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Preface 

This book deals with an important but relatively neglected aspect of 
regression theory: exploring the characteristics of a given data set for a 
particular regression application. Two diagnostic techniques are presented 
and examined. The first identifies influential subsets of data points, and 
the second identifies sources of collinearity, or ill conditioning, among the 
regression variates. Both of these techniques can be used to assess the 
potential damage their respective conditions may cause least-squares 
estimates, and each technique allows the user to examine more fully the 
suitability of his data for use in estimation by linear regression. We also 
show that there is often a natural hierarchy to the use of the two diagnostic 
procedures; it is usually desirable to assess the conditioning of the data 
and to take any possible remedial action in this regard prior to subsequent 
estimation and further diagnosis for influential data. 

Although this book has been written by two economists and a 
statistician and the examples are econometric in orientation, the techniques 
described here are of equal value to all users of linear regression. The book 
serves both as a useful reference and as a collateral text for courses in 
applied econometrics, data analysis, and applied statistical techniques. 
These diagnostic procedures provide all users of linear regression with a 
greater arsenal of tools for learning about their data than have hitherto 
been available. 

This study combines results from four disciplines: econometrics, 
statistics, data analysis, and numerical analysis. This fact causes problems 
of inclusion. While some effort has been expended to make this book 
self-contained, complete success here would unduly expand the length of 
the text, particularly since the needed concepts are well developed in 
readily available texts that are cited where appropriate. Some notational. 
problems arise, since econometrics, statistics, data analysis, and numerical 
analysis employ widely different conventions in use of symbols and 
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viii PREFACE 

terminology. No choice of notation will satisfy any one reader, and so the 
indulgence of all is requested. 

This book has been written with both the theorist and the practitioner in 
mind. Included are the theoretical bases for the diagnostics as well as 
straightforward means for implementing them. The practitioner who 
chooses to ignore some of the theoretical complexities can do so without 
jeopardizing the usefulness of the diagnostics. 

The division of labor lending to this book is reasonably straightforward. 
The diagnostics for influential data presented in Chapter 2 and its related 
aspects are an outgrowth of Roy E. Welsch and Edwin Kuh (1977), while 
the collinearity diagnostics of Chapter 3 and its related aspects stem from 
David A. Belsley (1976). W e  both chapters are written with the other in 
view, the blending of the two techniques occurs most directly in the 
examples of Chapter 4. It is therefore possible for the reader interested 
primarily in influential data to omit Chapter 3 and for the reader primarily 
interested in collinearity to omit Chapter 2. 

Research opportunities at the Massachusetts Institute of Technology 
Center for Computational Research in Economics and Management 
Science (previously under the aegis of the National Bureau of Economic 
Research) expedited this research in a number of important ways. The 
TROLL interactive econometric and statistical analysis system is a highly 
effective and adaptable research environment. In particular, a large 
experimental subsystem, SENSSY S, with over 50 operations for 
manipulating and analyzing data and for creating graphical or stored 
output, has been created by Stephen C. Peters for applying the diagnostic 
techniques developed here. The analytical and programming skills of Mark 
Gelfand, David Jones, Richard Wilk, and later, Robert Cumby and John 
Neese, have also been essential in this endeavor. 

Economists, statisticians, and numerical analysts at the Center and 
elsewhere have made many helpful comments and suggestions. The 
authors are indebted to the following: John Dennis, Harry Eisenpress, 
David Gay, Gene Golub, Richard Hill, Paul Holland, and Virginia Klema. 
Special thanks go to Ernst Berndt, Paolo Corsi, and David C. Hoaglin for 
their careful reading of earlier drafts and to John R. Meyer who, as 
president of the NBER, strongly supported the early stages of this 
research. It is not possible to provide adequate superlatives to describe the 
typing efforts of Karen Glennon through the various drafts of th is  
manuscript. 

David A. Belsley would like to acknowledge the Center for Advanced 
Study in the Behavioral Sciences at Stanford where he began his inquiry 
into collinearity during his tenure there as Fellow in 1970-1971. Roy E. 
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Murray Hill, New Jersey. Grants from the National Science Foundation 
(GJ-1154x3, SOC-75-13626, SOC-76-14311, and SOC-77-07412) and from 
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C H A P T E R  1 

Introduction and Overview 

Over the last several decades the linear regression model and its more 
sophisticated offshoots, such as two- and three-stage least squares, have 
surely become among the most widely employed quantitative tools of the 
applied social sciences and many of the physical sciences. The popularity 
of ordinary least squares is attributable to its low computational costs, its 
intuitive plausibility in a wide variety of circumstances, and its support by 
a broad and sophisticated body of statistical inference. Given the data, the 
tool of least squares can be employed on at least three separate conceptual 
levels. First, it can be applied mechanically, or descriptively, merely as a 
means of curve fitting. Second, it provides a vehicle for hypothesis testing. 
Third, and most generally, it provides an environment in which statistical 
theory, discipline-specific theory, and data may be brought together to 
increase our understanding of complex physical and social phenomena. 
From each of these perspectives, it is often the case that the relevant 
statistical theory has been quite well developed and that practical 
guidelines have arisen that make the use and interpretation of least squares 
straightforward. 

When it comes to examining and assessing the quality and potential 
influence of the data that are assumed “given,” however, the same degree 
of understanding, theoretical support, and practical experience cannot be 
said to exist. The thrust of standard regression theory is based on sampling 
fluctuations, reflected in the coefficient variance-covariance matrix and 
associated statistics (t-tests, F-tests, prediction intervals). The explanatory 
variables are treated as “given,” either as fixed numbers, or, in elaboration 
of the basic regression model, as random variables correlated with an 
otherwise independently distributed error term (as with estimators of 
simultaneous equations or errors-in-variables models). In reality, however, 
we know that data and model often can be in conflict in ways not readily 
analyzed by standard procedures. Thus, after all the t-tests have been 
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examined and all the model variants have been compared, the practitioner 
is frequently left with the uneasy feeling that his regression results are less 
meaningful and less trustworthy than might otherwise be the case because 
of possible problems with the data-problems that are typically ignored in 
practice. The researcher, for example, may notice that regressions based on 
different subsets of the data produce very different results, raising 
questions of model stability. A related problem occurs when the 
practitioner knows that certain observations pertain to unusud 
circumstances, such as strikes or war years, but he is unsure of the extent 
to which the results depend, for good or ill, on these few data points. An 
even more insidious situation arises when an unknown error in data 
collecting creates an anomalous data point that cannot be suspected on 
prior grounds. In another vein, the researcher may have a vague feeling 
that collinearity is causing troubles, possibly rendering insignificant 
estimates that were thought to be important on the basis of theoretical 
considerations. 

In years past, when multivariate research was conducted on small 
models using desk calculators and scatter diagrams, unusual data points 
and some obvious forms of collinearity could often be detected in tihe 
process of “handling the data,” in what was surely an informal procedure. 
With the introduction of high-speed computers and the frequent use of 
large-scale models, however, the researcher has become ever more de- 
tached from intimate knowledge of his data. It is increasingly the case that 
the data employed in regression analysis, and on which the results are 
conditioned, are given only the most cursory examination for their suitabil- 
ity. In the absence of any appealing alternative strategies, data-related 
problems are frequently brushed aside, all data being included without 
question on the basis of an appeal to a law of large numbers. But this is, of 
course, absurd if some of the data are in error, or they come from a 
different regime. And even if all the data are found to be correct and 
relevant, such a strategy does nothing to increase the researcher’s 
understanding of the degree to which his regression results depend on the 
specific data sample he has employed. Such a strategy also leaves the 
researcher ignorant of the properties that additionally collected data could 
have, either to reduce the sensitivity of the estimated model to some parts 
of the data, or to relieve ill-conditioning of the data that may be preventing 
meaningful estimation of some parameters altogether. 

The role of the data in regression analysis, therefore, remains an im- 
portant but unsettled problem area, and one that we begin to address in 
this book. It is clear that strides made in this integral but neglected aspect 
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of regression analysis can have great potential for making regression an 
even more useful and meaningful statistical tool. Such considerations have 
led us to examine new ways for analyzing regression models with an 
emphasis on diagnosing potential data problems rather than on inference 
or curve fitting. 

This book provides the practicing statistician and econometrician with 
new tools for assessing the quality and reliability of their regression 
estimates. Diagnostic techniques are developed that (1) aid in the 
systematic location of data points that are either unusual or inordinately 
influential and (2) measure the presence and intensity of collinear relations 
among the regression data, help to identify the variables involved in each, 
and pinpoint the estimated coefficients that are potentially most adversely 
affected. 

Although the primary emphasis of these contributions is on diagnostics, 
remedial action is called for once a source of trouble has been isolated. 
Various strategies for dealing with highly influential data and for 
ill-conditioned data are therefore also discussed and exemplified. Whereas 
the list of possible legitimate remedies will undoubtedly grow in time, it is 
hoped that the procedures suggested here will forestall indiscriminate use 
of the frequently employed, and equally frequently inappropriate, remedy: 
throw out the outliers (many of which, incidentally, may not be influential) 
and drop the collinear variates. While the efforts of this book are directed 
toward single-equation ordinary least squares, some possible extensions of 
these analytical tools to simultaneous-equations models and to nonlinear 
models are discussed in the final chapter. 

Chapter 2 is devoted to a theoretical development, with an illustrative 
example, of diagnostic techniques that systematically search for unusual or 
influential data, that is, observations that lie outside patterns set by other 
data, or those that strongly influence the regression results. The impact of 
such data points is rarely apparent from even a close inspection of the 
raw-data series, and yet such points clearly deserve further investigation 
either because they may be in error or precisely because of their 
differences from the rest of the data. 

Unusual or influential data points, of course, are not necessarily bad 
data points; they may contain some of the most interesting sample infor- 
mation. They may also, however, be in error or result from circumstances 
different from those common to the remaining data. Only after such data 
points have been identified can their quality be assessed and appropriate 
action taken. Such an analysis must invariably produce regression results 
in which the investigator has increased confidence. Indeed, this will be the 
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case even if it is determined that no corrective action is required, for then 
the investigator will at least know that the data showing the greatest 
influence are legitimate. 

The basis of this diagnostic technique is an analysis of the response of 
various regression model outputs to controlled perturbations of the model 
inputs. We view model inputs broadly to include data, parameters-to-be- 
estimated, error and model specifications, estimation assumptions, and the 
ordering of the data in time, space, or other characteristics. Outputs 
include fitted values of the response variable, estimated parameter val- 
ues, residuals, and functions of them (R 2, standard errors, autocorrela- 
tions, etc.). Specific perturbations of model inputs are developed that 
reveal where model outputs are particularly sensitive. The perturbations 
take various forms including differentiation or differencing, deletion of 
data, or a change in model or error specification. These diagnostic tech- 
niques prove to be quite successful in highlighting unusual data, and an 
example is provided using typical economic cross-sectional data. 

Chapter 3 is devoted to the diagnosis of collinearity among the variables 
comprising a regression data matrix. Collinear (ill-conditioned) data are a 
frequent, if often unanalyzed, component of statistical studies, and their 
presence, whether exposed or not, renders ordinary least-squares estimates 
less precise and less useful than would otherwise be the case. The ability to 
diagnose collinearity is therefore important to users of least-squares 
regression, and it consists of two related but separable elements: (1) 
detecting the presence of collinear relationships among the variates, and 
(2) assessing the extent to which these relationships have degraded 
regression parameter estimates. Such diagnostic information would aid the 
investigator in determining whether and where corrective action is 
necessary and worthwhile. Until now, attempts at diagnosing collinearity 
have not been wholly successful. The diagnostic technique presented here, 
however, provides a procedure that deals succesfully with both diagnostic 
elements. First, it provides numerical indexes whose magnitudes signify the 
presence of one or more near dependencies among the columns of a data 
matrix. Second, it provides a means for determining, within the linear 
regression model, the extent to which each such near dependency is 
degrading the least-squares estimate of each regression coefficient. In most 
instances this latter information also enables the investigator to determine 
specifically which columns of the data matrix are involved in each near 
dependency, that is, it isolates the variates involved and the specific 
relationships in which they are included. Chapter 3 begins with a 
development of the necessary theoretical basis for the collinearity analysis 
and then provides empirical verification of the efficacy of the process. 
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Simple rules and guidelines are stipulated that aid the user, and examples 
are provided based on actual economic data series. 

Chapter 4 provides extended and detailed application to statistical 
models (drawn from economics) of both sets of diagnostic techniques and 
examines their interrelationship. Material is also presented here on 
corrective actions. Mixed estimation is employed to correct the strong 
collinearity that besets standard consumption-function data, and both sets 
of diagnostic methods are given further verification in this context. A 
monetary equation is analyzed for influential observations, and the use of 
ridge regession is examined as a means for reducing ill-conditioning in the 
data. A housing-price model, based on a large cross-sectional sample, 
shows the merits of robust estimation for diagnosis of the error structure 
and improved parameter estimates. 

The book concludes with a summary chapter in which we discuss 
important considerations regarding the use of the diagnostics and their 
possible extensions to analytic frameworks outside linear least squares, 
including simultaneous-equations models and nonlinear models. 



C H A P T E R  2 

Detecting Influential 
Observations and Outliers 

In this chapter we identify subsets of the data that appear to have a 
disproportionate influence on the estimated model and ascertain which 
parts of the estimated model are most affected by these subsets. The focus 
is on methods that involve both the response (dependent) and the 
explanatory (independent) variables, since techniques not using both of 
these can fail to detect multivariate influential observations. 

The sources of influential subsets are diverse. First, there is the inevi- 
table occurrence of improperly recorded data, either at their source or in 
their transcription to computer-readable form. Second, observational 
errors are often inherent in the data. Although procedures more 
appropriate for estimation than ordinary least squares exist for this 
situation, the diagnostics we propose below may reveal the unsuspected 
existence and seventy of observational errors. Third, outlying data points 
may be legitimately occurring extreme observations. Such data often 
contain valuable information that improves estimation efficiency by its 
presence. Even in this beneficial situation, however, it is constructive to 
isolate extreme points and to determine the extent to which the parameter 
estimates depend on these desirable data. Fourth, since the data could 
have been generated by a model(s) other than that specified, diagnostics 
may reveal patterns suggestive of these alternatives. 

The fact that a small subset of the data can have a disproportionate 
influence on the estimated parameters or predictions is of concern to users 
of regression analysis, for, if this is the case, it is quite possible that the 
model-estimates are based primarily on this data subset rather than on the 
majority of the data. If, for example, the task at hand is the estimation of 
the mean and standard deviation of a univariate distribution, exploration 
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of the data will often reveal outliers, skewness, or multimodal distributions. 
Any one of these might cast suspicion on the data or the appropriateness 
of the mean and standard deviation as measures of location and 
variability, respectively. The original model may also be questioned, and 
transformations of the data consistent with an alternative model may be 
suggested. Before performing a multiple regression, it is common practice 
to look at the univariate distribution of each variate to see if any oddities 
(outliers or gaps) strike the eye. Scatter diagrams are also examined. While 
there are clear benefits from sorting out peculiar observations in this way, 
diagnostics of this type cannot detect multivariate discrepant observations, 
nor can they tell us in what ways such data influence the estimated model. 

After the multiple regression has been performed, most detection 
procedures focus on the residuals, the fitted (predicted) values, and the 
explanatory variables, Although much can be learned through such 
methods, they nevertheless fail to show us directly what the estimated 
model would be if a subset of the data were modified or set aside. Even if 
we are able to detect suspicious observations by these methods, we still will 
not know the extent to which their presence has affected the estimated 
coefficients, standard errors, and test statistics. In this chapter we develop 
techniques for diagnosing iduential data points that avoid some of these 
weaknesses. In Section 2.1 the theoretical development is undertaken. Here 
new techniques are developed and traditional procedures are suitably 
modified and reinterpreted. In Section 2.2 the diagnostic procedures are 
exemplified through their use on an intercountry life-cycle savings function 
employing cross-sectional data. Further examples of these techniques and 
their interrelation with the collinearity diagnostics that are the subject of 
the next chapter are found in Chapter 4. 

Before describing multivariate diagnostics, we present a brief two- 
dimensional graphic preview that indicates what sort of interesting 
situations might be subject to detection. We begin with an examination of 
Exhibit 2.la which portrays a case that we might call (to avoid statistical 
connotations) evenly distributed. If the variance of the explanatory 
variable is small, slope estimates will often be unreliable, but in these 
circumstances standard test statistics contain the necessary information. 

In Exhibit 2.lb, the point o is anomalous, but since it occurs near the 
mean of the explanatory variable, no adverse effects are inflicted on 
the slope estimate. The intercept estimate, however, will be affected. The 
source of this discrepant observation might be in the response variable, or 
the error term. If it is the last, it could be indicative of heteroscedasticity or 
thick-tailed error distributions. Clearly, more such points are needed to 
analyze those problems fully, but isolating the single point is instructive. 
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2.1 THEORETICAL FOUNDATIONS 9 

Exhibit 2.lc illustrates the case in which a gap separates the discrepant 
point from the main body of data. Since this potential outlier is consistent 
with the slope information contained in the rest of the data, this situation 
may exemplify the benevolent third source of influence mentioned above 
in which the outlying point supplies crucially useful information-in this 
case, a reduction in variance. Exhibit 2.ld is a more troublesome 
configuration that can arise frequently in practice. In this situation, the 
estimated regression slope is almost wholly determined by the extreme 
point. In its absence, the slope might be almost anything. Unless the 
extreme point is a crucial and valid piece of evidence (which, of course, 
depends on the research context), the researcher is likely to be highly 
suspicious of the estimate. Given the gap and configuration of the main 
body of data, the estimated slope surely has fewer than the usual degrees 
of freedom; in fact, it might appear that there are effectively only two data 
points. 

The situation displayed in Exhibit 2.1 e is a potential source of concern 
since either or both 0’s will heavily influence the slope estimate, but 
differently from the remaining data. Here is a case where some corrective 
action is clearly indicated-either data deletion or, less drastically, a 
downweighting of the suspicious observations or possibly even a model 
reformulation. 

Finally, Exhibit 2.1f presents an interesting case in which deletion of 
either 0 by itself will have little effect on the regression outcome. The 
potential effect of one outlying observation is clearly being masked by the 
presence of the other. This example serves as simple evidence for the need 
to examine the effects of more general subsets of the data. 

2.1 THEORETICAL FOUNDATIONS 

In this section we present the technical background for diagnosing 
influential data points. Our discussion begins with a description of the 
technique of row deletion, at first limited to deleting one row (observation) 
at a time. This procedure is easy to understand and to compute. Here we 
examine in turn how the deletion of a single row affects the estimated 
coefficients, the predicted (fitted) values, the residuals, and the estimated 
covariance structure of the coefficients. These four outputs of the 
estimation process are, of course, most familiar to users of multiple 
regression and provide a basic core of diagnostic tools. 

The second diagnostic procedure is based on derivatives of various 
regression outputs with respect to selected regression inputs. In particular, 
it proves useful to examine the sensitivity of the regression output to small 
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perturbations away from the usual regression assumption of homoscedas- 
ticity. Elements of the theory of robust estimation can then be used to 
convert these derivatives into diagnostic measures. 

The third diagnostic technique moves away from the traditional 
regression framework and focuses on a geometric approach. The y vector is 
adjoined to the X matrix to form n data points in a p + 1 dimensional 
space. It then becomes possible for multivariate methods, such as ratios of 
determinants, to be used to diagnose discrepant points. The emphasis here 
is on locating outliers in a geometric sense. 

Our attention then turns to more comprehensive diagnostic techniques 
that involve the deletion or perturbation of more than one row at a time. 
Such added complications prove necessary, for, in removing only one row 
at a time, the influence of a group of influential observations may not be 
adequately revealed. Similarly, an influential data point that coexists with 
others may have its influence masked by their presence, and thus remain 
hidden from detection by single-point (one-at-a-time) diagnostic 
techniques. The first multiple-point (more-than-one-at-a-time) procedures 
we examine involve the deletion of subsets of data, with particular 
emphasis on the resulting change in coefficients and fitted values. Since 
multiple deletion is relatively expensive, lower-cost stepwise' methods are 
also introduced. 

The next class of procedures adjoins to the X matrix a set of dummy 
variables, one for each row under consideration. Each dummy variate 
consists of all zeros except for a one in the appropriate row position. 
Variable-selection techniques, such as stepwise regression or regressions 
with all possible subsets removed, can be used to select the discrepant rows 
by noting which dummy variables remain in the regression. The derivative 
approaches can also be generalized to multiple rows. The emphasis is 
placed both on procedures that perturb the homoscedasticity assumption 
in exactly the same way for all rows in a subset and on low-cost stepwise 
methods. 

Next we examine the usefulness of Wilks' A statistic applied to the 
matrix Z, formed by adjoining y to X, as a means for diagnosing groups of 
outlying observations. This turns out to be especially useful either when 
there is no natural way to form groups, as with most cross-sectional data, 
or when unexpected groupings occur, such as might be the case in census 
tract data. We also examine the Andrews-Pregibon (1978) statistic. 

'The use of the term srepwise in this context should not be confused with the concept of 
StepwiSe regression, which is not being indicated. The term sequential was considered but not 
adopted because of its established statistical connotations. 
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Finally we consider generalized distance measures (like the Mahalanobis 
distance) applied to the Z matrix. These distances are computed in a 
stepwise manner, thus allowing more than one row at a time to be 
considered. 

A useful summary of the notation employed is given in Exhibit 2.2. 

Single-Row Effects 

We develop techniques here for discovering influential observations? Each 
observation, of course, is closely associated with a single row of the data 
matrix X and the corresponding element of y? An influential observation 
is one which, either individually or together with several other 
observations, has a demonstrably larger impact on the calculated values of 
various estimates (coefficients, standard errors, 1-values, etc.) than is the 
case for most of the other observations. One obvious means for examining 
such an impact is to delete each row, one at a time, and note the resultant 
effect on the various calculated values? Rows whose deletion produces 
relatively large changes in the calculated values are deemed influential. We 
begin, then, with an examination of t h i s  procedure of row deletion, looking 
in turn at the impact of each row on the estimated coefficients and the 
predicted (fitted) values (g's), the residuals, and the estimated parameter 
variance-covariance matrix. We then turn to other means of locating single 
data points with high impact: differentiation of the various calculated 
values with respect to the weight attached to an observation, and a 
geometrical view based on distance measures. Generalizations of some of 
these procedures to the problem of assessing the impact of deleting more 
than one row at a time are then examined. 

Deletion. 

Coefficients and Fitted Values. Since the estimated coefficients are often 
of primary interest to users of regression models, we look first at the 
change in the estimated regression coefficients that would occur if the ith 
row were deleted. Denoting the coefficients estimated with the ith row 

2A number of the concepts employed in this section have been drawn from the existing 
literature. Relevant citations accompany the derivation of these formulae in Appendix 2A. 
30bservations and rows need not be uniquely paired, for in time-series models with lagged 
variables, the data relevant to a given observation could occur in several neighboring rows. 
We defer further discussion of this aspect of time-series data until Chapters 4 and 5, and 
continue here to use these two terms interchangeably. 
" h e  term row deletion is used generally to indicate the deletion of a row from both the X 
matrix and the y vector. 



E
xh

ib
it 

2.2
 

N
ot

at
io

na
l c

on
ve

nt
io

ns
 

P
op

ul
at

io
n 

R
eg

re
ss

io
n 

E
st

im
at

ed
 R

eg
re

ss
io

n 
Y

aw
+€

 
y=

X
b

+
e 

y 
: 

sa
m

e 
X

: 
n 

x
p

 m
at

ri
x 

of 
ex

pl
an

at
or

y 
va

ri
ab

le
s*

 
sa

m
e 

fl:
 

p
 x

 1
 c

ol
um

n 
ve

ct
or

 o
f 

re
gr

es
si

on
 p

ar
am

et
er

s 
b 

es
ti

m
at

eo
ff

l 
e:

 
n 

x
 1

 c
ol

um
n 

ve
ct

or
 o

f 
er

ro
rs

 
e:

 
re

si
du

al
 v

ec
to

r 
0

2
: 

er
ro

r v
ar

ia
nc

e 
32

: 
es

tim
at

ed
 e

rr
or

 v
ar

ia
nc

e 

n 
x 

1 
co

lu
m

n 
ve

ct
or

 fo
r r

es
po

ns
e 

va
ri

ab
le

 

A
dd

iti
on

al
 N

ot
at

io
n 

xi
 : 

X,:
 

X
(i

):
 

X
 m

at
ri

x 
w

ith
 i

th
 ro

w
 d

el
et

ed
. 

it
h 
ro
w 

of
 X

 m
at

ri
x 

jt
h

 c
ol

um
n 

of
 X

 m
at

ri
x 

M
i):

 
es

tim
at

e o
f 

fl 
w

he
n 

it
h 

ro
w

 o
f 

X
 

an
d 

y 
ha

ve
 b

ee
n 

de
le

te
d.

 
s2

(i
):

 e
st

im
at

ed
 e

rr
or

 v
ar

ia
nc

e 
w

he
n 

it
h 

ro
w

 o
f 

X
 

an
d 

y 
ha

ve
 b

ee
n 

de
le

te
d.

 

M
at

ri
ce

s 
ar

e 
tr

an
sp

os
ed

 w
ith

 a
 s

up
er

sc
ri

pt
 T
, a

s 
in

 X
T

X
. 

M
en

tio
n 

sh
ou

ld
 a

ls
o 

be
 m

ad
e 

of
 a

 c
on

ve
nt

io
n 

th
at

 i
s 

ad
op

te
d 

in
 t

he
 

re
po

rt
in

g 
of 

re
gr

es
si

on
 re

su
lts

. E
st

im
at

ed
 s

ta
nd

ar
d 

er
ro

rs
 o

f 
th

e 
re

gr
es

si
on

 c
oe

ff
ic

ie
nt

s a
re

 a
lw

ay
s r

ep
or

te
d 

in
 p

ar
en

th
es

es
 b

en
ea

th
 

th
e 

co
rr

es
po

nd
in

g 
co

ef
fi

ci
en

t. 
In

 t
ho

se
 c

as
es

 w
he

re
 e

m
ph

as
is

 is
 o
n 

sp
ec

if
ic

 te
st

s 
of

 s
ig

ni
fi

ca
nc

e,
 th

e 
r’s

 a
re

 r
ep

or
te

d 
in

st
ea

d,
 a

nd
 

ar
e 

al
w

ay
s 

pl
ac

ed
 in

 s
qu

ar
e 

br
ac

ke
ts

. O
th

er
 n

ot
at

io
n 

is
 e

ith
er

 o
bv

io
us

 o
r 

is
 i

nt
ro

du
ce

d 
in

 i
ts

 s
pe

ci
fic

 c
on

te
xt

. 

*W
e 

ty
pi

ca
lly

 a
ss

um
e 

X
 t

o 
co

nt
ai

n 
a 

co
lu

m
n 

of
 o

ne
s,

 c
or

re
sp

on
di

ng
 to

 t
he

 c
on

st
an

t 
te

rm
. 
In
 t

he
 e

ve
nt

 th
at

 X
 c

on
ta

in
s 
no
 s

uc
h 

co
lu

m
n,

 c
er

ta
in

 o
f 

th
e 

fo
rm

ul
as

 m
us

t 
ha

ve
 t

he
ir

 d
eg

re
es

 o
f 

fr
ee

do
m

 a
lt

er
ed

 a
cc

or
di

ng
ly

. 
In
 p

ar
ti

cu
la

r,
 a

t 
a 

la
tt

er
 s

ta
ge

 w
e 

in
tr

od
uc

e 
th

e 
no

ta
ti

on
 k
 to

 i
nd

ic
at

e 
th

e 
m

at
ri

x 
fo

rm
ed

 b
y 

ce
nt

er
in

g 
th

e 
co

lu
m

ns
 o

f 
X

 a
bo

ut
 th

ei
r r

es
pe

ct
iv

e 
co

lu
m

n 
m

ea
ns

. I
f 

th
e 

n 
X

 p
 m

at
rix

 X
 c

on
ta

in
s 

a 
co

ns
ta

nt
 c

ol
um

n 
of

 o
ne

s,
 2
 is 

as
su

m
ed

 t
o 

be
 o

f 
si

ze
 n

X
(p

- 
I)

, 
th

e 
co

lu
m

n 
of

 z
er

os
 b

ei
ng

 r
em

ov
ed

. 
T

he
 f

or
m

ul
as

 a
s 

w
ri

tte
n 

ta
ke

 in
to

 a
cc

ou
nt

 th
is

 c
ha

ng
e 

in
 d

eg
re

es
 o

f 
fr

ee
do

m
. S

ho
ul

d 
X

 c
on

ta
in

 n
o 

co
ns

ta
nt

 c
ol

um
n,

 h
ow

ev
er

, a
ll 

fo
rm

ul
as

 d
ea

lin
g 

w
ith

 c
en

te
re

d 
m

at
ri

ce
s 

m
us

t 
ha

ve
 t

he
ir

 d
eg

re
es

 o
f 

fr
ee

do
m

 in
cr

ea
se

d 
by

 o
ne

. 



2.1 THEORETICAL FOUNDATIONS 

deleted by b(i), this change is easily computed from the formula 

(x'x)- 'x;ei 
l--hi ' DFBETA, = b - b( i )  = 

13 

where 

and the reader is reminded that xi is a row vector.The quantity hi occurs 
frequently in the diagnostics developed in this chapter and it is discussed 
more below. 

Whether the change in $, the j th component of b, that results from the 
deletion of the ith row is large or small is often most usefully assessed 
relative to the variance of 4, that is, u2(XTX)i1. If we let 

c= (x'x)- lx=, (2.3) 

then 

5, ei 
$-bJ(i)=- 

l -h i '  

Since 

n 

2 (x=x)-lx;xi(x'x)-l =(X'X)--', 
i -  1 

it follows that [see Mosteller and Tukey (1977)] 

n 

var( $) = u2 2 c;. 
k =  I 

(2.4) 

Thus a scaled measure of change can be defined as 

%ee Appendixes 2A and 2B for details on the computation of the hi. 
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where we have replaced s2, the usual estimate of u2, by 

in order to make the denominator stochastically independent of the 
numerator in the Gaussian (normal) case. A simple formula for s( i )  results 
from 

e; 
( n - p -  l ) s 2 ( i ) = ( n - p ) s 2 -  - 

1 - h i ’  

In the special case of location, 

ei 
n -  1 

DFBETA,= - 

and 

fi e, 
( n -  l ) s ( i )  ’ DFBETAS, = (2-9) 

As we might expect, the chance of getting a large DFBETA is reduced in 
direct proportion to the increase in sample size. Deleting one observation 
should have less effect as the sample size grows. Even though scaled by a 
measure of the standard error of 6, DFBETAS, decreases in proportion to 
fi. 

Returning to the general case, large values of IDFBETAS,I indicate 
observations that are influential in the determination of the j th  coefficient, 
3.‘ The nature of “large” in relation to the sample size, n, is discussed 
below. 

Another way to summarize coefficient changes and, at the same time, to 
gain insight into forecasting effects when an observation is deleted is by 

When the Gaussien assumption holds, it can also be useful to look at the change in 
t-statistics as a means for assessing the sensitivity of the regression output to the deletion of 
the ith row, that is, to examine 

Studying the changes in regression statistics is a good second-order diagnostic tool because, if 
a row appears to be overly influential on other grounds, an examination of the regression 
statistics will show whether the conclusions of hypothesis testing would be affected. 
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the change in fit, defined as 

hiei 
DFFIT, =ii -ji( i) = xi[ b - b( i)] = n. (2.10) 

I 

This diagnostic measure has the advantage that it does not depend on the 
particular coordinate system used to form the regression model. For 
scaling purposes, it is natural to divide by o f i  , the standard deviation of 
the fit, ii = xib, giving 

(2.1 1) 

where u has been estimated by s(i). A measure similar to (2.11) has been 
suggested by Cook (1977). 

It is natural to ask about the scaled changes in fit for other than the ith 
row; that is, 

(2.12) 

where hik = x,(x'x)- 'xl. Since 

{ [ b- b( i ) ]  '(X'X)[ b- b(i)] } 'I2 - Iqb-b( ' ) ]J  - 
4 9  SUP 

A s(i)[X=(X=X)-'X]1/2 

= IDFFITS,J, (2.13) 

it follows that 

< lDFFITSil. (2.14) 

Thus IDFFITSJ dominates the exp zssion in (2.12) for all k and these 
latter measures need only be investigated when lDFFITSiI is large. 

A word of warning is in order here, for it is obvious that there is room 
for misuse of the above procedures. High-influence data points could 
conceivably be removed solely to effect a desired change in a particular 
estimated coefficient, its t-value, or some other regression output. While 
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this danger surely exists, it is an unavoidable consequence of a procedure 
that successfully highlights such points. It should be obvious that an 
influential point is legitimately deleted altogether only if, once identified, it 
can be shown to be uncorrectably in error. Often no action is warranted, 
and when it is, the appropriate action is usually more subtle than simple 
deletion. Examples of corrective action are given in Section 2.2 and in 
Chapter 4. These examples show that the benefits obtained from 
information on influential points far outweigh any potential danger. 

The Hat Matrix. Returning now to our discussion of deletion diagnos- 
tics, we can see from (2.1) to (2.11) that hi and e, are fundamental 
components. Some special properties of hi are discussed in the remainder 
of this section and we study special types of residuals (like e , / s ( i ) I / m  ) 
in the next section.' 

The hi are the diagonal elements of the least-squares projection matrix, 
also called the hat matrix, 

H = X(XTX)- 'XT, 

which determines the fitted or predicted values, since 

9 SXb = Hy. 

(2.15) 

(2.16) 

The influence of the response value, yi, on the fit is most directly reflected 
in its impact on the corresponding fitted value, ?,, and this information is 
seen from (2.16) to be contained in hi. The diagonal elements of H can also 
be related to the distance between xi  and ?z (the row vector of explanatory 
variable means). Denoting by tilde data that have been centered, we show 
in Appendix 2A that 

(2.17) 

We see from (2.17) that h;. is a positive-definite quadratic form and thus 
possesses an appropriate distance interpretation! 

Where there are two or fewer explanatory variables, scatter plots will 
quickly reveal any x-outliers, and it is not hard to verify that they have 

'The immediately following material closely follows Hoaglin and Welsch (1978). 
IAs is well Lnown (Rao (1973). Section Ic.11, any n X n positivedefinite matrix A may be 
decomposed as A=PrP for some non-singular matrix P. Hence the positive-definite 
quadratic form X ~ A X  (x an n-vector) is equivalent to the sum of squares zTz (the squared 
Euclidean length of the n-vector z), where z- Px. 
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relatively large hi values. When p > 2 ,  scatter plots may not reveal 
“multivariate outliers,” which are separated from the bulk of the x-points 
but do not appear as outliers in a plot of any single explanatory variable or 
pair of them. Since, as we have seen, the diagonal elements of the hat 
matrix H have a distance interpretation, they provide a basic starting point 
for revealing such “multivariate outliers.” These diagonals of the hat 
matrix, the hi, are diagnostic tools in their own right as well as being 
fundamental parts ‘of other such tools. 

H is a projection matrix and hence, as is shown in Appendix 2A, 

O < h i <  1. (2.18) 

Further, since X is of full rank, 

n 

2 hi=p .  
i =  I 

(2.19) 

The average size of a diagonal element, then, is p / n .  Now if we were 
designing an experiment, it would be desirable to use data that were 
roughly equally influential, that is, each observation having an hi near to 
the average p / n .  But since the X data are usually given to us, we need 
some criterion to decide when a value of hi is large enough (far enough 
away from the average) to warrant attention. 

When the explanatory variables are independently distributed as the 
multivariate Gaussian, it is possible to compute the exact distribution of 
certain functions of the hi’s. We use these results for guidance only, 
realizing that independence and the Gaussian assumption are often not 
valid in practice. In Appendix 2A, ( n  -p)[  hi - (1 / n ) ] / (  1 - hi)( p - 1) is 
shown to be distributed as F with p - 1 and n -p  degrees of freedom. For 
p >  10 and n - p > 5 0  the 95% value for F is less than 2 and hence 2 p / n  
(twice the balanced average h i )  is a good rough cutoff. Whenp/n>0.4, 
there are so few degrees of freedom per parameter that all observations 
become suspect. For smallp, 2p/n tends to call a few too many points to 
our attention, but it is simple to remember and easy to use. In what 
follows, then, we call the ith observation a leveragepoint when hi exceeds 
2 p / n .  The term leverage is reserved for use in this context. 

Note that when hi= 1, we havepi=yi; that is, ei=O. This is equivalent to 
saying that, in some coordinate system, one parameter is determined 
completely byy, or, in effect, dedicated to one data point. A proof of this 
result is given in Appendix 2A where it is also shown that 

det[X‘(i)X(i)]=(I -hi)det(XTX). (2.20) 
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Clearly when hi = 1 the new matrix X( i ) ,  formed by deleting the ith row, is 
singular and we cannot obtain the usual least-squares estimates. This is 
extreme leverage and does not often occur in practice. 

We complete our discussion of the hat matrix with a few simple 
examples. For the sample mean, all elements of H are I / n .  Herep- 1 and 
each hi = p / n ,  the perfectly balanced case. 

For a straight line through the origin, 

(2.21) 

and 
n 

h i = p = l .  
i =  1 

Simple linear regression is slightly more complicated, but a few steps of 
algebra give 

(2.22) 

Residuals. We turn now to an examination of the diagnostic value of 
the effects that deleting rows can have on the regression residuals. The use 
of the regression residuals in a diagnostic context is, of course, not new. 
Looking at regression residuals, ei = yi - j i ,  and especially large residuals, 
has traditionally been used to highlight data points suspected of unduly 
affecting regression results. The residuals have also been employed to 
detect departures from the Gauss-Markov assumptions on which the 
desirable properties of least squares rest. As is well known, the residuals 
can be used to detect some forms of heteroscedasticity and auto- 
correlation, and can provide the basis for mitigating these problems. The 
residuals can also be used to test for the approximate normality of the 
disturbance term. Since the least-squares estimates retain their property of 
best-linear-unbiasedness even in the absence of normality of the 
disturbances, such tests are often overlooked in econometric practice, but 
even moderate departures from normality can noticeably impair estimation 
efficiency’ and the meaningfulness of standard tests of hypotheses. 
Harmful departures from normality include pronounced skewness, 
multiple modes, and thick-tailed distributions. In all these uses of residuals, 

The term efficiency is used here in a broad sense to indicate minimum mean-squared error. 
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one should bear in mind that large outliers among the true errors, 9, can 
often be reflected in only modest-sized least-squares residuals, since the 
squared-error criterion weights extreme values heavily. 

Three diagnostic measures based on regression residuals are presented 
here; two deal directly with the estimated residuals and the third results 
from a change in the assumption on the error distribution. The first is 
simply a frequency distribution of the residuals. If there is evident visual 
skewness, multiple modes, or a heavy-tailed distribution, a graph of the 
frequency distribution will prove informative. It is worth noting that 
economists often look at time plots of residuals but seldom at their 
frequency or cumulative distribution. 

The second is the normal probability plot, which displays the cumulative 
normal distribution as a straight line whose slope measures the standard 
deviation and whose intercept reflects the mean. Thus a failure of the 
residuals to be normally distributed will often reveal itself as a departure of 
the cumulative residual plot from a straight line. Outliers often appear at 
either end of the cumulative distribution. 

Finally, Denby and Mallows (1977) and Welsch (1976) have suggested 
plotting the estimated coefficients and residuals as the error likelihood, or, 
equivalently, as the criterion function (negative logarithm of the likelihood) 
is changed. One such family of criterion functions has been suggested by 
Huber (1973); namely, 

(2.23) 

which goes from least squares (c = 00) to least absolute residuals (c+ 0). 
This approach is attractive because of its relation to robust estimation, but 
it requires considerable computation. 

For diagnostic use the residuals can be modified in ways that will 
enhance our ability to detect problem data. It is well known [Theil (1971)l 
that 

var(ei) = a2( 1 - hi). (2.24) 

Consequently, many authors have suggested that, instead of studying e,, we 
should use the standardized residuals 

(2.25) ei e,, E 
s m  
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We prefer instead to estimate u by s ( i )  [cf. (2.8)]. The result is a studentized 
residual (RSTU DENT), 

(2.26) 

which, in a number of practical situations, is distributed closely to the 
t-distribution with n - p -  1 degrees of freedom. Thus, if the Gaussian 
assumption holds, we can readily assess the significance of any single 
studentized residual. Of course, the e: will not be independent. 

The studentized residuals have another interesting interpretation. If we 
were to add to the data a dummy variable consisting of a column with all 
zeros except for a one in the ith row (the new model), then e: is the 
f-statistic that tests for the significance of the coefficient of this new 
variable. To prove this, let SSR stand for sum of squared residuals and 
note that 

[ SSR(o1d model) - SSR(new model)]/ 1 

SSR(new model)/(n - p  - 1) 
(2.27) 

2 

. (2.28) - ei - - (n-p)s2-(n-p- l)s2(i) - 
s2( i )  s2( i ) (  I - hi) 

Under the Gaussian assumption, (2.27) is distributed as F,,”-*- ,, and the 
result follows by taking the square root of (2.28). Some additional details 
are contained in Appendix 2A. 

The studentized residuals thus provide a better way to examine the 
information in the residuals, both because they have equal variances and 
because they are easily related to the r-distribution in many situations. 
However, this does not tell the whole story, since some of the most 
influential data points can have relatively small studentized residuals (and 
very small ei). 

To illustrate with the simplest case, regression through the origin, note 
that 

x.e. 
b -  b( j )  = - (2.29) 

2j+ix; - 
Equation (2.29) shows that the residuals are related to the change in the 
least-squares estimate caused by deleting one row, but each contains 
different information, since large values of Ib - b(i)l can be associated with 
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small leil and vice versa. Hence row deletion and the analysis of residuals 
need to be treated together and on an equal footing. 

When the index of observations is time, the studentized residuals can be 
related to the recursive residuals proposed by Brown, Durbin, and Evans 
(1975). If b(t) is the least-squares estimate based on the first t-1 
observations, then the recursive residuals are defined to be 

which by simple algebra (see Appendix 2A) can be written as 

Y ,  - x,b 

lliq’ 
(2.3 1) 

where h, and b are computed from the first t observations. For a related 
interpretation see a discussion of the PRESS residual by Allen (1971). 

When we set 

I 

S, (ui -xib)*, 
i n  I 

(2.8) gives 

2 s, =st- ,  + 4,. 

(2.32) 

(2.33) 

Brown, Durbin, and Evans propose two tests for studying the constancy of 
regression relationships over time. The first uses the cusum 

W,= - T - p  q, t = p + l ,  ..., T, 
S T  J - p + l  

(2.34) 

and the second the cusum-of-squares 

, t = p + l ,  ..., T. (2.35) c, = - s, 
ST 

Schweder (1976) has shown that certain modifications of these tests, 
obtained by summing from j =  T to t Z p +  1 (backward cusum, etc.) have 
greater average power. The reader is referred to that paper for further 
details. An example of the use of these tests is given in Section 4.3. 
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Cooariance Matrix. So far we have focused on coefficients, predicted 
(fitted) values of y, and residuals. Another major aspect of regression is the 
covariance matrix of the estimated coefficients." We again consider 
the diagnostic technique of row deletion, this time in a comparison of the 
covariance matrix using all the data, a2(X'X)-', with the covariance 
matrix that results when the ith row has been deleted, u2[XT(i)X(i)]-'. Of 
the various alternative means for comparing two such positive-definite 
symmetric matrices, the ratio of their determinants det[XT(i)X(i)]-'/ 
det(XTX)-' is one of the simplest and, in the present application, is quite 
appealing. Since these two matrices differ only by the inclusion of the ith 
row in the sum of squares and cross products, values of this ratio near 
unity can be taken to indicate that the two covariance matrices are close, 
or that the covariance matrix is insensitive to the deletion of row i. Of 
course, the preceding analysis is based on information from the X matrix 
alone and ignores the fact that the estimator s2 of u2 also changes with the 
deletion of the ith observation. We can bring the y data into consideration 
by comparing the two matrices s z ( X r X ) - '  and sz(i)[XT(i)X(i)]-' in the 
determinantal ratio, 

det( s2( i) [ X'( i)X( i) ] - ' ) 
det [ s2(XTX) - I ] COVRATIO E 

(2.36) 
de t [ X'( i)X( i) ] - 

Equation (2.36) may be given a more useful formulation by applying (2.20) 
to show 

(2.37) 
1 =- 

det[ X*( i)X( i) ] 
det(X'X) - l -hi '  

Hence, using (2.8) and (2.26) we have 

(2.38) 
1 

COVRATIO = 
n - p - 1  e?Z p 

n-p  +---!---I n - p  (1-hi) 

''A diagnostic based on the diagonal elements of the covariance matrix can be obtained from 
the expression (2.6). By noting which c,; appear to be excessively large for a given j ,  we 
determine those observations that influence the variance of the jth coefficient. This 
diagnostic, however, has two weaknesses. First, it ignores the off-diagonal elements of the 
covariance matrix and second, emphasis on the c,: ignores s2. 
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As a diagnostic tool, then, we are interested in observations that result in 
values of COVRATIO from (2.38) that are not near unity, for these 
observations are possibly influential and warrant further investigation. 
In order to provide a rough guide to the magnitude of such variations 

from unity, we consider the two extreme cases le:1>2 with hi at its 
minimum ( 1  /n) and hi 2 2 p / n  with e: = 0. In the first case we get 

1 1 
COVRATIO= 

l+- 

Further approximation leads to 

where n - p  has been replaced by n for simplicity. The latter bounds are, of 
course, not useful when n < 3p. For the second case 

1 1 1 
COVRATIO= 

A cruder but simpler bound follows from 

Therefore we investigate points with lCOVRATI0-11 near to or larger 
than 3p ln .”  

The formula in (2.38) is a function of basic building blocks, such as hi 
and the studentized residuals. Roughly speaking (2.38) will be large when 
hi is large and small when the studentized residual is large. Clearly those 

‘ I  Some prefer to normalize expressions like (2.36) for model size by raising them to the l/pth 
power. Had such normalization been done here, the approximations corresponding to (2.39) 
and (2.40) would be 1 - ( 3 / n )  and 1 + ( 3 / n )  respectively. 
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two factors can offset each other and that is why it is useful to look at 
them separately and in combinations as in (2.38). 

We are also interested in how the variance of j j i  changes when an 
observation is deleted. To do this we compute 

var( j j i )  = s2hi 

var(ji(i))=var(xib(i)) = s2(i) - [ l : h i ] 7  

and form the ratio 

s 2 ( i )  
FVARATIO= 

s2( 1 - hi) ‘ 

This expression is similar to COVRATIO except that s2(i)/s2 is not raised 
to thepth power. As a diagnostic measure it will exhibit the same patterns 
of behavior with respect to different configurations of hi and the 
studentized residual as described above for COVRATIO. 

Diflerentirtion. We examine now a second means for identifying 
influential observations, differentiation of regression outputs with respect 
to specific model parameters. In particular, we can alter the weight 
attached to the ith observation if, in the assumptions of the standard linear 
regression model, we replace var(q) = u2 with var(ci) = a2/wi, for the 
specific i only. Differentiation of the regression coefficients with respect to 
w,, evaluated at wi = 1, provides a means for examining the sensitivity of 
the regression coefficients to a slight change in the weight given to the ith 
observation. Large values of this derivative indicate observations that have 
large influence on the calculated coefficients. This derivative, as is shown 
in Appendix 2A, is 

and it follows that 

(2.41) 

(2.42) 

This last formula is often viewed as the influence of the ith observation on 
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the estimated coefficients. Its relationship to the formula (2.1) for 
DFBETA is obvious and it could be used as an alternative to that statistic. 

The theory of robust estimation [cf. Huber (1973)l implies that influence 
functions such as (2.42) can be used to approximate the covariance matrix 
of b by forming 

n n 

2 (XTX)-'xrejejx,(XTX)-' = e,?(XTX)-'x~xj(X'X)-' . (2.43) 
i s  I i=  1 

This is not quite the usual covariance matrix, but if e,? is replaced by the 
average value, X i - , e i / n ,  we get 

Znk-p; x (x~x)-lx~x;(x~x)-l  = - (xTx)-', (2.44) n n i - i  

which, except for degrees of freedom, is the estimated least-squares 
covariance matrix. 

To assess the influence of an individual observation, we compare 

with 

SZ(X*X) - '. (2.46) 

The use of determinants with the sums in (2.45) is difficult, so we replace 
ei for k#i  by s2(i) ,  leaving 

Forming the ratio of the determinant of (2.47) to that of (2.46) we get 

( 1 - hi) = 
s 2 ~ ( i )  det[ X'( i)X( i) ] -. 

sZP det(XTX) { [ ( n - p - l ) / ( n - p ) ] + [ e j * 2 / ( n - p ) ] } P '  

(2.48) 

which is just (2.38) multiplied by (1 - hi)'. We prefer (2.38) because no 
substitution for e,? is required. 
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A similar result for the variances of the fit, jj;, compares the ratio of 
Z k f i e i h i  and s2hi giving, after some manipulation, 

1 - hi - - (2.49) 
s2( i)( 1 - hi) 

S2 *2  
’ 

n-p-l  n-p n-p 

which we note to be FVARATIO multiplied by (1 -hi)‘. This ratio can be 
related to some of the geometric procedures discussed below. 

A Geometric View. In the previous sections we have examined several 
techniques for diagnosing those observations that are influential in the 
determination of various regression outputs. We have seen that key roles 
are played in these diagnostic techniques by the elements of the hat matrix 
H, especially its diagonal elements, the hi, and by the residuals, the e,. The 
former elements convey information from the X matrix, while the latter 
also introduce information from the response vector, y. A geometric way of 
viewing this interrelationship is offered by adjoining the y vector to the X 
matrix to form a matrix Z=[Xy], consisting of p+  1 columns. We can 
think of each row of Z as an observation in a p  + 1 dimensional space and 
search for “outlying” observations. 

In this situation, it is natural to think of Wilks’ A statistic [Rao (1973)) 
for testing the differences in mean between two populations. Here one 
such population is represented by the ith observation and the second by 
the rest of the data. If we let 2 denote the centered (by Z) Z matrix, then 
the statistic is 

det(2 T Z -  (n - I);‘( i ) i ( i )  - ZTZi )  

det(kT2) 
h(Z,) = 7 

where i(i) is thep-vector (row) of column means of z(i). 

that 
As part of our discussion of the hat matrix in Appendix 2A, we show 

n 
n-1 A($) = - (1 - hi), (2.50) 

and a simple application of the formulas for adding a column to a matrix 
[Rao (1973), p. 331 shows that 

I-’. e,?’ 

(n-p- 1) 
A(Z,)=( &)( 1 -h i )  (2.5 1) 
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This index is again seen to be composed of the basic building blocks, hi, 
and the studentized residuals, e,*, and is similar (in the case of a single 
observation in one group) to (2.49). Small values of (2.51) would indicate 
possible discrepant observations. 

If we are willing to assume, for purposes of guidance, that 2 consists of 
n independent samples from a p-dimensional Gaussian distribution, then 
A@,) can be easily related to the F-statistic by 

(2.52) 

In place of A@,) we could have used the Mahalanobis distance between 
one row and the mean of the rest; that is, 

(2.53) 

- 
where &(i) is &(i) centered by i( i) .  This is seen by noting that A and M are 
simply related by 

l-A (n-1)M -- - 
A ( n - 2 ) n  ' 

(2.54) 

However, A(gi) has a more direct relationship to hi and its computation is 
somewhat easier when, later on, we consider removing more than one 
observation at a time. 

The major disadvantage of diagnostic approaches based on Z is that the 
special nature of y in the regression context is ignored (except when X is 
considered as fixed in the distribution of diagnostics based on Z). The 
close parallel of this approach to that of the covariance comparisons as 
given in (2.48) and (2.49) suggests, however, that computations based on Z 
will prove useful as well. 

Criteria for Influential Observations. In interpreting the results of each 
of the previously described diagnostic techniques, a problem naturally 
arises in determining when a particular measure of leverage or influence is 
large enough to be worthy of further notice. When, for example, is a 
hat-matrix diagonal large enough to indicate a point of leverage, or a 
DFBETA an influential point? As with all empirical procedures, this 
question is ultimately answered by judgment and intuition in choosing 
reasonable cutoffs most suitable for the problem at hand, guided wherever 
possible by statistical theory. There are at least three sources of 
information for determining such cutoffs that seem useful: external 
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scaling, internal scaling, and gaps. Elasticities, such as (i3bj( wi)/i3wi)(wi/4), 
and approximations to them like (4-4(i))/l+ may also be useful in 
specific applications, but will not be pursued here. 

External Scaling. External scaling denotes cutoff values determined by 
recourse to statistical theory. Each of the t-like diagnostics RSTUDENT, 
DFBETAS, and DFFITS, for example, has been scaled by an appropriate 
estimated standard error, which, under the Gaussian assumption, is 
stochastically independent of the given diagnostic. As such, it is natural to 
say, at least to a first approximation, that any of the diagnostic measures is 
large if its value exceeds two in magnitude. Such a procedure defines what 
we call an absolute cutofl, and it is most useful in determining cutoff values 
for RSTUDENT, since this diagnostic is less directly dependent on the 
sample size. Absolute cutoffs, however, are also relevant to determining 
extreme values for the diagnostics DFBETAS and DFFITS, even though 
these measures do depend directly on the sample size, since it would be 
most unusual for the removal of a single observation from a sample of 100 
or more to result in a change in any estimated statistic by two or more 
standard errors. By way of contrast, there can be no absolute cutoffs for 
the hat-matrix diagonals hi or for COVRATIO, since there is no natural 
standard-error scaling for these diagnostics. 

While the preceding absolute cutoffs are of use in providing a stringent 
criterion that does not depend directly on the sample size n, there are 
many cases in which it is useful to have a cutoff that would tend to expose 
approximately the same proportion of potentially influential observations, 
regardless of sample size. Such a measure defines what we call a 
size-adjurted curofl. In view of (2.7) and (2.9) a size-adjusted cutoff for 
DFBETAS is readily calculated as 2 / f i  . Similarly, a size-adjusted cutoff 
for DFFITS is possible, for we recall from (2.19) that a perfectly balanced 
design matrix X would have hi = p / n  for all i ,  and hence [see (2.1 l)], 

DFFITS, = ( L ) ’ ’ ’ e : .  
n - p  

A convenient size-adjusted cutoff in this case would be 2 m  which 
accounts both for the sample size n and the fact that DFFITS, increases as 
p does. In effect, then, the perfectly balanced case acts as a standard from 
which this measure indicates sizable departures. As we have noted above, 
the only cutoffs relevant to the hat-matrix diagonals hi and COVRATIO 
are the size-adjusted cutoffs 2 p / n  and 1 k + ( p / n ) ,  respectively. 

Both absolute and size-adjusted cutoffs have practical value, but the 
relation between them becomes particularly important for large data sets. 
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In this case, it is unlikely that the deletion of any single observation can 
result in large values for IDFBETASI or JDFFITSI; that is, when n is large 
there are not likely to be any observations that are influential in the 
absolute sense. However, it is still extremely useful to discover those 
observations that are most strongly influential in relation to the others, and 
the size-adjusted cutoffs provide a convenient means for doing this. 

Internal Scaling. Internal scaling defines extreme values of a diagnostic 
measure relative to the “weight of the evidence” provided by the given 
diagnostic series itself. The calculation of each deletion diagnostic results 
in a series of n values. The hat-matrix diagonals, for example, form a set of 
size n, as do DFFIT and thep series of DFBETA. Following Tukey (1977) 
we compute the interquartile range s’ for each series and indicate as 
extreme those values that exceed (7/2)5. If these diagnostics were 
Gaussian this would occur less than 0.1% of the time. Thus, these limits 
can be viewed as a convenient point of departure in the absence of a more 
exact distribution theory. The use of an interquartile range in this context 
provides a more robust estimate of spread than would the standard 
deviation when the series are non-Gaussian, particularly in instances where 
the underlying distribution is heavy tailed.I2 

Gaps. With either internal or external scaling, we are always alerted 
when a noticeable gap appears in the series of a diagnostic measure; that 
is, when one or more values of the diagnostic measure show themselves to 
be singularly different from the rest. The question of deciding when a gap 
is worthy of notice is even more difficult than deriving the previous 
cutoffs. Our experience with the many data sets examined in the course of 
our research, however, shows that in nearly every instance a large majority 
of the elements of a diagnostic series bunches in the middle, while the tails 
frequently contain small fractions of observations clearly detached from 
the remainder. 

It is important to note that, in any of these approaches to scaling, we 
face the problems associated with extreme values, multiple tests, and 
multiple comparisons. Bonferroni-type bounds can be useful for small data 
sets or for situations where only few diagnostics need to be examined 
because the rest have been excluded on other grounds. Until more is 
known about the issue, we suggest a cautious approach to the use of the 

l2 For further discussion of appropriate measures of spread for non-Gaussian data, see 
MosteUer and Tukey (1977). 
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diagnostics, but not so cautious that we remain ignorant of the potentially 
damaging effects of highly influential data. 

Parthl-Regression k m g e  Plots. Simple two-variable regression 
scatter-plots (like the stylized examples in Exhibit 2.le and f) contain 
much diagnostic information about residuals and leverage and, in addition, 
provide guidance about influential subsets of data that might escape 
detection through the use of single-row techniques. 

It is natural to ask if a similar tool exists for multiple regression, and this 
leads to the partial-regression leverage plot. This graphical device can be 
motivated as follows. Let X [ k ]  be the n X ( p  - 1) matrix formed from the 
data matrix, X ,  by removing its kth column, X k .  Further let uk and v k ,  

respectively, be the residuals that result from regressing y and X k  on X [ k ] .  
As is well known, the kth regression coefficient of a multiple regression of 
y on X can be determined from the simple two-variate regression of uk on 
v k .  We define, then, the partial-regression leverage plot for bk as a scatter 
plot of the uk against the v, along with their simple linear-regression line. 
The residuals from this regression line are, of course, just the residuals 
from the multiple regression of y on X ,  and the slope is bk, the 
multiple-regression estimate of &. Also, the simple correlation between uk 

and v k  is equal to the partial correlation between y and x k  in the multiple 
regression. 

We feel that these plots are an important part of regression diagnostics 
and that they should supplant the traditional plots of residuals against 
explanatory variables. Needless to say, however, partial-regression leverage 
plots cannot tell us everything. Certain types of multivariate influential 
data can be overlooked and the influence of the leverage points detected in 
the plot will sometimes be difficult to quantify. The computational details 
for these plots are discussed by Mosteller and Tukey (1977) who show that 
the uk are equal to bkvk+e, where e is the vector of residuals from the 
multiple regression. This fact saves considerable computational effort. 

The v, have another interesting interpretation. Let h,[k] denote the 
elements of the hat matrix for the regression of y on all of the explanatory 
variables except X k .  Then the elements of the hat matrix for the full 
regression are 

(2.55) 

where V k , ,  denotes the ith component of the vector v k .  This expression can 
be usefully compared with (2.21) for regression through the origin. Thus 
the vk are closely related to the partial leverage added to h i j [ k ]  by the 
addition of x k  to the regression. 
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Multiple-Row Effects 

In the preceding discussion, we have presented various diagnostic 
techniques for identifying influential observations that have been based on 
the deletion or alteration of a single row. While such techniques can 
satisfactorily identify influential observations much of the time, they will 
not always be successful. We have already seen, for example, in the simple 
case presented in Exhibit 2.1f that one outlier can mask the effect of 
another. It is necessary, therefore, to develop techniques that examine the 
potentially influential effects of subsets or groups of observations. We turn 
shortly to several multiple-row techniques that tend to avoid the effects of 
masking and that have a better chance of isolating influential subsets in 
the data. 

Before doing this, however, we must mention an inherent problem in 
delimiting influential subsets of the data, namely, when to stop-with 
subsets of size two, three, or more? Clearly, unusual observations can only 
be recognized relative to the bulk of the remaining data that are considered 
to be typical, and we must select an initial base subset of observations to 
serve this purpose. But how is this subset to be found? One straightforward 
approach would be to consider those observations that do not appear 
exceptional by any of the single-row measures discussed above. Of course, 
we could always be fooled, as in the example of Exhibit 2.lf, into including 
some discrepant observations in this base subset, but this would be 
minimized if we used low cutoffs, such as relaxing our size-adjusted cutoff 
levels to 90% or less instead of holding to the more conventional 95% 
level. We could also remove exceptional observations noticed in the 
partial-regression leverage plots. Some of the following procedures are less 
dependent on a base subset than others, but it cannot be avoided entirely, 
for the boundary between the typical and the unusual is inherently vague. 
We denote by B* (of size m*) the largest subset of potentially influential 
observations that we wish to consider. The complement of B* is the base 
subset of observations defined to be typical. 

We follow the same general outline as before and discuss deletion, 
residuals, differentiation, and geometric approaches in the multiple-row 
context. 

Deletion. A natural multiple-row generalization of (2.4) would be to 
examine the larger values of 

(2.56) 

for J = I , .  . . ,p and m = 2, 3,4, and so on, and where “scale” indicates some 
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appropriate measure of standard error. Here Dm is a set (of size m) of 
indexes of the rows to be deleted. If fitted values are of interest, then the 
appropriate measure becomes 

scale 
(2.57) 

for k = 1,. . . ,n. Although computational formulas exist for these quantities 
[Bingham (1977)], the cost is great and we feel most of the benefits can be 
obtained more simply. 

To avoid the consideration of p quantities in (2.56) or n quantities in 
(2.57). squared norms, such as 

[ b - b ( ~ m ) ]  ‘[b-b(~rn)] 

or 

[ b - b(D,)] ‘ X r X [  b- b(D,)] 

can be considered as summary measures. Since 

(2.58) 

(2.59) 

we are often most 
interested in changes in fit that occur for the data points remaining after 
deletion, (2.59) can be modified to 

T T  
MDFFIT= [ b - b( D,)] X (D,)X(D,)[ b- b( D,) ] .  (2.60) 

Bingham (1977) shows (2.60) can also be expressed as 

(2.61) 

where e is the column vector of least-squares residuals and where D,, used 
as a subscript, denotes a matrix or vector with rows whose indexes are 
contained in 0,. Because of (2.61) MDFFIT can be computed at lower 
cost than (2.59). Unfortunately, even (2.6 1) is computationally expensive 
when m exceeds about 20 observations. Some inequalities, however, are 
available for MDFFIT which may ease these computational problems. 
More details are provided at the end of Appendix 2B. 

For larger data sets, a stepwise approach is available that can provide 
useful information at low cost. This method begins for m=2 by using the 
iwo largest IDFFITI (or JDFFITSJ) to form If the two largest values 
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of 

(2.62) 

do not have their indexes k contained in DZ(l), a set 0i2) is formed 
consisting of the indexes for the two largest. This procedure is iterated 
until a set D, is found with indexes coinciding with the two largest values 
of (2.62). The resulting statistic is designated SMDFFIT. 

For m=3, a starting set Dill is found by using the three largest values 
of (2.62) from the final iteration for m-2. Once the starting set is found 
the iteration proceeds as for m = 2. The overall process continues for m '4, 
5, and so on. An alternative approach is to use the m largest values of 
IDFFITl to start the iterations for each value of m. Different starting sets 
can lead to different final results. 

This stepwise approach is motivated by the idea that the fitted values 
most sensitive to deletion should be those which correspond to the deleted 
observations because no attempt is being made to fit these points. Since 
(2.14) does not hold in general when two or more points are deleted, the 
stepwise process attempts to find a specific set for each m where it does 
hold. 

We conclude our study of multiple-row deletion by generalizing the 
covariance ratio to a deletion set 0,; namely, 

dets2(D,)[ XT(D,)X(D,)]-' 

det s2(XTX)- 
COVRATIO( 0,) = . (2.63) 

Computation of this ratio is facilitated by the fact that 

(2.64) 

where (I-WDm stands for the submatrix formed by considering only the 
rows and columns of I - H that are contained in 0,. FVARATIO also can 
be generalized." 

Studentized Residuals and Dummy Variables, The single-row studentized 
residual given in (2.26) is readily extended to deletions of more than one 
row at a time. Instead of adding just one dummy variate with a unity in 
row i and zeros elsewhere, we add many such dummies, each with its unity 

l3  It is easily seen that equations (2.48) and (2.49) can also be generalized. 
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only in the row to be deleted. In the extreme, we could add n such 
variables, one for each row. This leads to a singular problem which can, in 
fact, be studied. However, we assume that no more than n - p  columns of 
dummy variates are to be added. 

Once the subset of dummy columns to be added has been decided on, a 
problem that we turn to below, it is natural to make use of standard 
regression selection techniques to decide which, if any, of these dummy 
variables should be retained. Each dummy variable that is retained 
indicates that its corresponding row warrants special attention, just as we 
saw that the studentized residual calls attention to a single observation. 
The advantage here is that several rows can be considered simultaneously 
and we have a chance to overcome the masking situation in Exhibit 2.lf. 

There are no clear-cut means for selecting the set of dummy variables to 
be added. As already noted, we could use the previously described 
single-row techniques along with partial-regression leverage plots to 
determine a starting subset of potentially influential observations. Rather 
generally, however, the computational efficiency of some of these selection 
algorithms allows this starting subset to be chosen quite large. 
To test any particular subset 0, of dummy variables a generalization of 

(2.27) is available. For example, we could consider 

[ SSR(no dummies) - SSR(D, dummies used)]/m 

SSR(D, dummies used)/(n - p  - m) 
RESRATIO ZE , 

(2.65) 

which is distributed as Fmn--p--m if the appropriate probability 
assumptions hold. For further details see Gentleman and Wilk (1975). 

The use of stepwise regression has been considered as a solution to this 
problem by Mickey, Dunn, and Clark (1967). The well-known difficulties 
of stepwise regression arise in this context, and, in general, it is best to 
avoid attempting to discover the model (i.e., explanatory variables) and 
influential points at the same time. Thus one must first choose a set of 
explanatory variables and stay with them while the dummy variables are 
selected. Of course, this process may be iterated and, if some observations 
are deleted, a new stepwise regression on the explanatory variable set 
should be performed. Stepwise regression also clearly fails to consider all 
possible combinations of the dummy variables and can therefore m i s s  
influential points when more than one is present. 

A natural alternative to stepwise regression is to consider 
all-possible-subsets regre~sion.'~ The computational costs are higher and 

*' See Furnival and Wilson (1974). 
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more care must be taken in choosing the starting subset of dummy 
variables. Wood (1973) has suggested using partial-residual plotst5 to find 
an initial subset which is subjected in turn to the C, selection technique 
developed in Mallows (1973b) in order to find which dummy variables are 
to be retained. We think this method is appealing, especially if 
partial-regression leverage plots are combined with the methods discussed 
earlier in this chapter as an aid to finding the initial subset of dummies. 
Computational costs will tend to limit the practical size of this subset to 20 
or fewer dummy variates. 

The use of dummy variates has considerable appeal but the single-row 
analogue, the studentized residual, is, as we have seen, clearly not adequate 
for finding influential data points. This criticism extends to the 
dummy-variable approach because the use of sums of squares of residuals 
fails to give adequate weight to the structure and leverage of the 
explanatory-variable data. 

The deletion methods discussed above provide one way to deal with this 
failure. Another is to realize that I - H is proportional to the covariance 
matrix of the least-squares residuals. A straightforward argument using 
(2.64) shows that 

det(1 -Worn,; 
det(1- H)D, ’ l -h , (Dm)=  (2.66) 

where the numerator submatrix of (I - H) contains the ith row and column 
of I-H in addition to the rows and columns in 0,. When this is 
specialized to a single deleted row, k#i, we obtain 

(1 -hi)(  1 - hk)- h i  
1 - hk 

1 - h,(k)= 

= ( 1 - h , ) [ l -  cor2(ei,ek)]. (2.67) 

This means that hi(k) can be large when the magnitude of the correlation 
between e, and ek is large. Thus useful clues about subsets of leverage 
points can be provided by looking at large diagonal elements of H and at 
the large residual correlations. This is an example of the direct use of the 
off-diagonal elements of H, elements implicitly involved in most 
multiple-row procedures. This is further exemplified in the next two 
sections. 

Diflerentiation. Generalizing the single-row differentiation techniques 
to multiple-row deletion is straightforward. Instead of altering the weight, 
w,, attached to only one observation, we now consider a diagonal weight 

I s  On these plots, see Larson and McCleary (1972). 



36 DETECTING INFLUENTIAL OBSERVATIONS AND OUTLIERS 

matrix W, with diagonal elements ( w l ,  w,, . . . , w,) = w, and define 
b(w)r(XTWX)-'XTWy. This b(w) is a vector-valued function of w whose 
first partial derivatives evaluated at w = L (the vector of ones) are 

Vb(c)=CE, (2.68) 

where V is the standard gradient operator, C is defined in (2.3), and 
E=diag(e,, .. .,em). If we are interested in fitted values, this becomes 

XVb(I)=HE. (2.69) 

Our concern is with subsets of observations that have a large influence. 
One way to identify such subsets is to consider the directional derivatives 
Vb(r)l where 1 is a column vector of unit length with nonzero entries in 
rows with indexes in Om, that is, the rows to be perturbed. For a fixed m, 
the indexes corresponding to the nonzero entries in those I which give large 
values of 

1 'VbT( I)AV b( 1)1 (2.70) 

would be of interest. The matrix A is generally I, X'X, or X*(D,)X(D,). 
These 1 vectors are just the eigenvectors corresponding to largest 

eigenvalues of the matrix 

(2.71) 

When A=XTX, (2.71) is just the matrix whose elements are hoei?, with 
i ,  j E 0 , .  While the foregoing procedure is conceptually straightforward, 
it has the practical drawback that, computationally, finding these eigen- 
vectors is expensive. We therefore explore two less costly simplifications. 

In the first simplification we place equal weight on all the rows of 
interest, and consider the effect of an infinitesimal perturbation of that 
single weight. This is equivalent to using a particular directional derivative, 
I*, that has all of its nonzero entries equal. When A is X*X, this gives 

I * *V bT( t)XTXV b( I) I * = 2 huei 5. (2.72) 

Much less computational effort is required to find the large values of (2.72) 
than to compute the eigenvectors for (2.71). A more complete discussion of 
this issue is contained in Appendix 2B. The expression b-b(i) is an 
approximation to the ith column of Vb(i), and could be used instead in the 

i,J E Dm 
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preceding discussion. In this case (2.72) becomes 

e, ei = MEWDFFIT. 
i j  ' E Dm hii (1 - h,.)(l- h,) 

(2.73) 

In the second simplification, we use a stepwise approach for large data 
sets, employed in the same manner as (2.62), using the statistic 

(2.74) 

Geometric Approaches. Wilks' A statistic generalizes to the 
multiple-row situation quite readily and is useful for discovering groups of 
outliers. This is particularly interesting when the observations cannot be 
grouped on the basis of prior knowledge (e.g., time) or when there is prior 
knowledge but unexpected groupings occur. 

The generalization goes as follows. Let I, be an n X 1 vector consisting of 
ones for rows contained in Dm and zeros elsewhere and I Z = i -  I,. The 
relevant A statistic for this case is [Rao (1973), p. 5701 

Using an argument similar to that in Appendix 2A, this statistic reduces to 

A(D,)= 1 - (ll'fil,), 
m(n - m) 

(2.75) 

where k Z ( S r z ) - ' Z T .  Thus A(D,) is directly related to sums of elements 
of a matrix, F, (fl if k is replaced by 2) and, as we show in Appendix 2B, 
this greatly simplifies computation. 

To use A we examine the smaller values for each m = 1, 2, and so on. If 
we assume for guidance that the rows of Z are independent samples from a 
p-variate Gaussian distribution, then 

(2.76) 

This is only approximate, since we are interested in extreme values. It 
would be even better to know the distribution of A conditional on X, but 
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this remains an open problem. More than just the smallest value of A 
should be examined for each m, since there may be several significant 
groups. Gaps in the values of A are also usually worth noting. 

Andrews and Pregibon (1978) have proposed another method based on 
Z.  They consider the statistic 

, (2.77) 
= ( n  -P - m)s2(Dm)det [ XT(~rn)X(Drn)] 

( n  -p)s2det(X'X) 

which relates to (2.49) and (2.51) for m= 1. The idea is to ascertain the 
change in volume (measured b r  the determinant of Z'Z) caused by the 
deletion of the rows in 0,. If Z instead of Z had been used, Q becomes 
another form of Wilks' A statistic where there are m+ 1 groups: one for 
each row in Dm and one group for all the remaining rows. 

Computationally, Q is about the same order as MDFFIT and 
considerably more complicated than A. However, Andrews and Pregibon 
have succeeded in developing a distribution theory for Q when y is 
Gaussian and X is fixed. While useful only for n of modest size, it does 
provide some significance levels for finding sets of outliers. 

Both A and Q are computationally feasible for m<20. A stepwise 
approach based on the Mahalanobis distance and the ideas of robust 
covariance [Devlin, Gnanadesikan, and Kettenring (i975)] can be used for 
larger subsets. The philosophy is similar to that developed for (2.62) and 
(2.74). If we think the points in D are outliers, it is reasonable to remove 
them from our estimate of the covariance and means of the columns of 2 
by computing k'( D)Z( D) and ;( D).  The distance from any row Zi  to i ( D )  
is then measured by 

I 

M ( i , D )  = ( n  - 2) [ ii -i( D ) ]  [ k'( D ) i ( D ) ]  - I [  Zi - i ( D ) ]  '. (2.78) 

The starting set Dill consists of the rows corresponding to the two largest 
values of the single-row Mahalanobis distance M(Z,). D$*) consists of the 
indexes of the two largest values of M(i ,  Dd')). If Di2)= D f ) ,  we stop. If 
not we iterate with Dik+' )  consisting of the two largest values of M(i,Df')), 
and the process stops when DJk+')= Djk'. 

Final Comments 

The multiple-row techniques presented here form a subset of the possible 
procedures that could be devised. Our choices have been made on the 
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basis of limited experience and theory. We originally hoped that 
multiple-row methods could be avoided because of their computational 
cost. A number of examples has shown that a single-row analysis alone is 
not enough, but that such an analysis coupled with the partial-regression 
leverage plots and stepwise multiple-row methods is quite often adequate 
and of modest cost. 

On small data sets (n < loo), the fact that it is expensive to have m* 
exceed 20 is not so serious since this includes over 20 percent of the data. 
However, B+ should still be chosen carefully, using relaxed cutoffs and 
partial-regression leverage plots. The inequalities developed at the end of 
Appendix 2B can also provide additional information. Of the measures 
discussed, we have had best results with MDFFIT and A. 

For large data sets, the restriction on m* is serious because potentially 
masked observations may be omitted from B*, and we recommend 
partial-regression leverage plots and stepwise techniques such as 
SMDFFIT. 

A somewhat less expensive alternative than full deletion is to use the 
inequalities at the end of Appendix 2B to find potentially influential 
subsets based on the values of hi and e;. This provides no rank ordering 
among subsets, and we lose the ability to look for specific groupings of 
influential observations. Computing and storage costs will probably 
determine whether stepwise, inequality, or full-deletion methods are used. 

2.2 APPLICATION: AN INTERCOUNTRY LIFECYCLE SAVINGS 
FUNCTION 

We now exemplify some of the more important aspects of the various 
diagnostic procedures presented above in their application to a body of 
data relevant to a cross-sectional study of an intercountry life-cycle savings 
function. Not all of the potential battery of diagnostic techniques are 
applied, since some of them contain redundant information and others, 
while providing interesting insights, are not essential to an understanding 
of the analysis at hand. 

A Diagnostic Analysis of the Model 

Arlie Sterling (1977) of MIT has provided us with data he has collected on 
50 countries relevant to a cross-sectional study of the life-cycle savings 
hypothesis as developed by Franco Modigliani (1975). In this model the 
savings ratio (aggregate personal saving divided by disposable income) is 
explained by per-capita disposable income, the percentage rate of change 
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in per-capita disposable income, and two demographic variables: the 
percentage of population less than 15 years old and the percentage of 
population over 75 years old. The data are averaged over the decade 
1960-1970 to remove the business cycle or other short-term fluctuations. 
We examine first the intercountry life-cycle savings model and its basic 
regression results. We then examine in turn the application of the single- 
and multiple-row diagnostics. 

Ttre Model and Regression Results. According to the life-cycle 
hypothesis, savings rates should be smaller if nonmembers of the labor 
force constitute a large part of the population. Income is not expected to 
be important, since age distribution and the rate of income growth 
constitute the core of life-cycle savings behavior. The regression equation 
and variable definitions are then 

where 

SK. 
country i over the period 1960-1970, 

POP1 5i = the average percentage of the population under 15 
years of age over the period 1960-1970, 

POP75,= the average percentage of the population over 75 
years of age over the period 1960-1970, 

DPIi 
income in country i over the period 1960-1970 
measured in U.S. dollars, 

the period 1960-1 970. 

=the average aggregate personal savings rate in 

=the average level of real per-capita disposable 

ADPI, = the average percentage growth rate of DPI, over 

A full list of countries and data appears in Exhibit 2.3. It is evident that 
a wide geographic area and span of economic development have been 
included. It is also plausible to suppose that the quality of the underlying 
data is uneven. With these obvious caveats, the ordinary least-squares 
estimates are given in (2.80), for which standard errors appear in 
parentheses. To comment briefly on the results, the R2 is not 
uncharacteristically low for cross sections, and the population variables 
have correct negative signs. Testing at the 5% level, we note that 
b3(POP75) has a small t-statistic but b2(POP15) does not--b4 (income) is 



Exhibit 23 Intercountry life-cycle savings data 

Index Country SR POP15 POP75 DPI ADPI 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

Australia 
Austria 
Belgium 
Bolivia 
Brazil 
Canada 
Chile 
China (Taiwan) 
Colombia 
Costa Rica 
Denmark 
Ecuador 
Finland 
France 
Germany (F.R.) 
Greece 
Guatemala 
Honduras 
Iceland 
India 
Ireland 
Italy 
Japan 
Korea 
Luxembourg 
Malta 
Norway 
Netherlands 
New Zealand 
Nicaragua 
Panama 
Paraguay 
Peru 
Philippines 
Portugal 
South Africa 
South Rhodesia 
Spain 
Sweden 
Switzerland 
Turkey 
Tunisia 

1 1.43 
12.07 
13.17 
5.75 

12.88 
8.79 
0.60 

1 1.90 
4.98 

10.78 
16.85 
3.59 

1 1.24 
12.64 
12.55 
10.67 
3.01 
7.70 
1.27 
9 .oo 

11.34 
14.28 
21 .I0 
3.98 

10.35 
15.48 
10.25 
14.65 
10.67 
7.30 
4.44 
2.02 

12.70 
12.78 
12.49 
11.14 
13.30 
11.77 
6.86 

14.13 
5.13 
2.81 

29.35 
23.32 
23.80 
41 3 9  
42.19 
3 1.72 
39.74 
44.75 
46.64 
47.64 
24.42 
46.3 1 
27.84 
25.06 
23.31 
25.62 
46.05 
47.32 
34.03 
41.31 
31.16 
24.52 
27.01 
41.74 
21 .80 
32.54 
25.95 
24.71 
32.61 
45.04 
43 -56 
41.18 
44.19 
46.26 
28.96 
31.94 
31.92 
27.74 
21.44 
23.49 
43.42 
46.12 

2.87 
4.41 
4.43 
1.67 
0.83 
2.85 
1.34 
0.67 
1.06 
1.14 
3.93 
1 .I9 
2.37 
4.70 
3.35 
3.10 
0.87 
0.58 
3.08 
0.96 
4.19 
3.48 
1.91 
0.91 
3.73 
2.47 
3.67 
3.25 
3.17 
1.21 
1.20 
1.05 
1.28 
1.12 
2.85 
2.28 
1.52 
2.87 
4.54 
3.73 
1.08 
1.21 

2329.68 
1507.99 
2 108.47 

189.13 
728.47 

2982.88 
662.86 
289.52 
276.65 
47 1.24 

2496.53 
287.77 

I68 1.25 
22 1 3.82 
2457.12 
870.85 
289.71 
232.44 

1900.10 
88.94 

1139.95 
1390.00 
1257.28 
207.68 

2449.39 
601 -05 

223 1.03 
1740.70 
1487.52 
325.54 
568.56 
220.56 
400.06 
152.01 
579.5 1 
651.11 
250.% 
768.79 

3299.49 
2630.96 
389.66 
249.87 

2.87 
3.93 
3.82 
0.22 
4.56 
2.43 
2.67 
6.51 
3.08 
2.80 
3.99 
2.19 
4.32 
4.52 
3.44 
6.28 
1.48 
3.19 
1.12 
1.54 
2.99 
3.54 
8.21 
5.81 
1.57 
8.12 
3.62 
7.66 
1.76 
2.48 
3.61 
1.03 
0.67 
2 .oo 
7.48 
2.19 
2 .oo 
4.35 
3.01 
2.70 
2.96 
1.13 

41 
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Exhibit 23 Continued 

Index Countrv SR POP15 POP75 DPI ADPI 

43 
44 
45 
44 
47 
48 
49 
50 

United Kingdom 
United States 
Venezuela 
Zambia 
Jam a i c a 
Uruguay 
Libya 
Malaysia 

7.81 
7.56 
9.22 

18.56 
7.72 
9.24 
8.89 
4.71 

23.27 4.46 1813.93 
29.81 3.43 4001.89 
46.40 0.90 813.39 
45.25 0.56 138.33 
41.12 1.73 380.47 
28.13 2.72 766.54 
43.69 2.07 123.58 
47.20 0.66 242.69 

2.01 
2.45 
0.53 
5.14 

10.23 
I .88 

16.71 
5.08 

statistically insignificant, while b, (income growth) is significant and, as 
expected, has a positive influence on the savings rate. Broadly speaking, 
these results are consistent with the life-cycle hypothesis: 

SR=28.56 - 0.461 1POP15- 1.691POP75 -0.000337DPI+0.4096ADPI 
(7.345) (0.1446) (1.083) (0.000931) (0.1961) 

RZ=.33 SER = 3.802 (2.80) 

Condition numberi6 of scaled X = 34. 

The remainder of this section is a discussion of some of the single- and 
multiple-row diagnostics discussed previously. The computations were 
performed using SENSSYS (acronym for Sensitivity System), a TROLL 
experimental subsystem for regression diagnostics.” Orthogonal 
decompositions are used in the ieast-squares regression computations, and 
this makes it possible to get all of the single-row diagnostic measures in 
addition to the usual least-squares results in roughly twice the computer 
time for the least-squares results alone. Multiple-row techniques involve 
greater expense. Further details on computation and associated costs can 
be found in Appendix 2B. 

Residuals. Exhibit 2.4 is a Gaussian (normal) probability plot of the 
studentized residuals. Departure from a fitted line (which represents a 

I6The significance of the condition number for assessing the presence of collinearity is 
discussed in great detail in Chapter 3. 
” For more details and documentation on SENSSYS and TROLL, one may write 
Publications Office, Information Processing Services, MIT Room 39-484, Cambridge, MA 
02139. 
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5 

Exhlblt 2.4 Normal probability plot for studentized residual: intercountry lifccycle savings 
data. 

robust estimate of a particular Gaussian distribution with mean equal to 
the intercept and standard deviation equal to the slope-see Velleman and 
Hoaglin (1980)) is not substantial in the main body of the data for these 
studentized residuals, but Zambia (46) has an extreme residual. 
Magnitudes of the e: appear in Exhibit 2.5 which reveals not only Zambia, 
but possibly Chile (7), as outliers; each exceeds 2.0 times its standard error. 
The largest values here and subsequently are starred. 

Leverage and Hat-Matrix Diagonals. Exhibit 2.5 also shows the 
tabulated values of hi which, as diagonals of the hat matrix, are indicative 
of leverage points. Most of the hi are small, but two stand out sharply: 

Exhibit 2.5 RSTUDENT and hat -matrix diagonals: intercountry 
life-cycle savings data 

Index Countrv RSTUDENT h;  

Australia 
Austria 
Belgium 
Bolivia 
Brazil 
Canada 
Chile 
China (Taiwan) 

0.2327 
0.1709 
0.6065 

- 0.1903 
0.9679 

- 0.0898 
- 2.3134; 

0.6904 

0.0677 
0.1203 
0.0874 
0.0894 
0.0695 
0.1584 
0.0372 
0.0779 



Exhibit 2.5 Continued 

Index Country RSTUDENT h,  
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Colombia 
Costa Rica 
Denmark 
Ecuador 
Finland 
France 
Germany (F.R.) 
Greece 
Guatemala 
Honduras 
Iceland 
India 
Ireland 

Japan 
Korea 
Luxembourg 
Malta 
Norway 
Netherlands 
New Zealand 
Nicaragua 
Panama 
Paraguay 
Peru 
Philippines 
Portugal 
South Africa 
South Rhodesia 
Spain 
Sweden 
Switzerland 
Turkey 
Tunisia 
United Kingdom 
United States 
Venezuela 
Zambia 
Jamaica 
Uruguay 
Libya 
Malaysia 

IWY 

- 0.3894 
1.4173 
1.4864 

- 0.6495 
- 0.4598 

0.6964 
- 0.049 1 
-0.8596 
- 0.9085 

- 1.7312 
0.1905 

0.1373 
1.0048 
0.5201 
1.6032 

- 1.6910 
- 0.4556 

0.8122 
- 0.2324 

0.1160 
0.6137 
0.1725 

-0.8814 
- 1.7048 

1.8239 
1.8638 

-0.2104 
0.1299 
0.367 I 

- 0.1 8 17 
- 1.2029 

0.6753 
-0.7113 
-0.7667 
- 0.7495 
- 0.3546 

0.9993 
2.8535* 

- 0.8537 
- 0.6225 
- 1.0893 
- 0.8048 

0.0573 
0.0754 
0.0627 
0.0637 
0.0920 
0.1362 
0.0873 
0.0966 
0.0604 
0.0600 
0.0704 
0.07 14 
0.2122* 
0.0665 
0.2233* 
0.0607 
0.0863 
0.0794 
0.0479 
0.0906 
0.0542 
0.0503 
0.0389 
0.0693 
0.0650 
0.0642 
0.097 1 
0.065 1 
0. I 608 
0.0773 
0.1239 
0.0735 
0.0396 
0.0745 
0.1 165 
0.3336* 
0.0862 
0.0643 
0.1407 
0.0979 
0.53 14. 
0.0652 

*Exceeds cutoff values: RSTUDENT = 2.0; 4. = 0.20. 

44 
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Libya (49) and the United States (44). Two others, Japan (23) and Ireland 
(21), exceed the 2 p / n  =0.20 criterion, but just barely. Deciding whether 
leverage is potentially detrimental will depend on what happens elsewhere 
in the diagnostic analysis. 

Coefficient Sensitiuity. We note from Exhibit 2.6, which reports 
DFBETAS, that seven countries-Costa Rica (lo), Ireland (21), Japan 
(23), Peru (33), Zambia (46), Jamaica (47), and Libya (49Mhow up as 
possibly representing influential data. Three of these (Ireland, Japan, and 
Libya) appear also as high-leverage candidates and in addition have 
DFBETAS for either three or four of the five coefficients that exceed the 
size-adjusted cutoff of 2 / f i  -0.28. One DFBETAS for Libya (49) is 
large in an absolute sense as well. Note that the deletion of only one data 
point out of 50 is causing more than one standard error of change in an 
estimated coefficient. 

Exhibit 2.6 DFBETAS: intercountry life-cycle savings data 

DFBETAS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

bi 62 b3 64 b5 
Index Country Intercept POP15 POP75 DPI ADPI 

Australia 0.0123 -0.0104 -0.0265 0.0453 -0.ooO1 
Austria 
Belgium 
Bolivia 
Brazil 
Canada 
Chile 
China (Taiwan) 
Colombia 
Costa Rica 
Denmark 
Ecuador 
Finland 
France 
Germany (F.R.) 
Greece 
Guatemala 
Honduras 
Iceland 
India 
Ireland 
Italy 

-0.0100 
-0.0641 

0.0057 
0.0897 
0.0054 

-0.1994 
0.02 1 1 
0.0390 

- 0.2336 
- 0.0405 

0.07 17 
-0.1134 
-0.1660 
- 0.0080 
-0.1481 

0.01 55 
- 0.0922 

0.2478 
0.0210 

-0.3100* 
0.066 1 

0.0059 
0.05 14 

-0.0127 
-0.0616 
- 0.0067 

0.1326 
- 0.0057 
- 0.0522 

0.2842* 
0.0209 

- 0.0952 
0.1 113 
0.1470 
0.0082 
0.1639 

- 0.0548 
0.0098 

- 0.2735 
-0.0157 

0.2962* 
- 0.0709 

0.0408 -0.0367 
0.1207 - 0.0347 

- 0.0225 0.03 18 
-0.1790 0.1199 

0.0102 -0.0353 
0.2197 -0.0199 

-0.0831 0.0518 
-0.0246 0.0016 

0.1424 0.0563 
0.0465 0.1521 

-0.0606 0.0195 
0.1169 -0.0436 
0.2 189 - 0.0294 
0.0083 -0.0069 
0.0286 0.157 I 
0.0061 0.0058 

-0.0102 0.0081 
-0.2326 -0.1255 
-0.0143 -0.0137 

0.48 15* - 0.2573 
0.0030 -0.0699 

- 0.008 1 
- 0.0072 

0.0406 
0.0684 

- 0.0026 
0.1200 
0.1 106 
O.Oo90 

- 0.0328 
0.0488 
0.0477 

-0.0171 
0.0239 

- 0.0002 
- 0.0595 

0.0972 
-0.0018 

0.1846 
- 0.01 89 
- 0.0933 
- 0.0286 
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Exhibit 2.6 Continued DFBETAS : intercountry life-cycle savings data 

DFBETAS 

bl b2 b3 b4 b5 
Index Country Intercept POP15 POP75 DPI ADPI 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Japan 
Korea 
Luxembourg 
Malta 
Norway 
Netherlands 
New Zealand 
Nicaragua 
Panama 
Paraguay 
Peru 
Philippines 
Portugal 
south Africa 
South Rhodesia 
Spain 
Sweden 
Switzerland 
Turkey 
Tunisia 
United Kingdom 
United States 
Venezuela 
Zambia 
Jamaica 
Uruguay 
Libya 
Malaysia 

0.6398. 
- 0. I689 
- 0.0682 

0.0365 
0.0022 
0.0139 

- 0.06oO 
-0.0120 

0.0282 
-0.2322 
- 0.07 18 
-0.1570 
- 0.021 3 

0.022 1 
0.1439 

- 0.0303 
0.1009 
0.0432 

-0.0109 
0.0737 
0.0467 
0.0690 

- 0.0508 
0. I636 
0.1095 

-0.1340 
0.5507 
0.0368 

-0.6561. 
0.1350 
0.0688 

- 0.0487 
-0.0003 
- 0.01 67 

0.065 1 
0.0179 

- 0.0533 
0.1641 
0.1466 
0.2268 
0.0255 

- 0.0202 
-0.1347 

0.03 13 
-0.0816 
- 0.0464 
-0.01 19 
- 0.1049 
- 0.0358 
- 0.0728 

0.1008 
- 0.0791 
- 0.1002 

0.1288 
- 0.4832* 
-0.0611 

-0.6739* 0.1461 

0.0438 - 0.0279 
0.0079 - 0.0865 

-0.0061 -0.0159 
-0.0118 0.0043 

0.0941 - 0.0263 
0.0097 -0.0047 
0.0144 -0.0346 

0.0914 -0.0858 
0.1574 -0.1113 

-0.0037 0.0399 
-0.0067 -0.0204 
- 0.0924 - 0.0695 

0.0039 0.0351 
-0.0616 -0.2552 
-0.0436 0.0909 

0.0264 0.0016 
-0.0772 0.W3 
-0.1712 0.1255 

0.0374 - 0.233 1 
- 0.0336 0.1 136 
-0.3389. 0.0940 
- 0.0572 - 0.0070 

0.0295 0.1313 
-0.3797. -0.0193 

0.0323 - 0.0495 

0.2189 0.0051 

0.1582 0.1436 

0.3886* 
-0.1694 

0.049 1 
0.1530 

-0.0014 
0.0225 

- 0.0647 
-0.0104 
- 0.0078 

0.2704 
-0.2871* 
-0.1706 
- 0.0280 
-0.0163 
- 0.0579 

0.0053 
-0.0133 
- 0.0188 

0.025 1 
0.1030 
0.1003 

- 0.0327 
-0.1244 

0.2282 
- 0.2954. 

0.0995 
- 1.0244. 
- 0.0722 

Exceeds cutoff value: DFBETAS-0.28. 

Cmariance Matrix Sensitiuiw . Exhibit 2.7 presents the COVRATIOs 
for the intercountry life-cycle savings data. We recall from (2.36) that 
COVRATIO is a ratio of the determinant of the estimated coefficient 
covariance matrix with the ith observation deleted to that of the estimated 
covariance matrix based on the full data set. This magnitude is, of course, 
a ratio of the estimated generalized variances'* of the regression 

leSee, for example, Willrs (1%2) or Theil(l971, p. 124). 



Exhibit 2.7 COVRATIO and DFFITS: intercountry life-cycle savings data 

Index Country COVRATIO DFFITS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

Australia 
Austria 
Belgium 
Bolivia 
Brazil 
Canada 
Chile 
China (Taiwan) 
Colombia 
costa Rica 
Denmark 
Ecuador 
Finland 
France 
Germany (F.R.) 
Greece 
Guatemala 
Honduras 
Iceland 
India 
Ireland 

Japan 
Korea 
Luxembourg 
Malta 
Norway 
Netherlands 
New Zealand 
Nicaragua 
Panama 
Paraguay 
Peru 
Philippines 
Portugal 
South Africa 
South Rhodesia 
Spain 
Sweden 
Switzerland 
Turkey 
Tunisia 

Italy 

1.1928 
1.2678 
1.1762 
1.2238 
1.0823 
1.3283* 
0.6547* 
1.1499 
1.1667 
0.968 1 
0.9344 
1.1394 
1.2032 
1.2262 
1.2257 
1.1396 
1.0853 
1.1855 
0.8659 
1.2024 
1.2680 
1.1624 
1.0846 
0.8696 
1.1962 
1.1282 
1.1680 
1.2285 
1.1337 
1.1743 
1.0667 
0.8732 
0.8313 
0.8178 
1.233 1 
1.1945 
1.313 1* 
1.2082 
1.0865 
1.1471 
1.1004 
1.1314 

0.0627 
0.0632 
0.1878 

- 0.0596 
0.2646 

- 0.0389 
- 0.4553 

0.2007 
- 0.0960 

0.4049 
0.3845 

- 0.1694 
-0.1464 

0.2765 
- 0.0 152 
-0.281 1 
- 0.2305 

0.048 1 
- 0.4767 

0.0380 
0.52 1 5 
0.1388 
0.8596" 

- 0.4302 
- 0.1400 

0.2385 
- 0.052 1 

0.0366 
0.1469 
0.0397 

- 0.1775 
- 0.4654 

0.4810 
0.4884 

- 0.0690 
0.0342 
0.1607 

- 0.0526 
- 0.4525 

0.1903 
-0.1445 
-0.2176 

47 
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Exhibit 2.7 Continued 

Index Country COVRATIO DFFITS 

43 United Kingdom 1.1886 - 0.2722 
44 United States 1.6555* - 0.2509 
45 Venezuela 1.0946 0.3070 
46 Zambia 0.51 16* 0.7482, 
47 Jamaica 1.1995 - 0.3455 
48 UWWY 1.1872 - 0.205 1 

50 Malaysia 1.1126 - 0.2 126 
49 Libya 2 . m *  - 1.1601* 

*Exceeds cutoff values: COVRATIO = 1 It: 0.30; DFFITS =0.63. 

coefficients with and without the ith observation deleted from the data, 
and, as such, it can be interpreted as a measure of the effect of the ith 
observation on the efficiency of coefficient estimation. A value of 
COVRATIO greater than one indicates that the absence of the associated 
observation impairs efficiency, while a value of less than one indicates the 
reverse. As was noted in the discussion surrounding (2.36), values of 
COVRATIO that lie outside the range defined by 1?3(p/n) can be 
considered extreme, and hence they wave a warning flag. In this instance 
3p/n=0.30; thus we shall be interested in values that lie below 0.70 and 
above 1.30. Six countries produce COVRATIOs that lie outside these 
bounds: Canada (6), Chile (7), Southern Rhodesia (37), United States (a), 
Zambia (a), and Libya (49). 

Of these six countries, four have been pinpointed by previous diagnos- 
tics, the two new candidates being Canada (6) and Southern Rhodesia (37). 
We recall that extreme values can occur for COVRATIO if the deletion of 
the ith observation produces a large change in the estimated regression 
variance s2 or in the elements of (XTX)-' or in both. Thus Libya (49) had 
been detected earlier because it has high leverage and large coefficient 
changes; Chile (7) and Zambia (46) because of large residuals; and the 
United States (44) because of high leverage alone. The two new countries, 
Canada (6) and Southern Rhodesia (37), however, possess neither 
unusually high leverage nor large residuals in isolation. Thus the 
COVRATIO diagnostic measure, combining the residual and leverage 
information as it does, is able to pinpoint these new countries as well as the 
others, indicating that COVRATIO may possess value as a comprehensive 
diagnostic measure. 
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Change in Fit. The scaled row-deleted change in fit, DFFITS, is 
displayed in Exhibit 2.7. The three countries whose DFFITS exceed the 
size-adjusted cutoff of 2 m  =0.63 are three that have previously 
occurred, namely, Japan (23), Zambia (46), and Libya (49). 

Internal Scaling. Internal scaling according to Exhibit 2.8 provides 
general confirmation about the most severely affected data points. The 
(7/2)s’ criterion is so stringent that no outliers were recorded for e,. 
Remaining information on hat-matrix diagonals, DFFIT and DFBETA, is 
presented in Exhibit 2.8. The four large hat-matrix diagonals happen to 
include those which exceeded the size-adjusted cutoff: Ireland (21), Japan 
(23), United States (44), and Libya (49). DFBETA, according to the row 
counts in column 8, are most extreme for Japan (23) and Libya (49), which 
is consistent with DFFIT and the use of size-adjusted cutoffs. Thus, the 
internal scaling used here appears to be conservative relative to 
size-adjusted cutoffs, for each of the countries indicated by internal scaling 
as being potentially influential had already been exposed by size-adjusted 
diagnostics. 

Additional information can be obtained from DFBETA column counts. 
Coefficients 6, and b,, for example, show noticeably more extreme 
behavior than do the others, while coefficient b, shows the least. Another 
point that emerges is that the extremes are skewed. The fact that most 
extreme magnitudes appear at either the lower or upper end of these 
rank-ordered diagnostics suggests that the interaction between model and 
data raises questions about the model specification itself, a proposition 
which has not appeared from earlier analysis. 

A Provisional Summary. It is now desirable to bring together the 
information that has been obtained thus far. The first point to note is that 
Japan (23) and Libya (49) have both high leverage and a significant 
influence on the estimated parameters. This is reason enough to view these 
observations as presenting potentially serious problems. (After the analysis 
had reached this point, we were informed by Arlie Sterling that a data 
error had been discovered for Japan (23). Once corrected, this observation 
became more nearly in accord with the majority of countries.) 

Second, the United States (44) has high leverage combined with only 
meager differential effects on the estimated coefficients. Thus leverage in 
this instance can be viewed as neutral or beneficial. It is important to 
observe that not all leverage points cause large changes in the estimated 
coefficients or fit. 
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We also have seen that large residuals do not necessarily coincide with 
large changes in coefficients; all of the large changes in coefficients are 
associated with studentized residuals less than two. Thus residual analysis 
alone is not a sufficient diagnostic tool. 

Multiple-Ro w Diagnostics. 

Partial-Regression Leverage Plots: A Preliminary Analysis. The 
single-row analysis of the savings data has led us to consider observation 
49, and perhaps 23, as sufficiently influential to be worthy of further 
attention. As a preliminary to applying the multiple-row diagnostics, we 
turn briefly to the five partial-regression leverage plots that display how 49 
and 23 relate to each other as well as to any of the other more marginal 
leverage points that may be indicated. 

The plots for the intercept and POP15, Exhibits 2.9 and 2.10, 
respectively, show how observations 49 and 23 may be working together to 
increase the intercept and decrease the coefficient of POP15 It is also 
suggested that the role of 37 may be masked to some extent by 23. The 
effect of the large residual at point 46 is ambiguous. The plot for POP75 
(Exhibit 2.1 1) indicates that observations 21 and 23 could be offsetting 
each other’s leverage on this coefficient. 
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Partial X residual 

Regression equation is y = -0.00034X 

Exhlbit 2.12 Partial-regression leverage plot for b, @PI), S.E.=0.0009. 
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The partial-regression leverage plot for DPI (Exhibit 2.12) is much more 
clear-cut, since observation 44 has markedly high marginal leverage, as the 
single-row analysis has already indicated. The role of observation 6 has 
possibly been masked by 44. Although we have already seen that 
observation 44 is not influential, this fact cannot be deduced from this plot 
alone. Furthermore, this partial-regression leverage plot cannot indicate 
what happens when observations 6 and 44 are set aside together. 

The plot for ADPI (Exhibit 2.13) shows observation 49 with high 
marginal leverage, perhaps masking 47. We need nongraphical methods, to 
assess the difference in influence between the pair 6 and 44 in the previous 
partial-regression leverage plot and the pair 47 and 49 in this 
partial-regression leverage plot. 

Using Multiple-Row Methods. To apply the multiple-row methods, we 
require a basic subset B* of potentially influential points. The complement 
of this set defines a group of “typical” points for purposes of comparison. 
The set B* is chosen by using the single-row results with relaxed cutoffs 
(1.5 p / n  for hi, 1.68 for e;, 0.24 for DFBETAS, 0.53 for DFFITS, and 

Exhibit 2.14 Subset of potentially influential points: 
intercountry life-cycle savings data 

Observation 
Index Country 

3 Belgium 
6 Canada 
7 Chile 

10 Costa Rica 
14 France 
19 Iceland 
21 Ireland 
23 Japan 
24 Korea 
32 Paraguay 
33 Peru 
34 Philippines 
37 South Rhodesia 
39 Sweden 
44 United States 
46 Zambia 
47 Jamaica 
49 Libya 
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1 ? 2.5(p/n) for COVRATIO) and by examining the partial-regression 
leverage plots. The 18 points that are so chosen are given in Exhibit 2.14. 
Austria (2) is slightly above the relaxed COVRATIO cutoff but is not 
included, as it was not otherwise indicated and since we had limited our 
original computer codes to accept a B* with a maximum of 18 points. 

Deletion. A brief table of the results for MDFFIT is given in Exhibit 
2.15. The row values have been converted to percentages by dividing all 
values for a given deletion set of size m by the largest MDFFIT for that 
size. These percentages provide a ready means for indicating gaps that 
separate specific groups of points from the remaining groups. For example, 
when m =  1, observations 49, 23, and 46 are quite separated from the 
rest. When m=2, the subsets 47 and 49, and 23 and 46 attract our 
attention. When m = 3, the set 24,47, and 49 also appears to be interesting, 
in part because 24 has not been given special attention before. This is a 
subjective analysis, designed to provide clues rather than confirmation. We 
note that while observations 47 and 49 do appear to cause problems, 
observations 6 and 44 do not form an influential group. 

Exhibit 2.15 MDFFIT: intercountry life-cycle savings data 

m Subset MDFFIT Index Relative to Max 
1 49 

23 
46 
21 
34 

2 

3 

47 49 
23 46 
24 49 
19 23 
33 49 

24 47 49 
33 47 49 
37 47 49 
19 23 46 
39 47 49 

4 24 33 47 49 
24 37 47 49 
33 37 47 49 
7 24 47 49 

33 34 47 49 

9.08 
8.02 
6.54 
3.10 
3.06 

29.94 
23.74 
17.52 
17.02 
16.51 

48.07 
41.39 
38.23 
34.94 
31.90 

59.27 
55.54 
52.19 
50.49 
48.79 

1 .oo 
0.88 
0.72 
0.34 
0.34 

1 .oo 
0.79 
0.59 
0.57 
0.55 

1 .oo 
0.86 
0.80 
0 73 
0.66 

1 .oo 
0.94 
0.88 
0.85 
0.82 
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For completeness we give further statistics in Exhibit 2.16 with 
observation 49 deleted. As we might suspect, 47 is quite prominent; its 
leverage substantially exceeds the cutoff while its DFFITS is now 
noticeably large. Thus 49 has substantially masked the impact of 47. In this 
instance we would have discovered the masked point either by deleting 49 
and running a single-row analysis or by using multiple-row methods. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

Australia 
Austria 
Belgium 
Bolivia 
Brazil 
Canada 
Chile 
China (Taiwan) 
Colombia 
Costa Rica 
Denmark 
Ecuador 
Finland 
France 
Germany (F.R.) 
Greece 
Guatemala 
Honduras 
Iceland 
India 
Ireland 
Italy 
Japan 
Korea 
Luxembourg 
Malta 
Norway 
Netherlands 
New Zealand 
Nicaragua 
Panama 
Paraguay 
Peru 

Exhibit 2.16 Studentized residuals, hat-matrix diagonals and DFFITS: 
intercountry life-cycle savings data with Libya (49) removed 

Index Country RSTUDENT hi DFFITS 

0.2872 0.0700 0.0788 
0.1128 
0.5421 

- 0.0854 
0.9235 

- 0.0564 
- 2.2693* 

0.5 163 
- 0.4639 

1.3329 
1.4559 

- 0.6843 
- 0.3980 

0.5386 
0.0343 

- 0.9468 
- 0.8641 

0.1530 
- 1.6939 

0.2626 
0.8714 
0.5673 
1.5177 

- 1.8290 
- 0.2874 

0.5852 
- 0.2439 
- 0.0437 

0.6383 
0.1461 

- 0.9458 
- 1.5680 

1.9233 

0.1229 
0.0908 
0.0982 
0.07 12 
0.1592 
0.0390 
0.1038 
0.0615 
0.08 14 
0.0635 
0.0645 
0.095 1 
0.1560 
0.0928 
0.1016 
0.062 1 
0.06 12 
0.07 17 
0.0836 
0.2252* 
0.068 1 
0.2284* 
0.0707 
0.1096 
0.1248 
0.0480 
0.1105 
0.0546 
0.0509 
0.0418 
0.0856 
0.0700 

0.0422 
0.1714 

- 0.0282 
0.2557 

- 0.0245 
- 0.4573 

0.1757 
-0.1188 

0.3968 
0.3793 

-0.1798 
-0.1290 

0.23 16 
0.0109 

-0.3185 
- 0.2225 

0.0390 
- 0.4708 

0.0793 
0.4699 
0.1534 
0.825 8 * 

- 0.5046 
-0.1008 

0.22 10 
- 0.0548 
-0.0154 

0.1534 
0.0338 

- 0.1978 
- 0.4800 

0.5278 
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Exhibit 2.16 Continued 
Index Country RSTUDENT hi DFFITS 

34 Philippines 1.8546 0.0643 0.4865 
35 Portugal - 0.3977 0.1225 -0.1486 
36 South Africa 0.2467 0.0757 0.0706 
37 South Rhodesia 0.6063 0.1969 0.3002 
38 Spain -0.1706 0.0774 - 0.0494 
39 Sweden - 0.2000 0.1240 - 0.45 15 
40 Switzerland 0.7565 0.0782 0.2204 
47 Turkey - 0.72 1 1 0.0396 -0.1466 
42 Tunisia -0.7417 0.075 1 -0.2113 
43 United Kingdom - 0.7088 0.1 178 - 0.2590 
44 United States - 0.3582 0.3336* - 0.2535 
45 Venezuela 1 .O941 0.0920 0.3484 
46 Zambia 2.749S 0.0726 0.7697, 
47 Jamaica - 1.4611 0.2897* - 0.9332* 
48 Uruguay - 0.4702 0.1171 -0.1712 
50 Malaysia - 0.9664 0.0825 - 0.2899 

*Exceeds cutoff values: RSTUDENTm2.0; hi = 0.20; DFFITS = 0.63. 

The impact of the group consisting of observations 23 and 46 is more 
difficult to assess, but since each point has come to our attention 
separately, there is no problem of masking. Indeed, the data alone provide 
us with no reason to group these points (as they do for 6 (Canada) and 44 
(U.S.)), but a glance at the partial-regression leverage plots shows how 
observation 46 reinforces the impact of observation 23 in every case. A full 
assessment would require checking the model with 23 and 46 omitted. 

Since the computational costs for MDFFIT are of the order 2"', where 
m* is the size of B*, it is usually necessary to keep m* below 20. Of course, 
any such limitation increases the danger that some masked points may be 
inadvertently omitted from B*, and MDFFIT would never find them. It is 
therefore of use to complement MDFFIT with the stepwise fit procedure 
SMDFFIT [see text surrounding (2.62)J which does not require the 
formation of B * in order to remain computationally feasible. 

Exhibit 2.17 lists the value of SMDFFIT for two different stepwise 
procedures. The first method uses the largest m+ I values of (2.62) for 
SMDFFIT at the end of the mth step (deletion sets of size m) in order to 
start the m+ 1 step. This method immediately highlights observations 47 
and 49, for when observation 49 (the largest for m =  1) is deleted, 47 
becomes the next largest point. Method 2 uses the m largest points from 
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Exhibit 2.17 SMDFFIT: intercountry life-cycle savings data 

Method 1 Method 2 

Index Relative 
m Observation SMDFFIT to Max (1) 

1 49 3.21 1 .oo 
47 1.60 0.50 
26 0.88 0.27 
37 0.78 0.24 
8 0.66 0.21 

Index Relative 
Observation SMDFFIT to Max (2) 

49 3.2 1 1 .oo 
47 1.60 0.50 
26 0.88 0.27 
37 0.78 0.24 
8 0.66 0.2 1 

2 49 6.87 1 .oo 23 6.83 1 .oo 
47 3.48 0.5 1 37 4.43 0.65 
26 1.96 0.29 21 4.36 0.64 
8 1.56 0.23 13 4.24 0.62 

37 1.51 0.22 28 3.22 0.47 

3 49 6.33 1 .oo 49 5.27 1 .oo 
47 3.19 0.50 37 2.52 0.48 
26 1.76 0.28 47 2.39 0.45 
37 1.46 0.23 48 1.94 0.37 
8 1.42 0.22 25 1.74 0.33 

4 49 7.61 1 .oo 49 4.24 1 .oo 
47 3.72 0.49 23 3.02 0.7 1 
37 2.20 0.29 47 2.7 1 0.64 
26 1.93 0.25 8 2.33 0.55 
48 1.62 0.21 24 2.02 0.48 - 

IDFFITSl to start the mth step without further reference to the previous 
stage. In this case we see that observation 49 is chosen for m = 1 and 
observation 47 shows up as before. For m=2, however, the process 
converges with observation 23 as the largest and observation 37 as the 
second largest. The pair 23 and 37 has already been brought to our 
attention by the partial-regression leverage plots and needs further 
examination. 

This example highlights a possible weakness of stepwise procedures: 
they can “converge” to different sets of points depending on the starting 
set. In practice we have often found this useful, because it indicates 
different subgroups. For large data sets where even stringent single-row 
cutoffs might produce an m* greater than 20, the stepwise procedures are a 
feasible means for uncovering masked points that would not have shown 
up in the stringent single-row analysis. The lack of global convergence for 
the stepwise procedures aids in this process. 
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Exhibit 2.18 Multiple COVRATIO statistics: intercountry life-cycle 
savings data 

Index Relative 
m Observations Large COVRATIO to Max 

1 49 2.09 1 .oo 
44 1.66 0.79 
6 1.33 0.64 

2 44 49 3.47 
37 49 2.80 
6 49 2.79 

3 64449 5.09 
37 44 49 4.7 1 
21 4449 4.61 

1 .oo 
0.81 
0.80 

1 .oo 
0.93 
0.91 

Index Relative 
m Observations Small COVRATIO to Min 

1 46 0.5 1 1 .oo 
7 0.65 1.27 

34 0.82 1.61 

2 746 0.32 
34 46 0.37 
33 46 0.38 

3 7 34 46 0.23 
7 33 46 0.24 
7 1946 0.24 

1 .oo 
1.16 
1.19 

1 .oo 
1.04 
1 -04 

The results of using multiple-deletion statistics for COVRATIO are 
given in Exhibit 2.18. The large values of COVRATIO point to 
observations 44 and 49 as having a major impact on the covariance matrix. 
This confirms our earlier analysis using single-row methods. We should 
not, however, attach much significance to the fact that they are indicated 
together here since they are also the largest COVRATIO values 
determined by the single-row analyses and appear in different contexts in 
the partial-regression leverage plots. The smallest values of COVRATIO 
provide no new information since observations 46 and 7 had the smallest 
values in the single-row case. 

Residuals. In Exhibit 2.19 we record the values of the ratio (2.65) for 
residual sum-of-squares, RESRATIO. No attempt is made here to compare 
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Exhibit 2.19 RESRATIO: intercountry life-cycle savings data 

m Subset RESRATIO Index Relative to Max 
1 46 8.14 

7 5.35 
34 3.47 
33 3.32 
19 3 .oo 

2 746 7.34 
34 46 6.68 
33 46 6.5 1 
23 46 6.26 

3 7 34 46 6.88 
33 34 46 6.73 
7 33 46 6.73 
7 1946 6.64 

1 .oo 
0.66 
0.43 
0.4 1 
0.37 

1 .oo 
0.9 1 
0.89 
0.85 

1 .oo 
0.98 
0.98 
0.97 

4 7333446 7.13 1 .oo 
10 33 34 46 6.68 0.94 
7 193446 6.67 0.94 
7 19 33 46 6.6 1 0.93 

these ratios to the F-statistic since we are looking at extreme values. 
Bonferroni bounds [Miller ( 1966)] could conceivably be employed, but the 
necessary tables are not readily available. The significance methods 
developed by Andrews and Pregibon (1978) could also be used, but do not 
provide much help when there are more than 30 observations. 

The multiple-row residual statistic points to observaticns 7 and 46 and 
other observations with large residuals. As we have indicated earlier, this 
approach does not appear to provide adequate information about 
observations that influence the coefficients and fit. However, an 
examination of the larger residual correlations [cf. (2.67)] is useful for 

Exhibit 2.20 Squared residual correlations: 
intercountry life-cycle savings data 

Observations Squared Residual Correlations 

41 49 .173 
644 .09 1 

26 49 .049 
39 44 .045 
37 49 .043 
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qualitative assessment. Exhibit 2.20 contains the five largest squared 
residual correlations. The two largest, that between observations 47 and 49 
and that between observations 6 and 44, confirm our earlier analysis. Of 
course, these calculations do not tell us the crucial information that 
observations 47 and 49 are influential and that observations 6 and 44 are 
consistent with the rest of the data and appear to be helpful in reducing 
variance. 

Differentiation. The results for the derivative procedure, MEWDFFIT, 
given in Exhibit 2.21 point again to observations 47 and 49 as being 
influential. They do not indicate any other subgroup. We have included 
these results so that they may be compared to MDFFIT, which is 
considerably more expensive to compute. While the pair 23 and 46 is not 
as prominent with MEWDFFIT, we feel that MEWDFFIT provides a 
great deal of information when MDFFIT proves to be too expensive. 

Exhibit 2.21 MEWDFFIT: intercountry life-cycle savings data 

m Subset MEWDFFIT Index Relative to Max 

1 49 
23 
46 
21 
34 

2 47 49 
24 49 
33 49 
23 46 

3 24 47 49 
33 47 49 
23 41 49 
19 23 46 

4 24334149 
33 34 41 49 
I 24 41 49 

19 23 39 46 

19.3 
10.3 
6.9 
3.2 
3.1 

32.3 
27.3 
26.7 
25.1 

42.8 
40.2 
36.1 
35.4 

49.4 
48.2 
46.7 
45.3 

1 .oo 
0.53 
0.36 
0.20 
0.16 

1 .oo 
0.85 
0.83 
0.80 

1 .oo 
0.94 
0.84 
0.83 

1 .oo 
0.98 
0.95 
0.92 

Geometry. The geometric approaches are aimed more at “outliers” than 
at influential subsets because they adjoin y to X and ignore the regression 
context. Therefore we expect our results to be somewhat different. 
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The Wilks’ A statistic still points to observations 47 and 49, as is seen in 
Exhibit 2.22. The second group of size 2 contains observations 6 and 44, 
and it is separated from 47 and 49. Although more testing is needed, there 
is reason to believe that this statistic is good for finding subsets of 
influential and outlying data points. 

Exhibit 2.22 Wilks’ A: intercountry life-cycle savings data 

m Subset A Index Relative to Min 

1 49 
44 
23 
21 
46 

2 47 49 
6 4 4  

21 49 
44 49 
23 49 

3 24 47 49 
63944 

23 47 49 
14 47 49 

0.46 
0.67 
0.74 
0.78 
0.80 

0.39 
0.54 
0.57 
0.57 
0.59 

0.45 
0.47 
0.49 
0.49 

1 .oo 
1.46 
1.61 
1.70 
1.74 

1 .oo 
1.38 
1.46 
1.46 
1.51 

1 .oo 
1.04 
1 .09 
1.09 

The Andrews- Pregibon statistic [see (2.77)] listed in Exhibit 2.23 points 
clearly to observation 49 but gives no evidence that there are any outlying 
subgroups. Of course, observations 44 and 49 and observations 47 and 49 
are the top-ranked subsets of size 2, and a careful analysis would examine 
these more closely. This is especially indicated since the group for m = 3  
contains observations 44, 47, and 49. Unfortunately, the role of 
observation 44 is confused in this statistic. It is indeed an outlier, but quite 
different from observations 47 and 49. Further analysis is needed to 
distinguish geometric outliers from influential observations. 

We have not included any results from the stepwise distance measures 
because our focus is on influential observations rather than outliers. The 
stepwise deletion and derivative procedures seem to be better suited to 
identifying influential observations. 
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Exhibit 2.23 Andrews-Pregibon statistic Q: intercountry 
life-cycle savings data 

m Subset Q Index Relative to Min 

1 49 0.45 1 .oo 
44 0.66 1.47 
23 0.73 1.62 
21 0.77 1.71 
46 0.78 1.73 

2 44 49 0.30 1 .oo 
41  49 0.3 1 1.03 
23 49 0.33 1 .I0 
21 49 0.34 1.13 
46 49 0.36 1.20 

3 44 47 49 0.20 1 .oo 
23 44 49 0.22 1.07 
23 47 49 0.22 I .10 
21 4449 0.23 1.12 

Final Comments 

The question arises whether the approach taken here in detecting 
outliers is more effective than a simple examination of each data column 
for detached observations. The answer is clearly “yes”. While extreme 
outliers (see p. 29) appear, for example, in the A DPI column of Exhibit 2.3 
for Libya (49) and Jamaica (47), there is nevertheless no indication given 
here of their influence on other coefficients. Futhermore, additional 
influential observations (2 1 and 23) are revealed through the single-row 
deletion diagnostics. Jamaica, moreover, turns out to be a potentially 
troublesome data point even in the absence of Libya. Thus, if one restricts 
the analysis to single-row deletion procedures, it is prudent to reanalyze 
with the suspect points removed, to ascertain whether one or more 
observations have obscured the impact of others. 

Partial-regression leverage plots provide qualitative information that 
pairs of observations, like (6,44) and (47,49), might be influential. The 
multiple- row diagnostics show, however, that between these two 
anomalous pairs, the naturally related pair, 6 (Canada) and 44 (U.S.), is 
not influential, while the not obviously related pair, 47 and 49, is. 
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APPENDIX 2 A  ADDITIONAL THEORETICAL BACKGROUND 

Deletion Formulas 

The fundamental deletion formulas are known as the Sherman-Momson- 
Woodbury Theorem [Rao (1973), p. 331. Let A be a nonsingular matrix and 
u and v be two column vectors. Then 

A - ~ U V ~ A - ~  
(A - UV')-' = A -  + 

1 - v'A-Iu ' 
(2A.1) 

or more specifically, for A = X'X, and u = v = x:, 

From this comes [Miller (1964)] 

(x'x) -'xTei 
1 - hi 

b - b( i) = 

Since 

2 
( n - p -  I)s'(i)= 2 (y,-x,b(i)) , 

j # i  

we get, using (2A.3), 

(2A.3) 

(2A.4) 

( n - p -  l)s2(i)= 
J -  I 

2ei ,I e2 n ef 
= ( n - p ) s 2 +  - 2 e h . +  - 2 hj-  A 

( 1 - hi)' l - h i j - l  J I/ (1 - hi)2 j -  I 

(2A.5) 

where we have used the fact that H annihilates the vector of residuals. A 
different proof of (2A.5) is given by Beckman and Trussell (1974). 
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To prove (2.20), repeated here for convenience, 

det(X'(i)X(i))=(l -hi)det(X'X), (2A.6) 

we need first to show that 

det (I - uvT) = 1 - vru, (2A.7) 

where u and v are column vectors. Let Q be an orthonormal matrix such 
that 

Qu= llull51, 

where t1 is the first standard basis vector. Then 

det (I - uv') = det Q [ I - uvr] Qr 

=~~~[I-JJU~J~,V'Q~]-~-V'Q'~~J~UJ~, 

which is just I - v'u because of (2A.8). Now, 

det (X'( i)X( i ) )  = det [ (1 - x;xi(XTX)-')XTX]. 

(2A.8) 

(2A.9) 

(2A.10) 

(2A. 1 1) 

Hence, letting u = xT and v'= xi(XTX)- completes the proof," since 
xi(XTX)-'x:= hi. Another approach to this proof is outlined by Rao 
@. 33). 

Differentiation Formulas 

Let 

1 
Wi 

1 
(2A.12) 

I9 We are indebted to David Gay for simplifying our original proof. 
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and 

b( w,) = (X'WX)- IXTWy. (2A. 13) 

From (2A.l) we obtain 

(1 - wi)(X*X)-lX~xi(X~X)-l 
, (2A.14) 

1 - (1 - wi)hi 
(x~wx)-l=(x'x)-l+ 

and hence 

- (XTX) - IX;Xi(X*X) - -(x*wx)-'= a 
(2A.15) 

awi (1 - (1 - wi)hJ2 

Some algebraic manipulation using (2A. 13) and (2A. 14) gives 

(1 - wi) b(wi)=b-(XTX)-lx;ei 
l - ( l - w i ) h i '  

(2A. 16) 

where b and e, are the least-squares estimates obtained when wi = 1. Thus 

(2A.17) 

Theorems Related to the Hat Matrix 

Size of the Diagonal Elements. Since H is a projection matrix, it is 
symmetric and idempotent (H2 = H). Thus we can write 

(2A. 18) 

and it is clear that O<hi < 1. It is possible to go a little further. Let % 
denote the n X (p - 1) matrix obtained by centering the explanatory 
variables. Then 

9 - F =  Hy -y=fiy,  (2A. 19) 

and therefore the elements of the centered hat matrix are 

(2A.20) 
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This implies that I / .  <hi < 1. Sometimes 4. is called the distance to the 
center of the data, since 

4 = ( X i  - %)(?Z) - yxi - n) T. (2A.2 1) 

It is easy to show that the eigenvalues of a projection matrix are either 0 
or 1 and that the number of nonzero eigenvalues is equal to the rank of the 
matrix. In this case rank(H)=rank(X)=p and hence trace H=p or 

n 

2 hi=p. 
i =  1 

(2A.22) 

Distribution 27teory. Wiks' A statistic [Rao (1973), p. 5701 for two 
groups where one group consists of a single point is 

det (ar% - (n - I)%=( i) :( i) - jiT5ii) 

det (ZTZ) A(jii) = (2A.23) 

The numerator may be rewritten as 

:)'(g- 2 ) - % T j i i ) ) ,  (2A.24) 

and using the fact that d is centered, this reduces to 

Now we apply (2A.6) to show that (2A.25) is equal to 

( I  - -Zi(%'f)-'5iT)det(ZT%), n 
n-1 

(2A.25) 

(2A.26) 

and thus 

(2A.27) 
n -  n 

n-1 n-1 

If the rows of k are assumed to be i.i.d. from a (p- I)-diminsional 

A(&) = 1 - - hi = - (1  - hi). 

Gaussian distribution, then [Rao (1973), p. 5701 

(2A.28) 
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and it follows that 

n - p  [ h i - ( l / n ) ]  
p-1 (1 -4 , )  - F p - l , n - p '  (2A.29) 

Dummy Variables and Singular Matrices. When a dummy variable 
consisting of all zeros except for a one at the ith observation is added to an 
X matrix of full rank to form a new matrix N, then the ith diagonal 
element of HOV), the hat matrix for N, is 1. This follows from (2A.6) 
because deleting the ith row of N makes N(i) singular. If h,(N)= 1 ,  then 
e,(N) is zero because y,(N) =j,(N). 

The least-squares coefficients using N are just those found by using X(i) 
plus a coefficient for the dummy column of N which is chosen to make 
ei(N) equal to zero. This shows that SSR(new model) = (n - p  - l)s2(i), 
which is the result needed in (2.28). 

To conclude this section we formally show that for any X matrix with 
h, = 1 (we can take i =  1 without loss of generality), there exists a 
nonsingular transformation T, such that a, = (T-lb), = y I  and u2,. . .,up do 
not depend ony,. This implies that, in the transformed coordinate system, 
the parameter estimate a ,  depends only on observation 1. 

When h , = l ,  we have for the coordinate vector&=(l,O,...,O)T, 

w, =& (2A.30) 

since h,=O, j # l .  Let P be any p X p  nonsingular matrix whose first 
column is (x'x)-'x'&. Then 

XP-" 0 A '  '1 
where c is 1 X ( p -  1) and 0 is (p- 1)X 1. Now let 

c = [ ;  -;Iy 

(2A.3 1) 

(2A.32) 

with I denoting the (p - 1) x (p - 1) identity matrix. The transformation we 
seek is given by T- PC, which is nonsingular because both P and C have 
inverses. Now 

XT=[' O A  "1, (2A.33) 

and the least-squares estimate, a, of the parameters cw=T-'p will have the 
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first residual, y ,  - al, equal to zero because h,  = 1. (The transformations do 
not affect the hat matrix.) Clearly a,, ..., a, cannot affect this residual and 
thus a,, . . . , ap will not depend on yl. 

APPENDIX 2B: COMPUTATIONAL ELEMENTSM 

In this computational appendix we describe algorithms that can be used to 
compute the diagnostic measures developed in Section 2.1. Three concerns 
shape our choice of algorithms for the single-row measures considered 
there: numerical stability, as described below; computational efficiency; 
and availability of crucial subroutines in widely distributed libraries. The 
first two of these concerns are best met by numerical analytic methods for 
solving linear least-squares problems, and we begin with a summary of the 
relevant results. For more detailed discussion of these topics the reader is 
directed to Golub (1969), Lawson and Hanson (1974), and Forsythe and 
Moler (1967). Algorithms for computing the diagonal elements of the hat 
matrix [see (2.15)] and the DFBETA [see (2.1)] are then presented. 
Summary descriptions of algorithms for computing the remaining 
diagnostic measures complete the treatment of the single-row techniques. 
Greatest detail is given to the computation of the quantities b, e, hi, and 
b - b( i). 

The latter sections of this appendix describe the algorithms we have 
developed for calculating the multiple-row diagnostic measures. These 
procedures are the product of our ongoing research and have not yet been 
made part of a widely distributed software library. Rather than 
reproducing the FORTRAN codes here, we describe the algorithms in 
sufficient detail to guide the interested researcher to a straightforward 
implementation. Computational efficiency is the key concern in 
construction of these algorithms for reasons we consider in detail below. 
Fortunately, these efficient algorithms have stable numerical procedures 
for their kernels. 

Computational Elements for Single-Row Diagnostics 

Orthogonal Decompositions, the Least-Squares Solution, and Related 
Statistics. The linear least-squares problem (ordinary least-squares 
regression) may be cast in the following notation: 

(2B. 1) 

2oThis appendix was written by Stephen C. Peters. 
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where 11 - (I2 is the Euclidean (square root of sum-of-squares) norm, 
X is the n xp matrix of explanatory variables, 
y is an n-vector of observations on the response variable, and 
b is ap-vector of coefficient estimates. 

Since the Euclidean norm is invariant under an orthogonal 
transformation, a problem equivalent to (2B.1) is 

m p  I I Q Y - Q X ~ I I : ~  (2B.2) 

where Q is an n X n orthogonal matrix. 
It is always possible to choose Q so that 

QX- [ 
where R is p X p  and upper triangular. Hence, if we define 

QF[ i], 

(2B.3) 

(2B.4) 

where c is ap-vector, then a solution, b, to (2B.1) necessarily satisfies 

c = Rb. (2B.5) 

Further, when X has full rank p, this solution is unique and the triangular 
system is stably and efficiently solved by back-substitution. The algorithms 
suggested by the numerical analysts for determining Q, R, and b are stable 
in the sense that the computed solution, b, is the exact solution to a nearby 
problem: 

(2B.6) 

where f and E are, respectively, a vector and a matrix of very small 
perturbations?' 

This method is preferred to solving the normal equations in the form 

(XTX)b = X'y, (2B.7) 

since it avoids both the computation of the cross-products matrix, with the 

Relative to X, the sizes of the elements of E are bounded by a small multiple of the relative 
precision of the (finite) machine arithmetic. Similarly, I is a vector of small perturbations 
relative to y. 
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resulting rounding-error problems, and the need to solve a linear system 
whose conditioning may be worse by as much as the square of the 
condition of (2B.5). 

The most reliable computation of Q and R is by the so-called QR 
decomposition algorithm employing Householder transformations [see 
Golub (1969) or Lawson and Hanson (1974)l. A frequent alternative, the 
modified Gram-Schmidt algorithm, is less useful for our needs since, 
without additional reorthogonalization steps, the Q delivered by modified 
Gram-Schmidt can differ greatly from orthogonality. Since we require an 
orthogonal Q matrix for subsequent computations, we prefer algorithms 
based on Householder transformations which do not suffer this defect [see 
Wilkinson (1965)l. The cost of determining the least-squares solution by 
Householder transformations is approximately np2 - ( p 3 / 3 )  operations, 
where we adopt the convention that an operation is one floating-point 
multiplication and one floating-point addition. FORTRAN subroutines 
which reliably compute Q and R are available for a variety of machine 
types in the LINPACK (1 979) and ROSEPACK (1980) subroutine 
libraries. 

Directly related to the least-squares solution are the residuals e and the 
estimated coefficient covariance matrix s2(XTX)-'.  The residuals are 
formed directly by 

e = y - X b  (2B.8) 

and s2 is calculated as 

s2=eTe / (n -p ) .  (2B.9) 

We compute ( X r X ) - l  (when X has full rank) by exploiting the QR 
decomposition, for if QX= [ ], then 

X-Q T R  [ O ] I i ) R ,  (2B.10) 

where 0 is the first p columns of QT and O'Q = I. Then 

The upper triangular matrix R is stably inverted by back-substitution 
against the identity matrix in p3/6 operations. Multiplication by the 
transpose requires p 3 / 6  additional operations. 
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In Chapter 3 the Singular-Value Decomposition (SVD) is introduced in 
the development of diagnostics for collinearity. This orthogonal 
decomposition can also be advantageously used to solve the least-squares 
problem and to reliably identify rank deficiency. For a full treatment of 
the latter capability see Golub, Klema, and Peters (1980). The SVD 
determines orthogonal matrices U( n X n) and V( p Xp) such that 

uTxv=[ :], (2B.12) 

where D is a p Xp diagonal matrix whose nonnegative diagonal elements, 
pi are called the singufur uaiues of X (which in turn are equivalent to the 
square roots of the eigenvalues of XTX). The least-squares solution is 

b=VD-'C*y, (2B. 13) 

where 0 is the first p columns of U. While algorithms that compute the 
SVD are computationally just as stable as those that compute the QR 
decomposition, their cost is significantly greater; 2np2 + 4p3 operations are 
needed for the algorithm described in Golub and Reinsch (1970). 
FORTRAN subroutines which perform the SVD are available for a variety 
of machine types in EISPACK I1 (1976), LINPACK (1979), and 
ROSEPACK (1980). 

For n > 2p, the cost of the SVD can be reduced by first using the QR 
decomposition. As is readily shown, the singular values of X are the same 
as those of R. Hence, first apply the QR decomposition to X at a cost of 
np2 - (p3/3) operations. Then compute the SVD of R, at an additional cost 
of 6p3 operations, and determine the least-squares solution as 

(2B. 14) 

where 0 is the first p columns of QT and the subscript R denotes the 
matrices that result when the SVD is applied to the matrix R. Finally, 

1 T " T  b=VRDR URQ Y, 

(X'X)-' =VRDi2V; (2B.15) 

is formed with p3/2 operations. 

lk Diagonal E h n t s  of the Hat Matrix. Once the decomposition 
QX= [ t ]  has been performed the hat matrix is readily seen to be 

(2B.16) 
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where 6 is the first p columns of QT. The diagonal elements of QQ*, that 
is, the hi, are just the row sum-of-squares of 0: 

P 
hi= 2 Q;, i = l ,  ..., n. (2B.17) 

The hi may be simply calcuated by forming, in turn, each column of 0, 
squaring its n elements, and accumulating these new squares, so that 6 
need never be stored in its entirety. 

When QX = [ ] has been determined by Householder transformations, 

the matrix Q is formed as a product of p elementary symmetric orthogonal 
transformations, M,, where k = 1 . . . p ;  that is, 

J= 1 

Q= MpMp- * * . M2Ml. (2B. 18) 

It is a condensed form of the M s  that are stored and returned by the 
algorithms cited. To find Q we note 

QT=(MpMp-,...M2M,)*=M1M2. * - MP-,Mp. (2B. 19) 

The first p columns of QT (i.e., 0) are found by applying the elementary 
transformations M,M,. . - Mp- ,Mp to the first p columns of the identity 
matrix. The cost of forming the hi in this way is about 2np2 operations. 
FORTIWN subroutines which compute the diagonal elements of the hat 
matrix after the QR decomposition are available in the LINPACK and 
ROSEPACK subroutine libraries. 

When the singular-value decomposition of R has been formed to deal 
with ill-conditioning and collinearity, the same procedure may be followed 
to compute the hi, since 

X(X*X)-'X~ = Q u , D , v , T ( v , D , ~ v , T ) v ~ D ~ u ~ ~ ~ =  OQr. 
(2B.20) 

If the entire hat matrix is desired, 0 should be formed explicitly and 
multiplied by its transpose in n$/2 operations. 

Computing the DFBETA. The QR decomposition can also be used to 
advantage in the computation of the DFBETA as given in (2.1). The p X n 
matrix B whose columns contain the b - Mi) is 

B= (X*X)-'XTG=(R-lR-T)RTOTG=R-'Q*G, (2B.21) 
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where G is a diagonal matrix with Cii= e i / ( l  -h i )  and 0 is the first p 
columns of Q'. The columns of B may be found by backsolving the system 

RE = @G. (2B.22) 

Having computed the hi, 6 is already available and B is formed with 
approximately np2/2 additional operations. Note that care is needed in 
computing ei/( 1 - hi) when hi is very near unity, but this occurrence is 
seldom found in practice. 

When the SVD has been applied to R, B is obtained from 

B = V,D; Iu,TijT~ (2B.23) 

using straightfonvard matrix multiplication in about np2 operations. 
One other strategy for computing b-b(i) is noteworthy. Given the QR 

factorization of X, one can apply updating and downdating procedures to 
R and y effectively to remove row i. The resulting triangular system can 
then be solved for b(i). Updating and downdating techniques require about 
(9/2)p2 operations for each removal [see Chambers (197 I)]. 

Exhibit 2B.1 summarizes the costs for computing the basic regression 
and diagnostic elements just described. The remaining measures developed 
in Chapter 2 are all easily computed by combining these basic elements. 

Exhibit 2B.1 Summary of computational costs 
~~ 

Basic Regression Elements 

Approximate 
Element Algorithm Cost 

b ( SeVrrnposition n p Z - ( p 3 / 3 )  
2np2 + 4p 

e matrix multiplication np 

( x T x ) -  ' 
S2 inner product eTe/(n - p )  n 

back substitution using R P'/3 
VD-2VT from SVD P 3 / 2  

Basic Diagnostics Elements 

h 

b - qi) After QR 
After SVD 
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Exhibit 2B.1 Continued 

Element 

Derived Diagnostic Elements 
Approximate 

Formula Cost 

b-b(i) 

s ( i )  Js DFBETAS 

DFFIT 

DFFITS 

ei+ 

' hiei - 
1-hi 

ei 

s ( i ) m  
ei 

( 

- I  

COVRATIO O(n) 

The formulas for these measures are repeated and approximate costs are 
summarized. As indicated by the exhibit, the computational expense (in 
operation counts) for computing all diagnostic measures is roughly two 
and one-half times the cost of determining the basic regression elements b, 
e, s2, and (X'X)-'. 

Computational Elements for Multiple-Row Diagnostics 

In the second part of Section 2.1 it is noted that the idluence of one point 
could be masked by another and that the true impact and nature of a 
group of influential observations might not be fully diagnosed by 
single-row diagnostics. This led to a consideration of techniques that 
examine the influence of subsets of more than one row. The computational 
burden of these multiple-row methods increases dramatically over that of 
the single-row measures. Whereas single-row diagnostic computations deal 
with only n cases and are usually bounded in complexity by simple, 
low-order polynomials in n (e.g., 0 (np2)), multiple-row techniques must 
consider vastly more cases. If influential groups of largest sue m are 
suspected, there are ET-I( i )  such cases for which calculations are 
required. Clearly, computing budgets (and patience!) can be rapidly 
depleted by problems having only moderate values of n and m. 
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Our computational approach to this problem is two-fold. First we 
identify a base set, B*, of rows which we suspect participate in group 
influences. The size of B+ is substantially smaller than n, and our 
computations will involve only this smaller set of rows. The criteria 
whereby B+ is constructed are discussed in Section 2.1. Second, in our 
algorithms we trade increased storage for improved speed, and we employ 
algorithms which, overall, require a fixed number of arithmetic operations 
for any subset of B* considered. This is the best that can be achieved when 
an exhaustive search is camed out over these subsets. 

In Section 2.1 we described three different approaches for detecting 
influential groups: multiple-deletion, derivative measures, and geometric 
measures. The geometric approach to Wilks’ A statistic is both compu- 
tationally and conceptually the simplest, and it extends immediately to an 
algorithm for a derivative measure, so we consider its implementation in 
some detail below. With the structure of that algorithm in hand, a 
straightforward decomposition technique will then be introduced to 
provide the core of the algorithms for the remaining measures. There is a 
strong correspondence between these row-selection techniques and 
procedures for computing all-possible-(column)-subsets regression. The 
paper by Furnival and Wilson (1974) gives thorough consideration to this 
related area. 

Notation and the Subset Tree. As noted above, we restrict our 
consideration of influential-observation groups to a base set of rows, B+, 
extracted from the entire sample. The size of B*, say m*, is usually 
substantially smaller than n. All possible subsets of m elements taken from 
B* are then examined for m=1,2, ..., m,<m* (m,,wm*/2 has 
generally been chosen in our quantative work). The organization of subset 
selections utilized in our algorithms is illustrated in Exhibit 2B.2 for a base 
set B* which contains four elements (rows) and where mmax = 3. Each node 
in the tree corresponds to a selected subset. Following Furnival and 

.2 i4  

The subset tree. Ext~tMt 2.B.2 
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Wilson (1974)’ a dot notation similar to that employed for partial 
correlation coefficients is used to label the nodes in the tree. The indexes 
following the dot specify the particular subset taken from B*. Preceding 
the dot are the indexes of the elements of B* that are available for 
selection, but have not yet appeared as part of a subset in the path from 
the root (the root, 1234, is just the null subset). Hence, 34.2 represents a 
subset containing a single element (element 2) and further specifies that 
elements 3 and 4 are available for selection in subsets descendant from this 
node. Missing indexes (“1” in this case) indicate that the corresponding 
element has been remooed from consideration as a participant in subsets on 
the paths to the terminal nodes. 

It is not difficult to see that, at horizontal level 1, the tree depicts the (t ) =4 possible subsets of 1 element chosen from B*; at horizontal level 2, 

the ( ; ) = 6  possible subsets of 2 elements; and so on. The number of 

nodes in a tree of this kind is 

Our algorithms examine subsets by traversing this tree in what is 
commonly called a lexicographic or preordering: visit the parent node, 
then its eldest (leftmost) child. This is applied recursively, i.e., parent, 
eldest child, eldest grandchild. When a terminal node is reached, the next 
younger sibling is visited or, if there is none, the parent’s next younger 
sibling, and so on. The search is depth first, and in the case of Exhibit 
2B.2, yields the subset sequence: 1234, 234.1, 34.12, 4.123, .124, 4.13, 
.134,. . . , .4. The traversal algorithm is simply implemented with the use of 
a push-down stack. [See Knuth (1973).] 

It is crucial to recognize that from any subset, the constituents of 
descendant subsets visited by this traversal are known (their indexes 
precede the dot) and the number of these available elements decremes with 
the depth of the search. Our algorithms at a given subset will “work 
ahead” on these known constituents allowing for considerable economies 
in computation at the (generally more numerous) descendant subsets. 

An AIgorithm for the Geometric Measure, Wilks’ A. In Section 2.1, 
(2.75) was derived for computing Wilks’ A statistic from a subset of 
observations D taken from B*. Recall that 2 is the matrix [yX] centered by 
column means and @ the projection matrix k(k‘k)-’k‘. Let @* be the 
m*Xm* submatrix of 1?. chosen according to the elements of B*. 
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D + '  

Following the procedures specified earlier in this appendix, F* can be 
formed once and for all in O(np2)+O(m*2p) operations. Let I, be an 
m-vector consisting of ones where elements of B* appear in D and with 
zeros elsewhere. Then A ( D )  depends on D through the quadratic form 
f T f i * I , ,  and we now consider the efficient computation of such quantities 
over all subsets D chosen from B* with size m <ma. 

The quadratic form frlt?*l, is itself easy to compute since it involves only 
the (unweighted) sum of elements of @*. The summands are, of course, the 
elements of the m X m  submatrix of lt?* selected by D. Since this matrix is 
symmetric, there are m(m+ 1)/2 distinct elements to be summed. A naive 
algorithm that computes the sum for each subset independently of the 
others requires about 

Dl 
i 

floating- point additions. 
A somewhat more sophisticated approach takes advantage of the fact 

that, having computed @*f,  for a particular D, when a subset, D +, with 
one additional element is selected (e.g., any child of D in Exhibit 2B.2), 
only a "stripe" of @* need be summed with the previous ITp*ll to obtain 
the new statistic. Exhibit 2B.3 illustrates the previously summed submatrix 
selected by D and the additional summation required for D +. 

D +  

D 

I " " " " " ' " ~ ' ~ ~ ~ ~ ~ ~ ~  ~ - - - -  
I :  

Exhibit 2B3 The transition from A(D)  to A(0')  

The stripe summed with the previous f:@*f, is shaded. 
As we traverse the tree, we save, for use by all its children, the value of 

frpf, computed for each parent on the path back to the root. This 
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requires, at most, m,, additional storage locations. The improved 
algorithm will require about 

floating-point additions. 
A further economy can be achieved for a given subset D by taking into 

account the elements of B* that might appear in descendant subsets (their 
indexes precede the dot in Exhibit 2B.2). For each parent in the path back 
to the root we store, in addition to the value of fTP*l,  computed, the 
partial sums Z i j $ ,  where i ranges over the indexes of elements already in 
D (i.e., those following the dot) and j ranges over the indexes which are yet 
to be selected (i.e., those preceding the dot). Updating the statistic as one 
goes from parent to a child requires the addition of only three terms. The 
summands are the value of fTF*f ,  for the parent, the diagonal of @* 
selected by the index of the new element appearing in the offspring, and 
twice the partial-sum corresponding to the index i of the new element. 
Referring to Exhibit 2B.3, we have effectively collapsed the column 
standing above F& by forming the partial-sum P"f,+F':,+F& in the 
previous stages. Each partial-sum can be updated by a single addition to 
give the new partial-sum stored for the child. The partial-sum 
corresponding to the new offspring element is excluded from the update so 
that the number of sums so maintained decreases as the tree is descended. 
Fewer than m* *mmax additional storage locations are required to store the 
previous statistics and partial-sums. It can be shown that this algorithm 
requires about 

floating-point additions. This is proportional to the number of subsets 
considered and we have found no way to reduce further the number of 
operations. We look in further research to tree-pruning or branch- 
and-bound techniques that might allow us to exclude subtrees based on 
characteristics of their parents. An algorithm for computing the derivative 
measure in (2.73) can be constructed in a completely analogous way. The 
matrix whose elements are hije,.ej/(l -hi)(]  -hi) for i , j E B *  simply takes 
the place of fi* in the above procedure. 
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Dummy Variables, Sequential Choleski Decomposition, and the 
Andrews-Pregibon Statistic. The Andrews-Pregibon statistic for detecting 
influential-observation groups is [see (2.77)] 

SSR(D)det(X'(D)X(D))  
SSRdet (X'X) 

Q(Dm) = Y 

where D is again an m-element subset of rows taken from B*. Two results 
from linear algebra point toward a computational strategy. The first 
concerns the determinant 

det (XT(  D)X(  D ) )  = det( X'X 7) = det ([ X ED] '[ X ED]), 

X D  

(2B.24) 

where X D  is the m Xp matrix of the influential rows specified by D, and ED 
is an n X m matrix consisting of columns of the identity matrix where ones 
appear in the rows specified by D. These columns are the dummy variables 
discussed in Section 2.1. W e  observe that the determinant of the 
row-reduced cross-products matrix is identically that of a suitably 
column-augmented cross-products matrix. 

The second result also depends on a duality relating row-reduced and 
column-augmented cross-products matrices. Consider the (symmetric) 
cross-products matrix [ X  ED yJT[X ED y ] ;  a triangular decomposition fur it 
can be effected for which 

Y T [ X  ED] 

the following identity holds: 

(2B.25) 

where LD is ( p  + m) x (p + m) upper triangular and 1, is (p + m) X 1. It can 
be shown that AD is the residual sum-of-squares for the least-squares 
regression of y on [X ED], and that this is identically SSR(D).  
Furthermore, it follows that 

det([X ED]'[X E~])=det(L&;), (25.26) 

and using (2B.24) the determinant of XT(D)X(D)  is just the square of the 
product of the diagonals of the Choleski factor, L,. 
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It is possible to organize the computation of the decomposition and the 
formation of the Andrews-Pregibon statistic so that economies similar to 
those detailed in the previous section can be obtained when all subsets D 
taken from B* of size m Qmmax are examined. Specifically, in the tree 
traversal, the sequential Choleski method is employed which operates on 
the cross-products matrix [X E,. y]'[X E,. y] and forms, at each node, a 
column of L, corresponding to the new element appearing in the subsets. 
It then adjusts a submatrix (specified by the constituents of possible 
descendent subsets) for the effect of the column just considered. The 
adjustments are simply elementary row operations just like Gaussian 
elimination. Initially, p stages serve to decompose X'X (the leading 
principal submatrix). Further stages result in the augmented regressions as 
the tree is traversed. The adjustments to submatrices are analogous to the 
formation of partial-sums described previously. That is, adjustments are 
performed only over those elements which are members of descendent 
subsets; and the number of these elements, hence the work for each 
adjustment, decreases with depth in the tree. 

As in the previous algorithm, results computed at parent nodes in the 
path back to the root must be stored. Here the storage cost is somewhat 
greater since adjusted submatrices, rather than vectors, must be 
maintained. Roughly (m*2/2)m,ax storage locations are required. It can 
be shown that an algorithm constructed in this way will require 

approximately 14Z::y (:*) operations, where an operation consists of a 
floating-point multiplication followed by a floating-point addition (we 
have taken the square-root operation to be equivalent to six floating-point 
operations). The Choleski algorithm is numerically stable in the sense that 
the computed triangular factors are exact for a matrix very near to the 
cross-products matrix being decomposed, differing only by a small 
multiple of the machine rounding error. It  is critically important, however, 
that the cross-products matrix itself be computed and stored with extra 
precision, since only in this way can we be assured that it accurately 
represents the configuration of [X E,. y]. 

Further Elements Computed from the Triangular Factors. When the 
triangular factorization, (2B.25), has been determined, a number of other 
group-influence measures are readily available at only moderate additional 
cost. The generalized fit statistic, (2.60), is 

MDFFITG [ b- b ( D ) ]  'X'(D)X(D)[ b- b ( D ) ] .  
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Bingham (1977) provides several useful identities, one of which yields 

MDFFIT =egU,e,, 

where e, is the m X 1 subvector of the ordinary least-squares residuals 
selected by D, and U,=Xx,[XT(D)X(D)] - 'Xg,  is an m X m  matrix. Now, 

Notice that I+ U, appears as the k X k trailing submatrix. Exploiting the 
triangular factorization, we then have 

where 0 is ap-vector of zeros. The product [ k ]  =L;'[ t ]  is most stably 

whence, MDFFIT = c ~ c ,  -eie,. The back-substitution involves just the 
trailing k x k  lower triangle of Lo. These computations can again be 
arranged so that much of the back-substitution work for descendant 
subsets can be performed at the parent nodes. This work actually proceeds 
concurrently with the formation of LD. Fewer than m*.m,  additional 
storage locations are required for storing intermediate results (essentially 

the c,). The operation count is 162p-*i (;*) operations. 

and economically determined by back-substitution in L D [  4 = [ €3, 

Inequalities Related to MDFFIT.. Since XT(D)X(D) = XTX - XgX,, we 
obtain [Rao (1973), p. 331, 

[ X T ( D ) X ( D ) ]  - I = (XTX)--' - (XTX)-'X;[ x,(x*X)-'x, - I ]  -'x,(x7.x)- I, 

and therefore, 
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If we decompose H, as 

H, = VTS,V, 

where S, is diag{ s i }  and V is orthonormal, then 

U D  = v’s2v 

When all si # 1, 

Several useful inequalities result from this. One example occurs if 
trace H, = hi < 1 .  Then 

i E D  

2 hi 
X ei”, 

i E D  MDFFIT < 
1- x hi  ED 

i E D  

since max si 4 trace H D .  This is related to an inequality for (2.59) derived 
by Cook and Weisberg (1979). 

i € D  

Similar arguments can be used to show that 

x hiieiq< 2 hi x e;, 
i, j €  D,,, i € D m  i € D m  

and 

1 2 %  
n 

A( I),,,) 1 - m(n- m )  

SSR 

2 n ==[ 1 -  i E D m (  2 hi+-- .’-,]’ 

n 

where SSR= 2 e;. 
k - l  
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Although still computationally complex, inequalities of this form can 
reduce the overall computational load, since they are based only on the hi 
and the e, and can remove many subsets from consideration. The reader is 
reminded, however, that once these subsets have been excluded, the 
algorithms developed above for dealing with all subsets cannot be used 
efficiently. Trade-offs among these approaches have not been established, 
but branch-and-bound techniques hold promise. 



C H A P T E R  3 

Detecting and Assessing 
Collinearity 

In this chapter we develop means (1) for detecting one or more collinear 
relations among a set of explanatory variables X to be used in a linear 
regression, (2) for identifying the subsets of explanatory variables involved 
in each collinear relation, and (3) for assessing the extent to which each of 
the least-squares estimates b = (XTX)-’Xry is potentially harmed by the 
presence of such collinear relations. 

3.1 INTRODUCTION AND HISTORICAL PERSPECTIVE 

No precise definition of collinearity’ has been firmly established in the 
literature. Literally, two variates are collinear if the data vectors 
representing them lie on the same line (i.e., subspace of dimension one). 
More generally, k variates are collinear if the vectors that represent them 
lie in a subspace of dimension less than k, that is, if one of the vectors is a 
linear combination of the others. in practice, such “exact collinearity” 
rarely occurs, and it is certainly not necessary in order that a collinearity 
problem exist. A broader notion of collinearity is therefore needed to deal 
with the problem as it affects statistical estimation. More loosely, then, two 
variates are collinear if they lie almost on the same line, that is, if the angle 

‘The terms collinearity, multicollinearity, and ill conditioning are all used to denote this 
situation. The well-defined term of the numerical analysts, ill conditioning, would seem to be 
the term of choice, but coNinearity is so widely employed that it is difficult to ignore it 
altogether and we use it frequently. The term ill conditioning will also be employed once it is 
defined. The term multicollinearity is also popular, particularly in econometrics, but, being 
inherently redundant, this term has been avoided in this work. 
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between them is small. In the event that one of the variates is not constant, 
this is equivalent to saying that they have a high correlation between them. 
We can readily generalize this notion to more than two variates by saying 
that collinearity exists if there is a high multiple correlation when one of 
the variates is regressed on the others.* This intuitive view of collinearity is 
adequate for the immediate discussion, but we eventually define 
collinearity in terms of the condiiioning of the data matrix X. 

It is clear from the preceding discussion that collinearity has to do with 
specific characteristics of the data matrix X and not the statistical aspects 
of the linear regression model y=Xp+e. That is, collinearity is a data 
problem, not a statistical problem. This, together with the fact that, in 
some applications of regression models, experimental data can be obtained 
that are relatively free from collinearity, has allowed the topic of 
collinearity to receive very uneven textbook treatment. In many 
applications of linear regression, however, such as in econometrics, 
oceanography, geophysics, and other fields that rely on nonexperimental 
data, collinear data frequently arise and cause problems. Collinearity, then, 
is a nonstatistical problem that is nevertheless of great importance to the 
efficacy of least-squares estimation. 

Intuitively we can understand the potential harm that results from 
collinear data by realizing that the collinear variates do not provide 
information that is very different from that already inherent in the others. 
It becomes difficult, therefore, to infer the separate influence of such 
explanatory variates on the response variate. 

'An ambiguity immediately arises in defining the coefficient of multiple correlation. Let e be 
the residuals that result when any n-vector z is regressed on any set of p a-vectors Wi 
comprising the columns of the n x p  matrix W, that is, e=z-Wc, where c-(WrW)-'Wrz. 
Consider the two measures 

and 

where A=I-(u'/n), i a vector of ones. In the latter measure, the matrix A causes the z-data 
to be centered about their mean. Each of these measures has variously been defined to be the 
square of the coefficient of multiple correlation. The latter, however, lacks generality, 
applying only when there is a constant column in W. Since the diagnostics developed later in 
this chapter require no such limitation on the data matrix, we, along with Theil(1971, p. la), 
adopt definition (0) as our measure of the squared coefficient of multiple correlation. Should 
the data already be centered about their means, of course, the two measures will coincide. 
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We can view the nature of collinearity geometrically with reference to 
Exhibit 3.1. Here we have pictured several situations relevant to the model 

Yi=  PO+ Plxi l+ PZxi2+ &i, 

that is, the p = 3  case. In these exhibits we show scatters of the n data 
points. In the x I ,  x2 “floor” are the (xl, x2) scatters (points denoted by ), 
while above we show the data “cloud” that results when they dimension is 
included (points denoted by 0 ) .  Exhibit 3 . 1 ~  depicts the well-behaved case 
where the x ,  and x2 data are not collinear. The data cloud above provides 
a well-defined least-squares plane, that is, the plane that minimizes the sum 
of squared errors in the y direction between the actual yi and the plane. 
They-intercept of this plane estimates Po, and the partial slopes in the x1 
and x2 directions, respectively, estimate p, and P2. Since the plane is well 
defined, the various parameters are estimated with precision. Exhibit 3.1 b 
depicts a case of perfect collinearity between x1 and x2. The data cloud 
now has no width, and the resulting least-squares plane is not defined; any 

Exhibit 3.la No collinearity-all regression coefficients well-determined. A small change in 
any parameter of the regression plane will cause. a relatively large change in the residual 
sum-of-squares. 



t Y  

-bit 3.lb Exact collimearity-all regression coefficients undetermined. A s i m d m W ~  
change in all the parameters of the regression plane can leave the residual sm-Of-qWes 
unchanged. 

Exhibft 3.1~ Suong mllinearity-dl regression coefficients ill-determined. A simultan~uS 
chaoge in alI the parameters of the regression plane can cause little change in the residual 
sum-of-squares. 
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Exhibit 3.ld Strong collinearity-constant term well-determined. Only changes in the slope 
parameters of the regression plane can leave the residual sum-of-squares little affected. 

Exbibit 3.le Strong collinearity-6, well-determined. Only changes in the intercept and b, 
parameters of the regression plane can leave the residual sum-of-squares little affected. 
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t‘ 

Exhibit 3.11 Strong collinearity-except for an outlier. 

plane lying along the “axis” of the cloud results in the same minimum sum 
of squared errors. This illustrates the well-known fact that perfect 
collinearity destroys the uniqueness of the least-squares estimator. Exhibit 
3.1 c depicts strong (but not perfect) collinearity. Here the least-squares 
plane is ill defined in the sense that tilting it along the major axis of the 
cloud results in little change in the sum of squared errors. The fact that the 
plane is ill defined in this manner translates statistically into the fact that 
the least-squares estimates (the y-intercept and the partial slopes) are 
imprecise; that is, they have high variance. 

These simple illustrations serve also to show that collinearity need not 
harm all parameter estimates. Exhibit 3.ld, for example, shows a case 
where the partial slopes are ill defined-and hence one has imprecise 
estimates of PI and P2-but the y-intercept remains well defined as the 
plane is tilted along the cloud axis. Here, then, the intercept term remains 
estimated with precision. Likewise, in Exhibit 3.le, we have a case where 
the partial slope in the x2 direction remains well defined. Here estimates of 
Po and PI will lack precision while that of p2 will not. A little thought here 
will convince the reader that, in this case, the collinear relation is no longer 
between xI and x2, but rather is now between xI and the constant term. In 
Exhibit 3.lf we have included a situation that suggests the potential 
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interaction of the diagnostics for collinearity with those developed in 
Chapter 2 for influential data points. We say more about this interaction in 
Chapters 4 and 5. 

It is clear, then, that the ability to diagnose collinearity is important to 
many users of least-squares regression. Such diagnosis consists of two 
related but separate elements: (1) detecting the presence of collinear 
relationships among the data series, and (2) assessing the extent to which 
these relationships have degraded3 estimated parameters. Diagnostic 
information of this sort would aid the investigator in determining whether 
and where corrective action is necessary and worthwhile? This chapter 
presents and examines a method for treating both diagnostic elements. 
First, it provides numerical indexes whose magnitudes signify the presence 
of one or more collinear or near dependencies’ among the columns of a 
data matrix X; second, it provides a means for determining, within the 
linear regression model, the extent to which each such near ,dependency is 
potentially degrading the least-squares estimation of each regression 
coefficient. In most instances this latter information also enables the 
investigator to determine specifically which columns of the data matrix are 
involved in each near dependency; that is, it isolates the variates involved 
(and therefore also those not involved) and the specific relationships in 
which they are included. 

Overview 

The remainder of this section places the work reported here in its historical 
perspective. Section 3.2 provides an analytic background for the concepts 
employed and culminates in an empirically based procedure for diagnosing 
the presence of collinearity and assessing its potential harm to regression 
estimates. The basic building blocks employed in developing the diagnostic 
techniques of Section 3.2 have long been known to numerical analysts, but 
only recently are they becoming part of the working vocabulary of 

’This term is given meaning later on. 
‘While the emphasis of this book is on diagnostics, remedial or corrective mechanisms are 
discussed and exemplified in Chapter 4. 
’The relations among the data that result in collinearity or ill conditioning have variously 
been referred to as multicollinear relations, collinear relations, dependencies, near dependencies, 
near collineari& and near singulariv. The first of these terms is avoided here in line with 
footnote 1. The last of these terms is specious, since a matrix is either singular or not. The 
remaining terms are used interchangeably here with a preference for near dependency. This 
term is defined in the next section. 
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econometrics and statistics. Section 3.3 presents a series of experiments 
designed to illuminate the empirical properties of the collinearity 
diagnostics suggested in Section 3.2 and results in a set of interpretive 
tools. Finally, the process is summarized and exemplified in Section 3.4. 
There we learn, for example, that everything that macroeconomists 
thought was bad about the data used to estimate the consumption function 
is true. 

Historical Perspective 

Many procedures have been employed to detect collinearity.6 We discuss 
here those most commonly used and indicate certain of their problems and 
weaknesses. 

I .  Hypothesized signs are incorrect, “important” explanatory variables have 
low t-statistics, and various regression results are sensitive to deletion of a row 
or a column of X. 

Any of the above conditions is frequently cited as evidence of 
collinearity, and, even worse, collinearity is often cited as an explanation 
for these conditions. Unfortunately, none of these conditions is either 
necessary or sufficient for the existence of collinearity, and more refined 
techniques are required both to detect the presence of collinearity and to 
assess its potentially harmful effects. 

2. Examine the correlation matrix R, of the explanatory variables-or the 
inverse of this correlation matrix, R-’. 

Examining the correlation matrix of the explanatory variables is a 
commonly employed procedure since this matrix is a standard output of 
most regression packages. If we assume the X data have been centered and 
scaled to have unit length, the correlation matrix R is simply X‘X. While a 
high correlation coefficient between two explanatory variates can indeed 
point to a possible collinearity problem, the absence of high correlations 
cannot be viewed as evidence of no problem. It is clearly possible for three 
or more variates to be collinear while no two of the variates taken alone 
are highly correlated. The correlation matrix is wholly incapable of 
diagnosing such a situation. We encounter a phenomenon of this sort in 

6The reader who is interested in a more extensive survey of the collinearity problem is 
referred to Kumar (1975~). 
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Section 3.4, where we examine the consumption-function data. The 
correlation matrix is also unable to reveal the presence of several 
coexisting near dependencies among the explanatory variates. High 
pairwise correlations between, say, Xi  and X, and between X, and X, 
could be due to a single near dependency involving all four variates, or to 
two separate near dependencies, one between X i  and X, and one between 
X, and X,. The procedures we develop in the following section allow 
separate near dependencies to be uncovered as well as provide information 
on the involvement of each variate in each such near dependency. 

Clearly the shortcomings just mentioned in regard to the use of R as a 
diagnostic measure for collinearity would seem also to limit the usefulness 
of R-’,  and this is the case. The prevalence of this measure, however, 
justifies its separate treatment. Recalling that we are currently assuming 
the X data to be centered and scaled for unit length, we are considering 
R-’=mTX)- ’ .  The diagonal elements of R-I, the rii, are often called the 
variance inflation factors, VIF,, [Chatterjee and Price (1977)], and their 
diagnostic value follows from the relation 

1 

1-R: ’  
VIF,= - 

where 8, is the multiple correlation coefficient of Xi regressed on the 
remaining explanatory variables. Clearly a high VIF indicates an Rz near 
unity, and hence points to collinearity.’ This measure is therefore of some use as 
an overall indication of collinearity. Its weaknesses, like those of R, lie in its 
inability to distinguish among several coexisting near dependencies and in the 
lack of a meaningful boundary to distinguish between values of VIF that can be 
considered high and those that can be considered low. 

3. The technique of Farrar and Glauber. 
A diagnostic technique employing information from R and R-’  that has 

had great impact in the econometric literature and a growing impact in the 

’The term “variance inflation factor” derives from the fact that the variance of the ith 
regression coefficient u;, obeys the relation 

where u 2  is the variance of the regression disturbance term. This is shown in Theil (1971, p. 
166). 
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statistical literature is that of Farrar and Glauber (1967). We treat it 
separately here. Farrar and Glauber devised a measure of collinearity 
based on an assumption that the n X p  data matrix X is a sample of size n 
from a p-variate Gaussian (normal) distribution. Under the further 
assumption that X has orthogonal columns, they contend that a 
transformation of det(R) is approximately x 2  distributed, and hence 
provides a measure of the deviation from orthogonality or the presence of 
collinearity. In addition, they make use of the VIF, (though not by that 
name) as indicators of the variates involved. They further propose the use 
of the measure rii. = - r v / ( f i  fi ), that is, the partial correlation 
between Xi and X,, adjusted for all other X-variates, to investigate the 
patterns of interdependence in greater detail. The suggested technique of 
Farrar and Glauber falls prey to several interesting criticisms. 

First, the use of R and the VIFi and their weaknesses have already 
been discussed. The use of det(R) is, however, new to our discussion. But, 
like R itself, det(R) cannot diagnose the presence of several coexisting near 
dependencies, for the existence of any one near dependency will make 
det(R) near zero. 

Second, Haitovsky (1969) has criticized a measure based on a deviation 
from orthogonality of the columns of X, and has proposed a widely 
accepted change in emphasis to a measure of deviation from perfect 
singularity in X. This change reflects the fact that the Farrar and Glauber 
measure frequently indicates collinearity when, as a practical matter, no 
problem exists. While the Haitovsky modification seemingly strengthens 
the Farrar and Glauber process, more recent criticism has proved more 
troublesome. 

Third, Kumar (1975b) highlights (1) the obvious fact that the Farrar and 
Glauber technique, in assuming the data matrix X to be stochastic, has no 
relevance to the standard regression model in which X is assumed fixed, 
and (2) the less obvious fact that even when X is stochastic, a truly 
rigorous derivation of the statistic employed by Farrar and Glauber would 
depend on an assumption that the rows of the X matrix are independently 
distributed. 

Fourth, the use of the elements rv, = - r g / ( f i  fi ) by Farrar and 
Glauber to display detail of variate involvement lacks discrimination. As 
we show in Appendix 3C, these correlations all approach unity (k 1) as 
collinearity becomes more troublesome. Thus rv. can be near unity even if 
variates X i  and Xi are not involved in any collinear relation. 

Fifth, in quite another vein, OHagan and McCabe (1975) question the 
validity of Farrar and Glauber’s “statistical” interpretation of a measure of 
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collinearity, concluding that their procedure misinterprets the use of a 
t-statistic as providing a cardinal measure of the severity of collinearity. 

Indeed this latter criticism is correctly placed, for it is not proper, as 
some are wont, to interpret the Farrar and Glauber procedure as a 
statistical test for collinearity. Indeed Farrar and Glauber never make any 
such claim for their procedure. A statistical test, of course, must be based 
on a testable hypothesis; that is, the probability for the outcome of a 
relevant test statistic, calculated with actual sample data, is assessed in 
light of the distribution implied for it by the model under a specific null 
hypothesis. The Farrar and Glauber technique differs critically from this 
classical procedure exactly in the fact that the linear regression model 
makes no testable assumptions on the data matrix X.8 There are no 
distributional implications from the linear regression model for specific 
null hypotheses (such as orthogonality) on the nature of the data matrix X 
against which tests can be made. 

The preceding highlights the fact (made clear in Appendix 3D) that 
collinearity can cause computational problems and reduce the precision of 
statistical estimates, but, in the context of the linear regression model, 
collinearity is not itself a statistical phenomenon subject to statistical test. 
A solution to the problem of diagnosing collinearity, then, must be sought 
elsewhere, in methods that deal directly with the numerical properties of 
the data matrix that can cause calculations based on it to be unstable or 
sensitive (in ways to be discussed later). 

4. Examine Bunch Maps. 
Historical completeness certainly requires inclusion of Ragnar Frisch’s 

(1 934) bunch-map analysis. Frisch’s technique of graphically investigating 
the possible relationships among a set of data series was among the first 
major attempts to uncover the sources of near linear dependencies in 
economic data series. Frisch’s work addresses itself to the first of 
collinearity’s diagnostic problems-the location of dependencies-but 
makes no attempt to determine the degree to which regression results are 
degraded by their presence. Bunch-map analysis has not become a major 
tool in regression analysis because its extension to dependencies among 
more than two variates is time consuming and quite subjective. 

‘The data matrix X is, of course, assumed to have full rank, but this is not testable, for its 
absence, the null hypothesis, renders the regression model invalid. 
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5. Examine the eigenvalues and eigenvectors (or principal components) of the 
correlation matrix, R. 

For many years the eigensystem (eigenvalues and eigenvectors) of the 
cross-products matrix XTX or its related correlation matrix R has been 
employed in dealing with collinearity. Kloeck and Mennes (1960), for 
example, depict several ways of using the principal components of X or 
related matrices to reduce some ill effects of collinearity. In a direction 
more useful for diagnostic purposes, Kendall(l957) and Silvey (1969) have 
suggested using the eigenvalues of X’X as a key to the presence of 
collinearity : collinearity is indicated by the presence of a “small” 
eigenvalue. Unfortunately we are not informed what “small” is, and there 
is a natural tendency to compare small to the wrong standard, namely, 
zero. At least in some cases [e.g., Chatterjee and Price (1977)], it is 
indicated, but without justification, that collinearity may exist if “one 
eigenvalue is small in relation to the others.” Here, small is interpreted in 
relation to larger eigenvalues rather than in relation to zero. This 
fundamental distinction lies at the heart of the methods discussed later in 
this chapter and requires much additional theory to provide its 
justification. This additional material comes from the extremely rich 
literature in numerical analysis showing the relevance of the condition 
number of a matrix (a measure related to the ratio of the maximal to 
minimal eigenvalues) to problems akin to collinearity. 

A Basis for a Diagnostic 

None of the above approaches has been fully successful at diagnosing the 
presence of collinearity or assessing its potential harm. The basis for a 
successful diagnostic is, however, close at hand, for various concepts 
developed in the field of numerical analysis are capable of putting real 
meaning to the measures discussed above based on eigenvalues. 

Recent efforts of numerical analysts have provided a very useful set of 
tools for a rigorous examination of collinearity. While their attention has 
not been directly focused on collinearity, it has been directed at related 
topics. Numerical analysts are, for example, interested in the properties 
(conditioning) of a matrix A of a linear system of equations Az=c that 
allow a solution for z to be obtained with numerical stability. The 
relevance of this to collinearity in least squares is readily apparent, for the 
least-squares estimator is a solution to the linear system (X’X)b= X’y with 
variance-covariance matrix u2(X’X)-’. To the extent, then, that 
collinearity among the data series of X results in a matrix A=XTX whose 
ill conditioning causes both the solution for b and its variance-covariance 
matrix to be numerically unstable, the techniques of the numerical analysts 
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have direct bearing on understanding the econometrician’s and 
statistician’s problems with collinearity. The important efforts of the 
numerical analysts relevant to this study are contained in Businger and 
Golub (1965), Golub and Reinsch (1970), Lawson and Hanson (1974), 
Stewart (1973), and Wilkinson (1965). 

Few of the techniques of the numerical analysts have been directly 
absorbed in applied statistical fields such as econometrics. This is strange 
since one of the principal tools of numerical analysis, the singular-value 
decomposition (SVD) of the data matrix X, has an intimate connection to 
the eigensystem of XTX, a connection that we discuss in detail below. This 
lack of communication among the disciplines is explained in part by 
awkward differences in notation, and in part by seemingly different 
interests. Numerical analysts, for example, tend to work with nonstochastic 
equation systems. Furthermore, they have placed much of their emphasis 
on determining which columns of a data matrix can be discarded with least 
sacrifice to subsequent analysis,’ a solution that is rarely open to the 
econometrician or applied statistician whose theory has already 
determined those variates that must always be present-r those that may 
be deleted, but not on grounds of numerical stability. Nevertheless, as we 
see, the numerical analysts’ techniques, fused with the Kendall-Silvey line 
of research employing eigenvalues, have much to offer the user of least 
squares in diagnosing collinearity. 

We recall from above that Silvey concludes that collinearity is 
discernable by the presence of a “small” eigenvalue of XTX, a fact first 
noted by Kendall. This conclusion is correct, but falls short of the mark, 
since Silvey fails to inform us when an eigenvalue is small. We show that 
the numerical-analytic notion of the condition number can be applied to 
solve this shortcoming. Furthermore, Silvey provides the basis for 
diagnosing the involvement of the individual explanatory variates; namely, 
he examines a decomposition of the estimated variance of each regression 
coefficient in a manner that can illuminate the degradation of each 
coefficient caused by collinear relationships. Silvey, however, fails to 
exploit this use of the decomposition. 

This chapter, then, (1) applies the relevant techniques of numerical 
analysis to Silvey’s suggestion in order to provide a set of indexes 
(condition indexes) that signal the presence of one or more near 
dependencies among the columns of X and (2) adapts the Silvey 
regression-variance decomposition in a manner that can be combined with 
the above indexes to uncover those variates that are involved in particular 

9See, for example, Hawkins (1973) or Golub, Klema, and Stewart (1976), or Webster, Gunst, 
and Mason (1974), (1976). 
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near dependencies and to assess the degree to which the estimated 
coefficients are being degraded by the presence of the near dependencies. 

3.2 TECHNICAL BACKGROUND 

In this section we develop the two principal tools of analysis employed in 
this chapter, the singular-value decompostion (SVD) of a matrix X (and its 
associated notion of the conditioning of X), and the decomposition of the 
estimated regression variance in a manner corresponding to the SVD. As 
noted, none of these concepts is new; the innovation is their combination 
in a manner that helps the user of linear regression solve the two diagnostic 
problems of collinearity stated at the outset: detection and assessment of 
damage. 

The Singular-Value Decomposition 

Any n x p  matrix X, considered here to be a matrix of n observations on p 
variates, may be decomposed" as 

x = UDV', (3.1) 

where UTU=VTV=Ip and D is diagonal with nonnegative diagonal ele- 
ments pk, k- 1, ...,p,"* I2 called the singular values of X. The preceding 
holds whether or not X has been scaled or centered. For the purposes of 
the collinearity diagnostics that follow, however, we shall discover (below 
and in Appendix 3B) that it is always desirable to scale X to have equal 
(unit) column lengths. Furthermore, if the data are relevant to a model 
with a constant term, X should contain uncentered data along with a 
column of ones; indeed, the use of the centered data matrix X in this 
situation is to be avoided, since centering can mask the role of the constant 
in any underlying near dependencies and produce misleading diagnostic 

''See, for example, Golub (1969), Golub and Reinsch (1970). Hanson and Lawson (1%9), 
and Becker et al. (1974). 
"This decomposition is efficiently and stably effected by a program called MINFIT, a part 
of EISPACK I1 (1976). 
''In (3.1) U is n xp,  D is p xp,  and V is p xp .  Alternative formulations are also possible and 
may prove more suitable to other applications. Hence one may have 

nXp nXn n X p p X p  nXp n X r r X r r X p  
X = U  D Vr  or X = U  D V T  

where r=rank X. In this latter formulation D is always of full rank, even if X is not. 
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results. Throughout this analysis X may include lagged values of the 
response variable y; that is, X is a matrix of predetermined variables. 

The singular-value decomposition is closely related to the familiar 
concepts of eigenvalues and eigenvectors, but it has useful differences. 
Noting that X'X=VD2V', we see that V is an orthogonal matrix that 
diagonalizes X'X and hence the diagonal elements of D2, the squares of 
the singular values, must be the eigenvalues of the real symmetric matrix 
X'X.'' Further, the orthogonal columns of V must be the eigenvectors of 
X'X (and, similarly demonstrated, the columns of U are the p eigenvectors 
of XX' associated with itsp nonzero eigenvalues). 

The singular-value decomposition of the matrix X, therefore, provides 
information that encompasses that given by the eigensystem of X'X. As a 
practical matter, however, there are reasons for prefemng the use of the 
singular-value decomposition. First, it applies directly to the data matrix X 
that is the focus of our concern, and not to the cross-product matrix XTX. 
Second, as we shall see, the notion of a condition number of X is properly 
defined in terms of the singular values of X (spectral norm) and not the 
square roots of the eigenvalues of X'X. Third, the concept of the 
singular-value decomposition has such great practical, as well as analytical, 
use in matrix algebra that we take this opportunity to extend knowledge of 
it to a wider audience than the numerical analysts. And fourth, whereas 
the eigensystem and the SVD of a given matrix are mathematically 
equivalent, computationally they are not. Algorithms exist that allow the 
singular-value decomposition of X to be computed with much greater 
numerical stability than is possible in computing the eigensystem of X'X, 
particularly in the case focused upon here where X is ill ~onditioned.'~ As 
a practical matter, then, the collinearity diagnostics we discuss should 
always be carried out using the stable algorithm for the singular-value 
decomposition of X rather than an algorithm for determining the 
eigenvalues and eigenvectors of XTX. The use of the SVD throughout this 
chapter reminds us of this fact. 

Exact Linear Dependencies: Rank Deficiency. In the first instance let us 
assume X (which may contain a constant column of ones) has exact linear 
dependencies among its columns, a case rarely encountered in actual 
practice, so that rank X = r <p .  Since, in the SVD of X, U and V are each 
orthogonal (and hence are necessarily of full rank), we must have rank 
X=rank D. There will therefore be exactly as many zero elements along 

%ee, for example, Theil (1971, p. 27). 
14Furthermore, bt operating directly on the n x p  matrix X, the SVD avoids the additional 
computational burden of forming XTX, an np2 operation. 



100 DETECTING AND ASSESSING COLLINEARITY 

the diagonal of D as the nullity of X, and the SVD in (3.1) may be 
partitioned as 

where D,, is r X  r and nonsingular. Postmultiplying by V and further 
partitioning, we obtain 

where V, is p x r ,  U, is n x r ,  V, is p X ( p - r ) ,  
Equation (3.3) results in the two matrix equations 

XV,=U,D, ,  

xv, = 0. 

0 O 1. (3.3) 

and U, is n X ( p - r ) .  

(3-4) 

(3.5) 

linear dependencies of Interest centers on (3 .9 ,  for it displays all of the 
X. The p X ( p  - r )  matrix V, provides an orthonormal basis for the null 
space associated with the columns of X. 

If , then, X possessed p - r exact linear relations among its columns (and 
computers possessed exact arithmetic), there would also be exactly p - r 
zero singular values in D, and the variates involved in each of these 
dependencies would be determined by the nonzero elements of V, in (3.5). 

Needless to say, in most statistical applications, the interrelations among 
the columns of X are not exact dependencies, and computers deal in finite, 
not exact, arithmetic. Exact zeros for the singular values or for the 
elements of V, will therefore rarely, if ever, occur. In general, then, it will 
be difficult to determine the nullity of X (as determined by zero p’s) or 
those columns of X which do not enter into specific linear relationships (as 
determined by the zeros of V,). Nevertheless, it is suggested in the 
foregoing that each near linear dependence among the columns of X will 
manifest itself in a small singular value, a small p. This corresponds to 
Silvey’s notion that the presence of collinearity is revealed by the existence 
of a small eigenvalue. The question now is to determine what is small. 
Although what ultimately is to be judged as large or small must remain an 
empirical question, we are greatly aided in answering this question by the 
notion of a condition number of a matrix X. 

The Condition Number. Intuition is pressed to define a notion of an 
ill-conditioned matrix. One is tempted to say a matrix is ill conditioned if it 
“almost is not of full rank,” or “if its inverse almost does not exist”-two 
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obviously absurd statements. Yet in effect this is what is meant when it is 
said that an ill-conditioned square matrix is one with a small determinant 
(or an ill-conditioned rectangular matrix is one with a small det(XTX)). A 
small determinant, of course, has nothing to do with the invertibility of a 
matrix, for the matrix aI, has as its determinant the number a", which can 
be made arbitrarily small; and yet it is clear that A-' always exists for 
a#O and is readily calculated as a- 'I,,." 

A means for defining the conditioning of a matrix that accords 
somewhat with intuition and avoids the pitfalls of the above techniques is 
afforded by the singular-value decomposition. The motivation behind this 
technique derives from a more meaningful method for determining when 
an inverse of a given matrix "blows up." As we see, it becomes reasonable 
to consider a matrix A to be ill conditioned if the product of its spectral 
norm (defined below) with that of A - '  is large. This measure, called the 
condition number of A, provides summary information on the potential 
difficulties to be encountered in various calculations based on A; the larger 
the condition number, the more ill conditioned the given matrix. In 
particular, as we show below, the condition number provides a measure of 
the potential sensitivity of the solution vector z of the linear system Az=c 
to small changes in the elements of c and A. Furthermore, as we show in 
Appendix 3A, the condition number of a data matrix X provides an upper 
bound on the elasticity (a measure of sensitivity frequently employed in 
economics) of the diagonal elements of the matrix (X'X)-* with respect to 
any element of the data matrix X. 

As an aid to understanding the relevance of the condition number, we 
summarize several of its important properties here in the context of 
solutions to linear systems of equations. We then provide two illuminating 
examples. For a more detailed treatment of what follows, along with the 

"It is also sometimes thought that the ill conditioning of a given matrix can be discovered by 
the presence of small diagonal elements in a triangular factorization of the matrix. This, too, 
is not true. Two examples from Golub and Reinsch (1970) and Wilkinson (1965) illustrate this 
point. Consider 

Each of these matrices can be shown by the singular-value decomposition, in a way described 
later, to be quite ill conditioned even though neither possesses a small diagonal element. 
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proofs and derivations that are omitted here, the reader is referred to 
Forsythe and Moler (1967).j6 

The familiar Euclidean norm of an n-vector z, denoted 1 1 ~ 1 1 ,  is defined as 

T 1/2 Ilzll=(z 2) * 

An important generalization of the Euclidean norm to an n X n matrix A is 
the spectral norm, denoted IlAll and defined as 

llAll= SUP IlAzll. 
llzll = 1 

It is readily shown that llAll= p-, that is, the maximal singular value of 
A. Similarly, if A is square, (IA-'Il=l/pmi,,. Further, like the Euclidean 
norm, the spectral norm can be shown to be a true norm; that is, it 
possesses the following properties: 

1. llMll= JAl. IlAll for all real A and all A. 
2. IlAll =O if and only if A=O, the matrix of zeros. 
3. llA+ BJI < llAll+ IlBll for all rn x n matrices A and B. 

And, in addition, the spectral norm obeys the following relations: 

4. llAzll< llAll- llzll (which follows directly from the definition). 
5 .  llABll< llAll- IlBll for all commensurate A and B. 

We shall now see that the spectral norm is directly relevant to an 
analysis of the conditioning of a linear system of equations Az = c, A n X n 
and nonsingular with solution Z- A-lc. We can ask how much the solution 
vector z would change (62) if there were small changes or perturbations in 
the elements of c or A, denoted Sc and SA. In the event that A is fixed but 
c changes by Sc, we have Sz = A- ' Sc, or 

IlSZll llA--'lI* lISclI* 

llcll IlAll * llzll; 

Further, employing property 4 above to the equation system, we have 

and from multiplying these last two expressions we obtain 

"For even more detailed treatments, see Faddeeva (1959) and Wilkinson (1%5). 
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That is, the magnitude ~ ~ A [ ~ ~ ~ ~ A - ' ~ ~  provides a bound for the relative 
change in the length of the solution vector z that can result from a given 
relative change in the length of c. A similar result holds for perturbations 
in the elements of the matrix A. Here it can be shown that 

Because of its usefulness in this context, the magnitude [ ~ A ~ ~ - ~ ~ A - ' ~ ~  is 
defined to be the condition number of the nonsingular matrix A and is 
denoted as K(A). The preceding expressions show that, K(A) provides a 
measure of the potential sensitivity of the solution of a linear system of 
equations (which includes the least-squares normal equations) to changes 
in the elements of c and A of the linear system. 

Further understanding of the condition number is provided by the 
following two examples. Consider first the matrix A = [ A 1. Clearly, as 

a-1, this matrix tends toward perfect singularity. The singular values of A 
are readily shown" to be (1 k a) and those of A-'  to be (1 2 a)-'. Hence, 
as a+l the product ~ ~ A ~ ~ ~ ~ A - ' ~ ~ = ( l + a ) ( l - a ) - '  explodes; A is ill 
conditioned for a near unity. 

By way of contrast consider the admittedly well-conditioned matrix 

introduced above, B = [ !]. As we have seen, the often-held intuitive 

feeling that B becomes ill conditioned as a 4 0  is incorrect, and this is 
correctly reflected in the condition number, for IlBll = a  and llB1'll =a-' 
and the product llBllIIB-'II=aa-'=l as a+O. In this case, then, the 
product of the spectral norm of B with that of B-' does not blow up, and 
B is well conditioned for all aP0.  

The conditioning of any square matrix A can be summarized, then, by a 
condition number K(A) defined as the product of the maximal singular 
value of A (its spectral norm) and the maximal singular value of A-I. This 
concept is readily extended to a rectangular matrix and can be calculated 
without recourse to an inverse. From the SVD, X=UDV*, it is easily 
shown that the generalized inverse X+ of X is VD+U', where D+ is the 
generalized inverse of D and is simply D with its nonzero diagonal 
elements inverted.I8 Hence the singular values of X+ are merely the 
reciprocals of those of X, and the maximal singular value of X+ is the 
reciprocal of the minimum (nonzero) singular value of X. Thus for any 

"It is readily apparent from the application of the SVD (3.1) to a real symmetric matrix A 
that the singular values of A are also its eigenvalues. 
'*See Golub and Reinsch (1970) or Becker et al. (1974). 



104 DETECTING AND ASSESSING COLLINEARITY 

n X p  matrix X we may define its condition number to be 

K ( X ) =  - >1.  
Pmin 

It is readily shown that the condition number of any matrix with 
orthonormal columns is unity, and hence K(X) reaches its lower bound in 
this cleanest of all possible cases. Furthermore, it is clear that K(X) = K(X+),  
and hence the condition number has the highly desirable property of 
telling us the same story whether we are dealing with X or its (generalized) 
inverse. 

Near Linear Dependencies: How Small is Small? We have seen that for 
each exact linear dependency among the columns of X there is one zero 
singular value. Extending this property to near dependencies leads one to 
suggest, as did Kendall(l957) and Silvey (1969), that the presence of near 
dependencies will result in “small” singular values (or eigenvalues). This 
suggestion does not include a means for determining what small is. The 
preceding discussion of condition numbers, however, does provide a basis 
for assessing smallness. The degree of ill conditioning depends on how 
small the minimum singular value is relative to the maximum singular 
value; that is, pmax provides a yardstick against which smallness can be 
measured. In this connection, it proves useful to define 

- Pmfu q k ‘ y  k =  1,  . . . , p  (3.7) 

to be the kth condition index of the n x p  data matrix X. Of course qk > 1 
for all k, with the lower bound necessarily occurring for some k. The 
largest value for qk is also the condition number of the given matrix. A 
singular value that is small relative to its yardstick pmax, then, has a high 
condition index. 

We may therefore extend the Kendall-Silvey suggestion as follows: there 
are as many near dependencies among the columns of a data matrix X as 
there are high condition indexes (singular values small relative to p,,). 
Two points regarding this extension must be emphasized. 

First, we have not merely redirected the problem from one of 
determining when small is small to one of determining when large is large. 
As we saw above, taken alone, the singular values (or eigenvalues) shed no 
light on the conditioning of a data matrix: equally well-conditioned 
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problems can have arbitrarily low singular ~a1ues.l~ Determining when a 
singular value is small, then, has no relevance to determining the presence 
of a near dependency causing a data matrix to be ill conditioned. We did 
see, however, in our discussion of the condition number, that determining 
when a singular value is small relative to pmax (or, equivalently, 
determining when a condition index is high) is directly related to this 
problem. The meaningfulness of the condition index in this context is 
verified in the empirical studies of Section 3.3.2’ 

Second, even if there is measurable meaning to the term “large” in 
connection with condition indexes, there is no a priori basis for 
determining how large a condition index must be before there is evidence 
of collinear data or, even more importantly, evidence of data so collinear 
that its presence is degrading or harming regression estimates. Just what is 
to be considered a large condition index is a matter to be empirically 
determined, and the experiments of Section 3.3 are aimed at aiding such an 
understanding. There we learn that weak dependencies are associated with 
condition indexes around 5 or 10, whereas moderate to strong relations are 
associated with condition indexes of 30 to 100. 

The use of the condition index, then, extends the Kendall-Silvey 
suggestion in two ways. First, practical experience will allow an answer to 
the question of when small is small (or large is large), and second, the 
simultaneous occurrence of several large q’s keys the simultaneous 
presence of more than one near dependency. 

The Regression-Coefficient Variance Decomposition 

As we have seen, when any one singular value of a data matrix is small 
relative to pmax, we interpret it as indicative of a near dependency (among 
the columns of X) associated with that singular value. In this section, 
reinterpreting and extending the work of Silvey (1969), we show how the 
estimated variance of each regression coefficient may be decomposed into 
a sum of terms each of which is associated with a singular value, thereby 
providing means for determining the extent to which near dependencies 
(having high condition indexes) degrade (become a dominant part of) each 
variance. This decomposition provides the link between the numerical 
analysis of a data matrix X, as embodied in its singular-value 
decomposition, and the quality of the subsequent regression analysis using 

*%e matrix B = a1 employed above provides an excellent example here. 
2%e problem of determining when, as a practical matter, a matrix may be considered rank 
deficient (i.e., when pmin may be considered zero relative to p& is treated in Golub, Klema, 
and Stewart (1976). 
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X as a data matrix, as embodied in the variance-covariance matrix of b?' 
We recall from our discussion in the introduction to this chapter that the 
first of these is an important extension to the use of eigenvalues and the 
second is an important extension to the use of the correlation matrix R and 
the VIFs. 

The variance-covariance matrix of the least-squares estimator 
b==(XTX)-'XTy is, of course, u2(X'X)-', where u2 is the common variance 
of the components of e in the linear model y = w + e .  Using the SVD, 
X = UDV', the variance-covariance matrix of b, V@), may be written as 

V(b) = u2(XTX)-' = U ~ F ' D - ~ V ~ ,  (3.8) 

or, for the kth component of b, 

where the h's are the singular values and Vr(u,). 
Note that (3.9) decomposes var(bk) into a sum of components, each 

associated with one and only one of thep singular values pj (or eigenvalues 
b2). Since these h2 appear in the denominator, other things being equal, 
those components associated with near dependencies-that is, with small r-lj 
-will be large relative to the other components. This suggests, then, that 
an unusually high proportion of the variance of two or more coefficientsU 
concentrated in components associated with the same small singular value 
provides evidence that the corresponding near dependency is causing 
problems. Let us pursue this suggestion. 

Define the k, j th uariance-decomposition proportion as the proportion of 
the variance of the kth regression coefficient associated with the j th 
component of its decomposition in (3.9). These proportions are readily 
calculated as follows. 

First let 

2 P 

/Jj j -  1 
+kj= 7 "j and +kkI 2 +kj k = l ,  ...,p. (3.10) 

2'This link is obviously of the utmost importance, for ill conditioning is a numeric property of 
a data matrix having, in itself, nothing directly to do with least-squares estimation. To have 
meaning in a regression context, then, there must be some means by which the numeric 
information on ill conditioning can be shown to affect directly the quality (variances) of the 
regression estimates. It is this link, for example, that is lacking in the Farrar and Glauber 
techniques described in the introduction to this chapter. 
2z"Two or more," since there must be at least two columns of X invoIved in any dependency. 
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Exhibit 3.2 Variance-decomposition proportions 

Associated 
Singular 
Value v=(b,) var( b 2 1 

Proportions of 

var(b,) ... 

Then, the variance-decomposition proportions are 

(3.11) 

The investigator seeking patterns of high variance-decomposition 
proportions will be aided by a summary table (a ll matrix) in the form of 
Exhibit 3.2.23 

Notice that the T~ make use of the SVD information on near 
dependencies in a way that is directly applicable to examining their effects 
on regression estimates. 

Two Interpretive Considerations 

Section 3.3 reports detailed experiments using the two tools developed 
here, the SVD and its associated Il matrix of variance-decomposition 
proportions. These experiments are designed to provide experience in the 
behavior of these tools when employed for analyzing collinearity, for 
detecting it, and for assessing the damage it has caused to regression 
estimates. Before proceeding to these experiments, however, it is necessary 
to develop two important interpretive properties of the Il matrix of 
variance-decomposition proportions. An example of these two properties 
completes this section. 

Near Collkarity Nullijiid by Near Orthogonality. In the variance 
decomposition given by (3.9), small b, other things equal, lead to large 
components of var(b,). However, not all var(b,) need be adversely 
affected by a small for the vt .  in the numerator may be even smaller. In 

23For convenience in displaying the tables in this book, we have adopted the order of 
subscripts j and k as shown in (3.11). In an efficient computer code effecting these 
diagnostics, it may prove desirable to reverse their order, particularly when p is large. 
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the extreme case where Ukj’o, var(bk) would be unaffected by any near 
dependency among the columns of X that would cause c’j to become even 
very small. As is shown by Belsley and Klema (1974), the ukj = 0 when col- 
umns k and j of X belong to mutually orthogonal partitions. The proof to 
this intuitively plausible statement is lengthy and need not be repeated 
here, for it reflects a fact well known to users of linear regression; namely, 
that the introduction into regression analysis of a variate orthogonal to all 
preceding variates will not change the regression estimates or the true 
standard errors of the coefficients of the preceding ~ariates.’~ Thus, if two 
very nearly collinear variates (near multiples of one another) that are also 
mutually orthogonal to all prior variates are added to a regression 
equation, the estimates of the prior coefficients and their variances must be 
unaffected. In terms of the variance decomposition in (3.9), this situation 
results in at least one (corresponding to the two closely collinear 
variates) which is’very small, and which has no weight in determining any 
of the var(b,), for k corresponding to the initially included variates. 
Clearly, the only way this can occur is for the ukj between the prior variates 
and the additional variates to be zero. Hence we have the result that, in the 
SVD of X=[X, X,] with XfX,=O, it is always possible to findz5 a V matrix 
with the form 

Thus we see that the bad effects of collinearity, resulting in relatively small 
p’s, may be mitigated for some coefficients by near orthogonality, 
resulting in small Vkj7s. 

A t  Least Two Variates Must Be Inuolwd. At first it would seem that the 
concentration of the variance of any one regression coefficient in any one 
of its components could signal that collinearity may be causing 
problems. However, since two or more variates are required to create a 
near dependency, it must be that two or more variances are adversely 

2*This and the following statement refer to the true standard errors or variances taken from 
the diagonal elements of a2(XrX)-’ and not to the estimated standard errors based on s2, 
which will, of course, not necessarily remain unaltered. Of course, all that is needed here is 
the invariance of the diagonal elements of (XTX)- ’  that correspond to the preceding variates. 
*’The careful wording ”it is always possible to find” is required here. As is shown in Belsley 
and Klema (1974), if there are multiple eigenvalues of X, there is a class of V’s in the SVD of 
X, one, but not all, of which takes the partitioned form shown. Such multiplicities are 
therefore of theoretical importance but of little practical consequence since they will occur 
with probability zero for a “real life” economic data matrix. 
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affected by high variance-decomposition proportions associated with a 
single singular value (i.e., a single near dependency). 

To illuminate this, consider a data matrix X with mutually orthogonal 
columns-the best possible experimental data. Our previous result 
immediately implies that the V matrix of the singular-value decomposition 
of X is diagonal, since all uv = 0 for i Zj. Hence the associated ll matrix of 
variance-decomposition proportions must take the following form: 

Associated 
Singular Proportions of 

PI 
P2 

P P  

1 

1 0 
- . .  

0 1 

It is clear that a high proportion of any variance associated with a single 
singular value is hardly indicative of collinearity, for the 
variance-decomposition proportions here are those for an ideally 
conditioned, orthogonal data matrix. Reflecting the fact that two or more 
columns of X must be involved in any near dependency, the degradation 
of a regression estimate due to collinearity can be observed only when a 
singular value 4 is associated with a large proportion of the variance of hvo 
or more coefficients. If, for example, in a case forp =5,  columns 4 and 5 of 
X are highly collinear and all columns are otherwise mutually orthogonal, 
we would expect a variance-decomposition II matrix that has the following 
form: 

Associated 
Singular Proportions of 

Value var(b,) var(b2) var(b3) var(b4) var(b,) 

1 .o 0 0 0 0 
0 1 .o 0 0 0 
0 0 1 .o 0 0 
0 0 0 1 .o 0.9 
0 0 0 0 0.1 

Here p4 plays a large role in both var(b4) and var(b,). 
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r 

0.548 - 0.625 0.556 0.15X lo-" -0.54X 1O-I' 

0.033 0.680 0.733 0.16X -0.73X I0-l' 

- 0.836 - 0.383 0.393 0.22X -0.47X 

-0.64X lo-" -0.22X lo-" 0.91 X lo-" -0.477 0.894 
0.32~10-15 O.IOXIO-15 -0 .46~10-14 -0.894 - 0.441 

i 

An Example. An example of the preceding two interpretive 
considerations is useful at this point. Consider the 6 x 5  data matrix given 
in Exhibit 3.3. 

Exhibit 33 The modified Bauer matrix 

-56 52 - 1 1 2 1  104 
80 18 1-i: -69 21 

66 -72 -5 764 
-12 66 -30 4096 

zs10-14 on the IBM 370/168 in double precision. 
27Gol~b and Reinsch (1970), Becker et al. (1974), and EISPACK 11, (1976). 
"The reader is warned against interpreting the condition indexes from these singular values 
at this point. For reasons explained in Section 3.3 the data should first be scald to have equal 
column lengths, and the resulting singular values subjected to analysis. For the analysis of this 
section, however, scaling is unnecessary. 
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Exhibit 3.4 Variance-decomposition proportions: modified Bauer matrix 

Associated 
Singular 
Value var(bl) var(b3 var(b3) var(b.,) var(b5) 

PI .002 .m .Ooo .Ooo .Ooo 
I 4  .019 .015 .013 .Ooo .Ooo 
P3 .976 .972 .983 .Ooo .Ooo 
I 4  .OOo .OOo .Ooo .Ooo .OOo 
Cls .003 .005 .003 1 .Ooo 1 .OOo 

Proportions of 

A glance at V verfies that the off-diagonal blocks are small-all are of 
the order of lo-', or smaller-and well within the effective zero tolerance 
of the computational precision. Only somewhat less obvious is that one of 
the 6 is zero. Since ps is of the order of lo-'*, it would seem to be nonzero 
relative to the machine tolerance, but, as we have seen, the size of each p. 

well within the machine tolerance of zero. 
The Il matrix of variance-decomposition proportions for this data 

matrix is given in Exhibit 3.4. 
Several of its properties are noteworthy. First, we would expect that the 

small singular value ps associated with the exact linear dependency 
between columns 4 and 5 (C4=0.5C5) would dominate several variances 
-at least those of the two variates involved-and this is seen to be the 
case; the component associated with ps accounts for virtually all the 
variance of both b, and b,. 

Second, we would expect that the orthogonality of the first three 
columns of X to the two involved in the linear dependency would isolate 
their estimated coefficients from the deleterious effects of collinearity. 
Indeed, the components of these three variances associated with p5 are 
very small, .003, 305, and .003, re~pectively?~ This point serves also to 
exemplify that the analysis suggested here aids the user in determining not 
only which regression estimates are degraded by the presence of 
collinearity, but also which are not adversely affected and may therefore 
be salvaged. 

Third, a somewhat unexpected result is apparent. The singular value pJ 
accounts for 97% or more of var(b,), var(bJ, and var(b,). This suggests 
that a second near dependency is present in X, one associated with p3, that 
involves the first three columns. This, in fact, turns out to be the case. We 

has meaning only relative to pmax, and in this case ps/pmax=q;l < 10- Id , 

*%at these components are nonzero at all is due only to the finite arithmetic of the machine. 
In theory these components are an undefined ratio of zeros that would be defined to be zero 
for this case. 
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reexamine this example in Section 3.4, once we have gained further 
experience in interpreting the magnitudes of condition indexes and 
variance-decomposition proportions. 

Fourth, to the extent that there are two separate near dependencies in X 
(one among the first three columns, one between the last two), the IT 
matrix provides a means for determining which variates are involved in 
which near dependency. This property of the analytic framework presented 
here is important, because it is not true of alternative means of analyzing 
near dependencies among the columns of X. One could hope, for example, 
to investigate such near dependencies by regressing selected columns of X 
on other columns or to employ partial correlations. But to do this in 
anything other than a shotgun manner would require prior knowledge of 
which columns of X would be best preselected to regress on the others, and 
to do so when there are several coexisting near dependencies would prove 
a temble burden. Typically, the user of linear regression, when presented 
with a specific data matrix, will have no rational means for preselecting 
offending variates. Fortunately the problem can be avoided entirely 
through the use of the n matrix, which displays all such near 
dependencies, treating all columns of X symmetrically and requiring no 
prior information on the numbers of near dependencies or their 
composition. 

A Suggested Diagnostic Procedure 

The foregoing discussion suggests a practical procedure for (1) testing for 
the presence of one or more near dependencies among the columns of a 
data matrix, and (2) assessing the degree to which each such dependency 
potentially degrades the regression estimates based on that data matrix. 

Tlre Diagnostic Procedure. It is suggested that an appropriate means for 
diagnosing degrading collinearity is the following double condition: 

I *  A singular value judged to have a high condition index, and which is 

2* High variance-decomposition proportions for two or more estimated 
associated with 

regression coefficient variances. 

The number of condition indexes deemed large (say, greater than 30) in 1 * 
identifies the number of near dependencies among the columns of the data 
matrix X, and the magnitudes of these high condition indexes provide a 
measure of their relative “tightness.” Furthermore, the determination in 2* 
of large variance-decomposition proportions (say, greater than .5) 
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associated with each high condition index identifies those variates that are 
involved in the corresponding near dependency, and the magnitude of 
these proportions in conjunction with the high condition index provides a 
measure of the degree to which the corresponding regression estimate has 
been degraded by the presence of collinearity ?’ 

Examining ?he Near Dependencies. Once the variates involved in each 
near dependency have been identified by their high variance-decomposition 
proportions, the near dependency itself can be examined-for example, by 
regressing one of the variates involved on the others. Another procedure is 
suggested by (3.5). Since V, in (3.5) has rank (p - r), we may partition X 
and V, to obtain 

[ x 2 1  v21 =x1v21+x2v22=o, [ v22 1 (3.12) 

where V,, is chosen nonsingular and square. Hence the dependencies 
among the columns of X are displayed as 

X, = -X,V,V;’=X,C where Gr -V2,Vi1. (3.13) 

The elements of G, calculated directly from those of V, provide alternative 
estimates of the linear relation between those variates in X, and those in 
X,. Of course, (3.12) holds exactly only in the event that the linear 
dependencies of X are exact. It is also straightforward to show in this event 
that (3.13) provides identical estimates to those given by OLS. It seems 
reasonable, therefore, because of the relative simplicity involved, to employ 
OLS as the descriptive mechanism (auxiliary regressions) for displaying the 
linear dependencies once the variates involved are discerned in 2*. 

It is important to reiterate the point made earlier that OLS applied to 
columns of the X matrix does not and cannot substitute for the diagnostic 
procedure suggested above, for OLS can be rationally applied only after it 
has first been determined how many dependencies there are among the 
columns of X and which variates are involved. The diagnostic procedure 
suggested here requires no prior knowledge of the numbers of near 
dependencies involved or of the variates involved in each; it discovers this 
information-treating all columns of X symmetrically and requiring that 
none be chosen to become the “dependent” variable, as is required by OLS 
applied to columns of the X matrix. 

30Section 3.3 is devoted to experiments that help us put meaning to “high” and “large,” two 
terms whose meaning in this context can only be determined empirically and which 
necessarily must be used loosely here. 
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What is ‘‘bge’’ or “high”? Just what constitutes a “large” condition 
index or a “high” variance-decomposition proportion are matters that can 
only be decided empirically. We turn in Section 3.3 to a set of systematic 
experiments designed to shed light on this matter. To provide a meaningful 
background against which to interpret those empirical results, it is first 
useful to give a more specific idea of what it means for collinearity to harm 
or to degrade a regression estimate. 

The I11 Effects of Collinearity 

The ill effects that result from regression based on collinear data are two: 
one computational, one statistical. 

Computational Problems. When we introduced the condition number 
earlier in this chapter, we showed that it provides a measure of the 
potential sensitivity of a solution of a linear equation to changes in the 
elements of the system. Computationally, this means that solutions to a set 
of least-squares normal equations (or, in general, a solution to a system of 
linear equations) contain a number of digits whose meaningfulness is 
limited by the conditioning of the data in a manner directly related to the 
condition number?’ Indeed, the condition number gives a multiplication 
factor by which imprecision in the data can work its way through to 
imprecision in the solution to a linear system of equations. Somewhat 
loosely, if data are known to d significant digits, and the condition number 
of the matrix A of a linear system Az-c is of order of magnitude lo‘, then 
a small change in the data in its last place can (but need not) affect the 
solution z = A - k  in the (d-r)th place. Thus, if GNP data are trusted to 
four digits, and the condition number of ( X T X )  is Id, then a shift in the 
fifth place of GNP (which, since only the first four digits count, results in 
what must be considered an observutionully equivalent data matrix), could 
affect the least-squares solution in its second (5 - 3) significant digit. Only 
the first digit is therefore trustworthy, the others potentially being 
worthless, arbitrarily alterable by modifications in X that do not affect the 
degree of accuracy to which the data are known. Needless to say, had the 
condition number of XTX been 10‘‘ or 16 in this case, one could trust none 
of c’s significant digits. This computational problem in the calculation of 
least-squares estimates may be minimized32 but never removed. The 

”A more detailed discussion of this topic is contained in Belsley and Klema (1974). 
32The condition number of the moment matrix XrX is the square of that of X. This is seen 
from the SVD of X-UDVr. Hence XrX=vdVr, and. by definition, this must also be the 
SVD of XrX. Clearly. then, @X) = A/&,, = ~‘0. Hence, any ill conditioning of X can 
be greatly compounded in its ill effects on a least-squares solution calculated as 
b=(XrX)-’Xry. Procedures for calculating b that do not require forming XrX or its inverse 
exist, however. See Golub (1969) or Belsley (1974). 
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intuitive distrust held by users of least squares of estimates based on 
ill-conditioned data is therefore justified. A discussion of this topic in the 
context of the Longley (1967) data is to be found in Beaton, Rubin, and 
Barone (1978). 

Statistical Problems. Statistically, as is well known, the problem 
introduced by the presence of collinearity in a data matrix is the decreased 
precision with which statistical estimates ~ondi t ional~~ upon those data 
may be known; that is, collinearity causes the conditional variances to be 
high (see Appendix 3D). This problem reflects the fact that when data are 
ill conditioned, some data series are nearly linear combinations of others 
and hence add very little new, independent information from which 
additional statistical information may be gleaned. 

Needless to say, inflated variances are quite harmful to the use of 
regression as a basis for hypothesis testing, estimation, and forecasting. All 
users of linear regression have had the suspicion that an important test of 
significance has been rendered inconclusive through a needlessly high error 
variance induced by collinear data, or that a confidence interval or 
forecast interval is uselessly large, reflecting the lack of properly 
conditioned data from which appropriately refined intervals could 
conceivably have been estimated. 

Both of the above ill effects of collinear data are most directly removed 
through the introduction of new and well-conditioned data.34 In many 
applications, however, new data are either unavailable, or available but 
unable to be acquired except at great cost in time and effort. The 
usefulness of having diagnostic tools that signal the presence of collinearity 
and even isolate the variates involved is therefore apparent, for with them 
the investigator can at least determine whether the effort to correct for 
collinearity (collect new data or apply Bayesian techniques) is potentially 
worthwhile, and perhaps he can learn a great deal more. But just how 
much can be learned? To what extent can diagnostics tell the degree to 
which collinearity has caused harm? 

Harmful Versus Degrading Colheanty. At the outset it should be noted 
that not all collinearity need be harmful. We have already seen, in the 
example of the Bauer matrix given in Exhibit 3.3, that near orthogonality 

'Vo avoid any possible confusion it is worth highlighting that this is the statistical use of the 
word conditional, having nothing directly to do with (and thus to be contrasted with) the 
numerical-analytic notion of ill-conditioned data. 
341n addition, this statistical problem (but not necessarily the computational problem) can be 
alleviated by the introduction of Bayesian prior information. See Zellner (1971), Leamer 
(1973) and Section 4.1. 
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can isolate some regression estimates from the presence of even extreme 
collinearity. Also, it is well known [Theil (1971), pp. 152-1541 that specific 
linear combinations of estimated regression coefficients may well be 
determined even if the individual coefficients are n0t.3~ If by chance, the 
investigator’s interest centers only on unaffected parameter estimates or on 
well-determined linear combinations of the estimated coefficients, clearly 
no problem exists.36 The estimate of the constant term in Exhibit 3.14 or 
of & in Exhibit 3.le, provides a simple example of this. In a less extreme, 
and therefore a practically more useful example, we recall from (3.9) that 
the estimated variance of the kth regression coefficient, var(b,), is 
s2Zju$/p,2, where s2 is the estimated error variance. If s2 is sufficiently 
small, it may be that particular var(b,)’s are small enough for specific 
testing purposes in spite of large components in the u$./b2 terms resulting 
from near dependencies. One can see from Exhibit 3.lc that, if the height 
of the cloud, determined by s2, is made small relative to its “width,” the 
regression plane will become better defined even though the conditioning 
of the X data remains unchanged. Thus, for example, if an investigator is 
only interested in whether a given coefficient is significantly positive, and 
is able, even in the presence of collinearity, to accept that hypothesis on 
the basis of the relevant t-test, then collinearity has caused no problem. Of 
course, the resulting forecasts or point estimates may have wider 
confidence intervals than would be needed to satisfy a more ambitious 
researcher, but for the limited purpose of the test of significance intitially 
proposed, collinearity has caused no practical harm (see Appendix 3D). 
These cases serve to exemplify the pleasantly pragmatic philosophy that 
collinearity doesn’t hurt so long as it doesn’t bite. 

Providing evidence that collinearity has actually harmed estimation, 
however, is significantly more difficult. To do this, one must show, for 
example, that a prediction interval that is too wide for a given purpose 
could be appropriately narrowed if made statistically conditional on better 
conditioned data (or that a confidence interval could be appropriately 
narrowed, or the computational precision of a point estimator 
appropriately increased). To date no procedure provides such information. 
If, however, the researcher were provided with information that (1) there 
are strong near dependencies among the data, so that collinearity is 

)’The effect on the collinearity diagnostics of linear transformations of the data matrix X 
(-ZG, for G nonsingular) or, equivalently, of reparameterizations of the model y = w + c  
into y=Za+c-(XC-*)Cfl+c is treated in Appendix 3B. 
%No problem exists, that is, as long as a regression algorithm is used that does not blow up in 
the presence of highly muinear data. Standard routines based on solving b = ( X r X ) -  ‘X*y are 
quite sensitive to ill-conditioned X. This problem is greatly overcome by regression routines 
based on the SVD of X, or a QR decomposition [see Golub (1969) and Belsley (1974)]. 
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potentially a problem, and (2)  that variances of parameters (or confidence 
intervals based on them) that are of interest to him have a large proportion 
of their magnitude associated with the presence of the collinear relation(s), 
so that collinearity is potentially harmful, then he would be a long way 
toward deciding whether the costs of corrective action were warranted. In 
addition, such information would help to indicate when variances of 
interest were not being adversely affected and so could be relied on 
without further action. The above information is, of course, precisely that 
provided by the condition indexes and high variance-decomposition 
proportions used in the two-pronged diagnostic procedure suggested 
earlier. Thus we say that when this joint condition has been met, the 
affected regression coefficients have been degraded (but not necessarily 
harmed) by the presence of collinearity, degraded in the sense that the 
magnitude of the estimated variance is being determined primarily by the 
presence of a collinear relation. Therefore, there is a presumption that 
confidence intervals, prediction intervals, and point estimates based on this 
estimate could be refined, if need be, by introducing better conditioned 
data. A practical example of the distinction between degrading and 
harmful collinearity is provided by the data for an equation from the IBM 
econometric model analyzed in Section 3.4. 

At what point do estimates become degraded? Future experience may 
provide a better answer to this question, but for the experiments of the 
next section we take as a beginning rule of thumb that estimates are 
degraded when two or more variances have at least one-half of their 
magnitude associated with a single, large singular value. 

3 3  EXPERIMENTAL EXPERIENCE 

The test for the presence of degrading collinearity suggested at the end of 
the prior section requires the joint occurrence of high variance- 
decomposition proportions for two or more coefficients associated with a 
single singular value having a “high” condition index. Knowledge of what 
constitutes a high condition index must be empirically determined, and it 
is the purpose of this section to describe a set of experiments that have 
been designed to provide such experience. 

The Experimental Procedure 

Each of the three experiments reported below examines the behavior of the 
singular values and variance-decomposition proportions of a series of data 
matrices that are made to become systematically more and more ill 
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conditioned by the presence of one or more near dependencies constructed 
to become more nearly exact. 

Each experiment begins with a “basic” data set X of n observations, on 
p ,  variates. The number of observations, n, which is unimportant, is around 
24-27, andp, is 3-5, depending on the experiment. In each case the basic 
data series are chosen either as actual economic time series (not centered) 
or as constructs that are generated randomly but having similar means and 
variances as actual economic time series. 

These basic data series are used to construct additional collinear data 
series displaying increasingly tighter linear dependencies with the basic 
series as follows. Let c be ap,-vector of constants and construct 

wi = Xc + ei, (3.14) 

where the components of ei are generated i.i.d. normal with mean zero and 
variance u,? = 10-5ic, s i c  EvarGc), i -0,. . . ,4. Each wi then is, by 
construction, a known linear combination, Xc, of the basic data series plus 
a zero-mean random error term, ei, whose variance becomes smaller and 
smaller (that is, the dependency becomes tighter and tighter) with 
increasing i. In the i - 0  case the variance in wi due to the error term ei is 
seen to be equal to the variance in wi due to the systematic part Xc. In this 
case, the imposed linear dependency is weak. The sample correlation 
between wi and X c  in these cases tends toward .4 to .6. By the time i=4, 
however, only 1/1O,OOO of wits variance is due to additive noise, and the 
dependency between wi and Xc is tight, displaying correlations very close 
to unity. A set of data matrices that become systematically more ill 
conditioned may therefore be constructed by augmenting the basic data 
matrix X with each wi, that is, by constructing the set 

X{ i )  = [ X wi]  i = 0,. . . ,4. (3.15) 

The experiments are readily extended to the analysis of matrices 
possessing two or more simultaneous near dependencies by the addition of 
more data series similarly constructed from the basic series. Thus, for a 
given p,-vector b, let 

zj = Xb + uj, (3.16) 

where the components of uj are i.i.d normal with mean zero and variance 
92 = lO-js&, j = 0, . . . ,4.  Experimental matrices with two linear 
dependencies of varying strengths are constructed as 

~ { i , j } = [ ~ w ~ z , ]  i , j = O  ,..., 4. (3.17) 



3.3 EXPERIMENTAL EXPERIENCE 119 

In the third experiment that follows, three simultaneous dependencies are 
examined. 

Tlre Choice of the X’s. As mentioned, the data series chosen for the 
basic matrices X were either actual economic time series or variates 
constructed to have similar means and variances as actual economic time 
series. The principle of selection was to provide a basic data matrix that 
was reasonably well conditioned so that all significant ill conditioning 
could be controlled through the introduced dependencies, such as (3. 14)?7 

The various series of matrices that comprise any one experiment all have 
the same basic data matrix and differ only in the constructed near 
dependencies used to augment them. Within any one such series, the 
augmenting near dependencies become systematically tighter with 
increased i or j, and it is in this sense that we can speak meaningfully of 
what happens to condition indexes and variance-decomposition 
proportions as the data matrix becomes “more ill conditioned,” or “more 
nearly singular,” or “the near dependencies get tighter,” or “the degree of 
collinearity increases.” 

Experimental Shortcomings. The experiments given here, while not 
Monte Carlo  experiment^,^' are nevertheless subject to a similar weakness; 
namely, the results depend on the specific experimental matrices chosen 
and cannot be generalized to different situations with complete assurance. 
It has been attempted, therefore, within the necessarily small number of 
experiments reported here, to choose basic data matrices using data series 
and combinations of data series representing as wide a variety of economic 
circumstances as possible. Needless to say, not all meaningful cases can be 
considered, and the reader will no doubt think of cases he would rather 
have seen analyzed. The results also depend on the particular sample 
realizations that occur for the various ei and uj series that are used to 
generate the dependencies, such as (3.14) or (3.16). However, the cases 
offered here are sufficiently varied that any systematic patterns that 
emerge from them are worthy of being reported and will certainly provide 
a good starting point for any refinements that subsequent experience may 
suggest. In fact we find the stability of the results across all cases to be 
very reassuring. 

37As we see in experiment 2, this objective is only partially achieved, leading to an unexpected 
set of dependencies that nevertheless provides a further successful test of the usefulness of this 
analytical procedure. 
38No attempt is made here to infer any statistical properties through repeated samplings. 
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The Need for Column Scaling. Data matrices that differ from one 
another only by the scale assigned the columns (matrices of the form XB 
where B is a nonsingular diagonal matrix) represent essentially equivalent 
model structures; it does not matter, for example, whether one specifies an 
econometric model in dollars, cents, or billions of dollars. Such scale 
changes do, however, affect the numerical properties of the data matrix 
and result in very different singular-value decompositions and condition 
indexesP9 Without further adjustment, then, we have a situation in which 
near dependencies among structurally equivalent economic variates 
(differing only in the units assigned them) can result in greatly differing 
condition indexes. Clearly the condition indexes can provide no stable 
information to the user of linear regression on the degree of collinearity 
among the X variates in such a case. It is necessary, therefore, to 
standardize the data matrices corresponding to equivalent model structures 
in a way that makes comparisons of condition indexes meaningful. A 
natural standardization process is to scale each column to have equal 
length. This scaling is natural because it transforms a data matrix X with 
mutually orthogonal columns, the standard of ideal data, into a matrix 
whose condition indexes would be all unity, the smallest (and therefore 
most ideal) condition indexes possible. Any other scaling would fail to 
reflect this desirable property.40 As a matter of practice, we effect equal 
column lengths by scaling each column of X to have unit length4’ A full 
justification of such column equilibration is lengthy and is deferred to 
Appendix 3B. 

In all the experiments that follow, then, the data are scaled to have unit 
column length before being subjected to an analysis of their condition 
indexes and variance-decomposition proportions. In the event that the 
linear relations between the variates are displayed through auxiliary 
regressions, the regression coefficients have been rescaled to their original 
units. 

39Scale changes do not, however, affect the presence of exact linear dependencies among the 
columns of X, since for any nonsingular matrix B there exists a nonzero c such that Xc=O if 
and only if [XBI[B- ‘el SE RE== 0, where a = XB and E - B- ‘c. For a more general discussion of 
the effects of column scaling, see Appendix 3B. 
%urthermore an important converse is true with column-equilibrated data; namely, when all 
condition indexes of a data matrix are equal to unity, the columns are mutually orthogonal. 
This is readily proved by noting that all condition indexes equal to 1 implies D=M, for some 
A. Hence, in the SVD of X, we have X=UDVT=AUVT, or X f X = h 2 W T W T = h 2 1 ,  due to 
the orthogonality of U and V. This result is important, because it rules out the possibility that 
several high variance-decomposition proportions could be associated with a very low (near 
unit) condition index. 
“This scaling is similar to that used to transform the cross products matrix X r X  into a 
correlation matrix, except that the “mean zero” property is not needed, and, indeed, would be 
inappropriate in the event that X contains a constant column. 
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The Expenmentar Report. Selected tables displaying variance-decom- 
position proportions (II matrices) and condition indexes are reported for 
each experiment in order to show how these two principal pieces of 
information change as the near dependencies get tighter. 

Additional statistics, such as the simple correlations of the contrived 
dependencies and theirR ”s as measured from relevant regressions, are also 
reported to provide a link between the magnitudes of condition indexes 
and these more familiar notions. It cannot be stated too strongly, however, 
that these additional statistics cannot substitute for information provided 
by the variance-decomposition proportions and the condition indexes. In 
the experiments that follow, we know a priori which variates are involved 
in which relations and what the generating constants (the c in (3.14)) are. It 
is therefore possible to compute simple correlations between wi and Xc and 
run regressions of wi on X. In practice, of course, c is unknown and one 
does not know which elements in the data matrix are involved in which 
dependencies. These auxiliary statistics are, therefore, not available to the 
investigator as independent analytic or diagnostic tools. However, one can 
learn from the variance-decomposition proportions which variates are 
involved in which relationships, and regressions may then be run among 
these variates to display the dependency. Furthermore, the t-statistics that 
result from these regressions can be used in the standard way for providing 
additional descriptive evidence of the “significance” of each variate in the 
specific linear dependency. Once the analysis by condition indexes and 
variance-decomposition proportions has been conducted, then, it can 
suggest useful auxiliary regressions as a means of exhibiting the near 
dependencies; but regression by itself, particularly if there are two or more 
simultaneous near dependencies, cannot provide similar information!2 

The Individual Experiments 

Three experiments are conducted, each using a separate series of data 
matrices designed to represent different types of economic data and 
different types of collinearity. Thus “levels” data (manufacturing sales), 
“trended” data (GNP), “rate of change” data (inventory investment), and 
“rates” data (unemployment) are all represented. Similarly, the types of 
collinearity generated include simple relations between two variates, 
relations involving more than two variates, simultaneous near 
dependencies, and dependencies among variates with essential scaling 
problems. The different cases of relations involving more than two variates 

42Although, a costly and time-consuming set of tests based on partial correlations or block 
regressions on the columns of the data matrix encompassing all possible combinations could 
perhaps be of some value. 
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have been chosen to involve different mixes of the different types of 
economic variables listed above. In each case the dependencies are 
generated from the unscaled (natural) economic data, and hence the 
various test data sets represent as closely as possible economic data with 
natural near dependencies. 

Experiment I :  The X Series. The basic data set employed here is 

X r  [ MFGS, *IVM,MVI4’ 

where MFGS is manufacturers’ shipments, total 
*IVM is manufacturers’ inventories, total 
MV is manufacturers’ unfilled orders, total, 

and each series is in millions of dollars, annual 1947-1970 (n=24). This 
basic data set provides the type of series that would be relevant, for 
example, to an econometric study of inventory investment.“ 
Two sets of additional dependency series are generated from X as 

follows: 
(3.18~) wi = MV + vi, i = 0,. . . ,4, 

with vi generated normal with mean zero and variance -covariance matrix 
u?I= lO-5hVI [denoted v i o N ( O ,  lO-’sLI)], s h  being the sample 
variance of the MV series, and 

zj = 0.8MFGS + 0.2*IVM +vj, (3.186) 

v j~N(O, lo-~s~I) ,  

s;” being the sample variance of 0.8MFGS + 0.2*IVM. 

three sequences of matrices: 
The wi and zj series were used to augment the basic data set to produce 

XI { i )  EE [ X wi], 

~ 2 {  j }  = [ x z,], 

i = 0,. . . ,4, 

j = 0,. . . ,4, 

i ,  j = 0,. . . ,4, 

(3.19) 

x3{ i ,  j >  = [ x wi z j ] ,  

each of which is subjected to analysis. 

A before a series name indicates a dummy series was used having the same mean and 
variance as the given series, but generated to provide a well-conditioned basic data matrix. 
%ee, for example, Belsley (1%9). 

43 



3.3 EXPERIMENTAL EXPERIENCE 123 

The dependency (3.18~) is a commonly encountered simple relation 
between two variates. Unlike more complex relations, it is a dependency 
whose presence can be discovered through examination of the simple 
correlation matrix of the columns of the X1{ i} or X3{ i, j } .  Its inclusion, 
therefore, allows us to learn how condition indexes and simple correlations 
compare with one another. 

The dependency (3.18b) involves three variates, and hence would not 
generally be discovered through an analysis of the simple correlation 
matrix. Equation (3.18b) was designed to present no difficult scaling 
problems; that is, the two basic data series MFGS and *IVM have roughly 
similar magnitudes and variations, and the coefficients (0.8 and 0.2) are of 
the same order of magnitude. No one variate, therefore, dominates the 
linear dependency, masking the effects of others. This situation should 
allow both the identification of the variates involved and the estimation of 
the relation among them to be accomplished with relative ease. 

Experiment 2: lk Y Series. The basic data set employed here is 

YE [ *GNP58, *GAVM, *LHTUR, *GV58], 

is net corporate dividend payments, 

is annual change in total inventories, 1958 dollars. 

where GNP58 is GNP in 1958 dollars, 
GAVM 
LHTUR is unemployment rate, 
GV58 

Each basic series has been constructed from the above series to have 
similar means and variances, but has been chosen to produce a reasonably 
well-conditioned Y matrix. Data are annual, 1948-1974 (n-27). The 
variates included here, then, represent “levels” variates, (*GNP58), rates of 
change (*GAVM), and “rates” (*LHTUR). 

Three additional dependency series are constructed as ( i j ,  k = 0,. . . ,4) 

ui = *GNP58 + *GAVM + vi, 

Vit*N(O, 10-5~1), (3.20~) 

s;’ = var( +GNP58 + *GAVM), 

wj = 0.1 *GNP58 + *GAVM + vj, 

Vj*N( 0,lO -jsitI), 

s:=var(O.l*GNP58+ *GAVM), 

zk=*GV58+vk, 

VkHN(O, 1 o-ks?G,,,I). 

(3.20b) 

(3.20~) 
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These data were used to augment Y to produce four series of test matrices: 

Yl{i} = [Y ui ] ,  i =0, . . . ,4, 

~ 2 { j }  = [ Y W ~ ] ,  j=O ,..., 4, 

Y4{i,k} = [Y uizk], i ,k=O ,..., 4. 

(3.21) 
Y3{k} = [ Y  2 4 ,  k=O ,..., 4, 

Dependency (3.20a) presents a relation among three variates with an 
essential scaling problem; namely, in the units of the basic data, the 
variation introduced by GNP58 is less than 1% that introduced by GAVM. 
The inclusion of GNP58 is therefore dominated by GAVM, and its effects 
should be somewhat masked and difficult to discern. Dependency (3.206) 
is of a similar nature except that the scaling problem has been made more 
extreme. These are “essential” scaling problems in that their effects cannot 
be undone through simple column scaling. Dependency (3.20~) is a simple 
relation between two variates, except in this case the variate is a rate of 
change, exhibiting frequent shifts in sign. 

Experiment 3: Ttre Z Series. The basic data matrix here is an expanded 
version of that in the previous experiment: 

Z= [ *GNP58,*GAVM,*LHTUR, DUM1, DUMZ], 

where DUMl is generated to be similar to GV58, and D U M  similar to 
GNP58, except that DUMl and DUM2 are generated to have very low 
intercorrelation with the first three variates. This configuration allows 
examination of the case described in Section 3.2 when some variates are 
isolated by near orthogonality from dependencies among others. 

The additional dependency series are (i,j, k, m = 0,. . . ,4): 

ui = DUM 1 + ei, 
(3.22~) eiwN(O, 10- I I), 

e,++N(o, lo-’s&UM2- DUMlI), (3.226) 

e&t*N(o, 10-ks$GNP58 + I.5*LHTURr)r (3.22~) 

10-mstGAVM+0.7*DUM21), (3.22d) 

v,=DUM2- DUMl+e,, 

wk=3*GNP58 + 1.5*LHTUR+ek, 

z, = *GAVM -t 0.7*DUM2 +em, 
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These data are used to augment Z to produce seven series of test 
ma trices : 

(3.23) 
z2{j}  = [Zv,], Z6{i,m} [Zuizm], 

~ 3 ( k )  E [ z w ~ ] ,  Z7{i,k,m} = [ZU~W~Z, , , ] .  

Z4{m} = [ZZm], 

Each of the first three dependencies (3.22~-c) possesses essential scaling 
problems, with DUM2, 3*GNP58, and *GAVM, respectively, being the 
dominant terms. The problem is extreme in the relation of DUM2 and 
DUMl, where DUMl introduces much less than 0.1% of the total 
variation, and difficult in the other cases. The relation defined by (3.226) is 
isolated by near orthogonality from the one defined by (3.22c), and these 
relations occur separately in the 22 and 2 3  test series and together in the 
25 series. Relation (3.22d) bridges the two subseries. 

The Results 

Space limitations obviously prevent reporting the full set of experimental 
results. Fortunately, after reporting experiment 1 in some detail, it is 
possible to select samples of output from experiments 2 and 3 that convey 
what generalizations are possible. Even so, the experimental report that 
follows is necessarily lengthy and may be difficult to digest fully on a first 
reading. With the exception of the concept of the dominant dependency, 
however, the essential behavior of the diagnostic procedure can be 
appreciated from the results of experiment 1, that on the X series, alone. 
The reader may wish, therefore, to skip experiments 2 and 3 on a first 
reading, and, after reading experiment 1, go directly to the summary in 
Section 3.4 beginning on p. 152. Ultimately, however, experiments 2 and 3 
(and especially those surrounding data set Y3) are necessary to introduce 
the important concept of the dominant dependency and other refinements 
in interpretation and to demonstrate the empirical stability of the 
procedure in a wider set of situations. 

Experiment I :  ;nie X Matrices. X I :  Let us begin with the simplest 
series of experimental matrices, the X 1 { i } ,  i = 0,. . . ,4. Here the data series 
of column 4, which we denote as C4, is related to that of column 3, C3, by 
(3.18a), that is, C4 = C3 +e,, i = O , .  . . ,4; and this is the only contrived 
dependency among the four columns of Xi .  We would therefore expect 



Exhibit 3.5a Variance-decomposition proportions and condition indexes.* 
XI series. One constructed near dependency (3. I8a): C4 = C3 + e, 

Associated 
Singular Condition 
Value var(bl) var(b2) var(b,) var(b4) Index, q 

x1w 
PI 
P2 

P3 

1 4  

Pl 

P2 

1 3  

P4 

c 1 I  
PI 
P3 

P4 

PI 
8 2  
P3 
P4 

P1 
P2 

Pa 
Pa 

.005 

.044 

.906 

.045 

.005 

.094 
399 
.002 

.005 

.086 

.901 

.007 

.005 

.078 
3 5 5  
.061 

.005 

.084 

.906 

.004 

.012 .002 

.799 .004 

.002 .04 1 

.187 .954 

Xl(') 

.011 .001 
334 .003 
.117 .048 
.038 .948 

x1w 
.012 .Ooo 
389 .Ooo 
.083 .@I3 
.016 .997 

X1{3) 

.012 .Ooo 

.903 .Ooo 

.079 .Ooo 

.006 999 

Xl(4) 

.010 .Ooo 

.792 .OOo 

.070 .Ooo 

.003 1 

.032 5 

.238 8 

.727 14 

.001 1 

.002 5 

.035 9 

.962 27 

.Ooo 1 

.Ooo 5 

.003 9 

.997 95 

.Ooo 1 

.ooo 5 

.Ooo 9 

.999 461 

.Ooo 1 

.Ooo 5 

.OOo 9 
.I27 1 .Ooo 1 .Ooo 976 . _  

*Columns may not add to unity due to rounding error. 
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one ‘‘high’’ condition index and a large proportion of var(b,) and var(b,) 
associated with it. Exhibit 3 . 5 ~  presents the variance-decomposition 
proportions and the condition indexes for this series as i goes from 0 to 4. 

A glance at these results confirms our expectations. In each case there is 
a highest condition index that accounts for a high proportion of variance 
for two or more of the coefficients, and these are var(b,) and var(b,). 
Furthermore, the pattern is observable in the weakest case XI (01, and 
becomes increasingly clearer as the near dependency becomes tighter: all 
condition indexes save one remain virtually unchanged while the condition 
index corresponding to the imposed dependency increases strongly with 
each jump in i ;  the variance-decomposition proportions of the two 
“involved” variates C3 and C4 become larger and larger, eventually 
becoming unity. 

To help interpret the condition indexes in Exhibit 3.54 we present in 
Exhibit 3.5b the simple correlation between C3 and C4 for each of the 
X1{ i ]  matrices and also the multiple regressions of C4 on Cl, C2, and C3. 

In addition to observing the general pattern that was expected, the 
following points are noteworthy: 

1. The relation between C3 and C4 of XI(O}, having a simple correlation 
of .766 and a regression R 2  of .6229 (not very high in comparison with 
simple correlations present in most real-life economic data matrices), 

Exhibit 3.56 Regression of C4 on C1, C2, and C3.* 
Data 
Matrix r(C3,C4) c1 c 2  c 3  R2 

.766 0.3905 
[1.11] 

[0.97] 

X l W  

Xl{l> .93 1 0.1481 

X l W  .995 - 0.0076 
[-0.171 

X1{3} .999 0.01 1 1  

X1{4) 1 .Ooo -0.0012 

[ 1.221 

[ - 0.28) 

-0.1354 
[0.91] 

0.0925 
[ 1.381 

0.0142 
[0.72] 

0.0015 
[0.37] 

0.0033 
[ 1.761 

0.9380 .6229 
[4.76] 

0.8852 3765 
[10.10] 

0.9982 .9893 
[38.80] 

[ 1 88.961 

[400.56] 

0.9901 .9996 

0.9976 .9999 

*The figures in square brackets are t ’s.  Since interest in these results centers on 
“significance,” it seems proper to show t ’ s  rather than estimated standard 
deviations. 
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shows itself in a condition number of 14 and is sufficiently high to account 
for large proportions (.95 and .73) of the variance of the affected 
coefficients, var(b,) and var(6,). 
2. Also at this lowest level ( i = O ) ,  the diagnostic test proposed at the end 
of Section 3.2 does correctly indicate the existence of the one near 
dependency and correctly key the variates involved. 
3. In light of point 2 above, the regressions of Exhibit 3.56 that were run 
for comparative purposes are also those that would be suggested by the 
results for displaying the near dependencies. Exhibit 3.56 verifies that even 
in the X1{0} case with an TJ of 14, the proper relation among the columns 
of X1{0} is being clearly observed. 
4. With each increase in i (corresponding to a tenfold reduction in the 
variance of the noise in the near dependency), the simple correlations and 
R2’s increase one step, roughly adding another 9, in the series .9, 99, .999 
and so on, and the condition index increases roughly along the progression 
10, 30, 100, 300, IOOO, a pattern we consistently observe in future 
examples:’ This relation suggests a means for comparing the order of 
magnitude of the “tightness” of a near dependency. 
5. Also with each increase in i, the variance-decomposition proportion of 
the affected coefficients associated with the highest 7)  increases markedly 
(again roughly adding one more 9 with each step). 
6. As noted in Section 3.2, it is the joint condition of high 
variance-decomposition proportions for two or more coefficients 
associated with a high condition index that signals the presence of 
degrading collinearity. In the case of XI (0}, the second highest condition 
index, 8, is not too different from the highest, but it is a dominant 
component in only one variance, var(6,). In this case, then, a condition 
index of 14 (roughly 10) is “high enough” for the presence of collinearity 
to begin to be observed. 

X2: The X2{i} series also possesses only one constructed near 
dependency, (3.186), but involving three variates, columns 1, 2, and 4 in 
the form C4 = 0.8C1 + 0.2C2 + ei. We expect, then, high variance- 
decomposition proportions for these three variates to be associated with a 
single high condition index. Exhibit 3 . 6 ~  presents the II matrix of 
variance-decomposition proportions and the condition indexes for the 
X2( i }  data series, and Exhibit 3.66 gives the corresponding simple 

‘’ This progression corresponds closely to roughly equal increments in log,, q, of 1/2, that is, 
logto 7,- 1 +(i /2) .  Alternatively, and somewhat more directly, this progression results from 
the sequence i > 0, and corresponds to [ 1 /( 1 - R2)]’I2 for RZ= 0, .9,.99,.999, and so on. 



Exhibit 3.6~ Variance-decomposition proportions and condition indexes. 
X2 series. One constructed near dependency (3.18b): C4=0.8Cl+ 
0.2C2 + ei 

Associated 
Singular Condition 
Value var( b,)  var(b2) var( b3) var(b4) Index, q 

X2{0) 

PI 
P2 

I 3  

P4 

.003 
,027 
.009 
.960 

.012 

.735 

.223 

.030 

.w 

.001 

.636 

.359 

.005 

.068 

.526 

.40 1 

1 
4 
9 

11 

.001 

.02 1 

.09 1 
-887 

.004 

.297 

.026 

.673 

.003 

.011 

.767 

.219 

.Ooo 

.00 1 

.006 

.993 

1 
5 

10 
31 

PI 

P2 

P3 

P4 

.Ooo 

.001 

.w 

.995 

.oo 1 

.039 

.002 

.958 

.004 

.012 

.983 
,001 

.Ooo 

.OOo 

.002 

.998 

1 
5 
9 

102 

.Ooo 

.m 

.Ooo 
1 .om 

.Ooo 

.002 

.000 

.997 

.w 

.014 

.976 

.006 

.OOo 

.OOo 

.Ooo 
1 .OOo 

1 
5 
9 

38 1 

PI 
P2 

P3 

P4 

.Ooo 

.Ooo 

.Ooo 
1 .Ooo 

.000 

.Ooo 

.OOo 
1 .Ooo 

.Ooo 

.OOo 

.OOo 
1 .Ooo 

.w 

.013 

.938 

.046 

1 
5 
9 

1003 

PI 
P2 

P3 

I.rA 
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Exhibit 3.6b Regression of C4 on Cl , C2 and C3 

Data A r ( ~ 4 ,  fi) 
Matrix C4=0.8CI +0.2C2 c1 c 2  c 3  R2 

.477 0.8268 
[3.84] 

X2{0) 

V l I  

={2) 

={3) 

W 4 )  

.934 0.6336 
[10.14] 

.995 0.8186 
(40.901 

[ 149.031 

[ 393.94) 

"999 0.7944 

1 .Ooo 0.7990 

-0.0068 

0.1776 
[6.49] 

0.1879 

[ -0.071 

(21.441 

0.2023 
[ 86.691 

[224.32] 
0.1992 

0.1089 .2864 
(0.881 

0.1032 3976 
(2.871 

0.0007 .9911 
[0.061 

[0.401 

0.0012 .9999 
[ 1.021 

0.0012 .9993 

correlations and regressions. In this case the correlations are between C4 in 
(3.186) and = 0.8C 1 + 0.2C2. The regressions are C4 regressed on C1 , 
C2, and C3. 

The following points are noteworthy: 

1. Once again the expected results are clearly observed, at least for i 2 1. 
2. In the case of X2{0}, the constructed dependency is weak, having a 
simple correlation of less than .5. The resulting condition index, 11, is 
effectively the same as the second highest condition index, 9, and hence 
this dependency is no tighter than the general background conditioning of 
the basic data matrix. We see as we proceed that in the case where several 
condition indexes are effectioe/y the same, the procedure can have trouble 
distinguishing among them, and the variance-decomposition proportions of 
the variates involved can be arbitrarily distributed among the nearly equal 
condition indexes. In X2(0) the two condition indexes 9 and 11 account 
for over 90% of the variance in b, ,  b,, and 6,. We can explain 6,'s presence 
in this group by the fact that the simple correlation between C1 aAd C3 is 
.58 (greater than the constructed correlation between C4 and C4). The 
absence of b2 is explained by a minor scaling problem; C2 accounts for 
only one half the variance of the constructed variate C4=0.8C1+ 
0.2C2+e, and, in this case, its influence is being dominated by other 
correlations. 
3. By the time the simple correlation between C4 and C4 becomes .934, in 
the case of X2(1), the above problem completely disappears. The 
contrived relation involving columns I ,  2, and 4 now dominates the other 
correlations among the columns of the basic data matrix, and the 

A 
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variance-decomposition proportions of these variates associated with the 
largest condition index, 31, are all greater than .5. 
4. We again observe that, with each increase in i, the condition index 
corresponding to this ever-tightening relation jumps in the same 
progression noted before, namely, 10, 30, 100, 300, 10oO. In this regard it is 
of interest to observe that the contrived relation among columns 1, 2, and 
4, becomes clearly distinguishable from the background in case X2{ l}, 
when its condition index becomes one step in this progression above the 
“noise,” that is, when it becomes 31 versus the 10 associated with the 
background dependencies. 
5. Once again, the presence of collinearity begins to be observable with 
condition indexes around 10. In this instance, however, an unintended 
relation (the .58 correlation between Cl  and C3) also shows itself, 
confounding clear identification of the intended dependency among C4, 
C1, and C2. 
6. In both this and the X I  case, a condition index of 30 signals clear 
evidence of the presence of the linear dependency and degraded regression 
estimates. 

X3:  This series of matrices combines the two dependencies (3.18~) and 
(3.186) just examined into a single five-column matrix with C4=C3+e 
and C5 = O K 1  +0.2C2+ u. This, then, offers the first constructed example 
of simultaneous or coexisting dependencies.& We expect that there 
should be two high condition indexes, one associated with high 
variance-decomposition proportions in var(6,) and var(6,)due to 
dependency (3.18aFand one associated with high variance-decomposition 
proportions between var(b,) and var(6J and var(b,>--due to dependency 
(3.18b). 

In an effort to reduce the increasing number of II matrices rele- 
vant to this case we concentrate our reported results in two ways. First, 
we report only representative information from among the 25 cases 
(X3 { i, j}, i, j = 0,. . . ,4), and second, where possible, we report only the rows 
of the variance-decomposition proportions that correspond to the 
condition indexes of interest. We note in the previous two series that many 
of the rows, those corresponding to lower condition indexes, are effectively 
unchanging as i varies, and convey no useful additional information for 
the analysis at hand. 

Let us begin by holding i constant at 2 and varying j =  0,. . . ,4; depen- 
dency (3.18~) is therefore moderately tight, while (3.186) varies. Exhibit 
3.7 presents the results for this case. 

“Although we have already seen something like it above in the case of W(0).  



Exhibit 3.7 Variance-decomposition proportions and condition indexes. 
X3 series. Two constructed near dependencies ( 3 . 1 8 ~ )  and (3.186) : 
C4- C3 + e2 (unchanging); C5 = 0.8C1+0.2C2 + ui(  i -  0,. . . ,4) 

Associated 
Singular Condition 
Value var(bl) var(b2) var(b3) var(b4) var(b,) Index, 9 

P1 
c1.z 
P3 

P4 

Ps 

P3 

k 
Cls 

P3 

ch 
Ps 

P3 

P4 

PS 

k 
k 
PS 

.002 

.025 

.025 

.941 

.007 

.076 

.765 
,147 

.004 

.746 

.249 

.002 

.999 

.Ooo 

.Ooo 
1 .Ooo 
.Ooo 

.007 

.734 

.240 

.002 

.016 

.008 

.537 

.I92 

.001 

.750 

.211 

.Ooo 

.997 

.001 

.Ooo 
1 .Ooo 
.Ooo 

x3(2,0) 

.Ooo 

.Ooo 

.003 

.Ooo 
,996 

X3(2,1)+ 

.003 

.Ooo 

.997 

x3(2,2)* 

.003 

.459 

.537 

X3(2,3)+ 

.003 

.173 

.824 

X3(2,4)+ 

.003 

.003 
,994 

.Ooo 

.Ooo 

.003 

.001 

.996 

.003 

.004 

.992 

.003 

.464 

.533 

.003 
,182 
316 

.003 

.oo 1 

.996 

.003 

.OM 

.303 

.630 

.oo 1 

.009 

.792 

.199 

.002 

.758 

.24 1 

.Ooo 

.999 

.00 1 

.Ooo 
1 .Ooo 
.Ooo 

1 
5 
8 
12 

106 

9 
34 
118 

8 
127 
99 

8 
469 
83 

8 
1124 
106 

+The unchanging and inconsequential rows corresponding to pi and p2 have 
not been repeated. See text. 

132 
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The auxiliary correlation and regression statistics need not, of course, be 
repeated, for these are the same as the relevant portions of Exhibits 3.56 
and 3.66. In particular, the correlations and regressions for the unchanging 
X3(2, j )  relation for i - 2  between C4 and C3 are those for Xl(2)  in 
Exhibit 3Sb, and the regressions for column 5 on the basic columns 1, 2, 
and 3 forj=O, ..., 4 are those given in Exhibit 3.6b for X Z { j > , j = O  ,..., 4. 

The following points are noteworthy: 

1. The unchanging “tight” relation between columns 3 and 4 is observable 
throughout, having a correlation of .995 and a large condition index in the 
neighborhood of 100. 
2. The relation with varying intensity among C5, C1, and C2 begins 
weakly for the X3{2,0) case and, as before, is somewhat lost in the 
background. Still, the involvement of var(b,) and var(b,) with the 
condition index 12 is observable even here, although it is being 
confounded with the other condition index, 8, of roughly equal value. The 
unchanging tight relation between C4 and C3 with index 106 is unobscured 
by these other relations. 
3. When the relation between columns 1, 2, and 5 becomes somewhat 
tighter than the background, as in the case of X3{2, l} ,  its effects become 
separable. This case clearly demonstrates the ability of the procedure to 
correctly identify two simultaneous dependencies and indicate the variates 
involved in each: the q of 34 is associated with the high variance- 
decomposition proportions in var(b,), var(b,), and var(b,), and the 9 of 118 
is associated with those of var(b,) and var(b,). 
4. When the two contrived dependencies become of roughly equal 
intensity, as in the case of X3(2,2}, both having q’s in the neighborhood of 
100, the involvement of the variates in the two relations once again 
becomes confounded. However, only the information on the separate 
involvement of the variates is lost through this confounding. It is still 
possible to determine that there are two near dependencies among the 
columns of X, and it is still possible to determine which variates are 
involved; in this case all of them, for the two condition indexes together 
account for well over 90% of the variance in b,, b,, b,, b,, and b,, indicating 
the involvement of each. The only information being lost here is which 
variates enter which dependency. 
5. When the relation among columns 1, 2, and 5 again becomes strong 
relative to the unchanging relation between columns 3 and 4, as in the 
cases X3{ 2,3) and X3{2,4), their separate identities reemerge. 
6. Once again, the order of magnitude of the relative tightness of a near 
dependency seems to increase with a progression in the condition index in 
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the scale of 10,30,100,300,1000. Dependencies of roughly equal magnitude 
can be confounded; dependencies of differing magnitudes are able to be 
separately identified. 

The preceding analysis examines X3{ i ,  j }  by varying the second depen- 
dency and holding the first constant at i=2.  Let us reverse this order and 
examine X3{ i ,  1 } for i = 0,. . . ,4, and j held constant at 1. 

As i increases, we would expect there to be two high condition indexes. 
The one corresponding to the unchanging dependency between columns 1, 
2, and 5 will not be too high, sincej is held at 1. The relation between 

Exhibit 3.8 Variance-decomposition proportions and condition indexes. 
X3 series. Two constructed near dependencies (3.18~) and (3.18b): 
C4- C3 + e, ( i =  0,. . . ,4); C5 = 0.8C1+0.2C2 +u, (unchanging) 

Associated 
Singular Condition 
Value var(bl) var(b,) var(b3) var(b4) var(b5) Index, 'II 

PI 
Pz 
P3 
P4 

P5 

P4 
P5 

P4 
P5 

1 4  

Ps 

P4 

PS 

.001 .002 

.008 .274 

.092 ,004 

.885 .643 

.015 .076 

.82 1 .656 

.073 .018 

.765 ,537 

.147 .192 

.871 .673 

.028 .010 

.842 .549 

.062 .191 

X3(0,1) 

.001 

.003 

.044 

.171 

.78 1 

X3( 1,l) 

.226 

.720 

X3(2,1) 

.Ooo 
-997 

X3(3,1) 

.OOo 

.999 

X3(4,1) 

.OOo 
1 .Ooo 

.002 

.032 

.250 

.008 

.708 

.077 
380 

.004 

.992 

.Ooo 

.999 

.OOo 
1 .Ooo 

.Ooo 1 

.OOo 5 

.011 9 

.988 35 

.oo 1 15 

.900 35 

.089 30 

.792 34 

.199 118 

.985 34 

.005 5 19 

.90 1 34 

.089 1148 
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columns 3 and 4 will get tighter and more highly defined as i increases 
from 0 to 4. 

Exhibit 3.8 reports these results. Exhibit 3.56 and the second row of 
Exhibit 3.66 provide the relevant supplementary correlations and regres- 
sions. 

The following points are noteworthy: 

1. Both relations are observable from the outset. 
2. A condition index of 15 (greater than 10) corresponds to a dependency 
that is tight enough to be observed. 
3. The confounding of the two dependencies is observable when the 
condition indexes are close in magnitude, the case of X3{ 1, l} ,  but it is not 
as pronounced here as in the previous examples. 
4. The rough progression of the condition indexes in the order of 10, 30, 
100, 300, lo00 is observed again. 

To complete the picture on the behavior of X3{ i , j } ,  we report in Exhibit 
3.9 the variance-decomposition proportions for selected values of i and j 
increasing together. 

Exhibit 3.9 Variance-decomposition proportions and condition indexes. 
X3 series. Two constructed near dependencies ( 3 . 1 8 ~ )  and (3.18b): 
C4 = C3 + ei (selected values); C5 = O X 1  + 0.2C2 + ui (selected values) 

PI 
P2 

P3 

P4 

I r S  

P3 

P4 

P5 

114 

PS 

.oo2 

.016 

.028 

.953 

.oo 1 

.015 
-952 
.006 

.995 

.005 

.007 
-750 
.053 
.Ooo 
.190 

.27 1 

.m 

.037 

.962 

.002 

X3 { 0,O) 

.001 

.Ooo 

.044 

.018 

.937 

X3( 1,O) 

.041 

.012 

.946 

X3{ 1 2 )  

.094 

.860 

.002 .003 

.009 .@I 1 

.2M .323 

.032 .610 

.75 1 .023 

.033 .34 1 

.am 3 3 5  

.96 1 .004 

.117 .998 
348 .00 1 

1 
5 
7 

12 
15 

8 
12 
30 

123 
30 
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Exhibit 3.9 Continued 

Associated 
Singular Condition 
Value var(bl) var(b2) var(b3) var(b4) var(b5) Index, 11 

X3{3,2) 

P4 .967 .936 .Ooo .Ooo .979 115 
Ps .028 .023 1 .OOo 1 .Ooo .020 523 

X3(3,4) 
P4 .999 .999 .015 .013 .999 1129 
Ps .001 .001 .985 .986 .oo 1 517 

IL4 .698 .705 .633 .63 1 .699 1357 

X3{4,4) 

Ps .302 .294 .369 .369 .301 960 

The following points are noteworthy: 

1. In the X3{0,0} case, three condition indexes are of close magnitude, 7, 
12, and 15, and there is some confounding of vanate involvement among 
all three of them. 
2, The relation between C3 and C4 is freed from the background in the 
next case, X3{1,0}, but there is still some confusion between the two 
similar condition indexes, 8 and 12. 
3. The two relations become more clearly identified as i andj increase, 
and are strongly separable so long as the condition indexes remain 
separated by at least one order of magnitude along the 10, 30, 100, 300, 
lo00 progression. 
4. However, no matter how tight the individual relationships, they can be 
confused when their condition indexes are of similar magnitude, as is seen 
in the case of X3{4,4}. 

Experiment 2: The Y Matrices. Our interest in examining these new 
experimental data series focuses on several questions. First, does a totally 
different set of data matrices result in similar generalizations on the 
behavior of the condition indexes and the variance-decomposition 
proportions that were beginning to emerge from experiment I? Second, do 
“rate-of-change” data series and “rates” series behave differently from the 
“levels” and “trends” data of experiment l? The data series Y3 are relevant 
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here. Third, do essential scale problems cause troubles? Data series Y 1 and 
Y2 examine this problem. 

YI and Y2: The Y l { i }  series, we recall, consists of a five-column 
matrix in which C5 =C1 +C2 +ei as in (3.20~). The variance of C5 
introduced by Cl (GNP58) is relatively small, less than 1% of that 
introduced by C2. Its influence is therefore easily masked. The Y2{ i] series 
is exactly the same except that the influence of C1 is made smaller yet. 
Here C5=0.1Cl +C2+ei as is clear from (3.206). These two series allow 
us to see how sensitive the diagnostic procedure for collinearity is to strong 
and even severe scaling problems. 

For both experimental series Y1 and Y2 we would expect one high 
condition index associated with high variance-decomposition proportions 
in var(b,), var(b,), and var(b,). Exhibits 3 . 1 0 ~  and 3 . 1 1 ~  present these 
results for Y 1 and Y2, respectively, as i =0, . . . ,4. Exhibits 3.106 and 3.1 1 b 
present the corresponding supplementary correlations and regressions. 

The following points are noteworthy: 

1. The results for both data series are in basic accord with expectations. 
2. However, the essential scale differences do cause problems in 
identifying the variates involved in generating the dependency. In the Y 1 
series, the involvement of the dominated column 1 is not observed at all in 

Exhibit 3.10~ Variance-decomposition proportions and condition 
indexes. YI series. One constructed near dependency (3.20~):  
C5 = C1+ C2 + ei( i = O ,  . . . ,4) 

Associated 
Singular Condition 
Value var(b,) var(b2) var(6,) var(b4) var(b5) Index, 7 

Y1W 
PI 
Y2 

Y3 

P4 
Ys 

P3 

Y4 

Y5 

.005 

.010 

.782 

.188 

.016 

.607 

.024 

.360 

.001 

.00 1 

.036 

.045 

.916 

.019 

.030 

.950 

-003 -015 
.010 398 
.oo 1 -010 
.978 .07 1 
.008 .007 

Y1(1} 
.03 1 .008 
.94 1 .090 
.014 .036 

.002 

.002 

.08 1 

.096 

.819 

.003 

.012 

.985 

1 
3 
7 
10 
16 

8 
10 
40 



Exhibit 3.10~ Continued 

Associated 
Singular Condition 
Value var(b,) var(b2) var(b3) var(b4) var(b5) Index, 9 

y1w 

PI .394 .oo 1 .oo3 .010 .oo 1 7 
P4 .065 .001 .976 .068 .oo 1 10 
P5 .534 .998 .008 .020 .999 156 

Yl(31 

P3 .099 .Ooo .oo3 .010 .Ooo 7 
P4 .016 .Ooo .959 .073 .Ooo 10 
PS .883 .997 .024 .oo3 I .Ooo 397 

P4 .001 .Ooo .965 .072 .Ooo 10 

Yl(41 

P5 .993 1 .Ooo .018 .Ooo 1 .Ooo 1659 

Exhibit 3.10b Regression of C5 on C1, C2, C3, C4 

Data r(C5,e)  
Matrix a = C l + C 2  c1 c2 c 3  c 4  R2 

.776 - 0.0264 
[ -0.011 

[3.78] 

[ 5.241 

Y 1 W  

Y1(1) .939 2.5629 

.997 0.9505 y1 (21 

Yl(3) .999 0.9534 
[13.36] 

[59.57] 
Y1{4) 1 .Ooo 1.0178 

0.9262 
[ 5.33) 

0.8238 
[ 13.201 

[ 59.801 

[ 15 1.801 

[633.30] 

1 .oO09 

0.9989 

0.9975 

97.8101 
[ 1.031 

35.7769 
[ 1.051 

- 2.7505 
[ - 0.301 

2.8747 
[0.80] 

0.5632 
[0.65] 

28.3210 .6186 
lO.341 
35.1060 .9116 
[1.17] 

-4.9108 .9940 
[ -0.611 

0.%79 .9991 
[0.31] 

0.0135 .9999 
[ 0.01 781 

138 
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Exhibit 3.1 1 u Variance-decomposition proportions and condition 
indexes. Y2 series. One constructed near dependency (3.206) : 
C5 = O.lC1 + C2 + e; (i= 0,. . . ,4) 

Associated 
Singular Condition 
Value var(b,) var(6,) var(63) var(b4) var(b5) Index, 9 

PI .005 
P2 .009 
P3 .804 
P4 .157 
Ps .025 

P3 .736 
8 4  .248 
Ps .Ooo 

P3 .747 
P4 .190 
P5 .@I9 

P3 .648 
P4 .157 
PS .183 

P3 .512 
P4 .121 

.003 

.002 

.023 
,366 
.606 

.m 

.005 

.985 

,001 
.oo 1 
-999 

.Ooo 

.Ooo 
1 .Ooo 

.Ooo 

.Ooo 
1 .Ooo 

.O 14 

.886 

.001 

.Ooo 

.098 

.022 

.072 

.016 

.013 

.068 

.001 

.012 

.069 

.008 

,011 
.066 
.063 

.003 1 

.005 3 

.205 7 

.78 1 10 

.006 11 

.012 7 

.012 10 

.975 42 

.Ooo 7 

.001 10 
998 153 

.Ooo 7 

.Ooo 10 
1 .Ooo 475 

.OOo 7 

.Ooo 10 
1 .Ooo 1166 Ps .357 

the weakest case Y l{O),  having a condition index of 10 (and a correlation 
of .78). The involvement of C1 begins to be observed by Yl{ l}, but does 
not show itself completely until Y1{2) and Y1{3).  By contrast, the 
involvement of the dominant column, C2, along with the generated column 
5 is observed from the outset. The same pattern occurs within the 
supplementary regressions. The regression parameter of C1 is insignificant 
in case Y 1 {0), becomes significant in Y 1 { 1 }, and takes the proper order of 
magnitude (unity) in Y 1(2> and Y 1{3}. 
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Exhibit 3.11b Regression of C5 on C1, C2, C3, and C4 
~ 

Data r(C5,a)  
Matrix C/j=O.lCl+C2 C1 c2 c 3  c 4  R2 

.395 0.3789 
IO.16) 

Y2W 

Y2{1) 

W 2 )  

.962 0.0862 
[0.12] 

.997 0.2077 
[1.15] 

[2.28] 
Y2W ,999 0.1331 

1 .Ooo 0.0845 
[3.58] 

Y 4 )  

0.4585 
[2.10] 

1.0613 
[ 16.641 

[60.94] 
1.0179 

1.0078 
[187.80] 

1 .oO09 
[460.06] 

260.8090 
[2.18] 

- 35.0793 
[ -  1.001 

- 13.8609 
[ - 1.521 

- 5.0668 
[ - 1.731 

-0.2182 
[-0.181 

47.9654 .1433 
[0.46] 

27.0102 .9294 
(0.881 

- 0.4803 .9943 
[ - 0.061 

- 1.0565 .9994 
[ -0.41) 

1.3050 .9999 
[ 1.251 

3. Aggravating the scale problem in the Y2 series (C1 now accounts for 
less than 1/100 of 1% of the variance in C5) has the expected effect. Now 
the involvement of column 1 is becoming apparent only by the tightest 
case Y2{4} with a condition index of 1166. 
4. The several other general patterns noted in experiment 1 seem still to 
hold: a dependency’s effects are beginning to be observed with condition 
indexes around 10; decreasing the variance of the generated dependency 
by successive factors of 10 causes the condition index roughly to progress 
as 10,30,100,300,1000. 

Y3: The Y3{ i }  series consists of a five-column data matrix in which 
the fifth column is in a simple relation (3.20~) with the fourth column, 
C5 =C4+ei. In this case C4 is inventory investment, a rate-of-change 
variate. The results of this series are given in Exhibits 3 .12~ and 3.12b. 

The following points are noteworthy: 

1. An interesting phenomenon emerges in case Y3{0} that is in need of 
explanation and provides us with the first opportunity to apply our 
diagnostic tools to a near dependency that arises naturally in the data, that 
is, to one not artificially generated. First we note that the generated 
dependency between C5 and C4 is indeed observed-associated with the 
weak condition index 5. In addition, however, we note that over 8Wo of 
var(b,) and var(b,) is associated with the larger condition index 1 I, 
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Exhibit 3.12~ Variance - decomposition proportions and condition 
indexes. Y3 series. One constructed near dependency (3.20~): C5 = C4+ e, 
( i = O  ,..., 4) 

Associated 
Singular Condition 
Value var(b,) var(b2) var(b3) var(b,) var(b,) Index, q 

PI .005 
PZ .018 
P3 .953 
P4 .020 
PS .ooQ 

P3 .706 
P4 .OOo 
PS .270 

P3 .953 

PS .005 
P4 .017 

c13 .956 
P4 .018 
PS .00 1 

P3 390 
P4 .016 
US .07 1 

.003 

.007 

.I80 
310 
.001 

.133 

.855 

.00 1 

.171 

.757 

.063 

.I80 

.789 

.020 

.179 

.790 

.020 

Y3W 

.003 

.015 

.112 
370 
.001 

Y3(1) 

.118 

.693 

.171 

Y3P) 

.I02 

.75 1 

.I32 

Y3{3) 

. I  15 
359 
.008 

Y3{4) 

.lo7 

.798 

.078 

.012 

.094 

.003 

.013 
377 

.027 

.004 

.948 

.OOo 

.002 

.996 

.Ooo 

.Ooo 

.999 

.Ooo 

.Ooo 
1 .Ooo 

.012 

.222 

.001 

.034 

.73 1 

.019 

.022 

.939 

.Ooo 

.Ooo 

.997 

.Ooo 

.Ooo 

.999 

.OOo 

.Ooo 
1 .Ooo 

1 
3 
8 

11 
5 

8 
11 
15 

8 
11 
42 

8 
11 

147 

8 
11  

416 

indicating at least their involvement in a low-level, unintended 
“background” dependency. The simple correlation between C2 and C3 is 
very low, .09,’” so we must look further than a simple dependency between 
C2 and C3. Further examination of Y3{0} in Exhibit 3 . 1 2 ~  shows that 
there is really not one, but two unintended near dependencies of roughly 
equal intensity in the basic data matrix associated with the effectively 
equal condition indexes 11 and 8. Furthermore, these two background 

“Indeed the highest simple correlation between the four basic columns is - .32. 
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Exhibit 3.126 Regression of C5 on C1, C2, C3, and C4 

Data 
Matrix r(C5, C4) c 1  c 2  c3 c 4  R2 

Y 3 W  . a 3  0.0015 O.OOO4 -0.2014 0.9180 .4231 
[0.27] [0.81] [-0.741 (3.821 

.950 - 0.0027 O.ooO1 0.0845 0.9491 .9188 
(1.931 [0.62] [ 1.201 [ 15.381 

Y3P)  -995 0.0002 O.ooO1 -0.0450 1.0048 .9902 
[0.36] [ 1.231 [ 1.801 [45.67] 

.999 0 . m  - 0 . m  0.0029 1.ooo4 9992 
[O. 171 [ - 0.651 [0.40] [161.11] 

[-1.311 [-0.671 [ 1.421 I455.661 

Y3{1) 

Y3{3) 

Y3{4) 1.ooO - 0 . m  - 0 . m  0.0035 1.0013 9999 

dependencies together account for over 95% of var(b,), var(b3, and 
var(b,), and the three roughly equal condition indexes 5 , 8 ,  and 11 account 
for virtually all of each of the five variances. Applying what we have 
learned from experiments 1 and 2, we conclude that there are three weak 
dependencies of roughly equal intensity whose individual effects cannot be 
separated, a problem we have seen arise when there are several condition 
indexes of the same order of magnitude. Since we know C5 and C4 are 
related, we would expect to find two additional near dependencies among 
the four columns C1, C2, C3, and C4.48 Indeed, regressing C1 and C3 
separately on C2 and C4 gives49 

C1 =0.054W2+ 16.67C4 R ’ = .8335 
[5.86] [ 1.961 

C3 = 0.00 1 5C2 + 0.0373C4 
[8.43] [2.27] 

R = 9045. 

These background dependencies are, of course, also present in the Y1 

QEven though var(b,) is not greatly determined by the condition indexes of 8 and 11, W s  
involvement in these two dependencies cannot be ruled out. The variandecomposition 
proportions, as we have seen, can be arbitrarily distributed among q’s of nearly equal 
magnitude. 
‘%e choice of C1 and C3 on C2 and C4 is arbitrary. Any two of the four variatcs with a 
nonvanishing Jacobian could be selected for this descriptive use of least squares. The figures 
in the square brackets are rL, not standard deviations, and the R2’s are the ratio of predicted 
sum of squares (not deviations about the mean) to actual sum of squares since there is no 
constant term. 
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and Y2 series (the first four columns being the same in all Y series), but 
their effects there are overshadowed by the presence of the relatively 
stronger contrived dependency involving C1, C2, and C5. The experience 
we have gained from these experiments in the use of these diagnostic 
techniques, however, has clearly led us very much in the right direction. 
2. The previously described phenomenon serves to emphasize the point 
that when two or more condition indexes are of equal or close magnitude, 
care must be taken in applying the diagnostic test. In such cases the 
variance-decomposition proportions can be arbitrarily distributed across 
the roughly equal condition indexes so as to obscure the involvement of a 
given variate in any of the competing (nearly equal) near dependencies. In 
Y3{0}, for example, the fact that over 80% of var(b,) and var(b,) is 
associated with the single condition index of 11 need not imply only a 
simple relation between C2 and C3. Other variates (here C1 and C4) 
associated with competing condition indexes (8 and 5)  can be involved as 
well. Furthermore, when there are competing condition indexes, the fact 
that a single condition index (like 8 in Y3{0}) is associated with only one 
high variance-decomposition proportion (95% of var(bl)), need not imply, 
as it otherwise that the corresponding variate (Cl) is free from 
involvement in any near dependency. Its interrelation with the variates 
involved in competing dependencies must also be investigated. 

In sum, when there are competing dependencies (condition indexes of 
similar value), they must be treated together in the application of the 
diagnostic test. That is, the variance-decomposition proportions for each 
coefficient should be aggregated across the competing condition indexes, 
and high variance-decomposition aggregate proportions for two or more 
variances associated with the set of competing high indexes are to be 
interpreted as evidence of degrading collinearity. The exact involvement of 
specific variates in specific dependencies cannot be learned in this case, 
but it is still possible to learn (1) which variates are degraded (those with 
high aggregate variance-decomposition proportions) and (2) the number of 
near dependencies present (the number of competing indexes). 
3. Another, quite different, form of confounded involvement is also exem- 
plified by the foregoing: the dominant dependency. Column 4 is apparently 
involved simultaneously in several near dependencies: weakly, and with 
scaling problems, in the dependencies associated with q’s of 8 and 11; and 
without scaling problems in the contrived dependency between C4 and C5. 
In all cases, but particularly as it becomes tighter, this latter dependency 
dominates the determination of var( bd), thereby obscuring the weak in- 

sosee, however, point 3 following. 
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volvement of C4 in the other dependencies. Dominant dependencies (con- 
dition indexes of higher magnitude), then, can mask the simultaneous 
involvement of a single variate in weaker dependencies. That is, the 
possibility always exists that a variate having most or all of its variance 
determined by a dependency with a high condition index is also involved 
in dependencies with lower condition indexes, unless, of course, that 
variate is known to be buffered from the other dependencies through near 
orthogonality. 
4. From within the intricacies of the foregoing points, however, one must 
not lose sight of the fact that the test for potentially damaging collinearity 
requires the joint condition of (1) two or more variances with high 
decomposition proportions associated with (2) a single high condition 
i n d e ~ ; ~ ’  condition 1 by itself is not enough. It is true in the Y3(0} case, for 
example, that the three condition indexes 5, 8, and 11 account for most of 
the variance of all five estimates, but by very rough standards, these 
condition indexes are not high, and the data matrix Y3(0}, quite likely, 
could be suitable for many econometric applications. Let us examine this 
condition further. In our prior examples we noted that contrived 
dependencies began to be observed when their “tightness” resulted in 
condition indexes of around 10. We were also able to calculate the 
correlations that correspond to these relations, so we can associate the 
magnitudes of condition indexes with this more well-known measure of 
tightness. A glance through Exhibits 3.5 to 3.12 shows that condition 
indexes of magnitude 10 result from underlying dependencies whose 
correlations are in the range of .4 to .6, relatively loose relations by much 
econometric experience. It is not until condition indexes climb to a level of 
15-30 that the underlying relations have correlations of .9, a level that 
much experience suggests is high?2 Further insight is afforded by 
examining the actual variances whose decomposition proportions are given 
in Exhibit 3 . 1 2 ~ ;  these are presented in Exhibit 3.13. 

In the case of Y3{0}, all variance magnitudes are relatively small, 
certainly in comparison to the size attained by var(b,) and var(b,) in the 
cases of Y3(2} and Y3(3}, when the contrived dependency between them 
becomes tighter. In short, high variance-decomposition proportions surely 
need not imply large component values. This merely restates the notion of 

siAs we have just seen in points 2 and 3 above, condition ( I )  requires some modifications 
when there are either competing or dominating dependencies. These modifications are treated 

s21ndced the experience so far indicates that the condition index goes one further step in the 
10,30,100,300,1000 progression as successive “9’s’’ are added to the underlying correlation. 
For example, .5+10, .9-+30, .9!3+100, .999+300, and so on. 

fully in Section 3.4. 
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Exhibit 3.13 Underlying regression variances* 

Data 
Matrix var(b,) W b 2  ) var(b 3 ) W b 4 )  var(b5 1 

9.87 16.94 16.32 3.71 3.04 
1 1.43 16.74 16.94 25.58 26.38 

y 3  (0) 

9.90 17.56 18.18 207.76 204.17 
Y3(1) 

9.86 16.78 16.06 2559.53 2547.85 
Y3(2) 

10.59 16.79 17.28 20389.78 20457.85 
Y3(31 
Y3(4) 

*Representing the respective Y3(i) matrices by X, the figures reported here are 
diagonal elements of (XTX)-’-the + k k ’ ~  of (3.10)-and do not include the 
constant factor of s2, the estimated error variance. Of course, s2 can only be 
calculated once a specific y has been regressed on X. 

Section 3.2 that degraded estimates (capable of being improved if 
calculated from better conditioned data), which apparently can result from 
even low-level dependencies, need not be harmful; harmfulness depends, 
in addition, on the specific regression model employing the given data 
matrix, on the variance a* ,  and on the statistical use to which the results 
are to be put. For greater details, see Appendix 3D. 
5. The contrived dependency between C4 and C5, both rates-of-change 
variates, seems to behave somewhat differently from previous experience, 
based on “levels” data; namely, its condition index is lower for 
comparable tightness in the underlying relation as measured by 
correlations. Perusal of Exhibits 3.5 to 3.1 1 indicates that, quite roughly, 
the condition index jumps one step along the 10,30,100,300,1000 
progression each time another ‘‘Y’ digit is added to the correlation of the 
underlying dependency. That is, an q of 10 has a corresponding correlation 
of about .5; an ~ ” 3 0 ,  correlation .9; q”100, correlation .99; q z 3 0 0 ,  
correlation .999. Exhibit 3.12 indicates the rate-of-change data to be one 
step lower, with 77 < 10, correlation .6; q=10, correlation .9; 7 ~ 3 0 ,  
correlation .99, and so on. It may be, therefore, that there is no simple 
pairing of the level of the strength of a relation as measured by a condition 
index with that of the same relation as measured by a correlation. There 
does, however, seem to be stability in the relative magnitudes of these two 
measures along the progressions noted above. 
6. In all of the foregoing, one should not lose sight of the fact that, 
basically, the diagnostic procedure works in accord with expectations. The 
contrived relation between C4 and C5 is observed from the outset and 
takes on unmistakable form once it is removed from the background, in 
case Y3( I}  or Y3{2). 



Exhibit 3.14 Variance-decomposition proportions and condition 
indexes. Y4 series. Two constructed near dependencies (3.20a)and 
(3.20~) : C5 = C1+ C2 + vi (selected values); C6 = C4 +vk (selected 
values) 

Associated 
Singular Condition 
Value var(b,) var(b,) var(b3) var(b4) var(b5) Var(b6) Index, tl 

PI ,004 
Pl .OlO 
P3 .788 
P4 .I81 
PS .017 
k .00 1 

PI .003 
cc2 .011 
P3 .778 
P4 .186 
P5 .015 
k .006 

P3 .477 
P4 .00 1 
Ps .346 
k .167 

P3 .587 
P4 .023 
PS .173 
k .209 

P4 .016 
cc, .884 
cb .OOo 

.00 1 

.002 

.036 

.05 1 

.9 10 

.Ooo 

.001 

.002 

.036 

.044 

.916 

.Ooo 

.015 

.03 5 

.948 

.006 

.018 

.028 

.453 

.501 

.Ooo 
1 .Ooo 
.Ooo 

y4{0,0) 
.002 .008 
.009 .lo5 
.001 .001 
.981 .004 
.006 .008 
.Ooo .875 

~ 4 { 0 , 2 )  

.002 .m 

.008 .002 
,001 .m 
322 .001 
.009 .OOo 
.159 .996 

~4{1,1> 

.045 .024 

.777 .006 

.010 .m 

.I58 .948 

Y4( 1,2) 

.027 .Ooo 

.847 .001 

.068 .234 

.048 .762 

Y4 (3.3) 

.954 .m 

.025 .003 

.007 .997 

.001 

.002 

.079 

.loo 
317 
.001 

.001 

.003 

.077 

.092 

.772 

.055 

.002 

.013 

.984 

.OOo 

,003 
.011 
.543 
.442 

.OOo 
1 .OOo 

.OOo 

.008 

.223 

.004 

.044 

.00 1 

.720 

.m 

.002 

.m 

.m 

.m 

.997 

.014 

.025 

.005 
,936 

.ooo 

.m 
,250 
.747 

.m 
,003 
.997 

1 
3 
7 

11 
17 
5 

1 
3 
8 

11 
17 
47 

8 
11 
43 
17 

8 
11 
39 
51 

I I  
428 
162 

146 



3.3 EXPERIMENTAL EXPERIENCE 147 

Y4: In the Y4{ i, k )  series the two dependencies of Y 1 and Y3 occur 
simultaneously. Here C5 = C1 + C2 + vi according to (3.20a) and 
C6 = C4 + vk as in (3.20~). What is new to be learned from this experimental 
series can be seen from a very few selected variance-decomposition 
proportion matrices. These are reported in Exhibit 3.14. 

The following points are noteworthy: 

1. Both relations are observable even in the weakest instance of Y4{0,0}, 
one with condition index 17, the other with condition index 5. The 
presence of the contrived relation between C1, C2, and C5 has somewhat 
masked the background relation among C1, C2, and C3 that was observed 
in the Y3 series (although var(b,) is still being distributed among these 
relations). 
2. Dependencies with differing condition indexes tend to be separately 
identified, as in the cases of Y4{0,2), Y4{ 1, I } ,  and Y4{3,3}. When the 
condition indexes are nearly equal, however, as in the case Y4{ 1,2}, the 
involvement of separate variates is confounded between the two 
dependencies. This fact, observed frequently before, is particularly 
important in this instance. In earlier experiments, roughly equal condition 
indexes corresponded to roughly equal underlying correlations. In this 
case, however, the relation between the “rate-of-change” variates C4 and 
C6 is .9 while that underlying the relation among C1, C2, and C5 is .99, 
one 9 stronger. Thus the problem of confounding of relations results from 
relations of nearly equal tightness as judged by condition indexes, not as 
judged by correlations. 
3. In general, however, the two constructed relations behave together quite 
independently, and much as they did separately. This was true in 
experiment 1 as well; the individual behavior of the dependencies in the 
X1 and X2 series was camed over to their simultaneous behavior in the X3 
series. Thus, with the exception of the minor problem of confounded 
proportions that results from the presence of near dependencies with 
competing or dominating condition indexes, it seems fair to conclude that 
the simultaneous presence of several near dependencies poses no critical 
problems to the analysis. 

Experiment 3: The Z Matrices. The purposes of experiment 3 are (1) to 
analyze slightly larger data matrices (up to eight columns) to see if size has 
any notable effect on the procedure; (2) to allow up to three coexisting 
near dependencies, again to see if new complications arise; (3) to recast 
some previous experimental series in a slightly different setting to see if 
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their behavior remains stable; (4) to create cases where near orthogonality 
among data series exists in order to observe its buffering effect against 
dependencies within nearly orthogonal subgroups. Toward this last 
objective, columns 4 and 5 of the basic data matrix were generated having 
correlations with columns 1-3 of no more than .18. Columns 1-3 here are 
the same as columns 1-3 in the previous experiment 2. Four dependency 
relations are contrived according to (3.22~-d). Equations (3.22~ and b) 
generate dependencies between the two columns 4 and 5 which were 
constructed to have low intercorrelations with columns 1-3. Equation 
(3.22~) generates a dependency using only C1, C2, and C3, which is 
thereby buffered from C4 and C5. These two data groups are bridged by 
(3.22d). There are scaling problems built into the generated dependencies. 
The following are dominated: DUMl [ < .1% of the variance in (3.223)J; 
*LHTUR [<.1% of the variance in (3.22~)); and DUM2 [ < . l a  of the 
variance in (3.22d)l. 

Many of the 2 series experiments were designed to duplicate previous 
experiments with different data in order to observe whether the process 
exhibits some degree of stability. In those cases where such stability exists, 
such as Zl below, and the experiment merely becomes repetitive, it will be 
reported as such without additional and unnecessary tabulations. 

ZI: In this series C6-C4+ei. In this basic data matrix Z, C4 (DUMl) 
is generated to have the same mean and variance as column 4, the 
rate-of-change variate (GV58), of the basic data matrix Y of experiment 2. 
Hence the Zl series is quite similar to the Y3 series of experiment 2, and 
we had hoped that this experimental series would exhibit similar 
properties. This expectation was met in full. 

In th is  series the dependency is generated by the two “isolated” 
columns, 4 and 5, by C6 = C5 - C4. It also mixes a rate-of-change variate, 
C4, and a levels variate, C5, and, as noted, has a scaling problem. Exhibit 
3.15 presents two II matrices for cases Z2{2) and Z2(4). 

22: 

The following points are noteworthy: 

1. The “background” relations with condition indexes 8 and 11 are still 
present (the first three columns here are the same as in experiment 2). 
2. The generated dependency is quite observable, but the scaling problem 
is evident. Even in Z2(2) with a condition index of 104, the involvement of 
C4 is not clearly observed, and does not become strongly evident until the 
condition index increases to the very high value of 1OOO. 
3. The isolation of Cl-C3 from C4C6 is very evident. Even in the case of 
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Exhibit 3.15 Variance-decomposition proportions and condition indexes. 
2 2  series. One constructed near dependency (3.226): C6 = C5 - C4 +ei 
(selected values) 

Associated 
Singular Condition 
Value var(b,) var(b2) var(b3) var(b4) var(b5) var(b6) Index, q 

PI 
112 

P3 

P4 
P5 

P6 

P5 
P6 

.004 

.Ooo 

.047 

.944 

.oo 1 

.004 

.00 1 

.oo3 

.oo3 

.Ooo 

. I  14 

.162 

.721 

.Ooo 

.66 1 

.088 

Z2P)  
.002 .Ooo 
.Ooo 325 
.043 .019 
.085 .016 
336 .Ooo 
.034 .I40 

W 4 )  

339 .Ooo 
.029 .817 

.Ooo 

.Ooo 

.002 

.Ooo 

.Ooo 

.998 

.Ooo 
1 .Ooo 

.ooo 

.Ooo 

.002 

.ooo 

.ooo 

.998 

.Ooo 
1 .ooo 

1 
2 
6 
8 

11  
104 

1 1  
1039 

Z3{4), the high condition index of loo0 does not add any significant 
degradation to var(b,), var(b,), or var(b,). 

23: This series, in which C6=3C1+ 1.5C3+ei, is very similar to the 
Y 1 series and shows effectively identical behavior. The scaling problem 
here is severe, and the involvement of the dominated variate C3 is not 
strong even in the Z3{4) case, as is seen by the one relevant row of the ll 
matrix : 

Associated 
Singular Condition 
Value var(bl) var(b2) var(b3) var(b4) var(b5) var(b6) Index, v 
P6 1.000 .027 .451 .072 .Ooo 1.OcJo 980 

24: In this series there is the single contrived relation C6=C2+0.7C5 
+ei. The behavior is as according to expectation, paralleling that of the 
qualitatively similar Y 1 and X2 series. 

2 5  : This series possesses two simultaneous dependencies, each isolated 
from the other by low intercorrelations among the Cl-C3 and C4-C5 
columns of the basic data matrix Z. Here C6=C5-C4+ej and 
C7 = 3C1+ 1.5C3 + u,. A typical ll matrix for this series is given by Exhibit 
3.16. 
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Exhibit 3.16 Variance-decomposition proportions and condition indexes. 
2 5  series. Two constructed near dependencies (3.226) and (3.22~): 
C6=C5-C4+ei (i=2); C7=3C1+ 1.5C3+ui (j=3) 

Associated 
Singular Condition 
Value var(b,) var(b2) var(b3) var(b4) var(b5) var(b6) var(b,) Index, rl 

PI .OOO .002 .001 .OOO .OOO .OOO .OOO 1 
P2 .OOO .OOO .OOO .742 .OOO .OOO .OOO 2 

P4 .OOO .243 .090 .005 .OOO .OOO .OOO 8 
BS .OOO .711 .602 .OOO .OOO .W .OOO 12 

z5 (293) 

B3 .OOO .029 .005 .029 ,002 .002 .OOO 6 

P6 .OOO .OOO .02 1 .I2 1 .950 .949 .OOO 114 
81 .999 .015 .280 .lo2 .048 ,049 .999 368 

The following points are noteworthy: 

1. The presence of the two relations is clear, and the scaling problems that 
beset the two relations are observed. 
2. Of principal interest is the verification of the expected simultaneous 
isolation of the relation among C7, C1, and C3 from that among C4, C5, 
and C6. The low interconelations of these two sets of columns allows the 
variances within each group to be unaffected by the relation among the 
other group. 
3. Although not shown, it should be noted that the usual confounding of 
relations occurs in this series when the condition numbers are of equal 
magnitude. 

26: This case has two contrived near dependencies: C6=C4+ei and 
C7 = C2 + 0.7C5 + u,. The results are fully in accord with expectations. 

27 :  This case presents the first occurrence of three simultaneous 
relations C6 = C4 + ei, C7 = 3C1+ 1.5C3 + u,, and C8 = C2 +0.7C5 + vk. 
Exhibit 3.17 displays three selected cases. 

The following points are noteworthy: 

1. The presence of three simultaneous near dependencies causes no special 
problems, each behaving essentially as it did separately. 
2. The 27{2,2,3} case illustrates the separate identification of all three 
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relationships, although the severe scaling problem of C3 is masking its 
idluence in the relation associated with h. 
3. The other two cases exemplify the problem of separating the individual 
relationships when the condition indexes are of the same order of 
magnitude. In Z7{ 2,3,3) the two relations with similar condition indexes 
345 and 482 are confounded; while in Z7(3,2,2}, the involved variates 
have the variance of their estimated regression parameter distributed over 
the three dependencies with roughly equal condition indexes 221, 1 16, and 
164. 

One final conclusion may be drawn rather generally from experiment 3; 
namely, those Z series that are qualitatively similar to previous X and Y 
series, result in quantitatively similar Il matrices and condition indexes, 
attesting to a degree of stability in the diagnostic procedure. 

3.4 SUMMARY, INTERPRETATION, AND EXAMPLES OF DIAGNOSING 
ACTUAL DATA FOR COLLINEARITY 

In Section 3.2 a test was suggested for diagnosing the presence of 
collinearity in data matrices and for assessing the degree to which such 
near dependencies degrade ordinary least-squares regression estimates. 
Section 3.3, recognizing the empirical element to this diagnostic procedure, 
reported a set of experiments designed to provide experience in its use and 
interpretation. This section summarizes and exemplifies the foregoing. 
First, the experimental evidence of Section 3.3 is distilled and summarized. 
A summary set of steps to be followed in employing the diagnostic 
procedure on actual data sets is then provided, and, finally, four examples 
of the use of the diagnostic procedure on actual data are given. 

Interpreting the Diagnostic Results: A Summary of the Experimental 
Evidence 

Before proceeding with a summary of the evidence, it is worth noting that 
the experiments of Section 3.3 are necessarily limited in scope and cannot 
hope to illuminate all that is to be known of the behavior of the proposed 
diagnostic procedure in all econometric and statistical applications. 
Indeed, it is to be expected, as experience is gained from future application 
of these techniques to actual data, that the conclusions presented here will 
be refined and expanded. For the moment, however, the experimental 
evidence is gratifyingly stable and provides an excellent point of departure. 
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This summary begins with a presentation of the experience gained from 
experiments having a single contrived near dependency. We then 
summarize the modifications and extensions that arise when analyzing 
data matrices in which two or more near dependencies coexist. 

Experience With a Single Near Dependency 

1. The Diagnostic Procedure Works. The diagnostic test suggested in 
Section 3.2 works well and in accord with expectations for a variety of data 
matrices with contrived dependencies. It is possible not only to determine 
the presence of the near dependency, but also, subject to the qualifications 
given below, to determine the variates involved in it. 

The tighter the underlying dependency 
(as measured either by its correlation or relevant multiple correlation), 
the higher the condition index. Indeed, as the underlying correlations 
or R ”s increase along the progression < .9, .9, .99, .999, .9999, and so on, 
the condition indexes increase roughly along the progression 
3,10,30,100,300,1000,3000, and so on. The correspondence between these 
two progressions, however, is not constant and depends on the type of 
data. A given correlation, for example, among rates-of-change data 
appears to be translated into a lower condition index than for levels data. 
Some rough generalizations do, however, seem warranted, and these are 
given next. 

3. Interpreting the Magnitude of the Condition Index. Most of the 
experimental evidence shows that weak dependencies (correlations of less 
than .9) begin to exhibit themselves with condition indexes around 10, and 
in some cases as low as 5. An index in the neighborhood of 15-30 tends to 
result from an underlying near dependency with an associated correlation 
of .9, usually considered to be the borderline of “tightness” in informal 
econometric practice. Condition indexes of 100 or more appear to be large 
indeed, causing substantial variance inflation and great potential harm to 
regression estimates. 

The rule of thumb proposed at 
the end of Section 3.3, that estimates shall be deemed degraded when more 
than 50% of the variance of two or more coefficients is associated with a 
single high condition index, still seems good. Future experience may 
suggest a more appropriate or a more sophisticated rule of thumb, but the 
50% rule allows the involved variates to be identified in most instances 
even when the underlying dependency is reasonably weak (associated 
correlations of .4 to .7). Indeed, most evidence indicated proportions of 
over 80% were attained quite early. 

2. The Progression of Tightness. 

4. Variance-Decomposition Proportions. 
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5 .  Scaling Problems. Essential scaling imbalance causes the involvement 
of the dominated variates to be masked and more difficult to detect. 
Essential scaling imbalance occurs when several variates are interrelated so 
that the variance introduced by some is very much smaller than that 
introduced by others. Variates introducing less than 1% of the total 
variation are dominated, and their involvement can be completely 
overlooked by this procedure until the condition index rises to 30 or more. 
Very strongly dominated variates (<.Ol%) can be masked even with 
condition indexes in excess of 300. 

As already noted in 2 above, near dependencies 
among rates-of-change data seem to behave slightly differently from those 
involving levels type data. 

6.  Data Type Matters. 

Experience With Coexisting Near Dependencies 

7 .  Retention of Individuality. While some new problems of diagnosis and 
interpretation are introduced, in general it can be concluded that 
coexisting near dependencies cause the diagnostic procedure no critical 
problems. Subject to the modifications given in 11-13 below, the several 
underlying near dependencies behave together much as they did 
separately. In particular they remain countable (8 below) and to a great 
degree separable (9 below). 

The number of coexisting near dependencies is correctly 
assessed in all cases by the number of high condition indexes. The 
presence of a very strong (77 > 30) near dependency, for example, does not 
obsecure detection of a much weaker coexisting near dependency. 
9. Separability. The near dependencies remain separable in the follow- 

ing two senses. First, near dependencies which, when existing alone, have a 
gven condition index, retain roughly the same condition index when made 
to coexist with other near dependencies, regardless of their relative 
condition indexes. Second, subject to the qualifications given below, the 
individual involvement of specific variates in specific near dependencies 
remains observable. 
10. Isolation through Near Orthogonality. As the theory of Section 3.2 
would have it, near orthogonality does indeed buffer the regression 
estimates of one set of variates from the deleterious effects of near 
dependencies among the nearly orthogonal variates. 
11. Confounding of Effects with Competing Dependencies. When two or 
more near dependencies are competing, that is, have condition indexes of 
the same order of magnitude, the high variance-decomposition proportions 
of the variates involved in the separate competing dependencies can be 

8 .  Countability. 
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arbitrarily distributed among them, thus confounding their true 
involvement. The number of coexisting dependencies is, however, not 
obscured by this situation, nor is the identification of the variates that are 
involved in at least one of the competing dependencies. It remains 
possible, therefore, to diagnose how many dependencies are present and 
which variates are being degraded by the joint presence of those 
dependencies. Only information on the separate involvement of specific 
variates in specific competing dependencies is lost. In this case the test 
procedure is trivially modified to examine those variates which have high 
variance-decomposition proportions aggregated over the competing high 
condition indexes. 
12. Dominating Dependencies. A dominating dependency, one with a 
condition index of higher order of magnitude, can become the prime 
determinant of the variance of a given coefficient and thus obscure 
information about its simultaneous involvement in a weaker dependency. 
Consider the example of Exhibit 3.18. 

Here there are two dependencies with high condition indexes, 30 and 
300; and 300 dominates. The involvement of C3 and C4 in this dominant 
dependency is clear; however, equally clearly, we cannot rule out the 
potential involvement of C3 and C4 along with Cl  in the dependency 
associated with q=30. Thus, when a dependency is dominated, such as 
q = 30 above, it is quite possible for only one high variance-decomposition 
proportion to be associated with it and still give indication of degradation 
-the possible involvement of other variate(s) being obscured by the 
dominant relation. In this case our diagnostic procedure must once again 
be qualified: two or more high variance-decomposition proportions 
associated with a single high condition index-unless that high condition 
index is dominated by an even larger one, in which case further investigations 
may be required. One reasonable procedure to adopt in such cases would 
be to run an auxiliary regression among the potentially involved variates 
(C1 on C3 and C4 in the above example) to verify their roles, if such 

Exhibit 3.18 Illustrative variance-decomposition proportions and 
condition indexes 

Associated 
Singular Condition 
Value var(b,) var(b,) var(b3) var(b.,) Index, q 

81 .oo .o 1 .00 .oo 1 
8 2  .o 1 .99 .00 .oo 3 
P3 .99 .oo .01 .o 1 30 
8 4  .00 .oo .99 .99 300 
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Exhibit 3.19 Illustrative variance-decomposition proportions and 
condition indexes 

Associated 
Singular Condition 
Value var(bl) var(b2) var(b3) var(b4) Index, t 

I43 .99 .99 .01 .01 30 
Icr -00 .@I .99 .99 300 

information were required. In this example such additional information 
would be needed to demonstrate the degradation of var(b,). There is no 
question that var(b,) and var(b,) are degraded-not just by their presence 
in one, but possibly two, dependencies. However, var(b,) cannot be said to 
be degraded unless C1 can be shown to be involved in a linear dependency 
with C3 and/or C4. 

By way of contrast, had the last two rows of the above example read as 
in Exhibit 3.19, the degradation of all variances would be apparent without 
further analysis, and auxiliary regressions would not be required unless it 
was explicitly desired to know whether C3 and C4 entered along with Cl 
and C2 in the dependency with q = 30. 
13. Nondegraded Estimates. On occasion it is also possible to identify 
those coefficients whose estimates show no evidence of being degraded by 
the presence of near dependencies. In the example given by Exhibit 3.19, 
all four variances show degradation due to the two near dependencies with 
q’s of 30 and 300. In the example given by Exhibit 3.18, however, var(b,) 
has virtually all of its variance determined in association with the relatively 
small condition index 3 and is not adversely affected by the two tighter 
dependencies with q’s of 30 and 300. The same situation arises in Section 
3.3, for example, for var(b,) of the X1 or X2 series given in Exhibits 3 . 5 ~  
and 3 .6~ .  

Just where the dividing line between small and large is to be set is a 
matter that can be answered only with greater practical experience in the 
use of these techniques. The evidence of the experiments suggests that q’s 
of 10 to 30 are good starting points.53 We maintain that 10 is a bit on the 
weak side; 30 seems quite reasonable in almost all instances. 

Employing the Diagnostic Procedure 

Diagnosing any given data matrix for the presence of near dependencies 
and assessing the potential harm that their presence may cause regression 

S3Compare, however, point 6, page 154. 
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estimates is effected by a rather straightforward series of steps, the only 
problems of interpretation arising when there are competing or dominating 
near dependencies. Two thresholds must be determined at the outset, a 
condition-index cutoff ?* and a variance-decomposition proportion cutoff 
T*, as is seen in steps 3 and 5.  

Tlre Steps. It is assumed in the following that the user has a specific 
parameterization p in mind and has transformed the data (if need be) to 
conform, so that the model becomes y=Xfl+e (see Appendix 3B). Also, an 
intercept term, if relevant to the model, should remain explicit so that X 
has a column of ones. Centering the data in this case can mask the role of 
the constant in any underlying near dependencies and produce misleading 
diagnostic results. 

STEP 1. Scale the data matrix X to have unit column lengtI1.5~ 
STEP 2. Obtain the singular-value decompositionSS of X, and from this 

calculate: 
a. the condition indexes qk as in (3.7) and 
b. the II matrix of variance-decomposition proportions as in 

STEP 3. Determine the number and relative strengths of the near 
dependencies by the condition indexes exceeding some chosen 
threshold q*, such as q*= 10, or 15, or 30.s6 

STEP 4. Examine the condition indexes for the presence of competing 
dependencies (roughly equal condition indexes) and dominating 
dependencies (high condition indexes-exceeding the threshold 
determined for step 3-coexisting with even larger indexes.) 

STEP 5. Determine the involvement (and the resulting degradation to the 
regression estimates) of the variates in the near dependencies. For 
this step, some threshold variance-decomposition proportion, m*, 
must be chosen (T* -0.5 has worked well in practice). Three cases 
are to be considered. 
Case 1 .  On& one near dependency present. A variate is involved in, 
and its estimated coefficient degraded by, the single near 
dependency if it is one of two or more variates with variance- 
decomposition proportions in excess of some threshold value T*, 

Exhibit 3.2. 

54The need for this is discussed in Section 3.3 and, more rigorously, in Appendix 3B. 
ssPrOgrams effecting this decomposition are discussed in the text below. 
56Choosing this threshold is akin to choosing a test sue (a) in standard statistical hypothesis 
testing-and only practical experience will help determine a useful rule of thumb. 1. = 15 or 
30 seems a good start. As a matter of practice it seems reasonable to ignore all condition 
indexes below the threshold as beiig too weak for further consideration, regardless of what 
patterns of variance-decomposition proportions may be associated with them. 
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such as 0.50. Presumably, if only one high variance-decomposition 
proportion is associated with this single highest condition index, no 
degradation is e~hibited.~' 
Case 2. Competing dependencies. Here involvement is determined 
by aggregating the variance-decomposition proportions over the 
competing condition indexes (see point 11 above). Those variates 
whose aggregate proportions exceed the threshold IT* are involved 
in at least one of the competing dependencies, and therefore have 
degraded coefficient estimates. In this case, it is not possible 
exactly to determine in which of the competing near dependencies 
the variates are involved. 
Case 3. Dominating dependencies. 58 In this case (1) we cannot rule 
out the involvement of a given variate in a dominated dependency 
if its variance is being greatly determined by a dominating 
dependency, and (2) we cannot assume the noninvolvement of a 
variate even if it is the only one with a high proportion of its 
variance associated with the dominated condition index-other 
variates can well have their joint involvement obscured by the 
dominating near dependency. In this case additional analysis, such 
as auxiliary regressions, is warranted, directly to investigate the 
descriptive relations among all of the variates potentially involved. 
See point 12 above. 

STEP 6. Form the auxiliary regressions. Once the number of near 
dependencies has been determined, auxiliary regressions among 
the indicated variates can be run to display the relations. A simple 
procedure for forming the auxiliary regressions is described below. 

STEP 7. Determine those variates that remain unaffected by the presence of 
the coilinear relations. See point 13 above. 

Once the X matrix has been analyzed and the potential harm to 
regression estimates has been assessed, it is possible to analyze the quality 
of an actual regression based on those data. In particular, one can often 
learn the following: 

1. How many near dependencies plague a given data set and what they 
are. 

"This situation has, as yet, not occurred in practice, and as long as the data matrix has been 
properly scaled, as in step 1, it does not seem likely that it will (cf. footnote 40, page 120). 
'%e joint occurrence of dominating and competing dependencies causes no additional 
difficulties. The competing dependencies, whether dominated or dominating, are merely 
treated as one in association with their aggregate variance-decomposition proportions. 
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2. Which variates have coefficient estimates adversely affected by the 
presence of those dependencies. 
3. Whether estimates of interest are included among those with inflated 
confidence intervals, and therefore whether corrective action (obtaining 
better conditioned data or applying Bayesian techniques) is warranted. 
4. Whether, rather generally, prediction intervals based on the estimated 
model are greatly inflated by the presence of ill-conditioned data. 
5. Whether specific coefficient estimates of interest are relatively isolated 
from the ill effects of collinearity and therefore trustworthy in spite of 
ill-conditioned data, 

Forming the Auxiliary Regressions. Once the number of near 
dependencies has been determined, a simple procedure can be used to 
form the auxiliary regressions that will display them. This is exemplified in 
the following hypothetical variance-decomposition proportions matrix of a 
seven-column data matrix. X. 

Variance-decomposition proportions and condition indexes 

Associated 
Singular Condition 
Value var(6,) var(6,) var(b3) var(b4) var(b5) var(b6) var(b7) index, TI 

PI .O .O .O .O .O .O .O 1 
PZ .O .O .O .O .O . I  .O 2 
c3 .O .O .O .O .O .O .O 3 
P4 .O .O .1 -0 .O .6 .O 5 

PS .O .l @ .o .1 .1 . I  30 

P6 .5 @) .3 . I  . I  . I  .O 50 
P7 .5 .1 .O .Y .8 .1 @ loo 

Here we see that there are three near dependencies among the seven 
variates, associated with condition indexes 30,50, and 100. Hence, in a sort 
of reduced-form, we can express three of the seven variates in terms of the 
remaining four. Choose as the three variates for which to “solve” those 
three (associated with the circles in the above II matrix) which are most 
obviously associated with one each of the three separate dependencies. 
Beginning with the strongest near dependency (q = IOO), either C4 or C7 
can be picked. Since C7 has the remainder of its variance determined in a 
more removed dependency, problems from competing relations are 
minimized if it is picked rather than C4. Similarly, it is seen that C2 and C3 
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are most obviously associated with the second (q=50) and third (q=30) 
near dependencies, respectively. Hence we pick C7, C2, and C3 as the 
“pivots” to regress separately on the remaining variates C1, C4, C5, 
and C6. 

There are, of course, many other ways in which such auxiliary 
regressions could be constructed. Indeed, the specific context of any given 
data set may suggest a natural set of pivots. In the absence of any other 
considerations, however, the procedure described above has the 
advantages that (1) it is simple to employ, (2) it picks as a “dependent” 
variate for each auxiliary regression one that is known to be strongly 
involved in the underlying near dependency, and (3) by the procedure 
itself, the right-hand variates (the remaining set of “regressors”) of the 
auxiliary regressions will be relatively well conditioned. 

Software. The computational foundation of the diagnostic procedure 
reported here is the singular-value decomp~si t ion~~ of step 2, a 
computational routine whose accessibility would seem to be somewhat 
limited. However, a library called EISPACK-Release 2 contains a very 
efficient SVD algorithm and already has been made available to over 200 
university computer facilities.60 Furthermore, an interactive routine has 
been designed specifically to effect the computational steps 1, 2, and 6 and 
exists as part of the TROLL system at the MIT Center for Computational 
Research in Economics and Management Science!’ 

Applications with Actual Data 

With one very interesting exception,6* we have, until now, employed the 
proposed diagnostic procedure just summarized only on data matrices with 
contrived near dependencies. We turn now to analyses of four matrices of 
actual data to see how the procedure fares when dealing with examples of 
naturally occurring, uncontrived near dependencies. The first example 

59As noted in Section 3.2, the eigenvecton of XrX and the positive square roots of its 
eigenvalues provide identical information as the SVD of X, but this is not recommended, for 
calculations based on XrX are computationally very much less stable than those based on X 
when X is ill conditioned-the case that is central to this analysis. (Cf. footnote 32, page 114.) 
@%pies of EISPACK-Release 2 and further information on it may be obtained from Dr. 
Wayne Cowell, Argonne Code Center, Argonne National Laboratories, Argonne, Illinois 
60439. 
‘‘The software, known as VARDCOM, is currently incorporated as part of the SENSSYS 
system at the MIT Center for Computational Research in Economics and Management 
Science. Information available from Information Processing Services, Publications Office, 
Room 39-484, MIT, Cambridge, MA 02139. 
“The unexpected weak, “backgroundt. dependency that we discovered when we examined 
the experimental series Y3. 
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utilizes the data of the Bauer matrix, introduced in a different context in 
Section 3.2. The second example examines data familiar to all 
econometricians, those relevant to an annual, aggregate consumption 
function. The third example provides diagnostics of the conditioning of the 
Friedman data that are used in Section 4.3 in the analysis of a monetary 
equation and will be more fully motivated there. The final example uses 
data from an equation of the IBM econometric model. 

Tire Buuer Matrix. The modified Bauer matrix, we recall from Section 
3.2, had an exact contrived dependency (C4=0.5C5) between its last two 
columns, which were in turn orthogonal to the first three. Its purpose there 
was to exemplify the isolation from collinearity that is afforded those 
variates that are orthogonal, or nearly so, to the variates involved in the 
offending near dependencies. In examining the II matrix, given in Exhibit 
3.4, of the Bauer matrix, the involvement of var(b,) and var(b,) in the 
exact contrived dependency was clearly observed as well as the isolation of 
the first three variances from it. But, in addition, there appeared an 
unexpected occurrence: over 97% of var(b,), var(b,), and var(b,) was 
associated with the singular value p3.  We were not prepared at that time to 
pursue this naturally arising phenomenon, but now we are. 

First we note that the variance-decomposition proportions of Exhibit 3.4 
and the corresponding singular values cannot be given a wholly 
meaningful interpretation since they are based on data that have not been 
column scaled as is required in step 1. Hence, in Exhibit 3.20 we present 
the ll matrix and condition indexes for the column-scaled Bauer matrix. 

In analyzing Exhibit 3.20, it proves instructive to feign ignorance of any 
prior knowledge we have of the properties of the Bauer matrix to see how 
well the mechanism discovers what there is to know. 

The first and obvious fact is that there are two near dependencies with 
condition indexes greater than 10. One is dominating; none is competing. 

Exhibit 3.20 Variance-decomposition proportions and condition indexes, 
scaled Bauer matrix 

Associated 
Singular Condition 
Value var(6,) var(6,) var(b,) var(b4) var(b5) Index, 11 

PI .Ooo .Ooo .Ooo .Ooo .Ooo 1 .O 
c12 .005 .005 .Ooo .OW .Ooo I .o 
c13 .oo 1 .oo 1 .047 .Ooo .Ooo 1.3 

Lluz .Ooo .Ooo .OOo 1.OOo 1.Ooo 2x10'6 
c14 .994 .994 .953 .OW ,.Ooo 16.0 
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The dominating dependency is clearly very tight, having the 
astronomically large condition index of 2 X 10l6 and involving only 
columns 4 and 5 .  Hence it is safe to conclude that the involvement of C1, 
C2, and C3 in this dependency is minimal, if any. 

The second dependency (and the one that we are really interested in 
here) possesses the weak to moderate condition index of 16. Clearly, at 
least the first three columns, C1, C2, and C3, are involved in this 
dependency, but one cannot rule out the potential involvement of C4 and 
C5, their roles being masked by their involvement in the dominant 
dependency. 

We may display these two dependencies through auxiliary regressions; 
we need only to choose the two variates to act as dependent variates, the 
three remaining being independent. In this case, choosing one of Cl, C2, 
or C3 and one of C4 or C5 is clearly appropriate. Exhibit 3.21 presents 
auxiliary regression results with C1 and C4 chosen as the two dependent 
variates to be regressed on C2, C3, and C5. The regressions are based on 
unscaled data, so that the dependencies are displayed in terms of the 
original data relationships. 

Both near dependencies are clearly displayed. In the first, we see the 
dominant, essentially perfect relation true of the Bauer data given in 
Section 3.2 in which C4=0.5C5, exactly. The noninvolvement of C2 and 
C3 in this relation is also discovered. In the second, we see a weak to 
moderate (R2=.98) relation involving C1, C2, and C3, but not C5. This is 
the naturally occumng dependency whose presence was first suggested in 
Section 3.2 and is now verified. One can now conclude that all five 
regression estimates based on this matrix are degraded to varying degrees 
by the presence of two collinear relations. The variances for the 
coefficients of C4 and C5 are obviously very seriously degraded, while 
those for C1, C2, and C3 are considerably less so. 

Exhibit 3.21 Auxiliary regressions ,* Bauer data (unscaled) 

Coefficient of 

c 2  c 3  c 5  R2 

c4 O.oo00 O.oo00 0.5Ooo 1 .ooo 
[O-OI (0 *Ol [Wl  

c1 - 0.7008 - 1.2693 0 .oo00 .9820 
[ - 14.41 [ - 7.51 [O s o 1  

*Figures in square brackets are 1-statistics. 
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It is fair to conclude that the diagnostic procedure, when applied to the 
Bauer matrix, has been very successful in uncovering all relevant 
properties of the near dependencies contained in it. 

The Consumption Function. A relation of great importance in 
economics is the annual, aggregate consumption function, and so we 
analyze the following matrix of consumption-function data: 

X =  [CONST,C( T- l),DPI( T),r(T),ADPI(T)], 

where CONST is a column of ones (the constant term), 
C is total consumption, 1958 dollars, 

r is the interest rate (Moody's Aaa). 
DPI is disposable personal income, 1958 dollars, 

and all series are annual, 1948-1974. 

It must be emphasized that no attempt is being made here to analyze the 
consumption function itself. There are many well-known, sophisticated 
alterations to basic consumption data involving, for example, per-capita 
weightings, disaggregations, wealth effects, and recognition of simultaneity. 
Our interest here necessarily centers on analysis of one fundamental 
variant without regard to additional econometric refinements; namely, 

C( T) = PI + p2C( T- 1)  + &DPI( T) +par( T) + &ADPI( T) + E( 2"). 
(3.24) 

Estimation of (3.24) with ordinary least squares results in 

C(T)= 6.7242 + 0.2454 C(T- 1) (3.25) 
(3.827) * (0.2374) 

+ 0.6984 DPI( 7') - 2.2097 r( T) + 0.1608 ADPI( T). 
(0.2076) (1.838) (0.1 834) 

R2=.9991 SER-3.557 ~(X)=376 DW- 1.87 

*Numbers in parentheses are standard errors. 

Only one of these parameter estimates, that of DPI, is significant by a 
standard t-test; however, few econometricians would be willing to reject 
the hypotheses that the other p's, either jointly or singly, are significantly 
different from zero. Furthermore, few econometricians would be happy 
with the prediction intervals that would result from such a regression. This 
dissatisfaction stems from the widely held belief that the 
consumption-function data are highly ill conditioned and that estimates 
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Exhibit 3.22 Correlation matrix for consumption-function data 

C(T- 1) DPI( T) r(T) ADPI( T) 

C(T- 1) 1 .Ooo 
DPI( T) .997 1 .Ooo 
r(T) .975 .967 1 .Ooo 
A DPI( T) .3 14 .377 .229 1 .Ooo 

based on them are too noisy to prove conclusive or ~sefu1.6~ A mere glance 
at the simple correlation matrix for these data, given in Exhibit 3.22, 
partially confirms this belief. But how ill conditioned are these data? How 
many near dependencies exist among them and how strong are they? 
Which variates are involved in them giving evidence of degradation? 
Which estimates might benefit most from obtaining better conditioned 
data or from the introduction of appropriate information through a 
Bayesian prior? Answers to these questions, of course, cannot be obtained 
from Exhibit 3.22 alone, but can be obtained from an analysis of the ll 
matrix and condition indexes for the consumption-function data. For this 
analysis, we are interested only in moderate to strong near dependencies, 
and so we set the condition-index threshold to q*=30. We continue to 
employ a variance-decomposition proportion threshold of v* = 0.50. Steps 
1 and 2 of the diagnostic procedure applied to the consumption-function 
data result in the ll matrix given in Exhibit 3.23. 

Exhibit 3.23 shows the existence of two near dependencies, one 
dominant with a large condition index of 376 and one strong with a 
condition index of 39. The dominant relation involves C( T- l), DPI( T) ,  

Exhibit 3.23 Variance-decomposition proportions and condition indexes, 
consumption-function data 

Associated 
Singular CONST C(T-1) DPI(T) r(T) ADPI(T) Condition 
Value var(b,) var(b2) var(b3) var(b,J var(b5) Index, q 

PI .001 .Ooo .Ooo .Ooo .oo 1 1 
P2 .004 .Ooo .Ooo .oo2 .136 4 
P 3  .310 .Ooo .Ooo .013 .Ooo 8 
P4 ,264 .004 .004 .984 .048 39 
PS A20 .995 .995 .Ooo 314 376 

631ndeed, few functions have received greater attention than the consumption function in 
efforts made to overcome the ill-conditioned data and refine its estimation. 



3.4 SUMMARY, INTERPRETATION, AND EXAMPLES 165 

and ADPI(T). The variable r (T)  does not seem to be involved in this 
dependency, but it is likely that the constant term, CONST, is being shared 
in both. The weaker dependency definitely includes r( T); all other variates 
are potentially involved, their effects clearly being dominated by their 
involvement in the stronger dependency with q = 376. 

Auxiliary regressions are required in this case to determine those variates 
involved in the weaker of the two dependencies. One possible choice for 
the two dependent variates of these auxiliary regressions would be DPI( T) 
and r( T). Exhibit 3.24 reports these results. 

We verify that the dominant relation does involve CONST, C(T-  l), 
DPI( T) ,  and ADPI( T), and note that the weaker involves at least CONST, 
C( T- l), and r( T). 

Quite generally, then, we may conclude that the data on which the 
consumption-function regression (3.25) is based possess two strong near 
dependencies (one very strong). Furthermore, each variate is involved in 
one or both of these near dependencies, and each is degraded to some 
degree by their presence. It would appear that the estimates of coefficients 
of C(T-  1) and DPI(T) are most seriously affected, followed closely by 
that for ADPI(T), these variates being strongly involved in either the 
tighter of the two dependencies or both. The estimate of the coefficient of 
r ( T )  is adversely affected by its strong involvement in the weaker of the 
two dependencies, but, in our experimental experience, we found q’s of 39 
to be large, and the R in Exhibit 3.24 confirms this here. Thus we see that 
all parameter estimates in (3.25), and their estimated standard errors, show 
great potential for refinement through better conditioning of the estimation 
problem, either from more appropriate modeling or the introduction of 
better conditioned data or appropriate prior information. One would be 
loath to reject, for example, the role of interest rates in the aggregate 
consumption function on the basis of the estimates of (3.25); and one 
would feel even more helpless in predicting the effects of a change in r on 

Exhibit 3.24 Auxiliary regressions,* consumption-function data (unscaled) 

Coefficients of 

CONST w-- 1) ADPI(T) R2 II 
~~~ ~ ~ ~ ~ ~~~~~~ 

DPI(T) - 1 1 S472 1.1384 .8044 -9999 376 

W )  - 1.0244 0.0174 -0.0145 .9945 39 

[ -4.91 [ 164.9) [11.9] 

[-3.91 [22.3] [-1.91 

*Figures in square brackets are t-statistics. 
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aggregate consumption from a regression equation like (3.25). Thus the 
econometrician’s intuitive dissatisfaction with estimates of the aggregate 
consumption function, and his seemingly never-ending efforts to refine 
them, seem fully justified. 

Several additional points of interest arise from th is  example, some of 
which suggest future directions for research. First, it is not surprising that 
the estimated coefficient of DPI( T) demonstrates statistical significance 
even in the presence of the extreme ill conditioning of the 
consumption-function data, for C( T) and DPI( T) are phenomenally 
highly correlated (.9999). Indeed, it is in light of this high correlation that 
the seriousness of the degradation of the estimate of this parameter can be 
seen, for its standard error is nevertheless quite large, resulting in the very 
broad 95% confidence interval of [.28, 1.1 11. Second, as seen from Exhibit 
3.23, no one near dependency dominates the determination of the variance 
of the estimate of the constant term. This estimate is nevertheless degraded 
since nearly 70% of the variance is associated with the two near 
dependencies, as is verified by the auxiliary regressions in Exhibit 3.24. 
This lack of dominance is to be contrasted with the estimates of the 
coefficients of C( T- 1) and DPI( T), which also clearly enter both near 
dependencies but are greatly dominated by the stronger of the two. This 
situation suggests, in accord with intuition, that it is possible for a variate 
that is weakly involved in a strong near dependency to be confounded with 
one that is more strongly involved in a weaker near dependency. Similar 
results occur in the experiments of Section 3.3, but not in such a way that 
any definite conclusions can be drawn. Further experimentation will be 
needed directly to test this suggestion. Third, within a given near 
dependency, there appears to be a strong rank correlation between the 
relative size of the variance-decomposition proportions of the variates 
involved and their ?-statistics in the corresponding auxiliary regressions. 
Comparing the variance-decomposition proportions for the near 
dependency with q=376 in Exhibit 3.23 and the corresponding i’s for the 
DPI(T) regression in Exhibit 3.24 exemplifies the point. Of course, 
allowance must be made for relations that are dominated (such as the one 
with q = 39) or are competing, but again there is considerable support, but 
no substantiation, for such a hypothesis from the experiments of Section 
3.3, and further experiments aimed directly to this point are suggested. 
Fourth, even with this “real-world” data, the relative progression between 
correlations and condition indexes summarized in point 2 above continues 
to hold. The near dependencies of the consumption data are of orders of 
magnitudes 30 and 300, two steps apart along the progression 3, 10, 30, 
300, and so on. Similarly, the R2’s of the auxiliary regressions reported in 
Exhibit 3.24 are .99 and .9999, two steps apart along the 9’s progression .9, 
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.99, .999, .9999, and so on. Fifth, we once again note the ability of these 
diagnostic tools to uncover complex relations among three or more variates 
that are overlooked by simple correlation analysis, a problem first raised in 
the introduction. The simple correlation matrix in Exhibit 3.22 surely tells 
us that DPI( T) and C( T- 1) are closely related; but the role of ADPI( 7') 
(or, equivalently, the role of DPI(T- 1)) is not at all observable from this 
information. The largest simple correlation with ADPI(T) is under .4. The 
role of ADPI( T) in a near dependency along with C( T- 1) and DPI( T), 
however, is readily apparent from the variance-decomposition proportions 
matrix of Exhibit 3.23. 

The Friedman Data. As a further example of the use of the collinearity 
diagnostics, we analyze the conditioning of a body of monetary data. 
These data, relevant to the equation for the household demand for 
corporate bonds in the Friedman (1977) model, are introduced in greater 
detail in Chapter 4. We treat these data rather clinically here, without 
concern for their economic meaning, deferring definitions of the variable 
names and motivation for the model to Section 4.3. The reader may find it 
of interest to return to this example once that section has been read. We 
also see in Section 4.3 that it is possible to use ridge regression to 
ameliorate somewhat the collinearity that we soon observe to beset the 
Friedman data, with the result that the instability in the estimated 
coefficients is greatly reduced. 

The Friedman data consist of 56 observations on seven variables, the 
first of which is a constant variate. We continue to set q* at 30 and B* at 
0.50. Steps 1 and 2 applied to these data result in the ll matrix given in 
Exhibit 3.25. 

Exhibit 3.25 Variance-decomposition proportions and condition indexes, 
Friedman monetary data* 

Associated 
Singular Condition 
Value var(b,) var(b2) var(b3) var(b4) var(b5) var(b6) var(b7) Index, 7 

PI .Ooo .Ooo .OOo .OOo .Ooo .Ooo .Ooo 1 
P2 .004 .002 .OOo .023 .OOO .OO 1 .OO8 6 
P3 .001 .004 .003 .014 .096 .OOO .007 9 
114 .024 .028 .OO8 .2OO .022 .OOO -005 15 
P5 .091 .046 .018 .024 . I  14 .007 .009 21 
P4 .OO1 ,224 .I5 1 .596 .532 .028 .468 48 
P7 .878 .695 .819 .I42 .235 .963 SO2 112 

*For definitions of the variables and motivation for the model, see Section 4.3. 
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Two near dependencies with q>q*=30 are observed, one dominant 
with an q of 112. Clearly columns 1, 2, 3, 6, and 7 are involved in this 
stronger dependency, while columns 4, 5, and 7 (marginally) are involved 
in the weaker near dependency with q -48. Further, columns 1,2, 3, and 6 
could conceivably be involved in this weaker dependency, their effects 
possibly being masked by the dominant dependency associated with 
q = 112. Auxiliary regressions are required to obtain more detailed 
information on the exact makeup of these two near dependencies. From 
among the many ways two of these variables could be chosen to be written 
as a linear combination of the remaining five, examination of Exhibit 3.25 
would suggest pivoting on C4 and C6 to form these auxiliary regressions, 
since these two columns show simultaneously maximum involvement in 
one near dependency and minimum involvement in the other. Thus we 
regress C6 and C4 on the remaining columns C1, C2, C3, C5, and C7 to 
obtain Exhibit 3.26. 

From Exhibit 3.26 we see that all the variates C1, C2, C3, C5, and C7 
are strongly involved in the dominant near dependency along with C6, 
while only C2, C3, C5, and C7 enter into the weaker dependency along 
with C4. The usual progression of R2 versus q is again evident, although 
the level is different here from that for the consumption-function data. The 
q of 48 here corresponds to a slightly lower R2 of .98 than was the case for 
the consumption function, where an q of 39 corresponded to a near 
dependency having an R2 of .99. This highlights the fact, noted earlier, 
that condition indexes and correlations (multiple correlations) provide 
similar information about the relative tightness of a linear relationship, but 
do not convey the same information regarding absolute levels of tightness. 
It remains an open and interesting question which measure, if either, 
provides the better information regarding the potential harm to regression 

Exhibit 3.26 Auxiliary Regressions,* Friedman monetary datat 

Coefficient of 

c1 c2 c3 c5 c7 RZ 17 

C6 -1.818 0.0158 2.3506 3.6033 0.3614 .9989 112 
[- 14.01 [9.6] [13.2] (7.5) [I6.8] 

C4 0.0146 0.0103 1.3364 -2.1861 -0.1458 .9835 48 
[0.1] [7.5] [9.0] [-5.51 [-8.11 

*Figures in square brackets are t-statistics. 
'For definitions of variables and motivation for the model, see Section 
4.3. 
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estimates due to a given near dependency. In any event, it is clear that the 
information from auxiliary regressions is quite complementary with that 
obtained from the condition indexes and the variance-decomposition 
proportions; the two together provide a powerful and efficient tool for 
uncovering and analyzing the presence, degree, and content of linear near 
dependencies among data series. 

An Equatim from rhe IBM Econometric Model. The next example of 
the collinearity diagnostics makes use of a data set brought to our 
attention by Harry Eisenpress of IBM. It serves well both to expand our 
understanding of the means by which this diagnostic technique can 
distinguish between two seemingly intertwined linear relations within a 
data set and to provide an excellent example of the practical distinction 
between harmful and degrading collinearity made in Section 3.2. 

The basic regression model employed in this analysis is of the form 

NONDUR( T) = PI + &RATINC( T) + P,NONDUR( T- 1) + E(  T ) ,  

(3.26) 

where 

NONDUR = the ratio of nondurables-and-services consumption 

RATINC = the ratio of current deflated discretionary income 
to deflated discretionary income 

to its lagged value. 

Employing quarterly data from 1955-1 to 1973-4, this equation is 
estimated as 

NONDUR( T) =0.6906 - 0.6653 RATINC( T) + 0.9794 NONDUR( T -  1) 
(0.0656) (0.0613) (0.0342) 

(3.27) 
R * = .9226 SER = 0.0043 DW = 2.19 K ( X )  = 305. 

The estimated standard errors are given in parentheses, and on the basis of 
the t-statistics (all of which are in excess of lo), the three coefficients 
individually differ significantly from zero. At the same time, the condition 
number of the scaled X matrix (of order 76x3  including the constant 
term) is 305, indicating, according to our previous experience, at least one 
very strong near dependency among the three columns of X. Thus, while 
the individual t-statistics are good, there is evidence that a more detailed 
analysis of the possible sources of coilinearity within X is nevertheless 
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Exhibit 3.27 Variance-decomposition proportions, IBM equation 
Associated 
Singular CONST RATINC(T) NONDUR( T- 1) 
Value W b l )  W b 2 )  var(b3) 9 

PI .OOo .Ooo .m I 
c(2 .045 .085 .975 138 
P3 .954 .914 .024 305 

warranted. Exhibit 3.27 presents the variance-decomposition proportions 
for this data set. 

Exhibit 3.27 reveals not one but two strong near dependencies among 
the columns of X, a dominant relation, with condition index 305, involving 
CONST and RATING( T), and a dominated, but nevertheless strong, 
relation, with condition index 138, involving NONDUR( T- 1) and 
possibly CONST and/or RATINC(T), the effects of these latter two 
columns being masked by their involvement in the dominant near 
dependency. The dominant near dependency between CONST (the 
constant term) and RATING( T) is not surprising, for RATINC( T), being 
a ratio of a relatively smooth time series to its lagged value, is clearly going 
to take on values around unity. Auxiliary regressions are required to 
ascertain the nature and extent of the second, dominated near dependency. 
Special care, however, is required in this case in forming and interpreting 
the auxiliary regressions. 

Since there are two near dependencies among three variates, we can 
consider forming auxiliary relations between any two of the variates with 
the third. The two auxiliary regressions that are indicated from an 
examination of Exhibit 3.27 are between RATINC(T) and CONST on the 
one hand and between NONDUR(T- 1) and CONST on the other.@ 
CONST, of course, is a constant term, so both of these relations involve a 
regression of a single variate on a constant term alone. While there is 
nothing to prevent one from running such a regression, it is also clear that 
R 2, as usually calculated, will necessarily be zero, and this measure will not 
serve to assess the strength of the auxiliary relations. Rather it will be 
required to draw on the well-known fact that the cosine of the angle 8 
between any two n-vectors u and v can be expressed as u*v/llullIlvll. The 
square of this cosine bears a direct relation to R 2  and serves as an 
appropriate generalization of that concept when one of the two vectors has 

could just as well have chosen CONST on RATINqT) and NONDUR(T- 1) on 
RATINqT), but we chose instead to put the constant term CONST on the right-hand side. 
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Exhibit 3.28 Auxiliary regressions,* IBM equation 

Associated 
COSZB Condition Index 

RATINC( T) = 1.0092 CONST .999934 305 

NONDUR(T- 1) = 0.9532 CONST .999763 138 

[1067.0] 

[562 .O) 

*Figures in square brackets are t-statistics. 

constant c0mponents.6~ Exhibit 3.28 presents the two auxiliary regressions 
along with the appropriate squared cosines. 

Indeed we note that both near dependencies are very strong, but that the 
one associated with the dominant condition index 305 is the stronger,66 
and the usual “progression of nines” prevails. The diagnostics are therefore 
quite correct in indicating two strong near dependencies in the data set, 
and we have identified them. There does, however, remain one very 
interesting question: if collinearity is so bad among the columns of X, how 
did the regression estimates in (3.27) seemingly turn out so well? Each 
estimated coefficient there, we recall, had a t in excess of 10. But we see 
that this is only part of the story. 

It is appropriate at this point to reiterate the distinction made in Section 
3.2 between degrading and harmful collinearity. The presence of collinear 
dependencies renders tests based on least-squares estimates for a given 
sample size less powerful than could otherwise be the case; that is, 
collinearity degrades regression estimates. The degradation need not, 
however, be great enough actually to cause trouble for some purposes; that 

6sFor any two n-vectors u and v with angle 8 between them we have cos(8)~mrv/llulillv~~. If, 
in addition, u and v are centered about their means, this expression becomes r,, the Simple 
correlation between the components of u and those of v. The cosine of the angle between two 
centered vectors is thus directly related to the concept of correlation. Furthermore, it is 
readily demonstrated that the usual regression RZ is the simple correlation ber~een the true 
values of the response variable y and its least-squares fitted values i. Thus R2=cos2(8), 
where 0 is the angle between i and i and where the tilde indicates the vectors have been 
transformed into deviations about their means. Clearly this latter concept is of no use if either 
y or i has constant components. In this latter case, it is appropriate to consider the angle 0 
between y and i as a measure of their tightness of fit. When @ t o o ,  y and i Lie on the same 
line and cos(8)= 1, indicating this collinearity. When 8-90”, the two vectors are orthogonal, 
and cos(B)=O, indicating this lack of collinearity. 

is of interest to note here that the angle between RATlNqT) and CONST is less than f 
degree (about 28 minutes of 1 degree) and that between NONDUR( T- 1) and CONST is less 
than 0.9 degree (about 53 minutes of 1 degree). 
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is, it may not actually become harmful!' In the estimation of (3.27), for 
example, we can well assume that all of the regression coefficients are 
seriously degraded by their involvement in two strong near dependencies, 
and that our knowledge of all the estimates could be made even more 
precise if better conditioned data were employed. Such degradation clearly 
has not been harmful if our interest in (3.27) centers only on tests that the 
coefficients individually differ significantly from zero, for each coefficient 
passes this test with flying colors. If, however, our interest were in other 
tests of hypothesis, we might not be so fortunate. For example, it may well 
be of interest in a model of this sort with a lagged dependent variable 
to test the null hypothesis H,: p3=1, with an alternative hypothesis 
H, : p3 < 1. The calculated t for such a test here is .6023, and, on the basis 
of these data, we may not reject Ho. However, because we know that the 
estimate b, on which this test is based is being degraded by its inclusion in 
a strong near dependency, we are less willing actually to accept H, rather 
than to feel that the test consequently lacks power and is inconclusive. This 
test of hypothesis, therefore, is actually being harmed by the presence of 
degrading collinearity in the sense that there is reason to believe that the 
introduction of better conditioned data would result in a more refined 
estimate of p,, and with it a more conclusive test of H,: /3, = 1. If the test 
of this hypothesis were truly important to the investigator, the present data 
set would not be optimal for his needs. He would clearly be better off with 
a data set in which the effects of NONDUR(T- 1) were not so 
confounded with those of CONST or RATINC( T). It may very well be the 
case that, even if such data were available, they would lead to the same 
outcome, that is, not to reject H,: /3,=1. However, under these 
circumstances the investigator would have increased confidence in the 
conclusiveness of the test of hypothesis, knowing that the acceptance 
region had not been enlarged by ill-conditioned data. Collinearity is 
harmful, therefore, only if it is first degrading and then if, in addition, 
important tests based on the degraded estimates are considered 
inc~nclusive,~~ for these tests could be refined and made more trustworthy 
(even if the outcome is the same) when based on better conditioned data. 

671t is recalled that degradation is based on an analysis of the data matrix X alone. The 
estimated variances, however, depend not only on the elements of (X'X)-' but also on the 
estimated standard error s2. It could well be that degraded (inflated) elements of (X'X)-' are, 
for specific purposes, counteracted by a sufficiently small estimated regression error variance 
5'. The degradation exists, nevertheless, and one would clearly be even better off without it. 
%s occuls for a test of significance when it fails, and, rather more generally, for a test of 
hypothesis when one is unable to reject the null hypothesis. 
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It is important to note that the preceding discussion is not meant to 
suggest that an investigator should continue to seek out new data sets 
(should such riches be available) until a given hypothesis achieves a 
desirable outcome. Rather it is to say that, regardless of the desired 
outcome, tests of hypothesis of individual parameters6’ which are based 
on degraded estimates tend to lack power, the confidence intervals of 
the estimators being enlarged by the ill conditioning and, as such, the 
investigator is quite justified in viewing an outcome that lies in the 
“acceptance” region as being inconclusive. Of course, no similar 
assessment is warranted if the outcome falls in the rejection region, for one 
cannot be upset when an unpowerful test is nevertheless successful in 
rejecting a hypothesis. 

APPENDIX 3A: THE CONDITION NUMBER AND INVERTIBILITY 

In this appendix we examine a means for interpreting the relation that 
exists between the condition number of a matrix and the “invertibility” of 
that matrix. We see that the higher the condition number of a matrix, the 
greater is the potential sensitivity of elements of its inverse to small 
changes in the elements of the matrix itself. Sensitivity is measured by the 
economist’s familiar notion of elasticity. In particular we see that twice the 
condition number of a real symmetric matrix A, that is, ~ K ( A ) ,  provides an 
upper bound for the elasticity of the diagonal elements of A-’ with respect 
to elements of A. This result is then particularized to the special case where 
A =  X*X, and it is shown that ~ K ( X )  plays a similar role for the elasticity of 
the diagonal elements of (X‘X)-’ with respect to elements of X. This latter 
result shows how the condition number provides a measure of the potential 
sensitivity of the estimated standard errors of regression coefficients to 
small changes in the data. 

The elements of any matrix A are denoted by A=(u,,) and those of the 
inverse (if A is square and invertible) by A - ’ = ( d ) .  The m rows of an 
m X n matrix are denoted according to 

69As well as most linear combinations of the estimators. As is well known [Theil (1971), pp. 
148-1521, however, tests based on some, but by no means all, linear combinations of degraded 
estimates may not be degraded by ill-conditioned data. See also Appendix 3B. 
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The notation I * I indicates absolute value, and llxll denotes the Euclidean 
length of a vector x, that is, (Z:-Ix~)1/2. 

We first show a result applicable to any nonsingular matrix A which 
gains strength when applied to the case where A is a real symmetric matrix. 
Here we employ the elasticity notation 6: q a u  u/au,)(a,/h O). 

Theorem 1. Let A be a nonsingular matrix with condition number K(A), 
then I(,!![ < c~K(A) where cu 2 1 for all i andj. 

PROOF. First we recall [Theil (1971), p.331 au@/8urs= -u"a$, and from 
the SVD of A=UDVr, we note urs=uTDvs and ahk=vrD-luk. Hence we 
may write 

Taking absolute values and applying the Cauchy-Schwartz (C-S) inequality 
to the numerator produces 

x (uTD- Iu,) 1/2 (ur r Dur) 1/2 (vs r D - 1  v,) 1/2 (vs r Dv,)"'. (3A.2) 

Recalling that llukll = llvkll = 1 for all k, and that D is diagonal, we employ 
the fact [Rao (1973)J that for any positive-definite matrix B and vector f l  
with l l f l l l =  1, flTB@ < A,,,, where A,, is the maximal eigenvalue of B. 
Hence we have 

where 

by the C-S inequality. 
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We next examine the case where A is a nonsingular real symmetric 
matrix. Recognizing that changing a,, now also changes a,,, the elasticity of 
an element of A-‘ with respect to ars becomes 

Furthermore, along the diagonal of A-I, where i = j ,  we have 

(3A.4) 

(3A.5) 

where [;: is defined as in (3A.1). 
Finally we note that the symmetry of A implies that its SVD takes the 

form UDVT where, for all i, v i=  qui, ai= +- 1. Hence, along the diagonal 
where i =j, cv in Theorem 1 takes the values cii= 1 for all i. Joining this 
fact and Theorem 1 to (3A.9, we have just proved Theorem 2. 

Theorem 2. Let A be a nonsingular real symmetric matrix with 
condition number K(A), then, for the diagonal elements a ” f 0  of A-’, 
1g;;l < ~ K ( A )  for r#s  and lg,!;l <K(A) for all r.  

From the point of view of users of least-squares regression, particular 
interest is attached to the case where A=XTX, where X is an n x p  data 
matrix with condition number K(X). We now prove Theorem 3. 

Theorem 3.7’ Let X = ( x l k )  be an n x p  data matrix, and let A=XTX. 
Then 16;~I~((aaii/ax,k)(x,k/aii)<2KCX) for i , k=  1 ,..., p and ? = I ,  ..., n. 

‘ 9 e  are indebted to R. J. OBrien of the University of Southampton for providing a proof 
(employed here, following equation (3A.6)) that substantially tightens our original bounds. In 
OBrien (1975) a study of the sensitivity of OLS estimates to perturbations in the data is 
undertaken. 



176 

PROOF. 

DETECTING AND ASSESSING COLLINEARITY 

a ik 

= - 2 - x,,x,Ta' 
arl 

(3A.6) 

where xr is the tth row of X and a' is thejth column of A-', and where we 
note that Z:,la"'x,=x,Taj is the ( j , t )  element of the p x n  matrix 
Z T = ( X T X ) - ' X T .  Letting zj be the j th  column of Z, we note that 
lzljl < llz,ll = ( a l ) ' / 2 ,  this latter since ZTZ = (XTX)-'. Likewise 
Ix,&l< l l x k ~ ~  -(akk)'/'. Hence for i =j, (3A.6) becomes 

(3A.7) 

Further, A positive definite implies la"l< (ai i )1/2(akk)1/2,  resulting in 

Now, for any p-vector a such that l(a(( = 1, aTAa=aTWZVTas#?'D2@, 
where llpll= llVTall = 1, and hence 

aTAa =G pi,. (3A.9) 

In particular, letting a be the k th-component unit vector, (3A.9) becomes 

Prnax,  2 (3A.10) 

Using A-' and DW2 in the above results in 

1 
a k k <  2, 

Pmin 

(3A. 1 1) 
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which implies, in conjunction with (3A. lo), that 

( a k k ) l / 2 ( a k k ) l / 2  & - - K(X). (3A. 12) 
Pmin 

Hence, (3A.8) becomes 

(3A. 13) 

H 

This last result is directly interpretable in a least-squares context, for it 
says that the elasticity of the variance of any least-squares estimate with 
respect to any element of the data matrix X is bounded by twice the 
condition number of X. That is, 2 ~ @ )  provides an upper bound to the 
possible sensitivity of the parameter variances to changes in X. Since 
condition numbers in excess of 100 are not uncommon for econometric 
data matrices (the consumption-function data, we recall, have a K of 370), 
a 1% change in any element of X could result in a 2 X  IWO change in the 
variance of any estimate or, roughly, a 14% change in its standard error. It 
is to be emphasized that this result is an inequality, and hence shows the 
maximum potential sensitivity; it is not an immutable and incontrovertible 
fact of life. Experience shows that the sensitivity of economic data is 
usually considerably less than this maximum. Ill-conditioned data, 
however, obviously have the potential for causing troubles, and the 
condition index provides a quick measure of the extent of that potential. 

APPENDIX 3B: F’ARAMETJ3RIZATION AND SCALING 

This appendix deals with- two related issues that arise with respect to the 
general applicability of the collinearity diagnostics: the effect on the collin- 
earity diagnostics due to linear transformations of the data (the problem of 
“parameterization”) and the validity of and need for column scaling. The 
second issue has already been introduced in Section 3.3 but is given 
stronger justification in light of the results of Appendix 3A. 

The Effects on the Collinearity Diagnostics Due to Linear Transformations 
of the Data 

The collinearity diagnostics of this chapter analyze the suitability of the 
conditioning of the n x p  matrix X for estimating the parameters p of 
the linear model y = X f i + . ~  by the technique of linear regression. It may be 
the case, however, that one is interested in estimating a reparameterized, 
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but equivalent, version of this model in the form of 

where G is a p X p  nonsingular matrix. Since the singular values of Z need 
not be the same as those of X, the question naturally arises as to whether 
the collinearity diagnostics when applied to Z can show few or no 
problems even if they reveal severe problems when applied to X. While no 
simple answer can be given to this question," we are able to show here 
that the dependency of the collinearity diagnostics on the choice of 
parameters (or, equivalently on linear transformations of the data) in no 
way reduces the validity or usefulness of these diagnostic techniques for 
any particular application. Furthermore, we see that, in practice, most 
reparameterizations G leave the collinearity diagnostics little altered, if 
altered at all. And finally, we see that a linear transformation G-' can 
"undo" ill conditioning in X only if the transformation G-' is itself ill 
conditioned in a manner dependent on the nature of the ill conditioning of 
X. This proposition means (1) that such benignant transformations cannot 
be presumed to occur in practice, for the parameterization G is chosen on 
the basis of a priori modeling considerations whereas the ill conditioning 
of X results from chance outcomes in the data, and (2) that even if such a 
G were chosen, its ill conditioning would, as a matter of practice, provide 
unstable computation of G-' and Z = XG-'. 

Each Pammetenzation Is a Diflemnt Problem. It is well known [Theil 
(1971), pp. 153-154; Malinvaud (1970), pp. 216-221; Silvey (1969)J that 
some linear combinations of regression parameters can be precisely 
estimated even if ill conditioning prevents precise knowledge of the specific 
parameters estimated. Therefore, should the investigator be interested in 
such linear combinations of the parameters, reparameterization is a benefit 
to his cause?* If, however, the investigator is not interested in such linear 
 combination^,'^ but rather in estimates of the original parameters, then the 
fact that such linear combinations exist does him little good indeed. Thus, 

"The solution to this problem depends on knowledge of the relation of the condition indexes 
of a given matrix X to those of the linear transform, XC-'-and this latter problem stands as 
an interesting but unsolved problem of numerical analysis. 
720f course, testing hypotheses on linear Combinations S-G@ of the parameters of a given 
model y=Xg+c is equivalent to tests of hypotheses on the explicit parameters of an 
appropriately reparameterized model, y-Z&+e, ZsXG-'. 
"Since the linear combinations of the parameters that can be known with precision depend 
on the eigenvalues of X'X [Sivey (1969)) and not on the investigator's model, it is unlikely 
that one wil l  be interested in such a linear combination in practice. 
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each parameterization, with its corresponding data matrix, poses a separate 
problem. The investigator requires a diagnostic procedure that allows him 
to assess the suitability of the data for estimating the model relevant to his 
choice of parameterization. The diagnostics of Chapter 3 do just that. If 
the parameters of interest are the P'S of y=Xfl+ e, then the diagnostics are 
to be applied to X, whereas if the parameters of interest are the 8's of 
y = Z8 + E = O(G-')G@ + e, then the diagnostics should be applied to 
Z=XG-'. As a practical matter, however, we see that the diagnostics often 
lead to similar basic conclusions in both situations. 

A simple example serves well here. Consider a Cobb-Douglas model 
Q = AKaLBq estimated as 1nQ = 1nA + alnK + pint + E .  Assume 
investigator 1 is interested in knowing the individual coefficients, a and p, 
whereas investigator 2 is interested only in returns-to-scale as measured by 
y = a + p. Investigator 1 takes the basic data matrix74 X = [ r  1nK InL], while 
investigator 2 formulates the model as InQ- InA + ylnL+$(lnK- 1nL)f E ,  

where reparameterization occurs as75 

that is, y = a + &  +=a. For illustrative purposes, we assume that 
investigator 1 finds X ill conditioned on account of a single strong near 
dependency between InL and InK, and, as a result, he is unable to obtain 
the precise estimates he desires of a and /3 (although he gets a good 
estimate of the constant term, 1nA). Investigator 2, however, finds, in 
estimating his model y=Zb+e, where Z = [ I  1nL (InK-InL)] and b=(lnA, 
y, +)T, that the estimate of y = a + / ?  is quite well determined, and he is 
happy. This stems from the fact that the single near dependency in X 
between InL and InK (which has wholly foiled investigator 1) has been 
transformed into a single near dependency in Z between. I (the constant 
term) and the now relatively constant variate InK-1nL. Investigator 2 
therefore finds the Z matrix unsuitable for estimation of 1nA and I$, but 
quite useful to his purpose of estimating y = a + p .  Of course, the 
happiness of investigator 2 in no way diminishes the SOITOW of investigator 
1; investigator 1's problem is real despite the fact that another 
parameterization need not suffer the same fate. One should not be 
surprised, then, by the fact that data that are harmfully ill conditioned for 
one parameterization need not be so for another. What is important to 

'Vhe term I is a column of ones. 
7sWe are ignoring the constant term here. It is the same in both parameterisations and merely 
adds an identity component to the transformation. 



180 DETECTING AND ASSESSING COLLINEAIUTY 

realize here is that the diagnostics will correctly assess the suitability of the 
data for each investigator's needs. Investigator 1, in applying the analysis 
to X, will discover the near dependency adversely affecting a and p and 
will be apprised of the unsuitability of this data set for his needs. Likewise, 
investigator 2, in analyzing Z, will discover the near dependency adversely 
affecting the estimates of Id and +, but will also be apprised of the 
suitability of the data for estimating y = a + p. 

To summarize the foregoing, we see that each parameterization of a 
model presents an inherently different problem, reflecting different 
interests of the investigator and requiring different characteristics of the 
data. In general, once a parameterization Cp has been decided on, the data 
should be transformed (if need be) to conform, so that the model becomes 
y = Xf3 + e. Application of the diagnostics to X then assesses the suitability 
of X for estimating the specific parameters Cp. If the parameterization is to 
be changed, the data should be appropriately transformed and reanalyzed 
for their suitability to the new parameterization. In practice, however, 
analysis of the data in the form of X generally also tells a great deal about 
its suitability for other parameterizations. In particular, we see that 
reparameterization rarely undoes near dependencies; it merely alters their 
composition, as occurs in the case considered above. 

A More Genera/ Analysis. As noted, no fully general analysis of the 
effect of linear transformations is possible, since there is no known 
relation, in general, between the condition indexes of X and those of XA, 
for A nonsingular, The following points, however, can serve to clarify the 
effects that such linear transformations of the data can have on the 
collinearity diagnostics: 

1. Clearly, in the case of an exact dependency, no reparameterization can 
undo it, and so change the nature of the diagnostics. If there is a c#O such 
that Xc = 0, then for any Z =XA (A nonsingular) there exists a d = A-'c#O 
such that Zd = 0. Hence XTX has a zero eigenvalue if and only if ZTZ does, 
and the diagnostics would detect the dependency whether one analyzes X 
or Z. 
2. When the dependencies are not exact, however, it is possible for a 
reparameterization to result in a better conditioned matrix. Consider the 
matrices 
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As a goes to zero, A becomes ill conditioned and B does not. However, 
AG- ' = B, where 

Hence, there is a transformation G -  * that takes the ill-conditioned matrix 
A (for small a) into the well-conditioned matrix B. But this transformation 
itself becomes ill conditioned (as is obvious) as a goes to zero. Hence, 
unless the parameterization that is associated with B is the one desired for 
estimation, the transformation back to the one associated with A 
reintroduces the ill conditioning (you can't get something for nothing). 

This result is seen more generally as follows. Consider a data matrix X. 
The condition number of XTX is pi,m,/p&, and, as is well known 
[Wilkinson (1969, p. 571, 

pj,dn = cni:l IcTXTXcl and p i , , ,  = max IcTXTXcI. 
crc= 1 

Let c* be a solution to the min problem, and co be a solution to the max 
problem. Consider the "reparameterization" defined by Z = XG- and let 
d*=Gc* and d"=Gc". Further normalize d*=d*/lld*ll and d"=d"/IldOll. 
Then we have Id*'ZTZd*l= p~.minlld*ll-2 > p;,dn and IdoTZTZd0l 
= C1:,maxlldoll-2 G p;,,,,, where the p& are eigenvalues of Z'Z. Hence 

(3B.1) 

We see from (3B.1) that the condition number of Z exceeds that of X by a 
nonnegative factor lld*ll/lld"ll. In the case of an orthonormal G, it is clear 
that I)d"JJ = Ild*IJ and, as is well known, the equality holds in (3B.l). In this 
case, ill conditioning in X is directly reflected in ill conditioning in Z. More 
generally, (3B. 1) shows that reparameterization can make things better, 
that is, reduce the condition number, only if ~ ~ d * ~ ~ / ~ ~ d o ~ [  < 1, and indeed, if 
K(X) is very large, K(Z) can be small (but need not be) only if Ild*ll/lld"ll is 
very small. But this says that some transform under G of a unit vector is 
small in length, namely, d* = Gc*, relative to the length of another, namely, 
do = Gc". This, of course, can occur only if some eigenvalue of G is small 
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relative to another, or, equivalently, if G is ill conditioned; and the more ill 
conditioned X, the more ill conditioned must be G.'6 
3. The above result shows that reparameterization could improve 
conditioning, but in a way that depends on the singular values of X (or the 
eigenvalues of XTX); the transformation must be ill conditioned in a way 
that just offsets the ill conditioning of the X matrix. Thus, any 
improvement in conditioning brought about by reparameterization 
depends on aspects of the matrix X that are outside the control of the 
investigator, namely, the singular values of X. It can only be by accident 
that a particular parameterization, chosen on a priori grounds, would just 
undo the fortuitous ill conditioning of any given data matrix. Therefore, 
little practical significance attaches to this aspect of parameterization. 
4. There is another sense in which the above result shows 
reparameterization to have little practical value to the improvement of 
conditioning. Suppose the desired parameterization is as y =Xp + e, but 
that X is very ill conditioned. Suppose further that it is determined that 
reparameterization as b = Gfl provides a data matrix Z = XG- that is well 
conditioned. At first blush, it would seem reasonable to obtain an estimate 
d of b by OLS of y on Z and then estimate f3 by b=G-'d. This maneuver, 
however, cannot rid the problem of its ill conditioning, for we have seen 
that the ill conditioning of X implies ill conditioning of G, and hence of 
G-'. The ill conditioning of X is reintroduced into the solution of b=G-'d 
through the ill conditioning of G-'. It is true that one can often find a 
parameterization (usually without a priori interpretation) that takes us 
from darkness into light, but should we desire to return, the lights must 
again be dimmed. 
5. Finally, as noted above, orthononnal reparameterizations will not 
change the conditioning of the data matrix; indeed the eigenvalues of XTX 
remain invariant to such transformations. Likewise, well-conditioned 
reparameterizations (G with nearly equal eigenvalues) will, as a matter of 
practice, not alter the conditioning much and certainly cannot improve it 

'%is is proved as follows: Let c by any p-vector with ilcll= 1, and define d d k .  Let the 
SVD of G be UDV*. Then lldll- IIUDVTcll = JJDh/l, where h=V*c and llhll- 1. We have used 
the orthogonality of U and V. Hence lldll =&&:)''2, from which we get pmi. < lldll< p,. 
Now, from the text, ill conditioning in X can be offset by C-' only if Ild*(l <lld"ll. and hence 
we have l(mh < lld*II < lld"II < p,. Thus ~(G)=p-/p- > ~ l d o l ~ / l ~ d * ~ ~ .  Combining this with 
(3B.1), we obtain 

K(Z) > K ( X ) K -  ' (G),  

and we see that the larger K@), the larger must be K(G) to offset. 
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greatly." Hence, a well-conditioned reparameterization will leave the 
condition indexes relatively unchanged. As a matter of practice, the 
diagnostics of this chapter applied to the data matrix X will also tell much 
about the number and relative strengths of linear dependencies that will 
exist in any well-conditioned linear transformation of X. 

We may summarize the foregoing by noting that reparameterization (or, 
equivalently, linear transformations of the data) neither causes problems 
nor, in general, solves them. On the one hand, one cannot, except by 
happy accident, make use of linear transformations to relieve ill 
conditioning in the data. On the other hand, although the collinearity 
diagnostics are seen to be dependent on the parameterization chosen, it is 
also seen that such a dependency will not, in the case of well-conditioned 
transformations, alter the basic story told by the diagnostics, and will not, 
in any event, invalidate or reduce the usefulness of the collinearity 
diagnostics for correctly assessing the suitability of the appropriately 
transformed data for estimating the parameters of the particular 
parameterization chosen. 

Column Scaling 

We now turn to an examination of the effects of column scaling on the 
collinearity diagnostics. In the text, we recall, the data are scaled to have 
unit column length before being analyzed by the collinearity diagnostics. 
Some intuitive justification for such scaling is offered in Section 3.3, but a 
more rigorous justification has awaited the results of Theorem 3 of 
Appendix 3A. 

Of course, column scaling is a special case of the more general linear 
transformations of the data we have just considered, namely, that case 
limited to transformations of the form Z=XB, where B is diagonal and 
nonsingular. Unlike the general case, however, column scaling does not 
result in an inherently new parameterization of the regression model; 
rather, as we have already seen in Section 3.3, it merely changes the units 
in which the X variates are measured. However, it is still true that different 
column scalings of the same X matrix can result in different singular values 
and, hence, cause the collinearity diagnostics to tell different stories about 
the conditioning of what are, from a practical point of view, essentially 
equivalent data sets. In this appendix we see that (1) although there is an 
optimal scaling that removes this seeming ambiguity, it cannot, in general, 

"This is seen from the inequality (3B.1) above. If Ild*ll=Ild"II. so that, in the worst instance, 
~ ~ d * ~ ~ / ~ ~ d o ~ ~  is not too small, the conditioning of Z is bounded away from being much 
improved over that of X. 
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be simply determined, but (2) scaling for unit length (or, more generally, 
for equal column length) affords a simple and effective expedient for 
approximating this optimal scaling. 

The optimal scaling for the purpose of the collinearity diagnostics is 
readily determined from an examination of Theorem 3 of Appendix 3A. 
There we found the inequality, 

that relates two measures of the conditioning of X, ( 1 )  the condition 
number of X, K@), and (2) the sensitivity of the diagonal elements of 
@‘X)-’ to small changes in the elements of X, as measured by the 
elasticities 6;:. It is a simple matter to show that, whereas K@) can be 
altered by changing the lengths of the columns of X, the .$: are invariant to 
such column scaling. Hence the inequality (3B.2) must be identically true 
for all such column scalings. That is, for the n X p  data matrix X, 

< ~ K ( X B )  for all BE%p, (3B.3) 

where 6; is defined as in (3A.1) and $Bp is the set of all nonsingular 
diagonal matrices of sizep. The bound (3B.3) is obviously tightest when a 
scale B* is chosen such that 

K(XB*)= min K(XB), 
BE%, 

(3B.4) 

and such a scaling thereby becomes most meaningful for an analysis of the 
extent to which ill conditioning of the data matrix X can adversely affect 
linear regression. Unfortunately, the general problem of optimal 
scaling-column scaling that results in a data matrix X with minimal 
condition number K@)-remains unsolved. However, scaling for equal 
column lengths (which our unit column length is but a simple means for 
effecting) has known “near-optimal” properties in this regard. 

To wit, van der Sluis (1969) has shown that any positive-definite and 
symmetric matrix P ( p x p )  with all its diagonal elements equal has 
condition number 

K ( P ) < ~  min K ( ~ T ~ ~ ) .  
BE$, 

(3B.5) 

Of course, column equilibration (scaling for equal column lengths) of X 
results in a p X p  positive-definite, real symmetric matrix P = (X‘X) which 
has all of its diagonal elements equal. Remembering that K(X*X) = K~O( ) ,  
we see from the van der Sluis result that column equilibration must result 



3c: THE WEAKNESS OF CORRELATION MEASURES 185 

in a data matrix with condition number 

K(x)<G min K ( X B ) .  
B € a p  

Hence, even though column equilibration does not necessarily result in a 
data matrix with optimal K ,  it cannot be off by more than a factor of G. 
Since p, the number of variates, is usually small, column equilibration is 
highly desirable in the regression context.‘* 

The above fact has been known to numerical analysts for a number of 
years and has interested them even longer. Forsythe and Straus (1955), for 
example, had already shown that 

K(P)= min (B~PB)  
B € a P  

when P has “Young’s Property A,” that is, P takes the form 

This result is of limited use in statistics or econometrics, for one cannot 
assume that any given P=XTX will possess Young’s Property A. It is of 
interest to note, however, that the Forsythe-Straus result will clearly be 
true for the bivariate-regression case where p = 2, or r = q = 1. In summary 
then, Forsythe and Straus show us that column scaling is optimal for the 
bivariate regression, and van der Sluis shows us that it is near-optimal in 
general. Normalizing for unit column length, therefore, is not so arbitrary 
as it might first appear, and, as a practical matter, it works extremely well. 
This fact has long been exploited by numerical analysts, and it derives 
overwhelming verification in the context of this chapter. 

APPENDIX 3C. THE WEAKNESS OF CORRELATION MEASURES IN 
PROVIDING DIAGNOSTIC INFORMATION 

Occasionally it has been suggested, informally, that one can make use of 
the correlation matrix of the estimated parameters as a means of 
diagnosing collinearity. This is related to the use of the rii. terms advocated 

“Note that the factor of two or three that could normally result here in practice is very small 
relative to the potential variation in K(X) under different scalings, a variation that can extend 
to many orders of magnitude. 
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by Farrar and Glauber (1967) and described in the introduction to this 
chapter. We show here that these terms cannot be used to indicate whether 
or not their corresponding variates are involved in a near dependency, 
since they all approach unity (& 1) as the degree of ill conditioning 
increases without bound by whatever cause. 

Let the SVD of X be UDV', so that the estimated variance-covariance 
matrix of b=(X'X)-'X*y is ,@),,2(XTX)-'=~2VD-2V', where sz is the 
estimated regression variance. Now the ( i , j )  term of ( X T X ) - '  is seen to be 
vTD-2yj, where vi is the ith column of V'. Denoting the estimated 
correlation between bi and 6 by jjU, we have 

vik 9 k  v- 
vTDT2vj 

where v, is the kth component of vi. As any one near dependency gets 
tighter, some gets very small, zero in the limit of an exact dependency; 
and, as long as qr#0 and uj ,#O (a condition almost certain to occur in 
practice), we have 

(3C.2) 

In general, then, any one strong near dependency can infect all 
correlations, not just those involved in the specific dependency. 

This same problem besets the rQ, partial-correlation terms suggested by 
Farrar and Glauber (1967) for examining patterns of variable 
interdependence, and hence seriously limits their usefulness in that context. 
This is readily seen by noting that, if the X data are centered and scaled so 
that X'X is the matrix of correlations, (3C.1) directly reduces to the 
expression - rq. = r g / (  fi fi ) for these partial correlations. 

APPENDIX 3D. THE HARM CAUSED BY COLLINEARITY 

We note in Chapter 3 that collinearity is a data problem, resulting from ill 
conditioning in the matrix X of explanatory variables, and is not a 
statistical problem. The actual harm caused by collinearity, however, is a 
statistical problem, as we note in Sections 3.2 and 3.4, where the distinction 
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between degrading collinearity (the potential for harm) and harmful 
collinearity is discussed. Diagnosing the presence of collinearity and 
identifying the parameter estimates that are degraded by it requires 
information only on the data matrix X, whereas an examination of the 
harm that results requires introducing information on the response variable 
y and/or the variance u2 of the error term e. Diagnosing the presence of 
collinear relations and their potential for harm, therefore, is separable from 
seeking to determine fully the nature of the harm. We turn now to some of 
the conceptual issues involved in defining and understanding this latter 
problem. 

The Basic Harm 

The essential harm due to collinearity arises from the fact that a collinear 
relation can readily result in a situation in which some of the observed 
systematic influence of the explanatory variables on the response variable 
is swamped by the model’s random error term-r in the familiar 
terminology of electrical engineering, the signal is swamped by the noise. It 
is intuitively clear that, under these circumstances, estimation can be hin- 
dered. A very simple single-vanate model, devoid of any collinearity, 
suffices to illustrate the nature of this problem and provides, as we shall 
see, a canonical model to which all collinearity problems can be reduced. 

y=px+e, (3D.l) 

where y and x are n-vectors, p a scalar parameter, and e an n-vector 
disturbance term with components that are i.i.d. with mean zero and 
constant variance u2. We assume that (3D.1) is the model that generates 
the observed y’s, and, since collinearity is a phenomenon related to a 
specific data matrix, we assume x is fixed and view the generation of y as 
conditional on this given x. Of course (3D.1) encompasses the usual 
“bivariate” model with constant term, y = a + fix + E, simply by 
interpreting y, x, and E in (3D.1) to be variates centered about their 
respective means. 

We note in (3D.1) that the generation of y has a systematic (signal) 
component, px, and an independent random (noise) component, e. For a 
given p, x, and E we can geometrically depict the generation of y as in 
Exhibit 3D.la. Here we interpret y, x, and e as vectors in an n-dimensional 
space [see Malinvaud (1970), Wonnacott and Wonnacott (1979)l. For 
purposes of illustration, we set p=$.  The plane of the page, then, is the 
two-dimensional subspace of n-space spanned by x and e. 

We can also depict, for given x, likely outcomes of e, and hence y. Since 

Consider the simple single-variate model (through the origin) 
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Exhlblt 3D.1 Geometry of the statistical problem underlying collinearity. (a) The generation 
of y given x and B = 4. (b) The 95% concentration interval (dotted circle) for y given x-as 
projected on the plane of the page-x and f i  as above. The radius of the circle (see text) is 
proportional to u, and the case depicted here has a low ratio of signal-to-noise. (c) and (d) 
Two “likely” outcomes for y (given x, p, and u as before). Case (c) results in a least-%mrcs 
estimation b > 0 while case (d) has b < 0. The 95% concentration interval for b is AB and 
contains 8 in this lowAgnal-to-noise situation. (e) The 95% concentration interval for y 
(dotted circle) and b (AB) given thhsame f i  and u as before, but longer x. This case has 
higher ratio of signal-to-noise and AB lies wholly above 0. 

188 
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the components of e are independent and have constant variance, there 
will be an n-dimensional sphere, centered at the origin, with a given radius 
such that E, in repeated trials, will lie within the sphere with probability .95. 
This is the 95% concentration ellipse for e, and, should e be assumed 
Gaussian (normal), this ellipse would be the n-dimensional sphere with 

radius r , 9 5 = u G ,  where >G:,95 denotes the .95 critical value for a 
chi-square with n degrees of freedom. The corresponding 95% 
concentration interval for y is simply this same sphere centered on Dx. The 
intersection of this n-dimensional sphere with the two-dimensional page is 
depicted by the dotted circle in Exhibit 3D.lb, and from this we can 
illustrate two “likely” sample outcomes, shown in Exhibits 3D.lc and d. 
The dotted lines d denote the disturbance vector e shifted to emanate from 
P X .  

It is also possible to see what effect these two different sample outcomes 
will have on the least-squares estimate b of p. This estimate results from 
the orthogonal projection of y onto the space spanned by x ,  depicted as b x  
in Exhibits 3D.lc and d. We note that b is positive in Exhibit 3D.lc and 
negative in d, yet either of these cases could readily have been generated 
by the model, Indeed the 95% concentration interval for b x  is seen to be 
the interval E, an interval that includes the origin 0. It is clear that this 
variability in the regression estimate is due to the fact that the radius of the 
95% concentration sphere for y (which, for given n, is proportional to u) is 
large relative to px; that is, the noise is large relative to the signal, and any 
systematic elements have little weight in the regression results. 

The same degree of variability in the regression results will not arise if 
the signal becomes relatively greater. Keeping all parameters the same 
(p= f, u and n unchanged), we depict this case in Exhibit 3D.le. Once 
again the 95% concentration interval for b x  is a, an interval that now lies 
wholly above the origin, and the presence of the signal is more readily 
discernible. Thus, we see that the quality of information derivable from 
least-squares estimation is diminished the “shorter” is the signal vector p x  
relative to the noise (which, given n, is proportional to o)-a situation we 
may call hyp~kinesis.’~ 

79The relevance of the length of px  relative to u-a ratio of signal-to-noise-to this problem is 
also seen from the following expressions. (1) Conditional on x, we may define an expected 
(uncentered) R ‘ measure derived from & yry = p TxrxD + no2 (using the independence of x 
from e) as ~ 2 ~ ~ r x r x ~ / ( ~ r x r x ~ + n u 2 ) ~ o / ( o +  I), where 0 + 3 ~ x ~ x p / n u ~  is a measure of 
signal-to-noise. 9%’ measures the conditional expectation (on x )  of the “explained” portion of 
the second moment of y (or the variance of y if the data have been centered-in which case n 
is replaced by n -  I) .  Clearly, when o is small, so is a’, and as w increases, 3’ approaches 
unity. (2) We also see the relevance of o from an expression for the variance of 6, the 
least-squares estimate of p, namely var(b)= u 2 / x r x = p 2 / n o .  Given p and n, the lower a, the 
higher the variance of the regression estimate, and inversely. 
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Tbe Effect of Collinearity 

The presence of collinearity among several variates results in the 
hypokinetic situation just described; that is, it results in a relatively short 
signal vector relevant to the estimation of some parameters. We can see 
this by graduating to the two-variate model 

Y = PIXI  + P2xz+ e, (3D.2) 

and by showing that the assumption of a collinear relation between x1 and 
x2 allows us to reduce this model to the hypokinetic case just discussed. 
We continue to view estimation of (3D.2) by regression conditional upon a 
particular data set X = (xl xJ. 

If there exists a near dependency between x1 and xz, then a mechanical 
regression of xz on x1 will result in a fit with a relatively small 
sum-of-squared residuals-a short residual vector. Thus we have 

xz = ax, + %, (3D.3) 

where a = xrxz/xTxl, xTe2 = 0, and where ere2 is necessarily small relative 
to xfx2; that is e,’.,/x,’., = ( I  - R 2, is small.80 Substituting (3D.3) into 
(3D.2) gives the equivalent model 

Y = ( P I  + P,a)x* + P2e,+e, (3D.4) 

for which the fixed explanatory variables x, and e, are orthogonal. Thus 
the regression estimates of y on xI and e, together are the same as those 
obtained by regressing y on xl and y on q separately, and we may 
investigate the effectiveness of least squares in estimating & by focusing 
only on the regression of y on q, a problem identical to that discussed 
above. It is clear that the effect of the collinear relation has been to result 
in a short signal variate & associated with the estimation of &, while 
holding a constant, and hence to make estimation less precise. The greatest 
part of the signal has been applied to the estimate of the parameter 
associated with xl, that is, the linear combination of /I1+& (a known 
from (3D.3)). There is little signal left over to apply to the independent 
estimation of 4. Collinearity results in hypokinesis. 

The preceding analysis readily generalizes to p variates containing p 2  <p 
near dependencies (as diagnosed and identified by the methods of Chapter 
3). Here we have 

y=Xp+&=x,p, +X$P,+E, (3D.5) 

wR’ is not necessarily based on centered data here. 
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where X is n X p ,  Xi is n X p l ,  X, is n Xp,, and p =pi +p2.  We assume that 
X has been partitioned into two blocks, X, containing the variates 
determined by the methods of Chapter 3 to be involved in the p z  near 
dependencies with the variates in X,. Regressing X, on Xi gives 

X, = X A + E2, (3D.6) 

where A=(X;X,)-'XTXz, X;E,=O, and det(ErE3 is small relative to 
det(XlX2). 

Substituting (3D.6) into (3D.5) gives, analogously to the preceding, 

(3D.7) 

Once again, since XTE,=O, we may estimate Pi +AP2 and 8, through 
separate regressions of y on XI and y on &, respectively. Most of the data 
information (signal) will be applied to the estimate of the linear 
combination PI +AJB2 (A known from (3D.6)), and little information will 
be available from the hypokinetic variate E2P2 for the estimation of f12. 

Collinearity, then, is a data weakness that can manifest itself as a 
statistical problem by creating a situation in which there is insufficient 
signal relative to the noise to allow estimation with precision. Once again 
we see that collinearity is not, in itself, a statistical problem, but can result 
in one;" and that a full assessment of the harm of collinearity (as opposed 
to its potential harm) must be sought in introducing information on the 
response variable y. 

"It also proves instructive to examine the expression for the variance of the kth regression 
coefficient, var(b,), given in footnote 7, to clarify the relation between the data problem 
of collinearity and the statistical problem that may result. We recall that var(b,)= 
02VIF,/X:X,~B~VIF,/nak, where X, is the kth column of X, bk is the kth element of & 
VIFk=(I-Ri)-', R i  istheuncentered R 2  fromX,regressedontheremainingcolumnsof X, 
and ak=.8:X:X,Bk/na2. From the first equality above, we see how the three separable 
elements of signal o(TX,-given B,), noise (a2-given n), and collinearity (VIFk) come 
together to determine var (b, ). This interaction is made even clearer by the second equality. 
Here we note that at is a measure of the signal (relative to noise) associated with the kth 
regression component &Xk, which is invariant to the presence of wllinearity; and VIF, is a 
measure of strength of the collincar relation of x k  with the remaining data,.wbich is invariant 
to the relative signal, to,. Given B k  and n ,  then, var(bk) will be smaller the greater is the 
relative signal (0,) and the less is the collinearity (VIF,). Thus, we see that inflated 
regression variances can. but need not. always attend the presence of mllinearity. Indeed, 
given any VIF,, var(bk) can be small if u, is sufficiently large. 
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Applications and Remedies 

Chapters 2 and 3 present two sets of diagnostic techniques for analyzing, 
respectively, influential observations and collinearity in the linear 
regression model. Brief examples of the use of these tools are also given 
there, along with rules of thumb, where possible, for their application. This 
chapter is devoted to detailed examples, to verification of the usefulness of 
both of these diagnostic techniques, and to their interpretation in specific 
economic and statistical contexts. Section 4.1 addresses the problem of 
remedying ill-conditioned data and applies one specific remedy, that of 
mixed-estimation, to the ill-conditioned data of the consumption function 
introduced in Chapter 3. The collinearity diagnostics of Chapter 3 are used 
alongside the remedial action to show how the improved conditioning that 
results from the remedy is reflected in the diagnostics. Section 4.2 extends 
this example, analyzing by means of the influential-data diagnostics of 
Chapter 2 the effect on estimation of the consumption function due to 
each piece of prior information that has been introduced. 

In Section 4.3 the data used to estimate a monetary equation are 
subjected to the influential-data analysis of Chapter 2. These diagnostics 
may point to a possible misspecification of the model. In addition, the 
conditioning of the data is examined, and ridge regression is employed as 
an alternative means of remedial action. Its use confirms our belief that 
collinearity exacerbates the parameter sensitivity to influential data that is 
observed in this case. 

Finally, in Section 4.4, robust regression is employed along with the 
influential-data techniques to analyze a housing-price model. 

192 
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4.1 A REMEDY FOR COLLINEARITY: THE CONSUMPTION FUNCZlON 
WlTH MIXED-ESTIMATION 

As has been indicated on several occasions, it is not the purpose of this 
book to prescribe or deal with measures for correcting ill-conditioned data 
(the fix or the remedy). There is, however, a strong temptation to attempt a 
fix at least once, for such an experiment provides an excellent test of the 
efficacy of the diagnostic procedure of Chapter 3. That is, an acceptable 
fix must result in better conditioned data, which should in turn be reflected 
both in a lower condition number assigned by the diagnostic technique to 
the “fixed” data and in sharper regression results based on their use. 

In this section we turn our attention to the poorly conditioned 
consumption-function data introduced in Section 3.4. Before applying this 
corrective action, however, we discuss the range of possible corrective 
measures and examine in detail one such measure, the Theil-Goldberger 
(1961) method of mixed-estimation, that subsequently is applied to the 
consumption function. The resulting regressions and diagnostics are then 
compared and interpreted. 

Corrective Measures 

Historically, collinearity was one of the first-encountered and separately 
named problems of econometric estimation. In fact, however, i t  is a special 
case of the more general problem of identification. In its extreme form, 
some data series are indistinguishable from a linear combination of the 
others, and hence it becomes impossible to determine uniquely the 
parameters from knowledge of the conditional distribution of y given X. 
Corrective measures for ill conditioning, therefore, must be like corrective 
measures for identification; namely, some identifying prior or auxiliary 
information must be introduced. Two major sources currently exist for 
such condition-identifying information: additional, better conditioned data 
and Bayes-like methods employing prior information. 

Introduction of New Data. The most direct and obvious method of 
improving data conditioning is through the collection and use of additional 
data points that provide the needed independent variation relative to the 
original data. This answer is rarely useful to the econometrician or many 
other users of least squares who typically have short data series. New data 
are obtainable in adequate numbers only at substantial cost, either in 
terms of the time one must wait for new observations to occur or in terms 
of the collection costs needed to obtain a less collinear sample. Further, 
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even if new data are obtained, there is typically no guarantee that they will 
be consistent with the original data or that they will indeed provide 
independent information. Applied statisticians are often unable to control 
their experiments, whereas nature often closely replicates hers. 

The introduction of new data, therefore, is not likely to be a fix of much 
practical importance in many applications of least squares. When it is 
possible, however, to provide new data, the corrective action to be taken is 
straightforward and simple.' 

Bayesian-type Techniques. At least three Bayes-like procedures exist for 
introducing the experimenter's subjective prior information: (1) a pure 
Bayesian technique, (2) a mixed-estimation technique, and (3) the 
technique of ridge regression. These procedures are listed in order of 
decreasing generality and increasing ease of use. We select the 
mixed-estimation technique in dealing later with the consumption-function 
data. Ridge regression is used in conjunction with the monetary-equation 
data in Section 4.3. 

Pure Bayes. The use of Bayesian estimation for providing the 
identifying information that is needed to improve data conditioning is 
explained in the work of Zellner (1971) and Leamer (1973, 1978). These 
excellent studies show that the seemingly insoluble problem of collinearity 
can in fact be dealt with if the investigator possesses (and is willing to use) 
subjective prior information on the parameters of the model. The 
drawbacks of this method are severalfold. First, it relies on subjective 
information that many researchers simply distrust or feel they do not 
possess. Second, its use requires a rather exact statement of the prior 
distribution, an apparent precision that many find too exacting to be 
realistic. Third, it draws on a statistical theory not as widely understood as 
classical techniques, and fourth, the computer software required for such 
estimation methods is not widely available. In practice, the first two 

' It is also possible to improve the conditioning of a given body of data to some limited extent 
through the simple expedient of column scaling [cf. van der Sluis (1969,1970)l. Such 
transformations of the data, of course, do not introduce new identifying information; they 
merely prepare the existing information for optimal processing by computational software 
that must necessarily perform calculations using finite arithmetic, and therefore should be 
done as a matter of course. Simple column equilibration (making all columns of X the same 
length, usually unit), for example, can often reduce the condition number of economic data 
by a factor of lo3 or more! See also Appendix 3B on scaling. 
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drawbacks are far more psychological than real, and efforts by Kadane et 
al. (1977) have produced techniques that allow the user efficiently and 
straightforwardly to answer questions that reveal his subjective prior. Such 
research will moderate all four drawbacks of strict Bayesian estimation, 
and one can expect to see these techniques gain wider acceptance in the 
near future. 

Mixed-Estimation. Theil and Goldberger (1961) and Theil (1963,1971) 
have produced a Bayes-like technique which they call mixed-estimation. 
By this procedure, prior, or auxiliary,2 information is added directly to the 
data matrix. Mixed-estimation is simple to employ and need not require a 
full specification of the prior distribution. 

Beginning with the linear model 

Y = X I S + E ,  (4.1) 

with &e 2: 0 and V(e) = Z,, it is assumed the investigator can construct r <p 
prior restrictions on the elements of f l  in the form 

with G6-0 and V(t)=Z2. Here R is a matrix of rank r of known 
constants, c is an r-vector of specifiable values, and 6 is a random vector, 
independent of E ,  with mean zero and variance-covariance matrix Z2 also 
assumed to be stipulated by the investigator. 

In the method of mixed-estimation as suggested by Theil and 
Goldberger? estimation of (4.1) subject to (4.2) proceeds by augmenting y 
and X to give 

where V( ;)=I * ]=Z. If I;, and X 2  are known, generalized least 

squares applie to (4.3) results in the unbiased mixed-estimation estimator 
2 2  

2The use of the term “prior” here follows Theil (1971). For an approximation that allows a 
Bayesian interpretation of mixed estimation, see Theil (1971, pp. 670-672). 
’See Theil(l971, pp. 347-352). 
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In practice, an estimate S, is substituted for 8, (usually in the form s21), 
and 8, is specified by the investigator as part of the prior information. The 
Aitken-ty e augmented data matrix that results from this procedure is [ :::;:], and it is the improved conditioning of this matrix that should 

reflect the usefulness of both the prior information and the diagnostic 
procedure! 

Ridge Regression. Ridge regression is a relatively recent, modified 
squared-error estimation technique. The reader is directed to Stein ( 1956), 
Hoerl and Kennard (1970), Holland (1973), Dempster et al. (1977), and 
Vinod (1  978). The ridge-regression estimator, with the single ridge 
parameter k, is simply 

br = (XTX -t k I) - 'X'y . (4.5) 

While differing in its philosophical basis, the ridge estimator is seen to be 
computationally equivalent to the mixed-estimation estimator with R = A 
(where ATA=I), X:,=a21, E2=A21, and c=O. In this event, k=a2/A2. Of 
course, in mixed estimation c is taken to be stochastic with &c=Rfl, 
whereas here c is taken as a set of constants, which results in a biased 
estimator. Computationally, therefore, mixed-estimation provides a com- 
promise between the rigors of full Bayes and the somewhat inflexible ridge 
estimator, whose single parameter k forces the weight attached to all prior 
constraints to be equal.5 In practice, mixed-estimation allows prior 
information to be introduced more naturally and with much greater 
flexibility than ridge, and with little additional computational effort. 

Application to the Consumption-Function Data 

We recall from Section 3.4 that standard (scaled) consumption-function 
data are very poorly conditioned (possessing a K of 376), contain at least 
two strong near dependencies (shown in Exhibit 3.24), and result in a 
regression displaying only one statistically significant coefficient (that of 
DPI). In this section we employ the mixed-estimation method described 

41n the event that S ,=S~I ,  this matrix is equivalent to using [ &]  where D=sZi'/*. 

'This restriction is relaxed with the use of the generalized ridge estimator, having the form 
bGR = (XrX + A) - ' X'y, where A is a positive-definite matrix. Yet another near cousin to the 
ridge estimator, developed in Von Hohenbalken and Riddell (1978), is the wedge estimutor. 
This takes the form b , p ( Z r Z ) - ' Z T y ,  where Z = X + k X ( X T X ) - ' .  
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above as one possible means for confronting collinear data. It is also the 
purpose of this exercise to determine how well the diagnostic techniques 
presented in Sections 3.2 and 3.3 reflect the better conditioning resulting 
from the introduction of prior information. 

In the experiment that follows, three levels of prior information are 
specified and examined: a very loose (high variance) set of priors, a middle 
set, and a tight (relatively low variance) set. Initially these priors are 
specified as ranges or intervals in which the specific parameters (or linear 
combinations of them) are assumed to lie with .95 probability. These 
ranges are then translated into a form usable for mixed-estimation by 
assuming that the error terms attached to the restrictions in (4.2) are 
independent Gaussians having means at the center of the specified prior 
intervals and (implied) variances that cause these prior intervals and the 
95% concentration intervals of the error terms to coincide. 

An attempt has been made to make these prior restrictions economically 
reasonable and to allow the alternative levels to have interesting contrasts. 
But it is not our purpose here to present a highly refined and sophisticated 
set of priors. It is worth repeating that our objective is mainly to 
demonstrate how the increased information obtained fro* the application 
of successively stronger priors, which should manifest itself in better 
conditioned augmented data matrices, is in fact reflected in the 
diagnostics. We nevertheless feel that there is much of economic value to 
be learned from this study. 

The consumption function given by (3.24) was introduced without 
comment in Section 3.4. We reproduce it here: 

C( T )  = /3, + &C( T -  1)  + p3 DPI ( T )  + P4r( T )  + &ADPI ( T) + E (  T). 

(4.6) 

This consumption function, which allows for Friedmanesque (1957) 
dynamics in its inclusion of C ( T -  1) and ADPI(T), is somewhat 
unorthodox in its inclusion of interest rates, r( T). We will have more to say 
on these matters as we proceed. 

Prior Restrictions. Among the five parameters, three prior restrictions 
are imposed. As noted, the error terms attached to these restrictions are 
assumed to be independent and normal. 

1. The marginalpropensity to consume, p3, has an expected o a k  of 0.7. The 
95% prior intervals for the three levels (with their implied variances) are 
given in Exhibit 4.1. 
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Exhibit 4.1 

95% Implied 
Prior Range Variance 

Loose 0.50-0.90 0.0104 
Medium 0.55-0.85 0.0058 
Tight 0.60-0.80 0.0026 

Prior: p3 = 0.7 + 5,.  Ranges and implied variances 

The loose prior here is loose indeed, allowing a short-term marginal 
propensity to consume between 0.5 and 0.9 with high odds. The tight 
extreme is not excessive. 
2. The long-run marginal propensiw to consume p3/(l - /I2), has expected 
d u e  0.9.6 One must make an approximation here to mold this prior 
restriction into the linear framework of (4.2). If &/( 1 - &) = 0.9 + u, then 
& + 0.9& = 0.9 + t2, resulting in an error structure, t2 = (1 - &)u, 
dependent on A. To capture the flavor of this result in the necessary linear 
approximation, we treat & in the error structure as a known constant (but 
in the error structure only) and set it equal to its OLS estimate from (3.25), 
that is, 0.24: Thus we approximate var(1 -p2)u by (1 -&)2u,2-0.6u,2. 
Exhibit 4.2 presents the 95% prior intervals and implied variances for u and 
62'  

Exhibit 4.2 Prior: /I3/( 1 - /12)=0.9 + u. Incorporated as /I3 + 0.9p2= 
0.9 + t2. Ranges and implied variances 

Implied 
Prior 95% Range Variance, a,' af2-0.6a~ 

Loose 0.80- 1 .00 0.002603 0.001 56 18 
Medium 0.85-0.95 0.000650 0.0003904 
Tight 0.89-0.91 O.ooOo26 O.ooOo156 

The prior variances are specified on u and reflect strong prior 
information even in the loose case, depicting our strong belief in the 0.9 
figure. In the tightest case, little variation is allowed. 

long-run marginal propensity to consume is simply the partial derivative of the 
steady-state solution to (4.6) with respect to income, DPI. In the steady-state, 
time-dimensioned variables remain constant, and, ignoring the error term, (4.6) becomes 

where the asterisks indicate steady-state values. 
"INS procedure is, of course, in violation of a strict application of mixed-estimation, which 
requires that the prior information be independent of the original data. 
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3. Twenly-five cents of every “windfall” dollar is spent; that is, p, has 
expected value 0.25. We are not too sure of this parameter. If we were 
Professor Friedman, we would specify p5 = 0. To capture this position, we 
allow the loose case to encompass this possibility with high probability, as 
well as the possibility that p5 < 0. This later case would occur if, instead of 
consuming part of windfall income, consumers added to windfalls with 
increased savings in preparation for even larger purchases at a latter date. 
Exhibit 4.3 presents the three prior levels for this parameter. The middle 
case allows marginally for Friedman’s hypothesis, and the tight case 
depicts a prior belief that people do indeed spend some of their windfall 
income. 

Exhibit 4.3 
Implied 

Prior 95% Range Variance 

Loose - 0.254.75 0.0650 
Medium 0.00--0.50 0.01 62 
Tight 0.15-0.35 0.0026 

Prior: & = 0.25 + &. Ranges and implied variances 

Ignored Ifonnation. No prior information is included for either the 
constant term f i ,  or the effect of interest rates p.,. The former merely 
reflects our doubts of the validity of a linear model at the origin, a data 
point quite far removed from the center of the X data. The latter, the effect 
of interest rates, is of greater interest. Interest rates are often ignored in 
simple versions of consumption functions, a characteristic element of most 
elementary Keynesian models where r is determined in the investment 
equation, and indeed, most statistical estimation has failed to observe the 
significance of r in a consumption function. There are, of course, 
theoretical reasons for its inclusion. The consumption data used here are 
total consumption figures, total goods (durables plus non-durables) and 
services, and the relevance of r to decisions on consumer durables has long 
been recognized. Furthermore, any intertemporal theory of consumption 
would suggest that, ceteris paribus, the greater r,  the more expensive 
current consumption is relative to future consumption. Both of these 
reasons would argue that r should enter the consumption function with a 
negative coefficient. Indeed p4 is estimated as negative in (3.25), but the 
coefficient is insignificant. We choose to ignore any prior on p4 here, but a 
more sophisticated analysis would surely provide at least a one-sided 
diffuse prior on p4. We also choose to ignore any prior specification of the 
possible off-diagonal elements of X2. 
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Summary of Prior Data. The prior restrictions described above result in 
the following specification relative to (4.2): 

0 0 0 0 1  0.25 

and X2 for the three levels of prior, 

C,: loose prior, 

0.0104 0 0 
0 0.0015618 0 

0 0.0650 

X2: medium prior, 

0 0.0162 

0.0058 0 
0 0.0003904 

Z2: tight prior, 

0.0026 0 
0 O.ooOo156 

0 0.0026 

I:, was estimated as 8'1, where s2 is the estimated variance from (3.25), 
12.6534. 

Regression Results and Variance-Decomposition Proportions for 
Mixed-Estimation Consumption-Function Data 

Exhibits 4.4- 4.6 present, respectively, the regression output, the 
variance-decomposition proportions, and appropriate auxiliary regressions 
for the original data and the these data augmented by three degrees of 
tightness of prior information. These latter variance-decomposition 
proportions are based on a column-scaled transformation of the 
augmented data matrix [ ER 1, where D = ' I2. 



Exhibit 4.4 Regression and  mixed-estimation results* 

CONST C(T-  I )  DPI(T) r(T)  ADPI(T) 
bl b2 b3 b4 bS 

Original data 6.72 0.245 0.698 -2.209 0.161 

Data augmented by 
[ 1.761 [ 1.0331 [3.363] [ - 1.2021 [0.877] 

Loose prior 7.22 0.243 0.693 - 1.747 0.178 

Medium prior 7.61 0.241 0.688 -1.354 0.198 
13.101 [3.124] [10.351] [ -  1.2601 I2.6811 

Tight prior 7.77 0.240 0.684 -1.078 0.229 

[2.51] [2.356] [7.869] [-1.1751 [1.860] 

[3.89] [4.821] [15.372] [-2.3171 [5.346] 

*Since interest here centers on tests of significance, t-statistics are given in the 
square brackets. 

Exhibit 4.5 Variance-decomposition proportions and condition indexes 
~ ~ ~ 

Associated 
Singular CONST C(T- 1) DPI( T) r( T) ADPI( T) Condition 
Value var(bl) var(b2) var(b3) var(b4) var(bs) Index, 

Original Consumption Function 

PI .oo 1 .Ooo .Ooo .000 .00 1 1 
tc, .004 .Ooo .Ooo .002 .I36 4 
P3 .310 .Ooo .Ooo .013 .ooo 8 
P4 .264 .004 .004 .984 .048 39 
Ps .420 .995 .995 .000 .8 14 376 

Mixed-Estimation Consumption-Function Data 

Loose Prior 

PI .002 .Ooo .Ooo .000 .006 1 
P2 .007 .Ooo .Ooo .002 .465 4 
P3 .549 .Ooo .Ooo .019 .002 8 
P4 .270 .014 .017 .967 .092 31 
Ps .171 985 982 .011 .434 1 60 

Medium Prior 

PI .003 .Ooo .Ooo .Ooo .009 1 
P2 .008 .Ooo .Ooo .003 .648 4 
P3 .750 .Ooo .Ooo .034 .002 8 
P4 .I34 .012 .014 .958 .043 22 
Ps .lo4 .987 .985 .004 .297 120 
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Exhibit 4.5 Continued 

Associated 
Singular CONST C( T- 1) DPI( T) r( T) ADPI( T) Condition 
Value var(b,) var(b3 var(b,) var(b4) var(b5) Index, i~ 

Tight Prior 

PI .006 .OOo .Ooo .004 .016 1 
k .003 .Ooo .Ooo .003 .846 3 
Ps .285 .oo 1 .oo 1 .066 .039 5 
P4 .687 .OOo .OOo .895 .Ooo 8 
P5 .018 .998 .998 .03 1 .098 83 

Exhibit 4.6 Auxiliary regressions* 

Estimated coefficients of 

CONST C(T- 1) ADPI( T) R2 t 

Original Consumption-Function Data 

- 11.547 1.138 0.804 .9999 
[ - 4.91 [ 164.91 [ 1 1.91 

- 1.02 0.018 -0.015 .9945 
[ - 3.91 [22.3] [-1.91 

Mixed-Estimation Consumption-Function Data 

Loose Prior 

- 11.152 1.139 0.752 .9996 
[ - 2.21 [75.5] t5.21 

- 0.899 0.017 -0.012 .99 17 
[ - 2.91 [18.9] [ -  1.41 

Medium Prior 

- 10.029 1.141 0.631 .9994 
[-1.51 [59.5] i3.61 

- 0.553 0.016 - 0.007 .9839 
[ - 1.3) [ 13.21 [ -0.681 

Tight Prior 

0.209 1.124 0.322 .9987 
(0.031 [69.1] [ 1-81 

2.862 0.005 0.009 .9113 

376 

39 

160 

31 

120 

22 

83 

8 
r4.51 (3 -21 10.521 

*Since interest here centers on tests of significance, t-statistics are given in the 
square brackets. 
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The following conclusions are indicated: 

1. The introduction of prior information greatly sharpens the regression 
results. On the basis of the original, poorly conditioned data, only the 
estimate of p3 was statistically significant. Even the information from the 
loose prior, however, brings b, and b2 into significance, and the tight prior 
provides sufficient information to make all estimates significant, even that 
for b,, the coefficient of the interest rate! 
2. The improved conditioning of the data through the introduction of 
increasingly strong prior information is clearly and dramatically reflected 
in the condition indexes. The loose prior reduces the condition index of the 
dominant relation by more than one-half. The medium prior adds slightly 
more conditioning information, mainly to the second near dependency, 
and the tight prior has reduced the dominant condition index to a more 
nearly manageable 83 and has all but undone the second near dependency, 
whose condition index is now reduced to 8. There is, therefore, a strong 
parallel between the diagnostic indications of better conditioning and the 
sharpened regression estimates that result as increasingly tight prior infor- 
mation is introduced. 
3. Examination of the patterns of variance-decomposition proportions 
reveals two important changes. The first is the ever decreasing proportion 
of var(b,) determined by p5, the dominant singular value, and the second is 
the ever increasing proportion of var(b,) determined by (and away from 
p5). On the basis of these changes we would expect both of  these variates 
to play a diminished role in the near dependency associated with p,, and 
this is verified by examination of the auxiliary regressions in Exhibit 4.6. 
4. We also see in the auxiliary regressions how the decreasing condition 
indexes are reflected in decreasing R *, quite in line with the progression we 
have come to expect. 
5 .  Finally, it is to be noted that the tightest prior information has provided 
sufficient conditioning information so that even the coefficient of the 
interest rate, r( T), about which no prior restriction was introduced, has 
become significant. In essence, the prior information on the other 
coefficients appears to have “freed up” what independent information 
there is in the original data on r (T)  to allow its coefficient to be more 
precisely estimated. 

This phenomenon is also faithfully reflected in the corresponding 
diagnostic results (as we hoped it would be). We have already seen in 
Section 3.4 that r ( T )  is involved only in the second of the two near 
dependencies present in the original data. This characteristic is elucidated 
in the auxiliary regressions relevant to the original data given in Exhibit 
4.6. It is also seen clearly there that this second near dependency becomes 
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weaker and weaker as increasingly strong prior information is introduced, 
finally reduced to having a condition index of 8. Thus the prior 
information has broken the collinear relation involving r( T), making it 
possible to test effectively its significance in the estimated consumption 
function. 

4.2 ROW-DELETION DIAGNOSTICS WITH MIXED-ESTIMATION OF 
THE U.S. CONSUMPTION FUNWON 

We have seen in the previous section that the introduction of prior 
information can greatly improve the conditioning of a data matrix and 
result in increased precision in parameter estimates. In this section we 
show, still using the consumption-function data, that the introduction of 
prior information also has interesting implications for the analysis of 
parameter sensitivity to influential data. We first analyze the 
consumption-function data using single-row diagnostic techniques to high- 
light possible data problems and then reanalyze the data after they have 
been augmented by the medium-strength prior introduced in the previous 
section. This latter exercise allows us both to assess the effect of 
introducing the prior information and to provide a further illustration of 
the use of the row-deletion diagnostics. 

A Diagnostic Analysis of the Consumption-Function Data 

We apply various of the single-row diagnostic measures to the aggregate 
consumption-function data introducted in Chapter 3 and again in the 
previous section. For convenience we reproduce in (4.7) the basic 
least-squares regression for the consumption function in (4.6). 

We note that the only statistically significant coefficient is that for 
personal disposable income. The lack of significance for the other 
coefficients is quite possibly attributable to collinearity, as evidenced by 
the very large (scaled) condition number of 376. Our interest at the 
moment, however, centers on an analysis of the basic data. 

C( 7') = 6.7242 + 0.2454C( T- 1) 
(3.827) (0.2374) 

+ 0.6984 DPI( T) - 2.2097 r( T) I- 0.1608 ADPI( T) 
(0.2076) (1.838) (0.1834) 

R2=.9991 SER-3.557 DW= 1.89 ~(X)=376, (4.7) 



4.2 ROW-DELETION DIAGNOSTICS W I T H  MIXED-ESTIMATION 205 

Single-Row Diagnostics. Before proceeding to the single-row 
diagnostics, a word of warning is in order. The concept of deletion takes 
on a new meaning when applied to data series appearing along with their 
own lagged values. In this case deletion of a row does not fully remove the 
presence of an observation, since lagged values of the variates will occur in 
the neighboring rows; that is, deletion of a row does not truly correspond 
to deletion of an observation. We ignore any further examination of this 
problem here, but note its relevance to future research in Chapter 5.  

Residuals. Exhibit 4.7 shows a time-series plot of the studentized 
residuals. One clear outlier appears in 1973(26) with value -2.44. Two 
sizable positive residuals, each equal to 1.88, surface in 1969(22) and 
1972(25). These magnitudes, along with an examination of Exhibit 4.7, 
indicate the possibility of intertemporal heteroscedasticity or structural 
change. 

Leverage and Hat-Matrix Diagonals. Exhibit 4.8 tabulates the hat- 
matrix diagonals in the first column. The approximate cutoff of 
2pln10.37 is exceeded only in 1970(23) and 1974(27) with respective 
values of 0.57 and 0.74. The remaining sizable leverage points, associated 
with the intervening years 1971-1973, are all less than 0.37. 

Coefficienf Sensitiuity. The DFBETAS are shown in the last five 
columns of Exhibit 4.8. I t  is evident from the asterisks, which appear 
opposite magnitudes in excess of 2 / f i  -0.38, that the two worst data 
points, 23 and 25, have larger DFBETAS for the majority of their 

2.5 

1 

Observation 

Exhibit 4.7 Time-series plot of studentized residuals: US. consumption-function data. 
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parameters, while the somewhat less troublesome points, 12, 26, and 27 
show a large change in no more than two coefficients, and at lower values 
of DFBETAS. It is also seen that all coefficients are estimated with some 
degree of sensitivity to influential data. 

The most influential observation based on DFBETAS is 1970(23), where 
both substantial leverage and a moderately large residual coincide. The 
next most influential observation occurs two years later in 1972, which is 
most obviously linked to a moderately large residual. The last two 
observations are potentially troublesome and have, respectively, a large 
residual and an extremely large hi value of 0.74. 

Summary. In summary, all coefficients demonstrate sensitivity to 
influential data, with two data points, 197q23) and 1972(25), highlighted 
on account of their large number of sizable DFBETAS. Since the data are 
plagued by collinearity, we next examine what happens when remedial 
action is taken. 

A Reanalysis after Remedial Action for IU Conditioning 

It is apparent that the row-deletion diagnostics have revealed substantial 
sensitivities in the estimated coefficients of the consumption function. We 
shall see, however, that some of this sensitivity disappears with the 
introduction of prior information, a phenomenon that is clearly discernible 
from the influential-data diagnostics. For the purposes of this discussion 
we limit ourselves to an examination of the consumption function 
estimated by means of mixed-estimation subject to the introduction of the 
medium-strength prior described in the previous section. The 
mixed-estimation regression results for the medium-strength prior, taken 
from Exhibit 4.4, are given in Equation 4.8.8 

C( T )  = 7.61 +0.241 C( T -  1) + 0.688 DPI( T )  - 1.3544 T) + 0.198 ADPI( T )  
(2.45) (0.077) (0.066) (1.072) (0.074) 

R * = .99 SER = 4.264 DW = 1.97 K(X) = 120. 

A reanalysis of the residuals yields little additional information. The 
data matrix, however, has to be substantially altered, having three 
additional rows representing the three prior constraints. The row 

8Standard errors in (4.8) are given in parentheses. These, as well as the SER, are calculated 
on the basis of the full augmented data matrix described in the previous section with 25 
degrees of freedom. The Durbin-Watson statistic, however, has been calculated using only the 
unaugmented data series. 
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diagnostics should, therefore, reflect the introduction of the prior 
information, and we turn to them now. 

Ttre Row Diagnostics. Let us examine first the hat-matrix diagonals, hi,  
which are now very different from those of the unaugmented 
consumption-function data. The hi are given in column 1 of Exhibit 4.9, 
and the leverage points are now concentrated in the priors. The cutoff 
value for hi is 2p/n=0.33? Despite the fact that the prior variances are not 
especially tight, the largest hi's of 0.75 and 0.68 are associated with the 
rows 28 and 29 corresponding to the prior restrictions on &, the DPI 
coefficient, and the long-run marginal propensity to consume &/( 1 - &). 
Given the extreme extent of collinearity in the original data, it is not 
surprising that even moderate prior information possesses so much 
leverage. The largest previous leverage point of 0.74 (Exhibit 4.8) for 1974 
(27) has diminished to 0.59 in the presence of the prior information, while 
the only other large leverage point of 0.57 in 197q23) drops to 0.27. 

The introduction of the prior information, therefore, has somewhat 
stabilized the relative leverage of the original data, a fact that should prove 
reassuring to the investigator who believes in the validity of the prior. It is 
also seen that these diagnostic techniques allow the investigator to assess 
just how influential his prior information is in the final estimation process. 

The impact of the introduction of prior information on the measures for 
coefficient changes, DFBETAS, is also substantial, as is shown in Exhibit 
4.9. Originally the most sensitive data point was 1970(23) and the next 
most troublesome 1972(25). Both are dramatically less sensitive in the 
presence of prior information, while 1974(27), which was marginally 
disturbing before, is now even less a source of concern. The observation 
for 1973(26), which still has a large studentized residual, continues to 
demonstrate some sensitivity. 

The three data points 28, 29, and 30, reflecting prior information, tell a 
complementary story. When the rows corresponding to each prior are 
deleted one at a time, sizeable coefficient changes occur, particularly for 
deletions of the priors on short-run and long-run marginal propensities to 
consume, indexes 28 and 29, respectively. The impact from deleting the 
prior on income change & (30) is less. 

The partial-regression leverage plot for the interest rate coefficient, given 
in Exhibit 4.10, clearly shows the leverage extended by the prior on 
&/(l- &), the long-run marginal propensity to consume, index 29. Even 

'The proper way to include the prior information in the determination of the cutoffs is by no 
means clear. We have simply increased n by the number of such constraints here and in the 
calculations of the cutoffs for all other statistics. 
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= . O 0 ~  

O . O 0 r  . .  I 

Partial X residual 

Regression equation is y = -1.34608X 

ExhlMt 4.10 Partial-regression leverage plot for b,(R), S.E.= 1.0719 medium strength prior. 

though no prior information was provided about r(T), we see that other 
prior information has had a substantial impact on the estimation of this 
coefficient . 

Exhibit 4.1 1 brings together the most significant individual coefficient 
changes associated with row deletion in the presence and absence of prior 
information. With the exception of 1973(26), where coefficient b5 
deteriorated sharply when the prior was applied, introduction of the priors 
reduced large coefficient changes. 

A Suggested Researclr Strategy. The decrease in parameter sensitivity 
that results from introducing prior information, while far from definitive in 
the absence of more experimental evidence, does suggest that apparent 
segments of anomalous data can be readily confounded with problems 
arising from collinearity. Indeed, collinearity can even disguise anomalous 
data, as indicated by the increased coefficient sensitivity which became 
apparent in 1973(26) when data conditioning was improved through the 
use of prior information. Thus, we provisionally conclude that reduction in 
collinearity should be a first step for the effective detection of unusual data 
components. In the absence of additional, better conditioned data, this 
should be accomplished with Bayesian or mixed-estimation methods, as 
has been done here. When specific priors are not available, however, more 
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mechanical methods, such as ridge regression, might still improve the sort 
of diagnostic analysis we have developed in this book." 

4.3 AN ANALYSIS OF AN EQUATION DESCRIBING THE HOUSEHOLD 
DEMAND FOR CORPORATE BONDS 

Economic theory and empirical representations of monetary phenomena 
have come to play a more important, albeit controversial, part in 
economy-wide econometric models. This sectoral expansion has been 
accompanied by concern over the issue of the structural stability of 
estimated relations since financial regulations and institutions change 
frequently and the impact of monetary controls, actual or anticipated, 
could readily lead to modifications of underlying behavior. We have 
therefore selected a recently developed financial market equation as an 
appropriate context in which to examine possible structural instability and 
parameter sensitivity through a variety of means. 

First we apply the well-known Chow' (1960) and the Brown- 
Durbin-Evans (1975) tests for overall structural stability-tests that, in this 
case, result in conclusive evidence against instability. We then exploit the 
diagnostic techniques of Chapter 2 to expose those elements of the 
monetary equation that show special sensitivity to specific elements of 
the data. Having thus isolated the potentially troublesome data points, we 
examine the interaction of the conditioning of the data with the presence 
of influential observations by means of ridge regression. It is here 
discovered that there is a reduction in the influence demonstrated by the 
original data, although the periods of tight money continue to show some 
influence despite the improved conditioning brought about by ridge 
regression. This suggests the possibility that the model is not adequately 
specified. 

In the process of building a detailed model of the financial sector, 
Benjamin Friedman (1977) has devised an equation portraying the 
household demand for corporate bonds. He has kindly made the 
underlying data available for our subsequent analysis. The theoretical 
framework is described in the following excerpt: ' I  

In a world in which transactions costs are nontrivial, it is useful to represent 
investors' portfolio behavior by a model which determines the desired long-run 

"One should be aware, however, that there is a prior implicit in the use of ridge regression 
that is not always appropriate, namely that all the /3's are zero; on this see Holland (1973). 
I'  Reprinted With the kind permission of Benjamin Friedman and the Journal of Political 
Economy (Copyright 1977 by The University of Chicago. AU rights reserved. ISSN 
0022-3808.) 
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equilibrium portfolio allocation together with a model which determines the 
short-run adjustment toward the equilibrium allocation. 

A familiar model of the selection of desired portfolio allocation, for a given 
investor or group of investors, is the linear homogeneous form 

where 

A;, i = 1,. . . , N = the investor's desired equilibrium holding of the 
ith asset at time period t e i A ;  = Wl); 

W, = the investor's total portfolio size (wealth) at 
time period t ;  

asset at time period t; 

which influence the portfolio allocation; 

r,,, k = 1,. . . , N= the expected holdmg-period yield on the kth 

Xhr, h = 1,. . . , M = the values at time period I of additional variables 

and the &, yih,  and 7ii are fixed coefficients which satisfy xi&=o for all k, 
Z i y , h = O  for all h, and xi.rri= 1. The role of the wealth homogeneity constraint is to 
require that any shift in an asset's share in the desired equilibrium portfolio be due 
to movements either of relevant yields (r,) or of other variables (&), rather than to 
overall growth of the total portfolio itself; particularly for the case of equations 
representing the behavior of categories of investors, this assumption seems 
appropriate. . . . 

Given the desired equilibrium portfolio allocation indicated by model (4.9), the 
usual description of investor behavior involves a shift of asset holdings which 
eliminates some, but not all, of the discrepancy between holdings ,4i,l- I at the end 
of the previous period and the new desired holdings A:. One familiar 
representation of the resulting portfolio adjustment process is the stock adjustment 
model 

N 

k 
h' f i l= 2 @ i k ( A & - A k , l - 1 ) ,  i =  l,...,N, (4.10) 

where Aif=the investor's actual holding of the ith asset at time period t 
(xi& = W,), and the @,, are fixed coefficients of adjustment such that 0 GOik < 1, 
k = i ,  and 2 i@,k = 1 for all k. 

The empirical implementation by Friedman of this hypothesis is the 
following linear regression: 

HCB(T)= P,(HAFA(T).MR(T)) +&(HFA(T- l)*MR(T)) (4.11) 
+ &(PER( T) - HAFA( T)) + p4 (CPR( T) - HAFA( T)) 
+&HCB(T-l)+&HLA(T- ~ ) + & H E ( T - I ) + E ( T ) .  
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The symbol definitions are the following: 

Symbol 

CPR 
HAFA 
HCB 
HE 
HFA 
HLA 
MR 
PER 

Definition 

Commercial Paper Rate 
Household Net Acquisition of Financial Assets 
Household Stock of Corporate Bonds 
Household Stock of Equities 
Household Stock of Financial Assets 
Household Stock of Liquid Assets 
Moody AA Utility Bond Rate 
Standard and Poor’s Price-Earnings Ratio 

Equation (4.12) shows least-squares estimates for the regression 
described above, for the period 1960: 1-1973:4 using quarterly data. While 
Friedman used instrumental-variable estimation, his coefficients differ by 
at most 5% from those reported here: 

HCB( T) = 0.0322 HAFA( T) MR( T) + O.OOO3 16 HFA( T -  1) MR( T) 
(0.00648) (O.ooOO9 1) 

- 0.0242 PER( T) * HAFA( T) 
(0.0 125) 

-0.01549 CPR(T)*HAFA(T)+0.8847 HCB(T- 1) 
(0.00454) (0.0 161) 

+0.00894 HLA( T -  1) 
(0.00369) 

(4.12) 

-0.00619 HE(T- 1). 
(0.00157) 

R2=.99 SER=490.6 DW-2.25 ~(X)=106 

The multiple correlation coefficient is large, as is to be expected with a 
smoothly growing dependent variable such as the stock of corporate bonds 
in an equation which also includes a lagged dependent variable. The signs 
of the coefficients are correct, the t-statistics are near two or greater in 
magnitude, and the Durbin-Watson statistic (biased in the presence of a 
lagged dependent variable towards serial independence) does not indicate 



4.3 ANALYSING THE HOUSEHOLD DEMAND FOR CORPORATE BONDS 215 

autocorrelation problems. The condition number is large and suggests the 
need to take corrective action. 

An Examination of Parameter Instability and Sensitivity 

We approach the investigation of parameter instability and sensitivity in 
two steps. The first step is the application of significance tests for overall 
stability using the Chow test and the Brown-Durbin-Evans cusum or 
cusum-of-squares tests based on recursive residuals. The second step relies 
on row-deletion diagnostics to ascertain the existence and nature of 
potential sensitivity to influential data. 

Tests for Overall Structural Instability. One standard test for structural 
instability is the Chow (1960) test, which we examine first. To this end the 
sample period was divided into two equal parts, for which regressions 
appear in (4.13) and (4.14), and the Chow statistic calculated as F= 1.20. 
The null hypothesis of stability cannot be rejected by the Chow test. 
Before turning to somewhat more sensitive stability tests, it is worth noting 
that the coefficients estimated from the second half of the data resemble 
those for the entire period much more than those estimated from the first 
half of the data. This finding is consistent with the fact that the influential 
observations appear only in the last part of the sample. 

Regression from first half of data: 

HCB( T) 0.00963 HAFA( T) * MR( T) + 0.000770 HFA( T- 1). MR( T) 
(0.02330) (0.00022) 

+ 0.0393 1 PER( T) - HAFA( T) 
(0.0257 1) 

- 0.06589 CPR( T) * HAFA( T) + 0.73652 HCB( T- 1) 
(0.0245 3) (0.08500) 

- 0.00355 HLA( T -  1) 
(0.00657) 

+ 0.00034 HE( T- 1). 
(0.00243) 

(4.13) 

R 2= .92 SER = 327.9 DW = 2.25 K(X) = 140 
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Regression from second half of data: 

HCB(T)=0.03144 HAFA(T)-MR(T) +O.O00398 HFA( T -  1)-MR( T) 
(0.01 144) (0.0002 10) 

- 0.0 1957 PER( T) * HAFA( T) 
(0.02489) 

-0.01830 CPR(T)-HAFA( 7') +0.87582 HCB(T- 1) (4.14) 
(0.00740) (0.0222 1) 

+ 0.00905 HLA( T -  1) 
(0.007 17) 

- 0.00756 HE( T -  1) 
(0.00226) 

R2= .99 SER-600.3 DW-1.99 ~(X)=155  

The Brown-Durbin-Evans test appears to have greater power to detect 
departures from the null hypothesis than the Chow test. There are four 
possible versions of this test. The cusum, based on the cumulative sum of 
one-step ahead prediction residuals, has more power against one-sided 
departures from the null hypothesis. The cusum-of-squares, on the other 
hand, has most power against shifts in either direction and hence seems 
most appropriate for the type of analysis that concerns us. These two test 
statistics can be cumulated either forward or backward, thus providing 
four tests altogether. Schweder (1976) has suggested that the backward 
versions provide locally most powerful tests. Neither cusum test indicates 
departures at the 10% level. The backward cusum-of-squares, however, 
shown in Exhibit 4.12, indicates marginal instability at the 10% level, and 
the forward cusum of squares (not reproduced here) behaves similarly.12 
However, the departure from the null hypothesis is negligible and the 
cusum-of-squares retracks within the confidence limits. 

Thus, on the basis of these two tests, Chow and Brown-Durbin-Evans, 
we have little reason to conclude that there are substantial instabilities in 
the overall regression regime. 

12Tbe actual significance level for rejecting the null hypothesis is greater for the combination 
of points. 
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ObJervation 

Exidbit 4.12 Backward cusum-of-squares plot: household corporate-bond data. 

Sensitiuity Diagnostics. 

Residuals. Exhibit 4.13 shows the normal probability plot, and Exhibit 
4.14 the time-series plot, of the studentized residuals. Three residuals 
exceed two in magnitude: 1968-l(33) is-2.07, 1971-3(47) is 2.95, and 
1973-4(56) is 2.23. The noticeable wiggles in the normal probability plot 
suggest possible non-normality. There is, furthermore, evidence for some 
intertemporal heteroscedasticity, since the residuals for the first 2 1 

Standard-normal quantile 

Exhibit 4.13 Normal probability plot of studentized residuals: household corporate-bond 
data. 
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data points have less variance than those in the remainder of the data, as is 
evident in Exhibit 4.14. 

Leverage and Coefficient Sensitivity. The diagonal elements of the hat 
matrix have five values which exceed 2p/n=0.25 and appear in two 
clusters from 1970-2 onward. This shows up clearly in column 1 of Exhibit 
4.15, where the large leverage values are denoted by asterisks. Columns 4 
to 10 for DFBETAS have 12 rows with at least one entry exceeding the 
size-adjusted cutoff of 2 / f i  = 0.27. The majority occur in the latter 
half of the periods, and then, for the most part, in clusters. 

At this point it is appropriate to examine relations among large coefficient 
changes and potential sources of sensitivity reflected in leverage or 
residuals. The following relevant points emerge. By far the largest leverage 
point is that for 1973-3(55), yet the estimated parameters are impacted 
negligibly because of a small associated studentized residual. Four changes 
show up concurrently with high leverage points, of which the three 
1970-3(43) and 1970-4(44) and 19731y56) appear as potentially the most 
troublesome. Also, 1970-2(42) has high leverage, yet its DFBETAS, taken 
as a whole, are not troublesomely large. We also note that, in addition, 
1966-4(28), 1971-3(47), and 1973-l(53) have large DFFITS in combination 
with several large DFBETAS. 

We might therefore conclude that 1973-3(55) is helpful leverage, in that 
it reduces variance without exerting exceptional influence on coefficient 
estimates. It also appears that certain periods, as noted above, have 
adverse effects associated with leverage. We combine the preceding 
diagnostic information with knowledge of the specific economic events of 
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the period to determine whether there is a systematic relation between 
sensitive coefficients and particular episodes in monetary policy. 

The Monetary Background 

Exhibit 4.16 shows historical patterns of short-term business borrowing 
rates, while Exhibit 4.17 shows member-bank excess reserves and 
member-bank borrowing from the Federal Reserve System. Short-term 
rates are the most commonly used indexes for conditions of monetary 
tightness, even though in this instance long-term corporate rates shown in 
Exhibit 4.18 are of most direct concern.” Since long-term rates ordinarily 
lag both short-term rates and member-bank borrowings from the Federal 
Reserve System, our principal criteria are short-term rates and 
member-bank borrowing. 

Over the period to which the household demand for corporate bonds has 
been fitted, 1960-1-1973-4, there were two extended periods of extreme 
tightness shown by all the relevant series: 1969-1-1970-4 (observations 
3744) and 1972-2 through 1973-4 (observations 50-56). These intervals, 
while approximate, help to delineate circumstances of particular interest. 

From the preceding analysis, large leverage is associated with each of 
these periods, as is one of the largest residuals, particularly for 1973-4(56). 
With this equation specification, then, we tentatively conclude that the 
coefficients are sensitive to periods of tight money. Since it is most difficult 
to model periods of monetary turbulence and uncertainty, we would not be 
surprised to find specification problems during periods of tight money. 

A Use of Ridge Regression 

As suggested at the end of Section 4.2, it is reasonable to make every 
attempt to remove as much ill conditioning due to collinearity as possible 
before exploring row-deletion diagnostics. The scaled condition number of 
106 suggests that linear dependencies among the variables of the Friedman 
data are potentially troublesome, despite the “acceptably high” level of 
reported t-statistics. While mixed-estimation or Bayesian methods are the 
preferred means for introducing prior information that may improve 
conditioning, circumstances often arise in which prior information about 
parameter magnitudes and their variability is deficient or is incorporated 
only with great difficulty. In the present instance, where many of the 
variables are cross-products of the more basic variables, priors are 
especially difficult to establish. 

‘ 3 ~ e s e  charts have been reproduced from the 1976 Hisforicul Chrr Book, with the kind 
permission of the Board of Governors, Federal Reserve Board, Washington, D.C. 
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4.3 ANALYSING THE HOUSEHOLD DEMAND FOR CORPORATE BONDS 225 

Thus, we have chosen ridge regression as a second-best means for 
improving conditioning, and this (see Section 4.1 relating ridge regression 
to mixed estimation) in effect gives equal prior weight to each of the 
(scaled) variates. Conceptually, this is an empirical analogue to obtaining 
more identifying information since, in the limiting case of one or more 
exact linear dependencies, the parameters are unidentified. Thus, resorting 
to ridge regression can be thought.of as logically prior to estimation and 
exploration of data-model interactions. 

Equation (4.15) shows the new estimates with the ridge parameter 
k=0.001. This relatively small perturbation of the (scaled) X matrix 
reduces the condition number to 65, still an indication of potential 
collinearity problems, but to a less severe extent. Coefficient signs are 
unchanged, while magnitudes change moderately. The choice of a 
relatively small k value has provided roughly comparable regression 
estimates so that we have not drastically altered the nature of the principal 
results by using ridge regre~sion.’~ 

HCB(T)= 0.02737HAFA( T).MR(T) +0.000420HFA(T- l).MR(T) 
(0.00349) (O.oooO53) 

(0.0059) 

(0.00344) (0.0 1287) 

- 0.01 145 PER( T) * HAFA( T )  

-0.01800CPR(T)*HAFA(T)+0.87228HCB(T- 1) 

+0.00541 HLA( T- 1) 
(0.00149) 

- 0.00534 HE( T -  1). 
(0.00094) 

(4.15) 

R2=.99 ~(X)=65 Ridge k=0.001 

Column 1 of Exhibit 4.19, presents the diagonals of the hat matrix. 
Comparison with Exhibit 4.15, which records equivalent values for the 
original regression, shows that the leverage effects for the original data 

“The calculation of the ridge estimator and the corresponding condition indexes have here 
been accomplished by setting A =  I in the expression surrounding (4.5). Deletion of a “ridge 
row” is thereby associated with a column of X (a specific variate), as is desirable in this case. 
Other choices of A are conceivably more suitable to other diagnostic needs. Interesting and 
unresolved questions arise concerning the calculation of the standard errors of the regression 
and the coefficients, since ridge is an inherently biased estimator. The reported standard 
errors for the coefficients have been calculated according to Obenchain (1977). 
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Exhibit 430 Extremes of individual DFBETAS dervied from 
the OLS and ridge* estimates of the household corporate-bond 
equation 

OLS Ridge 

Coefficient Smallest Largest Smallest Largest 

bl -0.65 0.67 -0.68 0.35 
b2 -0.50 0.38 -0.32 0.30 
b3 -0.53 0.34 -0.36 0.3 1 
b4 - 0.32 0.48 - 0.22 0.33 
bS - 0.66 0.50 -0.33 0.37 
b6 - 0.44 0.63 -0.15 0.26 
67 - 0.82 0.50 - 0.70 0.27 

*Ridge extremes based on only the first 56 rows of Exhibit 4.19. 

(observations 1-56) are very little affected by the ridge augmentation, 
while the last seven ridge-related hi show moderately sizable leverage for 
only one entry, that associated with 62. 

Columns 2-8 of Exhibit 4.19 record the DFBETAS for the 
ridge-augmented data.I5 The highly intriguing result emerges that, despite 
leverage having changed only moderately, the number of DFBETAS 
above the size-adjusted cutoff has dropped dramatically for the 56 original 
observations, almost by one half. Thus, coefficient changes that had 
previously appeared may have been the consequence of collinearity. 
Nevertheless, periods of tight money remain relatively influential and their 
continued presence cannot be readily attributed to ill conditioning alone. 
Other interesting information can be gleaned from this exhibit by looking 
at row deletions for the ridge parameter (rows 57-63). In particular, 
deletion of the ridge parameter k associated with the lagged dependent 
variable (row 61) has a noticeably large impact on all coefficients except 
4. Row 62 for liquid assets, HLA(T-I), also has a pervasive influence. 
The largest and smallest values for each DFBETAS are summarized in 
Exhibit 4.20. Clearly, individual coefficient sensitivity has been markedly 
reduced by ridge regression. 

Summary 

In the preceding analysis of a household corporate-bond equation, using 
the influential-data diagnostics, we discovered the presence of two periods 

"In light of the previous footnote, we have calculated the ridge DFBETAS by scaling the 
ridge DFBETA by the OLS-estimated standard errors of the coefficients from (4.12). 
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of high influence associated with periods of tight money. This suggests the 
possibility that the model may be incompletely specified and may not deal 
adequately with periods of tight money. At the same time, the high 
condition number of the original data suggests that ill conditioning may 
also be a problem leading to parameter sensitivity. Ridge regression was 
therefore employed, using a very mild value for k=.001 as a means for 
improvinz data conditioning. The condition number was thereby roughly 
halved, and the periods of relatively high influence were reduced in 
duration and severity, but not removed altogether. Thus, while ill 
conditioning appears to be one major source of parameter sensitivity in 
this case, we must still consider the possibility that the model is not fully 
adequate to deal with periods of tight money. 

4.4 ROBUST ESTIMATION OF A HEDONIC HOUSINGPRICE 
EQUATION 

The final illustrative analysis in this chapter is based on a paper by 
Harrison and Rubinfeld (1978), in which a hedonic price index for housing 
is estimated for use in a subsequent estimation of the marginal- 
willingness-to-pay for clean air. Hedonic price indexes were introduced 
into the recent literature by Griliches (1968) and, in essence, are based on 
the fitted values of a regression of price on various explanatory variables 
used to represent its qualitative determinants. Harrison and Rubinfeld are 
principally interested in examining the impact of air pollution (as 
measured by the square of nitrogen oxide concentration (NOXSQ)) on the 
price of owner-occupied homes and include NOXSQ and thirteen other 
explanatory variables as indicators of qualities that affect the price variable 
relevant to this analysis. 

The basic data, listed in Appendix 4A, are a sample of 506 observations 
on census tracts in the Boston Standard Metropolitan Statistical Area 
(SMSA) in 1970. Tracts containing no housing units, or those composed 
entirely of institutions, have been excluded. To facilitate later 
interpretation, the various census tracts are associated with their towns in 
Exhibit 4.21. 

This application of the influential-data diagnostics complements the 
previous examples in several significant ways. First, it includes many 
sociodemographic variables at a relatively disaggregated level and, as such, 
is typical of many current studies of urban markets, voting patterns, wage 
patterns, and the like. While it isprimafacie absurd to generalize from this 
one sample to all others with similar data bases, there may nevertheless be 
some suggestive insights of more than purely methodological interest. 



1 
2-3 
4-4 
7-13 
14-35 
36-39 
40-41 
42-50 
51-54 
55 
56 
57 
58 
59-64 
65 
66-67 
68-70 
71-74 
75-80 
81-84 
85-88 
89-92 
93-95 
96-100 
101-1 1 1  
112-120 
121-127 
128-142 
143-172 
173-179 
180-187 
188-193 
194-195 
196 
197-1 99 
200-201 
202-203 
2w205 
206-216 
2 17-220 
221-238 
239-244 
245-254 
255-256 
257 
258-269 
270-274 

Exhibit 4.21 Census tracts in the Boston SMSA in 1910 

Observation Town Observation Town 

Nahant 275-279 
Swampsco tt 
Marblehead 
Salem 

Saugus 
Lynnfield 
Peabody 
Danvers 
Middleton 
Topsfield 
Hamilton 
Wenham 
Beverly 
Manchester 
North Reading 
Wilrnington 
Burlington 
Woburn 
Reading 
Wakefield 
Melrose 
Stoneham 
Winchester 
Medford 
Malden 
Everett 
Somerville 
Cambridge 
Arlington 
Belmont 
Lexington 
Bedford 
Lincoln 
Concord 
Sudbury 
Wayland 
Weston 
Waltham 
Watertown 
Newton 
Natick 
Framingham 
Ashland 
Sherborn 
Brookline 

Lynn 

280-283 
284 
285 
286 
287 
288-290 
29 1-293 
294-298 
299-301 

305-308 
309-320 

329-33 1 

334-341 
342 
343 
344-345 
346-347 
348 
349 
350-35 1 
352-353 
354 
355-356 
357488 

302-304 

32 1-328 

332-333 

357-364 
365-370 
37 1-373 
374-375 
376-382 
383-393 
394-406 
407-414 

415-433 
434-456 
457-467 
468-473 
474-480 
481484 
484-488 

489493 
49650 1 

Needham 
Wellesley 
Dover 
Medfield 
Millis 
Norfolk 
Walpole 
Westwood 
Norwood 
Sharon 
Canton 
Milton 
Quincy 
Braintree 
Randolph 
Holbrook 
Weymouth 
Cohasset 
Hull 
Hingham 
Rockland 
Hanover 
Norwell 
Scituate 
Marshfield 
Duxbury 
Pembroke 
Boston 

Allston-Brighton 
Back Bay 
Beacon Hill 
North End 
Charlestown 
East Boston 
South Boston 
Downtown 

(South Bay) 
Roxbury 
Savin Hill 
Dorchester 
Mattapan 
Forest Hills 
West Roxbury 
Hyde Park 

Chelsea 
Revere 

Dedham 502-506 Winthrop 

230 
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Second, the sample size is much larger than any of the others that were 
examined. We have a chance, then, to see whether problems of a different 
nature arise on this account. Third, the residual distribution is found to 
possess much heavier tails than the Gaussian (normal) distribution, unlike 
the previous cases. It becomes natural therefore to employ estimators 
which are more robust than OLS to departures from normality in the error 
structure. 

The Model 

The hedonic housing-price model used by Harrison and Rubinfeld is 

A brief description of each variable is given in Exhibit 4.22. Further details 
may be found in Harrison and Rubinfeld (1978). 

Exhibit 4.22 Definition of model variables 

Symbol Definition 

LMV 
CRIM 
ZN 

INDUS 
CHAS 

NOXSQ 

RM 
AGE 
DIS 

RAD 
TAX 
PTRATIO 
B 

LSTAT 

logarithm of the median value of owner-occupied homes 
per capita crime rate by town 
proportion of a town’s residential land zoned for lots 
greater than 25,000 square feet 
proportion of nonretail business acres per town 
Charles River dummy variable with value 1 if tract 
bounds on the Charles River 
nitrogen oxide concentration (parts per hundred million) 
squared 
average number of rooms squared 
proportion of owner-occupied units built prior to 1940 
logarithm of the weighted distances to five employ- 
ment centers in the Boston region 
logarithm of index of accessibility to radial highways 
full-value property-tax rate (per $lO,OOO) 
pupil-teacher ratio by town 
(Bk-0.63)* where Bk is the proportion of blacks in the 
population 
logarithm of the proportion of the population that is 
lower status 
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Exhibit 4.23 OLS estimates : Housing-price equation 

Coefficient Standard 
Variable Estimate Error t-Statistic 

INTERCEPT 9.758 0.150 65.23 
CRIM -0.01 19 0.00124 -9.53 
ZN 7 . 9 4 ~  10-5 5 . 0 6 ~  10-4 0.16 
INDUS 2.36X 2 . 3 6 ~  10-3 0.10 
CHAS 0.0914 0.0332 2.75 
NOXSQ - 0.00639 0,001 13 -5.64 
RM 0.00633 0.00131 4.82 
AGE 8.86X lo-’ 5 . 2 6 ~  10-4 0.17 
DIS -0.191 0.0334 -5.73 
RAD 0.0957 0.0191 5 .O0 
TAX - 4 . 2 0 ~  10-4 1.23 X - 3.42 
PTRATIO -0.0311 0.0050 1 -6.21 
B 0.364 0.103 3.53 
LSTAT -0.371 0.0250 - 14.83 

R2== 306 SER = 0.182 KO() = 66 

Exhibit 4.23 reports least-squares estimates of (4.16). The overall fit 
reflected in R2 is relatively good for cross-sections, and the condition 
number KO() of 66, while large, is not deemed large enough in this context 
to be worth pursuing. While several coefficient estimates have low 
I-statistics, we note that the NOXSQ term representing pollution has the 
correct sign and a t-statistic of -5.64. 

As a first diagnostic step we look at the normal probability plot in 
Exhibit 4.24. It is clear from visual inspection of this exhibit that there are 
very substantial departures from normality. 

Robust Estimation 

One appropriate means for estimating a model with an error structure that 
is not Gaussian is to use the maximum-likelihood estimator relevant to the 
“correct” error structure. Since, in the case of the Harrison-Rubinfeld 
model, the “correct” error structure is unknown, a reasonable alternative 
strategy is to explore structures in a neighborhood of the Gaussian to see 
how sensitive the estimated coefficients are to such changes. An analysis of 
this sort should be based on an estimator that is reasonably efficient both 
when the errors are Gaussian and when they are nearly so. 



4.4 ROBUST ESTIMATION OF A HEDONIC HOUSING-PRICE EQUATION 233 

Standard-normal quantile 

Exhlbit 4.24 Normal probability plot for studentized residuals from OLS estimates; 
housing-price equation. 

Recall from Chapter 2 [see (2.23)] that Huber has proposed just such an 
estimator, with a criterion function given by 

The parameters (including scale) are estimated by minimizing 

(4.17) 

(4.18) 

As noted in Chapter 2, when c= 00 (4.18) reduces to least squares, and 
when c+O it is equivalent to least-absolute residuals. For this analysis we 
chose an intermediate value of c= 1.345 along with d=0.3591(n-p), 
which results in a Huber estimator having 95% efficiency relative to OLS 
when the error structure is in fact Gaussian.I6 

Exhibit 4.25 compares the Huber estimates and the OLS estimates for 
the Harrison-Rubinfeld model, and it reveals a number of sources of 
sensitivity, especially LSTAT and RM, which change by more than three 
OLS standard errors.” 

‘Qese results were computed using the ROSEPACK (1980) program. 
“Since robust estimates of scale have a less secure theoretical basis than those for OLS 
estimates, they have not been reported here. 
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Exhibit 4.25 Huber and OLS estimates: housing-price equation 

Coefficient Estimates 

Variable 

~ 

bLs- b" Huber OLS 

INTERCEPT 9.630 9.758 0.854 
CRIM 
ZN 
INDUS 
CHAS 
NOXSQ 
RM 
AGE 
DIS 
RAD 
TAX 
PTRATIO 
B 
LSTAT 

- 0.01 10 
3.65 x 10-5 
1.21 x 10-3 
0.0768 

0.01 15 
- 6.60 X 
-0.164 

0.0705 

- 0.0290 
0.55 1 

- 0.28 1 

- 0.00505 

3.61 x 10-4 

-0.0119 
7.94x 10-5 

0.09 14 

0.00633 
8.86 X lo-' 

0.0957 

2 . 3 6 ~  10-4 

- 0.00639 

-0.191 

- 4 . 2 0 ~  10-4 
- 0.03 1 1 
0.364 

- 0.371 

- 0.700 
0.085 

-0.413 
0.44 1 

- 1.182 
- 3.943 

1.423 
-0.810 

1.319 
- 0.480 
- 0.436 
- 1.813 
- 3.587 

Although Harrison and Rubinfeld did not examine the distributional form 
of the residuals, they were careful to explore a number of alternative 
specifications that led to coefficient changes of at least the amount 
produced by the Huber estimates and to report their final results by 
bracketing the ranges of the NOXSQ effect for alternative model structures 
and correspondingly different coefficient estimates. 

Since, apart from the intercept, LSTAT had the largest I-statistic, it is 
somewhat disturbing for it to have shifted so much. The coefficient of the 
variable of principal interest, NOXSQ, also changed by one standard error. 

It is interesting to compare studentized residuals from OLS (Exhibit 4.24) 
with those from the Huber estimates which appear in Exhibit 4.26. The 
latter, while not having normality imposed, have had the more extreme 
residuals downweighted to such an extent that the sample distribution of 
the weighted studentized residuals'* is now broadly consistent with an 
underlying normal distribution. Since it is characteristic of the Huber 

"The Huber estimates are computed using iteratively reweighted least squares [Holland and 
Welsch (1978)]. The weights W (a diagonal weight matrix) at the final iteration are used to 
form W'l2X and W'/2y, which replace X and y in the derivation of the studentized residuals 
in (2.26). 
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I- 
2 
w 
0 

I3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 
Standard-normal quantile 

Exhlbtt 4.26 Normal probability plot of weighted studentized residuals from Huber 
estimates: housing-price equation. 

estimator to downweight large residuals, this result is hardly surprising. It 
is even more informative to make a direct comparison of OLS residuals 
with unweighted residuals obtained from the data and the Huber-estimated 
coefficients. Because the choice of scale is a problem with robust estimates, 
the cleanest contrast is between the two sets of raw residuals rather than 
studentized ones. These are shown on a scatter diagram in Exhibit 4.27 
with the Huber residuals on the vertical axis and the OLS residuals on the 
horizontal axis. A line with unit slope has been added. It is significant to 
note that the shape in the middle of the bivariate scatter is different from 
that of both ends. For the more sizable residuals at either end, the 
unweighted Huber residuals are larger in absolute value than the OLS 
residuals. When a robust fit (Tdcey’s resistant line [Velleman and Hoaglin 
(1980)l) is fitted to these data, it has a slope of 0.91, so that the Huber 
residuals tend to be smaller than the OLS residuals for the main body of 
the data but larger in the tails. This behavior, which is consistent with the 
underlying differences in the two estimators, is useful in the interpretation 
of DFFITS below. 

Partial Plots 

The partial-regression leverage plots, of which only two are shown here, 
reveal useful information of both a positive and a negative nature. Exhibit 
4.28 for NOXSQ, the variable of principal concern, reveals a scatter which 



Exhlbh 4.27 Scatter plot of unweighted Huber residuals versus OLS residuals: housing-price 
equation. 
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equation. 
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ExhlMt 4.29 Partial-regression leverage plot for b2 (CRIM), S.E. =O.O0124: housing-price 
equation. 

is not obviously dominated by extreme points. The result, which needs to 
be explored further with row-deletion diagnostics, helps to buttress the 
quantitative basis for the analysis undertaken by Harrison and Rubinfeld. 
CRIM, shown in Exhibit 4.29, has quite another aspect. Three points near 
the center of Boston-381 (Charlestown), 406 (South Boston), and 419 
(Roxbury)- dominate this partial plot in terms of leverage. A deeper 
investigation with deletion diagnostics is clearly worthwhile to see what 
can be understood beyond these visual impressions. The remaining plots, 
which are omitted to conserve space, do not portray strikingly influential 
observations comparable to that for CRIM. 

Single-Row Diagnostics 

Exhibit 4.30 contains a selected subset of 67 census tracts for which the 
size-adjusted cutoff is exceeded for either hat-matrix diagonals, studentized 
residuals, DFFITS or the DFBETAS for the two explanatory variables 
NOXSQ and CRIM. This subsample includes about half of the 139 census 
tracts that would have been indicated by the diagnostics applied to all 14 
explanatory variables together. The size-adjusted cutoffs used to indicate 
potential influence are 2p/n = 0.055 for hat-matrix diagonals, 2- = 
0.333 for DFFITS, and 2/ fi = 0.089 for DFBETAS. 

The last column of this table records how many of the 14 coefficients for 
a particular census tract had larger magnitudes than either the upper (U) 
or lower (L) cutoff for DFBETAS. The first general observation is that, 



Exhibit 430 Hat-matrix diagonals, studentized residuals, DFFITS, and 
DFBETAS for selected census tracts: housing-price data* 

Census 
Tract h, RSTUDENT DFFITS NOXSQ CRIM L (- 0.089) U (0.089) 

Row Summary : 
DFBETAS DFBETAS 

8 
124 
127 
143 
144 
148 
149 
151 
152 
153 
154 
155 
156 
157 
160 
161 
162 
163 
164 
215 
258 
284 
285 
343 
358 
359 
360 
36 1 
362 
363 
365 
366 
367 
368 
369 
370 
37 1 
372 
373 
38 1 
386 
388 
392 

0.0338 
0.0585* 
0.0599* 
0.0672* 
0.0475 
0.0508 
0.0485 
0.0456 
0.0496 
0.0737' 
0.0461 
0.0630* 
0.0840* 
0.0666* 
0.0555* 
0.0552* 
0.0679* 
0.0767' 
0.0676. 
0.0579* 
0.0572* 
0.0690* 
0.0443 
0.0823* 
0.0493 
0.0520 
0.0246 
0.03 16 
0.0204 
0.0329 
0.0891* 
0.0773. 
0.0223 
0.0607* 
0.0982* 
0.0656* 
0.073 1 
0.0242 
0.0532 
0.2949, 
0.0183 
0.023 1 
0.0126 

2.286* 0.4276* -0.0464 0.0196 
0.443 
0.071 

-0.717 
0.723 
0.718 
I .773 
0.980 
0.666 

- 1.312 
I .075 

- 0.538 
- 0.427 
- 0.468 

0.007 
- 1.525 
- 0.528 
- 0.975 
-0.105 

2.910* 
0.437 
0.495 
1.607 

- 1.014 
1.002 
1.250 
1.790 
1.277 
1.203 
0.969 

- 2.747* 
1.960 
1.718 
2.764* 
2.663* 
1.723 
0.965 
4.512. 
4.160, 
2.559. 

- 2.564* 
- 1.779 

2.334* 

0.1 103 - 0.0230 0.0028 
0.0180 -0.043 O.ooO1 

-0.1925 -0.0933, -0.0034 
0.1614 0.1049* 0.0046 
0.1662 0.1032* -0.0055 
o . m *  0.2609* -0.0144 
0.2142 0.1612* 0.0026 
0.1520 0.1051* -0.0014 

-0.3701* -0.2013. -0.0028 
0.2364 0.1664. -0.0061 

-0.1395 -0.0842 -0.0032 
-0.1292 -0.0650 0.0007 
-0.1251 -0.0707 0.0083 

0.0017 0.0013 0.0001 
-0.3688* 0.1152* -0.0003 
-0.1424 0.0166 -0.0107 
-0.2809 0.0406 -0.0325 
-0.0283 0.0042 -0.0028 

0.72 14* - 0.0776 - 0.075 1 
0.1076 0.0122 -0.0057 
0.1348 -0.0059 0.0159 
0.3461. -0.0005 0.0207 

-0.3036 -0.0406 -0.0323 
0.2282 0.0994* -0.0185 
0.2930 0.1364* -0.0056 
0.2841 0.2000* -0.0419 
0.2306 0.1502* -0.0190 
0.1737 0.1192* -0.0406 
0.1787 0.0906* -0.0318 

-0.8590' -0.1780* 0.0649 
0.5671 * 0.0549 - 0.0875 
0.2597 0.0427 -0.0958. 
0.7026* -0.1952* -0.0468 
0.8791. -0.1256* -0.1105. 
0.4566* -0.0808 -0.0454 
0.2712 -0.0467 -0.0195 
0.7110* -0.2709* -0.1293* 
0.9856. -0.1751* -0.1264' 
1.6551* 0.0975* 1.5914* 

-0.3499* 0.01 13 -0.0567 
- 0.2738 - 0.0077 - 0.1 1 17* 

0.2632 0.073 1 - 0.0800 

3 
- 
- 
- 
1 
1 
1 
1 
1 
2 
1 
- 
- 
- 
- 
4 
1 
1 

3 
- 

- 
- 
4 
3 
2 
3 
3 
2 
1 
1 
2 
1 

3 
2 
1 
1 
5 
4 
6 
1 

1 

- 

- 
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Row Summary : 
D FB ETAS DFBETAS Census 

Tract h, RSTUDENT DFFITS NOXSQ CRIM L (-0.089) U (0.089) 

398 
399 
400 
401 
402 
404 
406 
408 
410 
41 1 
412 
413 
414 
415 
416 
417 
419 
420 
427 
467 
474 
490 
49 1 
506 

0.0125 
0.0458 
0.0213 
0.0225 
0.0141 
0.0212 
0.1533' 
0.0198 
0.0252 
0.1 116* 
0.0394 
0.0477 
0 .Om7 
0.0674* 
0.0329 
0.0387 
0.1843* 
0.0377 
0.0410 
0.0373 
0.0189 
0.0514 
0.0527 
0.0357 

-3.212* 
-3.301* 
- 3.936* 
- 3.954* 
- 3.988' 
- 2.030* 

2.141* 
2.422' 
3.162* 
1.688 
1.084 
3.520' 
1.947 
0.588 

- 2.178* 
- 2.852* 

- 2.292' 
- 1.956 

2.316' 

1.803 
2.060' 

- 3.534' 
-2.019. 
- 3.070' 

-0.3617' -0.0025 0.0928' 
- 0.7235' -0.0168 - 0.5774' 
-0.5808' 0.0132 0.1176' 
-0.5995* -0.0242 -0.3424* 

0.4766* - 0.0204 - 0.0636 
- 0.2989 -0.0258 -0.1833* 
-0.9112' -0.0552 -0.8699* 

0.3446. -0.0925* -0.0271 
0.5079' -0.2685' - 0.0308 
0.5983' -0.1278* 0.4130' 
0.2195 -0.1008' -0.0268 
0.7878' -0.3782* -0.o060 
0.3470* -0.15~54~ 0.1783* 
0.1581 -0.0042 0.1190' 

-0.4019* 0.0409 -0.0251 
-0.5724' 0.0473 0.1098* 

-0.4536' -0.0606 0.0619 
-0.4012' 0.1416' 0.0582 

0.3549' -0.0155 -0.1191+ 
0.2860 -0.0250 -0.0655 

-0.8225' 0.2957* 0.1797* 
-0.4763' 0.1760* 0.1107* 
-0.5906* -0.1193* -0.0547 

1.1009' 0.0352 1.0041' 

1 2 
3 
4 4 
4 
3 1 
2 
3 1 
4 - 
3 3 
4 2 
2 
5 2 
2 2 

1 
3 1 
3 3 
5 3 
2 2 
1 4 
2 - 
1 1 
3 4 
2 3 
3 3 

- 

- 

- 

- 

- 

'Cutoff values: h, = 0.055; RSTUDENT = 2.0; DFFITS -0.333; 
DFBETAS -0.089. 

while Boston comprises 131 census tracts of a total of 506 in the sample, it 
accounts for 40 of the 67 observations that surfaced. While we did not 
explore the point further, one might speculate from this that central-city 
behavior differs systematically from that of the surrounding towns. A 
second general characteristic is that adjacent areas often have similar 
diagnostic magnitudes. This is particularly striking with respect to the 
studentized residuals. Here we see that observations 398-406 (in South 
Boston) all have negative values, only two of which fall short of 3 in 
absolute value. Similar patterns hold for most of the DFBETAS, which the 
reader should see for himself. Thus there appear to be potentially 
significant neighborhood effects on housing prices that have not been fully 
captured by this model. 
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Exhlblt 431 Scatter plots of DFFITS versus census tract number: housing-price data. 

The portmanteau diagnostic DFFITS is tabulated in Exhibit 4.30 and 
plotted against census tract number in Exhibit 4.31. This latter graph is 
most helpful in conveying impressions both of the relative magnitudes of 
the DFFITS and notions of neighborhood clustering. Indeed, in returning 
to Exhibit 4.30, we note that 35 census tracts exceed the cutoff, and there is 
apparent clustering around tracts 365-370 and 371-373 (in the adjacent 
neighborhoods of Back Bay and Beacon Hill), where large residuals are 
often accompanied by sizable hat-matrix diagonals. It is of further interest 
to note that the largest DFFITS has a value of 1.655 in tract 381 (in 
Charlestown), a result that indicates how powerful 1 of 506 observations 
can be.’9 

When the Huber estimates are used to calculate unweighted DFFITS” 
(again employing OLS scale to preserve comparability), only 10 census 

l9It should be noted, however, that the fitted values, in addition to b,NOXSQ, play an 
important role in determining W, the willingness to pay for clean air. Changes in the fit, 
therefore, can have a serious impact on the willingness-to-pay equations (cf. Harrison and 
Rubinfeld (1978), (2.3) and Table I). To assess fully the impact on W, a careful analysis of 
the off-diagonal change in fit (2.12) corresponding to large IDFFITSI would be needed. 
w e  unweighted DFFITS are calculated as 

X L b H  - W i ) )  

s ( i ) f i  ’ 
where bH is the Huber-estimated coefficient vector, and the denominator is computed from 
corresponding rows of OLS estimates. 
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tracts exceed the cutoff in comparison with 35 for OLS. These include 
census tracts 365, 366, 368-371, 381,406,411, and 419. The rank ordering 
is reasonably similar for both sets of calculations. Robust estimation is 
intended to provide more reliable estimates in the presence of heavy-tailed 
error distributions, an objective that has been only partially attained in this 
instance. We discuss this point further in Chapter 5. 

Returning to the OLS results in Exhibit 4.30, census tract 381, already 
noted above as having an extreme DFFITS, also has 10 of its 14 
coefficients with DFBETAS that exceed the cutoff, the largest of the 
hat-matrix diagonals (0.295) and a large studentized residual. Four other 
census tracts-365, 369 (in Back Bay); 372, and 373 (in Beacon 
Hillbhave nine or more coefficients with DFBETAS that exceed the 
cutoff. All of these tracts have large residuals, while the first two also have 
hat-matrix diagonals larger than the cutoff. 

Turning to the NOXSQ column, there does not appear to be a powerful 
association of large DFBETAS with large hi or studentized residuals, 
although once again there is clustering: eight of the Cambridge tracts, 
143-153; all of the Allston-Brighton tracts, 358-362; and most of the 
downtown Boston tracts, 4 10-414. However, the Back Bay tracts, 365-370, 
and the Beacon Hill tracts, 371-373, are clearly linked to hat-matrix 
diagonals and studentized residuals. Broadly speaking, it is reasonable to 
conclude that, apart from some neighborhood effects previously noted, the 
NOXSQ coefficient does not pose severe problems from the viewpoint of 
single-row deletion diagnostics, but the question arises: could deleting two 
or more observations cause trouble for NOXSQ?" We comment on this 
shortly. 

An examination of the CRIM variable shows it to have the largest 
DFBETAS, three of which (381, 406, and 419) are larger than 0.8 and the 
largest of which is - 1.59. These are associated with the three largest 
leverage points as well as sizable, though far from the largest, residuals. 
The other large DFBETAS for CRIM are more closely linked to large 
residuals than to leverage. 

Multiple-Row Diagnostics 

Since some influential observations may be overlooked by single-row 
diagnostics, we turn now to multiple-row techniques. Various multiple-row 
methods are discussed in Chapter 2, many of which prove quite costly. We 
resort here to the least expensive sequential procedure (see (2.62) and 

2'However, the problems indicated in footnote 19 in determining W, the willingness to pay, 
arise here as well. 
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following) that has nevertheless proven to be quite effective for large data 
sets. 

This procedure, we recall, is based on the principle that the largest 
changes in fit should occur for those discrepant observations not used in 
the estimation of the coefficients. Different starting sets 0,'"' can lead to 
different final sets. Rather than a drawback, we have found this 
characteristic to be an advantage and often use both of the starting 
procedures described in Chapter 2. 

For the Harrison-Rubinfeld data both starting methods converged to 
tracts 381, 419, 406, and 411, with 415 a possibility. The multiple-row 
analysis therefore has not revealed any masked observations, except 
perhaps 415, which might have been overlooked earlier had we only 
examined DFFITS. 

We have listed the results of deleting these five observations in Exhibit 
4.32. There is little change in NOXSQ from the least-squares results, but a 
substantial change in the CRIM coefficient and the fitted values (which we 
have not displayed). While a similar outcome arises when observations are 
deleted individually (Exhibit 4.30), this will not always be the case and 
there can be some situations in which multiple-row techniques will affect a 
coefficient when single-row methods do not. 

Exhibit 432 OLS estimates: housing-price equation with census 
tracts 381,419,406,411, and 415 deleted 

Variable Estimate Standard Error t-Statistic 
Coefficient 

INTERCEPT 9.788 0.147 
CRIM -0.0191 0.002 19 
ZN 3.12 X 4.97~ 10-4 
INDUS -7.31 x 10-4 2.32 x 10-3 

NOXSQ - 0.00637 0.001 1 1  

AGE - 8.08 X lo-' 5.17~ 10-4 

TAX - 3.48 x 10-4 1.21 x 10-4 

CHAS 0.0873 0.0325 

RM 0.00626 0.00130 

DIS -0.217 0.0333 
RAD 0.111 0.0191 

PTRATIO - 0.0305 0.00490 
B 0.39 1 0.105 
LSTAT - 0.355 0.0249 

R's .80  SER =0.78 

66.42 
- 8.73 
0.63 

- 0.3 1 
2.69 

- 5.73 
4.82 

- 0.16 
- 6.5 1 
5.80 

- 2.87 
- 6.23 
3.73 

- 14.27 
K(X) = 66 
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s-ary 

Several matters of substantive interest emerge. First, the residual 
distribution based on ordinary least-squares estimation departs strongly 
from normality according to the normal probability plot. A robust 
estimator designed to reduce the influence of large errors changes the value 
of the NOXSQ coefficient by one OLS standard error and several other 
coefficients by much more. We believe it is useful from a diagnostic 
perspective to examine estimates from robust fitting procedures in these 
circumstances and contrast them with OLS estimates. Second, about 1Wo 
of the observations are shown to be influential by single-row deletion 
diagnostics for the elements on which we have concentrated here and more 
than twice that number for the entire problem. It should be emphasized 
that the large proportion of observations indicated in this example by the 
diagnostics as being worthy of further attention is due not only to a large 
proportion of leverage points but also to a severely non-Gaussian error 
distribution. Third, a multiple-row deletion procedure indicates that five 
points are strongly influential (a result consistent with single-row 
procedures) and also points to one census tract whose influence might have 
been overshadowed, if not masked, in the single-row deletion diagnostics. 
Fourth, the NOXSQ coefficient seems well determined according to row- 
deletion diagnostics in the sense that its magnitude is not strongly affected 
by data perturbations. Fifth, the influential data tend to be quite heavily 
concentratd in a few neighborhoods and these are, for the most part, in 
the central Ltty of Boston, which leads us to believe that the housing-price 
equation is not as well specified as it might be. 

The housing-price equation has provided useful information on the 
applicability of deletion diagnostics to large data sets. We have found only 
slight differences between the analysis of large and small data sets. One 
might imagine that costs would be burdensome, but in fact a full set of 
single-row deletion diagnostics costs less than $10 and the sequential 
multiple-row procedure about $25. Since a complete set of output for 
DFBETAS, for instance, will produce 7084 values, it is advisable to rely 
more extensively on graphics and other summary measures. Thus, the plot 
of DFFITS against census tract number in Exhibit 4.31 provides useful 
global information about magnitude and the potential existence of 
correlated geographical effects, given the way the data matrix was 
naturally constructed. There may well be other more powerful 
pattern-recognition algorithms to detect such systematic behavior, a point 
that calls for further research. 

It proves informative to evaluate DFBETAS not only by examining 
those coefficients that exceed the chosen cutoff, but also by looking at the 
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number of them in a given census tract that exceed the cutoff. When well 
over one-half do so, we are especially alert to potential difficulties 
associated with the specific census tract deleted. In quite a few instances 
deletion of one observation out of the 506 makes a surprisingly large 
change as measured by external scale; for example, deletion of census tract 
419 alone changes the CRIM coefficient by one standard deviation, and 
the deletion of census tract 381 changes DFFITS by 1.65 standard 
deviations. Thus, what we conceive to be extremely influential 
observations are discernible by “absolute” criteria even in a large data set. 

a . . . . . . . . 

Census 
Tract 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31  
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

LMV 

10.0858 

10.4545 
10.4163 
10.4968 
10.2647 
10.0389 
10.2073 

9.98045 

9.71112 
9.84692 
9.61 581 
9.84692 
9.98507 
9.92329 
9.8091 8 
9.89848 

9.76996 
9.91344 
9.80918 
9.51783 
9.88329 
9.62905 
9.5819 
9.65503 
9.53964 
9.71716 
9.60238 
9.82011 
9.95228 
9.44936 
9.5819 
9.48797 
9.48037 
9.51045 
9.84692 
9.90349 
9.95228 

10.04 76 

10.1146 
10.3353 
10.4602 
10.1887 
10.1386 
10.1146 

CRIM 

0.00632 
0.02731 
0.0273 
0.03237 
0.06905 
0.02985 
0.08829 
0.14455 
0.21124 
0.17004 
0.22489 
0.11747 
0.09378 
0.62976 
0.63796 
0.62739 
1.05393 
0.7842 
0.80271 
0.7258 
1.25179 
0.85204 
1.23247 
0.98843 
0.75026 
0.84054 
0.67191 
0.95578 
0.77299 
1.00245 
1.13081 
1.35472 
1.38799 
1.15172 
1.61282 
0.06417 
0.09744 
0.080 I4 
0.17505 
0.02763 
0.03359 
0.12744 
0.1415 
0.15936 

. f . . . . . 

ZN 

18. 
0. 
0. 
0. 
0. 
0. 
12.5 
12.5 
12.5 
12.5 
12.5 
12.5 
12.5 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
75. 
75. 
0. 
0. 
0. 

Variable 

INDUS 

2.31 
7.07 
7.07 
2.18 
2.18 
2.18 
7.87 
7.87 
7.87 
7.87 
7.87 
7.87 
7.87 
8.14 
8.14 
8.14 
8.14 
8.14 
8.14 
8-14 
8.14 
8.14 
8.14 
8.14 
8.14 
8.14 
8.14 
8.14 
8.14 
8.14 
8.14 
8. I4 
8.14 
8.14 
8.14 
5.96 
5.96 
5.96 
5.96 
2.95 
2.95 
6.91 
6.91 
6.91 

. . . . . . . . 

CHAS 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

NOXSQ 

28.9444 
21.9961 
21.9961 
20.9764 
20.9 764 
20.9764 
27.4576 
27.6576 
27.4576 
27.6576 
27.4576 
27.4576 
27.4576 
28.9444 
28.9444 
28.9404 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9444 
28.9446 
28.9444 
24.900 I 
24.9001 
24.9001 
24.9001 
18.3184 
18.3184 
20.0704 
20.0704 
20.0704 

. . .  

RM 

43.2306 
41.2292 
51.6242 
48.972 
51.0796 
41.3449 
36.1441 
38.0936 
31.7082 
36.048 
40.6661 
36.1081 
34.6803 
35.3906 
37.1612 
34.0355 
35.2242 
35.880 I 
29.7619 
32.7905 
31.0249 
35.5812 
37.7242 
33.791 
35.0937 
31.3488 
33.791 
36.5662 
42.185 
44.5423 
32.6384 
36.8692 
35.4025 
32.5014 
37.1612 
35.2005 
34.1173 
34.2225 
35.5932 
43.494 
49.3365 
45.8329 
38.0565 
38.5765 
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APPENDIX 4A. THE HARRISON AND RUBINFELD HOUSINGPRICE 
DATA 

The following are the data used for the analysis of the Hamson and 
Rubinfeld (1978) Housing-Price equation treated in Section 4.4. For 
identification of census tracts, see Exhibit 4.21. We are grateful to David 
Harrison and Daniel L. Rubinfeld for making these data available. 

. . .  

Census 
Tract 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
I 3  
14 
15 
16 
17 
I 8  
19 
20 
21 
22 
23 
24 
25 
2b 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4 0  
41 
42 
4 3  
44 

. . .  

AGE 

65.2 
78.9 
61 .1  
45.8 
54.2 
58.7 
6b.b 
96.1 

85.9 
94.3 
82.9 
39. 
61.8 
84.5 
56.5 
29.3 
81.7 
36.6 
69.5 
9n .  I 
8Y.2 
Y1.7 

94.1 
85.7 
90.3 

94.4 
87.3 
94.1 

150. 
82 .  
95.  
96.9 
68.2 
61.4 
41.5 
30.2 
21.8 
15.8 
2.9 
6.6 
6.5 

100. 

100. 

68.8 

. . .  

DIS 

1.40854 
1.60283 
1.60283 
1.80207 
1.80207 
1.80207 
1.71569 
1.78347 
1.80535 
1.08587 
1.84793 
I .82885 
1.69578 
1.54916 
1.49557 
1.50377 
1.50377 
1.44878 
1.33408 
I .  33408 
1.33445 
I .  38936 
1.3805 
I .40981 
1.48151 
1.49394 
1.54372 
1.49367 
1.49396 
1.44433 
1.44291 
1.42911 
1.38379 
1.33163 
1.32436 
1.21203 
I .  21 725 
1.36971 
1.34737 
1.6866 

I .  74413 
1.74413 
1.74413 

I .  6866 

. . . . . . . . . . . . . . . . . .  

RAD 

0. 
0.69315 
0.69315 
1.09861 
1.09861 
1.09861 
1.60944 
1.60944 
I .  60944 
1.60944 
1.60944 
1.60344 
1.60944 
I .  38629 
1.38629 
1.38629 
I .  38629 
1.38629 
I .  38629 
1.38629 
I .  38629 
1.38629 
1.38629 
1.38629 
1.38629 
1.38629 
I .  38629 
1.38629 
I .  38629 
1.38629 
1.38629 
I .  38629 
1.38629 
I .  38629 
I .  38629 
1.60944 
I .  60944 
1.60944 
1.60944 
1.09861 
1.09861 
1.09861 
1.09661 

TAX 

296. 
242. 
242. 
222.  
222.  
222. 
311. 
311.  
311.  
311. 
311. 
311. 
311. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307.  
J07.  
279. 
279. 
279. 
279. 
252. 
252. 
233. 
233. 

Variable 

1.09861 233. 

PTRATIO 

15.3 
17.8 
17.8 
18. 7 
18.7 
18.7 
15.2 
15.2 
15.2 
15.2 
15.2 
15.2 
15.2 
21. 
21. 
21. 
21. 
21. 
21. 
21. 
21. 
2 1 .  
2 1 .  
21. 
21. 
21. 
21. 
2 1 .  
21. 
21. 
2 1 .  
21. 
21. 
21. 
21. 
19.2 
19.2 
19.2 
19.2 
18.3 
18.3 
17.9 
17.9 
17.9 

B 

0.3969 
0.3969 
0.39281 
0.39464 
0.3969 
0.39412 
0.3950 
0.3969 
0.38664 
0.38671 
0.39251 
0.3969 
0.3905 
0.3969 
0.38002 
0.39562 
0.38685 
0.38675 
0.28899 
0.39095 
0.37657 
0.39253 
0.3969 
0.39453 
0.39433 
0.30342 
0.37689 
0.10638 
0.38794 
0.38023 
0.36017 
0.37673 
0.2326 
0.35877 
0.24831 
0.3969 
0.37756 
0.3969 
0.39343 
0.39563 
0.39562 
0.38541 
0.38337 
0.39446 

LSTAT 

-3.0007 Cr 
-2.3925 1 
-3.21165 
-3.52744 
-2.93163 
-2.95555 
-2.08482 
-1.65276 
-1.20636 
-1.7662 7 
-1.58733 
-2.01966 
-1 .a5075 
-2.49411 
-2.27692 
-2.46852 
-2.72174 
-1.91943 
-2.14652 
-2.18196 
-1.55989 
-1.97818 
- 1 - 6 7563 
-1.6153 
-1.81376 
- I .  80108 
- I .  90987 
-1.75585 
-2.05557 
-2.12218 
-1.4874 
-2.03738 
-1.28348 
-1.69549 
-1.59263 
-2.33542 
-2.1705 
-2.43361 
-2.29016 
-3 .14238  
-3.9246 
-3.02764 
-2.84525 
-2.59776 



Variable 

Census 
Tract 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60  
61 
62 
63 
64 
6 5  
66 
67 
68  
69 
70  
71 
72 
73  
7 4  
75 
76 
7 7  
78  
79 
80 
81  
82 
83 
84 
85 
86 
87 
88 
8 9  
90 
91 
92 
93 
94 
95 
96 
97 
Y8 
99  
100 
101 
102 
103 
104 
105 

LMV 

9.96176 
9.86786 
9.90349 
9.71716 
9.57498 
Y.87303 
9.88837 
9.92818 

10.1266 
10.0605 

10.4745 
10.1146 
10.3609 
10.0562 

9.84692 

9.88329 
9.83628 
9.68034 

10.0078 
10.1266 
10.4043 
10.0648 
9.87303 
9.9988 
9.76423 
9.9475 

10.0941 
9.98507 

10.0345 
10.0605 
10.09 
9.97115 
9.90369 
9.94271 
9.96 176 
9.91838 

10.24 
10.3816 
10.1186 
10.0389 
10.081 6 
LO. I 887  
10.021 3 
10.0078 
10.069 
10.2647 
10.0257 

9.9988 
10.0389 
10.1266 

10.2541 

10.5636 
10.6874 
10.4103 
10.2219 
10.1849 

9.93305 

9.97115 

9.83092 
9.86786 
9.90848 

CFUM 

0.12269 
0.17142 
0.18836 
0.22927 
0.25387 
0.21977 
0.08873 
0.04337 
0.0536 
0.04981 
0.0136 
0.01311 
0.02056 
0.01432 
0.15445 
0.10328 
0.14932 
0.171 71 
0.11027 
0.12651 
0.01951 
0.03584 
0.043 79 
0.05789 
0.13555 
0.12816 
0.08826 
0.15876 
0.09164 
0.19539 
0.07896 
0.09512 
0.10153 
0.08707 
0.05646 
0.08387 
0.04113 
0.04462 
0.03659 
0.03551 
0.05059 
0.05735 
0.05188 
0.07151 
0.0566 
0.05302 
0.04684 
0.03932 
0.04203 
0.02875 
0.04294 
0.12204 
0.11504 
0.12083 
0.08187 
0.0686 
0.14866 
0.11432 
0.22876 
0.21161 
0.1396 

ZN INDUS 

0.  6.91 
0.  6.91 
0.  6.91 
0. 6.91 
0.  6.91 
0.  6.91 

21. 5.64 
21. 5.64 
21.  5.64 
21. 5.64 
75. 4. 
9 0 .  1.22 
85. 0.74 
100. 1.32 

25. 5.13 
25.  5 .13 
25. 5.13 
25. 5.13 
25.  5.13 
25. 5.13 
17.5 1.38 
80.  3.37 
8 0 .  3.37 
12.5 6.07 
12.5 6.07 
12.5 6.07 
0. 10.81 
0 .  10.81 
0. 10.81 
0 .  10.81 
0 .  12.83 
0 .  12.83 
0. 12.83 
0. 12.83 
0 .  12.83 
0. 12.83 

25. 4.86 
25. 4.86 
25 .  4.86 
25. 4.86 

0 .  4.49 
0 .  4.49 
0 .  4.49 
0.  4.49 
0.  3.41 
0. 3.41 
0 .  3.41 
0.  3.41 

28. 15.04 
28.  15.04 
28. 15.04 

0.  2.89 
0. 2.89 
0.  2.89 
0 .  2.89 
0. 2.89 
0. 8.56 
0. 8.56 
0 .  8.56 
0. 8.56 
0. 8.56 

CHAS 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0 .  
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0 .  
0 .  
0 .  
0. 
0.  
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

NOXSQ 

20.0704 
20.0704 
20.0 704 
20.0704 
20.0704 
20.0704 
19.2721 
19.2721 
19.2721 
19.2721 
16.81 
16.2409 
16.81 
16.892 1 
20.5209 
20.5209 
20.5209 
20.5209 
20.5209 
20.5209 
17.3056 
15.8404 
15.8404 
16.7281 
16.7281 
16.7281 
17.0569 
17.0569 
17.0569 
17.0569 
19.0969 
19.0969 
19.0969 
19.0969 
19.0969 
19.0969 
18.1476 
18.1476 
18.1476 
18.1476 
20.1601 
20.1601 
20. I 601  
20.1601 
23.9121 
23.9121 
23.9121 
23.9121 
21.5296 
21.5296 
21.5296 
19.802 5 
19.8025 
19.8025 
19.8025 
19.8025 
27.04 
27.06 
27.04 
27.04 
27.04 

RM 

36.8327 
32.2851 
33.6778 
36.3609 
29.1492 
31.3824 
35.5574 
37.3932 
42.3931 
35.976 
34.6685 
52.548 
40.7427 
46.4579 
37.761 
35.1293 
32.9591 
35.5932 
41.6799 
45.7246 
50.4 668 
39.5641 
33.4893 
34.5509 
31.2928 
34.6332 
41.1779 
35.5335 
36.7842 
39. 
39.3505 
39.5138 
39.4258 
37.6996 
38.8378 
34.5038 
45.2525 
43.8111 
39.7152 
38.0319 
40.8193 
43.9569 
36.1802 
37.4666 
4Y .098 
50.1122 
41.1779 
41.024 
41.4993 
38.5765 
39.05 
43.8906 
37.9826 
65.1087 
61.1524 
54.9971 
45.2525 
45.9819 
41.024 
37.6628 
38.0319 



Variable 

Census 
Tract 

45 
46 
47 
48 
49 
50 
5 1  
52 
53 
5L 
55 
5b 
57 
58 
5Y 
60 
6 1  
62 
63 
64 
65 
66 
67 
h8 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
’14 
95 
96 
97 
98 
99 
I00 
101 
102 
103 
104 
105 

AGE 

40. 
33.8 
33.3 
85.5 
55.3 
62. 
4>. 7 
63. 
21.  I 
21.4 
47.6 
21.9 
35. 7 
40.5 
2Y.2 
47.2 
66.2 
93.4 
57.8 
43.4 
5Y.5 
17.R 
31.1 
2 1 . 4  
36.8 
33. 
b.5 
17.5 
7.8 
6.2 
6. 
45. 
74.5 
45.8 
53.7 
36.6 
33.5 
70.4 
32.2 
46.7 
48. 
5h.I 
45.1 
56.8 
86.3 
63.1 
66. I 
73.Y 
53.6 
28.5 
77.3 
57.8 
69.6 
7b. 
36.9 
62.5 
79.9 
71.3 
85.4 
87.4 
90. 

DIS 

1.74413 
1.62932 
1.62932 
1.7386 
I. 76985 
1.80627 
1.91908 
I.Yl908 
1.91 908 
1.91908 
1.99057 
2.16293 
2 . 2  1785 
2.llY24 
2.05602 
1.93615 
1.9776 
1 .Y1966 
1.977b2 
2.07705 
2.22169 
I. &a881 
1.88681 
1.87149 
1.87149 
1.87149 
I. 66531 
1.66531 
1.66531 
1.66531 
I. 44121 
1.50465 
I. 3992 6 
1.40867 
1.61225 
1.50865 
1.68653 
1. 68653 
1.68653 
1.68653 
1.56431 
1.4Y014 
1.48777 
1.32111 
1.23014 
1.22803 
1 .  I2891 
1.12885 
1.29907 
1.29907 
1.28509 
1.25139 
1.25139 
1.25139 
1.25139 
I. 25139 
1.02166 
1.04946 

0.99868 
0.884 18 

0.99868 

RAD TAX 

1.09861 233. 
1.09861 233. 
1.09861 233. 
1.09861 233. 
1.09861 233. 
1.09861 233. 
1.3862’1 1’43. 
1.38629 243. 
1.38629 243. 
1.38529 223. 
1.09861 469. 
1.60944 2 2 6 .  
0.49315 313. 
1.60944 25h. 
2.07944 284. 
1.07Y44 2 8 4 .  
2.07944 284. 
2.07944 284. 
2.07944 284. 
2.07944 284. 
1.09861 21h. 
1.38629 337. 
1.38629 337. 
1.38629 345. 
1.38629 345. 
1.38629 345. 
1.38629 305. 
1.38629 305. 
1.38629 105. 
1.38629 305. 
1.60944 398. 
1.60944 398. 
1.60944 398. 
1.60944 398. 
1.60944 398. 
1.60944 398. 
1.38629 281. 
1.38629 281. 
1.38629 281. 
1.38629 281. 
1.09861 247. 
1.09861 267. 
1.09801 247. 
1.09861 2L7. 
0.69315 2 7 0 .  
9.69315 2 7 0 .  
0.69315 270. 
0.69315 2 7 0 .  
1.38629 270. 
1.38629 270. 
1.38629 270. 
0.69315 276. 
0.69315 276. 
0.59315 27b. 
0.69315 276. 
0.6’1315 276. 
1.60944 384. 
1.60944 384. 
1.60944 384. 
1.60944 384. 
1.60944 384. 

PTRATIO 

17.9 
17.9 
17.9 
17.9 
17.9 
17.9 
1b.8 
16.P 
10.3 
16.8 
2 1 . 1  
17.9 
17.3 
15.1 
19.7 
19.7 
19.7 
19.7 
19.7 
19.7 
18.6 
16.1 
lh .1  
18.9 
18.9 
18.9 
19.2 
19.2 
lY.2 
19.2 
18.7 
18.7 
18.7 
18.7 
18.7 
18.7 
19. 
19. 
19. 
19. 
18.5 
1R.5 
15.5 
18.5 
17.8 
17.8 
17.8 
17.8 
18.2 
18.2 
1R.2 
18. 
18. 
18. 
18. 
18. 
20.9 
20.9 
20.9 
20.9 
20.9 

B 

0.38939 
0.3969 
0.3969 
0.39274 
0.3969 
0.3969 
0.39557 

0.3969 
0.3965 
0.3969 
0.39593 
0.3969 
0.3929 
0.39067 
0.3969 
0.3951 I 
0.37608 
0.3969 
0.39558 
0.39324 
0.3969 
U.39b9 
0.3962 1 
0.3969 
0.3969 
0.38373 
0.37693 
0.39091 
0.37717 
0.39492 
0.38324 
0.37366 
0.38696 
0.3864 
0.39606 
0.3969 
0.39563 
0.3969 
0. 39064 
0.3969 
0.3923 
0.39599 
0.39515 
0.3969 
0.39606 
0.39218 
0.39356 
0.39501 
0.39633 
0.3969 
0.35797 
0.39183 
0.3969 
u.39353 
0.3969 
0.19476 
0.39558 
0.0108 
0.39447 
0.39269 

0.39397 

LSTAT 

-2.34832 
-2.28229 
-1.95567 
-1.67147 
-1.17723 
-1 .&1997 
-2.006 56 
-2.361 38 
-2.94 I h l  
-2.4 7385 
-1.9 1041 
-3.03426 
-2.853 19 
-3.2 31 96 
-2.67946 
-2.38369 
-2.0’2837 
-1.93538 
-?.6987!. 
-2.3 5 3  77 
-2.5 19 12 
-3.06487 
-2 .2  7926 
-2.51 3M 
-2.u3302 
-2.43178 
-2.70053 
-2.31 $76 
-2.896bl 
-2.58535 
-2.691 19 
-2.4 1463 
-2.12293 
-2.27585 
-2.092 lb 
-2.3967Y 
-2.9386 
-2.62804 
-2.7U036 
-2.58907 
-2.3409 1 
-2.72876 
-2.051 36 
-2.47231 
-2.90097 
-2.8647 
-2.4294 
-2.5014 
-2.50556 
-2.77885 
-2.24507 
-2.71115 
-2.17648 
-3.16794 
-3.33148 
-2.78224 
-2.36191 
-2.56733 
-2.21102 
-2.00716 
-2.09354 

247 



Variable 

Census 
Tract 

106 
107 
108 
109 
110 
1 1 1  
112 
113 
I14 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
I55 
156 
157 
158 
159 
I60 
161 
162 
163 
164 
165 
166 

248 

LMV 

9.87817 
9.8781 7 
9.92329 
9.89344 

9.98507 

9.84161 
9.83628 
9.82553 
9.81466 
9.96176 
9.86267 
9.92329 
9.86706 
9.9988 
9.91 838 
9.92818 
9.75846 
9.84161 
9.97115 
9.66142 
9.692 7 7 

9.56802 
9.86267 
9.88329 

9.82011 
9.65503 
9.80367 
9.76423 
9.74683 
9.49552 
9.78695 

9.57498 
9.50301 
9.65503 
9.37586 
9.53242 
9.65503 
9.58878 
9.78695 
9.642 12 
9.97581 
9.88329 
9.63561 
9.87303 
9.74097 
9.65503 
9.48037 

9.87303 

10.0345 

9.79813 

10.0433 

9.54681 

10.6286 
10.0982 
10.0562 
10.2036 
10.8198 
10.8198 
10.8198 
10.0301 
10.1266 

CRIM 

0.13262 
0.1712 
0.131 16 
0.12802 
0.26363 
0.10793 
0.10084 
0.12329 
0.22212 
0.14231 
0.17134 
0.13158 
0.15098 
0.13058 
0.14476 
0.06899 
0.071 65 
0.093 
0.15038 
0.09849 
0.16902 
0.38735 
0.25915 
0.32543 
0.881 25 
0.34006 
1.19294 
0.59005 
0.32982 
0.97617 
0.55778 
0.32264 
0.35233 
0.2498 
0.54452 
0.2909 
1.62864 
3.32105 
4.0974 
2.7 7974 
2.37934 
2.15505 
2.36862 
2.33099 
2.73397 
1.6566 
1.49632 
1.12658 
2.14918 
1.41 385 
3.53501 
2.44668 
1.22358 
1.34284 
1.42502 
1.27346 
1.46336 
1.83377 
1.51902 
2.24236 
2.924 

ZN 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

INDUS CHAS 

8.56 0. 
8.56 0. 
8.56 0. 
8.56 0. 
8.56 0. 
8.56 0. 
10.01 0. 
10.01 0. 
10.01 0. 
10.01 0. 
10.01 0. 
10.01 0. 
10.01 0. 
10.01 0. 
10.01 0. 
25.65 0. 
25.65 0. 
25.65 0. 
25.65 0. 
25.65 0. 
25.65 0. 
25.65 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
21.89 0. 
19.58 1. 
19.58 0. 
19.58 0. 
19.58 0. 
19.58 0. 
19.58 0 .  
19.58 0. 
19.58 0. 
19.58 0. 
19.58 0. 
19.58 1. 
19.58 0. 
19.58 1. 
19.58 1. 
19.58 0. 
19.58 0. 
19.58 0. 
19.58 0. 
19.58 1. 
19.58 0. 
19.58 1. 
19.58 1. 
19.58 0. 
19.58 0. 

NOXSQ 

27.04 
27.04 
27.04 
27.04 
27.04 
27.04 
29.9209 
29.9209 
29.9209 
29.9209 
29.9209 
29.9209 
29.9209 
29.9209 
29.9209 
33.7561 
33.7561 
33.7561 
33.7561 
33.7561 
33.7561 
33.7561 
38.9376 
38.93 76 
38.9376 
38.9376 
38.9376 
38.9376 
38.9376 
38.93 76 
38.9376 
38.93 76 

38.93 76 
38.9376 
38.9376 
38.9376 
75.864 
75.864 
75.864 
75.664 
75.864 
75.864 
75.864 
75.864 
75.864 
75.864 
75.864 
75.864 
75.864 
75.864 
75.864 
36.6025 
36.6025 
75.864 
36.6025 
36.6025 
36.6025 
36.6025 
36.6025 
36.6025 

38.9376 

RM 

34.2342 
34.0589 
37.5401 
41.9127 
38.8004 

45.0912 
34.9636 
37.1124 
39.1 125 
35.1412 

36.2524 
34.4804 
32.8444 
34.4569 
36.048 
35.5335 
34.2927 
34.5626 

38.378 

38.143 

35.8322 
31.5058 
32.4102 
41.35 78 
31.7758 
41.7058 
40.0183 
40.6024 
33.8957 
33.143 
40.1322 
35.3073 
41.6541 
34.3044 
37.8348 
38.1183 
25.1903 
29.1924 
29.899 
24.0394 
37.5769 
31.6744 
24.2655 
26.8946 
31.3264 
37.4789 
29.2032 
25.1201 
32.5927 
37.5646 
37.8471 
27.794 
48.2052 
36.7964 

39.0625 
56.0851 
60.871 2 
70.1406 
34.2693 
37.2222 

42.3801 



Census 
Tract 

106 
107 
108 
109 
1 LO 
1 1 1  
112 
113 
114 
115 
116 
117 
118 
1 I9 
120 
121 
122 
1 2 3  
124 
125 
126 
127 
128 
129 
130 
131 
1 3 2  
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
I44 
145 
146 
147 
148 
149 
150 
151 
1 5 2  
153 
154 
I55 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 

AGE 

96.7 
91.9 
85.2 
97. I 
Y1.2 
54.4 
81.6 
92.9 
95.4 
84.2 
88.2 
72.5 
82.6 
13. I 
65.2 
69.7 
84.1 
92.9 
97. 
95.8 
88.4 
95.6 
96. 
98.8 
94.7 
98.9 
97.7 
97.9 
95.4 
98.4 
98.2 
93.5 
98.4 
98.2 
97.9 
93.6 
100. 
100. 
100. 

100. 
IOU. 

97.8 

95.7 
93.8 
94.9 
97.3 
IOU. 
8 8 .  
98.5 
96. 
82.6 
94. 
97.4 
IOU. 
100. 
Y2.6 
YO.8 
98.2 
93.9 
91.8 
93. 

DIS 

0.74522 
0.79344 
0.75255 
0.88908 
0.93417 
1.021 66 
0.98488 
0.85586 
0.93531 
0.81381 
0.901 42 
1.00434 
1.01065 
0.90725 
1.01494 
0.81435 
0.78727 
0.73568 
0.66495 
0.69629 
0.689 59 
0.56372 
0.58126 
0.59471 
0.68305 
0.75071 
0.82022 
0.84475 
0.90418 
0.85271 
0.74702 
0.67646 
0.6 1508 
0.51198 
0.51204 
0.47741 
0.36423 
0.27884 
0.34487 
0.29706 
0.35002 
0.41647 
0.37898 
0.42501 
0.42245 
0.481 19 
0.46474 
0.4 7636 
0.4844 
0.55927 
0.55704 
0.55181 
0.62983 
0.56378 
0.56866 
0.5869 
0.6784Y 
U.7132Y 
0.77103 
0.88459 
0.82566 

V 

RAD 

1.60944 
I .  60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.79176 
1.791 76 
1.79176 
1.79176 
1.79176 
1.79176 
1.79176 
1.79176 
I .  791 76 
0.69315 
0.69315 
0.69315 
0.69315 
0.69315 
0.69315 
0.69315 
I .  38629 
1.38629 
1.38629 
1.38629 
1.38629 
1.38629 
1.38629 
1.38629 
I. 38629 
1.38629 
I * 38629 
1.38629 
I .  38629 
1.38629 
1.38629 
1.60944 
1.60944 
1.60944 
1.60944 
1. 60944 
1,60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.bUY44 
1.60944 
1. b0944 
1.60944 
I .  60944 
I .60944 
1.60944 
1.60944 
I .  60944 
1.60944 
I. 60944 

‘ariable 

TAX 

384. 
384. 
384. 
384. 
384. 
384. 
432. 
432. 
432. 
432. 
432. 
432. 
432. 
432. 
432. 
188. 
188. 
188. 
188. 
188. 
188. 
183. 
431. 
437. 
437. 
437. 
437. 
437. 
437. 
437. 
437. 
437. 
437. 
437. 
437. 
437. 
437. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 
403. 

403. 
403. 
403. 
403. 
403. 

403. 

PTRATIO 

20.9 
20.9 
20.9 
20.9 
20.9 
20.9 
17.8 
17.8 
17.8 
17.8 
17.8 
17.8 
17.9 
17.8 
17.8 
19.1 
19.1 
19.1 
19.1 
19.1 
19.1 
19.1 
21.2 
21.2 
21.2 
21.2 
21.2 
21.2 
21.2 
21.2 
21.2 
21.2 
21.2 
21.2 
21.2 
21.2 
21.2 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 

B 

0.39404 
0.39567 
0.38769 
0.39526 
0.39123 
0.39349 
0.39559 
0.39495 
0.3969 
0.38874 
0.34491 
0.3933 
0.39451 
0.33863 
0.3915 
0.38915 
0.37767 
0.37809 
0.37031 
0.37938 
0.38502 
0.35929 
0.39211 
0.3969 
0.3969 
0.39504 
0.3969 

0.38869 
0.26276 
0.39467 
0.37825 
0.39408 
0.39204 
0.3969 
0.38808 
0.3969 
0.3969 
0.3969 
0.3969 
0.17291 
0.169?7 
0.391 7 I 
0.35699 
0.35185 
0.3728 
0.34151 
0.34328 
0.26195 
0.32102 
U.08801 
0.08863 
0.36343 
0.35389 
0.36431 
0.33892 
0.37443 
0.38961 
0.38845 
0.39511 
0.24016 

0.38577 

LSTAT 

-1.80357 
- 1  -67868 
-1 -95956 
-2.09801 
-1.86104 
-2.03991 
-2.28651 
-1.81954 
-1.76656 
-2.25857 
-1.84776 
-2.11694 
-2.27322 
-1.87295 - 1.99429 
-1.93989 
-1.946 73 
-1.71881 
-1.37003 
-1.73824 
-1.91 
-1 -29975 
-1.76084 
-1  -87171 
-1.69592 
-2.07123 
-2.0985 
-2.19625 
-1.89505 
-1.75365 
-1.77408 
-1.77762 
-1.92 504 
-1.54566 
-1.68951 
-1.42047 
-1.06691 
-1  -31606 
-1.33105 
-1.22806 
-1.28028 
-1.79276 
-1.21983 
-1.26171 
-1.5394 
-1-95914 
-2.01906 
-2- I101 5 

-1.88922 
-1.89579 
- 1  -82375 
-3.081 73 
-2.74373 
-2.6053 1 
-2.8997 
-4.0582 I 
-3.95337 
-3.40611 
-2.1504 7 
-2.32 156 

- I  .845a6 

249 



Variable 

Census 
Tract 

167 
I68 
169 
170 
171 
I72 
173 
174 
I 7 5  
176 
177 
I78 
179 
180 
181 
182 
183 
184 
185 
186 
187 
I88 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 I 
2 1 2  
2 1 3  
214 
21 5 
216 
217 
218 
219 

221 
222 
223 
224 
225 
226 
227 

,.-v 

250 

LMV 

10.8198 
10.0774 
10.0774 
10.0123 
9.76423 
9.85744 
10.0476 
10.069 
10.0257 
10.2888 
10.051 9 
10.1105 
10.3056 
10.5241 
10.5916 
10.4968 
10.5427 
10.389 
10.181 I 
10.2955 
10.8198 
10.3735 
10.3023 
10.4602 
10.5187 
10.3255 
10.5023 
10.345 
10.2785 
10.8198 
10.4133 
10.3189 
10.4516 
10.4602 
10.4012 
10.09 
10.6525 
10.7893 
10.8198 
10.0257 
10.1O23 
10.021 3 
10.1023 
9.90349 
9.98507 
9.86786 
10.0168 
10.2435 
10.0732 
10.1266 
10.0562 
10.2647 

10.0433 
10.1924 

10.2219 
10.3123 
10.71 
10.8198 
10.5348 

9.97501 

9.98507 

CRIM 

2.01019 
I .a0028 
2.3004 
2.44953 
1.20742 
2.3139 
0.13914 
0.09178 
0.08447 
0.06664 
0.07022 
0.05425 
0.06642 
0.0578 
0.06588 
0.06888 
O.r)9103 
O.lOOO8 
0.08308 
0.06047 
0.05602 
0.07875 
0.1257’) 
0.0837 
0.09068 
0.06911 
0.08664 
0.02187 
0.01439 
0.01381 
0.04011 
0.04666 
0.03768 
0.0315 
0.01778 
0.03445 
0.02177 
0.0351 
0.02009 
0.13642 
0.22969 
0.25199 
0.13587 
0.43571 
0.17446 
0.37578 
0.21719 
0.14052 
0.28955 
0.19802 
0.0456 
0.0701 3 
0.11069 
0.11425 
0.35809 
0.40771 
0.62356 
0.6147 
0.31533 
0.52692 
0.38213 

ZN 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

45. 
45. 
45. 
45. 
45. 
45. 
60. 
60. 
80. 
80. 
80. 
80. 
95. 
95. 
82.5 
82.5 
95. 
95. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

INDUS CHAS NOXSQ 

19.58 0. 
19.58 0. 
19.58 0. 
19.58 0. 
19.58 0. 
19.58 0. 
4.05 0. 
4.05 0. 
4.05 0. 
4.05 0. 
4.05 0. 
4.05 0. 
4.05 0. 
2.46 0. 
2.46 0. 
2.46 0. 
2.46 0. 
2.46 0. 
2.46 0. 
2.46 0. 
2.66 0. 
3.44 0. 
3.44 0. 
3.44 0. 
3.44 0. 
3.44 0. 
3.44 0. 
2.93 0. 
2.93 0. 
0.46 0. 
1.52 0. 
1.52 0. 
1.52 0. 
1.47 0. 
1.47 0. 
2.03 0. 
2.03 0. 
2.68 0. 
2.68 0. 
10.59 0. 
10.59 0. 
10.59 0. 
10.59 1. 
10.59 1. 
10.59 1. 
10.59 1. 
10.59 1. 
10.59 0. 
10.59 0. 
10.59 0. 
13.89 1. 
13.89 0. 
13.89 1. 
13.89 1. 
6.2 1. 
6.2 1. 
6.2 1. 
6.2 0. 
6.2 0. 
6.2 0. 
6.2 0. 

36.6025 
36.6025 
36.6025 
36.6025 
36.6025 
36.6025 
26.01 
26.01 
26.01 
26.01 
26.01 
26.01 
26.01 
23.8144 
23.8144 
23.8144 
23.8144 
23.8144 
23.8144 
23.8144 
23.8144 
19.0969 
19.0969 
19.0969 
19.0969 
19.0969 
19.0969 
16.0801 
16.0801 
17.8084 
16.3216 
16.3216 
16.3216 
16.2409 
16.2409 
17.2225 
17.2225 
17.3056 
17.3056 
23.9121 
23.9121 
23.9121 
23.9121 
23.9121 
23.9121 
23.9121 
23.9121 
23.9121 
23.9121 
23.9121 
30.25 
30.25 
30.25 
30.25 
25.7049 
25.7049 
25.7049 
25.7049 
25.4016 
25.4016 
25.4016 

RM 

62.869 
34.5391 
39.9297 
40.9856 
34.5 I56 
34.5744 
31.0472 
41.1651 
34.3279 
42.8501 
36.2404 
30.8792 
47.0596 
48.7204 
60.2952 
37.7487 
51.194 
43.073 
31.4048 
37.8594 
61.3246 
45.9955 
42.981 I 
51.6242 
48.3164 
45.4141 
51.5237 
46.26 
43.6128 
62.0156 
53.1003 
50.5094 
52.911 
48.6506 
50.9082 
37.9702 
57.9121 
61.6696 
64.5451 
34.7039 
40.0183 
33.4431 
36.7721 
28.5583 
35.5216 
29.2032 
33.7212 
40.6406 
29.2897 
38.2171 
34.6685 
44.1161 
35.4144 
40.6151 
48.3164 
37.9949 
47.3206 
43.7979 
68.3268 
76.1256 
64.64 16 



Census 
Tract 

167 
I68  
169 
I70  
171 
172 
173 
174 
175 
176 
1 7 7  
178 
179 
180 
181 
182 
183 
I84  
I 8 5  
186 
187 
188 
189 
190 
191 
192 
193 
194 
195  
196 
197 
I98  
199 
2 00 
20 I 
202 
203  
204 
20 5 
206 
207 
208 
209 
210 
21 1 
212 
213 
214 
21 5 
216 
21 7 
218 
219 
220 
22 I 
222 
223  
224 
225 
22b 
227 

Variable 

AGE DIS RAD TAX PTRATIO B LSTAT 

96.2 
79.2 
96. I 
95.2 
94.6 
97.3 
88.5 
84.1 
68.7 
33.1 
47.2 
73.4 
74.4 
58.4 
83 .3  
62.2 
92.2 
95.6 
89.8 
68.8 
53.6 
41.1 
29. I 
38.9 
21.5 
30.8 
26.3 

9 .9  
18.8 
32. 
34.1 
36.6 
38.3 
15.3 
13.9 
38.4 
15.7 
33.2 
31.9 
22.3 
52.5 
72.7 
59. I 

92.1 
88.6 
53.8 
32.3 

Y.8 
42.4 
56.  
85. I 
93.8 
92.4 
88.5 
91.3 
77.7 
80.8 
78.3 
83. 
86.5 

100. 

0.71584 
0.8862 
0.74194 
0.8 164 7 
0.8862 
0.87075 
0.95401 
0.97316 
0.Y9395 
1.14177 
I .  26833 
1.19921 
1.06997 
1.03992 
1.00832 
0.9547 
0.99347 
1.04626 
1.09457 
1.18775 
1.1629 
1.332 
1.51879 
1.51879 
1.86869 
1.86869 
1.86869 
1.8277 
1.8277 
1.73137 
1.9891 I 
1 .98911 
1.98911 
2.03515 
2.03515 
1.83578 
1.83578 
1.63276 
1.63276 
1.37255 
1.4713 
1.4713 
1.44437 
1.35454 
1.35509 
1.29883 
1.29544 
1.37255 
1.27745 
1.37255 
1.1353 
1.22996 
1.06101 
1.21292 
1.05141 
1.11448 
1.18543 
1.18543 
1.06278 
1.06278 
1.16804 

1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
I. 60944 
1.60944 
1.60944 
1.60944 
1.60944 
I .  60944 
1.09861 
1.09861 
1.09861 
1.09861 
1.09861. 
1.09861 
1.09861 
1.09861 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
0. 
0. 
1.38629 
0.69315 
0.69315 
0.69315 
1.09861 
1.09861 
0.69315 
0.69315 
I .  38629 
I .  38629 
I .  38629 
1.38629 
1.38629 
I .  38629 
1.38629 
1.38629 
1.38629 
1.38629 
I. 38629 
1.38629 
1.38629 
1.60944 
I .  60944 
1.4096h 
1.60944 
2.07944 
2.07944 
2.07944 
2.07944 
2.07944 
2.07944 
2.07944 

403. 
403. 
403. 
403. 
403. 
403. 
29b. 
296. 
296. 
296. 
296. 
296. 
296. 
193. 
193. 
193. 
193. 
193. 
193. 
193. 
193. 
398. 
398. 
398. 
398. 
398. 
398. 
265. 
265. 
255. 
329. 
329. 
329. 
402. 
402. 
348. 
348. 
224. 
224. 
277. 
277. 
277. 
277. 
277. 
277. 
277. 
277. 
277. 
277. 
277. 
276. 
276. 
27b. 
276. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 

14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
16.6 
16.6 
16.6 
16.6 
16.6 
16.6 
16.6 
17.8 
17.8 
17.8 
17.8 
17.8 
17.8 
17.8 
17.8 
15.2 
15.2 
15.2 
15.2 
15.2 
15.2 
15.6 
15.6 
14.4 
12.6 
12.6 
12.6 
17. 
17. 
14.7 
14.7 
14.7 
14.7 
18.6 
18.6 
18.6 
18.6 
18.6 
18.6 
18.6 
18.6 

18.6 
18.6 
l h - 4  
16.4 
16.4 
16.4 
17.4 
17.4 , 

17.4 
17.4 
17.4 
17.4 
17.6 

18.6 

0.3693 -3.29549 
0.22761 -2.10875 
0.29709 -2.19786 
0.33004 -2.17878 
0.29229 -1.936 
0.34814 -2.11793 
0.3969 -1.91773 
0.3955 -2.40307 
0.39323 -2.33966 
0.39096 -2.93163 
0.39323 -2 29145 
0.3956 -2.76605 
0.39128 -2.67133 
0.3969 -2.98776 
0.3955 7 -2.58243 
0.3969 -2-35863 
0.39412 -3.03177 
0.3969 -2.86769 
0.391 -1.96733 
0.38711 -2.02844 
0.39263 -3.11316 
0.39387 -2.7065 
0.38284 -3.08785 
0.3969 -2.92025 
0.37768 -2.97671 
0.38971 -3.05888 
0.39049 -3.5526 
0.39337 -2.98995 
0.3767 -3.12835 
0.39423 -3.51526 
0.3969 -3.19981 
0.35431 -2.45236 
0.3922 -2.71583 
0.3969 -3.08829 
0.3843 -3.11137 
0.39377 -2.59951 
0.39538 -3.46958 
0.39278 -3.26702 
0.39055 -3.54738 
0.3969 -2.21962 
0.39487 -2.20973 
0.38943 -1.7113 
0.38132 -1.91984 
0.3969 -1.46577 
0.39325 -1.75631 
0.39524 -1.42795 
0.39094 -1 - 83083 
0.38581 -2.3668 
0.34893 -1.2 1902 
0.39363 -2.35662 
0.3928 -2.001411 
0.392 78 -2.33428 
0.3969 -1.71936 
0.39374 -2.25351 
0.3917 -2.33232 
0.39524 -1.53907 
0.39039 -2.3101 I 
0.3969 -2.57689 
0.38505 -3.18399 
0.382 -3.07175 
0.38738 -3.46318 

251 



Census LMV 
Tract 

228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
2 39 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
2 74 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
28 7 
2 88 

252 

10.3609 
10.7515 
10.3577 
10.0982 
10.3641 
10.6383 
10.7852 
10.2751 
10.0858 
10.1306 
10.3577 
10.0732 
10.0562 
9.9988 
9.90848 

10.0078 
10.0732 
9.77565 
9.82553 

9.92818 
10.0982 

10.1064 
10.1735 
10.1023 
10.1186 
10.2955 
10.6643 

9.99424 
9.9475 

10.6919 
10.8198 
10.4913 
10.3123 
10.4282 
10.6713 
10.7955 
10.3417 
10.5051 
10.0345 
10.332 
10.8198 
10.6805 

9.93789 
9.95703 

10.1346 
10.1023 
10.4688 
10.3859 
10.3735 
10.4103 
10.4073 
10.2785 
10.466 
10.7233 
10.4745 
10.7364 
10.8198 
10.3797 
9.9988 
9.90848 

10.0519 

CRIM 

0.41238 
0.29819 
0.44178 
0.537 
0.46296 
0.57529 
0.33147 
0.44791 
0.33046 
0.52058 
0.51183 
0.08244 
0.092 52 
0.11329 
0.10612 
0.1029 
0.12756 
0.20608 
0.19133 
0.33983 
0.19657 
0.16439 
0.19073 
0.1403 
0.21408 
0.08221 
0.36894 
0.0481 9 
0.03548 
0.01538 
0.61154 
0.66351 
0.65665 
0.5401 I 
0.53412 
0.52014 
0.82526 
0.55007 
0.76162 
0.7857 
0.57834 
0.5405 
0.09065 
0.29916 
0.16211 
0.1146 
0.22188 
0.05644 
0.09604 
0.10469 
0.06127 
0.07977 
0.21038 
0.03578 
0.03705 
0.061 29 
0.01501 
0.00906 
0.0 1096 
0.01965 
0.03871 

ZN 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

30.  
30. 
30. 
30. 
30. 
30. 
22. 
22. 
22. 
22. 
22. 
22. 
22.  
22. 
22. 
22. 
80. 
80.  
90. 
20. 
20. 
20. 
20. 
20. 
20. 
20. 
20.  
20. 
20. 
20.  
20.  
20. 
20. 
20. 
20. 
20.  
40. 
40.  
40.  
40 .  
40.  
20 .  
20. 
20. 
20.  
90 .  
9 0 .  
55 .  
80 .  
52.5 

Variable 

INDUS 

6.2 
6.2 
6.2 
6.2 
6.2 
6.2 
6.2 
6.2 
6.2 
6.2 
6.2 
4.93 
4.93 
4.93 
4.93 
4.93 
4.93 
5.86 
5.86 
5.86 
5.86 
5.86 
5.86 
5.86 
5.86 
5.86 
5.86 
3.64 
3.64 
3.75 
3.97 
3.97 
3.97 
3.97 
3.97 
3.97 
3.97 
3.97 
3.97 
3.97 
3.97 
3.97 
6.96 
6.96 
6.96 
6.96 
6.96 
6.41 
6.41 
6.41 
6.41 
6.41 
3.33 
3.33 
3.33 
3 . 3 3  
1.21 
2.97 
2.25 
1.76 
5.32 

CHAS 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
1. 
0. 
1. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0 .  
0. 
0 .  
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
1. 
0. 
0. 
0. 
1. 
1. 
0. 
1. 
1. 
0. 
0. 
0. 
0. 
1. 
1. 
0. 
0. 
0. 
0. 

NOXSQ 

25.4016 
25.4016 
25.4016 
25.4016 
25.6016 
25.7049 
25.7049 
25.7049 
25.7049 
25.7049 
25.7049 
18.3184 
18.3184 
18.3184 
18.3184 
18.3184 
18.3184 
18.5761 
18.5761 
18.5761 
18.5761 
18.5761 
18.5761 
18.5761 
18.576 I 
18.5761 
18.5761 
15.3664 
15.3664 
15.5236 
41.8608 
41.8608 
41.8608 
41.8608 
41.8608 
41.8608 
41.8608 
41.8608 
41.8608 
41.8608 
33.0625 
33.0625 
21.5296 
21.5296 
21.5296 
21.5296 
21.5296 
19.9809 
19.9809 
19.9809 
19.9809 
19.9809 
19.6249 
19.6249 
19.6249 
19.6249 
16.0801 
1 6 .  
15.1321 
14.8225 
16.4025 

RM 

51.3086 
59.0746 
42.9287 
35.7724 
54.9377 
69.5055 
68.013 
45.239 1 
37.0394 
43.9702 
54.1402 
42.0034 
43.6392 
47.5686 
37.149 
40.4241 
40.8704 
31.2816 
31.416 
37.3076 
38.7631 
41.3835 
45.1315 
42.0812 
41.4478 
48.3998 
68.2111 
37.3076 
34.5274 
55.5621 
75.7596 
53.7729 
46.8129 
51 .8832 
56.5504 
70.5264 
53.6849 
51.9264 
30.91 36 
49.1962 
68.8402 
55.8009 
35.0464 
34.2927 
38.9376 
42.7454 
59.1515 
45.6706 
46.9773 
52.8093 
46.5943 
42.0163 
46.4033 
61.1524 
48.553 
58.446 
62.7739 
50.2397 
41.6412 
38.8 129 
38.5517 



Census 
Tract 

228 
229 
2 30 
231 
232 
233 
234 
235 
236 
237 
2 38 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
2 50 
251 
252 
253 
254 
255 
256 
257 
258 
259 
2 60 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
2 73 
274 
275 
276 
277 
278 
279 
280 
281 
282 
28 3 
284 
285 
286 
287 
288 

AGE 

79.9 
17 .  
21.4 
68 .  I 
76.9 
73.3 
70.4 
66.5 
61 .5  
76.5 
71.6 
18.5 
42.2 
54.3 
65.1 
52.9 

7.8 
76.5 
70.2 
34.9 
79.2 
49.1 
17.5 
1 3 .  
8.9 
6.8 
8.4 

32. 
19.1 
34.2 
86.9 

100. 
100. 
81.8 
89.4 
91.5 
94.5 
91.6 
62.8 
84.6 
67.  
52.6 
61.5 
42. I 
16.3 
58.7 
51.8 
32.9 
42.8 
49. 
27.6 
32.1 
32.2 
64.5 
37.2 
49.7 
24.8 
20.6 
31.9 
31.5 
31.3 

DIS 

1.16804 
1.21642 
1.21642 
1.3006 
1.3006 
1.34505 
1.29525 
1.29525 
1.29525 
1.42263 
1.42263 
1.82292 
1.82292 
1.84626 
1.84626 
1.95097 
1.95097 
2.07379 
2.073 79 
2.08636 
2.08636 
2.05752 
2.05752 
2.00103 
2.00103 
2.1868 
2.1868 
2.22141 
2.22141 
1.84626 
0.58834 
0.63901 
0.69848 
0.74768 
0.76071 
0.8279 
0.73179 
0.6575 7 
0.68637 
0.75748 
0.88443 
1.05501 
1.36545 
1.4881 7 
1.48817 
1.36545 
1.47396 
I .  40551 
1.45098 
1.56594 
1.58161 
1.42077 
1.41116 
1.54643 
1.65722 
I .  65094 
1.77241 
I .98887 
1.98887 
2.20709 
1.9YU23 

Variable 

RAD TAX 

2.07944 
2.07944 
2.07944 
2.07944 
2.0794 4 
2.07944 
2.07944 
2.07944 
2.07944 
2.07944 
2.07904 
1.79176 
1.79176 
1.79176 
1.79176 
1.79176 
1.79176 
1.94591 
1.94591 
1.94591 
1.94591 
I .94591 
1.94591 
1.94591 
1.94591 
1.94591 
I .94591 
0. 
0 .  
1.09861 
I. 60944 
I .60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.60944 
1.09861 
1.09861 
I .09861 
1.09861 
1.09861 
I .  38629 
I .  38629 
I .  38629 
1.38629 
1.38629 
1.60944 
1.60944 
1.60944 
1.60944 
0 .  
0 .  
0 .  
0 .  
1.79176 

307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
307. 
300. 
300. 
300. 
300. 
300. 
300. 
330. 
330. 
330. 
330. 
330. 
330. 
330. 
330. 
330. 
330. 
315. 
315. 
244. 
264.  
264.  
264.  
264.  
264.  
264. 
264.  
264.  
264. 
264.  
264.  
264. 
223. 
223.  
223.  
223.  
223. 
254. 
254.  
254 .  
254. 
254.  
216. 
216. 
216. 
216.  
198. 
285. 
300. 
241.  
293.  

PTRATIO 

17.4 
17.4 
17.4 
17.4 
17.4 
17.4 
17.4 
17.4 
17.4 
17.4 
17.4 
16.6 
16.6 
16.6 
l b . 6  
16.6 
16.6 
19.  I 
19. I 
19.  I 
19. I 
19. I 
19. I 
19. I 
19.1 
19. I 
19.1 
16.4 
16.4 
15.9 
13. 
1 3 .  
13. 
1J .  
13. 
13.  
13.  
13. 
13.  
13. 
13.  
13. 
18.6 
18.6 
18.6 
18.6 
18.5 
17.6 
17.6 
17.6 
17.6 
17.6 
14.9 
14.9 
14.9 
14.9 
13.6 
15.3 
15.3 
18.2 
16.6 

B LSTAT 

0.37208 
0.37751 
0.38034 
0.37835 
0.37614 
0.38591 
0.37895 
0.3602 
0.37675 
0.38845 
0.39008 
0.37941 
0.38378 
0.39125 
0.39462 
0.37275 
0.37472 
0.37249 
0.38913 
0.39018 
0.37614 
0.37472 
0.39374 
0.39628 
0.37707 
0.38609 
0.3969 
0.39289 
0.39518 
0.38634 
0.3897 
0.38328 
0.39193 
0.3928 
0.38837 
0.38686 
0.39342 
0.38789 
0.3924 
0.38407 
0.38454 
0.3903 
0.391 34 
0.38865 
0.3969 
0.39496 
0.39077 
0.3969 
0.3969 
0.38925 
0.39346 
0.3969 
0.3969 
0.38731 
0.39223 
0.37707 
0.39552 
0.394 72 
0.39472 
0.34161 
0.3969 

-2.75514 
-3.23882 
-3.28208 
-2.14952 
-2.941 7 
-3.7021 7 
-3.23145 
-2.5192 5 
-2.21788 
-2.3501 
-3.05209 
-2.75561 
-2.60748 
-2.17296 
-2.08723 
-2.1872 
-2.95882 
-2 -07952 
-1.68946 
-2.3901 I 
-2.2873 
-2.35156 
-2.72372 
-2.82988 
-3.3259 
-3.344 16 
-3.3402 
-2.7222 
-2.38098 
-3.4699 
-2.97104 
-2.55207 
-2.67408 
-2.34445 
-2.62293 
-2 -82852 
-2.18471 
-2.51 331 
-2.25828 
- I  .91115 
-2.59397 
-3.45555 
-1.991 21 
-2.03991 
-2.71947 
-2.56019 
-2.72098 
-3.34444 
-3.51224 
-2.80429 
-3.17941 
-2.6322 
-3.02619 
-3.28208 
-3.08042 
-3.50423 
-3.4546 
-2.54427 
-2.49738 
-2.0453 I 
-2.64002 

253 



Census LMV 
Tract 

289 
290 
291 
292 
293 
294 
29 5 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
31 I 
312 
313 
314 
315 
316 
31 7 
318 
319 
320 
32 1 
322 
323 
324 
325 
326 
32 7 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
3 38 
339 
340  
34 I 
342 
343 
344 
345 
346 
347 
348 
349 

254 

10.0123 
10. 1186 
10.2577 
10.5267 
10.2364 
10.081 6 

10.2612 
10.2073 

10.0213 
10.2751 
10.1186 
9.9988 

10.1811 
10.4073 
10.494 
10.2541 
10.4163 
10.2471 
10.0345 

9.98507 

9.91838 

9.91838 
9.68657 

9.87303 
9.98045 

9.69277 
9.78695 
9.89344 

9.95220 

10.0033 

10.0774 

10.0476 

10.0774 
10.0476 

9.92329 
9.82553 

10.1266 
10.1105 
10.0433 
10.0078 

10.0257 
9.86786 

9.89344 
9.74683 
9.87303 

9.93789 
9.95703 
9.87817 
9.82553 
9.93305 
9.85219 
9.83628 

9.71112 

10.00 78 

10.3951 

10.081 6 
10.3482 
9.76996 
9.75266 

10.0676 
10.1064 

CRIM 

0.0459 
0.0429 7 
0.03502 
0.07886 
0.0361 5 
0.08265 
0.08199 
0.12932 
0.053 72 
0.16103 
0.06466 
0.05561 
0.0441 7 
0.03537 
0.09266 
0.1 
0.05515 
0.0548 
0.07503 
0.04932 
0.49298 
0.3494 
2.63548 
0.79041 
0.26169 
0.26938 
0.3692 
0.25356 
0.31827 
0.24522 
0.40202 
0.47547 
0.1676 
0.18159 
0.35114 
0.28392 
0.34109 
0.19186 
0.30347 
0.24103 
0.06617 
0.06724 
0.04544 
0.05023 
0.03466 
0.05083 
0.03738 
0.03961 
0.03427 
0 -0304 I 
0.03306 
0.05497 
0.06151 
0.01301 
0.02498 
0.02543 
0.03049 
0.03113 
0.06162 
0.0187 
0.01501 

ZN 

52.5 
52.5 
80.  
80 .  
80. 
0. 
0. 
0. 
0. 
0. 

70. 
70. 
70. 
34.  
34. 
34. 
33.  
33. 
33. 
33. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

35. 
35. 
0. 
0. 
0.  
0. 
0. 
0. 
0.  
0.  

35. 
0 .  

55. 
55. 
0.  
0.  

85. 
80. 

Variable 

INDUS 

5.32 
5.32 
4.95 
4.95 
4.95 

13.92 
13.92 
13.92 
13.92 
13.92 
2.24 
2.24 
2.24 
6.09 
6.09 
6.09 
2.18 
2.18 
2.18 
2.18 
9.9 
9.9 
9.9 
9.9 
9.9 
9.9 
9.9 
9.9 
9.9 
9.9 
9.9 
9.9 
7.38 
7.30 
7.38 
7.38 
7.38 
7.38 
7.38 
7.38 
3.24 
3.24 
3.24 
6.06 
6.06 
5.19 
5.19 
5.19 
5.19 
5.19 
5.19 
5.19 
5.19 
1.52 
1.89 
3.78 
3.78 
4.39 
4.39 
4.15 
2.01 

CHAS 

0. 
0.  
0. 
0 .  
0 .  
0. 
0 .  
0.  
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0.  
0.  
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

NOXSQ 

16.4025 
16.4025 
16.8921 
16.8921 
16.892 1 
19.0969 
19.0969 
19.0969 
19.0969 
19.0969 
16.  
16. 
16. 
18.7489 

18.7489 
22.2784 
22.2784 
22.2 784 
22.2784 
29.5936 
29.5936 
29.5936 
29.5936 
29.5936 
29.5936 
29.5936 
29.5936 
29.5936 
29.5936 
29.5936 
29.5936 
24.3049 
24.3049 
24.3049 
24.3049 
24.3049 
24.3049 
24.3049 
24.3049 
21.16 
21.16 
21.16 
19.1844 
19.1844 
26.5225 
26.5225 
26.5225 
26.5225 
26.5225 
26.5225 
26.5225 
26.5225 
19.5364 
26.8324 
23.4256 
23.4256 
19.5364 
19.5364 
18.4041 
18.9225 

18.7489 

RM 

39.8792 
43.0992 
47.0733 
51.0939 
43.9569 
37.5401 
36.1081 
44.5957 
42.8894 
33.5241 
40.259 
49.5757 
47.2 106 
43.4281 
42.185 
48.7483 
52.3597 
43.7715 
55.0564 
46.9088 
44.0232 
35.6648 
24.7307 
37.4789 
36.2765 
39.2628 
43.1255 
32.547 
34.9754 
33.4315 
40.7299 
37.3688 
41.2935 
40.6534 
36.4937 
32.581 3 
41.1522 
41.3570 
39.8413 
37.0029 
34.4334 
40.1069 
37.7487 
32.5584 
36.373 
39.8919 
39.8161 
36.4453 
34.4451 
34.751 
36.7115 
35.8202 
35.617 
52.432 1 
42.7716 
44.8364 
47.2518 
36.1682 
34.7864 
42.4583 
44.0232 



Variable 

Census 
Tract 

289 
2 90 
291 
292 
293 
294 
295 
2Y6 
29 7 
295 
299 
300 
30 1 
302 
303 
304 
305 
306 
307 
308 
309 
310 
31 I 
312 
313 
314 
315 
316 
31 7 
318 
319 
320 
32 I 
322 
32 3 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
3 39 
340 
341 
342 
343 
344 
345 
346 
34 7 
348 
349 

AGE 

45. 6 
22.9 
27.9 
27.7 
23.4 
18.4 
42.3 
31. I 
51. 
58. 
LO. I 
10. 
47.4 
40.4 
18.4 
17.7 
41.1 
58.1 
71.9 
70.3 
82.5 
76.7 
37.8 
52.8 
90.4 
82.8 
87.3 
77.7 
83.2 
71.7 
67.2 
58.8 
52.3 
54.3 
49.’)  
74.3 
40. I 
14.7 
28.9 
43.7 
25.8 
17.2 
32.2 
28.4 
23.3 
38.1 
38.5 
34.5 
46.3 
59.6 
37.3 
45.4 
58.5 
49.3 
59.7 
56.4 
28.  I 
48.5 
52.3 
27.7 
29.7 

DIS 

1.99023 
1.99323 
1.63251 
1.63251 
1.63251 
I .  70524 
1.70524 
1.78514 
1.78514 
1.84372 
2.05768 
2.05768 
2.05768 
1.70324 
1.70324 
I .  70324 
1.39178 
1.21491 
1.13114 
1.15773 
1.19921 
1.13221 
0.92402 
0.97089 
1.04169 
1.18259 
1.28157 
1.37245 
1.38594 
1.39419 
1.262 
1.386?? 
1.51301 
1.51301 
1.55204 
1.55204 
1.55204 
I. 689 34 
1.68934 
1.68934 
1.65146 
1.65146 
1.77047 
1.89322 
1.89322 
1.80538 
1.86538 
1.78931 
I .65462 
1.72544 
1.57115 
1.57115 
1.57115 
1.95131 
1.83528 
I .  74608 
1.86046 
2.0Y114 
2.08114 
2.14421 
2.12154 

RAD TAX 

1.79176 293.  
1.79176 293. 
1.38629 245.  
1.38629 245. 
1.38629 245 .  
1.38629 289. 
1.38629 289.  

1.36629 289.  
1.38629 289. 
1.60944 358.  
1.60944 358. 
1.60944 358. 
1.94591 329. 
1.94591 329. 
1.94591 329. 
1.94591 222. 
1.94591 222. 
1.94591 222. 
1.94591 222. 
1.38629 304. 
1.38629 304. 
1.38629 304. 
1.38629 304.  
1.38629 304. 
1.38629 304. 
1.36629 304. 
1.38629 304.  
1.38629 304. 
1.38629 304.  
1.38629 304.  
1.38629 304. 
1.60944 287.  
1.60944 287. 
1.60944 287. 
1.60944 287. 
1.60944 287.  
1.60944 287.  
1.60944 287. 
1.60944 287. 
1.38629 430. 
1.38629 630.  
1.38629 430. 
0 .  304.  
0. 304. 
1.60944 224.  
1.60944 224.  
1.60944 224.  
1.60944 224. 
1.60944 224.  
1.60941, 224.  
1.60944 224. 
1.60944 224.  
0. ZBJ. 
0. 422. 
1.60944 370. 
1.60944 370. 
1.09861 352. 
1.09861 3 5 2 .  
1.38629 351. 
1.38625 280.  

1.36629 2 n ~ .  

PTRATIO 

16.6 
16.6 
19.2 
19.2 
19.2 
16.  
16. 
16.  
16. 
16. 
14.8 
14.8 
14.8 
I h .  1 
16.1 
16.1 
18.4 
18.4 
18.4 
18.4 
18.4 
18.4 
18.4 
18.4 
18.4 
18.4 
18.4 
18.4 
18.4 
18.4 
18.4 
18.4 
19.6 
19. h 
19.6 
19.6 
19.6 
19.6 
19. 6 
19.6 
16.9 
16.9 
16.9 
16.9 
16.9 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
15.5 
15.9 
17.6 
17.6 
18.8 
111.8 
17.9 
17. 

B 

0.3969 
0.37172 
0.3969 
0.3969 
U.3969 
0.3969 
0.3969 
0.3969 
0.39285 
0.3969 
0.36824 
0.37158 
0.39086 
0.39575 
0.38361 
0.39042 
0.39368 
0.39335 
0.3969 
0.3969 
0.3969 
0.39624 
0.35015 
0.3969 
0.3963 
0.39339 
0.39569 
0.39642 
0.3907 
0.3969 
0.39521 
0.39523 
0.3969 
0.3969 
0,3969 
0.39113 
0.3969 
0.39368 
0.3969 
0.3969 
0.38244 
0.37521 
0.36857 
0.39402 
0.36225 
0.38971 
0.3894 
0.3969 
0.3969 
0.39481 
0.39614 
0.3969 
0.3969 
0.39474 
0- 38996 
0.3969 
0.38797 
0.38564 
0.36461 
0.39243 
0.39094 

LSTAT 

-2.57755 
-2.35325 
-3.1025 
-3.33569 
-3.05676 
-2.45527 
-2.20375 
-2.76939 
-2.60504 
-1.84276 
-3.00255 
-3.04934 
-2.80198 
-2.3543 
-2.14495 
-3.02331 
-2.66873 
-2.41542 
-2.7383 
-2.58628 
-3.09224 
-2.30519 
-2.06854 
-2.81625 
-2.14404 
-2.53818 
-2.37752 
-2.16291 
-1.6969 
-1.8364 
-2.26712 
-2 .Obi 52 
-2.63081 
-2.67751 
-2.56434 
-2.14242 
-2.79393 
-2.97916 
-2.78953 
-2.05651 
-2.30559 
-2. 6 1238 
-2.39799 
-2.08538 
-2.54708 
-2.86839 
-2.69503 
-2.52498 
-2.32309 
-2.24829 
-2.46393 
-2.32862 
-2.37591 
-2.90279 
-2. $4738 
-2.63345 
-3.07629 
-2.25123 
-2.0662 5 
-2.75514 
-2.8 1558 

255 



Census LMV 
Tract 

350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 

256 

10.1887 
10.0389 
10.09 

10.3123 
9.83092 

9.80918 
9.93305 
9.78695 
9.9850 7 
10.0301 
10.0257 
10.1266 
9.89848 
9.94271 
9.72913 
9.99424 

9.99424 
10.2219 

10.0476 
10.8198 
10.8198 
10.8198 
10.8198 
10.8198 
9.53242 
9.53242 
9.61581 
9.53964 
9.49552 
9.48037 
9.23014 
9.24956 
9.29652 
9.33256 
9.41735 
9.08251 
8.88184 
9.25913 
8.90924 
9.23014 
9.3501 
9.62245 
10.0519 
9.17988 
9.53242 
9.44936 
9.48037 
9.43348 
9.04782 
8.51719 
8.74831 
8.63052 
8.88184 
9.40096 
9.02401 
9.04782 
8.51719 
9.38429 

9.75266 
10.2364 

10.2219 

CRIM 

0.02899 
0.06211 
0.0795 
0.07244 
0.01709 
0.04301 
0.10659 
8.98296 
3.8497 
5.20177 
4.26131 
4.54 192 
3.83684 
3.67822 
4.22239 
3.47428 
4.55587 
3.69695 

4.89822 
5.66998 
6.53876 
9.2323 
8.26725 
11.1081 
18.4982 
19.609 1 
15.288 

23.6482 
17 -8667 
88.9762 
15.8744 

13.5222 

9.82349 

9.18702 
7.99248 

20.0849 
16.8118 
24.3938 
22.5971 
14.3337 
8.15174 
6.96215 
5.29305 

8.64476 

8.71675 
5.87205 
7.67202 

9.91655 

11.5779 

13.3598 

38.35 I8 

25.0461 
14.2362 

24.80 17 
41.5292 
67.9208 
20.7162 
11.9511 

14.4383 

9.59571 

7.40389 

ZN 

40. 
40. 
60. 
60. 
90. 
80. 
80. 
0. 
0. 
0. 
0. 
0. 
0 .  
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0 .  
0. 

Variable 

INDUS 

1.25 
1.25 
1.69 
1.69 
2.02 
1.91 
1.91 

18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18. I 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18. I 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18. I 
18.1 
18. 1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18. I 
18.1 
18.1 
18.1 
18.1 
18.1 
18. I 
18.1 
18. 1 

CHAS 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
1. 
1. 
1. 
0. 
0. 
0. 
0. 
1. 
1. 
0. 
0. 
0. 
0. 
1. 
1. 
0. 
1. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0.  
0 .  
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

NOXSQ RM 

18.4041 48.1491 
18.4041 42.1201 
16.8921 43.2832 
16.8921 34.6214 
16.81 45.266 
17.0569 32.0696 
17.0569 35.2361 
59.2899 38.5889 
59.2899 40.896 
59.2899 37.5401 
59.2899 37.3565 
59.2899 40.9344 
59.2899 39.075 
59.2899 28.751 
59.2899 33.6748 
51.5523 77.0884 
51.5523 12.6807 
51.5523 24.6314 
39.816 14.9228 
39.816 24.7009 
39.816 44.6625 
39.816 49.2243 
39.816 38.6387 
44.6223 34.5156 
44.6223 24.0688 
44.6223 17.123 
45.024 53.4799 
45.024 44.2092 
45.024 46.1584 
45.024 40.7044 
45.024 38.7257 
45.024 48.553 
45.024 42.837 
48.9999 30.6473 
48.9999 30.4704 
48.9999 19.0794 
48.9999 27.8467 
48.9999 21.6411 
48.9999 25. 
48.9999 23.8144 
48.9999 29.0521 
48.9999 32.6384 
48.9999 36.6146 
48.9999 25.3613 
48.0248 38.3532 
48.0248 34.6568 
48.0248 41.8738 
48.0248 41.024 
48.0248 33.028 
48.0248 29.7352 
48.0248 34.2459 
48.0248 35.8442 
48.0248 40.2336 
48.0248 41.0112 
48.0248 28.6118 
48.0248 30.5919 
48.0248 32.2965 
43.4281 17.123 
43.4281 31.4497 
35.6409 31.5507 
35.6409 46.9499 



Census 
Tract 

350 
351 
352 
353 
354 
355 
352 
357 

359 
360 
36 I 
362 
363 
364 
365 
366 
367 
368 
369 
3 70 
371 
372 
373 
3 74 
375 
376 
377 
3 78 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
3 Y  I 
392 
3 Y 3  
394 
395 
396 
39 7 
393 
399 
40U 
401 
402 
403 
4 04 
405 
406 
407 
408 
40Y 
410 

338 

AGE 

34.5  
44.4 
35.9 
18.5 
36. I 
21.9 
l Y . 5  
97.8 
Y I .  
63.4 
R1.3 
88 .  
91.1 
96.2 
89. 
82.9 
87.Y 
91.4 

low. 
100. 
96.8 
97.5 

8Y.6 
100. 

100. 
100. 

97.9 
93.3 
98.8 
96.2 

91.9 
9Y.1 

100. 

100. 
100. 
91.2 
98.1 

100. 
89.5 

100.  
98.9 
9 7.  
82.5 
97.  
92.6 
94.7 
98.8 
96.  
98.9 

I O U .  
77.8 

100.  
100. 
100. 

96.  
85 .4  

100. 
100. 
100.  

100. 
97.Y 

DIS 

2.17385 
2.17385 
2.37121 
2.37121 
2.49539 
2.3595 
2.3595 
0.75245 
U.91837 
1.001 62 
C.91992 
0.92354 
U.830Y5 
0.74365 
0.54432 
0.54432 
0.47822 
0.56093 
0.41251 
0.287’36 
0.30505 
0.18432 
0.15623 
0.12186 
0.16059 
0.12839 
0.2 7482 
0.29632 
0.30601 
0.32649 
0.32649 
0.348lY 
0.41818 
0.45768 
0.42 729 
0.36429 
0.35494 
0.38336 
0.41766 
0.4b342 
0.54702 
0.6557 
0.77371 
0.57098 
0.58288 
0.57779 
0.54563 
0.5 1669 
0.49066 
0.39851 
0.40573 
0.46298 
0.45368 
0.49409 
0.53227 
0.47462 
0.35445 
0.1639 
0.25091 
3.37$6 
0.3822 

Variable 

RAD TAX PTRATIO B LSTAT 

U .  
0.  
I .  38629 
I .  38629 
1.60944 
I .  38629 
1.38629 
3.17805 
3.17805 
3. I 7805  
3.17805 
3.17805 
3.17HO5 
3.17605 
3.17M05 
3.17805 
3.17805 
3.17805 
3.17805 
3. I 7805  
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3. I 7805  
3. I 7805  
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3.17H05 
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3.17J05 
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3.17ti05 
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3.17805 
3.178U5 
3.17ti05 
3.17805 

335. 
335. 
411. 
411 .  
187. 
334. 
334. 
666.  
566 .  
666.  
666 .  
666.  
666.  
66b .  
666.  
666.  
666.  
666 .  
666.  
666.  
666 .  
666.  
666.  
666 .  
666.  
666.  
666.  
666.  
666 .  
66b.  
666.  
666 .  
666 .  
66b .  
666 .  
660 .  
666. 
666. 
666.  
666. 
666.  
666. 
666. 
666. 
666.  
666.  
666.  
666. 
666. 
666.  
666.  
666. 
666. 
666.  
666.  
666. 
666. 
666. 
661,. 
666.  

3.17605 566. 

1Y.7 
19.7 
IS. 3 
18.3 
17.  
22. 
22. 
20.2 
20.2 
2u. 2 
20.2 
20.2 
20.2 
20.2 
LO.? 
20.2 
20.2 
211.2 
20.2 
20.2 
20.2 
20.2 
20.2 

20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 

20.2 
20.2 
20.2 
20.2 

20.2 

20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 

20.2 

20.2 

20.2 

20.2 

20.2 

20.2 

20. 2 

20.2 

0.38985 -2.83107 
0.3969 -2.81675 
0.37078 -2.90279 
0.39233 -2.55297 
0.18446 -3.10198 
0.3828 -2.51999 
0.37504 -2.M8813 
0.37773 -1.7375 
0.39134 -L.O1966 
0.39543 -2. lb439 
0.39074 -2.06571 
0.37456 -2.55194 
0.35065 -1.95298 
0.3807Y -2.28416 
9.35304 -1.92114 
0.35455 -2.93973 
0.3547 -2.6424 
0.31604 -1.96597 

0.37552 -3.42252 
0.37533 -3.2893 
0.39205 -3.52066 
0.36615 -2.35083 
0.34788 -2.42114 
0.3969 -1.05641 
0.3969 -0.968h3 
0.3969 -2.00723 
0.36302 -1.45925 
0.3969 -1.54924 
0.3969 -1.44016 
0.39374 -1.52422 
0.3969 -1.75974 
0.3969 -1.55689 
G.3969 -1.44401 
0.3969 -1.40393 
0.28583 -1.18312 
11.3969 -1.17723 
0.3969 -1.26291 
0.3969 -1. I 3968 

0.3Y69 -1.56758 
0.39443 -1.76562 
0.37838 -1.67323 
0.3969 -1.35934 
0.3969 -1.86618 
0.3969 -1.8107 
0.39198 -1.7651 
U.3969 -1.64155 
0.3931 -1.61355 
0.3969 -1.18453 
0.3381 7 - I  .20481 
0.3969 -1.31793 
0.3969 -1.59347 
0.37611 -1.59416 
0.3969 -1.62085 
0.32946 -1.29543 
0.38497 -1.47072 
0.37022 -1.45483 
0.33209 -2.10932 
0.31461 -1. j3192 
0.17Y36 -1.62055 

n.13162 -2.01545 

0.37292 - I .  1834s 

257 



Census LMV 
Tract 

41 I 
412 
413 
414 
415 
416 
41 7 
418 
419 
420 
621 
422 
423 
424 
425 
426 
42 7 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
4 50 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
4 70 
471 

258 

9.61581 
9.75266 
9.79256 
9.69892 
8.85367 
8.881 84 
(1.92266 
9.24956 
9.08251 
9.03599 
9.72316 
9.561 
9.94271 
9.50301 
9.36734 
9.02401 
9.23014 
Y.29652 
9.30565 
9.15905 
9.5819 
9.55393 
9.68657 
9.56802 
9.36734 
9.50301 
9.16952 
9.07108 
9.03599 
9.4572 
9.2591 3 
9.74683 
9.82011 
9.64212 
9.2873 
Y.37586 
9.60912 
9.44145 
9.55393 
9.4727 
9.50301 
Y .62905 
9.68657 
9.78695 
9.60912 
9.55393 
9.44936 
9.51045 
9.60912 
9.90349 
9.70504 
9.781 32 
9.87817 
9.91344 
9.97115 
9.89848 
9.85219 
9.85744 
9.85744 
9.90848 
9.89848 

CRIM 

51.1358 
14.0507 
18.811 
28.6558 
45.7461 
18.0846 
10.8342 
25.9406 
73.5341 
11.8123 
11.0874 

12.0482 
7.02259 

7.05042 
8.7Y2 I 2  

15.8603 
12.2472 
37.6619 

7.3671 1 
9.33889 
8.49213 

6.44405 
5.58107 

10.0623 

13.9134 
11.1604 
14.4208 
15.1772 
13.6781 

22.0511 
9.39063 

9.72418 
5.66637 
9.96654 

12.8023 
10.6718 

6.28807 
9.92485 
9.32909 
7.52601 
6.71772 
5.44114 
5.09017 
8.24809 
9.51363 
4.75237 
4.46883 
8.20058 
7.75223 
6.80117 
4.81213 
3.6931 1 
6.65492 
5.82115 
7.83932 
3.1636 
3.77498 
4.42228 

15.5757 
13.0751 

4.34879 

ZN 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0 .  
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

Variable 

INDUS 

18.  I 
18.1 
18.1 
18.1 
18.1 
18.1 
18. I 
18. I 
18. 1 
18.1 
I M . 1  
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18. I 
18.1 
18.1 
18. I 
18. I 
18.1 
18.1 
18.1 
18.1 
18. I 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
lY.l 
16. I 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 
18.1 

CHAS 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0 .  
0 .  
0 .  
0. 
0 .  
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
G. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0 .  
0. 
0. 
0 .  
0. 
0. 
0 .  
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

NOXSQ 

35.6409 
35.6409 
35.6409 
35.6409 
48.0246 
46.104 
46.104 
46.104 
46.104 
51.5523 
51.5523 
51.5523 
37.6996 
37.6996 
34.1056 
46.104 
34.1056 
46.104 
46.104 
46.104 
34.1056 
34.1056 
34.1056 
50.8368 
S O .  8368 
54.7599 
54.7599 
54.7599 
54.7599 
54.7599 
54.7599 
54.7599 
54.7599 
54.7599 
54.7599 
54.7599 
54.7599 
54.7599 
50.8368 
50.8368 
50.8368 
S O .  8368 
50.8368 
50.8368 
50.8368 
50.8368 
50.8368 
50.8368 
50.8368 
50.8368 
50.8368 
50.8368 
50.8368 
50.8368 
42.9024 
42.9024 
42'. 9024 
34.1056 
33.64 
33.64 
33.64 

RM 

33.143 
44.3156 
21.4184 
26.574 
20.4213 
41.3963 
45.9955 
28.1324 
35.4858 
46.5669 
41.1009 
36.072 
3 I. 8999 
37.2466 
30.9692 
36.7620 
34.0705 
38.4648 
38.3532 
40.7044 
40.2971 
46.6899 
41.2806 
41.4221 
38.5393 
43.9436 
41.7445 
37.8471 
35.2242 
31.6631 
33.8491 
41.0368 
38.6759 
42.0552 
34.2693 
41.7187 
40.2083 
39.075 
38.2542 
41.1779 
45.549 
44.289 
39.6522 
54.6564 
45.266 
42.5756 
35.7126 
35.2361 
39.7026 
36.9786 
44.9034 
40.6534 
39.9045 
62.4192 
38.551 7 
33.1661 
35.4263 
3b.036 
35.1175 
32.6384 
38.0319 



Variable 

Census AGE 
Tract 

41 I 
412 
413 
414 
415 
616 
417 
41Y 
419 
420 
42 I 
422 
423 
424 
42 5 
426 
42 7 
4.23 
429 
430 
431 
432 
433 
434 
435 
436 
437 
4Jb  
439 
440 
441 
442 
443 
444 
445 
44b 
44 I 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
h5S 
559 
460 
561 
462 
463 
4h4 
465 
466 
467 
468 
469 
4 70 
471 

100. 
100. 
100.  
I O U .  
100. 
LOO. 
90. 8 
69.  I 

7b.5 

95.3 
87.b 
8 5 .  I 
70.6 
95.4 
59.7 
78.7 
78. I 
55.6 
86.  I 
94.3 
74.8 
87.9 
95. 
95.6 
93.3 

67.9 
93.Y 
92.4 
97.2 

106. 

100. 

100. 

IOU. 
100. 
96.6 
94.8 
96.4 
Yb.6 
98.7 

Y2.b 
98.2 
91.3 
9'1. J 
Y 4 . 1  

86.5 
87.9 
80.3 
83.7 
84.4 
90 .  
88 .4  
83 .  
89.9 
65.4 
48.2 
H4.7 
94.5 
71. 
5b. 7  
8 4 .  

w . 3  

DIS 

0.34571 
0.42363 
0.44077 
0.46336 
0.50573 
0.60688 
0.59856 
0.4992 6 
0.58923 
0.58445 
0.b1998 
0.62839 
0.66844 
U.70399 
0. 7244 
0.64689 
0.69195 
0.62213 
0.66042 
0.67712 
0.71916 
0.7363 
0.78864 
0.83975 
0.7985 
0.75363 
0.69445 
0 .  6493 
0.59917 
0.5Y73 
0.6239 
0.72518 
0.69554 
0.58229 
0.63953 
0.68708 
0.72851 
U.78755 
0.81607 
0.78162 
0.04312 
U.tI56bL 
0.86213 
(;.ti9719 
0.91473 

0.94802 
1.02216 
1.02356 
0 .W971  
0.95455 
0.942 78 
1.00591 
1.03019 
1.08634 
1.12054 
I .05483 
9.93228 
I .  0676 
1.03805 
1.10968 

o.ay027 

RAD TAX 

3.17805 666.  
3.17805 666. 
3.17805 666.  
3.17805 666.  
3.17805 bbb. 
3.17805 666.  
3.17605 666 .  
3.17805 666.  
3.17805 666.  
3.17805 666. 
3.17805 666.  
3.17805 666.  
3.17805 666.  
3.17805 66b. 
3.17805 666. 
3.17805 666.  
3.17805 666.  
J.17805 666.  
3.17805 656 .  
3.17805 666.  
3.17805 666 .  
3.17805 666 .  
3.17805 666.  
3.17805 666.  
3.17805 6 6 6 .  
3.17805 666.  
3.17805 666.  
3.17805 666.  
J.17805 bb6.  
3.17805 666.  
3.17835 666.  
3.17805 666 .  
3.17805 666.  
3.17805 666. 
3.17805 666.  
3.17805 666. 
3.17M05 666. 
3.17b05 bbb. 
3.17805 bbb. 
3.17805 666. 
3.17b05 6 6 6 .  
3.17&05 6b6.  
3.17805 6 6 6 .  
J.17bU5 bbb. 
3.17805 6b6.  
3.178US bbb. 
3.17S05 666. 
3.17805 666. 
3.17605 666.  
3.17305 666. 
3.17805 666.  
3.17805 666. 
3.17805 666. 
3.17805 666. 
3.17805 56h.  
3.17805 6 6 6 .  
3.17R05 6bb. 
1.17805 h h h .  
3.17dU5 666. 
3.17805 666. 
3.17805 666. 

PTRATIO 

20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
2 0 . 2  
20.2 
20.2 

20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20. 2 
20.2 
20.2 
20.2 
211.2 
2G.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
211.2 

20.2 

20.2 
211.2 

20.? 

20.2 
20.2 

20.2 

2n. 2 

20.2 

20.2 

20.2 

B 

0.0016 
0.03505 
0.02879 
0.21097 
0.0882 7 
0.02724 
0.02157 
0.12736 
0.01645 
0.04845 
0.31875 
0.3 1 998 
0.29 1 5 5  
0.00252 
0.00366 
0.00768 
0. IJ 24 65 
0.C1882 
0.09673 
0.06072 
0.08345 
0.08133 
0.09795 
0.10019 
0.10063 
0.10985 
0.02749 
0.00932 
0.06895 
0.3Y59 
0.39145 
0.38596 
0.39569 
0.38673 
0.24052 
0.04 306 
0.31801 
0.38852 
0.3969 
0.30421 
0.00032 
0.35529 
0.38509 
b. 37587 
0.00668 
0.05092 
0.01045 
0.0035 
0.27221 
0.3969 
0 . 2 5 5 2 3  
0.39143 
0.3969 
0.39382 
0.3969 
0.3344 
0.02 20 I 
0.33129 
0.36874 
0. 3969 
0.3969 

LSTAT 

-2.29125 
-1.55027 
-1.06804 
-1.60555 
-0.Y94 74 
-1.23619 
-1.35522 
-1.32294 
-1.5791 
-1.48IOY 
-1.89585 
-1.851 38 
-1.95928 
-1.4571 
-1.7b253 
-1.41096 
-1.85246 
-1 -92971 
-1.53633 
-1.42366 
-1.73506 
-1.62521 
-2.11618 
-1.81862 
-1.88618 
- 1  -45813 
-1.71 197 

-1.07816 
-1.47482 
-1.50905 
-1.63363 
-1.79613 
-1.66871 
-1.43586 
-1.42807 
-1.72653 
-1.80515 
-1.7U738 
-1.b447 
-1.74635 
-1.72969 
-I  75637 
-1.70731 
-1.6761 7 
-1.70766 
-1.66026 
-1.77555 
-1 .a lE49  
-1.91725 
- 1  .E0643 
-! .0?046 
-1.96697 
-2.2 7429 
-2.02375 
-1.95715 
- I .  7631 I 
-1.54571 
- I  .70744 
- 1 - 9 1  298 
-1.8145 

-1.3298 

259 



Census LMV 
Tract 

4 72 
473 
4 74 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
442 
493 
494 
495 
496 
497 
498 
499 
500 
501 
502 
503 
504 
505 
506 

9.88329 
10.0519 
10.3023 
9.53242 
9.49552 
9.72316 
9.39266 
9.58878 
9.97115 

10.0433 
10.0732 
10.1266 
9.98967 
9.93305 
9.96176 
9.85744 
9.93305 
9.62905 
8.85367 
8.99962 
9.51783 
9.90848 
9.98967 

10.1064 
10.04 76 

9.88837 
Y .8 1466 
Y -96176 
9.16996 
Y.72913 

10.0168 
9.93305 

10.0816 
9.9988 
9.38429 

CRIM 

4.03841 
3.56868 
4.64689 
8.05579 
6.39312 
4.87141 

15.0234 
10.233 
14.3337 

5.82401 
5.70818 
5.731 16 
2.81838 
2.37857 
3.67367 
5.691 75 
4.83567 
0.15086 
0.18337 
0.20746 
0.10574 
0.11132 
0.17331 
0.27957 
0.17899 
0.2896 
0.26838 
0.23912 
0.17783 
0.22438 
0.06263 
0.04527 
0.06076 
0.10959 
0.04 741 

ZN 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0.  
0 .  
0. 
0. 
0.  
0. 
0. 
0. 
0. 
0. 
0.  
0. 
0. 
0. 
0. 
0. 
0. 
0. 

Variable 

INDUS 

18. I 
18.1 
18.1 
18.  I 
18.1 
18.1 
18.  1 
18.1 
18.1 
18. I 
18. I 
18. I 
18. I 
18. I 
18.1 
18.1 
18.1 
27.74 
27.74 
27.74 
27.74 
27.74 

9.69 
9.69 
9.69 
9.69 
9.69 
9.69 
9.69 
9.69 

11.93 
11.93 
11.93 
11.93 
11.93 

CHAS 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0 .  
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0.  

NOXSQ 

28.3024 
33.64 
37.6996 
34.1056 
34.1056 
37.6996 
37.6996 
37.6996 
37.6996 
28.3024 
28.3024 
20.3024 
28.3024 
33.9889 
33.9889 
33.9889 
33.9889 
3 7.0881 
37.0881 
3 7.0881 
37.0881 
37.0881 
34.2225 
34.2225 
34.2225 
34.2225 
34.2225 
34.2225 
34.2225 
34.2225 
32.8329 
32.0329 
32.8329 
32.8329 
32.8329 

RM 

38.8004 
41.435 

29.4523 
37.9702 
42.0422 
28.1324 
38.2542 
38.8004 
38.9625 
45.5625 
49.8577 
33.2006 
34.4686 
39.84 1 3  
37.381 
34.869 
29.7461 
29.31 14 
25.9386 
35.7963 
35.7963 
32.5698 
35.1175 
32.1489 
29.0521 
33.5 704 
36.2283 
31.0137 
36.3247 
43.4677 
37.4544 
48.6646 
46.1584 
36.3609 

48.7204 



Variable 

Census AGE 
Tract 

472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
4 82 
lr83 
484 
$85 
48b 
467 
488 
489 
490 
4Y I 
4YZ 
493 
494 
495 
496 
497 
49Y 
49Y 
500 
50 1 
50 2 
503 
504 
505 
506 

YO. 7 
75. 
67.6 
95.4 
97.4 
93.6 
97.3 
96.7 
88.  
64.7 
74.9 
7 7 .  
40.3 
41.9 
51.9 
79.8 
53.2 
92.7 
98.3 
98.  
98.8 
83.5 
54. 
42.6 
28.8 
72.9 
70. 6 
65.3 
73.5 
79.7 
69.  I 
7b. 7 
5 1 .  
89.3 
P U . b  

DIS 

1.13118 
1.0635 
0.92936 
0.88781 
0.791 18 
0.83521 
0.74227 
0.77496 
0.66844 
1.23087 
1.20348 
1.22689 
1.41057 
1.3148 
1.38422 
I .  26579 
1.14813 
0.59933 
0.5627 
0. bOO26 
0.62L92 
0.74664 
0.86761 
0.66781 
1.02YI2 
1.02912 
I .06219 
0.87925 
0.87543 
0.91557 
0.90769 
0.82746 
0.77357 
0.87083 
0.91829 

RAD TAX 

3. 17805 666. 
3.17805 666. 
3.17805 666.  
1.17805 666.  
3.17805 666.  
3.17805 666.  
3.17805 666 .  
1.17805 666 .  
3.17605 666.  
3.17805 666.  
3.17805 666.  
3.17805 666. 
3.17805 666.  
3.17805 666 .  
3.17805 666.  
3.17805 bbb.  
3.17805 666.  
1.3E629 711.  
1.38629 711. 
1.3862Y 711.  
1.38629 711. 
1.38629 711. 
1.7917b 391.  
1.7917b 391. 
1.7917b 391. 
1.7’1175 391. 
1.79176 391.  
1.79176 391. 
1.79176 391. 
l .7Y17b 391. 
0. 273.  
0 .  273.  
0 .  273. 
0.  273.  
0. 273.  

PTRATIO 

20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
20.2 
2fJ. 2 
20.2 
20.2 
20.1 
20.1 
20.1  
20. I 

I Y . 2  
19.2 
19.2 
1Y.2 
19.2 
19.2 
IY.2 
19.2 
2 1 .  
2 1 .  
2 1 .  
2 1 .  
21.  

20 .  I 

B 

0.39533 
0.39337 
0.37468 
0.35257 
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C H A P T E R  5 

Research Issues and 
Directions for Extensions 

In this monograph we have presented new diagnostic methods that help to 
assess the suitability of a given data set for estimating a specific linear 
regression model by least squares. As such, these techniques go beyond the 
usual statistical analysis associated with ordinary least squares, an analysis 
which does not provide means for exploring the interaction between the 
estimation process itself and the specific data sample employed. These 
diagnostics, then, complement standard statistical tools. The approach 
used in developing these diagnostic measures has necessarily had a large 
empirical content, and the experiments and case studies that have been 
included in the previous chapters provide meaningful guidelines for their 
use. It is anticipated, however, that refinements will naturally arise from 
their more widespread application in a variety of statistical and 
econometric contexts. 

We have limited the scope of this current research to ordinary least 
squares. This is by far the most widely employed of statistical models, and 
yet its inability to deal with many practical problems is evident from the 
variety of “tricks of the trade” that have evolved, mostly in an oral 
tradition, to help fill the void that arises between theory and practice when 
the data are less than ideal. It makes sense, then, to concentrate initial 
systematic efforts to deal with these problems in this most rudimentary but 
important context. 

At the same time we look forward to many interesting elaborations of 
this work. Section 5.2 contains some preliminary thoughts on the extension 
of these diagnostics to more complex estimation contexts, including 
estimation of nonlinear models and systems of simultaneous equations. 

Section 5.1 is devoted to some general notions regarding the application 
and interpretation of the diagnostic procedures that have emerged from 
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our experience with their use. Before proceeding, however, it is instructive 
to present a framework within which the various diagnostic techniques can 
be viewed. This is in terms of the two major outputs of the linear 
regression model that are also the objects toward which the diagnostic 
procedures are directed: the estimated regression coefficients and the fitted 
and/or predicted values. 

The regression coefficients are, of course, a fundamental element in any 
structural analysis of a regression equation. Their estimated values, as well 
as the precision, or the reliability, with which they are estimated, are of 
central importance. Thus, those diagnostics, such as the DFBETAS or the 
collinearity analysis, that point to characteristics of the data to which the 
coefficient estimates or their estimated standard errors are particularly 
sensitive, are especially useful for examining the suitability of the data for 
structural estimation. 

A different perspective is helpful for assessing the suitability of the data 
for predictive purposes. In prediction, and in the estimation of the predic- 
tion error, less interest is often attached to the estimates of individual 
coefficients than to their combined effect. Diagnostics such as DFFITS are 
aimed at pinpointing sources of such overall sensitivity. Some of the 
diagnostic measures, such as the hat-matrix diagonals and the partial- 
regression leverage plots, appear to be useful in both the predictive and 
structural contexts. 

5.1 ISSUES IN RESEARCH STRATEGY 

1. The principal use of the collinearity diagnostics (Chapter 3) is in 
evaluating the suitability of the data for structural estimation. This 
diagnostic provides information on those individual coefficients whose 
estimates are degraded by the presence of ill-conditioned data. If the 
investigator finds evidence of such degradation in the estimates of 
parameters that are of interest to his research, corrective action is 
indicated. In the absence of new, well-conditioned data, a Bayes-type 
approach (see Chapter 4) is appealing when the necessary prior 
information is available. Mixed-estimation provides a simple and flexible 
means for introducing this prior information, requiring software not much 
more demanding than a standard regression package. The case is similar 
for ridge regression. 

A commonly employed corrective measure, that of deleting one or more 
of the collinear variates, is not a correct procedure in the context of 
structural estimation. This is because the ill-conditioning itself causes the 
tests of significance on the “collinear variates” to lack power, and hence 
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the investigator stands a high risk of removing a variate that properly 
belongs in the regression equation. As is well known, this action can 
severely bias the remaining parameter estimates. 
2. The collinearity diagnostics are not devoid of interest in the context of 
prediction. Even when individual coefficients are unreliably estimated, 
linear combinations of them often are not, enabling the combined set of 
coefficients to produce acceptable predictions. In order for this to be the 
case, one must have reason to believe that the nature of the collinearity of 
the data on which the estimated parameters are based will continue into 
the prediction period. The collinearity diagnostics help the investigator to 
display the various collinear relations that exist in the sample data so that 
their stability into the prediction period can be investigated. 
3. The diagnostics for influential data points (Chapter 2) provide a wholly 
different point of view for assessing the suitability of the data for structural 
estimation and prediction, based as they are on an analysis of the effects of 
row perturbations rather than the column-effects that are observed in the 
collinearity diagnostics. A quick review of the diagnostic procedures 
presented in Chapter 2 will convince the reader of the importance of the 
roles played by the studentized residuals, e:, and the hat-matrix diagonals, 
hi. These two elements can often play off against one another in 
determining the sensitivity of coefficient estimates, DFBETAS, or fitted 
values, DFFITS, to the deletion of a given row. One sees from (2.7) and 
(2.11), for example, that when hi is small, a large coefficient change is 
often associated with a sizable (absolute) studentized residual, lei* I, 
whereas this effect may be considerably muted with regard to the fitted 
value. Such a situation, then, can be more critical to structural estimation 
than to prediction. A row with high leverage, however, can be the root of 
sensitivity in both coefficient estimates and predicted values. Of course, 
this need not be the case, for large hi can be counteracted by a small 
residual lei*[. Such a situation can become a desirable source of increased 
efficiency in estimation: an important observation that is in close 
agreement with the regression plane. 
4. We have found that the partial-regression leverage plots contain much 
of the qualitatively interesting information about disparate data. Potential 
leverage points and large residuals show up clearly, even though the 
quantitative measure of influence contained in the row-deletion diagnostics 
is absent from the plots. These plots also reveal convenient information 
about masking. This phenomenon arises when two or more anomalous 
data points evade detection through the deletion of a single row (see 
Exhibit 2.lf). These multiple outliers can also often be detected by 
combinatorial approaches. The approach described by (2.62) and its 
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ensuing equations seems to combine an acceptably low cost with 
effectiveness in detection. 
5. The effects that particular data rows may have on the efficiency of 
estimation are most effectively conveyed by COVRATIO, a ratio of 
determinants of the estimated variance-covariance matrices of the 
parameters, the numerator having been row-deleted. While COVRATIO 
can also be thought of as a summary measure containing information from 
both explanatory and response variables about possible anomalous rows, 
we have found the more direct and restrictive interpretation related to 
precision of estimation to be the most instructive. FVARATIO similarly 
provides a useful summary of the changes that occur in the precision of the 
fit. 
6. For prediction, as we have noted above, DFFITS is an effective 
measure of the combined influence of a specific row on all coefficients 
taken together. DFFITS joins the two key diagnostics, e: and hi, in an 
economical way that serves to flag circumstances where either let1 or hi is 
large, or both are moderate but act jointly, and hence points to those rows 
that have the largest effect on predictions. 
7. The residuals play a joint role with the hat-matrix diagonals in the 
diagnostics described above. But the residuals also play an important role 
alone. The normal probability plots, for example, convey valuable 
qualitative information about the extent and types of departures from 
normality. 
8. If there is evidence of influential data, several corrective actions are 
possible. Influential data should first be checked for accuracy, and any 
questions relating to model specification for the circumstances surrounding 
the generation of the influential observations should be cleared up. After 
this is done, these potentially most interesting data may be set aside or 
downweighted to assess their impact on the model. Or, an estimation 
procedure such as bounded-influence regression [Krasker and Welsch 
(1979)], which is specifically designed to limit the influence of anomalous 
data, may be used. At the very least, excessively influential data should be 
mentioned in any discussion of the model fitting and estimation process. 
9. Finally, we have found that one cannot be indifferent to the order in 
which collinearity (columns) and anomalous data (rows) are treated. 
Collinearity presents a problem akin to the problem of identification. If the 
X matrix were perfectly collinear, some parameters would be estimable 
only up to linear combinations. Likewise, the more ill-conditioned the 
data, the less effectively can the separate effects of the individual 
parameters be inferred. It is therefore usually advisable to introduce all 
conditioning information prior to estimation and prior to any additional 
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diagnosis that makes use of the response data, y. This conclusion, however, 
cannot be taken categorically. Exhibit 3 . V  depicts how potential ill 
conditioning can possibly be masked by one or more strategically placed 
observations.' Should such leverage points also prove to be influential 
(relative to the response data), and it were deemed reasonable to set them 
aside, collinearity problems would arise that might not have been foreseen 
from diagnosing the full data set for ill conditioning. Thus, while we 
typically suggest employing the collinearity diagnostics first, a careful 
analysis of ill conditioning would, in the next step, determine whether any 
influential observations should be set aside, and if so, examine the 
conditioning of the remaining data? Likewise, should it be decided in the 
,process of diagnosing leverage points to set aside any influential 
observations, the conditioning of the remaining data set could profitably 
be examined prior to any further diagnosis for influential data. 

5.2 EXTENSIONS OF THE DIAGNOSTICS 

The diagnostic techniques developed in Chapters 2 and 3 are designed to 
apply to the single-equation, linear regression model. In this section we 
examine some preliminary aspects of extending one or both of these 
diagnostic methods to systems of simultaneous equations and to nonlinear 
models. These extensions are by no means complete, and further research 
is warranted for each. 

Extensions to Systems of Simultaneous Equations 

Influential-Data Diagnostics. The basic diagnostic approach of Chapter 
2, that for influential data, can be extended to systems of simultaneous 
linear equations, 

Yr + XB + E = 0, 

where Y is an n x g  matrix of n observations on g jointly dependent 
variables, X is an nxp matrix of n observations on p predetermined 
variables, and E is an n x g  matrix of error terms whose rows are 
independently distributed with a constant mean vector zero and 
variance-covariance matrix X. The matrices r and B are, respectively, g Xg 

(5.1) 

'An extreme case would occur for an observation i when hi = 1 and thus det @'(i)X(i))=O. 
'This suggests the usefulness of deletion diagnostics based on eigenvalua or condition 
indexes, but these turn out to be computationally expensive and possibly impractical. In a 
related vein, recent work by Weisberg (1977) on properties of the hat matrix may offer 
additional insight into this problem. 
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and p x g  arrays of structural parameters. We suppose interest centers on 
estimating the first of these equations, which, after normalization and 
inclusion of all prior identifying zero restrictions, we write as 

YI = YIYI + XIP, + El 9 (5.2) 

where yl is an n-vector of observations on the jointly dependent variable 
whose coefficient has been normalized to - 1 ,  Y, is the n X g l  matrix of 
other included jointly dependent variables, XI is the n X p ,  matrix of 
included predetermined variables, and yl and 8, are, respectively, the 
corresponding elements of the first columns of r and B not known a priori 
to be zero. The vector el is the first column of E. We assume (5.2) is 
identified and, hence, that p >g,  + p I .  Now let 

so that (5.2) becomes 

y, =m+E,. (5.4) 

As is well known, the two-stage least-squares estimator of 6 in (5.4) is 
simply 

d= (ZTH,Z)-'ZTH,y,, (5.5) 

where H,=X(XTX)-'Xr and X is the n x p  matrix of full rank containing 
observations on all predetermined variables of the system. In this case the 
fit is determined by 

f l  E Zd = Tyl, (5.6) 

where Tf Z(ZTHxZ)-'ZTH,. 
In an attempt to parallel the results of Chapter 2, it is natural to focus 

on the matrix T. The matrix T is idempotent with trace g ,  +pl,  but it is not 
symmetric and therefore not a projection in the usual sense. No bounds 
can be placed on the individual diagonal elements of T. If we let krH,Z,  
then, since H, is a projection matrix, 

and H_=k(kT@-'kT is also a projection matrix. While H lacks the direct 
correspondence to 9,  that the matrix T has, it is nevertheless a projection 
relevant to the second-stage estimation and can be used. to assess the 
leverage of individual observations. 

Naturally, we also want to look at the d-d(i), just as in the 
single-equation case. Phillips (1977, p. 69) has derived the necessary 
formulas, so these quantities can be computed. These results can also be 
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extended to DFFITS; in this case the relevant statistic becomes 

z,.[d-d(i)] 
7 

where 

k # i  

Phillips (1977, p. 70) also provides a formula for computing s2(i) .  An 
example of the use of these diagnostics is contained in Kuh and Welsch 
(1979). 

If the single-equation diagnostics are all that are available, we suggest 
putting 2 and y1 in place of X and y in Chapter 2 and using the output as 
an approximation to d-d(i) and other diagnostics. In doing so, the effects 
of the ith observation have only been partially deleted, but useful insights 
often result. 

Collineary Diagnostics. The extension of the collinearity diagnostics to 
some aspects of simultaneous-equations estimation proves to be quite 
Straightforward. Other elements are considerably less obvious and provide 
fertile areas of research. There is no reason why the collinearity diagnostics 
cannot be applied directly to the “second stage” of two-stage least squares 
in order to assess the conditioning of the data for estimation of the given 
parameters. Here the data matrix whose conditioning is being assessed is 
the ~ E @ ~ X ~ )  matrix, where *l=H,y, is the set of reduced-form 
predicted values for the included jointly dependent variables and XI is the 
set of included predetermined variables. Similar considerations apply to 
three-stage least squares. An interesting research question is whether the 
conditioning and diagnostics can be obtained directly from an analysis of 
the raw Y and X data. Questions also arise as to an appropriate measure of 
conditioning and appropriate diagnostics for instrumental variables 
estimators and for maximum-likelihood estimators. 

Another aspect of two-stage least-squares estimation provides a context 
in which the collinearity diagnostics may have useful application. In the 
estimation of large models, it often happens that the number of exogenous 
variates in the model exceeds the number of observations. In this 
“undersized sample” case, the first stage of two-stage least squares cannot 
take place. Various solutions have been offered, many of which include 
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means for selecting a subset of the exogenous variates to use in place of the 
full set? Since the collinearity diagnostics pinpoint those variates that are 
closely associated with the remainder through linear relations, they can 
also be used to select the subset that provides the greatest amount of 
independent information. The relation of this procedure to the use of 
principal components is clear. 

Extensions to Nonlinear Models 

The extension of each of the diagnostics to nonlinear models has some 
straightforward aspects and some elements requiring further research. In 
what follows we denote n observations on a single-equation nonlinear 
model as 

where + is a vector-valued nonlinear stochastic function in the p 
parameters 8, u is an n-vector disturbance term, y is an n-vector of 
observations on the response variable, and X is an n x k  matrix of 
observations on k explanatory variables. Since y and X often do not 
directly enter the analysis, we write +(y,X,8) more simply as +@I). In the 
general estimation problem, a 8 is determined that minimizes some specific 
criterion function 

that is, 

In the case of the least-squares (minimum-distance) estimator, for example, 
f (e) is simply proportional to (pr(e)+(e). 

InfuenntZaI-Data Dlirgnostics. It is clear that an examination of the 
effect of deleting the ith observation would be cumbersome indeed. The 
problem given in (5.12) must be solved first for the whole data set to 
obtain 6 and then again with the ith observation deleted to obtain 8 ( i ) .  
While this procedure may be necessary in some instances [Duncan (1978)], 
considerable information may often be obtained at much less cost by 

'See Kloek and Mennes (1960) and Fisher (1965). See also Mitchell and Fisher (1970) and 
Mitchell (1971) for possible dangers that can arise if care is not taken. 
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employing a quadratic approximation to f(0) in the neighborhood of 8. 

about 6 as 
One approach, extending work by Chambers (1973), is to expand f(0) 

1 q ( e ) q ( 6 )  + (e--b)'g(e) + -z (e- 6)Tc(@)(e- 6), (5.13) 

where g( 6) 3 Vj( O), the gradient of f(e), and G(8) = V2f( e), the Hessian of 
f(0). Often, f, g, and G can be easily computed at 6 without the ith 
observation, and a reasonable local approximation to 6- 6 ( i )  would be 
obtained from the single Newton step 

G;; ( 4 k ( i , (  @ 1. (5.14) 

This avoids having to iterate to a new solution. In many optimization 
algorithms, such as quasi-Newton methods, G(@ ) is approximated by 
another matrix, A(@), and in this case we could employ 

A- ' ( e k ( i ) (  @) (5.15) 

as an approximation to (5.14). Of course, analogous to (2.7), some 
appropriate scaling is required, and this can often be provided by the 
estimated covariance matrix, V(@ ). 

If there are many parameters and a summary measure is desired, all 
linear combinations can be considered by using the fact that 

where X is ap-vector. Often V(6) is taken to be Awl(@), and then (5.16) 
can be approximated by4 

Li,23g~,(@)A-'(e)g,,)(6). (5.17) 

To examine changes in fit more directly, it would be necessary to compute 

with an appropriate scaling. 

'If V(i> is approximated by G-I( i )  and formula (5.14) is used, then a slightly different 
version of (5.17) wil l  be obtained. 
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Often Cci,(6) cannot be computed because a quasi-Newton algorithm is 
being used. In nonlinear least-squares problems, however, several special 
approximations to G(,,(6 ) are available. 

For Gauss-Newton algorithms, A(6) is generally J'(6 )J(@), where J is 
the n x p  Jacobian matrix for (p(6). Clearly A ( i J 6 )  is then given by 
4:(6)J(,(8), and some algebra shows that 

where J(6) is the ith row of J(6) and h i ( d )  is the ith diagonal element of 

(5.20) 

Note that (5.19) is exactly 8 - 6 ( i )  when, in the linear case, +i(0)=yi-xiO 
and J = X. By analogy, then, we can measure leverage in the neighborhood 
of 6 by the diagonal elements of H(6). Of course, special problems occur 
when J(8) is singular or has a high condition number. 

Specialized quasi-Newton methods for nonlinear least-squares have been 
developed by Dennis and Welsch (1 978) and are described in greater detail 
in Dennis, Gay, and Welsch (1979). In these algorithms the Hessian is 
approximated by JTJ + S, and S is updated by rank-two update formulas. 
It is then possible to construct an approximation to s(i,(6) as well, so that 
Ao,( 6 ) = J&( 6 Mil( 6 ) + qj,( 6 ). In large-residual least-squares problems the 
use of S is quite important and, although the simple relationship of (5.19) 
to the linear case is lost, the use of S is generally beneficial in computing 
approximations to 8 - 6 ( i )  as well. This procedure is more fully described 
in Welsch (1977b), and much of the special structure can be applied to the 
generalized linear models discussed by Nelder and Wedderburn (1972) and 
to the choice models in McFadden (1976). The recent thesis by Pregibon 
(1979) provides an in-depth study of a number of these problems. 

We recall that the approximation in (5.14) involves just one Newton (or 
quasi-Newton) step. Naturally, this process could be continued until 
convergence is achieved. Although more research is necessary, this 
additional computational burden appears to provide little new 
information. 

Approaches analogous to those discussed in this section can be 
developed using derivatives with respect to weighted observations rather 
than deletion. Since we emphasize deletion in the earlier parts of this book, 
we do not go into further detail here. 
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There is one fundamental problem with nonlinear regression diagnostics 
calculated only at the solution: data that are influential during specific 
iterations can cause the minimization algorithm to find a local minimum 
different from the one that would have been found had the influential data 
been modified or set aside. It is, therefore, advisable to monitor influential 
data as an algorithm proceeds. A simple approach is to compute $(k) at 
each iteration, k, and record how often it exceeds a certain cutoff (or is in 
the top lW0 of &k) for each k). When specific observations appear overly 
influential, the nonlinear problem can be rerun from the original starting 
guess with these data points downweighted or omitted. This technique has 
worked well in practice, and our early fears that every point would turn up 
as an influential point at some iteration have proved to be unfounded. 

There are special cases where algorithms can be monitored quite easily 
using the diagnostics developed in Chapter 2, as, for example, when 
iteratively reweighted least squares is used for robust estimation [Holland 
and Welsch (1978)J. Once the weights have been determined at each 
iteration, weighted least squares is used to find the next approximate 
solution. Since the weights are now fixed, many of the linear regression 
diagnostics can be used by replacing X by TX and y by Ty, where T is the 
diagonal matrix with elements consisting of the square root of the weights. 

Collkanty Diagnostics. The extension of the collinearity diagnostics to 
the estimation of models nonlinear in parameters and/or variables affords 
many interesting research topics. Alternative model specifications, 
involving nonlinearities in the variates, are a frequent object of applied 
statistical research. Economists, for example, are often interested in 
knowing whether a given explanatory variable should enter the model in 
the form of x or x2 or both. Similarly, specifications of models linear in the 
giveh variates vie with those linear in the logs, that is, y = a + px + E versus 
lny = a + p In x + q.  Both of these situations arise from nonlinear 
transformations of the original data series and result in models that remain 
linear in the parameters. The collinearity diagnostics would seem to be a 
useful tool for analyzing directly the effect such nonlinear transformations 
of the data have on the conditioning of the data for estimation of the 
model. 

Models nonlinear in the parameters present equally interesting 
problems. There appear to be at least two approaches to extending the 
collinearity diagnostics to such models. The first applies the existing 
diagnostics to a linearized approximation to the model in (5.10). Here we 
assume the components of u to be independently distributed with mean 
zero and variance 02. Several means exist for estimating models of this 
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For example, a least-squares (or minimum-distance) approach would 
be to find the 8 that, given y and X, minimizes uTu =+T(8)+(8). Once such 
an estimate has been obtained, the first two terms of a Taylor expansion 
may be used to form a linear approximation to the model about 6 as 

Z= J(6)O- U, 

where z=J(6)8 -+(8) and J(6) is the n x p  Jacobian matrix defined 
above. It seems reasonable to assess the conditioning of the data relative to 
the estimation of 8 by examining the conditioning of the J(8) matrix. 

The second possible extension of the diagnostics to models nonlinear in 
the parameters is a more direct, but less easily effected, approach in need 
of much more research. We note that the collinearity diagnostics of 
Chapter 3 are relevant to estimation of the linear regression model by 
ordinary least squares because they directly exploit properties of that 
model. In particular, the diagnostics pertain to the data matrix X in the 
form in which it enters the model, y = Xp + e, .and the condition indexes of 
the potential degradation of the estimates are related to a decomposition of 
the variance-covariance matrix u2(XTX)-’ of the least-squares estimator. 
Of course, no such direct link exists between the diagnostics of Chapter 3 
and estimators for models nonlinear in the parameters. Indeed a notion of 
“conditioning” relevant to such models has yet to be defined! If a measure 
of conditioning can be defined for such models, it can be exploited as a 
diagnostic tool only if it can be directly incorporated into specific 
nonlinear estimation procedures, in the manner, for example, that the pk 
entered the variance decomposition in the linear model. 

The collinearity diagnostics and their related concepts of conditioning 
are also usefully employed as a monitor of the numerical stability of the 
various optimization algorithms at each iteration leading up to the final 
parameter estimates. In the Gauss-Newton method, for example, the J(0) 
matrix is computed at each iteration and enters into the computation of 
the next step. Clearly, such algorithms should be monitored for the 
conditioning of J(0), flagging problems that arise. Likewise, in estimators 
using Newton-like algorithms, knowing that the Hessian is becoming ill 
conditioned signals problems in determining the next step. Furthermore, in 
maximum-likelihood estimation, an ill-conditioned Hessian near the 
solution signals potential problems in inverting the Hessian as an estimator 
of the variance-covariance matrix. 

5For further discussion of these and related matters, see Malinvaud (1970), Belsley (1974), 
and Bard (1 974). 
‘%e J(0) matrix lor the linearization obtained above may, however, be a good start. 
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Additional Topics 

Bounded-Influence Regression. In Section 4.4 we examined briefly the 
use of the regression diagnostics with a robust estimator, and an interesting 
research issue arises in this context. In particular, we recall that influential 
observations can result either from high leverage (hi) or from residuals with 
large magnitudes. Robust estimation, of course, is designed to lessen the 
influence of scaled residuals with large magnitudes, and hence helps to 
mitigate problems arising from this source, but robust regression typically 
will not downweight influential observations caused by high leverage (hi) 
alone. Notice, in Section 4.4, that even after using robust regression, we 
still have several large values of DFFITS. Thus, a word of warning is in 
order: since robust regression is not designed to deal with leverage, the 
weights associated with robust regression (when implemented as a 
weighted least-squares estimator) are not an adequate diagnostic for 
influential data from all causes. 

A modification of robust regression called bounded-influence regression 
was proposed by Welsch (1977a) and has been modified and extended in 
Krasker and Welsch (1979). In this approach the influence of an 
observation, as measured by generalizations of DFBETAS or DFFITS, is 
bounded and therefore both leverage and residuals are involved. Related 
alternatives to robust regression have been suggested by Mallows (1975), 
Hinkley (1977), Hill (1977), Handschin et al. (1975), and Hampel (1978). 
Much theoretical and computational work remains to be done in this area. 

Bounded-influence estimators should provide a powerful, low-cost 
diagnostic tool. They combine the influence philosophy developed for 
single-row deletion with the capacity to consider (in a structured way) 
more than one observation at a time. Thus, the weights obtained from 
bounded-influence regression can potentially provide a wealth of 
diagnostic information. In addition, an alternate set of coefficient 
estimates would be available for comparison with least-squares, robust, 
and deleted-data regression. 

Mulnjpce-Row Pmedures. Our discussion in Section 2.1 of multiple-row 
procedures leaves many fertile areas for further research, especially 
computational costs, methods of inference, and graphical techniques. 

Computational costs rise rapidly when deletion of more than one 
observation at a time is considered. For this reason, a number of attractive 
row-diagnostic procedures, based on changes in eigenvalues and condition 
indexes, have not been given further attention. However, there is some 
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hope that inequalities, branch-and-bound methods, and quadratic- 
programming techniques can be employed to reduce computational costs. 

Multiple-row techiques also lack formal inference procedures, even 
when a Gaussian sampling distribution is assumed. Andrews and Pregibon 
(1978) have taken a first step toward providing such procedures, and their 
techniques can probably be used with other diagnostics. Unfortunately, the 
calculation of the critical levels required by these tests depends on the 
specific X data employed in a manner that adds greatly to computational 
costs. Generally applicable tables can not be made available, and it 
becomes necessary to provide a conditional sampling distribution for each 
X, a formidable task indeed. Perhaps recent work by Efron (1979) on the 
bootstrap method will be of assistance here. 

While formal inference procedures may aid in the analysis of the large 
volume of information generated by multiple-row methods and other 
diagnostics, the most likely means for quickly digesting this information is 
through graphical data analysis. Fortunately, computer graphics 
technology has advanced to the point where research in this area is 
feasible, and we think it holds great promise. 

Trunsfonnutions. The influential-data diagnostics of Chapter 2, are 
based on an examination of the effects that result when some aspect of the 
overall model has been perturbed, as, for example, the data or the error 
structure, and includes the possibility that the structural form of the model 
equations can be perturbed as well. A particular case of ,this would occur if 
a response or explanatory variable were to be transformed. For example, 
we may wish to determine how the regression output is affected by a 
change in A, the parameter of the Box and Cox (1964) family of 
transformations, 

A solution to this exercise, consistent with the spirit of Chapter 2, would be 
to differentiate the least-squares estimates, providing a measure of local 
sensitivity to A. (More than one A could be involved for transformations of 
different data series.) Recent suggestions by Hinkley (1978) provide 
interesting ideas on the effect of transformations on response variables. 

Data transformations also affect the collinearity diagnostics of Chapter 
3. The impact of linear transformations has already been discussed in 
Appendix 3B, but, as noted above, the effect of nonlinear transformations 
offers an area of research. 
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Time Series and Lags. It is noted in Section 4.2 that the simultaneous 
presence of several different lags for a given data series can change our 
interpretation of the deletion diagnostics, for the deletion of a row can no 
longer be interpreted as the deletion of an observation. An observation 
can, of course, be deleted by removing all rows where data from that 
observation period occur. Such a procedure is quite cumbersome when 
there are higher-order lags, and we have not found it to be particularly 
effective. Nevertheless, we consider the methods of Chapter 2 only to be 
approximations to a more complete theory of influential data in the 
context of time-series. A promising approach to such a theory may be the 
generalized robust time-series estimation methods being developed in 
Martin (1979) and (1980). While our research on regression diagnostics has 
led to the development of bounded-influence regression, it may be that its 
counterpart in time-series analysis, generalized robust estimation, will lead 
to the development of better diagnostics for time-series models. 
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