing; cf. Chapter 2). In She-
leg’s example, where two submatrices of size 16 × 16 are used instead of one full 32 × 32
matrix, the number of hybrids could be reduced by 20%.

The Butler matrix performs an operation analogous to the fast Fourier transform (FFT)
[Nester 1968]. The FFT is often used for frequency filtering of broadband signals. Thus,
the spatial and frequency processing are in principle quite similar. Raabe [1976] discusses
a receiving sonar circular array with the successive operations

� FFT (frequency filtering of the element signals), obtaining frequency samples

� FMF (fast mode former), equivalent to the Butler matrix, for extracting phase
modes

� Weight application to the mode outputs for beam shape control 

� FBF (fast beam forming) for obtaining angular samples of the signals

The radiated phase modes differ in absolute phase by an amount that depends linearly
on the azimuth angle. Thus, detecting the phase difference between modes on reception
provides information about the direction toward the source. This has been exploited in so-
called digital bearing discriminators for broadband ESM systems [Rehnmark 1980a,b];
see also Figure 1.6 in Chapter 1.
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9.3.4 RF Lens Feed Systems

Many of the transmission line feed systems are quite complicated and suffer from large
losses. Systems based on RF/optical principles are therefore attractive, especially for
large arrays with many radiating elements. We will illustrate different kinds by examples
and we will note that several RF/optical feed systems also incorporate various types of
beam scanning functions.

RF refractive lenses have functions similar to their classical optical counterparts, using
the refraction between dissimilar materials. Constrained lenses force the waves to follow
given paths, as in a geodesic lens. The bootlace lens is one type of constrained lens in
which the signals between input and output surfaces are routed on transmission lines.
Sometimes, a conformal array feed makes use of combinations of lens types, or lenses
and matrices [Provencher 1970].

An RF lens usually has a set of input/output probes that couple to the lens region.
These probes are in fact small array antenna elements in an array environment, character-
ized by reflections and mutual coupling and the associated design problems. There can
also be standing waves caused by reflections from the opposite side of the lens, in partic-
ular in circular lens designs. A further problem is the variation of the element phase center
with frequency.

9.3.4.1 The R-2R Lens Feed. The R-2R lens feed (Figure 9.9) has feed ports on
the circumference of a parallel-plate lens with radius R, illuminating the output ports on
the opposite side of the lens. The latter are connected to the element ports on the 2R radius
circular array with equal length cables. The number of element ports is twice the number
of feeding ports. A study of the geometry [Boyns et al. 1968] reveals that the arrangement
provides perfect focusing for all feed points, resulting in a plane-phase front. Moving the
feed point an angle � results in scanning the antenna beam at angle �/2.

By combining three to four adjacent feed ports (as shown in Figure 9.9) an illumina-
tion taper can be achieved, resulting in lowered sidelobes. The matrix-fed array shown in
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Figure 9.9. The R-2R lens feed system [Boyns et al. 1968].
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Figure 9.1 was also tested with an R-2R lens feed with four ports combined. This resulted
in a reduction of the sidelobes from –18 dB to –30 dB [Provencher 1970].

For scanning the beam, a set of switches on the lens ports has to be added. For multiple
beam generation one needs to have access to several beam ports simultaneously. One so-
lution could be to use half the lens for beam ports and connect the other half to a 90° arc
array [Archer 1984].

The R-2R lens can be seen as a special case of the Rotman lens, which is mostly used
for linear array feeds [Rotman and Turner 1963]. The Rotman lens can also be used for
circular arcs up to about 90°; in fact, the curvature can be other than circular [Archer
1984], since the overall design, curvature of lens input and output lines, cable lengths, and
so on can be optimized together with the array shape. Perfect focusing in the Rotman lens
is obtained for three beam directions only.

9.3.4.2 The R-kR Lens Feed. The R-kR lens feed system has the same number
of ports on the lens as there are radiators on the circular array [Thies 1973, Archer 1984].
For 360° coverage, the lens ports have to be reused, both as feeding points and for con-
necting to the radiating elements. This can be accomplished with switches, circulators
(Figure 9.10), or by using two lenses.

The radiators on radius R are connected by equal length cables to the ports of the cir-
cular lens with radius kR. An approximately planar phase front for rays within a sector
of about 120° is obtained when k is about 1.9. This means that the lens is almost twice
the size of the circular array, and it does not fit inside the array unless filled with a di-
electric with permittivity 4 or higher. For large arrays (narrow beam widths), the lens
also becomes very large, unless a very high-permittivity dielectric material is used in the
lens.

The R-kR lens-fed circular array can be very broadband provided broadband radiators
are used. Circulators or switches could, of course, limit the bandwidth. A critical design
parameter is the phase center of the radiators, which must be located on the design radius
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Figure 9.10. The R-kR lens, here with circulators.
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R. Many element types have a phase center that changes position with frequency, thus
limiting the focusing performance. However, designs with greater than octave bandwidths
have been described [Archer 1984].

An elegant and compact R-kR lens-fed array using a microstrip lens and tapered-notch
radiating elements in the same substrate with �r = 10.2 has been described [Sierra and
Bernal 1989]; see Figure 9.11. 10 beams separated by 10° were obtained from one such
array; hence, four arrays were needed for full azimuth coverage.

An R-kR network intended for feeding an array antenna for mobile satellite communi-
cation (MSAT) has been proposed by [Bodnar et al. 1989]. This vehicle-mount antenna
has 360° coverage in the azimuth and covers 20°–60° in elevation. Thus, the focusing was
optimized for an elevated beam. An inner ring and an outer ring of 12 microstrip ele-
ments, each with a pair of lenses combined with hybrids, provide full azimuth coverage.
A compact multilayer design (see Figure 9.12) is predicted to cost less than a traditional
phase-steered array for this application.

9.3.4.3 Mode-Controlled Lenses. A radial transmission line forming a circu-
lar parallel-plate lens can act as a circular array feed. When excited by a set of probes near
the center, the modes generated will direct the energy toward a part of the lens periphery.
Thus, controlling the modes by phase shifters or a hybrid network connected to the input
probes commutates the excitation. Pick-up probes can then connect to the radiating ele-
ments, via additional phase shifters if needed. Honey and Jones [1957] employed this
mode-controlling technique in a coaxial structure, which was flared into a biconical direct
radiating antenna. A 32 radiating port coaxial commutator was described by Irzinski
[1981]. The parallel-plate approach was described as a commutating device by Bogner
[1974]. Uhlmann [1975b] also used a parallel-plate structure with a central input probe
surrounded by a number of pin diodes for mode control. Commutating was achieved by
successively short-circuiting of diodes. On the output, switches and phase shifters limited
the excitation to a 180° sector and focused the beam.
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Figure 9.11. A broadband semicircular array with microstrip R-kR lens feed in print-
ed circuit technology [Sierra and Bernal 1989].

c09.qxd  12/1/2005  4:29 PM  Page 376



9.3.4.4 The Luneburg Lens. The two-dimensional Luneburg circular lens has a
refractive index that varies with the radius. With a feed on the perimeter, a collimated
beam results, emerging from the opposite side of the lens (Figure 9.13). Switches, circula-
tors, or feeds with 45° inclined linear polarizations [Cassel 1982] can be used for covering
the full 360° sector. The three-dimensional Luneburg lens works similarly. 

The refractive index n varies as

n(r) = �2� –� (�r/�a�)2� (9.4)

where a is the radius of the lens and r is the distance from the center of the sphere. A typ-
ical design with the feed points on the lens surface has a variation of the dielectric con-
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Figure 9.12. A four R-kR lens design for mobile communication [Bodnar et al. 1989].
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stant �r = n2 from two in the center to unity at the surface. In practice a number (<10) of
concentric shells, each with fixed dielectric constant, are used.

A system with three-dimensional Luneburg transmit and receive lenses generating
multiple beams was used in the Typhon experimental system [Fowler 1998].

Probes on the output side of a two-dimensional Luneburg lens can connect to a cylin-
drical array. A constrained Luneburg-type lens can also be constructed from a parallel-
plate waveguide, which is deformed to two parallel “domes” between which the rays
propagate with the desired electrical path. Thus, a geodesic “tin hat” equivalent to a
Luneburg lens is obtained [Hollis and Long 1957, Peeler and Archer 1953].

9.3.4.5 The Geodesic Lens. A geodesic lens feed was used by Bodnar and
coworkers [1980] for feeding and mechanically commutating a cylindrical Ku-band ar-
ray. The design is shown in Figure 9.14. The rotating sector-shaped parallel plate has a
phase-compensating geodesic lens segment.

Mechanical commutating of a cylindrical array has also been described [Wolfson and
Cho 1979, Wolfson et al. 1980]. The rotating feed in their case is a stripline power divider
with phase-compensating line lengths. The “organ pipe scanner” [Peeler et al. 1952, Peeler
and Gabriel 1955] used a rotating feed for switching between several fixed waveguides con-
necting to feed horns in a lens antenna system, essentially a commutating device. The con-
tactless coupling between array and rotor is a key element in this design, as well as in the
previous ones. Although mechanically complicated, it replaces many active components in
electronically switched systems; hence, lower loss can be anticipated. In the Wullenweber
HF arrays of the 1960s, mechanical commutating devices with capacitive coupling between
a rotor and a stator (goniometer) were used [Fullilove et al. 1959, Gething 1966].

A cylindrical geodesic lens can be used in a number of configurations. Holley and
coworkers [1974] describe a feed system using a right-circular cylindrical geodesic lens
with a minimum number of active devices. The active sector is commutated by selecting 8
out of 256 feed ports on the cylinder input. An 8 × 8 Butler matrix is used to shift the ex-
citation between steps. On the output, diplexers and a second circular lens connect to a
cylindrical array with 256 dipole line sources. Figure 9.15 shows this design with the sig-
nal flow in the transmit mode indicated.
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Figure 9.13. A Luneburg lens with radially varying refractive index.
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Figure 9.14. A Ku band mechanically commutating cylindrical array with a rotating
geodesic lens feed [Bodnar et al. 1980].

Figure 9.15. Geodesic lens feed system with signal flow in the transmission mode
[Holley et al. 1974].
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9.3.4.6 The Dome Antenna. The WASCAL or Dome antenna (Figure 9.16)
[Bearse 1975, Schwartzman and Stangel 1975, Liebman et al. 1975] principle was briefly
described in Chapter 1; see Figure 1.7. WASCAL stands for wide-angle scanning array
lens. It allows scanning a pencil beam over the full hemisphere, in fact even a little more.
The phase gradient of the lens can be optimized for a desired elevation coverage, as was
studied by Steyskal and coworkers [1979] for a circular cylindrical case. Ellipsoidal-
shaped lenses have also been suggested for increased gain at low elevation angles. For
airborne applications, the dome antenna has been proposed for nose and tail mounting,
giving very wide angle scanning capability. The dome concept has not found widespread
use, however, due to relatively high cost, limited bandwidth, and somewhat poor sidelobe
performance [Fowler 1998, Kinsey 2000]. A possible variation of the dome principle
would be to insert active phase shifters in the constrained dome lens. The planar array
would in this case work mainly as a commutating device.

A passive dome-type lens can, of course, also be realized using homogeneous di-
electric materials. It can be less costly than the constrained dome antenna, but weight
and fabrication difficulties limit its use to the X band and higher. Octave bandwidths
have been quoted for real-time designs such as the one in Figure 9.17 [Valentino et al.
1980].

A wide-angle array-fed lens antenna (WAAFL) is described as a marriage between a
two-dimensional dome antenna and the Rotman lens-fed array [Thomas 1979]. A curved
feed array is used for the dome-type scan amplification lens; see Figure 9.18. Octave
bandwidths have been reported and scanning works well over 180°.

9.4 DIGITAL BEAM FORMING

Digital beam forming (DBF) in array antenna systems represents the ultimate solution
for flexibility, beam shaping, and multiple beam generation [Steyskal 1987]. DBF
makes it possible to fully exploit the spatial dimension of the antenna, and it is some-
times combined with advanced processing in the temporal/frequency domain as well.
Examples of signal processing antenna functions include adaptive interference suppres-
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Figure 9.16. The dome array antenna with 3636 passive lens elements fed by a pla-
nar array with 805 elements and phase shifters [Fowler 1998].
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sion, high-resolution direction finding, and multiple beam generation [Wirth 1978,
Gröger et al. 1990]. STAP is an advanced space–time adaptive processing scheme for
suppressing jamming signals and ground clutter in airborne surveillance radar systems
[Klemm 1993].

It seems that everything you can do with analog beam forming can also be done digi-
tally (Figure 9.19). The digital solution leads to rather extreme requirements on data
transmission, storage, and signal processing, especially for large arrays. However, these
problems are more easily solved today than in the past, thanks to the rapid growth of com-
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Figure 9.17. A dielectric dome lens antenna [Valentino et al. 1980].

Figure 9.18. A broadband multiple array feed using a two-dimensional dome output
lens [Thomas 1979].
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puter power, both software and hardware. In analog reception beam forming, the element
signals are combined with weights determined by feed networks and/or phase and ampli-
tude controlled receiver modules. The same operations can be performed in a digital com-
puter on the element signals after analog-to-digital conversion. The digital approach al-
lows the formation of simultaneous receive beams, even overlapping, without the feed
losses that are incurred in an analog system. The element modules in the digital case have
low noise amplifiers (LNA) preceding the analog-to-digital conversion. The signal-to-
noise ratio is set by the LNAs and it is, therefore, not affected by transmission losses in
further processing, resulting in “lossless beam forming.” 

Digital beam forming is also possible on transmission [Magill 2000, Jiaguo et al.
2003], but the advantages are less apparent. Once the beam is transmitted, there is no pos-
sibility to modify the beam shape or to do any other spatial signal processing. However,
digital synthesis of the transmitted waveform on the element level combined with DBF on
reception can provide interesting system capabilities in terms of, for example, LPI (low
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probability of intercept) radar with jamming resistance [Dorey et al. 1989]. A wide trans-
mission beam illuminating the area of interest and multiple, narrow, digitally formed re-
ceive beams has also been suggested for LPI systems—“ubiquitous radar” [Skolnik 2003]
and “OLPI radar” (Omnidirectional LPI) [Wirth 1995].

The capabilities of digital beam forming are well suited to the requirements posed by
conformal array antennas. The need for amplitude and phase control, switching of the ac-
tive sector (commutating), polarization control, compensating for element patterns in the
beam steering algorithms, calibration, and so on are all aspects that can best be imple-
mented digitally. 

A DBF antenna system consists of combinations of several subsystems and compo-
nents. Possible imperfections in these, which influence the overall system performance,
include receiver channel imbalance, amplitude and phase errors, A/D converter offset er-
rors, and frequency dependent errors. The imperfections can be more or less critical de-
pending on the requirements and the type of processing used. Array calibration and spe-
cial error correction schemes must typically be included in the antenna system design
[Steyskal 1991].

Three experimental conformal digital beam forming X-band array antennas were de-
scribed in a Japanese session at the 1996 Phased Array Symposium [Kanno et al. 1996a,b;
Rai 1996]. One of these arrays had the shape of an elliptical cylinder matching an aircraft
wing contour. The antenna used digital beamforming in two dimensions with 570 active
elements. The synthesis of sector beams and low sidelobes (–40 dB) was demonstrated.
The antenna is shown in Figure 1.2, page 3. The other two, also with about 600 active el-
ements, were doubly curved, matching the shape of the nose of an aircraft and the fuse-
lage, respectively. Haruyama and coworkers [1989] presented an experimental DBF array
with 64 elements on a sphere. They were able to measure –44 dB sidelobes thanks to very
precise weight control. The creation of multiple beams was also demonstrated.

Figure 9.20 shows one of several X-band arrays used for digital beam forming investi-
gations [Gniss 1998]. The radiators are dual-polarized patch elements. 64 receive chan-
nels were used and beamforming quality including polarization characteristics was
demonstrated.
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Figure 9.20. Elliptical array with dual-polarized patch elements in cavities for DBF
experiments. See also color insert, Figure 9. (Courtesy of FGAN Research Establish-
ment for Applied Science, Wachtberg-Werthhoven, Germany.)
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9.5 ADAPTIVE BEAM FORMING

9.5.1 Introduction

In adaptive array antenna systems [Gabriel 1992, Hudson 1981], special signal processing
algorithms are applied to the digitized received signals. By deriving optimum weights for
the element channels, based on the received signal characteristics, including noise and in-
terference, the signal-to-noise-plus-interference ratio (SNIR) can be maximized. The re-
sult can be seen as creating nulls in the reception pattern in the directions of the interfer-
ing sources while preserving a high-gain beam toward the useful signal. A simple
schematic for an adaptive beam forming system is shown in Figure 9.21. 

We will here present a short outline of the mathematics used in adaptive nulling ac-
cording to the sample matrix inversion (SMI) method [Applebaum 1976]. We will also il-
lustrate the method by a simulation in which two jamming signals are to be suppressed
using a DBF circular array. Finally, an example of superresolution techniques will be giv-
en. In Chapter 10, the adaptive method is applied to pattern synthesis problems.

Antenna pattern nulls can, of course, be generated by analog means as well. In the sim-
plest case, this is done without adapting to the received signals using suitable phase-con-
trol elements in the feed circuit [Davies and Rizk 1977]. However, we will in the follow-
ing focus on the more advanced adaptive principle, typically implemented in digital beam
forming arrays.

9.5.2 The Sample Matrix Inversion Method

The signal vector received from an N-element array of general shape (planar, conformal,
etc.), can be written as

x�(t) = [x1(t), x2(t), . . . , xN(t)]T = VS(t)x�S
T (9.5)

Here VS is the signal strength and x�S the directional vector for the signal source direction;
the superscript T stands for transpose. With complex weights w� = [w1, w2, . . . , wN]T we
get the output y(t) from the array:
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Figure 9.21. An adaptive beam forming antenna system with received signals [x1,
. . . , xN] forming the signal vector.
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y(t) = w�T · x�(t) (9.6)

The problem is to determine the weight vector such that an optimum (in some sense) out-
put signal is obtained. One element xi(t) in the signal vector is

xi(t) = VS(t)ELi(�S)e jk�S·r�i (9.7)

where k�S is the propagation vector in the signal direction. Equivalent expressions are ob-
tained for the external noise sources. Note that the radiating elements with patterns
ELi(�S) and positions r�i can all be different and point in different directions. Hence, the
theory applies equally well to planar and nonplanar arrays. The received signal power can
be written as

PS = |w�T x�S |2 = w� T x�*S x�S
T w�* (9.8)

(the superscript * stands for complex conjugate). Summing over all noise sources we ob-
tain

PN = w�T(x�*N x�N
T + n0 I�)w�* (9.9)

where the internal noise n0 is assumed to be of equal power in all channels, otherwise un-
correlated. I� is the identity matrix. It can be shown that the signal-to-noise ratio, that is,
the ratio between the quadratic forms, PS/PN, is maximized by the weight vector [Hudson
1981]:

w�* = � R�–1x�D (9.10)

where � is an arbitrary proportionality constant, x�D is the signal vector for the desired sig-
nal, and R� is the covariance matrix for the total noise:

R� = x�*N x�N
T + n0 I� (9.11)

In operational adaptive antennas, the noise covariance matrix elements can be estimated
by time averaging over several noise samples, thus

Rij = �T

0
x*i(t)xj(t)dt (9.12)

9.5.3 An Adaptive Beam Forming Simulation Using a 
Circular Array

As an example, we will demonstrate the use of the adaptive nulling algorithm SMI ap-
plied to a simple case with a cylindrical array antenna. Compared with linear and planar
array antennas, the adaptation includes also the “rear” side of the array. This part is usual-
ly without control in the planar or linear case. We choose a uniformly spaced 16 element
circular array with 0.5 � element spacing. The elements are assumed to have a cos 	 pat-
tern, with no radiation for |	| > 90°. Mutual coupling is neglected. The scenario is shown
in Figure 9.22 with the desired signal incident from 30° direction and jammers at 0° and
270°.

1


T
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Whereas the desired signal vector for an M element (spacing d) uniform linear array
(ULA) is simply

x�(ud) = EL(�d)[1, e jud, e2jud, . . . , e(M–1)jud]T (9.13)

with ud = kd sin �d, the corresponding signal vector for an N-element uniform circular ar-
ray (UCA) is slightly more complicated:

x�(�d) = [EL(�d)e jkr cos �d, EL(�d – ��)e jkr cos(�d–��), . . . , 
(9.14)

EL(�d – (N – 1)��)e jkr cos(�d–(N–1)��)]T

For the above circular array, we simulate the following case:

� Noise level 0 dB

� Desired signal: 10 dB above noise, incident from an angle of �d = 30°

� Interference signal 1: 40 dB level at �i1 = 0°

� Interference signal 2: 40 dB level at �i2 = 270°

� 100 samples are taken for estimating the covariance matrix.

� Noise and interfering signals are assumed random with a Gaussian distribution, in-
dependent from sample to sample.

Figure 9.23 shows the resulting pattern before (dashed line) and after adaptation (sol-
id). The small circles indicate the positions of the 16 elements. The interfering signals
have been suppressed by at least 25 dB. The pattern after adaptation remains roughly the
same except for a slight broadening of the main beam.

Similar techniques can also be used for DOA (direction of arrival), that is, bearing
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measurements. With sufficient signal-to-noise ratio, closely spaced signals can be re-
solved, even when the angular spacing is much less than the antenna beamwidth (“super-
resolution”). As a simple example of digital superresolution techniques using a circular
array, we will take the MUSIC algorithm (MUltiple SIgnal Classification) [Schmidt
1979]. The basis for this method is an eigen-decomposition of the covariance matrix into
a signal subspace and an orthogonal noise subspace, E�n. A testing vector x�s(�), represent-
ing a signal incident from an angle � is scanned and projected onto the noise subspace.
When the scan angle �, is close to one of the signal directions, the projection becomes
very small, due to the orthogonality between signal and noise subspaces. The inverse of
this projection, the MUSIC spectrum, can be written as

P(�) = (9.15)

where the superscript H indicates complex conjugate transpose. This spectrum exhibits
sharp peaks at the locations of the signals as � is varied. For the result shown in Figure
9.24, two signals at 25° and 35° with signal-to-noise ratios 20 dB were assumed. Other
data are the same as for Figure 9.23.

In principle, a circular array can be used for DOA estimates in both the azimuth and el-
evation [Mathews and Zoltowski 1994], which is not possible with a linear array. Further-
more, the UCA covers 360° in the azimuth, whereas the ULA covers only about 120°.

1
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However, it is desirable to be able to map the output signal vectors from a circular array
onto a (virtual) linear array in order to be able to use existing fast ULA algorithms. This
mapping principle has been analyzed by Hyberg and coworkers [2002]. It was assumed
that the DOA was approximately known beforehand within a 30° sector of the circular ar-
ray. [Recio et al. 2002] describe an interpolation scheme for transforming a spherical ar-
ray onto a crossed ULA array for adaptive DOA processing, also taking mutual coupling
effects into account. This requires that the mutual coupling be known accurately before-
hand, which is not always the case.

There are many variations to the adaptive principles discussed in this section, and
these are discussed extensively in the literature. The effects of errors, polarization, and
mutual coupling can be included in the analysis. It is found that it is often necessary to
make corrections by extensive calibrations [Steyskal 1991, Pettersson et al. 1997,
Svantesson 2001].

9.6 REMARKS ON FEED SYSTEMS

Selecting and designing a feeding and scanning system for a conformal array antenna is
not a simple matter. This chapter has provided some examples of designs that have been
used in the past. The majority of them are intended for circular arrays. This reflects the
standing of the technology today, since there are not yet so many doubly curved arrays in
use.

One clever solution for a doubly curved array is the dome antenna. Although not used
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very much in practice, it illustrates the possibility of using optical means for feeding and
commutating large arrays. Another approach for doubly curved, rotationally symmetric
arrays could be to use stacked circular array solutions.

Cylindrical arrays can be used for two-dimensional scanning. It should be noted, how-
ever, that ordinary “row-and-column” steering does not work as with planar arrays. The
focusing in the azimuth depends on the elevation beam steering. On the other hand, we
have observed that a single ring array can be steered both in the azimuth and elevation.

The polarization issue is part of the beam steering problem, since element polarization
often needs to be changed with the scan direction. The matter is further discussed in
Chapters 8 and 10.

Many of the beam scanning solutions require feed matrices with a large number of
switches, which typically results in networks with large transmission losses. The develop-
ment of RF microelectromechanical systems (MEMS) switches may offer new possibili-
ties, since these devices are very small, can be integrated with other circuits, and have low
transmission losses. They are currently limited to low-power applications [Nguyen et al.
1998, Rebeiz and Muldavin 2001].

The final solution, at least for receiver arrays, may well be found in the use of digital
beam forming, which is well suited to the requirements posed by conformal array antennas.
Amplitude and phase control, commutating, polarization control, compensating for ele-
ment patterns in beam steering algorithms, calibration, and so on can all be implemented
digitally. Digital beam forming will probably also be used for the transmission function in
the future. An alternative may be to employ wide floodlight transmit beams using a sepa-
rate aperture and not requiring sophisticated scanning. Multiple beams, high resolution,
and interference suppression will be realized in the digital domain. The digitized received
signals can be routed from the array element modules to processing units on optical fibers.
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In this chapter, we will address the synthesis problem for conformal array antennas. Pre-
vious chapters have mostly dealt with analysis of various types and shapes of conformal
antennas. The inverse problem—synthesis—is usually more difficult than the analysis. It
is in many cases nonlinear, and there is usually no unique solution to the problem. And
yet, this is the problem that faces the design engineer all the time.

The main focus here is on various methods for antenna pattern synthesis. However,
synthesis of a conformal array antenna entails more than synthesizing a pattern. One
should also include the problems of optimizing the shape, the distribution of radiating el-
ements, optimizing the impedance characteristics, polarization, bandwidth, and so on. A
coherent approach to all of this is not possible due to the difficulty of specifying all re-
quirements in a rigorous way. We will, however, touch upon these aspects as well, and
some related material is also found in the other chapters. 

10.1 INTRODUCTION

Antenna pattern synthesis is a vast subject in the antenna literature. The amount of publi-
cations is extensive; see, for example [Schell and Ishimaru 1969, Bucci et al. 1994]. Most
papers deal with linear array antennas; the results can then be carried over to planar anten-
nas. It is in general not possible to use these results also for curved arrays, although pro-
jections of excitations from a planar case to a curved array have been attempted. 

Conformal Array Antenna Theory and Design. By Lars Josefsson and Patrik Persson 395
© 2006 Institute of Electrical and Electronics Engineers, Inc.

10

CONFORMAL ARRAY 
PATTERN SYNTHESIS

c10.qxd  12/1/2005  4:31 PM  Page 395



Several of the classical methods used for linear arrays are both elegant and analytical.
We have, for instance, the Woodward–Lawson synthesis, Dolph–Chebyshev synthesis,
Fourier synthesis, and methods derived from the Taylor line-source synthesis, to mention
just a few [Hansen 1992]. Since 1970, numerical synthesis methods have become increas-
ingly popular. The objectives can be divided into (a) pencil beam/low sidelobe synthesis,
(b) shaped beam synthesis, and (c) optimization of performance indices such as directivi-
ty and bandwidth.

Today, iterative methods based on optimization techniques are very powerful tools for
pattern synthesis thanks to the modern computer. Arbitrarily shaped beam patterns can be
synthesized with minimum effort (as long as the patterns are physically realizable). Some
of the more general methods can also be applied to nonplanar array antennas, that is, con-
formal arrays. It may still be difficult to predict errors beforehand and to ensure that the
numerical solution is not trapped in a local optimum.

Finding a radiation pattern that meets the required pattern shape is only part of the job.
Next, we must find the corresponding excitations of the radiating elements. And, since el-
ements must have a feeding structure, we need to find feeding voltages and currents that
will result in the desired excitations in the presence of mismatch, mutual coupling, and so
on. Finally, the robustness of the solution should be assessed, as well as the impact of fre-
quency variations, error tolerances, polarization and so on. Maybe a more stable solution
is required instead of the first one derived.

In conformal arrays, the radiating elements point in different directions. This makes it
essential to include the element characteristics in the synthesis procedure. In planar arrays,
the element factor can often be disregarded and the synthesis is concentrated on the array
factor as if the elements were isotropic. However, it is still of interest to study the synthesis
of arrays with isotropic radiators, since much fundamental knowledge can be gained this
way. And some arrays do have isotropic radiators, at least in one plane. We will, therefore,
present some cases with isotropic radiators as canonical cases of reference.

The polarization information is carried by the radiating elements. Since they do not
combine to form a common element factor, as in planar arrays, the polarization character-
istics become particularly significant for the conformal antenna synthesis problem. It is
possible to include polarization in the synthesis; for example, to optimize for low side-
lobes and low cross polarization at the same time.

Low sidelobe/narrow main beam synthesis will be discussed in relation to
Dolph–Chebyshev synthesis for circular arrays. Both isotropic elements and directive ele-
ments will be treated. The method makes use of phase-mode theory [Taylor 1952, Davies
1981] and is based on the discussion of this topic in Chapter 2.

The pattern requirements are most often expressed in power (or decibels) and the pat-
tern phase is usually not important. If this can be exploited in the synthesis, it adds de-
grees of freedom and gives better results than a field synthesis. Beam shaping, as in cose-
cant-squared patterns, is a typical example where phase is of no concern. Thus, more than
one solution for the excitation to the synthesis problem may exist.

Adaptive array theory is a cross-disciplinary subject combining antenna arrays and sig-
nal processing. Signal processing algorithms in adaptive arrays make it possible to modi-
fy the radiation pattern according to changing environments by, for example, placing pat-
tern nulls in directions where there is strong interference. The methods can also be
applied in a more static fashion, that is, to find excitations for low sidelobes in specific
angular regions. 

All the essential aspects of antenna synthesis for conformal array antennas can not be
covered in a limited space. We will, however, discuss principles and by examples illus-

396 CONFORMAL ARRAY PATTERN SYNTHESIS

c10.qxd  12/1/2005  4:31 PM  Page 396



trate some of the important points that we have mentioned here. The chapter concludes
with a detailed presentation of a shaped-beam/low-sidelobes synthesis for a cylindrical ar-
ray using the method of alternating projections. Least squares approximation is included
and the effect of mutual coupling is illustrated.

Finally, an effort will be made to summarize the usefulness of the various synthesis
methods in tabular form.

10.2 SHAPE OPTIMIZATION

The shape of the conformal antenna determines its radiation characteristics to a great ex-
tent. The shape is, therefore, an important design parameter. The shape is in many cases
dictated by other requirements like aerodynamics in the case of an aircraft, but in other
cases we may be free to choose a suitable antenna shape. Conformal antenna shapes were
discussed in detail in Chapter 3 and also in Chapter 8 in relation to packaging considera-
tions.

There is currently an interest in shape optimization for a variety of applications. For
large structures, there will be a large number of design parameters. One would, therefore,
need efficient optimization methods such as gradient methods, which require the calcula-
tion of the derivatives with respect to the design parameters. It has been shown that this
calculation can be done very efficiently from a single solution of the adjoint problem
[Pironneau 1984]. Shape optimization methods have been used successfully in aerody-
namics [Weinerfelt and Enoksson 2001], but also for microwave devices [Chung et al.
2000] and for radar cross section reduction [Bondeson et al. 2004]. The technique could
certainly also be applied to optimizing the shape of conformal antennas. 

10.3 FOURIER METHODS FOR CIRCULAR RING ARRAYS

In Chapter 2, we analyzed circular arrays and their radiation properties. We demonstrated
how the circular antenna excitation can be expanded in phase modes (for a discussion of
phase modes, see Section 2.3). The excitation phase modes are related to a similar far
field phase-mode expansion, which uniquely defines the radiation pattern. The inverse
problem, i.e. synthesizing the excitation according to a required antenna pattern shape,
follows directly. Let us take a circular array with isotropic radiators. By expanding the de-
sired far field Edes(�) in a Fourier series of phase modes we write

Edes(�) = �
M

–M

Amejm� (10.1)

where the coefficients Am, the far field phase-mode amplitudes, are obtained from the de-
sired pattern according to the inverse transform,

Am = �2�

0
Edes(�)e–jm�d� (10.2)

The number of used far field modes has been limited to ±M, hence, the synthesis is ap-
proximate. When isotropic radiators are used, the excitation phase-mode amplitudes Cm

are found [cf. Eq. (2.25)] from

1
�
2�
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Cm = Am (10.3)

The circular antenna excitation is then given by

V(�) = �
M

–M

Cmejm� (10.4 = 2.18)

The number of modes M should not exceed kR, where R is the array radius, according to
the discussion in Section 2.3. A few higher modes could possibly be added, but they will
not radiate efficiently. If more modes are necessary to match the desired pattern shape,
one will, therefore, have to choose a larger array diameter. 

The Fourier method solution provides a match to the desired pattern in the least mean
square sense. Drawbacks of the Fourier method are oscillations and overshoots (Gibbs’
phenomenon) that appear when the desired pattern has rapid variations or discontinuities;
see, for example [Schell and Ishimaru 1969].

The expression for the circular array radiation with 2M + 1 phase modes [Eq. (10.1)],
is similar to the corresponding expression for a linear array of 2N + 1 isotropic elements:

Elin(�) = �
N

–N

Vnejknd sin � (10.5)

Thus, if the far field phase-mode excitations Am are set equal to the element excitations Vn,
the same pattern functions will result. However, the pattern in the circular array case would
be given in the � space, whereas the pattern in the linear array case would be given in the
sin � space. One can, for example, create sin x/x type patterns for both arrays in the two do-
mains by equating far field phase-mode amplitudes and element amplitudes, respectively.

An obvious problem regarding synthesis arises if the denominator in Equation (10.3)
vanishes for modes that are essential for the desired pattern. Another observation is that
the method does not always give good results because of radiation of spurious modes. We
will take a closer look at these effects and the role of the element pattern in the next sec-
tion. As an example, we will take a Dolph–Chebyshev pattern for circular arrays using the
Fourier phase-mode approach. 

10.4 DOLPH–CHEBYSHEV PATTERN SYNTHESIS 

10.4.1 Isotropic Elements

The array factor of a linear, equally spaced array antenna [Eq. (10.5)], can be identified as
a polynomial by substituting w = ejkd sin � [Schelkunoff 1943], thus obtaining

Elin(�) = �
N

–N

Vnwn (10.6)

By making this a Chebyshev polynomial of the same order, the excitation coefficients Vn

can be determined to obtain a pattern function with Chebyshev characteristics [Dolph
1946]. This is the basis for Chebyshev pattern synthesis for linear arrays [see, e.g., Balanis
1997, p. 297]. In a circular array, the corresponding expansion [Eq. (10.1)], is given in

1
�
jmJm(kR)
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terms of phase modes with amplitudes Am instead of the element excitations Vn. Thus, in the
following example we have taken the element excitations of a synthesized linear array to
represent the circular array phase-mode excitations. See Figure 10.1, which shows a nine-
element linear –25 dB Dolph–Chebyshev array pattern and the corresponding nine-phase-
mode, circular –25 dB Dolph–Chebyshev array pattern. The beamwidth is about 2.5 times
larger in the circular array case than in the linear array case, corresponding approximately
to the difference in array transverse width (length vs. diameter) for the two cases.

Having found the far field phase modes does not mean that we have solved the synthe-
sis problem completely. The remaining problem is to find a realistic element excitation that
will generate the phase modes. The transformation is given by Equation (10.3); Figure 10.2
presents both mode sets (Am and Cm) for the circular array pattern of Figure 10.1 (b).

The next step is to find the element excitation V(�) expressed in the near field (excita-
tion) modes according to Equation (10.4). Sampling the continuous excitation V(�) at the
element positions �n gives the element excitation values [Figure 10.3 (a)].

Has the discrete excitation we found solved the problem? From Chapter 2 we know
that additional spurious modes are generated (distortion terms) and we have to make sure
that they are sufficiently attenuated. We notice from Figure 10.3 (b) that the pattern com-
puted from the discrete element excitation has an increased side lobe level compared to
the design goal of –25 dB, possibly due to spurious effects. Let us take a closer look at the
relevant design criteria.

First of all, the number of modes used (we had nine) must be less than or equal to the
number of elements (we had ten) in order to avoid aliasing of the phase-mode spectrum
(cf. Table 2.1). Second, in order to radiate the useful unambiguous mode spectrum the
number of phase modes must be less than about 2kR (cf. Figure 2.12). A commonly stated
limit is 2kR + 1 [Taylor 1952]; in our case we had 2kR + 1 = 9. With 11 elements instead
of 10, we would get 2kR + 1 = 9.8, which is more on the safe side. Using this number, we
get the pattern shown in Figure 10.4. Now we have obtained a result that is very close to
the ideal Chebyshev pattern. However, this is a narrowband solution since kR cannot be
allowed to vary much. We have the requirement

2M + 1 < 2kR + 1 < 2N + 1 (10.7)

where 2M + 1 is the number of phase modes and 2N + 1 is the number of elements. For an
increased bandwidth, the number of elements has to be increased; hence, element spac-
ings are much closer in terms of wavelengths at the low-frequency end.

10.4.2 Directive Elements

We found in Chapter 2 that arrays with directive elements exhibit less frequency sensitiv-
ity (greater “mode stability”) than arrays with isotropic elements. This was illustrated by a
design with omnidirectional patterns. Let us now also look at the Chebyshev array case
using directive elements. The critical factor is the expression with the Bessel function
Am/Cm = jmJm(kR) appearing in the denominator of Equation (10.3). The corresponding
expression for conversion from far field phase modes to excitation phase modes when di-
rective elements are used was derived in Chapter 2 [see Eq. (2.34)]:

Am/Cm = � �
�

p=–�

Dpjm–pJm–p(kR)� (10.8)
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Figure 10.1. Chebyshev patterns: (a) Linear array with 9 elements, (b) Circular array
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The coefficients Dp are the coefficients of a Fourier expansion of the element pattern. The
summation in Equation (10.8) has typically much less variation with frequency than the
single Bessel function; hence, it is more stable.

We repeat the Dolph–Chebyshev pattern synthesis as before, using 9 modes and 10 ele-
ments but for directive elements with 1 + cos � shape. The resulting phase-mode ampli-
tudes are shown in Figure 10.5 for two element spacings, 0.3 � and 0.35 �, representing a
frequency shift of about 15%. Also shown are results for isotropic elements (dashed lines).

Notice the much larger variation of the excitation mode amplitudes for the array with
isotropic elements compared to the array using directive elements. These variations need to
be implemented in the feeding of the array for the required pattern shape to be maintained
over this frequency range. Obviously, this is not an easy task. Special frequency filters in
combination with digital beam forming could be one solution [Steyskal 1989].

10.5 AN APERTURE PROJECTION METHOD

This method starts from a planar aperture; see Figure 10.6. It is assumed that this planar
antenna has been synthesized to fulfil the pattern requirements. The element locations of
the curved array are projected onto the planar aperture, and the aperture excitation is sam-
pled at the projected points. The sampled excitation is corrected for the element patterns
and the sampling point density. A cophasal distribution is assumed, thus determining the
element phases.

The method was tested experimentally [Chiba et al. 1989] for an array using 60 mi-
crostrip-patch elements on a ±46° segment of a half sphere with radius 3.2 �. The element
spacings in � and � were 0.65 �. The starting planar aperture had a Taylor –25 dB excita-
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Figure 10.2. Far field mode (dashed line) and excitation mode (solid line) amplitudes
for the circular array case in Figure 10.1 (b).
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Figure 10.3. (a) Excitation function with samples at the element positions, (b) Radia-
tion pattern (dashed line) compared to the ideal case (solid line) from Figure 10.1 (b).
Ten radiating elements spaced 0.4 �.
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Figure 10.4. Pattern from an 11 element circular array, nine phase modes, and 0.4 �
element spacing (dashed line), compared with the desired Chebyshev pattern (solid
line).
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line: isotropic elements, solid line: directive (1 + cos �) elements.
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tion. Using measured element patterns in the synthesis, a –25 dB sidelobe pattern was
also measured for the spherical array. 

Thus, the projection method proved to be successful, at least when the pattern require-
ments are not too severe. In fact, we demonstrated in Chapter 8 that one can take the Tay-
lor weighting directly on a curved (circular) array and achieve reasonable results. The in-
creased projected element density toward the edges tends to be compensated for by the
falloff of the element pattern. Theoretical results by Mailloux 1994 [Chapter 4] demon-
strated this for –35 to –40 dB sidelobe levels using circular array radii down to about 10
�. For still lower sidelobes, the mutual coupling has to be compensated for (and, in the
practical case, careful calibration will probably be necessary). Kojima et al. [2003] in-
cluded mutual coupling compensation based on measured embedded-element patterns.
They demonstrated as low as –45 dB sidelobes for a 60 element, 22 � radius sector array
antenna.

A related projection method [Schuman 1994] starts also from a planar array solution
that is projected onto a curved array. Here, however, the curved array is part of an enclo-
sure that completely surrounds the planar array. Thus, the planar array illuminates the in-
side of the enclosure, setting up equivalent currents on the enclosure surface. These cur-
rents, according to the equivalence theorem [Balanis 1997, Chapter 12], radiate a field
outside the enclosure that is identical to the field from the planar array in the absence of
the enclosure. In this way, we have created a curved surface with a known current distrib-
ution that fulfils the pattern requirement.

The next steps are not so obvious. The current sheet must be replaced by real elements,
the extent of the array on the surface must probably be limited, and the radiating element
characteristics, cross polarization effects, shadowing, and so on will cause the pattern to
deteriorate. The result reported [Schuman 1994] for a conical array was not very encour-
aging, but could perhaps be taken as a starting point for further optimizations by other
methods. Rizk and coworkers [1985] also discuss the advantages and limitations of the
method when applied to a conical surface.

10.6 THE METHOD OF ALTERNATING PROJECTIONS

The method of alternating projections (see, e.g., [Prasad 1980, Poulton 1986, Bucci et al.
1990]), is quite general and applicable to both planar and conformal antenna pattern syn-
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theses. Two sets are defined, one (a) consisting of all realizable patterns, and the second
(b) consisting of patterns meeting the given requirements. The requirements can, for ex-
ample, be posed in terms of sidelobes not exceeding x dB and a main lobe meeting a cer-
tain shape within ±y dB. Thus, there are many possible solutions meeting the require-
ments, that is, many points in both sets. For a solution to exist, it is necessary that the two
sets overlap somewhere, and the synthesis problem is to find at least one point in the over-
lapping region. The method of alternating projections can be visualized as successive pro-
jections between the two sets until the solution region is found; see Figure 10.7.

The method can be implemented in the following steps:

1. Select a starting pattern from the (A) domain.

2. Compare with the desired pattern. If satisfactory, then stop iteration. Otherwise, in
angular regions where requirements are not met, replace values with the desired
ones. This gives the (B) domain pattern.

3. Calculate excitation coefficients for a realizable pattern that matches the corrected
pattern in the least-mean-square sense and, hence, belongs to (A). Calculate this
pattern.

4. Go back to step 2.

There is a risk that the solution will stop at a local optimum, depending on the selec-
tion of the starting pattern. However, experience with the method, both for planar arrays
and conformal arrays, is generally good. Steyskal [2002] used the method for synthesiz-
ing a low-sidelobe pattern for a conformal array of 116 microstrip-patch elements
wrapped around a representative aircraft wing profile. A picture of this conformal wing
array is found in Chapter 1 (Figure 1.3). Mutual coupling was included by using embed-
ded-element patterns. Another detailed example is presented in Section 10.11 for a circu-
lar array pattern synthesis.

The method of alternating projections can be used for power pattern synthesis or field
pattern synthesis, depending on the formulation. Field pattern synthesis consumes, of
course, more degrees of freedom. It is also possible to include various other constraints.
Vescovo [1995] used a starting pattern from a 32 element circular array of isotropic ele-
ments obtained by Fourier synthesis. He then introduced constraints on the excitation val-
ues and also imposed nulls [Vescovo 1997] at specific angles. The problem was solved
using alternating projections. 
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Figure 10.7. Method of alternating projections, illustrating the successive projec-
tions and the overlapping solution area.
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10.7 ADAPTIVE ARRAY METHODS

Adaptive array antenna systems [Applebaum 1976, Hudson 1981, Gabriel 1992] make
use of techniques for signal processing of digitized received signals. By deriving opti-
mum weights on the element channels, based on the received signals, including noise and
interference, the signal-to-noise-plus-interference ratio can be maximized. The result can
be seen as creating nulls in the received pattern in the directions of interfering sources
while preserving a high gain beam toward the useful signal. The mathematical principles
can be carried over to antenna pattern synthesis, both for linear and conformal arrays
[Brennan 1972, Sureau and Keeping 1982, Dufort 1989, Shi et al. 1997].

Imagine a scenario in which many uncorrelated noise sources are spaced all around the
antenna except for a narrow sector where, instead, a signal source is located. After a suc-
cessful adaptation, the element weights would produce a narrow beam toward the signal
source and low sidelobes in the directions of the noise sources. By controlling the noise
amplitudes, the shaping of the sidelobe region can be modified. The number of noise
sources can be selected to be two to three times the number of elements in order to simu-
late a continuous noise distribution (see Figure 10.8).

Sureau and Keeping [1982] simulated a case with 372 noise sources evenly distributed
on a circle around a 96 element circular array of which 32 elements were used. The em-
bedded-element pattern was based on measured data (phase and amplitude), the same for
all elements. With a noise-free window of about 10°, a pattern with a narrow beam and
–30 dB sidelobes was achieved. They also demonstrated the synthesis of a difference pat-
tern. The sidelobe taper could be modified by changing the amplitude distribution of the
noise sources. In an early paper [Brennan 1972], the same technique was applied to the
synthesis of a 40 element parabolic arc array using a uniformly distributed noise field.
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Figure 10.8. A jamming scenario according to [Sureau and Keeping 1982] for low
sidelobe synthesis.
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The adaptive array synthesis method is quite general, and applicable to both linear
and conformal arrays. It is suited for designing specific sidelobe profiles and, of course,
also for creating nulls in the patterns. Mutual coupling effects can be included by using
embedded-element pattern data. The inversion of the covariance matrix (see Chapter 9)
can be time-consuming for large arrays, and has to be repeated if, for example, the beam
direction is changed. The method involves some experimentation; there are no simple
design rules for achieving a particular side lobe level, and so on. However, iterative
methods have been developed for successively adjusting the excitation so that an ac-
ceptable approximation to the desired pattern is obtained [Olen and Compton 1990, Shi
et al. 1997].

10.8 LEAST-MEAN-SQUARES METHODS (LMS)

We can write the pattern function in matrix form:

E = A · V (10.9)

where E is the radiation pattern vector, A the system matrix, and V the excitation. The
synthesis problem implies that the pattern E(�k) is given and we want to find the corre-
sponding excitation V. For this inverse problem, that is, the synthesis problem, the solu-
tion can formally be written as

V = A–1 · E (10.10)

If the system of Equation (10.9) is over-determined, that is, the pattern E(�k) contains
several more angles than there are elements in the array, only an approximate solution is
possible. The system can be solved in the least-mean-squares (LMS) sense [Lindfield and
Penny 1995]: 

V = (AHA)–1AHE (10.11)

where the exponent H stands for complex conjugate transpose. (In MATLAB notation
Equation (10.11) is simply written V = A\E.)

Even if Equation (10.11) provides a best match to the desired pattern in the least-
squares sense, it does not always provide the desired trade-off between various parts of
the pattern, so some kind of iteration may be necessary. 

Guy [1988] describes a method in which the difference Ediff between the desired pat-
tern Edes and the first obtained LMS pattern E0 is taken as a new desired pattern function
to be synthesized in the least-squares sense. This is then added to E0, and a new difference
pattern is obtained to be synthesized, added, and so on. Only angles for which the pattern
is outside the tolerance limits are included. The method converges rather quickly after
10–20 iterations in the cases studied. These include a parabolic cylindrical array with
cosecant-squared main beam, and an ellipsoidal array with height/diameter = 1, synthe-
sized for about –30 dB sidelobes. The method can be modified to handle phase-only syn-
thesis (amplitudes are fixed) as well as amplitude-only synthesis (phases are fixed), but
the convergence is much slower.

In many cases, it is important to choose a good starting pattern. It should reasonably
well represent a realistic desired pattern, and thus ensure good convergence. Dinnichert
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[2000] introduces a virtual planar array perpendicular to the desired main beam direction;
see Figure 10.9. The planar array corresponds approximately to the projection of the con-
formal array in this direction. The virtual planar array can be synthesized by any known
planar synthesis method to meet the conformal array requirements. A similar method is
used by Schmid [2001].

Vaskelainen [1997a,b] describes a variation of the LMS method in which he intro-
duces different weights for different directions, and also iteratively changes the weights.
The solution [Eq. (10.11)] is modified to

V = (AHWA)–1AHWE (10.12)

where W is a diagonal matrix with weights for each direction. In the iteration, the desired
pattern is given the phase values obtained in each previous step, the weights are adjusted
according to the relative errors in each point, a new approximate pattern is calculated, and
so on. This method of using weights makes it possible to control the sidelobe profile and
other parameters. The weight corrections, however, must be made carefully in order to
ensure convergence. Among the examples shown by Vaskelainen [1997a] is a cosecant-
squared shaped beam synthesized from a parabolic array. This is the same as that of Guy
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Figure 10.9. The virtual array [Dinnichert 2000].
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[1988], and the two results agree well. Vaskelainen [1997b] also demonstrates results for
a spherical array with fixed amplitude excitation, using phase synthesis only and the
method of iterative weight correction. A number of nulls in the pattern could easily be
added. However, when using phase synthesis only, the starting case must be selected
carefully and the number of elements required is usually larger than in a phase and ampli-
tude synthesis.

10.9 POLARIMETRIC PATTERN SYNTHESIS

Most of the discussion so far has dealt with the synthesis of a scalar pattern, with no re-
gard for the polarization. One can extend the synthesis by considering both co- and cross-
polarized components, or � and � components. We would then have an extended pattern
vector:

E = � � (10.13)

The same procedures as before in, for example, the LMS synthesis can be applied. We get

E = A · V (10.14)

where the system matrix also describes the coupling between polarizations:

A = � � (10.15)

In this way, we can assign different requirements to the two components of the radiation
pattern, typically the co- and cross-polarization patterns. The excitation must be applied
to arrays with two-port radiators. It is, of course, essential to know the polarization char-
acteristics of the element patterns. Mutual coupling can be included, either as coupling
matrix or by the embedded-element patterns. It was shown by Heberling and Winterfeld
[1992] that even for a cylidrical array with one row of two-port patch elements, the intro-
duction of embedded-element patterns (instead of isolated patterns) in the synthesis re-
sulted in significantly less cross polarization.

Schmid [2001] reported excellent polarization purity for two synthesized arrays, one
cylindrical with elliptical cross section and one ellipsoidal. The very low cross polariza-
tion was mainly due to the assumption of ideal cross-polarization-free Huygens source el-
ements consisting of a short magnetic dipole crossed with a short electric dipole.

By including two polarization components, the synthesis problem is essentially dou-
bled. In the same way, one can extend vectors and matrices to include data for two or
more frequencies. In this way, the synthesis can be made for a range of frequencies, also
with different weights for different frequencies.

10.10 OTHER OPTIMIZATION METHODS

We have discussed several synthesis methods from an antenna perspective. There are,
however, many types of general optimization methods that can be applied to antenna

A��

A��

A��

A��

E�

E�
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synthesis problems, for example, genetic algorithms and simulated annealing. The ge-
netic algorithm method is based on an idea from Charles Darwin’s theory of evolution.
The parameter space (of “genes”) is often discretized. Each set of parameters (the “chro-
mosome”) represents one candidate, which performs according to its value of the cost
function. A population of several candidates is treated in each iteration step. Crossing
genes and mutation form new generations of the population. Then, a selection of the
best candidates (and rejection of the worst) is made, followed by a new crossover, and
so on [Haupt 1995]. These steps reduce the risk of becoming trapped in local minima.
However, the convergence is slow, especially for large problems. In spite of this the ge-
netic algorithm has been used successfully for pattern synthesis problems, for example,
a linear array on a cylinder [Allard et al. 2001] and linear and circular arrays [Yan and
Lu 1997]. Phase and amplitude constraints can easily be included, and element locations
can be perturbed.

Virga and Zhang [2000] combined the genetic algorithm method with the adaptive ar-
ray method. Their application was a circular array with 60 Vivaldi type elements, 20 of
which covered the active 120° arc. First, the genetic algorithm was used to maximize the
directivity for a given –25 dB sidelobe level. Subsequently, the adaptive array method
was used to insert several nulls into the pattern. A typical pattern with nine nulls imposed
is shown in Figure 10.10.

Simulated annealing is another global search method in which the parameters are
changed randomly. If the result is improved, the design is accepted; if not, it is rejected.
However, occasionally a worse result is also accepted with a probability governed by
the “temperature” parameter T, which is gradually reduced. After several steps the low-
er temperature makes it less likely that a worse result is accepted. Ferreira and Ares
[1997, 2000] did shaped-beam synthesis using this method for cylindrical, spherical,
and conical arrays. The acceptance of “worse” results in the beginning of the optimiza-
tion reduces the risk of being trapped in a local optimum. The mutations in the genetic
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Figure 10.10. A –25 dB sidelobe pattern synthesized with the genetic algorithm
method and nulls imposed by the adaptive array method [Virga and Zhang 2000].
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algorithm method and, sometimes, restarting from new parameters, serve the same pur-
pose.

10.11 A SYNTHESIS EXAMPLE INCLUDING MUTUAL COUPLING

We will conclude this chapter with a detailed presentation of pattern synthesis for a sim-
ple but typical application, and show results in terms of pattern performance and active
impedance, including mutual coupling effects. We take as the basis for our example the
cylindrical array antenna that we have referred to several times (see Figure 8.1a), using
the method of alternate projections. The assumed requirements include both the sidelobe
region and the shape of the main beam. We include the effect of the mutual coupling in
the synthesis; neglecting the mutual coupling leads otherwise to poor results, especially in
the shaped-beam region [Josefsson and Persson 1999].

For simplicity, we assume that the elements have a cos � isolated pattern and study
one row of waveguide aperture elements spaced 0.53 � on an arc of about 120° on the 4.3
� radius cylinder. We use calculated mutual coupling data for this row of 18 waveguide
elements (see Chapter 6).

The radiation pattern E(�k) for a range of angles �k is a function of the complex ele-
ment excitations V(n). In matrix notation this can be written as

E = Ae · V (10.16)

The matrix Ae contains the geometrical and other factors that govern the relationship be-
tween pattern and excitation:

E(�k) = �
n

Vn EL(�k – n��)ejkR cos(�k–n��) (10.17)

where EL(�) is the element pattern, R is the cylinder radius, k = 2�/�, and �� is the an-
gular spacing of elements around the cylinder.

We assume that the array is fed with an excitation vector V+(n) (waves from a feed net-
work toward the elements). The mutual coupling among the elements will cause reflected
waves V–(n) given by the mutual coupling scattering matrix S according to 

V– = S · V+ (10.18)

Thus, the total excitation at the elements (in our case at the apertures) becomes

Vtot = (I + S) · V+ (10.19)

where I is the identity matrix. Let us insert the last expression in Equation (10.16), yielding

E = Ae · (I + S) · V+ = A · V+ (10.20)

We see that Equation (10.20) is of the same form as Equation (10.16). Equation (10.20)
provides a transformation from the excitation (from the feed) to the pattern, including the
effect of the mutual coupling.
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The synthesis problem will be solved by the method of alternating projections. The
procedure is illustrated by the following example. A cosecant-squared main beam with
unequal sidelobe envelopes will be synthesized. The specification is:

–180 to 0°: maximum –20 dB sidelobes

0 to 35°: cosec2 within ±1dB

0 to 180°: maximum –30 dB sidelobes

Any pattern within the mask (dashed lines in Figure 10.11) is a solution. The Figure also
shows the starting pattern for the iteration.

The pattern is successively modified in the regions in which the requirements are not
met. For example, after three iterations shown in Figure 10.12, corrections are made
around –100°, where –20 dB replaces the high sidelobe, but the phase values are retained.
Similar corrections are done in the shaped beam region and around 50°. The next step is
to find a realizable pattern that matches the corrected pattern in the LMS sense, and so on.
A synthesized beam pattern after 100 iterations is shown in Figure 10.13.

The pattern is shown in polar form in Figure 10.14, where the locations of the 18 radi-
ating elements are also indicated by small circles.

If we now repeat the synthesis but neglect the mutual coupling effect, we find that the
pattern changes, Figure 10.15. Figure 10.15 (b) shows a close-up of the main beam ana-
lyzed with mutual coupling but synthesized without coupling. It is apparent that the mutu-
al coupling plays an important role; it is essential to include the mutual coupling in the
synthesis.

The change in excitation due to the mutual coupling is demonstrated in Figure 10.16.
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Figure 10.11. Starting case: Equal amplitude excitation with the main beam directed
at 30 degrees. Dashed lines represent the requirement template.
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Figure 10.13. Synthesized pattern after 100 iterations.
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Figure 10.12. Result after three iterations.
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The effect on the phase is shown next. Figure 10.17 shows the phase difference be-
tween the excitations without coupling and with coupling.

The active impedance expressed as the active reflection coefficient is presented in Fig-
ure 10.18 as a polar plot (corresponding to a Smith chart). The variations from element to
element are significant.

By this example, we have illustrated a simple power-pattern synthesis for a circular ar-
ray antenna. That it is essential to include the mutual coupling was shown by the impact
of the coupling on the excitation amplitudes and the shaped beam pattern. The mutual
coupling also modifies the active element impedance considerably and causes reflections
on the feeding lines. These effects were not considered in the optimization. However,
they could in principle be included by introducing additional parameters in the destination
function, for example, the reflection coefficients, in addition to the shape of the radiation
pattern.

10.12 A COMPARISON OF SYNTHESIS METHODS

Many optimization methods suitable for antenna array synthesis exist. We have mainly
discussed those that have found use in connection with conformal antennas. There are
many variations to most methods as well and new methods that are being developed. One
example is the shape optimization method briefly mentioned in Section 10.2. Another is
the particle swarm optimization method [Boeringer and Werner 2004] that resembles ge-
netic algorithms, but is claimed to have simpler implementation. Furthermore, different
performance indices can be chosen. We have given examples in which an average opti-
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Figure 10.14. Synthesized pattern with coupling, also showing element locations.
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Figure 10.16. The mutual coupling effect on the synthesized excitation amplitude.
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Figure 10.17. The change in the phase excitation due to the mutual coupling.
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mum in the least-squares sense was sought. Other, more detailed criteria can be used in-
stead, such as mini-max or equal ripple.

Thus, the suitability of the various methods for a specific application may depend on
the detailed requirements, the available parameter space, previous experience, available
computer codes, and simply the user’s personal preferences. It is not possible to rank the
methods, or even to include all possible methods in a comparison. However, an effort to
summarize the main characteristics with conformal arrays in mind is presented in Table
10.1, partly based on [Guy 1999].
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Figure 10.18. The active reflection coefficient for the 18 elements.

Table 10.1. Summary of synthesis methods for conformal arrays

Method Characteristics

Array shape optimization (Section 10.2) Not much done yet in this area.
Fourier methods (Section 10.3) For cylindrical geometries. Can have problems 

with overshoots. Sometimes satisfactory as
starting case for other methods.

Aperture projection (Section 10.5) Three-dimensional, simple, not good for advanced
requirements.

Alternating projections (Section 10.6) General, effective, flexible.
Adaptive array (Section 10.7) General, but computation intensive.
Iterative least-squares (Section 10.8) Flexible, several variations possible.
Polarimetric synthesis (Section 10.9) Can be included in other methods.
Genetic Algorithm (Section 10.10) General, slow convergence.
Simulated annealing (Section 10.10) General, slow convergence.
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In this chapter, we will discuss conformal antennas from a scattering point of view. This
is an important issue, in particular for antenna installations on stealth vehicles where it is
desired to minimize all scattering contributions. Efficient antennas are in principle also
good scatterers, so the problem at hand is a difficult one. However, conformal antennas
have some advantages over traditional planar antenna installations.

11.1 INTRODUCTION

An efficient receiving antenna is usually also an efficient scattering antenna. The antenna
receives only part of the energy incident on the antenna; a significant part is also scat-
tered. A portion of this scattered energy radiates back toward the illuminating transmitter.
Thus, the antenna exhibits a radar scattering cross section (RCS). In fact, the antenna can
be responsible for the larger part of the total RCS of, for example, an aircraft, especially if
the aircraft is designed to have stealth characteristics. The antenna scattering can some-
times also be the source of EMC (electromagnetic compatibility) problems and cause in-
terference with other systems on the same platform.

The general subject of electromagnetic scattering is extensive, see, for example, the
numerous references in the Proceedings of IEEE, August 1965, Special Issue on Radar
Reflectivity, where 30 pages (!) of literature references are listed. It has long been recog-
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nized that there exist relations between the transmitting and scattering properties of anten-
nas [Sinclair et al. 1947, Stevenson 1948, Appel-Hansen 1979]. However, the scattering
from practical antennas is not well covered in the literature. Several theoretical papers on
scattering from basic antenna types like dipole, horn, slot, or similar elementary antenna
elements have been published. For an overview, see among others [Collin and Zucker
1969, Williams 1986, Balanis 1997, Tai 2001, Bach Andersen 2003].

A number of authors have adopted a scattering matrix approach for single element an-
tennas; see, for example, [Collin and Zucker 1969, Knott et al. 1993, Hansen 1989]. In
[Harrington 1964], Harrington presents a formulation for the problem of scattering by an
N-port loaded antenna where the representation is made in terms of open-circuited imped-
ance parameters and short-circuited admittance parameters.

Some authors have treated the problem of scattering from planar array antennas, for
example, [Tittensor and Newton 1989, Wills 1991, Chen and Jin 1995, McNamara et al.
1992, Fan and Jin 1999]. Rather few references deal with scattering from conformal array
antennas. Ko and Mittra [1989] investigated the scattering properties of an array of patch-
es placed on a parabolic cylindrical surface. Fan and [Jin 1997] analyzed the scattering
from a slotted waveguide array bent into a cylindrical shape. 

In this chapter, we will present some examples of scattering from a cylindrical confor-
mal array antenna. This array has waveguide aperture elements, and we will investigate
cases with and without a dielectric coating on the array. We will also give some examples
of a trade-off between antenna performance and scattering characteristics by optimizing
the antenna load.

The results for the cylindrical array are based on recent research by Dr. Björn Thors
and coworkers; see [Thors 2003] and related references.

11.2 DEFINITIONS

The scattering characteristics of an object in terms of the radar cross section (RCS) is de-
fined as

. . . an area that, when multiplied by the power flux density of the incident wave, would yield
sufficient power that could produce, by isotropic radiation, the same radiation intensity as that in
a given direction from the scattering object. (IEEE Standard Definitions of Terms for Antennas,
IEEE Std 145-1993)

In equation form, the RCS can be written as

� = lim
r��

4�r2 = lim
r��

4�r2 (11.1)

where PS is the scattered power density and Pi is the incident power density. H� S is the
scattered magnetic field and H� i is the magnetic field of the incident plane wave. Instead of
the magnetic fields, we can use the corresponding electric field components—they are
proportional. The definition is valid for a particular set of polarizations: that of the illumi-
nating wave and that of the receiving antenna. A complete description of the scattering
characteristics (at one angle and one frequency) is provided by a scattering matrix instead
of just the scalar cross section �. Let us break down the incident and scattered fields into

H�S · H�S*
�
H� i · H� i*

PS

�
Pi
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two orthogonal components, the TE and TM wave components. Thus, four RCS compo-
nents form the radar cross-section matrix:

[�] = � � (11.2)

where the subscripts TE/TM etc. indicate the polarizations of the incident/scattered fields.
The radar cross section is usually defined as a far field quantity, but can in principle

also be defined in the near field. In this chapter we assume far field conditions with the
definition as in Equations (11.1) and (11.2). We will analyze the co-polarized RCS—the
matrix component �TETE—as well as the cross-polarized component, �TETM. When the il-
luminating antenna and the receiving antenna are at the same location, we have the mono-
static radar cross section. If the two are separated in angle, we get the bistatic radar cross
section. However, we will only consider the monostatic case here. The TE and TM field
components are defined relative to the z axis, that is, the transversal (T) components are
perpendicular to the z direction (cylinder axis in the cases to be studied).

The scattering cross section depends also on the antenna matching. A short-circuited
antenna reradiates the energy that could otherwise have been absorbed in a matched ter-
mination. This part of the cross section is termed the antenna mode contribution; the am-
plitude and phase depend on the antenna load. The remaining part is the residual mode
contribution; together they make up the total radar cross section of the antenna. Other de-
finitions can be found in the literature, but the ones just described are chosen here for their
simplicity. See also [Hansen 1989, Munk 2003]. We will assume that the cylindrical array
that we are going to analyze has the feed lines terminated in matched loads. However, in
Section 11.6 we will introduce a certain mismatch as a means for controlling the total
scattering.

11.3 RADAR CROSS SECTION ANALYSIS

11.3.1 General

It is often claimed that an antenna scatters (at least) as much as it receives, even when it is
matched. A large planar array antenna can in theory absorb all the incident energy from a
fixed direction, thus becoming “invisible.” However, on the rear side of the antenna it will
cast a shadow. This can be seen as the result of the forward scattering canceling the inci-
dent field in that region [Williams 1986, Munk 2003]. In practice, we will have to account
for some additional scattering due to contributions from the antenna/ground plane edges
as well as scattered energy due to variations in the active matching as the direction of illu-
mination is varied.

Most practical (not perfectly matched) planar antennas will give rise to a very large
back-scattered field at normal incidence, since all parts of the antenna radiate back in
phase. For a curved array, this will not happen; the phase compensation of the curvature
in the antenna feed system will not work for scattering. Another advantage of conformal
arrays is the conformal integration with the platform (aircraft, etc.), which reduces the ef-
fect of antenna edges and back structure. 

We will present a detailed analysis of a canonical case: scattering from an array in a
conducting cylinder. The cylinder itself will of course also scatter, but most of that is con-
centrated to the specular direction. In the monostatic case, this is significant only in the

�TETM

�TMTM

�TETE

�TMTE
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direction perpendicular to the cylinder axis. For other directions, there will be very little
backscattering if the cylinder is large; the major contributions will come from the array. 

11.3.2 Analysis Method for an Array on a Conducting Cylinder

The conformal array antenna with rectangular waveguide antenna elements in an infinite-
ly long circular cylinder is shown in Figure 11.1 (a).

For the analysis of the scattering, we will use a hybrid of the method of moments
(MoM) and one of the many different high-frequency methods discussed in Chapter 4.
This approach is suitable for medium- to large-size arrays. The mutual coupling between
the antenna elements can be included. We will present an outline of the analysis method;
more details are found in Chapter 4 and in [Thors and Josefsson 2003] and other refer-
ences.

The computational domain is divided into two regions as shown in Figure 11.1 (b). By
using the field equivalence theorem [Balanis 1989], the fields in the exterior region are
decoupled from the fields in the interior region by covering the apertures with a perfectly
conducting surface and introducing equivalent magnetic currents on the surface. The
magnetic field in the exterior region can now be expressed as the sum of the incident field
in the presence of the conducting cylinder without apertures, H� inc, and the magnetic field
H� sc caused by the equivalent magnetic currents.

The electric field in the interior region is represented by rectangular waveguide modes.
aip and bip (waveguide i, mode p) are the complex amplitudes of the forward and back-
ward propagating modes, respectively. 

The magnetic field in the interior region is denoted by H� int. Matching the tangential
magnetic fields in the aperture results in the following integral equation:

(H� inc + H� sc)|r��S+ap = H� ext|r��S+ap = H� int|r��S –ap (11.3)

where Sap is the set of all apertures.
The next step is to calculate the incident excitation field H� inc in the presence of the

cylinder. Two different methods have been considered for this, the high-frequency
method UTD, and a modal solution based on expansions of the fields in cylindrical wave
functions (modes). Both methods produce practically identical results. We choose UTD
since it turns out to be significantly faster.

The problem of finding the incident excitation is, by reciprocity, related to the radia-
tion problem. If the solution to the radiation problem is known, reciprocity will automati-
cally give the incident field H� inc on the cylinder surface. For a more detailed discussion
see [Thors 2003] where a discussion concerning the UTD and the modal solutions for the
incident and scattered fields can also be found. Now, consider two infinitesimal sources,
dp�Q

m and dp�P
e, magnetic and electric current moments, respectively, located at the points Q

and P, as shown in Figure 11.2. The electric and magnetic fields generated by the sources
are denoted by E�P, H� P and E�Q, H�Q.

By making use of reciprocity [Harrington 1961], the following relation can be estab-
lished:

–H�P(r�Q) · dp�Q
m(r�Q) = E�Q(r�P) · dp�P

e(r�P) (11.4)

With P located in the far zone, the electric current moment can be used to generate an in-
cident plane wave, where the strength of the current moment specifies the amplitude of
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the incident wave. Since E�Q(r�P) can be expressed in terms of dp�Q
m(r�Q) using the UTD, as

shown by [Pathak et al. 1981], the incident magnetic field on the cylinder surface can be
obtained from Equation (11.4).

The aperture fields can now be solved from Equation (11.3) using the method of mo-
ments with the waveguide mode functions as testing functions. The aperture fields then
yield the scattered far field.

11.3.3 Analysis Method for an Array on a Conducting Cylinder
with a Dielectric Coating

Many practical array antennas have a dielectric coating (radome) for mechanical protec-
tion. The dielectric layer will affect both the radiation and the scattering properties of the
antenna. Figure 11.3 illustrates the problem for this case.
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The introduction of the dielectric coating makes the analysis problem much more diffi-
cult compared to the noncoated surface discussed in Section 11.3.2. The techniques for
calculating the excitation field H� inc and the field H� sc scattered from the apertures must in-
clude the dielectric coating. For this purpose, special asymptotic techniques are used in
combination with MoM [Thors and Rojas 2003]. These asymptotic techniques have pre-
viously been used for radiation pattern and mutual coupling analyses; see Chapters 4 and
6. The following approximate rules illustrate when the asymptotic method is valid for
coated surfaces (�0 is the free-space wavelength):

a > �0 (11.5)

d < 0.15 (11.6)

�in > 10° (11.7)

As mentioned in Chapters 4 and 6, the paraxial (near axis) region of the coated cylinder
must be treated separately. Here, we use a planar approximation with a corresponding
spectral domain technique [Croswell et. al. 1967, Thors et. al. 2002]. This approximation
is also used for calculating the coupling in the azimuth direction between closely spaced
elements. For large cylinders coated with thin dielectric layers, it has been found that the
planar approximation is very accurate if the distance between the transmitting and receiv-
ing apertures is not too large [Thors et al. 2002]. Also, note that H� inc is defined in the
presence of the coated PEC cylinder, hence H� inc 	 H� i; compare Equation (11.1). More
details are presented in [Thors et al. 2004].

For the numerical results presented in the following sections, the receiver and trans-
mitter are collocated, that is, the values represent the monostatic RCS. Due to the large
dynamic range, a logarithmic power scale is used with values in dBsm, that is, 0 dBsm
corresponds to �ref = 1 m2. In section 11.4, theoretical results for the PEC cylinder, in-
cluding some experimental data, are presented. The case with a dielectric coating is dis-
cussed in 11.5. Finally, Section 11.6 addresses the trade-off between scattering and radia-
tion efficiency.

11.4 CYLINDRICAL ARRAY

11.4.1 Analysis and Experiment—Rectangular Grid

The radar cross section has been analyzed for a cylindrical array antenna with the follow-
ing dimensions:

Element waveguide apertures 39 mm × 16 mm

Element grid Rectangular, 3 × 18 elements

Element spacing 37.1 mm in the azimuth

41 mm in the axial direction

Cylinder radius 300 mm

The above dimensions agree with those of the experimental antenna shown in Figure
11.5. The polarization is horizontal. At the frequency selected, 6.8 GHz, the element spac-

�0
�
���r�
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ings in the rectangular grid are 0.84 � in the azimuth and 0.93 � in the axial direction. We
can, thus, expect grating lobe effects1 in the scattering pattern. The frequency was dictat-
ed by the available measurement setup; otherwise, a lower frequency could have been
chosen to reduce the grating lobe complication.

For the calculations, a simple phase correction was applied to the interior fields in the
apertures. The rectangular waveguide modes, as defined in the waveguide, were trans-
formed to the convex surface of the aperture by adding a small phase correction corre-
sponding to the distance between the two surfaces. See also the discussion in Section
4.5.2.

We will first present calculated results and compare them with experimental values.
This will verify the theoretical model. We will then perform a more detailed study of
the number of waveguide modes required and the polarization effects. The results are
presented in terms of the polarization scattering matrix elements; compare Equation
(11.2).

Figure 11.4 shows the theoretical co-polarized scattering �TETE and its variation in
the two principal planes. Only the dominant waveguide mode was used in this calcula-
tion. We note that for this case the results with and without mutual coupling are very
similar.

The scattering pattern in the E plane exhibits a considerable ripple. The periodicity
corresponds to the angular spacing of the array elements on the cylinder (7.09°). The
large ripple amplitude is due to the large E-plane element spacings, 0.84 � in this case.
We have (roughly speaking) three major scattering centers. One is the contribution from
an area close to normal incidence. In this area, several elements backscatter in phase. Two
other in-phase areas are located near 36° from the normal incidence direction, on both
sides, where a grating lobe radiates back to the source. These three most significant con-
tributions interfere, causing the strong ripple. With a closer element spacing (see Section
11.6), the ripple is substantially reduced.

In order to verify the theoretical results, measurements were performed on the experi-
mental cylindrical array antenna built by Ericsson Microwave Systems AB in Mölndal,
Sweden (Figure 11.5). It has the same dimensions as were used in the calculation. The
waveguides were terminated in matched loads designed for the dominant TE10 mode. The
measurements took place at the indoor measurement range at the Swedish Defence Re-
search Agency (FOI) in Linköping, Sweden. 

Since we were interested in the scattering from the apertures in the cylinder and not
from the cylinder itself, efforts were made to reduce the scattering contribution from the
finite cylinder. Thus, absorbers were used to minimize the scattering from the cylinder
edges;, see Figure 11.5. To avoid the strong specular reflection at normal incidence, the
antenna was tilted a small angle (about 4°), corresponding to the first RCS minimum of
the cylinder without apertures. See Figure 11.6, where the backscattered cross section
from a finite cylinder without apertures, �cyl, is compared with the predicted aperture-
scattered cross section �TETE. The backscattered field from the cylinder was computed by
a physical optics (PO) approximation, which is accurate in the region near � = 90°. From
these results, it was decided to make the measurements (and calculations) for an angle � =
86.3°.

After RCS data had been collected for all azimuth angles, the apertures were covered
with conducting tape and the measurements were repeated, now representing a metallic
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1There are no distinct grating lobes for a curved array. The curvature causes the grating lobes to be smeared out,
but the effect is still significant.
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cylinder without apertures. The array RCS was then obtained by subtracting the second
results from the first. A comparison between the calculated and the measured results is
presented in Figure 11.7.

Note that the measured curve is not perfectly symmetrical around � = 0°. This is main-
ly due to problems with aligning the antenna at the measurement range. The top of the
supporting pylon was not exactly flat, causing the elevation angle � to change slightly
during azimuth rotation. Figure 11.6 shows that a small change in elevation angle from
the desired � = �min corresponds to a large change in �cyl. This means that, for some az-
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imuth angles, two numbers of the same order of magnitude must be subtracted from each
other, which results in a reduced accuracy. However, the calculated and experimental re-
sults seem to agree within the tolerances of the experimental setup.

11.4.2 Higher-Order Waveguide Modes

As shown in Figure 11.7, the single-mode approximation gives good results for the
backscattered field in the E plane. However, as the elevation angle changes from normal
incidence, the asymmetric illumination excites higher-order waveguide modes. Higher-
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of Ericsson Microwave Systems AB, Göteborg, Sweden.)
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order modes must also be included for the case with cross-polarized illumination, that is,
TM incidence. Figure 11.8 shows results for �TETE and �TMTM calculated with the three
lowest-order waveguide modes (in cutoff order), that is, TE10, TE20, and TE01.

As expected, the effect of the two higher-order modes is more pronounced in the H
plane, the elevation plane (cf. the single-mode case in Figure 11.4). The dominant wave-
guide mode is not excited by an incident TM-polarized plane wave. However, the level of
�TETE is only slightly higher than the levels of �TMTM.

Figure 11.9 shows the calculated radar cross section in the H plane with even more
waveguide modes included. The E-plane results have already converged with three
modes; in fact, the single-mode approximation appears to be sufficient for this plane.

For the H plane, a few additional modes are required in order to reach full conver-
gence. Up to 40 modes have been tested [Thors 2003], but it was found that 15 modes are
sufficient for convergence in the H plane (Figure 11.10). Not all modes are significant,
however, and some modes are more important than other modes. Including the first five
modes predicts the RCS quite well. In fact, the fifth mode, TM11, is essential, as has pre-
viously been found in other studies [Bonnedal 1996, Persson and Josefsson 2001]. See
also Section 6.2.3.3.

Figure 11.11 shows the RCS in a contour plot covering azimuth angles from 0° to
90°and elevation angles from 10° to 90° (normal incidence). Fifteen modes are used and
mutual coupling is included. Figure 11.11 (a) shows the co-polarized case �TETE and (b)
the cross-polarized case �TETM.

Due to symmetry, the radar cross section exhibits very low cross-polarization levels in
the E and H planes. However, quite small angular changes will break the symmetry, re-
sulting in an increased cross polarization. In some regions, the cross-polarization levels
are of the same order of magnitude as the co-polarization levels. See also Figure 11.12, in
which the components of the radar cross section matrix are compared at the elevation an-
gle � = 60°.
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11.4.3 Triangular Grid

By staggering the middle row of the 3 × 18 elements array by half the azimuth spacing,
we obtain a coarse triangular grid. By repeating some of the previous cases with this new
grid, we can compare the results for the two grids. 

Figure 11.13 shows how the E-plane co-polarization levels are modified when the ele-
ments are arranged in a triangular grid.

The reduction of the RCS levels for the triangular grid array compared to the rectangu-
lar grid is explained by the denser azimuth spacing of the triangular grid, which reduces
the grating lobe contributions. Figure 11.14 shows the H-plane co-polarization levels. The
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maximum RCS is also reduced here. However, at some elevation angles the triangular
grid array exhibits larger RCS. 

Figure 11.15 compares the scattering properties in terms of �TETE for the triangular and
rectangular grid arrays. Figure 11.16 shows the cross-polarization case.

11.4.4 Conclusions from the PEC Conformal Array Analysis

We conclude from the analysis so far that it is only for very accurate results that it is nec-
essary to take the coupling between the antenna elements into account. The main features
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of the scattering are obtained without introducing the mutual coupling (which simplifies
the calculations). 

Rather few waveguide modes are needed when the RCS is calculated in the E plane,
whereas at least five modes are needed for the H-plane analysis. For best results, 15
modes should be used in the H plane.

It has been found that the antenna exhibits strong cross-polarization scattering outside
the principal planes. It is in general important to include all components in the radar
cross-section matrix when analyzing scattering from a conformal array antenna.

However, since the arrays have only three rows one cannot draw general conclusions
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regarding scattering from rectangular versus triangular grids from the simple example
presented.

11.5 CYLINDRICAL ARRAY WITH DIELECTRIC COATING

The results for the coated array were obtained for an array configuration as defined be-
low:

Element waveguide apertures 39 mm × 16 mm

Element grid Rectangular, 4 × 32 elements
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Element spacing 20 mm in the azimuth

41 mm in the axial direction

Cylinder radius 300 mm

Thus, the difference from the noncoated case is a denser grid and four rows of elements
instead of three [Figure 11.3 (a)]. This will eliminate the grating lobe problem in the az-
imuth (at 6.8 Ghz, 20 mm corresponds to 0.45 �). 32 elements cover about the same az-
imuth sector on the cylinder (� 120°) as before with 18 elements. The dielectric layer has
a thickness of 2.4 mm. Permittivity values from 1.0 to 2.5 have been studied. Five wave-
guide modes were used in the calculations. We present results mainly for two frequencies,
4.3 GHz and 6.8 GHz.

11.5.1 Single Element with Dielectric Coating

In Figures 11.17 and 11.18, the effect of the dielectric layer on the E- and H-plane RCS is
illustrated for a single-element antenna on the coated cylinder at 4.3 GHz.

By introducing the dielectric layer, the monostatic RCS decreases in the specular di-
rection. With a coating, more energy propagates along the cylinder surface, which ex-
plains the higher RCS levels at |�| > 90°. The oscillations result from the interference be-
tween the lit region geometrical optics ray and the rays that creep around the cylinder. 

The corresponding results calculated at 6.8 GHz are presented in Figures 11.19 and
11.20.

The increased frequency makes the coating electrically thicker and more energy prop-
agates along the cylinder surface. For elevation angles approaching the axial directions,
the radius of curvature in the direction of the geodesics increases. Therefore, the surface
rays shed less energy as they propagate along the surface. This effect is more pronounced
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at the higher frequency. As before, there is interference between the lit region geometrical
optics ray and the rays that creep around the cylinder. 

11.5.2 Array with Dielectric Coating

Since we now have a relatively dense element grid, we do not experience a large ripple in
the azimuth as we had before (cf. Figure 11.7). The E-plane RCS results shown in Figure
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11.21 are fairly constant over the about 120° extent of the array. The effect of the dielec-
tric layer on the RCS is not dramatic. The RCS patterns become more oscillatory when
the dielectric coating is introduced. The corresponding H-plane results are presented in
Figure 11.22.

At the lower frequency, the energy of the creeping waves are attenuated rather fast
and the coating has a small effect on the backscattered field. The appearance of the RCS
patterns is largely determined by the array factor. The peaks near 32 and 148 degrees in
the H plane at 4.3 GHz [Figure 11.22 (a)] are due to grating lobes in the elevation
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plane. At the higher frequency [Figure 11.22 (b)] the energy is guided much more effi-
ciently along the cylinder surface and the dielectric coating has a larger impact on the
backscattered field, especially in the paraxial regions where an increased RCS is ob-
tained.

Figure 11.23 shows the RCS as a function of frequency for two different angles of in-
cidence, � = 90° and � = 50°, both with and without a dielectric coating. The resonance
around 3.8 GHz in Figure 11.23 (a) corresponds to the cutoff frequency for the dominant
waveguide mode (fc,10). A similar resonance has also been observed for the isolated ele-
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ment [Figure 11.30 (b)]. For frequencies below fc,10, no modes propagate in the wave-
guides and the RCS decreases quickly, as expected. The second mode in cutoff order is
the TE20 mode, with a cutoff frequency fc,20 � 7.7 GHz. Because of symmetry, this mode
is not excited when � = 90° and no resonance is observed around that frequency. Howev-
er, when the elevation angle is changed from normal incidence the TE20 mode becomes
more important, as demonstrated in Figure 11.23 (b), where a resonance is observed
around 7.7 GHz. The highest RCS in Figure 11.23 (b) occurs between 5 and 6 GHz, cor-
responding to a “grating lobe” that sweeps past as the frequency is changed.
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11.5 CYLINDRICAL ARRAY WITH DIELECTRIC COATING 441
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Figure 11.17. The E-plane RCS at 4.3 GHz for a single waveguide element on a cylin-
der with different dielectric coatings.
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Figure 11.18. The H-plane RCS at 4.3 GHz for a single waveguide element on a cylin-
der with different dielectric coatings.
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Figure 11.19. The E-plane RCS at 6.8 GHz for a single waveguide element on a cylin-
der with different dielectric coatings.
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Figure 11.20. The H-plane RCS at 6.8 GHz for a single waveguide element on a cylin-
der with different dielectric coatings.
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Figure 11.21. The E-plane RCS for a 4 × 32 element array with a dielectric coating
(dashed line). The noncoated case is included as reference (solid line). (a) 4.3 GHz.
(b) 6.8 GHz.
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Figure 11.22. The H-plane RCS for a 4 × 32 element array with a dielectric coating
(dashed line). The noncoated case is included as reference (solid line). (a) 4.3 GHz.
(b) 6.8 GHz.
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The effect of a changing cylinder radius has also been investigated. Keeping a constant
aperture separation (in mm), results for different cylinder radii are shown in Figure 11.24.
For the smallest cylinder radius investigated, the apertures cover an arc of approximately
237° on the cylinder. As shown in Figure 11.24 (a), this results in a large angular region
with a rather constant RCS. As the cylinder radius is increased, the angular extent is re-
duced. As the radius a goes to infinity, the backscattering approaches the planar array
case.

11.6 RADIATION AND SCATTERING TRADE-OFF

11.6.1 Introduction

A common technique to reduce a vehicle’s radar cross section (RCS) is shaping, for ex-
ample, using flat surfaces where the individual facets are oriented to deflect incoming
electromagnetic energy away from the direction of the expected monostatic threat. By ap-
plying radar-absorbing materials to certain “hot spots” with strong reflections, the scatter-
ing can be further reduced. After these measures, the remaining dominant RCS contribu-
tion may very well be due to the antennas on the vehicle [Williams 1986, Wiesbeck and
Heydrich 1992].

The backscattered field from an antenna can to some extent be controlled by adjusting
the antenna load impedance. Such an adjustment will also affect the radiation properties
of the antenna, and a trade-off between scattering and radiation properties is necessary.
Several authors have reported work on this topic for simple antennas such as dipoles, cir-
cular loops, and horns; see, for example, [Garbacz 1962, Chen and Liepa 1964, Chen
1965, Lin and Chen 1968, Schneider 1996]. By a systematic variation of the element
loads in an array antenna, it is possible to minimize the scattering in selected directions
without too much penalty on the gain performance [Stjernman and Josefsson 2003].

In this section, we will present a trade-off between gain and RCS for waveguide aper-
ture antennas mounted on a PEC circular cylinder. Figure 11.25 (a) shows the geometry.
The geometrical parameters are the following:

Element waveguide apertures 39 mm × 8 mm

Element grid Rectangular, 40 × 32 elements

Element spacings 20 mm in the azimuth

41 mm in the axial direction

Cylinder radius 300 mm

A staggered triangular grid as shown in Figure 11.25 (d) is also analyzed for comparison.
In all cases, the array covers an arc of about 120° on the cylinder. There is no dielectric
coating.

The matching is controlled by placing reactive elements in the form of thin irises in the
waveguides. Symmetrical inductive irises were used since it was found that inductive iris-
es could be placed closer to the apertures than capacitive irises, thus providing a more
broadband match [see Figure 11.25 (b)].

The waveguides are assumed to be connected to matched loads, that is, the modal am-
plitudes a3

ip in Figure 11.25 (b) are zero for all apertures (numbered i) and modes (num-
bered p). Once the aperture electric field has been determined, the far-zone scattered

446 SCATTERING FROM CONFORMAL ARRAY ANTENNAS
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fields are calculated using UTD [Pathak et al. 1981]. For the radiation problem, the array
is fed from the waveguides, that is, a3

i1 	 0 and H� inc = 0. 
We will first present results for matched waveguide elements, both the single-element

case and the array case. We will then modify the iris parameters in order to find a good
compromise between gain and scattering cross section. The iris gap, cbl, and position, dbl,
needed to obtain an impedance match, were determined using a single-mode transmis-
sion-line model based on approximate formulas for the susceptance values [Collin 1992].
For the arrays, the design was made for a center element with the array phased for the
main beam pointing in the desired direction, also including the effects of the mutual cou-
pling among the elements (active impedance match). The resulting iris was then used in
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all waveguides, leading to a situation of well-matched center elements and somewhat less
well-matched edge elements.

11.6.2 Single-Element Results

In Section 11.4, it was found that the RCS in the E plane can be calculated with good ac-
curacy using only the dominant waveguide mode. At least five waveguide modes are
needed in the H plane; for best results, up to 15 modes should be included. Figure 11.26
shows the effect of higher-order modes (one mode vs. 15 modes), with and without iris, in
the E and H planes for a single waveguide element situated at � = 0° on the cylinder. The
frequency is 6.8 GHz.

The iris dimensions for the single-element match were found to depend slightly on the
number of waveguide modes used in the optimization:

cbl = 20.6 mm, dbl = 4.3 mm as optimized with one waveguide mode

cbl = 20.7 mm, dbl = 4.2 mm as optimized with 15 waveguide modes

Note that the RCS level is considerably higher for the matched configurations com-
pared to the unmatched cases. This is typical for many antennas and points to the difficult
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problem of maximizing gain and at the same time minimizing the scattering. As expected,
the fundamental mode is sufficient for the E plane where a very wide, almost flat response
is obtained. When the elevation angle is changed from normal incidence, higher-order
modes are excited and become important for the backscattered field as shown in Figure
11.26 (b). However, the single-mode approximation is reasonably accurate for the
matched configuration. This is due to the position of the symmetrical inductive iris close
to the aperture, causing the TE20 mode to become suppressed, thus increasing the impor-
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tance of the TE10 mode. The effects of matching and higher-order modes on the antenna
gain are shown in Figure 11.27.

For the antenna function, the excitation is symmetrical and the single-mode approxi-
mation predicts the gain rather well. Without matching, the gain decreases about 0.7 dB,
but the RCS is reduced about 3.4 dB. Thus, increasing the mismatch reduces the RCS sig-
nificantly without too much penalty on the antenna gain. 
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A systematic variation of the impedance loads (iris parameters) and the effects on re-
flection coefficient (gain) and RCS are shown in Figures 11.28 and Figure 11.29. Fifteen
waveguide modes were used here. The dark areas have low reflection and low scattering,
respectively.

The darkest region in Figure 11.28 (a) corresponds to values of cbl and dbl, where the
antenna element is well matched. For a very small iris gap, the antenna is almost short-
circuited, which obviously leads to a poor match, but very little backscattering [Figure
11.28 (b)].

From the results, we find that the dark regions in Figure 11.28 (a) and (b) do not coin-
cide and that a trade-off between efficiency and RCS is necessary. A region of low RCS
can be found in the lower-left corner for all frequencies, which indicates that an iris
placed close to the aperture with a gap of cbl/aw � 0.6 may be a good choice [cf. Figure
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11.28 (a)]. To illustrate this, the reflection coefficient and RCS are shown in Figure 11.30
(a) for an element with an iris placed 1 mm away from the aperture.

As the frequency increases from the working frequency band, it can be expected that
higher-order modes will give a larger contribution to the scattered field, especially for H-
plane scattering. This is illustrated in Figure 11.30 (b), where the RCS of a single element
is given as a function of frequency in the direction (� = 60°, � = 0°) for different numbers
of modes. We notice in this Figure a sharp resonance around the cutoff frequency for the
dominant mode (fc,10 � 3.8 GHz). For frequencies around and below fc,10, the fundamen-
tal mode predicts the RCS very well and higher-order modes are of little consequence.
For frequencies below fc,10, no modes propagate in the waveguide and the RCS decreases
quickly, as expected. However, as the frequency increases, the second mode in cutoff or-
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der (TE20) becomes important. The second resonance around the cutoff frequency for the
TE20 mode (fc,20 � 7.7 GHz) is not predicted by the single-mode approximation. 

11.6.3 Array Results

The effects of mutual coupling have been investigated for a reduced array of 4 × 32 ele-
ments placed in a rectangular grid [cf. Figure 11.25 (a)]. It was found [Thors and Josefs-
son 2003] that the mutual coupling primarily affects the exact gain and RCS levels,
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whereas the general patterns can be obtained without coupling (within 0.5 dB). By ne-
glecting mutual coupling, it is only necessary to consider the diagonal elements of the
moment matrix elements. This reduces the memory requirements and the computational
time significantly and makes it possible to analyze many cases and large arrays. In the fol-
lowing comparative study, we have neglected mutual coupling when investigating the ef-
fects of various impedance loads and element grid types.

The radiation and scattering properties of a rectangular and a triangular grid array con-
sisting of 40 × 32 elements have been compared and the results are given in Figure 11.31.
Due to the large number of elements, the RCS oscillates heavily, especially in the H
plane. In order to simplify the comparisons, the RCS is presented as an arithmetic average
(in power) calculated within a sliding window. The chosen window is 5° wide for the E-
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plane averaging and 2° for the H plane. The averaging makes the curves easier to read,
but causes the narrow high peaks and large dips to appear reduced in amplitude.

Due to the rather large element spacing, the sidelobes increase in a region around � =
–140° for the rectangular grid array, as shown in Figure 11.31 (a). This “grating lobe” ef-
fect is not observed for the triangular grid array, in which the effective element spacing is
smaller. The larger element spacing of the rectangular grid array is also responsible for
the higher RCS at azimuth angles outside � = ±60° in Figure 11.31 (b).

Finally, the radiation and scattering properties of a cylindrical array antenna have been
compared to the corresponding quantities for a planar array. The planar results were ap-
proximated by using a cylinder of radius a = 100 m in the calculations; the RCS results
are presented in Figures 11.32 and 11.33.
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As shown in Figure 11.32, the H-plane RCS is generally much lower for the cylin-
drical array than for the planar array. This is a consequence of the curved geometry,
which defocuses the backscattered field; compare with [Wills 1991]. Both unmatched
arrays exhibit an increased RCS at elevation angles far from broadside but a lower
peak value compared to the matched arrays (Figure 11.32). For the planar array, the
E-plane RCS is similar to the H-plane RCS with a very high RCS response at normal
incidence. The cylindrical array has an RCS response similar to the results presented
in Figure 11.21 (b) with a moderately high RCS over a broad angular region where
the elements are situated. Thus, the cylindrical array has a higher RCS in the E
plane, which, however, coincides with the large structural scattering from the cylinder
itself.
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11.7 DISCUSSION

We have presented an analysis of scattering from a cylindrical array with waveguide aper-
ture elements. The polarization is azimuthal, that is, horizontal with a vertical (z-directed)
cylinder axis. Each aperture has a dominant magnetic current distribution in the z direc-
tion. Therefore, this configuration represents a realization of a canonical case with axial
magnetic dipole elements. Like the dual case with axial electric dipoles, this array has low
cross-polarized radiation, as discussed in Chapter 8. 

Another canonical case is represented by an array with the waveguide apertures rotated
to produce axial polarization. This case can be analyzed using the same methods as we
have described here. The cross-polarization effects will be larger in that case. The effects
of higher waveguide modes will also be different. Consider, for example, illumination in
the azimuthal plane. Since the elements are oriented in different directions relative to the
incoming wave, there will be different degrees of asymmetric illumination, causing dif-
ferent mode combinations in the individual elements. This effect will be small near the
aperture resonance, but will increase for higher frequencies. An example is given in Fig-
ure 11.34, showing the electric field distribution along a narrow rectangular aperture
(slot) backed by a waveguide. The illumination is 60° from the direction normal to the
slot, in the H plane. The dashed line represents 9.375 GHz, which is close to slot reso-
nance; here, the fundamental TE10 mode dominates. However, at 14 GHz, the slot is far
from resonance, and higher modes are also excited; compare Figure 11.30 (b).

It is possible to improve the radiation function (increase the gain) and reduce the scat-
tering (reduce the RCS) by loading the waveguide elements with a suitable reactive im-
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pedance. For the waveguide element investigated here, an optimum iris load was sought
by calculating the reflection coefficient and RCS as a function of the iris gap, cbl, and iris
position, dbl. A suitable compromise was obtained for an iris placed rather close to the
aperture.

Grating lobes can be the source of high backscattering from arrays; therefore, close el-
ement spacings should be used. Hence, a triangular grid array is often to be preferred over
a rectangular grid.

A general comparison of planar and cylindrical array antenna performance is a compli-
cated issue. However, we could demonstrate that outside the plane � = 90° the cylindrical
array has much lower RCS compared to the planar array, since the cylindrical geometry
defocuses the backscattered field. Just as the specular reflection at normal incidence
should be avoided for a planar array, the cylindrical array antenna should be oriented in
such a way that the cylinder normal points in directions where high RCS levels can be tol-
erated.
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guideline for selecting, 101, 102
high-frequency methods for coated surfaces,

93
high-frequency methods for PEC surfaces,

90. See also Uniform theory of
diffraction (UTD)

method of moments (MoM), 80
modal solutions, 76
unit cell analysis, 79, 84
uniform theory of diffraction (UTD), 91

Antifading antenna, 16, 332
Aperture antennas 

array mutual coupling, 168, 282
cross polarization coupling, 168, 269
embedded-element patterns, 176, 196, 223
equivalent problem , 95
experimental antenna , 172, 213, 267
far-field expression, 79
flush mounted in curved surface, 97, 158
higher order modes, 96, 172, 215, 219, 430
isolated-element patterns, 175, 209, 283
isolated mutual coupling, 158, 207, 213, 269
self admittance, calculation of, 223
sensitivity of rotation, 271
single mode approximation, 269, 282 

Absorbers
used in measurements, 172, 213, 267, 428

Active area, 55
Active impedance, 327, 414
Active reflection, 327, 417
Active region, 58, 342
Active sector, 55, 316, 367, 373, 378
Adaptive array methods

pattern synthesis, 406
adaptive beam forming, 384

Admittance crater, 334
Air gap between coating and supporting

structure, 213, 232, 237
effect on mutual coupling, 215, 221, 234
effect on radiation patterns, 230, 237

Alternating projections 
pattern synthesis, 404

Amplitude control, 323
Analysis methods

comparison, 100
finite difference time domain method

(FDTD), 81
finite element boundary integral method

(FE-BI), 88
finite element method (FEM), 87
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Aperture field model of microstrip-patches, see
Slot model for patch elements

Aperture projection method 
pattern synthesis, 401

Arbitrarily shaped surfaces 
analysis methods, 101
geodesics of, 127, 149

Archimedean solid, 309
Array factor, 17
Array impedance, 327
Array mutual coupling, 

along axial direction, circular cylinder, 173
along circumferential direction, circular

cylinder, 173, 219
along principal plane, general paraboloid of

revolution, 282
asymptotic behavior, 168
definition of, 156
vs. air gap, coated circular cylinder, 221
vs. isolated coupling, 168, 237, 283
vs. measurements, 172, 219
vs. number of modes, 173, 219, 221
vs. planar case, 168

Asymptotic methods/solutions, 
for coated surfaces, 93
for mutual coupling analysis, 79
for non-coated surfaces, 90
for radiation analysis, 79
ray-based theory interpretation, 100
uniform theory of diffraction (UTD), 91, 107

AWACS, 370

Bandwidth, 31, 34, 41, 376, 380, 399
Basis functions, see Method of moments

(MoM)
Beam forming, 365

adaptive, 384
digital, 380
RF/optical, 374

Beamwidth
for general paraboloid of revolution, 289
for circular array, 41, 45

Bessel function, 25, 330
Bootlace lens, 374
Butler matrix feed systems, 370, 378

Calibration, 370, 383, 388
Cavity model of microstrip-patch antenna, 79,

232, 237
Chebyshev array, 399
Chebyshev pattern synthesis, 398
Christoffel symbols

differential geometry, 127
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Circular arc array, 351
Circular/cylindrical array(s), 16, 305, 313, 314,

333, 337, 340
bandwidth of, 31, 34, 41, 399
excitation with phase modes currents, 24,

398
commutating networks for, 367, 368, 376,

378
directional radiators, 29, 40
elevation scanning, 389
focused beam pattern, 44
Fourier series expansion of, 23, 31
geodesic of, 132
higher order phase modes, 40
impedance, 327
isotropic radiators, 37
mutual coupling characteristics, 158, 213,

232
phase mode impedance, 330
phase mode theory, 23
vs. planar arrays, 46, 315
radiation characteristics, 173, 221, 237
ripple in omnidirectional patterns, 34
scanning using phase modes, 372
sector array characteristics, 196, 238
smooth vs. faceted surface, 203
synthesis example, 411
theory of, 19

Coaxial modes, 312
Commutating, 52, 319, 365, 371

in cylindrical arrays, 367, 368, 376, 378
Complex pole locations

interpretation of, 105-107
Complex power, 334
Concave surface(s) 

analysis of, 90
geodesics of, 125

Cone, 60, 308, 336, 351
array of dipoles, 353
equivalent cylinder approximation, 246
geodesics of, 136
input impedance, microstrip-patch antenna,

248
mutual coupling, 246
radiation characteristics of, 248
scattering from tip, effect of, 246, 252

Conformal antenna(s) 
definition of, 1
history of, 4
vs. planar antenna arrays, 5

Cophasal excitation, 22, 44, 315
Coupling, see Isolated mutual coupling, Array

mutual coupling
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Covariance matrix, 385
Creeping waves, 105, 353
Cross-polarization, 338, 344

isolation, 346
mutual coupling, 168, 269

Current sheet, 50
Curvature vectors, 126
Curvilinear coordinates, 125
Cylinder axial solution, 93, 94
Cylindrical array(s), see Circular/cylindrical

array(s)
Cylindrical array of dipoles 

vs. array of apertures, 188
elevation patterns, 188, 192

Cylindrical endfire grating lobe, 178

Despun antenna, 367
Developable surfaces, 130
Dielectric

coating, 209, 213, 426
layer, 94, 231
radome, 209, 381

Dielectric loaded waveguides, use of, 267
Differential geometry 

Christoffel symbols , 127
definition of surface, 125
Euler-Lagrange equations, 127
first fundamental coefficients, 126
first fundamental form, 126
geodesic curvature vector, 126
geodesic equation, 127

Digital beam forming, 370, 380, 383, 389,
401

adaptive beam forming, 384
adaptive array synthesis, 406

Dipole(s)
circular array, 337

conical array, 354
cylindrical array, 188
elevation patterns of, circular cylinder, 188
mutual impedance, 330
paraboloidal array, 343

Directional elements, 29, 40
Distortion mode, 27, 37
Dodecahedron, 68, 309
Dolph-Chebyshev synthesis, 398

directive elements, 399
Dome antenna, 7, 380
Doubly curved surfaces 

arrays on, 354, 356, 358
geodesics of, 138, 139
mutual coupling characteristics, 267, 294
radiation characteristics, 283, 297

INDEX 465

vs. singly curved surfaces, 270, 271, 294,
297

Dual polarization, 383
Dynamic stress, 312

Edge-based elements, FEM, 89
Edge diffraction, 203

effect of, 209
Effective antenna area, 51
Eigenfunction solution, see Modal solution 
Eisenhart coordinate system, 130
Electrically large surface, definition of, 74
Electrically small surface, definition of, 74
Element factor, 17
Element look direction, 58
Element spacing, effect on embedded-element

pattern, 182, 196
Elevation pattern, circular array, 41
Elevation scanning, 389
Elliott-type creeping wave, 107
Elliptic cylinder 

embedded-element patterns of, 196
end effects in sector arrays, 196
geodesics of, 132
isolated mutual coupling, 193
smooth vs. faceted surface, 203

Ellipsoid (of revolution), 62, 358
geodesics of, 138

Embedded-element pattern
vs. air gap, 230
aperture elements, 176, 223, 249
vs. coating permittivity, 225
definition of, 173
dipole vs. aperture, 188
vs. element spacing, 182, 196
grating lobe drop-off, 178, 182
vs. lattice, 188, 192
vs. measurements, 186, 188, 225, 240, 252
microstrip-patch elements, 238
vs. planar case, 177, 196, 252
vs. radius of circular cylinder, 177
ripple in broadside (lit) region, 178, 182, 

230
vs. row number on cone, 185, 252
of sector arrays, 196, 225, 240
vs. tip diffraction of cone, 252

End effects in sector arrays, 196
Endfire grating lobe, 178, 182
Entire domain basis functions, 99
Equivalence theorem, 95, 99,  404, 424
Equivalent problem

of aperture antennas, 96
of microstrip-patches, 98
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Euler-Lagrange equations
geodesics, 127

European workshop on conformal antennas, 8,
156

Existence theorem for geodesics, 129

Faceted array, 67, 309
Faceted surface, 50, 200, 203
Far-field expression, 79
Feed systems 

bootlace lens, 374
Butler matrix, 370, 378
dome antenna, 7, 380
geodesic lens, 374, 378
Luneburg lens, 377
R-2R lens feed, 374
RF lenses, 374
R-kR lens feed, 375
Rotman lens, 375
switch matrix, 367
vector transfer matrix , 367

Finite element method (FEM), 87
hybrid FE-BI method, 88
hybrid FEM-FDTD method, 88

Fermat’s principle, ray tracing, 92, 124, 150
Finite arrays 

end effects, 196, 238
size requirements, 198

Finite difference time domain method (FDTD),
81

conformal (C) or contour-path (CP) FDTD,
82

hybrid cylindrical-cartesian FDTD, 87
hybrid FEM-FDTD, 88
in curvilinear coordinates, 83
in cylindrical coordinates, 84

First geodesic constant, 129, 130 
accuracy of, 147, 280

Floquet’s theorem, 79
Fock

function, 103, 107
substitution, 103

Fourier
analysis, 21
coefficients, 333
series, 6, 23, 31
synthesis, 397
transform (FFT), 373, 326

FSS (frequency selective structure), 9

Gain of element 
vs. iris in waveguide, circular cylinder, 

451
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vs. number of waveguide modes, circular
cylinder, 451

Galerkin’s method, 97, 99
General hyperboloid of revolution (GHOR), 

64
geodesic on, 138

General paraboloid of revolution (GPOR)
arrays on, 57, 63, 341, 358
vs. circular cylinder, 271
experimental antenna, 267, 307
geodesic on, 138
mutual coupling characteristics, 269, 282
vs. parabolic cylinder, 270
polarization issues, 343
radiation characteristics, 283, 358

Genetic algorithm, 410
Geodesic lens, 374, 378
Geodesic Constant Method (GCM), 130
Geodesic

arbitrarily shaped surface, 127, 149
cone, 136
constant method (GCM), 130
constant, 129, 130, 147
coordinate system, 124, 130
curvature vector, 126, 127
definition, 128
doubly curved surface, 138
equation, 127
existence, 129
higher order, 132, 134, 136, 140, 148
length of, 126
lens, 378
ogive, 139
singly curved surface, 132
splitting, 141

Geometrical optics (GO), 91
Geometrical theory of diffraction (GTD), 91
Gobau line, 236
Grating lobes, 19, 188, 315, 344, 428
Green’s function

pole location, 105

Hankel function, 327, 333
Harmonic series representation, see Modal

solution
Hemispherical arrays, 60, 355
Hemispherical coverage, 57

using cone, 60
using ellipsoid, 63
using half sphere, 60
using paraboloid, 63
using planar surfaces, 58

Hertz’s principle of particle dynamics, 150
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High-frequency methods for coated surfaces,
93. See also Asymptotic
methods/solutions

High-frequency methods for PEC surfaces, 90.
See also Uniform theory of diffraction
(UTD), Asymptotic methods/solutions

Higher-order waveguide modes 
importance of, 172, 215, 219, 430

Huygens source, 238, 347, 409
Hybrid methods 

cylindrical-cartesian FDTD, 87
FE-BI, 88
FEM-FDTD, 88
UTD-MoM, 97

Hyperbolic cylinder
end effects in sector arrays, 196
geodesics of, 132
isolated mutual coupling, 194

Hyperboloid, see General hyperboloid of
revolution (GHOR)

Icosahedron, 68, 309, 354
Impedance, 327

boundary condition (IBC), 95
characteristics, 327
crater, 334
matrix,
of phase mode, 330

Incomplete elliptical integrals, 132, 138
Infinite arrays, 79
Input impedance of microstrip-patches 

on doubly curved surfaces, 291
on singly curved surfaces, 232

Integral equations (IE), 80
Interference of waves 

in mutual coupling results, 158, 194
in radiation characteristics, 178, 186

Isolated-element pattern 
aperture elements, 173, 209, 221, 249, 283
vs. coating permittivity, 221, 257
definition, 173 
vs. faceted surfaces, 209
on general paraboloid of revolution, 289
vs. measurements, 175, 237, 283
microstrip patch , 237, 240, 257, 297
vs. planar case, 176

Isolated mutual coupling 
vs. air gap distance, circular cylinder, 215
vs. array coupling, 168, 237, 283
asymptotic behavior, 161
vs. coating permittivity, circular cylinder,

215
vs. coating thickness, circular cylinder, 215

INDEX 467

circular cylinder, non-coated, 158
circular cylinder, coated, 213, 232
cone, 246
vs. cone tip diffraction, 246
cross-polar results, 168
along cylinder-axial direction vs. planar

case, 167
definition of, 156
elliptic cylinder, 193
faceted surfaces (vs. smooth surface), 207
general paraboloid of revolution, 267, 294
hyperbolic cylinder, 194
vs. inclination angle, 162, 234
vs. measurements, 173, 215, 236, 246
vs. number of waveguide modes, 173, 215
parabolic cylinder, 194
vs. planar case, 158
vs. radius, circular cylinder, 162

Keller’s surface diffraction analysis, 161

Lattice, 192, 308, 341
Leaky waves, 105
Least-mean-squares method

pattern synthesis, 407
Lens-fed array, 374
Line of shortest distance, see Geodesics
Linear arrays, 16, 319, 329
Lit region 

definition of, 91
ripple in pattern, 178, 182, 230

Luneburg lens, 377

Matrix feed systems, 367
Mechanical integration, 312
Method of moments (MoM), 80

basis functions, 81, 97, 99
examples, 95, 98
hybrid UTD-MoM method, 97
weighting functions, 97, 99

METEOSAT, 368
Microelectromechanical systems (MEMS), 389
Microstrip-patch(es), 323

cavity model, 79, 232, 237
experimental antenna, 238, 294, 329
full wave analysis, 81, 98
input impedance, 232, 248, 291
mutual coupling, 232, 294
probe-fed model, 99
quasi-rectangular shape, 289
radiation characteristics, 237, 257, 297
resonance frequency, 232
two-slot radiator model, 79, 231, 327
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Modal admittance, 334
Modal solution, 76

circular cylinder, explicit formulas, 78
convergence criteria, 78

Mode stability, 34
Multifacet antennas vs. curved antennas, 67,

308
Multilayer, 10, 310
Multiple beams, 368, 373, 375, 378, 380, 383
MUSIC algorithm, 387
Mutual admittance, 76, 97, 158
Mutual coupling, 50, 188, 411. See also Array

mutual coupling, Isolated mutual
coupling

Mutual impedance, 100, 330

Near-field, 42, 333
Non-developable surfaces, 135
Non-paraxial region

coated cylinder, 94
non-coated cylinder, 93

Normal curvature vector, 126

Octahedron, 68
Ogive, geodesic of, 139
Omnidirectional patterns, 22, 34

higher order phase modes, 40
using directional radiators, 40
using isotropic radiators, 37
ripple, 34

Optical module, 310
Organ pipe scanner, 378
Orthogonal patterns, 366, 371

Packaging, 310, 50
Parabolic cylinder 

geodesics, 132
isolated mutual coupling, 194
vs. general paraboloid of revolution, 270

Paraboloid, see General paraboloid of
revolution (GPOR)

Paraboloidal-type shape, 64
Parametric equation of a surface, 125
Paraxial region, 427

coated surface, 94
non-coated surface, 93

Particle swarm optimization, 414
Patch(es), see Microstrip-patch(es)
Pattern characteristics. See also Embedded-

element pattern(s), Isolated-element
pattern(s)

phase scanned pattern, 319
scan invariant pattern,  319
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vs. scattering trade-off, 446
Pattern synthesis, 25, 46, 395

adaptive array methods, 406
alternating projections, 404
aperture projection method, 401
comparison of methods, 414
Dolph-Chebyshev synthesis, 398
Fourier methods for circular ring arrays, 397
least-mean-squares method, 407
polarimetric pattern synthesis, 409

Penumbra region, 91
Performance index, 52
Periodic structures, Floquet’s theorem, 79, 84
Phase center of cylindrical arrays, 374, 376
Phase modes, 6, 23, 330, 371

higher order modes, 330
impedance, 330
theory, 23, 330

Phase delay due to curvature, 161, 215
Phase scanning, see Phase steering
Phase shift boundary/FDTD, 86
Phase shifters, 350, 371
Phase steering, 319, 321, 372
Planar approximation 

along axial direction of cylinder, 167
for self admittance in curved surface, 223

Planar arrays
vs. cylindrical, 168, 177, 196, 252
grating lobe diagram, 192

Platonic solid, 68
Polarimetric pattern synthesis, 409
Polarization, 336

control, 348
change with scan , 340
of dipole ring array, 339
definitions, 337
isolation, 346

Pole locations 
interpretation, 105

Poynting vector, 333
Projected element excitation, 182, 404
Pyramids, 59

Q-value, 334
Quasiperiodic lattice, 308
Quasi-rectangular microstrip-patch antenna,

289

R-2R lens feed, 374
R-kR lens feed, 375
Radar cross section (RCS), 5, 351, 422. See

also Scattering cross section
bistatic, 423
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definition, 422
matrix, 423
monostatic, 423

Radiation formulas
aperture elements on circular cylinder, 78,

79
Radiation patterns, see Pattern characteristics 
Radome(s), 306

dielectric, 209
FSS, 9

Ray tracing, see Geodesic
Ray-based theory, see Uniform theory of

diffraction (UTD) 
Reactive energy, 315, 334
Reciprocity, 424
Rectangular grid

grating lobe lattice for, 192
scattering from circular array, 427

Residue series expansion, 79, 105
Ripple

in broadside (lit) region, 178, 182, 245
in omnidirectional patterns, 34

Ring array, 16
elevation pattern of, 41

Rotman lens, 375

Sample matrix inversion method, 384
Separation of variables, see Modal solution 
Scan loss, 52
Scanning, see Phase steering, Commutating
Scattering cross section, 421. See also Radar

cross section 
analysis of, 424
coated vs. non-coated circular cylinder, 431
vs. grid arrangement, 432
vs. higher order waveguide modes, 430, 458
vs. measurements, 427
vs. permittivity of coating, 436, 438
vs. radiation trade-off, 446

Scattering matrix, 76, 158, 231
Sector cylindrical arrays 

element patterns on, 240
end effects, 240

Self admittance of aperture antenna in curved
surface, 223

Shadow region 
definition, 91
interference between waves, 158, 178, 194
slope decay of far field, 178

Shape optimization, 50, 397
Shoot and bounce ray method (SBR), 124. See

also Geodesic
Simulated annealing, 410

INDEX 469

Single mode approximation, aperture antennas,
269, 282

Size requirements of finite phased-array
models, 198

Slot arrays, 338, 353
Slot model for patch elements, 79, 231, 323,

327
Smart skin, 9
Sommerfeld radiation condition in FEM, 88
Sonar arrays, 9
Sphere, 60

arrays on, 67, 336, 354
vs. circular cylinder, 294, 297
experimental antenna, 294
geodesic on, 138

Staircase approximation, 82
Steepest descent path integration, 104, 108
Subsectional basis function, 99
Surface ray coordinates, 92, 107
Surface waves, 105

creeping waves, 353
Surface(s)

doubly curved, 135
parametric equation of, 125
singly curved, 130

Synthesis, see Pattern synthesis 
System noise, 66

TACAN, 6, 373
Tangential curvature vector, 126
Taylor synthesis, 319
Tiles, 309, 310
Time delay, 365
Time-domain,

integral methods, 81
physical optics (TD-PO), 81
uniform theory of diffraction (TD-UTD), 81

Tip diffraction, 245, 246
Trapped waves, 105
Transfer switch, 369
Transition region, 91
Triangular grid

grating lobe lattice for, 192
scattering from cylindrical array, 432

Truncated conical arrays, 62

Umbra, 91
Uniform circular array (UCA), 19
Uniform linear array (ULA), 18, 388
Uniform theory of diffraction (UTD), 91, 107

hybrid UTD-MoM method, 97
limitation of formulation, 90
paraxial region, 93

bindex.qxd  12/1/2005  4:34 PM  Page 469



Unit cell analysis, 79, 84
Uni-axial perfectly matched layer (UPML), 86

Variable power divider (VPD), 350
Variation problem, geodesics, 127
Vibrations, 312
Virtual array, 408
Visible space, 27, 192, 315

470 INDEX

Watson transformation, 103
Watson-type creeping wave, 107
Waveguide-fed apertures, see Aperture

antennas
Waveguide aperture array, 307, 340 
Weighting functions, see Method of moments

(MoM)
Wullenweber array, 5, 351, 378
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