Neural Networks

Shahrood University of Technology Hossein Khosravi

Neural Networks - Introduction

References

 Judith E. Dayhoff, Neural Network Architectures: an introduction, 1990

- Simon Haykin, Neural Networks: A Comprehensive Foundation, Second edition, Prentice-Hall, 1999.
- Simon Haykin, Neural Networks and Learning Machines, 3rd Edition, 2008

Some Papers

Evaluation

- □ Presentation and assignments: ~8 points
 - Present a state of the art topic or paper
 - Computer Homeworks

☐ Final Exam: ~12 points

Neural Networks in the Brain

- Human brain computes in an entirely different way from conventional digital computers
- The brain is highly complex, nonlinear, and parallel information processing system
- Organization of neurons to perform tasks much faster than computers.
 - Typical time taken in visual recognition tasks is 100–200 ms.
- Key features of the biological brain: experience and learning.

Case study: Bat sonar system

- Sonar is an active echo-location system:
 - Providing information about how far away a target (e.g. a flying insect) is
 - The relative velocity of the target
 - The size of the target
 - The size of various features of the target
 - And the azimuth and elevation of the target.
- The complex neural computations needed to extract all this information from the target echo occur within a brain the size of a plum.
- So blessed is Allah, the best of creators

Applications

- Pattern Recognition
 - Face recognition, character recognition, etc
- Function Approximation (Regression)
 - To find best curve representing some data
- Time Series Prediction
- Clustering
 - Divide samples into some clusters
- Pattern Completion
 - To repair an incomplete pattern

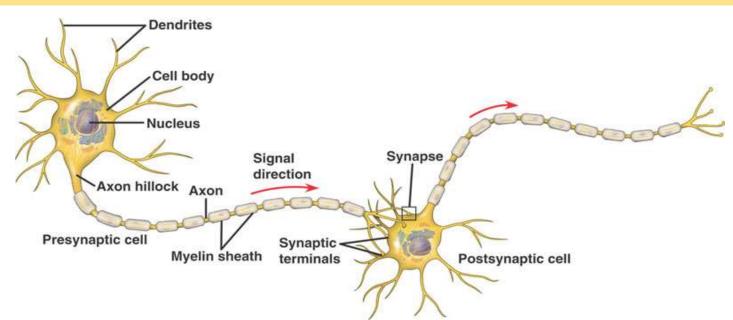
Neural Network Definition

- A neural network is a massively parallel distributed processor made up of simple processing units, which has a natural propensity for storing experimental knowledge and making it available for use
- Neural network resembles the brain in two respects:
 - Knowledge is acquired from the environment through a learning process.
 - Interneuron connection strengths, known as synaptic weights, are used to store the acquired knowledge.
- learning algorithm:
 - Procedure used for learning
 - Weights, or even the topology can be adjusted.

Benefits of Neural Networks

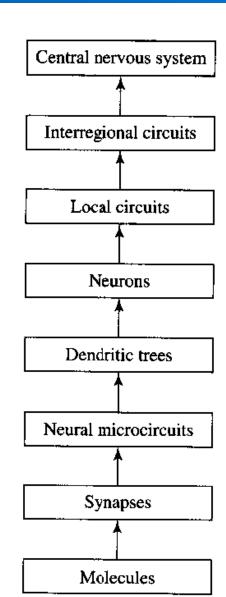
- Nonlinearity: neurons can be linear or nonlinear
- Input-output mapping: supervised learning similar to nonparametric statistical inference (model-free estimation, no prior assumptions)
- Adaptivity: can deal with nonstationary environments
- Evidential response: decision plus confidence of the decision can be provided.
- Contextual information: Information is distributed through the network: neurons and synapses

Benefits of Neural Networks

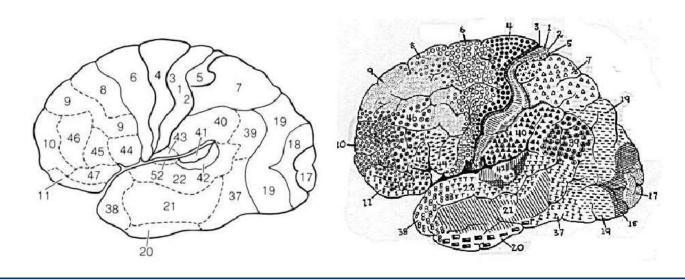

- Fault tolerance: performance degrades gracefully.
 There is no catastrophic failure if a neuron or its connecting links are damaged.
- VLSI implementability: due to parallel nature of network.
- Uniformity of analysis and design:
 - common components (neurons) in all application of NNs.
 - sharability of theories and learning algorithms
- Neurobiological analogy: Neural nets motivated by neurobiology, and neurobiology also turning to neural networks for insights and tools.

Human Nervous System

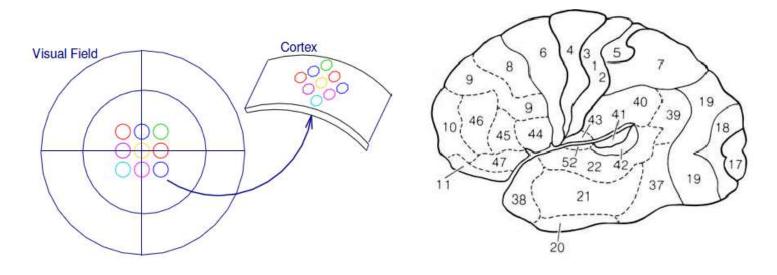
- Simple Brain Model
 - Stimulus ➤ Receptors <> Neural Net <> Effectors ➤ Response
- Neuron
 - In 1911 Santiago Ramony Cajal, a Spanish neuro-anatomist introduced neurons as a fundamental unit of brain function
- Neurons are slow
 - 1ms per operation, compared to 1ns of modern CPUs
- Huge number of neurons and connections
 - \square 10¹⁰ neurons, and 6×10¹³ connections in human brain.
- Highly energy efficient:
 - ightharpoonup J per operation per second in the brain vs. 10^{-6} J in modern computers


Neuron and Synapse

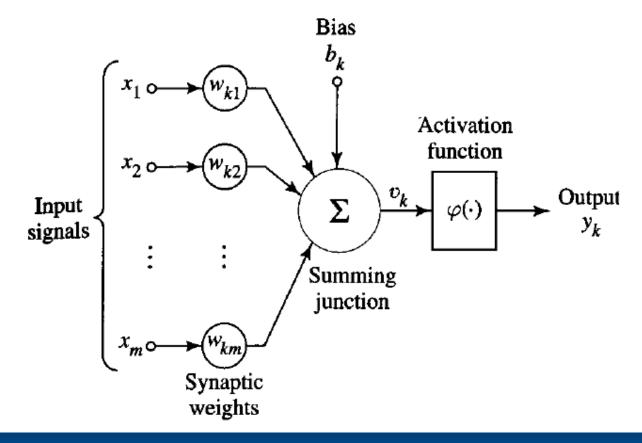
- Synapse: where two neurons meet.
- Presynaptic neuron: source, Postsynaptic neuron: target
- Neurotransmitters: molecules that cross the synapse (positive or excitatory, negative or inhibitory, or modulatory effect on postsynaptic activation)
- Dendrite: branch that receive input
- Axon: branch that send output (spike, or action potential)

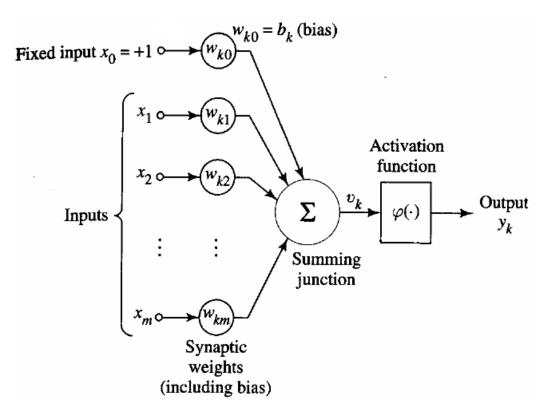

Structural Organization of the Brain

- Small to large-scale organizations
 - Molecules, Synapses,
 - Neural microcircuits: assembly of synapses
 - Like a silicon chip made up of transistors
 - size: several µm, speed: several ms
 - Dendritic trees, Neurons
 - Local circuits: assembly of local neurons
 - Size: about 1mm
 - Interregional circuits: pathways, columns, topographic maps
 - Central nervous system

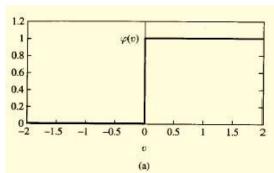

Cytoarchitectural Map of the Cerebral Cortex

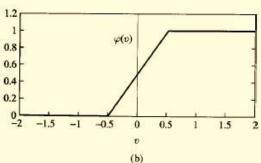
- Map-like organization:
- □ Area 17, 18, 19: visual cortices
- □ Area 41, 42: auditory cortices
- Area 1, 2, 3: somatosensory cortices (bodily sensation)

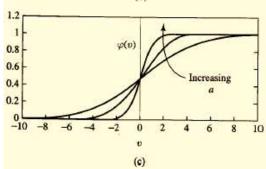

Topographic Maps in the Cortex


- Nearby location in the stimulus space are mapped to nearby neurons in the cortex.
- Thus, it is like a map of the sensory space, thus the term topographic organization.
- Many regions of the cortex are organized this way: visual (V1), auditory (A1), and somatosensory (S1) cortices

Models of (artificial) neuron


 Neuron: information processing unit fundamental to neural network operation.





- Synapses with associated weights: j to k denoted w_{kj} .
- Summing function: $u_k = \sum_{j=1}^m w_{kj} x_j$
- Activation function: $y_k = \phi(u_k + b_k)$
- Bias b_k : $v_k = u_k + b_k$, or $v_k = \sum_{j=0}^m w_{kj} x_j$

Activation functions

Threshold unit:

$$\phi(v) = \begin{cases} 1 & \text{if } v \ge 0 \\ 0 & \text{if } v < 0 \end{cases}$$

Piece-wise linear:

$$\phi(v) = \begin{cases} 1 & \text{if } v \ge +\frac{1}{2} \\ v & \text{if } +\frac{1}{2} > v > -\frac{1}{2} \\ 0 & \text{if } v \le -\frac{1}{2} \end{cases}$$

Sigmoid: logistic function (a: slope parameter)

$$\phi(v) = \frac{1}{1 + \exp(-av)}$$

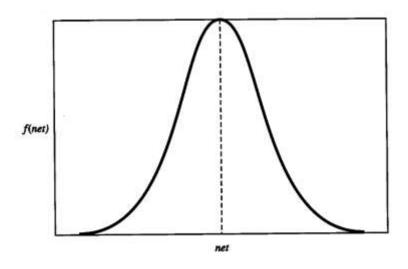
It is differentiable: $\phi'(v) = a\phi(v)(1 - \phi(v))$.

Other activation functions

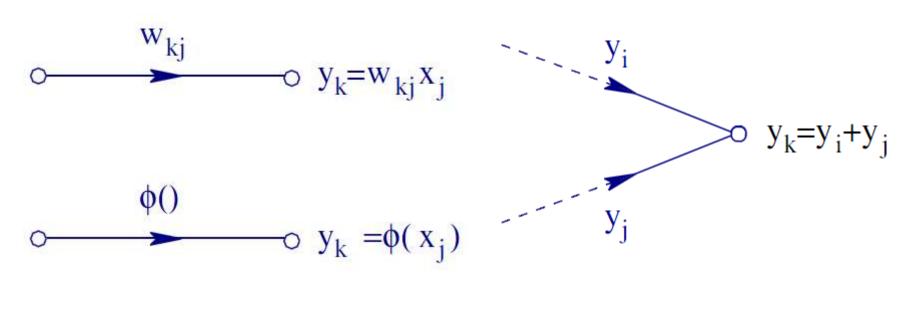
Signum function:

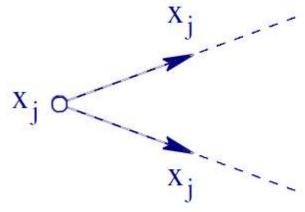
$$\phi(v) = \begin{cases} 1 & \text{if } v > 0 \\ 0 & \text{if } v = 0 \\ -1 & \text{if } v < 0 \end{cases}$$

Sign function:


$$\phi(v) = \begin{cases} 1 & \text{if } v \ge 0 \\ -1 & \text{if } v < 0 \end{cases}$$

Hyperbolic tangent function:


$$\phi(v) = \tanh(v)$$


$$\phi(v) = \tanh(v)$$
 $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$

Radial Basis Function

Signal-flow Graphs

