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Preface

Every spinning rotor has some vibration, at least a once-per-revolution
frequency component, because it is of course impossible to make any rotor
perfectly mass balanced. Experience has provided guidelines for quanti-
fying approximate comfortable safe upper limits for allowable vibration
levels on virtually all types of rotating machinery. It is rarely disputed that
such limits are crucial to machine durability, reliability, and life. However,
the appropriate magnitude of such vibration limits for specific machin-
ery is often disputed, with the vendor’s limit usually being higher than a
prudent equipment purchaser’s wishes. Final payment for a new machine
is occasionally put on hold, pending resolution of the machine’s failure
to operate below the vibration upper limits prescribed in the purchase
specifications.

The mechanics of rotating machinery vibration is an interesting field,
with considerable technical depth and breadth, utilizing first principles
of all the mechanical engineering fundamental areas, solid mechanics,
dynamics, fluid mechanics, heat transfer, and controls. Many industries
rely heavily on reliable trouble-free operation of rotating machinery. These
industries include power generation; petrochemical processes; manufac-
turing; land, sea and air transportation; heating and air conditioning;
aerospace propulsion; computer disk drives; textiles; home appliances;
and a wide variety of military systems. However, the level of basic under-
standing and competency on the subject of rotating machinery vibration
varies greatly among the various affected industries. In the author’s opin-
ion, all industries reliant on rotating machinery would benefit significantly
from a strengthening of their in-house competency on the subject of
rotating machinery vibration. A major mission of this book is to foster
an understanding of rotating machinery vibration, in both industry and
academia.

Even with the best of design practices and the most effective methods
of avoidance, many rotor vibration causes are so subtle and pervasive that
incidents of excessive vibration in need of solutions continue to occur.
Thus, a major task for the vibrations engineer is diagnosis and correction.
To that end, this book is comprised of four sequential parts.

Part I: Primer on Rotor Vibration is a group of three chapters that develop
the fundamentals of rotor vibration, starting with basic vibration concepts,
followed by lateral rotor vibration and torsional rotor vibration principles
and problem formulations.

xvii
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Part II: Use of Rotor Dynamic Analyses is a group of three chapters focused
on the general-purpose lateral rotor vibration PC-based code supplied
with this book. This code was developed in the author’s group at Case
Western Reserve University and is based on the finite element approach
explained in Part I. Major topics are the calculation of rotor unbalance
response, the calculation of self-excited instability vibration thresholds,
bearing and seal dynamic properties, and turbo-machinery impeller and
blade effects on rotor vibration. In addition to their essential role in the total
mission of this book, Parts I and II also provide the fundamentals of the
author’s graduate-level course in rotor vibration. In that context, Parts I
and II provide an in-depth treatment of rotor vibration design analysis
methods.

Part III: Monitoring and Diagnostics is a group of three chapters on mea-
surements of rotor vibration and how to use the measurements to identify
and diagnose problems in actual rotating machinery. Signal analysis meth-
ods and experience-based guidelines are provided. Approaches are given
on how measurements can be used in combination with computer model
analyses to optimally diagnose and alleviate rotor vibration problems.

Part IV: Trouble-Shooting Case Studies is a group of three chapters devoted
to rotor vibration trouble-shooting case studies and topics from the
author’s many years of troubleshooting and problem-solving experiences.
Major problem-solving cases include critical speeds and high sensitivity to
rotor unbalance, self-excited rotor vibration and thresholds, unique rotor
vibration characteristics of vertical machines, rub-induced high-amplitude
vibration, loose parts causing excessive vibration levels, excessive support
structure vibration and resonance, vibration-imposed DC motor-generator
uneven commutator wear, and rotor balancing. The sizes of machines in
these case studies range from a 1300 MW steam turbine generator unit
to a 10 kW APU for a jet aircraft. These case studies are heavily focused
on power generation equipment, including turbines, generators, exciters,
large pumps for fossil-fired and nuclear PWR and BWR-powered plants,
and air handling equipment. There is a common thread in all these case
studies: namely, the combined use of on-site vibration measurements and
signal processing along with computer-based rotor vibration model devel-
opment and analyses as the optimum overall multipronged approach to
maximize the probability of successfully identifying and curing problems
of excessive vibration levels in rotating machinery.

The main objectives of this book are to cover all the major rotor vibration
topics in a unified presentation, and to demonstrate the solving rotating
machinery vibration problems. These objectives are addressed by provid-
ing depth and breadth to the governing fundamental principles plus a
background in modern measurement and computational tools for rotor
vibration design analyses and troubleshooting. In all engineering problem-
solving endeavors, the surest way to success is to gain physical insight
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into the important phenomena involved in the problem, and that axiom is
especially true in the field of rotating machinery vibration. It is the author’s
hope that this book will aid those seeking to gain such insight.

Maurice L. Adams, Jr.
Case Western Reserve University

Cleveland, OH
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Part I

Primer on Rotor Vibration





1
Vibration Concepts and Methods

1.1 One-Degree-of-Freedom Model

The mass–spring–damper model, shown in Figure 1.1, is the starting point
for understanding mechanical vibrations. A thorough understanding of
this most elementary vibration model and its full range of vibration char-
acteristics is absolutely essential to a comprehensive and insightful study
of the rotating machinery vibration field. The fundamental physical law
governing all vibration phenomena is Newton’s Second Law, which in its
most commonly used form says that the sum of the forces acting upon an object
is equal to its mass times its acceleration. Both force and acceleration are vec-
tors, so Newton’s Second Law, written in its general form, yields a vector
equation. For the one-degree-of-freedom (1-DOF) system, this reduces to
a scalar equation, as follows:

F = ma (1.1)

where F is the sum of forces acting upon the body, m is the mass of the
body, and a is the acceleration of the body.

For the system in Figure 1.1, F = ma yields its differential equation of
motion as follows:

mẍ + cẋ + kx = f (t) (1.2)

For the system in Figure 1.1, the forces acting upon the mass include the
externally applied time-dependent force, f (t), plus the spring and damper
motion-dependent connection forces, −kx and −cẋ. Here, the minus signs
account for the spring force resisting displacement (x) in either direction
from the equilibrium position and the damper force resisting velocity (ẋ)

in either direction. The weight (mg) and static deflection force (kδst) that
the weight causes in the spring cancel each other. Equations of motion are
generally written about the static equilibrium position state and then need
not contain weight and weight-balancing spring deflection forces.

1.1.1 Assumption of Linearity

In the model of Equation 1.2, as in most vibration analysis models, spring
and damper connection forces are assumed to be linear with (proportional

3
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Free-body diagram

Static
equilibrium

k c

x

m m

k(x + dst) cx

f (t) f (t) mg

Schematic

mg  – kdst  = 0 F  =  –kx  – cẋ  + f (t), shown @ x  > 0  &   ̇x  > 0

FIGURE 1.1 One-DOF linear spring–mass–damper model.

to) their respective driving parameters, that is, displacement (x) across
the spring and velocity (ẋ) across the damper. These forces are therefore
related to their respective driving parameters by proportionality factors,
stiffness “k” for the spring and “c” for the damper. Linearity is a simplifying
assumption that permeates most vibration analyses because the equations
of motion are then made linear, even though real systems are never com-
pletely linear. Fortunately, the assumption of linearity leads to adequate
answers in most vibration engineering analyses and simplifies consider-
ably the tasks of making calculations and understanding what is calculated.
Some specialized large-amplitude rotor vibration problems justify treating
nonlinear effects, for example, large rotor unbalance such as from turbine
blade loss, shock and seismic base-motion excitations, rotor rub-impact
phenomena, and instability vibration limit cycles. These topics are treated
in subsequent sections of this book.

1.1.2 Unforced System

The solution for the motion of the unforced 1-DOF system is important
in its own right, but specifically important in laying the groundwork to
study self-excited instability rotor vibrations. If the system is considered to be
unforced, then f (t) = 0 and Equation 1.2 becomes

mẍ + cẋ + kx = 0 (1.3)

This is a second-order homogeneous ordinary differential equation
(ODE). To solve for x(t) from Equation 1.3, one needs to specify the two
initial conditions, x(0) and ẋ(0). Assuming that k and c are both positive,
there are three categories of solutions that can result from Equation 1.3:
(i) underdamped, (ii) critically damped, and (iii) overdamped. These are just
the traditional labels used to describe the three distinct types of roots and
the corresponding three motion categories that Equation 1.3 can potentially
yield when k and c are both positive. Substituting the known solution form
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(Ceλt) into Equation 1.3 and then canceling out the solution form yields the
following quadratic equation for its roots (eigenvalues) and leads to the
equation for the extracted two roots, λ1,2, as follows:

mλ2 + cλ + k = 0 (1.4)

λ1,2 = − c
2m

±
√( c

2m

)2 −
(

k
m

)

The three categories of root types possible from Equation 1.4 are listed
as follows:

Underdamped: (c/2m)2 ≤ (k/m), complex conjugate roots,λ1,2 = α ± iωd.
Critically damped: (c/2m)2 = (k/m), equal real roots, λ1,2 = α.
Overdamped: (c/2m)2 ≥ (k/m), real roots, λ1,2 = α ± β.

The well-known x(t) time signals for these three solution categories are
illustrated in Figure 1.2 along with the undamped system (i.e., c = 0). In most
mechanical systems, the important vibration characteristics are contained
in modes with the so-called underdamped roots, as is certainly the case for
rotor dynamical systems. The general expression for the motion of the
unforced underdamped system is commonly expressed in any one of the
following four forms:

x(t) = Xeαt

⎧⎪⎨
⎪⎩

sin(ωdt + φ+
s ) or sin(ωdt − φ−

s )

OR
cos(ωdt + φ+

c ) or cos(ωdt − φ−
c )

⎫⎪⎬
⎪⎭ (1.5)

Critically
damped

X1

X0

x(t)

0

Over damped

Time

X2

2t  = 4p /wd

Under damped
Undamped

t  = 2p /wd

x (t)  = X0eat cos wdt

FIGURE 1.2 Motion types for the unforced 1-DOF system.
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where X is the single-peak amplitude of exponential decay envelop at
t = 0; ωd = √

ω2
n − α2, the damped natural frequency; phase angles φ−

s =
−φ+

s , φ+
s = φ+

c + 90◦, and φ−
c = −φ+

c yield the same signal; α = −c/2m,
the real part of eigenvalue for underdamped system; ωn = √

k/m, the
undamped natural frequency; and i = √−1.

1.1.3 Self-Excited Dynamic-Instability Vibrations

The unforced underdamped system’s solution, as expressed in Equation 1.5,
provides a convenient way to introduce the concept of vibrations caused
by dynamic instability. In many standard treatments of vibration theory, it
is tacitly assumed that c ≥ 0. However, the concept of negative damping is a
convenient way to model some dynamic interactions that tap an available
energy source, modulating the tapped energy to produce the so-called
self-excited vibration.

Using the typical (shown later) multi-DOF models employed to analyze
rotor-dynamical systems, design computations are performed to determine
operating conditions at which self-excited vibrations are predicted. These
analyses essentially are a search for zones of operation within which the
real part (α) of any of the system’s eigenvalues becomes positive. It is
usually one of the rotor-bearing system’s lower frequency corotational-
orbit-direction vibration modes, at a natural frequency less than the spin
speed frequency, whose eigenvalue real part becomes positive. The tran-
sient response of this mode is basically the same as would be the response
of the 1-DOF system of Equation 1.3 with c < 0 and c2 < 4 km, which pro-
duces α > 0, a positive real part for the two complex conjugate roots of
Equation 1.4. As Figure 1.3 shows, this is the classic self-excited vibration
case, exhibiting a vibratory motion with an exponential growth envelope, as
opposed to the exponential decay envelope (for c > 0) shown in Figure 1.2.
The widely accepted fact that safe reliable operation of rotating machinery
must preclude such dynamical instabilities from zones of operation can be
readily appreciated just from the graph shown in Figure 1.3.

Time

0

x(t)

FIGURE 1.3 Initial growth of dynamical instability from an initial disturbance.
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1.1.4 Steady-State Sinusoidally Forced Systems

If the system is dynamically stable (c > 0), that is, the natural mode is
positively damped, as illustrated in Figure 1.2, then long-term vibration
can persist only as the result of some long-term forcing mechanism. In
rotating machinery, the one long-term forcing mechanism that is always
present is the residual mass unbalance distribution in the rotor, and that
can never be completely eliminated. Rotor mass unbalances are modeled
by equivalent forces fixed in the rotor, in other words, a group of rotor-
synchronous rotating loads each with a specified magnitude and phase
angle locating it relative to a common angular reference point (keyphaser)
fixed on the rotor. When viewed from a fixed radial direction, the projected
component of such a rotating unbalance force varies sinusoidally in time
at the rotor spin frequency. Without pre-empting the subsequent treatment
in this book on the important topic of rotor unbalance, suffice it to say that
there is a considerable similarity between the unbalance-driven vibration
of a rotor and the steady-state response of the 1-DOF system described
by Equation 1.2 with f (t) = Fo sin(ωt + θ). Equation 1.2 then becomes the
following:

mẍ + cẋ + kx = Fo sin(ωt + θ) (1.6)

where Fo is the force magnitude, θ is the force phase angle, and ω is the
forcing frequency.

It is helpful at this point to recall the relevant terminology from the
mathematics of differential equations, with reference to the solution for
Equation 1.2. Since this is a linear differential equation, its total solution can
be obtained by a linear superposition or adding of two component solu-
tions: the homogeneous solution and the particular solution. For the unforced
system, embodied in Equation 1.3, the homogeneous solution is the total
solution, because f (t) = 0 yields a zero particular solution. For any nonzero
f (t), unless the initial conditions, x(0) and ẋ(0), are specifically chosen to
start the system on the steady-state solution, there will be a start-up tran-
sient portion of the motion which, for stable systems, will die out as time
progresses. This start-up transient is contained in the homogeneous solution,
that is, Figure 1.2. The steady-state long-term motion is contained in the
particular solution.

Rotating machinery designers and troubleshooters are concerned with
long-term exposure vibration levels, because of material fatigue consid-
erations, and are concerned with maximum peak vibration amplitudes
passing through forced resonances within the operating zones. It is there-
fore only the steady-state solution, such as of Equation 1.6, that is most
commonly extracted. Because this system is linear, only the frequency(s)
in f (t) will be present in the steady-state (particular) solution. Thus the
solution of Equation 1.6 can be expressed in any of the following four
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steady-state solution forms, with phase angle as given for Equation 1.5 for
each to represent the same signal:

x(t) = X
{

sin(ωt + φ+
s ) or sin(ωt − φ−

s )

cos(ωt + φ+
c ) or cos(ωt − φ−

c )

}
(1.7)

The steady-state single-peak vibration amplitude (X) and its phase angle
relative to the force (let θ = 0) are solvable as functions of the sinusoidally
varying force magnitude (Fo) and frequency (ω), mass (m), spring stiffness
(k), and damper coefficient (c) values. This can be presented in the standard
normalized form shown in Figure 1.5.

1.1.5 Damping

Mechanical vibratory systems typically fall into the underdamped category,
so each individual system mode of importance can thereby be accurately
handled in the modal-coordinate space (Section 1.3 of this chapter) as the
1-DOF model illustrated in Figure 1.1. This is convenient since modern dig-
ital signal processing methods can separate out each mode’s underdamped
exponential decay signal from a total transient (e.g., impact initiated)
time-base vibration test signal. Each mode’s linear damping coefficient
can then be determined employing the log-decrement method, as outlined
here. Referring to Figures 1.2 and 1.4c, test data for a mode’s under-
damped exponential decay signal can be used to determine the damping

Area = energy/cycle dissipated

(b) Coulomb damping 

(d) Coulomb damping: linear decay(c) Linear damping: exponential decay

X0 X0

X3

x x

Fd  = cẋ

mẍ + cẋ + kx = F(t)

Fd  = mFN  ̇x/ ẋ

mẍ + mFN ẋ/ ẋ  + kx = F(t)

(a) Linear damping

X1 X2X1 X2

FIGURE 1.4 Damped decay and energy dissipated per cycle of periodic motion.
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coefficient as follows:

x(nτ) = X0eαnτ, ∴ x(nτ)

x(0)
= eαnτ, ∴ αnτ = ln

(
Xn

X0

)

1 − cycle period ≡ τ = 2π

ωd

Recalling α = − c
2m

yields the damping coefficient c = −2m
nτ

ln
(

Xn

X0

)

(1.8)

Vibration damping means are extremely important in nature as well
as engineered devices. The standard linear model for damping is akin
to a drag force proportional to velocity magnitude. But many impor-
tant damping mechanisms are nonlinear, for example, Coulomb damping,
internal material hysteresis damping. What is typically done to handle
the modeling of nonlinear damping is to approximate it with the lin-
ear model by matching energy dissipated per cycle. This works well
since modest amounts of damping have negligible effect on natural
frequency. Energy/cycle dissipated by damping under single-frequency
harmonic cycling is illustrated in Figure 1.4 for linear and Coulomb friction
damping.

The log-decrement test method for determining damping was previously
shown to utilize the transient decay motion of an initially displaced but
unforced system. In contrast, the half power bandwidth test method utilizes
the steady-state response to a harmonic excitation force. The steady-state
linear response to a single-frequency harmonic excitation force of slowly
varied frequency will correspond to a member of the family displayed
in Figure 1.5a. For the single-DOF linear damped model, the following
equation is applicable for low damped systems:

Q ≡ Frequency at peak vibration amplitude
ω2 − ω1

= 1
2ς

(1.9)

Q ≡ ωpeak

ω2 − ω1
= 1

2ς

Referring to the underdamped plots in Figure 1.5a, ω1 < ωpeak and ω2 >

ωpeak are the frequencies where a horizontal line at 0.707 × amplitude peak
intersects the particular amplitude versus the frequency plot. ωpeak � ωn
is the frequency at peak vibration amplitude. Q comes from the word
quality, long used to measure the quality of an electrical resonance circuit.
The term high Q is often used synonymously for low damping. For sources
of damping other than linear, such as structural damping, the equivalent
linear damping coefficient can be determined using Equation 1.9. So the



10 Rotating Machinery Vibration: From Analysis to Troubleshooting

0
0

0
0

1 32 4

1 32 4

1

2

3

4

5

0.1

0.1
0.25 0.5

1.0

0.25

0.5
1.0

1

X
F0/k

X
F0/k =

[[1 - (w/wn)2]2+ (2Vw/wn)2]½

@V = 0 (zero damping) & w = wn, X Æ •

cV ∫
2 ÷km

w / wn

180∞

90∞

V = 0

f = tan-1 2Vw/wn
1 - (w/wn)2

(b)

(a)

f

FIGURE 1.5 One-DOF steady-state response to a sinusoidal force. (a) X/(F0/k) versus ω/ωn,
(b) φ versus ω/ωn, ς = 1 at critically damped.

sharpness-of-peak of a measured steady-state plot of vibration amplitude
versus frequency provides a measure of the damping present.

1.1.6 Undamped Natural Frequency: An Accurate Approximation

Because of the modest amounts of damping typical of most mechanical
systems, the undamped model provides good answers for natural frequen-
cies in most situations. Figure 1.5 shows that the natural frequency of the
1-DOF model is the frequency at which an excitation force produces maxi-
mum vibration (i.e., a forced resonance) and is thus important. As shown in a
subsequent topic of this chapter (Modal Decomposition), each natural mode
of an undamped multi-DOF model is exactly equivalent to an undamped
1-DOF model. Therefore, the accurate approximation now shown for the
1-DOF model is usually applicable to the important modes of multi-DOF
models.

The ratio (ς) of damping to critical damping (frequently referenced as
a percentage, e.g., ς = 0.1 is “10% damping”) is derivable as follows.
Shown with Equation 1.4, the defined condition for “critically damped”
is (c/2m)2 = (k/m), which yields c = 2

√
km ≡ cc, the “critical damping.”



Vibration Concepts and Methods 11

Therefore, the damping ratio, defined as ς ≡ c/cc, can be expressed as
follows:

ς ≡ c

2
√

km
(1.10)

With Equations 1.4 and 1.5, the following were defined: ωn = √
k/m

(undamped natural frequency), α = −c/2m (real part of eigenvalue for an
underdamped system), and ωd = √

ω2
n − α2 (damped natural frequency).

Using these expressions with Equation 1.10 for the damping ratio (ς) leads
directly to the following formula for the damped natural frequency:

ωd = ωn

√
1 − ς2 (1.11)

This well-known important formula clearly shows just how well the
undamped natural frequency approximates the damped natural frequency for
typical applications. For example, a generous damping estimate for most
potentially resonant mechanical system modes is 10–20% of critical damp-
ing (ς = 0.1–0.2). Substituting the values ς = 0.1 and 0.2 into Equation 1.11
gives ωd = 0.995ωn for 10% damping and ωd = 0.98ωn for 20% damping,
that is, 0.5% error and 2% error, respectively. For even smaller damping
ratio values typical of many structures, the approximation just gets bet-
ter. A fundamentally important and powerful dichotomy, applicable to the
important modes of many mechanical and structural vibratory systems,
becomes clear within the context of this accurate approximation: A natural
frequency is only slightly lowered by the damping, but the peak vibration caused
by an excitation force at the natural frequency is overwhelmingly lowered by the
damping. Figure 1.5 clearly shows all this.

1.1.7 1-DOF Model as an Approximation

Equation 1.2 is an exact mathematical model for the system schematically
illustrated in Figure 1.1. However, real-world vibratory systems do not look
like this classic 1-DOF picture, but in many cases it adequately approxi-
mates them for the purposes of engineering analyses. An appreciation for
this is essential for one to make the connection between the mathematical
models and the real devices, for whose analysis the models are employed.

One of many important examples is the concentrated mass (m) sup-
ported at the free end of a uniform cantilever beam (length L, bending
moment of inertia I, Young’s modulus E) as shown in Figure 1.6a. If the
concentrated mass has considerably more mass than the beam, one may rea-
sonably assume the beam to be massless, at least for the purpose of analyzing
vibratory motions at the system’s lowest natural frequency transverse
mode. One can thereby adequately approximate the fundamental mode by
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(b)

q

FIGURE 1.6 Two examples treated as linear 1-DOF models: (a) cantilever beam with a
concentrated end mass and (b) simple pendulum.

a 1-DOF model. For small transverse static deflections (xst) at the free end
of the cantilever beam resulting from a transverse static load (Fst) at its
free end, the equivalent spring stiffness is obtained directly from the can-
tilever beam’s static deflection formula. This leads directly to the equivalent
1-DOF undamped system equation of motion, from which its undamped
natural frequency (ωn) is extracted, as follows:

xst = FstL3

3EI
(beam deflection formula) and Fst ≡ kxst

∴ k = Fst

xst
= 3EI

L3

Then,

mẍ +
(

3EI
L3

)
x = 0, ∴ ωn =

√
k
m

=
√

3EI
mL3 (1.12)

In this example, the primary approximation is that the beam is massless.
The secondary approximation is that the deflections are small enough so
that simple linear beam theory provides a good approximation of beam
deflection.

A second important example is illustrated in Figure 1.6b, the simple pla-
nar pendulum having a mass (m) concentrated at the free end of a rigid
link of negligible mass and length (L). The appropriate form of Newton’s
Second Law for motion about the fixed pivot point of this model is M = Jθ̈,
where M is the sum of moments about the pivot point “o,” J (equal to
mL2 here) is the mass moment-of-inertia about the pivot point, and θ is the
single motion coordinate for this 1-DOF system. The instantaneous sum
of moments about the pivot point “o” consists only of that from the grav-
itational force mg on the concentrated mass, which is shown as follows
(minus sign because M is always opposite θ):

M = −mgL sin θ, ∴ mL2θ̈ + mgL sin θ = 0
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Dividing by mL2 gives the following motion equation:

θ̈ +
(g

L

)
sin θ = 0 (1.13)

This equation of motion is obviously nonlinear. However, for small
motions (θ � 1) sin θ ∼= θ; hence it can be linearized as an approximation,
as follows:

θ̈ +
(g

L

)
θ = 0, ∴ ωn =

√
g
L

(1.14)

In this last example, the primary approximation is that the motion is small.
The secondary approximation is that the pendulum has all its mass concen-
trated at its free end. Note that the stiffness or the restoring force effect in
this model is not from a spring but from gravity. It is essential to make
simplifying approximations in all vibration models, in order to have fea-
sible engineering analyses. It is, however, also essential to understand the
practical limitations of those approximations, to avoid producing analy-
sis results that are highly inaccurate or, worse, do not even make physical
sense.

1.2 Multi-DOF Models

It is conventional practice to model rotor dynamical systems with multi-
DOF models, usually by utilizing standard finite element procedures.
To comfortably apply and understand such models, it is helpful to first
consider somewhat simpler models having more than 1-DOF.

The number of degrees of freedom (DOFs) of a dynamical system is
the number of kinematically independent spatial coordinates required to
uniquely and totally specify any position state the system can have. Conse-
quently, with F = ma the governing physical principle, this DOF number is
also equal to the number of second-order ODEs required to mathematically
characterize the system. Clearly, the 1-DOF system shown in Figure 1.1 is
consistent with this general rule, that is, one spatial coordinate (x) and one
ODE, Equation 1.2, to mathematically characterize the system. The 2-DOF
system is the next logical step to study.

1.2.1 Two-DOF Models

As shown in the previous section, even the 1-DOF model can provide
usable engineering answers when certain simplifying assumptions are jus-
tified. It is surely correct to infer that the 2-DOF model can provide usable
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k(x1 - x2)

k(x2 - x1)

k1x1

k2x2

FIGURE 1.7 2-DOF model.

engineering answers over a considerably broader range of problems than
the 1-DOF model. Also, first understanding the 2-DOF model is the best
approach to tackling the subject of multi-DOF models. Figure 1.7 shows
a common 2-DOF model. With the aid of the ever-important free body dia-
grams, application of F = ma individually to each mass yields the following
two equations of motion for this model:

m1ẍ1 + (c + c1)ẋ1 + (k + k1)x1 − cẋ2 − kx2 = f1(t)

m2ẍ2 + (c + c2)ẋ2 + (k + k2)x2 − cẋ1 − kx1 = f2(t)
(1.15)

With two or more DOFs, it is quite useful to write the equations of
motion in matrix form, as follows for Equations 1.15:

[
m1 0
0 m2

]{
ẍ1
ẍ2

}
+
[

c + c1 −c
−c c + c2

]{
ẋ1
ẋ2

}

+
[

k + k1 −k
−k k + k2

]{
x1
x2

}
=
{

f1(t)
f2(t)

}
(1.16)

For a multi-DOF system with any number of DOFs, the motion equa-
tions are typically written in the following condensed matrix notation:

[M]{ẍ} + [C]{ẋ} + [K]{x} = { f (t)} (1.17)

where [M] is the mass matrix, [C] is the damping matrix, and [K] is the stiffness
matrix.

Note that all the three matrices in Equation 1.16 are symmetric, a property
exhaustively treated in Section 2.4. Also note that Equation 1.16 is coupled
through displacements and velocities, but not through accelerations. This
is easily observable when the motion equations are in matrix form, as in
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Equation 1.16, noting that the mass matrix has zeros for the off-diagonal
terms whereas the stiffness and damping matrices do not. Coupling means
that these two differential equations are not independent, and thus are
solvable only as a simultaneous pair. The stiffness and damping coupling of
the two motion equations clearly reflects the physical model (Figure 1.7), as
the two masses are connected to each other by a spring (k) and a damper (c).

Figure 1.8 shows a second 2-DOF example, the planar double-compound
pendulum, which demonstrates acceleration (inertia) coupling. This exam-
ple is also utilized here to introduce the well-known Lagrange equations, an
alternate approach to applying F = ma directly as done in all the previous
examples. The Lagrange approach does not utilize the free-body diagrams
that are virtually mandatory when applying F = ma directly.

The Lagrange equations are derived directly from F = ma, and there-
fore embody the same physical principle. Their derivation can be found in
virtually any modern second-level text on Dynamics or Vibrations, and they
are expressible as follows:

d
dt

(
∂T
∂ q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= Qi, i = 1, 2, . . . , nDOF (1.18)

The qi’s and q̇i’s are the generalized coordinates and velocities, respec-
tively, T is the kinetic energy, V is the potential energy, and Qi’s are the
generalized forces. Generalized coordinates can be either straight-line dis-
placements (e.g., x, y, z) or angular displacements (e.g., θx, θy, θz). Thus,
a generalized force associated with a straight-line displacement will in
fact have units of force, whereas a generalized force associated with an
angular displacement will have units of moment or torque. Here, kinetic
energy can be a function of both generalized coordinates and velocities
whereas potential energy is a function of generalized coordinates only, that
is, T = T(q̇i, qi) and V = V(qi). Obtaining the two equations of motion for
the 2-DOF double-compound pendulum (Figure 1.8) is summarized as
follows:

T = 1
2 m1v2

1 + 1
2 m2v2

2 (1.19)

L1

q1

q2

L2g

m1

m2

FIGURE 1.8 Planar double-compound pendulum with concentrated masses.
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Here, v1 and v2 are the speeds of m1 and m2, respectively, and their
squares result in the following:

v2
1 = L2

1θ̇
2
1

v2
2 = L2

1θ̇
2
1 + L2

2θ̇
2
2 + 2L1L2θ̇1θ̇2(cos θ1 cos θ2 + sin θ1 sin θ2) (1.20)

V = m1gL1(1 − cos θ1) + m2g[L1(1 − cos θ1) + L2(1 − cos θ2)]

Substituting the T and V expressions into the Lagrange equations (q1 =
θ1 and q2 = θ2) leads to the two equations of motion for the double-
compound pendulum model shown in Figure 1.8. These two motion
equations are nonlinear just as shown in Equation 1.13 for the simple
pendulum. Therefore, they can be linearized for small motions (θ1 � 1
and θ2 � 1) in the same manner as Equation 1.14 was obtained from
Equation 1.13, to obtain the following:

[
(m1 + m2)L2

1 m2L1L2
m2L1L2 m2L2

2

] [
θ̈1
θ̈2

]
+
[
(m1 + m2)gL1 0

0 m2gL2

] [
θ1
θ2

]
=
[

0
0

]

(1.21)

Since Equations 1.21 are written in matrix form, it is clear from the mass
matrix and the zeros in the stiffness matrix that this model has accelera-
tion (inertia) coupling but not displacement coupling. Also, the stiffnesses
or generalized restoring forces (moments) in this model are not from
springs but from gravity, just like the simple pendulum model illustrated
in Figure 1.6b. Damping was not included in this model. As in the previous
example, the matrices in Equation 1.21 for this example are symmetric, as
they must be.

1.2.2 Matrix Bandwidth and Zeros

The 4-DOF model in Figure 1.9 has a characteristic common for mod-
els of many types of vibratory structures, such as many rotor vibration
models, namely, narrow bandwidth matrices. Specifically, this system’s mass
matrix is “diagonal” (i.e., only its diagonal elements are nonzero) and
its stiffness matrix is “tri-diagonal” (i.e., only its central three diagonals
are nonzero), as shown in Figure 1.8. Obviously, a model’s matrices are
essentially its equations of motion. For this model, the diagonal nature of
the mass matrix reflects that the model has no inertia coupling, in con-
trast to the model in Figure 1.8. For rotors, as shown in Chapter 2, the
lumped-mass approach gives a diagonal mass matrix, in contrast to the so-
called distributed-mass and consistent-mass approaches, which are preferred
over the lumped-mass approach since they yield better model resolution



Vibration Concepts and Methods 17

k1

k2

k3

k4

m4

m3

m2

m1x1

x2

x3

x4

m1

[M] = m2
m3

m4

0 0 0
0 0 0
0 0 0
0 0 0

k1 + k2 -k2

0
00

0
-k2 -k3

-k4-k3

k2 + k3
k3 + k4

0 k4-k40

[K ] = 

FIGURE 1.9 4-DOF lumped-mass model.

accuracy. That is, they require a smaller number of DOFs or finite elements
(i.e., smaller matrices) to get the same model resolution accuracy. Both
the distributed-mass and consistent-mass models yield multi-diagonal mass
matrices. Unlike the lumped-mass model shown in Figure 1.9, they embody
a first-order account of inertia coupling between adjacent masses in the
model, and thus a better resolution accuracy. As in the previous examples,
the matrices for the model in Figure 1.9 are symmetric, as they must be.

Rotors are essentially beams, albeit circular beams. In rotor vibration
models, rotors are typically sectioned (discretized) using circular-bar finite
elements, with the local radial and angular displacement coordinates num-
bered sequentially according to axial location along the rotor. Lateral rotor
vibration models therefore will have narrow bandwidth motion equation
matrices when the rotor model is connected directly to ground through
each bearing’s equivalent stiffness and damping elements, without inter-
vening bearing masses and without connections between the bearings other
than through the rotor. This is the most typical lateral rotor vibration
model. However, when more elaborate bearing support structure models are
employed, the total system’s motion equation matrices are generally not
of narrow bandwidth, with the resulting bandwidth depending on the coor-
dinate numbering sequence implemented in the specific computer code.
Even then, the model’s matrices still contain mostly zeros, that is, most
finite elements are connected in the model only to a limited number of
their neighboring finite elements.

Similarly, torsional rotor vibration models have narrow bandwidth motion
equation matrices (typically tri-diagonal) for single rotational drive lines.
However, for two or more shafts connected, for example, by gears, the
matrices will most likely not be of narrow bandwidth, as shown in Chapter 3,
but the matrices will still contain mostly zeros.

The topic of “matrix bandwidth and zeros” becomes a significant
computational consideration for systems having very large numbers of
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DOFs. That is, with large models (large number of DOFs), one has very
large matrices in which most of the elements are filled with zeros, causing
computer memory and computations to be unnecessarily taxed by multi-
plying and storing lots of zeros. Special measures are typically employed
in modern computational schemes to circumvent this. Fortunately, rotor
vibration models do not generally have such a large number of DOFs to
require such special measures, especially in light of the enormous and
continuing increases in PC and Work Station memory and computational
speed. Matrix bandwidth is simply a result of how the motion equations are
sequentially ordered or numbered. So even for the simple 4-DOF model
in Figure 1.9, the bandwidth could be maximized just by reordering the
equations accordingly, for example, {x1, x4, x2, x3} instead of {x1, x2, x3, x4}.
General purpose finite-element computer codes often have user-optional
algorithms for matrix bandwidth minimization, where the user-supplied
displacement coordinates are automatically renumbered for this purpose.

1.2.3 Standard Rotor Vibration Analyses

Achieving good models for rotor vibration analyses of many single-span
two-bearing rotors may require models with as many as 100 DOFs. For a
multispan rotor model of a complete large steam-powered turbo-generator,
models of 200 or 300 DOFs are typically deemed necessary to accurately
characterize the system. Obtaining the important vibration characteristics
of a machine or structure from large DOF models is not nearly as daunting
as one might initially think, because of the following axiom: Rarely is it
necessary in engineering vibration analyses to solve the model’s governing equa-
tions of motion in their totality. For example, lateral rotor vibration analyses
generally entail no more than the following three categories:

i. Natural frequencies (damped or undamped) and corresponding
mode shapes.

ii. Self-excited vibration threshold speeds, frequencies, and mode
shapes.

iii. Vibration over full speed range due to specified rotor mass
unbalances.

None of these three categories of analyses actually entails obtaining the
general solution for the model’s coupled differential equations of motion.
That is, the needed computational results can be extracted from the model’s
equations of motion without having to obtain their general solution, as later
detailed.

In the next section, basic topics important to these standard vibration anal-
yses are covered. Extraction of natural frequencies and mode shapes as well
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as instability threshold speeds are both embedded in the classic Eigenvalue–
Eigenvector mathematics problem associated with linear vibratory systems.
Specifically, the extraction of natural frequencies and corresponding mode
shapes for multi-DOF models are explained. Standard algorithms used
for these analyses are treated in later chapters. Steady-state rotor unbalance
vibration is simply an extension of the 1-DOF Equation 1.6.

1.3 Modes, Excitation, and Stability
of Multi-DOF Models

Linear vibration models are typically categorized as either undamped or
damped. Although all real systems have some damping, the important
vibration characteristics are usually contained in the “lightest damped”
modes, well within the so-called underdamped zone (defined in Section
1.1.1 in connection with Equation 1.4).As a consequence, an undamped model
can usually provide adequate assessment of natural frequencies and corre-
sponding mode shapes, with simpler computations and easier-to-visualize
results than with damping included. Moreover, with modern computa-
tional schemes like finite-element methods, most structures with defined
geometry and material linear elastic properties can be well modeled insofar
as inertia and elastic characteristics are concerned, that is, mass and stiffness
matrices adequate for vibration modeling purposes are usually obtainable.
Conversely, the job of characterizing a structure’s damping properties can
be an elusive task, relying more on experience, testing, and sometimes
rough approximation. Therefore, when analyzing the influence of struc-
tural variables on natural frequencies and mode shapes, it usually makes more
sense to analyze the system using the undamped model of the structure.

In stark contrast, when analyzing the steady-state peak vibration ampli-
tude at a forced resonance or the threshold location of a self-excited vibration
(dynamic instability), damping is an absolutely essential ingredient in the
analyses. For example, as Figure 1.5 clearly shows, the nearer the forcing
frequency approaches the natural or resonance frequency, the more impor-
tant is the influence of damping. Obviously, what allows an excitation force
to slowly pass through or “sit at” a natural frequency without potentially
damaging the machine or structure is the damping present in the system!

1.3.1 Modal Decomposition

Each natural mode of an undamped model is exactly equivalent to an
undamped 1-DOF model and is mathematically decoupled from the
model’s other natural modes, as observed when the motion equations



20 Rotating Machinery Vibration: From Analysis to Troubleshooting

are transformed into what are called the modal coordinates. Such a coordi-
nate transformation is similar and mathematically equivalent to observing
material stress components at a point in the principal coordinate system,
wherein viewed decoupling appears, that is, all the shear stresses disap-
pear and the normal stresses are the principal stresses. Similarly, when an
undamped mutli-DOF model’s equations of motion are transformed into
their modal coordinates, both the mass and stiffness matrices become diagonal
matrices, that is, all zeros except for their main diagonal elements. That is,
the equations of motion become decoupled when they are transformed from
the physical space into the modal space, as explained here.

Equations of motion for free (unforced) and undamped multi-DOF mod-
els can be compactly expressed in matrix form as follows, where the qi’s
are the previously defined generalized coordinates (Section 1.2.1):

[M]{q̈} + [K]{q} = {0} (1.22)

For a specified set of initial conditions, {q(0)} and {q̇(0)}, this set of equa-
tions is guaranteed a unique solution by virtue of applicable theorems
from differential equation theory, provided both [M] and [K] are positive-
definite matrices. Therefore, if a solution is found by any means, it must
be the solution. Historically, the approach that has guided the successful
solution to many problems in mechanics has been the use of good physical
insight to provide the correct guess of the solution form. Such is the case
for the solution to Equation 1.22.

The vibratory displacement in a multi-DOF model is a function of both
time and location in the model. The correct guess here is that the complete
solution can be comprised of superimposed contributory solutions, each
being expressible as the product of a time function, s(t), multiplied by
a spatial function of the coordinates, {u}. This is the classic Separation of
Variables method, expressed as follows:

qi(t) = uis(t), i = 1, 2, . . . , N = Number of DOF (1.23)

Substituting Equation 1.23 into Equation 1.22 yields the following
equation:

[M]{u}s̈(t) + [K]{u}s(t) = {0} (1.24)

Each of these N equations (i = 1, 2, . . . , N) can be expressed as

N∑
j=1

Mijujs̈(t) +
N∑

j=1

Kijujs(t) = 0 (1.25)
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rearranged to have a function of time only on one side of the equation and
a function of location only on the other side of the equation, as follows:

− s̈(t)
s(t)

=
∑N

j=1 Kijuj∑N
j=1 Mijuj

(1.26)

Following the usual argument of the separation of variables method,
for a time-only function to be equal to a location-only function they both
must equal the same constant (say ω2), positive in this case. A positive con-
stant gives harmonic motions in time, physically consistent with having
finite energy in a conservative model and contrary to the exponential solu-
tions that a negative constant gives. The following equations are thereby
obtained:

s̈(t) + ω2s(t) = 0 (1.27)

N∑
j=1

(
Kij − ω2Mij

)
uj = 0, i = 1, 2, . . . , N (1.28)

Equation 1.27 has the same form as the equation of motion for an
unforced and undamped 1-DOF model, that is, same as Equation 1.3 with
c = 0. Therefore, the solution of Equation 1.27 can be surmised directly
from Equation 1.5, as follows:

s(t) = X

{
sin(ωt + φ+

s ) or sin(ωt − φ−
s )

cos(ωt + φ+
c ) or cos(ωt − φ−

c )

}
(1.29)

Any of the four equation (Equation 1.29) forms can be used to represent
the same harmonic signal. The following form is arbitrarily selected here:

s(t) = X cos(ωt − φ) (1.30)

Equation 1.30 indicates a harmonic motion with all the coordinates hav-
ing the same frequency and the same phase angle. The information to
determine the specific frequencies at which the model will satisfy such a
harmonic motion is contained in Equation 1.28, which are a set of N lin-
ear homogeneous algebraic equations in the N unknowns, uj. Determining
the values of ω2 that provide nontrivial solutions to Equation 1.28 is the
classic characteristic value or eigenvalue problem. The trivial solution (all
uj’s = zero) is a static equilibrium state. Equation 1.28 can be compactly
shown in matrix form as follows:[

K − ω2M
]
{u} = {0} (1.31)
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From linear algebra it is known that for a nontrivial solution of
Equation 1.31, the determinant of equation coefficients must be equal to
zero, as follows:

D ≡ |K − ω2M| = 0 (1.32)

Expanding D, the characteristic determinant, yields an Nth-order poly-
nomial equation in ω2, usually referred to as the frequency or characteristic
equation, which has N roots (eigenvalues) forω2. These eigenvalues are real
numbers because [M] and [K] are symmetric, and are positive because [M]
and [K] are positive-definite matrices. Virtually any modern text devoted
just to vibration theory will contain an expanded treatment on modal
decomposition and rigorously develop its quite useful properties, which
are summarized here.

The N roots of Equation 1.32 each provide a positive natural fre-
quency, ωj ( j = 1, 2, . . . , N), for one of the model’s N natural modes.
These undamped natural frequencies are typically ordered by relative
magnitude, as follows:

ω1 ≤ ω2 ≤ · · · ≤ ωN

Each root of Equation 1.32 substituted into Equation 1.31 yields a solution
for the corresponding eigenvector {up}. Since Equation 1.31 is homoge-
neous (all right-hand sides = zero), each {up} is determined only to an
arbitrary multiplier. That is, if {up} is a solution with ω2

p then a{up} is also a
solution, where “a” is an arbitrary positive or negative real number. Each
eigenvector (modal vector) thus contains the mode shape, or the relative
magnitudes of all the physical coordinates, (qi, i = 1, 2, . . . , N), for a spe-
cific natural mode. To plot a mode shape, one usually scales the modal
vector by dividing all translation displacement elements by the largest,
thus maintaining their relative proportion on a 0-to-1 plot.

It can be rigorously shown that each modal vector of an N-DOF model is
orthogonal (with either mass or stiffness matrix as the weighting matrix)
to all the other modal vectors in an N-dimensional vector space. This is
somewhat the same way the x, y, and z axes of a three-dimensional Carte-
sian coordinate space are orthogonal. Consequently, the total set of modal
vectors forms a complete orthogonal set of N vectors in the N-dimensional
vector space that contains all possible displacement states of the model.
Thus, any instantaneous position state of a model can be expressed as an
instantaneous linear superposition of the contributions from all of its natural
modes. In other words, the so-called modal coordinates {η(t)} contain the
amount of each natural mode’s contribution to the system’s instantaneous
position state, {q(t)}. This property of the modal vectors can be expressed
by the following linear transformation, where the N × N modal matrix,
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[U], is formed using each one of the N × 1 modal vectors as one of its
columns:

{q(t)} = [U]{η(t)} (1.33)

Here it is convenient to scale each of the modal vectors as follows
(“T” denotes transpose):

{up}T[M]{up} = 1 (1.34)

Then the resulting modal matrix, [U], will satisfy the following equation:

[U]T[M][U] = [I] (1.35)

Here, [I] is the identity matrix, with 1 on each main diagonal element
and zeros elsewhere. Equation 1.35 is actually a linear transformation of
the mass matrix into modal coordinates, with the modal vectors scaled
(normalized); hence all the modal masses are equal to 1. Applying the
identical transformation on the stiffness matrix also produces a diagonal
matrix, with each main diagonal element equal to one of the eigenvalues
ω2

j as follows:

[U]T[K][U] =
[
ω2

ij

]
(1.36)

Here, the array [ω2
ij] is defined similar to the kronecker delta, as follows:

ω2
ij ≡

{
ω2

j , i = j

0, i 
= j
(1.37)

Substituting the linear transformation of Equation 1.33 into the original
equations of motion Equation 1.22 and then premultiplying the result by
[U]T yield the following result:

[U]T[M][U]{η̈(t)} + [U]T[K][U]{η(t)} = 0 (1.38)

Utilizing in Equations 1.38, 1.35, and 1.36, which express the modal
vectors’ orthogonality property, shows that the equations of motion are
decoupled in the modal coordinate space. Accordingly, Equation 1.38
becomes

{η̈(t)} +
[
ω2

ij

]
{η(t)} = 0 (1.39)

Equation 1.39 clearly shows that each natural mode is equivalent to an
undamped 1-DOF model. Each natural mode’s response to a set of initial
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conditions is therefore of the same form as for the undamped 1-DOF model,
shown as follows:

ηp(t) = Ap cos(ωpt − φp) (1.40)

Consequently, utilizing the linear superposition of the contributions from
all the model’s natural modes, the motion of a free undamped multi-
DOF system is expressible as follows, where the Ap’s are the single-peak
amplitudes of each of the modes:

{q(t)} =
N∑

p=1

Ap{up} cos(ωpt − φp)

This can be expressed in matrix form as follows:

{q(t)} = [U]{Ap cos(ωpt − φp)} (1.41)

1.3.2 Modal Damping

A major role of damping is to dissipate vibration energy that would other-
wise lead to intolerably high vibration amplitudes at forced resonances or
allow self-excited vibration phenomena to occur. As already shown for the
1-DOF model, a natural frequency is only slightly lowered by the damp-
ing, but the peak vibration caused by an excitation force at the natural
frequency is overwhelmingly lowered by the damping. This clearly applies
to multi-DOF models, as shown by the modal damping approach which
follows.

Modeling a structure’s damping properties can be an elusive task, rely-
ing more on experience, testing and occasionally rough approximation.
An actual damping mechanism may be fundamentally quite nonlinear like
Coulomb rubbing friction and internal material hysteresis damping. But to
maintain a linear model, the dissipated vibration energy mechanism must
be modeled as drag forces proportional to the velocity magnitude differ-
ences across the damper-connected elements in the model, such as shown
in Figures 1.1 and 1.7. Viscous damping is a natural embodiment of the lin-
ear damping drag force model. Satisfactory models for forced-resonance
vibration amplitudes and instability thresholds can be obtained when the
energy-per-cycle dissipated by the actual system is commensurate with the
linear damping model, even if the actual damping mechanism is nonlinear.

For a multi-DOF model, one convenient way to incorporate damping
into the model is on a mode-by-mode basis. This is an optimum mod-
eling procedure in light of modern testing and digital signal processing
techniques that provide equivalent linear damping ratios ς ≡ (c/cc)j for
each of the prevalent modes excited in testing. Thus, appropriate damping
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can be incorporated into the model by adding it to each relevant mode in
the modal coordinate system. Accordingly, Equation 1.39 is augmented as
follows:

{η̈(t)} + 2[ςiωj]{η̇(t)} +
[
ω2

ij

]
{η(t)} = 0 (1.42)

Here, ςiωj is a diagonal array defined similar to the Kronecker delta, as
follows:

ςiωj ≡
{

ςjωj, i = j
0, i 
= j

(1.43)

The often used 1-DOF version of Equation 1.42 is obtained by dividing
Equation 1.3 by m and using the definition for ς given in Equation 1.10,
yielding ẍ + 2ςωnẋ + ω2

nx = 0.
Mathematically, an N-DOF model has N modes. However, the dis-

crete model (e.g., finite-element model) should have the DOF number, N,
several (like 10, “more or less”) times the mode number, n, of the actual sys-
tem’s highest frequency mode of importance. This statement assumes usual
mode numbering by ascending frequency, ω1 ≤ ω2 ≤ · · · ≤ ωn ≤ · · · ≤ ωN .
The underlying objective is for the discrete model to adequately charac-
terize the actual continuous media system in the frequency range up to
the maximum modal frequency of importance. It is of fundamental model-
ing importance that at frequencies progressively higher the characteristics of the
discrete model and those of the actual system progressively diverge. The desired
number of important modes will depend on the nature of the problem
analysis. For example, to analyze forced resonances, one hopefully knows
the actual maximum excitation-force frequency ωmax. As a rule, all modal
frequencies within and somewhat above the excitation frequency range
should be included even though some of these modes may be of lesser
importance than others.

Consider an application in which an actual system has been tested, pro-
viding damping ratio data for the lowest frequency n modes. The first
n elements ( j = 1, 2, . . . , n < N) of the N × N diagonal modal damping
matrix will each contain its own value, ςjωj. The modal damping matrix
will otherwise consist of zeros, and thus modified from Equation 1.43 as
follows:

ςiωj =

⎧⎪⎨
⎪⎩

ςjωj, i = j ≤ n
0, i = j > n
0, i 
= j

(1.44)

With each jth mode having its own decoupled equation of motion in
modal coordinates, the previously stated equivalency between the damped
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1-DOF model and relevant modes of a multi-DOF model is thus shown, as
follows:

η̈j + 2ςjωjη̇j + ω2
j ηj = 0 (1.45)

The equations of motion in the physical coordinates are then as follows:

[M]{q̈} + [Cm]{q̇} + [K]{q} = {0} (1.46)

The elements 2ςjωj form a diagonal matrix in modal coordinates to
incorporate the mode-by-mode damping model. Consequently, the trans-
formation to physical coordinates to obtain [Cm] would appear to be simply
the inverse of the transformation that diagonalizes [M] and [K], as shown
in the following equation:

[Cm] = [
UT]−1[2ςiωj][U]−1 (1.47)

However, for typical large systems the available N × N modal matrix
[U] often contains only n nonzero eigenvectors extracted from the finite
element model of N DOFs, where n < N. So the available modal matrix is
missing N − n columns, and thus not invertible. An approach to circum-
vent this difficulty is to use the Static Condensation method to reduce the
number of DOFs to the number of modes to be retained, and then solve
for all the eigenvectors of the statically condensed model. The n × n [U]
matrix should then be invertible, allowing Equation 1.47 to be functional.
Element values in the modal-based damping matrix may not benefit from
the luxury of a good test on the actual system, particularly if the actual
system has not yet been built. In that case, modal damping is estimated
from experience and previous damping data.

Unlike [Cm], an arbitrary damping matrix, [C], is not diagonalized by the
transformation that diagonalizes [M] and [K]. There is an older approach
called proportional damping that postulates a damping matrix [Cp] in the
physical coordinate system proportional to a linear combination of [M]
and [K]. That is, [Cp] ≡ a[M] + b[K]. This is done simply so that [Cp] is
diagonalized by the transformation into modal coordinates. Here, “a” and
“b” are real numbers with appropriate dimensional units.Available prior to
modern modal test methods, the proportional damping approach provides
a damping model that also preserves decoupling in modal coordinates,
but not as physics motivated as a modal damping model. Compared to
the modal damping approach, proportional damping is not as directly
related to a mode-by-mode inclusion of damping based on modal testing.
Clearly, the proportional damping approach can be mathematically viewed
as a pseudo modal damping, given its diagonal form within the modal
coordinate space.
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1.3.3 Forced Systems Decoupled in Modal Coordinates

This important topic is shown by adding a system of external time-
dependent forces to either the modally damped model of Equation 1.46 or the
undamped model of Equation 1.22, [C] = [0], both of which are contained
within the following equation:

[M]{q̈} + [Cm]{q̇} + [K]{q} = { f (t)} (1.48)

Since the modal vectors span the vector space of all possible model dis-
placement states, modal decomposition is applicable to forced systems as
well. Clearly, transformation of Equation 1.48 into the modal coordinate
system provides the following equivalent decoupled set of equations:

{η̈(t)} + 2[ςiωj]{η̇(t)} +
[
ω2

ij

]
{η(t)} = [U]T{ f (t)} (1.49)

Here, the vector of modal forces is {Φ(t)} ≡ [U]T{ f (t)}. This shows that
each modal force Φi(t) is a linear combination of all the physical forces
fj(t). And the contribution of each physical force to Φi(t) is in proportion
to the modal matrix element Uji (or UT

ij ), which is called the participation
factor of the jth physical coordinate for the ith mode.

As an important example, Equation 1.49 shows that a physical har-
monic force having a particular mode’s natural frequency will produce
its maximum resonance vibration effect if applied at the physical coordi-
nate location having that mode’s largest participation factor. Conversely,
if the same harmonic force is applied in a physical coordinate with a
zero-participation factor (called a “nodal point” for that mode), the force’s
contribution to that mode’s vibration will be zero. This is particularly rel-
evant to rotor balancing problems, explaining why both a rotor unbalance
magnitude and its axial location are important.

1.3.4 Harmonic Excitation of Linear Multi-DOF Models

The most frequently performed type of vibration analysis is the steady-
state response from harmonic excitation forces. Various single-frequency
solutions at different frequencies can be superimposed to obtain a simulta-
neous multifrequency steady-state solution, provided the model is linear.
Also, using the single-frequency case, the frequency can be varied over the
desired range in a given application. Thus, the formulation and solution
for the single-frequency case is the building block for vibration analyses.
The generic governing equation for this case can be expressed as follows,
where [C] is arbitrary and not necessarily modal:

[M]{ẍ} + [C]{ẋ} + [K]{x} =
{

Fjei(ωt+θj)
}

(1.50)
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Here, x is used as the generalized coordinate symbol, and the harmonic
forcing functions have individual magnitudes Fj and phase angles θj. Since
they have a common excitation frequency ω, it is convenient to represent
each harmonic excitation force as a planar vector rotating counter clockwise
(ccw) at ω (rad/s) in the complex-plane exponential form. The right-hand
side of Equation 1.50 represents the standard notation for this represen-
tation, i ≡ √−1. The instantaneous projection of each planar vector onto
the real axis of the complex plane is the instantaneous physical value of the
corresponding sinusoidal time-varying scalar force component.

Equation 1.50 is the multi-DOF version of the 1-DOF model represen-
tation in Equation 1.6 whose steady-state solution (the so-called particular
solution) is harmonic, Equation 1.7. For the multi-DOF Equation 1.50, the
steady-state solution is also harmonic, and shown as follows using the
exponential complex form:

xj = Xjei(ωt+φj) (1.51)

Here, Xj is the single-peak amplitude of the jth coordinate’s harmonic
motion at frequency ω and phase angle φj. Substitution of this known
solution form, Equation 1.51, into the equations of motion, Equation 1.50,
and then dividing through by eiωt, yields the following simultaneous set
of complex algebraic equations:

[−ω2M + iωC + K
]{Xje

iφj} = {Fjeiθj} (1.52)

In this set of equations, the known inputs are the model’s M, C, and
K matrices, the excitation forcing frequency ω and magnitude Fj, and the
phase angle θj for each of the excitation forces. The outputs are the single-
peak amplitude Xj and the phase angle φj for each jth physical motion
coordinate of the model.

1.3.5 Dynamic Instability: The Complex Eigenvalue Problem

Consider the unforced general multi-DOF linear model, expressed as
follows:

[M]{ẍ} + [C]{ẋ} + [K]{x} = {0} (1.53)

As explained in Chapter 2, the stiffness and damping coefficients for
rotor vibration model elements that dynamically connect the rotor to the
rest of the model (e.g., bearings, squeeze-film dampers, and seals) are often
nonsymmetric arrays, especially the stiffness coefficients for journal bear-
ings. Also, the gyroscopic effects of rotor-mounted disk-like masses add
skew-symmetric element pairs to the model’s [C] matrix. No symmetry
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TABLE 1.1

Eigenvalue Categories and Associated Types of Unforced Motion

Eigenvalue Category Mode Motion: η(t) = Aeαt cos(ωt − φ)

1. α = 0 ω 
= 0 Zero damped, steady-state sinusoidal motion
2. α < 0 ω 
= 0 Underdamped, sinusoidal, exponential decay
3. α > 0 ω 
= 0 Negatively damped, sinusoidal , exponential growth
4. α = 0 ω = 0 So-called rigid-body mode, constant momentum
5. α < 0 ω = 0 Overdamped, nonoscillatory, exponential decay
6. α > 0 ω = 0 (i) Negatively damped more than “critical” amount

(ii) Statically unstable nonoscillatory exponential growth

restrictions are made here on [K], [C], or [M]. Solutions of Equation 1.53
have the following form:

{x} = {X}eλt, where λ = α ± iω (1.54)

For rotor vibration analyses, interest is focused on machine operating
zones wherein dynamic instability (self-excited vibration) is predicted to
occur. In particular, the boundary location of such an operating zone is
usually what is sought. With this objective in mind, it is important to first
understand the relationship between the eigenvalue type of a specific mode
and the mode’s characteristics or motion properties. The eigenvalues for
each mode can be of a variety of fundamental types, each type denoting a
specific property, similar to the 1-DOF model in Section 1.1.1.

Table 1.1 provides a complete list of eigenvalue types and the corre-
sponding mode motion properties. Referring to Figure 1.2, Section 1.1.1,
the underdamped and overdamped Categories 2 and 5, respectively, in
Table 1.1 are just like their 1-DOF counterparts. Thus, when Category
5 has the smallest absolute value |α| for which ω = 0, this corresponds
to the 1-DOF critically damped case. Furthermore, Category 1 is like the
1-DOF c = 0 undamped case. Category 3 corresponds to the 1-DOF nega-
tively damped c < 0 case illustrated in Figure 1.3. Categories 4 and 6 were
not explicitly discussed in Section 1.1.1, but each of these also has a 1-
DOF counterpart as well. For Category 4 the 1-DOF model has k = 0 and
c = 0, giving mẍ = 0 momentum conserved. For Category 6, recalling that
ς = c/(2

√
km) and ω2

n = k/m for the 1-DOF model, clearly ς < 0 with ς2 > 1
corresponds to 6(i), and k < 0 corresponds to 6(ii).

The usual analysis application concerning self-excited rotor vibration is
to predict the limits or boundaries of safe operating conditions, to predict
dynamic instability thresholds. In Table 1.1, a prediction of such a threshold
corresponds to finding the parameter boundary (usually rotor spin speed
or machine power output) where the system transitions from Category 2
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(positively damped) to Category 3 (negatively damped). Exactly on such a
transition boundary, the mode in question is in Category 1 (zero damped).

Equation 1.53 is a set of N second-order ODEs. The usual approach
to formulate the associated eigenvalue problem entails first transform-
ing Equation 1.53 into an equivalent set of 2N first-order differential
equations. To that end, the following associated vectors are defined,

{y} ≡ {ẋ}, ∴ {ẏ} = {ẍ} and {z} ≡
{{y}
{x}
}

, ∴ {ż} ≡
{{ẏ}
{ẋ}
}

so that Equation 1.53 is transformed into the following:

[ [0] [M]
[M] [C]

]
{ż} +

[[−M] [0]
[0] [K]

]
{z} = {0} (1.55)

Naturally, Equation 1.53 and Equation 1.55 have solutions of the same
form, Equation 1.54 as follows:

{z} = {Z}eλt, where λ = α ± iω (1.56)

A 2N × 2N matrix [A] is defined as

[A] ≡
[ [0] [M]
[M] [C]

]−1 [[−M] [0]
[0] [K]

]
(1.57)

Compact Equation 1.55 is shown as follows:

{ż} + [A]{z} = {0} (1.58)

Substituting Equation 1.56 into Equation 1.58 and dividing the result by
eλt yields the following complex eigenvalue problem:

[A + Iλ]{Z} = {0} (1.59)

Here [I] is the identity matrix. For the general multi-DOF models, the
eigenvalues λj and associated eigenvectors {Z}j can be mathematically
complex. This is in contrast to the real eigenvalues and real eigenvectors
for the undamped models treated earlier in this section. To solve both
the real eigenvalue problem presented earlier and the complex eigenvalue
problem covered here, modern computational methods are readily avail-
able. Application of these methods is covered in subsequent chapters as
required.
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1.4 Summary

This chapter is intended as a comprehensive primer on basic vibration
concepts and methods. In that context, it has general application beyond
this book’s primary subject, rotating machinery. But the main purpose of
this chapter is to provide the needed vibration fundamentals to draw upon
in the remainder of the book. Therefore, throughout this chapter, frequent
references are made to connect a specific vibration topic to some aspect of
Rotating Machinery Vibration.

For anyone requiring a more detailed presentation of the material pre-
sented in this chapter, there are several excellent texts devoted entirely to
Vibration.

PROBLEM EXERCISES

1. (a) Develop the equation of motion for the shown configura-
tion.

(b) Express the system’s natural frequency.

y = Fl3

48EI
, center deflection under center load

Both beams have negligible mass 
and the same EI. Only m has mass

m

k

x

LL

L

2. A rigid beam of negligible mass with a concentrated mass m at
each end is shown. Also at each end is located a spring of stiffness
k and a dashpot of damping c. Assume that motions are much
smaller than the configuration’s dimensions. F(t) = F0 sin ωt
develop (a) equations of motion and (b) natural frequencies
(C = 0).

L

F (t)
mm

k c c k

3L/4
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3. A two-bearing rotor operates at 1800 rpm. All parts are made of
steel, comprising a solid shaft modeled as perfectly rigid, and a
mid-span pump impeller modeled as a rigid disk that has the
mass and transverse moment of inertia of the actual impeller.
Neglect the polar moment of inertia of the shaft and the disk. The
two radial bearings positioned at the ends of the rotor are mod-
eled as being dynamically isotropic, meaning that their radial
stiffness (9500 lb/in = 332,880 n/m each) is the same in any radial
direction. This system has two resonance frequencies (critical
speeds), one below 1800 cpm and one far enough above 1800 cpm
not to matter.

Determine the minimum required isotropic radial linear damp-
ing strength C, in parallel with the stiffness at each bearing,
so as to limit the radial vibration peak amplitude to within
the close radial clearance (0.015 in. = 0.0381 cm) at the pump
impeller leakage control rings, that is, as the rotor slowly run-up
from zero to the 1800 rpm operating speed. Unbalance at the disk
is 40 oz in.

Shaft length = 60 in. (152.4 cm) Shaft outer diameter
= 4 in. (10.16 cm)

Disk diameter = 17 in. (43.18 cm) Disk width
= 4 in. (10.16 cm)

4. This problem is based on the previous Problem 3 in which the
bearing damping coefficient was determined to limit the ampli-
tude of rotor vibration at its lower unbalance excited resonance
speed. Specifying an initial nonzero displacement magnitude
with zero initial velocity, solve the transient (homogeneous) solu-
tion. Treat this solution as if it were an experimentally obtained
time-base signal. Then use this “experimental” displacement
signal with the log-decrement method to determine the damp-
ing coefficient for each bearing. Your result should return the
value obtained in Problem 3 and be used here to obtain the
“experimental” transient displacement decay signal.

5. The 3-DOF model, in its static equilibrium state, has three lumped
masses that translate only horizontally. It has one external forcing
function, two elastic beams, two linear connecting springs, and
two linear connecting dampers.

(a) Develop the equations of motion for this system.
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(b) Put the equations of motion into matrix form.
Cantilever beam static end deflection under end load:

δ = PL3

3EI

m1

x1

c2

x2

c1

m2 m3

x3

k2

k1

F1(t)

E1I1

E2I2

L1

0.5L2

L2

6. Shown, two mutually perpendicular elastic beams of negligible
mass and a single mass m behind the simply supported beam.
A pin, which is rigidly part of m, protrudes through both beams
and is free to slide without friction in the two perpendicular fitted
slots shown. Beams have the same EI and displacements are very
small: (a) develop the equations of motion in shown coordinates
(X, Y), (b) put the equations of motion into matrix form, and (c)
write the equations of motion in modal coordinates and express
the natural frequencies.

L

L

L
m X

Y

q

7. A uniform beam of negligible mass supports two concentrated
masses. Beam EI is uniform. Develop the equations of motion for
small amplitude displacements. Start by formulating the flexibil-
ity matrix, employing standard beam deflection formulas, and
then invert this flexibility matrix to obtain the stiffness matrix.

y2

m1 m2

L y1
2
L

2
L





2
Lateral Rotor Vibration Analysis Models

2.1 Introduction

Lateral rotor vibration (LRV) is radial-plane orbital motion of the rotor spin
axis. Transverse rotor vibration is used synonymously with LRV. Figure 2.1
shows the sketch of a complete steam turbine generator rotor (minus tur-
bine blades) and a sample of its computed LRV vibration orbits, shown
grossly enlarged. Actual LRV orbits are typically only a few thousandths
of an inch (a few hundredths of a millimeter) across. LRV is an important
design consideration in many types of rotating machinery, particularly
turbo-electrical machines such as steam and combustion gas turbine gen-
erators sets, compressors, pumps, gas turbine jet engines, turbochargers,
and electric motors. Thus, LRV impacts several major industries.

Usually, but not always, the potential for rotor dynamic beam-bending-
type deflections significantly contributes to the LRV characteristics. The
significance of LRV rotor bending increases with bearing-to-rotor stiffness
ratio and with rotor spin speed. Consequently, in some rotating machines
with low operating speed and/or low bearing-to-rotor stiffness ratio, the
LRV is essentially of a rigid rotor vibrating in flexible bearings/supports.
The opposite case (i.e., a flexible rotor in essentially rigid bearings) is
also possible but rotor dynamically less desirable, because it lacks some
vibratory motion at the bearings which often provide that essential ingredi-
ent, damping, to keep vibration amplitudes at resonance conditions within
tolerable levels.

For the same reason, it is generally undesirable to have journal bear-
ings located at nodal points of important potentially resonant modes, that
is, the squeeze-film damping capacity of a bearing cannot dissipate vibra-
tion energy without some vibratory motion across it. Figure 2.1 is a case
with significant participation of both rotor bending and relative motion at
the bearings. This is the most interesting and challenging LRV category
to analyze.

A rotor’s flexibility and mass distributions and its bearings’ flexibilities
combined with its maximum spin speed essentially determine whether or
not residual rotor unbalance can produce forced LRV resonance. That is,
these aforementioned factors determine if the rotor–bearing system has
one or more lateral natural frequency modes below the operating speed.

35
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HP-IP turbine LP turbine Generator exciter

(a)

(b)

FIGURE 2.1 LRV example; vibration orbits show rotor dynamic flexibility: (a) steam turbo-
generator rotor sketch (minus turbine blades) and (b) sample vibration orbits of above
turbo-generator (isometric view).

If so, then the rotor must pass through the speed(s) (called “critical speeds”)
where the residual mass unbalances act as once-per-rev (synchronous)
harmonic forces to excite the one or more natural frequencies the rotor
speed traverses when accelerating to operating speed and when coasting
down. Resonant mode shapes at critical speeds are also determined by the
same aforementioned rotor and bearing properties. Many types of modern
rotating machinery are designed to operate above one or more (sometimes
several) critical speeds, because of demands for compact high-performance
machines.

When one or more critical speeds are to be traversed, LRV analyses are
required at the design stage of a rotating machine. These analyses gener-
ally include computations to ensure that the machine is not inadvertently
designed to run continuously at or near a critical speed. These analyses
should also include computed unbalance rotor vibration levels over the entire
speed range, to ensure that the rotor–bearing system is adequately damped
to safely pass through the critical speeds within the operating speed range.
Furthermore, these analyses should include dynamic stability computations
to ensure that there are no self-excited vibration modes within the combined
ranges of operating speed and output of the machine. Lastly, if LRV rotor
bending significantly contributes to the critical speeds’ mode shapes, then
the rotor must be balanced using one of the proven flexible rotor balancing
procedures (e.g., Influence Coefficient Method), which are more complicated
than the simpler two-plane rigid-rotor balancing procedure. Providing an
introductory appreciation for all these is the objective of Table 2.1, which
somewhat simplistically subdivides the degree of LRV complexity into
three categories. The three categories in Table 2.1 could be further delin-
eated, as made clear in subsequent chapters, with the aid of the applicable
first principles covered in the remaining sections of this chapter.

Chapter 3 deals with torsional rotor vibration (TRV), which involves tor-
sional twisting of the rotor. In single-rotor drive lines it is rare for significant
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TABLE 2.1

Three Elementary LRV Complexity Categories
No
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System category
Max. speed below 80% of lowest critical speed Two-plane low-speed rigid-body balancing is all that

is required. No elabroate analyses required.

Must calculate critical speed(s) to avoid continuous
operation at or near a critical speed. Recommend
analysis prediction of vibration amplitudes at critical
speeds versus amount of available damping. Should
also check for self-excited instability rotor vibration.
Two-plane low-speed rigid-body balancing is adequate
because rotor dynamic flexibility is not significant.

Some recommendations as category 2, except that
it will probably be necessary to perform multiplane
flexible-rotor balancing at speeds up to maximum
operating speed because of the importance of bending
critical speeds (see Sec. 11, Chapter 12.)

Max. speed is near lowest critical speed or above one
or two critical speeds, but bearings are sufficienty soft
that critical-speed modes are rigid body-like.

Example mode shapes of rigid-body
critical speeds

Max. speed near or above one or two more critical
speeds and rotor flexing is a significant part of
critical-speed mode
shapes.

Example mode shapes of bending
critical speeds

Design considerations

dynamic coupling to exist between LRV and TRV characteristics. Conse-
quently, these two types of rotor vibration, while potentially coexisting to
significant degrees in the same rotor, practically do not significantly inter-
act. There are a few exceptions to this, for example, high-speed refrigerant
centrifugal compressors for high-capacity refrigeration and air condition-
ing systems. Such compressor units are typically comprised of two parallel
rotor dynamically flexible shafts coupled by a two-gear single-stage speed
increaser. In that specific type of rotating machinery, the gear teeth forces
provide a potential mechanism for coupling the LRV and TRV character-
istics. Even in that exceptional application, such lateral–torsional coupling
is generally not factored into design analyses. Near the end of Chapter 3,
subsequent to the coverage of applicable first principles for both LRV and
TRV, Table 3.1 is presented to show some quite interesting and important
contrasts between LRV and TRV, which are not frequently articulated and
thus not widely appreciated.

2.2 Simple Linear Models

2.2.1 Point–Mass 2-DOF Model

The simplest LRV model that can encompass radial-plane orbital rotor
motion has 2-DOF, as shown in Figure 2.2. In this model, the rotor point
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FIGURE 2.2 Simplest LRV model that can handle radial-plane orbital motion.

mass (m) is allowed to translate in a radial x−y plane. It is connected
to ground through linear springs and dampers and may be excited by
time-varying radial force components such as the rotating force (mass-
unbalance) shown. The two equations of motion for this model with the
shown rotating excitation force are easily derived from F = ma to obtain
the following:

mẍ + cxẋ + kxx = Fo cos ωt

mÿ + cyẏ + kyy = Fo sin ωt
(2.1)

Here, the springs and dampers can be used to include radially isotropic
shaft flexibility in series with bearing parallel flexibility and damping. Note
that in this model, the x-motion and y-motion are decoupled, that is, the
two motion equations are decoupled. However, if the x−y axes are not cho-
sen aligned with the springs and dampers as shown, the equations become
coupled, even though the model is “physically” unchanged in an alternate
x−y orientation. Therefore, the x−y physical coordinates shown in Figure 2.2
are also the modal coordinates for this model. Naturally, if a model can be
configured in a set of physical coordinates that yield completely decoupled
motion equations, then that set of physical coordinates are also the model’s
modal coordinates. For most vibration models, LRV or otherwise, this is
not possible. If the conditions kx = ky ≡ k and cx = cy ≡ c are imposed,
then the model is isotropic, which means the x−y coordinate system can
then be rotated to a different orientation in its plane with no change to the
motion equations. Therefore, such an isotropic model remains decoupled
and the physical coordinates are its modal coordinates in any x−y orienta-
tion. Thus, for the isotropic model the radial stiffness, k, is the same in any
radial direction, as is the radial damping, c.

Many types of radial bearings and seals have fluid dynamical features
that produce significant and important LRV cross coupling between orthog-
onal radial directions. A more generalized version of the simple 2-DOF
model in Figure 2.2 can incorporate such cross coupling, as shown in the
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following two coupled equations, written in matrix form:

[
m 0
0 m

]{
ẍ
ÿ

}
+
[

cxx cxy
cyx cyy

]{
ẋ
ẏ

}
+
[

kxx kxy
kyx kyy

]{
x
y

}
=
{

Fx(t)
Fy(t)

}
(2.2)

As shown in considerably more detail later in this chapter and in
Chapter 5, such 2 × 2 [cij] and [kij] matrices for bearings and seals are
extremely important inputs for many LRV analyses, and have been the
focus of extensive research to improve the accuracy for quantifying their
matrix coefficients. In general, these coefficient matrices for bearings and
seals cannot be simultaneously diagonalized in a single x−y coordinate
system, in contrast to the model shown in Figure 2.2. In fact, as explained
later in this chapter, the bearing and seal stiffness coefficient matrices are
often nonsymmetric and their damping coefficient matrices may also be
nonsymmetric when certain fluid dynamical factors are significant (e.g.,
fluid inertia).

2.2.2 Jeffcott Rotor Model

A centrally mounted disk on a slender flexible uniform shaft comprises
the model employed by H. H. Jeffcott [Philosophical Magazine 6(37), 1919]
to analyze the lateral vibration of shafts in the neighborhood of the (low-
est) critical speed. Figure 2.3a is a lateral planar view of this model and
Figure 2.3b is its extension to include bearing flexibility. If the concen-
trated midspan disk mass m in these two models is treated strictly as a
point mass, then both of these models fit the 2-DOF model in Figure 2.2.
If bearing stiffness is included but bearing damping neglected, bearing

(a)

(b)

Disk, m

k k

w = rotor spin velocity
w

w

x
y

z

FIGURE 2.3 Jeffcott rotor model: (a) Jeffcott model and (b) modified Jeffcott model with
bearing flexibility.



40 Rotating Machinery Vibration: From Analysis to Troubleshooting

stiffness and half-shaft transverse bending stiffness are simply added as
springs in series. To additionally include bearing damping, the bearing
stiffness and damping in-parallel combination is added in series with the
half-shaft transverse bending stiffness. This results in an equivalent radial
stiffness and damping coefficients that are frequency dependent, but still
within the 2-DOF model in Figure 2.2. However, if x and y disk angular
displacements (θx and θy) are allowed, and the disk’s transverse and polar
moments-of-inertia (IT and IP) about its center are included, then the Fig-
ure 2.3 models have 4-DOFs, the generalized coordinates for the disk then
being x, y, θx, and θy. If the disk is centered between two identical half
shafts (same length, diameter, and material), and both the modified Jeff-
cott model bearings are identical with symmetric stiffness coefficients as
in the model of Figure 2.2, then the 4-DOF models (undamped) are some-
what simpler than they would otherwise be. That is, there is no coupling
through the [M] and [K] matrices, as shown in the following equations of
motion which are then applicable:

⎡
⎢⎢⎣

m 0 0 0
0 m 0 0
0 0 IT 0
0 0 0 IT

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

ẍ
ÿ
θ̈x

θ̈y

⎫⎪⎪⎬
⎪⎪⎭+

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 ωIP
0 0 −ωIP 0

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

ẋ
ẏ
θ̇x

θ̇y

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

kx 0 0 0
0 ky 0 0
0 0 Kx 0
0 0 0 Ky

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

x
y
θx
θy

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

Fx(t)
Fy(t)
Mx(t)
My(t)

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

where IT is the disk transverse inertia, IP is the disk polar inertia, Kx is
the x-moment stiffness, Ky is the y-moment stiffness, Mx is the x-applied
moment on the disk, and My is the y-applied moment on the disk.

From the model represented in Equations 2.3, there still appears a [C]
matrix multiplying the velocity vector, albeit 14 of the 16 elements in [C]
are zero. The two nonzero elements in the [C] matrix of Equations 2.3
embody the so-called gyroscopic effect of the disk, which shows up as skew-
symmetric components of [C]. As more fully explained later in this chapter,
the gyroscopic effect is conservative (i.e., it is an inertia effect and thus
dissipates no energy) even though it “resides” in the [C] matrix. Note that
the gyroscopic effect couples the θx and θy motions.

For the simply supported Jeffcott rotor model, Figure 2.3a, the four
(diagonal) nonzero stiffness matrix elements in Equations 2.3 describe the
flexible shaft’s radially isotropic force and moment response to the disk’s
four coordinates (x, y, θx, and θy). For the modified Jeffcott model, Fig-
ure 2.3b, the stiffness elements in Equations 2.3 contain the combination
of the isotropic rotor flexibility in series with the bearings’ symmetric
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flexibilities (falls into Category 3 in Table 2.1). Equations 2.3 can be applied
to the model in Figure 2.3b, irrespective of whether the shaft is flexible or
completely rigid. Thus, in this rigid-shaft flexible-bearing case, the stiff-
ness elements in Equations 2.3 describe only the flexibility of the bearings
(Category 2 in Table 2.1).

Slightly less simple versions of the models in Figure 2.3 arise when the
disk is allowed to be located off center, or the two half shafts are not identi-
cal in every respect, since the equations of motion are then more coupled.
Similarly, for a disk located outboard of the bearing span on an “over-
hung” extension of the shaft, the model is not as simple as that described
by Equations 2.3. Early rotor vibration analysts like H. H. Jeffcott, without
the yet-to-be-invented digital computer, resorted out of necessity to a vari-
ety of such models in designing the machines for the rapid electrification
and industrialization during the first part of the twentieth century. Such
simple models are still quite useful in honing the rotor vibration special-
ist’s understanding and insights, and are exhaustively covered in several
texts devoted to rotor vibration theory (see the Bibliography section at the
end of this chapter).

Here, it is expedient to transition from the classic simple LRV models
just summarized to the modern finite-element models for multibearing
flexible rotors having general mass and flexibility properties. That tran-
sition step is covered in the next topic, the Simple Nontrivial LRV Model,
an 8-DOF system whose equations of motion can be written on a sin-
gle page even though it contains all the generic features of general LRV
models.

2.2.3 Simple Nontrivial 8-DOF Model

Even if one understands the underlying physical principles imbedded in
a computationally intensive engineering analysis computer code, it is still
somewhat of a “black box” to all except the individual(s) who wrote the
code. In that vein, the equations of motion for a multi-DOF system are
essentially contained in the elements of the model’s [M], [C], and [K]
matrices, which are “constructed and housed inside the computer” during
computation. Therefore, prior to presenting the formulation and develop-
ment of the Rotor Dynamic Analysis (RDA) Finite Element PC software
supplied with this book, the complete equations of motion are here rig-
orously developed for a simple nontrivial 8-DOF LRV model using both
the Lagrange and direct F = ma approaches. This 8-DOF model is illus-
trated in Figure 2.4, and contains the following features of general purpose
multi-DOF LRV models:

a. Bending of the shaft in two mutually perpendicular lateral planes.
b. Two completely general dynamically linear bearings.
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FIGURE 2.4 Simple nontrivial 8-DOF model for LRV.

c. Three concentrated masses connected by flexible shafting.
d. The central concentrated mass also has transverse and polar

moments of inertia and associated angular coordinates.

In most vibration modeling, such as with finite-element formulations,
the actual continuous media system is modeled by a discrete assemblage
of F = ma-based ODEs. This means the governing partial differential equation
(PDE) embodying the applicable physical principle(s) of the continuous
media structure is approximated by a set of ODEs. The more pieces into
which the structure model is subdivided, the larger the number of ODEs
(equal to the number of DOFs) and the more accurately they approximate
the governing PDE. The fundamental reason for doing this is because gen-
eral solutions to most governing PDEs are obtainable only for the simplest
of geometric shapes. The underlying objective is to model the system by a
sufficient number of DOFs in order to adequately characterize the actual
continuous media system in the frequency range up to ωn, the highest nat-
ural frequency of interest for the system being analyzed. At frequencies
progressively higher than ωn, the characteristics of the discrete model and
those of the actual system progressively diverge. The practical application
details of these considerations are covered in Chapter 4, which is essentially
a users’ manual for the RDA code supplied with this book.

The system in Figure 2.4 is modeled here by three lumped masses. The
two end masses (m1 and m3) are allowed only planar displacements in x
and y, whereas the central mass (m2) is allowed both x and y displacements
plus x and y angular displacements θx and θy. With this model, the two
flexible half shafts can be treated either as massless, or subdivided into
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lumped masses that are combined with the concentrated masses at mass
stations 1, 2, and 3. The usual way of doing this is to subdivide each shaft
section into two equal axial-length sections, adding the left-half mass to
the left station mass and the right-half mass to the right station mass.

The equations of motion for the system in Figure 2.4 are first derived
using two different variations of the Lagrange approach, followed by
the direct F = ma approach. The two different Lagrange derivations pre-
sented differ only as follows: (i) treating the gyroscopic effect as a reaction
moment upon the disk using rigid-body rotational dynamics or (ii) treat-
ing the gyroscopic effect by including the disk’s spin-velocity kinetic energy
within the total system kinetic energy function, T. The second of these two
Lagrange avenues is a bit more demanding to follow than the first, since it
requires using the so-called Euler angles to define the disk’s angular coordi-
nates. For each of the approaches used here, the starting point is the rotor
beam-deflection model consistent with the half shafts’ bending moment
boundary conditions (bending moment ∝ curvature) and the eight gener-
alized coordinates employed. This deflection model is shown in Figure 2.5,
where deflections are shown as greatly exaggerated.
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FIGURE 2.5 Rotor beam-deflection model for an 8-DOF system, with all generalized coordi-
nates shown in their respective positive directions: (a) beam deflection, slope, and curvature
in y−z plane and (b) x−z deflection only, but slope and curvature similar to (a).
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2.2.3.1 Lagrange Approach (i)

Referring back in Section 1.2.1 to the description of the Lagrange equations,
they can be expressed as follows:

d
dt

(
∂T
∂ q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= Qi, i = 1, 2, . . . , nDOF (2.4)

where T and V are the kinetic and potential energy functions, respec-
tively; and qi and Qi are the generalized coordinates and generalized forces,
respectively. In this derivation, the left-hand side of Equations 2.4 is used to
develop the rotor model mass and stiffness matrices. The bearings’ stiffness
and damping components as well as the rotor disk’s gyroscopic moment
are treated as generalized forces and thus brought into the equations of
motion on the right-hand side of Equations 2.4.

For a beam in bending, the potential energy can be derived by integrating
the strain energy over the length of the beam. Linear beam theory is used
here, so the bending strain energy in two planes (x−z and y−z) can be
linearly superimposed as

V =
2L∫

0

M2
xz + M2

yz

2EI
dz (2.5)

where Mxz is the bending moment in x−z plane = EIx′′, Myz is the bending
moment in y−z plane = EIy′′, E is Young’s modulus of the shaft material,
and I is the bending area moment of inertia for the two uniform diameter
half shafts.

As is evident from Figure 2.5, a linear bending curvature function satis-
fies the two zero-moment end-boundary conditions (at z = 0 and z = 2L)
and its discontinuity at z = L provides an instantaneous moment difference
across the disk consistent with the disk’s instantaneous dynamics. Because
of the discontinuity, the integration indicated in Equation 2.5 must be per-
formed in two pieces, z = 0 to L and z = L to 2L. Accordingly, each half
shaft has three generalized coordinates (two translations and one angular dis-
placement) to specify its deflection curve in the x−z plane and likewise
in the y−z plane. Therefore, deflection functions with three coefficients and
linearly varying second derivatives (i.e., curvatures) are required. Thus,
a third-order polynomial can be used, but it has four coefficients; hence
one term must be omitted. The second-order term is omitted because the
zero-order term is needed to retain x and y rigid-body translations and
the first-order term is needed to retain x and y rigid-body rotations. The
following expressions follow from these requirements. First, the left half
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shaft is treated.

z = 0 to L Boundary conditions

x = az3 + bz + c x(0) = x1 = c

x′ = 3az2 + b x(L) = x2 = aL3 + bL + x1

x′′ = 6az x′(L) = θy = 3aL2 + b
θx, θy � 1, ∴ tan θx ∼= θx and tan θy ∼= θy

From the above simultaneous equations with boundary conditions uti-
lized at z = 0 and z = L, the coefficient “a” is determined and results in the
following expression for x−z plane curvature:

x′′ = 3
L3 (x1 − x2 + θyL)z, z = 0 to L (2.6)

Similarly, the y−z plane curvature over z = 0 to L is determined to be the
following:

y′′ = 3
L3 ( y1 − y2 − θxL)z, z = 0 to L (2.7)

For the right half shaft, the same polynomial form is used for beam
deflection as for the left half shaft, except that (2L−z) must be put in place
of z, as follows:

z = L to 2L Boundary conditions

x = a(2L − z)3 + b(2L − z) + c x(2L) = x3 = c
x′ = −3a(2L − z)2 − b x(L) = x2 = aL3 + bL + x3

x′′ = 6a(2L − z) x′(L) = θy = −3aL2 − b

From these simultaneous equations with boundary conditions utilized
(at z = L and z = 2L), the coefficient “a” is determined and results in the
following expression for x−z plane curvature:

x′′ = 3
L3 (x3 − x2 − θyL)(2L − z), z = L to 2L (2.8)

Similarly, the y−z plane curvature over z = L to 2L is determined to be
the following:

y′′ = 3
L3 ( y3 − y2 + θxL)(2L − z), z = L to 2L (2.9)

The curvature expressions from Equations 2.6–2.9 are used for bend-
ing moment in the integration of strain energy expressed in Equation 2.5
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(i.e., Mxz = EIx′′ and Myz = EIy′′ from linear beam theory). Because of the
curvature discontinuity at z = L, the integral for strain energy must be split
into two pieces, as follows:

V = EI
2

⎡
⎣ L∫

0

[(x′′)2 + ( y′′)2] dz +
2L∫

L

[(x′′)2 + ( y′′)2] dz

⎤
⎦ (2.10)

There are obvious math steps left out at this point, in the interest of space.
The obtained expression for potential energy is given as follows:

V = 3EI
2L3

(
x2

1 + 2x2
2 + x2

3 − 2x1x2 − 2x2x3 + 2x1θyL − 2x3θyL + 2θ2
yL2

+ y2
1 + 2y2

2 + y2
3 − 2y1y2 − 2y2y3 − 2y1θxL + 2y3θxL + 2θ2

xL2
)

(2.11)

In this approach, the gyroscopic effect is treated as an external moment
upon the disk, so expressing the kinetic energy is a relatively simple step
since the disk’s spin velocity is not included in T. Kinetic energies for m1

and m3 are just 1
2 m1v2

1 and 1
2 m3v2

3, respectively. For the disk (m2), kinetic
energy (Tdisk) can be expressed as the sum of its mass center’s translational
kinetic energy (Tcg) and its rotational kinetic energy (Trot) about the mass
center. The kinetic energy function is thus given as follows:

T = 1
2

[
m1(ẋ2

1 + ẏ2
1) + m2(ẋ2

2 + ẏ2
2) + IT(θ̇2

x + θ̇2
y) + m3(ẋ2

3 + ẏ2
3)
]

IT = 1
4 m2R2 and IP = 1

2 m2R2
(2.12)

The generalized forces for the bearings are perturbations from static equi-
librium, and are treated as linear displacement and velocity-dependent
forces, expressible for each bearing as follows:

f (n)
x = − k(n)

xx x − k(n)
xy y − c(n)

xx ẋ − c(n)
xy ẏ

f (n)
y = − k(n)

yx x − k(n)
yy y − c(n)

yx ẋ − c(n)
yy ẏ

(2.13)

where, n is the bearing no. = 1, 2.
Treating the gyroscopic effect in this approach simply employs the fol-

lowing embodiment of Newton’s Second Law for rotation of a rigid body:

̇H = M (2.14)

Equation 2.14 states that the instantaneous time-rate-of-change of the rigid
body’s angular momentum ( H) is equal to the sum of the instantaneous moments
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( M) upon the rigid body, both ( H) and ( M) being referenced to the same base
point (the disk’s center-of-gravity is used). Here, H = îITθ̇x + ĵITθ̇y + k̂IPω

is the angular momentum, with the spin velocity (ω) held constant. To make
the mass moment-of-inertia components time invariant, the (x, y, z) unit
base vectors (î, ĵ, k̂) are defined to precess with the disk’s axis of symmetry
(i.e., spin axis) at an angular velocity Ω = îθ̇x + ĵθ̇y. Since the (î, ĵ, k̂) triad
rotates at the precession velocity ( Ω), the total inertial time-rate-of-change
of the rigid body’s angular momentum ( H) is expressed as follows:

̇H = ̇HΩ + Ω × H (2.15)

Using the chain rule for differentiating a product, ̇HΩ = îITθ̈x + ĵITθ̈y

is the portion of ̇H obtained by differentiating θ̇x and θ̇y, and Ω × H is
the portion obtained by differentiating the rotating base vectors (î, ĵ, k̂).
The disk’s angular motion displacements (θx, θy � 1) are assumed to be
very small; therefore, the precessing triad (î, ĵ, k̂) has virtually the same
orientation as the nonrotating x−y−z coordinate system. Thus, a vector
referenced to the precessing (î, ĵ, k̂) system has virtually the same x−y−z
scalar components in the nonprecessing (î, ĵ, k̂) system. Equation 2.14 then
yields the following expressions for the x and y moment components that
must be applied to the disk to make it undergo its x and y angular motions.

Mx = ITθ̈x + IPωθ̇y

My = ITθ̈y − IPωθ̇x
rearranged to

Mx − IPωθ̇y = ITθ̈x

My + IPωθ̇x = ITθ̈y
(2.16)

The IT acceleration terms in Equations 2.16 are included via the Lagrange
kinetic energy function (T), Equation 2.12. However, the IP terms are not
included, and these are the gyroscopic inertia components that are rear-
ranged here to the left side of the equations, as shown, to appear as moment
components (fictitious) applied to the disk. The gyroscopic moment com-
ponents that are “applied” to the disk as generalized forces in Equations 2.4
are then as follows:

Mgyro,x = −IPωθ̇y

Mgyro,y = +IPωθ̇x

(2.17)

Equations 2.11 and 2.12 for V and T, respectively, as well as Equations 2.13
for bearing dynamic force components upon m1 and m3 and Equations 2.17
for gyroscopic moment components upon the disk are all applied in Equa-
tions 2.4, the Lagrange equations. In the interest of space, the clearly
indicated math steps are omitted at this point. The derived eight equations
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of motion for the model shown in Figure 2.4 are presented in the matrix
form, as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1ẍ1
m1ÿ1

m2ẍ2

m2ÿ2

ITθ̈x

ITθ̈y

m3ẍ3

m3ÿ3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(1)
xx c(1)

xy 0 0 0 0 0 0

c(1)
yx c(1)

yy 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 IPω 0 0
0 0 0 0 −IPω 0 0 0

0 0 0 0 0 0 c(2)
xx c(2)

xy

0 0 0 0 0 0 c(2)
yx c(2)

yy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1

ẏ1

ẋ2

ẏ2

θ̇x

θ̇y

ẋ3

ẏ3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ 3EI
L3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + k̄(1)
xx ) k̄(1)

xy −1 0 0 L 0 0

k̄(1)
yx (1 + k̄(1)

yy ) 0 −1 −L 0 0 0
−1 0 2 0 0 0 −1 0
0 −1 0 2 0 0 0 −1
0 −L 0 0 2L2 0 0 L
L 0 0 0 0 2L2 −L 0

0 0 −1 0 0 −L (1 + k̄(2)
xx ) k̄(2)

xy

0 0 0 −1 L 0 k̄(2)
yx (1 + k̄(2)

yy )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
y1
x2
y2

θx
θy
x3
y3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= {R} (2.18)

k̄(n)
ij ≡ L3

3EI
k(n)

ij

{R} ≡ vector of time-varying forces and moments applied upon the
system.

In Equation 2.18 the {mq̈} vector shown takes advantage of multiply-
ing the diagonal mass matrix (all zeros except on the main diagonal) by
the acceleration vector, thus compressing the space needed to write the
full equations of motion. Properly applied, these equations of motion for
the 8-DOF model are a reasonable approximation for the first and pos-
sibly the second natural frequency modes of an axially symmetric rotor
on two dynamically linear bearings, especially if most of the rotor mass
is located near the rotor’s axial center between the bearings. It is also a



Lateral Rotor Vibration Analysis Models 49

worthy model on which to “benchmark” a general purpose linear LRV
computer code. More importantly, this model’s equations of motion lay-
out for detailed scrutiny all the elements of the motion equation matrices,
on slightly over half a page, for an 8-DOF model that has all the generic
features of general multi-DOF LRV models. One can thereby gain insight
into the computations that take place when a general purpose LRV code
is used.

2.2.3.2 Lagrange Approach (ii)

This approach differs from the just completed previous Lagrange approach
only in how the gyroscopic moment is derived; hence only that facet is
shown here. Specifically, the issue is the portion of the disk’s rotational
kinetic energy (Trot) due to its spin velocity. Using a coordinate system
with its origin at the disk’s mass center and its axes aligned with principal-
inertia axes through the disk’s mass center, the disk’s kinetic energy due
to rotation can be expressed as follows:

Trot = 1
2

(
Ixxω

2
x + Iyyω

2
y + Izzω

2
z

)
(2.19)

However, this expression cannot be directly used in the kinetic energy
function (T) for the Lagrange equations because ωx, ωy, and ωz are
not the time derivatives of any three angular coordinates, respectively,
that could specify the disk’s angular position. The angular orientation
of any rigid body can, however, be prescribed by three angles, the so-
called Euler angles. Furthermore, the first time derivatives of these three
angles provide angular velocity components applicable to Trot for the
Lagrange equations. While this approach can be applied to any rigid body,
the application here is somewhat simplified because Ixx = Iyy ≡ IT and
θx, θy � 1.

The three Euler angles are applied in a specified order that follows.
(î, ĵ, k̂) is a mass-center principal-inertia triad corresponding to an x−y−z
principal-inertia coordinate system fixed in the disk at its center. When
all the Euler angles are zero, (î, ĵ, k̂) aligns with a nonrotating triad
(Î, Ĵ, K̂).

To “book keep” the three sequential steps of orthogonal transforma-
tion produced by the three sequential Euler angles, it is helpful to give
a specific identity to the (î, ĵ, k̂) triad for each of the four orientations
it occupies, from “start to finish,” in undergoing the three Euler angles.
These identities are given along with each Euler angle specified. It is also
quite helpful at this point for the reader to isometrically sketch each of
the four x−y−z coordinate system angular orientations, using a common
origin.
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• Initial state (all Euler angles are zero): (î, ĵ, k̂) aligns with (Î, Ĵ, K̂).

• First Euler angle: Rotate disk θy about the y-axis (i.e., î, k̂ about
ĵ = Ĵ),

(î, ĵ, k̂) moves to (î′, ĵ′, k̂′), where ĵ′ = ĵ = Ĵ

• Second Euler angle: Rotate disk θx about the x-axis (i.e., ĵ′, k̂′
about î′),

(î′, ĵ′, k̂′) moves to (î′′, ĵ′′, k̂′′), where î′′ = î′

• Third Euler angle: Rotate the disk φ about the z-axis (i.e.,
î′′, ĵ′′ about k̂′′),

(î′′, ĵ′′, k̂′′) moves to (î, ĵ, k̂), where k̂′′ = k̂

The following angular velocity vector for the disk is now specified in
components that are legitimate for use in the Lagrange approach since each
velocity component is the first time derivative of a generalized coordinate:

ωtotal = θ̇yĴ + θ̇x î′ + ωk̂ (2.20)

ω = φ̇

The remaining step is to transform J and î′ in Equation 2.20 into their
(î, ĵ, k̂) components to obtain the disk’s angular velocity components
in a principal-inertia x−y−z coordinate system. This is accomplished
simply by using the following associated direction-cosine orthogonal
transformations: ⎧⎪⎨

⎪⎩
î′
ĵ′
k̂′

⎫⎪⎬
⎪⎭ =

⎡
⎣cos θy 0 −sin θy

0 1 0
sin θy 0 cos θy

⎤
⎦
⎧⎨
⎩

Î
Ĵ
K̂

⎫⎬
⎭

⎧⎪⎨
⎪⎩

î′′
ĵ′′
k̂′′

⎫⎪⎬
⎪⎭ =

⎡
⎣1 0 0

0 cos θx sin θx
0 −sin θx cos θx

⎤
⎦
⎧⎪⎨
⎪⎩

î′
ĵ′
k̂′

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

î
ĵ
k̂

⎫⎪⎬
⎪⎭ =

⎡
⎣ cos φ sin φ 0

−sin φ cos φ 0
0 0 1

⎤
⎦
⎧⎪⎨
⎪⎩

î′′
ĵ′′
k̂′′

⎫⎪⎬
⎪⎭

(2.21)
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Multiplying these three orthogonal matrices together according to the
proper Euler angle sequence yields an equation of the following form:⎧⎪⎨

⎪⎩
î
ĵ
k̂

⎫⎪⎬
⎪⎭ = [Rφ] [Rθx ] [Rθy ]

⎧⎨
⎩

Î
Ĵ
K̂

⎫⎬
⎭ (2.22)

Equation 2.22, product of the three orthogonal transformation matrices,
is also an orthogonal matrix, embodying the total orthogonal transforma-
tion from the initial state to the end state orientation following application
of the three Euler angles, and can be expressed as follows:

[R] = [Rφ] [Rθx ] [Rθy ] (2.23)

As an orthogonal matrix, [R] has an inverse equal to its transpose. There-
fore, the Ĵ unit vector in Equation 2.20 is obtained from the second equation
of the following three ⎧⎨

⎩
Î
Ĵ
K̂

⎫⎬
⎭ = [R]T

⎧⎪⎨
⎪⎩

î
ĵ
k̂

⎫⎪⎬
⎪⎭ (2.24)

to obtain the following expression for Ĵ:

Ĵ = (sin φ cos θx)î + (cos φ cos θx)ĵ − (sin θx)k̂ (2.25)

Since î′ = î′′, inverting the 3rd of Equations 2.21 yields the following:

î′ = î cos φ − ĵ sin φ (2.26)

Substituting Equations 2.25 and 2.26 into Equation 2.20 produces the
following result:

ω = (θ̇y sin φ cos θx + θ̇x cos φ)î + (θ̇y cos φ cos θx − θ̇x sin φ)ĵ

+ (−θ̇y sin θx + ω)k̂ (2.27)

Equation 2.27 provides the proper components for ωx, ωy, and ωz to
insert into Equation 2.19 for the disk’s rotational kinetic energy, Trot, as
follows:

Trot = 1
2 IT

(
ω2

x + ω2
y

)
+ 1

2 IPω2
z = 1

2 [IT(θ̇y sin φ cos θx + θ̇x cos φ)2

+ IT(θ̇y cos φ cos θx − θ̇x sin φ)2 + IP(−θ̇y sin θx + ω)2] (2.28)



52 Rotating Machinery Vibration: From Analysis to Troubleshooting

Simplifications utilizing cos θx ∼= 1, sin θx ∼= θx, and sin2 θx � sin θx then
yield the following expression for the disk’s rotational kinetic energy:

Trot = 1
2

[
IT

(
θ̇2

x + θ̇2
y

)
+ IP

(
ω2 − 2ωθ̇yθx

)]
(2.29)

A potential point of confusion is avoided here if one realizes that θx and
θy are both very small and are applied in the Euler angle sequence ahead
of φ, which is not small (φ = ωt). Thus, θ̇x and θ̇y are directed along axes
that are basically aligned with the nonrotating inertial x−y coordinates, not
those spinning with the disk. As with the Lagrange approach (i), the disk’s
total kinetic energy is expressible as the sum of the mass-center kinetic
energy plus the rotational kinetic energy as follows:

Tdisk = Tcg + Trot (2.30)

The total system kinetic energy is thus expressible for this Lagrange
approach by the following equation:

T = 1
2

[
m1

(
ẋ2

1 + ẏ2
1

)
+ m2

(
ẋ2

2 + ẏ2
2

)
+ IT

(
θ2

x + θ2
y

)
+ IP

(
ω2 − 2ωθ̇yθx

)
+ m3

(
ẋ2

3 + ẏ2
3

)]
(2.31)

Equation 2.31 differs from its Lagrange approach (i) counterpart,
Equation 2.12, only by its IP term that contains the disk’s gyroscopic effect.

The potential energy formulation and bearing dynamic force expressions
used here are identical to those in Lagrange approach (i), Equations 2.11 and
2.13, respectively. However, here the gyroscopic effect is contained within
the kinetic energy function in Equation 2.31. Therefore, Equations 2.17 used
in the Lagrange approach (i) for gyroscopic moment components upon the
disk are not applicable here. Implementing the clearly indicated math steps
implicit in Equations 2.4, this approach yields the same eight equations
given by Equations 2.18.

2.2.3.3 Direct F = ma Approach

In this approach, the sum of x-forces and the sum of y-forces on m1, m2,
and m3 equated to their respective mq̈ terms yields six of the eight motion
equations. The sum of x-moments and the sum of y-moments on the disk
equated to their respective ITθ̈ terms yields the other two motion equations.
This can be summarized as follows.
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FIGURE 2.6 Beam deflection formulas.

Bearing forces and gyroscopic moment are taken directly from
Equations 2.13 and 2.17, respectively. Thus, only the beam-deflection reac-
tion forces and moments need developing here, and these can be derived
using superposition of the two cases given in Figure 2.6. All reaction force
and moment components due to x and y translations with θx and θy both
zero are obtained using the cantilever beam end-loaded case given in Fig-
ure 2.6a. Likewise, all reaction force and moment components due to θx and
θy with x and y translations both zero are obtained using the simply supported
beam with an end moment, that is, case with a = L in Figure 2.6b. Super-
imposing these two cases provides all the beam reaction force and moment
components due to all eight displacements and these are summarized
as follows:

Beam-Deflection Reaction Force and Moment Components

f1x = 3EI
L3 (−x1 + x2 − θyL) M2x = 3EI

L3

(
y1L − 2θxL2 − y3L

)

f1y = 3EI
L3 (−y1 + y2 + θxL) M2y = 3EI

L3

(
−x1L − 2θyL2 + x3L

)

f2x = 3EI
L3 (x1 − 2x2 + x3) f3x = 3EI

L3

(
x2 − x3 + θyL

)

f2y = 3EI
L3 ( y1 − 2y2 + y3) f3y = 3EI

L3 ( y2 − y3 − θxL)

(2.32)

The eight equations of motion are constructed from F = ma and M = Iθ̈
utilizing Equations 2.13 for bearing forces, Equations 2.17 for gyroscopic
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moments, and Equations 2.32 for beam-bending force and moment reac-
tions, as follows:

m1ẍ1 = f1x + f (1)
x ITθ̈x = M2x + Mgyro,x

m1ÿ1 = f1y + f (1)
y ITθ̈y = M2y + Mgyro,y

m2ẍ2 = f2x m3ẍ3 = f3x + f (2)
x

m2ÿ2 = f2y m3ÿ3 = f3y + f (2)
y (2.33)

Substituting the appropriate expressions from Equations 2.13, 2.17, and
2.32 into Equations 2.33 yields the 8-DOF model’s equations of motion
given in Equations 2.18.

Equations 2.18 have been derived here in three somewhat different
approaches. However, all three approaches are based on Newton’s second
law and thus must yield the same result.

The right-hand side of Equations 2.18, {R}, is strictly for time-dependent
forcing functions and viewed as being externally applied on the system. No
specific examples of {R} were needed to develop the three derivations of
Equations 2.18, but two important cases are now delineated: (i) eigenvalue
extraction and (ii) steady-state unbalance response. For eigenvalue extraction,
such as performed in searching for operating zones where dynamic insta-
bility (self-excited vibration) is predicted, {R} = 0 can be used since {R}
does not enter into that mathematical process (see Section 1.3, subhead-
ing “Dynamic Instability: The Complex Eigenvalue Problem”). For an
unbalance response example, the combination of so-called static unbalance
and dynamic unbalance are simultaneously applied on the 8-DOF model’s
disk, as shown in Figure 2.7. An unbalance is modeled by its equivalent
centrifugal force.

Here, the static unbalance mass is chosen as the angular reference point
(key phaser) on the rotor and φ (90◦ for illustrated case in Figure 2.7) is the
phase angle between ms and the rotating moment produced by the two 180◦
out-of-phase md dynamic unbalance masses. Equations 2.18 then have the

w

ms
md

rd
rs

rd md

l

FIGURE 2.7 Combination of static and dynamic rotor disk unbalance.
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right-hand side {R} shown in the following equations:

[M]{q̈} + [C]{q̇} + [K]{q} = ω2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

msrs cos ωt
msrs sin ωt

mdrdl cos(ωt + φ)

mdrdl sin(ωt + φ)

0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.34)

The four zeros in {R} reflect no unbalances at the two bearing stations.

2.3 Formulations for RDA Software

The vibration fundamentals covered in Chapter 1 and the foregoing sec-
tions of this chapter provide ample background to follow the development
of the governing formulations for the RDA code. RDA is a user-friendly
PC-based user-interactive software package that is structured on the finite-
element method. It was developed in the Rotor Dynamics Laboratory at
Case Western Reserve University to handle the complete complement of
linear LRV analyses, and it is supplied with this book. In this section, the
focus is on formulation, solution, and computation aspects of the RDA
code. In Part 2 of this book (Chapters 4, 5, and 6), the focus shifts to the use
of RDA in problem solving.

2.3.1 Basic Rotor Finite Element

Development of the RDA model starts with the basic rotor finite-element
building block, which is comprised of two disks (or any M, IT, IP) connected
by a beam of uniform circular-cross-section (shaft), as shown in Figure 2.8.

For the rotor finite element shown in Figure 2.8, the following two lists
summarize its elementary parameters.

Shaft element properties:

Mass, M(s) = γsπ(d2
o − d2

i )L
4g

Transverse inertia at c.g., I(s)
T = 1

12
M(s)

[
3

(
d2

o + d2
i

4

)
+ L2

]

Polar inertia, I(s)
P = 1

2
M(s)

(
d2

o + d2
i

4

)
(2.35a)
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FIGURE 2.8 Basic rotor finite-element building block.

Area moment of inertia, I = π(d4
o − d4

i )

64

Modulus of elasticity, E

where do is the shaft outside diameter (OD), di is the shaft inside diameter
(ID) (optional concentric hole), L is the shaft length, γs is the shaft weight
density, and g is the gravity constant.

The formulas for concentrated disk masses are essentially the same as
those for the shaft element, and thus listed here as follows.

Concentrated disk mass properties:
Any axially symmetric mass specified by its M, IT, and IP can be used, for
example, couplings, impellers, gears, and so on

Mass, M(d) = γdπ
(
D2

o − D2
i
)

l
4g

Transverse inertia at c.g., I(d)
T = 1

12
M(d)

[
3

(
D2

o + D2
i

4

)
+ l2

]

Polar inertia, I(d)
P = 1

2
M(d)

(
D2

o + D2
i

4

)
(2.35b)
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where Do is the disk OD, Di is the disk ID (concentric hole), l is the disk
axial thickness, and γd is the disk weight density.

As shown in Figure 2.8, each mass station has four DOFs, that is, x, y, θx,
and θy. Thus, with θx and θy coordinates included at every mass station,
beam-bending transverse rotary inertia, an effect of increased importance
for higher frequency bending modes, is included. In addition therefore,
either an optional concentrated point mass or concentrated disk mass (or
other axially symmetric mass) can be added at each mass station after the
complete rotor matrices are assembled from all the individual shaft element
matrices.

The programmed steps in building the RDAequations of motion for arbi-
trary model configurations are essentially the encoding of the [M], [C], and
[K] matrices, as well as the right-hand side column of the applied forces,
{R}. These matrices are essentially the discrete model’s equations of motion.
Using the basic rotor finite-element building block shown in Figure 2.8, the
total system stiffness and damping matrices are single-option paths, in
contrast to the mass matrix that has three options, lumped mass, distributed
mass, and consistent mass discretizations. For most rotor vibration models,
the consistent and distributed mass formulations provide significantly bet-
ter model resolution accuracy (i.e., converge with fewer finite elements
or DOFs) than the lumped mass formulation. Furthermore, based on the
author’s experience, the consistent mass model seems to be marginally
better for rotors than the distributed mass model. RDA is coded to allow
the user to select any of these three mass models. While the consistent
mass model is usually the preferred option, it is occasionally informative
to be able to easily switch between these three mass models to parametri-
cally study model convergence characteristics. That is, to study if a selected
number of rotor elements is adequate for the needs of a particular analy-
sis. The three mass-matrix options are covered here first, followed by the
stiffness and gyroscopic matrices.

2.3.2 Shaft Element Lumped Mass Matrix

In this approach, it is assumed that the shaft element’s mass is lumped
at the element’s two end points according to static weight-equilibrating
forces at the element end points. For the uniform diameter shaft element
programmed into RDA this means lumping half the shaft element’s mass
at each of the mass stations at the two ends of the element. Implicit in this
approximation is a step change in the shaft element’s lateral (radial) accel-
eration at its axial midpoint. In other words, the actual continuous axial
variation in radial acceleration is approximated by a series of small dis-
crete step changes. Similarly, half the beam element’s transverse moment
of inertia is transferred to each of its two ends points using the parallel-axis
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theorem, shown as follows:

ITi = 1
12

(
M(s)

2

)[
3

(
d2

o + d2
i

4

)
+
(

L
2

)2
]

+ M(s)

2

(
L
4

)2

(2.36)

With the coordinate vector ordering {x1, y1, θx1, θy1, x2, y2, θx2, θy2}
employed, the shaft element lumped mass matrix is then as follows:

[M]l
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 M(s)

i 0 0 0 0 0 0 0

0 1
2 M(s)

i 0 0 0 0 0 0
0 0 ITi 0 0 0 0 0
0 0 0 ITi 0 0 0 0

0 0 0 0 1
2 M(s)

i 0 0 0

0 0 0 0 0 1
2 M(s)

i 0 0
0 0 0 0 0 0 ITi 0
0 0 0 0 0 0 0 ITi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.37)

2.3.3 Shaft Element Distributed Mass Matrix

The underlying assumption for the distributed mass formulation is that the
shaft element’s lateral acceleration varies linearly in the axial direction, a
logical first-order improvement over the axial step-change approximation
implicit in the lumped mass formulation. An axial linear variation of lateral
acceleration requires that the element’s lateral velocity also varies linearly
in the axial direction. The derivation here considers two adjacent mass
stations, as shown in Figure 2.9, to formulate the linear variation of lateral
velocity.

The linear variation of x-velocity is expressed as follows:

ẋ = ẋi + 1
Li

(ẋi+1 − ẋi) z (2.38)

The x-direction derivation is shown here, but the y-direction derivation
is identical. The x-translation kinetic energy of a shaft element can thus be

i i + 1
x

z

Mi
(s), Li, Ei, Ii

y

FIGURE 2.9 Two consecutive rotor-model mass stations.
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expressed as follows (similar for y-translation kinetic energy):

T(x)
i = 1

2
M(s)

i
Li

Li∫

0

ẋ2 dz (2.39)

Substituting Equation 2.38 into Equation 2.39 and integrating yields the
portion of the total system’s kinetic energy function that is needed to extract
the shaft element’s lateral acceleration terms associated with the xi and xi+1
Lagrange equations of motion. This leads to the following two results:

d
dt

(
∂T
∂ ẋi

)
= 1

3
M(s)

i ẍi + 1
6

M(s)
i ẍi+1

d
dt

(
∂T

∂ ẋi+1

)
= 1

6
M(s)

i ẍi + 1
3

M(s)
i ẍi+1

(2.40)

Since the beam element transverse rotary inertia effect is secondary to its
lateral mass acceleration effect, the inclusion of shaft element transverse
rotary inertia is included here, as already shown for the lumped mass
formulation, Equations 2.36. That is, beam element transverse moment
of inertia is not “distributed” in the manner just derived for the lat-
eral mass acceleration components. With the coordinate vector ordering
{x1, y1, θx1, θy1, x2, y2, θx2, θy2} employed, the shaft element’s distributed mass
matrix thus obtained is as follows:

[M]d
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3 M(s)

i 0 0 0 1
6 M(s)

i 0 0 0

0 1
3 M(s)

i 0 0 0 1
6 M(s)

i 0 0
0 0 ITi 0 0 0 0 0
0 0 0 ITi 0 0 0 0

1
6 M(s)

i 0 0 0 1
3 M(s)

i 0 0 0

0 1
6 M(s)

i 0 0 0 1
3 M(s)

i 0 0
0 0 0 0 0 0 ITi 0
0 0 0 0 0 0 0 ITi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.41)

2.3.4 Shaft Element Consistent Mass Matrix

When the spatial distribution of acceleration (and therefore velocity) in a
finite element is formulated with the same shape function as static deflec-
tion, it is referred to as the consistent mass approach. The shaft element
in Figure 2.8 is postulated to be a uniform cross-section beam in bending.
Thus, its static beam deflection can be expressed as cubic functions in the



60 Rotating Machinery Vibration: From Analysis to Troubleshooting

x−z and y−z planes, as follows (z referenced to left mass station, as shown
in Figure 2.9):

Ψ(z) = az3 + bz2 + cz + d (2.42)

A general state of shaft element deflection in a plane (x−z or y−z) can
be expressed as a linear superposition of four cases, each having a unity
displacement for one of the four generalized coordinates in the plane with
zero displacement for the other three coordinates in the plane. These four
cases are specified by the following tabulated sets of boundary conditions.

Correspondence between Ψj , Ψ′
j and Rotor Element Coordinates

x−z plane → x1 θy1 x2 θy2

y−z plane → y1 −θx1 y2 −θx2

Case 1: Ψ1(0) = 1 Ψ′
1(0) = 0 Ψ1(L) = 0 Ψ′

1(L) = 0

Case 2: Ψ2(0) = 0 Ψ′
2(0) = 1 Ψ2(L) = 0 Ψ′

2(L) = 0

Case 3: Ψ3(0) = 0 Ψ′
3(0) = 0 Ψ3(L) = 1 Ψ′

3(L) = 0

Case 4: Ψ4(0) = 0 Ψ′
4(0) = 0 Ψ4(L) = 0 Ψ′

4(L) = 1

Substituting each of the four above boundary condition sets into Equa-
tion 2.42 and solving in each case for the four coefficients in Equation 2.42
yields the following four deflection shape functions:

Ψ1(z) = 1 − 3
( z

L

)2 + 2
( z

L

)3
, Ψ2(z) = z − 2

z2

L
+ z3

L2

Ψ3(z) = 3
( z

L

)2 − 2
( z

L

)3
, Ψ4 = z2

L

( z
L

− 1
) (2.43)

The general state of shaft element deflection can be expressed as follows:

x = x1Ψ1(z) + θy1Ψ2(z) + x2Ψ3(z) + θy2Ψ4(z)

y = y1Ψ1(z) − θx1Ψ2(z) + y2Ψ3(z) − θx2Ψ4(z)
(2.44)

Thus, the general state of shaft element velocity can be expressed as
follows:

ẋ = ẋ1Ψ1(z) + θ̇y1Ψ2(z) + ẋ2Ψ3(z) + θ̇y2Ψ4(z)

ẏ = ẏ1Ψ1(z) − θ̇x1Ψ2(z) + ẏ2Ψ3(z) − θ̇x2Ψ4(z)
(2.45)
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The total shaft element kinetic energy is derived by substituting
Equations 2.45 into the following equation:

Ti = 1
2

M(s)
i

Li

Li∫

0

(ẋ2 + ẏ2) dz (2.46)

The element consistent mass matrix is obtained by substituting the inte-
grated result from Equation 2.46 into the acceleration portion for each of
the eight Lagrange equations for the shaft element, as follows:

d
dt

(
∂Ti

∂ q̇r

)
≡ [Mrs]c

i
{
q̈s
}

, r = 1, 2, . . . , 8 (2.47)

With {q̈s} = {
ẍ1, ÿ1, θ̈x1, θ̈y1, ẍ2, ÿ2, θ̈x2, θ̈y2

}
, the shaft element consistent

mass matrix thus obtained is as follows:

[M]c
i = M(s)

i
420

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

156 0 0 22Li 54 0 0 −13Li

0 156 −22Li 0 0 54 13Li 0
0 −22Li 4L2

i 0 0 0 0 0
22Li 0 0 4L2

i 13Li 0 0 −3L2
i

54 0 0 13Li 156 0 0 −22Li

0 54 0 0 0 156 22Li 0
0 13Li 0 0 0 22Li 4L2

i 0
−13Li 0 0 −3L2

i −22Li 0 0 4L2
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.48)

2.3.5 Shaft Element Stiffness Matrix

Borrowing from Equation 2.5, the potential energy for the shaft element in
bending can be expressed as follows:

Vi = 1
2

EiIi

Li∫

0

[(x′′)2 + ( y′′)2] dz (2.49)

Substituting Equations 2.44 into Equation 2.49 provides the shaft ele-
ment Vi as a function of the element’s eight generalized coordinates,
similar to the detailed development of Equation 2.11 for the 8-DOF “Simple
Nontrivial Model.” The element stiffness matrix is obtained by substi-
tuting the integrated result from Equation 2.49 into the potential energy
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term for each of the eight Lagrange equations for the shaft element, as
follows:

∂Vi

∂qr
≡ [Krs]i{qs}, r = 1, 2, . . . , 8 (2.50)

With {qs} = {
x1, y1, θx1, θy1, x2, y2, θx2, θy2

}
, the element stiffness matrix

thus obtained is as follows:

[K]i = 2EiIi

L3
i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 3Li −6 0 0 3Li

0 6 −3Li 0 0 −6 −3Li 0
0 −3Li 2L2

i 0 0 3Li L2
i 0

3Li 0 0 2L2
i −3Li 0 0 L2

i
−6 0 0 −3Li 6 0 0 −3Li

0 −6 3Li 0 0 6 3Li 0
0 −3Li L2

i 0 0 3Li 2L2
i 0

3Li 0 0 L2
i −3Li 0 0 2L2

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.51)

2.3.6 Shaft Element Gyroscopic Matrix

Half the shaft element’s polar moment of inertia, I(s)
P , is transferred to

each of its two ends points. Utilizing Equation 2.17, the shaft element’s
gyroscopic matrix is accordingly given by the following:

[G]s
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 ωIPi 0 0 0 0
0 0 −ωIPi 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ωIPi

0 0 0 0 0 0 −ωIPi 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.52)

IPi ≡ 1
2

I(s)
P = 1

4
M(s)

(
d2

o + d2
i

4

)

2.3.7 Addition of Nonstructural Mass and Inertia to Rotor Element

Nonstructural mass is added mass and inertia, lumped at mass stations,
that does not contribute to element flexibility. The rotor element in
Figure 2.8 shows a concentrated disk at each end. A concentrated disk
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(M(d), I(d)
P , and I(d)

T ) may be added at any rotor mass station. For a purely
concentrated nonstructural point mass, I(d)

P = I(d)
T = 0. Since construction of

the complete matrices for the rotor alone (next topic) overlays the ele-
ment matrices at their connection stations, nonstructural mass and inertia
is added to the left mass station of each element prior to that overlay of
element matrices, as reflected in the following equations. The exception is
the far right rotor station, where nonstructure mass is added to the right
station.

Complete element mass matrix ≡ [M]i = [[M]l
i or [M]d

i or [M]c
i

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M(d)

left 0 0 0 0 0 0 0

0 M(d)

left 0 0 0 0 0 0

0 0 I(d)

T,left 0 0 0 0 0

0 0 0 I(d)

T,left 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.53)

Complete element gyroscopic matrix ≡ [G]s
i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 ωI(d)

P,left 0 0 0 0

0 0 −ωI(d)

P,left 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.54)

2.3.8 Matrices for Complete Free–Free Rotor

The [M], [C], and [K] matrices for the complete free–free rotor (i.e., free of
connections to ground and free of external forces) are assembled by linking
all the corresponding individual rotor-element matrices. The right mass
station of each rotor element is overlaid on to the left mass station of its
immediate right neighbor. Thus, the total number of rotor mass stations
(NST) is equal to the total number of rotor elements (NEL) plus one. The total
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number of rotor DOFs is 4 times NST.

NST = NEL + 1

NRDOF = 4NST
(2.55)

Accordingly, the rotor matrices are expressible as follows:

[M]R =

M1

• • •
NEL

(2.56)

NRDOF × NRDOF

M2

M

M

3

[C]R =

G1

G2

G

G

3 • • •
NEL

(2.57)

NRDOF × NRDOF

[K]R =

K1

K2

K

K

3 • • •
NEL

(2.58)

NRDOF × NRDOF

Note that the free–free rotor damping matrix contains only the shaft gyro-
scopic terms. As further explained in Section 2.4, although the gyroscopic
effect is imbedded in [C] it is not really “damping” in the energy dissipation
sense. It is an inertia effect and therefore energy conservative.

2.3.9 Radial-Bearing and Bearing-Support Models

The RDAcode is configured so that inputs for a radial-bearing stiffness and
damping model, such as illustrated in Figure 2.2, may be applied at any
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rotor model mass station. In a complete model, at least two radial bearings are
needed to provide stiffness connections between the rotor and the inertial
reference frame (ground), because the rotor possesses two static equilib-
rium conditions for the x–z plane and two for the y–z plane. That is, it
is necessary to have rotor-to-ground stiffness connections for at least two
x-coordinates and two y-coordinates for there to exist a static equilibrium
state to exist, to which the computed linear-model vibrations are refer-
enced. The strictly mathematical statement of this is that the total model’s
stiffness matrix [K] must be nonsingular, which it would not be if at least the
minimum required number of rotor-to-ground stiffness connections was
not incorporated. The obvious practical way of viewing this is that a mini-
mum of two radial bearings are required to confine a rotor to its prescribed
rotational center line within the machine; otherwise, “look out!”

Not surprisingly, the most typical rotor–bearing configuration has two
radial bearings, but large steam turbine-generator sets may have 10 or
more journal bearings on one continuous flexible rotor. For most LRV com-
puter models, one typically uses 10−20 rotor-model mass stations between
adjacent bearings. Bearing rotor dynamic properties present probably the
biggest challenge in undertaking LRV analyses. This is because the bearing
“inputs” (stiffness and damping coefficients), while very important to the
accuracy of computed results, inherently have a high degree of uncertainty.
Chapter 5 of this book is devoted entirely to bearing and seal rotor dynamic
inputs. Although bearings and seals are different machine elements, both
are included in LRV analysis models in the same manner, that is, as radial
connections between the rotor and the inertial reference frame. In contrast
to bearings, seals often need fluid-inertia effects to be incorporated into the
rotor-to-ground connection model, as detailed in Chapter 5. Here, the focus
is on how the bearing rotor-to-ground stiffness and damping connections
are incorporated into the matrices for the complete equations of motion.

The x and y components of the total radial force (F) exerted upon the
rotor from a bearing can be separated into static-equilibrium and dynamic-
deviation parts, as follows:

Fx = −Wx + fx and Fy = −Wy + fy (2.59)

where Wx and Wy are the x and y components, respectively, of the static load
( W) exerted upon the bearing, whereas fx and fy are the x and y components,
respectively, of the dynamic deviation of total bearing force exerted upon
the rotor. This is illustrated by the vector diagram in Figure 2.10.

Fluid-film journal bearings provide the most typical example upon
which the inclusion of radial bearing dynamic compliance into linear
LRV analyses can be explained. As fully developed in Chapter 5, the
dynamic-deviation interactive force between a bearing and its rotating
journal can be described as a continuous function of journal-to-bearing



66 Rotating Machinery Vibration: From Analysis to Troubleshooting
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FIGURE 2.10 Force vectors and rotor-to-bearing vibration orbit at a bearing.

position and velocity components. This assumes that lubricant viscosity
effects are dominant and lubricant fluid inertia effects are negligible; oth-
erwise journal-to-bearing acceleration component effects should also be
included. A continuous function that also has continuous derivatives to
any order can be expanded in a Taylor series. Therefore, relative to the
static equilibrium state, the x and y components of the dynamic-deviation
of bearing force upon the rotor can be expressed as follows (under static
equilibrium, F + W = 0):

(higher order terms)

0

Fx+ Wx= fx= x + y•  +

y•  +

x•  +

x•  +

∂Fx
∂x

∂Fx
∂x•

∂Fx
∂y

y +
∂Fx
∂y•  

(higher order terms)Fy+ Wy= fy= x +
∂Fy

∂x
∂Fy

∂x•
∂Fy

∂y
y +

∂Fy

∂y•  

(2.60)

Fx = Fx(x, y, ẋ, ẏ) and Fy = Fy(x, y, ẋ, ẏ). x and y are referenced relative to
the static equilibrium position, as shown in Figure 2.10. It is postulated that
vibration signal amplitudes (x, y, ẋ, ẏ) are sufficiently small for the “higher
order terms” in Equations 2.60 to be vanishingly small compared to the
linear terms. Thus, only the linear terms are retained. Essentially, this is
how all linear vibration models are justified, because all real systems have
some nonlinearity.

Fortunately, the assumption of linearity leads to adequate answers in
most vibration engineering analyses, and simplifies considerably the tasks
of making calculations and understanding what is calculated. Some spe-
cialized large-amplitude rotor vibration problems justify treating nonlinear
effects, for example, large rotor unbalance such as that from turbine blade
loss, shock and seismic base-motion excitations, rotor rub-impact phenom-
ena, and self-excited vibration limit cycles. These topics are described at the
end of this chapter in Section 2.5. With the “higher order terms” dropped,
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it is convenient to put Equations 2.60 into the following matrix form:{
fx
fy

}
= −

[
kxx kxy
kyx kyy

]{
x
y

}
−
[

cxx cxy
cyx cyy

]{
ẋ
ẏ

}
(2.61)

where kij ≡ −(∂Fi/∂xj) and cij ≡ −(∂Fi/∂ ẋj) are the eight bearing stiffness
and damping coefficients. In general, these coefficient matrices for bearings
and seals cannot be simultaneously diagonalized in a single x–y coordi-
nate system, in contrast to the model shown in Figure 2.2. In fact, the
bearing and seal stiffness coefficient matrices are often nonsymmetric and
their damping coefficient matrices may also be nonsymmetric when certain
fluid dynamical factors are significant (e.g., fluid inertia). Such nonsym-
metries are somewhat of an anomaly within the broader field of linear
vibration analysis, but are quite the usual circumstance in rotor dynamics.
These nonsymmetries mathematically embody important physical aspects
of rotor dynamical systems that are explained in some depth in Section 2.4.
The minus signs in Equations 2.61 stem from definitions of the stiffness
and damping coefficients that are based on two implicit assumptions: (i) a
spring-like stiffness restoring force resisting radial displacement from the
equilibrium position and (ii) a damping drag force resisting radial-plane
velocity. This is identical to the sign convention shown at the beginning of
Chapter 1 for the 1-DOF spring–mass–damper system.

The most commonly used option in bearing LRV models is to “connect”
the rotor to ground directly through the bearing stiffness and damping
coefficients, and this is quite appropriate when very stiff bearing support
structures are involved. In that case, bearing coefficients embody exclu-
sively the bearing’s own dynamic characteristics. Conversely, when the
bearing support structure’s flexibility is not negligible, then the bearing
coefficients should either be modified to incorporate the support struc-
ture’s compliance, or additional DOFs should be added to the complete
system to include appropriate modeling for the support structure. RDA is
configured with two options, (i) bearing coefficients connect rotor directly
to ground and (ii) bearing coefficients connect to an intermediate mass
which then connects to ground through its own x and y stiffness and damp-
ing coefficients. This second option, referred to here as the 2-DOF bearing
pedestal model, adds two DOFs to the complete system for each bearing
on which it is used. Figure 2.2, previously introduced to illustrate a simple
point-mass model, alternately provides an adequate schematic illustration
of the 2-DOF bearing pedestal model. One may visualize a rotating journal
inside a concentric hole of the mass illustrated in Figure 2.2. Both RDA
bearing-support options are now shown.

2.3.9.1 Bearing Coefficients Connect Rotor Directly to Ground

As observed in Section 2.2, Equations 2.18, for the 8-DOF model’s equations
of motion, handling of this option is quite simple. That is, each of the
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bearing stiffness and damping coefficients are just added to their respective
rotor mass station’s x or y components within the total rotor [K]R and [C]R
matrices. The total system stiffness matrix is thus described as follows.
[K] = [K]R + [K]B, where [K]B ≡ NRDOF × NRDOF matrix containing all the
bearing stiffness coefficients in their proper locations. This is shown as
follows for the embedding of a bearing within [K]:

[K]{q} =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

12EiIi

L3
i

+ k(n)
xx k(n)

xy

k(n)
yx

12EiIi

L3
i

+ k(n)
yy

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

NRDOF×NRDOF

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

...
x

y
...

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.62)

Similarly, [C] = [C]R + [C]B, where [C]B ≡ NRDOF × NRDOF matrix
containing all the bearing damping coefficients in their proper
locations.

[C]{q̇} =

⎡
⎢⎢⎢⎣
[

c(n)
xx c(n)

xy

c(n)
yx c(n)

yy

] ⎤⎥⎥⎥⎦
NRDOF×NRDOF

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...

...
ẋ

ẏ
...
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.63)

where n is the bearing no. = 1, 2, . . . , NB.

[M] = [M]R (2.64)

For this option, the total number of DOFs is NDOF = NRDOF. The 8-
coefficient bearing model does not include any acceleration effects, thus
[M] = [M]R. At least two bearings must have nonzero principle values
for their [k(n)

ij ], for the total model stiffness matrix [K] to be nonsing-
ular, which is a requirement fully explained at the beginning of this
subsection.

2.3.9.2 Bearing Coefficients Connect to an Intermediate Mass

The total system [M], [C], and [K] matrices with no bearing pedestals in
the model, Equations 2.62 through 2.64, are split after the coordinates of
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each station where a 2-DOF bearing pedestal is located, to insert the addi-
tional two rows and two columns containing the corresponding matrix
coefficients for the two additional DOFs. This is easy to demonstrate by
showing the following expressions for the example of adding a 2-DOF
bearing pedestal model only to a bearing at rotor station no. 1:

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣4 × 4

⎤
⎦

⎡
⎢⎢⎣

0 0
0 0
0 0
0 0

⎤
⎥⎥⎦

⎡
⎣4 × NRDOF

⎤
⎦

[
0 0 0 0
0 0 0 0

] [
M(1)

B,x 0
0 M(1)

B,y

] [
0 0 0 0
0 0 0 0

]

⎡
⎣NRDOF × 4

⎤
⎦

⎡
⎢⎢⎣

0 0
0 0
0 0
0 0

⎤
⎥⎥⎦

⎡
⎣NRDOF × NRDOF

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.65)

Pedestal-expanded [C] and [K] matrices must be formulated to account
for the bearing [k(n)

ij ] and [c(n)
ij ] stiffness and damping coefficients being

driven by the differences between rotor and bearing pedestal displace-
ment and velocity components, respectively. The [2 × 4] and [4 × 2] off-
diagonal coefficient arrays shown within the following two equations
accomplish that

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣4 × 4

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

−c(1)
xx −c(1)

yx

−c(1)
xy −c(1)

yy

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣4 × NRDOF

⎤
⎦

⎡
⎢⎣−c(1)

xx −c(1)
xy 0 0

−c(1)
yx −c(1)

yy 0 0

⎤
⎥⎦

⎡
⎣c(1)

xx + C(1)
B,xx c(1)

xy + C(1)
B,xy

c(1)
yx + C(1)

B,yx c(1)
yy + C(1)

B,yy

⎤
⎦ [

0 0 0 0

0 0 0 0

]

⎡
⎣NRDOF × 4

⎤
⎦

⎡
⎢⎢⎣

0 0
0 0
0 0
0 0

⎤
⎥⎥⎦

⎡
⎣NRDOF × NRDOF

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.66)
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[K] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣4 × 4

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

−k(1)
xx −k(1)

yx

−k(1)
xy −k(1)

yy

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣4 × NRDOF

⎤
⎦

⎡
⎢⎣−k(1)

xx −k(1)
xy 0 0

−k(1)
yx −k(1)

yy 0 0

⎤
⎥⎦

⎡
⎢⎣k(1)

xx + K(1)
B,xx k(1)

xy + K(1)
B,xy

k(1)
yx + K(1)

B,yx k(1)
yy + K(1)

B,yy

⎤
⎥⎦ [

0 0 0 0
0 0 0 0

]

⎡
⎣NRDOF × 4

⎤
⎦

⎡
⎢⎢⎣

0 0
0 0
0 0
0 0

⎤
⎥⎥⎦

⎡
⎣NRDOF × NRDOF

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.67)

For this example, {q} = {x1, y1, θ1x, θ1y, xB,1x, yB,1y, x2, y2, θ2x, θ2y, . . .} is the
generalized coordinate vector. Note the additional two coordinates that are
added at the end of station 1 rotor coordinates.

M(n)
B,x and M(n)

B,y are the nth bearing pedestal’s x and y modal masses,

respectively. [C(n)
B,ij]2×2 and [K(n)

B,ij]2×2 are the nth bearing pedestal’s damp-
ing and stiffness connection-to-ground coefficients, respectively. The total
number of system DOFs is equal to the rotor DOF (NRDOF) plus 2 times the
number of bearing pedestals (NP) employed in the model, where NP ≤ NB.

NDOF = NRDOF + 2NP (2.68)

2.3.10 Completed RDA Model Equations of Motion

The complete RDA NDOF equations of motion can now be written in
the compact matrix form introduced in Equation 1.15. All the analysis
options available within the RDA code have one of two { f (t)} right-
hand sides as follows: { f (t)} = {0} for eigenvalue analyses (e.g., instability
searches), and at rotor stations with unbalance inputs, for steady-state
unbalance response.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

...
fx
fy
...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= ω2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

...
mubrub cos(ωt + φub)

mubrub sin(ωt + φub)
...

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.69)

2.4 Insights into Linear LRVs

Successful rotating machinery developments need reliable analyses to pre-
dict vibration performance. Predictive analyses can also be an invaluable
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tool in successful troubleshooting of vibration problems in existing machin-
ery. Present computerized rotor vibration analyses provide many software
options in this regard, such as the RDA code supplied with this book.
Equally important, but frequently overlooked and not well understood, are
the basic physical insights, which can easily be obscured in the presence
of enormous computational power. Basic physical insights are essential
for one to understand, explain, and apply what advanced analyses pre-
dict. This section relates important physical characteristics for LRV to the
mathematical structure of the governing equations of motion. The cen-
terpiece here is the decomposition of the equation-of-motion matrices
into their symmetric and skew-symmetric parts, and the relation of these
parts to the conservative and nonconservative forces of rotor dynamical
systems.

It has been recognized for quite sometime that, aside from journal bear-
ings, other fluid annuli such as sealing clearances and even complete
turbo-machinery stages produce rotor dynamically significant interactive
rotor–stator forces. These forces must be adequately characterized and
included in many rotor vibration analyses if reliable prediction and under-
standing of machinery vibration is to be realized. The most complete
rotor–stator interactive linear radial force model currently in wide use is
shown in the following equation, which can be referred to Figure 2.10 and
its associated nomenclature.

{
fx
fy

}
= −

[
kxx kxy
kyx kxx

]{
x
y

}
−
[

cxx cxy
cyx cyy

]{
ẋ
ẏ

}
−
[

mxx mxy
myx myy

]{
ẍ
ÿ

}

(2.70)

kij ≡ −(∂Fi/∂xj), cij ≡ −(∂Fi/∂ ẋj), and mij ≡ −(∂Fi/∂ ẍj) are defined at
static equilibrium and have an orthogonal transformation property of the
Cartesian second-rank tensor, that is, they are second-rank tensors just like
stress. Chapter 5 provides a more in-depth treatment of how these stiff-
ness, damping, and virtual mass (inertia) coefficients are determined. At
this point, suffice it to say that both first-principle-based computations
as well as some highly challenging experimental approaches are utilized
to quantify these rotor dynamic coefficients, because they are crucial to
meaningful rotor vibration analyses.

2.4.1 Systems with Nonsymmetric Matrices

The decomposition of any n × n matrix [A] into its symmetric (“s”) and
skew-symmetric (“ss”) parts is an elementary technique of Matrix Algebra,
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expressed as follows:

[Aij] = 1
2

[
Aij + Aji

]+ 1
2 [Aij − Aji] ≡ [As

ij] + [Ass
ij ]

where [As
ij] ≡ 1

2 [Aij + Aji] and [Ass
ij ] ≡ 1

2 [Aij − Aji]
giving [As

ij] = [As
ij]T and [Ass

ij ] = −[Ass
ij ]T

(2.71)

As shown in Equations 2.71, the symmetric part of [A] is equal to its
own transpose (“T,” i.e., interchange of rows and columns) whereas its
skew-symmetric part is equal to minus its own transpose. This matrix
decomposition technique can therefore be applied to any of the square
matrices associated with the equations of motion for LRV. Clearly, if an
n × n matrix is symmetric to begin with, then its skew-symmetric part
is zero and this matrix decomposition does not accomplish anything.
Although most linearized vibration models have symmetric [M], [C], and
[K] matrices, LRV models typically have some nonsymmetries. There
are compelling physical reasons to justify that the 2 × 2 interaction-force
gradient coefficient matrices [kij] and [cij] defined in Equation 2.70 can
be nonsymmetric, and conversely that the 2 × 2 array [mij] should be
symmetric. Furthermore, as already shown for spinning rotors in Equa-
tions 2.17, the gyroscopic moment effect manifests itself in the motion
equations as a skew-symmetric additive to the [C] matrix, for example,
Equations 2.18, 2.52, and 2.54. In a series of papers some years ago, listed in
the Bibliography at the end of this chapter, the author related the somewhat
unique nonsymmetric structure of rotor–bearing dynamics equation-of-
motion matrices to certain physical characteristics of these systems. The
main points of those papers are treated in the remainder of this section.

The complete linear LRV equations of motion can be compactly
expressed in standard matrix form as follows:

[M]{q̈} + [C]{q̇} + [K]{q} = { f (t)} (2.72)

First, the matrices in this equation are decomposed into their symmetric
and skew-symmetric parts as follows:

[K] = [Ks] + [Kss], [C] = [Cs] + [Css], [M] = [Ms] + [Mss] (2.73)

where the decompositions in Equations 2.73 are defined by Equations 2.71.
The fundamental demonstration is to show that these decompositions
amount to a separation of dynamical effects into energy conservative and
energy nonconservative parts. That [Ks] is conservative, [Cs] is nonconser-
vative, and [Ms] is conservative can automatically be accepted, being the
standard symmetric stiffness, damping, and mass matrices, respectively.
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[Css] is handled here first since there is a similarity in the treatments of
[Kss] and [Mss].

Attention is first on some 2 × 2 submatrix within the [Css] matrix that
contains [css

ij ], the skew-symmetric part of [cij] for a radial bearing, seal, or
other fluid-containing confine between the rotor and nonrotating member.
The incremental work dw (i.e., force times incremental displacement) done
on the rotor by the [css

ij ] terms at any point on any orbital path (refer to
journal center orbital trajectory shown in Figure 2.10) is expressible as
follows:

dw = −
[
css

ij

] {ẋ
ẏ

}
{dx dy} (2.74)

where [css
ij ] =

[
0 css

xy
−css

xy 0

]
.

Performing the indicated multiplications in Equation 2.74 and substitut-
ing dx = ẋ dt and dy = ẏ dt yields the following result:

dw = −css
xy(ẋẏ − ẏẋ) dt ≡ 0 (2.75)

This result simply reflects that the force vector here is always perpen-
dicular to its associated velocity vector, and thus no work (or power)
is transmitted. Similarly, focusing on some 2 × 2 submatrix within the
[Css] matrix that contains a pair of gyroscopic moment terms, as provided
in Equations 2.17, the identical proof applies to the gyroscopic moment
effects, shown as follows:

dw = −
[

0 ωIP
−ωIP 0

]{
θ̇x
θ̇y

} {
dθx dθy

}

= −
[

0 ωIP
−ωIP 0

]{
θ̇x
θ̇y

} {
θ̇x θ̇y

}
dt ≡ 0 (2.76)

The gyroscopic moment vector is perpendicular to its associated angu-
lar velocity vector, and thus no work (or power) is transmitted. The
skew-symmetric part of the total system [C] matrix thus embodies only
conservative force fields and is therefore not really damping in the energy
dissipation or addition sense, in contrast to the symmetric part of [C] which
embodies only nonconservative forces.

Turning attention to the skew-symmetric part of [K], consider some 2 × 2
submatrix within the [Kss] matrix that contains [kss

ij ], the skew-symmetric
part of [kij] for a radial bearing, seal, or other fluid-containing confine
between rotor and nonrotating member. The incremental work done by the
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[kss
ij ] terms on any point on any orbital trajectory is expressible as follows:

dw = −
[

0 kss
xy

−kss
xy 0

]{
x
y

}
{dx dy} = −kss

xyy dx + kss
xyx dy ≡ fx dx + fy dy

(2.77)

∴ ∂fx
∂y

= −kss
xy and

∂fy
∂x

= kss
xy

Obviously, (∂fx/∂y) 
= (∂fy/∂x), that is, dw here is not an exact differential;
hence, the [kss

ij ] energy transferred over any portion of a trajectory between
two points “A” and “B” is path dependent, and thus the force field is non-
conservative. The skew-symmetric part of the total system [K] matrix thus
embodies only nonconservative force fields and is therefore not really stiff-
ness in the energy conservative sense, in contrast to the symmetric part
of [K] which embodies only conservative forces. An additional interesting
insight is obtained here by formulating the net energy-per-cycle exchange
from the [kss

ij ] terms (see Figure 2.11).

Ecyc =
∮

dw = −kss
xy

∮
( y dx − x dy) (2.78)

Splitting the integral in Equation 2.78 into two line integrals between
points “A” and “B,” and integrating the dy terms “by parts” yield the
following result:

Ecyc = 2kss
xy

xB∫

xA

( y2 − y1) dx (2.79)

The integral in Equation 2.79 is clearly the orbit area. Typically, kss
xy ≥ 0

for journal bearings, seals, and other rotor–stator fluid annuli, even com-
plete centrifugal pump stages. Thus, the kss

xy effect represents negative
damping for forward (corotational) orbits and positive damping for back-
ward (counter-rotational) orbits. Only for orbits where the integral in

x

A

B
xA

y2(x)

y1(x)

xB

FIGURE 2.11 Any periodic orbit of rotor relative to nonrotating member.
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Equation 2.79 is zero will the net exchange of energy per cycle be zero. One
such example is a straight-line cyclic orbit. Another example is a “figure 8”
orbit comprised of a positive area and a negative area of equal magnitudes.

The complete nonconservative radial interaction force vector {P} on the
rotor at a journal bearing, for example, is thus embodied only in the sym-
metric part [cs

ij] and the skew-symmetric part [kss
ij ], and expressible as

follows (actually, cs
xx = cxx and cs

yy = cyy):

{
Px
Py

}
= −

[
cs

xx cs
xy

cs
xy cs

xx

]{
ẋ
ẏ

}
−
[

0 kss
xy

−kss
xy 0

]{
x
y

}
(2.80)

The parametric equations, x = X sin(Ωt + φx) with y = Y sin(Ωt + φy),
are used here to specify a harmonic rotor orbit for the purpose of formu-
lating the energy imparted to the rotor per cycle of harmonic motion, as
follows:

Ecyc =
∮

(Px dx + Py dy) =
2π/Ω∫

0

(Pxẋ dt + Pyẏ dt)

= −π
{
Ω
[
cs

xxX2 + 2cs
xyXY cos(φx − φy) + cs

yyY2
]

− 2kss
xyXY sin(φx − φy)

}
(2.81)

By casting in the x–y orientation of the principal coordinates of [cs
ij], the

cs
xy term in Equation 2.81 disappears, yielding the following result, which

is optimum for an explanation of rotor dynamical instability self-excited
vibration:

Ecyc = −π
[
Ω
(

cp
xxX2 + cp

yyY2
)

− 2kss
xyXY sin(φx − φy)

]
(2.82)

Since [kss
ij ] is an isotropic tensor, its coefficients are invariant to orthogonal

transformation, that is, do not change in transformation to the principal
coordinates of [cs

ij]. Furthermore, Ω, cp
xx, cp

yy, kss
xy, X and Y are all posi-

tive in the normal circumstance. For corotational orbits the difference in
phase angles satisfies sin(φx − φy) > 0, and conversely for counterrota-
tional orbits sin(φx − φy) < 0. For a straight-line orbit, which is neither
forward nor backward whirl, φx = φy so sin(φx − φy) = 0, yielding zero
destabilizing energy input to the rotor from the kss

xy effect. From Equa-
tion 2.82, one thus sees the presence of positive and negative damping
effects for any forward whirling motion. Typically, as rotor speed increases,
the kss

xy effect becomes progressively stronger in comparison with the cs
ij

(squeeze-film damping) effect. At the instability threshold speed, the two
effects exactly balance on an energy-per-cycle basis, and Ω is the natural



76 Rotating Machinery Vibration: From Analysis to Troubleshooting

frequency of the rotor–bearing resonant mode which is on the threshold
of “self-excitation.” From Equation 2.82 it therefore becomes clear as to
why this type of instability always produces a self-excited orbital vibra-
tion with forward whirl (corotational orbit), since the kss

xy term actually adds
positive damping to a backward whirl. It also becomes clear as to why the
instability mechanism usually excites the lowest-frequency forward-whirl
mode, because the energy dissipated per cycle by the velocity-proportional
drag force is also proportional to Ω, but the energy input per cycle from
the kss

xy destabilizing effect is not proportional to Ω. In other words, the
faster an orbit is traversed, the greater the energy dissipation per cycle
by the drag force. However, the energy input per cycle from the kss

xy
destabilizing effect is only proportional to the orbit area, not to how
fast the orbit is traversed. Consequently, as rotor speed is increased, the
first mode to be “attacked” by instability is usually the lowest-frequency
forward-whirl mode.

Harmonic motion is also employed to investigate the mss
xy effect. The net

energy per cycle imparted to the rotor by such a skew-symmetric additive
to the mass matrix is accordingly formulated similar to Equation 2.78, as
follows:

Ecyc = −mss
xy

∮
( ÿ dx − ẍ dy) = Ω2mss

xy

∮
( y dx − x dy) (2.83)

The factor (−Ω2) comes from twice differentiating the sinusoidal func-
tions for x and y to obtain ẍ and ÿ, respectively. With reference to Figure 2.11,
utilizing the same steps in Equation 2.83 as in going from Equation 2.78 to
Equation 2.79, the following result is obtained:

Ecyc = −2Ω2mss
xy

xB∫

xA

( y2 − y1) dx (2.84)

It is clear from Equation 2.84 that an mss
xy effect would be nonconser-

vative, similar to the kss
xy effect, but differing by the multiplier (−Ω2).

For mss
xy > 0, such a skew-symmetric additive to an otherwise symmet-

ric mass matrix would therefore “attack” one of the highest frequency
backward-whirl modes of a rotor–bearing system and drive it into a self-
excited vibration. Even if mss

xy were very small (positive or negative),
the Ω2 multiplier would seek a high-enough-frequency natural mode in
the actual continuous-media rotor system spectrum to overpower any
velocity-proportional drag-force damping effect, which has only an Ω

multiplier. No such very high-frequency backward-whirl (mss
xy > 0) or

forward-whirl (mss
xy < 0) instability has ever been documented for any type

of machinery. Thus, it must be concluded that mss
xy = 0 is consistent with

physical reality. In other words, the mass matrix should be symmetric to be
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consistent with real machinery. An important directive of this conclusion
is the following: For laboratory experimental results from bearings, seals,
or other fluid-containing confines between rotor and nonrotating mem-
ber, schemes for fitting measured data to linear models like Equation 2.70
should constrain [mij] to symmetry.

Even with symmetry imposed on [mij], the model in Equation 2.70 still
has 11 coefficients (instead of 12), which must be obtained either from quite
involved computational fluid mechanics analyses or from quite specialized
and expensive experimental efforts, as more fully described in Chapter 5.
Thus, any justifiable simplification to Equation 2.70 model that reduces
the number of its coefficients is highly desirable. For conventional oil-film
journal bearings, the justified simplification is to discount the lubricant’s
fluid inertia effects, which automatically reduces the number of coefficients
to eight. For seals and other rotor–stator fluid confines that behave more
like rotationally symmetric flows than do bearings, the isotropic model is
employed as described in Section 2.4.3.

2.4.2 Explanation of Gyroscopic Effect

During the author’s 1986 spring series of lectures on Turbomachinery Rotor
Vibration Problems, at the Swiss Federal Institute (ETH-Zurich), one student
commented as here paraphrased. “Professor, I have studied gyroscopic
effects in dynamics theory and have seen laboratory demonstrations of it,
but I still do not really understand it.” He was asking for a layman’s explana-
tion. The student’s comment warranted more than just a short answer. So I
promised to come to my next lecture prepared with an illustrated explana-
tion, Figure 2.12. Even best known twentieth century vibrations engineer,
MIT Professor J. P. Den Hartog (1901–1989), wavered on this phenomenon
in his book Mechanical Vibrations, McGraw-Hill, 1940.

To understand the pivot forces needed to support the simultaneous
spin and transverse precession angular velocities imposed upon the disk
illustrated in Figure 2.12, one need only understand the pivot forces (F, −F)

required just for the two mass points (m1, m2) shown in Figure 2.12. The
disk’s whole continuum of mass particles carry out the same effect to vary-
ing degrees, collectively yielding the required moment couple (FT, −FT)

upon the disk as per Newton’s Second Law (mR2ωsωpk̂/2 = Σ M = 2RFTk̂).
By viewing the mass points’ (m1, m2) respective trajectories, Figure 2.12
clearly shows why the instantaneous axial components of acceleration
(a1, a2 = −a1) of the two mass points are in opposite directions, thus creat-
ing the need for the applied moment about the z-axis perpendicular to the
precession and spin axes.

As rigorously derived in Sections 2.2.3 (Equations 2.18) and 2.3.6 (Equa-
tion 2.52) of this chapter, the presence of a polar moment-of-inertia on a
rotor model adds a skew-symmetric additive to the damping matrix [C],
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Inertia effects (P, -P) of m1 & m2 respectively
are equilibrated by the two pivot-applied
forces (F, -F ).
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H = î ITwp + ĵ IPwS
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FIGURE 2.12 Illustrated explanation of the gyroscopic effect.

even though it embodies a conservative effect. However, gyroscopic effects
produce a spectral bifurcation of rotor natural frequencies along forward and
backward whirl rotor vibration orbits. This has been recognized for a long
time, as described by Professor Den Hartog (1940) in his book. The same
type of spectral bifurcation is also created for any physical effect that
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imbeds itself in the model as a skew-symmetric additive to the [C] matrix.
Primary important examples of this are the rotor–stator fluid interaction
forces in bearings and seals when fluid inertia is not negligible. In low
Reynolds number fluid annuli, like typical oil-film journal bearings, fluid
inertia effects are usually neglected. However, for many other rotor–stator
cylindrical fluid annuli, such as high Reynolds number journal bearings,
seals, and the motor radial gap (filled with water) of canned-motor pumps,
fluid inertia is a dominant influence (see Section 6.3.1 of Chapter 6 and
Figure 6.6). The convective inertia terms in the Navier–Stokes fluid dynam-
ics equations embody a skew-symmetric additive to the [C] matrix. This
can be readily understood if one visualizes that the rotor–stator convec-
tive fluid inertia effect must be rotational-direction biased. That is, its
radial force influence will not be the same on backward-whirl orbits as
on forward-whirl orbits, given the directional bias of the inherent fluid
flow field. This is in contrast to the temporal fluid inertia effect (embodied
in the [M] matrix), which is the same for either orbit direction and also
remains even if the rotor speed is zero. The temporal fluid inertia effect
is the fluid annulus counterpart of a disk’s transverse moment-of-inertia,
also embodied in the [M] matrix and also having its effect remain even if
the rotor speed is zero.

A canned-motor pump model case is described by Adams and Padovan
(1981), which shows the combined gyroscopic-like effects of the canned-
motor fluid annulus and impeller wear-ring seal. They show two spectral
branches (modes) that emerge from one point as the influence of the
skew-symmetric additive to the [C] matrix is increased from zero to 100%
full effect. Surprisingly, the two mode shapes they show for the full
100% effect are quite similar in shape, even though they differ in fre-
quency by nearly a 2:1 ratio, with the backward-whirl branch being the
lower-frequency mode and the forward-whirl branch being the higher-
frequency mode.

2.4.3 Isotropic Model

The underlying assumptions for the isotropic model are that (i) the rotat-
ing and nonrotating members forming an annular fluid-filled gap are
concentric; (ii) the annular gap has geometric variations, if any, in the axial
direction only; and (iii) the inlet flow boundary conditions are rotationally
symmetric. As a consequence, it is assumed that the rotor orbital vibrations
impose only small dynamic perturbations upon an otherwise rotationally
symmetric primary steady flow field within the annular gap. Rotational
symmetry requires that the kij, cij, and mij coefficients in Equation 2.70 be
invariant to orthogonal transformation, that is, have the same values in
all orientations of the radial plane x−y coordinate system. It is relevant to
mention here that kij, cij, and mij are coefficients of single-point second-rank
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tensors, just like stress and rigid-body mass moment of inertia, which is not
typically so in the broader class of linear vibration model matrices. Thus,
for the case of rotationally symmetric flow, these tensors are isotropic. This
justifies that Equation 2.70 can be simplified to the following form for the
isotropic model:

{
fx
fy

}
= −

[
ks kss

−kss ks

]{
x
y

}
−
[

cs css

−css cs

]{
ẋ
ẏ

}

−
[

ms mss

−mss ms

]{
ẍ
ÿ

}
(2.85)

Clearly, the isotropic assumption by itself reduces the number of coef-
ficients to six. However, the constraint of symmetry on mij developed in
the previous subsection means that mss = 0; so in fact only five coefficients
are required for the isotropic model. The major limitation of the isotropic
model is that it does not accommodate nonzero rotor-to-stator static eccen-
tricities or other rotational asymmetries between rotor and stator. Thus, this
model would be physically inconsistent for journal bearings since they
derive their static load capacity from significant static eccentricity ratios.
However, it is widely applied for seals and other rotor–stator fluid confines,
but not for journal bearings.

The isotropic model lends itself to an insightful visualization of how
the linear interaction force model separates its single force vector into the
distinct parts delineated by the model. Such an illustration using the full
anisotropic model of Equation 2.70 would be too complicated an illus-
tration to be as insight provoking as Figure 2.13, which is based on the
isotropic model. The force vector directions shown in Figure 2.13 are for
the six coefficients of the isotopic model, all assumed to be positive, and all
brackets are omitted from the indicated matrix multiplications. Although it
has already been established that mss = 0, Figure 2.13 shows a component
that would be present if mss > 0, to illustrate its nonconservative nature.

Figure 2.13 visually embodies all the major points provided thus far in
this section, and more. First, note that the all the kij and mij force parts are in
their same directions for both forward and backward whirl, whereas the cij
force parts are all direction reversed between the forward- and backward-
whirl cases. The case of circular whirl is easiest to visualize, with all force
parts being either tangent or perpendicular to the path at the instantaneous
position. Note that the symmetric stiffness part provides a centering force
for ks > 0 and would thus represent a decentering force for ks < 0. The cs

force part is opposite the instantaneous orbit velocity in both orbit direction
cases and thus always provides a drag force for cs > 0. The css > 0 force part
provides a centering force for forward whirl and a decentering force for
backward whirl, thus imposing a gyroscopic-like effect that tends to bifurcate
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the system natural frequency spectrum along higher-frequency forward-
whirl branches and lower-frequency backward-whirl branches. The kss >

0 force part, being tangent to the path and in the velocity direction for
forward whirl, thus provides an energy (power) input to forward-whirl
rotor orbital motion and is thus a destabilizing influence for forward-whirl
modes, as previously described. Similarly, the mss > 0 force part, which
should actually be omitted from models, would impose a destabilizing
energy input to backward-whirl rotor orbits.

Parts c and d of Figure 2.13 show force part delineation for the more
general case of elliptical orbits. A general harmonic orbit is an ellipse;
thus circular orbits result only when X = Y with φx − φy = π/2 radians
or 90◦. For elliptical orbits, the relationship of each force part to a physical
effect is the same as just described for circular orbits. However, the picture
is slightly more complicated to visualize. Both force parts cs and css are
still tangent and perpendicular to the path, respectively. However, all the
stiffness and inertia parts (ks, kss, ms, and mss) are either colinear or perpen-
dicular to the instantaneous position vector of the journal center relative to
the static equilibrium point, as shown. Only where the trajectory crosses
the major and minor axes of the orbital ellipse are all force parts either
tangent or perpendicular to the path.

(a) (b)

(c) (d)
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FIGURE 2.13 Force components delineated by the symmetric/skew-symmetric decomposi-
tion of the kij , cij , and mij coefficient matrices for the isotropic model: (a) circular orbit, forward
whirl, (b) circular orbit, backward whirl, (c) elliptical orbit, forward whirl, and (d) elliptical
orbit, backward whirl.
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2.4.4 Physically Consistent Models

Allowing a bearing [cij] matrix to be nonsymmetric without including
a companion symmetric [mij] matrix can falsify the predicted natural
frequency spectrum of the rotor–bearing system because such would con-
stitute a physically inconsistent or incomplete model for inertia of the fluid
within an annular gap. This would be comparable to treating a concen-
trated rotor disk by including its polar moment of inertia but excluding its
transverse moment of inertia. It is equally valid to argue in the same way
regarding the bearing [kij] matrix. That is, a nonsymmetric [kij] without
its companion symmetric [cij] in the model would provide a destabilizing
influence without the companion stabilizing influence to counter it, that is,
a physically inconsistent nonconservative characteristic. These two argu-
ments here, combined with the earlier argument that the [mij] matrix must
be symmetric to be consistent with physical reality, suggest the following
axiom: The coefficient matrix of the highest order term for an interactive rotor
force should be symmetric to avoid physical inconsistencies in the model. Hence if
only [kij] coefficients are included in a model, so as to evaluate undamped
natural frequencies, only the symmetric part of the [kij] coefficient matri-
ces should be included. Likewise, if the [mij] (symmetric) inertia effects
are excluded for an interactive rotor force, as is typical for oil-film journal
bearings, then its [cij] coefficient matrix should include only its symmetric
part in the model. In fact, as shown in Chapter 5, computational determina-
tions for journal-bearing stiffness and damping coefficients based on the
Reynolds lubrication equation yield symmetric damping coefficients, as
should be expected, since the Reynolds equation is based on purely viscous
flow with all fluid inertia effects omitted. That is, any skew-symmetric part
of a [cij] coefficient matrix must represent an inertia effect since it embodies
a conservative force field.

2.4.5 Combined Radial and Misalignment Motions

A shortcoming of Equation 2.70 rotor–stator radial interaction force model
is its lack of an account of angular misalignment motions between the rotor
and stator centerlines. Figure 2.14 illustrates the case of simultaneous radial
and misalignment motions.

For bearings and seals, misalignment motion effects naturally become
more important, the larger the length-to-diameter ratio. There are always
practical limitations on just how close to “perfection” any engineering anal-
ysis model can be. Researchers in the field are still working to obtain more
accurate and diversified coefficient inputs for the Equation 2.70 model.
For angular misalignment motion effects to be included in the model, the
[kij], [cij], and [mij] coefficient matrices each require to be 4 × 4 instead
of only 2 × 2, because the local generalized coordinates then include
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FIGURE 2.14 Radial bearing/seal radial and misalignment coordinates.

{x, y, θx, θy} instead of only {x, y}. Consequently, the number of coefficients
would increase by a factor of four, as shown in Equation 2.86 for such
a model. Along practical lines of argument, optimum designs hopefully
have minimal static and dynamic misalignment effects. While the defini-
tive pronouncement on such effects may not have yet been rendered,
other uncertainties such as from the manufacturing tolerances affecting
journal-bearing clearance are more significant and prevalent (Chapter 5).
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The model in Equation 2.86 has both a radial force vector and a radial
moment vector, thus spawning 48 coefficients, as shown. The author feels
this is sufficient reason to move to a different next topic at this point!

2.5 Nonlinear Effects in Rotor Dynamical Systems

The vast majority of LRV analyses justifiably utilize linear models.
However, for postulated operating conditions that yield large vibration
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amplitudes, linear models do not give realistic predictions of rotor vibra-
tions and the attendant dynamic forces because of the significant dynamic
nonlinearities controlling the phenomena of such operating conditions.
Virtually any condition that causes a significantly high vibration level
will invariably be accompanied by significant dynamic nonlinearity. When
the journal vibration orbit fills up a substantial portion of a bearing or
seal radial clearance, the corresponding interactive rotor–stator force is
no longer well approximated by the truncated Taylor series linear model
introduced in Equations 2.60 along with Figure 2.10.

2.5.1 Large Amplitude Vibration Sources that Yield Nonlinear Effects

Well-recognized operating conditions, albeit out of the ordinary, that cause
large rotor-to-bearing vibration orbits include the following:

• Very large rotor unbalance, for example, sudden detachment loss of
large turbine or fan blades at running speed.

• Rotor–bearing self-excited orbital vibration limit cycles.

• Explosive detonation (shock) near underwater naval vessels.
• Unbalance-driven resonance at an inadequately damped criti-

cal speed.

• Resonance build-up resulting from earthquakes.

When such large vibration-causing phenomena occur, the following
additional rotor dynamic nonlinear phenomenon is likely to be produced
in the process:

• Rotor-to-stator rub-impacting.

Rub-impact phenomena can also result from other initiating factors such
as misalignment and differential thermal growths and/or distortions. In
such cases, the resulting influence of a rub-impact condition may or may
not by itself lead to high vibration levels, but it will likely inject a significant
nonlinear dynamic effect into the system.

Where risk assessments warrant, the added cost of performing appropri-
ate nonlinear rotor dynamic analyses to properly evaluate potential failure
modes associated with such unusually large vibration events is a prudent
investment. However, such analyses are more likely to be performed only
after a catastrophic failure occurs, to “do battle” in the resulting “contest”
in order to determine who was at fault and consequently who must pay.
The author spearheaded some of the early efforts in this problem area in the
1970s while at Westinghouse Electric’s Corporate R&D Center near Pitts-
burgh. A primary paper (1980) by the author stemming from that work is
included in the Bibliography at the end of this chapter.
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In all but a few classic 1-DOF nonlinear models, making computa-
tional predictions of dynamic response when one or more nonlinear
effects are incorporated into the model requires that the equations of
motion be numerically integrated marching forward in time. This means
that the parameter “time” in the motion equations is subdivided into
many very small but finite “slices” and within each one of these time
slices, the force model associated with a particular nonlinear effect is
linearized or at least held constant. This is quite similar to drawing a
curved line by joining many short straight-line segments, that is, as the
length of each straight-line segment gets smaller and smaller, their visual
effect becomes the curved line. Various numerical integration schemes
are available for this purpose, and with the advent of high-speed digi-
tal computers, such analyses first became feasible in the 1960s, but were
quite expensive. Subsequently, with the evolution of modern PCs and
workstations, at least the computational costs of such analyses are now
negligible.

2.5.2 Journal-Bearing Nonlinearity with Large Rotor Unbalance

Fluid-film journal bearings are a prominent component where dynamic
nonlinearity can play a controlling role in rotor vibration when the journal-
to-bearing orbital vibration amplitude becomes a substantial portion of
the bearing clearance circle. When this is the case, the linear model
introduced in Equations 2.60 fails to provide realistic rotor dynamic pre-
dictions, as previously explained at the beginning of this section. As
detailed in Chapter 5, computation of the fluid-film separating force that
keeps the journal from contacting the bearing starts by solving the lubri-
cant pressure distribution within the separating film. The film’s pressure
distribution is computed by solving the PDE known as the Reynolds
lubrication equation, the solution for which other types of CPU-intensive
numerical computations are required (e.g., finite difference, finite ele-
ment). Performing a numerical time marching integration of the motion
equations for a rotor supported by fluid-film journal bearings requires
that the fluid-film bearing forces to be recomputed at each time step
of the time marching computation. Thus, the fluid-film pressure distri-
butions at each journal bearing must be recomputed at each time step.
Therefore, depending upon the level of approximation used in solv-
ing the Reynolds equation, it can be quite CPU intensive to perform a
time marching integration of the motion equations for a rotor supported
by fluid-film journal bearings. For an instantaneous journal-to-bearing
{x, y, ẋ, ẏ}, the x and y components of fluid-film force upon the journal
are computed by integrating the instantaneous x and y projections of the
film pressure distribution upon the journal surface, as expressed by the
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following equation:

{
fx − Wx
fy − Wy

}
= −R

L/2∫

−L/2

2π∫

0

p(θ, z, t)
{

cos θ

sin θ

}
dθ dz (2.87)

Referring to Figure 2.10, Wx and Wy are the x and y components, respec-
tively, of the static load vector W acting upon the bearing. Thus, −Wx and
−Wy are the corresponding static reaction load components acting upon
the journal. Just as in linear LRV models, it is convenient in nonlinear anal-
yses to formulate the equations of motion relative to the static equilibrium
state. In so formulating the nonlinear LRV motion equations, the journal
static loads (−Wx and −Wy) are moved to the right-hand side of Equa-
tion 2.87, leaving { fx, fy} as the instantaneous nonequilibrium dynamic
force upon the journal.

The photographs in Figure 2.15 show some of the aftermath from two
1970s catastrophic failures of large steam turbo-generators. Both these fail-
ures occurred without warning and totally destroyed the machines. The
author is familiar with other similar massive failures. Miraculously, in none
of the several such failures to which the author has been familiarized have
any serious personal injuries or loss of life occurred, although the poten-
tial for such personal mishap is surely quite possible in such events. The
two early 1970s failures led to the author’s work in developing computer-
ized analyses to research the vibration response when very large rotor mass
unbalance is imposed on a multibearing flexible rotor. For in-depth treatment
of computational methods and results for nonlinear LRV, the group of ten
papers on nonlinear rotor dynamics topics, listed in the Bibliography at the
end of this chapter, are suggested. Some of the author’s reported results
are presented here.

The rotor illustrated in Figure 2.16 is one of the two identical low-pressure
(LP) turbine rotors of a 700 MW 3600 rpm steam turbo-generator unit. It
was used to computationally research the nonlinear vibrations resulting
from unusually large mass unbalance. Using methods presented in Sec-
tions 1.3 and 2.3, the free–free rotor’s undamped natural frequencies and
corresponding planar mode shapes were determined from a finite-element
model. All static and dynamic forces acting upon the rotor are applied
on the free–free model as “external forces” including nonlinear forces,
for example, bearing static and dynamic loads, unbalances, gyroscopic
moments, weight, and so on. This approach is detailed in Adams (1980)
and supplemented in the other associated papers referenced. The compu-
tation essentially entails solving the rotor response as a transient motion,
numerically integrating forward in time for a sufficiently large number of
shaft revolutions until a steady-state or motion envelope is determined.

Steady-state large unbalance results for the rotor in Figure 2.16 are shown
in Figure 2.17a for the rotor supported in standard fixed-arc journal bear-
ings, and in Figure 2.17b for the rotor supported in pivoted-pad journal
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(a)

(b)

(c)

FIGURE 2.15 (See color insert following page 262.) Photos from the two 1970s catas-
trophic failures of large 600 MW steam turbine-generator sets. Using nonlinear rotor dynamic
response computations, failures could be potentially traced to the large unbalance from loss
of one or more large LP turbine blades at running speed, coupled with behavior of fixed-arc
journal bearings during large unbalance. (a) LP steam turbine outer casing. (b) Brushless
exciter shaft. (c) Generator shaft. (d) LP steam turbine last stage.
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(d)

FIGURE 2.15 Continued.

bearings. In both of these cases, it is assumed that one-half of a complete
last-stage turbine blade detaches at 3600 rpm. This is equivalent to a 100,000
pound corotational 3600 cpm rotating load imposed at the last-stage blade
row where the lost blade piece is postulated to separate from the rotor.
As a point of magnitude reference, this LP turbine rotor weighs approx-
imately 85,000 pounds. The Figure 2.17 results show four orbit-like plots
as follows:

• Journal-to-bearing orbit normalized by radial clearance
• Total bearing motion (see bearing pedestal model, Section 2.3.9.2)
• Total journal motion
• Total fluid-film force transmitted to bearing

Journal Journal

FIGURE 2.16 LP rotor portion of a 3600 rpm 700 MW steam turbine.
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The normalized journal-to-bearing orbit is simply the journal motion
minus the bearing motion divided by the bearing radial clearance. For
the cylindrical journal bearing of the Figure 2.17a results, this clearance
envelope is thus a circle of unity radius. In contrast, for the pivoted four-
pad journal bearing of the Figure 2.17b results, the clearance envelope is a
square of unity side. A prerequisite to presenting a detailed explanation of
these results are the companion steady-state vibration and dynamic force
amplitude results presented in Figure 2.18 for unbalance conditions from
zero to 100,000 pounds imposed at the same last-stage blade row of the
same nonlinear model.
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FIGURE 2.17 (a) Steady-state periodic response at bearing nearest the unbalance with force
magnitude of 100,000 pounds, rotor supported on two identical fixed-arc journal bearings
modeled after the actual rotor’s two journal bearings. Timing marks at each one-half revo-
lution, that is, 3 rev shown. (b) Steady-state periodic response at bearing nearest unbalance
with force magnitude of 100,000 pounds, rotor supported on two identical four-pad pivoted-
pad bearings with the gravity load directed between the bottom two pads. Bearings have
same film diameter, length, and clearance as the actual fixed-arc bearings. Timings mark each
one-half revolution, that is, 3 rev shown.
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An informative transition between 30,000 and 40,000 pounds unbalance
is shown in Figure 2.18, from essentially a linear behavior, through a clas-
sic nonlinear jump phenomenon, and into a quite nonlinear dynamic motion
detailed by the Figure 2.17 results for a 100,000 pound unbalance force. The
explanation for the results in Figures 2.17 and 2.18 can be secured to the
well-established knowledge of fixed-arc and pivoted-pad journal bearings
concerning instability self-excited vibrations. The x−y signals displayed in
Figures 2.17a and b contain sequentially numbered timing marks for each
one-half rotor revolution time interval at 3600 rpm. The observed steady-
state motions therefore require three revolutions to complete one vibration
cycle for both cases shown in Figure 2.17. Thus, these steady-state motions
both fall into the category of a period-3 motion since they both contain
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FIGURE 2.18 Comparison between partial-arc and pivoted-pad journal-bearing vibration
control capabilities under large unbalance operating conditions of an LP steam turbine rotor
at 3600 rpm; steady-state journal motion and transmitted peak dynamic bearing force over a
range of unbalance magnitudes (data points mark computed simulation cases).

a 1/3 subharmonic frequency component along with a once-per-rev (syn-
chronous) component. But these two cases are clearly in stark contrast
to each other.

With the partial-arc bearings, Figure 2.17a, steady-state motion is domi-
nated by the 1/3 subharmonic component and the journal motion virtually
fills up the entire bearing clearance circle. However, in the second case
which employs a tilting-pad bearing model, the 1/3 subharmonic compo-
nent is somewhat less than the synchronous component and the journal
motion is confined to the lower portion of the bearing clearance enve-
lope. As is clear from Figure 2.18, with partial-arc bearings, motion
undergoes a nonlinear jump phenomenon as unbalance magnitude is
increased. With pivoted-pad bearings, a nonlinear jump phenomenon is
not obtained. This contrast is even clearer when the motions are trans-
formed into the frequency domain, as provide by FFT in Figure 2.19. The
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journal-to-bearing trajectories in these two cases provide the instantaneous
lubricant minimum film thickness. For the partial-arc case, a smallest
computed transient minimum film thickness of 0.1 mil (0.0001 in.) was
obtained, thus surely indicating that hard journal-on-bearing rubbing
would occur and as a consequence seriously degrade the bearings’ catastro-
phe containment abilities. For the pivoted-pad case, a smallest computed
transient minimum film thickness of 2 mils (0.002 in.) was obtained, thus
indicating a much higher probability of maintaining bearing (film) integrity
throughout such a large vibration event, especially considering that the
pivoted pads are also inherently self-aligning.

The comparative results collectively shown by Figures 2.17 through 2.19
show a phenomenon that is probably possible for most such machines that
operate only marginally below the threshold speed for the bearing-induced
self-excited rotor vibration, commonly called oil whip. That is, with fixed-
arc journal bearings and a large mass unbalance above some critical level
(between 30,000 and 40,000 pounds for the simulated case here), a very
large subharmonic resonance is a strong possibility.

In linear systems, steady-state response to harmonic excitation forces
can only contain the frequencies of the sinusoidal driving forces, as can
be rigorously shown from the basic mathematics of differential equations.
However, in nonlinear systems, the response to sinusoidal driving forces
has many more possibilities, including periodic motion (possibly with sub-
harmonics and/or superharmonics), quasiperiodic motion (two or more
noninteger-related harmonics), and chaos motion. Here, as the rotor mass
unbalance is progressively increased, the journal-bearing forces become
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FIGURE 2.19 Fast Fourier transform of peak-to-peak journal vibration displacement
amplitudes.
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progressively more nonlinear, thus increasing the opportunity for dynamic
behavior which deviates in some way from the limited behavior allowed
for linear systems. Such LP turbines typically have a fundamental corota-
tional mode which is in the frequency vicinity of one-third the 3600 rpm
rotational frequency. This mode typically has adequate damping to rou-
tinely be passed through as a critical speed at approximately 1100−1300 rpm.
However, up at 3600 rpm the speed-dependent destabilizing effect (kss

xy)

of the fixed-arc bearings upon this mode places the rotor–bearing sys-
tem only marginally below the instability threshold speed, as dissected
in Section 2.4. Therefore, what is indicated by the results in Figure 2.17a is
that the progressively increased bearing nonlinearity allows some energy
to “flow” into the lightly damped 1/3 subharmonic, whose amplitude then
adds to the overall vibration level and thus adds to the degree of bearing
nonlinearity, thus increasing further the propensity for energy to flow into
the 1/3 subharmonic, and so on. This synergistic mechanism manifests
itself as the nonlinear jump in vibration and dynamic force shown in Fig-
ure 2.18. In other words, it is consistent with other well-known dynamic
features of rotor–bearing systems.

Because of the emergence of strong nonlinearity in such a sequence of
events, an exact integer match (e.g., 3:1 in this case) between the forcing
frequency and the linearized subharmonic mode is not needed for the
above-described scenario to occur.

Pivoted-pad journal bearings have long been recognized as not produc-
ing the destabilizing influence of fixed-arc journal bearings. The four-pad
bearing modeled in these simulations has a symmetric stiffness coefficient
matrix, consistent with its recognized inherent stability. Therefore, the case
with pivoted-pad bearings gives results that are consistent with the prior
explanation for the high amplitude subharmonic resonance exhibited with
fixed-arc bearings. That is, the inherent characteristic of the pivoted-pad-type
journal bearing that makes it far more stable than fixed-arc bearings also makes
it far less susceptible to potentially catastrophic levels of subharmonic resonance
under large unbalance conditions. If the static bearing load vector is subtracted
from the total bearing force, the dynamic bearing force transmissibility is
approximately 4 for the Figure 2.17a results and 1 for the Figure 2.17b
results. Thus, the pivoted-pad bearing’s superiority in this context is again
manifest, in a 4:1 reduction in dynamic forces transmitted to the bearing
support structure, the last line of defense.

The topic covered in the subsequent Section 2.5.4 would appear to be
related to this type of large unbalance-excited subharmonic resonance non-
linear jump phenomenon, which occurs at an exact integer fraction of the
unbalance forcing frequency. However, the two phenomena are not exactly
the same thing, since the journal-bearing hysteresis-loop phenomenon is
self-excited and has its own frequency, being initiated only by a large bump
or ground motion disturbance.
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2.5.3 Unloaded Tilting-Pad Self-Excited Vibration in Journal Bearings

Symptoms of this problem first arose with routine bearing inspections dur-
ing scheduled outages of large power plant machinery. Some large steam
turbo-generator units employing tilting-pad journal bearings exhibited
fatigue crack damage to the leading edge of statically unloaded top pads
of large four-pad tilting-pad journal bearings, illustrated in Figure 2.20.
Around the same time, the author was investigating rotor dynamical
characteristics of a pressurized water reactor (PWR) vertical centerline
canned-motor pump rotor supported in tilting-pad journal bearings, uti-
lizing nonlinear time-transient rotor vibration simulations. In that work,
an unanticipated discovery occurred that found a previously unrecognized
dynamical phenomenon of tilting-pad journal bearings, namely unloaded-
pad self-excited flutter. The computational tools previously employed to
obtain the large unbalance results presented in Section 2.5.2 of this chapter
were employed by the author for nonlinear rotor dynamical simulations
of a canned-motor pump rotor supported in tilting pad journal bearings.
Other mission objectives drove these canned-motor pump simulations.
But an unexpected self-excited pad-flutter motion of a statically unloaded
pad, at a frequency slightly below one-half the rotational frequency, was
observed from the simulations.

Not focal to the mission at hand, the discovered pad flutter was not
further researched at that time. Some years later, the author reopened
research on this self-excited pad-flutter phenomenon.

Adams and Payandeh (1983) present their nonlinear dynamical simula-
tions for a single-pad 2-DOF model with simultaneous radial and pitching
pad motions. Figure 2.21 illustrates this model, and provides a four-frame
one-period time sequence of a typical case of unloaded pad flutter. They
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FIGURE 2.21 Simulation results of unloaded pad self-excited vibration.

present a tabulation of the results of several different pad configura-
tions and operating parameters that provide a broad coverage of design
and operating conditions that will or will not promote pad flutter. Their
work provides some general observations on the pad flutter phenomenon.
Namely, when a pad’s operating pivot clearance is larger than the concen-
tric clearance, a stable static equilibrium pad position may not exist, and if
not, self-excited subsynchronous pad vibration will occur. The self-excited
motion continuously seeks to find an instantaneous film pressure distri-
bution that produces a null force and moment. The base frequency of this
vibration is somewhat below 0.5 times the rotational speed, just like classi-
cal rotor–bearing instability. In fact, if one observes the stationary journal
centerline from a reference frame fixed in the fluttering pad, the journal
appears to be undergoing self-excited whirling. So this pad flutter phe-
nomenon is really a camouflaged version of the classical journal-bearing
instability phenomenon.
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2.5.4 Journal-Bearing Hysteresis Loop

The hysteresis loop associated with the journal bearing caused dynamic
instability self-excited vibration mechanism called oil whip was for a long
time an interesting topic for the academics. But it did not attract the close
scrutiny of rotating machinery development engineers. However, in the
seismically active region of Japan, a team headed by Professor Y. Hori at
the University of Tokyo brought the practical importance of the journal-
bearing hysteresis loop to the wider engineering community. In the paper
by Hori and Kato (1990), the distinct possibility of an earthquake-initiated
high-amplitude sustained self-excited rotor vibration is addressed. That
work helped initiate subsequent research by the author and his team,
reported in the paper by Adams et al. (1996). A generic illustration of their
journal-bearing hysteresis loop and computational model are shown in
Figure 2.22.

Figure 2.22 encapsulates the imbedding of the classical oil-whip phe-
nomenon within an expanded view that shows two stable vibration
solutions at speeds below the oil-whip threshold speed ωth (Hopf bibur-
cation) and one unstable solution, which is a boundary between the two
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stable solutions. Adams et al. (1996) demonstrate this through computa-
tional simulations of a rigid rotor in two identical journal bearings, which
they treat as a 2-DOF point mass rotor supported in one hydrodynamic
fluid-film journal bearing. They computationally constructed hysteresis
loop examples covering a wide range of parameter combinations, espe-
cially static load range from nearly zero to high loads. They confirm their
simulation constructed hysteresis loop examples using a specially config-
ured laboratory test rig.At vanishing small static bearing loads, a hysteresis
loop does not occur and the oil-whip threshold speed ωth is near twice the
critical speed. At progressively higher bearing static loads, the hysteresis
loops progressively open up wider, with the whip threshold speed ωth
occurring at progressively higher speeds, as is well known. But the lower
speed limit ωsn of the hysteresis loop gets progressively lower, asymptoti-
cally approaching 1.72 times the saddle node speed ωsn. The quite practical
importance of this is that given a substantially large dynamic disturbance,
a large amplitude oil-whip limit cycle vibration can occur at a rotor speed
less than twice the critical (resonance) speed. So while increased bearing
static load raises the expected oil-whip threshold speed, it also lowers
the speed above which a large amplitude oil whip limit cycle vibration
can occur.

One can see a similarity between the hysteresis loop and the nonlinear
jump phenomenon discussed in Section 2.5.2. However, the two phenom-
ena are not exactly the same thing, since the journal-bearing hysteresis loop
phenomenon is self-excited and has its own frequency, being initiated only
by a large bump or transient ground motion disturbance.

The unstable solution shown in Figure 2.22 is qualitatively superim-
posed to show its relationship to the hysteresis loop. Khonsari and Chang
(1993) show the existence of a closed position boundary encircling the
static equilibrium point, which delineates between initial positions that die
out and initial positions that grow to a stable large amplitude limit cycle
orbit. The author believes they have encountered the unstable solution that
exists within the framework of the hysteresis loop. Although they do not
apparently recognize this, their contribution to the subject is nonetheless
valuable. The complete initial condition boundary provided by the unsta-
ble solution would have to be described in the appropriated dimensioned
phase space, of which the orbital position space is a subset.

2.5.5 Shaft-on-Bearing Impacting

Impacting is a quite nonlinear dynamic phenomenon. In Chapter 9
Section 9.8.3, rotor–stator rub-impacting is treated from the point of view
as a cause of excessive rotor vibration, and its identifying symptoms are
treated. In order to computationally model rotor–bearing impact condi-
tions, there is the need for an impact restitution coefficient, a necessary input
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for impact dynamics analyses. In general, the coefficient-of-restitution is
based on experimentally determined information, a strictly theoretical
modeling approach being at the limits of what modern solid mechanics
analysis tools can provide. Adams et al. (2000) configured a quite elabo-
rate experimental setup employing orthogonal x−y laser vibrometers to
directly measure velocities through controlled bearing-shaft impacts. That
test apparatus is illustrated in Figure 2.23. Test results obtained with this
apparatus are presented in Figure 2.24, and cover wide ranges of journal
speed and impact velocity.
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As is clear from Figure 2.24, test results obtained with this apparatus
exhibit a fairly close grouping of test points, which is significant consid-
ering the nontriviality of capturing impact velocities, even with modern
sensors and data reduction methods. These results indicate virtually no
influence of journal sliding velocity, which probably reflects the quite
small relative impact time during bearing–journal contact. These results
approach a maximum restitution coefficient of 0.8 as impact velocity is
relatively small, and asymptotically approach a value of 0.5 as impact
velocity increases.

2.5.6 Chaos in Rotor Dynamical Systems

The necessary, but not sufficient, ingredient for chaos in vibrations is non-
linearity. As part of its research on new methods for diagnostics in rotating
machinery vibration, the author’s research team has done extensive numer-
ical simulations and some experimental investigations to discover if chaos
tracking tools can offer any new information to facilitate machinery mon-
itoring and diagnostics. The main body of this research is reported by
Adams and Abu-Mahfouz (1994), who investigated three different types
of systems to search for routes to chaos through nonlinear rotor dynam-
ical phenomena. These are (1) rotor–bearing rub-impact, (2) cylindrical
bearing supported journal, and (3) tilting-pad bearing-supported jour-
nal. In Chapter 9 Section 9.7, chaos analysis tools, several examples of
the research into this topic are presented to show the potential utility
of chaos measures in order to diagnostically identify a variety of inter-
nal machinery distress sources. The reader is referred to Section 9.7 of
Chapter 9 for the explanation of simulation results from the three system
categories.

When a system has zero damping, the type of chaotic motion that can
occur is referred to as Hamiltonian. Where there is finite damping, dissipative
chaos can occur. For the purposes of studying routes to chaos in rotor
dynamical systems, dissipative chaos is the more useful since real sys-
tems always have energy dissipation mechanisms present. Dissipative
chaos is analyzed by employing various established methods. Strobo-
scopic records (i.e., Poincaré maps) and their fractal dimensions are the
most commonly used tools. Significant progress in the general modern
study of chaotic dynamics has been pioneered by researchers in applied
mathematics, and its disclosures are thus often imbedded in the more
abstract language of mathematics. In contrast, the research reported by
Adams and Abu-Mahfouz has the goal of exploring and explaining ways
in which chaos tracking techniques can be used to potentially further the
field of rotating machinery vibration monitoring and diagnostics. When the
mathematicians’ jargon is filtered from the topic of chaos, as Adams and
Abu-Mahfouz have done, it is quite easy for engineers to understand the
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essence of the topic and thereby conceptualize applications potentially
useful for engineering purposes.

2.5.7 Nonlinear Damping Masks Oil Whip and Steam Whirl

While employed in the 1970s at the Westinghouse Electric Corporate
Research Labs near Pittsburgh, the author first became aware of a quite
interesting nonlinear damping phenomenon that can mask oil whip and
steam whirl.As is well known and treated in Sections 2.5.1 and 2.5.2, if rotor
vibration levels grow progressively higher, the journal-bearing fluid-film
force characteristic becomes progressively more nonlinear.

2.5.7.1 Oil Whip Masked

A hypothetical case serves well the fundamental explanation. Assume that
a large steam turbine-generator machine has an oil-whip threshold speed
that over years has “in secrecy” gradually moved lower, approaching the
3600 rpm operating speed. This is not unusual because of support structure
shifting and various accrued wear that can gradually reduce the effec-
tive residual damping of the potentially unstable mode associated with
the oil-whip threshold. Further assume that the rotor of this machine has
gradually undergone a deterioration of its state of rotor mass balance. It
has therefore undergone progressively increased vibration levels and has
become “rough running” and thus in need of rebalancing measures. So at
a convenient point, like over a weekend or other power-lowered demand
periods, the unit is brought down, cooled, and balance correction weight(s)
appropriately attached.

On completion of this rebalancing, the machine is put through its stan-
dard several-hour start-up sequence, approaching the 3600 rpm operating
speed. But before quite reaching the 3600 rpm speed, a high-level rotor
vibration comes in at a frequency somewhat below half the rotor spin
speed. The level of this subsynchronous vibration is significantly above
allowable operating vibration levels; therefore, the machine is immedi-
ately brought down so that the plant engineers can determine what it
is that they have just encountered. What they have just encountered is
oil whip. By rebalancing the rotor and thereby significantly reducing the
unbalance vibration levels, the bearing dynamic nonlinearities accompa-
nying the rough running condition are largely removed. And thereby the
extra damping of the potentially unstable oil-whip vibration mode result-
ing from bearing nonlinearities is also largely removed. Without this extra
damping, the self-excited oil-whip instability vibration is able to “kick in.”
So by reducing the state of rotor unbalance-driven synchronous vibra-
tion, the attendant reduction in nonlinear damping allows the oil whip to
finally “come out of the closet,” after years “in hiding” above but close to
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the 3600 rpm operating speed. This is akin to trading a headache for appen-
dicitis. This unit will have to be fixed using a cost-effective option, which the
author strongly suggests is not adding the unbalance back on to the rotor (see
Chapter 11 case studies).

2.5.7.2 Steam Whirl Masked

In addition to the above oil-whip scenario, a similar scenario involving
steam whirl also occurs in large high-pressure steam turbines. As in the
oil-whip case described, steam whirl can occur immediately following a
rotor rebalancing to reduce synchronous unbalance forced vibration of a
rough running machine. The unit’s rotor is balanced over its speed range
and subsequently brought up to operating synchronous speed and elec-
trically connected to the grid. The unit is then powered up at its allowed
power ramp-up (e.g., 5 MW/min). But as it approaches say 85% of the rated
capacity, a high level of subsynchronous rotor vibration (also somewhat
below half the rotor spin frequency) kicks in, primarily in the high-pressure
turbine rotor. The nature of this vibration is quite similar to oil whip, but it
is not oil whip. Until the problem is fixed, the plant is restricted to operate
this unit at loads below 85% of the unit’s rated capacity. That is a significant
loss in generating revenue and yields a degradation of heat rate (higher
fuel cost via lower efficiency). The unit owners are informed by their rotat-
ing machinery vibration consultant that the unit is load limited by the long
recognized steam-whirl phenomenon. This unit will have to be fixed using
one of the options available. Again, adding back the removed rotor unbal-
ance is definitely not the recommended fix to allow the unit to be operated
at its full-rated power capacity (see Chapter 11 case studies).

2.5.8 Nonlinear Bearing Dynamics Explains Compressor Bearing Failure

The piston and connecting rod subassembly shown in Figure 2.25 is from
a single-piston reciprocating compressor designed for use in both a home
refrigerator and a window air conditioner produced by a major home appli-
ances manufacturer. Several months after some design modifications to this
compressor were released into these two refrigerant products, the refrig-
erator application started to show 4 times the rate of warranty compressor
failures as the window air conditioning application. This resulted in an
annual multimillion dollar loss on the refrigerator product from warranty
replacements and it thereby quickly got onto the upper management’s
“radar screen.” Close study of several of the failed compressors revealed
that it was the wrist pin bearing that was failing. The wrist pin bearing is
the sleeve bearing press fitted into the piston end of the connecting rod
and surrounds the wrist pin, which is press fitted into the piston as shown
in Figure 2.25.
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Wrist pin
and bearing

FIGURE 2.25 (See color insert following page 262.) Piston and connecting rod of a small
reciprocating compressor.

That the refrigerator compressor failure rate was 4 times that of the
air conditioner compressor mystified the manufacturer’s top compres-
sor engineers, because the wrist pin peak load in the air conditioner was
approximately 25% higher than in the refrigerator. The wrist pin bear-
ing radial load versus crank angle is illustrated for both applications in
Figure 2.26. In an attempt to uncover the root cause for the relatively
large warranty failure rate in the refrigerator application, many different
analyses and tests were conducted, sort of a “fishing expedition.”
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FIGURE 2.26 Wrist pin bearing load (W) curves versus crank angle.



Lateral Rotor Vibration Analysis Models 103

One of the many analyses pursued was computation of the wrist pin
bearing’s minimum film thickness within the 0−360◦ crank cycle. The
author was assigned this task. Unlike the calculation of journal-bearing
minimum oil-film thickness under bearing static load, the nonlinear
dynamical orbit of the wrist pin relative to the bearing must be modeled
to predict the transient minimum oil film thickness. This is a well-
established computational approach for reciprocating compressors and
internal combustion piston engines. Both the air conditioner and refrig-
erator time-varying load were entered into the author’s inputs simulation,
which employed a nonlinear time-transient marching algorithm. The com-
puted wrist pin orbits, not the minimum film thickness, unexpectedly
provided the answer to the bearing failure root cause.

Two simulated wrist pin orbits from this analysis are illustrated in
Figure 2.27. They clearly show the root cause of the refrigerator compres-
sor’s higher warranty failure rate. The load curves illustrated in Figure 2.26
show that one loading function goes slightly negative and one does not, a
feature that was not previously noted when focus was on the maximum
peak loads. That is, in the air conditioner application, just a slight amount
of load reversal causes the wrist pin to substantially separate away from
the oil-feed hole that channels oil from the rod bearing through a connect-
ing hole in the rod. In contrast, in the refrigerator application, there is no
load reversal and thus the wrist pin does not lift off the oil-feed hole as
its oscillatory trajectory clearly shows. Subsequent endurance tests com-
pletely confirmed what the computed nonlinear dynamical orbits imply.
That is, the refrigerator wrist pin continuously rubs on the bearing over
the oil hole and thereby does not separate to allow oil in for the next
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FIGURE 2.27 Wrist pin orbital trajectories from nonlinear simulations.
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squeeze film action of each loading cycle. With the root cause uncovered
by the author’s nonlinear analysis, modifications were then implemented
to insure that the refrigerator compressor load curve included some load
reversal. The high compressor failure rate ceased, once those units still “in
the pipeline” cleared the retailers’ stocks.

2.6 Summary

Chapter 2 is the “backbone” of this book. The fundamental formulations
and basic physical insight foundations for LRV are presented. The focus
is primarily on the construction of linear analysis models. However, the
last section on nonlinear effects should sensitize the troubleshooter to the
fact that all real systems have some nonlinearity. Therefore, one should not
expect even the best linear models to portray all the vibration features that
might be obtained from vibration measurements on actual machinery or
even on laboratory test rigs.
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PROBLEM EXERCISES

1. The simple rotor dynamics model here illustrated is for a small
turbomachinery rotor that runs at 6000 rpm. The mid-span 14 kg
disk has an unbalance of 0.0028 kg-m. Neglecting the mass of the
steel shaft and neglecting bearing flexibility, determine the ampli-
tude of disk radial orbital vibration and amplitude of rotating
dynamic force at each bearing for a 25 mm diameter shaft.

0.4 m

2. For the rotor model in Problem 1 estimate the error of neglecting
the shaft mass ms. The method for this is to use the simple energy
approach to derive the equation of motion. That is, since the
system is conservative (no damping) the time rate of change of
system energy is zero. For the 1-DOF spring-mass model, this
yields the following path to the equation of motion and natural
frequency.

d
dt

(
1
2

m ẋ2 + 1
2

kx2
)

= 0 ∴ mẋẍ + kxẋ = 0 giving

mẍ + kx = 0 and ωn = √
k/m.
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To estimate the effect of shaft mass, integrate its kinetic energy
over (0, L) using the static deflection shape under a center load,
scaled to the center deflection x and shaft mass density per unit
length. Then add this shaft kinetic energy to the disks kinetic
energy to obtain total kinetic energy. This results in the amount
of shaft mass to be added to the disk mass as 17ms/35, yielding
the following.

ωn =
√

k
(m + 17ms/35)

where k = 48EI/L3

The reason this is not theoretically an exact answer is because the
static deflection shape under a center load is slightly different
than the dynamic deflection shape.

3. The model here illustrated is for small rotor with a 140 kg disk
mounted as shown on a 75 mm diameter steel shaft. The bear-
ing flexibility vertically is sufficiently small to be treated as rigid.
But bearing flexibility in the horizontal direction is not negligible,
each having a horizontal stiffness k of 50 million N/m. Neglect-
ing shaft mass and gyroscopic effect, determine the critical
speeds.

0.6 m

k k

0.3 m

4. Shown is a rotor model for a simply supported steel shaft carry-
ing two disks, left disk at 45 kg and right disk at 70 kg. L1 =
150 mm and L = 600 mm. Using the flexibility matrix approach
(see Problem 7 in Chapter 1), develop the equations of motion
and determine the critical speeds. Assume that both bearing
flexibility and disk gyroscopic effects are negligible.

L1

L

L1

5. For the three-bearing shaft supporting two disks, use the influ-
ence coefficient matrix approach (see Problem 7 in Chapter 1)
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to formulate the equations of motion, and determine the critical
speeds and corresponding mode shapes for the configuration.

4L

L L L L

6. Formulate the lumped-mass equations of motion for an 8-DOF
flexible rotor-bearing configuration similar to that shown in
Figure 2.4, but with the two shafting pieces of different length
L and different EI. Put the equations in matrix form. (a) Use a
Lagrange approach, (b) use the direct F = ma approach.

7. Formulate the equations of motion for an 8-DOF flexible rotor-
bearing configuration with the disk mounted at the free end of
an overhung portion of the shaft, not between the two bearings.
Let the shaft piece between the two bearings and the overhung
shaft piece have arbitrarily different lengths and different EI. Put
the equations in matrix form. (a) Use a Lagrange approach, (b)
use direct F = ma approach.

8. Formulate the lumped-mass equations of motion for a 12-DOF
flexible rotor-bearing configuration with two equal disks sym-
metrically located between two end bearings on three equal
shaft pieces each having a length of one-third the total shaft
length bearing span. Put the equations in matrix form. (a) Use a
Lagrange approach, (b) use the direct F = ma approach.

9. Formulate the lumped-mass equations of motion for a 12-DOF
flexible rotor-bearing configuration with two different disks non-
symmetrically located between two end bearings with three
different shaft pieces. Put the equations in matrix form. (a) Use
a Lagrange approach, (b) use the direct F = ma approach.

10. Formulate the lumped-mass equations of motion for a 12-DOF
flexible rotor-bearing configuration with two equal disks, one
disk positioned at the mid-span location between the two bear-
ings and the second disk positioned at the free end of an overhung
portion of the shaft, not between the two bearings. Let the bearing
shaft span and overhung shaft portion be of arbitrarily different
lengths and different EI. Put the equations in matrix form. (a)
Use a Lagrange approach, (b) use direct F = ma approach.

11. Formulate the lumped-mass equations of motion for a 12-DOF
flexible rotor-bearing configuration with two equal disks, each
positioned at a free end of two overhung portion of the shaft, not
between the two bearings. Let the bearing shaft span be different
than the two overhung shaft pieces which are identical. Put the
equations in matrix form. (a) Use a Lagrange approach, (b) use
direct F = ma approach.
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12. Project on nonlinear rotor vibration hysteresis loop. Using the mod-
eling procedures cited in Adams, Adams, and Guo (1996) for-
mulate and implement a computer code of a time-marching
2-DOF model for a point-mass rotor supported by a single 360◦
fluid-film journal bearing. Model the fluid-film bearing force
by re-solving the Reynolds PDE lubrication equation at each
marching time step. With the debugged code, simulate the cases
reported in Adams, Adams, and Guo (1996). Then computation-
ally explore the unbalance induced nonlinear jump phenomenon
described in Section 2.5.2 of this chapter.

13. Project on nonlinear self-excited vibration simulation of unloaded bear-
ing tilting pads. Employing the 2-DOF pad model of Adams and
Payandeh (1983) reproduce the simulation results reported by
them.





3
Torsional Rotor Vibration
Analysis Models

3.1 Introduction

Torsional rotor vibration (TRV) is angular vibratory twisting of a rotor about
its centerline superimposed on its angular spin velocity. TRV analysis
is not needed for many types of rotating machinery, particularly those
machines with a single uncoupled rotor. Many single-drive-line rotors are
stiff enough in torsion so that torsional natural frequencies are sufficiently
high to avoid forced resonance by the time-varying torque components
transmitted in the rotor. A notable exception is the quite long rigidly cou-
pled rotors in modern large steam turbine generator sets, examined later
in this chapter. When single rotors are coupled together, the possibility
is greater for excitation of coupled-system torsional natural frequency
modes. Coupling of single rotors in this context can also be through stan-
dard so-called flexible couplings connecting coaxial rotors and/or through
gears. In most coupled drive trains, it is the characteristics of the cou-
plings, gear trains, and electric motors or generators that instigate TRV
problems.

It is typical for dynamic coupling between the torsional and lateral rotor
vibration (LRV) characteristics to be discounted. The generally accepted
thinking is that while potentially coexisting to significant degrees in
the same rotor(s), TRV and LRV do not significantly interact in most
machinery types. There are a few exceptions to this as noted at the end
of Section 2.1.

As previously summarized in Table 2.1, LRV is always an important con-
sideration in virtually all types of rotating machinery. Conversely, TRV is
often not an important consideration in many machinery types, especially
machines with single uncoupled rotors as previously noted. Consequently,
TRV has not received nearly as much attention in engineering publications
as LRV. Of the rotor dynamics books listed in the Chapter 2 Bibliogra-
phy, most do not cover TRV. This is a measure of the extent to which
rotor dynamics technologists have focused on the admittedly much better
funded topics within the LRV category. For rotating machinery products
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where TRV considerations are now part of standard design analyses, dra-
matic past failures were often involved in making TRV get its deserved
recognition.

Unlike typical LRV modes, TRV modes are usually quite lightly damped.
For example, the significant squeeze-film damping inherently provided to
LRV modes by fluid-film journal bearings and/or squeeze-film dampers
does not help damp TRV modes because the TRV modes are nearly uncou-
pled from the LRV modes in most cases. With very little damping, excitation
of a TRV mode can readily lead to a serious machine failure without warn-
ing. Because TRV modes are usually uncoupled from LRV modes, TRV
modes can be continuously or intermittently undergoing large amplitude
forced resonance without the machine exhibiting any readily monitored or
outward signs of distress or “shaking.” That is, there is no sign of distress
until the shaft suddenly fails from a through-propagated fatigue-initiated
crack in consequence of vibration-caused material fatigue. When a machine
specified to have say a 40-year design life experiences such a failure after
say 6 months in service, one strongly competing conclusion is the follow-
ing: some discounted phenomenon (like TRV) had in fact become significant to
the product. Some notable examples of TRV “earning” its deserved recog-
nition as an important design consideration involves synchronous motors
with slow speed-ups of large rotary inertia drive lines and early frequency-
inverter variable-speed induction electric motor drives. In both of these cases,
pulsating motor torque is the source of excitation.

As described in the book by Vance (1988), the start-up of a large power
synchronous electric motor produces a pulsating torque with a frequency
that changes from twice line frequency at start, down to zero at syn-
chronous operating speed. The peak-to-peak magnitude of the torque
pulsation varies with speed and motor design, but is often larger than
the average torque. Any TRV mode with a natural frequency in the
zero to twice-line-frequency range is therefore potentially vulnerable to
large amplitude excitation during the start-up transient. In a worst-case
scenario, a number of large single rotors are coupled (tandem, paral-
lel, or other), yielding some coupled-system low natural frequencies,
and a large total rotary inertia for a relatively long start-up exposure
time to forced resonances. In an application where such a machine must
undergo a number of start–stop cycles each day, a shaft or other drive-
line failure within 6 months of service is a likely outcome. Synchronous
motor-powered drive trains are just one important example where the
rotor system must be analyzed at the design stage to avoid such TRV-
initiated failures. Special couplings that provide TRV damping, or act
as torsional low-pass filters, and other design approaches are used. Suc-
cessful use of such approaches requires careful analyses, thus the major
thrust of this chapter is to present the formulation of TRV models for
such analyses.
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3.2 Rotor-Based Spinning Reference Frames

To properly visualize TRV, one must consider that the relatively small
torsion-twisting angular velocities of TRV are superimposed on the consid-
erably larger rotor spin velocity. That is, the TRV angular displacements,
velocities, and accelerations are referenced to a rotating (noninertial)
reference frame that rotates at the spin velocity. However, TRV equations
of motion are generally derived as though the coordinate system is not
rotating. The reason this produces proper motion equations warrants a
fundamental explanation. As developed in Chapter 2, the rate-of-change
of a rigid body’s angular momentum vector, prescribed in a coordinate
system rotating at Ω, is given by Equation 2.15. The same form of equa-
tion applies to time differentiation of any vector prescribed in a rotating

reference frame. The instantaneous total angular velocity (̇θT
i ) at a rotor

mass station is the sum of the instantaneous TRV velocity (̇θi) and the
instantaneous rotor spin velocity (ω), shown as follows:

̇θT
i = ̇θi + ω (3.1)

Thus, the inertial angular acceleration at a rotor station is as follows:

qT
i  =  qi  +  w  =  (qi )w  +  w  ¥  qi  +  w

0

(3.2)

The spin and TRV velocity vectors are coaxial; thus their cross product
is zero, as indicated in Equation 3.2. Furthermore, for most TRV anal-
ysis purposes, rotor spin acceleration (ω̇) is taken as zero, that is, ω ∼=
constant, so θ̈T

i = θ̈i. Inertial angular acceleration vectors for TRV can then
be given as follows:

̈θi = (̈θi)ω (3.3)

That TRV equations of motion are derived as though the rotor is not
spinning about its axis is thus shown to be valid.

3.3 Single Uncoupled Rotor

Although TRV analysis is not needed for many single-rotor drive lines,
there are notable exceptions like large steam turbine generator sets. Fur-
thermore, the single uncoupled rotor model is the basic analysis model
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building block for the general category of coupled rotors. It is thus logi-
cal to begin TRV model development at the single rotor level. Chapter 1
provides the essential vibration concepts and methods to follow the pre-
sentations in this chapter. Also, the developments on LRV analysis models
presented in Chapter 2 have many similarities to the TRV model develop-
ments presented in this chapter. In particular, TRV equations of motion are
systematically assembled in matrix form based on standard finite-element
procedures, combining both structural (i.e., flexible) and nonstructural (i.e.,
lumped) mass contributions.

As explained in Sections 1.1 and 1.3, undamped models are accurate for
the prediction of natural frequencies in most mechanical systems. Since
most TRV systems are quite lightly damped, these prior arguments are
especially valid for TRV models. Thus, the focus here is on developing
undamped models. The TRV rotor model in Figure 3.1 shows a number of
rigid disks, each with a flexible torsional shaft connection to its immediate
neighbors, but no connections to ground. As shown, this model there-
fore has one so-called rigid-body mode about the rotor axis and its twisting
modes must each conserve angular momentum about the rotor axis. For
configurations where the driver (e.g., electric motor, turbine) and/or the
driven component (e.g., pump, compressor, fan) provide only relatively
low torsional stiffness connections to ground, a free–free TRV model, such
as in Figure 3.1, may be appropriate. However, in some applications the
interactive torsional stiffness of the driver and/or the driven components
cannot be neglected in making accurate predictions for natural frequencies
and mode shapes. For example, with a variable speed electric motor drive
having a high-gain feedback speed control, the effective rotor-to-ground
torsional stiffness effect at the motor may be quite significant.

Vance (1988) describes the relation of feedback speed control to TRV.
Stability analysis of the speed controller should couple the TRV differential
equations of motion to the differential equations of state for the controller
(see the last topic in Section 1.3 of Chapter 1). Such a stability analysis will

Rigid disk Torsionally
flexible shaft 

Actual
shaft

TRV model

FIGURE 3.1 Multielement TRV model for a single-shaft rotor.



Torsional Rotor Vibration Analysis Models 115

determine whether or not the controller gain must be reduced to avoid
TRV-controller system dynamic instabilities that could potentially excite
one or more of the rotor system’s many lightly damped torsional vibration
modes. Although long recognized, this is now a timely point to emphasize
because of the significantly increasing trend to use variable speed motors
with feedback speed control. This trend is fostered by the introduction of
many new types of variable speed electric motors utilizing microprocessor
speed controllers.

Assemblage of the mass and stiffness matrices for a single rotor such as
in Figure 3.1 follows the same approach used in Chapter 2 for LRV analysis
models. The basic TRV finite element used here has the identical geometric
features as its LRV counterpart shown in Figure 2.8. However, the TRV
model is postulated with torsional “twistability,” not the beam-bending
flexibility of the LRV model. The basic TRV finite element is shown in
Figure 3.2 and is comprised of a uniform diameter shaft element connecting
two rigid disks.

3.3.1 Lumped and Distributed Mass Matrices

As shown in Figure 3.2, the basic TRV finite element has only two DOFs
and is thus simpler than its 8-DOF LRV counterpart shown in Figure 2.8.
Both the lumped mass and distributed mass shaft element matrices are
presented here. The consistent mass matrix for the 2-DOF element in Fig-
ure 3.2 is the same as its distributed mass matrix. This is because the shaft
element’s torsional deflection is a linear (shape) function of axial posi-
tion between its two end point stations, and thus is consistent with the
piecewise linear variation of acceleration implicit in the distributed mass
formulation.

3.3.1.1 Lumped Mass Matrix

In this approach, it is assumed that for each uniform-diameter shaft ele-
ment, half its polar moment of inertia, I(s), is lumped at each of the

Torsionally twistible
shaft element 

q1 q2

Disk-1 Disk-2

Li

FIGURE 3.2 Rotor torsional finite-element 2-DOF building block.
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element’s two end points (stations). Implicit in this approximation is an
incremental step change in angular acceleration for each shaft element
at its axial midpoint. That is, the continuous axial variation in angular
acceleration is approximated by a series of small discrete step changes. A
concentrated (nonstructural) polar moment of inertia, I(d), may be option-
ally added at any rotor station as appropriate to model gears, couplings,
impellers, turbine disks, pulleys, flywheels, thrust-bearing collars, nons-
tiffening motor and generator rotor components, and so on. The complete
single-rotor (“sr”) lumped (“l”) mass matrix is thus a diagonal matrix, given
as follows:

[M]l
sr=

1
2 1 1

1 2 2

1

1

I I

I I I

I I I

I I

i i i

N N

(s)

(s) (s) (d)

(d)

(s) (s) (d)

(s) (d)

( )

( )

. . .
. . .

N×N

+

+

+ +

+ +

1
2

1
2

1
2

(3.4)

N = No. of rotor stations = No. of DOFs = No. of elements + 1.
Subscript on I(s) = Element Number, Subscript on = I(d) Station Number.

3.3.1.2 Distributed Mass Matrix

As similarly explained in Section 2.3 for LRV models, the underlying
assumption here is that the angular acceleration of each shaft element
about it axis varies linearly over its own length. Therefore, model reso-
lution accuracy is better with the distributed mass formulation than with
the lumped mass formulation. The better the model resolution accuracy,
the fewer the number of finite elements (or DOFs) needed to accurately
characterize the relevant modes of the actual continuous media system
using a discrete model. Consistent with the assumption that angular accel-
eration varies linearly between rotor stations, the angular velocity then
also must vary linearly between rotor stations. The instantaneous TRV
kinetic energy stored in the ith single shaft element can be formulated
from the integration of kinetic energy distributed over the ith element’s
length, similar to Equation 2.39 for LRV radial velocity components,
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as follows:

T(s)
i = 1

2
I(s)
i
Li

Li∫

0

(θ̇ + ω)
2 dz (3.5)

Substituting a linearly varying θ̇ and ω ≡ constant into Equation 3.5 yields
the ith shaft element’s torsional kinetic energy terms associated with the
θi and θi+1 Lagrange equations for the ith and (ith + 1) rotor stations. This
yields the following results, consistent with Equation 3.2 (i.e., ω ≡ constant,
∴ ω̇ = 0).

d
dt

(
∂T

∂ θ̇i

)
= 1

3 I(s)
i θ̈i + 1

6 I(s)
i θ̈i+1

d
dt

(
∂T

∂ θ̇i+1

)
= 1

6 I(s)
i θ̈i + 1

3 I(s)
i θ̈i+1

(3.6)

The complete single-rotor distributed mass matrix is thus a tridiagonal
matrix, as follows. Note the optional I(d) at each station, just as in
Equation 3.4.

Polar moment-of-inertia formulas for shaft elements and concentrated disks
are the same as given at the beginning of Section 2.3 for LRV models.

3.3.2 Stiffness Matrix

The TRV stiffness matrix [K]ff for a free–free single rotor, such as shown in
Figure 3.1, is quite simple to formulate. It is the torsional equivalent of the
type of translational system shown in Figure 1.8. That is, each rotor mass
station has elastic coupling only to its immediate neighbors. Therefore, the
single-rotor TRV stiffness matrix, shown as follows, is tridiagonal just as
shown for the system in Figure 1.8.

1
3

1
3

1
3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1 1 1

1 1 2 2 2

1 1

1 1

I I I

I I I I I

I I I I I

I I I

i i i i i
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(s) (s)

(s) (s)

(s) (s) (s) (s)

(s) (s) (d)

(d)

(s)

(d)

(d) (s)( )

( )

N×N

[ ]M sr
d =

+

. . .
. . .

(3.7)
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K

K1

N×N

[ ]ff =

-K1

KN-2 KN-1 -KN-1

-KN-1 KN-1

+-KN-2

K1 K2+-K1 -K2

Ki Ki+1 Ki+1+-Ki . . .

. . .

(3.8)

Subscript on K = Element Number.
Shaft element torsional stiffness:

K = π(d4
o − d4

i )G
32L

where do is the outside diameter, di is the inside diameter (optional concen-
tric hole), L is the element length, and G is the element material modulus
of rigidity.

The term “free–free” refers to a model that is both free of external forces
or torques and free of connections to the inertial frame of reference. The
free–free rotor stiffness matrix given in Equation 3.8 is a singular matrix
because it contains no torsional stiffness connections to the inertial frame
of reference. Therefore, the complete model obtained by combining the
stiffness matrix of Equation 3.8 with either the lumped or distributed mass
matrix in Equations 3.4 and 3.5, respectively, is a system with one rigid-
body mode (refer to Table 1.1, Case 4). All the generalized coordinates,
velocities, and accelerations here (i.e., θi, θ̇i, θ̈i) are coaxial; thus the model
is one-dimensional even though it is multi-DOF. This is why it has only
one rigid-body mode and why only one rigid or stiffness connection to the
inertial frame of reference, added at a single mass station, is required to
make the stiffness matrix nonsingular. With the addition of one or more
connections to ground, the model will not have a rigid-body mode. By com-
parison, general LRV models (Chapter 2) have four dimensions of motion
(x, y, θx, and θy). LRV models thus can have as many as four rigid-body
modes (two in the x–z plane and two in the y–z plane) if the rotor is com-
pletely unconnected to ground. Thus, for an LRV stiffness matrix to be
nonsingular, there must be a minimum of two stiffness connections in the
x–z plane plus two in the y–z plane, that is, like having a minimum of two
radial bearings. Discussion of this aspect of LRV models is also given in
Section 2.3.9.
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The general single-rotor TRV stiffness matrix [K]sr is the sum of the free–
free stiffness matrix [K]ff and a diagonal matrix [K]c containing the optional
one or more stiffness connections to the inertial frame, as follows. A rigid
connection to the inertial frame has no DOF at the connection point.

[ ]

( )

( )

( )

( )

( )

K

K

K

K

K

K

c

c

c

i
c

N
c

N
c

1

2

1

[ ] [ ] [ ]K K Ksr ff c

. . .
. . .

-

=

=

+ (3.9)

Equations of motion for the undamped single-rotor model are then as
follows:

[M]sr{θ̈} + [K]sr{θ} = {m(t)} (3.10)

Here, {m(t)} contains any externally applied time-dependent torque com-
ponents, such as to model synchronous generators of turbo-generators
during severe electrical disturbances like high-speed reclosure (HSR) of
circuit breakers after fault clearing of transmission lines leaving power
stations. Of course, to compute the undamped natural frequencies and
corresponding mode shapes, only the mass and stiffness matrices are
utilized.

3.4 Coupled Rotors

The single-rotor mass and stiffness matrices developed in the previous
section form the basic model building blocks for TRV coupled-rotor mod-
els. One of the many advantages of assembling the equations of motion
in matrix form is the ease with which modeled substructures can be
joined to assemble the complete equations of motion of a multisubstruc-
ture system.

Coaxial same-speed coupled-rotor configurations are the simplest TRV
coupled-rotor models to assemble, and are treated here first. Model
construction for a broader category of coupled-rotor TRV systems has
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additional inherent complexities stemming from the following three
features:

• Coupled rotors may have speed ratios other than 1:1.
• Torsional coupling may be either rigid (e.g., gears) or flexible (e.g.,

belt).
• System may be branched instead of unbranched.

An understanding of these complexities can be obtained by following
the formulation details of their TRV model constructions, which are pre-
sented subsequently in this section. The handling of these complexities is
simplified by the fact that correct TRV equations of motion can be derived
as though the rotors are not spinning, as shown in Section 3.2, Equation 3.3,
that is, modeled as though the coupled-rotor machine is not running.

3.4.1 Coaxial Same-Speed Coupled Rotors

This is a quite common configuration category and the most typical case
involves two single rotors joined by a so-called flexible coupling.Assembling
the mass and stiffness matrices for this case is quite simple, as shown by
the following equations. The total mass matrix can be expressed as follows:

[M] =
[[M1]sr [0]

[0] [M2]sr

]
(3.11)

Usually, a flexible coupling can be adequately modeled by two concen-
trated polar moment-of-inertias connected by a torsional spring stiffness.
The two concentrated coupling inertias I(c)

1 and I(c)
2 are added as concen-

trated inertias to the last diagonal element of [M1]sr and the first diagonal
element of [M2]sr, respectively. To assemble the total stiffness matrix, the
equivalent torsional spring stiffness K(c) of the coupling is used to join the
respective single-rotor stiffness matrices of the two rotors, as follows:

[ ]
[ ]

[ ]
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( ) ( )

( )
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K
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c
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c c

c c

ij

1

2
2 2

2

0
0 ×

2×2
+ = -

-
= (3.12)

The complete equations of motion for two coaxially coupled rotors
are then expressible in the same matrix format as Equation 3.10, that is,
[M]{θ̈} + [K]{θ} = {M(t)}. For three or more simply connected same-speed
flexible-coupled rotors, the above process is taken to its natural extension.
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3.4.2 Unbranched Systems with Rigid and Flexible Connections

For rotors coupled by gears, the appropriate model for TRV coupling
could be flexible or rigid, depending on the particulars of a given appli-
cation. When the gear teeth contact and gear wheel combined equivalent
torsional stiffness is much greater than other torsional stiffnesses in the
system, it is best to model the geared connection as rigid so as to avoid
any computational inaccuracies stemming from large disparities in con-
necting stiffnesses. The configuration shown in Figure 3.3 contains both a
geared connection and a pulley–belt connection of a three-shaft assembly.
Although the shown shafts are mutually parallel, this is not a restriction
for the TRV models developed here.

The configuration shown in Figure 3.3 is categorized as an unbranched
system. The full impact of this designation is fully clarified in the next sub-
section that treats branched systems. Whether a TRV system is branched or
unbranched made a lot of difference in computer programming complexity
when older solution algorithms (e.g., transfer matrix method) were used.
With the modern finite-element-based matrix approaches used exclusively
in this book, additional programming complexities with branched systems
are not nearly so significant as with the older algorithmic methods that were
better matched to the relatively limited memory of early generation com-
puters. A coupled-rotor TRV system is defined here as unbranched when
each of the coupled rotors in the drive train is connected to the next or
previous rotor only at its two end stations (i.e., first or last), is not connected
to more than one rotor at either end station, and is not connected to the
same rotor at both end stations. When this is the case, the stiffness matrix
for the coupled system is tridiagonal, just like the individual rotor stiffness
matrices. The simplest example of this is the stiffness matrix for coaxial
same-speed coupled rotors, Equation 3.12, which is tridiagonal. The Figure 3.3
system also clearly fits the definition of an unbranched TRV system, and is

Gear set

Pulley–belt set

Rotor-1
Rotor-2

Rotor-3

qi,1

qi,2

qi,3

FIGURE 3.3 Unbranched three-rotor system with a gear set and a pulley–belt set.
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here used to show the formulation for TRV equation-of-motion matrices
of arbitrary-speed-ratio rotors with rigid and flexible unbranched connections.

3.4.2.1 Rigid Connections

The gear set of the system in Figure 3.3 will be assumed to be torsionally
much stiffer than other torsional flexibilities of the system, and thus taken
as perfectly rigid. The TRV angular displacements of the two gears are
then constrained to have the same ratio as the nominal speed ratio of the
two-gear set. Thus, one equation of motion must be eliminated either from
rotor-1 (last station) or rotor-2 (first station). Here the equation of motion
for the first station of rotor-2 is absorbed into the equation of motion for
last station of rotor-1. The concentrated inertia of the rotor-2 gear is thus
transferred to the rotor-1 station with the mating gear. Defining n21 as the
speed ratio of rotor-2 to rotor-1, and θi,j as ith angular coordinate of the jth
rotor, the TRV angular coordinate of the rotor-2 gear is expressed in terms
of the rotor-1 gear’s coordinate, as follows. Note the opposite positive sense
for θi,2, Figure 3.3.

θ1,2 = n21θN1,1 (3.13)

where N1 = number of stations on rotor-1 = station number rotor-1’s last
station.

The TRV kinetic energy of the two rigidly coupled gears is thus
expressible as follows:

Tgears
12 = 1

2 I(d)
N1,1θ̇

2
N1,1 + 1

2 I(d)
1,2 θ̇2

1,2 = 1
2

(
I(d)
N1,1 + n2

21I(d)
1,2

)
θ̇2

N1,1 (3.14)

where I(d)
i,j ≡ nonstructural concentrated inertia for the ith station of the

jth rotor.
The combined TRV nonstructural inertia of the two gears is thus lumped

in the motion equation for station N1 of rotor-1 as follows:

d
dt

(
∂Tgears

12

∂ θ̇N1,1

)
=
(

I(d)
N1,1 + n2

21I(d)
1,2

)
θ̈N1,1 (3.15)

As previously detailed in Section 3.3, shaft element structural mass is
included by using either the lumped mass or the distributed mass approach.
For the lumped mass approach, the shaft element connecting the rotor-2 first
and second stations has half its inertia lumped at the last station of rotor-1
(with the n2

21 multiplier) and half its inertia lumped at the rotor-2 second
station. For the distributed mass approach (in TRV, same as the consistent
mass approach), the shaft element kinetic energy is integrated along the
first shaft element of rotor-2, as is similarly shown in Equations 3.5 and 3.6.
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That is, postulating a linear variation of angular velocity along the shaft
element, and substituting from Equation 3.13 for θ1,2, yields the following
equation for the TRV kinetic energy of shaft element-1 of rotor-2.

T(s)
1,2 = I(s)

1,2

6

(
n2

21θ̇
2
N1,1 + n21θ̇N1,1θ̇2,2 + θ̇2

2,2

)
(3.16)

The following equation-of-motion distributed mass inertia contributions of
this shaft element to the stations that bound it are accordingly obtained:

d
dt

(
∂T(s)

1,2

∂ θ̇N1,1

)
= 1

3 n2
21I(s)

1,2θ̈N1,1 + 1
6 n21I(s)

1,2θ̈2,2

d
dt

(
∂T(s)

1,2

∂ θ̇2,2

)
= 1

6 n21I(s)
1,2θ̈N1,1 + 1

3 I(s)
1,2θ̈2,2

(3.17)

where I(s)
i,j ≡ structural inertia for the ith shaft element of the jth rotor.

Postulating a rigid connection between the two gears in Figure 3.3 elimi-
nates one DOF (i.e., the first station of rotor-2). The corresponding detailed
formulations needed to merge the rotor-1 and rotor-2 mass matrices are
contained in Equations 3.13 through 3.17. Merging the rotor-1 and rotor-2
stiffness matrices must also incorporate the same elimination of one DOF.
Specifically, shaft element-1 of rotor-2 becomes a direct torsional stiffness
between the last station of rotor-1 and the second station of rotor-2. This
stiffness connection is almost as though these two stations were adjacent
to each other on the same rotor, except for the speed-ratio effect. The eas-
iest way to formulate the details for merging rotor-1 and rotor-2 stiffness
matrices is to use the potential energy term of the Lagrange formulation
for the equations of motion, as follows (see Equation 2.50):

V1,2 = 1
2 K1,2(θ1,2 − θ2,2)

2 (3.18)

whereVi,j ≡ TRV potential energy stored in ith shaft element of the jth rotor
and Ki,j ≡ Torsional stiffness of the ith shaft element of the jth rotor.

Substituting from Equation 3.13 for θ1,2 into Equation 3.18 thus leads to
the following terms for merging rotor-1 and rotor-2 stiffness matrices:

∂V1,2

∂θN1,1
= K1,2(n2

21θN1,1 − n21θ2,2)

∂V1,2

∂θ2,2
= K1,2(−n21θN1,1 + θ2,2)

(3.19)
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Before implementing the terms for connecting rotor-1 to rotor-2, the
detailed formulations for connecting rotor-2 to rotor-3 are first developed
so that the mass and stiffness matrices for the complete Figure 3.3 system
can be assembled.

3.4.2.2 Flexible Connections

The pulley–belt set in Figure 3.3 connecting rotor-2 to rotor-3 is assumed
to be a flexible connection and thus no DOF is eliminated, contrary to the
rigid connection case. A flexible connection does not entail modifications to
the mass matrix of either of the two flexibly connected rotors. Only the
stiffness of the belt must be added to the formulation to model the flexible
connection. It is assumed that both straight spans of the belt connecting
the two pulleys are in tension, and thus both spans are assumed to have
the same tensile stiffness, kb, and their TRV stiffness effects are additive
like two springs in parallel. The easiest way to formulate the merging
rotor-2 and rotor-3 stiffness matrices is to use the potential energy term of
the Lagrange formulation, as shown in Equation 2.50. To model gear-set
flexibility, replace 2kb with pitch-line kg and define Rj as jth pitch radius,
not jth pulley radius.

Vb = 1
2 (2kb)(θN2,2R2 − θ1,3R3)

2

= kb(θ2
N2,2R2

2 − 2θN2,2θ1,3R2R3 + θ2
1,3R2

3) (3.20)

∂Vb

∂θN2,2
= 2kb(θN2,2R2

2 − θ1,3R2R3)

∂Vb

∂θ1,3
= 2kb(−θN2,2R2R3 + θ1,3R2

2)

(3.21)

where Rj ≡ pulley radius for the jth rotor, Vb ≡ TRV potential energy in
belt and N2 = Number of stations on rotor-2 = Station number rotor-2’s
last station.

At this point, all components needed to write the equations of motion
for the TRV system in Figure 3.3 are ready for implementation.

3.4.2.3 Complete Equations of Motion

For the individual rotors, the distributed mass approach is used here simply
because it is better than the lumped mass approach, as discussed earlier.
Thus, Equation 3.7 is applied for construction of the three single-rotor
mass matrices, [M1], [M2], and [M3]. Equation 3.9 is used to construct
the three single-rotor stiffness matrices [K1], [K2], and [K3], adding any
to-ground flexible connections to the free–free TRV stiffness matrices from
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Equation 3.8. At this point, constructing the total system mass and stiffness
matrices only entails catenating the single-rotor matrices and implement-
ing the already developed modifications to the matrices dictated by the
rigid and flexible connections. Employing modifications extracted from
Equations 3.15 and 3.17, [M1] is augmented as follows. Superscript “rc”
refers to rigid connection.

(d) (s)n I n I21
2

1,2 21
2

1,2
1
3

N1×N1

+

[ ] [ ] [ ]*M M M rc
1 1 1 , where [ ]Mrc

1

All elements in [ ]Mrc
1 are

zero except element (N N1 1, ).

= + (3.22)

Eliminating its first row and first column, [M2] is reduced to [M∗
2]. The

complete system mass matrix can be assembled at this point, catenating
[M∗

1], [M∗
2], and [M∗

3], and adding the cross-coupling terms contained in
Equation 3.17, as follows:

[M] =
⎡
⎣
[
M∗

1
]

Mcc
Mcc
[
M∗

2
]

[M3]

⎤
⎦

N×N

(3.23)

Subscript “cc” refers to cross-coupling.

MN1,N1+1 = MN1+1,N1 = 1
6 n21I(s)

1,2 ≡ Mcc, N = N1 + (N2 − 1) + N3

The complete system stiffness matrix [K] is similarly constructed. Employ-
ing modifications extracted from Equation 3.19, [K1] is augmented as
follows:

[ ] [ ] [ ]*K K Krc
1 1 1 , where [ ]K

n K

rc
1

21
2

1,2
N1×N1

All elements in [ ]K rc
1  are 

zero except element (N N1 1, ).

= =+ (3.24)

Eliminating its first row and first column, [K2] is reduced to [K#
2 ], which

is augmented to form [K∗
2 ] as follows. Superscript “fc” refers to flexible

connection.

[ ] [ ] [ ]* #K K Kfc
2 2 2

fc
2

fc
2, where [ ]K

k Rb 2
22

N N2 2
* *×

All elements in [ ]K are
zero except element (N N2 2

* *, ).

= =+
(3.25)
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[ ]K3 is augmented to form [ ]*K3 as follows.

[ ] [ ] [ ], where*K K K fc
3 3 3 [ ]K

k R

fc

b

3

3
22

N N3 3×

All elements in [ ]K fc
3 are

zero except element (1,1).

N N2 2 1* = -

= =+

(3.26)

The complete system stiffness matrix can be assembled at this point, cate-
nating [K∗

1 ], [K∗
2 ], and [K∗

3 ], and adding the cross-coupling terms contained
in Equations 3.19 and 3.21, as follows:

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ K∗

1

⎤
⎦

K1,2
cc

K1,2
cc

⎡
⎣ K∗

2

⎤
⎦

K2,3
cc

K2,3
cc

⎡
⎣ K∗

3

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

(3.27)

K1,2
cc ≡ −n21K1,2; extracted from Equation 3.19

K2,3
cc ≡ −2kbR2R3; extracted from Equation 3.21

The complete TRV equations of motion for the Figure 3.3 system are thus
expressible in the same matrix format as Equation 3.10, that is, [M]{θ̈} +
[K]{θ} = {m(t)}. The [M] and [K] matrices here are tridiagonal, which is
consistent with the designation of unbranched. The formulations devel-
oped here are readily applicable to any unbranched TRV system of coupled
rotors.

3.4.3 Branched Systems with Rigid and Flexible Connections

The system shown in Figure 3.4 bears a close similarity to the system in
Figure 3.3, except that its gear set and pulley set are located inboard of
their respective rotor ends, each of these connections thus making it a
branched system. Its [M] and [K] matrices are therefore not tridiagonal, as
now shown.
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FIGURE 3.4 Branched three-rotor system with a gear set and a pulley–belt set.

Constructing mass and stiffness matrices for the Figure 3.4 system
follows the same procedures of the previous subsection for unbranched
systems. For the individual rotors, the distributed mass approach is again
used, applying Equation 3.7 for construction of the single-rotor mass matri-
ces, [M1], [M2], and [M3]. Also, Equation 3.9 is again used to construct the
single-rotor stiffness matrices [K1], [K2], and [K3], adding any to-ground
flexible connections to the free–free TRV stiffness matrices from Equa-
tion 3.8. Using the standard substructuring approach previously applied
here to unbranched systems, constructing the [M] and [K] matrices for the
Figure 3.4 system is only slightly more involved than for the Figure 3.3
system.

3.4.3.1 Rigid Connections

The two gears joining rotor-1 to rotor-2 are assumed here to be a per-
fectly rigid torsional connection between the two rotors. Accordingly, the
equation of motion for the rotor-2 gear station (NG2) is absorbed into the
equation of motion for the rotor-1 gear station (NG1), with the eliminated
rotor-2 gear DOF (θNG2,2) expressed by the constant speed ratio (n21) times
the rotor-1 gear coordinate (θNG1,1), as follows (n21 ≡ ω2/ω1).

θNG2,2 = n21θNG1,1 (3.28)

Similar to Equation 3.14, the TRV kinetic energy of the two rigidly
coupled gears is thus expressible as follows:

Tgears
12 = 1

2 I(d)
NG1,1θ̇

2
NG1,1 + 1

2 I(d)
NG2,2θ̇

2
NG2,2 = 1

2

(
I(d)
NG1,1 + n2

21I(d)
NG2,2

)
θ̇2

NG1,1

(3.29)
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The combined TRV nonstructural inertia of the two gears is thus lumped
in the motion equation for station NG1 of rotor-1 as follows:

d
dt

(
∂Tgears

12

∂ θ̇NG1,1

)
=
(

I(d)
NG1,1 + n2

21I(d)
NG2,2

)
θ̈NG1,1 (3.30)

Using the distributed mass approach, the TRV kinetic energy of the rotor-
2 shaft element just to the left of rotor-2’s station NG2 and of the element
just to the right of station NG2 are derived to be the following, similar to
Equation 3.16:

T(s)
NG2−1,2 = I(s)

NG2−1,2

6

(
n2

21θ̇
2
NG1,1 + n21θ̇NG1,1θ̇NG2−1,2 + θ̇2

NG2−1,2

)

T(s)
NG2,2 = I(s)

NG2,2

6

(
n2

21θ̇
2
NG1,1 + n21θ̇NG1,1θ̇NG2+1,2 + θ̇2

NG2+1,2

) (3.31)

The following distributed mass matrix contributions of these two rotor-2
shaft elements are thus obtained, similar to Equation 3.17:

d
dt

(
∂T(s)

NG2−1,2

∂ θ̇NG1,1

)
= 1

3 n2
21I(s)

NG2−1,2θ̈NG1,1 + 1
6 n21I(s)

NG2−1,2θ̈NG2−1,2

d
dt

(
∂T(s)

NG2−1,2

∂ θ̇NG2−1,2

)
= 1

6 n21I(s)
NG2−1,2θ̈NG1,1 + 1

3 I(s)
NG2−1,2θ̈NG2−1,2

d
dt

(
∂T(s)

NG2,2

∂ θ̇NG1,1

)
= 1

3 n2
21I(s)

NG2,2θ̈NG1,1 + 1
6 n21I(s)

NG2,2θ̈NG2+1,2

d
dt

(
∂T(s)

NG2,2

∂ θ̇NG2,2

)
= 1

6 n21I(s)
NG2,2θ̈NG1,1 + 1

3 I(s)
NG2,2θ̈NG2+1,2

(3.32)

Equations 3.30 and 3.32 contain all the terms needed to merge rotor-1
and rotor-2 mass matrices.

The following formulation details for merging rotor-1 and rotor-2 stiff-
ness matrices are developed using the potential energy term of the
Lagrange formulation, the same procedure as used to develop Equa-
tions 3.18 and 3.19.

VNG2−1,2 = 1
2 KNG2−1,2(θNG2,2 − θNG2−1,2)

2

VNG2,2 = 1
2 KNG2,2(θNG2+1,2 − θNG2,2)

2
(3.33)
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Substituting from Equation 3.28 for θNG2,2 into Equation 3.33 thus leads
to the following terms for merging rotor-1 and rotor-2 stiffness matrices:

∂VNG2−1,2

∂θNG1,1
= KNG2−1,2

(
n2

21θNG1,1 − n21θNG2−1,2

)
∂VNG2−1,2

∂θNG2−1,2
= KNG2−1,2

(−n21θNG1,1 + θNG2−1,2
)

∂VNG2,2

∂θNG1,1
= KNG2,2

(
n2

21θNG1,1 − n21θNG2+1,2

)
∂VNG2,2

∂θNG2,2
= KNG2,2

(−n21θNG1,1 + θNG2+1,2
)

(3.34)

3.4.3.2 Flexible Connections

As a torsionally flexible connection between rotor-2’s station NP2 and rotor-
3’s station NP3, the pulley–belt set in Figure 3.4 needs no corresponding
modifications to the mass matrix of either of the two rotors. Following the
identical procedure used to develop Equations 3.20 and 3.21, the formu-
lation details for merging the rotor-2 and rotor-3 stiffness matrices are as
follows:

Vb = 1
2 (2kb)

(
θNP2,2R2 − θNP3,3R3

)2
= kb

(
θ2

NP2,2R2
2 − 2θNP2,2θNP3,3R2R3 + θ2

NP3,3R2
3

)
(3.35)

∂Vb

∂θNP2,2
= 2kb

(
θNP2,2R2

2 − θNP3,3R2R3

)
∂Vb

∂θNP3,3
= 2kb

(
−θNP2,2R2R3 + θNP3,3R2

3

) (3.36)

As explained in Equation 3.20, this formulation is applicable to flexible
gear sets.

At this point, all components needed to write the equations of motion
for the TRV system in Figure 3.4 are ready for implementation.

3.4.3.3 Complete Equations of Motion

Assembling [M] and [K] for the complete system in Figure 3.4 follows the
same procedures used in the previous subsection for unbranched systems.
The main difference with branched systems is that the matrices of the respec-
tive coupled rotors are not just catenated with tridiagonal splicing. With
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branched systems, the catenated matrices are instead spliced at their respec-
tive intermediate connection coordinates; hence the bandwidths of [M] and
[K] are not limited to being tridiagonal. Directions for the attendant matrix
bookkeeping are clearly indicated by Equations 3.30, 3.32, and 3.34 for
rigid connections between rotors, and Equation 3.36 for flexible connections
between rotors. In the interest of space, the complete [M] and [K] matrices
for Figure 3.4 system are not written here.

3.5 Semidefinite Systems

Some of the problem exercises at the end of this chapter entail what are
called semidefinite systems, for example, Problems 1 and 2. Synonymous
with this designation is a system having a singular stiffness matrix, or
a system with a natural frequency equal to zero. When a natural fre-
quency is zero, the corresponding mode shape is a rigid body one. The
other modes of such a system are commonly referred to as free–free modes,
which are relative to the rigid-body mode(s). Modern finite-element codes
automatically handle systems with zero natural frequencies. However, for
semidefinite systems when setting up motion equations external to some
automatic code, one may first reduce the number of motion equations by
the degree of singularity of the stiffness matrix. That is, the rigid-body
modes are constraint equations that reduce the number of generalized coor-
dinates needed to express the motion equations relative to the rigid-body
modes. The resulting reduced stiffness matrix is then nonsingular, that is,
|K| 
= 0. Any modern text devoted entirely to vibration theory will provide
a detailed treatment on semidefinite systems and their handling.

3.6 Examples

3.6.1 High-Capacity Fan for Large Altitude Wind Tunnel

The large two-stage fan illustrated in Figure 3.5 has an overall length
of 64 m (210 ft) and requires several thousand horsepower from its two
electric drive motors to operate at capacity. This machine fits into the pre-
viously designated TRV category of coaxial same-speed coupled rotors. The
drive-motor portion of this machine is constructed with an extended shaft
length adjacent to each motor so that the two motor stators can easily be
moved horizontally to expose motor internals for inspection and service.
This need to provide unobstructed space adjacent to each motor, as shown
in Figure 3.5, adds considerably to the motor shaft overall length. This
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FIGURE 3.5 Altitude wind tunnel high-capacity two-stage fan.

complete turbo-machine is substantially longer, but of substantially less
power and torque (i.e., smaller diameter shafting) than typical large steam
turbo-generator sets. These factors combine to produce a quite torsionally
flexible rotor, giving rise to the highest potential for serious TRV resonance
problems that must be addressed at the design stage for the machine to
operate successfully.

Since this fan powers an altitude wind tunnel, the internal air pressure
of the wind tunnel, and therefore of the fan, is controlled to pressures
below outside ambient pressure. A close inspection of the fan portion of
this machine reveals that the drive shaft passes into the fan/wind tun-
nel envelope within a coaxial nonrotating cylindrical section which is
internally vented to the outside ambient pressure. The fan shaft and its
bearings are thus at outside ambient pressure. Controlled-leakage dynamic
seals are therefore located on the fan-blade hubs, thus requiring axially
accurate positioning of the seal parts on the rotor with respect to close-
proximity nonrotating seal components. As a consequence, the fan and
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the motor shafts each have their own double-acting oil-film axial thrust
bearing and the two shafts are connected by a 3 m “floating shaft” with
couplings that allow enough free axial relative displacement between fan
and motor shafts to accommodate differential thermal expansion or other
such relative movements. The central of three oil-film radial bearings on
the fan shaft also houses the double-acting oil-film thrust bearing. Being
located axially close to the two fan-blade rows, this thrust bearing pro-
vides the required axially accurate positioning of the fan rotor with respect
to the controlled-leakage dynamic seals at the fan-blade hubs. The motor
shaft’s double-acting oil-film thrust bearing is housed with the motor-shaft
oil-film radial bearing closest to the fan shaft.

The torsionally soft floating-shaft connection between the motor and fan
rotors essentially also provides a TRV low-pass filter that isolates the two
rotors insofar as most important TRV modes are concerned. This does not
in any way lessen the need for extensive TRV design analyses for this
machine, but it does isolate any significant motor-produced torque pulsa-
tions from “infesting” the fan rotor and any of its lightly damped fan-blade
natural-frequency modes. Both the motor and the fan rotors each must be
analyzed in their own right to determine the possibilities for TRV forced
resonances from torque pulsations and the corresponding potential need
for TRV damping to be designed into one or more of the five shaft couplings.

3.6.2 Four-Square Gear Tester

This is a well-known type of test machine in the gear industry for test-
ing high-torque capacity gears. The basic principle is quite simple. Two
gear sets of the same speed ratio and pitch diameters are mounted on
two parallel shafts as illustrated in Figure 3.6. One of the shafts or one of
the gear-to-shaft mountings is made so that its torsional characteristic is
relatively quite flexible. The gears are meshed with a prescribed pretwist
in the torsionally flexible component, thereby “locking in” a prescribed
test torque that the two gear sets apply against each other. The torque and
power required of the drive motor is then only what is needed to accommo-
date the relatively small nonrecoverable power losses in the gears, shaft
bearings, couplings, seals, windage, and so on. Clearly, this type of test
machine eliminates the large expense of a drive motor with torque and
power ratings of the gears. Only one of the gear sets needs to be tested
gears, whereas the other gear set may be viewed as the energy regenerative
set, designed to the machine’s maximum capacity.

The configuration in Figure 3.6 is clearly a TRV branched system. The pri-
mary need for TRV design analyses of this type of machine stems from the
low torsional stiffness inherent in its basic operating principle. The drive
motor is most likely of a controlled variable speed type and may inher-
ently produce torque pulsations. Also, as mentioned in the introductory
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FIGURE 3.6 Conceptual illustration of a four-square gear tester.

comments of this chapter, if the speed controller employs speed feedback,
then the differential equations of state for the motor controller should be
coupled to the TRV equations of motion of the rotor system to analyze
the potential for instability type self-excited TRV. Furthermore, geomet-
ric inaccuracies are inherent in all gear sets and are a potential source
for resonance excitation of TRV modes. It is likely that a special coupling
with prescribed damping characteristics is a prudent component for such a
machine as a preventative measure against any of these potentially serious
TRV problems from occurring.

Because of the potential use of a torsionally flexible gear-to-shaft mount-
ing for a four-square gear tester, proper modeling formulation for TRV-
flexible gear sets is reiterated here. The modeling formulations given in
Equations 3.21 and 3.36 were derived using the flexible pulley–belt con-
nection of Figures 3.3 and 3.4 unbranched and branched configurations,
respectively. These equations also provide the proper formulation for gear
sets deemed flexible instead of rigid, as stated in the previous section. To
model a TRV-flexible gear set, the factor 2kb in Equations 3.21 and 3.36 is
replaced with kg, the equivalent tangential translation stiffness of the gear
set. This is illustrated in Figure 3.7.

Two mating gear teeth
on dedendum circles

Model with equivalent stiffness
(kb) tangent to pitch circles

f
f

+

+

kg

+

+

FIGURE 3.7 TRV-flexible gear-set model (φ ≡ gear pressure angle).
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3.6.3 Large Steam Turbo-Generator Sets

Modern single-drive-line large steam turbo-generators are in the power
range of approximately 300–800 megawatts (MW). The rotor shown in
Figure 2.1 is for a unit in the lower half of this power range since it has only
one low-pressure (LP) turbine, whereas the largest single-drive-line units
typically have two or even three LP turbines. Single-boiler cross-compound
configurations as large as 1300 MW are in service, but are actually two
650 MW side-by-side drive lines, having a high-pressure (HP) turbine + 2
LP turbines + generator/exciter on one rotor and an intermediate-pressure
(IP) turbine + 2 LP turbines + generator/exciter on the second rotor, with
interconnecting steam lines (for further description, see Section 11.2).

The primary TRV problems concerning large turbo-generator units are
the high alternating stresses caused by transient TRV that occurs as a result
of the electrical connection transients associated with power-line transmis-
sion interruption and restoration. Weather storms, severe lightning, and
malfunctions of protective systems are the prominent causes of these harm-
ful interactions between the electrical and the mechanical systems due to
the switching procedures used to restore the network transmission lines.
Faced with the possibility of system collapse (i.e., major regional blackout),
the power generation industry desires increased switching speeds. This
runs counter to the turbo-generator manufacturers’ efforts to minimize
the problem of cumulative fatigue damage accrued at critical rotor locations
in each such transient disturbance. There are several categories of electri-
cal network disturbances including the following that are most prominent:
(a) transmission line switching, (b) high-speed reclosing of circuit breakers
after fault clearing on transmission lines leaving power stations, (c) single-
phase operation that produces alternating torques at twice the synchronous
frequency, (d) out-of-phase synchronization, (e) generator terminal faults,
and (f) full load trips.

A comprehensive set of TRV analyses are reported by Maghraoui (1985,
see Bibliography at end of this chapter), whose 93 DOF TRV model
for an actual 800 MW single-drive-line turbo-generator is shown here in
Figure 3.8 (illustration not to scale). The turbine section of the turbo-
generator unit modeled is similar to that illustrated in Figure 3.9, except for
the rigid couplings. The primary focus of Maghraoui’s work is to model
and compute transient TRV for an HSR event on the 800 MW unit mod-
eled in Figure 3.8. In that work, the model is used to accurately extract
the eight lowest-frequency undamped modes (i.e., natural frequencies
and corresponding mode shapes). Using these modes, the TRV transient
response through a typical HSR event is computed by superimposing
the contributions of all the included modes, using the methods given in
Section 1.3. Maghraoui gives a comprehensive bibliography on the overall
topic of electrical network disturbances, from which the following formula
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FIGURE 3.8 Layout for 93-DOF model of 800 MW 3600 rpm turbo-generator.
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FIGURE 3.9 Turbine section of an 800 MW 3600 rpm turbo-generator (generator not shown).

is obtained for electrically imposed generator torque fluctuations caused
by various transient electrical disturbances, such as those previously listed:

TE = Ao + A1e−α1t cos(ωot + δ1) + A2e−α2t cos(2ωot + δ2)

+ A3e−α3t cos(ωnt + δ3) (3.37)

The system’s synchronous frequency is given by (ωo). Appropriate input
values of disturbance electromechanical frequency (ωn), the phase angles
δj, the damping exponents (αj), and amplitude coefficients (Aj) are tab-
ulated by Maghraoui for successful and unsuccessful HSR from mild to
severe conditions.

3.7 Summary

Table 3.1 summarizes interesting and important contrasts between TRV
and LRV. TRV is often not an important consideration in many rotating
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TABLE 3.1

Contrasting Characteristics of TRV and LRV in Single Rotors

Lateral Rotor Vibration Torsional Rotor Vibration

Always an important consideration Often not an important consideration
Resonant modes are usually sufficiently

damped by bearings, seals, and so on
Modes are very lightly damped, so

resonance avoidance is a “must”
More difficult to accurately model and

computationally simulate because of the
uncertainties in rotor-dynamic properties
of bearings and seals

Relatively easy to accurately model and
simulate because of decoupling from LRV
modes

Easy to measure and monitor, thus does not
become dangerously excessive with no
warning, making LRV monitoring of
rotating machinery now common

Can become excessive with no obvious
outward symptoms or readily monitored
motion. First sign of trouble can be seen
when the shaft fails from material fatigue

machinery types, especially in machines with single uncoupled rotors.
However, in contrast to LRV modes, TRV modes are nearly always very
lightly damped, unless special design measures such as a flexible coupling
with TRV damping capacity are taken. Therefore, if torque fluctuations
with a substantial frequency content of one or more TRV modes are present,
shaft failure from material fatigue can readily occur after only a relatively
short time period of machine operation. Because TRV modes are usually
uncoupled from LRV modes, TRV modes can be continuously or intermit-
tently undergoing large amplitude forced resonance without the machine
exhibiting any readily monitored or outward signs of distress or “shak-
ing.” The first sign of distress may be when a material-fatigue-initiated
shaft failure occurs. When single rotors are coupled together, the possi-
bility for excitation of coupled-system torsional natural frequency modes
is greater. In most coupled drive trains, it is the characteristics of the cou-
plings, gear trains, and electric motors or generators that instigate TRV
problems.

Although rotating machinery TRV problems are less amenable to mon-
itoring and early detection than LRV problems, TRV characteristics can
generally be more accurately modeled for predictive analyses than LRV.
This is because TRV is usually uncoupled from the characteristics (i.e.,
bearings, seals, and other rotor-casing interactions) that make LRV model-
based predictions more uncertain and challenging to perform. Further-
more, since TRV modes of primary importance (i.e., those in the lower
frequency range of the system) are almost always quite lightly damped,
accurate prediction of TRV natural frequencies and corresponding mode
shapes is further enhanced. That is, the actual system’s TRV characteristics
are essentially embodied in its model’s mass and stiffness matrices, which
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are accurately extractable from the detailed rotor geometry through the
modern finite-element modeling procedures developed and explained in
this chapter.

The primary focus of this book and its subsequent chapters is on LRV.
So to make this chapter on TRV more “stand alone” than its LRV coun-
terpart (Chapter 2), Section 3.6 on TRV Examples has been included in this
chapter.
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PROBLEM EXERCISES

1. A single drive-line pump and coupled drive motor are mod-
eled as a torsionally twistable shaft of relatively small mass and
torsional stiffness K connecting two disks of polar moments
of inertia, JM and JP, for the motor rotor and pump impeller,
respectively. Derive the equations of motion, natural frequencies,
and mode shapes. Assume that torsional stiffness connections
to ground are negligible.

JM
K

JP

2. An improved model for the system of Problem 1 accounts for the
polar moment of inertia of the coupling JC that joins the pump
and motor shafts. Again, assuming that torsional stiffness con-
nections to ground are negligible, derive the equations of motion,
natural frequencies, and mode shapes.

JM KP
JP

JC

KM

3. A modified version of the Problem 1 model has added a sig-
nificantly stiff torsional connection to the ground to represent a



138 Rotating Machinery Vibration: From Analysis to Troubleshooting

stiff motor speed control. Derive the equations of motion, natural
frequency, and mode shapes.

JM

K2

JP

K1

4. A modified version of the Problem 2 model has added a sig-
nificantly stiff torsional connection to the ground to represent a
stiff motor speed control. Derive the equations of motion, natural
frequencies, and mode shapes.

5. The system shown is a model for a two-shaft-geared transmis-
sion. Geared connections are typically modeled as torsionally
rigid (see Figure 3.7) and thus rigidly couple the shafts together.
Neglect shaft inertias. Derive the equations of motion and the
natural frequencies. The tooth numbers of the gears on shaft 1
and shaft 2 are N1 and N2, respectively.

J11 J12

J21 J22

K1

K2

Shaft 1 

Shaft 2 

6. Project on torsional rotor vibration software. Develop a MATLAB�
computer code for general multirotor branched linear systems
with rigid and flexible connections as covered in Section 3.4.3 of
this chapter. A complete version of the code should include the
determination of (a) undamped natural frequencies and mode
shapes; (b) steady-state single-frequency harmonic excitation
torques with a modal damping option; and (c) time-transient
resonance build-up simulation.



Part II

Rotor Dynamic Analyses





4
RDA Code for Lateral Rotor
Vibration Analyses

4.1 Introduction

The RDA Fortran computer code is a general purpose tool for linear rotor
vibration analyses. It is developed on the FE formulations derived in
Chapter 2, Section 2.3. First written for use on early generation PCs, it was
initially limited to fairly simple rotor–bearing configuration models with
10 or less mass stations (40 DOFs or less) because of the memory limitations
of early PCs. RDA was initially written to simulate rotor–bearing systems
as part of research efforts on active control of rotor vibration in the author’s
group at Case Western Reserve University (CWRU). Validation tests and
other background information for RDA are provided by Maghraoui (1989)
in his PhD dissertation (see Bibliography at the end of this chapter). RDA
has been distributed and used by the author in machinery dynamics courses
and student research projects at CWRU for over 20 years and in professional
short courses in the United States and Europe. The current enlarged version
supplied with this book, RDA99, has now been exercised by countless users
since being provided free with the 2001 first edition of this book. RDA99
has been successfully used by the author in modeling several large power
plant machinery, in vibration troubleshooting missions (see Part 4 of this
book). It has also been successfully used by the author in troubleshooting
and redesigning a high-speed vertical spin-pit test rig specially configured
for research on aircraft jet engine blade-on-casing tip-rub-induced blade
vibrations and transmitted blade-casing interaction dynamic forces.

The compiled code included here has been dimensioned to accommodate
up to 99 rotor mass stations (396 DOF rotor), making it suitable for virtually
any single-drive-line rotor–bearing system, including large steam turbo-
generator rotors as subsequently demonstrated in Part 4 of this book. The
author and his troubleshooting associates still use this newer RDA99 as
the primary rotor vibration analysis tool both for troubleshooting work in
plants as well as research.

As demonstrated in this chapter, RDA99 is a user-interactive code and
thus does not utilize the batch-mode input approach typical of older com-
puter codes written in the era of older mainframe computers. RDA99

141
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has interactive input and output selection menus, each with several
options. Not all these options are demonstrated here. Only the ones that
are the most expedient for design or troubleshooting applications are
demonstrated here.

There are many quite useful PC codes that were initially developed to
run in the DOS environment prior to the introduction of Windows. The
RDA executable code (RDA99.exe), supplied with this book, is but one
example. The DOS operating system, developed for first-generation PCs
and the forerunner of Windows, has therefore naturally been retained as
an application within Windows. Earlier versions of Windows are actually
an application within DOS. RDA99.exe will execute successfully on any
PC as a DOS application within Windows.

Within the DOS operation mode, RDA99 is accessed simply by entering
the appropriate drive and folder. Execution is then initiated simply by
entering RDA99. The monitor then displays the following main menu.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
R O T O R   D Y N A M I C S   A N A L Y S I S
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

M A I N    M E N U

1. Solve the Undamped Eigenvalue Problem Only
2. Solve for Damped Eigenvalues Only
3. Solve Both Damped and Undamped Eigenvalue Problems
4. Perform a Stability Analysis of the System
5. Obtain the Steady-State Unbalance Response
6. Active Control Simulation
7. Data Curve Fitting By Cubic Spline
8. Exit
Choose Option <1–8> …

All the MAIN MENU options are covered in Maghraoui (1989). When
accessed by entering its number, each displays the DATA MENU from
which the INPUT OPTIONS menu is accessed. Vibration specialists may
wish to use options 1, 2, and 3 of the MAIN MENU to construct maps of
eigenvalues as functions of rotor spin speed, and these are demonstrated
in Maghraoui (1989). Options 6 and 7 may be ignored. MAIN MENU
options 4 and 5 are the most important and useful ones. Therefore, the
detailed instructions covered in this chapter are focused exclusively on
options 4 and 5.

4.2 Unbalance Steady-State Response Computations

Referring to Equation 2.69, a synchronous (i.e., at rotor-speed frequency)
corotational rotating radial force may be appended to any rotor model
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mass station to simulate the effect of a mass unbalance at that mass sta-
tion. Thus, with an analysis algorithm such as contained in the RDA code,
virtually any realistic rotor unbalance distribution can be accordingly pos-
tulated and the resulting steady-state vibration at all rotor mass stations
computed. The standard algorithm for this is the solution of the corre-
sponding set of simultaneous complex algebraic equations, Equation 1.52.
From the MAIN MENU, enter option 5. The monitor then displays the
following menu.

D A T A    M E N U

1. Input/Read Data
2. Print Data on the Screen
3. Save Data in a File
4. Edit Data
5. Run Main Menu Option
6. Return to Main Menu

Choose Option <1–6> …

To initiate input for a case, enter option 1 from the above DATA MENU.
The monitor then displays the following input options.

I N P U T    O P T I O N S

1. File Input  
2. Keyboard Input
3. Check Directory
4. Return to Previous Menu

Choose Option <1–4> …

Important
Input file must
reside within
the same
directory as
RDA99

For a completely new model, the INPUT OPTIONS menu would appear
to indicate that option 2 is the only route since no previously saved input
file would yet exist in the RDAdirectory for the model to be run. In fact, for a
completely new model there are actually two options: 1 and 2. For a simple
model with a relatively small number of mass stations and bearings, the
Keyboard Input route (option 2) is a satisfactory option that any new RDA
user should try out just to be familiar with it. As shown subsequently, the
user is prompted at each step of the Keyboard Input option. The drawback
with this option is that while it does recover and appropriately prompt
interactively for many types of inadvertent keyboard errors, it does not
recover from all types of keyboard errors. In such an unrecoverable error
occurrence, one may make corrections by accessing option 4 (Edit Data)
at the completion of the Keyboard Input cycle. However, for large DOF
models, one has the option to first create the new input file using a full-
screen editor (e.g., Notepad) outside the RDA environment, employing
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RDA’s own output format allocations for saving an input file. This will
avoid unrecoverable input errors that necessitate starting the input creation
all over again. However, in employing the full-screen editor option, the user
must externally calculate and then enter the rotor element weights into the
input file, since that is programmed into the RDA Keyboard option 2.

Once an input file already exists for the model in the RDA99 directory,
the File Input (option 1) is naturally used. Entering number 1 from the
INPUT OPTIONS menu, the monitor prompts for the input file name.
Upon entering the input file name, the monitor returns to the DATA
MENU, from which option 5 is entered if the named input file is ready
to run. A comprehensive analysis almost always entails computing sev-
eral different operating cases, for example, different unbalance conditions,
different speed range and speed increments, different bearing properties,
and so on. Thus, if as usual, the named input file is to be first modified
before executing the run, the user again has two options. First, option 4 on
the DATA MENU may be accessed. Or as just recommended for creating
large new input files, input file modifications are more conveniently imple-
mented using a full-screen editor outside the RDAenvironment. If the input
file modifications are fairly short, Edit Data (option 4) is a reasonable route
which when accessed displays the EDITOR OPTIONS menu of 16 different
user options, each specific to the type of modification to be made. When
accessed, each of these options on the EDITOR OPTIONS menu prompts
the user for the information necessary to implement the desired input file
changes. In the interest of space, these will not be individually covered
here. In fact, the author practically never uses the EDITOR OPTIONS menu,
preferring the previously indicated full-screen editor route.

One may reasonably ask why RDA has not been updated to streamline
its use, like a GUI Windows version. Since RDA is not a commercially
marketed code, there is no group of dedicated programmers to do this.
When commercially marketed codes are updated, a battery of test cases
must be run to ensure that no new bugs have found their way into the
code. The version of RDA supplied with this book has been in use for many
years, but has not been modified in any way in that interim. This eliminates
the possibility of any program bugs acquired over its many years of use,
internationally. The degree of confidence inherent in that approach surely
surpasses in importance the niceties of streamlining, bells and whistles.

In matters of rotor unbalance analysis and rotor balancing proce-
dures, there are a number of parameters that need precise clarification,
most notably a clear explanation of phase angle and direction of rotation.
However, before covering such clarifications, some simple examples are
worked through first, to acclimate the new RDA user on how to get started
in running RDA. Input and output files for all shown examples are included
with the here-supplied RDA software, so users can readily check their own
input/output work.
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4.2.1 3-Mass Rotor Model + 2 Bearings and 1 Disk

The simple nontrivial 8-DOF model illustrated in Figure 2.4 consists of
two identical rotor elements, giving three mass stations, with one con-
centrated disk mass at the middle mass station. Furthermore, it has a
radial bearing at each end, both modeled with the standard 8-coefficient
linear bearing model introduced by Equation 2.2 and further explained
in Section 2.3.9. An example with numerical inputs for this model is
employed here to provide the new user an expedient first exercise
using RDA to compute unbalance response. RDA includes transverse
moment of inertia not only for specified disks, but also automatically
for every shaft element, as detailed in Section 2.3 of Chapter 2. There-
fore, the RDA equivalent model to that in Figure 2.4 has 12 DOFs, since
each of the three mass stations has 4 DOFs. Employing the user menu
and input prompts explained thus far in this chapter, the following
model data are used to construct an input file from the Keyboard Input
option.

Input Title: 3-Mass, 1 Disk, 2 Bearing Sample No. 1

Number of stations 3
Number of disks 1
Number of bearings 2
Number of pedestals 0
Number of extra weights 0
Modulus of elasticity and weight density 30,000,000 psi, 0.285 lb/in.3

Shaft Element Data OD (in.) ID (in.) Length (in.) Inertia (lb s2/in.) Weight (lb)

Element no. 1 0.5 0.0 10 0.0 0.0
Element no. 2 0.5 0.0 10 0.0 0.0

Typically, shaft element inertia and weight are input as “zero,” like in
this example, and RDA then calculates them from dimensions and input
weight density. Input of “nonzero” values overrides the RDA calculated
ones.

Disc Data Station No. OD (in.) ID (in.) Length (in.) Weight IP IT

Disc no. 1 2 5.0 0.5 1.0 0.0 0.0 0.0

Similarly, disc weight (lb), polar moment of inertia IP, and transverse
moment of inertia IT (lb in.2) are typically input as “zero” and RDA cal-
culates them from disc dimensions and the default weight density input.
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For components that are not disc like (e.g., impellers, couplings, etc.), appro-
priate “nonzero” weight, IP and IT overriding values may be input instead,
accompanied by zero inputs for the disc OD, ID, and length.

Bearing Data Bearing No. (Prompt) Station No. Weight

1 1 0.0
2 3 0.0

Typically, bearing weight is also input as “zero.” For a rolling-element
bearing, the added weight of the inner raceway on the shaft may be input
here as a nonzero bearing weight. However, the same identical effect may
alternatively be incorporated into the model using the extra weights option.

Bearing Properties Speed Dependent Y/N? N

Bearing Stiffness and Damping Coefficients

Bearing no. 1 Kxx Kxy Cxx Cxy
2000 lb/in. 0.0 5.0 lb s/in. 0.0
Kyx Kyy Cyx Cyy
0.0 2000 lb/in. 0.0 5.0 lb s/in.

Bearing no. 2 Kxx Kxy Cxx Cxy
2000 lb/in. 0.0 5.0 lb s/in. 0.0
Kyx Kyy Cyx Cyy
0.0 2000 lb/in. 0.0 5.0 lb s/in.

Unbalance Data Station No. Amplitude (lb in.) Phase Angle (◦)

1 0.0 0.0
2 0.005 0.0
3 0.0 0.0

At this point, RDA returns the user to the DATA MENU, where option
3 is entered to save the input file just created using the Keyboard Input
option, and the user is again returned to the DATA MENU. At that point,
option 5 “Run Main Menu Option” may be entered to execute the run.
However, one may first wish to check the input file by entering option 2
“Print Data on the Screen,” and if input errors are detected, enter option 4
“Edit Data” to access the EDITOR OPTIONS. Corrections to the input file
may also be done outside of RDA using a full-screen editor on the saved
input file.

Upon entering option 5 “Run Main Menu Option,” a PLOT OPTIONS
output menu is displayed with several self-explanatory options, and the
new RDA user may wish to explore all of them. Option 11, which produces
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a complete labeled input/output file but no plots, is chosen here. After an
output option is entered, the user is prompted for the following:

Input Speed Range Data for Unbalance Response

Enter input starting speed (rpm) 100
Enter input ending speed (rpm) 2100
Enter input speed increment (rpm) 200

Shaft Mass Model Options

1. Lumped Mass
2. Distributed Mass
3. Consistent Mass

The Consistent Mass option is usually the preferred choice, and is chosen
here, that is, enter option 3. For any given rotor, prudent users may com-
pare model resolution accuracy and convergence of these three options by
varying the number of shaft elements.

The last prompt is to specify the “output file name.” Entering the file
name (e.g., sample01.out), RDA executes the run to completion. If output
option 11 is specified, the complete labeled output information may be
viewed by opening the output file in a full-screen editor like Notepad. The
abbreviated output shown below does not include the input review and
does not show response for station 3 since it is the same as station 1 due to
symmetry. Unbalance at station 2 has θ2 = 0, and is thus a reference signal.

Response of Rotor Station No. 1

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

100.0 0.000 −1.5 0.000 −91.5
300.0 0.003 −4.5 0.003 −94.5
500.0 0.010 −7.6 0.010 −97.6
700.0 0.021 −10.7 0.021 −100.7
900.0 0.040 −13.9 0.040 −103.9

1100.0 0.073 −17.6 0.073 −107.6
1300.0 0.143 −22.2 0.143 −112.2
1500.0 0.360 −31.0 0.360 −121.0
1700.0 1.897 −129.6 1.897 140.4
1900.0 0.440 167.5 0.440 77.5
2100.0 0.264 160.0 0.264 70.0

Maximum amplitudes of station 1 occurred at
1700.0 rpm for the X-direction with 1.9 mils and a phase angle of −129.6◦.
1700.0 rpm for the Y-direction with 1.9 mils and a phase angle of 140.4◦.
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Response of Rotor Station No. 2

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

100.0 0.003 −.2 0.003 −90.2
300.0 0.027 −.6 0.027 −90.6
500.0 0.080 −1.0 0.080 −91.0
700.0 0.173 −1.5 0.173 −91.5
900.0 0.331 −2.2 0.331 −92.2

1100.0 0.615 −3.3 0.615 −93.3
1300.0 1.212 −5.5 1.212 −95.5
1500.0 3.080 −11.9 3.080 −101.9
1700.0 16.388 −108.1 16.388 161.9
1900.0 3.843 −168.7 3.843 101.3
2100.0 2.327 −174.0 2.327 96.0

Maximum amplitudes of station 2 occurred at
1700.0 rpm for the X-direction with 16 mils and a phase angle of −108.1◦.
1700.0 rpm for the Y-direction with 16 mils and a phase angle of 161.9◦.

RDA output tabulates single-peak vibration amplitudes in thousandths
of an inch (mils) for both x and y directions. The abbreviated output here
clearly shows a first (lowest) critical speed near 1700 rpm where the syn-
chronous unbalance vibration amplitude passes through a maximum value
as a function of rotor speed. Comparing results at the bearings (station 1
results same as 3) with results at the disc (station 2) shows that the rotor
undergoes a significant relative amount of bending vibration at the critical
speed. With RDA it is quite easy to “zoom in” on the critical speed by using
a finer speed increment (resolution) in order to accurately capture it and its
maximum value. For this sample, simply repeat the run (using the saved
input file) with a start speed and end speed inputs near 1700 rpm and a sig-
nificantly reduced speed increment, as demonstrated with the following
inputs.

Input Speed Range Data for Unbalance Response

Enter input starting speed (rpm) 1600
Enter input ending speed (rpm) 1800
Enter input speed increment (rpm) 20

Output for this revised speed range and increment is tabulated for station
2 as follows. It shows that the critical-speed peak is between 1680 and
1700 rpm. One could “zoom in” further.
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Response of Rotor Station No. 2

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

1600.0 6.785 −25.0 6.785 −115.0
1620.0 8.474 −31.3 8.474 −121.3
1640.0 10.880 −41.1 10.880 −131.1
1660.0 14.062 −57.0 14.062 −147.0
1680.0 16.795 −81.0 16.795 −171.0
1700.0 16.388 −108.1 16.388 161.9
1720.0 13.580 −129.0 13.580 141.0
1740.0 10.856 −142.2 10.856 127.8
1760.0 8.848 −150.5 8.848 119.5
1780.0 7.421 −155.9 7.421 114.1
1800.0 6.385 −159.8 6.385 110.2

Maximum amplitudes of station 2 occurred at
1680.0 rpm for the X-direction with 17 mils and a phase angle of −81.0◦.
1680.0 rpm for the Y-direction with 17 mils and a phase angle of −171.0◦.

In this simple example, the bearing inputs are all radial isotropic (see
Section 2.4 of Chapter 2) and thus the rotor vibration orbits are all circular.
This is indicated by the x and y vibration amplitudes being equal and
90◦ out of phase (x leading y, therefore forward whirl). With one or more
anisotropic bearings, the rotor orbits are ellipses.

4.2.2 Phase Angle Explanation and Direction of Rotation

Before demonstrating additional sample cases, the phase-angle conven-
tion employed in RDA is given a careful explanation at this point because
of the confusion and errors that frequently occur in general where rotor
vibration phase angles are involved. Confusion concerning rotor vibration
phase angles stems from a number of sources. The first source of confu-
sion, common to harmonic signals in general, is the sign convention, (i.e., is
the phase angle defined positive when the signal leads or lags the reference
signal?). The second source of confusion stems from the visual similar-
ity between the complex plane illustration of harmonic signals as rotating
vectors and the actual rotation of fixed points or force vectors on the rotor,
for example, high spot, heavy spot (or unbalance mass).

On real machines, the most troublesome consequence of phase-angle
confusion occurs when balance correction weights are placed at incorrect
angular locations on a rotor. Similar mistakes often result from the fact that
the rotor must spin clockwise (cw) when viewed from one end and counter-
clockwise (ccw) when viewed from the other end. Consequently, it is far
less confusing to have the analysis model consistent with the actual rotor’s
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rotational direction and this is accomplished by starting the shaft element
inputs from the proper end of the rotor. As shown in Section 2.3 of Chap-
ter 2, RDA is formulated in a standard xyz right-hand coordinate system
where x and y define the radial directions and positive z defines the axis
and direction of positive rotor spin velocity. Thus, if one views the rotor
from the end where the rotation is ccw, the positive z-axis should point
toward them and the rotor model shaft elements’ input should start from
the other end of the rotor. The proper end of the rotor to start RDA shaft ele-
ment inputs is accordingly demonstrated in Figure 4.1 for a three-element
(four-mass-station) example.

The RDA phase angle sign convention is defined by the following
specifications for unbalance force and vibration displacement components:

Fx = muruω2 cos(ωt + θ), mu = unbalance mass, x = X cos(ωt + φx)

Fy = muruω2 sin(ωt + θ), ru = unbalance radius, y = Y cos(ωt + φy)

(4.1)

These specifications define a phase angle (θ, φx, and φy) as positive when
its respective harmonic signal leads the reference signal. A commonly used
convenient way to visualize this full complement of synchronous harmonic
signals is the complex plane representation, which illustrates each harmonic
signal as a rotating vector. Figure 4.2 shows this for the RDAunbalance force
and vibration displacement components.

The three complex vectors (X , Y , and F) shown in Figure 4.2 are conceived
rotating at the angular velocity ω in the ccw direction, thus maintaining
their relative angular positions to each other. However, this is not to be
confused with points or vectors fixed on the rotor that also naturally rotate
ccw at ω. It is only that the mathematics of complex numbers has long been
recognized and used as a convenient means of representing a group of
related harmonic signals all having the same frequency, such as the various
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FIGURE 4.1 Proper shaft element and station input ordering.
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FIGURE 4.2 Complex plane representation of synchronous harmonic signals.

components of voltage- and current-related signals in alternating-current
electricity. Since the unbalance force is purely a synchronous rotating vec-
tor, it is easy to view it as a complex entity since its x-component projects
onto the real axis, while its y-component projects onto the imaginary axis.
The same could be said of the rotor orbits for the simple three-mass rotor
model given in the previous subsection, because the bearing stiffness and
damping inputs are radially isotropic and thus yield circular orbits. But
this is not typical.

To avoid confusion when applying the complex plane approach to rotor
vibration signals, it is essential to understand the relationship between the
standard complex plane illustration and the position coordinates for the
orbital trajectory of rotor vibration. First and foremost, the real (Re) and
imaginary (Im) axes of the standard complex plane shown in Figure 4.2 are
not the x and y axes in the plane of radial orbital rotor vibration trajectory.
There are a few rotor vibration academics who have joined the complex
plane and the rotor x–y trajectory into a single illustration and signal man-
agement method by using the real axis for the x-signal and the imaginary
axis for the y-signal. This can be accomplished by having the component
Y cos Φy projected onto the imaginary axis by defining Φy relative to the
imaginary axis instead of the real axis. The author does not embrace this
approach since all the rotor orbital trajectory motion coordinates then entail
complex arithmetic. The author does embrace the usefulness of the com-
plex plane, as typified by Figure 4.2, to illustrate the steady-state rotor
vibration harmonic signals specified by Equation 4.1.

Figure 4.3 is an addendum to Figure 4.2, illustrating the x-displacement,
x-velocity, and x-acceleration in the complex plane. The same can be done
for the y-direction signals. As in the previous complex plane illustration,
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FIGURE 4.3 Complex plane view of x-displacement, velocity, and acceleration.

all the shown vectors in Figure 4.3 rotate ccw at the angular velocity ω, thus
maintaining their relative angular positions to each other.

4.2.3 3-Mass Rotor Model + 2 Bearings/Pedestals and 1 Disk

The previous 3-mass model is augmented here with the addition of bearing
pedestals, as formulated in Section 2.3 of Chapter 2. The inputs here differ
from those in the previous example only by the addition of a pedestal
at each bearing. For creating this input file from the Keyboard Input
option, only the following inputs are added to the previous sample’s input
as prompted by RDA. The following numerical inputs are used in this
example.

Number of Pedestals: 2

Pedestal Data Pedestal No. (Prompt) Station No. Weight (lb)

1 1 5.0
2 3 5.0

Pedestal Stiffness and Damping Coefficients

Pedestal No. (Prompt) Kxx (lb/in.) Kyy (lb/in.) Cxx (lb s/in.) Cyy (lb s/in.)

1 2000 2000 0.5 0.5
2 2000 2000 0.5 0.5

This example has 16 DOFs, four more than the previous example, because
each of the two pedestals has two DOF, that is, x and y. An abbreviated
output summary follows. Since the model is symmetric about station 2,
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rotor and pedestal responses at station 3, being the same as at station 1, are
not shown here.

Response of Rotor Station No. 1

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

100.0 0.001 −0.8 0.001 −90.8
300.0 0.007 −2.5 0.007 −92.5
500.0 0.020 −4.2 0.020 −94.2
700.0 0.044 −5.9 0.044 −95.9
900.0 0.087 −7.9 0.087 −97.9

1100.0 0.174 −10.4 0.174 −100.4
1300.0 0.398 −14.7 0.398 −104.7
1500.0 1.803 −36.5 1.803 −126.5
1700.0 1.196 −173.9 1.196 96.1

Maximum amplitudes of station 1 occurred at
1500.0 rpm for the X-direction with 1.8 mils and a phase angle of −36.5◦.
1500.0 rpm for the Y-direction with 1.8 mils and a phase angle of −126.5◦.

Response of Rotor Station No. 2

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

100.0 0.003 −0.2 0.003 −90.2
300.0 0.031 −0.6 0.031 −90.6
500.0 0.091 −1.0 0.091 −91.0
700.0 0.201 −1.5 0.201 −91.5
900.0 0.396 −2.3 0.396 −92.3

1100.0 0.780 −3.7 0.780 −93.7
1300.0 1.762 −7.1 1.762 −97.1
1500.0 7.843 −28.0 7.843 −118.0
1700.0 5.083 −164.6 5.083 105.4

Maximum amplitudes of station 2 occurred at
1500.0 rpm for the X-direction with 7.8 mils and a phase angle of −28.0◦.
1500.0 rpm for the Y-direction with 7.8 mils and a phase angle of −118.0◦.

Response of Pedestal No. 1

Located at Station No. 1

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

100.0 0.000 −0.2 0.000 −90.2
300.0 0.003 −0.5 0.003 −90.5

continued
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Continued

500.0 0.010 −0.9 0.010 −90.9
700.0 0.023 −1.4 0.023 −91.4
900.0 0.046 −2.2 0.046 −92.2

1100.0 0.093 −3.7 0.093 −93.7
1300.0 0.219 −7.2 0.219 −97.2
1500.0 1.025 −28.3 1.025 −118.3
1700.0 0.704 −165.2 0.704 104.8

Maximum amplitudes of pedestal 1 occurred at
1500.0 rpm for the X-direction with 1.0 mils and a phase angle of −28.3◦.
1500.0 rpm for the Y-direction with 1.0 mils and a phase angle of −118.3◦.

A number of observations can immediately be made from this abbrevi-
ated output summary. First, the addition of pedestals has dropped the first
critical speed from about 1680 rpm (previous example) to about 1500 rpm,
as all the response signals here peak at approximately 1500 rpm. Second,
the orbital trajectories of rotor stations as well as the pedestal masses
are all circular and corotational. This is shown by the x and y ampli-
tudes for a given rotor station or pedestal mass being equal, with the
x-signal leading the y-signal by 90◦. This is the result of all bearing and
pedestal stiffness and damping coefficients being radial isotropic, other-
wise the trajectories would be ellipses. Third, the total response of rotor
station 1 is almost twice its pedestal’s total response. Relative rotor-to-
bearing/pedestal motions are now continuously monitored on nearly all
large power plant and process plant rotating machinery using noncon-
tacting inductance-type proximity probes mounted in the bearings and
targeting the rotor ( journals). Part 3 of this book, Monitoring and Diagnos-
tics, describes this in detail. Since a bearing is held in its pedestal, bearing
motion and pedestal motion are synonymous here within the context of an
RDA model. The corresponding additional computation of rotor ( journal)
orbital trajectory relative to the bearing can be derived directly with the aid
of the previously introduced complex plane, wherein the standard rules
for vector addition and subtraction apply. This is illustrated in Figure 4.4
and specified by Equations 4.2:

xR = XR cos(ωt + φRX), yR = YR cos(ωt + φRY)

xB = XB cos(ωt + φBX), yB = YB cos(ωt + φBY)

xrel = xR − xB yrel = yR − yB

≡ Xrel cos(ωt + φXrel), ≡ Yrel cos(ωt + φYrel)

(4.2)

All the vectors in Figure 4.4 maintain their relative angular position
to each other and rotate ccw at ω. By considering the view shown to be
at time t = 0, it is clear from standard vector arithmetic that the single-
peak amplitudes and phase angles for the relative rotor-to-bearing orbital
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FIGURE 4.4 Rotor and bearing displacements (R, rotor; B, bearing).

trajectory harmonic signals are given as follows:

Xrel =
√

(XR cos φRX − XB cos φBX)2 + (XR sin φRX − XB sin φBX)2

Yrel =
√

(YR cos φRY − YB cos φBY)2 + (YR sin φRY − YB sin φBY)2

φXrel = tan−1
(

XR sin φRX − XB sin φBX

XR cos φRX − XB cos φBX

)

φYrel = tan−1
(

YR sin φRY − YB sin φBY

YR cos φRY − YB cos φBY

)
(4.3)

Equations 4.3 are general, and thus applicable to the RDA outputs for
any case. Substituting outputs from the simple isotropic bearing/pedestal
example problem here, one may confirm that the relative rotor-to-bearing
orbits are circles since the individual rotor and pedestal orbits are cir-
cles. For general anisotropic systems, the total-motion and relative-motion
orbits are ellipses.

4.2.4 Anisotropic Model: 3-Mass Rotor + 2 Bearings/Pedestals
and 1 Disk

The previous model is modified here to provide an example with bear-
ing and pedestal dynamic properties that are not isotropic and thus
more realistic. Starting with the input file from the previous example, the
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bearing and pedestal inputs are modified according to the following input
specifications.

Bearing Stiffness and Damping Coefficients

Bearing No. 1 Kxx Kxy Cxx Cxy
1500 lb/in. 750.0 20.0 lb s/in. 5.0
Kyx Kyy Cyx Cyy
50.0 5000 lb/in. 5.0 30.0 lb s/in.

Bearing No. 2 Kxx Kxy Cxx Cxy
1500 lb/in. 750.0 20.0 lb s/in. 5.0
Kyx Kyy Cyx Cyy
50.0 5000 lb/in. 5.0 30.0 lb s/in.

Note that the bearing stiffness coefficient matrices while symmetric are
postulated as anisotropic (nonisotropic) and thus provide a more realis-
tic example for fluid-film journal bearings, as dissected in Section 2.4 of
Chapter 2 and more fully developed in Chapter 5.

Pedestal Stiffness and Damping Coefficients

Kxx (lb/in.) Kyy (lb/in.) Cxx (lb s/in.) Cyy (lb s/in.)

Pedestal no. 1 2000 3000 10 10
Pedestal no. 2 2000 3000 10 10

In an RDA model, the connection between horizontal and vertical is
essentially through the bearing and pedestal stiffness and damping inputs.
It is typical for horizontal-rotor machines that pedestal vertical stiffness is
approximately 50% or more larger than the pedestal horizontal stiffness
and the inputs in this example emulate that (x horizontal, y vertical).

The steady-state unbalance response for this third sample case is driven
by the same single unbalance at station 2 (the disc) of the previous two
examples with its phase angle input as “zero.” Therefore, as with the previ-
ous two examples, the unbalance at station 2 is a reference signal to which all
phase angles in the output are referenced. This example is also symmetric
about the rotor mid-plane (station 2) in all details, and thus its abbreviated
output, tabulated as follows, does not include here bearing and pedestal
responses for station 3.

Response of Rotor Station No. 1

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

1500.0 0.677 −60.4 0.494 −131.7
1550.0 0.915 −72.6 0.692 −142.2
1600.0 1.249 −92.6 1.007 −160.1

continued
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Continued

1650.0 1.509 −124.3 1.369 169.3
1700.0 1.292 −157.6 1.383 130.7
1750.0 0.945 −173.8 1.036 101.8
1800.0 0.772 178.2 0.748 87.4
1850.0 0.661 171.5 0.582 80.2
1900.0 0.577 166.0 0.482 75.7

Maximum amplitudes of station 1 occurred at
1650.0 rpm for the X-direction with 1.5 mils and a phase angle of −124.3◦.
1700.0 rpm for the Y-direction with 1.4 mils and a phase angle of 130.7◦.

Response of Rotor Station No. 2

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

1500.0 3.699 −33.1 3.412 −109.3
1550.0 5.077 −44.7 4.783 −117.9
1600.0 7.054 −64.7 7.003 −133.7
1650.0 8.640 −97.4 9.715 −162.1
1700.0 7.206 −133.3 10.197 160.6
1750.0 4.791 −148.6 7.867 131.2
1800.0 3.802 −151.5 5.688 116.1
1850.0 3.315 −154.8 4.383 109.0
1900.0 2.956 −158.2 3.596 105.1

Maximum amplitudes of station 2 occurred at
1650.0 rpm for the X-direction with 8.6 mils and a phase angle of −97.4◦.
1700.0 rpm for the Y-direction with 10 mils and a phase angle of 160.6◦.

Response of Rotor Station No. 1

Located at Station No. 1

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

1500.0 0.407 −56.3 0.336 −124.2
1550.0 0.556 −68.9 0.474 −134.8
1600.0 0.766 −89.4 0.694 −153.0
1650.0 0.932 −121.8 0.949 176.0
1700.0 0.795 −156.3 0.959 136.9
1750.0 0.572 −172.6 0.714 107.6
1800.0 0.466 179.9 0.514 93.3
1850.0 0.402 173.4 0.400 86.3
1900.0 0.354 167.9 0.333 81.9

Maximum amplitudes of pedestal 1 occurred at
1650.0 rpm for the X-direction with 0.93 mils and a phase angle of −121.8◦.
1700.0 rpm for the Y-direction with 0.96 mils and a phase angle of 136.9◦.
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The response outputs here all show a critical speed near 1650 rpm. A
more precise critical speed value and corresponding response-peak values
may of course be obtained by speed “zooming in” around 1650 rpm. The
main feature that distinguishes this example from the previous two is that
the bearings/pedestals are anisotropic and thus the orbits are ellipses, not
circles.

4.2.5 Elliptical Orbits

As typified by the last example, when one or more bearings and/or
pedestals have anisotropic stiffness and/or damping coefficient matri-
ces, the steady-state unbalance response orbits are ellipses. Size, shape,
and orientation of the elliptical response orbits change from station to
station (refer to Figure 2.1). Furthermore, depending on the difference
(φx − φy), an orbit’s trajectory direction can be corotational (forward whirl)
or counter-rotational (backward whirl). Whirl direction at a given rotor
station (absolute or relative to bearing) may be ascertained directly from
the corresponding RDA response output using the following:

Forward-Whirl Orbit −→ 0 < (φx − φy) < 180◦

Backward-Whirl Orbit −→ −180◦ < (φx − φy)

Straight-Line Orbit −→ (φx − φy) = 0, 180◦
(4.4)

In long slender rotors, such as for large steam turbo-generator units,
the whirl direction along the rotor can change direction as a function of
axial position. That is, some portions of the rotor steady-state response
can be in forward whirl, while the other portions are in backward whirl.
Troubleshooting cases in Part 4 of this book deal with several large turbo-
generators. In addition, the steady-state response orbit at a given rotor
station changes with speed, as typified by the example illustrated in
Figure 4.5, which shows the progressive change in orbit size, shape, and
orientation as a critical speed is traversed.

The geometric properties of an orbital ellipse can be computed directly
from the x and y harmonic displacement signals. With the aid of the
complex-plane representation of harmonic signals previously introduced,
the x and y displacement signals are first transformed in the following
standard way:

x = X cos(ωt + θx) = X1 sin ωt + X2 cos ωt

y = Y cos(ωt + θy) = Y1 sin ωt + Y2 cos ωt

X1 ≡ X sin θx X2 ≡ X cos θx

Y1 ≡ Y sin θy Y2 ≡ Y cos θy

(4.5)
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FIGURE 4.5 Orbit at a rotor station versus speed; critical speed at 1500 rpm.

Here it is advantageous to handle the orbital position vector as a complex
entity, as follows (i ≡ √−1):

r(t) = x(t) + iy(t) (4.6)

The complex exponential forms for the sine and cosine functions are as
follows:

sin ωt = − i
2

(
eiωt − e−iωt

)
, cos ωt = 1

2

(
eiωt + e−iωt

)
(4.7)

First substitute the components of Equations 4.7 into Equations 4.5 and
then substitute the results into Equation 4.6 to yield the following:

r(t) = 1
2

[
(X cos θx + Y sin θy) + i(−X sin θx + Y cos θy)

]
eiωt

+ 1
2

[
(X cos θx − Y sin θy) + i(X sin θx + Y cos θy)

]
e−iωt

(4.8)

r(t) is thus expressed in terms of two rotating vectors, as follows:

r(t) = R1ei(ωt+β1) + R2e−i(ωt−β2) (4.9)

R1 ≡ 1
2

√
(X cos θx + Y sin θy)2 + (−X sin θx + Y cos θy)2

R2 ≡ 1
2

√
(X cos θx − Y sin θy)2 + (X sin θx + Y cos θy)2

β1 = arctan
(−X sin θx + Y cos θy

X cos θx + Y sin θy

)

β2 = arctan
(

X sin θx + Y cos θy

X cos θx − Y sin θy

)
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Equation 4.9 shows that the elliptical orbit decomposes into two syn-
chronously rotating vectors, one corotational of radius R1 and the other
counterrotational of radius R2, both with an angular speed magnitude
of ω. At t = 0, these two vectors are positioned relative to the x-axis by
their respective angles β1 and β2. It is then clear, as Figure 4.6 illustrates
at t = 0, that the angle Ψ from the x-axis to the major ellipse axis is the
average of these two angles, as follows:

Ψ = β1 + β2

2
(4.10)

When R1 > R2 their vector sum produces forward whirl, and con-
versely when R1 < R2 their vector sum produces backward whirl. The
orbit is a straight line when R1 = R2. Furthermore, the semimajor axis
(b) and semiminor axis (a) of the orbit ellipse are given by the following
expressions:

b = |R1| + |R2|, a = ||R1| − |R2|| (4.11)

All the results developed here for the orbit ellipse properties in terms of
the x and y harmonic displacement signals are applicable for steady-state
unbalance response signals as well as for instability threshold modal orbits.

As mentioned in explaining gyroscopic effects, Section 2.4.2 of Chapter 2,
even the best known twentieth century vibrations engineer, MIT Profes-
sor J. P. Den Hartog (1901–1989) “Mechanical Vibrations,” McGraw-Hill,
1940, had not yet fully appreciated the possibility of backward whirl actu-
ally occurring as he described the gyroscopic effect. In that connection,
Professor Den Hartog expressed that while backward whirl appeared to
be a valid motion solution of a rotor with a gyroscopic component, he
did not see how it could be excited (by residual rotor unbalance). At that
time (1940, birth year of this book’s author) Professor Den Hartog appar-
ently did not think of elliptical orbits, but considered only circular orbits.

x

iy

R1

Y

-w

w R2

r

FIGURE 4.6 Elliptical orbit: the sum of two counter whirling circular orbits.
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In that case the forward rotating unbalance force could not put energy
into a circular backward whirl. However, elliptical orbits decompose into a
corotational circular orbit and a counterrotational circular orbit. So a coro-
tational unbalance force does put energy into the corotational circular orbit
portion of a backward elliptical whirl orbit.

Once a steady-state response is computed, the task of visually presenting
the results depends on how much detail the user requires. A multi-DOF
version of Figure 1.5, with plots of amplitudes and phase angles at selected
rotor stations as functions of speed, is often all that may be needed. How-
ever, to appreciate the potentially complex contortions the complete rotor
undergoes in one cycle of motion requires that the orbital trajectories are
pictured as a function of axial position at selected rotor speeds. Special ani-
mation software can be employed to construct an isometric-view “movie” of
rotor orbital trajectories along the rotor. Such animations show the greatly
slowed-down and enlarged whirling rotor centerline position by line con-
necting the instantaneous rotor radial (x, y) coordinates on the elliptical
orbits axially positioned along the rotor. Animations for a flexible rotor on
anisotropic bearings/pedestals clearly show that the rotor “squirms” as
part of a complete cycle of motion. This is because of the response phase
angle changes along the rotor, which give rise to the size, shape, and ori-
entation of the elliptical response orbits changing from station to station at
a given speed.

Thoughtfully prepared still-picture presentations can provide much of
the visual communication of animations. The most extensive and infor-
mative compilation of axially distributed rotor orbits on still-picture
presentations is given in the book by Lalanne and Ferraris (1998) listed
in this chapter’s Bibliography. Figures 4.7 through 4.9 provide a few such
examples to emphasize how the fundamental rotor-orbit characteristics can
be delineated by whether or not the model has damping and by whether or
not the model has one or more anisotropic bearings and/or pedestals.

x

y

z

Model has no damping so
phase-angle uniformity gives
a planar rotor mode shape 

Orbits are all circles because 
model is completely isotropic

FIGURE 4.7 Isotropic model with no damping and very near resonance gives circular orbits
that are all in phase.
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Orbits are all circles because 
model is completely isotropic

With damping, phase-angle 
non-uniformity gives a 
non-planar rotor mode
shape

FIGURE 4.8 Isotropic model with damping gives circular orbits.

The example shown in Figure 4.7 typifies the nature of near resonance
orbits at selected rotor stations for a case where all bearings and pedestals
are isotropic and the model contains no damping. Naturally the orbit
amplitudes (typically in the range of a few thousandths of an inch) are
illustrated here as greatly enlarged.As with any harmonically excited linear
vibration model, RDA response computed exactly at a natural frequency
without any damping will exhibit numerical difficulties because theoreti-
cal amplitudes approach infinity with zero damping. The case illustrated
in Figure 4.7 is not exactly at a critical speed. As shown, since the model
is completely isotropic, the orbits are all circular and thus the additional
feature of “no damping” makes the rotor mode shape planar.

The addition of isotropic bearing damping to the case in Figure 4.7 main-
tains the orbits as circular but causes the rotor response shape to be non-
planar, as shown in Figure 4.8. In both these isotropic cases, the respective
rotor response shapes are fixed and simply precess synchronously at ω.

Rotor response shape
changes during motion cyclez

y

x

Elliptical orbits due to 
model anisotropy 

FIGURE 4.9 Response orbits of an anisotropic model with damping.
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For general unbalance response linear models such as with RDA, the
bearing/pedestal properties are usually anisotropic and there is nearly
always bearing damping included in the model. In such general models,
the synchronous orbital response trajectories are ellipses that progressively
change in size, shape, and orientation both as functions of axial rotor posi-
tion and speed. The case shown in Figure 4.9 illustrates such a general
unbalance response output at a given speed. In such a general case, the
previously mentioned animation adds significantly to the visualization to
show the rotor “squirming.” That is, the rotor response shape is not fixed
as it is in the previous examples of Figures 4.7 and 4.8.

Unbalance response computation is one of the two most important and
necessary types of rotor vibration analyses, providing a number of valu-
able pieces of information about the analyzed system. Unbalance response
analyses show the speeds (i.e., critical speeds) where unbalance produces
forced resonance responses and also how sensitive the critical-speed vibra-
tion peaks are to residual rotor unbalance magnitude and axial location.
Unbalance response analyses also show if postulated damping (e.g., at
the bearings) is adequate for a reasonable tolerance at resonance to resid-
ual rotor unbalance. Lastly, unbalance response analyses can be used to
supplement actual balancing influence coefficients from trial weights (see
Section 12.11 of Chapter 12).

4.2.6 Campbell Diagrams

Some vibratory systems are generically characterized by resonance frequen-
cies that are strong functions of some parameter that can significantly change
during normal operation. The most prominent and important example
is the resonance frequencies of the vibration modes of blades in axial
flow turbo-machinery, such as in power generation turbo-machinery and
aircraft gas turbine jet engines. Typically, turbo-blade resonance frequen-
cies increase quite strongly with rotor speed because blade stress-stiffening
strongly increases with rotor speed.

Some rotor–bearing systems are also inherently characterized by a
speed dependence of resonance frequencies. Of somewhat less criticality
than axial flow turbo-machinery blade design analyses, successful design
and operation for rotor dynamical performance can benefit by mapping
the influence of rotor speed on analysis predicted resonance frequency
magnitudes.

Presentations of resonance frequencies as functions of rotor speed are
called Campbell diagrams. For rotor–bearing systems, application of the
Campbell diagram arises when speed-dependent bearing stiffness and/or
gyroscopic influences make rotor–bearing system lateral rotor vibration
resonance frequencies significantly speed dependent. For fairly simple
2 bearing rotors with strong gyroscopic influences, a Campbell diagram
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is also instructional in clearly demonstrating spectral bifurcations of
resonance frequencies along forward-whirl and backward-whirl mode
branches (see Section 2.4.2 of Chapter 2). In this respect, Campbell dia-
grams are an excellent insight tool. Lalanne and Ferraris (1998) provide
several examples demonstrating insight gleaned from Campbell diagrams.

Figure 4.10 shows an illustration that typifies large multibearing
machines supported on oil-film bearings where rotor speed influence
upon bearing stiffness and thus resonance frequencies is pronounced. Pre-
dicted critical speeds are indicated by the intersection (ω = Ωj’s) of the
once-per-revolution synchronous line and the resonance frequencies as
functions of rotor speed. Campbell diagram assessments are useful for
configuration screening at the early design phase of rotor–bearing sys-
tems when a number of design configurations are competing. Campbell
diagrams can also be helpful in understanding what detailed model-based
unbalance response predictions like those from RDAyield. However, when
troubleshooting already existing operating machines exhibiting excessive
vibration, calibrating a detailed RDA-type prediction model with reliable
vibration measurements off the troubled machine is the more likely route
to mission success.

Figure 4.10 superimposes a Campbell diagram with the correspond-
ing unbalance excited rotor vibration amplitudes, thus correlating the
two. The author much prefers focusing upon unbalance response over
the operating speed range because it not only shows where the critical
speeds are located, but also predicts vibration amplitudes at the criti-
cal speeds. Campbell diagrams only provide the critical speed locations.

Mode-5
Mode-4
Mode-3
Mode-2
Mode-1

0

X

w = Rotor speed 

wi = i th critical speed 
X = Vibration amplitude

0

Wj w = Wj

Wj = j th mode frequency 

w

w
w1 w2 w3 w4 w5

FIGURE 4.10 Campbell diagram combined with unbalance vibration.
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In long flexible multibearing drivelines, such as large steam turbine-
generator sets, some of the critical speeds indicated by a corresponding
Campbell diagram do not show up as significant vibration peaks. This
is because of a mode being heavily damped and/or not sensitive to the
predominant unbalance axial locations, that is, nearness of unbalance to a
mode’s nodal point (see Figure 4.13). Typically a Campbell diagram may
indicate say eight or nine critical speeds for a large steam turbine-generator
set between 0 and 3600 rpm, but the unit only exhibits four or five of
these critical speeds. In this regard, RDA-type unbalance response predic-
tions emulate the actual machine, with the important resonance speeds
evidenced by pronounced vibration peaks.

A Campbell diagram superimposed on predicted vibration amplitudes
(Figure 4.10) provides engineering insight at the design phase of a machine
by identifying modes that are overly sensitive to residual unbalance mag-
nitude and axial location. Acceptable modification of features like bearing
spans, bearing configurations and preloads, balance drum dynamic char-
acteristics, support structure rigidity, bearing alignment tolerance, and
process fluid vibration excitation sources can be evaluated by presenting
extensive computational parametric studies in the manner of the example
of Figure 4.10.

4.3 Instability Self-Excited-Vibration Threshold
Computations

Avoiding self-excited rotor vibration is an absolute necessity because in
most occurrences the resulting vibration levels are dangerously high,
potentially causing severe machine damage within a relatively short inter-
val of time. Even with the best of design practices and most effective
methods of avoidance, self-excited rotor vibration causes are so subtle and
pervasive that incidents continue to occur. Thus, a major task for the vibra-
tions engineer is diagnosis and correction. Crandall (1983) provides physical
descriptions for sources of dynamic destabilizing forces that are known
to energize self-excited lateral rotor vibrations. Crandall describes how
each of the various destabilizing mechanisms have one thing in common:
a dynamic force component that is perpendicular to the instantaneous
rotor dynamic radial displacement vector and thus at least partially col-
inear with the orbital trajectory, that is, colinear with the instantaneous
trajectory velocity. Since force × velocity = power, such a dynamic force is
nonconservative and thus potentially destabilizing. As described in Sec-
tion 2.4 of Chapter 2 for linear LRV models, such destabilizing forces are
embodied model-wise within the skew-symmetric portion of the stiffness
matrix that operates upon a radial displacement vector to produce a force
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vector perpendicular to the radial displacement, consistent with Crandall’s
physical descriptions.

RDA utilizes the standard formulation for the extraction of eigenval-
ues covered in Section 1.3 and prescribed by Equation 1.59. In assessing
the potential for self-excited LRV, computations are performed to locate
boundaries for operating parameters (e.g., speed, power output) where
a mode’s complex conjugate set of eigenvalues transitions from positive
damping to negative damping. In Table 1.1 (Section 1.3), this corresponds
to case 1, which is the transition boundary between case 2 and case 3.
In self-excited LRV, such a boundary is usually referred to as an instability
threshold. Self-excited vibration resulting from a negatively damped 1-DOF
system is formulated in Section 1.1. The initial transient vibration build-up
of a self-excited unstable LRV mode occurs just like its 1-DOF counter-
part illustrated in Figure 1.3. A typical journal orbital vibration transient
build-up for a rotor speed above the instability threshold speed is shown
in Figure 4.11. Although the nonlinear barrier presented by the bearing
clearance limits the vibration amplitude, in most cases a machine would
not tolerate such a high vibration level for a long period of time without
sustaining significant damage. The simple examples that follow are used
to demonstrate RDA’s use for predicting instability threshold speeds.

4.3.1 Symmetric 3-Mass Rotor + 2 Anisotropic Bearings (Same) and Disk

The simple nontrivial 8-DOF model illustrated in Figure 2.4 is again used,
here as a basis for new-user RDA demonstrations on computations to
predict instability threshold speeds. Chapter 5 is devoted to formulations,
computations, and experiments to determine bearing and seal dynamic
properties. In this example, bearing dynamic properties will be used that
are typical for fluid-film journal bearings, and are scaled to be consistent
with the relatively small dimensions of the rotor in this example. The same
3-mass rotor model used in the three previous examples, for unbalance
response, is also used here. The bearing stiffness coefficient matrices are
anisotropic and nonsymmetric and are the same for both bearings to preserve
symmetry about the rotor mid-plane. For this first instability threshold
example, pedestals are not included.

In the previous three examples, for unbalance response, the bearing prop-
erties were contrived to be independent of speed just to keep the input
shorter. In actual applications involving journal bearings, the dynamic
properties of the bearings are usually quite speed dependent and should
thus be input as such even for unbalance response computations. In the
examples here for instability threshold speed prediction, speed-dependent
bearing properties are not optional since they are required to demonstrate
the computations. RDA uses bearing dynamic property inputs at a user-
selected number of appropriate speeds (maximum of 10) to interpolate
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FIGURE 4.11 Transient orbital vibration build-up in an unstable condition: (a) initial linear
transient build-up and (b) growth to nonlinear limit cycle.

for intermediate speeds using a cubic-spline curve fit, both for unbalance
response as well as instability threshold speed computations.

From the RDA MAIN MENU, option 4 initiates an instability threshold
speed computation, and the DATA MENU shown earlier in this chap-
ter appears. Using bearing property inputs at five or more speeds is not
unusual and the considerable amount of corresponding input certainly
suggests that the user use a full-screen editor outside the RDA environ-
ment, at least for the speed-dependent bearing properties. That following
full-screen input process is applicable for both unbalance response and
instability thresholds. Inputs are in free format.

Input Title: 50 spaces for any alpha-numeric string of characters (1 line)
No. of: Stations, Disks, Bearings, Pedestals, Extra Weights (integer)

(1 line)
Units Code: “1” for inches & pounds
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Shaft Elements: OD, ID, Length, Inertia, Weight (1 line for each
element)

Disks: Station No. (integer), OD, ID, Length, Weight, IP, IT (1 line for
each disc)

Bearings: Station No. (integer), Weight (1 line for each bearing)
Pedestals: Station No. (integer), Weight (1 line for each pedestal)
Pedestals: Kxx, Kyy, Cxx, Cyy (1 line for each pedestal)
Added Rotor Weights: Station No. (integer), Weight (1 line for each

weight)
Shaft Material: Modulus of elasticity, Poisson’s ratio (1 line)
No. of Speeds for Bearing Dynamic Properties: (integer) (1 line)
Bearing Dynamic Properties:

RPM (1 line)
Kxx, Kxy, Cxx, Cxy, Kyx, Kyy, Cyx, Cyy
(1 line for each bearing)

⎤
⎦ Sequence for each RPM

Unbalances: Station No., Amplitude, Phase Angle (1 line for each
station).

This last input group of lines (unbalances) is ignored by RDA when exe-
cuting threshold speed runs, but may be retained in the input file. It can
therefore also be excluded when executing threshold-speed runs. The input
file for this sample can be viewed in file sample04.inp, but is not printed
here in the interest of space.

Entering option 1 in the DATA MENU produces the INPUT OPTIONS
menu, from which option 1 (file input) prompts the user for the input
file name, which is sample04.inp for this example. Input file must
reside in RDA99 directory. Upon entering the input file, the user is
returned to the DATA MENU, where the user can select any of the six
options, including option 5 that executes the previously designated Main
Menu option 4 for stability analyses. Three stability analysis options are
displayed as follows:

S T A B I L I T Y        A N A L Y S I S
 *********************************************
The Options Are:

1. Do not iterate to find threshold speed.
    Energy check will not be performed.
    Store the eigenvalues for plotting. 

2. Find the threshold speed of instability.
    Perform energy check at threshold speed.
    Store the eigenvalues for plotting.

3. Find the threshold speed of instability.
    Perform energy check at threshold speed.
    Do not store the eigenvalues for plotting.
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The new user should explore all three of these options. Option 1 pro-
vides the complex eigenvalues for a speed range and increment prompted
from the user. Plotting the real eigenvalue parts as functions of speed is
one way of determining the instability threshold speed, that is, by find-
ing the lowest speed at which one of the eigenvalue real parts changes
from negative (positively damped) to positive (negatively damped).At this
negative-to-positive crossover speed, the two eigenvalues for the threshold
(zero-damped) mode are imaginary conjugates and thus provide the natu-
ral frequency of the unstable mode. Plotting the first few lowest frequency
modes’ eigenvalues versus speed can provide information (see Campbell
diagram in Section 4.2.6) to corroborate which modes are shown to be
sensitive to rotor unbalance. However, option 3 is more expedient since
it automatically “halves in” on the positive-to-negative crossover thresh-
old speed to within the user supplied speed convergence tolerance. In this
demonstration example, option 3 is selected. Although not often experi-
enced by the author, option 3 may skip over an instability threshold speed
due to the fact that the bearing coefficients are provided at distinct speeds
between which curve fitting of bearing coefficients is used. Small errors
stemming from this curve fitting can significantly corrupt the instability
threshold search algorithm. Rather than reflecting algorithm shortcomings,
this potential difficulty is a result of the extreme sensitivity of the balance
of positive and negative energy right at an instability threshold. If this dif-
ficulty occurs, use option 1 and plot the real part versus speed for the lower
frequency modes and thereby graphically capture the zero crossover speed.

The unstable mode theoretically has exactly zero net damping at the
instability threshold, so its eigenvector at the threshold speed (and only
at the threshold speed) is not complex. Thus, a real mode shape can
be extracted from the threshold-speed eigenvector. The “energy check”
referenced in the STABILITY ANALYSIS menu uses the eigenvector com-
ponents for the mode at the determined stability threshold speed to
construct that mode’s normalized x and y harmonic signals at the bearings
to perform an energy-per-cycle computation at each bearing, as provided
by Equation 2.81. This computation provides a potential side check for
solution convergence of the threshold speed, because exactly at a thresh-
old of instability the sum of all energy-per-cycle “in” should exactly cancel
all energy-per-cycle “out.” However, the second example in this section
demonstrates that in some cases inherent computational tolerances in
eigenvector extraction can make the energy-per-cycle residual convergent
to a relatively small but nonzero limit. STABILITY ANALYSIS option 3
prompts for the following (inputs shown):

Input lower speed (rpm) 0 (RDA starts at the lowest bearing data speed)
Input upper speed (rpm) 4000
Desired accuracy (rpm) 1
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The user is next prompted with an option to change the speed tolerance.
With present PCs being so much faster than the early PCs for which RDA
was originally coded, the user should answer the prompt with “N” for
“No.” The user is next prompted to select from the following three choices.

The bearing coefficients will be fitted by a cubic spline.
Three types of end conditions could be used:

1. Linear
2. Parabolic
3. Cubic

Option 1 (Linear) is used in this demonstration example.
The user is next prompted to select from the following three choices

pertaining to shaft mass model formulation, just as in unbalance response
cases.
Shaft mass model options:

1. Lumped mass
2. Distributed mass
3. Consistent mass

The consistent mass option is usually the preferred choice, and is chosen
here. For any given rotor, curious users may compare model resolution
accuracy or convergence of these three options by varying the number of
shaft elements.

The last user prompt is to give a name to the output file that will be
generated (here sample04.out is provided). The complete output file for
this example is provided with the CD-ROM that comes with this book.
An abbreviated portion of that output file is given here as follows:

Stability Analysis Results

Threshold speed 2775.6 rpm ± 1.00 rpm
Whirl frequency 1692.5 cpm
Whirl ratio 0.6098

Energy Per Cycle at the Onset of Instability

Damping Part, Stiffness Part,
Bearing No. Rotor Location Cs

ij Kss
ij Net Energy

1 1 −349.9 350.0 0.148
2 3 −348.5 348.6 0.143

Energy/cycle of the bearings total 0.291
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As can be observed from the quite small bearing energy-per-cycle
residual, the user provided 1-rpm convergence criteria for the instabil-
ity threshold speed provides an eigenvector indicative of a zero-damped
mode. The energy-per-cycle output tabulations reflect that the model
(including bearing coefficient inputs) is symmetric about the rotor mid-
plane. In the next example, where the bearings are somewhat different, it
is seen that the total energy per cycle residual does not approach “small-
ness” to the same degree as this example, even though the threshold speed
iteration has essentially converged to the solution. One can conclude that
the energy-per-cycle criteria for convergence are much more stringent than
the speed tolerance. The “whirl ratio” (whirl frequency/threshold speed)
is always less than “one” for this type of instability, that is, the associated
self-excited vibration is always subsynchronous.

The normalized threshold (zero-damped) mode used for the energy-
per-cycle computations is essentially planar, which can be deduced from
the following RDA output for this example. The mode for this exam-
ple is indicative of the typical nearly circular orbit shapes at instability
thresholds.

Normalized Self-Excited Vibration Mode

Coordinate Amplitude Phase (rad) Phase Angle (◦)

x1 1 0.1016590 0.9276607E−03 0.0
y1 2 0.8729088E−01 −1.822578 −104.4
θx1 3 0.1160974 1.317930 75.5
θy2 4 0.1352273 −0.9837417E−04 0.0
x2 5 1.000000 0.0000000 0.0
y2 6 0.8586232 −1.823513 −104.5
θx2 7 0.2455765E−03 1.304664 74.8
θy2 8 0.2896766E−03 0.9317187E−02 0.0
x3 9 0.1014572 0.8898759E−03 0.0
y3 10 0.8711492E−01 −1.822611 −104.4
θx3 11 0.1163277 −1.823615 −104.5
θy3 12 0.1355006 3.141485 180.0

Namely, the orbits are “fat ellipses” or “almost circular,” and there is an
insight to be gleaned from this. Referring to Equation 2.79 for the energy-
per-cycle input from the skew-symmetric part of the bearing stiffness
matrix, the integrated expression is the orbit area. Thus, the destabilizing
energy is proportional to the normalized orbit area, which is a maximum
for a purely circular orbit. A major European builder of large steam turbo-
generator units used this idea “in reverse” by making the journal bearings
much stiffer in the vertical direction than in the horizontal direction, to
create “very flat” modal orbit ellipses (i.e., small normalized orbit areas),
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with the objective of increasing the instability threshold power for steam-
whirl-induced self-excited vibration. This design feature unfortunately
made these machines difficult to balance well, and was thus subsequently
“reversed” in the power plants as per customers’ request (Adams and
Makay, 1981).

4.3.2 Symmetric 3-Mass Rotor + 2 Anisotropic Bearings (Different)
and Disk

The model for this example differs from the previous model only in the
bearing coefficients for bearing 2, which are somewhat different from those
of bearing 1. This example demonstrates instability threshold output for
the more typical machine configuration where perfect symmetry is not
preserved. The input file (sample5.inp) and output file (sample5.out) are
on the CD-ROM that comes with this book. Below is an abbreviated output
summary with a speed tolerance of ±1 rpm.

Stability Analysis Results

Threshold speed 2017.4 rpm ± 1.00 rpm
Whirl frequency 1455.7 cpm
Whirl ratio 0.7216

Energy Per Cycle at the Onset of Instability

Bearing No. Rotor Location Damping Part, Cs
ij Stiffness Part, Kss

ij Net Energy

1 1 −36,041 30,865 −5176
2 3 −157 167 10

Energy/cycle of the bearings total −5166

Afirst impression of the energy-per-cycle residual here might induce one
to question the quality of solution convergence. However, the following
abbreviated output summary from a rerun of this example with the signif-
icantly smaller speed tolerance of ±0.1 rpm does not support such a first
impression.

Stability Analysis Results

Threshold speed 2016.5 rpm ± 0.10 rpm
Whirl frequency 1455.2 cpm
Whirl ratio 0.7216
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Energy Per Cycle at the Onset of Instability

Bearing No. Rotor Location Damping Part, Cs
ij Stiffness Part, Kss

ij Net Energy

1 1 −36,035 30,852 −5183
2 3 −158 167 9
Energy/cycle of the bearings total −5174

For practical purposes, the threshold speed answer here is the same as
computed in the initial run that used a ±1 rpm speed tolerance. In con-
trast to the previous example, which is symmetric about the mid-plane,
the threshold mode in this example has its largest modal motion at sta-
tion 1 (bearing 1) and its smallest motion at station 2 (disc). In the previous
example, the disc’s threshold modal orbit is about 10 times as large as
at the bearings. The difference in energy-per-cycle residual convergence
characteristics between these two examples, one symmetric and one not,
invites further research. Clearly, the energy-per-cycle criteria for threshold
speed convergence are more stringent than speed tolerance, but fortunately
threshold speed is the answer sought.

In all RDA examples thus far presented, the bearing damping coeffi-
cient arrays used are symmetric. For the examples in this section, bearing
stiffness and damping coefficients originate from standard computa-
tions for fluid-film hydrodynamic journal bearings, that is, using “small”
radial position and velocity perturbations on the solution of the Reynolds
lubrication equation (RLE). As shown in Section 2.4 of Chapter 2, a skew-
symmetric portion of a bearing “damping” matrix is not really damping
since it embodies a conservative force field, and thus should be present
only if needed to capture bearing (or seal) fluid inertia effects. Chapter 5
more thoroughly develops this and other aspects of bearing dynamic prop-
erties, but it is relevant to mention here that the classical RLE encompasses
only the viscous effects of the lubricant fluid with no account of the fluid
inertia effects. Thus, journal bearing dynamic properties obtained from
Reynolds-equation-based perturbations must have symmetric damping
coefficient arrays.

This first group of RDAexamples should provide one with a background
to begin analyses of other cases. Like any computer code, RDA is just a tool
and thus can be used properly or improperly. As will be exposed more fully
in Part 4, proper use of an LRV code like RDA demands that the user apply
good engineering judgment and care in devising models that adequately
portray the important modes and responses of the system.

4.4 Additional Sample Problems

The sample problems of the previous two sections were devised primarily
to give one a primer on use of the RDA code. The new RDA user is
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encouraged to analyze variations of that initial batch of samples. That is,
to perform basic parametric studies on the model to study the influence
of input variations (bearing, pedestal, shaft, etc.) on the results, such as
critical speeds and attendant amplitude peaks, and instability threshold speeds.
The sample problems provided in this section are an extension of the RDA
primer begun with the previous sample problems.

4.4.1 Symmetric 3-Mass Rotor + 2 Anisotropic Bearings and 2 Pedestals

The inputs for this example are the same as the previous example
except that pedestals are added at each of the two bearings. Input
file sample06.inp for this sample contains the following requisite input
modifications to input file sample05.inp.

Number of Pedestals: 2

Pedestal Data: Pedestal No. Station No. Weight (lb)

1 1 25.0
2 3 25.0

Pedestal Stiffness and Damping Coefficients

Kxx (lb/in.) Kyy (lb/in.) Cxx (lb s/in.) Cyy (lb s/in.)

Pedestal no. 1: 15,000 25,000 1 1
Pedestal no. 2: 15,000 25,000 1 1

The following is an abbreviated results summary for this example.

Stability Analysis Results

Threshold speed 2004.1 rpm ± 0.10 rpm
Whirl frequency 1530.0 cpm
Whirl ratio 0.7634

The new RDA user is encouraged at this point to explore moderate input
variations, specifically for the pedestal parameters. For example, a small
reduction in both pedestal x-stiffness inputs may provide the surprise of
eliminating a threshold of instability from the speed range below the max-
imum speed of bearing input stiffness and damping coefficients (i.e., no
threshold speed below 8015 rpm). The new RDA user should attempt to
explain such dramatic changes in the results.
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4.4.2 Nine-Stage Centrifugal Pump Model, 17-Mass Stations,
2 Bearings

The input file name for this model is pump17.inp. Both unbalance response
and instability threshold speed cases are included here for the main pur-
pose of comparison with the next example which is a five-mass-station
model of the same pump. The rotor model for this example is based on
a pump rotor quite similar to that shown in Figure 4.12. It has two oil-
film journal bearings and nine impeller stages to produce a very high
pump pressure. The model here is purely for RDA demonstration pur-
poses. It does not account for the quite significant effects of any of the
inter-stage close-clearance sealing gaps and end seals, all of which have
their own bearing-like rotor dynamic coefficients that can be entered into
RDA just like the coefficient inputs for journal bearings. In Part 4, such
effects were included in the models used for troubleshooting case studies
presented.

4.4.2.1 Unbalance Response

This pump could be driven either by a constant speed driver (e.g., induc-
tion motor) or a variable speed driver (e.g., frequency-inverter drive
motor, induction motor through fluid coupling, or an auxiliary steam
turbine).The main advantages of variable-speed drive for such a pump
include operation at a “best efficiency point” (BEP) over a wide flow
range, and avoidance of intense flow-induced vibration at flows signifi-
cantly below BEP flow. In any case, it is prudent practice to analyze the
unbalance response over a speed range that is significantly higher than
the anticipated maximum operation speed. This is to insure the detec-
tion of any unbalance-sensitive critical speeds of the model that might
be located just above the maximum operating speed. Given the possible
inaccuracies of any model, such critical speeds that are computed to be
only marginally above the maximum operating speed could in fact intrude
into the upper range of the operating speed on the actual machine. Such
pumps are generally driven through a so-called flexible coupling, which
provides a tolerance of angular as well as parallel misalignment between
the driver and pump. As a consequence, LRV characteristics of the pump
are essentially decoupled from the driver.

FIGURE 4.12 Rotor of a nine-stage double-case centrifugal pump.
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Third mode

Second mode 

First mode 

FIGURE 4.13 First three planar mode shapes for a simply supported uniform beam.

This example involves a relatively long flexible rotor with nine impeller
stages inboard of two journal bearings that are located near their respective
ends of the rotor. Thus, one should anticipate the possibility of more than
one bending-type critical speed existing within the operating speed range.
To insure the potential for exciting multiple bending critical speeds with
unbalances, the axial location and phasing of the unbalance inputs should
be properly configured, as is demonstrated in this example. For an indi-
cation of where to place unbalances in the model, one should be guided
by the mode shapes for a uniform beam with appropriate approximate
boundary conditions. In this example the so-called simple support case of
a uniform beam, illustrated in Figure 4.13, is appropriate.

In Section 1.3 of Chapter 1 it was shown that the influence of a force on
a particular mode is proportional to the participation factor of the mode
at the point of the force’s application, that is, proportional to the rela-
tive displacement magnitude at the point of application. Accordingly, an
unbalance placed near the axial midpoint of this example rotor can be
expected to provide near-maximum effect on the first and third modes,
whereas unbalances placed near the 1/4 and 3/4 axial locations at 180◦
out of phase can be expected to provide near-maximum effect on the sec-
ond mode. Accordingly, input file pump17.inp is configured with three
such unbalances. Also, to make the problem a bit more interesting, the two
180◦-out-of-phase unbalances are placed 90◦ out of phase with the axial
midpoint unbalance. The full output file is pump17ub.out, from which the
following abbreviated output summary is extracted.

Response of Rotor Station No. 5 (Near 1/4 Axial Position)

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

1200.0 0.333 −1.9 0.327 −93.9
1400.0 0.678 −1.5 0.676 −93.0

continued
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Continued

1600.0 2.138 −1.1 2.106 −93.0
1800.0 4.593 179.8 4.759 91.8
2000.0 1.410 −179.8 1.416 90.5
2200.0 0.943 −179.2 0.946 90.9
6200.0 0.786 −131.7 0.786 138.3
6600.0 1.162 −120.1 1.164 149.9
7000.0 2.636 −107.3 2.634 162.7
7200.0 7.237 −101.0 7.234 169.0
7400.0 10.493 85.2 10.256 −4.7
7600.0 3.159 91.3 3.162 1.3
8000.0 1.452 102.1 1.453 12.1

Response of Rotor Station No. 9 (Near 1/2 Axial Position)

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

1200.0 0.442 −0.7 0.434 −92.5
1400.0 0.896 −0.7 0.894 −92.1
1600.0 2.812 −0.8 2.770 −92.6
1800.0 6.004 179.6 6.223 91.6
2000.0 1.830 179.4 1.838 89.8
2200.0 1.214 179.4 1.219 89.5
2400.0 0.963 179.3 0.964 89.4
6200.0 0.428 175.5 0.428 85.5
6400.0 0.419 174.2 0.419 84.2
6600.0 0.411 172.4 0.410 82.3
6800.0 0.403 168.8 0.403 78.8
7000.0 0.402 161.0 0.402 71.0
7200.0 0.499 133.1 0.499 43.0
7400.0 0.696 −130.0 0.684 139.4
7600.0 0.421 −157.9 0.421 112.1
7800.0 0.384 −165.6 0.384 104.4
8000.0 0.366 −169.1 0.366 100.9

Response of Rotor Station No. 13 (Near 3/4 Axial Position)

X-Direction Y-Direction

Speed (rpm) Amplitude (mils) Phase Angle (◦) Amplitude (mils) Phase Angle (◦)

1200.0 0.312 0.4 0.306 −91.9
1400.0 0.634 0.1 0.631 −91.6
1600.0 1.997 −0.4 1.964 −92.4
1800.0 4.282 179.4 4.435 91.4
2000.0 1.312 178.6 1.317 88.9

continued
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Continued

2200.0 0.876 177.9 0.879 88.0
2400.0 0.699 177.1 0.700 87.2
6200.0 0.687 121.1 0.686 31.2
6400.0 0.823 114.1 0.823 24.1
6600.0 1.047 107.2 1.049 17.1
6800.0 1.480 99.9 1.480 9.9
7000.0 2.492 93.0 2.490 3.0
7200.0 7.020 86.3 7.017 −3.7
7400.0 10.438 −99.8 10.204 170.2
7600.0 3.215 −105.5 3.218 164.5
7800.0 2.018 −110.6 2.018 159.4
8000.0 1.531 −115.2 1.532 154.8

The results summarized here clearly show two critical speeds, the first
near 1800 rpm and the second near 7400 rpm. One may of course “zoom
in” on these two speeds to more accurately acquire the model’s critical
speeds and associated amplitude peaks. As the full unabridged results
output on file pump17ub.out show, the motion at the two journal bearings
is vanishingly small over the complete computed speed range, indicat-
ing that the rotor locations at the bearings are virtual nodal points for both
critical speeds. And that is consistent with the mode shapes at the first
and second critical speeds, albeit nonplanar, closely resembling the cor-
responding mode shapes shown in Figure 4.13 for the simply supported
uniform beam. For example, the vibration level at station 9 (near the rotor
mid-plane) shows virtually no sensitivity to the second critical speed, indi-
cating that station 9 is practically a nodal point for the second critical speed.
Furthermore, the relative amplitudes for the second critical speed at sta-
tions 5, 9, and 13 are in qualitative agreement with the second mode shape
for the simply supported uniform beam. This example clearly shows that
vibration measurements near the bearings may not correlate well at all
with rotor vibration at the mid-span zone.

4.4.2.2 Instability Threshold Speed

The same input file from the previous example is used here to perform
a computation for determining if a threshold speed is predicted in the
speed range below 8000 rpm for the nine-stage centrifugal pump. The full
unabridged results are on output file pump17ts.out.An abbreviated output
summary is given as follows:

Stability Analysis Results

Threshold speed 2648.1 rpm ± 0.10 rpm
Whirl frequency 1417.0 cpm
Whirl ratio 0.5351
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This result shows a couple of features that are typical for this type of
instability (commonly called oil whip). First, the whirl ratio at the oil-whip
threshold speed is close to 1/2. Second, the mode that is self-excited is quite
similar to the first-critical-speed mode excited by unbalance in the pre-
vious example, but with two notable differences: (i) The motion at the
bearings is approximately 5% of the maximum (at rotor mid-plane) instead
of being vanishingly small. This is because the journal bearings are pro-
viding the self-exciting destabilizing mechanism. (ii) The unstable mode’s
natural frequency (1417 cpm) is noticeably lower than the first critical speed
(∼1800 rpm). This is because the bearing’s hydrodynamic oil films become
thicker, and thus less stiff, as rotational speed is increased. Consequently,
the first mode’s natural frequency at the threshold speed (2648 rpm) is
1417 cpm, not 1800 cpm.

4.4.3 Nine-Stage Centrifugal Pump Model, 5-Mass Stations, 2 Bearings

This 5-mass-station rotor model has been configured to provide a best effort
at approximating the previous 17-mass-station rotor model. The input file
is pump5.inp. Both the unbalance response case and instability threshold speed
case have been rerun with the 5-mass rotor model. Bearing inputs are the
same as the pump17.inp file. A brief summary for unbalance response
output from file pump5ub.out is presented as follows. The first critical
speed is reasonably close to that with pump17 but the second critical speed
differs considerably from that of pump17, as should be expected.

1st critical speed ∼= 1800 rpm with x 1
2 -axial-position amplitude

∼= 6 mils

2nd critical speed ∼= 6400 rpm with x 3
4 -axial-position amplitude

∼= 37 mils

The instability threshold speed case computed with pump17.inp is repeated
here using pump5.inp. The following output summary is extracted from
the full output file pump5ts.out.

Threshold speed 2449.5 rpm ± 10 rpm
Whirl frequency 1512.3 rpm
Whirl ratio 0.6174

As these results show, the threshold speed computed here is approx-
imately 200 rpm lower than that computed from pump17.inp and the
whirl frequency is approximately 100 cpm higher. The reason the threshold
results from pump5.inp are this close to those from pump17.inp is because



180 Rotating Machinery Vibration: From Analysis to Troubleshooting

the mode at instability threshold is just a somewhat “softer version” of the
mode at the first critical speed, as previously explained. As explained in
Chapter 1, the higher the mode number needed, the more the DOF (i.e., the
more finite elements) necessary to accurately portray the actual continuous
media body with a discrete model. The comparisons between the pump17
and pump5 results are completely consistent with that axiom.

4.5 Summary

The primary focus of this chapter is to provide a primer on using the RDA
code for LRV analyses. Several carefully configured examples are presented
for that purpose. In addition to the “how to” instructions, attention is given
to important issues needed to make comprehensive use of what “comes
out” of RDA. This includes showing that unbalance response results are the
best approach to determine the so-called critical speeds at which sensitiv-
ity to residual rotor unbalance can produce significant resonant vibration
peaks. Also, the confusing topic of rotor vibration phase angles is clearly
and comprehensively covered. The explanation of elliptical orbits and their
changing size, shape, and orientation as functions of rotor axial position
and speed is provided as an in-depth treatment. The important topic insta-
bility self-excited rotor vibration is both analyzed and explained. In Part 4
(Troubleshooting), a constructive interplay between the analysis types cov-
ered in this chapter and the Monitoring and Diagnostics methods covered in
Part 3 provide serious vibration analysts and troubleshooters a broad pic-
ture of the methods used to solve rotating machinery vibration problems.

When using a code like RDA for design prediction analyses of rotor
dynamic behavior, it is important to keep in mind the inherent uncertain-
ties in the inputs, most notably bearing stiffness and damping coefficients.
Even under controlled laboratory testing, these uncertainties remain sig-
nificant as Adams and Falah (2004) show with their laboratory 3-bearing
flexible-rotor test rig. They show comparisons between test results and
RDA predictions, both for rotor unbalance response through critical speed
and oil whip thresholds speeds, for a wide range of bearing loads.
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PROBLEM EXERCISES

1. Using RDA, model the simple rotor configuration of Problem 1
in the problem exercises of Chapter 2 with a 2-element (3-mass)
model. Compute its response to a central unbalance (at the disk)
up to and somewhat beyond the lowest critical speed. This will
necessitate adding bearing stiffness and damping at the two ends
of the shaft, to replace the two simple supports of the prior prob-
lem. Start with a low bearing isotropic stiffness (like 1000 lb/in.)
and low isotropic bearing damping (like 0.005 lbs/in.). Progres-
sively increase the bearing stiffness until the output does not
appreciably change. Then adjust the unbalance force magni-
tude to achieve single peak critical speed vibration amplitude of
about 0.010 in. at the disk. Remember, the system is linear. Now
model and simulate this configuration using the 8-DOF nontriv-
ial model (Equation 2.18) and compare its predictions with RDA
results for critical speed and peak vibration magnitude. Compare
the RDA critical speed with the natural frequency determined in
Problems 1 and 2 of the problem exercises in Chapter 2.

2. Using RDA, devise a 2-element model of the rotor shown in
Problem 3 in the problem exercises of Chapter 2. As indicated
in Problem 1 here, provide isotopic bearing and stiffness coeffi-
cients, sufficiently stiff to emulate the rigid simple end supports
and lightly damped so that critical speed vibration does not seek
infinite amplitude. Compare the critical speed(s) with the natural
frequency(s) of the configuration in Chapter 2.

3. With the RDA model developed in Problem 2 here as a starting
model, progressively increase the number of shaft elements to
determine how many elements are required to converge to best
achievable model resolution. Perform this parametric study for
all RDA’s three mass matrix options (lumped, distributed, and
consistent mass models). Do this parametric study for the two
configurations (a) shaft with disk and (b) shaft alone without
disk. Plot results for both (a) and (b), showing predicted critical
speed values as a function of number of elements.

4. With the RDA model developed in Problem 1 here as a start-
ing model, progressively increase bearing stiffness to establish
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the maximum bearing stiffness value before RDA computations
exhibit numerical difficulties. Explain the fundamental reason
for these numerical difficulties. Try to establish an approximate
guideline for maximum bearing-to-shaft stiffness ratio that will
not cause such numerical problems.

5. In a manner similar to Problem 4 and using the same RDAmodel,
progressively decrease bearing stiffness to establish the mini-
mum bearing stiffness value before RDA computations exhibit
numerical difficulties. Similar to Problem 4, try to establish
an approximate guideline for minimum bearing-to-shaft stiff-
ness ratio that will not cause such numerical problems. Clearly,
Problems 4 and 5 are important to demonstrate how to use
RDA for rotor systems where bearings are tantamount to rigid
simple supports and the other extreme case where the rotor is
tantamount to being a free–free flexible body of revolution.

6. Conduct a computational research investigation to seek an expla-
nation for the apparent discrepancy of instability threshold
speed energy balance in the sample5 example problem (see
Section 4.3.2).

7. Conduct a research investigation to seek an explanation for
the extreme sensitivity of predicted threshold speed to bear-
ing pedestal stiffness in the sample6 example problem (see
Section 4.4.1).



5
Bearing and Seal Rotor Dynamics

5.1 Introduction

RDA, the modern FE-based PC code supplied with this book, is presented
from a fundamentals perspective in Chapter 2 and a user’s perspective in
Chapter 4. There are a number of commercially available codes with simi-
lar capabilities. Engineering analysis codes in general and rotor dynamics
codes in particular nearly always have one tacit fundamental trait in
common. That trait is as follows:

Those aspects of the problem class that are reasonably well defined and
modeled by first principles are what is “inside” the computer code.
Whereas, those aspects which are not as well defined and modeled by
first principles show up as some of the “inputs” to the computer code.

With this approach, the typical computer code developer and marketer has
long been quick to tout their code as capable of handling “any” conceivable
problem within the code’s intended range of usage, as long as one has all the
“correct” inputs.

For LRV analyses, those important inputs that present the biggest
challenge are the dynamic properties (stiffness, damping, and inertia
coefficients) for the components that dynamically connect the rotor to the
stator (stator ≡ everything that does not rotate). These components include
first and foremost the radial bearings. In many rotating machinery types
(e.g., turbo-machinery) other liquid- and gas-filled internal close-clearance
annular gaps, such as seals, are also of considerable LRV importance.
Furthermore, the confined liquid or gas that surrounds a rotor component
(e.g., centrifugal pump impeller and balancing drum) may also signifi-
cantly contribute to the basic vibration characteristics of a rotating machine,
both in an interactive way much like bearings and seals, and as explicit
time-dependent unsteady-flow forces (e.g., hydraulic instability in cen-
trifugal pumps, rotating stall in turbo-compressors). Motor and generator
electromagnetic forces also contribute. Most modern LRV research has been
devoted to all these rotor–stator effects. One could justifiably devote an
entire book just to this single aspect of LRV. This chapter focuses on bearing
and seal LRV dynamic properties. Small clearances critical to these prop-
erties are of significant uncertainty because of manufacturing tolerances.

183
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Thus, LRV characteristics are really stochastic rather than deterministic.
That is, if significant inputs are random-variable distributions, then so are
the outputs.

5.2 Liquid-Lubricated Fluid-Film Journal Bearings

5.2.1 Reynolds Lubrication Equation

The strong urge to rigorously derive the classic Reynolds lubrication equa-
tion (RLE) is here resisted in the interest of space and because the RLE is so
aptly derived in several references (e.g., Szeri, 1998). To facilitate the serious
reader’s understanding of available derivations of the RLE, the following
perspective is provided. Figure 5.1 provides an elementary illustration of
a journal bearing.

The general starting point for modeling fluid mechanics problems is
encompassed in the three coupled fluid-momentum PDEs [Navier–Stokes
(N–S) equations] plus the single conservation-of-mass PDE (continuity equa-
tion). The three scalar N–S equations (which are nonlinear) are obtained
by applying Newton’s Second Law ΣF = d(mv)/dt to an inertial differen-
tial control volume (CV) of a continuum flow field. Attempting to solve
these equations for 2D and 3D problems has historically been the chal-
lenge to occupy the careers of fluid mechanics theoreticians, because these
equations are nonlinear and coupled. The ingenious contributions of the
precomputer age fluid mechanics “giants” (like Osborne Reynolds) sprang
from the application of their considerable physical insight into specific
problems, leading them to make justifiable simplifying assumptions,
thereby producing important solvable formulations. This was tantamount
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FIGURE 5.1 Generic journal bearing configuration and nomenclature.
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to identifying and excising those terms in the N–S equations of secondary
importance for a specific problem. In this regard, Reynolds’ (1886) original
paper on development of the RLE is nothing short of a masterpiece.

In a “nutshell” the RLE applies to an incompressible laminar (no tur-
bulence) strictly viscous (no fluid inertia) thin fluid film between two
closely spaced surfaces in relative motion. Because of the neglect of
fluid inertia, all the nonlinearities (convective inertia terms) are deleted
from the N–S equations. Because of the close spacing of the two sur-
faces, a number of further simplifying assumptions are invoked. These
include neglect of local surface curvature and neglect of gradients of fluid
shear stress components in the local plane of the thin fluid film, because
they are much smaller than the gradients across the thin fluid film. The
simplifying assumptions additionally include neglect of the fluid veloc-
ity and the change in local pressure normal to the local plane of the
film. When all these simplifying assumptions are implemented, the N–S
equation for the direction normal to the film is eliminated. The other
two N–S equations (for the two in-plane directions) are decoupled from
each other and are left with only shear stress and pressure terms for
their respective directions. Integrating these two differential equations
and applying the surface velocity boundary conditions yield solutions
for the two in-plane velocity distributions in the film in terms of the
local in-plane pressure gradient terms and relative velocity components
between the surfaces.

These velocity solutions substituted into the conservation-of-mass condi-
tion yield the Reynolds equation. Originally, only sliding velocity between
the two surfaces was considered. Much later, as Equation 5.1 for the RLE
reflects, the so-called squeeze-film term was added to handle local relative
velocity of the surfaces perpendicular to their local plane. Within the con-
text of rotor dynamics, it is the sliding velocity term that gives rise to the
bearing stiffness coefficients and the squeeze-film velocity term that gives rise
to the bearing damping coefficients:

Sliding velocity term Squeeze-film term

m = viscosityp = p(t, z), h = h(t, z), 0 £ t £ 2pR,

= 6wR + 12+

–L/2 £ z £ L/2,

∂
∂t m

h3

m
h3∂p

∂t
dh
dt

dh
dt

∂p
∂z

∂
∂z

(5.1)

Here, p(τ, z) is the film pressure distribution, h(τ, z) is the film thickness
distribution, and L is the hydrodynamic-active axial length of the journal
bearing. p(τ, z) is the unknown parameter and all other parameters are
specified.
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It was Reynolds’ objective to explain then recently published experimen-
tal results for rail-locomotive journal bearings, which showed a capacity to
generate film pressures in order to keep the rotating journal from contact
rubbing of the bearing. Reynolds’ derivation showed how the sliding action
of the rotating journal surface, shearing oil into the converging thin gap
between an eccentric journal and bearing, produced a hydrodynamic pres-
sure distribution that could support static radial loads across the oil film
without the journal and bearing making metal-to-metal contact. This is
one of the most significant discoveries in the history of engineering sci-
ence. Reynolds’ derivation clearly showed that this hydrodynamic load
capacity was in direct proportion to the sliding velocity (rotational speed)
and the lubricant viscosity. Virtually every first-level undergraduate text
in Machine Design has a chapter devoted to hydrodynamic journal bear-
ing design based on the Raimondi and Boyd (1958) computer-generated
nondimensional solutions to the RLE for static load capacity (see A. A.
Raimondi in the Acknowledgment section of this book). The focus here
is primarily on how solutions of the RLE are used to determine journal
bearing stiffness and damping coefficients.

Before the existence of digital computers, Equation 5.1 was solved by
neglecting either the axial pressure flow term (“long bearing” solution)
or the circumferential pressure flow term (“short bearing” solution). With
either approximation, the RLE is reduced to an ODE (i.e., one independent
spatial coordinate) and thus solvable without computerized numerical
methods. These two approximate solutions provide an upper bound
and lower bound, respectively, for the “exact” 2D solutions to Equa-
tion 5.1. Whether using one of these approximate solution approaches
or a full 2D numerical solution algorithm, pressure boundary condi-
tions must be specified with Equation 5.1 in order to have a well-posed
mathematical problem. The generic circumferential view of a journal bear-
ing hydrodynamic pressure distribution in Figure 5.1 is for the typical
( p = 0) boundary condition in which cavitation or film rupture in the
diverging portion of the fluid film gap is handled by imposing the addi-
tional boundary condition ∇p = 0 at the interface between the full-film
region (in which the RLE is used) and the ruptured region (in which
the pressure distribution is set equal to vapor pressure ≈0). The ∇p = 0
condition imposes the physical requirement that lubricant mass flow
is conserved across the interface boundary separating the full-film and
ruptured-film regions.

To show how journal bearing stiffness and damping coefficients are
obtained from the RLE, it is necessary to first show how solution of the RLE
is used to generate static load capacity design curves like those originally
published by Raimondi and Boyd (1958). The sequence of computational
steps for obtaining solutions to Equation 5.1 is exactly the reverse of the
sequence of steps when pre-existing RLE solutions are subsequently used
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in bearing design analyses. This distinction can be quickly shown by the
following outline.

5.2.1.1 For a Single RLE Solution Point

1. Specify e ≡
√

(e2
x + e2

y), φ = arctan(ey/ex), ex = xJ − xB, ey =
yJ − yB

With journal-to-bearing axial alignment, h = C − ex cos(τ/R) −
ey sin(τ/R) giving (dh/dτ) = (ex/R) sin(τ/R) − (ey/R) cos(τ/R),
ḣ = −ėx cos(τ/R) − ėy sin(τ/R)

2. Solve the RLE for the pressure distribution p = p(τ, z)

3. Integrate p(τ, z) over the journal cylindrical surface to get x and y
forces upon the journal:

Fx = −
L/2∫

−L/2

2πR∫

0

p(τ, z) cos(τ/R) dτ dz

Fy = −
L/2∫

−L/2

2πR∫

0

p(τ, z) sin(τ/R) dτ dz

(5.2)

In a numerical finite-difference solution for p(τ, z), the pressure is
determined only at the grid points of a 2D rectangular mesh. The
above integrations are then done numerically, such as by using
Simpson’s rule.

4. Calculate resultant radial load and its angle:

W =
√

F2
x + F2

y, θW = arctan(Fy/Fx) (5.3)

By performing the above steps, 1 through 4, over a suitable range
of values for 0 ≤ e/C < 1 and φ, enough solution points are generated
to construct design curves similar to those of Raimondi and Boyd. As
stated earlier, the sequence of computations in design analyses is the
reverse of the above sequence. That is, one starts by specifying the bear-
ing load, W, and its angle θW , and uses design curves preassembled from
many RLE solutions to determine the corresponding journal eccentricity, e,
and attitude angle, φ.

5.2.2 Journal Bearing Stiffness and Damping Formulations

Solutions to the RLE are a nonlinear function of the journal-to-bearing
radial displacement or eccentricity, even though the RLE itself is a linear
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differential equation. Thus, Fx and Fy given by Equations 5.2 are nonlin-
ear (but continuous) functions of journal-to-bearing motion. Therefore,
they may each be expanded in a Taylor series about the static equilib-
rium position. For sufficiently “small” motions, the corresponding changes
in the journal fluid-film force components about equilibrium can thus be
linearized for displacement and velocity perturbations, as indicated by
Equations 2.60.

Since solutions for the fluid-film radial force components Fx and Fy are
usually obtained through numerical integration on p(τ, z) as it is obtained
from numerical solution of the RLE, the partial derivatives of Fx and Fy that
are the bearing stiffness and damping coefficients must also be numerically
computed. This is shown by the following equations:

−kxx ≡ ∂Fx

∂x
∼= ΔFx

Δx
= Fx(x + Δx, y, 0, 0) − Fx(x, y, 0, 0)

Δx

−kyx ≡ ∂Fy

∂x
∼= ΔFy

Δx
= Fy(x + Δx, y, 0, 0) − Fy(x, y, 0, 0)

Δx

−kxy ≡ ∂Fx

∂y
∼= ΔFx

Δy
= Fx(x, y + Δy, 0, 0) − Fx(x, y, 0, 0)

Δy

−kyy ≡ ∂Fy

∂y
∼= ΔFy

Δy
= Fy(x, y + Δy, 0, 0) − Fy(x, y, 0, 0)

Δy

−cxx ≡ ∂Fx

∂ ẋ
∼= ΔFx

Δẋ
= Fx(x, y, Δẋ, 0) − Fx(x, y, 0, 0)

Δẋ

−cyx ≡ ∂Fy

∂ ẋ
∼= ΔFy

Δẋ
= Fy(x, y, Δẋ, 0) − Fy(x, y, 0, 0)

Δẋ

−cxy ≡ ∂Fx

∂ ẏ
∼= ΔFx

Δẏ
= Fx(x, y, 0, Δẏ) − Fx(x, y, 0, 0)

Δẏ

−cyy ≡ ∂Fy

∂ ẏ
∼= ΔFy

Δẏ
= Fy(x, y, 0, Δẏ) − Fy(x, y, 0, 0)

Δẏ

(5.4)

Here, x ≡ ex, y ≡ ey, ẋ ≡ ėx, ẏ ≡ ėy.
The definitions contained in Equations 5.4 for the eight stiffness and

damping coefficients are compactly expressed using subscript notation,
as follows:

kij ≡ −∂Fi

∂xj
and cij ≡ −∂Fi

∂ ẋj
(5.5)
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It is evident from Equations 5.4 that the journal radial force components
Fx and Fy are expressible as continuous functions of journal-to-bearing
radial displacement and velocity components, as follows:

Fx = Fx(x, y, ẋ, ẏ)

Fy = Fy(x, y, ẋ, ẏ)
(5.6)

It is also evident from Equations 5.4 that for each selected static equilib-
rium operating condition (x, y, 0, 0), five solutions of the RLE are required
to compute the eight stiffness and damping coefficients. These five slightly
different solutions are tabulated as follows:

(x, y, 0, 0), Equilibrium condition,
(x + Δx, y, 0, 0), x—displacement perturbation about equilibrium,
(x, y + Δy, 0, 0), y—displacement perturbation about equilibrium,
(x, y, Δẋ, 0), x—velocity perturbation about equilibrium,
(x, y, 0, Δẏ), y—velocity perturbation about equilibrium.

5.2.2.1 Perturbation Sizes

Because of the highly nonlinear nature of Equations 5.6, special care must
be taken when computing the numerically evaluated partial derivatives
in Equations 5.4. That is, each of the displacement and velocity perturba-
tions (Δx, Δy, Δẋ, Δẏ) must be an appropriate value (neither too large
nor too small) for the particular equilibrium condition to ensure reliable
results. This point is apparently not adequately appreciated by some who
have developed computer codes to perform the calculations implicit in
Equations 5.4. The author’s approach to handle this problem, while
possibly not original, is explained as follows.

For the sake of explanation, it is assumed that the individual compu-
tations are accurate to eight significant digits. The basic approach is to
program for automatic adjustment of each perturbation size based on the
number of digits-of-agreement between unperturbed and perturbed force
components. This approach is quite versatile and can be calibrated for any
specific application involving the computation of derivatives by numerical
differences. The author has found the following guidelines to work well. If
the difference between the unperturbed and perturbed force components
originates between the third and the fifth digit, the perturbation size is
accepted. If the difference invades the first three digits, then the particu-
lar perturbation is reduced, dividing it by 10. If the difference originates
beyond the first five digits, then the particular perturbation is increased,
multiplying it by 10. In this manner, the displacement and velocity force
derivatives are tangent (not secant) gradients, and are accurate to at least
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three significant digits. This is enumerated by the following:

unperturbed force component

To ensure at least
3-digit accuracy

perturbed force component

To ensure tangent gradients

Fi(x, y, 0, 0) = 0.a1a2a3a4a5a6a7a8 ¥ 10n,

a6a7a8 π b6b7b8,

a1a2a3 = b1b2b3,

Fi(x, y, 0, 0) + DFi = 0.b1b2b3b4b5b6b7b8 ¥ 10n,

5.2.2.2 Coordinate Transformation Properties

With few exceptions, journal bearing stiffness and damping coefficient arrays
are anisotropic. This means that the individual array elements change when
the orientation of the x–y coordinate system is changed. It is therefore quite
useful to be aware of the coordinate transformation properties of radial
bearing and seal rotor dynamic coefficients. For example, if available stiff-
ness and damping coefficient data are referenced to a coordinate system
orientation not convenient for a given LRV model, the available coefficient
arrays can be easily transformed to the desired coordinate system orienta-
tion. A similar example is when one wishes to rotate a bearing orientation
in a pre-existing LRV model, say for the purpose of analyzing the potential
improvement in vibration behavior such a change might accomplish.

With journal-to-bearing eccentricity, the predominant anisotropic char-
acter of journal bearing dynamic arrays is in contrast to the isotropic
assumption usually invoked for radial seals that are more reasonably
conceptualized with a rotationally symmetric flow field than are bearings.

The rotor dynamic coefficient arrays defined in Equations 5.4 and 5.5
are in fact quite properly categorized as single-point second rank tensors,
being mathematically just like the components for stress at a point and the
components for the mass moment-of-inertia of a rigid body with respect to
a point. The defining property of a tensor entity is its orthogonal transfor-
mation properties, that is how its individual scalar components transform
when the coordinate system orientation is rotated from that in which the
tensor’s components are initially specified. The most common application
of tensor transformation is in stress analysis when the coordinate system
rotation is into the principal coordinate system, in which all the shear stresses
disappear and the normal stresses are the principal stresses. Radial bear-
ing and seal rotor dynamic coefficients involving two spatial coordinates
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x and y are thus comparable to bi-axial stress. Therefore, the same direc-
tion cosines relating two orthogonal coordinate systems used to transform
bi-axial stress components also apply to the rotor dynamic coefficients of
radial bearings and seals. For the unprimed and primed coordinate systems
shown in Figure 5.2, the following transformations apply:

k′
ij = QirQjskrs and c′

ij = QriQjscrs (in tensor notation) or

[k′] = [Q][k][Q]T and [c′] = [Q][c][Q]T (in matrix notation)
(5.7)

where

[Q] =
[

cos γ sin γ

−sin γ cos γ

]

Unlike the component arrays for the stress and mass moment-of-inertia
tensors, bearing and seal rotor dynamic coefficient arrays are not neces-
sarily symmetric. Recalling the decomposition of bearing and seal arrays
into symmetric and skew-symmetric parts (see Section 2.4 of Chapter 2),
the skew-symmetric part is an isotropic tensor, that is, it is invariant to
coordinate system angular orientation.

As described in Section 5.3, these stiffness and damping coefficients are
not directly measurable, but are extracted from measured time-varying
force and displacement signals. That is, each coefficient is the derivative
of one measured signal with respect to another measured signal. Thus, the
challenge of achieving coefficient accuracy from such tests is obvious. It
is suggested here that the tensor transformation property of the stiffness
and damping arrays could be utilized to combat various sources of error
in extracting these coefficient arrays from laboratory measured force and
displacement signals. Specifically, it is proposed that the measured dis-
placement and force signals be simultaneously measured in a multitude
of orthogonal coordinate systems as illustrated in Figure 5.2. The stiffness
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FIGURE 5.2 Tensor transformation of bearing coefficients, Equations 5.7.
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and damping coefficient arrays are first extracted in each coordinate sys-
tem. An optimization algorithm is then employed to merge the coefficient
arrays from the different coordinate systems imposing their tensor trans-
formation property. In theory, the measurement errors do not possess the
tensor transform property and thus should be so minimized. This manner
of experimental error minimization could be referred to as tensor filtering.

5.2.2.3 Symmetry of Damping Array

It is evident from Equation 5.1 that the RLE retains certain pressure and
viscous fluid effects in the thin lubricant film while all fluid inertia effects
are absent, as described in the perspective on simplifying assumptions
leading to Equation 5.1. As rigorously developed in Section 2.4 of Chap-
ter 2 and briefly mentioned at the end of Section 4.3 of Chapter 4, the
skew-symmetric portion of an unsymmetric array added to the damping
array embodies a conservative force field and thus must reflect inertia effects,
similar to gyroscopic moment effects. Thus, solution perturbations from
the RLE must yield symmetric damping arrays (cij = cji).

5.2.3 Tilting-Pad Journal Bearing Mechanics

Also referred to as pivoted-pad journal bearings (PPJB), this style of hydro-
dynamic fluid-film radial bearing is now used in a multitude of rotating
machinery types, for example, turbines, compressors, pumps, motors, and
generators. When properly designed and appropriately employed, this
style of bearing yields distinct advantages in rotor vibration control over
the purely cylindrical journal bearing. But a lack of fundamental under-
standing of this type of bearing has led to misapplications where rotor
dynamical performance has turned out worse rather than better. If proper
design precautions are not taken, this bearing type can be quite sensitive
to the static load direction.

The basic understanding of this type of bearing is facilitated with its
comparison to the purely cylindrical journal bearing. Figure 5.3 illustrates
a fundamental difference between the two. Figure 5.3a illustrates a single
partial-arc cylindrical bearing as it responds with stability to an incremental
change in static load. In contrast, Figure 5.3b illustrates how a single tilting-
pad arc cannot support a static load with stability, since the freely pivoting
pad must have a film pressure distribution with the pressure center
directed through the pivot point, about which the sum of the moments
must be zero. As Figure 5.3b further illustrates, static stability dictates that
at least two tilting pads must share the static radial bearing load.

One ideal design condition is to have nominal bearing load directed
between two pads. The least desirable is to have the bearing load supported
mostly by one pad. Note that as long as the tilting-pad bearing has at least
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three equally spaced pads, a load passing directly through one of the pivot
points does not cause the bearing to collapse because the three or more
pads at least capture the journal. But even with three or more pads, a load
that is supported mostly by a single pad can produce poor rotor dynamical
characteristics. By restraining a single pad pivot and journal (test setup or
simulation), the load capacity of a single pad is obtained as a function of
journal pivot radial eccentricity as typified by Figure 5.4, where the slope
is pad pivot radial film stiffness.

It is seen that the pad radial film stiffness acts as a nonlinear spring
in compression. Consider the four-pad bearing, illustrated in Figure 5.5
for two loading conditions: (a) load between two pads and (b) load on a

Wp

Journal radial eccentricity position

FIGURE 5.4 Tilting pad load Wp versus journal pivot radial displacement.
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single pad. Utilizing the generic information provided by Figure 5.4, it is
clear from the rotor vibration orbits as to why it is better to have the load
directed between two pads rather than directed on a single pad.

Figure 5.5 also shows illustrations based on two actual power plant
machine case studies. The first shows a strange looking three-pad bearing
of a European design steam turbine generator. The second shows a “before”
and “after” for a boiler feed water pump (BFP). In both machines, vibration
problems and balancing difficulties necessitated rotating the inner bearing
shell to more evenly distribute the bearing static load on two pads.

The sensitivity to static load direction illustrated in Figure 5.5 can be
greatly reduced by adding preload to the bearing. Illustrated in Figure 5.6,
preload is achieved by assembling the bearing with the pivot radial clear-
ance smaller than the concentric radial clearance. Similar to ball bearings,
preloading also has the added benefit of achieving higher bearing film



Bearing and Seal Rotor Dynamics 195

Oil film
pressure

W2

W

W1

W3

+

w

FIGURE 5.6 Illustration of preloaded tilting-pad journal bearing.

stiffness, even when the static load is zero, like machines with vertical
centerlines (see Section 12.2 of Chapter 12). A moderate preload is C′/C =
0.7, where C is the concentric bearing radial clearance (C = radius of pad
surface minus radius of journal) and C′ is the radial clearance between pad
surface pivot circle and journal. Excessive preload (C′/C = 0.3) risks exces-
sive bearing temperatures and intolerance to thermal differential growth.

When performing rotor vibration simulation analyses (Chapter 4) in
cases where one or more tilting-pad journal bearings are in play, one must
be aware of the frequency dependence of the eight stiffness and damping
coefficients, as here expressed for the nondimensional journal bearing stiff-
ness and damping coefficients (see tilting-pad bearing tables in electronic
folder BEARCOEF):

k̄ij = k̄ij(S, Ω̄) c̄ij = c̄ij(S, Ω̄) S = Sommerfeld No. Ω̄ = Ω/ω

ω = rotational speed Ω = vibration frequency.

The reason for this frequency dependence is that additional DOFs are
present for each tilting pad, since at least 1-DOF for each pad’s pitch-
ing motion must be included. However, the 2 × 2 journal bearing stiffness
and damping arrays only account for the bearing-local two-DOFs (x, y) of
rotor orbital motion. As is the standard means to correctly absorb “unseen”
DOFs in structural mechanical impedance, the coefficients of the retained
DOFs must then be frequency dependent (see Section 5.3.1).

Versatility of the tilting-pad journal bearing concept is extended by
the novel configuration developed by Adams and Laurich (2005). This
bearing was developed, built, and rigorously tested by the author in his
university laboratory. Its unique inside-out configuration is devised for
next-generation centerless grinder high-speed spindles (Figure 5.7).
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FIGURE 5.7 (See color insert following page 262.) Next-generation centerless grinder
spindle.

Recent grinding research has demonstrated the feasibility of finish grind-
ing ceramics with considerable improvements in throughput, costs, and
quality. To implement this advancement in ceramic grinding necessitates
the use of high-speed high-power grinding spindles (7000 rpm, 50 hp).
Also needed are radial spindle bearings with real-time adjustable stiffness.
Extensive development devoted to achieve a bearing design to accom-
plish the requirements resulted in a predicted optimum design. Based on
extensive advanced analyses, a three-pad inside-out tilting-pad bearing
promised to fulfill the demanding requirements. Subsequent laboratory
testing validated the predicted bearing performance, as reported by
Adams and Laurich.

This novel inside-out three-pad bearing is pictured in Figure 5.8. All
three pads are supported on spherical seats, allowing pad self-alignment
in addition to the generic tilting characteristic. Two of the three pads
support the spindle grinding force, rotor weight, and radial preload
imparted by the hydraulically actuated third pad. It is well known among
bearing specialists that preload can be set by a single pad since three
pivot points define a circle. This is often utilized by conventional three-pad
bearings such as illustrated in Figure 5.6.

5.2.4 Journal Bearing Stiffness and Damping Data and Resources

Early LRV investigators modeled flexible rotors as circular flexible beams
carrying concentrated masses and supported on rigid points at the
bearings. The importance of gyroscopic effects was identified quite
early, by Stodola (1927), as was the self-excited vibration induced with
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FIGURE 5.8 (See color insert following page 262.) Photo of three-pad inside-out PPJB
with three copper pads to facilitate heat removal; three steel thrust sectors.

hydrodynamic oil-film journal bearings, by Newkirk and Taylor (1925).
However, it was not until 1956 that Hagg and Sankey identified the need
to model journal bearings as radial springs and dampers. Sternlicht (1959)
and others generalized the Hagg and Sankey idea to formulate the linear
model given in Equations 2.60.

Raimondi and Boyd (1958) were among the first to use the digital
computer to obtain “exact” 2D numerical solutions of the RLE. They
and others soon thereafter applied the same computerized numerical
RLE solution algorithms to begin providing journal bearing stiffness and
damping coefficients by applying the numerical partial differentiation
approach shown in Equations 5.4.

The earliest major compendium of such journal bearing rotor dynamic
property coefficients was published by Lund et al. (1965), and it is still a sig-
nificant resource for rotor vibration specialists. It contains nondimensional
stiffness and damping coefficients plotted against bearing nondimensional
speed (the Sommerfeld number) for several types of journal bearing con-
figurations, including 360◦ cylindrical, axially grooved, partial-arc, lobed,
and tilting pad, for both laminar and turbulent films. The most signifi-
cant recent compendium of journal bearing rotor dynamic properties is
provided by Someya et al. (1988). It is based on data contributed by tech-
nologists from several Japan-based institutes and companies participating
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in a joint project through the Japanese Society of Mechanical Engineers
(JSME). It contains not only computationally generated data but also corre-
sponding data from extensive laboratory testing. Although many industry
and university organizations now have computer codes that can generate
bearing dynamic properties for virtually any bearing configuration and
operating condition, urgent on-the-spot rotor vibration analyses in trou-
bleshooting circumstances are more likely to necessitate the use of existing
available bearing dynamic coefficient data. The published data, such as
by Lund et al. (1965) and Someya et al. (1988), are thus invaluable to the
successful troubleshooter and designers.

For use with LRV computer codes such as RDA, tabulated bearing
dynamic properties are more convenient than plotted curves since the bear-
ing input for such codes is tabulated data at specific rotational speeds, as
demonstrated with some of the RDA sample problems in Chapter 4. Fur-
thermore, tabulations are more accurate than reading from plotted curves,
especially semilog and log–log plots spanning several powers of 10. This
accuracy issue is particularly important concerning instability threshold
predictions. In fact, if a next generation of LRV code is to be written, it
should be directly integrated with a companion journal bearing dynamic
coefficient code. In this manner, at every speed (or speed iteration) where
eigenvalues (stability analyses) or unbalance responses are computed, the
bearing coefficients are generated exactly for that condition, instead of
using curve-fit interpolations between data points at a limited number of
input speeds. The CD-ROM that accompanies this book contains a direc-
tory, in MS-WORD (portions can be electronically copied) and pdf, named
BearCoef in which there are several files, each providing a tabulation of
bearing stiffness and damping coefficients for a particular bearing type and
geometry. Space here is thereby not wasted on several hard-to-read graphs
of stiffness and damping coefficients.

5.2.4.1 Tables of Dimensionless Stiffness and Damping Coefficients

The bearing data files in the directory BearCoef use the standard non-
dimensionalization most frequently employed for journal bearing rotor
dynamic coefficients, as defined by the following dimensionless param-
eters for stiffness (k̄ij) and damping (c̄ij) as functions of a dimensionless
speed, S:

k̄ij ≡ kijC
W

, c̄ij ≡ cijωC
W

, S ≡ μn
P

(
R
C

)2

(5.8)

where C is the radial clearance, W is the static load, S is the Sommerfeld
number, μ is the lubricant viscosity, P = W/DL, the unit load, R is the
nominal radius, D = 2R, L is the length, and n (revs/s) = ω/2π.
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5.2.5 Journal Bearing Computer Codes

There are now several commercially available PC codes to analyze all
aspects of journal bearings, including stiffness and damping coefficients.
Most of these codes are older main-frame computer codes that have been
adapted to run on a PC, while a few are more recently developed specif-
ically for PC usage, as was the RDA code. The author uses primarily two
journal bearing codes, one that is an in-house code and a quite similar code
that is commercially available. Since these two codes have very similar
features, the commercially available one is described here.

The COJOUR journal bearing code was originally developed for main
frame computers by Mechanical Technology Incorporated (MTI) under
sponsorship of the Electric Power Research Institute (EPRI). It is doc-
umented in a published EPRI report authored by Pinkus and Wilcock
(1985). The COJOUR code is now commercially available in a PC ver-
sion, and it has two attractive features that set it apart from other
competing codes.

The first of these attractive features is a user option to specify the bearing
static load magnitude and direction. COJOUR then iterates to determine the
corresponding static-equilibrium radial eccentricity magnitude and direc-
tion of the journal relative to the bearing, as illustrated in Figure 5.1. Most
other journal bearing codes only function in the opposite sequence out-
lined by the four-step approach leading to Equations 5.3, but COJOUR
functions either way at the user’s option. As implicit in Equations 5.4, for
any specified bearing operating point, determining the static equilibrium
position is clearly a prerequisite to generating the stiffness and damping
coefficients about that operating point. COJOUR is thus quite convenient
for this purpose.

The second attractive feature of COJOUR is that the user may choose
either the uniform-viscosity solution inherent in all journal bearing codes
or a variable-viscosity solution based on a noniterative adiabatic formulation
that assumes that all the viscous drag losses progressively accumulate as
film heating in the direction of sliding with no heat transfer (via bearing
or journal) to or from the lubricant film. This is a first-order approxima-
tion of a much more computationally intensive formulation (not in any
commercially available software) that couples the RLE to the energy and
heat transfer equations. The variable-viscosity option in COJOUR is partic-
ularly relevant to large turbo-generator bearings. For most case studies in
PART-4, the COJOUR code was used to obtain the journal bearing dynamic
coefficients.

5.2.6 Fundamental Caveat of LRV Analyses

The RDA example problems given in Chapter 4 provide a suitable basis
for one to explore the considerable sensitivity of important output answers
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to variations in bearing dynamic coefficient inputs, such as those arising
from manufacturing tolerances. As implied in Section 5.1, rotor vibration
computer code vendors are not necessarily attuned to the considerable
uncertainties that exist regarding radial bearing rotor dynamic coefficients.
Uncertainties arise from a number of practical factors that are critical to
bearing dynamic characteristics, but controllable only to within statistical
measures. The most prominent example is journal bearing clearance, which
is a small difference between two relatively large numbers. Referring to
Equations 5.8, the dimensionless bearing speed (S) varies with C−2, where
C = RB − RJ is the radial clearance. The following is a realistic example of
bearing and journal manufacturing dimensions.

5.2.6.1 Example

Bearing bore diameter, 5.010 ±0.001 in.

Journal diameter, 5.000 ±0.001 in.

)
Radial clearance =

(
0.004′′ min.

0.006′′ max.

Smax

Smin
=
(

0.006
0.004

)2

= 2.25

This is more than a 2-to-1 range of dimensionless speed, which can be
related to parameter ranges such as 2-to-1 in rpm or lubricant viscosity or
static load. This provides a sizable variation in journal bearing dynamic
coefficients, to say the least. This is just one of many factors that prove
the old power plant adage that no two machines are exactly alike. Other
prominent factors that add uncertainty to journal bearing characteristics
include the following:

• Large variations in oil viscosity from oil temperature variations.
• Journal-to-bearing angular misalignment (see Figure 2.14).
• Uncertainties and operating variations in bearing static load.

• Bearing surface distortions from loads, temperature gradients,
wear, and so on.

• Basic simplifying assumptions leading to the RLE.

These revelations are not intended to show LRV analyses to be worth-
less, because they most assuredly are of considerable value. But, the savvy
analyst and troubleshooter must keep these and any other sources of
uncertainty uppermost in their mind when applying LRV computations.
As described in the next section, laboratory experimental efforts are at
least as challenging.
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5.3 Experiments to Measure Dynamic Coefficients

Bearing and seal rotor dynamic characteristics are of overwhelm-
ing importance to the success of modern high-performance rotat-
ing machinery, especially turbo-machinery. A review of the techni-
cal literature on this subject shows that a keen recognition of this
fact dates back to the 1950s, for example, Hagg and Sankey (1956)
and Sternlicht (1959). Several serious experimental efforts were subse-
quently undertaken. The most impressive of these was the work of
Morton (1971) and his coworkers at General Electric Co. (GEC) in
Stafford, England. They devised a test apparatus to measure stiffness
and damping coefficients on full size journal bearings of large turbo-
generators. The other major world manufacturers of large turbo-generators
developed similar test machines at their respective research facilities
and/or collaborating universities, albeit on smaller scaled-down journal
bearings.

About the same time, a general recognition emerged that many types of
annular seals and other fluid-annulus gaps also inherently possess rotor
dynamic characteristics of considerable importance. Black (1969, 1971,
1974), recognized as one of the first to intensively research these fluid
dynamical effects, provided a major initial contribution to this aspect of
rotor dynamics technology. Over the last 30 years, precipitated by the
high-energy-density turbo-machines developed for NASA’s space flight
programs, the major portion of significant experimental and computa-
tional development work on rotor dynamic properties of seals has been
conducted at Texas A&M University’s Turbomachinery Laboratory under
the direction of Professor Dara Childs. A comprehensive treatise of this
work is contained in his book, Childs (1993).

A major ($10 million) EPRI-sponsored multiyear research project on
improving reliability of BFPs was started in the early 1980s at the Pump
Division of the Sulzer Company in Winterthur, Switzerland. One of
the major tasks in this research project was to build a quite elaborate
experimental test apparatus to measure the rotor dynamic coefficients of
a complete impeller–diffuser stage of a high-head centrifugal pump, as
reported by Bolleter et al. (1987). The final report covering all the tasks of
this EPRI project, Guelich et al. (1993), is a major technical book in itself.

Under laboratory conditions, sources of uncertainty in bearing rotor
dynamic characteristics (enumerated at the end of the previous section)
can be minimized but not eliminated. Measurement uncertainties arise.
Bearing and seal rotor dynamic array coefficients are not directly measur-
able quantities because they are based on a mathematical decomposition
of a single interactive radial force vector into several parts, as clearly delin-
eated by Equations 2.60, 2.70, and 5.4. The parameters that can be directly
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measured are the x and y orbital displacement signals and the corresponding
x and y interactive radial force signals. One can thus begin to appreci-
ate the inherent challenge in bearing and seal rotor dynamic coefficient
“measurements” just from Equations 2.70, which show the following
obvious fact:

Bearing and seal rotor dynamic coefficients are each a derivative of one
measured signal (a force component) with respect to one of the other
measured signals (a displacement component) or its first or second
derivative in time (velocity or acceleration).

As technologists of many fields know, extracting derivatives of one set
of time-varying measured signals with respect to a second set of time-
varying measured signals and their derivatives in time is a challenge,
to say the least. The significance of measurement accuracy and signal
corruption (noise-to-signal ratio) issues is substantial. The yet-to-be-tried
tensor filtering method, proposed by the author in Section 5.2.2 (Figure 5.2),
entices the author as a worthy research mission: that is, filtering out effects
and signal corruption that do not conform to the tensor transformation
property of radial bearing and seal linearized rotor dynamic coefficient
arrays.

As described in Section 2.4.4, the number of decomposition parts of the
interactive radial force vector depends on what physical assumptions are
invoked for the fluid flow within the bearing or seal. For a mathematical
model consistent with the RLE (no fluid inertia effects are retained), the
rotor dynamic coefficients (eight) can capture only displacement gradient
(stiffness) and velocity gradient (damping) parts of the radial force vector,
and furthermore the array of damping coefficients are symmetric.

For high Reynolds number film bearings and most annular radial clear-
ance sealing gaps, fluid inertia effects should be included because of their
importance. The mathematical model must then also capture the accel-
eration gradient (virtual mass or inertia) parts, giving rise to four more
coefficients, for a total of 12 rotor dynamic coefficients. As fully explained
in Section 2.4.4, the highest-order rotor dynamic coefficient array should be
symmetric so as to avoid physical inconsistencies in the model. Thus, when
stiffness, damping, and inertia coefficients are all employed, the inertia
coefficient array should be constrained to symmetry, whereas the stiffness
and damping arrays do not have to be symmetric.

In a practical sense, bearing and seal rotor dynamic coefficients are really
curve-fit coefficients that exist as entities primarily in the minds of rotor
vibration analysts. When the radial pressure field within a bearing or seal
is perturbed in response to relative orbital vibration of its close-proximity
rotating component, the pressure-field interactive radial force vector is
of course correspondingly perturbed. To model and analyze LRV with
reasonable accuracy, such interactive radial force perturbations must be
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modeled in a mathematical format that is compatible with F = ma based
equations of motion. This means that the model must accommodate no
higher than second derivatives of displacements with time, that is, accel-
erations. Furthermore, the inclusion of such rotor–stator interactive forces
must fit a linear mathematical model in order to facilitate most vibration
analysis protocols. Thus, the “die is cast” for the mathematical model of
bearing and seal rotor–stator radial interactive forces. The required model
is given by Equation 5.9, which is a restatement of Equation 2.70:{

fx
fy

}
= −

[
kxx kxy
kyx kxx

]{
x
y

}
−
[

cxx cxy
cyx cyy

]{
ẋ
ẏ

}
−
[

mxx mxy
myx myy

]{
ẍ
ÿ

}
(5.9)

kij ≡ −∂Fi

∂xj
, cij ≡ −∂Fi

∂ ẋj
, and mij ≡ −∂Fi

∂ ẍj

are defined at static equilibrium.
There are a number of experimental procedures that have been employed

to extract some or all of the coefficients in Equation 5.9. The degree of
success or potential success varies, depending on which procedure is
used in a given application. Mechanical impedance approaches utiliz-
ing harmonic excitation are the most frequently employed techniques.
Mechanical impedance approaches utilizing impact excitation are also
used. Recent advances in low-cost PC-based data acquisition hardware
and software and signal processing methods have somewhat eased the
burden of those researchers seeking to extract LRV bearing and seal
rotor dynamic coefficients from laboratory experiments. However, their
task remains a considerable challenge because of the inherent factors
previously described.

5.3.1 Mechanical Impedance Method with Harmonic Excitation

Impedance approaches are often associated with characterization of an
electrical network by a prescribed model circuit of resistances, capaci-
tances, and inductances. With sufficient measured input/output data on an
actual system, correlation of input (e.g., single-frequency sinusoidal volt-
age signal) and the resulting output (e.g., current signal) leads to a solution
of values for all the model’s resistances, capacitances, and inductances that
would theoretically produce the measured outputs caused by the measured
inputs. Such a characterization process is commonly referred to as system
identification. Quite similar approaches have long been used to character-
ize mechanical dynamic systems with a suitable linear model in which
the values of a discrete model’s stiffness, damping, and mass elements
are solved by determining what combination of these values produces the
“best fit” in correlating measured input and output signals.



204 Rotating Machinery Vibration: From Analysis to Troubleshooting

For example, suppose a machine is mounted to the floor of a large plant
and it is known from experience that if a vibration analysis of the machine
assumes the floor to be perfectly rigid, the analysis will be seriously flawed.
Common sense dictates that one does not devise an FE model of the entire
plant building just to couple it to the vibration model of the machine in
question, which occupies only a few square feet of the plant’s floor space. If
previous experimental data are not deemed applicable, then a mechanical
impedance shaker test can be performed on the plant floor at the location
where the machine will be installed. An alternate technique is to apply
an impact force to the floor position in question, measuring simultane-
ously the impact force signal and the acceleration signal at the floor point
of impact. Impact approaches are fairly common and standard hammer
kits (from small laboratory size up to large sledge-hammer size for power
plants machinery) are made for this purpose with the force and motion
signals processed through a dual-channel FFT instrument to extract the
impact point’s mechanical impedance. For very large structures (e.g., plant
building) or devices with very high internal damping (e.g., multistage
centrifugal pumps) impact techniques may lack sufficient energy input
to the structure to achieve adequately high response signal-to-noise ratios
to work well. In such cases, multiple impact strikes (several hundred) com-
bined with synchronized signal time averaging has been used to filter out
the noncoherent noise, but this is a very specialized procedure. For the
sake of the following example, it is assumed that the vertical motion of the
floor is significant and that a mechanical shaker is used, as illustrated in
Figure 5.9.

If the structure is dynamically linear, then its steady-state response con-
tains only the forcing function frequency, ω. The linearity assumption thus
leads to the following equations as the basis for processing measured
response to the controlled sinusoidal force input illustrated in Figure 5.9.
Here it is convenient to use the complex plane representation for harmonic
signals explained in Section 4.2.2 and illustrated in Figures 4.2 and 4.3:

(ms + mf)ẍf + cf ẋf + kfxf = Fseiωt

xf = Xei(ωt+φ)
(5.10)

kfcf

mf

xf

xfFs sin w t
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FIGURE 5.9 Vertical shaker test of floor where a machine is to be installed.
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Equations 5.10 lead to the following complex algebraic equation:

(kf − ω2mf − ω2ms + icfω)Xeiφ = Fs (5.11)

For the configuration illustrated in Figure 5.9, the vertical forcing func-
tion is equal to the imaginary part of the complex force. The single complex
equation of Equation 5.11 is equivalent to two real equations and thus can
yield solutions for the two unknowns (kf − ω2mf) and cf at a given fre-
quency. If the excited floor point was in fact an exact 1-DOF system, its
response would be that shown in Figure 1.5, and the impedance coef-
ficients kf , mf , and cf would be constants independent of the vibration
frequency, ω. However, since an actual structure is likely to be dynamically
far more complicated than a 1-DOF model, the “best-fitted” impedance
coefficients will be functions of frequency. When it is deemed appropriate
or necessary to treat the impedance coefficients as “constants” over some
frequency range of intended application, the coefficients are then typically
solved using a least-squares linear regression fit of measurement data over
the applicable frequency range.

For a 2-DOF radial plane motion experiment on a dynamically
anisotropic bearing or seal, force and motion signals must be processed
in two different radial directions, preferably orthogonal like the stan-
dard x–y coordinates. For a concentric fluid annulus, such as typically
assumed for radial seals, the dynamic coefficient arrays are formulated
to be isotropic, as is consistent with a rotationally symmetric equilibrium
flow field. Impedance tests devised strictly for the isotropic model, Equa-
tion 2.85, require less data signals than impedance tests for the anisotropic
model, Equation 5.9.

There are fundamentally two ways of designating the inputs and the out-
puts. In the 1-DOF impedance test schematically illustrated in Figure 5.9,
the input is the harmonic force and the output is the resulting harmonic
displacement response. However, there is no fundamental reason that pre-
vents these roles from being reversed, since both input and output signals
are measured and then processed through Equations 5.10. Likewise, a
2-DOF radial plane motion experiment on a bearing or seal may have the
x and y force signals as the controlled inputs with the resulting x and y
displacement signals as the outputs, or the converse of this. Both types of
tests are used for bearing and seal characterizations.

The apparatus developed by the author at the Rotor Dynamics Labora-
tory of Case Western Reserve University is the example described here,
because it is configured with a maximum of versatility that accommo-
dates the anisotropic model with fluid inertia effects, as embodied in
Equation 5.9. Figure 5.10 shows a cross section of the double-spool-shaft
spindle assembly of this apparatus. The inner spindle provides the con-
trolled spin speed. The outer spindle, which provides a circumscribing
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FIGURE 5.10 Double-spool-shaft spindle for bearing and seal test apparatus.

support of the inner spindle, is comprised of two close fitting sleeves that
have their mating fit machined slightly eccentric to their centers. These
machined-in eccentricities allow the radial eccentricity between the two
coaxial spindles to be manually adjusted from zero to 0.030 in. Each spindle
is driven independently with its own variable speed motor. The net result
of this arrangement is an independently controlled circular journal orbit
of adjustable radius (0–0.030 in.) with a controllable frequency and whirl
direction independent of the controllable spin speed. The bearing/seal test
chamber is designed to be hermetically sealed for testing seals with large
leakage through flows and pressure drops or open to ambient as is typical
for testing journal bearings. The bearing or seal test specimen can be either
very stiffly held by piezoelectric load measuring cells or flexible mounted.
Several inductance-type noncontacting proximity probes are installed to
measure all x and y radial displacement signals of the journal and the
tested bearing or seal. A full description of the complete test facility and
data processing steps are given by Adams et al. (1988, 1992) and Sawicki
et al. (1997). The journal, attached to the inner spindle on a tapered fit, is
precision ground, while the inner spindle is rotated in its high-precision
ball bearings (Horattas et al., 1997).

In the fullest application of the apparatus shown in Figure 5.10, all the
12 stiffness, damping, and inertia coefficients shown in Equation 5.9 can
be extracted for a rotor dynamically anisotropic bearing or seal. The inputs
are the x and y radial displacement signals of the journal and the outputs
are the x and y radial force signals required to rigidly hold the bearing or
seal motionless. If the bearing or seal has orbital motion that cannot be
neglected, then the inputs are the x and y radial displacement signals of
the journal relative to the bearing and the inertia effect of the test bearing
or seal mass (i.e., D’Alembert force) must be subtracted from the output
measurements by the x and y load cells that support the test bearing or seal.
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Although the apparatus shown in Figure 5.10 produces an orbit that is very
close to circular, it is not required that the orbit be assumed perfectly circular
because the orbit is precision measured with a multiprobe complement of
noncontacting proximity probes. The impedance model postulates that
the measured x and y orbit signals (inputs) and force signals (outputs)
are harmonic. The processed signals extracted from the measurements can
thus be expressed as follows:

x = Xei(Ωt+φx), y = Yei(Ωt+φy), fx = Fxei(Ωt+θx), fy = Fyei(Ωt+θy)

(5.12)

where Ω is the orbital frequency. (Here, Ω is not necessarily equal to ω,
the rotational speed.)

Equations 5.12 are substituted into Equations 5.9 to yield two complex
equations. The basic formula eiz = cos z + i sin z separates real and imagi-
nary parts of the resulting two complex equations, to yield the following
four real equations:

Fx cos θx =
[(

Ω2mxx − kxx

)
cos φx + cxxΩ sin φx

]
X

+
[(

Ω2mxy − kxy

)
cos φy + cxyΩ sin φy

]
Y

Fx sin θx =
[(

Ω2mxx − kxx

)
sin φx − cxxΩ cos φx

]
X

+
[(

Ω2mxy − kxy

)
sin φy − cxyΩ cos φy

]
Y

Fy cos θy =
[(

Ω2myx − kyx

)
cos φx + cyxΩ sin φx

]
X

+
[(

Ω2myy − kyy

)
cos φy + cyyΩ sin φy

]
Y

Fy sin θy =
[(

Ω2myx − kyx

)
sin φx − cyxΩ cos φx

]
X

+
[(

Ω2myy − kyy

)
sin φy − cyyΩ cos φy

]
Y

(5.13)

Since there are 12 unknowns in these four equations (i.e., stiffness,
damping, and inertia coefficients), measured data must be obtained at a
minimum of three discrete orbit frequencies for a given equilibrium operat-
ing condition. There are several data reduction (“curve fitting”) approaches
when test data are taken at a multitude of orbit frequencies for a given
equilibrium operating condition. For example, a frequency-localized three-
frequency fit propagated over a frequency range with several frequency
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data points will produce frequency-dependent coefficients to the extent
that this improves the fitting of the measurements to Equations 5.13
impedance model. However, it is more typical to reduce the measurement
data using a least-squares linear-regression fit of all measurement data over
a tested frequency range, thereby solving for all the dynamic coefficients
as constants independent of frequency.

The apparatus shown in Figure 5.10 has proven to be accurate and
very close to “linear” by its performance and repeatability. Data are
collected at 50–100 consecutive cycles of orbit excitation (at frequency
Ω) and time averaged to remove all noise or other noncoherent signal
content (e.g., spin-speed mechanical and proximity-probe electrical run-
out at frequency ω). The time-averaged signals from each measurement
channel are Fourier series decomposed. Ω components are much larger
than the nΩ harmonics, indicating near linearity of the apparatus. The
test results by Sawicki et al. show excellent agreement with theoretical
results.

5.3.2 Mechanical Impedance Method with Impact Excitation

As implied in the earlier section, impact techniques are widely used
on lightly damped structures with relatively low background structural
vibration noise levels. Such structures can be impact excited to yield
adequately favorable signal-to-noise ratios. Journal bearings and fluid-
annulus seals typically have considerable inherent damping, and that
is always an important benefit for controlling rotor vibration to within
acceptable residual levels in operating machinery. However, from the
point of view of using impact testing to extract dynamic coefficients
of bearings and other fluid-annulus elements, their inherent damping
capacity typically results in unfavorable signal-to-noise ratios. Neverthe-
less, the relative ease of conducting impact impedance testing motivated
some researchers to pursue the impact impedance approach for various
rotor–stator fluid-annuls elements. A notable example is the work of Pro-
fessor Nordmann of Germany, whose experimental setup is illustrated in
Figure 5.11.

Nordmann and Massmann (1984) explored the use of impact testing to
extract the stiffness, damping, and inertia coefficients of annular seals. For
coefficient extraction, they used the isotropic model presented in Equa-
tion 2.85 with the cross-inertial term mxy = −mxy = 0, which correctly
conforms to the author’s axiom (see Section 2.4.4) requiring symme-
try of the highest-order coefficient array. Their test setup, illustrated in
Figure 5.11, employs two “identical” test seals that are fed from a com-
mon central pressurized annular chamber and are axially opposed to
cancel axial pressure forces on the quite flexibly supported seal housing.
The housing can be impacted at its center of mass in various x–y radial
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FIGURE 5.11 Experimental setup for impact excitation of radial seals: (a) quarter through-
cut schematic illustration of test apparatus and (b) schematic of test measurements and data
processing.

directions; so a 2-DOF x−y model is thereby used as a basis for processing
the measured signals to extract the five coefficients of the isotropic model.
Various algorithms, such as least-squares linear-regression fitting, can be
employed to extract the five isotropic-model dynamic coefficients to pro-
vide the “best” frequency response fit of the model to the measured
time-base signals as transformed into the frequency domain. The 2-DOF
model’s equations of motion are as follows; factor of “2” is present because
the apparatus has two “identical” annular seals:

mẍ + 2(mxxẍ + cxxẋ + cxyẏ + kxxx + kxyy) = Fx(t)

mÿ + 2(myyÿ + cyyẏ − cxyẋ + kyyy − kxyx) = Fy(t)
(5.14)

Nordmann and Massmann suggest that the questionable quality of their
coefficient results may be due to the model needing additional DOFs to
adequately correlate with the experimental results. This may very well
be a factor, but the author suspects that the more fundamental problem
with their results lies with the inherent difficulty of obtaining sufficient
energy from an impact hammer into a system that has significant internal
damping.
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5.3.3 Instability Threshold-Based Approach

As explained in Chapter 1, providing accurate damping inputs to vibra-
tion analysis models is possibly the most elusive aspect of making reliable
predictions of vibration characteristics for almost any vibratory system.
The mass and flexibility characteristics of typical structures are reliably
obtained with modern computational techniques such as FE procedures,
and thus natural frequencies can be predicted with good reliability in
most circumstances. Referring to Figure 1.5 on the other hand, predict-
ing the vibration amplitude of a forced resonance at a natural frequency
is not such a sure thing, because of the inherent uncertainties in damp-
ing inputs to the computation model. Similarly, predictions of instability
thresholds also suffer from lack of high reliability for the same reason,
that is, inherent uncertainties in damping inputs. Motivated by this funda-
mental reality in vibration analysis as it affects important rotor vibration
predictions, Adams and Rashidi (1985) devised a novel experimental
approach for extracting bearing dynamic coefficients from instability
thresholds.

The apparatus illustrated in Figure 5.12 was first proposed by Adams
and Rashidi (1985). The fundamental concept behind the approach is to
capitalize on the physical requirement for an exact energy-per-cycle bal-
ance between positive and negative damping influences right at an instability
threshold speed. This physical requirement is expressed by Equation 2.81
when Ecyc = 0. Through adjustment of the test bearing mass, by adding
or subtracting weights, one can vary the instability-threshold natural
frequency of the 2-DOF system and thereby cause an instability threshold

Test bearing 
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Annular
hydrostatic-
bearing
support

Static load

Oil-return
    drain 

Oil-inlet
fitting

Timing-belt 
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W

FIGURE 5.12 Vertical spindle rig for controlled instability-threshold-speed tests.
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at selected operating conditions spanning a wide range of journal bearing
Sommerfeld numbers (dimensionless speed). The controlled test parame-
ters are rotational speed, bearing static radial load, lubricant viscosity, and
test bearing mass. As with mechanical impedance approaches, the experi-
ment mentioned here is correlated with a 2-DOF model given by the
following equations:

mẍ + cxxẋ + kxxx + cxyẏ + kxyy = 0

mÿ + cyyẏ + kyyy + cyxẋ + kyxx = 0

cxy ≡ cyx

(5.15)

The complete procedure for extracting journal bearing dynamic coef-
ficients at a given Sommerfeld number is summarized by the following
sequence:

1. Determine stiffness coefficients using controlled static loading
data.

2. Slowly increase spin speed until the instability threshold speed is
reached.

3. Capture x−y signals of “linear” instability growth; see Figure 4.11.
4. Invert eigenvalue problem of Equations 5.15 to solve for the

damping coefficients.

Basically, this procedure yields a matched set of journal bearing stiff-
ness and damping coefficients. Even if the individual stiffness coefficients
are somewhat corrupted by experimental measurement errors, they are
“matched” to the damping coefficients. That is, by step 4 reproduce the
experimentally observed instability threshold frequency and orbit para-
meters for the 2-DOF model given by Equations 5.15. Step 4 algorithm
uses the following information as inputs (Adams and Rashidi, 1985):

1. Test bearing mass
2. Experimentally or computationally determined bearing stiffness

coefficients
3. Eigenvalue, Ω, the frequency of self-excited vibration at threshold
4. Eigenvector information: x-to-y displacement signal amplitudes

(X/Y) and the difference in x-to-y phase angles, Δθxy ≡ θx − θy.

Using a standard eigen-solution algorithm, the computation determines
the damping coefficient values (cxx, cxy = cyx, cyy) that in combination with
the a priori stiffness coefficient values yield the experimentally observed
instability self-excited vibration threshold speed, vibration frequency, and
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normalized orbit ellipse. A rigorous demonstration of the significant accu-
racy improvement possible, over standard impedance approaches, with
this novel instability threshold experimental approach is presented by
Rashidi and Adams (1988).

Equations 5.15 reflect that in contrast to impedance approaches,
dynamic force measurements are not needed in this approach, thus elimi-
nating one major source of experimental error. However, the fundamental
superiority of this approach lies in its basis that the “matched” stiffness and
damping coefficients are consistent with Ecyc = 0 when the steady oper-
ating condition is tuned to its instability threshold (forward-whirl) mode,
as described in Section 2.4.1. Using postulated experimental measurement
errors, Rashidi and Adams (1988) conclusively show the inherent superi-
ority of this approach over impedance approaches to provide drastically
improved prediction accuracy for instability threshold speeds and resonance
amplitudes at critical speeds. In summary, since an instability threshold is
inherently most sensitive to nonconservative force effects (i.e., positive or
negative damping), it is logical that an instability threshold should be the
most sensitive and accurate “measurer” of damping.

5.4 Annular Seals

Developing reasonably accurate rotor dynamic coefficients is even more
challenging for radial clearance seals than for journal bearings. That is, the
uncertainty in quantifying seal rotor dynamic coefficients for LRV anal-
ysis inputs is even greater than the uncertainty for journal bearings. The
primary objective here is to identify the major information resources for
annular seals and other fluid-annulus rotor dynamic effects. The multi-
stage BFP illustrated in Figure 5.13 provides a primary turbo-machinery
example where there are several components and locations of fluid dynam-
ical effects that collectively have a dominant influence on the vibration
characteristics of the machine.

As described in Section 5.2, journal bearings derive static load-carrying
capacity from the hydrodynamic pressure distribution generated between
bearing and journal by a viscous lubricant film, which is continuously
fed and sheared into the small-clearance converging gap formed between
them. At the same time, a journal bearing also reacts to rotor vibration
with an important interactive dynamic force that is linearly characterized
about the equilibrium position using stiffness and damping elements. On
the other hand, the primary function of seals is to control leakage, usually
to the lowest flow practical. In the process of performing this primary
function, an annular seal also reacts to rotor vibration with an interactive
dynamic force that can also be quite significant. The focus here is the LRV
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dynamic characteristics of liquid- and gas-filled small-clearance annular
seals and other fluid dynamical effects. Rubbing-type seals are generally
not as amenable to linear modeling.

For fixed annular seals like smooth-bore and labyrinth types, the radial
clearance between the close-proximity rotating and nonrotating parts is
typically two or more times the clearance of the machine’s radial bear-
ings. This makes sense since the seals are not the bearings. On the other
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hand, it is desirable to have sealing clearances as small as practical, because
seal leakage rates increase exponentially with clearance. An exception is
floating ring seals that may actually have smaller radial clearance than the
journal bearings, but this seal type is of minor rotor vibration significance
specifically because of its radial float. In many modern high-pressure cen-
trifugal pumps, the potentially beneficial influence of seal radial dynamic
interaction effects on rotor vibration are now factored into the design of
many pumps. Although it is certainly a good thing to exploit the benefits of
seal rotor vibration characteristics, there is a caveat to making LRV smooth
running too heavily dependent upon sealing clearances. In some sealing
components, such as centrifugal pump wear rings, the sealing clearances
are likely to enlarge over time from wear, possibly caused by rotor vibra-
tion. Thus not only does pump efficiency suffer as this wear progresses,
but vibration levels will likely grow as well because of loss of seal rotor
dynamic benefits. Often the increased back flow, through the wear ring
clearance, to the impeller inlet (eye) causes sufficient disruption to the
impeller inlet flow velocity distribution as to also substantially increase
the intensity of unsteady flow vibration-causing forces upon the pump
rotor. The author has dealt with several such centrifugal pumps, and they
require too frequent wear ring replacements to maintain rotor vibration to
within safe levels. Such pumps are definitely not of an optimum design
(see case study in Section 10.6).

The inputs for annular seals in LRV analyses are handled in the same
manner as the stiffness and damping characteristics for journal bearings,
except that seals often have fluid inertia effects that are significant and
thus need to be included. In further contrast to LRV modeling of journal
bearings, the equilibrium position (rotor orbit center) for an annular seal
is usually treated as though the rotating part orbits about and relative to
the center of its close-proximity nonrotating part. This is done to justify
the isotropic model shown in Equation 2.85, which is rewritten here as
Equation 5.16 with the cross-mass term appropriately set to zero per the
axiom given in Section 5.2.4:

{
fx
fy

}
= −

[
ks kss

−kss ks

]{
x
y

}
−
[

cs css
−css cs

]{
ẋ
ẏ

}
−
[

ms 0
0 ms

]{
ẍ
ÿ

}
(5.16)

Test rigs specifically focused on seal rotor vibration characteristics can
obviously be simplified by assuming the isotropic model. In contrast,
the test apparatus shown in Figure 5.10 is by necessity more compli-
cated than most other test rigs for rotor dynamic coefficients because it
is designed to allow extraction of the full anisotropic model with fluid
inertia, Equation 5.9, which contains 12 coefficients, or 11 coefficients
when the symmetry axiom of Section 2.4.4 is imposed upon the inertia
coefficient array (i.e., mxy = myx).
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5.4.1 Seal Dynamic Data and Resources

The more recent text books on rotor dynamics include information on
the LRV characteristics of annular seals. Referring to the Chapter 2
Bibliography, Vance (1988) and Kramer (1993) both provide quite good
introductory treatments of seal dynamics. However, the most complete
treatment and information resource for seal dynamics is contained in
the book by Childs (1993). Childs’ book covers a wide spectrum of rotor
dynamics topics well, but its coverage of seal dynamics is comparable to the
combined coverage for journal bearings provided by Lund et al. (1965) and
Someya et al. (1988). It is the single most complete source of computational
and experimental data, information and references for seal rotor dynamic
characteristics, reflecting the many years that Professor Childs has devoted
to this important topic. It is probably safe to suggest that had the untimely
death of Professor H. F. Black, Heriot-Watt University, Edinburgh, Scotland
not occurred (ca. 1980), there would most certainly exist one more major
modern resource on the dynamics of seals and other fluid-annulus compo-
nent effects. Black’s work (e.g., 1969, 1971, 1974) provided the major initial
impetus for the extensive research and new design information developed
on this topic over the last 40 years.

5.4.2 Ungrooved Annular Seals for Liquids

Three commonly used versions of ungrooved annular seal geometries are
shown in Figure 5.14, with exaggerated clearances for illustrative purposes,
as done with the journal bearing illustration in Figure 5.1. Although these
ungrooved seals bear some geometric similarity to journal bearings, essen-
tial differences distinguish them. First, in most high-pressure applications
the fluid being sealed is not a viscous oil but a much lower viscosity liq-
uid like water or other process liquids or gases. The flow within the seal

Cylindrical
bore

Flow

Flow

Tapered
bore

Cylindrical
step bore

FIGURE 5.14 Ungrooved annular seals (illustrated clearances exaggerated).
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clearance is thus usually turbulent, in contrast to most oil-film journal bear-
ings that are characterized by the laminar flow RLE, Equation 5.1. Second,
such seals usually have an axial length much smaller than the diameter
(typically L/D < 0.1).

The importance of such seals to rotor vibration characteristics is roughly
in proportion to the pressure drop across the seal. For high-pressure pumps
such as that shown in Figure 5.13, the net effect of the inter-stage sealing
clearances, balancing drum, and impeller casing interaction forces is to
add considerable radial stiffening and damping to the rotor system. It is
relatively easy to calculate that without the liquid inside such a pump;
it would likely have one or more lightly damped critical speeds within
the operating speed range because the shaft is relatively slender and the
two journal bearings are located at opposite ends of the rotor. However,
the combined influence of the interstage sealing clearances, balancing
drum, and impeller casing interaction forces is to potentially eliminate
detectable critical speeds from the operating speed range, at least when all
the interstage sealing clearances are not appreciably worn open. To main-
tain good pump efficiency and low vibration levels, a prudent rule-of-thumb
for such high-pressure pumps is to replace wear rings when the internal
sealing clearances wear open to twice the “as-new” clearances. Of course,
plant machines are like cars in that some owners are quite diligent with
maintenance, while others are virtually oblivious to it.

5.4.2.1 Lomakin Effect

The first person to publish about the influence of ungrooved annular seals
on rotor vibration was Lomakin (1955, 1958). Figure 5.15 illustrates how a
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radial-pressure centering force is produced when the rotor and stator of an
annular seal are eccentric to each other. Ignoring at this point the effects of
shaft rotation and inlet flow preswirl, the entrance pressure loss is highest
where the radial gap and thus the inlet flow velocity are largest. Conversely,
the entrance pressure loss is lowest where the radial gap and thus the inlet
flow velocity are smallest. This effect thus produces a radial centering force
on the rotor, which increases with eccentricity between seal rotor and stator.
That is, the radial displacement causes a skewing of the pressure distribu-
tion, producing a radial stiffness effect that is called the “Lomakin” effect. The
x and y components of the centering force are expressible by directionally
integrating the pressure distribution as shown in Equations 5.2 for journal
bearings. In this simplest embodiment of the Lomakin effect, with shaft
rotation and inlet flow prerotation not included, the centering force vector
( f ) is in line with the eccentricity (e) and thus its magnitude is expressible
as follows:

f = −
L∫

0

2π∫

0

p(θ, z)R sin θ dθ dz (5.17)

In precisely the same manner described for journal bearings, the cen-
tering force described by Equation 5.17 can be linearized for “small”
eccentricities, thus yielding a radial stiffness coefficient as follows:

kr = f
e

≈ 0.4
ΔpRL

C
(5.18)

where Δp is the pressure drop, R is the seal radius, L is the seal length,
and C is the seal radial clearance.

In this case, kr is the diagonal stiffness coefficient referenced as ks in
the isotropic model given by Equation 5.16. The centering force stiffness
of the tapered bore and cylindrical step bore ungrooved seals illustrated in
Figure 5.15 is explained by the same effect given here for the plain cylin-
drical bore seal. In fact, for the same operating conditions, seal length and
minimum clearance, their Lomakin effect is significantly stronger than that
of the plain cylindrical bore configuration, albeit with accompanying higher
leakage flow.

Prior to a wide appreciation of the Lomakin effect by pump designers,
their computational predictions for critical speeds based on a “dry pump”
model were notoriously unreliable. By accounting for the Lomakin effect,
computed predictions and the understanding of rotor vibration character-
istics of high-pressure centrifugal pumps are improved over “dry pump”
predictions. However, since the Lomakin (1955, 1958) publications it has
been conclusively shown, especially in works by Black and Childs, that the
additional effects of shaft rotation and preswirl of seal inlet flow are also
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quite important effects, not only to the radial stiffness (ks) but also in pro-
ducing other effects embodied in the coefficients (kss, cs, css, ms) contained
in the isotropic model of Equation 5.16. The complete modern treatment of
annular seal rotor vibration characteristics clearly involves a considerably
fuller account of fluid mechanics effects than implicit in the Lomakin effect
as well as the classic RLE for laminar oil-film journal bearings.

5.4.2.2 Seal Flow Analysis Models

The predominance of turbulent flow in annular seals has dictated that
their proper analysis must incorporate a phenomenological (or semiem-
pirical) aspect to the analysis formulation to account for turbulence. For a
limited group of fluid flow problems, top-end super computers are now
up to the task of handling simulations of turbulent flow fine structures
without the ingredients of semiempirical turbulence models, employing
only the Navier–Stokes (N–S) and continuity equations. Such new and
highly advanced computational fluid dynamics (CFD) efforts have not yet
been applied to many traditional turbulent flow engineering problems,
and annular seals are no exception.

For analyses of annular seals, the incorporation of semiempirical turbu-
lence modeling can be inserted into the analysis model in basically two
approaches. In the first of these two approaches, the turbulence model
is inserted right into the N–S equations. The velocity components are
expressed as the sum of their time-averaged and fluctuating parts. The
fluctuating parts of the fluid velocity components give rise to the so-called
Reynolds stress terms, which are handled with a semiempirical turbulence
model. In the second approach, a bulk flow model (BFM) is used in a man-
ner similar to that used in traditional calculations for turbulent pipe flow.
The fundamental difference between these two approaches is that the BFM
approach characterizes the velocity components at any axial and circum-
ferential location by their respective average values at that location. That
is, fluid velocity variations across the clearance gap are not considered
and thus fluid shear stress variations across the clearance gap are also not
considered. Fluid shear stresses in a BFM approach are thus incorporated
only at the fluid–solid boundaries (shaft and seal surfaces), employing
empirical turbulent friction factors borrowed from the traditional turbu-
lent pipe flow data. The flow path geometric boundaries for ungrooved
annular seals are relatively simple. Consequently, the much simpler BFM
approach has been the primary approach used by the major technologists
who have focused on seal rotor vibration characteristics. A notable excep-
tion is the work by Nordamnn and Dietzen (1990) who provide a solution
for an ungrooved annular seal using a computational model based on a
perturbation of the N–S equations. Professor Childs has stated that the
BFM has major shortcomings not previously recognized.
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5.4.2.3 Bulk Flow Model Approach

Consistent with the brief description of the RLE provided in Section 5.2.1,
the aim here is not to provide all the intricate derivation steps in applying
the BFM to annular seals. Instead, the intent here is to facilitate the serious
reader’s understanding of available derivations of an annular seal BFM,
such as that detailed by Childs (1993). To that end, the following perspective
is provided.

The BFM employs standard control volume (CV) formulation as covered
in fluid mechanics courses of undergraduate mechanical engineering pro-
grams. In this application, the CV is a small arbitrary volume of fluid within
the seal (Figure 5.16), bounded by seal rotor and stator surfaces, and by
infinitesimal differential sides in the axial and circumferential directions.
In fact, this is just how Reynolds set up the development of the RLE, except
that variation of fluid velocities across the clearance gap are of paramount
importance in laminar oil-film bearings and thus are not neglected as they
are in the BFM approach.

Fluid flow mass balance for this CV is satisfied by the continuity (mass
conservation) equation. Application of Newton’s Second Law (F = ma) to
this CV leads to two coupled PDEs, one for circumferential momentum bal-
ance and one for axial momentum balance. As Childs (1993) implies, the
continuity equation is satisfied by appropriately substituting it into each
of the two momentum equations, which are in turn considerably simpli-
fied in that derivation step. Employing the coordinate system shown in
Figure 5.16, the following two momentum equations for the BFM are thus
obtained.

5.4.2.4 Circumferential Momentum Equation

− h
R

∂p
∂θ

= ρ

2
uus fs + ρ

2
(u − Rω)ur fr + ρh

(
∂u
∂t

+ u
R

∂u
∂θ

+ w
∂u
∂z

)
(5.19)
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5.4.2.5 Axial Momentum Equation
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)
(5.20)

where u = u(θ, z) is the circumferential velocity, us ≡ (u2 + w2)1/2,
w = w(θ, z) is the axial velocity, ur ≡ [(u − Rω)2 + w2]1/2, h = h(θ, z) is the
film thickness, fs is the local friction factor for seal, fr is the local friction
factor for rotor, and ρ is the fluid density. fs and fr are modeled after empiri-
cal friction factors for turbulent pipe flow, thus functions of local Reynolds
No. and surface roughness.

Comparison of the RLE with the BFM is informative. First of all, the BFM
equations include both temporal and convective inertia terms that are not
retained in the RLE. Thus, the BFM includes an accounting of fluid iner-
tia effects for seal rotor vibration characteristics. Second, the BFM has two
coupled equations, whereas the classical lubrication model has only one
equation, the RLE. This second comparison is interesting in that it shows
a fundamental contrast in the developments of the RLE and BFM. The
RLE is basically conservation of mass, that is, the scalar continuity equation,
with a priori solutions for axial and circumferential velocity distributions
substituted into the continuity equation. On the other hand, the two BFM
equations (for the θ and z components of F = ma) have continuity sub-
stituted into them. Third, the RLE has the pressure distribution p(θ, z) as
the only unknown field, but the BFM equations have not only the pressure
distribution but also circumferential velocity distributions. Thus, while the
RLE needs to be accompanied only by pressure boundary conditions, the
BFM equations need pressure plus circumferential and axial velocity inlet
boundary conditions.

Proper pressure and velocity boundary conditions combined with Equa-
tions 5.19 and 5.20 provide a well-posed mathematical problem the
solution of which yields BFM simulations for ungrooved annular seal
flow. Although this system of two equations is a considerable abridgement
from the full N–S equations for this problem, obtaining general solutions
is nevertheless still a formidable task, given that the BFM equations are
coupled nonlinear PDEs.

However, based on computational solutions plus experiments over
a static eccentricity ratio (e/C) range from 0 to 0.9, strong arguments
are made that for practical purposes the seal rotor vibration coeffi-
cients expressed in Equation 5.16 are nearly constant out to e/C ≈ 0.3.
The mitigating factors that make static eccentricity of less importance
to ungrooved annular seals than to journal bearings are the follow-
ing: (i) seal clearances are typically more than twice the clearances of
the journal bearings, which are the primary enforcers of rotor center-
line static position and (ii) turbulent flow inherently acts to desensitize
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the circumferential variation of pressure to static eccentricity because
of the corresponding reduction of the local Reynolds number where
the seal film thickness is smaller and increase where it is larger. This
second effect is similar to a (hypothetical) circumferentially cyclic varia-
tion in viscosity ∝ h with the maximum viscosity at the maximum film
thickness and the minimum viscosity at the minimum film thickness.
Such a phenomenon in a journal bearing would obviously desensitize
it to static eccentricity. It would thus appear that the isotropic model
of Equation 5.16 is justified for seals much more so than for journal
bearings.

Childs (1993) presents in considerable detail the formulation for extract-
ing annular seal rotor vibration characteristic coefficients from the BFM.
Perturbation pressure solutions Δp(θ, z) are formulated and obtained for
a “small” circular rotor orbital motion of radius (e � C) about the cen-
tered position, that is, about the position for which seal flow is rotationally
symmetric. Integration of the perturbation pressure distribution into x and
y force components yields the following:

fx(e, Ω) = −
L∫

0

2π∫

0

Δp(θ, z, e, Ω)R cos θ dE dz

fy(e, Ω) = −
L∫

0

2π∫

0

Δp(θ, z, e, Ω)R sin θ dθ dz

(5.21)

Since this perturbation force is a function of orbit frequency, it lends itself
to a second-order polynomial curve fit in frequency that directly extracts
the isotropic model coefficients of Equation 5.16. To that end, expressing the
perturbation force by its orthogonal components referenced to the instan-
taneous radial and tangential directions of the circular perturbation orbit
yields the following expressions (refer Figure 2.13):

f R ∼= −(ks + Ωcss − Ω2ms)e, f T ∼= (kss − Ωcs)e (5.22)

Solutions for the isotropic model stiffness, damping, and inertia coef-
ficients of Equation 5.16, based on Equations 5.22, are a mathematical
curve-fit approximation of the exact frequency-dependent characteristic
of the BFM perturbation solution. In a manner similar to data reduction
of harmonic-excitation experimental results as covered in Section 5.3.1,
Childs uses a least-squares fit of Equations 5.22 over the frequency range
of Ω/ω from 0 to 2.

There is a tacit underlying assumption in this whole approach that
Adams (1987) calls the mechanical impedance hypothesis, which implies that
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the extracted rotor vibration coefficients are not functions of the shape of
the imposed harmonic orbit (i.e., circular versus elliptical). This hypothesis
is completely consistent with the RLE, but must be assumed for the BFM.
Equations 5.22 provide that the BFM-based perturbation solutions are only
approximated by the mechanical impedance hypothesis and thus the potential
influence of orbit shape on seal rotor dynamic coefficients should be kept
open for discussion. As the more general sample problems in Chapter 4
demonstrate, with typical LRV models that incorporate anisotropic journal
bearing characteristics, LRV orbits are usually elliptical, not circular.

5.4.2.6 Comparisons between Ungrooved Annular Seals
and Journal Bearings

The majority of journal bearings operate with their hydrodynamic films
in the laminar flow regime, in which case aligned journal bearings are
characterized by two dimensionless parameters, Sommerfeld number
(dimensionless speed) and L/D. In some applications, however, the combi-
nation of journal surface speed, lubricant viscosity, and bearing clearance
place journal bearing hydrodynamic lubricating films into the turbulent
regime. Conventional wisdom of the experts is that a quite good approx-
imation for turbulence effects in journal bearings is based on the use of
an apparent viscosity, which is locally made higher than the actual vis-
cosity as a function of the local Reynolds numbers for journal velocity
and localized parameters of pressure gradient and film thickness. This
approach is provided by Elrod and Ng (1967). In the Elrod–Ng approach,
the RLE Equation 5.1 for laminar lubricant films is still employed, albeit
with the local viscosity at each finite-difference grid point modified to its
local apparent viscosity. There is then an additional dimensionless number
(e.g., clearance based Reynolds number) to characterize the journal bear-
ing. The Elrod–Ng approach rests upon a fundamental assumption that
temporal and convective inertia terms of the N–S equations are negligible
even though it is fluid inertia at the film flow’s fine structure level that
is an essential ingredient of the turbulence. Thus, even with turbulence
effects included, the theory and characterization of hydrodynamic jour-
nal bearings is not appreciably different than for laminar hydrodynamic
lubrication. In stark contrast, ungrooved annular seals are characterized
by several nondimensional parameters, including, but not limited to, the
following list of major ones:

Pressure drop:
( pin − pout)

ρw2
0

w0 ≡ Q
2πC

Q ≡ seal through flow.
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Axial and circumferential Reynolds numbers, respectively:

Rz = 2w0ρC
μ

, Rθ = RωρC
μ

Length-to-diameter and clearance-to-radius ratios, respectively:
L/D, C/R.

Absolute roughness of rotor and stator, respectively: er/2C, es/2C.
Thus it is clear that, unlike journal bearings, annular seals do not lend

themselves to the development of nondimensional wide-coverage design
charts or tabulations as a practical option. Although the task of devel-
oping reasonably accurate journal bearing vibration characteristic input
coefficients for rotor vibration analyses can be quite challenging, that
task for seals is considerably more challenging than for journal bear-
ings. For applications such as high-pressure centrifugal pumps where
rotor vibration performance is dominated by the various fluid-annulus
sealing zones (see Figure 5.13), the author recommends that serious ana-
lysts use experimentally benchmarked commercially available computer
codes such as those from the Turbo-Machinery Laboratory at Texas A&M
University.

Section 5.2.6, Subsection “Fundamental Caveat of LRV Analysis,” pro-
vides a list of significant uncertainty factors affecting journal bearing
characteristics. The following comparable list of uncertainty factors for
ungrooved annular seals is similar but longer:

• Clearance uncertainty via seal rotor and stator diameter mfg.
tolerances

• Variations in fluid viscosity from fluid temperature variations
• Seal rotor-to-stator static eccentricity (assumed zero for isotropic

model)
• Seal rotor-to-stator tilt misalignment

• Seal ring distortions from loads, temperature gradients, wear, and
so on

• Basic simplifying assumptions leading to the BFM governing
equations

• Coefficients for entrance pressure loss and exit pressure recovery
• Entrance circumferential velocity (preswirl)
• Surface roughness.

As this list implies, the uncertainty in seal rotor vibration characteristics
is no less than that for journal bearings.



224 Rotating Machinery Vibration: From Analysis to Troubleshooting

5.4.3 Circumferentially Grooved Annular Seals for Liquids

Various fluid-annulus sealing zones, such as those shown in Figure 5.13,
are not always ungrooved designs. Circumferential grooves are used in
many designs to further reduce leakage flow between stages, through end
seals and balancing drum (piston). The number of grooves, their axial
spacing, width, and depth are not standardized parameters; different man-
ufacturers have their own variation on the basic idea of circumferentially
grooving to improve leakage reduction. The presence of such grooves
also provides a more rub-forgiving less seizure-prone rotor–stator com-
bination than without grooves. Grooves are employed on either rotor or
stator. Figure 5.17 shows a variety of circumferential groove geometry for
annular seals:

a. Labyrinth seals; groove depth much larger than radial tip clear-
ance.

b. Shallow-grooves; groove depth approximately equal to tip clear-
ance.

Published analysis and experimental results are sparse. Those cited by
Childs (1993) suggest some trends. First, grooving significantly reduces
LRV stiffness and damping effects, possibly as much as 80% reduction
with wide deep grooves. Second, having the grooves on the seal stator

(a)

(b)

FIGURE 5.17 Examples of circumferentially grooved annular seals: (a) labyrinth seals;
groove depth much larger than radial tip clearance and (b) shallow grooves; groove depth
approximately equal to tip clearance.
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is rotor dynamically more stable than having the grooves on the rotor.
A configuration favored by some manufacturers of high-pressure multi-
stage centrifugal pumps employs shallow circumferential grooves that are
separated by axially straight lands unlike the sharp saw-tooth or narrow-
strip tips in labyrinth seals, as contrasted in Figure 5.17. The advantage
of a shallow-groove land-tip configuration is that it retains a significant
Lomakin effect (see Figure 5.15). Abalancing drum is long (see Figure 5.13).
So a shallow groove land-tip geometry thus produces a quite high radial
stiffness from a balancing drum because it has the full pressure rise of the
pump across it.

From a fundamental fluid mechanics perspective, the flow patterns in
a circumferentially grooved fluid annulus are considerably more com-
plicated than in an ungrooved configuration and correspondingly more
difficult to analyze. Thus, a BFM approach is unlikely to yield a realistic
or accurate characterization of rotor vibration coefficients for circum-
ferentially grooved seals. Nordmann and Dietzen (1990) use a finite-
difference solution of the N–S equations, accounting both for turbulence
and the geometric complications of circumferential grooves. The com-
parisons between their computational results and experiments are quite
good. At the time of their work, computer costs were a significant
factor in obtaining such N–S solutions, but with present work stations
and top-end PCs such computational costs are no longer a significant
consideration.

5.4.4 Annular Gas Seals

Turbo-machinery with a gas as the working fluid (i.e., compressors and
turbines) are quite similar in appearance, function, and principle of oper-
ation to turbo-machinery with a liquid as the working fluid (i.e., pumps
and hydro turbines). The multistage in-line centrifugal pump illustrated in
Figure 5.13 could almost be taken for a centrifugal compressor of similar
proportions. In compressible flow turbo-machinery, matters are compli-
cated by the considerable change in process gas density that naturally
occurs as the gas progresses through the flow path within the machine.
On the other hand, at maximum flow conditions, turbo-machinery for
liquids commonly operate with some cavitation, particularly at the inlet
section of a pump impeller (first stage impeller if a multistage pump) or
the exit section of a hydro turbine impeller. Significant amounts of cav-
itation vapor pockets in a pump act like a hydraulic flexibility (spring)
and thereby can significantly contribute to pump flow instability and thus
unsteady flow forces exerted upon the rotor.

As with annular seals for liquid-handling machinery, the radial forces
developed in annular gas seals are approximately proportional to seal
pressure drop and fluid density within the seal. Thus, for comparably sized
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seals and pressure drop, seal forces developed in gas-handling machines
are much less than in liquid-handling machines because of the compress-
ibility and lower density of the gas. Also, the added mass effect, (ms) in
Equation 5.16, is typically negligible and therefore generally not included
when dealing with gas seals. The assumption of a seal-force isotropic
model, as explained and used for liquid seals, is generally also used for
gas seals. With the added-mass terms not included, the isotropic model of
Equation 5.16 provides the following linear model that is usually employed
for annular gas seals:

{
fx
fy

}
= −

[
ks kss

−kss ks

]{
x
y

}
−
[

cs css
css cs

]{
ẋ
ẏ

}
(5.23)

Unlike liquid seals, the gas seal centering stiffness effect (ks) is usually
negligible, often negative. Like liquid seals, the gas seal cross stiffness (kss)
is an important LRV analysis input because it is a destabilizing effect,
for example, high-pressure steam turbine blade tip labyrinth seals can
cause steam whirl.

5.4.4.1 Steam Whirl Compared to Oil Whip

The self-excited rotor vibration in high-pressure steam turbines called
steam whirl is partially caused by the flow effects in blade tip seals and
is embodied in the cross-stiffness coefficient (kss). Some of the case studies
presented in Part 4 of this book deal with the steam whirl phenomenon,
which is quite similar in its characteristics to the other well-known self-
excited rotor vibration phenomenon called oil whip. Section 2.4.1 rigorously
treats the connection between the skew-symmetric part of the stiffness coef-
ficient matrix and such self-excited rotor vibration phenomena. In both
oil whip and steam whirl, the rotor vibrates with a corotational direc-
tion orbit, typically at the lowest rotor-system natural frequency, usually
near and somewhat below one-half the rotor spin speed frequency. The
main difference between oil whip and steam whirl is in the controlled
operating parameters that trigger each of these self-excited rotor vibra-
tion phenomena. With oil whip there is a rotational speed (threshold
speed of instability) above which the self-excited vibration “kicks in.”
With steam whirl, there is a turbine power output level above which the
self-excited vibration “kicks in.” While both are serious problems requir-
ing solution, oil whip is worse because if the oil whip threshold speed
is encountered below the machine’s operating speed, then the machine
cannot be safely operated. With steam whirl, the turbine can be operated
below the power output level where the self-excited vibration “kicks in.”
Thus, when oil whip is encountered, the machine should be shut down
and a solution developed. With steam whirl, the machine may still be
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safely operated, albeit at a sufficiently reduced power output level. Thus,
the “fix” for a steam whirl problem can be made at a later convenient
time. Reduced power yields loss of some generating capacity and oper-
ation below the machine’s best-efficiency power rating (i.e., higher fuel
cost/KW-HR).

5.4.4.2 Typical Configurations for Annular Gas Seals

Nearly all annular gas seals can be placed into one of the following four
categories:

• Labyrinth
• Ungrooved with floating stator
• Honeycomb
• Brush

}
Conventional designs

}
Recently implemented designs

The design features of conventional annular gas seals are not much dif-
ferent than for annular liquid seals. Just like fixed-stator annular liquid
seals, gas seals are also not supposed to act as the bearings; thus the radial
clearance for fixed-stator annular gas seals is also typically two or more
times the clearance of the machine’s radial bearings. Consequently, for the
much lower viscosity of typical process gases as compared with a typi-
cal liquid viscosity, ungrooved annular gas seals with fixed stators are not
commonly used because the seal leakage in most cases would be too high
with clearances two or more times the bearing clearances. However, annu-
lar gas seals with a floating stator (possibly segmented, frequently carbon
for nonseizure qualities) can use an ungrooved surface since the stator float
makes feasible very small clearances.

For gas handling turbo-machines, labyrinth seals yield considerably
lower leakage than ungrooved gas seals of the same axial length and
radial clearance because of labyrinth seals’ inherent higher resistance
to gas leakage flow. Thus, because of the optimum combination of sim-
plicity and relatively low leakage, fixed-stator gas seals with annular
grooves are the most common, especially labyrinth seals such as shown
in Figure 5.17a. The labyrinth configuration is also inherently more rub-
forgiving and less siezure prone than ungrooved seals, a contrast that is
even more pronounced with gases than with liquids. The basic labyrinth
seal configuration is possibly as old as turbo-machinery, that is, over
100 years old.

In recent times, two relatively new annular gas seal configurations
have found their way into some high-performance gas handling turbo-
machinery, namely the honeycomb seal and the brush seal. These two seal
types are illustrated in Figure 5.18. The honeycomb seal is comprised of deep
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(a)

(b)

Cell depth Cell size

Seal stator bristle holder

 Ceramic coated seal 

 Stiff wire

FIGURE 5.18 Recently implemented annular gas seal designs: (a) honeycomb seal and
(b) brush seal.

honeycomb-shaped pockets on the seal stator, which reportedly provide
lower leakage than comparably sized labyrinth seals of the same clearance
and operating conditions. The major improvement provided by the hon-
eycomb seal over the labyrinth seal is a significant reduction in tangential
flow velocity within the seal, which significantly reduces the destabiliz-
ing cross-stiffness effect (kss). This type of seal has been implemented in
centrifugal compressors with back-to-back impellers at the central location
sealing the two impeller chambers from each other. Since the axial center
of the rotor typically has a large motion participation in the lowest reso-
nant mode shape, the significantly reduced destabilization quality of the
honeycomb seal provides a considerable increase in the range of compressor
operation free of self-excited vibrations, as reported by Childs (1993).

The brush seal is illustrated in Figure 5.18b. It uses a tightly packed array
of many stiff wire bristles oriented with the direction of rotation, as shown.
It reportedly has been determined in recent tests to provide much lower
leakage rates than either labyrinth or honeycomb seals. The brush seal has
also demonstrated favorable rotor vibration characteristics, as reported by
Childs (1993). Clearly, the brush seal would appear to inherently reduce
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tangential flow velocity within the seal and thus reduce the destabilizing
cross-stiffness effect (kss). The brush seal would also appear to be inherently
immune from the potential rotor–stator rub-impact vulnerabilities of other
seals since its brush bristles are already in constant contact with the rotor
and are relatively compliant. This type of seal is now being used in late
model gas turbine jet engines.

Since both the brush seal and the honeycomb seal are relatively recent
developments, their long-term durability and reliability qualities in the
field under favorable as well as adverse operating conditions have yet to
be firmly established. For example, the author has recently become aware of
premature brush seal wear-out on the gas turbine jet engines of one major
aircraft engine manufacturer. Although not necessarily a safety hazard,
significant engine repair costs could readily result. One theory concerning
this brush seal problem is that bristle motion characterized by circumfer-
entially traveling waves occurs in the bristles, leading to their accelerated
wear rates.

5.4.4.3 Dealing with Seal LRV-Coefficient Uncertainties

As for annular liquid seals, the most comprehensive single information
source on annular gas seal rotor vibration characteristics is Childs’ (1993)
book. Childs comprehensively shows that the current “ignorance factor”
in predictions for seal rotor vibration properties is significantly higher for
gas seals than for liquid seals. Also, there is less available laboratory test
data on gas seal rotor vibration properties. Unlike journal bearings, annular
seals (for liquid and even more so for gas) clearly do not lend themselves
to the development of nondimensional wide-coverage design charts or
tabulations.

Part 4 of this book provides some of the author’s experience in dealing
with the inherent uncertainties in seal rotor vibration properties when per-
forming LRV analyses for the purpose of troubleshooting. For example,
with adroit use of vibration measurements on a particular vibration-
plagued machine, one can often make insight-motivated adjustments to
uncertain inputs of the LRV analysis model (e.g., seal LRV coefficients)
to improve its correlation with the actual machine’s vibration behavior,
for example, instability threshold speed or threshold power output, self-
excited vibration frequency at the instability threshold, critical speeds, and
peak vibration amplitudes at critical speeds. When a model is successfully
adjusted to provide a reasonable portrayal of an actual machine’s vibration
behavior, the author refers to the model as a calibrated model. By superimpos-
ing promising fixes upon a calibrated model, potential corrective actions or
retrofits can be thoroughly analyzed and evaluated prior to implementing a
specific corrective course of action. This approach brings solid engineering
science to bear upon troubleshooting and consequently has a much higher
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probability of a timely success than randomly trying “something someone
heard worked on a different machine at another plant somewhere else.”

5.5 Rolling Contact Bearings

Several different configurations of rolling contact bearings (RCB) are used
in numerous applications. The most common RCB configurations are ball
bearings, which can be subdivided into specific categories of radial contact,
angular contact, and axial contact. Other commonly used RCB configurations
utilize straight cylindrical, crowned-cylindrical, and tapered roller elements. In
many applications that employ RCBs, the complete rotor-bearing system
is sufficiently stiff (e.g., machine tool spindles) to operate at speeds well
below the lowest critical speed, so that the only rotor vibration consid-
eration is proper rotor balancing (Category-1, Table 2.1). In flexible rotor
applications, where operating speeds are above one or more critical speeds,
the RCBs often have sufficient internal preloading so that in comparison
to the other system flexibilities (i.e., shaft and/or support structure) the
RCBs act essentially as rigid connections. In applications where the bear-
ings have no internal preload and possibly some clearance (or “play”), the
dynamic behavior can be quite nonlinear and thus standard linear analyses
are potentially quite misleading (see Section 2.5 of Chapter 2).

RCBs can readily be configured to achieve high stiffness; thus they are
frequently used in applications where precision positioning accuracy is
important, such as in machine tool spindles. In contrast to their high stiff-
ness potential, RCBs have very little inherent vibration damping capacity,
unlike fluid-film journal bearings. Also, unlike a fluid-film journal bearing
that will fail catastrophically if its lubricant supply flow is interrupted, an
RCB can operate for sustained periods of time when the normal lubrica-
tion supply fails, albeit with a probable shortening of the RCB’s useable life.
Thus, RCBs are usually a safer choice over fluid-film bearings in aerospace
applications such as modern aircraft gas turbine engines. In such appli-
cations, however, the inability of the RCBs to provide adequate vibration
damping capacity to safely pass through critical speeds frequently necessi-
tates the use of squeeze-film dampers (SFD) (see Section 5.6) to support one or
more of the machine’s RCBs. When an SFD is employed, its rotor vibration
characteristics are usually the governing factor at the bearing, not the very
high stiffness of the RCB in series with the SFD.

Roller bearings inherently possess much higher load capacity and Hertzian
contact stiffness than ball bearings, because a ball’s load-supporting foot-
print is conceptually a point contact, whereas a roller’s load-supporting
footprint is conceptually a line contact. However, in roller bearings each
roller has a single axis about which it must spin in proper operation. As
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rotational speed is increased for a roller bearing, the increased propensity
for dynamic skewing of the rollers will impose a maximum useable rota-
tional speed for the bearing. In contrast, a ball’s spin may take place about
any diameter of the ball. As a consequence, ball bearings have much higher
maximum speed limits than roller bearings, given their inherent absence of
dynamic skewing. Given the higher speed capability but inherently lower
stiffness of ball bearings compared to roller bearings, it is far more likely
that one would possibly need radial stiffness for a ball bearing than for a
roller bearing when performing LRV modeling and analyses.

If one focuses on the load paths through an RCB, two important factors
become apparent:

1. Each contact between a rolling element and its raceways possesses
a nonlinear load versus deformation characteristic (F versus δ).
That is, since the deformation footprint area between rolling ele-
ment and raceway increases with load, the F versus δ characteristic
exhibits a stiffening nonlinearity, that is, the slope of F versus δ

increases with F.
2. The total bearing load is simultaneously shared, albeit nonuni-

formly, by a number of rolling elements in compression as
illustrated in Figure 5.19. Therefore, the contact forces taken by
the rolling elements are statically indeterminate, that is, cannot
be solved from force and moment equilibrium alone, but must
include the flexibility characteristics of all elements.

As first developed by A. B. “Bert” Jones (1946), this combination of
statically indeterminate and nonlinear contact forces requires the use of quite
specialized analyses that employ appropriate iterative algorithms to con-
verge on the static equilibrium state of all the rolling elements and raceways

 Bearing
load

Ball or roller
load arc

Fi–1 Fi+1

Fi

x
y

f

FIGURE 5.19 Typical distribution of contact loads in an RCB.
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for a specified combination of externally applied forces and moments. Per-
turbing the static equilibrium solution yields the RCB stiffness coefficient
array. The work of Bert Jones is essentially the foundation of all modern
computer codes for RCB load-deflection analyses.

A suitable estimate of RCB radial stiffness for LRV analyses is obtained
by assuming that the inner and outer raceways are both perfectly rigid.
This simplifying assumption avoids employing the quite formidable and
specialized complete static equilibrium-based solution just described,
because it geometrically relates all the rolling elements’ compressive deflec-
tions to a single bearing deflection. The load versus deflection for the ith
rolling element is expressible from Hertzian elastic contact theory, such as
in the following summary from Kramer (1993) (numbers in B expressions
based on steel):

Fi =
(

δi

B

)n

(5.24)

where Fi, δI are load and deflection of ith rolling element.

Here,
n = 3/2
B = 4.37 × 10−4d−1/3

}
Ball
bearings

n = 1/0.9
B = 0.77 × 10−4L−0.8

}
Roller
bearings

Units: Ball diameter d mm, roller length L mm, contact force Fj Newtons.
Contact forces occur only when a rolling element is in compression. It is

implicit in the approximation here that the bearing has no internal preload
and no play (clearance). Then the only source of contact loads is from the
applied bearing load and the contact zone will be the 180◦ arc shown in
Figure 5.19. The contact compressive deflection of each rolling element can
then be expressed as follows, where x is the relative radial displacement
between the raceways:

δi =
⎧⎨
⎩

x cos φi, 90◦ < φi < 270◦

0, −90◦ < φi < 90◦ (5.25)

Play (clearance) in a bearing tends to make the contact load arc less than
180◦ and preload tends to make the contact load arc greater than 180◦.

With φ referenced to the bearing load as shown in Figure 5.19, equilibrat-
ing the bearing load by the sum of the components of all the individual
contact forces can be expressed as follows:
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where N is the number of rolling elements within the 180◦ arc of contact
loading.

Rearranging Equation 5.26, the bearing deflection is expressed as follows:

x = B
(

F
Sx

)1/n

(5.27)

Differentiating the radial bearing force (F) by its corresponding radial
bearing deflection (x), bearing x-direction stiffness is obtained in the
following equation:

kxx = dF
dx

= nxn−1

Bn Sx = n
x

( x
B

)n
Sx = n

x
F (5.28)

Visualize each loaded rolling element as a nonlinear radial spring in
compression. Each individual rolling element’s stiffness in the direc-
tion perpendicular to the bearing load can be obtained by projecting a
y-direction differential deflection onto its radial direction and projecting its
resulting differential radial force back onto the y direction. The radial stiff-
ness of an individual loaded rolling element is obtained by differentiating
Equation 5.24, as follows:

ki = dFi

dδi
= nδn−1

i
Bn = n(x cos φi)

n−1

Bn (5.29)

Projecting the y-direction differential deflection onto rolling element’s
radial direction and its resulting differential radial force back onto the y
direction yields the following:

dδi = dy sin φi and dFiy = dFi sin φi

Therefore,

dFiy = dFi sin φi = kiφ dδi sin φi = ki dy(sin φi)
2

The y-direction stiffness for an individual loaded rolling element is thus
obtained as follows:

kiy = dFiy

dy
= ki(sin φi)

2 (5.30)
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Summing all the rolling elements’ y-direction stiffness yields the bear-
ing’s y-direction stiffness, as follows:

kyy =
N∑

i=1

ki(sin φi)
2 = nxn−1

Bn

N∑
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(cos ϕi)
n−1(sin φi)

2 = nxn−1

Bn Sy
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(cos φi)
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2
(5.31)

Combining Equations 5.28 and 5.31 yields the stiffness ratio, as follows:

Rk ≡ kyy

kxx
= Sy

Sx
< 1 (5.32)

This easily calculated ratio increases with the number of rolling elements
in the bearing. Kramer (1993) provides values for the following example
cases.

Number of rolling elements in bearing = 8, 12, 16 gives the following:

Ball bearing, Rk = 0.46, 0.64, 0.73, Roller bearing, Rk = 0.49, 0.66, 0.74

The bearing stiffness coefficients given by Equations 5.28 and 5.31 are
derived as though neither raceway is rotating. There are three cases of
rotation one could encounter: (1) only the inner raceway rotates (most
typical), (2) only the outer raceway rotates, and (3) both raceways rotate
(e.g., intershaft bearings for multispool-shaft jet engines). The cage main-
tains uniform spacing between the rolling elements, and when it rotates
the bearing load and resulting deflection are perfectly aligned with each
other only when the bearing load is either directly into a rolling element
or directly between two rolling elements. At all other instances, bearing
load and resulting deflection are very slightly out of alignment. This pro-
duces a very slight cyclic variation of the bearing’s stiffness coefficients at
roller or ball passing frequency, and thus suggests the possibility of what
is generically referred to as parametric excitation.

As an input into a standard LRV analysis code, such as RDA, Equa-
tions 5.28 and 5.31 provide the following bearing interactive force with
stiffness only, but no damping:{

fx
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= −
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]{
x
y

}
(5.33)

Of course the chosen x–y coordinate system orientation in a given LRV
model may not align with the Equation 5.33 principal x–y coordinate sys-
tem orientation, which is shown in Figure 5.19. However, as described by
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Equation 5.7 and Figure 5.2, bearing and seal LRV coefficient arrays are
second rank tensors and thus can be easily transformed to any alternate
coordinate system orientation. Equation 5.33 transformed to a nonprin-
cipal coordinate system yields nonzero off-diagonal stiffness terms that
are equal, that is, the stiffness array is symmetric. Thus, this model for
rolling element bearing stiffness does not embody any destabilizing effect,
in contrast to journal bearings.

5.6 Squeeze-Film Dampers

Vibration damping capacity of an RCB is extremely small and therefore to
measure it is virtually impossible since any test rig for this purpose would
have its own damping that would mask that of a tested RCB. As is well
known and shown by Figure 1.5, the benefit of damping is in preventing
excessively high vibration amplitudes at resonance conditions. Thus, for
the many machines running on RCBs that have the maximum running
speed well below the lowest critical speed, the absence of any significant
RCB damping presents no problem.

Since an RCB can usually operate for sustained periods of time after the
normal lubrication supply fails, RCBs are usually a safer choice over fluid-
film bearings in aerospace applications such as modern aircraft gas turbine
jet engines. In such applications, however, the inability of the RCBs to
provide adequate vibration damping capacity to maintain tolerable unbal-
ance vibration levels through critical speeds frequently necessitates the
use of SFD. Typically, an SFD is defined by a cylindrical annular oil film
within a small radial clearance between the O.D. cylindrical surface of an
RCB’s outer raceway and the precision cylindrical bore into which it is
fitted in a machine. The radial clearance of the SFD is similar to that for
a comparable diameter journal bearing, possibly a bit larger as optimized
for a specific application. Figure 5.20 shows a configuration that employs
centering springs.

An SFD is like a journal bearing without journal rotation. Referring to
Equation 5.1, the “sliding velocity term” in the RLE is then zero, leaving
only the squeeze-film term to generate hydrodynamic pressure within the
small annular clearance. As a first-order approximation to compute SFD
damping coefficients, the perturbation approach given by Equations 5.4
may be used. However, the factors of film rupture and dissolution of air
in the SFD oil film produce considerably more complication and uncer-
tainty of computational predictions for LRV damping coefficients than
these factors do in journal bearings. Also, the neglect of fluid inertia effects
implicit in the RLE is not as good an assumption for SFDs as it is for journal
bearings.
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FIGURE 5.20 SFD concept with RCB and centering springs.

5.6.1 Dampers with Centering Springs

The SFD configuration shown in Figure 5.20 employs centering springs
since there is no active sliding velocity term to generate static load-carrying
capacity in the hydrodynamic oil film. To create a static equilibrium posi-
tion about which the vibration occurs and is damped by the SFD, centering
springs are typically used to negate the bearing static load and maintain
damper approximate concentricity. The radial stiffness of the centering
springs is far less than the radial stiffness of the RCB, as developed in
the previous section. Thus, the stiffness coefficient array is essentially the
isotropic radial stiffness of the centering springs, kcs. Assuming validity of
linearization, as postulated for journal bearings in Equation 2.60, the LRV
interactive force at a bearing station employing an SFD is then expressible
as follows: {
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where cd is the damping coefficient for the concentric damper film.
The SFD’s length (L) is typically much smaller than its diameter (D =

2R). Consequently, it is customary to consider two cases: (1) SFD does not
have end seals, and (2) SFD does have end seals. For Case 1, the supplied
oil flow is continuously squeezed out of the two axial boundaries of the
damper film and since typically L/D < 0.2, solution to Equation 5.1 using
the short bearing approximation is justified. For Case 2, the use of end seals
essentially prevents the significant axial oil flow encountered in Case 1
and thus using the long bearing approximation is justified. Also for Case 2,
one or more drain holes are put in the damper to maintain a specified oil
through-flow to control damper oil temperature.

Postulating a concentric circular orbit for the rotor within the SFD, solu-
tion of Equation 5.1 yields an instantaneous radial-plane force vector upon
the rotor which can be decomposed into its radial and tangential compo-
nents. As an example of this, Vance (1988) lists these two force components
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based on the “short bearing” approximation which is appropriate for the
above Case 1 (no end seals) and 180◦ cavitation zone trailing the orbiting
line-of-centers (i.e., minimum film thickness), as follows:

Radial component, FR = − 2μRL3Ωε2

C2(1 − ε2)2

Tangential component, FT = − πμRL3Ωε

2C2(1 − ε2)3/2

(5.35)

where μ is the viscosity, R is the damper radius, L is the damper length,
Ω is the orbit frequency, C is the damper radial clearance, and ε is the
eccentricity ratio e/C.

Radial and tangential force components can also be similarly derived
using the “long bearing” solution of Equation 5.1, which is appropriate
to the previous Case 2 (with end seals). It should be noted that the force
components given by Equations 5.35 are clearly nonlinear functions of the
motion. However, they can be linearized for a “small” concentric circular
orbit as similarly shown in Equations 5.22 for annular seals. Equations 5.35
can be simplified for ε � 1 (ε → 0) to the following:

FR ∼= −
(

2μRL3Ωε

C2

)
ε

FT ∼= −πμRL3Ωε

2C2

(5.36)

Since the radial force approaches zero one order faster than the tangential
force (i.e., ε versus ε2), the only nonzero coefficient retrieved from Equa-
tions 5.22 is the diagonal damping coefficient, cs ≡ cd. Thus, for the “short
bearing” approximation with boundary conditions for the 180◦ cavita-
tion zone trailing the orbiting line-of-centers, the Equation 5.34 damping
coefficient for LRV analyses is given as follows:

cd ∼= πμRL3

2C3 (5.37)

For a sufficiently high damper ambient pressure to suppress cavita-
tion, the solution yields a damping coefficient that is twice that given by
Equation 5.37.

5.6.2 Dampers without Centering Springs

Eliminating the centering springs makes the SFD mechanically simpler
and more compact. The possibility of centering spring fatigue failure does
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not need to be addressed if there are no centering springs. However, from
a rotor vibration point of view, eliminating the centering springs makes
the system considerably less simple. The damper now tends to “sit” at the
bottom of the clearance gap and it requires some vibration to “lift” it off
the bottom. That is a quite nonlinear dynamics problem.

Some modern aircraft engines are fitted with “springless” SFDs while
some have spring-centered SFDs. Under NASA sponsorship, Adams et al.
(1982) devised methods and software to retrofit algorithms for both types of
dampers into the general purpose nonlinear time-transient rotor response
computer codes used by the two major U.S. aircraft engine manufac-
tures. Adams et al. (1982) show a family of nonlinear rotor vibration
orbits that develop in “springless” SFDs as a rotating unbalance force
magnitude is progressively increased. With a static decentering force
effect (e.g., rotor weight) and small unbalance magnitudes, the orbit
barely lifts off the “bottom” of the SFD, forming a small orbital trajec-
tory that has been likened to a “crescent moon.” As unbalance magnitude
is progressively increased, it tends to overcome the static decentering force
and thus the orbit progresses from the small “crescent moon” trajectory
to a distorted ellipse to a nearly concentric circular orbit as the unbalance
force overpowers the static decentering force effect.

To provide a reasonable linear approximation to the nonlinear behavior
of both “springless” and spring-centered SFDs, Hahn (1984) developed
methods and results to approximate SFD dynamic characteristics with
equivalent linearized stiffness and damping coefficients compatible with
LRV analysis codes like RDA. Such an approach appears to make sense
when parametric preliminary design studies are conducted, leaving a
full nonlinear analysis to check out a proposed and/or final prototype
engine design.

5.6.3 Limitations of Reynolds Equation–Based Solutions

In developing Equations 5.35 through 5.37, a concentric circular orbit
trajectory is postulated. If one views the Reynolds equation solution for
film pressure distribution in the SFD from a reference frame rotating at the
orbit frequency (Ω), the pressure distribution is the same as in an equivalent
journal bearing running at static equilibrium with the same eccentricity. In
the typical case where cavitation occurs, the respective SFD and journal
bearing Reynolds equation solutions are still equivalent. However, there is
a quite significant physical difference between the SFD and its equivalent
journal bearing. That is, in the journal bearing under static load there is
typically an oil inlet groove near where the film gap starts its reduction
(or “wedge” effect) and the cavitation zone downstream of the minimum
film thickness is fixed in the journal bearing space. On the other hand,
in the SFD with a concentric Ω-frequency orbit, the cavitation zone also



Bearing and Seal Rotor Dynamics 239

rotates at Ω around the SFD annulus. Depending on whether end seals are
used or not and on the through-flow of oil metered to the SFD, a specific
“blob” of oil may be required to pass into and out of cavitation several
times at a frequency of Ω during a single residence period within the SFD
film. It is reasonable to visualize that as the orbit frequency is progressively
increased, the SFD oil refuses to cooperate in that manner. Experiments have
in fact shown that as orbit frequency is progressively increased, the SFD
becomes an oil froth producer and its damping capacity falls far short of
Reynolds-equation-based predictions.

Hibner and Bansal (1979) provide the most definitive description on the
failure of classical lubrication theory to reasonably predict SFD perfor-
mance. They show with extensive laboratory testing at speeds and other
operating conditions typical of modern aircraft engines that fluid-film
lubrication theory greatly over predicts SFD film pressure distributions
and damping coefficients. They observed a frothy oil flow out of their
test damper. They suggest that the considerable deviation between test
and theory stems from gaseous cavitation, greatly enhanced by air bubbles
being drawn into the SFD to produce a two-phase flow that greatly reduces
hydrodynamic pressures.

The work of Hibner and other SFD specialists indicates that for low-
speed applications, classical hydrodynamic lubrication theory can pro-
vide reasonable predictions for SFD performance. But at rotational speeds
typical of modern aircraft engines, classical hydrodynamic lubrication
theory greatly overestimates SFD damping coefficients and therefore
thorough testing of specific SFD configurations is required to reliably
determine the actual SFD performance.

5.7 Magnetic Bearings

The generic configuration of an active magnetic bearing system is shown
in Figure 5.21, which schematically illustrates the essential components.

The main feature of magnetic bearings which has attracted the attention
of some rotating machinery designers is that they are oil-free bearings. This
means for example that with large pipe line compressor rotors supported
on oil-free bearings, the elimination of oil precludes the eventual coating of
pipeline interior surfaces with lost oil that otherwise must be periodically
cleaned out of the pipeline, at considerable service and downtime costs.
Interestingly, this feature is not uppermost in the minds of magnetic bearing
conceivers, who for the most part are academicians with a particular focus
on control theory. They conceived the modern active magnetic bearing as
an electromechanical actuator device that utilizes rotor position feedback
to a controller in order for the magnetic bearing to provide electromagnetic
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FIGURE 5.21 Active magnetic bearing schematic.

noncontacting rotor levitation with attributes naturally occurring in con-
ventional bearings, that is, static load capacity along with stiffness and
damping. Magnetic bearing technologists have focused their story on the
fact that the rotor dynamic properties of magnetic bearings are freely pre-
scribed by the control law designed into the feedback control system, and
thus can also be programmed to adjust in real time to best suit a machine’s
current operating needs, such as active tuning “around” critical speeds and
“extra damping” to suppress instabilities.

5.7.1 Unique Operating Features of Active Magnetic Bearings

Magnetic bearing systems can routinely be configured with impressive ver-
satility not readily achievable with conventional bearings. In addition to
providing real-time controllable load support, stiffness, and damping, they
can simultaneously provide feed-forward-based dynamic bearing forces to
partially negate rotor vibrations from other inherent sources. They can also
employ notch filtering strategies to isolate the machine’s stator from spe-
cific rotor vibration frequencies such as synchronous forces from residual
rotor mass unbalance. In this last feature, notch filtering out the syn-
chronous unbalance forces from the rotor–stator interaction forces seems
to be quite nice, but then the rotor wants to spin about its polar inertia
principal axis through its mass center, and thus its surfaces will wob-
ble accordingly, meaning that rotor–stator rubs and/or impacts at small
rotor–stator radial clearances have an increased likelihood of occurrence.

A natural extension of current magnetic bearing systems is their
integration with next-generation condition monitoring strategies, dis-
cussed in Chapter 7, Section 7.1. Not only do active magnetic bearing
systems possess the displacement sensors inherent in modern conditioning
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monitoring systems, but they automatically provide the capability of real-
time monitoring of bearing forces, a long wished-for feature of rotating
machinery problem diagnosticians. As alluded to earlier, magnetic bear-
ings being real-time controlled force actuators can also be programmed
to impose static and dynamic bearing load signals that can be “intelli-
gently” composed to alleviate (at least partially and temporarily) a wide
array of machine operating difficulties such as excessive vibrations and
rotor–stator rubbing initiated by transient thermal distortions of the sta-
tor or other sources. Clearly, the concept of a so-called “smart machine”
for next-generation rotating machinery is not difficult to conceptualize
when active magnetic bearings are employed for rotor support. For an
update on magnetic bearing publications, Allaire and Trumper (1998) pro-
vide several papers and Schweitzer (1998) focuses on “smart rotating
machinery.”

5.7.2 Short Comings of Magnetic Bearings

Magnetic bearing systems are relatively expensive, encompassing a system
with position sensors, A-to-D and D-to-A multichannel signal converters,
multichannel power amplifiers, and a microprocessor. Also, the lack of
basic simplicity with such a multicomponent electromechanical system
surely translates into concerns about reliability and thus the need for
component redundancy (e.g., sensors).

The most obvious manifestation of the reliability/redundancy factor
is that magnetic bearings in actual applications require a backup set of
“catcher” bearings (typically ball bearings) onto which the rotor drops when
the magnetic bearing operation is interrupted, such as by power or primary
nonredundant component failure, or when the magnetic bearing is over-
loaded. The dynamical behavior of the rotor when the catcher bearings take
over was initially not properly evaluated by magnetic bearing technolo-
gists. But in rigorous application testing, it was found that severe nonlinear
rotor vibration can occur when the rotor falls through the catcher bearing
clearance gap and hits the catcher bearings.

Fluid-film bearings and RCBs both possess considerable capacities for
momentary overloads, for example, shock loads. Since these conven-
tional bearings completely permeate the modern industrial world, their
high capacities for momentary overloads are essentially taken for granted
since they “do their job” and keep on running. On the other hand, mag-
netic bearings “saturate” when loads are pushed to their limits and thus
provide little capacity for large load increases that momentarily exceed the
bearing’s design load capacity by substantial amounts. This is a serious
limitation for many applications. For static load and lower-frequency stiff-
ness and damping properties, magnetic bearing force capacity is limited
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FIGURE 5.22 Magnetic bearing saturation effect load limits (Fleming, 1991).

by the saturation flux density of the magnetic iron, as illustrated in Fig-
ure 5.22a. A further limitation is set by the maximum rate at which the
control system can change the current in the windings. The magnets have
an inherently high inductance which resists a change in current, thus the
maximum “slew rate” depends on the voltage available from the power
amplifier. In practical terms, the required slew rate is a function of the
frequency and amplitude of rotor vibration experienced at the bearing.
Figure 5.22b illustrates the combined effects of magnetic saturation and
slew-rate limitation on magnetic bearing load limits.

Conventional bearings are not normally feedback-controlled devices,
that is, they achieve their load capacity and other natural characteristics
through mechanical design features grounded in fundamental mechan-
ics principles. Conversely, the basic operation of active magnetic bearings
relies on feedback of rotor position signals to adjust instantaneous bearing
forces. As a result, a generic shortcoming of active magnetic bearings stems
from this fundamental reliance on feedback control. It is referred to with
the terms “spillover” and “collocation error.” Feedback control design
is traditionally viewed as a compromise between response and stability.
Whenever a feedback loop is closed, there is the potential for instability, as
is well known.

Specifically for active magnetic bearings, collocation error arises from the
sensors not being placed exactly where the bearing force signals are applied
to the rotor, and this can produce rotor dynamical instabilities (spillover)
that would not otherwise occur. Surely, no longstanding rotor dynam-
ics specialist is enthused about this, since other traditionally recognized
rotor dynamical instability mechanisms are always lurking, especially in
turbo-machinery.

The magnetic bearing technologists’ answer to this fundamental short-
coming is to have programmed into the control law a very accurate
dynamics model of the rotor system. However, machines constantly change
their dynamic characteristics in response to operating point changes and
as a result of normal seasoning and wear over time. This necessitates
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continuous automatic real-time recalibration of the dynamics model resid-
ing in the programmed control law. Under some well-defined operating
modes, rotor dynamical systems can be quite nonlinear, and then having
an accurate model in the control law for the actual rotor system becomes
a formidable challenge. It prompts one to sarcastically ask “how all those
‘stupid’ oil-film bearings and ball bearings can do all the things they do?”
The answer is, “the designers are smart.”

5.8 Compliance Surface Foil Gas Bearings

Gas film bearings of both hydrodynamic and hydrostatic functioning were
already being investigated and used in a few novel applications nearly 50
years ago. However, use of those bearings never achieved wide indus-
trial use, primarily because of quite low load capacity at modest rotational
speeds and rotor dynamical instability problems at speeds sufficiently high
to provide useable static load capacities. Hydrostatic gas bearings utilizing
porous media bearing sleeves were also shown to be feasible in labora-
tory testing and analysis. The foil gas bearing concept achieved success in
the predigital-age high-speed tape deck heads by manufacturers such as
Ampex. The main modern application of the hydrodynamic air bearing,
initially on mainframe computer high-speed flying-head disk readers, has
found its present place in PC hard drives. Quite recently, a major Cleveland-
based manufacturer of MRI medical scanners has successfully developed
and employed hydrostatic air bearings to support the main rotational
positioning barrel, advancing the position resolution in this product.

About 25 years ago the gas foil bearing concept evolved into a new family
of configuration, namely the compliance surface foil gas bearing (Heshmat
et al., 1982). Figure 5.23 illustrates two typical compliance surface foil gas

Leaf foils Top
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Bump
foil

+ + 

Journal Journal

(a) (b)

Bearing
sleeve

FIGURE 5.23 Two types of compliant surface foil gas journal bearings: (a) leaf-type foil
bearing and (b) bump-type foil bearing.
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journal bearings. Similar concepts for axial load thrust bearings are also
in the mix but not addressed here because of the focus on rotor radial
vibration.

The main selling feature touted of the modern compliant surface foil gas
bearing has been that it is oil free, which can be a definite advantage for
a number of applications, not just aerospace applications. Although mag-
netic bearings (see Section 5.7) were touted by the academically inclined
developers primarily for their accurately controllable characteristics like
rotor dynamical stiffness and damping, it is actually the oil-free nature of
magnetic bearings that resulted in their use in a few heavy industry appli-
cations such as in large pipeline compressors. However, compliant surface
foil bearings have the added benefit over magnetic bearings of use at quite
elevated temperatures in excess of 1100◦F (593◦C).

Most of the development work has been focused on the bump-type foil
bearing illustrated in Figure 5.23b. These bearings are assembled with a
modest amount of elastic preload, which means that at start-up the journal
is in rubbing contact with the inner surface of the top foil. Special coatings on
the interior surface of top foil are thus required to counter the potential for
significant wear accumulation from many starts and stops. As the journal
accelerates up to operating speed, the hydrodynamic gas film overcomes
the initial preload and thereby separates the journal and top foil. As the
bearing radial load comes into play, the top foil and bumper foil elastically
deform under the load so as to spread the load-carrying hydrodynamic sep-
arating pressure distribution more uniformly over the load-carrying area.
This yields a bearing load capacity superior to the original hydrodynamic
gas bearings of rigid construction.

An interesting dichotomy between compliant surface foil bearings and
magnetic bearings is the following. Foil bearings are relatively simple in their
configuration, with operating properties resulting from the fundamental
ambient-gas hydrodynamics of the gas film interacting with the elastically
deformable foils. That is, the foil bearings do not have to be “smart,” they
only have to let nature take its course. In stark contrast, operation of the
magnetic bearing is anything but simple, involving position sensors, with
A-to-D, microprocessor, D-to-A, and power amplifiers (see Figure 5.21).
But the magnetic bearing has quite predictable performance, for example,
load capacity, dynamic stiffness, and damping coefficients. However, the
much simpler configured foil bearing surely presents considerable chal-
lenges in predicting its operating performance characteristics, especially
rotor dynamical stiffness and damping properties. The elastic deforma-
tion of the foils is significantly hardening nonlinear with load, and it is
the foil hardening nonlinear deformations that dominate both the static
and dynamic bearing properties. The beneficial damping inherent in the
dynamic rubbing between the top and bumper foils is also a quite nonlinear
mechanism. In consequence, use of foil bearings in a specific application
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requires significantly more development testing than other alternatives
require, at least at this point of time. The main applications thus far for
these foil bearings include turbo-chargers and micro gas turbine engines
for land-based electric power generation. The compact oil-free nature and
high-temperature capability of the compliant surface foil gas bearing are
significant.

One can begin to appreciate the unpredictability of rotor dynamical stiff-
ness and damping coefficients from the work of Howard et al. (2001). Their
large scatter of results to fit linear dynamical models leads one to the con-
clusion that perhaps foil bearings inherently cannot be sufficiently well
modeled for rotor vibration predictions using linear vibration models.
This assertion is supported by the recent work of San Andres and Kim
(2007). Their nonlinear rotor vibration simulations compare amazingly
close with their laboratory tests on a small precision 2-bearing high-speed
rotor. Their results clearly demonstrate that the rotor vibration character-
istics are dominated by the structural nonlinearities of the foils, showing
phenomena that could not be predicted by any linear vibration predictive
simulation model. For example, they demonstrate that gas foil bearing sup-
ported rotors are prone to subsynchronous whirl orbits, albeit at tolerable
vibration levels. Specifically, they show subsynchronous orbit frequencies
that track subharmonics of the rotor speed (i.e., 1/2, 1/3, etc. of the rotor
spin frequency), but more often locking onto a system subsynchronous
natural frequency. These subsynchronous orbital motion components may
persist over a range of operating speeds, with disappearance then subse-
quently reappear with further operating changes. Their results also show
that adding more rotor unbalance can trigger and worsen the severity of the
subsynchronous orbital vibration components. This makes fundamental
sense since the addition of rotor unbalance increases the overall vibration
level and thereby increases the degree of dynamic nonlinearity, which in
turn increases the propensity for the synchronous forcing function to drive
energy into harmonics of itself (see Figures 2.17 through 2.19). Their results
confirm that the subsynchronous vibration components are a consequence
of the structural hardening nonlinearity akin to a Duffing resonator, not a
hydrodynamic rotor dynamic instability energized by the gas film.

For a conventional cylindrical journal bearing with a machined journal
OD and machined bearing bore ID, the clearance of course has a precise
definition. Conversely, the equivalent clearance of a compliant surface foil
journal bearing is not as precisely definable because the bearing surface is
compliant. If one attempts to progressively increase bearing load to deter-
mine at what load magnitude the compliant surface bottoms out on the
bearing sleeve (see Figure 5.23), the bearing is likely to fail from overheating
before that bottom-out condition is reached. Of course, for what its worth,
this test can be done for the journal not rotating. The somewhat nebulous
definition of compliant surface foil journal bearing clearance cautions the
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author concerning the other nonbearing small radial rotor-to-stator radial
clearances in an application, for example, radial seal clearances, turbo-
machinery blade-tip clearances, balance drum clearance. An important
function of any radial bearing is to prevent these other small-clearance
components from becoming inadvertent bearings during operation.

5.9 Summary

The specifics of bearing and seal rotor dynamic properties as well as the
rotor dynamic effects of turbo-machinery flows (Chapter 6) are primary
factors that provide much of the uncertainty in making predictions for
rotating machinery vibration. When using rotor vibration predictive anal-
yses for design purposes, one should of course reflect such uncertainties in
configuring the design and its prototype test program. However, the use
of rotor vibration predictive analyses for troubleshooting is a somewhat dif-
ferent endeavor that benefits from having actual vibration measurements
made on the machine that is in excessive vibration difficulty. As conveyed
by the case studies presented in Part 4 of this book, adroit use of measured
vibration characteristics on the actual machine leads to a calibrated model
that can greatly increase the probability of devising a timely and adequate
remedy for the particular rotating machinery vibration problem at hand.
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PROBLEM EXERCISES

1. Using RDA and assuming a Gaussian (normal) distribution
of journal bearing clearance for a high production rotor-
bearing product, determine the distribution of the first critical
speed and the oil-whip instability threshold speed. Use the
single central disk two bearing configuration of Problem 3
of Chapter 1. Use 360◦ cylindrical oil film journal bearings,
4 in. nominal diameter, 2 in. length (L/D = 0.5), nominal radial
clearance of 0.004 in., and tolerances of ±0.001 in. on journal
OD and bearing bore diameter. Assume an oil viscosity of
0.2 × 10−7 reyns (lb s/in.2).

2. Starting with the three N–S equations and the continuity
equation, rigorously develop the RLE, Equation 5.1. Clearly state
all assumptions.

3. Concerning the experimental extraction of bearing and seal rotor
dynamics coefficient arrays, devise a tensor filtering algorithm to
research the removal of random signal noise and measurement
errors.

4. For a three-pad tilting-pad journal bearing (see Figure 5.6), devise
a computer code to determine the static equilibrium journal
center x and y eccentricity position coordinates for any speci-
fied bearing static radial load magnitude and direction. Use the
following assumed functional relationship for individual pad
load (see Figures 5.4 and 5.5) and assume no bearing preload:

Wp = W0e3
p

(c − ep)
,

where Wp is the pad load, c is the bearing concentric radial
clearance, and ep is the excentricity of journal into the pivot
direction.

5. Repeat the Problem 4 scope with the added option of bear-
ing preload, specified by the ratio of radial pivot-clearance-to-
concentric-clearance, 0 < c′/c < 1.

6. Utilizing the published literature, do a term paper on squeeze film
dampers with particular focus on the effects of film rupture and
dissolution of air in the oil, and the influence of fluid inertia.

7. Using the equations provided in Section 5.5, calculate the x and y
bearing radial stiffness for a commercially available ball bearing
without preload and compare to stiffness data available from the
manufacturer’s literature.





6
Turbo-Machinery Impeller
and Blade Effects

The complete flow fields within turbo-machinery stages, both in radial
flow and axial flow machines, are significant influences on rotor vibration.
Figure 6.1 illustrates the radial flow fields typical in centrifugal impeller
stages. For a typical axial flow machine, Figure 6.2 shows the high-pressure
turbine of the large steam-powered multiturbine unit shown in Figure 3.9.
Within these machines, flow through the impellers and blade rows interacts
considerably with the flow through their respective seals.

6.1 Centrifugal Pumps

Referring to Figure 6.1a, it is not surprising that static and dynamic
hydraulic forces are imposed on the rotor of a centrifugal pump by
the flow through the pump. These hydraulic rotor forces are dominant
factors in determining the vibration behavior of a centrifugal pump, espe-
cially high-energy pumps such as those required for boiler feed water
service.

6.1.1 Static Radial Hydraulic Impeller Force

A static radial force is imposed on a pump impeller because the steady
portion of the total pressure distribution over the impeller surface is not
of perfect axial symmetry. This static radial hydraulic force is relatively
larger in single-tongue volute-casing pumps, and smaller in multitongue
volute-casing and diffuser-casing pumps. The combined static radial
impeller force from all the impellers of a high-pressure multiimpeller
pump, such as shown in Figure 5.13, can easily be much larger than the total
weight of the pump rotating element. Thus, the static hydraulic impeller
force can readily be the dominant factor in determining journal bearing
static loads and thus the LRV stiffness and damping characteristics of the
bearings. The static hydraulic radial force on an impeller varies consid-
erably in magnitude and direction with pump flow. Therefore, the rotor
dynamic properties of the journal bearings can vary considerably over the
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FIGURE 6.1 Centrifugal impeller typical flow patterns: (a) centrifugal pump impeller,
radial-plane view and (b) centrifugal compressor impeller, radial-plane view.

operating flow range of a centrifugal pump. For example, if the bearings
are unloaded at some pump flow, this can have serious LRV consequences
such as oil-whip-induced self-excited large amplitude vibration. Similarly,
this variation of the impeller static radial force (and thus the variation of
the bearing LRV coefficients) can therefore also shift the location of LRV
natural frequencies as a function of pump operating flow.

In the early development period of centrifugal pumps, as speeds and
output pressures were being continually increased, it was learned that
a significant radial static impeller force was the main reason for high
cyclic shaft bending stresses resulting in material fatigue-initiated shaft
failures. Stepanoff (1957) was among the first to report on the static radial
impeller force in single-tongue volute-type centrifugal pumps, providing
the following equation from dimensional analysis calibrated by test results
(Figure 6.3):

Ps = KsHD2B2

2.31
(6.1)

where Ps is the static force (pounds), H is the pump head (ft), D2 is the
impeller outer diameter (in.), B2 is the impeller discharge width including
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FIGURE 6.2 Contribution to steam whirl from the “Thomas–Alford” effect: (a) sectional view
of a single-flow high-pressure steam turbine and (b) nonuniform torque distribution resulting
from eccentricity.

impeller side plates (in.), and Ks is the empirical coefficient that changes
with pump flow approximately as follows:

Ks = 0.36

[
1 −

(
Q

QBEP

)2
]

,
Q = operating pump flow
QBEP = best efficient point pump flow

(6.2)

As Equation 6.2 shows, there is a strong correlation between impeller
static radial force and the ratio of the pump’s operating flow to its best
efficiency flow. This is because the nearly constant average velocity and
pressure in centrifugal pump volutes occur only near the best efficiency
operating flow. Equation 6.2 is a simple curve fit of many test results that
show static radial impeller forces to be minimum near the best efficiency
flow and maximum at the shutoff (zero flow) condition. The maximum
value of Ks depends on various hydraulic design features, with Stepanoff
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FIGURE 6.3 Static radial hydraulic force on volute-pump impellers: (a) single-volute pump
and (b) double-volute pump, Ps = P′
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reporting values for some single-volute pumps as high as 0.6 at shutoff
operation.

The well-known double-volute (two tongues) configuration, as shown in
Figure 6.3b, was devised to divide the pump volute into two equal 180◦
flow sections, with the intent that each section’s static radial impeller force
cancels the other’s. The double volute does not completely accomplish
that objective, but it does yield a drastic force reduction from that of a
single-tongue volute. The author is familiar with centrifugal pump designs
employing the tri-volute (three 120◦-arc sections) and the quad-volute (four
90◦-arc sections). Of course, if one further increases the number of volute
tongues, the volute then resembles a diffuser.

Guelich et al. (1987) use the following less confusing form of Equa-
tion 6.1, which applies in any consistent system of units and explicitly
shows density:

Ks = Ps

ρgHD2B2
(6.3)

where ρ is the mass density of the pumped liquid and g is the gravitational
constant.

In addition to an increased propensity for fatigue-initiated shaft failure
from excessive static radial impeller force, the accompanying shaft radial
deflections can likely result in rubbing with accelerated wear rates at the
close running concentric annular sealing clearances. The work reported
by Agostinelli et al. (1959) is probably the most comprehensive source
of experimental information on the static radial hydraulic impeller force.
Their experimental results for single-tongue volute pumps are approxi-
mated well by Equation 6.2. Their results also show measured Ks values
at shut-off for both the double-volute and the diffuser-casing pumps that
are as low as 20% of the shut-off values measured for pumps using single-
tongue volutes, and varying to a far lesser degree over the pump operating
flow range than that indicated by Equation 6.2.
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6.1.2 Dynamic Radial Hydraulic Impeller Forces

Time-varying (dynamic) hydraulic forces (both radial and axial) are also
imposed on a centrifugal pump impeller. These dynamic hydraulic forces
are quite significant and are separable into two categories, as follows:

• Strictly time-dependent unsteady flow forces

• Interaction forces produced in response to LRV orbital motions

The radial components of these two delineated types of dynamic forces
can be incorporated into standard LRV analyses. The interaction forces that
dynamically connect the rotor to the stator can be modeled by bearing-like
radial stiffness, damping, and inertia (added mass) coefficients obtained
from laboratory tests. The LRV importance of unsteady flow forces in a par-
ticular pump configuration can be assessed based on the model resonance
sensitivity to the dominant frequency force components obtained from
tests.

It has been recognized for many years that dynamic hydraulic unsteady
flow forces on centrifugal pump impellers can be quite significant con-
tributors to overall pump vibration levels as well as pump component
failures. This is especially true for high-energy pumps. Furthermore, in
contrast to most gas handling turbo-machines, the process fluid’s dynamic
interaction forces in centrifugal pumps have a major influence on LRV
natural frequencies, mode shapes, and modal damping. As illustrated in
Figure 5.13, interaction forces on a centrifugal pump rotor originate from
journal bearings, annular seals, balancing drums, and impeller flow fields.

Most of the relevant research on impeller dynamic radial forces of centrifu-
gal pumps is a product of the last 30 years, and most of what is available
in the open literature comes from two sources: (1) California Institute of
Technology and (2) Sulzer Co. (Pump Division, Winterthur, Switzerland).
The work at Cal Tech has been funded primarily by NASA as part of the
development of the high-energy pumps for space shuttle main engines.
Cal Tech’s work focuses primarily on obtaining the bearing-like stiffness,
damping, and added mass coefficients for impeller interaction forces. The
Sulzer work was funded by the Electric Power Research Institute (EPRI) as
part of a $10 million multiyear EPRI research project on improving the relia-
bility of boiler feed water pumps, and began in the mid-1980s. The Sulzer work
covers the interaction force bearing-like impeller stiffness, damping, and
added mass coefficients as well as the time-dependent impeller unsteady
flow forces.

6.1.2.1 Unsteady Flow Dynamic Impeller Forces

Impeller unsteady flow dynamic radial forces are normalized using the same
parameters shown in Equations 6.1 and 6.3 for impeller static radial force.
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TABLE 6.1

Normalized (rms) Impeller Hydraulic Dynamic Force Factor (Kd)

Q/QBEP Ω/ω = 0.02−0.2 Ω/ω = 0.2−1.25 Ω/ω = 1 Ωv

0.2 0.02– 0.07 0.02– 0.05 0.01– 0.12 0.2– 0.12
0.5 0.01– 0.04 0.01– 0.02 0.01– 0.12 0.1– 0.08
1.0 0.002– 0.015 0.005 0.01–0.13 0.1– 0.06
1.5 0.005– 0.03 0.01– 0.02 0.01– 0.15 0.2– 0.10

Ω is the force frequency, ω is the speed, Ωv is the Vane No. x ω, and Kd values for
Ω/ω = 0.2–1.25 have Ω/ω = 1 component filtered out.

The corresponding dynamic force coefficient Kd is given by Equation 6.4
with values listed in Table 6.1, which are extracted from experimental
results reported by Guelich et al. (1993). Good quality hydraulic flow-
passage design procedures combined with precision cast or precision
milled impellers should yield the low end of the ranges for Kd given in
Table 6.1:

Kd(rms) = Pd(rms)
ρgHD2B2

(6.4)

where Pd is the dynamic force (rms).
Conversely, poor hydraulic design quality and especially poor impeller

dimensional control, such as with cheap low-quality sand cast impellers,
will tend to yield the high end of the ranges for Kd given in Table 6.1.
The Kd ranges shown for the frequency range of Ω/ω = 0.2–1.25 have
the once-per-rev (synchronous) force component filtered out. The syn-
chronous hydraulic component magnitude is shown in a separate column
of Table 6.1, because it is primarily a function of impeller precision and less
dependent on the percentage of BEP flow.

High levels of synchronous rotor vibration are usually attributed to the
rotor being badly out of balance. However, in high-head-per-stage cen-
trifugal pumps, a large synchronous hydraulic dynamic force may be a
primary contributing cause of large amplitude synchronous rotor vibra-
tion. As one might expect, synchronous hydraulic impeller forces do not
completely mimic rotor mass unbalance forces. Mass unbalance produces
a corotational force that is “frozen” in the rotor. On the other hand, a
large synchronous hydraulic dynamic impeller force will change in phase
angle and somewhat in magnitude with pump flow. A clue to the savvy
troubleshooter of poor impeller casting dimensional control is when an
unacceptably high synchronous vibration cannot be alleviated over the
full operating flow range by performing good rotor balancing procedures.

Figure 6.4 is from experimental results reported by Guelich et al. (1993)
on a low specific speed high-head impeller rotating at 4000 rpm in a diffuser
casing, typical for a boiler feed pump stage. As the flow is throttled below
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FIGURE 6.4 Spectra (rms) of normalized broadband impeller forces.

the BEP flow, the continuous strong increase in force magnitude results
from impeller inlet and exit flow re-circulation (see Figure 6.1a) and flow
separation.

6.1.2.2 Interaction Impeller Forces

The handling of impeller LRV interaction forces that has evolved over the
last 30 years is to curve fit experimental data to the same linear isotropic LRV
model used for most annular seal LRV characterizations. The assumption
typically invoked for annular seal LRV coefficient arrays is that the flow
field is rotationally symmetric (Chapter 5), and this assumption leads to the
isotropic model given by Equation 2.85. While this assumption is quite inap-
propriate for journal bearings, it has been justified for annular seals and
yields considerable simplification of both computational and experimental
methods to extract LRV coefficient arrays for annular seals. Conversely, the
flow field of a centrifugal pump impeller is certainly not rotationally sym-
metric. Nevertheless, to simplify test rigs and minimize associated costs
to extract pump impeller LRV coefficient arrays, initial experiments were
based on the isotropic model given by Equation 2.85, rewritten as

{
fx
fy

}
= −

[
ks kss

−kss ks

]{
x
y

}
−
[

cs css

−css cs

]{
ẋ
ẏ

}
−
[
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−mss ms

]{
ẍ
ÿ

}

(6.5)

To the surprise of some, early test data by Chamieh et al. (1982) suggest
that the isotropic model is well suited to centrifugal pump impellers. Further
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TABLE 6.2

Impeller Dimensionless Stiffness, Damping, and Inertia Coefficients

Source/Type k̄s k̄ss c̄s c̄ss m̄s m̄ss

Cal Tech/volute −2.5 1.1 3.14 7.91 6.51 −0.58
Cal Tech/diffuser −2.65 1.04 3.80 8.96 6.60 −0.90
Sulzer/diffuser (2000 rpm) −5.0 4.4 4.2 17.0 12.0 3.5
Sulzer/diffuser (4000 rpm) −2.0 7.5 4.2 8.5 7.5 2.0

extensive testing (e.g., Jery et al., 1984; Bolleter et al., 1987), coupled with
computational efforts [e.g., Adkins (1985) who did not include impeller-
shroud flow effects, and Childs (1999) who included only impeller-shroud
flow], led to the realization that the impeller rotor–stator interaction force
is dominated by the flow field between the casing and impeller shrouds,
primarily the inlet-side shroud that has the main radial area projection
(refer to Figure 6.1a). Since the flow field between the casing and impeller
shrouds can be reasonably viewed to be rotationally symmetric, the experi-
menters’ good fortune with the LRV isotropic model is thus understandable.
A visualization of the complexity and diversity of such rotationally sym-
metric flow fields with net inward or outward through-flow is provided by
Adams and Szeri (1982), who developed computer solutions of the full non-
linear Navier–Stokes (N–S) equations using Galerkin’s method to expand
the N–S equations into a truncated set of nonlinear ODEs, which are numer-
ically solved using the method of orthogonal collocation. The simplest of
impeller-shroud flow patterns are characterized by a single recirculation
cell superimposed upon the through-flow, as shown in Figure 6.1a. Adams
and Szeri provide results that show the single recirculation cell evolv-
ing into multiple recirculation cells as the rotational Reynolds number is
progressively increased.

A summary list of experimentally extracted impeller LRV coefficients for
the isotropic model, Equation 6.5, is given in Table 6.2, and the coefficients
are made nondimensional as follows:

Dimensionless stiffness coefficients, k̄ij ≡ kij

πρR2B2ω2

Dimensionless damping coefficients, c̄ij ≡ cij

πρR2B2ω

Dimensionless inertia coefficients, m̄ij ≡ mij

πρR2B2

(6.6)

where ρ is the mass density of pumped liquid, R2 is the impeller outer
(discharge) radius, and B2 is the impeller discharge width including
impeller side plates.
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In comparing the Cal Tech and Sulzer results, it should be realized that the
Cal Tech test rig used much lower power impellers with different hydraulic
design details than the Sulzer test rig impellers. Both the Cal Tech and the
Sulzer tests reported that, unlike annular seal inertia coefficients, the cross-
coupled inertia coefficient for impellers (i.e., skew-symmetric inertia) is not
negligible. In the author’s opinion, this is an anomalous conclusion that
stems from a lack of due appreciation to the simple fact that the equiv-
alent mechanical-impedance coefficients in Equation 6.5 are just curve fit
coefficients that are given birth when they are evaluated to provide the
best simple curve fit to radial force versus motion test results over a lim-
ited frequency range from a quite complex 3D fluid mechanics flow field.
Based on the rigorously argued conclusion in Section 2.4, Equation 2.84,
the Cal Tech and Sulzer data curve fits should have been done with the iner-
tia matrix constrained to symmetry, that is, mss = 0. Sawicki et al. (1996)
show that when the highest order matrix is constrained to symmetry in
the data reduction curve fitting step, as compared to allowing it to be non-
symmetric, all the other coefficients change (adjust) somewhat to provide
the best fit possible with the retained coefficients. Sawicki et al. further
show that by applying extracted coefficients through Equation 6.5 to the
measured displacement signals, the so computed dynamic force signals
have comparable accuracy comparisons to the actual measured force sig-
nals with or without the physically inconsistent skew-symmetric inertia
coefficient. Nevertheless, provided the Cal Tech and the Sulzer coefficient
results summarized in Table 6.2 are not used as LRV analysis inputs above
the maximum Ω/ω test value (∼2), the physically inconsistent curve fit
approach should not corrupt analysis answers. Interestingly, the Cal Tech
and Sulzer results summarized in Table 6.2 are consistent with each other
in magnitudes and signs, except for the skew-symmetric inertia term. Cal
Tech’s m̄ss values are negative and Sulzer’s are positive, yielding opposite
physical interpretations and thus supporting the argument inferred from
Equation 2.84 that a nonzero m̄ss is a physical inconsistency; that is, it does
not make physical sense.

Aside from the anomaly of a nonzero skew-symmetric inertia coeffi-
cient shown in Table 6.2, other important general observations are in order.
First, it is observed that the radial stiffness term (ks) is negative, and tends
to slightly lower natural frequencies. Second, the skew-symmetric stiff-
ness term (kss) is positive and significantly complements other similar
forward-whirl destabilizing effects such as those from lightly loaded jour-
nal bearings and annular seals. Third, the relatively large skew-symmetric
term (css) is like a gyroscopic effect (see Figure 2.13), which lowers the
backward-whirl natural frequencies and raises the forward-whirl natu-
ral frequencies and, being rotation-direction biased, reflects convective
fluid inertia influences. Finally, the diagonal inertia term (ms) is like a
nonstructural added mass on the rotor and tends to slightly lower natural
frequencies.
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6.2 Centrifugal Compressors

The radial forces on centrifugal compressor rotors are basically similar
to, but considerably less dominant than, those illustrated for centrifugal
pumps in Figure 5.13. As stated in the previous section, in contrast to most
gas handling turbo-machines, the process fluid’s dynamic interaction forces
in centrifugal pumps have a major influence on LRV natural frequencies,
mode shapes, and modal damping. Although the effects of centrifugal
compressor aerodynamic forces are an important design consideration,
they do not constitute the overwhelming influence on LRV characteris-
tics as the hydraulic forces do in centrifugal pumps. As a consequence,
there is far less information in the open literature on centrifugal compres-
sor impeller LRV effects than is summarized in Section 6.1 for centrifugal
pumps. No industry-funded research project on centrifugal compressors
similar to the $10 million EPRI project on boiler feed water pumps has been
launched. Also, the author is not aware of any copiously funded univer-
sity research projects on centrifugal compressor aerodynamic rotor forces
comparable to the Cal Tech work on centrifugal pump impeller forces.

As with most turbo-machinery, the primarily LRV concerns of centrifugal
compressor designers are location(s) of critical speed(s) within the operat-
ing speed range, unbalance sensitivity, and thresholds of instability. Predictive
analyses of centrifugal compressor critical speeds and unbalance sensitiv-
ity have traditionally been considered to be sufficiently accurate without
accounting for aerodynamic interaction forces. On that basis alone, one
might surmise that there is not a single compelling justification to motivate
significant research expenditures for laboratory experiments to determine
the LRV radial-interaction force coefficients for centrifugal compressor
impellers. However, the thresholds of instability are not easy to accu-
rately predict, but are of paramount importance in achieving successful
centrifugal compressor designs. Until recently, the absence of data on
the LRV coefficients for gas handling annular seals has hampered cen-
trifugal compressor designers in determining what portion of the LRV
destabilization from a centrifugal compressor stage originates in the stage’s
annular sealing clearances and how much comes from the aerodynamic
impeller forces.

6.2.1 Overall Stability Criteria

Possibly the definitive publication on centrifugal compressor LRV stability
limits is that of Kirk and Donald (1983). The most valuable information
in their paper is a chart of pressure parameter ( p2Δp) versus speed-to-
critical-speed ratio (N/Ncr) for successfully stable running compressors.
Based on several successfully stable compressors and two initially unstable
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ones that were stabilized through modifications, Kirk and Donald provide
an acceptability chart redrawn here in Figure 6.5. The two compressor
units labeled Unit “A” and Unit “B” are from well-known plants that are
identified by name in their paper. They draw attention to compressor con-
figurations. These compressors are most susceptible to LRV instability due
to the having back-to-back impellers (to minimize rotor axial thrust loads)
because the balancing drum seal is then located near the rotor mid-span
position. Any destabilizing influence from the mid-span balancing drum
seal has the maximum “opportunity” to cause LRV instability because
the unstable mode (the first bending mode, Figure 4.13) has its maximum
amplitude near the mid-span axial location. In discussion with Professor
Childs (1999), the author has learned that at least one manufacturer has
quite successfully employed a honeycomb seal (Figure 5.18) in the mid-span
balancing drum of their back-to-back centrifugal compressors. According
to Professor Childs, this has extended considerably the margin of rotor
dynamic stability on these compressors since the honeycomb seal drasti-
cally diminishes the effect of seal inlet preswirl and in-seal swirl as well as
increases the potentially unstable first mode’s natural frequency through
increased interactive radial stiffness at the mid-span location. Correspond-
ingly, it is clear from Figure 6.5 that the two compressor units referenced
were stabilized by modifications that raised the critical speed, since the
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pressure parameter remained unchanged. That is, the delivered output of
the two machines was not lowered as part of the modifications.

The next two sections deal with the Thomas–Alford LRV destabilizing
forces in axial flow turbo-machinery. The Kirk and Donald paper shows
a calculation approach for the centrifugal compressor LRV destabilizing
cross-coupled (skew-symmetric) stiffness coefficient based on a version
of the Alford (1965) formulation for axial flow turbo-machinery, modified
for centrifugal compressors. They attempt a correlation of their modified
Alford calculation with field experience from stable and unstable centrifu-
gal compressors, but this correlation is of questionable meaning because
of a potential inconsistency. As shown in Figure 6.2b and further explained
in the next two sections, an Alford-type destabilizing force as physically
explained is corotational for turbines, but possibly counter-rotational for
compressors. However, the subsynchronous LRV instability self-excited
vibration on centrifugal compressors occurs in the corotational direction,
just like a journal-bearing-induced oil whip (explained in Section 2.4). Thus
an Alford-force explanation or basis of modeling is potentially inconsistent
with the experience from compressors that have exhibited LRV instability.
The author has spoken with a number of centrifugal compressor design-
ers, both in the United States and in Europe, and none of them has ever
seen a centrifugal compressor experience LRV subsynchronous vibration
in the backward whirl orbital direction. Section 2.4 provides a fundamental
explanation that covers this.

6.2.2 Utilizing Interactive Force Modeling Similarities with Pumps

Experimental LRV information is summarized in the previous section for
centrifugal pumps, taken from two modern well-funded research projects
at Cal Tech and Sulzer Pump Division, respectively. Since such intensive
experimental research results are not in existence for centrifugal com-
pressors, at least not in the open literature, some assumptions must be
made. However, in the author’s opinion it makes more sense to assume
that strong LRV similarities exist between centrifugal pump and centrifu-
gal compressor impeller destabilizing interactive forces, than to invoke the
Alford-force approach shown by Kirk and Donald. Specifically, it makes
more sense to assume that LRV interactive centrifugal compressor impeller
forces (not including annular sealing gaps) are dominated by the flow field
between the inlet-side impeller shroud and casing, as shown for centrifu-
gal pump impellers and with destabilization effects likewise corotational.
This approach strongly suggests that the primary sources of centrifu-
gal compressor stage LRV destabilization are the annular sealing gaps
and the flow field between impeller inlet shroud and casing, assuming
the compressor impeller has an inlet-side shroud. As is now known for
centrifugal pump impellers, the less the radial projected shroud area,
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the less the shroud should contribute to LRV interactive forces and the
more the annular sealing gaps are the dominant source of potential LRV
instability.

For compressor impellers without an inlet-side shroud, the annular seal-
ing gaps are probably the singular dominant source of potential LRV
instability. As stated at the end of Chapter 5, in using rotor vibration predic-
tive analyses for troubleshooting purposes, as opposed to design purposes,
one can adroitly utilize actual vibration measurements made on a troubled
machine to adjust uncertain LRV model inputs (such as for compressor
stages) to achieve a reasonable agreement between the machine and the
LRV model. Such “calibrated models” can greatly increase the probability
of devising a timely solution for high levels of subsynchronous instability
vibrations.

6.3 High-Pressure Steam Turbines and Gas Turbines

6.3.1 Steam Whirl

As with LRV considerations for most gas handling turbo-machinery, in
steam turbines the rotor and journal bearings provide the dominant stiff-
ness effects whereas positive LRV damping comes almost entirely from
the journal bearings. However, the journal bearings can also be a trouble-
some source of LRV instability (oil whip) if journal bearing static loads
are insufficient to maintain stable operation, as explained in Section 2.4.
In steam turbines, there is an additional destabilizing effect that originates
in the turbine stages that can produce subsynchronous forward-whirling
rotor vibration quite similar to oil whip. The self-excited rotor vibration
caused by this effect is usually referred to as steam whirl, and like oil whip
it can produce large amplitude subsynchronous frequency forward-whirl
rotor vibrations. The importance of steam whirl excitation is almost exclu-
sively in the high-pressure turbine section of large steam turbine-generator
units, for reasons that are made clear in this section. A number of case
studies in Part 4 involve steam whirl-induced self-excited rotor vibration
and corrective measures.

The operating symptom that distinguishes steam whirl from oil whip is
that it initiates at some threshold level of turbine power output, not at some
threshold speed, even though the resulting self-excited vibrations from
the two respective phenomena are essentially indistinguishable, that is, a
forward whirl subsynchronous rotor vibration usually near and slightly
below one-half the rotor spin speed frequency. For example, if steam whirl
initiates at say 90% of a turbine-generator unit’s rated full power output,
then operation above 90% rated power will not be possible without the
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associated subsynchronous rotor vibration. It will likely be necessary to
temporarily derate the unit by 10% until a modification or maintenance fix
can be implemented to achieve full power output without the occurrence of
subsynchronous vibration levels above the recommended safe operating
maximum limits.

6.3.1.1 Blade Tip Clearance Contribution

The earliest publication addressing steam whirl was that of Thomas (1958).
He proposed that observed thresholds of instability correlated to turbine
power output could not be properly explained as a journal-bearing-
induced instability, which was then already well known to be speed
induced, that is, instability threshold speed. Thomas focused on the fact
that when a turbine blade row is given a radial displacement eccentricity
relative to its closely circumscribing nonrotating casing, blade tip leakage
and thus blade row efficiency become circumferentially nonuniform. The
essential feature of Thomas’ explanation is that the power loading on the
turbine blades is correspondingly nonuniform as Figure 6.2b illustrates,
with the blades instantaneously passing the position of minimum radial
gap (i.e., minimum local leakage) having the highest tangential driving
force and the blades instantaneously passing the position of maximum
radial gap having the lowest tangential driving force. The resultant sum
of all the tangential blade forces upon the rotor then has a net radial force
that is perpendicular to the rotor radial eccentricity and in the corotational
direction. Assuming that such a net radial force is well approximated using
a linear bearing-like LRV coefficient (ksw), the net force shown in Figure 6.2b
can then be expressed as follows:

{Fnet}stage =
{

fx
fy

}
stage

= −
[

0 ksw
−ksw 0

]{
x
y

}
(6.7)

ksw = βT
DL

(6.8)

where T is the turbine-stage torque, D is the mean diameter of turbine stage
blade row, L is the radial length of turbine blades, and β is the linear factor
for blade force reduction with radial tip clearance.

Fblade = F(0)

blade

(
1 − β

C
L

)

F(0)

blade ≡ Blade tangential force for zero clearance, C = Clearance

(6.9)

Based on numerous published test results, 2 < β < 5 for unshrouded
turbines. Although β was originally devised as the change in efficiency
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per unit change in clearance ratio (C/L), it is now considered to be more an
empirical factor to put Equations 6.7 and 6.8 into agreement with laboratory
tests and field experience. Consistent with intuition, Equation 6.8 shows
that a radial eccentricity of a blade row has a proportionally greater steam
whirl effect the shorter the blades, that is, it is inversely proportional to
the blade length. Thus, in the higher pressure stages of a steam turbine,
although the mean blade diameter is smaller, 1/DL is still significantly
the largest because the blades are relatively quite short. Furthermore, the
torque is significantly higher than in lower pressure stages. Therefore, it is
clear that the destabilizing force contribution given by Equation 6.7 is by
far the greatest in the high-pressure turbine (see Figure 3.9).

Following Thomas’ (1958) explanation in Germany for steam turbines,
Alford (1965) proposed the same explanation for gas turbines in the United
States, by which time Thomas was already in the early phases of extensive
research on test machines to measure the net destabilizing force expressed
in Equation 6.7 and shown in Figure 6.2b. In the United States, the net desta-
bilizing force is often referred to as the Alford force, but here it is referred to
as the Thomas–Alford force in recognition that Thomas (1958) provided the
first explanation of LRV instability correlated to turbine power output. The
major doctoral dissertations under Professor Thomas’ direction, by Urlichs
(1975) and Wohlrab (1975), contain many of the extensive experimental
results on steam whirl developed at the Technical University Munich.
A comprehensive English summary of this research is given by Thomas
et al. (1976). See also Kostyuk et al. (1984), Pollman et al. (1978), and Urlichs
(1976).

6.3.1.2 Blade Shroud Annular Seal Contribution

Early experimental research on steam whirl found that when blade shrouds
(see Figure 6.2b) are added to a blade row, the magnitude of the destabi-
lizing force becomes approximately two or more times as large as without
blade shrouds. Subsequent research on the rotor vibration characteristics
of labyrinth annular gas seals (Chapter 5) confirmed that the additional
steam whirl destabilizing effect with shrouds is strongly driven by the coro-
tational preswirl of high-pressure steam entering the labyrinth annular tip
seals. As shown by one case study in Part 4, this component of the total
steam whirl effect can be greatly attenuated by using axially aligned flow-
straightening vanes (called swirl brakes) just upstream of the annular seals.
Without swirl brakes, the total steam whirl force is approximately two to
three times the value that would be predicted using Equation 6.7 with Equa-
tion 6.8. The most significant precision experiments for the blade shroud
annular seal contribution to whirl forces were conducted and reported by
Wright (1983). He devised a vertical rotor test rig with a two-strip labyrinth
air seal in which precisely controlled electromagnetic dampers were tuned
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to produce neutral stability (instability threshold condition) for a given
operating seal pressure drop, rotational speed, seal geometry, and preswirl
velocity. Wright’s objective was to provide high-precision experimental
results to which proposed computational approaches for labyrinth seal
destabilizing forces could be compared and evaluated. An explanation is
provided here for the labyrinth seal destabilizing effect. Figure 6.6 consists
of four circumferential pressure distributions corresponding to four cases,
respectively.

The four illustrated cases in Figure 6.6 are summarized as follows:

a. Journal bearing operating with a liquid lubricant, an atmospheric
ambient pressure, and thus cavitation formed slightly down-
stream of the minimum film thickness; pressure field governed
by fluid viscosity (i.e., Reynolds Lubrication Equation).

b. Journal bearing operating with very high ambient pressure (e.g.,
pressurized water reactor (PWR) reactor coolant pump lower
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FIGURE 6.6 Circumferential pressure distributions relative to ambient: (a) journal bearing
operating with atmospheric ambient pressure (cavitation); (b) journal bearing operating with
high ambient pressure (no cavitation); (c) and (d) high rotational Reynolds number fluid
annulus with high ambient pressure.
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bearing; see Figure 12.1) and thus no cavitation; pressure field
also governed by fluid viscosity.

c. High rotational Reynolds number fluid annulus in which the major
inner core of fluid has a nearly “flat” circumferential velocity pro-
file that is joined to the cylindrical boundaries through very thin
boundary layers; pressure field governed by inertia of inner core
of fluid.

d. Aslightly modified version of (c), which is the basis of the author’s
own explanation of the labyrinth seal contribution to steam whirl
forces.

Figure 6.6a and b are well understood by bearing specialists, and in
both of these cases the fluid film force upon the journal has a destabilizing
component influence on forward whirling LRV orbits (i.e., perpendicular
to journal eccentricity). In (a), with a sufficiently high static bearing load,
the squeeze-film damping controls the energy input from the destabilizing
force component and the rotor-bearing system is stable. In (b), the entire
fluid film force is perpendicular to the journal eccentricity, and thus sub-
synchronous instability vibration is much more likely. The case illustrated
in Figure 6.6c is well known to designers of canned-motor pumps since
the fluid-inertia-dominated pressure field acts in contrast to the behavior
of a bearing, that is, the circumferential pressure distribution pushes the
rotating cylinder in the direction of eccentricity (a decentering force or neg-
ative radial stiffness). Cases (a), (b), and (c) are reviewed here as a backdrop
for the author’s explanation, which focuses on Figure 6.6d.

To simplify the explanation, axial flow is ignored and thus it is assumed
that the circumferential mass flow across the radial gap thickness (h) is the
same at all angular locations, which is expressed as follows:

Circumferential flow/unit axial length, Qθ =
h∫

0

V(r, θ) dr = constant

(6.10)

A high rotational Reynolds number fluid annulus has its pressure field
controlled by the fluid inertia in the inner core of circulating fluid. Thus,
the clearance gap can be thought of as a Venturi meter wrapped around on
itself and operating on the Bernoulli equation principle of conservation of
energy, with maximum pressure occurring at the maximum radial gap and
minimum pressure occurring at the minimum radial gap. With elevation
and density changes discounted, the Bernoulli equation can be stated as
follows:

p + ρV2

2
= constant (6.11)
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where p is the pressure, V is the fluid velocity, and ρ is the fluid mass
density.

If the kinetic energy term is based on the average velocity at each cicum-
ferential location (θ), then the pressure distribution in Figure 6.6c illustrates
the result, and is based on the minimum possible local kinetic energy term
(per unit of axial length), which is achieved with a perfectly flat velocity
profile (zero thickness boundary layer), and is expressed as follows:

KEmin = ρ(Qθ/h)2

2
(6.12)

However, the flow in the converging 180◦ arc is in acceleration whereas
the flow in the diverging 180◦ arc is in deceleration. Therefore, the veloc-
ity profile will be “flatter” (thinner boundary layers) in the converging
portion than in the diverging portion, as illustrated by the two represen-
tative fluid velocity profiles shown in Figure 6.6d. If instead of using the
more approximate average-velocity approach at a location (θ), the kinetic
energy term is determined by integrating V2 radially across the fluid gap
(h), the so determined kinetic energy will then be slightly greater in the
diverging arc than in the converging arc. For any circumferential velocity
profile (other than “perfectly flat”) at the same radial gap thickness (same
average velocity), the kinetic energy term obtained by integrating across
the gap thickness (h) is larger than KEmin, as expressed in the following
equation:

KE = ρ

2h

h∫

0

[V(r, θ)]2 dr > KEmin (6.13)

The Bernoulli equation argument of this explanation is that a higher
kinetic energy produces a lower pressure. Consistent with this argument,
the pressure distribution in Figure 6.6d is shown to be slightly skewed in
comparison to that of Figure 6.6c. Such a skewing of the pressure distri-
bution will produce a destabilizing component from the total fluid force
upon the rotating cylinder, as shown in Figure 6.6d. Note the two velocity
profiles in Figure 6.6d. The pressure is slightly higher where the profile
is more flat than where the profile is less flat. Consistent with the experi-
ments, Equation 6.11 implies the shroud contribution to steam whirl to be
proportional to fluid density, and thus like the Thomas–Alford effect, also
greatest in the high-pressure turbine.

The high corotation preswirl gas velocity entering such seals naturally
contributes strongly to the total circumferential circulation flow within the
annular space between two labyrinth seal strips. Without such preswirl, the
gas must be circumferentially accelerated (by the boundary layer attached
to the rotating boundary) after it enters the space between two labyrinth
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seal strips, and thus would not have nearly as much of the destabilizing
force effect illustrated in Figure 6.6d as with a high preswirl inlet velocity.
It is thus quite understandable that the annular labyrinth seal contribu-
tion to the total steam whirl effect can be greatly attenuated by using
axially aligned flow-straightening vanes (called swirl brakes) just upstream
of the seal.

From laboratory tests and analyses, it is now known by many LRV spe-
cialists that having the grooves of grooved annular seals located on the
stator produces less LRV destabilizing effect than locating the grooves
on the rotor. Consistent with the above discussion, this is easily under-
standable because of the difference in the amount of rotating boundary area
between the two configuration options. Referring to Figure 6.2b, in which
the tip clearance is greatly exaggerated, the gas-filled annular chamber
between the two sealing strips has four sides, one is stationary and the
other three are rotating, because the strips shown are rotor mounted. In
the alternate configuration (not shown) in which the sealing strips are
stator mounted, the gas-filled rectangular chamber between the two seal-
ing strips has three sides stationary and only one side rotating. Clearly,
there is proportionally less boundary layer area available to circumferen-
tially accelerate incoming gas (or liquid) when the sealing strips are stator
mounted, and thus less total circumferential circulation flow velocity and
therefore less LRV destabilizing effect than with rotor-mounted strips (or
grooves).

6.3.2 Partial Admission in Steam Turbine Impulse Stages

Typical fossil-fuel-fired boilers for steam turbines in electric power gener-
ating plants in the United States are designed to operate with controlled
variable steam flow output. In contrast, European fossil-fuel-fired boilers
are typically designed to operate with controlled variable steam pressure
output. Thus, it is usual that large steam turbines in the U.S. power plants
have impulse stages at the first stage of the high-pressure turbine because
the turbine flow and the power output can then be efficiently regulated by
throttling impulse stage nozzles.

An impulse stage for a large steam turbine typically incorporates a
number (e.g., six) of equally spaced nozzles (Figure 6.7) that are fully open
at full power output. To regulate the power below full output, one or more
nozzles are throttled. Thus the term “control stage” is sometimes used to
identify such controlled-nozzle impulse steam turbine stages. The nozzles
are not uniformly throttled, but more typically only one (possibly two)
is (are) operated in the partially open setting. This mode of operation is
commonly referred to as partial admission, and it produces a significant
net static radial force on the turbine rotor due to the nonuniform distri-
bution of jet forces on the impulse turbine blade row. So that this static
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FIGURE 6.7 Laboratory impulse steam turbine stage with three nozzles.

radial force does not add to rotor weight static loads already carried by the
high-pressure turbine’s journal bearings, the partial admission is config-
ured so that its net static radial force is directed approximately opposite
(i.e., up) the weight. This makes sense for bearing static load but it can cause
rotor vibration problems. Specifically, the attendant reduction in journal
bearing load increases the possibility for subsynchronous instability rotor
vibration. The ability of a journal bearing to damp forward whirl sub-
synchronous LRV modes is reduced as bearing static loads are reduced.
Therefore, the additive action of oil whip and steam whirl destabilizing
effects can combine to produce large amplitude subsynchronous vibration
of the high-pressure turbine at partial admission operation. One of the case
studies in Part 4 is concerned with this type of vibration problem.

6.3.3 Combustion Gas Turbines

Multistage axial flow gas turbines are most commonly employed for land-
based electric power generation plants and for gas turbine engines of both
commercial and military aircraft propulsion systems. Equations 6.7 and
6.9 provide an estimate of Thomas–Alford forces in steam turbines and
are in fact the same equations that are similarly applied for combustion
gas turbines. The corresponding Thomas–Alford force physical explana-
tions already provided here for steam turbines also apply to gas turbines.
It is the author’s sense that Thomas–Alford forces are a more important
consideration for gas turbine aircraft engines than for gas turbine electric
power generating units.

6.4 Axial Flow Compressors

The Thomas–Alford type of destabilizing force described in Section 6.3 and
illustrated in Figure 6.2b has been researched concerning its significance
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to LRV stability of axial compressors. Multistage axial compressors are
most commonly employed as an essential portion of modern combustion
gas turbines, both for electric power generation plants and for gas turbine
engines of both commercial and military aircraft propulsion. Ehrich (1993)
reports that the Alford (1965) explanation for destabilizing LRV forces in
gas turbines was subsequently extended by Alford to explain LRV insta-
bilities in axial compressors. The direction of the shaft torque that powers
a compressor is the same as its direction of rotation, which is of course
opposite the torque direction upon a turbine by the shaft it powers. This
has led many who have seriously thought about this problem to expect
that Thomas–Alford forces in compressors would seek to drive the rotor
into backward whirl self-excited rotor vibration, in contrast to the univer-
sally accepted forward whirl direction of these forces in turbines. However,
according to Ehrich (1993), Alford suggested just the opposite, that is, that
these forces also provide energy input to forward whirl modes of com-
pressors just like in turbines. The essence of Alford’s argument was that
as the rotor displaces radially with respect to its stator, the blades with
the instantaneous minimum tip clearance are more efficient and thus more
lightly loaded than the blades with the larger clearance.

Current thinking on this reflects the realization that the flow field in such
turbo-machinery is quite complex, especially at operating conditions other
than at peak efficiency. Although the Thomas–Alford theme is quite impor-
tant to provide simplified explanations, reality is not so simple. Ehrich
(1993) assembled three different sets of experimental Thomas–Alford force
results from three different axial compressors. In a quite thorough analysis
of all those results, Ehrich concludes that the Thomas–Alford-force coeffi-
cient (β), Equation 6.8, is not a simple constant for a specific compressor but
is a very strong function of operating condition of the stage (i.e., its throttle
coefficient or flow coefficient). Quoting Ehrich: “it is found that the value
of β is in the range of +0.27 to −0.71 in the vicinity of the stages’ nominal
operating line and +0.08 to −1.25 in the vicinity of the stages’ operation at
peak efficiency. The value of β reaches a level of between −1.16 and −3.36
as the compressor is operated near its stalled condition.” Consistent with
Equation 6.8, positive values for β indicate corotational Thomas–Alford
forces as in turbines, and negative values for β indicate counter-rotational
Thomas–Alford forces. Alford’s explanation for compressors appears to be
mostly wrong.

For an aircraft gas turbine jet engine application, the axial compressor
and gas turbine on the same shaft have equal magnitude torque. In such
applications, Ehrich’s results indicate that the compressor has either a neg-
ligible influence or may even negate some of the destabilizing effect of the
forward whirl tendencies from the Thomas–Alford forces in the turbine.
Obviously, for electric power generation gas turbines, the turbine torque is
considerably larger than the compressor torque; otherwise no power would
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be generated. Thus, the compressor’s Thomas–Alford force importance is
less than for the gas turbine aircraft engine high-compressor rotors.

6.5 Summary

Rankine (1869) presented a seriously flawed rotor vibration analysis in
which he cast F = ma in a rotor-imbedded (i.e., noninertial) coordinate
system without including the requisite correction factor known as Corio-
lis acceleration. Rankine’s results led designers to work for several years
under the misconception that rotors could not safely operate at speeds in
excess of what is now called the first critical speed. Not until G. DeLaval
in 1895 experimentally showed a steam turbine operating safely above its
first critical speed was Rankine’s fallacy debunked, leading to the higher-
speed higher-power turbo-machines of the twentieth century. Because of
the high concentration of power transferred in modern turbo-machines,
and for some types of applications the quite high rotational speeds, the
process liquid or the gas in turbo-machinery stages provides a number of
identifiable fluid–solid interaction phenomena that can quite significantly
influence rotor vibration behavior, especially stability. These phenomena
are the focus of this chapter.
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REVIEWS OF PUBLISHED WORK

1. Review the published literature and report on centrifugal pump
hydraulic forces imposed on the rotating element.

2. Review the published literature and report on Thomas–Alford
forces in axial flow turbo-machinery.

3. Review the published literature and report on balancing drums
and their rotor dynamical effects.

4. Review the published literature and report on rotor dynam-
ics stiffness, damping, and inertia arrays for centrifugal pump
impellers.



Part III

Monitoring and Diagnostics





7
Rotor Vibration Measurement
and Acquisition

7.1 Introduction to Monitoring and Diagnostics

Vibration is the most regularly measured condition parameter in modern
rotating machinery, and it is now continuously monitored in many impor-
tant applications. Bearing temperature is also quite often a continuously
monitored condition parameter as is rotor axial position. Some types of
rotating machinery vibration problems can be expeditiously diagnosed
by correlating vibration level and other such simultaneously monitored
parameters, as covered in Part 4 of this book.

Modern vibration monitoring has its genesis in the mid-1950s with the
development and application of basic vibration sensors, which are the
heart of modern computerized condition monitoring systems. Figure 7.1
shows the traditional fundamental use of vibration monitoring in rotat-
ing machinery, that is, to provide warning of gradually approached or
suddenly encountered excessively high vibration levels that could poten-
tially damage the machinery. Trending a machine’s vibration levels over an
extended period of time can potentially provide early warning of impend-
ing excessive vibration levels and/or other problems, and thus provide
plant operators with valuable information for critical decision making in
order to schedule a timely shutdown of a problem machine for corrective
action, for example, rebalancing the rotor.

In recent years, there has been a concerted effort to utilize vibration mon-
itoring in a more extended role, most notably in what is now commonly
called predictive maintenance, which is an extension and/or replacement of
traditional preventive maintenance. As illustrated in Figure 7.2 for one pro-
posed version of predictive maintenance, each machine of a given group is
provided with specific maintenance actions based on the machine’s moni-
tored condition instead of a fixed-time maintenance cycle. In principle this
makes a lot of sense, but as most practitioners know, “the devil is in the
details.” This effort is primarily driven by the current trend in industry
and government organizations to drastically reduce maintenance costs,
primarily by making large reductions in maintenance and technical sup-
port personnel. This prevailing “bean counter” mentality has created new
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FIGURE 7.1 Tracking of a representative vibration peak amplitude over time.

business opportunities for suppliers of machinery condition monitoring
systems and impetus for new approaches to glean increased diagnostic
information from already continuously monitored machinery vibration
signals.

The invention of the Fast Fourier Transform (FFT) algorithm in the mid-
1960s was developed as an effective means for quickly mimicking the
frequently changed radar signal spectrum of enemy ground based anti-
aircraft missile targeting systems, so that multiple decoy signals could not
be distinguished from authentic reflections. The FFT algorithm has sub-
sequently become a primary signal analysis tool, and has been the major
modern advancement in rotating machinery vibration signal analysis. The
quest of researchers for creative new approaches has been facilitated by
the FFT’s success and the reductions in maintenance and support per-
sonnel. For example, Adams and Abu-Mahfouz (1994) explored chaos and
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routes to chaos in rotor vibration signals as diagnostic markers for providing
improved early detection and diagnosis of impending problems or needed
maintenance actions. The development of new machinery vibration signal
analysis techniques gleaned from modern chaos theory is predicated on
the inherent nonlinear dynamical character of many incipient failure modes
and wear mechanisms (see Section 2.5 of Chapter 2). Other nontraditional
signal analysis methods are also finding their way into machinery vibra-
tion diagnosis, such as the signal processing technique called wavelets or
wavelet transforms (WTs).

Over the last 20 years or so the term expert system has gained notoriety
in those industry and government organizations heavily concerned with
rotating machinery. It is a fact that these rotating machinery user sectors
have drastically reduced the number of maintenance personnel. Original
equipment manufacturers (OEMs) have also undergone similar major con-
tractions involving mergers, downsizing, and the like, with considerable
reductions of in-house technology development, and an almost nonexis-
tent development of the next generation of true specialists and experts. Thus,
the so-called expert systems struck a welcomed theme among both rotating
machinery OEMs and users alike. Naturally, expert systems are at best
as good as the information and data stored in them, and glitzy additives
such as fuzzy logic and neural networks have not significantly changed that
because they entail a “learning period” that requires a large number of
unwanted events to occur. Figure 7.3 illustrates a so-called expert system,
which is computer software that contains a programmed knowledge base
and a set of rules that key on that knowledge base, as reviewed by Bently
and Muszynska (1996) concerning “expert system” application to rotating
machinery condition monitoring.

If future major applications of rotating machinery are to be economi-
cally successful in an environment of greatly reduced maintenance person-
nel and very few available true experts, then new yet-to-be-introduced
machinery management systems will be required. Development of such new
systems was a topic of extensive ongoing research in the author’s labo-
ratory at CWRU in the 1990s. The CWRU team developed model-based
monitoring-diagnostic and prognostic software, incorporating an array
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FIGURE 7.3 Flow chart of a rule-based “expert system.”
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FIGURE 7.4 Real-time probabilities for defined faults and severity levels from statistical
correlation of monitored and model-predicted vibration signals.

of machine-specific vibration simulation computer models, specific to an
extensive array of operating modes as well as fault types and severity
levels. As illustrated in Figure 7.4, each model (called an “observer”) is
run in real time and its simulated vibration signals are continuously com-
bined with the machine’s actual monitored vibration signals and correlated
through a novel set of statistical algorithms and model-based filters, as
summarized by Loparo and Adams (1998). Probabilities are generated
for each fault type and severity level potentially in progress. The vibra-
tion models in the observers also remove signal “noise,” which does not
statistically correlate with the models. In contrast to conventional signal
noise filtering techniques, such model-based statistical-correlation filtering
allows retention of physical-model correlated low-level and fine-structure
signal components, such as in signal chaos content, for on-line or off-line
analysis.

One of the many interesting findings by the CWRU team is that the
various fault and fault-level specific observer vibration models do not
have to be as “nearly perfect” as one might suspect if thinking in a time
signal domain and/or frequency domain framework. Because the sum of
probabilities is constrained to = 1, a model (observer) only has to be repre-
sentative enough of its respective operating mode to “win the probability
race” among all the “observers” when its fault (or fault combination) type
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and severity level are in fact the dominant condition. Compared to the
rule-based approach inherent in the so-called expert systems, this physical
model-based statistical approach is fundamentally much more open to cor-
rect and early diagnosis, especially of infrequently encountered failure and
maintenance-related phenomena and especially of conditions not readily
covered within a rule-based “expert system.”

An additional benefit of a model-based diagnostics approach is the ability
to combine measured vibration signals with vibration computer model out-
puts to make real-time determinations of rotor vibration signals at locations
where no sensors are installed. Typically, vibration sensors are installed at
or near the bearings where sensor access to the rotor and survivability
of sensors dictate. However, the mid-span locations between the bearings
is where operators would like to measure vibration levels the most, but
cannot because of inaccessibility and hostile environment for vibration
sensors. Thus, the model-based approach provides “virtual sensors” at
inaccessible rotor locations.

The field of modern condition monitoring for rotating machinery is now
over 50 years into its development and thus is truly a matured techni-
cal subject. However, it continues to evolve and advance in response to
new requirements to further reduce machinery downtime and drastically
reduce maintenance costs.

7.2 Measured Vibration Signals and Associated Sensors

The commonly monitored vibration signals are displacement, velocity, and
acceleration. The respective sensor operating principles are presented in this
section. Commercial suppliers of vibration measurement systems provide
specific information on their vibration measurement products. For a more
formal treatment of machinery vibration measurement, the author refers
to the books by Mitchell (1981) and Bently and Hatch (1999), and the paper
by Muszynska (1995).

7.2.1 Accelerometers

An accelerometer is comprised of an internal mass compressed in contact
with a relatively stiff force-measuring load cell (usually a piezoelectric crys-
tal) by a relatively soft preload spring, as illustrated in Figure 7.5. The
functioning of an accelerometer is thus derived from the 1-DOF system
shown in Figure 1.1. For an accelerometer, the system damping is a neg-
ligible effect and thus for explanation purposes the damping is assumed
here to be zero. Referring to the free-body diagram shown in Figure 7.5,
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FIGURE 7.5 Elementary schematic for unidirectional accelerometer.

the equation of motion for the mass is obtained as follows:

mẍ + kx = kxa (7.1)

For a sinusoidal motion of the accelerometer housing (xa = Xa sin ωt) and
the measurement place to which it is rigidly attached, the motion equation
for the internal mass is Equation 1.6 with zero damping, as follows:

mẍ + kx = kXa sin ωt (7.2)

Thus, for the steady-state solution of Equation 7.2, the normalized response
equation shown in Figure 1.5 is applicable, and for zero damping it
provides the following ratio for peak acceleration of the internal mass to
the housing: ∣∣∣∣∣ Ẍ

Ẍa

∣∣∣∣∣ =
∣∣∣∣∣ ω2X
ω2Xa

∣∣∣∣∣ =
∣∣∣∣ X
Xa

∣∣∣∣ = 1
1 − (ω/ωn)2 (7.3)

For a frequency at 10% of the accelerometer’s natural frequency (ωn),
Equation 7.3 shows the acceleration of the internal mass to be 1% higher
than housing acceleration, at 20% it is 4% higher, at 30% it is 10% higher,
and so on.

The accelerometer load cell is usually a piezoelectric crystal and thus
only registers compressive loads, necessitating a preload spring to keep it
in compression. However, the piezoelectric crystal is inherently quite stiff
in comparison with the preload spring. Therefore, the load cell essentially
registers all the dynamic force (ala F = ma → a = F/m) required to accel-
erate the internal mass. Equation 7.3 shows that for the load cell electrical
output to be highly linear with housing acceleration, an accelerometer must
be selected with an internal natural frequency at least five times higher than
the maximum end of its intended frequency range of use. Consequently, an
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accelerometer for a relatively high frequency application has a relatively
smaller internal mass than an accelerometer for a relatively low frequency
range of application. Since a smaller internal mass produces a propor-
tionally smaller peak load-cell force for a given acceleration peak, there
is clearly a compromise between sensitivity and frequency range. That is,
the higher the accelerometer’s internal resonance frequency, the lower its
sensitivity. Accelerometer sensitivity is proportional to its internal mass
(m), but its internal natural frequency is only proportional to 1/

√
m. Con-

sequently, for a given load cell stiffness, the sensitivity varies as 1/ω2
n, that

is, a penalty to sensitivity for better linearity. But accelerometers are still
the best transducer for high frequencies because of the inherent frequency
squared multiplier.

Piezoelectric load cells produce a self-generated electrical output in
response to dynamic loading, but at very high impedance. Accelerometers
are therefore usually constructed with internal electronics to convert the
load cell’s signal to a low impedance output suitable for conventional
plugs, cables, and data acquisition systems. Mitchell (1981) provides many
practical considerations including an explanation on remote location of the
electronics for high-temperature measurement places where the piezoelec-
tric load crystal can survive but the signal-conditioning electronics cannot.

7.2.2 Velocity Transducers

The velocity transducer is comprised of a mass (permanent magnet)
suspended in very soft springs and surrounded by an electrical coil,
as illustrated in Figure 7.6. Also explained by the 1-DOF model, a
velocity transducer operates above its natural frequency, in contrast to
an accelerometer. Its springs are configured to produce a very low natural
frequency so that the permanent magnet typically remains stationary at
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FIGURE 7.6 Elementary schematic for a velocity transducer.
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frequencies above 10 Hz. Typically, an internal fluid provides the critical
damping of the natural frequency and the roll-off of response below 10 Hz.

With the magnet essentially stationary in the transducer’s frequency
range of use (typically 10–1500 Hz), vibration of the electrical coil rigidly
attached to the housing causes the magnetic flux lines to induce a voltage in
the coil proportional to velocity of housing vibration. Thus, a velocity trans-
ducer produces a self-generated low-impedance velocity-proportional
electrical signal that can be fed to monitoring and data acquisition sys-
tems without additional signal conditioning. Velocity transducers could
therefore be popular in many rotating machinery applications. However,
because a velocity transducer has internal moving parts, it is less popular in
hostile environments where a relatively higher ruggedness is demanded,
as more inherent with an accelerometer. Thus, rugged sensors that are
marketed for measurement of velocity are actually accelerometers with
built-in integration circuits to output the velocity signal.

7.2.3 Displacement Transducers

7.2.3.1 Background

The internals of many types of rotating machinery, especially turbo-
machinery, have a number of quite small annular radial clearance gaps
between the rotor and the stator, for example, journal bearings, annular
seals, balance drums, and blade-tip clearances. Therefore, one obvious
potential consequence of excessive rotor vibration is rotor–stator rubbing
contact or worse, impacting. Both accelerometers and velocity transducers
measure the vibration of nonrotating parts of a machine and thus cannot
provide any direct information on rotor motion relative to the stator.

The importance of rotor motion relative to stator motion led to the
development of transducers to provide continuous instantaneous rotor-
to-stator position measurements, typically at each journal bearing. The
earliest rotor-to-stator position measurement device widely applied is com-
monly referred to as a shaft rider, and it is similar to a typical spring loaded
IC engine valve tracking its cam profile. That is, a shaft rider is essen-
tially a radial stick that is spring loaded against the journal to track the
journal radial motion relative to a fixed point on the nonrotating part of
the machine, for example, bearing housing. Shaft riders utilize a position
sensing transducer to provide an electrical output linear with shaft rider
instantaneous radial position. Some older power plant turbines still use
OEM supplied shaft riders. However, shaft riders have two major short
comings: (1) their mass inertia limits their frequency range and (2) their
rubbing contact on the journals is a wear point. Copious lubrication is
not a solution to the wear problem, because the uncertainty of contact
oil-film thickness is of the same order of magnitude as the rotor relative
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position changes continuously measured. Therefore, a shaft rider journal
contact point is typically a wearable carbon material. The effect of this
slowly wearing contact point is to produce a continuous DC drift in posi-
tion measurements, thus detracting somewhat from the main intent of
rotor-to-stator continuous position measurement.

The significant shortcomings of shaft riders led to the development of
noncontacting position sensing transducers. Two types of noncontacting
transducers that emerged in the 1950s are the capacitance type and the
inductance type. The capacitance-type displacement transducer works on
the principal of measuring the electrical capacitance of the gap between the
transducer tip and the target whose position is measured. The capacitance
method is well suited for highly precise laboratory measurements, but its
high sensitivity to material (e.g., oil) variations/contaminants within the
clearance gap would make it a calibration “nightmare” for industrial appli-
cations. In contrast, inductance-type displacement transducer systems have
proven to be the optimum rotor-to-stator position measurement method,
and are now installed on nearly all major rotating machines in power
plants, petrochemical and process plants, naval vessel propulsion drive
systems, and many others. It is also the primary rotor position sensor for
laboratory test rigs as well.

7.2.3.2 Inductance (Eddy-Current) Noncontacting Position
Sensing Systems

Unlike accelerometers and velocity transducers, which are mechani-
cal vibratory systems in their own right, inductance-type displacement
transducer systems function entirely on electrical principles. As illustrated
in Figure 7.7, the system includes a target (shaft), a proximity probe, cables,
and an oscillator demodulator (called proximeter). Aproximity probe is typ-
ically made with a fine machine thread on its outer cylindrical surface for
precision positioning and houses a helical wound wire coil encased in a
plastic or ceramic material. The oscillator demodulator excites the probe’s
coil with a radio-frequency carrier signal of 1.5 mHz (typical), causing a
magnetic field to radiate from the probe’s tip. When the probe tip is in
proximity to an electrically conductive material (target), the induced eddy
currents in the target absorb electrical energy from the probe coil’s excitation
and thus attenuate its carrier signal. Within the oscillator demodulator, a
DC voltage output is produced from the modulated envelope of the carrier
signal, as schematically shown in Figure 7.7.

Figure 7.8 illustrates a typical DC voltage output versus gap. As shown,
the DC voltage output calibrates quite linearly over a large gap range
between the probe tip and the target. For typical systems now used for
monitoring rotor vibration, the linear range is normally from 10 to 100 mils
(0.25–2.5 mm). Setting the mean probe-to-target gap at the midpoint of the
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FIGURE 7.7 Inductance (eddy-current) position sensing system.

linear range provides substantially more vibration magnitude operating
range than needed for virtually all rotor vibration monitoring applica-
tions. In rare catastrophic failures (e.g., Figure 2.15), dynamic motions can
quite readily exceed the usable gap range, but this is irrelevant since the
vibration monitoring proximity probes are probably destroyed along with
the machine.

It is important to point out that the combination of the proximity probe,
oscillator demodulator, and their cables form a tuned resonant electrical
circuit. Thus, in order to obtain a specified voltage-to-gap calibration factor,
the cables must be properly matched to the probe and oscillator demodu-
lator. Adherence to the manufacturer’s cable type and length will therefore
maintain the system’s vibration calibration accuracy with component inter-
changeability. It is also important to know that the calibration factor is a
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FIGURE 7.8 Typical inductance probe displacement calibration plot.
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strong function of the target’s material. Therefore, if the manufacturer’s
supplied calibration factor is in doubt regarding the target material, the
system should be carefully recalibrated using the actual target material.
Large variations in the probe’s ambient temperature and/or pressure may
produce variations in the calibration factor that are significant, at least
for high-precision laboratory measurements on research rotor test rigs.
Mitchell (1981) discusses the influence of probe diameter and excitation
voltage on system sensitivity as well as other design and application con-
siderations such as proper probe mounting. With the quite high carrier
frequency used to excite the probe’s inductance coil, the oscillator demod-
ulator can readily track gap variations linearly at frequencies well over
10,000 Hz, which is considerably higher than needed for virtually any rotor
vibration measurement purposes.

Obviously, any residual mechanical run-out of the target portion of the
shaft is added to the vibration signal detected by the proximity probe. The
periphery of a rotating shaft presents a target that moves laterally across
the proximity probe’s magnetic field, as illustrated in Figure 7.7. As a con-
sequence, the system’s output not only reflects the shaft vibration plus
mechanical run-out, but also the superimposed effects of circumferential
variations in shaft surface conditions as well as electrical conductivity and
permeability variations just below the shaft surface. Except for mechanical
run-out, these nonvibration electromagnetic additions to the output signal
were not widely recognized until the early 1970s when several apparent
excessive rotor vibration problems in plants were diagnosed correctly as
“false trips” caused by the nonmechanical electromagnetic signal distor-
tions. That is, the superimposed nonvibration output signal components
(commonly called “electrical run-out”), when added to the signal portion
representative of actual rotor vibration, indicated fictitiously high vibration
levels, triggering automatic machine shutdowns or “trips.”

In the years since the nonvibration component in proximity probe system
output was first widely recognized, these vibration monitoring systems
have been refined to substantially remove nonvibration sources from the
output. On the mechanical side, every effort must be taken to provide a
smooth shaft target surface free of scratches and with a tight concentricity
tolerance to the journal. Mitchell (1981) describes various measures to min-
imize the electromagnet sources of “electrical run-out.” It has become the
standard procedure in plants to take the output signal for each probe while
the machine is slowly rotated on turning-gear mode or on coast-down
near stopping, and to process that data to extract the once-per-rev compo-
nent (amplitude and phase angle) which is then stored and automatically
subtracted in real time from the raw monitored signal. The ultimate pre-
cision in journal vibration measurements was demonstrated by Horattas
et al. (1997) on the laboratory spindle shown in Figure 5.10 with maximum
precision preloaded ball bearings. They mounted a precision grinder/slide
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on the front of the test rig to remove a test journal’s mechanical run-out as
achievable with the spindle bearings, that is, less than 0.5 μm TIR residual
run-out after grinding. They then processed the remaining slow-speed
“electrical run-out” (approximately 0.5 and 0.7 mil pp on x and y probes,
respectively) and recorded the outputs as high sampling rate digital sig-
nals. By subtracting the entire “electrical run-out” digital signal (not just
the once-per-rev component) for each probe from its raw signal at running
speed, Horattas et al. (1997) demonstrated journal vibration measurements
with an accuracy approaching 0.02 mil (0.5 μm).

Proximity probes are usually installed in pairs at each journal bearing,
with their measurement axes at an angular position of 90◦ with respect to
their partner, as illustrated in Figure 7.9a. In this manner, the rotor vibration
orbit can be readily viewed in real time by feeding the two signals into the
x and y amplifiers of a dual channel oscilloscope. Rotor vibration orbital
trajectories are illustrated in earlier Figures, that is, 2.10, 2.11, 2.13, 2.17, and
4.5 through 4.9. Figure 7.9a also illustrates the typical angular orientation
of a pair of proximity probes at 45◦ and 135◦. Referring to Figure 2.10, the
reason for this is that in most cases the major axis of the orbit ellipse is
close to the 45◦ axis due to the journal bearing oil film being stiffest into
the minimum film thickness, that is, along the line of centers. Thus, with
one of the two probes located at 45◦, its channel yields close to the largest
vibration signal of the orbit. The 45◦ channel is therefore normally selected
as the vibration channel used for rotor balancing in the field, that is, it has
the highest signal level if it closely aligns with the rotor vibration orbit’s
ellipse major axis.

By intent, proximity probes measure rotor motion relative to stator
motion, and thus do not provide total rotor motion. When measurement
of total rotor vibration motion is needed, the combination of a proxim-
ity displacement probe mounted with a seismic transducer (accelerometer
or velocity transducer) may be employed as illustrated in Figure 7.9b.

(a) (b)

x-channel y-channel

FIGURE 7.9 Proximity probe example mountings: (a) typical 2-probe @90◦ placement and
(b) probe with seismic sensor.
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The total rotor displacement signal is then obtained by adding the
conditioned outputs of the integrated seismic transducer measurement and
the proximity probe displacement measurement. An alternate approach
not always feasible in plants but commonly used in laboratory rotor test
rigs is simply to mount the proximity probes to an essentially nonvibrating
fixture.

7.3 Vibration Data Acquisition

There is a considerable variety of extent and methods used to acquire and
log vibration and other diagnostic monitored machinery parameters. The
methods and corresponding products available to accomplish data acquisi-
tion tasks comprise a constantly changing field that parallels the rapid and
perpetual advancements in PCs and Workstations. This section provides
neither a historical perspective nor a forecast of future trends for machin-
ery monitoring data acquisition technology. The intent of this section is to
present the fundamental steps in data acquisition and a summary of up-to-
date methods and devices appropriate for different application categories.

7.3.1 Continuously Monitored Large Multibearing Machines

The main steam turbine-generator sets of large electric power generating
plants are a prime example of large machines where the need for constant
condition monitoring is driven both by the monetary replacement cost
of a machine if seriously damaged (well over $100 million) and the lost
generating revenues accrued in the event of an unscheduled outage of a
single large steam turbine generator (as high as $500 thousand/24 h day,
more in a nuclear plant). A complete rigidly coupled drive line, includ-
ing a high-pressure turbine (HP), an intermediate-pressure turbine (IP),
two low-pressure turbines (LP-1 and LP-2), an AC synchronous generator
(2-pole for fossil units, 4-pole for nuclear units), and its exciter (EX), is illus-
trated in Figure 7.10. The generating unit shown in Figure 7.10 has eight
journal bearings and is equipped with x and y noncontacting proximity
probes as well as vertical and horizontal accelerometers at each journal
bearing, for a total of 32 vibration data channels.

Rotor vibration time-based signals are phase referenced to a single fixed
angular position on the rotor, referred to as the keyphasor, as shown in
Figure 7.11. A keyphasor signal must be a very sharply changing signal so
as to trigger a time marker for the designated fixed angular position on
the rotor. It can be produced by a proximity probe targeting a pronounced
shaft surface interruption such as a key way. It can also be produced by a
light sensitive optical pickup targeting a piece of reflective tape on the shaft
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FIGURE 7.10 Vibration monitoring channels for an electric power turbine.

surface. An important use of the keyphasor is in prescribing phase angles
of the once-per-rev components of all vibration signals for rotor balancing
purposes. For large generating units typified by Figure 7.10, continuously
updated vibration peak amplitudes (or RMS values) at the bearings are
displayed in the plant control room, such as illustrated in Figure 7.12.

For power plants and large process plants, the traditional control room
is being replaced by a few computer monitors (i.e., a virtual control room)
each having several operations, control and condition monitoring menus.
Such virtual control rooms need not be located at the plant site. These new
virtual control rooms are accompanied by super high-capacity computer
data storage units, which make it possible to digitally store all moni-
tored machinery vibration time-base signals on a continuous basis, for any
subsequent analysis purposes. This facilitates introducing the next gen-
eration of condition monitoring systems developed on a modeled-based
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FIGURE 7.11 Vibration signals all referenced to a single keyphasor.
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FIGURE 7.12 Control room display of current vibration levels at each bearing.

evaluation of fault and fault-level probabilities, as illustrated in Figure 7.4.
For machinery vibration monitoring, the virtual control room monitor has
various operator selected menus, such as that illustrated in Figure 7.13.

7.3.2 Monitoring Several Machines at Regular Intervals

Many types of rotating machines are much smaller and more numerous
than the electric power generating unit illustrated in Figure 7.10. Unlike
modern power plants that are typically dominated by a relatively few
large machines, many types of process plants employ several relatively
smaller machines too numerous to bear the costs of continuous vibration
monitoring systems for every machine.

The lower cost alternative to continuous vibration monitoring is to take
vibration data from machines at designated regular intervals. All vibra-
tion monitoring system suppliers now market over-the-shoulder hand-held
vibration analyzers that display on-the-spot vibration analysis outputs such
as amplitudes (peak, filtered, RMS, etc.) and FFT spectra. The typical
over-the-shoulder unit employs an accelerometer vibration pickup that
a maintenance person can securely touch against designated vibration
monitoring points on each machine that is routinely checked. Many of
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FIGURE 7.13 Viewing vibration levels at bearings in the virtual control room.
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FIGURE 7.14 Portable machinery vibration analyzer and data logger.

these hand-held vibration analyzers are also made to digitally record and
store vibration signals that a single maintenance person can acquire from
several machines in a single pass through an entire plant, for example,
for subsequent downloading into a PC for further analysis and perma-
nent data storage. Figure 7.14 schematically illustrates a typical hand-held
vibration analysis and data logger unit.

7.3.3 Research Laboratory and Shop Test Applications

For laboratory and shop test applications, high sampling rate multichannel
data acquisition is now universally done quite inexpensively by installing
one or more analog-to-digital (A-to-D) expansion boards into a standard
desktop PC. Major suppliers of such PC expansion boards also market
quite versatile PC software to capture, store and reduce measured signals,
and to perform user programmed control operations based on measured
signals. Current PC-based high sampling rate multichannel data acquisi-
tion setups are quite superior to top-end systems of about 25 years ago and
are about 1/20th their cost.

7.4 Signal Conditioning

Raw vibration signals always contain some contamination (“noise”) and
frequently some actual components that may partially obscure other actual
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components that comprise the important part of the signal being sought
by the measurements taken. Thus, the most frequent signal conditioning
operation is filtering. A-to-D signal conversion is unfortunately often the
first step in data acquisition, with filtering then performed computation-
ally from the digitized signal. However, low-pass analog filtering should be
inserted ahead of theA-to-D converter to avoid aliasing, which is the “reflec-
tion” into the lower end of the spectrum of high-frequency content above
the sampling-rate capability of the A-to-D converter. Other frequently per-
formed signal conditioning operations include integration (i.e., to extract
displacement from measured acceleration or velocity signals, or velocity
from measured acceleration signals) and signal amplitude conversion.

7.4.1 Filters

Filters that are most often used with vibration signals include low-pass,
high-pass, band-pass, notch, and tracking filters. Filtering is now routinely
performed digitally after A-to-D conversion, but the initial signal must
first be passed through an analog low-pass filter with cut-off frequency
sufficiently below the Nyquist frequency (1/2 sampling rate) to elimi-
nate aliasing (false peaks in the FFT amplitude). The analog filter’s cut-off
frequency must be substantially below the Nyquist frequency because no
analog filter has a perfect frequency cut-off, that is, it has its roll-off above
the cut-off frequency.

The low-pass filter is probably the most frequently employed signal con-
ditioning operation in handling machinery vibration measurement signals.
For routine rotating machinery vibration assessments, frequency compo-
nents above 10 times spin speed are usually not of interest, be they “noise”
or true signal. The low-pass filter is intended to remove signal content above
the designated cut-off frequency and thus passes through the remaining
portion of the signal that is below the designated cut-off frequency. If
using a digital low-pass filter, it is assumed that the original analog sig-
nal has already been passed through an analog low-pass filter to avoid
aliasing, as described above. It is important to caution here that the typ-
ical A-to-D expansion board for PCs does not have an analog low-pass
filter to avoid aliasing. However, modern digital tape recorders do (i.e.,
Sony, TIAC).

The high-pass filter is the converse of the low-pass filter, removing signal
content below the designated cut-off frequency and thus it passes through
the remaining portion of the signal that is above the designated cut-off
frequency. Since routine rotating machinery vibration assessments are
usually not focused on frequency components above 10 times spin
speed, high-pass filtering by itself is not often used in machinery appli-
cations. However, the band-pass filter, which is a combination of high-
and low-pass filtering, is routinely employed in machinery vibration
analyses.
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A band-pass filter is designed to remove signal content outside a
designated frequency band, and thus is a low-pass filter in series with a
high-pass filter, where the low-pass cut-off frequency is higher than the
high-pass cut-off frequency. Again, if filtering digitally, the original ana-
log signal has first been passed through an appropriate analog low-pass
filter to avoid aliasing. A band-pass filter centered at rotor speed is a stan-
dard operation in rotor balancing, since only the synchronous vibration
component is processed for rotor balancing purposes. The fundamental
basis for this is that balancing procedures are inherently based on the tacit
assumption that the vibratory system is linear, and thus only the forcing
frequency (once-per-rev) vibration amplitude and phase angle are accom-
modated in rotor balancing procedures. Synchronous band-pass filtering
thus improves balancing accuracy.

The notch filter is the opposite of the band-pass filter, passing through all
the signal content except that which is within a specified bandwidth. One
interesting application is magnetic bearings, which inherently operate with
displacement feedback control, where a notch-type filter is frequently used
to filter out the once-per-rev bearing force components, so they are not
transmitted to the nonrotating structure of the machine, while the bearings
continue to provide static load support capacity and damping. The broad
band spectra of measured pump impeller hydraulic forces provided in
Figure 6.4 have the once-per-rev component removed, that is, notch filtered.

A tracking filter can employ the functionality of any of the previously
described filters, but it has the added feature that its cut-off frequency(s)
are made to track a specified signal component. The main application of
the tracking filter in rotor vibration measurement is to have the center-band
frequency of a band-pass filter track the once-per-rev frequency tracked by
the keyphaser signal, illustrated in Figure 7.11. This is a standard feature
on rotor vibration signal processing devices as a convenience for tracking
synchronous rotor vibration signals as a machine is slowly brought up to
operating speed and is coasting down to shut-off or turning-gear condition.

Advanced model-based nonlinear denoising filters, which do not remove
important low level signal content (e.g., chaos), are inherent in the system
schematically illustrated in Figure 7.4, from Loparo and Adams (1998).

7.4.2 Amplitude Conventions

When vibration amplitudes are conveyed, one should also specify which
amplitude convention is being used. Although rotating machinery vibra-
tion signals always contain frequency components other than just the
frequently dominant once-per-rev (synchronous) component, the single-
frequency (harmonic) signal is well suited for explaining the different
vibration amplitude measurement conventions. The following generic
harmonic vibration signal is thus used here:

x = X sin ωt (7.4)
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For a vibration signal comprised of only one single harmonic component,
there are two obvious choices for conveyance of the vibration amplitude,
single-peak and peak-to-peak, as follows:

Single-peak amplitude (S.P.) = X and peak-to-peak amplitude (P.P.) = 2X

However, vibration signals frequently contain significant contributions
from more than just one harmonic, often several, and thus an average ampli-
tude is frequently used to quantify a broad band vibration signal. The two
conventional average magnitudes are the average absolute value and the
RMS average, evaluated over a specified time interval Δt as follows:

A = average = 1
Δt

t+Δt∫

t

|x| dt and RMS average = 1
Δt

⎡
⎣t+Δt∫

t

x2 dt

⎤
⎦

1/2

For a simple harmonic signal as given in Equation 7.4, these two averages
yield the following:

A = 0.637X and RMS = 0.707X

7.5 Summary

The vitally important function of machinery condition monitoring rests upon
the feasibility of reliable measurement of a machine’s “vital life signs,”
of which vibration is among the most important. The traditional use of
rotating machinery vibration monitoring is to provide warning if vibration
levels become sufficiently high to potentially damage the machine. While
this traditional function of machinery vibration monitoring is of course still
of paramount importance, present diagnostic methods now allow a much
broader assessment of a machine’s condition from its monitored vibration
than just saying “the vibration level is too large.” Predictive maintenance is
one example of a capability derived from condition monitoring.
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EXERCISES AND REVIEW OF PUBLISHED WORK

1. Formulate the equation(s) and devise an accelerometer users’
guide that clearly shows the trade-off between sensitivity and
frequency response. Also, utilizing the fundamental principles,
determine a practical frequency nonlinearity correctly as one
would use an accelerometer approaching its resonance fre-
quency. Comment on the possibility of using an accelerometer in
the frequency range significantly above its resonance frequency.

2. When applying an accelerometer with an integrating circuit
to output velocity signal, determine the operative criteria for
useable frequency range restrictions.

3. Review the available literature on shaft-rider contacting dis-
placement sensors and develop frequency criteria for where
inductance-type proximity probes are much more appropriate.
Also, find available information to quantify inductance non-
contacting proximity probes’ performance (sensitivity, linearity)
suffers as the used frequency range is increased.

4. Research dynamic system model-based filtering algorithms.
Explore potential benefits of employing these advanced signal
filtering approaches to rotating machinery vibration monitoring,
diagnostics, and prognostics.



8
Vibration Severity Guidelines

8.1 Introduction

Considering the extensive technology development efforts devoted to
computing and measuring rotating machinery vibration signals, it has
always struck the author as ironic that when all that is “said and
done” the fundamental question “at what level does vibration become
too much?” is still often left with an uncertain answer, or possibly an
answer that is disputed. It parallels the health industry’s often chang-
ing proclamations on how much of certain “healthy” foods are “enough”
and how much of certain “unhealthy” foods are “too much.” At the
present time, severity criteria for rotating machinery vibration levels
are still most heavily governed by “experience.” Most industrial rotat-
ing machines are not mass produced like consumer products. Therefore,
it is not economically feasible to base the experience factor in rotat-
ing machinery vibration severity criteria on a rich statistical database
stemming from controlled test-to-damage or destruction of machines
at various levels of “excessive” vibration, to quantify statistically how
long it takes the vibration to damage each machine at each tested
vibration level.

There are several new rotating machinery products on the horizon for
industrial and consumer applications, such as in the power generation
and automotive sectors, that will run at considerably higher rotational
speeds than their present forebears (to 100,000 rpm and above). Design
solutions for next-generation high-speed rotating machinery will neces-
sitate some fundamental research and development to more accurately
quantify just how much vibration can be continuously endured by a given
machine through its lifetime. The quite approximate upper limits provided
by contemporary guidelines will probably be unacceptably too conserva-
tive or otherwise not applicable to next-generation high-speed rotating
machinery.

297
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8.2 Casing and Bearing Cap Vibration
Displacement Guidelines

The first rotating machinery vibration severity guidelines widely used in
the United States are generally credited to Rathbone (1939). His guide-
lines grew out of his experience as an insurance inspector on low-speed
machines having shaft-to-housing vibration amplitude ratios typically in
the range of 2−3. His chart and subsequent versions of it by others are based
on machine casing or bearing cap vibration levels, such as illustrated by the
accelerometers on the turbo-generator in Figure 7.10 and the hand-held
analyzer in Figure 7.14.

Current severity guidelines bear a strong resemblance to Rathbone’s
original chart, that is, as the frequency is higher, the allowable vibration displace-
ment amplitude is less. Many of the Rathbone-like charts are misleading by
subdividing the vibration level into too many zones delineated by too many
descriptors such as destruction imminent, very rough, rough, slightly rough,
fair, good, very good, smooth, very smooth, and extremely smooth (in power
plant lingo, “smooth as a baby’s a--”). Such fine striations and descriptors
are misleading because they incorrectly imply that the vibration sever-
ity guidelines are based on refined engineering science or finely honed
experienced-based knowledge. In fact, severity guidelines are based on a
collective “voting” by rotating machinery builders, users, and consultants,
each having business interests to foster and protect. The most sensible
“descendent” of the original Rathbone chart found by the author is pro-
vided by Eshleman (1976) based on that given by the German Engineering
Society, VDI (1964), reconfigured in Figure 8.1 to show peak-to-peak vibration
displacement amplitude in both metric and English units.

As labeled in Figure 8.1, the sloping straight lines on this log–log graph
are lines of constant velocity. Consistent with this, it is widely accepted
that between 10 and 1000 Hz (CPS), a given velocity peak value has
essentially the same measure of vibration severity. This is a compro-
mise between the vibration displacement consideration (e.g., rotor–stator
rubbing or impacting caused by excessive vibration displacement) and
the vibration acceleration consideration (i.e., peak time-varying forces and
stresses generated from vibration are proportional to acceleration peak that
is proportional to frequency squared times displacement amplitude). In the
frequency range of 10–1000 Hz, when specifying vibration level in displace-
ment, one needs to know the frequency in order to assess the severity, as
Figure 8.1 demonstrates. Below 10 Hz the measure of vibration severity is
generally characterized by a displacement value, whereas above 1000 Hz the
measure of vibration severity is generally characterized by an acceleration
value. This is illustrated in the severity guideline in Figure 8.2, which has
been constructed to be numerically consistent with Figure 8.1.
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FIGURE 8.1 Bearing cap vibration displacement guideline.

The same vibration severity guideline is embodied in Figures 8.1 and 8.2,
and is typical of severity levels now being used for many years to evaluate
large turbo-machinery, especially in power plants. Again, one clearly sees
the appeal of using velocity severity levels, since a particular velocity peak
value has the same severity interpretation over the entire frequency range
of concern for most plant machinery.
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8.3 Standards, Guidelines, and Acceptance Criteria

The many standards, guidelines, and acceptance criteria for rotating
machinery vibration levels can be a source of confusion for those charged
with making plant decisions based on assessing vibration severity in
operating machines. The potential for confusion is enhanced by the
presence of many governing criteria from several independent groups,
as comprehensively surveyed by Eshleman (1976). There are interna-
tional groups such as the International Standards Organization (ISO) and
the International Electrical Commission (IEC). There are nongovernment
national organizations such as the American National Standards Insti-
tute (ANSI). There are industry trade organizations such as the National
Electrical Manufacturers Association (NEMA), the American Petroleum
Institute (API), the American Gear Manufacturers Association (AGMA),
the Compressed Air and Gas Association, and the Hydraulic Institute.
Various engineering societies, such as the American Society of Mechan-
ical Engineers (ASME), also have codes and standards for specific types
and classes of rotating machinery that may include vibration criteria. Last
but not least, standards and specifications that encompass “acceptable”
vibration levels are also mandated by the biggest customer of them all, the
U.S. government.

In this last category, the U.S. Navy is noteworthy because its vibration
acceptance levels for rotating machinery are significantly lower than those
of all the other major standards. Nongovernment user groups of rotating
machinery know that to require vibration specification acceptance lev-
els significantly lower than what the well-designed and well-maintained
machine will comfortably settle into early in its operating life is a large
waste of money. In other words, why pay a significant increase in
the purchase price of a new machine so that it can be delivered with
tested vibration levels significantly lower than what the machine will
comfortably exhibit after a relatively short period of operation. This mon-
etary dichotomy between government and nongovernment groups is of
course a “bit” more inclusive than just machinery vibration specification
acceptance levels.

Eshleman (1976) provides an excellent survey and comparison of the
well-recognized machinery vibration severity-level guidelines and accep-
tance standards. In many cases, those guidelines and standards have been
revised since Eshleman’s survey was published. A Bibliography Supple-
ment at the end of this chapter provides a more up-to-date listing, but one
should keep in mind that revisions are an ongoing process.

To apply, as intended, a specific rotating machinery vibration crite-
rion (guideline or standard) one must carefully study its documentation,
because there are a number of important factors that are not uniformly
handled across many guidelines and standards. For example, some criteria
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are based on the vibration RMS average (possibly filtered) and some are
based on single-peak or peak-to-peak values. Some are based on bearing cap (or
casing) vibration level while others are based on shaft peak-to-peak displace-
ment relative to the bearing or shaft total vibration. Furthermore, the various
criteria usually distinguish between the so-called flexible supports and rigid
supports, that is, whether the support’s lowest resonance frequency is below
or above the operating speed of the machine. Also, the relative mass of the
rotor to the stator is an important variable that significantly affects appli-
cation of some criteria, although this is not always stipulated in various
standards and guidelines. Whether from a vendor’s or a purchaser’s per-
spective, to help remove potential confusion for one who must apply a
given guideline or standard, the article by Eshleman (1976) and the book
by Mitchell (1981) provide good complementary reviews.

8.4 Shaft Displacement Criteria

Virtually all major turbo-machines using fluid-film bearings now have con-
tinuous monitoring of shaft orbital x−y displacements relative to the bear-
ings (see Figure 7.10). Turbo-machines have quite small radial rotor–stator
clearance gaps, for example, at the journal bearings, annular seals, impeller
rings, balance drums, and blade-tip clearances. Thus, rotor-to-stator vibra-
tion displacement is important for evaluation of turbo-machines’ vibration
severity.

By necessity, displacement transducers are located only near the bear-
ings, because that is where there is access to the rotor and that is where the
sensors can survive. Vibration displacement at midspan locations between
the bearings would be more informative for vibration severity assessments,
that is, small rotor–stator annular radial clearance gaps. But midspan
locations are inaccessible and environmentally too hostile for proximity
probes and cables to survive. Assessment of vibration severity levels from
proximity probe displacement outputs at the bearings should therefore be
interpreted with due consideration given to the vibration displacement
mode shape of the rotor, such as from a rotor-response simulation (see
Chapter 4). The extreme example to demonstrate this point is where rotor
flexibility produces a rotor vibration displacement mode shape with nodal
points near the bearings. Then the rotor vibration displacement amplitudes
at the bearings are relatively small even when the midspan amplitudes
are sufficiently high to cause accelerated wear at the small rotor–stator
annular radial clearance gaps and to initiate a failure in the machine.
Actually, it is a deficient design that operates continuously with vibra-
tion nodal points near the fluid-film radial bearings, because the fluid-film
bearings are usually the primary source of rotor vibration damping, that
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is, there is no damping unless the dampers are “exercised.” Thus, it is
not difficult to visualize two contrasting machines where the one with
a substantially higher rotor vibration at the bearings is the significantly
“happier” machine than the one with a relatively low rotor vibration at
the bearings.

As discussed in Section 7.1 (see Figure 7.4), one of the side benefits of
a model-based diagnostics approach is the real-time combination of dis-
placement measurements at the bearings with a simulation model observer
to construct rotor vibration displacement signals at midspan locations. That
is, the model-based approach provides “virtual sensors” at inaccessible
rotor locations. As discussed in Chapter 9, measurement of rotor-to-stator
vibration displacement adds considerably to the mix of valuable rotat-
ing machinery diagnostics information. However, its interpretation for
severity assessment purposes is not as simple as is implied by the use
of vibration levels based on bearing cap vibration, for example, Figures 8.1
and 8.2. A meaningful severity interpretation of rotor-to-stator vibration
displacement measurements needs to be “calibrated” by information on
the machine’s vibration displacement shape of the rotor. The proliferation
of severity standards and guidelines, as listed here in the Bibliography
Supplement, is an attempt by builder and user groups to address this and
other machine-specific severity-relevant differences.

One assessment of rotor-to-stator vibration displacement at the bearings
is based on time-varying bearing loads derived from the measured journal-
to-bearing displacement. A severity criterion can thereby be based on the
fatigue strength of the bearing inner surface material (e.g., babbitt). McHugh
(1983) showed a procedure using this approach. This approach, however,
does not address the absence of midspan vibration displacement measure-
ments. An experience-based guideline from Eshleman (1999) is tabulated
as follows:

Immediate
Speed (rpm) Normal Surveillance Plan Shutdown Shutdown

3600 R/C < 0.3 0.3 < R/C < 0.5 0.5 < R/C < 0.7 R/C > 0.7
10,000 R/C < 0.2 0.2 < R/C < 0.4 0.4 < R/C < 0.6 R/C > 0.6

Condition: R = peak-to-peak J-to-B displacement, C = dia. bearing clearance.

8.5 Summary

When supplying or purchasing a new machine, the allowable vibration
levels mandated by the purchase specification provide definite values,
whether based on a conservative or a not-so-conservative standard. How-
ever, the application of vibration severity guidelines can become a difficult
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“call” later on when the machine is out of warranty and its vibration levels
have increased above the purchase specification level, but are still below the
alarm or mandatory shutdown (trip) levels such as illustrated in Figure 7.1.
The bearing cap vibration severity criteria contained in Figures 8.1 and
8.2 are not conservative compared to many purchase specification accep-
tance levels, but are realistic for subsequent operating criteria of many
machines.

Rotor-to-stator vibration displacement measurements add consider-
ably to the mix of valuable monitoring and diagnostics information, as
described in Chapter 9. But its use for severity assessment purposes
is not any simpler than severity criteria based on bearing cap vibra-
tion levels. A complete vibration severity interpretation of rotor-to-stator
vibration displacement measurements needs “calibration” by informa-
tion on the vibration displacement mode shape of the rotor so that
midspan rotor-to-casing vibration displacement amplitudes can be rea-
sonably estimated. For additional information on vibration severity levels
in rotating machinery, Eshleman (1988) provides a practical and broad
treatment.
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9
Signal Analysis and Identification
of Vibration Causes

9.1 Introduction

The most fundamental assessment of monitored rotating machinery
vibration is, of course, provided by the ever important factors illustrated in
Figure 7.1. That is, how large is the vibration and how is it trending. For those
who are operating a vibration problem machine on a day-to-day basis,
these two pieces of vibration information are often all that the operators
use to make operational decisions. However, over the last 40 years the quite
advantageous application of the FFT spectrum analysis in troubleshooting
rotating machinery vibration problems has sensitized the general commu-
nity of plant operators to the considerable value of vibration signal analyses
in diagnosing the source of vibration problems whose solutions would oth-
erwise be far more elusive. As illustrated in Figure 7.14, portable hand-held
vibration analyzer data loggers are now pretty standard maintenance and
troubleshooting tools in many types of machinery-intensive plants. There
are other less commonly used signal analysis tools that are now beginning
to find their way into rotating machinery vibration analysis. This chapter
has the dual objectives of (a) introducing the frequently used and presently
emerging machinery vibration signal analysis tools and (b) explaining the
use of these tools combined with accumulated industry-wide experience
in order to help identify specific sources of vibration.

9.2 Vibration Trending and Baselines

Even in the healthiest operating machines, monitored vibration signals
may tend to migrate in amplitude and phase angle, even while remaining
within a baseline “envelope” of acceptable vibration levels. Such benign
changes are the normal effects of changes in operating conditions, for
example, thermal transients, load changes, river circ-water temperature
(seasonal changes), normal wear, and other fluctuations in the machine’s
overall environment. On the other hand, when the monitored vibration
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signals begin to grow in amplitude beyond the established baseline lev-
els for a given machine, that trend should be carefully followed by the
plant operators to continually assess the potential need for (a) temporary
changes of the machine’s operating conditions, (b) scheduling an early outage
of the machine for corrective actions, or (c) an immediate shutdown dictated
by rapidly increasing vibration levels. When a machine’s vibration levels
begin to grow beyond its established baseline levels, some problem within
the machine begins to emerge and growth in vibration levels is often not
the only symptom of the underlying problem. Once attention is focused on
a machine beginning to show an upward trend in vibration levels, various
vibration signal analysis tools are then commonly used to seek identifica-
tion of the root cause(s). Frequently used and presently emerging machinery
vibration signal analysis tools are introduced in the next sections of this
chapter, followed by a section on the use of these tools to help identify
specific sources of vibration.

9.3 FFT Spectrum

The mid-1960s invention of the fast Fourier transformation (FFT) algorithm
made feasible the modern real-time spectrum analyzer, which transforms
time-varying signals from the time domain into the frequency domain,
and thereby provides a continuously updated on-the-spot picture of a sig-
nal’s frequency makeup. In modern times prior to FFT spectrum analyzers,
the primary real-time on-the-spot display of vibration signals was in their
natural time domain, typically using an oscilloscope.

The mathematical basis for spectrum analysis is the Fourier integral,
which was provided by the mathematician Joseph Fourier in the early
1800s, long before the advent of modern rotating machinery. However,
in modern times prior to the FFT algorithm, which utilizes modern digi-
tal computational methods, the transform of a measured time-base signal
into the frequency domain required costly “off-line” processing with a
slow turnaround. Specifically, a taped recording of the analog signal was
processed through several narrow bandwidth analog filters (Section 7.4 of
Chapter 7) with center-band frequencies spanning the relevant frequency
range. Pre-FFT spectrum analyzers were cumbersome pieces of electronics
equipment to operate successfully, requiring a technician experienced in
how to tune and adjust the bandwidth filters to achieve optimum results for
a given time-base signal record. Understandably, pre-FFT spectrum anal-
ysis was very sparingly used. The mathematical details of Fourier series,
Fourier integrals, and FFTs are now standard parts of the mathematics com-
ponent in college engineering curricula, and are well covered in numerous
math and engineering analysis textbooks and handbooks. In the interest of
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space and brevity, these mathematical details are not covered here. Instead,
a more heuristic explanation of spectrum analysis is given here to aid the
machinery vibration practitioner in understanding the direct connection
between a time-base signal and its frequency spectrum.

The practical underlying idea of the Fourier transform (FT) is that a
function (e.g., time-base signal) can be constructed from a summation of
sinusoidal functions with a continuous distribution of frequency from zero
to a suitable cut-off frequency. For a periodically repeating signal or a
defined period, a simpler, more restrictive version of this (the so-called
Fourier series) is applicable and sums sinusoidal components only at a
discrete set of frequencies that are the integer multiples (n = 1, 2, . . .) of
a designated base frequency Ω1 ≡ 2π/τ, where τ is the duration of one
period. Although machinery vibration signatures often contain only a lim-
ited number of significant harmonic components, their frequencies are
often not all integer multiples of a single base frequency, and therefore the
FT, not the Fourier series, is the appropriate tool to map rotating machinery
vibration signals from the time domain into the frequency domain.

Figure 9.1, fashioned after a similar illustration in Mitchell (1981), pro-
vides a visual connection between a function of time, X(t), and its FT or
frequency spectrum. As illustrated, only a few harmonics added together
readily produce a time trace from which it is difficult to directly view or
identify individual contributing sinusoidal components. By transforming
the signal into the frequency domain, the contributing components are
readily identified.

Since the development of the FFT algorithm, spectrum analysis of time-
base signals has permeated many fields of investigation, especially in
diagnosing and troubleshooting vibration problems. In teaching students
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FIGURE 9.1 Illustration of an oscillatory signal’s frequency spectrum.
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FIGURE 9.2 Example spectrum of a rotating machinery vibration signal.

the practical insight of using FFT signal analysis in vibration problems,
the author uses the analogy of the modern paint color mixing apparatus
used in retail paint stores. The frequency spectrum of a time-base signal is
analogous to a virtually instantaneous process that would identify all the
base color components and their respective proportions from a sample of
an already mixed paint. Adding up a known ensemble of sinusoidal func-
tions is analogous to adding the prescribed proportions of each base color
for a given paint specification, whereas obtaining the frequency spectrum
of a multicomponent time-base signal is analogous to figuring out the color
components/proportions from the already mixed paint.

The spectrum of a vibration signal measured on a rotating machine is
typified by the example in Figure 9.2. The 1N (once-per-revolution or syn-
chronous) frequency component is often the largest because of the ever
present residual rotor mass unbalance. Harmonic components with fre-
quencies that are integer multiples (2N, 3N, . . .) of the rotational speed
are frequently present, usually at relatively small amplitudes. Harmon-
ics at subsynchronous frequencies are also often encountered, from a
small percentage of the rotational speed to only slightly less than the 1N
component.

9.4 Rotor Orbit Trajectories

The example, shown in Figure 9.2, of a frequency spectrum for a vibration
signal can be based on displacement, velocity, or acceleration. As described in
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the last section of this chapter, there is now a considerable wealth of expe-
rience and insight accrued in using such spectra for diagnosing sources
of machinery vibration problems. Specifically for LRV, rotor orbital vibra-
tion displacement trajectories provide an additional diagnostic information
component for the troubleshooter to analyze when seeking to identify the
nature and cause of a rotating machinery vibration problem. Several exam-
ples of rotor orbital vibration trajectories are illustrated and described
in the earlier chapters of this book. In Chapter 4, which is essentially a
user’s manual for the RDA code supplied with this book, the discussions
pertaining to Figures 4.4 through 4.10 provide a primer for this section.
An understanding of the topics covered in Section 2.4 of Chapter 2 fur-
ther facilitates the adroit use of rotor orbital displacement trajectories in
identifying rotor vibration types and sources.

The primary method now widely used to measure rotor orbital dis-
placement trajectories is the inductance (eddy-current) noncontacting position
sensing system described in Section 7.2 of Chapter 7. Proximity probes for
this type of system are commonly installed on major rotating machinery in
power plants, petrochemical plants, and others for continuous monitoring
and diagnostic purposes. As typified in Figure 7.9a, a pair of proximity
probes positioned 90◦ apart are located at each of a number of accessi-
ble axial locations (usually at the radial bearings) such as illustrated in
Figure 7.10. By feeding the conditioned output signals from an x–y pair
of probes into the x and y amplifiers, respectively, of a dual-channel oscil-
loscope, the real-time rotor orbital trajectory can be displayed. Thus, one
can measure and display in real time the rotor vibration orbits that are
computationally simulated from rotor vibration models, as demonstrated
in Chapter 4 using the RDA code.

Proximity probes are typically mounted at journal bearings and then
measured orbits of the shaft are relative to the bearing (refer Figure 4.4).
There is now a considerable wealth of accrued experience and insight
in using the geometric properties of rotor vibration orbits for identifying
the nature and source of machinery vibration problems. Furthermore, the
presence of numerous quite small rotor-to-stator annular radial clearance
gaps, such as in turbo-machinery, makes rotor-to-stator relative vibration
displacement orbits important information in assessing the well-being of
a machine.

In seeking to devise a suitably accurate computer-simulation model for
troubleshooting purposes, comparisons between predicted and measured
LRV orbits of a troubled machine is of course a proper scientific approach
in “fine-tuning” a model for subsequent “what if” studies. However, it
is important to realize that the noise-free single-frequency elliptical orbits
from linear response computer simulations, such as those illustrated in
Figures 4.5 through 4.9, are much “cleaner” pictures than is typically
obtained for actual measured orbits from unfiltered displacement signals.
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FIGURE 9.3 Illustrated examples of measured rotor synchronous orbits: (a) forward whirl
and (b) backward whirl.

Low-pass filtering of raw signals to remove high-frequency components
and noise is a first step in “cleaning up” the measured orbit display. Prox-
imity probe signal processing instruments typically have a tracking filter
option (Section 7.4 of Chapter 7) synchronized by the keyphaser signal
(Figure 7.11) to track the rotational speed frequency, and thus provide
a “clean” synchronous orbit picture, which is comparable to the noise-
free single-frequency elliptical orbits from a corresponding computational
simulation. Figure 9.3 illustrates two typical measured synchronous rotor
vibration orbits, before and after synchronous bandwidth filtering.

When significant nonsynchronous orbit frequency components are
present, synchronous bandwidth filtering is ill-advised in general
troubleshooting because it removes the subsynchronous and higher har-
monic components such as those captured in the Figure 9.2 FFT illustration.
On the other hand, for rotor balancing purposes, since only synchronous
vibration components are used in the balancing procedure, synchronous
bandwidth filtering is naturally applicable. Figure 9.4 illustrates an orbit

Filtered

Time (Revs)

FilteredUnfiltered

x

x

X
or
Y

x
y

yy
1

N
2

FrequencyKeyphaser mark

221

2

2

2

1

1
1

FFT

½N1
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with a period of two revolutions, containing synchronous and half
synchronous components, the orbit being typical for cases where the half
synchronous component is largest.

Subsynchronous rotor vibrations are often associated with instability
self-excited rotor vibrations. The example shown in Figure 9.4 is for the
particular case where the subsynchronous component is exactly half the
spin speed and thus, being a periodic motion, is easy to illustrate. In con-
trast, subsynchronous rotor vibrations are more often not at an integer
fraction of the spin speed, and thus the motion is not strictly periodic.
The real-time orbit display may then look similar to that in Figure 9.4,
but will have an additional unsteady “bouncing” motion to it due to its
nonperiodic character. An additional unsteadiness is also common because
instability self-excited rotor vibrations are themselves often unsteady, as
easily observed from a real-time continuously updated FFT that shows the
subsynchronous component significantly changing its amplitude (up and
down) from sample-to-sample on the spectrum analyzer display.

Referring to the example frequency spectrum in Figure 9.2, a word of
caution is in order when observing integer harmonics of the synchronous
frequency (2N, 3N, . . .) if the signals are proximity probe displacement sig-
nals. As described in Section 7.2 of Chapter 7, proximity probe systems
produce a fictitious additive vibration component from “electrical run-
out” caused by the shaft’s circumferential variations in surface conditions,
electrical conductivity, and permeability. It is now a standard procedure
in plants to take a low-speed output signal for each probe, such as while
the machine is slowly rotated on turning-gear mode, and to consider the
once-per-rev component of that signal (amplitude and phase angle) as the
electrical run-out component, which is then stored and automatically sub-
tracted in real time from the raw signal in normal operation. However,
based on the research of Horattas et al. (1997) discussed in Section 7.2 of
Chapter 7, proximity probe electrical run-out signals are definitely far from
sinusoidal, that is, not a single 1N harmonic. Thus, integer harmonics of the
synchronous frequency (2N, 3N, . . .) are generally contaminated by electri-
cal run-out components even when using the standard procedure, which
may remove only the synchronous component of the electrical run-out. As
shown by Horattas et al., digitally subtracting out all the electrical run-out
removes all its harmonics, but this is not generally done in plants thus far.
With present microprocessors it is easy to remove the first 5 or 10 electrical
run-out harmonics in real time, and this feature has more recently made its
way into the monitoring and diagnostic function now becoming utilized
intensively in predictive maintenance and troubleshooting.

Having reliable vibration baseline data for a machine, subsequent incre-
mental changes to integer-multiple harmonics of spin speed can reasonably
be attributed to changes in the vibration spectrum apart from any con-
tamination originating with the “electrical run-out” harmonics. When a
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machine’s vibration levels are within safe conservative levels and running
in good condition, the rotor vibration is likely to be well characterized
by linear dynamic behavior and integer-multiple harmonics of the spin
speed are then more likely to be relatively quite small. When single-
frequency dynamic linearity predominates, the rotor orbits are essentially
synchronous ellipses. But when a significant nonlinear influence manifests
itself, one or more higher harmonics (2N, 3N, . . .) and one or more subhar-
monics (N/2, N/3, . . .) in the synchronous frequency range can become
significant. A number of different abnormal conditions can give rise to sig-
nificant dynamic nonlinearity in the rotor dynamical system, as described
in Section 2.5 of Chapter 2. Therefore, the vibration harmonics of spin speed
can often be valuable information utilized in troubleshooting rotating
machinery problems.

Figure 9.5 illustrates an important example where some progressively
worsening influence in the machine causes a progressively increasing static
radial force on the rotor (and thus bearings), which leads to increased non-
linear behavior. For example, increased static radial load can develop on a
centrifugal pump impeller (Section 6.1 of Chapter 6) as internal stationary
vanes and/or impeller vanes become damaged, for example, by cavita-
tion, improper operation of the pump, or poor hydraulic design. Internally
generated static radial loads act similar to internal radial misalignment,
for example, from casing thermal distortions.

Basically what Figure 9.5 illustrates is what can happen to the normal
unbalance forced vibration of the shaft orbital motion due to increased
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FIGURE 9.5 Filtered orbit and FFT with increasing radial load or misalignment. (a) Nominal
radial load; synchronous linear motion. (b) Moderate radial load increase; synchronous linear
motion. (c) Substantial radial load; nonlinear motion with some 2N. (d) Very high radial load;
nonlinear motion with high 2N.
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journal bearing dynamic nonlinearity as a progressively worsening static
radial load and/or misalignment emerges over time. As the shaft orbit
changes from the normal elliptical shape to a “banana” shape to a “figure
eight” shape, the progressive increase of the 2N harmonic is reflected. Sim-
ilar distortions to the normal elliptical orbits can also result from other
higher order harmonics (3N, 4N, . . .) of spin frequency. Higher journal bear-
ing static loads produce higher journal-to-bearing eccentricity, resulting
in increased bearing film dynamic nonlinearity. Therefore, an emerging
rich spectrum of higher harmonics can be an indication of excessive radial
bearing loads and/or misalignments.

As stated earlier in this section, subharmonics (N/2, N/3, . . .) of the spin
frequency can be present with rotor dynamical nonlinearity and an impor-
tant example of this is an extension of the “story” already told by the
Figure 9.5 filtered signals, which typify worsening conditions as moni-
tored at normal operating speed. What likely happens to orbital vibration
of such a machine when it goes through speed coast-down is illustrated
in Figure 9.6, fashioned after a case in Bently and Muszynska (1996).

The journal vibration orbit in Figure 9.6a is a slightly different version of
the “figure eight” orbit in Figure 9.5d, resulting from a high degree of bear-
ing film dynamic nonlinearity associated with high static radial bearing
load and/or misalignment.As this machine coasted down (see Figure 9.10),
a significant increase in overall rotor vibration levels was encountered
between 4500 and 4100 rpm, as shown by Bently and Muszynska (1996).
The orbit and its FFT spectrum at 4264 rpm are a clear “picture” of what is
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FIGURE 9.6 Changes with high radial load or misalignment during coast-down. (a) Filtered
journal orbit and FFT at normal operating speed (5413 rpm). (b) Filtered journal orbit and
FFT during coast-down at 4264 rpm.
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occurring in the 4500–4100 rpm speed range. At 4264 rpm, the spin speed
traverses twice the 2132 cpm unbalance resonance frequency, that is, half
the spin speed. Significant bearing dynamic nonlinearity from high radial
static load and/or misalignment plus the inherent characteristics of the
journal bearings to have low damping for subsynchronous frequencies
combine to produce a dominant 1

2 N subharmonic vibration component in
the speed neighborhood of 4264 rpm. As the orbit in Figure 9.6b clearly
shows, the significant increase in the overall rotor vibration level near
this speed causes strong rotor–stator rub-impacting at the monitored bear-
ing journal or a nearby seal. Once rub-impacting occurs, the dynamic
nonlinearity increases even further, synergistically working to maximize
the 1

2 N vibration amplitude through what is tantamount to a so-called non-
linear jump phenomenon, similar to that analyzed by Adams and McCloskey
(1984) and shown here in Figure 2.18.

Both the orbital vibration illustrated in Figure 9.4 and the field mea-
surement case shown in Figure 9.6b have a period of two revolutions, but
are significantly different in a fundamental way. In Figure 9.4, the illus-
trated motion is the simple summation of two harmonic motions that have
exactly a 2:1 frequency ratio. In the Figure 9.6b case however, the motion
has a rich spectrum of harmonics of the N/2 component, because the sharp
redirection of the orbital trajectory in and out of the rub-impacting zone
needs several terms in its Fourier series to accurately add up to the orbit
shape. The spectrum shown in Figure 9.6b has been truncated beyond the
2N component, but the actual spectrum is richer.

It has been well known for over 50 years that large two-pole alternate
current (AC) generators with relatively long bearing spans, having sig-
nificant mid-span static deflection, must have a series of radial slots cut
along the generator rotor to make its radial static deflection characteristic
as close to isotropic as is practical (Chapter 12). Otherwise, an intolerably
high 2N vibration would occur, as inadvertently discovered on early large
steam turbine generators in the 1950s. A similar anisotropic rotor stiffness
develops when a crack has propagated part way through the shaft, and
so proper capture of the 2N component of rotor vibration can provide a
primary symptom of a cracked rotor. Furthermore, trending the 2N com-
ponent over time can aid in assessing the propagation rate and extent of
the crack, for example, how many more hours or days will it take for the
shaft to fail. Muszynska (1995) provides insight on this by tracking the 1N
and 2N rotor vibration measurements on rotors with slowly propagating
cracks, showing how it is possible in some cases to make an early detec-
tion of a slowly propagating material crack through the shaft. Muszynska
describes a troubleshooting case study, using orbits, combined with the
additional tools of Bode, polar, and cascade plots.

Acquiring rotor vibration orbits with permanently installed proximity
probe systems for continuous vibration monitoring on major machinery,
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as typified in Figure 7.10, has a monetary cost not deemed justified for many
other rotating machines, although many older machines (e.g., large steam
turbine generator units) with valuable remaining operating lives are now
retrofitted with proximity probe shaft vibration monitoring systems. More
typically, a check of vibration characteristics is routinely collected at regular
time intervals using portable hand-held vibration analysis/data logger
units as illustrated in Figure 7.14. When vibration problems are detected
however, effective troubleshooting can usually be significantly helped by
temporarily installing x–y proximity probes at one or more accessible shaft
locations. This is frequently implemented by the author and his co-workers
in troubleshooting plant machinery excessive vibration problems.

9.5 Bode, Polar, and Spectrum Cascade Plots

The term Bode diagram is from the field of feedback control, being a plot
of phase angle between harmonic input and output signals versus fre-
quency. Many in rotating machinery vibration have adopted this term to
describe steady-state vibration response amplitude and phase angle versus
rotational speed. The well-known plot of steady-state vibration amplitude
and phase angle versus frequency for a 1-DOF system excited by a sinu-
soidal force is shown in Figure 1.5, and could be similarly labeled as its
Bode diagram. Figure 9.7 illustrates a “Bode plot” of a rotor vibration sig-
nal’s steady-state response during a gradual roll-up to operating speed or
a coast-down from operating speed, as it passes through a critical speed
near 1000 rpm. Similar to the steady-state response for the harmonically
excited underdamped 1-DOF system (Figure 1.5), passage through critical
speeds is typically characterized by a local peak in vibration amplitude
and a distinct phase angle shift (180◦ for the simple 1-DOF system). As
covered in Section 1.3, in underdamped natural modes of multi-DOF sys-
tems, each mode behaves similar to the 1-DOF system and so the similarity
in steady-state response is natural. Rotor unbalances, which excite critical
speeds, are in fact like synchronous harmonic excitation forces and differ
from the 1-DOF harmonic excitation force only in that the unbalances’ force
magnitudes vary as the square of the rotational speed (i.e., unbalance force
magnitudes ∝ ω2).

On complex machines, phase angle shifts through critical speeds may
not be as close to a 180◦ shift as shown in Figure 9.7. For the 1-DOF sys-
tem, the phase angle in Figure 1.5 is the phase lag of the steady-state
vibration harmonic displacement behind the harmonic excitation force,
and thus shifts from 0◦ to 180◦ versus frequency through the natural fre-
quency. On the other hand, unbalance synchronous response signals of
rotors are time (phase) referenced to a specified angular location on the
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FIGURE 9.7 Bode plot of a rotor vibration signal on speed-up or coast-down.

rotor (keyphaser mark), and thus the phase shift through resonance is not
specifically referenced to zero. On very well-balanced rotors, the shift in
phase angle through a critical speed is often easier to detect than the speed
at which the rotor vibration peaks.

The same information plotted in Figure 9.7 is replotted in polar form in
Figure 9.8. The polar plot of steady-state vibration is a compact and visually
revealing way to present vibration measurements as a function of rotational
speed, as a function of time, or as a function of some other parameter in
which vibration changes are to be analyzed (see the example in Figure 12.2).

A cascade plot (or water fall plot) is a contour-map presentation of vibra-
tion amplitude (contour elevation) versus frequency (horizontal axis) versus
spin speed (vertical axis), providing an insightful and revealing picture
of a machine’s rotor vibration characteristics over its entire speed range.
Cascade plots can be “busy” when a multitude of vibration frequencies
are present. Figure 9.9 shows a cascade plot that is interesting but not
overly busy.

Figure 9.9 shows a typical case of encroachment upon the oil-whip
threshold speed, discussed at length in Section 2.4 of Chapter 2. As is
typical, the subsynchronous self-excited rotor vibration mode is the same
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forward whirling mode as that synchronously excited by unbalance at the
first critical speed. The first critical speed mode does not necessarily have
exactly the same frequency as when it becomes the self-excited mode at the
oil-whip threshold speed, for two reasons. First, the journal bearing effec-
tive oil-film stiffness will be somewhat different at the oil-whip threshold
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FIGURE 9.9 Cascade of passage through first critical speed to oil whip.
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speed than at the critical speed. Second, when oil whip occurs, the typi-
cally high orbital vibration amplitudes may produce a frequency increase
consistent with achieving a nonlinear limit cycle if the journal orbit fills up
most of the bearing clearance circle. As the plot in Figure 9.9 shows, once
oil whip is initiated as speed is increased, the oil-whip whirl frequency
stays locked onto the self-excited mode’s frequency.

A second type of cascade plot, fashioned after an example of Bently and
Muszynska (1995), is shown in Figure 9.10. It is the same coast-down case
as was previously discussed from the rotor orbits and FFTs presented in
Figure 9.6. The significant vibration increase between 4500 and 4100 rpm
is dominated by the N/2 component, as Figure 9.10 also clearly shows.

The derivation that accompanies Figure 4.6 shows that any harmonic
orbit (i.e., ellipse) can be composed of a forward-whirl circular orbit and
a backward-whirl circular orbit of the same frequency. The cascade plot
in Figure 9.10 delineates the forward and backward circular-whirl com-
ponents for each harmonic, in contrast to Figure 9.9, which is the more
common cascade plot that is based on a single time-base signal. By com-
paring the relative amplitudes of the forward and backward components,
the rotor whirl direction for a given harmonic at a specific speed is appar-
ent. Also for a particular harmonic and speed, the major and minor axes
of the corresponding orbit ellipse are apparent since the major axis is the
sum of the two circular orbit radii and the minor axis is the absolute value
of their difference. Thus, the type of cascade plot illustrated in Figure 9.10
is an excellent way to include orbit characteristics, making the “picture”

5000

4000

3000

2000

1000

–200 –100

Frequency (Hz)

N N
N/2

N/23N/2
2N 2N

Sp
ee

d 
(r

pm
)

Backward-whirl
circular orbit part

Forward-whirl
circular orbit part

Combines the
processed “X ” & “Y ”
proximity probe
signals

100 2000
0

FIGURE 9.10 Cascade for field measurement case shown in Figure 9.6.



Signal Analysis and Identification of Vibration Causes 321

complete.Afinal interesting observation can be made from the actual coast-
down case shown in Figure 9.10. That is, when the rub-impacting occurs
around 4264 rpm, Figure 9.6b, the 3N/2 harmonic is essentially present
only in the backward-whirl circular orbit component.

The next two sections treat advanced signal analysis methods that have
not yet been widely applied in industrial applications, but are described
here to show where future machine condition analysis innovations lie.

9.6 Wavelet Analysis Tools

Over the last 30 years wavelets, which are also called wavelet transforms
(WTs), have emerged through a confluence of ideas and techniques from
such diverse fields as pure mathematics, quantum physics, and electri-
cal engineering. The collection of theory and computational methods now
known by the label wavelets is now a mature topic in some cutting-edge
applications. Some specific applications include (i) computer vision sys-
tems that process variations in light intensity at several resolutions levels,
similar to how animal and human vision is now postulated to function, (ii)
digital data compression of human finger print images, (iii) denoising con-
taminated time-base signals, (iv) detecting self-similar behavior patterns in
time-base signals over a wide range of time scales, (v) sound synthesis, and
(vi) photo image enhancements. A number of books on wavelets are now
published, but many of these are suitable reading primarily for applied
mathematicians and signal analysis specialists. The author has found a
few publications that are potentially fathomable by the more mathemati-
cally inclined engineers, and these include the article by Graps (1995) and
the books by Chui (1997) and Kaiser (1994). Currently marketed machinery
condition monitoring systems do not typically utilize WTs, but the author’s
exposure to WTs has led him to believe that the capability of next-generation
machinery condition monitoring systems would be considerably advanced
by their use, once wavelets and their advantages are familiar to machinery
vibration engineers. The important implications of wavelets for future rotat-
ing machinery vibration-based troubleshooting justifies including here a
short readable description of WTs, to introduce vibration engineers to the
topic.

WTs are a powerful extension of the FT, the basis for FFT generated
spectra. Computationally fast numerical algorithms are readily available
for WTs as well, that is, fast wavelet transform (FWT) and are quite similar
in their details to FFT algorithms. These two types of transforms are also
similar in a fundamental way, and thus the description here of wavelets is
keyed to the similarity between the FT and WTs.

When frequency content (spectrum) of a time-base function x(t) is of
interest, the first inclination is to compute the FT, which is represented
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by a complex function of frequency, X(ω), used to describe the amplitude
and phase angle of a sinusoid. This is expressed as follows

X(ω) =
∞∫

−∞
x(t)e−iωt dt (9.1)

Just as the various harmonic frequency components are difficult to see at
a glance of a time signal x(t), the time-base information contained in X(ω) is
difficult to see because it is hidden in the phase of X(ω). The desirability of
time localizing spectrum information (time–frequency localization) in some
signal analysis applications has made the windowed Fourier transform (WFT)
the primary tool for such needs ever since the development of the FFT algo-
rithm. Time–frequency localization is similar to the music notes written on
a sheet of music, which show the musician when (time information) to play
which notes (frequency information). A WT is a time–frequency localiza-
tion, and thus reviewing the WFT is a first stepping stone to understanding
wavelets; see Daubechies (1993).

The function x(t) is windowed by multiplying it by a time window func-
tion w(t) of a specified time duration t0, usually with smooth edges. This
lifts out the piece of x(t) for the time interval prescribed by the window
function, as illustrated in Figure 9.11; similar to Daubechies (1993).

This process is successively repeated to span the specified time range of
x(t), with each successive time window shifted by t0 from the preceding
window. Following from Equation 9.1, a WFT Xmn(ω) for each succes-
sive nth window is obtained for each of a succession of progressively
higher frequency localizations as set in the following equation by the index
m (ω0 and t0 fixed):

Xmn(ω) =
nt0+ΔT∫

nt0−ΔT

x(t)w(t − nt0)e−imω0t dt (9.2)
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FIGURE 9.11 Time windowing of a function for WFT.
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FIGURE 9.12 Illustration of a member of the function family wmn(t).

ΔT = t0/2, m and n are the real integers ±n = 0, 1, 2, . . . , N and ±m =
0, 1, 2, . . . , M.

The family of WFTs given by Equation 9.2 can be considered as inner
products of x(t) with the family of functions wmn(t) defined in the following
equation:

wmn(t) = e−imω0tw(t − nt0) (9.3)

As illustrated in Figure 9.12, wmn(t) is a windowed sinusoidal oscillation
with a frequency of mω0, an amplitude of w, and a time shift of nt0.

As shown generically in the following equation, a WT Wmn is similar to
a WFT because it is formed from an inner product of x(t) with a sequence
of wavelet functions Ψmn(t), where m and n likewise indicate frequency
and time localizations, respectively:

Wmn =
t2∫

t1

x(t)Ψm,n(t) dt (9.4)

The wavelet functions Ψmn(t) are localized in time and frequency, similar
to the windowed functions wmn(t) in the WFT. Also similar to wmn(t), each
Ψmn(t) integrates to zero over its respective time duration, which means it
has at least some oscillations. However, wavelet functions Ψmn(t) have a
basic property that sets them apart from the WFT functions wmn(t). Ψmn(t)
are generated so that the time window interval width is inversely propor-
tional to the localized frequency and thus translated proportionally to its
width. In contrast, a given set of WFT wmn(t) functions all have the same
width of time interval. This basic property of wavelets makes them ide-
ally suited to analyze signals having highly concentrated (time localized)
high-frequency components superimposed on longer lived low-frequency



324 Rotating Machinery Vibration: From Analysis to Troubleshooting

components. This property of wavelets is observed from their basic math-
ematical specification, given in the following equation and delineated in
the next paragraph:

Ψmn(t) = a−m/2
0 Ψ(a−m

0 t − nb0) (9.5)

Similar to t0 and ω0 in Equation 9.2, a0 and b0 > 0 are fixed, and m and
n are as specified for Equation 9.2. For m > 0 (higher frequency oscilla-
tions in Ψ) the oscillations are packed into a smaller time width, whereas
for m < 0 (lower frequency oscillations) the oscillations are packed into
a larger time width. For a given m, the Ψmn are time translates of Ψmn
(n = 0), with each successive time-shift translation of magnitude nam

0 b0. In
the terminology of signal analysis specialists, this generation of a family
of wavelet functions Ψmn is said to be formed by a sequence of dilations
and translations of the analyzing wave or mother wave, Ψ(t). There are now
several recognized “mother waves,” usually named for their respective
originators. Furthermore, unique mother waves can be formulated for opti-
mum suitability to specific applications, which is an additional advantage
of WTs over the FT. Figure 9.13 shows a fairly simple mother wave and
two example wavelets generated from it.

The well-known intermittent nature (i.e., nonstationary), often at high
frequencies, of rotor vibration signal content symptomatic of a number of
specific problems or incipient machine failure phenomena has induced the
author to believe that the capability of next-generation machinery condi-
tion monitoring systems will be considerably advanced by the use of FWT
to augment the present heavy reliance on the FFT. Figure 9.14 presents a
visual comparison between WT and WFT, which clearly delineates the two.

Clearly, WT inherently possesses the simultaneous capabilities of iso-
lating signal discontinuities with high resolution along with detailed
frequency analysis over longer time windows. This frequency localiza-
tion causes many time-base signals to be sparse when transformed into
the wavelet domain. This feature yields wavelets quite useful for feature
detection, signal noise removal, and data compression. These capabilities are
all obvious potential advantages for next-generation machinery condition

Mother wave

m < 0
m = 0m > 0

 n = 1

Ymn

Ymn
Y(t)

0 0
0

t t t

n = 0
m = -1

FIGURE 9.13 Two wavelets, which are dilations and translations of Ψ(t).
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monitoring systems. In contrast to wavelets, the WFT has a single time
window interval for all frequencies, and thus the degree of resolution with
the WFT is the same at all time–frequency locations.

9.7 Chaos Analysis Tools

WT has now become a signal processing and analysis tool in many applica-
tions. Although not yet a standard tool in condition monitoring systems for
rotating machinery vibration, wavelets frequently appear in some research
and application papers on rotor vibration. In contrast, the use of chaos anal-
ysis tools in rotor vibration signal analysis is still pretty much the domain of
a few researchers in academia, although chaos analysis tools are being used
in other fields such as in medical research for analyzing monitored heart
beat signals. Adams and Abu-Mahfouz (1994) provide an introduction to
chaos concepts for analyzing rotating machinery vibration signals. They
employ computer simulations to demonstrate how chaos signal analysis
techniques can detect some important rotating machinery conditions that
are not readily detectable by any of the standard signal analysis tools.

Two of the several models investigated by Adams and Abu-Mahfouz are
illustrated in Figure 9.15. The necessary, though not sufficient, requirement
for chaotic motion to occur in a dynamical system is nonlinearity. Interest-
ingly, many in-process failure mechanisms and various adverse operating
conditions in rotating machinery involve significant nonlinear dynami-
cal properties. Section 2.5 of Chapter 2 gives an introduction to nonlinear
rotor dynamics. The exploratory work of Adams and Abu-Mahfouz (1994)
exposes an abundance of interesting possibilities for machinery condition
feature detection using signal mappings that are regularly employed by
chaos specialists in their work. Just a few of these are presented here for
the two models shown in Figure 9.15.
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FIGURE 9.15 Simple rotor dynamics models used for chaos studies: (a) unbalance excited
rub-impact and (b) three-pad pivoted-pad bearing.

Figure 9.16 presents simulation results for the unbalance-excited rub-
impact model illustrated in Figure 9.15a, and shows a confluence of rotor
orbital trajectories and their mappings using some typical chaos signal
processing tools. The central portion of Figure 9.16 is a bifurcation diagram,
which here plots the rotor orbit’s x-coordinate (with a dot) for each shaft
revolution as the reference mark fixed on the rotor passes the same rota-
tional position angle. If the orbital motion is strictly synchronous, only
the same dot appears, repeatedly. If a half-synchronous subharmonic com-
ponent is superimposed, then only the same two dots repeatedly appear.
Similarly, the Poincaré maps in Figure 9.16 contain a dot deposited for the
orbit’s (x, y) position at each shaft revolution as the reference mark fixed on
the rotor passes the same rotational position angle. The term quasiperiodic
is used by chaos specialists and others to label nonperiodic signals that are
comprised of incommensurate (noninteger related) periodic signals.

Spanning the range of nondimensional unbalance shown in Figure 9.16,
the orbital motion goes from quasiperiodic to period-5 motion (five revo-
lutions to complete one period), bifurcates into period-10 motion, becomes
chaotic (nonperiodic but nonrandom), and finally emerges from, the chaos
zone as period-8 motion. To the author, this is extremely interesting. On
the periodic orbits shown, a fat dot is deposited at each keyphaser mark,
thus period-5, period-10, and period-8 orbits have 5, 10, and 8 marks,
respectively. These dots deposited on the periodic orbits are, by themselves,
the Poincaré maps of their respective motion orbits. Thus, for any periodic
motion, the Poincaré map is a limited number of dots equal in number to the
number of revolutions per period of the motion. For a quasiperiodic motion,
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FIGURE 9.16 Rotor orbits and chaos-tool mappings for the unbalance-excited rub-impact
simulation model in Figure 9.15a.

the dots on the Poincaré map over time fill in one or more closed loops, with
the number of loops equal to the number of superimposed incommensu-
rate periodic components minus one (i.e., N − 1). Thus, the quasiperiodic
orbit shown in Figure 9.16 has two incommensurate periodic components,
thus one loop.

For chaotic motion, the Poincaré map has a fractal nature to it and therefore
has a fuzzy appearance, as displayed for the chaotic orbit in Figure 9.16.
There are mathematical algorithms to compute a scalar dimension of such
a fractal pattern, as detailed by Abu-Mahfouz (1993). In general, the fuzzier
the map, the higher the fractal scalar dimension and the higher the degree
of chaos content in the motion. Signal noise content also can produce
Poincaré map fuzziness, even without chaos content. Thus, special filtering
methods must be employed to remove the noise without removing the
chaos content. For this, the author has used in his laboratory model-based



328 Rotating Machinery Vibration: From Analysis to Troubleshooting

observers (see Section 7.1 discussion concerning Figure 7.4) and signal-
threshold de-noising in the signal WTs to reconstruct the de-noised signal.
Clearly, the example simulation results shown in Figure 9.16 indicate
that chaos signal processing tools have a definite potential to signifi-
cantly enhance the capability of future vibration-based rotating machinery
condition monitoring.

Figure 9.17 shows some additional simulation results for the
unbalance-excited rub-impact model shown in Figure 9.15a. These results
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were generated to study the detection of small losses in damping capac-
ity at off-resonance conditions. Since the effects of damping on vibration
amplitudes are significant primarily at or near a resonance, off-resonance
vibration amplitudes are not significantly affected by reduction in damp-
ing. As Figure 9.17 results clearly show, the fractal nature of the associated
Poincaré maps for 8% and 11% critical damping cases has a quite mea-
surable effect on the degree of chaos in the vibration. However, the FFT
signatures for the two compared cases show virtually no difference. It is not
difficult to relate the practical implication of early detection of damping loss
to rotor vibration. For example, through some progressive deterioration
process at a journal bearing, one can readily imagine a slowly progress-
ing loss of damping that would not result in increased vibration levels
at operating speed but would result in dangerously high rotor vibration
levels on coast-down through critical speed(s).

Figure 9.18 shows one of the several interesting results on chaotic motion
with pivoted-pad journal bearings presented by Adams and Abu-Mahfouz
(1994). For the three-pad bearing illustrated in Figure 9.15b, with the static
load directed into a pivot location (bottom), it is well known that the jour-
nal eccentricity will find a stable static equilibrium position on one side
of the pivot or the other, but not exactly on the pivot (see Figure 5.3,
Chapter 5). This property can be mitigated or even eliminated if the bear-
ing is assembled with preload (see Figure 5.6), which is more often not
done. The results illustrated in Figure 9.18 show the synchronous unbal-
ance force causing a chaotic orbit with a zero bearing preload, but a more
expected small synchronous orbit when a modest amount of preload (15%)
is applied by adjusting the pivot clearance to 85% of the bearing’s ground

Synchronous
orbit

w

Chaotic orbit

C'/C = 0.85

x/C

y/C

C'/C = 1.0

FIGURE 9.18 Chaotic rotor vibration originating in a pivoted-pad bearing.
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clearance (C′ = pivot clearance, C = bearing pad radius–journal radius).
These results suggest some useful applications of chaos-tool signal analy-
sis that can help diagnose such abnormal rotor vibration and other related
operating problems. The fuller presentation of these results by Adams and
Abu-Mahfouz show chaotic pitching motion of all three bearing pads with
the chaotic rotor motion shown in Figure 9.18. They also show that chaotic
motion for pivoted pad bearings is possible for other numbers of pads
(e.g., four pads) and other operating conditions where the static bearing
load is not directed into a pivot.

9.8 Symptoms and Identification of Vibration Causes

Diagnosis of rotating machinery vibration causes has been enormously
advanced in modern times through the intensive scrutiny of machin-
ery vibration with modern instrumentation and signal analysis methods.
However, identification of vibration causes remains an inexact science,
albeit far better now than it was 40 years ago.

9.8.1 Rotor Mass Unbalance Vibration

The most common cause of excessive rotor vibration is mass unbalance
in the rotor and the primary symptom is of course excessive once-per-
rev (synchronous) vibration. Excessive vibration is often accompanied by
a significant presence of dynamic nonlinearity in a rotor dynamical sys-
tem (e.g., journal bearing films, rotor–stator rubs). In consequence, integer
multiples of the synchronous frequency may also appear with high levels
of unbalance-driven vibration (see Figure 9.2). However, vibration com-
ponents at integer multiples of the synchronous frequency are possible
symptoms of other vibration causes as well. Furthermore, in some machin-
ery types, strong synchronous vibration can originate from sources other
than rotor mass unbalance, most notably centrifugal pump hydraulic forces
(see Section 6.1 of Chapter 6 discussion pertaining to Table 6.1). Therefore,
it is readily apparent just from the symptoms associated with excessive
rotor unbalance that identification of specific causes of excessive vibration
remains an inexact science.

The two most important ramifications of unbalance caused excessive
vibration are (1) the long-term abuse that a machine incurs at operat-
ing speed if the unbalance situation is not mitigated and (2) the passage
through critical speed(s), that is, run-up and coast-down in machines with
operating speeds above one or more critical speeds. In a machine where a
rotor piece of significant mass detaches from the rotor, coasting the machine
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down through critical speed(s) without major damage is a primary concern.
Many types of rotating machinery typically maintain their quality state of
rotor mass balance over long periods of operation, and thus are more likely
to exhibit excessive unbalance vibration when something definitive has
gone wrong, such as loosening or detachment of a rotor piece. Conversely,
some types of rotating machinery are notorious for going out of balance in
normal operation, for example, large fans in power plants, steel mills, and
so on, due to uneven accumulation of crud on the fan impeller. In spindles
of precision grinders where the grinding wheel diameter is reduced sub-
stantially through wear and repeated redressing, nonuniform distribution
of grinding wheel density is sufficiently significant in that rotor-mounted
automatic balancing devices are a standard spindle attachment that is
needed to achieve precision grinding operations.

The rapid growth in the need for larger and higher speed rotating
machinery initiated in the early twentieth century quickly clarified the
importance and need for well-balanced rotors. Early engineering empha-
sis was both on (1) developing adequate balancing methods/devices for
machinery production and (2) design and construction approaches to make
rotors inherently maintain their state of balance in operation. One notable
example is the manufacture of large electric generators powered by steam
turbines. In the construction of these large generators, it is required that
rotors be turned for several hours at their operating speed in shop floor pits
at elevated temperatures so as to “season” rotor parts to stable dimensional
positions, thereby enabling a stable shop balancing of the rotor.

9.8.2 Self-Excited Instability Vibrations

In forced vibration (like from rotor unbalance), the responsible alternating
force is independent of the vibration. In self-excited vibration, the respon-
sible alternating force is controlled by the vibration itself, and vanishes if
the vibration ceases. The early twentieth century focus on rotor unbalance
vibration quite naturally led early vibration troubleshooters to attribute
any excessive rotor vibration to inadequately balanced rotors and/or insuf-
ficient ability of rotors to maintain good rotor balance in operation. Such
assessments were usually correct. However, in certain landmark cases
when repeated rotor rebalancing failed to alleviate an excessive vibration,
major discoveries were made of previously unidentified vibration causes.
Possibly the most significant example of this is the discovery of oil whip, as
documented by Newkirk and Taylor (1925). Oil whip is a subsynchronous
vibration, triggered when the journal bearings act as negative dampers
to the lowest-frequency forward-whirl rotor–bearing vibration mode. Oil
whip is scrutinized within the context of a linear model in Section 2.4 of
Chapter 2. As Crandall (1983) heuristically explains, oil whip is but one of
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FIGURE 9.19 Growth of rotor orbit for an unstable rotor mode.

the several known self-excited rotor vibration instability mechanisms that
share the fundamental characteristic illustrated in Figure 9.19.

The most prominent of this group of instability mechanisms include
(1) oil whip, Section 2.4 of Chapter 2; (2) centrifugal pump impeller
forces, Section 6.1 of Chapter 6; (3) centrifugal compressor impeller forces,
Section 6.2 of Chapter 6; (4) steam whirl, Section 6.3 of Chapter 6; (5) axial
flow compressor stages, Section 6.4 of Chapter 6; (6) Coulomb friction,
material stress–strain hysteresis, or other rotor-based damping mecha-
nisms rotating synchronously with the rotor; (7) rotor anisotropy (elastic,
inertia); and (8) trapped liquid in a hollow rotor. Figure 9.19 illustrates that
for any of these instability mechanisms, their reaction force on the rotor
in response to a radial displacement from equilibrium has both radial
and tangential components. The radial component (Fr) of the reaction
force can be either a centering force as in the case of journal bearings,
or it can be a decentering force as in the case of a high-Reynolds-number
fluid annulus; see Figure 6.6c and d, Chapter 6. However, it is the tan-
gential component (Ft) of the reaction force that supplies the energy to
destabilize a potentially self-excited rotor vibration mode. Such destabi-
lizing forces are usually present in most rotating machinery from one or
more sources such as itemized earlier in this paragraph. But self-excited
vibration occurs only when the dissipative positive damping influences
in the system are overpowered by the negative damping influences of the
instability mechanism(s) present. An instability threshold is an operating
condition “demarcation boundary,” where the negative damping effects
overtake the positive damping effects. In a successfully designed machine,
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the positive damping effects keep the negative damping effects in-check
over the full range of intended operating conditions.

In many modern high-power-density high-speed machines, the
supremacy of positive damping effects over the destabilizing negative
damping effects is tenuous. Thus, due to subtle differences between so-
called identical machines, a particular machine within a group of several
of the same configuration may occasionally experience self-excited vibra-
tion while the others do not. Similarly, a particular machine may operate
free of self-excited vibration for a number of years and then begin to
regularly exhibit self-excited vibration, for example, due to accumulated
wear or other gradual changes over time or due to hard-to-isolate changes
that may occur during overhaul and refurbishment. Such is the nature
of oil whip and other similarly manifested instability self-excited rotor
vibration causes.

9.8.2.1 Oil Whip

The cascade plot in Figure 9.9 best illustrates the identifying symptoms of
oil whip. The machine must typically be rotating above twice the frequency
of the potentially unstable mode. As Figure 9.9 suggests, the oil-whip mode
is unbalance excited as a critical speed (damped forced resonance) as it is
passed through on the way up to operating speed, posing no problem as
a critical speed, provided the rotor is adequately well balanced and the
mode is adequately damped. As the oil-whip threshold speed is encroached
upon, the net damping/cycle for this mode transitions from positive to
negative and the mode commences vibration at a significant amplitude
with its frequency typically below half the rotor spin speed. As Figure 9.9
further shows, with speed increases beyond the oil-whip threshold speed,
the subsynchronous rotor vibration does not proportionally track the rotor
spin speed but maintains a nearly constant frequency.Also, it does not peak
and then attenuate at progressively higher speeds like response through a
critical speed does. Thus, oil whip cannot generally be “passed through” as
can a critical speed. Afurther characteristic of oil whip and some other sim-
ilar self-excited vibrations is that its peak in the frequency spectrum often
exhibits significant amplitude fluctuations, for example, as observable from
picture-to-picture on a real-time spectrum analyzer display screen. Again,
this is the nature of oil whip and other similarly manifested instability
self-excited rotor vibrations.

9.8.2.2 Steam Whirl

Steam whirl is described in Section 6.3 of Chapter 6. Its vibration symp-
toms are quite similar to oil whip, with one notable exception. Its threshold
of instability is not rotational speed induced but, instead, power output
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induced. In power plant jargon, power output is synonymous with “load”
on the machine. Steam whirl is a destabilizing mechanism that is of concern
primarily in the high-pressure steam turbine section of large turbo-generator
units. It can produce significantly high subsynchronous forward-whirling
rotor vibration, just like oil whip. However, oil whip within the operating
speed range usually prevents safe operation, and thus requires an imme-
diate solution. In contrast, since steam whirl is a destabilizing influence
whose strength increases with “load” on the machine, not speed, a tempo-
rary solution is to derate the machine to a load below which the steam whirl
is suppressed by the positive damping, primarily in the oil-film journal
bearings. Figure 9.20 illustrates steam whirl vibration symptoms and its
threshold power output, and is similar to Figure 9.9, which illustrates the
symptoms for oil whip and its threshold speed.

9.8.2.3 Instability Caused by Internal Damping in the Rotor

Damping is a fundamental means both to minimize the amplitude of res-
onant response and to keep destabilizing influences in check. However,
damping mechanisms fixed in the rotor become destabilizing influences in
rotors that operate above a critical speed. Two widely recognized sources of
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rotor-based damping are (1) rotor internal material stress–strain hysteresis-
loop energy dissipation and (2) sliding friction between rotor components
such as in splines. Both of these rotor-based damping mechanisms are
exercised by flexural vibration in the rotor.

Internal rotor damping as a potential source of self-excited vibration
was first proposed in a pair of papers by Kimball (1923, 1925), but Smith
(1933) provided a simpler insightful explanation. More recently, Crandall
(1983) has provided additional clarity to the topic. In essence, irrespective
of whether a damping mechanism is linear (e.g., viscous dash pot) or non-
linear (e.g., Coulomb sliding friction), there is always an energy dissipating
drag force at the heart of the damping action. Aerodynamic drag forces are
a source of energy dissipation, as airplane and automobile designers well
know. However, aerodynamic drag can also impart energy to solid objects
such as occurs in strong wind storms, and this essentially explains how
rotor internal damping can produce self-excited rotor vibration.

Figure 9.21 illustrates this point using a simple example in which it
is assumed that rotor internal damping is the only damping present. As
shown, when the rotor spins slower than the orbit natural frequency, rotor
internal damping causes an orbital disturbance to decay. Conversely, when
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the rotor and its internal damping mechanism rotate faster (at a higher
frequency) than the orbit natural frequency, the rotor internal damping
pulls tangentially in the direction of orbiting and thereby imparts energy
to the orbital vibration mode, causing the mode to become self-excited at
its natural frequency.

This is similar to an automobile traveling at a speed slower than a high-
speed tail wind, which then imparts energy to the vehicle rather than
extracting energy from it. Similarly, the strength of the orbit-tangential
pulling force from rotor internal damping progressively increases as shaft
rotational speed becomes progressively larger than the orbit natural fre-
quency. In actual machines, there are always sources of damping present
in the machine’s nonrotating portion and thus, for this instability to occur,
rotor speed must exceed the orbit natural frequency (i.e., critical speed)
by a sufficient margin in order to overpower the positive damping influ-
ences present. Thus, when internal rotor damping causes a self-excited
rotor vibration, the frequency of the vibration is subsynchronous, simi-
lar to oil whip and steam whirl described earlier in this section. Ehrich
(1964) provides a comprehensive analytical treatment of self-excited rotor
vibration caused by rotor internal damping.

This type of self-excited vibration is not often diagnosed in heavy indus-
trial machines (e.g., in power plants) where the rotors are supported on
oil-film journal bearings. But the destabilizing mechanism of rotor inter-
nal damping may well be a significant contributing factor in some cases
where oil whip or steam whirl are the primary sources of self-excited
rotor vibration. On the other hand, rotor internal damping is more likely
to be diagnosed as the primary source of self-excited forward-whirling
subsynchronous rotor vibration on gas-turbine aircraft jet engines and
aero-derivative gas turbines for power generation, where rotors are sup-
ported on rolling-element bearings and in some configurations coupled
by splines to accommodate differential thermal expansions.

9.8.2.4 Other Instability Mechanisms

Chapter 5 provides a background on bearing and radial-seal rotor vibra-
tion characteristics, with attention focused on factors affecting dynamical
stability. Chapter 6 provides additional insights into the instability mecha-
nisms for self-excited rotor vibration originating in turbo-machinery stages
of pumps, turbines, and compressors. Crandall (1983) gives insightful
tutorial descriptions of several rotor instability mechanisms and Ehrich
(1976) provides detailed analyses and symptom descriptions.

9.8.3 Rotor–Stator Rub-Impacting

The boiler feed water pump illustrated in Figure 5.13a exemplifies many
types of rotating machinery that possess quite small internal annular radial



Signal Analysis and Identification of Vibration Causes 337

clearance gaps (e.g., at end seals, interstage seals, bearings, blade tips,
balance drums, etc.). These small internal radial clearances are essential to
the efficient functioning of such machines and are among the most impor-
tant reasons for the close attention paid to operating vibration levels in
rotating machinery. This is because one of the deleterious effects of exces-
sive rotor vibration is the contact between rotor and stator at locations
with small rotor–stator radial clearances.

Occurrences of rotor–stator rubs and rub-impacts can be roughly
grouped into the following categories: (1) rotor vibration levels become
high for any reason (e.g., excessive unbalance, resonance, self-excited
instability, etc.), resulting in contact between rotating and nonrotating com-
ponents, with the rotor–stator contact somewhat passive in its effect on the
overall vibration; (2) similar to category (1) except that the rotor–stator con-
tact contributes a strong influence on the ensuing vibration; (3) rotor–stator
contact is initiated by excessive static radial rotor forces and/or casing
thermal distortions, and excessive vibrations may or may not result; and
(4) rotor rub force magnitude is modulated in synchronization with the
once-per-rev component of rotor vibration orbit, providing an asymmetric
friction-induced heat input to the rotor, causing it to develop a “thermal
bow,” which initiates a slowly precessing vibration phase angle (forward
or backward) because the rotor “high spot” and “hot spot” do not coin-
cide due to thermal inertia and phase lead or lag between the unbalance
and the synchronous orbital response it excites. In effect, the “hot spot”
tries to catch up to the “high spot,” but as the “hot spot” migrates so
does the “high spot” in response. This phenomenon is sometimes referred
to as “vector turning” because when a representative vibration signal is
polar plotted over time (see Figure 9.8), the vibration “vector” slowly
rotates (e.g., couple of hours per turn) in one direction, as further explained
in the corresponding case study of Chapter 12. When there is insuffi-
cient heat-removal capacity available, the turning vector does not stay
within acceptable vibration levels, but instead continues to slowly spiral
outward.

In brush-type exciters of large AC generators, this “vector turning” phe-
nomenon can be instigated by the brushes’ rubbing contact friction forces
being synchronously modulated by brush inertia, that is, brushes are spring
preloaded to track rotor contact-surface orbital motions. This type of rub-
bing friction-induced vibration is also known to occur from rotor rubbing
of radial seals where the rubbing contact friction force is synchronously
modulated by the effective support stiffness of the seal. The field mea-
surement case explained earlier in this chapter pertaining to Figures 9.6
and 9.10 is a prime example of category (3) in which the rub-impacting
significantly worsens subsynchronous vibration on coast-down.

Figure 9.22, from tests and corresponding computer simulations,
Adams and Loparo (2000), demonstrates transition from category (1) to
category (2).
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FIGURE 9.22 Unbalance induced rub-impacting on a flexible-rotor test rig.

Referring to the orbital responses in Figure 9.22, the stronger the
rub-impacting, the higher the degree of dynamic nonlinearity and thus
the greater the amplitude of harmonics of the synchronous frequency
(2N, 3N, 4N, . . .), which will appear in the rotor vibration FFT spectra.
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Rub-impact in rotating machines is a group of phenomena involv-
ing continuous or dynamically intermittent contact between rotating and
stationary (nonrotating) machine components. Rotor–stator contact is of
course undesirable but tolerated in most machines for brief periods dur-
ing initial wear-in and operating transients. Persistent rotor–stator contact
considerably accelerates the wearing open of the small rotor–stator radial
clearance gaps, significantly reducing machine efficiency and thereby
shortening the time cycles between machine repairs and major overhauls.
Furthermore, persistent rotor–stator contact puts a machine in jeopardy
of failure from the potentially devastating effects of very large amplitude
rotor vibration, which can be triggered by severe rotor–stator rub-impact
events. In the worst-case scenario, if rub friction is sufficiently intense
to impose backward whirl on the rotor vibration orbit, it can provide
a mechanism for the ensuing vibration to tap directly into the primary
torque-transmitted power through the shaft, leading to an immediate
catastrophic failure of the machine.

In modern aircraft gas turbine jet engines, blade tip clearances are
understandably quite small, because of inefficiencies associated with back
leakage at turbo-machinery blade rows. Therefore, blade tip-on-casing rubs
are not unusual in service, given hard landings, ingestion of hail and birds,
and tight-maneuver engine rotor gyroscopic effects in military fighter jets.
In recent years starting from 2000, the author has been retained by the
largest manufacturer of gas turbine jet engines to help develop a test
rig and specialized simulation software to study engine core compressor
blade tip-rub contact with the engine casing shroud. The test facility that
resulted from this collaboration is described by Padova et al. (2005) and
the tip-rub-induced blade vibration software development by the author
is described by Turner et al. (2005). That work initially focused on gain-
ing new knowledge and insight into the fundamental phenomenon of
blade-on-casing rub-induced blade vibration that could potentially lead
to shortened blade life expectancy. More recently, this work has focused on
determining improved rotor vibration bearing-like model representation
of rubbing blade rows to better predict how blade–casing contact changes
critical speed locations.

9.8.4 Misalignment

Vance (1988) provides an insightful description of vibration symptoms
associated with misalignment. Piotrowski (1995) provides an excellent
handbook on shaft alignment methods and procedures. Vance concisely
points out the key symptoms that distinguish misalignment caused vibra-
tion from rotor unbalance vibration. Specifically, excessive misalignment
typically produces a large twice running speed (2N) harmonic component
of vibration and a high level of axial vibration. He cites bent shafts and
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improperly seated bearings as special cases of misalignment that yield
similar symptoms. Furthermore, for machines that operate below the first
critical speed, the misalignment-induced running-speed axial vibration at
the two ends of the shaft or across the coupling will be approximately
180◦ out of phase with each other (like in the 150–210◦ range). In contrast,
these signals will usually be nearly in-phase when rotor unbalance is the
primary source of vibration. On this point, Vance cautions that transducer
orientations in opposite directions (e.g., at opposite ends of the shaft) will
impose an inadvertent 180◦ error in phase measurement if the readings are
not properly interpreted for transducer orientations.

9.8.5 Resonance

With adequacy of rotor balance quality and available damping, passing
through critical speeds is a tolerable fact of life for many types of modern
rotating machinery, because the critical speed vibration peaks are endured
only for the brief time periods while the machine passes through the critical
speed(s). However, if by some design flaw, installation error, or component
deterioration, a machine’s operating speed is quite near a critical speed,
excessive unbalance-driven vibration will most likely result. To achieve
acceptable vibration levels in such an undesirable circumstance requires
a state of rotor balance quality, which is possibly beyond what is prac-
tically achievable. Ironically, it is in this very circumstance for which it
is most difficult to achieve a high-quality rotor balance. This is because
accurate vibration phase angle measurement is an essential ingredient
for achieving quality rotor balancing. But the close proximity of a crit-
ical speed to the machine’s operating speed will cause vibration signal
phase angle to be quite unsteady. This is explained by the response of the
1-DOF system to a harmonic excitation force (see Figure 1.5), which clearly
shows the steep change in phase angle near the natural frequency that
will be caused by continuously occurring small perturbations in natural
frequency.

Aside from the critical speed operation, resonances in nonrotating com-
ponents such as the machine housing or attached components (e.g., piping)
are not uncommon, and if not properly diagnosed and corrected can shortly
lead to a failure. These types of vibration are usually relatively easy to
diagnose and correct, in comparison to vibration problems inherent in
the rotor–bearing system. Vibrations of this type may occur at the syn-
chronous frequency (1N) and/or its harmonics (2N, 3N, . . .) such as from
a vane-passing frequency, and are thus readily identified by their strong
dependence on rotor speed. Spectral cascade plots against rotor speed (e.g.,
Figures 9.9 and 9.10) are therefore quite useful in diagnosing this category
of vibration.
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9.8.6 Mechanically Loose Connections

Looseness at nonrotating connections such as bearing caps, bearing
mounts, or base mounts is likely to result in a vibration problem since
the bearings and mounts constrain the shaft to its rotational center-
line. The dynamical characteristics precipitated by the looseness of these
components will quite likely introduce a significant degree of dynamic
nonlinearity into the vibratory system, for example, intermittent in-and-
out of hard contacting as components vibrate through dead-band gaps
created by the mechanical component looseness. Therefore, the excessive
vibration produced by such mechanical looseness usually yields a rich
vibration spectrum with several prominent harmonics (2N, 3N, . . .) of the
synchronous spin frequency and possibly prominent integer subharmon-
ics (N/2, N/3, . . .) and their integer multiples (2N/3, 4N/3, . . . , 3N/2, . . .)
as well. The singular presence of such a subsynchronous harmonic may
lead to a misdiagnosis that the vibration root cause is one of the sub-
synchronous self-excited vibration types covered earlier in this section.
In seeking to differentiate mechanical looseness-caused vibration from
other sources (e.g., excessive rotor unbalance, self-excited vibration),
taking vibration measurements in different directions and locations on the
machine (e.g., see Figure 7.14) can be helpful because looseness-caused
vibration tends to be directionally biased as dictated by the specific direc-
tion and location of the looseness (see case studies in Section 12.7 of
Chapter 12).

Looseness of a rotor-mounted component (e.g., thrust collar, spacer col-
lar, impeller ring, slinger disk, etc.) is also likely to cause a vibration
problem. Such a looseness is likely to induce a mass unbalance on the
rotor, but not necessarily resulting in a synchronous vibration, although
it could. If the looseness combined with other factors involved allows the
rotor-loose component to spin at a speed different from the shaft speed,
then a nonsynchronous vibration is likely to be present. Prevailing fric-
tion conditions, clearances, and fluid or aerodynamic drag forces provide
a wide range of possibilities for various steady or unsteady vibrations
to result. The loose component could possibly lock its rotational speed
into one of the rotor–bearing system’s subsynchronous orbital natural fre-
quencies and thereby disguise itself as one of the previously described
self-excited vibration types. If the loose component is a driven element
like a turbine disk, then a resulting nonsynchronous vibration would be
at a frequency above the rotor spin frequency. Otherwise, any resulting
nonsynchronous vibration will likely be at a subsynchronous frequency.
A rotor-loose component will possibly cause additional symptoms to
help it to be identified, for example, axial shuttling of the rotor if the thrust
collar is loose.
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9.8.7 Cracked Shafts

The initiation and subsequent propagation of a crack through the shaft is
of course among the most dreaded failure types in rotating machinery. As a
consequence, early diagnosis and careful trending of vibration symptoms
for cracked shafts is a well-studied topic within the machinery vibration
monitoring field. Muszynska (1995) provides an insightful explanation of
cracked-rotor vibration symptoms, employing a simple 2-DOF single-mass
rotor dynamics model. Muszynska’s model embodies the two prominent
symptoms that a rotor crack superimposes on a simple unbalance-only
vibration model. These two effects are (1) a bending stiffness reduction
aligned with the crack direction and (2) a crack-local shift in the bending
neutral axis (the rotor therefore bows) corresponding to the crack direction.

The first of these two effects produces a twice-rotational-speed (2N)

vibration component. This is similar to what would occur prominently in
long two-pole generators were it not for the standard radial slots that are cut
in such generator rotors to equilibrate the principle bending stiffnesses. The
second of these effects produces a synchronous (N) vibration component
that vectorially adds to the preexisting residual unbalance synchronous
vibration.

The vibration symptoms for a developing rotor crack are therefore (1)
the emergence and growth of a 2N vibration component simultaneously
with (2) the emergence of a progressive change in synchronous vibration
amplitude and phase angle from the rotor-bow-induced unbalance. An
additional symptom is apparent when rotor x and y displacements are
monitored. That is, the rotor orbit will appear similar to the typical orbit
with N and N/2 harmonics superimposed (see Figure 9.4) except that the
period of the cracked-shaft orbit is one revolution (not two) as immedi-
ately detectable from the presence of only one keyphaser mark per period of
orbital vibration. There have been some remarkably accurate predictions of
how long a rotor can operate before it fails from a sudden through fracture
precipitated by a shaft crack propagation. In one well-substantiated case,
the supplier of the vibration monitoring system predicted the exact number
of operating days remaining for a primary nuclear reactor coolant pump
shaft in a PWR commercial electric power generating plant. Although
that nuclear plant’s operators were unfortunately skeptical of the predic-
tion, after the shaft failed as predicted (to the day) they became converted
“believers.”

9.8.8 Rolling-Element Bearings, Gears, and Vane/Blade-Passing Effects

Wear and other damage in rolling element bearings yields vibration com-
ponents that are symptomatically related to specific bearing features such
as inner raceway, outer raceway, separator, and rolling element damage.
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Similarly, gear sets also produce unique vibration signatures with specific
features that can be diagnostically related to specific wear and other dam-
age types and locations. The level of rotor and casing vibration components
present for these diagnostic purposes is typically of much lower amplitudes
than the overall levels of residual vibration, and thus typically are not of
great significance with regard to their potential for vibration-caused dam-
age to a machine. Incipient bearing failure detection is of course important
on its own.Adams (Michael) and Loparo (2004) demonstrate the significant
capability of combining advanced signal processing with remote sensing
of vibration for early detection of impending failure in rolling element
bearings.

Similarly, vane-passing and blade-passing frequencies are com-
monly present in turbo-machinery vibration signatures, but likewise at
amplitudes typically much smaller than the overall levels of residual vibra-
tion. Vane- and blade-passing vibration components are of diagnostic
significance primarily in assessing the respective hydraulic or aerody-
namic operating factors of such machinery. For example, the propensity
for certain types of internal damage such as to impeller and diffuser vanes
in high-power-density centrifugal pumps (e.g., boiler feed water pumps)
can be assessed from the strength of vane-passing vibration components.
Vane-passing vibration components can also be related to acoustic reso-
nance problems. The highly specialized component and machine-specific
natures of the vibration signature components for these categories rele-
gates their fuller treatments to component and machine-specific references.
Vance (1988) provides introductory treatments, but an entire book chap-
ter could readily be employed to give comprehensive treatments to each
of these topics. Makay (1978) provides the definitive charts of vibration
symptom identifications for centrifugal pumps. The Makay charts correlate
root-cause symptoms and severity levels to vibration frequency compo-
nents (normalized by rotational speed frequency) as functions of pump
flow (normalized by best-efficiency flow).

9.9 Summary

This chapter identifies and explains the symptoms of known causes of
excessive rotating machinery vibration within the context of modern
measurement and monitoring-detection technologies. An initial call for
vibration diagnosis of a specific machine usually begins with an alert
from vibration monitoring that shows the machine’s vibration levels are
going to exceed or have already exceeded the experience-based “normal”
or “allowable” levels for the machine (e.g., see Figures 7.1 and 8.1). In
seeking to eliminate the problem, identification of the root cause(s) of the
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excessive vibration is a far more rewarding approach than the trial-and-
error method which may never converge to a good solution. There are
many unfortunate cases in which machine owners/operators have lived
with vibration-plagued machines for years without a good diagnosis and
solution, and thereby have borne the expenses associated with the all-too-
frequent costly repairs precipitated by long duration exposure to excessive
vibration levels. The spare parts and rebuild business attending such sit-
uations can be lucrative indeed, easily exceeding several times the initial
profits on the sale of the defectively designed machinery.

As indicated throughout this chapter, the FFT spectrum is presently the
major rotating machinery vibration diagnostic tool. A scrutiny of vibration
spectral characteristics for various problem root causes, as described and
explained in this chapter, shows that many different root causes pro-
duce similar looking rich spectra. This shows the need to combine FFT
analysis with other diagnostic tools such as rotor orbit measurement
and analysis. This also shows the significant value of developing fur-
ther improvements and better tools in the condition monitoring field.
So this chapter also presents new emerging diagnostic approaches that
can be major advancements for next-generation condition monitoring
products.
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Studies





10
Forced Vibration and Critical Speed
Case Studies

10.1 Introduction

Vibration excited by residual rotor unbalance is always present in all rotors
at all operating speeds, because it is of course impossible to make any rotor
perfectly mass balanced. Therefore, the objective concerning unbalance-
excited vibration is its minimization, not total elimination. Chapter 8
addresses the fundamental question of whether the residual vibration of
a machine is within its acceptable limits or is excessive. When vibration
levels are deemed excessive and it has been established that the excita-
tion is unbalance (see Section 9.8), the proper corrective course of action
is often simply to rebalance the rotor. This is especially typical in some
machinery types that are inherently susceptible to going out-of-balance in
normal operation, like large fans in power plants and steel mills where
crud collects nonuniformly on fan blades. Many machines are designed
with externally accessible rotor balance planes where balance correction
weights can be added. Thus, in-service rebalancing of the rotor does not
typically require opening up the machine and is considered a relatively
routine procedure.

However, the root cause for excessive unbalance-excited vibration can be
other than the rotor being too far out-of-balance.As explained in Section 9.8,
an inadequately damped resonance condition can cause excessive vibra-
tion, even when the excitation force is not large, as Figure 1.5 clearly shows.
If for any reason the operating speed is quite near a critical speed, then the
vibration levels can readily become excessive for continuous operation.
A critical speed near the operating speed can be the result of some design
flaw, installation error, component deterioration, or support/foundation
changes over time. For similar causes, transient passage through a criti-
cal speed may exhibit vibration levels that are dangerously high even for a
short duration passage through critical speed, such as in a slow coast-down
of the machine.

The case studies presented in this chapter are not of the category where
routine rebalancing of the rotor is the solution to the excessive vibra-
tion problem. Each case study presented here typifies the more difficult
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ones where routine rebalancing does not solve the problem. As these
cases demonstrate, identification of both root cause(s) and the most cost-
effective solution(s) or fixes can be enormously aided by using analysis
models.

10.2 HP Steam Turbine Passage through First
Critical Speed

Figure 10.1 shows the steam turbine portion (generator not shown) of the
HP–LP drive line of a 350 MW cross-compound turbo-generator. Cross-
compound units typically have 50% of the power capacity on each of two
drive lines. One drive line contains an HP turbine, one or two LP turbines
plus an AC generator and possibly a drive-line-mounted exciter. The other
drive line similarly contains an IP (or reheat cycle) turbine, one or two LP
turbines plus an AC generator and possibly a drive-line-mounted exciter.
Cross-compound units are powered by a single fossil-fired boiler, and have
main flow steam lines connecting the two drive lines. That is, reheated
exhaust from the HP turbine is piped across drive lines to the IP turbine
steam inlet and IP turbine exhaust is piped proportionally to all the LP
turbines of both the drive lines.

The excessive vibration experienced with the unit in Figure 10.1 occurred
primarily in the HP turbine section during coast-down, where it exhibited
a clear resonance of the HP turbine, with a 20 mils (0.5 mm) peak-to-peak
synchronous vibration of the HP rotor at its bearings. This vibration prob-
lem had all the symptoms of an HP turbine critical speed that had become
insufficiently damped over a period of several months. Furthermore, the
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FIGURE 10.1 Cross-compound 350 MW turbo-generator, HP–LP portion.
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coast-down speed at which this critical speed vibration peaked varied from
coast-down to coast-down, anywhere between 1400 and 2000 rpm.

The author’s preliminary diagnosis was that one of the HP rotor’s two
tilting-pad journal bearings was statically unloaded (at least during coast-
down), probably due to bearing alignment shifting. This would explain
a significant reduction in bearing damping capacity with the attendant
excessively high resonance vibration peaks. This would also explain the
nonstationary HP turbine critical speed (i.e., from bearing stiffness varia-
tions caused by bearing load variations). From assembly drawings of the
machine, the author developed a complete drive-line finite-element-based
rotor vibration model for the complete HP–LP drive line (see Chapter 4 for
computer modeling examples). Even though the excessive vibration was
localized primarily in the HP section of the HP–LP drive line, the model
(236 DOF) was configured to include not only the HP turbine but also the
LP turbine and generator sections, all connected by rigid couplings and
with a total of six journal bearings. The author’s approach on this point is
not to guess whether, or how much, the LP and generator sections affect
the vibration problem, but instead to include the complete drive-line rotor.
This approach also provides an analysis model readily available for other
future analyses needed for rotor vibration problems anywhere on the same
drive line.

Ajournal bearing’s oil-film stiffness and damping properties are strongly
influenced by its static load. In the computer model for this case, journal
bearing stiffness and damping coefficients were generated for all six journal
bearings using the EPRI COJOUR code referenced in Chapter 5. Bearing
coefficients were determined for the nominal alignment case with bear-
ing design loads as well as several off-design out-of-alignment bearing
load distributions. Since large turbo-generators have more than two jour-
nal bearings, the bearing loads are statically indeterminate. This means
that bearing static loads are strongly influenced by bearing alignments.
Therefore, it is common on large turbo-generator units for vibration char-
acteristics to change significantly as the bearing support structures shift,
for example, as a function of operating point and/or from support shifting
and settling over time.

As detailed by McCloskey and Adams (1992) for this troubleshooting
case, the analysis showed that unloading of bearing no. 2 fully accounted
for the excessive vibration symptoms on this unit. They also provide details
of an extensive parametric study, which shows that by adding preload
to the statically unloaded tilting-pad journal bearing no. 2 (preload of
C′/C = 0.7), the HP turbine vibration peak at its critical speed is reduced
to half the level of that using an unloaded bearing no. 2 with no preload.
This change was made to the actual no. 2 bearing with the result that
the HP critical speed vibration peak amplitude was in fact approximately
halved with no negative side effects of adding the modest amount of
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preload to no. 2 bearing. The long-term permanent fix by the power com-
pany owner of this machine was to replace the two original OEM HP
turbine tilting-pad bearings with a superior non-OEM tilting-pad design
discussed in Chapter 12 and in the EPRI symposium paper by Giberson
(1993).

10.3 HP–IP Turbine Second Critical Speed through
Power Cycling

In this case study, the HP–LP steam turbine drive line of a 240 MW 60 Hz
(3600 rpm) generating unit is similar to that illustrated for the prior case in
Figure 10.1. Excessive rotor vibration was consistently experienced on the
unit’s HP–IP rotor during power following in the 145–185 MW range. This
characteristic was reported to exist since the unit’s original commissioning
several years earlier. However, it was only after a recent scheduled refur-
bishment outage that this vibration increased to levels that were deemed
sufficiently excessive to require root cause identification and substantial
attenuation. The author undertook vibration measurements of the entire
drive line employing a 16-channel digital tape recorder. Examination of
these measurements suggested the root cause to be the HP–IP rotor’s sec-
ond critical speed, as evidenced from the vibration peak accompanied by a
sharp change in phase angle measurement, as shown in Figure 10.2. This
critical speed shifted up or down across 3600 rpm operating speed as power
output of the unit cycled during power demand following. The author’s
preliminary assessment was as follows. The root cause appeared to be the
HP–IP journal bearing static load changes commensurate with the variable
partial emission of the impulse turbine control stage during power cycling
(see Section 6.3.2 of Chapter 6 with Figure 6.7).
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FIGURE 10.2 Measured shaft vibration versus power at HP–IP bearing no. 2.
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Using the RDA code supplied with this book, the author developed a
rotor vibration computer model of the unit’s entire drive line, as shown in
Figure 10.3. This model was used to parametrically study rotor unbal-
ance vibration as influenced by journal bearing hydrodynamic oil-film
stiffness variations at 3600 rpm resulting from variations in net impulse
turbine nozzle radial force when transitioning through power changes.
The computer model simulations verified the initial diagnosis that the
root cause was the HP–IP rotor’s shifting second critical speed. A compos-
ite of simulation results are plotted in Figure 10.4, showing the influence of
journal oil-film radial stiffness. The OEM’s HP bearing configuration (Fig-
ure 10.5a) was a four-pad pivoted-pad configuration with dead-weight
load between the bottom two pads. As was expected, and as Figure 10.4
shows, the computer model predicted that the second critical speed tran-
sitions up through the 3600 rpm operating speed as journal bearing input
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FIGURE 10.5 Turbine pivoted-pad bearing configurations: (a) OEM and (b) TRI.

stiffness is set at progressively higher values, from 0.3 million lb/in. (54
million N/m) to 1.4 million lb/in. (250 million N/m). Figure 10.4 also
shows the unbalance vibration response predicted with a six-pad non-
OEM journal bearing retrofit at bearings no. 1 and no. 2. This retrofit
six-pad pivoted-pad bearing design, with weight centered on the bottom
pad, has substantially higher radial stiffness than the OEM design, and its
stiffness is much less sensitive to bearing load changes during power fol-
lowing of the unit. Based on the drastic vibration attenuation predicted by
the computer model with the six-pad bearing retrofit, the authors recom-
mended this retrofit. It was supplied by Turbo Research Inc. (TRI). A sketch
of this bearing configuration is shown in Figure 10.5b and described by
Giberson (1993).

This bearing retrofit was purchased and installed at bearings no. 1 and
no. 2 shortly thereafter by the power company owner of this unit during
the next scheduled outage. Following that scheduled outage and bearing
retrofit, the author again took shaft vibration measurements on the entire
machine’s drive line (Adams and Adams, 2006). Those vibration measure-
ments showed a more than twofold reduction in peak vibration levels.
Elimination of the second critical speed from the operating power range
was also evidenced from a rotor vibration phase angle gradual change
versus unit power.

10.4 Boiler Feed Pumps: Critical Speeds
at Operating Speed

10.4.1 Boiler Feed Pump Case Study 1

The rotor sectional view shown in Figure 10.6 is from a four-stage boiler
feed water pump (BFP) somewhat similar to that shown in Figure 5.13a.
In the power plant of this case study, the BFPs are installed as variable
speed units with operating speeds from 3000 to 6000 rpm, each with an
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FIGURE 10.6 Rotor sectional view for a four-stage BFP.

induction motor drive through a variable speed fluid coupling. In this
plant, the BFPs are all “50%” pumps, which means that when a mainstream
turbo-generator is at 100% (full load) power output, two such pumps are
operating at their nominal operating condition. This plant (located south of
Melbourne, Australia) houses four 500 MW generating units, each having
three 50% BFPs installed (i.e., one extra 50% BFP on standby), for a total of
12 boiler feed pumps, all with the same configuration. Full-load operating
speed ranges for each 50% BFP is 5250–5975 rpm.

The BFPs at this plant had experienced a long history of failures, with
typical operating times between overhauls under 10,000 h, with the atten-
dant significant monetary cost. Based on the operating experience at other
power plants (at U.S. power plants) employing the same BFP configuration
with quite similar operating ranges, these BFPs should have been running
satisfactorily for over 40,000 h between overhauls. Using vibration velocity
peak monitored at the outboard bearing bracket, these BFPs were usually
taken out of service for overhaul when vibration levels exceeded 15 mm/s
(0.6 in./s). To wait longer significantly increased the overhaul rebuild cost,
that is, incurred more damage. The dominant vibration frequency was
synchronous (1N).

The author’s preliminary diagnosis was that these pumps were operat-
ing quite near a critical speed and that the resonance vibration resulting
from this worked to accelerate the wearing open of interstage sealing ring
radial clearances. As these inter-stage clearances wear open, the overall
vibration damping capacity diminishes significantly, typically leading to
a continuous growth of vibration levels. To confirm this preliminary diag-
nosis, the author developed an RDA finite-element-based computer model
(see Chapter 4) for this BFP configuration in order to compute lateral rotor
vibration unbalance response versus rpm. The manufacturer (OEM) of the
pump provided a nominally dimensioned layout of the assembled pump,
including weight and inertia for concentrated masses (impellers, balanc-
ing disk rotor, thrust bearing collar, coupling piece, and shaft sleeves). The
pump OEM also provided detailed geometric dimensions for the journal
bearings, interstage radial seals, and other close-clearance radial annular
gaps. This cooperation by the pump OEM greatly expedited the develop-
ment of the RDA model, eliminating the need to take extensive dimension
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measurements from one of the BFPs at the plant or repair shop, which were
at a considerable distance outside the United States (Australia).

The radial annular gaps have clearance dimensions that are quite small
and are formed by the small difference between a bore (inside diameter,
ID) and an outside diameter (OD), each with tolerances. The size of each
of these small radial clearance gaps is very influential on the respective
bearing or seal stiffness, damping, and inertia coefficients (Chapters 5
and 6) and thus very influential on the computed results for rotor vibration
response. However, these small radial gaps vary percentage-wise signifi-
cantly and randomly because of their respective ID and OD manufacturing
tolerances plus any wearing open due to in-service use. BFPs are thus
one of the most challenging rotating machinery types to accurately model
and analyze for rotor vibration. The net result is that even in the easiest
of cases, a realistic rotor vibration analysis for troubleshooting purposes
(as opposed to design purposes) requires several trial input cases to get
the model predictions to reasonably portray the vibration problem the
machine is exhibiting. By iterating the model inputs per radial-clearance
manufacturing tolerances and allowances for wear, a set of inputs is sought
that produce rotor vibration response predictions concurring with the
machine’s vibration behavior. When a good agreement model is achieved,
the author refers to it as the calibrated model. Through computer simula-
tions, the calibrated model can then be used to explore the relative benefits
of various fix or retrofit scenarios, as was done in the successful steam
turbine case studies presented in the previous two sections.

A calibrated model was not initially achieved for this pump vibration
problem in that all reasonable model variations for input dimensions failed
to produce predicted unbalance responses having a resonance peak below
8000 rpm, which is considerably above the operating speed range. Since
the power plant in this case was in Australia, a visit to the plant had not
initially been planned. However, given the failure of all initial RDA model
variations to replicate or explain the BFP vibration problem, a trip to the
plant was undertaken to study the pumps firsthand.

Poor hydraulic conditions in BFPs, such as from inaccurate impeller cast-
ings, can produce strong synchronous rotor vibrations (see Section 9.8 and
Table 6.1) so several of the impellers were inspected for such inaccuracies.
In the course of further searching for the vibration problem root cause,
a number of serious deficiencies were uncovered in the local BFP over-
haul and repair shop’s methods and procedures, all of which collectively
might have accounted for the vibration problem. Luckily, on the last day of
the planned 1-week visit to the plant, the root cause was discovered, but it
could have been easily overlooked. In the process of discussing installation-
after-overhaul details with mechanics at the plant, it was revealed that
between the inner journal bearing shells and the axially split outer
housings there was a clearance of about 0.001 in. (0.025 mm) into which
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FIGURE 10.7 Computed unbalance-excited critical speed versus bearing stiffness (inter-
posed gasket).

a gasket was interposed and compressed as the two housing halves were
tightly bolted together. This use of gaskets had been discontinued many
years earlier in most U.S. power plants. The net result of the interposed
gasket was to reduce the effective bearing stiffness to a value significantly
below the range that had been reasonably assumed in the initial (unsuccess-
ful) attempts to develop a calibrated RDA model. When the relatively soft
gasket effect was incorporated into the RDAmodel bearing stiffness inputs,
a resonance peak showed up right in the normal operating speed range.

An analysis study was conducted to compute critical speed (speed at
which unbalance-excited vibration response peaks) as a function net bear-
ing stiffness, using a stiffness value range consistent with the interposed
gasket. A summary of the results for this analysis is shown in Figure 10.7. A
bearing stiffness value of 100,000 lb/in. (12.8 × 106 N/m) places the critical
speed right at the normal full load operating speed range. The variability
of gasket stiffness also explained the plant’s experience with the excessive
vibration fading in-and-out over time.

The gasket stiffness is in-series with the bearing oil film’s in-parallel stiff-
ness and damping characteristics. Since the gasket is much less stiffer than
the journal bearing oil-film stiffness, the gasket also reduces considerably
the damping action of the oil films. The use of a gasket between the bearing
inner shell and outer housing was clearly the “smoking gun,” placing the
critical speed near the normal full-load operating speed while depriving
the attendant resonance of reasonable damping. All bearings were rein-
stalled with metal shim strips, at the 45◦ and 135◦ angular locations relative
to horizontal, providing a bearing pinch of about 0.001 in. (0.025 mm).

A simplified view of the BFP nonplanar critical speed response shape is
shown in Figure 10.8, which flattens the actual nonplanar response shape
into a plane for plotting purposes. This is helpful in showing the rotor
axial locations where residual rotor mass unbalance will have the most
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effect in exciting the critical speed resonance vibration. The unbalance
vibration response shape here is in fact nonplanar, similar to the exam-
ple isometric illustration shown in Figure 4.9. The obvious conclusion
drawn from the computed unbalance response shape shown in Figure 10.8
was that coupling unbalance probably contributed significantly to this
vibration problem, because the repair shop’s rotor balancing procedure,
as witnessed by the author, was inadequate in several areas, particularly
for the coupling. The flexible couplings employed on these BFPs are of
the diaphragm type and are well suited to such applications, being more
reliable than gear couplings that require maintaining lubrication. With a
properly functioning flexible coupling, the BFP is sufficiently isolated from
the driver (lateral vibration wise) so that the analysis models can justifiably
terminate at the pump half of the coupling. Experience has shown this to
be well justified.

10.4.2 Boiler Feed Pump Case Study 2

A second BFP vibration case study presented here involves the BFP
shown assembled in Figure 10.9. It is similar in size and capacity to that
in the previous BFP case study (Figure 10.6), being a “50%” pump for
a 430 MW steam turbo-generator unit. The BFP shown in Figure 10.9 is
actually a three-stage pump for boiler feed, but has a small fourth stage
(called a “kicker stage”), which is to supply high-pressure injection water
at pressures above feed water pressure.

This BFP was observed to have a critical speed at 5150 rpm, although
the manufacturer’s design analyses did not support this observation. This
is a variable speed pump with a maximum operating speed of 6000 rpm.
The 5150 rpm critical speed was in the frequently used operating speed
range and produced excessive vibration levels, primarily at the inboard
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end of the rotor (i.e., coupling end at suction inlet). A clue was supplied by
Dr. Elemer Makay. At a number of power plants employing the same BFP
design, he observed BFP inboard journal bearing distress in the top half of
the bearing bore. This bearing distress was consistently centered about 10◦
rotation direction from the top center. The journal bearings were of a design
employing a relieved top-half pocket. The specific elbow geometry of the
pump inlet piping suggested to Dr. Makay that there was a significant
upward hydraulic static force on the suction end (inboard end) of the rotor.

A finite-element-based unbalance response model was developed by the
author from detailed OEM information supplied by the electric power
company owner of the plant. A lengthy double-nested iteration study was
undertaken in which an upward static rotor force was applied on the rotor
model at the suction-stage impeller. Through a trial-and-error iteration, this
upward static radial force was directed so as to produce an inboard journal
eccentricity direction of 10◦ rotation from the top center, as motivated by
the bearing distress observations of Dr. Makay. From each of several values
assumed for this force, a set of journal bearing static loads were calculated.
A set of bearing stiffness and damping coefficients were in turn calcu-
lated for each set of bearing static loads. Each set of bearing stiffness and
damping coefficients were then used as inputs to the finite-element-based
unbalance response model to compute rotor vibration response versus rpm
using a typical set rotor unbalances.

Through several iterations, a force of 3477 pounds yielded journal
bearing rotor dynamic coefficients (using the EPRI COJOUR code
referenced in Chapter 5) that predicted an unbalance-excited critical speed
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of 5150 rpm. Furthermore, at this predicted 5150 rpm critical speed, the
rotor vibration response shape showed high inboard (coupling end) vibra-
tion levels as observed on the BFPs at the plant. In fact, the critical speed
rotor vibration response shape was very similar to that shown in Figure 10.8
for the earlier BFP case study presented in this section. The problem
was eliminated by retrofitting a different journal bearing configuration
that shifted the critical speed considerably above the 6000 rpm maximum
operating speed.

10.4.3 Boiler Feed Pump Case Study 3

The boiler feed pump shown in Figure 10.10 experienced a number of
forced outages that were accompanied by excessive vibration levels. One
of these outages involved a complete through-fracture of the pump shaft
just adjacent to the balancing drum runner. As detailed by Adams and
Adams (2006), the authors were retained to diagnose the root cause(s) and
develop a cost-effective fix. This pump was not equipped with shaft tar-
geting noncontacting displacement proximity probes. So the author’s first
step was to retrofit X and Y (90◦ apart) proximity probes near each pump
journal bearing, to obtain shaft vibration displacement measurements ade-
quate for successful root cause diagnoses. These four retrofitted proximity
probes were installed in parallel with four velocity pickups, to capture
any proximity probe mounting motions. Figure 10.11 shows the outboard
end of the pump with the author’s retrofitted vibration sensors (x and y
proximity probes and velocity pick-ups).

A parallel task was undertaken to develop a rotor unbalance vibration
response RDAcomputer model for this pump. Computer model prediction

FIGURE 10.10 Variable-speed boiler feed pump of a 600 MW generating unit.
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FIGURE 10.11 (See color insert following page 262.) Proxy probe setup.
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FIGURE 10.12 Journal vibration.

results are shown in Figure 10.12 and predict a critical speed at 5250 rpm,
right near the normal full load operating speed. Subsequent to these model
predictions, the unit was restarted and all eight channels of the newly
installed vibration channels were recorded as a function of pump rota-
tional speed during roll-up. A sample of these vibration measurements is
plotted in Figure 10.13. These rotor vibration measurements clearly show a
vibration peak at about 5100 rpm, quite close to the predicted 5250 rpm crit-
ical speed. This critical speed was judged to be a strong contributing factor
to the excessive pump vibrations and associated outages. The author engi-
neered wear-ring surface geometry modifications for this pump to shift the
critical speed well above the operating speed range.

10.5 Nuclear Feed Water Pump Cyclic Thermal Rotor Bow

A cross-sectional layout of a PWR nuclear power plant feed water pump
configuration is shown in Figure 10.14. This plant houses two 1150 MW
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PWR generating units. Each unit employs two 50% feed water pumps, for
a total of four feed water pumps. All four of these pumps had experienced
cyclic rotor vibration spikes that were synchronized with the seal injec-
tion water flow control. After several months of unsuccessful in-company
vibration measurements and troubleshooting diagnoses of this excessive

FIGURE 10.14 Nuclear feed water pump.
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FIGURE 10.15 Fifty-minute vibration record from feed water B-Pump Unit-2.

vibration problem, the author was retained by the power company owner
to see if a rotor vibration computer model analysis could identify the root
cause of the excessive vibration. A more detailed documentation of this
troubleshooting case is reported by Adams and Gates (2002), where plant
and pump OEM are identified. The correlation between pump seal injec-
tion water control and vibration signals is shown in the 50-min sample of
the vibration data in Figure 10.15.

Exhaustive computer rotor vibration analyses of this pump were con-
ducted by the author utilizing the RDA software (rotor mass station
numbers shown in Figure 10.14), both for unbalance-forced vibration and
instability self-excited rotor vibration root causes. It was no surprise to
the author that these analyses eliminated critical speeds and self-excited
vibration phenomena as likely root causes, but the plant insisted upon
these analyses as the first step.

With those analyses out of the way, the author was free to study if a cyclic
thermal bowing of the rotor could be the root cause of the problem that
could explain the plant’s pump rotor vibration. The 10◦F cyclic seal injec-
tion differential temperature swings synchronized with the 15 min/cycle
rotor vibration characteristic, as shown in Figure 10.15.Aclose examination
of this pump configuration in Figure 10.14 shows a typical arrangement
employing shaft sleeves to form the rotating parts of the shaft seals. There
are two mating sleeves on each axial side of the impeller. Each of these
two-sleeve combinations was modeled by a single hollow cylinder of a
nominal length. A calculated 10◦F differential thermal expansion for the
two-sleeve model (in steel) was computed to be 1.2 mils (0.03 mm), which
was calculated to impose a 23,000 pound (10,250 N) compressive force on
the sleeves, since the much higher cross-sectional area of the shaft virtually
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FIGURE 10.16 Computed shaft bow by sleeve-to-shaft differential expansion.

prevents this differential thermal expansion. Under perfect manufacturing
and assembly conditions (i.e., no tolerances), the compressive restraining
force would be coaxial with the shaft centerline (i.e., best-case scenario).
Under a worst-case scenario (possible), the axial restraining force would
be centered at the outer radius of the cylinder (R ∼= 3.5 in., 89 mm). For a
representative bending moment calculation, the intermediate value of R/2
was used. Shaft compressive force was accordingly calculated to yield a
shaft bending moment of 40,250 in. lb (= 1.75 × 23,000), 4554 N m.

As illustrated in Figure 10.16, the bending moment was calculated to
cause a 3.8 mil (0.097 mm) transient thermal bow of the shaft. This result
was initially not believed by the client. So as a prudent next step, the client
shop tested the plant’s spare feed pump rotor on a rotor balancing machine
with specially installed locally placed heaters on the shaft sleeves. This
test confirmed the author’s contention shown in Figure 10.16. That led to a
shaft-sleeve retaining nut modification retrofit, by interposing a compress-
ible gasket under each shaft-sleeve retaining nut at both ends of the pump
shaft. This low-cost retrofit more evenly distributes the compressive force
circumferentially, and freely allows the inherent cyclic differential thermal
expansion while maintaining the nominal sleeve assembly compressive
force. This retrofit is now installed on all four of the plant’s 50% feed water
pumps, with total success in eliminating the vibration problem’s root cause,
as reported by Adams and Gates (2002).

10.6 Power Plant Boiler Circulating Pumps

Some fossil-fired boilers for steam power plants incorporate boiler circu-
lation pumps. This measure significantly reduces the size of the boiler,
compared to free-convection boiler designs for the same capacity and thus
significantly reduces the boiler first cost. Such boiler circ pumps come in a
range of sizes matched to the output capacity of the boiler. The boiler circ
pump discussed here is for quite older generating units rated at 130 MW.
Each boiler is supplied with three such pumps, but can operate at full capac-
ity with only two pumps operating, so pump maintenance and rebuilds
can take place without backing off on unit generating power output.
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Figure 10.17a shows a cross section of the boiler circ pump in this case
study. These pumps have a vertical centerline of rotation, as illustrated.

The author was retained to do a thorough top-to-bottom investigation of
these pumps because they each had, for many years, required rebuilds
approximately once per year, based on the floating ring seal clearance
wearing open enough to exceed the capacity of the feed water system to
supply seal injection water from a point upstream of the feed water mani-
fold, that is, at a pressure sufficiently higher than boiler feed water pressure
(see Figure 10.17b).

To gain potentially valuable diagnostic information, the author devised
special fixtures so that shaft vibration measuring probes could be installed
on one of the operating boiler circ pumps, at the only readily accessible
location, the coupling. Figure 10.17a schematically illustrates that installa-
tion of x and y proximity probes. A spectrum of one of the shaft vibration
displacement signals is plotted in Figure 10.18. It was fully anticipated that
the vibration levels at the coupling would be relatively small. Also, since
the rotational centerline is vertical, the appearance of a modest level of
N/2 subsynchronous component was not surprising.

But what was surprising was the high level of the 6N impeller vane-
passing shaft vibration level so far away from the impeller. This finding led
to the identification of the root cause of the consistently high wear rate of the
floating rings seal clearance, but not before some additional detective work.
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FIGURE 10.18 Shaft coupling vibration displacement spectrum.

It was discovered by the author that when one of these boiler circ pumps
is removed to the rebuild shop, the boiler remains in operation. Further-
more, during the time the pump is away for rebuild, the only thing that
separates the inside 600◦F 2500 psi (316◦C 170 bars) boiler water from the
surrounding area is a single isolation valve, hopefully with a good seat!
So naturally, no one in their right mind is going to stick his (or her) head
down into the impeller vacated area to take an inside micrometer reading
of the impeller-eye wear ring ID. When the simultaneous opportunity of
unit shut down and boiler circ pump removal coincided, the impeller-eye
wear ring ID was measured. The measurement showed that the impeller
wear ring radial clearance was several times what it should be, worn open
from years of unattended inspection and use.

The author made calculations which showed that the backflow through
the impeller wear ring clearance to the impeller inlet (eye) was easily as
high as 30% of the pump’s rated capacity. This surely explained why these
pumps were never quite delivering rated capacity, even just after a rebuild.
Upon consultation with the boiler circ pump OEM’s lead hydraulics engi-
neer, it was revealed that such a high rate of wear ring backflow would
significantly disrupt the impeller inlet flow velocity distribution, with the
likely outcome of a quite high dynamic hydraulic impeller force at the
vane passing frequency. The root cause smoking gun was finally found. The
impeller wear rings need to be replaced when their clearance wears open
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to twice the as-new value. The pump OEM also has available a zero leak-
age mechanical seal retrofit that eliminates the floating ring seals and thus
eliminates the need for seal injection flow. However, even with the superior
OEM seal retrofit mechanical seal, the excessive 6N vane passing vibration
must still be kept in check by proper wear ring replacement when needed.

10.7 Nuclear Plant Cooling Tower Circulating
Pump Resonance

This case deals with a nuclear power plant boiling water reactor (BWR) gen-
erating unit rated at 1300 MW. It has three cooling tower circulation pumps,
requiring at full load only two of these pumps operating during the winter
season, but all three operating during the summer season. These are quite
large vertical rotational centerline pumps with a rotor speed of 325 rpm
(5.5 Hz). Over a period of several years, at least one of these pumps moved
sufficiently out of plumb to need re-plumbing. That was accomplished dur-
ing the winter season when this pump was taken out of service. Following
this effort the unit was test run and found to have excessive levels of vibra-
tion at rotor speed frequency (5.5 Hz). The plumb shimming used at the
base reduced base floor contact, called “soft foot.” A structural resonance
frequency moved right into the spin frequency. The result was a high level
of structural resonance vibration, a rocking mode with maximum motion
at the top of the unit (motor).

The ultimate long-term fix is to eliminate the soft foot. A cost-effective
intermediate fix is to design and install a tuned vibration absorber attached
to the top of the motor. The author and his staff designed a vibration
absorber for this application.Atuned vibration absorber replaces the preex-
isting resonance with two side-band resonances, one below and one above
the preexisting resonance frequency. The absorber is simply a spring–mass
(Figure 1.1) tuned to the preexisting natural frequency, ωn = √

k/m. The
greater the absorber mass, the greater the frequency separation between the
two resulting resonance peak replacements. This is a common cost-effective
fix in the field. Figure 10.19 illustrates the design for this case.

10.8 Generator Exciter Collector Shaft Critical Speeds

The collector stub shaft of a 250 MW 3600 rpm steam turbine generator
had a long history of high brush wear rate. It also needed frequent grind
and polish operations on the collector rings to avoid “flash-over” arcing,
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FIGURE 10.19 (See color insert following page 262.) Vibration absorber (blue and red) atop
pump motor.

which occurs when the collector brushes do not follow (i.e., remain in
contact with) the collector ring radial excursions. Such excursions come
from rotor vibration and any collector-ring run-out from circumferentially
nonuniform wear imposed (e.g., via the rotor vibration-modulated brush
rub-contact forces; see Section 12.3, Chapter 12). The collector shaft is
shown in Figure 10.20. It did not have any shaft targeting noncontacting
displacement proximity vibration probes installed on it when the author
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Generator
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Fan

FIGURE 10.20 Collector shaft.
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was first retained to troubleshoot this problem. So the first step by the
author was to retrofit x and y (90◦ apart) proximity probes targeting the
outboard end of the collector shaft. In addition, x and y velocity pickups
were installed on the proximity probe holders so that absolute as well
as relative collector shaft orbital vibration signals could be continuously
measured. The recorded collector shaft vibration measurements are plot-
ted in Figure 10.21. Utilizing the RDA rotor vibration analysis software
provided with this book, a rotor unbalance vibration computer model
simulation confirmed the vibration peak at 3000 rpm to be the generator
second critical speed and the peak at 3550 rpm to be a collector shaft critical
speed.

A heavier outboard disk on the collector shaft was substituted in the
computer model and predicted that the addition of a heavier disk at the
outboard end of the collector shaft would push the collector shaft’s critical
speed down by 300 rpm below 3550 rpm. This analysis result provided the
basis for a practical cost-effective fix.

10.9 Summary

Critical speed troubleshooting case studies were selected for this chapter
to highlight a number of important considerations. The large steam tur-
bine cases demonstrate how rigidly coupled drive lines with more than
two radial bearings are susceptible to nonstationary vibration character-
istics resulting from statically indeterminate bearing load shifting. These
turbine cases, along with those in Chapter 12, support the author’s belief
that in cases of excessive vibration problems in large steam turbine gener-
ators, journal bearing static load changes, such as from bearing alignment
shifting, are most often one of the contributing factors to the problem.
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Four feed pump cases were selected for this chapter to stress the consider-
able challenges in developing good predictive rotor vibration models and
making correct problem diagnoses for high-energy density pumps. These
challenges arise for two generic reasons. The first reason is the multiplicity
of liquid-filled annular rotor–stator small-clearance radial gaps that dom-
inate the vibration characteristics of such machines, combined with the
dimensional variability of these small radial gaps from ID and OD manu-
facturing tolerances and in-service wear. Second, the potentially large and
uncertain hydraulic radial static impeller forces, which vary with a pump’s
operating point over its head-capacity curve (see Section 6.1), introduce
considerable uncertainty in radial bearing static loads. Since a bearing’s
rotor dynamic characteristics are a strong function of its static load, the
inherent uncertainty of impeller static radial forces adds to the uncertainty
of rotor vibration modeling and problem diagnoses. These pump cases
demonstrate the diligent persistence required to isolate the root cause(s)
in cases where simply rebalancing the rotor does not solve the problem.

The boiler circulating pump case study unfortunately typifies many long-
standing problems that can exist for decades at a plant, incurring high
upkeep costs and being a major nuisance for the operators until some
new person arrives at the plant one day and simply asks why. The service
and refurbishment companies are not necessarily going to ask the “why”
because the plant’s problem is their “honey basket.” The cooling tower
pump case study surely demonstrates what can easily happen when the
in-house individuals in charge of a major task, like replumbing a massive
piece of equipment, do not know what they are doing.
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11
Self-Excited Rotor Vibration Case Studies

11.1 Introduction

As discussed in Section 9.8 of Chapter 9, dynamic instability leading to
self-excited rotor vibration can originate from several different sources.
Modern turbomachinery is probably where self-excited rotor vibration
is most often encountered, because of the high-power transfers and the
attendant fluid dynamical interaction phenomena that abound inside
turbomachinery. In most cases, self-excited rotor vibration can lead to
excessively high vibration levels, and therefore when it is encountered
the mandatory objective is its elimination from the operating zones of
the machine. Paraphrasing Professor Stephen Crandall (1983), the avail-
able rotational kinetic energy in a machine is typically several orders of
magnitude greater than the energy storage capacity of a destabilized rotor-
whirling mode, and thus only a miniscule portion of the rotor kinetic
energy channeled into an unstable mode can readily cause a failure. Even
with the best of design practices and most effective methods of avoid-
ance, many rotor causes of dynamic instability are so subtle and pervasive
that incidents of self-excited rotor vibration in need of solutions continue
to occur. Three interesting case studies from the author’s troubleshoot-
ing experiences are presented in this chapter, all involving large steam
turbo-generators. Each of these three cases is unique and thus individually
informative.

11.2 Swirl Brakes Cure Steam Whirl in a 1300 MW Unit

As described in Section 6.3 of Chapter 6 and Section 9.8 of Chapter 9, steam
whirl is a subsynchronous self-excited vibration, typically of the lowest
natural frequency forward-whirling rotor mode. As previously explained,
steam whirl differs from its close relative oil whip in that steam whirl has an
instability threshold dictated by increasing power output, not increasing
rotor speed. While steam whirl forces are present in all stages of steam
turbines, when steam whirl occurs it is always in the high-pressure turbine,
as explained in Section 6.3 of Chapter 6.
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The case study presented in this section pertains to a 1300 MW
cross-compound steam turbo-generator. As explained in Section 10.2 of
Chapter 10, cross-compound units have two drive lines, each providing
approximately 50% of the unit’s rated power output. In the unit of this
case, each drive line is rated at 650 MW. One drive line has a double-flow
HP turbine, two double-flow LP turbines, a generator, and a drive-line-
mounted exciter. The other drive line has a double-flow IP turbine, two
double-flow LP turbines, a generator, and a drive-line-mounted exciter.
The power plant in this case houses two of these 1300 MW generating
units, each having it own coal-fired steam boiler. After being in service for
about 15 years, one of the two units developed a subsynchronous vibration
of excessive magnitude in its HP turbine section. At the point where the
author became involved in this problem, steam whirl was already deemed
the likely root cause responsible for the excessive subsynchronous (28 Hz)
vibration on this 60 Hz machine. It had been established that the vibration
kicked in at about 900 MW as the load was increased on the machine. The
unit was temporarily derated to 900 MW pending a solution to the prob-
lem. The organization owning the power plant therefore incurred a 300 MW
loss in generating capacity with the attendant lowered fuel efficiency of the
unit at the reduced power output. At that point in time, the owning orga-
nization also had some of its nuclear-powered generating units under a
temporary U.S. Nuclear Regulatory Commission (NRC) mandated shut-
down pending resolution of regulatory concerns. The search for a solution
to the problem was intense. The author was directed to this troubleshooting
case by the EPRI, who sponsored the author’s work on it.

As in the case presented in Section 10.2 of Chapter 10, the author devel-
oped a calibrated model for the entire HP drive line. That is, not to guess
whether, or how much, the two LPs, the generator, and the exciter affect
the vibration problem, but instead to include the complete rigid-coupled
rotor drive line in the model.

The complete HP drive line is supported in six journal bearings. Fig-
ure 11.1 shows only the HP turbine portion of the HP drive line, which is
where “swirl brakes” were retrofitted. As described in Section 6.3 of Chap-
ter 6, the destabilizing effect known as steam whirl is actually the sum of
two effects: (1) the Thomas-Alford forces due to variation of circumferen-
tial torque distribution (see Figure 6.2b) and (2) the leakage steam pressure
distribution effect within the annuluses between the labyrinth strips of the
blade tip seals (see Figure 6.6d), which is strongly abetted by the corota-
tional preswirl of steam entering the seals. Swirl brakes work to negate the
second of these two contributions, which is approximately twice as strong
as the first contribution. Swirl brakes are axially oriented flow straighten-
ing stationary vanes installed just upstream of the annular tip seals. In this
case, the rotor vibration model was used to determine instability thresh-
olds (see Section 4.3 of Chapter 4) and thereby evaluate how many of the
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FIGURE 11.1 HP turbine section of the HP drive line of a 1300 MW 3600 rpm cross-
compound steam turbo-generator.

first HP stages should be retrofitted with swirl brakes, which drastically
reduce seal inlet corotational preswirl. The destabilizing effect of steam
prerotation ahead of a seal varies approximately with the gas density and
thus the largest stabilizing influence yielded by swirl brakes is in tip seals
of the highest pressure stages.

As is typical, labyrinth tip seals in this HP turbine have multiple annular
sealing strips at each stage. To make space for swirl brake axial strips, the
first annular strip was removed at each stage and retrofitted with swirl
brakes. This reduces the efficiency of the turbine; hence so an evaluation
was made on the annual incremental fuel cost increase for each stage
retrofitted with swirl brakes. Stage-by-stage cross-coupled (skew sym-
metric) bearing-like stiffness coefficients were incorporated into the RDA
model at each HP turbine stage, with and without swirl brakes. The result-
ing analyses with the model indicated that swirl brakes installed in the rotor
mid-plane seals and in the first three stages (both flow legs) would produce
most of the stabilization influence that could be accomplished. Not only is
the steam pressure (density) highest in this axial central region of the HP
turbine, but the mode shape of the destabilized mode has its largest recep-
tiveness (i.e., magnitude) in the axial central region. The model-computed
HP unstable mode shape (Figure 11.2) clearly shows this, and it also shows
that the steam whirl self-excited vibration in this case is primarily in the
HP turbine. That is, the rest of the rotor sections rigidly coupled to the HP
turbine do not participate vigorously in the unstable mode’s self-excited
vibration. This is consistent with the monitored vibration measurements
from this machine, which showed the significant subsynchronous vibration
component concentrated in the HP rotor.
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FIGURE 11.2 Steam whirl excited unstable mode of HP drive line.

The fix implemented at the power plant on this unit was therefore to
install swirl brakes in the rotor mid-plane seals and in the first three stages
of both flow legs. The unit was then able to operate free of steam whirl
up to 1250 MW. Some subsequent adjustments to journal bearing vertical
alignments provided the additional stabilizing influences that allowed the
unit to be operated at its rated 1300 MW capacity, free of steam whirl.

Swirl brakes
(Axial vanes)

FIGURE 11.3 (See color insert following page 262.) HP turbine swirl brakes on a 1300 MW
steam turbine.
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A photo of the retrofitted swirl brakes is shown in Figure 11.3. Further
details of the analyses for this case are given in the EPRI (1993) Symposium
Short Course Proceedings and by McCloskey and Adams (1992).

11.3 Bearing Unloaded by Nozzle Forces Allows
Steam Whirl

The steam turbo-generator unit in this case study is a 650 MW 3600 rpm
tandem compound configuration (i.e., one drive line). It is one of five such
units housed at the same plant.At about nine months prior to the unit’s next
scheduled outage for inspection and overhaul, the unit started to exhibit
a large amplitude subsynchronous 27 Hz vibration concentrated in its
HP–IP turbine section, 25 mils (0.64 mm) p.p. at journals. The initially diag-
nosed cause of the vibration source was steam whirl, because the associated
threshold of instability was machine power output dependent. At the point
in time when the author became involved in troubleshooting this problem,
the subsynchronous vibration kicked in at about 500 MW as the load was
increased on the machine.

Upon the strongest of recommendations by the author, the machine
was temporarily derated to 500 MW. The power output where the sub-
synchronous vibration kicked in progressively lowered as the machine’s
scheduled outage approached, indicating a progressive worsening of the
root cause. Accordingly, the unit was progressively derated in increments
to about 300 MW as its scheduled outage was reached. When the unit was
operable at its full 650 MW rated capacity, the power company owner of this
plant had about 1000 MW of excess power from its most efficient generating
units to sell to other power companies, such as the neighboring organi-
zation owner of the generating unit covered in Section 11.2, which was
significantly short of capacity at the time because of its nuclear units in reg-
ulatory shutdown. Understandably, the quite significant income reduction
from derating the machine to operate free of the high-amplitude subsyn-
chronous vibration precipitated a tug-of-war between production financial
management and plant engineering. Nonetheless, with the author’s help,
the engineers prevailed over the “bean counters” (not an everyday event!)
and the unit was derated as necessary to operate free of the subsynchronous
vibration. Naturally, the search for a solution to this vibration problem
was intense.

A review of operation and maintenance records for this machine dis-
closed a history of excessive HP-turbine impulse (control stage) nozzle
erosion for the unit. This discovery strongly suggested to the author that
uneven static radial steam forces on the HP–IP rotor (at its impulse stage,
see Figure 6.7) produced a net static radial rotor force that partially unload
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journal bearing static loads enough so that the bearings’ normal squeeze-
film capacity to suppress steam whirl was significantly diminished. The
HP–IP journal bearings for this unit are of a 6-pad tilting-pad configu-
ration with the rotor weight vector directed into the bottom pad’s pivot
location. In this scenario, the impulse stage’s static radial load on the HP–
IP rotor slowly increases over time because of the progressive closing of
an impulse-stage control nozzle as some other nozzles’ steam-flow areas
enlarge due to erosion. This control nozzle closing must of course occur in
order to maintain the steam power input to the machine within its rated
capacity.

To test this hypothesis, the author developed a finite-element based
total drive-line lateral rotor vibration RDA model calibrated for this unit’s
vibration symptoms, as had previously been done in successfully trou-
bleshooting the unit in the Section 10.2 case study. Net static radial
loading conditions on the HP–IP rotor were calculated as a function of
slowly progressing time-dependent nozzle wear. Several analysis cases
were undertaken by incorporating these progressive HP–IP rotor load
changes into the journal bearing static loads for the drive line. The result-
ing stiffness and damping coefficients for all the journal bearings plus the
skew-symmetric bearing-like stiffness coefficients for the HP section steam
whirl forces were incorporated into the rotor vibration model of the unit.
As reported by McCloskey and Adams (1992), the computed model results
correlated well with the actual time line progression of the continuously
worsening subsynchronous vibration problem. The conclusion was there-
fore drawn, with a high degree of confidence, that the vibration was in fact
steam whirl and that progressive nozzle wear in the HP turbine impulse
stage was the root cause. Therefore, a new nozzle plate replacement, with
a change in material to provide improved resistance to erosion wear, was
immediately ordered and ready for installation by the time of the scheduled
outage. During the scheduled outage, the old nozzle plate was inspected
and as expected was found to have considerable nozzle erosion wear. The
unit was put back into service with the new nozzle plate and operated free
of steam whirl up to its full rated 650 MW capacity. The unstable mode’s
shape is shown in Figure 11.4 and it is quite similar to that shown in Fig-
ure 11.2 for the steam whirl case in Section 11.2. The model-computed mode
shape in Figure 11.4 shows that the rest of the rotor sections rigidly cou-
pled to the HP–IP rotor do not participate vigorously in the steam whirl
vibration. This is consistent with the monitored vibration measurements
from this machine at the time of the problem. The experience gained from
this problem by the owning company of this unit was especially valu-
able given the fact that the plant houses five such 650 MW units. In the
same time frame of this problem, the author was consulted by another
power company having a similar problem on a 620 MW version of the
same design machine.
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FIGURE 11.4 Steam whirl unstable mode of complete drive line.

11.4 Misalignment Causes Oil Whip/Steam
Whirl “Duet”

The steam turbine generator unit in this case study is a 430 MW 3600 rpm
tandem compound configuration (i.e., one drive line). It is the largest of four
generating units housed at its plant. The author was consulted because the
unit was in a derated mode of operation due to a strong subsynchronous
28.5 Hz vibration in the HP–IP rotor at loads above 390 MW. Based upon
prior experiences, such as with the cases presented in Sections 11.2 and
11.3, it appeared to be a clear-cut case of steam whirl. However, the manu-
facturer of this machine claimed that this design did not have any history
of steam whirl at other plants where the same design had been installed
and no information was found at these plants to refute OEM’s claim.

In a close collaborative effort with the OEM, the author developed
a finite-element-based total drive-line rotor-bearing RDA model of the
machine from detailed drawings and other information supplied by the
OEM and the power company owner of the machine. Based on then recent
bearing elevation measurements, for both “cold” and “hot” machine con-
ditions, the rotor static sag-line was computed and the journal bearing
static loads were thereby determined for both cold and hot conditions.
The difference in journal bearing static loads between cold and hot eleva-
tion readings was large enough to critically affect the loads on the HP–IP
bearings no. 1 and no. 2. Based on the so determined bearing static loads,
bearing stiffness and damping coefficients were computed (see Chapter 5).

Under the hot operating condition, bearing alignments at the HP–IP
end of the machine were significantly lowered relative to the rest of the
machine as compared to the cold condition. Consequently, HP bearing
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FIGURE 11.5 Oil whip/steam whirl unstable mode of complete drive line.

no. 1 (outboard) was about 90% unloaded. In fact, the HP–IP rotor was
operating nearly in a condition of being cantilevered off the rest of the
machine. It was amazing to the author that the rugged construction of the
rotor had allowed this operating mode without structural fatigue damage
to the shaft. However, as the model analyses showed, this allowed bearing
no. 1 to contribute significant oil whip forces to help the steam whirl occur.
All of the machine’s journal bearings were of the two-lobe configuration,
sometimes referred to as the “lemon” bore design, a metaphor particu-
larly appropriate for this plant’s installation. The unstable mode shape for
this case is shown in Figure 11.5 and it is significantly different than the
two unstable mode shapes shown in Figures 11.2 and 11.4 for the two other
steam whirl cases presented in this chapter. Figure 11.5 reflects that bearing
no. 1 was almost completely unloaded.

Further computer analysis studies singled out an optimum solution to
stabilize the 28.5 Hz mode, which resulted in stable operation up to the
machine’s rated output. Bearing no. 1 was replaced in the model with a
four-pad tilting-pad journal bearing with a range of preload factors, of
which 0.5 provided the best compromise. As a result of the author’s anal-
yses, the plant replaced bearing no. 1 with a four-pad tilting-pad journal
bearing having a preload factor of 0.5. This retrofit enabled the full load
operation of the machine.

11.5 Summary

These cases and those of Chapter 10 demonstrate convincingly that adroit
use of computer modeling drastically increases the probability of correctly
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diagnosing and curing difficult rotating machinery vibration problems
that are not solved by routine maintenance actions or trial-and-error
approaches.

Bibliography

Crandall, S. H., The Physical Nature of Rotor Instability Mechanisms (M. L. Adams,
Ed.), Proceedings of the ASME Applied Mechanics Division Symposium on
Rotor Dynamical Instability, AMD Vol. 55, pp. 1−18, 1983.

Electric Power Research Institute (EPRI) Short Course, Proceedings, EPRI Sympo-
sium on Trouble Shooting Power Plant Rotating Machinery Vibrations, San
Diego, CA, May 19–21, 1993.

McCloskey, T. H. and Adams, M. L., Troubleshooting Power Plant Rotating Machin-
ery Vibration Problems Using Computational Techniques, Fifth IMechE Inter-
national Conference on Vibration in Rotating Machinery, Bath, England,
September 1992.





12
Additional Rotor Vibration Cases
and Topics

12.1 Introduction

The commonly identified rotor vibration root causes and symptom
descriptions specific to each cause are summarized in Section 9.8.
Chapters 10 and 11 present specific troubleshooting case studies that fall
into two of the most frequently identified problem categories and that are
drawn from the author’s own troubleshooting experiences. This chapter is
more a potpourri of rotating machinery vibration problem topics not read-
ily grouped into a broad generic category, some taken from the author’s
own experience.

12.2 Vertical Rotor Machines

The topic of vertical machines warrants special treatment. The author gained
valuable experience and insights on vertical machines (while employed at
the Westinghouse R&D Center) from bearing and rotor vibration research
on PWR primary coolant pumps, both of the shaft-sealed type for com-
mercial nuclear plants and the canned-motor type for naval propulsion
systems. That these types of pumps are vertical is dictated by the pip-
ing layout constraints of a typical PWR primary flow loop. Concerning
rotor-bearing mechanics, vertical machines are fundamentally more dif-
ficult to analyze and understand than horizontal machines primarily
because the radial bearing loads are not dead-weight influenced, the rotor
weight being carried by the axial thrust bearing. Radial bearing static
loads in vertical machines are therefore significantly less well defined
and more nonstationary than bearing static loads in horizontal machines.
Given the strong dependence of journal-bearing rotor dynamic character-
istics on bearing static loads, the rotor vibration characteristics of vertical
rotor machines are typically quite uncertain and randomly variable, far
more than horizontal machines. While the author’s Westinghouse experi-
ence was still fresh, he disclosed his insights on vertical machines into
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the EPRI publication by Makay and Adams (1979), which delineates
important design and operational differences between vertical machines
and horizontal machines.

A shaft-sealed reactor coolant pump (RCP) for a PWR nuclear power
plant is illustrated in Figure 12.1. This pump is approximately 25 ft (7.6 m)
high. The motor and pump shafts are rigidly coupled, which enables
the entire coupled-rotor weight plus axial pump hydraulic thrust to be
supported by one double-acting tilting-pad thrust bearing. This is the
standard arrangement supplied by the U.S. RCP manufacturers. A major
European pump manufacturer employs a flexible coupling, necessitat-
ing two thrust bearings, one for the pump and one for the motor. In the
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Motor
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journal
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FIGURE 12.1 RCP of 100,000 gpm capacity and speed of 1200 rpm; typical PWR primary
loop conditions are 2250 psi (153 bars), 550◦F.
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Figure 12.1 configuration, a large flywheel mounted at the top of the rotor
is approximately 6 ft (1.8 m) in diameter and 15 in. (0.38 m) thick. It pro-
vides a relatively long coast-down time to insure uninterrupted reactor
coolant water flow during the transition to emergency backup power in a
pump power interruption. The use of a spool piece in the rigid coupling
is to allow inspection and repair of the pump shaft seals without having
to lift the motor. The pump impeller OD is approximately 38 in. (0.97 m).
The rigidly coupled rotor shown in Figure 12.1 is held by three journal
bearings, two quite narrow oil-lubricated tilting-pad journal bearings in
the motor and one water-lubricated graphite-composition sleeve bear-
ing located just above the thermal barrier. The water-lubricated bearing
operates at primary loop pressure (∼2250 psi, 153 bars) and thus this hydro-
dynamic bearing runs free of film rupture (cavitation). The attitude angle
between the static load and the journal-to-bearing radial line-of-centers is
therefore 90◦ over the full range of operation. This case is illustrated in
Figure 6.6b. As a consequence, such RCPs usually exhibit a half-frequency
whirl (i.e., half rotational speed) component in the rotor vibration signals.
More detailed information on this pump and similar designs of different
manufacturers is given in the Oak Ridge National Laboratory report of
Makay et al. (1972).

RCPconfigurations in most U.S. and several foreign nuclear power plants
have the rigid-coupled three-journal-bearing arrangement typified by the
pump shown in Figure 12.1. From a rotor vibrations perspective, this
presents possibly the most challenging type of system on which analysis-
based predictions are made. That is, the journal-bearing static forces are
not only devoid of dead-weight biasing, but they are also statically inde-
terminate. All this combines to make journal-bearing static loads, and thus
rotor vibration characteristics, highly variable as related to manufactur-
ing tolerances, assembly variations, pump operating flow point as well as
normal wear at close clearance radial gaps. Given the absence of dead-
weight journal-bearing loads, the primary source of radial static load is
the static radial impeller force that changes with pump operating flow (see
Section 6.1). However, given the three-bearing rigid-coupled configuration
of RCPs, unless the three journal bearings are perfectly aligned on a straight
line, there will be additional journal-bearing static loads from the bearings
inadvertently preloading each other.

Jenkins (1993) attests to the considerable challenge in assessing the
significance of monitored vibration signals from RCPs, and focuses on
possible correlation of vibration signal content and equipment malfunc-
tion as related to machine age. He presents the “Westinghouse approach”
in identifying vibration problem root causes and corrective changes for
these aging Westinghouse RPC machines. In one of Jenkins’ case stud-
ies, what appeared to be a sudden unfavorable change in monitored rotor
vibration orbits was in fact eventually traced to a combined malfunction
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and faulty installation of the eddy current proximity probe system. This
led to the conclusion that eddy current probe displacement systems are
vulnerable to deterioration over time in the hot and radioactive environ-
ment around RCPs, and thus need to be replaced or at least checked at
regular intervals. This “false alarm” case also emphasized the importance
of closely following the proximity probe vibration instrumentation manu-
facturer’s instructions regarding permissible part number with allowable
target material combinations to avoid errors in probe-to-target scale factors,
upon which all monitored vibration signals are based. For rotor vibration
monitoring of RCPs, an x–y pair of proximity probes are installed 90◦ apart
just below the coupling on a short straight low run-out section of the shaft.

Asecond case study presented by Jenkins (1993) pertains to an RCP of the
model illustrated in Figure 12.1. It is one of the three identical pumps for a
specific reactor. It developed a large half-frequency (N/2) rotor vibration
whirl. With a cavitation-free water-lubricated sleeve bearing on a vertical
centerline, there is nearly always some N/2 vibration content observed in
the monitored rotor vibration signals of these pumps, but at tolerable levels
when the pumps are operating “normally.” In this case, the drastically
increased level of N/2 vibration led to an investigation to determine the
likely root cause(s) and the proper corrective action(s). Based on both the
drastic increase in monitored N/2 vibration component (changed from
2 to 6 mils p.p. at coupling) and on a shift in static centerline position
as indicated by the proximity probe DC voltages, it was diagnosed that
the pump (water lubricated) journal-bearing clearance had significantly
worn open. Some motor-bearing alignment adjustments allowed the N/2
vibration component to be held within levels deemed operable, pending a
replacement of the pump bearing at the next refueling outage, or sooner if
the monitored vibration developed a subsequent upward trend.

RCPs are not the only vertical pump applications. Some fossil-fired steam
boilers in electric power-generating plants are designed with boiler circu-
lating pumps (Section 10.6 of Chapter 10), which are incorporated into the
design to make the boiler physical size much smaller than it would other-
wise have to be if relying on free convection alone. Boiler circulating pumps
have vertical centerlines as dictated by suction and discharge piping con-
straints. Steam turbine power plant condensate pumps are another example
of vertical centerline machines. Marscher (1986) presents a comprehensive
experience-based treatment to vibration problems in these vertical pumps.
Most hydroelectric turbines and pump turbines are vertical.

12.3 Vector Turning from Synchronously Modulated Rubs

The propensity for rotor rubs to cause thermal rotor bows or local dis-
tortions that significantly increase synchronous vibration levels is greatest
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when the operating speed is close to a rotor critical speed with significant
modal participation at the rub site. This tendency was recognized early
in the era of modern rotating machinery as evidenced by the published
works of Taylor (1924) and Newkirk (1926). More recently, Muszynska
(1993) has provided an approximate computational model for this problem.
The author became familiar with this problem firsthand when consulted
by an electric power company in 1991 to help diagnose, explain, and cure
the root cause of a serious exciter vibration problem that the company
was experiencing on one of its fossil-fired 760 MW 3600 rpm steam tur-
bine generator units. The unit had just been retrofitted with a brush-type
exciter to replace its OEM-supplied brushless exciter with which the power
company had had a long history of unsatisfactory experience. Both the
original brushless exciter and the replacement brush-type exciter were con-
figured to be direct connected to the outboard end of the generator shaft, see
Section 10.8 of Chapter 10. The retrofitted brush-type exciter was custom
designed and built by an OEM, which was not the turbine generator unit’s
OEM. Because of the serious vibration problem initially experienced with
the newly retrofitted brush-type exciter, it was temporarily removed from
generator outboard end and the turbine generator unit was then operated
with an off-mounted exciter. To “add insult to injury” the power company
had to lease (at a quite high daily rental rate) the off-mounted exciter from
the turbine generator unit’s OEM.

To a high degree of certainty, the exciter vibration problem was initiated
by rub-induced friction heating at the sliding contact between the exciter
brushes and collector rings. The power company’s engineers working on
this rub-induced vibration problem were surprised by a fundamental dif-
ference between a major symptom on this problem and the corresponding
symptom of the previous rub-induced vibration problems that they had
seen, that is, with rubs at packings, oil deflectors, interstage seals, and end
seals. Specifically, in their prior experiences with rub-induced vibration,
the vibration signal polar plot of amplitude versus phase angle (see Fig-
ure 9.8) exhibited a counterrotational slowly precessing “vibration vector.”
In the exciter vibration problem at hand, the vibration vector slowly pre-
cessed in the corotational direction, taking approximately 3 h per 360◦ vector
turn, as illustrated in Figure 12.2. To understand and thereby properly
diagnose the exciter vibration problem, the author developed a simplified
model that explained the corotational direction precession of the exciter
vibration vector. The presentation that follows on the author’s simplified-
model explanation is extracted from its first presentation, by Adams and
Pollard (1993).

The simplified linear model has only 2-DOF (x and y) and treats the
rotor as a single lumped mass, as shown in Figure 12.3. Furthermore, the
radial stiffness and damping characteristic is assumed to be isotropic (i.e.,
same in all radial directions). Residual rotor unbalance is represented by
the standard synchronous rotating force. The two equations of motion for
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this system are therefore given as follows (see Equation 2.1):

mẍ + cẋ + kx = F1 cos ωt

mÿ + cẏ + ky = F1 sin ωt
(12.1)

The steady-state vibration obtained from the particular solution to
Equation 12.1 is as follows:

x1 = Z1 cos(ωt − φ)

y1 = Z1 sin(ωt − φ)
(12.2)

Assume that a rotor rub is initiated or at least modulated by this vibra-
tion. Consequently, a localized or cyclic heating of the shaft (hot spot)
produces a thermal bowing or local distortion on the shaft such that an
additional synchronous run-out and therefore additional unbalance-like
force are added colinear with the vibration “vector” Z1. The incremen-
tal change to the total vibration vector will lag the incremental unbalance
force by the same characteristic phase angle, φ. Thus, the total unbalance
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FIGURE 12.3 Simple 2-DOF model for rub-induced “vector turning” vibration.

force vector and the total synchronous vibration will be composed of the
appropriate vector additions given in the following equations:

x = x1 + x2 = Z1 cos(ωt − φ) + Z2 cos(ωt − 2φ)

y = y1 + y2 = Z1 sin(ωt − φ) + Z2 sin(ωt − 2φ)

Z ≡
√

x2 + y2 =
√

Z2
1 + Z2

2 + 2Z1Z2

[
1 − 2 sin2

(
φ

2

)] (12.3)

Equation 12.3 is used to explore four cases that explain why the afore-
mentioned exciter vibration problem was characterized by a corotationally
precessing vibration vector, in contrast to plant engineers’ prior experience
on rub-induced vibrations at packings, oil deflectors, and seals.

Case 1: Stiffness-modulated rub with ω < ωcr
If the rub is a “single-point” localized “hard” rub, or more generally stiff-
ness modulated all around the shaft, then the incremental unbalance force
(F2) will be in phase with Z1. Further, if the rotor speed (ω) is somewhat
less than the critical speed (ωcr), then the characteristic phase angle will be
less than 90◦ (see Figure 1.5b). This case is illustrated in Figure 12.4a.

That F2 is proportional and in phase with Z1 is based on the notion
that the rub contact pushes back on Z1 approximately proportional to Z1
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FIGURE 12.4 Stiffness modulated simple 2-DOF isotropic model.

(i.e., stiffness modulated such as rubs against packings, oil deflectors,
interstage seals, and end seals, etc.). Two important observations can be
made for this case from Figure 12.4a. First, the incremental effect of the
rub-induced rotor bow is to increase the total synchronous vibration (i.e.,
Z > Z1). Second, the phase lag (Φ) between F1 (a point fixed on the rotor, i.e.,
keyphaser) and the total vibration Z is increased, which means the rotor
high spot slowly precesses opposite the rotor spin direction. In other words,
as time proceeds, the phase lag and the vibration amplitude will both
slowly increase, because Z will produce a new incremental synchronous
unbalance force colinear with Z and thus produce an additional incremen-
tal synchronous component lagging Z by φ (not added to Figure 12.4a).

Case 2: Stiffness-modulated rub with ω > ωcr
In this case, using the same step-by-step approach, Figure 12.4b clearly
shows that a stiffness-modulated rub at a speed somewhat above the crit-
ical speed also produces a total vibration vector that precesses opposite
the rotor spin direction. However, in contrast to Case 1, the rub-induced
rotor bow does not automatically tend to continuously increase the total
vibration magnitude, an obvious consequence of φ being between 90◦
and 180◦.

Case 3: Inertia-modulated rub with ω < ωcr
Figure 12.5 is a visualization aid to explain the difference between stiffness-
modulated and inertia-modulated rotor rubs. The stiffness-modulated rub
(Figure 12.5a) pertains to a rotor-to-stator contact in which the normal
contact force increases the more the rotor displaces into the rub site. In
contrast, the inertia-modulated rub model presumes that the nonrotat-
ing contact rub surface is comprised of masses (e.g., exciter brushes) that
are soft-spring preloaded against the shaft to prevent loss of contact, as
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(a) Radial contact by “Stiff” springs (b) Radially movable masses
 preloaded by “Soft” springs

+ 
w

+
w

FIGURE 12.5 Rub force modulation models: (a) stiffness modulated and (b) inertia mod-
ulated. (Adams, M. L. and Pollard, M. A., Rotor Vibration Vector Turning Due to Rotor Rubs,
Proceedings of the EPRI Symposium on Trouble Shooting Power Plant Rotating Machinery
Vibrations, LaJolla, CA, May 19–21, 1993.)

illustrated in Figure 12.5b. Thus, the dynamics of inertia-modulated rotor
rubs produce a normal dynamic contact force, which is proportional to the
radial acceleration of the moveable stator masses. Therefore, for a syn-
chronous circular shaft vibration orbit, the dynamic component of the
normal contact force is 180◦ out of phase with the vibration displacement
signal, as is obvious from the following equations: Given

x = X cos(ωt − θ), then ẍ = −ω2X cos(ωt − θ) (12.4)

An inertia-modulated rotor rub thus tends to produce a maximum
contact force (and thus “hot” spot) which is 180◦ out of phase with the dis-
placement vibration vector (“high” spot). Therefore, in this case (ω < ωcr,
∴ φ < 90◦) the result can be illustrated as shown in Figure 12.6a, which
clearly indicates that the high spot (Z) will slowly precess in the corotational
direction of shaft spin. Figure 12.6a also indicates that the total vibration
amplitude is less than that from the initial mass unbalance alone, so in this
case the vibration vector is not as likely to spiral out of control as in the
next case.

Case 4: Inertia-modulated rub with ω > ωcr
This case differs from Case 3 in that the characteristic phase angle (φ) is
between 90◦ and 180◦. Using the same type of vector diagram illustration
as for the previous three cases, Figure 12.6b is constructed for this case. It
shows that in this case the total vibration vector will also slowly precess in
the corotational direction of shaft spin as with Case 3. However, in contrast
to Case 3, the total vibration vector (Z) is shown to be more likely to spi-
ral outward, and assuming insufficient heat removal capacity, can readily
spiral out of control.
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FIGURE 12.6 Inertia-modulated simple 2-DOF isotropic model.

Table 12.1 summarizes the four cases that are delineated with the model
in Figure 12.3. The specific rub-induced vibration problem on the 760 MW
unit referenced at the beginning of this section falls into Case 4. The suc-
cessful fix implemented by the supplier of the custom-designed brush-type
exciter retrofit entailed design changes to raise the exciter critical speed to
a safe speed margin above 3600 rpm, thus moving it into Case 3 category.

Taylor (1924), Newkirk (1926), and Muszynska (1993) all sort of treat
Case 1. Taylor and Newkirk also sort of treat Case 2. However, none of
these publications mentions anything like the Adams and Pollard (1993)
Cases 3 and 4 presented here.

TABLE 12.1

Four Cases of Rub-Induced Vibration Delineated by Simple Model

Rotor Speed Stiffness Modulated Rub Inertia Modulated Rub

Case 1 Case 3

ω < ωcr • Slow precession of
vibration vector is
counterrotational

• Slow precession of
vibration vector is
corotational

• Spiraling to high vibration
levels is more likely

• Spiraling to high vibration
levels is less likely

Case 2 Case 4

ω > ωcr • Slow precession of
vibration vector is
counterrotational

• Slow precession of
vibration vector is
corotational

• Spiraling to high vibration
levels is less likely

• Spiraling to high vibration
levels is more likely
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In all four cases, the thermal distortion attempts to make the hot spot
become the high spot, and thus the position of the high spot will slowly
change circumferentially and thereby continue to hunt for an equilib-
rium state, but never finding it. So the vibration phase angle continuously
changes at a slow rate. The leverage that the thermal bow has on the vibra-
tion will be more amplified, the closer the running speed is to a critical
speed with high modal participation at the rub site. The simple model
indicates that the likelihood of severe vibration is much greater with situ-
ations that essentially fall into Cases 1 and 4. The plausible explanation of
why such a phenomenon can reach a limit cycle is probably due to non-
linear components in the heat removal mechanisms at work. That is, the
incremental increase in heat removal near the hot spot region becomes pro-
gressively larger than the incremental decrease in heat removal near the
cold spot. However, the existence of a limit cycle is not a guaranteed line of
defense against a major failure since the limit cycle vibration may be larger
than the vibration level sufficient to initiate failure.

For brush-type exciters, brush wear does not alleviate the rotor rub inten-
sity since the brushes (rods of impregnated carbon) are kept in contact with
the rotating collector rings by soft preload springs. Conversely, it is reason-
able to hope that initial rub-induced thermal distortion rotor vibrations at
packings, oil deflectors, and seals will eventually attenuate by rub alle-
viation through wear at the rub site. This may not be realized in specific
configurations, especially when the wearing open of a radial clearance at
the rub-site component appreciably reduces the component’s otherwise
significant contribution to total damping, for example, centrifugal pump
wear rings.

12.4 Air Preheater Drive Structural Resonances

The boilers of fossil-fired steam turbine generator units are accompanied
by several machines such as primary air fans, induced draft fans, forced
draft fans, and air preheaters. The last one is a quite large carrousel that
rotates about 3 rpm and supports hundreds of perforated metallic heat
trays. The large carrousel slowly rotates through two wide sealed slots,
one in the outgoing exhaust air duct and one in the incoming primary
combustion air duct, thereby transferring heat from the outgoing hot
exhaust air to the incoming primary combustion air. This is basically a
heat recovery step that adds efficiency to the overall power generation
process.

To drive the large air preheater carrousel at 3 rpm requires a three-stage
speed reduction gear box, the last stage employing a worm-gear drive. The
plant of this case study houses three tandem compound 3600 rpm steam
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FIGURE 12.7 (See color insert following page 262.) Air preheater drive/platform with
overhang support bars.

turbine generating units of the same configuration, each rated at 850 MW.
The boiler for each generating unit has two air preheaters, for a total of
six air preheaters for the three-unit plant. In an overall plant improve-
ment audit, the drive and speed reduction gear box were identified as high
maintenance systems due to a need for frequent rebuilds. This equipment
deficiency apparently existed since the plant was commissioned several
years previously. The plant’s longstanding assessment (tribal knowledge)
of the root cause was high vibration. The author was retained to determine
how this vibration could be greatly attenuated and the air preheater drives
thereby not needing frequent rebuilds. Figure 12.7 shows one of the plant’s
six air preheater drives in place and driving its air preheater carrousel at
3 rpm.

The author and his staff attached 11 channels of laboratory-grade piezo-
electric accelerometers to a selected grid covering the drive support
platform. The signals were simultaneously recorded with a multichannel
digital tape recorder for subsequent analysis. This test setup was repeated
on all six drive units in one 14-h work day visit. The recorded vibration mea-
surements were analyzed for frequency content and found to have three
main frequency components dominating the overall platform vibration,
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TABLE 12.2

Summary of Preheater Drive Vibration Reduction Improvements

Original Structure Modified Structure Improvements

Vibration Twist and Flex
Frequency Frequency Vibration Frequency Vibration

No. (Hz) (mils p.p.) (Hz) (mils p.p.) Reduction

1 6.3 2 8.9 0.5 4:1 Strong reduction
2 12.4 2 12.4 1.5 25% Strong reduction
3 29.9 1.1 29.8 0.1 10:1 Strong reduction

6.3, 12.4, and 29.9 Hz. For each of these three harmonics, the signal ampli-
tude and relative phase angles were extracted for the 11 simultaneously
recorded locations. That information was then used to construct motion
animations for each of the three dominant components of the platform
vibration, which was almost entirely in the vertical direction.

The vibration motion animations for the three dominant vibration fre-
quency components made it abundantly clear that the drive support
platform simply needed more structural support of its cantilevered config-
uration. An inexpensive addition to the drive support structure is shown
in Figure 12.7. After the new support bars were retrofitted to the drive
platform, the author’s staff returned to the plant and took vibration mea-
surements on two of the units, to quantify the vast attenuation of the
platform vibration. Even before these postfix measurements were taken, it
was obvious even to one’s finger tips that the platform vibration levels had
been reduced significantly. Table 12.2 summarizes the vibration reduction
improvements. Following installation of the added support bars to each
of the six drive platforms, the need for frequent drive system rebuilds
stopped. Success is fun, failure is not.

12.5 Aircraft Auxiliary Power Unit Commutator
Vibration-Caused Uneven Wear

Figure 12.8 illustrates the auxiliary power unit (APU) for a commercial
regional jet aircraft. The DC starter generator functions to start the small
gas drive turbine, and then switches over to generate 10 kW of DC power.
This is a standard piece of equipment on modern jet power aircraft.

Significantly uneven radial wear patterns on several commutator cop-
per surfaces of 10 kW DC starter-generator units of APUs of a specific
commuter jet led to an intensive engineering investigation to solve this
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FIGURE 12.8 Commuter jet APU.

problem. In service, the circumferentially uneven radial wear typically
progressed to a degree where the brushes could no longer track the commu-
tator radial profile to maintain continuous rubbing electrical contact with
the commutator, rendering the APU DC starter-generator inoperable. The
author developed a commutator-brush dynamics-wear model and a corre-
sponding new computer code to simulate commutator wear as a function
of operating time. The code was formulated to simulate several design and
operating parameters for this APU. This new analysis code was then used
to simulate commutator time-dependent radial wear patterns around the
commutator 360◦ arc of contact, specifically to study the influences of var-
ious parameters, especially (a) initial as-manufactured commutator radial
run-out and (b) imposed unit vibration. The commuator rotor is illustrated
in Figure 12.9 and carbon brush pair in their holder is shown in Figure 12.10.

4 Axes of
brush
tracking
motion

w

FIGURE 12.9 DC starter-generator rotor.
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Carbon
brush pair Preload springs 

FIGURE 12.10 (See color insert following page 262.) Carbon brush pair in holder with
preload springs.

The analysis development for simulated commutator wear is detailed
by Adams (2007). The dynamics model of the spring-loaded brush is illus-
trated in Figure 12.11. Applying Newton’s Second Law to the model illus-
trated in Figure 12.11 yields Equation 12.1 for the time-dependent contact
force on the brush as the result of x(t) tracking of the commutator profile.

Fc = mẍ cos α − (ẋ/|ẋ|)μ2Fsy + Fsx

[(cos α − μ1 sin α) + (ẋ/|ẋ|)μ2(sin α + μ1 cos α)]
(12.5)

It is well established that the wear rate for the rubbing brushes in this
type of application is opposite of what occurs for a classical Coulomb fric-
tion wear. That is, the larger the normal contact force between brush and
commutator, the smaller the wear rate, and vice versa. This is because
the primary wear mechanism is neither abrasive nor adhesive wear, but
is dictated by the current conduction effects across the rubbing contact.
That is, the higher the contact force, the less the spark erosion wear of
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FIGURE 12.11 (a) Brush, holder, and spring. (b) Force free-body diagram of brush.
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FIGURE 12.12 (See color insert following page 262.) Simulated commutator radial wear
for APU DC starter-generator.

the brush. The wear model implemented in this analysis followed the
well-established approach embodying the applicable wear phenomenon
described by Adams (2007). Rubbing friction wear is also included, but its
influence is secondary.

Asample of simulated wear results is shown in Figure 12.12. Note that the
initial unworn profile (from factory measurements) is eliminated, as antic-
ipated with the wear rate model. Similarly, for the case of no imposed rotor
vibration, the wear model does not perpetuate but in fact works to elimi-
nate initial manufacturing run-out. On the other hand, imposed vibration
upon the rotor is shown by the simulation to produce the type of circum-
ferentially uneven commutator wear patterns that were occurring in the
fleet. Therefore, these dynamic wear simulation results strongly suggested
that the root cause of the uneven commutator wear problem was excessive
unit vibration imposed by the small 60,000 rpm gas turbine that connects
to the APU’s 12,000 rpm DC starter-generator through a planetary-gear 5:1
speed reducer (Figure 12.8). Subsequent vibration information from the
turbine manufacturer confirmed this conclusion and thereby eliminated
the commutator wear problem by curing the root cause of the turbine rotor
vibration. The turbine manufacturer’s fix was a change in material for the
turbine rotor axial retaining bolt in order to eliminate a severe bolt mate-
rial high-temperature creep phenomenon that allowed the turbine rotor to
become loose in operation. Implementation of this turbine fix in the fleet
resulted in the elimination of the commutator uneven wear problem.
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12.6 Impact Tests for Vibration Problem Diagnoses

A laboratory impact test method for determining radial seal and bearing
rotor vibration characteristics was discussed in Section 5.3 of Chapter 5
(see Figure 5.5). The major limitation of that experimental approach is the
difficulty in getting sufficient energy into such highly damped dynami-
cal components to enable retrieval of an adequately strong signal-to-noise
response to the applied impact force.

To execute a comparable impact-based modal test on operating centrifu-
gal pumps is an even bigger challenge than the laboratory experiment
illustrated in Figure 5.11. Centrifugal pumps are highly damped dynamical
systems. Although impact-based modal testing is a quite useful diagnos-
tic tool for many low-damped structures, it was long considered not a
practical or feasible diagnostic test method for centrifugal pumps in oper-
ation. In addition to having fluid-film bearings and radial seals, centrifugal
pumps also internally generate a broadband set of dynamic forces emanat-
ing from the various internal unsteady flow phenomena (see Section 6.1
of Chapter 6). Furthermore, these pump unsteady-flow dynamic forces
change during operation with changes in flow, head and speed, and change
over time with internal component wear. In addition, the rotor dynamic
properties of the bearings and radial seals of the typical centrifugal pump
change significantly as a function of operating conditions and wear over
time, making the rotor vibration natural frequencies nonstationary as well.
Thus, the prospect of employing the quite powerful diagnostic test tech-
nique called modal analysis was basically not an option for centrifugal
pumps until recent years. Marscher (1986) pioneered an impact method
for centrifugal pumps in which multiple impacts are applied to the rotor
(e.g., at the coupling) with impact magnitudes within ranges that are not
injurious to a pump or its driver.

The key to the success of Marscher’s method is the use of time averag-
ing over several hundred impact strikes. By time averaging over several
hundred impacts, only those vibration components that are the response
to the impacts will be magnified in the time-averaging process. The time-
averaged pump internally generated vibration and signal noise that do not
correlate with the controlled impact strikes are progressively diminished as
the number of time-averaged signal samples is increased. Marscher (1986)
shows test results that provide convincing proof of the significant change
in pump natural frequencies that can occur over the parameter changes
within a pump’s normal operating range.

Since Marscher first developed his test procedures, the field of data
acquisition and signal analysis has advanced considerably (see Chapter 9).
With the use of current generation multichannel high-sampling-rate digi-
tal tape recorders and companion analysis software that runs on a lap-top
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PC right at the test site, Marscher’s method can now be applied much
more expeditiously and cheaply than when it was first implemented.
Correctly diagnosing particularly troublesome pump vibration problems
can be greatly facilitated by employing this modal test approach. The
impact-based modal test method can greatly facilitate the development
of “calibrated” computer models for pump vibration problem analyses
(see Chapter 10) as useful in doing “what if” studies in search of the best
corrective actions.

12.7 Bearing Looseness Effects

Vibration symptoms for mechanically loose connections are covered in
Section 9.8. Probably every plant maintenance engineer and mechanic
have their own long list of past cases where the root cause of a vibra-
tion problem was discovered to be looseness at the bearings. Virtually no
rotating machinery type is immune to vibration problems when bearing
or bearing support looseness is present. A short but informative paper by
Bennett and Piatt (1993) documents three case studies that focused on loose-
ness at journal bearings in power plant rotating machinery. Their three case
studies are summarized in this section.

12.7.1 350 MW Steam Turbine Generator

This case study is in fact a continuation of the case study presented in
Section 10.2 of Chapter 10, where the author’s rotor unbalance computer
model analyses on this 350 MW cross-compound steam turbo-generator
indicated that bearing no. 2 (in the HP turbine) was not providing proper
load support for the rotor. The excessive synchronous vibration peak
(20 mils p.p.) of the HP turbine through its critical speed was not good
for the turbine internal clearances and efficiency of the unit. The author’s
analyses further indicated that employing a modest amount of preload
on bearing no. 2 (four-pad tilting-pad bearing) would reduce critical-
speed peak vibration levels of the HP rotor to approximately half the
experienced levels on run-ups and coast-downs. Based on the author’s
analyses, the indicated bearing preload was employed at the plant, and
the result was as predicted: the HP critical-speed vibration peak level was
more than halved. However, after only 6 months of operation, the prob-
lem reoccurred, indicating that the OEM bearing was not maintaining
the setup.

Upon further investigation by the electric power company’s engineers,
it was uncovered that a number of deficiencies of the OEM HP turbine
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journal bearings contributed to the problem. Both HP journal bearings
(no. 1 and no. 2) had developed looseness, which was the primary cause
of the excessive critical-speed vibration peak level in the HP turbine. The
looseness was found to be primarily an inherent characteristic of the OEM
bearing design. Bearing no. 1 did not have bolts to hold together the top and
bottom halves of the inside bearing support ring. Also, the bearings were
designed to rely on differential thermal expansions to create the necessary
“pinch” on the inner bearing ring by the bearing outer housing. Several
attempts to create adequate pinch to properly secure the inner bearing
rings of both HP bearings failed.

Because of the inherent design deficiencies of the OEM HP turbine bear-
ing design, the electric utility company’s corrective course of action was
to find a retrofit replacement for the HP journal bearings that would not
have the inherent deficiencies. Accordingly, a superior non-OEM six-pad
tilting-pad bearing was retrofitted into the existing cylindrical bore bear-
ing fits. Figure 12.13 shows both the original OEM bearing configuration
and the non-OEM retrofit. After the outage to install the non-OEM bear-
ings, excessive critical speed vibration in the HP turbine did not occur
and that success of the fix has continued for several years. The electric
utility company lists the following items as crucial to this success story:
(1) use of horizontal joint bolts to insure adequate “pinch” on the inner
bearing ring, (2) bearing pad preload, (3) and high-quality control over
materials and construction details. They also recommend controlling the
steam-valve sequencing so that the HP turbine bearings are always loaded
(see Section 6.3.2 of Chapter 6).

12.7.2 BFP 4000 hp Electric Motor

During a routine maintenance vibration survey of plant machinery not
instrumented with continuous vibration monitoring sensors, quite high
vibration levels were detected on this 4000 hp 3600 rpm feed pump drive
motor. Electrical problems were eliminated as the root cause because the
vibration was dominated by the synchronous frequency component (1N)
as well as the 2N and N/2 frequency components. The pump–motor set
was removed from service and found to be out of alignment by about 9 mils.
Furthermore, the drive-end bearing housing-to-endbell fit had 8 mils clear-
ance instead of the zero to 1 mil pinch specified. After properly aligning
the set and providing the proper bearing pinch, the unit was returned to
service and exhibited an overall vibration level on the motor bearings of
less than 1 mil p.p. One conclusion drawn from this case by the plant engi-
neers is that bearing pinch is vitally important. The first of two feed pump
case studies in Section 10.3 also demonstrates the importance of bearing
inner shell pinch.
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FIGURE 12.13 HP turbine tilting-pad journal bearings for a 350 MW unit.

12.7.3 LP Turbine Bearing Looseness on a 750 MW Steam
Turbine Generator

This 3600 rpm unit has a similar rotor and bearing rigid-coupled configu-
ration to that indicated in Figure 11.4 for a unit of the same manufacturer.
Just following a major overhaul, high subsynchronous vibration (19.8 Hz)
was experienced. Bearing or support-structure looseness was considered
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FIGURE 12.14 LP turbine bearing of a 750 MW 3600 rpm unit.

the most likely root cause or also a seal rub. This subsynchronous vibration
was highest at bearing no. 6 (generator side of LP no. 2) and somewhat less
on bearings no. 5 and no. 7 (see same drive line arrangement in Figure 11.4).

The LP turbine bearing (no. 6) was inspected during a short outage. An
illustration of the LP turbine bearing configuration for this unit is shown
in Figure 12.14. The spherical-seat pinch between the bearing housing and
inner bearing halves was found to be zero, and the side alignment pad was
loose. After adjusting the side adjustment pad and restoring pinch to the
spherical-seat fit, the unit was returned to service with drastically reduced
overall vibration levels at bearings no. 5 through no. 7. The lesson learned
was that close attention must be paid to properly set the bearings during
overhauls. Virtually any power plant engineer involved with major over-
haul outages is unfortunately accustomed to debugging “new” problems
caused by inadvertent mistakes and oversights when large machines are
reassembled.

12.8 Tilting-Pad versus Fixed-Surface Journal Bearings

The tilting-pad journal bearing (also called pivoted-pad journal bearing,
PPJB) has a proven history of avoiding the self-excited rotor vibration
“oil whip,” often encountered with fixed-surface cylindrical-bore journal
bearings (CBJB). As explained in Section 2.4 of Chapter 2 and Section 9.8
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of Chapter 9, the nonsymmetric portion of the bearing displacement-
reaction dynamic force component perpendicular to radial displacement is
a nonconservative destabilizing force. As explained by Adams and Makay
(1981), PPJBs are basically immune to oil whip.

PPJBs were first introduced for vertical-rotor machines (see Section 12.2)
because fix-surface CBJBs are most likely to cause self-excited subsyn-
chronous rotor vibration when unloaded or lightly loaded. The success of
PPJBs on vertical machines prompted designers to employ them on many
horizontal-rotor machines where combinations of light bearing static loads
and high rotational speeds made CBJBs highly susceptible to oil whip.
Wide use of PPJBs has clearly shown that PPJBs are not a cure-all for fun-
damentally poor rotor dynamic design. Also, there are several ways in
which PPJBs can be inadvertently designed, constructed, or applied to
cause their own problems (see Sections 5.2.3 and 12.7.2), as Adams and
Makay (1981) describe. Furthermore, PPJBs are somewhat more compli-
cated and first-cost more expensive than CBJBs. Fixed-surface non-CBJBs
(e.g., multilobe bearings) are a suitable improvement over CBJBs, at signifi-
cantly less cost and complication than PPJBs. Each new rotating machinery
design employing fluid-film journal bearings should be carefully analyzed
before jumping to the conclusion that PPJBs are required for good rotor
dynamic performance.

On large steam turbo-generators, Adams (1980) and Adams and
McCloskey (1984) show that PPJBs are far superior to fixed-surface CBJBs
under conditions of very large rotor unbalance such as those from loss of
large turbine blades (see Section 2.5.2 of Chapter 2). Specifically, PPJBs more
readily suppress subharmonic resonance from developing into catastroph-
ically large amplitudes. On the other hand, Adams and Payandeh (1983)
show that statically unloaded PPJB pads can incur a subsynchronous self-
excited “pad-flutter” vibration that can lead to pad surface material fatigue
damage (see Section 2.5.3 of Chapter 2).

12.8.1 A Return to the Machine of Section 11.4 of Chapter 11
Case Study

Discussion of the troubleshooting case study in Section 11.4 of Chapter 11
ended with the confirmation that replacing bearing no. 1 with a four-
pad PPJB allowed that 430 MW unit to operate rotor dynamically stable
up to its full rated capacity without excessive vibration. That retrofit of
a PPJB to replace the original fixed-surface journal bearing was deter-
mined to be the least expensive and most readily implemented option
available to the electric power company. The root cause of the problem
was the severe shifting of journal-bearing support structures all along the
machine’s drive line, and correcting that root cause was deemed cost pro-
hibitive. About 4 years after this retrofit was successfully implemented,
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this machine began to again exhibit some of the same subsynchronous
self-excited vibration it had previously experienced, necessitating the unit
to again be derated pending solution of the recurring problem. Apparently,
shifting of journal-bearing support structures (the problem root cause) had
continued to slowly worsen.

Again, the electric power company contracted the unit’s OEM to retrofit
a four-pad PPJB, (this time at bearing no. 2) to replace the original fixed-
surface journal bearing, as the OEM had already done at bearing no. 1. This
time the author’s involvement was to independently check the OEM’s rotor
vibration computer model analysis results, because the OEM’s predicted
results surprised the power company’s engineers. The OEM’s computer
analyses predicted that retrofitting a PPJB at bearing no. 2, to augment the
PPJB they had previously retrofitted at bearing no. 1 4 years earlier, did
more than just “push” the unstable mode above the rated power range
of the unit. In fact, the OEM’s analyses predicted that the unstable mode
would totally “disappear.” That is, the OEM predicted that the additional
retrofit of a four-pad PPJB at bearing no. 2 effectively removed the offending
mode from the rotor dynamical system of the unit.

The OEM’s prediction suggested that the proposed retrofit would do
more than provide the needed additional stabilizing damping capacity,
that is, it suggested to the author that the proposed retrofit would rad-
ically alter the modal content of the system, eliminating the offending
mode in the process. Augmenting the author’s prior model of this unit to
include the proposed bearing no. 2 PPJB retrofit, the author confirmed this
“surprise” result predicted by the OEM. Bearing no. 2 retrofit was then
implemented, which yielded the desired result. The unit was returned
to service with restored operability to full rated capacity. However (the
terrible “however”), this unit has more recently been having excessive
synchronous vibration problems, also in the HP turbine. In this the author
has analyzed the unit to assess potential benefits of employing additional
balancing planes to those already used in plants balancing the unit’s drive
line. This is further discussed in Section 12.10.

12.9 Base-Motion Excitations from Earthquake
and Shock

An important topic for which the author first gained appreciation dur-
ing his Westinghouse experience is earthquake and shock inputs to rotating
machinery. To study this topic, a good place to start is the keynote
address paper of Professor Hori (1988) (University of Tokyo), in which he
reviews published literature on the analysis of large power plant rotating
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machinery to withstand major earthquake events. The topic of base-motion
excitations from earthquake and shock inputs to rotating machinery is one
of the applications formulated by the author in his 1980 Journal of Sound and
Vibration paper. More recently, the author has analyzed the stable nonlinear
limit cycle of oil-whip rotor vibration, and confirmed interesting compu-
tational findings with laboratory tests, as provided in Adams and Guo
(1996). Specifically, this research shows that a machine operating stable-in-
the-small (i.e., below the linear threshold-of-instability speed) but above its
“saddle node” speed can be “kicked” by a large dynamic disturbance into
a high amplitude stable nonlinear limit cycle vibration with potentially
catastrophic consequences.

12.10 Parametric Excitation: Nonaxisymmetric
Shaft Stiffness

The rotor vibration consequences of anisotropic bending stiffness in a rotat-
ing shaft has been analyzed over the course of several decades by many
investigators, with the earliest English citation attributed to Smith (1933).
However, the German fluid mechanics specialist Prandtl (1918) appears
to be the first investigator to publish a treatment of the problem. The
fundamental problem has shown a considerable appeal to the more math-
ematically inclined mechanics theoreticians, providing a rich variety of
possible vibration outcomes even for relatively simple configurations such
as a Jeffcott rotor (see Figure 2.3) with axially uniform anisotropic shaft
bending stiffness.

The fundamental problem did not attract the attention of rotating
machinery designers until the post World War II period with the dramatic
increases in maximum size of two-pole AC generators driven by large
compound steam turbines. Figure 12.15, fashioned after that of Bishop and
Parkinson (1965), illustrates the relative progressive change in rotor max-
imum physical size and power rating of two-pole steam turbine-powered
AC generators from the 1940s to the 1960s. As the length-to-diameter pro-
portions shown in Figure 12.15 indicate, this 20-year change from 120 MW
to 750 MW generators has been accomplished by making the rotors longer
but not appreciably larger in diameter, because the diameter is limited by
allowable stress considerations. The progressive increase in slenderness
led to lower generator critical speeds with the attendant increased propen-
sity for oil-whip vibration. Also, the static deflection of generator center
line under its own weight became a primary problem because of the inher-
ent anisotropic shaft stiffness of two-pole generator rotors. Basically the
rotor of a two-pole generator is a large rotating electromagnet with north
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FIGURE 12.15 Maximum two-pole generator rotor sizes from the 1940s to the late 1960s.

and south poles on opposite circumference sides of the rotor. As illus-
trates in Figure 12.16, there are axial slots in the rotor into which copper
conductors are embedded to provide a rotating magnetic field from the DC
exciter current fed to the rotor windings, usually through brushes rubbing
on exciter collector rings (see Section 12.3). This construction makes the
rotor’s two principal bending-area moments-of-inertia different, thus the
rotor has a maximum and a minimum static deflection line. Without proper
bending stiffness equalization measures (see Figure 12.16), a large two-pole
generator rotor slowly rotating about its centerline would cycle between
maximum and minimum static beam deflections, twice each revolution.
Operation at full speed (3600 rpm on 60 Hz systems, 3000 rpm on 50 Hz sys-
tems), without adequate bending stiffness equalization measures, would

To equalize rotor bending stiffness, lateral slots are cut
at intervals along the generator rotor, top and bottom.

Top

Bottom

FIGURE 12.16 Rotor construction for two-pole generators.
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produce quite high rotor vibration levels at a frequency of twice the run-
ning speed (2N). Lateral slots cut at intervals along the generator rotor is
now the standard design approach to sufficiently reduce the rotor bending
stiffness anisotropy so that the residual 2N generator vibration is much
smaller than the residual synchronous vibration.

The 2N rotor vibration exhibited by two-pole generators falls into a
vibration generic category called parametric excitation. A comprehensive
theoretical treatment of this type of rotor vibration as well as the design
ramifications of it for generators are given by Kellenberger and Rihak
(1982).

12.11 Rotor Balancing

As succinctly stated by NASA’s Dr. David Fleming (1989), “A rotor is said
to be unbalanced if its mass axis does not coincide with its axis of rota-
tion.” A mass axis is the locus of the distributed mass-center along the rotor
length. Rotor balancing is the most important and frequently addressed
day-to-day operation in achieving smooth running rotating machinery. It
starts with the basic machine design process coupled with the construc-
tion details of the rotor, including shop rotor balancing of new and repaired
rotors using a balancing machine. For some machinery types and applica-
tions, this is all that may be required. However, in-service rebalancing
of some machinery types is periodically needed to reduce their residual
unbalance-driven vibration to within acceptable levels (e.g., see Figures 7.1
and 8.1). There is a sharp distinction between shop balancing a rotor in a bal-
ancing machine and in-service balancing a rotor in an assembled machine.
Since this book is aimed more toward the troubleshooter than toward the
machine designer, the emphasis here is more on in-service balancing. To
that end, a general purpose computer code is furnished here for deter-
mining balance correction weights. A recent advancement for balancing in
operation is a new type of rotor-mounted automatic real-time balancing
system, which is described later in this section.

That the subject of rotor balancing warrants its own book was rectified
by Rieger (1986), whose book is the most complete and comprehen-
sive treatise on the subject to date. In addition to fundamental theory
and application details for different balancing methods and balancing
machines, Rieger also provides a historical perspective on rotor balanc-
ing and a summary of balancing specifications for the different classes
of machines. Thus, Rieger’s book provides coverage of the field both
as needed by the designer/builder of rotating machinery as well as the
in-service user/maintainer of rotating machinery. The emphasis here is
focused on the needs of the user/maintainer of rotating machinery. If one is
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just beginning to study rotor balancing, it is helpful to delineate between
so-called static unbalance and dynamic unbalance as well as distinguish
between so-called rigid rotors and flexible rotors.

12.11.1 Static Unbalance, Dynamic Unbalance, and Rigid Rotors

The simplest rotor unbalance condition is characterized by the rotor mass
center being eccentric to the rotor’s geometric spin axis. This is called static
unbalance. A static unbalance can be likened to an unbalance mass (ms) at
some nonzero radius (rs) superimposed (in the radial plane of the rotor’s
mass center) on an otherwise perfectly balanced rotor, as illustrated in Fig-
ure 2.7. Such a concentrated static unbalance clearly acts on the rotor like
an equivalent synchronous corotational force (Fu = msrsω

2) that is fixed in
the rotor. Thus, a purely static unbalance on a simple rotor configuration
like in Figure 2.7 can theoretically be corrected by a single balance correc-
tion with the same magnitude (msrs) and in the same radial plane as the
initial static unbalance, but positioned 180◦ from the initial unbalance. That
is, static unbalance is theoretically correctable by adding a balance correc-
tion mass in a single plane, that is, in the plane of the unbalance. There are
many examples where single-plane balancing produces an adequate state
of rotor balance quality.

Dynamic unbalance refers to rotor unbalance that acts like an equivalent
radial corotational moment fixed in the rotor. Referring to Figure 2.7 and
using its nomenclature, the equivalent corotational moment of a concen-
trated dynamic unbalance has magnitude Md = mdrdlω2. If rotor flexibility
is not a significant factor to unbalance vibration response, then the “rigid
rotor” assumption can be invoked. Then the total dynamic unbalance of
a rotor is theoretically correctable by adding two equal-magnitude (mcrc)
corrections (separated by 180◦), one at each of two planes axially separated
by lc (where mcrclc = mdrdl). The two mcrc corrections are positioned in the
plane of the initial dynamic unbalance, but 180◦ out of phase with the initial
dynamic unbalance. The initial dynamic unbalance is thereby theoretically
negated since the corotational moment produced by the two correction
masses has the magnitude mdrdlω2 of the initial dynamic unbalance, but
180◦ out of angular position with the corotational moment produced by the
initial dynamic unbalance. Since a static unbalance can be negated by two
in-phase correction weights appropriately placed in the same two planes
as the dynamic unbalance correction masses, it is clear that a complete
rotor balance (static + dynamic) of a “rigid” rotor can be accomplished
by adding correction masses in only two planes. Since a general state of
rotor unbalance is a combination of both static and dynamic unbalance, the
correction weights at different axial locations will generally be neither at
the same angular position nor separated exactly by a 180◦ in their relative
angular positions.
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The defining property for so-called rigid rotors is that rotor flexibility
is not a significant factor to unbalance vibration response. Therefore, the
two-plane balance procedure for a rigid rotor can be performed at a speed
lower than the operating speed of the rotor. In practical terms, this means
the rotor may be balanced using vibration or dynamic force measurements
at balancing spin speeds substantially lower than the rotor’s in-service
operating speed.

12.11.2 Flexible Rotors

As all inclusively stated by Dr. Neville Rieger (1986), “A flexible rotor is
defined as being any rotor that cannot be effectively balanced through-
out its speed range by placing suitable correction weights in two separate
planes along its length.” Synonymous with this definition is that a so-
called flexible rotor has an operating speed range that closely approaches
or encompasses one or more bending critical speeds whose rotor flexu-
ral bending contributes significantly to the corresponding critical speed
mode shape(s) and unbalance vibration responses. Table 2.1 provides an
introductory composite description of the increased rotor dynamic com-
plexity produced when rotor flexibility is significant to unbalance vibration
characteristics.

In contrast to a rigid rotor, adequate balancing of a dynamically flexi-
ble rotor often requires placement of correction weights in more than two
separate planes along the rotor length. What is an adequate number of
balancing planes and what are their optimum locations along the rotor
are factors dictated by the mode shape(s) of the critical speed(s) that sig-
nificantly affect the rotor’s unbalance vibration response. The first three
flexure mode shapes of a uniform simply supported beam are illustrated
in Figure 4.13, and provide some insight into proper axial locations for
balance correction weights in balancing flexible rotors. That is, for a rotor
with critical speed mode shapes similar to those in Figure 4.13, a midspan
balance plane clearly has maximum effectiveness on the first mode. Simi-
larly, the 1/4 and 3/4 span locations have maximum effectiveness on the
second mode, and the 1/6, 1/2, and 5/6 span locations have maximum
effectiveness on the third mode.

A flexible rotor is also definable as one whose dynamic bending shape
changes with rotational speed, and this speed-dependent dynamic bending
may alter the state of balance. Ideally, a flexible rotor should there-
fore be balanced at full in-service rotational speed and at speeds near
critical speeds within or near the operating speed range. This point is
clearly demonstrated by an example from Fleming (1989) illustrated in
Figure 12.17, which shows a uniform shaft in stiff bearings unbalanced by
a single mass attached at the axial center of the shaft. Figure 12.17 also illus-
trates that the shaft has been rebalanced using the low-speed rigid-rotor
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Initial unbalance Rotor
Wub

Wub/2 Wub/2

Balance correction weights

Bearings

FIGURE 12.17 Simple uniform diameter flexible rotor.

approach by adding a correction weight at each end of the shaft. As long
as the shaft speed is significantly below its first bending critical speed, it
will remain essentially straight and thus will remain in balance. But as its
rotational speed approaches its first bending critical speed, it deforms as
illustrated in Figure 12.18 (illustrated deflection grossly exaggerated). As
is clear from Figure 12.18, at speeds near its first bending critical speed the
shaft illustrated in Figure 12.17 has its initial unbalance and both unbal-
ance correction weights acting together to excite the first bending critical
speed. If this experiment were performed, one would find that the vibration
near the first bending critical speed is worse (higher) with the two low-
speed-balancing correction weights attached than without. In this simple
example, the initial unbalance is known to be concentrated at the midspan
location and thus it is a trivial case. In a general case with manufactur-
ing and assembly tolerances, the unbalance is of an unknown distribution
along the rotor, such as that illustrated in Figure 12.19.

Balancing a dynamically flexible rotor is a considerably more involved
process than low-speed two-plane balancing of rigid rotors. Each type of
flexible rotor has its own preferred number and location of balance planes.
Many multistage machines require a component-balance of each impeller
or blade disk assembly before mounting and balancing the fully assembled
rotor.

There are some dynamically flexible rotors that can be adequately well
balanced like a rigid rotor, that is, on a low-speed balancing machine
with correction masses placed in only two planes along the rotor length.

Wub

Wub/2 Wub/2

FIGURE 12.18 Unbalance vibration mode shape of a first bending critical speed.
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Distributed rotor unbalance
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z

FIGURE 12.19 Isometric view of a general rotor unbalance axial distribution.

Such a rotor is characterized by having most of its unbalance concen-
trated at a known axial region of the rotor. A prominent example repre-
sents large double-suction power plant centrifugal fans, where the single
impeller (midspan) essentially dominates the assembled rotor’s unbalance
distribution.

As described by Rieger (1986), there are historically a number of com-
peting methods for balancing flexible rotors, the two most recognized
being the modal method and the influence coefficient method (ICM). Both of
these methods assume that the rotor dynamic system is linear. Significant
nonlinearity can be tolerated, but it will likely increase the number of bal-
ancing iterations needed to achieve the required quality of rotor balance.
The modal method requires detailed modal information (mode shapes)
for all the critical speeds that significantly influence the rotor’s unbal-
ance vibration characteristics over its entire speed range. To the extent
that critical-speed modal characteristics are a function of radial bearing
dynamic characteristics, the bearings in a modal balancing machine need to
match the dynamic characteristics of the actual machine’s bearings, and this
is often not practical.Although the modal method is considered in some cir-
cles to be theoretically a more effective approach than the ICM for balancing
flexible rotors, in practice the ICM is used in most applications, being less
complicated and more practical than the modal method. The strong pref-
erence for the ICM is particularly true for in-service rebalancing of rotors
in assembled machines, where a correction is often limited to one plane.

12.11.3 Influence Coefficient Method

The ICM does not require critical-speed mode shapes, but approximate
mode shapes can be helpful in the design process to prescribe where
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balance planes and unbalance vibration measurements are best located.
However, after a rotor is installed in its machine, accessible planes for
rebalancing are often limited to locations near the axial ends of the rotor,
for example, at a coupling. Thus, all the potential benefits of multiplane
rotor balancing are only of academic interest to the person in the power
plant who must implement a “balance shot” during a short outage of a
machine. A general summary of the ICM fashioned after Fleming (1989) is
presented here, followed by some examples using the ICM balancing code
Flxbal.exe contained in the directory Balance on the diskette supplied with
this book.

The ICM is based only on the assumption of linear dynamic charac-
teristics, so nonplanar modes are automatically accommodated. Utilizing
the linearity assumption, the rotor vibration response can be given as the
superposition or sum of individual vibration responses from an unbal-
ance at each of the selected balance planes, as expressed in the following
equation:

Vj =
Np∑

k=1

AjkUk , j = 1, 2, . . . , Nm k = 1, 2, . . . , Np (12.6)

where Nm is the number of independent vibration observations = no. of
locations × no. of speeds, Np is the number of balance planes, Vj is the
vibration response from jth measurement ≡ Vjei(ωt−θj)(complex), Uk is the
unbalance at kth balance correction plane ≡ Ukei(ωt+φk)(complex), and Ajk

is the influence coefficient Nm × Np Array ≡ Ajkeiαjk (complex).
Vibration measurements need not be taken at the same locations as the

balance correction planes. Also, any and all of the three basic vibration
sensor types may be used, that is, accelerometer, velocity pick-up, and
displacement proximity probe. Furthermore, vibration measurements may
be made on adequately responsive nonrotating parts of the machine (e.g.,
bearing caps). For in-service rebalancing of machines with displacement
proximity probes installed (typically mounted on the bearings targeting
the shaft), the rotor vibration relative to the bearing(s) may be used and
is recommended.

The influence coefficients are experimentally obtained by measuring the
incremental change in each of the measured vibration responses to a trial
mass individually placed at each balance correction plane. With the influ-
ence coefficients known, balance corrections for each correction plane can
be computed.After the correction masses (Wj, j = 1, 2, . . . , Np) are installed,
the residual rotor vibration for all the specified observations (locations and
speeds) are expressible as follows:

Vj = V(0)
j + AjkWk (12.7)
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where V(0)
j are the measured vibration responses before adding the balance

correction masses.
If the number of observations (Nm = Np) is equal to the number of bal-

ance correction planes (Nm = Np), then the influence coefficient array Ajk
yields a square matrix which is presumably nonsingular by virtue of mak-
ing Nm linearly independent vibration measurement observations. Using
Equation 12.7, unbalance vibration at the observation locations and speeds
can then theoretically be made zero by using balance corrections given by
the following equation:

{W} = −[A]−1{V(0)} (12.8)

It is widely suggested that better balancing often results if the number
of observations exceeds the number of correction planes, that is, Nm >

Np. Since it is then mathematically impossible to make all the observed
vibrations go to zero, the approach generally taken is to base the balance
correction masses on minimizing the sum of the squares of the residual
observed vibrations.

What the ICM can theoretically achieve is best understood by considering
the following. If the system were perfectly linear and the vibration observa-
tion measurements were made with zero error, then for the case of Nm = Np,
the observed vibrations (at location–speed combinations) are all made zero
by the correction masses. Similarly, for the case of Nm > Np, the sum of the
squares of the residual observed vibrations can be minimized. However,
there is no mathematical statement for unbalance vibration amplitudes
at any other location–speed combinations. By choosing balance speeds
near all important critical speeds and at maximum operating speed, and
balance planes where actual unbalance is greatest, as well as choosing
vibration measurement points that are not close to critical speed mode-
shape nodal points, smooth running over the full speed range is routinely
achievable.

12.11.4 Balancing Computer Code Examples and the Importance
of Modeling

Rotor balancing examples are presented here to demonstrate the use of
the PC code Flxbal.exe contained in the directory Balance that accompa-
nies this book. Flxbal.exe is based on the ICM. It is written by NASA’s
Dr. David Fleming and provided as part of his invited two-lecture presen-
tation on “Balancing of Flexible Rotors,” given regularly to the author’s
graduate class on Rotating Machinery Dynamics at Case Western Reserve
University. Flxbal.exe is demonstrated here using some of the RDA99.exe
unbalance sample cases in Section 4.2 of Chapter 4. That is, the RDA99.exe
computational models are treated here as “virtual machines” for balancing
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data “input” and “output.” This way, the balance corrections computed
by Flxbal.exe can be investigated at midspan rotor locations where
rotor vibration measurements are typically not available with in-service
machinery.

The “virtual machine” provided by an RDA99.exe model is equivalent
to a hypothetical machine that is perfectly linear and on which there is
zero error in the balancing vibration measurements. Flxbal.exe runs in
the DOS environment just like RDA99.exe and thus all input and output
files in use during a run must reside in the same directory as Flxbal.exe.
To initiate it, simply enter “Flexbal” and the code then prompts the user,
line by line, for input options and data, as will be demonstrated by the
following examples. There are a few key factors in using this balancing
code in conjunction with RDA99 models for virtual machines, itemized as
follows:

• RDA99 vibration phase angles are leading since xRDA ≡
X cos(ωt + θ).

• Flxbal vibration phase angles are lagging since xFlxbal ≡
X cos(ωt − θ).

• Both RDA99 and Flxbal use leading angles for unbalance
placement.

Therefore, when transferring data between RDA99 and Flxbal, the sign on
the indicated vibration phase angle(s) must be reversed, but the indicated
angles for placement of unbalance trial weights and correction weights are
the same. The nomenclature for Equation 12.6 is defined consistent with
Flxbal.

• Flxbal correction weights are based on trial weight(s) being first
removed.

Case-1: 3 Mass Rotor, 2 Bearings, 1 Disk, Unbalance and Correction Same Plane
This numerical balancing experiment example uses the first model in Sec-
tion 4.2 of Chapter 4 and is a trivial case since the balance correction can be
automatically seen. As detailed in Section 4.2 of Chapter 4 for this model,
a single unbalance of 0.005 in. lb, located at 0◦ phase angle, is attached to
the disk at the axial center of the rotor. With a 0◦ phase angle, it becomes
the angular reference point fixed on the shaft. The rotor will be balanced at
1700 rpm (near its first critical speed) using the RDA99 x-displacement of
16.388 mils s.p. at −108.1◦ (from first sample case tabulation in Section 4.2)
at the axial center of the rotor where the disk is located. Thus, this example
is really a case of static unbalance correction since the correction is to be
placed in the same plane as the initial unbalance. Furthermore, a trial
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“weight” of unbalance magnitude 0.0025 in. lb will be used also at the
midspan disk and at 0◦ phase angle. Thereby, the Flxbal inputs and the
sought answer for the “correction weight” are already obvious.

• Begin by entering Flxbal. The prompt reads ENTER DESCRIPTIVE
LINE TO IDENTIFY RUN:

“Balancing example Case-1” is entered here.

• The next prompt is ENTER NAME OF FILE FOR OUTPUT DATA:

“Case-1” is entered here.

• The next prompt is ENTER NUMBER OF PROBES:

(NUMBER OF PROBES) TIMES (NUMBER OF SPEEDS)<=50:

The number “1” is entered here.

• The next prompt is ENTER NUMBER OF SPEEDS:

The number “1” is entered here.

• The next prompt is ENTER NUMBER OF BALANCING PLANES:

The number “1” is entered here.

• The next prompt is ENTER CALIBRATION FACTOR FOR
PROBE 1:

The number “1” is entered here.

• The next prompt is DO YOU WANT TO ENTER LOW SPEED
RUNNOUT? (Y/N):

The letter “N” is entered here for “no.”

• The next prompt is DO YOU WANT TO ENTER NEW
INFLUENCE COEFFICIENTS?

The letter “Y” is entered here for “yes.”

• The next prompt is ENTER BALANCING SPEED 1 IN RPM:

“1700.” is entered here.

• The next prompt is ENTER AMPLITUDE AND PHASE ANGLE
FOR PROBE 1:

“16.388 108.1” is entered here.

• The next prompt is ENTER SIZE AND ANGULAR LOCATION
OF TRIAL WEIGHT:

“0.0025 0.0” is entered here.
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In this last entry, one may either enter a “weight” or an
“unbalance” magnitude (in any system of units), provided the
usage is consistent throughout the exercise.

• The next prompt is ROTOR SPEED 1700 RPM
ENTER AMPLITUDE AND PHASE FOR PROBE 1:

“24.582 108.1” is entered here.

By inspection for this last entry, the addition of 0.0025 (in-lb) to
the initial unbalance of 0.005 (in-lb), both at 0◦ phase angle, sim-
ply increases the total vibration by 0.5 times the initial unbalance
magnitude (1.5 × 16.388 = 24.582) while leaving the phase angle
unchanged at 108.1◦.

• The next prompt is DO YOU WANT TO SAVE THESE INFLUENCE
COEFFICIENTS?

The letter “N” is entered here for “no.”

The output file Case-1 is automatically written to the same directory
(folder) in which Flxbal.exe has been executed. The following is an
abbreviated list from the output file Case-1.

CORRECTION WEIGHTS

PLANE WEIGHT ANGLE, DEG.
1 0.5000E-02 180.0

RESIDUAL VIBRATION AFTER BALANCING

PROBE SPEED AMPLITUDE PHASE
1 1700.0 0.2719E-06 108.1

The complete Flxbal.exe generated output file for this case is contained in
the subdirectory BalExpls, along with the output files for all the other sub-
sequent rotor balancing examples presented here. The correction “weight”
shown in the abbreviated output provides the obvious correct answer of
0.005 (in. lb) at 180◦, which directly cancels the initial unbalance. Thus, the
residual vibration amplitude (mils s.p.) after balancing is essentially zero.

Case-2: Same as Case-1 Except Trial Weight Angle is More Arbitrary
In Case-1, the trial weight is placed at 0◦ (the same angle as the initial
unbalance), and so the total resulting vibration with the trial weight is
deducible from the original sample01.out results simply by multiplying
the vibration amplitude by 1.5. Here in Case-2, the same trial weight
unbalance is used but is placed at a different angle than the original unbal-
ance. This is to demonstrate the correct interpretation of weight placement
angles.
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A trial weight unbalance of 0.0025 (in. lb) is placed at 30◦ on the disk
located at the axial center of the rotor (station no. 2 in RDA99 model). The
total unbalance at station no. 2 of the RDA99 model is therefore the vector
sum of 0.005 (in. lb) at 0◦ plus 0.0025 (in. lb) at 30◦. This vector sum gives
0.00727382 (in. lb) at 9.896091◦, which is implemented in the RDA99 input
file ubal02tw.inp. The RDA99 computed response with this input file is
contained in the output file ubal02tw.out, and shows that the x-vibration
computed for station no. 2 at 1700 rpm is 23.838 mils s.p. at a phase angle
of −98.2◦. Thus, for the Flxbal input the trial weight is 0.0025 in. lb placed
at 30◦ and the resulting total vibration is 23.838 at +98.2◦.

The Flxbal output file for this case, named Case-2, shows the same
unbalance correction as determined in the Case-1 example, that is, same
magnitude as initial unbalance, but 180◦ from the initial unbalance. It is not
necessary to confirm this result with an RDA99 run with the trial weight
removed and the correction weight added because the net unbalance is
obviously zero.

Case-3: Case-1 Model with Measurement & Correction at Rotor End
This next example also uses the first model in Section 4.2 of Chapter 4 with
the same single midspan initial unbalance as in the first two examples.
It also uses the same 1700 rpm balancing speed near the critical speed.
But this case is less trivial than the first two examples. In this case, the
correction weight is placed at one end of the rotor (station no. 1). Also,
the y-displacement signal at station no. 1 is used as the single vibration
“measurement.” Using the Flxbal.exe results, the specified correction is
added to the RDA99 model and the RDA99 code is used to compute the
unbalance vibration amplitudes at all the stations. Thus, this example will
demonstrate the overall results that a single rotor-end “shot balance” in the
field might produce. In an actual machine, the change produced by a “bal-
ance shot” cannot generally be measured at the important midspan axial
locations. However, a “calibrated” RDA99 model for an actual machine
can provide a reliable estimate of midspan vibration after the balance
correction is implemented. This is demonstrated in the next subsection
from a case study on a 430-MW steam turbo-generator.

The RDA99 output file named sample01.out, summarized in Section 4.2
of Chapter 4, shows the initial station no. 1 unbalance y-vibration at
1700 rpm as 1.897 mils s.p. at a phase angle of 140.4◦. The first step in this
exercise is to use RDA99 to compute the unbalance response with a trial
weight added at station no. 1. Accordingly, the RDA99 input file named
ubal03tw.inp reflects the addition of a trial weight of 0.01 (in. lb) at 0◦
placed at station no. 1. The corresponding RDA99 output file, ubal03tw.out,
shows that the y-response at station no. 1 with this trial weight added is
2.210 mils s.p. at 145.1◦ phase angle. Therefore, the Flxbal inputs are 1.897
at −140.4◦ for the initial station no. 1 y-vibration at 1700 rpm. The Flexbal
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inputs after the trial weight is added are 2.210 at −145.1◦. An abbreviated
Flexbal output is listed as follows:

CORRECTION WEIGHTS

PLANE WEIGHT ANGLE, DEG.
1 0.5341E-03 149.3

The next step is to remove the trial weight, add the Flxbal indicated
correction weight, and then compute the unbalance response of the rotor
with the balance correction in place, using RDA99. The RDA99 input file
named ubal03cw.inp reflects the Flxbal computed balance correction. The
corresponding RDA99 output file, ubal03cw.out, shows that the 1700 rpm
y-response at station no. 1 is essentially zero with the correction added.
However, a quite important observation is made by observing the unbal-
ance response at all other rotor locations and at other speeds. Clearly, the
“balance shot” did exactly what it was mathematically programmed to do,
that is, make the 1700 rpm vibration at station no. 1 become zero through
the addition of a correction weight at station no. 1. The general unbal-
ance response was not overall improved, but in fact became worse after
addition of the correction.

Case-4: Rotor-End Measurement, But Mid-Plane Correction
Case-3 shows the potential pitfall of adding a “balance shot” correction
weight at the end of a rotor. The next case is a variation of Case-3. The
vibration measurement is still taken at the rotor end (station no. 1) where
proximity probes, velocity pickups or accelerometers can generally be
placed on actual machinery. But the trial weight and subsequent correction
weight are placed at the rotor midspan location (station no. 2) where the
initial unbalance is concentrated. This is to demonstrate a typical situation
where the vibration measurement cannot be made at the rotor midspan
location, but the balance weights can be added at the midspan location
when a midspan access plate has been designed into the casing so that the
rotor midspan plane is easily accessible.

The trial weight RDA99 unbalance vibration here can be taken from the
Case-2 output file ubal02tw.out for vibration at station no. 1 with the trial
weight 0.0025 (in. lb) at 30◦ placed at station no. 2. This output is 2.759
(in. lb) at 150.3◦. From the first case tabulated in Section 4.2, the initial
midspan (station no. 2) 1700 rpm y-direction vibration is 1.897 mils s.p. at
140.4◦. Thus, the Flxbal inputs are as follows (refer to Case-2):

• Balance speed, 1700 (rpm)
• Initial y-vibration data, 1.897 –140.4◦

• Trial weight, 0.0025 30◦

• y-vibration data with trial weighted added, 2.759 –150.3◦
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The Flxbal file (Case-4) correction weight data are 0.005 at 180◦, the exact
cancellation of the initial unbalance and thus zero vibration everywhere.

A comparison of Cases 3 and 4 demonstrates the critical importance of
proper balance plane(s) selection. It also demonstrates that the vibration
measurement point is not as critical provided that measurement point is
adequately responsive to the initial unbalance distribution and the added
unbalance trial weight(s). That is, the measurement point should not be
near a nodal point of any of the important critical speed modes nor near a
nodal point of the rotor response shape at operating speed. These two cases
clearly demonstrate the value of employing a calibrated rotor unbalance
response computer model in concert with standard balancing procedures
to predetermine whether a quick “balance shot” during a short outage
will actually reduce the rotor vibration at the important midspan rotor
locations. An unbalance response computer model used in this manner
basically “measures” the midspan vibration reduction from a “balance
shot.”

With the example Cases 1–4 provided here, interested readers can create
additional interesting examples using any of the other RDA99 unbalance
response sample cases presented in Chapter 4. Of course, the primary
reason for this is to prepare interested readers to generate new RDA99
models of rotor–bearing systems for machinery, important to their respec-
tive organizations.

12.11.5 Case Study of 430 MW Turbine Generator

The machine in this case study is the same machine described in the self-
excited subsynchronous vibration case study of Section 11.4. After this
machine was reassembled at the end of a recent major planned outage
for the unit, it exhibited excessive synchronous rotor vibration concen-
trated in the HP and IP rotors (see Figure 11.4 for the schematic layout).
Successive attempts by a quite competent industry recognized specialist
in balancing such machines were unsuccessful in reducing the journal-
to-bearing vibration at bearing no. 1 to less than 10 mils p.p. Since the
author already had modeled this machine to solve the problems described
in Section 11.4 of Chapter 11 and Section 12.8, the author was retained to
employ the model to determine whether using additional balancing planes
(not typically used for in-service rebalancing) could potentially reduce the
synchronous vibration from 10 mils p.p. to possibly 5 or 6 mils p.p.

The influence of employing various multiplane balancing combinations
was computationally researched using an RDA99 unbalance response
model. The model included the entire rigidly coupled drive line, including
the HP, IP, LP, generator, and exciter rotors, all supported on seven jour-
nal bearings, as sketched in Figure 11.5. In the process of conducting
this work, the author’s computed unbalance responses were compared
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to the incremental responses produced by the trial weights used on the
actual turbo-generator during the most recent attempt to balance the
machine. These comparisons are summarized as follows, to demonstrate
the expected accuracy of a properly devised RDA99 model for such a
machine.

Plane-1: HP rotor between bearing no. 1 and HP end seals; 488 g at 180◦ at
7.58 in. radius, for 8.135 in. lb; vibration (mils p.p.), phase angle◦ (lagging)

Incremental vibration from measurement at bearing no. 1: 3.1 at 290◦

Incremental vibration from RDA99 model at bearing no. 1: 3.3 at 272◦

Plane-10: IP end of LP, just outside of LP last-stage blades; 950 g at 255◦
at 19.68 in. radius, for 41.13 in lb

Incremental vibration from measurement at bearing no. 3: 1.7 at 52◦

Incremental vibration from RDA99 model at bearing no. 3: 2.8 at 27◦

Given the complexity of the machine and the uncertainty of actual
journal-bearing static loads, these comparisons are remarkably close. This
excellent comparison added to the author’s own confidence in apply-
ing computer model simulations to aid in troubleshooting vibrations
problems, even on such large complicated machines with the inherent
uncertainties.

Unusually large balance correction weights indicated by the analyses
in this case led the author to conclude that the root cause of the exces-
sive vibration was not unbalance but more likely an improper setting
of a rigid coupling between two of the rotors at the scheduled outage
reassemble, probably at the coupling between the HP and IP rotors. Power
generation revenue considerations dictated this unit to be deemed “oper-
able” until the next opportunity to remove the turbine covers for general
inspection of internals and to check for rotor-to-rotor run-out at the turbine
couplings.

12.11.6 Continuous Automatic In-Service Rotor Balancing

No up-to-date discussion on rotor balancing would be complete with-
out mentioning the latest and most advanced product in automated
real-time continuous rotor balancing. Figure 12.20 shows this in a cut-
away view of the newest automatic balancing product from the Lord
Corporation. The rotor-mounted portion houses two equally unbalanced
counterweight/stepping-motor rotors, separately indexed in 5◦ incre-
ments relative to the rotor. Power and control is through magnetic
couplers.
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Conventional rotor-mounted automatic balancing devices are designed
to minimize residual rotor mass unbalance so that the rotor vibration
level is maintained within a given application’s requirements. Precision
machine tool spindles, especially for grinding, are a major application
for such devices since successful high-volume high-precision grinding
requires continual automatic adjustment of balance correction weights on
the rotating assembly as grinding wheel material is removed. The conven-
tional devices available for such automated balancing are configured to
change the correction weight magnitude and angular location based on
many successive incremental moves that reduce the monitored vibration
(usually measured with an accelerometer attached to the spindle hous-
ing). However, such conventional systems do not “know” the magnitude
or angular location of the continuously changed correction weight nor
are they able to execute a “command” to perform a specified incremental
change to the correction weight.

The Lord product shown in Figure 12.20 has significantly advanced the
field of automatic rotor balancing by tracking the magnitude and angu-
lar location of the instantaneous balance correction. The author designed
and constructed a flexible-rotor test rig in his laboratory at Case Western

Nonrotating
assembly

Coil power wires

Coil

Permanent
magnet

Counterweight
rotor

Rotating
assembly

FIGURE 12.20 Lord Corporation automatic rotor mass balancer.
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Reserve University, which is configured with two of these Baladyne bal-
ancing devices. The software supplied with these two matched devices
executes real-time two-plane automatic rotor balancing, with the control-
ling algorithm based on the ICM. The software also permits manual control
of counterweight placement and magnitude (through a host PC controller).
That feature plays prominently in current ongoing model-based monitor-
ing and diagnostics research in the author’s laboratory, see Adams and
Loparo (2000). That is, by being able to impose a known incremental change
to the state of unbalance (i.e., active probing of the dynamical system), a
continuous real-time comparison can be made between how the actual
machine incrementally responds and how an observer model tracking the
machine’s vibration responds.

The author believes this new type of real-time automatic balancing sys-
tem can be a quite cost-effective method for minimizing rotor vibration
levels on flexible-rotor machines that currently necessitate considerable
compromises between various important critical speeds and operating
speeds that each individually have somewhat unique optimum bal-
ance correct weight placements. The author is familiar with some large
steam turbo-generator configurations now in service that would benefit
considerably from such a system.

12.11.7 In-Service Single-Plane Balance Shot

The most frequent rotor balancing job is the in-service quick balance correc-
tion. Rotating machinery in power plants, process plants, and in machine
tool spindles are typical examples. The machine is in service and vibration
has increased above allowable maximum amplitude levels (see Chapter 8).
A balance correction weight is placed on the rotor at a readily accessible
location on the machine. The objective of such single-plane in-service bal-
ance shots is to reduce the maximum vibration levels. It is not intended nor
is it feasible that such a single-plane balance shot provide the high degree
of rotor balance quality that is achievable when the removed bare rotor is
factory balanced in a precision balancing machine.

Refer to Section 12.11.4 (Case-4) of this chapter. When the vibration
measurement and added correction weight locations are limited to access
points of an assembled machine, the vibration levels at critical internal
inaccessible rotor locations may actually increase, even while the vibration
levels at accessible vibration measurement points has been significantly
reduced. Thus, the small internal radial clearances between rotating and
nonrotating components at midspan locations (e.g., at turbine and com-
pressor blade tips and pump sealing wear rings) may not benefit from
such a balance shot. For a detailed treatment of single-plane balance shots,
see Adams (2007).
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12.12 Summary

This chapter is a potpourri of rotating machinery vibration problems. The
emphasis is on solving real problems in real machines, with actual case
histories being the primary basis of the material presented. This chap-
ter and Chapters 10 and 11 form Part 4 of this book on Case Studies.
Since the author’s own troubleshooting experience has been, and contin-
ues to be, heavily focused on power plant rotating machinery, the case
studies here are primarily from power plants. However, the particulars
of each case study have much broader value in guiding problem solution
investigations in many other different industrial applications of rotating
machinery.
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Feedback speed control, to TRV,
114–115

FFT algorithm. See Fast Fourier
Transform (FFT) algorithm

Film thickness, 92, 103, 185, 220, 221,
222, 237, 238, 288
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Filters, 293–294
Finite element models, 25, 26, 41, 86
First critical speed, 272
Flexible connections

branched systems with, 129
unbranched systems with, 124

Flexible couplings, 111, 120
Flexible rotors, 408–410. See Balancing

applications, 230
Floating ring seals, 214
Fluid-film bearings, 65, 85, 241. See also

Liquid-liquid fluid-film
journal bearings

Foil bearings. See Compliance surface
foil gas bearings

Footprint and RCB, 230, 231
Forced resonance, 10
Forced systems decoupled in modal

coordinates, 27
Forced vibration and critical speed,

349–370
boiler feed pumps critical speeds,

354–361
case study 1, 354–358
case study 2, 358–360
case study 3, 360–361

circulating pumps, 364–367
circulating pump resonance, 367
generator exciter collector shaft

critical speeds, 367–369
HP steam turbine passage through

first critical speed, 350–352
HP–IP turbine second critical speed,

352–354
nuclear feed water pump cyclic

thermal rotor bow, 361–364
Forward whirl, 76
Fourier transform, 278, 308–310
Four-square gear tester, 132–133
Free body diagrams, 14
Free–free rotor matrices, 63–64, 118–119
Free-free rotor model. See Rotor

Dynamic Analysis (RDA)

G

Gas turbines, 35, 163, 229, 235, 245, 270,
271, 339

Geared connections, TRV coupling, 121
General solution, 18
Generalized coordinates. See Lagrange

equations
Generalized forces. See Lagrange

equations
Generator exciter collector shaft critical

speeds, 367–369
Generators, 35, 111, 134, 316, 337, 351,

402, 404
Gyroscopic

effect, 40, 43
explanation of, 77–79
matrix. See RDA
moment, 44, 47, 49, 52–53, 73, 86

H

Half power bandwidth test method, 9
Half-frequency whirl, 383
Hamiltonian motion, 99
Hammer kits, 204
Harmonic. See Vibration
Harmonic excitation. See also Vibration

of linear models, 27–28
High rotational Reynolds number fluid

annulus, 267
High-capacity fan for large altitude

wind tunnel, 130–132
High-pass filter, 293

See also Filters
High-pressure steam turbines and gas

turbines
combustion gas turbines, 270
partial admission in steam turbine,

269–270
steam whirl, 263–269

High-speed reclosure (HSR), 119
Homogeneous solution, 7
Honeycomb seal, 227–228, 261. See also

Annular seals
HP steam turbine passage through first

critical speed, 350–352
HP turbine, 373, 374
HP–IP turbine second critical speed

through power cycling,
352–354

Hydraulic Institute, 300
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Hydrodynamic bearings, 97, 173
Hydrodynamic pressure

distribution, 186
Hydrostatic gas bearings, 243
Hysteresis loop, 96–97

I

ICM. See Influence coefficient method
(ICM)

IEC. See International Electrical
Commission (IEC)

Imbalance. See Unbalance
Impact approach for mechanical

impedance, 204
Impact excitation of radial seals

experimental setup, 209
Impact tests for vibration problem

diagnoses, 397–398
Impulse turbines, 269, 352, 353
Inductance-type displacement

transducer, 285–289
position sensing system, 286
for rotor orbital displacement

trajectories measurement, 311
Inertia-modulated rub, 388–390
Influence coefficient method (ICM),

410–412. See Balancing
Initial conditions, 4, 7, 20
In-service single-plane balance

shot, 421
In-servicing balancing, 406
Insights into rotor vibration, 70–83
Instability, 6, 28–30, 76, 165–173,

331–336
Instability growth orbits, 167
Instability self-excited-vibration

threshold computations,
165–173

mass rotor and disk
different, 172–173
same, 166–172

Instability thresholds, 160, 165–166,
198, 332

Instability threshold speed, 178–179
Instability threshold-based approach,

210–212

vertical spindle rig for controlled
speed tests, 210

Integration and signal conditioning,
293

Interaction forces, dynamic radial
hydraulic, 255

Interaction impeller forces, 257–259
Interactive radial force vector, 201
Internal rotor damping, 335–336
International Electrical Commission

(IEC), 300
International Standards Organization

(ISO), 300
ISO. See International Standards

Organization (ISO)
Isotropic model, 38, 79–81, 205, 208,

209, 214, 217, 218, 221, 257
Isotropic tensor, 75, 80, 191

J

Japanese Society of Mechanical
Engineers (JSME), 198

Jeffcott rotor model, 39–41
Jet engine. See Combustion gas

turbines
Journal bearings. See Hydrodynamic

bearings
Journal of Sound and Vibration, 404
Journal vibration orbit, 315
Journal-bearing hysteresis loop, 96–97
Journal-bearing nonlinearity with large

rotor unbalance, 85–93
JSME. See Japanese Society of

Mechanical Engineers (JSME)

K

Keyphaser, 289–290, 312
Kinetic energy. See Lagrange equations
Kronecker’s delta, 23, 25

L

Labyrinth seals, 213, 227, 373. See also
Annular seals

destabilizing forces, 266
Lagrange approaches, 44–52
Lagrange equations, 15
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Large amplitude vibration sources,
84–85

Large steam turbo-generator sets,
example, 134–135

Lateral rotor vibration (LRV) analyses,
35–37

categories, 18
complexity categories, 37
linear LRVs, 70–71

gyroscopic effect, 77–79
isotropic model, 79–81
physically consistent models, 82
radial and misalignment

motions, 82–83
nonsymmetric matrices, 71–77

nonlinear effects in rotor
dynamics, 83–84

chaos in rotor dynamical
systems, 99–100

damping masks oil whip and
steam whirl, 100–101

journal-bearing hysteresis loop,
96–97

journal-bearing nonlinearity,
85–93

large amplitude vibration
sources, 84–85

shaft-on-bearing impact, 97–99
unloaded tilting-pad self-excited

vibration, 94–95
RDA code. See RDA code for LRV

analyses
RDA software formulations, 55

addition of nonstructural mass
and inertia, 62–63

basic rotor finite element, 55–57
complete free–free rotor

matrices, 63–64
completed RDA model equations

of motion, 70
radial-bearing and

bearing-support models,
64–70

shaft element consistent mass
matrix, 59–61

shaft element distributed mass
matrix, 58–59

shaft element gyroscopic
matrix, 62

shaft element lumped mass
matrix, 57–58

shaft element stiffness matrix,
61–62

simple linear models
Jeffcott rotor model, 39–41
point-mass 2-DOF model,

37–39
simple nontrivial 8-DOF model,

41–43
versus TRV, 135–137

Least-squares linear regression, 205
Limit cycle, 84
Linear LRVs, 70–71

gyroscopic effect, 77–79
isotropic model, 79–81
physically consistent models, 82
radial and misalignment motions,

82–83
systems with nonsymmetric

matrices, 71–77
Linearity assumption, 4
Liquid-liquid fluid-film journal

bearings
caveat of LRV analyses, 199–200
computer codes, 199
Reynolds lubrication equation

(RLE), 184–187
stiffness and damping data and

resources, 196–198
stiffness and damping formulations,

187–192
tilting-pad mechanics, 192–196

Log-decrement test method, 9
Lomakin effect, 216–218
Loose connection. See Troubleshooting
Lord Corporation automatic rotor

mass balancer, 420
Low-pass filter, 293, 312. See also Filters
LP turbine bearing looseness, 400–401
LRV. See Lateral rotor vibration (LRV)

analyses
Lubricant pressure distribution, 85
Lumped mass matrices, 16–17, 57,

115–116. See also Rotor
Dynamic Analysis (RDA)
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M

Machinery management systems, 279
Magnetic bearings, 239, 244

collocation error, 242
feedback control, 240, 242
load capacity saturation effects,

240, 242
microprocessor controller, 241
short comings, 241–243
spillover 242
unique operating features, 240–241

Makay charts, 343
Marscher’s method, 397
Mass axis, 406
Mass matrix, 14, 15, 16, 57
Mass moment of inertia, 12, 47,

190, 191
Mass unbalance. See Unbalance
Mass–spring–damper model, 3
Material damping. See Damping
Matrix bandwidth, 16–18
Matrix zeros, 15, 16–18
Mechanical impedance hypothesis,

221–222
Mechanical Technology Incorporated

(MTI), 199
Mechanically loose connections. See

Troubleshooting
Misalignment, 377–378. See also

Bearing stiffness and
damping; Troubleshooting

vibration symptoms, 339–340
Modal

analysis, 397
coordinates, 20
damping, 24–26
decomposition, 19–24
decoupling, 20, 26
method for balancing flexible

rotors, 410
testing, 26, 397–398
vectors, 22–23

Mode shapes, 18, 19, 36, 86, 136, 169,
176, 255, 373, 378, 408, 410

Model-based
condition monitoring, 278, 279, 281,

289, 290, 321, 328

diagnostic approach, 280–281, 302
statistical-correlation filtering, 280

Monitoring. See Vibration
Mother wave. See Wavelet transforms

(WTs)
Motion equations, 13, 14, 20, 26
MTI. See Mechanical Technology

Incorporated (MTI)
Multistage axial compressors, 271
Multi-DOF models, 13–30. See also

Vibration
dynamic instability, 28–30
forced systems decoupled in modal

coordinates, 27
harmonic excitation of linear

models, 27–28
matrix bandwidth and zeros, 16–18
modal damping, 24–26
modal decomposition, 19–24
standard rotor vibration analyses,

18–19
two-DOF models, 13–16

Multi-stage centrifugal pumps,
204, 225

N

Narrow bandwidth matrices, 16
National Electrical Manufacturers

Association (NEMA), 300
Natural frequency vibration, 10–11
Navier–Stokes (N–S) equation, 184–185
Negative damping, 6
NEMA. See National Electrical

Manufacturers Association
(NEMA)

Net destabilizing force, 264, 265
Newton’s Second Law, 3
Nine-stage centrifugal pump model,

175–180
instability threshold speed, 178–179
unbalance response, 175–178

Nodal points, 27, 35, 178
Nonaxisymmetric shaft stiffness,

404–406
Nonconservative force fields, 74
Nonlinear contact forces, 231
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Nonlinear damping masks oil whip
and steam whirl, 100

compressor bearing failure, 101–104
oil whip masked, 100–101
steam whirl masked, 101

Nonlinear effects in rotor dynamic,
83–84

chaos in rotor dynamic, 99–100
journal-bearing hysteresis loop,

96–97
journal-bearing nonlinearity, 85–93
large amplitude vibration sources,

84–85
nonlinear damping masks oil whip

and steam whirl, 100
compressor bearing failure,

101–104
oil whip masked, 100–101
steam whirl masked, 101

shaft-on-bearing impacting, 97–99
unloaded tilting-pad self-excited

vibration, 94–95
Nonlinear jump phenomena, 90, 91,

93, 316
Nonlinear limit cycles. See Limit cycle
Nonlinear rotor vibration, 83–104
Nonstructural mass, 62–63
Nonsymmetric matrices, systems

with, 71–77
Nonsynchronous orbit frequency, 312
Nonsynchronous vibration. See

Vibration
Notch filter, 294. See also Filters
NRC. See Nuclear Regulatory

Commission (NRC)
N–S equation. See Navier–Stokes (N–S)

equation
Nuclear feed water pump cyclic

thermal rotor bow, 361–364
Nuclear plant cooling tower circulating

pump resonance, 367
Nuclear Regulatory Commission

(NRC), 372

O

Oak Ridge National Laboratory
report, 383

Observers. See Model-based condition
monitoring

OEMs. See Original equipment
manufacturers (OEMs)

Oil whip, 96, 179, 331–332, 333
masked, 100–101
and steam whirl, 226–227

Oil-free bearings, 239, 244
One-degree-of-freedom model,

3–13, 238
as an approximation, 11–13
damping, 8–10
linearity assumptions, 3–4
self-excited dynamic-instability

vibrations, 6
steady-state sinusoidally forced

systems, 7–8
undamped model, 10–11
unforced system, 4–6

1-DOF impedance test, 204–205
Orbital displacement signals, 202
Orbital trajectories, 73, 74, 103, 151,

154, 161, 165, 238, 311,
316, 326

Original equipment manufacturers
(OEMs), 279, 353, 354, 367,
385, 398, 403

Oscillatory signal’s frequency
spectrum, 309

Over damped. See Damping
Over-the-shoulder hand-held vibration

analyzers, 291

P

Pad radial film stiffness, 193
Parametric excitation, 234

nonaxisymmetric shaft stiffness,
404–406

Parametric excitation. See
Non-axisymmetric shaft
stiffness

Partial admission in steam turbine
impulse stages,
269–270

Partial derivatives and RLE, 188
Partial differential equation

(PDE), 42
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Participation factor, 27
Particular solution, 7
PDE. See Partial differential equation

(PDE)
Peak-to-peak amplitude, 295
Pendulums, 12–13, 15–16
Period. See Vibrations
Phase angle, 6, 7–8, 144, 149–152, 161,

287, 307, 317, 340,
389, 391

Phase angle explanation and direction
of rotation, 149–152

Physical model-based statistical
approach, 280–281

Physically consistent models, 82
Piezoelectric crystal, 281, 282
Pivoted-pad bearing, chaotic rotor

vibration in, 329
Pivoted-pad journal bearings (PPJB).

See Tilting-pad journal
bearings

Planar double-compound pendulum,
15–16

Poincaré maps, 326, 327.
See also Chaos

Point-mass 2-DOF model, 37–39
Polar plot, 317, 318, 319, 386
Portable machinery vibration

analyzers. See Vibration
Potential energy. See Lagrange

equations
Power plant boiler circulating pumps,

364–367
Predictive maintenance, 277, 278
Preload spring, 281, 282
Preventive maintenance, 277, 278
Principal stress, 190
Proportional damping method, 26
Proximeter, 285
Proximity probe, 285, 287–288, 311, 312,

313. See also Displacement
measurement

Q

Quad volute pump configurations, 254
Quasiperiodic motion, 326–327

R

Radial centering force, 217
Radial contact, 230
Radial eccentricity, 193, 199, 206
Radial force, 237
Radial force signals, 202
Radial stiffness effect, 217
Radial-bearing, 121–and

bearing-support models,
64–67

bearing coefficients
connect rotor directly to ground,

67–68
connect to an intermediate mass,

68–70
Rankin’s model, 272
RCB. See Rolling contact bearings

(RCB)
RCP. See Reactor coolant pump

(RCP)
RDA. See Rotor Dynamic Analysis

(RDA)
RDA code for LRV analyses, 141–142

additional sample problems,
173–180

nine-stage centrifugal pump
model, 175–180

mass rotor and pedestals, 174
instability self-excited-vibration

threshold computations,
165–173

mass rotor (different) and disk,
172–173

mass rotor (same) and disk,
166–172

unbalance steady-state response
computations, 142–165

Campbell diagrams, 163–165
elliptical orbits, 158–163
mass rotor and disk, 152–158
phase angle explanation and

direction of rotation, 149–152
RDA Sample problems, 173–180

Campbell diagrams, 163–165
elliptical orbits, 158–163
mass rotor and disk, 145–149,

152–158
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RDA Sample problems (continued)
different, 172–173
same, 166–172
and 2-pedestals, 174

nine-stage centrifugal pump model,
175–180

phase angle explanation and
direction of rotation, 149–152

RDA99, 141–144
Reactor coolant pump (RCP), 382–384
Real-time probabilities for defined

faults and severity levels, 280
Resonance, 340. See also Vibration
Reynolds lubrication equation (RLE),

85, 173, 184–187
assumptions, 184–185
bearing static load, 186
cavitation, 186
journal bearings, 185–186
laminar flow, 216
limitations for squeeze-film

dampers, 238–239
long-bearing approximation, 186
short-bearing approximation, 186
single solution point, 187

Reynolds numbers. See Bulk flow
model (BFM)

Rigid body’s angular momentum,
46–47

Rigid connections
branched systems with, 127–129
unbranched systems with, 122–124

Rigid rotors, 407–408
Rigid-body mode, 114
RLE. See Reynolds lubrication equation

(RLE)
Rolling contact bearings (RCB),

230–235, 241
distribution of contact loads in, 231

Rolling-element bearings, 342–343
Rotary inertia, 57, 59, 112
Rotating coordinate systems, 191, 192
Rotational kinetic energy, 52
Rotor balancing. See Balancing
Rotor Dynamic Analysis (RDA)

basic rotor finite element, 55–57
completed RDA model equations of

motion, 70

complete free–free rotor matrices,
63–64

nonstructural mass and inertia to
rotor element, 62–63

radial-bearing and bearing-support
models, 64–67

bearing coefficients, 67–70
shaft element

consistent mass matrix, 59–61
damping matrix, 26, 64, 77, 173
distributed mass matrix, 58–59
formulations, 55–70
gyroscopic matrix, 62
lumped mass matrix, 57–58
stiffness matrix, 61–62

Rotor Dynamic Analysis (RDA) Finite
Element PC software.
See RDA

Rotor dynamic coefficients
bearings. (see Bearing stiffness and

damping)
centrifugal pumps, 251–259
seals. See Annular seals
turbine steam-whirl forces. (see

Thomas-Alford forces)
Rotor dynamic models, for chaos

studies, 325, 326
Rotor Dynamics Laboratory, 205
Rotor mass unbalance vibration,

330–331
Rotor orbit

and chaos-tool mappings for, 327
growth, for unstable rotor

mode, 332
and inductance-type displacement

transducer, 311
trajectories, 310–317

Rotor slotting, 316, 342
Rotor unbalance, 7
Rotor vibration analyses (standard),

18–19
Rotor vibration case studies

base-motion excitations, 403–404
bearing looseness effects

steam turbine generator, 398–399
electric motor, 399
LP turbine bearing looseness,

400–401
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impact tests for vibration diagnoses,
397–398

parametric excitation, 404–406
rotor balancing, 406

balancing computer code,
412–418

dynamic balance, 407
flexible rotors, 408–410
influence coefficient method

(ICM), 410–412
in-service rotor balancing,

419–421
in-service single-plane balance

shot, 421
rigid rotors, 407–408
static unbalance, 407
turbine generator case study,

418–419
self-excited

misalignment, 377–378
steam whirl, 371–377

structural resonances, 391–393
tilting-pad versus fixed-surface

journal bearings, 401–403
vector turning from modulated

rubs, 384
simplified linear model, 385–391

vertical rotor machines, 381–384
vibration-caused wear, 393–396

Rotor vibration measurement and
acquisition

monitoring and diagnostics,
277–281

signal conditioning, 292
amplitude conventions, 294–295
filters, 293–294

vibration data acquisition
applications, 292
large multibearing machines,

289–291
monitoring, 291–292

vibration signals and associated
sensors

accelerometers, 281–283
displacement transducers,

284–289
velocity transducers, 283–284

Rotor vibration orbit, 288, 316–317

Rotor-based spinning reference
frames, 113

Rotor-relative-to-bearing (stator)
vibration orbits, 154, 411

Rotor–stator rub-impacting, 316,
336–339. See also
Troubleshooting

Rotor-to-stator position, 284
Rotor-to-stator vibration displacement,

302, 303
Rubbing. See Troubleshooting
Rub-impacting

on flexible-rotor test rig, 338
rotor–stator, 336–339

S

Seal flow analysis models, 218
Seal rotor dynamic coefficient data

resources. See Annular seals
Seals. See Annular seals
Seismic sensor, 288
Self-excited dynamic-instability

vibrations, 6
Self-excited instability vibrations,

331–336
internal rotor damping, instability

caused by, 334–336
oil whip, 333
steam whirl, 333–334

Self-excited rotor vibration case studies
misalignment, 377–378
steam whirl

bearing unloaded by nozzle
forces and, 375–377

and swirl brakes, 371–375
Semidefinite systems, 130
Sensors. See Accelerometers; Velocity

transducers; Displacement
Separation of variables method, 20–21
SFD. See Squeeze-film dampers (SFD)
Shaft element

consistent mass matrix, 59–61
distributed mass matrix, 58–59
gyroscopic matrix, 62
lumped mass matrix, 57–58
properties, RDA, 55–56
stiffness matrix, 61–62
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Shaft riders, 284–285
shortcomings of, 285

Shaft-on-bearing impacting, 97–99
Shaker test, mechanical impedance, 204
Shock. See Base-motion excitation
Shop balancing, 406
Signal amplitude conversion, 293
Signal conditioning, 292–295

amplitude conventions, 294–295
filters, 293–294

Simple linear models for LRVs
Jeffcott rotor model, 39–41
point-mass 2-DOF model, 37–39
simple nontrivial 8-DOF model,

41–43
direct approach, 52–55
Lagrange approaches, 44–52

Simple nontrivial 8-DOF model, 41–43
direct approach, 52–55
Lagrange approaches, 44–52

Simply supported beam, 53
Single mass rotor model, 145–149,

152–158, 166, 172, 174, 342
Single uncoupled rotor, 113–115

lumped and distributed mass
matrices, 115–116

distributed mass matrix, 116–117
stiffness matrix, 117–119

Single-peak amplitude, 295
Skew-symmetric parts of coefficient

matrices, 71–75, 82, 226
Sliding velocity term, 185
Smooth-bore seals, 213
Sommerfeld number, 197, 198, 211
Spectrum analyzer and FFT, 308
Spectrum cascade plots, 317–321
Squeeze-film dampers (SFD), 230

with centering springs, 236–237
without centering springs, 237–238
Reynolds-equation-based solutions,

238–239
Squeeze-film term, 185
Stability of

axial flow compressors, 270–272
centrifugal compressors, 260–262
centrifugal pumps. (see

Troubleshooting)
multi-degree-of-freedom models, 19

rotor-bearing systems
computations, 6, 36

steam turbines. (see
Troubleshooting)

Standard rotor vibration analyses,
18–19

Standards for machinery vibration
severity. See Vibration

Static condensation method, 26
Static equilibrium, 199, 203
Static radial force, 314
Static radial force on pump impellers.

See Centrifugal pump
impellers

Static unbalance, 407
Static rotor unbalance. See Unbalance
Statically indeterminate contact

forces, 231
Steady-state harmonic vibration.

See Vibration
Steady-state responses, 89–92
Steady-state sinusoidally forced

systems, 7–8
Steady-state unbalance response, 54
Steam turbines, 35, 65, 100, 113, 226,

263–270, 289, 316–317, 334,
350–352, 398–401

Steam turbine generator, 350, 398–399
Steam turbine power plant condensate

pumps, 384
Steam whirl, 226–227, 263, 333–334

bearing unloaded by nozzle forces
and, 375–377

blade shroud annular seal
contribution, 265–269

blade tip clearance contribution,
264–265

and swirl brakes, 371–375
Steam whirl masked, 101
Stiffness and damping coefficients,

185, 186
data and resources, 196–198

tables of dimensionless
coefficients, 198

perturbation sizes, 189–190
coordinate transformation

properties, 190–192
symmetry of damping array, 192
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Stiffness matrix, 62, 117–119
Stiffness-modulated rub, 387–388
Straight cylindrical roller elements, 230
Stresses, 20
Structural damping. See Damping
Sub-harmonic resonance. See Vibration
Subsynchronous rotor vibrations, 313
Sulzer tests, 259
Swirl breaks, 265, 269, 371–375
Symmetric mass rotor anisotropic

bearings
and disk

different, 172–173
same, 166–172

and pedestals, 174
Symmetric parts of coefficient

matrices, 71–75, 82, 226
Synchronous bandwidth filtering, 312
Synchronous electric motor, 112
Synchronous rotor vibration. See

Vibration
System identification, 203
Systems with nonsymmetric matrices,

71–77

T

Tangential force, 237
Tapered roller elements, 230
Tapered-bore seals, 217
Tensor filtering, 192, 202
Tensor transformation, 190, 191
Thermal distortion, 391
Thomas–Alford forces

coefficient, 264, 271–272
in compressors, 271
in steam turbines, 253, 264, 270

Thresholds of instability, 260, 264
Tilting-pad journal bearings, 192–196

comparison with cylindrical journal
bearings, 193

and grinder spindle, 196
HP turbine, 400
load-direction vibration factors

of, 194
preloaded, 195
three-pad inside-out, 197

Tilting-pad versus fixed-surface
journal bearings, 401–403

Time marching computation, 85
Time–frequency localization, 322. See

also Wavelet transforms (WTs)
Time-rate-of-change, 46–47
Time-varying bearing loads, 302
Time-varying hydraulic forces. See

Dynamic radial hydraulic
impeller forces

Top foil, 244
Torsional rotor vibration (TRV)

analyses, 111–112
coupled rotors, 119–120

branched systems, 126–130
coaxial same-speed coupled

rotors, 120
unbranched systems, 121–126

finite element model, 114, 115
flexibly coupled, 124, 129
four-square gear tester, example,

132–133
gear sets, 121, 124, 126, 127, 132, 133
high-capacity fan, 130–132
large steam turbo-generator,

134–135
versus LRV, 135–137
pulley-belt sets, 121, 127
rigidly coupled, 127–129
rotor-based spinning reference

frames, 113
self-excited instability vibration,

165–173
semidefinite systems, 130
single uncoupled rotor, 113–115

mass matrices, 115–117
stiffness matrix, 117–119

Total solution, 7
Tracking filter, 294, 312. See also Filters
Transverse rotor vibration analyses.

See Lateral rotor vibration
analyses

Trending, 277
TRI. See Turbo Research Inc. (TRI)
Tri-volute pump configurations, 254
Troubleshooting

boiler feed pumps, 354–361
cracked shafts, 342
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Troubleshooting (continued)
critical speed, 324, 333, 349–369
exciters, 337
loose connections, 341
misalignment, 339–340
motors, 355
oil whip, 333
reactor coolant pumps, 342
resonance, 340
rotor-stator rub-impacting, 316,

336–339
self-excited instability vibrations,

331–333
steam turbines, 263–270, 331
steam whirl, 333–334
vibrations, 330–331

TRV. See Torsional rotor vibration
(TRV) analyses

Turbine generator
case study, 418–419
rotor vibration model, 353

Turbine pivoted-pad bearing
configurations, 354

Turbo Research Inc. (TRI), 354
Turbo-machinery impeller and blade

effects
axial flow compressors, 270–272
centrifugal pumps, 251

static impeller force, 251–254
dynamic impeller forces, 255

centrifugal compressors, 260
interaction impeller forces,

257–259
interactive force modeling and

pumps, 262–263
stability criteria, 260–262
unsteady flow dynamic impeller

forces, 255–257
high-pressure steam turbines and

gas turbines
combustion gas turbines, 270
partial admission in steam

turbine impulse stages,
269–270

steam whirl, 263–269
Two-DOF bearing pedestal model, 67
Two-DOF impedance test, 205
Two-DOF models, 13–16

Two-DOF x–y model, 209
Two-plane rigid-rotor balancing.

See Balancing

U

Unbalance
excited rub-impact simulation

model, 326–329
Poincaré mapping of chaotic

response, 328
rotor orbits and chaos-tool

mappings for, 327
response of centrifugal pump,

175–178
rotor mass, 7, 86, 92, 330–331

distribution, 331, 406
dynamic, 330, 407–408
flexible rotors, 408–410
force, 236, 256
response computation, 142–165
static, 407–408

steady-state response computations,
142–165

pedestals and disk, 155–158
mass rotor model, 145–149,

152–155
Campbell diagrams, 163–165
elliptical orbits, 158–163
phase angle and direction of

rotation, 149–152
Unbranched systems, 121–126

complete equations of motion,
124–126

flexible connections, 124
rigid connections, 122–124

Undamped model, 5, 10–11
Undamped natural frequency. See

Natural frequency vibration
Underdamped system, 5, 8. See also

Damping
Unforced, 1-DOF system, 4–6
Unforced underdamped system, 5–6
Ungrooved annular seals for liquids,

215–223, 227
axial momentum equation, 220–222
bulk flow model approach, 219
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circumferential momentum
equation, 219

and journal bearings, comparison
between, 222–223

Lomakin effect, 216–218
seal flow analysis models, 218

Uniform viscosity, 199
Unloaded tilting-pad self-excited

vibration, 94–95
Unsteady flow dynamic impeller

forces, 255–257
U.S. Navy and rotating machinery, 300

V

Vane-passing and blade-passing
effects, 343

Variable viscosity, 199
Vector turning, 337

synchronously modulated rubs, 384
simplified linear model, 385–391

Velocity transducers, 283–284
elementary scheme, 283

Vertical rotor machines, 381–384
Vertical shaker test, 204
Vibration, 3–31

alarm levels, 278
amplitude conventions, 294–295
damped natural frequency, 11
data acquisition, 289–292
decay, 6
frequency, 6–9
harmonic excitation, 9, 27–28
measurement, 277, 411
monitoring, 99, 277, 287, 290, 291
multi-degree-of-freedom models, 6,

10, 13–19
natural frequency, 10–11
one-degree-of-freedom model, 3–13

as approximation, 11–13
damping, 8–10
linearity assumptions, 3–4
self-excited dynamic-instability

vibrations, 6
steady-state sinusoidally forced

systems, 7–8
undamped model, 10–11
unforced system, 4–6

portable analyzers, 291–292
resonance, 10, 19
severity acceptance codes, 300–301
subharmonic, 91, 316
subsynchronous, 100, 245, 264, 270,

372, 375, 376, 418
synchronous, 100, 256, 294, 330, 341,

342, 350, 388, 398, 418
trip levels, 278

Vibration absorber, 368
Vibration cues

Bode diagram, 317–318
cascade plot, 318–321, 319, 320
chaos analysis tools, 325–330
FFT spectrum, 308–310
polar plot, 318, 319
rotor orbit trajectories, 310–317
symptoms and identification

cracked shafts, 342
mechanically loose

connections, 341
misalignment, 339–340
resonance, 340
rolling-element bearings,

342–343
rotor mass unbalance vibration,

330–331
rotor–stator rub-impacting,

336–339
self-excited instability vibrations,

331–336
vane-passing and blade-passing

effects, 343
vibration trending and baselines,

307–308
wavelet transforms, 321–325

Vibration damping, 9
Vibration data acquisition

applications, 292
large multibearing machines,

289–291
monitoring, 291–292

Vibration severity guidelines, 297
acceptance criteria, 300–301
bearing cap vibration displacement,

298–299
shaft displacement criteria,

301–302
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Virtual control rooms, 290
vibration levels at bearings, 291

Virtual sensors, 302
Viscosity, 65, 186, 199, 200, 211,

221, 222
Viscous damping, 24

W

Water lubricated bearing, 383, 384
Wavelet transforms (WTs), 279,

321–325
Westinghouse approach, 383–384

WFT. See Windowed Fourier transform
(WFT)

Whirl frequency ratio, 171
Windowed Fourier transform (WFT),

322–323
time windowing, 322

Wind tunnel fan, 130–132
Wrist pin bearings, 103
WTs. See Wavelet transforms (WTs)

Z

Zeros, in matrices, 17–18



(a)

(b)

FIGURE 2.15 Photos from the two 1970s catastrophic failures of large 600 MW steam turbine-
generator sets. Using nonlinear rotor dynamic response computations, failures could be
potentially traced to the large unbalance from loss of one or more large LP turbine blades at
running speed, coupled with behavior of fixed-arc journal bearings during large unbalance.
(a) LP steam turbine outer casing. (b) Brushless exciter shaft. (c) Generator shaft. (d) LP steam
turbine last stage.



(c)

(d)

FIGURE 2.15 Continued.



Wrist pin
and bearing

FIGURE 2.25 Piston and connecting rod of a small reciprocating compressor.
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FIGURE 5.7 Next-generation centerless grinder spindle.



FIGURE 5.8 Photo of three-pad inside-out PPJB with three copper pads to facilitate heat
removal; three steel thrust sectors.
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FIGURE 10.4 Predicted shaft unbalance vibration amplitude at bearing no. 1: At the nominal
bearing static unit load of 200 psi (13.6 bar), OEM radial bearing stiffness K is computed to be
1.98 × 106 lb/in. (254 × 106 N/m).

FIGURE 10.11 Proxy probe setup.



Top of motor structure

Flexibly supported
absorber mass (red)

Adjustable-length flexible rods
support of absorber mass (blue) 

FIGURE 10.19 Vibration absorber (blue and red) atop pump motor.

Swirl brakes
(Axial vanes)

FIGURE 11.3 HP turbine swirl brakes on a 1300 MW steam turbine.



FIGURE 12.7 Air preheater drive/platform with overhang support bars.

Carbon
brush pair Preload springs 

FIGURE 12.10 Carbon brush pair in holder with preload springs.



Simulated commutator wear after 800 Hours
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FIGURE 12.12 Simulated commutator radial wear for APU DC starter-generator.
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